The Python/C API
Wydanie 3.9.21

Guido van Rossum
and the Python development team

grudnia 09, 2024

Python Software Foundation
Email: docs@python.org

Spis tresci

1 Wprowadzenie 3
.1 Codingstandards e e e e e e e e e 3

1.2 Pliki Wiaczania-zang. Include L o 3

1.3 Useful macros o o i i e e e e 4

1.4 Przedmioty, ich Rodzaje i Liczby Odwotann 6
1.4.1 Liczbyodniesien e e e 6

LA2 TYPY ¢ o v o e e e e e e e e e e e e e 9

1.5 Sytuacje Wyjatkowe oL e e e e e e e 9

1.6 Zalaczanie programu interpretujacego jezyk pytonowskio oL 11

1.7 Odpluskwiajace Budowy e 12

2 Stable Application Binary Interface 13
3 The Very High Level Layer 15
4 Reference Counting 21
5 Obsluga sytuacji wyjatkowych 23
5.1 Printingandclearing L 23

5.2 RaiSing eXCeptions o i i e e e e e e e e e e e e 24

5.3 Issuing Warningso i i e e e e e e e e e e e e e e e e e e e 26

5.4 Querying the error indicator L L. o e e e e e e e e 27

5.5 SignalHandling e e e 29

5.6 Exception Classes e e e 29

5.7 Przedmioty Sytuacji Wyjatkowych L 29

5.8 Unicode Exception Objects o i it e e e 30

5.9 Kontrola Rekursji o e e e e e e e e 31
5.10 Sztandarowe Sytuacje Wyjatkoweo e e e 32
5.11 Standard Warning Categories e e e 34

6 Utilities 35
6.1 Operating System Utilities L e 35

6.2 SystemFunctions L e 37

6.3 Process Control e e e 39
6.4 Importing Modules e 40

6.5 Datamarshalling SUpport L e e e e e e e e e e e e e 43

6.6 Pobieranie kolejnych rzeczy podanych na wejSciu i konstruowanie warto$ci. 44
6.6.1 Parsowanie argumentOw L. Lo e 44

6.6.2 Budowanie WartoSCio e e e e e 50

6.7 String conversion and formatting L. L 51

6.8 Reflection 53

6.9 Codec registry and support functions v . i it e e e e e e e e e 54
6.9.1 Codeclookup APL. e e e 54
6.9.2 Registry API for Unicode encoding error handlers 54
Warstwa obiektow abstrakcyjnych 57
7.1 ObjectProtocol e e e e e e 57
7.2 Call Protocol e 61
7.2.1 Thetp_call Protocol e e e 61
7.2.2 The Vectorcall Protocol 61
7.23 Object Calling API e 63
7.2.4 Call Support APT o e e e e 65
7.3 Number Protocol 65
7.4 Sequence Protocol e 68
7.5 Mapping Protocol e e e e 70
7.6 Tterator Protocol e 71
7.7 Buffer Protocol L e e 71
7.7.1 Bufferstructure e 72
7.7.2 Bufferrequesttypes L e 74
7773 Complex arrays e e 76
7.7.4 Buffer-related functions 77
7.8 OldBuffer Protocol e 78
Concrete Objects Layer 79
8.1 Fundamental Objects e e e 79
8.1.1 Type ObJects o v v i i e e e e e e e 79
8.1.2 TheNone Object i 82
8.2 Numeric Objects o o e e e e 83
8.2.1 Integer Objects o e e e e e e e e 83
822 Boolean ObJects o it e e e e e 86
8.2.3 Floating Point Objects e e 86
8.2.4 Objekt Liczby Zespolonejo o 87
83 Sequence ObJeCts L e e e e e e 88
8.3.1 BytesObjects e e e e e e 88
832 Byte Array Objects e e e 90
8.3.3 Unicode Objectsand Codecs oo v v ittt e e 91
8.3.4 Tuple Objects i v v i e e e e e e e e e e e e e e 109
8.3.5 StructSequence Objects L i e e e e e e e e e 110
8.3.6 ListObjects i e e e e e e e 112
8.4 Container Objects L 113
8.4.1 Dictionary Objects e e e e e 113
8.4.2 SetODbJects o i e e e e e e e e e e e e 115
8.5 Function Objects o o v i e e e e e e e e e e e e 117
8.5.1 Function Objects e e 117
8.5.2 Imstance Method Objects 118
853 Method Objects o o e e 118
854 CellObJects . . . v v vt e e e e e e e e e e e 119
8.5.5 Code ObJeCts v v i i e e e e e e e e e e 119
8.6 Other ObJECtS v ot i e e e e e e e e e e e e e e 120
8.6.1 FileObjects e 120
8.6.2 Module Objects i e e e e e 121
8.6.3 Tterator Objects o o i e e e e e e 127
8.6.4 Descriptor ODJECES v v v v e e e e e e e e e e e e e e e 127
8.6.5 Slice ObjJects o o e e e e e e e e e 128
8.6.6 EllipsisObject 129
8.6.7 MemoryViewobjects L 129
8.6.8 Weak Reference Objects e 130
8.6.9 Capsules e e e e e e e 131
8.6.10 Generator Objects v v i i e e e e e e e e e e e e 132

8.6.11 Coroutine ObJects v v v it e e e e e e e e e e e e e e 133
8.6.12 Context Variables Objects o v v it e e e e e e e 133
8.6.13 DateTime Objects o v i i e e e e e e e e e 134
8.6.14 Objectsfor Type Hinting 137

9 Initialization, Finalization, and Threads 139
9.1 Before Python Initialization 139
9.2 Global configuration variables Lo L 140
9.3 Initializing and finalizing the interpretero 142
9.4 Process-wide parameters v . v et e 143
9.5 Thread State and the Global Interpreter Lock 146
9.5.1 Releasing the GIL from extensioncode, 146

9.52 Non-Pythoncreated threads 147

9.53 Cautionsaboutfork() e e 147

9.54 High-level APT e 148

9.5.5 Low-level APL e 150

0.6 Sub-interpreter SUPPOTL . . . v v v v v e 152
9.6.1 Bugsandcaveats 153

9.7 Asynchronous Notifications L. e 154
9.8 Profilingand Tracing e e e 154
9.9 Advanced Debugger SUPPOTt e e e e e e e e e 156
9.10 Thread Local Storage Support 0 o i e e e e e e e e e 156
9.10.1 Thread Specific Storage (TSS) APT 156
9.10.2 Thread Local Storage (TLS) APT 157

10 Python Initialization Configuration 159
10.1 PyWideStringList o L e e e e e e e 160
10.2 PyStatus o e e e e e e 161
10.3 PyPreConfig e e e 162
10.4 Preinitialization with PyPreConfig 163
10.5 PyConfig o o o e e e 164
10.6 Initialization with PyConfig e 168
10.7 Isolated Configuration o i i e e e e e e e 170
10.8 Python Configuration e e e 170
10.9 Path Configuration i i e e e e e 171
10.10 Py_RunMain() 0o e e e e e e 172
10.11 Py_GetArgCArgv() . . o v o o e e e e e e e e e e e e e e e e e e e 172
10.12 Multi-Phase Initialization Private Provisional APT 172
11 Zarzadzanie Pamiecia 175
I1.1 Skorowidz e e e e 175
11.2 Raw Memory Interface e 176
11.3 SprzegPamieci o L e e 177
11.4 Objectallocators o v v i v e et e e e e e e e 178
11.5 Default Memory Allocators o v v v i e e e e e e e e e e e e e e e 179
11.6 Customize Memory ALlOCators o o v v i i e e e e e e e e e 179
11.7 The pymalloc allocator e 181
11.7.1 Customize pymalloc Arena Allocator, 181

11.8 tracemalloc C APL e e e e e 181
11.9 Przyklady o o e e e e e e 182
12 Object Implementation Support 183
12.1 Allocating Objectsonthe Heap e 183
12.2° Wspdlne struktury obiektowo 184
12.2.1 Baseobjecttypes and macros e e e e e 184
12.2.2 Implementing functions and methods 185

12.2.3 Accessing attributes of eXtension types oo e i e e e 187

12.3 Type ObJeCts . . . o v v v e e e e e e e e 189
123.1 QuickReference 189

12.3.2 PyTypeObject Definition e 194

1233 PyObject SIots o o o e e e e e e e 195
12.3.4 PyVarObject SIOts o o o o e e e e e e e 196
12.3.5 PyTypeObject Slots o o e e e 196
12.3.6 Heap Types o o o i e e e e e e e e 212
12.4 Number Object Structures o o vt e e e e e e e 212
12.5 Mapping Object StruCtures v v v v e o e e e e e e e e e e e e e e e e e e e 214
12.6 Sequence Object SLIUCIUIES v v v v v v it e e e e e e e e e e e e e e e e 214
12.7 Buffer Object Structures e e e e 215
12.8 Async Object Structures ottt 216
12.9 Slot Type typedefs e e 217
12,10 Exampleso o e e e e 218
12.11 Supporting Cyclic Garbage Collection i ittt e 220
13 API and ABI Versioning 223
A Glosariusz 225
B O tej dokumentacji 239
B.1 Wspéttwoérey dokumentacji Pythona00 o 239
C Historia i zapisy prawne 241
C.1 Historia programu v v v v v e 241
C.2 Zasady i warunki postgpowania z programem j¢zyka pytonowskiego i ogdlnie jego uzycia. 242
C.2.1 PSFLICENSE AGREEMENT FOR PYTHON 39.21. 243
C.2.2 BEOPEN.COM LICENSE AGREEMENT FOR PYTHON2.0 244
C.2.3 CNRILICENSE AGREEMENT FOR PYTHON 1.6.1 245
C.2.4 CWI LICENSE AGREEMENT FOR PYTHON 0.9.0 THROUGH 1.2 246

C.2.5 ZERO-CLAUSE BSD LICENSE FOR CODE IN THE PYTHON 3.9.21 DOCUMEN-
TATION 246
C.3 Licenses and Acknowledgements for Incorporated Software 246
C3.1 Mersenne TWIStEr o v v v ittt e e e e e e 246
C32 Sockets e e 247
C.3.3 Asynchronous socket Services v v v i i i e e e e e e 248
C34 Cookiemanagementt e e 248
C.3.5 EXecution traCing v v v ittt e e e e e e e e e e e e 249
C.3.6 UUencode and UUdecode functionso i i i 249
C3.7 XML Remote Procedure Calls 250
C.3.8 test_epoll L e e e e e e 250
C.3.9 Selectkqueue e e e e 251
C3.10 SipHash24 e e 251
C3.11 strtodanddtoa. oL e e 252
C3.12 OpenSSL o e e 252
C3U13 eXPat. . v v v e e e e e e e e e e e e e e e e e 254
C3.14 Hbfi e 255
C3.05 zlib . . . e 255
C3.16 cfuhash e 256
C3.17 Hbmpdec e e e e 256
C3.08 WI3CCIANTESt SUITE . . o v v v v v e 257
D Prawa autorskie 259
Indeks 261

The Python/C API, Wydanie 3.9.21

This manual documents the API used by C and C++ programmers who want to write extension modules or embed
Python. It is a companion to extending-index, which describes the general principles of extension writing but does
not document the API functions in detail.

Spis tresci 1

The Python/C API, Wydanie 3.9.21

2 Spis tresci

rozpzAt 1

Wprowadzenie

Interfejs programowania aplikacji w Pythonie daje programistom jezykéw C i C++ dostep do programu interpretu-
jacego polecenia jezyka pytonowskiego na wielu poziomach. Sprzgg (API) jest rtéwno uzyteczny z poziomu C++ ale
dla porzadku jest zwykle okreslany mianem sprzggu pomigdzy jezykami pytonowskim a C (z ang. - Python/C API).
Istnieja dwie zasadniczo rézne przyczyny dla uzycia interfejsu migdzy jezykami Python i C. Pierwsza przyczyna
jest pisanie modutéw rozszerzajqcych dla szczeg6lnych powoddw; sa to moduty jezyka C, ktére rozszerzaja interpre-
ter Pythona. To jest zwykle najczgstsze uzycie. Druga przyczyng jest uzycie Pythona jako komponentu wigkszego
programu; ta technika jest zwykle okre§lana mianem zataczania - z ang. - embedding w aplikacji.

Writing an extension module is a relatively well-understood process, where a ,,cookbook™ approach works well. There
are several tools that automate the process to some extent. While people have embedded Python in other applications
since its early existence, the process of embedding Python is less straightforward than writing an extension.

Wiele zadan sprzegu (API) jest uzytecznych niezaleznie od tego czy zalaczasz, czy tez rozszerzasz program inter-
pretujacy jezyk pytonowski; co wigcej, wigkszos¢ aplikacji ktére zalacza program interpretujacy polecenia jezyka
pytonowskiego potrzebuje takze szczegdlnych rozszerzen, wiec prawdopodobnie jest dobrym pomystem zaznajo-
mienie si¢ z pisaniem rozszerzenia przed proba zataczenia jezyka pytonowskiego w prawdziwej aplikacji.

1.1 Coding standards

If you’re writing C code for inclusion in CPython, you must follow the guidelines and standards defined in PEP 7.
These guidelines apply regardless of the version of Python you are contributing to. Following these conventions is
not necessary for your own third party extension modules, unless you eventually expect to contribute them to Python.

1.2 Pliki Wigczania - z ang. Include

Wszystkie zadania, definicje typu i makropolecen konieczne do uzycia sprzggu miedzy jezykami pytonowskim i C
sa wlaczane do Zrédet w kodzie uzytkownika przez nastepujacg linijke:

#define PY_SSIZE_T CLEAN
#include <Python.h>

This implies inclusion of the following standard headers: <stdio.h>, <string.h>, <errno.h>,<limits.
h>, <assert.h>and <stdlib.h> (if available).

https://www.python.org/dev/peps/pep-0007

The Python/C API, Wydanie 3.9.21

Informacja: Odkad jezyk pytonowski moze definiowaé pewne definicje preprocesora, ktére wptywaja na pliki na-
gléwkowe na niektérych systemach, musisz zataczy¢ plik Python.h zanim jakiekolwiek standardowe nagtowki
zostang zataczone.

It is recommended to always define PY_SSIZE_T_CLEAN before including Python . h. See Pobieranie kolejnych
rzeczy podanych na wejsciu i konstruowanie wartosci. for a description of this macro.

Wszystkie widoczne dla uzytkownika nazwy okreSlone w Python.h (z wyjatkiem tych okre§lonych przez zataczone
standardowe pliki nagtéwkowe) maja jeden z przedrostkéw Py lub _Py. Nazwy rozpoczynajace si¢ od _Py stuza
do wewng¢trznego uzytku przez urzeczywistnienie programu interpretujacego jezyka pytonowskiego i nie powinno
by¢ uzywane przez piszacych rozszerzenia. Nazwy czlonkow struktury nie maja zarezerwowanych przedrostkéw.

Informacja: User code should never define names that begin with Py or _Py. This confuses the reader, and jeopar-
dizes the portability of the user code to future Python versions, which may define additional names beginning with
one of these prefixes.

The header files are typically installed with Python. On Unix, these are located in the directories prefix/
include/pythonversion/ and exec_prefix/include/pythonversion/, where prefix and
exec_prefix are defined by the corresponding parameters to Python’s configure script and version is ' $d.
%d' % sys.version_info[:2]. On Windows, the headers are installed in prefix/include, where
prefix is the installation directory specified to the installer.

Aby zalaczy¢ pliki nagléwkowe, umies¢ oba katalogi (jesli sa r6zne) na liScie przeszukiwanych $ciezek poszukiwania
plikéw nagtéwkowych. Nie umieszczaj katalogéw nadrz¢dnych na $ciezkach poszukiwania plikéw nagtéwkowych po
czym wpisujac #include <pythonX.Y/Python.h>; To spowoduje przerwanie na realizacjach wieloplatfor-
mowych gdyz niezalezne od platformy nagléwki dostgpne w katalogu przedrostek zawiera pliki nagtéwkowe
szczegOlne dla pewnych platform z katalogu exec_prefix.

C++ users should note that although the API is defined entirely using C, the header files properly declare the entry
points to be extern "C". As a result, there is no need to do anything special to use the API from C++.

1.3 Useful macros

Several useful macros are defined in the Python header files. Many are defined closer to where they are useful (e.g.
Py_RETURN_NONE). Others of a more general utility are defined here. This is not necessarily a complete listing.

Py_UNREACHABLE ()
Use this when you have a code path that cannot be reached by design. For example, in the default : clause
in a switch statement for which all possible values are covered in case statements. Use this in places where
you might be tempted to put an assert (0) or abort () call.

In release mode, the macro helps the compiler to optimize the code, and avoids a warning about unreachable
code. For example, the macro is implemented with __builtin_unreachable () on GCC in release
mode.

A use for Py_ UNREACHARBRLE () is following a call a function that never returns but that is not declared
_Py_NO_RETURN.

If a code path is very unlikely code but can be reached under exceptional case, this macro must not be used.
For example, under low memory condition or if a system call returns a value out of the expected range. In this
case, it’s better to report the error to the caller. If the error cannot be reported to caller, Py_FatalError ()
can be used.

Nowe w wersji 3.7.

Py_ABS (x)
Return the absolute value of x.

Nowe w wersji 3.3.

4 Rozdziat 1. Wprowadzenie

The Python/C API, Wydanie 3.9.21

Py MIN(X,y)
Return the minimum value between x and y.

Nowe w wersji 3.3.

Py MAX (X,y)
Return the maximum value between x and y.

Nowe w wersji 3.3.

Py STRINGIFY (X)
Convert x to a C string. E.g. Py_ STRINGIFY (123) returns "123".

Nowe w wersji 3.4.

Py_MEMBER_SIZE (type, member)
Return the size of a structure (t ype) member in bytes.

Nowe w wersji 3.6.

Py CHARMASK (c)
Argument must be a character or an integer in the range [-128, 127] or [0, 255]. This macro returns c cast to
anunsigned char.

Py_GETENV (s)
Like getenv(s), but returns NULL if -E was passed on the command line (i.e. if
Py_IgnoreEnvironmentFlag is set).

Py_UNUSED (arg)
Use this for unused arguments in a function definition to silence compiler warnings. Example: int
func(int a, int Py_UNUSED (b)) { return a; }.

Nowe w wersji 3.4.

Py_DEPRECATED (version)
Use this for deprecated declarations. The macro must be placed before the symbol name.

Example:

Py_DEPRECATED (3.8) PyAPI_FUNC (int) Py_OldFunction (wvoid);

Zmienione w wersji 3.8: MSVC support was added.

PyDoc_STRVAR (name, str)
Creates a variable with name name that can be used in docstrings. If Python is built without docstrings, the
value will be empty.

Use PyDoc_ STRVAR for docstrings to support building Python without docstrings, as specified in PEP 7.

Example:

PyDoc_STRVAR (pop_doc, "Remove and return the rightmost element.");

static PyMethodDef deque_methods[] = {
VIR
{"pop", (PyCFunction)deque_pop, METH_NOARGS, pop_doc},
VY2

PyDoc_STR (str)
Creates a docstring for the given input string or an empty string if docstrings are disabled.

Use PyDoc_ STR in specifying docstrings to support building Python without docstrings, as specified in PEP
7.

Example:

1.3. Useful macros 5

https://www.python.org/dev/peps/pep-0007
https://www.python.org/dev/peps/pep-0007
https://www.python.org/dev/peps/pep-0007

The Python/C API, Wydanie 3.9.21

static PyMethodDef pysglite_row_methods[] = {
{"keys", (PyCFunction)pysqglite_row_keys, METH_NOARGS,
PyDoc_STR("Returns the keys of the row.")},
{NULL, NULL}
bi

1.4 Przedmioty, ich Rodzaje i Liczby Odwotan

Most Python/C API functions have one or more arguments as well as a return value of type PyOb ject *. This type
is a pointer to an opaque data type representing an arbitrary Python object. Since all Python object types are treated
the same way by the Python language in most situations (e.g., assignments, scope rules, and argument passing), it
is only fitting that they should be represented by a single C type. Almost all Python objects live on the heap: you
never declare an automatic or static variable of type PyOb ject, only pointer variables of type PyOb ject * can
be declared. The sole exception are the type objects; since these must never be deallocated, they are typically static
PyTypeObject objects.

Wszystkie przedmioty jezyka pytonowskiego (nawet liczby catkowite jezyka pytonowskiego) maja rodzaj i liczbe
odniesieni. Typ przedmiotu okresla jakiego rodzaju przedmiot to jest (np. liczba catkowita, lista, lub zadanie zde-
finiowane przez uzytkownika; jest wiele wigcej jak wyjasniono w types). Dla kazdego z dobrze-znanych rodzajéw
istnieje makropolecenie sprawdzajace czy przedmiot jest tego rodzaju; na przyklad, PyList_Check (a) jest
prawdziwe wtedy (i tylko wtedy) gdy przedmiot na ktéry wskazuje a jest lista z jgzyka pytonowskiego.

1.4.1 Liczby odniesien

Liczba odniesien jest istotna, gdyz dzisiejsze komputery maja skoficzony (i zwykle powaznie ograniczony) rozmiar
pamigci; liczy ona jak wiele réznych miejsc istnieje, ktre przechowuja odniesienie do przedmiotu. Takie miejsce
moze by¢ innym przedmiotem, zmienng C nadrzednego poziomu (lub statyczng), lub lokalng zmienng w jakim§
zadaniu jezyka C. Gdy liczba odniesient do przedmiotu staje si¢ réwna zero, przedmiot jest zdejmowany z pamigci.
Jesli zawiera odniesienia do innych przedmiotéw liczba odniesieri do nich jest obnizana po jednym dla kazdego. Te
inne przedmioty moga by¢ zdejmowane z pamigci w konsekwencji, jesli obnizenie liczby odniesiefi do nich spowoduje
ze liczba odniesieni stanie si¢ réwna zero, itd. (Istnieje doS¢ oczywisty problem z przedmiotami ktére wzajemnie si¢
odnosza do siebie; na razie rozwigzaniem jest ,,prosze¢ tak nie robié.”)

Reference counts are always manipulated explicitly. The normal way is to use the macro Py_ TNCREF () to incre-
ment an object’s reference count by one, and Py_ DECREF () to decrement it by one. The Py DECREF () macro
is considerably more complex than the incref one, since it must check whether the reference count becomes zero
and then cause the object’s deallocator to be called. The deallocator is a function pointer contained in the object’s
type structure. The type-specific deallocator takes care of decrementing the reference counts for other objects con-
tained in the object if this is a compound object type, such as a list, as well as performing any additional finalization
that’s needed. There’s no chance that the reference count can overflow; at least as many bits are used to hold the
reference count as there are distinct memory locations in virtual memory (assuming sizeof (Py_ssize_t) >=
sizeof (void*)). Thus, the reference count increment is a simple operation.

Nie jest konieczne zwigkszanie zwigkszanie liczby odniesiert do przedmiotu dla kazdej lokalnej zmiennej ktéra za-
wiera wskaznik na przedmiot. Teoretycznie, liczba odniesieri do przedmiotu zwigksza si¢ o jeden gdy zmienna jest
zmuszana do wskazywania nafi i jest zmniejszana o jeden gdy zmienna wychodzi z widoku. Jednakze te dwa dziatania
wykluczaja si¢ nawzajem, wigc ostatecznie liczba odniesieni nie ulega zmianie. Jedynym prawdziwym powodem uzy-
cia liczby odniesien jest aby uniemozliwi¢ zdjgcie z pamigci przedmiotu tak dlugo jak nasza zmienna nan wskazuje.
Jesli wiemy, Zze istnieje przynajmniej jedno inne odniesienie do przedmiotu, ktére zyje tak dlugo jak nasza zmienna,
nie ma potrzeby zwigkszania liczby odniesieni tymczasowo. Istotna sytuacja gdzie to si¢ pojawia jest w obiektach
ktére sa przekazywane jako parametry do zadari C w modutach rozszerzajacych ktére sa wywolywane przez polece-
nia jezyka pytonowskiego; mechanizm wywolania gwarantuje przytrzymanie odniesienia do kazdego parametru na
czas wywotania zadania z tym parametrem.

However, a common pitfall is to extract an object from a list and hold on to it for a while without incrementing its
reference count. Some other operation might conceivably remove the object from the list, decrementing its reference
count and possibly deallocating it. The real danger is that innocent-looking operations may invoke arbitrary Python

6 Rozdziat 1. Wprowadzenie

The Python/C API, Wydanie 3.9.21

code which could do this; there is a code path which allows control to flow back to the user from a Py_ DECREF (),
so almost any operation is potentially dangerous.

A safe approach is to always use the generic operations (functions whose name begins with PyObject_,
PyNumber_, PySequence_ or PyMapping_). These operations always increment the reference count of the
object they return. This leaves the caller with the responsibility to call Py DECREF () when they are done with the
result; this soon becomes second nature.

Szczegoty Liczby Odniesien

The reference count behavior of functions in the Python/C API is best explained in terms of ownership of references.
Ownership pertains to references, never to objects (objects are not owned: they are always shared). ,,Owning a refe-
rence” means being responsible for calling Py_DECREF on it when the reference is no longer needed. Ownership
can also be transferred, meaning that the code that receives ownership of the reference then becomes responsible for
eventually decref’ing it by calling Py_ DECREF () or Py_XDECREEF () when it’s no longer needed—or passing on
this responsibility (usually to its caller). When a function passes ownership of a reference on to its caller, the caller is
said to receive a new reference. When no ownership is transferred, the caller is said to borrow the reference. Nothing
needs to be done for a borrowed reference.

Idac dalej, gdy wywotujace zadanie przekazuje odniesienie do przedmiotu, istnieja dwie mozliwosci: zadanie kradnie
odniesienie do przedmiotu, lub nie kradnie go. Kradniecie odniesienia oznacza, ze gdy przekazujesz odniesienie do
zadania, to zadanie przyjmuje, ze teraz ono posiada odniesienie i nie jeste$ za nie odpowiedzialny ani chwili diuzej.

Few functions steal references; the two notable exceptions are PyList_SetItem() and
PyTuple_SetItem(), which steal a reference to the item (but not to the tuple or list into which the item
is put!). These functions were designed to steal a reference because of a common idiom for populating a tuple or
list with newly created objects; for example, the code to create the tuple (1, 2, "three") could look like this
(forgetting about error handling for the moment; a better way to code this is shown below):

PyObject *t;

t = PyTuple_New
PyTuple_SetItem
PyTuple_SetItem
PyTuple_SetItem

3);

t, 0, PyLong_FromLong(lL));

t, 1, PyLong_FromLong(2L));

t, 2, PyUnicode_FromString("three"));

Here, PyLong FromLong () returns a new reference which is immediately stolen by PyTuple SetItem().
‘When you want to keep using an object although the reference to it will be stolen, use Py_ TNCREF () to grab another
reference before calling the reference-stealing function.

Incidentally, PyTuple_SetItem() is the only way to set tuple items; PySequence_SetItem() and
PyObject_SetItem() refuse to do this since tuples are an immutable data type. You should only use
PyTuple_SetItem/() for tuples that you are creating yourself.

Equivalent code for populating a list can be written using PyList_New () and PyList_SetItem().

However, in practice, you will rarely use these ways of creating and populating a tuple or list. There’s a generic
function, Py_BuildValue (), that can create most common objects from C values, directed by a format string.
For example, the above two blocks of code could be replaced by the following (which also takes care of the error
checking):

PyObject *tuple, *1list;

tuple = Py_Buildvalue (" (iis)", 1, 2, "three");
list = Py_Buildvalue("[iis]", 1, 2, "three");

It is much more common to use PyObject_SetItem () and friends with items whose references you are only
borrowing, like arguments that were passed in to the function you are writing. In that case, their behaviour regarding
reference counts is much saner, since you don’t have to increment a reference count so you can give a reference away
(,have it be stolen”). For example, this function sets all items of a list (actually, any mutable sequence) to a given
item:

1.4. Przedmioty, ich Rodzaje i Liczby Odwotan 7

The Python/C API, Wydanie 3.9.21

int
set_all (PyObject *target, PyObject *item)
{

Py_ssize_t i, n;

n = PyObject_Length (target);
if (n < 0)
return -1;
for (i = 0; 1 < n; i++) {
PyObject *index = PyLong_FromSsize_t (i);
if (!index)
return -1;
if (PyObject_SetItem(target, index, item) < 0) {
Py_DECREF (index) ;
return -1;
}
Py_DECREF (index) ;
}

return 0O;

The situation is slightly different for function return values. While passing a reference to most functions does not
change your ownership responsibilities for that reference, many functions that return a reference to an object give
you ownership of the reference. The reason is simple: in many cases, the returned object is created on the fly, and the
reference you get is the only reference to the object. Therefore, the generic functions that return object references, like
PyObject_GetItem() and PySequence_GetItem (), always return a new reference (the caller becomes
the owner of the reference).

It is important to realize that whether you own a reference returned by a function depends on which function you call
only — the plumage (the type of the object passed as an argument to the function) doesn't enter into it! Thus, if you
extract an item from a list using PyList_GetItem (), you don’t own the reference — but if you obtain the same
item from the same list using PySequence_GetItem () (which happens to take exactly the same arguments),
you do own a reference to the returned object.

Here is an example of how you could write a function that computes the sum of the items in a list of integers; once
using PyList_GetItem (), and once using PySequence_GetItem().

long

sum_list (PyObject *1list)

{
Py_ssize_t i, n;
long total = 0, value;
PyObject *item;

n = PyList_Size(list);
if (n < 0)
return -1; /* Not a list */
for (i = 0; i < n; i++) {
item = PyList_GetItem(list, 1); /* Can't fail */
if (!PyLong_Check (item)) continue; /* Skip non-integers */
value = PyLong_AsLong (item);
if (value == -1 && PyErr_Occurred())
/* Integer too big to fit in a C long, bail out */
return -1;
total += wvalue;
3

return total;

long
sum_sequence (PyObject *sequence)

(ciag dalszy na nastgpnej stronie)

8 Rozdziat 1. Wprowadzenie

The Python/C API, Wydanie 3.9.21

(kontynuacja poprzedniej strony)

Py_ssize_t i, nj;
long total = 0, value;
PyObject *item;
n = PySequence_Length (sequence) ;
if (n < 0)
return -1; /* Has no length */

for (i = 0; 1 < n; i++) |
item = PySequence_GetItem(sequence, 1i);
if (item == NULL)

return -1; /* Not a sequence, or other failure */
if (PyLong_Check (item)) {
value = PyLong_AsLong (item);
Py_DECREF (item) ;
if (value == -1 && PyErr_Occurred())
/* Integer too big to fit in a C long, bail out */
return -1;
total += wvalue;
}
else {
Py_DECREF (item); /* Discard reference ownership */

}

return total;

1.4.2 Typy

There are few other data types that play a significant role in the Python/C API; most are simple C types such as
int, long, double and char*. A few structure types are used to describe static tables used to list the functions
exported by a module or the data attributes of a new object type, and another is used to describe the value of a complex
number. These will be discussed together with the functions that use them.

Py ssize_t
A signed integral type such that sizeof (Py_ssize_t) == sizeof (size_t). C99 doesn’t define
such a thing directly (size_t is an unsigned integral type). See PEP 353 for details. PY_SSIZE_T_MAX is the
largest positive value of type Py_ssize_t.

1.5 Sytuacje Wyjatkowe

Programujacy komputer w jezyku pytonowskim musi sobie zaprzataé gtowe tylko sytuacjami wyjatkowymi tylko
jesli szczegblna obstuga btedéw jest konieczna; Nieobstuzone wyjatki sa automatycznie przesylane do zadania wy-
wolujacego, potem do zadania ktére wywotato tamto zadanie, i tak dalej, dopdki nie natrafi na program interpretujacy
najwyzszego poziomu, gdzie sa przekazywane uzytkownikowi wraz z wypisem kolejnych wywotari odtozonych na
stercie.

For C programmers, however, error checking always has to be explicit. All functions in the Python/C API can raise
exceptions, unless an explicit claim is made otherwise in a function’s documentation. In general, when a function
encounters an error, it sets an exception, discards any object references that it owns, and returns an error indicator.
If not documented otherwise, this indicator is either NULL or —1, depending on the function’s return type. A few
functions return a Boolean true/false result, with false indicating an error. Very few functions return no explicit error
indicator or have an ambiguous return value, and require explicit testing for errors with PyErr_ Occurred().
These exceptions are always explicitly documented.

Exception state is maintained in per-thread storage (this is equivalent to using global storage in an unthreaded appli-
cation). A thread can be in one of two states: an exception has occurred, or not. The function PyErr_Occurred ()
can be used to check for this: it returns a borrowed reference to the exception type object when an exception has

1.5. Sytuacje Wyjatkowe 9

https://www.python.org/dev/peps/pep-0353

The Python/C API, Wydanie 3.9.21

occurred, and NULL otherwise. There are a number of functions to set the exception state: PyErr_SetString ()
is the most common (though not the most general) function to set the exception state, and PyErr_Clear () clears
the exception state.

The full exception state consists of three objects (all of which can be NULL): the exception type, the corresponding
exception value, and the traceback. These have the same meanings as the Python result of sys.exc_info();
however, they are not the same: the Python objects represent the last exception being handled by a Python try ...
except statement, while the C level exception state only exists while an exception is being passed on between C
functions until it reaches the Python bytecode interpreter’s main loop, which takes care of transferring it to sys.
exc_info () and friends.

Zauwaz ze poczynajac od jezyka pytonowskiego w wersji 1.5 preferowana, bezpiecznym dla watkéw sposobem
na dostep do stanu wyjatku z poziomu kodu napisanego w jezyku pytonowskim jest wezwanie zadania sys.
exc_info (), ktére zwraca okreslony-dla-watku stan wyjatku dla kodu napisanego w jezyku pytonowskim. Poza
tym skladnia obu sposobéw na dostep do stanu sytuacji wyjatkowej zmienita si¢ tak, ze zadanie ktére ztapie wy-
jatek zachowa i przywréci swoj stan wyjatku tak, aby zachowaé stan wyjatku wywotujacego zadanie. To dziatanie
zapobiega typowym btedom w obstudze sytuacji wyjatkowych powodowanych przez niewinnie-wygladajace zadania
nadpisujace sytuacje wyjatkowe ktére aktualnie sg obstugiwane; to takze redukuje czesto niechciane wydtuzanie
czasu zycia przedmiotéw do ktérych odnosi si¢ ramka stosu w wypisie Sladu wywotan.

Jako nadrzedna zasadg, przyjmuje si¢ ze zadanie ktére wywoluje inne zadanie do wykonania pewnych operacji po-
winno sprawdzi¢ czy wywotane zadanie zglosito wyjatek, a jesli tak, to przekaza¢ stan wyjatku do wywotujacego.
Powinno tez odrzucic¢ jakiekolwiek odniesienia do przedmiotéw, ktére posiada, i zwrdcié sygnalizator btedu, ale nie
powinno ustawia¢ innego wyjatku — ktéry nadpisywatby wyjatek, ktéry wlasnie zostat zgloszony i traci¢ istotne
informacje o doktadnym powodzie bigdu.

A simple example of detecting exceptions and passing them on is shown in the sum_sequence () example above.
It so happens that this example doesn’t need to clean up any owned references when it detects an error. The following
example function shows some error cleanup. First, to remind you why you like Python, we show the equivalent Python
code:

def incr_item(dict, key):
try:
item = dict [key]
except KeyError:
item = O
dict[key] = item + 1

Tu nastgpuje odpowiadajacy kod w jezyku C, w calej pelni okazatosci:

int

incr_item(PyObject *dict, PyObject *key)

{
/* Objects all initialized to NULL for Py XDECREF */
PyObject *item = NULL, *const_one = NULL, *incremented_item = NULL;
int rv = -1; /* Return value initialized to -1 (failure) */

item = PyObject_GetItem(dict, key);
if (item == NULL) {
/* Handle KeyError only: */
if (!PyErr_ExceptionMatches (PyExc_KeyError))
goto error;

/* Clear the error and use zero: */
PyErr_Clear();
item = PyLong_FromLong (0L) ;
if (item == NULL)
goto error;
}
const_one = PyLong_FromLong (1L);
if (const_one == NULL)
goto error;

(ciag dalszy na nast¢pnej stronie)

10 Rozdziat 1. Wprowadzenie

The Python/C API, Wydanie 3.9.21

(kontynuacja poprzedniej strony)

incremented_item = PyNumber_Add(item, const_one);
if (incremented_item == NULL)
goto error;

if (PyObject_SetItem(dict, key, incremented_item) < 0)
goto error;

rv = 0; /* Success */

/* Continue with cleanup code */

error:
/* Cleanup code, shared by success and failure path */

/* Use Py_XDECREF () to ignore NULL references */
Py_XDECREF (item) ;

Py_XDECREF (const_one) ;

Py_XDECREF (incremented_item);

return rv; /* -1 for error, 0 for success */

This example represents an endorsed use of the goto statement in C! It illustrates the use of
PyErr_ExceptionMatches () and PyErr Clear () to handle specific exceptions, and the use of
Py_XDECREF () to dispose of owned references that may be NULL (note the 'X"' in the name; Py_DECREF ()
would crash when confronted with a NULL reference). It is important that the variables used to hold owned
references are initialized to NULL for this to work; likewise, the proposed return value is initialized to —1 (failure)
and only set to success after the final call made is successful.

1.6 Zalaczanie programu interpretujacego jezyk pytonowski

Jedno istotne zadanie, o ktdére zalaczajacy (w przeciwienstwie do piszacych rozszerzenia) program interpretujacy
jezyk pytonowski musza si¢ martwié jest zainicjowanie i prawdopodobne zakoriczenie programu interpretujacego
polecenia jezyka pytonowskiego. Wigkszos$¢ uzyteczno$ci programu interpretujacego polecenia jezyka pytonowskie-
go moze tylko by¢ uzyta po jego zainicjowaniu.

The basic initialization functionis Py_ Tnitialize (). This initializes the table of loaded modules, and creates the
fundamental modules builtins, _main__, and sys. It also initializes the module search path (sys.path).

Py _TInitialize () does not set the ,script argument list” (sys.argv). If this variable is needed by Python
code that will be executed later, it must be set explicitly with a call to PySys_SetArgvEx (argc, argv,
updatepath) afterthecallto Py _Tnitialize().

On most systems (in particular, on Unix and Windows, although the details are slightly different),
Py_Initialize () calculates the module search path based upon its best guess for the location of the standard
Python interpreter executable, assuming that the Python library is found in a fixed location relative to the Python in-
terpreter executable. In particular, it looks for a directory named 1ib/pythonX. Y relative to the parent directory
where the executable named python is found on the shell command search path (the environment variable PATH).

Na przyktad, jesli plik wykonywalny programu interpretujacego polecenia jezyka pytonowskiego znajduje sig¢
w katalogu /usr/local/bin/python, bedzie zakladat, ze biblioteki sa w katalogu /usr/local/lib/
pythonX. Y (Faktycznie, ta szczegélna §ciezka jest takze ,ratunkowym” polozeniem, uzywanym gdy zaden plik
wykonywalny nazwany python nie znajdzie si¢ w katalogach znajdujacych si¢ w zmiennej §rodowiskowej PATH.)
Uzytkownik moze podmieni¢ to zachowanie przez ustawienie zmiennej Srodowiskowej PYTHONHOME, lub wstawic
dodatkowe katalogi przed sztandarowa $ciezka przez ustawienie zmiennej Srodowiskowej PY THONPATH.

The embedding application can steer the search by calling Py_SetProgramName (file) before calling
Py_Initialize (). Note that PYTHONHOME still overrides this and PYTHONPATH is still inserted in front
of the standard path. An application that requires total control has to provide its own implementation of

1.6. Zataczanie programu interpretujacego jezyk pytonowski 11

The Python/C API, Wydanie 3.9.21

Py_GetPath (), Py_GetPrefix (), Py _GetExecPrefix (), and Py_GetProgramFullPath () (all
defined in Modules/getpath.c).

Sometimes, it is desirable to ,uninitialize” Python. For instance, the application may want to start over (ma-
ke another call to Py_Tnitialize ()) or the application is simply done with its use of Python and wants
to free memory allocated by Python. This can be accomplished by calling Py_FinalizeEx (). The function
Py _IsInitialized () returns true if Python is currently in the initialized state. More information about these
functions is given in a later chapter. Notice that Py_FinalizeEx () does not free all memory allocated by the
Python interpreter, e.g. memory allocated by extension modules currently cannot be released.

1.7 Odpluskwiajace Budowy

Program interpretujacy jezyk pytonowski moze by¢ zbudowany z kilkoma makropoleceniami do zalaczenia do-
datkowych sprawdzen programu interpretujacego polecenia jezyka pytonowskiego i modutéw rozszerzajacych. Te
sprawdzenia maja zwyczaj dodawaé duzy narzut czasu wykonania polecen programu wigc nie sa zataczane domyslnie.

Pelna list¢ r6znego rodzaju budéw odpluskwiania znajduje si¢ w pliku Misc/SpecialBuilds.txt w Zrédlo-
wych zasobach pakietu jezyka pytonowskiego. Sa dostgpne budowy ze wsparciem wypisywania przebiegéw liczb
odniesien, lub profilowania nisko-poziomowego gtéwnej petli programu interpretujacego polecenia jezyka pytonow-
skiego. Tylko najczesciej uzywane budowy beda opisane w dalszej czgsci tej sekcji.

Compiling the interpreter with the Py_ DEBUG macro defined produces what is generally meant by ,,a debug build” of
Python. Py_DEBUG is enabled in the Unix build by adding ——with-pydebugto the . /configure command.
It is also implied by the presence of the not-Python-specific _ DEBUG macro. When Py_DEBUG is enabled in the
Unix build, compiler optimization is disabled.

W uzupetnieniu odpluskwiania opartego o zliczanie odniesien opisanego ponizej, nastgpujace dodatkowe sprawdzenia
sa wykonywane:

» Dodatkowe sprawdzenia sa dodawane do przedmiotu lokujacego inne przedmioty w pamigci.
o Dodatkowe sprawdzenia sa dodawane do przedmiotu wczytujacego i kompilujacego.
o Rzutowania w dét z szerokich do waskich typéw sa sprawdzane pod katem utraty informacji.

o Pewna ilo$¢ ustaleri twierdzacych jest dodawana do realizacji stownika i zbioru. W dodatku przedmiot zbioru
otrzymuje sposob postgpowania zwany pod nazwa test_c_api ().

o Sprawdzenia przytomnosci parametréw wejSciowych dodawane sa do kreacji ramki.

o Przechowalnia przedmiotéw liczb calkowitych z ang. - ints jest inicjowana ze znanym btgdnym wzorem do
wylapania odniesiefi do niezainicjowanych cyfr.

« Niskopoziomowe §ledzenie i dodatkowe sprawdzanie blgdéw dodawane jest do kodu wykonywalnego wirtu-
alnej maszyny.

« Dodatkowe sprawdzenia dodawane sa do implementacji areny pamigci.
o Dodatkowe odpluskwianie dodawane jest do modutu watkéw.
Moga istnie¢ dodatkowe sprawdzenia nie wymienione tutaj.

Defining Py_ TRACE_REFS enables reference tracing. When defined, a circular doubly linked list of active objects
is maintained by adding two extra fields to every PyOb ject. Total allocations are tracked as well. Upon exit, all
existing references are printed. (In interactive mode this happens after every statement run by the interpreter.) Implied
by Py_DEBUG.

Odwotaj si¢ do Misc/SpecialBuilds.txt w Zrédlowym pakiecie jezyka pytonowskiego po wigcej szczego-
6w.

12 Rozdziat 1. Wprowadzenie

ROZDZIAL 2

Stable Application Binary Interface

Traditionally, the C API of Python will change with every release. Most changes will be source-compatible, typically
by only adding API, rather than changing existing API or removing API (although some interfaces do get removed
after being deprecated first).

Unfortunately, the API compatibility does not extend to binary compatibility (the ABI). The reason is primarily the
evolution of struct definitions, where addition of a new field, or changing the type of a field, might not break the
API, but can break the ABI. As a consequence, extension modules need to be recompiled for every Python release
(although an exception is possible on Unix when none of the affected interfaces are used). In addition, on Windows,
extension modules link with a specific pythonXY.dll and need to be recompiled to link with a newer one.

Since Python 3.2, a subset of the API has been declared to guarantee a stable ABI. Extension modules wishing
to use this API (called ,limited API”) need to define Py_LIMITED_API. A number of interpreter details then
become hidden from the extension module; in return, a module is built that works on any 3.x version (x>=2) without
recompilation.

In some cases, the stable ABI needs to be extended with new functions. Extension modules wishing to use these
new APIs need to set Py_ LIMITED_APT to the PY_VERSION_HEX value (see APl and ABI Versioning) of the
minimum Python version they want to support (e.g. 0x03030000 for Python 3.3). Such modules will work on all
subsequent Python releases, but fail to load (because of missing symbols) on the older releases.

As of Python 3.2, the set of functions available to the limited API is documented in PEP 384. In the C API docu-
mentation, API elements that are not part of the limited API are marked as ,,Not part of the limited APL.”

13

https://www.python.org/dev/peps/pep-0384

The Python/C API, Wydanie 3.9.21

14 Rozdziat 2. Stable Application Binary Interface

ROZDZIAL 3

The Very High Level Layer

The functions in this chapter will let you execute Python source code given in a file or a buffer, but they will not let
you interact in a more detailed way with the interpreter.

Several of these functions accept a start symbol from the grammar as a parameter. The available start symbols are
Py_eval_input, Py_file_input, and Py_single_input. These are described following the functions
which accept them as parameters.

Note also that several of these functions take FILE* parameters. One particular issue which needs to be handled
carefully is that the FILE structure for different C libraries can be different and incompatible. Under Windows (at
least), it is possible for dynamically linked extensions to actually use different libraries, so care should be taken that
FILE* parameters are only passed to these functions if it is certain that they were created by the same library that
the Python runtime is using.

int Py_Main (int arge, wchar_t **argv)
The main program for the standard interpreter. This is made available for programs which embed Python. The
arge and argv parameters should be prepared exactly as those which are passed to a C program’s main ()
function (converted to wchar_t according to the user’s locale). It is important to note that the argument list may
be modified (but the contents of the strings pointed to by the argument list are not). The return value will be
0 if the interpreter exits normally (i.e., without an exception), 1 if the interpreter exits due to an exception, or
2 if the parameter list does not represent a valid Python command line.

Note that if an otherwise unhandled SystemExit is raised, this function will not return 1, but exit the
process, as long as Py_ InspectFlag is not set.

int Py_BytesMain (int argc, char **argv)
Similar to Py_Main () but argy is an array of bytes strings.

Nowe w wersji 3.8.

int PyRun_AnyFile (FILE *fp, const char *filename)
This is a simplified interface to PyRun_AnyFileExFlags () below, leaving closeit set to 0 and flags set
to NULL.

int PyRun_AnyFileFlags (FILE *fp, const char *filename, PyCompilerFlags *flags)
This is a simplified interface to PyRun_AnyFileExFlags () below, leaving the closeit argument set to O.

int PyRun_AnyFileEx (FILE *fp, const char *filename, int closeit)
This is a simplified interface to PyRun_AnyFileExFlags () below, leaving the flags argument set to
NULL.

15

The Python/C API, Wydanie 3.9.21

int PyRun_AnyFileExFlags (FILE *fp, const char *filename, int closeit, PyCompilerFlags *flags)
If fp refers to a file associated with an interactive device (console or terminal input or Unix
pseudo-terminal), return the value of PyRun_InteractiveLoop (), otherwise return the re-
sult of PyRun_SimpleFile (). filename is decoded from the filesystem encoding (sys.
getfilesystemencoding ()). If filename is NULL, this function uses "?7?22" as the filename. If
closeit is true, the file is closed before PyRun_SimpleFileExFlags () returns.

int PyRun_SimpleString (const char *command)
This is a simplified interface to PyRun_SimpleStringFlags () below, leaving the
PyCompilerFlags* argument set to NULL.

int PyRun_SimpleStringFlags (const char *command, PyCompilerFlags *flags)
Executes the Python source code from command inthe __main__ module according to the flags argument.
If _ _main__ does not already exist, it is created. Returns 0 on success or —1 if an exception was raised. If
there was an error, there is no way to get the exception information. For the meaning of flags, see below.

Note that if an otherwise unhandled SystemExit is raised, this function will not return —1, but exit the
process, as long as Py_ InspectFlag is not set.

int PyRun_SimpleFile (FILE *fp, const char *filename)
This is a simplified interface to PyRun_SimpleFileExFlags () below, leaving closeit set to 0 and flags
set to NULL.

int PyRun_SimpleFileEx (FILE *fp, const char *filename, int closeit)
This is a simplified interface to PyRun_SimpleFileExFlags () below, leaving flags set to NULL.

int PyRun_SimpleFileExFlags (FILE *fp, const char *filename, int closeit, PyCompilerFlags *flags)
Similar to PyRun_SimpleStringFlags (), but the Python source code is read from fp instead of an
in-memory string. filename should be the name of the file, it is decoded from the filesystem encoding (sys .
getfilesystemencoding ()). If closeit is true, the file is closed before PyRun_SimpleFileExFlags re-
turns.

Informacja: On Windows, fp should be opened as binary mode (e.g. fopen (filename, "rb")).Other-
wise, Python may not handle script file with LF line ending correctly.

int PyRun_InteractiveOne (FILE *fp, const char *filename)
This is a simplified interface to PyRun_TInteractiveOneFlags () below, leaving flags set to NULL.

int PyRun_InteractiveOneFlags (FILE *fp, const char *filename, PyCompilerFlags *flags)
Read and execute a single statement from a file associated with an interactive device according to the flags
argument. The user will be prompted using sys .ps1 and sys . ps2. filename is decoded from the filesystem
encoding (sys.getfilesystemencoding()).

Returns 0 when the input was executed successfully, —1 if there was an exception, or an error code from the
errcode. h include file distributed as part of Python if there was a parse error. (Note that errcode.h is
not included by Python . h, so must be included specifically if needed.)

int PyRun_InteractiveLoop (FILE *fp, const char *filename)
This is a simplified interface to PyRun_TInteractiveLoopFlags () below, leaving flags set to NULL.

int PyRun_InteractiveLoopFlags (FILE *fp, const char *filename, PyCompilerFlags *flags)
Read and execute statements from a file associated with an interactive device until EOF is reached. The user
will be prompted using sys.psl and sys.ps?2. filename is decoded from the filesystem encoding (sys .
getfilesystemencoding ()). Returns 0 at EOF or a negative number upon failure.

int (*PyOS_InputHook) (void)
Can be set to point to a function with the prototype int func (void). The function will be called when
Python’s interpreter prompt is about to become idle and wait for user input from the terminal. The return value
is ignored. Overriding this hook can be used to integrate the interpreter’s prompt with other event loops, as
done in the Modules/_tkinter. c in the Python source code.

char* (*PyOS_ReadlineFunctionPointer) (FILE * FILE *, const char *)
Can be set to point to a function with the prototype char *func (FILE *stdin, FILE *stdout,

16 Rozdziat 3. The Very High Level Layer

The Python/C API, Wydanie 3.9.21

char *prompt), overriding the default function used to read a single line of input at the interpreter’s
prompt. The function is expected to output the string prompt if it’s not NULL, and then read a line of input
from the provided standard input file, returning the resulting string. For example, The readline module
sets this hook to provide line-editing and tab-completion features.

The result must be a string allocated by PyMem_ RawMalloc () or PyMem_RawRealloc (), or NULL if
an error occurred.

Zmienione w wersji 3.4: The result must be allocated by PyMem RawMalloc () or
PyMem_ RawRealloc (), instead of being allocated by PyMem Malloc () or PyMem Realloc ().

struct _node* PyParser_SimpleParseString (const char *swr, int start)
This is a simplified interface to PyParser SimpleParseStringFlagsFilename () below, leaving
filename set to NULL and flags set to 0.

Deprecated since version 3.9, will be removed in version 3.10.

struct _node* PyParser_SimpleParseStringFlags (const char *str, int start, int flags)
This is a simplified interface to PyParser SimpleParseStringFlagsFilename () below, leaving
filename set to NULL.

Deprecated since version 3.9, will be removed in version 3.10.

struct _node* PyParser_SimpleParseStringFlagsFilename (const char *str, const char *filena-
me, int start, int flags)
Parse Python source code from st using the start token start according to the flags argument. The re-
sult can be used to create a code object which can be evaluated efficiently. This is useful if a co-
de fragment must be evaluated many times. filename is decoded from the filesystem encoding (sys.
getfilesystemencoding()).

Deprecated since version 3.9, will be removed in version 3.10.

struct _node* PyParser_SimpleParseFile (FILE *fp, const char *filename, int start)
This is a simplified interface to PyParser SimpleParseFileFlags () below, leaving flags set to 0.

Deprecated since version 3.9, will be removed in version 3.10.

struct _node* PyParser_SimpleParseFileFlags (FILE *fp, const char *filename, int start,
int flags)
Similar to PyParser_SimpleParseStringFlagsFilename (), but the Python source code is read
from fp instead of an in-memory string.

Deprecated since version 3.9, will be removed in version 3.10.

PyObject* PyRun_String (const char *str, int start, PyObject *globals, PyObject *locals)
Return value: New reference. This is a simplified interface to PyRun_StringFlags () below, leaving flags
set to NULL.

PyObject* PyRun_StringFlags (const char *str, int start, PyObject *globals, PyObject *locals, PyCompi-
lerFlags *flags)
Return value: New reference. Execute Python source code from str in the context specified by the objects globals
and locals with the compiler flags specified by flags. globals must be a dictionary; locals can be any object that
implements the mapping protocol. The parameter start specifies the start token that should be used to parse
the source code.

Returns the result of executing the code as a Python object, or NULL if an exception was raised.

PyObject* PyRun_File (FILE *fp, const char *filename, int start, PyObject *globals, PyObject *locals)
Return value: New reference. This is a simplified interface to PyRun_FileExFlags () below, leaving closeit
set to 0 and flags set to NULL.

PyObject* PyRun_FileEx (FILE *fp, const char *filename, int start, PyObject *globals, PyObject *locals,

int closeit)
Return value: New reference. This is a simplified interface to PyRun_FileExFlags () below, leaving flags

set to NULL.

