The Python/C API
E2A WA 3.7.17

Guido van Rossum
and the Python development team

6< 28, 2023

Contents

1 Introduction 3
I.1 Codingstandards L e e e e e e 3
1.2 Include Files e e 4
1.3 Useful macros 0 o e e e e e e e 4
1.4 Objects, Types and Reference Counts vttt 6
I1.5 EXCEPUONS . . . o v i ot e e e e e e e e e e e e e e e e e 9
1.6 Embedding Python e e 11
1.7 Debugging Builds e 12
2 A $§ =2 uholie] Aol A 13
3 The Very High Level Layer 15
4 FzIA$ 21
5 Exception Handling 23
5.1 Printingand clearing e e e e e e e e e 24
5.2 Raising exceptions e e e e 24
5.3 Issuingwarningsol e e e 26
54 Querying the error indicator Lo e e e 27
5.5 SignalHandling L e e e e e e e 29
5.6 Exception Classes o v v i i e e e e e e e e e e e e e e 29
5.7 Exception Objects e e e e e 30
5.8 Unicode Exception Objects e 30
5.9 Recursion Control L e 31
5.10 Standard EXCEptions e e e e e e e e e e e e e e e e 32
5.11 Standard Warning Categories v v v v v i e e e e e e e e e e e e e e e e e e 34
6 FezlE 35
6.1 Operating System UtIlities 0 0t e e e e e e e e e e 35
6.2 System Functions L e e e e e e e 37
6.3 Process Control L e e 38
6.4 EE AEZESIT] .. e 39
6.5 HIolE HFAFR A L L 42
6.6 Parsing arguments and building values Lo 43
6.7 BAG WHMBIZUNE L 51
6.8 EIZEIA L L 53

10

11

Object Protocol
FAZZEZ
ADr~Z2EF ...
g Z2ES
olElHolH ZE2EZ . .
HE Z2EF
e WY ZE2EEE ...

A AS

V' AA L
A AA
AlFx AR ...
Aol AA
S AA L

ZIeR A L

Initialization, Finalization, and Threads

9.1
9.2
9.3
9.4
9.5
9.6
9.7
9.8
9.9

Before Python Initialization

Global configuration variables L
Initializing and finalizing the interpreter e

Process-wide parameters .

Thread State and the Global Interpreter Lock

Sub-interpreter support . .
Asynchronous Notifications
Profiling and Tracing . . .

Advanced Debugger SUPpOrt L e e e e e e e e e e e
9.10 Thread Local Storage SUppOrt v v v v i i e e e e e e e e e e e e e e e

Memory Management

10.1
10.2
10.3
10.4
10.5
10.6
10.7
10.8
10.9

Overview
Raw Memory Interface . .
Memory Interface
Object allocators
Default Memory Allocators

Customize Memory AIlOCators o v v v i e e e e e e e e e e e e e e

The pymalloc allocator . .
tracemalloc C APT
Examples

AR 78 A9

11.1
11.2
11.3
11.4
11.5
11.6
11.7
11.8
11.9

ol AA &dstr] ...
Common Object Structures
Type Objects
Number Object Structures

Mapping Object Structures
Sequence Object Structures
Buffer Object Structures .

Async Object Structures .
<8 7R =AY

12 APIS} ABI W A Eo|7]

57
57
62
65
67
68
68
75

77
77
79
84
110
115
118

137
137
138
140
141
144
149
150
151
152
152

155
155
156
157
158
159
159
161
162
162

165
165
166
170
184
185
186
187
188
188

191

golx

o] A1 Aol P5}o]

Bl old AWl ZAXE

o 2} s} 2hol A
Cl =&

C3 =
A7)
3

ZEOIY ARL L L
C.2 spo] ol M 23t A L AL 37

g8 £z e o] o g 2tol Al

193

207
207

209
209
210
213

227

229

The Python/C API, &] 8| A 3.7.17

o] ABA L g BES YA ol A WS LA SH= C9 Crt 22 125 7} X451 APIo] 23)
AW Th o) AWA L AL o Fi extending-index £ S A 2ol Ank %S WA W, APL I 2
A A5 AR5 =

rlr k=)

Contents 1

The Python/C API, &] B{ A 3.7.17

2 Contents

CHAPTER 1

Introduction

The Application Programmer’s Interface to Python gives C and C++ programmers access to the Python interpreter at a
variety of levels. The API is equally usable from C++, but for brevity it is generally referred to as the Python/C API.
There are two fundamentally different reasons for using the Python/C API. The first reason is to write extension modules
for specific purposes; these are C modules that extend the Python interpreter. This is probably the most common use. The
second reason is to use Python as a component in a larger application; this technique is generally referred to as embedding
Python in an application.

Writing an extension module is a relatively well-understood process, where a “cookbook’ approach works well. There are
several tools that automate the process to some extent. While people have embedded Python in other applications since
its early existence, the process of embedding Python is less straightforward than writing an extension.

Many API functions are useful independent of whether you’re embedding or extending Python; moreover, most applica-
tions that embed Python will need to provide a custom extension as well, so it’s probably a good idea to become familiar
with writing an extension before attempting to embed Python in a real application.

1.1 Coding standards

If you’re writing C code for inclusion in CPython, you must follow the guidelines and standards defined in PEP 7. These
guidelines apply regardless of the version of Python you are contributing to. Following these conventions is not necessary
for your own third party extension modules, unless you eventually expect to contribute them to Python.

https://www.python.org/dev/peps/pep-0007

The Python/C API, &] B{ A 3.7.17

1.2 Include Files

All function, type and macro definitions needed to use the Python/C API are included in your code by the following line:

#define PY_SSIZE_T_CLEAN
#include <Python.h>

This implies inclusion of the following standard headers: <stdio.h>, <string.h>, <errno.h>,<limits.h>,
<assert.h>and <stdlib.h> (if available).

ZF31: Since Python may define some pre-processor definitions which affect the standard headers on some systems, you
must include Python . h before any standard headers are included.

It is recommended to always define PY_SSIZE_T_CLEAN before including Python.h. See Parsing arguments and
building values for a description of this macro.

All user visible names defined by Python.h (except those defined by the included standard headers) have one of the prefixes
Py or _Py. Names beginning with _Py are for internal use by the Python implementation and should not be used by
extension writers. Structure member names do not have a reserved prefix.

ZF31: User code should never define names that begin with Py or _Py. This confuses the reader, and jeopardizes the
portability of the user code to future Python versions, which may define additional names beginning with one of these
prefixes.

The header files are typically installed with Python. On Unix, these are located in the directories prefix/include/
pythonversion/ and exec_prefix/include/pythonversion/, where prefix and exec_prefix
are defined by the corresponding parameters to Python’s configure script and version is '$d.%d' % sys.
version_info[:2]. On Windows, the headers are installed in prefix/include, where prefix is the in-

stallation directory specified to the installer.

To include the headers, place both directories (if different) on your compiler’s search path for includes. Do not place
the parent directories on the search path and then use #include <pythonX.Y/Python.h>; this will break on
multi-platform builds since the platform independent headers under pre £ix include the platform specific headers from
exec_prefix.

C++ users should note that although the API is defined entirely using C, the header files properly declare the entry points
tobe extern "C". As aresult, there is no need to do anything special to use the API from C++.

1.3 Useful macros

Several useful macros are defined in the Python header files. Many are defined closer to where they are useful (e.g.
Py_RETURN_NONE). Others of a more general utility are defined here. This is not necessarily a complete listing.

Py_UNREACHABLE ()
Use this when you have a code path that you do not expect to be reached. For example, in the default : clause
in a switch statement for which all possible values are covered in case statements. Use this in places where you
might be tempted to putan assert (0) or abort () call.

B A 3.70] &7}

Py_ABS (X)
Return the absolute value of x.

4 Chapter 1. Introduction

The Python/C API, &] 8| A 3.7.17

WA 330 27}

Py_MIN (X, y)
Return the minimum value between x and y.
B A 3.30] F7}.

Py MAX (X,y)
Return the maximum value between x and y.
WA 330 =7}

Py_STRINGIFY (X)
Convert x to a C string. E.g. Py_STRINGIFY (123) returns "123".

B A 3.40] =7}

Py_MEMBER_SIZE (type, member)
Return the size of a structure (t ype) member in bytes.

WA 3.690 7}

Py_CHARMASK (c)
Argument must be a character or an integer in the range [-128, 127] or [0, 255]. This macro returns c cast to an
unsigned char.

Py_GETENV (s)
Like getenv(s), but returns NULL if -E was passed on the command line (i.e. if
Py_IgnoreEnvironmentFlag is set).

Py_UNUSED (arg)
Use this for unused arguments in a function definition to silence compiler warnings, e.g. PyObject*
func (PyObject *Py_UNUSED (ignored)).

B A 3.40] =7}

PyDoc_STRVAR (name, Str)
Creates a variable with name name that can be used in docstrings. If Python is built without docstrings, the value
will be empty.

Use PyDoc_ STRVAR for docstrings to support building Python without docstrings, as specified in PEP 7.

Example:

PyDoc_STRVAR (pop_doc, "Remove and return the rightmost element.");

static PyMethodDef deque_methods[] = {
VY2
{"pop", (PyCFunction)deque_pop, METH_NOARGS, pop_doc},
VYR

PyDoc_STR (str)
Creates a docstring for the given input string or an empty string if docstrings are disabled.

Use PyDoc_ STR in specifying docstrings to support building Python without docstrings, as specified in PEP 7.

Example:

static PyMethodDef pysglite_row_methods[] = {
{"keys", (PyCFunction)pysqglite_row_keys, METH_NOARGS,
PyDoc_STR("Returns the keys of the row.")},

(TF= ol A ol A%)

1.3. Useful macros 5

https://www.python.org/dev/peps/pep-0007
https://www.python.org/dev/peps/pep-0007

The Python/C API, &] B{ A 3.7.17

(o] A sl o] A A M A%)

{NULL, NULL}

bi

1.4 Objects, Types and Reference Counts

Most Python/C API functions have one or more arguments as well as a return value of type PyOb ject *. This type is a
pointer to an opaque data type representing an arbitrary Python object. Since all Python object types are treated the same
way by the Python language in most situations (e.g., assignments, scope rules, and argument passing), it is only fitting that
they should be represented by a single C type. Almost all Python objects live on the heap: you never declare an automatic
or static variable of type PyOb ject, only pointer variables of type PyObject * can be declared. The sole exception
are the type objects; since these must never be deallocated, they are typically static Py TypeOb ject objects.

All Python objects (even Python integers) have a type and a reference count. An object’s type determines what kind of
object it is (e.g., an integer, a list, or a user-defined function; there are many more as explained in types). For each of the
well-known types there is a macro to check whether an object is of that type; for instance, PyList_Check (a) is true
if (and only if) the object pointed to by a is a Python list.

1.4.1 Reference Counts

The reference count is important because today’s computers have a finite (and often severely limited) memory size; it
counts how many different places there are that have a reference to an object. Such a place could be another object, or a
global (or static) C variable, or a local variable in some C function. When an object’s reference count becomes zero, the
object is deallocated. If it contains references to other objects, their reference count is decremented. Those other objects
may be deallocated in turn, if this decrement makes their reference count become zero, and so on. (There’s an obvious
problem with objects that reference each other here; for now, the solution is “don’t do that.”)

Reference counts are always manipulated explicitly. The normal way is to use the macro Py_ INCREF () to increment an
object’s reference count by one, and Py_ DECREF () to decrement it by one. The Py_ DECREF () macro is considerably
more complex than the incref one, since it must check whether the reference count becomes zero and then cause the object’
s deallocator to be called. The deallocator is a function pointer contained in the object’s type structure. The type-specific
deallocator takes care of decrementing the reference counts for other objects contained in the object if this is a compound
object type, such as a list, as well as performing any additional finalization that’s needed. There’s no chance that the
reference count can overflow; at least as many bits are used to hold the reference count as there are distinct memory
locations in virtual memory (assuming sizeof (Py_ssize_t) >= sizeof (void*)). Thus, the reference count
increment is a simple operation.

It is not necessary to increment an object’s reference count for every local variable that contains a pointer to an object.
In theory, the object’s reference count goes up by one when the variable is made to point to it and it goes down by one
when the variable goes out of scope. However, these two cancel each other out, so at the end the reference count hasn’
t changed. The only real reason to use the reference count is to prevent the object from being deallocated as long as
our variable is pointing to it. If we know that there is at least one other reference to the object that lives at least as long
as our variable, there is no need to increment the reference count temporarily. An important situation where this arises
is in objects that are passed as arguments to C functions in an extension module that are called from Python; the call
mechanism guarantees to hold a reference to every argument for the duration of the call.

However, a common pitfall is to extract an object from a list and hold on to it for a while without incrementing its
reference count. Some other operation might conceivably remove the object from the list, decrementing its reference
count and possible deallocating it. The real danger is that innocent-looking operations may invoke arbitrary Python code
which could do this; there is a code path which allows control to flow back to the user from a Py_DECREF (), so almost
any operation is potentially dangerous.

6 Chapter 1. Introduction

The Python/C API, &] 8| A 3.7.17

A safe approach is to always use the generic operations (functions whose name begins with PyObject_, PyNumber_,
PySequence_ or PyMapping_). These operations always increment the reference count of the object they return.
This leaves the caller with the responsibility to call Py DECREF () when they are done with the result; this soon becomes
second nature.

Reference Count Details

The reference count behavior of functions in the Python/C API is best explained in terms of ownership of references.
Ownership pertains to references, never to objects (objects are not owned: they are always shared). “Owning a reference”
means being responsible for calling Py_DECREEF on it when the reference is no longer needed. Ownership can also be
transferred, meaning that the code that receives ownership of the reference then becomes responsible for eventually decref’
ing it by calling Py_DECREF () or Py_XDECREF () when it’s no longer needed—or passing on this responsibility
(usually to its caller). When a function passes ownership of a reference on to its caller, the caller is said to receive a new
reference. When no ownership is transferred, the caller is said to borrow the reference. Nothing needs to be done for a
borrowed reference.

Conversely, when a calling function passes in a reference to an object, there are two possibilities: the function steals a
reference to the object, or it does not. Stealing a reference means that when you pass a reference to a function, that function
assumes that it now owns that reference, and you are not responsible for it any longer.

Few functions steal references; the two notable exceptions are PyList_SetItem() and PyTuple_SetItem(),
which steal a reference to the item (but not to the tuple or list into which the item is put!). These functions were designed
to steal a reference because of a common idiom for populating a tuple or list with newly created objects; for example,
the code to create the tuple (1, 2, "three") could look like this (forgetting about error handling for the moment;
a better way to code this is shown below):

PyObject *t;

3);

t, 0, PyLong_FromLong (1lL));

t, 1, PyLong_FromLong(2L));

t, 2, PyUnicode_FromString("three"));

t = PyTuple_New
PyTuple_SetItem
PyTuple_SetItem

(
(
(
PyTuple_SetItem(

Here, PyLong_FromLong () returns a new reference which is immediately stolen by Py Tuple_Set Item (). When
you want to keep using an object although the reference to it will be stolen, use Py_ TNCREF () to grab another reference
before calling the reference-stealing function.

Incidentally, PyTuple SetItem() is the only way to set tuple items; PySequence_SetItem() and
PyObject_SetItem() refuse to do this since tuples are an immutable data type. You should only use
PyTuple_SetItem () for tuples that you are creating yourself.

Equivalent code for populating a list can be written using PyList_New () and PyList_SetItem().

However, in practice, you will rarely use these ways of creating and populating a tuple or list. There’s a generic function,
Py_BuildValue (), that can create most common objects from C values, directed by a format string. For example,
the above two blocks of code could be replaced by the following (which also takes care of the error checking):

PyObject *tuple, *list;

tuple = Py_BuildvValue (" (iis)", 1, 2, "three");
list = Py_Buildvalue("[iis]", 1, 2, "three");

It is much more common to use PyOb ject_SetItem () and friends with items whose references you are only borrow-
ing, like arguments that were passed in to the function you are writing. In that case, their behaviour regarding reference
counts is much saner, since you don’t have to increment a reference count so you can give a reference away (“have it be
stolen”). For example, this function sets all items of a list (actually, any mutable sequence) to a given item:

1.4. Objects, Types and Reference Counts 7

The Python/C API, &] B{ A 3.7.17

int
set_all (PyObject *target, PyObject *item)
{

Py_ssize_t i, n;

n = PyObject_Length (target);
if (n < 0)
return -1;

for (i = 0; 1 < n; 1i++) {
PyObject *index = PylLong_FromSsize_t (i);
if (!index)

return -1;
if (PyObject_SetItem(target, index, item) < 0) {
Py_DECREF (index) ;
return -1;
}
Py_DECREF (index) ;
}

return 0O;

The situation is slightly different for function return values. While passing a reference to most functions does not change
your ownership responsibilities for that reference, many functions that return a reference to an object give you ownership of
the reference. The reason is simple: in many cases, the returned object is created on the fly, and the reference you get is the
only reference to the object. Therefore, the generic functions that return object references, like PyOb ject_GetItem ()
and PySequence_GetItem (), always return a new reference (the caller becomes the owner of the reference).

