multiprocessing.shared_memory
— Shared memory for direct access across processes¶
소스 코드: Lib/multiprocessing/shared_memory.py
Added in version 3.8.
This module provides a class, SharedMemory
, for the allocation
and management of shared memory to be accessed by one or more processes
on a multicore or symmetric multiprocessor (SMP) machine. To assist with
the life-cycle management of shared memory especially across distinct
processes, a BaseManager
subclass,
SharedMemoryManager
, is also provided in the
multiprocessing.managers
module.
In this module, shared memory refers to “POSIX style” shared memory blocks (though is not necessarily implemented explicitly as such) and does not refer to “distributed shared memory”. This style of shared memory permits distinct processes to potentially read and write to a common (or shared) region of volatile memory. Processes are conventionally limited to only have access to their own process memory space but shared memory permits the sharing of data between processes, avoiding the need to instead send messages between processes containing that data. Sharing data directly via memory can provide significant performance benefits compared to sharing data via disk or socket or other communications requiring the serialization/deserialization and copying of data.
- class multiprocessing.shared_memory.SharedMemory(name=None, create=False, size=0, *, track=True)¶
Create an instance of the
SharedMemory
class for either creating a new shared memory block or attaching to an existing shared memory block. Each shared memory block is assigned a unique name. In this way, one process can create a shared memory block with a particular name and a different process can attach to that same shared memory block using that same name.As a resource for sharing data across processes, shared memory blocks may outlive the original process that created them. When one process no longer needs access to a shared memory block that might still be needed by other processes, the
close()
method should be called. When a shared memory block is no longer needed by any process, theunlink()
method should be called to ensure proper cleanup.- 매개변수:
name (str | None) – The unique name for the requested shared memory, specified as a string. When creating a new shared memory block, if
None
(the default) is supplied for the name, a novel name will be generated.create (bool) – Control whether a new shared memory block is created (
True
) or an existing shared memory block is attached (False
).size (int) – The requested number of bytes when creating a new shared memory block. Because some platforms choose to allocate chunks of memory based upon that platform’s memory page size, the exact size of the shared memory block may be larger or equal to the size requested. When attaching to an existing shared memory block, the size parameter is ignored.
track (bool) – When
True
, register the shared memory block with a resource tracker process on platforms where the OS does not do this automatically. The resource tracker ensures proper cleanup of the shared memory even if all other processes with access to the memory exit without doing so. Python processes created from a common ancestor usingmultiprocessing
facilities share a single resource tracker process, and the lifetime of shared memory segments is handled automatically among these processes. Python processes created in any other way will receive their own resource tracker when accessing shared memory with track enabled. This will cause the shared memory to be deleted by the resource tracker of the first process that terminates. To avoid this issue, users ofsubprocess
or standalone Python processes should set track toFalse
when there is already another process in place that does the bookkeeping. track is ignored on Windows, which has its own tracking and automatically deletes shared memory when all handles to it have been closed.
버전 3.13에서 변경: Added the track parameter.
- close()¶
Close the file descriptor/handle to the shared memory from this instance.
close()
should be called once access to the shared memory block from this instance is no longer needed. Depending on operating system, the underlying memory may or may not be freed even if all handles to it have been closed. To ensure proper cleanup, use theunlink()
method.
- unlink()¶
Delete the underlying shared memory block. This should be called only once per shared memory block regardless of the number of handles to it, even in other processes.
unlink()
andclose()
can be called in any order, but trying to access data inside a shared memory block afterunlink()
may result in memory access errors, depending on platform.This method has no effect on Windows, where the only way to delete a shared memory block is to close all handles.
- buf¶
공유 메모리 블록의 내용에 대한 메모리 뷰.
- name¶
공유 메모리 블록의 고유한 이름에 대한 읽기 전용 액세스.
- size¶
공유 메모리 블록의 크기(바이트)에 대한 읽기 전용 액세스.