17

The Python/C API, Wydanie 3.9.21

PyObject* PyRun_FileFlags (FILE *fp, const char *filename, int start, PyObject *globals, PyObject *lo-
cals, PyCompilerFlags *flags)
Return value: New reference. This is a simplified interface to PyRun_FileExFlags () below, leaving closeit
set to O.

PyObject* PyRun_FileExFlags (FILE *fp, const char *filename, int start, PyObject *globals, Py-
Object *locals, int closeit, PyCompilerFlags *flags)
Return value: New reference. Similar to PyRun_StringFlags (), but the Python source code is read
from fp instead of an in-memory string. filename should be the name of the file, it is decoded from the
filesystem encoding (sys.getfilesystemencoding()). If closeit is true, the file is closed before
PyRun_FileExFlags () returns.

PyObject* Py_CompileString (const char *str, const char *filename, int start)
Return value: New reference. This is a simplified interface to Py_ CompileStringFlags () below, leaving
flags set to NULL.

PyObject* Py_CompileStringFlags (const char *str, const char *filename, int start, PyCompiler-
Flags *flags)
Return value: New reference. This is a simplified interface to Py CompileStringExFlags () below, with
optimize set to —1.

PyObject* Py_CompileStringObject (const char *str, PyObject *filename, int start, PyCompiler-
Flags *flags, int optimize)
Return value: New reference. Parse and compile the Python source code in str, returning the resulting code
object. The start token is given by start; this can be used to constrain the code which can be compiled and should
be Py_eval_input,Py_file_input,or Py_single_input. The filename specified by filename is
used to construct the code object and may appear in tracebacks or SyntaxError exception messages. This
returns NULL if the code cannot be parsed or compiled.

The integer optimize specifies the optimization level of the compiler; a value of -1 selects the optimization
level of the interpreter as given by —O options. Explicit levels are 0 (no optimization; __debug___is true), 1
(asserts are removed, ___debug___is false) or 2 (docstrings are removed too).

Nowe w wersji 3.4.

PyObject* Py_CompileStringExFlags (const char *str, const char *filename, int start, PyCompiler-
Flags *flags, int optimize)
Return value: New reference. Like Py_CompileStringObject (), but filename is a byte string decoded
from the filesystem encoding (os . fsdecode ()).

Nowe w wersji 3.2.

PyObject* PyEval_EvalCode (PyObject *co, PyObject *globals, PyObject *locals)
Return value: New reference. This is a simplified interface to PyEval_ EvalCodeEx (), with just the code
object, and global and local variables. The other arguments are set to NULL.

PyObject* PyEval_EvalCodeEx (PyObject *co, PyObject *globals, PyObject *locals, PyObject
*const *args, int argcount, PyObject *const *kws, int kwcount, PyObject
*const *defs, int defcount, PyObject *kwdefs, PyObject *closure)
Return value: New reference. Evaluate a precompiled code object, given a particular environment for its evalu-
ation. This environment consists of a dictionary of global variables, a mapping object of local variables, arrays
of arguments, keywords and defaults, a dictionary of default values for keyword-only arguments and a closure
tuple of cells.

PyFrameObject
The C structure of the objects used to describe frame objects. The fields of this type are subject to change at
any time.

PyObject* PyEval_EvalFrame (PyFrameObject *f)
Return value: New reference. Evaluate an execution frame. This is a simplified interface to
PyEval_FEvalFrameEx (), for backward compatibility.

PyObject* PyEval_EvalFrameEx (PyFrameObject *f, int throwflag)
Return value: New reference. This is the main, unvarnished function of Python interpretation. The code object
associated with the execution frame f is executed, interpreting bytecode and executing calls as needed. The

18 Rozdziat 3. The Very High Level Layer

The Python/C API, Wydanie 3.9.21

additional throwflag parameter can mostly be ignored - if true, then it causes an exception to immediately be
thrown; this is used for the throw () methods of generator objects.

Zmienione w wersji 3.4: This function now includes a debug assertion to help ensure that it does not silently
discard an active exception.

int PyEval_MergeCompilerFlags (PyCompilerFlags *cf)
This function changes the flags of the current evaluation frame, and returns true on success, false on failure.

int Py_eval_input
The start symbol from the Python grammar for isolated expressions; for use with Py CompileString().

int Py file_input
The start symbol from the Python grammar for sequences of statements as read from a file or other source; for
use with Py CompileString (). This is the symbol to use when compiling arbitrarily long Python source
code.

int Py_single_input
The start symbol from the Python grammar for a single statement; for use with Py_CompileString ().
This is the symbol used for the interactive interpreter loop.

struct PyCompilerFlags
This is the structure used to hold compiler flags. In cases where code is only being compiled, it is passed as
int flags, and in cases where code is being executed, it is passed as PyCompilerFlags *flags.In
this case, from __ future__ import can modify flags.

Whenever PyCompilerFlags *flagsisNULL, cf_flags is treated as equal to 0, and any modifica-
tiondue to from __ future_ import is discarded.

intcf_flags
Compiler flags.

int c£_feature_version
¢f _feature_version is the minor Python version. It should be initialized to PY_MINOR_VERSTION.

The field is ignored by default, it is used if and only if PyCF_ONLY_AST flag is set in ¢f_flags.
Zmienione w wersji 3.8: Added c¢f_feature_version field.

int CO_FUTURE_DIVISION
This bit can be set in flags to cause division operator / to be interpreted as ,,true division” according to PEP
238.

19

https://www.python.org/dev/peps/pep-0238
https://www.python.org/dev/peps/pep-0238

The Python/C API, Wydanie 3.9.21

20 Rozdziat 3. The Very High Level Layer

rRozpzIAL 4

Reference Counting

The macros in this section are used for managing reference counts of Python objects.

void Py_ INCREF (PyObject *0)
Increment the reference count for object o. The object must not be NULL; if you aren’t sure that it isn’t NULL,
use Py_ XINCREF ().

void Py_XINCREF (PyObject *o)

Increment the reference count for object 0. The object may be NULL, in which case the macro has no effect.
void Py_DECREF (PyObject *0)

Decrement the reference count for object o. The object must not be NULL; if you aren’t sure that it isn’t NULL,

use Py_XDECREF (). If the reference count reaches zero, the object’s type’s deallocation function (which
must not be NULL) is invoked.

Ostrzezenie: The deallocation function can cause arbitrary Python code to be invoked (e.g. when a class
instance witha __del__ () method is deallocated). While exceptions in such code are not propagated,
the executed code has free access to all Python global variables. This means that any object that is reachable
from a global variable should be in a consistent state before Py DECREF () is invoked. For example, code
to delete an object from a list should copy a reference to the deleted object in a temporary variable, update
the list data structure, and then call Py DECREF () for the temporary variable.

void Py_XDECREF (PyObject *o)
Decrement the reference count for object o. The object may be NULL, in which case the macro has no effect;
otherwise the effect is the same as for Py_ DECREF (), and the same warning applies.

void Py_ CLEAR (PyObject *0)
Decrement the reference count for object 0. The object may be NULL, in which case the macro has no effect;
otherwise the effect is the same as for Py_ DECREF (), except that the argument is also set to NULL. The
warning for Py DECREF () does not apply with respect to the object passed because the macro carefully uses
a temporary variable and sets the argument to NULL before decrementing its reference count.

It is a good idea to use this macro whenever decrementing the reference count of an object that might be
traversed during garbage collection.

The following functions are for runtime dynamic embedding of Python: Py_IncRef (PyObject *o),

Py_DecRef (PyObject *o). They are simply exported function versions of Py XINCREF () and
Py_XDECREF (), respectively.

21

The Python/C API, Wydanie 3.9.21

The following functions or macros are only for use within the interpreter core: _Py_Dealloc (),
_Py_ForgetReference (), _Py_NewReference (), as well as the global variable _Py_RefTotal.

22 Rozdziat 4. Reference Counting

ROzDzZIAL D

Obstuga sytuacji wyjatkowych

The functions described in this chapter will let you handle and raise Python exceptions. It is important to understand
some of the basics of Python exception handling. It works somewhat like the POSIX e rrno variable: there is a global
indicator (per thread) of the last error that occurred. Most C API functions don’t clear this on success, but will set
it to indicate the cause of the error on failure. Most C API functions also return an error indicator, usually NULL if
they are supposed to return a pointer, or —1 if they return an integer (exception: the PyArg_* () functions return
1 for success and 0 for failure).

Concretely, the error indicator consists of three object pointers: the exception’s type, the exception’s value, and the
traceback object. Any of those pointers can be NULL if non-set (although some combinations are forbidden, for
example you can’t have a non-NULL traceback if the exception type is NULL).

Gdy zadanie musi zawiez¢ z powodu bledu zadania ktére wywotato, ogdlnie nie ustawia ona wskaznika btedu; po-
dzadanie ktore zostalo wywotane juz go ustawita. Jest on odpowiedzialny albo za obstuge btedu i wyczyszczenie
wskaznika sytuacji wyjatkowej lub powr6t po sprzatnigeiu jakichkolwiek zasobéw ktére utrzymuje (takich jak od-
wotania do przedmiotéw lub zajgte pamigci); nie powinien kontynuowaé zwyczajnie jesli nie jest przygotowany do
obstugi btedu. Jesli koriczy z powodu bledu, istotne jest zwrdcenie uwagi wotajacego ze zostat zgloszony btad. Jesli
btad nie jest obstugiwany lub propagowany wilasciwie, dodatkowe odwotania do sprzegu jezyka pytonowskiego/C
moga nie zachowywac sig¢ tak, jak planowano i moga zawieZ¢ w nieoczekiwane sposoby.

Informacja: The error indicator is not the result of sys.exc_info (). The former corresponds to an exception
that is not yet caught (and is therefore still propagating), while the latter returns an exception after it is caught (and
has therefore stopped propagating).

5.1 Printing and clearing

void PyErr_ Clear ()
Clear the error indicator. If the error indicator is not set, there is no effect.

void PyErr_ PrintEx (int set_sys_last_vars)
Print a standard traceback to sy s . st derr and clear the error indicator. Unless the errorisa SystemExit,
in that case no traceback is printed and the Python process will exit with the error code specified by the
SystemExit instance.

Call this function only when the error indicator is set. Otherwise it will cause a fatal error!

23

The Python/C API, Wydanie 3.9.21

If set_sys_last vars is nonzero, the variables sys.last_type, sys.last_value and sys.
last_traceback will be set to the type, value and traceback of the printed exception, respectively.

void PyErr_Print ()
Alias for PyErr_PrintEx (1).

void PyErr_ WriteUnraisable (PyObject *obj)
Call sys.unraisablehook () using the current exception and obj argument.

This utility function prints a warning message to sys.stderr when an exception has been set but it is
impossible for the interpreter to actually raise the exception. It is used, for example, when an exception occurs
inan __ del () method.

The function is called with a single argument obj that identifies the context in which the unraisable exception
occurred. If possible, the repr of obj will be printed in the warning message.

An exception must be set when calling this function.

5.2 Raising exceptions

These functions help you set the current thread’s error indicator. For convenience, some of these functions will always
return a NULL pointer for use in a return statement.

void PyErr_SetString (PyObject *type, const char *message)
This is the most common way to set the error indicator. The first argument specifies the exception type; it is
normally one of the standard exceptions, e.g. PyExc_Runt imeError. You need not increment its reference
count. The second argument is an error message; it is decoded from 'ut£-8"'.

void PyErr_SetObject (PyObject *type, PyObject *value)
This function is similar to PyErr_SetString () but lets you specify an arbitrary Python object for the
,value” of the exception.

PyObject* PyErr_Format (PyObject *exception, const char *format, ...)
Return value: Always NULL. This function sets the error indicator and returns NULL. exception should be
a Python exception class. The format and subsequent parameters help format the error message; they have the
same meaning and values as in PyUnicode_FromFormat (). format is an ASCII-encoded string.

PyObject* PyErr_FormatV (PyObject *exception, const char *format, va_list vargs)
Return value: Always NULL. Same as PyErr_Format (), but taking a va_11ist argument rather than
a variable number of arguments.

Nowe w wersji 3.5.

void PyErr_SetNone (PyObject *type)
This is a shorthand for PyErr_SetObject (type, Py_None).

int PyErr_ BadArgument ()
This is a shorthand for PyErr_SetString (PyExc_TypeError, message), where message indica-
tes that a built-in operation was invoked with an illegal argument. It is mostly for internal use.

PyObject* PyErr_NoMemory ()
Return value: Always NULL. This is a shorthand for PyErr_SetNone (PyExc_MemoryError); it re-
turns NULL so an object allocation function can write return PyErr_NoMemory () ; when it runs out
of memory.

PyObject* PyErr_SetFromErrno (PyObject *type)

Return value: Always NULL. This is a convenience function to raise an exception when a C library function
has returned an error and set the C variable errno. It constructs a tuple object whose first item is the integer
errno value and whose second item is the corresponding error message (gotten from strerror ()), and
then calls PyErr_SetObject (type, object).On Unix, whenthe errno value is EINTR, indicating
an interrupted system call, this calls PyErr CheckSignals (), and if that set the error indicator, leaves it
set to that. The function always returns NULL, so a wrapper function around a system call can write return
PyErr_SetFromErrno (type) ; when the system call returns an error.

24 Rozdziat 5. Obstuga sytuacji wyjatkowych

The Python/C API, Wydanie 3.9.21

PyObject* PyErr_SetFromErrnoWithFilenameObject (PyObject *type, PyObject *filename-
Object)
Return value: Always NULL. Similar to PyErr_SetFromErrno (), with the additional behavior that if
filenameObject is not NULL, it is passed to the constructor of #ype as a third parameter. In the case of OSError
exception, this is used to define the £ilename attribute of the exception instance.

PyObject* PyErr_SetFromErrnoWithFilenameObjects (PyObject *type, PyObject *filename-
Object, PyObject *filenameObject2)
Return value: Always NULL. Similar to PyErr_SetFromErrnoWithFilenameObject (), but takes
a second filename object, for raising errors when a function that takes two filenames fails.

Nowe w wersji 3.4.

PyObject* PyErr_SetFromErrnoWithFilename (PyObject *type, const char *filename)
Return value: Always NULL. Similar to PyErr_SetFromErrnoWithFilenameObject (), but the fi-
lename is given as a C string. filename is decoded from the filesystem encoding (os . fsdecode ()).

PyObject* PyErr_SetFromWindowsErr (int ierr)
Return value: Always NULL. This is a convenience function to raise WindowsError. If called with
ierr of 0, the error code returned by a call to GetLastError () is used instead. It calls the Win32
function FormatMessage () to retrieve the Windows description of error code given by ierr or
GetLastError (), then it constructs a tuple object whose first item is the ierr value and who-
se second item is the corresponding error message (gotten from FormatMessage ()), and then calls
PyErr_SetObject (PyExc_WindowsError, object). This function always returns NULL.

Availability: Windows.

PyObject* PyErr_ SetExcFromWindowsErr (PyObject *type, int ierr)
Return value: Always NULL. Similar to PyErr_SetFromWindowsErr (), with an additional parameter
specifying the exception type to be raised.

Availability: Windows.

PyObject* PyErr_ SetFromWindowsErrWithFilename (int ierr, const char *filename)
Return value: Always NULL. Similar to PyErr_SetFromWindowsErrWithFilenameObject (), but
the filename is given as a C string. filename is decoded from the filesystem encoding (os . fsdecode ()).

Availability: Windows.

PyObject* PyErr_SetExcFromWindowsErrWithFilenameObject (PyObject *type, int ierr, Py-
Object *filename)
Return value: Always NULL. Similar to PyErr_SetFromWindowsErrWithFilenameObject (),
with an additional parameter specifying the exception type to be raised.

Auvailability: Windows.

PyObject* PyErr_SetExcFromWindowsErrWithFilenameObjects (PyObject *type, int ierr,
PyObject *filename, Py-
Object *filename?2)
Return value: Always NULL. Similarto PyErr_SetExcFromWindowsErrWithFilenameObject (),
but accepts a second filename object.

Auvailability: Windows.
Nowe w wersji 3.4.

PyObject* PyErr_SetExcFromWindowsErrWithFilename (PyObject *type, int ierr, const char *fi-

lename)
Return value: Always NULL. Similar to PyErr_SetFromWindowsErrWithFilename (), with an ad-

ditional parameter specifying the exception type to be raised.
Availability: Windows.

PyObject* PyErr_SetImportError (PyObject *msg, PyObject *name, PyObject *path)
Return value: Always NULL. This is a convenience function to raise ImportError. msg will be set as the
exception’s message string. name and path, both of which can be NULL, will be set as the ImportError’s
respective name and path attributes.

5.2. Raising exceptions 25

The Python/C API, Wydanie 3.9.21

Nowe w wersji 3.3.

PyObject* PyErr_SetImportErrorSubclass (PyObject *exception, PyObject *msg, PyObject *name,
PyObject *path)
Return value: Always NULL. Much like PyErr _Set ImportError () but this function allows for specify-
ing a subclass of ImportError to raise.

Nowe w wersji 3.6.

void PyErr_SyntaxLocationObject (PyObject *filename, int lineno, int col_offset)
Set file, line, and offset information for the current exception. If the current exceptionis nota SyntaxError,
then it sets additional attributes, which make the exception printing subsystem think the exception is
a SyntaxError.

Nowe w wersji 3.4.

void PyErr_SyntaxLocationEx (const char *filename, int lineno, int col_offset)
Like PyErr SyntaxLocationObject (), but filename is a byte string decoded from the filesystem
encoding (os . fsdecode ()).

Nowe w wersji 3.2.

void PyErr_SyntaxLocation (const char *filename, int lineno)
Like PyErr_SyntaxLocationEx (), but the col_offset parameter is omitted.

void PyErr_BadInternalCall ()
This is a shorthand for PyErr_SetString (PyExc_SystemError, message), where message in-
dicates that an internal operation (e.g. a Python/C API function) was invoked with an illegal argument. It is
mostly for internal use.

5.3 Issuing warnings

Use these functions to issue warnings from C code. They mirror similar functions exported by the Python warnings
module. They normally print a warning message to sys.stderr; however, it is also possible that the user has specified
that warnings are to be turned into errors, and in that case they will raise an exception. It is also possible that the
functions raise an exception because of a problem with the warning machinery. The return value is 0 if no exception
israised, or —1 if an exception is raised. (It is not possible to determine whether a warning message is actually printed,
nor what the reason is for the exception; this is intentional.) If an exception is raised, the caller should do its normal
exception handling (for example, Py DECREF () owned references and return an error value).

int PyErr_WarnEx (PyObject *category, const char *message, Py_ssize_t stack_level)
Issue a warning message. The category argument is a warning category (see below) or NULL; the message
argument is a UTF-8 encoded string. stack_level is a positive number giving a number of stack frames; the
warning will be issued from the currently executing line of code in that stack frame. A stack_level of 1 is the
function calling PyErr WarnEx (), 2 is the function above that, and so forth.

Warning categories must be subclasses of PyExc_Warning; PyExc_Warning is a subclass of
PyExc_Exception; the default warning category is PyExc_RuntimeWarning. The standard Python
warning categories are available as global variables whose names are enumerated at Standard Warning Cate-
gories.

For information about warning control, see the documentation for the warnings module and the ~W option
in the command line documentation. There is no C API for warning control.

int PyErr_ WarnExplicitObject (PyObject *category, PyObject *message, PyObject *filename, int li-
neno, PyObject *module, PyObject *registry)
Issue a warning message with explicit control over all warning attributes. This is a straightforward wrapper
around the Python function warnings.warn_explicit () ;see there for more information. The module
and registry arguments may be set to NULL to get the default effect described there.

Nowe w wersji 3.4.

26 Rozdziat 5. Obstuga sytuacji wyjatkowych

The Python/C API, Wydanie 3.9.21

int PyErr_ WarnExplicit (PyObject *category, const char *message, const char *filename, int lineno,
const char *module, PyObject *registry)
Similarto PyErr _WarnExplicitObject () except that message and module are UTF-8 encoded strings,
and filename is decoded from the filesystem encoding (os . fsdecode ()).

int PyErr_WarnFormat (PyObject *category, Py_ssize_t stack_level, const char *format, ...)
Function similar to PyErr_WarnEx (), but use PyUnicode_FromFormat () to format the warning
message. format is an ASClI-encoded string.

Nowe w wersji 3.2.

int PyErr_ResourceWarning (PyObject *source, Py_ssize_t stack_level, const char *format, ...)
Function similar to PyErr_WarnFormat (), but category is ResourceWarning and it passes source to
warnings.WarningMessage ().

Nowe w wersji 3.6.

5.4 Querying the error indicator

PyObject* PyErr_Occurred ()
Return value: Borrowed reference. Test whether the error indicator is set. If set, return the exception fype (the
first argument to the last call to one of the PyErr_Set* () functions or to PyErr_Restore ()). If not
set, return NULL. You do not own a reference to the return value, so you do not need to Py_ DECREF () it.

The caller must hold the GIL.

Informacja: Do not compare the return value to a specific exception; use PyErr_ExceptionMatches ()
instead, shown below. (The comparison could easily fail since the exception may be an instance instead of
a class, in the case of a class exception, or it may be a subclass of the expected exception.)

int PyErr_ExceptionMatches (PyObject *exc)
Equivalent to PyErr_GivenExceptionMatches (PyErr_Occurred (), exc). This should only
be called when an exception is actually set; a memory access violation will occur if no exception has been
raised.

int PyErr_GivenExceptionMatches (PyObject *given, PyObject *exc)
Return true if the given exception matches the exception type in exc. If exc is a class object, this also returns
true when given is an instance of a subclass. If exc is a tuple, all exception types in the tuple (and recursively
in subtuples) are searched for a match.

void PyErr_Fetch (PyObject **ptype, PyObject **pvalue, PyObject **ptraceback)
Retrieve the error indicator into three variables whose addresses are passed. If the error indicator is not set,
set all three variables to NULL. If it is set, it will be cleared and you own a reference to each object retrieved.
The value and traceback object may be NULL even when the type object is not.

Informacja: This function is normally only used by code that needs to catch exceptions or by code that needs
to save and restore the error indicator temporarily, e.g.:

{
PyObject *type, *value, *traceback;
PyErr_Fetch(&type, &value, &traceback);

/* ... code that might produce other errors ... */

PyErr_Restore (type, value, traceback);

5.4. Querying the error indicator 27

The Python/C API, Wydanie 3.9.21

void PyErr_Restore (PyObject *type, PyObject *value, PyObject *traceback)

Set the error indicator from the three objects. If the error indicator is already set, it is cleared first. If the
objects are NULL, the error indicator is cleared. Do not pass a NULL type and non-NULL value or traceback.
The exception type should be a class. Do not pass an invalid exception type or value. (Violating these rules will
cause subtle problems later.) This call takes away a reference to each object: you must own a reference to each
object before the call and after the call you no longer own these references. (If you don’t understand this, don’t
use this function. I warned you.)

Informacja: This function is normally only used by code that needs to save and restore the error indicator
temporarily. Use PyErr_Fetch () to save the current error indicator.

void PyErr_ NormalizeException (PyObject **exc, PyObject **val, PyObject **tb)

Under certain circumstances, the values returned by PyErr Fetch () below can be ,,unnormalized”, me-
aning that *exc is a class object but *val is not an instance of the same class. This function can be used to
instantiate the class in that case. If the values are already normalized, nothing happens. The delayed normali-
zation is implemented to improve performance.

Informacja: This function does not implicitly set the __traceback___ attribute on the exception value. If
setting the traceback appropriately is desired, the following additional snippet is needed:

if (tb != NULL) {
PyException_SetTraceback (val, tb);
}

void PyErr_GetExcInfo (PyObject **ptype, PyObject **pvalue, PyObject **ptraceback)

Retrieve the exception info, as known from sys.exc_info (). This refers to an exception that was already
caught, not to an exception that was freshly raised. Returns new references for the three objects, any of which
may be NULL. Does not modify the exception info state.

Informacja: This function is not normally used by code that wants to handle exceptions. Rather, it can be
used when code needs to save and restore the exception state temporarily. Use PyErr_SetExcInfo () to
restore or clear the exception state.

Nowe w wersji 3.3.

void PyErr_SetExcInfo (PyObject *type, PyObject *value, PyObject *traceback)

Set the exception info, as known from sys.exc_info (). This refers to an exception that was already
caught, not to an exception that was freshly raised. This function steals the references of the arguments. To
clear the exception state, pass NULL for all three arguments. For general rules about the three arguments, see
PyErr Restore ().

Informacja: This function is not normally used by code that wants to handle exceptions. Rather, it can be
used when code needs to save and restore the exception state temporarily. Use PyErr_GetExcInfo () to
read the exception state.

Nowe w wersji 3.3.

28

Rozdziat 5. Obstuga sytuacji wyjatkowych

The Python/C API, Wydanie 3.9.21

5.5 Signal Handling

int PyErr_CheckSignals ()
This function interacts with Python’s signal handling. It checks whether a signal has been sent to the processes
and if so, invokes the corresponding signal handler. If the signal module is supported, this can invoke a signal
handler written in Python. In all cases, the default effect for STGINT is to raise the KeyboardInterrupt
exception. If an exception is raised the error indicator is set and the function returns - 1; otherwise the function
returns 0. The error indicator may or may not be cleared if it was previously set.

void PyErr_SetInterrupt ()
Simulate the effect of a SIGINT signal arriving. The next time PyErr_ CheckSignals () is called, the
Python signal handler for SIGINT will be called.

If SIGINT isn’t handled by Python (it was set to signal.SIG_DFLor signal.SIG_IGN), this function
does nothing.

int PySignal_SetWakeupFd (int fd)
This utility function specifies a file descriptor to which the signal number is written as a single byte whenever
a signal is received. fd must be non-blocking. It returns the previous such file descriptor.

The value -1 disables the feature; this is the initial state. This is equivalentto signal.set_wakeup_£fd ()
in Python, but without any error checking. fd should be a valid file descriptor. The function should only be
called from the main thread.

Zmienione w wersji 3.5: On Windows, the function now also supports socket handles.

5.6 Exception Classes

PyObject* PyErr_NewException (const char *name, PyObject *base, PyObject *dict)
Return value: New reference. This utility function creates and returns a new exception class. The name argument
must be the name of the new exception, a C string of the form module.classname. The base and dict
arguments are normally NULL. This creates a class object derived from Exception (accessible in C as
PyExc_Exception).

The __module___ attribute of the new class is set to the first part (up to the last dot) of the name argument,
and the class name is set to the last part (after the last dot). The base argument can be used to specify alternate
base classes; it can either be only one class or a tuple of classes. The dict argument can be used to specify
a dictionary of class variables and methods.

PyObject* PyErr_NewExceptionWithDoc (const char *name, const char *doc, PyObject *base, Py-
Object *dict)
Return value: New reference. Same as PyErr_NewException (), except that the new exception class can
easily be given a docstring: If doc is non-NULL, it will be used as the docstring for the exception class.

Nowe w wersji 3.2.

5.7 Przedmioty Sytuacji Wyjatkowych

PyObject* PyException_GetTraceback (PyObject *ex)
Return value: New reference. Return the traceback associated with the exception as a new reference, as acces-
sible from Python through _ traceback__ . If there is no traceback associated, this returns NULL.

int PyException_SetTraceback (PyObject *ex, PyObject *tb)
Set the traceback associated with the exception to tb. Use Py_None to clear it.

PyObject* PyException_GetContext (PyObject *ex)
Return value: New reference. Return the context (another exception instance during whose handling ex was
raised) associated with the exception as a new reference, as accessible from Python through __ context__ .
If there is no context associated, this returns NULL.

5.5. Signal Handling 29

The Python/C API, Wydanie 3.9.21

void PyException_SetContext (PyObject *ex, PyObject *ctx)
Set the context associated with the exception to ctx. Use NULL to clear it. There is no type check to make sure
that ctx is an exception instance. This steals a reference to ctx.

PyObject* PyException_GetCause (PyObject *ex)
Return value: New reference. Return the cause (either an exception instance, or None, set by raise
from ...) associated with the exception as a new reference, as accessible from Python through
__cause__.

void PyException_SetCause (PyObject *ex, PyObject *cause)
Set the cause associated with the exception to cause. Use NULL to clear it. There is no type check to make
sure that cause is either an exception instance or None. This steals a reference to cause.

__suppress_context__ isimplicitly set to True by this function.

5.8 Unicode Exception Objects

The following functions are used to create and modify Unicode exceptions from C.

PyObject* PyUnicodeDecodeError_Create (const char *encoding, const char *object,
Py_ssize_t length, Py_ssize_t start, Py_ssize_t end,
const char *reason)))
Return value: New reference. Create a UnicodeDecodeError object with the attributes encoding, object,

length, start, end and reason. encoding and reason are UTF-8 encoded strings.

PyObject* PyUnicodeEncodeError_Create (const char *encoding, const Py UNICODE *object,
Py_ssize_t length, Py_ssize_t start, Py_ssize_t end, const

char *reason)
Return value: New reference. Create a UnicodeEncodeError object with the attributes encoding, object,

length, start, end and reason. encoding and reason are UTF-8 encoded strings.
Niezalecane od wersji 3.3: 3.11

Py_UNICODE is deprecated since Python 3.3. Please migrate to
PyObject_CallFunction (PyExc_UnicodeEncodeError, "sOnns", ...).

PyObject* PyUnicodeTranslateError_Create (const Py UNICODE *object, Py_ssize_t length,
Py_ssize_t start, Py_ssize_t end, const char *re-

ason)
Return value: New reference. Create a UnicodeTranslateError object with the attributes object, length,

start, end and reason. reason is a UTF-8 encoded string.
Niezalecane od wersji 3.3: 3.11

Py_UNICODE is deprecated since Python 3.3. Please migrate to
PyObject_CallFunction (PyExc_UnicodeTranslateError, "Onns", ...).

PyObject* PyUnicodeDecodeError_GetEncoding (PyObject *exc)
PyObject* PyUnicodeEncodeError_GetEncoding (PyObject *exc)
Return value: New reference. Return the encoding attribute of the given exception object.

PyObject* PyUnicodeDecodeError_GetObject (PyObject *exc)
PyObject* PyUnicodeEncodeError_GetObject (PyObject *exc)
PyObject* PyUnicodeTranslateError_GetObject (PyObject *exc)
Return value: New reference. Return the object attribute of the given exception object.

int PyUnicodeDecodeError_GetStart (PyObject *exc, Py_ssize_t *start)

int PyUnicodeEncodeError_GetStart (PyObject *exc, Py_ssize_t *start)

int PyUnicodeTranslateError_GetStart (PyObject *exc, Py_ssize_t *start)
Get the start attribute of the given exception object and place it into *start. start must not be NULL. Return 0
on success, —1 on failure.

int PyUnicodeDecodeError_SetStart (PyObject *exc, Py_ssize_t start)
int PyUnicodeEncodeError_SetStart (PyObject *exc, Py_ssize_t start)

30 Rozdziat 5. Obstuga sytuacji wyjatkowych

The Python/C API, Wydanie 3.9.21

int PyUnicodeTranslateError_SetStart (PyObject *exc, Py_ssize_t start)
Set the start attribute of the given exception object to start. Return O on success, —1 on failure.

int PyUnicodeDecodeError_GetEnd (PyObject *exc, Py_ssize_t *end)

int PyUnicodeEncodeError_GetEnd (PyObject *exc, Py_ssize_t *end)

int PyUnicodeTranslateError_GetEnd (PyObject *exc, Py_ssize_t *end)
Get the end attribute of the given exception object and place it into *end. end must not be NULL. Return 0 on
success, —1 on failure.

int PyUnicodeDecodeError_SetEnd (PyObject *exc, Py_ssize_t end)
int PyUnicodeEncodeError_SetEnd (PyObject *exc, Py_ssize_t end)
int PyUnicodeTranslateError_SetEnd (PyObject *exc, Py _ssize_t end)
Set the end attribute of the given exception object to end. Return 0 on success, —1 on failure.

PyObject* PyUnicodeDecodeError_GetReason (PyObject *exc)
PyObject* PyUnicodeEncodeError_GetReason (PyObject *exc)
PyObject* PyUnicodeTranslateError_GetReason (PyObject *exc)
Return value: New reference. Return the reason attribute of the given exception object.

int PyUnicodeDecodeError_SetReason (PyObject *exc, const char *reason)
int PyUnicodeEncodeError_SetReason (PyObject *exc, const char *reason)
int PyUnicodeTranslateError_SetReason (PyObject *exc, const char *reason)
Set the reason attribute of the given exception object to reason. Return 0 on success, —1 on failure.

5.9 Kontrola Rekurs;ji

These two functions provide a way to perform safe recursive calls at the C level, both in the core and in extension
modules. They are needed if the recursive code does not necessarily invoke Python code (which tracks its recursion
depth automatically). They are also not needed for #p_call implementations because the call protocol takes care of
recursion handling.

int Py_EnterRecursiveCall (const char *where)
Marks a point where a recursive C-level call is about to be performed.

If USE_STACKCHECK is defined, this function checks if the OS stack overflowed using
PyOS_CheckStack (). In this is the case, it sets a MemoryError and returns a nonzero value.

The function then checks if the recursion limit is reached. If this is the case, a RecursionError is set and
a nonzero value is returned. Otherwise, zero is returned.

where should be a UTF-8 encoded string such as " in instance check" to be concatenated to the
RecursionError message caused by the recursion depth limit.

Zmienione w wersji 3.9: This function is now also available in the limited API.

void Py_LeaveRecursiveCall (void)
Ends a Py _EnterRecursiveCall (). Must be called once for each successful invocation of
Py _EnterRecursiveCall ().

Zmienione w wersji 3.9: This function is now also available in the limited API.

Properly implementing t p_ repr for container types requires special recursion handling. In addition to protecting the
stack, t p_ repr also needs to track objects to prevent cycles. The following two functions facilitate this functionality.
Effectively, these are the C equivalent to reprlib.recursive_repr ().

int Py_ReprEnter (PyObject *object)
Called at the beginning of the t p_ repr implementation to detect cycles.

If the object has already been processed, the function returns a positive integer. In that case the tp_repr
implementation should return a string object indicating a cycle. As examples, dict objects return { . . . } and
list objectsreturn [...].

The function will return a negative integer if the recursion limit is reached. In that case the t p_repr imple-
mentation should typically return NULL.

5.9. Kontrola Rekursiji 31

The Python/C API, Wydanie 3.9.21

Otherwise, the function returns zero and the t p_ repr implementation can continue normally.

void Py_ReprLeave (PyObject *object)
Ends a Py__ReprEnter (). Must be called once for each invocation of Py_ReprEnter () that returns
zero.

5.10 Sztandarowe Sytuacje Wyjatkowe

All standard Python exceptions are available as global variables whose names are PyExc__ followed by the Python
exception name. These have the type PyOb ject *; they are all class objects. For completeness, here are all the
variables:

Nazwa C Nazwa w jezyku pytonowskim Notatki
PyExc_BaseException BaseException f
PyExc_Exception Exception !
PyExc_ArithmeticError ArithmeticError I
PyExc_AssertionError AssertionError
PyExc_AttributeError AttributeError
PyExc_BlockingIOError BlockingIOError
PyExc_BrokenPipeError BrokenPipeError
PyExc_BufferError BufferError

PyExc_ChildProcessError

ChildProcessError

PyExc_ConnectionAbortedE

r€onnectionAbortedError

PyExc_ConnectionError

ConnectionError

PyExc_ConnectionRefusedE

rfonnectionRefusedError

PyExc_ConnectionResetErr

pfonnectionResetError

PyExc_EOFError

EOFError

PyExc_FileExistsError

FileExistsError

PyExc_FileNotFoundError

FileNotFoundError

PyExc_FloatingPointError

FloatingPointError

PyExc_GeneratorExit GeneratorExit
PyExc_TImportError ImportError
PyExc_IndentationError IndentationError
PyExc_IndexError IndexError
PyExc_InterruptedError InterruptedError

PyExc_IsADirectoryError

IsADirectoryError

PyExc_KeyError

KeyError

PyExc_KeyboardInterrupt | KeyboardInterrupt
PyExc_LookupError LookupError I
PyExc_MemoryError MemoryError

PyExc_ModuleNotFoundErro

rModuleNotFoundError

PyExc_NameError

NameError

PyExc_NotADirectoryError

NotADirectoryError

PyExc_NotImplementedErro

rNotImplementedError

PyExc_OSError

OSError

PyExc_OverflowError OverflowError
PyExc_PermissionError PermissionError
PyExc_ProcessLookupError| ProcessLookupError
PyExc_RecursionError RecursionError
PyExc_ReferenceError ReferenceError
PyExc_RuntimeError RuntimeError
PyExc_StopAsynclIteration| StopAsynclIteration
PyExc_StopIteration StopIlteration
PyExc_SyntaxError SyntaxError

Kontynuacja na nastepnej stronie

32

Rozdziat 5. Obstuga sytuacji wyjatkowych

The Python/C API, Wydanie 3.9.21

Tabela 1 - kontynuacja poprzedniej strony

Nazwa C Nazwa w jezyku pytonowskim Notatki
PyExc_SystemError SystemError

PyExc_SystemExit SystemExit

PyExc_TabError TabError

PyExc_TimeoutError TimeoutError

PyExc_TypeError TypeError

PyExc_UnboundLocalError

UnboundLocalError

PyExc_UnicodeDecodeError

UnicodeDecodeError

PyExc_UnicodeEncodeError

UnicodeEncodeError

PyExc_UnicodeError UnicodeError
PyExc_UnicodeTranslateErrdnicodeTranslateError
PyExc_ValueError ValueError

PyExc_ZeroDivisionError

ZeroDivisionError

Nowe w wersji 3.3:

PyExc_ConnectionRefusedEr
PyExc_FileExistsError,
PyExc_IsADirectoryError,

PyExc_ProcessLookupError and PyExc_TimeoutError were introduced following PEP 3151.

Nowe w wersji 3.5: PyExc_StopAsyncIteration and PyExc_RecursionError.

Nowe w wersji 3.6: PyExc_Module

PyExc_BlockingIOError, PyExc_BrokenPipeError,
PyExc_ChildProcessError, PyExc_ConnectionError, PyExc_ConnectionAbortedError,
ror, PyExc_ConnectionResetError,
PyExc_FileNotFoundError, PyExc_InterruptedError,

PyExc_NotADirectoryError, PyExc_PermissionError,

NotFoundError.

These are compatibility aliases to PyExc_OSError:

Nazwa C Notatki

PyExc_EnvironmentError

PyExc_IOError

PyExc_WindowsError

Zmienione w wersji 3.3: These aliases

Uwagi:

used to be separate exception types.

! To jest podstawowy rodzaj przedmiotu dla innych sztandarowych sytuacji wyjatkowych.
2 Zdefiniowane tylko w systemie Windows; Kod chroniony ktéry uzywa tego przez sprawdzenie czy makrodefinicja preprocesora

MS_WINDOWS jest okreSlona.

5.10. Sztandarowe Sytuacje Wyjatkowe

33

https://www.python.org/dev/peps/pep-3151

The Python/C API, Wydanie 3.9.21

5.11 Standard Warning Categories

All standard Python warning categories are available as global variables whose names are PyExc_ followed by the
Python exception name. These have the type PyOb ject *; they are all class objects. For completeness, here are all

the variables:

Nazwa C Nazwa w jezyku pytonowskim Notatki
PyExc_Warning Warning 3
PyExc_BytesWarning BytesWarning
PyExc_DeprecationWarning DeprecationWarning
PyExc_FutureWarning FutureWarning
PyExc_ImportWarning ImportWarning
PyExc_PendingDeprecationWarning | PendingDeprecationWarning
PyExc_ResourceWarning ResourceWarning
PyExc_RuntimeWarning RuntimeWarning
PyExc_SyntaxWarning SyntaxWarning
PyExc_UnicodeWarning UnicodeWarning
PyExc_UserWarning UserWarning

Nowe w wersji 3.2: PyExc_ResourceWarning

Uwagi:

3 This is a base class for other standard warning categories.

34

Rozdziat 5. Obstuga sytuacji wyjatkowych

ROzDzIAL O

Utilities

The functions in this chapter perform various utility tasks, ranging from helping C code be more portable across
platforms, using Python modules from C, and parsing function arguments and constructing Python values from C
values.

6.1 Operating System Utilities

PyObject* PyOS_FSPath (PyObject *path)
Return value: New reference. Return the file system representation for path. If the object is a str or bytes
object, then its reference count is incremented. If the object implements the os . PathLike interface, then
__fspath__ () isreturned as long as it is a st r or bytes object. Otherwise TypeError is raised and
NULL is returned.

Nowe w wersji 3.6.

int Py_FdIsInteractive (FILE *fp, const char *filename)
Return true (nonzero) if the standard I/O file fp with name filename is deemed interactive. This is the case
for files for which isatty (fileno (fp)) is true. If the global flag Py_TnteractiveFlaqg is true,
this function also returns true if the filename pointer is NULL or if the name is equal to one of the strings
'<stdin>"'or '??°?"'.

void PyOS_BeforeFork ()
Function to prepare some internal state before a process fork. This should be called before calling fork () or
any similar function that clones the current process. Only available on systems where fork () is defined.

Ostrzezenie: The C fork () call should only be made from the ,main” thread (of the ,,main” interpreter).
The same is true for PyOS_BeforeFork ().

Nowe w wersji 3.7.

void PyOS_AfterFork_Parent ()
Function to update some internal state after a process fork. This should be called from the parent process after
calling fork () or any similar function that clones the current process, regardless of whether process cloning
was successful. Only available on systems where fork () is defined.

35

The Python/C API, Wydanie 3.9.21

Ostrzezenie: The C fork () call should only be made from the ,main” thread (of the ,,main” interpreter).
The same is true for PyOS_AfterFork_Parent ().

Nowe w wersji 3.7.

void PyOS_AfterFork_Child()
Function to update internal interpreter state after a process fork. This must be called from the child process
after calling fork (), or any similar function that clones the current process, if there is any chance the process
will call back into the Python interpreter. Only available on systems where fork () is defined.

Ostrzezenie: The C fork () call should only be made from the ,,main” thread (of the ,,main” interpreter).
The same is true for PyOS_AfterFork_Child ().

Nowe w wersji 3.7.
Zobacz takze:

os.register_at_fork () allows registering custom Python functions to be called by
PyOS_BeforeFork (), PyOS_AfterFork_Parent () and PyOS_AfterFork_Child().

void PyOS_AfterFork ()
Function to update some internal state after a process fork; this should be called in the new process if the
Python interpreter will continue to be used. If a new executable is loaded into the new process, this function
does not need to be called.

Niezalecane od wersji 3.7: This function is superseded by PyOS_AfterFork_Child().

int PyOS_CheckStack ()
Return true when the interpreter runs out of stack space. This is a reliable check, but is only available
when USE_STACKCHECK is defined (currently on Windows using the Microsoft Visual C++ compiler).
USE_STACKCHECK will be defined automatically; you should never change the definition in your own code.

PyOS_sighandler_t PyOS_getsig (int i)
Return the current signal handler for signal i. This is a thin wrapper around either sigaction () or
signal (). Do not call those functions directly! PyOS_sighandler_t is a typedef alias for void
(*) (int).

PyOS_sighandler_t PyOS_setsig (int i, PyOS_sighandler_t /)
Set the signal handler for signal i to be &; return the old signal handler. This is a thin wrapper around either
sigaction () or signal (). Do not call those functions directly! PyOS_sighandler_t is a typedef
alias for void (*) (int).

wchar_t* Py_DecodeLocale (const char* arg, size_t *size)
Decode a byte string from the locale encoding with the surrogateescape error handler: undecodable bytes are
decoded as characters in range U+DC80..U+DCFF. If a byte sequence can be decoded as a surrogate character,
escape the bytes using the surrogateescape error handler instead of decoding them.

Encoding, highest priority to lowest priority:
e UTF-8 on macOS, Android, and VxWorKks;
e UTF-8 on Windows if Py_LegacyWindowsFSEncodingFlagqg is zero;
o UTF-38 if the Python UTF-8 mode is enabled;

e ASCIT if the LC_CTYPE locale is "C", nl_langinfo (CODESET) returns the ASCII encoding
(or an alias), and mbstowcs () and westombs () functions uses the ISO-8859-1 encoding.

« the current locale encoding.

Return a pointer to a newly allocated wide character string, use PyMem_RawFree () to free the memory. If
size is not NULL, write the number of wide characters excluding the null character into *size

36 Rozdziat 6. Utilities

The Python/C API, Wydanie 3.9.21

Return NULL on decoding error or memory allocation error. If sizeisnot NULL, *sizeissetto (size_t) -1
on memory error or setto (size_t) -2 on decoding error.

Decoding errors should never happen, unless there is a bug in the C library.
Use the Py_EncodeLocale () function to encode the character string back to a byte string.
Zobacz takze:

The PyUnicode_DecodeFSDefaultAndSize () and PyUnicode_DecodeLocaleAndSize ()
functions.

Nowe w wersji 3.5.
Zmienione w wersji 3.7: The function now uses the UTF-8 encoding in the UTF-8 mode.

Zmienione w wersji 3.8: The function now wuses the UTF-8 encoding on Windows if
Py_LegacyWindowsFSEncodingFlag is zero;

char* Py_EncodeLocale (const wchar_t *fext, size_t *error_pos)
Encode a wide character string to the locale encoding with the surrogateescape error handler: surrogate cha-
racters in the range U+DC80..U+DCFF are converted to bytes 0x80..0xFF.

Encoding, highest priority to lowest priority:
e UTF-8 on macOS, Android, and VxWorks;
e UTF-8 on Windows if Py TLegacyWindowsFSEncodingFlag is zero;
o UTF-38 if the Python UTF-8 mode is enabled;

e ASCIT if the LC_CTYPE locale is "C", nl_langinfo (CODESET) returns the ASCII encoding
(or an alias), and mbstowcs () and westombs () functions uses the ISO-8859-1 encoding.

« the current locale encoding.
The function uses the UTF-8 encoding in the Python UTF-8 mode.

Return a pointer to a newly allocated byte string, use PyMem Free () to free the memory. Return NULL on
encoding error or memory allocation error.

If error_pos is not NULL, *error_posissetto (size_t) -1 on success, or set to the index of the invalid
character on encoding error.

Use the Py_DecodeLocale () function to decode the bytes string back to a wide character string.
Zobacz takze:

The PyUnicode_EncodeFSDefault () and PyUnicode_EncodeLocale () functions.
Nowe w wersji 3.5.

Zmienione w wersji 3.7: The function now uses the UTF-8 encoding in the UTF-8 mode.

Zmienione w wersji 3.8: The function now uses the UTF-8 encoding on Windows if
Py_LegacyWindowsFSEncodingFlag is zero.

6.2 System Functions

These are utility functions that make functionality from the sys module accessible to C code. They all work with
the current interpreter thread’s sy s module’s dict, which is contained in the internal thread state structure.

PyObject *PySys_GetObject (const char *name)
Return value: Borrowed reference. Return the object name from the sy s module or NULL if it does not exist,
without setting an exception.

int PySys_SetObject (const char *name, PyObject *v)
Set name in the sy s module to v unless v is NULL, in which case name is deleted from the sys module. Returns
0 on success, —1 on error.

6.2. System Functions 37

The Python/C API, Wydanie 3.9.21

void PySys_ResetWarnOptions ()
Reset sys.warnoptions to an empty list. This function may be called prior to Py_Tnitialize ().

void PySys_AddWarnOption (const wchar_t *s)
Append s to sys .warnoptions. This function must be called prior to Py_Tnitialize () in order to
affect the warnings filter list.

void PySys_AddWarnOptionUnicode (PyObject *unicode)
Append unicode to sys .warnoptions.

Note: this function is not currently usable from outside the CPython implementation, as it must be called prior
to the implicit import of warningsin Py_Initialize () to be effective, but can’t be called until enough
of the runtime has been initialized to permit the creation of Unicode objects.

void PySys_ SetPath (const wchar_t *path)
Set sys.path to a list object of paths found in path which should be a list of paths separated with the
platform’s search path delimiter (: on Unix, ; on Windows).

void PySys_WriteStdout (const char *format, ...)
Write the output string described by format to sys . stdout. No exceptions are raised, even if truncation
occurs (see below).

format should limit the total size of the formatted output string to 1000 bytes or less — after 1000 bytes, the
output string is truncated. In particular, this means that no unrestricted ,,%s” formats should occur; these should
be limited using ,,%.<N>s” where <N> is a decimal number calculated so that <N> plus the maximum size of
other formatted text does not exceed 1000 bytes. Also watch out for ,,%f”, which can print hundreds of digits
for very large numbers.

If a problem occurs, or sys . stdout is unset, the formatted message is written to the real (C level) stdout.

void PySys_WriteStderr (const char *format, ...)
As PySys_WriteStdout (), but write to sys.stderr or stderr instead.

void PySys_FormatStdout (const char *format, ...)
Function similar to PySys_WriteStdout() but format the message using PyUnicode_ FromFormatV () and
don’t truncate the message to an arbitrary length.

Nowe w wersji 3.2.

void PySys_FormatStderr (const char *format, ...)
As PySys_FormatStdout (), but write to sys . stderr or stderr instead.

Nowe w wersji 3.2.

void PySys_ AddXOption (const wchar_t *s)
Parse s as a set of —X options and add them to the current options mapping as returned by
PySys_GetXOptions (). This function may be called prior to Py Tnitialize ().

Nowe w wersji 3.2.

PyObject *PySys_GetXOptions ()
Return value: Borrowed reference. Return the current dictionary of —X options, similarly to sys . _xoptions.
On error, NULL is returned and an exception is set.

Nowe w wersji 3.2.

int PySys_Audit (const char *event, const char *format, ...)
Raise an auditing event with any active hooks. Return zero for success and non-zero with an exception set on
failure.

If any hooks have been added, format and other arguments will be used to construct a tuple to pass. Apart from
N, the same format characters as used in Py_BuildValue () are available. If the built value is not a tuple,
it will be added into a single-element tuple. (The N format option consumes a reference, but since there is no
way to know whether arguments to this function will be consumed, using it may cause reference leaks.)

Note that # format characters should always be treated as Py _ssize_t, regardless of whether
PY_SSIZE_T_CLEAN was defined.

38 Rozdziat 6. Utilities

The Python/C API, Wydanie 3.9.21

sys.audit () performs the same function from Python code.
Nowe w wersji 3.8.

Zmienione w wersji 3.8.2: Require Py ssize t for # format characters. Previously, an unavoidable depre-
cation warning was raised.

int PySys_AddAuditHook (Py_AuditHookFunction hook, void *userData)
Append the callable Kook to the list of active auditing hooks. Return zero on success and non-zero on failure.
If the runtime has been initialized, also set an error on failure. Hooks added through this API are called for all
interpreters created by the runtime.

The userData pointer is passed into the hook function. Since hook functions may be called from different
runtimes, this pointer should not refer directly to Python state.

This function is safe to call before Py_Tnitialize (). When called after runtime initialization, existing
audit hooks are notified and may silently abort the operation by raising an error subclassed from Exception
(other errors will not be silenced).

The hook function is of type int (*) (const char *event, PyObject *args, void
*userData), where args is guaranteed to be a PyTupleObject. The hook function is always called
with the GIL held by the Python interpreter that raised the event.

See PEP 578 for a detailed description of auditing. Functions in the runtime and standard library that raise
events are listed in the audit events table. Details are in each function’s documentation.

If the interpreter is initialized, this function raises a auditing event sy s . addaudithook with no arguments.
If any existing hooks raise an exception derived from Except ion, the new hook will not be added and the
exception is cleared. As a result, callers cannot assume that their hook has been added unless they control all
existing hooks.

Nowe w wersji 3.8.

6.3 Process Control

void Py_FatalError (const char *message)
Print a fatal error message and kill the process. No cleanup is performed. This function should only be invoked
when a condition is detected that would make it dangerous to continue using the Python interpreter; e.g., when
the object administration appears to be corrupted. On Unix, the standard C library function abort () is called
which will attempt to produce a core file.

The Py_FatalError () function is replaced with a macro which logs automatically the name of the current
function, unless the Py_LIMITED_API macro is defined.

Zmienione w wersji 3.9: Log the function name automatically.

void Py_Exit (int status)
Exit the current process. This calls Py_FinalizeEx () and then calls the standard C library function
exit (status).If Py _FinalizeEx () indicates an error, the exit status is set to 120.

Zmienione w wersji 3.6: Errors from finalization no longer ignored.

int Py_AtExit (void (*func)())
Register a cleanup function to be called by Py FinalizeEx (). The cleanup function will be called with no
arguments and should return no value. At most 32 cleanup functions can be registered. When the registration
is successful, Py_AtExit () returns O; on failure, it returns — 1. The cleanup function registered last is called
first. Each cleanup function will be called at most once. Since Python’s internal finalization will have completed
before the cleanup function, no Python APIs should be called by func.

6.3. Process Control 39

https://www.python.org/dev/peps/pep-0578

The Python/C API, Wydanie 3.9.21

6.4 Importing Modules

PyObject* PyImport_ImportModule (const char *name)

Return value: New reference. This is a simplified interface to PyImport_ImportModuleEx () below,
leaving the globals and locals arguments set to NULL and level set to 0. When the name argument contains
a dot (when it specifies a submodule of a package), the fromlist argument is set to the list ['* '] so that
the return value is the named module rather than the top-level package containing it as would otherwise be
the case. (Unfortunately, this has an additional side effect when name in fact specifies a subpackage instead of
a submodule: the submodules specified in the package’s __all__ variable are loaded.) Return a new reference
to the imported module, or NULL with an exception set on failure. A failing import of a module doesn’t leave
the module in sys .modules.

This function always uses absolute imports.

PyObject* PyImport_ImportModuleNoBlock (const char *name)
Return value: New reference. This function is a deprecated alias of Py Import_ImportModule ().

Zmienione w wersji 3.3: This function used to fail immediately when the import lock was held by another
thread. In Python 3.3 though, the locking scheme switched to per-module locks for most purposes, so this
function’s special behaviour isn’t needed anymore.

PyObject* PyImport_ImportModuleEx (const char *name, PyObject *globals, PyObject *locals, Py-
Object *fromlist)
Return value: New reference. Import a module. This is best described by referring to the built-in Python function
__import__ ().

The return value is a new reference to the imported module or top-level package, or NULL with an exception
set on failure. Like for __import__ (), the return value when a submodule of a package was requested is
normally the top-level package, unless a non-empty fromlist was given.

Failing imports remove incomplete module objects, like with Py Tmport_ ImportModule ().

