The Python/C API
Wydanie 3.7.17

Guido van Rossum
and the Python development team

czerwca 28, 2023

Python Software Foundation
Email: docs@python.org

Spis tresci

1 Wprowadzenie 3
I.1 Codingstandards L e e e e e e 4
1.2 Pliki Wiaczania-zang. Include L 4
1.3 Useful macros 0 o e e e e e e e 5
1.4 Przedmioty, ich Rodzaje i Liczby Odwotan, 6
1.5 Sytuacje Wyjatkowe L e e e 10
1.6 Zalaczanie programu interpretujacego jezyk pytonowski L oL oL L 12
1.7 Odpluskwiajace Budowy o . . e e e e e e 12
2 Stable Application Binary Interface 15
3 The Very High Level Layer 17
4 Reference Counting 23
5 Obstuga sytuacji wyjatkowych 25
5.1 Printingand clearing e e e e e e e e e 26
5.2 Raising exceptions e e e e 26
5.3 Issuingwarningsol e e e 28
54 Querying the error indicatoro e e e e e 29
5.5 SignalHandling e e 31
5.6 Exception Classes o v v i i e e e e e e e e e e e e e e 31
5.7 Przedmioty Sytuacji Wyjatkowych o 32
5.8 Unicode Exception Objects e 32
59 KontrolaRekursji L e e e 33
5.10 Sztandarowe Sytuacje Wyjatkowe L e e 34
5.11 Standard Warning Categories v v v v v i e e e e e e e e e e e e e e e e e e 36
6 Utilities 37
6.1 Operating System Utilities 0 o0 e e e e e 37
6.2 System Functions L e e e e e e e 39
6.3 Process Control L e e 40
6.4 Importing Modules L e e e e e e e e e e 41
6.5 Datamarshalling support L. e 44
6.6 Pobieranie kolejnych rzeczy podanych na wejsciu i konstruowanie wartosci. 45
6.7 String conversion and formatting L. L L L e e e e e e e e e e 54
6.8 Reflection L e 55

10

11

6.9 Codec registry and support functions i e e e e e e e e e e e

Warstwa obiektow abstrakcy jnych

7.1 Object Protocol e e
7.2 Number Protocol L
7.3 Sequence Protocol e e e e e e e e e
7.4 Mapping Protocol e e e e e e e e
7.5 Tterator Protocol L e e e e e e e e e e
7.6 Buffer Protocol e e e e e e e e
7.7 OldBuffer Protocol e

Concrete Objects Layer

8.1 Fundamental Objects L e e e e
8.2 Numeric ODJECtS o v o o e e e e e e e e e e e e e e e
8.3 Sequence ODJECTS v v v v i e e e e e e e e e e e e e e e
84 Container ObJECtS v v v v i e e e e e e e e e e e e e e e e e
8.5 Function Objects o i i e e e e e e e e
8.6 Other Objects o o o e e e e e e

Initialization, Finalization, and Threads

9.1 Before Python Initialization e
9.2 Global configuration variables e
9.3 Initializing and finalizing the interpreter o e e e e e e e e
9.4 Process-wide parameters i e
9.5 Thread State and the Global Interpreter Lock
9.6 Sub-interpreter SUpport L. e e e e e e e e e e
9.7 Asynchronous Notifications« . i e e e e
9.8 Profilingand Tracing L e e e e e e
9.9 Advanced Debugger Support L e e e e e
9.10 Thread Local Storage SUppOrt v v v v i i e e e e e e e e e e e e e e e

Zarzadzanie Pamiecia

10.1 Skorowidz L
10.2 Raw Memory Interface L e
103 SprzegPamigCi L e
10.4 Objectallocators o v i i e e e e e e e
10.5 Default Memory AllOCators o o i vt e e e e e e e e e
10.6 Customize Memory AIOCAtOrS v v v v v e e e e e e e e e e e e e e e
10.7 The pymalloc allocator o o i e e e e e e e e e e
10.8 tracemalloc CAPL e
109 Przyklady e

Object Implementation Support

11.1 Allocating Objectsonthe Heap
11.2 Wspdlne struktury obiektowo
11.3 Type ObJects v v v o e e e e e e e e e e
11.4 Number Object StruCtures v i it et e e e e e e e e e e e e e
11.5 Mapping Object StrUCtUres o v v i it e e e e e e e e e e e e e e e e e e e
11.6 Sequence Object Structures i e e e
11.7 Buffer Object Structures i v et e e e e e e e e e e e e e e e
11.8 Async Object Structures o i i it e e e e e e e
11.9 Supporting Cyclic Garbage Collection i i v ittt e e e e e e e e

12 API and ABI Versioning

59
59
64
67
68
69
70
77

79
79
81
86
112
116
120

139
139
140
142
143
146
151
152
153
154
154

157
157
158
159
160
161
162
163
164
164

167
167
168
172
186
187
188
189
190
190

193

A Stowik

B O tej dokumentacji
B.1 Wspéttwoércy dokumentacji Pythona

C Historia i zapisy prawne
C.1 Historia programu

C.2 Zasady i warunki postgpowania z programem jezyka pytonowskiego i ogdlnie jego uzycia.

C.3 Licenses and Acknowledgements for Incorporated Software
D Prawa autorskie

Indeks

195

209
209

211
211
212
216

229

231

The Python/C API, Wydanie 3.7.17

This manual documents the API used by C and C++ programmers who want to write extension modules or embed Python.
It is a companion to extending-index, which describes the general principles of extension writing but does not document
the API functions in detail.

Spis tresci 1

The Python/C API, Wydanie 3.7.17

2 Spis tresci

rRozDZIAL 1

Wprowadzenie

Sprzeg programowania aplikacji w jezyku pytonowskim daje programistom jezykéw C i C++ dostep do programu inter-
pretujacego polecenia jezyka pytonowskiego na wielu poziomach. Sprzeg (API) jest réwno uzyteczny z poziomu C++
ale dla porzadku jest zwykle okreslany mianem sprzggu pomigdzy jezykami pytonowskim a C (z ang. - Python/C API).
Istnieja dwie zasadniczo rézne przyczyny dla uzycia sprzegu miedzy jezykami pytonowskim i C. Pierwsza przyczyna jest
pisanie modutow rozszerzajqcych dla szczegblnych powodéw; sa to moduty jezyka C, ktore rozszerzaja program interpre-
tujacy jezyka pytonowskiego. To jest zwykle najczgstsze uzycie. Druga przyczyna jest uzycie jezyka pytonowskiego jako
komponentu wigkszego programu; ta technika jest zwykle okreslana mianem zataczania - z ang. - embedding w aplikacji.

Writing an extension module is a relatively well-understood process, where a ,,cookbook™ approach works well. There are
several tools that automate the process to some extent. While people have embedded Python in other applications since
its early existence, the process of embedding Python is less straightforward than writing an extension.

Wiele zadari sprz¢gu (API) jest uzytecznych niezaleznie od tego czy zalaczasz, czy tez rozszerzasz program interpretujacy
jezyk pytonowski; co wiecej, wigkszo$¢ aplikacji ktére zatacza program interpretujacy polecenia jezyka pytonowskiego
potrzebuje takze szczegdlnych rozszerzen, wigc prawdopodobnie jest dobrym pomystem zaznajomienie si¢ z pisaniem
rozszerzenia przed proba zalaczenia jezyka pytonowskiego w prawdziwej aplikacji.

The Python/C API, Wydanie 3.7.17

1.1 Coding standards

If you’re writing C code for inclusion in CPython, you must follow the guidelines and standards defined in PEP 7. These
guidelines apply regardless of the version of Python you are contributing to. Following these conventions is not necessary
for your own third party extension modules, unless you eventually expect to contribute them to Python.

1.2 Pliki Wiaczania - z ang. Include

Wszystkie zadania, definicje typu i makropolecen konieczne do uzycia sprzegu migedzy jezykami pytonowskim i C sa
wilaczane do Zrédet w kodzie uzytkownika przez nastepujaca linijke:

#define PY_SSIZE_T CLEAN
#include <Python.h>

This implies inclusion of the following standard headers: <stdio.h>, <string.h>, <errno.h>,<limits.h>,
<assert.h>and <stdlib.h> (if available).

Informacja: Odkad jezyk pytonowski moze definiowa¢ pewne definicje preprocesora, ktére wptywaja na pliki nagtéw-
kowe na niektoérych systemach, musisz zataczy¢ plik Python.h zanim jakiekolwiek standardowe nagléwki zostana
zalaczone.

Itis recommended to always define PY_SSIZE_T_CLEAN before including Python . h. See Pobieranie kolejnych rzeczy
podanych na wejsciu i konstruowanie wartosci. for a description of this macro.

Wszystkie widoczne dla uzytkownika nazwy okreSlone w Python.h (z wyjatkiem tych okreslonych przez zataczone stan-
dardowe pliki nagtéwkowe) maja jeden z przedrostkéw Py lub _Py. Nazwy rozpoczynajace si¢ od _Py stuza do we-
wnetrznego uzytku przez urzeczywistnienie programu interpretujacego jezyka pytonowskiego i nie powinno by¢ uzywane
przez piszacych rozszerzenia. Nazwy czlonkow struktury nie maja zarezerwowanych przedrostkéw.

Informacja: User code should never define names that begin with Py or _Py. This confuses the reader, and jeopardizes
the portability of the user code to future Python versions, which may define additional names beginning with one of these
prefixes.

The header files are typically installed with Python. On Unix, these are located in the directories prefix/include/
pythonversion/ and exec_prefix/include/pythonversion/, where prefix and exec_prefix
are defined by the corresponding parameters to Python’s configure script and version is '$d.%d' % sys.
version_info[:2]. On Windows, the headers are installed in prefix/include, where prefix is the instal-
lation directory specified to the installer.

Aby zalaczy¢ pliki nagtéwkowe, umies¢ oba katalogi (jesli sa rézne) na liscie przeszukiwanych Sciezek poszukiwania pli-
kéw nagtéwkowych. Nie umieszczaj katalogéw nadrz¢dnych na $ciezkach poszukiwania plikéw nagtéwkowych po czym
wpisujac #include <pythonX.Y/Python.h>; To spowoduje przerwanie na realizacjach wieloplatformowych
gdyz niezalezne od platformy nagtéwki dostgpne w katalogu przedrostek zawiera pliki nagléwkowe szczegélne dla
pewnych platform z katalogu exec_prefix.

C++ users should note that although the API is defined entirely using C, the header files properly declare the entry points
tobe extern "C". As aresult, there is no need to do anything special to use the API from C++.

4 Rozdziat 1. Wprowadzenie

https://www.python.org/dev/peps/pep-0007

The Python/C API, Wydanie 3.7.17

1.3 Useful macros

Several useful macros are defined in the Python header files. Many are defined closer to where they are useful (e.g.
Py_RETURN_NONE). Others of a more general utility are defined here. This is not necessarily a complete listing.

Py_UNREACHABLE ()
Use this when you have a code path that you do not expect to be reached. For example, in the default : clause
in a switch statement for which all possible values are covered in case statements. Use this in places where you
might be tempted to putan assert (0) or abort () call.

Nowe w wersji 3.7.

Py_ABS (X)
Return the absolute value of x.

Nowe w wersji 3.3.

Py_MIN (Xx,y)
Return the minimum value between x and y.

Nowe w wersji 3.3.

Py_MAX (X,y)
Return the maximum value between x and y.

Nowe w wersji 3.3.

Py_STRINGIFY (x)
Convert x to a C string. E.g. Py_ STRINGIFY (123) returns "123".

Nowe w wersji 3.4.

Py_MEMBER_SIZE (type, member)
Return the size of a structure (t ype) member in bytes.

Nowe w wersji 3.6.

Py_CHARMASK (c)
Argument must be a character or an integer in the range [-128, 127] or [0, 255]. This macro returns c cast to an
unsigned char.

Py_GETENV (s)
Like getenv(s), but returns NULL if -E was passed on the command line (i.e. if
Py_IgnoreEnvironmentFlag is set).

Py_UNUSED (arg)
Use this for unused arguments in a function definition to silence compiler warnings, e.g. PyObject*
func (PyObject *Py_UNUSED (ignored)).

Nowe w wersji 3.4.

PyDoc_STRVAR (name, str)
Creates a variable with name name that can be used in docstrings. If Python is built without docstrings, the value
will be empty.

Use PyDoc_STRVAR for docstrings to support building Python without docstrings, as specified in PEP 7.

Example:

PyDoc_STRVAR (pop_doc, "Remove and return the rightmost element.");

static PyMethodDef deque_methods[] = {

(ciag dalszy na nastgpnej stronie)

1.3. Useful macros 5

https://www.python.org/dev/peps/pep-0007

The Python/C API, Wydanie 3.7.17

(kontynuacja poprzedniej strony)

VY2
{"pop", (PyCFunction)deque_pop, METH_NOARGS, pop_doc},
V2R

PyDoc_STR (str)
Creates a docstring for the given input string or an empty string if docstrings are disabled.

Use PyDoc_STR in specifying docstrings to support building Python without docstrings, as specified in PEP 7.

Example:

static PyMethodDef pysglite_row_methods[] = {
{"keys", (PyCFunction)pysqglite_row_keys, METH_NOARGS,
PyDoc_STR ("Returns the keys of the row.")},
{NULL, NULL}
i

1.4 Przedmioty, ich Rodzaje i Liczby Odwotan

Most Python/C API functions have one or more arguments as well as a return value of type PyOb ject *. This type is a
pointer to an opaque data type representing an arbitrary Python object. Since all Python object types are treated the same
way by the Python language in most situations (e.g., assignments, scope rules, and argument passing), it is only fitting that
they should be represented by a single C type. Almost all Python objects live on the heap: you never declare an automatic
or static variable of type PyObject, only pointer variables of type PyOb ject * can be declared. The sole exception
are the type objects; since these must never be deallocated, they are typically static Py TypeOb ject objects.

Wszystkie przedmioty jezyka pytonowskiego (nawet liczby catkowite jezyka pytonowskiego) maja rodzaj i liczbe od-
niesieni. Typ przedmiotu okresla jakiego rodzaju przedmiot to jest (np. liczba catkowita, lista, lub zadanie zdefiniowane
przez uzytkownika; jest wiele wiecej jak wyjasniono w types). Dla kazdego z dobrze-znanych rodzajéw istnieje makro-
polecenie sprawdzajace czy przedmiot jest tego rodzaju; na przyklad, PyList_Check (a) jest prawdziwe wtedy (i
tylko wtedy) gdy przedmiot na ktdry wskazuje a jest lista z jezyka pytonowskiego.

1.4.1 Liczby odniesien

Liczba odniesieri jest istotna, gdyz dzisiejsze komputery maja skorficzony (i zwykle powaznie ograniczony) rozmiar pa-
migci; liczy ona jak wiele réznych miejsc istnieje, ktére przechowuja odniesienie do przedmiotu. Takie miejsce moze by¢
innym przedmiotem, zmienna C nadrzednego poziomu (lub statyczng), lub lokalna zmienng w jakim$ zadaniu jezyka C.
Gdy liczba odniesieni do przedmiotu staje si¢ réwna zero, przedmiot jest zdejmowany z pamigci. JeSli zawiera odniesienia
do innych przedmiotéw liczba odniesieri do nich jest obnizana po jednym dla kazdego. Te inne przedmioty moga by¢
zdejmowane z pamigci w konsekwencji, jesli obnizenie liczby odniesieri do nich spowoduje ze liczba odniesien stanie
si¢ réwna zero, itd. (Istnieje do$¢ oczywisty problem z przedmiotami ktére wzajemnie si¢ odnosza do siebie; na razie
rozwigzaniem jest ,,prosz¢ tak nie robic.”)

Reference counts are always manipulated explicitly. The normal way is to use the macro Py_ INCREF () to increment an
object’s reference count by one, and Py DECREF () to decrement it by one. The Py DECREF () macro is considerably
more complex than the incref one, since it must check whether the reference count becomes zero and then cause the
object’s deallocator to be called. The deallocator is a function pointer contained in the object’s type structure. The type-
specific deallocator takes care of decrementing the reference counts for other objects contained in the object if this is a
compound object type, such as a list, as well as performing any additional finalization that’s needed. There’s no chance that
the reference count can overflow; at least as many bits are used to hold the reference count as there are distinct memory

6 Rozdziat 1. Wprowadzenie

https://www.python.org/dev/peps/pep-0007

The Python/C API, Wydanie 3.7.17

locations in virtual memory (assuming sizeof (Py_ssize_t) >= sizeof (void*)). Thus, the reference count
increment is a simple operation.

Nie jest konieczne zwigkszanie zwigkszanie liczby odniesiefi do przedmiotu dla kazdej lokalnej zmiennej ktéra zawiera
wskaznik na przedmiot. Teoretycznie, liczba odniesieri do przedmiotu zwigksza si¢ o jeden gdy zmienna jest zmuszana
do wskazywania nafi i jest zmniejszana o jeden gdy zmienna wychodzi z widoku. Jednakze te dwa dzialania wykluczaja
si¢ nawzajem, wigc ostatecznie liczba odniesieri nie ulega zmianie. Jedynym prawdziwym powodem uzycia liczby od-
niesieni jest aby uniemozliwi¢ zdjecie z pamigci przedmiotu tak dtugo jak nasza zmienna nan wskazuje. Jesli wiemy, ze
istnieje przynajmniej jedno inne odniesienie do przedmiotu, ktére zyje tak dtugo jak nasza zmienna, nie ma potrzeby
zwigkszania liczby odniesiert tymczasowo. Istotng sytuacja gdzie to si¢ pojawia jest w obiektach ktdre sg przekazywane
jako parametry do zadan C w modutach rozszerzajacych ktére sa wywolywane przez polecenia jezyka pytonowskiego;
mechanizm wywolania gwarantuje przytrzymanie odniesienia do kazdego parametru na czas wywolania zadania z tym
parametrem.

However, a common pitfall is to extract an object from a list and hold on to it for a while without incrementing its
reference count. Some other operation might conceivably remove the object from the list, decrementing its reference
count and possible deallocating it. The real danger is that innocent-looking operations may invoke arbitrary Python code
which could do this; there is a code path which allows control to flow back to the user from a Py_ DECREF (), so almost
any operation is potentially dangerous.

A safe approach is to always use the generic operations (functions whose name begins with PyObject_, PyNumber_,
PySequence_ or PyMapping_). These operations always increment the reference count of the object they return.
This leaves the caller with the responsibility to call Py_ DECREF () when they are done with the result; this soon becomes
second nature.

Szczegoty Liczby Odniesien

The reference count behavior of functions in the Python/C API is best explained in terms of ownership of references.
Ownership pertains to references, never to objects (objects are not owned: they are always shared). ,,Owning a reference”
means being responsible for calling Py_DECREF on it when the reference is no longer needed. Ownership can also
be transferred, meaning that the code that receives ownership of the reference then becomes responsible for eventually
decref’ing it by calling Py DECREF () or Py_ XDECREF () whenit’s no longer needed—or passing on this responsibility
(usually to its caller). When a function passes ownership of a reference on to its caller, the caller is said to receive a new
reference. When no ownership is transferred, the caller is said to borrow the reference. Nothing needs to be done for a
borrowed reference.

Idac dalej, gdy wywolujace zadanie przekazuje odniesienie do przedmiotu, istnieja dwie mozliwosci: zadanie kradnie
odniesienie do przedmiotu, lub nie kradnie go. Kradniecie odniesienia oznacza, ze gdy przekazujesz odniesienie do zadania,
to zadanie przyjmuje, ze teraz ono posiada odniesienie i nie jeste§ za nie odpowiedzialny ani chwili dtuzej.

Few functions steal references; the two notable exceptions are PyList_SetItem() and PyTuple_SetItem(),
which steal a reference to the item (but not to the tuple or list into which the item is put!). These functions were designed
to steal a reference because of a common idiom for populating a tuple or list with newly created objects; for example,
the code to create the tuple (1, 2, "three™) could look like this (forgetting about error handling for the moment;
a better way to code this is shown below):

PyObject *t;

t = PyTuple_New
PyTuple_SetItem
PyTuple_SetItem
PyTuple_SetItem

3)

t, 0, PyLong_FromLong (lL));
t, 1, PyLong_FromLong(2L));
t

(
(
(
(t, 2, PyUnicode_FromString("three"));

Here, PyLong FromLong () returns a new reference which is immediately stolen by Py Tuple_ SetItem (). When
you want to keep using an object although the reference to it will be stolen, use Py_ TNCREF () to grab another reference
before calling the reference-stealing function.

1.4. Przedmioty, ich Rodzaje i Liczby Odwotan 7

The Python/C API, Wydanie 3.7.17

Incidentally, PyTuple SetItem() is the only way to set tuple items; PySequence_SetItem() and
PyObject_SetItem() refuse to do this since tuples are an immutable data type. You should only use
PyTuple_SetItem () for tuples that you are creating yourself.

Equivalent code for populating a list can be written using PyList_New () and PyList_SetItem().

However, in practice, you will rarely use these ways of creating and populating a tuple or list. There’s a generic function,
Py_BuildValue (), that can create most common objects from C values, directed by a format string. For example,
the above two blocks of code could be replaced by the following (which also takes care of the error checking):

PyObject *tuple, *1list;

tuple = Py_Buildvalue (" (iis)", 1, 2, "three");
list = Py_Buildvalue("[iis]", 1, 2, "three");

It is much more common to use PyObject_SetItem () and friends with items whose references you are only borro-
wing, like arguments that were passed in to the function you are writing. In that case, their behaviour regarding reference
counts is much saner, since you don’t have to increment a reference count so you can give a reference away (,,have it be
stolen”). For example, this function sets all items of a list (actually, any mutable sequence) to a given item:

int
set_all (PyObject *target, PyObject *item)
{

Py_ssize_t i, n;

n = PyObject_Length (target);
if (n < 0)
return -1;

for (i = 0; i < n; i++) {
PyObject *index = PyLong_FromSsize_t (i);
if (!index)

return -1;
if (PyObject_SetItem(target, index, item) < 0) {
Py_DECREF (index) ;
return -1;
}
Py_DECREF (index) ;
3

return 0O;

The situation is slightly different for function return values. While passing a reference to most functions does not change
your ownership responsibilities for that reference, many functions that return a reference to an object give you ownership of
the reference. The reason is simple: in many cases, the returned object is created on the fly, and the reference you get is the
only reference to the object. Therefore, the generic functions that return object references, like PyOb ject_GetItem ()
and PySequence_GetItem (), always return a new reference (the caller becomes the owner of the reference).

It is important to realize that whether you own a reference returned by a function depends on which function you call only
— the plumage (the type of the object passed as an argument to the function) doesn’t enter into it/ Thus, if you extract
an item from a list using PyList_GetItem (), you don’t own the reference — but if you obtain the same item from
the same list using PySequence_Get Item () (which happens to take exactly the same arguments), you do own a
reference to the returned object.

Here is an example of how you could write a function that computes the sum of the items in a list of integers; once using
PyList_GetItem(),andonce using PySequence_GetItem().

long
sum_list (PyObject *1list)

(ciag dalszy na nastgpnej stronie)

8 Rozdziat 1. Wprowadzenie

The Python/C API, Wydanie 3.7.17

(kontynuacja poprzedniej strony)

Py_ssize_t i, n;
long total = 0, value;
PyObject *item;

n = PyList_Size(list);
if (n < 0)
return -1; /* Not a list */
for (i = 0; 1 < n; i++) {
PyList_GetItem(list, 1); /* Can't fail */
if (!PyLong_Check (item)) continue; /* Skip non-integers */
value = PyLong_AsLong(item);
if (value == -1 && PyErr_Occurred())
/* Integer too big to fit in a C long, bail out */
return -1;
total += value;

item

}

return total;

long
sum_sequence (PyObject *sequence)
{
Py_ssize_t i, n;
long total = 0, value;
PyObject *item;
n = PySequence_Length (sequence) ;
if (n < 0)
return -1; /* Has no length */

for (i = 0; 1 < n; i++) |
item PySequence_GetItem(sequence, 1i);
if (item == NULL)

return -1; /* Not a sequence, or other failure */
if (PyLong_Check (item)) {

value = PyLong_AsLong(item);

Py_DECREF (item) ;

if (value == -1 && PyErr_Occurred())
/* Integer too big to fit in a C long, bail out */
return -1;

total += value;

}
else {

Py_DECREF (item); /* Discard reference ownership */
}

}

return total;

1.4. Przedmioty, ich Rodzaje i Liczby Odwotan 9

The Python/C API, Wydanie 3.7.17

1.4.2 Typy

There are few other data types that play a significant role in the Python/C API; most are simple C types such as int,
long, double and char*. A few structure types are used to describe static tables used to list the functions exported
by a module or the data attributes of a new object type, and another is used to describe the value of a complex number.
These will be discussed together with the functions that use them.

1.5 Sytuacje Wyjatkowe

Programujacy komputer w jgzyku pytonowskim musi sobie zaprzataé gltowe tylko sytuacjami wyjatkowymi tylko jesli
szczegllna obstuga btedow jest konieczna; Nieobstuzone wyjatki sa automatycznie przesytane do zadania wywotujacego,
potem do zadania ktére wywotato tamto zadanie, i tak dalej, dopdki nie natrafi na program interpretujacy najwyzszego
poziomu, gdzie sa przekazywane uzytkownikowi wraz z wypisem kolejnych wywotan odlozonych na stercie.

For C programmers, however, error checking always has to be explicit. All functions in the Python/C API can raise excep-
tions, unless an explicit claim is made otherwise in a function’s documentation. In general, when a function encounters an
error, it sets an exception, discards any object references that it owns, and returns an error indicator. If not documented
otherwise, this indicator is either NULL or -1, depending on the function’s return type. A few functions return a Boolean
true/false result, with false indicating an error. Very few functions return no explicit error indicator or have an ambiguous
return value, and require explicit testing for errors with PyErr_Occurred (). These exceptions are always explicitly
documented.

Exception state is maintained in per-thread storage (this is equivalent to using global storage in an unthreaded application).
A thread can be in one of two states: an exception has occurred, or not. The function PyErr Occurred () can be used
to check for this: it returns a borrowed reference to the exception type object when an exception has occurred, and NULL
otherwise. There are a number of functions to set the exception state: PyErr_SetString () is the most common
(though not the most general) function to set the exception state, and PyErr_ Clear () clears the exception state.

The full exception state consists of three objects (all of which can be NULL): the exception type, the corresponding
exception value, and the traceback. These have the same meanings as the Python result of sys.exc_info () ; however,
they are not the same: the Python objects represent the last exception being handled by a Python try ... except
statement, while the C level exception state only exists while an exception is being passed on between C functions until
it reaches the Python bytecode interpreter’s main loop, which takes care of transferring it to sys.exc_info () and
friends.

Zauwaz ze poczynajac od jezyka pytonowskiego w wersji 1.5 preferowana, bezpiecznym dla watkéw sposobem na dostep
do stanu wyjatku z poziomu kodu napisanego w jezyku pytonowskim jest wezwanie zadania sys.exc_info (), ktdre
zwraca okreslony-dla-watku stan wyjatku dla kodu napisanego w jezyku pytonowskim. Poza tym sktadnia obu sposobéw
na dostep do stanu sytuacji wyjatkowej zmienita si¢ tak, ze zadanie ktére ztapie wyjatek zachowa i przywréci swéj stan
wyjatku tak, aby zachowaé stan wyjatku wywotujacego zadanie. To dzialanie zapobiega typowym btedom w obstudze
sytuacji wyjatkowych powodowanych przez niewinnie-wygladajace zadania nadpisujace sytuacje wyjatkowe ktére aktu-
alnie sa obstugiwane; to takze redukuje czgsto niechciane wydluzanie czasu zycia przedmiotéw do ktérych odnosi sig
ramka stosu w wypisie §ladu wywotan.

Jako nadrzedna zasade, przyjmuje si¢ ze zadanie ktére wywotuje inne zadanie do wykonania pewnych operacji powinno
sprawdzi¢ czy wywotane zadanie zglosito wyjatek, a jesli tak, to przekaza¢ stan wyjatku do wywolujacego. Powinno tez
odrzuci¢ jakiekolwiek odniesienia do przedmiotéw, ktére posiada, i zwrdci¢ sygnalizator btedu, ale nie powinno ustawiaé
innego wyjatku — ktéry nadpisywatby wyjatek, ktéry wtasnie zostat zgloszony i tracié istotne informacje o doktadnym
powodzie btedu.

A simple example of detecting exceptions and passing them on is shown in the sum_sequence () example above. It so
happens that this example doesn’t need to clean up any owned references when it detects an error. The following example
function shows some error cleanup. First, to remind you why you like Python, we show the equivalent Python code:

10 Rozdziat 1. Wprowadzenie

The Python/C API, Wydanie 3.7.17

def incr_item(dict, key):
try:
item = dict[key]
except KeyError:
item = 0
dict[key] = item + 1

Tu nastgpuje odpowiadajacy kod w jezyku C, w catej pelni okazatosci:

int

incr_item(PyObject *dict, PyObject *key)

{
/* Objects all initialized to NULL for Py XDECREF */
PyObject *item = NULL, *const_one = NULL, *incremented_item = NULL;
int rv = -1; /* Return value initialized to -1 (failure) */

item = PyObject_GetItem(dict, key);
if (item == NULL) {
/* Handle KeyError only: */
if (!PyErr_ExceptionMatches (PyExc_KeyError))
goto error;

/* Clear the error and use zero: */
PyErr_Clear();
item = PyLong_FromLong (0L) ;
if (item == NULL)
goto error;
}
const_one = PyLong_FromLong (1L);
if (const_one == NULL)
goto error;

incremented_item = PyNumber_Add(item, const_one);
if (incremented_item == NULL)
goto error;

if (PyObject_SetItem(dict, key, incremented_item) < 0)
goto error;

rv = 0; /* Success */

/* Continue with cleanup code */

error:
/* Cleanup code, shared by success and failure path */

/* Use Py_XDECREF () to ignore NULL references */
Py_XDECREF (item) ;

Py_XDECREF (const_one) ;

Py_XDECREF (incremented_item);

return rv; /* -1 for error, 0 for success */

This example represents an endorsed use of the goto statement in C! It illustrates the use of
PyErr_ ExceptionMatches () and PyErr Clear () to handle specific exceptions, and the use of
Py_XDECREF () to dispose of owned references that may be NULL (note the 'X' in the name; Py_DECREF ()
would crash when confronted with a NULL reference). It is important that the variables used to hold owned references
are initialized to NULL for this to work; likewise, the proposed return value is initialized to —1 (failure) and only set to
success after the final call made is successful.

1.5. Sytuacje Wyjatkowe 11

The Python/C API, Wydanie 3.7.17

1.6 Zataczanie programu interpretujacego jezyk pytonowski

Jedno istotne zadanie, o ktére zataczajacy (w przeciwienstwie do piszacych rozszerzenia) program interpretujacy jezyk
pytonowski musza si¢ martwi¢ jest zainicjowanie i prawdopodobne zakoriczenie programu interpretujacego polecenia
jezyka pytonowskiego. Wigkszo$¢ uzytecznosci programu interpretujacego polecenia jezyka pytonowskiego moze tylko
by¢ uzyta po jego zainicjowaniu.

The basic initialization function is Py Tnitialize (). This initializes the table of loaded modules, and creates the
fundamental modules builtins, ___main__, and sys. It also initializes the module search path (sys.path).

Py_TInitialize () doesnotsetthe ,scriptargument list” (sys.argv). If this variable is needed by Python code that
will be executed later, it must be set explicitly with a call to PySys_SetArgvEx (argc, argv, updatepath)
after the call to Py Tnitialize ().

On most systems (in particular, on Unix and Windows, although the details are slightly different), Py Tnitialize ()
calculates the module search path based upon its best guess for the location of the standard Python interpreter executable,
assuming that the Python library is found in a fixed location relative to the Python interpreter executable. In particular, it
looks for a directory named 1ib/pythonX. Y relative to the parent directory where the executable named python is
found on the shell command search path (the environment variable PATH).

Na przyklad, jesli plik wykonywalny programu interpretujacego polecenia jezyka pytonowskiego znajduje si¢ w kata-
logu /usr/local/bin/python, bedzie zaktadat, ze biblioteki sa w katalogu /usr/local/lib/pythonX.Y
(Faktycznie, ta szczegblna Sciezka jest takze ,ratunkowym” potozeniem, uzywanym gdy zaden plik wykonywalny na-
zwany python nie znajdzie si¢ w katalogach znajdujacych si¢ w zmiennej Srodowiskowej PATH.) Uzytkownik moze
podmienié to zachowanie przez ustawienie zmiennej Srodowiskowej PYTHONHOME, lub wstawi¢ dodatkowe katalogi
przed sztandarowa Sciezka przez ustawienie zmiennej Srodowiskowej PYTHONPATH.

The embedding application can steer the search by calling Py_SetProgramName (file) before calling
Py_Initialize (). Note that PYTHONHOME still overrides this and PYTHONPATH is still inserted in front of the
standard path. An application that requires total control has to provide its own implementation of Py_GetPath (),
Py_GetPrefix (), Py GetExecPrefix(),and Py GetProgramFullPath () (all defined in Modules/
getpath.c).

Sometimes, it is desirable to ,,uninitialize” Python. For instance, the application may want to start over (make another call
to Py_Initialize ()) or the application is simply done with its use of Python and wants to free memory allocated
by Python. This can be accomplished by calling Py FinalizeEx (). Thefunction Py _TsTnitialized () returns
true if Python is currently in the initialized state. More information about these functions is given in a later chapter.
Notice that Py_FinalizeEx () does not free all memory allocated by the Python interpreter, e.g. memory allocated
by extension modules currently cannot be released.

1.7 Odpluskwiajace Budowy

Program interpretujacy jezyk pytonowski moze by¢ zbudowany z kilkoma makropoleceniami do zataczenia dodatkowych
sprawdzen programu interpretujacego polecenia jezyka pytonowskiego i modutéw rozszerzajacych. Te sprawdzenia maja
zwyczaj dodawaé duzy narzut czasu wykonania polecen programu wigc nie sa zalaczane domyslnie.

Pelng list¢ réznego rodzaju budéw odpluskwiania znajduje si¢ w pliku Misc/SpecialBuilds.txt w Zrédlowych
zasobach pakietu jezyka pytonowskiego. Sa dostgpne budowy ze wsparciem wypisywania przebiegéw liczb odniesien,
lub profilowania nisko-poziomowego gtéwnej petli programu interpretujacego polecenia jezyka pytonowskiego. Tylko
najczesciej uzywane budowy beda opisane w dalszej czgsci tej sekcji.

Compiling the interpreter with the Py_DEBUG macro defined produces what is generally meant by ,,a debug build” of
Python. Py_DEBUG is enabled in the Unix build by adding ——with-pydebug to the . /configure command. It is
also implied by the presence of the not-Python-specific _DEBUG macro. When Py_DEBUG is enabled in the Unix build,
compiler optimization is disabled.

12 Rozdziat 1. Wprowadzenie

The Python/C API, Wydanie 3.7.17

W uzupetnieniu odpluskwiania opartego o zliczanie odniesierl opisanego ponizej, nastgpujace dodatkowe sprawdzenia sa
wykonywane:

Dodatkowe sprawdzenia sa dodawane do przedmiotu lokujacego inne przedmioty w pamigci.
Dodatkowe sprawdzenia sa dodawane do przedmiotu wezytujacego i kompilujacego.
Rzutowania w dét z szerokich do waskich typ6éw sa sprawdzane pod katem utraty informacji.

Pewna ilo$¢ ustaleri twierdzacych jest dodawana do realizacji stownika i zbioru. W dodatku przedmiot zbioru otrzy-
muje sposob postgpowania zwany pod nazwa test_c_api ().

Sprawdzenia przytomno$ci parametréw wejsciowych dodawane sa do kreacji ramki.

Przechowalnia przedmiotéw liczb catkowitych z ang. - ints jest inicjowana ze znanym blednym wzorem do wyla-
pania odniesieri do niezainicjowanych cyfr.

Niskopoziomowe Sledzenie i dodatkowe sprawdzanie bledéw dodawane jest do kodu wykonywalnego wirtualnej
maszyny.

Dodatkowe sprawdzenia dodawane sa do implementacji areny pamigci.

Dodatkowe odpluskwianie dodawane jest do modutu watkow.

Moga istnie¢ dodatkowe sprawdzenia nie wymienione tutaj.

Defining Py_ TRACE_REF'S enables reference tracing. When defined, a circular doubly linked list of active objects is
maintained by adding two extra fields to every PyObject. Total allocations are tracked as well. Upon exit, all exi-
sting references are printed. (In interactive mode this happens after every statement run by the interpreter.) Implied by
Py_DEBUG.

Odwotaj si¢ do Misc/SpecialBuilds. txt w Zrédlowym pakiecie jezyka pytonowskiego po wigcej szczegdtow.

1.7. Odpluskwiajace Budowy 13

The Python/C API, Wydanie 3.7.17

14 Rozdziat 1. Wprowadzenie

ROZDZIAL 2

Stable Application Binary Interface

Traditionally, the C API of Python will change with every release. Most changes will be source-compatible, typically by
only adding API, rather than changing existing API or removing API (although some interfaces do get removed after
being deprecated first).

Unfortunately, the API compatibility does not extend to binary compatibility (the ABI). The reason is primarily the
evolution of struct definitions, where addition of a new field, or changing the type of a field, might not break the API, but
can break the ABI. As a consequence, extension modules need to be recompiled for every Python release (although an
exception is possible on Unix when none of the affected interfaces are used). In addition, on Windows, extension modules
link with a specific pythonXY.dll and need to be recompiled to link with a newer one.

Since Python 3.2, a subset of the API has been declared to guarantee a stable ABI. Extension modules wishing to use
this API (called ,,limited API”) need to define Py_LIMITED_API. A number of interpreter details then become hidden
from the extension module; in return, a module is built that works on any 3.x version (x>=2) without recompilation.

In some cases, the stable ABI needs to be extended with new functions. Extension modules wishing to use these new
APIs need to set Py_ LIMITED_APT to the PY_VERSION_HEX value (see APl and ABI Versioning) of the minimum
Python version they want to support (e.g. 0x03030000 for Python 3.3). Such modules will work on all subsequent
Python releases, but fail to load (because of missing symbols) on the older releases.

As of Python 3.2, the set of functions available to the limited API is documented in PEP 384. In the C API documentation,
API elements that are not part of the limited API are marked as ,,Not part of the limited APIL.”

15

https://www.python.org/dev/peps/pep-0384

The Python/C API, Wydanie 3.7.17

16 Rozdziat 2. Stable Application Binary Interface

ROZDZIAL 3

The Very High Level Layer

The functions in this chapter will let you execute Python source code given in a file or a buffer, but they will not let you
interact in a more detailed way with the interpreter.

Several of these functions accept a start symbol from the grammar as a parameter. The available start symbols are
Py_eval_input,Py_file_input,and Py_single_input. These are described following the functions which
accept them as parameters.

Note also that several of these functions take FILE* parameters. One particular issue which needs to be handled care-
fully is that the FILE structure for different C libraries can be different and incompatible. Under Windows (at least),
it is possible for dynamically linked extensions to actually use different libraries, so care should be taken that FILE*
parameters are only passed to these functions if it is certain that they were created by the same library that the Python
runtime is using.

int Py_Main (int argc, wechar_t **argv)
The main program for the standard interpreter. This is made available for programs which embed Python. The
arge and argv parameters should be prepared exactly as those which are passed to a C program’s main () function
(converted to wchar_t according to the user’s locale). It is important to note that the argument list may be modified
(but the contents of the strings pointed to by the argument list are not). The return value will be 0 if the interpreter
exits normally (i.e., without an exception), 1 if the interpreter exits due to an exception, or 2 if the parameter list
does not represent a valid Python command line.

Note that if an otherwise unhandled SystemExit is raised, this function will not return 1, but exit the process,
aslong as Py_InspectFlag is not set.

int PyRun_AnyFile (FILE *fp, const char *filename)
This is a simplified interface to PyRun_AnyFileExFlags () below, leaving closeit set to 0 and flags set to
NULL.

int PyRun_AnyFileFlags (FILE *fp, const char *filename, PyCompilerFlags *flags)
This is a simplified interface to PyRun_AnyFileExFlags () below, leaving the closeit argument set to 0.

int PyRun_AnyFileEx (FILE *fp, const char *filename, int closeit)
This is a simplified interface to PyRun_AnyFileExFlags () below, leaving the flags argument set to NULL.

int PyRun_AnyFileExFlags (FILE *fp, const char *filename, int closeit, PyCompilerFlags *flags)
If fp refers to a file associated with an interactive device (console or terminal input or Unix pseudo-terminal),

17

The Python/C API, Wydanie 3.7.17

return the value of PyRun_TnteractiveLoop (), otherwise return the result of PyRun_SimpleFile ().
filename is decoded from the filesystem encoding (sys .getfilesystemencoding ()). If filename is NULL,
this function uses " 2?2 ?" as the filename.

int PyRun_SimpleString (const char *command)
This is a simplified interface to PyRun_SimpleStringFlags () below, leaving the PyCompilerFlags*
argument set to NULL.

int PyRun_SimpleStringFlags (const char *command, PyCompilerFlags *flags)
Executes the Python source code from command in the __main___ module according to the flags argument. If
__main__ does not already exist, it is created. Returns 0 on success or —1 if an exception was raised. If there
was an error, there is no way to get the exception information. For the meaning of flags, see below.

Note that if an otherwise unhandled SystemEx1it is raised, this function will not return —1, but exit the process,
aslong as Py_InspectFlag is not set.

int PyRun_SimpleFile (FILE *fp, const char *filename)
This is a simplified interface to PyRun_SimpleFileExFlags () below, leaving closeit set to 0 and flags set
to NULL.

int PyRun_SimpleFileEx (FILE *fp, const char *filename, int closeit)
This is a simplified interface to PyRun_SimpleFileExFlags () below, leaving flags set to NULL.

int PyRun_SimpleFileExF1lags (FILE *fp, const char *filename, int closeit, PyCompilerFlags *flags)
Similar to PyRun_SimpleStringFlags (), but the Python source code is read from fp instead of an in-
memory string. filename should be the name of the file, it is decoded from the filesystem encoding (sys.
getfilesystemencoding ()). If closeit is true, the file is closed before PyRun_SimpleFileExFlags returns.

Informacja: On Windows, fp should be opened as binary mode (e.g. fopen (filename, "rb").Otherwise,
Python may not handle script file with LF line ending correctly.

int PyRun_InteractiveOne (FILE *fp, const char *filename)
This is a simplified interface to PyRun_InteractiveOneFlags () below, leaving flags set to NULL.

int PyRun_InteractiveOneFlags (FILE *fp, const char *filename, PyCompilerFlags *flags)
Read and execute a single statement from a file associated with an interactive device according to the flags argument.
The user will be prompted using sys.psl and sys.ps2. filename is decoded from the filesystem encoding
(sys.getfilesystemencoding()).

Returns 0 when the input was executed successfully, —1 if there was an exception, or an error code from the
errcode. h include file distributed as part of Python if there was a parse error. (Note that errcode . h is not
included by Python . h, so must be included specifically if needed.)

int PyRun_InteractiveLoop (FILE *fp, const char *filename)
This is a simplified interface to PyRun_InteractiveLoopFlags () below, leaving flags set to NULL.

int PyRun_InteractiveLoopFlags (FILE *fp, const char *filename, PyCompilerFlags *flags)
Read and execute statements from a file associated with an interactive device until EOF is reached. The user
will be prompted using sys.psl and sys.ps2. filename is decoded from the filesystem encoding (sys.
getfilesystemencoding ()). Returns 0 at EOF or a negative number upon failure.

int (*PyOS_InputHook) (void)
Can be set to point to a function with the prototype int func (void). The function will be called when Py-
thon’s interpreter prompt is about to become idle and wait for user input from the terminal. The return value is
ignored. Overriding this hook can be used to integrate the interpreter’s prompt with other event loops, as done in
the Modules/_tkinter. c in the Python source code.

char* (*PyOS_ReadlineFunctionPointer) (FILE * FILE *, const char *)
Can be set to point to a function with the prototype char *func (FILE *stdin, FILE *stdout,

18 Rozdziat 3. The Very High Level Layer

The Python/C API, Wydanie 3.7.17

char *prompt), overriding the default function used to read a single line of input at the interpreter’s prompt.
The function is expected to output the string prompt if it’s not NULL, and then read a line of input from the provided
standard input file, returning the resulting string. For example, The readl ine module sets this hook to provide
line-editing and tab-completion features.

The result must be a string allocated by PyMem RawMalloc () or PyMem_RawRealloc (), or NULL if an
error occurred.

Zmienione w wersji 3.4: The result must be allocated by PyMem_RawMalloc () or PyMem_RawRealloc (),
instead of being allocated by PyMem Malloc () or PyMem Realloc ().

struct _node* PyParser_SimpleParseString (const char *smr, int start)
This is a simplified interface to PyParser SimpleParseStringFlagsFilename () below, leaving file-
name set to NULL and flags set to O.

struct _node* PyParser_SimpleParseStringFlags (const char *str, int start, int flags)
This is a simplified interface to PyParser_SimpleParseStringFlagsFilename () below, leaving file-
name set to NULL.

struct _node* PyParser_SimpleParseStringFlagsFilename (const char *str, const char *filename,
int start, int flags)
Parse Python source code from str using the start token start according to the flags argument. The result can be
used to create a code object which can be evaluated efficiently. This is useful if a code fragment must be evaluated
many times. filename is decoded from the filesystem encoding (sys.getfilesystemencoding()).

struct _node* PyParser_SimpleParseFile (FILE *fp, const char *filename, int start)
This is a simplified interface to PyParser SimpleParseFileFlags () below, leaving flags set to 0.

struct _node* PyParser_SimpleParseFileFlags (FILE *fp, const char *filename, int start, int flags)
Similar to PyParser SimpleParseStringFlagsFilename (),butthe Python source code is read from
fp instead of an in-memory string.

PyObject* PyRun_String (const char *str, int start, PyObject *globals, PyObject *locals)
Return value: New reference. This is a simplified interface to PyRun_StringFlags () below, leaving flags set
to NULL.

PyObject* PyRun_StringFlags (const char *str, int start, PyObject *globals, PyObject *locals, PyCompiler-
Flags *flags)
Return value: New reference. Execute Python source code from st in the context specified by the objects globals
and locals with the compiler flags specified by flags. globals must be a dictionary; locals can be any object that
implements the mapping protocol. The parameter start specifies the start token that should be used to parse the
source code.

Returns the result of executing the code as a Python object, or NULL if an exception was raised.

PyObject* PyRun_File (FILE *fp, const char *filename, int start, PyObject *globals, PyObject *locals)
Return value: New reference. This is a simplified interface to PyRun_FileExFlags () below, leaving closeit set
to 0 and flags set to NULL.

PyObject* PyRun_FileEx (FILE *fp, const char *filename, int start, PyObject *globals, PyObject *locals, int clo-

seit)
Return value: New reference. This is a simplified interface to PyRun_FileExFlags () below, leaving flags set

to NULL.

PyObject* PyRun_FileFlags (FILE *fp, const char *filename, int start, PyObject *globals, PyObject *locals,
PyCompilerFlags *flags)
Return value: New reference. This is a simplified interface to PyRun_FileExFlags () below, leaving closeit set
to 0.

PyObject* PyRun_FileExFlags (FILE *fp, const char *filename, int start, PyObject *globals, PyObject *lo-
cals, int closeit, PyCompilerFlags *flags)
Return value: New reference. Similar to PyRun_StringFlags (), but the Python source code is read from fp

19

The Python/C API, Wydanie 3.7.17

instead of an in-memory string. filename should be the name of the file, it is decoded from the filesystem encoding
(sys.getfilesystemencoding ()). If closeit is true, the file is closed before PyRun_FileExFlags ()
returns.

PyObject* Py_CompileString (const char *str, const char *filename, int start)
Return value: New reference. This is a simplified interface to Py_CompileStringFlags () below, leaving
flags set to NULL.

PyObject* Py_CompileStringFlags (const char *str, const char *filename, int start, PyCompiler-
Flags *flags)
Return value: New reference. This is a simplified interface to Py CompileStringExFlags () below, with
optimize set to —1.

PyObject* Py_CompileStringObject (const char *str, PyObject *filename, int start, PyCompiler-
Flags *flags, int optimize)
Return value: New reference. Parse and compile the Python source code in str, returning the resulting code object.
The start token is given by start; this can be used to constrain the code which can be compiled and should be
Py_eval_input, Py_file_input, or Py_single_input. The filename specified by filename is used
to construct the code object and may appear in tracebacks or SyntaxError exception messages. This returns
NULL if the code cannot be parsed or compiled.

The integer optimize specifies the optimization level of the compiler; a value of -1 selects the optimization level of
the interpreter as given by —O options. Explicit levels are 0 (no optimization; __debug___is true), 1 (asserts are
removed, __debug___is false) or 2 (docstrings are removed too).

Nowe w wersji 3.4.

PyObject* Py_CompileStringExFlags (const char *str, const char *filename, int start, PyCompiler-
Flags *flags, int optimize)
Return value: New reference. Like Py_CompileStringObject (), but filename is a byte string decoded from
the filesystem encoding (os . fsdecode ()).

Nowe w wersji 3.2.

PyObject* PyEval_EvalCode (PyObject *co, PyObject *globals, PyObject *locals)
Return value: New reference. This is a simplified interface to PyEval_ FEvalCodeEx (), with just the code object,
and global and local variables. The other arguments are set to NULL.

PyObject* PyEval_EvalCodeEx (PyObject *co, PyObject *globals, PyObject *locals, PyObject *const *args,
int argcount, PyObject *const *kws, int kwcount, PyObject *const *defs,
int defcount, PyObject *kwdefs, PyObject *closure)
Return value: New reference. Evaluate a precompiled code object, given a particular environment for its evaluation.
This environment consists of a dictionary of global variables, a mapping object of local variables, arrays of ar-
guments, keywords and defaults, a dictionary of default values for keyword-only arguments and a closure tuple of
cells.

PyFrameObject
The C structure of the objects used to describe frame objects. The fields of this type are subject to change at any
time.

PyObject* PyEval_EvalFrame (PyFrameObject *f)
Return value: New reference. Evaluate an execution frame. This is a simplified interface to
PyEval_EvalFrameEx (), for backward compatibility.

PyObject* PyEval_EvalFrameEx (PyFrameObject *f, int throwflag)
Return value: New reference. This is the main, unvarnished function of Python interpretation. It is literally 2000
lines long. The code object associated with the execution frame f is executed, interpreting bytecode and executing
calls as needed. The additional throwflag parameter can mostly be ignored - if true, then it causes an exception to
immediately be thrown; this is used for the throw () methods of generator objects.

20 Rozdziat 3. The Very High Level Layer

The Python/C API, Wydanie 3.7.17

Zmienione w wersji 3.4: This function now includes a debug assertion to help ensure that it does not silently discard
an active exception.

int PyEval_MergeCompilerF1lags (PyCompilerFlags *cf)
This function changes the flags of the current evaluation frame, and returns true on success, false on failure.
int Py_eval_input
The start symbol from the Python grammar for isolated expressions; for use with Py CompileString().
int Py_file_input
The start symbol from the Python grammar for sequences of statements as read from a file or other source; for use
with Py_CompileString (). This is the symbol to use when compiling arbitrarily long Python source code.
int Py_single_input
The start symbol from the Python grammar for a single statement; for use with Py_CompileString (). This
is the symbol used for the interactive interpreter loop.
struct PyCompilerFlags

This is the structure used to hold compiler flags. In cases where code is only being compiled, it is passed as int
flags, and in cases where code is being executed, it is passed as PyCompilerFlags *flags. In this case,
from __future__ import can modify flags.

Whenever PyCompilerFlags *flagsis NULL, cf_flags is treated as equal to O, and any modification
dueto from __ future_ import is discarded.

struct PyCompilerFlags {
int cf_flags;
}

int CO_FUTURE_DIVISION
This bit can be set in flags to cause division operator / to be interpreted as ,.true division” according to PEP 238.

21

https://www.python.org/dev/peps/pep-0238

The Python/C API, Wydanie 3.7.17

22 Rozdziat 3. The Very High Level Layer

rozDzIAL 4

Reference Counting

The macros in this section are used for managing reference counts of Python objects.

void Py_ INCREF (PyObject *0)
Increment the reference count for object o. The object must not be NULL; if you aren’t sure that it isn’t NULL, use
Py _XINCREF ().

void Py_XINCREF (PyObject *o)
Increment the reference count for object o. The object may be NULL, in which case the macro has no effect.

void Py_DECREF (PyObject *0)
Decrement the reference count for object 0. The object must not be NULL; if you aren’t sure that it isn’t NULL, use
Py_XDECREF ().If the reference count reaches zero, the object’s type’s deallocation function (which must not be
NULL) is invoked.

Ostrzezenie: The deallocation function can cause arbitrary Python code to be invoked (e.g. when a class
instance with a __del__ () method is deallocated). While exceptions in such code are not propagated, the
executed code has free access to all Python global variables. This means that any object that is reachable from
a global variable should be in a consistent state before Py_ DECREF () is invoked. For example, code to delete
an object from a list should copy a reference to the deleted object in a temporary variable, update the list data
structure, and then call Py_ DECREF () for the temporary variable.

void Py_XDECREF (PyObject *o)
Decrement the reference count for object 0. The object may be NULL, in which case the macro has no effect;
otherwise the effect is the same as for Py DECREF (), and the same warning applies.

void Py_ CLEAR (PyObject *0)
Decrement the reference count for object 0. The object may be NULL, in which case the macro has no effect;
otherwise the effect is the same as for Py DECREF (), except that the argument is also set to NULL. The warning
for Py_DECREF () does not apply with respect to the object passed because the macro carefully uses a temporary
variable and sets the argument to NULL before decrementing its reference count.

It is a good idea to use this macro whenever decrementing the value of a variable that might be traversed during
garbage collection.

23

The Python/C API, Wydanie 3.7.17

The following functions are for runtime dynamic embedding of Python: Py_IncRef (PyObject *o),

Py_DecRef (PyObject *o). They are simply exported function versions of Py XTINCREF () and
Py_XDECREF (), respectively.

The following functions or macros are only for use within the interpreter core: _Py_Dealloc (),
_Py_ForgetReference (), _Py_NewReference (), as well as the global variable _Py_RefTotal.

24 Rozdziat 4. Reference Counting

ROzDzZIAL D

Obstuga sytuacji wyjatkowych

The functions described in this chapter will let you handle and raise Python exceptions. It is important to understand some
of the basics of Python exception handling. It works somewhat like the POSIX errno variable: there is a global indicator
(per thread) of the last error that occurred. Most C API functions don’t clear this on success, but will set it to indicate
the cause of the error on failure. Most C API functions also return an error indicator, usually NULL if they are supposed
to return a pointer, or —1 if they return an integer (exception: the PyArg_* () functions return 1 for success and 0 for
failure).

Concretely, the error indicator consists of three object pointers: the exception’s type, the exception’s value, and the tra-
ceback object. Any of those pointers can be NULL if non-set (although some combinations are forbidden, for example
you can’t have a non-NULL traceback if the exception type is NULL).

Gdy zadanie musi zawieZ¢ z powodu bledu zadania ktére wywotato, ogélnie nie ustawia ona wskaznika btedu; podzadanie
ktére zostato wywolane juz go ustawita. Jest on odpowiedzialny albo za obstuge bledu 1 wyczyszczenie wskaZnika sytuacji
wyjatkowej lub powr6t po sprzatnigeiu jakichkolwiek zasobéw ktére utrzymuje (takich jak odwotania do przedmiotéw
lub zajete pamigci); nie powinien kontynuowaé zwyczajnie jesli nie jest przygotowany do obstugi btedu. Jesli koriczy
z powodu bledu, istotne jest zwrdcenie uwagi wolajacego ze zostal zgtoszony blad. Jesli btad nie jest obstugiwany lub
propagowany wilasciwie, dodatkowe odwotania do sprzegu jezyka pytonowskiego/C moga nie zachowywac sie tak, jak
planowano i moga zawieZ¢ w nieoczekiwane sposoby.

Informacja: The error indicator is not the result of sys.exc_info (). The former corresponds to an exception that is
not yet caught (and is therefore still propagating), while the latter returns an exception after it is caught (and has therefore
stopped propagating).

25

The Python/C API, Wydanie 3.7.17

5.1 Printing and clearing

void PyErr_Clear ()
Clear the error indicator. If the error indicator is not set, there is no effect.

void PyErr_PrintEx (int set_sys_last_vars)
Print a standard traceback to sys. stderr and clear the error indicator. Unless the errorisa SystemExit. In
that case the no traceback is printed and Python process will exit with the error code specified by the SystemExit
instance.

Call this function only when the error indicator is set. Otherwise it will cause a fatal error!

If set_sys_last vars is nonzero, the variables sys.last_type, sys.last_value and sys.
last_traceback will be set to the type, value and traceback of the printed exception, respectively.

void PyErr_Print ()
Alias for PyErr_PrintEx (1).

void PyErr_WriteUnraisable (PyObject *obyj)
This utility function prints a warning message to sy s . stderr when an exception has been set but it is impos-
sible for the interpreter to actually raise the exception. It is used, for example, when an exception occurs in an
del__ () method.

The function is called with a single argument obj that identifies the context in which the unraisable exception
occurred. If possible, the repr of obj will be printed in the warning message.

An exception must be set when calling this function.

5.2 Raising exceptions

These functions help you set the current thread’s error indicator. For convenience, some of these functions will always
return a NULL pointer for use in a return statement.

void PyErr_SetString (PyObject *type, const char *message)
This is the most common way to set the error indicator. The first argument specifies the exception type; it is normally
one of the standard exceptions, e.g. PyExc_RuntimeError. You need not increment its reference count. The
second argument is an error message; it is decoded from 'ut £-8».

void PyErr_SetObject (PyObject *type, PyObject *value)
This function is similar to PyErr_SetString () butlets you specify an arbitrary Python object for the ,,value”
of the exception.

PyObject* PyExrr_Format (PyObject *exception, const char *format, ...)
Return value: Always NULL. This function sets the error indicator and returns NULL. exception should be a Python
exception class. The format and subsequent parameters help format the error message; they have the same meaning
and values as in PyUnicode_FromFormat (). format is an ASCll-encoded string.

PyObject* PyErr_FormatV (PyObject *exception, const char *format, va_list vargs)
Return value: Always NULL. Same as PyErr_Format (), buttakinga va_11st argument rather than a variable
number of arguments.

Nowe w wersji 3.5.

void PyErr_SetNone (PyObject *type)
This is a shorthand for PyErr_SetObject (type, Py_None).

26 Rozdziat 5. Obstuga sytuacji wyjatkowych

The Python/C API, Wydanie 3.7.17

int PyErr_BadArgument ()
This is a shorthand for PyErr_SetString (PyExc_TypeError, message), where message indicates
that a built-in operation was invoked with an illegal argument. It is mostly for internal use.

PyObject* PyErr_NoMemory ()
Return value: Always NULL. This is a shorthand for PyErr_SetNone (PyExc_MemoryError); it returns
NULL so an object allocation function can write return PyErr_NoMemory () ; when it runs out of memory.

PyObject* PyErr_SetFromErrno (PyObject *type)

Return value: Always NULL. This is a convenience function to raise an exception when a C library function
has returned an error and set the C variable errno. It constructs a tuple object whose first item is the inte-
ger errno value and whose second item is the corresponding error message (gotten from strerror ()), and
then calls PyErr_SetObject (type, object). On Unix, when the errno value is EINTR, indicating
an interrupted system call, this calls PyErr_ CheckSignals (), and if that set the error indicator, leaves it
set to that. The function always returns NULL, so a wrapper function around a system call can write return
PyErr_SetFromErrno (type) ; when the system call returns an error.

PyObject* PyErr_SetFromErrnoWithFilenameObject (PyObject *type, PyObject *filenameObject)
Return value: Always NULL. Similar to PyErr_SetFromErrno (), with the additional behavior that if file-
nameObject is not NULL, it is passed to the constructor of fype as a third parameter. In the case of OSError
exception, this is used to define the £i1lename attribute of the exception instance.

PyObject* PyErr_SetFromErrnoWithFilenameObjects (PyObject *type, PyObject *filenameObject,
PyObject *filenameObject2)
Return value: Always NULL. Similar to PyErr_SetFromErrnoWithFilenameObject (), but takes a se-
cond filename object, for raising errors when a function that takes two filenames fails.

Nowe w wersji 3.4.

PyObject* PyErr_SetFromErrnoWithFilename (PyObject *type, const char *filename)
Return value: Always NULL. Similarto PyErr_SetFromErrnoWithFilenameObject (),butthe filename
is given as a C string. filename is decoded from the filesystem encoding (os . £sdecode ()).

PyObject* PyErr_SetFromWindowsErr (int ierr)
Return value: Always NULL. This is a convenience function to raise WindowsError. If called with
ierr of 0, the error code returned by a call to GetLastError () is used instead. It calls the
Win32 function FormatMessage () to retrieve the Windows description of error code given by ierr
or GetLastError (), then it constructs a tuple object whose first item is the ierr value and who-
se second item is the corresponding error message (gotten from FormatMessage ()), and then calls
PyErr_SetObject (PyExc_WindowsError, object). This function always returns NULL.

Availability: Windows.

PyObject* PyErr_SetExcFromWindowsErr (PyObject *type, int ierr)
Return value: Always NULL. Similar to PyErr_SetFromWindowsErr (), with an additional parameter spe-
cifying the exception type to be raised.

Availability: Windows.

PyObject* PyErr_SetFromWindowsErrWithFilename (int ierr, const char *filename)
Return value: Always NULL. Similar to PyErr_SetFromWindowsErrWithFilenameObject (), but the
filename is given as a C string. filename is decoded from the filesystem encoding (os . fsdecode ()).

Availability: Windows.

PyObject* PyErr_SetExcFromWindowsErrWithFilenameObject (PyObject *type, int ierr, Py-
Object *filename)
Return value: Always NULL. Similar to PyErr_SetFromWindowsErrWithFilenameObject (), with an
additional parameter specifying the exception type to be raised.

Availability: Windows.

5.2. Raising exceptions 27

The Python/C API, Wydanie 3.7.17

PyObject* PyErr_SetExcFromWindowsErrWithFilenameObjects (PyObject *type, int ierr, Py-
Object *filename, PyObject *file-
name?2)

Return value: Always NULL. Similarto PyErr_SetExcFromWindowsErrWithFilenameObject (),but

accepts a second filename object.
Auvailability: Windows.
Nowe w wersji 3.4.

PyObject* PyErr_SetExcFromWindowsErrWithFilename (PyObject *type, int ierr, const char *filena-

me)
Return value: Always NULL. Similar to PyErr_SetFromWindowsErrWithFilename (), with an additio-

nal parameter specifying the exception type to be raised.
Availability: Windows.

PyObject* PyErr_SetImportError (PyObject *msg, PyObject *name, PyObject *path)
Return value: Always NULL. This is a convenience function to raise ImportError. msg will be set as the excep-
tion’s message string. name and path, both of which can be NULL, will be set as the ImportError’s respective
name and path attributes.

Nowe w wersji 3.3.

void PyErr_SyntaxLocationObject (PyObject *filename, int lineno, int col_offset)
Set file, line, and offset information for the current exception. If the current exception isnota SyntaxError, then
it sets additional attributes, which make the exception printing subsystem think the exceptionis a SyntaxError.

Nowe w wersji 3.4.

void PyErr_SyntaxLocationEx (const char *filename, int lineno, int col_offset)
Like PyErr_SyntaxLocationObject (), but filename is a byte string decoded from the filesystem encoding
(os.fsdecode ()).

Nowe w wersji 3.2.

void PyErr_SyntaxLocation (const char *filename, int lineno)
Like PyErr_SyntaxLocationEx (), but the col_offset parameter is omitted.

void PyErr_BadInternalCall ()
This is a shorthand for PyErr_SetString (PyExc_SystemError, message), where message indicates
that an internal operation (e.g. a Python/C API function) was invoked with an illegal argument. It is mostly for
internal use.

5.3 Issuing warnings

Use these functions to issue warnings from C code. They mirror similar functions exported by the Python warnings
module. They normally print a warning message to sys.stderr; however, it is also possible that the user has specified that
warnings are to be turned into errors, and in that case they will raise an exception. It is also possible that the functions
raise an exception because of a problem with the warning machinery. The return value is O if no exception is raised, or
-1 if an exception is raised. (It is not possible to determine whether a warning message is actually printed, nor what the
reason is for the exception; this is intentional.) If an exception is raised, the caller should do its normal exception handling
(for example, Py. DECREF () owned references and return an error value).

int PyErr_WarnEx (PyObject *category, const char *message, Py_ssize_t stack_level)
Issue a warning message. The category argument is a warning category (see below) or NULL; the message argument
is a UTF-8 encoded string. stack_level is a positive number giving a number of stack frames; the warning will
be issued from the currently executing line of code in that stack frame. A stack_level of 1 is the function calling
PyErr_WarnEx (), 2 is the function above that, and so forth.

28 Rozdziat 5. Obstuga sytuacji wyjatkowych

The Python/C API, Wydanie 3.7.17

Warning categories must be subclasses of PyExc_Warning; PyExc_Warning is a subclass of
PyExc_Exception; the default warning category is PyExc_Runt imeWarning. The standard Python war-
ning categories are available as global variables whose names are enumerated at Standard Warning Categories.

For information about warning control, see the documentation for the warnings module and the —W option in
the command line documentation. There is no C API for warning control.

PyObject* PyErr_SetImportErrorSubclass (PyObject *exception, PyObject *msg, PyObject *name, Py-
Object *path)
Return value: Always NULL. Much like PyErr Set ImportError () but this function allows for specifying a
subclass of ImportError to raise.

Nowe w wersji 3.6.

int PyErr_WarnExplicitObject (PyObject *category, PyObject *message, PyObject *filename, int lineno,
PyObject *module, PyObject *registry)
Issue a warning message with explicit control over all warning attributes. This is a straightforward wrapper around
the Python function warnings.warn_explicit (), see there for more information. The module and registry
arguments may be set to NULL to get the default effect described there.

Nowe w wersji 3.4.

int PyErr_WarnExplicit (PyObject *category, const char *message, const char *filename, int lineno, const
char *module, PyObject *registry)
Similarto PyErr_WarnExplicitObject () exceptthat message and module are UTF-8 encoded strings, and
filename is decoded from the filesystem encoding (os . fsdecode ()).

int PyErr_WarnFormat (PyObject *category, Py_ssize_t stack_level, const char *format, ...)
Functionsimilarto PyErr_WarnEx (),butuse PyUnicode_FromFormat () toformat the warning message.
format is an ASCII-encoded string.

Nowe w wersji 3.2.

int PyErr_ResourceWarning (PyObject *source, Py_ssize_t stack_level, const char *format, ...)
Function similar to PyErr_WarnFormat (), but category is ResourceWarning and it passes source to
warnings.WarningMessage ().

Nowe w wersji 3.6.

5.4 Querying the error indicator

PyObject* PyErr_Occurred ()
Return value: Borrowed reference. Test whether the error indicator is set. If set, return the exception type (the first
argument to the last call to one of the PyErr_Set* () functions or to PyErr_Restore ()). If not set, return
NULL. You do not own a reference to the return value, so you do not need to Py_ DECREF () it.

Informacja: Do not compare the return value to a specific exception; use PyErr_ExceptionMatches ()
instead, shown below. (The comparison could easily fail since the exception may be an instance instead of a class,
in the case of a class exception, or it may be a subclass of the expected exception.)

int PyErr_ExceptionMatches (PyObject *exc)
Equivalent to PyErr_GivenExceptionMatches (PyErr_Occurred (), exc). This should only be
called when an exception is actually set; a memory access violation will occur if no exception has been raised.

int PyErr_GivenExceptionMatches (PyObject *given, PyObject *exc)
Return true if the given exception matches the exception type in exc. If exc is a class object, this also returns true

5.4. Querying the error indicator 29

The Python/C API, Wydanie 3.7.17

when given is an instance of a subclass. If exc is a tuple, all exception types in the tuple (and recursively in subtuples)
are searched for a match.

void PyErr_Fetch (PyObject **ptype, PyObject **pvalue, PyObject **ptraceback)
Retrieve the error indicator into three variables whose addresses are passed. If the error indicator is not set, set all
three variables to NULL. If it is set, it will be cleared and you own a reference to each object retrieved. The value
and traceback object may be NULL even when the type object is not.

Informacja: This function is normally only used by code that needs to catch exceptions or by code that needs to
save and restore the error indicator temporarily, e.g.:

{
PyObject *type, *value, *traceback;
PyErr_Fetch (&type, &value, &traceback);

/* ... code that might produce other errors ... */

PyErr_Restore (type, value, traceback);

void PyErr_Restore (PyObject *type, PyObject *value, PyObject *traceback)
Set the error indicator from the three objects. If the error indicator is already set, it is cleared first. If the objects are
NULL, the error indicator is cleared. Do not pass a NULL type and non-NULL value or traceback. The exception
type should be a class. Do not pass an invalid exception type or value. (Violating these rules will cause subtle
problems later.) This call takes away a reference to each object: you must own a reference to each object before the
call and after the call you no longer own these references. (If you don’t understand this, don’t use this function. I
warned you.)

Informacja: This function is normally only used by code that needs to save and restore the error indicator tem-
porarily. Use PyErr_ Fetch () to save the current error indicator.

void PyErr_NormalizeException (PyObject**exc, PyObject**val, PyObject**tb)
Under certain circumstances, the values returned by PyErr_Fetch () below can be ,,unnormalized”, meaning
that *exc is a class object but *val is not an instance of the same class. This function can be used to instantiate the
class in that case. If the values are already normalized, nothing happens. The delayed normalization is implemented
to improve performance.

Informacja: This function does not implicitly set the __traceback___ attribute on the exception value. If
setting the traceback appropriately is desired, the following additional snippet is needed:

if (tb != NULL) {
PyException_SetTraceback (val, tb);
}

void PyErr_GetExcInfo (PyObject **ptype, PyObject **pvalue, PyObject **ptraceback)
Retrieve the exception info, as known from sys.exc_info (). This refers to an exception that was already
caught, not to an exception that was freshly raised. Returns new references for the three objects, any of which may
be NULL. Does not modify the exception info state.

Informacja: This function is not normally used by code that wants to handle exceptions. Rather, it can be used
when code needs to save and restore the exception state temporarily. Use PyErr_SetExcInfo () to restore or

30 Rozdziat 5. Obstuga sytuacji wyjatkowych

The Python/C API, Wydanie 3.7.17

clear the exception state.

Nowe w wersji 3.3.

void PyErr_SetExcInfo (PyObject *type, PyObject *value, PyObject *traceback)
Set the exception info, as known from sys . exc_info () . This refers to an exception that was already caught, not
to an exception that was freshly raised. This function steals the references of the arguments. To clear the exception
state, pass NULL for all three arguments. For general rules about the three arguments, see PyErr_Restore ().

Informacja: This function is not normally used by code that wants to handle exceptions. Rather, it can be used
when code needs to save and restore the exception state temporarily. Use PyErr_GetExcInfo () to read the
exception state.

Nowe w wersji 3.3.

5.5 Signal Handling

int PyErr_CheckSignals ()
This function interacts with Python’s signal handling. It checks whether a signal has been sent to the processes and if
so, invokes the corresponding signal handler. If the signal module is supported, this can invoke a signal handler
written in Python. In all cases, the default effect for SIGINT is to raise the KeyboardInterrupt exception. If
an exception is raised the error indicator is set and the function returns —1; otherwise the function returns 0. The
error indicator may or may not be cleared if it was previously set.

void PyErr_SetInterrupt ()
Simulate the effect of a STGINT signal arriving. The next time PyErr_CheckSignals () is called, the Python
signal handler for SIGINT will be called.

If SIGINT isn’t handled by Python (it was setto signal .SIG_DFLor signal.SIG_IGN), this function does
nothing.

int PySignal_SetWakeupFd (int fd)
This utility function specifies a file descriptor to which the signal number is written as a single byte whenever a
signal is received. fd must be non-blocking. It returns the previous such file descriptor.

The value —1 disables the feature; this is the initial state. This is equivalent to signal.set_wakeup_£d ()
in Python, but without any error checking. fd should be a valid file descriptor. The function should only be called
from the main thread.

Zmienione w wersji 3.5: On Windows, the function now also supports socket handles.

5.6 Exception Classes

PyObject* PyErr_NewException (const char *name, PyObject *base, PyObject *dict)
Return value: New reference. This utility function creates and returns a new exception class. The name argu-
ment must be the name of the new exception, a C string of the form module.classname. The base and
dict arguments are normally NULL. This creates a class object derived from Exception (accessible in C as
PyExc_Exception).

The __module___ attribute of the new class is set to the first part (up to the last dot) of the name argument, and
the class name is set to the last part (after the last dot). The base argument can be used to specify alternate base

5.5. Signal Handling 31

The Python/C API, Wydanie 3.7.17

classes; it can either be only one class or a tuple of classes. The dict argument can be used to specify a dictionary
of class variables and methods.

PyObject* PyErr_NewExceptionWithDoc (const char *name, const char *doc, PyObject *base, Py-
Object *dict)
Return value: New reference. Same as PyErr NewException (), except that the new exception class can easily
be given a docstring: If doc is non-NULL, it will be used as the docstring for the exception class.

Nowe w wersji 3.2.

5.7 Przedmioty Sytuacji Wyjatkowych

PyObject* PyException_GetTraceback (PyObject *ex)
Return value: New reference. Return the traceback associated with the exception as a new reference, as accessible
from Python through __traceback__ . If there is no traceback associated, this returns NULL.

int PyException_SetTraceback (PyObject *ex, PyObject *tb)
Set the traceback associated with the exception to tb. Use Py_None to clear it.

PyObject* PyException_GetContext (PyObject *ex)
Return value: New reference. Return the context (another exception instance during whose handling ex was raised)
associated with the exception as a new reference, as accessible from Python through __context__. If there is
no context associated, this returns NULL.

void PyException_SetContext (PyObject *ex, PyObject *ctx)
Set the context associated with the exception to ctx. Use NULL to clear it. There is no type check to make sure that
ctx is an exception instance. This steals a reference to ctx.

PyObject* PyException_GetCause (PyObject *ex)
Return value: New reference. Return the cause (either an exception instance, or None, setby raise ... from
. . .) associated with the exception as a new reference, as accessible from Python through ___cause__.

void PyException_SetCause (PyObject *ex, PyObject *cause)
Set the cause associated with the exception to cause. Use NULL to clear it. There is no type check to make sure
that cause is either an exception instance or None. This steals a reference to cause.

__suppress_context___isimplicitly set to True by this function.

5.8 Unicode Exception Objects

The following functions are used to create and modify Unicode exceptions from C.

PyObject* PyUnicodeDecodeError_Create (const char *encoding, const char *object, Py_ssize_t length,

Py_ssize_t start, Py_ssize_t end, const char *reason)
Return value: New reference. Create a UnicodeDecodeError object with the attributes encoding, object, length,

start, end and reason. encoding and reason are UTF-8 encoded strings.

PyObject* PyUnicodeEncodeError_Create (const char *encoding, const Py UNICODE *object,
Py_ssize_t length, Py_ssize_t start, Py_ssize_t end, const

char *reason)
Return value: New reference. Create a UnicodeEncodeError object with the attributes encoding, object, length,

start, end and reason. encoding and reason are UTF-8 encoded strings.

PyObject* PyUnicodeTranslateError_Create (const Py UNICODE *object, Py_ssize_t length,

Py_ssize_t start, Py_ssize_t end, const char *reason)
Return value: New reference. Create a UnicodeTranslateError object with the attributes object, length, start,

end and reason. reason is a UTF-8 encoded string.

32 Rozdziat 5. Obstuga sytuacji wyjatkowych

The Python/C API, Wydanie 3.7.17

PyObject* PyUnicodeDecodeError_GetEncoding (PyObject *exc)
PyObject* PyUnicodeEncodeError_GetEncoding (PyObject *exc)
Return value: New reference. Return the encoding attribute of the given exception object.

PyObject* PyUnicodeDecodeError_GetObject (PyObject *exc)
PyObject* PyUnicodeEncodeError_GetObject (PyObject *exc)
PyObject* PyUnicodeTranslateError_GetObject (PyObject *exc)
Return value: New reference. Return the object attribute of the given exception object.

int PyUnicodeDecodeError_GetStart (PyObject *exc, Py_ssize_t *start)

int PyUnicodeEncodeError_GetStart (PyObject *exc, Py_ssize_t *start)

int PyUnicodeTranslateError_GetStart (PyObject *exc, Py_ssize_t *start)
Get the start attribute of the given exception object and place it into *start. start must not be NULL. Return 0 on
success, —1 on failure.

int PyUnicodeDecodeError_SetStart (PyObject *exc, Py_ssize_t start)
int PyUnicodeEncodeError_SetStart (PyObject *exc, Py_ssize_t start)
int PyUnicodeTranslateError_SetStart (PyObject *exc, Py_ssize_t start)
Set the start attribute of the given exception object to start. Return O on success, —1 on failure.

int PyUnicodeDecodeError_GetEnd (PyObject *exc, Py_ssize_t *end)

int PyUnicodeEncodeError_GetEnd (PyObject *exc, Py_ssize_t *end)

int PyUnicodeTranslateError_GetEnd (PyObject *exc, Py_ssize_t *end)
Get the end attribute of the given exception object and place it into *end. end must not be NULL. Return 0 on
success, —1 on failure.

int PyUnicodeDecodeError_SetEnd (PyObject *exc, Py_ssize_t end)
int PyUnicodeEncodeError_SetEnd (PyObject *exc, Py_ssize_t end)
int PyUnicodeTranslateError_SetEnd (PyObject *exc, Py_ssize_t end)
Set the end attribute of the given exception object to end. Return 0 on success, —1 on failure.

PyObject* PyUnicodeDecodeError_GetReason (PyObject *exc)
PyObject* PyUnicodeEncodeError_GetReason (PyObject *exc)
PyObject* PyUnicodeTranslateError_GetReason (PyObject *exc)
Return value: New reference. Return the reason attribute of the given exception object.

int PyUnicodeDecodeError_SetReason (PyObject *exc, const char *reason)
int PyUnicodeEncodeError_SetReason (PyObject *exc, const char *reason)
int PyUnicodeTranslateError_SetReason (PyObject *exc, const char *reason)
Set the reason attribute of the given exception object to reason. Return 0 on success, —1 on failure.

