turtle — Grafika żółwia

Kod źródłowy: Lib/turtle.py


Wprowadzenie

Grafika żółwia jest implementacją popularnych narzędzi do rysowania geometrycznego wprowadzonych w Logo, opracowanych przez Wally’ego Feurzeiga, Seymoura Paperta i Cynthię Solomon w 1967 roku.

W Pythonie grafika żółwia zawiera reprezentację fizycznego „żółwia” (małego robota z piórem), który rysuje na kartce papieru na podłodze.

Jest to skuteczny i sprawdzony sposób na poznanie koncepcji programowania i interakcji z oprogramowaniem, ponieważ zapewnia natychmiastową, widoczną informację zwrotną. Zapewnia również wygodny dostęp do graficznych danych wyjściowych.

Grafika żółwia została pierwotnie stworzona jako narzędzie edukacyjne, do wykorzystania przez nauczycieli w klasach. Dla programistów, którzy muszą tworzyć pewne graficzne dane wyjściowe, może to być sposób na zrobienie ich bez konieczności wprowadzania bardziej złożonych lub zewnętrznych bibliotek do ich pracy.

Tutorial

Nowi użytkownicy powinni zacząć tutaj. W tym tutorialu poznamy niektóre z podstaw rysowania żółwi.

Uruchamianie środowiska żółwia

W powłoce Pythona zaimportuj wszystkie obiekty z modułu turtle:

from turtle import *

Jeśli napotkasz błąd No module named '_tkinter', będziesz musiał zainstalować pakiet interfejsu Tk w swoim systemie.

Podstawowe rysowanie

Wyślij żółwia do przodu o 100 kroków:

forward(100)

Powinieneś zobaczyć (najprawdopodobniej w nowym oknie na ekranie) linię narysowaną przez żółwia w kierunku wschodnim. Zmień kierunek żółwia, tak aby obrócił się o 120 stopni w lewo (przeciwnie do ruchu wskazówek zegara):

left(120)

Kontynuujmy, rysując trójkąt:

forward(100)
left(120)
forward(100)

Zwróć uwagę, jak żółw, reprezentowany przez strzałkę, kieruje się w różnych kierunkach.

Eksperymentuj z tymi poleceniami, a także z backward() i right().

Kontrola pióra

Spróbuj zmienić kolor – na przykład color('blue') – i szerokość linii – na przykład width(3) – a następnie narysuj ponownie.

Żółwia można także przesuwać bez rysowania, podnosząc pióro: up() przed wykonaniem ruchu. Aby ponownie rozpocząć rysowanie, użyj down().

Pozycja żółwia

Wyślij żółwia z powrotem do punktu początkowego (przydatne, jeśli zniknął poza ekranem):

home()

The home position is at the center of the turtle’s screen. If you ever need to know them, get the turtle’s x-y coordinates with:

pos()

Pozycja wyjściowa znajduje się pod (0, 0).

A po pewnym czasie prawdopodobnie przyda się wyczyścić okno, abyśmy mogli zacząć od nowa:

clearscreen()

Tworzenie wzorców algorytmicznych

Za pomocą pętli można tworzyć geometryczne wzory:

for steps in range(100):
    for c in ('blue', 'red', 'green'):
        color(c)
        forward(steps)
        right(30)

– które oczywiście ogranicza tylko wyobraźnia!

Narysujmy kształt gwiazdy z góry tej strony. Potrzebujemy czerwonych linii, wypełnionych kolorem żółtym:

color('red')
fillcolor('yellow')

Podobnie jak up() i down() określają, czy linie będą rysowane, wypełnianie można włączać i wyłączać:

begin_fill()

Następnie utworzymy pętlę:

while True:
    forward(200)
    left(170)
    if abs(pos()) < 1:
        break

abs(pos()) < 1 to dobry sposób, aby dowiedzieć się, kiedy żółw powróci do pozycji wyjściowej.

Na koniec uzupełnij wypełnienie:

end_fill()

(Należy pamiętać, że wypełnianie odbywa się tylko po wydaniu polecenia end_fill().)

Jak…

Ta sekcja omawia niektóre typowe przypadki użycia i koncepcje.

Zacząć najszybciej jak to możliwe

Jedną z zalet grafiki żółwia jest natychmiastowa, wizualna informacja zwrotna dostępna po wykonaniu prostych poleceń – jest to doskonały sposób na wprowadzenie dzieci w idee programowania przy minimalnym nakładzie pracy (oczywiście nie tylko dzieci).

Żółw moduł umożliwia to, udostępniając wszystkie swoje podstawowe funkcjonalności jako funkcje dostępne przez from turtle import *. Tutorial grafiki żółwia wykorzystuje to podejście.

Warto zauważyć, że wiele poleceń żółwia ma bardziej zwięzłe odpowiedniki, takie jak fd() dla forward(). Są one szczególnie przydatne podczas pracy z uczniami, dla których pisanie na klawiaturze jest jeszcze wyzwaniem.

Aby grafika żółwia działała, w systemie musi być zainstalowany pakiet interfejsu Tk. Ostrzegamy, że nie zawsze jest to proste, więc sprawdź to z wyprzedzeniem, jeśli planujesz używać grafiki żółwia z uczniem.

Użyć przestrzeni nazw modułu turtle

Korzystanie z from turtle import * jest wygodne – ale należy pamiętać, że importuje dość dużą kolekcję obiektów, a jeśli robisz cokolwiek innego niż grafika żółwia, ryzykujesz konflikt nazw (staje się to jeszcze większym problemem, jeśli używasz grafiki żółwia w skrypcie, w którym mogą być importowane inne moduły).

Rozwiązaniem jest użycie import turtlefd() staje się turtle.fd(), width() staje się turtle.width() i tak dalej. (Jeśli wpisywanie „turtle” w kółko staje się uciążliwe, użyj na przykład import turtle as t.)

Użyć grafiki żółwia w skrypcie

Zaleca się korzystanie z przestrzeni nazw modułu turtle, jak opisano bezpośrednio powyżej, na przykład:

import turtle as t
from random import random

for i in range(100):
    steps = int(random() * 100)
    angle = int(random() * 360)
    t.right(angle)
    t.fd(steps)

Wymagany jest jednak jeszcze jeden krok – gdy tylko skrypt się zakończy, Python zamknie również okno żółwia. Dodaj:

t.mainloop()

na końcu skryptu. Skrypt będzie teraz czekał na zwolnienie i nie wyjdzie, dopóki nie zostanie zakończony, na przykład przez zamknięcie okna graficznego żółwia.

Użyć obiektowej grafiki żółwia

Poza bardzo podstawowymi celami wprowadzającymi lub do wypróbowania rzeczy tak szybko, jak to możliwe, bardziej typowe i znacznie bardziej wydajne jest użycie podejścia obiektowego do grafiki żółwia. Pozwala to na przykład na jednoczesne wyświetlanie wielu żółwi na ekranie.

W tym podejściu różne komendy żółwia są metodami obiektów (głównie obiektów Turtle). Można używać podejścia obiektowego w powłoce, ale byłoby to bardziej typowe w pythonowym skrypcie.

Przykład powyżej staje się wtedy:

from turtle import Turtle
from random import random

t = Turtle()
for i in range(100):
    steps = int(random() * 100)
    angle = int(random() * 360)
    t.right(angle)
    t.fd(steps)

t.screen.mainloop()

Zwróć uwagę na ostatnią linię. t.screen to instancja Screen, na której istnieje instancja Turtle; jest ona tworzona automatycznie wraz z żółwiem.

Ekran żółwia można dostosować, na przykład:

t.screen.title('Object-oriented turtle demo')
t.screen.bgcolor("orange")

Dokumentacja grafiki żółwia

Informacja

W poniższej dokumentacji podano listę argumentów dla funkcji. Metody, oczywiście, mają dodatkowy pierwszy argument self, który jest tutaj pominięty.