PyObject* PyImport_ImportModuleLevelObject (PyObject *name, PyObject *globals, Py-
Object *locals, PyObject *fromlist, int level)
Return value: New reference. Import a module. This is best described by referring to the built-in Python function
__import__ (), asthestandard __import__ () function calls this function directly.

The return value is a new reference to the imported module or top-level package, or NULL with an exception
set on failure. Like for __import__ (), the return value when a submodule of a package was requested is
normally the top-level package, unless a non-empty fromlist was given.

Nowe w wersji 3.3.

PyObject* PyImport_ImportModuleLevel (const char *name, PyObject *globals, PyObject *locals,

PyObject *fromlist, int level)
Return value: New reference. Similar to Py Tmport_ImportModulelLevelObject (), but the name is
a UTF-8 encoded string instead of a Unicode object.

Zmienione w wersji 3.3: Negative values for level are no longer accepted.

PyObject* PyImport_Import (PyObject *name)
Return value: New reference. This is a higher-level interface that calls the current ,import hook function”
(with an explicit level of 0, meaning absolute import). It invokes the ___import__ () function from the
__builtins__ of the current globals. This means that the import is done using whatever import hooks are
installed in the current environment.

This function always uses absolute imports.

PyObject* PyImport_ReloadModule (PyObject *m)
Return value: New reference. Reload a module. Return a new reference to the reloaded module, or NULL with
an exception set on failure (the module still exists in this case).

PyObject* PyImport_AddModuleObject (PyObject *name)
Return value: Borrowed reference. Return the module object corresponding to a module name. The name ar-

40 Rozdziat 6. Utilities

The Python/C API, Wydanie 3.9.21

gument may be of the form package .module. First check the modules dictionary if there’s one there, and
if not, create a new one and insert it in the modules dictionary. Return NULL with an exception set on failure.

Informacja: This function does not load or import the module; if the module wasn’t already loaded, you will
get an empty module object. Use Py Import_ImportModule () or one of its variants to import a module.
Package structures implied by a dotted name for name are not created if not already present.

Nowe w wersji 3.3.

PyObject* PyImport_AddModule (const char *name)
Return value: Borrowed reference. Similar to Py ITmport_AddModuleObject (), but the name is a UTF-8
encoded string instead of a Unicode object.

PyObject* PyImport_ExecCodeModule (const char *name, PyObject *co)

Return value: New reference. Given a module name (possibly of the form package.module) and a code
object read from a Python bytecode file or obtained from the built-in function compile (), load the modu-
le. Return a new reference to the module object, or NULL with an exception set if an error occurred. name
is removed from sys.modules in error cases, even if name was already in sys.modules on entry to
PyImport_ExecCodeModule (). Leaving incompletely initialized modules in sys.modules is dan-
gerous, as imports of such modules have no way to know that the module object is an unknown (and probably
damaged with respect to the module author’s intents) state.

The module’s __spec__and ___loader__ will be set, if not set already, with the appropriate values. The
spec’s loader will be set to the module’s ___1oader__ (if set) and to an instance of SourceFileLoader
otherwise.

The module’s _ file_ attribute will be set to the code object's co_filename. If applicable,
___cached___ will also be set.

This function will reload the module if it was already imported. See Py Import_ReloadModule () for
the intended way to reload a module.

If name points to a dotted name of the form package .module, any package structures not already created
will still not be created.

Seealso Py Import_ExecCodeModuleEx () and Py Import_ExecCodeModuleWithPathnames ().

PyObject* PyImport_ExecCodeModuleEx (const char *name, PyObject *co, const char *pathname)
Return value: New reference. Like Py Import_ExecCodeModule (),butthe _ file_ attribute of the
module object is set to pathname if it is non-NULL.

See also Py ITmport_ExecCodeModuleWithPathnames ().

PyObject* PyImport_ExecCodeModuleObject (PyObject *name, PyObject *co, PyObject *pathname,
PyObject *cpathname)
Return value: New reference. Like Py Import_ExecCodeModuleEx (), butthe ___cached___ attribute

of the module object is set to cpathname if it is non-NULL. Of the three functions, this is the preferred one to
use.

Nowe w wersji 3.3.

PyObject* PyImport_ExecCodeModuleWithPathnames (const char *name, PyObject *co, const

char *pathname, const char *cpathname)
Return value: New reference. Like Py Import_ExecCodeModuleObject (), but name, pathname and

cpathname are UTF-8 encoded strings. Attempts are also made to figure out what the value for pathname
should be from cpathname if the former is set to NULL.

Nowe w wersji 3.2.

Zmienione w wersji 3.3: Uses imp.source_from_cache () in calculating the source path if only the
bytecode path is provided.

long PyImport_GetMagicNumber ()
Return the magic number for Python bytecode files (a.k.a. . pyc file). The magic number should be present
in the first four bytes of the bytecode file, in little-endian byte order. Returns —1 on error.

6.4. Importing Modules a1

The Python/C API, Wydanie 3.9.21

Zmienione w wersji 3.3: Return value of —1 upon failure.

const char * PyImport_GetMagicTag ()
Return the magic tag string for PEP 3147 format Python bytecode file names. Keep in mind that the value at
sys.implementation.cache_tag is authoritative and should be used instead of this function.

Nowe w wersji 3.2.

PyObject* PyImport_GetModuleDict ()
Return value: Borrowed reference. Return the dictionary used for the module administration (a.k.a. sys.
modules). Note that this is a per-interpreter variable.

PyObject* PyImport_GetModule (PyObject *name)
Return value: New reference. Return the already imported module with the given name. If the module has not

been imported yet then returns NULL but does not set an error. Returns NULL and sets an error if the lookup
failed.

Nowe w wersji 3.7.

PyObject* PyImport_GetImporter (PyObject *path)
Return value: New reference. Return a finder object for a sys.path/pkg.__path__ item path, possi-
bly by fetching it from the sys.path_importer_cache dict. If it wasn’t yet cached, traverse sys.
path_hooks until a hook is found that can handle the path item. Return None if no hook could; this tells
our caller that the path based finder could not find a finder for this path item. Cache the result in sys.
path_importer_cache. Return a new reference to the finder object.

int PyImport_ImportFrozenModuleObject (PyObject *name)
Return value: New reference. Load a frozen module named name. Return 1 for success, 0 if the module is not
found, and -1 with an exception set if the initialization failed. To access the imported module on a successful
load, use Py Import_ImportModule (). (Note the misnomer — this function would reload the module
if it was already imported.)

Nowe w wersji 3.3.
Zmienione w wersji 3.4: The __file_ attribute is no longer set on the module.

int PyImport_ImportFrozenModule (const char *name)
Similar to Py Import_ImportFrozenModuleObject (), but the name is a UTF-8 encoded string in-
stead of a Unicode object.

struct _frozen
This is the structure type definition for frozen module descriptors, as generated by the freeze utility (see
Tools/freeze/ in the Python source distribution). Its definition, found in Include/import .h, is:

struct _frozen {
const char *name;
const unsigned char *code;
int size;

bi

const struct _frozen* PyImport_FrozenModules
This pointer is initialized to point to an array of struct _ frozen records, terminated by one whose mem-
bers are all NULL or zero. When a frozen module is imported, it is searched in this table. Third-party code
could play tricks with this to provide a dynamically created collection of frozen modules.

int PyImport_AppendInittab (const char *name, PyObject* (*initfunc)(void))
Add a single module to the existing table of built-in modules. This is a convenience wrapper around
PyImport_ExtendInittab (), returning —1 if the table could not be extended. The new module can
be imported by the name name, and uses the function initfunc as the initialization function called on the first
attempted import. This should be called before Py_Tnitialize ().

struct _inittab
Structure describing a single entry in the list of built-in modules. Each of these structures gives the
name and initialization function for a module built into the interpreter. The name is an ASCII enco-
ded string. Programs which embed Python may use an array of these structures in conjunction with

42 Rozdziat 6. Utilities

https://www.python.org/dev/peps/pep-3147

The Python/C API, Wydanie 3.9.21

PyImport_ExtendInittab () to provide additional built-in modules. The structure is defined in
Include/import.h as:

struct _inittab {
const char *name; /* ASCII encoded string */
PyObject* (*initfunc) (void);

bi

int PyImport_ExtendInittab (struct _inittab *newtab)
Add a collection of modules to the table of built-in modules. The newtab array must end with a sentinel entry
which contains NULL for the name field; failure to provide the sentinel value can result in a memory fault.
Returns 0 on success or -1 if insufficient memory could be allocated to extend the internal table. In the event
of failure, no modules are added to the internal table. This must be called before Py Tnitialize ().

If Python is initialized multiple times, PyImport_AppendInittab () or
PyImport_ExtendInittab () must be called before each Python initialization.

6.5 Data marshalling support

These routines allow C code to work with serialized objects using the same data format as the marshal module.
There are functions to write data into the serialization format, and additional functions that can be used to read the
data back. Files used to store marshalled data must be opened in binary mode.

Numeric values are stored with the least significant byte first.

The module supports two versions of the data format: version O is the historical version, version 1 shares in-
terned strings in the file, and upon unmarshalling. Version 2 uses a binary format for floating point numbers.
Py_MARSHAL_VERSION indicates the current file format (currently 2).

void PyMarshal_WriteLongToFile (long value, FILE *file, int version)
Marshal a 1ong integer, value, to file. This will only write the least-significant 32 bits of value; regardless of
the size of the native 1ong type. version indicates the file format.

This function can fail, in which case it sets the error indicator. Use PyErr Occurred () to check for that.

void PyMarshal_WriteObjectToFile (PyObject *value, FILE *file, int version)
Marshal a Python object, value, to file. version indicates the file format.

This function can fail, in which case it sets the error indicator. Use PyErr Occurred () to check for that.

PyObject* PyMarshal_WriteObjectToString (PyObject *value, int version)
Return value: New reference. Return a bytes object containing the marshalled representation of value. version
indicates the file format.

The following functions allow marshalled values to be read back in.

long PyMarshal_ReadLongFromFile (FILE *file)
Return a C 1ong from the data stream in a FILE* opened for reading. Only a 32-bit value can be read in
using this function, regardless of the native size of long.

On error, sets the appropriate exception (EOFError) and returns —1.

int PyMarshal_ReadShortFromFile (FILE *file)
Return a C short from the data stream in a FILE* opened for reading. Only a 16-bit value can be read in
using this function, regardless of the native size of short.

On error, sets the appropriate exception (EOFError) and returns —1.

PyObject* PyMarshal_ReadObjectFromFile (FILE *file)
Return value: New reference. Return a Python object from the data stream in a FILE* opened for reading.

On error, sets the appropriate exception (EOFError, ValueError or TypeError) and returns NULL.

6.5. Data marshalling support 43

The Python/C API, Wydanie 3.9.21

PyObject* PyMarshal_ReadLastObjectFromFile (FILE *file)
Return value: New reference. Return a Python object from the data stream in a FILE* opened for reading.
Unlike PyMarshal_ ReadObjectFromFile (), this function assumes that no further objects will be
read from the file, allowing it to aggressively load file data into memory so that the de-serialization can operate
from data in memory rather than reading a byte at a time from the file. Only use these variant if you are certain
that you won’t be reading anything else from the file.

On error, sets the appropriate exception (EOFError, ValueError or TypeError) and returns NULL.

PyObject* PyMarshal_ReadObjectFromString (const char *data, Py_ssize_t len)
Return value: New reference. Return a Python object from the data stream in a byte buffer containing len bytes
pointed to by data.

On error, sets the appropriate exception (EOFError, ValueError or TypeError) and returns NULL.

6.6 Pobieranie kolejnych rzeczy podanych na wejsciu i konstruowa-
nie wartosci.

Te dzialania sg uzyteczne przy tworzeniu swoich wiasnych zadan rozszerzajacych i rozszerzajacych sposobéw dzia-
tania. Dodatkowe informacje i przyktady dostgpne sa w extending-index.

The first three of these functions described, PyArg ParseTuple (), PyArg_ParseTupleAndKeywords (),
and PyArg_Parse (), all use format strings which are used to tell the function about the expected arguments.
The format strings use the same syntax for each of these functions.

6.6.1 Parsowanie argumentow

napis ksztaltujacy moze by¢ pusty lub sktadac si¢ z ,,jednostek ksztattujacych”. Jednostka uksztattowania opisuje je-
den pytonowski przedmiot; jest to zazwyczaj jedna litera, lub kolejka jednostek uksztaltowania w ujetych w nawias.
Z kilkoma wyjatkami, jednostka uksztaltowania, ktéra nie jest kolejka jednostek ujgta w nawias zwykle odpowia-
da pojedynczo umiejscowionej rzeczy przekazywanej dla tych zadan. W ponizszych zapisach cytat jest jednostka
ksztattujaca; polecenie ujgte w nawias okragly () oznacza typ przedmiotu w jezyku pytonowskim, ktéry odpowiada
jednostce ksztaltujacej, a zapis ujety w nawiasie kwadratowym [] okreSla typ przedmiotu / przedmiotéw w jezyku
C, ktérego miejsce powinno zosta¢ wskazane i przekazane dla zadania.

Napisy i skrzynki wymiany

These formats allow accessing an object as a contiguous chunk of memory. You don’t have to provide raw storage for
the returned unicode or bytes area.

In general, when a format sets a pointer to a buffer, the buffer is managed by the corresponding Python object, and
the buffer shares the lifetime of this object. You won’t have to release any memory yourself. The only exceptions are
es, es#, et and et #.

However, when a Py bu f fer structure gets filled, the underlying buffer is locked so that the caller can subsequently
use the buffer even inside a Py_ BEGIN_ALLOW_THREADS block without the risk of mutable data being resized or
destroyed. As a result, you have to call PyBuffer Release () after you have finished processing the data (or
in any early abort case).

Bufory nie sa zakoriczone znakiem NULL, chyba ze zaznaczono inaczej.

Some formats require a read-only byzes-like object, and set a pointer instead of a buffer structure. They work by chec-
king that the object’s PyBufferProcs.bf releasebuffer field is NULL, which disallows mutable objects
such as bytearray.

Informacja: For all # variants of formats (s#, y#, etc.), the type of the length argument (intor Py_ssize_t)is
controlled by defining the macro PY_SSIZE_T_CLEAN before including Python. h. If the macro was defined,

44 Rozdziat 6. Utilities

The Python/C API, Wydanie 3.9.21

lengthisa Py_ssize_t rather than an int. This behavior will change in a future Python version to only support
Py_ssize_t and drop int support. It is best to always define PY_SSIZE_T_CLEAN.

s (str) [const char *] Convert a Unicode object to a C pointer to a character string. A pointer to an existing string
is stored in the character pointer variable whose address you pass. The C string is NUL-terminated. The Python
string must not contain embedded null code points; if it does, a ValueError exception is raised. Unicode
objects are converted to C strings using 'ut £-8"' encoding. If this conversion fails, a UnicodeError is
raised.

Informacja: This format does not accept byres-like objects. If you want to accept filesystem paths and convert
them to C character strings, it is preferable to use the O& format with PyUnicode FSConverter () as
converter.

Zmienione w wersji 3.5: Previously, TypeError was raised when embedded null code points were encoun-
tered in the Python string.

s* (str or bytes-like object) [Py_buffer] This format accepts Unicode objects as well as bytes-like objects. It fills
a Py_buffer structure provided by the caller. In this case the resulting C string may contain embedded NUL
bytes. Unicode objects are converted to C strings using 'ut £-8"' encoding.

s# (str, read-only byfes-like object) [const char *, int or Py_ssize t] Like s*, except that it doesn’t accept
mutable objects. The result is stored into two C variables, the first one a pointer to a C string, the second
one its length. The string may contain embedded null bytes. Unicode objects are converted to C strings using
'ut£-8"' encoding.

z (str or None) [const char *] Like s, but the Python object may also be None, in which case the C pointer is
set to NULL.

z* (str, bytes-like object or None) [Py_buffer] Like s*, but the Python object may also be None, in which case
the buf member of the Py_buffer structure is set to NULL.

z# (str, read-only byfes-like object or None) [const char *, int or Py_ssize t] Like s#, but the Python ob-
ject may also be None, in which case the C pointer is set to NULL.

y (read-only byfes-like object) [const char *] This format converts a bytes-like object to a C pointer to a character
string; it does not accept Unicode objects. The bytes buffer must not contain embedded null bytes; if it does,
aValueError exception is raised.

Zmienione w wersji 3.5: Previously, TypeError was raised when embedded null bytes were encountered in
the bytes buffer.

y* (bytes-like object) [Py_buffer] This variant on s* doesn’t accept Unicode objects, only bytes-like objects. This
is the recommended way to accept binary data.

y# (read-only bytes-like object) [const char *, int or Py_ssize_t] Ten wariant s# nie akceptuje obiektéw
Unicode, a jedynie bajto-podobne obiekty.

S (bytes) [PyBytesObject *] Requires that the Python object is a bytes object, without attempting any co-
nversion. Raises TypeError if the object is not a bytes object. The C variable may also be declared as
PyObject *.

Y (bytearray) [PyByteArrayObject *] Requires that the Python object is a bytearray object, without at-
tempting any conversion. Raises TypeError if the object is not a bytearray object. The C variable may
also be declared as PyOb ject *.

u (str) [const Py_UNICODE *] Convert a Python Unicode object to a C pointer to a NUL-terminated buffer of
Unicode characters. You must pass the address of a Py_ UNTCODE pointer variable, which will be filled with
the pointer to an existing Unicode buffer. Please note that the width of a Py UNICODE character depends on
compilation options (it is either 16 or 32 bits). The Python string must not contain embedded null code points;
if it does, a ValueError exception is raised.

Zmienione w wersji 3.5: Previously, TypeError was raised when embedded null code points were encoun-
tered in the Python string.

6.6. Pobieranie kolejnych rzeczy podanych na wejsciu i konstruowanie wartosci. 45

The Python/C API, Wydanie 3.9.21

Deprecated since version 3.3, will be removed in version 3.12: Part of the old-style Py UNICODE API; please
migrate to using PyUnicode AsWideCharString ().

u# (str) [const Py_UNICODE #*, int or Py_ssize_ t] This variant on u stores into two C variables, the first
one a pointer to a Unicode data buffer, the second one its length. This variant allows null code points.

Deprecated since version 3.3, will be removed in version 3.12: Part of the old-style Py UNICODE API; please
migrate to using PyUnicode AsWideCharString ().

Z (str or None) [const Py_UNICODE *] Like u, but the Python object may also be None, in which case the
Py_UNICODE pointer is set to NULL.

Deprecated since version 3.3, will be removed in version 3.12: Part of the old-style Py UNICODE API; please
migrate to using PyUnicode AsWideCharString().

Z# (str or None) [const Py_UNICODE #*, int or Py _ssize t] Like u#, but the Python object may also be
None, in which case the Py UNICODE pointer is set to NULL.

Deprecated since version 3.3, will be removed in version 3.12: Part of the old-style Py UNICODE API; please
migrate to using PyUnicode_AsWideCharString ().

U (str) [PyObject *] Requires that the Python object is a Unicode object, without attempting any conversion.
Raises TypeError if the object is not a Unicode object. The C variable may also be declared as PyOb ject *.

w* (read-write bytes-like object) [Py_buffer] This format accepts any object which implements the read-write
buffer interface. It fills a Py_buffer structure provided by the caller. The buffer may contain embedded
null bytes. The caller have to call PyBuffer Release () when it is done with the buffer.

es (str) [const char *encoding, char **buffer] Ten wariant s jest uzywany do zakodowania Unicode w buforze
znakow. To dziala tylko dla zakodowanych danych bez osadzonych znakéw NUL.

This format requires two arguments. The first is only used as input, and must be a const char* which
points to the name of an encoding as a NUL-terminated string, or NULL, in which case 'ut £-8"' encoding
is used. An exception is raised if the named encoding is not known to Python. The second argument must be
a char**; the value of the pointer it references will be set to a buffer with the contents of the argument text.
The text will be encoded in the encoding specified by the first argument.

PyArg_ParseTuple () will allocate a buffer of the needed size, copy the encoded data into this buffer and
adjust *buffer to reference the newly allocated storage. The caller is responsible for calling PyMem Free ()
to free the allocated buffer after use.

et (str, bytes or bytearray) [const char *encoding, char **buffer] Podobnie jak e s z wyjatkiem tego, ze
obiekty ciagéw znakéw sa przekazywane dalej bez ich zapisywania. Zamiast tego implementacja zaktada, ze
obiekt faricucha znakéw wykorzystuje kodowanie przekazane jako parametr.

es# (str) [const char *encoding, char **buffer, int or Py_ssize_ t *buffer_length] Ten wariant s# uzy-
wany jest do kodowania Unicode w buforze znakéw. W przeciwieristwie do formatu e s, ten wariant pozwala
wprowadza¢ dane zawierajace znaki NUL.

It requires three arguments. The first is only used as input, and must be a const char* which points to the
name of an encoding as a NUL-terminated string, or NULL, in which case 'ut £-8"' encoding is used. An
exception is raised if the named encoding is not known to Python. The second argument must be a char* *;
the value of the pointer it references will be set to a buffer with the contents of the argument text. The text will
be encoded in the encoding specified by the first argument. The third argument must be a pointer to an integer;
the referenced integer will be set to the number of bytes in the output buffer.

Istniejg dwa tryby pracy:

If *buffer points a NULL pointer, the function will allocate a buffer of the needed size, copy the encoded data
into this buffer and set *buffer to reference the newly allocated storage. The caller is responsible for calling
PyMem_Free () to free the allocated buffer after usage.

If *buffer points to a non-NULL pointer (an already allocated buffer), PyArg ParseTuple () will use this
location as the buffer and interpret the initial value of *buffer_length as the buffer size. It will then copy the
encoded data into the buffer and NUL-terminate it. If the buffer is not large enough, a ValueError will be
set.

46 Rozdziat 6. Utilities

The Python/C API, Wydanie 3.9.21

W obu przypadkach, *buffer_length jest ustawiany na dlugo$¢ zakodowanych danych z pominigciem zakari-
czajacego znaku NUL.

et# (str,bytes or bytearray) [const char *encoding, char **buffer, int or Py_ssize_t *buffer_length]
Tak samo, jak w es# oprdcz tego, ze obiekty ciggu bajtéw sa przekazywane do funkcji bez ich zapisywania.
Zamiast tego, implementacja zaktada ze obiekt ciggu bajtéw uzywa kodowania przekazywanego w parametrze.

Liczby
b (int) [unsigned char] Convert a nonnegative Python integer to an unsigned tiny int, stored in a C unsigned
char.

B (int) [unsigned char] Converta Python integer to a tiny int without overflow checking, storedina Cunsigned
char.

h (int) [short int] Convert a Python integer to a C short int.

H (int) [unsigned short int] Convert a Python integer to a C unsigned short int, without overflow chec-
king.

i (int) [int] Convert a Python integer to a plain C int.

I (int) [unsigned int] Convert a Python integer to a C unsigned int, without overflow checking.

1 (int) [long int] Convert a Python integer toa C long int.

k (int) [unsigned long] Convert a Python integer to a C unsigned 1long without overflow checking.
L (int) [long long] Convert a Python integer toa C long long.

K (int) [unsigned long long] Convert a Python integer to a C unsigned long long without overflow chec-
king.

n (int) [Py_ssize_t] Convert a Python integertoa C Py_ssize_t.

c (bytes or bytearray of length 1) [char] Convert a Python byte, represented as a bytes or bytearray
object of length 1, toa C char.

Zmienione w wersji 3.3: Allow bytearray objects.
C (str of length 1) [int] Convert a Python character, represented as a st r object of length 1, to a C int.
f (float) [float] Convert a Python floating point number to a C float.
d (float) [double] Convert a Python floating point number to a C double.

D (complex) [Py_complex] Convert a Python complex number to a C Py_ comp1ex structure.

Inne obiekty

O (object) [PyObject *] Store a Python object (without any conversion) in a C object pointer. The C program thus
receives the actual object that was passed. The object’s reference count is not increased. The pointer stored is
not NULL.

O! (object) [typeobject, PyObject *] Store a Python object in a C object pointer. This is similar to O, but takes two
C arguments: the first is the address of a Python type object, the second is the address of the C variable (of
type PyObject *) into which the object pointer is stored. If the Python object does not have the required
type, TypeError is raised.

0& (object) [converter, anything] Convert a Python object to a C variable through a converter function. This takes
two arguments: the first is a function, the second is the address of a C variable (of arbitrary type), converted
to void *. The converter function in turn is called as follows:

status = converter (object, address);

6.6. Pobieranie kolejnych rzeczy podanych na wejsciu i konstruowanie wartosci. 47

The Python/C API, Wydanie 3.9.21

where object is the Python object to be converted and address is the void* argument that was passed to
the PyArg Parse* () function. The returned status should be 1 for a successful conversion and O if the
conversion has failed. When the conversion fails, the converter function should raise an exception and leave the
content of address unmodified.

If the converter returns Py_ CLEANUP_ SUPPORTED, it may get called a second time if the argument parsing
eventually fails, giving the converter a chance to release any memory that it had already allocated. In this second
call, the object parameter will be NULL; address will have the same value as in the original call.

Zmienione w wersji 3.1: Py_ CLEANUP_ SUPPORTED was added.

p (bool) [int] Tests the value passed in for truth (a boolean predicate) and converts the result to its equivalent C
true/false integer value. Sets the int to 1 if the expression was true and O if it was false. This accepts any valid
Python value. See truth for more information about how Python tests values for truth.

Nowe w wersji 3.3.

(items) (tuple) [matching-items] Obiekt musi by¢ sekwencja jezyka Python, ktérej dlugosé jest liczba ele-
mentéw formatu mierzona w elementach. Argumenty jezyka C musza odpowiada¢ poszczegdlnym jednostkom
formatu w elementach. Jednostki formatu dla sekwencji moga by¢ zagniezdzane.

Mozliwe jest przekazywanie liczb catkowitych ,,dtugich” (liczb catkowitych, ktérych warto$¢ przekracza wartos¢ sta-
tej LONG_MAX okreSlong dla danej architektury) chociaz zadne wlasciwe sprawdzenie zakresu nie jest wykonywane
- najbardziej znaczace cyfry dwdjkowe sa w milczeniu obcinane, gdy docelowy obszar pamigci jest zbyt maty, aby
przyja¢ warto$¢ (w rzeczywistoSci sktadnia jest odziedziczona po rzutowaniu z jezyka C — twoje do§wiadczenia
moga si¢ r6znic).

Kilka innych znakéw ma jeszcze znaczenie w ciagu formatu. Nie moga one wystapi¢ wewnatrz zagniezdzonych
nawiasach okraglych. Sg to:

| Indicates that the remaining arguments in the Python argument list are optional. The C variables corresponding to
optional arguments should be initialized to their default value — when an optional argument is not specified,
PyArg_ParseTuple () does not touch the contents of the corresponding C variable(s).

$ PyArg ParseTupleAndKeywords () only: Indicates that the remaining arguments in the Python argument
list are keyword-only. Currently, all keyword-only arguments must also be optional arguments, so | must always
be specified before $ in the format string.

Nowe w wersji 3.3.

: The list of format units ends here; the string after the colon is used as the function name in error messages (the
»associated value” of the exception that PyArg_ParseTuple () raises).

; Na tym koriczy sig lista jednostek formatu; ciag po Sredniku jest traktowany jako informacja o btgdzie do uzycia
zamiast automatycznej wiadomosci o btedzie. Znaki dwukropka : i Srednika ; wzajemnie si¢ wykluczaja.

Zwr6¢ uwage, ze kazde odniesienie do obiektu Pythona ktére jest dostarczone do wywotujacego funkcje jest odnie-
sieniem pozyczonym; nie zmniejsza ich liczby odniesier!

Dodatkowe parametry przekazywane do tych funkcji musza by¢ adresami zmiennych ktérych typ jest okreslany przez
ciag formatu; sa one uzywane do przechowywania wartosci z krotki wejSciowe;j. Jest pare przypadkéw, jak opisuje
to lista jednostek formatu powyzej, gdzie te parametry sa uzywane jako wprowadzane wartosci; w takich przypadku
powinny one odpowiada¢ temu, co jest okreslone we wlasciwych im jednostach formatu.

For the conversion to succeed, the arg object must match the format and the format must be exhausted. On success, the
PyArg_Parse* () functions return true, otherwise they return false and raise an appropriate exception. When the
PyArg_Parse* () functions fail due to conversion failure in one of the format units, the variables at the addresses
corresponding to that and the following format units are left untouched.

48 Rozdziat 6. Utilities

The Python/C API, Wydanie 3.9.21

Funkcje interfejsu programowania aplikaciji

int PyArg_ParseTuple (PyObject *args, const char *format, ...)
Parse the parameters of a function that takes only positional parameters into local variables. Returns true on
success; on failure, it returns false and raises the appropriate exception.

int PyArg_VaParse (PyObject *args, const char *format, va_list vargs)
Identical to PyArg ParseTuple (), except that it accepts a va_list rather than a variable number of argu-
ments.

int PyArg_ParseTupleAndKeywords (PyObject *args, PyObject *kw, const char *format, char *key-

words[], ...)
Parse the parameters of a function that takes both positional and keyword parameters into local variables. The

keywords argument is a NULL-terminated array of keyword parameter names. Empty names denote positional-
-only parameters. Returns true on success; on failure, it returns false and raises the appropriate exception.

Zmienione w wersji 3.6: Added support for positional-only parameters.

int PyArg_VaParseTupleAndKeywords (PyObject *args, PyObject *kw, const char *format, char *key-
words[], va_list vargs)
Identical to PyArg ParseTupleAndKeywords (), except that it accepts a va_list rather than a variable

number of arguments.

int PyArg_ValidateKeywordArguments (PyObject *)
Ensure that the keys in the keywords argument dictionary are strings. This is only needed if
PyArg_ParseTupleAndKeywords () is not used, since the latter already does this check.

Nowe w wersji 3.2.

int PyArg_Parse (PyObject *args, const char *format, ...)
Function used to deconstruct the argument lists of ,,0ld-style” functions — these are functions which use the
METH_OLDARGS parameter parsing method, which has been removed in Python 3. This is not recommended
for use in parameter parsing in new code, and most code in the standard interpreter has been modified to no
longer use this for that purpose. It does remain a convenient way to decompose other tuples, however, and may
continue to be used for that purpose.

int PyArg_UnpackTuple (PyObject *args, const char *name, Py_ssize_t min, Py_ssize_t max, ...)

A simpler form of parameter retrieval which does not use a format string to specify the types of the arguments.
Functions which use this method to retrieve their parameters should be declared as METH_VARARGS in func-
tion or method tables. The tuple containing the actual parameters should be passed as args; it must actually
be a tuple. The length of the tuple must be at least min and no more than max; min and max may be equal.
Additional arguments must be passed to the function, each of which should be a pointer to a PyObject *
variable; these will be filled in with the values from args; they will contain borrowed references. The variables
which correspond to optional parameters not given by args will not be filled in; these should be initialized by
the caller. This function returns true on success and false if args is not a tuple or contains the wrong number
of elements; an exception will be set if there was a failure.

This is an example of the use of this function, taken from the sources for the _weakref helper module for
weak references:

static PyObject *
weakref ref (PyObject *self, PyObject *args)
{

PyObject *object;

PyObject *callback = NULL;

PyObject *result = NULL;

if (PyArg_UnpackTuple (args, "ref", 1, 2, &object, &callback)) |
result = PyWeakref NewRef (object, callback);
}

return result;

6.6. Pobieranie kolejnych rzeczy podanych na wejsciu i konstruowanie wartosci. 49

The Python/C API, Wydanie 3.9.21

The call to PyArg UnpackTuple () in this example is entirely equivalent to this call to
PyArg ParseTuple():

PyArg_ParseTuple (args, "O|O:ref", &object, &callback)

6.6.2 Budowanie wartosci

PyObject* Py_BuildValue (const char *format, ...)

Return value: New reference. Create a new value based on a format string similar to those accepted by the
PyArg_Parse* () family of functions and a sequence of values. Returns the value or NULL in the case of
an error; an exception will be raised if NULL is returned.

Py_BuildValue () does not always build a tuple. It builds a tuple only if its format string contains two or
more format units. If the format string is empty, it returns None; if it contains exactly one format unit, it returns
whatever object is described by that format unit. To force it to return a tuple of size 0 or one, parenthesize the
format string.

When memory buffers are passed as parameters to supply data to build objects, as for the s and s# for-
mats, the required data is copied. Buffers provided by the caller are never referenced by the objects cre-
ated by Py_BuildValue (). In other words, if your code invokes malloc () and passes the alloca-
ted memory to Py_BuildValue (), your code is responsible for calling free () for that memory once
Py _BuildValue () returns.

In the following description, the quoted form is the format unit; the entry in (round) parentheses is the Python
object type that the format unit will return; and the entry in [square] brackets is the type of the C value(s) to
be passed.

The characters space, tab, colon and comma are ignored in format strings (but not within format units such as
s#). This can be used to make long format strings a tad more readable.

s (str or None) [const char *] Convert a null-terminated C string to a Python st r object using 'ut £-8"'
encoding. If the C string pointer is NULL, None is used.

s# (str or None) [const char *, int or Py _ssize t] Converta C string and its length to a Python st r
object using 'ut £-8"' encoding. If the C string pointer is NULL, the length is ignored and None is
returned.

y (bytes) [const char *] This converts a C string to a Python byt e s object. If the C string pointer is NULL,
None is returned.

yv# (bytes) [const char *, int or Py_ssize_t] Thisconverts a C string and its lengths to a Python object.
If the C string pointer is NULL, None is returned.

z (str or None) [const char *] Same as s.
z# (str or None) [const char #, int or Py_ssize t] Same as s#.

u (str) [const wchar_t *] Convert a null-terminated wchar_ t buffer of Unicode (UTF-16 or UCS-4) data
to a Python Unicode object. If the Unicode buffer pointer is NULL, None is returned.

u# (str) [const wchar_t *, int or Py_ssize t] Convert a Unicode (UTF-16 or UCS-4) data buffer and
its length to a Python Unicode object. If the Unicode buffer pointer is NULL, the length is ignored and
None is returned.

U (str or None) [const char *] Same as s.

U# (str or None) [const char *, int or Py _ssize t] Same as s#.

i (int) [int] Convert a plain C int to a Python integer object.

b (int) [char] Convert a plain C char to a Python integer object.

h (int) [short int] Convert a plain C short int to a Python integer object.

1 (int) [long int] Converta C 1long int to a Python integer object.

50

Rozdziat 6. Utilities

The Python/C API, Wydanie 3.9.21

B (int) [unsigned char] Converta C unsigned char to a Python integer object.

H (int) [unsigned short int] Converta C unsigned short int toa Python integer object.

I (int) [unsigned int] Converta C unsigned int to a Python integer object.

k (int) [unsigned long] Converta C unsigned long to a Python integer object.

L (int) [long long] Converta C 1long long to a Python integer object.

K (int) [unsigned long long] Converta C unsigned long long to a Python integer object.

n (int) [Py _ssize t] Converta C Py_ssize_t toa Python integer.

c (bytes of length 1) [char] Converta C int representing a byte to a Python bytes object of length 1.
C (str of length 1) [int] Convert a C int representing a character to Python st r object of length 1.
d (float) [double] Converta C double to a Python floating point number.

f (float) [float] Converta C £1loat to a Python floating point number.

D (complex) [Py_complex *] Converta C Py_complex structure to a Python complex number.

O (object) [PyObject *] Pass a Python object untouched (except for its reference count, which is incremented
by one). If the object passed in is a NULL pointer, it is assumed that this was caused because the call
producing the argument found an error and set an exception. Therefore, Py_BuildValue () will return
NULL but won’t raise an exception. If no exception has been raised yet, SystemError is set.

S (object) [PyObject *] Same as O.

N (object) [PyObject *] Same as O, except it doesn’t increment the reference count on the object. Useful when
the object is created by a call to an object constructor in the argument list.

O& (object) [converter, anything] Convert anything to a Python object through a converter function. The
function is called with anything (which should be compatible with void*) as its argument and should
return a ,,new” Python object, or NULL if an error occurred.

(items) (tuple) [matching-items] Convert a sequence of C values to a Python tuple with the same num-
ber of items.

[items] (1ist) [matching-items] Convert a sequence of C values to a Python list with the same number
of items.

{items} (dict) [matching-items] Convert a sequence of C values to a Python dictionary. Each pair of
consecutive C values adds one item to the dictionary, serving as key and value, respectively.

If there is an error in the format string, the SystemError exception is set and NULL returned.

PyObject* Py_VaBuildValue (const char *format, va_list vargs)
Return value: New reference. Identical to Py_BuildValue (), except that it accepts a va_list rather than
a variable number of arguments.

6.7 String conversion and formatting

Functions for number conversion and formatted string output.

int PyOS_snprint £ (char *str, size_t size, const char *format, ...)
Output not more than size bytes to str according to the format string format and the extra arguments. See the
Unix man page snprintf (3).

int PyOS_vsnprint£ (char *str, size_t size, const char *format, va_list va)
Output not more than size bytes to str according to the format string format and the variable argument list va.
Unix man page vsnprintf (3).

PyOS_snprintf () and PyOS_vsnprintf () wrap the Standard C library functions snprintf () and
vsnprintf (). Their purpose is to guarantee consistent behavior in corner cases, which the Standard C functions
do not.

6.7. String conversion and formatting 51

The Python/C API, Wydanie 3.9.21

The wrappers ensure that str [size—1] is always '\0"' upon return. They never write more than size bytes (in-
cluding the trailing '\0"') into str. Both functions require that str != NULL, size > 0 and format !=
NULL.

If the platform doesn’t have vsnprint £ () and the buffer size needed to avoid truncation exceeds size by more than
512 bytes, Python aborts with a Py_FatalError ().

The return value (7v) for these functions should be interpreted as follows:

When 0 <= rv < size, the output conversion was successful and rv characters were written to st (exc-
luding the trailing '\O"' byte at str [rv]).

When rv >= size, the output conversion was truncated and a buffer with rv + 1 bytes would have been
needed to succeed. str[size—1]1is "\ 0" in this case.

When rv < 0, ,something bad happened.” str [size—-1] is "\0' in this case too, but the rest of st is
undefined. The exact cause of the error depends on the underlying platform.

The following functions provide locale-independent string to number conversions.

double PyOS_string_to_double (const char *s, char **endptr, PyObject *overflow_exception)

char*

Convert a string s to a double, raising a Python exception on failure. The set of accepted strings corresponds
to the set of strings accepted by Python’s f1oat () constructor, except that s must not have leading or trailing
whitespace. The conversion is independent of the current locale.

If endpt r is NULL, convert the whole string. Raise ValueError and return —1 . O if the string is not a valid
representation of a floating-point number.

If endptr is not NULL, convert as much of the string as possible and set *endptr to point to the first unco-
nverted character. If no initial segment of the string is the valid representation of a floating-point number, set
*endptr to point to the beginning of the string, raise ValueError, and return —1 . 0.

If s represents a value that is too large to store in a float (for example, "1e500" is such a string on many
platforms) then if overflow_exception is NULL return Py_HUGE_VAL (with an appropriate sign) and
don’t set any exception. Otherwise, overflow_except ion must point to a Python exception object; raise
that exception and return —1 . 0. In both cases, set *endpt r to point to the first character after the converted
value.

If any other error occurs during the conversion (for example an out-of-memory error), set the appropriate
Python exception and return -1 . 0.

Nowe w wersji 3.1.

PyOS_double_to_string (double val, char format_code, int precision, int flags, int *ptype)
Convert a double val to a string using supplied format_code, precision, and flags.

format_code mustbeoneof 'e', 'E', "£','F', 'g', 'G" or 'r'.For 'r', the supplied precision must
be 0 and is ignored. The ' r' format code specifies the standard repxr () format.

flags can be zero or more of the values Py_ DTSF_SIGN, Py_DTSF_ADD_DOT_O0, or Py_DTSF_ALT,
or-ed together:

e Py_DTSF_SIGN means to always precede the returned string with a sign character, even if val is non-
-negative.

e Py_DTSF_ADD_DOT_0 means to ensure that the returned string will not look like an integer.

e Py _DTSF_ALT means to apply ,alternate” formatting rules. See the documentation for the
PyOS_snprintf () "#' specifier for details.

If ptype is non-NULL, then the value it points to will be set to one of Py DTST_FINITE,
Py_DTST_INFINITE, or Py_DTST_NAN, signifying that val is a finite number, an infinite number, or
not a number, respectively.

The return value is a pointer to buffer with the converted string or NULL if the conversion failed. The caller is
responsible for freeing the returned string by calling PyMem_Free ().

Nowe w wersji 3.1.

52

Rozdziat 6. Utilities

The Python/C API, Wydanie 3.9.21

int PyOS_stricmp (const char *s/, const char *s2)
Case insensitive comparison of strings. The function works almost identically to strcmp () except that it
ignores the case.

int PyOS_strnicmp (const char *s/, const char *s2, Py_ssize t size)
Case insensitive comparison of strings. The function works almost identically to st rncmp () except that it
ignores the case.

6.8 Reflection

PyObject* PyEval_GetBuiltins (void)
Return value: Borrowed reference. Return a dictionary of the builtins in the current execution frame, or the
interpreter of the thread state if no frame is currently executing.

PyObject* PyEval_GetLocals (void)
Return value: Borrowed reference. Return a dictionary of the local variables in the current execution frame, or
NULL if no frame is currently executing.

PyObject* PyEval_GetGlobals (void)
Return value: Borrowed reference. Return a dictionary of the global variables in the current execution frame,
or NULL if no frame is currently executing.

PyFrameObject* PyEval_GetFrame (void)
Return value: Borrowed reference. Return the current thread state’s frame, which is NULL if no frame is cur-
rently executing.

See also PyThreadState_GetFrame ().

PyFrameObject* PyFrame_GetBack (PyFrameObject *frame)
Get the frame next outer frame.

Return a strong reference, or NULL if frame has no outer frame.
frame must not be NULL.
Nowe w wersji 3.9.

PyCodeObject* PyFrame_GetCode (PyFrameObject *frame)
Get the frame code.

Return a strong reference.
frame must not be NULL. The result (frame code) cannot be NULL.
Nowe w wersji 3.9.

int PyFrame_GetLineNumber (PyFrameObject *frame)
Return the line number that frame is currently executing.

frame must not be NULL.

const char* PyEval_GetFuncName (PyObject *func)
Return the name of func if it is a function, class or instance object, else the name of funcs type.

const char* PyEval_GetFuncDesc (PyObject *func)
Return a description string, depending on the type of func. Return values include ,,()” for functions and methods,
” constructor”, ” instance”, and ” object”. Concatenated with the result of PyEval_ GetFuncName (), the
result will be a description of func.

6.8. Reflection 53

The Python/C API, Wydanie 3.9.21

6.9 Codec registry and support functions

int PyCodec_Register (PyObject *search_function)
Register a new codec search function.

As side effect, this tries to load the encodings package, if not yet done, to make sure that it is always first
in the list of search functions.

int PyCodec_KnownEncoding (const char *encoding)
Return 1 or 0 depending on whether there is a registered codec for the given encoding. This function always
succeeds.

PyObject* PyCodec_Encode (PyObject *object, const char *encoding, const char *errors)
Return value: New reference. Generic codec based encoding API.

object is passed through the encoder function found for the given encoding using the error handling method de-
fined by errors. errors may be NULL to use the default method defined for the codec. Raises a LookupError
if no encoder can be found.

PyObject* PyCodec_Decode (PyObject *object, const char *encoding, const char *errors)
Return value: New reference. Generic codec based decoding API.

object is passed through the decoder function found for the given encoding using the error handling method de-
fined by errors. errors may be NULL to use the default method defined for the codec. Raises a LookupError
if no encoder can be found.

6.9.1 Codec lookup API

In the following functions, the encoding string is looked up converted to all lower-case characters, which makes
encodings looked up through this mechanism effectively case-insensitive. If no codec is found, a KeyError is set
and NULL returned.

PyObject* PyCodec_Encoder (const char *encoding)
Return value: New reference. Get an encoder function for the given encoding.

PyObject* PyCodec_Decoder (const char *encoding)
Return value: New reference. Get a decoder function for the given encoding.

PyObject* PyCodec_IncrementalEncoder (const char *encoding, const char *errors)
Return value: New reference. Get an IncrementalEncoder object for the given encoding.

PyObject* PyCodec_IncrementalDecoder (const char *encoding, const char *errors)
Return value: New reference. Get an IncrementalDecoder object for the given encoding.

PyObject* PyCodec_StreamReader (const char *encoding, PyObject *stream, const char *errors)
Return value: New reference. Get a St reamReader factory function for the given encoding.

PyObject* PyCodec_StreamWriter (const char *encoding, PyObject *stream, const char *errors)
Return value: New reference. Get a St reamWriter factory function for the given encoding.

6.9.2 Registry API for Unicode encoding error handlers

int PyCodec_RegisterError (const char *name, PyObject *error)
Register the error handling callback function error under the given name. This callback function will be called
by a codec when it encounters unencodable characters/undecodable bytes and name is specified as the error
parameter in the call to the encode/decode function.

The callback gets a single argument, an instance of UnicodeEncodeError,UnicodeDecodeError or
UnicodeTranslateError that holds information about the problematic sequence of characters or bytes
and their offset in the original string (see Unicode Exception Objects for functions to extract this information).
The callback must either raise the given exception, or return a two-item tuple containing the replacement for

54 Rozdziat 6. Utilities

The Python/C API, Wydanie 3.9.21

the problematic sequence, and an integer giving the offset in the original string at which encoding/decoding
should be resumed.

Return O on success, —1 on error.

PyObject* PyCodec_LookupError (const char *name)
Return value: New reference. Lookup the error handling callback function registered under name. As a special
case NULL can be passed, in which case the error handling callback for ,,strict” will be returned.

PyObject* PyCodec_StrictErrors (PyObject *exc)
Return value: Always NULL. Raise exc as an exception.

PyObject* PyCodec_IgnoreErrors (PyObject *exc)
Return value: New reference. Ignore the unicode error, skipping the faulty input.

PyObject* PyCodec_ReplaceErrors (PyObject *exc)
Return value: New reference. Replace the unicode encode error with ? or U+FFFED.

PyObject* PyCodec_XMLCharRefReplaceErrors (PyObject *exc)
Return value: New reference. Replace the unicode encode error with XML character references.

PyObject* PyCodec_BackslashReplaceErrors (PyObject *exc)
Return value: New reference. Replace the unicode encode error with backslash escapes (\x, \u and \U).

PyObject* PyCodec_NameReplaceErrors (PyObject *exc)
Return value: New reference. Replace the unicode encode error with \N{ . . . } escapes.

Nowe w wersji 3.5.

6.9. Codec registry and support functions 55

The Python/C API, Wydanie 3.9.21

56 Rozdziat 6. Utilities

ROZDZIAL /

Warstwa obiektow abstrakcyjnych

Funkcje, ktérych dotyczy ten rozdzial dziataja na obiektach Pythona bez wzgledu na ich typ oraz na wielu klasach
typéw obiektéw (np. wszystkie typy numeryczne oraz sekwencyjne). Uzyte na nieobstugiwanych typach obiektéw
rzuca wyjatek.

Nie da si¢ uzywac tych funckcji na obiektach, ktére nie zostaty prawidlowo zainicjowane jak np. lista utworzona
za pomocy PyList_New (), ktérej elementom nie nadano jeszcze wartosci innej niz NULL.

7.1 Object Protocol

PyObject* Py_NotImplemented
The Not Implemented singleton, used to signal that an operation is not implemented for the given type
combination.

Py_RETURN_NOTIMPLEMENTED
Properly handle returning Py Not Implemented from within a C function (that is, increment the reference
count of NotImplemented and return it).

int PyObject_Print (PyObject *o, FILE *fp, int flags)
Print an object o, on file fp. Returns —1 on error. The flags argument is used to enable certain printing options.
The only option currently supported is Py_ PRINT_RAW; if given, the st r () of the object is written instead
of the repr ().

int PyObject_HasAttr (PyObject *o, PyObject *attr_name)
Returns 1 if o has the attribute aftr_name, and 0 otherwise. This is equivalent to the Python expression
hasattr (o, attr_name). This function always succeeds.

Note that exceptions which occur while calling ___getattr__ () and __getattribute__ () methods
will get suppressed. To get error reporting use PyOb ject_GetAttr () instead.

int PyObject_HasAttrString (PyObject *o, const char *attr_name)
Returns 1 if o has the attribute aftr_name, and 0 otherwise. This is equivalent to the Python expression
hasattr (o, attr_name). This function always succeeds.

Note that exceptions which occur while calling _ getattr_ () and _ getattribute_ ()
methods and creating a temporary string object will get suppressed. To get error reporting use
PyObject_GetAttrString () instead.

57

The Python/C API, Wydanie 3.9.21

PyObject* PyObject_GetAttr (PyObject *o, PyObject *attr_name)
Return value: New reference. Retrieve an attribute named atfr_name from object o. Returns the attribute value
on success, or NULL on failure. This is the equivalent of the Python expression o.attr_name.

PyObject* PyObject_GetAttrString (PyObject *o, const char *attr_name)
Return value: New reference. Retrieve an attribute named attr_name from object o. Returns the attribute value
on success, or NULL on failure. This is the equivalent of the Python expression o.attr_name.

PyObject* PyObject_GenericGetAttr (PyObject *o, PyObject *name)
Return value: New reference. Generic attribute getter function that is meant to be put into a type object’s
tp_getattro slot. It looks for a descriptor in the dictionary of classes in the object’s MRO as well as an
attribute in the object’s __dict__ (if present). As outlined in descriptors, data descriptors take preference
over instance attributes, while non-data descriptors don’t. Otherwise, an AttributeError is raised.

int PyObject_SetAttrx (PyObject *o, PyObject *attr_name, PyObject *v)
Set the value of the attribute named attr_name, for object o, to the value v. Raise an exception and return -1
on failure; return O on success. This is the equivalent of the Python statement o.attr_name = v.

If v is NULL, the attribute is deleted. This behaviour is deprecated in favour of using
PyObject_DelAttr (), but there are currently no plans to remove it.

int PyObject_SetAttrString (PyObject *o, const char *attr_name, PyObject *v)
Set the value of the attribute named attr_name, for object o, to the value v. Raise an exception and return —1
on failure; return O on success. This is the equivalent of the Python statement 0. attr_name = v.

If v is NULL, the attribute is deleted, but this feature is deprecated in favour of using
PyObject_DelAttrString ().

int PyObject_GenericSetAttr (PyObject *o, PyObject *name, PyObject *value)
Generic attribute setter and deleter function that is meant to be put into a type object’s tp_setattro slot.
It looks for a data descriptor in the dictionary of classes in the object’s MRO, and if found it takes preference
over setting or deleting the attribute in the instance dictionary. Otherwise, the attribute is set or deleted in the
object’s __dict__ (if present). On success, O is returned, otherwise an AttributeError is raised and
-1 is returned.

int PyObject_DelAttr (PyObject *o, PyObject *attr_name)
Delete attribute named attr_name, for object o. Returns —1 on failure. This is the equivalent of the Python
statement del o.attr_name.

int PyObject_DelAttrString (PyObject *o, const char *attr_name)
Delete attribute named attr_name, for object o. Returns —1 on failure. This is the equivalent of the Python
statement del o.attr_name.

PyObject* PyObject_GenericGetDict (PyObject *o, void *context)
Return value: New reference. A generic implementation for the getter of a ___dict___ descriptor. It creates
the dictionary if necessary.

Nowe w wersji 3.3.

int PyObject_GenericSetDict (PyObject *o, PyObject *value, void *context)
A generic implementation for the setter of a ___dict__ descriptor. This implementation does not allow the
dictionary to be deleted.

Nowe w wersji 3.3.

PyObject* PyObject_RichCompare (PyObject *ol, PyObject *02, int opid)
Return value: New reference. Compare the values of ol and o2 using the operation specified by opid, which
must be one of Py_LT, Py_LE, Py_EQ, Py_NE, Py_GT, or Py_GE, corresponding to <, <=, ==, ! =, >,
or >= respectively. This is the equivalent of the Python expression o1 op 02, where op is the operator
corresponding to opid. Returns the value of the comparison on success, or NULL on failure.

int PyObject_RichCompareBool (PyObject *ol, PyObject *02, int opid)
Compare the values of o/l and 02 using the operation specified by opid, which must be one of Py_ LT, Py_LE,
Py_EQ, Py_NE, Py_GT, or Py_GE, corresponding to <, <=, ==, ! =, >, or >= respectively. Returns —1 on
error, 0 if the result is false, 1 otherwise. This is the equivalent of the Python expression o1 op 02, where
op is the operator corresponding to opid.

58 Rozdziat 7. Warstwa obiektéw abstrakcyjnych

The Python/C API, Wydanie 3.9.21

Informacja: If o/ and 02 are the same object, PyObject_RichCompareBool () will always return 1 for
Py_EQand 0 for Py_NE.

PyObject* PyObject_Repr (PyObject *0)
Return value: New reference. Compute a string representation of object o. Returns the string representation on
success, NULL on failure. This is the equivalent of the Python expression repr (o). Called by the repr ()
built-in function.

Zmienione w wersji 3.4: This function now includes a debug assertion to help ensure that it does not silently
discard an active exception.

PyObject* PyObject_ASCII (PyObject *o)
Return value: New reference. As PyObject_Repr (),compute a string representation of object o, but escape
the non-ASCII characters in the string returned by PyOb ject_Repr () with \x, \u or \U escapes. This
generates a string similar to that returned by PyObject_Repr () in Python 2. Called by the ascii ()
built-in function.

PyObject* PyObject_Strx (PyObject *0)
Return value: New reference. Compute a string representation of object o. Returns the string representation
on success, NULL on failure. This is the equivalent of the Python expression str (o). Called by the str ()
built-in function and, therefore, by the print () function.

Zmienione w wersji 3.4: This function now includes a debug assertion to help ensure that it does not silently
discard an active exception.

PyObject* PyObject_Bytes (PyObject *o)
Return value: New reference. Compute a bytes representation of object 0. NULL is returned on failure and
a bytes object on success. This is equivalent to the Python expression bytes (o), when o is not an integer.
Unlike bytes (o), a TypeError is raised when o is an integer instead of a zero-initialized bytes object.

int PyObject_IsSubclass (PyObject *derived, PyObject *cls)
Return 1 if the class derived is identical to or derived from the class cls, otherwise return 0. In case of an error,
return —1.