5.9 Kontrola Rekursiji

These two functions provide a way to perform safe recursive calls at the C level, both in the core and in extension mo-
dules. They are needed if the recursive code does not necessarily invoke Python code (which tracks its recursion depth
automatically).

int Py_EnterRecursiveCall (const char *where)
Marks a point where a recursive C-level call is about to be performed.

If USE_STACKCHECK is defined, this function checks if the OS stack overflowed using PyOS_CheckStack ().
In this is the case, it sets a MemoryError and returns a nonzero value.

The function then checks if the recursion limit is reached. If this is the case, a RecursionError is set and a
nonzero value is returned. Otherwise, zero is returned.

where should be a string such as " in instance check™" to be concatenated to the RecursionError
message caused by the recursion depth limit.

5.9. Kontrola Rekursji 33

The Python/C API, Wydanie 3.7.17

void Py_LeaveRecursiveCall ()
Ends a Py_EnterRecursiveCall (). Must be called once for each successful invocation of
Py _EnterRecursiveCall ().

Properly implementing tp_ repr for container types requires special recursion handling. In addition to protecting the
stack, tp_ repr also needs to track objects to prevent cycles. The following two functions facilitate this functionality.
Effectively, these are the C equivalent to reprlib.recursive_repr ().

int Py_ReprEnter (PyObject *object)
Called at the beginning of the t o repr implementation to detect cycles.

If the object has already been processed, the function returns a positive integer. In that case the t p_ repr imple-
mentation should return a string object indicating a cycle. As examples, dict objects return { ...} and 1ist
objectsreturn [...].

The function will return a negative integer if the recursion limit is reached. In that case the t p_ repr implemen-
tation should typically return NULL.

Otherwise, the function returns zero and the tp_ repr implementation can continue normally.

void Py_ReprLeave (PyObject *object)
Ends a Py_ReprEnter (). Must be called once for each invocation of Py_ ReprEnter () that returns zero.

5.10 Sztandarowe Sytuacje Wyjatkowe

All standard Python exceptions are available as global variables whose names are PyExc__ followed by the Python excep-
tion name. These have the type PyObject *; they are all class objects. For completeness, here are all the variables:

Nazwa C Nazwa w jezyku pytonowskim | Notatki
PyExc_BaseException BaseException €))
PyExc_Exception Exception D
PyExc_ArithmeticError ArithmeticError (D
PyExc_AssertionError AssertionError
PyExc_AttributeError AttributeError
PyExc_BlockingIOError BlockingIOError
PyExc_BrokenPipeError BrokenPipeError
PyExc_BufferError BufferError

PyExc_ChildProcessError

ChildProcessError

PyExc_ConnectionAbortedError

ConnectionAbortedError

PyExc_ConnectionError

ConnectionError

PyExc_ConnectionRefusedError

ConnectionRefusedError

PyExc_ConnectionResetError

ConnectionResetError

PyExc_EOFError

EOFError

PyExc_FileExistsError

FileExistsError

PyExc_FileNotFoundError

FileNotFoundError

PyExc_FloatingPointError

FloatingPointError

PyExc_GeneratorExit GeneratorExit
PyExc_ImportError ImportError
PyExc_IndentationError IndentationError
PyExc_IndexError IndexError
PyExc_InterruptedError InterruptedError

PyExc_IsADirectoryError

IsADirectoryError

PyExc_KeyError

KeyError

Kontynuacja na nastepne;j stronie

34

Rozdziat 5. Obstuga sytuacji wyjatkowych

The Python/C API, Wydanie 3.7.17

Nowe

PyExc_ChildProcessError,

Tabela 1 - kontynuacja poprzedniej strony

Nazwa C Nazwa w jezyku pytonowskim | Notatki
PyExc_KeyboardInterrupt KeyboardInterrupt
PyExc_LookupError LookupError (D
PyExc_MemoryError MemoryError

PyExc_ModuleNotFoundError

ModuleNotFoundError

PyExc_NameError

NameError

PyExc_NotADirectoryError

NotADirectoryError

PyExc_NotImplementedError

NotImplementedError

PyExc_OSError

OSError

@

PyExc_OverflowError OverflowError
PyExc_PermissionError PermissionError
PyExc_ProcessLookupError ProcessLookupError
PyExc_RecursionError RecursionError
PyExc_ReferenceError ReferenceError 2)
PyExc_RuntimeError RuntimeError
PyExc_StopAsynclteration StopAsyncIteration
PyExc_StopIteration StopIteration
PyExc_SyntaxError SyntaxError
PyExc_SystemError SystemError
PyExc_SystemExit SystemExit
PyExc_TabError TabError
PyExc_TimeoutError TimeoutError
PyExc_TypeError TypeError

PyExc_UnboundLocalError

UnboundLocalError

PyExc_UnicodeDecodeError

UnicodeDecodeError

PyExc_UnicodeEncodeError

UnicodeEncodeError

PyExc_UnicodeError

UnicodeError

PyExc_UnicodeTranslateError

UnicodeTranslateError

PyExc_ValueError

ValueError

PyExc_ZeroDivisionError

ZeroDivisionError

w wersji 3.3:

PyExc_BlockingIOError,
PyExc_ConnectionError,

PyExc_BrokenPipeError,
PyExc_ConnectionAbortedError,

PyExc_ConnectionRefusedError, PyExc_ConnectionResetError, PyExc_FileExistsError,

PyExc_FileNotFoundError,
PyExc_NotADirectoryError,

PyExc_InterruptedError,
PyExc_PermissionError,

PyExc_TimeoutError were introduced following PEP 3151.

Nowe w wersji 3.5: PyExc_StopAsyncIterationand PyExc_RecursionError

Nowe w wersji 3.6: PyExc_ModuleNotFoundError.

These are compatibility aliases to PyExc_OSError:

Nazwa C

Notatki

PyExc_EnvironmentError

PyExc_IOError

PyExc_WindowsError

(©))

Zmienione w wersji 3.3: These aliases used to be separate exception types.

Uwagi:

(1) To jest podstawowy rodzaj przedmiotu dla innych sztandarowych sytuacji wyjatkowych.

PyExc_ProcessLookupError

PyExc_IsADirectoryError,
and

5.10. Sztandarowe Sytuacje Wyjatkowe

35

https://www.python.org/dev/peps/pep-3151

The Python/C API, Wydanie 3.7.17

(2) Zdefiniowane tylko w systemie Windows; Kod chroniony ktéry uzywa tego przez sprawdzenie czy makrodefinicja
preprocesora MS_WINDOWS jest okreslona.

5.11 Standard Warning Categories

All standard Python warning categories are available as global variables whose names are PyExc__followed by the Python
exception name. These have the type PyOb ject #; they are all class objects. For completeness, here are all the variables:

Nazwa C Nazwa w jezyku pytonowskim Notatki
PyExc_Warning Warning D
PyExc_BytesWarning BytesWarning
PyExc_DeprecationWarning DeprecationWarning
PyExc_FutureWarning FutureWarning
PyExc_ImportWarning ImportWarning
PyExc_PendingDeprecationWarning | PendingDeprecationWarning
PyExc_ResourceWarning ResourceWarning
PyExc_RuntimeWarning RuntimeWarning
PyExc_SyntaxWarning SyntaxWarning
PyExc_UnicodeWarning UnicodeWarning
PyExc_UserWarning UserWarning

Nowe w wersji 3.2: PyExc_ResourceWarning
Uwagi:

(1) This is a base class for other standard warning categories.

36 Rozdziat 5. Obstuga sytuacji wyjatkowych

ROZzDZIAL O

Utilities

The functions in this chapter perform various utility tasks, ranging from helping C code be more portable across platforms,
using Python modules from C, and parsing function arguments and constructing Python values from C values.

6.1 Operating System Utilities

PyObject* PyOS_FSPath (PyObject *path)
Return value: New reference. Return the file system representation for path. If the object is a str or bytes
object, then its reference count is incremented. If the object implements the os.PathLike interface, then
__fspath__ () is returned as long as it is a str or bytes object. Otherwise TypeError is raised and
NULL is returned.

Nowe w wersji 3.6.

int Py_FdIsInteractive (FILE *fp, const char *filename)
Return true (nonzero) if the standard I/O file fp with name filename is deemed interactive. This is the case for files
for which isatty (fileno (fp)) is true. If the global flag Py_TnteractiveFlag is true, this function
also returns true if the filename pointer is NULL or if the name is equal to one of the strings '<stdin>"' or

reeRt.
void PyOS_BeforeFork ()

Function to prepare some internal state before a process fork. This should be called before calling fork () or any
similar function that clones the current process. Only available on systems where fork () is defined.

Nowe w wersji 3.7.

void PyOS_AfterFork_Parent ()
Function to update some internal state after a process fork. This should be called from the parent process after
calling fork () or any similar function that clones the current process, regardless of whether process cloning was
successful. Only available on systems where fork () is defined.

Nowe w wersji 3.7.

void PyOS_AfterFork_Child ()
Function to update internal interpreter state after a process fork. This must be called from the child process after

37

The Python/C API, Wydanie 3.7.17

calling fork (), or any similar function that clones the current process, if there is any chance the process will call
back into the Python interpreter. Only available on systems where fork () is defined.

Nowe w wersji 3.7.
Zobacz takze:

os.register_at_fork() allows registering custom Python functions to be called by
PyOS_BeforeFork (), PyOS_AfterFork_Parent () and PyOS_AfterFork_Child().

void PyOS_AfterFork ()
Function to update some internal state after a process fork; this should be called in the new process if the Python
interpreter will continue to be used. If a new executable is loaded into the new process, this function does not need
to be called.

Niezalecane od wersji 3.7: This function is superseded by PyOS_AfterFork_Child().

int PyOS_CheckStack ()
Return true when the interpreter runs out of stack space. This is a reliable check, but is only available
when USE_STACKCHECK is defined (currently on Windows using the Microsoft Visual C++ compiler).
USE_STACKCHECK will be defined automatically; you should never change the definition in your own code.

PyOS_sighandler_t PyOS_getsig (int i)
Return the current signal handler for signal i. This is a thin wrapper around either sigaction () or signal ().
Do not call those functions directly! PyOS_sighandler_t is a typedef alias for void (*) (int).

PyOS_sighandler_t PyOS_setsig (int i, PyOS_sighandler_t /)
Set the signal handler for signal i to be &; return the old signal handler. This is a thin wrapper around either
sigaction () or signal (). Do not call those functions directly! PyOS_sighandler_t is a typedef alias
for void (*) (int).

wchar_t* Py_DecodeLocale (const char* arg, size_t *size)
Decode a byte string from the locale encoding with the surrogateescape error handler: undecodable bytes are deco-
ded as characters in range U+DC80..U+DCEFF. If a byte sequence can be decoded as a surrogate character, escape
the bytes using the surrogateescape error handler instead of decoding them.

Encoding, highest priority to lowest priority:
e UTF-8 on macOS and Android;
* UTF-8 if the Python UTF-8 mode is enabled;

e ASCITI if the LC_CTYPE localeis "C",nl_langinfo (CODESET) returns the ASCII encoding (or an
alias), and mbstowcs () and wecstombs () functions uses the ISO-8859-1 encoding.

« the current locale encoding.

Return a pointer to a newly allocated wide character string, use PyMem RawFree () to free the memory. If size
is not NULL, write the number of wide characters excluding the null character into *size

Return NULL on decoding error or memory allocation error. If size is not NULL, *size issetto (size_t) -1
on memory error or set to (size_t) —2 on decoding error.

Decoding errors should never happen, unless there is a bug in the C library.
Use the Py_EncodeLocale () function to encode the character string back to a byte string.
Zobacz takze:

The PyUnicode_DecodeFSDefaultAndSize () and PyUnicode_DecodeLocaleAndSize ()
functions.

Nowe w wersji 3.5.

Zmienione w wersji 3.7: The function now uses the UTF-8 encoding in the UTF-8 mode.

38 Rozdziat 6. Utilities

The Python/C API, Wydanie 3.7.17

char* Py_EncodeLocale (const wchar_t *fext, size_t *error_pos)
Encode a wide character string to the locale encoding with the surrogateescape error handler: surrogate characters
in the range U+DC80..U+DCEFF are converted to bytes 0x80..0xFF.

Encoding, highest priority to lowest priority:
e UTF-8 on macOS and Android;
e UTF-8 if the Python UTF-8 mode is enabled;

* ASCITI if the LC_CTYPE localeis "C",nl_langinfo (CODESET) returns the ASCIT encoding (or an
alias), and mbstowcs () and wcstombs () functions uses the ISO-8859-1 encoding.

* the current locale encoding.
The function uses the UTF-8 encoding in the Python UTF-8 mode.

Return a pointer to a newly allocated byte string, use PyMem_Free () to free the memory. Return NULL on
encoding error or memory allocation error

If error_pos is not NULL, *error_pos is set to (size_t) -1 on success, or set to the index of the invalid
character on encoding error.

Use the Py_DecodeLocale () function to decode the bytes string back to a wide character string.
Zmienione w wersji 3.7: The function now uses the UTF-8 encoding in the UTF-8 mode.

Zobacz takze:

The PyUnicode _EncodeFSDefault () and PyUnicode_EncodeLocale () functions.
Nowe w wersji 3.5.

Zmienione w wersji 3.7: The function now supports the UTF-8 mode.

6.2 System Functions

These are utility functions that make functionality from the sys module accessible to C code. They all work with the
current interpreter thread’s sy s module’s dict, which is contained in the internal thread state structure.

PyObject *PySys_GetObject (const char *name)
Return value: Borrowed reference. Return the object name from the sys module or NULL if it does not exist,
without setting an exception.

int PySys_SetObject (const char *name, PyObject *v)
Set name in the sy s module to v unless v is NULL, in which case name is deleted from the sys module. Returns 0
on success, —1 on error.

void PySys_ResetWarnOptions ()
Reset sys.warnoptions to an empty list. This function may be called prior to Py_Tnitialize ().

void PySys_AddWarnOption (const wchar_t *s)
Append s to sys . warnoptions. This function must be called prior to Py_Initialize () inorder to affect
the warnings filter list.

void PySys_AddWarnOptionUnicode (PyObject *unicode)
Append unicode to sys .warnoptions.

Note: this function is not currently usable from outside the CPython implementation, as it must be called prior to
the implicit import of warningsin Py_Initialize () to be effective, but can’t be called until enough of the
runtime has been initialized to permit the creation of Unicode objects.

6.2. System Functions 39

The Python/C API, Wydanie 3.7.17

void PySys_SetPath (const wchar_t *path)
Set sys.path to alist object of paths found in path which should be a list of paths separated with the platform’s
search path delimiter (: on Unix, ; on Windows).

void PySys_WriteStdout (const char *format, ...)
Write the output string described by format to sys . stdout. No exceptions are raised, even if truncation occurs
(see below).

format should limit the total size of the formatted output string to 1000 bytes or less — after 1000 bytes, the output
string is truncated. In particular, this means that no unrestricted ,,%s” formats should occur; these should be limited
using ,,%.<N>s” where <N> is a decimal number calculated so that <N> plus the maximum size of other formatted
text does not exceed 1000 bytes. Also watch out for ,,%f”, which can print hundreds of digits for very large numbers.

If a problem occurs, or sys . stdout is unset, the formatted message is written to the real (C level) stdout.

void PySys_WriteStderr (const char *format, ...)
As PySys_WriteStdout (), but write to sys.stderr or stderr instead.

void PySys_FormatStdout (const char *format, ...)
Function similar to PySys_WriteStdout() but format the message using PyUnicode_ FromFormatV () and
don’t truncate the message to an arbitrary length.

Nowe w wersji 3.2.

void PySys_FormatStderr (const char *format, ...)
As PySys_ FormatStdout (), but write to sys . stderr or stderr instead.

Nowe w wersji 3.2.

void PySys_AddXOption (const wchar_t *s)
Parse s as a set of —-X options and add them to the current options mapping as returned by
PySys_GetXOptions (). This function may be called prior to Py_Tnitialize ().

Nowe w wersji 3.2.

PyObject *PySys_GetXOptions ()
Return value: Borrowed reference. Return the current dictionary of —X options, similarly to sys._xoptions.
On error, NULL is returned and an exception is set.

Nowe w wersji 3.2.

6.3 Process Control

void Py_FatalError (const char *message)
Print a fatal error message and Kkill the process. No cleanup is performed. This function should only be invoked
when a condition is detected that would make it dangerous to continue using the Python interpreter; e.g., when the
object administration appears to be corrupted. On Unix, the standard C library function abort () is called which
will attempt to produce a core file.

void Py_Exit (int status)
Exit the current process. This calls Py FinalizeEx () and then calls the standard C library function
exit (status).If Py _FinalizeEx () indicates an error, the exit status is set to 120.

Zmienione w wersji 3.6: Errors from finalization no longer ignored.

int Py_AtExit (void (*func)())
Register a cleanup function to be called by Py_FinalizeEx (). The cleanup function will be called with no
arguments and should return no value. At most 32 cleanup functions can be registered. When the registration is
successful, Py_ AtExit () returns O; on failure, it returns —1. The cleanup function registered last is called first.

40 Rozdziat 6. Utilities

The Python/C API, Wydanie 3.7.17

Each cleanup function will be called at most once. Since Python’s internal finalization will have completed before
the cleanup function, no Python APIs should be called by func.

6.4 Importing Modules

PyObject* PyImport_ImportModule (const char *name)

Return value: New reference. This is a simplified interface to Py Import_ImportModuleEx () below, leaving
the globals and locals arguments set to NULL and level set to 0. When the name argument contains a dot (when
it specifies a submodule of a package), the fromlist argument is set to the list [' *'] so that the return value is
the named module rather than the top-level package containing it as would otherwise be the case. (Unfortunately,
this has an additional side effect when name in fact specifies a subpackage instead of a submodule: the submodules
specified in the package’s __all__ variable are loaded.) Return a new reference to the imported module, or NULL
with an exception set on failure. A failing import of a module doesn’t leave the module in sys.modules.

This function always uses absolute imports.

PyObject* PyImport_ImportModuleNoBlock (const char *name)
Return value: New reference. This function is a deprecated alias of Py Import_ImportModule ().

Zmienione w wersji 3.3: This function used to fail immediately when the import lock was held by another thread. In
Python 3.3 though, the locking scheme switched to per-module locks for most purposes, so this function’s special
behaviour isn’t needed anymore.

PyObject* PyImport_ImportModuleEx (const char *name, PyObject *globals, PyObject *locals, Py-
Object *fromlist)
Return value: New reference. Import a module. This is best described by referring to the built-in Python function
__import__ ().

The return value is a new reference to the imported module or top-level package, or NULL with an exception set
on failure. Like for __import__ (), the return value when a submodule of a package was requested is normally
the top-level package, unless a non-empty fromlist was given.

Failing imports remove incomplete module objects, like with Py Import_ImportModule ().

PyObject* PyImport_ImportModuleLevelObject (PyObject *name, PyObject *globals, PyObject *lo-
cals, PyObject *fromlist, int level)
Return value: New reference. Import a module. This is best described by referring to the built-in Python function
__import__ (), asthestandard __import__ () function calls this function directly.

The return value is a new reference to the imported module or top-level package, or NULL with an exception set
on failure. Like for __import__ (), the return value when a submodule of a package was requested is normally
the top-level package, unless a non-empty fromlist was given.

Nowe w wersji 3.3.

PyObject* PyImport_ImportModuleLevel (const char *name, PyObject *globals, PyObject *locals, Py-

Object *fromlist, int level)
Return value: New reference. Similar to Py Import_ImportModuleLevelObject (), but the name is a

UTF-8 encoded string instead of a Unicode object.
Zmienione w wersji 3.3: Negative values for /evel are no longer accepted.

PyObject* PyImport_Import (PyObject *name)
Return value: New reference. This is a higher-level interface that calls the current ,,import hook function” (with an

explicit level of 0, meaning absolute import). It invokes the __import__ () function fromthe __builtins_
of the current globals. This means that the import is done using whatever import hooks are installed in the current
environment.

This function always uses absolute imports.

6.4. Importing Modules a1

The Python/C API, Wydanie 3.7.17

PyObject* PyImport_ReloadModule (PyObject *m)
Return value: New reference. Reload a module. Return a new reference to the reloaded module, or NULL with an
exception set on failure (the module still exists in this case).

PyObject* PyImport_AddModuleObject (PyObject *name)
Return value: Borrowed reference. Return the module object corresponding to a module name. The name argument
may be of the form package .module. First check the modules dictionary if there’s one there, and if not, create
a new one and insert it in the modules dictionary. Return NULL with an exception set on failure.

Informacja: This function does not load or import the module; if the module wasn’t already loaded, you will get an
empty module object. Use Py ITmport_ImportModule () or one of its variants to import a module. Package
structures implied by a dotted name for name are not created if not already present.

Nowe w wersji 3.3.

PyObject* PyImport_AddModule (const char *name)
Return value: Borrowed reference. Similar to Py Tmport_AddModuleObject (), but the name is a UTF-8
encoded string instead of a Unicode object.

PyObject* PyImport_ExecCodeModule (const char *name, PyObject *co)

Return value: New reference. Given a module name (possibly of the form package.module) and a code
object read from a Python bytecode file or obtained from the built-in function compile (), load the mo-
dule. Return a new reference to the module object, or NULL with an exception set if an error occurred. na-
me is removed from sys.modules in error cases, even if name was already in sys.modules on entry to
PyImport_ExecCodeModule (). Leaving incompletely initialized modules in sys.modules is dangero-
us, as imports of such modules have no way to know that the module object is an unknown (and probably damaged
with respect to the module author’s intents) state.

The module’s __spec___and__loader__ will be set, if not set already, with the appropriate values. The spec’s
loader will be set to the module’s __1oader__ (if set) and to an instance of SourceFileLoader otherwise.

The module’s __file__ attribute will be set to the code object’s co_filename. If applicable, __cached_
will also be set.

This function will reload the module if it was already imported. See Py Import_ReloadModule () for the
intended way to reload a module.

If name points to a dotted name of the form package .module, any package structures not already created will
still not be created.

See also Py Import_ExecCodeModuleEx () and PyImport_ExecCodeModuleWithPathnames ().

PyObject* PyImport_ExecCodeModuleEx (const char *name, PyObject *co, const char *pathname)
Return value: New reference. Like Py Import_ExecCodeModule (),butthe __ _file_ attribute of the mo-
dule object is set to pathname if it is non-NULL.

See also Py Import_ExecCodeModuleWithPathnames ().

PyObject* PyImport_ExecCodeModuleObject (PyObject *name, PyObject *co, PyObject *pathname, Py-
Object *cpathname)
Return value: New reference. Like Py Import_ExecCodeModuleEx (), but the ___cached___ attribute of
the module object is set to cpathname if it is non-NULL. Of the three functions, this is the preferred one to use.

Nowe w wersji 3.3.

PyObject* PyImport_ExecCodeModuleWithPathnames (const char *name, PyObject *co, const

char *pathname, const char *cpathname)
Return value: New reference. Like Py Import_ExecCodeModuleObject (), but name, pathname and cpa-

thname are UTF-8 encoded strings. Attempts are also made to figure out what the value for pathname should be
from cpathname if the former is set to NULL.

42 Rozdziat 6. Utilities

The Python/C API, Wydanie 3.7.17

Nowe w wersji 3.2.

Zmienione w wersji 3.3: Uses imp . source_from_cache () in calculating the source path if only the bytecode
path is provided.

long PyImport_GetMagicNumber ()
Return the magic number for Python bytecode files (a.k.a. . pyc file). The magic number should be present in the
first four bytes of the bytecode file, in little-endian byte order. Returns —1 on error.

Zmienione w wersji 3.3: Return value of —1 upon failure.

const char * PyImport_GetMagicTag ()
Return the magic tag string for PEP 3147 format Python bytecode file names. Keep in mind that the value at
sys.implementation.cache_tag is authoritative and should be used instead of this function.

Nowe w wersji 3.2.

PyObject* PyImport_GetModuleDict ()
Return value: Borrowed reference. Return the dictionary used for the module administration (a.k.a. sys.
modules). Note that this is a per-interpreter variable.

PyObject* PyImport_GetModule (PyObject *name)
Return value: New reference. Return the already imported module with the given name. If the module has not been
imported yet then returns NULL but does not set an error. Returns NULL and sets an error if the lookup failed.

Nowe w wersji 3.7.

PyObject* PyImport_GetImporter (PyObject *path)
Return value: New reference. Return a finder object for a sys.path/pkg.__path__ item path, possibly by
fetching it from the sys.path_importer_cache dict. If it wasn’t yet cached, traverse sys.path_hooks
until a hook is found that can handle the path item. Return None if no hook could; this tells our caller that the
path based finder could not find a finder for this path item. Cache the resultin sys.path_importer_cache.
Return a new reference to the finder object.

void _PyImport_Init ()
Initialize the import mechanism. For internal use only.

void PyImport_Cleanup ()
Empty the module table. For internal use only.

void _PyImport_Fini ()
Finalize the import mechanism. For internal use only.

int PyImport_ImportFrozenModuleObject (PyObject *name)
Return value: New reference. Load a frozen module named name. Return 1 for success, O if the module is not found,
and -1 with an exception set if the initialization failed. To access the imported module on a successful load, use
PyImport_ImportModule (). (Note the misnomer — this function would reload the module if it was already
imported.)

Nowe w wersji 3.3.
Zmienione w wersji 3.4: The __file___attribute is no longer set on the module.

int PyImport_ImportFrozenModule (const char *name)
Similar to Py Import_ImportFrozenModuleObject (), but the name is a UTF-8 encoded string instead
of a Unicode object.

struct _frozen
This is the structure type definition for frozen module descriptors, as generated by the £reeze utility (see Tools/
freeze/ in the Python source distribution). Its definition, found in Include/import .h, is:

6.4. Importing Modules 43

https://www.python.org/dev/peps/pep-3147

The Python/C API, Wydanie 3.7.17

struct _frozen {
const char *name;
const unsigned char *code;
int size;

bi

const struct _frozen* PyImport_FrozenModules
This pointer is initialized to point to an array of struct _frozen records, terminated by one whose members
are all NULL or zero. When a frozen module is imported, it is searched in this table. Third-party code could play
tricks with this to provide a dynamically created collection of frozen modules.

int PyImport_AppendInittab (const char *name, PyObject* (¥initfunc)(void))
Add a single module to the existing table of built-in modules. This is a convenience wrapper around
PyImport_ExtendInittab (), returning —1 if the table could not be extended. The new module can be
imported by the name name, and uses the function initfunc as the initialization function called on the first attemp-
ted import. This should be called before Py_Tnitialize ().

struct _inittab
Structure describing a single entry in the list of built-in modules. Each of these structures gives the name and
initialization function for a module built into the interpreter. The name is an ASCII encoded string. Programs
which embed Python may use an array of these structures in conjunction with Py Import_ExtendInittab ()
to provide additional built-in modules. The structure is defined in Include/import.h as:

struct _inittab {
const char *name; /* ASCII encoded string */
PyObject* (*initfunc) (void);

bi

int PyImport_ExtendInittab (struct _inittab *newtab)
Add a collection of modules to the table of built-in modules. The newtab array must end with a sentinel entry which
contains NULL for the name field; failure to provide the sentinel value can result in a memory fault. Returns 0 on
success or —1 if insufficient memory could be allocated to extend the internal table. In the event of failure, no
modules are added to the internal table. This should be called before Py Tnitialize ().

6.5 Data marshalling support

These routines allow C code to work with serialized objects using the same data format as the marshal module. There
are functions to write data into the serialization format, and additional functions that can be used to read the data back.
Files used to store marshalled data must be opened in binary mode.

Numeric values are stored with the least significant byte first.

The module supports two versions of the data format: version 0 is the historical version, version 1 shares interned strings
in the file, and upon unmarshalling. Version 2 uses a binary format for floating point numbers. Py_MARSHAL_VERSION
indicates the current file format (currently 2).

void PyMarshal_WriteLongToFile (long value, FILE *file, int version)
Marshal a 1ong integer, value, to file. This will only write the least-significant 32 bits of value; regardless of the
size of the native 1ong type. version indicates the file format.

This function can fail, in which case it sets the error indicator. Use PyErr_ Occurred () to check for that.

void PyMarshal_WriteObjectToFile (PyObject *value, FILE *file, int version)
Marshal a Python object, value, to file. version indicates the file format.

This function can fail, in which case it sets the error indicator. Use PyErr_ Occurred () to check for that.

44 Rozdziat 6. Utilities

The Python/C API, Wydanie 3.7.17

PyObject* PyMarshal_WriteObjectToString (PyObject *value, int version)
Return value: New reference. Return a bytes object containing the marshalled representation of value. version in-
dicates the file format.

The following functions allow marshalled values to be read back in.

long PyMarshal_ReadLongFromFile (FILE *file)
Return a C 1long from the data stream in a FILE* opened for reading. Only a 32-bit value can be read in using
this function, regardless of the native size of 1ong.

On error, sets the appropriate exception (EOFError) and returns —1.

int PyMarshal_ReadShortFromFile (FILE *file)
Return a C short from the data stream in a FILE * opened for reading. Only a 16-bit value can be read in using
this function, regardless of the native size of short.

On error, sets the appropriate exception (EOFError) and returns —1.

PyObject* PyMarshal_ReadObjectFromFile (FILE *file)
Return value: New reference. Return a Python object from the data stream in a FILE* opened for reading.

On error, sets the appropriate exception (EOFError, ValueError or TypeError) and returns NULL.

PyObject* PyMarshal_ReadLastObjectFromFile (FILE *file)
Return value: New reference. Return a Python object from the data stream in a FILE* opened for reading. Unlike
PyMarshal_ ReadObjectFromFile (), this function assumes that no further objects will be read from the
file, allowing it to aggressively load file data into memory so that the de-serialization can operate from data in
memory rather than reading a byte at a time from the file. Only use these variant if you are certain that you won’t
be reading anything else from the file.

On error, sets the appropriate exception (EOFError, ValueError or TypeError) and returns NULL.

PyObject* PyMarshal_ReadObjectFromString (const char *data, Py_ssize_t len)
Return value: New reference. Return a Python object from the data stream in a byte buffer containing len bytes
pointed to by data.

On error, sets the appropriate exception (EOFError, ValueError or TypeError) and returns NULL.

6.6 Pobieranie kolejnych rzeczy podanych na wejsciu i konstruowa-
nie wartosci.

Te dzialania sg uzyteczne przy tworzeniu swoich wlasnych zadan rozszerzajacych i rozszerzajacych sposobéw dziatania.
Dodatkowe informacje i przyktady dostepne sa w extending-index.

The first three of these functions described, PyArg ParseTuple (), PyArg ParseTupleAndKeywords (),
and PyArg_Parse (), all use format strings which are used to tell the function about the expected arguments. The
format strings use the same syntax for each of these functions.

6.6. Pobieranie kolejnych rzeczy podanych na wejsciu i konstruowanie wartosci. 45

The Python/C API, Wydanie 3.7.17

6.6.1 Parsowanie argumentow

napis ksztattujacy moze by¢ pusty lub sktadacd sig¢ z ,,jednostek ksztaltujacych”. Jednostka uksztattowania opisuje jeden
pytonowski przedmiot; jest to zazwyczaj jedna litera, lub kolejka jednostek uksztaltowania w ujgtych w nawias. Z kilkoma
wyjatkami, jednostka uksztaltowania, ktdra nie jest kolejka jednostek ujeta w nawias zwykle odpowiada pojedynczo
umiejscowionej rzeczy przekazywanej dla tych zadad. W ponizszych zapisach cytat jest jednostka ksztattujaca; polecenie
ujete w nawias okragly () oznacza typ przedmiotu w jezyku pytonowskim, ktéry odpowiada jednostce ksztaltujacej, a
zapis ujety w nawiasie kwadratowym [| okreSla typ przedmiotu / przedmiotéw w jezyku C, ktérego miejsce powinno
zosta¢ wskazane i przekazane dla zadania.

Napisy i skrzynki wymiany

These formats allow accessing an object as a contiguous chunk of memory. You don’t have to provide raw storage for the
returned unicode or bytes area.

In general, when a format sets a pointer to a buffer, the buffer is managed by the corresponding Python object, and the
buffer shares the lifetime of this object. You won’t have to release any memory yourself. The only exceptions are es,
es#, et and et #.

However, when a Py_buf fer structure gets filled, the underlying buffer is locked so that the caller can subsequently
use the buffer even inside a Py BEGIN_ALLOW_THREADS block without the risk of mutable data being resized or
destroyed. As a result, you have to call PyBuffer Release () after you have finished processing the data (or in any
early abort case).

Bufory nie sa zakoriczone znakiem NULL, chyba ze zaznaczono inacze;j.

Some formats require a read-only bytes-like object, and set a pointer instead of a buffer structure. They work by checking
that the object’s PyBufferProcs.bf_releasebuffer field is NULL, which disallows mutable objects such as
bytearray.

Informacja: For all # variants of formats (s#, y#, etc.), the type of the length argument (int or Py_ssize_t)is con-
trolled by defining the macro PY_SSIZE_T_CLEAN before including Python. h. If the macro was defined, length is a
Py_ssize_t rather than an int. This behavior will change in a future Python version to only support Py_ssize_t
and drop int support. It is best to always define PY_SSIZE_T_CLEAN.

s (str) [const char *] Convert a Unicode object to a C pointer to a character string. A pointer to an existing string is
stored in the character pointer variable whose address you pass. The C string is NUL-terminated. The Python string
must not contain embedded null code points; if it does, a ValueError exception is raised. Unicode objects are
converted to C strings using 'ut £-8"' encoding. If this conversion fails, a UnicodeError is raised.

Informacja: This format does not accept bytes-like objects. If you want to accept filesystem paths and convert them
to C character strings, it is preferable to use the O& format with PyUnicode_FSConverter () as converter.

Zmienione w wersji 3.5: Previously, TypeError was raised when embedded null code points were encountered
in the Python string.

s* (str or bytes-like object) [Py_buffer] This format accepts Unicode objects as well as bytes-like objects. It fills a
Py_buffer structure provided by the caller. In this case the resulting C string may contain embedded NUL
bytes. Unicode objects are converted to C strings using 'ut £-8"' encoding.

s# (str, read-only bytes-like object) [const char *, int or Py_ssize_t] Like s*, except that it doesn’t accept mu-
table objects. The result is stored into two C variables, the first one a pointer to a C string, the second one its
length. The string may contain embedded null bytes. Unicode objects are converted to C strings using 'ut£-8"'
encoding.

46 Rozdziat 6. Utilities

The Python/C API, Wydanie 3.7.17

z (str or None) [const char *] Like s, but the Python object may also be None, in which case the C pointer is set to
NULL.

z* (str, bytes-like object or None) [Py_buffer] Like s*, but the Python object may also be None, in which case the
buf member of the Py_ buf fer structure is set to NULL.

z# (str, read-only bytes-like object or None) [const char *, int or Py_ssize_t] Like s#, but the Python object
may also be None, in which case the C pointer is set to NULL.

y (read-only byfes-like object) [const char *] This format converts a bytes-like object to a C pointer to a character
string; it does not accept Unicode objects. The bytes buffer must not contain embedded null bytes; if it does, a
ValueError exception is raised.

Zmienione w wersji 3.5: Previously, TypeError was raised when embedded null bytes were encountered in the
bytes buffer.

y* (bytes-like object) [Py_buffer] This variant on s* doesn’t accept Unicode objects, only bytes-like objects. This is
the recommended way to accept binary data.

y# (read-only bytes-like object) [const char *, int or Py_ssize_t] Ten wariant s# nie akceptuje obiektéw Unico-
de, a jedynie bajto-podobne obiekty.

S (bytes) [PyBytesObject *] Requires that the Python object is a bytes object, without attempting any conversion.
Raises TypeError if the object is not a bytes object. The C variable may also be declared as PyObject *.

Y (bytearray) [PyByteArrayObject *] Requires that the Python object is a byt earray object, without attempting
any conversion. Raises TypeError if the objectis nota bytearray object. The C variable may also be declared
as PyObject *.

u (str) [const Py_UNICODE *] Convert a Python Unicode object to a C pointer to a NUL-terminated buffer of Uni-
code characters. You must pass the address of a Py_ UNICODE pointer variable, which will be filled with the
pointer to an existing Unicode buffer. Please note that the width of a Py_ UNTCODE character depends on compi-
lation options (it is either 16 or 32 bits). The Python string must not contain embedded null code points; if it does,
aValueError exception is raised.

Zmienione w wersji 3.5: Previously, TypeError was raised when embedded null code points were encountered
in the Python string.

Deprecated since version 3.3, will be removed in version 4.0: Part of the old-style Py UNICODE API; please
migrate to using PyUnicode AsWideCharString().

u# (str) [const Py_UNICODE *, int or Py_ssize_t] This variant on u stores into two C variables, the first one a
pointer to a Unicode data buffer, the second one its length. This variant allows null code points.

Deprecated since version 3.3, will be removed in version 4.0: Part of the old-style Py_UNICODE API; please
migrate to using PyUnicode AsWideCharString ().

Z (str or None) [const Py_UNICODE *] Like u, but the Python object may also be None, in which case the
Py_UNICODE pointer is set to NULL.

Deprecated since version 3.3, will be removed in version 4.0: Part of the old-style Py_UNICODE API; please
migrate to using PyUnicode AsWideCharString ().

Z# (str or None) [const Py_UNICODE *, int or Py_ssize_t] Like u#, but the Python object may also be None,
in which case the Py UNICODE pointer is set to NULL.

Deprecated since version 3.3, will be removed in version 4.0: Part of the old-style Py_UNICODE API; please
migrate to using PyUnicode AsWideCharString ().

U (str) [PyObject *] Requires that the Python object is a Unicode object, without attempting any conversion. Raises
TypeError if the object is not a Unicode object. The C variable may also be declared as PyOb ject *.

6.6. Pobieranie kolejnych rzeczy podanych na wejsciu i konstruowanie wartosci. 47

The Python/C API, Wydanie 3.7.17

w* (read-write bytes-like object) [Py_buffer] This format accepts any object which implements the read-write buffer

interface. Itfills a Py_buf fer structure provided by the caller. The buffer may contain embedded null bytes. The
caller have to call PyBuffer Release () when itis done with the buffer.

es (str) [const char *encoding, char **buffer] Ten wariant s jest uzywany do zakodowania Unicode w buforze zna-

kéw. To dziata tylko dla zakodowanych danych bez osadzonych znakéw NUL.

This format requires two arguments. The first is only used as input, and must be a const char* which points
to the name of an encoding as a NUL-terminated string, or NULL, in which case 'ut £-8"' encoding is used. An
exception is raised if the named encoding is not known to Python. The second argument must be a char* *; the
value of the pointer it references will be set to a buffer with the contents of the argument text. The text will be
encoded in the encoding specified by the first argument.

PyArg_ParseTuple () will allocate a buffer of the needed size, copy the encoded data into this buffer and
adjust *buffer to reference the newly allocated storage. The caller is responsible for calling PyMem Free () to
free the allocated buffer after use.

et (str, bytes or bytearray) [const char *encoding, char **buffer] Podobnie jak es z wyjatkiem tego, ze

obiekty ciagéw znakow sa przekazywane dalej bez ich zapisywania. Zamiast tego implementacja zaktada, ze obiekt
taicucha znakéw wykorzystuje kodowanie przekazane jako parametr.

es# (str) [const char *encoding, char **buffer, int or Py_ssize_t *buffer_length] Ten wariant s# uzywany

jest do kodowania Unicode w buforze znakéw. W przeciwieristwie do formatu es, ten wariant pozwala wpro-
wadza¢ dane zawierajace znaki NUL.

It requires three arguments. The first is only used as input, and must be a const char* which points to the name
of an encoding as a NUL-terminated string, or NULL, in which case 'ut £-8"' encoding is used. An exception is
raised if the named encoding is not known to Python. The second argument must be a char* *; the value of the
pointer it references will be set to a buffer with the contents of the argument text. The text will be encoded in the
encoding specified by the first argument. The third argument must be a pointer to an integer; the referenced integer
will be set to the number of bytes in the output buffer.

Istnieja dwa tryby pracy:

If *buffer points a NULL pointer, the function will allocate a buffer of the needed size, copy the encoded da-
ta into this buffer and set *buffer to reference the newly allocated storage. The caller is responsible for calling
PyMem_Free () to free the allocated buffer after usage.

If *buffer points to a non-NULL pointer (an already allocated buffer), PyArg ParseTuple () will use this
location as the buffer and interpret the initial value of *buffer_length as the buffer size. It will then copy the encoded
data into the buffer and NUL-terminate it. If the buffer is not large enough, a ValueError will be set.

W obu przypadkach, *buffer_length jest ustawiany na dtugo$¢ zakodowanych danych z pominigciem zakariczaja-
cego znaku NUL.

et# (str,bytes or bytearray) [const char *encoding, char **buffer, int or Py_ssize_t *buffer_length]

Tak samo, jak w es# oprocz tego, ze obiekty ciggu bajtéw sa przekazywane do funkcji bez ich zapisywania.
Zamiast tego, implementacja zaklada ze obiekt ciagu bajtéw uzywa kodowania przekazywanego w parametrze.

48

Rozdziat 6. Utilities

The Python/C API, Wydanie 3.7.17

Liczby
b (int) [unsigned char] Convert a nonnegative Python integer to an unsigned tiny int, stored in a C unsigned
char.

B (int) [unsigned char] Convert a Python integer to a tiny int without overflow checking, stored in a C unsigned
char.

h (int) [short int] Convert a Python integer to a C short int.

H (int) [unsigned short int] Convert a Python integer to a C unsigned short int, without overflow checking.
i (int) [int] Convert a Python integer to a plain C int.

I (int) [unsigned int] Convert a Python integer to a C unsigned int, without overflow checking.

1 (int) [long int] Convert a Python integer to a C long int.

k (int) [unsigned long] Convert a Python integer to a C unsigned long without overflow checking.

L (int) [long long] Convert a Python integer to a C long long.

K (int) [unsigned long long] Convert a Python integer to a C unsigned long long without overflow checking.
n (int) [Py_ssize_t] Convert a Python integertoa C Py_ssize_t.

c (bytes or bytearray of length 1) [char] Convert a Python byte, represented asabytes or bytearray object
of length 1, toa C char.

Zmienione w wersji 3.3: Allow bytearray objects.
C (str of length 1) [int] Convert a Python character, represented as a st r object of length 1,toa C int.
£ (float) [float] Convert a Python floating point number to a C f1oat.
d (float) [double] Convert a Python floating point number to a C double.

D (complex) [Py_complex] Convert a Python complex number to a C Py__compIex structure.

Inne obiekty

O (object) [PyObject *] Store a Python object (without any conversion) in a C object pointer. The C program thus
receives the actual object that was passed. The object’s reference count is not increased. The pointer stored is not
NULL.

0! (object) [typeobject, PyObject *] Store a Python object in a C object pointer. This is similar to O, but takes two
C arguments: the first is the address of a Python type object, the second is the address of the C variable (of ty-
pe PyObject *) into which the object pointer is stored. If the Python object does not have the required type,
TypeError is raised.

O& (object) [converter, anything] Convert a Python object to a C variable through a converter function. This takes two
arguments: the first is a function, the second is the address of a C variable (of arbitrary type), converted to void
*. The converter function in turn is called as follows:

status = converter (object, address);

where object is the Python object to be converted and address is the void* argument that was passed to the
PyArg_Parse* () function. The returned status should be 1 for a successful conversion and 0 if the conversion
has failed. When the conversion fails, the converter function should raise an exception and leave the content of
address unmodified.

6.6. Pobieranie kolejnych rzeczy podanych na wejsciu i konstruowanie wartosci. 49

The Python/C API, Wydanie 3.7.17

If the converter returns Py_CLEANUP_SUPPORTED, it may get called a second time if the argument parsing
eventually fails, giving the converter a chance to release any memory that it had already allocated. In this second
call, the object parameter will be NULL; address will have the same value as in the original call.

Zmienione w wersji 3.1: Py_ CLEANUP_SUPPORTED was added.

p (bool) [int] Tests the value passed in for truth (a boolean predicate) and converts the result to its equivalent C
true/false integer value. Sets the int to 1 if the expression was true and 0 if it was false. This accepts any valid
Python value. See truth for more information about how Python tests values for truth.

Nowe w wersji 3.3.

(items) (tuple) [matching-items] Obiekt musi by¢ sekwencja jezyka Python, ktérej dtugos$¢ jest liczba elementéw
formatu mierzong w elementach. Argumenty jezyka C musza odpowiada¢ poszczegdlnym jednostkom formatu w
elementach. Jednostki formatu dla sekwencji moga by¢ zagniezdzane.

Mozliwe jest przekazywanie liczb catkowitych ,,dtugich” (liczb catkowitych, ktérych warto$¢ przekracza warto$¢ stalej
LONG_MAX okreslong dla danej architektury) chociaz zadne wlasciwe sprawdzenie zakresu nie jest wykonywane - naj-
bardziej znaczace cyfry dwdjkowe sa w milczeniu obcinane, gdy docelowy obszar pamigci jest zbyt maty, aby przyjacé
warto$¢ (w rzeczywistosci sktadnia jest odziedziczona po rzutowaniu z jgzyka C — twoje do§wiadczenia moga si¢ r6znic).

Kilka innych znakdw ma jeszcze znaczenie w ciggu formatu. Nie moga one wystapi¢ wewnatrz zagniezdzonych nawiasach
okraglych. Sa to:

| Indicates that the remaining arguments in the Python argument list are optional. The C variables corresponding to
optional arguments should be initialized to their default value — when an optional argument is not specified,
PyArg_ParseTuple () does not touch the contents of the corresponding C variable(s).

$ PyArg ParseTupleAndKeywords () only: Indicates that the remaining arguments in the Python argument list
are keyword-only. Currently, all keyword-only arguments must also be optional arguments, so | must always be
specified before $ in the format string.

Nowe w wersji 3.3.

: The list of format units ends here; the string after the colon is used as the function name in error messages (the
»associated value” of the exception that PyArg ParseTuple () raises).

; Natym koriczy si¢ lista jednostek formatu; ciag po Sredniku jest traktowany jako informacja o bledzie do uzycia zamiast
automatycznej wiadomosci o btedzie. Znaki dwukropka : i $rednika ; wzajemnie si¢ wykluczaja.

Zwré uwage, ze kazde odniesienie do obiektu Pythona ktére jest dostarczone do wywotujacego funkcje jest odniesieniem
pozyczonym; nie zmniejsza ich liczby odniesier!

Dodatkowe parametry przekazywane do tych funkcji musza by¢ adresami zmiennych ktérych typ jest okreslany przez
ciag formatu; sa one uzywane do przechowywania wartosci z krotki wejSciowe;j. Jest pare przypadkéw, jak opisuje to lista
jednostek formatu powyzej, gdzie te parametry sa uzywane jako wprowadzane wartoSci; w takich przypadku powinny
one odpowiadaé temu, co jest okreslone we wtasciwych im jednostach formatu.

For the conversion to succeed, the arg object must match the format and the format must be exhausted. On success,
the PyArg_Parse* () functions return true, otherwise they return false and raise an appropriate exception. When the
PyArg Parse* () functions fail due to conversion failure in one of the format units, the variables at the addresses
corresponding to that and the following format units are left untouched.

50 Rozdziat 6. Utilities

The Python/C API, Wydanie 3.7.17

Funkcje interfejsu programowania aplikacji

int PyArg_ParseTuple (PyObject *args, const char *format, ...)
Parse the parameters of a function that takes only positional parameters into local variables. Returns true on success;
on failure, it returns false and raises the appropriate exception.

int PyArg_VaParse (PyObject *args, const char *format, va_list vargs)
Identical to PyArg_ParseTuple (), except that it accepts a va_list rather than a variable number of arguments.

int PyArg_ParseTupleAndKeywords (PyObject *args, PyObject *kw, const char *format, char *key-

words[], ...)
Parse the parameters of a function that takes both positional and keyword parameters into local variables. The

keywords argument is a NULL-terminated array of keyword parameter names. Empty names denote positional-only
parameters. Returns true on success; on failure, it returns false and raises the appropriate exception.

Zmienione w wersji 3.6: Added support for positional-only parameters.

int PyArg_VaParseTupleAndKeywords (PyObject *args, PyObject *kw, const char *format, char *key-
words(], va_list vargs)
Identical to PyArg_ParseTupleAndKeywords (),except that it accepts a va_list rather than a variable num-

ber of arguments.

int PyArg_ValidateKeywordArguments (PyObject *)
Ensure that the keys in the keywords argument dictionary are strings. This is only needed if
PyArg ParseTupleAndKeywords () isnot used, since the latter already does this check.

Nowe w wersji 3.2.

int PyArg_Parse (PyObject *args, const char *format, ...)
Function used to deconstruct the argument lists of ,,0ld-style” functions — these are functions which use the
METH_OLDARGS parameter parsing method, which has been removed in Python 3. This is not recommended
for use in parameter parsing in new code, and most code in the standard interpreter has been modified to no longer
use this for that purpose. It does remain a convenient way to decompose other tuples, however, and may continue
to be used for that purpose.

int PyArg_UnpackTuple (PyObject *args, const char *name, Py_ssize_t min, Py_ssize_t max, ...)

A simpler form of parameter retrieval which does not use a format string to specify the types of the arguments.
Functions which use this method to retrieve their parameters should be declared as METH_VARARGS in function or
method tables. The tuple containing the actual parameters should be passed as args; it must actually be a tuple. The
length of the tuple must be at least min and no more than max; min and max may be equal. Additional arguments
must be passed to the function, each of which should be a pointer to a PyOb ject * variable; these will be filled
in with the values from args; they will contain borrowed references. The variables which correspond to optional
parameters not given by args will not be filled in; these should be initialized by the caller. This function returns true
on success and false if args is not a tuple or contains the wrong number of elements; an exception will be set if
there was a failure.

This is an example of the use of this function, taken from the sources for the _weakre f helper module for weak
references:

static PyObject *
weakref_ref (PyObject *self, PyObject *args)
{

PyObject *object;

PyObject *callback = NULL;

PyObject *result = NULL;

if (PyArg_UnpackTuple (args, "ref", 1, 2, &object, &callback)) {
result = PyWeakref_ NewRef (object, callback);

(ciag dalszy na nastgpnej stronie)

6.6. Pobieranie kolejnych rzeczy podanych na wejsciu i konstruowanie wartosci. 51

The Python/C API, Wydanie 3.7.17

(kontynuacja poprzedniej strony)

return result;

The call to PyArg UnpackTuple () in this example is entirely equivalent to this call to
PyArg ParseTuple():

PyArg_ParseTuple (args, "O|O:ref", &object, &callback)

6.6.2 Budowanie wartosci

PyObject* Py_BuildValue (const char *format, ...)

Return value: New reference. Create a new value based on a format string similar to those accepted by the
PyArg Parse* () family of functions and a sequence of values. Returns the value or NULL in the case of
an error; an exception will be raised if NULL is returned.

Py_BuildValue () does not always build a tuple. It builds a tuple only if its format string contains two or more
format units. If the format string is empty, it returns None; if it contains exactly one format unit, it returns whatever
object is described by that format unit. To force it to return a tuple of size 0 or one, parenthesize the format string.

When memory buffers are passed as parameters to supply data to build objects, as for the s and s# for-
mats, the required data is copied. Buffers provided by the caller are never referenced by the objects created by
Py_BuildValue (). In other words, if your code invokes malloc () and passes the allocated memory to
Py_BuildValue (), your code is responsible for calling free () for that memory once Py_BuildValue ()
returns.

In the following description, the quoted form is the format unit; the entry in (round) parentheses is the Python
object type that the format unit will return; and the entry in [square] brackets is the type of the C value(s) to be
passed.

The characters space, tab, colon and comma are ignored in format strings (but not within format units such as s #).
This can be used to make long format strings a tad more readable.

s (str or None) [const char *] Convert a null-terminated C string to a Python str object using 'utf£-8"
encoding. If the C string pointer is NULL, None is used.

s# (str or None) [const char *, int or Py_ssize_t] Convert a C string and its length to a Python st r ob-
jectusing 'ut £-8"' encoding. If the C string pointer is NULL, the length is ignored and None is returned.

y (bytes) [const char *] This converts a C string to a Python bytes object. If the C string pointer is NULL,
None is returned.

yv# (bytes) [const char *, int or Py_ssize_t] This converts a C string and its lengths to a Python object. If
the C string pointer is NULL, None is returned.

z (str or None) [const char *] Same as s.
z# (str or None) [const char *, int or Py_ssize_t] Same as s#.

u (str) [const wchar_t *] Convert a null-terminated wchar_t buffer of Unicode (UTF-16 or UCS-4) data to
a Python Unicode object. If the Unicode buffer pointer is NULL, None is returned.

u# (str) [const wchar_t *, int or Py_ssize_t] Convert a Unicode (UTF-16 or UCS-4) data buffer and its
length to a Python Unicode object. If the Unicode buffer pointer is NULL, the length is ignored and None is
returned.

U (str or None) [const char *] Same as s.

U# (str or None) [const char *, int or Py_ssize_t] Same as s#.

52

Rozdziat 6. Utilities

The Python/C API, Wydanie 3.7.17

i (int) [int] Convert a plain C int to a Python integer object.

b (int) [char] Convert a plain C char to a Python integer object.

h (int) [short int] Convert a plain C short int to a Python integer object.

1 (int) [long int] Converta C long int to a Python integer object.

B (int) [unsigned char] Converta C unsigned char to a Python integer object.

H (int) [unsigned short int] Converta C unsigned short int toa Python integer object.

I (int) [unsigned int] Convert a C unsigned int to a Python integer object.

k (int) [unsigned long] Converta C unsigned long to a Python integer object.

L (int) [long long] Converta C long long to a Python integer object.

K (int) [unsigned long long] Converta C unsigned long long to a Python integer object.

n (int) [Py_ssize_t] Converta C Py_ssize_t to a Python integer.

c (bytes of length 1) [char] Converta C int representing a byte to a Python bytes object of length 1.
C (str of length 1) [int] Convert a C int representing a character to Python st r object of length 1.
d (float) [double] Converta C double to a Python floating point number.

f (float) [float] Converta C f1loat to a Python floating point number.

D (complex) [Py_complex *] Converta C Py_complex structure to a Python complex number.

O (object) [PyObject *] Pass a Python object untouched (except for its reference count, which is incremented by
one). If the object passed in is a NULL pointer, it is assumed that this was caused because the call producing
the argument found an error and set an exception. Therefore, Py BuildValue () will return NULL but
won’t raise an exception. If no exception has been raised yet, SystemError is set.

S (object) [PyObject *] Same as O.

N (object) [PyObject *] Same as O, except it doesn’t increment the reference count on the object. Useful when
the object is created by a call to an object constructor in the argument list.

O& (object) [converter, anything] Convert anything to a Python object through a converter function. The function
is called with anything (which should be compatible with void *) as its argument and should return a ,,new”
Python object, or NULL if an error occurred.

(items) (tuple) [matching-items] Convert a sequence of C values to a Python tuple with the same number
of items.

[items] (1ist) [matching-items] Convert a sequence of C values to a Python list with the same number of
items.

{items} (dict) [matching-items] Convert a sequence of C values to a Python dictionary. Each pair of conse-
cutive C values adds one item to the dictionary, serving as key and value, respectively.

If there is an error in the format string, the SystemError exception is set and NULL returned.

PyObject* Py_VaBuildValue (const char *format, va_list vargs)
Return value: New reference. Identicalto Py_ BuildValue (),exceptthatitacceptsava_list rather than a variable
number of arguments.

6.6. Pobieranie kolejnych rzeczy podanych na wejsciu i konstruowanie wartosci. 53

The Python/C API, Wydanie 3.7.17

6.7 String conversion and formatting

Functions for number conversion and formatted string output.

int PyOS_snprint £ (char *str, size_t size, const char *format, ...)
Output not more than size bytes to str according to the format string format and the extra arguments. See the Unix
man page snprintf (2).

int PyOS_vsnprint £ (char *str, size_t size, const char *format, va_list va)
Output not more than size bytes to str according to the format string format and the variable argument list va. Unix
man page vsnprintf (2).

PyOS_snprintf () and PyOS_vsnprintf () wrap the Standard C library functions snprintf () and
vsnprintf (). Their purpose is to guarantee consistent behavior in corner cases, which the Standard C functions
do not.

The wrappers ensure that str*[*size-1] is always ' \ 0 ' upon return. They never write more than size bytes (including the
trailing ' \ 0 ") into str. Both functions require that str != NULL, size > 0Oand format != NULL.

If the platform doesn’t have vsnprintf () and the buffer size needed to avoid truncation exceeds size by more than
512 bytes, Python aborts witha Py FatalError().

The return value (rv) for these functions should be interpreted as follows:

e When 0 <= rv < size, the output conversion was successful and rv characters were written to st (excluding
the trailing ' \0 ' byte at s&r*[*rv]).

e When rv >= size, the output conversion was truncated and a buffer with rv + 1 bytes would have been
needed to succeed. str*[*size-1]is '\ 0" in this case.

e When rv < 0, ,something bad happened.” str*[*size-1]is ' \ 0 ' in this case too, but the rest of s# is undefined.
The exact cause of the error depends on the underlying platform.

The following functions provide locale-independent string to number conversions.

double PyOS_string_to_double (const char *s, char **endptr, PyObject *overflow_exception)
Convert a string s to a double, raising a Python exception on failure. The set of accepted strings corresponds
to the set of strings accepted by Python’s f1oat () constructor, except that s must not have leading or trailing
whitespace. The conversion is independent of the current locale.

If endptr is NULL, convert the whole string. Raise ValueError and return —1. 0 if the string is not a valid
representation of a floating-point number.

If endptr is not NULL, convert as much of the string as possible and set *endpt r to point to the first unconverted
character. If no initial segment of the string is the valid representation of a floating-point number, set *endptr
to point to the beginning of the string, raise ValueError, and return —1 . 0.

If s represents a value that is too large to store in a float (for example, "1e500" is such a string on many platforms)
then if overflow_exception is NULL return Py_HUGE_VAL (with an appropriate sign) and don’t set any
exception. Otherwise, over f low_except ion must point to a Python exception object; raise that exception and
return —1 . 0. In both cases, set *endptr to point to the first character after the converted value.

If any other error occurs during the conversion (for example an out-of-memory error), set the appropriate Python
exception and return —1. 0.

Nowe w wersji 3.1.

char* PyOS_double_to_string (double val, char format_code, int precision, int flags, int *ptype)
Convert a double val to a string using supplied format_code, precision, and flags.

format_code mustbe one of 'e', 'E', "', 'F', 'g', 'G"' or 'r'.For 'r', the supplied precision must be 0
and is ignored. The ' r' format code specifies the standard repr () format.

54 Rozdziat 6. Utilities

The Python/C API, Wydanie 3.7.17

flags can be zero or more of the values Py_DTSF_SIGN, Py_DTSF_ADD_DOT_0, or Py_DTSF_ALT, or-ed
together:

e Py_DTSF_SIGN means to always precede the returned string with a sign character, even if val is non-
negative.

e Py_DTSF_ADD_DOT_0 means to ensure that the returned string will not look like an integer.

e Py_DTSF_ALT means to apply ,alternate” formatting rules. See the documentation for the
PyOS_snprintf () "#' specifier for details.

If ptype is non-NULL, then the value it points to will be set to one of Py_DTST_FINITE,Py_DTST_INFINITE,
or Py_DTST_NAN, signifying that val is a finite number, an infinite number, or not a number, respectively.

The return value is a pointer to buffer with the converted string or NULL if the conversion failed. The caller is
responsible for freeing the returned string by calling PyMem Free ().

Nowe w wersji 3.1.

int PyOS_stricmp (const char *s/, const char *s2)
Case insensitive comparison of strings. The function works almost identically to st rcmp () except that it ignores
the case.

int PyOS_strnicmp (const char *s/, const char *s2, Py_ssize_t size)
Case insensitive comparison of strings. The function works almost identically to st rncmp () except that it ignores
the case.

6.8 Reflection

PyObject* PyEval_GetBuiltins ()
Return value: Borrowed reference. Return a dictionary of the builtins in the current execution frame, or the inter-
preter of the thread state if no frame is currently executing.

PyObject* PyEval_GetLocals ()
Return value: Borrowed reference. Return a dictionary of the local variables in the current execution frame, or NULL
if no frame is currently executing.

PyObject* PyEval_GetGlobals ()
Return value: Borrowed reference. Return a dictionary of the global variables in the current execution frame, or
NULL if no frame is currently executing.

PyFrameObject* PyEval_GetFrame ()
Return value: Borrowed reference. Return the current thread state’s frame, which is NULL if no frame is currently
executing.

int PyFrame_GetLineNumber (PyFrameObject *frame)
Return the line number that frame is currently executing.

const char* PyEval_GetFuncName (PyObject *func)
Return the name of func if it is a function, class or instance object, else the name of funcs type.

const char* PyEval_GetFuncDesc (PyObject *func)
Return a description string, depending on the type of func. Return values include ,,()” for functions and methods, ”
constructor”, ” instance”, and ” object”. Concatenated with the result of PyEval GetFuncName (), the result

will be a description of func.

6.8. Reflection 55

The Python/C API, Wydanie 3.7.17

6.9 Codec registry and support functions

int PyCodec_Register (PyObject *search_function)
Register a new codec search function.

As side effect, this tries to load the encodings package, if not yet done, to make sure that it is always first in the
list of search functions.

int PyCodec_KnownEncoding (const char *encoding)
Return 1 or 0 depending on whether there is a registered codec for the given encoding. This function always
succeeds.

PyObject* PyCodec_Encode (PyObject *object, const char *encoding, const char *errors)
Return value: New reference. Generic codec based encoding API.

object is passed through the encoder function found for the given encoding using the error handling method defined
by errors. errors may be NULL to use the default method defined for the codec. Raises a LookupError if no
encoder can be found.

PyObject* PyCodec_Decode (PyObject *object, const char *encoding, const char *errors)
Return value: New reference. Generic codec based decoding API.

object is passed through the decoder function found for the given encoding using the error handling method defined
by errors. errors may be NULL to use the default method defined for the codec. Raises a LookupError if no
encoder can be found.

6.9.1 Codec lookup API

In the following functions, the encoding string is looked up converted to all lower-case characters, which makes encodings
looked up through this mechanism effectively case-insensitive. If no codec is found, a KeyError is set and NULL
returned.

PyObject* PyCodec_Encoder (const char *encoding)
Return value: New reference. Get an encoder function for the given encoding.

PyObject* PyCodec_Decoder (const char *encoding)
Return value: New reference. Get a decoder function for the given encoding.

PyObject* PyCodec_IncrementalEncoder (const char *encoding, const char *errors)
Return value: New reference. Get an IncrementalEncoder object for the given encoding.

PyObject* PyCodec_IncrementalDecoder (const char *encoding, const char *errors)
Return value: New reference. Get an IncrementalDecoder object for the given encoding.

PyObject* PyCodec_StreamReader (const char *encoding, PyObject *stream, const char *errors)
Return value: New reference. Get a St reamReader factory function for the given encoding.

PyObject* PyCodec_StreamWriter (const char *encoding, PyObject *stream, const char *errors)
Return value: New reference. Get a St reamWriter factory function for the given encoding.

56 Rozdziat 6. Utilities

The Python/C API, Wydanie 3.7.17

6.9.2 Registry API for Unicode encoding error handlers

int PyCodec_RegisterError (const char *name, PyObject *error)
Register the error handling callback function error under the given name. This callback function will be called by a
codec when it encounters unencodable characters/undecodable bytes and name is specified as the error parameter
in the call to the encode/decode function.

The callback gets a single argument, an instance of UnicodeEncodeError, UnicodeDecodeError or
UnicodeTranslateError that holds information about the problematic sequence of characters or bytes and
their offset in the original string (see Unicode Exception Objects for functions to extract this information). The
callback must either raise the given exception, or return a two-item tuple containing the replacement for the pro-
blematic sequence, and an integer giving the offset in the original string at which encoding/decoding should be
resumed.

Return 0 on success, —1 on error.

PyObject* PyCodec_LookupError (const char *name)
Return value: New reference. Lookup the error handling callback function registered under name. As a special case
NULL can be passed, in which case the error handling callback for ,,strict” will be returned.

PyObject* PyCodec_StrictErrors (PyObject *exc)
Return value: Always NULL. Raise exc as an exception.

PyObject* PyCodec_IgnoreErrors (PyObject *exc)
Return value: New reference. Ignore the unicode error, skipping the faulty input.

PyObject* PyCodec_ReplaceErrors (PyObject *exc)
Return value: New reference. Replace the unicode encode error with ? or U+FFFD.

PyObject* PyCodec_XMLCharRefReplaceErrors (PyObject *exc)
Return value: New reference. Replace the unicode encode error with XML character references.

PyObject* PyCodec_BackslashReplaceErrors (PyObject *exc)
Return value: New reference. Replace the unicode encode error with backslash escapes (\x, \u and \U).

PyObject* PyCodec_NameReplaceErrors (PyObject *exc)
Return value: New reference. Replace the unicode encode error with \N{ . . . } escapes.

Nowe w wersji 3.5.

6.9. Codec registry and support functions 57

The Python/C API, Wydanie 3.7.17

58 Rozdziat 6. Utilities

ROZDZIAL /

Warstwa obiektow abstrakcyjnych

Funkcje, ktérych dotyczy ten rozdziat dziataja na obiektach Pythona bez wzgledu na ich typ oraz na wielu klasach typéw
obiektéw (np. wszystkie typy numeryczne oraz sekwencyjne). Uzyte na nieobstugiwanych typach obiektéw rzuca wyjatek.

Nie da sig uzywac tych funckcji na obiektach, ktére nie zostaty prawidtowo zainicjowane jak np. lista utworzona za pomoca
PyList_New (), ktérej elementom nie nadano jeszcze wartoSci innej niz NULL.

7.1 Object Protocol

PyObject* Py_NotImplemented
The Not Implemented singleton, used to signal that an operation is not implemented for the given type combi-
nation.

Py RETURN_NOTIMPLEMENTED
Properly handle returning Py Not Implemented from within a C function (that is, increment the reference
count of NotImplemented and return it).

int PyObject_Print (PyObject *o, FILE *fp, int flags)
Print an object o, on file fp. Returns —1 on error. The flags argument is used to enable certain printing options. The
only option currently supported is Py_PRINT_RAW; if given, the str () of the object is written instead of the
repr ().

int PyObject_HasAttr (PyObject *o, PyObject *attr_name)
Returns 1 if o has the attribute aftr_name, and 0 otherwise. This is equivalent to the Python expression
hasattr (o, attr_name). This function always succeeds.

Note that exceptions which occur while calling __getattr__ () and __getattribute__ () methods will
get suppressed. To get error reporting use PyObject_GetAttr () instead.

int PyObject_HasAttrString (PyObject *o, const char *attr_name)
Returns 1 if o has the attribute attr_name, and O otherwise. This is equivalent to the Python expression
hasattr (o, attr_name). This function always succeeds.

59

The Python/C API, Wydanie 3.7.17

Note that exceptions which occur while calling _ getattr_ () and __getattribute__ ()
methods and creating a temporary string object will get suppressed. To get error reporting use
PyObject_GetAttrString () instead.

PyObject* PyObject_GetAttr (PyObject *o, PyObject *attr_name)
Return value: New reference. Retrieve an attribute named attr_name from object o. Returns the attribute value on
success, or NULL on failure. This is the equivalent of the Python expression o .attr_name.

PyObject* PyObject_GetAttrString (PyObject *o, const char *attr_name)
Return value: New reference. Retrieve an attribute named attr_name from object o. Returns the attribute value on
success, or NULL on failure. This is the equivalent of the Python expression o .attr_name.

PyObject* PyObject_GenericGetAttr (PyObject *o, PyObject *name)
Return value: New reference. Generic attribute getter function that is meant to be put into a type object’s
tp_getattro slot. It looks for a descriptor in the dictionary of classes in the object’s MRO as well as an attribute
in the object’s __dict__ (if present). As outlined in descriptors, data descriptors take preference over instance
attributes, while non-data descriptors don’t. Otherwise, an AttributeError is raised.

int PyObject_SetAttr (PyObject *o, PyObject *attr_name, PyObject *v)
Set the value of the attribute named attr_name, for object o, to the value v. Raise an exception and return —1 on
failure; return O on success. This is the equivalent of the Python statement o.attr_name = v.

If v is NULL, the attribute is deleted, however this feature is deprecated in favour of using
PyObject_DelAttr ().

int PyObject_SetAttrString (PyObject *o, const char *attr_name, PyObject *v)
Set the value of the attribute named attr_name, for object o, to the value v. Raise an exception and return —1 on
failure; return O on success. This is the equivalent of the Python statement o.attr_name = v.

If v is NULL, the attribute is deleted, however this feature is deprecated in favour of using
PyObject_DelAttrString().

int PyObject_GenericSetAttr (PyObject *o, PyObject *name, PyObject *value)
Generic attribute setter and deleter function that is meant to be put into a type object’s tp_setattro slot. It
looks for a data descriptor in the dictionary of classes in the object’s MRO, and if found it takes preference over
setting or deleting the attribute in the instance dictionary. Otherwise, the attribute is set or deleted in the object’s
__dict__ (if present). On success, O is returned, otherwise an At t ributeError israised and -1 is returned.

int PyObject_DelAttr (PyObject *o, PyObject *attr_name)
Delete attribute named attr_name, for object 0. Returns —1 on failure. This is the equivalent of the Python statement
del o.attr_name.

int PyObject_DelAttrString (PyObject *o, const char *attr_name)
Delete attribute named attr_name, for object 0. Returns —1 on failure. This is the equivalent of the Python statement
del o.attr_name.

PyObject* PyObject_GenericGetDict (PyObject *o, void *context)
Return value: New reference. A generic implementation for the getter of a ___dict___ descriptor. It creates the
dictionary if necessary.

Nowe w wersji 3.3.

int PyObject_GenericSetDict (PyObject *o, PyObject *value, void *context)
A generic implementation for the setter of a___dict___ descriptor. This implementation does not allow the dic-
tionary to be deleted.

Nowe w wersji 3.3.

PyObject* PyObject_RichCompare (PyObject *ol, PyObject *02, int opid)
Return value: New reference. Compare the values of o/ and 02 using the operation specified by opid, which must
be one of Py_LT, Py_LE, Py_EQ, Py_NE, Py_GT, or Py_GE, corresponding to <, <=, ==, !=, > or >=

60 Rozdziat 7. Warstwa obiektéw abstrakcyjnych

The Python/C API, Wydanie 3.7.17

respectively. This is the equivalent of the Python expression o1 op 02, where op is the operator corresponding
to opid. Returns the value of the comparison on success, or NULL on failure.

int PyObject_RichCompareBool (PyObject *ol, PyObject *02, int opid)
Compare the values of o/ and o2 using the operation specified by opid, which must be one of Py_LT, Py_LE,
Py_EQ,Py_NE, Py_GT, or Py_GE, corresponding to <, <=, ==, ! =, >, or >= respectively. Returns —1 on error,
0 if the result is false, 1 otherwise. This is the equivalent of the Python expression o1 op 02, where op is the
operator corresponding to opid.

Informacja: If o/ and o2 are the same object, PyObject_RichCompareBool () will always return 1 for Py_EQ
and 0 for Py_NE.

PyObject* PyObject_Repr (PyObject *0)
Return value: New reference. Compute a string representation of object o. Returns the string representation on
success, NULL on failure. This is the equivalent of the Python expression repr (o) . Called by the repr () built-
in function.

Zmienione w wersji 3.4: This function now includes a debug assertion to help ensure that it does not silently discard
an active exception.

PyObject* PyObject_ASCII (PyObject *o)
Return value: New reference. As PyObject_Repr (), compute a string representation of object o, but escape the
non-ASCII characters in the string returned by PyOb ject_Repr () with \x, \u or \U escapes. This generates
a string similar to that returned by PyOb ject_Repr () in Python 2. Called by the ascii () built-in function.

PyObject* PyObject_Str (PyObject *o)
Return value: New reference. Compute a string representation of object o. Returns the string representation on
success, NULL on failure. This is the equivalent of the Python expression st r (o) . Called by the str () built-in
function and, therefore, by the print () function.

Zmienione w wersji 3.4: This function now includes a debug assertion to help ensure that it does not silently discard
an active exception.

PyObject* PyObject_Bytes (PyObject *0)
Return value: New reference. Compute a bytes representation of object 0. NULL is returned on failure and a by-
tes object on success. This is equivalent to the Python expression bytes (o), when o is not an integer. Unlike
bytes (o), a TypeError is raised when o is an integer instead of a zero-initialized bytes object.

int PyObject_IsSubclass (PyObject *derived, PyObject *cls)
Return 1 if the class derived is identical to or derived from the class cls, otherwise return 0. In case of an error,
return —1.

If cls is a tuple, the check will be done against every entry in cls. The result will be 1 when at least one of the checks
returns 1, otherwise it will be 0.

If cls hasa ___subclasscheck__ () method, it will be called to determine the subclass status as described
in PEP 3119. Otherwise, derived is a subclass of cls if it is a direct or indirect subclass, i.e. contained in cls.
mro

Normally only class objects, i.e. instances of t ype or a derived class, are considered classes. However, objects can
override this by havinga __bases___ attribute (which must be a tuple of base classes).

int PyObject_IsInstance (PyObject *inst, PyObject *cls)
Return 1 if inst is an instance of the class cls or a subclass of cls, or O if not. On error, returns —1 and sets an
exception.

If cls is a tuple, the check will be done against every entry in cls. The result will be 1 when at least one of the checks
returns 1, otherwise it will be 0.

7.1. Object Protocol 61

https://www.python.org/dev/peps/pep-3119

The Python/C API, Wydanie 3.7.17

If clshasa___instancecheck__ () method, it will be called to determine the subclass status as described in
PEP 3119. Otherwise, inst is an instance of cls if its class is a subclass of cIs.

An instance inst can override what is considered its class by havinga ___class___ attribute.

An object cls can override if it is considered a class, and what its base classes are, by havinga ___bases___ attribute
(which must be a tuple of base classes).

int PyCallable_Check (PyObject *0)
Determine if the object o is callable. Return 1 if the object is callable and 0 otherwise. This function always
succeeds.

PyObject* PyObject_Call (PyObject *callable, PyObject *args, PyObject *kwargs)
Return value: New reference. Call a callable Python object callable, with arguments given by the tuple args, and
named arguments given by the dictionary kwargs.

args must not be NULL, use an empty tuple if no arguments are needed. If no named arguments are needed, kwargs
can be NULL.

Return the result of the call on success, or raise an exception and return NULL on failure.
This is the equivalent of the Python expression: callable (*args, **kwargs).

PyObject* PyObject_CallObject (PyObject *callable, PyObject *args)
Return value: New reference. Call a callable Python object callable, with arguments given by the tuple args. If no
arguments are needed, then args can be NULL.

Return the result of the call on success, or raise an exception and return NULL on failure.
This is the equivalent of the Python expression: callable (*args).

PyObject* PyObject_CallFunction (PyObject *callable, const char *format, ...)
Return value: New reference. Call a callable Python object callable, with a variable number of C arguments. The C
arguments are described using a Py_BuildValue () style format string. The format can be NULL, indicating
that no arguments are provided.

Return the result of the call on success, or raise an exception and return NULL on failure.

This is the equivalent of the Python expression: callable (*args).

Note that if you only pass PyObject *args, PyObject_CallFunctionObjArgs () isafaster alternative.
Zmienione w wersji 3.4: The type of format was changed from char *.

PyObject* PyObject_CallMethod (PyObject *obj, const char *name, const char *format, ...)
Return value: New reference. Call the method named name of object obj with a variable number of C arguments.
The C arguments are described by a Py BuildValue () format string that should produce a tuple.

The format can be NULL, indicating that no arguments are provided.

Return the result of the call on success, or raise an exception and return NULL on failure.

This is the equivalent of the Python expression: obj.name (argl, arg2, ...).

Note that if you only pass PyObject *args, PyObject_CallMethodObjArgs () is a faster alternative.
Zmienione w wersji 3.4: The types of name and format were changed from char *.

PyObject* PyObject_CallFunctionObjArgs (PyObject *callable, ..., NULL)
Return value: New reference. Call a callable Python object callable, with a variable number of PyOb ject * argu-
ments. The arguments are provided as a variable number of parameters followed by NULL.

Return the result of the call on success, or raise an exception and return NULL on failure.

This is the equivalent of the Python expression: callable (argl, arg2, ...).

62 Rozdzial 7. Warstwa obiektow abstrakcyjnych

https://www.python.org/dev/peps/pep-3119

The Python/C API, Wydanie 3.7.17

PyObject* PyObject_CallMethodObjArgs (PyObject *obj, PyObject *name, ..., NULL)
Return value: New reference. Calls a method of the Python object obj, where the name of the method is given as a
Python string object in name. It is called with a variable number of PyObject * arguments. The arguments are
provided as a variable number of parameters followed by NULL.

Return the result of the call on success, or raise an exception and return NULL on failure.

Py_hash_t PyObject_Hash (PyObject *0)
Compute and return the hash value of an object 0. On failure, return —1. This is the equivalent of the Python
expression hash (o) .

Zmienione w wersji 3.2: The return type is now Py_hash_t. This is a signed integer the same size as Py_ssize_t.

Py_hash_t PyObject_HashNotImplemented (PyObject *o0)
Seta TypeError indicating that t ype (o) is not hashable and return — 1. This function receives special treatment
when stored in a t p_hash slot, allowing a type to explicitly indicate to the interpreter that it is not hashable.

int PyObject_IsTrue (PyObject *o)
Returns 1 if the object o is considered to be true, and 0 otherwise. This is equivalent to the Python expression not
not o. On failure, return —1.

int PyObject_Not (PyObject *o)
Returns 0 if the object o is considered to be true, and 1 otherwise. This is equivalent to the Python expression not
o. On failure, return —1.