Metody żółwia

Ruch żółwia
Przesuwanie i rysowanie
Pobieranie stanu żółwia
Ustawienia i pomiary
Kontrola pióra
Stan rysowania
Kontrola koloru
Wypełnienie
Więcej kontroli rysowania
Stan żółwia
Widoczność
Wygląd
Korzystanie ze zdarzeń
Specjalne metody żółwi

Metody TurtleScreen/Screen

Kontrola okna
Kontrola animacji
Korzystanie ze zdarzeń ekranowych
Ustawienia i metody specjalne
Metody wprowadzania danych
Metody specyficzne dla klasy Screen

Metody RawTurtle/Turtle i odpowiadające im funkcje

Większość przykładów w tej sekcji odnosi się do instancji Turtle o nazwie turtle.

Ruch żółwia

turtle.forward(distance)
turtle.fd(distance)
Parametry:

distance – liczba (całkowita lub zmiennoprzecinkowa)

Przesuwa żółwia do przodu o określony dystans, w kierunku, w którym żółw jest skierowany.

>>> turtle.position()
(0.00,0.00)
>>> turtle.forward(25)
>>> turtle.position()
(25.00,0.00)
>>> turtle.forward(-75)
>>> turtle.position()
(-50.00,0.00)
turtle.back(distance)
turtle.bk(distance)
turtle.backward(distance)
Parametry:

distance – liczba

Przesuwa żółwia do tyłu o dysants, w kierunku przeciwnym do kierunku, w którym żółw jest skierowany. Nie zmienia kierunku żółwia.

>>> turtle.position()
(0.00,0.00)
>>> turtle.backward(30)
>>> turtle.position()
(-30.00,0.00)
turtle.right(angle)
turtle.rt(angle)
Parametry:

angle – liczba (całkowita lub zmiennoprzecinkowa)

Obraca żółwia w prawo o jednostki kąta. (Jednostki to domyślnie stopnie, ale można je ustawić za pomocą funkcji degrees() i radians().) Orientacja kąta zależy od trybu żółwia, patrz mode().

>>> turtle.heading()
22.0
>>> turtle.right(45)
>>> turtle.heading()
337.0
turtle.left(angle)
turtle.lt(angle)
Parametry:

angle – liczba (całkowita lub zmiennoprzecinkowa)

Obraca żółwia w lewo o jednostki kąta. (Jednostki to domyślnie stopnie, ale można je ustawić za pomocą funkcji degrees() i radians().) Orientacja kąta zależy od trybu żółwia, patrz mode().

>>> turtle.heading()
22.0
>>> turtle.left(45)
>>> turtle.heading()
67.0
turtle.goto(x, y=None)
turtle.setpos(x, y=None)
turtle.setposition(x, y=None)
Parametry:
  • x – liczba lub para/wektor liczb

  • y – liczba lub None

Jeśli y to None, x musi być parą współrzędnych lub obiektem Vec2D (np. zwróconym przez pos()).

Przesuwa żółwia do pozycji bezwzględnej. Jeśli pióro jest opuszczone, rysuje linię. Nie zmienia orientacji żółwia.

>>> tp = turtle.pos()
>>> tp
(0.00,0.00)
>>> turtle.setpos(60,30)
>>> turtle.pos()
(60.00,30.00)
>>> turtle.setpos((20,80))
>>> turtle.pos()
(20.00,80.00)
>>> turtle.setpos(tp)
>>> turtle.pos()
(0.00,0.00)
turtle.teleport(x, y=None, *, fill_gap=False)
Parametry:
  • x – liczba lub None

  • y – liczba lub None

  • fill_gap – wartość logiczna

Przesuwa żółwia do pozycji bezwzględnej. W przeciwieństwie do goto(x, y), linia nie zostanie narysowana. Orientacja żółwia nie zmienia się. Jeśli aktualnie wypełniany(-e) jest(/są) wielokąt(y), z którego(-ych) teleportowano żółwia, zostanie(-ną) on(e) wypełniony(-ne) po wyjściu, a wypełnianie rozpocznie się ponownie po teleportacji. Można to wyłączyć za pomocą fill_gap=True, co sprawia, że wyimaginowana linia przebyta podczas teleportacji działa jako bariera wypełnienia, jak w goto(x, y).

>>> tp = turtle.pos()
>>> tp
(0.00,0.00)
>>> turtle.teleport(60)
>>> turtle.pos()
(60.00,0.00)
>>> turtle.teleport(y=10)
>>> turtle.pos()
(60.00,10.00)
>>> turtle.teleport(20, 30)
>>> turtle.pos()
(20.00,30.00)

Added in version 3.12.

turtle.setx(x)
Parametry:

x – liczba (całkowita lub zmiennoprzecinkowa)

Ustawia pierwszą współrzędną żółwia na x, drugą pozostawiając bez zmian.

>>> turtle.position()
(0.00,240.00)
>>> turtle.setx(10)
>>> turtle.position()
(10.00,240.00)
turtle.sety(y)
Parametry:

y – liczba (całkowita lub zmiennoprzecinkowa)

Ustawia drugą współrzędną żółwia na y, pozostawiąc pierwszą współrzędną bez zmian.

>>> turtle.position()
(0.00,40.00)
>>> turtle.sety(-10)
>>> turtle.position()
(0.00,-10.00)
turtle.setheading(to_angle)
turtle.seth(to_angle)
Parametry:

to_angle – liczba (całkowita lub zmiennoprzecinkowa)

Ustawia orientację żółwia na to_angle. Oto kilka często używanych kierunków w stopniach:

tryb standardowy

tryb logo

0 – wschód

0 – północ

90 – północ

90 – wschód

180 – zachód

180 – południe

270 – południe

270 – zachód

>>> turtle.setheading(90)
>>> turtle.heading()
90.0
turtle.home()

Przesuwa żółwia do punktu początkowego – współrzędne (0,0) – i ustawia jego kurs na orientację początkową (która zależy od trybu, patrz mode()).

>>> turtle.heading()
90.0
>>> turtle.position()
(0.00,-10.00)
>>> turtle.home()
>>> turtle.position()
(0.00,0.00)
>>> turtle.heading()
0.0
turtle.circle(radius, extent=None, steps=None)
Parametry:
  • radius – liczba

  • extent – liczba (lub None)

  • steps – liczba całkowita (lub None)

Rysuje okrąg o podanym promieniu. Środek znajduje się w odległości radius na lewo od żółwia; extent – kąt – określa, która część okręgu zostanie narysowana. Jeśli extent nie jest podany, rysowany jest cały okrąg. Jeśli extent nie jest pełnym okręgiem, jednym z punktów końcowych łuku jest bieżąca pozycja pióra. Rysuje łuk w kierunku przeciwnym do ruchu wskazówek zegara, jeśli radius jest dodatni, w przeciwnym razie w kierunku zgodnym z ruchem wskazówek zegara. Kierunek żółwia jest zmieniany o wartość extent.

Ponieważ okrąg jest przybliżany przez wpisany wielokąt foremny, steps określa liczbę kroków do użycia. Jeśli nie zostanie podana, zostanie obliczona automatycznie. Może być używana do rysowania wielokątów foremnych.

>>> turtle.home()
>>> turtle.position()
(0.00,0.00)
>>> turtle.heading()
0.0
>>> turtle.circle(50)
>>> turtle.position()
(-0.00,0.00)
>>> turtle.heading()
0.0
>>> turtle.circle(120, 180)  # draw a semicircle
>>> turtle.position()
(0.00,240.00)
>>> turtle.heading()
180.0
turtle.dot(size=None, *color)
Parametry:
  • size – liczba całkowita >= 1 (jeśli podano)

  • color – colorstring lub numeryczna krotka koloru

Rysuje okrągłą kropkę o średnicy size, używając koloru color. Jeśli nie podano size, używana jest maksymalna wartość z pensize+4 i 2*pensize.

>>> turtle.home()
>>> turtle.dot()
>>> turtle.fd(50); turtle.dot(20, "blue"); turtle.fd(50)
>>> turtle.position()
(100.00,-0.00)
>>> turtle.heading()
0.0
turtle.stamp()

Stempluje kopię kształtu żółwia na płótnie w bieżącej pozycji żółwia. Zwraca stamp_id dla tego stempla, który może być użyty do usunięcia go przez wywołanie clearstamp(stamp_id).