If cls is a tuple, the check will be done against every entry in cls. The result will be 1 when at least one of the
checks returns 1, otherwise it will be 0.

If clshasa __ _subclasscheck__ () method, it will be called to determine the subclass status as described
in PEP 3119. Otherwise, derived is a subclass of cls if it is a direct or indirect subclass, i.e. contained in
cls.__ _mro_

Normally only class objects, i.e. instances of t ype or a derived class, are considered classes. However, objects
can override this by havinga __bases___ attribute (which must be a tuple of base classes).

int PyObject_IsInstance (PyObject *inst, PyObject *cls)
Return 1 if inst is an instance of the class cls or a subclass of cls, or 0 if not. On error, returns —1 and sets an
exception.

If cls is a tuple, the check will be done against every entry in cls. The result will be 1 when at least one of the
checks returns 1, otherwise it will be 0.

If clshasa___instancecheck__ () method, it will be called to determine the subclass status as described
in PEP 3119. Otherwise, inst is an instance of c¢ls if its class is a subclass of cls.

An instance inst can override what is considered its class by havinga ___class___ attribute.

An object cls can override if it is considered a class, and what its base classes are, by havinga __bases_
attribute (which must be a tuple of base classes).

Py_hash_t PyObject_Hash (PyObject *o0)
Compute and return the hash value of an object 0. On failure, return —1. This is the equivalent of the Python
expression hash (o).

Zmienione w wersji 3.2: The return type is now Py_hash_t. This is a signed integer the same size as
Py_ssize_t.

7.1. Object Protocol 59

https://www.python.org/dev/peps/pep-3119
https://www.python.org/dev/peps/pep-3119

The Python/C API, Wydanie 3.9.21

Py_hash_t PyObject_HashNotImplemented (PyObject *o0)
Set a TypeError indicating that type (o) is not hashable and return —1. This function receives special
treatment when stored in a t p_hash slot, allowing a type to explicitly indicate to the interpreter that it is not
hashable.

int PyObject_IsTrue (PyObject *0)
Returns 1 if the object o is considered to be true, and 0 otherwise. This is equivalent to the Python expression
not not o. On failure, return —1.

int PyObject_Not (PyObject *0)
Returns 0 if the object o is considered to be true, and 1 otherwise. This is equivalent to the Python expression
not o. On failure, return —1.

PyObject* PyObject_Type (PyObject *o)
Return value: New reference. When o is non-NULL, returns a type object corresponding to the object type of
object o. On failure, raises SystemError and returns NULL. This is equivalent to the Python expression
type (o). This function increments the reference count of the return value. There’s really no reason to use
this function instead of the Py_ TYPE () function, which returns a pointer of type Py TypeOb ject *, except
when the incremented reference count is needed.

int PyObject_TypeCheck (PyObject *o, PyTypeObject *type)
Return true if the object o is of type fype or a subtype of fype. Both parameters must be non-NULL.

Py_ssize_t PyObject_Size (PyObject *0)

Py_ssize_t PyObject_Length (PyObject *0)
Return the length of object o. If the object o provides either the sequence and mapping protocols, the sequence
length is returned. On error, —1 is returned. This is the equivalent to the Python expression 1len (o).

Py_ssize_t PyObject_LengthHint (PyObject *o, Py_ssize_t defaultvalue)
Return an estimated length for the object o. First try to return its actual length, then an estimate using
_ length_hint__ (), and finally return the default value. On error return —1. This is the equivalent to
the Python expression operator.length_hint (o, defaultvalue).

Nowe w wersji 3.4.

PyObject* PyObject_GetItem (PyObject *o, PyObject *key)
Return value: New reference. Return element of o corresponding to the object key or NULL on failure. This is
the equivalent of the Python expression o [key].

int PyObject_SetItem (PyObject *o, PyObject *key, PyObject *v)
Map the object key to the value v. Raise an exception and return —1 on failure; return O on success. This is the
equivalent of the Python statement o [key] = wv. This function does not steal a reference to v.

int PyObject_DelItem (PyObject *o, PyObject *key)
Remove the mapping for the object key from the object 0. Return —1 on failure. This is equivalent to the Python
statement del of[key].

PyObject* PyObject_Dir (PyObject *o)
Return value: New reference. This is equivalent to the Python expression dir (o), returning a (possibly empty)
list of strings appropriate for the object argument, or NULL if there was an error. If the argument is NULL,
this is like the Python dir (), returning the names of the current locals; in this case, if no execution frame is
active then NULL is returned but PyErr_Occurred () will return false.

PyObject* PyObject_GetIter (PyObject *0)
Return value: New reference. This is equivalent to the Python expression iter (o). It returns a new iterator
for the object argument, or the object itself if the object is already an iterator. Raises TypeError and returns
NULL if the object cannot be iterated.

60 Rozdziat 7. Warstwa obiektéw abstrakcyjnych

The Python/C API, Wydanie 3.9.21

7.2 Call Protocol

CPython supports two different calling protocols: #p_call and vectorcall.

7.2.1 The tp_call Protocol

Instances of classes that set tp_cal1 are callable. The signature of the slot is:

PyObject *tp_call (PyObject *callable, PyObject *args, PyObject *kwargs);

A call is made using a tuple for the positional arguments and a dict for the keyword arguments, similarly to
callable (*args, **kwargs) in Python code. args must be non-NULL (use an empty tuple if there are
no arguments) but kwargs may be NULL if there are no keyword arguments.

This convention is not only used by #p_call: tp_new and tp_init also pass arguments this way.

To call an object, use PyObject_Call () or another call API.

7.2.2 The Vectorcall Protocol

Nowe w wersji 3.9.
The vectorcall protocol was introduced in PEP 590 as an additional protocol for making calls more efficient.

As rule of thumb, CPython will prefer the vectorcall for internal calls if the callable supports it. However, this is not
a hard rule. Additionally, some third-party extensions use #p_call directly (rather than using PyObject_Call ()).
Therefore, a class supporting vectorcall must also implement tp_call. Moreover, the callable must behave the
same regardless of which protocol is used. The recommended way to achieve this is by setting tp_call to
PyVectorcall_Call (). This bears repeating:

Ostrzezenie: A class supporting vectorcall must also implement tp_cal1 with the same semantics.

A class should not implement vectorcall if that would be slower than #p_call. For example, if the callee needs to
convert the arguments to an args tuple and kwargs dict anyway, then there is no point in implementing vectorcall.

Classes can implement the vectorcall protocol by enabling the Py TPFLAGS _HAVE_VECTORCALLflag and setting
tp_vectorcall offset tothe offsetinside the object structure where a vectorcallfunc appears. This is a pointer
to a function with the following signature:

PyObject * (*vectorcallfunc) (PyObject *callable, PyObject *const *args, size_t nargsf, Py-
Object *kwnames)
e callable is the object being called.

« args is a C array consisting of the positional arguments followed by the values of the keyword argu-
ments. This can be NULL if there are no arguments.

 nargsf is the number of positional arguments plus possibly the PY_VECTORCALIL_ARGUMENTS_OFFSET
flag. To get the actual number of positional arguments from nargsf, use PyVectorcall_NARGS ().

o kwnames is a tuple containing the names of the keyword arguments; in other words, the keys of the
kwargs dict. These names must be strings (instances of str or a subclass) and they must be unique.
If there are no keyword arguments, then kwnames can instead be NULL.

PY VECTORCALL_ARGUMENTS_OFFSET
If this flag is set in a vectorcall nargsf argument, the callee is allowed to temporarily change args [-1]. In
other words, args points to argument 1 (not 0) in the allocated vector. The callee must restore the value of
args [—1] before returning.

For PyObject_VectorcallMethod (), this flag means instead that args [0] may be changed.

7.2. Call Protocol 61

https://www.python.org/dev/peps/pep-0590

The Python/C API, Wydanie 3.9.21

Whenever they can do so cheaply (without additional allocation), callers are encouraged to use
PY_VECTORCALL_ARGUMENTS_OFFSET. Doing so will allow callables such as bound methods to ma-
ke their onward calls (which include a prepended self argument) very efficiently.

To call an object that implements vectorcall, use a call APl function as with any other callable.
PyObject_Vectorcall () will usually be most efficient.

Informacja: In CPython 3.8, the vectorcall API and related functions were available provisionally under
names with a leading underscore: _PyObject_Vectorcall, _Py_TPFLAGS_HAVE_VECTORCALL,
_PyObject_VectorcallMethod, _PyVectorcall Function, _PyObject_CallOneArg,
_PyObject_CallMethodNoArgs, _PyObject_CallMethodOneArgq. Additionally,
PyObject_VectorcallDict was available as _PyObject_FastCallDict. The old names are still
defined as aliases of the new, non-underscored names.

Kontrola Rekurs;ji

When using #p_call, callees do not need to worry about recursion: CPython uses Py_EnterRecursiveCall ()
and Py_LeaveRecursiveCall () for calls made using tp_call.

For efficiency, this is not the case for calls done using vectorcall: the callee should use Py_EnterRecursiveCall and
Py_LeaveRecursiveCall if needed.

Vectorcall Support API

Py_ssize_t PyVectorcall_NARGS (size_t nargsf)
Given a vectorcall nargsf argument, return the actual number of arguments. Currently equivalent to:

(Py_ssize_t) (nargsf & ~PY_VECTORCALL_ARGUMENTS_OFFSET)

However, the function PyVectorcall_NARGS should be used to allow for future extensions.
This function is not part of the limited API.
Nowe w wersji 3.8.

vectorcallfunc PyVectorcall_Function (PyObject *op)
If op does not support the vectorcall protocol (either because the type does not or because the specific instance
does not), return NULL. Otherwise, return the vectorcall function pointer stored in op. This function never
raises an exception.

This is mostly useful to check whether or not op supports vectorcall, which can be done by checking
PyVectorcall_Function (op) != NULL.

This function is not part of the limited API.
Nowe w wersji 3.8.

PyObject* PyVectorcall_Call (PyObject *callable, PyObject *tuple, PyObject *dict)
Call callable’s vectorcallfunc with positional and keyword arguments given in a tuple and dict, respec-
tively.

This is a specialized function, intended to be put in the tp_call slot or be used in an implementation of
tp_call. It does not check the Py TPFLAGS HAVE_ VECTORCALL flag and it does not fall back to
tp_call.

This function is not part of the limited API.

Nowe w wersji 3.8.

62 Rozdzial 7. Warstwa obiektow abstrakcyjnych

The Python/C API, Wydanie 3.9.21

7.2.3 Object Calling API

Various functions are available for calling a Python object. Each converts its arguments to a convention supported by
the called object - either #p_call or vectorcall. In order to do as little conversion as possible, pick one that best fits
the format of data you have available.

The following table summarizes the available functions; please see individual documentation for details.

Function callable args kwargs
PyObject_Call () PyObject * | tuple dict/NULL
PyObject_CallNoArgs () PyObject * | — —
PyObject_CallOneArgqg () PyObject * | 1 object —
PyObject_CallObject () PyObject * | tuple/NULL | —
PyObject_CallFunction () PyObject * | format —
PyObject_CallMethod () obj + char* format —
PyObject_CallFunctionObjArgs () | PyObject * | variadic —
PyObject_CallMethodObjArgs () obj + name variadic —
PyObject_CallMethodNoArgs () obj + name — —
PyObject_CallMethodOneArg () obj + name 1 object —
PyObject_Vectorcall () PyObject * | vectorcall vectorcall
PyObject_VectorcallDict () PyObject * | vectorcall dict/NULL
PyObject_VectorcallMethod () arg + name vectorcall vectorcall

PyObject* PyObject_Call (PyObject *callable, PyObject *args, PyObject *kwargs)
Return value: New reference. Call a callable Python object callable, with arguments given by the tuple args, and
named arguments given by the dictionary kwargs.

args must not be NULL; use an empty tuple if no arguments are needed. If no named arguments are needed,
kwargs can be NULL.

Return the result of the call on success, or raise an exception and return NULL on failure.
This is the equivalent of the Python expression: callable (*args, **kwargs).

PyObject* PyObject_CallNoArgs (PyObject *callable)
Call a callable Python object callable without any arguments. It is the most efficient way to call a callable
Python object without any argument.

Return the result of the call on success, or raise an exception and return NULL on failure.
Nowe w wersji 3.9.

PyObject* PyObject_CallOneArg (PyObject *callable, PyObject *arg)
Call a callable Python object callable with exactly 1 positional argument arg and no keyword arguments.

Return the result of the call on success, or raise an exception and return NULL on failure.
This function is not part of the limited API.
Nowe w wersji 3.9.
PyObject* PyObject_CallObject (PyObject *callable, PyObject *args)
Return value: New reference. Call a callable Python object callable, with arguments given by the tuple args. If
no arguments are needed, then args can be NULL.
Return the result of the call on success, or raise an exception and return NULL on failure.

This is the equivalent of the Python expression: callable (*args).

PyObject* PyObject_CallFunction (PyObject *callable, const char *format, ...)
Return value: New reference. Call a callable Python object callable, with a variable number of C arguments.
The C arguments are described using a Py_ BuildValue () style format string. The format can be NULL,
indicating that no arguments are provided.

Return the result of the call on success, or raise an exception and return NULL on failure.

7.2. Call Protocol 63

The Python/C API, Wydanie 3.9.21

This is the equivalent of the Python expression: callable (*args).

Note that if you only pass PyObject *args, PyObject_CallFunctionObjArgs () is a faster alter-
native.

Zmienione w wersji 3.4: The type of format was changed from char *.

PyObject* PyObject_CallMethod (PyObject *obj, const char *name, const char *format, ...)
Return value: New reference. Call the method named name of object obj with a variable number of C arguments.
The C arguments are described by a Py BuildValue () format string that should produce a tuple.

The format can be NULL, indicating that no arguments are provided.
Return the result of the call on success, or raise an exception and return NULL on failure.
This is the equivalent of the Python expression: obj.name (argl, arg2, ...).

Note that if you only pass PyObject *args, PyObject_CallMethodObjArgs () is a faster alterna-
tive.

Zmienione w wersji 3.4: The types of name and format were changed from char *.

PyObject* PyObject_CallFunctionObjArgs (PyObject *callable, ...)
Return value: New reference. Call a callable Python object callable, with a variable number of PyObject *
arguments. The arguments are provided as a variable number of parameters followed by NULL.

Return the result of the call on success, or raise an exception and return NULL on failure.
This is the equivalent of the Python expression: callable (argl, arg2, ...).

PyObject* PyObject_CallMethodObjArgs (PyObject *obj, PyObject *name, ...)
Return value: New reference. Call a method of the Python object obj, where the name of the method is given as
a Python string object in name. It is called with a variable number of PyOb ject *arguments. The arguments
are provided as a variable number of parameters followed by NULL.

Return the result of the call on success, or raise an exception and return NULL on failure.

PyObject* PyObject_CallMethodNoArgs (PyObject *obj, PyObject *name)
Call a method of the Python object obj without arguments, where the name of the method is given as a Python
string object in name.

Return the result of the call on success, or raise an exception and return NULL on failure.
This function is not part of the limited API.
Nowe w wersji 3.9.

PyObject* PyObject_CallMethodOneArg (PyObject *obj, PyObject *name, PyObject *arg)
Call a method of the Python object obj with a single positional argument arg, where the name of the method
is given as a Python string object in name.

Return the result of the call on success, or raise an exception and return NULL on failure.
This function is not part of the limited API.
Nowe w wersji 3.9.

PyObject* PyObject_Vectorcall (PyObject *callable, PyObject *const *args, size_t nargsf, Py-
Object *kwnames)
Call a callable Python object callable. The arguments are the same as for vectorcall func. If callable

supports vectorcall, this directly calls the vectorcall function stored in callable.
Return the result of the call on success, or raise an exception and return NULL on failure.
This function is not part of the limited API.

Nowe w wersji 3.9.

64 Rozdzial 7. Warstwa obiektow abstrakcyjnych

The Python/C API, Wydanie 3.9.21

PyObject* PyObject_VectorcallDict (PyObject *callable, PyObject *const *args, size_t nargsf, Py-
Object *kwdict)
Call callable with positional arguments passed exactly as in the vectorcall protocol, but with keyword arguments
passed as a dictionary kwdict. The args array contains only the positional arguments.

Regardless of which protocol is used internally, a conversion of arguments needs to be done. Therefore, this
function should only be used if the caller already has a dictionary ready to use for the keyword arguments, but
not a tuple for the positional arguments.

This function is not part of the limited API.
Nowe w wersji 3.9.

PyObject* PyObject_VectorcallMethod (PyObject *name, PyObject *const *args, size_t nargsf, Py-
Object *kwnames)
Call a method using the vectorcall calling convention. The name of the method is given as a Python string
name. The object whose method is called is args[0], and the args array starting at args/1] represents the
arguments of the call. There must be at least one positional argument. nargsf is the number of positional
arguments including args/0], plus PY_VECTORCALL_ARGUMENTS_OFFSET if the value of args[0]
may temporarily be changed. Keyword arguments can be passed just like in PyObject_Vectorcall ().

If the object has the Py TPFLAGS _METHOD_DESCRIPTOR feature, this will call the unbound method
object with the full args vector as arguments.

Return the result of the call on success, or raise an exception and return NULL on failure.
This function is not part of the limited API.

Nowe w wersji 3.9.

7.2.4 Call Support API

int PyCallable_Check (PyObject *0)
Determine if the object o is callable. Return 1 if the object is callable and 0 otherwise. This function always
succeeds.

7.3 Number Protocol

int PyNumber_Check (PyObject *0)
Returns 1 if the object o provides numeric protocols, and false otherwise. This function always succeeds.

Zmienione w wersji 3.8: Returns 1 if o is an index integer.

PyObject* PyNumber_Add (PyObject *ol, PyObject *02)
Return value: New reference. Returns the result of adding o/ and 02, or NULL on failure. This is the equivalent
of the Python expression o1 + 02.

PyObject* PyNumber_Subtract (PyObject *ol, PyObject *02)
Return value: New reference. Returns the result of subtracting 02 from o/, or NULL on failure. This is the
equivalent of the Python expression 01 - o2.

PyObject* PyNumber Multiply (PyObject *ol, PyObject *02)
Return value: New reference. Returns the result of multiplying ol and 02, or NULL on failure. This is the
equivalent of the Python expression o1 * o2.

PyObject* PyNumber MatrixMultiply (PyObject *ol, PyObject *02)
Return value: New reference. Returns the result of matrix multiplication on o/ and 02, or NULL on failure. This
is the equivalent of the Python expression 01 @ 02.

Nowe w wersji 3.5.

7.3. Number Protocol 65

The Python/C API, Wydanie 3.9.21

PyObject* PyNumber_ FloorDivide (PyObject *ol, PyObject *02)
Return value: New reference. Return the floor of o/ divided by 02, or NULL on failure. This is the equivalent
of the Python expression o1 // o2.

PyObject* PyNumber_TrueDivide (PyObject *ol, PyObject *02)
Return value: New reference. Return a reasonable approximation for the mathematical value of o/ divided by 02,
or NULL on failure. The return value is ,,approximate” because binary floating point numbers are approximate;
it is not possible to represent all real numbers in base two. This function can return a floating point value when
passed two integers. This is the equivalent of the Python expression o1 / 02.

PyObject* PyNumber_Remainder (PyObject *ol, PyObject *02)
Return value: New reference. Returns the remainder of dividing o/ by 02, or NULL on failure. This is the
equivalent of the Python expression o1 % o2.

PyObject* PyNumber_Divmod (PyObject *ol, PyObject *02)
Return value: New reference. See the built-in function divmod () . Returns NULL on failure. This is the equ-
ivalent of the Python expression divmod (01, 02).

PyObject* PyNumber_Power (PyObject *ol, PyObject *02, PyObject *03)
Return value: New reference. See the built-in function pow () . Returns NULL on failure. This is the equivalent
of the Python expression pow (01, 02, 03), where 03 is optional. If 03 is to be ignored, pass Py_None
in its place (passing NULL for o3 would cause an illegal memory access).

PyObject* PyNumber_Negative (PyObject *0)
Return value: New reference. Returns the negation of o on success, or NULL on failure. This is the equivalent
of the Python expression —o.

PyObject* PyNumber_Positive (PyObject *o)
Return value: New reference. Returns o on success, or NULL on failure. This is the equivalent of the Python
expression +o.

PyObject* PyNumber_Absolute (PyObject *0)
Return value: New reference. Returns the absolute value of o, or NULL on failure. This is the equivalent of the
Python expression abs (o) .

PyObject* PyNumber_Invert (PyObject *0)
Return value: New reference. Returns the bitwise negation of o on success, or NULL on failure. This is the
equivalent of the Python expression ~o.

PyObject* PyNumber_Lshift (PyObject *ol, PyObject *02)
Return value: New reference. Returns the result of left shifting o/ by 02 on success, or NULL on failure. This
is the equivalent of the Python expression o1 << o02.

PyObject* PyNumber_ Rshift (PyObject *ol, PyObject *02)
Return value: New reference. Returns the result of right shifting o/ by 02 on success, or NULL on failure. This
is the equivalent of the Python expression o1 >> o2.

PyObject* PyNumber_And (PyObject *ol, PyObject *02)
Return value: New reference. Returns the ,,bitwise and” of ol and 02 on success and NULL on failure. This is
the equivalent of the Python expression 01 & o2.

PyObject* PyNumber_Xor (PyObject *ol, PyObject *02)
Return value: New reference. Returns the ,,bitwise exclusive or” of ol by 02 on success, or NULL on failure.
This is the equivalent of the Python expression o1 *~ 02.

PyObject* PyNumber_Ox (PyObject *ol, PyObject *02)
Return value: New reference. Returns the ,,bitwise or” of ol and 02 on success, or NULL on failure. This is the
equivalent of the Python expression o1 | 02.

PyObject* PyNumber_InPlaceAdd (PyObject *ol, PyObject *02)
Return value: New reference. Returns the result of adding o/ and 02, or NULL on failure. The operation is done
in-place when ol supports it. This is the equivalent of the Python statement 01 += 02.

PyObject* PyNumber_InPlaceSubtract (PyObject *ol, PyObject *02)
Return value: New reference. Returns the result of subtracting o2 from o/, or NULL on failure. The operation
is done in-place when ol supports it. This is the equivalent of the Python statement 01 -= 02.

66 Rozdziat 7. Warstwa obiektéw abstrakcyjnych

The Python/C API, Wydanie 3.9.21

PyObject* PyNumber_ InPlaceMultiply (PyObject *ol, PyObject *02)
Return value: New reference. Returns the result of multiplying o/ and 02, or NULL on failure. The operation is
done in-place when ol supports it. This is the equivalent of the Python statement 01 *= 02.

PyObject* PyNumber_InPlaceMatrixMultiply (PyObject *ol, PyObject *02)
Return value: New reference. Returns the result of matrix multiplication on o/ and 02, or NULL on failure. The
operation is done in-place when ol supports it. This is the equivalent of the Python statement 01 @= o02.

Nowe w wersji 3.5.

PyObject* PyNumber_InPlaceFloorDivide (PyObject *ol, PyObject *02)
Return value: New reference. Returns the mathematical floor of dividing o/ by 02, or NULL on failure. The
operation is done in-place when ol supports it. This is the equivalent of the Python statement o1 //= o2.

PyObject* PyNumber_InPlaceTrueDivide (PyObject *ol, PyObject *02)
Return value: New reference. Return a reasonable approximation for the mathematical value of o/ divided by 02,
or NULL on failure. The return value is ,,approximate” because binary floating point numbers are approximate;
it is not possible to represent all real numbers in base two. This function can return a floating point value when
passed two integers. The operation is done in-place when ol supports it. This is the equivalent of the Python
statement o1 /= 02.

PyObject* PyNumber_InPlaceRemainder (PyObject *ol, PyObject *02)
Return value: New reference. Returns the remainder of dividing o/ by 02, or NULL on failure. The operation
is done in-place when ol supports it. This is the equivalent of the Python statement 01 %= o02.

PyObject* PyNumber_InPlacePower (PyObject *ol, PyObject *02, PyObject *03)
Return value: New reference. See the built-in function pow (). Returns NULL on failure. The operation is
done in-place when ol supports it. This is the equivalent of the Python statement o1 **= 02 when 03 is
Py_None, or an in-place variant of pow (01, 02, o03) otherwise. If 03 is to be ignored, pass Py_None
in its place (passing NULL for o3 would cause an illegal memory access).

PyObject* PyNumber_InPlaceLshift (PyObject *ol, PyObject *02)
Return value: New reference. Returns the result of left shifting o by 02 on success, or NULL on failure. The
operation is done in-place when ol supports it. This is the equivalent of the Python statement o1 <<= 02.

PyObject* PyNumber_ InPlaceRshift (PyObject *ol, PyObject *02)
Return value: New reference. Returns the result of right shifting o/ by 02 on success, or NULL on failure. The
operation is done in-place when ol supports it. This is the equivalent of the Python statement 01 >>= 02.

PyObject* PyNumber_InPlaceAnd (PyObject *ol, PyObject *02)
Return value: New reference. Returns the ,bitwise and” of ol and 02 on success and NULL on failure. The
operation is done in-place when ol supports it. This is the equivalent of the Python statement o1 &= 02.

PyObject* PyNumber InPlaceXor (PyObject *ol, PyObject *02)
Return value: New reference. Returns the ,,bitwise exclusive or” of ol by 02 on success, or NULL on failure. The
operation is done in-place when ol supports it. This is the equivalent of the Python statement 01 "= o02.

PyObject* PyNumber_InPlaceOr (PyObject *ol, PyObject *02)
Return value: New reference. Returns the ,,bitwise or” of o/ and 02 on success, or NULL on failure. The operation
is done in-place when ol supports it. This is the equivalent of the Python statement 01 |= o2.

PyObject* PyNumber_Long (PyObject *0)
Return value: New reference. Returns the o converted to an integer object on success, or NULL on failure. This
is the equivalent of the Python expression int (o).

PyObject* PyNumber_Float (PyObject *0)
Return value: New reference. Returns the o converted to a float object on success, or NULL on failure. This is
the equivalent of the Python expression f1oat (o).

PyObject* PyNumber_Index (PyObject *o)
Return value: New reference. Returns the o converted to a Python int on success or NULL with a TypeError
exception raised on failure.

PyObject* PyNumber_ToBase (PyObject *n, int base)
Return value: New reference. Returns the integer n converted to base base as a string. The base argument must

7.3. Number Protocol 67

The Python/C API, Wydanie 3.9.21

be one of 2, 8, 10, or 16. For base 2, 8, or 16, the returned string is prefixed with a base marker of 'Ob",
'0o',or '0x", respectively. If n is not a Python int, it is converted with PyNumber_Tndex () first.

Py_ssize_t PyNumber_ AsSsize_t (PyObject *o, PyObject *exc)
Returns o converted toa Py_ ssize_ t value if o can be interpreted as an integer. If the call fails, an exception
is raised and -1 is returned.

If o can be converted to a Python int but the attempt to convert to a Py_ssize_t value would ra-
ise an OverflowError, then the exc argument is the type of exception that will be raised (usually
IndexError or OverflowError). If exc is NULL, then the exception is cleared and the value is clip-
pedtoPY_SSIZE_T_MIN for a negative integer or PY_SSIZE_T_MAX for a positive integer.

int PyIndex_Check (PyObject *0)
Returns 1 if o is an index integer (has the nb_index slot of the tp_as_number structure filled in), and 0
otherwise. This function always succeeds.

7.4 Sequence Protocol

int PySequence_Check (PyObject *0)
Return 1 if the object provides the sequence protocol, and 0 otherwise. Note that it returns 1 for Python
classes witha __getitem__ () method, unless they are dict subclasses, since in general it is impossible
to determine what type of keys the class supports. This function always succeeds.

Py_ssize_t PySequence_Size (PyObject *0)

Py_ssize_t PySequence_Length (PyObject *0)
Returns the number of objects in sequence o on success, and —1 on failure. This is equivalent to the Python
expression len (o).

PyObject* PySequence_Concat (PyObject *ol, PyObject *02)
Return value: New reference. Return the concatenation of ol and 02 on success, and NULL on failure. This is
the equivalent of the Python expression o1 + o2.

PyObject* PySequence_Repeat (PyObject *o, Py_ssize_t count)
Return value: New reference. Return the result of repeating sequence object o count times, or NULL on failure.
This is the equivalent of the Python expression o * count.

PyObject* PySequence_InPlaceConcat (PyObject *ol, PyObject *02)
Return value: New reference. Return the concatenation of o/ and 02 on success, and NULL on failure. The
operation is done in-place when ol supports it. This is the equivalent of the Python expression o1 += o02.

PyObject* PySequence_InPlaceRepeat (PyObject *o, Py_ssize_t count)
Return value: New reference. Return the result of repeating sequence object o count times, or NULL on failure.
The operation is done in-place when o supports it. This is the equivalent of the Python expression o *=
count.

PyObject* PySequence_Get Item (PyObject *o, Py_ssize_t i)
Return value: New reference. Return the ith element of o, or NULL on failure. This is the equivalent of the
Python expression o [1].

PyObject* PySequence_GetSlice (PyObject *o, Py_ssize_t il, Py_ssize_t i2)
Return value: New reference. Return the slice of sequence object o between i/ and i2, or NULL on failure. This
is the equivalent of the Python expression o [11:12].

int PySequence_SetItem (PyObject *o, Py_ssize_t i, PyObject *v)
Assign object v to the ith element of o. Raise an exception and return —1 on failure; return 0 on success. This
is the equivalent of the Python statement o [1] = v. This function does not steal a reference to v.

If v is NULL, the element is deleted, but this feature is deprecated in favour of using
PySequence_DelItem().

int PySequence_DelItem (PyObject *o, Py_ssize_t i)
Delete the ith element of object o. Returns —1 on failure. This is the equivalent of the Python statement de 1
o[i].

68 Rozdziat 7. Warstwa obiektéw abstrakcyjnych

The Python/C API, Wydanie 3.9.21

int PySequence_SetSlice (PyObject *o, Py_ssize_t il, Py_ssize_t i2, PyObject *v)
Assign the sequence object v to the slice in sequence object o from i/ to i2. This is the equivalent of the Python
statement o [11:12] = wv.

int PySequence_DelSlice (PyObject *o0, Py_ssize_t il, Py_ssize_t i2)
Delete the slice in sequence object o from i/ to i2. Returns —1 on failure. This is the equivalent of the Python
statement del o[il:12].

Py_ssize_t PySequence_Count (PyObject *o, PyObject *value)
Return the number of occurrences of value in o, that is, return the number of keys for which o [key] ==
value. On failure, return —1. This is equivalent to the Python expression o . count (value).

int PySequence_Contains (PyObject *o, PyObject *value)
Determine if o contains value. If an item in o is equal to value, return 1, otherwise return 0. On error, return
—1. This is equivalent to the Python expression value in o.

Py_ssize_t PySequence_ Index (PyObject *o, PyObject *value)
Return the first index i for which o [1] == wvalue. On error, return —1. This is equivalent to the Python
expression o . index (value).

PyObject* PySequence_List (PyObject *0)
Return value: New reference. Return a list object with the same contents as the sequence or iterable o, or NULL
on failure. The returned list is guaranteed to be new. This is equivalent to the Python expression 1ist (o).

PyObject* PySequence_Tuple (PyObject *0)
Return value: New reference. Return a tuple object with the same contents as the sequence or iterable o, or
NULL on failure. If o is a tuple, a new reference will be returned, otherwise a tuple will be constructed with
the appropriate contents. This is equivalent to the Python expression tuple (o).

PyObject* PySequence_Fast (PyObject *o, const char *m)
Return value: New reference. Return the sequence or iterable o as an object usable by the other
PySequence_Fast* family of functions. If the object is not a sequence or iterable, raises TypeError
with m as the message text. Returns NULL on failure.

The PySequence_Fast* functions are thus named because they assume o is a PyTupleObject or
a PyListObject and access the data fields of o directly.

As a CPython implementation detail, if o is already a sequence or list, it will be returned.

Py_ssize_t PySequence_Fast_GET_SIZE (PyObject *0)
Returns the length of o, assuming that o was returned by PySequence Fast () and that
o is not NULL. The size can also be retrieved by calling PySequence_Size () on o, but
PySequence_Fast_GET_SIZE () is faster because it can assume o is a list or tuple.

PyObject* PySequence_Fast_GET_ITEM (PyObject *o, Py_ssize_t i)
Return value: Borrowed reference. Return the ith element of o, assuming that o was returned by
PySequence_Fast (), o0is not NULL, and that i is within bounds.

PyObject** PySequence_Fast_ITEMS (PyObject *0)
Return the underlying array of PyObject pointers. Assumes that o was returned by PySequence_Fast ()
and o is not NULL.

Note, if a list gets resized, the reallocation may relocate the items array. So, only use the underlying array
pointer in contexts where the sequence cannot change.

PyObject* PySequence_ITEM (PyObject *o, Py_ssize_t i)
Return value: New reference. Return the ith element of o or NULL on failure. Faster form of
PySequence_GetItem () but without checking that PySequence_Check () on o is true and without
adjustment for negative indices.

7.4. Sequence Protocol 69

The Python/C API, Wydanie 3.9.21

7.5 Mapping Protocol

See also PyObject_GetItem (), PyObject_SetItem() and PyObject_DelItem().

int PyMapping_Check (PyObject *0)
Return 1 if the object provides the mapping protocol or supports slicing, and 0 otherwise. Note that it returns
1 for Python classes with a ___getitem__ () method, since in general it is impossible to determine what
type of keys the class supports. This function always succeeds.

Py_ssize_t PyMapping_Size (PyObject *0)

Py_ssize_t PyMapping Length (PyObject *0)
Returns the number of keys in object o on success, and —1 on failure. This is equivalent to the Python expression
len (o).

PyObject* PyMapping_GetItemString (PyObject *o, const char *key)
Return value: New reference. Return element of o corresponding to the string key or NULL on failure. This is
the equivalent of the Python expression o [key]. See also PyObject_GetItem().

int PyMapping_SetItemString (PyObject *o, const char *key, PyObject *v)
Map the string key to the value v in object 0. Returns —1 on failure. This is the equivalent of the Python
statement o [key] = v.Seealso PyObject_SetItem (). This function does not steal a reference to v.

int PyMapping_DelItem (PyObject *o, PyObject *key)
Remove the mapping for the object key from the object 0. Return -1 on failure. This is equivalent to the Python
statement del o [key]. Thisis an alias of PyObject_DelItem().

int PyMapping_DelItemString (PyObject *o, const char *key)
Remove the mapping for the string key from the object 0. Return —1 on failure. This is equivalent to the Python
statement del of[key].

int PyMapping_HasKey (PyObject *o, PyObject *key)
Return 1 if the mapping object has the key key and O otherwise. This is equivalent to the Python expression
key in o. This function always succeeds.

Note that exceptions which occur while calling the __getitem__ () method will get suppressed. To get
error reporting use PyOb ject_GetItem () instead.

int PyMapping_HasKeyString (PyObject *o, const char *key)
Return 1 if the mapping object has the key key and 0 otherwise. This is equivalent to the Python expression
key in o. This function always succeeds.

Note that exceptions which occur while callingthe __getitem_ () method and creating a temporary string
object will get suppressed. To get error reporting use PyMapping GetItemString () instead.

PyObject* PyMapping_Keys (PyObject *0)
Return value: New reference. On success, return a list of the keys in object 0. On failure, return NULL.

Zmienione w wersji 3.7: Previously, the function returned a list or a tuple.

PyObject* PyMapping_Values (PyObject *0)
Return value: New reference. On success, return a list of the values in object 0. On failure, return NULL.

Zmienione w wersji 3.7: Previously, the function returned a list or a tuple.

PyObject* PyMapping_Items (PyObject *0)
Return value: New reference. On success, return a list of the items in object o, where each item is a tuple
containing a key-value pair. On failure, return NULL.

Zmienione w wersji 3.7: Previously, the function returned a list or a tuple.

70 Rozdzial 7. Warstwa obiektow abstrakcyjnych

The Python/C API, Wydanie 3.9.21

7.6 lterator Protocol

There are two functions specifically for working with iterators.

int PyIter Check (PyObject *0)
Return true if the object o supports the iterator protocol. This function always succeeds.
PyObject* PyIter_ Next (PyObject *0)
Return value: New reference. Return the next value from the iteration o. The object must be an iterator (it is up

to the caller to check this). If there are no remaining values, returns NULL with no exception set. If an error
occurs while retrieving the item, returns NULL and passes along the exception.

To write a loop which iterates over an iterator, the C code should look something like this:

PyObject *iterator = PyObject_GetIter (obj);
PyObject *item;

if (iterator == NULL) {
/* propagate error */

while ((item = PyIter_Next (iterator))) {
/* do something with item */

/* release reference when done */
Py_DECREF (item) ;

Py_DECREF (iterator);

if (PyErr_Occurred()) A
/* propagate error */
}
else {
/* continue doing useful work */

7.7 Buffer Protocol

Certain objects available in Python wrap access to an underlying memory array or buffer. Such objects include the
built-in bytes and bytearray, and some extension types like array . array. Third-party libraries may define
their own types for special purposes, such as image processing or numeric analysis.

While each of these types have their own semantics, they share the common characteristic of being backed by
a possibly large memory buffer. It is then desirable, in some situations, to access that buffer directly and without
intermediate copying.

Python provides such a facility at the C level in the form of the buffer protocol. This protocol has two sides:

« on the producer side, a type can export a ,,.buffer interface” which allows objects of that type to expose infor-
mation about their underlying buffer. This interface is described in the section Buffer Object Structures;

« on the consumer side, several means are available to obtain a pointer to the raw underlying data of an object
(for example a method parameter).

Simple objects such as bytes and bytearray expose their underlying buffer in byte-oriented form. Other forms
are possible; for example, the elements exposed by an array .array can be multi-byte values.

An example consumer of the buffer interface is the write () method of file objects: any object that can export
a series of bytes through the buffer interface can be written to a file. While write () only needs read-only access
to the internal contents of the object passed to it, other methods such as readinto () need write access to the

7.6. lterator Protocol 71

The Python/C API, Wydanie 3.9.21

contents of their argument. The buffer interface allows objects to selectively allow or reject exporting of read-write
and read-only buffers.

There are two ways for a consumer of the buffer interface to acquire a buffer over a target object:
e call PyObject_GetBuffer () with the right parameters;
e call PyArg ParseTuple () (or one of its siblings) with one of the y*, w* or s* format codes.

In both cases, PyBuffer_ Release () must be called when the buffer isn’t needed anymore. Failure to do so could
lead to various issues such as resource leaks.

7.7.1 Buffer structure

Buffer structures (or simply ,,buffers”) are useful as a way to expose the binary data from another object to the Python
programmer. They can also be used as a zero-copy slicing mechanism. Using their ability to reference a block of
memory, it is possible to expose any data to the Python programmer quite easily. The memory could be a large,
constant array in a C extension, it could be a raw block of memory for manipulation before passing to an operating
system library, or it could be used to pass around structured data in its native, in-memory format.

Contrary to most data types exposed by the Python interpreter, buffers are not PyOb ject pointers but rather simple
C structures. This allows them to be created and copied very simply. When a generic wrapper around a buffer is
needed, a memoryview object can be created.

For short instructions how to write an exporting object, see Buffer Object Structures. For obtaining a buffer, see
PyObject_GetBuffer().

Py_buffer

void *buf
A pointer to the start of the logical structure described by the buffer fields. This can be any location within
the underlying physical memory block of the exporter. For example, with negative st rides the value
may point to the end of the memory block.

For contiguous arrays, the value points to the beginning of the memory block.

void *obj
A new reference to the exporting object. The reference is owned by the consumer and automatically
decremented and set to NULL by PyBuffer Release (). The field is the equivalent of the return
value of any standard C-API function.

As a special case, for femporary buffers that are wrapped by PyMemoryView FromBuffer () or
PyBuffer FillInfo () thisfield is NULL. In general, exporting objects MUST NOT use this sche-
me.

Py_ssize_t 1len
product (shape) * itemsize.Forcontiguous arrays, this is the length of the underlying memory
block. For non-contiguous arrays, it is the length that the logical structure would have if it were copied
to a contiguous representation.

Accessing ((char *)buf) [0] up to ((char *)buf) [len-1] is only valid if the buf-
fer has been obtained by a request that guarantees contiguity. In most cases such a request will be
PyBUF_SIMPLE or PyBUF _WRITABLE.

int readonly
An indicator of whether the buffer is read-only. This field is controlled by the PyBUF_WRITABLE flag.

Py _ssize_t itemsize
Item size in bytes of a single element. Same as the value of st ruct .calcsize () called on non-NULL
format values.

Important exception: If a consumer requests a buffer without the PyBUF_FORMAT flag, format will
be set to NULL, but i temsi ze still has the value for the original format.

72 Rozdzial 7. Warstwa obiektow abstrakcyjnych

The Python/C API, Wydanie 3.9.21

If shape is present, the equality product (shape) * itemsize == len still holds and the
consumer can use itemsize to navigate the buffer.

If shape is NULL as a result of a PyBUF_SIMPLE or a PyBUF_WRITABLE request, the consumer
must disregard i temsize and assume itemsize == 1.

const char *format
A NUL terminated string in st ruct module style syntax describing the contents of a single item. If this
is NULL, "B" (unsigned bytes) is assumed.

This field is controlled by the PyBUF_FORMAT flag.

int ndim
The number of dimensions the memory represents as an n-dimensional array. If it is 0, buf points to
a single item representing a scalar. In this case, shape, st ridesand suboffsets MUST be NULL.

The macro PyBUF_MAX_NDIM limits the maximum number of dimensions to 64. Exporters MUST
respect this limit, consumers of multi-dimensional buffers SHOULD be able to handle up to
PyBUF_MAX_NDIM dimensions.

Py_ssize_t *shape
An array of Py_ssize_t of length ndim indicating the shape of the memory as an n-dimensional
array. Note that shape [0] * ... * shape[ndim-1] * itemsize MUST beequalto len.

Shape values are restricted to shape [n] >= 0. The case shape [n] == 0 requires special atten-
tion. See complex arrays for further information.

The shape array is read-only for the consumer.

Py_ssize_t *strides
An array of Py_ssize_t of length ndim giving the number of bytes to skip to get to a new element
in each dimension.

Stride values can be any integer. For regular arrays, strides are usually positive, but a consumer MUST
be able to handle the case strides[n] <= 0. See complex arrays for further information.

The strides array is read-only for the consumer.

Py_ssize_t *suboffsets
An array of Py_ssize_t of length ndim. If suboffsets[n] >= 0, the values stored along the
nth dimension are pointers and the suboffset value dictates how many bytes to add to each pointer after
de-referencing. A suboffset value that is negative indicates that no de-referencing should occur (striding
in a contiguous memory block).

If all suboffsets are negative (i.e. no de-referencing is needed), then this field must be NULL (the default
value).

This type of array representation is used by the Python Imaging Library (PIL). See complex arrays for
further information how to access elements of such an array.

The suboffsets array is read-only for the consumer.

void *internal
This is for use internally by the exporting object. For example, this might be re-cast as an integer by the
exporter and used to store flags about whether or not the shape, strides, and suboffsets arrays must be
freed when the buffer is released. The consumer MUST NOT alter this value.

7.7. Buffer Protocol 73

The Python/C API, Wydanie 3.9.21

7.7.2 Buffer request types

Buffers are usually obtained by sending a buffer request to an exporting object via PyObject_GetBuffer ().
Since the complexity of the logical structure of the memory can vary drastically, the consumer uses the flags argument
to specify the exact buffer type it can handle.

All Py_buf fer fields are unambiguously defined by the request type.

request-independent fields

The following fields are not influenced by flags and must always be filled in with the correct values: ob j, buf, len,
itemsize, ndim.

readonly, format

PyBUF_WRITABLE
Controls the readon 1y field. If set, the exporter MUST provide a writable buffer or else report
failure. Otherwise, the exporter MAY provide either a read-only or writable buffer, but the choice
MUST be consistent for all consumers.

PyBUF_FORMAT
Controls the format field. If set, this field MUST be filled in correctly. Otherwise, this field
MUST be NULL.

PyBUF_WRITABLE can be |»d to any of the flags in the next section. Since PyBUF _STIMPLE is defined as 0,
PyBUF_WRITABLE can be used as a stand-alone flag to request a simple writable buffer.

PyBUF_FORMAT can be |»d to any of the flags except PyBUF_STMPLE. The latter already implies format B (unsi-
gned bytes).

shape, strides, suboffsets

The flags that control the logical structure of the memory are listed in decreasing order of complexity. Note that each
flag contains all bits of the flags below it.

Request shape | strides | suboffsets
PyBUF_INDIRECT tak tak if needed
PyBUF_STRIDES tak tak NULL

tak NULL | NULL

PyBUF_ND

PyBUF_SIMPLE NULL | NULL | NULL

74 Rozdzial 7. Warstwa obiektow abstrakcyjnych

The Python/C API, Wydanie 3.9.21

contiguity requests

C or Fortran contiguity can be explicitly requested, with and without stride information. Without stride information,

the buffer must be C-contiguous.

Request shape | strides | suboffsets | contig
PyBUF_C_CONTIGUOUS tak tak NULL C
PyBUF_F_CONTIGUOUS tak tak NULL E
PyBUF_ANY_ CONTIGUOUS tak tak NULL CorF
PyBUF _ND tak NULL NULL .

compound requests

All possible requests are fully defined by some combination of the flags in the previous section. For convenience, the
buffer protocol provides frequently used combinations as single flags.

In the following table U stands for undefined contiguity. The consumer would have to call

PyBuffer IsContiguous () to determine contiguity.
Request shape | strides | suboffsets | contig | readonly | format
PyBUF_FULL tak tak if needed U 0 tak
PyBUF_FULL_RO tak tak if needed U lor0 tak
PyBUF_RECORDS tak tak NULL U 0 tak
PyBUF_RECORDS_RO tak tak NULL U Lor0 tak
PyBUF_STRIDED tak tak NULL U 0 NULL
PyBUF_STRIDED_RO tak tak NULL U lor0 | NULL
PyBUF_CONTIG tak NULL | NULL C 0 NULL
PyBUF_CONTIG_RO tak NULL | NULL C Lor0 NULL

7.7. Buffer Protocol 75

The Python/C API, Wydanie 3.9.21

7.7.3 Complex arrays

NumPy-style: shape and strides

The logical structure of NumPy-style arrays is defined by i temsize, ndim, shape and strides.

If ndim == 0, the memory location pointed to by bu £ is interpreted as a scalar of size i temsize. In that case,
both shape and st rides are NULL.

If strides is NULL, the array is interpreted as a standard n-dimensional C-array. Otherwise, the consumer must
access an n-dimensional array as follows:

ptr = (char *)buf + indices[0] * strides[0] + ... + indices[n-1] * strides[n-1];
item = *((typeof (item) *)ptr);

As noted above, buf can point to any location within the actual memory block. An exporter can check the validity
of a buffer with this function:

def verify_ structure (memlen, itemsize, ndim, shape, strides, offset):
"""Verify that the parameters represent a valid array within
the bounds of the allocated memory:
char *mem: start of the physical memory block
memlen: length of the physical memory block
offset: (char *)buf - mem
if offset % itemsize:
return False
if offset < 0 or offset+itemsize > memlen:
return False
if any(v % itemsize for v in strides):
return False

if ndim <= O:

return ndim == 0 and not shape and not strides
if 0 in shape:

return True

imin = sum(strides[j]* (shape[j]-1) for j in range (ndim)
if strides[j] <= 0)
imax = sum(strides[j]* (shape[j]-1) for j in range (ndim)

if strides[j] > 0)

return 0 <= offset+imin and offset+imax+itemsize <= memlen

PIL-style: shape, strides and suboffsets

In addition to the regular items, PIL-style arrays can contain pointers that must be followed in order to get to the
next element in a dimension. For example, the regular three-dimensional C-array char v[2] [2] [3] can also be
viewed as an array of 2 pointers to 2 two-dimensional arrays: char (*v[2]) [2] [3].Insuboffsets representation,
those two pointers can be embedded at the start of bu £, pointing to two char x [2] [3] arrays that can be located
anywhere in memory.

Here is a function that returns a pointer to the element in an N-D array pointed to by an N-dimensional index when
there are both non-NULL strides and suboffsets:

void *get_item_pointer (int ndim, woid *buf, Py_ssize_t *strides,
Py_ssize_t *suboffsets, Py_ssize_t *indices) {

char *pointer = (char*)buf;
int i;
for (i = 0; 1 < ndim; i++) |

pointer += strides[i] * indices[i];

(ciag dalszy na nast¢pnej stronie)

76 Rozdzial 7. Warstwa obiektow abstrakcyjnych

The Python/C API, Wydanie 3.9.21

(kontynuacja poprzedniej strony)

if (suboffsets

(1] >=0) A
pointer = *(

(char**)pointer) + suboffsets[i];

}

return (void*)pointer;

7.7.4 Buffer-related functions

int PyObject_CheckBuffer (PyObject *obj)
Return 1 if obj supports the buffer interface otherwise 0. When 1 is returned, it doesn’t guarantee that
PyObject_GetBuffer () will succeed. This function always succeeds.

int PyObject_GetBuffer (PyObject *exporter, Py_buffer *view, int flags)
Send a request to exporter to fill in view as specified by flags. If the exporter cannot provide a buffer of the
exact type, it MUST raise PyExc_BufferError, set view—>ob3j to NULL and return - 1.

On success, fill in view, set view—->0b7j to a new reference to exporter and return 0. In the case of chained
buffer providers that redirect requests to a single object, view—>obj MAY refer to this object instead of
exporter (See Buffer Object Structures).

Successful calls to PyObject_GetBuffer () must be paired with calls to PyBuffer Release (),
similar to malloc () and free (). Thus, after the consumer is done with the buffer,
PyBuffer Release () must be called exactly once.

void PyBuffer Release (Py_buffer *view)
Release the buffer view and decrement the reference count for view—>obj. This function MUST be called
when the buffer is no longer being used, otherwise reference leaks may occur.

It is an error to call this function on a buffer that was not obtained via PyObject_GetBuffer ().

Py_ssize_ t PyBuffer SizeFromFormat (const char *format)
Return the implied i temsize from format. On error, raise an exception and return -1.

Nowe w wersji 3.9.

int PyBuffer_IsContiguous (Py_buffer *view, char order)
Return 1 if the memory defined by the view is C-style (order is ' C") or Fortran-style (order is ' F ") contiguous
or either one (order is 'A"). Return O otherwise. This function always succeeds.

void* PyBuffer_GetPointer (Py_buffer *view, Py_ssize_t *indices)
Get the memory area pointed to by the indices inside the given view. indices must point to an array of
view->ndim indices.

int PyBuffer_ FromContiguous (Py_buffer *view, void *buf, Py_ssize_t len, char fort)
Copy contiguous len bytes from buf to view. fort canbe 'C' or 'F' (for C-style or Fortran-style ordering). O
is returned on success, —1 on error.

int PyBuffer_ToContiguous (void *buf, Py_buffer *src, Py_ssize_t len, char order)
Copy len bytes from src to its contiguous representation in buf. order canbe 'C' or 'F' or 'A" (for C-style
or Fortran-style ordering or either one). O is returned on success, —1 on error.

This function fails if len != src->len.

void PyBuffer FillContiguousStrides (int ndims, Py_ssize_t *shape, Py_ssize_t *strides, int item-

size, char order)
Fill the strides array with byte-strides of a contiguous (C-style if order is ' C"' or Fortran-style if orderis 'F ')

array of the given shape with the given number of bytes per element.

int PyBuffer FillInfo (Py_buffer *view, PyObject *exporter, void *buf, Py_ssize_t len, int readonly,
int flags)
Handle buffer requests for an exporter that wants to expose buf of size len with writability set according to
readonly. buf is interpreted as a sequence of unsigned bytes.

7.7. Buffer Protocol 77

The Python/C API, Wydanie 3.9.21

The flags argument indicates the request type. This function always fills in view as specified by flags, unless buf
has been designated as read-only and PyBUF_WRITABLE is set in flags.

On success, set view->obj to a new reference to exporter and return 0. Otherwise, raise
PyExc_BufferError, set view—>0bj to NULL and return —1;

If this function is used as part of a getbufferproc, exporter MUST be set to the exporting object and flags must
be passed unmodified. Otherwise, exporter MUST be NULL.

7.8 Old Buffer Protocol

Niezalecane od wersji 3.0.

These functions were part of the ,,0ld buffer protocol” API in Python 2. In Python 3, this protocol doesn’t exist
anymore but the functions are still exposed to ease porting 2.x code. They act as a compatibility wrapper around
the new buffer protocol, but they don’t give you control over the lifetime of the resources acquired when a buffer is
exported.

Therefore, it is recommended that you call PyObject_GetBuffer () (or the y* or w* format codes with the
PyArg_ParseTuple () family of functions) to get a buffer view over an object, and PyBuffer_Release ()
when the buffer view can be released.

int PyObject_AsCharBuffer (PyObject *obj, const char **buffer, Py_ssize_t *buffer_len)
Returns a pointer to a read-only memory location usable as character-based input. The obj argument must
support the single-segment character buffer interface. On success, returns 0, sets buffer to the memory location
and buffer_len to the buffer length. Returns —1 and sets a TypeError on error.

int PyObject_AsReadBuffer (PyObject *obj, const void **buffer, Py_ssize_t *buffer_len)
Returns a pointer to a read-only memory location containing arbitrary data. The obj argument must support
the single-segment readable buffer interface. On success, returns 0, sets buffer to the memory location and
buffer_len to the buffer length. Returns —1 and sets a TypeError on error.

int PyObject_CheckReadBuffer (PyObject *0)
Returns 1 if o supports the single-segment readable buffer interface. Otherwise returns 0. This function always
succeeds.

Note that this function tries to get and release a buffer, and exceptions which occur while calling corresponding
functions will get suppressed. To get error reporting use PyObject_GetBuffer () instead.

int PyObject_AsWriteBuffer (PyObject *obj, void **buffer, Py_ssize_t *buffer_len)
Returns a pointer to a writable memory location. The obj argument must support the single-segment, character
buffer interface. On success, returns 0, sets buffer to the memory location and buffer_len to the buffer length.
Returns —1 and sets a TypeError on error.

