Extending and Embedding Python
Wydanie 3.9.18

Guido van Rossum
and the Python development team

lutego 06, 2024

Python Software Foundation
Email: docs@python.org

Spis tresci

1 Rekomendowane zewnetrzne narzedzia. 3
2 Tworzenie rozszerzen poprzez narzedzia zewnetrzne. 5
2.1 Rozszerzanie Pythonazapomoca ClubC++o 5
2.1.1 Prostyprzyktad e e e 6

2.1.2 Imtermezzo: Btedy i Wyjatki e 7

2.1.3 ZpowrotemdoPrzyktaduo o 9

2.1.4 Zadanie zainicjowania i tabela sposobéw postgpowania modutu. L. 9

2.1.5 Kompilacjaitaczenie 11

2.1.6 Wywotywanie zadan jezyka pytonowskiegoz C 11

2.1.7 Wydobywanie parametréw w zadaniach rozszerzajacych 13

2.1.8 Parametry kluczowe dla zadan rozszerzajacych oL 15

2.1.9 Budowanie dowolnych wartoSci Lo oL 16
2.1.10 Liczby odniesiefl e e e e e e e 16
2.1.11 PisanierozszerzeA W CH++ L ..o 20
2.1.12 Dostarczanie sprzegu programowania aplikacji (API) jezyka C dla modutu rozszerzajacego 20

2.2 Defining Extension Types: Tutorial 23
221 TheBasics e e 24

2.2.2 Adding data and methods to the Basicexample 27

2.2.3 Providing finer control over data attributes L. 34

2.2.4 Supporting cyclic garbage collection L. Lo e 39

2.2.5 Subclassing other types o e e e e e e e e e e 44

2.3 Defining Extension Types: Assorted Topics 46
2.3.1 Finalizowanieide-alokacja 48

2.3.2 Prezentacja Przedmiotdw 50

2.3.3 Zarzadzanie wlasnoSciami e e e e e 50

2.3.4 Poréwnywanie przedmiotOw L. e e e e e e e 52

2.3.5 Wsparcie protokotu abstrakcyjnego Lo oL Lo 53

2.3.6 Wsparcie dla stabych odniesied 000000 oo 55

237 WIGCEJ SUZESLIL . .« v o o i i e i e e e e e e e e e e e 56

24 Building Cand C++ EXtensionso e e e 56
2.4.1 Building C and C++ Extensions with distutils 57

2.4.2 Distributing your extension modules oL Lo oL 58

2.5 Tworzenie rozszerzed C1i C++w Windowsie o o e 58
2.5.1 A Cookbook Approach 59

2.5.2 Roznice pomigdzy Unixem a Windowsem 59

2.53 UsingDLLsinPractice 0 i i ittt e 59

3 Whbudowywanie runtime Cpython w wigksza aplikacje. 61
3.1 Embedding Python in Another Application. 61

3.1.1 Very High Level Embedding 62

3.1.2 Beyond Very High Level Embedding: Anoverview 62
3.1.3 PureEmbedding. e e e 63
3.1.4 Extending Embedded Python 65
3.1.5 Embedding Pythonin C++ 66
3.1.6 Compiling and Linking under Unix-like systems 66
A Glosariusz 67
B O tej dokumentacji 81
B.1 Wspéttworcy dokumentacji Pythona oL Lo 81
C Historia i zapisy prawne 83
C.1 Historia programu v v v v v e v e 83
C.2 Zasady i warunki postgpowania z programem jezyka pytonowskiego i ogdlnie jego uzycia. 84
C.2.1 PSF LICENSE AGREEMENT FOR PYTHON 3.9.18 85
C.2.2 BEOPEN.COM LICENSE AGREEMENT FOR PYTHON2.0 86
C.2.3 CNRILICENSE AGREEMENT FOR PYTHON 1.6.1 87
C.24 CWILICENSE AGREEMENT FOR PYTHON 0.9.0 THROUGH 1.2 88
C.2.5 ZERO-CLAUSE BSD LICENSE FOR CODE IN THE PYTHON 3.9.18 DOCUMEN-
TATION e 88
C.3 Licenses and Acknowledgements for Incorporated Software 88
C3.1 Mersenne TWISIET v v v v e i e 88
C32 Sockets o e e 89
C.3.3 Asynchronous SOCKet ServiCes v v v v v v i e e e e e e e e 90
C.3.4 Cookie management v v vttt e e e e e e e e e e e e e e e e 90
C3.5 ExecutiontraCing e e e 91
C.3.6 UUencode and UUdecode functions v v v v i v i i e e e 91
C3.7 XML Remote Procedure Calls 92
C.3.8 test_epoll L e e e e e e e e e 92
C.3.9 Selectkqueue e e e e e 93
C.3.10 SipHash24 e 93
C3.11 strtodand dtoa. o L e e e e 94
C3.12 OpenSSL . . . o L e e 94
C3I3 eXPat. . o o ot e e e e e e e e e 96
C3.04 Hbfi . . . e e 97
C3.05 zlib . . o e e 97
C.3.16 cfuhash e e 98
C3.17 libmpdec e e 98
C3.18 WI3CCIANTeStSUIte . .« v v v v v e e e e e e e e e e e e e e e e e e e 99
D Prawa autorskie 101
Indeks 103

Extending and Embedding Python, Wydanie 3.9.18

Ten dokument opisuje jak pisa¢é moduty w C lub C++ do rozszerzania Python Interpreter o nowe moduty. Te mo-
duty moga nie tylko zawiera¢ nowe funkcje, ale tez nowe obiekty i ich metody. Dokument réwniez zawiera opis jak
wbudowa¢ interpreter Pyhona do innej aplikacji w celu rozszerzenia jgzyka. Podsumowujac pokazemy ci jak kom-
pilowac i linkowaé rozszerzone moduty, tak ze moga by¢ zatadowane dynamicznie w danej chwili przez interpreter,
o ile dany system operacyjny wspiera ta funkcje.

Ten dokument zawiera podstawowa wiedze o Pythonie. Z nieformalnym wstgpem do jezyka zapoznaj si¢ z tutorial-
index. reference-index zawiera bardziej formalny opis jezyka. Dokumenty library-index zawieraja istniejace typy
obiektéw, funkcje i moduty (zaréwno wbudowane jak i napisane w Pythonie) dajace jezykowi duze pole zastosowan.

Aby zapoznac¢ si¢ z doktadna instrukcja dla Python/C API, spdjrz na c-api-index.

Spis tresci 1

Extending and Embedding Python, Wydanie 3.9.18

2 Spis tresci

rRozDzIAt 1

Rekomendowane zewnetrzne narzedzia.

Ten przewodnik obejmuje tylko podstawowe narzedzia do tworzenia rozszerzeri dostarczane jako czgS$¢ aktualnej
wersji CPython. Narzedzia innych firm, takie jak ” Cython <http://cython.org/>»_, « Cffi <https://cffi.readthedocs.
i0>‘_,» SWIG <http://www.swig.org > _ i «Numba <https://numba.pydata.org / >» _ oferuja zaréwno prostsze, jak
i bardziej wyrafinowane podejscie do tworzenia rozszerzefi C i C++ dla Pythona.

Zobacz takze:

Pakiety Pythona Podrecznik Uzytkownika: Rozszerzenia Binarne <https://packaging.python.org/guides/packaging-binary-e
Przewodnik Uzytkownika Python Packaging nie tylko obejmuje kilka dostgpnych narzedzi, ktére upraszczaja
tworzenie rozszerzen binarnych, ale takze omawia r6zne powody, dla ktérych tworzenie modutu rozszerzen
moze by¢ pozadane w pierwszej kolejnosci.

http://cython.org/
https://cffi.readthedocs.io
https://cffi.readthedocs.io
http://www.swig.org
https://numba.pydata.org
https://packaging.python.org/guides/packaging-binary-extensions/

Extending and Embedding Python, Wydanie 3.9.18

4 Rozdziat 1. Rekomendowane zewnetrzne narzedzia.

ROZDZIAL 2

Tworzenie rozszerzen poprzez narzedzia zewnetrzne.

Ta czg$¢ przewodnika obejmuje tworzenie rozszerzeni C i C++ bez pomocy narzedzi innych firm. Jest przeznaczony
przede wszystkim dla twércéw tych narzedzi, a nie jest zalecanym sposobem tworzenia wtasnych rozszerzen C.

2.1 Rozszerzanie Pythona za pomocg C lub C++

Jest catkiem tatwo doda¢ nowe wbudowane moduty do Pythona, jesli znasz si¢ na programowaniu w C. Takie moduty
rozszerzajqce <extension modules>moga zrobi¢ dwie rzeczy ktérych nie da sig zrobi¢ bezposrednio w Pythonie: moga
wypelni¢ nowe wbudowane typy przedmiotéw i moga odwotac si¢ do zadan bibliotecznych C i odwotari systemowych.

Aby wspieraé rozszerzenia, API Pythona (Application Programmers Interface) okresla zbiér funkcji, makropolecen
i zmiennych, ktére dostarczaja dostep do wigkszosci aspektéw systemu czasu-wykonania Pythona. API Pythona jest
zalaczane w zZrédlowym pliku C przez zalaczenie pliku nagtéwkowego "Python.h".

Kompilacja rozszerzajacych modutéw zalezy od jego zamierzonego uzycia zaréwno jak tez od ustawien twojego
systemu; szczegoty sa dane w pdzniejszych rozdziatach.

Informacja: The C extension interface is specific to CPython, and extension modules do not work on other Python
implementations. In many cases, it is possible to avoid writing C extensions and preserve portability to other imple-
mentations. For example, if your use case is calling C library functions or system calls, you should consider using
the ct ypes module or the cffi library rather than writing custom C code. These modules let you write Python code
to interface with C code and are more portable between implementations of Python than writing and compiling a C
extension module.

https://cffi.readthedocs.io/

Extending and Embedding Python, Wydanie 3.9.18

2.1.1 Prosty przyktad

Let’s create an extension module called spam (the favorite food of Monty Python fans...) and let’s say we want to
create a Python interface to the C library function system () '. This function takes a null-terminated character string
as argument and returns an integer. We want this function to be callable from Python as follows:

>>> import spam
>>> status = spam.system("ls —-1")

Zaczynajac od stworzenia pliku spammodule . ¢ (Historycznie, jesli modut byt nazwany spam, plik C zawierajacy
jego wypelnienie jest nazywany spammodule . c; jesli nazwa modutu jest bardzo dtuga, jak np spammi fy, nazwa
modutu moze by¢ po prostu spammify.c.)

The first two lines of our file can be:

#define PY_SSIZE_T CLEAN
#include <Python.h>

ktére dociagaja API Pythona (mozesz doda¢ komentarz opisujacy przeznaczenie modulu i uwagi na temat praw
autorskich jesli masz ochote).

Informacja: Jako ze Python moze definiowac¢ pewne definicje preprocesora, ktére wptywaja na pliki nagtéwkowe
na niektérych systemach, musisz zataczy€ plik Python . h przed jakimikolwiek standardowymi nagtéwkami.

It is recommended to always define PY_SSIZE_T_CLEAN before including Python . h. See Wydobywanie para-
metrow w zadaniach rozszerzajqcych for a description of this macro.

All user-visible symbols defined by Python . h have a prefix of Py or PY, except those defined in standard header
files. For convenience, and since they are used extensively by the Python interpreter, "Python.h" includes a few
standard header files: <stdio.h>, <string.h>, <errno.h>,and <stdlib.h>.If the latter header file does
not exist on your system, it declares the functions malloc (), free () and realloc () directly.

Nastepna rzecza ktéra dodajemy do naszego pliku modutu jest zadanie C ktére bedzie wzywane gdy wyrazenie
jezyka pytonowskiego spam. system (string) zostanie obliczone (zobaczymy niedtugo, jak to si¢ koriczy wy-
wolaniem):

static PyObject *
spam_system (PyObject *self, PyObject *args)
{

const char *command;

int sts;

if (!PyArg_ParseTuple(args, "s", &command))
return NULL;

sts = system(command) ;

return PylLong_FromLong (sts);

Istnieje prosta zamiana nazw z listy parametréw w jezyku pytonowskim (dla przyktadu, pojedyncze wyrazenie "1s
—1") do parametréw przekazanych do zadania C. Zadanie C zawsze ma dwa parametry, dla wygody nazywane sam
-z ang. - self 1 args.

Parametr sam - z ang. - self - wskazuje na przedmiot modutu dla zadari na poziomie-modutu; dla sposobu postgpo-
wania wskazywatby na przyktad przedmiotu.

The args argument will be a pointer to a Python tuple object containing the arguments. Each item of the tuple
corresponds to an argument in the call’s argument list. The arguments are Python objects — in order to do anything
with them in our C function we have to convert them to C values. The function PyArg_ParseTuple () in the
Python API checks the argument types and converts them to C values. It uses a template string to determine the

! sprzeg dla tego zadania juz istnieje w standardowym module os — zostal on wybrany jako prosty i przejrzysty przyktad.

6 Rozdziat 2. Tworzenie rozszerzen poprzez narzedzia zewnetrzne.

Extending and Embedding Python, Wydanie 3.9.18

required types of the arguments as well as the types of the C variables into which to store the converted values. More
about this later.

PyArg_ParseTuple () returns true (nonzero) if all arguments have the right type and its components have been
stored in the variables whose addresses are passed. It returns false (zero) if an invalid argument list was passed. In
the latter case it also raises an appropriate exception so the calling function can return NULL immediately (as we saw
in the example).

2.1.2 Intermezzo: Btedy i Wyijatki

An important convention throughout the Python interpreter is the following: when a function fails, it should set an
exception condition and return an error value (usually —1 or a NULL pointer). Exception information is stored in
three members of the interpreter’s thread state. These are NULL if there is no exception. Otherwise they are the
C equivalents of the members of the Python tuple returned by sys.exc_info (). These are the exception type,
exception instance, and a traceback object. It is important to know about them to understand how errors are passed
around.

Sprzeg jezyka pytonowskiego okresla pewien zestaw zadan do ustawiania réznych rodzajéw wyjatkéw.

The most common one is PyErr_SetString (). Its arguments are an exception object and a C string. The excep-
tion object is usually a predefined object like PyExc_ZeroDivisionError. The C string indicates the cause of
the error and is converted to a Python string object and stored as the ,,associated value” of the exception.

Another useful function is PyErr_SetFromErrno (), which only takes an exception argument and constructs the
associated value by inspection of the global variable e rrno. The most general function is PyErr_SetObject (),
which takes two object arguments, the exception and its associated value. You don’t need to Py_INCREF () the
objects passed to any of these functions.

You can test non-destructively whether an exception has been set with PyErr_Occurred (). This returns the cur-
rent exception object, or NULL if no exception has occurred. You normally don’t need to call PyErr_Occurred ()
to see whether an error occurred in a function call, since you should be able to tell from the return value.

When a function f that calls another function g detects that the latter fails, f should itself return an error value (usually
NULL or —1). It should not call one of the PyErr_* () functions — one has already been called by g. f’s caller is
then supposed to also return an error indication to its caller, again without calling PyErr_* (), and so on — the
most detailed cause of the error was already reported by the function that first detected it. Once the error reaches the
Python interpreter’s main loop, this aborts the currently executing Python code and tries to find an exception handler
specified by the Python programmer.

(There are situations where a module can actually give a more detailed error message by calling another PyErr_* ()
function, and in such cases it is fine to do so. As a general rule, however, this is not necessary, and can cause information
about the cause of the error to be lost: most operations can fail for a variety of reasons.)

To ignore an exception set by a function call that failed, the exception condition must be cleared explicitly by calling
PyErr_Clear (). The only time C code should call PyErr_Clear () is if it doesn’t want to pass the error on
to the interpreter but wants to handle it completely by itself (possibly by trying something else, or pretending nothing
went wrong).

Every failingmalloc () call must be turned into an exception — the direct caller of malloc () (or realloc ())
must call PyErr_NoMemory () and return a failure indicator itself. All the object-creating functions (for example,
PyLong_FromLong ()) already do this, so this note is only relevant to those who callmalloc () directly.

Also note that, with the important exception of PyArg_ParseTuple () and friends, functions that return an
integer status usually return a positive value or zero for success and -1 for failure, like Unix system calls.

Finally, be careful to clean up garbage (by making Py_XDECREF () or Py_DECREF () calls for objects you have
already created) when you return an error indicator!

The choice of which exception to raise is entirely yours. There are predeclared C objects corresponding to all built-in
Python exceptions, such as PyExc_ZeroDivisionError, which you can use directly. Of course, you should
choose exceptions wisely — don’t use PyExc_TypeError to mean that a file couldn’t be opened (that should pro-
bably be PyExc_IOError). If something’s wrong with the argument list, the PyArg_ParseTuple () function

2.1. Rozszerzanie Pythona za pomoca C lub C++ 7

Extending and Embedding Python, Wydanie 3.9.18

usually raises PyExc_TypeError. If you have an argument whose value must be in a particular range or must
satisfy other conditions, PyExc_ValueError is appropriate.

Mozesz tez okreSlic nowy wyjatek ktéry jest niepowtarzalny dla twojego modutu. Dla tego, zwykle deklarujesz
przedmiot statycznej zmiennej na poczatku pliku:

static PyObject *SpamError;

and initialize it in your module’s initialization function (PyInit_spam ()) with an exception object:

PyMODINIT_FUNC
PyInit_spam(void)
{

PyObject *m;

m = PyModule_Create (&spammodule) ;
if (m == NULL)
return NULL;

SpamError = PyErr_NewException("spam.error", NULL, NULL);
Py_XINCREF (SpamError) ;
if (PyModule_AddObject (m, "error", SpamError) < 0) {
Py_XDECREF (SpamError) ;
Py_CLEAR (SpamError) ;
Py_DECREF (m) ;
return NULL;

return m;

Note that the Python name for the exception object is spam.error. The PyErr_NewException () function
may create a class with the base class being Exception (unless another class is passed in instead of NULL), de-
scribed in bltin-exceptions.

Note also that the SpamError variable retains a reference to the newly created exception class; this is intentional!
Since the exception could be removed from the module by external code, an owned reference to the class is needed to
ensure that it will not be discarded, causing SpamError to become a dangling pointer. Should it become a dangling
pointer, C code which raises the exception could cause a core dump or other unintended side effects.

We discuss the use of PyMODINIT_FUNC as a function return type later in this sample.

The spam.error exception can be raised in your extension module using a call to PyErr_SetString () as
shown below:

static PyObject *
spam_system (PyObject *self, PyObject *args)
{

const char *command;

int sts;

if (!PyArg_ParseTuple(args, "s", &command))
return NULL;

sts = system(command) ;

if (sts < 0) {
PyErr_SetString (SpamError, "System command failed");
return NULL;

}

return PyLong_FromLong(sts);

8 Rozdziat 2. Tworzenie rozszerzen poprzez narzedzia zewnetrzne.

Extending and Embedding Python, Wydanie 3.9.18

2.1.3 Z powrotem do Przyktadu

Wracajac do naszej przyktadowego zadania, powiniene$ juz by¢ w stanie zrozumie¢ to wyrazenie:

if (!PyArg_ParseTuple(args, "s", &command))
return NULL;

It returns NULL (the error indicator for functions returning object pointers) if an error is detected in the argument
list, relying on the exception set by PyArg_ParseTuple (). Otherwise the string value of the argument has
been copied to the local variable command. This is a pointer assignment and you are not supposed to modify the
string to which it points (so in Standard C, the variable command should properly be declared as const char
*command).

The next statement is a call to the Unix function system(), passing it the string we just got from
PyArg_ParseTuple():

sts = system(command) ;

Our spam.system () function must return the value of sts as a Python object. This is done using the function
PyLong_FromLong ().

’return PyLong_FromLong (sts) ;

W tym przypadku, zwrdci przedmiot liczby catkowitej (Tak, nawet liczby catkowite sa przedmiotami na stercie w
jezyku pytonowskim!)

If you have a C function that returns no useful argument (a function returning void), the corresponding Python
function must return None. You need this idiom to do so (which is implemented by the Py_ RETURN_NONE macro):

Py_INCREF (Py_None) ;
return Py_None;

Py_None is the C name for the special Python object None. It is a genuine Python object rather than a NULL
pointer, which means ,error” in most contexts, as we have seen.

2.1.4 Zadanie zainicjowania i tabela sposoboéw postepowania modutu.

I promised to show how spam_system () is called from Python programs. First, we need to list its name and
address in a ,,method table”:

static PyMethodDef SpamMethods[] = {

{"system", spam_system, METH_VARARGS,
"Execute a shell command."},

{NULL, NULL, 0, NULL} /* Sentinel */
bi

Note the third entry (METH_VARARGS). This is a flag telling the interpreter the calling convention to be used for the
C function. It should normally always be METH_VARARGS or METH_VARARGS | METH_KEYWORDS; a value of
0 means that an obsolete variant of PyArg_ParseTuple () is used.

When using only METH_ VARARGS, the function should expect the Python-level parameters to be passed in as a tuple
acceptable for parsing via PyArg_ParseTuple () ; more information on this function is provided below.

The METH_KEYWORDS bit may be set in the third field if keyword arguments should be passed to the function. In
this case, the C function should accept a third PyObject * parameter which will be a dictionary of keywords. Use
PyArg_ParseTupleAndKeywords () to parse the arguments to such a function.

Tabela sposobdw postepowania musi by¢ okreslona w strukturze definicji modutu:

2.1. Rozszerzanie Pythona za pomoca C lub C++ 9

Extending and Embedding Python, Wydanie 3.9.18

static struct PyModuleDef spammodule = {
PyModuleDef_HEAD_INIT,

"spam", /* name of module */
spam_doc, /* module documentation, may be NULL */
-1, /* size of per-interpreter state of the module,

or -1 if the module keeps state in global variables. */
SpamMethods
bi

This structure, in turn, must be passed to the interpreter in the module’s initialization function. The initialization
function must be named PyInit_name (), where name is the name of the module, and should be the only non-
static item defined in the module file:

PyMODINIT_FUNC
PyInit_spam(void)
{

return PyModule_Create (&spammodule) ;

Zauwaz ze PyMODINIT_FUNC deklaruje zadanie jako zwrotny typ PyObject *, deklaruje wszelkie specjalne
deklaracje polaczeri wymagane przez maszyng/Srodowisko, i dla C++ deklaruje zadanie jako extern "C".

When the Python program imports module spam for the first time, PyInit_spam () is called. (See below for
comments about embedding Python.) It calls PyModule_Create (), which returns a module object, and inserts
built-in function objects into the newly created module based upon the table (an array of PyMethodDef structures)
found in the module definition. PyModule_Create () returns a pointer to the module object that it creates. It may
abort with a fatal error for certain errors, or return NULL if the module could not be initialized satisfactorily. The init
function must return the module object to its caller, so that it then gets inserted into sys.modules.

When embedding Python, the PyInit_spam () function is not called automatically unless there’s an entry in the
PyImport_Inittab table. Toadd the module to the initialization table, use Py Import_AppendInittab (),
optionally followed by an import of the module:

int
main (int argc, char *argv([])
{
wchar_t *program = Py_Decodelocale (argv[0], NULL);

if (program == NULL) {
fprintf (stderr, "Fatal error: cannot decode argv[0]\n");
exit (1) ;

/* Add a built—-in module, before Py_Initialize */

if (PyImport_AppendInittab ("spam", PyInit_spam) == -1) {
fprintf (stderr, "Error: could not extend in-built modules table\n");
exit (1) ;

/* Pass argv[0] to the Python interpreter */
Py_SetProgramName (program) ;

/* Initialize the Python interpreter. Required.
If this step fails, it will be a fatal error. */
Py_Initialize();

/* Optionally import the module; alternatively,
import can be deferred until the embedded script
imports it. */
PyObject *pmodule = PyImport_ImportModule ("spam");
if (!pmodule) {
PyErr_Print ();
fprintf (stderr, "Error: could not import module 'spam'\n");

(ciag dalszy na nastgpnej stronie)

10 Rozdziat 2. Tworzenie rozszerzen poprzez narzedzia zewnetrzne.

Extending and Embedding Python, Wydanie 3.9.18

(kontynuacja poprzedniej strony)

PyMem_RawFree (program) ;
return 0;

Informacja: Removing entries from sys.modules or importing compiled modules into multiple interpreters
within a process (or following a fork () without an intervening exec ()) can create problems for some extension
modules. Extension module authors should exercise caution when initializing internal data structures.

Bardziej konkretny przyktad modutu jest zataczony w dystrybucji Zrodet jezyka pytonowskiego jako plik Modules/
xxmodule. c. Ten plik moze by¢ uzyty jako wzdr lub po prostu czytany jako przykiad.

Informacja: Unlike our spam example, xxmodule uses multi-phase initialization (new in Python 3.5), where a
PyModuleDef structure is returned from Py Init_spam, and creation of the module is left to the import machinery.
For details on multi-phase initialization, see PEP 489.

2.1.5 Kompilacja i taczenie

Sa jeszcze dwie rzeczy ktore trzeba zrobi¢ zanim bedzie mozna uzy¢ nowego rozszerzenia: skompilowanie go i podia-
czenie z systemem Pythona. Jesli uzywasz dynamicznego tadowania, szczegély moga zaleze¢ od stylu dynamicznego
fadowania ktérego twdj system uzywa; zobacz rozdziat o budowaniu rozszerzajacych modutéw (rozdziat Building C
and C++ Extensions) 1 dodatkowe informacje ktére odnoszg si¢ tylko do budowania w Windows (rozdzial Tworzenie
rozszerzen C i C++ w Windowsie) po wigcej informacji na ten temat.

If you can’t use dynamic loading, or if you want to make your module a permanent part of the Python interpreter,
you will have to change the configuration setup and rebuild the interpreter. Luckily, this is very simple on Unix: just
place your file (spammodule. c for example) in the Modules/ directory of an unpacked source distribution, add
a line to the file Modules/Setup. local describing your file:

spam spammodule.o

1 przebuduj program interpretujacy przez uruchomienie programu make w katalogu gtéwnym instalacji. Mozesz takze
uruchomic program make w podkatalogu Modules/, ale wtedy musisz najpierw przebudowaé plik Makefile tam
przez uruchomienie programu make Makefile». To jest konieczne za kazdym razem gdy zmieniasz plik Setup.)

If your module requires additional libraries to link with, these can be listed on the line in the configuration file as well,
for instance:

spam spammodule.o -1X11

2.1.6 Wywolywanie zadan jezyka pytonowskiego z C

Jak do tej pory koncentrowaliSmy si¢ na uczynieniu zadain C mozliwymi do wywotania z poziomu jezyka pytonow-
skiego. Odwrotna sytuacja jest takze uzyteczna: wywotywanie zadafi jgzyka pytonowskiego z poziomu je¢zyka C. To
w szczegllnosci odnosi si¢ do bibliotek ktére wspieraja tak zwane zadania ,,callback” wstecznie wywotujace. Jesli
sprzeg C uzywa zadan wstecznie wywotujacych, odpowiednik jezyka pytonowskiego czesto potrzebuje dostarczyC
mechanizm wstecznego wywotania dla programisty jezyka pytonowskiego; wypetienie bedzie potrzebowato wzy-
waé zadania wywotania wstecznego z poziomu wstecznego C. Inne przypadki sa takze mozliwe do wyobrazenia.

Szczesliwie, program interpretujacy polecenia jgzyka pytonowskiego jest tatwo wywotywany rekursywnie i istnieje
standardowy sprzeg aby wywotaé zadanie jezyka pytonowskiego. (Nie bede rozpisywat sig¢ o tym jak wywotac czytnik

2.1. Rozszerzanie Pythona za pomoca C lub C++ 11

https://www.python.org/dev/peps/pep-0489

Extending and Embedding Python, Wydanie 3.9.18

jezyka pytonowskiego z konkretnym ciagiem znakéw na wejSciu — jesli jestes zainteresowany, sp6jrz na wypelnienie
opcji —c wiersza polecenia w Modules/main. c z kodu Zrodtowego jezyka pytonowskiego.)

Calling a Python function is easy. First, the Python program must somehow pass you the Python function object.
You should provide a function (or some other interface) to do this. When this function is called, save a pointer to
the Python function object (be careful to Py_INCREF () it!) in a global variable — or wherever you see fit. For
example, the following function might be part of a module definition:

static PyObject *my_callback = NULL;

static PyObject *
my_set_callback (PyObject *dummy, PyObject *args)
{

PyObject *result = NULL;

PyObject *temp;

if (PyArg_ParseTuple (args, "O:set_callback", &temp)) {
if (!PyCallable_Check (temp)) {
PyErr_SetString (PyExc_TypeError, "parameter must be callable");
return NULL;
}

Py_XINCREF (temp) ; /* Add a reference to new callback */
Py_XDECREF (my_callback); /* Dispose of previous callback */
my_callback = temp; /* Remember new callback */

/* Boilerplate to return "None" */
Py_INCREF (Py_None) ;
result = Py_None;

}

return result;

This function must be registered with the interpreter using the METH_VARARGS flag; this is described in section
Zadanie zainicjowania i tabela sposobow postepowania modutu.. The PyArg_ParseTuple () function and its
arguments are documented in section Wydobywanie parametrow w zadaniach rozszerzajgcych.