>>> turtle.color("blue")
>>> stamp_id = turtle.stamp()
>>> turtle.fd(50)
turtle.clearstamp(stampid)
Parametry:

stampid – liczba całkowita, musi być wartością zwróconą przez wywołanie poprzedniego stamp()

Usunięcie stempla z podanym stampid.

>>> turtle.position()
(150.00,-0.00)
>>> turtle.color("blue")
>>> astamp = turtle.stamp()
>>> turtle.fd(50)
>>> turtle.position()
(200.00,-0.00)
>>> turtle.clearstamp(astamp)
>>> turtle.position()
(200.00,-0.00)
turtle.clearstamps(n=None)
Parametry:

n – liczba całkowita (lub None)

Usuwa wszystkie lub pierwsze/ostatnie n stempli żółwia. Jeśli n to None, usuwa wszystkie stemple, jeśli n > 0 usuwa pierwsze n stempli, inaczej jeśli n < 0 usuwa ostatnie n stempli.

>>> for i in range(8):
...     unused_stamp_id = turtle.stamp()
...     turtle.fd(30)
>>> turtle.clearstamps(2)
>>> turtle.clearstamps(-2)
>>> turtle.clearstamps()
turtle.undo()

Cofa (wielokrotnie) ostatnią akcję (akcje) żółwia. Liczba dostępnych cofnięć zależy od rozmiaru bufora cofania.

>>> for i in range(4):
...     turtle.fd(50); turtle.lt(80)
...
>>> for i in range(8):
...     turtle.undo()
turtle.speed(speed=None)
Parametry:

speed – liczba całkowita w zakresie 0..10 lub nazwa prędkości (patrz poniżej)

Ustawia prędkość żółwia na wartość liczby całkowitej w zakresie 0..10. Jeśli nie podano argumentu, zwraca aktualną prędkość.

Jeśli wartość wejściowa jest większa niż 10 lub mniejsza niż 0,5, prędkość jest ustawiana na 0. Nazwy prędkości są mapowane na wartości prędkości w następujący sposób:

  • „fastest”: 0

  • „fast”: 10

  • „normal”: 6

  • „slow”: 3

  • „slowest”: 1

Prędkości od 1 do 10 wymuszają coraz szybszą animację rysowania linii i obracania żółwia.

Uwaga: speed = 0 oznacza, że żadna animacja nie ma miejsca. forward/back sprawia, że żółw skacze i podobnie left/right sprawia, że żółw natychmiast się obraca.

>>> turtle.speed()
3
>>> turtle.speed('normal')
>>> turtle.speed()
6
>>> turtle.speed(9)
>>> turtle.speed()
9

Pobieranie stanu żółwia

turtle.position()
turtle.pos()

Zwraca bieżącą lokalizację żółwia (x,y) (jako wektor Vec2D).

>>> turtle.pos()
(440.00,-0.00)
turtle.towards(x, y=None)
Parametry:
  • x – liczba lub para/wektor liczb lub instancja żółwia

  • y – liczba, jeśli x jest liczbą, w przeciwnym razie None

Zwraca kąt między linią od pozycji żółwia do pozycji określonej przez (x,y), wektor lub drugiego żółwia. Zależy to od orientacji początkowej żółwia, która zależy od trybu – „standard”/„world” lub „logo”.

>>> turtle.goto(10, 10)
>>> turtle.towards(0,0)
225.0
turtle.xcor()

Zwraca współrzędną x żółwia.

>>> turtle.home()
>>> turtle.left(50)
>>> turtle.forward(100)
>>> turtle.pos()
(64.28,76.60)
>>> print(round(turtle.xcor(), 5))
64.27876
turtle.ycor()

Zwraca współrzędną y żółwia.

>>> turtle.home()
>>> turtle.left(60)
>>> turtle.forward(100)
>>> print(turtle.pos())
(50.00,86.60)
>>> print(round(turtle.ycor(), 5))
86.60254
turtle.heading()

Zwraca aktualny kierunek żółwia (wartość zależy od trybu żółwia, patrz mode()).

>>> turtle.home()
>>> turtle.left(67)
>>> turtle.heading()
67.0
turtle.distance(x, y=None)
Parametry:
  • x – liczba lub para/wektor liczb lub instancja żółwia

  • y – liczba, jeśli x jest liczbą, w przeciwnym razie None

Zwraca odległość od żółwia do (x,y), podanego wektora lub podanego innego żółwia, w jednostkach kroku żółwia.

>>> turtle.home()
>>> turtle.distance(30,40)
50.0
>>> turtle.distance((30,40))
50.0
>>> joe = Turtle()
>>> joe.forward(77)
>>> turtle.distance(joe)
77.0

Ustawienia pomiarowe

turtle.degrees(fullcircle=360.0)
Parametry:

fullcircle – liczba

Ustawia jednostki pomiaru kąta, tj. liczbę „stopni” dla pełnego okręgu. Domyślna wartość to 360 stopni.

>>> turtle.home()
>>> turtle.left(90)
>>> turtle.heading()
90.0

Change angle measurement unit to grad (also known as gon,
grade, or gradian and equals 1/100-th of the right angle.)
>>> turtle.degrees(400.0)
>>> turtle.heading()
100.0
>>> turtle.degrees(360)
>>> turtle.heading()
90.0
turtle.radians()

Ustawia jednostki miary kąta na radiany. Odpowiednik degrees(2*math.pi).

>>> turtle.home()
>>> turtle.left(90)
>>> turtle.heading()
90.0
>>> turtle.radians()
>>> turtle.heading()
1.5707963267948966

Kontrola pióra

Stan rysowania

turtle.pendown()
turtle.pd()
turtle.down()

Opuszcza pióro w dół – rysowanie podczas ruchu.

turtle.penup()
turtle.pu()
turtle.up()

Podnosi pióro do góry – nierysowanie podczas ruchu.

turtle.pensize(width=None)
turtle.width(width=None)
Parametry:

width – liczba dodatnia

Ustawia grubość linii na width lub zwraca ją. Jeśli resizemode jest ustawiony na „auto”, a turtleshape jest wielokątem, wielokąt ten jest rysowany z taką samą grubością linii. Jeśli nie podano argumentu, zwracany jest bieżący rozmiar pióra.

>>> turtle.pensize()
1
>>> turtle.pensize(10)   # from here on lines of width 10 are drawn
turtle.pen(pen=None, **pendict)
Parametry:
  • pen – słownik z niektórymi lub wszystkimi z poniższych kluczy

  • pendict – jedno lub więcej argumentów nazwanych z poniższymi kluczami jako nazwami

Zwraca lub ustawia atrybuty pióra w „pióro-słowniku” z następującymi parami klucz/wartość:

  • „shown”: True/False

  • „pendown”: True/False

  • „pencolor”: nazwa koloru (color-string) lub kolor-krotka

  • „fillcolor”: nazwa koloru (color-string) lub kolor-krotka

  • „pensize”: liczba dodatnia

  • „speed”: liczba z przedziału 0..10

  • „resizemode”: „auto” lub „user” lub „noresize”

  • „stretchfactor”: (liczba dodatnia, liczba dodatnia)

  • „outline”: liczba dodatnia

  • „tilt”: liczba

Ten słownik może być użyty jako argument dla kolejnego wywołania pen() w celu przywrócenia poprzedniego stanu pióra. Co więcej, jeden lub więcej z tych atrybutów może być przekazany jako argument nazwany. Można to wykorzystać do ustawienia kilku atrybutów pióra w jednej instrukcji.

>>> turtle.pen(fillcolor="black", pencolor="red", pensize=10)
>>> sorted(turtle.pen().items())
[('fillcolor', 'black'), ('outline', 1), ('pencolor', 'red'),
 ('pendown', True), ('pensize', 10), ('resizemode', 'noresize'),
 ('shearfactor', 0.0), ('shown', True), ('speed', 9),
 ('stretchfactor', (1.0, 1.0)), ('tilt', 0.0)]
>>> penstate=turtle.pen()
>>> turtle.color("yellow", "")
>>> turtle.penup()
>>> sorted(turtle.pen().items())[:3]
[('fillcolor', ''), ('outline', 1), ('pencolor', 'yellow')]
>>> turtle.pen(penstate, fillcolor="green")
>>> sorted(turtle.pen().items())[:3]
[('fillcolor', 'green'), ('outline', 1), ('pencolor', 'red')]
turtle.isdown()

Zwraca True jeśli pióro jest opuszczone, False jeśli jest podniesione.