PyObject* PyObject_Type (PyObject *0)
Return value: New reference. When o is non-NULL, returns a type object corresponding to the object type of object
0. On failure, raises SystemError and returns NULL. This is equivalent to the Python expression type (o).
This function increments the reference count of the return value. There’s really no reason to use this function instead
of the common expression o—>ob_type, which returns a pointer of type Py TypeOb ject *, except when the
incremented reference count is needed.

int PyObject_TypeCheck (PyObject *o, PyTypeObject *type)
Return true if the object o is of type fype or a subtype of type. Both parameters must be non-NULL.

Py_ssize_t PyObject_Size (PyObject *o)

Py_ssize_t PyObject_Length (PyObject *o)
Return the length of object o. If the object o provides either the sequence and mapping protocols, the sequence
length is returned. On error, —1 is returned. This is the equivalent to the Python expression 1len (o).

Py_ssize_t PyObject_LengthHint (PyObject *o, Py_ssize_t default)
Return an estimated length for the object o. First try to return its actual length, then an estimate using
__length_hint__ (), and finally return the default value. On error return —1. This is the equivalent to the
Python expression operator.length_hint (o, default).

Nowe w wersji 3.4.

PyObject* PyObject_GetItem (PyObject *o, PyObject *key)
Return value: New reference. Return element of o corresponding to the object key or NULL on failure. This is the
equivalent of the Python expression o [key].

int PyObject_SetItem (PyObject *o, PyObject *key, PyObject *v)
Map the object key to the value v. Raise an exception and return —1 on failure; return O on success. This is the
equivalent of the Python statement o [key] = wv.

int PyObject_DelItem (PyObject *o, PyObject *key)
Remove the mapping for the object key from the object 0. Return —1 on failure. This is equivalent to the Python
statement del of[key].

PyObject* PyObject_Dir (PyObject *0)
Return value: New reference. This is equivalent to the Python expression dir (o), returning a (possibly empty)

7.1. Object Protocol 63

The Python/C API, Wydanie 3.7.17

list of strings appropriate for the object argument, or NULL if there was an error. If the argument is NULL, this is
like the Python dir (), returning the names of the current locals; in this case, if no execution frame is active then
NULL is returned but PyErr_Occurred () will return false.

PyObject* PyObject_GetIter (PyObject *o)
Return value: New reference. This is equivalent to the Python expression iter (o). It returns a new iterator for
the object argument, or the object itself if the object is already an iterator. Raises TypeError and returns NULL
if the object cannot be iterated.

7.2 Number Protocol

int PyNumber_Check (PyObject *0)
Returns 1 if the object o provides numeric protocols, and false otherwise. This function always succeeds.

PyObject* PyNumber_Add (PyObject *ol, PyObject *02)
Return value: New reference. Returns the result of adding o/ and 02, or NULL on failure. This is the equivalent of
the Python expression o1 + 02.

PyObject* PyNumber_Subtract (PyObject *ol, PyObject *02)
Return value: New reference. Returns the result of subtracting 02 from o/, or NULL on failure. This is the equivalent
of the Python expression o1 - o2.

PyObject* PyNumber_Multiply (PyObject *ol, PyObject *02)
Return value: New reference. Returns the result of multiplying o/ and 02, or NULL on failure. This is the equivalent
of the Python expression o1 * o02.

PyObject* PyNumber_MatrixMultiply (PyObject *ol, PyObject *02)
Return value: New reference. Returns the result of matrix multiplication on o/ and 02, or NULL on failure. This is
the equivalent of the Python expression o1 @ o2.

Nowe w wersji 3.5.

PyObject* PyNumber_FloorDivide (PyObject *ol, PyObject *02)
Return value: New reference. Return the floor of o/ divided by 02, or NULL on failure. This is equivalent to the
»classic” division of integers.

PyObject* PyNumber_TrueDivide (PyObject *ol, PyObject *02)
Return value: New reference. Return a reasonable approximation for the mathematical value of o/ divided by o2,
or NULL on failure. The return value is ,,approximate” because binary floating point numbers are approximate; it is
not possible to represent all real numbers in base two. This function can return a floating point value when passed
two integers.

PyObject* PyNumber_Remainder (PyObject *ol, PyObject *02)
Return value: New reference. Returns the remainder of dividing o/ by 02, or NULL on failure. This is the equivalent
of the Python expression o1 % o2.

PyObject* PyNumber_Divmod (PyObject *o0l, PyObject *02)
Return value: New reference. See the built-in function divmod () . Returns NULL on failure. This is the equivalent
of the Python expression divmod (01, 02).

PyObject* PyNumber_Power (PyObject *ol, PyObject *02, PyObject *03)
Return value: New reference. See the built-in function pow () . Returns NULL on failure. This is the equivalent of
the Python expression pow (01, 02, 03), where 03 is optional. If 03 is to be ignored, pass Py_None in its
place (passing NULL for 03 would cause an illegal memory access).

PyObject* PyNumber_Negative (PyObject *o)
Return value: New reference. Returns the negation of o on success, or NULL on failure. This is the equivalent of the
Python expression —o.

64 Rozdzial 7. Warstwa obiektow abstrakcyjnych

The Python/C API, Wydanie 3.7.17

PyObject* PyNumber_Positive (PyObject *0)
Return value: New reference. Returns o on success, or NULL on failure. This is the equivalent of the Python expres-
sion +o.

PyObject* PyNumber_Absolute (PyObject *o)
Return value: New reference. Returns the absolute value of o, or NULL on failure. This is the equivalent of the
Python expression abs (o) .

PyObject* PyNumber_Invert (PyObject *0)
Return value: New reference. Returns the bitwise negation of o on success, or NULL on failure. This is the equivalent
of the Python expression ~o.

PyObject* PyNumber_Lshift (PyObject *ol, PyObject *02)
Return value: New reference. Returns the result of left shifting o/ by 02 on success, or NULL on failure. This is the
equivalent of the Python expression 01 << 02.

PyObject* PyNumber_Rshift (PyObject *ol, PyObject *02)
Return value: New reference. Returns the result of right shifting o/ by 02 on success, or NULL on failure. This is
the equivalent of the Python expression o1 >> o02.

PyObject* PyNumber_And (PyObject *ol, PyObject *02)
Return value: New reference. Returns the ,bitwise and” of o/ and 02 on success and NULL on failure. This is the
equivalent of the Python expression 01 & o02.

PyObject* PyNumber_Xor (PyObject *ol, PyObject *02)
Return value: New reference. Returns the ,,bitwise exclusive or” of o/ by 02 on success, or NULL on failure. This is
the equivalent of the Python expression o1 ~ o2.

PyObject* PyNumber_Oxr (PyObject *ol, PyObject *02)
Return value: New reference. Returns the ,bitwise or” of ol and 02 on success, or NULL on failure. This is the
equivalent of the Python expression o1 | o2.

PyObject* PyNumber_InPlaceAdd (PyObject *ol, PyObject *02)
Return value: New reference. Returns the result of adding o/ and 02, or NULL on failure. The operation is done
in-place when ol supports it. This is the equivalent of the Python statement 01 += o02.

PyObject* PyNumber_InPlaceSubtract (PyObject *ol, PyObject *02)
Return value: New reference. Returns the result of subtracting 02 from o/, or NULL on failure. The operation is
done in-place when ol supports it. This is the equivalent of the Python statement 01 —-= 02.

PyObject* PyNumber_InPlaceMultiply (PyObject *ol, PyObject *02)
Return value: New reference. Returns the result of multiplying o/ and 02, or NULL on failure. The operation is done
in-place when ol supports it. This is the equivalent of the Python statement 01 *= o02.

PyObject* PyNumber_InPlaceMatrixMultiply (PyObject *ol, PyObject *02)
Return value: New reference. Returns the result of matrix multiplication on o/ and 02, or NULL on failure. The
operation is done in-place when ol supports it. This is the equivalent of the Python statement 01 @= o2.

Nowe w wersji 3.5.

PyObject* PyNumber_InPlaceFloorDivide (PyObject *ol, PyObject *02)
Return value: New reference. Returns the mathematical floor of dividing o/ by 02, or NULL on failure. The operation
is done in-place when ol supports it. This is the equivalent of the Python statement o1 //= o02.

PyObject* PyNumber_InPlaceTrueDivide (PyObject *ol, PyObject *02)
Return value: New reference. Return a reasonable approximation for the mathematical value of o/ divided by 02,
or NULL on failure. The return value is ,,approximate” because binary floating point numbers are approximate; it is
not possible to represent all real numbers in base two. This function can return a floating point value when passed
two integers. The operation is done in-place when ol supports it.

7.2. Number Protocol 65

The Python/C API, Wydanie 3.7.17

PyObject* PyNumber_InPlaceRemainder (PyObject *ol, PyObject *02)
Return value: New reference. Returns the remainder of dividing o/ by 02, or NULL on failure. The operation is done
in-place when ol supports it. This is the equivalent of the Python statement o1 %= o02.

PyObject* PyNumber_InPlacePower (PyObject *ol, PyObject *02, PyObject *03)
Return value: New reference. See the built-in function pow () . Returns NULL on failure. The operation is done in-
place when ol supports it. This is the equivalent of the Python statement 01 **= 02 when 03 is Py_None, or
an in-place variant of pow (01, 02, o3) otherwise. If 03 is to be ignored, pass Py_ None in its place (passing
NULL for 03 would cause an illegal memory access).

PyObject* PyNumber_InPlaceLshift (PyObject *ol, PyObject *02)
Return value: New reference. Returns the result of left shifting o/ by 02 on success, or NULL on failure. The operation
is done in-place when ol supports it. This is the equivalent of the Python statement o1 <<= o02.

PyObject* PyNumber_InPlaceRshift (PyObject *ol, PyObject *02)
Return value: New reference. Returns the result of right shifting o/ by 02 on success, or NULL on failure. The
operation is done in-place when ol supports it. This is the equivalent of the Python statement 01 >>= 02.

PyObject* PyNumber_InPlaceAnd (PyObject *ol, PyObject *02)
Return value: New reference. Returns the ,,bitwise and” of o/ and 02 on success and NULL on failure. The operation
is done in-place when ol supports it. This is the equivalent of the Python statement 01 &= 02.

PyObject* PyNumber_InPlaceXor (PyObject *ol, PyObject *02)
Return value: New reference. Returns the ,,bitwise exclusive or” of ol by 02 on success, or NULL on failure. The
operation is done in-place when ol supports it. This is the equivalent of the Python statement 01 ~= 02.

PyObject* PyNumber_InPlaceOr (PyObject *ol, PyObject *02)
Return value: New reference. Returns the ,,bitwise or” of o/ and 02 on success, or NULL on failure. The operation
is done in-place when ol supports it. This is the equivalent of the Python statement o1 |= o2.

PyObject* PyNumber_Long (PyObject *0)
Return value: New reference. Returns the o converted to an integer object on success, or NULL on failure. This is
the equivalent of the Python expression int (o).

PyObject* PyNumber_Float (PyObject *0)
Return value: New reference. Returns the o converted to a float object on success, or NULL on failure. This is the
equivalent of the Python expression f1loat (o).

PyObject* PyNumber_Index (PyObject *0)
Return value: New reference. Returns the o converted to a Python int on success or NULL with a TypeError
exception raised on failure.

PyObject* PyNumber_ToBase (PyObject *n, int base)
Return value: New reference. Returns the integer n converted to base base as a string. The base argument must be
one of 2, 8, 10, or 16. For base 2, 8, or 16, the returned string is prefixed with a base marker of '0b"', '0o"', or
'0x ', respectively. If n is not a Python int, it is converted with PyNumber_Index () first.

Py_ssize_t PyNumber_AsSsize_t (PyObject *o, PyObject *exc)
Returns o converted to a Py_ssize_t value if o can be interpreted as an integer. If the call fails, an exception is raised
and —1 is returned.

If o can be converted to a Python int but the attempt to convert to a Py_ssize_t value would raise an
OverflowError, then the exc argument is the type of exception that will be raised (usually IndexError or
OverflowError). If exc is NULL, then the exception is cleared and the value is clipped to PY_SSIZE_T_MIN
for a negative integer or PY_SSIZE_T_MAX for a positive integer.

int PyIndex_Check (PyObject *o)
Returns 1 if o is an index integer (has the nb_index slot of the tp_as_number structure filled in), and 0 otherwise.
This function always succeeds.

66 Rozdziat 7. Warstwa obiektéw abstrakcyjnych

The Python/C API, Wydanie 3.7.17

7.3 Sequence Protocol

int PySequence_Check (PyObject *0)
Return 1 if the object provides sequence protocol, and O otherwise. Note that it returns 1 for Python classes with
a__getitem__ () method unless they are dict subclasses since in general case it is impossible to determine
what the type of keys it supports. This function always succeeds.

Py_ssize_t PySequence_Size (PyObject *0)

Py_ssize_t PySequence_Length (PyObject *0)
Returns the number of objects in sequence o on success, and —1 on failure. This is equivalent to the Python expres-
sion len (o).

PyObject* PySequence_Concat (PyObject *ol, PyObject *02)
Return value: New reference. Return the concatenation of o/ and 02 on success, and NULL on failure. This is the
equivalent of the Python expression o1 + o2.

PyObject* PySequence_Repeat (PyObject *o, Py_ssize_t count)
Return value: New reference. Return the result of repeating sequence object o count times, or NULL on failure. This
is the equivalent of the Python expression o * count.

PyObject* PySequence_InPlaceConcat (PyObject *ol, PyObject *02)
Return value: New reference. Return the concatenation of o/ and 02 on success, and NULL on failure. The operation
is done in-place when ol supports it. This is the equivalent of the Python expression o1 += o02.

PyObject* PySequence_InPlaceRepeat (PyObject *o, Py_ssize_t count)
Return value: New reference. Return the result of repeating sequence object o count times, or NULL on failure. The
operation is done in-place when o supports it. This is the equivalent of the Python expression o *= count.

PyObject* PySequence_GetItem (PyObject *o, Py_ssize_ti)
Return value: New reference. Return the ith element of o, or NULL on failure. This is the equivalent of the Python
expression o [1].

PyObject* PySequence_GetSlice (PyObject *o, Py_ssize_til, Py_ssize_ti2)
Return value: New reference. Return the slice of sequence object o between i/ and i2, or NULL on failure. This is
the equivalent of the Python expression o [11:12].

int PySequence_SetItem (PyObject *o, Py_ssize_t i, PyObject *v)
Assign object v to the ith element of o. Raise an exception and return —1 on failure; return 0 on success. This is
the equivalent of the Python statement o [1] = v. This function does not steal a reference to v.

If v is NULL, the element is deleted, however this feature is deprecated in favour of using
PySequence_DelIltem().

int PySequence_DelItem (PyObject *o, Py_ssize_t i)
Delete the ith element of object 0. Returns —1 on failure. This is the equivalent of the Python statement del
of[i].

int PySequence_SetSlice (PyObject *o, Py_ssize_t il, Py_ssize_t i2, PyObject *v)
Assign the sequence object v to the slice in sequence object o from i/ to i2. This is the equivalent of the Python
statement o [11:12] = w.

int PySequence_DelSlice (PyObject *o, Py_ssize_t il, Py_ssize_ti2)
Delete the slice in sequence object o from i/ to i2. Returns —1 on failure. This is the equivalent of the Python
statement del o[i11:12].

Py_ssize_t PySequence_Count (PyObject *o, PyObject *value)
Return the number of occurrences of value in o, that is, return the number of keys for which o [key] == value.
On failure, return —1. This is equivalent to the Python expression o . count (value).

7.3. Sequence Protocol 67

The Python/C API, Wydanie 3.7.17

int PySequence_Contains (PyObject *o, PyObject *value)
Determine if o contains value. If an item in o is equal to value, return 1, otherwise return 0. On error, return —1.
This is equivalent to the Python expression value in o.

Py_ssize_t PySequence_Index (PyObject *o, PyObject *value)
Return the first index i for whicho [1i] == wvalue. On error, return —1. This is equivalent to the Python expres-
sion o.index (value).

PyObject* PySequence_List (PyObject *o0)
Return value: New reference. Return a list object with the same contents as the sequence or iterable o, or NULL on
failure. The returned list is guaranteed to be new. This is equivalent to the Python expression 1ist (o).

PyObject* PySequence_Tuple (PyObject *o)
Return value: New reference. Return a tuple object with the same contents as the sequence or iterable o, or NULL on
failure. If o is a tuple, a new reference will be returned, otherwise a tuple will be constructed with the appropriate
contents. This is equivalent to the Python expression tuple (o).

PyObject* PySequence_Fast (PyObject *o, const char *m)
Return value: New reference. Return the sequence or iterable o as an object usable by the other
PySequence_Fast* family of functions. If the object is not a sequence or iterable, raises TypeError with
m as the message text. Returns NULL on failure.

The PySequence_Fast* functions are thus named because they assume o is a PyTupleObject or a
PyListObject and access the data fields of o directly.

As a CPython implementation detail, if o is already a sequence or list, it will be returned.

Py_ssize_t PySequence_Fast_GET_SIZE (PyObject *0)
Returns the length of o, assuming that 0 was returned by PySequence_Fast () and that o is not NULL. The
size can also be gotten by calling PySequence_Size () on o, but PySequence_Fast_GET_SIZE() is
faster because it can assume o is a list or tuple.

PyObject* PySequence_Fast_GET_ITEM (PyObject *o, Py_ssize_t i)
Return value: Borrowed reference. Return the ith element of o, assuming that o was returned by
PySequence_Fast (), ois not NULL, and that i is within bounds.

PyObject** PySequence_Fast_ITEMS (PyObject *0)
Return the underlying array of PyObject pointers. Assumes that o was returned by PySequence_Fast () and
o0 is not NULL.

Note, if a list gets resized, the reallocation may relocate the items array. So, only use the underlying array pointer
in contexts where the sequence cannot change.

PyObject* PySequence_ITEM (PyObject *o, Py_ssize_t i)
Return value: New reference. Return the ith element of o or NULL on failure. Faster form of
PySequence_GetItem () but without checking that PySequence_Check () on o is true and without ad-
justment for negative indices.

7.4 Mapping Protocol

See also PyObject_GetItem (), PyObject_SetItem() and PyObject_DelItem().

int PyMapping_Check (PyObject *o)
Return 1 if the object provides mapping protocol or supports slicing, and O otherwise. Note that it returns 1 for
Python classes witha ___getitem__ () method since in general case it is impossible to determine what type of
keys it supports. This function always succeeds.

Py_ssize_t PyMapping_Size (PyObject *0)

68 Rozdziat 7. Warstwa obiektéw abstrakcyjnych

The Python/C API, Wydanie 3.7.17

Py_ssize_t PyMapping_Length (PyObject *0)
Returns the number of keys in object o on success, and —1 on failure. This is equivalent to the Python expression
len (o).

PyObject* PyMapping_ GetItemString (PyObject *o, const char *key)
Return value: New reference. Return element of o corresponding to the string key or NULL on failure. This is the
equivalent of the Python expression o [key]. See also PyObject_GetItem().

int PyMapping_SetItemString (PyObject *o, const char *key, PyObject *v)
Map the string key to the value v in object o. Returns -1 on failure. This is the equivalent of the Python statement
olkey] = v.Seealso PyObject_SetItem().

int PyMapping_DelItem (PyObject *o, PyObject *key)
Remove the mapping for the object key from the object 0. Return —1 on failure. This is equivalent to the Python
statement del o [key]. Thisis an alias of PyObject_Delltem().

int PyMapping_DelItemString (PyObject *o, const char *key)
Remove the mapping for the string key from the object 0. Return —1 on failure. This is equivalent to the Python
statement del o [key].

int PyMapping_HasKey (PyObject *o, PyObject *key)
Return 1 if the mapping object has the key key and 0 otherwise. This is equivalent to the Python expression key
in o. This function always succeeds.

Note that exceptions which occur while calling the __getitem__ () method will get suppressed. To get error
reporting use PyObject_GetItem () instead.

int PyMapping_HasKeyString (PyObject *o, const char *key)
Return 1 if the mapping object has the key key and 0 otherwise. This is equivalent to the Python expression key
in o. This function always succeeds.

Note that exceptions which occur while calling the __getitem__ () method and creating a temporary string
object will get suppressed. To get error reporting use PyMapping GetItemString () instead.

PyObject* PyMapping_ Keys (PyObject *o)
Return value: New reference. On success, return a list of the keys in object 0. On failure, return NULL.

Zmienione w wersji 3.7: Previously, the function returned a list or a tuple.

PyObject* PyMapping_Values (PyObject *o0)
Return value: New reference. On success, return a list of the values in object 0. On failure, return NULL.

Zmienione w wersji 3.7: Previously, the function returned a list or a tuple.

PyObject* PyMapping_Items (PyObject *0)
Return value: New reference. On success, return a list of the items in object o, where each item is a tuple containing
a key-value pair. On failure, return NULL.

Zmienione w wersji 3.7: Previously, the function returned a list or a tuple.

7.5 lterator Protocol

There are two functions specifically for working with iterators.
int PyIter_Check (PyObject *0)
Return true if the object o supports the iterator protocol.

PyObject* PyIter_Next (PyObject *o)
Return value: New reference. Return the next value from the iteration o. The object must be an iterator (it is up to

7.5. lterator Protocol 69

The Python/C API, Wydanie 3.7.17

the caller to check this). If there are no remaining values, returns NULL with no exception set. If an error occurs
while retrieving the item, returns NULL and passes along the exception.

To write a loop which iterates over an iterator, the C code should look something like this:

PyObject *iterator = PyObject_GetIter (obj);
PyObject *item;

if (iterator == NULL) {
/* propagate error */

while ((item = PyIter_Next (iterator))) {
/* do something with item */

/* release reference when done */
Py_DECREF (item) ;

Py_DECREF (iterator);

if (PyErr_Occurred()) {
/* propagate error */
}
else {
/* continue doing useful work */

7.6 Buffer Protocol

Certain objects available in Python wrap access to an underlying memory array or buffer. Such objects include the built-in
bytes and bytearray, and some extension types like array.array. Third-party libraries may define their own
types for special purposes, such as image processing or numeric analysis.

While each of these types have their own semantics, they share the common characteristic of being backed by a possibly
large memory buffer. It is then desirable, in some situations, to access that buffer directly and without intermediate copying.

Python provides such a facility at the C level in the form of the buffer protocol. This protocol has two sides:

* on the producer side, a type can export a ,,buffer interface” which allows objects of that type to expose information
about their underlying buffer. This interface is described in the section Buffer Object Structures;

* on the consumer side, several means are available to obtain a pointer to the raw underlying data of an object (for
example a method parameter).

Simple objects such as bytes and bytearray expose their underlying buffer in byte-oriented form. Other forms are
possible; for example, the elements exposed by an array . array can be multi-byte values.

An example consumer of the buffer interface is the write () method of file objects: any object that can export a series
of bytes through the buffer interface can be written to a file. While write () only needs read-only access to the internal
contents of the object passed to it, other methods such as readinto () need write access to the contents of their
argument. The buffer interface allows objects to selectively allow or reject exporting of read-write and read-only buffers.

There are two ways for a consumer of the buffer interface to acquire a buffer over a target object:
e call PyObject_GetBuffer () with the right parameters;

e call PyArg_ParseTuple () (or one of its siblings) with one of the y*, w* or s* format codes.

70 Rozdzial 7. Warstwa obiektow abstrakcyjnych

The Python/C API, Wydanie 3.7.17

In both cases, PyBuffer_ Release () must be called when the buffer isn’t needed anymore. Failure to do so could
lead to various issues such as resource leaks.

7.6.1 Buffer structure

Buffer structures (or simply ,,buffers”) are useful as a way to expose the binary data from another object to the Python
programmer. They can also be used as a zero-copy slicing mechanism. Using their ability to reference a block of memory,
it is possible to expose any data to the Python programmer quite easily. The memory could be a large, constant array in
a C extension, it could be a raw block of memory for manipulation before passing to an operating system library, or it
could be used to pass around structured data in its native, in-memory format.

Contrary to most data types exposed by the Python interpreter, buffers are not PyOb ject pointers but rather simple C
structures. This allows them to be created and copied very simply. When a generic wrapper around a buffer is needed, a
memoryview object can be created.

For short instructions how to write an exporting object, see Buffer Object Structures. For obtaining a buffer, see
PyObject_GetBuffer ().

Py_buffer

void *buf
A pointer to the start of the logical structure described by the buffer fields. This can be any location within
the underlying physical memory block of the exporter. For example, with negative st rides the value may
point to the end of the memory block.

For contiguous arrays, the value points to the beginning of the memory block.

void *obj
A new reference to the exporting object. The reference is owned by the consumer and automatically decre-
mented and set to NULL by PyBuffer_Release (). The field is the equivalent of the return value of any
standard C-API function.

As a special case, for femporary buffers that are wrapped by PyMemoryView FromBuffer () or
PyBuffer FillInfo () thisfield is NULL. In general, exporting objects MUST NOT use this scheme.

Py_ssize_t len
product (shape) * itemsize. For contiguous arrays, this is the length of the underlying memory
block. For non-contiguous arrays, it is the length that the logical structure would have if it were copied to a
contiguous representation.

Accessing ((char *)buf) [0] up to ((char *)buf) [len-1] is only valid if the buffer has
been obtained by a request that guarantees contiguity. In most cases such a request will be PyBUF_STMPLE
or PyBUF_WRITABLE.

int readonly
An indicator of whether the buffer is read-only. This field is controlled by the PyBUF_WRITABLE flag.

Py_ssize_t itemsize
Item size in bytes of a single element. Same as the value of struct.calcsize () called on non-NULL
format values.

Important exception: If a consumer requests a buffer without the PyBUF_FORMAT flag, format will be set
to NULL, but i temsi ze still has the value for the original format.

If shape is present, the equality product (shape) * itemsize == len still holds and the consu-
mer can use itemsize to navigate the buffer.

If shapeis NULL as aresult of a PyBUF_SIMPLE or a PyBUF_WRITABLE request, the consumer must
disregard i temsize and assume itemsize ==

7.6. Buffer Protocol 71

The Python/C API, Wydanie 3.7.17

const char *format
A NUL terminated string in st ruct module style syntax describing the contents of a single item. If this is
NULL, "B" (unsigned bytes) is assumed.

This field is controlled by the PyBUF_FORMAT flag.

int ndim
The number of dimensions the memory represents as an n-dimensional array. If it is 0, bu £ points to a single
item representing a scalar. In this case, shape, st rides and suboffsets MUST be NULL.

The macro PyBUF_MAX_NDIM limits the maximum number of dimensions to 64. Exporters MUST respect
this limit, consumers of multi-dimensional buffers SHOULD be able to handle up to PyBUF_MAX_NDIM
dimensions.

Py_ssize_t *shape
An array of Py_ssize_t of length ndim indicating the shape of the memory as an n-dimensional array.
Note that shape [0] * ... * shape[ndim-1] * itemsize MUST beequal to Ien.

Shape values are restricted to shape [n] >= 0. The case shape [n] == 0 requires special attention.
See complex arrays for further information.

The shape array is read-only for the consumer.

Py_ssize_t *strides
An array of Py_ssize_t of length ndim giving the number of bytes to skip to get to a new element in
each dimension.

Stride values can be any integer. For regular arrays, strides are usually positive, but a consumer MUST be
able to handle the case strides[n] <= 0. See complex arrays for further information.

The strides array is read-only for the consumer.

Py_ssize_t *suboffsets
An array of Py_ssize_t of length ndim. If suboffsets[n] >= 0, the values stored along the nth
dimension are pointers and the suboffset value dictates how many bytes to add to each pointer after de-
referencing. A suboffset value that is negative indicates that no de-referencing should occur (striding in a
contiguous memory block).

If all suboffsets are negative (i.e. no de-referencing is needed), then this field must be NULL (the default
value).

This type of array representation is used by the Python Imaging Library (PIL). See complex arrays for further
information how to access elements of such an array.

The suboffsets array is read-only for the consumer.

void *internal
This is for use internally by the exporting object. For example, this might be re-cast as an integer by the
exporter and used to store flags about whether or not the shape, strides, and suboffsets arrays must be freed
when the buffer is released. The consumer MUST NOT alter this value.

72

Rozdzial 7. Warstwa obiektow abstrakcyjnych

The Python/C API, Wydanie 3.7.17

7.6.2 Buffer request types

Buffers are usually obtained by sending a buffer request to an exporting object via PyObject_GetBuffer (). Since
the complexity of the logical structure of the memory can vary drastically, the consumer uses the flags argument to specify
the exact buffer type it can handle.

All Py_buf fer fields are unambiguously defined by the request type.

request-independent fields

The following fields are not influenced by flags and must always be filled in with the correct values: ob 7, buf, len,
itemsize, ndim.

readonly, format

PyBUF_WRITABLE
Controls the readon 1y field. If set, the exporter MUST provide a writable buffer or else report failure.
Otherwise, the exporter MAY provide either a read-only or writable buffer, but the choice MUST be
consistent for all consumers.

PyBUF_FORMAT
Controls the format field. If set, this field MUST be filled in correctly. Otherwise, this field MUST
be NULL.

PyBUF_WRITABLE can be |»d to any of the flags in the next section. Since PyBUF _SIMPLE is defined as O,
PyBUF_WRITABLE can be used as a stand-alone flag to request a simple writable buffer.

PyBUF_FORMAT can be I»d to any of the flags except PyBUF_STMPLE. The latter already implies format B (unsigned
bytes).

shape, strides, suboffsets

The flags that control the logical structure of the memory are listed in decreasing order of complexity. Note that each flag
contains all bits of the flags below it.

Request shape | strides | suboffsets
tak tak if needed

PyBUF_INDIRECT

PyBUF_STRIDES tak tak NULL

pPyBUF_ND tak NULL | NULL

PyBUF_SIMPLE NULL | NULL | NULL

7.6. Buffer Protocol 73

The Python/C API, Wydanie 3.7.17

contiguity requests

C or Fortran contiguity can be explicitly requested, with and without stride information. Without stride information, the
buffer must be C-contiguous.

Request shape | strides | suboffsets | contig
PyBUF_C_CONTIGUOUS tak tak NULL C
PyBUF_F_CONTIGUOUS tak tak NULL F
PyBUF_ANY_ CONTIGUOUS tak tak NULL CorF
PyBUF_ND tak NULL | NULL C

compound requests

All possible requests are fully defined by some combination of the flags in the previous section. For convenience, the

buffer protocol provides frequently used combinations as single flags.

In

the

following

table

U

stands

for

undefined

PyBuffer IsContiguous () to determine contiguity.

contiguity. The

consumer

would have to

call

Request shape | strides | suboffsets | contig | readonly | format
PyBUF_FULL tak tak if needed U 0 tak
PyBUF_FULL_RO tak tak if needed | U lor0 tak
PyBUF_RECORDS tak tak NULL U 0 tak
PyBUF_RECORDS_RO tak tak NULL U Lor0 tak
PyBUF_STRIDED tak tak NULL U 0 NULL
PyBUF_STRIDED_RO tak tak NULL U Lor0 NULL
PyBUF_CONTIG tak NULL | NULL C 0 NULL
PyBUF_CONTIG_RO tak | NULL | NULL C lor0O [NULL

74

Rozdziat 7. Warstwa obiektéw abstrakcyjnych

The Python/C API, Wydanie 3.7.17

7.6.3 Complex arrays
NumPy-style: shape and strides

The logical structure of NumPy-style arrays is defined by i temsize, ndim, shape and strides.

If ndim == 0, the memory location pointed to by bu £ is interpreted as a scalar of size i temsi ze. In that case, both
shape and st rides are NULL.

If st ridesis NULL, the array is interpreted as a standard n-dimensional C-array. Otherwise, the consumer must access
an n-dimensional array as follows:

ptr = (char *)buf + indices[0] * strides[0] + ... + indices[n-1] * strides[n-1];
item = *((typeof (item) *)ptr);

As noted above, buf can point to any location within the actual memory block. An exporter can check the validity of a
buffer with this function:

def verify_structure (memlen, itemsize, ndim, shape, strides, offset):
"""Verify that the parameters represent a valid array within
the bounds of the allocated memory:
char *mem: start of the physical memory block
memlen: length of the physical memory block
offset: (char *)buf - mem
o
if offset % itemsize:
return False
if offset < 0 or offset+itemsize > memlen:
return False
if any(v $ itemsize for v in strides):
return False

if ndim <= 0:

return ndim == 0 and not shape and not strides
if 0 in shape:

return True

imin = sum(strides[j]* (shape[j]l-1) for j in range (ndim)
if strides[j] <= 0)
imax = sum(strides[j]* (shape[j]l-1) for j in range (ndim)

if strides[j] > 0)

return 0 <= offset+imin and offset+imax+titemsize <= memlen

PIL-style: shape, strides and suboffsets

In addition to the regular items, PIL-style arrays can contain pointers that must be followed in order to get to the next
element in a dimension. For example, the regular three-dimensional C-array char v [2][2] [3] can also be viewed
as an array of 2 pointers to 2 two-dimensional arrays: char (*v[2]) [2] [3]. In suboffsets representation, those two
pointers can be embedded at the start of bu £, pointing to two char x[2] [3] arrays that can be located anywhere in
memory.

Here is a function that returns a pointer to the element in an N-D array pointed to by an N-dimensional index when there
are both non-NULL strides and suboffsets:

7.6. Buffer Protocol 75

The Python/C API, Wydanie 3.7.17

void *get_item_pointer (int ndim, wvoid *buf, Py_ssize_t *strides,
Py_ssize_t *suboffsets, Py_ssize_t *indices) {

char *pointer = (char*)buf;
int i;
for (i = 0; i < ndim; 1i++) |

pointer += strides[i] * indices[i];
if (suboffsets[i] >=0) {
pointer = * ((char**)pointer) + suboffsets[i];

}

return (void*)pointer;

7.6.4 Buffer-related functions

int PyObject_CheckBuffer (PyObject *obj)
Return 1 if obj supports the buffer interface otherwise 0. When 1 is returned, it doesn’t guarantee that
PyObject_GetBuffer () will succeed. This function always succeeds.

int PyObject_GetBuffer (PyObject *exporter, Py_buffer *view, int flags)
Send a request to exporter to fill in view as specified by flags. If the exporter cannot provide a buffer of the exact
type, it MUST raise PyExc_BufferError, set view—>0bj to NULL and return —1.

On success, fill in view, set view—>0bj to a new reference to exporter and return 0. In the case of chained buffer
providers that redirect requests to a single object, view—>obj MAY refer to this object instead of exporter (See
Buffer Object Structures).

Successful calls to PyObject_GetBuffer () must be paired with calls to PyBuffer Release (), similar
tomalloc () and free (). Thus, after the consumer is done with the buffer, PyBuffer Release () must
be called exactly once.

void PyBuffer_ Release (Py_buffer *view)
Release the buffer view and decrement the reference count for view—>obj. This function MUST be called when
the buffer is no longer being used, otherwise reference leaks may occur.

It is an error to call this function on a buffer that was not obtained via PyObject_GetBuffer ().

Py_ssize_t PyBuffer SizeFromFormat (constchar *)
Return the implied i temsize from format. This function is not yet implemented.

int PyBuffer_IsContiguous (Py_buffer *view, char order)
Return 1 if the memory defined by the view is C-style (order is ' C ") or Fortran-style (order is 'F ') contiguous or
either one (order is 'A"). Return 0 otherwise. This function always succeeds.

void* PyBuffer_ GetPointer (Py_buffer *view, Py_ssize_t *indices)
Get the memory area pointed to by the indices inside the given view. indices must point to an array of view—->ndim
indices.

int PyBuffer_FromContiguous (Py_buffer *view, void *buf, Py_ssize_t len, char fort)
Copy contiguous len bytes from buf to view. fort canbe 'C' or 'F' (for C-style or Fortran-style ordering). 0 is
returned on success, —1 on error.

int PyBuffer_ToContiguous (void *buf, Py_buffer *src, Py_ssize_t len, char order)
Copy len bytes from src to its contiguous representation in buf. order canbe 'C' or 'F' or 'A"' (for C-style or
Fortran-style ordering or either one). O is returned on success, —1 on error.

This function fails if len != src->len.

76 Rozdzial 7. Warstwa obiektow abstrakcyjnych

The Python/C API, Wydanie 3.7.17

void PyBuffer_FillContiguousStrides (int ndims, Py_ssize_t *shape, Py_ssize_t *strides, int itemsize,

char order)
Fill the strides array with byte-strides of a contiguous (C-style if orderis ' C' or Fortran-style if order is 'F ') array

of the given shape with the given number of bytes per element.

int PyBuffer_FillInfo (Py_buffer *view, PyObject *exporter, void *buf, Py_ssize_t len, int readonly,
int flags)
Handle buffer requests for an exporter that wants to expose buf of size len with writability set according to readonly.
buf is interpreted as a sequence of unsigned bytes.

The flags argument indicates the request type. This function always fills in view as specified by flags, unless buf has
been designated as read-only and PyBUF_WRITABLE is set in flags.

On success, set view—->obj to a new reference to exporter and return 0. Otherwise, raise
PyExc_BufferError,set view—>0b]j to NULL and return —1;

If this function is used as part of a getbufferproc, exporter MUST be set to the exporting object and flags must be
passed unmodified. Otherwise, exporter MUST be NULL.

7.7 Old Buffer Protocol

Niezalecane od wersji 3.0.

These functions were part of the ,,0ld buffer protocol” API in Python 2. In Python 3, this protocol doesn’t exist anymore
but the functions are still exposed to ease porting 2.x code. They act as a compatibility wrapper around the new buffer
protocol, but they don’t give you control over the lifetime of the resources acquired when a buffer is exported.

Therefore, it is recommended that you call PyObject_GetBuffer () (or the y* or w* format codes with the
PyArg ParseTuple () family of functions) to get a buffer view over an object, and PyBuffer Release ()
when the buffer view can be released.

int PyObject_AsCharBuffer (PyObject *obj, const char **buffer, Py_ssize_t *buffer_len)
Returns a pointer to a read-only memory location usable as character-based input. The obj argument must sup-
port the single-segment character buffer interface. On success, returns 0, sets buffer to the memory location and
buffer_len to the buffer length. Returns —1 and sets a TypeError on error.

int PyObject_AsReadBuffer (PyObject *obj, const void **buffer, Py_ssize_t *buffer_len)
Returns a pointer to a read-only memory location containing arbitrary data. The obj argument must support the
single-segment readable buffer interface. On success, returns 0, sets buffer to the memory location and buffer_len
to the buffer length. Returns -1 and sets a TypeError on error.

int PyObject_CheckReadBuffer (PyObject *0)
Returns 1 if o supports the single-segment readable buffer interface. Otherwise returns 0. This function always
succeeds.

Note that this function tries to get and release a buffer, and exceptions which occur while calling corresponding
functions will get suppressed. To get error reporting use PyOb ject_GetBuffer () instead.

int PyObject_AsWriteBuffer (PyObject *obj, void **buffer, Py_ssize_t *buffer_len)
Returns a pointer to a writable memory location. The obj argument must support the single-segment, character
buffer interface. On success, returns 0, sets buffer to the memory location and buffer_len to the buffer length.
Returns —1 and sets a TypeError on error.

7.7. Old Buffer Protocol 77

The Python/C API, Wydanie 3.7.17

78 Rozdziat 7. Warstwa obiektéw abstrakcyjnych

ROZDZIAL 8

Concrete Objects Layer

The functions in this chapter are specific to certain Python object types. Passing them an object of the wrong type is not
a good idea; if you receive an object from a Python program and you are not sure that it has the right type, you must
perform a type check first; for example, to check that an object is a dictionary, use PyDict_Check (). The chapter is
structured like the ,,family tree” of Python object types.

Ostrzezenie: While the functions described in this chapter carefully check the type of the objects which are passed
in, many of them do not check for NULL being passed instead of a valid object. Allowing NULL to be passed in can
cause memory access violations and immediate termination of the interpreter.

8.1 Fundamental Objects

This section describes Python type objects and the singleton object None.

8.1.1 Type Objects

PyTypeObject
The C structure of the objects used to describe built-in types.

PyObject* PyType_Type
This is the type object for type objects; it is the same object as t ype in the Python layer.

int PyType_Check (PyObject *0)
Return true if the object o is a type object, including instances of types derived from the standard type object.
Return false in all other cases.

int PyType_CheckExact (PyObject *o)
Return true if the object o is a type object, but not a subtype of the standard type object. Return false in all other
cases.

79

The Python/C API, Wydanie 3.7.17

unsigned int PyType_ClearCache ()
Clear the internal lookup cache. Return the current version tag.

unsigned long PyType_GetFlags (PyTypeObject* type)
Return the tp_fIlags member of fype. This function is primarily meant for use with Py_LIMITED_API; the
individual flag bits are guaranteed to be stable across Python releases, but access to tp_ f1ags itself is not part
of the limited API.

Nowe w wersji 3.2.
Zmienione w wersji 3.4: The return type is now unsigned long rather than long.

void PyType_Modified (PyTypeObject *type)
Invalidate the internal lookup cache for the type and all of its subtypes. This function must be called after any
manual modification of the attributes or base classes of the type.

int PyType_HasFeature (PyTypeObject *o, int feature)
Return true if the type object o sets the feature feature. Type features are denoted by single bit flags.

int PyType_IS_GC (PyTypeObject *o0)
Return true if the type object includes support for the cycle detector; this tests the type flag
Py TPFLAGS_HAVE_GC.

int PyType_IsSubtype (PyTypeObject *a, PyTypeObject *b)
Return true if a is a subtype of b.

This function only checks for actual subtypes, which means that __subclasscheck__ () is not called on b.
Call PyObject_TIsSubclass () todo the same check that issubclass () would do.

PyObject* PyType_GenericAlloc (PyTypeObject *type, Py_ssize_t nitems)
Return value: New reference. Generic handler for the t p_ a1 1ocslot of a type object. Use Python’s default memory
allocation mechanism to allocate a new instance and initialize all its contents to NULL.

PyObject* PyType_GenericNew (PyTypeObject *type, PyObject *args, PyObject *kwds)
Return value: New reference. Generic handler for the tp_new slot of a type object. Create a new instance using
the type’s tp_alloc slot.

int PyType_Ready (PyTypeObject *type)
Finalize a type object. This should be called on all type objects to finish their initialization. This function is respon-
sible for adding inherited slots from a type’s base class. Return O on success, or return —1 and sets an exception on
error.

PyObject* PyType_FromSpec (PyType_Spec *spec)
Return value: New reference. Creates and returns a heap type object from the spec passed to the function.

PyObject* PyType_FromSpecWithBases (PyType_Spec *spec, PyObject *bases)
Return value: New reference. Creates and returns a heap type object from the spec. In addition to that, the created
heap type contains all types contained by the bases tuple as base types. This allows the caller to reference other
heap types as base types.

Nowe w wersji 3.3.

void* PyType_GetSlot (PyTypeObject *type, int slot)
Return the function pointer stored in the given slot. If the result is NULL, this indicates that either the slot is NULL, or
that the function was called with invalid parameters. Callers will typically cast the result pointer into the appropriate
function type.

Nowe w wersji 3.4.

80 Rozdziat 8. Concrete Objects Layer

The Python/C API, Wydanie 3.7.17

8.1.2 The None Object

Note that the Py TypeOb ject for None is not directly exposed in the Python/C API. Since None is a singleton, testing
for object identity (using == in C) is sufficient. There is no PyNone_Check () function for the same reason.

PyObject* Py_None
The Python None object, denoting lack of value. This object has no methods. It needs to be treated just like any
other object with respect to reference counts.

Py_RETURN_NONE
Properly handle returning Py None from within a C function (that is, increment the reference count of None and
return it.)

8.2 Numeric Objects

8.2.1 Integer Objects

All integers are implemented as ,,long” integer objects of arbitrary size.

On error, most PyLong_As* APIs return (return type) -1 which cannot be distinguished from a number. Use
PyErr_Occurred () to disambiguate.

PyLongObject
This subtype of PyOb ject represents a Python integer object.

PyTypeObject PyLong_Type
This instance of Py TypeOb ject represents the Python integer type. This is the same object as int in the Python
layer.

int PyLong_Check (PyObject *p)
Return true if its argument is a PyLongObject or a subtype of PyLongObject.

int PyLong_CheckExact (PyObject *p)
Return true if its argument is a PyLongObject, but not a subtype of PyLongObject.

PyObject* PyLong_FromLong (long v)
Return value: New reference. Return a new PyLongOb ject object from v, or NULL on failure.

The current implementation keeps an array of integer objects for all integers between —5 and 256, when you create
an int in that range you actually just get back a reference to the existing object. So it should be possible to change
the value of 1. I suspect the behaviour of Python in this case is undefined. :-)

PyObject* PyLong_FromUnsignedLong (unsigned long v)
Return value: New reference. Return a new PyLongObject object from a C unsigned long, or NULL on
failure.

PyObject* PyLong_FromSsize_t (Py_ssize_t v)
Return value: New reference. Return anew PyLongObject object froma CPy_ssize_t, or NULL on failure.

PyObject* PyLong_FromSize_t (size_t v)
Return value: New reference. Return a new PyLongOb ject object from a C size_t, or NULL on failure.

PyObject* PyLong_FromLongLong (long long v)
Return value: New reference. Return a new PyLongOb ject object from a C Long long, or NULL on failure.

PyObject* PyLong_FromUnsignedLongLong (unsigned long long v)
Return value: New reference. Returnanew PyLongOb ject objectfroma Cunsigned long long,or NULL
on failure.

8.2. Numeric Objects 81

The Python/C API, Wydanie 3.7.17

PyObject* PyLong_FromDouble (double v)
Return value: New reference. Return a new Py LongOb ject object from the integer part of v, or NULL on failure.

PyObject* PyLong_FromString (const char *str, char **pend, int base)
Return value: New reference. Return a new PyLongObject based on the string value in str, which is interpreted
according to the radix in base. If pend is non-NULL, *pend will point to the first character in st which follows the
representation of the number. If base is O, str is interpreted using the integers definition; in this case, leading zeros
in a non-zero decimal number raises a ValueError. If base is not 0, it must be between 2 and 36, inclusive.
Leading spaces and single underscores after a base specifier and between digits are ignored. If there are no digits,
ValueError will be raised.

PyObject* PyLong_FromUnicode (Py_UNICODE *u, Py_ssize_t length, int base)
Return value: New reference. Convert a sequence of Unicode digits to a Python integer value. The Unicode
string is first encoded to a byte string using PyUnicode_EncodeDecimal () and then converted using
PyLong_FromString ().

Deprecated since version 3.3, will be removed in version 4.0: Part of the old-style Py_UNICODE API; please
migrate to using PyLong_FromUnicodeObject ().

PyObject* PyLong_FromUnicodeObject (PyObject *u, int base)
Return value: New reference. Convert a sequence of Unicode digits in the string u to a Python integer value. The
Unicode string is first encoded to a byte string using PyUnicode_EncodeDecimal () and then converted
using PyLong_FromString ().

Nowe w wersji 3.3.

PyObject* PyLong_FromVoidPtr (void *p)
Return value: New reference. Create a Python integer from the pointer p. The pointer value can be retrieved from
the resulting value using PyLong_AsVoidPtr ().

long PyLong_AsLong (PyObject *obj)
Return a C 1ong representation of obj. If 0bj is not an instance of PyLongObject, first call its __int__ ()
method (if present) to convert it to a PyLongObject.

Raise OverflowError if the value of obj is out of range for a 1ong.
Returns —1 on error. Use PyErr_Occurred () to disambiguate.

long PyLong_AsLongAndOverflow (PyObject *obj, int *overflow)
Return a C 1ong representation of obj. If obj is not an instance of PyLongObject, first call its __int__ ()
method (if present) to convert it to a PyLongOb ject.

If the value of obj is greater than LONG_MAX or less than LONG_MIN, set *overflow to 1 or —1, respectively, and
return —1; otherwise, set *overflow to 0. If any other exception occurs set *overflow to 0 and return —1 as usual.

Returns —1 on error. Use PyErr_Occurred () to disambiguate.

long long PyLong_AsLongLong (PyObject *obj)
Return a C long long representation of obj. If obj is not an instance of PyLongObject, first call its
int__ () method (if present) to convertittoa PyLongObject.

Raise OverflowError if the value of obj is out of range fora long long.
Returns —1 on error. Use PyErr_Occurred () to disambiguate.

long long PyLong_AsLongLongAndOverflow (PyObject *obj, int *overflow)
Return a C long long representation of obj. If obj is not an instance of PyLongObject, first call its
int__ () method (if present) to convertitto a PyLongObject.

If the value of obj is greater than PY_LLONG_MAX or less than PY_LLONG_MIN, set *overflow to 1 or -1,
respectively, and return —1; otherwise, set *overflow to 0. If any other exception occurs set *overflow to 0 and
return -1 as usual.

82 Rozdziat 8. Concrete Objects Layer

The Python/C API, Wydanie 3.7.17

Returns —1 on error. Use PyErr_Occurred () to disambiguate.
Nowe w wersji 3.2.

Py_ssize_t PyLong_AsSsize_t (PyObject *pylong)
Return a C Py_ssize_t representation of pylong. pylong must be an instance of PyLongObject.

Raise OverflowError if the value of pylong is out of range for a Py_ssize_t.
Returns -1 on error. Use PyErr_Occurred () to disambiguate.

unsigned long PyLong_AsUnsignedLong (PyObject *pylong)
Return a C unsigned long representation of pylong. pylong must be an instance of PyLongOb ject.

Raise OverflowError if the value of pylong is out of range for a unsigned long.
Returns (unsigned long) -1 onerror. Use PyErr_ Occurred () to disambiguate.

size_t PyLong_AsSize_t (PyObject *pylong)
Return a C size_t representation of pylong. pylong must be an instance of PyLongObject.

Raise OverflowError if the value of pylong is out of range fora size_t.
Returns (size_t) -1 onerror. Use PyErr_ Occurred () to disambiguate.

unsigned long long PyLong_AsUnsignedLongLong (PyObject *pylong)
Returna Cunsigned long long representation of pylong. pylong must be an instance of PyLongOb ject.

Raise OverflowError if the value of pylong is out of range for an unsigned long long.
Returns (unsigned long long)-1onerror. Use PyErr Occurred () to disambiguate.
Zmienione w wersji 3.1: A negative pylong now raises OverflowError, not TypeError.

unsigned long PyLong_AsUnsignedLongMask (PyObject *obj)
Return a C unsigned long representation of obj. If obj is not an instance of PyLongObject, first call its
__int__ () method (if present) to convertittoa PyLongObject.

If the value of 0bj is out of range for an unsigned long, return the reduction of that value modulo ULONG_MAX
+ 1.

Returns (unsigned long) -1 onerror. Use PyErr Occurred () to disambiguate.

unsigned long long PyLong_AsUnsignedLongLongMask (PyObject *obj)
Return a C unsigned long long representation of obj. If obj is not an instance of PyLongObject, first
callits __int__ () method (if present) to convert it to a PyLongObject.

If the value of obj is out of range for an unsigned long long, return the reduction of that value modulo
PY_ULLONG_MAX + 1.

Returns (unsigned long long) -1 onerror. Use PyErr Occurred () to disambiguate.

double PyLong_AsDouble (PyObject *pylong)
Return a C double representation of pylong. pylong must be an instance of PyLongObject.

Raise OverflowError if the value of pylong is out of range for a double.
Returns —1 . 0 on error. Use PyErr_ Occurred () to disambiguate.

void* PyLong_AsVoidPtr (PyObject *pylong)
Convert a Python integer pylong to a C void pointer. If pylong cannot be converted, an OverflowError
will be raised. This is only assured to produce a usable void pointer for values created with
PyLong _FromVoidPtr ().

Returns NULL on error. Use PyErr_Occurred () to disambiguate.

8.2. Numeric Objects 83

The Python/C API, Wydanie 3.7.17

8.2.2 Boolean Objects

Booleans in Python are implemented as a subclass of integers. There are only two booleans, Py_False and Py_True.
As such, the normal creation and deletion functions don’t apply to booleans. The following macros are available, however.

int PyBool_Check (PyObject *0)
Return true if o is of type PyBool_Type.

PyObject* Py_False
The Python False object. This object has no methods. It needs to be treated just like any other object with respect
to reference counts.

PyObject* Py_True
The Python True object. This object has no methods. It needs to be treated just like any other object with respect
to reference counts.

Py_RETURN_FALSE
Return Py_False from a function, properly incrementing its reference count.

Py_RETURN_TRUE
Return Py_ True from a function, properly incrementing its reference count.

PyObject* PyBool_FromLong (long v)
Return value: New reference. Return a new reference to Py_True or Py_False depending on the truth value of
V.

8.2.3 Floating Point Objects

PyFloatObject
This subtype of PyOb ject represents a Python floating point object.

PyTypeObject PyFloat_Type
This instance of Py TypeOb ject represents the Python floating point type. This is the same object as f1oat in
the Python layer.

int PyFloat_Check (PyObject *p)
Return true if its argument is a PyFloatObject or a subtype of PyFloatObject.

int PyFloat_CheckExact (PyObject *p)
Return true if its argument is a PyF1oatOb ject, but not a subtype of PyFloatObject.

PyObject* PyFloat_FromString (PyObject *str)
Return value: New reference. Create a PyF'loatOb ject object based on the string value in str, or NULL on
failure.

PyObject* PyFloat_FromDouble (double v)
Return value: New reference. Create a PyF1oatOb ject object from v, or NULL on failure.

double PyFloat_AsDouble (PyObject *pyfloat)
Return a C double representation of the contents of pyfloat. If pyfloat is not a Python floating point object but
hasa___float__ () method, this method will first be called to convert pyfloat into a float. This method returns
—1. 0 upon failure, so one should call PyErr_Occurred () to check for errors.

double PyFloat_AS_DOUBLE (PyObject *pyfloat)
Return a C double representation of the contents of pyfloat, but without error checking.

PyObject* PyFloat_GetInfo (void)
Return value: New reference. Return a structseq instance which contains information about the precision, minimum
and maximum values of a float. It’s a thin wrapper around the header file f1oat . h.

84 Rozdziat 8. Concrete Objects Layer

The Python/C API, Wydanie 3.7.17

double PyFloat_GetMax ()
Return the maximum representable finite float DBL_MAX as C double.

double PyFloat_GetMin ()
Return the minimum normalized positive float DBL_MIN as C double.

int PyFloat_ClearFreeList ()
Clear the float free list. Return the number of items that could not be freed.

8.2.4 Objekt Liczby Zespolonej

Pythonowe liczby zespolone sg stworzone w implementacji C jako dwa oddzielne typy: jeden jest struktura w C ktéra
reprezentuje prawdziwe liczby zespolone, a drugi ujawnia ta strukture dla Pythonowego kodu. API ma funkcje do operacji
na obydwu typach.

Liczby zespolone jako struktury w C

Note that the functions which accept these structures as parameters and return them as results do so by value rather than
dereferencing them through pointers. This is consistent throughout the API.

Py_complex
The C structure which corresponds to the value portion of a Python complex number object. Most of the functions
for dealing with complex number objects use structures of this type as input or output values, as appropriate. It is
defined as:

typedef struct {
double real;
double imag;
} Py_complex;

Py_complex _Py_c_sum (Py_complex left, Py_complex right)
Return the sum of two complex numbers, using the C Py_comp 1 ex representation.

Py_complex _Py_c_dif£ (Py_complex left, Py_complex right)
Return the difference between two complex numbers, using the C Py comp 1 ex representation.

Py_complex _Py_c_neg (Py_complex complex)
Return the negation of the complex number complex, using the C Py_ comp 1 ex representation.

Py_complex _Py_c_prod (Py_complex left, Py_complex right)
Return the product of two complex numbers, using the C Py comp1ex representation.

Py_complex _Py_c_quot (Py_complex dividend, Py_complex divisor)
Return the quotient of two complex numbers, using the C Py_ comp1ex representation.

If divisor is null, this method returns zero and sets errno to EDOM.

Py_complex _Py_c_pow (Py_complex num, Py_complex exp)
Return the exponentiation of num by exp, using the C Py_ comp1ex representation.

If num is null and exp is not a positive real number, this method returns zero and sets errno to EDOM.

8.2. Numeric Objects 85

The Python/C API, Wydanie 3.7.17

Complex Numbers as Python Objects

PyComplexObject
This subtype of PyOb ject represents a Python complex number object.

PyTypeObject PyComplex_Type
This instance of Py TypeOb ject represents the Python complex number type. It is the same object as complex
in the Python layer.

int PyComplex_Check (PyObject *p)
Return true if its argument is a PyComplexObject or a subtype of PyComplexObject.

int PyComplex_CheckExact (PyObject *p)
Return true if its argument is a PyComplexOb ject, but not a subtype of PyComplexObject.

PyObject* PyComplex_FromCComplex (Py_complex v)
Return value: New reference. Create a new Python complex number object from a C Py_ complex value.

PyObject* PyComplex_FromDoubles (double real, double imag)
Return value: New reference. Return a new PyComplexObject object from real and imag.

double PyComplex_RealAsDouble (PyObject *op)
Return the real part of op as a C double.

double PyComplex_ImagAsDouble (PyObject *op)
Return the imaginary part of op as a C double.

Py_complex PyComplex_AsCComplex (PyObject *op)
Return the Py comp1ex value of the complex number op.

If op is not a Python complex number object but hasa ___complex__ () method, this method will first be called
to convert op to a Python complex number object. Upon failure, this method returns —1 . 0 as a real value.

8.3 Sequence Objects

Generic operations on sequence objects were discussed in the previous chapter; this section deals with the specific kinds
of sequence objects that are intrinsic to the Python language.

8.3.1 Bytes Objects

These functions raise TypeError when expecting a bytes parameter and are called with a non-bytes parameter.

PyBytesObject
This subtype of PyOb ject represents a Python bytes object.

PyTypeObject PyBytes_Type
This instance of Py TypeObject represents the Python bytes type; it is the same object as bytes in the Python
layer.

int PyBytes_Check (PyObject *o)
Return true if the object o is a bytes object or an instance of a subtype of the bytes type.
int PyBytes_CheckExact (PyObject *0)
Return true if the object o is a bytes object, but not an instance of a subtype of the bytes type.
PyObject* PyBytes_FromString (const char *v)
Return value: New reference. Return a new bytes object with a copy of the string v as value on success, and NULL
on failure. The parameter v must not be NULL; it will not be checked.

86 Rozdziat 8. Concrete Objects Layer

The Python/C API, Wydanie 3.7.17

PyObject* PyBytes_FromStringAndSize (const char *v, Py_ssize_t len)
Return value: New reference. Return a new bytes object with a copy of the string v as value and length len on success,
and NULL on failure. If v is NULL, the contents of the bytes object are uninitialized.

PyObject* PyBytes_FromFormat (const char *format, ...)
Return value: New reference. Take a C print £ () -style format string and a variable number of arguments, cal-
culate the size of the resulting Python bytes object and return a bytes object with the values formatted into it. The
variable arguments must be C types and must correspond exactly to the format characters in the format string. The
following format characters are allowed:

Format Characters | Type Comment

%% n/a The literal % character.

$c int A single byte, represented as a C int.

sd int Equivalent to printf("%l").I

%u nieoznaczony typ int Equivalent to print £ ("su").!

$1d long Equivalent to print f ("% ld") T

%$1lu nieoznaczony typ dtugi | Equivalent to printf ("$1u").!

$zd Py_ssize_t Equivalent to printf ("$zd"). I

Szu size_t Equivalent to print £ ("$zu").!

%i int Equivalent to printf ("$1i"). I

$x int Equivalent to print f ("$x").!

%s const char* A null-terminated C character array.

$p const void* The hex representation of a C pointer. Mostly equivalent to
printf ("$p") except that it is guaranteed to start with
the literal 0x regardless of what the platform’s print f
yields.

An unrecognized format character causes all the rest of the format string to be copied as-is to the result object, and
any extra arguments discarded.

PyObject* PyBytes_FromFormatV (const char *format, va_list vargs)
Return value: New reference. Identical to PyBytes_FromFormat () except that it takes exactly two arguments.

PyObject* PyBytes_FromObject (PyObject *o)
Return value: New reference. Return the bytes representation of object o that implements the buffer protocol.

Py_ssize_t PyBytes_Size (PyObject *0)
Return the length of the bytes in bytes object o.

Py_ssize_t PyBytes_GET_SIZE (PyObject *0)
Macro form of PyBytes_Size () but without error checking.

char* PyBytes_AsString (PyObject *o0)
Return a pointer to the contents of o. The pointer refers to the internal buffer of o, which consists of 1en (o) +
1 bytes. The last byte in the buffer is always null, regardless of whether there are any other null bytes. The data must
not be modified in any way, unless the object was just created using PyBytes_FromStringAndSize (NULL,
size). It must not be deallocated. If o is not a bytes object at all, PyBytes_AsString () returns NULL and
raises TypeError.

char* PyBytes_AS_STRING (PyObject *string)
Macro form of PyBytes_AsString () but without error checking.

int PyBytes_AsStringAndSize (PyObject *obj, char **buffer, Py_ssize_t *length)
Return the null-terminated contents of the object obj through the output variables buffer and length.

! For integer specifiers (d, u, Id, lu, zd, zu, i, x): the O-conversion flag has effect even when a precision is given.

8.3. Sequence Objects 87

The Python/C API, Wydanie 3.7.17

If length is NULL, the bytes object may not contain embedded null bytes; if it does, the function returns —1 and a
ValueError is raised.

The buffer refers to an internal buffer of obj, which includes an additional null byte at the end (not co-
unted in length). The data must not be modified in any way, unless the object was just created using
PyBytes_FromStringAndSize (NULL, size). It must not be deallocated. If obj is not a bytes object
atall, PyBytes AsStringAndSize () returns —1 and raises TypeError.

Zmienione w wersji 3.5: Previously, TypeError was raised when embedded null bytes were encountered in the
bytes object.

void PyBytes_Concat (PyObject **bytes, PyObject *newpart)

Create a new bytes object in *bytes containing the contents of newpart appended to bytes; the caller will own the
new reference. The reference to the old value of byfes will be stolen. If the new object cannot be created, the old
reference to bytes will still be discarded and the value of *byfes will be set to NULL; the appropriate exception will
be set.

void PyBytes_ConcatAndDel (PyObject **bytes, PyObject *newpart)

Create a new bytes object in *bytes containing the contents of newpart appended to bytes. This version decrements
the reference count of newpart.

int _PyBytes_Resize (PyObject **bytes, Py_ssize_t newsize)

A way to resize a bytes object even though it is ,,immutable”. Only use this to build up a brand new bytes object;
don’t use this if the bytes may already be known in other parts of the code. It is an error to call this function if
the refcount on the input bytes object is not one. Pass the address of an existing bytes object as an Ivalue (it may
be written into), and the new size desired. On success, *byfes holds the resized bytes object and O is returned;
the address in *byfes may differ from its input value. If the reallocation fails, the original bytes object at *bytes is
deallocated, *bytes is set to NULL, MemoryError is set, and —1 is returned.

8.3.2 Byte Array Objects

PyByteArrayObject

This subtype of PyOb ject represents a Python bytearray object.

PyTypeObject PyByteArray_Type

This instance of Py TypeOb ject represents the Python bytearray type; it is the same object as bytearray in
the Python layer.

Type check macros

int PyByteArray_Check (PyObject *o)

Return true if the object o is a bytearray object or an instance of a subtype of the bytearray type.

int PyByteArray_CheckExact (PyObject *0)

Return true if the object o is a bytearray object, but not an instance of a subtype of the bytearray type.

88

Rozdziat 8. Concrete Objects Layer

The Python/C API, Wydanie 3.7.17

Direct API functions

PyObject* PyByteArray_FromObject (PyObject *0)
Return value: New reference. Return a new bytearray object from any object, o, that implements the buffer protocol.

PyObject* PyByteArray FromStringAndSize (const char *string, Py_ssize_t len)
Return value: New reference. Create a new bytearray object from string and its length, len. On failure, NULL is
returned.

PyObject* PyByteArray_Concat (PyObject *a, PyObject *b)
Return value: New reference. Concat bytearrays a and b and return a new bytearray with the result.

Py_ssize_t PyByteArray_Size (PyObject *bytearray)
Return the size of bytearray after checking for a NULL pointer.

char* PyByteArray_AsString (PyObject *bytearray)
Return the contents of byfearray as a char array after checking for a NULL pointer. The returned array always has
an extra null byte appended.

int PyByteArray_Resize (PyObject *bytearray, Py_ssize_t len)
Resize the internal buffer of bytearray to len.

Macros

These macros trade safety for speed and they don’t check pointers.

char* PyByteArray_AS_STRING (PyObject *bytearray)
Macro version of PyByteArray AsString().

Py_ssize_t PyByteArray_ GET_SIZE (PyObject *bytearray)
Macro version of PyByteArray Size ().

8.3.3 Unicode Objects and Codecs

Unicode Objects

Since the implementation of PEP 393 in Python 3.3, Unicode objects internally use a variety of representations, in order
to allow handling the complete range of Unicode characters while staying memory efficient. There are special cases for
strings where all code points are below 128, 256, or 65536; otherwise, code points must be below 1114112 (which is the
full Unicode range).

Py _UNICODE* and UTF-8 representations are created on demand and cached in the Unicode object. The
Py_UNICODE * representation is deprecated and inefficient; it should be avoided in performance- or memory-sensitive
situations.

Due to the transition between the old APIs and the new APIs, Unicode objects can internally be in two states depending
on how they were created:

* canonical” Unicode objects are all objects created by a non-deprecated Unicode API. They use the most efficient
representation allowed by the implementation.

e .legacy” Unicode objects have been created through one of the deprecated APIs (typically
PyUnicode_FromUnicode ()) and only bear the Py_UNICODE* representation; you will have to call
PyUnicode_READY () on them before calling any other APL

8.3. Sequence Objects 89

https://www.python.org/dev/peps/pep-0393

The Python/C API, Wydanie 3.7.17

Unicode Type

These are the basic Unicode object types used for the Unicode implementation in Python:

Py_UCS4

Py_UCS2

Py_UCS1
These types are typedefs for unsigned integer types wide enough to contain characters of 32 bits, 16 bits and 8 bits,
respectively. When dealing with single Unicode characters, use Py_ UCS4.

Nowe w wersji 3.3.

Py_UNICODE
This is a typedef of wchar_t, which is a 16-bit type or 32-bit type depending on the platform.

Zmienione w wersji 3.3: In previous versions, this was a 16-bit type or a 32-bit type depending on whether you
selected a ,,narrow” or ,,wide” Unicode version of Python at build time.

PyASCIIObject

PyCompactUnicodeObject

PyUnicodeObject
These subtypes of PyOb ject represent a Python Unicode object. In almost all cases, they shouldn’t be used
directly, since all API functions that deal with Unicode objects take and return PyOb ject pointers.

Nowe w wersji 3.3.

PyTypeObject PyUnicode_Type
This instance of Py TypeObject represents the Python Unicode type. It is exposed to Python code as str.

The following APIs are really C macros and can be used to do fast checks and to access internal read-only data of Unicode
objects:

int PyUnicode_Check (PyObject *o)
Return true if the object o is a Unicode object or an instance of a Unicode subtype.

int PyUnicode_CheckExact (PyObject *o)
Return true if the object o is a Unicode object, but not an instance of a subtype.

int PyUnicode_READY (PyObject *o)
Ensure the string object o is in the ,,canonical” representation. This is required before using any of the access macros
described below.

Returns O on success and —1 with an exception set on failure, which in particular happens if memory allocation
fails.

Nowe w wersji 3.3.

Py_ssize_t PyUnicode_GET_LENGTH (PyObject *0)
Return the length of the Unicode string, in code points. o has to be a Unicode object in the ,,canonical” representation
(not checked).

Nowe w wersji 3.3.

Py_UCSI* PyUnicode_1BYTE_DATA (PyObject *0)

Py_UCS2* PyUnicode_2BYTE_DATA (PyObject *0)

Py_UCS4* PyUnicode_4BYTE_DATA (PyObject *0)
Return a pointer to the canonical representation cast to UCS1, UCS2 or UCS4 integer types for direct cha-
racter access. No checks are performed if the canonical representation has the correct character size; use
PyUnicode_KIND () to select the right macro. Make sure PyUnicode_READY () has been called before
accessing this.

Nowe w wersji 3.3.

920 Rozdziat 8. Concrete Objects Layer

The Python/C API, Wydanie 3.7.17

PyUnicode_WCHAR_KIND
PyUnicode_1BYTE_KIND
PyUnicode_2BYTE_KIND
PyUnicode_4BYTE_KIND

Return values of the PyUnicode KIND () macro.

Nowe w wersji 3.3.

int PyUnicode_KIND (PyObject *o0)
Return one of the PyUnicode kind constants (see above) that indicate how many bytes per character this Unicode
object uses to store its data. o has to be a Unicode object in the ,,canonical” representation (not checked).

Nowe w wersji 3.3.

void* PyUnicode_DATA (PyObject *o)
Return a void pointer to the raw Unicode buffer. o has to be a Unicode object in the ,,canonical” representation (not
checked).

Nowe w wersji 3.3.

void PyUnicode_WRITE (int kind, void *data, Py_ssize_t index, Py_UCS4 value)
Write into a canonical representation data (as obtained with PyUnicode_DATA ()). This macro does not do any
sanity checks and is intended for usage in loops. The caller should cache the kind value and data pointer as obtained
from other macro calls. index is the index in the string (starts at 0) and value is the new code point value which
should be written to that location.

Nowe w wersji 3.3.

Py_UCS4 PyUnicode_READ (int kind, void *data, Py_ssize_t index)
Read a code point from a canonical representation data (as obtained with PyUnicode_DATA ()). No checks or
ready calls are performed.

Nowe w wersji 3.3.

Py_UCS4 PyUnicode_READ_CHAR (PyObject *o, Py_ssize_t index)
Read a character from a Unicode object o, which must be in the ,,canonical” representation. This is less efficient
than PyUnicode_READ () if you do multiple consecutive reads.

Nowe w wersji 3.3.

PyUnicode_MAX_CHAR_VALUE (PyObject *0)
Return the maximum code point that is suitable for creating another string based on o, which must be in the
»canonical” representation. This is always an approximation but more efficient than iterating over the string.

Nowe w wersji 3.3.

int PyUnicode_ClearFreeList ()
Clear the free list. Return the total number of freed items.

Py_ssize_t PyUnicode_GET_SIZE (PyObject *0)
Return the size of the deprecated Py_ UNICODE representation, in code units (this includes surrogate pairs as 2
units). o has to be a Unicode object (not checked).

Deprecated since version 3.3, will be removed in version 4.0: Part of the old-style Unicode API, please migrate to
using PyUnicode_ GET_LENGTH ().

Py_ssize_t PyUnicode_GET_DATA_SIZE (PyObject *o)
Return the size of the deprecated Py_ UNTCODE representation in bytes. o has to be a Unicode object (not checked).

Deprecated since version 3.3, will be removed in version 4.0: Part of the old-style Unicode API, please migrate to
using PyUnicode_GET_LENGTH ().

Py_UNICODE* PyUnicode_AS_UNICODE (PyObject *0)

8.3. Sequence Objects 91

The Python/C API, Wydanie 3.7.17

const char* PyUnicode_AS_DATA (PyObject *0)
Return a pointer to a Py UNICODE representation of the object. The returned buffer is always terminated with an
extra null code point. It may also contain embedded null code points, which would cause the string to be truncated
when used in most C functions. The AS_DATA form casts the pointer to const char *. The o argument has
to be a Unicode object (not checked).

Zmienione w wersji 3.3: This macro is now inefficient — because in many cases the Py_ UNTICODE representation
does not exist and needs to be created — and can fail (return NULL with an exception set). Try to port the code to use
the new PyUnicode_nBYTE_DATA () macros or use PyUnicode_ WRITE () or PyUnicode READ ().

Deprecated since version 3.3, will be removed in version 4.0: Part of the old-style Unicode API, please migrate to
using the PyUnicode_nBYTE_DATA () family of macros.

Unicode Character Properties

Unicode provides many different character properties. The most often needed ones are available through these macros
which are mapped to C functions depending on the Python configuration.

int Py_UNICODE_ISSPACE (Py_UNICODE ch)
Return 1 or 0 depending on whether ch is a whitespace character.

int Py_UNICODE_ISLOWER (Py_UNICODE ch)
Return 1 or 0 depending on whether ch is a lowercase character.

int Py_UNICODE_ISUPPER (Py UNICODE ch)
Return 1 or 0 depending on whether ch is an uppercase character.

int Py_UNICODE_ISTITLE (Py UNICODE ch)
Return 1 or 0 depending on whether ch is a titlecase character.

int Py_UNICODE_ISLINEBREAK (Py_UNICODE ch)
Return 1 or 0 depending on whether c# is a linebreak character.

int Py_UNICODE_ISDECIMAL (Py UNICODE ch)
Return 1 or 0 depending on whether ch is a decimal character.

int Py _UNICODE_ISDIGIT (Py_UNICODE ch)
Return 1 or 0 depending on whether ch is a digit character.

int Py_UNICODE_ISNUMERIC (Py_ UNICODE ch)
Return 1 or 0 depending on whether c/ is a numeric character.

int Py_UNICODE_ISALPHA (Py_ UNICODE ch)
Return 1 or 0 depending on whether ch is an alphabetic character.

int Py_UNICODE_ISALNUM (Py_UNICODE ch)
Return 1 or 0 depending on whether c# is an alphanumeric character.

int Py_UNICODE_ISPRINTABLE (Py_UNICODE ch)
Return 1 or 0 depending on whether c# is a printable character. Nonprintable characters are those characters defined
in the Unicode character database as ,,Other” or ,,Separator”, excepting the ASCII space (0x20) which is considered
printable. (Note that printable characters in this context are those which should not be escaped when repr () is
invoked on a string. It has no bearing on the handling of strings written to sys . stdout or sys.stderr.)

These APIs can be used for fast direct character conversions:

Py_UNICODE Py_UNICODE_TOLOWER (Py_UNICODE ch)
Return the character ch converted to lower case.

Niezalecane od wersji 3.3: This function uses simple case mappings.

92 Rozdziat 8. Concrete Objects Layer

The Python/C API, Wydanie 3.7.17

Py_UNICODE Py_UNICODE_TOUPPER (Py_UNICODE ch)
Return the character ch converted to upper case.

Niezalecane od wersji 3.3: This function uses simple case mappings.

Py_UNICODE Py_UNICODE_TOTITLE (Py_UNICODE ch)
Return the character ch converted to title case.

Niezalecane od wersji 3.3: This function uses simple case mappings.

int Py_UNICODE_TODECIMAL (Py_UNICODE ch)
Return the character ch converted to a decimal positive integer. Return —1 if this is not possible. This macro does
not raise exceptions.

int Py_UNICODE_TODIGIT (Py_UNICODE ch)
Return the character ch converted to a single digit integer. Return —1 if this is not possible. This macro does not
raise exceptions.

double Py_UNICODE_TONUMERIC (Py_UNICODE ch)
Return the character ch converted to a double. Return —1 . 0 if this is not possible. This macro does not raise
exceptions.

These APIs can be used to work with surrogates:

Py_UNICODE_IS_SURROGATE (ch)
Check if ch is a surrogate (0xD800 <= ch <= O0xDFFF).

Py_UNICODE_IS_HIGH_SURROGATE (ch)
Check if ch is a high surrogate (0xD800 <= ch <= 0xDBFF).

Py_UNICODE_IS_LOW_SURROGATE (ch)
Check if ch is a low surrogate (0xDC00 <= ch <= OxDFFF).

Py_UNICODE_JOIN_SURROGATES (high, low)
Join two surrogate characters and return a single Py_UCS4 value. high and low are respectively the leading and
trailing surrogates in a surrogate pair.

Creating and accessing Unicode strings

To create Unicode objects and access their basic sequence properties, use these APIs:

PyObject* PyUnicode_New (Py_ssize_t size, Py_UCS4 maxchar)
Return value: New reference. Create a new Unicode object. maxchar should be the true maximum code point to
be placed in the string. As an approximation, it can be rounded up to the nearest value in the sequence 127, 255,
65535, 1114111.

This is the recommended way to allocate a new Unicode object. Objects created using this function are not resizable.
Nowe w wersji 3.3.

PyObject* PyUnicode_FromKindAndData (int kind, const void *buffer, Py_ssize_t size)
Return value: New reference. Create a new Unicode object with the given kind (possible values are
PyUnicode_1BYTE_KIND etc., as returned by PyUnicode_KIND ()). The buffer must point to an array
of size units of 1, 2 or 4 bytes per character, as given by the kind.

Nowe w wersji 3.3.

PyObject* PyUnicode_FromStringAndSize (const char *u, Py_ssize_t size)
Return value: New reference. Create a Unicode object from the char buffer u. The bytes will be interpreted as being
UTF-8 encoded. The buffer is copied into the new object. If the buffer is not NULL, the return value might be a
shared object, i.e. modification of the data is not allowed.

8.3. Sequence Objects 93

The Python/C API, Wydanie 3.7.17

If u is NULL, this function behaves like PyUnicode_FromUnicode () with the buffer set to NULL. This usage
is deprecated in favor of PyUnicode New ().

PyObject *PyUnicode_FromString (const char *u)
Return value: New reference. Create a Unicode object from a UTF-8 encoded null-terminated char buffer u.

PyObject* PyUnicode_FromFormat (const char *format, ...)
Return value: New reference. Take a C print £ () -style format string and a variable number of arguments, calcu-
late the size of the resulting Python Unicode string and return a string with the values formatted into it. The variable
arguments must be C types and must correspond exactly to the format characters in the format ASCII-encoded
string. The following format characters are allowed:

Format Characters | Type Comment

5% n/a The literal % character.

%c int A single character, represented as aCint.

$d int Equivalent to print £ (" /d")

$u unsigned int Equivalent to printf (" R

%1d long Equivalent to printf (" %l dam .t

$11i long Equivalent to printf ("$11i"). I

%$1lu unsigned long Equivalent to print £ ("$1u").!

$11d long long Equivalent to printf ("$11d").!

$111 long long Equivalent to print £ ("$111i").!

$1lu unsigned long long Equivalent to printf ("$11u").!

5zd Py_ssize_t Equivalent to print £ ("$zd").!

$zi Py_ssize_t Equivalent to print £ ("$zi").!