The macros Py_XINCREF () and Py_XDECREF () increment/decrement the reference count of an object and are
safe in the presence of NULL pointers (but note that femp will not be NULL in this context). More info on them in
section Liczby odniesieri.

Later, when it is time to call the function, you call the C function PyObject_CallObject (). This function has
two arguments, both pointers to arbitrary Python objects: the Python function, and the argument list. The argument
list must always be a tuple object, whose length is the number of arguments. To call the Python function with no ar-
guments, pass in NULL, or an empty tuple; to call it with one argument, pass a singleton tuple. Py_BuildvValue ()
returns a tuple when its format string consists of zero or more format codes between parentheses. For example:

int arg;
PyObject *arglist;
PyObject *result;

arg = 123;

/* Time to call the callback */

arglist = Py_BuildvValue (" (i)", arg);

result = PyObject_CallObject (my_callback, arglist);
Py_DECREF (arglist);

PyObject_CallObject () returns a Python object pointer: this is the return value of the Python func-
tion. PyObject_CallObject () is ,reference-count-neutral” with respect to its arguments. In the exam-
ple a new tuple was created to serve as the argument list, which is Py_DECREF () -ed immediately after the
PyObject_CallObject () call

The return value of PyObject_CallObject () is,new”: either it is a brand new object, or it is an existing object
whose reference count has been incremented. So, unless you want to save it in a global variable, you should somehow

12 Rozdziat 2. Tworzenie rozszerzen poprzez narzedzia zewnetrzne.

Extending and Embedding Python, Wydanie 3.9.18

Py_DECREF () the result, even (especially!) if you are not interested in its value.

Before you do this, howeyver, it is important to check that the return value isn’t NULL. If it is, the Python function
terminated by raising an exception. If the C code that called PyObject_CallObject () is called from Python,
it should now return an error indication to its Python caller, so the interpreter can print a stack trace, or the calling
Python code can handle the exception. If this is not possible or desirable, the exception should be cleared by calling
PyErr_Clear (). For example:

if (result == NULL)
return NULL; /* Pass error back */
..use result...
Py_DECREF (result);

Depending on the desired interface to the Python callback function, you may also have to provide an argument list to
PyObject_CallObject ().Insome cases the argument list is also provided by the Python program, through the
same interface that specified the callback function. It can then be saved and used in the same manner as the function
object. In other cases, you may have to construct a new tuple to pass as the argument list. The simplest way to do this
istocall Py_Buildvalue (). For example, if you want to pass an integral event code, you might use the following
code:

PyObject *arglist;

arglist = Py_BuildValue (" (1)", eventcode);
result = PyObject_CallObject (my_callback, arglist);
Py_DECREF (arglist);
if (result == NULL)
return NULL; /* Pass error back */
/* Here maybe use the result */
Py_DECREF (result) ;

Note the placement of Py_DECREF (arglist) immediately after the call, before the error check! Also note
that strictly speaking this code is not complete: Py_BuildValue () may run out of memory, and this should be
checked.

You may also call a function with keyword arguments by using PyObject_Call (), which supports arguments
and keyword arguments. As in the above example, we use Py_BuildValue () to construct the dictionary.

PyObject *dict;

dict = Py_Buildvalue("{s:1}", "name", wval);
result = PyObject_Call (my_callback, NULL, dict);
Py_DECREF (dict) ;
if (result == NULL)

return NULL; /* Pass error back */
/* Here maybe use the result */
Py_DECREF (result) ;

2.1.7 Wydobywanie parametréw w zadaniach rozszerzajgcych

The PyArg_ParseTuple () function is declared as follows:

int PyArg_ParseTuple (PyObject *arg, const char *format, ...);

Parametr arg musi by¢ przedmiotem - krotka zawierajacym liste parametréw z jezyka pytonowskiego dla zadania C.
Parametr format musi by¢ ciagiem formatu, ktérego sktadnia jest wyjasniona w arg-parsing w podreczniku uzytkow-
nika API Python/C. Pozostate parametry musza by¢ adresami zmiennych ktérych rodzaj jest okreslony przez ciag
formatujacy.

Note that while PyArg_ParseTuple () checks that the Python arguments have the required types, it cannot check
the validity of the addresses of C variables passed to the call: if you make mistakes there, your code will probably
crash or at least overwrite random bits in memory. So be careful!

2.1. Rozszerzanie Pythona za pomoca C lub C++ 13

Extending and Embedding Python, Wydanie 3.9.18

Zauwaz, ze dowolne odniesienia do przedmiotéw jezyka pytonowskiego, ktére sa dostarczone wotajacemu sa pozy-
czonymi odniesieniami; nie zmniejszaj liczby tych odniesieri.

Pewne przyktadowe wywolania:

#define PY _SSIZE_T CLEAN /* Make "s#'" use Py_ssize_t rather than int. */
#include <Python.h>

int ok;

int 1, 7J;

long k, 1;

const char *s;
Py_ssize_t size;

ok = PyArg_ParseTuple(args, ""); /* No arguments */
/* Python call: f() */

ok = PyArg_ParseTuple (args, "s", &s); /* A string */
/* Possible Python call: f('whoops!') */

ok = PyArg_ParseTuple (args, "lls", &k, &1, &s); /* Two longs and a string */
/* Possible Python call: f(1, 2, 'three') */

ok = PyArg_ParseTuple (args, " (ii)s#", &i, &3j, &s, &size);
/* A pair of ints and a string, whose size is also returned */
/* Possible Python call: f((1, 2), 'three') */

const char *file;
const char *mode = "r";
int bufsize = 0;
ok = PyArg_ParseTuple(args, "s|si", &file, &mode, &bufsize);
/* A string, and optionally another string and an integer */
/* Possible Python calls:

f('spam')

f('spam', 'w')

f('spam', 'wb', 100000) */

}
{
int left, top, right, bottom, h, v;
ok = PyArg_ParseTuple(args, " ((ii) (ii)) (ii)",
&left, &top, &right, &bottom, &h, &v);
/* A rectangle and a point */
/* Possible Python call:
f(((0, 0), (400, 300)), (10, 10)) */
}
{
Py_complex c;
ok = PyArg_ParseTuple (args, "D:myfunction", &c);
/* a complex, also providing a function name for errors */
/* Possible Python call: myfunction (1+23) */
}

14 Rozdziat 2. Tworzenie rozszerzen poprzez narzedzia zewnetrzne.

Extending and Embedding Python, Wydanie 3.9.18

2.1.8 Parametry kluczowe dla zadan rozszerzajgcych

The PyArg_ParseTupleAndKeywords () function is declared as follows:

int PyArg_ParseTupleAndKeywords (PyObject *arg, PyObject *kwdict,
const char *format, char *kwlist[], ...);

The arg and format parameters are identical to those of the PyArg_ParseTuple () function. The kwdict para-
meter is the dictionary of keywords received as the third parameter from the Python runtime. The kwlist parameter
is a NULL-terminated list of strings which identify the parameters; the names are matched with the type information
from format from left to right. On success, PyArg_ParseTupleAndKeywords () returns true, otherwise it
returns false and raises an appropriate exception.

Informacja: ZagniezdZone krotki nie moga by¢ wczytane gdy uzywane sa parametry stéw kluczowych! Parametry
stéw kluczowych przekazane do zadania ktére nie sa obecne na liScie kwlist spowoduja ze wyjatek TypeError
zostanie zgtoszony.

Tu jest przyktadowy modut ktéry uzywa stéw kluczowych, oparty na przykiadzie Geoffa Philbricka (phil-
brick@hks.com):

#define PY_SSIZE_T CLEAN /* Make "s#" use Py_ssize_t rather than int. */
#include <Python.h>

static PyObject *
keywdarg_parrot (PyObject *self, PyObject *args, PyObject *keywds)
{

int voltage;

const char *state = "a stiff";

const char *action = "voom";

const char *type = "Norwegian Blue";

static char *kwlist[] = {"voltage", "state", "action", "type", NULL};

if (!PyArg_ParseTupleAndKeywords (args, keywds, "i|sss", kwlist,
&voltage, &state, &action, &type))
return NULL;

printf ("-- This parrot wouldn't %s if you put %i Volts through it.\n",
action, voltage);
printf ("-- Lovely plumage, the %s —-- It's %s!\n", type, state);

Py_RETURN_NONE;

static PyMethodDef keywdarg_methods[] = {
/* The cast of the function is necessary since PyCFunction values
* only take two PyObject* parameters, and keywdarg_parrot () takes
* three.
*/
{"parrot", (PyCFunction) (void (*) (void))keywdarg_parrot, METH_VARARGS | METH_
—~KEYWORDS,
"Print a lovely skit to standard output."},
{NULL, NULL, O, NULL} /* sentinel */
bi

static struct PyModuleDef keywdargmodule = {
PyModuleDef_ HEAD_INIT,
"keywdarg",
NULL,
-1,

(ciag dalszy na nastgpnej stronie)

2.1. Rozszerzanie Pythona za pomoca C lub C++ 15

mailto:philbrick@hks.com
mailto:philbrick@hks.com

Extending and Embedding Python, Wydanie 3.9.18

(kontynuacja poprzedniej strony)

keywdarg_methods
i

PyMODINIT_FUNC
PyInit_keywdarg (void)
{

return PyModule_Create (&keywdargmodule) ;

2.1.9 Budowanie dowolnych wartosci

This function is the counterpart to PyArg_ParseTuple (). It is declared as follows:

PyObject *Py_BuildValue (const char *format, ...);

It recognizes a set of format units similar to the ones recognized by PyArg_ParseTuple (), but the arguments
(which are input to the function, not output) must not be pointers, just values. It returns a new Python object, suitable
for returning from a C function called from Python.

One difference with PyArg_ParseTuple () : while the latter requires its first argument to be a tuple (since Python
argument lists are always represented as tuples internally), Py_Buildvalue () does not always build a tuple. It
builds a tuple only if its format string contains two or more format units. If the format string is empty, it returns
None; if it contains exactly one format unit, it returns whatever object is described by that format unit. To force it to
return a tuple of size O or one, parenthesize the format string.

Examples (to the left the call, to the right the resulting Python value):

Py_Buildvalue ("") None
Py_Buildvalue ("i", 123) 123
Py_Buildvalue ("iii", 123, 456, 789) (123, 456, 789)
Py_Buildvalue ("s", "hello") 'hello'
Py_Buildvalue ("y", "hello") b'hello'
Py_BuildvValue ("ss" "hello", "world") ('"hello', 'world')
Py_BuildValue('s# "hello", 4) 'hell'
Py_BuildvValue ("y#", "hello", 4) b'hell'
Py_Buildvalue (" ()") ()
Py_BuildValue("(l)", 123) (123,)
Py_Buildvalue (" (ii)", 123, 456) (123, 4506)
Py_Buildvalue (" (i,i)", 123, 456) (123, 4506)
Py_Buildvalue("[i,i]", 123, 4506) [123, 456]
Py_Buildvalue ("{s:i,s:i}",

"abc", 123, "def", 456) {'abc': 123, 'def': 456}
Py_Buildvalue (" ((ii) (ii1)) «(ii)",

1, 2, 3, 4, 5, 6) (1, 23, (3, 4)), (5, 6))

2.1.10 Liczby odniesien

In languages like C or C++, the programmer is responsible for dynamic allocation and deallocation of memory on
the heap. In C, this is done using the functions malloc () and free (). In C++, the operators new and delete
are used with essentially the same meaning and we’ll restrict the following discussion to the C case.

Every block of memory allocated with malloc () should eventually be returned to the pool of available memory
by exactly one call to free (). It is important to call free () at the right time. If a block’s address is forgotten but
free () is not called for it, the memory it occupies cannot be reused until the program terminates. This is called
a memory leak. On the other hand, if a program calls free () for a block and then continues to use the block, it
creates a conflict with re-use of the block through another malloc () call. This is called using freed memory. It has
the same bad consequences as referencing uninitialized data — core dumps, wrong results, mysterious crashes.

16 Rozdziat 2. Tworzenie rozszerzen poprzez narzedzia zewnetrzne.

Extending and Embedding Python, Wydanie 3.9.18

Typowymi przyczynami wyciekéw pamigci sa nietypowe Sciezki przejscia przez kod. Dla przykladu, zadanie mo-
ze zaalokowaé blok pamigci, wykonaé pewne obliczenia, a potem uwolni¢ ten blok jeszcze raz. Teraz zmiana w
wymaganiach dla zadania moze dodac test do obliczenia ktéry wykrywa warunek btedu i moze wrdcié wczesniej
z zadania. Latwo jest zapomnie¢ aby uwolni¢ zaalokowany blok pamigci podczas wybierania tej drogi wczesniej-
szego zakonczenia, szczegdlnie gdy jest dodawane pdzniej do kodu. Takie przecieki, gdy raz wprowadzone, czgsto
uchodza niewykryte przez dtugi czas: bledne wyjscie jest wybierane tylko w malym wycinku wszystkich wywotan,
1 wiekszo$¢ nowoczesnych maszyn ma mndstwo wirtualnej pamigci, tak ze wyciek staje si¢ widoczny tylko w dtugo
dziatajacym procesie ktéry uzywa cieknacego zadania czgsto. Dlatego tez, jest to wazne aby zapobiegaé wyciekom
przed ich nastapieniem, przez powziecie konwencji kodowania lub strategii ktéra minimalizuje ten rodzaj btedu.

Since Python makes heavy use of malloc () and free (), it needs a strategy to avoid memory leaks as well as the
use of freed memory. The chosen method is called reference counting. The principle is simple: every object contains
a counter, which is incremented when a reference to the object is stored somewhere, and which is decremented when
a reference to it is deleted. When the counter reaches zero, the last reference to the object has been deleted and the
object is freed.

An alternative strategy is called automatic garbage collection. (Sometimes, reference counting is also referred to as
a garbage collection strategy, hence my use of ,automatic” to distinguish the two.) The big advantage of automatic
garbage collection is that the user doesn’t need to call free () explicitly. (Another claimed advantage is an impro-
vement in speed or memory usage — this is no hard fact however.) The disadvantage is that for C, there is no truly
portable automatic garbage collector, while reference counting can be implemented portably (as long as the functions
malloc () and free () are available — which the C Standard guarantees). Maybe some day a sufficiently portable
automatic garbage collector will be available for C. Until then, we’ll have to live with reference counts.

Podczas gdy jezyk pytonowski uzywa tradycyjnego wypelnienia zliczania odniesieni, on takze oferuje wykrywanie
cykli, ktére pracuje aby wykrywac cykliczne odniesienia. To pozwala aplikacjom nie martwic si¢ o tworzenie bezpo-
Srednich lub posrednich cyklicznych odniesiei; to sg staboSci wypelnienia zbidrki Smieci opartego jedynie na zliczaniu
odniesien. Cykle odniesieri skladaja si¢ z przedmiotéw ktére zawieraja (mozliwie posrednio) odniesienia do samych
siebie, tak ze kazdy przedmiot w cyklu ma liczbg odniesiert ktéra jest nie-zerowa. Typowe wypetnienia zliczajace
odniesienia nie sa w stanie przeja¢ z powrotem pamigci nalezacej do ktéregokolwiek z przedmiotéw w cyklu odnie-
sieri, ani do ktorej odnosi sig ktorys z przedmiotéw w cyklu, nawet jesli nie ma wigcej odniesieri do cyklu samego w
sobie.

The cycle detector is able to detect garbage cycles and can reclaim them. The gc module exposes a way to run the
detector (the collect () function), as well as configuration interfaces and the ability to disable the detector at
runtime. The cycle detector is considered an optional component; though it is included by default, it can be disabled
at build time using the ~——without-cycle—gc option to the configure script on Unix platforms (including
Mac OS X). If the cycle detector is disabled in this way, the gc module will not be available.

Zliczanie odniesien w jezyku pytonowskim

There are two macros, Py_INCREF (x) and Py_DECREF (x), which handle the incrementing and decrementing
of the reference count. Py_DECREF () also frees the object when the count reaches zero. For flexibility, it doesn’t
call free () directly — rather, it makes a call through a function pointer in the object’s type object. For this purpose
(and others), every object also contains a pointer to its type object.

The big question now remains: when to use Py_INCREF (x) and Py_DECREF (x) ? Let’s first introduce some
terms. Nobody ,,owns” an object; however, you can own a reference to an object. An object’s reference count is now
defined as the number of owned references to it. The owner of a reference is responsible for calling Py_DECREF ()
when the reference is no longer needed. Ownership of a reference can be transferred. There are three ways to dispose
of an owned reference: pass it on, store it, or call Py_DECREF (). Forgetting to dispose of an owned reference
creates a memory leak.

It is also possible to borrow” a reference to an object. The borrower of a reference should not call Py_DECREF ().
The borrower must not hold on to the object longer than the owner from which it was borrowed. Using a borrowed
reference after the owner has disposed of it risks using freed memory and should be avoided completely”.

2 Metafora ,,pozyczania” odniesienia nie jest do korica poprawna: whasciciel wciaz ma kopie odniesienia.
3 Sprawdzanie ze liczba odniesieri jest przynajmniej 1 nie dziata — liczba odniesieri sama w sobie moze by¢ w uwolnionej pamieci i dlatego
moze by¢ ponownie uzyta dla innego przedmiotu!

2.1. Rozszerzanie Pythona za pomoca C lub C++ 17

Extending and Embedding Python, Wydanie 3.9.18

Zaleta pozyczania ponad posiadaniem odniesienia jest to ze nie potrzebujesz zaprzata¢ swojej uwagi pozbyciem si¢
odniesienia na wszystkich mozliwych $ciezkach przejscia przez kod — innymi stowy, z pozyczonym odniesieniem
nie musisz ryzykowaé wycieku gdy nastapi przedwczesne wyjscie z programu. Wada pozyczania ponad posiadaniem
jest to ze istnieja pewne szczegllne sytuacje gdzie w wydawatoby sie¢ poprawnym kodzie pozyczone odniesienie moze
by¢ uzyte po tym jak wtasciciel od ktérego zostato ono pozyczone faktycznie pozbyt si¢ go.

A borrowed reference can be changed into an owned reference by calling Py_ INCREF () . This does not affect the
status of the owner from which the reference was borrowed — it creates a new owned reference, and gives full owner
responsibilities (the new owner must dispose of the reference properly, as well as the previous owner).

Zasady wtascicielskie

Zawsze gdy odniesienie do przedmiotu jest przekazywane do lub z zadania, jest czeScia specyfiki sprzegu zadania to
czy wlasnos¢ jest przekazywana z odniesieniem czy tez nie.

Most functions that return a reference to an object pass on ownership with the reference. In particular, all func-
tions whose function it is to create a new object, such as PyLong_FromLong () and Py_Buildvalue (), pass
ownership to the receiver. Even if the object is not actually new, you still receive ownership of a new reference to
that object. For instance, PyLong_FromLong () maintains a cache of popular values and can return a reference
to a cached item.

Many functions that extract objects from other objects also transfer ownership with the reference, for
instance PyObject_GetAttrString (). The picture is less clear, here, however, since a few com-
mon routines are exceptions: PyTuple_GetItem (), PyList_GetItem(), PyDict_GetItem(), and
PyDict_GetItemString () all return references that you borrow from the tuple, list or dictionary.

The function Py Import_AddModule () also returns a borrowed reference, even though it may actually create the
object it returns: this is possible because an owned reference to the object is stored in sys.modules.

When you pass an object reference into another function, in general, the function borrows the reference from you —
if it needs to store it, it will use Py_INCREF () to become an independent owner. There are exactly two important
exceptions to this rule: PyTuple_SetItem () and PyList_SetItem (). These functions take over ownership
of the item passed to them — even if they fail! (Note that PyDict_SetItem() and friends don’t take over
ownership — they are ,,normal.”)

When a C function is called from Python, it borrows references to its arguments from the caller. The caller owns a
reference to the object, so the borrowed reference’s lifetime is guaranteed until the function returns. Only when such a
borrowed reference must be stored or passed on, it must be turned into an owned reference by calling Py_ INCREF () .

Odniesienie do przedmiotu zwrécone z zadania C ktdre jest wywotane z poziomu jezyka pytonowskiego musi by¢
posiadanym odniesieniem — prawo wlasnoSci jest przekazywane z zadania do wywotujacego to ostatnie.

Cienki lod

Istnieje kilka sytuacji gdzie wydawaloby si¢ nieszkodliwe uzycie pozyczonych odniesiefi moze prowadzi¢ do kto-
potéw. Wszystkie one maja do czynienia z niejawnymi wezwaniami programu interpretujacego polecenia j¢zyka
pytonowskiego, ktére moga powodowaé ze wlasciciel odniesienia pozbedzie sig go.

The first and most important case to know about is using Py_ DECREF () on an unrelated object while borrowing a
reference to a list item. For instance:

void
bug (PyObject *1list)
{
PyObject *item = PyList_GetItem(list, 0);

PyList_SetItem(list, 1, PyLong_FromLong (0L)) ;
PyObject_Print (item, stdout, 0); /* BUG! */

18 Rozdziat 2. Tworzenie rozszerzen poprzez narzedzia zewnetrzne.

Extending and Embedding Python, Wydanie 3.9.18

To zadanie najpierw pozycza odniesienie do 1ist [0], potem zamienia 1ist [1] na wartos$¢ 0,1 osta-
tecznie wypisuje pozyczone odniesienie. Wydaje si¢ nieszkodliwe, czyz nie? A jednak jest!

Let’s follow the control flow into PyList_SetItem (). The list owns references to all its items, so when item
1 is replaced, it has to dispose of the original item 1. Now let’s suppose the original item 1 was an instance of a
user-defined class, and let’s further suppose that the class defineda __del__ () method. If this class instance has a
reference count of 1, disposing of it will call its __del__ () method.

Since it is written in Python, the __del__ () method can execute arbitrary Python code. Could it perhaps do
something to invalidate the reference to item in bug () ? You bet! Assuming that the list passed into bug () is
accessible to the __del__ () method, it could execute a statement to the effect of del 1ist [0], and assuming
this was the last reference to that object, it would free the memory associated with it, thereby invalidating i t em.

Rozwiazanie, gdy znasz juz Zrédlo problemu, jest fatwe: tymczasowo zwigkszy¢ ilo$¢ odniesien. Poprawna wersja
zadania réwna jest:

void
no_bug (PyObject *1list)
{
PyObject *item = PyList_GetItem(list, 0);

Py_INCREF (item) ;

PyList_SetItem(list, 1, PyLong_FromLong (0L)) ;
PyObject_Print (item, stdout, 0);

Py_DECREF (item) ;

To jest prawdziwa historia. Starsza wersja jezyka pytonowskiego zawierata warianty tego btedu i kto§ spedzit zdrowy
kawatek czasu w debugerze C aby dowiedzie€ si¢ czemu jegosposoby postgpowania ___del_ () zawodzily...

The second case of problems with a borrowed reference is a variant involving threads. Normally, multiple threads in
the Python interpreter can’t get in each other’s way, because there is a global lock protecting Python’s entire object
space. However, it is possible to temporarily release this lock using the macro Py_ BEGIN_ALLOW_THREADS, and
to re-acquire it using Py_ END_ALLOW_THREADS. This is common around blocking I/O calls, to let other threads
use the processor while waiting for the I/O to complete. Obviously, the following function has the same problem as
the previous one:

void

bug (PyObject *1list)

{
PyObject *item = PyList_GetItem(list, 0);
Py_BEGIN_ALLOW_THREADS
...some blocking I/O call...
Py_END_ALLOW_THREADS
PyObject_Print (item, stdout, 0); /* BUG! */

Puste wskazniki (NULL)

In general, functions that take object references as arguments do not expect you to pass them NULL pointers, and will
dump core (or cause later core dumps) if you do so. Functions that return object references generally return NULL
only to indicate that an exception occurred. The reason for not testing for NULL arguments is that functions often
pass the objects they receive on to other function — if each function were to test for NULL, there would be a lot of
redundant tests and the code would run more slowly.

It is better to test for NULL only at the ,,source:” when a pointer that may be NULL is received, for example, from
malloc () or from a function that may raise an exception.

The macros Py_INCREF () and Py_DECREF () do not check for NULL pointers — however, their variants
Py_XINCREF()andPy_XDECREF()dQ

2.1. Rozszerzanie Pythona za pomoca C lub C++ 19

Extending and Embedding Python, Wydanie 3.9.18

The macros for checking for a particular object type (Pytype_Check ()) don’t check for NULL pointers — again,
there is much code that calls several of these in a row to test an object against various different expected types, and
this would generate redundant tests. There are no variants with NULL checking.

The C function calling mechanism guarantees that the argument list passed to C functions (args in the examples)
is never NULL — in fact it guarantees that it is always a tuple*.

It is a severe error to ever let a NULL pointer ,.escape” to the Python user.

2.1.11 Pisanie rozszerzen w C++

Jest mozliwe pisanie moduléw rozszerzajacych w C++. Niektére ograniczenia obowiazuja. Jesli gléwny program
(program interpretujacy polecenia jezyka pytonowskiego) jest kompilowany i faczony przez kompilator jezyka C,
nadrzedne lub statyczne przedmioty z konstruktorami nie moga by¢ uzywane. To nie jest problemem jesli gtéwny
program jest taczony przez kompilator C++. Zadania ktére bgda wezwane przez program interpretujacy polecenia je-
zyka pytonowskiego (w szczeg6lnosci, zadania inicjujace modut) musza by¢ deklarowane uzywajac extern "C".
Nie jest to konieczne aby zawieraé plik nagléwkowy jezyka pytonowskiego w extern "C" {...} — one uzy-
waja juz tej formy jesli symbol ___cplusplus jest zdefiniowany (wszystkie niedawne kompilatory C++ definiuja
ten symbol).

2.1.12 Dostarczanie sprzegu programowania aplikacji (API) jezyka C dla modutu
rozszerzajacego

Wiele moduléw rozszerzajacych po prostu dostarcza nowych zadan i typéw aby byly uzywane z jezyka pytonow-
skiego, ale czasami kod w module rozszerzajacym moze by¢ uzyteczny dla innych rozszerzajacych modutéw. Na
przyktad, modul rozszerzajacy mégiby wypetniaé typ ,.kolekcji” ktéry dziatatby jak lista bez wprowadzonego po-
rzadku. Tak jak standardowy typ listy jezyka pytonowskiego posiada sprz¢g programowania aplikacji jezyka C,
ktéry pozwala modutom rozszerzajacym tworzenie i zmiang list, ten nowy typ kolekcji powinien mie¢ zbiér zadan C
dla bezposrednich zmian z innych moduléw rozszerzajacych.

Na pierwszy rzut oka to wydaje si¢ proste: napisa¢ zadania (bez deklarowania ich jako statycznych, oczywiscie),
dostarczy¢ odpowiedni plik nagtéwkowy, i udokumentowac sprzeg programowania aplikacji (API) C. I faktycznie to
mogloby zadziataC jeSli wszystkie rozszerzajace moduty bylyby zawsze ztaczone statycznie z programem interpretu-
jacym polecenia jezyka pytonowskiego. Gdy moduty sa uzywane jako wspétdzielone biblioteki, jednakze, symbole
zdefiniowane w jednym module moga nie by¢ widoczne dla innych modutéw. Szczegéty widocznosci zaleza od sys-
temu operacyjnego; niektére systemy uzywaja jednej nadrzednej przestrzeni nazw dla programu interpretujacego
polecenia jezyka pytonowskiego i wszystkich moduléw rozszerzajacych (dla Windows, na przyktad), podczas gdy
inne wymagaja jawnej listy importowanych symboli w czasie taczenia modutéw (AIX jest jednym z przykiadéw),
lub oferuja wybdr réznych strategii (wigkszo$¢ Unix-6w). I nawet jesli symbole sa widoczne nadrzgdnie, modut
ktérego zadania kto§ cheialby uruchomi¢ mogty nie zostaé jeszcze zaladowane!

Przenono¢ zatem wymaga aby nie czyni¢ zadnych zalozen o widoczno$ci symboli. To oznacza, ze wszystkie sym-
bole w rozszerzajacych modutach powinny by¢ deklarowane jako statyczne, z wyjatkiem zadania zainicjowania
modutu, w celu ominigcia wojen nazw z innymi modulami rozszerzajacymi (jak okreslono w rozdziale Zadanie za-
inicjowania i tabela sposobow postepowania modutu.). I to oznacza, ze symbole, ktére powinny by¢ dostgpne z innych
rozszerzajacych modutéw musza by¢ eksportowane w rézny sposéb.

Python provides a special mechanism to pass C-level information (pointers) from one extension module to another
one: Capsules. A Capsule is a Python data type which stores a pointer (void *). Capsules can only be created
and accessed via their C API, but they can be passed around like any other Python object. In particular, they can
be assigned to a name in an extension module’s namespace. Other extension modules can then import this module,
retrieve the value of this name, and then retrieve the pointer from the Capsule.