It is important to realize that whether you own a reference returned by a function depends on which function you call only
— the plumage (the type of the object passed as an argument to the function) doesn’t enter into it/ Thus, if you extract
an item from a list using PyList_Get Item (), youdon’t own the reference — but if you obtain the same item from
the same list using PySequence_Get Item () (which happens to take exactly the same arguments), you do own a
reference to the returned object.

Here is an example of how you could write a function that computes the sum of the items in a list of integers; once using
PyList_GetItem(),and once using PySequence_GetItem().

long

sum_list (PyObject *list)

{
Py_ssize_t i, n;
long total = 0, value;
PyObject *item;

n = PyList_Size(list);
if (n < 0)
return -1; /* Not a list */
for (i = 0; i < n; i++) {
item = PyList_GetItem(list, 1); /* Can't fail */
if (!PyLong_Check(item)) continue; /* Skip non-integers */
value = PyLong_AsLong(item);
if (value == -1 && PyErr_Occurred())
/* Integer too big to fit in a C long, bail out */
return -1;
total += value;
3

return total;

8 Chapter 1. Introduction

The Python/C API, &] 8| A 3.7.17

long
sum_sequence (PyObject *sequence)
{
Py_ssize_t i, n;
long total = 0, value;
PyObject *item;
n = PySequence_Length (sequence);
if (n < 0)
return -1; /* Has no length */

for (i = 0; i < n; i++) |
item = PySequence_GetItem(sequence, 1i);
if (item == NULL)

return -1; /* Not a sequence, or other failure */
if (PyLong_Check (item)) {
value = PylLong_AsLong (item);
Py_DECREF (item) ;
if (value == -1 && PyErr_Occurred())
/* Integer too big to fit in a C long, bail out */
return -1;
total += wvalue;
}
else {
Py_DECREF (item); /* Discard reference ownership */

}

return total;

1.4.2 Types

There are few other data types that play a significant role in the Python/C API; most are simple C types such as int,
long, double and char*. A few structure types are used to describe static tables used to list the functions exported
by a module or the data attributes of a new object type, and another is used to describe the value of a complex number.
These will be discussed together with the functions that use them.

1.5 Exceptions

The Python programmer only needs to deal with exceptions if specific error handling is required; unhandled exceptions
are automatically propagated to the caller, then to the caller’s caller, and so on, until they reach the top-level interpreter,
where they are reported to the user accompanied by a stack traceback.

For C programmers, however, error checking always has to be explicit. All functions in the Python/C API can raise
exceptions, unless an explicit claim is made otherwise in a function’s documentation. In general, when a function en-
counters an error, it sets an exception, discards any object references that it owns, and returns an error indicator. If not
documented otherwise, this indicator is either NULL or -1, depending on the function’s return type. A few functions
return a Boolean true/false result, with false indicating an error. Very few functions return no explicit error indicator or
have an ambiguous return value, and require explicit testing for errors with PyErr_Occurred (). These exceptions
are always explicitly documented.

Exception state is maintained in per-thread storage (this is equivalent to using global storage in an unthreaded application).
A thread can be in one of two states: an exception has occurred, or not. The function PyErr_Occurred () canbe used
to check for this: it returns a borrowed reference to the exception type object when an exception has occurred, and NULL

1.5. Exceptions 9

The Python/C API, &] B{ A 3.7.17

otherwise. There are a number of functions to set the exception state: PyErr_SetString () is the most common
(though not the most general) function to set the exception state, and PyErr_Clear () clears the exception state.

The full exception state consists of three objects (all of which can be NULL): the exception type, the corresponding
exception value, and the traceback. These have the same meanings as the Python result of sys.exc_info () ; however,
they are not the same: the Python objects represent the last exception being handled by a Python try - except
statement, while the C level exception state only exists while an exception is being passed on between C functions until
it reaches the Python bytecode interpreter’s main loop, which takes care of transferring it to sys.exc_info () and
friends.

Note that starting with Python 1.5, the preferred, thread-safe way to access the exception state from Python code is to call
the function sys.exc_info (), which returns the per-thread exception state for Python code. Also, the semantics of
both ways to access the exception state have changed so that a function which catches an exception will save and restore
its thread’s exception state so as to preserve the exception state of its caller. This prevents common bugs in exception
handling code caused by an innocent-looking function overwriting the exception being handled; it also reduces the often
unwanted lifetime extension for objects that are referenced by the stack frames in the traceback.

As a general principle, a function that calls another function to perform some task should check whether the called function
raised an exception, and if so, pass the exception state on to its caller. It should discard any object references that it owns,
and return an error indicator, but it should not set another exception — that would overwrite the exception that was just
raised, and lose important information about the exact cause of the error.

A simple example of detecting exceptions and passing them on is shown in the sum_sequence () example above. It so
happens that this example doesn’t need to clean up any owned references when it detects an error. The following example
function shows some error cleanup. First, to remind you why you like Python, we show the equivalent Python code:

def incr_item(dict, key):
try:
item = dict [key]
except KeyError:
item = 0
dict[key] = item + 1

Here is the corresponding C code, in all its glory:

int

incr_item(PyObject *dict, PyObject *key)

{
/* Objects all initialized to NULL for Py_XDECREF */
PyObject *item = NULL, *const_one = NULL, *incremented_item = NULL;
int rv = -1; /* Return value initialized to -1 (failure) */

item = PyObject_GetItem(dict, key);
if (item == NULL) {
/* Handle KeyError only: */
if (!PyErr_ExceptionMatches (PyExc_KeyError))
goto error;

/* Clear the error and use zero: */
PyErr_Clear();
item = PyLong_FromLong (0L) ;
if (item == NULL)
goto error;
}
const_one = PyLong_FromLong (1L);
if (const_one == NULL)
goto error;

(THE sTolAToll A1)

10 Chapter 1. Introduction

The Python/C API, &] 8| A 3.7.17

(o] A sl o] A A M A%)

incremented_item = PyNumber_Add(item, const_one);
if (incremented_item == NULL)
goto error;

if (PyObject_SetItem(dict, key, incremented_item) < 0)
goto error;

rv = 0; /* Success */

/* Continue with cleanup code */

error:
/* Cleanup code, shared by success and failure path */

/* Use Py_XDECREF () to ignore NULL references */
Py_XDECREF (item) ;

Py_XDECREF (const_one) ;

Py_XDECREF (incremented_item);

return rv; /* -1 for error, 0 for success */

This example represents an endorsed use of the goto statement in C! It illustrates the use of
PyErr_ExceptionMatches () and PyErr_Clear () to handle specific exceptions, and the use of
Py_XDECREF () to dispose of owned references that may be NULL (note the 'X"' in the name; Py_DECREF ()
would crash when confronted with a NULL reference). It is important that the variables used to hold owned references
are initialized to NULL for this to work; likewise, the proposed return value is initialized to —1 (failure) and only set to
success after the final call made is successful.

1.6 Embedding Python

The one important task that only embedders (as opposed to extension writers) of the Python interpreter have to worry
about is the initialization, and possibly the finalization, of the Python interpreter. Most functionality of the interpreter
can only be used after the interpreter has been initialized.

The basic initialization function is Py Tnitialize (). This initializes the table of loaded modules, and creates the
fundamental modules builtins, __main__, and sys. It also initializes the module search path (sys.path).

Py_TInitialize () doesnotsetthe “scriptargumentlist” (sys.argv). If this variable is needed by Python code that
will be executed later, it must be set explicitly with a call to PySys_SetArgvEx (argc, argv, updatepath)
after the callto Py Tnitialize ().

On most systems (in particular, on Unix and Windows, although the details are slightly different), Py Tnitialize ()
calculates the module search path based upon its best guess for the location of the standard Python interpreter executable,
assuming that the Python library is found in a fixed location relative to the Python interpreter executable. In particular, it
looks for a directory named 1ib/pythonX. Y relative to the parent directory where the executable named python is
found on the shell command search path (the environment variable PATH).

For instance, if the Python executable is found in /usr/local/bin/python, it will assume that the libraries are in /
usr/local/lib/pythonX. Y. (In fact, this particular path is also the “fallback™ location, used when no executable
file named python is found along PATH.) The user can override this behavior by setting the environment variable
PYTHONHOME, or insert additional directories in front of the standard path by setting PYTHONPATH.

The embedding application can steer the search by calling Py_SetProgramName (file) before calling
Py_Initialize (). Note that PYTHONHOME still overrides this and PYTHONPATH is still inserted in front of the
standard path. An application that requires total control has to provide its own implementation of Py_GetPath (),

1.6. Embedding Python 11

The Python/C API, &] B{ A 3.7.17

Py_GetPrefix (), Py_GetExecPrefix (), and Py _GetProgramFullPath () (all defined in Modules/
getpath.c).

Sometimes, it is desirable to “uninitialize” Python. For instance, the application may want to start over (make another call
toPy_TInitialize ())or the application is simply done with its use of Python and wants to free memory allocated by
Python. This can be accomplished by calling Py_FinalizeEx (). The function Py_TsInitialized () returns
true if Python is currently in the initialized state. More information about these functions is given in a later chapter.
Notice that Py FinalizeEx () does not free all memory allocated by the Python interpreter, e.g. memory allocated
by extension modules currently cannot be released.

1.7 Debugging Builds

Python can be built with several macros to enable extra checks of the interpreter and extension modules. These checks
tend to add a large amount of overhead to the runtime so they are not enabled by default.

A full list of the various types of debugging builds is in the file Misc/SpecialBuilds.txt in the Python source
distribution. Builds are available that support tracing of reference counts, debugging the memory allocator, or low-level
profiling of the main interpreter loop. Only the most frequently-used builds will be described in the remainder of this
section.

Compiling the interpreter with the Py_ DEBUG macro defined produces what is generally meant by “a debug build” of
Python. Py_DEBUG is enabled in the Unix build by adding ——with-pydebugtothe . /configure command. Itis
also implied by the presence of the not-Python-specific _DEBUG macro. When Py_DEBRUG is enabled in the Unix build,
compiler optimization is disabled.

In addition to the reference count debugging described below, the following extra checks are performed:
 Extra checks are added to the object allocator.
» Extra checks are added to the parser and compiler.
* Downcasts from wide types to narrow types are checked for loss of information.

¢ A number of assertions are added to the dictionary and set implementations. In addition, the set object acquires a
test_c_api () method.

¢ Sanity checks of the input arguments are added to frame creation.
* The storage for ints is initialized with a known invalid pattern to catch reference to uninitialized digits.
* Low-level tracing and extra exception checking are added to the runtime virtual machine.
 Extra checks are added to the memory arena implementation.
» Extra debugging is added to the thread module.
There may be additional checks not mentioned here.

Defining Py_TRACE_REFS enables reference tracing. When defined, a circular doubly linked list of active objects
is maintained by adding two extra fields to every PyObject. Total allocations are tracked as well. Upon exit, all
existing references are printed. (In interactive mode this happens after every statement run by the interpreter.) Implied
by Py_DEBUG.

Please refer to Misc/SpecialBuilds.txt in the Python source distribution for more detailed information.

12 Chapter 1. Introduction

CHAPTER 2

[-40
o
2
l-'O
olo

& =233 vl e SE s o)

Fef o wha}, ghol W] C APIE RE 2

712 APIE W A 8} A} APIE A A 3R] 911

A AGYh.

ol Al =, API & 32 ABI(H}o] 1 2]
A5et7] W #du, 22 =S 27}

nhc} vl
API

ﬂllﬂ.l

AU RE WAL 42 58, Jpdow
2= WA H A" F

fol

)2 F95 A gk 1ol fE N BAow T2A 397}
AL 0] 8-S uTE APIZ} £ AME 2] = okA] uk ABIV} £ AHE)

0

=l U
L

O

9% A%dos, Y Ee 3 ﬂﬁwi}wﬂﬂﬂﬂmﬂ%ﬁﬂd%‘?%ﬁ AEE RS
AEH A e A frUsdAE Y £ AFUTh. B3, AR oA 34 ZE-S 574 pythonXY.dil 3}
EEERERRE- ST ER MR BRI BSOS

Iho] A 3.27¥, APl 4 H-7} OP% 21 ABIE H A8t = = A A= s yth o] API(“A| g API’2Fal ghy ot

7t 1%,
X

= A}%s}ix} 3= 3 E‘eﬂ 52 Py_LIMITED_API% AYsloF Fuch 2y JAHZ 2 H AR FH =
T RE %742&145};1 Wbz, AF D glol ZE 3x HA (x>=2) | A Zr&st= Zgol REFH Uth

Ao, HE A A ABIE MEL 7522 e oF Tyt o] st 22 APIE A-8-3taL A} 3=

E2EL x]-ds}j_rx} Sl= A 4 vho]l M v A9 PY_VERSION_ HEX ZX(APIS} ABI ¥l 20]7] IAZR)o0 7
Py_LIMITED_APIE AAdoF AU TH(o]E S0, 3to] A 3.3 -9 0x03030000). o|HTF EELS EE T
alo] R Bf 32 o A z‘EﬂZl whold wjzol A (HE FEeE A oH)E‘:SPXl Zth

sho] A 325 E, Al - APIO| A AFR 3 5= 9l 34 F3to] PEP 3840 £ A & w50l A 95U Th C API
A Aol A, A g8 APL Y27} ol d API 8 2= “A| 39 API 4% 7} opd Utk & A g Ut

toy @ J&,OL
oX (g oX

rlr

r]r

13

https://www.python.org/dev/peps/pep-0384

The Python/C API, &] B{ A 3.7.17

14 Chapter 2. ¢t A ¢l &-& =2 73 nlog] Qe o)A

CHAPTER 3

The Very High Level Layer

The functions in this chapter will let you execute Python source code given in a file or a buffer, but they will not let you
interact in a more detailed way with the interpreter.

Several of these functions accept a start symbol from the grammar as a parameter. The available start symbols are
Py_eval_input,Py_file_input,andPy_single_input. These are described following the functions which
accept them as parameters.

Note also that several of these functions take F ILE * parameters. One particular issue which needs to be handled carefully
is that the FILE structure for different C libraries can be different and incompatible. Under Windows (at least), it
is possible for dynamically linked extensions to actually use different libraries, so care should be taken that FILE*
parameters are only passed to these functions if it is certain that they were created by the same library that the Python
runtime is using.

int Py_Main (int argc, wechar_t **argv)
The main program for the standard interpreter. This is made available for programs which embed Python. The
arge and argv parameters should be prepared exactly as those which are passed to a C program’s main () function
(converted to wchar_t according to the user’s locale). It is important to note that the argument list may be modified
(but the contents of the strings pointed to by the argument list are not). The return value will be 0 if the interpreter
exits normally (i.e., without an exception), 1 if the interpreter exits due to an exception, or 2 if the parameter list
does not represent a valid Python command line.