78 Rozdzial 7. Warstwa obiektow abstrakcyjnych

ROZDZIAL 8

Concrete Objects Layer

The functions in this chapter are specific to certain Python object types. Passing them an object of the wrong type is
not a good idea; if you receive an object from a Python program and you are not sure that it has the right type, you
must perform a type check first; for example, to check that an object is a dictionary, use PyDict_Check (). The
chapter is structured like the ,,family tree” of Python object types.

Ostrzezenie: While the functions described in this chapter carefully check the type of the objects which are
passed in, many of them do not check for NULL being passed instead of a valid object. Allowing NULL to be
passed in can cause memory access violations and immediate termination of the interpreter.

8.1 Fundamental Objects

This section describes Python type objects and the singleton object None.

8.1.1 Type Objects

PyTypeObject
The C structure of the objects used to describe built-in types.

PyTypeObject PyType_Type
This is the type object for type objects; it is the same object as t ype in the Python layer.

int PyType_Check (PyObject *0)
Return non-zero if the object o is a type object, including instances of types derived from the standard type
object. Return 0 in all other cases. This function always succeeds.

int PyType_CheckExact (PyObject *o)
Return non-zero if the object o is a type object, but not a subtype of the standard type object. Return 0 in all
other cases. This function always succeeds.

unsigned int PyType_ClearCache ()
Clear the internal lookup cache. Return the current version tag.

unsigned long PyType_GetFlags (PyTypeObject* type)
Return the tp_ f1ags member of fype. This function is primarily meant for use with Py_LIMITED_API; the

79

The Python/C API, Wydanie 3.9.21

individual flag bits are guaranteed to be stable across Python releases, but access to tp_ f1ags itself is not
part of the limited APL.

Nowe w wersji 3.2.
Zmienione w wersji 3.4: The return type is now unsigned long rather than long.

void PyType_Modified (PyTypeObject *type)
Invalidate the internal lookup cache for the type and all of its subtypes. This function must be called after any
manual modification of the attributes or base classes of the type.

int PyType_HasFeature (PyTypeObject *o, int feature)
Return non-zero if the type object o sets the feature feature. Type features are denoted by single bit flags.

int PyType_IS_GC (PyTypeObject *o)
Return true if the type object includes support for the cycle detector; this tests the type flag
Py TPFLAGS_HAVE_GC.

int PyType_IsSubtype (PyTypeObject *a, PyTypeObject *b)
Return true if a is a subtype of b.

This function only checks for actual subtypes, which means that __subclasscheck__ () is not called on
b.Call PyObject_TIsSubclass () to do the same check that i ssubclass () would do.

PyObject* PyType_GenericAlloc (PyTypeObject *type, Py_ssize_t nitems)
Return value: New reference. Generic handler for the tp_alloc slot of a type object. Use Python’s default
memory allocation mechanism to allocate a new instance and initialize all its contents to NULL.

PyObject* PyType_GenericNew (PyTypeObject *type, PyObject *args, PyObject *kwds)
Return value: New reference. Generic handler for the tp_new slot of a type object. Create a new instance
using the type’s tp_alloc slot.

int PyType_Ready (PyTypeObject *type)
Finalize a type object. This should be called on all type objects to finish their initialization. This function is
responsible for adding inherited slots from a type’s base class. Return 0 on success, or return —1 and sets an
exception on error.

Informacja: If some of the base classes implements the GC protocol and the provided type does not include
the Py TPFLAGS_HAVE_GC in its flags, then the GC protocol will be automatically implemented from its
parents. On the contrary, if the type being created does include Py TPFLAGS_HAVE_GC in its flags then it
must implement the GC protocol itself by at least implementing the t p_t raverse handle.

void* PyType_GetSlot (PyTypeObject *type, int slot)
Return the function pointer stored in the given slot. If the result is NULL, this indicates that either the slot is
NULL, or that the function was called with invalid parameters. Callers will typically cast the result pointer into
the appropriate function type.

See PyType_Slot.slot for possible values of the slot argument.
An exception is raised if type is not a heap type.
Nowe w wersji 3.4.

PyObject* PyType_GetModule (PyTypeObject *type)
Return the module object associated with the given type when the type was created using
PyType_FromModuleAndSpec ().

If no module is associated with the given type, sets TypeError and returns NULL.

This function is usually used to get the module in which a method is defined. Note that in such a method,
PyType_GetModule (Py_TYPE (self)) may not return the intended result. Py_TYPE (self) may
be a subclass of the intended class, and subclasses are not necessarily defined in the same module as their
superclass. See PyCMethod to get the class that defines the method.

Nowe w wersji 3.9.

80 Rozdziat 8. Concrete Objects Layer

The Python/C API, Wydanie 3.9.21

void* PyType_GetModuleState (PyTypeObject *type)
Return the state of the module object associated with the given type. This is a shortcut for calling
PyModule_ GetState () ontheresult of PyType_ GetModule ().

If no module is associated with the given type, sets TypeError and returns NULL.
If the rype has an associated module but its state is NULL, returns NULL without setting an exception.

Nowe w wersji 3.9.

Creating Heap-Allocated Types

The following functions and structs are used to create /eap types.

PyObject* PyType_FromModuleAndSpec (PyObject *module, PyType_Spec *spec, PyObject *bases)
Return value: New reference. Creates and returns a heap type object from the spec
(Py_TPFLAGS_HEAPTYPE).

If bases is a tuple, the created heap type contains all types contained in it as base types.

If bases is NULL, the Py_tp_bases slot is used instead. If that also is NULL, the Py_tp_base slot is used instead.
If that also is NULL, the new type derives from object.

The module argument can be used to record the module in which the new class is defined. It must be a module
object or NULL. If not NULL, the module is associated with the new type and can later be retrieved with
PyType_GetModule (). The associated module is not inherited by subclasses; it must be specified for
each class individually.

This function calls Py Type_Ready () on the new type.
Nowe w wersji 3.9.

PyObject* PyType_FromSpecWithBases (PyType_Spec *spec, PyObject *bases)
Return value: New reference. Equivalent to PyType_FromModuleAndSpec (NULL, spec, bases).

Nowe w wersji 3.3.

PyObject* PyType_FromSpec (PyType_Spec *spec)
Return value: New reference. Equivalent to PyType_FromSpecWithBases (spec, NULL).

PyType_Spec
Structure defining a type’s behavior.

const char* PyType_Spec .name
Name of the type, used to set Py TypeObject.tp_name.

int PyType_Spec.basicsize

int PyType_Spec.itemsize
Size of the instance in bytes, used to set Py TypeObject.tp_basicsize and PyTypeObject.
tp_itemsize.

int PyType_Spec. flags
Type flags, used to set PyTypeObject.tp_flags.

If the Py_TPFLAGS_HEAPTYPE flag is not set, Py Type_FromSpeclWithBases () sets it auto-
matically.

PyType_Slot *PyType_Spec.slots
Array of PyType_S1ot structures. Terminated by the special slot value {0, NULL}.

PyType_Slot
Structure defining optional functionality of a type, containing a slot ID and a value pointer.

int PyType_Slot.slot

8.1. Fundamental Objects 81

The Python/C API, Wydanie 3.9.21

A slot ID.

Slot IDs are named like the field names of the structures PyTypeObject,
PyNumberMethods, PySequenceMethods, PyMappingMethods and
PyAsyncMethods with an added Py__ prefix. For example, use:

e Py _tp_dealloctoset PyTypeObject.tp _dealloc

e Py_nb_addtoset PyNumberMethods.nb_add

e Py_sqg lengthtoset PySequenceMethods.sq length
The following fields cannot be set at all using Py Type_Spec and PyType_Slot:

e tp_dict

e tp_mro

e tp_cache

e tp_subclasses

e tp _weaklist

e tp_vectorcall

e tp_weaklistoffset (see PyMemberDef)

e tp_dictoffset (see PyMemberDef)

e tp_vectorcall_offset (see PyMemberDef)

The following fields cannot be set using Py Type_ Specand Py Type_ S1ot under the limited
APIL:

e bf _getbhuffer
e bf releasebuffer

Setting Py_tp_bases or Py_tp_base may be problematic on some platforms. To avoid
issues, use the bases argument of PyType_FromSpecWithBases () instead.

Zmienione w wersji 3.9: Slots in PyBufferProcs may be set in the unlimited APL

void *PyType_Slot .pfunc
The desired value of the slot. In most cases, this is a pointer to a function.

May not be NULL.

8.1.2 The None Object

Note that the Py TypeObject for None is not directly exposed in the Python/C API. Since None is a singleton,
testing for object identity (using == in C) is sufficient. There is no PyNone_Check () function for the same reason.

PyObject* Py_None
The Python None object, denoting lack of value. This object has no methods. It needs to be treated just like
any other object with respect to reference counts.

Py_RETURN_NONE
Properly handle returning Py_ None from within a C function (that is, increment the reference count of None
and return it.)

82 Rozdziat 8. Concrete Objects Layer

The Python/C API, Wydanie 3.9.21

8.2 Numeric Objects

8.2.1 Integer Objects

All integers are implemented as ,,long” integer objects of arbitrary size.

On error, most PyLong_As* APIs return (return type) -1 which cannot be distinguished from a number.
Use PyErr_Occurred () to disambiguate.

PyLongObject
This subtype of PyOb ject represents a Python integer object.

PyTypeObject PyLong_Type
This instance of Py TypeObject represents the Python integer type. This is the same object as int in the
Python layer.

int PyLong_Check (PyObject *p)
Return true if its argument is a PyLongObject or a subtype of PyLongOb ject. This function always
succeeds.

int PyLong_CheckExact (PyObject *p)
Return true if its argumentisa PyLongOb ject, but not a subtype of PyLongOb ject. This function always
succeeds.

PyObject* PyLong_FromLong (long v)
Return value: New reference. Return a new PyLongOb ject object from v, or NULL on failure.

The current implementation keeps an array of integer objects for all integers between —5 and 256. When you
create an int in that range you actually just get back a reference to the existing object.

PyObject* PyLong_FromUnsignedLong (unsigned long v)
Return value: New reference. Return a new PyLongOb ject object from a C unsigned long, or NULL
on failure.

PyObject* PyLong_FromSsize_t (Py_ssize tv)
Return value: New reference. Return a new PyLongOb ject object from a C Py_ssize_ t, or NULL on
failure.

PyObject* PyLong_FromSize_t (size_t v)
Return value: New reference. Return a new PyLongOb ject object from a C size_t, or NULL on failure.

PyObject* PyLong_FromLongLong (long long v)
Return value: New reference. Return a new PyLongObject object from a C long long, or NULL on
failure.

PyObject* PyLong_FromUnsignedLongLong (unsigned long long v)
Return value: New reference. Return a new PyLongObject object froma C unsigned long long, or
NULL on failure.

PyObject* PyLong_FromDouble (double v)
Return value: New reference. Return a new PyLongOb ject object from the integer part of v, or NULL on
failure.

PyObject* PyLong_FromString (const char *str, char **pend, int base)
Return value: New reference. Return a new PyLongObject based on the string value in str, which is inter-
preted according to the radix in base. If pend is non-NULL, *pend will point to the first character in s&r which
follows the representation of the number. If base is 0, str is interpreted using the integers definition; in this
case, leading zeros in a non-zero decimal number raises a ValueError. If base is not 0, it must be between 2
and 36, inclusive. Leading spaces and single underscores after a base specifier and between digits are ignored.
If there are no digits, ValueError will be raised.

PyObject* PyLong_FromUnicode (Py_UNICODE *u, Py_ssize_t length, int base)
Return value: New reference. Convert a sequence of Unicode digits to a Python integer value.

8.2. Numeric Objects 83

The Python/C API, Wydanie 3.9.21

Deprecated since version 3.3, will be removed in version 3.10: Part of the old-style Py UNICODE API; please
migrate to using PyLong_FromUnicodeObject ().

PyObject* PyLong_FromUnicodeObject (PyObject *u, int base)
Return value: New reference. Convert a sequence of Unicode digits in the string u to a Python integer value.

Nowe w wersji 3.3.

PyObject* PyLong_FromVoidPtr (void *p)
Return value: New reference. Create a Python integer from the pointer p. The pointer value can be retrieved
from the resulting value using PyLong AsVoidPtr ().

long PyLong_AsLong (PyObject *obj)
Return a C long representation of obj. If obj is not an instance of PyLongObject, first call its
__index__ () or __int__ () method (if present) to convert it to a PyLongObject.

Raise OverflowError if the value of obj is out of range for a 1ong.
Returns —1 on error. Use PyErr_Occurred () to disambiguate.
Zmienione w wersji 3.8: Use __index___ () if available.

Niezalecane od wersji 3.8: Using __int__ () is deprecated.

long PyLong_AsLongAndOverflow (PyObject *obj, int *overflow)
Return a C long representation of obj. If obj is not an instance of PyLongObject, first call its
__index__ () or __int__ () method (if present) to convertittoa PyLongObject.

If the value of obj is greater than LONG_MAX or less than LONG_MIN, set *overflow to 1 or —1, respectively,
and return —1; otherwise, set *overflow to 0. If any other exception occurs set *overflow to 0 and return —1
as usual.

Returns —1 on error. Use PyErr_Occurred () to disambiguate.
Zmienione w wersji 3.8: Use __index__ () if available.
Niezalecane od wersji 3.8: Using ___int__ () is deprecated.

long long PyLong_AsLongLong (PyObject *obj)
Return a C 1long long representation of obj. If obj is not an instance of PyLongObject, first call its
__index__ () or __int__ () method (if present) to convertitto a PyLongObject.

Raise OverflowError if the value of obj is out of range for a 1long long.
Returns —1 on error. Use PyErr_Occurred () to disambiguate.

Zmienione w wersji 3.8: Use ___index__ () if available.

Niezalecane od wersji 3.8: Using __int__ () is deprecated.

long long PyLong_AsLongLongAndOverflow (PyObject *obj, int *overflow)
Return a C 1long long representation of obj. If obj is not an instance of PyLongObject, first call its
__index__ () or __int__ () method (if present) to convertittoa PyLongObject.

If the value of o0bj is greater than LLONG_MAX or less than LLONG_MIN, set *overflow to 1 or -1, respectively,
and return —1; otherwise, set *overflow to 0. If any other exception occurs set *overflow to O and return —1
as usual.

Returns —1 on error. Use PyErr_Occurred () to disambiguate.
Nowe w wersji 3.2.

Zmienione w wersji 3.8: Use __index__ () if available.
Niezalecane od wersji 3.8: Using __int__ () is deprecated.

Py_ssize_t PyLong_AsSsize_t (PyObject *pylong)
Return a C Py_ssize_ t representation of pylong. pylong must be an instance of PyLongObject.

Raise OverflowError if the value of pylong is out of range fora Py_ssize t.

Returns —1 on error. Use PyErr_Occurred () to disambiguate.

84 Rozdziat 8. Concrete Objects Layer

The Python/C API, Wydanie 3.9.21

unsigned long PyLong_AsUnsignedLong (PyObject *pylong)
Return a C unsigned long representation of pylong. pylong must be an instance of PyLongObject.

Raise OverflowError if the value of pylong is out of range for a unsigned long.
Returns (unsigned long) -1 onerror. Use PyErr_Occurred () to disambiguate.

size_t PyLong_AsSize_t (PyObject *pylong)
Return a C size_t representation of pylong. pylong must be an instance of PyLongObject.

Raise OverflowError if the value of pylong is out of range fora size_t.
Returns (size_t) -1 onerror. Use PyErr Occurred () to disambiguate.

unsigned long long PyLong_AsUnsignedLonglLong (PyObject *pylong)
Return a C unsigned long long representation of pylong. pylong must be an instance of
PyLongObiject.

Raise OverflowError if the value of pylong is out of range for an unsigned long long.
Returns (unsigned long long) -1 onerror. Use PyErr Occurred () to disambiguate.
Zmienione w wersji 3.1: A negative pylong now raises OverflowError, not TypeError.

unsigned long PyLong_AsUnsignedLongMask (PyObject *obj)
Return a C unsigned long representation of obj. If obj is not an instance of PyLongObject, first call
its__index__ () or __int__ () method (if present) to convert it to a PyLongObject.

If the value of obj is out of range for an unsigned long, return the reduction of that value modulo
ULONG_MAX + 1.

Returns (unsigned long) -1 onerror. Use PyErr_Occurred () to disambiguate.
Zmienione w wersji 3.8: Use ___index__ () if available.
Niezalecane od wersji 3.8: Using __int__ () is deprecated.

unsigned long long PyLong_AsUnsignedLongLongMask (PyObject *obj)
Return a C unsigned long long representation of obj. If obj is not an instance of PyLongOb ject,
firstcallits __index_ () or __int__ () method (if present) to convert it to a PyLongObject.

If the value of obj is out of range for an unsigned long long, return the reduction of that value modulo
ULLONG_MAX + 1.

Returns (unsigned long long) -1 onerror. Use PyErr Occurred () to disambiguate.
Zmienione w wersji 3.8: Use ___index__ () if available.
Niezalecane od wersji 3.8: Using __int__ () is deprecated.

double PyLong_AsDouble (PyObject *pylong)
Return a C double representation of pylong. pylong must be an instance of PyLongObject.

Raise OverflowError if the value of pylong is out of range for a double.
Returns —1. 0 on error. Use PyErr_Occurred () to disambiguate.

void* PyLong_AsVoidPtr (PyObject *pylong)
Convert a Python integer pylong to a C void pointer. If pylong cannot be converted, an OverflowError
will be raised. This is only assured to produce a usable void pointer for values created with
PyLong_FromVoidPtr ().

Returns NULL on error. Use PyErr_Occurred () to disambiguate.

8.2. Numeric Objects 85

The Python/C API, Wydanie 3.9.21

8.2.2 Boolean Objects

Booleans in Python are implemented as a subclass of integers. There are only two booleans, Py_False and
Py_True. As such, the normal creation and deletion functions don’t apply to booleans. The following macros are
available, however.

int PyBool_Check (PyObject *0)
Return true if o is of type PyBool_Type. This function always succeeds.

PyObject* Py_False
The Python False object. This object has no methods. It needs to be treated just like any other object with
respect to reference counts.

PyObject* Py_True
The Python True object. This object has no methods. It needs to be treated just like any other object with
respect to reference counts.

Py _RETURN_FALSE
Return Py_False from a function, properly incrementing its reference count.

Py_RETURN_TRUE
Return Py_ True from a function, properly incrementing its reference count.

PyObject* PyBool_FromLong (long v)
Return value: New reference. Return a new reference to Py_ True or Py_False depending on the truth value
of v.

8.2.3 Floating Point Objects

PyFloatObject
This subtype of PyOb ject represents a Python floating point object.

PyTypeObject PyFloat_Type
This instance of Py TypeOb ject represents the Python floating point type. This is the same objectas f1oat
in the Python layer.

int PyFloat_Check (PyObject *p)
Return true if its argument is a PyFloatObject or a subtype of PyFloatOb ject. This function always
succeeds.

int PyFloat_CheckExact (PyObject *p)
Return true if its argument is a PyFloatObject, but not a subtype of PyFloatObject. This function
always succeeds.

PyObject* PyFloat_FromString (PyObject *str)
Return value: New reference. Create a PyF1oatOb ject object based on the string value in str, or NULL on
failure.

PyObject* PyFloat_FromDouble (double v)
Return value: New reference. Create a PyF1oatObject object from v, or NULL on failure.

double PyFloat_AsDouble (PyObject *pyfloat)
Return a C doub1e representation of the contents of pyfloat. If pyfloat is not a Python floating point object but
hasa___float__ () method, this method will first be called to convert pyfloat intoafloat. If __float__ ()
is not defined then it falls back to __index__ (). This method returns —1 . 0 upon failure, so one should call
PyErr Occurred () to check for errors.

Zmienione w wersji 3.8: Use ___index___ () if available.

double PyFloat_AS_DOUBLE (PyObject *pyfloat)
Return a C double representation of the contents of pyfloat, but without error checking.

PyObject* PyFloat_GetInfo (void)
Return value: New reference. Return a structseq instance which contains information about the precision, mi-
nimum and maximum values of a float. It’s a thin wrapper around the header file f1oat . h.

86 Rozdziat 8. Concrete Objects Layer

The Python/C API, Wydanie 3.9.21

double PyFloat_GetMax ()
Return the maximum representable finite float DBL_MAX as C double.

double PyFloat_GetMin ()
Return the minimum normalized positive float DBL_MIN as C double.

8.2.4 Objekt Liczby Zespolonej

Pythonowe liczby zespolone sa stworzone w implementacji C jako dwa oddzielne typy: jeden jest strukturg w C ktéra
reprezentuje prawdziwe liczby zespolone, a drugi ujawnia ta strukture dla Pythonowego kodu. API ma funkcje do
operacji na obydwu typach.

Liczby zespolone jako struktury w C

Note that the functions which accept these structures as parameters and return them as results do so by value rather
than dereferencing them through pointers. This is consistent throughout the API.

Py_complex
The C structure which corresponds to the value portion of a Python complex number object. Most of the
functions for dealing with complex number objects use structures of this type as input or output values, as
appropriate. It is defined as:

typedef struct {
double real;
double imag;
} Py_complex;

Py_complex _Py_c_sum (Py_complex left, Py_complex right)
Return the sum of two complex numbers, using the C Py_ comp1ex representation.

Py_complex _Py_c_dif£ (Py_complex left, Py_complex right)
Return the difference between two complex numbers, using the C Py_ comp 1 ex representation.

Py_complex _Py_c_neg (Py_complex num)
Return the negation of the complex number num, using the C Py comp1ex representation.

Py_complex _Py_c_prod (Py_complex left, Py_complex right)
Return the product of two complex numbers, using the C Py_ comp1ex representation.

Py_complex _Py_c_quot (Py_complex dividend, Py_complex divisor)
Return the quotient of two complex numbers, using the C Py comp1ex representation.

If divisor is null, this method returns zero and sets errno to EDOM.

Py_complex _Py_c_pow (Py_complex num, Py_complex exp)
Return the exponentiation of num by exp, using the C Py_ comp I ex representation.

If num is null and exp is not a positive real number, this method returns zero and sets errno to EDOM.

Complex Numbers as Python Objects

PyComplexObject
This subtype of PyOb ject represents a Python complex number object.

PyTypeObject PyComplex_Type
This instance of PyTypeObject represents the Python complex number type. It is the same object as
complex in the Python layer.

int PyComplex_Check (PyObject *p)
Return true if its argument is a PyComplexObject or a subtype of PyComplexObject. This function
always succeeds.

8.2. Numeric Objects 87

The Python/C API, Wydanie 3.9.21

int PyComplex_CheckExact (PyObject *p)
Return true if its argument is a PyComplexObject, but not a subtype of PyComplexObject. This
function always succeeds.

PyObject* PyComplex_FromCComplex (Py_complex v)
Return value: New reference. Create a new Python complex number object from a C Py_ complex value.

PyObject* PyComplex_FromDoubles (double real, double imag)
Return value: New reference. Return a new PyComplexObject object from real and imag.

double PyComplex_RealAsDouble (PyObject *op)
Return the real part of op as a C double.

double PyComplex_ImagAsDouble (PyObject *op)
Return the imaginary part of op as a C double.

Py_complex PyComplex_AsCComplex (PyObject *op)
Return the Py_ comp1ex value of the complex number op.

If op is not a Python complex number object but hasa ___complex__ () method, this method will first be
called to convert op to a Python complex number object. If __complex__ () is not defined then it falls back
to_ float_ ().If __float__ () isnotdefined then it falls back to __index__ (). Upon failure, this

method returns —1 . O as a real value.

Zmienione w wersji 3.8: Use __index__ () if available.

8.3 Sequence Objects

Generic operations on sequence objects were discussed in the previous chapter; this section deals with the specific
kinds of sequence objects that are intrinsic to the Python language.

8.3.1 Bytes Objects

These functions raise TypeError when expecting a bytes parameter and called with a non-bytes parameter.

PyBytesObject
This subtype of PyOb ject represents a Python bytes object.

PyTypeObject PyBytes_Type
This instance of PyTypeOb ject represents the Python bytes type; it is the same object as bytes in the
Python layer.

int PyBytes_Check (PyObject *o)
Return true if the object o is a bytes object or an instance of a subtype of the bytes type. This function always
succeeds.

int PyBytes_CheckExact (PyObject *0)
Return true if the object o is a bytes object, but not an instance of a subtype of the bytes type. This function
always succeeds.

PyObject* PyBytes_FromString (const char *v)
Return value: New reference. Return a new bytes object with a copy of the string v as value on success, and
NULL on failure. The parameter v must not be NULL; it will not be checked.

PyObject* PyBytes_FromStringAndSize (const char *v, Py_ssize_t len)
Return value: New reference. Return a new bytes object with a copy of the string v as value and length len on
success, and NULL on failure. If v is NULL, the contents of the bytes object are uninitialized.

PyObject* PyBytes_FromFormat (const char *format, ...)
Return value: New reference. Take a C print £ () -style format string and a variable number of arguments,
calculate the size of the resulting Python bytes object and return a bytes object with the values formatted into

88 Rozdziat 8. Concrete Objects Layer

The Python/C API, Wydanie 3.9.21

it. The variable arguments must be C types and must correspond exactly to the format characters in the format

string. The following format characters are allowed:

Format Characters | Type Comment

%% n/a The literal % character.

%C int A single byte, represented as a C int.

5d int Equivalent to print £ ("Qd") !

u nieoznaczony typ int Equivalent to printf ("su").!

$1d long Equivalent to printf ("% ld") !

%$1lu nieoznaczony typ dtugi | Equivalent to printf ("$1u").!

%$zd Py_ssize_t Equivalent to printf ("$zd"). I

%zu size t Equivalent to printf ("$zu"). I

i int Equivalent to printf ("$i").!

$x int Equivalent to printf ("$x") R

%$s const char* A null-terminated C character array.

$p const void* The hex representation of a C pointer. Mostly
equivalent to printf ("%p") except that it is
guaranteed to start with the literal 0x regardless of
what the platform’s print £ yields.

An unrecognized format character causes all the rest of the format string to be copied as-is to the result object,
and any extra arguments discarded.

PyObject* PyBytes_FromFormatV (const char *format, va_list vargs)
Return value: New reference. Identical to PyBytes_FromFormat () except that it takes exactly two argu-
ments.

PyObject* PyBytes_FromObject (PyObject *o0)
Return value: New reference. Return the bytes representation of object o that implements the buffer protocol.

Py_ssize_t PyBytes_Size (PyObject *0)
Return the length of the bytes in bytes object o.

Py_ssize_t PyBytes_GET_SIZE (PyObject *o)
Macro form of PyBytes_Size () but without error checking.

char* PyBytes_AsString (PyObject *0)
Return a pointer to the contents of o. The pointer refers to the internal buffer of o, which consists
of len (o) + 1 bytes. The last byte in the buffer is always null, regardless of whether there are any
other null bytes. The data must not be modified in any way, unless the object was just created using
PyBytes_FromStringAndSize (NULL, size). It must not be deallocated. If o is not a bytes ob-
jectatall, PyBytes_AsString () returns NULL and raises TypeError.

char* PyBytes_AS_STRING (PyObject *string)
Macro form of PyBytes_AsString () but without error checking.

int PyBytes_AsStringAndSize (PyObject *obj, char **buffer, Py_ssize_t *length)
Return the null-terminated contents of the object obj through the output variables buffer and length.

If length is NULL, the bytes object may not contain embedded null bytes; if it does, the function returns -1
and a ValueError is raised.

The buffer refers to an internal buffer of obj, which includes an additional null byte at the end (not co-
unted in length). The data must not be modified in any way, unless the object was just created using
PyBytes_FromStringAndSize (NULL, size).Itmustnotbe deallocated. If objis not a bytes object
atall, PyBytes_ AsStringAndSize () returns —1 and raises TypeError.

Zmienione w wersji 3.5: Previously, TypeError was raised when embedded null bytes were encountered in
the bytes object.

! For integer specifiers (d, u, 1d, lu, zd, zu, i, x): the O-conversion flag has effect even when a precision is given.

8.3. Sequence Objects 89

The Python/C API, Wydanie 3.9.21

void PyBytes_Concat (PyObject **bytes, PyObject *newpart)
Create a new bytes object in *byfes containing the contents of newpart appended to bytes; the caller will own
the new reference. The reference to the old value of byfes will be stolen. If the new object cannot be created,
the old reference to bytes will still be discarded and the value of *byfes will be set to NULL; the appropriate
exception will be set.

void PyBytes_ConcatAndDel (PyObject **bytes, PyObject *newpart)
Create a new bytes object in *byfes containing the contents of newpart appended to bytes. This version decre-
ments the reference count of newpart.

int _PyBytes_Resize (PyObject **bytes, Py_ssize_t newsize)
A way to resize a bytes object even though it is ,immutable”. Only use this to build up a brand new bytes object;
don’t use this if the bytes may already be known in other parts of the code. It is an error to call this function
if the refcount on the input bytes object is not one. Pass the address of an existing bytes object as an Ivalue
(it may be written into), and the new size desired. On success, *bytes holds the resized bytes object and O is
returned; the address in *byfes may differ from its input value. If the reallocation fails, the original bytes object
at *bytes is deallocated, *bytes is set to NULL, MemoryError is set, and —1 is returned.

8.3.2 Byte Array Objects

PyByteArrayObject
This subtype of PyOb ject represents a Python bytearray object.

PyTypeObject PyByteArray_Type
This instance of Py TypeObject represents the Python bytearray type; it is the same object as bytearray
in the Python layer.

Type check macros

int PyByteArray_Check (PyObject *o0)
Return true if the object o is a bytearray object or an instance of a subtype of the bytearray type. This function
always succeeds.

int PyByteArray_ CheckExact (PyObject *0)
Return true if the object o is a bytearray object, but not an instance of a subtype of the bytearray type. This
function always succeeds.

Direct API functions

PyObject* PyByteArray_ FromObject (PyObject *0)
Return value: New reference. Return a new bytearray object from any object, o, that implements the buffer
protocol.

PyObject* PyByteArray_FromStringAndSize (const char *string, Py_ssize_t len)
Return value: New reference. Create a new bytearray object from string and its length, len. On failure, NULL is
returned.

PyObject* PyByteArray_Concat (PyObject *a, PyObject *b)
Return value: New reference. Concat bytearrays a and b and return a new bytearray with the result.
Py_ssize_t PyByteArray_Size (PyObject *bytearray)
Return the size of bytearray after checking for a NULL pointer.
char* PyByteArray_ AsString (PyObject *bytearray)
Return the contents of bytearray as a char array after checking for a NULL pointer. The returned array always

has an extra null byte appended.

int PyByteArray_ Resize (PyObject *bytearray, Py_ssize_t len)
Resize the internal buffer of bytearray to len.

920 Rozdziat 8. Concrete Objects Layer

The Python/C API, Wydanie 3.9.21

Macros

These macros trade safety for speed and they don’t check pointers.

char* PyByteArray_AS_STRING (PyObject *bytearray)
Macro version of PyByteArray AsString().

Py_ssize_t PyByteArray GET_SIZE (PyObject *bytearray)
Macro version of PyByteArray Size ().

8.3.3 Unicode Objects and Codecs

Unicode Objects

Since the implementation of PEP 393 in Python 3.3, Unicode objects internally use a variety of representations, in
order to allow handling the complete range of Unicode characters while staying memory efficient. There are special
cases for strings where all code points are below 128, 256, or 65536; otherwise, code points must be below 1114112
(which is the full Unicode range).

Py _UNICODE* and UTF-8 representations are created on demand and cached in the Unicode object. The
Py_UNICODE * representation is deprecated and inefficient.

Due to the transition between the old APIs and the new APIs, Unicode objects can internally be in two states depen-
ding on how they were created:

« ,canonical” Unicode objects are all objects created by a non-deprecated Unicode API. They use the most
efficient representation allowed by the implementation.

» legacy” Unicode objects have been created through one of the deprecated APIs (typically
PyUnicode_FromUnicode ()) and only bear the Py_UNICODE* representation; you will have to
call PyUnicode_READY () on them before calling any other APL

Informacja: The ,legacy” Unicode object will be removed in Python 3.12 with deprecated APIs. All Unicode objects
will be ,,canonical” since then. See PEP 623 for more information.

Unicode Type

These are the basic Unicode object types used for the Unicode implementation in Python:

Py UCS4

Py_UCS2

Py_UCS1
These types are typedefs for unsigned integer types wide enough to contain characters of 32 bits, 16 bits and
8 bits, respectively. When dealing with single Unicode characters, use Py_UCS4.

Nowe w wersji 3.3.

Py_UNICODE
This is a typedef of wchar_t, which is a 16-bit type or 32-bit type depending on the platform.

Zmienione w wersji 3.3: In previous versions, this was a 16-bit type or a 32-bit type depending on whether you
selected a ,,narrow” or ,,wide” Unicode version of Python at build time.

PyASCIIObject

PyCompactUnicodeObject

PyUnicodeObject
These subtypes of PyOb ject represent a Python Unicode object. In almost all cases, they shouldn’t be used
directly, since all API functions that deal with Unicode objects take and return Py Ob ject pointers.

Nowe w wersji 3.3.

8.3. Sequence Objects 91

https://www.python.org/dev/peps/pep-0393
https://www.python.org/dev/peps/pep-0623

The Python/C API, Wydanie 3.9.21

PyTypeObject PyUnicode_Type
This instance of Py TypeOb ject represents the Python Unicode type. It is exposed to Python code as str.

The following APIs are really C macros and can be used to do fast checks and to access internal read-only data of
Unicode objects:

int PyUnicode_Check (PyObject *0)
Return true if the object o is a Unicode object or an instance of a Unicode subtype. This function always
succeeds.

int PyUnicode_CheckExact (PyObject *o)
Return true if the object o is a Unicode object, but not an instance of a subtype. This function always succeeds.

int PyUnicode_READY (PyObject *0)
Ensure the string object o is in the ,,canonical” representation. This is required before using any of the access
macros described below.

Returns 0 on success and —1 with an exception set on failure, which in particular happens if memory allocation
fails.

Nowe w wersji 3.3.

Deprecated since version 3.10, will be removed in version 3.12: This API will be removed with
PyUnicode_FromUnicode ().

Py_ssize_t PyUnicode_GET_LENGTH (PyObject *0)
Return the length of the Unicode string, in code points. o has to be a Unicode object in the ,,canonical” repre-
sentation (not checked).

Nowe w wersji 3.3.

Py _UCSI* PyUnicode_1BYTE_DATA (PyObject *0)

Py_UCS2* PyUnicode_2BYTE_DATA (PyObject *0)

Py_UCS4* PyUnicode_4BYTE_DATA (PyObject *0)
Return a pointer to the canonical representation cast to UCS1, UCS2 or UCS4 integer types for direct cha-
racter access. No checks are performed if the canonical representation has the correct character size; use
PyUnicode_KIND () to select the right macro. Make sure PyUnicode_READY () has been called befo-
re accessing this.

Nowe w wersji 3.3.

PyUnicode_WCHAR_KIND
PyUnicode_1BYTE_KIND
PyUnicode_2BYTE_KIND
PyUnicode_4BYTE_KIND

Return values of the PyUnicode_KIND () macro.

Nowe w wersji 3.3.
Deprecated since version 3.10, will be removed in version 3.12: PyUnicode_WCHAR_KIND is deprecated.

unsigned int PyUnicode_KIND (PyObject *o)
Return one of the PyUnicode kind constants (see above) that indicate how many bytes per character this
Unicode object uses to store its data. o has to be a Unicode object in the ,,canonical” representation (not
checked).

Nowe w wersji 3.3.

void* PyUnicode_DATA (PyObject *o)
Return a void pointer to the raw Unicode buffer. o has to be a Unicode object in the ,,canonical” representation
(not checked).

Nowe w wersji 3.3.

void PyUnicode_WRITE (int kind, void *data, Py_ssize_t index, Py_UCS4 value)
Write into a canonical representation data (as obtained with PyUnicode_DATA ()). This macro does not do
any sanity checks and is intended for usage in loops. The caller should cache the kind value and data pointer

92 Rozdziat 8. Concrete Objects Layer

The Python/C API, Wydanie 3.9.21

as obtained from other macro calls. index is the index in the string (starts at 0) and value is the new code point
value which should be written to that location.

Nowe w wersji 3.3.

Py_UCS4 PyUnicode_READ (int kind, void *data, Py_ssize_t index)
Read a code point from a canonical representation data (as obtained with PyUnicode_DATA ()). No checks
or ready calls are performed.

Nowe w wersji 3.3.

Py_UCS4 PyUnicode_READ_CHAR (PyObject *o, Py_ssize_t index)
Read a character from a Unicode object o, which must be in the ,.,canonical” representation. This is less efficient
than PyUnicode READ () if you do multiple consecutive reads.

Nowe w wersji 3.3.

PyUnicode_MAX_ CHAR_VALUE (0)
Return the maximum code point that is suitable for creating another string based on o, which must be in the
»canonical” representation. This is always an approximation but more efficient than iterating over the string.

Nowe w wersji 3.3.

Py_ssize_t PyUnicode_GET_SIZE (PyObject *o)
Return the size of the deprecated Py_ UNICODE representation, in code units (this includes surrogate pairs as
2 units). o has to be a Unicode object (not checked).

Deprecated since version 3.3, will be removed in version 3.12: Part of the old-style Unicode API, please migrate
to using PyUnicode GET_LENGTH().

Py_ssize_t PyUnicode_GET_DATA_SIZE (PyObject *o)
Return the size of the deprecated Py_ UNICODE representation in bytes. o has to be a Unicode object (not
checked).

Deprecated since version 3.3, will be removed in version 3.12: Part of the old-style Unicode API, please migrate
to using PyUnicode GET_LENGTH ().

Py_UNICODE* PyUnicode_AS_UNICODE (PyObject *0)

const char* PyUnicode_AS_DATA (PyObject *0)
Return a pointer to a Py_ UNICODE representation of the object. The returned buffer is always terminated
with an extra null code point. It may also contain embedded null code points, which would cause the string to
be truncated when used in most C functions. The AS_DATA form casts the pointer to const char *.The
o argument has to be a Unicode object (not checked).

Zmienione w wersji 3.3: This macro is now inefficient — because in many cases the Py_ UNICODE repre-
sentation does not exist and needs to be created — and can fail (return NULL with an exception set). Try to
port the code to use the new PyUnicode_nBYTE_DATA () macros or use PyUnicode WRITE () or
PyUnicode_READ ().

Deprecated since version 3.3, will be removed in version 3.12: Part of the old-style Unicode API, please migrate
to using the PyUnicode_nBYTE_DATA () family of macros.

int PyUnicode_IsIdentifier (PyObject *0)
Return 1 if the string is a valid identifier according to the language definition, section identifiers. Return 0
otherwise.

Zmienione w wersji 3.9: The function does not call Py_FatalError () anymore if the string is not ready.

8.3. Sequence Objects 93

The Python/C API, Wydanie 3.9.21

Unicode Character Properties

Unicode provides many different character properties. The most often needed ones are available through these macros
which are mapped to C functions depending on the Python configuration.

int Py_ UNICODE_ISSPACE (Py_UCS4 ch)
Return 1 or 0 depending on whether ch is a whitespace character.

int Py_UNICODE_ISLOWER (Py UCS4 ch)
Return 1 or 0 depending on whether ch is a lowercase character.

int Py_UNICODE_ISUPPER (Py UCS4 ch)
Return 1 or 0 depending on whether c# is an uppercase character.

int Py_UNICODE_ISTITLE (Py UCS4 ch)
Return 1 or 0 depending on whether c# is a titlecase character.

int Py_UNICODE_ISLINEBREAK (Py UCS4 ch)
Return 1 or 0 depending on whether ch is a linebreak character.

int Py_UNICODE_ISDECIMAL (Py_UCS4 ch)
Return 1 or 0 depending on whether c# is a decimal character.

int Py UNICODE_ISDIGIT (Py UCS4 ch)
Return 1 or 0 depending on whether c# is a digit character.

int Py_UNICODE_ISNUMERIC (Py_UCS4 ch)
Return 1 or 0 depending on whether ch is a numeric character.

int Py UNICODE_ISALPHA (Py UCS4 ch)
Return 1 or 0 depending on whether c# is an alphabetic character.

int Py UNICODE_ISALNUM (Py_UCS4 ch)
Return 1 or 0 depending on whether ch is an alphanumeric character.

int Py UNICODE_ISPRINTABLE (Py UCS4 ch)
Return 1 or 0 depending on whether c# is a printable character. Nonprintable characters are those characters
defined in the Unicode character database as ,,Other” or ,,Separator”, excepting the ASCII space (0x20) which
is considered printable. (Note that printable characters in this context are those which should not be escaped
when repr () is invoked on a string. It has no bearing on the handling of strings written to sys . stdout or
sys.stderr.)

These APIs can be used for fast direct character conversions:

Py_UCS4 Py_UNICODE_TOLOWER (Py UCS4 ch)
Return the character ch converted to lower case.

Niezalecane od wersji 3.3: This function uses simple case mappings.

Py_UCS4 Py_UNICODE_TOUPPER (Py_UCS4 ch)
Return the character ch converted to upper case.

Niezalecane od wersji 3.3: This function uses simple case mappings.

Py_UCS4 Py_UNICODE_TOTITLE (Py_UCS4 ch)
Return the character ch converted to title case.

Niezalecane od wersji 3.3: This function uses simple case mappings.

int Py UNICODE_TODECIMAL (Py_UCS4 ch)
Return the character ch converted to a decimal positive integer. Return —1 if this is not possible. This macro
does not raise exceptions.

int Py _UNICODE_TODIGIT (Py_UCS4 ch)
Return the character ch converted to a single digit integer. Return —1 if this is not possible. This macro does
not raise exceptions.

94 Rozdziat 8. Concrete Objects Layer

The Python/C API, Wydanie 3.9.21

double Py_ UNICODE_TONUMERIC (Py_UCS4 ch)
Return the character ch converted to a double. Return —1 . 0 if this is not possible. This macro does not raise
exceptions.

These APIs can be used to work with surrogates:

Py_UNICODE_IS_SURROGATE (ch)
Check if ch is a surrogate (0xD800 <= ch <= 0OxDFFF).

Py UNICODE_IS_HIGH_SURROGATE (ch)
Check if ch is a high surrogate (0xD800 <= ch <= 0xDBFF).

Py_UNICODE_IS_LOW_SURROGATE (ch)
Check if ch is a low surrogate (0xDC00 <= ch <= OxDFFF).

Py_UNICODE_JOIN_SURROGATES (high, low)
Join two surrogate characters and return a single Py_UCS4 value. high and low are respectively the leading and
trailing surrogates in a surrogate pair.

Creating and accessing Unicode strings

To create Unicode objects and access their basic sequence properties, use these APIs:

PyObject* PyUnicode_New (Py_ssize_t size, Py_UCS4 maxchar)
Return value: New reference. Create a new Unicode object. maxchar should be the true maximum code point
to be placed in the string. As an approximation, it can be rounded up to the nearest value in the sequence 127,
255, 65535, 1114111.

This is the recommended way to allocate a new Unicode object. Objects created using this function are not
resizable.

Nowe w wersji 3.3.

PyObject* PyUnicode_FromKindAndData (int kind, const void *buffer, Py_ssize_t size)
Return value: New reference. Create a new Unicode object with the given kind (possible values are
PyUnicode_1BYTE_KIND etc.,asreturned by PyUnicode_ KIND ()). The buffer must point to an array
of size units of 1, 2 or 4 bytes per character, as given by the kind.

Nowe w wersji 3.3.

PyObject* PyUnicode_FromStringAndSize (const char *u, Py ssize_t size)
Return value: New reference. Create a Unicode object from the char buffer u. The bytes will be interpreted as
being UTF-8 encoded. The buffer is copied into the new object. If the buffer is not NULL, the return value
might be a shared object, i.e. modification of the data is not allowed.

If u is NULL, this function behaves like PyUnicode FromUnicode () with the buffer set to NULL. This
usage is deprecated in favor of PyUnicode_New (), and will be removed in Python 3.12.

PyObject *PyUnicode_FromString (const char *u)
Return value: New reference. Create a Unicode object from a UTF-8 encoded null-terminated char buffer u.

PyObject* PyUnicode_FromFormat (const char *format, ...)
Return value: New reference. Take a C print £ () -style format string and a variable number of arguments,
calculate the size of the resulting Python Unicode string and return a string with the values formatted into it.
The variable arguments must be C types and must correspond exactly to the format characters in the format
ASClII-encoded string. The following format characters are allowed:

8.3. Sequence Objects 95

The Python/C API, Wydanie 3.9.21

T

size_t Equivalent to printf ("
int Equivalent to print £ (" "y, 1
int Equivalent to printf ("sx").!

const char*

A null-terminated C character array.

Format Characters | Type Comment

5% n/a The literal % character.

%$c int A single character, represented as a Cint.
%d int Equivalent to printf (" °/d")
$u unsigned int Equivalent to print £ (" my 1
%1d long Equivalent to print £ (' 51am) .t
$1i long Equivalent to printf ("$11i my I
%$1lu unsigned long Equivalent to printf ("$1u").!
$11d long long Equivalent to print f ("$11d").!
$111 long long Equivalent to print £ ("$111i").!
$1lu unsigned long long Equivalent to printf ("$11lu)
%zd Py _ssize t Equivalent to printf ("$zd" R
$z1 Py_ssize_t Equivalent to printf ("%21) I
$zu ("%zu

%1 ("1

%X X

%s

P const void* The hex representation of a C pointer. Mostly
equivalent to printf ("%p") except that it is
guaranteed to start with the literal 0x regardless of
what the platform’s print f yields.

$A PyObject* The result of calling ascii ().

$U PyObject* A Unicode object.

SV PyObject*, const char* | A Unicode object (which may be NULL) and
a null-terminated C character array as a second
parameter (which will be used, if the first parameter is
NULL).

%S PyObject* The result of calling PyObject_Str().

%R PyObject* The result of calling PyObject_Repr ().

An unrecognized format character causes all the rest of the format string to be copied as-is to the result string,

and any extra arguments discarded.

Informacja: The width formatter unit is number of characters rather than bytes. The precision formatter unit

is number of bytes for "%

s" and "$V" (if the PyObject * argument is NULL), and a number of characters

for "sA™", "sU", "%S" "$R" and "$V" (if the PyObject* argument is not NULL).

Zmienione w wersji 3.2: Support for "$11d" and "$11u" added.

Zmienione w wersji 3.3: Support for "$1i", "$11i" and "%$z1i" added.

Zmienione w wersji 3.4: Support width and precision formatter for "$s", "$A", "SU", "SV", "$S", "SR"

added.

PyObject* PyUnicode_FromFormatV (const char *format, va_list vargs)
Return value: New reference. 1dentical to PyUnicode_FromFormat () except that it takes exactly two

arguments.

PyObject* PyUnicode_FromEncodedObject (PyObject *obj, const char *encoding, const char *errors)
Return value: New reference. Decode an encoded object obj to a Unicode object.

bytes, bytearray and other bytes-like objects are decoded according to the given encoding and using the
error handling defined by errors. Both can be NULL to have the interface use the default values (see Built-in

Codecs for details).

All other objects, including Unicode objects, cause a TypeError to be set.

The API returns NULL if there was an error. The caller is responsible for decref’ing the returned objects.

! For integer specifiers (d, u, 1d, 1i, lu, 11d, 11i, llu, zd, zi, zu, i, x): the O-conversion flag has effect even when a precision is given.

96

Rozdziat 8. Concrete Objects Layer

The Python/C API, Wydanie 3.9.21

Py_ssize_t PyUnicode_GetLength (PyObject *unicode)
Return the length of the Unicode object, in code points.

Nowe w wersji 3.3.

Py_ssize_t PyUnicode_CopyCharacters (PyObject *to, Py_ssize t to_start, PyObject *from,
Py_ssize_t from_start, Py_ssize_t how_many)
Copy characters from one Unicode object into another. This function performs character conversion when
necessary and falls back to memcpy () if possible. Returns —1 and sets an exception on error, otherwise
returns the number of copied characters.

Nowe w wersji 3.3.

Py_ssize_t PyUnicode_Fill (PyObject *unicode, Py_ssize_t start, Py_ssize_t length, Py_UCS4 fill_char)
Fill a string with a character: write fill_char into unicode [start:start+length].

Fail if fill_char is bigger than the string maximum character, or if the string has more than 1 reference.
Return the number of written character, or return —1 and raise an exception on error.
Nowe w wersji 3.3.

int PyUnicode_WriteChar (PyObject *unicode, Py_ssize_t index, Py_UCS4 character)
Write a character to a string. The string must have been created through PyUnicode_New (). Since Unicode
strings are supposed to be immutable, the string must not be shared, or have been hashed yet.

This function checks that unicode is a Unicode object, that the index is not out of bounds, and that the object
can be modified safely (i.e. that it its reference count is one).

Nowe w wersji 3.3.

Py_UCS4 PyUnicode_ReadChar (PyObject *unicode, Py_ssize_t index)
Read a character from a string. This function checks that unicode is a Unicode object and the index is not out
of bounds, in contrast to the macro version PyUnicode READ CHAR().

Nowe w wersji 3.3.

PyObject* PyUnicode_Substring (PyObject *str, Py_ssize_t start, Py_ssize_t end)
Return value: New reference. Return a substring of str, from character index start (included) to character index
end (excluded). Negative indices are not supported.

Nowe w wersji 3.3.

Py_UCS4* pyUnicode_AsUCS4 (PyObject *u, Py_UCS4 *buffer, Py_ssize_t buflen, int copy_null)
Copy the string u into a UCS4 buffer, including a null character, if copy_null is set. Returns NULL and sets an
exception on error (in particular, a SystemError if buflen is smaller than the length of u). buffer is returned
on success.

Nowe w wersji 3.3.

Py_UCS4* PyUnicode_AsUCS4Copy (PyObject *u)
Copy the string u into a new UCS4 buffer that is allocated using PyMem_ Malloc (). If this fails, NULL is
returned with a MemoryError set. The returned buffer always has an extra null code point appended.

Nowe w wersji 3.3.

8.3. Sequence Objects 97

The Python/C API, Wydanie 3.9.21

Deprecated Py_UNICODE APIs

Deprecated since version 3.3, will be removed in version 3.12.

These API functions are deprecated with the implementation of PEP 393. Extension modules can continue using
them, as they will not be removed in Python 3.x, but need to be aware that their use can now cause performance and
memory hits.

PyObject* PyUnicode_FromUnicode (const Py UNICODE *u, Py_ssize_t size)
Return value: New reference. Create a Unicode object from the Py_UNICODE buffer u of the given size. u
may be NULL which causes the contents to be undefined. It is the user’s responsibility to fill in the needed data.
The buffer is copied into the new object.

If the buffer is not NULL, the return value might be a shared object. Therefore, modification of the resulting
Unicode object is only allowed when u is NULL.

If the buffer is NULL, PyUnicode_READY () must be called once the string content has been filled before
using any of the access macros such as PyUnicode KIND ().

Deprecated since version 3.3, will be removed in version 3.12: Part of the old-style Unicode API,
please migrate to using PyUnicode FromKindAndData (), PyUnicode_FromWideChar (), or
PyUnicode_New ().

Py_UNICODE* PyUnicode_AsUnicode (PyObject *unicode)
Return a read-only pointer to the Unicode object’s internal Py UNICODE buffer, or NULL on error. This will
create the Py UNICODE * representation of the object if it is not yet available. The buffer is always terminated
with an extra null code point. Note that the resulting Py_ UNICODE string may also contain embedded null
code points, which would cause the string to be truncated when used in most C functions.

Deprecated since version 3.3, will be removed in version 3.12: Part of the old-style Unicode API, please mi-
grate to using PyUnicode_AsUCS4 (), PyUnicode_AsWideChar (), PyUnicode_ReadChar ()
or similar new APIs.

Deprecated since version 3.3, will be removed in version 3.10.

PyObject* PyUnicode_TransformDecimalToASCII (Py_UNICODE *s, Py_ssize_t size)
Return value: New reference. Create a Unicode object by replacing all decimal digits in Py_ UNICODE buffer
of the given size by ASCII digits 0-9 according to their decimal value. Return NULL if an exception occurs.

Deprecated since version 3.3, will be removed in version 3.11: Part of the old-style Py_ UNICODE API; please
migrate to using Py_ UNICODE_TODECIMAL ().

Py_UNICODE* PyUnicode_AsUnicodeAndSize (PyObject *unicode, Py_ssize_t *size)
Like PyUnicode_AsUnicode (), but also saves the Py UNICODE () array length (excluding the extra
null terminator) in size. Note that the resulting Py UNICODE * string may contain embedded null code points,
which would cause the string to be truncated when used in most C functions.

Nowe w wersji 3.3.

Deprecated since version 3.3, will be removed in version 3.12: Part of the old-style Unicode API, please mi-
grate to using PyUnicode_AsUCS4 (), PyUnicode_AsWideChar (), PyUnicode_ReadChar ()
or similar new APIs.

Py_UNICODE* PyUnicode_AsUnicodeCopy (PyObject *unicode)
Create a copy of a Unicode string ending with a null code point. Return NULL and raise a MemoryError
exception on memory allocation failure, otherwise return a new allocated buffer (use PyMem Free () to
free the buffer). Note that the resulting Py_ UNICODE * string may contain embedded null code points, which
would cause the string to be truncated when used in most C functions.

Nowe w wersji 3.2.
Please migrate to using PyUnicode_AsUCS4Copy () or similar new APIs.

Py_ssize_t PyUnicode_GetSize (PyObject *unicode)
Return the size of the deprecated Py_ UNICODE representation, in code units (this includes surrogate pairs as
2 units).

98 Rozdziat 8. Concrete Objects Layer

https://www.python.org/dev/peps/pep-0393

The Python/C API, Wydanie 3.9.21

Deprecated since version 3.3, will be removed in version 3.12: Part of the old-style Unicode API, please migrate
to using PyUnicode_ GET_LENGTH().

PyObject* PyUnicode_FromObject (PyObject *obj)
Return value: New reference. Copy an instance of a Unicode subtype to a new true Unicode object if necessary.
If obj is already a true Unicode object (not a subtype), return the reference with incremented refcount.

Objects other than Unicode or its subtypes will cause a TypeError.

Locale Encoding

The current locale encoding can be used to decode text from the operating system.