>>> turtle.penup()
>>> turtle.isdown()
False
>>> turtle.pendown()
>>> turtle.isdown()
True

Kontrola koloru

turtle.pencolor(*args)

Zwraca lub ustawia kolor pióra.

Dozwolone są cztery formaty wejściowe:

pencolor()

Zwraca bieżący kolor pióra jako ciąg specyfikacji koloru lub jako krotkę (patrz przykład). Może być użyty jako dane wejściowe do innego wywołania color/pencolor/fillcolor.

pencolor(colorstring)

Ustawia kolor pióra na colorstring, który jest ciągiem specyfikacji koloru Tk, takim jak "red", "yellow", lub "#33cc8c".

pencolor((r, g, b))

Ustawia kolor pióra na kolor RGB reprezentowany przez krotkę r, g i b. Każda z r, g i b musi należeć do zakresu 0..colormode, gdzie colormode to 1.0 lub 255 (patrz colormode()).

pencolor(r, g, b)

Ustawia kolor pióra na kolor RGB reprezentowany przez r, g i b. Każda z r, g i b musi należeć do zakresu 0..colormode.

Jeśli turtleshape jest wielokątem, kontur tego wielokąta jest rysowany przy użyciu nowo ustawionego koloru pióra.

>>> colormode()
1.0
>>> turtle.pencolor()
'red'
>>> turtle.pencolor("brown")
>>> turtle.pencolor()
'brown'
>>> tup = (0.2, 0.8, 0.55)
>>> turtle.pencolor(tup)
>>> turtle.pencolor()
(0.2, 0.8, 0.5490196078431373)
>>> colormode(255)
>>> turtle.pencolor()
(51.0, 204.0, 140.0)
>>> turtle.pencolor('#32c18f')
>>> turtle.pencolor()
(50.0, 193.0, 143.0)
turtle.fillcolor(*args)

Zwraca lub ustawia kolor wypełnienia.

Dozwolone są cztery formaty wejściowe:

fillcolor()

Zwraca bieżący kolor wypełnienia jako ciąg specyfikacji koloru, ewentualnie w formacie krotki (patrz przykład). Może być użyty jako dane wejściowe do innego wywołania color/pencolor/fillcolor.

fillcolor(colorstring)

Ustawia kolor wypełnienia na colorstring, który jest ciągiem specyfikacji koloru Tk, takim jak "red", "yellow", lub "#33cc8c".

fillcolor((r, g, b))

Ustawia kolor wypełnienia na kolor RGB reprezentowany przez krotkę r, g i b. Każdy z r, g i b musi należeć do zakresu 0..colormode, gdzie colormode to 1.0 lub 255 (patrz colormode()).

fillcolor(r, g, b)

Ustawia kolor wypełnienia na kolor RGB reprezentowany przez r, g i b. Każde z r, g i b musi należeć do zakresu 0..colormode.

Jeśli turtleshape jest wielokątem, wnętrze tego wielokąta jest rysowane z nowo ustawionym kolorem wypełnienia.

>>> turtle.fillcolor("violet")
>>> turtle.fillcolor()
'violet'
>>> turtle.pencolor()
(50.0, 193.0, 143.0)
>>> turtle.fillcolor((50, 193, 143))  # Integers, not floats
>>> turtle.fillcolor()
(50.0, 193.0, 143.0)
>>> turtle.fillcolor('#ffffff')
>>> turtle.fillcolor()
(255.0, 255.0, 255.0)
turtle.color(*args)

Zwraca lub ustawia kolor pióra i wypełnienia.

Dozwolonych jest kilka formatów wejściowych. Używają one od 0 do 3 argumentów w następujący sposób:

color()

Zwraca bieżący kolor pióra i bieżący kolor wypełnienia jako parę ciągów specyfikacji kolorów lub krotek zwracanych przez pencolor() i fillcolor().

color(colorstring), color((r,g,b)), color(r,g,b)

Dane wejściowe jak w pencolor(), ustawiają zarówno kolor wypełnienia, jak i kolor pióra na podaną wartość.

color(colorstring1, colorstring2), color((r1,g1,b1), (r2,g2,b2))

Odpowiednik dla pencolor(colorstring1) i fillcolor(colorstring2) oraz analogicznie, jeśli używany jest inny format wejścia.

Jeśli turtleshape jest wielokątem, kontur i wnętrze tego wielokąta są rysowane z nowo ustawionymi kolorami.

>>> turtle.color("red", "green")
>>> turtle.color()
('red', 'green')
>>> color("#285078", "#a0c8f0")
>>> color()
((40.0, 80.0, 120.0), (160.0, 200.0, 240.0))

Zobacz także: Metoda klasy Screen colormode().

Wypełnienie

turtle.filling()

Zwraca fillstate (True jeśli wypełnienie, False w przeciwnym razie).

>>> turtle.begin_fill()
>>> if turtle.filling():
...    turtle.pensize(5)
... else:
...    turtle.pensize(3)
turtle.begin_fill()

Do wywołania tuż przed rysowaniem kształtu do wypełnienia.

turtle.end_fill()

Wypełnia kształt narysowany po ostatnim wywołaniu begin_fill().

To, czy obszary nakładania się przecinających się wielokątów lub wielu kształtów są wypełnione, zależy od grafiki systemu operacyjnego, typu nakładania się i liczby nakładających się obszarów. Na przykład żółwiowa gwiazda na górze rozdziału może być cała żółta lub mieć kilka białych obszarów.

>>> turtle.color("black", "red")
>>> turtle.begin_fill()
>>> turtle.circle(80)
>>> turtle.end_fill()

Więcej kontroli rysowania

turtle.reset()

Usuń rysunki żółwia z ekranu, ponownie wyśrodkuj żółwia i ustaw zmienne na wartości domyślne.

>>> turtle.goto(0,-22)
>>> turtle.left(100)
>>> turtle.position()
(0.00,-22.00)
>>> turtle.heading()
100.0
>>> turtle.reset()
>>> turtle.position()
(0.00,0.00)
>>> turtle.heading()
0.0
turtle.clear()

Usuwa rysunki żółwia z ekranu. Nie rusza żółwia. Stan i pozycja żółwia, a także rysunki innych żółwi, nie zostaną zmienione.

turtle.write(arg, move=False, align='left', font=('Arial', 8, 'normal'))
Parametry:
  • arg – obiekt, który ma zostać zapisany na TurtleScreen

  • move – True/False

  • align – jedna z wartości „left”, „center” lub „right”

  • font – trójka wartości (fontname, fontsize, fonttype)

Pisze tekst – reprezentację obiektu arg – w bieżącej pozycji żółwia zgodnie z align („left”, „center” lub „right”) i z podaną czcionką. Jeśli move to True, pióro jest przesuwane do prawego dolnego rogu tekstu. Domyślnie move ma wartość False.

>>> turtle.write("Home = ", True, align="center")
>>> turtle.write((0,0), True)

Stan żółwia

Widoczność

turtle.hideturtle()
turtle.ht()

Czyni żółwia niewidocznym. Dobrym pomysłem jest zrobienie tego w trakcie wykonywania złożonego rysunku, ponieważ ukrycie żółwia znacznie przyspiesza rysowanie.

>>> turtle.hideturtle()
turtle.showturtle()
turtle.st()

Sprawia, że żółw jest widoczny.

>>> turtle.showturtle()
turtle.isvisible()

Zwraca True jeśli żółw jest widoczny, False jeśli jest ukryty.

>>> turtle.hideturtle()
>>> turtle.isvisible()
False
>>> turtle.showturtle()
>>> turtle.isvisible()
True

Wygląd

turtle.shape(name=None)
Parametry:

name – a string which is a valid shapename

Set turtle shape to shape with given name or, if name is not given, return name of current shape. Shape with name must exist in the TurtleScreen’s shape dictionary. Initially there are the following polygon shapes: „arrow”, „turtle”, „circle”, „square”, „triangle”, „classic”. To learn about how to deal with shapes see Screen method register_shape().