Note that if an otherwise unhandled SystemExit is raised, this function will not return 1, but exit the process,
aslong as Py_InspectFlag is not set.

int PyRun_AnyFile (FILE *fp, const char *filename)
This is a simplified interface to PyRun_AnyFileExFlags () below, leaving closeit set to 0 and flags set to
NULL.

int PyRun_AnyFileFlags (FILE *fp, const char *filename, PyCompilerFlags *flags)
This is a simplified interface to PyRun_AnyFileExFlags () below, leaving the closeit argument set to 0.

int PyRun_AnyFileEx (FILE *fp, const char *filename, int closeit)
This is a simplified interface to PyRun_AnyFileExFlags () below, leaving the flags argument set to NULL.

int PyRun_AnyFileExFlags (FILE *fp, const char *filename, int closeit, PyCompilerFlags *flags)
If fp refers to a file associated with an interactive device (console or terminal input or Unix pseudo-terminal),

15

The Python/C API, &] B{ A 3.7.17

return the value of PyRun_TnteractiveLoop (), otherwise return the result of PyRun_SimpleFile ().
filename is decoded from the filesystem encoding (sys .getfilesystemencoding ()). If filenameis NULL,
this function uses " 2?2 ?" as the filename.

int PyRun_SimpleString (const char *command)
This is a simplified interface to PyRun_SimpleStringFlags () below, leaving the PyCompilerFlags*
argument set to NULL.

int PyRun_SimpleStringFlags (const char *command, PyCompilerFlags *flags)
Executes the Python source code from command in the __main___ module according to the flags argument. If
__main__ does not already exist, it is created. Returns 0 on success or —1 if an exception was raised. If there
was an error, there is no way to get the exception information. For the meaning of flags, see below.

Note that if an otherwise unhandled SystemEx1it is raised, this function will not return —1, but exit the process,
aslong as Py_InspectFlag is not set.

int PyRun_SimpleFile (FILE *fp, const char *filename)
This is a simplified interface to PyRun_SimpleFileExFlags () below, leaving closeit set to 0 and flags set
to NULL.

int PyRun_SimpleFileEx (FILE *fp, const char *filename, int closeit)
This is a simplified interface to PyRun_SimpleFileExFlags () below, leaving flags set to NULL.

int PyRun_SimpleFileExF1lags (FILE *fp, const char *filename, int closeit, PyCompilerFlags *flags)
Similar to PyRun_SimpleStringFlags (), but the Python source code is read from fp instead of an in-
memory string. filename should be the name of the file, it is decoded from the filesystem encoding (sys.
getfilesystemencoding ()). If closeit is true, the file is closed before PyRun_SimpleFileExFlags returns.

ZF31: On Windows, fp should be opened as binary mode (e.g. fopen (filename, "rb"). Otherwise,
Python may not handle script file with LF line ending correctly.

int PyRun_InteractiveOne (FILE *fp, const char *filename)
This is a simplified interface to PyRun_InteractiveOneFlags () below, leaving flags set to NULL.

int PyRun_InteractiveOneFlags (FILE *fp, const char *filename, PyCompilerFlags *flags)
Read and execute a single statement from a file associated with an interactive device according to the flags argument.
The user will be prompted using sys.psl and sys.ps2. filename is decoded from the filesystem encoding
(sys.getfilesystemencoding()).

Returns 0 when the input was executed successfully, —1 if there was an exception, or an error code from the
errcode. h include file distributed as part of Python if there was a parse error. (Note that errcode.h is not
included by Python . h, so must be included specifically if needed.)

int PyRun_InteractiveLoop (FILE *fp, const char *filename)
This is a simplified interface to PyRun_InteractiveLoopFlags () below, leaving flags set to NULL.

int PyRun_InteractiveLoopFlags (FILE *fp, const char *filename, PyCompilerFlags *flags)
Read and execute statements from a file associated with an interactive device until EOF is reached. The user
will be prompted using sys.psl and sys.ps2. filename is decoded from the filesystem encoding (sys.
getfilesystemencoding ()). Returns 0 at EOF or a negative number upon failure.

int (*PyOS_InputHook) (void)
Can be set to point to a function with the prototype int func (void) . The function will be called when Python’
s interpreter prompt is about to become idle and wait for user input from the terminal. The return value is ignored.
Overriding this hook can be used to integrate the interpreter’s prompt with other event loops, as done in the
Modules/_tkinter. c in the Python source code.

char* (*PyOS_ReadlineFunctionPointer) (FILE * FILE *, const char *)
Can be set to point to a function with the prototype char *func (FILE *stdin, FILE *stdout,

16 Chapter 3. The Very High Level Layer

The Python/C API, &] 8| A 3.7.17

char *prompt), overriding the default function used to read a single line of input at the interpreter’s prompt.
The function is expected to output the string prompt if it’s not NULL, and then read a line of input from the pro-
vided standard input file, returning the resulting string. For example, The readline module sets this hook to
provide line-editing and tab-completion features.

The result must be a string allocated by PyMem RawMalloc () or PyMem_RawRealloc (), or NULL if an
error occurred.

H A 3.4 4] ¥ 7 : The result must be allocated by PyMem RawMalloc () or PyMem RawRealloc (),
instead of being allocated by PyMem Malloc () or PyMem Realloc ().

struct _node* PyParser_SimpleParseString (const char *smr, int start)
This is a simplified interface to PyParser SimpleParseStringFlagsFilename () below, leaving file-
name set to NULL and flags set to O.

struct _node* PyParser_SimpleParseStringFlags (const char *str, int start, int flags)
This is a simplified interface to PyParser_SimpleParseStringFlagsFilename () below, leaving file-
name set to NULL.

struct _node* PyParser_SimpleParseStringFlagsFilename (const char *str, const char *filename,
int start, int flags)
Parse Python source code from st using the start token start according to the flags argument. The result can be
used to create a code object which can be evaluated efficiently. This is useful if a code fragment must be evaluated
many times. filename is decoded from the filesystem encoding (sys.getfilesystemencoding ()).

struct _node* PyParser_SimpleParseFile (FILE *fp, const char *filename, int start)
This is a simplified interface to PyParser SimpleParseFileFlags () below, leaving flags set to 0.

struct _node* PyParser_SimpleParseFileFlags (FILE *fp, const char *filename, int start, int flags)
Similar to PyParser SimpleParseStringFlagsFilename (),butthe Python source code is read from
fp instead of an in-memory string.

PyObject* PyRun_String (const char *str, int start, PyObject *globals, PyObject *locals)
Return value: New reference. This is a simplified interface to PyRun_StringFlags () below, leaving flags set
to NULL.

PyObject* PyRun_StringFlags (const char *str, int start, PyObject *globals, PyObject *locals, PyCompiler-
Flags *flags)
Return value: New reference. Execute Python source code from st in the context specified by the objects globals
and locals with the compiler flags specified by flags. globals must be a dictionary; locals can be any object that
implements the mapping protocol. The parameter start specifies the start token that should be used to parse the
source code.

Returns the result of executing the code as a Python object, or NULL if an exception was raised.

PyObject* PyRun_File (FILE *fp, const char *filename, int start, PyObject *globals, PyObject *locals)
Return value: New reference. This is a simplified interface to PyRun_FileExFlags () below, leaving closeit
set to 0 and flags set to NULL.

PyObject* PyRun_FileEx (FILE *fp, const char *filename, int start, PyObject *globals, PyObject *locals,

int closeit)
Return value: New reference. This is a simplified interface to PyRun_FileExFlags () below, leaving flags set

to NULL.

PyObject* PyRun_FileFlags (FILE *fp, const char *filename, int start, PyObject *globals, PyObject *locals,
PyCompilerFlags *flags)
Return value: New reference. This is a simplified interface to PyRun_FileExFlags () below, leaving closeit
set to 0.

PyObject* PyRun_FileExFlags (FILE *fp, const char *filename, int start, PyObject *globals, PyObject *lo-
cals, int closeit, PyCompilerFlags *flags)
Return value: New reference. Similar to PyRun_StringFlags (), but the Python source code is read from fp

17

The Python/C API, &] B{ A 3.7.17

instead of an in-memory string. filename should be the name of the file, it is decoded from the filesystem encoding
(sys.getfilesystemencoding ()). If closeit is true, the file is closed before PyRun_FileExFlags ()
returns.

PyObject* Py_CompileString (const char *str, const char *filename, int start)
Return value: New reference. This is a simplified interface to Py_CompileStringFlags () below, leaving
flags set to NULL.

PyObject* Py_CompileStringFlags (const char *str, const char *filename, int start, PyCompiler-
Flags *flags)
Return value: New reference. This is a simplified interface to Py CompileStringExFlags () below, with
optimize set to —1.

PyObject* Py_CompileStringObject (const char *sr, PyObject *filename, int start, PyCompiler-
Flags *flags, int optimize)
Return value: New reference. Parse and compile the Python source code in str, returning the resulting code object.
The start token is given by start; this can be used to constrain the code which can be compiled and should be
Py_eval_input, Py_file_input, or Py_single_input. The filename specified by filename is used
to construct the code object and may appear in tracebacks or SyntaxError exception messages. This returns
NULL if the code cannot be parsed or compiled.

The integer optimize specifies the optimization level of the compiler; a value of -1 selects the optimization level of
the interpreter as given by —O options. Explicit levels are 0 (no optimization; __debug___is true), 1 (asserts are
removed, __debug___is false) or 2 (docstrings are removed too).

B A 3.40] F7}.

PyObject* Py_CompileStringExFlags (const char *str, const char *filename, int start, PyCompiler-
Flags *flags, int optimize)
Return value: New reference. Like Py_CompileStringObject (), but filename is a byte string decoded from
the filesystem encoding (os . fsdecode ()).

WA 320 F7h

PyObject* PyEval_EvalCode (PyObject *co, PyObject *globals, PyObject *locals)
Return value: New reference. This is a simplified interface to PyEval_ FEvalCodeEx (), with just the code
object, and global and local variables. The other arguments are set to NULL.

PyObject* PyEval_EvalCodeEx (PyObject *co, PyObject *globals, PyObject *locals, PyObject *const *args,
int argcount, PyObject *const *kws, int kwcount, PyObject *const *defs,
int defcount, PyObject *kwdefs, PyObject *closure)
Return value: New reference. Evaluate a precompiled code object, given a particular environment for its evalua-
tion. This environment consists of a dictionary of global variables, a mapping object of local variables, arrays of
arguments, keywords and defaults, a dictionary of default values for keyword-only arguments and a closure tuple
of cells.

PyFrameObject
The C structure of the objects used to describe frame objects. The fields of this type are subject to change at any
time.

PyObject* PyEval_EvalFrame (PyFrameObject *f)
Return value: ~ New reference. Evaluate an execution frame. This is a simplified interface to
PyEval_EvalFrameEx (), for backward compatibility.

PyObject* PyEval_EvalFrameEx (PyFrameObject *f, int throwflag)
Return value: New reference. This is the main, unvarnished function of Python interpretation. It is literally 2000
lines long. The code object associated with the execution frame f is executed, interpreting bytecode and executing
calls as needed. The additional throwflag parameter can mostly be ignored - if true, then it causes an exception to
immediately be thrown; this is used for the throw () methods of generator objects.

18 Chapter 3. The Very High Level Layer

The Python/C API, &] 8| A 3.7.17

WA 3.4 A W7 : This function now includes a debug assertion to help ensure that it does not silently discard
an active exception.

int PyEval_MergeCompilerF1lags (PyCompilerFlags *cf)
This function changes the flags of the current evaluation frame, and returns true on success, false on failure.
int Py_eval_input
The start symbol from the Python grammar for isolated expressions; for use with Py CompileString().
int Py_file_input
The start symbol from the Python grammar for sequences of statements as read from a file or other source; for use
with Py_CompileString (). This is the symbol to use when compiling arbitrarily long Python source code.
int Py_single_input
The start symbol from the Python grammar for a single statement; for use with Py_CompileString (). This
is the symbol used for the interactive interpreter loop.
struct PyCompilerFlags

This is the structure used to hold compiler flags. In cases where code is only being compiled, it is passed as int
flags, and in cases where code is being executed, it is passed as PyCompilerFlags *flags. In this case,
from __future__ import can modify flags.

Whenever PyCompilerFlags *flags is NULL, cf_flags is treated as equal to O, and any modification
dueto from __ future_ import is discarded.

struct PyCompilerFlags {
int cf_flags;
}

int CO_FUTURE_DIVISION
This bit can be set in flags to cause division operator / to be interpreted as “true division” according to PEP 238.

19

https://www.python.org/dev/peps/pep-0238

The Python/C API, &] B{ A 3.7.17

20 Chapter 3. The Very High Level Layer

cHAPTER 4

e
N
N
4>

o] Qo) AL vhol W AR Y Fx A4S TS © AgH T

void Py_ INCREF (PyObject *0)
Increment the reference count for object o. The object must not be NULL; if you aren’t sure that it isn’t NULL, use
Py_XINCREF ().

void Py_XINCREF (PyObject *o)
Increment the reference count for object 0. The object may be NULL, in which case the macro has no effect.

void Py_DECREF (PyObject *0)
Decrement the reference count for object 0. The object must not be NULL; if you aren’t sure that it isn’t NULL,
use Py_XDECREF (). If the reference count reaches zero, the object’s type’s deallocation function (which must
not be NULL) is invoked.

A3 @A e g stolH FEVFIEHESR T S JdFUTH(AE o], _del_ <)
HAEZ e 2dla d2d a7 S sfAlE o). o] st ZEo A9 o8& AutE A kA v
AYH == BE ol A Toﬂ Z-EA A 2T 5 s UTh o] 22 Py DECREFW}
TEH7 Aol AYG Mol 22 5 Qe BE QA7 LA = el ojores =gy
g 5o, PaEA AAE A= T=E &xﬂ AA) ek FRE YA "ol BEASEA
g AE HolH 725 BAS ok, U] W5l tis Py _DECREF () & EZ&foF FUTh

void Py_XDECREF (PyObject *0)
Decrement the reference count for object 0. The object may be NULL, in which case the macro has no effect;
otherwise the effect is the same as for Py_DECREF (), and the same warning applies.

void Py_ CLEAR (PyObject *0)
Decrement the reference count for object 0. The object may be NULL, in which case the macro has no effect;
otherwise the effect is the same as for Py DECREF (), except that the argument is also set to NULL. The warning
for Py_DECREF () does not apply with respect to the object passed because the macro carefully uses a temporary
variable and sets the argument to NULL before decrementing its reference count.

7Ha A =3 Foll A 2 = 9= W] gE A wivint o] 228 AFEShe Aol F5Uth

lr

21

The Python/C API, &] B{ A 3.7.17

&

02 &5 golHe A A% 54 WAEE A AYUrth: Py _IncRef (PyObject *o),
Py_DecRef (PyObject *0). ©|AEL <3| Py _XINCREF ()&} Py _XDECREF ()9 =2 H T4+ HAY

pUANE =
Ut

g v Mazs dezgy FZoJdAw ALSE & syt _Py Dealloc(),
_Py_ForgetReference(),_Py NewReference () ¥ A9 M4 Py _RefTotal.

22

T

Nt
BN
=

Chapter 4. 3]

o

CHAPTER D

Exception Handling

The functions described in this chapter will let you handle and raise Python exceptions. It is important to understand
some of the basics of Python exception handling. It works somewhat like the POSIX errno variable: there is a global
indicator (per thread) of the last error that occurred. Most C API functions don’t clear this on success, but will set it to
indicate the cause of the error on failure. Most C API functions also return an error indicator, usually NULL if they are
supposed to return a pointer, or —1 if they return an integer (exception: the PyArg_* () functions return 1 for success
and 0 for failure).

Concretely, the error indicator consists of three object pointers: the exception’s type, the exception’s value, and the
traceback object. Any of those pointers can be NULL if non-set (although some combinations are forbidden, for example
you can’t have a non-NULL traceback if the exception type is NULL).

When a function must fail because some function it called failed, it generally doesn’t set the error indicator; the function
it called already set it. It is responsible for either handling the error and clearing the exception or returning after cleaning
up any resources it holds (such as object references or memory allocations); it should not continue normally if it is not
prepared to handle the error. If returning due to an error, it is important to indicate to the caller that an error has been
set. If the error is not handled or carefully propagated, additional calls into the Python/C API may not behave as intended
and may fail in mysterious ways.

ZF31: The error indicator is not the result of sys.exc_info (). The former corresponds to an exception that is not
yet caught (and is therefore still propagating), while the latter returns an exception after it is caught (and has therefore
stopped propagating).

23

The Python/C API, &] B{ A 3.7.17

5.1 Printing and clearing

void PyErr_Clear ()
Clear the error indicator. If the error indicator is not set, there is no effect.

void PyErr_PrintEx (int set_sys_last_vars)
Print a standard traceback to sy s . stderr and clear the error indicator. Unless the errorisa SystemExit. In
that case the no traceback is printed and Python process will exit with the error code specified by the SystemExit
instance.

Call this function only when the error indicator is set. Otherwise it will cause a fatal error!