%zu size_t Equivalent to print £ ("$zu")1

$i int Equivalent to print £ ("$i"). 1

$x int Equivalent to print £ ("$x").!

%s const char* A null-terminated C character array.

$p const void* The hex representation of a C pointer. Mostly equivalent to
printf ("$p") except that it is guaranteed to start with
the literal Ox regardless of what the platform’s print £
yields.

$A PyObject* The result of calling ascii ().

$U PyObject* A Unicode object.

SV PyObject*, const char* | A Unicode object (which may be NULL) and a
null-terminated C character array as a second parameter
(which will be used, if the first parameter is NULL).

%S PyObject* The result of calling PyObject_Str().

%R PyObject* The result of calling PyObject_Repr ().

An unrecognized format character causes all the rest of the format string to be copied as-is to the result string, and
any extra arguments discarded.

Informacja: The width formatter unit is number of characters rather than bytes. The precision formatter unit is
number of bytes for "$s" and "$V" (if the PyObject* argument is NULL), and a number of characters for
"SAM, "SU", "$S", "SR" and "$V" (if the PyObject * argument is not NULL).

Zmienione w wersji 3.2: Support for "$11d" and "$11u" added.

Zmienione w wersji 3.3: Support for "$1i", "$11i" and "%$z1i" added.

! For integer specifiers (d, u, 1d, 1i, Iu, 11d, 11i, 1lu, zd, zi, zu, i, x): the O-conversion flag has effect even when a precision is given.

94 Rozdziat 8. Concrete Objects Layer

The Python/C API, Wydanie 3.7.17

Zmienione w wersji 3.4: Support width and precision formatter for "$s", "$A", "$U", "sV", "$3S", "SR"
added.

PyObject* PyUnicode_FromFormatV (const char *format, va_list vargs)
Return value: New reference. Identical to PyUnicode_FromFormat () except that it takes exactly two argu-
ments.

PyObject* PyUnicode_FromEncodedObject (PyObject *obj, const char *encoding, const char *errors)
Return value: New reference. Decode an encoded object obj to a Unicode object.

bytes, bytearray and other byfes-like objects are decoded according to the given encoding and using the error
handling defined by errors. Both can be NULL to have the interface use the default values (see Built-in Codecs for
details).

All other objects, including Unicode objects, cause a TypeError to be set.
The API returns NULL if there was an error. The caller is responsible for decref’ing the returned objects.

Py_ssize_t PyUnicode_GetLength (PyObject *unicode)
Return the length of the Unicode object, in code points.

Nowe w wersji 3.3.

Py_ssize_t PyUnicode_CopyCharacters (PyObject *to, Py_ssize_t to_start, PyObject *from,
Py_ssize_t from_start, Py_ssize_t how_many)
Copy characters from one Unicode object into another. This function performs character conversion when necessary
and falls back to memcpy () if possible. Returns —1 and sets an exception on error, otherwise returns the number
of copied characters.

Nowe w wersji 3.3.

Py_ssize_t PyUnicode_Fill (PyObject *unicode, Py_ssize_t start, Py_ssize_t length, Py_UCS4 fill_char)
Fill a string with a character: write fill_char into unicode [start:start+length].

Fail if fill_char is bigger than the string maximum character, or if the string has more than 1 reference.
Return the number of written character, or return —1 and raise an exception on error.
Nowe w wersji 3.3.

int PyUnicode_WriteChar (PyObject *unicode, Py_ssize_t index, Py_UCS4 character)
Write a character to a string. The string must have been created through PyUnicode_New (). Since Unicode
strings are supposed to be immutable, the string must not be shared, or have been hashed yet.

This function checks that unicode is a Unicode object, that the index is not out of bounds, and that the object can
be modified safely (i.e. that it its reference count is one).

Nowe w wersji 3.3.

Py_UCS4 PyUnicode_ReadChar (PyObject *unicode, Py_ssize_t index)
Read a character from a string. This function checks that unicode is a Unicode object and the index is not out of
bounds, in contrast to the macro version PyUnicode_READ_CHAR ().

Nowe w wersji 3.3.

PyObject* PyUnicode_Substring (PyObject *str, Py_ssize_t start, Py_ssize_t end)
Return value: New reference. Return a substring of str, from character index start (included) to character index end
(excluded). Negative indices are not supported.

Nowe w wersji 3.3.

Py_UCS4* PyUnicode_AsUCS4 (PyObject *u, Py_UCS4 *buffer, Py_ssize_t buflen, int copy_null)
Copy the string u into a UCS4 buffer, including a null character, if copy_null is set. Returns NULL and sets an
exception on error (in particular, a SystemError if buflen is smaller than the length of u). buffer is returned on
success.

8.3. Sequence Objects 95

The Python/C API, Wydanie 3.7.17

Nowe w wersji 3.3.

Py_UCS4* PyUnicode_AsUCS4Copy (PyObject *u)

Copy the string u into a new UCS4 buffer that is allocated using PyMem Malloc (). If this fails, NULL is returned
with a MemoryError set. The returned buffer always has an extra null code point appended.

Nowe w wersji 3.3.

Deprecated Py_UNICODE APls

Deprecated since version 3.3, will be removed in version 4.0.

These API functions are deprecated with the implementation of PEP 393. Extension modules can continue using them,
as they will not be removed in Python 3.x, but need to be aware that their use can now cause performance and memory

hits.

PyObject* PyUnicode_FromUnicode (const Py_UNICODE *u, Py_ssize_t size)

Return value: New reference. Create a Unicode object from the Py_UNICODE buffer u of the given size. u may be
NULL which causes the contents to be undefined. It is the user’s responsibility to fill in the needed data. The buffer
is copied into the new object.

If the buffer is not NULL, the return value might be a shared object. Therefore, modification of the resulting Unicode
object is only allowed when u is NULL.

If the buffer is NULL, PyUnicode_READY () must be called once the string content has been filled before using
any of the access macros such as PyUnicode_KIND ().

Please migrate to using PyUnicode_ FromKindAndData (), PyUnicode_FromWideChar () or
PyUnicode_New ().

Py_UNICODE* PyUnicode_AsUnicode (PyObject *unicode)

Return a read-only pointer to the Unicode object’s internal Py UNICODE buffer, or NULL on error. This will
create the Py UNICODE * representation of the object if it is not yet available. The buffer is always terminated
with an extra null code point. Note that the resulting Py_ UNTCODE string may also contain embedded null code
points, which would cause the string to be truncated when used in most C functions.

Please migrate to using PyUnicode_AsUCS4 (), PyUnicode_AsWideChar (),
PyUnicode_ReadChar () or similar new APIs.

PyObject* PyUnicode_TransformDecimalToASCII (Py_UNICODE *s, Py_ssize_t size)

Return value: New reference. Create a Unicode object by replacing all decimal digits in Py_ UNTCODE buffer of
the given size by ASCII digits 0-9 according to their decimal value. Return NULL if an exception occurs.

Py_UNICODE* PyUnicode_AsUnicodeAndSize (PyObject *unicode, Py_ssize_t *size)

Like PyUnicode_AsUnicode (), but also saves the Py_ UNICODE () array length (excluding the extra null
terminator) in size. Note that the resulting Py_ UNICODE * string may contain embedded null code points, which
would cause the string to be truncated when used in most C functions.

Nowe w wersji 3.3.

Py_UNICODE* PyUnicode_AsUnicodeCopy (PyObject *unicode)

Create a copy of a Unicode string ending with a null code point. Return NULL and raise a MemoryError exception
on memory allocation failure, otherwise return a new allocated buffer (use PyMem_ Free () to free the buffer).
Note that the resulting Py UNICODE * string may contain embedded null code points, which would cause the
string to be truncated when used in most C functions.

Nowe w wersji 3.2.

Please migrate to using PyUnicode AsUCS4Copy () or similar new APIs.

96

Rozdziat 8. Concrete Objects Layer

https://www.python.org/dev/peps/pep-0393

The Python/C API, Wydanie 3.7.17

Py_ssize_t PyUnicode_GetSize (PyObject *unicode)
Return the size of the deprecated Py_UNICODE representation, in code units (this includes surrogate pairs as 2
units).

Please migrate to using PyUnicode_GetLength ().

PyObject* PyUnicode_FromObject (PyObject *obj)
Return value: New reference. Copy an instance of a Unicode subtype to a new true Unicode object if necessary. If
obj is already a true Unicode object (not a subtype), return the reference with incremented refcount.

Objects other than Unicode or its subtypes will cause a TypeError.

Locale Encoding

The current locale encoding can be used to decode text from the operating system.

PyObject* PyUnicode_DecodeLocaleAndSize (const char *str, Py_ssize_t len, const char *errors)
Return value: New reference. Decode a string from UTF-8 on Android, or from the current locale encoding on other
platforms. The supported error handlers are "strict" and "surrogateescape" (PEP 383). The decoder
uses "strict" error handler if errors is NULL. str must end with a null character but cannot contain embedded
null characters.

Use PyUnicode_DecodeFSDefaultAndSize () to decode a string from
Py_FileSystemDefaultEncoding (the locale encoding read at Python startup).

This function ignores the Python UTF-8 mode.
Zobacz takze:

The Py_DecodeLocale () function.

Nowe w wersji 3.3.

Zmienione w wersji 3.7: The function now also uses the current locale encoding for the surrogateescape
error handler, except on Android. Previously, Py_DecodeLocale () was used for the surrogateescape,
and the current locale encoding was used for strict.

PyObject* PyUnicode_DecodeLocale (const char *str, const char *errors)
Return value: New reference. Similar to PyUnicode_DecodeLocaleAndSize (), but compute the string
length using strlen ().

Nowe w wersji 3.3.

PyObject* PyUnicode_EncodeLocale (PyObject *unicode, const char *errors)
Return value: New reference. Encode a Unicode object to UTF-8 on Android, or to the current locale encoding on
other platforms. The supported error handlers are "strict" and "surrogateescape" (PEP 383). The en-
coder uses "strict" error handler if errors is NULL. Return a byt es object. unicode cannot contain embedded
null characters.

Use PyUnicode_EncodeFSDefault () toencodeastringtoPy_FileSystemDefaultEncoding (the
locale encoding read at Python startup).

This function ignores the Python UTF-8 mode.
Zobacz takze:
The Py _EncodeLocale () function.

Nowe w wersji 3.3.

8.3. Sequence Objects 97

https://www.python.org/dev/peps/pep-0383
https://www.python.org/dev/peps/pep-0383

The Python/C API, Wydanie 3.7.17

Zmienione w wersji 3.7: The function now also uses the current locale encoding for the surrogateescape
error handler, except on Android. Previously, Py_EncodeLocale () was used for the surrogateescape,
and the current locale encoding was used for strict.

File System Encoding

To encode and decode file names and other environment strings, Py_FileSystemDefaultEncoding should be
used as the encoding, and Py_FileSystemDefaultEncodeErrors should be used as the error handler (PEP
383 and PEP 529). To encode file names to bytes during argument parsing, the "O&" converter should be used,
passing PyUnicode_FSConverter () asthe conversion function:

int PyUnicode_FSConverter (PyObject* obj, void* result)
ParseTuple converter: encode str objects — obtained directly or through the os.PathLike interface —
to bytes using PyUnicode EncodeFSDefault (); bytes objects are output as-is. result must be a
PyBytesObject * which must be released when it is no longer used.

Nowe w wersji 3.1.
Zmienione w wersji 3.6: Accepts a path-like object.

To decode file names to str during argument parsing, the "O&" converter should be used, passing
PyUnicode_FSDecoder () as the conversion function:

int PyUnicode_FSDecoder (PyObject* obj, void* result)
ParseTuple converter: decode bytes objects — obtained either directly or indirectly through the os .PathLike
interface — to st r using PyUnicode_DecodeFSDefaultAndSize (); str objects are output as-is. result
must be a PyUnicodeOb ject * which must be released when it is no longer used.

Nowe w wersji 3.2.
Zmienione w wersji 3.6: Accepts a path-like object.

PyObject* PyUnicode_DecodeFSDefaultAndSize (const char *s, Py_ssize_t size)
Return value: New reference. Decode a string using Py_FileSystemDefaultEncoding and the
Py_FileSystemDefaultEncodeErrors error handler.

If Py_FileSystemDefaultEncoding is not set, fall back to the locale encoding.

Py_FileSystemDefaultEncoding is initialized at startup from the locale encoding and
cannot be modified later. If you need to decode a string from the current locale encoding, use
PyUnicode_DecodeLocaleAndSize ().

Zobacz takze:
The Py_DecodeLocale () function.
Zmienione w wersji 3.6: Use Py_FileSystemDefaultEncodeErrors error handler.

PyObject* PyUnicode_DecodeFSDefault (const char *s)
Return value: New reference. Decode a null-terminated string using Py_FileSystemDefaultEncodingand
the Py_FileSystemDefaultEncodeErrors error handler.

If Py_FileSystemDefaultEncoding is not set, fall back to the locale encoding.
Use PyUnicode_DecodeFSDefaultAndSize () if you know the string length.
Zmienione w wersji 3.6: Use Py_FileSystemDefaultEncodeErrors error handler.

PyObject* PyUnicode_EncodeFSDefault (PyObject *unicode)
Return value: New reference. Encode a Unicode object to Py_FileSystemDefaultEncoding with the
Py_FileSystemDefaultEncodeErrors error handler, and return bytes. Note that the resulting bytes
object may contain null bytes.

98 Rozdziat 8. Concrete Objects Layer

https://www.python.org/dev/peps/pep-0383
https://www.python.org/dev/peps/pep-0383
https://www.python.org/dev/peps/pep-0529

The Python/C API, Wydanie 3.7.17

If Py_FileSystemDefaultEncoding is not set, fall back to the locale encoding.

Py_FileSystemDefaultEncoding isinitialized at startup from the locale encoding and cannot be modified
later. If you need to encode a string to the current locale encoding, use PyUnicode_EncodeLocale ().

Zobacz takze:
The Py EncodelLocale () function.
Nowe w wersji 3.2.

Zmienione w wersji 3.6: Use Py_FileSystemDefaultEncodeErrors error handler.

wchar_t Support

wchar_t support for platforms which support it:

PyObject* PyUnicode_FromWideChar (const wchar_t *w, Py_ssize_t size)
Return value: New reference. Create a Unicode object from the wchar_t buffer w of the given size. Passing -1 as
the size indicates that the function must itself compute the length, using weslen. Return NULL on failure.

Py_ssize_t PyUnicode_AsWideChar (PyObject *unicode, wchar_t *w, Py_ssize_t size)
Copy the Unicode object contents into the wchar_t buffer w. At most size wchar_t characters are copied
(excluding a possibly trailing null termination character). Return the number of wchar_t characters copied or
-1 in case of an error. Note that the resulting wchar_t* string may or may not be null-terminated. It is the
responsibility of the caller to make sure that the wchar_t * string is null-terminated in case this is required by the
application. Also, note that the wchar_t * string might contain null characters, which would cause the string to
be truncated when used with most C functions.

wchar_t* PyUnicode_AsWideCharString (PyObject *unicode, Py_ssize_t *size)
Convert the Unicode object to a wide character string. The output string always ends with a null character. If size is
not NULL, write the number of wide characters (excluding the trailing null termination character) into *size. Note
that the resulting wchar_ t string might contain null characters, which would cause the string to be truncated when
used with most C functions. If size is NULL and the wchar_t* string contains null characters a ValueError
is raised.

Returns a buffer allocated by PyMem_Alloc () (use PyMem Free () to free it) on success. On error, returns
NULL and *size is undefined. Raises a MemoryError if memory allocation is failed.

Nowe w wersji 3.2.

Zmienione w wersji 3.7: Raisesa ValueError if sizeis NULL and the wchar_t * string contains null characters.

Built-in Codecs

Python provides a set of built-in codecs which are written in C for speed. All of these codecs are directly usable via the
following functions.

Many of the following APIs take two arguments encoding and errors, and they have the same semantics as the ones of
the built-in st r () string object constructor.

Setting encoding to NULL causes the default encoding to be used which is ASCII. The file sys-
tem calls should use PyUnicode_ FSConverter () for encoding file names. This uses the variable
Py_FileSystemDefaultEncoding internally. This variable should be treated as read-only: on some sys-
tems, it will be a pointer to a static string, on others, it will change at run-time (such as when the application invokes
setlocale).

Error handling is set by errors which may also be set to NULL meaning to use the default handling defined for the codec.
Default error handling for all built-in codecs is ,,strict” (ValueError is raised).

8.3. Sequence Objects 99

The Python/C API, Wydanie 3.7.17

The codecs all use a similar interface. Only deviation from the following generic ones are documented for simplicity.

Generic Codecs

These are the generic codec APIs:

PyObject* PyUnicode_Decode (const char *s, Py_ssize_t size, const char *encoding, const char *errors)
Return value: New reference. Create a Unicode object by decoding size bytes of the encoded string s. encoding and
errors have the same meaning as the parameters of the same name in the st r () built-in function. The codec to
be used is looked up using the Python codec registry. Return NULL if an exception was raised by the codec.

PyObject* PyUnicode_AsEncodedString (PyObject *unicode, const char *encoding, const char *errors)
Return value: New reference. Encode a Unicode object and return the result as Python bytes object. encoding and
errors have the same meaning as the parameters of the same name in the Unicode encode () method. The codec
to be used is looked up using the Python codec registry. Return NULL if an exception was raised by the codec.

PyObject* PyUnicode_Encode (const Py_UNICODE *s, Py_ssize_t size, const char *encoding, const char *er-

rors)
Return value: New reference. Encode the Py_ UNICODE buffer s of the given size and return a Python bytes object.

encoding and errors have the same meaning as the parameters of the same name in the Unicode encode () method.
The codec to be used is looked up using the Python codec registry. Return NULL if an exception was raised by the
codec.

Deprecated since version 3.3, will be removed in version 4.0: Part of the old-style Py_UNICODE API; please
migrate to using PyUnicode_AsEncodedString ().

UTF-8 Codecs

These are the UTF-8 codec APIs:

PyObject* PyUnicode_DecodeUTF8 (const char *s, Py_ssize_t size, const char *errors)
Return value: New reference. Create a Unicode object by decoding size bytes of the UTF-8 encoded string s. Return
NULL if an exception was raised by the codec.

PyObject* PyUnicode_DecodeUTF8Stateful (const char *s, Py_ssize_t size, const char *errors,
Py_ssize_t *consumed)
Return value: New reference. If consumed is NULL, behave like PyUnicode_DecodeUTFS8 (). If consumed

is not NULL, trailing incomplete UTF-8 byte sequences will not be treated as an error. Those bytes will not be
decoded and the number of bytes that have been decoded will be stored in consumed.

PyObject* PyUnicode_AsUTF8String (PyObject *unicode)
Return value: New reference. Encode a Unicode object using UTF-8 and return the result as Python bytes object.
Error handling is ,,strict”. Return NULL if an exception was raised by the codec.

const char* PyUnicode_AsUTF8AndSize (PyObject *unicode, Py_ssize_t *size)
Return a pointer to the UTF-8 encoding of the Unicode object, and store the size of the encoded representation (in
bytes) in size. The size argument can be NULL; in this case no size will be stored. The returned buffer always has
an extra null byte appended (not included in size), regardless of whether there are any other null code points.

In the case of an error, NULL is returned with an exception set and no size is stored.

This caches the UTF-8 representation of the string in the Unicode object, and subsequent calls will return a pointer
to the same buffer. The caller is not responsible for deallocating the buffer.

Nowe w wersji 3.3.

Zmienione w wersji 3.7: The return type is now const char * rather of char *.

100 Rozdziat 8. Concrete Objects Layer

The Python/C API, Wydanie 3.7.17

const char* PyUnicode_AsUTF8 (PyObject *unicode)
As PyUnicode_AsUTF8AndSize (), but does not store the size.

Nowe w wersji 3.3.
Zmienione w wersji 3.7: The return type is now const char * rather of char *.

PyObject* PyUnicode_EncodeUTF8 (const Py_UNICODE *s, Py_ssize_t size, const char *errors)
Return value: New reference. Encode the Py_ UNICODE buffer s of the given size using UTF-8 and return a Python
bytes object. Return NULL if an exception was raised by the codec.

Deprecated since version 3.3, will be removed in version 4.0: Part of the old-style Py_UNICODE
API; please migrate to using PyUnicode AsUTEF8String (), PyUnicode_ AsUTF8AndSize () or
PyUnicode_AsEncodedString().

UTF-32 Codecs

These are the UTF-32 codec APIs:

PyObject* PyUnicode_DecodeUTF32 (const char *s, Py_ssize_t size, const char *errors, int *byteorder)
Return value: New reference. Decode size bytes from a UTF-32 encoded buffer string and return the corresponding
Unicode object. errors (if non-NULL) defines the error handling. It defaults to ,,strict”.

If byteorder is non-NULL, the decoder starts decoding using the given byte order:

*byteorder == -1: little endian
*byteorder == 0: native order
*byteorder == 1: Dbig endian

If *byteorder is zero, and the first four bytes of the input data are a byte order mark (BOM), the decoder
switches to this byte order and the BOM is not copied into the resulting Unicode string. If *byteorder is —1 or
1, any byte order mark is copied to the output.

After completion, *byteorder is set to the current byte order at the end of input data.
If byteorder is NULL, the codec starts in native order mode.
Return NULL if an exception was raised by the codec.

PyObject* PyUnicode_DecodeUTF32Stateful (const char *s, Py_ssize_t size, const char *errors, int *by-

teorder, Py_ssize_t *consumed)
Return value: New reference. If consumed is NULL, behave like PyUnicode_DecodeUTF32 ().If consumed is

not NULL, PyUnicode_DecodeUTF32Stateful () will not treat trailing incomplete UTF-32 byte sequen-
ces (such as a number of bytes not divisible by four) as an error. Those bytes will not be decoded and the number
of bytes that have been decoded will be stored in consumed.

PyObject* PyUnicode_AsUTF32String (PyObject *unicode)
Return value: New reference. Return a Python byte string using the UTF-32 encoding in native byte order. The
string always starts with a BOM mark. Error handling is ,,strict”. Return NULL if an exception was raised by the
codec.

PyObject* PyUnicode_EncodeUTF32 (const Py_UNICODE *s, Py_ssize_t size, const char *errors, int byteor-

der)
Return value: New reference. Return a Python bytes object holding the UTF-32 encoded value of the Unicode data

in s. Output is written according to the following byte order:

byteorder == -1: little endian
byteorder == 0: native byte order (writes a BOM mark)
byteorder == 1: Dbig endian

8.3. Sequence Objects 101

The Python/C API, Wydanie 3.7.17

If byteorder is 0, the output string will always start with the Unicode BOM mark (U+FEFF). In the other two
modes, no BOM mark is prepended.

If Py_ UNICODE_WIDE is not defined, surrogate pairs will be output as a single code point.
Return NULL if an exception was raised by the codec.

Deprecated since version 3.3, will be removed in version 4.0: Part of the old-style Py UNICODE API; please
migrate to using PyUnicode AsUTF32String () or PyUnicode_AsEncodedString().

UTF-16 Codecs

These are the UTF-16 codec APIs:

PyObject* PyUnicode_DecodeUTF16 (const char *s, Py_ssize_t size, const char *errors, int *byteorder)

Return value: New reference. Decode size bytes from a UTF-16 encoded buffer string and return the corresponding
Unicode object. errors (if non-NULL) defines the error handling. It defaults to ,strict”.

If byteorder is non-NULL, the decoder starts decoding using the given byte order:

*pbyteorder == -1: little endian
*byteorder == 0: native order
*byteorder == 1: Dbig endian

If *byteorder is zero, and the first two bytes of the input data are a byte order mark (BOM), the decoder
switches to this byte order and the BOM is not copied into the resulting Unicode string. If *byteorder is -1 or
1, any byte order mark is copied to the output (where it will result in either a \ufeff or a \uf f fe character).

After completion, *byteorder is set to the current byte order at the end of input data.
If byteorder is NULL, the codec starts in native order mode.

Return NULL if an exception was raised by the codec.

PyObject* PyUnicode_DecodeUTF1l6Stateful (const char *s, Py_ssize_t size, const char *errors, int *by-

teorder, Py_ssize_t *consumed)
Return value: New reference. If consumed is NULL, behave like PyUnicode_DecodeUTF16 (). If consumed

isnot NULL, PyUnicode_DecodeUTF1é6Stateful () will not treat trailing incomplete UTF-16 byte sequ-
ences (such as an odd number of bytes or a split surrogate pair) as an error. Those bytes will not be decoded and
the number of bytes that have been decoded will be stored in consumed.

PyObject* PyUnicode_AsUTF16String (PyObject *unicode)

Return value: New reference. Return a Python byte string using the UTF-16 encoding in native byte order. The
string always starts with a BOM mark. Error handling is ,strict”. Return NULL if an exception was raised by the
codec.

PyObject* PyUnicode_EncodeUTF16 (const Py_UNICODE *s, Py_ssize_t size, const char *errors, int byteor-

der)
Return value: New reference. Return a Python bytes object holding the UTF-16 encoded value of the Unicode data

in s. Output is written according to the following byte order:

byteorder == -1: little endian
byteorder == 0: native byte order (writes a BOM mark)
byteorder == 1: Dbig endian

If byteorder is O, the output string will always start with the Unicode BOM mark (U+FEFF). In the other two
modes, no BOM mark is prepended.

If Py_UNICODE_WIDE is defined, a single Py_ UNICODE value may get represented as a surrogate pair. If it is
not defined, each Py_ UNTCODE values is interpreted as a UCS-2 character.

102

Rozdziat 8. Concrete Objects Layer

The Python/C API, Wydanie 3.7.17

Return NULL if an exception was raised by the codec.

Deprecated since version 3.3, will be removed in version 4.0: Part of the old-style Py UNICODE API; please
migrate to using PyUnicode AsUTF16String () or PyUnicode_AsEncodedString().

UTF-7 Codecs

These are the UTF-7 codec APIs:

PyObject* PyUnicode_DecodeUTF 7 (const char *s, Py_ssize_t size, const char *errors)
Return value: New reference. Create a Unicode object by decoding size bytes of the UTF-7 encoded string s. Return
NULL if an exception was raised by the codec.

PyObject* PyUnicode_DecodeUTF7Stateful (const char *s, Py_ssize t size, const char *errors,

Py_ssize_t *consumed)
Return value: New reference. If consumed is NULL, behave like PyUnicode_DecodeUTF7 (). If consumed

is not NULL, trailing incomplete UTF-7 base-64 sections will not be treated as an error. Those bytes will not be
decoded and the number of bytes that have been decoded will be stored in consumed.

PyObject* PyUnicode_EncodeUTF7 (const Py UNICODE *s, Py_ssize_t size, int base64SetO, int ba-
se64 WhiteSpace, const char *errors)
Return value: New reference. Encode the Py_ UNTCODE buffer of the given size using UTF-7 and return a Python

bytes object. Return NULL if an exception was raised by the codec.

If base64SetO is nonzero, ,,Set O” (punctuation that has no otherwise special meaning) will be encoded in base-64.
If base64 WhiteSpace is nonzero, whitespace will be encoded in base-64. Both are set to zero for the Python ,,utf-7”
codec.

Deprecated since version 3.3, will be removed in version 4.0: Part of the old-style Py. UNICODE API; please
migrate to using PyUnicode_AsEncodedString().

Unicode-Escape Codecs

These are the ,,Unicode Escape” codec APIs:

PyObject* PyUnicode_DecodeUnicodeEscape (const char *s, Py_ssize_t size, const char *errors)
Return value: New reference. Create a Unicode object by decoding size bytes of the Unicode-Escape encoded string
s. Return NULL if an exception was raised by the codec.

PyObject* PyUnicode_AsUnicodeEscapeString (PyObject *unicode)
Return value: New reference. Encode a Unicode object using Unicode-Escape and return the result as a bytes object.
Error handling is ,.strict”. Return NULL if an exception was raised by the codec.

PyObject* PyUnicode_EncodeUnicodeEscape (const Py_UNICODE *s, Py_ssize_t size)
Return value: New reference. Encode the Py UNICODE buffer of the given size using Unicode-Escape and return
a bytes object. Return NULL if an exception was raised by the codec.

Deprecated since version 3.3, will be removed in version 4.0: Part of the old-style Py UNICODE API; please
migrate to using PyUnicode_AsUnicodeEscapeString().

8.3. Sequence Objects 103

The Python/C API, Wydanie 3.7.17

Raw-Unicode-Escape Codecs

These are the ,,Raw Unicode Escape” codec APIs:

PyObject* PyUnicode_DecodeRawUnicodeEscape (const char *s, Py_ssize_t size, const char *errors)
Return value: New reference. Create a Unicode object by decoding size bytes of the Raw-Unicode-Escape encoded
string s. Return NULL if an exception was raised by the codec.

PyObject* PyUnicode_AsRawUnicodeEscapeString (PyObject *unicode)
Return value: New reference. Encode a Unicode object using Raw-Unicode-Escape and return the result as a bytes
object. Error handling is ,strict”. Return NULL if an exception was raised by the codec.

PyObject* PyUnicode_EncodeRawUnicodeEscape (const Py_UNICODE *s, Py_ssize_t size)
Return value: New reference. Encode the Py UNICODE buffer of the given size using Raw-Unicode-Escape and
return a bytes object. Return NULL if an exception was raised by the codec.

Deprecated since version 3.3, will be removed in version 4.0: Part of the old-style
Py _UNICODE API; please migrate to using PyUnicode_AsRawUnicodeEscapeString() or
PyUnicode_AsEncodedString ().

Latin-1 Codecs

These are the Latin-1 codec APIs: Latin-1 corresponds to the first 256 Unicode ordinals and only these are accepted by
the codecs during encoding.

PyObject* PyUnicode_DecodeLatinl (const char *s, Py_ssize_t size, const char *errors)
Return value: New reference. Create a Unicode object by decoding size bytes of the Latin-1 encoded string s. Return
NULL if an exception was raised by the codec.

PyObject* PyUnicode_AsLatinlString (PyObject *unicode)
Return value: New reference. Encode a Unicode object using Latin-1 and return the result as Python bytes object.
Error handling is ,,strict”. Return NULL if an exception was raised by the codec.

PyObject* PyUnicode_EncodeLatinl (const Py_UNICODE *s, Py_ssize_t size, const char *errors)
Return value: New reference. Encode the Py_ UNICODE buffer of the given size using Latin-1 and return a Python
bytes object. Return NULL if an exception was raised by the codec.

Deprecated since version 3.3, will be removed in version 4.0: Part of the old-style Py_UNICODE API; please
migrate to using PyUnicode AsLatinlString() or PyUnicode AsEncodedString().

ASCII Codecs

These are the ASCII codec APIs. Only 7-bit ASCII data is accepted. All other codes generate errors.

PyObject* PyUnicode_DecodeASCII (const char *s, Py_ssize_t size, const char *errors)
Return value: New reference. Create a Unicode object by decoding size bytes of the ASCII encoded string s. Return
NULL if an exception was raised by the codec.

PyObject* PyUnicode_AsASCIIString (PyObject *unicode)
Return value: New reference. Encode a Unicode object using ASCII and return the result as Python bytes object.
Error handling is ,.strict”. Return NULL if an exception was raised by the codec.

PyObject* PyUnicode_EncodeASCII (const Py_UNICODE *s, Py_ssize_t size, const char *errors)
Return value: New reference. Encode the Py_ UNTCODE buffer of the given size using ASCII and return a Python
bytes object. Return NULL if an exception was raised by the codec.

Deprecated since version 3.3, will be removed in version 4.0: Part of the old-style Py. UNICODE API; please
migrate to using PyUnicode AsASCIIString () or PyUnicode_AsEncodedString().

104 Rozdziat 8. Concrete Objects Layer

The Python/C API, Wydanie 3.7.17

Character Map Codecs

This codec is special in that it can be used to implement many different codecs (and this is in fact what was done to
obtain most of the standard codecs included in the encodings package). The codec uses mapping to encode and
decode characters. The mapping objects provided must support the __getitem__ () mapping interface; dictionaries
and sequences work well.

These are the mapping codec APIs:

PyObject* PyUnicode_DecodeCharmap (const char *data, Py_ssize_t size, PyObject *mapping, const

char *errors)
Return value: New reference. Create a Unicode object by decoding size bytes of the encoded string s using the given

mapping object. Return NULL if an exception was raised by the codec.

If mapping is NULL, Latin-1 decoding will be applied. Else mapping must map bytes ordinals (integers in the range
from O to 255) to Unicode strings, integers (which are then interpreted as Unicode ordinals) or None. Unmapped
data bytes — ones which cause a LookupError, as well as ones which get mapped to None, OXFFFE or '\
ufffe', are treated as undefined mappings and cause an error.

PyObject* PyUnicode_AsCharmapString (PyObject *unicode, PyObject *mapping)
Return value: New reference. Encode a Unicode object using the given mapping object and return the result as a
bytes object. Error handling is ,,strict”. Return NULL if an exception was raised by the codec.

The mapping object must map Unicode ordinal integers to bytes objects, integers in the range from 0 to 255 or
None. Unmapped character ordinals (ones which cause a LookupError) as well as mapped to None are treated
as ,,undefined mapping” and cause an error.

PyObject* PyUnicode_EncodeCharmap (const Py_UNICODE *s, Py_ssize_t size, PyObject *mapping, const

char *errors)
Return value: New reference. Encode the Py_UNICODE buffer of the given size using the given mapping object

and return the result as a bytes object. Return NULL if an exception was raised by the codec.

Deprecated since version 3.3, will be removed in version 4.0: Part of the old-style Py UNICODE API; please
migrate to using PyUnicode_AsCharmapString () or PyUnicode_AsEncodedString().

The following codec API is special in that maps Unicode to Unicode.

PyObject* PyUnicode_Translate (PyObject *unicode, PyObject *mapping, const char *errors)
Return value: New reference. Translate a Unicode object using the given mapping object and return the resulting
Unicode object. Return NULL if an exception was raised by the codec.

The mapping object must map Unicode ordinal integers to Unicode strings, integers (which are then interpreted as
Unicode ordinals) or None (causing deletion of the character). Unmapped character ordinals (ones which cause a
LookupError) are left untouched and are copied as-is.

PyObject* PyUnicode_TranslateCharmap (const Py_UNICODE *s, Py_ssize_t size, PyObject *mapping,

const char *errors)
Return value: New reference. Translate a Py UNICODE buffer of the given size by applying a character mapping

table to it and return the resulting Unicode object. Return NULL when an exception was raised by the codec.

Deprecated since version 3.3, will be removed in version 4.0: Part of the old-style Py_ UNTICODE API; please
migrate to using PyUnicode_Translate (). or generic codec based API

8.3. Sequence Objects 105

The Python/C API, Wydanie 3.7.17

MBCS codecs for Windows

These are the MBCS codec APIs. They are currently only available on Windows and use the Win32 MBCS converters
to implement the conversions. Note that MBCS (or DBCS) is a class of encodings, not just one. The target encoding is
defined by the user settings on the machine running the codec.

PyObject* PyUnicode_DecodeMBCS (const char *s, Py_ssize_t size, const char *errors)
Return value: New reference. Create a Unicode object by decoding size bytes of the MBCS encoded string s. Return
NULL if an exception was raised by the codec.

PyObject* PyUnicode_DecodeMBCSStateful (const char *s, Py_ssize_t size, const char *errors,
Py_ssize_t *consumed)
Return value: New reference. If consumed is NULL, behave like PyUnicode_DecodeMBCS (). If consumed
is not NULL, PyUnicode_DecodeMBCSStaterful () will not decode trailing lead byte and the number of
bytes that have been decoded will be stored in consumed.

PyObject* PyUnicode_AsMBCSString (PyObject *unicode)
Return value: New reference. Encode a Unicode object using MBCS and return the result as Python bytes object.
Error handling is ,,strict”. Return NULL if an exception was raised by the codec.

PyObject* PyUnicode_EncodeCodePage (int code_page, PyObject *unicode, const char *errors)
Return value: New reference. Encode the Unicode object using the specified code page and return a Python bytes
object. Return NULL if an exception was raised by the codec. Use CP_ACP code page to get the MBCS encoder.

Nowe w wersji 3.3.

PyObject* PyUnicode_EncodeMBCS (const Py_UNICODE *s, Py_ssize_t size, const char *errors)
Return value: New reference. Encode the Py UNICODE buffer of the given size using MBCS and return a Python
bytes object. Return NULL if an exception was raised by the codec.

Deprecated since version 3.3, will be removed in version 4.0: Part of the old-style Py UNICODE
API; please migrate to using PyUnicode_ AsMBCSString (), PyUnicode_EncodeCodePage () or
PyUnicode_AsEncodedString ().

Methods & Slots

Methods and Slot Functions

The following APIs are capable of handling Unicode objects and strings on input (we refer to them as strings in the
descriptions) and return Unicode objects or integers as appropriate.

They all return NULL or —1 if an exception occurs.

PyObject* PyUnicode_Concat (PyObject *left, PyObject *right)
Return value: New reference. Concat two strings giving a new Unicode string.

PyObject* PyUnicode_Split (PyObject *s, PyObject *sep, Py_ssize_t maxsplit)
Return value: New reference. Split a string giving a list of Unicode strings. If sep is NULL, splitting will be done
at all whitespace substrings. Otherwise, splits occur at the given separator. At most maxsplit splits will be done. If
negative, no limit is set. Separators are not included in the resulting list.

PyObject* PyUnicode_Splitlines (PyObject *s, int keepend)
Return value: New reference. Split a Unicode string at line breaks, returning a list of Unicode strings. CRLF is
considered to be one line break. If keepend is 0, the Line break characters are not included in the resulting strings.

PyObject* PyUnicode_Translate (PyObject *str, PyObject *table, const char *errors)
Translate a string by applying a character mapping table to it and return the resulting Unicode object.

106 Rozdziat 8. Concrete Objects Layer

The Python/C API, Wydanie 3.7.17

The mapping table must map Unicode ordinal integers to Unicode ordinal integers or None (causing deletion of
the character).

Mapping tables need only provide the __getitem__ () interface; dictionaries and sequences work well. Unmap-
ped character ordinals (ones which cause a LookupError) are left untouched and are copied as-is.

errors has the usual meaning for codecs. It may be NULL which indicates to use the default error handling.

PyObject* PyUnicode_Join (PyObject *separator, PyObject *seq)
Return value: New reference. Join a sequence of strings using the given separator and return the resulting Unicode
string.

Py_ssize_t PyUnicode_Tailmatch (PyObject *str, PyObject *substr, Py_ssize_t start, Py_ssize_t end, int di-

rection)
Return 1 if substr matches str [start :end] at the given tail end (direction == —1 means to do a prefix match,

direction == 1 a suffix match), 0 otherwise. Return —1 if an error occurred.

Py_ssize_t PyUnicode_Find (PyObject *str, PyObject *substr, Py_ssize_t start, Py_ssize_t end, int direction)
Return the first position of substr in str [start :end] using the given direction (direction == 1 means to do a
forward search, direction == —1 a backward search). The return value is the index of the first match; a value of —1
indicates that no match was found, and -2 indicates that an error occurred and an exception has been set.

Py_ssize_t PyUnicode_FindChar (PyObject *str, Py_UCS4 ch, Py_ssize_t start, Py_ssize_t end, int direction)
Return the first position of the character chin str [start :end] using the given direction (direction == 1 means
to do a forward search, direction == —1 a backward search). The return value is the index of the first match; a value
of —1 indicates that no match was found, and -2 indicates that an error occurred and an exception has been set.

Nowe w wersji 3.3.
Zmienione w wersji 3.7: start and end are now adjusted to behave like str [start :end].

Py_ssize_t PyUnicode_Count (PyObject *str, PyObject *substr, Py_ssize_t start, Py_ssize_t end)
Return the number of non-overlapping occurrences of substr in str [start:end]. Return —1 if an error oc-
curred.

PyObject* PyUnicode_Replace (PyObject *str, PyObject *substr, PyObject *replstr, Py_ssize_t maxcount)
Return value: New reference. Replace at most maxcount occurrences of substr in str with replstr and return the
resulting Unicode object. maxcount == —1 means replace all occurrences.

int PyUnicode_Compare (PyObject *left, PyObject *right)
Compare two strings and return -1, 0, 1 for less than, equal, and greater than, respectively.

This function returns —1 upon failure, so one should call PyErr_Occurred () to check for errors.

int PyUnicode_CompareWithASCIIString (PyObject *uni, const char *string)
Compare a Unicode object, uni, with string and return —1, 0, 1 for less than, equal, and greater than, respectively. It
is best to pass only ASCII-encoded strings, but the function interprets the input string as ISO-8859-1 if it contains
non-ASCII characters.

This function does not raise exceptions.

PyObject* PyUnicode_RichCompare (PyObject *left, PyObject *right, int op)
Return value: New reference. Rich compare two Unicode strings and return one of the following:

e NULL in case an exception was raised
e Py_True or Py_False for successful comparisons
e Py_NotImplemented in case the type combination is unknown

Possible values for op are Py_GT, Py_GE, Py_EQ, Py_NE, Py_LT, and Py_ LE.

8.3. Sequence Objects 107

The Python/C API, Wydanie 3.7.17

PyObject* PyUnicode_Format (PyObject *format, PyObject *args)
Return value: New reference. Return a new string object from format and args; this is analogous to format %
args.

int PyUnicode_Contains (PyObject *container, PyObject *element)
Check whether element is contained in container and return true or false accordingly.

element has to coerce to a one element Unicode string. —1 is returned if there was an error.

void PyUnicode_InternInPlace (PyObject **string)
Intern the argument *string in place. The argument must be the address of a pointer variable pointing to a Python
Unicode string object. If there is an existing interned string that is the same as *string, it sets *string to it (decremen-
ting the reference count of the old string object and incrementing the reference count of the interned string object),
otherwise it leaves *string alone and interns it (incrementing its reference count). (Clarification: even though there
is a lot of talk about reference counts, think of this function as reference-count-neutral; you own the object after
the call if and only if you owned it before the call.)

PyObject* PyUnicode_InternFromString (const char *v)
Return value: New reference. A combination of PyUnicode FromString/() and
PyUnicode_InternInPlace (), returning either a new Unicode string object that has been interned,
or a new (,owned”) reference to an earlier interned string object with the same value.

8.3.4 Tuple Objects

PyTupleObject
This subtype of PyOb ject represents a Python tuple object.

PyTypeObject PyTuple_Type
This instance of Py TypeOb ject represents the Python tuple type; it is the same object as tuple in the Python
layer.

int PyTuple_Check (PyObject *p)
Return true if p is a tuple object or an instance of a subtype of the tuple type.

int PyTuple_CheckExact (PyObject *p)
Return true if p is a tuple object, but not an instance of a subtype of the tuple type.

PyObject* PyTuple_New (Py_ssize_t len)
Return value: New reference. Return a new tuple object of size len, or NULL on failure.

PyObject* PyTuple_Pack (Py_ssize_tn, ...)
Return value: New reference. Return a new tuple object of size n, or NULL on failure. The tuple values are initiali-
zed to the subsequent n C arguments pointing to Python objects. PyTuple_Pack (2, a, b) is equivalent to
Py_BuildvValue (" (OO)", a, b).

Py_ssize_t PyTuple_Size (PyObject *p)
Take a pointer to a tuple object, and return the size of that tuple.
Py_ssize_t PyTuple_GET_SIZE (PyObject *p)
Return the size of the tuple p, which must be non-NULL and point to a tuple; no error checking is performed.
PyObject* PyTuple_GetItem (PyObject *p, Py_ssize_t pos)
Return value: Borrowed reference. Return the object at position pos in the tuple pointed to by p. If pos is out of
bounds, return NULL and set an IndexError exception.
PyObject* PyTuple_GET_ITEM (PyObject *p, Py_ssize_t pos)
Return value: Borrowed reference. Like PyTuple GetItem (), but does no checking of its arguments.

108 Rozdziat 8. Concrete Objects Layer

The Python/C API, Wydanie 3.7.17

PyObject* PyTuple_GetSlice (PyObject *p, Py_ssize_t low, Py_ssize_t high)
Return value: New reference. Return the slice of the tuple pointed to by p between low and high, or NULL on failure.
This is the equivalent of the Python expression p [Low : high]. Indexing from the end of the list is not supported.

int PyTuple_SetItem (PyObject *p, Py_ssize_t pos, PyObject *0)
Insert a reference to object o at position pos of the tuple pointed to by p. Return 0 on success. If pos is out of
bounds, return —1 and set an IndexError exception.

Informacja: This function ,,steals” a reference to o and discards a reference to an item already in the tuple at the
affected position.

void PyTuple_SET_ITEM (PyObject *p, Py_ssize_t pos, PyObject *o)
Like PyTuple_SetItem (), butdoes no error checking, and should only be used to fill in brand new tuples.

Informacja: This macro ,steals” a reference to o, and, unlike Py Tuple SetTtem (), does not discard a refe-
rence to any item that is being replaced; any reference in the tuple at position pos will be leaked.

int _PyTuple_Resize (PyObject **p, Py_ssize_t newsize)

Can be used to resize a tuple. newsize will be the new length of the tuple. Because tuples are supposed to be
immutable, this should only be used if there is only one reference to the object. Do not use this if the tuple may
already be known to some other part of the code. The tuple will always grow or shrink at the end. Think of this as
destroying the old tuple and creating a new one, only more efficiently. Returns O on success. Client code should never
assume that the resulting value of *p will be the same as before calling this function. If the object referenced by *p
is replaced, the original *p is destroyed. On failure, returns —1 and sets *p to NULL, and raises MemoryError
or SystemError.

int PyTuple_ClearFreeList ()
Clear the free list. Return the total number of freed items.

8.3.5 Struct Sequence Objects
Struct sequence objects are the C equivalent of namedtuple () objects, i.e. a sequence whose items can also be accessed
through attributes. To create a struct sequence, you first have to create a specific struct sequence type.

PyTypeObject* PyStruct Sequence_NewType (PyStructSequence_Desc *desc)
Return value: New reference. Create a new struct sequence type from the data in desc, described below. Instances
of the resulting type can be created with Py St ruct Sequence_New ().

void PyStructSequence_InitType (PyTypeObject *type, PyStructSequence_Desc *desc)
Initializes a struct sequence type fype from desc in place.

int PyStructSequence_InitType2 (PyTypeObject *type, PyStructSequence_Desc *desc)
The same as PyStructSequence_InitType, but returns 0 on success and —1 on failure.

Nowe w wersji 3.4.

PyStructSequence_Desc
Contains the meta information of a struct sequence type to create.

8.3. Sequence Objects 109

The Python/C API, Wydanie 3.7.17

Field typ jezyka C Znaczenie
nazwa const char * name of the struct sequence type
doc const char * pointer to docstring for the type or NULL to omit
fields PyStructSequence_Fieldpointer to NULL-terminated array with field names of the
* new type
n_in_sequenceint number of fields visible to the Python side (if used as
tuple)

PyStructSequence_Field
Describes a field of a struct sequence. As a struct sequence is modeled as a tuple, all fields are typed as PyOb ject *.
The index in the fields array of the PyStructSequence_Desc determines which field of the struct sequ-
ence is described.

Field | typ jezyka | Znaczenie
C

nazwa const name for the field or NULL to end the list of named fields, set to
char * PyStructSequence_UnnamedField to leave unnamed

doc | const field docstring or NULL to omit
char *

char* PyStructSequence_UnnamedField
Special value for a field name to leave it unnamed.

PyObject* PyStructSequence_New (PyTypeObject *type)
Return value: New reference. Creates an instance of fype, which must have been created with
PyStructSequence_NewType ().

PyObject* PyStruct Sequence_Get Item (PyObject *p, Py_ssize_t pos)
Return value: Borrowed reference. Return the object at position pos in the struct sequence pointed to by p. No
bounds checking is performed.

PyObject* PyStructSequence_GET_ITEM (PyObject *p, Py_ssize_t pos)
Return value: Borrowed reference. Macro equivalent of PyStructSequence_GetItem().

void PyStructSequence_SetItem (PyObject *p, Py_ssize_t pos, PyObject *0)
Sets the field at index pos of the struct sequence p to value o. Like PyTuple SET _TTEM (), this should only be
used to fill in brand new instances.

Informacja: This function ,steals” a reference to o.

void PyStructSequence_SET_ITEM (PyObject *p, Py_ssize_t *pos, PyObject *o)
Macro equivalent of Py St ruct Sequence_SetItem().

Informacja: This function ,steals” a reference to o.

110 Rozdziat 8. Concrete Objects Layer

The Python/C API, Wydanie 3.7.17

8.3.6 List Objects

PyListObject
This subtype of PyOb ject represents a Python list object.

PyTypeObject PyList_Type
This instance of Py TypeObject represents the Python list type. This is the same object as 11 st in the Python
layer.

int PyList_Check (PyObject *p)
Return true if p is a list object or an instance of a subtype of the list type.

int PyList_CheckExact (PyObject *p)
Return true if p is a list object, but not an instance of a subtype of the list type.

PyObject* PyList_New (Py_ssize_t len)
Return value: New reference. Return a new list of length len on success, or NULL on failure.

Informacja: If len is greater than zero, the returned list object’s items are set to NULL. Thus you cannot use
abstract API functions such as PySequence_SetItem () or expose the object to Python code before setting
all items to a real object with PyList_SetItem().

Py_ssize_t PyList_Size (PyObject *list)
Return the length of the list object in list; this is equivalent to 1en (1ist) on a list object.

Py_ssize_t PyList_GET_SIZE (PyObject *list)
Macro form of PyList_Size () without error checking.

PyObject* PyList_GetItem (PyObject *list, Py_ssize_t index)
Return value: Borrowed reference. Return the object at position index in the list pointed to by lisz. The position must
be non-negative; indexing from the end of the list is not supported. If index is out of bounds (<0 or >=len(list)),
return NULL and set an IndexError exception.

PyObject* PyList_GET_ITEM (PyObject *list, Py_ssize_ti)
Return value: Borrowed reference. Macro form of PyList_GetItem () without error checking.

int PyList_SetItem (PyObject *list, Py_ssize_t index, PyObject *item)
Set the item at index index in list to item. Return 0 on success. If index is out of bounds, return —1 and set an
IndexError exception.

Informacja: This function ,,steals” a reference to ifem and discards a reference to an item already in the list at the
affected position.

void PyList_SET_ITEM (PyObject *list, Py_ssize_t i, PyObject *o)
Macro form of PyList_SetItem () without error checking. This is normally only used to fill in new lists where
there is no previous content.

Informacja: This macro ,steals” a reference to ifem, and, unlike PyList_SetItem(), does not discard a
reference to any item that is being replaced; any reference in /ist at position i will be leaked.

int PyList_Insert (PyObject *list, Py_ssize_t index, PyObject *item)
Insert the item item into list list in front of index index. Return 0 if successful; return —1 and set an exception if
unsuccessful. Analogous to 1ist.insert (index, item).

8.3. Sequence Objects 111

The Python/C API, Wydanie 3.7.17

int PyList_Append (PyObject *list, PyObject *item)
Append the object item at the end of list lisz. Return 0 if successful; return —1 and set an exception if unsuccessful.
Analogous to 1ist .append (item).

PyObject* PyList_GetSlice (PyObject *list, Py_ssize_t low, Py_ssize_t high)
Return value: New reference. Return a list of the objects in /ist containing the objects between low and high. Return
NULL and set an exception if unsuccessful. Analogous to 1ist [low:high]. Indexing from the end of the list
is not supported.

int PyList_SetSlice (PyObject *list, Py_ssize_t low, Py_ssize_t high, PyObject *itemlist)
Set the slice of list between low and high to the contents of ifemlist. Analogous to 1ist [low:high] =
itemlist. The itemlist may be NULL, indicating the assignment of an empty list (slice deletion). Return 0
on success, —1 on failure. Indexing from the end of the list is not supported.

int PyList_Sort (PyObject *list)
Sort the items of list in place. Return O on success, —1 on failure. This is equivalent to 1ist .sozrt ().
int PyList_Reverse (PyObject *list)
Reverse the items of list in place. Return 0 on success, —1 on failure. This is the equivalentof 1ist . reverse ().
PyObject* PyList_AsTuple (PyObject *list)
Return value: New reference. Return a new tuple object containing the contents of Ilist; equivalent to
tuple (list).

int PyList_ClearFreelist ()
Clear the free list. Return the total number of freed items.

Nowe w wersji 3.3.

8.4 Container Objects

8.4.1 Dictionary Objects

PyDictObject
This subtype of PyOb ject represents a Python dictionary object.

PyTypeObject PyDict_Type
This instance of Py TypeOb ject represents the Python dictionary type. This is the same object as dict in the
Python layer.

int PyDict_Check (PyObject *p)
Return true if p is a dict object or an instance of a subtype of the dict type.

int PyDict_CheckExact (PyObject *p)
Return true if p is a dict object, but not an instance of a subtype of the dict type.

PyObject* PyDict_New ()
Return value: New reference. Return a new empty dictionary, or NULL on failure.

PyObject* PyDictProxy_New (PyObject *mapping)
Return value: New reference. Return a t ypes . MappingProxyType object for a mapping which enforces read-
only behavior. This is normally used to create a view to prevent modification of the dictionary for non-dynamic
class types.

void PyDict_Clear (PyObject *p)
Empty an existing dictionary of all key-value pairs.

112 Rozdziat 8. Concrete Objects Layer

The Python/C API, Wydanie 3.7.17

int PyDict_Contains (PyObject *p, PyObject *key)
Determine if dictionary p contains key. If an item in p is matches key, return 1, otherwise return 0. On error, return
—1. This is equivalent to the Python expression key in p.

PyObject* PyDict_Copy (PyObject *p)
Return value: New reference. Return a new dictionary that contains the same key-value pairs as p.

int PyDict_SetItem (PyObject *p, PyObject *key, PyObject *val)
Insert value into the dictionary p with a key of key. key must be hashable; if it isn’t, TypeError will be raised.
Return 0 on success or —1 on failure.

int PyDict_SetItemString (PyObject *p, const char *key, PyObject *val)
Insert value into the dictionary p using key as a key. key should be a const char*. The key object is created
using PyUnicode_FromString (key) . Return 0 on success or —1 on failure.

int PyDict_DelItem (PyObject *p, PyObject *key)
Remove the entry in dictionary p with key key. key must be hashable; if it isn’t, TypeError is raised. Return 0
on success or —1 on failure.

int PyDict_DelItemString (PyObject *p, const char *key)
Remove the entry in dictionary p which has a key specified by the string key. Return O on success or —1 on failure.

PyObject* PyDict_GetItem (PyObject *p, PyObject *key)
Return value: Borrowed reference. Return the object from dictionary p which has a key key. Return NULL if the
key key is not present, but without setting an exception.

Note that exceptions which occur while calling __hash__ () and __eqg__ () methods will get suppressed. To
get error reporting use PyDict_GetItemWithError () instead.

PyObject* PyDict_GetItemWithError (PyObject *p, PyObject *key)
Return value: Borrowed reference. Variant of PyDict_GetItem () that does not suppress exceptions. Return
NULL with an exception set if an exception occurred. Return NULL without an exception set if the key wasn’t
present.

PyObject* PyDict_GetItemString (PyObject *p, const char *key)
Return value: Borrowed reference. This is the same as PyDict_GetItem (), but key is specified as a const
char*, rather than a PyOb ject *.

Note that exceptions which occur while calling __hash__ () and __eqg___ () methods and creating a temporary
string object will get suppressed. To get error reporting use PyDict_GetItemWithError () instead.

PyObject* PyDict_SetDefault (PyObject *p, PyObject *key, PyObject *defaultobj)
Return value: Borrowed reference. This is the same as the Python-level dict .setdefault (). If present, it
returns the value corresponding to key from the dictionary p. If the key is not in the dict, it is inserted with value
defaultobj and defaultobj is returned. This function evaluates the hash function of key only once, instead of evaluating
it independently for the lookup and the insertion.

Nowe w wersji 3.4.
PyObject* PyDict_Items (PyObject *p)

Return value: New reference. Return a PyListOb ject containing all the items from the dictionary.
PyObject* PyDict_Keys (PyObject *p)

Return value: New reference. Return a PyListOb ject containing all the keys from the dictionary.
PyObject* PyDict_Values (PyObject *p)

Return value: New reference. Return a PyL1istOb ject containing all the values from the dictionary p.
Py_ssize_t PyDict_Size (PyObject *p)

Return the number of items in the dictionary. This is equivalent to 1en (p) on a dictionary.

8.4. Container Objects 113

The Python/C API, Wydanie 3.7.17

int PyDict_Next (PyObject *p, Py_ssize_t *ppos, PyObject **pkey, PyObject **pvalue)

Iterate over all key-value pairs in the dictionary p. The Py_ssize_t referred to by ppos must be initialized to 0
prior to the first call to this function to start the iteration; the function returns true for each pair in the dictionary,
and false once all pairs have been reported. The parameters pkey and pvalue should either point to PyOb ject *
variables that will be filled in with each key and value, respectively, or may be NULL. Any references returned
through them are borrowed. ppos should not be altered during iteration. Its value represents offsets within the
internal dictionary structure, and since the structure is sparse, the offsets are not consecutive.

Dla przyktadu:

PyObject *key, *value;
Py_ssize_t pos = 0;

while (PyDict_Next (self->dict, &pos, &key, &value)) {
/* do something interesting with the values... */

The dictionary p should not be mutated during iteration. It is safe to modify the values of the keys as you iterate
over the dictionary, but only so long as the set of keys does not change. For example:

PyObject *key, *value;
Py_ssize_t pos = 0;

while (PyDict_Next (self->dict, &pos, &key, &value)) |
long i = PyLong_AsLong(value);
if (i == -1 && PyErr_Occurred()) {
return -1;
}
PyObject *o = PylLong_FromLong(i + 1);
if (o == NULL)
return -1;
if (PyDict_SetItem(self->dict, key, o) < 0) {
Py_DECREF (0) ;
return -1;
}
Py_DECREF (0) ;

int PyDict_Merge (PyObject *a, PyObject *b, int override)

Iterate over mapping object b adding key-value pairs to dictionary a. b may be a dictionary, or any object supporting
PyMapping_Keys () and PyObject_GetItem ().If override is true, existing pairs in a will be replaced if
a matching key is found in b, otherwise pairs will only be added if there is not a matching key in a. Return 0 on
success or —1 if an exception was raised.

int PyDict_Update (PyObject *a, PyObject *b)

This is the same as PyDict_Merge (a, b, 1) inC, and is similar to a.update (b) in Python except that
PyDict_Update () doesn’t fall back to the iterating over a sequence of key value pairs if the second argument
has no ,.keys” attribute. Return 0 on success or —1 if an exception was raised.

int PyDict_MergeFromSeq2 (PyObject *a, PyObject *seq2, int override)

Update or merge into dictionary a, from the key-value pairs in seg2. seq2 must be an iterable object producing
iterable objects of length 2, viewed as key-value pairs. In case of duplicate keys, the last wins if override is true,
else the first wins. Return O on success or —1 if an exception was raised. Equivalent Python (except for the return
value):

114

Rozdziat 8. Concrete Objects Layer

The Python/C API, Wydanie 3.7.17

def PyDict_MergeFromSeqg2 (a, seqg2, override):
for key, value in seg2:
if override or key not in a:
alkey] = value

int PyDict_ClearFreelist ()
Clear the free list. Return the total number of freed items.

Nowe w wersji 3.3.

8.4.2 Set Objects

This section details the public API for set and frozenset objects. Any functionality not listed be-
low is best accessed using the either the abstract object protocol (including PyObject_CallMethod (),
PyObject_RichCompareBool (), PyObject_Hash (), PyObject_Repr (), PyObject_IsTrue(),
PyObject_Print (), and PyObject_GetIter()) or the abstract number protocol (inclu-
ding PyNumber_And (), PyNumber_ Subtract (), PyNumber_Or (), PyNumber_Xor (),
PyNumber_InPlaceAnd(), PyNumber_InPlaceSubtract (), PyNumber_InPlaceOr(), and
PyNumber_InPlaceXor ()).

PySetObject
This subtype of PyObject is used to hold the internal data for both set and frozenset objects. It is like
a PyDictObject in that it is a fixed size for small sets (much like tuple storage) and will point to a separate,
variable sized block of memory for medium and large sized sets (much like list storage). None of the fields of this
structure should be considered public and are subject to change. All access should be done through the documented
API rather than by manipulating the values in the structure.

PyTypeObject PySet_Type
This is an instance of Py TypeOb ject representing the Python set type.

PyTypeObject PyFrozenSet_Type
This is an instance of Py TypeOb ject representing the Python frozenset type.

The following type check macros work on pointers to any Python object. Likewise, the constructor functions work with
any iterable Python object.

int PySet_Check (PyObject *p)
Return true if p is a set object or an instance of a subtype.

int PyFrozenSet_Check (PyObject *p)
Return true if pis a frozenset object or an instance of a subtype.

int PyAnySet_Check (PyObject *p)
Return true if p is a set object, a frozenset object, or an instance of a subtype.

int PyAnySet_CheckExact (PyObject *p)
Return true if p is a set object or a frozenset object but not an instance of a subtype.

int PyFrozenSet_CheckExact (PyObject *p)
Return true if pis a frozenset object but not an instance of a subtype.

PyObject* PySet_New (PyObject *iterable)
Return value: New reference. Return a new set containing objects returned by the iterable. The iterable may be
NULL to create a new empty set. Return the new set on success or NULL on failure. Raise TypeError if iterable
is not actually iterable. The constructor is also useful for copying a set (c=set (s)).

PyObject* PyFrozenSet_New (PyObject *iterable)
Return value: New reference. Return a new frozenset containing objects returned by the iterable. The itera-

8.4. Container Objects 115

The Python/C API, Wydanie 3.7.17

ble may be NULL to create a new empty frozenset. Return the new set on success or NULL on failure. Raise
TypeError if iterable is not actually iterable.

The following functions and macros are available for instances of set or frozenset or instances of their subtypes.

Py_ssize_t PySet_Size (PyObject *anyset)
Return the length of a set or frozenset object. Equivalent to len (anyset). Raises a
PyExc_SystemError if anyset isnota set, frozenset, or an instance of a subtype.

Py_ssize_t PySet_GET_SIZE (PyObject *anyset)
Macro form of PySet_Size () without error checking.

int PySet_Contains (PyObject *anyset, PyObject *key)
Return 1 if found, O if not found, and -1 if an error is encountered. Unlike the Python __contains__ () me-
thod, this function does not automatically convert unhashable sets into temporary frozensets. Raise a TypeError
if the key is unhashable. Raise PyExc_SystemError if anyset isnota set, frozenset, or an instance of a
subtype.

int PySet_Add (PyObject *set, PyObject *key)
Add key to a set instance. Also works with frozenset instances (like PyTuple_Set Item () itcan be used
to fill-in the values of brand new frozensets before they are exposed to other code). Return 0 on success or —1 on
failure. Raise a TypeError if the key is unhashable. Raise a MemoryError if there is no room to grow. Raise
a SystemError if set is not an instance of set or its subtype.

The following functions are available for instances of set or its subtypes but not for instances of frozenset or its
subtypes.

int PySet_Discard (PyObject *set, PyObject *key)
Return 1 if found and removed, O if not found (no action taken), and —1 if an error is encountered. Do-
es not raise KeyError for missing keys. Raise a TypeError if the key is unhashable. Unlike the Python
discard () method, this function does not automatically convert unhashable sets into temporary frozensets.
Raise PyExc_SystemError if set is not an instance of set or its subtype.

PyObject* PySet_Pop (PyObject *set)
Return value: New reference. Return a new reference to an arbitrary object in the set, and removes the object from
the ser. Return NULL on failure. Raise KeyError if the set is empty. Raise a SystemError if sef is not an
instance of set or its subtype.

int PySet_Clear (PyObject *set)
Empty an existing set of all elements.

int PySet_ClearFreeList ()
Clear the free list. Return the total number of freed items.

Nowe w wersji 3.3.

8.5 Function Objects

8.5.1 Function Objects

There are a few functions specific to Python functions.

PyFunctionObject
The C structure used for functions.

PyTypeObject PyFunction_Type
This is an instance of Py TypeObject and represents the Python function type. It is exposed to Python program-
mers as types.FunctionType.

116 Rozdziat 8. Concrete Objects Layer

The Python/C API, Wydanie 3.7.17

int PyFunction_Check (PyObject *0)
Return true if o is a function object (has type PyFunction_Type). The parameter must not be NULL.

PyObject* PyFunction_New (PyObject *code, PyObject *globals)
Return value: New reference. Return a new function object associated with the code object code. globals must be a
dictionary with the global variables accessible to the function.

The function’s docstring and name are retrieved from the code object. __module__is retrieved from globals. The
argument defaults, annotations and closure are set to NULL. __qualname__1is set to the same value as the function’s
name.

PyObject* PyFunction_NewWithQualName (PyObject *code, PyObject *globals, PyObject *qualname)
Return value: New reference. As PyFunction_New (), but also allows setting the function object’s
__qualname___ attribute. qualname should be a unicode object or NULL; if NULL, the __qualname___ attri-
bute is set to the same value as its __name___ attribute.

Nowe w wersji 3.3.

PyObject* PyFunction_GetCode (PyObject *op)
Return value: Borrowed reference. Return the code object associated with the function object op.
PyObject* PyFunction_GetGlobals (PyObject *op)
Return value: Borrowed reference. Return the globals dictionary associated with the function object op.
PyObject* PyFunction_GetModule (PyObject *op)
Return value: Borrowed reference. Return the __module__ attribute of the function object op. This is normally a
string containing the module name, but can be set to any other object by Python code.

PyObject* PyFunction_GetDefaults (PyObject *op)
Return value: Borrowed reference. Return the argument default values of the function object op. This can be a tuple
of arguments or NULL.

int PyFunction_SetDefaults (PyObject *op, PyObject *defaults)
Set the argument default values for the function object op. defaults must be Py_None or a tuple.

Raises SystemError and returns —1 on failure.

PyObject* PyFunction_GetClosure (PyObject *op)
Return value: Borrowed reference. Return the closure associated with the function object op. This can be NULL or
a tuple of cell objects.

int PyFunction_SetClosure (PyObject *op, PyObject *closure)
Set the closure associated with the function object op. closure must be Py_None or a tuple of cell objects.

Raises SystemError and returns —1 on failure.

PyObject *PyFunction_GetAnnotations (PyObject *op)
Return value: Borrowed reference. Return the annotations of the function object op. This can be a mutable dictionary
or NULL.

int PyFunction_SetAnnotations (PyObject *op, PyObject *annotations)
Set the annotations for the function object op. annotations must be a dictionary or Py_None.

Raises SystemError and returns —1 on failure.

8.5. Function Objects 117

The Python/C API, Wydanie 3.7.17

8.5.2 Instance Method Objects

An instance method is a wrapper for a PyCFunct ion and the new way to bind a PyCFunction to a class object. It
replaces the former call PyMethod_New (func, NULL, class).

PyTypeObject PyInstanceMethod_Type
This instance of Py TypeObject represents the Python instance method type. It is not exposed to Python pro-
grams.

int PyInstanceMethod_Check (PyObject *0)
Return true if o is an instance method object (has type Py InstanceMethod_Type). The parameter must not
be NULL.

PyObject* PyInstanceMethod_New (PyObject *func)
Return value: New reference. Return a new instance method object, with func being any callable object func is the
function that will be called when the instance method is called.

PyObject* PyInstanceMethod_Function (PyObject *im)
Return value: Borrowed reference. Return the function object associated with the instance method im.

PyObject* PyInstanceMethod_GET_FUNCTION (PyObject *im)
Return value: Borrowed reference. Macro version of PyInstanceMethod_ Function () which avoids error
checking.

8.5.3 Method Objects

Methods are bound function objects. Methods are always bound to an instance of a user-defined class. Unbound methods
(methods bound to a class object) are no longer available.

PyTypeObject PyMethod_Type
This instance of Py TypeObject represents the Python method type. This is exposed to Python programs as
types.MethodType.

int PyMethod_Check (PyObject *o0)
Return true if o is a method object (has type PyMethod_Type). The parameter must not be NULL.
PyObject* PyMethod_New (PyObject *func, PyObject *self’)
Return value: New reference. Return a new method object, with func being any callable object and self the instance

the method should be bound. func is the function that will be called when the method is called. self must not be
NULL.

PyObject* PyMethod_Function (PyObject *meth)
Return value: Borrowed reference. Return the function object associated with the method meth.

PyObject* PyMethod_GET_FUNCTION (PyObject *meth)
Return value: Borrowed reference. Macro version of PyMethod Function () which avoids error checking.

PyObject* PyMethod_Sel€£ (PyObject *meth)
Return value: Borrowed reference. Return the instance associated with the method meth.

PyObject* PyMethod_GET_SELF (PyObject *meth)
Return value: Borrowed reference. Macro version of PyMethod_Self () which avoids error checking.

int PyMethod_ClearFreeList ()
Clear the free list. Return the total number of freed items.

118 Rozdziat 8. Concrete Objects Layer

The Python/C API, Wydanie 3.7.17

8.5.4 Cell Objects

,Cell” objects are used to implement variables referenced by multiple scopes. For each such variable, a cell object is
created to store the value; the local variables of each stack frame that references the value contains a reference to the cells
from outer scopes which also use that variable. When the value is accessed, the value contained in the cell is used instead
of the cell object itself. This de-referencing of the cell object requires support from the generated byte-code; these are not
automatically de-referenced when accessed. Cell objects are not likely to be useful elsewhere.

PyCellObject
The C structure used for cell objects.

PyTypeObject PyCell_Type
The type object corresponding to cell objects.

int PyCell_Check (ob)
Return true if ob is a cell object; ob must not be NULL.

PyObject* PyCell_New (PyObject *ob)
Return value: New reference. Create and return a new cell object containing the value ob. The parameter may be
NULL.

PyObject* PyCell_Get (PyObject *cell)
Return value: New reference. Return the contents of the cell cell.

PyObject* PyCell_GET (PyObject *cell)
Return value: Borrowed reference. Return the contents of the cell cell, but without checking that cell is non-NULL
and a cell object.

int PyCell_Set (PyObject *cell, PyObject *value)
Set the contents of the cell object cell to value. This releases the reference to any current content of the cell. value
may be NULL. cell must be non-NULL; if it is not a cell object, —1 will be returned. On success, 0 will be returned.

void PyCell_SET (PyObject *cell, PyObject *value)
Sets the value of the cell object cell to value. No reference counts are adjusted, and no checks are made for safety;
cell must be non-NULL and must be a cell object.

8.5.5 Code Objects

Code objects are a low-level detail of the CPython implementation. Each one represents a chunk of executable code that
hasn’t yet been bound into a function.

PyCodeObject
The C structure of the objects used to describe code objects. The fields of this type are subject to change at any
time.

PyTypeObject PyCode_Type
This is an instance of Py TypeOb ject representing the Python code type.

int PyCode_Check (PyObject *co)
Return true if co is a code object.

int PyCode_GetNumFree (PyCodeObject *co)
Return the number of free variables in co.

PyCodeObject* PyCode_New (int argcount, int kwonlyargcount, int nlocals, int stacksize, int flags, PyObject *co-
de, PyObject *consts, PyObject *names, PyObject *varnames, PyObject *fre-
evars, PyObject *cellvars, PyObject *filename, PyObject *name, int firstlineno, Py-
Object *Inotab)
Return value: New reference. Return a new code object. If you need a dummy code object to create a frame, use

8.5. Function Objects 119

The Python/C API, Wydanie 3.7.17

PyCode_NewEmpty () instead. Calling PyCode_New () directly can bind you to a precise Python version
since the definition of the bytecode changes often.

PyCodeObject* PyCode_NewEmpty (const char *filename, const char *funcname, int firstlineno)
Return value: New reference. Return a new empty code object with the specified filename, function name, and first
line number. It is illegal to exec () or eval () the resulting code object.

8.6 Other Objects

8.6.1 File Objects

These APIs are a minimal emulation of the Python 2 C API for built-in file objects, which used to rely on the buffered
I/O (FILE*) support from the C standard library. In Python 3, files and streams use the new io module, which defines
several layers over the low-level unbuffered I/O of the operating system. The functions described below are convenience C
wrappers over these new APIs, and meant mostly for internal error reporting in the interpreter; third-party code is advised
to access the 1o APIs instead.

PyFile_FromFd (int fd, const char *name, const char *mode, int buffering, const char *encoding, const char *er-

rors, const char *newline, int closefd)
Return value: New reference. Create a Python file object from the file descriptor of an already opened file fd. The

arguments name, encoding, errors and newline can be NULL to use the defaults; buffering can be -1 to use the
default. name is ignored and kept for backward compatibility. Return NULL on failure. For a more comprehensive
description of the arguments, please refer to the 10 .open () function documentation.

Ostrzezenie: Since Python streams have their own buffering layer, mixing them with OS-level file descriptors
can produce various issues (such as unexpected ordering of data).

Zmienione w wersji 3.2: Zignoruj atrybut name.

int PyObject_AsFileDescriptor (PyObject *p)
Return the file descriptor associated with p as an int. If the object is an integer, its value is returned. If not, the
object’s £ileno () method is called if it exists; the method must return an integer, which is returned as the file
descriptor value. Sets an exception and returns —1 on failure.

PyObject* PyFile_GetLine (PyObject *p, int n)
Return value: New reference. Equivalent to p. readline ([n]), this function reads one line from the object p.
p may be a file object or any object with a readline () method. If n is 0, exactly one line is read, regardless of
the length of the line. If » is greater than O, no more than n bytes will be read from the file; a partial line can be
returned. In both cases, an empty string is returned if the end of the file is reached immediately. If # is less than 0,
however, one line is read regardless of length, but EOFError is raised if the end of the file is reached immediately.

int PyFile_WriteObject (PyObject *obj, PyObject *p, int flags)
Write object obj to file object p. The only supported flag for flags is Py_PRINT_RAW; if given, the str () of the
object is written instead of the repr (). Return 0 on success or —1 on failure; the appropriate exception will be
set.

int PyFile_WriteString (const char *s, PyObject *p)
Write string s to file object p. Return 0 on success or —1 on failure; the appropriate exception will be set.

120 Rozdziat 8. Concrete Objects Layer

The Python/C API, Wydanie 3.7.17

8.6.2 Module Objects

PyTypeObject PyModule_Type
This instance of Py TypeObject represents the Python module type. This is exposed to Python programs as
types.ModuleType.

int PyModule_Check (PyObject *p)
Return true if p is a module object, or a subtype of a module object.

int PyModule_CheckExact (PyObject *p)
Return true if p is a module object, but not a subtype of PyModule Type.

PyObject* PyModule_NewObject (PyObject *name)
Return value: New reference. Return a new module object with the __name___ attribute set to name. The module’s
__name_ ,_ _doc_ ,_ package_ ,and _ loader___ attributes are filled in (all but __name___ are set
to None); the caller is responsible for providinga ___file_ attribute.

Nowe w wersji 3.3.
Zmienione w wersji 3.4: __package___and __loader__ are set to None.

PyObject* PyModule_New (const char *name)
Return value: New reference. Similar to PyModule_NewObject (), but the name is a UTF-8 encoded string
instead of a Unicode object.

PyObject* PyModule_GetDict (PyObject *module)
Return value: Borrowed reference. Return the dictionary object that implements module’s namespace; this object
is the same as the __dict___ attribute of the module object. If module is not a module object (or a subtype of a
module object), SystemError is raised and NULL is returned.

It is recommended extensions use other PyModule_* () and PyObject_* () functions rather than directly
manipulate a module’s __dict__.

PyObject* PyModule_GetNameObject (PyObject *module)
Return value: New reference. Return module’s __name___ value. If the module does not provide one, or if it is not
astring, SystemError is raised and NULL is returned.

Nowe w wersji 3.3.

const char* PyModule_GetName (PyObject *module)
Similar to PyModule_ GetNameObject () but return the name encoded to 'ut£-8".

void* PyModule_GetState (PyObject *module)
Return the ,,state” of the module, that is, a pointer to the block of memory allocated at module creation time, or
NULL. See PyModuleDef.m _size.

PyModuleDef* PyModule_GetDef (PyObject *module)
Return a pointer to the PyModuleDef struct from which the module was created, or NULL if the module wasn’t
created from a definition.

PyObject* PyModule_GetFilenameObject (PyObject *module)
Return value: New reference. Return the name of the file from which module was loaded using module’s __file_
attribute. If this is not defined, or if it is not a unicode string, raise SystemError and return NULL; otherwise
return a reference to a Unicode object.

Nowe w wersji 3.2.

const char* PyModule_GetFilename (PyObject *module)
Similar to PyModule_ GetFilenameObject () butreturn the filename encoded to «utf-8».

Niezalecane od wersji 3.2: PyModule GetFilename () raises UnicodeEncodeError on unencodable
filenames, use PyModule_ GetFilenameObject () instead.

8.6. Other Objects 121

The Python/C API, Wydanie 3.7.17

Initializing C modules

Modules objects are usually created from extension modules (shared libraries which export an initialization function), or
compiled-in modules (where the initialization function is added using Py Import_AppendInittab ()).See building
or extending-with-embedding for details.

The initialization function can either pass a module definition instance to PyModule_Create (), and return the re-
sulting module object, or request ,,multi-phase initialization” by returning the definition struct itself.

PyModuleDef

The module definition struct, which holds all information needed to create a module object. There is usually only
one statically initialized variable of this type for each module.

PyModuleDef_Base m_base
Always initialize this member to PyModuleDef_HEAD_INIT.

const char *m_name
Name for the new module.

const char *m_doc
Docstring for the module; usually a docstring variable created with PyDoc_ STRVAR is used.

Py_ssize_tm_size
Module state may be kept in a per-module memory area that can be retrieved with
PyModule_GetState (), rather than in static globals. This makes modules safe for use in multi-
ple sub-interpreters.

This memory area is allocated based on m_size on module creation, and freed when the module object is
deallocated, after the m_ f ree function has been called, if present.

Setting m_size to —1 means that the module does not support sub-interpreters, because it has global state.

Setting it to a non-negative value means that the module can be re-initialized and specifies the additional
amount of memory it requires for its state. Non-negative m__s i ze is required for multi-phase initialization.

See PEP 3121 for more details.

PyMethodDef* m_methods
A pointer to a table of module-level functions, described by PyMethodDe £ values. Can be NULL if no
functions are present.