Istnieje wiele sposobdéw w jakie kapsuty moga by¢ uzywane aby wystawia¢ na zewnatrz sprzegi programowania apli-
kacji (API) jezyka C dla danego modutu rozszerzajacego. Kazde zadanie mogloby dosta¢ swoja wtasng kapsule, lub
wszystkie wskazniki sprzegu programowania aplikacji (API) jezyka C mogtyby by¢ zachowane w tabeli ktérej adres
bylby opublikowany w kapsule. A rézne zadania zachowania i odbioru wskaznikéw mogtyby by¢ rozprowadzone na
rézne sposoby pomig¢dzy moduly dostarczajace kod i moduly odbierajace.

4 Te gwarancje nie sa w mocy gdy uzywasz ,,starego” sposobu wywolywania — to jest wcigz znajdowane w duzej czesci istniejacego kodu.

20 Rozdziat 2. Tworzenie rozszerzen poprzez narzedzia zewnetrzne.

Extending and Embedding Python, Wydanie 3.9.18

Whichever method you choose, it’s important to name your Capsules properly. The function PyCapsule_New ()
takes a name parameter (const char *); youre permitted to pass in a NULL name, but we strongly encourage
you to specify a name. Properly named Capsules provide a degree of runtime type-safety; there is no feasible way to
tell one unnamed Capsule from another.

W szczegdlnosci, kapsutom uzywanym do wystawiania sprzggéw programowania aplikacji jezyka C (- z ang. - API)
powinna by¢ nadana nazwa stosujaca si¢ do nastepujacej konwencji:

modulename.attributename

The convenience function PyCapsule_Import () makes it easy toload a C API provided via a Capsule, but only
if the Capsule’s name matches this convention. This behavior gives C API users a high degree of certainty that the
Capsule they load contains the correct C API.

The following example demonstrates an approach that puts most of the burden on the writer of the exporting module,
which is appropriate for commonly used library modules. It stores all C API pointers (just one in the example!) in an
array of void pointers which becomes the value of a Capsule. The header file corresponding to the module provides
a macro that takes care of importing the module and retrieving its C API pointers; client modules only have to call
this macro before accessing the C APL.

The exporting module is a modification of the spam module from section Prosty przyktad. The function spam.
system () does not call the C library function system () directly, but a function PySpam_System (), which
would of course do something more complicated in reality (such as adding ,,spam” to every command). This function
PySpam_System () is also exported to other extension modules.

The function PySpam_System () is a plain C function, declared stat ic like everything else:

static int
PySpam_System(const char *command)
{

return system(command) ;

The function spam_system () is modified in a trivial way:

static PyObject *
spam_system (PyObject *self, PyObject *args)
{

const char *command;

int sts;

if (!PyArg_ParseTuple(args, "s", &command))
return NULL;

sts = PySpam_System (command) ;

return PylLong_FromLong (sts);

Na poczatku modutu, zaraz za linig

#include <Python.h>

muszg by¢ dodane dwie linie:

#define SPAM_MODULE
#include "spammodule.h"

#define jest uzywane aby przekaza¢ plikowi nagtéwkowemu ze jest zataczany w module wystawianym na ze-
wnatrz, nie w module ktéremu wszystko stuzy. Ostatecznie zadanie inicjowania musi zadba¢ o zainicjowanie tabeli
wskaznikéw sprzegu programowania aplikacji jezyka C.

PyMODINIT_FUNC
PyInit_spam(void)

(ciag dalszy na nastgpnej stronie)

2.1. Rozszerzanie Pythona za pomoca C lub C++ 21

Extending and Embedding Python, Wydanie 3.9.18

(kontynuacja poprzedniej strony)

PyObject *m;
static void *PySpam_API[PySpam_API_pointers];
PyObject *c_api_object;

m = PyModule_Create (&spammodule) ;
if (m == NULL)
return NULL;

/* Initialize the C API pointer array */
PySpam_API [PySpam_System NUM] = (void *)PySpam_System;

/* Create a Capsule containing the API pointer array's address */
c_api_object = PyCapsule_New((void *)PySpam_API, "spam._C_API", NULL);

if (PyModule_AddObject(m, "_C_API", c_api_object) < 0) {
Py_XDECREF (c_api_object);
Py_DECREF (m) ;
return NULL;

return m;

Zauwaz, ze PySpam_APT jest zadeklarowane statycznie; w innym przypadku tabela wskaznikéw zniknetaby
gdy PyInit_spam () si¢ zakoriczy!

Wigksza czes$¢ pracy jest wykonywana w pliku nagtéwkowym spammodule . h, ktéry wyglada nastepujaco:

#ifndef Py_SPAMMODULE_H
#define Py SPAMMODULE_H
#ifdef __cplusplus
extern "C" {

#endif

/* Header file for spammodule */

/* C API functions */

#define PySpam_System_NUM 0

#define PySpam System RETURN int

#define PySpam_System PROTO (const char *command)

/* Total number of C API pointers */

#define PySpam_API_pointers 1

#ifdef SPAM_MODULE

/* This section is used when compiling spammodule.c */

static PySpam_System_RETURN PySpam_System PySpam_System_ PROTO;

#else
/* This section is used in modules that use spammodule's API */

static void **PySpam_ API;

#define PySpam_System \
(* (PySpam_System_ RETURN (*)PySpam_System PROTO) PySpam API[PySpam_System NUM])

/* Return -1 on error, 0 on success.
* PyCapsule_Import will set an exception if there's an error.

(ciag dalszy na nastgpnej stronie)

22 Rozdziat 2. Tworzenie rozszerzen poprzez narzedzia zewnetrzne.

Extending and Embedding Python, Wydanie 3.9.18

(kontynuacja poprzedniej strony)

*/
static int
import_spam(void)

{

PySpam_API = (void **)PyCapsule_Import ("spam._C_API", 0);
return (PySpam_ API != NULL) 2 0 : -1;

}

#endif

#ifdef __cplusplus

i
#endif

#endif /* !defined (Py_SPAMMODULE_H) */

All that a client module must do in order to have access to the function PySpam_System () is to call the function
(or rather macro) import_spam () in its initialization function:

PyMODINIT_FUNC
PyInit_client (void)
{

PyObject *m;

m = PyModule_Create (&clientmodule);
if (m == NULL)
return NULL;
if (import_spam() < 0)
return NULL;
/* additional initialization can happen here */
return m;

Gléwna wadg tego podejscia jest to, ze plik spammodule.h jest raczej skomplikowany. Jednakze podstawowa
struktura jest taka sama dla kazdego zadania ktdre jest wystawiane na zewnatrz wigc trzeba sig tego uczy¢ tylko raz.

Ostatecznie warto wspomnie¢, ze kapsuty daja dodatkowe mozliwosci dziatania, ktére sa szczeg6lnie uzyteczne dla
umieszczania i zabierania miejsca w pamigci wskaznikéw zachowywanych w kapsule. Szczegéty sa opisane w pod-
reczniku uzytkownika API Python/C w rozdziale capsules i w wypelnieniu programowym kapsut (plikéw Include/
pycapsule.hiObjects/pycapsule.c w dystrybucji Zrodtowej kodu Pythona).

2.2 Defining Extension Types: Tutorial

Python allows the writer of a C extension module to define new types that can be manipulated from Python code,
much like the built-in str and 1ist types. The code for all extension types follows a pattern, but there are some
details that you need to understand before you can get started. This document is a gentle introduction to the topic.

2.2. Defining Extension Types: Tutorial 23

Extending and Embedding Python, Wydanie 3.9.18

2.2.1 The Basics

The CPython runtime sees all Python objects as variables of type PyObject *, which serves as a ,,base type” for all
Python objects. The PyObject structure itself only contains the object’s reference count and a pointer to the object’s
»type object”. This is where the action is; the type object determines which (C) functions get called by the interpreter
when, for instance, an attribute gets looked up on an object, a method called, or it is multiplied by another object.
These C functions are called ,,type methods”.

So, if you want to define a new extension type, you need to create a new type object.

This sort of thing can only be explained by example, so here’s a minimal, but complete, module that defines a new
type named Custom inside a C extension module custom:

Informacja: What we’re showing here is the traditional way of defining static extension types. It should be adequate
for most uses. The C API also allows defining heap-allocated extension types using the PyType_FromSpec ()
function, which isn’t covered in this tutorial.

#define PY_SSIZE_T_ CLEAN
#include <Python.h>

typedef struct {

PyObject_HEAD

/* Type-specific fields go here. */
} CustomObiject;

static PyTypeObject CustomType = {
PyVarObject_HEAD_INIT (NULL, 0)
.tp_name = "custom.Custom",
.tp_doc = PyDoc_STR("Custom objects"),
.tp_basicsize = sizeof (CustomObject),
.tp_itemsize = 0,
.tp_flags = Py_TPFLAGS_DEFAULT,
.tp_new = PyType_GenericNew,

bi

static PyModuleDef custommodule = {
PyModuleDef_ HEAD_INIT,

.m_name = "custom",
.m_doc = "Example module that creates an extension type.",
.m_size = -1,

bi

PyMODINIT_FUNC
PyInit_custom(void)
{
PyObject *m;
if (PyType_Ready (&CustomType) < 0)
return NULL;

m = PyModule_Create (&custommodule) ;
if (m == NULL)
return NULL;

Py_INCREF (&CustomType) ;

if (PyModule_AddObject (m, "Custom", (PyObject *) &CustomType) < 0)
Py_DECREF (&CustomType) ;
Py_DECREF (m) ;
return NULL;

(ciag dalszy na nastgpnej stronie)

24 Rozdziat 2. Tworzenie rozszerzen poprzez narzedzia zewnetrzne.

Extending and Embedding Python, Wydanie 3.9.18

(kontynuacja poprzedniej strony)

return m;

Now that’s quite a bit to take in at once, but hopefully bits will seem familiar from the previous chapter. This file
defines three things:

1. Whata Custom object contains: this is the Cust omOb ject struct, which is allocated once for each Cust om
instance.

2. How the Custom type behaves: this is the Cust omType struct, which defines a set of flags and function
pointers that the interpreter inspects when specific operations are requested.

3. How to initialize the custom module: this is the PyInit_custom function and the associated
custommodule struct.

The first bit is:

typedef struct {
PyObject_HEAD
} CustomObject;

This is what a Custom object will contain. PyObject_HEAD is mandatory at the start of each object struct and
defines a field called ob_base of type PyObject, containing a pointer to a type object and a reference count
(these can be accessed using the macros Py_ TYPE and Py_REFCNT respectively). The reason for the macro is to
abstract away the layout and to enable additional fields in debug builds.

Informacja: There is no semicolon above after the PyObject__HEAD macro. Be wary of adding one by accident:
some compilers will complain.

Of course, objects generally store additional data besides the standard PyObject_HEAD boilerplate; for example,
here is the definition for standard Python floats:

typedef struct {
PyObject_HEAD
double ob_fval;
} PyFloatObiject;

The second bit is the definition of the type object.

static PyTypeObject CustomType = {
PyVarObject_HEAD_INIT (NULL, 0)
.tp_name = "custom.Custom",
.tp_doc = PyDoc_STR("Custom objects"),
.tp_basicsize = sizeof (CustomObject),
.tp_itemsize = 0,
.tp_flags = Py_TPFLAGS_DEFAULT,
.tp_new = PyType_GenericNew,

bi

Informacja: We recommend using C99-style designated initializers as above, to avoid listing all the
PyTypeObject fields that you don’t care about and also to avoid caring about the fields» declaration order.

The actual definition of PyTypeObject in object . h has many more fields than the definition above. The rema-
ining fields will be filled with zeros by the C compiler, and it’s common practice to not specify them explicitly unless
you need them.

We're going to pick it apart, one field at a time:

2.2. Defining Extension Types: Tutorial 25

Extending and Embedding Python, Wydanie 3.9.18

’PyVarObject_HEAD_INIT(NULL, 0)

This line is mandatory boilerplate to initialize the ob_base field mentioned above.

’.tp_name = "custom.Custom",

The name of our type. This will appear in the default textual representation of our objects and in some error messages,
for example:

>>> "" + custom.Custom{()
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: can only concatenate str (not "custom.Custom") to str

Note that the name is a dotted name that includes both the module name and the name of the type within the module.
The module in this case is cust om and the type is Custom, so we set the type name to custom.Custom. Using
the real dotted import path is important to make your type compatible with the pydoc and pickle modules.

.tp_basicsize = sizeof (CustomObject),
.tp_itemsize = O,

This is so that Python knows how much memory to allocate when creating new Custom instances. tp_itemsize
is only used for variable-sized objects and should otherwise be zero.

Informacja: If you want your type to be subclassable from Python, and your type has the same tp_basicsize
as its base type, you may have problems with multiple inheritance. A Python subclass of your type will have to list
your type first in its __bases__, or else it will not be able to call your type’s __new___ () method without getting
an error. You can avoid this problem by ensuring that your type has a larger value for t p_basicsize than its base
type does. Most of the time, this will be true anyway, because either your base type will be object, or else you will
be adding data members to your base type, and therefore increasing its size.

We set the class flags to Py_ TPFLAGS_DEFAULT.

.tp_flags = Py_TPFLAGS_DEFAULT,

All types should include this constant in their flags. It enables all of the members defined until at least Python 3.3. If
you need further members, you will need to OR the corresponding flags.

We provide a doc string for the type in tp_doc.

’.tp_doc = PyDoc_STR("Custom objects"),

To enable object creation, we have to provide a tp_new handler. This is the equivalent of the Python method
__new___ (), but has to be specified explicitly. In this case, we can just use the default implementation provided by
the API function PyType_GenericNew ().

.tp_new = PyType_GenericNew,

Everything else in the file should be familiar, except for some code in PyInit_custom():

if (PyType_Ready (&CustomType) < 0)
return;

This initializes the Custom type, filling in a number of members to the appropriate default values, including
ob_type that we initially set to NULL.

Py_INCREF (&CustomType) ;
if (PyModule_AddObject (m, "Custom", (PyObject *) &CustomType) < 0) |
Py_DECREF (&CustomType) ;

(ciag dalszy na nastgpnej stronie)

26 Rozdziat 2. Tworzenie rozszerzen poprzez narzedzia zewnetrzne.

Extending and Embedding Python, Wydanie 3.9.18

(kontynuacja poprzedniej strony)

Py_DECREF (m) ;
return NULL;

This adds the type to the module dictionary. This allows us to create Cust om instances by calling the Cust om class:

>>> import custom
>>> mycustom = custom.Custom/()

That’s it! All that remains is to build it; put the above code in a file called custom. ¢ and:

from distutils.core import setup, Extension
setup (name="custom", version="1.0",
ext_modules=[Extension("custom", ["custom.c"])])

in a file called setup . py; then typing

$ python setup.py build

at a shell should produce a file custom. so in a subdirectory; move to that directory and fire up Python — you
should be able to import custom and play around with Custom objects.

That wasn’t so hard, was it?

Of course, the current Custom type is pretty uninteresting. It has no data and doesn’t do anything. It can’t even be
subclassed.

Informacja: While this documentation showcases the standard distutils module for building C extensions, it is
recommended in real-world use cases to use the newer and better-maintained setuptools library. Documentation
on how to do this is out of scope for this document and can be found in the Python Packaging User’s Guide.

2.2.2 Adding data and methods to the Basic example

Let’s extend the basic example to add some data and methods. Let’s also make the type usable as a base class. We'll
create a new module, custom?2 that adds these capabilities:

#define PY SSIZE T CLEAN
#include <Python.h>
#include "structmember.h"

typedef struct {
PyObject_HEAD
PyObject *first; /* first name */
PyObject *last; /* last name */
int number;

} CustomObject;

static void
Custom_dealloc (CustomObject *self)
{
Py_XDECREF (self->first);
Py_XDECREF (self->last);
Py_TYPE (self)->tp_free ((PyObject *) self);

static PyObject *
Custom_new (PyTypeObject *type, PyObject *args, PyObject *kwds)
{

(ciag dalszy na nastgpnej stronie)

2.2. Defining Extension Types: Tutorial 27

https://packaging.python.org/tutorials/distributing-packages/

Extending and Embedding Python, Wydanie 3.9.18

(kontynuacja poprzedniej strony)

CustomObject *self;

self = (CustomObject *) type->tp_alloc(type, 0);
if (self != NULL) {

self->first = PyUnicode_FromString("");

if (self->first == NULL) {

Py_DECREF (self);
return NULL;

}
self->last = PyUnicode_FromString("");
if (self->last == NULL) {
Py_DECREF (self);
return NULL;
}
self->number = 0;

}
return (PyObject *) self;

static int
Custom_init (CustomObject *self, PyObject *args, PyObject *kwds)
{
static char *kwlist[] = {"first", "last", "number", NULL};
PyObject *first = NULL, *last = NULL, *tmp;

if (!PyArg_ParseTupleAndKeywords (args, kwds, "|00i", kwlist,
sfirst, &last,
&self->number))
return -1;

if (first) |
tmp = self->first;
Py_INCREF (first);
self->first = first;
Py_XDECREF (tmp) ;

3

if (last) {
tmp = self->last;
Py_INCREF (last);
self->last = last;
Py_XDECREF (tmp) ;

3

return O;

static PyMemberDef Custom_members|[] = {
{"first", T_OBJECT_EX, offsetof (CustomObject, first), O,
"first name"},
{"last", T_OBJECT_EX, offsetof (CustomObject, last), O,
"last name"},
{"number", T_INT, offsetof (CustomObject, number), O,
"custom number"},
{NULL} /* Sentinel */
bi

static PyObject *
Custom_name (CustomObject *self, PyObject *Py_UNUSED (ignored))
{
if (self->first == NULL) {
PyErr_SetString (PyExc_AttributeError, "first");
return NULL;

(ciag dalszy na nastgpnej stronie)

28 Rozdziat 2. Tworzenie rozszerzen poprzez narzedzia zewnetrzne.

Extending and Embedding Python, Wydanie 3.9.18

(kontynuacja poprzedniej strony)

if (self->last == NULL) {
PyErr_SetString (PyExc_AttributeError, "last");
return NULL;

3

return PyUnicode_FromFormat ("%$S %S", self->first, self->last);

static PyMethodDef Custom_methods([] = {
{"name", (PyCFunction) Custom_name, METH_NOARGS,
"Return the name, combining the first and last name"
}I
{NULL} /* Sentinel */

bi

static PyTypeObject CustomType = {
PyVarObject_HEAD_INIT (NULL, O0)
.tp_name = "custom2.Custom",
.tp_doc = PyDoc_STR("Custom objects"),
.tp_basicsize = sizeof (CustomObject),
.tp_itemsize = 0,
.tp_flags = Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE,
.tp_new = Custom_new,
.tp_init = (initproc) Custom_init,
.tp_dealloc = (destructor) Custom_dealloc,
.tp_members = Custom_members,
.tp_methods = Custom_methods,

bi

static PyModuleDef custommodule = {
PyModuleDef_ HEAD_INIT,
.m_name = "custom2",
.m_doc = "Example module that creates an extension type.",
.m_size = -1,
bi

PyMODINIT_FUNC
PyInit_custom?2 (void)
{
PyObject *m;
if (PyType_Ready (&CustomType) < 0)
return NULL;

m = PyModule_Create (&custommodule) ;
if (m == NULL)
return NULL;

Py_INCREF (&CustomType) ;

if (PyModule_AddObject (m, "Custom", (PyObject *) &CustomType) < 0)
Py_DECREF (&CustomType) ;
Py_DECREF (m) ;
return NULL;

return m;

This version of the module has a number of changes.

We’ve added an extra include:

#include <structmember.h>

2.2. Defining Extension Types: Tutorial 29

Extending and Embedding Python, Wydanie 3.9.18

This include provides declarations that we use to handle attributes, as described a bit later.

The Custom type now has three data attributes in its C struct, first, last, and number. The first and last variables are
Python strings containing first and last names. The number attribute is a C integer.

The object structure is updated accordingly:

typedef struct {
PyObject_HEAD
PyObject *first; /* first name */
PyObject *last; /* last name */
int number;

} CustomObject;

Because we now have data to manage, we have to be more careful about object allocation and deallocation. At a
minimum, we need a deallocation method:

static void
Custom_dealloc (CustomObject *self)
{
Py_XDECREF (self->first);
Py_XDECREF (self->last);
Py_TYPE (self)->tp_free ((PyObject *) self);

which is assigned to the tp_dealloc member:

.tp_dealloc = (destructor) Custom_dealloc,

This method first clears the reference counts of the two Python attributes. Py_XDECREF () correctly handles the
case where its argument is NULL (which might happen here if t p_new failed midway). It then calls the tp_free
member of the object’s type (computed by Py_TYPE (self)) to free the object’s memory. Note that the object’s
type might not be CustomType, because the object may be an instance of a subclass.

Informacja: The explicit cast to destructor above is needed because we defined Custom_dealloc to ta-
ke a CustomObject * argument, but the tp_dealloc function pointer expects to receive a PyObject *
argument. Otherwise, the compiler will emit a warning. This is object-oriented polymorphism, in C!

We want to make sure that the first and last names are initialized to empty strings, so we provide a tp_new imple-
mentation:

static PyObject *
Custom_new (PyTypeObject *type, PyObject *args, PyObject *kwds)
{

CustomObject *self;

self = (CustomObject *) type->tp_alloc(type, 0);
if (self != NULL) {

self->first = PyUnicode_FromString("");

if (self->first == NULL) {

Py_DECREF (self);
return NULL;
}
self->last = PyUnicode_FromString("");
if (self->last == NULL) {
Py_DECREF (self);
return NULL;
t
self->number = 0;
3
return (PyObject *) self;

30 Rozdziat 2. Tworzenie rozszerzen poprzez narzedzia zewnetrzne.

Extending and Embedding Python, Wydanie 3.9.18

and install it in the tp_new member:

.tp_new = Custom_new,

The tp_new handler is responsible for creating (as opposed to initializing) objects of the type. It is exposed in Python
as the __new__ () method. It is not required to define a t p_new member, and indeed many extension types will
simply reuse PyType_GenericNew () as done in the first version of the Custom type above. In this case, we
use the tp_new handler to initialize the first and last attributes to non-NULL default values.

tp_new is passed the type being instantiated (not necessarily CustomType, if a subclass is instantiated) and any
arguments passed when the type was called, and is expected to return the instance created. tp_new handlers always
accept positional and keyword arguments, but they often ignore the arguments, leaving the argument handling to
initializer (a.k.a. tp_init inCor__init__ in Python) methods.

Informacja: tp_new shouldn’t call tp_init explicitly, as the interpreter will do it itself.

The tp_new implementation calls the t p_alloc slot to allocate memory:

self = (CustomObject *) type->tp_alloc(type, 0);

Since memory allocation may fail, we must check the tp_alloc result against NULL before proceeding.

Informacja: We didn’t fill the tp_alloc slot ourselves. Rather PyType_Ready () fills it for us by inheriting it
from our base class, which is object by default. Most types use the default allocation strategy.

Informacja: If you are creating a co-operative t p_new (one that calls a base type’s tp_newor __new__ ()), you
must not try to determine what method to call using method resolution order at runtime. Always statically determine
what type you are going to call, and call its tp_new directly, or via type->tp_base->tp_new. If you do not
do this, Python subclasses of your type that also inherit from other Python-defined classes may not work correctly.
(Specifically, you may not be able to create instances of such subclasses without getting a TypeError.)

We also define an initialization function which accepts arguments to provide initial values for our instance:

static int
Custom_init (CustomObject *self, PyObject *args, PyObject *kwds)
{
static char *kwlist[] = {"first", "last", "number", NULL};
PyObject *first = NULL, *last = NULL, *tmp;

if (!PyArg_ParseTupleAndKeywords (args, kwds, "|00i", kwlist,
sfirst, &last,
&self->number))
return -1;

if (first) |
tmp = self->first;
Py_INCREF (first);
self->first = first;
Py_XDECREF (tmp) ;

}

if (last) |
tmp = self->last;
Py_INCREF (last);
self->last = last;
Py_XDECREF (tmp) ;

}

return 0O;

2.2. Defining Extension Types: Tutorial 31

Extending and Embedding Python, Wydanie 3.9.18

by filling the tp_init slot.

.tp_init = (initproc) Custom_init,

The tp_init slot is exposed in Python as the __init__ () method. It is used to initialize an object after it’s
created. Initializers always accept positional and keyword arguments, and they should return either O on success or
—1 on error.

Unlike the t p_new handler, there is no guarantee that t p_init is called at all (for example, the pickle module
by defaultdoesn’tcall__init__ () onunpickled instances). It can also be called multiple times. Anyone can call the
__init__ () method on our objects. For this reason, we have to be extra careful when assigning the new attribute
values. We might be tempted, for example to assign the £irst member like this:

if (first) {
Py_XDECREF (self->first);
Py_INCREF (first);
self->first = first;

But this would be risky. Our type doesn’t restrict the type of the £irst member, so it could be any kind of object.
It could have a destructor that causes code to be executed that tries to access the £1irst member; or that destructor
could release the Global interpreter Lock and let arbitrary code run in other threads that accesses and modifies our
object.

To be paranoid and protect ourselves against this possibility, we almost always reassign members before decrementing
their reference counts. When don’t we have to do this?

* when we absolutely know that the reference count is greater than 1;

+ when we know that deallocation of the object! will neither release the GIL nor cause any calls back into our
type’s code;

» when decrementing a reference count in a tp_dealloc handler on a type which doesn’t support cyclic gar-
bage collection”.

We want to expose our instance variables as attributes. There are a number of ways to do that. The simplest way is to
define member definitions:

static PyMemberDef Custom_members|[] = {
{"first", T_OBJECT_EX, offsetof (CustomObject, first), O,
"first name"},
{"last", T_OBJECT_EX, offsetof (CustomObject, last), O,
"last name"},
{"number", T_INT, offsetof (CustomObject, number), O,
"custom number"},
{NULL} /* Sentinel */

bi

and put the definitions in the t p_members slot:

.tp_members = Custom_members,

Each member definition has a member name, type, offset, access flags and documentation string. See the Zastepcze
zarzqdzanie witasciwosciami section below for details.

A disadvantage of this approach is that it doesn’t provide a way to restrict the types of objects that can be assigned
to the Python attributes. We expect the first and last names to be strings, but any Python objects can be assigned.
Further, the attributes can be deleted, setting the C pointers to NULL. Even though we can make sure the members
are initialized to non-NULL values, the members can be set to NULL if the attributes are deleted.

We define a single method, Custom.name (), that outputs the objects name as the concatenation of the first and
last names.

! This is true when we know that the object is a basic type, like a string or a float.
2 We relied on this in the t p_dealloc handler in this example, because our type doesn’t support garbage collection.

32 Rozdziat 2. Tworzenie rozszerzen poprzez narzedzia zewnetrzne.

Extending and Embedding Python, Wydanie 3.9.18

static PyObject *
Custom_name (CustomObject *self, PyObject *Py_UNUSED (ignored))
{
if (self->first == NULL) {
PyErr_SetString (PyExc_AttributeError, "first");
return NULL;
}
if (self->last == NULL) {
PyErr_SetString (PyExc_AttributeError, "last");
return NULL;
}

return PyUnicode_FromFormat ("%S %S", self->first, self->last);

The method is implemented as a C function that takes a Cust om (or Cust om subclass) instance as the first argument.
Methods always take an instance as the first argument. Methods often take positional and keyword arguments as well,
but in this case we don’t take any and don’t need to accept a positional argument tuple or keyword argument dictionary.
This method is equivalent to the Python method:

def name (self):
return " " % (self.first, self.last)

Note that we have to check for the possibility that our £irst and 1ast members are NULL. This is because they
can be deleted, in which case they are set to NULL. It would be better to prevent deletion of these attributes and to
restrict the attribute values to be strings. We'll see how to do that in the next section.

Now that we’ve defined the method, we need to create an array of method definitions:

static PyMethodDef Custom_methods[] = {
{"name", (PyCFunction) Custom_name, METH_NOARGS,
"Return the name, combining the first and last name"
by
{NULL} /* Sentinel */

bi

(note that we used the METH_NOARGS flag to indicate that the method is expecting no arguments other than self)

and assign it to the tp_methods slot:

.tp_methods = Custom_methods,

Finally, we’ll make our type usable as a base class for subclassing. We’ve written our methods carefully so far so that
they don’t make any assumptions about the type of the object being created or used, so all we need to do is to add the
Py_TPFLAGS_BASETYPE to our class flag definition:

.tp_flags = Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE,

We rename PyInit_custom() to PyInit_custom?2 (), update the module name in the PyModuleDef
struct, and update the full class name in the PyTypeObject struct.

Finally, we update our setup . py file to build the new module:

from distutils.core import setup, Extension
setup (name="custom", version="1.0",
ext_modules=]|
Extension("custom", ["custom.c"]),
Extension("custom2", ["custom2.c"]),

1)

2.2. Defining Extension Types: Tutorial 33

Extending and Embedding Python, Wydanie 3.9.18

2.2.3 Providing finer control over data attributes

In this section, we’ll provide finer control over how the first and last attributes are set in the Cust om example.
In the previous version of our module, the instance variables first and last could be set to non-string values or
even deleted. We want to make sure that these attributes always contain strings.