>>> turtle.shape()
'classic'
>>> turtle.shape("turtle")
>>> turtle.shape()
'turtle'
turtle.resizemode(rmode=None)
Parametry:

rmode – one of the strings „auto”, „user”, „noresize”

Set resizemode to one of the values: „auto”, „user”, „noresize”. If rmode is not given, return current resizemode. Different resizemodes have the following effects:

  • „auto”: adapts the appearance of the turtle corresponding to the value of pensize.

  • „user”: adapts the appearance of the turtle according to the values of stretchfactor and outlinewidth (outline), which are set by shapesize().

  • „noresize”: no adaption of the turtle’s appearance takes place.

resizemode("user") is called by shapesize() when used with arguments.

>>> turtle.resizemode()
'noresize'
>>> turtle.resizemode("auto")
>>> turtle.resizemode()
'auto'
turtle.shapesize(stretch_wid=None, stretch_len=None, outline=None)
turtle.turtlesize(stretch_wid=None, stretch_len=None, outline=None)
Parametry:
  • stretch_wid – positive number

  • stretch_len – positive number

  • outline – positive number

Return or set the pen’s attributes x/y-stretchfactors and/or outline. Set resizemode to „user”. If and only if resizemode is set to „user”, the turtle will be displayed stretched according to its stretchfactors: stretch_wid is stretchfactor perpendicular to its orientation, stretch_len is stretchfactor in direction of its orientation, outline determines the width of the shape’s outline.

>>> turtle.shapesize()
(1.0, 1.0, 1)
>>> turtle.resizemode("user")
>>> turtle.shapesize(5, 5, 12)
>>> turtle.shapesize()
(5, 5, 12)
>>> turtle.shapesize(outline=8)
>>> turtle.shapesize()
(5, 5, 8)
turtle.shearfactor(shear=None)
Parametry:

shear – number (optional)

Set or return the current shearfactor. Shear the turtleshape according to the given shearfactor shear, which is the tangent of the shear angle. Do not change the turtle’s heading (direction of movement). If shear is not given: return the current shearfactor, i. e. the tangent of the shear angle, by which lines parallel to the heading of the turtle are sheared.

>>> turtle.shape("circle")
>>> turtle.shapesize(5,2)
>>> turtle.shearfactor(0.5)
>>> turtle.shearfactor()
0.5
turtle.tilt(angle)
Parametry:

angle – liczba

Rotate the turtleshape by angle from its current tilt-angle, but do not change the turtle’s heading (direction of movement).

>>> turtle.reset()
>>> turtle.shape("circle")
>>> turtle.shapesize(5,2)
>>> turtle.tilt(30)
>>> turtle.fd(50)
>>> turtle.tilt(30)
>>> turtle.fd(50)
turtle.settiltangle(angle)
Parametry:

angle – liczba

Rotate the turtleshape to point in the direction specified by angle, regardless of its current tilt-angle. Do not change the turtle’s heading (direction of movement).

>>> turtle.reset()
>>> turtle.shape("circle")
>>> turtle.shapesize(5,2)
>>> turtle.settiltangle(45)
>>> turtle.fd(50)
>>> turtle.settiltangle(-45)
>>> turtle.fd(50)

Niezalecane od wersji 3.1.

turtle.tiltangle(angle=None)
Parametry:

angle – a number (optional)

Set or return the current tilt-angle. If angle is given, rotate the turtleshape to point in the direction specified by angle, regardless of its current tilt-angle. Do not change the turtle’s heading (direction of movement). If angle is not given: return the current tilt-angle, i. e. the angle between the orientation of the turtleshape and the heading of the turtle (its direction of movement).

>>> turtle.reset()
>>> turtle.shape("circle")
>>> turtle.shapesize(5,2)
>>> turtle.tilt(45)
>>> turtle.tiltangle()
45.0
turtle.shapetransform(t11=None, t12=None, t21=None, t22=None)
Parametry:
  • t11 – a number (optional)

  • t12 – a number (optional)

  • t21 – a number (optional)

  • t12 – a number (optional)

Set or return the current transformation matrix of the turtle shape.

If none of the matrix elements are given, return the transformation matrix as a tuple of 4 elements. Otherwise set the given elements and transform the turtleshape according to the matrix consisting of first row t11, t12 and second row t21, t22. The determinant t11 * t22 - t12 * t21 must not be zero, otherwise an error is raised. Modify stretchfactor, shearfactor and tiltangle according to the given matrix.

>>> turtle = Turtle()
>>> turtle.shape("square")
>>> turtle.shapesize(4,2)
>>> turtle.shearfactor(-0.5)
>>> turtle.shapetransform()
(4.0, -1.0, -0.0, 2.0)
turtle.get_shapepoly()

Return the current shape polygon as tuple of coordinate pairs. This can be used to define a new shape or components of a compound shape.

>>> turtle.shape("square")
>>> turtle.shapetransform(4, -1, 0, 2)
>>> turtle.get_shapepoly()
((50, -20), (30, 20), (-50, 20), (-30, -20))

Korzystanie ze zdarzeń

turtle.onclick(fun, btn=1, add=None)
Parametry:
  • fun – a function with two arguments which will be called with the coordinates of the clicked point on the canvas

  • btn – number of the mouse-button, defaults to 1 (left mouse button)

  • addTrue or False – if True, a new binding will be added, otherwise it will replace a former binding

Bind fun to mouse-click events on this turtle. If fun is None, existing bindings are removed. Example for the anonymous turtle, i.e. the procedural way:

>>> def turn(x, y):
...     left(180)
...
>>> onclick(turn)  # Now clicking into the turtle will turn it.
>>> onclick(None)  # event-binding will be removed
turtle.onrelease(fun, btn=1, add=None)
Parametry:
  • fun – a function with two arguments which will be called with the coordinates of the clicked point on the canvas

  • btn – number of the mouse-button, defaults to 1 (left mouse button)

  • addTrue or False – if True, a new binding will be added, otherwise it will replace a former binding

Bind fun to mouse-button-release events on this turtle. If fun is None, existing bindings are removed.

>>> class MyTurtle(Turtle):
...     def glow(self,x,y):
...         self.fillcolor("red")
...     def unglow(self,x,y):
...         self.fillcolor("")
...
>>> turtle = MyTurtle()
>>> turtle.onclick(turtle.glow)     # clicking on turtle turns fillcolor red,
>>> turtle.onrelease(turtle.unglow) # releasing turns it to transparent.
turtle.ondrag(fun, btn=1, add=None)
Parametry:
  • fun – a function with two arguments which will be called with the coordinates of the clicked point on the canvas

  • btn – number of the mouse-button, defaults to 1 (left mouse button)

  • addTrue or False – if True, a new binding will be added, otherwise it will replace a former binding

Bind fun to mouse-move events on this turtle. If fun is None, existing bindings are removed.

Remark: Every sequence of mouse-move-events on a turtle is preceded by a mouse-click event on that turtle.

>>> turtle.ondrag(turtle.goto)

Subsequently, clicking and dragging the Turtle will move it across the screen thereby producing handdrawings (if pen is down).

Specjalne metody żółwi

turtle.begin_poly()

Start recording the vertices of a polygon. Current turtle position is first vertex of polygon.

turtle.end_poly()

Stop recording the vertices of a polygon. Current turtle position is last vertex of polygon. This will be connected with the first vertex.

turtle.get_poly()

Return the last recorded polygon.

>>> turtle.home()
>>> turtle.begin_poly()
>>> turtle.fd(100)
>>> turtle.left(20)
>>> turtle.fd(30)
>>> turtle.left(60)
>>> turtle.fd(50)
>>> turtle.end_poly()
>>> p = turtle.get_poly()
>>> register_shape("myFavouriteShape", p)
turtle.clone()

Create and return a clone of the turtle with same position, heading and turtle properties.