PyModuleDef _Slot* m_slots
An array of slot definitions for multi-phase initialization, terminated by a {0, NULL} entry. When using
single-phase initialization, m_slots must be NULL.

Zmienione w wersji 3.5: Prior to version 3.5, this member was always set to NULL, and was defined as:
inquirym_reload

fraverseproc m_traverse
A traversal function to call during GC traversal of the module object, or NULL if not needed. This function
may be called before module state is allocated (PyModule GetState () may return NULL), and before
the Py_mod_exec function is executed.

inquirym_clear
A clear function to call during GC clearing of the module object, or NULL if not needed. This function may
be called before module state is allocated (PyModule_GetState () may return NULL), and before the
Py_mod_exec function is executed.

freefunc m_free
A function to call during deallocation of the module object, or NULL if not needed. This function may

122

Rozdziat 8. Concrete Objects Layer

https://www.python.org/dev/peps/pep-3121

The Python/C API, Wydanie 3.7.17

be called before module state is allocated (PyModule_ GetState () may return NULL), and before the
Py_mod_exec function is executed.

Single-phase initialization

The module initialization function may create and return the module object directly. This is referred to as ,,single-phase
initialization”, and uses one of the following two module creation functions:

PyObject* PyModule_Create (PyModuleDef *def)
Return value: New reference. Create a new module object, given the definition in def. This behaves like
PyModule_Createl () with module_api_version set to PYTHON_API_VERSION.

PyObject* PyModule_Create2 (PyModuleDef *def, int module_api_version)
Return value: New reference. Create a new module object, given the definition in def, assuming the API version
module_api_version. If that version does not match the version of the running interpreter, a Runt imeWarning
is emitted.

Informacja: Most uses of this function should be using PyModule_Create () instead; only use this if you are
sure you need it.

Before it is returned from in the initialization function, the resulting module object is typically populated using functions
like PyModule_AddObject ().

Multi-phase initialization

An alternate way to specify extensions is to request ,,multi-phase initialization”. Extension modules created this way behave
more like Python modules: the initialization is split between the creation phase, when the module object is created, and
the execution phase, when it is populated. The distinction is similar to the __new__ () and __init__ () methods of
classes.

Unlike modules created using single-phase initialization, these modules are not singletons: if the sys.modules entry is
removed and the module is re-imported, a new module object is created, and the old module is subject to normal garbage
collection — as with Python modules. By default, multiple modules created from the same definition should be independent:
changes to one should not affect the others. This means that all state should be specific to the module object (using e.g.
using PyModule_ GetState ()), or its contents (such as the module’s __dict___ or individual classes created with
PyType_FromSpec()).

All modules created using multi-phase initialization are expected to support sub-interpreters. Making sure multiple mo-
dules are independent is typically enough to achieve this.

To request multi-phase initialization, the initialization function (PyInit_modulename) returns a PyModuleDe £ instance
with non-empty m_sIots. Before it is returned, the PyModuleDef instance must be initialized with the following
function:

PyObject* PyModuleDef_Init (PyModuleDef *def)
Return value: Borrowed reference. Ensures a module definition is a properly initialized Python object that correctly
reports its type and reference count.

Returns def cast to PyObject*, or NULL if an error occurred.
Nowe w wersji 3.5.
The m_slots member of the module definition must point to an array of PyModuleDef_Slot structures:

PyModuleDef_Slot

8.6. Other Objects 123

The Python/C API, Wydanie 3.7.17

int slot
A slot ID, chosen from the available values explained below.

void* value
Value of the slot, whose meaning depends on the slot ID.

Nowe w wersji 3.5.
The m_slots array must be terminated by a slot with id 0.
The available slot types are:

Py_mod_create
Specifies a function that is called to create the module object itself. The value pointer of this slot must point to a
function of the signature:

PyObject* create_module (PyObject *spec, PyModuleDef *def’)

The function receives a ModuleSpec instance, as defined in PEP 451, and the module definition. It should return
a new module object, or set an error and return NULL.

This function should be kept minimal. In particular, it should not call arbitrary Python code, as trying to import the
same module again may result in an infinite loop.

Multiple Py_mod_create slots may not be specified in one module definition.

If Py_mod_create is not specified, the import machinery will create a normal module object using
PyModule_New (). The name is taken from spec, not the definition, to allow extension modules to dynami-
cally adjust to their place in the module hierarchy and be imported under different names through symlinks, all
while sharing a single module definition.

There is no requirement for the returned object to be an instance of PyModule Type. Any type can be used, as
long as it supports setting and getting import-related attributes. However, only PyModule_Type instances may
be returned if the PyModuleDef has non-NULL m_traverse, m_clear, m_free; non-zero m_size; or
slots other than Py_mod_create.

Py_mod_exec
Specifies a function that is called to execute the module. This is equivalent to executing the code of a Python module:
typically, this function adds classes and constants to the module. The signature of the function is:

int exec_module (PyObject* module)
If multiple Py_mod_exec slots are specified, they are processed in the order they appear in the m_slots array.

See PEP 489 for more details on multi-phase initialization.

Low-level module creation functions

The following functions are called under the hood when using multi-phase initialization. They can be used direc-
tly, for example when creating module objects dynamically. Note that both PyModule_FromDefAndSpec and
PyModule_ExecDef must be called to fully initialize a module.

PyObject * PyModule_FromDefAndSpec (PyModuleDef *def, PyObject *spec)
Return value: New reference. Create a new module object, given the definition in module and the Mo-

duleSpec spec. This behaves like PyModule FromDefAndSpecZ () with module_api_version set to
PYTHON_API_VERSION.

Nowe w wersji 3.5.

PyObject * PyModule_FromDefAndSpec2 (PyModuleDef *def, PyObject *spec, int module_api_version)
Return value: New reference. Create a new module object, given the definition in module and the ModuleSpec spec,

124 Rozdziat 8. Concrete Objects Layer

https://www.python.org/dev/peps/pep-0451
https://www.python.org/dev/peps/pep-0489

The Python/C API, Wydanie 3.7.17

assuming the API version module_api_version. If that version does not match the version of the running interpreter,
a RuntimeWarning is emitted.

Informacja: Most uses of this function should be using PyModule FromDefAndSpec () instead; only use
this if you are sure you need it.

Nowe w wersji 3.5.

int PyModule_ExecDef£ (PyObject *module, PyModuleDef *def’)
Process any execution slots (Py_mod_exec) given in def.

Nowe w wersji 3.5.

int PyModule_SetDocString (PyObject *module, const char *docstring)
Set the docstring for module to docstring. This function is called automatically when creating a module from
PyModuleDef, using either PyModule_Create or PyModule_FromDefAndSpec.

Nowe w wersji 3.5.

int PyModule_AddFunctions (PyObject *module, PyMethodDef *functions)
Add the functions from the NULL terminated functions array to module. Refer to the PyMet hodDe £ documen-
tation for details on individual entries (due to the lack of a shared module namespace, module level ,,functions”
implemented in C typically receive the module as their first parameter, making them similar to instance methods on
Python classes). This function is called automatically when creating a module from PyModuleDef, using either
PyModule_Create or PyModule_FromDefAndSpec.

Nowe w wersji 3.5.

Support functions

The module initialization function (if using single phase initialization) or a function called from a module execution slot
(if using multi-phase initialization), can use the following functions to help initialize the module state:

int PyModule_AddObject (PyObject *module, const char *name, PyObject *value)
Add an object to module as name. This is a convenience function which can be used from the module’s initialization
function. This steals a reference to value on success. Return —1 on error, O on success.

Informacja: Unlike other functions that steal references, PyModule_AddObject () only decrements the re-
ference count of value on success.

This means that its return value must be checked, and calling code must Py DECREF () value manually on error.
Example usage:

Py_INCREF (spam) ;

if (PyModule_AddObject (module, "spam", spam) < 0) {
Py_DECREF (module) ;
Py_DECREF (spam) ;
return NULL;

int PyModule_AddIntConstant (PyObject *module, const char *name, long value)
Add an integer constant to module as name. This convenience function can be used from the module’s initialization
function. Return —1 on error, O on success.

8.6. Other Objects 125

The Python/C API, Wydanie 3.7.17

int PyModule_AddStringConstant (PyObject *module, const char *name, const char *value)
Add a string constant to module as name. This convenience function can be used from the module’s initialization
function. The string value must be NULL-terminated. Return —1 on error, O on success.

int PyModule_AddIntMacro (PyObject *module, macro)
Add an int constant to module. The name and the value are taken from macro. For example
PyModule_AddIntMacro (module, AF_INET) adds the int constant AF_INET with the value of
AF_INET to module. Return —1 on error, O on success.

int PyModule_AddStringMacro (PyObject *module, macro)
Add a string constant to module.

Module lookup

Single-phase initialization creates singleton modules that can be looked up in the context of the current interpreter. This
allows the module object to be retrieved later with only a reference to the module definition.

These functions will not work on modules created using multi-phase initialization, since multiple such modules can be
created from a single definition.

PyObject* PyState_FindModule (PyModuleDef *def’)
Return value: Borrowed reference. Returns the module object that was created from def for the current
interpreter. This method requires that the module object has been attached to the interpreter state with
PyState_AddModule () beforehand. In case the corresponding module object is not found or has not been
attached to the interpreter state yet, it returns NULL.

int PyState_AddModule (PyObject *module, PyModuleDef *def)
Attaches the module object passed to the function to the interpreter state. This allows the module object to be
accessible via PyState_FindModule ().

Only effective on modules created using single-phase initialization.

Python calls PyState_AddModule automatically after importing a module, so it is unnecessary (but harmless)
to call it from module initialization code. An explicit call is needed only if the module’s own init code subsequently
calls PyState_FindModule. The function is mainly intended for implementing alternative import mechanisms
(either by calling it directly, or by referring to its implementation for details of the required state updates).

Return 0 on success or -1 on failure.
Nowe w wersji 3.3.

int PyState_RemoveModule (PyModuleDef *def)
Removes the module object created from def from the interpreter state. Return 0 on success or -1 on failure.

Nowe w wersji 3.3.

8.6.3 Iterator Objects

Python provides two general-purpose iterator objects. The first, a sequence iterator, works with an arbitrary sequence
supporting the __getitem__ () method. The second works with a callable object and a sentinel value, calling the
callable for each item in the sequence, and ending the iteration when the sentinel value is returned.

PyTypeObject PySeqIter_Type
Type object for iterator objects returned by PySegIter New () and the one-argument form of the iter ()
built-in function for built-in sequence types.

int PySeqIter_Check (op)
Return true if the type of op is PySegIter Type.

126 Rozdziat 8. Concrete Objects Layer

The Python/C API, Wydanie 3.7.17

PyObject* PySeqIter_New (PyObject *seq)
Return value: New reference. Return an iterator that works with a general sequence object, seq. The iteration ends
when the sequence raises IndexError for the subscripting operation.

PyTypeObject PyCallIter_Type
Type object for iterator objects returned by PyCallTter New () and the two-argument form of the iter ()
built-in function.

int PyCallIter_Check (0p)
Return true if the type of opis PyCallIter Type.

PyObject* PyCallIter_New (PyObject *callable, PyObject *sentinel)
Return value: New reference. Return a new iterator. The first parameter, callable, can be any Python callable object
that can be called with no parameters; each call to it should return the next item in the iteration. When callable
returns a value equal to sentinel, the iteration will be terminated.

8.6.4 Descriptor Objects

»Descriptors” are objects that describe some attribute of an object. They are found in the dictionary of type objects.

PyTypeObject PyProperty_Type
The type object for the built-in descriptor types.

PyObject* PyDescr_NewGetSet (PyTypeObject *type, struct PyGetSetDef *getset)
Return value: New reference.

PyObject* PyDescr_NewMember (PyTypeObject *type, struct PyMemberDef *meth)
Return value: New reference.

PyObject* PyDescr_NewMethod (PyTypeObject *type, struct PyMethodDef *meth)
Return value: New reference.

PyObject* PyDescr_NewWrapper (PyTypeObject *type, struct wrapperbase *wrapper, void *wrapped)
Return value: New reference.

PyObject* PyDescr_NewClassMethod (PyTypeObject *type, PyMethodDef *method)
Return value: New reference.

int PyDescr_IsData (PyObject *descr)
Return true if the descriptor objects descr describes a data attribute, or false if it describes a method. descr must
be a descriptor object; there is no error checking.

PyObject* PyWrapper_New (PyObject *, PyObject *)
Return value: New reference.

8.6.5 Slice Objects

PyTypeObject PySlice_Type
The type object for slice objects. This is the same as s1ice in the Python layer.

int PySlice_Check (PyObject *ob)
Return true if ob is a slice object; ob must not be NULL.

PyObject* PySlice_New (PyObject *start, PyObject *stop, PyObject *step)
Return value: New reference. Return a new slice object with the given values. The start, stop, and step parameters
are used as the values of the slice object attributes of the same names. Any of the values may be NULL, in which
case the None will be used for the corresponding attribute. Return NULL if the new object could not be allocated.

8.6. Other Objects 127

The Python/C API, Wydanie 3.7.17

int PySlice_GetIndices (PyObject *slice, Py_ssize_t length, Py_ssize_t *start, Py_ssize_t *stop,
Py_ssize_t *step)
Retrieve the start, stop and step indices from the slice object slice, assuming a sequence of length length. Treats
indices greater than length as errors.

Returns 0 on success and —1 on error with no exception set (unless one of the indices was not None and failed to
be converted to an integer, in which case -1 is returned with an exception set).

You probably do not want to use this function.
Zmienione w wersji 3.2: The parameter type for the slice parameter was PyS1iceObject * before.

int PySlice_GetIndicesEx (PyObject *slice, Py_ssize_t length, Py_ssize_t *start, Py_ssize_t *stop,
Py_ssize_t *step, Py_ssize_t *slicelength)
Usable replacement for PyS1ice_GetIndices (). Retrieve the start, stop, and step indices from the slice
object slice assuming a sequence of length length, and store the length of the slice in slicelength. Out of bounds
indices are clipped in a manner consistent with the handling of normal slices.

Returns 0 on success and —1 on error with exception set.

Informacja: This function is considered not safe for resizable sequences. Its invocation should be replaced by a
combination of PyS1ice Unpack () and PySlice AdjustIndices () where

if (PySlice_GetIndicesEx(slice, length, &start, &stop, &step, &slicelength) < 0) {
// return error

is replaced by

if (PySlice_Unpack(slice, &start, &stop, é&step) < 0) |
// return error
3
slicelength = PySlice_AdjustIndices (length, &start, &stop, step);

Zmienione w wersji 3.2: The parameter type for the slice parameter was PyS1iceObject * before.

Zmienione w wersji 3.6.1: If Py_ LIMITED_APT is not set or set to the value between 0x03050400 and
0x03060000 (not including) or 0x03060100 or higher PySlice_GetIndicesEx () isimplemented as a
macro using PySlice_Unpack () and PySlice_AdjustIndices (). Arguments start, stop and step are
evaluated more than once.

Niezalecane od wersji 3.6.1: If Py_LIMITED_APT is set to the value less than 0x03050400 or between
0x03060000 and 0x03060100 (not including) PySlice_GetIndicesEx () is a deprecated function.

int PySlice_Unpack (PyObject *slice, Py_ssize_t *start, Py_ssize_t *stop, Py_ssize_t *step)
Extract the start, stop and step data members from a slice object as C integers. Silently reduce values
larger than PY_SSIZE_T_MAX to PY_SSIZE_T_MAX, silently boost the start and stop values less than
PY_SSIZE_T_MINtoPY_SSIZE_T_MIN, and silently boost the step values less than -PY_SSIZE_T_MAX
to -PY_SSIZE_T_MAX.

Return -1 on error, 0 on success.
Nowe w wersji 3.6.1.

Py_ssize_tPySlice_AdjustIndices (Py_ssize_t length, Py_ssize t ‘*start, Py_ssize_t *stop,

Py_ssize_t step)
Adjust start/end slice indices assuming a sequence of the specified length. Out of bounds indices are clipped in a
manner consistent with the handling of normal slices.

Return the length of the slice. Always successful. Doesn’t call Python code.

128 Rozdziat 8. Concrete Objects Layer

The Python/C API, Wydanie 3.7.17

Nowe w wersji 3.6.1.

8.6.6 Ellipsis Object

PyObject *Py_Ellipsis
The Python E11ipsis object. This object has no methods. It needs to be treated just like any other object with
respect to reference counts. Like Py_None it is a singleton object.

8.6.7 MemoryView objects

A memoryview object exposes the C level buffer interface as a Python object which can then be passed around like any
other object.

PyObject *PyMemoryView_FromObject (PyObject *obyj)
Return value: New reference. Create a memoryview object from an object that provides the buffer interface. If obj
supports writable buffer exports, the memoryview object will be read/write, otherwise it may be either read-only
or read/write at the discretion of the exporter.

PyObject *PyMemoryView_FromMemory (char *mem, Py_ssize_t size, int flags)
Return value: New reference. Create a memoryview object using mem as the underlying buffer. flags can be one of
PyBUF_READ or PyBUF_WRITE.

Nowe w wersji 3.3.

PyObject *PyMemoryView_FromBuffer (Py_buffer *view)
Return value: New reference. Create a memoryview object wrapping the given buffer structure view. For simple
byte buffers, PyMemoryView FromMemory () is the preferred function.

PyObject *PyMemoryView_GetContiguous (PyObject *obj, int buffertype, char order)
Return value: New reference. Create a memoryview object to a contiguous chunk of memory (in either «C» or
«Fortran order) from an object that defines the buffer interface. If memory is contiguous, the memoryview object
points to the original memory. Otherwise, a copy is made and the memoryview points to a new bytes object.

int PyMemoryView_Check (PyObject *obj)
Return true if the object obj is a memoryview object. It is not currently allowed to create subclasses of
memoryview.

Py_buffer *PyMemoryView_GET_BUFFER (PyObject *mview)
Return a pointer to the memoryview’s private copy of the exporter’s buffer. mview must be a memoryview instance;
this macro doesn’t check its type, you must do it yourself or you will risk crashes.

Py_buffer *PyMemoryView_GET_BASE (PyObject *mview)
Return either a pointer to the exporting object that the memoryview is based on or NULL if the memoryview has be-
en created by one of the functions PyMemoryView FromMemory () or PyMemoryView_FromBuffer ().
mview must be a memoryview instance.

8.6. Other Objects 129

The Python/C API, Wydanie 3.7.17

8.6.8 Weak Reference Objects

Python supports weak references as first-class objects. There are two specific object types which directly implement weak
references. The first is a simple reference object, and the second acts as a proxy for the original object as much as it can.

int PyWeakref_Check (ob)
Return true if ob is either a reference or proxy object.

int PyWeakref_CheckRef (ob)
Return true if ob is a reference object.

int PyWeakref_CheckProxy (ob)
Return true if ob is a proxy object.

PyObject* PyWeakref_NewRef (PyObject *ob, PyObject *callback)
Return value: New reference. Return a weak reference object for the object ob. This will always return a new re-
ference, but is not guaranteed to create a new object; an existing reference object may be returned. The second
parameter, callback, can be a callable object that receives notification when ob is garbage collected; it should accept
a single parameter, which will be the weak reference object itself. callback may also be None or NULL. If 0b is
not a weakly-referencable object, or if callback is not callable, None, or NULL, this will return NULL and raise
TypeError.

PyObject* PyWeakref_ NewProxy (PyObject *ob, PyObject *callback)
Return value: New reference. Return a weak reference proxy object for the object ob. This will always return a
new reference, but is not guaranteed to create a new object; an existing proxy object may be returned. The second
parameter, callback, can be a callable object that receives notification when ob is garbage collected; it should accept
a single parameter, which will be the weak reference object itself. callback may also be None or NULL. If ob is
not a weakly-referencable object, or if callback is not callable, None, or NULL, this will return NULL and raise
TypeError.

PyObject* PyWeakref_GetObject (PyObject *ref)

Return value: Borrowed reference. Return the referenced object from a weak reference, ref. If the referent is no
longer live, returns Py_None.

Informacja: This function returns a borrowed reference to the referenced object. This means that you should
always call Py_ TNCREF () on the object except if you know that it cannot be destroyed while you are still using
it.

PyObject* PyWeakref_ GET_OBJECT (PyObject *ref)
Return value: Borrowed reference. Similar to Pyleakref GetObject (), but implemented as a macro that
does no error checking.

8.6.9 Capsules

Refer to using-capsules for more information on using these objects.
Nowe w wersji 3.1.

PyCapsule
This subtype of PyOb ject represents an opaque value, useful for C extension modules who need to pass an opaque
value (as a void* pointer) through Python code to other C code. It is often used to make a C function pointer
defined in one module available to other modules, so the regular import mechanism can be used to access C APIs
defined in dynamically loaded modules.

PyCapsule_Destructor
The type of a destructor callback for a capsule. Defined as:

130 Rozdziat 8. Concrete Objects Layer

The Python/C API, Wydanie 3.7.17

typedef void (*PyCapsule_Destructor) (PyObject *);

See PyCapsule_New () for the semantics of PyCapsule_Destructor callbacks.

int PyCapsule_CheckExact (PyObject *p)
Return true if its argument is a PyCapsule.

PyObject* PyCapsule_New (void *pointer, const char *name, PyCapsule_Destructor destructor)
Return value: New reference. Create a PyCapsule encapsulating the pointer. The pointer argument may not be
NULL.

On failure, set an exception and return NULL.

The name string may either be NULL or a pointer to a valid C string. If non-NULL, this string must outlive the
capsule. (Though it is permitted to free it inside the destructor.)

If the destructor argument is not NULL, it will be called with the capsule as its argument when it is destroyed.

If this capsule will be stored as an attribute of a module, the name should be specified as modulename.
attributename. This will enable other modules to import the capsule using PyCapsule_Import ().

void* PyCapsule_GetPointer (PyObject *capsule, const char *name)
Retrieve the pointer stored in the capsule. On failure, set an exception and return NULL.

The name parameter must compare exactly to the name stored in the capsule. If the name stored in the capsule is
NULL, the name passed in must also be NULL. Python uses the C function st rcmp () to compare capsule names.

PyCapsule_Destructor PyCapsule_GetDestructor (PyObject *capsule)
Return the current destructor stored in the capsule. On failure, set an exception and return NULL.

It is legal for a capsule to have a NULL destructor. This makes a NULL return code somewhat ambiguous; use
PyCapsule_IsValid() or PyErr_Occurred () to disambiguate.

void* PyCapsule_GetContext (PyObject *capsule)
Return the current context stored in the capsule. On failure, set an exception and return NULL.

It is legal for a capsule to have a NULL context. This makes a NULL return code somewhat ambiguous; use
PyCapsule_IsValid() or PyErr_Occurred () to disambiguate.

const char* PyCapsule_GetName (PyObject *capsule)
Return the current name stored in the capsule. On failure, set an exception and return NULL.

It is legal for a capsule to have a NULL name. This makes a NULL return code somewhat ambiguous; use
PyCapsule_IsValid() or PyErr_Occurred () to disambiguate.

void* PyCapsule_Import (const char *name, int no_block)
Import a pointer to a C object from a capsule attribute in a module. The name parameter should specify the full
name to the attribute, as inmodule.attribute. The name stored in the capsule must match this string exactly.
If no_block is true, import the module without blocking (using Py Import_ImportModuleNoBlock ()).If
no_block is false, import the module conventionally (using Py Import_ImportModule ()).

Return the capsule’s internal pointer on success. On failure, set an exception and return NULL.

int PyCapsule_IsValid (PyObject *capsule, const char *name)
Determines whether or not capsule is a valid capsule. A valid capsule is non-NULL, passes
PyCapsule_CheckExact (), has a non-NULL pointer stored in it, and its internal name matches the
name parameter. (See PyCapsule_GetPointer () for information on how capsule names are compared.)

In other words, if PyCapsule_ IsValid () returns a true value, calls to any of the accessors (any function
starting with PyCapsule_Get ()) are guaranteed to succeed.

Return a nonzero value if the object is valid and matches the name passed in. Return 0 otherwise. This function
will not fail.

8.6. Other Objects 131

The Python/C API, Wydanie 3.7.17

int PyCapsule_SetContext (PyObject *capsule, void *context)
Set the context pointer inside capsule to context.

Return 0 on success. Return nonzero and set an exception on failure.

int PyCapsule_SetDestructor (PyObject *capsule, PyCapsule_Destructor destructor)
Set the destructor inside capsule to destructor.

Return 0 on success. Return nonzero and set an exception on failure.

int PyCapsule_SetName (PyObject *capsule, const char *name)
Set the name inside capsule to name. If non-NULL, the name must outlive the capsule. If the previous name stored
in the capsule was not NULL, no attempt is made to free it.

Return 0 on success. Return nonzero and set an exception on failure.

int PyCapsule_SetPointer (PyObject *capsule, void *pointer)
Set the void pointer inside capsule to pointer. The pointer may not be NULL.

Return 0 on success. Return nonzero and set an exception on failure.

8.6.10 Generator Objects

Generator objects are what Python uses to implement generator iterators. They are normally created by iterating over a
function that yields values, rather than explicitly calling PyGen_New () or PyGen_NewWithQualName ().

PyGenObject
The C structure used for generator objects.

PyTypeObject PyGen_Type
The type object corresponding to generator objects.

int PyGen_Check (PyObject *ob)
Return true if ob is a generator object; ob must not be NULL.

int PyGen_CheckExact (PyObject *ob)
Return true if ob’s type is PyGen_ Type; ob must not be NULL.

PyObject* PyGen_New (PyFrameObject *frame)
Return value: New reference. Create and return a new generator object based on the frame object. A reference to
frame is stolen by this function. The argument must not be NULL.

PyObject* PyGen_NewWithQualName (PyFrameObject *frame, PyObject *name, PyObject *qualname)
Return value: New reference. Create and return a new generator object based on the frame object, with __name___
and __qualname___ set to name and qualname. A reference to frame is stolen by this function. The frame
argument must not be NULL.

8.6.11 Coroutine Objects

Nowe w wersji 3.5.
Coroutine objects are what functions declared with an async keyword return.

PyCoroObject

The C structure used for coroutine objects.
PyTypeObject PyCoro_Type

The type object corresponding to coroutine objects.

int PyCoro_CheckExact (PyObject *ob)
Return true if ob’s type is PyCoro_ Type; ob must not be NULL.

132 Rozdziat 8. Concrete Objects Layer

The Python/C API, Wydanie 3.7.17

PyObject* PyCoro_New (PyFrameObject *frame, PyObject *name, PyObject *qualname)
Return value: New reference. Create and return a new coroutine object based on the frame object, with __name___
and __qualname___ set to name and qualname. A reference to frame is stolen by this function. The frame
argument must not be NULL.

8.6.12 Context Variables Objects

Informacja: Zmienione w wersji 3.7.1: In Python 3.7.1 the signatures of all context variables C APIs were changed to
use PyObject pointers instead of PyContext, PyContextVar, and PyContextToken, e.g..

// in 3.7.0:
PyContext *PyContext_New (void) ;

// in 3.7.1+:
PyObject *PyContext_New (void);

See bpo-34762 for more details.

Nowe w wersji 3.7.
This section details the public C API for the contextvars module.

PyContext
The C structure used to represent a contextvars.Context object.

PyContextVar
The C structure used to represent a contextvars.ContextVar object.

PyContextToken
The C structure used to represent a contextvars. Token object.

PyTypeObject PyContext_Type
The type object representing the context type.

PyTypeObject PyContextVar_Type
The type object representing the context variable type.

PyTypeObject PyContextToken_Type
The type object representing the context variable token type.

Type-check macros:

int PyContext_CheckExact (PyObject *o)
Return true if o is of type PyContext_ Type. o must not be NULL. This function always succeeds.

int PyContextVar_CheckExact (PyObject *o)
Return true if o is of type PyContextVar_Type. o must not be NULL. This function always succeeds.

int PyContextToken_CheckExact (PyObject *0)
Return true if o is of type PyContext Token_Type. o must not be NULL. This function always succeeds.

Context object management functions:

PyObject *PyContext_New (void)
Return value: New reference. Create a new empty context object. Returns NULL if an error has occurred.

PyObject *PyContext_Copy (PyObject *ctx)
Return value: New reference. Create a shallow copy of the passed ctx context object. Returns NULL if an error has
occurred.

8.6. Other Objects 133

https://bugs.python.org/issue?@action=redirect&bpo=34762

The Python/C API, Wydanie 3.7.17

PyObject *PyContext_CopyCurrent (void)
Return value: New reference. Create a shallow copy of the current thread context. Returns NULL if an error has
occurred.

int PyContext_Enter (PyObject *ctx)
Set ctx as the current context for the current thread. Returns O on success, and —1 on error.

int PyContext_Exit (PyObject *ctx)
Deactivate the ctx context and restore the previous context as the current context for the current thread. Returns 0
on success, and —1 on error.

int PyContext_ClearFreeLlist ()
Clear the context variable free list. Return the total number of freed items. This function always succeeds.

Context variable functions:

PyObject *PyContextVar_New (const char *name, PyObject *def’)
Return value: New reference. Create a new ContextVar object. The name parameter is used for introspection
and debug purposes. The def parameter may optionally specify the default value for the context variable. If an error
has occurred, this function returns NULL.

int PyContextVar_Get (PyObject *var, PyObject *default_value, PyObject **value)
Get the value of a context variable. Returns -1 if an error has occurred during lookup, and 0 if no error occurred,
whether or not a value was found.

If the context variable was found, value will be a pointer to it. If the context variable was not found, value will point
to:

e default_value, if not NULL;
¢ the default value of var, if not NULL;
e NULL
If the value was found, the function will create a new reference to it.

PyObject *PyContextVar_Set (PyObject *var, PyObject *value)
Return value: New reference. Set the value of var to value in the current context. Returns a pointer toa PyOb ject
object, or NULL if an error has occurred.

int PyContextVar_Reset (PyObject *var, PyObject *token)
Reset the state of the var context variable to that it was in before PyContextVar_Set () that returned the token
was called. This function returns 0 on success and —1 on error.

8.6.13 DateTime Objects

Various date and time objects are supplied by the datet ime module. Before using any of these functions, the he-
ader file datetime . h must be included in your source (note that this is not included by Python.h), and the macro
PyDateTime_IMPORT must be invoked, usually as part of the module initialisation function. The macro puts a pointer
to a C structure into a static variable, PyDateTimeAPI, that is used by the following macros.

Macro for access to the UTC singleton:

PyObject* PyDateTime_TimeZone_UTC
Returns the time zone singleton representing UTC, the same object as datetime.timezone.utc.

Nowe w wersji 3.7.

Type-check macros:

134 Rozdziat 8. Concrete Objects Layer

The Python/C API, Wydanie 3.7.17

int PyDate_Check (PyObject *ob)
Return true if ob is of type PyDateTime_DateType or asubtype of PyDateTime_DateType. ob must not
be NULL.

int PyDate_CheckExact (PyObject *ob)
Return true if ob is of type PyDateTime_DateType. ob must not be NULL.

int PyDateTime_Check (PyObject *ob)
Return true if 0b is of type PyDateTime_DateTimeType or asubtype of PyDateTime_DateTimeType.
ob must not be NULL.

int PyDateTime_CheckExact (PyObject *ob)
Return true if ob is of type PyDateTime_DateTimeType. ob must not be NULL.

int PyTime_Check (PyObject *ob)
Return true if ob is of type PyDateTime_TimeType or asubtype of PyDateTime_TimeType. ob must not
be NULL.

int PyTime_CheckExact (PyObject *ob)
Return true if ob is of type PyDateTime_TimeType. ob must not be NULL.

int PyDelta_Check (PyObject *ob)
Return true if 0b is of type PyDateTime_DeltaType or asubtype of PyDateTime_DeltaType. ob must
not be NULL.

int PyDelta_CheckExact (PyObject *ob)
Return true if ob is of type PyDateTime_DeltaType. ob must not be NULL.

int PyTZInfo_Check (PyObject *ob)
Return true if ob is of type PyDateTime_TZInfoType or a subtype of PyDateTime_TZInfoType. ob
must not be NULL.

int PyTZInfo_CheckExact (PyObject *ob)
Return true if ob is of type PyDateTime_TZInfoType. ob must not be NULL.

Macros to create objects:

PyObject* PyDate_FromDate (int year, int month, int day)
Return value: New reference. Return a datet ime . date object with the specified year, month and day.

PyObject* PyDateTime_FromDateAndTime (int year, int month, int day, int hour, int minute, int second,

int usecond)
Return value: New reference. Return a datet ime . datet ime object with the specified year, month, day, hour,

minute, second and microsecond.

PyObject* PyDateTime_FromDateAndTimeAndFold (int year, int month, int day, int hour, int minute,

int second, int usecond, int fold)
Return value: New reference. Return a datetime.datet ime object with the specified year, month, day, hour,

minute, second, microsecond and fold.
Nowe w wersji 3.6.

PyObject* PyTime_FromTime (int hour, int minute, int second, int usecond)
Return value: New reference. Return a datetime.time object with the specified hour, minute, second and
microsecond.

PyObject* PyTime_FromTimeAndFold (int hour, int minute, int second, int usecond, int fold)
Return value: New reference. Return a datet ime .t ime object with the specified hour, minute, second, micro-
second and fold.

Nowe w wersji 3.6.

8.6. Other Objects 135

The Python/C API, Wydanie 3.7.17

PyObject* PyDelta_FromDSU (int days, int seconds, int useconds)
Return value: New reference. Return a datetime.timedelta object representing the given number of days,
seconds and microseconds. Normalization is performed so that the resulting number of microseconds and seconds
lie in the ranges documented for datet ime.timedelta objects.

PyObject* PyTimeZone_FromOffset (PyDateTime_DeltaType* offset)
Return value: New reference. Return a datetime .t imezone object with an unnamed fixed offset represented
by the offset argument.

Nowe w wersji 3.7.

PyObject* PyTimeZone_FromOf fsetAndName (PyDateTime_DeltaType* offset, PyUnicode* name)
Return value: New reference. Return a datet ime . t imezone object with a fixed offset represented by the offset
argument and with tzname name.

Nowe w wersji 3.7.

Macros to extract fields from date objects. The argument must be an instance of PyDateTime_Date, including subc-
lasses (such as PyDateTime_DateTime). The argument must not be NULL, and the type is not checked:

int PyDateTime_GET_YEAR (PyDateTime_Date *o0)
Return the year, as a positive int.

int PyDateTime_GET_MONTH (PyDateTime_Date *o)
Return the month, as an int from 1 through 12.

int PyDateTime_GET_DAY (PyDateTime_Date *0)
Return the day, as an int from 1 through 31.

Macros to extract fields from datetime objects. The argument must be an instance of PyDateTime_DateTime, inc-
luding subclasses. The argument must not be NULL, and the type is not checked:

int PyDateTime_DATE_GET_HOUR (PyDateTime_DateTime *o0)
Return the hour, as an int from 0 through 23.

int PyDateTime_DATE_GET_MINUTE (PyDateTime_DateTime *o)
Return the minute, as an int from 0 through 59.

int PyDateTime_DATE_GET_SECOND (PyDateTime_DateTime *0)
Return the second, as an int from 0 through 59.

int PyDateTime_DATE_GET_MICROSECOND (PyDateTime_DateTime *o)
Return the microsecond, as an int from 0 through 999999.

int PyDateTime_DATE_GET_FOLD (PyDateTime_DateTime *o)
Return the fold, as an int from O through 1.

Nowe w wersji 3.6.

Macros to extract fields from time objects. The argument must be an instance of PyDateTime_Time, including sub-
classes. The argument must not be NULL, and the type is not checked:

int PyDateTime_TIME_GET_HOUR (PyDateTime_Time *o)
Return the hour, as an int from 0 through 23.

int PyDateTime_TIME_GET_MINUTE (PyDateTime_Time *0)
Return the minute, as an int from 0 through 59.

int PyDateTime_TIME_GET_SECOND (PyDateTime_Time *0)
Return the second, as an int from 0 through 59.

int PyDateTime_TIME_GET_MICROSECOND (PyDateTime_Time *0)
Return the microsecond, as an int from 0 through 999999.

136 Rozdziat 8. Concrete Objects Layer

The Python/C API, Wydanie 3.7.17

int PyDateTime_TIME_GET_FOLD (PyDateTime_Time *o)
Return the fold, as an int from O through 1.

Nowe w wersji 3.6.

Macros to extract fields from time delta objects. The argument must be an instance of PyDateTime_Delta, including
subclasses. The argument must not be NULL, and the type is not checked:

int PyDateTime_DELTA_GET_DAYS (PyDateTime_Delta *0)
Return the number of days, as an int from -999999999 to 999999999.

Nowe w wersji 3.3.

int PyDateTime_DELTA_GET_SECONDS (PyDateTime_Delta *0)
Return the number of seconds, as an int from O through 86399.

Nowe w wersji 3.3.

int PyDateTime_DELTA_GET_MICROSECONDS (PyDateTime_Delta *0)
Return the number of microseconds, as an int from 0 through 999999.

Nowe w wersji 3.3.
Macros for the convenience of modules implementing the DB API:

PyObject* PyDateTime_FromTimestamp (PyObject *args)
Return value: New reference. Create and return a new datetime.datetime object given an argument tuple
suitable for passing to datetime.datetime.fromtimestamp ().

PyObject* PyDate_FromTimestamp (PyObject *args)
Return value: New reference. Create and return a new datet ime.date object given an argument tuple suitable
for passing to datetime.date.fromtimestamp ().

8.6. Other Objects 137

The Python/C API, Wydanie 3.7.17

138 Rozdziat 8. Concrete Objects Layer

rRozDzIAL 9

Initialization, Finalization, and Threads

9.1 Before Python Initialization

In an application embedding Python, the Py_ Tnitialize () function must be called before using any other Python/C
API functions; with the exception of a few functions and the global configuration variables.

The following functions can be safely called before Python is initialized:

* Configuration functions:

PyImport_AppendInittab ()
PyImport_ExtendInittab ()
PyInitFrozenExtensions ()
PyMem_ SetAllocator ()
PyMem_SetupDebugHooks ()
PyObject_SetArenaAllocator ()
Py _SetPath ()
Py_SetProgramName ()
Py_SetPythonHome ()
Py_SetStandardStreamEncoding ()
PySys_AddWarnOption ()
PySys_AddXOption ()

PySys_ResetWarnOptions ()

¢ Informative functions:

Py _IsInitialized()

PyMem_GetAllocator ()

139

The Python/C API, Wydanie 3.7.17

— PyObject_GetArenaAllocator ()
— Py_GetBuildInfo/()
— Py _GetCompiler()
— Py _GetCopyright ()
— Py_GetPlatform()
— Py_GetVersion()
« Utilities:
— Py_DecodeLocale ()
* Memory allocators:

— PyMem RawMalloc ()

PyMem_ RawRealloc ()
— PyMem RawCalloc ()

— PyMem_RawFree ()

Informacja: The following functions should not be called before Py_Tnitialize (): Py_EncodeLocale (),
Py_GetPath(), Py_GetPrefix(), Py_GetExecPrefix(), Py_GetProgramFullPath(),
Py_GetPythonHome (), Py_GetProgramName () and PyEval_InitThreads ().

9.2 Global configuration variables

Python has variables for the global configuration to control different features and options. By default, these flags are
controlled by command line options.

When a flag is set by an option, the value of the flag is the number of times that the option was set. For example, —b sets
Py _BytesWarningFlagto 1l and —-bb sets Py_BytesWarningFlagto 2.

Py_BytesWarningFlag
Issue a warning when comparing bytes or bytearray with str or bytes with int. Issue an error if greater
or equal to 2.

Set by the —b option.

Py_DebugFlag
Turn on parser debugging output (for expert only, depending on compilation options).

Set by the —d option and the PYTHONDEBUG environment variable.

Py _DontWriteBytecodeFlag
If set to non-zero, Python won't try to write . pyc files on the import of source modules.

Set by the —B option and the PYTHONDONTWRITEBYTECODE environment variable.

Py FrozenFlag
Suppress error messages when calculating the module search path in Py_GetPath ().

Private flag used by _freeze_importlib and frozenmain programs.

140 Rozdziat 9. Initialization, Finalization, and Threads

The Python/C API, Wydanie 3.7.17

Py_HashRandomizationFlag
Set to 1 if the PYTHONHASHSEED environment variable is set to a non-empty string.

If the flag is non-zero, read the PYTHONHASHSEED environment variable to initialize the secret hash seed.

Py_IgnoreEnvironmentFlag
Ignore all PYTHON* environment variables, e.g. PYTHONPATH and PYTHONHOME, that might be set.

Set by the —E and - I options.

Py_InspectFlag
When a script is passed as first argument or the —c option is used, enter interactive mode after executing the script
or the command, even when sys . stdin does not appear to be a terminal.

Set by the —1 option and the PYTHONINSPECT environment variable.

Py_InteractiveFlag
Set by the —1 option.

Py_TIsolatedFlag
Run Python in isolated mode. In isolated mode sys.path contains neither the script’s directory nor the user’s
site-packages directory.

Set by the — I option.
Nowe w wersji 3.4.

Py_LegacyWindowsFSEncodingFlag
If the flag is non-zero, use the mbcs encoding instead of the UTF-8 encoding for the filesystem encoding.

Set to 1 if the PYTHONLEGACYWINDOWSEFSENCODING environment variable is set to a non-empty string.
See PEP 529 for more details.
Auvailability: Windows.

Py_LegacyWindowsStdioFlag
If the flag is non-zero, use io.FileIO instead of WindowsConsoleIO for sys standard streams.

Set to 1 if the PYTHONLEGACYWINDOWSSTDIO environment variable is set to a non-empty string.
See PEP 528 for more details.
Availability: Windows.

Py NoSiteFlag
Disable the import of the module site and the site-dependent manipulations of sys.path that it entails. Also
disable these manipulations if site is explicitly imported later (call site.main () if you want them to be
triggered).

Set by the —S option.

Py _NoUserSiteDirectory
Don’t add the user site-packages directoryto sys.path.

Set by the —s and - I options, and the PYTHONNOUSERSITE environment variable.

Py_OptimizeFlag
Set by the —O option and the PYTHONOPTIMI ZE environment variable.

Py_QuietFlag
Don’t display the copyright and version messages even in interactive mode.

Set by the —q option.

Nowe w wersji 3.2.

9.2. Global configuration variables 141

https://www.python.org/dev/peps/pep-0529
https://www.python.org/dev/peps/pep-0528

The Python/C API, Wydanie 3.7.17

Py_UnbufferedStdioFlag

Force the stdout and stderr streams to be unbuffered.

Set by the —u option and the PYTHONUNBUFFERED environment variable.

Py_VerboseFlag

Print a message each time a module is initialized, showing the place (filename or built-in module) from which it is
loaded. If greater or equal to 2, print a message for each file that is checked for when searching for a module. Also
provides information on module cleanup at exit.

Set by the —v option and the PYTHONVERBOSE environment variable.

9.3 Initializing and finalizing the interpreter

void Py_Initialize ()

Initialize the Python interpreter. In an application embedding Python, this should be called before using any other
Python/C API functions; see Before Python Initialization for the few exceptions.

This initializes the table of loaded modules (sys .modules), and creates the fundamental modules builtins,
__main__ and sys. It also initializes the module search path (sys.path). It does not set sys.argv;
use PySys_SetArgvEx () for that. This is a no-op when called for a second time (without calling
Py_FinalizeEx () first). There is no return value; it is a fatal error if the initialization fails.

Informacja: On Windows, changes the console mode from O_TEXT to O_BINARY, which will also affect non-
Python uses of the console using the C Runtime.

void Py_InitializeEx (int initsigs)

This function works like Py_Tnitialize () if initsigsis 1. If initsigs is 0, it skips initialization registration of
signal handlers, which might be useful when Python is embedded.

int Py_IsInitialized()

Return true (nonzero) when the Python interpreter has been initialized, false (zero) if not. After
Py _FinalizeEx () is called, this returns false until Py_Tnitialize () is called again.

intPy_FinalizeEx ()

Undo all initializations made by Py_Initialize () and subsequent use of Python/C API functions, and destroy
all sub-interpreters (see Py_NewInterpreter () below) that were created and not yet destroyed since the last
call to Py_Tnitialize (). Ideally, this frees all memory allocated by the Python interpreter. This is a no-op
when called for a second time (without calling Py Tnitialize () again first). Normally the return value is O.
If there were errors during finalization (flushing buffered data), —1 is returned.

This function is provided for a number of reasons. An embedding application might want to restart Python without
having to restart the application itself. An application that has loaded the Python interpreter from a dynamically
loadable library (or DLL) might want to free all memory allocated by Python before unloading the DLL. During
a hunt for memory leaks in an application a developer might want to free all memory allocated by Python before
exiting from the application.

Bugs and caveats: The destruction of modules and objects in modules is done in random order; this may cause
destructors (__del__ () methods) to fail when they depend on other objects (even functions) or modules. Dy-
namically loaded extension modules loaded by Python are not unloaded. Small amounts of memory allocated by
the Python interpreter may not be freed (if you find a leak, please report it). Memory tied up in circular references
between objects is not freed. Some memory allocated by extension modules may not be freed. Some extensions
may not work properly if their initialization routine is called more than once; this can happen if an application calls
Py_Initialize () and Py FinalizeEx () more than once.

Nowe w wersji 3.6.

142

Rozdziat 9. Initialization, Finalization, and Threads

The Python/C API, Wydanie 3.7.17

void Py_Finalize ()
This is a backwards-compatible version of Py_FinalizeEx () that disregards the return value.

9.4 Process-wide parameters

int Py_SetStandardStreamEncoding (const char *encoding, const char *errors)
This function should be called before Py_Tnitialize (), if itis called at all. It specifies which encoding and
error handling to use with standard IO, with the same meanings as in str.encode ().

It overrides PYTHONIOENCOD ING values, and allows embedding code to control IO encoding when the environ-
ment variable does not work.

encoding and/or errors may be NULL to use PYTHONIOENCODING and/or default values (depending on other
settings).

Note that sy s . stderr always uses the ,,backslashreplace” error handler, regardless of this (or any other) setting.

If Py _FinalizeEx () is called, this function will need to be called again in order to affect subsequent calls to
Py Initialize().

Returns 0 if successful, a nonzero value on error (e.g. calling after the interpreter has already been initialized).
Nowe w wersji 3.4.

void Py_SetProgramName (const wchar_t *name)
This function should be called before Py _Tnitialize () is called for the first time, if it is called at all. It
tells the interpreter the value of the argv [0] argument to the main () function of the program (converted to
wide characters). This is used by Py_GetPath () and some other functions below to find the Python run-time
libraries relative to the interpreter executable. The default value is 'python'. The argument should point to
a zero-terminated wide character string in static storage whose contents will not change for the duration of the
program’s execution. No code in the Python interpreter will change the contents of this storage.

Use Py_DecodeLocale () to decode a bytes string to get a wchar_ * string.

wchar* Py_GetProgramName ()
Return the program name set with Py SetProgramName (), or the default. The returned string points into
static storage; the caller should not modify its value.

wchar_t* Py_GetPrefix ()
Return the prefix for installed platform-independent files. This is derived through a number of complicated rules
from the program name set with Py_ Set ProgramName () and some environment variables; for example, if the
program name is ' /usr/local/bin/python’, the prefix is ' /usr/local"'. The returned string points
into static storage; the caller should not modify its value. This corresponds to the prefix variable in the top-
level Makefile and the ——prefix argument to the configure script at build time. The value is available to
Python code as sys . prefix. It is only useful on Unix. See also the next function.

wchar_t* Py_GetExecPrefix ()
Return the exec-prefix for installed platform-dependent files. This is derived through a number of complicated rules
from the program name set with Py_SetProgramName () and some environment variables; for example, if
the program name is ' /usr/local/bin/python’, the exec-prefixis ' /usr/local'. The returned string
points into static storage; the caller should not modify its value. This corresponds to the exec_prefix variable
in the top-level Makefile and the ——exec-prefix argument to the configure script at build time. The
value is available to Python code as sys.exec_prefix. Itis only useful on Unix.

Background: The exec-prefix differs from the prefix when platform dependent files (such as executables and shared
libraries) are installed in a different directory tree. In a typical installation, platform dependent files may be installed
inthe /usr/local/plat subtree while platform independent may be installed in /usr/local.

9.4. Process-wide parameters 143

The Python/C API, Wydanie 3.7.17

Generally speaking, a platform is a combination of hardware and software families, e.g. Sparc machines running
the Solaris 2.x operating system are considered the same platform, but Intel machines running Solaris 2.x are
another platform, and Intel machines running Linux are yet another platform. Different major revisions of the same
operating system generally also form different platforms. Non-Unix operating systems are a different story; the
installation strategies on those systems are so different that the prefix and exec-prefix are meaningless, and set to
the empty string. Note that compiled Python bytecode files are platform independent (but not independent from
the Python version by which they were compiled!).

System administrators will know how to configure the mount or automount programs to share /usr/local
between platforms while having /usr/local/plat be a different filesystem for each platform.

wchar_t* Py_GetProgramFullPath ()

Return the full program name of the Python executable; this is computed as a side-effect of deriving the de-
fault module search path from the program name (set by Py_SetProgramName () above). The returned string
points into static storage; the caller should not modify its value. The value is available to Python code as sys.
executable.

wchar_t* Py_GetPath ()

Return the default module search path; this is computed from the program name (set by
Py_SetProgramName () above) and some environment variables. The returned string consists of a se-
ries of directory names separated by a platform dependent delimiter character. The delimiter character is ' : '
on Unix and Mac OS X, '; ' on Windows. The returned string points into static storage; the caller should not
modify its value. The list sys . path is initialized with this value on interpreter startup; it can be (and usually is)
modified later to change the search path for loading modules.

void Py_SetPath (const wchar_t *)

Set the default module search path. If this function is called before Py Tnitialize (),then Py_GetPath ()
won’t attempt to compute a default search path but uses the one provided instead. This is useful if Python is em-
bedded by an application that has full knowledge of the location of all modules. The path components should be
separated by the platform dependent delimiter character, whichis ' : ' on Unix and Mac OS X, '; ' on Windows.

This also causes sys.executable to be set only to the raw program name (see Py_SetProgramName ())
and for sys.prefix and sys.exec_prefix to be empty. It is up to the caller to modify these if required
after calling Py_Initialize ().

Use Py_DecodeLocale () to decode a bytes string to get a wchar_ * string.

The path argument is copied internally, so the caller may free it after the call completes.

const char* Py_GetVersion ()

Return the version of this Python interpreter. This is a string that looks something like

"3.0a5+ (py3k:63103M, May 12 2008, 00:53:55) \n[GCC 4.2.3]"

The first word (up to the first space character) is the current Python version; the first three characters are the major
and minor version separated by a period. The returned string points into static storage; the caller should not modify
its value. The value is available to Python code as sys.version.

const char* Py_GetPlatform ()

Return the platform identifier for the current platform. On Unix, this is formed from the ,,official” name of the
operating system, converted to lower case, followed by the major revision number; e.g., for Solaris 2.x, which is
also known as SunOS 5.x, the value is ' sunos5"'. On Mac OS X, itis '"darwin'. On Windows, itis 'win'.
The returned string points into static storage; the caller should not modify its value. The value is available to Python
code as sys.platform.

const char* Py_GetCopyright ()

Return the official copyright string for the current Python version, for example

'Copyright 1991-1995 Stichting Mathematisch Centrum, Amsterdam'

144

Rozdziat 9. Initialization, Finalization, and Threads

The Python/C API, Wydanie 3.7.17

The returned string points into static storage; the caller should not modify its value. The value is available to Python
code as sys.copyright.

const char* Py_GetCompiler ()
Return an indication of the compiler used to build the current Python version, in square brackets, for example:

"[GCC 2.7.2.2]1"

The returned string points into static storage; the caller should not modify its value. The value is available to Python
code as part of the variable sys.version.

const char* Py_GetBuildInfo ()
Return information about the sequence number and build date and time of the current Python interpreter instance,
for example

"#67, Aug 1 1997, 22:34:28"

The returned string points into static storage; the caller should not modify its value. The value is available to Python
code as part of the variable sys.version.

void PySys_SetArgvEx (int argc, wchar_t **argvy, int updatepath)
Set sys.argv based on argc and argv. These parameters are similar to those passed to the program’s main ()
function with the difference that the first entry should refer to the script file to be executed rather than the executable
hosting the Python interpreter. If there isn’t a script that will be run, the first entry in argv can be an empty string.
If this function fails to initialize sys . argv, a fatal condition is signalled using Py_FatalError ().

If updatepath is zero, this is all the function does. If updatepath is non-zero, the function also modifies sys .path
according to the following algorithm:

« If the name of an existing script is passed in argv [0], the absolute path of the directory where the script
is located is prepended to sys .path.

» Otherwise (that is, if argc is 0 or argv [0] doesn’t point to an existing file name), an empty string is pre-
pended to sys .path, which is the same as prepending the current working directory (" . ").

Use Py_DecodeLocale () to decode a bytes string to get a wchar_ * string.

Informacja: It is recommended that applications embedding the Python interpreter for purposes other than exe-
cuting a single script pass 0 as updatepath, and update sys . path themselves if desired. See CVE-2008-5983.

On versions before 3.1.3, you can achieve the same effect by manually popping the first sy s . path element after
having called PySys_SetArgv (), for example using:

PyRun_SimpleString ("import sys; sys.path.pop(0)\n");

Nowe w wersji 3.1.3.

void PySys_SetArgv (int argc, wchar_t **argv)
This function works like PySys_SetArgvEx () with updatepath set to 1 unless the python interpreter was
started with the —I.

Use Py_DecodeLocale () to decode a bytes string to get a wchar_ * string.
Zmienione w wersji 3.4: The updatepath value depends on —I.

void Py_SetPythonHome (const wchar_t *home)
Set the default ,,home” directory, that is, the location of the standard Python libraries. See PYTHONHOME for the
meaning of the argument string.

9.4. Process-wide parameters 145

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-5983

The Python/C API, Wydanie 3.7.17

The argument should point to a zero-terminated character string in static storage whose contents will not change for
the duration of the program’s execution. No code in the Python interpreter will change the contents of this storage.

Use Py_DecodeLocale () to decode a bytes string to get a wchar_ * string.

w_char* Py_GetPythonHome ()
Return the default ,.,home”, that is, the value set by a previous call to Py_SetPythonHome (), or the value of
the PYTHONHOME environment variable if it is set.

9.5 Thread State and the Global Interpreter Lock

The Python interpreter is not fully thread-safe. In order to support multi-threaded Python programs, there’s a global lock,
called the global interpreter lock or GIL, that must be held by the current thread before it can safely access Python objects.
Without the lock, even the simplest operations could cause problems in a multi-threaded program: for example, when
two threads simultaneously increment the reference count of the same object, the reference count could end up being
incremented only once instead of twice.

Therefore, the rule exists that only the thread that has acquired the GIL may operate on Python objects or call Python/C
API functions. In order to emulate concurrency of execution, the interpreter regularly tries to switch threads (see sys.
setswitchinterval ()). Thelock is also released around potentially blocking I/O operations like reading or writing
a file, so that other Python threads can run in the meantime.

The Python interpreter keeps some thread-specific bookkeeping information inside a data structure called
PyThreadState. There’s also one global variable pointing to the current PyThreadState: it can be retrieved
using PyThreadState_Get ().

9.5.1 Releasing the GIL from extension code

Most extension code manipulating the G/L has the following simple structure:

Save the thread state in a local variable.
Release the global interpreter lock.
Do some blocking I/O operation
Reacquire the global interpreter lock.
Restore the thread state from the local variable.

This is so common that a pair of macros exists to simplify it:

Py_BEGIN_ALLOW_THREADS
Do some blocking I/O operation
Py_END_ALLOW_THREADS

The Py BEGIN_ALLOW_THREADS macro opens a new block and declares a hidden local variable; the
Py_END_ALLOW_THREADS macro closes the block.

The block above expands to the following code:

PyThreadState *_save;

_save = PyEval_sSaveThread();
Do some blocking I/O operation
PyEval_RestoreThread(_save);

Here is how these functions work: the global interpreter lock is used to protect the pointer to the current thread state.
When releasing the lock and saving the thread state, the current thread state pointer must be retrieved before the lock is

146 Rozdziat 9. Initialization, Finalization, and Threads

The Python/C API, Wydanie 3.7.17

released (since another thread could immediately acquire the lock and store its own thread state in the global variable).
Conversely, when acquiring the lock and restoring the thread state, the lock must be acquired before storing the thread
state pointer.

Informacja: Calling system I/O functions is the most common use case for releasing the GIL, but it can also be useful
before calling long-running computations which don’t need access to Python objects, such as compression or cryptographic
functions operating over memory buffers. For example, the standard z11ib and hashl ib modules release the GIL when
compressing or hashing data.

9.5.2 Non-Python created threads

When threads are created using the dedicated Python APIs (such as the threading module), a thread state is auto-
matically associated to them and the code showed above is therefore correct. However, when threads are created from
C (for example by a third-party library with its own thread management), they don’t hold the GIL, nor is there a thread
state structure for them.

If you need to call Python code from these threads (often this will be part of a callback API provided by the aforementioned
third-party library), you must first register these threads with the interpreter by creating a thread state data structure, then
acquiring the GIL, and finally storing their thread state pointer, before you can start using the Python/C API. When you
are done, you should reset the thread state pointer, release the GIL, and finally free the thread state data structure.

The PyGILState_Ensure () and PyGILState_Release () functions do all of the above automatically. The
typical idiom for calling into Python from a C thread is:

PyGILState_STATE gstate;
gstate = PyGILState_Ensure();

/* Perform Python actions here. */
result = CallSomeFunction () ;
/* evaluate result or handle exception */

/* Release the thread. No Python API allowed beyond this point. */
PyGILState_Release (gstate);

Note that the PyGILState_* () functions assume there is only one global interpreter (created automatically by
Py_TInitialize ()). Python supports the creation of additional interpreters (using Py_NewInterpreter ()),
but mixing multiple interpreters and the PyGILState_* () API is unsupported.

Another important thing to note about threads is their behaviour in the face of the C fork () call. On most systems with
fork (), after a process forks only the thread that issued the fork will exist. That also means any locks held by other
threads will never be released. Python solves this for os. fork () by acquiring the locks it uses internally before the
fork, and releasing them afterwards. In addition, it resets any lock-objects in the child. When extending or embedding
Python, there is no way to inform Python of additional (non-Python) locks that need to be acquired before or reset after
a fork. OS facilities such as pthread_atfork () would need to be used to accomplish the same thing. Additionally,
when extending or embedding Python, calling fork () directly rather than through os . fork () (and returning to or
calling into Python) may result in a deadlock by one of Python’s internal locks being held by a thread that is defunct after
the fork. PyOS_AfterFork_Child () tries to reset the necessary locks, but is not always able to.

9.5. Thread State and the Global Interpreter Lock 147

The Python/C API, Wydanie 3.7.17

9.5.3 High-level API

These are the most commonly used types and functions when writing C extension code, or when embedding the Python
interpreter:

PyInterpreterState

This data structure represents the state shared by a number of cooperating threads. Threads belonging to the same
interpreter share their module administration and a few other internal items. There are no public members in this
structure.

Threads belonging to different interpreters initially share nothing, except process state like available memory, open
file descriptors and such. The global interpreter lock is also shared by all threads, regardless of to which interpreter
they belong.

PyThreadState

This data structure represents the state of a single thread. The only public data member is
PyInterpreterState *interp, which points to this thread’s interpreter state.

void PyEval_InitThreads ()

Initialize and acquire the global interpreter lock. It should be called in the main thread before creating a second
thread or engaging in any other thread operations such as PyEval_ReleaseThread (tstate). It is not
needed before calling PyEval SaveThread () or PyEval RestoreThread ().

This is a no-op when called for a second time.

Zmienione w wersji 3.7: This function is now called by Py_Tnitialize (), soyoudon’t have to call it yourself
anymore.

Zmienione w wersji 3.2: This function cannot be called before Py Tnitialize () anymore.

int PyEval_ThreadsInitialized()

Returns a non-zero value if PyEval TInitThreads () has been called. This function can be called without
holding the GIL, and therefore can be used to avoid calls to the locking API when running single-threaded.

Zmienione w wersji 3.7: The GIL is now initialized by Py Tnitialize ().

PyThreadState* PyEval_SaveThread ()

Release the global interpreter lock (if it has been created and thread support is enabled) and reset the thread state
to NULL, returning the previous thread state (which is not NULL). If the lock has been created, the current thread
must have acquired it.

void PyEval_RestoreThread (PyThreadState *tstate)

Acquire the global interpreter lock (if it has been created and thread support is enabled) and set the thread state to
tstate, which must not be NULL. If the lock has been created, the current thread must not have acquired it, otherwise
deadlock ensues.

Informacja: Calling this function from a thread when the runtime is finalizing will terminate the thread, even if
the thread was not created by Python. Youcanuse _Py_IsFinalizing() orsys.is_finalizing() to
check if the interpreter is in process of being finalized before calling this function to avoid unwanted termination.

PyThreadState* PyThreadState_Get ()

Return the current thread state. The global interpreter lock must be held. When the current thread state is NULL,
this issues a fatal error (so that the caller needn’t check for NULL).

PyThreadState* PyThreadState_Swap (PyThreadState *tstate)

Swap the current thread state with the thread state given by the argument tstate, which may be NULL. The global
interpreter lock must be held and is not released.

148

Rozdziat 9. Initialization, Finalization, and Threads

The Python/C API, Wydanie 3.7.17

void PyEval_ReInitThreads ()
This function is called from PyOS_AfterFork_Child () to ensure that newly created child processes don’t
hold locks referring to threads which are not running in the child process.

The following functions use thread-local storage, and are not compatible with sub-interpreters:

PyGILState_STATE PyGILState_Ensure ()
Ensure that the current thread is ready to call the Python C API regardless of the current state of Python, or
of the global interpreter lock. This may be called as many times as desired by a thread as long as each call is
matched with a call to PyGILState_Release (). In general, other thread-related APIs may be used betwe-
en PyGILState_Ensure () and PyGILState_Release () calls as long as the thread state is restored to
its previous state before the Release(). For example, normal usage of the Py BEGIN_ALLOW_THREADS and
Py_END_ALLOW_THREADS macros is acceptable.

The return value is an opaque ,handle” to the thread state when PyGILState_Ensure () was called, and must
be passed to PyGILState_Release () to ensure Python is left in the same state. Even though recursive calls
are allowed, these handles cannot be shared - each unique call to PyGILState_Ensure () must save the handle
forits call to PyGILState Release ().

When the function returns, the current thread will hold the GIL and be able to call arbitrary Python code. Failure
is a fatal error.

Informacja: Calling this function from a thread when the runtime is finalizing will terminate the thread, even if
the thread was not created by Python. Youcanuse _Py_IsFinalizing() or sys.is_finalizing() to
check if the interpreter is in process of being finalized before calling this function to avoid unwanted termination.

void PyGILState_Release (PyGILState_STATE)
Release any resources previously acquired. After this call, Python’s state will be the same as it was prior to the
corresponding PyGILState Ensure () call (but generally this state will be unknown to the caller, hence the
use of the GILState API).

Everycallto PyGILState_Ensure () mustbe matchedbyacallto PyGILState Release () onthe same
thread.

PyThreadState* PyGILState_GetThisThreadState ()
Get the current thread state for this thread. May return NULL if no GILState API has been used on the current
thread. Note that the main thread always has such a thread-state, even if no auto-thread-state call has been made
on the main thread. This is mainly a helper/diagnostic function.

int PyGILState_Check ()
Return 1 if the current thread is holding the GIL and 0 otherwise. This function can be called from any thread
at any time. Only if it has had its Python thread state initialized and currently is holding the GIL will it return 1.
This is mainly a helper/diagnostic function. It can be useful for example in callback contexts or memory allocation
functions when knowing that the GIL is locked can allow the caller to perform sensitive actions or otherwise behave
differently.

Nowe w wersji 3.4.

The following macros are normally used without a trailing semicolon; look for example usage in the Python source
distribution.

Py_BEGIN_ALLOW_THREADS
This macro expands to { PyThreadState *_save; _save = PyEval_SaveThread () ;. Note that
it contains an opening brace; it must be matched with a following Py END_ALLOW_THREADS macro. See above
for further discussion of this macro.

Py_END_ALLOW_THREADS
This macro expands to PyEval_RestoreThread (_save); }. Note that it contains a closing brace; it must

9.5. Thread State and the Global Interpreter Lock 149

The Python/C API, Wydanie 3.7.17

be matched with an earlier Py BEGTN_ALILOW_THREADS macro. See above for further discussion of this macro.

Py_BLOCK_THREADS
This macro expands to PyEval_RestoreThread (_save);: it is equivalent to
Py_END_ALLOW_THREADS without the closing brace.

Py_UNBLOCK_THREADS
This macro expands to _save = PyEval_SaveThread() ;: it
Py_BEGIN_ALLOW_THREADS without the opening brace and variable declaration.

—

s equivalent to

9.5.4 Low-level API

All of the following functions must be called after Py_Tnitialize ().
Zmienione w wersji 3.7: Py_Tnitialize () now initializes the GIL.

PyInterpreterState* PyInterpreterState_New ()
Create a new interpreter state object. The global interpreter lock need not be held, but may be held if it is necessary
to serialize calls to this function.

void PyInterpreterState_Clear (PylnterpreterState *interp)
Reset all information in an interpreter state object. The global interpreter lock must be held.

void PyInterpreterState_Delete (PylnterpreterState *interp)
Destroy an interpreter state object. The global interpreter lock need not be held. The interpreter state must have
been reset with a previous call to Py InterpreterState Clear ().

PyThreadState* PyThreadState_New (PylnterpreterState *interp)
Create a new thread state object belonging to the given interpreter object. The global interpreter lock need not be
held, but may be held if it is necessary to serialize calls to this function.

void PyThreadState_Clear (PyThreadState *tstate)
Reset all information in a thread state object. The global interpreter lock must be held.

void PyThreadState_Delete (PyThreadState *tstate)
Destroy a thread state object. The global interpreter lock need not be held. The thread state must have been reset
with a previous call to PyThreadState_Clear ().

PY_INT64_T PyInterpreterState_GetID (PylnterpreterState *interp)
Return the interpreter’s unique ID. If there was any error in doing so then -1 is returned and an error is set.

Nowe w wersji 3.7.

PyObject* PyThreadState_GetDict ()
Return value: Borrowed reference. Return a dictionary in which extensions can store thread-specific state informa-
tion. Each extension should use a unique key to use to store state in the dictionary. It is okay to call this function
when no current thread state is available. If this function returns NULL, no exception has been raised and the caller
should assume no current thread state is available.

int PyThreadState_SetAsyncExc (unsigned long id, PyObject *exc)
Asynchronously raise an exception in a thread. The id argument is the thread id of the target thread; exc is the
exception object to be raised. This function does not steal any references to exc. To prevent naive misuse, you must
write your own C extension to call this. Must be called with the GIL held. Returns the number of thread states
modified; this is normally one, but will be zero if the thread id isn’t found. If exc is NULL, the pending exception
(if any) for the thread is cleared. This raises no exceptions.

Zmienione w wersji 3.7: The type of the id parameter changed from long to unsigned long.

150 Rozdziat 9. Initialization, Finalization, and Threads

The Python/C API, Wydanie 3.7.17

void PyEval_AcquireThread (PyThreadState *tstate)
Acquire the global interpreter lock and set the current thread state to tstate, which should not be NULL. The lock
must have been created earlier. If this thread already has the lock, deadlock ensues.

PyEval_RestoreThread () is a higher-level function which is always available (even when threads have not
been initialized).

void PyEval_ReleaseThread (PyThreadState *tstate)
Reset the current thread state to NULL and release the global interpreter lock. The lock must have been created
earlier and must be held by the current thread. The fstate argument, which must not be NULL, is only used to check
that it represents the current thread state — if it isn’t, a fatal error is reported.

PyEval_SaveThread () is a higher-level function which is always available (even when threads have not been
initialized).

void PyEval_AcquirelLock ()
Acquire the global interpreter lock. The lock must have been created earlier. If this thread already has the lock, a
deadlock ensues.

Niezalecane od wersji 3.2: This function does not update the current thread state. Please use
PyEval_RestoreThread () or PyEval_AcquireThread () instead.

void PyEval_ReleaseLock ()
Release the global interpreter lock. The lock must have been created earlier.

Niezalecane od wersji 3.2: This function does not update the current thread state. Please use
PyEval_SaveThread () or PyEval_ReleaseThread () instead.

9.6 Sub-interpreter support

While in most uses, you will only embed a single Python interpreter, there are cases where you need to create several
independent interpreters in the same process and perhaps even in the same thread. Sub-interpreters allow you to do that.
You can switch between sub-interpreters using the PyThreadState_Swap () function. You can create and destroy
them using the following functions:

PyThreadState* Py_NewInterpreter ()
Create a new sub-interpreter. This is an (almost) totally separate environment for the execution of Python code.
In particular, the new interpreter has separate, independent versions of all imported modules, including the fun-
damental modules builtins, _ main__ and sys. The table of loaded modules (sys.modules) and the
module search path (sys.path) are also separate. The new environment has no sys . argv variable. It has new
standard I/O stream file objects sys.stdin, sys.stdout and sys.stderr (however these refer to the
same underlying file descriptors).

The return value points to the first thread state created in the new sub-interpreter. This thread state is made in the
current thread state. Note that no actual thread is created; see the discussion of thread states below. If creation of
the new interpreter is unsuccessful, NULL is returned; no exception is set since the exception state is stored in the
current thread state and there may not be a current thread state. (Like all other Python/C API functions, the global
interpreter lock must be held before calling this function and is still held when it returns; however, unlike most other
Python/C API functions, there needn’t be a current thread state on entry.)

Extension modules are shared between (sub-)interpreters as follows: the first time a particular extension is im-
ported, it is initialized normally, and a (shallow) copy of its module’s dictionary is squirreled away. When the
same extension is imported by another (sub-)interpreter, a new module is initialized and filled with the contents
of this copy; the extension’s init function is not called. Note that this is different from what happens when an
extension is imported after the interpreter has been completely re-initialized by calling Py FinalizeEx () and
Py_Initialize ();in that case, the extension’s initmodule function is called again.

9.6. Sub-interpreter support 151

The Python/C API, Wydanie 3.7.17

void Py_EndInterpreter (PyThreadState *tstate)
Destroy the (sub-)interpreter represented by the given thread state. The given thread state must be the current thread
state. See the discussion of thread states below. When the call returns, the current thread state is NULL. All thread
states associated with this interpreter are destroyed. (The global interpreter lock must be held before calling this
function and is still held when it returns.) Py_FinalizeEx () will destroy all sub-interpreters that haven’t been
explicitly destroyed at that point.

9.6.1 Bugs and caveats

Because sub-interpreters (and the main interpreter) are part of the same process, the insulation between them isn’t perfect
— for example, using low-level file operations like os . c1lose () they can (accidentally or maliciously) affect each other’s
open files. Because of the way extensions are shared between (sub-)interpreters, some extensions may not work properly;
this is especially likely when the extension makes use of (static) global variables, or when the extension manipulates its
module’s dictionary after its initialization. It is possible to insert objects created in one sub-interpreter into a namespace of
another sub-interpreter; this should be done with great care to avoid sharing user-defined functions, methods, instances or
classes between sub-interpreters, since import operations executed by such objects may affect the wrong (sub-)interpreter’s
dictionary of loaded modules.

Also note that combining this functionality with PyGILState_* () APIs is delicate, because these APIs assume a
bijection between Python thread states and OS-level threads, an assumption broken by the presence of sub-interpreters.
It is highly recommended that you don’t switch sub-interpreters between a pair of matching PyGILState_Ensure ()
and PyGILState_Release () calls. Furthermore, extensions (such as ct ypes) using these APIs to allow calling of
Python code from non-Python created threads will probably be broken when using sub-interpreters.

9.7 Asynchronous Notifications

A mechanism is provided to make asynchronous notifications to the main interpreter thread. These notifications take the
form of a function pointer and a void pointer argument.

int Py_AddPendingCall (int (*func)(void *), void *arg)
Schedule a function to be called from the main interpreter thread. On success, 0 is returned and func is queued for
being called in the main thread. On failure, -1 is returned without setting any exception.

When successfully queued, func will be eventually called from the main interpreter thread with the argument arg.
It will be called asynchronously with respect to normally running Python code, but with both these conditions met:

* on a bytecode boundary;
» with the main thread holding the global interpreter lock (func can therefore use the full C API).

Sfunc must return 0 on success, or —1 on failure with an exception set. func won’t be interrupted to perform another
asynchronous notification recursively, but it can still be interrupted to switch threads if the global interpreter lock
is released.

This function doesn’t need a current thread state to run, and it doesn’t need the global interpreter lock.

Ostrzezenie: This is a low-level function, only useful for very special cases. There is no guarantee that func
will be called as quick as possible. If the main thread is busy executing a system call, func won’t be called before
the system call returns. This function is generally not suitable for calling Python code from arbitrary C threads.
Instead, use the PyGILState API.

Nowe w wersji 3.1.

152 Rozdziat 9. Initialization, Finalization, and Threads

The Python/C API, Wydanie 3.7.17

9.8 Profiling and Tracing

The Python interpreter provides some low-level support for attaching profiling and execution tracing facilities. These are
used for profiling, debugging, and coverage analysis tools.

This C interface allows the profiling or tracing code to avoid the overhead of calling through Python-level callable objects,
making a direct C function call instead. The essential attributes of the facility have not changed; the interface allows trace
functions to be installed per-thread, and the basic events reported to the trace function are the same as had been reported
to the Python-level trace functions in previous versions.

int (*Py_tracefunc) (PyObject *obj, PyFrameObject *frame, int what, PyObject *arg)
The type of the trace function registered using PyEval_ SetProfile () and PyEval_ SetTrace (). The
first parameter is the object passed to the registration function as obj, frame is the frame object to which the event
pertains, what is one of the constants PyTrace_CALL, PyTrace_EXCEPTION, PyTrace_LINE,
PyTrace_RETURN, PyTrace_C_CALL, PyTrace_C_EXCEPTION, PyTrace_C_RETURN, or
PyTrace_OPCODE, and arg depends on the value of what:

Value of what Meaning of arg

PyTrace_CALL Always Py_None.

PyTrace_EXCEPTION Exception information as returned by sys.exc_info ().
PyTrace_LINE Always Py_None.

PyTrace_RETURN Value being returned to the caller, or NULL if caused by an exception.
PyTrace_C_CALL Function object being called.

PyTrace_C_EXCEPTION | Function object being called.

PyTrace_C_RETURN Function object being called.

PyTrace_OPCODE Always Py_None.

int PyTrace_CALL
The value of the what parameter to a Py_ t race func function when a new call to a function or method is being
reported, or a new entry into a generator. Note that the creation of the iterator for a generator function is not
reported as there is no control transfer to the Python bytecode in the corresponding frame.

int PyTrace_EXCEPTION
The value of the what parameter to a Py_ t race func function when an exception has been raised. The callback
function is called with this value for what when after any bytecode is processed after which the exception becomes
set within the frame being executed. The effect of this is that as exception propagation causes the Python stack to
unwind, the callback is called upon return to each frame as the exception propagates. Only trace functions receives
these events; they are not needed by the profiler.

int PyTrace_LINE
The value passed as the what parameter to a Pyt racefunc function (but not a profiling function) when a
line-number event is being reported. It may be disabled for a frame by setting £_trace_lines to 0 on that
frame.

int PyTrace_RETURN
The value for the what parameter to Py_ t race func functions when a call is about to return.

int PyTrace_C_CALL
The value for the what parameter to Py_ t race func functions when a C function is about to be called.

int PyTrace_C_EXCEPTION
The value for the what parameter to Py_ t race func functions when a C function has raised an exception.

int PyTrace_C_RETURN
The value for the what parameter to Py_t race func functions when a C function has returned.

9.8. Profiling and Tracing 153

The Python/C API, Wydanie 3.7.17

int PyTrace_OPCODE
The value for the what parameter to Py_t race func functions (but not profiling functions) when a new opco-
de is about to be executed. This event is not emitted by default: it must be explicitly requested by setting
f_trace_opcodes to I on the frame.

void PyEval_SetProfile (Py_tracefunc func, PyObject *obj)
Set the profiler function to func. The obj parameter is passed to the function as its first parameter, and may be
any Python object, or NULL. If the profile function needs to maintain state, using a different value for obj for each
thread provides a convenient and thread-safe place to store it. The profile function is called for all monitored events
except PyTrace_LINE PyTrace_OPCODE and PyTrace_EXCEPTION.

void PyEval_SetTrace (Py_tracefunc func, PyObject *obj)
Set the tracing function to func. This is similar to PyEval SetProfile (), except the tracing function does
receive line-number events and per-opcode events, but does not receive any event related to C function objects
being called. Any trace function registered using PyEval_SetTrace () will not receive PyTrace_C_CALL,
PyTrace_C_EXCEPTION or PyTrace_C_RETURN as a value for the what parameter.

9.9 Advanced Debugger Support

These functions are only intended to be used by advanced debugging tools.

PylInterpreterState* PyInterpreterState_Head ()
Return the interpreter state object at the head of the list of all such objects.

PyInterpreterState* PyInterpreterState_Main ()
Return the main interpreter state object.

PylInterpreterState* PyInterpreterState_Next (PylnterpreterState *interp)
Return the next interpreter state object after interp from the list of all such objects.

PyThreadState * PyInterpreterState_ThreadHead (PylnterpreterState *interp)
Return the pointer to the first Py ThreadStat e object in the list of threads associated with the interpreter interp.

PyThreadState* PyThreadState_Next (PyThreadState *tstate)
Return the next thread state object after rstate from the list of all such objects belonging to the same
PyInterpreterState object.

9.10 Thread Local Storage Support

The Python interpreter provides low-level support for thread-local storage (TLS) which wraps the underlying native TLS
implementation to support the Python-level thread local storage API (threading. local). The CPython C level APIs
are similar to those offered by pthreads and Windows: use a thread key and functions to associate a void* value per
thread.

The GIL does not need to be held when calling these functions; they supply their own locking.

Note that Python.h does not include the declaration of the TLS APIs, you need to include pythread.h to use
thread-local storage.