#define PY SSIZE T CLEAN
#include <Python.h>
#include "structmember.h"

typedef struct {
PyObject_HEAD
PyObject *first; /* first name */
PyObject *last; /* last name */
int number;

} CustomObject;

static void
Custom_dealloc (CustomObject *self)
{
Py_XDECREF (self->first);
Py_XDECREF (self->last);
Py_TYPE (self) —>tp_free ((PyObject *) self);

static PyObject *
Custom_new (PyTypeObject *type, PyObject *args, PyObject *kwds)
{

CustomObject *self;

self = (CustomObject *) type->tp_alloc(type, 0);

if (self != NULL) {
self->first = PyUnicode_FromString("");
if (self->first == NULL) {

Py_DECREF (self);
return NULL;
}
self->last = PyUnicode_FromString("");
if (self->last == NULL) H{
Py_DECREF (self);
return NULL;
}
self->number = 0;

}
return (PyObject *) self;

static int
Custom_init (CustomObject *self, PyObject *args, PyObject *kwds)
{
static char *kwlist[] = {"first", "last", "number", NULL};
PyObject *first = NULL, *last = NULL, *tmp;

if (!PyArg_ParseTupleAndKeywords (args, kwds, "|UUi", kwlist,
sfirst, &last,
&self->number))
return -1;

if (first) |
tmp = self->first;
Py_INCREF (first);
self->first = first;
Py_DECREF (tmp) ;

(ciag dalszy na nastgpnej stronie)

34 Rozdziat 2. Tworzenie rozszerzen poprzez narzedzia zewnetrzne.

Extending and Embedding Python, Wydanie 3.9.18

(kontynuacja poprzedniej strony)

}

if (last) {
tmp = self->last;
Py_INCREF (last);
self->last = last;
Py_DECREF (tmp) ;

}

return 0;

static PyMemberDef Custom_members|[] = {

{"number", T_INT, offsetof (CustomObject, number), O,
"custom number"},

{NULL} /* Sentinel */

bi

static PyObject *
Custom_getfirst (CustomObject *self, wvoid *closure)
{

Py_INCREF (self->first);

return self->first;

static int
Custom_setfirst (CustomObject *self, PyObject *value, void *closure)
{
PyObject *tmp;
if (value == NULL) {
PyErr_SetString (PyExc_TypeError, "Cannot delete the first attribute");
return -1;
3
if (!PyUnicode_Check (value)) {
PyErr_SetString (PyExc_TypeError,
"The first attribute value must be a string");
return -1;
}
tmp = self->first;
Py_INCREF (value);
self->first = value;
Py_DECREF (tmp) ;
return O;

static PyObject *
Custom_getlast (CustomObject *self, wvoid *closure)
{

Py_INCREF (self->last);

return self->last;

static int
Custom_setlast (CustomObject *self, PyObject *value, void *closure)
{
PyObject *tmp;
if (value == NULL) {
PyErr_SetString (PyExc_TypeError, "Cannot delete the last attribute");
return -1;
}
if (!PyUnicode_Check (value)) {
PyErr_SetString (PyExc_TypeError,
"The last attribute value must be a string");

(ciag dalszy na nastgpnej stronie)

2.2. Defining Extension Types: Tutorial 35

Extending and Embedding Python, Wydanie 3.9.18

(kontynuacja poprzedniej strony)

return -1;
}
tmp = self->last;
Py_INCREF (value);
self->last = value;
Py_DECREF (tmp) ;
return 0O;

static PyGetSetDef Custom_getsetters[] = {
{"first", (getter) Custom_getfirst, (setter) Custom_setfirst,
"first name", NULL},
{"last", (getter) Custom_getlast, (setter) Custom_setlast,
"last name", NULL},
{NULL} /* Sentinel */
bi

static PyObject *
Custom_name (CustomObject *self, PyObject *Py_UNUSED (ignored))
{

return PyUnicode_FromFormat ("%S %S", self->first, self->last);

static PyMethodDef Custom_methods[] = {
{"name", (PyCFunction) Custom_name, METH_NOARGS,
"Return the name, combining the first and last name"
}I
{NULL} /* Sentinel */

bi

static PyTypeObject CustomType = {
PyVarObject_HEAD_INIT (NULL, O)
.tp_name = "custom3.Custom",
.tp_doc = PyDoc_STR("Custom objects"),
.tp_basicsize = sizeof (CustomObject),
.tp_itemsize = 0,
.tp_flags = Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE,
.tp_new = Custom_new,

.tp_init = (initproc) Custom_init,
.tp_dealloc = (destructor) Custom_dealloc,
.tp_members = Custom_members,

.tp_methods = Custom_methods,
.tp_getset = Custom_getsetters,

bi

static PyModuleDef custommodule = {
PyModuleDef_ HEAD_INIT,

.m_name = "custom3",
.m_doc = "Example module that creates an extension type.",
.m_size = -1,

bi

PyMODINIT_FUNC
PyInit_custom3 (void)
{
PyObject *m;
if (PyType_Ready (&CustomType) < 0)
return NULL;

m = PyModule_Create (&custommodule) ;
if (m == NULL)

(ciag dalszy na nastgpnej stronie)

36 Rozdziat 2. Tworzenie rozszerzen poprzez narzedzia zewnetrzne.

Extending and Embedding Python, Wydanie 3.9.18

(kontynuacja poprzedniej strony)

return NULL;

Py_INCREF (&CustomType) ;

if (PyModule_AddObject (m, "Custom", (PyObject *) &CustomType) < 0)
Py_DECREF (&CustomType) ;
Py_DECREF (m) ;
return NULL;

return m;

To provide greater control, over the first and last attributes, we’ll use custom getter and setter functions. Here
are the functions for getting and setting the first attribute:

static PyObject *
Custom_getfirst (CustomObject *self, woid *closure)
{

Py_INCREF (self->first);

return self->first;

static int
Custom_setfirst (CustomObject *self, PyObject *value, wvoid *closure)
{
PyObject *tmp;
if (value == NULL) {
PyErr_SetString (PyExc_TypeError, "Cannot delete the first attribute");
return -1;
}
if (!PyUnicode_Check (value)) {
PyErr_SetString (PyExc_TypeError,
"The first attribute value must be a string");
return -1;
}
tmp = self->first;
Py_INCREF (value) ;
self->first = value;
Py_DECREF (tmp) ;
return O;

The getter function is passed a Custom object and a ,,closure”, which is a void pointer. In this case, the closure is
ignored. (The closure supports an advanced usage in which definition data is passed to the getter and setter. This
could, for example, be used to allow a single set of getter and setter functions that decide the attribute to get or set
based on data in the closure.)

The setter function is passed the Custom object, the new value, and the closure. The new value may be NULL, in
which case the attribute is being deleted. In our setter, we raise an error if the attribute is deleted or if its new value
is not a string.

We create an array of PyGet SetDef structures:

static PyGetSetDef Custom_getsetters[] = {
{"first", (getter) Custom_getfirst, (setter) Custom_setfirst,
"first name", NULL},
{"last", (getter) Custom_getlast, (setter) Custom_setlast,
"last name", NULL},
{NULL} /* Sentinel */

bi

and register it in the tp_getset slot:

2.2. Defining Extension Types: Tutorial 37

Extending and Embedding Python, Wydanie 3.9.18

.tp_getset = Custom_getsetters,

The last item in a PyGet SetDef structure is the ,,closure” mentioned above. In this case, we aren’t using a closure,
S0 we just pass NULL.

‘We also remove the member definitions for these attributes:

static PyMemberDef Custom_members|[] = {
{"number", T_INT, offsetof (CustomObject, number), O,
"custom number"},
{NULL} /* Sentinel */

bi

We also need to update the tp_init handler to only allow strings® to be passed:

static int
Custom_init (CustomObject *self, PyObject *args, PyObject *kwds)
{
static char *kwlist[] = {"first", "last", "number", NULL};
PyObject *first = NULL, *last = NULL, *tmp;

if (!PyArg_ParseTupleAndKeywords (args, kwds, "|UUi", kwlist,
sfirst, &last,
&self->number))
return -1;

if (first) |
tmp = self->first;
Py_INCREF (first);
self->first = first;
Py_DECREF (tmp) ;

}

if (last) |
tmp = self->last;
Py_INCREF (last);
self->last = last;
Py_DECREF (tmp) ;

}

return 0;

With these changes, we can assure that the first and 1ast members are never NULL so we can remove checks
for NULL values in almost all cases. This means that most of the Py_XDECREF () calls can be converted to
Py_DECREF () calls. The only place we can’t change these calls is in the tp_dealloc implementation, whe-
re there is the possibility that the initialization of these members failed in tp_new.

‘We also rename the module initialization function and module name in the initialization function, as we did before,
and we add an extra definition to the setup. py file.

3 We now know that the first and last members are strings, so perhaps we could be less careful about decrementing their reference counts,
however, we accept instances of string subclasses. Even though deallocating normal strings won’t call back into our objects, we can’t guarantee
that deallocating an instance of a string subclass won't call back into our objects.

38 Rozdziat 2. Tworzenie rozszerzen poprzez narzedzia zewnetrzne.

Extending and Embedding Python, Wydanie 3.9.18

2.2.4 Supporting cyclic garbage collection

Python has a cyclic garbage collector (GC) that can identify unneeded objects even when their reference counts are
not zero. This can happen when objects are involved in cycles. For example, consider:

>>> 1 = []
>>> 1.append (1)
>>> del 1

In this example, we create a list that contains itself. When we delete it, it still has a reference from itself. Its reference
count doesn’t drop to zero. Fortunately, Python’s cyclic garbage collector will eventually figure out that the list is
garbage and free it.

In the second version of the Custom example, we allowed any kind of object to be stored in the first or last
attributes®. Besides, in the second and third versions, we allowed subclassing Custom, and subclasses may add
arbitrary attributes. For any of those two reasons, Cust om objects can participate in cycles:

>>> import custom3
>>> class Derived (custom3.Custom) : pass

>>> n = Derived()
>>> n.some_attribute = n

To allow a Custom instance participating in a reference cycle to be properly detected and collected by the cyclic
GC, our Custom type needs to fill two additional slots and to enable a flag that enables these slots:

#define PY _SSIZE T CLEAN
#include <Python.h>
#include "structmember.h"

typedef struct {
PyObject_HEAD
PyObject *first; /* first name */
PyObject *last; /* last name */
int number;

} CustomObject;

static int
Custom_traverse (CustomObject *self, visitproc visit, wvoid *arq)
{

Py_VISIT (self->first);

Py_VISIT (self->last);

return O;

static int
Custom_clear (CustomObject *self)
{
Py_CLEAR(self->first);
Py_CLEAR(self->last);
return 0;

static void
Custom_dealloc (CustomObject *self)
{
PyObject_GC_UnTrack (self);
Custom_clear (self);
Py_TYPE (self)->tp_free ((PyObject *) self);

(ciag dalszy na nastgpnej stronie)

4 Also, even with our attributes restricted to strings instances, the user could pass arbitrary st r subclasses and therefore still create reference
cycles.

2.2. Defining Extension Types: Tutorial 39

Extending and Embedding Python, Wydanie 3.9.18

(kontynuacja poprzedniej strony)

static PyObject *
Custom_new (PyTypeObject *type,
{

PyObject *args, PyObject *kwds)
CustomObject *self;
self = (CustomObject *)
if (self != NULL) {
self->first = PyUnicode_FromString("");
if (self->first NULL) A
Py_DECREF (self);
return NULL;

type->tp_alloc (type, 0);

}
self->last = PyUnicode_FromString("");

if (self->last NULL) A
Py_DECREF (self);
return NULL;

}

self->number = 0;
}

return (PyObject *) self;

static int
Custom_init (CustomObject *self,
{

PyObject *args, PyObject *kwds)

static char *kwlist[] = {"first", "last", "number", NULL};
PyObject *first = NULL, *last = NULL, *tmp;
if (!PyArg_ParseTupleAndKeywords (args, kwds, "|UUi", kwlist,
sfirst, &last,
&self->number))
return -1;
if (first) |
tmp = self->first;
Py_INCREF (first);
self->first = first;
Py_DECREF (tmp) ;
}
if (last) |
tmp = self->last;

Py_INCREF (last);
self->last = last;
Py_DECREF (tmp) ;

}

return 0O;

static PyMemberDef Custom_members|[] = {
{"number", T_INT, offsetof (CustomObject,
"custom number"},
{NULL} /* Sentinel */

number), O,

bi

static PyObject *
Custom_getfirst (CustomObject *self,
{

void *closure)

Py_INCREF (self->first);
return self->first;

(ciag dalszy na nastgpnej stronie)

40

Rozdziat 2. Tworzenie rozszerzen poprzez narzedzia zewnetrzne.

Extending and Embedding Python, Wydanie 3.9.18

(kontynuacja poprzedniej strony)

static int
Custom_setfirst (CustomObject *self, PyObject *value, wvoid *closure)
{
if (value == NULL) {
PyErr_SetString (PyExc_TypeError, "Cannot delete the first attribute");
return -1;
}
if (!PyUnicode_Check (value)) {
PyErr_SetString (PyExc_TypeError,
"The first attribute value must be a string");
return -1;
}
Py_INCREF (value) ;
Py_CLEAR(self->first);
self->first = value;
return 0O;

static PyObject *
Custom_getlast (CustomObject *self, wvoid *closure)
{

Py_INCREF (self->1last);

return self->last;

static int
Custom_setlast (CustomObject *self, PyObject *value, wvoid *closure)
{
if (value == NULL) {
PyErr_SetString (PyExc_TypeError, "Cannot delete the last attribute");
return -1;
}
if (!PyUnicode_Check (value)) {
PyErr_SetString (PyExc_TypeError,
"The last attribute value must be a string");
return -1;
}
Py_INCREF (value);
Py_CLEAR(self->last);
self->last = value;
return 0;

static PyGetSetDef Custom_getsetters[] = {
{"first", (getter) Custom_getfirst, (setter) Custom_setfirst,
"first name", NULL},
{"last", (getter) Custom_getlast, (setter) Custom_setlast,
"last name", NULL},
{NULL} /* Sentinel */

bi

static PyObject *
Custom_name (CustomObject *self, PyObject *Py_UNUSED (ignored))
{

return PyUnicode_FromFormat ("$S %S", self->first, self->last);

static PyMethodDef Custom_methods[] = {
{"name", (PyCFunction) Custom_name, METH_NOARGS,
"Return the name, combining the first and last name"

by

(ciag dalszy na nastgpnej stronie)

2.2. Defining Extension Types: Tutorial 41

Extending and Embedding Python, Wydanie 3.9.18

(kontynuacja poprzedniej strony)

{NULL} /* Sentinel */
bi

static PyTypeObject CustomType = {
PyVarObject_HEAD_INIT (NULL, O)
.tp_name = "customé4.Custom",
.tp_doc = PyDoc_STR("Custom objects"),
.tp_basicsize = sizeof (CustomObject),
.tp_itemsize = 0,
.tp_flags = Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE | Py_TPFLAGS_HAVE_GC,
.tp_new = Custom_new,
.tp_init = (initproc) Custom_init,
.tp_dealloc = (destructor) Custom_dealloc,
.tp_traverse = (traverseproc) Custom_traverse,
.tp_clear = (inquiry) Custom_clear,
.tp_members = Custom_members,
.tp_methods = Custom_methods,
.tp_getset = Custom_getsetters,

bi

static PyModuleDef custommodule = {
PyModuleDef_ HEAD_INIT,

.m_name = "custom4d",
.m_doc = "Example module that creates an extension type.",
.m_size = -1,

bi

PyMODINIT_FUNC
PyInit_custom4 (void)
{
PyObject *m;
if (PyType_Ready (&CustomType) < 0)
return NULL;

m = PyModule_Create (&custommodule) ;
if (m == NULL)
return NULL;

Py_INCREF (&CustomType) ;

if (PyModule_AddObject (m, "Custom", (PyObject *) &CustomType) < 0)
Py_DECREF (&CustomType) ;
Py_DECREF (m) ;
return NULL;

return m;

First, the traversal method lets the cyclic GC know about subobjects that could participate in cycles:

static int
Custom_traverse (CustomObject *self, visitproc visit, void *arg)
{
int vret;
if (self->first) {
vret = visit(self->first, arg);
if (vret != 0)
return vret;
3
if (self->last) {
vret = visit(self->last, arg);

(ciag dalszy na nastgpnej stronie)

42 Rozdziat 2. Tworzenie rozszerzen poprzez narzedzia zewnetrzne.

Extending and Embedding Python, Wydanie 3.9.18

(kontynuacja poprzedniej strony)

if (vret != 0)
return vret;

}

return 0O;

For each subobject that can participate in cycles, we need to call the visit () function, which is passed to the
traversal method. The visit () function takes as arguments the subobject and the extra argument arg passed to the
traversal method. It returns an integer value that must be returned if it is non-zero.

Python providesa Py_VISIT () macro that automates calling visit functions. WithPy_VISIT (), we can minimize
the amount of boilerplate in Custom_traverse:

static int
Custom_traverse (CustomObject *self, visitproc visit, wvoid *arqg)
{

Py_VISIT (self->first);

Py_VISIT (self->last);

return 0O;

Informacja: The tp_traverse implementation must name its arguments exactly visit and arg in order to use
Py_VISIT().

Second, we need to provide a method for clearing any subobjects that can participate in cycles:

static int
Custom_clear (CustomObject *self)
{
Py_CLEAR (self->first);
Py_CLEAR (self->last);
return 0;

Notice the use of the Py_CLEAR () macro. It is the recommended and safe way to clear data attributes of arbitrary
types while decrementing their reference counts. If you were to call Py_ XDECREF () instead on the attribute before
setting it to NULL, there is a possibility that the attribute’s destructor would call back into code that reads the attribute
again (especially if there is a reference cycle).

Informacja: You could emulate Py_CLEAR () by writing:

PyObject *tmp;

tmp = self->first;
self->first = NULL;
Py_XDECREF (tmp) ;

Nevertheless, it is much easier and less error-prone to always use Py_CLEAR () when deleting an attribute. Don’t
try to micro-optimize at the expense of robustness!

The deallocator Custom_dealloc may call arbitrary code when clearing attributes. It means the circular GC can
be triggered inside the function. Since the GC assumes reference count is not zero, we need to untrack the object from
the GC by calling PyObject_GC_UnTrack () before clearing members. Here is our reimplemented deallocator
using PyObject_GC_UnTrack () and Custom_clear:

static void
Custom_dealloc (CustomObject *self)
{

(ciag dalszy na nastgpnej stronie)

2.2. Defining Extension Types: Tutorial 43

Extending and Embedding Python, Wydanie 3.9.18

(kontynuacja poprzedniej strony)

PyObject_GC_UnTrack (self);
Custom_clear (self);
Py_TYPE (self) ->tp_free ((PyObject *) self);

Finally, we add the Py_TPFLAGS_HAVE_GC flag to the class flags:

.tp_flags = Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE | Py_TPFLAGS_HAVE_GC,

That’s pretty much it. If we had written custom tp_alloc or tp_free handlers, we’d need to modify them for
cyclic garbage collection. Most extensions will use the versions automatically provided.

2.2.5 Subclassing other types

It is possible to create new extension types that are derived from existing types. It is easiest to inherit from the
built in types, since an extension can easily use the PyTypeObject it needs. It can be difficult to share these
PyTypeObject structures between extension modules.

In this example we will create a SubList type that inherits from the built-in 1ist type. The new type will be
completely compatible with regular lists, but will have an additional increment () method that increases an internal
counter:

>>> import sublist

>>> s = sublist.SubList (range (3))
>>> s.extend(s)

>>> print (len(s))

6

>>> print (s.increment ())

1

>>> print (s.increment ())

2

#define PY_SSIZE_T_CLEAN
#include <Python.h>

typedef struct {
PyListObject list;
int state;

} SubListObject;

static PyObject *
SubList_increment (SubListObject *self, PyObject *unused)
{

self->state++;

return PyLong_FromLong (self->state);

static PyMethodDef SubList_methods[] = {
{"increment", (PyCFunction) SubList_increment, METH_NOARGS,
PyDoc_STR("increment state counter")},
{NULL},

bi

static int
SubList_init (SubListObject *self, PyObject *args, PyObject *kwds)
{
if (PyList_Type.tp_init ((PyObject *) self, args, kwds) < 0)
return -1;
self->state = 0;

(ciag dalszy na nastgpnej stronie)

44 Rozdziat 2. Tworzenie rozszerzen poprzez narzedzia zewnetrzne.

Extending and Embedding Python, Wydanie 3.9.18

(kontynuacja poprzedniej strony)

return O;

static PyTypeObject SubListType = {
PyVarObject_HEAD_INIT (NULL, O)
.tp_name = "sublist.SubList",
.tp_doc = PyDoc_STR("SubList objects"),
.tp_basicsize = sizeof (SubListObject),
.tp_itemsize = 0,
.tp_flags = Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE,
.tp_init = (initproc) SubList_init,
.tp_methods = SubList_methods,
bi

static PyModuleDef sublistmodule = {
PyModuleDef_ HEAD_INIT,

.m_name = "sublist",
.m_doc = "Example module that creates an extension type.",
.m_size = -1,

bi

PyMODINIT_FUNC
PyInit_sublist (void)
{
PyObject *m;
SubListType.tp_base = &PyList_Type;
if (PyType_Ready (&SubListType) < 0)
return NULL;

m = PyModule_Create (&sublistmodule);
if (m == NULL)
return NULL;

Py_INCREF (&SubListType) ;

if (PyModule_AddObject (m, "SubList", (PyObject *) &SubListType) < 0) {
Py_DECREF (&SubListType) ;
Py_DECREF (m) ;
return NULL;

return m;

As you can see, the source code closely resembles the Cust om examples in previous sections. We will break down
the main differences between them.

typedef struct {
PyListObject list;
int state;

} SubListObject;

The primary difference for derived type objects is that the base type’s object structure must be the first value. The
base type will already include the PyObject_HEAD () at the beginning of its structure.

When a Python objectis a SubList instance, its PyObject * pointer can be safely castto bothPyListObject
* and SubListObject *:

static int
SubList_init (SubListObject *self, PyObject *args, PyObject *kwds)
{

if (PyList_Type.tp_init ((PyObject *) self, args, kwds) < 0)

(ciag dalszy na nastgpnej stronie)

2.2. Defining Extension Types: Tutorial 45

Extending and Embedding Python, Wydanie 3.9.18

(kontynuacja poprzedniej strony)

return -1;
self->state = 0;
return 0;

We see above how to call through to the ___init___ method of the base type.

This pattern is important when writing a type with custom tp_new and tp_dealloc members. The tp_new
handler should not actually create the memory for the object with its tp_alloc, but let the base class handle it by
calling its own tp_new.

The PyTypeObject struct supports a tp_base specifying the type’s concrete base class. Due to cross-platform
compiler issues, you can’t fill that field directly with a reference to PyList_Type; it should be done later in the
module initialization function:

PyMODINIT_FUNC
PyInit_sublist (void)
{
PyObject* m;
SubListType.tp_base = &PyList_Type;
if (PyType_Ready (&SubListType) < 0)
return NULL;

m = PyModule_Create (&sublistmodule) ;
if (m == NULL)
return NULL;

Py_INCREF (&SubListType) ;

if (PyModule_AddObject (m, "SubList", (PyObject *) &SubListType) < 0) {
Py_DECREF (&SubListType) ;
Py_DECREF (m) ;
return NULL;

return m;

Before calling PyType_Ready (), the type structure must have the tp_base slot filled in. When we are deriving
an existing type, it is not necessary to fill out the tp_alloc slot with PyType_GenericNew () — the allocation
function from the base type will be inherited.

After that, calling PyType_Ready () and adding the type object to the module is the same as with the basic
Custom examples.

2.3 Defining Extension Types: Assorted Topics

Ten rozdziat ma na celu szybko oblecie¢ rézne sposoby postgpowania typdw ktére mozesz wypetni¢ i oméwic co one
robig.

Here is the definition of Py TypeObject, with some fields only used in debug builds omitted:

typedef struct _typeobject {
PyObject_VAR_HEAD
const char *tp_name; /* For printing, in format "<module>.<name>" */
Py_ssize_t tp_basicsize, tp_itemsize; /* For allocation */

/* Methods to implement standard operations */

destructor tp_dealloc;

(ciag dalszy na nastgpnej stronie)

46 Rozdziat 2. Tworzenie rozszerzen poprzez narzedzia zewnetrzne.

Extending and Embedding Python, Wydanie 3.9.18

(kontynuacja poprzedniej strony)

Py_ssize_t tp_vectorcall_offset;
getattrfunc tp_getattr;
setattrfunc tp_setattr;

PyAsyncMethods *tp_as_async; /* formerly known as tp_compare (Python 2)

or tp_reserved (Python 3)
reprfunc tp_repr;

/* Method suites for standard classes */
PyNumberMethods *tp_as_number;

PySequenceMethods *tp_as_sequence;
PyMappingMethods *tp_as_mapping;

*/

/* More standard operations (here for binary compatibility) */

hashfunc tp_hash;
ternaryfunc tp_call;
reprfunc tp_str;
getattrofunc tp_getattro;
setattrofunc tp_setattro;

/* Functions to access object as input/output buffer */
PyBufferProcs *tp_as_buffer;

/* Flags to define presence of optional/expanded features
unsigned long tp_flags;

const char *tp_doc; /* Documentation string */

/* call function for all accessible objects */
traverseproc tp_traverse;

/* delete references to contained objects */
inquiry tp_clear;

/* rich comparisons */
richcmpfunc tp_richcompare;

/* weak reference enabler */
Py_ssize_t tp_weaklistoffset;

/* Iterators */
getiterfunc tp_iter;
iternextfunc tp_iternext;

/* Attribute descriptor and subclassing stuff */
struct PyMethodDef *tp_methods;

struct PyMemberDef *tp_members;

struct PyGetSetDef *tp_getset;

struct _typeobject *tp_base;

PyObject *tp_dict;

descrgetfunc tp_descr_get;

descrsetfunc tp_descr_set;

Py_ssize_t tp_dictoffset;

initproc tp_init;

allocfunc tp_alloc;

newfunc tp_new;

freefunc tp_free; /* Low-level free-memory routine */
inquiry tp_is_gc; /* For PyObject_IS _GC */
PyObject *tp_bases;

PyObject *tp_mro; /* method resolution order */

*/

(ciag dalszy na nastgpnej stronie)

2.3. Defining Extension Types: Assorted Topics

47

Extending and Embedding Python, Wydanie 3.9.18

(kontynuacja poprzedniej strony)

PyObject *tp_cache;
PyObject *tp_subclasses;
PyObject *tp_weaklist;
destructor tp_del;

/* Type attribute cache version tag. Added in version 2.6 */
unsigned int tp_version_tag;

destructor tp_finalize;

} PyTypeObiject;

Now that’s a lot of methods. Don’t worry too much though — if you have a type you want to define, the chances are
very good that you will only implement a handful of these.

As you probably expect by now, we're going to go over this and give more information about the various handlers.
We won'’t go in the order they are defined in the structure, because there is a lot of historical baggage that impacts
the ordering of the fields. It’s often easiest to find an example that includes the fields you need and then change the
values to suit your new type.

’const char *tp_name; /* For printing */

The name of the type — as mentioned in the previous chapter, this will appear in various places, almost entirely for
diagnostic purposes. Try to choose something that will be helpful in such a situation!

’Py_ssize_t tp_basicsize, tp_itemsize; /* For allocation */

These fields tell the runtime how much memory to allocate when new objects of this type are created. Python has
some built-in support for variable length structures (think: strings, tuples) which is where the tp_itemsize field
comes in. This will be dealt with later.

const char *tp_doc;

Tu mozesz wstawi¢ ciag znakéw (lub jego adres) ktdry cheesz zwréceic gdy skrypt jezyka pytonowskiego odnosi sig
do obj.__doc__ aby otrzymac ciag znakéw dokumentacji.

Now we come to the basic type methods — the ones most extension types will implement.

2.3.1 Finalizowanie i de-alokacja

destructor tp_dealloc;

This function is called when the reference count of the instance of your type is reduced to zero and the Python
interpreter wants to reclaim it. If your type has memory to free or other clean-up to perform, you can put it here. The
object itself needs to be freed here as well. Here is an example of this function:

static void
newdatatype_dealloc (newdatatypeobject *obj)
{
free (obj->obj_UnderlyingDatatypePtr);
Py_TYPE (obj) —>tp_free ((PyObject *)obj);

If your type supports garbage collection, the destructor should call PyObject_GC_UnTrack () before clearing
any member fields:

static void
newdatatype_dealloc (newdatatypeobject *obj)

{

(ciag dalszy na nastgpnej stronie)

48 Rozdziat 2. Tworzenie rozszerzen poprzez narzedzia zewnetrzne.

Extending and Embedding Python, Wydanie 3.9.18

(kontynuacja poprzedniej strony)

PyObject_GC_UnTrack (obj) ;
Py_CLEAR (obj->other_obj);

Py_TYPE (obj) —>tp_free ((PyObject *)obj);

One important requirement of the deallocator function is that it leaves any pending exceptions alone. This is important
since deallocators are frequently called as the interpreter unwinds the Python stack; when the stack is unwound due to
an exception (rather than normal returns), nothing is done to protect the deallocators from seeing that an exception has
already been set. Any actions which a deallocator performs which may cause additional Python code to be executed
may detect that an exception has been set. This can lead to misleading errors from the interpreter. The proper way to
protect against this is to save a pending exception before performing the unsafe action, and restoring it when done.
This can be done using the PyErr_Fetch () and PyErr_Restore () functions:

static void

my_dealloc (PyObject *obj)

{
MyObject *self = (MyObject *) obj;
PyObject *cbresult;

if (self->my_callback != NULL) {
PyObject *err_type, *err_value, *err_traceback;

/* This saves the current exception state */
PyErr_Fetch (&éerr_type, &err_value, &err_traceback);

cbresult = PyObject_CallNoArgs (self->my_callback);
if (cbresult == NULL)

PyErr_WriteUnraisable (self->my_callback);
else

Py_DECREF (cbresult) ;

/* This restores the saved exception state */
PyErr_Restore (err_type, err_value, err_traceback);

Py_DECREF (self->my_callback);

3
Py_TYPE (obj)->tp_free ((PyObject*)self);

Informacja: There are limitations to what you can safely do in a deallocator function. First, if your type supports
garbage collection (using tp_traverse and/or tp_clear), some of the object’s members can have been cleared
or finalized by the time tp_dealloc is called. Second, in tp_dealloc, your object is in an unstable state: its
reference count is equal to zero. Any call to a non-trivial object or API (as in the example above) might end up calling
tp_dealloc again, causing a double free and a crash.