>>> mick = Turtle()
>>> joe = mick.clone()
turtle.getturtle()
turtle.getpen()

Return the Turtle object itself. Only reasonable use: as a function to return the „anonymous turtle”:

>>> pet = getturtle()
>>> pet.fd(50)
>>> pet
<turtle.Turtle object at 0x...>
turtle.getscreen()

Return the TurtleScreen object the turtle is drawing on. TurtleScreen methods can then be called for that object.

>>> ts = turtle.getscreen()
>>> ts
<turtle._Screen object at 0x...>
>>> ts.bgcolor("pink")
turtle.setundobuffer(size)
Parametry:

size – an integer or None

Set or disable undobuffer. If size is an integer, an empty undobuffer of given size is installed. size gives the maximum number of turtle actions that can be undone by the undo() method/function. If size is None, the undobuffer is disabled.

>>> turtle.setundobuffer(42)
turtle.undobufferentries()

Return number of entries in the undobuffer.

>>> while undobufferentries():
...     undo()

Compound shapes

To use compound turtle shapes, which consist of several polygons of different color, you must use the helper class Shape explicitly as described below:

  1. Create an empty Shape object of type „compound”.

  2. Add as many components to this object as desired, using the addcomponent() method.

    Na przykład:

    >>> s = Shape("compound")
    >>> poly1 = ((0,0),(10,-5),(0,10),(-10,-5))
    >>> s.addcomponent(poly1, "red", "blue")
    >>> poly2 = ((0,0),(10,-5),(-10,-5))
    >>> s.addcomponent(poly2, "blue", "red")
    
  3. Now add the Shape to the Screen’s shapelist and use it:

    >>> register_shape("myshape", s)
    >>> shape("myshape")
    

Informacja

The Shape class is used internally by the register_shape() method in different ways. The application programmer has to deal with the Shape class only when using compound shapes like shown above!

Methods of TurtleScreen/Screen and corresponding functions

Most of the examples in this section refer to a TurtleScreen instance called screen.

Kontrola okna

turtle.bgcolor(*args)
Parametry:

args – a color string or three numbers in the range 0..colormode or a 3-tuple of such numbers

Set or return background color of the TurtleScreen.

>>> screen.bgcolor("orange")
>>> screen.bgcolor()
'orange'
>>> screen.bgcolor("#800080")
>>> screen.bgcolor()
(128.0, 0.0, 128.0)
turtle.bgpic(picname=None)
Parametry:

picname – a string, name of a gif-file or "nopic", or None

Set background image or return name of current backgroundimage. If picname is a filename, set the corresponding image as background. If picname is "nopic", delete background image, if present. If picname is None, return the filename of the current backgroundimage.

>>> screen.bgpic()
'nopic'
>>> screen.bgpic("landscape.gif")
>>> screen.bgpic()
"landscape.gif"
turtle.clear()

Informacja

This TurtleScreen method is available as a global function only under the name clearscreen. The global function clear is a different one derived from the Turtle method clear.

turtle.clearscreen()

Delete all drawings and all turtles from the TurtleScreen. Reset the now empty TurtleScreen to its initial state: white background, no background image, no event bindings and tracing on.

turtle.reset()

Informacja

This TurtleScreen method is available as a global function only under the name resetscreen. The global function reset is another one derived from the Turtle method reset.

turtle.resetscreen()

Reset all Turtles on the Screen to their initial state.

turtle.screensize(canvwidth=None, canvheight=None, bg=None)
Parametry:
  • canvwidth – positive integer, new width of canvas in pixels

  • canvheight – positive integer, new height of canvas in pixels

  • bg – colorstring or color-tuple, new background color

If no arguments are given, return current (canvaswidth, canvasheight). Else resize the canvas the turtles are drawing on. Do not alter the drawing window. To observe hidden parts of the canvas, use the scrollbars. With this method, one can make visible those parts of a drawing which were outside the canvas before.

>>> screen.screensize()
(400, 300)
>>> screen.screensize(2000,1500)
>>> screen.screensize()
(2000, 1500)

e.g. to search for an erroneously escaped turtle ;-)

turtle.setworldcoordinates(llx, lly, urx, ury)
Parametry:
  • llx – a number, x-coordinate of lower left corner of canvas

  • lly – a number, y-coordinate of lower left corner of canvas

  • urx – a number, x-coordinate of upper right corner of canvas

  • ury – a number, y-coordinate of upper right corner of canvas

Set up user-defined coordinate system and switch to mode „world” if necessary. This performs a screen.reset(). If mode „world” is already active, all drawings are redrawn according to the new coordinates.

ATTENTION: in user-defined coordinate systems angles may appear distorted.

>>> screen.reset()
>>> screen.setworldcoordinates(-50,-7.5,50,7.5)
>>> for _ in range(72):
...     left(10)
...
>>> for _ in range(8):
...     left(45); fd(2)   # a regular octagon

Kontrola animacji

turtle.delay(delay=None)
Parametry:

delay – positive integer

Set or return the drawing delay in milliseconds. (This is approximately the time interval between two consecutive canvas updates.) The longer the drawing delay, the slower the animation.

Optional argument:

>>> screen.delay()
10
>>> screen.delay(5)
>>> screen.delay()
5
turtle.tracer(n=None, delay=None)
Parametry:
  • n – nonnegative integer

  • delay – nonnegative integer

Turn turtle animation on/off and set delay for update drawings. If n is given, only each n-th regular screen update is really performed. (Can be used to accelerate the drawing of complex graphics.) When called without arguments, returns the currently stored value of n. Second argument sets delay value (see delay()).

>>> screen.tracer(8, 25)
>>> dist = 2
>>> for i in range(200):
...     fd(dist)
...     rt(90)
...     dist += 2
turtle.update()

Perform a TurtleScreen update. To be used when tracer is turned off.

See also the RawTurtle/Turtle method speed().

Korzystanie ze zdarzeń ekranowych

turtle.listen(xdummy=None, ydummy=None)

Set focus on TurtleScreen (in order to collect key-events). Dummy arguments are provided in order to be able to pass listen() to the onclick method.

turtle.onkey(fun, key)
turtle.onkeyrelease(fun, key)
Parametry:
  • fun – a function with no arguments or None

  • key – a string: key (e.g. „a”) or key-symbol (e.g. „space”)

Bind fun to key-release event of key. If fun is None, event bindings are removed. Remark: in order to be able to register key-events, TurtleScreen must have the focus. (See method listen().)

>>> def f():
...     fd(50)
...     lt(60)
...
>>> screen.onkey(f, "Up")
>>> screen.listen()
turtle.onkeypress(fun, key=None)
Parametry:
  • fun – a function with no arguments or None

  • key – a string: key (e.g. „a”) or key-symbol (e.g. „space”)

Bind fun to key-press event of key if key is given, or to any key-press-event if no key is given. Remark: in order to be able to register key-events, TurtleScreen must have focus. (See method listen().)

>>> def f():
...     fd(50)
...
>>> screen.onkey(f, "Up")
>>> screen.listen()
turtle.onclick(fun, btn=1, add=None)
turtle.onscreenclick(fun, btn=1, add=None)
Parametry:
  • fun – a function with two arguments which will be called with the coordinates of the clicked point on the canvas

  • btn – number of the mouse-button, defaults to 1 (left mouse button)

  • addTrue or False – if True, a new binding will be added, otherwise it will replace a former binding

Bind fun to mouse-click events on this screen. If fun is None, existing bindings are removed.

Example for a TurtleScreen instance named screen and a Turtle instance named turtle:

>>> screen.onclick(turtle.goto) # Subsequently clicking into the TurtleScreen will
>>>                             # make the turtle move to the clicked point.
>>> screen.onclick(None)        # remove event binding again

Informacja

This TurtleScreen method is available as a global function only under the name onscreenclick. The global function onclick is another one derived from the Turtle method onclick.

turtle.ontimer(fun, t=0)
Parametry:
  • fun – a function with no arguments

  • t – a number >= 0

Install a timer that calls fun after t milliseconds.

>>> running = True
>>> def f():
...     if running:
...         fd(50)
...         lt(60)
...         screen.ontimer(f, 250)
>>> f()   ### makes the turtle march around
>>> running = False
turtle.mainloop()
turtle.done()

Starts event loop - calling Tkinter’s mainloop function. Must be the last statement in a turtle graphics program. Must not be used if a script is run from within IDLE in -n mode (No subprocess) - for interactive use of turtle graphics.