If set_sys_last_vars is nonzero, the variables sys.last_type, sys.last_value and sys.
last_traceback will be set to the type, value and traceback of the printed exception, respectively.

void PyErr_Print ()
Alias for PyErr_PrintEx (1).

void PyErr_WriteUnraisable (PyObject *obyj)
This utility function prints a warning message to sy s . stderr when an exception has been set but it is impos-
sible for the interpreter to actually raise the exception. It is used, for example, when an exception occurs in an
del__ () method.

The function is called with a single argument obj that identifies the context in which the unraisable exception
occurred. If possible, the repr of obj will be printed in the warning message.

An exception must be set when calling this function.

5.2 Raising exceptions

These functions help you set the current thread’s error indicator. For convenience, some of these functions will always
return a NULL pointer for use in a return statement.

void PyErr_SetString (PyObject *type, const char *message)
This is the most common way to set the error indicator. The first argument specifies the exception type; it is
normally one of the standard exceptions, e.g. PyExc_RuntimeError. You need not increment its reference
count. The second argument is an error message; it is decoded from 'ut £-8’.

void PyErr_SetObject (PyObject *type, PyObject *value)
This function is similar to PyErr_SetString () butlets you specify an arbitrary Python object for the “value”
of the exception.

PyObject* PyExrr_Format (PyObject *exception, const char *format, ...)
Return value: Always NULL. This function sets the error indicator and returns NULL. exception should be a Python
exception class. The format and subsequent parameters help format the error message; they have the same meaning
and values as in PyUnicode_FromFormat (). format is an ASCII-encoded string.

PyObject* PyErr_FormatV (PyObject *exception, const char *format, va_list vargs)
Return value: Always NULL. Same as PyErr_Format (),buttakingava_11 st argument rather than a variable
number of arguments.

B A 3.50] &7}

void PyErr_SetNone (PyObject *type)
This is a shorthand for PyErr_SetObject (type, Py_None).

24 Chapter 5. Exception Handling

The Python/C API, &] 8| A 3.7.17

int PyErr_BadArgument ()
This is a shorthand for PyErr_SetString (PyExc_TypeError, message), where message indicates
that a built-in operation was invoked with an illegal argument. It is mostly for internal use.

PyObject* PyErr_NoMemory ()
Return value: Always NULL. This is a shorthand for PyErr_SetNone (PyExc_MemoryError); it returns
NULL so an object allocation function can write return PyErr_NoMemory () ; when it runs out of memory.

PyObject* PyErr_SetFromErrno (PyObject *type)

Return value: Always NULL. This is a convenience function to raise an exception when a C library function
has returned an error and set the C variable errno. It constructs a tuple object whose first item is the inte-
ger errno value and whose second item is the corresponding error message (gotten from strerror ()), and
then calls PyErr_SetObject (type, object). On Unix, when the errno value is EINTR, indicating
an interrupted system call, this calls PyErr_CheckSignals (), and if that set the error indicator, leaves it
set to that. The function always returns NULL, so a wrapper function around a system call can write return
PyErr_SetFromErrno (type) ; when the system call returns an error.

PyObject* PyErr_SetFromErrnoWithFilenameObject (PyObject *type, PyObject *filenameObject)
Return value: Always NULL. Similar to PyErr_SetFromErrno (), with the additional behavior that if file-
nameObject is not NULL, it is passed to the constructor of fype as a third parameter. In the case of OSError
exception, this is used to define the £i1lename attribute of the exception instance.

PyObject* PyErr_SetFromErrnoWithFilenameObjects (PyObject *type, PyObject *filenameObject,
PyObject *filenameObject2)
Return value: Always NULL. Similar to PyErr_SetFromErrnoWithFilenameObject (), but takes a
second filename object, for raising errors when a function that takes two filenames fails.

B A 3.40] =7}

PyObject* PyErr_SetFromErrnoWithFilename (PyObject *type, const char *filename)
Return value: Always NULL. Similar to PyErr_SetFromErrnoWithFilenameObject (), but the file-
name is given as a C string. filename is decoded from the filesystem encoding (os . fsdecode ()).

PyObject* PyErr_SetFromWindowsErr (int ierr)
Return value: Always NULL. This is a convenience function to raise WindowsError. If called
with ierr of 0, the error code returned by a call to GetLastError () is used instead. It calls
the Win32 function FormatMessage () to retrieve the Windows description of error code given by
ierr or GetLastError (), then it constructs a tuple object whose first item is the ierr value and
whose second item is the corresponding error message (gotten from FormatMessage ()), and then calls
PyErr_SetObject (PyExc_WindowsError, object). This function always returns NULL.

Availability: Windows.

PyObject* PyErr_SetExcFromWindowsErr (PyObject *type, int ierr)
Return value: Always NULL. Similarto PyErr_SetFromWindowsErr (), with an additional parameter spec-
ifying the exception type to be raised.

Availability: Windows.

PyObject* PyErr_SetFromWindowsErrWithFilename (int ierr, const char *filename)
Return value: Always NULL. Similarto PyErr_SetFromWindowsErrWithFilenameObject (), butthe
filename is given as a C string. filename is decoded from the filesystem encoding (os . fsdecode ()).

Availability: Windows.

PyObject* PyErr_SetExcFromWindowsErrWithFilenameObject (PyObject *type, int ierr, PyOb-
Ject *filename)
Return value: Always NULL. Similar to PyErr_SetFromWindowsErrWithFilenameObject (), with
an additional parameter specifying the exception type to be raised.

Auvailability: Windows.

5.2. Raising exceptions 25

The Python/C API, &] B{ A 3.7.17

PyObject* PyErr_SetExcFromWindowsErrWithFilenameObjects (PyObject *type, int ierr, PyOb-
Ject *filename, PyObject *file-
name?2)
Return value: Always NULL. Similar to PyErr_ SetExcFromWindowsErrWithFilenameObject (),

but accepts a second filename object.
Auvailability: Windows.
HZA 340 F7}

PyObject* PyErr_SetExcFromWindowsErrWithFilename (PyObject *type, int ierr, const char *file-

name)
Return value: Always NULL. Similar to PyErr_SetFromWindowsErrWithFilename (), with an addi-

tional parameter specifying the exception type to be raised.
Availability: Windows.

PyObject* PyErr_SetImportError (PyObject *msg, PyObject *name, PyObject *path)
Return value: Always NULL. This is a convenience function to raise ImportError. msg will be set as the
exception’s message string. name and path, both of which can be NULL, will be set as the ImportError’s
respective name and path attributes.

B A 3.30] F7}.

void PyErr_SyntaxLocationObject (PyObject *filename, int lineno, int col_offset)
Set file, line, and offset information for the current exception. If the current exceptionisnota SyntaxError, then
it sets additional attributes, which make the exception printing subsystem think the exceptionis a SyntaxError.

WA 340 27}

void PyErr_SyntaxLocationEx (const char *filename, int lineno, int col_offset)
Like PyErr_SyntaxLocationObject (), but filenameis a byte string decoded from the filesystem encoding
(os.fsdecode ()).

B A 3.20] F7}.

void PyErr_SyntaxLocation (const char *filename, int lineno)
Like PyErr_SyntaxLocationEx (), but the col_offset parameter is omitted.

void PyErr_BadInternalCall ()
This is a shorthand for PyErr_SetString (PyExc_SystemError, message), where message indicates
that an internal operation (e.g. a Python/C API function) was invoked with an illegal argument. It is mostly for
internal use.

5.3 Issuing warnings

Use these functions to issue warnings from C code. They mirror similar functions exported by the Python warnings
module. They normally print a warning message to sys.stderr; however, it is also possible that the user has specified that
warnings are to be turned into errors, and in that case they will raise an exception. It is also possible that the functions
raise an exception because of a problem with the warning machinery. The return value is 0 if no exception is raised, or
-1 if an exception is raised. (It is not possible to determine whether a warning message is actually printed, nor what the
reason is for the exception; this is intentional.) If an exception is raised, the caller should do its normal exception handling
(for example, Py. DECREF () owned references and return an error value).

int PyErr_WarnEx (PyObject *category, const char *message, Py_ssize_t stack_level)
Issue a warning message. The category argument is a warning category (see below) or NULL; the message argument
is a UTF-8 encoded string. stack_level is a positive number giving a number of stack frames; the warning will be
issued from the currently executing line of code in that stack frame. A stack_level of 1 is the function calling
PyErr_WarnEx (), 2 is the function above that, and so forth.

26 Chapter 5. Exception Handling

The Python/C API, &] 8| A 3.7.17

Warning categories must be subclasses of PyExc_Warning; PyExc_Warning is a subclass of
PyExc_Except ion; the default warning category is PyExc_Runt imeWarning. The standard Python warn-
ing categories are available as global variables whose names are enumerated at Standard Warning Categories.

For information about warning control, see the documentation for the warnings module and the —W option in
the command line documentation. There is no C API for warning control.

PyObject* PyErr_SetImportErrorSubclass (PyObject *exception, PyObject *msg, PyObject *name, Py-
Object *path)
Return value: Always NULL. Much like PyErr Set ImportError () but this function allows for specifying a
subclass of ImportError to raise.

B A 3.60] &7}

int PyErr_WarnExplicitObject (PyObject *category, PyObject *message, PyObject *filename, int lineno,
PyObject *module, PyObject *registry)
Issue a warning message with explicit control over all warning attributes. This is a straightforward wrapper around
the Python function warnings.warn_explicit (), see there for more information. The module and registry
arguments may be set to NULL to get the default effect described there.

WA 340 27}

int PyErr_WarnExplicit (PyObject *category, const char *message, const char *filename, int lineno, const
char *module, PyObject *registry)
Similarto PyErr_WarnExplicitObject () except that message and module are UTF-8 encoded strings, and
filename is decoded from the filesystem encoding (os . fsdecode ()).

int PyErr_WarnFormat (PyObject *category, Py_ssize_t stack_level, const char *format, ...)
Function similar to PyErr_WarnEx (), but use PyUnicode_FromFormat () to format the warning mes-
sage. format is an ASCII-encoded string.

B A 3.2 =7}

int PyErr_ResourceWarning (PyObject *source, Py_ssize_t stack_level, const char *format, ...)
Function similar to PyErr_WarnFormat (), but category is ResourceWarning and it passes source to
warnings.WarningMessage ().

W2 3.600 71

5.4 Querying the error indicator

PyObject* PyErr_Occurred ()
Return value: Borrowed reference. Test whether the error indicator is set. If set, return the exception fype (the first
argument to the last call to one of the PyErr_Set* () functions or to PyErr_Restore ()). If not set, return
NULL. You do not own a reference to the return value, so you do not need to Py_ DECREF () it.

ZF31: Do not compare the return value to a specific exception; use PyErr ExceptionMatches () instead,
shown below. (The comparison could easily fail since the exception may be an instance instead of a class, in the
case of a class exception, or it may be a subclass of the expected exception.)

int PyErr_ExceptionMatches (PyObject *exc)
Equivalent to PyErr_GivenExceptionMatches (PyErr_Occurred (), exc). This should only be
called when an exception is actually set; a memory access violation will occur if no exception has been raised.

int PyErr_GivenExceptionMatches (PyObject *given, PyObject *exc)
Return true if the given exception matches the exception type in exc. If exc is a class object, this also returns true

5.4. Querying the error indicator 27

The Python/C API, &] B{ A 3.7.17

when given is an instance of a subclass. If exc is a tuple, all exception types in the tuple (and recursively in subtuples)
are searched for a match.

void PyErr_Fetch (PyObject **ptype, PyObject **pvalue, PyObject **ptraceback)
Retrieve the error indicator into three variables whose addresses are passed. If the error indicator is not set, set all
three variables to NULL. If it is set, it will be cleared and you own a reference to each object retrieved. The value
and traceback object may be NULL even when the type object is not.

Z31: This function is normally only used by code that needs to catch exceptions or by code that needs to save
and restore the error indicator temporarily, e.g.:

{
PyObject *type, *value, *traceback;
PyErr_Fetch (&type, &value, &traceback);

/* ... code that might produce other errors ... */

PyErr_Restore (type, value, traceback);

void PyErr_Restore (PyObject *type, PyObject *value, PyObject *traceback)
Set the error indicator from the three objects. If the error indicator is already set, it is cleared first. If the objects are
NULL, the error indicator is cleared. Do not pass a NULL type and non-NULL value or traceback. The exception
type should be a class. Do not pass an invalid exception type or value. (Violating these rules will cause subtle
problems later.) This call takes away a reference to each object: you must own a reference to each object before the
call and after the call you no longer own these references. (If you don’t understand this, don’t use this function. I
warned you.)

ZF31: This function is normally only used by code that needs to save and restore the error indicator temporarily.
Use PyErr_Fetch () to save the current error indicator.

void PyErr_NormalizeException (PyObject**exc, PyObject**val, PyObject**tb)
Under certain circumstances, the values returned by PyErr_Fetch () below can be “unnormalized”, meaning
that *exc is a class object but *val is not an instance of the same class. This function can be used to instantiate the
class in that case. If the values are already normalized, nothing happens. The delayed normalization is implemented
to improve performance.

ZF31: This function does not implicitly set the __traceback___ attribute on the exception value. If setting the
traceback appropriately is desired, the following additional snippet is needed:

if (tb != NULL) {
PyException_SetTraceback (val, tb);
}

void PyErr_GetExcInfo (PyObject **ptype, PyObject **pvalue, PyObject **ptraceback)
Retrieve the exception info, as known from sys.exc_info (). This refers to an exception that was already
caught, not to an exception that was freshly raised. Returns new references for the three objects, any of which may
be NULL. Does not modify the exception info state.

Z31: This function is not normally used by code that wants to handle exceptions. Rather, it can be used when
code needs to save and restore the exception state temporarily. Use PyErr_SetExcInfo () to restore or clear

28 Chapter 5. Exception Handling

The Python/C API, &] 8| A 3.7.17

the exception state.

WA 3.30] F7}.

void PyErr_SetExcInfo (PyObject *type, PyObject *value, PyObject *traceback)
Set the exception info, as known from sys . exc_info (). This refers to an exception that was already caught, not
to an exception that was freshly raised. This function steals the references of the arguments. To clear the exception
state, pass NULL for all three arguments. For general rules about the three arguments, see PyErr_Restore ().

ZF31: This function is not normally used by code that wants to handle exceptions. Rather, it can be used when code
needs to save and restore the exception state temporarily. Use PyErr GetExcInfo () to read the exception
state.

WA 330 =7}

5.5 Signal Handling

int PyErr_CheckSignals ()
This function interacts with Python’s signal handling. It checks whether a signal has been sent to the processes
and if so, invokes the corresponding signal handler. If the signal module is supported, this can invoke a signal
handler written in Python. In all cases, the default effect for SIGINT is to raise the KeyboardInterrupt
exception. If an exception is raised the error indicator is set and the function returns —1; otherwise the function
returns 0. The error indicator may or may not be cleared if it was previously set.

void PyErr_SetInterrupt ()
Simulate the effect of a STGINT signal arriving. The nexttime PyErr_CheckSignals () is called, the Python
signal handler for SIGINT will be called.

If SIGINT isn’t handled by Python (it was set to signal.SIG_DFL or signal.SIG_IGN), this function
does nothing.

int PySignal_SetWakeupFd (int fd)
This utility function specifies a file descriptor to which the signal number is written as a single byte whenever a
signal is received. fd must be non-blocking. It returns the previous such file descriptor.

The value -1 disables the feature; this is the initial state. This is equivalent to signal.set_wakeup_£fd ()
in Python, but without any error checking. fd should be a valid file descriptor. The function should only be called
from the main thread.

H A 3.5 4 ¥ 7 : On Windows, the function now also supports socket handles.

5.6 Exception Classes

PyObject* PyErr_NewException (const char *name, PyObject *base, PyObject *dict)
Return value: New reference. This utility function creates and returns a new exception class. The name argu-
ment must be the name of the new exception, a C string of the form module.classname. The base and
dict arguments are normally NULL. This creates a class object derived from Exception (accessible in C as
PyExc_Exception).

The __module___ attribute of the new class is set to the first part (up to the last dot) of the name argument, and
the class name is set to the last part (after the last dot). The base argument can be used to specify alternate base

5.5. Signal Handling 29

The Python/C API, &] B{ A 3.7.17

classes; it can either be only one class or a tuple of classes. The dict argument can be used to specify a dictionary
of class variables and methods.