Informacja: None of these API functions handle memory management on behalf of the void* values. You need to
allocate and deallocate them yourself. If the void* values happen to be PyObject *, these functions don’t do refcount
operations on them either.

154 Rozdziat 9. Initialization, Finalization, and Threads

The Python/C API, Wydanie 3.7.17

9.10.1 Thread Specific Storage (TSS) API

TSS API is introduced to supersede the use of the existing TLS API within the CPython interpreter. This API uses a new
type Py_tss_t instead of int to represent thread keys.

Nowe w wersji 3.7.
Zobacz takze:
,»A New C-API for Thread-Local Storage in CPython” (PEP 539)

Py tss_t
This data structure represents the state of a thread key, the definition of which may depend on the underlying TLS
implementation, and it has an internal field representing the key’s initialization state. There are no public members
in this structure.

When Py_LIMITED_API is not defined, static allocation of this type by Py_tss_ NEEDS INIT is allowed.

Py _tss_NEEDS_INIT
This macro expands to the initializer for Py_tss_t variables. Note that this macro won’t be defined with
Py _LIMITED_API.

Dynamic Allocation

Dynamic allocation of the Py_ tss_ t, required in extension modules built with Py_LIMITED_API, where static alloca-
tion of this type is not possible due to its implementation being opaque at build time.

Py_tss_t* PyThread_tss_alloc ()
Return a value which is the same state as a value initialized with Py _tss_NEEDS_INIT, or NULL in the case
of dynamic allocation failure.

void PyThread_tss_free (Py_1ss_t *key)
Free the given key allocated by PyThread_tss_alloc (), after first calling PyThread tss_delete ()
to ensure any associated thread locals have been unassigned. This is a no-op if the key argument is NULL.

Informacja: A freed key becomes a dangling pointer, you should reset the key to NULL.

Methods

The parameter key of these functions must not be NULL. Moreover, the behaviors of PyThread tss_set ()
and PyThread tss_get () are undefined if the given Py tss_t has not been initialized by
PyThread_tss_create().

int PyThread_tss_is_created (Py_1ss_t *key)
Return a non-zero value if the given Py_ t ss_ t has been initialized by PyThread_tss_create ().

int PyThread_tss_create (Py_tss_t *key)
Return a zero value on successful initialization of a TSS key. The behavior is undefined if the value pointed to by
the key argument is not initialized by Py_ tss_NEEDS _INIT. This function can be called repeatedly on the same
key — calling it on an already initialized key is a no-op and immediately returns success.

void PyThread_tss_delete (Py_iss_t *key)
Destroy a TSS key to forget the values associated with the key across all threads, and change the key’s initializa-
tion state to uninitialized. A destroyed key is able to be initialized again by PyThread_tss_create (). This
function can be called repeatedly on the same key — calling it on an already destroyed key is a no-op.

9.10. Thread Local Storage Support 155

https://www.python.org/dev/peps/pep-0539

The Python/C API, Wydanie 3.7.17

int PyThread_tss_set (Py_tss_t *key, void *value)
Return a zero value to indicate successfully associating a void* value with a TSS key in the current thread. Each
thread has a distinct mapping of the key to a void* value.

void* PyThread_tss_get (Py_fss_t *key)
Return the void* value associated with a TSS key in the current thread. This returns NULL if no value is associated
with the key in the current thread.

9.10.2 Thread Local Storage (TLS) API

Niezalecane od wersji 3.7: This API is superseded by Thread Specific Storage (TSS) API.

Informacja: This version of the API does not support platforms where the native TLS key is defined in a way that cannot
be safely cast to int. On such platforms, PyThread_ create_key () will return immediately with a failure status,
and the other TLS functions will all be no-ops on such platforms.

Due to the compatibility problem noted above, this version of the API should not be used in new code.
int PyThread_create_key ()

void PyThread_delete_key (int key)

int PyThread_set_key_value (int key, void *value)

void* PyThread_get_key_value (int key)

void PyThread_delete_key_value (int key)

void PyThread_ReInitTLS ()

156 Rozdziat 9. Initialization, Finalization, and Threads

rozpziat 10

Zarzadzanie Pamiecig

10.1 Skorowidz

Zarzadzanie pamigcia w Pythonie zaktada prywatna stert¢ zawierajaca wszystkie obiekty i struktury danych Pythona.
Zarzadzanie ta prywatna sterta jest zapewniane wewnetrznie przez zarzqdce pamieci Pythona. Zarzadca pamigci Pytho-
na ma rézne komponenty ktére radza sobie z r6znymi aspektami dynamicznego przechowywania, jak wspétdzielenie,
segmentacja, alokacja wstgpna i kieszeniowanie.

Na najnizszym poziomie, przedmiot przydzielajacy pamig¢ ,,na-surowo” zapewnia ze begdzie do§¢ pamigci na prywat-
nej stercie dla przechowania wszystkich zwiazanych-z-jezykiem-pytonowskim danych przez wspétdziatanie z zarzadca
pamigci systemu operacyjnego. Ponad zarzadca surowej pamigci, kilka szczeg6lnych dla danych typdw przedmiotéw za-
rzadcéw operuje na tej samej stercie i wypelnia szczegdlne zasady zarzadzania pamiecia dostosowane do szczegdlnych
wiasno$ci kazdego rodzaju przedmiotu. Dla przyktadu przedmioty liczb catkowitych s zarzadzane inaczej wewnatrz ster-
ty niz ciagi znakéw, krotki czy stowniki gdyz liczby catkowite zakladaja inne wymagania przechowywania i wady i zalety
predkosci/zajgtej przestrzeni. Zarzadca pamigcia Pythona zatem odprawia pewna ilo$¢ naktadéw pracy dla szczegdlnych
dla przedmiotéw réznych typéw zarzadcéw, ale zapewnia ze te drugie beda operowaé wewnatrz ograniczen prywatnej
sterty.

It is important to understand that the management of the Python heap is performed by the interpreter itself and that the
user has no control over it, even if they regularly manipulate object pointers to memory blocks inside that heap. The
allocation of heap space for Python objects and other internal buffers is performed on demand by the Python memory
manager through the Python/C API functions listed in this document.

To avoid memory corruption, extension writers should never try to operate on Python objects with the functions exported
by the C library: malloc (), calloc (), realloc () and free (). This will result in mixed calls between the C
allocator and the Python memory manager with fatal consequences, because they implement different algorithms and
operate on different heaps. However, one may safely allocate and release memory blocks with the C library allocator for
individual purposes, as shown in the following example:

PyObject *res;
char *buf = (char *) malloc (BUFSIZ); /* for I/0 */

if (buf == NULL)

(ciag dalszy na nastgpnej stronie)

157

The Python/C API, Wydanie 3.7.17

(kontynuacja poprzedniej strony)

return PyErr_NoMemory () ;
...Do some I/O operation involving buf...
res = PyBytes_FromString (buf);
free(buf); /* malloc'ed */
return res;

In this example, the memory request for the I/O buffer is handled by the C library allocator. The Python memory manager
is involved only in the allocation of the bytes object returned as a result.

W wigkszosci przypadkéw, jednakze, zalecane jest umieszczanie w pamigci ze sterty Pythona szczegdlnie poniewaz ta
ostatnia jest pod kontrola zarzadcy pamigci jgzyka Pytonowskiego. Na przyklad, jest to wymagane gdy program interpre-
tujacy polecenia Pythona jest rozszerzany nowymi typami obiektéw napisanych w jezyku C. Inng przyczyna uzycia sterty
Pythona jest cheé poinformowania zarzadcy pamigci Pythona o potrzebach pamigciowych modutu rozszerzajacego. Na-
wet gdy zadana pamigC jest uzywana wytacznie dla wewngtrznych wysoko-wyspecjalizowanych potrzeb, oddelegowanie
wszystkich zapytai o pamig¢ do zarzadcy pamigci Pythona spowoduje ze program interpretujacy polecenia Pythona be-
dzie miat bardziej trafny obraz podstawowego rozmiaru potrzeb pamigciowych jako catosci. Konsekwentnie, w pewnych
warunkach zarzadca pamigci Pythona moze lub moze nie uruchomié wtasciwych dziatan, jak zbiérki Smieci, porzadko-
wania pamigci lub innych zapobiegawczych dziatad. Zauwaz, ze uzywajac programu bibliotecznego lokujacego pamigé z
jezyka C jak pokazano w poprzednim przyktadzie zarezerwowana pamigé dla obszaru wymiany wejscia/wyjscia catko-
wicie umyka uwadze zarzadcy pamigci Pythona.

Zobacz takze:
The PYTHONMALLOC environment variable can be used to configure the memory allocators used by Python.

The PYTHONMALLOCSTATS environment variable can be used to print statistics of the pymalloc memory allocator every
time a new pymalloc object arena is created, and on shutdown.

10.2 Raw Memory Interface

The following function sets are wrappers to the system allocator. These functions are thread-safe, the GI/L does not need
to be held.

The default raw memory allocator uses the following functions: malloc (), calloc (), realloc () and free();
callmalloc (1) (orcalloc (1, 1)) when requesting zero bytes.

Nowe w wersji 3.4.

void* PyMem_RawMalloc (size_t n)
Allocates n bytes and returns a pointer of type void* to the allocated memory, or NULL if the request fails.

Requesting zero bytes returns a distinct non-NULL pointer if possible, as if PyMem_RawMalloc (1) had been
called instead. The memory will not have been initialized in any way.

void* PyMem_RawCalloc (size_t nelem, size_t elsize)
Allocates nelem elements each whose size in bytes is elsize and returns a pointer of type void* to the allocated
memory, or NULL if the request fails. The memory is initialized to zeros.

Requesting zero elements or elements of size zero bytes returns a distinct non-NULL pointer if possible, as if
PyMem_RawCalloc (1, 1) had been called instead.

Nowe w wersji 3.5.

void* PyMem_RawRealloc (void *p, size_t n)
Resizes the memory block pointed to by p to n bytes. The contents will be unchanged to the minimum of the old
and the new sizes.

158 Rozdziat 10. Zarzadzanie Pamiecia

The Python/C API, Wydanie 3.7.17

If p is NULL, the call is equivalent to PyMem_RawMalloc (n); else if n is equal to zero, the memory block is
resized but is not freed, and the returned pointer is non-NULL.

Unless p is NULL, it must have been returned by a previous call to PyMem RawMalloc (),
PyMem RawRealloc () or PyMem RawCalloc ().

If the request fails, PyMem RawRealloc () returns NULL and p remains a valid pointer to the previous memory
area.

void PyMem_RawFree (void *p)
Frees the memory block pointed to by p, which must have been returned by a previous call to
PyMem_RawMalloc (), PyMem_ RawRealloc () or PyMem RawCalloc (). Otherwise, or if
PyMem_RawFree (p) has been called before, undefined behavior occurs.

If p is NULL, no operation is performed.

10.3 Sprzeg Pamieci

The following function sets, modeled after the ANSI C standard, but specifying behavior when requesting zero bytes, are
available for allocating and releasing memory from the Python heap.

The default memory allocator uses the pymalloc memory allocator.

Ostrzezenie: The GI/L must be held when using these functions.

Zmienione w wersji 3.6: The default allocator is now pymalloc instead of system malloc ().

void* PyMem_Malloc (size_t n)
Allocates n bytes and returns a pointer of type void* to the allocated memory, or NULL if the request fails.

Requesting zero bytes returns a distinct non-NULL pointer if possible, as if PyMem_Malloc (1) had been called
instead. The memory will not have been initialized in any way.

void* PyMem_Calloc (size_t nelem, size_t elsize)
Allocates nelem elements each whose size in bytes is elsize and returns a pointer of type void* to the allocated
memory, or NULL if the request fails. The memory is initialized to zeros.

Requesting zero elements or elements of size zero bytes returns a distinct non-NULL pointer if possible, as if
PyMem_Calloc (1, 1) had been called instead.

Nowe w wersji 3.5.

void* PyMem_Realloc (void *p, size_t n)
Resizes the memory block pointed to by p to n bytes. The contents will be unchanged to the minimum of the old
and the new sizes.

If pis NULL, the call is equivalent to PyMem_Malloc (n);else if n is equal to zero, the memory block is resized
but is not freed, and the returned pointer is non-NULL.

Unless p is NULL, it must have been returned by a previous call to PyMem Malloc (), PyMem Realloc ()
or PyMem_Calloc ().

If the request fails, PyMem Realloc () returns NULL and p remains a valid pointer to the previous memory
area.

void PyMem_Free (void *p)
Frees the memory block pointed to by p, which must have been returned by a previous call to PyMem_Malloc (),

10.3. Sprzeg Pamieci 159

The Python/C API, Wydanie 3.7.17

PyMem_Realloc () or PyMem Calloc (). Otherwise, or if PyMem_Free (p) has been called before, un-
defined behavior occurs.

If p is NULL, no operation is performed.

Nastepujace makropolecenia zorientowane-wedtug-typu dostarczone sa dla wygody. Zauwaz ze TYP odnosi si¢ do do-
wolnego typu C.

TYPE* PyMem_New (TYPE, size_t n)
Same as PyMem Malloc (), butallocates (n * sizeof (TYPE)) bytes of memory. Returns a pointer cast
to TYPE*. The memory will not have been initialized in any way.

TYPE* PyMem_Resize (void *p, TYPE, size_t n)
Same as PyMem_Realloc (), but the memory block is resized to (n * sizeof (TYPE)) bytes. Returns a
pointer cast to TYPE*. On return, p will be a pointer to the new memory area, or NULL in the event of failure.

This is a C preprocessor macro; p is always reassigned. Save the original value of p to avoid losing memory when
handling errors.

void PyMem_Del (void *p)
Same as PyMem_Free ().

Doda¢ nalezy, ze nastgpujacy zbiér makropolecen dostarczony jest aby odwotywaé si¢ do programu przydzielajacego
pamigé w jezyku pytonowskim bezpoSrednio, bez udziatu zadan sprzggu C wymienionych powyzej. Jednakze, zauwaz,
ze ich uzycie nie zachowuje wzajemnej zgodnosci binarnej pomigdzy wersjami Pythona i z tego tez powodu ich uzycie
jest niewskazane w modutach rozszerzajacych.

* PyMem_ MALLOC (size)

e PyMem_ NEW (type, size)

e PyMem_REALLOC (ptr, size)

e PyMem_RESIZE (ptr, type, size)
e PyMem_FREE (ptr)

¢ PyMem DEL (ptr)

10.4 Object allocators

The following function sets, modeled after the ANSI C standard, but specifying behavior when requesting zero bytes, are
available for allocating and releasing memory from the Python heap.

The default object allocator uses the pymalloc memory allocator.

Ostrzezenie: The GIL must be held when using these functions.

void* PyObject_Malloc (size_t n)
Allocates n bytes and returns a pointer of type void* to the allocated memory, or NULL if the request fails.

Requesting zero bytes returns a distinct non-NULL pointer if possible, as if PyObject_Malloc (1) had been
called instead. The memory will not have been initialized in any way.

void* PyObject_Calloc (size_t nelem, size_t elsize)
Allocates nelem elements each whose size in bytes is elsize and returns a pointer of type void* to the allocated
memory, or NULL if the request fails. The memory is initialized to zeros.

160 Rozdziat 10. Zarzadzanie Pamiecia

The Python/C API, Wydanie 3.7.17

Requesting zero elements or elements of size zero bytes returns a distinct non-NULL pointer if possible, as if

PyObject_Calloc (1,

Nowe w wersji 3.5.

void* PyObject_Realloc (void *p, size_t n)
Resizes the memory block pointed to by p to n bytes. The contents will be unchanged to the minimum of the old

and the new sizes.

1) had been called instead.

If p is NULL, the call is equivalent to PyObject_Malloc (n);else if n is equal to zero, the memory block is
resized but is not freed, and the returned pointer is non-NULL.

Unless p is NULL, it must have been returned by a previous call to PyObject_Malloc(),
PyObject_Realloc () or PyObject_Calloc ().

If the request fails, PyOb ject_Realloc () returns NULL and p remains a valid pointer to the previous memory

area.

void PyObject_Free (void *p)
Frees the memory block pointed to by p, which must have been returned by a previous call to

PyObject_Malloc (),

PyObject_Realloc () or

PyObject_Calloc ().

PyObject_Free (p) has been called before, undefined behavior occurs.

If p is NULL, no operation is performed.

10.5 Default Memory Allocators

Default memory allocators:

Otherwise, or if

malloc

Configuration Nazwa Py- PyMem_Malloc | Py-
Mem_RawMalloc Object_Malloc
Release build "pymalloc" malloc pymalloc pymalloc
Debug build "pymalloc_debug"malloc + debug pymalloc +de- | pymalloc +de-
bug bug
Release build, without py- | "malloc" malloc malloc malloc

Debug build, without py-
malloc

"malloc_debug"

malloc + debug

malloc + debug

malloc + debug

Legend:

¢ Name: value for PYTHONMALLOC environment variable

* malloc:system allocators from the standard C library, C functions: malloc (), calloc (), realloc () and

free()

* pymalloc: pymalloc memory allocator

* .+ debug”: with debug hooks installed by PyMem SetupDebugHooks ()

10.5. Default Memory Allocators

161

The Python/C API, Wydanie 3.7.17

10.6 Customize Memory Allocators

Nowe w wersji 3.4.

PyMemAllocatorEx
Structure used to describe a memory block allocator. The structure has four fields:

Field Znaczenie

void *ctx user context passed as first argument
void* malloc(void *ctx, size_t size) allocate a memory block

void* calloc(void *ctx, size_t nelem, size_t | allocateamemory block initialized with
elsize) Zeros

void* realloc (void *ctx, void *ptr, size_t allocate or resize a memory block
new_size)

void free(void *ctx, void *ptr) free a memory block

Zmienione w wersji 3.5: The PyMemAllocator structure was renamed to PyMemAllocatorEx and a new
calloc field was added.

PyMemAllocatorDomain
Enum used to identify an allocator domain. Domains:

PYMEM DOMAIN_RAW
Functions:

* PyMem RawMalloc ()
* PyMem RawRealloc ()
* PyMem RawCalloc ()
* PyMem RawFree ()

PYMEM_DOMAIN_MEM
Functions:

* PyMem Malloc(),
* PyMem Realloc()
e PyMem_Calloc /()
* PyMem Free()

PYMEM DOMAIN_OBJ
Functions:

e PyObject_Malloc/()
e PyObject_Realloc ()
* PyObject_Calloc/()
* PyObject_Free()

void PyMem_GetAllocator (PyMemAllocatorDomain domain, PyMemAllocatorEx *allocator)
Get the memory block allocator of the specified domain.

void PyMem_SetAllocator (PyMemAllocatorDomain domain, PyMemAllocatorEx *allocator)
Set the memory block allocator of the specified domain.

The new allocator must return a distinct non-NULL pointer when requesting zero bytes.

162 Rozdziat 10. Zarzadzanie Pamiecia

The Python/C API, Wydanie 3.7.17

For the PYMEM DOMAIN_RAW domain, the allocator must be thread-safe: the GIL is not held when the allocator
is called.

If the new allocator is not a hook (does not call the previous allocator), the PyMem SetupDebugHooks ()
function must be called to reinstall the debug hooks on top on the new allocator.

void PyMem_SetupDebugHooks (void)
Setup hooks to detect bugs in the Python memory allocator functions.

Newly allocated memory is filled with the byte 0xCD (CLEANBYTE), freed memory is filled with the byte 0xDD
(DEADBYTE). Memory blocks are surrounded by ,,forbidden bytes” (FORBIDDENBYTE: byte 0xFD).

Runtime checks:
¢ Detect API violations, ex: PyObject_Free () called on a buffer allocated by PyMem Malloc ()
¢ Detect write before the start of the buffer (buffer underflow)
¢ Detect write after the end of the buffer (buffer overflow)

e Check that the GIL is held when allocator functions of PYMEM DOMAIN_OBJ (ex:
PyObject_Malloc()) and PYMEM_DOMAIN MEM (ex: PyMem_Malloc ()) domains are cal-
led

On error, the debug hooks use the t racemalloc module to get the traceback where a memory block was allo-
cated. The traceback is only displayed if t racemalloc is tracing Python memory allocations and the memory
block was traced.

These hooks are installed by default if Python is compiled in debug mode. The PYTHONMALLOC environment
variable can be used to install debug hooks on a Python compiled in release mode.

Zmienione w wersji 3.6: This function now also works on Python compiled in release mode. On error, the debug
hooks now use t racemalloc to get the traceback where a memory block was allocated. The debug hooks now
also check if the GIL is held when functions of PYMEM _DOMAIN_OBJ and PYMEM_DOMAIN_MEM domains are
called.

Zmienione w wersji 3.7.3: Byte patterns 0xCB (CLEANBYTE), 0xDB (DEADBYTE) and OxFB
(FORBIDDENBYTE) have been replaced with 0xCD, 0xDD and OxFD to use the same values than Win-
dows CRT debug malloc () and free ().

10.7 The pymalloc allocator

Python has a pymalloc allocator optimized for small objects (smaller or equal to 512 bytes) with a short lifetime. It
uses memory mappings called ,arenas” with a fixed size of 256 KiB. It falls back to PyMem_ RawMalloc () and
PyMem_RawRealloc () for allocations larger than 512 bytes.

pymalloc is the default allocator of the PYMEM_DOMATIN_MEM (ex: PyMem_Malloc ())and PYMEM _DOMAIN_OBJ
(ex: PyObject_Malloc ()) domains.

The arena allocator uses the following functions:
e VirtualAlloc () and VirtualFree () on Windows,
e mmap () and munmap () if available,

e malloc () and free () otherwise.

10.7. The pymalloc allocator 163

The Python/C API, Wydanie 3.7.17

10.7.1 Customize pymalloc Arena Allocator

Nowe w wersji 3.4.

PyObjectArenaAllocator

Structure used to describe an arena allocator. The structure has three fields:

Field

Znaczenie

void *ctx

user context passed as first argument

void* alloc(void *ctx, size_t size)

allocate an arena of size bytes

void free(void *ctx, size_t size, void *ptr)

free an arena

PyObject_GetArenaAllocator (PyObjectArenaAllocator *allocator)
Get the arena allocator.

PyObject_SetArenaAllocator (PyObjectArenaAllocator *allocator)
Set the arena allocator.

10.8 tracemalloc C API

Nowe w wersji 3.7.

int PyTraceMalloc_Track (unsigned int domain, uintptr_t ptr, size_t size)

Track an allocated memory block in the t racemal loc module.

Return 0 on success, return —1 on error (failed to allocate memory to store the trace). Return -2 if tracemalloc is

disabled.
If memory block is already tracked, update the existing trace.

int PyTraceMalloc_Untrack (unsigned int domain, uintptr_t ptr)

Untrack an allocated memory block in the t racemalloc module. Do nothing if the block was not tracked.

Return -2 if tracemalloc is disabled, otherwise return 0.

10.9 Przyktady

Tutaj jest przyktad z sekcji ,,przegladu pamigci” - z ang. - Skorowidz, przepisa
przydzielona ze sterty Pythona uzywajac pierwszego zestawu zadan:

ne, tak aby przestrzen wejscia/wyjscia byla

PyObject *res;

char *buf = (char *) PyMem_Malloc (BUFSIZ); /* for I/0 */
if (buf == NULL)

return PyErr_NoMemory () ;
/* ...Do some I/O operation involving buf... */

res = PyBytes_FromString (buf);
PyMem_Free (buf); /* allocated with PyMem Malloc */
return res;

ten sam kod przy uzyciu zorientowanych na typ zbioréw zadan:

164

Rozdziat 10. Zarzadzanie Pamiecia

The Python/C API, Wydanie 3.7.17

PyObject *res;
char *buf = PyMem_New (char, BUFSIZ); /* for I/0 */

if (buf == NULL)
return PyErr_NoMemory () ;
/* ...Do some I/O operation involving buf... */

res = PyBytes_FromString (buf) ;
PyMem_Del (buf); /* allocated with PyMem_New */
return res;

Zauwaz, ze w dwdch powyzszych przyktadach, przestrzert wymiany jest zawsze zmieniana przez zadania nalezace do tego
samego zbioru. Wlasciwie, jest wymagane uzycie tej samej rodziny sprzegéw zarzadzania pamigcia (z ang. - memory API)
dla danego obszaru pamigci, tak, ze ryzyko pomieszania réznych programéw lokujacych zmniejszone jest do minimum.
Nastepujaca sekwencja zawiera dwa btedy, jeden z ktérych okreSlony jest jako krytyczny poniewaz miesza dwa rézne
programy lokujace pamigé dziatajace na r6znych stertach.

char *bufl = PyMem_New (char, BUFSIZ);

char *buf2 = (char *) malloc (BUFSIZ);

char *buf3 = (char *) PyMem_Malloc (BUFSIZ);

PyMem_Del (buf3) ; /* Wrong —-- should be PyMem_Free() */
free (buf2); /* Right —-- allocated via malloc() */
free (bufl); /* Fatal —-—- should be PyMem_ Del () */

In addition to the functions aimed at handling raw memory blocks from the Python heap, objects in Python are allocated
and released with PyOb ject_New (), PyObject_NewVar () and PyObject_Del ().

Te zostang wyjasnione w nastgpnym rozdziale o okreSlaniu i realizowaniu nowych typéw obiektow w jezyku C.

10.9. Przykiady 165

The Python/C API, Wydanie 3.7.17

166 Rozdziat 10. Zarzadzanie Pamiecia

rozpziAt 11

Object Implementation Support

This chapter describes the functions, types, and macros used when defining new object types.

11.1 Allocating Objects on the Heap

PyObject* _PyObject_New (PyTypeObject *type)
Return value: New reference.

PyVarObject* _PyObject_NewVar (PyTypeObject *type, Py_ssize_t size)
Return value: New reference.

PyObject* PyObject_Init (PyObject *op, PyTypeObject *type)
Return value: Borrowed reference. Initialize a newly-allocated object op with its type and initial reference. Returns
the initialized object. If #ype indicates that the object participates in the cyclic garbage detector, it is added to the
detector’s set of observed objects. Other fields of the object are not affected.

PyVarObject* PyObject_InitVar (PyVarObject *op, PyTypeObject *type, Py_ssize_t size)
Return value: Borrowed reference. This does everything PyObject_Init () does, and also initializes the length
information for a variable-size object.

TYPE* PyObject_New (TYPE, PyTypeObject *type)
Return value: New reference. Allocate a new Python object using the C structure type TYPE and the Python type
object type. Fields not defined by the Python object header are not initialized; the object’s reference count will be
one. The size of the memory allocation is determined from the tp_hbasicsize field of the type object.

TYPE* PyObject_NewVar (TYPE, PyTypeObject *type, Py_ssize_t size)
Return value: New reference. Allocate a new Python object using the C structure type TYPE and the Python type
object type. Fields not defined by the Python object header are not initialized. The allocated memory allows for the
TYPE structure plus size fields of the size given by the t p_ i t ems i ze field of fype. This is useful for implementing
objects like tuples, which are able to determine their size at construction time. Embedding the array of fields into
the same allocation decreases the number of allocations, improving the memory management efficiency.

void PyObject_Del (void *op)
Releases memory allocated to an object using PyOb ject_New () or PyObject_NewVar (). This is normally

167

The Python/C API, Wydanie 3.7.17

called from the t p_ deal1oc handler specified in the object’s type. The fields of the object should not be accessed
after this call as the memory is no longer a valid Python object.

PyObject _Py_NoneStruct
Object which is visible in Python as None. This should only be accessed using the Py None macro, which eva-
luates to a pointer to this object.

Zobacz takze:

PyModule_Create () To allocate and create extension modules.

11.2 Wspodine struktury obiektéw

Istnieje duza liczba struktur, ktére sa uzywane przy definiowaniu rodzajéw obiektéw w Pythonie. Ten rozdziat opisuje te
struktury i jak sa one uzywane.

All Python objects ultimately share a small number of fields at the beginning of the object’s representation in memory.
These are represented by the PyObject and PyVarObject types, which are defined, in turn, by the expansions of
some macros also used, whether directly or indirectly, in the definition of all other Python objects.

PyObject
All object types are extensions of this type. This is a type which contains the information Python needs to treat
a pointer to an object as an object. In a normal ,release” build, it contains only the object’s reference count and
a pointer to the corresponding type object. Nothing is actually declared to be a PyOb ject, but every pointer
to a Python object can be cast to a PyObject *. Access to the members must be done by using the macros
Py _REFCNT and Py_ TYPE.

PyVarObject
This is an extension of PyObject that adds the ob_size field. This is only used for objects that have some
notion of length. This type does not often appear in the Python/C API. Access to the members must be done by
using the macros Py_REFCNT, Py_TYPE,and Py_SIZE.

PyObject_HEAD
This is a macro used when declaring new types which represent objects without a varying length. The Py-
Object_HEAD macro expands to:

PyObject ob_base;

See documentation of PyOb ject above.

PyObject_VAR_HEAD
This is a macro used when declaring new types which represent objects with a length that varies from instance to
instance. The PyObject_ VAR_HEAD macro expands to:

PyVarObject ob_base;

See documentation of PyVaroOb ject above.

Py_TYPE (0)
This macro is used to access the ob_t ype member of a Python object. It expands to:

’(((PyObject*)(o))7>ob_type)

Py_REFCNT (0)
This macro is used to access the ob_refcnt member of a Python object. It expands to:

’(((PyObject*)(o))—>ob_refcnt)

168 Rozdziat 11. Object Implementation Support

The Python/C API, Wydanie 3.7.17

Py_SIZE (0)
This macro is used to access the ob__size member of a Python object. It expands to:

(((PyVarObject™) (0))-—>ob_size)

PyObject_HEAD_INIT (type)
This is a macro which expands to initialization values for a new PyOb ject type. This macro expands to:

_PyObject_EXTRA_INIT
1, type,

PyVarObject_HEAD_INIT (type, size)
This is a macro which expands to initialization values for a new PyVarObject type, including the ob_size
field. This macro expands to:

_PyObject_EXTRA_INIT
1, type, size,

PyCFunction
Type of the functions used to implement most Python callables in C. Functions of this type take two PyOb ject *
parameters and return one such value. If the return value is NULL, an exception shall have been set. If not NULL,
the return value is interpreted as the return value of the function as exposed in Python. The function must return a
new reference.

PyCFunctionWithKeywords
Type of the functions used to implement Python callables in C with signature METH_VARARGS |
METH_KEYWORDS.

_PyCFunctionFast
Type of the functions used to implement Python callables in C with signature METH FASTCALL.

_PyCFunctionFastWithKeywords
Type of the functions used to implement Python callables in C with signature METH_FASTCALL |
METH_KEYWORDS.

PyMethodDef
Structure used to describe a method of an extension type. This structure has four fields:

Field typ jezyka C | Znaczenie

ml_name const char * name of the method

ml_meth PyCFunction | pointer to the C implementation

ml_flags | int flag bits indicating how the call should be constructed
ml_doc const char * points to the contents of the docstring

Theml_meth is a C function pointer. The functions may be of different types, but they always return PyOb ject *. If the
function is not of the PyCFunct i on, the compiler will require a cast in the method table. Even though PyCFunction
defines the first parameter as PyOb ject *, it is common that the method implementation uses the specific C type of the
self object.

The m1_flags field is a bitfield which can include the following flags. The individual flags indicate either a calling
convention or a binding convention.

There are four basic calling conventions for positional arguments and two of them can be combined with
METH_KEYWORDS to support also keyword arguments. So there are a total of 6 calling conventions:

METH_VARARGS
This is the typical calling convention, where the methods have the type PyCFunct i on. The function expects two
PyObject * values. The first one is the self object for methods; for module functions, it is the module object.

11.2. Wspdlne struktury obiektow 169

The Python/C API, Wydanie 3.7.17

The second parameter (often called args) is a tuple object representing all arguments. This parameter is typically
processed using PyArg_ParseTuple () or PyArg_UnpackTuple ().

METH_VARARGS | METH_KEYWORDS
Methods with these flags must be of type PyCFunctioniWithKeywords. The function expects three parame-
ters: self, args, kwargs where kwargs is a dictionary of all the keyword arguments or possibly NULL if there are no
keyword arguments. The parameters are typically processed using PyArg_ParseTupleAndKeywords ().

METH_FASTCALL
Fast calling convention supporting only positional arguments. The methods have the type _PyCFunctionFast.
The first parameter is self, the second parameter is a C array of PyOb ject * values indicating the arguments and
the third parameter is the number of arguments (the length of the array).

This is not part of the limited API.
Nowe w wersji 3.7.

METH_FASTCALL | METH_KEYWORDS
Extension of METH FASTCALL supporting also keyword arguments, with methods of type
_PyCFunctionFastWithKeywords. Keyword arguments are passed the same way as in the vector-
call protocol: there is an additional fourth PyOb ject * parameter which is a tuple representing the names of the
keyword arguments or possibly NULL if there are no keywords. The values of the keyword arguments are stored
in the args array, after the positional arguments.

This is not part of the limited API.
Nowe w wersji 3.7.

METH_NOARGS
Methods without parameters don’t need to check whether arguments are given if they are listed with the
METH_NOARGS flag. They need to be of type PyCFunct ion. The first parameter is typically named self and
will hold a reference to the module or object instance. In all cases the second parameter will be NULL.

METH_O
Methods with a single object argument can be listed with the METH O flag, instead of invoking
PyArg_ParseTuple () with a "O" argument. They have the type PyCFunct ion, with the self parameter,
and a PyOb ject * parameter representing the single argument.

Te dwie stale nie sa uzywane do zaznaczania konwencji wywotywania, ale wiaza gdy sq uzywane z metodami klas. Nie
moga by¢ one uzywane dla funkcji okreSlonych dla modutéw. Co najwyzej jedna z tych flag moze by¢ ustawiona dla
dowolnej danej metody.

METH_CLASS
Metodzie zostanie przekazany typ obiektu jako pierwszy parametr zamiast instancji tego typu. Jest to uzywane aby
tworzy¢ metody klasowe, podobnie do tego, co jest tworzone przy uzyciu wbudowanej funkcji classmethod ().

METH_STATIC
The method will be passed NULL as the first parameter rather than an instance of the type. This is used to create
static methods, similar to what is created when using the staticmethod () built-in function.

Jedna pozostata stata kontroluje czy metoda jest tadowana w miejscu innej definicji o tej samej nazwie metody.

METH_COEXIST
Metoda zostanie zatadowana w miejsce istniejacych definicji. Bez METH COEXIST, domySlnie pomija si¢ po-
wtérzone definicje. Od kiedy opakowania gniazd sa tadowane przed tabela metod, istnienie na przyktad gniazda
sq_contains generuje opakowana metodg nazywana ___contains__ () i zapobiega tadowaniu odpowiadajace;j
funkcji PyCFunction o tej samej nazwie. Ze zdefiniowana flaga, PyCFunction zostanie zaladowana w miejsce
obiektu opakowania i bedzie wspotistniala z gniazdem. To jest pomocne poniewaz wywotania PyCFunction sa
zoptymalizowane bardziej niz odwotania do obiektéw opakowari.

170 Rozdziat 11. Object Implementation Support

The Python/C API, Wydanie 3.7.17

PyMemberDef
Structure which describes an attribute of a type which corresponds to a C struct member. Its fields are:

Field typ jezyka C | Znaczenie

name const char * name of the member

type int the type of the member in the C struct

offset | Py_ssize_t the offset in bytes that the member is located on the type’s object struct
flags int flag bits indicating if the field should be read-only or writable

doc const char * points to the contents of the docstring

type can be one of many T_ macros corresponding to various C types. When the member is accessed in Python,
it will be converted to the equivalent Python type.

Macro name C type

T_SHORT short

T_INT int

T_LONG long

T_FLOAT typ (float) zmiennoprzecinkowy pojedynczej precyzji
T_DOUBLE typ (double) zmiennoprzecinkowy podwdjnej precyzji
T_STRING const char *

T_OBIJECT PyObject *

T_OBJECT_EX PyObject *

T_CHAR char

T BYTE char

T_UBYTE nieoznaczony typ znakowy

T_UINT nieoznaczony typ int

T_USHORT nieoznaczony typ krétki

T_ULONG nieoznaczony typ dtugi

T_BOOL char

T_LONGLONG long long

T_ULONGLONG | unsigned long long

T _PYSSIZET Py_ssize_t

T_OBJECT and T_OBJECT_EX differ in that T_OBJECT returns None if the member is NULL and
T_OBJECT_EX raises an AttributeError. Try to use T_OBJECT_EX over T_OBJECT because
T_OBJECT_EX handles use of the del statement on that attribute more correctly than T_OBJECT.

flags can be 0 for write and read access or READONLY for read-only access. Using T_STRING for type
implies READONLY. T__STRING data is interpreted as UTF-8. Only T_OBJECT and T_OBJECT_EX members
can be deleted. (They are set to NULL).

PyGetSetDef
Structure to define property-like access for a type. See also description of the Py TypeObject.tp_getset
slot.
Field typ jezyka C | Znaczenie
name const char * attribute name
get getter C Function to get the attribute
set setter optional C function to set or delete the attribute, if omitted the attribute is readonly
doc const char * optional docstring
closure | void * optional function pointer, providing additional data for getter and setter

The get function takes one PyObject * parameter (the instance) and a function pointer (the associated

11.2. Wspdlne struktury obiektow 171

The Python/C API, Wydanie 3.7.17

closure):

typedef PyObject * (*getter) (PyObject *, wvoid *);

It should return a new reference on success or NULL with a set exception on failure.

set functions take two PyOb ject * parameters (the instance and the value to be set) and a function pointer (the
associated closure):

typedef int (*setter) (PyObject *, PyObject *, wvoid *);

In case the attribute should be deleted the second parameter is NULL. Should return 0 on success or —1 with a set
exception on failure.

11.3 Type Objects

Perhaps one of the most important structures of the Python object system is the structure that defines a new type: the
PyTypeObject structure. Type objects can be handled using any of the PyObject_* () or PyType_* () functions,
but do not offer much that’s interesting to most Python applications. These objects are fundamental to how objects behave,
so they are very important to the interpreter itself and to any extension module that implements new types.

Type objects are fairly large compared to most of the standard types. The reason for the size is that each type object stores
a large number of values, mostly C function pointers, each of which implements a small part of the type’s functionality.
The fields of the type object are examined in detail in this section. The fields will be described in the order in which they
occur in the structure.

Typedefs: unaryfunc, binaryfunc, ternaryfunc, inquiry, intargfunc, intintargfunc, intobjargproc, intintobjargproc, objo-
bjargproc, destructor, freefunc, printfunc, getattrfunc, getattrofunc, setattrfunc, setattrofunc, reprfunc, hashfunc

The structure definition for Py TypeOb ject can be found in Include/object .h. For convenience of reference,
this repeats the definition found there:

typedef struct _typeobject {
PyObject_VAR_HEAD
const char *tp_name; /* For printing, in format "<module>.<name>" */
Py_ssize_t tp_basicsize, tp_itemsize; /* For allocation */

/* Methods to implement standard operations */

destructor tp_dealloc;

printfunc tp_print;

getattrfunc tp_getattr;

setattrfunc tp_setattr;

PyAsyncMethods *tp_as_async; /* formerly known as tp_compare (Python 2)
or tp_reserved (Python 3) */

reprfunc tp_repr;

/* Method suites for standard classes */
PyNumberMethods *tp_as_number;
PySequenceMethods *tp_as_sequence;
PyMappingMethods *tp_as_mapping;

/* More standard operations (here for binary compatibility) */

hashfunc tp_hash;

(ciag dalszy na nastgpnej stronie)

172 Rozdziat 11. Object Implementation Support

The Python/C API, Wydanie 3.7.17

(kontynuacja poprzedniej strony)

ternaryfunc tp_call;
reprfunc tp_str;
getattrofunc tp_getattro;
setattrofunc tp_setattro;

/* Functions to access object as input/output buffer */
PyBufferProcs *tp_as_buffer;

/* Flags to define presence of optional/expanded features */
unsigned long tp_flags;

const char *tp_doc; /* Documentation string */

/* call function for all accessible objects */
traverseproc tp_traverse;

/* delete references to contained objects */
inquiry tp_clear;

/* rich comparisons */
richcmpfunc tp_richcompare;

/* weak reference enabler */
Py_ssize_t tp_weaklistoffset;

/* Iterators */
getiterfunc tp_iter;
iternextfunc tp_iternext;

/* Attribute descriptor and subclassing stuff */
struct PyMethodDef *tp_methods;

struct PyMemberDef *tp_members;

struct PyGetSetDef *tp_getset;

struct _typeobject *tp_base;

PyObject *tp_dict;

descrgetfunc tp_descr_get;

descrsetfunc tp_descr_set;

Py_ssize_t tp_dictoffset;

initproc tp_init;

allocfunc tp_alloc;

newfunc tp_new;

freefunc tp_free; /* Low-level free-memory routine */
inquiry tp_is_gc; /* For PyObject_IS_GC */
PyObject *tp_bases;

PyObject *tp_mro; /* method resolution order */
PyObject *tp_cache;

PyObject *tp_subclasses;

PyObject *tp_weaklist;

destructor tp_del;

/* Type attribute cache version tag. Added in version 2.6 */
unsigned int tp_version_tag;

destructor tp_finalize;

} PyTypeObiject;

11.3. Type Objects

173

The Python/C API, Wydanie 3.7.17

The type object structure extends the PyVarObject structure. The ob_size field is used for dynamic types (cre-
ated by type_new (), usually called from a class statement). Note that Py Type_Type (the metatype) initializes
tp_1itemsize, which means that its instances (i.e. type objects) must have the ob_size field.

PyObject* PyObject ._ob_next

PyObject* PyObject . _ob_prev
These fields are only present when the macro Py_TRACE_REFS is defined. Their initialization to NULL is taken
care of by the PyObject_HEAD_INIT macro. For statically allocated objects, these fields always remain NULL.
For dynamically allocated objects, these two fields are used to link the object into a doubly-linked list of all live
objects on the heap. This could be used for various debugging purposes; currently the only use is to print the objects
that are still alive at the end of a run when the environment variable PYTHONDUMPREF'S is set.

These fields are not inherited by subtypes.

Py_ssize_t PyObject .ob_refecnt
This is the type object’s reference count, initialized to 1 by the PyObject_HEAD_INIT macro. Note that for
statically allocated type objects, the type’s instances (objects whose ob_t ype points back to the type) do not count
as references. But for dynamically allocated type objects, the instances do count as references.

This field is not inherited by subtypes.

PyTypeObject* PyObject .ob_type
This is the type’s type, in other words its metatype. It is initialized by the argument to the PyObject _HEAD_INIT
macro, and its value should normally be &Py Type_Type. However, for dynamically loadable extension modules
that must be usable on Windows (at least), the compiler complains that this is not a valid initializer. Therefore, the
convention is to pass NULL to the PyObject_HEAD_INIT macro and to initialize this field explicitly at the start
of the module’s initialization function, before doing anything else. This is typically done like this:

Foo_Type.ob_type = &PyType_Type;

This should be done before any instances of the type are created. PyType_Ready () checks if ob_type is
NULL, and if so, initializes it to the ob_type field of the base class. Py Type Ready () will not change this
field if it is non-zero.

This field is inherited by subtypes.

Py_ssize_t PyVarObject.ob_size
For statically allocated type objects, this should be initialized to zero. For dynamically allocated type objects, this
field has a special internal meaning.

This field is not inherited by subtypes.

const char* PyTypeObject . tp_name
Pointer to a NUL-terminated string containing the name of the type. For types that are accessible as module globals,
the string should be the full module name, followed by a dot, followed by the type name; for built-in types, it should
be just the type name. If the module is a submodule of a package, the full package name is part of the full module
name. For example, a type named T defined in module M in subpackage Q in package P should have the t p_name
initializer "P.Q.M.T".

For dynamically allocated type objects, this should just be the type name, and the module name explicitly stored in
the type dict as the value for key ' __module_ '.

For statically allocated type objects, the tp_name field should contain a dot. Everything before the last dot is made
accessible as the __module___ attribute, and everything after the last dot is made accessible as the __name___
attribute.

If no dot is present, the entire tp_name field is made accessible as the __name__ attribute, and the
__module__ attribute is undefined (unless explicitly set in the dictionary, as explained above). This means your
type will be impossible to pickle. Additionally, it will not be listed in module documentations created with pydoc.

This field is not inherited by subtypes.

174 Rozdziat 11. Object Implementation Support

The Python/C API, Wydanie 3.7.17

Py_ssize_t PyTypeObject.tp_basicsize
Py_ssize_t PyTypeObject.tp_itemsize
These fields allow calculating the size in bytes of instances of the type.

There are two kinds of types: types with fixed-length instances have a zero tp_itemsize field, types with
variable-length instances have a non-zero t p_ i t ems i ze field. For a type with fixed-length instances, all instances
have the same size, given in tp_basicsize.

For a type with variable-length instances, the instances must have an ob_size field, and the instance size is
tp_basicsizeplus Ntimes tp_itemsize, where N is the ,length” of the object. The value of N is typically
stored in the instance’s ob_ s ize field. There are exceptions: for example, ints use a negative ob_size to indicate
anegative number, and N is abs (ob_size) there. Also, the presence of an ob_ s i ze field in the instance layout
doesn’t mean that the instance structure is variable-length (for example, the structure for the list type has fixed-length
instances, yet those instances have a meaningful ob_size field).

The basic size includes the fields in the instance declared by the macro PyObject_HEAD or
PyObject_VAR_HEAD (whichever is used to declare the instance struct) and this in turn includes the
_ob_prev and _ob_next fields if they are present. This means that the only correct way to get an initializer
for the tp_basicsize is to use the sizeof operator on the struct used to declare the instance layout. The
basic size does not include the GC header size.

These fields are inherited separately by subtypes. If the base type has anon-zero tp_ i temsize,itis generally not
safe to set tp_itemsize to a different non-zero value in a subtype (though this depends on the implementation
of the base type).

A note about alignment: if the variable items require a particular alignment, this should be taken ca-
re of by the value of tp_basicsize. Example: suppose a type implements an array of double.
tp_itemsizeis sizeof (double). It is the programmer’s responsibility that tp_basicsize is a mul-
tiple of sizeof (double) (assuming this is the alignment requirement for double).

destructor PyTypeObject .tp_dealloc
A pointer to the instance destructor function. This function must be defined unless the type guarantees that its
instances will never be deallocated (as is the case for the singletons None and E11ipsis).

The destructor function is called by the Py_ DECREF () and Py_XDECREF () macros when the new reference
count is zero. At this point, the instance is still in existence, but there are no references to it. The destructor function
should free all references which the instance owns, free all memory buffers owned by the instance (using the freeing
function corresponding to the allocation function used to allocate the buffer), and finally (as its last action) call
the type’s t p_ free function. If the type is not subtypable (doesn’t have the Py TPFLAGS BASETYPE flag bit
set), it is permissible to call the object deallocator directly instead of via tp_ free. The object deallocator should
be the one used to allocate the instance; this is normally PyOb ject_Del () if the instance was allocated using
PyObject_New () orPyObject_VarNew (),or PyObject_GC_Del () if the instance was allocated using
PyObject_GC_New () or PyObject_GC_NewVar ().

This field is inherited by subtypes.

printfunc PyTypeObject .tp_print
Reserved slot, formerly used for print formatting in Python 2.x.

getattrfunc PyTypeObject .tp_getattr
An optional pointer to the get-attribute-string function.

This field is deprecated. When it is defined, it should point to a function that acts the same as the tp_getattro
function, but taking a C string instead of a Python string object to give the attribute name. The signature is

PyObject * tp_getattr (PyObject *o, char *attr_name);

This field is inherited by subtypes together with tp_getattro: a subtype inherits both tp_getattr and
tp_getattro from its base type when the subtype’s tp_getattrand tp_getattro are both NULL.

11.3. Type Objects 175

The Python/C API, Wydanie 3.7.17

setattrfunc PyTypeObject .tp_setattr
An optional pointer to the function for setting and deleting attributes.

This field is deprecated. When it is defined, it should point to a function that acts the same as the tp_setattro
function, but taking a C string instead of a Python string object to give the attribute name. The signature is

PyObject * tp_setattr (PyObject *o, char *attr_name, PyObject *v);

The v argument is set to NULL to delete the attribute. This field is inherited by subtypes together with
tp_setattro:asubtype inherits both tp_setattrand tp_setattro from its base type when the subty-
pe’s tp_setattrand tp_ setattro are both NULL.

PyAsyncMethods* tp_as_async
Pointer to an additional structure that contains fields relevant only to objects which implement awaitable and asyn-
chronous iterator protocols at the C-level. See Async Object Structures for details.

Nowe w wersji 3.5: Formerly known as t p_compare and tp_reserved.

reprfunc PyTypeObject .tp_repr
An optional pointer to a function that implements the built-in function repr ().

The signature is the same as for PyObject_Repr (); it must return a string or a Unicode object. Ideally, this
function should return a string that, when passed to eval (), given a suitable environment, returns an object with
the same value. If this is not feasible, it should return a string starting with ' <' and ending with '>' from which
both the type and the value of the object can be deduced.

When this field is not set, a string of the form <%s object at $%$p> isreturned, where %s is replaced by the
type name, and $p by the object’s memory address.

This field is inherited by subtypes.

PyNumberMethods* tp_as_number
Pointer to an additional structure that contains fields relevant only to objects which implement the number protocol.
These fields are documented in Number Object Structures.

The tp_as_number field is not inherited, but the contained fields are inherited individually.

PySequenceMethods* tp_as_sequence
Pointer to an additional structure that contains fields relevant only to objects which implement the sequence protocol.
These fields are documented in Sequence Object Structures.

The tp_as_sequence field is not inherited, but the contained fields are inherited individually.

PyMappingMethods* tp_as_mapping
Pointer to an additional structure that contains fields relevant only to objects which implement the mapping protocol.
These fields are documented in Mapping Object Structures.

The tp_as_mapping field is not inherited, but the contained fields are inherited individually.

hashfunc PyTypeObject .tp_hash
An optional pointer to a function that implements the built-in function hash ().

The signature is the same as for PyObject_Hash ();it must return a value of the type Py_hash_t. The value -1
should not be returned as a normal return value; when an error occurs during the computation of the hash value,
the function should set an exception and return —1.

This field can be set explicitly to PyObject_HashNotImplemented () to block inheritance of the hash
method from a parent type. This is interpreted as the equivalent of __hash__ = None at the Python level,
causing isinstance (o, collections.Hashable) to correctly return False. Note that the converse
is also true - setting __hash___ = None on a class at the Python level will result in the t p_hash slot being set
to PyObject_HashNotImplemented().

When this field is not set, an attempt to take the hash of the object raises TypeError.

176 Rozdziat 11. Object Implementation Support

The Python/C API, Wydanie 3.7.17

This field is inherited by subtypes together with tp_richcompare: a subtype inherits both of
tp_richcompare and tp_hash, when the subtype’s tp_richcompare and tp_hash are both NULL.

ternaryfunc PyTypeObject .tp_call
An optional pointer to a function that implements calling the object. This should be NULL if the object is not
callable. The signature is the same as for PyObject_Call ().

This field is inherited by subtypes.

reprfunc PyTypeObject .tp_str
An optional pointer to a function that implements the built-in operation st r () . (Note that st r is a type now, and
str () calls the constructor for that type. This constructor calls PyObject_Str () to do the actual work, and
PyObject_Str () will call this handler.)

The signature is the same as for PyObject_Str (); it must return a string or a Unicode object. This function
should return a ,,friendly” string representation of the object, as this is the representation that will be used, among
other things, by the print () function.

When this field is not set, PyOb ject_Repr () is called to return a string representation.
This field is inherited by subtypes.

getattrofunc PyTypeObject .tp_getattro
An optional pointer to the get-attribute function.

The signature is the same as for PyObject_GetAttr (). It is usually convenient to set this field to
PyObject_GenericGetAttr (), which implements the normal way of looking for object attributes.

This field is inherited by subtypes together with tp_getattr: a subtype inherits both tp_getattr and
tp_getattro from its base type when the subtype’s tp_getattrand tp_getattro are both NULL.

setattrofunc PyTypeObject .tp_setattro
An optional pointer to the function for setting and deleting attributes.

The signature is the same as for PyObject_SetAttr (), but setting v to NULL to delete an attribute must be
supported. It is usually convenient to set this field to PyObject_GenericSetAttr (), which implements the
normal way of setting object attributes.

This field is inherited by subtypes together with tp_setattr: a subtype inherits both tp_setattr and
tp_setattro from its base type when the subtype’s tp_setattrand tp_setattro are both NULL.

PyBufferProcs* PyTypeObject .tp_as_buffer
Pointer to an additional structure that contains fields relevant only to objects which implement the buffer interface.
These fields are documented in Buffer Object Structures.

The tp_as_buffer field is not inherited, but the contained fields are inherited individually.

unsigned long PyTypeObject .tp_£flags
This field is a bit mask of various flags. Some flags indicate variant semantics for certain situations; others are used
to indicate that certain fields in the type object (or in the extension structures referenced via tp_as_number,
tp_as_sequence, tp_as_mapping, and tp_as_buffer) that were historically not always present are
valid; if such a flag bit is clear, the type fields it guards must not be accessed and must be considered to have a zero
or NULL value instead.

Inheritance of this field is complicated. Most flag bits are inherited individually, i.e. if the base type has a flag bit set,
the subtype inherits this flag bit. The flag bits that pertain to extension structures are strictly inherited if the extension
structure is inherited, i.e. the base type’s value of the flag bit is copied into the subtype together with a pointer to
the extension structure. The Py TPFLAGS_HAVE_ GC flag bit is inherited together with the tp_ t raverse and
tp_clear fields, i.e. if the Py TPFLAGS HAVE_GC flag bit is clear in the subtype and the tp_traverse
and tp_clear fields in the subtype exist and have NULL values.

11.3. Type Objects 177

The Python/C API, Wydanie 3.7.17

The following bit masks are currently defined; these can be ORed together using the | operator to form the value of
the tp_ flags field. The macro Py Type_ HasFeature () takes a type and a flags value, #p and f, and checks
whether tp->tp_flags & f isnon-zero.

Py_TPFLAGS_HEAPTYPE
This bit is set when the type object itself is allocated on the heap. In this case, the ob_type field of its
instances is considered a reference to the type, and the type object is INCREF’ed when a new instance is
created, and DECREFed when an instance is destroyed (this does not apply to instances of subtypes; only
the type referenced by the instance’s ob_type gets INCREFed or DECREF’ed).

Py _TPFLAGS_BASETYPE
This bit is set when the type can be used as the base type of another type. If this bit is clear, the type cannot
be subtyped (similar to a ,final” class in Java).

Py_TPFLAGS_READY
This bit is set when the type object has been fully initialized by Py Type_Ready ().

Py_TPFLAGS_READYING
This bit is set while Py Type_Ready () is in the process of initializing the type object.

Py_TPFLAGS_HAVE_GC
This bit is set when the object supports garbage collection. If this bit is set, instances must be created
using PyObject_GC_New () and destroyed using PyObject_GC_Del (). More information in sec-
tion Supporting Cyclic Garbage Collection. This bit also implies that the GC-related fields tp_traverse
and tp_clear are present in the type object.

Py_TPFLAGS_DEFAULT
This is a bitmask of all the bits that pertain to the existence of certain fields in the type object and its extension
structures. Currently, it includes the following bits: Py_TPFLAGS_HAVE_STACKLESS_EXTENSION,
Py_TPFLAGS_HAVE_VERSION_TAG.

Py_TPFLAGS_LONG_SUBCLASS
Py_TPFLAGS_LIST SUBCLASS
Py_TPFLAGS_TUPLE_SUBCLASS
Py_TPFLAGS_BYTES_SUBCLASS
Py_TPFLAGS_UNICODE_SUBCLASS
Py_TPFLAGS_DICT_ SUBCLASS
Py_TPFLAGS_BASE_EXC_SUBCLASS

Py_TPFLAGS_TYPE_SUBCLASS
These flags are used by functions such as PyLong_Check () to quickly determine if a type is a subclass
of a built-in type; such specific checks are faster than a generic check, like PyObject_IsInstance ().
Custom types that inherit from built-ins should have their tp_ f1ags set appropriately, or the code that
interacts with such types will behave differently depending on what kind of check is used.

Py_TPFLAGS_HAVE_FINALIZE
This bit is set when the tp_finalize slotis present in the type structure.

Nowe w wersji 3.4.

const char* PyTypeObject .tp_doc

An optional pointer to a NUL-terminated C string giving the docstring for this type object. This is exposed as the
___doc___ attribute on the type and instances of the type.

This field is not inherited by subtypes.

178

Rozdziat 11. Object Implementation Support

The Python/C API, Wydanie 3.7.17

traverseproc PyTypeObject .tp_traverse
An optional pointer to a traversal function for the garbage collector. This is only used if the
Py_TPFLAGS_HAVE_GC flag bit is set. More information about Python’s garbage collection scheme can be
found in section Supporting Cyclic Garbage Collection.

The t p_ t raverse pointer is used by the garbage collector to detect reference cycles. A typical implementation of
a tp_traverse function simply calls Py_VISTT () on each of the instance’s members that are Python objects
that the instance owns. For example, this is function local_traverse () fromthe _thread extension module:

static int
local_traverse (localobject *self, visitproc visit, woid *arg)
{

Py_VISIT (self->args);

Py_VISIT (self->kw);

Py_VISIT (self->dict);

return O;

Note that Py VISIT () is called only on those members that can participate in reference cycles. Although there
is also a sel f->key member, it can only be NULL or a Python string and therefore cannot be part of a reference
cycle.

On the other hand, even if you know a member can never be part of a cycle, as a debugging aid you may want to
visit it anyway just so the gc module’s get _referents () function will include it.

Ostrzezenie: When implementing tp_ t raverse, only the members that the instance owns (by having strong
references to them) must be visited. For instance, if an object supports weak references viathe tp_weaklist
slot, the pointer supporting the linked list (what p_weaklist points to) must not be visited as the instance does
not directly own the weak references to itself (the weakreference list is there to support the weak reference
machinery, but the instance has no strong reference to the elements inside it, as they are allowed to be removed
even if the instance is still alive).

Note that Py VISTT () requires the visit and arg parameters to local_traverse () to have these specific
names; don’t name them just anything.

This field is inherited by subtypes together with tp_clear and the Py_ TPFLAGS_HAVE_GC flag bit: the flag
bit, tp_traverse,and tp_clear are all inherited from the base type if they are all zero in the subtype.

inquiry PyTypeObject .tp_clear
An optional pointer to a clear function for the garbage collector. This is only used if the Py TPFLAGS_HAVE_GC
flag bit is set.

The tp_clear member function is used to break reference cycles in cyclic garbage detected by the garbage
collector. Taken together, all tp_ c1ear functions in the system must combine to break all reference cycles. This
is subtle, and if in any doubt supply a tp_clear function. For example, the tuple type does not implement a
tp_clear function, because it’s possible to prove that no reference cycle can be composed entirely of tuples.
Therefore the tp_clear functions of other types must be sufficient to break any cycle containing a tuple. This
isn’t immediately obvious, and there’s rarely a good reason to avoid implementing tp_clear.

Implementations of tp_ clear should drop the instance’s references to those of its members that may be Python
objects, and set its pointers to those members to NULL, as in the following example:

static int
local_clear (localobject *self)

{

Py_CLEAR (self->key);

(ciag dalszy na nastgpnej stronie)

11.3. Type Objects 179

The Python/C API, Wydanie 3.7.17

(kontynuacja poprzedniej strony)

Py_CLEAR(self->args);
Py_CLEAR (self->kw);
Py_CLEAR(self->dict);
return O;

The Py_CLEAR () macro should be used, because clearing references is delicate: the reference to the contained
object must not be decremented until after the pointer to the contained object is set to NULL. This is because
decrementing the reference count may cause the contained object to become trash, triggering a chain of reclamation
activity that may include invoking arbitrary Python code (due to finalizers, or weakref callbacks, associated with the
contained object). If it’s possible for such code to reference self again, it’s important that the pointer to the contained
object be NULL at that time, so that self knows the contained object can no longer be used. The Py CLEAR ()
macro performs the operations in a safe order.

Because the goal of tp_clear functions is to break reference cycles, it’s not necessary to clear contained objects
like Python strings or Python integers, which can’t participate in reference cycles. On the other hand, it may be
convenient to clear all contained Python objects, and write the type’s t p_ deal 1ocfunctiontoinvoke tp_clear.

More information about Python’s garbage collection scheme can be found in section Supporting Cyclic Garbage
Collection.

This field is inherited by subtypes together with tp_traverse and the Py TPFLAGS_HAVE_GC flag bit: the
flag bit, tp_traverse, and tp_clear are all inherited from the base type if they are all zero in the subtype.

richcmpfunc PyTypeObject . tp_richcompare

An optional pointer to the rich comparison function, whose signature is PyObject
*tp_richcompare (PyObject *a, PyObject *b, int op). The first parameter is guarante-
ed to be an instance of the type that is defined by Py TypeObject.

The function should return the result of the comparison (usually Py_True or Py_False). If the comparison
is undefined, it must return Py_Not Implemented, if another error occurred it must return NULL and set an
exception condition.

Informacja: If you want to implement a type for which only a limited set of comparisons makes sense (e.g. ==
and ! =, but not < and friends), directly raise TypeError in the rich comparison function.

This field is inherited by subtypes together with t p_ hash: a subtype inherits t p_ richcompareand tp_hash
when the subtype’s tp_richcompare and tp_hash are both NULL.

The following constants are defined to be used as the third argument for tp_ richcompare and for
PyObject_RichCompare ():

Constant | Comparison
Py_LT <

Py_LE <=

Py_EOQ ==

Py_NE 1=

Py_GT >

Py_GE >=

The following macro is defined to ease writing rich comparison functions:

PyObject *Py_RETURN_RICHCOMPARE (VAL_A, VAL_B, int op)
Return Py_True or Py_False from the function, depending on the result of a comparison. VAL_A and

180

Rozdziat 11. Object Implementation Support

The Python/C API, Wydanie 3.7.17

VAL_B must be orderable by C comparison operators (for example, they may be C ints or floats). The third
argument specifies the requested operation, as for PyObject_RichCompare ().

The return value’s reference count is properly incremented.
On error, sets an exception and returns NULL from the function.
Nowe w wersji 3.7.

Py_ssize_t PyTypeObject.tp_weaklistoffset
If the instances of this type are weakly referenceable, this field is greater than zero and contains the offset in
the instance structure of the weak reference list head (ignoring the GC header, if present); this offset is used by
PyObject_ClearWeakRefs () andthe PyWeakref_* () functions. The instance structure needs to include
a field of type PyOb ject * which is initialized to NULL.

Do not confuse this field with tp_weak 11 st; that is the list head for weak references to the type object itself.

This field is inherited by subtypes, but see the rules listed below. A subtype may override this offset; this means
that the subtype uses a different weak reference list head than the base type. Since the list head is always found via
tp_weaklistoffset, this should not be a problem.

When a type defined by a class statement has no ___slots__ declaration, and none of its base types are weakly
referenceable, the type is made weakly referenceable by adding a weak reference list head slot to the instance layout
and setting the tp_weaklistoffset of thatslot’s offset.

When a type’s __slots___ declaration contains a slot named __weakref__, that slot becomes the weak refe-
rence list head for instances of the type, and the slot’s offset is stored in the type’s tp_weaklistoffset.

When a type’s __slots__ declaration does not contain a slot named __weakref
tp_weaklistoffset from its base type.

, the type inherits its

getiterfunc PyTypeObject .tp_iter
An optional pointer to a function that returns an iterator for the object. Its presence normally signals that the instances
of this type are iterable (although sequences may be iterable without this function).

This function has the same signature as PyOb ject_GetIter ().
This field is inherited by subtypes.

iternextfunc PyTypeObject .tp_iternext
An optional pointer to a function that returns the next item in an iterator. When the iterator is exhausted, it must
return NULL; a StopIteration exception may or may not be set. When another error occurs, it must return
NULL too. Its presence signals that the instances of this type are iterators.

Iterator types should also define the t p_ i t e r function, and that function should return the iterator instance itself
(not a new iterator instance).

This function has the same signature as Py Iter_ Next ().
This field is inherited by subtypes.

struct PyMethodDef* PyTypeObject . tp_methods
An optional pointer to a static NULL-terminated array of PyMethodDef structures, declaring regular methods
of this type.

For each entry in the array, an entry is added to the type’s dictionary (see tp_dict below) containing a method
descriptor.

This field is not inherited by subtypes (methods are inherited through a different mechanism).

struct PyMemberDef* PyTypeObject . tp_members
An optional pointer to a static NULL-terminated array of PyMemberDe £ structures, declaring regular data mem-
bers (fields or slots) of instances of this type.

11.3. Type Objects 181

The Python/C API, Wydanie 3.7.17

For each entry in the array, an entry is added to the type’s dictionary (see tp_dict below) containing a member
descriptor.

This field is not inherited by subtypes (members are inherited through a different mechanism).

struct PyGetSetDef* PyTypeObject .tp_getset
An optional pointer to a static NULL-terminated array of PyGet SetDe £ structures, declaring computed attributes
of instances of this type.

For each entry in the array, an entry is added to the type’s dictionary (see tp_dict below) containing a getset
descriptor.

This field is not inherited by subtypes (computed attributes are inherited through a different mechanism).

PyTypeObject* PyTypeObject .tp_base
An optional pointer to a base type from which type properties are inherited. At this level, only single inheritance is
supported; multiple inheritance require dynamically creating a type object by calling the metatype.

This field is not inherited by subtypes (obviously), but it defaults to sPyBaseObject_Type (which to Python
programmers is known as the type object).

PyObject* PyTypeObject .tp_dict
The type’s dictionary is stored here by Py Type_Ready ().

This field should normally be initialized to NULL before PyType_Ready is called; it may also be initialized to
a dictionary containing initial attributes for the type. Once PyType Ready () has initialized the type, extra
attributes for the type may be added to this dictionary only if they don’t correspond to overloaded operations (like
add__()).

This field is not inherited by subtypes (though the attributes defined in here are inherited through a different me-
chanism).

Ostrzezenie: It is not safe to use PyDict_Set Item () on or otherwise modify tp_dict with the dictio-
nary C-APL

descrgetfunc PyTypeObject .tp_descr_get
An optional pointer to a ,,descriptor get” function.

The function signature is

PyObject * tp_descr_get (PyObject *self, PyObject *obj, PyObject *type);

This field is inherited by subtypes.

descrsetfunc PyTypeObject .tp_descr_set
An optional pointer to a function for setting and deleting a descriptor’s value.

The function signature is

int tp_descr_set (PyObject *self, PyObject *obj, PyObject *value);

The value argument is set to NULL to delete the value. This field is inherited by subtypes.

Py_ssize_t PyTypeObject .tp_dictoffset
If the instances of this type have a dictionary containing instance variables, this field is non-zero and con-
tains the offset in the instances of the type of the instance variable dictionary; this offset is used by
PyObject_GenericGetAttr().

Do not confuse this field with tp_dict; that is the dictionary for attributes of the type object itself.

182 Rozdziat 11. Object Implementation Support

The Python/C API, Wydanie 3.7.17

If the value of this field is greater than zero, it specifies the offset from the start of the instance structure. If the value
is less than zero, it specifies the offset from the end of the instance structure. A negative offset is more expensive to
use, and should only be used when the instance structure contains a variable-length part. This is used for example
to add an instance variable dictionary to subtypes of str or tuple. Note that the tp_basicsize field should
account for the dictionary added to the end in that case, even though the dictionary is not included in the basic
object layout. On a system with a pointer size of 4 bytes, tp_dictoffset should be set to —4 to indicate that
the dictionary is at the very end of the structure.

The real dictionary offset in an instance can be computed from a negative tp_dictoffset as follows:

dictoffset = tp_basicsize + abs(ob_size)*tp_itemsize + tp_dictoffset
if dictoffset is not aligned on sizeof (void*) :
round up to sizeof (void*)

where tp_basicsize, tp_itemsizeand tp_dictoffset aretaken from the type object, and ob_size
is taken from the instance. The absolute value is taken because ints use the sign of ob_size to sto-
re the sign of the number. (There’s never a need to do this calculation yourself; it is done for you by
_PyObject_GetDictPtr().)

This field is inherited by subtypes, but see the rules listed below. A subtype may override this offset; this means that
the subtype instances store the dictionary at a difference offset than the base type. Since the dictionary is always
found via tp_dictoffset, this should not be a problem.

When a type defined by a class statementhasno ___slots__ declaration, and none of its base types has an instance
variable dictionary, a dictionary slot is added to the instance layout and the tp_dictoffset is set to that slot’s
offset.

When a type defined by a class statement has a ___slots___ declaration, the type inherits its tp_dictoffset
from its base type.

(Adding aslotnamed __dict__ tothe ___slots__ declaration does not have the expected effect, it just causes
confusion. Maybe this should be added as a feature just like __weakref__ though.)
initproc PyTypeObject .tp_init
An optional pointer to an instance initialization function.
This function corresponds tothe __init__ () method of classes. Like __init__ (), itis possible to create an

instance without calling __init__ (), and it is possible to reinitialize an instance by calling its __init__ ()
method again.

The function signature is

int tp_init (PyObject *self, PyObject *args, PyObject *kwds)

The self argument is the instance to be initialized; the args and kwds arguments represent positional and keyword
arguments of the callto __init__ ().

The tp_init function, if not NULL, is called when an instance is created normally by calling its type, after the
type’s t o_new function has returned an instance of the type. If the £ p_ new function returns an instance of some
other type that is not a subtype of the original type, no tp_ init function is called; if tpp_new returns an instance
of a subtype of the original type, the subtype’s tp_init is called.

This field is inherited by subtypes.

allocfunc PyTypeObject .tp_alloc
An optional pointer to an instance allocation function.

The function signature is

PyObject *tp_alloc (PyTypeObject *self, Py_ssize_t nitems)

11.3. Type Objects 183

The Python/C API, Wydanie 3.7.17

The purpose of this function is to separate memory allocation from memory initialization. It should return a po-
inter to a block of memory of adequate length for the instance, suitably aligned, and initialized to zeros, but with
ob_refcnt set to 1 and ob_type set to the type argument. If the type’s tp_itemsize is non-zero, the
object’s ob_size field should be initialized to nitems and the length of the allocated memory block should be
tp_basicsize + nitems*tp_itemsize, rounded up to a multiple of sizeof (void*); otherwise,
nitems is not used and the length of the block should be tp_basicsize.

Do not use this function to do any other instance initialization, not even to allocate additional memory; that should
be done by tp_new.

This field is inherited by static subtypes, but not by dynamic subtypes (subtypes created by a class statement); in
the latter, this field is always set to PyType_GenericAlloc (), to force a standard heap allocation strategy.
That is also the recommended value for statically defined types.

newfunc PyTypeObject .tp_new

An optional pointer to an instance creation function.

If this function is NULL for a particular type, that type cannot be called to create new instances; presumably there
is some other way to create instances, like a factory function.

The function signature is

PyObject *tp_new (PyTypeObject *subtype, PyObject *args, PyObject *kwds)

The subtype argument is the type of the object being created; the args and kwds arguments represent positional
and keyword arguments of the call to the type. Note that subtype doesn’t have to equal the type whose tp_new
function is called; it may be a subtype of that type (but not an unrelated type).

The tp_new function should call subtype->tp_alloc (subtype, nitems) to allocate space for the
object, and then do only as much further initialization as is absolutely necessary. Initialization that can safely be
ignored or repeated should be placed in the tp_init handler. A good rule of thumb is that for immutable types,
all initialization should take place in tp_new, while for mutable types, most initialization should be deferred to
tp_init.

This field is inherited by subtypes, except it is not inherited by static types whose tp_base is NULL or
&PyBaseObject_Type.

destructor PyTypeObject .tp_free

An optional pointer to an instance deallocation function. Its signature is freefunc:

void tp_free(void *)

An initializer that is compatible with this signature is PyOb ject_Free ().

This field is inherited by static subtypes, but not by dynamic subtypes (subtypes created by a class statement); in
the latter, this field is set to a deallocator suitable to match Py Type GenericAlloc () and the value of the
Py_TPFLAGS_HAVE_GC flag bit.

inquiry PyTypeObject .tp_is_gc

An optional pointer to a function called by the garbage collector.

The garbage collector needs to know whether a particular object is collectible or not. Normally, it is sufficient to
look at the object’s type’s t p_ £ 1ags field, and check the Py TPFLAGS_HAVE_ GC flag bit. But some types have
a mixture of statically and dynamically allocated instances, and the statically allocated instances are not collectible.
Such types should define this function; it should return 1 for a collectible instance, and O for a non-collectible
instance. The signature is

int tp_is_gc(PyObject *self)

184

Rozdziat 11. Object Implementation Support

The Python/C API, Wydanie 3.7.17

(The only example of this are types themselves. The metatype, Py Type_

between statically and dynamically allocated types.)
This field is inherited by subtypes.

PyObject* PyTypeObject . tp_bases
Tuple of base types.

Type, defines this function to distinguish

This is set for types created by a class statement. It should be NULL for statically defined types.

This field is not inherited.

PyObject* PyTypeObject . tp_mro

Tuple containing the expanded set of base types, starting with the type itself and ending with object, in Method

Resolution Order.
This field is not inherited; it is calculated fresh by Py Type_ Ready ().

destructor PyTypeObject .tp_finalize

An optional pointer to an instance finalization function. Its signature is destructor:

void tp_finalize (PyObject *)

If tp_finalizeisset, the interpreter calls it once when finalizing an instance. It is called either from the garbage
collector (if the instance is part of an isolated reference cycle) or just before the object is deallocated. Either way,

it is guaranteed to be called before attempting to break reference cycles,

state.

ensuring that it finds the object in a sane

tp_finalize should not mutate the current exception status; therefore, a recommended way to write a non-

trivial finalizer is:

static void
local_finalize (PyObject *self)
{

PyObject *error_type, *error_value,
/* Save the current exception, */
PyErr_Fetch (&error_type,

if any.
&error_value,
/* */

*/

error_value,

/* Restore the saved exception.
PyErr_Restore (error_type,

*error_traceback;

&error_traceback);

error_traceback);

For this field to be taken into account
Py TPFLAGS_HAVE FINALIZE ﬂags bit.

(even through

This field is inherited by subtypes.
Nowe w wersji 3.4.

Zobacz takze:

»Safe object finalization” (PEP 442)

PyObject* PyTypeObject . tp_cache
Unused. Not inherited. Internal use only.

PyObject* PyTypeObject .tp_subclasses
List of weak references to subclasses. Not inherited. Internal use only.

inheritance),

you must also set the

11.3. Type Objects

185

https://www.python.org/dev/peps/pep-0442

The Python/C API, Wydanie 3.7.17

PyObject* PyTypeObject .tp_weaklist

Weak reference list head, for weak references to this type object. Not inherited. Internal use only.

The remaining fields are only defined if the feature test macro COUNT_ALLOCS is defined, and are for internal use only.
They are documented here for completeness. None of these fields are inherited by subtypes.

Py_ssize_t PyTypeObject.tp_allocs
Number of allocations.

Py_ssize_t PyTypeObject.tp_frees
Number of frees.

Py_ssize_t PyTypeObject.tp_maxalloc
Maximum simultaneously allocated objects.

PyTypeObject* PyTypeObject . tp_next

Pointer to the next type object with a non-zero tp_allocs field.

Also, note that, in a garbage collected Python, tp_dealloc may be called from any Python thread, not just the thread which
created the object (if the object becomes part of a refcount cycle, that cycle might be collected by a garbage collection
on any thread). This is not a problem for Python API calls, since the thread on which tp_dealloc is called will own the
Global Interpreter Lock (GIL). However, if the object being destroyed in turn destroys objects from some other C or C++
library, care should be taken to ensure that destroying those objects on the thread which called tp_dealloc will not violate

any assumptions of the library.

11.4 Number Object Structures

PyNumberMethods

This structure holds pointers to the functions which an object uses to implement the number protocol. Each function
is used by the function of similar name documented in the Number Protocol section.

Here is the structure definition:

typedef struct {
binaryfunc nb_add;
binaryfunc nb_subtract;
binaryfunc nb_multiply;
binaryfunc nb_remainder;
binaryfunc nb_divmod;
ternaryfunc nb_power;
unaryfunc nb_negative;
unaryfunc nb_positive;
unaryfunc nb_absolute;
inquiry nb_bool;
unaryfunc nb_invert;
binaryfunc nb_1lshift;
binaryfunc nb_rshift;
binaryfunc nb_and;
binaryfunc nb_xor;
binaryfunc nb_or;
unaryfunc nb_int;
void *nb_reserved;
unaryfunc nb_float;

binaryfunc nb_inplace_add;
binaryfunc nb_inplace_subtract;
binaryfunc nb_inplace_multiply;

(ciag dalszy na nastgpnej stronie)

186

Rozdziat 11

. Object Implementation Support

The Python/C API, Wydanie 3.7.17

(kontynuacja poprzedniej strony)

binaryfunc nb_inplace_remainder;
ternaryfunc nb_inplace_power;
binaryfunc nb_inplace_1lshift;
binaryfunc nb_inplace_rshift;
binaryfunc nb_inplace_and;
binaryfunc nb_inplace_xor;
binaryfunc nb_inplace_or;

binaryfunc nb_floor_divide;
binaryfunc nb_true_divide;
binaryfunc nb_inplace_floor_divide;
binaryfunc nb_inplace_true_divide;

unaryfunc nb_index;
binaryfunc nb_matrix_multiply;

binaryfunc nb_inplace_matrix_multiply;
} PyNumberMethods;

Informacja: Binary and ternary functions must check the type of all their operands, and implement the necessary
conversions (at least one of the operands is an instance of the defined type). If the operation is not defined for the
given operands, binary and ternary functions must return Py_Not Implemented, if another error occurred they
must return NULL and set an exception.

Informacja: The nb_reserved field should always be NULL. It was previously called nb_1ong, and was
renamed in Python 3.0.1.