PyObject* PyUnicode_DecodeLocaleAndSize (const char *str, Py _ssize_t len, const char *errors)
Return value: New reference. Decode a string from UTF-8 on Android and VxWorks, or from the current locale
encoding on other platforms. The supported error handlers are "strict" and "surrogateescape"
(PEP 383). The decoder uses "strict" error handler if errors is NULL. str must end with a null character
but cannot contain embedded null characters.

Use PyUnicode_DecodeFSDefaultAndSize () to decode a string from
Py_FileSystemDefaultEncoding (the locale encoding read at Python startup).

This function ignores the Python UTF-8 mode.
Zobacz takze:

The Py _DecodeLocale () function.

Nowe w wersji 3.3.

Zmienione w wersji 3.7: The function now also uses the current locale encoding for the
surrogateescape error handler, except on Android. Previously, Py _DecodeLocale () was
used for the surrogateescape, and the current locale encoding was used for strict.

PyObject* PyUnicode_DecodeLocale (const char *st, const char *errors)
Return value: New reference. Similarto PyUnicode_DecodeLocaleAndSize (), butcompute the string
length using strlen ().

Nowe w wersji 3.3.

PyObject* PyUnicode_EncodeLocale (PyObject *unicode, const char *errors)
Return value: New reference. Encode a Unicode object to UTF-8 on Android and VxWorks, or to the current lo-
cale encoding on other platforms. The supported error handlers are "strict" and "surrogateescape"
(PEP 383). The encoder uses "strict" error handler if errors is NULL. Return a bytes object. unicode
cannot contain embedded null characters.

Use PyUnicode_EncodeFSDefault () toencodeastringtoPy_FileSystemDefaultEncoding
(the locale encoding read at Python startup).

This function ignores the Python UTF-8 mode.
Zobacz takze:

The Py _EncodeLocale () function.

Nowe w wersji 3.3.

Zmienione w wersji 3.7: The function now also uses the current locale encoding for the
surrogateescape error handler, except on Android. Previously, Py_EncodeLocale () was
used for the surrogateescape, and the current locale encoding was used for strict.

8.3. Sequence Objects 99

https://www.python.org/dev/peps/pep-0383
https://www.python.org/dev/peps/pep-0383

The Python/C API, Wydanie 3.9.21

File System Encoding

To encode and decode file names and other environment strings, Py_FileSystemDefaultEncoding should
be used as the encoding, and Py_FileSystemDefaultEncodeErrors should be used as the error handler
(PEP 383 and PEP 529). To encode file names to bytes during argument parsing, the "0O&" converter should be
used, passing PyUnicode_FSConverter () as the conversion function:

int PyUnicode_FSConverter (PyObject* obj, void* result)

ParseTuple converter: encode str objects — obtained directly or through the os.PathLike interface —
to bytes using PyUnicode_EncodeFSDefault (); bytes objects are output as-is. result must be
a PyBytesObject * which must be released when it is no longer used.

Nowe w wersji 3.1.

Zmienione w wersji 3.6: Accepts a path-like object.

To decode file names to str during argument parsing, the "O&" converter should be used, passing
PyUnicode_FSDecoder () as the conversion function:

int PyUnicode_FSDecoder (PyObject* obj, void* result)

ParseTuple converter: decode bytes objects — obtained either directly or indirectly through the os.
PathLike interface - to str using PyUnicode_DecodeFSDefaultAndSize (); str objects are
output as-is. result must be a PyUnicodeOb ject * which must be released when it is no longer used.

Nowe w wersji 3.2.

Zmienione w wersji 3.6: Accepts a path-like object.

PyObject* PyUnicode_DecodeFSDefaultAndSize (const char *s, Py_ssize_t size)

Return value: New reference. Decode a string using Py_FileSystemDefaultEncoding and the
Py_FileSystemDefaultEncodeErrors error handler.

If Py_FileSystemDefaultEncoding is not set, fall back to the locale encoding.

Py _FileSystemDefaultEncoding is initialized at startup from the locale encoding and can-
not be modified later. If you need to decode a string from the current locale encoding, use
PyUnicode_DecodeLocaleAndSize ().

Zobacz takze:
The Py_DecodeLocale () function.

Zmienione w wersji 3.6: Use Py_FileSystemDefaultEncodeErrors error handler.

PyObject* PyUnicode_DecodeFSDefault (const char *s)

Return value: New reference. Decode a null-terminated string using Py_FileSystemDefaultEncoding
and the Py_FileSystemDefaultEncodeErrors error handler.

If Py_FileSystemDefaultEncoding is not set, fall back to the locale encoding.
Use PyUnicode_DecodeFSDefaultAndSize () if you know the string length.

Zmienione w wersji 3.6: Use Py_FileSystemDefaultEncodeErrors error handler.

PyObject* PyUnicode_EncodeFSDefault (PyObject *unicode)

Return value: New reference. Encode a Unicode object to Py_FileSystemDefaultEncoding with the
Py_FileSystemDefaultEncodeErrors error handler, and return bytes. Note that the resulting
bytes object may contain null bytes.

If Py_FileSystemDefaultEncoding is not set, fall back to the locale encoding.

Py _FileSystemDefaultEncoding is initialized at startup from the locale encoding and can-
not be modified later. If you need to encode a string to the current locale encoding, use
PyUnicode_EncodeLocale ().

Zobacz takze:

The Py _EncodeLocale () function.

100

Rozdziat 8. Concrete Objects Layer

https://www.python.org/dev/peps/pep-0383
https://www.python.org/dev/peps/pep-0529

The Python/C API, Wydanie 3.9.21

Nowe w wersji 3.2.

Zmienione w wersji 3.6: Use Py_FileSystemDefaultEncodeErrors error handler.

wchar_t Support

wchar_t support for platforms which support it:

PyObject* PyUnicode_FromWideChar (const wchar_t *w, Py _ssize t size)
Return value: New reference. Create a Unicode object from the wchar_t buffer w of the given size. Passing
—1 as the size indicates that the function must itself compute the length, using wcslen. Return NULL on failure.

Py_ssize_t PyUnicode_AsWideChar (PyObject *unicode, wchar_t *w, Py_ssize_t size)
Copy the Unicode object contents into the wchar_t buffer w. At most size wchar_t characters are copied
(excluding a possibly trailing null termination character). Return the number of wchar_t characters copied
or —1 in case of an error. Note that the resulting wchar_t * string may or may not be null-terminated. It is the
responsibility of the caller to make sure that the wchar_t* string is null-terminated in case this is required
by the application. Also, note that the wchar_t* string might contain null characters, which would cause the
string to be truncated when used with most C functions.

wchar_t* PyUnicode_AsWideCharString (PyObject *unicode, Py_ssize_t *size)
Convert the Unicode object to a wide character string. The output string always ends with a null character. If
size is not NULL, write the number of wide characters (excluding the trailing null termination character) into
*size. Note that the resulting wchar_ t string might contain null characters, which would cause the string to be
truncated when used with most C functions. If size is NULL and the wchar_ t * string contains null characters
aValueError is raised.

Returns a buffer allocated by PyMem_Alloc () (use PyMem_ Free () to free it) on success. On error,
returns NULL and *size is undefined. Raises a MemoryError if memory allocation is failed.

Nowe w wersji 3.2.

Zmienione w wersji 3.7: Raises a ValueError if size is NULL and the wchar_t* string contains null
characters.

Built-in Codecs

Python provides a set of built-in codecs which are written in C for speed. All of these codecs are directly usable via
the following functions.

Many of the following APIs take two arguments encoding and errors, and they have the same semantics as the ones
of the built-in st r () string object constructor.

Setting encoding to NULL causes the default encoding to be used which is UTF-8. The file sys-
tem calls should use PyUnicode_FSConverter () for encoding file names. This uses the variable
Py_FileSystemDefaultEncoding internally. This variable should be treated as read-only: on some systems,
it will be a pointer to a static string, on others, it will change at run-time (such as when the application invokes
setlocale).

Error handling is set by errors which may also be set to NULL meaning to use the default handling defined for the
codec. Default error handling for all built-in codecs is ,,strict” (ValueError is raised).

The codecs all use a similar interface. Only deviations from the following generic ones are documented for simplicity.

8.3. Sequence Objects 101

The Python/C API, Wydanie 3.9.21

Generic Codecs

These are the generic codec APIs:

PyObject* PyUnicode_Decode (const char *s, Py_ssize_t size, const char *encoding, const char *errors)
Return value: New reference. Create a Unicode object by decoding size bytes of the encoded string s. encoding
and errors have the same meaning as the parameters of the same name in the st r () built-in function. The
codec to be used is looked up using the Python codec registry. Return NULL if an exception was raised by the
codec.

PyObject* PyUnicode_AsEncodedString (PyObject *unicode, const char *encoding, const char *er-

rors)
Return value: New reference. Encode a Unicode object and return the result as Python bytes object. encoding

and errors have the same meaning as the parameters of the same name in the Unicode encode () method.
The codec to be used is looked up using the Python codec registry. Return NULL if an exception was raised
by the codec.

PyObject* PyUnicode_Encode (const Py_UNICODE *s, Py_ssize_t size, const char *encoding, const

char *errors))
Return value: New reference. Encode the Py_ UNICODE buffer s of the given size and return a Python by-

tes object. encoding and errors have the same meaning as the parameters of the same name in the Unicode
encode () method. The codec to be used is looked up using the Python codec registry. Return NULL if an
exception was raised by the codec.

Deprecated since version 3.3, will be removed in version 3.11: Part of the old-style Py UNICODE API; please
migrate to using PyUnicode_AsEncodedString ().

UTF-8 Codecs

These are the UTF-8 codec APIs:

PyObject* PyUnicode_DecodeUTF8 (const char *s, Py_ssize_t size, const char *errors)
Return value: New reference. Create a Unicode object by decoding size bytes of the UTF-8 encoded string s.
Return NULL if an exception was raised by the codec.

PyObject* PyUnicode_DecodeUTF8Stateful (const char *s, Py_ssize t size, const char *errors,
Py_ssize_t *consumed)
Return value: New reference. If consumed is NULL, behave like PyUnicode_DecodeUTF8 ().If consumed
is not NULL, trailing incomplete UTF-8 byte sequences will not be treated as an error. Those bytes will not be
decoded and the number of bytes that have been decoded will be stored in consumed.

PyObject* PyUnicode_AsUTF8String (PyObject *unicode)
Return value: New reference. Encode a Unicode object using UTF-8 and return the result as Python bytes object.
Error handling is ,,strict”. Return NULL if an exception was raised by the codec.

const char* PyUnicode_AsUTF8AndSize (PyObject *unicode, Py_ssize_t *size)
Return a pointer to the UTF-8 encoding of the Unicode object, and store the size of the encoded representation
(in bytes) in size. The size argument can be NULL; in this case no size will be stored. The returned buffer always
has an extra null byte appended (not included in size), regardless of whether there are any other null code points.

In the case of an error, NULL is returned with an exception set and no size is stored.

This caches the UTF-8 representation of the string in the Unicode object, and subsequent calls will return
a pointer to the same buffer. The caller is not responsible for deallocating the buffer. The buffer is deallocated
and pointers to it become invalid when the Unicode object is garbage collected.

Nowe w wersji 3.3.
Zmienione w wersji 3.7: The return type is now const char * rather of char *.

const char* PyUnicode_AsUTF8 (PyObject *unicode)
As PyUnicode_AsUTF8AndSize (), but does not store the size.

Nowe w wersji 3.3.

102 Rozdziat 8. Concrete Objects Layer

The Python/C API, Wydanie 3.9.21

Zmienione w wersji 3.7: The return type is now const char * rather of char *.

PyObject* PyUnicode_EncodeUTF8 (const Py_UNICODE *s, Py_ssize_t size, const char *errors)
Return value: New reference. Encode the Py UNICODE buffer s of the given size using UTF-8 and return
a Python bytes object. Return NULL if an exception was raised by the codec.

Deprecated since version 3.3, will be removed in version 3.11: Part of the old-style Py UNICODE
API; please migrate to using PyUnicode AsUTF8String (), PyUnicode AsUTF8AndSize () or
PyUnicode_ AsEncodedString ().

UTF-32 Codecs

These are the UTF-32 codec APIs:

PyObject* PyUnicode_DecodeUTF 32 (const char *s, Py_ssize_t size, const char *errors, int *byteorder)
Return value: New reference. Decode size bytes from a UTF-32 encoded buffer string and return the corre-
sponding Unicode object. errors (if non-NULL) defines the error handling. It defaults to ,,strict”.

If byteorder is non-NULL, the decoder starts decoding using the given byte order:

*byteorder == —-1: little endian
*byteorder == 0: native order
*byteorder == 1: Dbig endian

If *byteorder is zero, and the first four bytes of the input data are a byte order mark (BOM), the decoder
switches to this byte order and the BOM is not copied into the resulting Unicode string. If *byteorder is
-1 or 1, any byte order mark is copied to the output.

After completion, *byteorder is set to the current byte order at the end of input data.
If byteorder is NULL, the codec starts in native order mode.
Return NULL if an exception was raised by the codec.

PyObject* PyUnicode_DecodeUTF32Stateful (const char *s, Py ssize t size, const char *errors,
int *byteorder, Py_ssize_t *consumed)
Return value: New reference. If consumed is NULL, behave like PyUnicode_DecodeUTF32 (). If consu-
med is not NULL, PyUnicode_DecodeUTF32Stateful () will not treat trailing incomplete UTF-32
byte sequences (such as a number of bytes not divisible by four) as an error. Those bytes will not be decoded
and the number of bytes that have been decoded will be stored in consumed.

PyObject* PyUnicode_AsUTF32String (PyObject *unicode)
Return value: New reference. Return a Python byte string using the UTF-32 encoding in native byte order. The
string always starts with a BOM mark. Error handling is ,,strict”. Return NULL if an exception was raised by
the codec.

PyObject* PyUnicode_EncodeUTF32 (const Py_UNICODE *s, Py_ssize_t size, const char *errors, int by-

teorder)
Return value: New reference. Return a Python bytes object holding the UTF-32 encoded value of the Unicode

data in s. Output is written according to the following byte order:

byteorder == -1: little endian
byteorder == 0: native byte order (writes a BOM mark)
byteorder == 1: Dbig endian

If byteorder is 0, the output string will always start with the Unicode BOM mark (U+FEFF). In the other two
modes, no BOM mark is prepended.

If Py_ UNICODE_WIDE is not defined, surrogate pairs will be output as a single code point.
Return NULL if an exception was raised by the codec.

Deprecated since version 3.3, will be removed in version 3.11: Part of the old-style Py UNICODE API; please
migrate to using PyUnicode AsUTF32String () or PyUnicode_AsEncodedString().

8.3. Sequence Objects 103

The Python/C API, Wydanie 3.9.21

UTF-16 Codecs

These are the UTF-16 codec APIs:

PyObject* PyUnicode_DecodeUTF16 (const char *s, Py_ssize_t size, const char *errors, int *byteorder)
Return value: New reference. Decode size bytes from a UTF-16 encoded buffer string and return the corre-
sponding Unicode object. errors (if non-NULL) defines the error handling. It defaults to ,,strict”.

If byteorder is non-NULL, the decoder starts decoding using the given byte order:

*byteorder == -1: little endian
*byteorder == 0: native order
*byteorder == 1: Dbig endian

If *byteorder is zero, and the first two bytes of the input data are a byte order mark (BOM), the decoder
switches to this byte order and the BOM is not copied into the resulting Unicode string. If *byteorder is
-1 or 1, any byte order mark is copied to the output (where it will result in either a \ufeff ora \ufffe
character).

After completion, *byteorder is set to the current byte order at the end of input data.
If byteorder is NULL, the codec starts in native order mode.
Return NULL if an exception was raised by the codec.

PyObject* PyUnicode_DecodeUTF16Stateful (const char *s, Py ssize_t size, const char *errors,
int *byteorder, Py_ssize_t *consumed)
Return value: New reference. If consumed is NULL, behave like PyUnicode_DecodeUTF16 (). If consu-
med is not NULL, PyUnicode_DecodeUTF16Stateful () will not treat trailing incomplete UTF-16
byte sequences (such as an odd number of bytes or a split surrogate pair) as an error. Those bytes will not be
decoded and the number of bytes that have been decoded will be stored in consumed.

PyObject* PyUnicode_AsUTF16String (PyObject *unicode)
Return value: New reference. Return a Python byte string using the UTF-16 encoding in native byte order. The
string always starts with a BOM mark. Error handling is ,strict”. Return NULL if an exception was raised by
the codec.

PyObject* PyUnicode_EncodeUTF16 (const Py_UNICODE *s, Py_ssize_t size, const char *errors, int by-

teorder)
Return value: New reference. Return a Python bytes object holding the UTF-16 encoded value of the Unicode

data in s. Output is written according to the following byte order:

byteorder == -1: little endian
byteorder == 0: native byte order (writes a BOM mark)
byteorder == 1: Dbig endian

If byteorder is 0, the output string will always start with the Unicode BOM mark (U+FEFF). In the other two
modes, no BOM mark is prepended.

If Py_ UNICODE_WIDE is defined, a single Py_ UNICODE value may get represented as a surrogate pair. If
it is not defined, each Py_ UNTCODE values is interpreted as a UCS-2 character.

Return NULL if an exception was raised by the codec.

Deprecated since version 3.3, will be removed in version 3.11: Part of the old-style Py UNICODE API; please
migrate to using PyUnicode_AsUTEF16String () or PyUnicode_AsEncodedString ().

104 Rozdziat 8. Concrete Objects Layer

The Python/C API, Wydanie 3.9.21

UTF-7 Codecs

These are the UTF-7 codec APlIs:

PyObject* PyUnicode_DecodeUTF 7 (const char *s, Py _ssize_t size, const char *errors)
Return value: New reference. Create a Unicode object by decoding size bytes of the UTF-7 encoded string s.
Return NULL if an exception was raised by the codec.

PyObject* PyUnicode_DecodeUTF7Stateful (const char *s, Py ssize t size, const char *errors,
Py_ssize_t *consumed)
Return value: New reference. If consumed is NULL, behave like PyUnicode_DecodeUTF7 (). If consumed
is not NULL, trailing incomplete UTF-7 base-64 sections will not be treated as an error. Those bytes will not
be decoded and the number of bytes that have been decoded will be stored in consumed.

PyObject* PyUnicode_EncodeUTF7 (const Py _UNICODE *s, Py ssize_t size, int base64SetO, int ba-

se64 WhiteSpace, const char *errors)
Return value: New reference. Encode the Py UNICODE buffer of the given size using UTF-7 and return

a Python bytes object. Return NULL if an exception was raised by the codec.

If base64SetO is nonzero, ,,.Set O” (punctuation that has no otherwise special meaning) will be encoded in
base-64. If base64 WhiteSpace is nonzero, whitespace will be encoded in base-64. Both are set to zero for the
Python ,,utf-7” codec.

Deprecated since version 3.3, will be removed in version 3.11: Part of the old-style Py UNICODE API; please
migrate to using PyUnicode_AsEncodedString ().

Unicode-Escape Codecs

These are the ,,Unicode Escape” codec APIs:

PyObject* PyUnicode_DecodeUnicodeEscape (const char *s, Py_ssize_t size, const char *errors)
Return value: New reference. Create a Unicode object by decoding size bytes of the Unicode-Escape encoded
string s. Return NULL if an exception was raised by the codec.

PyObject* PyUnicode_AsUnicodeEscapeString (PyObject *unicode)
Return value: New reference. Encode a Unicode object using Unicode-Escape and return the result as a bytes
object. Error handling is ,,strict”. Return NULL if an exception was raised by the codec.

PyObject* PyUnicode_EncodeUnicodeEscape (const Py _UNICODE *s, Py_ssize_t size)
Return value: New reference. Encode the Py UNICODE buffer of the given size using Unicode-Escape and
return a bytes object. Return NULL if an exception was raised by the codec.

Deprecated since version 3.3, will be removed in version 3.11: Part of the old-style Py UNICODE API; please
migrate to using PyUnicode_AsUnicodeEscapeString ().

Raw-Unicode-Escape Codecs

These are the ,,Raw Unicode Escape” codec APIs:

PyObject* PyUnicode_DecodeRawUnicodeEscape (constchar *s, Py_ssize_t size, const char *errors)
Return value: New reference. Create a Unicode object by decoding size bytes of the Raw-Unicode-Escape
encoded string s. Return NULL if an exception was raised by the codec.

PyObject* PyUnicode_AsRawUnicodeEscapeString (PyObject *unicode)
Return value: New reference. Encode a Unicode object using Raw-Unicode-Escape and return the result as
a bytes object. Error handling is ,.strict”. Return NULL if an exception was raised by the codec.

PyObject* PyUnicode_EncodeRawUnicodeEscape (const Py_UNICODE *s, Py_ssize_t size)
Return value: New reference. Encode the Py_UNICODE buffer of the given size using Raw-Unicode-Escape
and return a bytes object. Return NULL if an exception was raised by the codec.

8.3. Sequence Objects 105

The Python/C API, Wydanie 3.9.21

Deprecated since version 3.3, will be removed in version 3.11: Part of the old-style
Py_UNICODE API; please migrate to using PyUnicode_AsRawUnicodeEscapeString() or
PyUnicode_AsEncodedString ().

Latin-1 Codecs

These are the Latin-1 codec APIs: Latin-1 corresponds to the first 256 Unicode ordinals and only these are accepted
by the codecs during encoding.

PyObject* PyUnicode_DecodeLatinl (const char *s, Py_ssize_t size, const char *errors)
Return value: New reference. Create a Unicode object by decoding size bytes of the Latin-1 encoded string s.
Return NULL if an exception was raised by the codec.

PyObject* PyUnicode_AsLatinlString (PyObject *unicode)
Return value: New reference. Encode a Unicode object using Latin-1 and return the result as Python bytes
object. Error handling is ,strict”. Return NULL if an exception was raised by the codec.

PyObject* PyUnicode_EncodeLatinl (const Py_UNICODE *s, Py_ssize_t size, const char *errors)
Return value: New reference. Encode the Py UNICODE buffer of the given size using Latin-1 and return
a Python bytes object. Return NULL if an exception was raised by the codec.

Deprecated since version 3.3, will be removed in version 3.11: Part of the old-style Py_ UNTCODE API; please
migrate to using PyUnicode_AsLatinlString () or PyUnicode_ AsEncodedString().

ASCII Codecs

These are the ASCII codec APIs. Only 7-bit ASCII data is accepted. All other codes generate errors.

PyObject* PyUnicode_DecodeASCII (const char *s, Py_ssize_t size, const char *errors)
Return value: New reference. Create a Unicode object by decoding size bytes of the ASCII encoded string s.
Return NULL if an exception was raised by the codec.

PyObject* PyUnicode_AsASCIIString (PyObject *unicode)
Return value: New reference. Encode a Unicode object using ASCII and return the result as Python bytes object.
Error handling is ,,strict”. Return NULL if an exception was raised by the codec.

PyObject* PyUnicode_EncodeASCII (const Py_UNICODE *s, Py_ssize_t size, const char *errors)
Return value: New reference. Encode the Py UNICODE buffer of the given size using ASCII and return a Py-
thon bytes object. Return NULL if an exception was raised by the codec.

Deprecated since version 3.3, will be removed in version 3.11: Part of the old-style Py UNICODE API; please
migrate to using PyUnicode AsASCIIString () or PyUnicode AsEncodedString().

Character Map Codecs

This codec is special in that it can be used to implement many different codecs (and this is in fact what was done
to obtain most of the standard codecs included in the encodings package). The codec uses mappings to enco-
de and decode characters. The mapping objects provided must support the __getitem__ () mapping interface;
dictionaries and sequences work well.

These are the mapping codec APIs:

PyObject* PyUnicode_DecodeCharmap (const char *data, Py_ssize_t size, PyObject *mapping, const

char *errors)
Return value: New reference. Create a Unicode object by decoding size bytes of the encoded string s using the

given mapping object. Return NULL if an exception was raised by the codec.

If mapping is NULL, Latin-1 decoding will be applied. Else mapping must map bytes ordinals (integers in the
range from 0 to 255) to Unicode strings, integers (which are then interpreted as Unicode ordinals) or None.
Unmapped data bytes — ones which cause a LookupError, as well as ones which get mapped to None,
OxFFFE or '\ufffe', are treated as undefined mappings and cause an error.

106 Rozdziat 8. Concrete Objects Layer

The Python/C API, Wydanie 3.9.21

PyObject* PyUnicode_AsCharmapString (PyObject *unicode, PyObject *mapping)
Return value: New reference. Encode a Unicode object using the given mapping object and return the result as
a bytes object. Error handling is ,.strict”. Return NULL if an exception was raised by the codec.

The mapping object must map Unicode ordinal integers to bytes objects, integers in the range from O to 255
or None. Unmapped character ordinals (ones which cause a LookupError) as well as mapped to None are
treated as ,,undefined mapping” and cause an error.

PyObject* PyUnicode_EncodeCharmap (const Py_UNICODE *s, Py_ssize_t size, PyObject *mapping,

const char *errors)
Return value: New reference. Encode the Py_ UNTCODE buffer of the given size using the given mapping object

and return the result as a bytes object. Return NULL if an exception was raised by the codec.

Deprecated since version 3.3, will be removed in version 3.11: Part of the old-style Py_ UNTCODE API; please
migrate to using PyUnicode_AsCharmapString () or PyUnicode AsEncodedString().

The following codec API is special in that maps Unicode to Unicode.

PyObject* PyUnicode_Translate (PyObject *str, PyObject *table, const char *errors)
Return value: New reference. Translate a string by applying a character mapping table to it and return the
resulting Unicode object. Return NULL if an exception was raised by the codec.

The mapping table must map Unicode ordinal integers to Unicode ordinal integers or None (causing deletion
of the character).

Mapping tables need only provide the _ _getitem_ () interface; dictionaries and sequences work well.
Unmapped character ordinals (ones which cause a LookupError) are left untouched and are copied as-is.

errors has the usual meaning for codecs. It may be NULL which indicates to use the default error handling.

PyObject* PyUnicode_TranslateCharmap (const Py UNICODE *s, Py _ssize_t size, PyObject *map-
ping, const char *errors)
Return value: New reference. Translate a Py_ UNTCODE buffer of the given size by applying a character mapping
table to it and return the resulting Unicode object. Return NULL when an exception was raised by the codec.

Deprecated since version 3.3, will be removed in version 3.11: Part of the old-style Py UNICODE API; please
migrate to using PyUnicode_Translate ().or generic codec based API

MBCS codecs for Windows

These are the MBCS codec APIs. They are currently only available on Windows and use the Win32 MBCS converters
to implement the conversions. Note that MBCS (or DBCS) is a class of encodings, not just one. The target encoding
is defined by the user settings on the machine running the codec.

PyObject* PyUnicode_DecodeMBCS (const char *s, Py_ssize_t size, const char *errors)
Return value: New reference. Create a Unicode object by decoding size bytes of the MBCS encoded string s.
Return NULL if an exception was raised by the codec.

PyObject* PyUnicode_DecodeMBCSStateful (const char *s, Py_ssize_t size, const char *errors,
Py_ssize_t *consumed)
Return value: New reference. If consumed is NULL, behave like PyUnicode_DecodeMBCS (). If consumed
isnot NULL, PyUnicode_DecodeMBCSStateful () will not decode trailing lead byte and the number
of bytes that have been decoded will be stored in consumed.

PyObject* PyUnicode_AsMBCSString (PyObject *unicode)
Return value: New reference. Encode a Unicode object using MBCS and return the result as Python bytes object.
Error handling is ,,strict”. Return NULL if an exception was raised by the codec.

PyObject* PyUnicode_EncodeCodePage (int code_page, PyObject *unicode, const char *errors)
Return value: New reference. Encode the Unicode object using the specified code page and return a Python
bytes object. Return NULL if an exception was raised by the codec. Use CP_ACP code page to get the MBCS
encoder.

Nowe w wersji 3.3.

8.3. Sequence Objects 107

The Python/C API, Wydanie 3.9.21

PyObject* PyUnicode_EncodeMBCS (const Py _UNICODE *s, Py_ssize_t size, const char *errors)
Return value: New reference. Encode the Py UNTCODE buffer of the given size using MBCS and return a Py-
thon bytes object. Return NULL if an exception was raised by the codec.

Deprecated since version 3.3, will be removed in version 4.0: Part of the old-style Py_ UNICODE API;
please migrate to using PyUnicode_ AsMBCSString (), PyUnicode_EncodeCodePage () or
PyUnicode_AsEncodedString ().

Methods & Slots

Methods and Slot Functions

The following APIs are capable of handling Unicode objects and strings on input (we refer to them as strings in the
descriptions) and return Unicode objects or integers as appropriate.

They all return NULL or —1 if an exception occurs.

PyObject* PyUnicode_Concat (PyObject *left, PyObject *right)
Return value: New reference. Concat two strings giving a new Unicode string.

PyObject* PyUnicode_Split (PyObject *s, PyObject *sep, Py_ssize_t maxsplit)
Return value: New reference. Split a string giving a list of Unicode strings. If sep is NULL, splitting will be done
at all whitespace substrings. Otherwise, splits occur at the given separator. At most maxsplit splits will be done.
If negative, no limit is set. Separators are not included in the resulting list.

PyObject* PyUnicode_Splitlines (PyObject *s, int keepend)
Return value: New reference. Split a Unicode string at line breaks, returning a list of Unicode strings. CRLF
is considered to be one line break. If keepend is 0, the line break characters are not included in the resulting
strings.

PyObject* PyUnicode_Join (PyObject *separator, PyObject *seq)
Return value: New reference. Join a sequence of strings using the given separator and return the resulting
Unicode string.

Py_ssize_t PyUnicode_Tailmatch (PyObject *str, PyObject *substr, Py_ssize_t start, Py _ssize_t end,

] int direction)))
Return 1 if substr matches str [start:end] at the given tail end (direction == —1 means to do a prefix

match, direction == 1 a suffix match), 0 otherwise. Return —1 if an error occurred.

Py_ssize_t PyUnicode_Find (PyObject *str, PyObject *substr, Py_ssize_t start, Py_ssize_t end, int direc-

tion)
Return the first position of substrin str [start : end] using the given direction (direction == 1 means to do

a forward search, direction == —1 a backward search). The return value is the index of the first match; a value
of —1 indicates that no match was found, and -2 indicates that an error occurred and an exception has been
set.

Py_ssize_t PyUnicode_FindChar (PyObject *str, Py_UCS4 ch, Py_ssize_t start, Py_ssize_t end, int direc-

tion)
Return the first position of the character ch in str[start:end] using the given direction (direction ==
1 means to do a forward search, direction == —1 a backward search). The return value is the index of the

first match; a value of —1 indicates that no match was found, and —2 indicates that an error occurred and an
exception has been set.

Nowe w wersji 3.3.
Zmienione w wersji 3.7: start and end are now adjusted to behave like str [start:end].

Py_ssize_t PyUnicode_Count (PyObject *str, PyObject *substr, Py_ssize_t start, Py_ssize_t end)
Return the number of non-overlapping occurrences of substr in str [start:end]. Return -1 if an error
occurred.

PyObject* PyUnicode_Replace (PyObject *str, PyObject *substr, PyObject *replstr, Py_ssize_t maxco-

unt)
Return value: New reference. Replace at most maxcount occurrences of substr in str with replstr and return the

108 Rozdziat 8. Concrete Objects Layer

The Python/C API, Wydanie 3.9.21

resulting Unicode object. maxcount == —1 means replace all occurrences.

int PyUnicode_Compare (PyObject *left, PyObject *right)
Compare two strings and return -1, 0, 1 for less than, equal, and greater than, respectively.

This function returns —1 upon failure, so one should call PyErr_Occurred () to check for errors.

int PyUnicode_CompareWithASCIIString (PyObject *uni, const char *string)
Compare a Unicode object, uni, with string and return —1, 0, 1 for less than, equal, and greater than, respec-
tively. It is best to pass only ASCII-encoded strings, but the function interprets the input string as [SO-8859-1
if it contains non-ASCII characters.

This function does not raise exceptions.

PyObject* PyUnicode_RichCompare (PyObject *left, PyObject *right, int op)
Return value: New reference. Rich compare two Unicode strings and return one of the following:

e NULL in case an exception was raised
e Py_True or Py_False for successful comparisons
e Py_NotImplemented in case the type combination is unknown
Possible values for op are Py_GT, Py_GE, Py_EQ, Py_NE, Py_LT, and Py_LE.

PyObject* PyUnicode_Format (PyObject *format, PyObject *args)
Return value: New reference. Return a new string object from format and args; this is analogous to format

o)

% args.

int PyUnicode_Contains (PyObject *container, PyObject *element)
Check whether element is contained in container and return true or false accordingly.

element has to coerce to a one element Unicode string. —1 is returned if there was an error.

void PyUnicode_InternInPlace (PyObject **string)
Intern the argument *string in place. The argument must be the address of a pointer variable pointing to a Py-
thon Unicode string object. If there is an existing interned string that is the same as *string, it sets *string to it
(decrementing the reference count of the old string object and incrementing the reference count of the interned
string object), otherwise it leaves *string alone and interns it (incrementing its reference count). (Clarification:
even though there is a lot of talk about reference counts, think of this function as reference-count-neutral; you
own the object after the call if and only if you owned it before the call.)

PyObject* PyUnicode_InternFromString (const char *v)
Return value: New reference. A combination of PyUnicode_FromString() and
PyUnicode_InternInPlace (), returning either a new Unicode string object that has been in-
terned, or a new (,,owned”) reference to an earlier interned string object with the same value.

8.3.4 Tuple Objects

PyTupleObject
This subtype of PyOb ject represents a Python tuple object.

PyTypeObject PyTuple_Type
This instance of PyTypeObject represents the Python tuple type; it is the same object as tuple in the
Python layer.

int PyTuple_Check (PyObject *p)
Return true if p is a tuple object or an instance of a subtype of the tuple type. This function always succeeds.
int PyTuple_CheckExact (PyObject *p)
Return true if p is a tuple object, but not an instance of a subtype of the tuple type. This function always
succeeds.
PyObject* PyTuple_New (Py_ssize_t len)
Return value: New reference. Return a new tuple object of size len, or NULL on failure.

8.3. Sequence Objects 109

The Python/C API, Wydanie 3.9.21

PyObject* PyTuple_Pack (Py_ssize_tn, ...)
Return value: New reference. Return a new tuple object of size n, or NULL on failure. The tuple values are
initialized to the subsequent n C arguments pointing to Python objects. PyTuple_Pack (2, a, b) is
equivalent to Py_Buildvalue (" (00)", a, b).

Py_ssize_t PyTuple_Size (PyObject *p)
Take a pointer to a tuple object, and return the size of that tuple.

Py_ssize_t PyTuple_GET_SIZE (PyObject *p)
Return the size of the tuple p, which must be non-NULL and point to a tuple; no error checking is performed.

PyObject* PyTuple_GetItem (PyObject *p, Py ssize_t pos)
Return value: Borrowed reference. Return the object at position pos in the tuple pointed to by p. If pos is out of
bounds, return NULL and set an IndexError exception.

PyObject* PyTuple_GET_ITEM (PyObject *p, Py_ssize_t pos)
Return value: Borrowed reference. Like PyTuple_GetItem (), but does no checking of its arguments.

PyObject* PyTuple_GetSlice (PyObject *p, Py_ssize_t low, Py_ssize_t high)
Return value: New reference. Return the slice of the tuple pointed to by p between low and high, or NULL on
failure. This is the equivalent of the Python expression p [low:high]. Indexing from the end of the list is
not supported.

int PyTuple_SetItem (PyObject *p, Py_ssize_t pos, PyObject *0)

Insert a reference to object o at position pos of the tuple pointed to by p. Return 0 on success. If pos is out of
bounds, return —1 and set an IndexError exception.

Informacja: This function ,steals” a reference to o and discards a reference to an item already in the tuple at
the affected position.

void PyTuple_SET_ITEM (PyObject *p, Py_ssize_t pos, PyObject *0)
Like PyTuple SetItem(),butdoesno error checking, and should only be used to fill in brand new tuples.

Informacja: This macro ,steals” a reference to o, and, unlike PyTuple_SetTtem(), does not discard
a reference to any item that is being replaced; any reference in the tuple at position pos will be leaked.

int _PyTuple_Resize (PyObject **p, Py_ssize_t newsize)

Can be used to resize a tuple. newsize will be the new length of the tuple. Because tuples are supposed to be
immutable, this should only be used if there is only one reference to the object. Do not use this if the tuple
may already be known to some other part of the code. The tuple will always grow or shrink at the end. Think
of this as destroying the old tuple and creating a new one, only more efficiently. Returns O on success. Client
code should never assume that the resulting value of *p will be the same as before calling this function. If the
object referenced by *p is replaced, the original *p is destroyed. On failure, returns —1 and sets *p to NULL,
and raises MemoryError or SystemError.

8.3.5 Struct Sequence Objects

Struct sequence objects are the C equivalent of namedtuple () objects, i.e. a sequence whose items can also be
accessed through attributes. To create a struct sequence, you first have to create a specific struct sequence type.

PyTypeObject* PyStruct Sequence_NewType (PyStructSequence_Desc *desc)
Return value: New reference. Create a new struct sequence type from the data in desc, described below. Instances
of the resulting type can be created with Py St ruct Sequence_New ().

void PyStructSequence_InitType (PyTypeObject *type, PyStructSequence_Desc *desc)
Initializes a struct sequence type fype from desc in place.

int PyStructSequence_InitType2 (PyTypeObject *type, PyStructSequence_Desc *desc)
The same as PySt ruct Sequence_InitType, but returns O on success and —1 on failure.

110 Rozdziat 8. Concrete Objects Layer

The Python/C API, Wydanie 3.9.21

Nowe w wersji 3.4.

PyStructSequence_Desc
Contains the meta information of a struct sequence type to create.

Field typ jezyka C Znaczenie
nazwa const char * name of the struct sequence type
doc const char * pointer to docstring for the type or NULL to omit
fields PyStructSequence_Fiel gointer to NULL-terminated array with field names of
* the new type
n_in_sequengeint number of fields visible to the Python side (if used as
tuple)

PyStructSequence_Field
Describes a field of a struct sequence. As a struct sequence is modeled as a tuple, all fields are typed as
PyObject *. The index in the fields array of the Py St ruct Sequence_Desc determines which field
of the struct sequence is described.

Field | typ jezyka | Znaczenie
C

nazwa const name for the field or NULL to end the list of named fields, set to
char * PyStructSequence_UnnamedField to leave unnamed

doc | const field docstring or NULL to omit
char *

const char * const PyStruct Sequence_UnnamedField
Special value for a field name to leave it unnamed.

Zmienione w wersji 3.9: The type was changed from char *.

PyObject* PyStructSequence_New (PyTypeObject *type)
Return value: New reference. Creates an instance of fype, which must have been created with
PyStructSequence_NewType ().

PyObject* PyStruct Sequence_GetItem (PyObject *p, Py_ssize_t pos)
Return value: Borrowed reference. Return the object at position pos in the struct sequence pointed to by p. No
bounds checking is performed.

PyObject* PyStructSequence_GET_ITEM (PyObject *p, Py_ssize_t pos)
Return value: Borrowed reference. Macro equivalent of Py St ruct Sequence_GetItem().

void PyStructSequence_SetItem (PyObject *p, Py_ssize_t pos, PyObject *0)

Sets the field at index pos of the struct sequence p to value o. Like PyTuple_SET_TTEM (), this should only
be used to fill in brand new instances.

Informacja: This function ,steals” a reference to o.

void PyStructSequence_SET_ITEM (PyObject *p, Py_ssize_t *pos, PyObject *0)
Macro equivalent of PyStructSequence_SetItem().

Informacja: This function ,steals” a reference to o.

8.3. Sequence Objects 111

The Python/C API, Wydanie 3.9.21

8.3.6 List Objects

PyListObject
This subtype of PyOb ject represents a Python list object.

PyTypeObject PyList_Type
This instance of Py TypeObject represents the Python list type. This is the same object as 1ist in the
Python layer.

int PyList_Check (PyObject *p)
Return true if p is a list object or an instance of a subtype of the list type. This function always succeeds.
int PyList_CheckExact (PyObject *p)
Return true if p is a list object, but not an instance of a subtype of the list type. This function always succeeds.

PyObject* PyList_New (Py_ssize_t len)
Return value: New reference. Return a new list of length len on success, or NULL on failure.

Informacja: If /en is greater than zero, the returned list object’s items are set to NULL. Thus you cannot
use abstract API functions such as PySequence_SetItem () or expose the object to Python code before
setting all items to a real object with PyList_SetItem().

Py_ssize_t PyList_Size (PyObject *list)
Return the length of the list object in /ist; this is equivalent to 1en (1ist) on a list object.

Py_ssize_t PyList_GET_SIZE (PyObject *list)
Macro form of PyList_Size () without error checking.

PyObject* PyList_GetItem (PyObject *list, Py ssize_t index)
Return value: Borrowed reference. Return the object at position index in the list pointed to by Zisz. The position
must be non-negative; indexing from the end of the list is not supported. If index is out of bounds (<0 or
>=len(list)), return NULL and set an IndexError exception.

PyObject* PyList_GET_ITEM (PyObject *list, Py_ssize_t i)
Return value: Borrowed reference. Macro form of PyList_GetItem () without error checking.

int PyList_SetItem (PyObject *list, Py_ssize_t index, PyObject *item)
Set the item at index index in list to item. Return 0 on success. If index is out of bounds, return —1 and set an
IndexError exception.

Informacja: This function ,steals” a reference to item and discards a reference to an item already in the list at
the affected position.

void PyList_SET_ITEM (PyObject *list, Py_ssize_t i, PyObject *0)
Macro form of PyList_SetItem () without error checking. This is normally only used to fill in new lists
where there is no previous content.

Informacja: This macro ,steals” a reference to ifem, and, unlike PyList_SetItem/(), does not discard
a reference to any item that is being replaced; any reference in list at position i will be leaked.

int PyList_Insert (PyObject *list, Py_ssize_t index, PyObject *item)
Insert the item ifem into list list in front of index index. Return 0 if successful; return —1 and set an exception
if unsuccessful. Analogous to 1ist.insert (index, item).

int PyList_Append (PyObject *list, PyObject *item)
Append the object item at the end of list lisz. Return 0 if successful; return —1 and set an exception if unsuc-
cessful. Analogous to 1ist.append (item).

PyObject* PyList_GetSlice (PyObject *list, Py_ssize_t low, Py_ssize_t high)
Return value: New reference. Return a list of the objects in /ist containing the objects between low and high.

112 Rozdziat 8. Concrete Objects Layer

The Python/C API, Wydanie 3.9.21

Return NULL and set an exception if unsuccessful. Analogous to 1ist [low:high]. Indexing from the end
of the list is not supported.

int PyList_SetSlice (PyObject *list, Py_ssize_t low, Py_ssize_t high, PyObject *itemlist)
Set the slice of list between low and high to the contents of ifemlist. Analogous to 1ist [low:high] =
itemlist. The ifemlist may be NULL, indicating the assignment of an empty list (slice deletion). Return 0
on success, —1 on failure. Indexing from the end of the list is not supported.

int PyList_Sort (PyObject *list)
Sort the items of list in place. Return O on success, —1 on failure. This is equivalent to 1ist .sort ().

int PyList_Reverse (PyObject *list)
Reverse the items of list in place. Return 0 on success, —1 on failure. This is the equivalent of 1ist.
reverse ().

PyObject* PyList_AsTuple (PyObject *list)
Return value: New reference. Return a new tuple object containing the contents of list; equivalent to
tuple(list).

8.4 Container Objects

8.4.1 Dictionary Objects

PyDictObject
This subtype of PyOb ject represents a Python dictionary object.

PyTypeObject PyDict_Type
This instance of Py TypeObject represents the Python dictionary type. This is the same object as dict in
the Python layer.

int PyDict_Check (PyObject *p)
Return true if p is a dict object or an instance of a subtype of the dict type. This function always succeeds.

int PyDict_CheckExact (PyObject *p)
Return true if p is a dict object, but not an instance of a subtype of the dict type. This function always succeeds.

PyObject* PyDict_New ()
Return value: New reference. Return a new empty dictionary, or NULL on failure.

PyObject* PyDictProxy_New (PyObject *mapping)
Return value: New reference. Return a types .MappingProxyType object for a mapping which enforces
read-only behavior. This is normally used to create a view to prevent modification of the dictionary for non-
-dynamic class types.

void PyDict_Clear (PyObject *p)
Empty an existing dictionary of all key-value pairs.

int PyDict_Contains (PyObject *p, PyObject *key)
Determine if dictionary p contains key. If an item in p is matches key, return 1, otherwise return 0. On error,
return —1. This is equivalent to the Python expression key in p.

PyObject* PyDict_Copy (PyObject *p)
Return value: New reference. Return a new dictionary that contains the same key-value pairs as p.

int PyDict_SetItem (PyObject *p, PyObject *key, PyObject *val)
Insert val into the dictionary p with a key of key. key must be hashable; if it isn’'t, TypeError will be raised.
Return 0 on success or —1 on failure. This function does not steal a reference to val.

int PyDict_SetItemString (PyObject *p, const char *key, PyObject *val)
Insert val into the dictionary p using key as a key. key should be a const char*. The key object is created
using PyUnicode_FromString (key).Return O on success or —1 on failure. This function does not steal
a reference to val.

8.4. Container Objects 113

The Python/C API, Wydanie 3.9.21

int PyDict_DelItem (PyObject *p, PyObject *key)
Remove the entry in dictionary p with key key. key must be hashable; if it isn’t, TypeError is raised. If key
is not in the dictionary, KeyError is raised. Return 0O on success or —1 on failure.

int PyDict_DelItemString (PyObject *p, const char *key)
Remove the entry in dictionary p which has a key specified by the string key. If key is not in the dictionary,
KeyError is raised. Return O on success or —1 on failure.

PyObject* PyDict_GetItem (PyObject *p, PyObject *key)
Return value: Borrowed reference. Return the object from dictionary p which has a key key. Return NULL if
the key key is not present, but without setting an exception.

Note that exceptions which occur while calling __hash__ () and __eq__ () methods will get suppressed.
To get error reporting use PyDict_GetItemWithError () instead.

PyObject* PyDict_GetItemWithError (PyObject *p, PyObject *key)
Return value: Borrowed reference. Variantof PyDict_Get Item () thatdoes notsuppress exceptions. Return
NULL with an exception set if an exception occurred. Return NULL without an exception set if the key wasn’t
present.

PyObject* PyDict_GetItemString (PyObject *p, const char *key)
Return value: Borrowed reference. This is the same as PyDict_GetItem (), butkeyis specifiedasaconst
char*, rather than a PyOb ject *.

Note that exceptions which occur while calling__hash__ () and__eqg__ () methods and creating a tempo-
rary string object will get suppressed. To get error reportinguse PyDict_Get ItemWithError () instead.

PyObject* PyDict_SetDefault (PyObject *p, PyObject *key, PyObject *defaultobj)
Return value: Borrowed reference. This is the same as the Python-level dict .setdefault (). If present,
it returns the value corresponding to key from the dictionary p. If the key is not in the dict, it is inserted with
value defaultobj and defaultobj is returned. This function evaluates the hash function of key only once, instead
of evaluating it independently for the lookup and the insertion.

Nowe w wersji 3.4.

PyObject* PyDict_Items (PyObject *p)
Return value: New reference. Return a Py L1 st Ob ject containing all the items from the dictionary.

PyObject* PyDict_Keys (PyObject *p)
Return value: New reference. Return a Py ListObject containing all the keys from the dictionary.

PyObject* PyDict_Values (PyObject *p)
Return value: New reference. Return a Py Li st Object containing all the values from the dictionary p.

Py_ssize_t PyDict_Size (PyObject *p)
Return the number of items in the dictionary. This is equivalent to 1en (p) on a dictionary.

int PyDict_Next (PyObject *p, Py_ssize_t *ppos, PyObject **pkey, PyObject **pvalue)
Iterate over all key-value pairs in the dictionary p. The Py_ ssize_ t referred to by ppos must be initialized
to O prior to the first call to this function to start the iteration; the function returns true for each pair in the
dictionary, and false once all pairs have been reported. The parameters pkey and pvalue should either point
to PyObject * variables that will be filled in with each key and value, respectively, or may be NULL. Any
references returned through them are borrowed. ppos should not be altered during iteration. Its value represents
offsets within the internal dictionary structure, and since the structure is sparse, the offsets are not consecutive.

Dla przyktadu:

PyObject *key, *value;
Py_ssize_t pos = 0;

while (PyDict_Next (self->dict, &pos, &key, &value)) |
/* do something interesting with the values... */

114 Rozdziat 8. Concrete Objects Layer

The Python/C API, Wydanie 3.9.21

The dictionary p should not be mutated during iteration. It is safe to modify the values of the keys as you iterate
over the dictionary, but only so long as the set of keys does not change. For example:

PyObject *key, *value;
Py_ssize_t pos = 0;

while (PyDict_Next (self->dict, s&pos, &key, &value)) |
long i = PyLong_AsLong(value);
if (i == -1 && PyErr_Occurred()) A
return -1;
}
PyObject *o = PyLong_ FromLong (i + 1);
if (o == NULL)
return -1;
if (PyDict_SetItem(self->dict, key, o) < 0) {
Py_DECREF (0) ;
return -1;
}
Py_DECREF (0) ;

int PyDict_Merge (PyObject *a, PyObject *b, int override)
Iterate over mapping object b adding key-value pairs to dictionary a. b may be a dictionary, or any object
supporting PyMapping Keys () and PyObject_GetItem().If override is true, existing pairs in @ will
be replaced if a matching key is found in b, otherwise pairs will only be added if there is not a matching key
in a. Return O on success or —1 if an exception was raised.

int PyDict_Update (PyObject *a, PyObject *b)
This is the same as PyDict_Merge (a, b, 1) inC,and is similar to a.update (b) in Python except
that PyDict_Update () doesn’t fall back to the iterating over a sequence of key value pairs if the second
argument has no ,.keys” attribute. Return 0 on success or -1 if an exception was raised.

int PyDict_MergeFromSeq2 (PyObject *a, PyObject *seq2, int override)
Update or merge into dictionary a, from the key-value pairs in seq2. seg2 must be an iterable object producing
iterable objects of length 2, viewed as key-value pairs. In case of duplicate keys, the last wins if override is
true, else the first wins. Return 0 on success or —1 if an exception was raised. Equivalent Python (except for
the return value):

def PyDict_MergeFromSeqg2 (a, seqg2, override):
for key, value in seg2:
if override or key not in a:
alkey] = value

8.4.2 Set Objects

This section details the public API for set and frozenset objects. Any functionali-
ty not listed below is best accessed using either the abstract object protocol (including
PyObject_CallMethod(), PyObject_RichCompareBool (), PyObject_Hash (),
PyObject_Repr(), PyObject_IsTrue (), PyObject_Print (), and PyObject_GetIter()) or
the abstract number protocol (including PyNumber_And (), PyNumber_Subtract (), PyNumber_Or (),
PyNumber_Xor (), PyNumber_InPlaceAnd(), PyNumber_InPlaceSubtract (),
PyNumber_InPlaceOr (),and PyNumber_ InPlaceXor ()).

PySetObject
This subtype of PyObject is used to hold the internal data for both set and frozenset objects. It is like
aPyDictObject inthatitis a fixed size for small sets (much like tuple storage) and will point to a separate,
variable sized block of memory for medium and large sized sets (much like list storage). None of the fields of
this structure should be considered public and all are subject to change. All access should be done through the
documented API rather than by manipulating the values in the structure.

8.4. Container Objects 115

The Python/C API, Wydanie 3.9.21

PyTypeObject PySet_Type
This is an instance of Py TypeOb ject representing the Python set type.

PyTypeObject PyFrozenSet_Type
This is an instance of Py TypeOb ject representing the Python frozenset type.

The following type check macros work on pointers to any Python object. Likewise, the constructor functions work
with any iterable Python object.

int PySet_Check (PyObject *p)
Return true if p is a set object or an instance of a subtype. This function always succeeds.

int PyFrozenSet_Check (PyObject *p)
Return true if pis a frozenset object or an instance of a subtype. This function always succeeds.

int PyAnySet_Check (PyObject *p)
Return true if p is a set object, a frozenset object, or an instance of a subtype. This function always
succeeds.

int PyAnySet_CheckExact (PyObject *p)
Return true if pis a set object or a frozenset object but not an instance of a subtype. This function always
succeeds.

int PyFrozenSet_CheckExact (PyObject *p)
Return true if p is a frozenset object but not an instance of a subtype. This function always succeeds.

PyObject* PySet_New (PyObject *iterable)
Return value: New reference. Return a new set containing objects returned by the iterable. The iterable may
be NULL to create a new empty set. Return the new set on success or NULL on failure. Raise TypeError if
iterable is not actually iterable. The constructor is also useful for copying a set (c=set (s)).

PyObject* PyFrozenSet_New (PyObject *iterable)
Return value: New reference. Return a new frozenset containing objects returned by the iterable. The ite-
rable may be NULL to create a new empty frozenset. Return the new set on success or NULL on failure. Raise
TypeError if iterable is not actually iterable.

The following functions and macros are available for instances of set or frozenset or instances of their subtypes.

Py_ssize_t PySet_Size (PyObject *anyset)
Return the length of a set or frozenset object. Equivalent to len (anyset). Raises
aPyExc_SystemError if anyset is not a set, frozenset, or an instance of a subtype.

Py_ssize_t PySet_GET_SIZE (PyObject *anyset)
Macro form of PySet_Size () without error checking.

int PySet_Contains (PyObject *anyset, PyObject *key)
Return 1 if found, 0 if not found, and -1 if an error is encountered. Unlike the Python __contains__ ()
method, this function does not automatically convert unhashable sets into temporary frozensets. Raise
a TypeError if the key is unhashable. Raise PyExc_SystemError if anysetisnota set, frozenset,
or an instance of a subtype.

int PySet_Add (PyObject *set, PyObject *key)
Add key to a set instance. Also works with frozenset instances (like PyTuple SetItem () itcanbe
used to fill in the values of brand new frozensets before they are exposed to other code). Return O on success
or —1 on failure. Raise a TypeError if the key is unhashable. Raise a MemoryError if there is no room
to grow. Raise a SystemError if sef is not an instance of set or its subtype.