PyObject* PyErr_NewExceptionWithDoc (const char *name, const char *doc, PyObject *base, PyOb-
Ject *dict)
Return value: New reference. Same as PyErr_ NewException (),except that the new exception class can easily
be given a docstring: If doc is non-NULL, it will be used as the docstring for the exception class.

WA 3200 7}

5.7 Exception Objects

PyObject* PyException_GetTraceback (PyObject *ex)
Return value: New reference. Return the traceback associated with the exception as a new reference, as accessible
from Python through __traceback__. If there is no traceback associated, this returns NULL.

int PyException_SetTraceback (PyObject *ex, PyObject *tb)
Set the traceback associated with the exception to tb. Use Py_None to clear it.

PyObject* PyException_GetContext (PyObject *ex)
Return value: New reference. Return the context (another exception instance during whose handling ex was raised)
associated with the exception as a new reference, as accessible from Python through __context__. If there is
no context associated, this returns NULL.

void PyException_SetContext (PyObject *ex, PyObject *ctx)
Set the context associated with the exception to ctx. Use NULL to clear it. There is no type check to make sure that
ctx is an exception instance. This steals a reference to ctx.

PyObject* PyException_GetCause (PyObject *ex)
Return value: New reference. Return the cause (either an exception instance, or None, setby raise ... from
. . .) associated with the exception as a new reference, as accessible from Python through ___cause__.

void PyException_SetCause (PyObject *ex, PyObject *cause)
Set the cause associated with the exception to cause. Use NULL to clear it. There is no type check to make sure
that cause is either an exception instance or None. This steals a reference to cause.

__suppress_context___isimplicitly set to True by this function.

5.8 Unicode Exception Objects

The following functions are used to create and modify Unicode exceptions from C.

PyObject* PyUnicodeDecodeError_Create (const char *encoding, const char *object, Py_ssize_t length,

Py_ssize_t start, Py_ssize_t end, const char *reason)
Return value: New reference. Create aUnicodeDecodeError object with the attributes encoding, object, length,

start, end and reason. encoding and reason are UTF-8 encoded strings.

PyObject* PyUnicodeEncodeError_Create (const char *encoding, const Py _UNICODE *object,
Py_ssize_t length, Py_ssize_t start, Py_ssize_t end, const

char *reason)
Return value: New reference. Create a UnicodeEncodeError object with the attributes encoding, object, length,

start, end and reason. encoding and reason are UTF-8 encoded strings.

PyObject* PyUnicodeTranslateError_Create (const Py UNICODE *object, Py_ssize_t length,

Py_ssize_t start, Py_ssize_t end, const char *reason)
Return value: New reference. Create a UnicodeTranslateError object with the attributes object, length,

start, end and reason. reason is a UTF-8 encoded string.

30 Chapter 5. Exception Handling

The Python/C API, &] 8| A 3.7.17

PyObject* PyUnicodeDecodeError_GetEncoding (PyObject *exc)
PyObject* PyUnicodeEncodeError_GetEncoding (PyObject *exc)
Return value: New reference. Return the encoding attribute of the given exception object.

PyObject* PyUnicodeDecodeError_GetObject (PyObject *exc)
PyObject* PyUnicodeEncodeError_GetObject (PyObject *exc)
PyObject* PyUnicodeTranslateError_GetObject (PyObject *exc)
Return value: New reference. Return the object attribute of the given exception object.

int PyUnicodeDecodeError_GetStart (PyObject *exc, Py_ssize_t *start)

int PyUnicodeEncodeError_GetStart (PyObject *exc, Py_ssize_t *start)

int PyUnicodeTranslateError_GetStart (PyObject *exc, Py_ssize_t *start)
Get the start attribute of the given exception object and place it into *start. start must not be NULL. Return O on
success, —1 on failure.

int PyUnicodeDecodeError_SetStart (PyObject *exc, Py_ssize_t start)
int PyUnicodeEncodeError_SetStart (PyObject *exc, Py_ssize_t start)
int PyUnicodeTranslateError_SetStart (PyObject *exc, Py_ssize_t start)
Set the start attribute of the given exception object to start. Return 0 on success, —1 on failure.

int PyUnicodeDecodeError_GetEnd (PyObject *exc, Py_ssize_t *end)

int PyUnicodeEncodeError_GetEnd (PyObject *exc, Py_ssize_t *end)

int PyUnicodeTranslateError_GetEnd (PyObject *exc, Py_ssize_t *end)
Get the end attribute of the given exception object and place it into *end. end must not be NULL. Return 0 on
success, —1 on failure.

int PyUnicodeDecodeError_SetEnd (PyObject *exc, Py_ssize_t end)
int PyUnicodeEncodeError_SetEnd (PyObject *exc, Py_ssize_t end)
int PyUnicodeTranslateError_SetEnd (PyObject *exc, Py_ssize_t end)
Set the end attribute of the given exception object to end. Return 0 on success, —1 on failure.

PyObject* PyUnicodeDecodeError_GetReason (PyObject *exc)
PyObject* PyUnicodeEncodeError_GetReason (PyObject *exc)
PyObject* PyUnicodeTranslateError_GetReason (PyObject *exc)
Return value: New reference. Return the reason attribute of the given exception object.

int PyUnicodeDecodeError_SetReason (PyObject *exc, const char *reason)
int PyUnicodeEncodeError_SetReason (PyObject *exc, const char *reason)
int PyUnicodeTranslateError_SetReason (PyObject *exc, const char *reason)
Set the reason attribute of the given exception object to reason. Return O on success, —1 on failure.

5.9 Recursion Control

These two functions provide a way to perform safe recursive calls at the C level, both in the core and in extension mod-
ules. They are needed if the recursive code does not necessarily invoke Python code (which tracks its recursion depth
automatically).

int Py_EnterRecursiveCall (const char *where)
Marks a point where a recursive C-level call is about to be performed.

If USE_STACKCHECK is defined, this function checks if the OS stack overflowed using PyOS_CheckStack ().
In this is the case, it sets a MemoryError and returns a nonzero value.

The function then checks if the recursion limit is reached. If this is the case, a RecursionError is set and a
nonzero value is returned. Otherwise, zero is returned.

where should be a string such as " in instance check" to be concatenated to the RecursionError
message caused by the recursion depth limit.

5.9. Recursion Control 31

The Python/C API, &] B{ A 3.7.17

void Py_LeaveRecursiveCall ()
Ends a Py _EnterRecursiveCall ().
Py _EnterRecursiveCall ().

Must be called once for each successful invocation of

Properly implementing tp_ repr for container types requires special recursion handling. In addition to protecting the
stack, tp_ repr also needs to track objects to prevent cycles. The following two functions facilitate this functionality.
Effectively, these are the C equivalent to reprlib.recursive_repr ().

int Py_ReprEnter (PyObject *object)
Called at the beginning of the t o repr implementation to detect cycles.

If the object has already been processed, the function returns a positive integer. In that case the t p_ repr imple-
mentation should return a string object indicating a cycle. As examples, dict objects return { ...} and 1ist
objectsreturn [...].

The function will return a negative integer if the recursion limit is reached. In that case the tp_ repr implemen-
tation should typically return NULL.

Otherwise, the function returns zero and the tp_ repr implementation can continue normally.

void Py_ReprLeave (PyObject *object)
Ends a Py_ReprEnter (). Must be called once for each invocation of Py_ReprEnter () that returns zero.

5.10 Standard Exceptions

All standard Python exceptions are available as global variables whose names are PyExc__ followed by the Python ex-
ception name. These have the type PyOb ject *; they are all class objects. For completeness, here are all the variables:

C Name Python Name Notes
PyExc_BaseException BaseException (D
PyExc_Exception Exception D
PyExc_ArithmeticError ArithmeticError @))
PyExc_AssertionError AssertionError
PyExc_AttributeError AttributeError
PyExc_BlockingIOError BlockingIOError
PyExc_BrokenPipeError BrokenPipeError
PyExc_BufferError BufferError

PyExc_ChildProcessError

ChildProcessError

PyExc_ConnectionAbortedError

ConnectionAbortedError

PyExc_ConnectionError

ConnectionError

PyExc_ConnectionRefusedError

ConnectionRefusedError

PyExc_ConnectionResetError

ConnectionResetError

PyExc_EOFError

EOFError

PyExc_FileExistsError

FileExistsError

PyExc_FileNotFoundError

FileNotFoundError

PyExc_FloatingPointError

FloatingPointError

PyExc_GeneratorExit GeneratorExit
PyExc_ImportError ImportError
PyExc_IndentationError IndentationError
PyExc_IndexError IndexError
PyExc_InterruptedError InterruptedError

PyExc_IsADirectoryError

IsADirectoryError

PyExc_KeyError

KeyError

EEE EECEES

32

Chapter 5. Exception Handling

The Python/C API, &] 8| A 3.7.17

£ 1- oA ol Aol A A%

C Name Python Name Notes
PyExc_KeyboardInterrupt KeyboardInterrupt
PyExc_LookupError LookupError (D)
PyExc_MemoryError MemoryError
PyExc_ModuleNotFoundError ModuleNotFoundError
PyExc_NameError NameError
PyExc_NotADirectoryError NotADirectoryError
PyExc_NotImplementedError NotImplementedError
PyExc_OSError OSError (D)
PyExc_OverflowError OverflowError
PyExc_PermissionError PermissionError
PyExc_ProcessLookupError ProcessLookupError
PyExc_RecursionError RecursionError
PyExc_ReferenceError ReferenceError 2)
PyExc_RuntimeError RuntimeError
PyExc_StopAsynclIteration StopAsyncIteration
PyExc_StopIteration StopIteration
PyExc_SyntaxError SyntaxError
PyExc_SystemError SystemError
PyExc_SystemExit SystemExit
PyExc_TabError TabError
PyExc_TimeoutError TimeoutError
PyExc_TypeError TypeError
PyExc_UnboundLocalError UnboundLocalError
PyExc_UnicodeDecodeError UnicodeDecodeError
PyExc_UnicodeEncodeError UnicodeEncodeError
PyExc_UnicodeError UnicodeError
PyExc_UnicodeTranslateError UnicodeTranslateError
PyExc_ValueError ValueError
PyExc_ZeroDivisionError ZeroDivisionError

H A 3.3 9 = 7} PyExc_BlockingIOError, PyExc_BrokenPipeError,

PyExc_ChildProcessError, PyExc_ConnectionError, PyExc_ConnectionAbortedError,
PyExc_ConnectionRefusedError, PyExc_ConnectionResetError, PyExc_FileExistsError,
PyExc_FileNotFoundError, PyExc_InterruptedError, PyExc_IsADirectoryError,
PyExc_NotADirectoryError, PyExc_PermissionError, PyExc_ProcessLookupError and
PyExc_TimeoutError were introduced following PEP 3151.

WA 3.59] 7} PyExc_StopAsyncIterationand PyExc_RecursionError
WA 3.69] 37} PyExc_ModuleNotFoundError.

These are compatibility aliases to PyExc_OSError:

C Name Notes
PyExc_EnvironmentError
PyExc_IOError

PyExc_WindowsError 3)

¥ A 3.39]| A ¥ 7 : These aliases used to be separate exception types.
Notes:

(1) This is a base class for other standard exceptions.

5.10. Standard Exceptions 33

https://www.python.org/dev/peps/pep-3151

The Python/C API, &] B{ A 3.7.17

(2) Only defined on Windows; protect code that uses this by testing that the preprocessor macro MS_WINDOWS is
defined.

5.11 Standard Warning Categories

All standard Python warning categories are available as global variables whose names are PyExc__followed by the Python
exception name. These have the type Py Ob ject *; they are all class objects. For completeness, here are all the variables:

C Name Python Name Notes
PyExc_Warning Warning H
PyExc_BytesWarning BytesWarning
PyExc_DeprecationWarning DeprecationWarning
PyExc_FutureWarning FutureWarning
PyExc_ImportWarning ImportWarning
PyExc_PendingDeprecationWarning | PendingDeprecationWarning
PyExc_ResourceWarning ResourceWarning
PyExc_RuntimeWarning RuntimeWarning
PyExc_SyntaxWarning SyntaxWarning
PyExc_UnicodeWarning UnicodeWarning
PyExc_UserWarning UserWarning

WA 320 7} PyExc_ResourceWarning

Notes:

(1) This is a base class for other standard warning categories.

34

Chapter 5. Exception Handling

CHAPTER O

o
[t
N
N,
N,
o
(7
%
Jo
e,
)
Au)
B
A
o
5
o
oo ol

6.1 Operating System Utilities

PyObject* PyOS_FSPath (PyObject *path)
Return value: New reference. Return the file system representation for path. If the object is a str or bytes
object, then its reference count is incremented. If the object implements the os.PathLike interface, then
__fspath__ () is returned as long as it is a str or bytes object. Otherwise TypeError is raised and
NULL is returned.

WA 3.690 7}

int Py_FdIsInteractive (FILE *fp, const char *filename)
Return true (nonzero) if the standard I/O file fp with name filename is deemed interactive. This is the case for files
for which isatty (fileno (fp)) is true. If the global flag Py_InteractiveFlag is true, this function
also returns true if the filename pointer is NULL or if the name is equal to one of the strings '<stdin>"' or

reeRt.
void PyOS_BeforeFork ()

Function to prepare some internal state before a process fork. This should be called before calling fork () or any
similar function that clones the current process. Only available on systems where fork () is defined.

WA 3.70] &7}

void PyOS_AfterFork_Parent ()
Function to update some internal state after a process fork. This should be called from the parent process after
calling fork () or any similar function that clones the current process, regardless of whether process cloning was
successful. Only available on systems where fork () is defined.

WA 3.7 7}

void PyOS_AfterFork_Child ()
Function to update internal interpreter state after a process fork. This must be called from the child process after

35

The Python/C API, &] B{ A 3.7.17

calling fork (), or any similar function that clones the current process, if there is any chance the process will call
back into the Python interpreter. Only available on systems where fork () is defined.

WA 379 F7}
o H17]:

os.register_at_fork() allows registering custom Python functions to be «called by
PyOS_BeforeFork (), PyOS_AfterFork_Parent () and PyOS_AfterFork_Child().

void PyOS_AfterFork ()
Function to update some internal state after a process fork; this should be called in the new process if the Python
interpreter will continue to be used. If a new executable is loaded into the new process, this function does not need
to be called.

W A 3.75 €] 9] : This function is superseded by Py0S_AfterFork_ Child().

int PyOS_CheckStack ()
Return true when the interpreter runs out of stack space. This is a reliable check, but is only avail-
able when USE_STACKCHECK is defined (currently on Windows using the Microsoft Visual C++ compiler).
USE_STACKCHECK will be defined automatically; you should never change the definition in your own code.

PyOS_sighandler_t PyOS_getsig (int i)
Return the current signal handler for signal i. This is a thin wrapper around either sigaction () or signal ().
Do not call those functions directly! PyOS_sighandler_t is a typedef alias for void (*) (int).

PyOS_sighandler_t PyOS_setsig (int i, PyOS_sighandler_t /)
Set the signal handler for signal i to be h; return the old signal handler. This is a thin wrapper around either
sigaction () or signal (). Do not call those functions directly! PyOS_sighandler_t is a typedef alias
for void (*) (int).

wchar_t* Py_DecodeLocale (const char* arg, size_t *size)
Decode a byte string from the locale encoding with the surrogateescape error handler: undecodable bytes are
decoded as characters in range U+DC80..U+DCFF. If a byte sequence can be decoded as a surrogate character,
escape the bytes using the surrogateescape error handler instead of decoding them.

Encoding, highest priority to lowest priority:
e UTF-8 on macOS and Android;
* UTF-8 if the Python UTF-8 mode is enabled;

e ASCITI if the LC_CTYPE localeis "C",nl_langinfo (CODESET) returns the ASCII encoding (or an
alias), and mbstowcs () and westombs () functions uses the TSO-8859~-1 encoding.

« the current locale encoding.

Return a pointer to a newly allocated wide character string, use PyMem_RawFree () to free the memory. If size
is not NULL, write the number of wide characters excluding the null character into *size

Return NULL on decoding error or memory allocation error. If size is not NULL, *sizeissetto (size_t) -1
on memory error or set to (size_t) —2 on decoding error.