Starting with Python 3.4, it is recommended not to put any complex finalization code in tp_dealloc, and instead
use the new tp_finalize type method.

Zobacz takze:

PEP 442 explains the new finalization scheme.

2.3. Defining Extension Types: Assorted Topics 49

https://www.python.org/dev/peps/pep-0442

Extending and Embedding Python, Wydanie 3.9.18

2.3.2 Prezentacja Przedmiotow

W Pythonie istnieja dwa sposoby aby wygenerowac tekstowa reprezentacje przedmiotu: funkcja repr (), i funkcja
str (). (Zadanie print () po prostu wywotuje zadanie st r () .) Ta zadania obstugi sa oba opcjonalne.

reprfunc tp_repr;
reprfunc tp_str;

The tp_repr handler should return a string object containing a representation of the instance for which it is called.
Here is a simple example:

static PyObject *
newdatatype_repr (newdatatypeobject * obj)
{
return PyUnicode_FromFormat ("Repr—-ified_newdatatype{{size:%d}}",
obj->obj_UnderlyingDatatypePtr->size);

If no tp_repr handler is specified, the interpreter will supply a representation that uses the type’s tp_name and a
uniquely-identifying value for the object.

The tp_str handler is to str () what the tp_repr handler described above is to repr () ; that is, it is called
when Python code calls st r () on an instance of your object. Its implementation is very similar to the tp_repr
function, but the resulting string is intended for human consumption. If tp_str is not specified, the tp_repr
handler is used instead.

Tu jest prosty przyktad:

static PyObject *
newdatatype_str (newdatatypeobject * obj)
{
return PyUnicode_FromFormat ("Stringified newdatatype{{size:%d}}",
obj->obj_UnderlyingDatatypePtr->size);

2.3.3 Zarzadzanie wtasnosciami

For every object which can support attributes, the corresponding type must provide the functions that control how the
attributes are resolved. There needs to be a function which can retrieve attributes (if any are defined), and another to
set attributes (if setting attributes is allowed). Removing an attribute is a special case, for which the new value passed
to the handler is NULL.

Python supports two pairs of attribute handlers; a type that supports attributes only needs to implement the functions
for one pair. The difference is that one pair takes the name of the attribute as a char*, while the other accepts a
PyObject*. Each type can use whichever pair makes more sense for the implementation’s convenience.

getattrfunc tp_getattr; /* char * version */
setattrfunc tp_setattr;

VA V4

getattrofunc tp_getattro; /* PyObject * version */

setattrofunc tp_setattro;

If accessing attributes of an object is always a simple operation (this will be explained shortly), there are generic
implementations which can be used to provide the PyObject * version of the attribute management functions. The
actual need for type-specific attribute handlers almost completely disappeared starting with Python 2.2, though there
are many examples which have not been updated to use some of the new generic mechanism that is available.

50 Rozdziat 2. Tworzenie rozszerzen poprzez narzedzia zewnetrzne.

Extending and Embedding Python, Wydanie 3.9.18

Zastepcze zarzadzanie wlasciwosciami

Wiekszos$¢ typdw rozszerzen uzywa tylko prostych wtasciwosci. Wigc, co sprawia ze wtasciwosci sa proste? Istnieje
tylko kilka warunkéw ktére nalezy spetnié:

1. The name of the attributes must be known when Py Type_Ready () is called.

2. Zadne szczegdlne przetwarzanie nie jest potrzebne aby zarejestrowaé, ze wtasciwo$¢é zostata pobrana lub usta-
wiona, ani tez dziatania nie musza by¢ podejmowane w oparciu o wartos¢.

Zauwaz ze ta lista nie umieszcza zadnych ograniczen na warto$ciach wtasciwosci, gdy wartosci sg obliczane, lub jak
istotne dane sa przechowywane.

When PyType_Ready () is called, it uses three tables referenced by the type object to create descriptors which
are placed in the dictionary of the type object. Each descriptor controls access to one attribute of the instance object.
Each of the tables is optional; if all three are NULL, instances of the type will only have attributes that are inherited
from their base type, and should leave the tp_getattro and tp_setattro fields NULL as well, allowing the
base type to handle attributes.

Tabele sa zadeklarowane jako trzy pola przedmiotu typu:

struct PyMethodDef *tp_methods;
struct PyMemberDef *tp_members;
struct PyGetSetDef *tp_getset;

If tp_methods is not NULL, it must refer to an array of PyMethodDef structures. Each entry in the table is an
instance of this structure:

typedef struct PyMethodDef {

const char *ml_name; /* method name */

PyCFunction ml_meth; /* implementation function */
int ml_flags; /* flags */

const char *ml_doc; /* docstring */

} PyMethodDef;

One entry should be defined for each method provided by the type; no entries are needed for methods inherited from
a base type. One additional entry is needed at the end; it is a sentinel that marks the end of the array. The m1_name
field of the sentinel must be NULL.

Druga tabela jest uzywana aby okresla¢ wtasciwosci ktére odnosza si¢ bezposrednio do danych przechowywanych w
przyktadzie. R6znorodne podstawowe typy C sa wspierane, i dostep moze by¢ albo tylko-do-odczytu lub odczyt-i-
zapis. Struktury w tabeli sg okreSlone jako:

typedef struct PyMemberDef {
const char *name;

int type;
int offset;
int flags;

const char *doc;
} PyMemberDef;

Dla kazdego wpisu w tabeli zostanie skonstruowany descriptor i dodany do typu, ktéry bedzie mégt wydobyc
warto§¢ ze struktury przykladu. Pole type powinno zawiera¢ jeden z kodéw typu okreslonych w nagtéwku
structmember . h; warto§¢ bedzie uzyta do okreslenia jak zamieni¢ warto$ci Pythona z i na wartosci C. Pole
flags jest uzywane do przechowywania flag ktére kontroluja, jak mozna uzyskaé¢ dostep do wtasciwosci.

Nastepujace state flag s okreSlone w pliku st ructmember . h; moga ztaczone przy uzyciu bitowego-LUB.

Stafa Znaczenie

READONLY Nigdy nie do wpisywania.

READ_RESTRICTED Nie do czytania w trybie z ograniczeniami.
WRITE_RESTRICTED | Nie do pisania w trybie z ograniczeniami.
RESTRICTED Nie do czytania ani pisania w trybie z ograniczeniami.

2.3. Defining Extension Types: Assorted Topics 51

Extending and Embedding Python, Wydanie 3.9.18

An interesting advantage of using the tp_members table to build descriptors that are used at runtime is that any
attribute defined this way can have an associated doc string simply by providing the text in the table. An application
can use the introspection API to retrieve the descriptor from the class object, and get the doc string usingits __doc___
attribute.

As with the tp_methods table, a sentinel entry with a name value of NULL is required.

Szczegolne-dla-typu-przedmiotu zarzadzanie wilasciwosciami

For simplicity, only the char* version will be demonstrated here; the type of the name parameter is the only diffe-
rence between the char* and PyObject* flavors of the interface. This example effectively does the same thing
as the generic example above, but does not use the generic support added in Python 2.2. It explains how the handler
functions are called, so that if you do need to extend their functionality, you'll understand what needs to be done.

The tp_getattr handler is called when the object requires an attribute look-up. It is called in the same situations
where the __getattr__ () method of a class would be called.

Tu jest przyktad:

static PyObject *
newdatatype_getattr (newdatatypeobject *obj, char *name)
{
if (strcmp(name, "data") == 0)
{
return PylLong_FromLong (obj->data) ;

PyErr_Format (PyExc_AttributeError,
"'$.50s' object has no attribute '%.400s'",
tp—>tp_name, name);

return NULL;

The tp_setattr handleris called whenthe __setattr__ () or__delattr__ () method of a class instance
would be called. When an attribute should be deleted, the third parameter will be NULL. Here is an example that
simply raises an exception; if this were really all you wanted, the tp_setattr handler should be set to NULL.

static int

newdatatype_setattr (newdatatypeobject *obj, char *name, PyObject *v)

{
PyErr_Format (PyExc_RuntimeError, "Read-only attribute: %s", name);
return -1;

2.3.4 Porownywanie przedmiotow

richcmpfunc tp_richcompare;

The tp_richcompare handler is called when comparisons are needed. It is analogous to the
rich comparison methods, like __1t__ (), and also called by PyObject_RichCompare () and
PyObject_RichCompareBool ().

This function is called with two Python objects and the operator as arguments, where the operator is one of Py_EQ,
Py_NE,Py_LE,Py_GE, Py_LT or Py_GT. It should compare the two objects with respect to the specified opera-
tor and return Py_True or Py_False if the comparison is successful, Py_Not Implemented to indicate that
comparison is not implemented and the other object’s comparison method should be tried, or NULL if an exception
was set.

Tu jest przyktadowe wypekienie, dla typu danych ktéry jest uznawany za réwny, jesli rozmiar wewngtrznego wskaz-
nika jest réwny:

52 Rozdziat 2. Tworzenie rozszerzen poprzez narzedzia zewnetrzne.

Extending and Embedding Python, Wydanie 3.9.18

static PyObject *
newdatatype_richcmp (PyObject *objl, PyObject *obj2, int op)
{

PyObject *result;

int c, sizel, size2;

/* code to make sure that both arguments are of type
newdatatype omitted */

sizel = objl->obj_UnderlyingDatatypePtr->size;
size2 = obj2->o0bj_UnderlyingDatatypePtr->size;

switch (op) {

case : ¢ = sizel < size2; break;
case c = sizel <= size2; break;
case : ¢ = sizel == size2; break;
case c = sizel != size2; break;
case c = sizel > size2; break;
case c = sizel >= size2; break;
3

result = ¢ ? Py_True : Py_False;

Py_INCREF (result);
return result;

2.3.5 Wsparcie protokotu abstrakcyjnego

Python wspiera rézne abstrakcyjne «protokoty;» szczegblowe interfejsy dostarczone do uzycia tych interfejsow sa
udokumentowane w abstract.

A number of these abstract interfaces were defined early in the development of the Python implementation. In parti-
cular, the number, mapping, and sequence protocols have been part of Python since the beginning. Other protocols
have been added over time. For protocols which depend on several handler routines from the type implementation,
the older protocols have been defined as optional blocks of handlers referenced by the type object. For newer pro-
tocols there are additional slots in the main type object, with a flag bit being set to indicate that the slots are present
and should be checked by the interpreter. (The flag bit does not indicate that the slot values are non-NULL. The flag
may be set to indicate the presence of a slot, but a slot may still be unfilled.)

PyNumberMethods *tp_as_number;
PySequenceMethods *tp_as_sequence;
PyMappingMethods *tp_as_mapping;

If you wish your object to be able to act like a number, a sequence, or a mapping object, then you place the address of a
structure that implements the C type PyNumberMethods, PySequenceMethods, or PyMappingMethods,
respectively. It is up to you to fill in this structure with appropriate values. You can find examples of the use of each
of these in the Objects directory of the Python source distribution.

hashfunc tp_hash;

This function, if you choose to provide it, should return a hash number for an instance of your data type. Here is a
simple example:

static Py_hash_t
newdatatype_hash (newdatatypeobject *obj)

{
Py_hash_t result;

result = obj->some_size + 32767 * obj->some_number;
if (result == -1)
result = -2;

(ciag dalszy na nastgpnej stronie)

2.3. Defining Extension Types: Assorted Topics 53

Extending and Embedding Python, Wydanie 3.9.18

(kontynuacja poprzedniej strony)

return result;

Py_hash_t is a signed integer type with a platform-varying width. Returning -1 from tp_hash indicates an
error, which is why you should be careful to avoid returning it when hash computation is successful, as seen above.

ternaryfunc tp_call;

This function is called when an instance of your data type is ,,called”, for example, if obj1 is an instance of your
data type and the Python script contains obj1 ('hello'), the tp_call handler is invoked.

To zadanie pobiera trzy parametry:
1. self is the instance of the data type which is the subject of the call. If the call is obj1 ('hello'), then self
isobjl.

2. args is a tuple containing the arguments to the call. You can use PyArg_ParseTuple () to extract the
arguments.

3. kwds is a dictionary of keyword arguments that were passed. If this is non-NULL and you support keyword
arguments, use PyArg_ParseTupleAndKeywords () to extract the arguments. If you do not want to
support keyword arguments and this is non-NULL, raise a TypeError with a message saying that keyword
arguments are not supported.

Here is a toy tp_call implementation:

static PyObject *
newdatatype_call (newdatatypeobject *self, PyObject *args, PyObject *kwds)
{

PyObject *result;

const char *argl;

const char *arg2;

const char *arg3;

if (!PyArg_ParseTuple(args, "sss:call", &argl, &arg2, &arg3)) |
return NULL;

}

result = PyUnicode_FromFormat (
"Returning —- value: [%d] argl: [%s] arg2: [%s] arg3: [%s]\n",
obj->obj_UnderlyingDatatypePtr->size,
argl, arg2, arg3);

return result;

/* Iterators */
getiterfunc tp_iter;
iternextfunc tp_iternext;

These functions provide support for the iterator protocol. Both handlers take exactly one parameter, the instance for
which they are being called, and return a new reference. In the case of an error, they should set an exception and
return NULL. tp_iter corresponds to the Python __iter__ () method, while tp_iternext corresponds to
the Python __next__ () method.

Any iterable object must implement the tp_iter handler, which must return an iterator object. Here the same
guidelines apply as for Python classes:

* For collections (such as lists and tuples) which can support multiple independent iterators, a new iterator should
be created and returned by each call to tp_iter.

* Objects which can only be iterated over once (usually due to side effects of iteration, such as file objects) can
implement tp_iter by returning a new reference to themselves — and should also therefore implement the
tp_iternext handler.

54 Rozdziat 2. Tworzenie rozszerzen poprzez narzedzia zewnetrzne.

Extending and Embedding Python, Wydanie 3.9.18

Any iterator object should implement both tp_iter and tp_iternext. Aniterator’s t p_iter handler should
return a new reference to the iterator. Its t p_iternext handler should return a new reference to the next object in
the iteration, if there is one. If the iteration has reached the end, t p_iternext may return NULL without setting an
exception, or it may set StopIteration in addition to returning NULL; avoiding the exception can yield slightly
better performance. If an actual error occurs, tp_iternext should always set an exception and return NULL.

2.3.6 Wsparcie dla stabych odniesien

One of the goals of Python’s weak reference implementation is to allow any type to participate in the weak reference
mechanism without incurring the overhead on performance-critical objects (such as numbers).

Zobacz takze:

Documentation for the weakre f module.

For an object to be weakly referencable, the extension type must do two things:

1. Include a PyObject * field in the C object structure dedicated to the weak reference mechanism. The object’s
constructor should leave it NULL (which is automatic when using the default tp_alloc).

2. Setthe tp_weaklistoffset type member to the offset of the aforementioned field in the C object struc-
ture, so that the interpreter knows how to access and modify that field.

Concretely, here is how a trivial object structure would be augmented with the required field:

typedef struct {

PyObject_HEAD

PyObject *weakreflist; /* List of weak references */
} TrivialObject;

And the corresponding member in the statically-declared type object:

static PyTypeObject TrivialType = {
PyVarObject_HEAD_INIT (NULL, 0)
/* ... other members omitted for brevity ... */
.tp_weaklistoffset = offsetof (TrivialObject, weakreflist),
bi

The only further addition is that tp_dealloc needs to clear any weak references (by calling
PyObject_ClearWeakRefs ()) if the field is non-NULL:

static void
Trivial_dealloc(TrivialObject *self)

{

/* Clear weakrefs first before calling any destructors */
if (self->weakreflist != NULL)
PyObject_ClearWeakRefs ((PyObject *) self);
/* ... remainder of destruction code omitted for brevity ... */

Py_TYPE (self) ->tp_free ((PyObject *) self);

2.3. Defining Extension Types: Assorted Topics 55

Extending and Embedding Python, Wydanie 3.9.18

2.3.7 Wiecej sugestii

In order to learn how to implement any specific method for your new data type, get the CPython source code.
Go to the Objects directory, then search the C source files for tp_ plus the function you want (for example,
tp_richcompare). You will find examples of the function you want to implement.

When you need to verify that an object is a concrete instance of the type you are implementing, use the
PyObject_TypeCheck () function. A sample of its use might be something like the following:

if (!PyObject_TypeCheck (some_object, &MyType)) A
PyErr_SetString (PyExc_TypeError, "arg #1 not a mything");
return NULL;

Zobacz takze:
Download CPython source releases. https://www.python.org/downloads/source/

The CPython project on GitHub, where the CPython source code is developed. https://github.com/python/
cpython

2.4 Building C and C++ Extensions

A C extension for CPython is a shared library (e.g. a . so file on Linux, .pyd on Windows), which exports an
initialization function.

To be importable, the shared library must be available on PYTHONPATH, and must be named after the module name,
with an appropriate extension. When using distutils, the correct filename is generated automatically.

The initialization function has the signature:
PyObject* PyInit_modulename (void)
It returns either a fully-initialized module, or a PyModuleDef instance. See initializing-modules for details.

For modules with ASCII-only names, the function must be named PyInit_<modulename>, with
<modulename> replaced by the name of the module. When using multi-phase-initialization, non-ASCII mo-
dule names are allowed. In this case, the initialization function name is PyInitU_<modulename>, with
<modulename> encoded using Python’s punycode encoding with hyphens replaced by underscores. In Python:

def initfunc_name (name) :

try:
suffix = b' ' + name.encode('ascii')
except UnicodeEncodeError:
suffix = b'U_' + name.encode ('punycode') .replace(b'-"', b'_")

return b'PyInit' + suffix

It is possible to export multiple modules from a single shared library by defining multiple initialization functions.
However, importing them requires using symbolic links or a custom importer, because by default only the function
corresponding to the filename is found. See the ,,Multiple modules in one library” section in PEP 489 for details.

56 Rozdziat 2. Tworzenie rozszerzen poprzez narzedzia zewnetrzne.

https://www.python.org/downloads/source/
https://github.com/python/cpython
https://github.com/python/cpython
https://www.python.org/dev/peps/pep-0489

Extending and Embedding Python, Wydanie 3.9.18

2.4.1 Building C and C++ Extensions with distutils
Extension modules can be built using distutils, which is included in Python. Since distutils also supports creation of
binary packages, users don’t necessarily need a compiler and distutils to install the extension.

A distutils package contains a driver script, setup . py. This is a plain Python file, which, in the most simple case,
could look like this:

from distutils.core import setup, Extension

modulel = Extension('demo',
sources = ['demo.c'])

setup (name = 'PackageName',
version = '1.0",
description = 'This is a demo package',
ext_modules = [modulel])

With this setup. py, and a file demo . ¢, running

python setup.py build

will compile demo . ¢, and produce an extension module named demo in the build directory. Depending on the
system, the module file will end up in a subdirectory build/1lib. system, and may have a name like demo . so
or demo . pyd.

Inthe setup . py, all execution is performed by calling the set up function. This takes a variable number of keyword
arguments, of which the example above uses only a subset. Specifically, the example specifies meta-information to
build packages, and it specifies the contents of the package. Normally, a package will contain additional modules, like
Python source modules, documentation, subpackages, etc. Please refer to the distutils documentation in distutils-index
to learn more about the features of distutils; this section explains building extension modules only.

It is common to pre-compute arguments to setup (), to better structure the driver script. In the example above,
the ext_modules argument to setup () is a list of extension modules, each of which is an instance of the
Extension. In the example, the instance defines an extension named demo which is build by compiling a single
source file, demo. c.

In many cases, building an extension is more complex, since additional preprocessor defines and libraries may be
needed. This is demonstrated in the example below.

from distutils.core import setup, Extension

modulel = Extension('demo',
define_macros = [('MAJOR_VERSION', '1'"),
('MINOR_VERSION', '0')1,
include_dirs = ['/usr/local/include'],
libraries = ['tcl83'],
library_dirs = ['/usr/local/lib'],
sources = ['demo.c'])
setup (name = 'PackageName',
version = '1.0",
description = 'This is a demo package',
author = 'Martin v. Loewis',
author_email = 'martin@v.loewis.de',
url = 'https://docs.python.org/extending/building’,

long_description = """
This is really just a demo package.

[
4

ext_modules = [modulel])

In this example, setup () is called with additional meta-information, which is recommended when distribution
packages have to be built. For the extension itself, it specifies preprocessor defines, include directories, library direc-

2.4. Building C and C++ Extensions 57

Extending and Embedding Python, Wydanie 3.9.18

tories, and libraries. Depending on the compiler, distutils passes this information in different ways to the compiler.
For example, on Unix, this may result in the compilation commands

gcc -DNDEBUG -g -03 -Wall -Wstrict-prototypes —-fPIC -DMAJOR_VERSION=1 -DMINOR_
—VERSION=0 -I/usr/local/include -I/usr/local/include/python2.2 -c demo.c -o build/
—temp.linux-1686-2.2/demo.o

gcc -shared build/temp.linux-i686-2.2/demo.o -L/usr/local/lib -1tcl83 -o build/lib.
—1linux-1686-2.2/demo.so

These lines are for demonstration purposes only; distutils users should trust that distutils gets the invocations right.

2.4.2 Distributing your extension modules

When an extension has been successfully built, there are three ways to use it.

End-users will typically want to install the module, they do so by running

’python setup.py install

Module maintainers should produce source packages; to do so, they run

’python setup.py sdist

In some cases, additional files need to be included in a source distribution; this is done through a MANIFEST. in
file; see manifest for details.

If the source distribution has been built successfully, maintainers can also create binary distributions. Depending on
the platform, one of the following commands can be used to do so.

python setup.py bdist_wininst
python setup.py bdist_rpm
python setup.py bdist_dumb

2.5 Tworzenie rozszerzen Ci C++ w Windowsie

This chapter briefly explains how to create a Windows extension module for Python using Microsoft Visual C++, and
follows with more detailed background information on how it works. The explanatory material is useful for both the
Windows programmer learning to build Python extensions and the Unix programmer interested in producing software
which can be successfully built on both Unix and Windows.

Module authors are encouraged to use the distutils approach for building extension modules, instead of the one
described in this section. You will still need the C compiler that was used to build Python; typically Microsoft Visual
C++.

Informacja: This chapter mentions a number of filenames that include an encoded Python version number. These
filenames are represented with the version number shown as XY; in practice, ' X' will be the major version number
and 'Y ' will be the minor version number of the Python release you’re working with. For example, if you are using
Python 2.2.1, XY will actually be 22.

58 Rozdziat 2. Tworzenie rozszerzen poprzez narzedzia zewnetrzne.

Extending and Embedding Python, Wydanie 3.9.18

2.5.1 A Cookbook Approach

There are two approaches to building extension modules on Windows, just as there are on Unix: use the distutils
package to control the build process, or do things manually. The distutils approach works well for most extensions;
documentation on using distutils to build and package extension modules is available in distutils-index. If you
find you really need to do things manually, it may be instructive to study the project file for the winsound standard
library module.

2.5.2 Réznice pomiedzy Unixem a Windowsem

Unix and Windows use completely different paradigms for run-time loading of code. Before you try to build a module
that can be dynamically loaded, be aware of how your system works.

In Unix, a shared object (. so) file contains code to be used by the program, and also the names of functions and
data that it expects to find in the program. When the file is joined to the program, all references to those functions
and data in the file’s code are changed to point to the actual locations in the program where the functions and data
are placed in memory. This is basically a link operation.

In Windows, a dynamic-link library (. d11) file has no dangling references. Instead, an access to functions or data
goes through a lookup table. So the DLL code does not have to be fixed up at runtime to refer to the program’s
memory; instead, the code already uses the DLL’s lookup table, and the lookup table is modified at runtime to point
to the functions and data.

In Unix, there is only one type of library file (. a) which contains code from several object files (. o). During the link
step to create a shared object file (. so), the linker may find that it doesn’t know where an identifier is defined. The
linker will look for it in the object files in the libraries; if it finds it, it will include all the code from that object file.

In Windows, there are two types of library, a static library and an import library (both called . 1ib). A static library
is like a Unix . a file; it contains code to be included as necessary. An import library is basically used only to reassure
the linker that a certain identifier is legal, and will be present in the program when the DLL is loaded. So the linker
uses the information from the import library to build the lookup table for using identifiers that are not included in the
DLL. When an application or a DLL is linked, an import library may be generated, which will need to be used for
all future DLLs that depend on the symbols in the application or DLL.

Suppose you are building two dynamic-load modules, B and C, which should share another block of code A. On
Unix, you would not pass A . a to the linker for B. so and C . so; that would cause it to be included twice, so that B
and C would each have their own copy. In Windows, building A.d11 will also build A.1ib. Youdo pass A.11ib
to the linker for B and C. A. 1ib does not contain code; it just contains information which will be used at runtime
to access A’s code.

In Windows, using an import library is sort of like using import spam; it gives you access to spam’s names, but
does not create a separate copy. On Unix, linking with a library is more like from spam import *; it does
create a separate copy.

2.5.3 Using DLLs in Practice
Windows Python is built in Microsoft Visual C++; using other compilers may or may not work. The rest of this
section is MSVC++ specific.

When creating DLLs in Windows, you must pass pythonXY. 1ib to the linker. To build two DLLs, spam and ni
(which uses C functions found in spam), you could use these commands:

cl /LD /I/python/include spam.c ../libs/pythonXY.lib
cl /LD /I/python/include ni.c spam.lib ../libs/pythonXY.lib

The first command created three files: spam.obj, spam.dll and spam.lib. Spam.dl1l does not contain
any Python functions (such as PyArg_ParseTuple ()), but it does know how to find the Python code thanks to
pythonXY.lib.

The second command created ni.d11 (and .obj and .1ib), which knows how to find the necessary functions
from spam, and also from the Python executable.

2.5. Tworzenie rozszerzen C i C++ w Windowsie 59

https://github.com/python/cpython/tree/3.9/PCbuild/winsound.vcxproj

Extending and Embedding Python, Wydanie 3.9.18

Not every identifier is exported to the lookup table. If you want any other modules (including Python) to be able
to see your identifiers, you have to say _declspec (dllexport), asin void _declspec (dllexport)
initspam(void) or PyObject _declspec(dllexport) *NiGetSpamData (void).

Developer Studio will throw in a lot of import libraries that you do not really need, adding about 100K to your
executable. To get rid of them, use the Project Settings dialog, Link tab, to specify ignore default libraries. Add the
correct msvcrtxx. 1ib to the list of libraries.

60 Rozdziat 2. Tworzenie rozszerzen poprzez narzedzia zewnetrzne.

ROZDZIAL 3

Whbudowywanie runtime Cpython w wiekszg aplikacje.

Czasami zamiast tworzy€ rozszerzenie, ktére dziata wewnatrz interpretera Pythona jako gléwnej aplikacji, pozadane
jest osadzenie Srodowiska wykonawczego CPython w wigkszej aplikacji. W tej sekcji oméwiono niektére szczegdty
zwigzane z pomyslnym wykonaniem tego zadania.

3.1 Embedding Python in Another Application

The previous chapters discussed how to extend Python, that is, how to extend the functionality of Python by attaching
a library of C functions to it. It is also possible to do it the other way around: enrich your C/C++ application by
embedding Python in it. Embedding provides your application with the ability to implement some of the functionality
of your application in Python rather than C or C++. This can be used for many purposes; one example would be to
allow users to tailor the application to their needs by writing some scripts in Python. You can also use it yourself if
some of the functionality can be written in Python more easily.

Embedding Python is similar to extending it, but not quite. The difference is that when you extend Python, the main
program of the application is still the Python interpreter, while if you embed Python, the main program may have
nothing to do with Python — instead, some parts of the application occasionally call the Python interpreter to run
some Python code.

So if you are embedding Python, you are providing your own main program. One of the things this main program
has to do is initialize the Python interpreter. At the very least, you have to call the function Py_Initialize ().
There are optional calls to pass command line arguments to Python. Then later you can call the interpreter from any
part of the application.

