Sorting HOW TO

Wydanie 3.10.18

Guido van Rossum
and the Python development team

lipca 08, 2025

Python Software Foundation
Email: docs@python.org

Spis tresci

1 Podstawy sortowania 1
2 Key Functions 2
3 Operator Module Functions 3
4 Ascending and Descending 3
5 Sort Stability and Complex Sorts 3
6 The Old Way Using Decorate-Sort-Undecorate 4
7 The Old Way Using the cmp Parameter 4
8 0dd and Ends 5

Autor Andrew Dalke and Raymond Hettinger
wydanie 0.1

Python lists have a built-in 1ist . sort () method that modifies the list in-place. There is alsoa sorted () built-in
function that builds a new sorted list from an iterable.

In this document, we explore the various techniques for sorting data using Python.

1 Podstawy sortowania

A simple ascending sort is very easy: just call the sorted () function. It returns a new sorted list:

>>> sorted([5, 2, 3, 1, 41)
[1, 2, 3, 4, 5]

You can also use the 1ist.sort () method. It modifies the list in-place (and returns None to avoid confusion).
Usually it’s less convenient than sorted () - but if you don’t need the original list, it’s slightly more efficient.

>>> a = [5, 2, 3, 1, 4]
>>> a.sort ()

>>> a

(1, 2, 3, 4, 5]

Another difference is that the 1ist . sort () method is only defined for lists. In contrast, the sorted () function
accepts any iterable.

>>> sorted({1: 'D', 2: 'B', 3: 'B', 4: 'E', 5: 'A'})
[11 2/ 3’ 4’ 5]

2 Key Functions

Both 1ist.sort () and sorted () have a key parameter to specify a function (or other callable) to be called on
each list element prior to making comparisons.

For example, here’s a case-insensitive string comparison:

>>> sorted("This is a test string from Andrew".split (), key=str.lower)
['a', 'Andrew', 'from', 'is', 'string', 'test', 'This']

The value of the key parameter should be a function (or other callable) that takes a single argument and returns a key
to use for sorting purposes. This technique is fast because the key function is called exactly once for each input record.

A common pattern is to sort complex objects using some of the object’s indices as keys. For example:

>>> student_tuples = [
('john', 'A', 15),
('"jane', 'B', 12),
('dave', 'B', 10),
L]
>>> sorted(student_tuples, key=lambda student: student[2]) # sort by age
[('dave', 'B', 10), ('jane', 'B', 12), ('john', 'A', 15)]

The same technique works for objects with named attributes. For example:

>>> class Student:
def _ _init__ (self, name, grade, age):
self.name = name
self.grade = grade
self.age = age
def _ repr__ (self):
return repr((self.name, self.grade, self.age))

>>> student_objects = [
Student (' john', 'A', 15),
Student (' jane', 'B', 12),
Student ('dave', 'B', 10),
L]
>>> sorted(student_objects, key=lambda student: student.age) # sort by age
[('dave', 'B', 10), ('jane', 'B', 12), ('john', 'A', 15)]

3 Operator Module Functions

The key-function patterns shown above are very common, so Python provides convenience functions to ma-
ke accessor functions easier and faster. The operator module has itemgetter (), attrgetter (), and
amethodcaller () function.

Using those functions, the above examples become simpler and faster:

>>> from operator import itemgetter, attrgetter

>>> sorted(student_tuples, key=itemgetter (2))
[('dave', 'B', 10), ('jane', 'B', 12), ('john', 'A', 15)]

>>> sorted(student_objects, key=attrgetter('age'))
[('dave', 'B', 10), ('jane', 'B', 12), ('john', 'A', 15)]

The operator module functions allow multiple levels of sorting. For example, to sort by grade then by age:

>>> sorted(student_tuples, key=itemgetter(l,2))
[("john', 'A', 15), ('dave', 'B', 10), ('jane', 'B', 12)]

>>> sorted(student_objects, key=attrgetter('grade', 'age'))
[("john', 'A', 15), ('dave', 'B', 10), ('jane', 'B', 12)]

4 Ascending and Descending

Both 1ist.sort () and sorted () accept a reverse parameter with a boolean value. This is used to flag descen-
ding sorts. For example, to get the student data in reverse age order:

>>> sorted(student_tuples, key=itemgetter (2), reverse=True)
[("john', 'A', 15), ('jane', 'B', 12), ('dave', 'B', 10)]

>>> sorted(student_objects, key=attrgetter('age'), reverse=True)
[("john', 'A', 15), ('jane', 'B', 12), ('dave', 'B', 10)]

5 Sort Stability and Complex Sorts

Sorts are guaranteed to be stable. That means that when multiple records have the same key, their original order is
preserved.

>>> data = [('red', 1), ('blue', 1), ('red', 2), ('blue', 2)]
>>> sorted(data, key=itemgetter (0))
[("blue', 1), ('blue', 2), ('red', 1), ('red', 2)]

Notice how the two records for blue retain their original order so that ('blue', 1) is guaranteed to precede
('blue', 2).

This wonderful property lets you build complex sorts in a series of sorting steps. For example, to sort the student data
by descending grade and then ascending age, do the age sort first and then sort again using grade:

>>> s = sorted(student_objects, key=attrgetter('age')) # sort on secondary key
>>> sorted(s, key=attrgetter('grade'), reverse=True) # now sort on primary.
—key, descending

[('dave', 'B', 10), ('jane', 'B', 12), ('john', 'A', 15)]

This can be abstracted out into a wrapper function that can take a list and tuples of field and order to sort them on
multiple passes.

https://en.wikipedia.org/wiki/Sorting_algorithm#Stability

>>> def multisort (xs, specs):
for key, reverse in reversed(specs):
xs.sort (key=attrgetter (key), reverse=reverse)
return xs

>>> multisort (list (student_objects), (('grade', True), ('age', False)))
[('dave', 'B', 10), ('jane', 'B', 12), ('john', 'A', 15)]

The Timsort algorithm used in Python does multiple sorts efficiently because it can take advantage of any ordering
already present in a dataset.