Decoding errors should never happen, unless there is a bug in the C library.
Use the Py_EncodeLocale () function to encode the character string back to a byte string.
o B7]:

The PyUnicode_DecodeFSDefaultAndSize () and PyUnicode_DecodeLocaleAndSize ()
functions.

WA 350 F71.
WA 3.7 A ¥ 7 : The function now uses the UTF-8 encoding in the UTF-8 mode.

36 Chapter 6. 22 ¥]

The Python/C API, &] 8| A 3.7.17

char* Py_EncodeLocale (const wchar_t *fext, size_t *error_pos)
Encode a wide character string to the locale encoding with the surrogateescape error handler: surrogate characters
in the range U+DC80..U+DCEFF are converted to bytes 0x80..0xFF.

Encoding, highest priority to lowest priority:
e UTF-8 on macOS and Android;
e UTF-8 if the Python UTF-8 mode is enabled;

* ASCITI if the LC_CTYPE localeis "C",nl_langinfo (CODESET) returns the ASCIT encoding (or an
alias), and mbstowcs () and wcstombs () functions uses the ISO-8859-1 encoding.

* the current locale encoding.
The function uses the UTF-8 encoding in the Python UTF-8 mode.

Return a pointer to a newly allocated byte string, use PyMem Free () to free the memory. Return NULL on
encoding error or memory allocation error

If error_pos is not NULL, *error_pos is set to (size_t) -1 on success, or set to the index of the invalid
character on encoding error.

Use the Py_DecodeLocale () function to decode the bytes string back to a wide character string.
WA 3.7 A ¥ 7 : The function now uses the UTF-8 encoding in the UTF-8 mode.

o ®B7]:

The PyUnicode _EncodeFSDefault () and PyUnicode_EncodeLocale () functions.
WA 350 =7}

WA 3.7 A ¥ 7 : The function now supports the UTF-8 mode.

6.2 System Functions

These are utility functions that make functionality from the sy s module accessible to C code. They all work with the
current interpreter thread’s sy s module’s dict, which is contained in the internal thread state structure.

PyObject *PySys_GetObject (const char *name)
Return value: Borrowed reference. Return the object name from the sys module or NULL if it does not exist,
without setting an exception.

int PySys_SetObject (const char *name, PyObject *v)
Set name in the sy s module to v unless v is NULL, in which case name is deleted from the sys module. Returns 0
on success, —1 on error.

void PySys_ResetWarnOptions ()
Reset sys.warnoptions to an empty list. This function may be called prior to Py Tnitialize ().

void PySys_AddWarnOption (const wchar_t *s)
Append s to sys .warnoptions. This function must be called priorto Py_Tnitialize () in order to affect
the warnings filter list.

void PySys_AddWarnOptionUnicode (PyObject *unicode)
Append unicode to sys .warnoptions.

Note: this function is not currently usable from outside the CPython implementation, as it must be called prior to
the implicit import of warningsin Py_Initialize () to be effective, but can’t be called until enough of the
runtime has been initialized to permit the creation of Unicode objects.

6.2. System Functions 37

The Python/C API, &] B{ A 3.7.17

void PySys_SetPath (const wchar_t *path)
Set sys.path to a list object of paths found in path which should be a list of paths separated with the platform’
s search path delimiter (: on Unix, ; on Windows).

void PySys_WriteStdout (const char *format, ...)
Write the output string described by format to sy s . stdout. No exceptions are raised, even if truncation occurs
(see below).

format should limit the total size of the formatted output string to 1000 bytes or less — after 1000 bytes, the output
string is truncated. In particular, this means that no unrestricted “%s” formats should occur; these should be limited
using “%.<N>s” where <N> is a decimal number calculated so that <N> plus the maximum size of other formatted
text does not exceed 1000 bytes. Also watch out for “%f”, which can print hundreds of digits for very large numbers.

If a problem occurs, or sys . stdout is unset, the formatted message is written to the real (C level) stdout.

void PySys_WriteStderr (const char *format, ...)
As PySys_WriteStdout (), but write to sys.stderr or stderr instead.

void PySys_FormatStdout (const char *format, ...)
Function similar to PySys_WriteStdout() but format the message using PyUnicode_ FromFormatV () and
don’t truncate the message to an arbitrary length.

WA 320 F7}

void PySys_FormatStderr (const char *format, ...)
As PySys_ FormatStdout (), but write to sys . stderr or stderr instead.

B A 3.20 =7}

void PySys_AddXOption (const wchar_t *s)
Parse s as a set of —-X options and add them to the current options mapping as returned by
PySys_GetXOptions (). This function may be called priorto Py_Tnitialize ().

B A 3.20] =7}

PyObject *PySys_GetXOptions ()
Return value: Borrowed reference. Return the current dictionary of —X options, similarly to sys._xoptions.
On error, NULL is returned and an exception is set.

B & 3.20] &7}

6.3 Process Control

void Py_FatalError (const char *message)
Print a fatal error message and kill the process. No cleanup is performed. This function should only be invoked
when a condition is detected that would make it dangerous to continue using the Python interpreter; e.g., when the
object administration appears to be corrupted. On Unix, the standard C library function abort () is called which
will attempt to produce a core file.

void Py_Exit (int status)
Exit the current process. This calls Py _FinalizeEx () and then calls the standard C library function
exit (status).If Py FinalizeEx () indicates an error, the exit status is set to 120.

WA 3.69 A4 ¥ 7 : Errors from finalization no longer ignored.

int Py_AtExit (void (*func)())
Register a cleanup function to be called by Py FinalizeEx (). The cleanup function will be called with no
arguments and should return no value. At most 32 cleanup functions can be registered. When the registration is
successful, Py_AtExit () returns 0; on failure, it returns —1. The cleanup function registered last is called first.

38 Chapter 6. 22 ¥]

The Python/C API, &] 8| A 3.7.17

Each cleanup function will be called at most once. Since Python’s internal finalization will have completed before
the cleanup function, no Python APIs should be called by func.

PyObject* PyImport_ImportModule (const char *name)
Return value: New reference. This is a simplified interface to Py Import_ImportModuleEx () below, leaving
the globals and locals arguments set to NULL and level set to 0. When the name argument contains a dot (when
it specifies a submodule of a package), the fromlist argument is set to the list [' * '] so that the return value is
the named module rather than the top-level package containing it as would otherwise be the case. (Unfortunately,
this has an additional side effect when name in fact specifies a subpackage instead of a submodule: the submodules
specified in the package’s __all__ variable are loaded.) Return a new reference to the imported module, or
NULL with an exception set on failure. A failing import of a module doesn’t leave the module in sys .modules.

o B4t 4 AT YEES ASFULH

PyObject* PyImport_ImportModuleNoBlock (const char *name)
Return value: New reference. o] 84 pyImport_ImportModule ()& WA H & YUt

WA 33004 W ﬂﬂo%WEAﬂCﬂmiEﬂ1°i°d 37 SA ARAJFUTE 2
AqM3ww4,§%J o] R E EF N BE O FFo A Q7] ujo, o] 49

Sesae He dashA ey,

PyObject* PyImport_ImportModuleEx (const char *name, PyObject *globals, PyObject *locals, PyOb-
Ject *fromlist)
Return value: New reference. 252 YZE gUth W glo]H &4 import_ () & E3 7124 &
49 e 5 g

The return value is a new reference to the imported module or top-level package, or NULL with an exception set

on failure. Like for __import__ (), the return value when a submodule of a package was requested is normally
the top-level package, unless a non-empty fromlist was given.

AXE A= PyImport_ImportModule () A8 E2&4AS 2 & AAE A ATt

PyObject* PyImport_ImportModuleLevelObject (PyObject *name, PyObject *globals, PyObject *lo-
cals, PyObject *fromlist, int level) i
Return value: New reference. 28-S YXZE TUTh F__import__ () Tt o] d4&E I H 5&317]

wZoll, W stel W g __import_ () & F3l M 2 AW s Uth

The return value is a new reference to the imported module or top-level package, or NULL with an exception set
on failure. Like for __import__ (), the return value when a submodule of a package was requested is normally
the top-level package, unless a non-empty fromlist was given.

W7 3.30] 71

PyObject* PyImport_ImportModulelevel (const char *name, PyObject *globals, PyObject *locals, PyOb-
Ject *fromlist, int level)
Return value: New reference. PyImport_ImportModulelLevelObject ()%} B]$3}X] 2 name2 4
F= AH A UTF-8 & 3 gd g dyrh

B 3304 A : level®] 55 A2 HE 185 A FFU
PyObject* PyImport_Import (PyOhject *name)

Return value: New reference. 0| 212 AR “YEXLE = "5 T &3 1S5S AEHH o] 2d YTt (HA A
ol level 0= AL-&-3l=t], A2t dXLEE Eﬁ]"/} oh. A A9 _ builtins_ o] Y+=_ import__ ()
AL T2 GO} DLE S 0B L o vl g,

42 52FUD. o @A 270 442
A

=
ol g I A d2EE AT

6.4. 2 & I E 5} 39

The Python/C API, &] B{ A 3.7.17

PyObject* PyImport_ReloadModule (PyObject *m)
Return value: New reference. Reload a module. Return a new reference to the reloaded module, or NULL with an
exception set on failure (the module still exists in this case).

PyObject* PyImport_AddModuleObject (PyObject *name)
Return value: Borrowed reference. Return the module object corresponding to a module name. The name argument
may be of the form package .module. First check the modules dictionary if there’s one there, and if not, create
a new one and insert it in the modules dictionary. Return NULL with an exception set on failure.

Fi: o] L RES EESAU YZE oA ghFUTH EEo ofF REFHA Yo, Wl BE
AAE AA Ut REE AZLE 32| W PyImport_ ImportModule () o]t 1 WY ZF S AR
S Al L. named| Al B o2 FEH o] F o A H I 7| A F xR+ o] EAEHA] gkt REE o] A A
aFsuth
1w A .

B A 3.30]] 7}

PyObject* PyImport_AddModule (const char *name)
Return value: Borrowed reference. PyImport_AddModuleObject ()2} B]S23}A ¥H nameS FU I =
AA A UTF-82 A FJH EAF Y th

PyObject* PyImport_ExecCodeModule (const char *name, PyObject *co)

Return value: New reference. Given a module name (possibly of the form package.module) and a code
object read from a Python bytecode file or obtained from the built-in function compile (), load the mod-
ule. Return a new reference to the module object, or NULL with an exception set if an error occurred. name
is removed from sys.modules in error cases, even if name was already in sys.modules on entry to
PyImport_ExecCodeModule (). Leaving incompletely initialized modules in sy s .modules is dangerous,
as imports of such modules have no way to know that the module object is an unknown (and probably damaged
with respect to the module author’s intents) state.

250) _spec__7_loader__i o} AR A kkthd A2 oz ARP Uk ade 2oix
B2E9 _ loader_ (AAFIJuHA)E AAFI, 12X &40 SourceFileLoader & A2EHAZE
A 79511,]1-4.
209 .

EEY _ file oEFYHEE FE AAY co_filenamel ® A AFH Uk & F3icid,

__cached_ = AAF Yt

o) Bot olv] ATE HATHE RES
}

Al 223Ut 252 A 235t =9 WY
PyImport_ReloadModule ()& ZF A

h=4
name®] package .module 3219 4
o] A 3] RE=o] A 7] ek Ut

PyImport_ExecCodeModuleEx ()&} PyImport_ExecCodeModuleWithPathnames ()& FZ3}
Al)\] e}
H .

PyObject* PyImport_ExecCodeModuleEx (const char *name, PyObject *co, const char *pathname)
Return value: New reference. PyImport_ExecCodeModule ()3 FAFSHA g, B E AA| 9 _ file
o] E g HE = NULLO| o}y 29 pathname 2. 2 4 A Ut}
PyImport_ExecCodeModuleWithPathnames ()& ZFZ A A L.

PyObject* PyImport_ExecCodeModuleObject (PyObject *name, PyObject *co, PyObject *pathname, Py-

Object *cpathname)

Return value: New reference. PyImport_ExecCodeModuleEx ()2t FAFSHA B, EE A A 9
__cached__ 9| E2|FE£ NULLO| o} 2} cpathname 2. & AR F Ut Al 7}A] o 5 o] Zlo] A&

H+e Ayt
WA 330 7}

40 Chapter 6. 22 ¥]

The Python/C API, &] 8| A 3.7.17

PyObject* PyImport_ExecCodeModuleWithPathnames (const char *name, PyObject *co, const
char *pathname, const char *cpathname)

Return value: New reference. PyImport_ExecCodeModuleObject ()2} FAVSHA| 2, name, pathname 2
cpathname2 UTF-8 2 Q1 F Q¥ E 214 YU T pathname?] k] NULLZ A A H 7% o] Zko] cpathname
o A gFoksl=A] dotufe]ar Fth
B A 3.20] F7}.
HA33A HA: vlolE T = AEZNAZEHH 2 A2 E AAE W] imp. source_from_cache ()
& Agg,

long PyImport_GetMagicNumber ()
o] 1 u[o] £ 3L 521 (A% . pyc 72 o) 94 WF (magic number) & W o}, 54 95 ol
£ 2= 5do] A8 4vhol = o])% 20|k uko] = A 2 E A of Tk o2 Al 12 e,
WA 3304 WA A Al -1 WU T

const char * PyImport_GetMagicTag ()
PEP 3147 3 A mlolx uHlolE F & =3
implementation.cache_tag9 F}< {\lﬂ gk 4 911 o]
WA 320 71

PyObject* PyImport_GetModuleDict ()

Return value: Borrowed reference. 25 #]o] AF&5 = 9] (€Y sys.modules)E W33 o}
o] AL AH Z g Hutth EA 3t W ol YA AL

PyObject* PyImport_GetModule (PyObject *name)
Return value: New reference. Return the already imported module with the given name. If the module has not been
imported yet then returns NULL but does not set an error. Returns NULL and sets an error if the lookup failed.

B A 3.70] &7}

PyObject* PyImport_GetImporter (PyObject *path)
Return value: New reference. sys.path/pkg._ _path_ &%
/\
B

4 o
4

fus

=

path 913 sholt] A7 2 whash o,
U}, AR g

sys path_importer_cache S B AA Ad =% oA AMA] = A &grow 3}

< xiﬂbﬂ-" A= o] dAE w714 sys.path_hooksE B —]1“;‘4‘;} % o] glod Non eS_‘ i)
14‘3]', o] AL -S):Ex]'oﬂﬂl A& 71N 31T 7L o] B2 & EH G E 2 T flas s
sys.path_importer_cachedl] 235 7§ Futh 3t H AA ol hT M 2& F2E gyt

void _PyImport_Init ()

JZE fAYSS 2713t Wi A8 A

void PyImport_Cleanup ()
25 HelEs Hlayth Wi A8 4k

void _PyImport_Fini ()
QEE M AUZE v Th Y A8 DU

int PyImport_ImportFrozenModuleObject (PyObject *name)
Return value: New reference. name©] 2} 0] 52] = & & B & (frozen module) 2 Z =3t} AZ3514H 12,
EEo 32 ZotH 02, 27)3ol] Aofstd o9 & st -1& WUt REVH A3 S W X E
25l dM s Py Import ImportModule ()& AHESHIAIL. (BXE o] 5ol Fo A2
— o] Gt BE] o U] YEE H 9L W) oA =G h)
B A 3.30]] F7}.
WA 34004 M __file OEZREx= He BEd AFHA g5Uth

int PyImport_ImportFrozenModule (const char *name)

PyImport_ImportFrozenModuleObject ()&} H]S3FA 2 name-2 U Z = A X tfAl UTF-8 2 21
FEE FAE Y Yrth

6.4. 2E YXE 57 H

https://www.python.org/dev/peps/pep-3147

The Python/C API, &] B{ A 3.7.17

struct _frozen
°]Z-& freeze T2l E] (F}o] M &2 M E O Tools/ freeze/E FRIUAN) /M AR 22 Z RE

HAZHEE 98 724 B A0 YU Tnclude/ import .ho] Qi Aol BT 241 L)

struct _frozen {
const char *name;
const unsigned char *code;
int size;

bi

const struct _frozen* PyImport_FrozenModules
This pointer is initialized to point to an array of struct _frozen records, terminated by one whose members
are all NULL or zero. When a frozen module is imported, it is searched in this table. Third-party code could play
tricks with this to provide a dynamically created collection of frozen modules.

int PyImport_AppendInittab (const char *name, PyObject™* (*initfunc)(void)

7129 YA BE HolEd Bd BES 273U o] AL Pyimport. ExtendInlttab <%
A A A], HeleS 332 + gled 1% SEFUT Al BB L nameo| 2 o] B2
b NES JEENA 525 & 2713 42 AHS T

2 AdXE F £ oy, nitfunc -5 A
Py_ Inltlallze() ol T &30 oF P

struct _inittab
W BE S5 e dd F5E 7Este #RA. 4 FRA = dEZ e E
2713 FrE AFFYUh o5 ASCIIE 1T H —Erx}‘ﬁ%Mﬂ‘r ol M
PyImport_ExtendInittab ()3 @7 o]2] gt T2 A9 vj g A&t 7}
Ad5Uth 22 A= Include/import . hol| A o} o] 76-/] HUoh:

struct _inittab {
const char *name; /* ASCII encoded string */
PyObject* (*initfunc) (void);

}i

int PyImport_ExtendInittab (struct _inittab *newtab)
Add a collection of modules to the table of built-in modules. The newtab array must end with a sentinel entry which
contains NULL for the name field; failure to provide the sentinel value can result in a memory fault. Returns 0
on success or —1 if insufficient memory could be allocated to extend the internal table. In the event of failure, no
modules are added to the internal table. This should be called before Py Tnitialize ().