There are several different ways to call the interpreter: you can pass a string containing Python statements to
PyRun_SimpleString (), or youcan pass a stdio file pointer and a file name (for identification in error messages
only) to PyRun_SimpleFile (). You can also call the lower-level operations described in the previous chapters
to construct and use Python objects.

Zobacz takze:

c-api-index The details of Python’s C interface are given in this manual. A great deal of necessary information can
be found here.

61

Extending and Embedding Python, Wydanie 3.9.18

3.1.1 Very High Level Embedding

The simplest form of embedding Python is the use of the very high level interface. This interface is intended to
execute a Python script without needing to interact with the application directly. This can for example be used to
perform some operation on a file.

#define PY_SSIZE_T_ CLEAN
#include <Python.h>

int
main (int argc, char *argv[])
{
wchar_t *program = Py_DecodeLocale(argv[0], NULL);

if (program == NULL) {
fprintf (stderr, "Fatal error: cannot decode argv[0]\n");
exit (1) ;

}
Py_SetProgramName (program); /* optional but recommended */
Py_Initialize();
PyRun_SimpleString ("from time import time,ctime\n"
"print ('Today is', ctime (time()))\n");

if (Py_FinalizeEx () < 0) {

exit (120);
}
PyMem_RawFree (program) ;
return 0;

The Py_SetProgramName () function should be called before Py_Initialize () to inform the interpreter
about paths to Python run-time libraries. Next, the Python interpreter is initialized with Py_Initialize (),
followed by the execution of a hard-coded Python script that prints the date and time. Afterwards, the
Py_FinalizeEx () call shuts the interpreter down, followed by the end of the program. In a real program, you
may want to get the Python script from another source, perhaps a text-editor routine, a file, or a database. Getting
the Python code from a file can better be done by using the PyRun_SimpleFile () function, which saves you
the trouble of allocating memory space and loading the file contents.

3.1.2 Beyond Very High Level Embedding: An overview

The high level interface gives you the ability to execute arbitrary pieces of Python code from your application, but
exchanging data values is quite cumbersome to say the least. If you want that, you should use lower level calls. At the
cost of having to write more C code, you can achieve almost anything.

It should be noted that extending Python and embedding Python is quite the same activity, despite the different intent.
Most topics discussed in the previous chapters are still valid. To show this, consider what the extension code from
Python to C really does:

1. Convert data values from Python to C,
2. Perform a function call to a C routine using the converted values, and
3. Convert the data values from the call from C to Python.
When embedding Python, the interface code does:
1. Convert data values from C to Python,
2. Perform a function call to a Python interface routine using the converted values, and
3. Convert the data values from the call from Python to C.

As you can see, the data conversion steps are simply swapped to accommodate the different direction of the cross-
language transfer. The only difference is the routine that you call between both data conversions. When extending,
you call a C routine, when embedding, you call a Python routine.

62 Rozdziat 3. Wbudowywanie runtime Cpython w wieksza aplikacje.

Extending and Embedding Python, Wydanie 3.9.18

This chapter will not discuss how to convert data from Python to C and vice versa. Also, proper use of references
and dealing with errors is assumed to be understood. Since these aspects do not differ from extending the interpreter,
you can refer to earlier chapters for the required information.

3.1.3 Pure Embedding

The first program aims to execute a function in a Python script. Like in the section about the very high level interface,
the Python interpreter does not directly interact with the application (but that will change in the next section).

The code to run a function defined in a Python script is:

#define PY SSIZE_T CLEAN
#include <Python.h>

int

main (int argc, char *argv([])

{
PyObject *pName, *pModule, *pFunc;
PyObject *pArgs, *pValue;
int i;

if (argc < 3) |
fprintf (stderr, "Usage: call pythonfile funcname [args]\n");
return 1;

Py_Initialize();
pName = PyUnicode_DecodeFSDefault (argv[1l]);
/* Error checking of pName left out */

pModule = PyImport_Import (pName) ;
Py_DECREF (pName) ;

if (pModule != NULL) {
pFunc = PyObject_GetAttrString (pModule, argv[2]);
/* pFunc is a new reference */

if (pFunc && PyCallable_Check (pFunc)) |
pArgs = PyTuple_New(argc - 3);
for (i = 0; 1 < argc - 3; ++1i) A
pValue = PylLong_FromLong (atoi (argv[i + 31));
if (!pvalue) {
Py_DECREF (pArgs) ;
Py_DECREF (pModule) ;
fprintf (stderr, "Cannot convert argument\n");
return 1;
}
/* pValue reference stolen here: */
PyTuple_SetItem(pArgs, i, pValue);
}
pValue = PyObject_CallObject (pFunc, pArgs);
Py_DECREF (pArgs) ;
if (pValue != NULL) {
printf ("Result of call: %1d\n", PyLong_AsLong (pValue));
Py_DECREF (pValue) ;
}
else {
Py_DECREF (pFunc) ;
Py_DECREF (pModule) ;
PyErr_Print ();
fprintf (stderr,"Call failed\n");

(ciag dalszy na nastgpnej stronie)

3.1. Embedding Python in Another Application 63

Extending and Embedding Python, Wydanie 3.9.18

(kontynuacja poprzedniej strony)

return 1;

t
else {
if (PyErr_Occurred())
PyErr_Print ();
fprintf (stderr, "Cannot find function \"%s\"\n", argv[2]);
}
Py_XDECREF (pFunc) ;
Py_DECREF (pModule) ;
3
else {
PyErr_Print ();
fprintf (stderr, "Failed to load \"%s\"\n", argv[1]);
return 1;
3
if (Py_FinalizeEx () < 0) {
return 120;
3

return 0;

This code loads a Python script using argv [1], and calls the function named in argv [2]. Its integer arguments
are the other values of the argv array. If you compile and link this program (let’s call the finished executable call),
and use it to execute a Python script, such as:

def multiply(a,b):
print ("Will compute", a, "times", b)

c =20

for i in range (0, a):
c=c¢c+b

return c

then the result should be:

$ call multiply multiply 3 2
Will compute 3 times 2
Result of call: 6

Although the program is quite large for its functionality, most of the code is for data conversion between Python and
C, and for error reporting. The interesting part with respect to embedding Python starts with

Py_Initialize();

pName = PyUnicode_DecodeFSDefault (argv([1]);
/* Error checking of pName left out */
pModule = PyImport_Import (pName) ;

After initializing the interpreter, the script is loaded using PyImport_Import (). This routine needs a Python
string as its argument, which is constructed using the PyUnicode_FromString () data conversion routine.

pFunc = PyObject_GetAttrString(pModule, argv[2]);
/* pFunc is a new reference */

if (pFunc && PyCallable_Check (pFunc)) {

}
Py_XDECREF (pFunc) ;

Once the script is loaded, the name we’re looking for is retrieved using PyObject_GetAttrString (). If the
name exists, and the object returned is callable, you can safely assume that it is a function. The program then proceeds
by constructing a tuple of arguments as normal. The call to the Python function is then made with:

64 Rozdziat 3. Wbudowywanie runtime Cpython w wieksza aplikacje.

Extending and Embedding Python, Wydanie 3.9.18

pValue = PyObject_CallObject (pFunc, pArgs);

Upon return of the function, pvalue is either NULL or it contains a reference to the return value of the function.
Be sure to release the reference after examining the value.

3.1.4 Extending Embedded Python

Until now, the embedded Python interpreter had no access to functionality from the application itself. The Python
API allows this by extending the embedded interpreter. That is, the embedded interpreter gets extended with routines
provided by the application. While it sounds complex, it is not so bad. Simply forget for a while that the application
starts the Python interpreter. Instead, consider the application to be a set of subroutines, and write some glue code
that gives Python access to those routines, just like you would write a normal Python extension. For example:

static int numargs=0;

/* Return the number of arguments of the application command line */
static PyObject*
emb_numargs (PyObject *self, PyObject *args)
{
if (!PyArg_ParseTuple (args, ":numargs"))
return NULL;
return PyLong_FromLong (numargs) ;

static PyMethodDef EmbMethods[] = {
{"numargs", emb_numargs, METH_VARARGS,
"Return the number of arguments received by the process."},
{NULL, NULL, 0O, NULL}

bi

static PyModuleDef EmbModule = {
PyModuleDef_ HEAD_INIT, "emb", NULL, -1, EmbMethods,
NULL, NULL, NULL, NULL

bi

static PyObject*
PyInit_emb (void)
{
return PyModule_Create (&EmbModule) ;

Insert the above code just above the main () function. Also, insert the following two statements before the call to
Py_Initialize():

numargs = argc;
PyImport_AppendInittab ("emb", &PyInit_emb);

These two lines initialize the numargs variable, and make the emb .numargs () function accessible to the em-
bedded Python interpreter. With these extensions, the Python script can do things like

import emb
print ("Number of arguments", emb.numargs())

In a real application, the methods will expose an API of the application to Python.

3.1. Embedding Python in Another Application 65

Extending and Embedding Python, Wydanie 3.9.18

3.1.5 Embedding Python in C++

It is also possible to embed Python in a C++ program; precisely how this is done will depend on the details of the
C++ system used; in general you will need to write the main program in C++, and use the C++ compiler to compile
and link your program. There is no need to recompile Python itself using C++.

3.1.6 Compiling and Linking under Unix-like systems

It is not necessarily trivial to find the right flags to pass to your compiler (and linker) in order to embed the Python in-
terpreter into your application, particularly because Python needs to load library modules implemented as C dynamic
extensions (. so files) linked against it.

To find out the required compiler and linker flags, you can execute the pythonX. Y-config script which is gene-
rated as part of the installation process (a python3—-config script may also be available). This script has several
options, of which the following will be directly useful to you:

* pythonX.Y-config —--cflags will give you the recommended flags when compiling:

$ /opt/bin/python3.4-config —--cflags
-I/opt/include/python3.4m -I/opt/include/python3.4m -DNDEBUG -g —-fwrapv -03 -
—Wall -Wstrict-prototypes

pythonX.Y-config --1dflags will give you the recommended flags when linking:

$ /opt/bin/python3.4-config —--1dflags
-L/opt/lib/python3.4/config-3.4m -lpthread -1dl -lutil -1lm -lpython3.4m -
—Xlinker -export-dynamic

Informacja: To avoid confusion between several Python installations (and especially between the system Python
and your own compiled Python), it is recommended that you use the absolute path to pythonX. Y-config, as in
the above example.

If this procedure doesn’t work for you (it is not guaranteed to work for all Unix-like platforms; however, we welcome
bug reports) you will have to read your system’s documentation about dynamic linking and/or examine Python’s
Makefile (use sysconfig.get_makefile_filename () to find its location) and compilation options. In
this case, the sysconfig module is a useful tool to programmatically extract the configuration values that you will
want to combine together. For example:

>>> import sysconfig

>>> sysconfig.get_config_var ('LIBS")
'-lpthread -1dl1 -lutil’

>>> gysconfig.get_config_var ('LINKFORSHARED")
'-Xlinker -export-dynamic'

66 Rozdziat 3. Wbudowywanie runtime Cpython w wieksza aplikacje.

DODATEK A

Glosariusz

>>> DomyS§lny znak zachety powloki interaktywnej w jezyku Python. Czgsto spotykane w przypadku przyktadéw
kodu, ktére moga by¢ wykonywane w interpreterze.

. Moze odnosi¢ sie do:

* Domyslnego znaku zachety powloki interaktywnej Pythona przy wpisywaniu kodu wecigtego bloku,
wewnatrz pary odpowiadajacych sobie ogranicznikéw (nawiaséw, nawiaséw kwadratowych, nawiaséw
klamrowych lub potrdjnych cudzystowéw) lub po uzyciu dekoratora.

e Whbudowanej statej E11ipsis.

2to3 A tool that tries to convert Python 2.x code to Python 3.x code by handling most of the incompatibilities which
can be detected by parsing the source and traversing the parse tree.

2to3 is available in the standard library as 1ib2to3; a standalone entry point is provided as Tools/
scripts/2to3. See 2to3-reference.

abstract base class Abstract base classes complement duck-typing by providing a way to define interfaces when
other techniques like hasattr () would be clumsy or subtly wrong (for example with magic methods).
ABCs introduce virtual subclasses, which are classes that don’t inherit from a class but are still recognized
by isinstance () and issubclass (); see the abc module documentation. Python comes with many
built-in ABCs for data structures (in the collections.abc module), numbers (in the numbe rs module),
streams (in the io module), import finders and loaders (in the importlib.abc module). You can create
your own ABCs with the abc module.

annotation A label associated with a variable, a class attribute or a function parameter or return value, used by
convention as a type hint.

Annotations of local variables cannot be accessed at runtime, but annotations of global variables, class attribu-
tes, and functions are stored in the __annotations___ special attribute of modules, classes, and functions,
respectively.

See variable annotation, function annotation, PEP 484 and PEP 526, which describe this functionality.
argument A value passed to a function (or method) when calling the function. There are two kinds of argument:

* keyword argument: an argument preceded by an identifier (e.g. name=) in a function call or passed as a
value in a dictionary preceded by * *. For example, 3 and 5 are both keyword arguments in the following
calls to complex ():

complex (real=3, imag=5)
complex (**{'real': 3, 'imag': 5})

67

https://www.python.org/dev/peps/pep-0484
https://www.python.org/dev/peps/pep-0526

Extending and Embedding Python, Wydanie 3.9.18

* positional argument: an argument that is not a keyword argument. Positional arguments can appear at the
beginning of an argument list and/or be passed as elements of an iterable preceded by *. For example, 3
and 5 are both positional arguments in the following calls:

complex (3, 5)
complex (* (3, 5))

Arguments are assigned to the named local variables in a function body. See the calls section for the rules
governing this assignment. Syntactically, any expression can be used to represent an argument; the evaluated
value is assigned to the local variable.

See also the parameter glossary entry, the FAQ question on the difference between arguments and parameters,
and PEP 362.

asynchronous context manager An object which controls the environment seen in an async with statement by
defining __aenter__ () and __aexit__ () methods. Introduced by PEP 492.

asynchronous generator A function which returns an asynchronous generator iterator. It looks like a coroutine
function defined with async def except that it contains yield expressions for producing a series of values
usable in an async for loop.

Usually refers to an asynchronous generator function, but may refer to an asynchronous generator iterator in
some contexts. In cases where the intended meaning isn’t clear, using the full terms avoids ambiguity.

An asynchronous generator function may contain await expressions as well as async for, and async
with statements.

asynchronous generator iterator An object created by a asynchronous generator function.

This is an asynchronous iterator which when called using the __anext___ () method returns an awaitable
object which will execute the body of the asynchronous generator function until the next yield expression.

Each yield temporarily suspends processing, remembering the location execution state (including local va-
riables and pending try-statements). When the asynchronous generator iterator effectively resumes with another
awaitable returned by __anext__ (), it picks up where it left off. See PEP 492 and PEP 525.

asynchronous iterable An object, that can be used in an async for statement. Must return an asynchronous
iterator from its __aiter__ () method. Introduced by PEP 492.

asynchronous iterator An object that implements the _ aiter_ () and __anext__ () methods.
__anext__ must return an awaitable object. async for resolves the awaitables returned by an
asynchronous iterator’s __anext__ () method until it raises a StopAsyncIteration exception.
Introduced by PEP 492.

atrybut A value associated with an object which is referenced by name using dotted expressions. For example, if an
object o has an attribute a it would be referenced as o.a.

awaitable An object that can be used in an await expression. Can be a coroutine or an object with an
__await__ () method. See also PEP 492.

BDFL Benevolent Dictator For Life, a.k.a. Guido van Rossum, Python’s creator.

binary file A file object able to read and write byfes-like objects. Examples of binary files are files opened in binary
mode ('rb', 'wb' or 'rb+"'), sys.stdin.buffer, sys.stdout.buffer, and instances of io.
BytesIOand gzip.GzipFile.

See also text file for a file object able to read and write st r objects.

bytes-like object An object that supports the bufferobjects and can export a C-contiguous bufter. This includes all
bytes,bytearray,and array.array objects, as well as many common memoryview objects. Bytes-
like objects can be used for various operations that work with binary data; these include compression, saving
to a binary file, and sending over a socket.

Some operations need the binary data to be mutable. The documentation often refers to these as ,read-
write bytes-like objects”. Example mutable buffer objects include bytearray and a memoryview of a
bytearray. Other operations require the binary data to be stored in immutable objects (,,read-only bytes-
like objects”); examples of these include bytes and a memoryview of a bytes object.

68 Dodatek A. Glosariusz

https://www.python.org/dev/peps/pep-0362
https://www.python.org/dev/peps/pep-0492
https://www.python.org/dev/peps/pep-0492
https://www.python.org/dev/peps/pep-0525
https://www.python.org/dev/peps/pep-0492
https://www.python.org/dev/peps/pep-0492
https://www.python.org/dev/peps/pep-0492
https://gvanrossum.github.io/

Extending and Embedding Python, Wydanie 3.9.18

kod bajtowy Python source code is compiled into bytecode, the internal representation of a Python program in the
CPython interpreter. The bytecode is also cached in . pyc files so that executing the same file is faster the
second time (recompilation from source to bytecode can be avoided). This ,,intermediate language” is said to
run on a virfual machine that executes the machine code corresponding to each bytecode. Do note that bytecodes
are not expected to work between different Python virtual machines, nor to be stable between Python releases.

A list of bytecode instructions can be found in the documentation for the dis module.
wywolanie zwrotne A subroutine function which is passed as an argument to be executed at some point in the future.

class A template for creating user-defined objects. Class definitions normally contain method definitions which ope-
rate on instances of the class.

class variable A variable defined in a class and intended to be modified only at class level (i.e., not in an instance of
the class).

coercion The implicit conversion of an instance of one type to another during an operation which involves two
arguments of the same type. For example, int (3.15) converts the floating point number to the integer 3,
but in 3+4 .5, each argument is of a different type (one int, one float), and both must be converted to the
same type before they can be added or it will raise a TypeError. Without coercion, all arguments of even
compatible types would have to be normalized to the same value by the programmer, e.g., f1oat (3)+4.5
rather than just 3+4. 5.

complex number An extension of the familiar real number system in which all numbers are expressed as a sum of
a real part and an imaginary part. Imaginary numbers are real multiples of the imaginary unit (the square root
of —1), often written i in mathematics or 7 in engineering. Python has built-in support for complex numbers,
which are written with this latter notation; the imaginary part is written with a j suffix, e.g., 3+17j. To get
access to complex equivalents of the math module, use cmath. Use of complex numbers is a fairly advanced
mathematical feature. If you’re not aware of a need for them, it’s almost certain you can safely ignore them.

context manager An object which controls the environment seen in a with statement by defining__enter__ ()
and __exit__ () methods. See PEP 343.

context variable A variable which can have different values depending on its context. This is similar to Thread-
Local Storage in which each execution thread may have a different value for a variable. However, with context
variables, there may be several contexts in one execution thread and the main usage for context variables is to
keep track of variables in concurrent asynchronous tasks. See contextvars.

contiguous A buffer is considered contiguous exactly if it is either C-contiguous or Fortran contiguous. Zero-
dimensional buffers are C and Fortran contiguous. In one-dimensional arrays, the items must be laid out in
memory next to each other, in order of increasing indexes starting from zero. In multidimensional C-contiguous
arrays, the last index varies the fastest when visiting items in order of memory address. However, in Fortran
contiguous arrays, the first index varies the fastest.

coroutine Coroutines are a more generalized form of subroutines. Subroutines are entered at one point and exi-
ted at another point. Coroutines can be entered, exited, and resumed at many different points. They can be
implemented with the async def statement. See also PEP 492.

coroutine function A function which returns a coroutine object. A coroutine function may be defined with the
async def statement, and may contain await, async for, and async with keywords. These were
introduced by PEP 492.

CPython The canonical implementation of the Python programming language, as distributed on python.org. The
term ,,CPython” is used when necessary to distinguish this implementation from others such as Jython or
IronPython.

decorator A function returning another function, usually applied as a function transformation using the @wrapper
syntax. Common examples for decorators are classmethod () and staticmethod ().

The decorator syntax is merely syntactic sugar, the following two function definitions are semantically equiva-
lent:

def f (arg):

f = staticmethod (f)

(ciag dalszy na nastgpnej stronie)

69

https://www.python.org/dev/peps/pep-0343
https://www.python.org/dev/peps/pep-0492
https://www.python.org/dev/peps/pep-0492
https://www.python.org

Extending and Embedding Python, Wydanie 3.9.18

(kontynuacja poprzedniej strony)

@staticmethod
def f (arqg):

The same concept exists for classes, but is less commonly used there. See the documentation for function
definitions and class definitions for more about decorators.

descriptor Any object which defines the methods __get__ (),__set__ (),or__delete_ (). Whenaclass
attribute is a descriptor, its special binding behavior is triggered upon attribute lookup. Normally, using a.b to
get, set or delete an attribute looks up the object named b in the class dictionary for a, but if b is a descriptor,
the respective descriptor method gets called. Understanding descriptors is a key to a deep understanding of
Python because they are the basis for many features including functions, methods, properties, class methods,
static methods, and reference to super classes.

For more information about descriptors» methods, see descriptors or the Descriptor How To Guide.

dictionary An associative array, where arbitrary keys are mapped to values. The keys can be any object with
__hash__ () and __eq__ () methods. Called a hash in Perl.

dictionary comprehension A compact way to process all or part of the elements in an iterable and return a dic-
tionary with the results. results = {n: n ** 2 for n in range (10) } generates a dictionary
containing key n mapped to value n ** 2. See comprehensions.

dictionary view The objects returned from dict .keys (), dict.values (), and dict.items () are cal-
led dictionary views. They provide a dynamic view on the dictionary’s entries, which means that when the
dictionary changes, the view reflects these changes. To force the dictionary view to become a full list use
list (dictview). See dict-views.

docstring A string literal which appears as the first expression in a class, function or module. While ignored when
the suite is executed, it is recognized by the compiler and put into the __doc___ attribute of the enclosing
class, function or module. Since it is available via introspection, it is the canonical place for documentation of
the object.

duck-typing A programming style which does not look at an object’s type to determine if it has the right interface;
instead, the method or attribute is simply called or used (,If it looks like a duck and quacks like a duck,
it must be a duck.”) By emphasizing interfaces rather than specific types, well-designed code improves its
flexibility by allowing polymorphic substitution. Duck-typing avoids tests using t ype () or isinstance ().
(Note, however, that duck-typing can be complemented with abstract base classes.) Instead, it typically employs
hasattr () tests or FAFP programming.

EAFP Easier to ask for forgiveness than permission. This common Python coding style assumes the existence of valid
keys or attributes and catches exceptions if the assumption proves false. This clean and fast style is characterized
by the presence of many t ry and except statements. The technique contrasts with the LBYL style common
to many other languages such as C.

expression A piece of syntax which can be evaluated to some value. In other words, an expression is an accumulation
of expression elements like literals, names, attribute access, operators or function calls which all return a value.
In contrast to many other languages, not all language constructs are expressions. There are also statements
which cannot be used as expressions, such as while. Assignhments are also statements, not expressions.

modul rozszerzenia A module written in C or C++, using Python’s C API to interact with the core and with user
code.

f-string String literals prefixed with ' £' or 'F' are commonly called ,,f-strings” which is short for formatted string
literals. See also PEP 498.

file object An object exposing a file-oriented API (with methods such as read () or write ()) to an underlying
resource. Depending on the way it was created, a file object can mediate access to a real on-disk file or to another
type of storage or communication device (for example standard input/output, in-memory buffers, sockets, pipes,
etc.). File objects are also called file-like objects or streams.

There are actually three categories of file objects: raw binary files, buffered binary files and text files. Their
interfaces are defined in the io module. The canonical way to create a file object is by using the open ()

70 Dodatek A. Glosariusz

https://www.python.org/dev/peps/pep-0498

Extending and Embedding Python, Wydanie 3.9.18

function.
file-like object A synonym for file object.
finder An object that tries to find the loader for a module that is being imported.

Since Python 3.3, there are two types of finder: meta path finders for use with sys.meta_path, and path
entry finders for use with sys.path_hooks.

See PEP 302, PEP 420 and PEP 451 for much more detail.

floor division Mathematical division that rounds down to nearest integer. The floor division operator is //. For
example, the expression 11 // 4 evaluates to 2 in contrast to the 2 . 75 returned by float true division. Note
that (-11) // 41is —3 because thatis —2 . 75 rounded downward. See PEP 238.

function A series of statements which returns some value to a caller. It can also be passed zero or more arguments
which may be used in the execution of the body. See also parameter, method, and the function section.

function annotation An annotation of a function parameter or return value.

Function annotations are usually used for rype hints: for example, this function is expected to take two int
arguments and is also expected to have an int return value:

def sum_two_numbers(a: int, b: int) -> int:
return a + b

Function annotation syntax is explained in section function.
See variable annotation and PEP 484, which describe this functionality.

_ future__ A future statement, from __future__ import <feature>, directs the compiler to compile
the current module using syntax or semantics that will become standard in a future release of Python. The
__future__ module documents the possible values of feature. By importing this module and evaluating its
variables, you can see when a new feature was first added to the language and when it will (or did) become the

default:
>>> import __ future_
>>> _ future_ .division

_Feature((2, 2, 0, 'alpha', 2), (3, 0, 0, 'alpha', 0), 8192)

garbage collection The process of freeing memory when it is not used anymore. Python performs garbage collection
via reference counting and a cyclic garbage collector that is able to detect and break reference cycles. The
garbage collector can be controlled using the gc module.

generator A function which returns a generator iterator. It looks like a normal function except that it contains yield
expressions for producing a series of values usable in a for-loop or that can be retrieved one at a time with the
next () function.

Usually refers to a generator function, but may refer to a generator iterator in some contexts. In cases where
the intended meaning isn’t clear, using the full terms avoids ambiguity.

generator iterator An object created by a generator function.

Each yield temporarily suspends processing, remembering the location execution state (including local varia-
bles and pending try-statements). When the generator iterator resumes, it picks up where it left off (in contrast
to functions which start fresh on every invocation).

generator expression An expression that returns an iterator. It looks like a normal expression followed by a for
clause defining a loop variable, range, and an optional if clause. The combined expression generates values
for an enclosing function:

>>> sum(i*i for i in range (10)) # sum of squares 0, 1, 4, ... 81
285

generic function A function composed of multiple functions implementing the same operation for different types.
Which implementation should be used during a call is determined by the dispatch algorithm.

7

https://www.python.org/dev/peps/pep-0302
https://www.python.org/dev/peps/pep-0420
https://www.python.org/dev/peps/pep-0451
https://www.python.org/dev/peps/pep-0238
https://www.python.org/dev/peps/pep-0484

Extending and Embedding Python, Wydanie 3.9.18

See also the single dispatch glossary entry, the functools.singledispatch () decorator, and PEP
443.

generic type A type that can be parameterized; typically a container class such as 1ist or dict. Used for type
hints and annotations.

For more details, see generic alias types, PEP 483, PEP 484, PEP 585, and the t yping module.
GIL See global interpreter lock.

global interpreter lock The mechanism used by the CPyrhon interpreter to assure that only one thread executes
Python bytecode at a time. This simplifies the CPython implementation by making the object model (including
critical built-in types such as dict) implicitly safe against concurrent access. Locking the entire interpreter
makes it easier for the interpreter to be multi-threaded, at the expense of much of the parallelism afforded by
multi-processor machines.

However, some extension modules, either standard or third-party, are designed so as to release the GIL when
doing computationally-intensive tasks such as compression or hashing. Also, the GIL is always released when
doing I/0.

Past efforts to create a ,,free-threaded” interpreter (one which locks shared data at a much finer granularity)
have not been successful because performance suffered in the common single-processor case. It is believed
that overcoming this performance issue would make the implementation much more complicated and therefore
costlier to maintain.

hash-based pyc A bytecode cache file that uses the hash rather than the last-modified time of the corresponding
source file to determine its validity. See pyc-invalidation.

hashable An object is hashable if it has a hash value which never changes during its lifetime (it needs a
__hash__ () method), and can be compared to other objects (it needs an __eq___ () method). Hashable
objects which compare equal must have the same hash value.

Hashability makes an object usable as a dictionary key and a set member, because these data structures use the
hash value internally.

Most of Python’s immutable built-in objects are hashable; mutable containers (such as lists or dictionaries)
are not; immutable containers (such as tuples and frozensets) are only hashable if their elements are hashable.
Objects which are instances of user-defined classes are hashable by default. They all compare unequal (except
with themselves), and their hash value is derived from their id () .