11.5 Mapping Object Structures

PyMappingMethods
This structure holds pointers to the functions which an object uses to implement the mapping protocol. It has three
members:

lenfunc PyMappingMethods.mp_length
This function is used by PyMapping Size () and PyObject_Size (), and has the same signature. This slot
may be set to NULL if the object has no defined length.

binaryfunc PyMappingMethods .mp_subscript
This function is used by PyOb ject_GetItem () and PySequence_GetSlice (), and has the same signa-
ture as PyObject_GetItem (). This slot must be filled for the PyMapping_ Check () function to return 1,
it can be NULL otherwise.

objobjargproc PyMappingMethods .mp_ass_subscript
This function is used by PyObject_SetItem(), PyObject_DellItem(), PyObject_SetSlice ()
and PyObject_DelSlice (). It has the same signature as PyObject_SetItem (), but v can also be set to
NULL to delete an item. If this slot is NULL, the object does not support item assignment and deletion.

11.5. Mapping Object Structures 187

The Python/C API, Wydanie 3.7.17

11.6 Sequence Object Structures

PySequenceMethods
This structure holds pointers to the functions which an object uses to implement the sequence protocol.

lenfunc PySequenceMethods.sq_length
This function is used by PySequence_Size () and PyObject_Size (), and has the same signature. It is
also used for handling negative indices via the sqg_itemand the sqg_ass_itemslots.

binaryfunc PySequenceMethods.sq concat
This function is used by PySequence_Concat () and has the same signature. It is also used by the + operator,
after trying the numeric addition via the nb_add slot.

ssizeargfunc PySequenceMethods.sq_repeat
This function is used by PySequence Repeat () and has the same signature. It is also used by the * operator,
after trying numeric multiplication via the nb_multiply slot.

ssizeargfunc PySequenceMethods.sq _item
This function is used by PySequence_GetItem() and has the same signature. It is also used by
PyObject_GetItem (), after trying the subscription via the mp_ subscript slot. This slot must be filled
for the PySequence_Check () function to return 1, it can be NULL otherwise.

Negative indexes are handled as follows: if the sq_length slot is filled, it is called and the sequence length is
used to compute a positive index which is passed to sgq_item. If sg_length is NULL, the index is passed as is
to the function.

ssizeobjargproc PySequenceMethods.sq_ass_item
This function is used by PySequence_SetItem() and has the same signature. It is also used by
PyObject_SetItem() and PyObject_DelItem (), after trying the item assignment and deletion via the
mp_ass_subscript slot. This slot may be left to NULL if the object does not support item assignment and
deletion.

objobjproc PySequenceMethods.sq_contains
This function may be used by PySequence_Contains () and has the same signature. This slot may be left to
NULL, in this case PySequence_Contains () simply traverses the sequence until it finds a match.

binaryfunc PySequenceMethods.sq_inplace_concat
This function is used by PySequence_InPlaceConcat () and has the same signature. It should modify its
first operand, and return it. This slot may be left to NULL, in this case PySequence_InPlaceConcat () will
fall back to PySequence_Concat (). It is also used by the augmented assignment +=, after trying numeric
in-place addition via the nb_inplace_add slot.

ssizeargfunc PySequenceMethods.sq_inplace_repeat
This function is used by PySequence_InPlaceRepeat () and has the same signature. It should modify its
first operand, and return it. This slot may be left to NULL, in this case PySequence_InPlaceRepeat () will
fall back to PySequence_Repeat (). It is also used by the augmented assignment *=, after trying numeric
in-place multiplication via the nb_inplace_multiply slot.

188 Rozdziat 11. Object Implementation Support

The Python/C API, Wydanie 3.7.17

11.7 Buffer Object Structures

PyBufferProcs
This structure holds pointers to the functions required by the Buffer protocol. The protocol defines how an exporter
object can expose its internal data to consumer objects.

getbufferproc PyBufferProcs .bf_getbuffer
The signature of this function is:

int (PyObject *exporter, Py_buffer *view, int flags);

Handle a request to exporter to fill in view as specified by flags. Except for point (3), an implementation of this
function MUST take these steps:

(1) Check if the request can be met. If not, raise PyExc_BufferError,set view—>o0b7 to NULL and return
-1.

(2) Fill in the requested fields.
(3) Increment an internal counter for the number of exports.
(4) Set view->o0b7j to exporter and increment view—>ob .
(5) Return 0.
If exporter is part of a chain or tree of buffer providers, two main schemes can be used:

¢ Re-export: Each member of the tree acts as the exporting object and sets view—>obj to a new reference to
itself.

e Redirect: The buffer request is redirected to the root object of the tree. Here, view—>o0bj will be a new
reference to the root object.

The individual fields of view are described in section Buffer structure, the rules how an exporter must react to specific
requests are in section Buffer request types.

All memory pointed to in the Py__buf fer structure belongs to the exporter and must remain valid until there are
no consumers left. format, shape, strides, suboffsetsand internal are read-only for the consumer.

PyBuffer FillInfo () provides an easy way of exposing a simple bytes buffer while dealing correctly with
all request types.

PyObject_GetBuffer () is the interface for the consumer that wraps this function.

releasebufferproc PyBufferProcs .bf_releasebuffer
The signature of this function is:

void (PyObject *exporter, Py_buffer *view);

Handle a request to release the resources of the buffer. If no resources need to be released, PyBufferProcs.
bf_releasebuffer may be NULL. Otherwise, a standard implementation of this function will take these
optional steps:

(1) Decrement an internal counter for the number of exports.
(2) If the counter is 0, free all memory associated with view.

The exporter MUST use the internal field to keep track of buffer-specific resources. This field is guaranteed
to remain constant, while a consumer MAY pass a copy of the original buffer as the view argument.

This function MUST NOT decrement view—>ob j, since that is done automatically in PyBuffer_Release ()
(this scheme is useful for breaking reference cycles).

11.7. Buffer Object Structures 189

The Python/C API, Wydanie 3.7.17

PyBuffer Release () is the interface for the consumer that wraps this function.

11.8 Async Object Structures

Nowe w wersji 3.5.

PyAsyncMethods
This structure holds pointers to the functions required to implement awaitable and asynchronous iterator objects.

Here is the structure definition:

typedef struct {
unaryfunc am_await;
unaryfunc am_aiter;
unaryfunc am_anext;
} PyAsyncMethods;

unaryfunc PyAsyncMethods.am_await
The signature of this function is:

PyObject *am_await (PyObject *self)

The returned object must be an iterator, i.e. PyIter Check () must return 1 for it.
This slot may be set to NULL if an object is not an awaitable.

unaryfunc PyAsyncMethods.am_aiter
The signature of this function is:

PyObject *am_aiter (PyObject *self)

Must return an awaitable object. See __anext___ () for details.
This slot may be set to NULL if an object does not implement asynchronous iteration protocol.

unaryfunc PyAsyncMethods.am_anext
The signature of this function is:

’Pyobject *am_anext (PyObject *self)

Must return an awaitable object. See __anext___ () for details. This slot may be set to NULL.

11.9 Supporting Cyclic Garbage Collection

Python’s support for detecting and collecting garbage which involves circular references requires support from object
types which are ,,containers” for other objects which may also be containers. Types which do not store references to other
objects, or which only store references to atomic types (such as numbers or strings), do not need to provide any explicit
support for garbage collection.

To create a container type, the tp_ flags field of the type object must include the Py TPFLAGS_HAVE_GC and
provide an implementation of the tp_t raverse handler. If instances of the type are mutable, a tp_clear imple-
mentation must also be provided.

Py_TPFLAGS_HAVE_GC

Objects with a type with this flag set must conform with the rules documented here. For convenience these objects
will be referred to as container objects.

190 Rozdziat 11. Object Implementation Support

The Python/C API, Wydanie 3.7.17

Constructors for container types must conform to two rules:
1. The memory for the object must be allocated using PyObject_GC_New () or PyObject_GC_NewVar ().

2. Once all the fields which may contain references to other containers are initialized, it must call
PyObject_GC_Track ().

TYPE* PyObject_GC_New (TYPE, PyTypeObject *type)
Analogous to PyObject_New () but for container objects with the Py TPFLAGS _HAVE_GC flag set.

TYPE* PyObject_GC_NewVar (TYPE, PyTypeObject *type, Py_ssize_t size)
Analogous to PyOb ject_NewVar () but for container objects with the Py_ TPFLAGS_HAVE_ GC flag set.

TYPE* PyObject_GC_Resize (TYPE, PyVarObject *op, Py_ssize_t newsize)
Resize an object allocated by PyObject_NewVar (). Returns the resized object or NULL on failure. op must
not be tracked by the collector yet.

void PyObject_GC_Track (PyObject *op)
Adds the object op to the set of container objects tracked by the collector. The collector can run at unexpec-
ted times so objects must be valid while being tracked. This should be called once all the fields followed by the
tp_traverse handler become valid, usually near the end of the constructor.

void _PyObject_GC_TRACK (PyObject *op)
A macro version of PyObject_GC_Track (). It should not be used for extension modules.

Niezalecane od wersji 3.6: This macro is removed from Python 3.8.
Similarly, the deallocator for the object must conform to a similar pair of rules:
1. Before fields which refer to other containers are invalidated, PyOb ject_GC_UnTrack () must be called.
2. The object’s memory must be deallocated using PyObject_GC_Del ().

void PyObject_GC_Del (void *op)
Releases memory allocated to an object using PyObject_GC_New () or PyObject_GC_NewVar ().

void PyObject_GC_UnTrack (void *op)
Remove the object op from the set of container objects tracked by the collector. Note that
PyObject_GC_Track () can be called again on this object to add it back to the set of tracked objects.
The deallocator (tp_dealloc handler) should call this for the object before any of the fields used by the
tp_traverse handler become invalid.

void _PyObject_GC_UNTRACK (PyObject *op)
A macro version of PyObject_GC_UnTrack (). It should not be used for extension modules.

Niezalecane od wersji 3.6: This macro is removed from Python 3.8.
The tp_traverse handler accepts a function parameter of this type:

int (*visitproc) (PyObject *object, void *arg)
Type of the visitor function passed to the tp_ t raverse handler. The function should be called with an object
to traverse as object and the third parameter to the tp_t raverse handler as arg. The Python core uses several
visitor functions to implement cyclic garbage detection; it’s not expected that users will need to write their own
visitor functions.

The tp_t raverse handler must have the following type:

int (*traverseproc) (PyObject *self, visitproc visit, void *arg)
Traversal function for a container object. Implementations must call the visit function for each object directly con-
tained by self, with the parameters to visit being the contained object and the arg value passed to the handler. The
visit function must not be called with a NULL object argument. If visit returns a non-zero value that value should
be returned immediately.

11.9. Supporting Cyclic Garbage Collection 191

The Python/C API, Wydanie 3.7.17

To simplify writing tp_traverse handlers, a Py_VISIT () macro is provided. In order to use this macro, the
tp_traverse implementation must name its arguments exactly visit and arg:

void Py_VISIT (PyObject *o)

If o0 is not NULL, call the visit callback, with arguments o and arg. If visit returns a non-zero value, then return it.
Using this macro, tp_ t raverse handlers look like:

static int
my_traverse (Noddy *self, visitproc visit, woid *arg)
{

Py_VISIT (self->foo0);

Py_VISIT (self->bar);

return O;

The tp_clear handler must be of the i nguiry type, or NULL if the object is immutable.

int (*inquiry) (PyObject *self)

Drop references that may have created reference cycles. Immutable objects do not have to define this method since
they can never directly create reference cycles. Note that the object must still be valid after calling this method

(don’t just call Py_DECREF () on a reference). The collector will call this method if it detects that this object is
involved in a reference cycle.

192

Rozdziat 11. Object Implementation Support

rozDzIAE 12

API and ABI Versioning

PY_ VERSION_HEX is the Python version number encoded in a single integer.

For example if the PY_VERSION_HEX is set to 0x030401a2, the underlying version information can be found by
treating it as a 32 bit number in the following manner:

By- | Bits (big en- | Znaczenie

tes | dian order)

1 1-8 PY_MAJOR_VERSION (the 3in3.4.1a2)

2 9-16 PY_MINOR_VERSION (the 4in 3.4.1a2)

3 17-24 PY_MICRO_VERSION (the 1in 3.4.1a2)

4 25-28 PY_RELEASE_LEVEL (0xA for alpha, 0xB for beta, 0xC for release candi-
date and 0xF for final), in this case it is alpha.

29-32 PY_RELEASE_SERIAL (the 2 in 3.4 .1a2, zero for final releases)

Thus 3.4.1a2 is hexversion 0x030401a2.

All the given macros are defined in Include/patchlevel.h.

193

https://github.com/python/cpython/tree/3.7/Include/patchlevel.h

The Python/C API, Wydanie 3.7.17

194 Rozdziat 12. API and ABI Versioning

DODATEK A

Stowik

»»>"" Domyslny znak zachgty powloki interaktywnej w jgzyku Python. Czgsto spotykane w przypadku przyktadéw kodu,
ktére moga by¢ wykonywane w interpreterze.

. DomySlny znak zachety powtoki interaktywnej Pythona przy wpisywaniu kodu dla wcigtego bloku kodu, wewnatrz
pary odpowiadajacych sobie ogranicznikéw (nawiaséw, nawiaséw kwadratowych, nawiaséw klamrowych lub po-
tréjnych cudzystowdéw) lub po uzyciu dekoratora.

2to3 A tool that tries to convert Python 2.x code to Python 3.x code by handling most of the incompatibilities which can
be detected by parsing the source and traversing the parse tree.

2to3 is available in the standard library as 1 1b2t 03; a standalone entry point is provided as Tools/scripts/
2t o03. See 2to3-reference.

abstract base class Abstract base classes complement duck-typing by providing a way to define interfaces when other
techniques like hasattr () would be clumsy or subtly wrong (for example with magic methods). ABCs introduce
virtual subclasses, which are classes that don’t inherit from a class but are still recognized by isinstance () and
issubclass () ;see the abc module documentation. Python comes with many built-in ABCs for data structures
(in the collections.abc module), numbers (in the numbers module), streams (in the i o module), import
finders and loaders (in the import1lib.abc module). You can create your own ABCs with the abc module.

annotation A label associated with a variable, a class attribute or a function parameter or return value, used by convention
as a type hint.

Annotations of local variables cannot be accessed at runtime, but annotations of global variables, class attributes, and
functions are stored in the __annotations___ special attribute of modules, classes, and functions, respectively.

See variable annotation, function annotation, PEP 484 and PEP 526, which describe this functionality.
argument A value passed to a function (or method) when calling the function. There are two kinds of argument:

e keyword argument: an argument preceded by an identifier (e.g. name=) in a function call or passed as a value
in a dictionary preceded by * *. For example, 3 and 5 are both keyword arguments in the following calls to
complex ():

complex (real=3, imag=5)
complex (**{'real': 3, 'imag': 5})

195

https://www.python.org/dev/peps/pep-0484
https://www.python.org/dev/peps/pep-0526

The Python/C API, Wydanie 3.7.17

* positional argument: an argument that is not a keyword argument. Positional arguments can appear at the
beginning of an argument list and/or be passed as elements of an iterable preceded by *. For example, 3 and
5 are both positional arguments in the following calls:

complex (3, 5)
complex (* (3, 5))

Arguments are assigned to the named local variables in a function body. See the calls section for the rules governing
this assignment. Syntactically, any expression can be used to represent an argument; the evaluated value is assigned
to the local variable.

See also the parameter glossary entry, the FAQ question on the difference between arguments and parameters, and
PEP 362.

asynchronous context manager An object which controls the environment seen in an async with statement by
defining __aenter_ () and __aexit__ () methods. Introduced by PEP 492.

asynchronous generator A function which returns an asynchronous generator iterator. It looks like a coroutine function
defined with async def except that it contains yield expressions for producing a series of values usable in an
async for loop.

Usually refers to an asynchronous generator function, but may refer to an asynchronous generator iterator in some
contexts. In cases where the intended meaning isn’t clear, using the full terms avoids ambiguity.

An asynchronous generator function may contain await expressions as well as async for,and async with
statements.

asynchronous generator iterator An object created by a asynchronous generator function.

This is an asynchronous iterator which when called using the __anext___ () method returns an awaitable object
which will execute the body of the asynchronous generator function until the next yield expression.

Each yield temporarily suspends processing, remembering the location execution state (including local variables
and pending try-statements). When the asynchronous generator iterator effectively resumes with another awaitable
returned by __anext__ (), it picks up where it left off. See PEP 492 and PEP 525.

asynchronous iterable An object, that can be used in an async for statement. Must return an asynchronous iterator
fromits __aiter__ () method. Introduced by PEP 492.

asynchronous iterator An object that implements the __aiter_ () and __anext__ () methods. __anext_
must return an awaitable object. async for resolves the awaitables returned by an asynchronous iterator’s
__anext__ () method until it raises a StopAsyncIteration exception. Introduced by PEP 492.

atrybut A value associated with an object which is referenced by name using dotted expressions. For example, if an
object o has an attribute a it would be referenced as o.a.

awaitable An object that can be used in an await expression. Can be a coroutine or an object withan __await__ ()
method. See also PEP 492.

BDFL Benevolent Dictator For Life, a.k.a. Guido van Rossum, Python’s creator.

binary file A file object able to read and write bytes-like objects. Examples of binary files are files opened in binary mode
("rb', 'wb' or 'rb+"'), sys.stdin.buffer, sys.stdout .buffer, and instances of 1o0.BytesIO
and gzip.GzipFile.

See also text file for a file object able to read and write st r objects.

bytes-like object An object that supports the Buffer Protocol and can export a C-contiguous buffer. This includes all
bytes,bytearray,and array.array objects, as well as many common memoryview objects. Bytes-like
objects can be used for various operations that work with binary data; these include compression, saving to a binary
file, and sending over a socket.

196 Dodatek A. Stowik

https://www.python.org/dev/peps/pep-0362
https://www.python.org/dev/peps/pep-0492
https://www.python.org/dev/peps/pep-0492
https://www.python.org/dev/peps/pep-0525
https://www.python.org/dev/peps/pep-0492
https://www.python.org/dev/peps/pep-0492
https://www.python.org/dev/peps/pep-0492
https://gvanrossum.github.io/

The Python/C API, Wydanie 3.7.17

Some operations need the binary data to be mutable. The documentation often refers to these as ,,read-write bytes-
like objects”. Example mutable buffer objects include bytearray andamemoryviewof abytearray. Other
operations require the binary data to be stored in immutable objects (,,read-only bytes-like objects”); examples of
these include bytes and a memoryview of a bytes object.

kod bajtowy Python source code is compiled into bytecode, the internal representation of a Python program in the
CPython interpreter. The bytecode is also cached in . pyc files so that executing the same file is faster the second
time (recompilation from source to bytecode can be avoided). This ,intermediate language” is said to run on a
virtual machine that executes the machine code corresponding to each bytecode. Do note that bytecodes are not
expected to work between different Python virtual machines, nor to be stable between Python releases.

A list of bytecode instructions can be found in the documentation for the dis module.

class A template for creating user-defined objects. Class definitions normally contain method definitions which operate
on instances of the class.

class variable A variable defined in a class and intended to be modified only at class level (i.e., not in an instance of the
class).

coercion The implicit conversion of an instance of one type to another during an operation which involves two arguments
of the same type. For example, int (3.15) converts the floating point number to the integer 3, but in 3+4. 5,
each argument is of a different type (one int, one float), and both must be converted to the same type before they
can be added or it will raise a TypeError. Without coercion, all arguments of even compatible types would have
to be normalized to the same value by the programmer, e.g., f1oat (3) +4 .5 rather than just 3+4.5.

complex number An extension of the familiar real number system in which all numbers are expressed as a sum of a real
part and an imaginary part. Imaginary numbers are real multiples of the imaginary unit (the square root of —1),
often written i1 in mathematics or j in engineering. Python has built-in support for complex numbers, which are
written with this latter notation; the imaginary part is written with a j suffix, e.g., 3+17. To get access to complex
equivalents of the math module, use cmath. Use of complex numbers is a fairly advanced mathematical feature.
If you're not aware of a need for them, it’s almost certain you can safely ignore them.

context manager An object which controls the environment seen in a with statement by defining __enter__ () and
__exit__ () methods. See PEP 343.

context variable A variable which can have different values depending on its context. This is similar to Thread-Local
Storage in which each execution thread may have a different value for a variable. However, with context variables,
there may be several contexts in one execution thread and the main usage for context variables is to keep track of
variables in concurrent asynchronous tasks. See contextvars.

contiguous A buffer is considered contiguous exactly if it is either C-contiguous or Fortran contiguous. Zero-dimensional
buffers are C and Fortran contiguous. In one-dimensional arrays, the items must be laid out in memory next to each
other, in order of increasing indexes starting from zero. In multidimensional C-contiguous arrays, the last index
varies the fastest when visiting items in order of memory address. However, in Fortran contiguous arrays, the first
index varies the fastest.

coroutine Coroutines are a more generalized form of subroutines. Subroutines are entered at one point and exited at
another point. Coroutines can be entered, exited, and resumed at many different points. They can be implemented
with the async def statement. See also PEP 492.

coroutine function A function which returns a coroutine object. A coroutine function may be defined with the async
def statement, and may contain await, async for,and async with keywords. These were introduced by
PEP 492.

CPython The canonical implementation of the Python programming language, as distributed on python.org. The term
,»CPython” is used when necessary to distinguish this implementation from others such as Jython or IronPython.

decorator A function returning another function, usually applied as a function transformation using the @wrapper
syntax. Common examples for decorators are classmethod () and staticmethod().

The decorator syntax is merely syntactic sugar, the following two function definitions are semantically equivalent:

197

https://www.python.org/dev/peps/pep-0343
https://www.python.org/dev/peps/pep-0492
https://www.python.org/dev/peps/pep-0492
https://www.python.org

The Python/C API, Wydanie 3.7.17

def f(...):
f = staticmethod (f)

@staticmethod
def f(...):

The same concept exists for classes, but is less commonly used there. See the documentation for function definitions
and class definitions for more about decorators.

descriptor Any object which defines the methods __get__ (), set__ (),or __delete__ (). When a class
attribute is a descriptor, its special binding behavior is triggered upon attribute lookup. Normally, using a.b to
get, set or delete an attribute looks up the object named b in the class dictionary for a, but if b is a descriptor,
the respective descriptor method gets called. Understanding descriptors is a key to a deep understanding of Python
because they are the basis for many features including functions, methods, properties, class methods, static methods,
and reference to super classes.

For more information about descriptors» methods, see descriptors.

dictionary An associative array, where arbitrary keys are mapped to values. The keys can be any object with
__hash__ () and __eqg__ () methods. Called a hash in Perl.

dictionary view The objects returned from dict .keys (),dict.values (),anddict.items () are called dic-
tionary views. They provide a dynamic view on the dictionary’s entries, which means that when the dictionary chan-
ges, the view reflects these changes. To force the dictionary view to become a full list use 1ist (dictview).
See dict-views.

docstring A string literal which appears as the first expression in a class, function or module. While ignored when the suite
is executed, it is recognized by the compiler and put into the __doc___ attribute of the enclosing class, function
or module. Since it is available via introspection, it is the canonical place for documentation of the object.

duck-typing A programming style which does not look at an object’s type to determine if it has the right interface;
instead, the method or attribute is simply called or used (,,If it looks like a duck and quacks like a duck, it must
be a duck.”) By emphasizing interfaces rather than specific types, well-designed code improves its flexibility by
allowing polymorphic substitution. Duck-typing avoids tests using t ype () or isinstance (). (Note, however,
that duck-typing can be complemented with abstract base classes.) Instead, it typically employs hasattr () tests
or EAFP programming.

EAFP Easier to ask for forgiveness than permission. This common Python coding style assumes the existence of valid
keys or attributes and catches exceptions if the assumption proves false. This clean and fast style is characterized
by the presence of many try and except statements. The technique contrasts with the LBYL style common to
many other languages such as C.

expression A piece of syntax which can be evaluated to some value. In other words, an expression is an accumulation
of expression elements like literals, names, attribute access, operators or function calls which all return a value.
In contrast to many other languages, not all language constructs are expressions. There are also statements which
cannot be used as expressions, such as while. Assignments are also statements, not expressions.

modul rozszerzenia A module written in C or C++, using Python’s C API to interact with the core and with user code.

f-string String literals prefixed with '£' or 'F' are commonly called ,,f-strings” which is short for formatted string
literals. See also PEP 498.

file object An object exposing a file-oriented API (with methods such as read () or write ()) to an underlying reso-
urce. Depending on the way it was created, a file object can mediate access to a real on-disk file or to another type
of storage or communication device (for example standard input/output, in-memory buffers, sockets, pipes, etc.).
File objects are also called file-like objects or streams.

198 Dodatek A. Stowik

https://www.python.org/dev/peps/pep-0498

The Python/C API, Wydanie 3.7.17

There are actually three categories of file objects: raw binary files, buffered binary files and text files. Their interfaces
are defined in the i o module. The canonical way to create a file object is by using the open () function.

file-like object A synonym for file object.
finder An object that tries to find the loader for a module that is being imported.

Since Python 3.3, there are two types of finder: meta path finders for use with sys .meta_path, and path entry
finders for use with sys .path_hooks.

See PEP 302, PEP 420 and PEP 451 for much more detail.

floor division Mathematical division that rounds down to nearest integer. The floor division operator is / /. For example,
the expression 11 // 4 evaluates to 2 in contrast to the 2 . 75 returned by float true division. Note that (-11)
// 4is -3 because thatis —2 . 75 rounded downward. See PEP 238.

function A series of statements which returns some value to a caller. It can also be passed zero or more arguments which
may be used in the execution of the body. See also parameter, method, and the function section.

function annotation An annotation of a function parameter or return value.

Function annotations are usually used for type hints: for example, this function is expected to take two int argu-
ments and is also expected to have an int return value:

def sum_two_numbers(a: int, b: int) -> int:
return a + b

Function annotation syntax is explained in section function.
See variable annotation and PEP 484, which describe this functionality.

__future__ A pseudo-module which programmers can use to enable new language features which are not compatible
with the current interpreter.

By importing the ___future___ module and evaluating its variables, you can see when a new feature was first
added to the language and when it becomes the default:

>>> import __ future_
>>> _ future_ .division
_Feature((2, 2, 0, 'alpha', 2), (3, 0, 0, 'alpha', 0), 8192)

garbage collection The process of freeing memory when it is not used anymore. Python performs garbage collection
via reference counting and a cyclic garbage collector that is able to detect and break reference cycles. The garbage
collector can be controlled using the gc module.

generator A function which returns a generator iterator. It looks like a normal function except that it contains yield
expressions for producing a series of values usable in a for-loop or that can be retrieved one at a time with the
next () function.

Usually refers to a generator function, but may refer to a generator iterator in some contexts. In cases where the
intended meaning isn’t clear, using the full terms avoids ambiguity.

generator iterator An object created by a generator function.

Each yield temporarily suspends processing, remembering the location execution state (including local varia-
bles and pending try-statements). When the generator iterator resumes, it picks up where it left off (in contrast to
functions which start fresh on every invocation).

generator expression An expression that returns an iterator. It looks like a normal expression followed by a for clau-
se defining a loop variable, range, and an optional if clause. The combined expression generates values for an
enclosing function:

199

https://www.python.org/dev/peps/pep-0302
https://www.python.org/dev/peps/pep-0420
https://www.python.org/dev/peps/pep-0451
https://www.python.org/dev/peps/pep-0238
https://www.python.org/dev/peps/pep-0484

The Python/C API, Wydanie 3.7.17

>>> sum(i*i for i in range (10)) # sum of squares 0, 1, 4, ... 81
285

generic function A function composed of multiple functions implementing the same operation for different types. Which
implementation should be used during a call is determined by the dispatch algorithm.

See also the single dispatch glossary entry, the functools.singledispatch () decorator, and PEP 443.
GIL See global interpreter lock.

global interpreter lock The mechanism used by the CPython interpreter to assure that only one thread executes Python
bytecode at a time. This simplifies the CPython implementation by making the object model (including critical built-
in types such as dict) implicitly safe against concurrent access. Locking the entire interpreter makes it easier
for the interpreter to be multi-threaded, at the expense of much of the parallelism afforded by multi-processor
machines.

However, some extension modules, either standard or third-party, are designed so as to release the GIL when doing
computationally-intensive tasks such as compression or hashing. Also, the GIL is always released when doing 1/O.

Past efforts to create a ,,free-threaded” interpreter (one which locks shared data at a much finer granularity) have not
been successful because performance suffered in the common single-processor case. It is believed that overcoming
this performance issue would make the implementation much more complicated and therefore costlier to maintain.

hash-based pyc A bytecode cache file that uses the hash rather than the last-modified time of the corresponding source
file to determine its validity. See pyc-invalidation.

hashable An object is hashable if it has a hash value which never changes during its lifetime (it needsa __hash__ ()
method), and can be compared to other objects (it needs an __eq___ () method). Hashable objects which compare
equal must have the same hash value.

Hashability makes an object usable as a dictionary key and a set member, because these data structures use the hash
value internally.

Most of Python’s immutable built-in objects are hashable; mutable containers (such as lists or dictionaries) are not;
immutable containers (such as tuples and frozensets) are only hashable if their elements are hashable. Objects which
are instances of user-defined classes are hashable by default. They all compare unequal (except with themselves),
and their hash value is derived from their 1d ().

IDLE An Integrated Development Environment for Python. IDLE is a basic editor and interpreter environment which
ships with the standard distribution of Python.

immutable An object with a fixed value. Immutable objects include numbers, strings and tuples. Such an object cannot
be altered. A new object has to be created if a different value has to be stored. They play an important role in places
where a constant hash value is needed, for example as a key in a dictionary.

import path A list of locations (or path entries) that are searched by the path based finder for modules to import. During
import, this list of locations usually comes from sys . path, but for subpackages it may also come from the parent
package’s __path___ attribute.

importing The process by which Python code in one module is made available to Python code in another module.
importer An object that both finds and loads a module; both a finder and loader object.

interactive Python has an interactive interpreter which means you can enter statements and expressions at the interpreter
prompt, immediately execute them and see their results. Just launch python with no arguments (possibly by
selecting it from your computer’s main menu). It is a very powerful way to test out new ideas or inspect modules
and packages (remember help (x)).

interpreted Python is an interpreted language, as opposed to a compiled one, though the distinction can be blurry be-
cause of the presence of the bytecode compiler. This means that source files can be run directly without explicitly

200 Dodatek A. Stowik

https://www.python.org/dev/peps/pep-0443

The Python/C API, Wydanie 3.7.17

creating an executable which is then run. Interpreted languages typically have a shorter development/debug cycle
than compiled ones, though their programs generally also run more slowly. See also interactive.

interpreter shutdown When asked to shut down, the Python interpreter enters a special phase where it gradually releases
all allocated resources, such as modules and various critical internal structures. It also makes several calls to the
garbage collector. This can trigger the execution of code in user-defined destructors or weakref callbacks. Code
executed during the shutdown phase can encounter various exceptions as the resources it relies on may not function
anymore (common examples are library modules or the warnings machinery).

The main reason for interpreter shutdown is that the _ _main__ module or the script being run has finished
executing.

iterable An object capable of returning its members one at a time. Examples of iterables include all sequence types (such
as 1ist, str, and tuple) and some non-sequence types like dict, file objects, and objects of any classes you
define withan __iter__ () method or witha __getitem__ () method that implements Sequence semantics.

Iterables can be used in a for loop and in many other places where a sequence is needed (zip (), map (), ...).
When an iterable object is passed as an argument to the built-in function iter (), it returns an iterator for the
object. This iterator is good for one pass over the set of values. When using iterables, it is usually not necessary to
call iter () or deal with iterator objects yourself. The for statement does that automatically for you, creating
a temporary unnamed variable to hold the iterator for the duration of the loop. See also iterator, sequence, and
genemt()r.

iterator An object representing a stream of data. Repeated calls to the iterator’s ___next__ () method (or passing
it to the built-in function next ()) return successive items in the stream. When no more data are available a
StopIteration exception is raised instead. At this point, the iterator object is exhausted and any further calls
toits __next__ () method justraise StopIteration again. Iterators are required to have an __iter__ ()
method that returns the iterator object itself so every iterator is also iterable and may be used in most places where
other iterables are accepted. One notable exception is code which attempts multiple iteration passes. A container
object (such as a 1ist) produces a fresh new iterator each time you pass it to the iter () function or use it in a
for loop. Attempting this with an iterator will just return the same exhausted iterator object used in the previous
iteration pass, making it appear like an empty container.

More information can be found in typeiter.

key function A key function or collation function is a callable that returns a value used for sorting or ordering. For
example, locale.strxfrm() is used to produce a sort key that is aware of locale specific sort conventions.

A number of tools in Python accept key functions to control how elements are ordered or grouped. They inc-
lude min (), max (), sorted (), list.sort (), heapg.merge (), heapg.nsmallest (), heapqg.
nlargest (),and itertools.groupby ().

There are several ways to create a key function. For example. the st r. lower () method can serve as a key func-
tion for case insensitive sorts. Alternatively, a key function can be built from a 1 ambda expression such as 1 ambda
r: (r[0], r[2]).Also,the operator module provides three key function constructors: attrgetter (),
itemgetter (), and methodcaller (). See the Sorting HOW TO for examples of how to create and use
key functions.

keyword argument See argument.

lambda An anonymous inline function consisting of a single expression which is evaluated when the function is called.
The syntax to create a lambda function is lambda [parameters]: expression

LBYL Look before you leap. This coding style explicitly tests for pre-conditions before making calls or lookups. This
style contrasts with the EAFP approach and is characterized by the presence of many i f statements.

In a multi-threaded environment, the LBYL approach can risk introducing a race condition between ,,the looking”
and ,the leaping”. For example, the code, 1f key in mapping: return mappinglkey] can fail if
another thread removes key from mapping after the test, but before the lookup. This issue can be solved with locks
or by using the EAFP approach.

201

The Python/C API, Wydanie 3.7.17

list A built-in Python sequence. Despite its name it is more akin to an array in other languages than to a linked list since
access to elements is O(1).

list comprehension A compact way to process all or part of the elements in a sequence and return a list with the results.
result = ['{:#04x}'.format (x) for x in range(256) if x % 2 == 0] generates a list
of strings containing even hex numbers (0x..) in the range from O to 255. The i f clause is optional. If omitted, all
elements in range (256) are processed.

loader An object that loads a module. It must define a method named 1oad_module (). A loader is typically returned
by a finder. See PEP 302 for details and importlib.abc.Loader for an abstract base class.

magic method An informal synonym for special method.

mapping A container object that supports arbitrary key lookups and implements the methods specified in the Mapping
or MutableMapping abstract base classes. Examples include dict, collections.defaultdict,
collections.OrderedDict and collections.Counter.

meta path finder A finder returned by a search of sys.meta_path. Meta path finders are related to, but different
from path entry finders.

See importlib.abc.MetaPathFinder for the methods that meta path finders implement.

metaclass The class of a class. Class definitions create a class name, a class dictionary, and a list of base classes. The
metaclass is responsible for taking those three arguments and creating the class. Most object oriented program-
ming languages provide a default implementation. What makes Python special is that it is possible to create custom
metaclasses. Most users never need this tool, but when the need arises, metaclasses can provide powerful, ele-
gant solutions. They have been used for logging attribute access, adding thread-safety, tracking object creation,
implementing singletons, and many other tasks.

More information can be found in metaclasses.

method A function which is defined inside a class body. If called as an attribute of an instance of that class, the method
will get the instance object as its first argument (which is usually called self). See function and nested scope.

method resolution order Method Resolution Order is the order in which base classes are searched for a member during
lookup. See The Python 2.3 Method Resolution Order for details of the algorithm used by the Python interpreter
since the 2.3 release.

module An object that serves as an organizational unit of Python code. Modules have a namespace containing arbitrary
Python objects. Modules are loaded into Python by the process of importing.

See also package.

module spec A namespace containing the import-related information used to load a module. An instance of
importlib.machinery.ModuleSpec.

MRO See method resolution order.
mutable Mutable objects can change their value but keep their i1d () . See also immutable.

named tuple The term ,,named tuple” applies to any type or class that inherits from tuple and whose indexable elements
are also accessible using named attributes. The type or class may have other features as well.

Several built-in types are named tuples, including the values returned by time.localtime () and os.
stat (). Another example is sys.float_info:

>>> sys.float_info[1l] # Iindexed access
1024

>>> sys.float_info.max_exp # named field access
1024

>>> isinstance(sys.float_info, tuple) # kind of tuple

True

202 Dodatek A. Stowik

https://www.python.org/dev/peps/pep-0302
https://www.python.org/download/releases/2.3/mro/

The Python/C API, Wydanie 3.7.17

Some named tuples are built-in types (such as the above examples). Alternatively, a named tuple can be created
from a regular class definition that inherits from tuple and that defines named fields. Such a class can be written
by hand or it can be created with the factory function collections.namedtuple (). The latter technique
also adds some extra methods that may not be found in hand-written or built-in named tuples.

namespace The place where a variable is stored. Namespaces are implemented as dictionaries. There are the local, global
and built-in namespaces as well as nested namespaces in objects (in methods). Namespaces support modularity by
preventing naming conflicts. For instance, the functions builtins.open and os.open () are distinguished
by their namespaces. Namespaces also aid readability and maintainability by making it clear which module im-
plements a function. For instance, writing random. seed () or itertools.islice () makes it clear that
those functions are implemented by the random and itertools modules, respectively.

namespace package A PEP 420 package which serves only as a container for subpackages. Namespace packages may
have no physical representation, and specifically are not like a regular package because they haveno __init__ .
py file.

See also module.

nested scope The ability to refer to a variable in an enclosing definition. For instance, a function defined inside another
function can refer to variables in the outer function. Note that nested scopes by default work only for reference and
not for assignment. Local variables both read and write in the innermost scope. Likewise, global variables read and
write to the global namespace. The nonlocal allows writing to outer scopes.

new-style class Old name for the flavor of classes now used for all class objects. In earlier Python versions, on-
ly new-style classes could use Python’s newer, versatile features like __ slots__, descriptors, properties,
__getattribute__ (), class methods, and static methods.

object Any data with state (attributes or value) and defined behavior (methods). Also the ultimate base class of any
new-style class.

package A Python module which can contain submodules or recursively, subpackages. Technically, a package is a Python
module with an __path___ attribute.

See also regular package and namespace package.

parameter A named entity in a function (or method) definition that specifies an argument (or in some cases, arguments)
that the function can accept. There are five kinds of parameter:

e positional-or-keyword: specifies an argument that can be passed either positionally or as a keyword argument.
This is the default kind of parameter, for example foo and bar in the following:

def func (foo, bar=None) :

* positional-only: specifies an argument that can be supplied only by position. Python has no syntax for defining
positional-only parameters. However, some built-in functions have positional-only parameters (e.g. abs ()).

* keyword-only: specifies an argument that can be supplied only by keyword. Keyword-only parameters can be
defined by including a single var-positional parameter or bare * in the parameter list of the function definition
before them, for example kw_onlyl and kw_only2 in the following:

def func(arg, *, kw_onlyl, kw_only2):

* var-positional: specifies that an arbitrary sequence of positional arguments can be provided (in addition to any
positional arguments already accepted by other parameters). Such a parameter can be defined by prepending
the parameter name with *, for example args in the following:

def func(*args, **kwargs):

* var-keyword: specifies that arbitrarily many keyword arguments can be provided (in addition to any key-
word arguments already accepted by other parameters). Such a parameter can be defined by prepending the

203

https://www.python.org/dev/peps/pep-0420

The Python/C API, Wydanie 3.7.17

parameter name with * *, for example kwargs in the example above.
Parameters can specify both optional and required arguments, as well as default values for some optional arguments.

See also the argument glossary entry, the FAQ question on the difference between arguments and parameters, the
inspect.Parameter class, the function section, and PEP 362.

path entry A single location on the import path which the path based finder consults to find modules for importing.

path entry finder A finder returned by a callable on sys.path_hooks (i.e. a path entry hook) which knows how to
locate modules given a path entry.

See importlib.abc.PathEntryFinder for the methods that path entry finders implement.

path entry hook A callable on the sys.path_hook list which returns a path entry finder if it knows how to find
modules on a specific path entry.

path based finder One of the default meta path finders which searches an import path for modules.

path-like object An object representing a file system path. A path-like object is either a st r or bytes object represen-
ting a path, or an object implementing the os . PathLike protocol. An object that supports the os.PathLike
protocol can be converted to a str or bytes file system path by calling the os . fspath () function; os.
fsdecode () and os.fsencode () can be used to guarantee a str or bytes result instead, respectively.
Introduced by PEP 519.

PEP Python Enhancement Proposal. A PEP is a design document providing information to the Python community,
or describing a new feature for Python or its processes or environment. PEPs should provide a concise technical
specification and a rationale for proposed features.

PEPs are intended to be the primary mechanisms for proposing major new features, for collecting community input
on an issue, and for documenting the design decisions that have gone into Python. The PEP author is responsible
for building consensus within the community and documenting dissenting opinions.

See PEP 1.

portion A set of files in a single directory (possibly stored in a zip file) that contribute to a namespace package, as defined
in PEP 420.

positional argument See argument.

provisional API A provisional API is one which has been deliberately excluded from the standard library’s backwards
compatibility guarantees. While major changes to such interfaces are not expected, as long as they are marked
provisional, backwards incompatible changes (up to and including removal of the interface) may occur if deemed
necessary by core developers. Such changes will not be made gratuitously — they will occur only if serious funda-
mental flaws are uncovered that were missed prior to the inclusion of the APL

Even for provisional APIs, backwards incompatible changes are seen as a ,,solution of last resort” - every attempt
will still be made to find a backwards compatible resolution to any identified problems.

This process allows the standard library to continue to evolve over time, without locking in problematic design
errors for extended periods of time. See PEP 411 for more details.

provisional package See provisional API.

Python 3000 Nickname for the Python 3.x release line (coined long ago when the release of version 3 was something in
the distant future.) This is also abbreviated ,,Py3k”.

Pythonic An idea or piece of code which closely follows the most common idioms of the Python language, rather than
implementing code using concepts common to other languages. For example, a common idiom in Python is to loop
over all elements of an iterable using a for statement. Many other languages don’t have this type of construct, so
people unfamiliar with Python sometimes use a numerical counter instead:

204 Dodatek A. Stowik

https://www.python.org/dev/peps/pep-0362
https://www.python.org/dev/peps/pep-0519
https://www.python.org/dev/peps/pep-0001
https://www.python.org/dev/peps/pep-0420
https://www.python.org/dev/peps/pep-0411

The Python/C API, Wydanie 3.7.17

for i in range(len(food)):
print (food[i])

As opposed to the cleaner, Pythonic method:

for piece in food:
print (piece)

qualified name A dotted name showing the ,,path” from a module’s global scope to a class, function or method defined
in that module, as defined in PEP 3155. For top-level functions and classes, the qualified name is the same as the
object’s name:

>>> class C:
class D:
def meth (self):
pass

>>> C._ _qualname___

YC’

>>> C.D.__qgqualname___
'C.D'

>>> C.D.meth._ gualname
'C.D.meth'

When used to refer to modules, the fully qualified name means the entire dotted path to the module, including any
parent packages, e.g. email .mime.text:

>>> import email.mime.text
>>> email.mime.text. name_
'email.mime.text'

reference count The number of references to an object. When the reference count of an object drops to zero, it is
deallocated. Reference counting is generally not visible to Python code, but it is a key element of the CPython
implementation. The sy s module defines a get refcount () function that programmers can call to return the
reference count for a particular object.

regular package A traditional package, such as a directory containingan __init__ .py file.
See also namespace package.

__slots__ A declaration inside a class that saves memory by pre-declaring space for instance attributes and eliminating
instance dictionaries. Though popular, the technique is somewhat tricky to get right and is best reserved for rare
cases where there are large numbers of instances in a memory-critical application.

sequence An iferable which supports efficient element access using integer indices via the __getitem__ () special
method and definesa ___len__ () method that returns the length of the sequence. Some built-in sequence types
are 1ist, str,tuple, and bytes. Note that dict also supports __getitem__ () and __len__ (), butis
considered a mapping rather than a sequence because the lookups use arbitrary immutable keys rather than integers.

The collections.abc.Sequence abstract base class defines a much richer interface that goes bey-
ond just _ getitem__ () and __len__ (), adding count (), index (), contains__ (), and
__reversed__ (). Types that implement this expanded interface can be registered explicitly using
register ().

single dispatch A form of generic function dispatch where the implementation is chosen based on the type of a single
argument.

slice An object usually containing a portion of a sequence. A slice is created using the subscript notation, [] with co-
lons between numbers when several are given, such as in variable_name [1:3:5]. The bracket (subscript)

205

https://www.python.org/dev/peps/pep-3155

The Python/C API, Wydanie 3.7.17

notation uses s11ice objects internally.

special method A method that is called implicitly by Python to execute a certain operation on a type, such as addi-
tion. Such methods have names starting and ending with double underscores. Special methods are documented in
specialnames.

statement A statement is part of a suite (a ,,block” of code). A statement is either an expression or one of several constructs
with a keyword, such as i f, while or for.

text encoding A codec which encodes Unicode strings to bytes.

text file A file object able to read and write st r objects. Often, a text file actually accesses a byte-oriented datastream
and handles the rext encoding automatically. Examples of text files are files opened in text mode ('r' or 'w'),
sys.stdin, sys.stdout, and instances of i0.StringIO.

See also binary file for a file object able to read and write bytes-like objects.

triple-quoted string A string which is bound by three instances of either a quotation mark () or an apostrophe («).
While they don’t provide any functionality not available with single-quoted strings, they are useful for a number of
reasons. They allow you to include unescaped single and double quotes within a string and they can span multiple
lines without the use of the continuation character, making them especially useful when writing docstrings.

type The type of a Python object determines what kind of object it is; every object has a type. An object’s type is accessible
asits __class___ attribute or can be retrieved with t ype (obj).

type alias A synonym for a type, created by assigning the type to an identifier.

Type aliases are useful for simplifying #ype hints. For example:

from typing import List, Tuple

def remove_gray_shades (
colors: List[Tuple[int, int, int]]) -> List[Tuplel[int, int, int]]:
pass

could be made more readable like this:

from typing import List, Tuple

Color = Tuple[int, int, int]
def remove_gray_shades (colors: List[Color]) -> List[Color]:
pass

See typing and PEP 484, which describe this functionality.

type hint An annotation that specifies the expected type for a variable, a class attribute, or a function parameter or return
value.

Type hints are optional and are not enforced by Python but they are useful to static type analysis tools, and aid IDEs
with code completion and refactoring.

Type hints of global variables, class attributes, and functions, but not local variables, can be accessed using
typing.get_type_hints().

See typing and PEP 484, which describe this functionality.

universal newlines A manner of interpreting text streams in which all of the following are recognized as ending a line: the
Unix end-of-line convention ' \n"', the Windows convention ' \r\n"', and the old Macintosh convention '\ r"'.
See PEP 278 and PEP 3116, as well as bytes.splitlines () for an additional use.

variable annotation An annotation of a variable or a class attribute.

206 Dodatek A. Stowik

https://www.python.org/dev/peps/pep-0484
https://www.python.org/dev/peps/pep-0484
https://www.python.org/dev/peps/pep-0278
https://www.python.org/dev/peps/pep-3116

The Python/C API, Wydanie 3.7.17

When annotating a variable or a class attribute, assignment is optional:

class C:
field: 'annotation'

Variable annotations are usually used for rype hints: for example this variable is expected to take int values:

count: int = 0

Variable annotation syntax is explained in section annassign.
See function annotation, PEP 484 and PEP 526, which describe this functionality.

virtual environment A cooperatively isolated runtime environment that allows Python users and applications to install
and upgrade Python distribution packages without interfering with the behaviour of other Python applications
running on the same system.

See also venv.

virtual machine A computer defined entirely in software. Python’s virtual machine executes the byfecode emitted by the
bytecode compiler.

Zen of Python Listing of Python design principles and philosophies that are helpful in understanding and using the
language. The listing can be found by typing ,,import this” at the interactive prompt.

207

https://www.python.org/dev/peps/pep-0484
https://www.python.org/dev/peps/pep-0526

The Python/C API, Wydanie 3.7.17

208 Dodatek A. Stowik

DODATEK B

O tej dokumentaciji

Dokumenty sa wygenerowane ze Zrodet reStructuredText przez Sphinksa, procesor dokumentéw napisany specjalnie dla
dokumentacji Pythona.

Rozwéj dokumentacji i jej oprzyrzadowania jest w catoSci wysitkiem wolontarystycznym, tak samo jak sam Python. Jesli
chcesz wnie$¢ swoj wktad, na stronie reporting-bugs znajdziesz informacje jak to zrobi¢. Nowi wolontariusze sa zawsze
mile widziani!

Ogromne podzigkowania dla:
e Freda L. Drake’a, Jr., twércy oryginalnego zestawu narzedzi dokumentacji Pythona i autora duzej czgsci jej tresci;
* projektu Docutils za stworzenie reStructuredText i pakietu Docutils;

* Fredrika Lundha za jego projekt Alternative Python Reference, z ktérego Sphinx wziat wiele dobrych pomystéw.

B.1 Wspoéitworcy dokumentacji Pythona

Wiele ludzi rozwija jezyk Python, biblioteke standardowa Pythona i dokumentacje. W Misc/ACKS w Zrédtach Pythona
znajdziesz czg$ciowa list¢ kontrybutoréw.

Tylko dzieki wktadowi spolecznosci Python ma tak wspaniata dokumentacje — dziekujemy!

209

http://docutils.sourceforge.net/rst.html
http://sphinx-doc.org/
http://docutils.sourceforge.net/
http://effbot.org/zone/pyref.htm
https://github.com/python/cpython/tree/3.7/Misc/ACKS

The Python/C API, Wydanie 3.7.17

210 Dodatek B. O tej dokumentacji

popaTEk G

Historia i zapisy prawne

C.1 Historia programu

Python was created in the early 1990s by Guido van Rossum at Stichting Mathematisch Centrum (CWI, see https://www.
cwi.nl/) in the Netherlands as a successor of a language called ABC. Guido remains Python’s principal author, although
it includes many contributions from others.

In 1995, Guido continued his work on Python at the Corporation for National Research Initiatives (CNRI, see https:
/Iwww.cnri.reston.va.us/) in Reston, Virginia where he released several versions of the software.

In May 2000, Guido and the Python core development team moved to BeOpen.com to form the BeOpen PythonLabs
team. In October of the same year, the PythonLabs team moved to Digital Creations (now Zope Corporation; see https:
/Iwww.zope.org/). In 2001, the Python Software Foundation (PSF, see https://www.python.org/psf/) was formed, a non-
profit organization created specifically to own Python-related Intellectual Property. Zope Corporation is a sponsoring
member of the PSF.

All Python releases are Open Source (see https://opensource.org/ for the Open Source Definition). Historically, most, but
not all, Python releases have also been GPL-compatible; the table below summarizes the various releases.

211

https://www.cwi.nl/
https://www.cwi.nl/
https://www.cnri.reston.va.us/
https://www.cnri.reston.va.us/
https://www.zope.org/
https://www.zope.org/
https://www.python.org/psf/
https://opensource.org/

The Python/C API, Wydanie 3.7.17

Wydanie | Po- Rok Wiasciciel Zgodne z Uprawnieniami Ogélnie Po-
chodne wszechnymi (GPL)?
po

od 0.9.0 | nie poda- | od 1991 do | CWI tak

do1.2 no 1995

od1.3do | 1.2 0d 1995do | CNRI tak

1.5.2 1999

1.6 1.5.2 2000 CNRI nie

2.0 1.6 2000 BeOpen.com nie

1.6.1 1.6 2001 CNRI nie

2.1 2.0 i| 2001 Fundacja Programu jezyka Py- | nie
1.6.1 tonowskiego (PSF)

2.0.1 2.0 i| 2001 Fundacja Programu jezyka Py- | tak
1.6.1 tonowskiego (PSF)

2.1.1 2.1 i| 2001 Fundacja Programu jezyka Py- | tak
2.0.1 tonowskiego (PSF)

2.1.2 2.1.1 2002 Fundacja Programu jezyka Py- | tak

tonowskiego (PSF)

2.1.3 2.1.2 2002 Fundacja Programu jezyka Py- | tak

tonowskiego (PSF)

22 and | 2.1.1 2001-now | Fundacja Programu jezyka Py- | tak

above tonowskiego (PSF)

Informacja: Zgodno$¢ z uprawnieniami ogélnie powszechnymi (w skrécie - z ang. - GPL) nie oznacza, Ze rozpro-
wadzamy jezyk pytonowski z uprawnieniami ogélnie powszechnymi (w skrécie - z ang. - GPL). Wszystkie uprawnienia
dostarczane z jezykiem pytonowskim, w przeciwienistwie do uprawnien ogélnie powszechnych (w skrécie - z ang. - GPL),
pozwalaja na rozpowszechnianie programéw jezyka pytonowskiego z wprowadzonymi zmianami bez ustanawiania tych
zmian w ramach otwartych Zrédet. Uprawnienia zgodne z ogdlnie powszechnymi uprawnieniami (w skrdcie - z ang. -
GPL) pozwalaja na taczenie wydan programu jezyka pytonowskiego z innymi programami ktére sa wydane z uprawnie-
niami og6lnie powszechnymi (w skrécie - z ang. - GPL). Inne uprawnienia, niezgodne z ogdlnie powszechnymi, na to nie
zezwalaja.

Podzigkowania dla wielu ochotnikéw przychodzacych z zewnatrz, ktérzy pracowali pod kierunkiem Gwidona aby umoz-
liwi¢ te wydania programu jezyka pytonowskiego.

C.2 Zasady i warunki postepowania z programem jezyka pytonow-
skiego i ogdlnie jego uzycia.

C.2.1 PSF LICENSE AGREEMENT FOR PYTHON 3.7.17

1. This LICENSE AGREEMENT is between the Python Software Foundation ("PSE"),.
—and

the Individual or Organization ("Licensee") accessing and otherwise using.
—Python

3.7.17 software in source or binary form and its associated documentation.

2. Subject to the terms and conditions of this License Agreement, PSF hereby
grants Licensee a nonexclusive, royalty-free, world-wide license to.
—reproduce,

212 Dodatek C. Historia i zapisy prawne

The Python/C API, Wydanie 3.7.17

analyze, test, perform and/or display publicly, prepare derivative works,

distribute, and otherwise use Python 3.7.17 alone or in any derivative

version, provided, however, that PSF's License Agreement and PSF's notice.
—of

copyright, i.e., "Copyright © 2001-2023 Python Software Foundation; All._
—Rights

Reserved" are retained in Python 3.7.17 alone or in any derivative version

prepared by Licensee.

3. In the event Licensee prepares a derivative work that is based on or
incorporates Python 3.7.17 or any part thereof, and wants to make the
derivative work available to others as provided herein, then Licensee.

—hereby
agrees to include in any such work a brief summary of the changes made to.

—Python
3.7.17.

4. PSF is making Python 3.7.17 available to Licensee on an "AS IS" basis.

PSEF MAKES NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF

EXAMPLE, BUT NOT LIMITATION, PSEF MAKES NO AND DISCLAIMS ANY REPRESENTATION..
—OR

WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT.
—THE

USE OF PYTHON 3.7.17 WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

5. PSF SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF PYTHON 3.7.17

FOR ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT.
—OF

MODIFYING, DISTRIBUTING, OR OTHERWISE USING PYTHON 3.7.17, OR ANY.
—~DERIVATIVE

THEREOF, EVEN IF ADVISED OF THE POSSIBILITY THEREOF.

6. This License Agreement will automatically terminate upon a material breach.
—of
its terms and conditions.

7. Nothing in this License Agreement shall be deemed to create any.
—~relationship

of agency, partnership, or joint venture between PSF and Licensee. This.
—License

Agreement does not grant permission to use PSF trademarks or trade name in.
—a

trademark sense to endorse or promote products or services of Licensee, or.
—any

third party.

8. By copying, installing or otherwise using Python 3.7.17, Licensee agrees
to be bound by the terms and conditions of this License Agreement.

C.2. Zasady i warunki postepowania z programem jezyka pytonowskiego i ogodlnie jego uzycia213

The Python/C API, Wydanie 3.7.17

C.2.2 BEOPEN.COM LICENSE AGREEMENT FOR PYTHON 2.0

BEOPEN PYTHON OPEN SOURCE LICENSE AGREEMENT VERSION 1

1.

This LICENSE AGREEMENT is between BeOpen.com ("BeOpen"), having an office at
160 Saratoga Avenue, Santa Clara, CA 95051, and the Individual or Organization
("Licensee") accessing and otherwise using this software in source or binary
form and its associated documentation ("the Software").

Subject to the terms and conditions of this BeOpen Python License Agreement,
BeOpen hereby grants Licensee a non-exclusive, royalty-free, world-wide license
to reproduce, analyze, test, perform and/or display publicly, prepare derivative
works, distribute, and otherwise use the Software alone or in any derivative
version, provided, however, that the BeOpen Python License is retained in the
Software, alone or in any derivative version prepared by Licensee.

BeOpen is making the Software available to Licensee on an "AS IS" basis.

BEOPEN MAKES NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF
EXAMPLE, BUT NOT LIMITATION, BEOPEN MAKES NO AND DISCLAIMS ANY REPRESENTATION OR
WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE
USE OF THE SOFTWARE WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

BEOPEN SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF THE SOFTWARE FOR
ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT OF USING,
MODIFYING OR DISTRIBUTING THE SOFTWARE, OR ANY DERIVATIVE THEREOF, EVEN IF
ADVISED OF THE POSSIBILITY THEREOEF.

This License Agreement will automatically terminate upon a material breach of
its terms and conditions.

This License Agreement shall be governed by and interpreted in all respects

by the law of the State of California, excluding conflict of law provisions.
Nothing in this License Agreement shall be deemed to create any relationship of
agency, partnership, or joint venture between BeOpen and Licensee. This License
Agreement does not grant permission to use BeOpen trademarks or trade names in a
trademark sense to endorse or promote products or services of Licensee, or any
third party. As an exception, the "BeOpen Python" logos available at
http://www.pythonlabs.com/logos.html may be used according to the permissions
granted on that web page.

By copying, installing or otherwise using the software, Licensee agrees to be
bound by the terms and conditions of this License Agreement.

C.2.3 CNRI LICENSE AGREEMENT FOR PYTHON 1.6.1

This LICENSE AGREEMENT is between the Corporation for National Research
Initiatives, having an office at 1895 Preston White Drive, Reston, VA 20191
("CNRI"), and the Individual or Organization ("Licensee") accessing and
otherwise using Python 1.6.1 software in source or binary form and its
associated documentation.

Subject to the terms and conditions of this License Agreement, CNRI hereby
grants Licensee a nonexclusive, royalty-free, world-wide license to reproduce,
analyze, test, perform and/or display publicly, prepare derivative works,
distribute, and otherwise use Python 1.6.1 alone or in any derivative version,
provided, however, that CNRI's License Agreement and CNRI's notice of copyright,

(ciag dalszy na nastgpnej stronie)

214 Dodatek C. Historia i zapisy prawne

The Python/C API, Wydanie 3.7.17

(kontynuacja poprzedniej strony)

i.e., "Copyright © 1995-2001 Corporation for National Research Initiatives; All
Rights Reserved" are retained in Python 1.6.1 alone or in any derivative version
prepared by Licensee. Alternately, in lieu of CNRI's License Agreement,
Licensee may substitute the following text (omitting the quotes): "Python 1.6.1
is made available subject to the terms and conditions in CNRI's License
Agreement. This Agreement together with Python 1.6.1 may be located on the
Internet using the following unique, persistent identifier (known as a handle):
1895.22/1013. This Agreement may also be obtained from a proxy server on the
Internet using the following URL: http://hdl.handle.net/1895.22/1013."

3. In the event Licensee prepares a derivative work that is based on or
incorporates Python 1.6.1 or any part thereof, and wants to make the derivative
work available to others as provided herein, then Licensee hereby agrees to
include in any such work a brief summary of the changes made to Python 1.6.1.

4. CNRI is making Python 1.6.1 available to Licensee on an "AS IS" basis. CNRI
MAKES NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF EXAMPLE,
BUT NOT LIMITATION, CNRI MAKES NO AND DISCLAIMS ANY REPRESENTATION OR WARRANTY
OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE USE OF
PYTHON 1.6.1 WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

5. CNRI SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF PYTHON 1.6.1 FOR
ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT OF
MODIFYING, DISTRIBUTING, OR OTHERWISE USING PYTHON 1.6.1, OR ANY DERIVATIVE
THEREOF, EVEN IF ADVISED OF THE POSSIBILITY THEREOF.

6. This License Agreement will automatically terminate upon a material breach of
its terms and conditions.

7. This License Agreement shall be governed by the federal intellectual property
law of the United States, including without limitation the federal copyright
law, and, to the extent such U.S. federal law does not apply, by the law of the
Commonwealth of Virginia, excluding Virginia's conflict of law provisions.
Notwithstanding the foregoing, with regard to derivative works based on Python
1.6.1 that incorporate non-separable material that was previously distributed
under the GNU General Public License (GPL), the law of the Commonwealth of
Virginia shall govern this License Agreement only as to issues arising under or
with respect to Paragraphs 4, 5, and 7 of this License Agreement. Nothing in
this License Agreement shall be deemed to create any relationship of agency,
partnership, or joint venture between CNRI and Licensee. This License Agreement
does not grant permission to use CNRI trademarks or trade name in a trademark
sense to endorse or promote products or services of Licensee, or any third
party.

8. By clicking on the "ACCEPT" button where indicated, or by copying, installing
or otherwise using Python 1.6.1, Licensee agrees to be bound by the terms and
conditions of this License Agreement.

C.2. Zasady i warunki postepowania z programem jezyka pytonowskiego i ogodlnie jego uzycia215

The Python/C API, Wydanie 3.7.17

C.2.4 CWI LICENSE AGREEMENT FOR PYTHON 0.9.0 THROUGH 1.2

Copyright © 1991 - 1995, Stichting Mathematisch Centrum Amsterdam, The
Netherlands. All rights reserved.

Permission to use, copy, modify, and distribute this software and its
documentation for any purpose and without fee is hereby granted, provided that
the above copyright notice appear in all copies and that both that copyright
notice and this permission notice appear in supporting documentation, and that
the name of Stichting Mathematisch Centrum or CWI not be used in advertising or
publicity pertaining to distribution of the software without specific, written
prior permission.

STICHTING MATHEMATISCH CENTRUM DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS
SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN NO
EVENT SHALL STICHTING MATHEMATISCH CENTRUM BE LIABLE FOR ANY SPECIAL, INDIRECT
OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE,
DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS
SOFTWARE .

C.3 Licenses and Acknowledgements for Incorporated Software

This section is an incomplete, but growing list of licenses and acknowledgements for third-party software incorporated in
the Python distribution.

C.3.1 Mersenne Twister

The _random module includes code based on a download from http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/
MT2002/emt19937ar.html. The following are the verbatim comments from the original code:

A C-program for MT19937, with initialization improved 2002/1/26.
Coded by Takuji Nishimura and Makoto Matsumoto.

Before using, initialize the state by using init_genrand (seed)
or init_by_array(init_key, key_length).

Copyright (C) 1997 - 2002, Makoto Matsumoto and Takuji Nishimura,
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

3. The names of its contributors may not be used to endorse or promote
products derived from this software without specific prior written

(ciag dalszy na nastgpnej stronie)

216 Dodatek C. Historia i zapisy prawne

http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/MT2002/emt19937ar.html
http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/MT2002/emt19937ar.html

The Python/C API, Wydanie 3.7.17

(kontynuacja poprzedniej strony)

permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. 1IN NO EVENT SHALL THE COPYRIGHT OWNER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Any feedback is very welcome.
http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html
email: m-mat @ math.sci.hiroshima-u.ac.jp (remove space)

C.3.2 Sockets

The socket module uses the functions, getaddrinfo (), and getnameinfo (), which are coded in separate
source files from the WIDE Project, http://www.wide.ad.jp/.

Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
All rights reserved.

Redistribution and use in source and binary forms, with or without

modification, are permitted provided that the following conditions

are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

3. Neither the name of the project nor the names of its contributors
may be used to endorse or promote products derived from this software
without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS " "AS IS'' AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. 1IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS

OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

C.3. Licenses and Acknowledgements for Incorporated Software 217

http://www.wide.ad.jp/

The Python/C API, Wydanie 3.7.17

C.3.3 Asynchronous socket services

The asynchat and asyncore modules contain the following notice:

Copyright 1996 by Sam Rushing
All Rights Reserved

Permission to use, copy, modify, and distribute this software and
its documentation for any purpose and without fee is hereby
granted, provided that the above copyright notice appear in all
copies and that both that copyright notice and this permission
notice appear in supporting documentation, and that the name of Sam
Rushing not be used in advertising or publicity pertaining to
distribution of the software without specific, written prior
permission.

SAM RUSHING DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE,
INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN
NO EVENT SHALL SAM RUSHING BE LIABLE FOR ANY SPECIAL, INDIRECT OR
CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS
OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT,
NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

C.3.4 Cookie management

The http.cookies module contains the following notice:

Copyright 2000 by Timothy O'Malley <timo@alum.mit.edu>
All Rights Reserved

Permission to use, copy, modify, and distribute this software

and its documentation for any purpose and without fee is hereby
granted, provided that the above copyright notice appear in all
copies and that both that copyright notice and this permission
notice appear in supporting documentation, and that the name of
Timothy O'Malley not be used in advertising or publicity

pertaining to distribution of the software without specific, written
prior permission.

Timothy O'Malley DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS
SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS, IN NO EVENT SHALL Timothy O'Malley BE LIABLE FOR
ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
PERFORMANCE OF THIS SOFTWARE.

218 Dodatek C. Historia i zapisy prawne

The Python/C API, Wydanie 3.7.17

C.3.5 Execution tracing

The t race module contains the following notice:

portions copyright 2001, Autonomous Zones Industries, Inc., all rights...
err... reserved and offered to the public under the terms of the

Python 2.2 license.

Author: Zooko O'Whielacronx

http://zooko.com/

mailto:zooko@zooko.com

Copyright 2000, Mojam Media, Inc., all rights reserved.
Author: Skip Montanaro

Copyright 1999, Bioreason, Inc., all rights reserved.
Author: Andrew Dalke

Copyright 1995-1997, Automatrix, Inc., all rights reserved.
Author: Skip Montanaro

Copyright 1991-1995, Stichting Mathematisch Centrum, all rights reserved.

Permission to use, copy, modify, and distribute this Python software and
its associated documentation for any purpose without fee is hereby
granted, provided that the above copyright notice appears in all copies,
and that both that copyright notice and this permission notice appear in
supporting documentation, and that the name of neither Automatrix,
Bioreason or Mojam Media be used in advertising or publicity pertaining to
distribution of the software without specific, written prior permission.

C.3.6 UUencode and UUdecode functions

The uu module contains the following notice:

Copyright 1994 by Lance Ellinghouse
Cathedral City, California Republic, United States of America.

All Rights Reserved
Permission to use, copy, modify, and distribute this software and its
documentation for any purpose and without fee is hereby granted,
provided that the above copyright notice appear in all copies and that
both that copyright notice and this permission notice appear in
supporting documentation, and that the name of Lance Ellinghouse
not be used in advertising or publicity pertaining to distribution
of the software without specific, written prior permission.
LANCE ELLINGHOUSE DISCLAIMS ALL WARRANTIES WITH REGARD TO
THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS, IN NO EVENT SHALL LANCE ELLINGHOUSE CENTRUM BE LIABLE
FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT
OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

Modified by Jack Jansen, CWI, July 1995:
— Use binascii module to do the actual line-by-line conversion
between ascii and binary. This results in a 1000-fold speedup. The C

(ciag dalszy na nastgpnej stronie)

C.3. Licenses and Acknowledgements for Incorporated Software 219

The Python/C API, Wydanie 3.7.17

(kontynuacja poprzedniej strony)

version is still 5 times faster, though.
- Arguments more compliant with Python standard

C.3.7 XML Remote Procedure Calls

The xmlrpc.client module contains the following notice:

The XML-RPC client interface is

Copyright (c) 1999-2002 by Secret Labs AB
Copyright (c) 1999-2002 by Fredrik Lundh

By obtaining, using, and/or copying this software and/or its
associated documentation, you agree that you have read, understood,
and will comply with the following terms and conditions:

Permission to use, copy, modify, and distribute this software and
its associated documentation for any purpose and without fee is
hereby granted, provided that the above copyright notice appears in
all copies, and that both that copyright notice and this permission
notice appear in supporting documentation, and that the name of
Secret Labs AB or the author not be used in advertising or publicity
pertaining to distribution of the software without specific, written
prior permission.

SECRET LABS AB AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH REGARD
TO THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANT-
ABILITY AND FITNESS. 1IN NO EVENT SHALL SECRET LABS AB OR THE AUTHOR
BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY
DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
OF THIS SOFTWARE.

C.3.8 test_epoll

The test_epoll module contains the following notice:

Copyright (c) 2001-2006 Twisted Matrix Laboratories.

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF

(ciag dalszy na nastgpnej stronie)

220 Dodatek C. Historia i zapisy prawne

The Python/C API, Wydanie 3.7.17

(kontynuacja poprzedniej strony)

MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND

NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION

WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

C.3.9 Select kqueue

The select module contains the following notice for the kqueue interface:

Copyright (c) 2000 Doug White, 2006 James Knight, 2007 Christian Heimes
All rights reserved.

Redistribution and use in source and binary forms, with or without

modification, are permitted provided that the following conditions

are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS " "AS IS'' AND

ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS

OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

C.3.10 SipHash24

The file Python/pyhash. c contains Marek Majkowski» implementation of Dan Bernstein’s SipHash24 algorithm. It
contains the following note:

<MIT License>
Copyright (c) 2013 Marek Majkowski <marek@popcount.org>

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
</MIT License>

(ciag dalszy na nastgpnej stronie)

C.3. Licenses and Acknowledgements for Incorporated Software 221

The Python/C API, Wydanie 3.7.17

(kontynuacja poprzedniej strony)

Original location:
https://github.com/majek/csiphash/

Solution inspired by code from:
Samuel Neves (supercop/crypto_auth/siphash24/1little)
djb (supercop/crypto_auth/siphash24/little2)
Jean-Philippe Aumasson (https://131002.net/siphash/siphash24.c)

C.3.11 strtod and dtoa

The file Python/dtoa . ¢, which supplies C functions dtoa and strtod for conversion of C doubles to and from strings, is
derived from the file of the same name by David M. Gay, currently available from http://www.netlib.org/fp/. The original
file, as retrieved on March 16, 2009, contains the following copyright and licensing notice:

/**

*

The author of this software is David M. Gay.

*

Copyright (c) 1991, 2000, 2001 by Lucent Technologies.

* % o

Permission to use, copy, modify, and distribute this software for any
purpose without fee is hereby granted, provided that this entire notice
is included in all copies of any software which is or includes a copy
or modification of this software and in all copies of the supporting
documentation for such software.

* % o

* % o

THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR IMPLIED
* WARRANTY. IN PARTICULAR, NEITHER THE AUTHOR NOR LUCENT MAKES ANY

* REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE MERCHANTABILITY

* OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR PURPOSE.

*

‘k***‘k*‘k**‘k******‘k*‘k**‘k**‘k*‘k*‘k*‘k*****‘k*‘k************************/

C.3.12 OpenSSL

The modules hashlib, posix, ssl, crypt use the OpenSSL library for added performance if made available by the
operating system. Additionally, the Windows and Mac OS X installers for Python may include a copy of the OpenSSL
libraries, so we include a copy of the OpenSSL license here:

LICENSE ISSUES

The OpenSSL toolkit stays under a dual license, i.e. both the conditions of
the OpenSSL License and the original SSLeay license apply to the toolkit.
See below for the actual license texts. Actually both licenses are BSD-style
Open Source licenses. In case of any license issues related to OpenSSL
please contact openssl-core@openssl.org.

OpenSSL License

/*
* Copyright (c) 1998-2008 The OpenSSL Project. All rights reserved.

(ciag dalszy na nastgpnej stronie)

222 Dodatek C. Historia i zapisy prawne

http://www.netlib.org/fp/

The Python/C API, Wydanie 3.7.17

(kontynuacja poprzedniej strony)

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in
the documentation and/or other materials provided with the
distribution.

3. All advertising materials mentioning features or use of this
software must display the following acknowledgment:
"This product includes software developed by the OpenSSL Project
for use in the OpenSSL Toolkit. (http://www.openssl.org/)"

4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
endorse or promote products derived from this software without
prior written permission. For written permission, please contact
openssl-corelopenssl.org.

5. Products derived from this software may not be called "OpenSSL"
nor may "OpenSSL" appear in their names without prior written
permission of the OpenSSL Project.

6. Redistributions of any form whatsoever must retain the following
acknowledgment:
"This product includes software developed by the OpenSSL Project
for use in the OpenSSL Toolkit (http://www.openssl.org/)"

THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT " "AS IS'' AND ANY
EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT

NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;

LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)

HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
OF THE POSSIBILITY OF SUCH DAMAGE.

This product includes cryptographic software written by Eric Young
(eay@cryptsoft.com). This product includes software written by Tim
Hudson (tjh@cryptsoft.com).

L R R S TR R N S N S S SN S S T S SIS N S S R R e S N S N S N S T SN S S S SN S S SN ST SN S N SRS N .

Original SSLeay License

/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
* All rights reserved.

(ciag dalszy na nastgpnej stronie)

C.3. Licenses and Acknowledgements for Incorporated Software 223

The Python/C API, Wydanie 3.7.17

(kontynuacja poprzedniej strony)

o I R S T e NS N S S SN S S T S S e SIS S S S SN S N SN T S S N S S T S S N S N S N S S S S

This package is an SSL implementation written
by Eric Young (eay@cryptsoft.com).
The implementation was written so as to conform with Netscapes SSL.

This library is free for commercial and non-commercial use as long as
the following conditions are aheared to. The following conditions
apply to all code found in this distribution, be it the RC4, RSA,
lhash, DES, etc., code; not just the SSL code. The SSL documentation
included with this distribution is covered by the same copyright terms
except that the holder is Tim Hudson (tjh@cryptsoft.com).

Copyright remains Eric Young's, and as such any Copyright notices in

the code are not to be removed.

If this package is used in a product, Eric Young should be given attribution
as the author of the parts of the library used.

This can be in the form of a textual message at program startup or

in documentation (online or textual) provided with the package.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
1. Redistributions of source code must retain the copyright
notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
3. All advertising materials mentioning features or use of this software
must display the following acknowledgement:
"This product includes cryptographic software written by
Eric Young (eay@cryptsoft.com)"
The word 'cryptographic' can be left out if the rouines from the library
being used are not cryptographic related :-).
4. If you include any Windows specific code (or a derivative thereof) from
the apps directory (application code) you must include an acknowledgement:
"This product includes software written by Tim Hudson (tjh@cryptsoft.com)"

THIS SOFTWARE IS PROVIDED BY ERIC YOUNG " "AS IS'' AND

ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS

OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

The licence and distribution terms for any publically available version or
derivative of this code cannot be changed. i.e. this code cannot simply be
copied and put under another distribution licence

[including the GNU Public Licence.]
/

224

Dodatek C. Historia i zapisy prawne

The Python/C API, Wydanie 3.7.17

C.3.13 expat

The pyexpat extension is built using an included copy of the expat sources unless the build is configured
—-with-system-expat:

Copyright (c) 1998, 1999, 2000 Thai Open Source Software Center Ltd
and Clark Cooper

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

C.3.14 libffi

The _ctypes extension is built using an included copy of the libffi sources unless the build is configured
——with-system—-1ibffi:

Copyright (c) 1996-2008 Red Hat, Inc and others.

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software''), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED " "AS IS'', WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.

C.3. Licenses and Acknowledgements for Incorporated Software 225

The Python/C API, Wydanie 3.7.17

C.3.15 zlib

The z11ib extension is built using an included copy of the zlib sources if the zlib version found on the system is too old
to be used for the build:

Copyright (C) 1995-2011 Jean-loup Gailly and Mark Adler

This software is provided 'as-is', without any express or implied
warranty. In no event will the authors be held liable for any damages
arising from the use of this software.

Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it
freely, subject to the following restrictions:

1. The origin of this software must not be misrepresented; you must not
claim that you wrote the original software. If you use this software
in a product, an acknowledgment in the product documentation would be
appreciated but is not required.

2. Altered source versions must be plainly marked as such, and must not be
misrepresented as being the original software.

3. This notice may not be removed or altered from any source distribution.

Jean—-loup Gailly Mark Adler
jloup@gzip.org madler@alumni.caltech.edu

C.3.16 cfuhash

The implementation of the hash table used by the t racemalloc is based on the cfuhash project:

Copyright (c) 2005 Don Owens
All rights reserved.

This code is released under the BSD license:

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following
disclaimer in the documentation and/or other materials provided
with the distribution.

* Neither the name of the author nor the names of its
contributors may be used to endorse or promote products derived
from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS

(ciag dalszy na nastgpnej stronie)

226 Dodatek C. Historia i zapisy prawne

The Python/C API, Wydanie 3.7.17

(kontynuacja poprzedniej strony)

FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
OF THE POSSIBILITY OF SUCH DAMAGE.

C.3.17 libmpdec

The _decimal module is built using an included copy of the libmpdec library unless the build is configured
——with-system—-libmpdec:

Copyright (c) 2008-2016 Stefan Krah. All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS "AS IS" AND

ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS

OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

C.3. Licenses and Acknowledgements for Incorporated Software 227

The Python/C API, Wydanie 3.7.17

228 Dodatek C. Historia i zapisy prawne

DODATEK D

Prawa autorskie

Python i ta dokumentacja jest:

Copyright © 2001-2023 Python Software Foundation. All rights reserved.

Copyright © 2000 BeOpen.com. All rights reserved.

Copyright © 1995-2000 Corporation for National Research Initiatives. All rights reserved.
Copyright © 1991-1995 Stichting Mathematisch Centrum. All rights reserved.

Patrz dzial Historia i zapisy prawne, aby zobaczy¢ pelna informacje na temat licencji i praw.