>>> screen.mainloop()

Metody wprowadzania danych

turtle.textinput(title, prompt)
Parametry:
  • title – ciąg znaków

  • prompt – ciąg znaków

Pop up a dialog window for input of a string. Parameter title is the title of the dialog window, prompt is a text mostly describing what information to input. Return the string input. If the dialog is canceled, return None.

>>> screen.textinput("NIM", "Name of first player:")
turtle.numinput(title, prompt, default=None, minval=None, maxval=None)
Parametry:
  • title – ciąg znaków

  • prompt – ciąg znaków

  • default – number (optional)

  • minval – number (optional)

  • maxval – number (optional)

Pop up a dialog window for input of a number. title is the title of the dialog window, prompt is a text mostly describing what numerical information to input. default: default value, minval: minimum value for input, maxval: maximum value for input. The number input must be in the range minval .. maxval if these are given. If not, a hint is issued and the dialog remains open for correction. Return the number input. If the dialog is canceled, return None.

>>> screen.numinput("Poker", "Your stakes:", 1000, minval=10, maxval=10000)

Ustawienia i metody specjalne

turtle.mode(mode=None)
Parametry:

mode – one of the strings „standard”, „logo” or „world”

Set turtle mode („standard”, „logo” or „world”) and perform reset. If mode is not given, current mode is returned.

Mode „standard” is compatible with old turtle. Mode „logo” is compatible with most Logo turtle graphics. Mode „world” uses user-defined „world coordinates”. Attention: in this mode angles appear distorted if x/y unit-ratio doesn’t equal 1.

Mode

Initial turtle heading

positive angles

„standard”

to the right (east)

counterclockwise

„logo”

upward (north)

clockwise

>>> mode("logo")   # resets turtle heading to north
>>> mode()
'logo'
turtle.colormode(cmode=None)
Parametry:

cmode – one of the values 1.0 or 255

Return the colormode or set it to 1.0 or 255. Subsequently r, g, b values of color triples have to be in the range 0..*cmode*.

>>> screen.colormode(1)
>>> turtle.pencolor(240, 160, 80)
Traceback (most recent call last):
     ...
TurtleGraphicsError: bad color sequence: (240, 160, 80)
>>> screen.colormode()
1.0
>>> screen.colormode(255)
>>> screen.colormode()
255
>>> turtle.pencolor(240,160,80)
turtle.getcanvas()

Return the Canvas of this TurtleScreen. Useful for insiders who know what to do with a Tkinter Canvas.

>>> cv = screen.getcanvas()
>>> cv
<turtle.ScrolledCanvas object ...>
turtle.getshapes()

Return a list of names of all currently available turtle shapes.

>>> screen.getshapes()
['arrow', 'blank', 'circle', ..., 'turtle']
turtle.register_shape(name, shape=None)
turtle.addshape(name, shape=None)

There are three different ways to call this function:

  1. name is the name of a gif-file and shape is None: Install the corresponding image shape.

    >>> screen.register_shape("turtle.gif")
    

    Informacja

    Image shapes do not rotate when turning the turtle, so they do not display the heading of the turtle!

  2. name is an arbitrary string and shape is a tuple of pairs of coordinates: Install the corresponding polygon shape.

    >>> screen.register_shape("triangle", ((5,-3), (0,5), (-5,-3)))
    
  3. name is an arbitrary string and shape is a (compound) Shape object: Install the corresponding compound shape.

Add a turtle shape to TurtleScreen’s shapelist. Only thusly registered shapes can be used by issuing the command shape(shapename).

turtle.turtles()

Return the list of turtles on the screen.

>>> for turtle in screen.turtles():
...     turtle.color("red")
turtle.window_height()

Return the height of the turtle window.

>>> screen.window_height()
480
turtle.window_width()

Return the width of the turtle window.

>>> screen.window_width()
640

Methods specific to Screen, not inherited from TurtleScreen

turtle.bye()

Shut the turtlegraphics window.

turtle.exitonclick()

Bind bye() method to mouse clicks on the Screen.

If the value „using_IDLE” in the configuration dictionary is False (default value), also enter mainloop. Remark: If IDLE with the -n switch (no subprocess) is used, this value should be set to True in turtle.cfg. In this case IDLE’s own mainloop is active also for the client script.

turtle.setup(width=_CFG['width'], height=_CFG['height'], startx=_CFG['leftright'], starty=_CFG['topbottom'])

Set the size and position of the main window. Default values of arguments are stored in the configuration dictionary and can be changed via a turtle.cfg file.

Parametry:
  • width – if an integer, a size in pixels, if a float, a fraction of the screen; default is 50% of screen

  • height – if an integer, the height in pixels, if a float, a fraction of the screen; default is 75% of screen

  • startx – if positive, starting position in pixels from the left edge of the screen, if negative from the right edge, if None, center window horizontally

  • starty – if positive, starting position in pixels from the top edge of the screen, if negative from the bottom edge, if None, center window vertically

>>> screen.setup (width=200, height=200, startx=0, starty=0)
>>>              # sets window to 200x200 pixels, in upper left of screen
>>> screen.setup(width=.75, height=0.5, startx=None, starty=None)
>>>              # sets window to 75% of screen by 50% of screen and centers
turtle.title(titlestring)
Parametry:

titlestring – a string that is shown in the titlebar of the turtle graphics window

Set title of turtle window to titlestring.

>>> screen.title("Welcome to the turtle zoo!")

Public classes

class turtle.RawTurtle(canvas)
class turtle.RawPen(canvas)
Parametry:

canvas – a tkinter.Canvas, a ScrolledCanvas or a TurtleScreen

Create a turtle. The turtle has all methods described above as „methods of Turtle/RawTurtle”.

class turtle.Turtle

Subclass of RawTurtle, has the same interface but draws on a default Screen object created automatically when needed for the first time.

class turtle.TurtleScreen(cv)
Parametry:

cv – a tkinter.Canvas

Provides screen oriented methods like bgcolor() etc. that are described above.

class turtle.Screen

Subclass of TurtleScreen, with four methods added.

class turtle.ScrolledCanvas(master)
Parametry:

master – some Tkinter widget to contain the ScrolledCanvas, i.e. a Tkinter-canvas with scrollbars added

Used by class Screen, which thus automatically provides a ScrolledCanvas as playground for the turtles.

class turtle.Shape(type_, data)
Parametry:

type_ – one of the strings „polygon”, „image”, „compound”

Data structure modeling shapes. The pair (type_, data) must follow this specification:

type_

data

„polygon”

a polygon-tuple, i.e. a tuple of pairs of coordinates

„image”

an image (in this form only used internally!)

„compound”

None (a compound shape has to be constructed using the addcomponent() method)

addcomponent(poly, fill, outline=None)
Parametry:
  • poly – a polygon, i.e. a tuple of pairs of numbers

  • fill – a color the poly will be filled with

  • outline – a color for the poly’s outline (if given)

Przykład:

>>> poly = ((0,0),(10,-5),(0,10),(-10,-5))
>>> s = Shape("compound")
>>> s.addcomponent(poly, "red", "blue")
>>> # ... add more components and then use register_shape()

See Compound shapes.

class turtle.Vec2D(x, y)

A two-dimensional vector class, used as a helper class for implementing turtle graphics. May be useful for turtle graphics programs too. Derived from tuple, so a vector is a tuple!

Provides (for a, b vectors, k number):

  • a + b vector addition

  • a - b vector subtraction

  • a * b inner product

  • k * a and a * k multiplication with scalar

  • abs(a) absolute value of a

  • a.rotate(angle) rotation

Wytłumaczenie

A turtle object draws on a screen object, and there a number of key classes in the turtle object-oriented interface that can be used to create them and relate them to each other.

A Turtle instance will automatically create a Screen instance if one is not already present.

Turtle is a subclass of RawTurtle, which doesn’t automatically create a drawing surface - a canvas will need to be provided or created for it. The canvas can be a tkinter.Canvas, ScrolledCanvas or TurtleScreen.