IDLE An Integrated Development Environment for Python. IDLE is a basic editor and interpreter environment
which ships with the standard distribution of Python.

immutable An object with a fixed value. Immutable objects include numbers, strings and tuples. Such an object
cannot be altered. A new object has to be created if a different value has to be stored. They play an important
role in places where a constant hash value is needed, for example as a key in a dictionary.

import path A list of locations (or path entries) that are searched by the path based finder for modules to import.
During import, this list of locations usually comes from sys.path, but for subpackages it may also come
from the parent package’s __path___ attribute.

importing The process by which Python code in one module is made available to Python code in another module.
importer An object that both finds and loads a module; both a finder and loader object.

interactive Python has an interactive interpreter which means you can enter statements and expressions at the in-
terpreter prompt, immediately execute them and see their results. Just launch python with no arguments
(possibly by selecting it from your computer’s main menu). It is a very powerful way to test out new ideas or
inspect modules and packages (remember help (x)).

interpreted Python is an interpreted language, as opposed to a compiled one, though the distinction can be blurry
because of the presence of the bytecode compiler. This means that source files can be run directly without expli-
citly creating an executable which is then run. Interpreted languages typically have a shorter development/debug
cycle than compiled ones, though their programs generally also run more slowly. See also interactive.

interpreter shutdown When asked to shut down, the Python interpreter enters a special phase where it gradually
releases all allocated resources, such as modules and various critical internal structures. It also makes several

72 Dodatek A. Glosariusz

https://www.python.org/dev/peps/pep-0443
https://www.python.org/dev/peps/pep-0443
https://www.python.org/dev/peps/pep-0483
https://www.python.org/dev/peps/pep-0484
https://www.python.org/dev/peps/pep-0585

Extending and Embedding Python, Wydanie 3.9.18

calls to the garbage collector. This can trigger the execution of code in user-defined destructors or weakref
callbacks. Code executed during the shutdown phase can encounter various exceptions as the resources it relies
on may not function anymore (common examples are library modules or the warnings machinery).

The main reason for interpreter shutdown is that the __main___ module or the script being run has finished
executing.

iterable An object capable of returning its members one at a time. Examples of iterables include all sequence ty-
pes (such as 1ist, str, and tuple) and some non-sequence types like dict, file objects, and objects of
any classes you define withan __iter__ () method or witha __getitem__ () method that implements
Sequence semantics.

Iterables can be used in a for loop and in many other places where a sequence is needed (zip (), map (),
...). When an iterable object is passed as an argument to the built-in function iter (), it returns an iterator
for the object. This iterator is good for one pass over the set of values. When using iterables, it is usually not
necessary to call iter () or deal with iterator objects yourself. The for statement does that automatically for
you, creating a temporary unnamed variable to hold the iterator for the duration of the loop. See also iterator,
sequence, and generator.

iterator An object representing a stream of data. Repeated calls to the iterator’s ___next___ () method (or passing
it to the built-in function next ()) return successive items in the stream. When no more data are available
a StopIteration exception is raised instead. At this point, the iterator object is exhausted and any fur-
ther calls to its __next__ () method just raise StopIteration again. [terators are required to have an
__iter__ () method that returns the iterator object itself so every iterator is also iterable and may be used
in most places where other iterables are accepted. One notable exception is code which attempts multiple ite-
ration passes. A container object (such as a 1ist) produces a fresh new iterator each time you pass it to the
iter () function or use it in a for loop. Attempting this with an iterator will just return the same exhausted
iterator object used in the previous iteration pass, making it appear like an empty container.

More information can be found in typeiter.

key function A key function or collation function is a callable that returns a value used for sorting or ordering. For
example, locale.strxfrm () isused to produce a sort key that is aware of locale specific sort conventions.

A number of tools in Python accept key functions to control how elements are ordered or grouped. They inclu-
demin (),max (), sorted(),list.sort (),heapg.merge (),heapg.nsmallest (), heapq.
nlargest (),and itertools.groupby ().

There are several ways to create a key function. For example. the str. lower () method can serve as a key
function for case insensitive sorts. Alternatively, a key function can be built from a 1ambda expression such
as lambda r: (r[0], r[2]).Also,the operator module provides three key function constructors:
attrgetter (), itemgetter (), and methodcaller (). See the Sorting HOW TO for examples of
how to create and use key functions.

keyword argument See argument.

lambda An anonymous inline function consisting of a single expression which is evaluated when the function is
called. The syntax to create a lambda function is 1lambda [parameters]: expression

LBYL Look before you leap. This coding style explicitly tests for pre-conditions before making calls or lookups.
This style contrasts with the EAFP approach and is characterized by the presence of many i f statements.

In a multi-threaded environment, the LBYL approach can risk introducing a race condition between ,,the lo-
oking” and ,the leaping”. For example, the code, 1f key in mapping: return mappingl[key]
can fail if another thread removes key from mapping after the test, but before the lookup. This issue can be
solved with locks or by using the EAFP approach.

list A built-in Python sequence. Despite its name it is more akin to an array in other languages than to a linked list
since access to elements is O(1).

list comprehension A compact way to process all or part of the elements in a sequence and return a list with the
results. result = ['{:#04x}'.format (x) for x in range(256) if x % 2 == 0] ge-
nerates a list of strings containing even hex numbers (0x..) in the range from O to 255. The 1 £ clause is optional.

If omitted, all elements in range (256) are processed.

73

Extending and Embedding Python, Wydanie 3.9.18

loader An object that loads a module. It must define a method named 1oad_module (). A loader is typically
returned by a finder. See PEP 302 for details and importlib.abc.Loader for an abstract base class.

magic method An informal synonym for special method.

mapping A container object that supports arbitrary key lookups and implements the methods specified in
the Mapping or MutableMapping abstract base classes. Examples include dict, collections.
defaultdict, collections.OrderedDict and collections.Counter.

meta path finder A finder returned by a search of sys.meta_path. Meta path finders are related to, but different
from path entry finders.

See importlib.abc.MetaPathFinder for the methods that meta path finders implement.

metaclass The class of a class. Class definitions create a class name, a class dictionary, and a list of base classes.
The metaclass is responsible for taking those three arguments and creating the class. Most object oriented
programming languages provide a default implementation. What makes Python special is that it is possible to
create custom metaclasses. Most users never need this tool, but when the need arises, metaclasses can provide
powerful, elegant solutions. They have been used for logging attribute access, adding thread-safety, tracking
object creation, implementing singletons, and many other tasks.

More information can be found in metaclasses.

method A function which is defined inside a class body. If called as an attribute of an instance of that class, the
method will get the instance object as its first argument (which is usually called se1f). See function and nested
scope.

method resolution order Method Resolution Order is the order in which base classes are searched for a member
during lookup. See The Python 2.3 Method Resolution Order for details of the algorithm used by the Python
interpreter since the 2.3 release.

module An object that serves as an organizational unit of Python code. Modules have a namespace containing ar-
bitrary Python objects. Modules are loaded into Python by the process of importing.

See also package.

module spec A namespace containing the import-related information used to load a module. An instance of
importlib.machinery.ModuleSpec.

MRO See method resolution order.
mutable Mutable objects can change their value but keep their id () . See also immutable.

named tuple The term ,named tuple” applies to any type or class that inherits from tuple and whose indexable
elements are also accessible using named attributes. The type or class may have other features as well.

Several built-in types are named tuples, including the values returned by time.localtime () and os.
stat (). Another example is sys.float_info:

>>> sys.float_info[l] # indexed access
1024

>>> sys.float_info.max_exp # named field access
1024

>>> isinstance (sys.float_info, tuple) # kind of tuple

True

Some named tuples are built-in types (such as the above examples). Alternatively, a named tuple can be created
from a regular class definition that inherits from tuple and that defines named fields. Such a class can be
written by hand or it can be created with the factory function collections.namedtuple (). The latter
technique also adds some extra methods that may not be found in hand-written or built-in named tuples.

namespace The place where a variable is stored. Namespaces are implemented as dictionaries. There are the local,
global and built-in namespaces as well as nested namespaces in objects (in methods). Namespaces support
modularity by preventing naming conflicts. For instance, the functions builtins.open and os.open ()
are distinguished by their namespaces. Namespaces also aid readability and maintainability by making it clear
which module implements a function. For instance, writing random. seed () oritertools.islice ()
makes it clear that those functions are implemented by the random and itertools modules, respectively.

74 Dodatek A. Glosariusz

https://www.python.org/dev/peps/pep-0302
https://www.python.org/download/releases/2.3/mro/

Extending and Embedding Python, Wydanie 3.9.18

namespace package A PEP 420 package which serves only as a container for subpackages. Namespace packages
may have no physical representation, and specifically are not like a regular package because they have no
__init__ .pyfile.

See also module.

nested scope The ability to refer to a variable in an enclosing definition. For instance, a function defined inside
another function can refer to variables in the outer function. Note that nested scopes by default work only for
reference and not for assignment. Local variables both read and write in the innermost scope. Likewise, global
variables read and write to the global namespace. The nonlocal allows writing to outer scopes.

new-style class Old name for the flavor of classes now used for all class objects. In earlier Python versions, on-
ly new-style classes could use Python’s newer, versatile features like ___slots__, descriptors, properties,
__getattribute__ (), class methods, and static methods.

object Any data with state (attributes or value) and defined behavior (methods). Also the ultimate base class of any
new-style class.

package A Python module which can contain submodules or recursively, subpackages. Technically, a package is a
Python module with an __path___ attribute.

See also regular package and namespace package.

parameter A named entity in a function (or method) definition that specifies an argument (or in some cases, argu-
ments) that the function can accept. There are five kinds of parameter:

e positional-or-keyword: specifies an argument that can be passed either positionally or as a keyword argu-
ment. This is the default kind of parameter, for example foo and bar in the following:

def func (foo, bar=None) :

e positional-only: specifies an argument that can be supplied only by position. Positional-only parameters
can be defined by including a / character in the parameter list of the function definition after them, for
example posonlyl and posonly2 in the following:

’def func (posonlyl, posonly2, /, positional_or_keyword) :

* keyword-only: specifies an argument that can be supplied only by keyword. Keyword-only parameters can
be defined by including a single var-positional parameter or bare * in the parameter list of the function
definition before them, for example kw_onlyl and kw_only2 in the following:

def func(arg, *, kw_onlyl, kw_only2):

* var-positional: specifies that an arbitrary sequence of positional arguments can be provided (in addition
to any positional arguments already accepted by other parameters). Such a parameter can be defined by
prepending the parameter name with *, for example args in the following:

def func(*args, **kwargs):

* var-keyword: specifies that arbitrarily many keyword arguments can be provided (in addition to any key-
word arguments already accepted by other parameters). Such a parameter can be defined by prepending
the parameter name with * *, for example kwargs in the example above.

Parameters can specify both optional and required arguments, as well as default values for some optional ar-
guments.

See also the argument glossary entry, the FAQ question on the difference between arguments and parameters,
the inspect.Parameter class, the function section, and PEP 362.

path entry A single location on the import path which the path based finder consults to find modules for importing.

path entry finder A finder returned by a callable on sys.path_hooks (i.e. a path entry hook) which knows how
to locate modules given a path entry.

See importlib.abc.PathEntryFinder for the methods that path entry finders implement.

75

https://www.python.org/dev/peps/pep-0420
https://www.python.org/dev/peps/pep-0362

Extending and Embedding Python, Wydanie 3.9.18

path entry hook A callable on the sys.path_hook list which returns a path entry finder if it knows how to find

modules on a specific path entry.

path based finder One of the default meta path finders which searches an import path for modules.

path-like object An object representing a file system path. A path-like object is either a str or bytes object

representing a path, or an object implementing the os .PathLike protocol. An object that supports the os .
PathLike protocol can be converted to a str or bytes file system path by calling the os . fspath ()
function; os . fsdecode () and os . fsencode () canbe used to guarantee a st r or by tes result instead,
respectively. Introduced by PEP 519.

PEP Python Enhancement Proposal. A PEP is a design document providing information to the Python community,

or describing a new feature for Python or its processes or environment. PEPs should provide a concise technical
specification and a rationale for proposed features.

PEPs are intended to be the primary mechanisms for proposing major new features, for collecting community
input on an issue, and for documenting the design decisions that have gone into Python. The PEP author is
responsible for building consensus within the community and documenting dissenting opinions.

See PEP 1.

portion A set of files in a single directory (possibly stored in a zip file) that contribute to a namespace package, as

defined in PEP 420.

positional argument See argument.

provisional API A provisional API is one which has been deliberately excluded from the standard library’s bac-

kwards compatibility guarantees. While major changes to such interfaces are not expected, as long as they are
marked provisional, backwards incompatible changes (up to and including removal of the interface) may occur
if deemed necessary by core developers. Such changes will not be made gratuitously — they will occur only if
serious fundamental flaws are uncovered that were missed prior to the inclusion of the API.

Even for provisional APIs, backwards incompatible changes are seen as a ,solution of last resort” - every
attempt will still be made to find a backwards compatible resolution to any identified problems.

This process allows the standard library to continue to evolve over time, without locking in problematic design
errors for extended periods of time. See PEP 411 for more details.

provisional package See provisional API.

Python 3000 Nickname for the Python 3.x release line (coined long ago when the release of version 3 was something

in the distant future.) This is also abbreviated ,,Py3k”.

Pythonic An idea or piece of code which closely follows the most common idioms of the Python language, rather

than implementing code using concepts common to other languages. For example, a common idiom in Python
is to loop over all elements of an iterable using a for statement. Many other languages don’t have this type of
construct, so people unfamiliar with Python sometimes use a numerical counter instead:

for i in range(len(food)):
print (food[i])

As opposed to the cleaner, Pythonic method:

for piece in food:
print (piece)

qualified name A dotted name showing the ,,path” from a module’s global scope to a class, function or method

defined in that module, as defined in PEP 3155. For top-level functions and classes, the qualified name is the
same as the object’s name:

>>> class C:
class D:
def meth (self):
pass

(ciag dalszy na nastgpnej stronie)

76

Dodatek A. Glosariusz

https://www.python.org/dev/peps/pep-0519
https://www.python.org/dev/peps/pep-0001
https://www.python.org/dev/peps/pep-0420
https://www.python.org/dev/peps/pep-0411
https://www.python.org/dev/peps/pep-3155

Extending and Embedding Python, Wydanie 3.9.18

(kontynuacja poprzedniej strony)

>>> C.__ _qualname_

lCl

>>> C.D.__gualname___
'C.D'

>>> C.D.meth.__gualname
'C.D.meth'

When used to refer to modules, the fully qualified name means the entire dotted path to the module, including
any parent packages, e.g. email .mime.text:

>>> import email.mime.text
>>> email.mime.text._ name_
'email.mime.text'

reference count The number of references to an object. When the reference count of an object drops to zero, it is
deallocated. Reference counting is generally not visible to Python code, but it is a key element of the CPython
implementation. The sy s module defines a get refcount () function that programmers can call to return
the reference count for a particular object.

regular package A traditional package, such as a directory containingan __init__ .py file.
See also namespace package.

__slots__ A declaration inside a class that saves memory by pre-declaring space for instance attributes and elimina-
ting instance dictionaries. Though popular, the technique is somewhat tricky to get right and is best reserved
for rare cases where there are large numbers of instances in a memory-critical application.

sequence An iferable which supports efficient element access using integer indices via the __getitem__ () spe-
cial method and defines a __len__ () method that returns the length of the sequence. Some built-in se-
quence types are 1ist, str, tuple, and bytes. Note that dict also supports __getitem__ () and
__len__ (),butisconsidered a mapping rather than a sequence because the lookups use arbitrary immutable
keys rather than integers.

The collections.abc.Sequence abstract base class defines a much richer interface that goes bey-
ond just __getitem__ () and __len__ (), adding count (), index (), __contains__ (), and
__reversed__ (). Types that implement this expanded interface can be registered explicitly using
register ().

set comprehension A compact way to process all or part of the elements in an iterable and return a set with the
results. results = {c for c in 'abracadabra' if c not in 'abc'} generates the setof
strings { 'r', 'd'}.See comprehensions.

single dispatch A form of generic function dispatch where the implementation is chosen based on the type of a
single argument.

slice An object usually containing a portion of a sequence. A slice is created using the subscript notation, [] with
colons between numbers when several are given, such as in variable_name [1:3:5]. The bracket (sub-
script) notation uses s11ice objects internally.

special method A method that is called implicitly by Python to execute a certain operation on a type, such as addition.
Such methods have names starting and ending with double underscores. Special methods are documented in
specialnames.

statement A statement is part of a suite (a ,.block” of code). A statement is either an expression or one of several
constructs with a keyword, such as i f, while or for.

text encoding A string in Python is a sequence of Unicode code points (in range U+0000-U+10FFFF). To store
or transfer a string, it needs to be serialized as a sequence of bytes.

Serializing a string into a sequence of bytes is known as ,.,encoding”, and recreating the string from the sequence
of bytes is known as ,,decoding”.

There are a variety of different text serialization codecs, which are collectively referred to as ,,text encodings”.

77

Extending and Embedding Python, Wydanie 3.9.18

text file A file object able to read and write st r objects. Often, a text file actually accesses a byte-oriented datastream
and handles the fext encoding automatically. Examples of text files are files opened in text mode ('r ' or 'w'),
sys.stdin, sys.stdout, and instances of i0.StringIO.

See also binary file for a file object able to read and write byfes-like objects.

triple-quoted string A string which is bound by three instances of either a quotation mark (”) or an apostrophe
(«). While they don’t provide any functionality not available with single-quoted strings, they are useful for a
number of reasons. They allow you to include unescaped single and double quotes within a string and they can
span multiple lines without the use of the continuation character, making them especially useful when writing
docstrings.

type The type of a Python object determines what kind of object it is; every object has a type. An object’s type is
accessible asits ___class___ attribute or can be retrieved with type (ob7).

type alias A synonym for a type, created by assigning the type to an identifier.

Type aliases are useful for simplifying rype hints. For example:

def remove_gray_shades (
colors: list[tuple[int, int, int]]) -> list[tuplel[int, int, int]]:
pass

could be made more readable like this:

Color = tuple[int, int, int]

def remove_gray_shades (colors: list[Color]) —-> list[Color]:
pass

See typing and PEP 484, which describe this functionality.

type hint An annotation that specifies the expected type for a variable, a class attribute, or a function parameter or
return value.

Type hints are optional and are not enforced by Python but they are useful to static type analysis tools, and aid
IDEs with code completion and refactoring.

Type hints of global variables, class attributes, and functions, but not local variables, can be accessed using
typing.get_type_hints ().

See typing and PEP 484, which describe this functionality.

universal newlines A manner of interpreting text streams in which all of the following are recognized as ending
a line: the Unix end-of-line convention '\n"', the Windows convention '\r\n"', and the old Macintosh
convention '\r"'. See PEP 278 and PEP 3116, as well as bytes.splitlines () for an additional use.

variable annotation An annotation of a variable or a class attribute.

When annotating a variable or a class attribute, assignment is optional:

class C:
field: 'annotation'

Variable annotations are usually used for type hints: for example this variable is expected to take int values:

count: int = 0

Variable annotation syntax is explained in section annassign.
See function annotation, PEP 484 and PEP 526, which describe this functionality.

virtual environment A cooperatively isolated runtime environment that allows Python users and applications to
install and upgrade Python distribution packages without interfering with the behaviour of other Python ap-
plications running on the same system.

See also venv.

78 Dodatek A. Glosariusz

https://www.python.org/dev/peps/pep-0484
https://www.python.org/dev/peps/pep-0484
https://www.python.org/dev/peps/pep-0278
https://www.python.org/dev/peps/pep-3116
https://www.python.org/dev/peps/pep-0484
https://www.python.org/dev/peps/pep-0526

Extending and Embedding Python, Wydanie 3.9.18

virtual machine A computer defined entirely in software. Python’s virtual machine executes the byfecode emitted
by the bytecode compiler.

Zen of Python Listing of Python design principles and philosophies that are helpful in understanding and using the
language. The listing can be found by typing ,,import this” at the interactive prompt.

79

Extending and Embedding Python, Wydanie 3.9.18

80

Dodatek A. Glosariusz

DODATEK B

O tej dokumentaciji

Dokumenty sa wygenerowane ze Zrodet reStructuredText przez Sphinksa, procesor dokumentéw napisany specjalnie
dla dokumentacji Pythona.

Rozwéj dokumentacji i jej oprzyrzadowania jest w catoSci wysitkiem wolontariackim, tak samo jak sam Python.
Jesli checesz wnies¢ swoj wktad, na stronie reporting-bugs znajdziesz informacje jak to zrobi¢. Nowi wolontariusze sa
zawsze mile widziani!

Ogromne podzigkowania dla:

e Freda L. Drake’a, Jr., twércy oryginalnego zestawu narzedzi dokumentacji Pythona i autora duzej czgsci jej
tresci;

* projektu Docutils za stworzenie reStructuredText i pakietu Docutils;

¢ Fredrik Lundh for his Alternative Python Reference project from which Sphinx got many good ideas.

B.1 Wspoiltworcy dokumentacji Pythona

Wielu ludzi rozwija jezyk Python, biblioteke standardowa Pythona i dokumentacje. W Misc/ACKS w Zrédtach Py-
thona znajdziesz czgSciowa listg kontrybutoréw.

Tylko dzigki wktadowi spotecznosci Python ma tak wspaniata dokumentacje — dzigkujemy!

81

http://docutils.sourceforge.net/rst.html
http://sphinx-doc.org/
http://docutils.sourceforge.net/
https://github.com/python/cpython/tree/3.9/Misc/ACKS

Extending and Embedding Python, Wydanie 3.9.18

82

Dodatek B. O tej dokumentaciji

popaTEk G

Historia i zapisy prawne

C.1 Historia programu

Python was created in the early 1990s by Guido van Rossum at Stichting Mathematisch Centrum (CWI, see https:
/Iwww.cwi.nl/) in the Netherlands as a successor of a language called ABC. Guido remains Python’s principal author,
although it includes many contributions from others.

In 1995, Guido continued his work on Python at the Corporation for National Research Initiatives (CNRI, see https:
/Iwww.cnri.reston.va.us/) in Reston, Virginia where he released several versions of the software.

In May 2000, Guido and the Python core development team moved to BeOpen.com to form the BeOpen Python-
Labs team. In October of the same year, the PythonLabs team moved to Digital Creations (now Zope Corporation;
see https://www.zope.org/). In 2001, the Python Software Foundation (PSF, see https://www.python.org/psf/) was
formed, a non-profit organization created specifically to own Python-related Intellectual Property. Zope Corporation
is a sponsoring member of the PSF.

All Python releases are Open Source (see https://opensource.org/ for the Open Source Definition). Historically, most,
but not all, Python releases have also been GPL-compatible; the table below summarizes the various releases.

83

https://www.cwi.nl/
https://www.cwi.nl/
https://www.cnri.reston.va.us/
https://www.cnri.reston.va.us/
https://www.zope.org/
https://www.python.org/psf/
https://opensource.org/

Extending and Embedding Python, Wydanie 3.9.18

Wyda- Po- Rok Wiasciciel Zgodne z Uprawnieniami Ogo6lnie

nie chodne Powszechnymi (GPL)?
po

od 0.9.0 | nie od 1991 | CWI tak

do 1.2 podano do 1995

od1.3do | 1.2 od 1995 | CNRI tak

1.5.2 do 1999

1.6 1.5.2 2000 CNRI nie

2.0 1.6 2000 BeOpen.com nie

1.6.1 1.6 2001 CNRI nie

2.1 2.0 i| 2001 Fundacja Programu j¢zyka Py- | nie
1.6.1 tonowskiego (PSF)

2.0.1 2.0 i| 2001 Fundacja Programu je¢zyka Py- | tak
1.6.1 tonowskiego (PSF)

2.1.1 2.1 i| 2001 Fundacja Programu je¢zyka Py- | tak
2.0.1 tonowskiego (PSF)

2.1.2 2.1.1 2002 Fundacja Programu jezyka Py- | tak

tonowskiego (PSF)
2.1.3 2.1.2 2002 Fundacja Programu jezyka Py- | tak
tonowskiego (PSF)
22 and | 2.1.1 2001-now | Fundacja Programu jezyka Py- | tak
above tonowskiego (PSF)

Informacja: Zgodno$¢ z uprawnieniami ogélnie powszechnymi (w skrécie - z ang. - GPL) nie oznacza, Ze rozprowa-
dzamy jezyk pytonowski z uprawnieniami ogélnie powszechnymi (w skrécie - z ang. - GPL). Wszystkie uprawnienia
dostarczane z jezykiem pytonowskim, w przeciwiedstwie do uprawniert ogélnie powszechnych (w skrécie - z ang.
- GPL), pozwalaja na rozpowszechnianie programéw jgzyka pytonowskiego z wprowadzonymi zmianami bez usta-
nawiania tych zmian w ramach otwartych Zrédel. Uprawnienia zgodne z ogdlnie powszechnymi uprawnieniami (w
skrécie - z ang. - GPL) pozwalaja na taczenie wydari programu jezyka pytonowskiego z innymi programami ktére sa
wydane z uprawnieniami ogdlnie powszechnymi (w skrécie - z ang. - GPL). Inne uprawnienia, niezgodne z ogélnie
powszechnymi, na to nie zezwalaja.

Podzigkowania dla wielu ochotnikéw przychodzacych z zewnatrz, ktérzy pracowali pod kierunkiem Gwidona aby
umozliwi¢ te wydania programu jgzyka pytonowskiego.

C.2 Zasady i warunki postepowania z programem jezyka pytonow-
skiego i ogdlnie jego uzycia.

Python software and documentation are licensed under the PSF License Agreement.

Starting with Python 3.8.6, examples, recipes, and other code in the documentation are dual licensed under the PSF
License Agreement and the Zero-Clause BSD license.

Some software incorporated into Python is under different licenses. The licenses are listed with code falling under
that license. See Licenses and Acknowledgements for Incorporated Software for an incomplete list of these licenses.

84 Dodatek C. Historia i zapisy prawne

Extending and Embedding Python, Wydanie 3.9.18

C.2.1 PSF LICENSE AGREEMENT FOR PYTHON 3.9.18

1. This LICENSE AGREEMENT is between the Python Software Foundation.
—~ ("PSF"), and

the Individual or Organization ("Licensee") accessing and otherwise.
—using Python

3.9.18 software in source or binary form and its associated.
—documentation.

2. Subject to the terms and conditions of this License Agreement, PSF._
—hereby

grants Licensee a nonexclusive, royalty-free, world-wide license to.
—reproduce,

analyze, test, perform and/or display publicly, prepare derivative.
—works,

distribute, and otherwise use Python 3.9.18 alone or in any derivative

version, provided, however, that PSF's License Agreement and PSF's.
—notice of

copyright, i.e., "Copyright © 2001-2023 Python Software Foundation; All_
—Rights

Reserved" are retained in Python 3.9.18 alone or in any derivative.
—version

prepared by Licensee.

3. In the event Licensee prepares a derivative work that is based on or
incorporates Python 3.9.18 or any part thereof, and wants to make the
derivative work available to others as provided herein, then Licensee.

—hereby
agrees to include in any such work a brief summary of the changes made.

—~to Python
3.9.18.

4. PSF is making Python 3.9.18 available to Licensee on an "AS IS" basis.

PSF MAKES NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY.
—OF

EXAMPLE, BUT NOT LIMITATION, PSF MAKES NO AND DISCLAIMS ANY..
—REPRESENTATION OR

WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR..
—THAT THE

USE OF PYTHON 3.9.18 WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

5. PSF SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF PYTHON 3.9.18

FOR ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A._
—RESULT OF

MODIFYING, DISTRIBUTING, OR OTHERWISE USING PYTHON 3.9.18, OR ANY.
—DERIVATIVE

THEREOF, EVEN IF ADVISED OF THE POSSIBILITY THEREOF.

6. This License Agreement will automatically terminate upon a material.
—breach of

its terms and conditions.

7. Nothing in this License Agreement shall be deemed to create any.
—relationship

of agency, partnership, or joint venture between PSF and Licensee.
—This License

Agreement does not grant permission to use PSF trademarks or trade name.
—~in a

C.2. Zasady i warunki postepowania z programem jezyka pytonowskiego i ogélnie jego uzycgh

Extending and Embedding Python, Wydanie 3.9.18

trademark sense to endorse or promote products or services of Licensee,.

—0r any

8.

third party.

By copying, installing or otherwise using Python 3.9.18, Licensee agrees
to be bound by the terms and conditions of this License Agreement.

C.2.2 BEOPEN.COM LICENSE AGREEMENT FOR PYTHON 2.0

BEOPEN PYTHON OPEN SOURCE LICENSE AGREEMENT VERSION 1

This LICENSE AGREEMENT is between BeOpen.com ("BeOpen"), having an office at
160 Saratoga Avenue, Santa Clara, CA 95051, and the Individual or Organization
("Licensee") accessing and otherwise using this software in source or binary
form and its associated documentation ("the Software").

Subject to the terms and conditions of this BeOpen Python License Agreement,
BeOpen hereby grants Licensee a non-exclusive, royalty-free, world-wide license
to reproduce, analyze, test, perform and/or display publicly, prepare derivative
works, distribute, and otherwise use the Software alone or in any derivative
version, provided, however, that the BeOpen Python License is retained in the
Software, alone or in any derivative version prepared by Licensee.

BeOpen is making the Software available to Licensee on an "AS IS" basis.

BEOPEN MAKES NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF
EXAMPLE, BUT NOT LIMITATION, BEOPEN MAKES NO AND DISCLAIMS ANY REPRESENTATION OR
WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE
USE OF THE SOFTWARE WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

BEOPEN SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF THE SOFTWARE FOR
ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT OF USING,
MODIFYING OR DISTRIBUTING THE SOFTWARE, OR ANY DERIVATIVE THEREOF, EVEN IF
ADVISED OF THE POSSIBILITY THEREOEF.