The following functions are available for instances of set or its subtypes but not for instances of frozenset or
its subtypes.

int PySet_Discard (PyObject *set, PyObject *key)
Return 1 if found and removed, 0 if not found (no action taken), and —1 if an error is encountered. Does
not raise KeyError for missing keys. Raise a TypeError if the key is unhashable. Unlike the Python
discard () method, this function does not automatically convert unhashable sets into temporary frozensets.
Raise PyExc_SystemError if sef is not an instance of set or its subtype.

116 Rozdziat 8. Concrete Objects Layer

The Python/C API, Wydanie 3.9.21

PyObject* PySet_Pop (PyObject *set)
Return value: New reference. Return a new reference to an arbitrary object in the sef, and removes the object
from the ser. Return NULL on failure. Raise KeyError if the set is empty. Raise a SystemError if set is
not an instance of set or its subtype.

int PySet_Clear (PyObject *set)
Empty an existing set of all elements.

8.5 Function Objects

8.5.1 Function Objects

There are a few functions specific to Python functions.

PyFunctionObject
The C structure used for functions.

PyTypeObject PyFunction_Type
This is an instance of PyTypeObject and represents the Python function type. It is exposed to Python
programmers as types.FunctionType.

int PyFunction_Check (PyObject *0)
Return true if o is a function object (has type PyFunction_ Type). The parameter must not be NULL. This
function always succeeds.

PyObject* PyFunction_New (PyObject *code, PyObject *globals)
Return value: New reference. Return a new function object associated with the code object code. globals must
be a dictionary with the global variables accessible to the function.

The function’s docstring and name are retrieved from the code object. __module__ is retrieved from globals.
The argument defaults, annotations and closure are set to NULL. __gualname__is set to the same value as the
function’s name.

PyObject* PyFunction_NewWithQualName (PyObject *code, PyObject *globals, PyObject *qualname)
Return value: New reference. As PyFunction_New (), but also allows setting the function object’s
__qualname___ attribute. gualname should be a unicode object or NULL; if NULL, the _ _qualname_
attribute is set to the same value as its ___name___ attribute.

Nowe w wersji 3.3.

PyObject* PyFunction_GetCode (PyObject *op)
Return value: Borrowed reference. Return the code object associated with the function object op.

PyObject* PyFunction_GetGlobals (PyObject *op)
Return value: Borrowed reference. Return the globals dictionary associated with the function object op.

PyObject* PyFunction_GetModule (PyObject *op)
Return value: Borrowed reference. Return the __module__ attribute of the function object op. This is normally
a string containing the module name, but can be set to any other object by Python code.

PyObject* PyFunction_GetDefaults (PyObject *op)
Return value: Borrowed reference. Return the argument default values of the function object op. This can be
a tuple of arguments or NULL.

int PyFunction_SetDefaults (PyObject *op, PyObject *defaults)
Set the argument default values for the function object op. defaults must be Py_None or a tuple.

Raises SystemError and returns —1 on failure.

PyObject* PyFunction_GetClosure (PyObject *op)
Return value: Borrowed reference. Return the closure associated with the function object op. This can be NULL
or a tuple of cell objects.

8.5. Function Objects 117

The Python/C API, Wydanie 3.9.21

int PyFunction_SetClosure (PyObject *op, PyObject *closure)
Set the closure associated with the function object op. closure must be Py_None or a tuple of cell objects.

Raises SystemError and returns -1 on failure.

PyObject *PyFunction_GetAnnotations (PyObject *op)
Return value: Borrowed reference. Return the annotations of the function object op. This can be a mutable
dictionary or NULL.

int PyFunction_SetAnnotations (PyObject *op, PyObject *annotations)
Set the annotations for the function object op. annotations must be a dictionary or Py_None.

Raises SystemError and returns —1 on failure.

8.5.2 Instance Method Objects

An instance method is a wrapper for a PyCFunct ion and the new way to bind a PyCFunct ion to a class object.
It replaces the former call PyMethod_New (func, NULL, class).

PyTypeObject PyInstanceMethod_Type
This instance of Py TypeObject represents the Python instance method type. It is not exposed to Python
programs.

int PyInstanceMethod_Check (PyObject *0)
Return true if o is an instance method object (has type Py ITnstanceMethod_Type). The parameter must
not be NULL. This function always succeeds.

PyObject* PyInstanceMethod_New (PyObject *func)
Return value: New reference. Return a new instance method object, with func being any callable object. func
is the function that will be called when the instance method is called.

PyObject* PyInstanceMethod_Function (PyObject *im)
Return value: Borrowed reference. Return the function object associated with the instance method im.

PyObject* PyInstanceMethod_GET_FUNCTION (PyObject *im)
Return value: Borrowed reference. Macro version of PyInstanceMethod Function () which avoids
error checking.

8.5.3 Method Objects

Methods are bound function objects. Methods are always bound to an instance of a user-defined class. Unbound
methods (methods bound to a class object) are no longer available.

PyTypeObject PyMethod_Type
This instance of Py TypeOb ject represents the Python method type. This is exposed to Python programs
as types.MethodType.

int PyMethod_Check (PyObject *0)
Return true if o is a method object (has type PyMethod_Type). The parameter must not be NULL. This
function always succeeds.

PyObject* PyMethod_New (PyObject *func, PyObject *self)
Return value: New reference. Return a new method object, with func being any callable object and self the

instance the method should be bound. func is the function that will be called when the method is called. self
must not be NULL.

PyObject* PyMethod_Function (PyObject *meth)
Return value: Borrowed reference. Return the function object associated with the method meth.

PyObject* PyMethod_GET_FUNCTION (PyObject *meth)
Return value: Borrowed reference. Macro version of PyMethod_Function () which avoids error checking.

PyObject* PyMethod_Self (PyObject *meth)
Return value: Borrowed reference. Return the instance associated with the method meth.

118 Rozdziat 8. Concrete Objects Layer

The Python/C API, Wydanie 3.9.21

PyObject* PyMethod_GET_SELF (PyObject *meth)
Return value: Borrowed reference. Macro version of PyMethod_Self () which avoids error checking.

8.5.4 Cell Objects

,Cell” objects are used to implement variables referenced by multiple scopes. For each such variable, a cell object is
created to store the value; the local variables of each stack frame that references the value contains a reference to the
cells from outer scopes which also use that variable. When the value is accessed, the value contained in the cell is used
instead of the cell object itself. This de-referencing of the cell object requires support from the generated byte-code;
these are not automatically de-referenced when accessed. Cell objects are not likely to be useful elsewhere.

PyCellObject
The C structure used for cell objects.

PyTypeObject PyCell_Type
The type object corresponding to cell objects.

int PyCell_Check (ob)
Return true if ob is a cell object; ob must not be NULL. This function always succeeds.

PyObject* PyCell_New (PyObject *ob)
Return value: New reference. Create and return a new cell object containing the value ob. The parameter may
be NULL.

PyObject* PyCell_Get (PyObject *cell)
Return value: New reference. Return the contents of the cell cell.

PyObject* PyCell_GET (PyObject *cell)
Return value: Borrowed reference. Return the contents of the cell cell, but without checking that cell is non-
-NULL and a cell object.

int PyCell_Set (PyObject *cell, PyObject *value)
Set the contents of the cell object cell to value. This releases the reference to any current content of the cell.
value may be NULL. cell must be non-NULL; if it is not a cell object, —1 will be returned. On success, 0 will
be returned.

void PyCell_SET (PyObject *cell, PyObject *value)
Sets the value of the cell object cell to value. No reference counts are adjusted, and no checks are made for
safety; cell must be non-NULL and must be a cell object.

8.5.5 Code Objects

Code objects are a low-level detail of the CPython implementation. Each one represents a chunk of executable code
that hasn’t yet been bound into a function.

PyCodeObject
The C structure of the objects used to describe code objects. The fields of this type are subject to change at
any time.

PyTypeObject PyCode_Type
This is an instance of Py TypeOb ject representing the Python code type.

int PyCode_Check (PyObject *co)
Return true if co is a code object. This function always succeeds.

int PyCode_GetNumFree (PyCodeObject *co)
Return the number of free variables in co.

PyCodeObject* PyCode_New (int argcount, int kwonlyargcount, int nlocals, int stacksize, int flags, Py-
Object *code, PyObject *consts, PyObject *names, PyObject *varnames, Py-
Object *freevars, PyObject *cellvars, PyObject *filename, PyObject *name,
int firstlineno, PyObject *Inotab)
Return value: New reference. Return a new code object. If you need a dummy code object to create a frame, use

8.5. Function Objects 119

The Python/C API, Wydanie 3.9.21

PyCode_NewEmpty () instead. Calling PyCode_New () directly can bind you to a precise Python version
since the definition of the bytecode changes often.

PyCodeObject* PyCode_NewWithPosOnlyArgs (int argcount, int posonlyargcount, int kwonlyargcount,
int nlocals, int stacksize, int flags, PyObject *code,
PyObject *consts, PyObject *names, PyObject *var-
names, PyObject *freevars, PyObject *cellvars, Py-
Object *filename, PyObject *name, int firstlineno, Py-
Object *Inotab)
Return value: New reference. Similar to PyCode_New (), but with an extra ,,posonlyargcount” for positional-

-only arguments.
Nowe w wersji 3.8.

PyCodeObject* PyCode_NewEmpty (const char *filename, const char *funcname, int firstlineno)
Return value: New reference. Return a new empty code object with the specified filename, function name, and
first line number. It is illegal to exec () or eval () the resulting code object.

8.6 Other Objects

8.6.1 File Objects

These APIs are a minimal emulation of the Python 2 C API for built-in file objects, which used to rely on the
buffered I/O (FILE*) support from the C standard library. In Python 3, files and streams use the new io module,
which defines several layers over the low-level unbuffered I/O of the operating system. The functions described below
are convenience C wrappers over these new APIs, and meant mostly for internal error reporting in the interpreter;
third-party code is advised to access the 1o APIs instead.

PyObject* PyFile_FromFd (int fd, const char *name, const char *mode, int buffering, const char *encoding,

const char *errors, const char *newline, int closefd)
Return value: New reference. Create a Python file object from the file descriptor of an already opened file fd.

The arguments name, encoding, errors and newline can be NULL to use the defaults; buffering can be -1 to
use the default. name is ignored and kept for backward compatibility. Return NULL on failure. For a more
comprehensive description of the arguments, please refer to the 10 .open () function documentation.

Ostrzezenie: Since Python streams have their own buffering layer, mixing them with OS-level file de-
scriptors can produce various issues (such as unexpected ordering of data).

Zmienione w wersji 3.2: Zignoruj atrybut name.

int PyObject_AsFileDescriptor (PyObject *p)
Return the file descriptor associated with p as an int. If the object is an integer, its value is returned. If not,
the object’s fileno () method is called if it exists; the method must return an integer, which is returned as
the file descriptor value. Sets an exception and returns —1 on failure.

PyObject* PyFile_GetLine (PyObject *p, int n)
Return value: New reference. Equivalent to p. readline ([n]), this function reads one line from the object
p. pmay be afile object or any object witha readl ine () method. If nis 0, exactly one line is read, regardless
of the length of the line. If n is greater than 0, no more than n bytes will be read from the file; a partial line
can be returned. In both cases, an empty string is returned if the end of the file is reached immediately. If n
is less than 0, however, one line is read regardless of length, but EOFError is raised if the end of the file is
reached immediately.

int PyFile_SetOpenCodeHook (Py_OpenCodeHookFunction handler)
Overrides the normal behavior of 10.open_code () to pass its parameter through the provided handler.

The handler is a function of type PyObject * (*) (PyObject *path, void *userData), where
path is guaranteed to be PyUnicodeObject.

120 Rozdziat 8. Concrete Objects Layer

The Python/C API, Wydanie 3.9.21

The userData pointer is passed into the hook function. Since hook functions may be called from different
runtimes, this pointer should not refer directly to Python state.

As this hook is intentionally used during import, avoid importing new modules during its execution unless they
are known to be frozen or available in sys .modules.

Once a hook has been set, it cannot be removed or replaced, and later calls to
PyFile_SetOpenCodeHook () will fail. On failure, the function returns -1 and sets an exception
if the interpreter has been initialized.

Funkcja ta moze by¢ bezpiecznie wywolana przed Py_Initialize ().
Raises an auditing event set opencodehook with no arguments.
Nowe w wersji 3.8.

int PyFile_WriteObject (PyObject *obj, PyObject *p, int flags)
Write object obj to file object p. The only supported flag for flags is Py_ PRINT_RAW; if given, the str () of
the object is written instead of the repr (). Return O on success or —1 on failure; the appropriate exception
will be set.

int PyFile_WriteString (const char *s, PyObject *p)
Write string s to file object p. Return 0 on success or —1 on failure; the appropriate exception will be set.

8.6.2 Module Objects

PyTypeObject PyModule_Type
This instance of Py TypeOb ject represents the Python module type. This is exposed to Python programs as
types.ModuleType.

int PyModule_Check (PyObject *p)
Return true if p is a module object, or a subtype of a module object. This function always succeeds.

int PyModule_CheckExact (PyObject *p)

Return true if p is a module object, but not a subtype of PyModule_Type. This function always succeeds.
PyObject* PyModule_NewObject (PyObject *name)

Return value: New reference. Return a new module object with the _ name__ attribute set to name.

The module’s _ _name_ , _ doc_ ,_ package_ ,and _ loader_ attributes are filled in (all but
__name___are set to None); the caller is responsible for providinga ___file_ attribute.

Nowe w wersji 3.3.
Zmienione w wersji 3.4: __package___and __loader__ are set to None.

PyObject* PyModule_New (const char *name)
Return value: New reference. Similar to PyModule_ NewObject (),butthe name is a UTF-8 encoded string
instead of a Unicode object.

PyObject* PyModule_GetDict (PyObject *module)
Return value: Borrowed reference. Return the dictionary object that implements module’s namespace; this object
is the same as the __dict__ attribute of the module object. If module is not a module object (or a subtype
of a module object), SystemError is raised and NULL is returned.

It is recommended extensions use other PyModule_* () and PyObject_* () functions rather than directly
manipulate a module’s __dict__ .

PyObject* PyModule_GetNameObject (PyObject *module)
Return value: New reference. Return module’s __name___ value. If the module does not provide one, or if it
is not a string, SystemError is raised and NULL is returned.

Nowe w wersji 3.3.

const char* PyModule_GetName (PyObject *module)
Similar to PyModule_GetNameObject () but return the name encoded to 'ut£-8"'.

8.6. Other Objects 121

The Python/C API, Wydanie 3.9.21

void* PyModule_GetState (PyObject *module)
Return the ,,state” of the module, that is, a pointer to the block of memory allocated at module creation time,
or NULL. See PyModuleDef.m _size.

PyModuleDef* PyModule_GetDef (PyObject *module)
Return a pointer to the PyModuleDef struct from which the module was created, or NULL if the module
wasn’t created from a definition.

PyObject* PyModule_GetFilenameObject (PyObject *module)
Return value: New reference. Return the name of the file from which module was loaded using module’s
__file__ attribute. If this is not defined, or if it is not a unicode string, raise SystemError and return
NULL; otherwise return a reference to a Unicode object.

Nowe w wersji 3.2.

const char* PyModule_GetFilename (PyObject *module)
Similar to PyModule_GetFilenameObject () but return the filename encoded to «utf-8».

Niezalecane od wersji 3.2: PyModule_ GetFilename () raises UnicodeEncodeError on unencoda-
ble filenames, use PyModule_GetFilenameObject () instead.

Initializing C modules

Modules objects are usually created from extension modules (shared libraries which export an initialization function),
or compiled-in modules (where the initialization function is added using Py Tmport_AppendInittab ()). See
building or extending-with-embedding for details.

The initialization function can either pass a module definition instance to PyModule_Create (), and return the
resulting module object, or request ,,multi-phase initialization” by returning the definition struct itself.

PyModuleDef
The module definition struct, which holds all information needed to create a module object. There is usually
only one statically initialized variable of this type for each module.

PyModuleDef Base m_base
Always initialize this member to PyModuleDef HEAD_INIT.

const char *m_name
Name for the new module.

const char *m_doc
Docstring for the module; usually a docstring variable created with PyDoc_ STRVAR is used.

Py _ssize_t m_size
Module state may be kept in a per-module memory area that can be retrieved with
PyModule_GetState (), rather than in static globals. This makes modules safe for use in
multiple sub-interpreters.

This memory area is allocated based on m_size on module creation, and freed when the module object is
deallocated, after the m__f ree function has been called, if present.

Setting m_size to —1 means that the module does not support sub-interpreters, because it has global
state.

Setting it to a non-negative value means that the module can be re-initialized and specifies the additional
amount of memory it requires for its state. Non-negative m_s1ize is required for multi-phase initializa-
tion.

See PEP 3121 for more details.

PyMethodDef* m_methods
A pointer to a table of module-level functions, described by PyMet hodDe £ values. Can be NULL if no
functions are present.

122 Rozdziat 8. Concrete Objects Layer

https://www.python.org/dev/peps/pep-3121

The Python/C API, Wydanie 3.9.21

PyModuleDef_Slot* m_slots
An array of slot definitions for multi-phase initialization, terminated by a {0, NULL} entry. When
using single-phase initialization, m_slots must be NULL.

Zmienione w wersji 3.5: Prior to version 3.5, this member was always set to NULL, and was defined as:
inquiry m_reload

traverseproc m_traverse
A traversal function to call during GC traversal of the module object, or NULL if not needed.

This function is not called if the module state was requested but is not allocated yet. This is the case
immediately after the module is created and before the module is executed (Py_mod_exec function).
More precisely, this function is not called if m_size is greater than 0 and the module state (as returned
by PyModule_GetState ())is NULL.

Zmienione w wersji 3.9: No longer called before the module state is allocated.

inquirym_clear
A clear function to call during GC clearing of the module object, or NULL if not needed.

This function is not called if the module state was requested but is not allocated yet. This is the case
immediately after the module is created and before the module is executed (Py_mod_exec function).
More precisely, this function is not called if m_s1i ze is greater than O and the module state (as returned
by PyModule_ GetState ())is NULL.

Like PyTypeObject . tp_clear, this function is not always called before a module is deallocated.
For example, when reference counting is enough to determine that an object is no longer used, the cyclic
garbage collector is not involved and m_free is called directly.

Zmienione w wersji 3.9: No longer called before the module state is allocated.

Jfreefunc m_free
A function to call during deallocation of the module object, or NULL if not needed.

This function is not called if the module state was requested but is not allocated yet. This is the case
immediately after the module is created and before the module is executed (Py_mod_exec function).
More precisely, this function is not called if m_size is greater than 0 and the module state (as returned
by PyModule_GetState ())is NULL.

Zmienione w wersji 3.9: No longer called before the module state is allocated.

Single-phase initialization

The module initialization function may create and return the module object directly. This is referred to as ,,single-
-phase initialization”, and uses one of the following two module creation functions:

PyObject* PyModule_Create (PyModuleDef *def)
Return value: New reference. Create a new module object, given the definition in def. This behaves like
PyModule_Create?l () with module_api_version set to PYTHON_API_VERSION.

PyObject* PyModule_Create2 (PyModuleDef *def, int module_api_version)
Return value: New reference. Create a new module object, given the definition in def, assuming the
API version module_api_version. If that version does not match the version of the running interpreter,
a RuntimeWarning is emitted.

Informacja: Most uses of this function should be using PyModule Create () instead; only use this if you
are sure you need it.

Before it is returned from in the initialization function, the resulting module object is typically populated using func-
tions like PyModule AddObject ().

8.6. Other Objects 123

The Python/C API, Wydanie 3.9.21

Multi-phase initialization

An alternate way to specify extensions is to request ,,multi-phase initialization”. Extension modules created this way
behave more like Python modules: the initialization is split between the creation phase, when the module object is cre-
ated, and the execution phase, when it is populated. The distinction is similartothe __new__ () and _init__ ()

methods of classes.

Unlike modules created using single-phase initialization, these modules are not singletons: if the sys.modules entry
is removed and the module is re-imported, a new module object is created, and the old module is subject to normal
garbage collection — as with Python modules. By default, multiple modules created from the same definition should
be independent: changes to one should not affect the others. This means that all state should be specific to the module
object (using e.g. using PyModule_GetState ()), orits contents (such as the module’s __dict__ or individual
classes created with Py Type_FromSpec ()).

All modules created using multi-phase initialization are expected to support sub-interpreters. Making sure multiple
modules are independent is typically enough to achieve this.

To request multi-phase initialization, the initialization function (PyInit_modulename) returns a PyModuleDef in-
stance with non-empty m_slots. Before it is returned, the PyModuleDef instance must be initialized with the
following function:

PyObject* PyModuleDef_Init (PyModuleDef *def)
Return value: Borrowed reference. Ensures a module definition is a properly initialized Python object that
correctly reports its type and reference count.

Returns def cast to PyObject *, or NULL if an error occurred.
Nowe w wersji 3.5.
The m_slots member of the module definition must point to an array of PyModuleDef_Slot structures:

PyModuleDef_Slot

int slot
A slot ID, chosen from the available values explained below.

void* value
Value of the slot, whose meaning depends on the slot ID.

Nowe w wersji 3.5.
The m_slots array must be terminated by a slot with id 0.
The available slot types are:

Py_mod_create
Specifies a function that is called to create the module object itself. The value pointer of this slot must point
to a function of the signature:

PyObject* create_module (PyObject *spec, PyModuleDef *def’)

The function receives a ModuleSpec instance, as defined in PEP 451, and the module definition. It should
return a new module object, or set an error and return NULL.

This function should be kept minimal. In particular, it should not call arbitrary Python code, as trying to import
the same module again may result in an infinite loop.

Multiple Py_mod_create slots may not be specified in one module definition.

If Py_mod_create is not specified, the import machinery will create a normal module object using
PyModule_New (). The name is taken from spec, not the definition, to allow extension modules to dynami-
cally adjust to their place in the module hierarchy and be imported under different names through symlinks,
all while sharing a single module definition.

There is no requirement for the returned object to be an instance of PyModule_Type. Any type can be
used, as long as it supports setting and getting import-related attributes. However, only PyModule_Type

124 Rozdziat 8. Concrete Objects Layer

https://www.python.org/dev/peps/pep-0451

The Python/C API, Wydanie 3.9.21

instances may be returned if the PyModuleDef has non-NULL m_traverse,m_clear,m_free;non-
-zero m_size; or slots other than Py_mod_create.

Py_mod_exec
Specifies a function that is called to execute the module. This is equivalent to executing the code of a Python
module: typically, this function adds classes and constants to the module. The signature of the function is:

int exec_module (PyObject* module)
If multiple Py_mod_exec slots are specified, they are processed in the order they appear in the m_slots array.

See PEP 489 for more details on multi-phase initialization.

Low-level module creation functions

The following functions are called under the hood when using multi-phase initialization. They can be used direc-
tly, for example when creating module objects dynamically. Note that both PyModule_FromDefAndSpec and
PyModule_ExecDef must be called to fully initialize a module.

PyObject * PyModule_FromDefAndSpec (PyModuleDef *def, PyObject *spec)
Return value: New reference. Create a new module object, given the definition in module and the Mo-
duleSpec spec. This behaves like PyModule FromDefAndSpecZ2 () with module_api_version set to
PYTHON_API_VERSION.

Nowe w wersji 3.5.

PyObject * PyModule_FromDefAndSpec2 (PyModuleDef *def, PyObject *spec, int modu-
le_api_version)
Return value: New reference. Create a new module object, given the definition in module and the ModuleSpec
spec, assuming the API version module_api_version. If that version does not match the version of the running
interpreter, a Runt imeWarning is emitted.

Informacja: Most uses of this function should be using PyModule FromDefAndSpec () instead; only
use this if you are sure you need it.

Nowe w wersji 3.5.

int PyModule_ExecDef (PyObject *module, PyModuleDef *def)
Process any execution slots (Py_mod_exec) given in def.

Nowe w wersji 3.5.

int PyModule_SetDocString (PyObject *module, const char *docstring)
Set the docstring for module to docstring. This function is called automatically when creating a module from
PyModuleDef, using either PyModule_Create or PyModule_FromDefAndSpec.

Nowe w wersji 3.5.

int PyModule_AddFunctions (PyObject *module, PyMethodDef *functions)
Add the functions from the NULL terminated functions array to module. Refer to the PyMethodDef do-
cumentation for details on individual entries (due to the lack of a shared module namespace, module level
Hfunctions” implemented in C typically receive the module as their first parameter, making them similar
to instance methods on Python classes). This function is called automatically when creating a module from
PyModuleDef, using either PyModule_Create or PyModule_FromDefAndSpec.

Nowe w wersji 3.5.

8.6. Other Objects 125

https://www.python.org/dev/peps/pep-0489

The Python/C API, Wydanie 3.9.21

Support functions

The module initialization function (if using single phase initialization) or a function called from a module execution
slot (if using multi-phase initialization), can use the following functions to help initialize the module state:

int PyModule_AddObject (PyObject *module, const char *name, PyObject *value)
Add an object to module as name. This is a convenience function which can be used from the module’s initia-
lization function. This steals a reference to value on success. Return —1 on error, O on success.

Informacja: Unlike other functions that steal references, PyModule_AddObject () only decrements the
reference count of value on success.

This means that its return value must be checked, and calling code must Py DECREF () value manually on
error. Example usage:

Py_INCREF (spam) ;

if (PyModule_AddObiject (module, "spam", spam) < 0) {
Py_DECREF (module) ;
Py_DECREF (spam) ;
return NULL;

int PyModule_AddIntConstant (PyObject *module, const char *name, long value)
Add an integer constant to module as name. This convenience function can be used from the module’s initia-
lization function. Return —1 on error, O on success.

int PyModule_AddStringConstant (PyObject *module, const char *name, const char *value)
Add a string constant to module as name. This convenience function can be used from the module’s initialization
function. The string value must be NULL-terminated. Return —1 on error, O on success.

int PyModule_AddIntMacro (PyObject *module, macro)
Add an int constant to module. The name and the value are taken from macro. For example
PyModule_AddIntMacro (module, AF_INET) adds the int constant AF_INET with the value of
AF_INET to module. Return —1 on error, O on success.

int PyModule_AddStringMacro (PyObject *module, macro)
Add a string constant to module.

int PyModule_AddType (PyObject *module, PyTypeObject *type)
Add a type object to module. The type object is finalized by calling internally Py Type_Ready (). The name
of the type object is taken from the last component of tp_name after dot. Return —1 on error, 0 on success.

Nowe w wersji 3.9.

Module lookup

Single-phase initialization creates singleton modules that can be looked up in the context of the current interpreter.
This allows the module object to be retrieved later with only a reference to the module definition.

These functions will not work on modules created using multi-phase initialization, since multiple such modules can
be created from a single definition.

PyObject* PyState_FindModule (PyModuleDef *def’)
Return value: Borrowed reference. Returns the module object that was created from def for the current
interpreter. This method requires that the module object has been attached to the interpreter state with
PyState_AddModule () beforehand. In case the corresponding module object is not found or has not
been attached to the interpreter state yet, it returns NULL.

int PyState_AddModule (PyObject *module, PyModuleDef *def)
Attaches the module object passed to the function to the interpreter state. This allows the module object to be
accessible via PyState_FindModule ().

126 Rozdziat 8. Concrete Objects Layer

The Python/C API, Wydanie 3.9.21

Only effective on modules created using single-phase initialization.

Python calls PyState_AddModule automatically after importing a module, so it is unnecessary (but harm-
less) to call it from module initialization code. An explicit call is needed only if the module’s own init code
subsequently calls PyState_FindModule. The function is mainly intended for implementing alternative
import mechanisms (either by calling it directly, or by referring to its implementation for details of the required
state updates).

The caller must hold the GIL.
Return 0 on success or -1 on failure.
Nowe w wersji 3.3.

int PyState_RemoveModule (PyModuleDef *def)
Removes the module object created from def from the interpreter state. Return 0 on success or -1 on failure.

The caller must hold the GIL.

Nowe w wersji 3.3.

8.6.3 lterator Objects

Python provides two general-purpose iterator objects. The first, a sequence iterator, works with an arbitrary sequence
supporting the __getitem__ () method. The second works with a callable object and a sentinel value, calling the
callable for each item in the sequence, and ending the iteration when the sentinel value is returned.

PyTypeObject PySeqIlter_Type
Type object for iterator objects returned by PySegIter_ New () and the one-argument form of the iter ()
built-in function for built-in sequence types.

int PySeqIter_Check (op)
Return true if the type of op is PySegIter_Type. This function always succeeds.

PyObject* PySeqIter_New (PyObject *seq)
Return value: New reference. Return an iterator that works with a general sequence object, seq. The iteration
ends when the sequence raises IndexError for the subscripting operation.

PyTypeObject PyCallIter_ Type
Type object for iterator objects returned by PyCallTlter New () and the two-argument form of the
iter () built-in function.

int PyCallIter_ Check (op)
Return true if the type of op is PyCallIter_Type. This function always succeeds.
PyObject* PyCallIter_New (PyObject *callable, PyObject *sentinel)
Return value: New reference. Return a new iterator. The first parameter, callable, can be any Python callable

object that can be called with no parameters; each call to it should return the next item in the iteration. When
callable returns a value equal to sentinel, the iteration will be terminated.

8.6.4 Descriptor Objects

»Descriptors” are objects that describe some attribute of an object. They are found in the dictionary of type objects.

PyTypeObject PyProperty_Type
The type object for the built-in descriptor types.

PyObject* PyDescr_NewGetSet (PyTypeObject *type, struct PyGetSetDef *getset)
Return value: New reference.

PyObject* PyDescr_NewMember (PyTypeObject *type, struct PyMemberDef *meth)
Return value: New reference.

PyObject* PyDescr_NewMethod (PyTypeObject *type, struct PyMethodDef *meth)
Return value: New reference.

8.6. Other Objects 127

The Python/C API, Wydanie 3.9.21

PyObject* PyDescr_NewWrapper (PyTypeObject *type, struct wrapperbase *wrapper, void *wrapped)
Return value: New reference.

PyObject* PyDescr_NewClassMethod (PyTypeObject *type, PyMethodDef *method)
Return value: New reference.

int PyDescr_IsData (PyObject *descr)
Return true if the descriptor objects descr describes a data attribute, or false if it describes a method. descr
must be a descriptor object; there is no error checking.

PyObject* PyWrapper_New (PyObject *, PyObject *)
Return value: New reference.

8.6.5 Slice Objects

PyTypeObject PySlice_Type
The type object for slice objects. This is the same as s1ice in the Python layer.

int PySlice_Check (PyObject *ob)
Return true if 0b is a slice object; ob must not be NULL. This function always succeeds.

PyObject* PySlice_New (PyObject *start, PyObject *stop, PyObject *step)
Return value: New reference. Return a new slice object with the given values. The start, stop, and step parameters
are used as the values of the slice object attributes of the same names. Any of the values may be NULL, in
which case the None will be used for the corresponding attribute. Return NULL if the new object could not
be allocated.

int PySlice_GetIndices (PyObject *slice, Py_ssize_t length, Py_ssize_t *start, Py_ssize_t *stop,
Py_ssize_t *step)
Retrieve the start, stop and step indices from the slice object slice, assuming a sequence of length length. Treats
indices greater than length as errors.

Returns 0 on success and —1 on error with no exception set (unless one of the indices was not None and failed
to be converted to an integer, in which case -1 is returned with an exception set).

You probably do not want to use this function.
Zmienione w wersji 3.2: The parameter type for the slice parameter was PyS1iceObject * before.

int PySlice_GetIndicesEx (PyObject *slice, Py ssize_t length, Py ssize t *start, Py _ssize_t *stop,
Py_ssize_t *step, Py_ssize_t *slicelength)
Usable replacement for PyS1ice_ GetIndices (). Retrieve the start, stop, and step indices from the slice
object slice assuming a sequence of length length, and store the length of the slice in slicelength. Out of bounds
indices are clipped in a manner consistent with the handling of normal slices.

Returns 0 on success and —1 on error with exception set.

Informacja: This function is considered not safe for resizable sequences. Its invocation should be replaced by
a combination of PyS1ice Unpack () and PySlice AdjustIndices () where

if (PySlice_GetIndicesEx(slice, length, é&start, &stop, &step, &slicelength) <o
=0) A
// return error

}

is replaced by

if (PySlice_Unpack(slice, &start, &stop, &step) < 0) {
// return error

}
slicelength = PySlice_AdjustIndices (length, &start, &stop, step);

128 Rozdziat 8. Concrete Objects Layer

The Python/C API, Wydanie 3.9.21

Zmienione w wersji 3.2: The parameter type for the slice parameter was PyS1iceObject* before.

Zmienione w wersji 3.6.1: If Py_ LIMITED_APT is not set or set to the value between 0x03050400 and
0x03060000 (not including) or 0x03060100 or higher PySlice_GetIndicesEx () isimplemented
as a macro using PySlice_Unpack () and PySlice_AdjustIndices (). Arguments start, stop and
step are evaluated more than once.

Niezalecane od wersji 3.6.1: If Py_ LIMITED_APT is set to the value less than 0x03050400 or between
0x03060000 and 0x03060100 (notincluding) PySlice_GetIndicesEx () isadeprecated function.

int PySlice_Unpack (PyObject *slice, Py_ssize_t *start, Py_ssize_t *stop, Py_ssize_t *step)
Extract the start, stop and step data members from a slice object as C integers. Silently reduce va-
lues larger than PY_SSIZE_T_MAX to PY_SSIZE_T_MAX, silently boost the start and stop valu-
es less than PY_SSIZE_T_MIN to PY_SSIZE_T_MIN, and silently boost the step values less than
-PY_ SSIZE_T_MAXto-PY_SSIZE_T_MAX.

Return —1 on error, 0 on success.
Nowe w wersji 3.6.1.

Py _ssize_t PySlice_AdjustIndices (Py_ssize_t length, Py ssize t *start, Py_ssize_t *stop,
Py_ssize_t step)
Adjust start/end slice indices assuming a sequence of the specified length. Out of bounds indices are clipped
in a manner consistent with the handling of normal slices.

Return the length of the slice. Always successful. Doesn’t call Python code.

Nowe w wersji 3.6.1.

8.6.6 Ellipsis Object

PyObject *Py_Ellipsis
The Python E11ipsis object. This object has no methods. It needs to be treated just like any other object
with respect to reference counts. Like Py_ None it is a singleton object.

8.6.7 MemoryView objects

A memoryview object exposes the C level buffer interface as a Python object which can then be passed around like
any other object.

PyObject *PyMemoryView_FromObject (PyObject *obj)
Return value: New reference. Create a memoryview object from an object that provides the buffer interface.
If obj supports writable buffer exports, the memoryview object will be read/write, otherwise it may be either
read-only or read/write at the discretion of the exporter.

PyObject *PyMemoryView_FromMemory (char *mem, Py_ssize_t size, int flags)
Return value: New reference. Create a memoryview object using mem as the underlying buffer. flags can be one
of PyBUF_READ or PyBUF_WRITE.

Nowe w wersji 3.3.

PyObject *PyMemoryView_FromBuffer (Py_buffer *view)
Return value: New reference. Create a memoryview object wrapping the given buffer structure view. For simple
byte buffers, PyMemoryView_ FromMemory () is the preferred function.

PyObject *PyMemoryView_GetContiguous (PyObject *obj, int buffertype, char order)
Return value: New reference. Create a memoryview object to a contiguous chunk of memory (in either «C»
or «Fortran order) from an object that defines the buffer interface. If memory is contiguous, the memoryview
object points to the original memory. Otherwise, a copy is made and the memoryview points to a new bytes
object.

8.6. Other Objects 129

The Python/C API, Wydanie 3.9.21

int PyMemoryView_Check (PyObject *obj)
Return true if the object obj is a memoryview object. It is not currently allowed to create subclasses of
memoryview. This function always succeeds.

Py_buffer *PyMemoryView_GET_BUFFER (PyObject *mview)
Return a pointer to the memoryview’s private copy of the exporter’s buffer. mview must be a memoryview
instance; this macro doesn’t check its type, you must do it yourself or you will risk crashes.

Py_buffer *PyMemoryView_GET_BASE (PyObject *mview)
Return either a pointer to the exporting object that the memoryview is based on or NULL if
the memoryview has been created by one of the functions PyMemoryView_FromMemory () or
PyMemoryView_FromBuffer (). mview must be a memoryview instance.

8.6.8 Weak Reference Objects

Python supports weak references as first-class objects. There are two specific object types which directly implement
weak references. The first is a simple reference object, and the second acts as a proxy for the original object as much
as it can.

int PyWeakref_Check (ob)
Return true if ob is either a reference or proxy object. This function always succeeds.

int PyWeakref_ CheckRef (ob)
Return true if ob is a reference object. This function always succeeds.

int PyWeakref_CheckProxy (ob)
Return true if ob is a proxy object. This function always succeeds.

PyObject* PyWeakref_ NewRef (PyObject *ob, PyObject *callback)
Return value: New reference. Return a weak reference object for the object ob. This will always return a new
reference, but is not guaranteed to create a new object; an existing reference object may be returned. The
second parameter, callback, can be a callable object that receives notification when ob is garbage collected; it
should accept a single parameter, which will be the weak reference object itself. callback may also be None or
NULL. If 0b is not a weakly-referencable object, or if callback is not callable, None, or NULL, this will return
NULL and raise TypeError.

PyObject* PyWeakref_NewProxy (PyObject *ob, PyObject *callback)
Return value: New reference. Return a weak reference proxy object for the object ob. This will always return
a new reference, but is not guaranteed to create a new object; an existing proxy object may be returned. The
second parameter, callback, can be a callable object that receives notification when ob is garbage collected; it
should accept a single parameter, which will be the weak reference object itself. callback may also be None or
NULL. If 0b is not a weakly-referencable object, or if callback is not callable, None, or NULL, this will return
NULL and raise TypeError.

PyObject* PyWeakref_GetObject (PyObject *ref)

Return value: Borrowed reference. Return the referenced object from a weak reference, ref. If the referent is
no longer live, returns Py_None.

Informacja: This function returns a borrowed reference to the referenced object. This means that you should
always call Py_ TNCREF () on the object except if you know that it cannot be destroyed while you are still
using it.

PyObject* PyWeakref_GET_OBJECT (PyObject *ref)
Return value: Borrowed reference. Similar to PyWeakref_ GetObject (), but implemented as a macro
that does no error checking.

130 Rozdziat 8. Concrete Objects Layer

The Python/C API, Wydanie 3.9.21

8.6.9 Capsules

Refer to using-capsules for more information on using these objects.
Nowe w wersji 3.1.

PyCapsule
This subtype of PyOb ject represents an opaque value, useful for C extension modules who need to pass an
opaque value (as a void* pointer) through Python code to other C code. It is often used to make a C function
pointer defined in one module available to other modules, so the regular import mechanism can be used to
access C APIs defined in dynamically loaded modules.

PyCapsule_Destructor
The type of a destructor callback for a capsule. Defined as:

typedef void (*PyCapsule_Destructor) (PyObject *);

See PyCapsule_New () for the semantics of PyCapsule_Destructor callbacks.

int PyCapsule_CheckExact (PyObject *p)
Return true if its argument is a PyCapsule. This function always succeeds.

PyObject* PyCapsule_New (void *pointer, const char *name, PyCapsule_Destructor destructor)
Return value: New reference. Create a PyCapsule encapsulating the pointer. The pointer argument may not
be NULL.

On failure, set an exception and return NULL.

The name string may either be NULL or a pointer to a valid C string. If non-NULL, this string must outlive the
capsule. (Though it is permitted to free it inside the destructor.)

If the destructor argument is not NULL, it will be called with the capsule as its argument when it is destroyed.

If this capsule will be stored as an attribute of a module, the name should be specified as modulename.
attributename. This will enable other modules to import the capsule using PyCapsule_Import ().

void* PyCapsule_GetPointer (PyObject *capsule, const char *name)
Retrieve the pointer stored in the capsule. On failure, set an exception and return NULL.

The name parameter must compare exactly to the name stored in the capsule. If the name stored in the capsule
is NULL, the name passed in must also be NULL. Python uses the C function st rcmp () to compare capsule
names.

PyCapsule_Destructor PyCapsule_GetDestructor (PyObject *capsule)
Return the current destructor stored in the capsule. On failure, set an exception and return NULL.

It is legal for a capsule to have a NULL destructor. This makes a NULL return code somewhat ambiguous; use
PyCapsule_IsValid() or PyErr_Occurred () to disambiguate.

void* PyCapsule_GetContext (PyObject *capsule)
Return the current context stored in the capsule. On failure, set an exception and return NULL.

It is legal for a capsule to have a NULL context. This makes a NULL return code somewhat ambiguous; use
PyCapsule_IsValid() or PyErr_Occurred () to disambiguate.

const char* PyCapsule_GetName (PyObject *capsule)
Return the current name stored in the capsule. On failure, set an exception and return NULL.

It is legal for a capsule to have a NULL name. This makes a NULL return code somewhat ambiguous; use
PyCapsule_IsValid () or PyErr_Occurred () to disambiguate.

void* PyCapsule_Import (const char *name, int no_block)
Import a pointer to a C object from a capsule attribute in a module. The name parameter should
specify the full name to the attribute, as in module.attribute. The name stored in the cap-
sule must match this string exactly. If no_block is true, import the module without blocking (using
PyImport_ImportModuleNoBlock ()).If no_block is false, import the module conventionally (using
PyImport_ImportModule ()).

8.6. Other Objects 131

The Python/C API, Wydanie 3.9.21

Return the capsule’s internal pointer on success. On failure, set an exception and return NULL.

int PyCapsule_IsValid (PyObject *capsule, const char *name)
Determines whether or not capsule is a valid capsule. A valid capsule is non-NULL, passes
PyCapsule_CheckExact (),hasanon-NULL pointer stored in it, and its internal name matches the name
parameter. (See PyCapsule_GetPointer () for information on how capsule names are compared.)

In other words, if PyCapsule_TsValid () returns a true value, calls to any of the accessors (any function
starting with PyCapsule_Get ()) are guaranteed to succeed.

Return a nonzero value if the object is valid and matches the name passed in. Return 0 otherwise. This function
will not fail.

int PyCapsule_SetContext (PyObject *capsule, void *context)
Set the context pointer inside capsule to context.

Return 0 on success. Return nonzero and set an exception on failure.

int PyCapsule_SetDestructor (PyObject *capsule, PyCapsule_Destructor destructor)
Set the destructor inside capsule to destructor.

Return O on success. Return nonzero and set an exception on failure.

int PyCapsule_SetName (PyObject *capsule, const char *name)
Set the name inside capsule to name. If non-NULL, the name must outlive the capsule. If the previous name
stored in the capsule was not NULL, no attempt is made to free it.

Return O on success. Return nonzero and set an exception on failure.

int PyCapsule_SetPointer (PyObject *capsule, void *pointer)
Set the void pointer inside capsule to pointer. The pointer may not be NULL.

Return 0 on success. Return nonzero and set an exception on failure.

8.6.10 Generator Objects

Generator objects are what Python uses to implement generator iterators. They are normally created by iterating over
a function that yields values, rather than explicitly calling PyGen_New () or PyGen_NewlWithQualName ().

PyGenObject
The C structure used for generator objects.

PyTypeObject PyGen_Type
The type object corresponding to generator objects.

int PyGen_Check (PyObject *ob)
Return true if ob is a generator object; ob must not be NULL. This function always succeeds.

int PyGen_CheckExact (PyObject *ob)
Return true if ob’s type is PyGen_ Type; ob must not be NULL. This function always succeeds.

PyObject* PyGen_New (PyFrameObject *frame)
Return value: New reference. Create and return a new generator object based on the frame object. A reference
to frame is stolen by this function. The argument must not be NULL.

PyObject* PyGen_NewWithQualName (PyFrameObject *frame, PyObject *name, PyObject *qualname)
Return value: New reference. Create and return a new generator object based on the frame object, with
__name__and __qualname___ set to name and qualname. A reference to frame is stolen by this func-
tion. The frame argument must not be NULL.

132 Rozdziat 8. Concrete Objects Layer

The Python/C API, Wydanie 3.9.21

8.6.11 Coroutine Objects

Nowe w wersji 3.5.
Coroutine objects are what functions declared with an async keyword return.

PyCoroObject
The C structure used for coroutine objects.

PyTypeObject PyCoro_Type
The type object corresponding to coroutine objects.
int PyCoro_CheckExact (PyObject *ob)
Return true if ob’s type is PyCoro_ Type; ob must not be NULL. This function always succeeds.
PyObject* PyCoro_New (PyFrameObject *frame, PyObject *name, PyObject *qualname)
Return value: New reference. Create and return a new coroutine object based on the frame object, with

_ _name__ and __qualname___ set to name and qualname. A reference to frame is stolen by this func-
tion. The frame argument must not be NULL.

8.6.12 Context Variables Objects

Informacja: Zmienione w wersji 3.7.1: In Python 3.7.1 the signatures of all context variables C APIs were changed
to use PyOb ject pointers instead of PyContext, PyContextVar,and PyContextToken, e.g.:

// in 3.7.0:
PyContext *PyContext_ New (wvoid);

// in 3.7.1+:
PyObject *PyContext_New (wvoid);

See bpo-34762 for more details.

Nowe w wersji 3.7.
This section details the public C API for the contextvars module.

PyContext
The C structure used to represent a contextvars.Context object.

PyContextVar
The C structure used to represent a contextvars.ContextVar object.

PyContextToken
The C structure used to represent a contextvars . Token object.

PyTypeObject PyContext_Type
The type object representing the context type.

PyTypeObject PyContextVar_Type
The type object representing the context variable type.

PyTypeObject PyContextToken_Type
The type object representing the context variable token type.

Type-check macros:

int PyContext_CheckExact (PyObject *o)
Return true if o is of type PyContext_ Type. o must not be NULL. This function always succeeds.

int PyContextVar_CheckExact (PyObject *o)
Return true if o is of type PyContextVar_Type. o must not be NULL. This function always succeeds.

8.6. Other Objects 133

https://bugs.python.org/issue?@action=redirect&bpo=34762

The Python/C API, Wydanie 3.9.21

int PyContextToken_CheckExact (PyObject *0)
Return true if o is of type PyContext Token_Type. o must not be NULL. This function always succeeds.

Context object management functions:

PyObject *PyContext_New (void)
Return value: New reference. Create a new empty context object. Returns NULL if an error has occurred.

PyObject *PyContext_Copy (PyObject *ctx)
Return value: New reference. Create a shallow copy of the passed ctx context object. Returns NULL if an error
has occurred.

PyObject *PyContext_CopyCurrent (void)
Return value: New reference. Create a shallow copy of the current thread context. Returns NULL if an error has
occurred.

int PyContext_Enter (PyObject *ctx)
Set ctx as the current context for the current thread. Returns 0 on success, and —1 on error.

int PyContext_Exit (PyObject *ctx)
Deactivate the ctx context and restore the previous context as the current context for the current thread. Returns
0 on success, and —1 on error.

Context variable functions:

PyObject *PyContextVar_New (const char *name, PyObject *def)
Return value: New reference. Create anew ContextVar object. The name parameter is used for introspection
and debug purposes. The def parameter specifies a default value for the context variable, or NULL for no default.
If an error has occurred, this function returns NULL.

int PyContextVar_Get (PyObject *var, PyObject *default_value, PyObject **value)
Get the value of a context variable. Returns -1 if an error has occurred during lookup, and 0 if no error
occurred, whether or not a value was found.

If the context variable was found, value will be a pointer to it. If the context variable was not found, value will
point to:

e default_value, if not NULL;
o the default value of var, if not NULL;
e NULL
Except for NULL, the function returns a new reference.

PyObject *PyContextVar_Set (PyObject *var, PyObject *value)
Return value: New reference. Set the value of var to value in the current context. Returns a new token object
for this change, or NULL if an error has occurred.

int PyContextVar_Reset (PyObject *var, PyObject *token)
Reset the state of the var context variable to that it was in before PyContextVar_Set () that returned the
token was called. This function returns O on success and —1 on error.

8.6.13 DateTime Objects

Various date and time objects are supplied by the datet ime module. Before using any of these functions, the
header file datet ime . h must be included in your source (note that this is not included by Python.h), and the
macro PyDateTime_IMPORT must be invoked, usually as part of the module initialisation function. The macro
puts a pointer to a C structure into a static variable, PyDateTimeAPT, that is used by the following macros.

Macro for access to the UTC singleton:

PyObject* PyDateTime_TimeZone_UTC
Returns the time zone singleton representing UTC, the same object as datetime.timezone.utc.

Nowe w wersji 3.7.

134 Rozdziat 8. Concrete Objects Layer

The Python/C API, Wydanie 3.9.21

Type-check macros:

int PyDate_Check (PyObject *ob)
Return true if ob is of type PyDateTime_DateType orasubtype of PyDateTime_DateType. ob must
not be NULL. This function always succeeds.

int PyDate_CheckExact (PyObject *ob)
Return true if ob is of type PyDateTime_DateType. ob must not be NULL. This function always succeeds.

int PyDateTime_Check (PyObject *ob)
Return true if ob is of type PyDateTime_DateTimeType or a subtype of
PyDateTime_DateTimeType. ob must not be NULL. This function always succeeds.

int PyDateTime_CheckExact (PyObject *ob)
Return true if ob is of type PyDateTime_DateTimeType. ob must not be NULL. This function always
succeeds.

int PyTime_Check (PyObject *ob)
Return true if ob is of type PyDateTime_TimeType orasubtype of PyDateTime_TimeType. ob must
not be NULL. This function always succeeds.

int PyTime_CheckExact (PyObject *ob)
Return true if ob is of type PyDateTime_TimeType. ob must not be NULL. This function always succeeds.

int PyDelta_Check (PyObject *ob)
Return true if ob is of type PyDateTime_DeltaType or a subtype of PyDateTime_DeltaType. 0ob
must not be NULL. This function always succeeds.

int PyDelta_CheckExact (PyObject *ob)
Return true if 0b is of type PyDateTime_DeltaType. ob must not be NULL. This function always succe-
eds.

int PyTZInfo_Check (PyObject *ob)
Return true if 0b is of type PyDateTime_TZInfoType or a subtype of PyDateTime_TZInfoType.
ob must not be NULL. This function always succeeds.

int PyTZInfo_CheckExact (PyObject *ob)
Return true if ob is of type PyDateTime_TZInfoType. ob must not be NULL. This function always suc-
ceeds.

Macros to create objects:

PyObject* PyDate_FromDate (int year, int month, int day)
Return value: New reference. Return a datet ime . date object with the specified year, month and day.

PyObject* PyDateTime_FromDateAndTime (int year, int month, int day, int hour, int minute, int second,

int usecond)
Return value: New reference. Return a datetime.datet ime object with the specified year, month, day,

hour, minute, second and microsecond.

PyObject* PyDateTime_FromDateAndTimeAndFold (int year, int month, int day, int hour, int minute,

int second, int usecond, int fold)
Return value: New reference. Return a datetime.datet ime object with the specified year, month, day,

hour, minute, second, microsecond and fold.
Nowe w wersji 3.6.

PyObject* PyTime_FromTime (int hour, int minute, int second, int usecond)
Return value: New reference. Return a datetime .t ime object with the specified hour, minute, second and
microsecond.

PyObject* PyTime_FromTimeAndFold (int hour, int minute, int second, int usecond, int fold)
Return value: New reference. Return a datetime.time object with the specified hour, minute, second,
microsecond and fold.

Nowe w wersji 3.6.

8.6. Other Objects 135

The Python/C API, Wydanie 3.9.21

PyObject* PyDelta_FromDSU (int days, int seconds, int useconds)
Return value: New reference. Return a datetime.timedelta object representing the given number of
days, seconds and microseconds. Normalization is performed so that the resulting number of microseconds
and seconds lie in the ranges documented for datetime.timedelta objects.

PyObject* PyTimeZone_FromOffset (PyDateTime_DeltaType* offset)
Return value: New reference. Return a datetime.timezone object with an unnamed fixed offset repre-
sented by the offser argument.

Nowe w wersji 3.7.

PyObject* PyTimeZone_FromOf fsetAndName (PyDateTime_DeltaType* offset, PyUnicode* name)
Return value: New reference. Return a datetime.timezone object with a fixed offset represented by the
offset argument and with tzname name.

Nowe w wersji 3.7.

Macros to extract fields from date objects. The argument must be an instance of PyDateTime_Date, including
subclasses (such as PyDateTime_DateTime). The argument must not be NULL, and the type is not checked:

int PyDateTime_GET_YEAR (PyDateTime_Date *0)
Return the year, as a positive int.

int PyDateTime_GET_MONTH (PyDateTime_Date *o)
Return the month, as an int from 1 through 12.

int PyDateTime_GET_DAY (PyDateTime_Date *0)
Return the day, as an int from 1 through 31.

Macros to extract fields from datetime objects. The argument must be an instance of PyDateTime_DateTime,
including subclasses. The argument must not be NULL, and the type is not checked:

int PyDateTime_DATE_GET_HOUR (PyDateTime_DateTime *0)
Return the hour, as an int from 0 through 23.

int PyDateTime_DATE_GET_MINUTE (PyDateTime_DateTime *o)
Return the minute, as an int from 0 through 59.

int PyDateTime_DATE_GET_SECOND (PyDateTime_DateTime *0)
Return the second, as an int from 0 through 59.

int PyDateTime_DATE_GET_MICROSECOND (PyDateTime_DateTime *o0)
Return the microsecond, as an int from O through 999999.

int PyDateTime_DATE_GET_FOLD (PyDateTime_DateTime *0)
Return the fold, as an int from O through 1.

Nowe w wersji 3.6.

Macros to extract fields from time objects. The argument must be an instance of PyDateTime_Time, including
subclasses. The argument must not be NULL, and the type is not checked:

int PyDateTime_TIME_GET_HOUR (PyDateTime_Time *o)
Return the hour, as an int from 0 through 23.

int PyDateTime_TIME_GET_MINUTE (PyDateTime_Time *0)
Return the minute, as an int from 0 through 59.

int PyDateTime_TIME_GET_SECOND (PyDateTime_Time *0)
Return the second, as an int from 0 through 59.

int PyDateTime_TIME_GET_MICROSECOND (PyDateTime_Time *o)
Return the microsecond, as an int from 0 through 999999.

int PyDateTime_TIME_GET_FOLD (PyDateTime_Time *o)
Return the fold, as an int from O through 1.