6 The Old Way Using Decorate-Sort-Undecorate

This idiom is called Decorate-Sort-Undecorate after its three steps:
« First, the initial list is decorated with new values that control the sort order.
« Po drugie, decorated list jest posortowana

» Podsumowujac, dekoratory sa usunigte, stworzona lista zawiera tylko wartoSci poczatkowe, ktorych kolejnos¢
jest posortowana.

For example, to sort the student data by grade using the DSU approach:

>>> decorated = [(student.grade, i, student) for i, student in enumerate (student_
—objects)]

>>> decorated.sort ()

>>> [student for grade, i, student in decorated] # undecorate

[('john', 'A', 15), ('jane', 'B', 12), ('dave', 'B', 10)]

This idiom works because tuples are compared lexicographically; the first items are compared; if they are the same
then the second items are compared, and so on.

It is not strictly necessary in all cases to include the index i in the decorated list, but including it gives two benefits:
o The sort is stable - if two items have the same key, their order will be preserved in the sorted list.

 The original items do not have to be comparable because the ordering of the decorated tuples will be determined
by at most the first two items. So for example the original list could contain complex numbers which cannot
be sorted directly.

Another name for this idiom is Schwartzian transform, after Randal L. Schwartz, who popularized it among Perl
programmers.

Now that Python sorting provides key-functions, this technique is not often needed.

7 The Old Way Using the cmp Parameter

Many constructs given in this HOWTO assume Python 2.4 or later. Before that, there was no sorted () builtin and
list.sort () took no keyword arguments. Instead, all of the Py2.x versions supported a cmp parameter to handle
user specified comparison functions.

In Py3.0, the cmp parameter was removed entirely (as part of a larger effort to simplify and unify the language,
eliminating the conflict between rich comparisons and the __cmp___ () magic method).

In Py2.x, sort allowed an optional function which can be called for doing the comparisons. That function should take
two arguments to be compared and then return a negative value for less-than, return zero if they are equal, or return
a positive value for greater-than. For example, we can do:

https://en.wikipedia.org/wiki/Timsort
https://en.wikipedia.org/wiki/Schwartzian_transform

>>> def

numeric_compare (x, Vy):
return x — y

>>> sorted([5, 2, 4, 1, 3], cmp=numeric_compare)
[1, 2, 3, 4, 5]

Lub mozesz odwrdcié kolejno$¢ poréwnania za pomoca:

>>> def

reverse_numeric(x, y):
return y - x

>>> sorted([5, 2, 4, 1, 3], cmp=reverse_numeric)
[5, 4, 3, 2, 1]

When porting code from Python 2.x to 3.x, the situation can arise when you have the user supplying a comparison
function and you need to convert that to a key function. The following wrapper makes that easy to do:

def cmp_

to_key (mycmp) :

'Convert a cmp= function into a key= function'
class K:

def _ _init__ (self, obj, *args):

self.obj = obj
def _ 1t (self, other):

return mycmp (self.obj, other.obj) < 0
def _ gt_ (self, other):

return mycmp (self.obj, other.obj) > 0
def __eqg (self, other):

return mycmp (self.obj, other.obj) == 0
def _ le_ (self, other):

return mycmp (self.obj, other.obj) <= 0
def _ ge_ (self, other):

return mycmp (self.obj, other.obj) >= 0
def _ ne_ (self, other):

return mycmp (self.obj, other.obj) != 0

return K

To convert to a key function, just wrap the old comparison function:

>>> sorted([5, 2, 4, 1, 3], key=cmp_to_key(reverse_numeric))
[5, 4, 3, 2, 1]

In Python 3.2, the functools.cmp_to_key () function was added to the functools module in the standard

library.

8 0Odd and Ends

« For locale aware sorting, use locale.strxfrm () forakey functionor locale.strcoll () foracom-
parison function.

e The

reverse parameter still maintains sort stability (so that records with equal keys retain the original order).

Interestingly, that effect can be simulated without the parameter by using the builtin reversed () function

twice:

>>> data = [('red', 1), ('blue', 1), ('red', 2), ('blue', 2)]

>>> standard_way = sorted(data, key=itemgetter (0), reverse=True)

>>> double_reversed = list (reversed(sorted(reversed(data), key=itemgetter(0))))
>>> assert standard_way == double_reversed

>>> standard_way

[('red', 1), ('red', 2), ('blue', 1), ('blue', 2)]

e The

sort routines use < when making comparisons between two objects. So, it is easy to add a standard sort

order to a class by definingan __1t__ () method:

>>> Student._ 1t = lambda self, other: self.age < other.age
>>> sorted(student_objects)
[('dave', 'B', 10), ('jane', 'B', 12), ('john', 'A', 15)]

However, note that < can fall back to using ___gt
_ 1t O)).

() if __1t__ () is not implemented (see object.

« Key functions need not depend directly on the objects being sorted. A key function can also access external
resources. For instance, if the student grades are stored in a dictionary, they can be used to sort a separate list
of student names:

>>> students = ['dave', 'john', 'jane']
>>> newgrades = {'john': 'F', '"jane':'A', 'dave': 'C'}
>>> sorted(students, key=newgrades.__getitem_)

["jane', 'dave', 'john']

	Podstawy sortowania
	Key Functions
	Operator Module Functions
	Ascending and Descending
	Sort Stability and Complex Sorts
	The Old Way Using Decorate-Sort-Undecorate
	The Old Way Using the cmp Parameter
	Odd and Ends