This License Agreement will automatically terminate upon a material breach of
its terms and conditions.

This License Agreement shall be governed by and interpreted in all respects

by the law of the State of California, excluding conflict of law provisions.
Nothing in this License Agreement shall be deemed to create any relationship of
agency, partnership, or joint venture between BeOpen and Licensee. This License
Agreement does not grant permission to use BeOpen trademarks or trade names in a
trademark sense to endorse or promote products or services of Licensee, or any
third party. As an exception, the "BeOpen Python" logos available at
http://www.pythonlabs.com/logos.html may be used according to the permissions
granted on that web page.

By copying, installing or otherwise using the software, Licensee agrees to be
bound by the terms and conditions of this License Agreement.

86

Dodatek C. Historia i zapisy prawne

Extending and Embedding Python, Wydanie 3.9.18

C.2.3 CNRI LICENSE AGREEMENT FOR PYTHON 1.6.1

1. This LICENSE AGREEMENT is between the Corporation for National Research
Initiatives, having an office at 1895 Preston White Drive, Reston, VA 20191
("CNRI"), and the Individual or Organization ("Licensee") accessing and
otherwise using Python 1.6.1 software in source or binary form and its
associated documentation.

2. Subject to the terms and conditions of this License Agreement, CNRI hereby
grants Licensee a nonexclusive, royalty-free, world-wide license to reproduce,
analyze, test, perform and/or display publicly, prepare derivative works,
distribute, and otherwise use Python 1.6.1 alone or in any derivative version,
provided, however, that CNRI's License Agreement and CNRI's notice of copyright,
i.e., "Copyright © 1995-2001 Corporation for National Research Initiatives; All
Rights Reserved" are retained in Python 1.6.1 alone or in any derivative version
prepared by Licensee. Alternately, in lieu of CNRI's License Agreement,
Licensee may substitute the following text (omitting the quotes): "Python 1.6.1
is made available subject to the terms and conditions in CNRI's License
Agreement. This Agreement together with Python 1.6.1 may be located on the
Internet using the following unique, persistent identifier (known as a handle):
1895.22/1013. This Agreement may also be obtained from a proxy server on the
Internet using the following URL: http://hdl.handle.net/1895.22/1013."

3. In the event Licensee prepares a derivative work that is based on or
incorporates Python 1.6.1 or any part thereof, and wants to make the derivative
work available to others as provided herein, then Licensee hereby agrees to
include in any such work a brief summary of the changes made to Python 1.6.1.

4. CNRI is making Python 1.6.1 available to Licensee on an "AS IS" basis. CNRI
MAKES NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF EXAMPLE,
BUT NOT LIMITATION, CNRI MAKES NO AND DISCLAIMS ANY REPRESENTATION OR WARRANTY
OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE USE OF
PYTHON 1.6.1 WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

5. CNRI SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF PYTHON 1.6.1 FOR
ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT OF
MODIFYING, DISTRIBUTING, OR OTHERWISE USING PYTHON 1.6.1, OR ANY DERIVATIVE
THEREOF, EVEN IF ADVISED OF THE POSSIBILITY THEREOEF.

6. This License Agreement will automatically terminate upon a material breach of
its terms and conditions.

7. This License Agreement shall be governed by the federal intellectual property
law of the United States, including without limitation the federal copyright
law, and, to the extent such U.S. federal law does not apply, by the law of the
Commonwealth of Virginia, excluding Virginia's conflict of law provisions.
Notwithstanding the foregoing, with regard to derivative works based on Python
1.6.1 that incorporate non-separable material that was previously distributed
under the GNU General Public License (GPL), the law of the Commonwealth of
Virginia shall govern this License Agreement only as to issues arising under or

with respect to Paragraphs 4, 5, and 7 of this License Agreement. Nothing in
this License Agreement shall be deemed to create any relationship of agency,
partnership, or joint venture between CNRI and Licensee. This License Agreement

does not grant permission to use CNRI trademarks or trade name in a trademark
sense to endorse or promote products or services of Licensee, or any third
party.

8. By clicking on the "ACCEPT" button where indicated, or by copying, installing
or otherwise using Python 1.6.1, Licensee agrees to be bound by the terms and
conditions of this License Agreement.

C.2. Zasady i warunki postepowania z programem jezyka pytonowskiego i ogélnie jego uzyci.

Extending and Embedding Python, Wydanie 3.9.18

C.2.4 CWI LICENSE AGREEMENT FOR PYTHON 0.9.0 THROUGH 1.2

Copyright © 1991 - 1995, Stichting Mathematisch Centrum Amsterdam, The
Netherlands. All rights reserved.

Permission to use, copy, modify, and distribute this software and its
documentation for any purpose and without fee is hereby granted, provided that
the above copyright notice appear in all copies and that both that copyright
notice and this permission notice appear in supporting documentation, and that
the name of Stichting Mathematisch Centrum or CWI not be used in advertising or
publicity pertaining to distribution of the software without specific, written
prior permission.

STICHTING MATHEMATISCH CENTRUM DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS
SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN NO
EVENT SHALL STICHTING MATHEMATISCH CENTRUM BE LIABLE FOR ANY SPECIAL, INDIRECT
OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE,
DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS
SOFTWARE.

C.2.5 ZERO-CLAUSE BSD LICENSE FOR CODE IN THE PYTHON 3.9.18 DOCU-
MENTATION

Permission to use, copy, modify, and/or distribute this software for any
purpose with or without fee is hereby granted.

THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH
REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT,
INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM
LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR
OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
PERFORMANCE OF THIS SOFTWARE.

C.3 Licenses and Acknowledgements for Incorporated Software

This section is an incomplete, but growing list of licenses and acknowledgements for third-party software incorporated
in the Python distribution.

C.3.1 Mersenne Twister

The _random module includes code based on a download from http://www.math.sci.hiroshima-u.ac.jp/~m-mat/
MT/MT2002/emt19937ar.html. The following are the verbatim comments from the original code:

A C-program for MT19937, with initialization improved 2002/1/26.
Coded by Takuji Nishimura and Makoto Matsumoto.

Before using, initialize the state by using init_genrand (seed)
or init_by_array(init_key, key_length).

Copyright (C) 1997 - 2002, Makoto Matsumoto and Takuji Nishimura,
All rights reserved.

Redistribution and use in source and binary forms, with or without

(ciag dalszy na nastgpnej stronie)

88 Dodatek C. Historia i zapisy prawne

http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/MT2002/emt19937ar.html
http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/MT2002/emt19937ar.html

Extending and Embedding Python, Wydanie 3.9.18

(kontynuacja poprzedniej strony)

modification, are permitted provided that the following conditions
are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

3. The names of its contributors may not be used to endorse or promote
products derived from this software without specific prior written
permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. 1IN NO EVENT SHALL THE COPYRIGHT OWNER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Any feedback is very welcome.
http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html
email: m-mat @ math.sci.hiroshima-u.ac.jp (remove space)

C.3.2 Sockets

The socket module uses the functions, getaddrinfo (), and getnameinfo (), which are coded in separate
source files from the WIDE Project, http://www.wide.ad.jp/.

Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
All rights reserved.

Redistribution and use in source and binary forms, with or without

modification, are permitted provided that the following conditions

are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

3. Neither the name of the project nor the names of its contributors
may be used to endorse or promote products derived from this software
without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS " "AS IS'' AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS

OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT

(ciag dalszy na nastgpnej stronie)

C.3. Licenses and Acknowledgements for Incorporated Software 89

http://www.wide.ad.jp/

Extending and Embedding Python, Wydanie 3.9.18

(kontynuacja poprzedniej strony)

LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

C.3.3 Asynchronous socket services

The asynchat and asyncore modules contain the following notice:

Copyright 1996 by Sam Rushing
All Rights Reserved

Permission to use, copy, modify, and distribute this software and
its documentation for any purpose and without fee is hereby
granted, provided that the above copyright notice appear in all
copies and that both that copyright notice and this permission
notice appear in supporting documentation, and that the name of Sam
Rushing not be used in advertising or publicity pertaining to
distribution of the software without specific, written prior
permission.

SAM RUSHING DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE,
INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN
NO EVENT SHALL SAM RUSHING BE LIABLE FOR ANY SPECIAL, INDIRECT OR
CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS
OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT,
NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

C.3.4 Cookie management

The http.cookies module contains the following notice:

Copyright 2000 by Timothy O'Malley <timo@alum.mit.edu>
All Rights Reserved

Permission to use, copy, modify, and distribute this software

and its documentation for any purpose and without fee is hereby
granted, provided that the above copyright notice appear in all
copies and that both that copyright notice and this permission
notice appear in supporting documentation, and that the name of
Timothy O'Malley not be used in advertising or publicity

pertaining to distribution of the software without specific, written
prior permission.

Timothy O'Malley DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS
SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS, IN NO EVENT SHALL Timothy O'Malley BE LIABLE FOR
ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
PERFORMANCE OF THIS SOFTWARE.

90 Dodatek C. Historia i zapisy prawne

Extending and Embedding Python, Wydanie 3.9.18

C.3.5 Execution tracing

The t race module contains the following notice:

portions copyright 2001, Autonomous Zones Industries, Inc., all rights...
err... reserved and offered to the public under the terms of the

Python 2.2 license.

Author: Zooko O'Whielacronx

http://zooko.com/

mailto:zooko@zooko.com

Copyright 2000, Mojam Media, Inc., all rights reserved.
Author: Skip Montanaro

Copyright 1999, Bioreason, Inc., all rights reserved.
Author: Andrew Dalke

Copyright 1995-1997, Automatrix, Inc., all rights reserved.
Author: Skip Montanaro

Copyright 1991-1995, Stichting Mathematisch Centrum, all rights reserved.

Permission to use, copy, modify, and distribute this Python software and
its associated documentation for any purpose without fee is hereby
granted, provided that the above copyright notice appears in all copies,
and that both that copyright notice and this permission notice appear in
supporting documentation, and that the name of neither Automatrix,
Bioreason or Mojam Media be used in advertising or publicity pertaining to
distribution of the software without specific, written prior permission.

C.3.6 UUencode and UUdecode functions

The uu module contains the following notice:

Copyright 1994 by Lance Ellinghouse
Cathedral City, California Republic, United States of America.

All Rights Reserved
Permission to use, copy, modify, and distribute this software and its
documentation for any purpose and without fee is hereby granted,
provided that the above copyright notice appear in all copies and that
both that copyright notice and this permission notice appear in
supporting documentation, and that the name of Lance Ellinghouse
not be used in advertising or publicity pertaining to distribution
of the software without specific, written prior permission.
LANCE ELLINGHOUSE DISCLAIMS ALL WARRANTIES WITH REGARD TO
THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS, IN NO EVENT SHALL LANCE ELLINGHOUSE CENTRUM BE LIABLE
FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT
OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

Modified by Jack Jansen, CWI, July 1995:

— Use binascii module to do the actual line-by-line conversion
between ascii and binary. This results in a 1000-fold speedup. The C
version is still 5 times faster, though.

- Arguments more compliant with Python standard

C.3. Licenses and Acknowledgements for Incorporated Software 91

Extending and Embedding Python, Wydanie 3.9.18

C.3.7 XML Remote Procedure Calls

The xmlrpc.client module contains the following notice:

The XML-RPC client interface is

Copyright (c) 1999-2002 by Secret Labs AB
Copyright (c) 1999-2002 by Fredrik Lundh

By obtaining, using, and/or copying this software and/or its
associated documentation, you agree that you have read, understood,
and will comply with the following terms and conditions:

Permission to use, copy, modify, and distribute this software and
its associated documentation for any purpose and without fee is
hereby granted, provided that the above copyright notice appears in
all copies, and that both that copyright notice and this permission
notice appear in supporting documentation, and that the name of
Secret Labs AB or the author not be used in advertising or publicity
pertaining to distribution of the software without specific, written
prior permission.

SECRET LABS AB AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH REGARD
TO THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANT-
ABILITY AND FITNESS. IN NO EVENT SHALL SECRET LABS AB OR THE AUTHOR
BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY
DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
OF THIS SOFTWARE.

C.3.8 test_epoll

The test_epoll module contains the following notice:

Copyright (c) 2001-2006 Twisted Matrix Laboratories.

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND

NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

92 Dodatek C. Historia i zapisy prawne

Extending and Embedding Python, Wydanie 3.9.18

C.3.9 Select kqueue

The select module contains the following notice for the kqueue interface:

Copyright (c) 2000 Doug White, 2006 James Knight, 2007 Christian Heimes
All rights reserved.

Redistribution and use in source and binary forms, with or without

modification, are permitted provided that the following conditions

are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS "~ "AS IS'' AND

ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. 1IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS

OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

C.3.10 SipHash24

The file Python/pyhash. c contains Marek Majkowski» implementation of Dan Bernstein’s SipHash24 algori-
thm. It contains the following note:

<MIT License>
Copyright (c) 2013 Marek Majkowski <marek@popcount.org>

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
</MIT License>

Original location:
https://github.com/majek/csiphash/

Solution inspired by code from:
Samuel Neves (supercop/crypto_auth/siphash24/1little)
djb (supercop/crypto_auth/siphash24/1ittle2)
Jean-Philippe Aumasson (https://131002.net/siphash/siphash24.c)

C.3. Licenses and Acknowledgements for Incorporated Software 93

Extending and Embedding Python, Wydanie 3.9.18

C.3.11 strtod and dtoa

The file Python/dtoa. c, which supplies C functions dtoa and strtod for conversion of C doubles to and from
strings, is derived from the file of the same name by David M. Gay, currently available from http://www.netlib.org/fp/.
The original file, as retrieved on March 16, 2009, contains the following copyright and licensing notice:

/**************************k**************************************

*

* The author of this software is David M. Gay.

Copyright (c) 1991, 2000, 2001 by Lucent Technologies.

* % o

Permission to use, copy, modify, and distribute this software for any
purpose without fee is hereby granted, provided that this entire notice
is included in all copies of any software which is or includes a copy
or modification of this software and in all copies of the supporting
documentation for such software.

E

* % o

THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR IMPLIED
WARRANTY. IN PARTICULAR, NEITHER THE AUTHOR NOR LUCENT MAKES ANY
REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE MERCHANTABILITY

* OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR PURPOSE.
*

* % o

*******~)<***********~)<**~k~k*******~)<*******************************/

C.3.12 OpenSSL

The modules hashlib, posix, ssl, crypt use the OpenSSL library for added performance if made available
by the operating system. Additionally, the Windows and macOS installers for Python may include a copy of the
OpenSSL libraries, so we include a copy of the OpenSSL license here:

LICENSE ISSUES

The OpenSSL toolkit stays under a dual license, i.e. both the conditions of
the OpenSSL License and the original SSLeay license apply to the toolkit.
See below for the actual license texts. Actually both licenses are BSD-style
Open Source licenses. In case of any license issues related to OpenSSL
please contact openssl-core@openssl.org.

OpenSSL License

/* == == =============================== ===
* Copyright (c) 1998-2008 The OpenSSL Project. All rights reserved.

*

* Redistribution and use in source and binary forms, with or without

* modification, are permitted provided that the following conditions

* are met:

*

* 1. Redistributions of source code must retain the above copyright

* notice, this list of conditions and the following disclaimer.

*

* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in

* the documentation and/or other materials provided with the

* distribution.

*

* 3. All advertising materials mentioning features or use of this

*

software must display the following acknowledgment:

(ciag dalszy na nastgpnej stronie)

94 Dodatek C. Historia i zapisy prawne

http://www.netlib.org/fp/

Extending and Embedding Python, Wydanie 3.9.18

(kontynuacja poprzedniej strony)

L T S S T S S N S N S S N R S S e S N S N S S S IS N S I

"This product includes software developed by the OpenSSL Project
for use in the OpenSSL Toolkit. (http://www.openssl.org/)"

4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
endorse or promote products derived from this software without
prior written permission. For written permission, please contact
openssl-corelopenssl.org.

5. Products derived from this software may not be called "OpenSSL"
nor may "OpenSSL" appear in their names without prior written
permission of the OpenSSL Project.

6. Redistributions of any form whatsoever must retain the following
acknowledgment:
"This product includes software developed by the OpenSSL Project
for use in the OpenSSL Toolkit (http://www.openssl.org/)"

THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT " "AS IS'' AND ANY
EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE ARE DISCLAIMED. 1IN NO EVENT SHALL THE OpenSSL PROJECT OR
ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT

NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;

LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)

HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
OF THE POSSIBILITY OF SUCH DAMAGE.

This product includes cryptographic software written by Eric Young
(eay@cryptsoft.com). This product includes software written by Tim
Hudson (tjh@cryptsoft.com).

Original SSLeay License

LR T R SR T S S S S S N S N S S SN T

Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
All rights reserved.

This package is an SSL implementation written
by Eric Young (eay@cryptsoft.com).
The implementation was written so as to conform with Netscapes SSL.

This library is free for commercial and non-commercial use as long as
the following conditions are aheared to. The following conditions
apply to all code found in this distribution, be it the RC4, RSA,
lhash, DES, etc., code; not just the SSL code. The SSL documentation
included with this distribution is covered by the same copyright terms
except that the holder is Tim Hudson (tjh@cryptsoft.com).

Copyright remains Eric Young's, and as such any Copyright notices in

the code are not to be removed.

If this package is used in a product, Eric Young should be given attribution
as the author of the parts of the library used.

This can be in the form of a textual message at program startup or

in documentation (online or textual) provided with the package.

(ciag dalszy na nastgpnej stronie)

C.3. Licenses and Acknowledgements for Incorporated Software 95

Extending and Embedding Python, Wydanie 3.9.18

(kontynuacja poprzedniej strony)

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
1. Redistributions of source code must retain the copyright
notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
3. All advertising materials mentioning features or use of this software
must display the following acknowledgement:
"This product includes cryptographic software written by
Eric Young (eay@cryptsoft.com)"
The word 'cryptographic' can be left out if the rouines from the library
being used are not cryptographic related :-).
4. If you include any Windows specific code (or a derivative thereof) from
the apps directory (application code) you must include an acknowledgement:
"This product includes software written by Tim Hudson (tjh@cryptsoft.com)"

THIS SOFTWARE IS PROVIDED BY ERIC YOUNG " "AS IS'' AND

ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS

OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

The licence and distribution terms for any publically available version or
derivative of this code cannot be changed. i.e. this code cannot simply be
copied and put under another distribution licence

[including the GNU Public Licence.]
/

L R S R S N S S S R S e S R S SN S S S N S T S T N T

C.3.13 expat

The pyexpat extension is built using an included copy of the expat sources unless the build is configured
—--with-system-expat:

Copyright (c) 1998, 1999, 2000 Thai Open Source Software Center Ltd
and Clark Cooper

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY

(ciag dalszy na nastgpnej stronie)

96 Dodatek C. Historia i zapisy prawne

Extending and Embedding Python, Wydanie 3.9.18

(kontynuacja poprzedniej strony)

CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

C.3.14 libffi

The _ctypes extension is built using an included copy of the libfli sources unless the build is configured
——with-system-1ibffi:

Copyright (c) 1996-2008 Red Hat, Inc and others.

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
‘*Software''), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED " "AS IS'', WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.

C.3.15 zlib

The z11ib extension is built using an included copy of the zlib sources if the zlib version found on the system is too
old to be used for the build:

Copyright (C) 1995-2011 Jean-loup Gailly and Mark Adler

This software is provided 'as-is', without any express or implied
warranty. In no event will the authors be held liable for any damages
arising from the use of this software.

Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it
freely, subject to the following restrictions:

1. The origin of this software must not be misrepresented; you must not
claim that you wrote the original software. If you use this software
in a product, an acknowledgment in the product documentation would be
appreciated but is not required.

2. Altered source versions must be plainly marked as such, and must not be
misrepresented as being the original software.

3. This notice may not be removed or altered from any source distribution.

Jean-loup Gailly Mark Adler
jloup@gzip.org madler@alumni.caltech.edu

C.3. Licenses and Acknowledgements for Incorporated Software 97

Extending and Embedding Python, Wydanie 3.9.18

C.3.16 cfuhash

The implementation of the hash table used by the t racemalloc is based on the cfuhash project:

Copyright (c) 2005 Don Owens
All rights reserved.

This code is released under the BSD license:

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following
disclaimer in the documentation and/or other materials provided
with the distribution.

* Neither the name of the author nor the names of its
contributors may be used to endorse or promote products derived
from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
OF THE POSSIBILITY OF SUCH DAMAGE.

C.3.17 libmpdec

The _decimal module is built using an included copy of the libmpdec library unless the build is configured
——-with-system-libmpdec:

Copyright (c) 2008-2020 Stefan Krah. All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS "AS IS" AND

ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. 1IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE

(ciag dalszy na nastgpnej stronie)

98 Dodatek C. Historia i zapisy prawne

Extending and Embedding Python, Wydanie 3.9.18

(kontynuacja poprzedniej strony)

FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS

OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

C.3.18 W3C C14N test suite

The C14N 2.0 test suite in the test package (Lib/test/xmltestdata/c14n-20/) was retrieved from the
W3C website at https://www.w3.org/TR/xml-c14n2-testcases/ and is distributed under the 3-clause BSD license:

Copyright (c) 2013 W3C(R) (MIT, ERCIM, Keio, Beihang),
All Rights Reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

* Redistributions of works must retain the original copyright notice,
this list of conditions and the following disclaimer.

* Redistributions in binary form must reproduce the original copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

* Neither the name of the W3C nor the names of its contributors may be
used to endorse or promote products derived from this work without
specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

C.3. Licenses and Acknowledgements for Incorporated Software 929

https://www.w3.org/TR/xml-c14n2-testcases/

Extending and Embedding Python, Wydanie 3.9.18

100 Dodatek C. Historia i zapisy prawne

DODATEK D

Prawa autorskie

Python i ta dokumentacja jest:

Copyright © 2001-2023 Python Software Foundation. All rights reserved.

Copyright © 2000 BeOpen.com. All rights reserved.

Copyright © 1995-2000 Corporation for National Research Initiatives. All rights reserved.
Copyright © 1991-1995 Stichting Mathematisch Centrum. All rights reserved.

Patrz dzial Historia i zapisy prawne, aby zobaczy¢ pelna informacje na temat licencji i praw.

101

Extending and Embedding Python, Wydanie 3.9.18

102 Dodatek D. Prawa autorskie

Indeks

Niealfabetyczny

..., 67
2to3, 67
>>> 67
_ future_ ,71
__slots_ ,77

A

abstract base class, 67
annotation, 67

argument, 67

asynchronous context manager, 68
asynchronous generator, 68
asynchronous generator iterator, 68
asynchronous iterable, 68
asynchronous iterator, 68
atrybut, 68

awaitable, 68

B

BDFL, 68
binary file, 68
bytes—-like object, 68

C

C-contiguous, 69
class, 69

class variable, 69
coercion, 69

complex number, 69
context manager, 69
context variable, 69
contiguous, 69
coroutine, 69
coroutine function, 69
CPython, 69

D

deallocation, object,48
decorator, 69

descriptor, 70

dictionary, 70

dictionary comprehension, 70

dictionary view, 70
docstring, 70
duck-typing, 70

E

EAFP, 70
expression, 70

F

f-string, 70

file object,70

file-like object,71

finalization, of objects,48

finder, 71

floor division,71

Fortran contiguous, 69

function, 71

function annotation, 71

funkcja wbudowana
repr, 49

G

garbage collection,71
generator, 71

generator expression,71
generator iterator,71
generic function,71
generic type, 72

GIL, 72

global interpreter lock,72

F{

hash-based pyc, 72
hashable, 72

IDLE, 72
immutable, 72
import path, 72
importer, 72
importing, 72
interactive, 72
interpreted, 72

103

Extending and Embedding Python, Wydanie 3.9.18

interpreter shutdown, 72

iterable, 73
iterator,73

K

key function,73
keyword argument, 73
kod bajtowy, 69

L

lambda, 73

LBYL, 73

list,73

list comprehension,73
loader, 74

M

magic
method, 74
magic method, 74
mapping, 74
meta path finder, 74
metaclass, 74
method, 74
magic, 74
special, 77

method resolution order, 74

module, 74

module spec, 74

modul rozszerzenia, 70
MRO, 74

mutable, 74

N

named tuple, 74
namespace, 74
namespace package, 75
nested scope, 75
new-style class,75

O

object, 75
deallocation, 48
finalization,48

P

package, 75
parameter, 75

path based finder, 76
path entry,75

path entry finder,75
path entry hook, 76
path-like object, 76
PEP, 76

Philbrick, Geoff, 15
portion, 76
positional argument, 76
provisional API, 76

provisional package, 76

PyArg_ParseTuple (), 13

PyArg_ParseTupleAndKeywords (), 15

PyErr_Fetch(),49
PyErr_Restore (), 49

PyInit_modulename (funkcja C), 56
PyObject_CallObject (), 12

Python 3000, 76

Python Enhancement Proposals

PEP 1,76
PEP 238,71
PEP 278,78
PEP 302,71,74
PEP 343,69
PEP 362,68,75
PEP 411,76
PEP 420,71,75,76
PEP 442,49
PEP 443,72
PEP 451,71
PEP 483,72
PEP 484,67,71,72,78
PEP 489,11, 56
PEP 492,68, 69
PEP 498,70
PEP 519,76
PEP 525,68
PEP 526,67,78
PEP 585,72
PEP 3116,78
PEP 3155,76
Pythonic, 76
PYTHONPATH, 56

Q

qualified name, 76

R

READ_RESTRICTED, 52
READONLY, 52
reference count, 77
regular package,77
repr

funkcja wbudowana, 49

RESTRICTED, 52

S

sequence, 77
set comprehension, 77
single dispatch, 77
slice, 77
special

method, 77
special method, 77
statement, 77
string

object representation,49

104

Indeks

Extending and Embedding Python, Wydanie 3.9.18

T

text encoding, 77

text file,78
triple-quoted string, 78
type, 78

type alias,78

type hint, 78

U

universal newlines, 78

Vv

variable annotation, 78
virtual environment, 78
virtual machine, 79

W

WRITE_RESTRICTED, 52
wywolanie zwrotne, 69

Z

Zen of Python, 79
zmienna S$rodowiskowa
PYTHONPATH, 56

Indeks 105

	Rekomendowane zewnętrzne narzędzia.
	Tworzenie rozszerzeń poprzez narzędzia zewnętrzne.
	Rozszerzanie Pythona za pomocą C lub C++
	Prosty przykład
	Intermezzo: Błędy i Wyjątki
	Z powrotem do Przykładu
	Zadanie zainicjowania i tabela sposobów postępowania modułu.
	Kompilacja i łączenie
	Wywoływanie zadań języka pytonowskiego z C
	Wydobywanie parametrów w zadaniach rozszerzających
	Parametry kluczowe dla zadań rozszerzających
	Budowanie dowolnych wartości
	Liczby odniesień
	Pisanie rozszerzeń w C++
	Dostarczanie sprzęgu programowania aplikacji (API) języka C dla modułu rozszerzającego

	Defining Extension Types: Tutorial
	The Basics
	Adding data and methods to the Basic example
	Providing finer control over data attributes
	Supporting cyclic garbage collection
	Subclassing other types

	Defining Extension Types: Assorted Topics
	Finalizowanie i de-alokacja
	Prezentacja Przedmiotów
	Zarządzanie własnościami
	Porównywanie przedmiotów
	Wsparcie protokołu abstrakcyjnego
	Wsparcie dla słabych odniesień
	Więcej sugestii

	Building C and C++ Extensions
	Building C and C++ Extensions with distutils
	Distributing your extension modules

	Tworzenie rozszerzeń C i C++ w Windowsie
	A Cookbook Approach
	Różnice pomiędzy Unixem a Windowsem
	Using DLLs in Practice

	Wbudowywanie runtime Cpython w większą aplikację.
	Embedding Python in Another Application
	Very High Level Embedding
	Beyond Very High Level Embedding: An overview
	Pure Embedding
	Extending Embedded Python
	Embedding Python in C++
	Compiling and Linking under Unix-like systems

	Glosariusz
	O tej dokumentacji
	Współtwórcy dokumentacji Pythona

	Historia i zapisy prawne
	Historia programu
	Zasady i warunki postępowania z programem języka pytonowskiego i ogólnie jego użycia.
	PSF LICENSE AGREEMENT FOR PYTHON 3.9.18
	BEOPEN.COM LICENSE AGREEMENT FOR PYTHON 2.0
	CNRI LICENSE AGREEMENT FOR PYTHON 1.6.1
	CWI LICENSE AGREEMENT FOR PYTHON 0.9.0 THROUGH 1.2
	ZERO-CLAUSE BSD LICENSE FOR CODE IN THE PYTHON 3.9.18 DOCUMENTATION

	Licenses and Acknowledgements for Incorporated Software
	Mersenne Twister
	Sockets
	Asynchronous socket services
	Cookie management
	Execution tracing
	UUencode and UUdecode functions
	XML Remote Procedure Calls
	test_epoll
	Select kqueue
	SipHash24
	strtod and dtoa
	OpenSSL
	expat
	libffi
	zlib
	cfuhash
	libmpdec
	W3C C14N test suite

	Prawa autorskie
	Indeks