TurtleScreen is the basic drawing surface for a turtle. Screen is a subclass of TurtleScreen, and includes some additional methods for managing its appearance (including size and title) and behaviour. TurtleScreen’s constructor needs a tkinter.Canvas or a ScrolledCanvas as an argument.

The functional interface for turtle graphics uses the various methods of Turtle and TurtleScreen/Screen. Behind the scenes, a screen object is automatically created whenever a function derived from a Screen method is called. Similarly, a turtle object is automatically created whenever any of the functions derived from a Turtle method is called.

To use multiple turtles on a screen, the object-oriented interface must be used.

Help and configuration

How to use help

The public methods of the Screen and Turtle classes are documented extensively via docstrings. So these can be used as online-help via the Python help facilities:

  • When using IDLE, tooltips show the signatures and first lines of the docstrings of typed in function-/method calls.

  • Calling help() on methods or functions displays the docstrings:

    >>> help(Screen.bgcolor)
    Help on method bgcolor in module turtle:
    
    bgcolor(self, *args) unbound turtle.Screen method
        Set or return backgroundcolor of the TurtleScreen.
    
        Arguments (if given): a color string or three numbers
        in the range 0..colormode or a 3-tuple of such numbers.
    
    
        >>> screen.bgcolor("orange")
        >>> screen.bgcolor()
        "orange"
        >>> screen.bgcolor(0.5,0,0.5)
        >>> screen.bgcolor()
        "#800080"
    
    >>> help(Turtle.penup)
    Help on method penup in module turtle:
    
    penup(self) unbound turtle.Turtle method
        Pull the pen up -- no drawing when moving.
    
        Aliases: penup | pu | up
    
        No argument
    
        >>> turtle.penup()
    
  • The docstrings of the functions which are derived from methods have a modified form:

    >>> help(bgcolor)
    Help on function bgcolor in module turtle:
    
    bgcolor(*args)
        Set or return backgroundcolor of the TurtleScreen.
    
        Arguments (if given): a color string or three numbers
        in the range 0..colormode or a 3-tuple of such numbers.
    
        Example::
    
          >>> bgcolor("orange")
          >>> bgcolor()
          "orange"
          >>> bgcolor(0.5,0,0.5)
          >>> bgcolor()
          "#800080"
    
    >>> help(penup)
    Help on function penup in module turtle:
    
    penup()
        Pull the pen up -- no drawing when moving.
    
        Aliases: penup | pu | up
    
        No argument
    
        Example:
        >>> penup()
    

These modified docstrings are created automatically together with the function definitions that are derived from the methods at import time.

Translation of docstrings into different languages

There is a utility to create a dictionary the keys of which are the method names and the values of which are the docstrings of the public methods of the classes Screen and Turtle.

turtle.write_docstringdict(filename='turtle_docstringdict')
Parametry:

filename – a string, used as filename

Create and write docstring-dictionary to a Python script with the given filename. This function has to be called explicitly (it is not used by the turtle graphics classes). The docstring dictionary will be written to the Python script filename.py. It is intended to serve as a template for translation of the docstrings into different languages.

If you (or your students) want to use turtle with online help in your native language, you have to translate the docstrings and save the resulting file as e.g. turtle_docstringdict_german.py.

If you have an appropriate entry in your turtle.cfg file this dictionary will be read in at import time and will replace the original English docstrings.

At the time of this writing there are docstring dictionaries in German and in Italian. (Requests please to glingl@aon.at.)

How to configure Screen and Turtles

The built-in default configuration mimics the appearance and behaviour of the old turtle module in order to retain best possible compatibility with it.

If you want to use a different configuration which better reflects the features of this module or which better fits to your needs, e.g. for use in a classroom, you can prepare a configuration file turtle.cfg which will be read at import time and modify the configuration according to its settings.

The built in configuration would correspond to the following turtle.cfg:

width = 0.5
height = 0.75
leftright = None
topbottom = None
canvwidth = 400
canvheight = 300
mode = standard
colormode = 1.0
delay = 10
undobuffersize = 1000
shape = classic
pencolor = black
fillcolor = black
resizemode = noresize
visible = True
language = english
exampleturtle = turtle
examplescreen = screen
title = Python Turtle Graphics
using_IDLE = False

Short explanation of selected entries:

  • The first four lines correspond to the arguments of the Screen.setup method.

  • Line 5 and 6 correspond to the arguments of the method Screen.screensize.

  • shape can be any of the built-in shapes, e.g: arrow, turtle, etc. For more info try help(shape).

  • If you want to use no fill color (i.e. make the turtle transparent), you have to write fillcolor = "" (but all nonempty strings must not have quotes in the cfg file).

  • If you want to reflect the turtle its state, you have to use resizemode = auto.

  • If you set e.g. language = italian the docstringdict turtle_docstringdict_italian.py will be loaded at import time (if present on the import path, e.g. in the same directory as turtle).

  • The entries exampleturtle and examplescreen define the names of these objects as they occur in the docstrings. The transformation of method-docstrings to function-docstrings will delete these names from the docstrings.

  • using_IDLE: Set this to True if you regularly work with IDLE and its -n switch („no subprocess”). This will prevent exitonclick() to enter the mainloop.

There can be a turtle.cfg file in the directory where turtle is stored and an additional one in the current working directory. The latter will override the settings of the first one.

The Lib/turtledemo directory contains a turtle.cfg file. You can study it as an example and see its effects when running the demos (preferably not from within the demo-viewer).

turtledemo — Demo scripts

The turtledemo package includes a set of demo scripts. These scripts can be run and viewed using the supplied demo viewer as follows:

python -m turtledemo

Alternatively, you can run the demo scripts individually. For example,

python -m turtledemo.bytedesign

The turtledemo package directory contains:

  • A demo viewer __main__.py which can be used to view the sourcecode of the scripts and run them at the same time.

  • Multiple scripts demonstrating different features of the turtle module. Examples can be accessed via the Examples menu. They can also be run standalone.

  • A turtle.cfg file which serves as an example of how to write and use such files.

The demo scripts are:

Nazwa

Opis

Features

bytedesign

complex classical turtle graphics pattern

tracer(), delay, update()

chaos

graphs Verhulst dynamics, shows that computer’s computations can generate results sometimes against the common sense expectations

world coordinates

clock

analog clock showing time of your computer

turtles as clock’s hands, ontimer

colormixer

experiment with r, g, b

ondrag()

forest

3 breadth-first trees

randomization

fractalcurves

Hilbert & Koch curves

recursion

lindenmayer

ethnomathematics (indian kolams)

L-System

minimal_hanoi

Towers of Hanoi

Rectangular Turtles as Hanoi discs (shape, shapesize)

nim

play the classical nim game with three heaps of sticks against the computer.

turtles as nimsticks, event driven (mouse, keyboard)

paint

super minimalistic drawing program

onclick()

peace

elementary

turtle: appearance and animation

penrose

aperiodic tiling with kites and darts

stamp()

planet_and_moon

simulation of gravitational system

compound shapes, Vec2D

rosette

a pattern from the wikipedia article on turtle graphics

clone(), undo()

round_dance

dancing turtles rotating pairwise in opposite direction

compound shapes, clone shapesize, tilt, get_shapepoly, update

sorting_animate

visual demonstration of different sorting methods

simple alignment, randomization

tree

a (graphical) breadth first tree (using generators)

clone()

two_canvases

simple design

turtles on two canvases

yinyang

another elementary example

circle()

Have fun!

Changes since Python 2.6

  • The methods Turtle.tracer, Turtle.window_width and Turtle.window_height have been eliminated. Methods with these names and functionality are now available only as methods of Screen. The functions derived from these remain available. (In fact already in Python 2.6 these methods were merely duplications of the corresponding TurtleScreen/Screen methods.)

  • The method Turtle.fill() has been eliminated. The behaviour of begin_fill() and end_fill() have changed slightly: now every filling process must be completed with an end_fill() call.

  • A method Turtle.filling has been added. It returns a boolean value: True if a filling process is under way, False otherwise. This behaviour corresponds to a fill() call without arguments in Python 2.6.

Changes since Python 3.0