6.5 Hlol¥ mpiFa x ¢

o|e)8 £H L C TE7bnarshal BEN 2L o8 B2 A3te] 4URE ARz AU T4+ =S
Uk 485 AR ol HE 2 B9 U HE T Ut H AST 5 Ak 7857 A&
u}Fe 8 o] e & A ek v A8 = sk e vhol el RER do]of Tt

527k ghe 239 whol E7L WA 43 k.

The module supports two versions of the data format: version 0 is the historical version, version 1 shares interned strings in
the file, and upon unmarshalling. Version 2 uses a binary format for floating point numbers. Py_MARSHAL_VERSION
indicates the current file format (currently 2).

void PyMarshal _WriteLongToFile (long value, FILE *file, int version)
long A values file2 vFFSUTh valued] Z5HY 328 E T 71 &3 Ut); 7] long §9 279}
BA Lol version 3+ A2 YERE U T

This function can fail, in which case it sets the error indicator. Use PyErr_Occurred () to check for that.

42 Chapter 6. 22 ¥]

The Python/C API, &] 8| A 3.7.17

void PyMarshal_WriteObjectToFile (PyObject *value, FILE *file, int version)

sto) W A values file2 vHFEU T versionS 31 B A& VUERY YT
This function can fail, in which case it sets the error indicator. Use PyErr_Occurred () to check for that.

PyObject* PyMarshal_WriteObjectToString (PyObject *value, int version)
Return value: New reference. W}FH value %3S :T’-_?;]'?} HlolE Y AAE HbEU) versionS oY
B 42 e

e B4 E AHSSHE v g2 Al 942 5 gtk

long PyMarshal_ReadLongFromFile (FILE *file)

7] 913 A& r11ex 9] U ol E AEHONA C long 2 HHHFLTh o] F5F A§ 5 Long?] 7|2
=79t BAGol 324 £ ek 92 AUtk
o8] A, A3 o9 (EOFError) & A A8t -1 w33 ot
int PyMarshal_ReadShortFromFile (FILE *file)
97 918) A& FILE*9) Bl o] E] AE A C short & WAFTH o] 48 A-881W short o] 7] &
2719k FARC] 16H E gt o2 5 s uTh
ol Al, A 23k €] (EOFError) & A48l -1 W&y o
PyObject* PyMarshal_ReadObjectFromFile (FILE *file)
Return value: New reference. 217] 93] € FILE* 2] t]o]E] 2E Hoj|A] glo] W AAE ¥istsh o}
On error, sets the appropriate exception (EOFError, ValueError or TypeError) and returns NULL.
PyObject* PyMarshal_ReadLastObjectFromFile (FILE *file)
Return value: New reference. 2)7] 93] €& rFILE*S] o] g 2E YA sto|d AAE 935 o}
PyMarshal_ReadObjectFromFile ()2t &g, o] &4+ o= gtdo A AAE A ?%'g Zlolgtar
A9Ro 2N, st Hlol g Muelo] 43402 25 W 4 A1, Ao A B ute| =4 ¢ A
wzelol = tlolEolA o HH3srt A5 d 4 A5tk J+°‘°1W o A= g A &= Aolete
shalo] & 49t o] MYL G EHAIA L
On error, sets the appropriate exception (EOFError, ValueError or TypeError) and returns NULL.
PyObject* PyMarshal_ReadObjectFromString (const char *data, Py_ssize_t len)
Return value: New reference. data”} 7}2] 7] = len Vo] EE X851 vlo]E B 5 9] H| o] E] 2E oA

ol A A7) & Whahgh o).

On error, sets the appropriate exception (EOFError, ValueError or TypeError) and returns NULL.

6.6 Parsing arguments and building values

These functions are useful when creating your own extensions functions and methods. Additional information and exam-
ples are available in extending-index.

The first three of these functions described, PyArg ParseTuple (), PyArg ParseTupleAndKeywords (),
and PyArg_Parse (), all use format strings which are used to tell the function about the expected arguments. The
format strings use the same syntax for each of these functions.

6.6. Parsing arguments and building values 43

The Python/C API, &] B{ A 3.7.17

6.6.1 Parsing arguments

A format string consists of zero or more “format units.” A format unit describes one Python object; it is usually a single
character or a parenthesized sequence of format units. With a few exceptions, a format unit that is not a parenthesized
sequence normally corresponds to a single address argument to these functions. In the following description, the quoted
form is the format unit; the entry in (round) parentheses is the Python object type that matches the format unit; and the
entry in [square] brackets is the type of the C variable(s) whose address should be passed.

Strings and buffers

These formats allow accessing an object as a contiguous chunk of memory. You don’t have to provide raw storage for the
returned unicode or bytes area.

In general, when a format sets a pointer to a buffer, the buffer is managed by the corresponding Python object, and the
buffer shares the lifetime of this object. You won’t have to release any memory yourself. The only exceptions are es,
es#, et and et #.

However, when a Py_buf fer structure gets filled, the underlying buffer is locked so that the caller can subsequently
use the buffer even inside a Py BEGIN_ALLOW_THREADS block without the risk of mutable data being resized or
destroyed. As a result, you have to call PyBuffer Release () after you have finished processing the data (or in any
early abort case).

Unless otherwise stated, buffers are not NUL-terminated.

Some formats require a read-only bytes-like object, and set a pointer instead of a buffer structure. They work by checking
that the object’s PyBufferProcs.bf_releasebuffer field is NULL, which disallows mutable objects such as
bytearray.

ZF31: For all # variants of formats (s#, y#, etc.), the type of the length argument (int or Py_ssize_t) is con-
trolled by defining the macro PY_SSIZE_T_CLEAN before including Python. h. If the macro was defined, length is
aPy_ssize_t rather thanan int. This behavior will change in a future Python version to only support Py_ssize_t
and drop int support. It is best to always define PY_SSIZE_T_CLEAN.

s (str) [const char *] Convert a Unicode object to a C pointer to a character string. A pointer to an existing string
is stored in the character pointer variable whose address you pass. The C string is NUL-terminated. The Python
string must not contain embedded null code points; if it does, a ValueError exception is raised. Unicode objects
are converted to C strings using 'ut £-8"' encoding. If this conversion fails, a UnicodeError is raised.

ZF3: This format does not accept bytes-like objects. If you want to accept filesystem paths and convert them to
C character strings, it is preferable to use the O& format with PyUnicode FSConverter () as converter.

WA 3.59 4] ¥ A : Previously, TypeError was raised when embedded null code points were encountered in
the Python string.

s* (str or bytes-like object) [Py_buffer] This format accepts Unicode objects as well as bytes-like objects. It fills a
Py_buffer structure provided by the caller. In this case the resulting C string may contain embedded NUL
bytes. Unicode objects are converted to C strings using 'ut £-8"' encoding.

s# (str, read-only byfes-like object) [const char *, int or Py_ssize_t] Like s*, except that it doesn’t accept mu-
table objects. The result is stored into two C variables, the first one a pointer to a C string, the second one its length.
The string may contain embedded null bytes. Unicode objects are converted to C strings using 'ut £-8"' encoding.

z (str or None) [const char *] Like s, but the Python object may also be None, in which case the C pointer is set to
NULL.

44 Chapter 6. 22 ¥]

The Python/C API, &] 8| A 3.7.17

z* (str, bytes-like object or None) [Py_buffer] Like s*, but the Python object may also be None, in which case the
buf member of the Py_buf fer structure is set to NULL.

z# (str, read-only byfes-like object or None) [const char *, int or Py_ssize_t] Like s#, but the Python object
may also be None, in which case the C pointer is set to NULL.

y (read-only bytes-like object) [const char *] This format converts a bytes-like object to a C pointer to a character
string; it does not accept Unicode objects. The bytes buffer must not contain embedded null bytes; if it does, a
ValueError exception is raised.

WA 3.59 4 ¥ 7 : Previously, TypeError was raised when embedded null bytes were encountered in the bytes
buffer.

y* (bytes-like object) [Py_buffer] This variant on s* doesn’t accept Unicode objects, only bytes-like objects. This is
the recommended way to accept binary data.

y# (read-only bytes-like object) [const char *, int or Py_ssize_t] This variant on s# doesn’t accept Unicode ob-
jects, only bytes-like objects.

S (bytes) [PyBytesObject *] Requires that the Python object is a byt es object, without attempting any conversion.
Raises TypeError if the object is not a bytes object. The C variable may also be declared as PyObject *.

Y (bytearray) [PyByteArrayObject *] Requires that the Python object is a byt earray object, without attempting
any conversion. Raises TypeError if the objectis notabytearray object. The C variable may also be declared
as PyObject *.

u (str) [const Py_UNICODE *] Convert a Python Unicode object to a C pointer to a NUL-terminated buffer of Uni-
code characters. You must pass the address of a Py UNICODE pointer variable, which will be filled with the
pointer to an existing Unicode buffer. Please note that the width of a Py, UNICODE character depends on compi-
lation options (it is either 16 or 32 bits). The Python string must not contain embedded null code points; if it does,
aValueError exception is raised.

¥ A 3.5 4] ¥ 7 : Previously, TypeError was raised when embedded null code points were encountered in
the Python string.

Deprecated since version 3.3, will be removed in version 4.0: Part of the old-style Py UNICODE API; please
migrate to using PyUnicode_AsWideCharString ().

u# (str) [const Py_UNICODE *, int or Py_ssize_t] This variant on u stores into two C variables, the first one a
pointer to a Unicode data buffer, the second one its length. This variant allows null code points.

Deprecated since version 3.3, will be removed in version 4.0: Part of the old-style Py UNICODE API; please
migrate to using PyUnicode_AsWideCharString ().

Z (str or None) [const Py_UNICODE *] Like u, but the Python object may also be None, in which case the
Py_UNICODE pointer is set to NULL.

Deprecated since version 3.3, will be removed in version 4.0: Part of the old-style Py UNICODE API; please
migrate to using PyUnicode_AsWideCharString ().

Z# (str or None) [const Py_UNICODE *, int or Py_ssize_t] Like u#, but the Python object may also be
None, in which case the Py_ UNICODE pointer is set to NULL.

Deprecated since version 3.3, will be removed in version 4.0: Part of the old-style Py UNICODE API; please
migrate to using PyUnicode_AsWideCharString().

U (str) [PyObject *] Requires that the Python object is a Unicode object, without attempting any conversion. Raises
TypeError if the object is not a Unicode object. The C variable may also be declared as PyOb ject *.

w* (read-write bytes-like object) [Py_buffer] This format accepts any object which implements the read-write buffer
interface. It fills a Py_buf fer structure provided by the caller. The buffer may contain embedded null bytes.
The caller have to call PyBuffer Release () when it is done with the buffer.

6.6. Parsing arguments and building values 45

The Python/C API, &] B{ A 3.7.17

es (str) [const char *encoding, char **buffer] This variant on s is used for encoding Unicode into a character

buffer. It only works for encoded data without embedded NUL bytes.

This format requires two arguments. The first is only used as input, and must be a const char* which points
to the name of an encoding as a NUL-terminated string, or NULL, in which case 'ut £-8"' encoding is used. An
exception is raised if the named encoding is not known to Python. The second argument must be a char* *; the
value of the pointer it references will be set to a buffer with the contents of the argument text. The text will be
encoded in the encoding specified by the first argument.

PyArg ParseTuple () will allocate a buffer of the needed size, copy the encoded data into this buffer and
adjust *buffer to reference the newly allocated storage. The caller is responsible for calling PyMem_Free () to
free the allocated buffer after use.

et (str,bytes or bytearray) [const char *encoding, char **buffer] Same as e s except that byte string objects

are passed through without recoding them. Instead, the implementation assumes that the byte string object uses the
encoding passed in as parameter.

es# (str) [const char *encoding, char **buffer, int or Py_ssize_t *buffer_length] This variant on s# is used

for encoding Unicode into a character buffer. Unlike the e s format, this variant allows input data which contains
NUL characters.

It requires three arguments. The first is only used as input, and must be a const chaxr* which points to the name
of an encoding as a NUL-terminated string, or NULL, in which case 'ut £-8"' encoding is used. An exception is
raised if the named encoding is not known to Python. The second argument must be a char* *; the value of the
pointer it references will be set to a buffer with the contents of the argument text. The text will be encoded in the
encoding specified by the first argument. The third argument must be a pointer to an integer; the referenced integer
will be set to the number of bytes in the output buffer.

There are two modes of operation:

If *buffer points a NULL pointer, the function will allocate a buffer of the needed size, copy the encoded data
into this buffer and set *buffer to reference the newly allocated storage. The caller is responsible for calling
PyMem_Free () to free the allocated buffer after usage.

If *buffer points to a non-NULL pointer (an already allocated buffer), PyArg ParseTuple () will use this
location as the buffer and interpret the initial value of *buffer_length as the buffer size. It will then copy the
encoded data into the buffer and NUL-terminate it. If the buffer is not large enough, a ValueError will be set.

In both cases, *buffer_length is set to the length of the encoded data without the trailing NUL byte.

et# (str,bytes or bytearray) [const char *encoding, char **buffer, int or Py_ssize_t *buffer_length]

Same as e s # except that byte string objects are passed through without recoding them. Instead, the implementation
assumes that the byte string object uses the encoding passed in as parameter.

Numbers

b (int) [unsigned char] Convert a nonnegative Python integer to an unsigned tiny int, stored in a C unsigned

char.

B (int) [unsigned char] Convert a Python integer to a tiny int without overflow checking, stored in a C unsigned

char.

h (int) [short int] Convert a Python integer to a C short int.

H (int) [unsigned short int] Convert a Python integer to a C unsigned short int, without overflow checking.

i (int) [int] Convert a Python integer to a plain C int.

I (int) [unsigned int] Convert a Python integer to a C unsigned int, without overflow checking.

1 (int) [long int] Convert a Python integer toa C long int.

46

Chapter 6. 22 ¥]

The Python/C API, &] 8| A 3.7.17

k (int) [unsigned long] Convert a Python integer to a C unsigned 1long without overflow checking.

L (int) [long long] Convert a Python integer to a C long long.

K (int) [unsigned long long] Convert a Python integer to a C unsigned long long without overflow checking.
n (int) [Py_ssize_t] Convert a Python integertoa C Py_ssize_t.

c (bytes or bytearray of length 1) [char] Convert a Python byte, represented asabytes orbytearray object
of length 1, to a C char.

H A 3.39 4 M7 Allow bytearray objects.
C (str of length 1) [int] Convert a Python character, represented as a st r object of length 1, toa C int.
f (float) [float] Convert a Python floating point number to a C f1oat.
d (float) [double] Convert a Python floating point number to a C double.

D (complex) [Py_complex] Convert a Python complex number to a C Py_ comp1ex structure.

Other objects

O (object) [PyObject *] Store a Python object (without any conversion) in a C object pointer. The C program thus
receives the actual object that was passed. The object’s reference count is not increased. The pointer stored is not
NULL.