Nowe w wersji 3.6.

136 Rozdziat 8. Concrete Objects Layer

The Python/C API, Wydanie 3.9.21

Macros to extract fields from time delta objects. The argument must be an instance of PyDateTime_Delta,
including subclasses. The argument must not be NULL, and the type is not checked:

int PyDateTime_DELTA_GET_DAYS (PyDateTime_Delta *o)

Return the number of days, as an int from -999999999 to 999999999.

Nowe w wersji 3.3.

int PyDateTime_DELTA_GET_SECONDS (PyDateTime_Delta *0)

Return the number of seconds, as an int from O through 86399.

Nowe w wersji 3.3.

int PyDateTime_DELTA_GET_MICROSECONDS (PyDateTime_Delta *o)

Return the number of microseconds, as an int from 0 through 999999.

Nowe w wersji 3.3.

Macros for the convenience of modules implementing the DB API:

PyObject* PyDateTime_FromTimestamp (PyObject *args)

Return value: New reference. Create and return a new datet ime . datet ime object given an argument tuple
suitable for passing to datetime.datetime.fromtimestamp ().

PyObject* PyDate_FromTimestamp (PyObject *args)

Return value: New reference. Create and return a new datetime.date object given an argument tuple
suitable for passing to datetime.date.fromtimestamp ().

8.6.14 Objects for Type Hinting

Various built-in types for type hinting are provided. Only GenericAlias is exposed to C.

PyObject* Py_GenericAlias (PyObject *origin, PyObject *args)

Create a GenericAlias object. Equivalent to calling the Python class types.GenericAlias. The origin
and args arguments set the GenericAlias’s __origin__and __args___ attributes respectively. origin
should be a PyTypeOb ject *, and args can be a PyTupleObject * or any PyObject *. If args passed
is not a tuple, a 1-tuple is automatically constructed and __args___is set to (args,). Minimal checking
is done for the arguments, so the function will succeed even if origin is not a type. The GenericAlias’s
__parameters__ attribute is constructed lazily from __args__. On failure, an exception is raised and
NULL is returned.

Here’s an example of how to make an extension type generic:

static PyMethodDef my_obj_methods[] = {
// Other methods.

{"_ class_getitem__", (PyCFunction)Py_GenericAlias, METH_O|METH_CLASS,
—"See PEP 585"}

Zobacz takze:
The data model method __class_getitem__ ().

Nowe w wersji 3.9.

PyTypeObject Py_GenericAliasType

The C type of the object returned by Py_GenericAlias (). Equivalent to types.GenericAlias in
Python.

Nowe w wersji 3.9.

8.6. Other Objects 137

The Python/C API, Wydanie 3.9.21

138 Rozdziat 8. Concrete Objects Layer

rRozDzIAt 9

Initialization, Finalization, and Threads

See also Python Initialization Configuration.

9.1 Before Python Initialization

In an application embedding Python, the Py_Tnitialize () function must be called before using any other
Python/C API functions; with the exception of a few functions and the global configuration variables.

The following functions can be safely called before Python is initialized:
« Configuration functions:
— PyImport_AppendInittab ()
- PyImport_ExtendInittab ()
- PyInitFrozenExtensions ()
- PyMem_SetAllocator ()
- PyMem_SetupDebugHooks ()
- PyObject_SetArenaAllocator ()
- Py_SetPath()
- Py_SetProgramName ()
- Py_SetPythonHome ()
- Py_SetStandardStreamEncoding ()
- PySys_AddWarnOption ()
- PySys_AddXOption ()
- PySys_ResetWarnOptions ()
« Informative functions:
- Py _IsInitialized()
- PyMem_GetAllocator ()

- PyObject_GetArenaAllocator ()

139

The Python/C API, Wydanie 3.9.21

Py_GetBuildInfo()

Py_GetCompiler ()
- Py_GetCopyright ()
- Py_GetPlatform()
- Py_GetVersion()

« Utilities:
- Py_DecodeLocale ()

o Memory allocators:

- PyMem_RawMalloc ()

PyMem_RawRealloc ()

PyMem RawCalloc ()

- PyMem_RawFree ()

Informacja: The following functions should not be called before Py Initialize():
Py_EncodeLocale (), Py _GetPath(), Py_GetPrefix(), Py_GetExecPrefix(),
Py _GetProgramFullPath(), Py _GetPythonHome (), Py _GetProgramName () and

PyEval_InitThreads ().

9.2 Global configuration variables

Python has variables for the global configuration to control different features and options. By default, these flags are
controlled by command line options.

When a flag is set by an option, the value of the flag is the number of times that the option was set. For example, —b
sets Py_BytesWarningFlagto 1 and —bb sets Py_BytesWarningFlagto 2.

int Py_BytesWarningFlag
Issue a warning when comparing bytes or bytearray with str or bytes with int. Issue an error if
greater or equal to 2.

Set by the —b option.

int Py_DebugFlag
Turn on parser debugging output (for expert only, depending on compilation options).

Set by the —d option and the PYTHONDEBUG environment variable.

int Py_DontWriteBytecodeFlag
If set to non-zero, Python won’t try to write . pyc files on the import of source modules.

Set by the —B option and the PYTHONDONTWRITEBYTECODE environment variable.

int Py_FrozenFlag
Suppress error messages when calculating the module search path in Py GetPath ().

Private flag used by _freeze_importlib and frozenmain programs.

int Py HashRandomizationFlag
Set to 1 if the PYTHONHASHSEED environment variable is set to a non-empty string.

If the flag is non-zero, read the PYTHONHASHSEED environment variable to initialize the secret hash seed.

int Py_IgnoreEnvironmentFlag
Ignore all PYTHON* environment variables, e.g. PYTHONPATH and PY THONHOME, that might be set.

Set by the —E and - T options.

140 Rozdziat 9. Initialization, Finalization, and Threads

The Python/C API, Wydanie 3.9.21

int Py_InspectFlag
When a script is passed as first argument or the —c option is used, enter interactive mode after executing the
script or the command, even when sys . stdin does not appear to be a terminal.

Set by the —1 option and the PYTHONINSPECT environment variable.

int Py_InteractiveFlag
Set by the —1 option.

int Py_IsolatedFlag
Run Python in isolated mode. In isolated mode sy s . path contains neither the script’s directory nor the user’s
site-packages directory.

Set by the —I option.
Nowe w wersji 3.4.

int Py_LegacyWindowsFSEncodingFlag
If the flag is non-zero, use the mbcs encoding instead of the UTF-8 encoding for the filesystem encoding.

Set to 1 if the PYTHONLEGACYWINDOWSFSENCODING environment variable is set to a non-empty string.
See PEP 529 for more details.
Availability: Windows.

int Py_LegacyWindowsStdioFlag
If the flag is non-zero, use io.FileIO instead of WindowsConsoleIO for sys standard streams.

Set to 1 if the PYTHONLEGACYWINDOWSSTDIO environment variable is set to a non-empty string.
See PEP 528 for more details.
Availability: Windows.

int Py_NoSiteFlag
Disable the import of the module site and the site-dependent manipulations of sys.path that it entails.
Also disable these manipulations if site is explicitly imported later (call site.main () if you want them
to be triggered).

Set by the —S option.

int Py_NoUserSiteDirectory
Don’t add the user site-packages directorytosys.path.

Set by the —s and T options, and the PYTHONNOUSERSITE environment variable.

int Py_OptimizeFlag
Set by the —O option and the PYTHONOPTIMIZE environment variable.

int Py_QuietFlag
Don'’t display the copyright and version messages even in interactive mode.

Set by the —g option.
Nowe w wersji 3.2.

int Py_UnbufferedStdioFlag
Force the stdout and stderr streams to be unbuffered.

Set by the —u option and the PYTHONUNBUFFERED environment variable.

int Py_VerboseFlag
Print a message each time a module is initialized, showing the place (filename or built-in module) from which it
is loaded. If greater or equal to 2, print a message for each file that is checked for when searching for a module.
Also provides information on module cleanup at exit.

Set by the —v option and the PYTHONVERBOSE environment variable.

9.2. Global configuration variables 141

https://www.python.org/dev/peps/pep-0529
https://www.python.org/dev/peps/pep-0528

The Python/C API, Wydanie 3.9.21

9.3 Initializing and finalizing the interpreter

void Py_Initialize ()

Initialize the Python interpreter. In an application embedding Python, this should be called before using any
other Python/C API functions; see Before Python Initialization for the few exceptions.

This initializes the table of loaded modules (sys.modules), and creates the fundamental modules
builtins, __main__ and sys. It also initializes the module search path (sys.path). It does not set
sys.argv;use PySys_SetArgvEx () for that. This is a no-op when called for a second time (without
calling Py_FinalizeEx () first). There is no return value; it is a fatal error if the initialization fails.

Informacja: On Windows, changes the console mode from O_TEXT to O_BINARY, which will also affect
non-Python uses of the console using the C Runtime.

void Py_InitializeEx (int initsigs)

This function works like Py Tnitialize () if initsigsis 1. If initsigs is O, it skips initialization registration
of signal handlers, which might be useful when Python is embedded.

intPy_IsInitialized()

Return true (nonzero) when the Python interpreter has been initialized, false (zero) if not. After
Py _FinalizeEx () is called, this returns false until Py_Tnitialize () is called again.

int Py _FinalizeEx ()

Undo all initializations made by Py_Tnitialize () and subsequent use of Python/C API functions, and
destroy all sub-interpreters (see Py_NewInterpreter () below) that were created and not yet destroyed
since the last callto Py_Tnitialize ().ldeally, this frees all memory allocated by the Python interpreter.
This is a no-op when called for a second time (without calling Py_Tnitialize () again first). Normally
the return value is 0. If there were errors during finalization (flushing buffered data), -1 is returned.

This function is provided for a number of reasons. An embedding application might want to restart Python
without having to restart the application itself. An application that has loaded the Python interpreter from
a dynamically loadable library (or DLL) might want to free all memory allocated by Python before unloading
the DLL. During a hunt for memory leaks in an application a developer might want to free all memory allocated
by Python before exiting from the application.

Bugs and caveats: The destruction of modules and objects in modules is done in random order; this may cause
destructors (__del__ () methods) to fail when they depend on other objects (even functions) or modules.
Dynamically loaded extension modules loaded by Python are not unloaded. Small amounts of memory allocated
by the Python interpreter may not be freed (if you find a leak, please report it). Memory tied up in circular
references between objects is not freed. Some memory allocated by extension modules may not be freed. Some
extensions may not work properly if their initialization routine is called more than once; this can happen if an
application calls Py Tnitialize () and Py_FinalizeEx () more than once.

Raises an auditing event cpython._PySys_ClearAuditHooks with no arguments.

Nowe w wersji 3.6.

void Py_Finalize ()

This is a backwards-compatible version of Py_FinalizeEx () that disregards the return value.

142

Rozdziat 9. Initialization, Finalization, and Threads

The Python/C API, Wydanie 3.9.21

9.4 Process-wide parameters

int Py_SetStandardStreamEncoding (const char *encoding, const char *errors)
This function should be called before Py Tnitialize (), if itis called at all. It specifies which encoding
and error handling to use with standard 10, with the same meanings as in str.encode ().

It overrides PYTHONIOENCODING values, and allows embedding code to control IO encoding when the
environment variable does not work.

encoding and/or errors may be NULL to use PYTHONIOENCODING and/or default values (depending on other
settings).

Note that sys.stderr always uses the ,backslashreplace” error handler, regardless of this (or any other)
setting.

If Py FinalizeEx () is called, this function will need to be called again in order to affect subsequent calls
toPy_Initialize().

Returns 0 if successful, a nonzero value on error (e.g. calling after the interpreter has already been initialized).
Nowe w wersji 3.4.

void Py_ SetProgramName (const wchar_t *name)
This function should be called before Py_ Tnitialize () is called for the first time, if it is called at all. It
tells the interpreter the value of the argv [0] argument to the main () function of the program (converted
to wide characters). This is used by Py_GetPath () and some other functions below to find the Python
run-time libraries relative to the interpreter executable. The default value is ' python '. The argument should
point to a zero-terminated wide character string in static storage whose contents will not change for the duration
of the program’s execution. No code in the Python interpreter will change the contents of this storage.

Use Py_DecodeLocale () to decode a bytes string to get a wchar_ * string.

wchar* Py_GetProgramName ()
Return the program name set with Py Set ProgramName (), or the default. The returned string points into
static storage; the caller should not modify its value.

wchar_t* Py GetPrefix ()
Return the prefix for installed platform-independent files. This is derived through a number of complicated rules
from the program name set with Py Set ProgramName () and some environment variables; for example, if
the program name is ' /usr/local/bin/python’', the prefixis ' /usr/local'. The returned string
points into static storage; the caller should not modify its value. This corresponds to the prefix variable in
the top-level Makefile and the ——prefix argument to the configure script at build time. The value is
available to Python code as sys . prefix. It is only useful on Unix. See also the next function.

wchar_t* Py_GetExecPrefix ()

Return the exec-prefix for installed platform-dependent files. This is derived through a number of compli-
cated rules from the program name set with Py_SetProgramName () and some environment varia-
bles; for example, if the program name is ' /usr/local/bin/python’, the exec-prefix is ' /usr/
local'. The returned string points into static storage; the caller should not modify its value. This corre-
sponds to the exec_prefix variable in the top-level Makefile and the ——exec—prefix argument to
the configure script at build time. The value is available to Python code as sys.exec_prefix. Itis
only useful on Unix.

Background: The exec-prefix differs from the prefix when platform dependent files (such as executables and
shared libraries) are installed in a different directory tree. In a typical installation, platform dependent files
may be installed in the /usr/local/plat subtree while platform independent may be installed in /usr/
local.

Generally speaking, a platform is a combination of hardware and software families, e.g. Sparc machines run-
ning the Solaris 2.x operating system are considered the same platform, but Intel machines running Solaris 2.x
are another platform, and Intel machines running Linux are yet another platform. Different major revisions of
the same operating system generally also form different platforms. Non-Unix operating systems are a different

9.4. Process-wide parameters 143

The Python/C API, Wydanie 3.9.21

story; the installation strategies on those systems are so different that the prefix and exec-prefix are meanin-
gless, and set to the empty string. Note that compiled Python bytecode files are platform independent (but not
independent from the Python version by which they were compiled!).

System administrators will know how to configure the mount or automount programs to share /usr/
local between platforms while having /usr/local/plat be a different filesystem for each platform.

wchar_t* Py_GetProgramFullPath ()

Return the full program name of the Python executable; this is computed as a side-effect of deriving the default
module search path from the program name (set by Py_SetProgramName () above). The returned string
points into static storage; the caller should not modify its value. The value is available to Python code as sy s .
executable.

wchar_t* Py_GetPath ()

Return the default module search path; this is computed from the program name (set by
Py_SetProgramName () above) and some environment variables. The returned string consists of
a series of directory names separated by a platform dependent delimiter character. The delimiter character is
' : ' on Unix and macOS, '; ' on Windows. The returned string points into static storage; the caller should
not modify its value. The list sys.path is initialized with this value on interpreter startup; it can be (and
usually is) modified later to change the search path for loading modules.

void Py_SetPath (const wchar_t *)

Set the default module search path. If this function is called before Py _Tnitialize (), then
Py_GetPath () won't attempt to compute a default search path but uses the one provided instead. This
is useful if Python is embedded by an application that has full knowledge of the location of all modules. The
path components should be separated by the platform dependent delimiter character, which is ' : ' on Unix
and macOS, '; ' on Windows.

This also causes sys.executable to be set to the program full path (see
Py_GetProgramFullPath()) and for sys.prefix and sys.exec_prefix to be empty. It
is up to the caller to modify these if required after calling Py_Tnitialize ().

Use Py_DecodeLocale () to decode a bytes string to get a wchar_ * string.
The path argument is copied internally, so the caller may free it after the call completes.

Zmienione w wersji 3.8: The program full path is now used for sys.executable, instead of the program
name.

const char* Py_GetVersion ()

Return the version of this Python interpreter. This is a string that looks something like

"3.0a5+ (py3k:63103M, May 12 2008, 00:53:55) \n[GCC 4.2.3]"

The first word (up to the first space character) is the current Python version; the first characters are the major
and minor version separated by a period. The returned string points into static storage; the caller should not
modify its value. The value is available to Python code as sys .version.

const char* Py_GetPlatform ()

Return the platform identifier for the current platform. On Unix, this is formed from the ,,official” name of the
operating system, converted to lower case, followed by the major revision number; e.g., for Solaris 2.x, which
is also known as SunOS 5.x, the value is ' sunos5'.OnmacOS,itis 'darwin'. On Windows, itis 'win'.
The returned string points into static storage; the caller should not modify its value. The value is available to
Python code as sys.platform.

const char* Py_GetCopyright ()

Return the official copyright string for the current Python version, for example
'Copyright 1991-1995 Stichting Mathematisch Centrum, Amsterdam'’

The returned string points into static storage; the caller should not modify its value. The value is available to
Python code as sys.copyright.

const char* Py_GetCompiler ()

Return an indication of the compiler used to build the current Python version, in square brackets, for example:

144

Rozdziat 9. Initialization, Finalization, and Threads

The Python/C API, Wydanie 3.9.21

"[GCC 2.7.2.2]"

The returned string points into static storage; the caller should not modify its value. The value is available to
Python code as part of the variable sys.version.

const char* Py_GetBuildInfo ()
Return information about the sequence number and build date and time of the current Python interpreter
instance, for example

"#67, Aug 1 1997, 22:34:28"

The returned string points into static storage; the caller should not modify its value. The value is available to
Python code as part of the variable sys.version.

void PySys_SetArgvEx (int argc, wchar_t **argv, int updatepath)
Set sys . argv based on argc and argv. These parameters are similar to those passed to the program’smain ()
function with the difference that the first entry should refer to the script file to be executed rather than the execu-
table hosting the Python interpreter. If there isn’t a script that will be run, the first entry in argv can be an empty
string. If this function fails to initialize sy s . argv, a fatal condition is signalled using Py_FatalError ().

If updatepath is zero, this is all the function does. If updatepath is non-zero, the function also modifies sys .
path according to the following algorithm:

« If the name of an existing script is passed in argv [0], the absolute path of the directory where the
script is located is prepended to sy s . path.

» Otherwise (that is, if argcis 0 or argv [0] doesn’t point to an existing file name), an empty string is
prepended to sys . path, which is the same as prepending the current working directory (" . ").

Use Py_DecodeLocale () to decode a bytes string to get a wchar_ * string.

Informacja: It is recommended that applications embedding the Python interpreter for purposes other than
executing a single script pass 0 as updatepath, and update sys . path themselves if desired. See CVE-2008-
-5983.

On versions before 3.1.3, you can achieve the same effect by manually popping the first sys.path element
after having called PySys_SetArgv (), for example using:

PyRun_SimpleString ("import sys; sys.path.pop(0)\n");

Nowe w wersji 3.1.3.

void PySys_ SetArgv (int argc, wchar_t **argv)
This function works like PySys_SetArgvEx () with updatepath set to 1 unless the python interpreter
was started with the - T.

Use Py_DecodeLocale () to decode a bytes string to get a wchar_ * string.
Zmienione w wersji 3.4: The updatepath value depends on —I.

void Py_ SetPythonHome (const wchar_t *home)
Set the default ,,home” directory, that is, the location of the standard Python libraries. See PYTHONHOME for
the meaning of the argument string.

The argument should point to a zero-terminated character string in static storage whose contents will not change
for the duration of the program’s execution. No code in the Python interpreter will change the contents of this
storage.

Use Py_DecodeLocale () to decode a bytes string to get a wchar_ * string.

w_char* Py_GetPythonHome ()
Return the default ,,home”, that is, the value set by a previous call to Py_SetPythonHome (), or the value
of the PYTHONHOME environment variable if it is set.

9.4. Process-wide parameters 145

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-5983
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-5983

The Python/C API, Wydanie 3.9.21

9.5 Thread State and the Global Interpreter Lock

The Python interpreter is not fully thread-safe. In order to support multi-threaded Python programs, there’s a global
lock, called the global interpreter lock or GIL, that must be held by the current thread before it can safely access
Python objects. Without the lock, even the simplest operations could cause problems in a multi-threaded program:
for example, when two threads simultaneously increment the reference count of the same object, the reference count
could end up being incremented only once instead of twice.

Therefore, the rule exists that only the thread that has acquired the G/L may operate on Python objects or call Python/C
API functions. In order to emulate concurrency of execution, the interpreter regularly tries to switch threads (see
sys.setswitchinterval ()). Thelock is also released around potentially blocking I/O operations like reading
or writing a file, so that other Python threads can run in the meantime.

The Python interpreter keeps some thread-specific bookkeeping information inside a data structure called
PyThreadState. There’s also one global variable pointing to the current PyThreadState: it can be retrie-
ved using PyThreadState_Get ().

9.5.1 Releasing the GIL from extension code

Most extension code manipulating the GIL has the following simple structure:

Save the thread state in a local variable.
Release the global interpreter lock.
Do some blocking I/O operation
Reacquire the global interpreter lock.
Restore the thread state from the local variable.

This is so common that a pair of macros exists to simplify it:

Py_BEGIN_ALLOW_THREADS
Do some blocking I/O operation
Py_END_ALLOW_THREADS

The Py BEGIN_ALLOW_THREADS macro opens a new block and declares a hidden local variable; the
Py_END_ALLOW_THREADS macro closes the block.

The block above expands to the following code:

PyThreadState *_save;

_save = PyEval_sSaveThread();
Do some blocking I/O operation
PyEval_RestoreThread(_save);

Here is how these functions work: the global interpreter lock is used to protect the pointer to the current thread state.
When releasing the lock and saving the thread state, the current thread state pointer must be retrieved before the
lock is released (since another thread could immediately acquire the lock and store its own thread state in the global
variable). Conversely, when acquiring the lock and restoring the thread state, the lock must be acquired before storing
the thread state pointer.

Informacja: Calling system I/O functions is the most common use case for releasing the GIL, but it can also be
useful before calling long-running computations which don’t need access to Python objects, such as compression or
cryptographic functions operating over memory buffers. For example, the standard z1ib and hashlib modules
release the GIL when compressing or hashing data.

146 Rozdziat 9. Initialization, Finalization, and Threads

The Python/C API, Wydanie 3.9.21

9.5.2 Non-Python created threads

When threads are created using the dedicated Python APIs (such as the threading module), a thread state is
automatically associated to them and the code showed above is therefore correct. However, when threads are created
from C (for example by a third-party library with its own thread management), they don’t hold the GIL, nor is there
a thread state structure for them.

If you need to call Python code from these threads (often this will be part of a callback API provided by the afo-
rementioned third-party library), you must first register these threads with the interpreter by creating a thread state
data structure, then acquiring the GIL, and finally storing their thread state pointer, before you can start using the
Python/C APIL. When you are done, you should reset the thread state pointer, release the GIL, and finally free the
thread state data structure.

The PyGILState_Ensure () and PyGILState_Release () functions do all of the above automatically. The
typical idiom for calling into Python from a C thread is:

PyGILState_STATE gstate;
gstate = PyGILState_Ensure();

/* Perform Python actions here. */
result = CallSomeFunction();
/* evaluate result or handle exception */

/* Release the thread. No Python API allowed beyond this point. */
PyGILState_Release (gstate);

Note that the PyGILState_* () functions assume there is only one global interpreter (created automatically by
Py_TInitialize ()).Pythonsupports the creation of additional interpreters (using Py NewInterpreter ()),
but mixing multiple interpreters and the PyGILState_* () APIis unsupported.

9.5.3 Cautions about fork()

Another important thing to note about threads is their behaviour in the face of the C fork () call. On most systems
with fork (), after a process forks only the thread that issued the fork will exist. This has a concrete impact both
on how locks must be handled and on all stored state in CPython’s runtime.

The fact that only the ,,current” thread remains means any locks held by other threads will never be released. Python
solves this for os . fork () by acquiring the locks it uses internally before the fork, and releasing them afterwards.
In addition, it resets any lock-objects in the child. When extending or embedding Python, there is no way to inform
Python of additional (non-Python) locks that need to be acquired before or reset after a fork. OS facilities such
as pthread_atfork () would need to be used to accomplish the same thing. Additionally, when extending or
embedding Python, calling fork () directly rather than through os.fork () (and returning to or calling into
Python) may result in a deadlock by one of Python’s internal locks being held by a thread that is defunct after the
fork. PyOS_AfterFork_Child () tries to reset the necessary locks, but is not always able to.

The fact that all other threads go away also means that CPython’s runtime state there must be cleaned up properly,
which os. fork () does. This means finalizing all other Py ThreadStat e objects belonging to the current inter-
preter and all other Py InterpreterState objects. Due to this and the special nature of the ,main” interpreter,
fork () should only be called in that interpreter’s ,,main” thread, where the CPython global runtime was originally
initialized. The only exception is if exec () will be called immediately after.

9.5. Thread State and the Global Interpreter Lock 147

The Python/C API, Wydanie 3.9.21

9.5.4 High-level API

These are the most commonly used types and functions when writing C extension code, or when embedding the
Python interpreter:

PyInterpreterState
This data structure represents the state shared by a number of cooperating threads. Threads belonging to the
same interpreter share their module administration and a few other internal items. There are no public members
in this structure.

Threads belonging to different interpreters initially share nothing, except process state like available memory,
open file descriptors and such. The global interpreter lock is also shared by all threads, regardless of to which
interpreter they belong.

PyThreadState
This data structure represents the state of a single thread. The only public data member is interp
(PyInterpreterState *), which points to this thread’s interpreter state.

void PyEval_InitThreads ()
Deprecated function which does nothing.

In Python 3.6 and older, this function created the GIL if it didn’t exist.
Zmienione w wersji 3.9: The function now does nothing.

Zmienione w wersji 3.7: This function is now called by Py_Tnitialize (), so you don’t have to call it
yourself anymore.

Zmienione w wersji 3.2: This function cannot be called before Py Tnitialize () anymore.
Deprecated since version 3.9, will be removed in version 3.11.

int PyEval_ThreadsInitialized()
Returns a non-zero value if PyEval_TInitThreads () hasbeen called. This function can be called without
holding the GIL, and therefore can be used to avoid calls to the locking API when running single-threaded.

Zmienione w wersji 3.7: The GIL is now initialized by Py_Tnitialize ().
Deprecated since version 3.9, will be removed in version 3.11.

PyThreadState* PyEval_SaveThread ()
Release the global interpreter lock (if it has been created) and reset the thread state to NULL, returning the
previous thread state (which is not NULL). If the lock has been created, the current thread must have acquired
it.

void PyEval_RestoreThread (PyThreadState *tstate)
Acquire the global interpreter lock (if it has been created) and set the thread state to fstate, which must not be
NULL. If the lock has been created, the current thread must not have acquired it, otherwise deadlock ensues.

Informacja: Calling this function from a thread when the runtime is finalizing will terminate the thread, even if
the thread was not created by Python. Youcanuse _Py_IsFinalizing() orsys.is_finalizing/()

to check if the interpreter is in process of being finalized before calling this function to avoid unwanted termi-
nation.

PyThreadState* PyThreadState_Get ()
Return the current thread state. The global interpreter lock must be held. When the current thread state is
NULL, this issues a fatal error (so that the caller needn’t check for NULL).

PyThreadState* PyThreadState_Swap (PyThreadState *tstate)
Swap the current thread state with the thread state given by the argument fstate, which may be NULL. The
global interpreter lock must be held and is not released.

The following functions use thread-local storage, and are not compatible with sub-interpreters:

148 Rozdziat 9. Initialization, Finalization, and Threads

The Python/C API, Wydanie 3.9.21

PyGILState_STATE PyGILState_Ensure ()
Ensure that the current thread is ready to call the Python C API regardless of the current state of Python, or of
the global interpreter lock. This may be called as many times as desired by a thread as long as each call is mat-
ched witha callto PyGILState_Release ().In general, other thread-related APIs may be used between
PyGILState_Ensure () and PyGILState_Release () calls as long as the thread state is restored to
its previous state before the Release(). For example, normal usage of the Py BEGIN_ALLOW_THREADS
and Py_END_ALLOW_THREADS macros is acceptable.

The return value is an opaque ,handle” to the thread state when PyGILState_Ensure () was called,
and must be passed to PyGILState_Release () to ensure Python is left in the same state. Even though
recursive calls are allowed, these handles cannot be shared - each unique call to PyGILState Ensure ()
must save the handle for its call to PyGTIL.State Release ().

When the function returns, the current thread will hold the GIL and be able to call arbitrary Python code.
Failure is a fatal error.

Informacja: Calling this function from a thread when the runtime is finalizing will terminate the thread, even if
the thread was not created by Python. Youcanuse _Py_IsFinalizing() orsys.is_finalizing/()

to check if the interpreter is in process of being finalized before calling this function to avoid unwanted termi-
nation.

void PyGILState_Release (PyGILState_STATE)
Release any resources previously acquired. After this call, Python’s state will be the same as it was prior to the
corresponding PyGILState_Ensure () call (but generally this state will be unknown to the caller, hence
the use of the GILState API).

Everycallto PyGILState_Ensure () must be matched by acallto PyGILState Release () onthe
same thread.

PyThreadState* PyGILState_GetThisThreadState ()
Get the current thread state for this thread. May return NULL if no GILState API has been used on the current
thread. Note that the main thread always has such a thread-state, even if no auto-thread-state call has been
made on the main thread. This is mainly a helper/diagnostic function.

int PyGILState_Check ()
Return 1 if the current thread is holding the GIL and O otherwise. This function can be called from any thread
at any time. Only if it has had its Python thread state initialized and currently is holding the GIL will it return
1. This is mainly a helper/diagnostic function. It can be useful for example in callback contexts or memory
allocation functions when knowing that the GIL is locked can allow the caller to perform sensitive actions or
otherwise behave differently.

Nowe w wersji 3.4.

The following macros are normally used without a trailing semicolon; look for example usage in the Python source
distribution.

Py_BEGIN_ALLOW_THREADS
This macro expands to { PyThreadState *_save; _save = PyEval_SaveThread() ;. Note
that it contains an opening brace; it must be matched with a following Py_END_ALLOW_THREADS macro.
See above for further discussion of this macro.

Py_END_ALLOW_THREADS
This macro expands to PyEval_RestoreThread (_save); }.Note that it contains a closing brace; it
must be matched with an earlier Py BEGIN_ALLOW_THREADS macro. See above for further discussion of
this macro.

Py_BLOCK_THREADS
This macro expands to PyEval RestoreThread(_save);: it is equivalent to
Py_END_ALLOW_THREADS without the closing brace.

Py_UNBLOCK_THREADS
This macro expands to _save = PyEval_ SaveThread();: it is equivalent to
Py_BEGIN_ALLOW_THREADS without the opening brace and variable declaration.

9.5. Thread State and the Global Interpreter Lock 149

The Python/C API, Wydanie 3.9.21

9.5.5 Low-level API

All of the following functions must be called after Py Tnitialize ().
Zmienione w wersji 3.7: Py_Initialize () now initializes the GIL.

PylnterpreterState* PyInterpreterState_New ()
Create a new interpreter state object. The global interpreter lock need not be held, but may be held if it is
necessary to serialize calls to this function.

Raises an auditing event coython.PyInterpreterState_New with no arguments.

void PyInterpreterState_Clear (PylnterpreterState *interp)
Reset all information in an interpreter state object. The global interpreter lock must be held.

Raises an auditing event cpython.PyInterpreterState_Clear with no arguments.

void PyInterpreterState_Delete (PylnterpreterState *interp)
Destroy an interpreter state object. The global interpreter lock need not be held. The interpreter state must
have been reset with a previous call to PyTnterpreterState_Clear ().

PyThreadState* PyThreadState_New (PylnterpreterState *interp)
Create a new thread state object belonging to the given interpreter object. The global interpreter lock need not
be held, but may be held if it is necessary to serialize calls to this function.

void PyThreadState_Clear (PyThreadState *tstate)
Reset all information in a thread state object. The global interpreter lock must be held.

Zmienione w wersji 3.9: This function now calls the PyThreadState.on_delete callback. Previously,
that happened in PyThreadState_Delete ().

void PyThreadState_Delete (PyThreadState *tstate)
Destroy a thread state object. The global interpreter lock need not be held. The thread state must have been
reset with a previous call to PyThreadState_Clear ().

void PyThreadState_DeleteCurrent (void)
Destroy the current thread state and release the global interpreter lock. Like Py ThreadState_Delete (),
the global interpreter lock need not be held. The thread state must have been reset with a previous call to
PyThreadState_Clear().

PyFrameObject* PyThreadState_GetFrame (PyThreadState *tstate)
Get the current frame of the Python thread state tstate.

Return a strong reference. Return NULL if no frame is currently executing.
See also PyEval_ GetFrame ().

tstate must not be NULL.

Nowe w wersji 3.9.

uint64_t PyThreadState_GetID (PyThreadState *tstate)
Get the unique thread state identifier of the Python thread state zstate.

tstate must not be NULL.
Nowe w wersji 3.9.

PylnterpreterState* PyThreadState_GetInterpreter (PyThreadState *tstate)
Get the interpreter of the Python thread state zstate.

tstate must not be NULL.
Nowe w wersji 3.9.

PylInterpreterState* PyInterpreterState_Get (void)
Get the current interpreter.

Issue a fatal error if there no current Python thread state or no current interpreter. It cannot return NULL.

150 Rozdziat 9. Initialization, Finalization, and Threads

The Python/C API, Wydanie 3.9.21

The caller must hold the GIL.
Nowe w wersji 3.9.

int64_t PyInterpreterState_GetID (PylnterpreterState *interp)
Return the interpreter’s unique ID. If there was any error in doing so then -1 is returned and an error is set.

The caller must hold the GIL.
Nowe w wersji 3.7.

PyObject* PyInterpreterState_GetDict (PylnterpreterState *interp)
Return a dictionary in which interpreter-specific data may be stored. If this function returns NULL then no
exception has been raised and the caller should assume no interpreter-specific dict is available.

This is not a replacement for PyModule GetState (), which extensions should use to store interpreter-
-specific state information.

Nowe w wersji 3.8.

PyObject* (*_PyFrameEvalFunction) (PyThreadState *tstate, PyFrameObject *frame, int throwflag)
Type of a frame evaluation function.

The throwflag parameter is used by the throw () method of generators: if non-zero, handle the current excep-
tion.

Zmienione w wersji 3.9: The function now takes a zstate parameter.

_PyFrameEvalFunction _PyInterpreterState_GetEvalFrameFunc (PylnterpreterState *interp)
Get the frame evaluation function.

See the PEP 523 | Adding a frame evaluation API to CPython”.
Nowe w wersji 3.9.

void _PyInterpreterState_SetEvalFrameFunc (PylnterpreterState *interp, _PyFrameEvalFunc-

tion eval_frame)
Set the frame evaluation function.

See the PEP 523 ,,Adding a frame evaluation API to CPython”.
Nowe w wersji 3.9.

PyObject* PyThreadState_GetDict ()
Return value: Borrowed reference. Return a dictionary in which extensions can store thread-specific state in-
formation. Each extension should use a unique key to use to store state in the dictionary. It is okay to call this
function when no current thread state is available. If this function returns NULL, no exception has been raised
and the caller should assume no current thread state is available.

int PyThreadState_SetAsyncExc (unsigned long id, PyObject *exc)
Asynchronously raise an exception in a thread. The id argument is the thread id of the target thread; exc is the
exception object to be raised. This function does not steal any references to exc. To prevent naive misuse, you
must write your own C extension to call this. Must be called with the GIL held. Returns the number of thread
states modified; this is normally one, but will be zero if the thread id isn’t found. If exc is NULL, the pending
exception (if any) for the thread is cleared. This raises no exceptions.

Zmienione w wersji 3.7: The type of the id parameter changed from long to unsigned long.

void PyEval_AcquireThread (PyThreadState *tstate)
Acquire the global interpreter lock and set the current thread state to tstate, which must not be NULL. The lock
must have been created earlier. If this thread already has the lock, deadlock ensues.

Informacja: Calling this function from a thread when the runtime is finalizing will terminate the thread, even if
the thread was not created by Python. Youcanuse Py _IsFinalizing() orsys.is_finalizing()

to check if the interpreter is in process of being finalized before calling this function to avoid unwanted termi-
nation.

9.5. Thread State and the Global Interpreter Lock 151

https://www.python.org/dev/peps/pep-0523
https://www.python.org/dev/peps/pep-0523

The Python/C API, Wydanie 3.9.21

Zmienione w wersji 3.8: Updated to be consistent with PyEval RestoreThread(),
Py _END_ALLOW_THREADS (), and PyGILState_Ensure (), and terminate the current thread
if called while the interpreter is finalizing.

PyEval_RestoreThread () is a higher-level function which is always available (even when threads have
not been initialized).

void PyEval_ReleaseThread (PyThreadState *tstate)
Reset the current thread state to NULL and release the global interpreter lock. The lock must have been created
earlier and must be held by the current thread. The #state argument, which must not be NULL, is only used to
check that it represents the current thread state — if it isn’t, a fatal error is reported.

PyEval_SaveThread () is a higher-level function which is always available (even when threads have not
been initialized).

void PyEval_AcquireLock ()
Acquire the global interpreter lock. The lock must have been created earlier. If this thread already has the lock,
a deadlock ensues.

Niezalecane od wersji 3.2: This function does not update the current thread state. Please use
PyEval_RestoreThread () or PyEval_AcquireThread () instead.

Informacja: Calling this function from a thread when the runtime is finalizing will terminate the thread, even if
the thread was not created by Python. Youcanuse _Py_IsFinalizing() orsys.is_finalizing/()

to check if the interpreter is in process of being finalized before calling this function to avoid unwanted termi-
nation.

Zmienione w wersji 3.8: Updated to be consistent with PyEval RestoreThread(),
Py_END_ALLOW_THREADS (), and PyGILState Ensure (), and terminate the current thread
if called while the interpreter is finalizing.

void PyEval_Releaselock ()
Release the global interpreter lock. The lock must have been created earlier.

Niezalecane od wersji 3.2: This function does not update the current thread state. Please use
PyEval_SaveThread () or PyEval_ReleaseThread () instead.

9.6 Sub-interpreter support

While in most uses, you will only embed a single Python interpreter, there are cases where you need to create several
independent interpreters in the same process and perhaps even in the same thread. Sub-interpreters allow you to do
that.

The ,,main” interpreter is the first one created when the runtime initializes. It is usually the only Python interpreter in
a process. Unlike sub-interpreters, the main interpreter has unique process-global responsibilities like signal handling.
It is also responsible for execution during runtime initialization and is usually the active interpreter during runtime
finalization. The Py InterpreterState_Main () function returns a pointer to its state.

You can switch between sub-interpreters using the PyThreadState_Swap () function. You can create and de-
stroy them using the following functions:

PyThreadState* Py_NewInterpreter ()
Create a new sub-interpreter. This is an (almost) totally separate environment for the execution of Python
code. In particular, the new interpreter has separate, independent versions of all imported modules, including
the fundamental modules builtins, _ _main__ and sys. The table of loaded modules (sys .modules)
and the module search path (sys . path) are also separate. The new environment has no sy s . argv variable.
It has new standard I/O stream file objects sys.stdin, sys.stdout and sys.stderr (however these
refer to the same underlying file descriptors).

The return value points to the first thread state created in the new sub-interpreter. This thread state is made
in the current thread state. Note that no actual thread is created; see the discussion of thread states below. If

152 Rozdziat 9. Initialization, Finalization, and Threads

The Python/C API, Wydanie 3.9.21

creation of the new interpreter is unsuccessful, NULL is returned; no exception is set since the exception state
is stored in the current thread state and there may not be a current thread state. (Like all other Python/C API
functions, the global interpreter lock must be held before calling this function and is still held when it returns;
however, unlike most other Python/C API functions, there needn’t be a current thread state on entry.)

Extension modules are shared between (sub-)interpreters as follows:

« For modules using multi-phase initialization, e.g. PyModule FromDefAndSpec (), a separate mo-
dule object is created and initialized for each interpreter. Only C-level static and global variables are
shared between these module objects.

» For modules using single-phase initialization, e.g. PyModule_ Create (), the first time a particular
extension is imported, it is initialized normally, and a (shallow) copy of its module’s dictionary is squirre-
led away. When the same extension is imported by another (sub-)interpreter, a new module is initialized
and filled with the contents of this copy; the extension’s init function is not called. Objects in the mo-
dule’s dictionary thus end up shared across (sub-)interpreters, which might cause unwanted behavior (see
Bugs and caveats below).

Note that this is different from what happens when an extension is imported after the interpreter has been
completely re-initialized by calling Py_FinalizeEx () and Py_Initialize ();in that case, the
extension’s initmodule function is called again. As with multi-phase initialization, this means that
only C-level static and global variables are shared between these modules.

void Py_EndInterpreter (PyThreadState *tstate)
Destroy the (sub-)interpreter represented by the given thread state. The given thread state must be the current
thread state. See the discussion of thread states below. When the call returns, the current thread state is NULL.
All thread states associated with this interpreter are destroyed. (The global interpreter lock must be held before
calling this function and is still held when it returns.) Py_FinalizeEx () will destroy all sub-interpreters
that haven’t been explicitly destroyed at that point.

9.6.1 Bugs and caveats

Because sub-interpreters (and the main interpreter) are part of the same process, the insulation between them isn’t
perfect — for example, using low-level file operations like os . c1lose () they can (accidentally or maliciously) affect
each other’s open files. Because of the way extensions are shared between (sub-)interpreters, some extensions may not
work properly; this is especially likely when using single-phase initialization or (static) global variables. It is possible
to insert objects created in one sub-interpreter into a namespace of another (sub-)interpreter; this should be avoided
if possible.

Special care should be taken to avoid sharing user-defined functions, methods, instances or classes between sub-
-interpreters, since import operations executed by such objects may affect the wrong (sub-)interpreter’s dictionary of
loaded modules. It is equally important to avoid sharing objects from which the above are reachable.

Also note that combining this functionality with PyGILState_* () APIs is delicate, because these APIs as-
sume a bijection between Python thread states and OS-level threads, an assumption broken by the presence of
sub-interpreters. It is highly recommended that you don’t switch sub-interpreters between a pair of matching
PyGILState_ Ensure () and PyGILState_Release () calls. Furthermore, extensions (such as ctypes)
using these APIs to allow calling of Python code from non-Python created threads will probably be broken when
using sub-interpreters.

9.6. Sub-interpreter support 153

The Python/C API, Wydanie 3.9.21

9.7 Asynchronous Notifications

A mechanism is provided to make asynchronous notifications to the main interpreter thread. These notifications take
the form of a function pointer and a void pointer argument.

int Py_ AddPendingCall (int (*func)(void *), void *arg)

Schedule a function to be called from the main interpreter thread. On success, 0 is returned and func is queued
for being called in the main thread. On failure, —1 is returned without setting any exception.

When successfully queued, func will be eventually called from the main interpreter thread with the argument
arg. It will be called asynchronously with respect to normally running Python code, but with both these con-
ditions met:

e on a byfecode boundary;
« with the main thread holding the global interpreter lock (func can therefore use the full C API).

func must return 0 on success, or —1 on failure with an exception set. func won't be interrupted to perform
another asynchronous notification recursively, but it can still be interrupted to switch threads if the global
interpreter lock is released.

This function doesn’t need a current thread state to run, and it doesn’t need the global interpreter lock.

To call this function in a subinterpreter, the caller must hold the GIL. Otherwise, the function func can be
scheduled to be called from the wrong interpreter.

Ostrzezenie: This is a low-level function, only useful for very special cases. There is no guarantee that
func will be called as quick as possible. If the main thread is busy executing a system call, func won’t be
called before the system call returns. This function is generally not suitable for calling Python code from
arbitrary C threads. Instead, use the PyGILState API.

Zmienione w wersji 3.9: If this function is called in a subinterpreter, the function func is now scheduled to be
called from the subinterpreter, rather than being called from the main interpreter. Each subinterpreter now has
its own list of scheduled calls.

Nowe w wersji 3.1.

9.8 Profiling and Tracing

The Python interpreter provides some low-level support for attaching profiling and execution tracing facilities. These
are used for profiling, debugging, and coverage analysis tools.

This C interface allows the profiling or tracing code to avoid the overhead of calling through Python-level callable
objects, making a direct C function call instead. The essential attributes of the facility have not changed; the interface
allows trace functions to be installed per-thread, and the basic events reported to the trace function are the same as
had been reported to the Python-level trace functions in previous versions.

int (*Py_tracefunc) (PyObject *obj, PyFrameObject *frame, int what, PyObject *arg)

The type of the trace function registered using PyEval_ SetProfile () and PyEval_SetTrace ().
The first parameter is the object passed to the registration function as obj, frame is the frame object to which the
event pertains, what is one of the constants PyTrace_CALL, PyTrace_EXCEPTION, PyTrace_LINE,
PyTrace_RETURN, PyTrace_C_CALL, PyTrace_C_EXCEPTION, PyTrace_C_RETURN, or
PyTrace_OPCODE, and arg depends on the value of what:

154

Rozdziat 9. Initialization, Finalization, and Threads

The Python/C API, Wydanie 3.9.21

Value of what Meaning of arg

PyTrace_CALL Always Py_None.

PyTrace_EXCEPTION Exception information as returned by sys.exc_info ().
PyTrace_LINE Always Py_None.

PyTrace_RETURN Value being returned to the caller, or NULL if caused by an exception.
PyTrace_C_CALL Function object being called.

PyTrace_C_EXCEPTION | Function object being called.

PyTrace_C_RETURN Function object being called.

PyTrace_OPCODE Always Py_None.

int PyTrace_CALL
The value of the what parameter to a Py_ t racefunc function when a new call to a function or method is
being reported, or a new entry into a generator. Note that the creation of the iterator for a generator function
is not reported as there is no control transfer to the Python bytecode in the corresponding frame.

int PyTrace_EXCEPTION
The value of the what parameter to a Pyt racefunc function when an exception has been raised. The
callback function is called with this value for what when after any bytecode is processed after which the
exception becomes set within the frame being executed. The effect of this is that as exception propagation
causes the Python stack to unwind, the callback is called upon return to each frame as the exception propagates.
Only trace functions receives these events; they are not needed by the profiler.

int PyTrace_LINE
The value passed as the what parameter to a Py_t race func function (but not a profiling function) when
a line-number event is being reported. It may be disabled for a frame by setting £ _trace_lines to 0 on
that frame.

int PyTrace_RETURN
The value for the what parameter to Py_ t race func functions when a call is about to return.

int PyTrace_C_CALL
The value for the what parameter to Py_ t race func functions when a C function is about to be called.

int PyTrace_C_EXCEPTION
The value for the what parameter to Py_ t race func functions when a C function has raised an exception.

int PyTrace_C_RETURN
The value for the what parameter to Py_t race func functions when a C function has returned.

int PyTrace_OPCODE
The value for the what parameter to Py_tracefunc functions (but not profiling functions) when a new
opcode is about to be executed. This event is not emitted by default: it must be explicitly requested by setting
f_trace_opcodes to I on the frame.

void PyEval_SetProfile (Py_tracefunc func, PyObject *obj)
Set the profiler function to func. The obj parameter is passed to the function as its first parameter, and may
be any Python object, or NULL. If the profile function needs to maintain state, using a different value for obj
for each thread provides a convenient and thread-safe place to store it. The profile function is called for all
monitored events except PyTrace_LINE PyTrace_OPCODE and PyTrace_EXCEPTION.

The caller must hold the GIL.

void PyEval_SetTrace (Py_tracefunc func, PyObject *obj)
Set the tracing function to func. This is similar to PyEval_ SetProfile (), except the tracing func-
tion does receive line-number events and per-opcode events, but does not receive any event related to C
function objects being called. Any trace function registered using PyEval_SetTrace () will not rece-
ive PyTrace_C_CALL, PyTrace_C_EXCEPTION or PyTrace_C_RETURN as a value for the what
parameter.

The caller must hold the GIL.

9.8. Profiling and Tracing 155

The Python/C API, Wydanie 3.9.21

9.9 Advanced Debugger Support

These functions are only intended to be used by advanced debugging tools.

PylInterpreterState* PyInterpreterState_Head ()
Return the interpreter state object at the head of the list of all such objects.

PylnterpreterState* PyInterpreterState_Main ()
Return the main interpreter state object.

PyInterpreterState* PyInterpreterState_Next (PylnterpreterState *interp)
Return the next interpreter state object after inferp from the list of all such objects.

PyThreadState * PyInterpreterState_ThreadHead (PylnterpreterState *interp)
Return the pointer to the first Py ThreadState object in the list of threads associated with the interpreter
interp.

PyThreadState* PyThreadState_Next (PyThreadState *tstate)
Return the next thread state object after tstate from the list of all such objects belonging to the same
PyInterpreterState object.

9.10 Thread Local Storage Support

The Python interpreter provides low-level support for thread-local storage (TLS) which wraps the underlying native
TLS implementation to support the Python-level thread local storage API (threading. local). The CPython C
level APIs are similar to those offered by pthreads and Windows: use a thread key and functions to associate a void*
value per thread.

The GIL does not need to be held when calling these functions; they supply their own locking.

Note that Python . h does not include the declaration of the TLS APIs, you need to include pythread.h to use
thread-local storage.

Informacja: None of these API functions handle memory management on behalf of the void* values. You need
to allocate and deallocate them yourself. If the void* values happen to be PyOb ject *, these functions don’t do
refcount operations on them either.

9.10.1 Thread Specific Storage (TSS) API

TSS API is introduced to supersede the use of the existing TLS API within the CPython interpreter. This API uses
anew type Py_tss_t instead of int to represent thread keys.

Nowe w wersji 3.7.
Zobacz takze:
,»A New C-API for Thread-Local Storage in CPython” (PEP 539)

Py tss_t
This data structure represents the state of a thread key, the definition of which may depend on the underlying
TLS implementation, and it has an internal field representing the key’s initialization state. There are no public
members in this structure.

When Py_LIMITED_API is not defined, static allocation of this type by Py_tss_NEEDS_TNIT is allowed.

Py_tss_NEEDS_INIT
This macro expands to the initializer for Py_ tss_t variables. Note that this macro won’'t be defined with
Py_LIMITED_API.

156 Rozdziat 9. Initialization, Finalization, and Threads

https://www.python.org/dev/peps/pep-0539

The Python/C API, Wydanie 3.9.21

Dynamic Allocation

Dynamic allocation of the Py_tss_ t, required in extension modules built with Py_LIMITED_API, where static
allocation of this type is not possible due to its implementation being opaque at build time.

Py_tss_t* PyThread_tss_alloc ()
Return a value which is the same state as a value initialized with Py_tss_NEEDS_TINIT, or NULL in the
case of dynamic allocation failure.

void PyThread_tss_free (Py_fss_t *key)
Free the given key allocated by PyThread tss_alloc(), after first calling
PyThread_tss_delete () to ensure any associated thread locals have been unassigned. This is
a no-op if the key argument is NULL.

Informacja: A freed key becomes a dangling pointer. You should reset the key to NULL.

Methods

The parameter key of these functions must not be NULL. Moreover, the behaviors of PyThread tss_set ()
and PyThread tss_get () are undefined if the given Py tss_t has not been initialized by
PyThread_tss_create().

int PyThread_tss_is_created (Py_1ss_t *key)
Return a non-zero value if the given Py_ tss_ t has been initialized by PyThread_tss_create ().

int PyThread_tss_create (Py_fss_t *key)
Return a zero value on successful initialization of a TSS key. The behavior is undefined if the value pointed to
by the key argument is not initialized by Py_t ss_NEEDS_INIT. This function can be called repeatedly on
the same key - calling it on an already initialized key is a no-op and immediately returns success.

void PyThread_tss_delete (Py_tss_t *key)
Destroy a TSS key to forget the values associated with the key across all threads, and change the key’s initiali-
zation state to uninitialized. A destroyed key is able to be initialized again by Py Thread_tss_create ().
This function can be called repeatedly on the same key - calling it on an already destroyed key is a no-op.

int PyThread_tss_set (Py_tss_t *key, void *value)
Return a zero value to indicate successfully associating a void* value with a TSS key in the current thread.
Each thread has a distinct mapping of the key to a void* value.

void* PyThread_tss_get (Py_tss_t *key)
Return the void* value associated with a TSS key in the current thread. This returns NULL if no value is
associated with the key in the current thread.

9.10.2 Thread Local Storage (TLS) API

Niezalecane od wersji 3.7: This API is superseded by Thread Specific Storage (TSS) API.

Informacja: This version of the API does not support platforms where the native TLS key is defined in a way
that cannot be safely cast to int. On such platforms, PyThread create_key () will return immediately with
a failure status, and the other TLS functions will all be no-ops on such platforms.

Due to the compatibility problem noted above, this version of the API should not be used in new code.
int PyThread_create_key ()
void PyThread_delete_key (int key)

int PyThread_set_key_ value (int key, void *value)

9.10. Thread Local Storage Support 157

The Python/C API, Wydanie 3.9.21

void* PyThread_get_key_value (int key)
void PyThread_delete_key_value (int key)

void PyThread_ReInitTLS ()

158 Rozdziat 9. Initialization, Finalization, and Threads

rozoziat 10

Python Initialization Configuration

Nowe w wersji 3.8.

Structures:

PyConfig
PyPreConfig
PyStatus

PyWideStringList

Functions:

PyConfig Clear()

PyConfig InitIsolatedConfig/()
PyConfig _InitPythonConfig()
PyConfig_Read/()

PyConfig _SetArgv ()

PyConfig SetBytesArgv()
PyConfig_SetBytesString ()
PyConfig_SetString()

PyConfig SetWideStringList ()
PyPreConfig _InitIsolatedConfig/()
PyPreConfig InitPythonConfig()
PyStatus_Error ()
PyStatus_Exception ()
PyStatus_Exit ()
PyStatus_IsError()
PyStatus_IsExit ()

PyStatus_NoMemory ()

159

The Python/C API, Wydanie 3.9.21

PyStatus_Ok ()
PywWideStringList_Append()
PyWideStringList_Insert ()
Py_ExitStatusException ()
Py_InitializeFromConfig/()

Py PrelInitialize()
Py_PrelnitializeFromArgs ()
Py_PrelInitializeFromBytesArgs ()
Py_RunMain ()

Py_GetArgcArgv ()

The preconfiguration (PyPreConfig type) is stored in _PyRuntime