다음 예제는 SharedMemory
인스턴스의 저수준 사용을 보여줍니다:
>>> from multiprocessing import shared_memory
>>> shm_a = shared_memory.SharedMemory(create=True, size=10)
>>> type(shm_a.buf)
<class 'memoryview'>
>>> buffer = shm_a.buf
>>> len(buffer)
10
>>> buffer[:4] = bytearray([22, 33, 44, 55]) # Modify multiple at once
>>> buffer[4] = 100 # Modify single byte at a time
>>> # Attach to an existing shared memory block
>>> shm_b = shared_memory.SharedMemory(shm_a.name)
>>> import array
>>> array.array('b', shm_b.buf[:5]) # Copy the data into a new array.array
array('b', [22, 33, 44, 55, 100])
>>> shm_b.buf[:5] = b'howdy' # Modify via shm_b using bytes
>>> bytes(shm_a.buf[:5]) # Access via shm_a
b'howdy'
>>> shm_b.close() # Close each SharedMemory instance
>>> shm_a.close()
>>> shm_a.unlink() # Call unlink only once to release the shared memory
The following example demonstrates a practical use of the SharedMemory
class with NumPy arrays, accessing the
same numpy.ndarray
from two distinct Python shells:
>>> # In the first Python interactive shell
>>> import numpy as np
>>> a = np.array([1, 1, 2, 3, 5, 8]) # Start with an existing NumPy array
>>> from multiprocessing import shared_memory
>>> shm = shared_memory.SharedMemory(create=True, size=a.nbytes)
>>> # Now create a NumPy array backed by shared memory
>>> b = np.ndarray(a.shape, dtype=a.dtype, buffer=shm.buf)
>>> b[:] = a[:] # Copy the original data into shared memory
>>> b
array([1, 1, 2, 3, 5, 8])
>>> type(b)
<class 'numpy.ndarray'>
>>> type(a)
<class 'numpy.ndarray'>
>>> shm.name # We did not specify a name so one was chosen for us
'psm_21467_46075'
>>> # In either the same shell or a new Python shell on the same machine
>>> import numpy as np
>>> from multiprocessing import shared_memory
>>> # Attach to the existing shared memory block
>>> existing_shm = shared_memory.SharedMemory(name='psm_21467_46075')
>>> # Note that a.shape is (6,) and a.dtype is np.int64 in this example
>>> c = np.ndarray((6,), dtype=np.int64, buffer=existing_shm.buf)
>>> c
array([1, 1, 2, 3, 5, 8])
>>> c[-1] = 888
>>> c
array([ 1, 1, 2, 3, 5, 888])
>>> # Back in the first Python interactive shell, b reflects this change
>>> b
array([ 1, 1, 2, 3, 5, 888])
>>> # Clean up from within the second Python shell
>>> del c # Unnecessary; merely emphasizing the array is no longer used
>>> existing_shm.close()
>>> # Clean up from within the first Python shell
>>> del b # Unnecessary; merely emphasizing the array is no longer used
>>> shm.close()
>>> shm.unlink() # Free and release the shared memory block at the very end
- class multiprocessing.managers.SharedMemoryManager([address[, authkey]])¶
A subclass of
multiprocessing.managers.BaseManager
which can be used for the management of shared memory blocks across processes.A call to
start()
on aSharedMemoryManager
instance causes a new process to be started. This new process’s sole purpose is to manage the life cycle of all shared memory blocks created through it. To trigger the release of all shared memory blocks managed by that process, callshutdown()
on the instance. This triggers aunlink()
call on all of theSharedMemory
objects managed by that process and then stops the process itself. By creatingSharedMemory
instances through aSharedMemoryManager
, we avoid the need to manually track and trigger the freeing of shared memory resources.이 클래스는
SharedMemory
인스턴스를 만들고 반환하는 메서드와, 공유 메모리로 지원되는 리스트류 객체(ShareableList
)를 만드는 메서드를 제공합니다.Refer to
BaseManager
for a description of the inherited address and authkey optional input arguments and how they may be used to connect to an existingSharedMemoryManager
service from other processes.- SharedMemory(size)¶
Create and return a new
SharedMemory
object with the specified size in bytes.
- ShareableList(sequence)¶
Create and return a new
ShareableList
object, initialized by the values from the input sequence.
The following example demonstrates the basic mechanisms of a
SharedMemoryManager
:
>>> from multiprocessing.managers import SharedMemoryManager
>>> smm = SharedMemoryManager()
>>> smm.start() # Start the process that manages the shared memory blocks
>>> sl = smm.ShareableList(range(4))
>>> sl
ShareableList([0, 1, 2, 3], name='psm_6572_7512')
>>> raw_shm = smm.SharedMemory(size=128)
>>> another_sl = smm.ShareableList('alpha')
>>> another_sl
ShareableList(['a', 'l', 'p', 'h', 'a'], name='psm_6572_12221')
>>> smm.shutdown() # Calls unlink() on sl, raw_shm, and another_sl
The following example depicts a potentially more convenient pattern for using
SharedMemoryManager
objects via the
with
statement to ensure that all shared memory blocks are released
after they are no longer needed:
>>> with SharedMemoryManager() as smm:
... sl = smm.ShareableList(range(2000))
... # Divide the work among two processes, storing partial results in sl
... p1 = Process(target=do_work, args=(sl, 0, 1000))
... p2 = Process(target=do_work, args=(sl, 1000, 2000))
... p1.start()
... p2.start() # A multiprocessing.Pool might be more efficient
... p1.join()
... p2.join() # Wait for all work to complete in both processes
... total_result = sum(sl) # Consolidate the partial results now in sl
When using a SharedMemoryManager
in a with
statement, the shared memory blocks created using that
manager are all released when the with
statement’s code block
finishes execution.