229

The Python/C API, Wydanie 3.7.17

230 Dodatek D. Prawa autorskie

Indeks

Niealfabetyczny

..., 195
">>>" 195
2to3, 195
__all__ (package variable), 41
__dict__ (module attribute), 121
__doc__ (module attribute), 121
_ file_ (module attribute), 121
_ future_ , 199
__import_

funkcja wbudowana, 41
_ loader__ (module attribute), 121
_ _main___

modutl, 12, 142, 151
__name___ (module attribute), 121
__ package__ (module attribute), 121
__slots_ ,205
_frozen(typC), 43
_inittab (typ (), 44
_Py_c_diff (funkcja C), 85
_Py_c_neqg (funkcja C), 85
_Py_c_pow (funkcja C), 85
_Py_c_prod (funkcja C), 85
_Py_c_quot (funkcja C), 85
_Py_c_sum (funkcja C), 85
_Py_NoneStruct (zmienna C), 168
_PyBytes_Resize (funkca C), 88
_PyCFunctionFast (typ C), 169
_PyCFunctionFastWithKeywords (typ C), 169
_PyImport_Fini (funkcja C), 43
_PyImport_Init (funkcja C), 43
_PyObject_GC_TRACK (funkcja C), 191
_PyObject_GC_UNTRACK (funkcja C), 191
_PyObject_New (funkcja C), 167
_PyObject_NewVar (funkcja C), 167
_PyTuple_Resize (funkcja C), 109
_thread

modutl, 148

A

abort (), 40
abs

funkcja wbudowana, 65
abstract base class, 195
annotation, 195
argument, 195
argv (in module sys), 145
ascii

funkcja wbudowana, 61
asynchronous context manager, 196
asynchronous generator, 196
asynchronous generator iterator, 196
asynchronous iterable, 196
asynchronous iterator, 196
atrybut, 196
awaitable, 196

B

BDFL, 196
binary file, 196
buffer interface
(see buffer protocol), 70
buffer object
(see buffer protocol), 70
buffer protocol, 70
builtins
modut, 12, 142, 151
bytearray
obiekt, 88
bytes
funkcja wbudowana, 61
obiekt, 86
bytes—-like object, 196

C

calloc (), 157
Capsule
obiekt, 130

231

The Python/C API, Wydanie 3.7.17

C-contiguous, 73, 197
class, 197
class variable, 197
classmethod

funkcja wbudowana, 170
cleanup functions,40
close () (in module os), 151

CO_FUTURE_DIVISION (zmienna C), 21

code object, 119
coercion, 197
compile
funkcja wbudowana, 42
complex number, 197
obiekt, 85
context manager, 197
context variable, 197
contiguous, 73, 197
copyright (in module sys), 144
coroutine, 197
coroutine function, 197
CPython, 197
create_module (funkcja C), 124

D

decorator, 197
descriptor, 198
dictionary, 198

obiekt, 112
dictionary view, 198
divmod

funkcja wbudowana, 64
docstring, 198
duck-typing, 198

E

EAFP, 198

EOFError (built-in exception), 120
exc_info () (in module sys), 10
exec_module (funkcja C), 124
exec_prefix, 4

executable (in module sys), 144
exit (),40

expression, 198

F

f-string, 198
file

obiekt, 120
file object, 198
file-like object, 199
finder, 199
float

funkcja wbudowana, 66
floating point

obiekt, 84
floor division, 199
Fortran contiguous, 73, 197
free (), 157
freeze utility,43
frozenset
obiekt, 115
function, 199
obiekt, 116
function annotation, 199
funkcja wbudowana
_ _import_ ,41
abs, 65
ascii, 61
bytes, 61
classmethod, 170
compile, 42
divmod, 64
float, 66
hash, 63, 176
int, 66
len, 63,67,69, 111,113,116
pow, 64, 66
repr, 61, 176
staticmethod, 170
tuple, 68, 112
type, 63

G

garbage collection, 199
generator, 199

generator expression, 199
generator iterator, 199
generic function, 200
GIL, 200

global interpreter lock, 146,200

Fi

hash

funkcja wbudowana, 63, 176

hash-based pyc, 200
hashable, 200

IDLE, 200
immutable, 200
import path, 200
importer, 200
importing, 200
incr_item(), 11
inquiry (typ C), 192
instancemethod

obiekt, 118
int

232

Indeks

The Python/C API, Wydanie 3.7.17

funkcja wbudowana, 66
integer

obiekt, 81
interactive, 200
interpreted, 200
interpreter lock, 146
interpreter shutdown, 201
iterable, 201
iterator, 201

K

key function, 201
KeyboardInterrupt (built-in exception), 31
keyword argument, 201

kod bajtowy, 197

L

lambda, 201
LBYL, 201
len

funkcja wbudowana, 63, 67,69, 111,113,116
list, 202

obiekt, 111
list comprehension, 202
loader, 202
lock, interpreter, 146
long integer

obiekt, 81
LONG_MAX, 82

M
magic

method, 202
magic method, 202
main (), 143, 145
malloc (), 157
mapping, 202

obiekt, 112
memoryview

obiekt, 129
meta path finder, 202
metaclass, 202
METH_CLASS (zmienna wbudowana), 170
METH_COEXIST (zmienna wbudowana), 170
METH_FASTCALL (zmienna wbudowana), 170
METH_NOARGS (zmienna wbudowana), 170
METH_O (zmienna wbudowana), 170
METH_STATIC (zmienna wbudowana), 170
METH_VARARGS (zmienna wbudowana), 169
method, 202

magic, 202

obiekt, 118

special, 206
method resolution order, 202

MethodType (in module types), 116, 118
module, 202
obiekt, 121
search path, 12, 142, 144
module spec, 202
modules (in module sys), 41, 142
ModuleType (in module types), 121
modut
__main_ , 12,142,151
_thread, 148
builtins, 12, 142, 151
signal, 31
sys, 12, 142, 151
modutl rozszerzenia, 198
MRO, 202
mutable, 202

N

named tuple, 202
namespace, 203
namespace package, 203
nested scope, 203
new-style class, 203

None
obiekt, 81

numeric
obiekt, 81

@)

obiekt
bytearray, 88
bytes, 86

Capsule, 130
complex number, 85
dictionary, 112
file, 120
floating point, 84
frozenset, 115
function, 116
instancemethod, 118
integer, 81
list, 111
long integer, 81
mapping, 112
memoryview, 129
method, 118
module, 121
None, 81
numeric, 81
sequence, 86
set, 115
tuple, 108
type, 6,79

object, 203

Indeks

233

The Python/C API, Wydanie 3.7.17

code, 119
OverflowError (built-in exception), 82, 83

P

package, 203
package variable

all 41
parameter, 203
PATH, 12

path

module search, 12, 142, 144
path (in module sys), 12, 142, 144
path based finder, 204
path entry, 204
path entry finder, 204
path entry hook, 204
path-like object, 204
PEP, 204
platform (in module sys), 144
portion, 204
positional argument, 204
pow

funkcja wbudowana, 64, 66
prefix, 4
provisional API, 204
provisional package, 204
przedrostek, 4
Py_ABS (makro C), 5
Py_AddPendingCall (funkcja C), 152
Py_AddPendingCall (), 152
Py_AtExit (funkcja C), 40
Py_BEGIN_ALLOW_THREADS, 146
Py_BEGIN_ALLOW_THREADS (makro C), 149
Py_BLOCK_THREADS (makro C), 150
Py_buffer (typ C), 71

Py_buffer.
Py_buffer.
Py_buffer.
Py_buffer.
Py_buffer.
Py_buffer.
Py_buffer.
.readonly (pole C), 71

Py_buffer

Py_buffer.
Py_buffer.
Py_buffer.

buf (pole C), 71
format (pole C), 71
internal (pole C), 72
itemsize (pole C), 71
len (pole C), 71

ndim (pole C), 72

obj (pole C), 71

shape (pole C), 72
strides (pole C), 72
suboffsets (pole C), 72

Py_BuildValue (funkcja C), 52
Py_BytesWarningFlag (zmienna C), 140

Py_CompileStringObject (funkcja C), 20
Py_complex (typ C), 85

Py_DebugFlag (zmienna C), 140
Py_DecodeLocale (funkcja C), 38
Py_DECREF (funkcja C), 23
Py_DECREF (), 6

Py_DontWriteBytecodeFlag (zmienna C), 140

Py_Ellipsis (zmienna C), 129
Py_EncodeLocale (funkcja C), 38
Py_END_ALLOW_THREADS, 146
Py_END_ALLOW_THREADS (makro C), 149
Py_EndInterpreter (funkca C), 151
Py_EnterRecursiveCall (funkcja C), 33
Py_eval_input (zmienna C), 21
Py_Exit (funkcja C), 40

Py_False (zmienna C), 84
Py_FatalError (funkca C), 40
Py_FatalError (), 145
Py_FdIsInteractive (funkca C), 37
Py_file_input (zmienna C), 21
Py_Finalize (funkcja C), 143
Py_FinalizeEx (funkcja C), 142
Py_FinalizeEx (), 40, 142,151, 152
Py_FrozenFlag (zmienna C), 140
Py_GetBuildInfo (funkcja C), 145
Py_GetCompiler (funkca C), 145
Py_GetCopyright (funkcja C), 144
Py_GETENV (makro C), 5
Py_GetExecPrefix (funkcja C), 143
Py_GetExecPrefix (), 12
Py_GetPath (funkcja C), 144
Py_GetPath (), 12, 143, 144
Py_GetPlat form (funkcja C), 144
Py_GetPrefix (funkcja C), 143
Py_GetPrefix (), 12
Py_GetProgramFullPath (funkca C), 144
Py_GetProgramFullPath (), 12
Py_GetProgramName (funkcja C), 143
Py_GetPythonHome (funkcja C), 146
Py_GetVersion (funkcja C), 144

Py_HashRandomizationFlag (zmienna C), 140
Py_IgnoreEnvironmentFlag (zmienna C), 141

Py_INCREF (funkcja C), 23
Py_INCREF (), 6
Py_Initialize (funkca C), 142
Py_Initialize(), 12,143,151
Py_InitializeEx (funkcja C), 142
Py_InspectFlag (zmienna C), 141

Py_InteractiveFlagqg (zmienna C), 141
Py_IsInitialized (funkca C), 142
Py_IsInitialized(), 12
Py_TIsolatedFlag (zmienna C), 141
Py_LeaveRecursiveCall (funkcja C), 34

Py_CHARMASK (makro C), 5

Py_CLEAR (funkcja C), 23
Py_CompileString (funkcja C), 20
Py_CompileString (), 21
Py_CompileStringExFlags (funkcja C), 20
Py_CompileStringFlags (funkcja C), 20

234 Indeks

The Python/C API, Wydanie 3.7.17

Py_LegacyWindowsFSEncodingFlag (zmienna
0), 141

Py_LegacyWindowsStdioFlag (zmienna C), 141

Py_Main (funkcja C), 17

Py_MAX (makro C), 5

Py_MEMBER_SIZE (makro C), 5

Py_MIN (makro C), 5

Py_mod_create (zmienna C), 124

Py_mod_exec (zmienna C), 124

Py_NewlInterpreter (funkcja C), 151

Py_None (zmienna C), 81

Py_NoSiteFlag (zmienna C), 141

Py_NotImplemented (zmienna C), 59

Py_NoUserSiteDirectory (zmienna C), 141

Py_OptimizeFlag (zmienna C), 141

Py_PRINT_RAW, 120

Py_QuietFlag (zmienna C), 141

Py_REFCNT (makro C), 168

Py_ReprEnter (funkcja C), 34

Py_ReprLeave (funkcja C), 34

Py_RETURN_FALSE (makro C), 84

Py_RETURN_NONE (makro C), 81

Py_RETURN_NOTIMPLEMENTED (makro C), 59

Py_RETURN_RICHCOMPARE (funkcja C), 180

Py_RETURN_TRUE (makro C), 84

Py_SetPath (funkcja C), 144

Py_SetPath (), 144

Py_SetProgramName (funkcja C), 143

Py_SetProgramName (), 12, 142144

Py_SetPythonHome (funkcja C), 145

Py_SetStandardStreamkEncoding (funkcja C),
143

Py_single_input (zmienna C), 21

Py_SIZE (makro C), 168

PY_SSIZE_T_MAX, 83

Py_STRINGIFY (makro C), 5

Py_TPFLAGS_BASE_EXC_SUBCLASS (zmienna wbu-
dowana), 178

Py_TPFLAGS_BASETYPE (zmienna wbudowana), 178

Py_TPFLAGS_BYTES_SUBCLASS (zmienna whbudo-
wana), 178

Py_TPFLAGS_DEFAULT (zmienna wbudowana), 178

Py_TPFLAGS_DICT_SUBCLASS (zmienna wbudowa-
na), 178

Py_TPFLAGS_HAVE_FINALIZE (zmienna wbudowa-
na), 178

Py_TPFLAGS_HAVE_GC (zmienna wbudowana), 178

Py_TPFLAGS_HEAPTYPE (zmienna wbudowana), 178

Py_TPFLAGS_LIST_SUBCLASS (zmienna wbudowa-
na), 178

Py_TPFLAGS_LONG_SUBCLASS (zmienna wbudowa-
na), 178

Py_TPFLAGS_READY (zmienna wbudowana), 178

Py_TPFLAGS_READYING (zmienna wbudowana), 178

Py_TPFLAGS_TUPLE_SUBCLASS (zmienna wbudo-
wana), 178

Py_TPFLAGS_TYPE_SUBCLASS (zmienna wbudowa-
na), 178

Py_TPFLAGS_UNICODE_SUBCLASS (zmienna wbu-
dowana), 178

Py_tracefunc (typ C), 153

Py_True (zmienna C), 84

Py_tss_NEEDS_INIT (makro C), 155

Py_tss_t (typ C), 155

Py_TYPE (makro C), 168

Py_UCS1 (typ C), 90

Py_UCS2 (typ C), 90

Py_UCS4 (typ C), 90

Py_UNBLOCK_THREADS (makro C), 150

Py_UnbufferedStdioFlag (zmienna C), 141

Py_UNICODE (typ C), 90

Py_UNICODE_IS_HIGH_SURROGATE (makro C), 93

Py_UNICODE_IS_LOW_SURROGATE (makro C), 93

Py_UNICODE_IS_SURROGATE (makro C), 93

Py_UNICODE_ISALNUM (funkcja C), 92

Py_UNICODE_ISALPHA (funkcja C), 92

Py_UNICODE_ISDECIMAL (funkcja C), 92

Py_UNICODE_ISDIGIT (funkcja C), 92

Py_UNICODE_ISLINEBRERAK (funkcja C), 92

Py_UNICODE_ISLOWER (funkcja C), 92

Py_UNICODE_ISNUMERIC (funkcja C), 92

Py_UNICODE_ISPRINTABLE (funkcja C), 92

Py_UNICODE_ISSPACE (funkcja C), 92

Py_UNICODE_ISTITLE (funkcja C), 92

Py_UNICODE_ISUPPER (funkcja C), 92

Py_UNICODE_JOIN_SURROGATES (makro C), 93

Py_UNICODE_TODECIMAL (funkcja C), 93

Py_UNICODE_TODIGIT (funkcja C), 93

Py_UNICODE_TOLOWER (funkcja C), 92

Py_UNICODE_TONUMERIC (ﬁmkcja 0), 93

Py_UNICODE_TOTITLE (funkcja C), 93

Py_UNICODE_TOUPPER (funkcja C), 92

Py_UNREACHABLE (makro C), 5

Py_UNUSED (makro C), 5

Py_VaBuildvalue (funkcja C), 53

Py_VerboseFlag (zmienna C), 142

Py_VISIT (funkcja C), 192

Py_XDECREF (funkcja C), 23

Py_XDECREF (), 11

Py_XINCREF (funkcja C), 23

PyAnySet_Check (funkgja C), 115

PyAnySet_CheckExact (funkca C), 115

PyArg_Parse (funkcja C), 51

PyArg_ParseTuple (funkca C), 51

PyArg_ParseTupleAndKeywords (funkcja C), 51

PyArg_UnpackTuple (funkcja C), 51

PyArg_ValidateKeywordArguments (funkga C),
51

Indeks

235

The Python/C API, Wydanie 3.7.17

PyArg_VaParse (funkcja C), 51
PyArg_VaParseTupleAndKeywords (funkcja C),
51
PyASCIIObject (typ C), 90
PyAsyncMethods (typ C), 190
PyAsyncMethods.am_aiter (pole C), 190
PyAsyncMethods.am_anext (pole C), 190
PyAsyncMethods.am_await (pole C), 190
PyBool_Check (funkcja C), 84
PyBool_FromLong (funkcja C), 84
PyBUF_ANY_CONTIGUOUS (makro C), 74
PyBUF_C_CONTIGUOUS (makro C), 74
PyBUF_CONTIG (makro C), 74
PyBUF_CONTIG_RO (makro C), 74
PyBUF_F_CONTIGUOUS (makro C), 74
PyBUF_FORMAT (makro C), 73
PyBUF_FULL (makro C), 74
PyBUF_FULL_RO (makro C), 74
PyBUF_INDIRECT (makro C), 73
PyBUF_ND (makro C), 73, 74
PyBUF_RECORDS (makro C), 74
PyBUF_RECORDS_RO (makro C), 74
PyBUF_SIMPLE (makro C), 73
PyBUF_STRIDED (makro C), 74
PyBUF_STRIDED_RO (makro C), 74
PyBUF_STRIDES (makro C), 73
PyBUF_WRITABLE (makro C), 73
PyBuffer_FillContiguousStrides (funkca C),
76
PyBuffer FillInfo (funkca C), 77
PyBuffer FromContiguous (funkca C), 76
PyBuffer_GetPointer (funkca C), 76
PyBuffer_IsContiguous (funkcja C), 76
PyBuffer_Release (funkcja C), 76
PyBuffer_SizeFromFormat (funkcja C), 76
PyBuffer ToContiguous (funkca C), 76
PyBufferProcs, 70
PyBufferProcs (typ C), 189
PyBufferProcs.bf_getbuffer (pole C), 189
PyBufferProcs.bf_releasebuffer (pole
189
PyByteArray_AS_STRING (funkcja C), 89
PyByteArray_AsString (funkca C), 89
PyByteArray_Check (funkcja C), 88
PyByteArray_CheckExact (funkcja C), 88
PyByteArray_Concat (funkcja C), 89
PyByteArray_FromObject (funkcja C), 89
PyByteArray_FromStringAndSize (funkcga C),
89
PyByteArray_GET_SIZE (funkcja C), 89
PyByteArray_Resize (funkcja C), 89
PyByteArray_Size (funkcja C), 89
PyByteArray_Type (zmienna C), 88
PyByteArrayObject (typ C), 88

0,

PyBytes_AS_STRING (funkcja C), 87
PyBytes_AsString (funkcja C), 87
PyBytes_AsStringAndSize (funkcja C), 87
PyBytes_Check (funkcja C), 86
PyBytes_CheckExact (funkcja C), 86
PyBytes_Concat (funkcja C), 88
PyBytes_ConcatAndDel (funkcja C), 88
PyBytes_FromFormat (funkcja C), 87
PyBytes_FromFormatV (funkcja C), 87
PyBytes_FromObject (funkcja C), 87
PyBytes_FromString (funkcja C), 86
PyBytes_FromStringAndSize (funkcja C), 86
PyBytes_GET_SIZE (funkcja C), 87
PyBytes_Size (funkcja C), 87
PyBytes_Type (zmienna C), 86
PyBytesObject (typ C), 86
PyCallable_Check (funkcja C), 62
PyCallIter_Check (funkcja C), 127
PyCalllIter_New (funkca C), 127
PyCalllIter_Type (zmienna C), 127
PyCapsule (typ C), 130
PyCapsule_CheckExact (funkcja C), 131
PyCapsule_Destructor (typ C), 130
PyCapsule_GetContext (funkcja C), 131
PyCapsule_GetDestructor (funkca C), 131
PyCapsule_GetName (funkcja C), 131
PyCapsule_GetPointer (funkca C), 131
PyCapsule_TImport (funkca C), 131
PyCapsule_TIsValid (funkcja C), 131
PyCapsule_New (funkcja C), 131
PyCapsule_SetContext (funkcja C), 131
PyCapsule_SetDestructor (funkca C), 132
PyCapsule_SetName (funkcja C), 132
PyCapsule_SetPointer (funkcja C), 132
PyCell_Check (funkcja C), 119
PyCell_ GET (funkcja C), 119
PyCell_Get (funkcja C), 119
PyCell_New (funkcja C), 119
PyCell_SET (funkcja C), 119
PyCell_Set (funkcja C), 119
PyCell_Type (zmienna C), 119
PyCellObject (typ C), 119
PyCFunction (typ C), 169
PyCFunctionWithKeywords (typ C), 169
PyCode_Check (funkcja C), 119
PyCode_GetNumFree (funkcja C), 119
PyCode_New (funkcja C), 119
PyCode_NewEmpty (funkcja C), 120
PyCode_Type (zmienna C), 119
PyCodec_BackslashReplaceErrors (funkca C),
57
PyCodec_Decode (funkcja C), 56
PyCodec_Decoder (funkcja C), 56
PyCodec_Encode (funkcja C), 56

236

Indeks

The Python/C API, Wydanie 3.7.17

PyCodec_Encoder (funkcja C), 56
PyCodec_IgnoreErrors (funkca C), 57
PyCodec_IncrementalDecoder (funkcja C), 56
PyCodec_IncrementalEncoder (funkcja C), 56
PyCodec_KnownEncoding (funkcja C), 56
PyCodec_LookupError (funkca C), 57
PyCodec_NameReplaceErrors (funkca C), 57
PyCodec_Register (funkcja C), 56
PyCodec_RegisterError (funkca C), 57
PyCodec_ReplaceErrors (funkca C), 57
PyCodec_StreamReader (funkcja C), 56
PyCodec_StreamWriter (funkca C), 56
PyCodec_StrictErrors (funkca C), 57
PyCodec_XMLCharRefReplaceErrors
0), 57
PyCodeObject (typ C), 119
PyCompactUnicodeObject (typ C), 90
PyCompilerFlags (typ 0), 21
PyComplex_AsCComplex (funkcja C), 86
PyComplex_Check (funkcja C), 86
PyComplex_CheckExact (funkcja C), 86
PyComplex_FromCComplex (funkcja C), 86
PyComplex_FromDoubles (funkcja C), 86
PyComplex_ImagAsDouble (funkcja C), 86
PyComplex_RealAsDouble (funkcja C), 86
PyComplex_Type (zmienna C), 86
PyComplexObject (typ C), 86
PyContext (typ C), 133
PyContext_CheckExact (funkcja C), 133
PyContext_ClearFreelist (funkga C), 134
PyContext_Copy (funkga C), 133
PyContext_CopyCurrent (funkcja C), 133
PyContext_Enter (funkcja C), 134
PyContext_Exit (funkcja C), 134
PyContext_New (funkcja C), 133
PyContext_Type (zmienna C), 133
PyContextToken (typ C), 133
PyContextToken_CheckExact (funkcja C), 133
PyContextToken_Type (zmienna C), 133
PyContextVar (typ C), 133
PyContextVar_CheckExact (funkca C), 133
PyContextVar_Get (funkcja C), 134
PyContextVar_New (funkcja C), 134
PyContextVar_Reset (funkcja C), 134
PyContextVar_Set (funkcja C), 134
PyContextVar_Type (zmienna C), 133
PyCoro_CheckExact (funkcja C), 132
PyCoro_New (funkcja C), 133
PyCoro_Type (zmienna C), 132
PyCoroObject (typ C), 132
PyDate_Check (funkcja C), 134
PyDate_CheckExact (funkcja C), 135
PyDate_FromDate (funkcja C), 135
PyDate_FromTimestamp (funkcja C), 137

(funkcja

PyDateTime_Check (funkcja C), 135
PyDateTime_CheckExact (funkcja C), 135
PyDateTime_DATE_GET_FOLD (funkcja C), 136
PyDateTime_DATE_GET_HOUR (funkcja C), 136
PyDateTime_DATE_GET_MICROSECOND (funkcja
0), 136
PyDateTime_DATE_GET_MINUTE (funkcja C), 136
PyDateTime_DATE_GET_SECOND (funkcja C), 136
PyDateTime_DELTA_GET_DAYS (funkcja C), 137
PyDateTime_DELTA_GET_MICROSECONDS (funk-

ga C), 137
PyDateTime_DELTA_GET_SECONDS (ﬁmkcja 0),
137

PyDateTime_FromDateAndTime (funkcja C), 135
PyDateTime_FromDateAndTimeAndFold (funk-
ga C), 135
PyDateTime_FromTimestamp (funkca C), 137
PyDateTime_GET_DAY (funkcja C), 136
PyDateTime_GET_MONTH (funkcja C), 136
PyDateTime_GET_YEAR (funkcja C), 136
PyDateTime_TIME_GET_FOLD (funkcja C), 136
PyDateTime_TIME_GET_HOUR (funkcja C), 136
PyDateTime_TIME_GET_MICROSECOND (funkcja
0), 136
PyDateTime_TIME_GET_MINUTE (funkcja C), 136
PyDateTime_TIME_GET_SECOND (funkcja C), 136
PyDateTime_TimeZone_UTC (zmienna C), 134
PyDelta_Check (funkcja C), 135
PyDelta_CheckExact (funkcja C), 135
PyDelta_FromDSU (funkcja C), 135
PyDescr_IsData (funkga C), 127
PyDescr_NewClassMethod (funkca C), 127
PyDescr_NewGetSet (funkcja C), 127
PyDescr_NewMember (funkcja C), 127
PyDescr_NewMethod (funkcja C), 127
PyDescr_NewWrapper (funkcja C), 127
PyDict_Check (funkcja C), 112
PyDict_CheckExact (funkcja C), 112
PyDict_Clear (funkcja C), 112
PyDict_ClearFreelist (funkca C), 115
PyDict_Contains (funkcja C), 112
PyDict_Copy (funkga C), 113
PyDict_DelItem (funkca C), 113
PyDict_DelItemString (funkcia C), 113
PyDict_GetItem (funkga C), 113
PyDict_GetItemString (funkcja C), 113
PyDict_GetItemWithError (funkca C), 113
PyDict_Items (funkga C), 113
PyDict_Keys (funkcja C), 113
PyDict_Merge (funkcja C), 114
PyDict_MergeFromSeq2 (funkcja C), 114
PyDict_New (funkcja C), 112
PyDict_Next (funkcja C), 113
PyDict_SetDefault (funkca C), 113

Indeks

237

The Python/C API, Wydanie 3.7.17

PyDict_SetItem (funkca C), 113
PyDict_SetItemString (funkcia C), 113
PyDict_Size (funkca C), 113
PyDict_Type (zmienna C), 112
PyDict_Update (funkcja C), 114
PyDict_Values (funkcja C), 113
PyDictObject (typ 0), 112
PyDictProxy_New (funkcja C), 112
PyDoc_STR (makro C), 6
PyDoc_STRVAR (makro C), 5
PyErr_BadArgument (funkcja C), 26
PyErr_BadInternalCall (funkcja C), 28
PyErr_CheckSignals (funkcja C), 31
PyErr_Clear (funkcja C), 26
PyErr_Clear (), 10,11
PyErr_ExceptionMatches (funkca C), 29
PyErr_ExceptionMatches (), 11
PyErr_Fetch (funkcja C), 30
PyErr_Format (funkcja C), 26
PyErr_FormatV (funkcja C), 26
PyErr_GetExcInfo (funkcja C), 30
PyErr_GivenExceptionMatches (funkca C), 29
PyErr_NewException (funkca C), 31
PyErr_NewExceptionWithDoc (funkcja C), 32
PyErr_NoMemory (funkcja C), 27
PyErr_NormalizeException (funkcja C), 30
PyErr_Occurred (funkca C), 29
PyErr_Occurred(), 10
PyErr_Print (funkcja C), 26
PyErr_PrintEx (funkcja C), 26
PyErr_ResourceWarning (funkcja C), 29
PyErr_Restore (funkcja C), 30
PyErr_SetExcFromWindowsErr (funkcja C), 27
PyErr_SetExcFromWindowsErrWithFilename
(funkcja C), 28

PyErr_SetObject (funkcja C), 26
PyErr_SetString (funkcja C), 26
PyErr_SetString(), 10
PyErr_SyntaxLocation (funkcja C), 28
PyErr_SyntaxLocationEx (funkcja C), 28
PyErr_SyntaxLocationObject (funkcja C), 28
PyErr_WarnEx (funkcja C), 28
PyErr_WarnExplicit (funkcja C), 29
PyErr_WarnExplicitObject (funkcja C), 29
PyErr_WarnFormat (funkcja C), 29
PyErr_WriteUnraisable (funkcja C), 26
PyEval_AcquireLock (funkcja C), 151
PyEval_AcquireThread (funkcja C), 150
PyEval_AcquireThread (), 148
PyEval_EvalCode (funkcja C), 20
PyEval_EvalCodeEx (funkcja C), 20
PyEval_EvalFrame (funkcja C), 20
PyEval_EvalFrameEx (funkcja C), 20
PyEval_GetBuiltins (funkca C), 55
PyEval_GetFrame (funkcja C), 55
PyEval_GetFuncDesc (funkcja C), 55
PyEval_GetFuncName (funkcja C), 55
PyEval_GetGlobals (funkcja C), 55
PyEval_GetLocals (funkcja C), 55
PyEval_InitThreads (funkcja C), 148
PyEval_InitThreads (), 142
PyEval_MergeCompilerFlags (funkca C), 21
PyEval_ReInitThreads (funkca C), 148
PyEval_ReleaseLock (funkcja C), 151
PyEval_ReleaseThread (funkcja C), 151
PyEval_ReleaseThread (), 148
PyEval_RestoreThread (funkca C), 148
PyEval_RestoreThread (), 146, 148
PyEval_SaveThread (funkcja C), 148
PyEval_SaveThread (), 146, 148

PyErr_SetExcFromWindowsErrWithFilenameObBgEtal_SetProfile (funkcja C), 154

(funkcja C), 27

PyEval_SetTrace (funkca C), 154

PyErr_SetExcFromWindowsErrWithFilenameObBgEval_ThreadsInitialized (funkcga C), 148

(funkcja C), 27
PyErr_SetExcInfo (funkca C), 31
PyErr_SetFromErrno (funkca C), 27
PyErr_SetFromErrnoWithFilename (funkcja C),
27
PyErr_SetFromErrnoWithFilenameObject
(funkcja C), 27
PyErr_SetFromErrnoWithFilenameObjects
(funkcja C), 27
PyErr_SetFromWindowsErr (funkcja C), 27
PyErr_SetFromWindowsErrWithFilename
(funkcja C), 27
PyErr_SetImportError (funkca C), 28
PyErr_SetImportErrorSubclass (funkca C), 29
PyErr_SetInterrupt (funkcja C), 31
PyErr_SetNone (funkcja C), 26

PyExc_ArithmeticError, 34
PyExc_AssertionError, 34
PyExc_AttributeError, 34
PyExc_BaseException, 34
PyExc_BlockingIOError, 34
PyExc_BrokenPipeError, 34
PyExc_BufferError, 34
PyExc_BytesWarning, 36
PyExc_ChildProcessError, 34
PyExc_ConnectionAbortedError, 34
PyExc_ConnectionError, 34
PyExc_ConnectionRefusedError, 34
PyExc_ConnectionResetError, 34
PyExc_DeprecationWarning, 36
PyExc_EnvironmentError, 35
PyExc_EOFError, 34

238

Indeks

The Python/C API, Wydanie 3.7.17

PyExc_Exception, 34
PyExc_FileExistsError, 34
PyExc_FileNotFoundError, 34
PyExc_FloatingPointError, 34
PyExc_FutureWarning, 36
PyExc_GeneratorExit, 34
PyExc_ImportError, 34
PyExc_ImportWarning, 36
PyExc_IndentationError, 34
PyExc_IndexError, 34
PyExc_InterruptedError, 34
PyExc_IOError, 35
PyExc_IsADirectoryError, 34
PyExc_KeyboardInterrupt, 34
PyExc_KeyError, 34
PyExc_LookupError, 34
PyExc_MemoryError, 34
PyExc_ModuleNotFoundError, 34
PyExc_NameError, 34
PyExc_NotADirectoryError, 34
PyExc_NotImplementedError, 34
PyExc_OSError, 34
PyExc_OverflowError, 34
PyExc_PendingDeprecationWarning, 36
PyExc_PermissionError, 34
PyExc_ProcessLookupError, 34
PyExc_RecursionError, 34
PyExc_ReferenceError, 34
PyExc_ResourceWarning, 36
PyExc_RuntimeError, 34
PyExc_RuntimeWarning, 36
PyExc_StopAsyncIteration, 34
PyExc_StopIteration, 34
PyExc_SyntaxError, 34
PyExc_SyntaxWarning, 36
PyExc_SystemError, 34
PyExc_SystemExit, 34
PyExc_TabError, 34
PyExc_TimeoutError, 34
PyExc_TypeError, 34
PyExc_UnboundLocalError, 34
PyExc_UnicodeDecodeError, 34
PyExc_UnicodeEncodeError, 34
PyExc_UnicodeError, 34
PyExc_UnicodeTranslateError, 34
PyExc_UnicodeWarning, 36
PyExc_UserWarning, 36
PyExc_ValueError, 34
PyExc_Warning, 36
PyExc_WindowsError, 35
PyExc_ZeroDivisionError, 34
PyException_GetCause (funkcja C), 32
PyException_GetContext (funkcja C), 32
PyException_GetTraceback (funkcja C), 32

PyException_SetCause (funkcja C), 32
PyException_SetContext (funkca C), 32
PyException_SetTraceback (funkca C), 32
PyFile_FromFd (funkca C), 120
PyFile_GetLine (funkcja C), 120
PyFile_WriteObject (funkcja C), 120
PyFile_WriteString (funkca C), 120
PyFloat_AS_DOUBLE (funkcja C), 84
PyFloat_AsDouble (funkcja C), 84
PyFloat_Check (funkcja C), 84
PyFloat_CheckExact (funkcja C), 84
PyFloat_ClearFreeList (funkca C), 85
PyFloat_FromDouble (funkcja C), 84
PyFloat_FromString (funkcja C), 84
PyFloat_GetInfo (funkcja C), 84
PyFloat_GetMax (funkcja C), 84
PyFloat_GetMin (funkcja C), 85
PyFloat_Type (zmienna C), 84
PyFloatObject (typ C), 84
PyFrame_GetLineNumber (funkcja C), 55
PyFrameObject (typ C), 20
PyFrozenSet_Check (funkcja C), 115
PyFrozenSet_CheckExact (funkca C), 115
PyFrozenSet_New (funkcja C), 115
PyFrozenSet_Type (zmienna C), 115
PyFunction_Check (funkca C), 116
PyFunction_GetAnnotations (funkca C), 117
PyFunction_GetClosure (funkca C), 117
PyFunction_GetCode (funkcja C), 117
PyFunction_GetDefaults (funkca C), 117
PyFunction_GetGlobals (funkca C), 117
PyFunction_GetModule (funkcja C), 117
PyFunction_New (funkcja C), 117
PyFunction_NewWithQualName (funkcja C), 117
PyFunction_SetAnnotations (funkca C), 117
PyFunction_SetClosure (funkca C), 117
PyFunction_SetDefaults (funkga C), 117
PyFunction_Type (zmienna C), 116
PyFunctionObject (typ C), 116
PyGen_Check (funkcja C), 132
PyGen_CheckExact (funkcja C), 132
PyGen_New (funkcja C), 132
PyGen_NewWithQualName (funkcja C), 132
PyGen_Type (zmienna C), 132
PyGenObject (typ C), 132
PyGetSetDef (typ C), 171
PyGILState_Check (funkcja C), 149
PyGILState_Ensure (funkcja C), 149
PyGILState_GetThisThreadState (funkca C),
149
PyGILState_Release (funkcja C), 149
PyImport_AddModule (funkcja C), 42
PyImport_AddModuleObject (funkcja C), 42
PyImport_AppendInittab (funkca C), 44

Indeks

239

The Python/C API, Wydanie 3.7.17

PyImport_Cleanup (funkca C), 43
PyImport_ExecCodeModule (funkcja C), 42
PyImport_ExecCodeModuleEx (funkcja C), 42
PyImport_ExecCodeModuleObject (funkcja C),
42
PyImport_ExecCodeModuleWithPathnames
(funkcja C), 42
PyImport_ExtendInittab (funkcja C), 44
PyImport_FrozenModules (zmienna C), 44
PyImport_GetImporter (funkcja C), 43
PyImport_GetMagicNumber (funkca C), 43
PyImport_GetMagicTag (funkcia C), 43
PyImport_GetModule (funkcja C), 43
PyImport_GetModuleDict (funkca C), 43
PyImport_Import (funkcja C), 41
PyImport_ImportFrozenModule (funkcja C), 43
PyImport_ImportFrozenModuleObject (funk-
ga C), 43
PyImport_ImportModule (funkcja C), 41
PyImport_ImportModuleEx (funkcja C), 41
PyImport_ImportModulelLevel (funkcja C), 41
PyImport_ImportModuleLevelObject (funkcja
0), 41
PyImport_ImportModuleNoBlock (funkcja C), 41
PyImport_ReloadModule (funkcja C), 41
PyIndex_Check (funkcja C), 66
PyInstanceMethod_Check (funkca C), 118
PyInstanceMethod_Function (funkca C), 118
PyInstanceMethod_GET_FUNCTION (funkcja C),
118
PyInstanceMethod_New (funkcja C), 118
PyInstanceMethod_Type (zmienna C), 118
PyInterpreterState (typ C), 148
PyInterpreterState_Clear (funkca C), 150
PyInterpreterState_Delete (funkca C), 150
PyInterpreterState_GetID (funkcja C), 150
PyInterpreterState_Head (funkca C), 154
PyInterpreterState_Main (funkcja C), 154
PyInterpreterState_New (funkca C), 150
PyInterpreterState_Next (funkcja C), 154
PyInterpreterState_ThreadHead (funkcja C),
154
PyIter_Check (funkca C), 69
PyIter_Next (funkcja C), 69
PyList_Append (funkcja C), 111
PyList_AsTuple (funkcja C), 112
PyList_Check (funkcja C), 111
PyList_CheckExact (funkca C), 111
PyList_ClearFreelist (funkca C), 112
PyList_GET_ITEM (funkcja C), 111
PyList_GET_SIZE (funkcja C), 111
PyList_GetItem (funkcja C), 111
PyList_GetItem(), 8
PyList_GetSlice (funkcja C), 112

PyList_Insert (funkcja C), 111
PyList_New (funkcja C), 111
PyList_Reverse (funkcja C), 112
PyList_SET_ITEM (funkcja C), 111
PyList_SetItem (funkca C), 111
PyList_SetItem(),7
PyList_SetSlice (funkcja C), 112
PyList_Size (funkcja C), 111
PyList_Sort (funkcja C), 112
PyList_Type (zmienna C), 111
PyListObject (typ C), 111
PyLong_AsDouble (funkcja C), 83
PyLong_AsLong (funkcja C), 82
PyLong_AsLongAndOverflow (funkcja C), 82
PyLong_AsLongLong (funkcja C), 82
PyLong_AsLongLongAndOverflow (funkcja C), 82
PyLong_AsSize_t (funkcja C), 83
PyLong_AsSsize_t (funkca C), 83
PyLong_AsUnsignedLong (funkcja C), 83
PyLong_AsUnsignedLongLong (funkcja C), 83
PyLong_AsUnsignedLongLongMask (funkca C),
83
PyLong_AsUnsignedLongMask (funkca C), 83
PyLong_AsVoidPtr (funkcja C), 83
PyLong_Check (funkcja C), 81
PyLong_CheckExact (funkcja C), 81
PyLong_FromDouble (funkcja C), 81
PyLong_FromLong (funkcja C), 81
PyLong_FromLongLong (funkcja C), 81
PyLong_FromSize_t (funkcja C), 81
PyLong_FromSsize_t (funkcja C), 81
PyLong_FromString (funkcja C), 82
PyLong_FromUnicode (funkcja C), 82
PyLong_FromUnicodeObject (funkcja C), 82
PyLong_FromUnsignedLong (funkcja C), 81
PyLong_FromUnsignedLongLong (funkcja C), 81
PyLong_FromVoidPtr (funkcja C), 82
PyLong_Type (zmienna C), 81
PyLongObject (typ C), 81
PyMapping_Check (funkcja C), 68
PyMapping_DelItem (funkcja C), 69
PyMapping_DelItemString (funkcja C), 69
PyMapping_GetItemString (funkca C), 69
PyMapping_HasKey (funkcja C), 69
PyMapping_HasKeyString (funkcja C), 69
PyMapping_Items (funkcja C), 69
PyMapping_Keys (funkcja C), 69
PyMapping_Length (funkcja C), 68
PyMapping_SetItemString (funkca C), 69
PyMapping_Size (funkcja C), 68
PyMapping_Values (funkcja C), 69
PyMappingMethods (typ C), 187
PyMappingMethods.mp_ass_subscript
0), 187

(pole

240

Indeks

The Python/C API, Wydanie 3.7.17

PyMappingMethods.mp_length (pole C), 187
PyMappingMethods.mp_subscript (pole C), 187
PyMarshal_ReadLastObjectFromFile (funkcja
0), 45
PyMarshal_ReadLongFromFile (funkcja C), 45
PyMarshal_ReadObjectFromFile (funkcja C), 45
PyMarshal_ReadObjectFromString (funkca C),
45
PyMarshal_ReadShortFromFile (funkcja C), 45
PyMarshal_WriteLongToFile (funkcja C), 44
PyMarshal_WriteObjectToFile (funkcja C), 44
PyMarshal_WriteObjectToString (funkca C),
44
PyMem_Calloc (funkcja C), 159
PyMem_Del (funkcja C), 160
PYMEM_DOMAIN_MEM (zmienna C), 162
PYMEM_DOMAIN_OBJ (zmienna C), 162
PYMEM_DOMAIN_RAW (zmienna C), 162
PyMem_Free (funkcja C), 159
PyMem_GetAllocator (funkcja C), 162
PyMem_Malloc (funkcja C), 159
PyMem_New (funkcja C), 160
PyMem_RawCalloc (funkcja C), 158
PyMem_RawFree (funkcja C), 159
PyMem_RawMalloc (funkcja C), 158
PyMem_RawRealloc (funkcja C), 158
PyMem_Realloc (funkcja C), 159
PyMem_Resize (funkcja C), 160
PyMem_SetAllocator (funkca C), 162
PyMem_SetupDebugHooks (funkcja C), 163
PyMemAllocatorDomain (typ C), 162
PyMemAllocatorEx (typ C), 162
PyMemberDef (typ C), 170
PyMemoryView_Check (funkcja C), 129
PyMemoryView_FromBuffer (funkcja C), 129
PyMemoryView_FromMemory (funkcja C), 129
PyMemoryView_FromObject (funkca C), 129
PyMemoryView_GET_BASE (funkcja C), 129
PyMemoryView_GET_BUFFER (funkcja C), 129
PyMemoryView_GetContiguous (funkcia C), 129
PyMethod_Check (funkcja C), 118
PyMethod_ClearFreelist (funkca C), 118
PyMethod_Function (funkcja C), 118
PyMethod_GET_FUNCTION (funkcja C), 118
PyMethod_GET_SELF (funkcja C), 118
PyMethod_New (funkcja C), 118
PyMethod_Self (funkcja C), 118
PyMethod_Type (zmienna C), 118
PyMethodDef (typ C), 169
PyModule_AddFunctions (funkcja C), 125
PyModule_AddIntConstant (funkcia C), 125
PyModule_AddIntMacro (funkcja C), 126
PyModule_AddObject (funkcja C), 125
PyModule_AddStringConstant (funkcja C), 125

PyModule_AddStringMacro (funkcja C), 126
PyModule_Check (funkcja C), 121
PyModule_CheckExact (funkcja C), 121
PyModule_Create (funkcja C), 123
PyModule_Create2 (funkcja C), 123
PyModule_ExecDef (funkcja C), 125
PyModule_FromDefAndSpec (funkcja C), 124
PyModule_FromDefAndSpec?2 (funkcja C), 124
PyModule_GetDef (funkcja C), 121
PyModule_GetDict (funkca C), 121
PyModule_GetFilename (funkcja C), 121
PyModule_GetFilenameObject (funkcja C), 121
PyModule_GetName (funkcja C), 121
PyModule_GetNameObject (funkca C), 121
PyModule_GetState (funkcja C), 121
PyModule_New (funkcja C), 121
PyModule_NewObject (funkcja C), 121
PyModule_SetDocString (funkcja C), 125
PyModule_Type (zmienna C), 121
PyModuleDef (typ C), 122
PyModuleDef_Init (funkcja C), 123
PyModuleDef_Slot (typ C), 123
PyModuleDef_Slot.slot (pole C), 123
PyModuleDef_Slot.value (pole C), 124
PyModuleDef .m_base (pole C), 122
PyModuleDef.m_clear (pole C), 122
PyModuleDef .m_doc (pole C), 122
PyModuleDef.m_free (pole C), 122
PyModuleDef .m_methods (pole C), 122
PyModuleDef .m_name (pole C), 122
PyModuleDef.m_reload (pole C), 122
PyModuleDef.m_size (pole C), 122
PyModuleDef.m_slots (pole C), 122
PyModuleDef.m_traverse (pole C), 122
PyNumber_Absolute (funkcja C), 65
PyNumber_Add (funkcja C), 64
PyNumber_And (funkcja C), 65
PyNumber_AsSsize_t (funkcja C), 66
PyNumber_Check (funkcja C), 64
PyNumber_Divmod (funkcja C), 64
PyNumber_Float (funkcja C), 66
PyNumber_FloorDivide (funkcja C), 64
PyNumber_Index (funkcja C), 66
PyNumber_InPlaceAdd (funkca C), 65
PyNumber_InPlaceAnd (funkcja C), 66
PyNumber_InPlaceFloorDivide (funkcja C), 65
PyNumber_InPlaceLshift (funkcja C), 66
PyNumber_InPlaceMatrixMultiply (funkcja C),
65
PyNumber_InPlaceMultiply (funkcja C), 65
PyNumber_InPlaceOr (funkcja C), 66
PyNumber_InPlacePower (funkcja C), 66
PyNumber_InPlaceRemainder (funkcja C), 65
PyNumber_InPlaceRshift (funkca C), 66

Indeks

241

The Python/C API, Wydanie 3.7.17

PyNumber_InPlaceSubtract (funkca C), 65
PyNumber_InPlaceTrueDivide (funkcja C), 65
PyNumber_InPlaceXor (funkcja C), 66
PyNumber_Invert (funkcja C), 65
PyNumber_Long (funkcja C), 66
PyNumber_Lshift (funkcja C), 65
PyNumber_MatrixMultiply (funkcja C), 64
PyNumber_Multiply (funkcja C), 64
PyNumber_Negative (funkcja C), 64
PyNumber_Or (funkcja C), 65
PyNumber_Positive (funkcja C), 64
PyNumber_Power (funkcja C), 64
PyNumber_Remainder (funkcja C), 64
PyNumber_Rshift (funkga C), 65
PyNumber_Subtract (funkca C), 64
PyNumber_ToBase (funkcja C), 66
PyNumber_TrueDivide (funkcja C), 64
PyNumber_Xor (funkcja C), 65
PyNumberMethods (typ C), 186

PyObject (typ C), 168
PyObject_AsCharBuffer (funkcja C), 77
PyObject_ASCII (funkcja C), 61
PyObject_AsFileDescriptor (funkca C), 120
PyObject_AsReadBuffer (funkcja C), 77
PyObject_AsWriteBuffer (funkca C), 77
PyObject_Bytes (funkcja C), 61
PyObject_Call (funkcja C), 62
PyObject_CallFunction (funkcja C), 62
PyObject_CallFunctionObjArgs (funkcja C), 62
PyObject_CallMethod (funkcja C), 62
PyObject_CallMethodObjArgs (funkcja C), 62
PyObject_CallObject (funkcia C), 62
PyObject_Calloc (funkcja C), 160
PyObject_CheckBuffer (funkca C), 76
PyObject_CheckReadBuffer (funkcja C), 77
PyObject_Del (funkcja C), 167
PyObject_DelAttr (funkcja C), 60
PyObject_DelAttrString (funkca C), 60
PyObject_DelItem (funkcja C), 63
PyObject_Dir (funkcja C), 63
PyObject_Free (funkcja C), 161
PyObject_GC_Del (funkcja C), 191
PyObject_GC_New (funkcja C), 191
PyObject_GC_NewVar (funkcja C), 191
PyObject_GC_Resize (funkcja C), 191
PyObject_GC_Track (funkcja C), 191
PyObject_GC_UnTrack (funkca C), 191
PyObject_GenericGetAttr (funkca C), 60
PyObject_GenericGetDict (funkcia C), 60
PyObject_GenericSetAttr (funkcja C), 60
PyObject_GenericSetDict (funkcja C), 60
PyObject_GetArenaAllocator (funkcia C), 164
PyObject_GetAttr (funkcja C), 60
PyObject_GetAttrString (funkca C), 60

PyObject_GetBuffer (funkcja C), 76
PyObject_GetItem (funkca C), 63
PyObject_GetIter (funkcja C), 64
PyObject_HasAttr (funkcja C), 59
PyObject_HasAttrString (funkcja C), 59
PyObject_Hash (funkcja C), 63
PyObject_HashNotImplemented (funkca C), 63
PyObject_HEAD (makro C), 168
PyObject_HEAD_INIT (makro C), 169
PyObject_Init (funkcja C), 167
PyObject_InitVar (funkcja C), 167
PyObject_IsInstance (funkca C), 61
PyObject_IsSubclass (funkca C), 61
PyObject_IsTrue (funkcja C), 63
PyObject_Length (funkcja C), 63
PyObject_LengthHint (funkca C), 63
PyObject_Malloc (funkcja C), 160
PyObject_New (funkcja C), 167
PyObject_NewVar (funkcja C), 167
PyObject_Not (funkcja C), 63
PyObject._ob_next (pole C), 174
PyObject._ob_prev (pole C), 174
PyObject_Print (funkca C), 59
PyObject_Realloc (funkcja C), 161
PyObject_Repr (funkca C), 61
PyObject_RichCompare (funkcja C), 60
PyObject_RichCompareBool (funkcja C), 61
PyObject_SetArenalAllocator (funkcga C), 164
PyObject_SetAttr (funkca C), 60
PyObject_SetAttrString (funkca C), 60
PyObject_SetItem (funkca C), 63
PyObject_Size (funkca C), 63
PyObject_Str (funkcja C), 61
PyObject_Type (funkcja C), 63
PyObject_TypeCheck (funkcja C), 63
PyObject_VAR_HEAD (makro C), 168
PyObjectArenalAllocator (typ C), 164
PyObject.ob_refcnt (pole C), 174
PyObject.ob_type (pole C), 174
PyOS_AfterFork (funkca C), 38
PyOS_AfterFork_Child (funkcja C), 37
PyOS_AfterFork_Parent (funkcja C), 37
PyOS_BReforeFork (funkcja C), 37
PyOS_CheckStack (funkcja C), 38
PyOS_double_to_string (funkca C), 54
PyOS_FSPath (funkcja C), 37
PyOS_getsig (funkga C), 38
PyOS_InputHook (zmienna C), 18
PyOS_ReadlineFunctionPointer (zmienna C),
18
PyOS_setsig (funkga C), 38
PyOS_snprintf (funkcja C), 54
PyOS_stricmp (funkcja C), 55
PyOS_string_to_double (funkcja C), 54

242

Indeks

The Python/C API, Wydanie 3.7.17

PyOS_strnicmp (funkca C), 55
PyOS_vsnprintf (funkcja C), 54
PyParser_SimpleParseFile (funkcja C), 19
PyParser_SimpleParseFileFlags (funkcja C),
19
PyParser_SimpleParseString (funkca C), 19
PyParser_SimpleParseStringFlags (funkcja
0), 19
PyParser_SimpleParseStringFlagsFilename
(funkcja C), 19
PyProperty_Type (zmienna C), 127
PyRun_AnyFile (funkcja C), 17
PyRun_AnyFileEx (funkca C), 17
PyRun_AnyFileExFlags (funkcja C), 17
PyRun_AnyFileFlags (funkcja C), 17
PyRun_F1ile (funkcja C), 19
PyRun_FileEx (funkcja C), 19
PyRun_FileExFlags (funkca C), 19
PyRun_FileFlags (funkcja C), 19
PyRun_InteractiveLoop (funkca C), 18
PyRun_InteractiveLoopFlags (funkca C), 18
PyRun_InteractiveOne (funkca C), 18
PyRun_InteractiveOneFlags (funkca C), 18
PyRun_SimpleFile (funkca C), 18
PyRun_SimpleFileEx (funkcja C), 18
PyRun_SimpleFileExFlags (funkcja C), 18
PyRun_SimpleString (funkca C), 18
PyRun_SimpleStringFlags (funkga C), 18
PyRun_String (funkcja C), 19
PyRun_StringFlags (funkca C), 19
PySeqlter_Check (funkcja C), 126
PySeqlter_New (funkcja C), 126
PySeqlter_Type (zmienna C), 126
PySequence_Check (funkcja C), 67
PySequence_Concat (funkcja C), 67
PySequence_Contains (funkcja C), 67
PySequence_Count (funkcja C), 67
PySequence_DelItem (funkcja C), 67
PySequence_DelSlice (funkca C), 67
PySequence_Fast (funkcja C), 68
PySequence_Fast_GET_ITEM (funkcja C), 68
PySequence_Fast_GET_SIZE (funkcja C), 68
PySequence_Fast_ITEMS (funkcja C), 68
PySequence_GetItem (funkcja C), 67
PySequence_GetItem(), 8
PySequence_GetSlice (funkcja C), 67
PySequence_Index (funkcja C), 68
PySequence_InPlaceConcat (funkcja C), 67
PySequence_InPlaceRepeat (funkca C), 67
PySequence_ITEM (funkcja C), 68
PySequence_Length (funkcja C), 67
PySequence_List (funkcja C), 68
PySequence_Repeat (funkcja C), 67
PySequence_SetItem (funkcja C), 67

PySequence_SetSlice (funkca C), 67
PySequence_Size (funkcja C), 67
PySequence_Tuple (funkcja C), 68
PySequenceMethods (typ C), 188
PySequenceMethods.sqg _ass_item (pole C), 188
PySequenceMethods.sq_concat (pole C), 188
PySequenceMethods.sqg_contains (pole C), 188
PySequenceMethods.sq_inplace_concat (po-
le C), 188
PySequenceMethods
le C), 188
PySequenceMethods
PySequenceMethods.sqg_length (pole C), 188
PySequenceMethods.sq _repeat (pole C), 188
PySet_Add (funkcja C), 116
PySet_Check (funkcja C), 115
PySet_Clear (funkcja C), 116
PySet_ClearFreelist (funkca C), 116
PySet_Contains (funkcja C), 116
PySet_Discard (funkca C), 116
PySet_GET_SIZE (funkcja C), 116
PySet_New (funkcja C), 115
PySet_Pop (funkcja C), 116
PySet_Size (funkcja C), 116
PySet_Type (zmienna C), 115
PySetObject (typ C), 115
PySignal_SetWakeupFd (funkcia C), 31
PySlice_AdjustIndices (funkcja C), 128
PySlice_Check (funkcja C), 127
PySlice_GetIndices (funkcja C), 127
PySlice_GetIndicesEx (funkcja C), 128
PySlice_New (funkcja C), 127
PySlice_Type (zmienna C), 127
PySlice_Unpack (funkca C), 128
PyState_AddModule (funkcja C), 126
PyState_FindModule (funkcja C), 126
PyState_RemoveModule (funkcja C), 126
PyStructSequence_Desc (typ C), 109
PyStructSequence_Field (typ C), 110
PyStructSequence_GET_ITEM (funkcja C), 110
PyStructSequence_GetItemn (funkcja C), 110
PyStructSequence_InitType (funkcja C), 109
PyStructSequence_InitType?2 (funkca C), 109
PyStructSequence_New (funkcja C), 110
PyStructSequence_NewType (funkcja C), 109
PyStructSequence_SET_ITEM (funkcja C), 110
PyStructSequence_SetItemn (funkcja C), 110
PyStructSequence_UnnamedField (zmienna C),
110
PySys_AddWarnOption (funkcja C), 39
PySys_AddWarnOptionUnicode (funkcja C), 39
PySys_AddXOption (funkcja C), 40
PySys_FormatStderr (funkcja C), 40
PySys_FormatStdout (funkcja C), 40

.sg_inplace_repeat (po-

.sqg_item (pole C), 188

Indeks

243

The Python/C API, Wydanie 3.7.17

PySys_GetObject (funkcja C), 39
PySys_GetXOptions (funkcia C), 40
PySys_ResetWarnOptions (funkca C), 39
PySys_SetArgv (funkcja C), 145
PySys_SetArgv (), 142
PySys_SetArgvEx (funkcja C), 145
PySys_SetArgvEx (), 12, 142
PySys_SetObject (funkcja C), 39
PySys_SetPath (funkcja C), 39
PySys_WriteStderr (funkca C), 40
PySys_WriteStdout (funkcja C), 40
Python 3000, 204
Python Enhancement Proposals

PEP 1,204

PEP 7,46

PEP 238,21, 199

PEP 278,206

PEP 302,199,202

PEP 343,197

PEP 362,196,204

PEP 383,97,98

PEP 384,15

PEP 393, 89,96

PEP 411,204

PEP 420, 199, 203, 204

PEP 442,185

PEP 443,200

PEP 451, 124, 199

PEP 484, 195, 199, 206, 207

PEP 489, 124

PEP 492,196, 197

PEP 498,198

PEP 519,204

PEP 525,196

PEP 526, 195,207

PEP 528, 141

PEP 529,98, 141

PEP 539,155

PEP 3116, 206

PEP 3119,61,62

PEP 3121, 122

PEP 3147,43

PEP 3151,35

PEP 3155, 205
PYTHON*, 141
PYTHONDEBUG, 140
PYTHONDONTWRITEBYTECODE, 140
PYTHONDUMPREFS, 174
PYTHONHASHSEED, 141
PYTHONHOME, 12, 141, 145, 146
Pythonic, 204
PYTHONINSPECT, 141
PYTHONIOENCODING, 143
PYTHONLEGACYWINDOWSFSENCODING, 141

PYTHONLEGACYWINDOWSSTDIO, 141
PYTHONMALLOC, 158, 161, 163
PYTHONMALLOCSTATS, 158
PYTHONNOUSERSITE, 141
PYTHONOPTIMIZE, 141
PYTHONPATH, 12, 141
PYTHONUNBUFFERED, 142
PYTHONVERBOSE, 142
PyThread_create_key (funkcja C), 156
PyThread_delete_key (funkcja C), 156
PyThread_delete_key_value (funkca C), 156
PyThread_get_key_value (funkcja C), 156
PyThread_ReInitTLS (funkcja C), 156
PyThread_set_key_value (funkcja C), 156
PyThread_tss_alloc (funkcja C), 155
PyThread_tss_create (funkca C), 155
PyThread_tss_delete (funkca C), 155
PyThread_tss_free (funkca C), 155
PyThread_tss_get (funkca C), 156
PyThread_tss_is_created (funkcja C), 155
PyThread_tss_set (funkcja C), 155
PyThreadState, 146
PyThreadState (typ C), 148
PyThreadState_Clear (funkcia C), 150
PyThreadState_Delete (funkcja C), 150
PyThreadState_Get (funkcja C), 148
PyThreadState_GetDict (funkcja C), 150
PyThreadState_New (funkcja C), 150
PyThreadState_Next (funkcja C), 154
PyThreadState_SetAsyncExc (funkca C), 150
PyThreadState_Swap (funkcja C), 148
PyTime_Check (funkcja C), 135
PyTime_CheckExact (funkcja C), 135
PyTime_FromTime (funkcja C), 135
PyTime_FromTimeAndFold (funkcja C), 135
PyTimeZone_FromOffset (funkca C), 136
PyTimeZone_FromOffsetAndName (funkcja C),
136
PyTrace_C_CALL (zmienna C), 153
PyTrace_C_EXCEPTION (zmienna C), 153
PyTrace_C_RETURN (zmienna C), 153
PyTrace_CALL (zmienna C), 153
PyTrace_EXCEPTION (zmienna C), 153
PyTrace_LINE (zmienna C), 153
PyTrace_OPCODE (zmienna C), 153
PyTrace_RETURN (zmienna C), 153
PyTraceMalloc_Track (funkca C), 164
PyTraceMalloc_Untrack (funkca C), 164
PyTuple_Check (funkcja C), 108
PyTuple_CheckExact (funkcja C), 108
PyTuple_ClearFreelist (funkcja C), 109
PyTuple_GET_ITEM (funkcja C), 108
PyTuple_GET_SIZE (funkcja C), 108
PyTuple_GetItem (funkcja C), 108

244

Indeks

The Python/C API, Wydanie 3.7.17

PyTuple_GetSlice (funkcja C), 108
PyTuple_New (funkcja C), 108
PyTuple_Pack (funkcja C), 108
PyTuple_SET_ITEM (funkcja C), 109
PyTuple_SetItem (funkcja C), 109
PyTuple_SetItem(),7
PyTuple_Size (funkcja C), 108
PyTuple_Type (zmienna C), 108
PyTupleObject (typ C), 108
PyType_Check (funkcja C), 79
PyType_CheckExact (funkcja C), 79
PyType_ClearCache (funkcja C), 79
PyType_FromSpec (funkcja C), 80
PyType_FromSpecWithBases (funkcja C), 80
PyType_GenericAlloc (funkcja C), 80
PyType_GenericNew (funkcja C), 80
PyType_GetFlags (funkcja C), 80
PyType_GetSlot (funkcja C), 80
PyType_HasFeature (funkcja C), 80
PyType_IS_GC (funkcja C), 80
PyType_IsSubtype (funkcja C), 80
PyType_Modified (funkcja C), 80
PyType_Ready (funkcja C), 80
PyType_Type (zmienna C), 79

PyTypeObject (typ C), 79

PyTypeObject.
PyTypeObject.
PyTypeObject.
PyTypeObject.
.tp_bases (pole C), 185

PyTypeObject

PyTypeObject.
PyTypeObject.
PyTypeObject.
PyTypeObject.
.tp_dealloc (pole C), 175

PyTypeObject

PyTypeObiject.
PyTypeObject.
PyTypeObject.
PyTypeObject.
PyTypeObject.
PyTypeObject.
PyTypeObject.
PyTypeObject.
PyTypeObject.
PyTypeObject.
.tp_getattro (pole C), 177
.tp_getset (pole C), 182

PyTypeObject
PyTypeObject

PyTypeObject.
.tp_init (pole C), 183

PyTypeObject

PyTypeObject.
.tp_itemsize (pole C), 175

PyTypeObject

PyTypeObiject.
.tp_iternext (pole C), 181

PyTypeObject

PyTypeObject.

tp_alloc (pole C), 183
tp_allocs (pole C), 186
tp_as_buffer (pole C), 177
tp_base (pole C), 182

tp_basicsize (pole C), 175
tp_cache (pole C), 185
tp_call (pole C), 177
tp_clear (pole C), 179

tp_descr_get (pole C), 182
tp_descr_set (pole C), 182
tp_dict (pole C), 182
tp_dictoffset (pole C), 182
tp_doc (pole C), 178
tp_finalize (pole C), 185
tp_flags (pole C), 177
tp_~free (pole C), 184
tp_~frees (pole C), 186
tp_getattr (pole C), 175

tp_hash (pole C), 176

tp_is_gc (pole C), 184

tp_iter (pole C), 181

tp_maxalloc (pole C), 186

PyTypeObject.tp_members (pole C), 181
PyTypeObject.tp_methods (pole C), 181
PyTypeObject.tp_mro (pole C), 185
PyTypeObject.tp_name (pole C), 174
PyTypeObject.tp_new (pole C), 184
PyTypeObject.tp_next (pole C), 186
PyTypeObject.tp_print (pole C), 175
PyTypeObject.tp_repr (pole C), 176
PyTypeObject.tp_richcompare (pole C), 180
PyTypeObject.tp_setattr (pole C), 175
PyTypeObject.tp_setattro (pole C), 177
PyTypeObject.tp_str (pole C), 177
PyTypeObject.tp_subclasses (pole C), 185
PyTypeObject.tp_traverse (pole C), 178
PyTypeObject.tp_weaklist (pole C), 185
PyTypeObject.tp_weaklistoffset (pole C),
181
PyTZInfo_Check (funkga C), 135
PyTZInfo_CheckExact (funkca C), 135
PyUnicode_1BYTE_DATA (funkcja C), 90
PyUnicode_1BYTE_KIND (makro C), 90
PyUnicode_2BYTE_DATA (funkcja C), 90
PyUnicode_2BYTE_KIND (makro C), 90
PyUnicode_4BYTE_DATA (funkcja C), 90
PyUnicode_4BYTE_KIND (makro C), 90
PyUnicode_AS_DATA (funkcja C), 91
PyUnicode_AS_UNICODE (funkcja C), 91
PyUnicode_AsASCIIString (funkcia C), 104
PyUnicode_AsCharmapString (funkga C), 105
PyUnicode_AsEncodedString (funkcja C), 100
PyUnicode_AsLatinlString (funkcja C), 104
PyUnicode_AsMBCSString (funkcja C), 106
PyUnicode_AsRawUnicodeEscapeString
(funkcja C), 104
PyUnicode_AsUCS4 (funkcja C), 95
PyUnicode_AsUCS4Copy (funkcja C), 96
PyUnicode_AsUnicode (funkcja C), 96
PyUnicode_AsUnicodeAndSize (funkcja C), 96
PyUnicode_AsUnicodeCopy (funkcja C), 96
PyUnicode_AsUnicodeEscapeString (funkcja
0), 103
PyUnicode_AsUTF8 (funkcja C), 100
PyUnicode_AsUTF8AndSize (funkcja C), 100
PyUnicode_AsUTF8String (funkcja C), 100
PyUnicode_AsUTF16String (funkcga C), 102
PyUnicode_AsUTF32String (funkca C), 101
PyUnicode_AsWideChar (funkcja C), 99
PyUnicode_AsWideCharString (funkcja C), 99
PyUnicode_Check (funkcja C), 90
PyUnicode_CheckExact (funkcja C), 90
PyUnicode_ClearFreeList (funkcja C), 91
PyUnicode_Compare (funkcja C), 107
PyUnicode_CompareWithASCIIString (funkcja
0), 107

Indeks

245

The Python/C API, Wydanie 3.7.17

PyUnicode_Concat (funkcja C), 106
PyUnicode_Contains (funkcja C), 108
PyUnicode_CopyCharacters (funkcja C), 95
PyUnicode_Count (funkcja C), 107
PyUnicode_DATA (funkcja C), 91
PyUnicode_Decode (funkcja C), 100
PyUnicode_DecodeASCII (funkcja C), 104
PyUnicode_DecodeCharmap (funkcja C), 105
PyUnicode_DecodeFSDefault (funkga C), 98
PyUnicode_DecodeFSDefaultAndSize (funkcja
0), 98
PyUnicode_DecodelLatinl (funkcja C), 104
PyUnicode_DecodeLocale (funkcja C), 97
PyUnicode_DecodeLocaleAndSize (funkcja C),
97
PyUnicode_DecodeMBCS (funkcja C), 106
PyUnicode_DecodeMBCSStateful (funkcia C),
106
PyUnicode_DecodeRawUnicodeEscape (funkcja
0), 104
PyUnicode_DecodeUnicodeEscape (funkcga C),
103
PyUnicode_DecodeUTF7 (funkcja C), 103
PyUnicode_DecodeUTF7Stateful (funkca C),
103
PyUnicode_DecodeUTF8 (funkcja C), 100
PyUnicode_DecodeUTF8Stateful (funkca C),
100
PyUnicode_DecodeUTF16 (funkcja C), 102
PyUnicode_DecodeUTF1l6Stateful (funkcja C),
102
PyUnicode_DecodeUTF32 (funkcja C), 101
PyUnicode_DecodeUTF32Stateful (funkca C),
101
PyUnicode_Encode (funkcja C), 100
PyUnicode_EncodeASCII (funkcja C), 104
PyUnicode_EncodeCharmap (funkcja C), 105
PyUnicode_EncodeCodePage (funkcja C), 106
PyUnicode_EncodeFSDefault (funkga C), 98
PyUnicode_EncodeLatinl (funkcja C), 104
PyUnicode_EncodeLocale (funkcja C), 97
PyUnicode_EncodeMBCS (funkcja C), 106
PyUnicode_FEncodeRawUnicodeEscape (funkcja
0), 104
PyUnicode_EncodeUnicodeEscape (funkcja C),
103
PyUnicode_EncodeUTF7 (funkcja C), 103
PyUnicode_EncodeUTF8 (funkcja C), 101
PyUnicode_EncodeUTF16 (funkcja C), 102
PyUnicode_EncodeUTF 32 (funkcja C), 101
PyUnicode_Fill (funkcja C), 95
PyUnicode_Find (funkcja C), 107
PyUnicode_FindChar (funkcja C), 107
PyUnicode_Format (funkcja C), 107

PyUnicode_FromEncodedObject (funkca C), 95
PyUnicode_FromFormat (funkcja C), 94
PyUnicode_FromFormatV (funkcja C), 95
PyUnicode_FromKindAndData (funkcja C), 93
PyUnicode_FromObject (funkcja C), 97
PyUnicode_FromString (funkcja C), 94
PyUnicode_FromString(), 113
PyUnicode_FromStringAndSize (funkcja C), 93
PyUnicode_FromUnicode (funkcja C), 96
PyUnicode_FromWideChar (funkca C), 99
PyUnicode_FSConverter (funkcja C), 98
PyUnicode_FSDecoder (funkcja C), 98
PyUnicode_GET_DATA_SIZE (funkcja C), 91
PyUnicode_GET_LENGTH (funkcja C), 90
PyUnicode_GET_SIZE (funkcja C), 91
PyUnicode_GetLength (funkca C), 95
PyUnicode_GetSize (funkcja C), 96
PyUnicode_InternFromString (funkcja C), 108
PyUnicode_InternInPlace (funkcja C), 108
PyUnicode_Join (funkcja C), 107
PyUnicode_KIND (funkcja C), 91
PyUnicode_MAX_CHAR_VALUE (funkcja C), 91
PyUnicode_New (funkcja C), 93
PyUnicode_READ (funkcja C), 91
PyUnicode_READ_CHAR (funkcja C), 91
PyUnicode_ReadChar (funkcja C), 95
PyUnicode_READY (funkcja C), 90
PyUnicode_Replace (funkcja C), 107
PyUnicode_RichCompare (funkcja C), 107
PyUnicode_Split (funkcja C), 106
PyUnicode_Splitlines (funkcja C), 106
PyUnicode_Substring (funkcja C), 95
PyUnicode_Tailmatch (funkcja C), 107
PyUnicode_TransformDecimalToASCII (funk-
ga C), 96
PyUnicode_Translate (funkcja C), 105, 106
PyUnicode_TranslateCharmap (funkcja C), 105
PyUnicode_Type (zmienna C), 90
PyUnicode_WCHAR_KIND (makro C), 90
PyUnicode_WRITE (funkcja C), 91
PyUnicode_WriteChar (funkcja C), 95
PyUnicodeDecodeError_Create (funkcja C), 32
PyUnicodeDecodeError_GetEncoding (funkcja
0), 33
PyUnicodeDecodeError_GetEnd (funkcja C), 33
PyUnicodeDecodeError_GetObject (funkga C),
33
PyUnicodeDecodeError_GetReason (funkcja C),
33
PyUnicodeDecodeError_GetStart (funkca C),
33
PyUnicodeDecodeError_SetEnd (funkcja C), 33
PyUnicodeDecodeError_SetReason (funkca C),
33

246

Indeks

The Python/C API, Wydanie 3.7.17

PyUnicodeDecodeError_SetStart (funkca C),

33

PyUnicodeEncodeError_Create (funkcja C), 32
PyUnicodeEncodeError_GetEncoding (funkcja

0),33

PyUnicodeEncodeError_GetEnd (funkcja C), 33
PyUnicodeEncodeError_GetObject (funkca C),

33

PyUnicodeEncodeError_GetReason (funkca C),

33

PyUnicodeEncodeError_GetStart (funkca C),

33

PyUnicodeEncodeError_SetEnd (funkcja C), 33
PyUnicodeEncodeError_SetReason (funkca C),

33

PyUnicodeEncodeError_SetStart (funkca C),

33
PyUnicodeObject (typ C), 90

PyUnicodeTranslateError_Create (funkca C),

32

PyUnicodeTranslateError_GetEnd (funkga C),

33

PyUnicodeTranslateError_GetObject (funk-

ga C), 33

PyUnicodeTranslateError_GetReason (funk-

cja C), 33

PyUnicodeTranslateError_GetStart (funkca

C), 33

PyUnicodeTranslateError_SetEnd (funkca C),

33

PyUnicodeTranslateError_SetReason (funk-

ga C), 33

PyUnicodeTranslateError_SetStart (funkca

0), 33
PyVarObject (typ C), 168
PyVarObject_HEAD_INIT (makro C), 169
PyVarObject.ob_size (pole C), 174
PyWeakref_Check (funkcja C), 130
PyWeakref_CheckProxy (funkcja C), 130
PyWeakref_CheckRef (funkcja C), 130
PyWeakref_ GET_OBJECT (funkcja C), 130
PyWeakref_GetObject (funkcja C), 130
PyWeakref_NewProxy (funkcja C), 130
PyWeakref_NewRef (funkcja C), 130
PyWrapper_New (funkcja C), 127

Q

qualified name, 205

R

realloc (), 157
reference count, 205
regular package, 205
repr

funkcja wbudowana, 61, 176

S

sdterr

stdin stdout, 143
search

path, module, 12, 142, 144
sequence, 205

obiekt, 86
set

obiekt, 115
set_all(),8
setswitchinterval () (in module sys), 146
SIGINT, 31
signal

modut, 31
single dispatch, 205
SIZE_MAX, 83
slice, 205
special

method, 206
special method, 206
statement, 206
staticmethod

funkcja wbudowana, 170
stderr (in module sys), 151
stdin

stdout sdterr, 143
stdin (in module sys), 151
stdout

sdterr, stdin, 143
stdout (in module sys), 151
strerror (), 27
string

PyObject_Str (C function), 61
sum_list (),9
sum_sequence (), 9, 10
Sys

moduti, 12, 142, 151
SystemError (built-in exception), 121

T

text encoding, 206

text file, 206
tp_as_async (pole C), 176
tp_as_mapping (pole C), 176
tp_as_number (pole C), 176
tp_as_sequence (pole C), 176
traverseproc (typ C), 191
triple—-quoted string, 206

tuple
funkcja wbudowana, 68, 112
obiekt, 108

type, 206

Indeks

247

The Python/C API, Wydanie 3.7.17

funkcja wbudowana, 63
obiekt, 6,79

type alias, 206

type hint, 206

U

ULONG_MAX, 83
universal newlines, 206

\Y

variable annotation, 206
version (in module sys), 144, 145
virtual environment, 207
virtual machine, 207
visitproc (typ C), 191

Z

Zen of Python, 207

zmienna $rodowiskowa
exec_prefix, 4
PATH, 12
prefix, 4
przedrostek, 4
PYTHON*, 141
PYTHONDEBRUG, 140
PYTHONDONTWRITEBYTECODE, 140
PYTHONDUMPREFS, 174
PYTHONHASHSEED, 141
PYTHONHOME, 12, 141, 145, 146
PYTHONINSPECT, 141
PYTHONIOENCODING, 143
PYTHONLEGACYWINDOWSFEFSENCODING, 141
PYTHONLEGACYWINDOWSSTDIO, 141
PYTHONMALLOC, 158, 161, 163
PYTHONMALLOCSTATS, 158
PYTHONNOUSERSITE, 141
PYTHONOPTIMIZE, 141
PYTHONPATH, 12, 141
PYTHONUNBUFFERED, 142
PYTHONVERBOSE, 142

248 Indeks

	Wprowadzenie
	Coding standards
	Pliki Włączania - z ang. Include
	Useful macros
	Przedmioty, ich Rodzaje i Liczby Odwołań
	Sytuacje Wyjątkowe
	Załączanie programu interpretującego język pytonowski
	Odpluskwiające Budowy

	Stable Application Binary Interface
	The Very High Level Layer
	Reference Counting
	Obsługa sytuacji wyjątkowych
	Printing and clearing
	Raising exceptions
	Issuing warnings
	Querying the error indicator
	Signal Handling
	Exception Classes
	Przedmioty Sytuacji Wyjątkowych
	Unicode Exception Objects
	Kontrola Rekursji
	Sztandarowe Sytuacje Wyjątkowe
	Standard Warning Categories

	Utilities
	Operating System Utilities
	System Functions
	Process Control
	Importing Modules
	Data marshalling support
	Pobieranie kolejnych rzeczy podanych na wejściu i konstruowanie wartości.
	String conversion and formatting
	Reflection
	Codec registry and support functions

	Warstwa obiektów abstrakcyjnych
	Object Protocol
	Number Protocol
	Sequence Protocol
	Mapping Protocol
	Iterator Protocol
	Buffer Protocol
	Old Buffer Protocol

	Concrete Objects Layer
	Fundamental Objects
	Numeric Objects
	Sequence Objects
	Container Objects
	Function Objects
	Other Objects

	Initialization, Finalization, and Threads
	Before Python Initialization
	Global configuration variables
	Initializing and finalizing the interpreter
	Process-wide parameters
	Thread State and the Global Interpreter Lock
	Sub-interpreter support
	Asynchronous Notifications
	Profiling and Tracing
	Advanced Debugger Support
	Thread Local Storage Support

	Zarządzanie Pamięcią
	Skorowidz
	Raw Memory Interface
	Sprzęg Pamięci
	Object allocators
	Default Memory Allocators
	Customize Memory Allocators
	The pymalloc allocator
	tracemalloc C API
	Przykłady

	Object Implementation Support
	Allocating Objects on the Heap
	Wspólne struktury obiektów
	Type Objects
	Number Object Structures
	Mapping Object Structures
	Sequence Object Structures
	Buffer Object Structures
	Async Object Structures
	Supporting Cyclic Garbage Collection

	API and ABI Versioning
	Słowik
	O tej dokumentacji
	Współtwórcy dokumentacji Pythona

	Historia i zapisy prawne
	Historia programu
	Zasady i warunki postępowania z programem języka pytonowskiego i ogólnie jego użycia.
	Licenses and Acknowledgements for Incorporated Software

	Prawa autorskie
	Indeks