- class multiprocessing.shared_memory.ShareableList(sequence=None, *, name=None)¶
Provide a mutable list-like object where all values stored within are stored in a shared memory block. This constrains storable values to the following built-in data types:
int
(signed 64-bit)str
(less than 10M bytes each when encoded as UTF-8)bytes
(less than 10M bytes each)None
It also notably differs from the built-in
list
type in that these lists can not change their overall length (i.e. noappend()
,insert()
, etc.) and do not support the dynamic creation of newShareableList
instances via slicing.sequence is used in populating a new
ShareableList
full of values. Set toNone
to instead attach to an already existingShareableList
by its unique shared memory name.name is the unique name for the requested shared memory, as described in the definition for
SharedMemory
. When attaching to an existingShareableList
, specify its shared memory block’s unique name while leaving sequence set toNone
.참고
A known issue exists for
bytes
andstr
values. If they end with\x00
nul bytes or characters, those may be silently stripped when fetching them by index from theShareableList
. This.rstrip(b'\x00')
behavior is considered a bug and may go away in the future. See gh-106939.For applications where rstripping of trailing nulls is a problem, work around it by always unconditionally appending an extra non-0 byte to the end of such values when storing and unconditionally removing it when fetching:
>>> from multiprocessing import shared_memory >>> nul_bug_demo = shared_memory.ShareableList(['?\x00', b'\x03\x02\x01\x00\x00\x00']) >>> nul_bug_demo[0] '?' >>> nul_bug_demo[1] b'\x03\x02\x01' >>> nul_bug_demo.shm.unlink() >>> padded = shared_memory.ShareableList(['?\x00\x07', b'\x03\x02\x01\x00\x00\x00\x07']) >>> padded[0][:-1] '?\x00' >>> padded[1][:-1] b'\x03\x02\x01\x00\x00\x00' >>> padded.shm.unlink()
- count(value)¶
Return the number of occurrences of value.
- index(value)¶
Return first index position of value. Raise
ValueError
if value is not present.
- shm¶
값이 저장되는
SharedMemory
인스턴스.
다음 예제는 ShareableList
인스턴스의 기본 사용을 보여줍니다.:
>>> from multiprocessing import shared_memory
>>> a = shared_memory.ShareableList(['howdy', b'HoWdY', -273.154, 100, None, True, 42])
>>> [ type(entry) for entry in a ]
[<class 'str'>, <class 'bytes'>, <class 'float'>, <class 'int'>, <class 'NoneType'>, <class 'bool'>, <class 'int'>]
>>> a[2]
-273.154
>>> a[2] = -78.5
>>> a[2]
-78.5
>>> a[2] = 'dry ice' # Changing data types is supported as well
>>> a[2]
'dry ice'
>>> a[2] = 'larger than previously allocated storage space'
Traceback (most recent call last):
...
ValueError: exceeds available storage for existing str
>>> a[2]
'dry ice'
>>> len(a)
7
>>> a.index(42)
6
>>> a.count(b'howdy')
0
>>> a.count(b'HoWdY')
1
>>> a.shm.close()
>>> a.shm.unlink()
>>> del a # Use of a ShareableList after call to unlink() is unsupported
다음 예는 하나, 둘 또는 여러 프로세스가 그 뒤에 있는 공유 메모리 블록의 이름을 제공하여 같은 ShareableList
에 액세스하는 방법을 보여줍니다:
>>> b = shared_memory.ShareableList(range(5)) # In a first process
>>> c = shared_memory.ShareableList(name=b.shm.name) # In a second process
>>> c
ShareableList([0, 1, 2, 3, 4], name='...')
>>> c[-1] = -999
>>> b[-1]
-999
>>> b.shm.close()
>>> c.shm.close()
>>> c.shm.unlink()
The following examples demonstrates that ShareableList
(and underlying SharedMemory
) objects
can be pickled and unpickled if needed.
Note, that it will still be the same shared object.
This happens, because the deserialized object has
the same unique name and is just attached to an existing
object with the same name (if the object is still alive):
>>> import pickle
>>> from multiprocessing import shared_memory
>>> sl = shared_memory.ShareableList(range(10))
>>> list(sl)
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
>>> deserialized_sl = pickle.loads(pickle.dumps(sl))
>>> list(deserialized_sl)
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
>>> sl[0] = -1
>>> deserialized_sl[1] = -2
>>> list(sl)
[-1, -2, 2, 3, 4, 5, 6, 7, 8, 9]
>>> list(deserialized_sl)
[-1, -2, 2, 3, 4, 5, 6, 7, 8, 9]
>>> sl.shm.close()
>>> sl.shm.unlink()