0! (object) [typeobject, PyObject *] Store a Python object in a C object pointer. This is similar to O, but takes two
C arguments: the first is the address of a Python type object, the second is the address of the C variable (of
type PyObject *) into which the object pointer is stored. If the Python object does not have the required type,
TypeError is raised.

O& (object) [converter, anything] Convert a Python object to a C variable through a converter function. This takes two
arguments: the first is a function, the second is the address of a C variable (of arbitrary type), converted to void
*. The converter function in turn is called as follows:

status = converter (object, address);

where object is the Python object to be converted and address is the void* argument that was passed to the
PyArg_Parse* () function. The returned status should be 1 for a successful conversion and 0 if the conversion
has failed. When the conversion fails, the converter function should raise an exception and leave the content of
address unmodified.

If the converter returns Py_CLEANUP_SUPPORTED, it may get called a second time if the argument parsing
eventually fails, giving the converter a chance to release any memory that it had already allocated. In this second
call, the object parameter will be NULL; address will have the same value as in the original call.

A 3.19] A4 W7 : Py_CLEANUP_SUPPORTED was added.

p (bool) [int] Tests the value passed in for truth (a boolean predicate) and converts the result to its equivalent C
true/false integer value. Sets the int to 1 if the expression was true and O if it was false. This accepts any valid
Python value. See truth for more information about how Python tests values for truth.

B A 3.30] F7}.

(items) (tuple) [matching-items] The object must be a Python sequence whose length is the number of format
units in items. The C arguments must correspond to the individual format units in items. Format units for sequences
may be nested.

It is possible to pass “long” integers (integers whose value exceeds the platform’s LONG_MAX) however no proper range
checking is done — the most significant bits are silently truncated when the receiving field is too small to receive the value
(actually, the semantics are inherited from downcasts in C — your mileage may vary).

6.6. Parsing arguments and building values 47

The Python/C API, &] B{ A 3.7.17

A few other characters have a meaning in a format string. These may not occur inside nested parentheses. They are:

| Indicates that the remaining arguments in the Python argument list are optional. The C variables corresponding to
optional arguments should be initialized to their default value — when an optional argument is not specified,
PyArg_ParseTuple () does not touch the contents of the corresponding C variable(s).

$ PyArg ParseTupleAndKeywords () only: Indicates that the remaining arguments in the Python argument list
are keyword-only. Currently, all keyword-only arguments must also be optional arguments, so | must always be
specified before $ in the format string.

H A 3.30] &7}

: The list of format units ends here; the string after the colon is used as the function name in error messages (the
“associated value” of the exception that PyArg ParseTuple () raises).

; The list of format units ends here; the string after the semicolon is used as the error message instead of the default
error message. : and ; mutually exclude each other.

Note that any Python object references which are provided to the caller are borrowed references; do not decrement their
reference count!

Additional arguments passed to these functions must be addresses of variables whose type is determined by the format
string; these are used to store values from the input tuple. There are a few cases, as described in the list of format units
above, where these parameters are used as input values; they should match what is specified for the corresponding format
unit in that case.

For the conversion to succeed, the arg object must match the format and the format must be exhausted. On success,
the PyArg_Parse* () functions return true, otherwise they return false and raise an appropriate exception. When the
PyArg_Parse* () functions fail due to conversion failure in one of the format units, the variables at the addresses
corresponding to that and the following format units are left untouched.

API Functions

int PyArg_ParseTuple (PyObject *args, const char *format, ...)
Parse the parameters of a function that takes only positional parameters into local variables. Returns true on success;
on failure, it returns false and raises the appropriate exception.

int PyArg_VaParse (PyObject *args, const char *format, va_list vargs)
Identical to PyArg ParseTuple (), except that it accepts a va_list rather than a variable number of arguments.

int PyArg_ParseTupleAndKeywords (PyObject *args, PyObject *kw, const char *format, char *key-

words[], ...)
Parse the parameters of a function that takes both positional and keyword parameters into local variables. The

keywords argument is a NULL-terminated array of keyword parameter names. Empty names denote positional-
only parameters. Returns true on success; on failure, it returns false and raises the appropriate exception.

W A 3.69 4 M7 : Added support for positional-only parameters.

int PyArg_VaParseTupleAndKeywords (PyObject *args, PyObject *kw, const char *format, char *key-
words(], va_list vargs)
Identical to PyArg ParseTupleAndKeywords (),except thatit accepts a va_list rather than a variable num-

ber of arguments.

int PyArg_ValidateKeywordArguments (PyObject *)
Ensure that the keys in the keywords argument dictionary are strings. This is only needed if
PyArg_ParseTupleAndKeywords () is not used, since the latter already does this check.

B & 3.20] &7}

int PyArg_Parse (PyObject *args, const char *format, ...)
Function used to deconstruct the argument lists of “old-style” functions — these are functions which use the

48 Chapter 6. 22 ¥]

The Python/C API, &] 8| A 3.7.17

METH_OLDARGS parameter parsing method, which has been removed in Python 3. This is not recommended
for use in parameter parsing in new code, and most code in the standard interpreter has been modified to no longer
use this for that purpose. It does remain a convenient way to decompose other tuples, however, and may continue
to be used for that purpose.

int PyArg_UnpackTuple (PyObject *args, const char *name, Py_ssize_t min, Py_ssize_t max, ...)

A simpler form of parameter retrieval which does not use a format string to specify the types of the arguments.
Functions which use this method to retrieve their parameters should be declared as METH_VARARGS in function or
method tables. The tuple containing the actual parameters should be passed as args; it must actually be a tuple. The
length of the tuple must be at least min and no more than max; min and max may be equal. Additional arguments
must be passed to the function, each of which should be a pointer to a PyOb ject * variable; these will be filled
in with the values from args; they will contain borrowed references. The variables which correspond to optional
parameters not given by args will not be filled in; these should be initialized by the caller. This function returns
true on success and false if args is not a tuple or contains the wrong number of elements; an exception will be set
if there was a failure.

This is an example of the use of this function, taken from the sources for the _weakre f helper module for weak
references:

static PyObject *
weakref_ref (PyObject *self, PyObject *args)
{

PyObject *object;

PyObject *callback = NULL;

PyObject *result = NULL;

if (PyArg_UnpackTuple (args, "ref", 1, 2, &object, &callback)) {
result = PyWeakref_NewRef (object, callback);
}

return result;

The call to PyArg UnpackTuple () in this example is entirely equivalent to this call to
PyArg_ParseTuple():

PyArg_ParseTuple (args, "O|O:ref", &object, &callback)

6.6.2 Building values

PyObject* Py_BuildValue (const char *format, ...)

Return value: New reference. Create a new value based on a format string similar to those accepted by the
PyArg_Parse* () family of functions and a sequence of values. Returns the value or NULL in the case of
an error; an exception will be raised if NULL is returned.

Py _BuildValue () does not always build a tuple. It builds a tuple only if its format string contains two or more
format units. If the format string is empty, it returns None; if it contains exactly one format unit, it returns whatever
object is described by that format unit. To force it to return a tuple of size O or one, parenthesize the format string.

When memory buffers are passed as parameters to supply data to build objects, as for the s and s# formats,
the required data is copied. Buffers provided by the caller are never referenced by the objects created by
Py_BuildValue (). In other words, if your code invokes malloc () and passes the allocated memory to
Py_BuildValue (), your code is responsible for calling free () for that memory once Py_BuildValue ()
returns.

In the following description, the quoted form is the format unit; the entry in (round) parentheses is the Python
object type that the format unit will return; and the entry in [square] brackets is the type of the C value(s) to be
passed.

6.6. Parsing arguments and building values 49

The Python/C API, &] B{ A 3.7.17

The characters space, tab, colon and comma are ignored in format strings (but not within format units such as s#).
This can be used to make long format strings a tad more readable.

s (str or None) [const char *] Convert a null-terminated C string to a Python str object using 'ut£-8"'
encoding. If the C string pointer is NULL, None is used.

s# (str or None) [const char *, int or Py_ssize_t] Convert a C string and its length to a Python st r ob-
jectusing 'ut £-8"' encoding. If the C string pointer is NULL, the length is ignored and None is returned.

y (bytes) [const char *] This converts a C string to a Python bytes object. If the C string pointer is NULL,
None is returned.

y# (bytes) [const char *, int or Py_ssize_t] This converts a C string and its lengths to a Python object. If
the C string pointer is NULL, None is returned.

z (str or None) [const char *] Same as s.
z# (str or None) [const char *, int or Py_ssize_t] Same as s#.

u (str) [const wchar_t *] Convert a null-terminated wchar_t buffer of Unicode (UTF-16 or UCS-4) data to
a Python Unicode object. If the Unicode buffer pointer is NULL, None is returned.

u# (str) [const wchar_t *, int or Py_ssize_t] Convert a Unicode (UTF-16 or UCS-4) data buffer and its
length to a Python Unicode object. If the Unicode buffer pointer is NULL, the length is ignored and None is
returned.

U (str or None) [const char *] Same as s.

U# (str or None) [const char *, int or Py_ssize_t] Same as s#.

i (int) [int] Convert a plain C int to a Python integer object.

b (int) [char] Convert a plain C char to a Python integer object.

h (int) [short int] Convert a plain C short int to a Python integer object.

1 (int) [long int] Converta C 1long int to a Python integer object.

B (int) [unsigned char] Converta C unsigned char to a Python integer object.

H (int) [unsigned short int] Converta C unsigned short int toa Python integer object.

I (int) [unsigned int] Convert a C unsigned int to a Python integer object.

k (int) [unsigned long] Convert a C unsigned long to a Python integer object.

L (int) [long long] Converta C long long to a Python integer object.

K (int) [unsigned long long] Converta C unsigned long long to a Python integer object.

n (int) [Py_ssize_t] Converta C Py_ssize_t to a Python integer.

c (bytes of length 1) [char] Convert a C int representing a byte to a Python bytes object of length 1.
C (str of length 1) [int] Convert a C int representing a character to Python st r object of length 1.
d (float) [double] Convert a C double to a Python floating point number.

f (float) [float] Converta C float to a Python floating point number.

D (complex) [Py_complex *] Converta C Py_complex structure to a Python complex number.

O (object) [PyObject *] Pass a Python object untouched (except for its reference count, which is incremented by
one). If the object passed in is a NULL pointer, it is assumed that this was caused because the call producing
the argument found an error and set an exception. Therefore, Py BuildValue () will return NULL but
won’t raise an exception. If no exception has been raised yet, SystemError is set.

S (object) [PyObject *] Same as O.

50

Chapter 6. 22 ¥]

The Python/C API, &] 8| A 3.7.17

N (object) [PyObject *] Same as O, except it doesn’t increment the reference count on the object. Useful when
the object is created by a call to an object constructor in the argument list.

O& (object) [converter, anything] Convert anything to a Python object through a converter function. The function
is called with anything (which should be compatible with void *) as its argument and should return a “new”
Python object, or NULL if an error occurred.

(items) (tuple) [matching-items] Convert a sequence of C values to a Python tuple with the same number
of items.

[items] (1ist) [matching-items] Convert a sequence of C values to a Python list with the same number of
items.

{items} (dict) [matching-items] Convert a sequence of C values to a Python dictionary. Each pair of con-
secutive C values adds one item to the dictionary, serving as key and value, respectively.

If there is an error in the format string, the SystemError exception is set and NULL returned.

PyObject* Py_VaBuildValue (const char *format, va_list vargs)
Return value: New reference. ldentical to Py_BuildValue (), except that it accepts a va_list rather than a
variable number of arguments.

6.7 2 W3ty Zuj g
SA BT 2R EAL DL 9D B4

Q

int PyOS_snprint £ (char *str, size_t size, const char *format, ...)
E9 FAED formar 3 57+ Aol we} sice vholEE WA FES wrx EHPUTh G2 R
H 0] A snprintf(2)E BHAAAL

int PyOS_vsnprint £ (char *str, size_t size, const char *format, va_list va)
EW AL format 3 7FH A AL 5 vaol] Wt size WOl EE @A AEF w2 ST 2
W54 9 o)A vsnprintf(2)E E/“ Al L

PyOS_snprintf ()%} PyOS vsnprintf ()= Z&F C gtolB# 8] &4 snprintf () & vsnprintf () &
AU 259 BAe A 2A0A B2 C HeslABHA Gt 2o ABE 5L g A9
e},

2l 5= WhEE A] st Fsize-1]0] B/ '\0 " o] H =5 U Th strof] size HFo] E(F3 '\ 0" 23 E A 274
ASULEL F 4 2F str = NULL, size > 0 ¥ format != NULLS 73 ch

If the platform doesn’t have vsnprintf () and the buffer size needed to avoid truncation exceeds size by more than
512 bytes, Python aborts with a Py FatalError ().

ol k=l W Fh ()& Tt 2ol s A F of o it}
e 0 <= rv < sizegdu], &3 A3 o AFZI oW rvEX7}Fstroll 7)1 S5 QST #rv]] T3] '\0!
aho] £ A 9)),
e rv >= size Qd U, &8 o AP AFSEH rv + 1 vHo]EY B H 7} FH 3T} st *size-
H%ﬂﬂWW“HW
s v < 0D, W7 Ao Dol eri]ch” oful st Hsize-112 *\0" 0] A gk, stre] Vpu) A &= A 2
= A ?%’S‘%E‘r ol2le] A& A2 S FHFol wek ohE Yt
e Bt 2AY SPA EALeNA 242 AL AF T Lk
double PyOS_string_to_double (const char *s, char **endptr, PyObject *overflow_exception)
274el 5 € double WS, U3} A stold 9§ WAN YU 585 C A Ae o7}
Ao} 3 ZwS 71A 4 Qv AL A et go]l MY float () BRI} &L= B2

;gzgoﬂq] gqr/} B30 F) iﬂ]“d)ri%l’“%l‘%‘?}

6.7. 2t &3

Kl

ujj € 51

M

The Python/C API, &] B{ A 3.7.17

char*

endptro] NULLO| |, AA] £AE& Wagch £Ad o] 5 253 229 a2l oy
ValueErrorS WA 7] -1.0L HF&-sh .

endptr ©] NULL®] obU ™, 759k oF B2 %%P% = W&}l *endptro] MEH X 2 A WA £A-=
7He 7| =5 AUtk 24 b3t @ o] of |, *endptr

O 27| A AWET RE A4 4 AZ]‘-/] FaET
o] At A FE 718 7| £ & A A3}, Va lueErrorE QA 71 31 02 Wkhehyth
s 7} floatol]l A stz ol U7 2 gk Uekd of (& S0f, o8] SAFolA "1e500"7F 29 AL
%]141:}) overflow exceptionﬂNULLO]tﬂ (A A3 259} 8H) Py_HUGE_VALES HF361, o H
del= dA3A Futh 23R oW, overflow_exception 30| o 9] AAE 7}e] A oF
Ut 2 s DAY -1.08 HEF UL F A B, HEE g oY A iR EAE
7}el 7| =5 *endptr<& A Yt
HE S o ol# 7SS (S Sl WlRe] F= o)), AZ % sfold & At -1.08
g o)

WA 310 F7F

PyOS_double_to_string (double val, char format_code, int precision, int flags, int *ptype)
A2 format_code, precision X flagsE A& 35to] double valS FA1YE 2 HES T},

format_code="'e','E','£','F', 'g", 'G" 'r' F ookt 'r' o] AS, Al FH precision
2 00]ojof st FAHULE 'r' W IEE FF repr () FHS AZFYTH

flags can be zero or more of the values Py_DTSF_SIGN, Py_DTSF_ADD_DOT_0, or Py_DTSF_ALT, or-ed
together:

C
A

e Py_DTSF_SIGN means to always precede the returned string with a sign character, even if val is non-
negative.

e Py_DTSF_ADD_DOT_0 means to ensure that the returned string will not look like an integer.

e Py_DTSF_ALT means to apply “alternate” formatting rules. See the documentation for the
PyOS_snprintf () "4 specifier for details.

If ptype is non-NULL, then the value it points to will be set toone of Py_DTST_FINITE,Py DTST_INFINITE,
or Py_DTST_NAN, signifying that val is a finite number, an infinite number, or not a number, respectively.

The return value is a pointer to buffer with the converted string or NULL if the conversion failed. The caller is
responsible for freeing the returned string by calling PyMem_ Free ().

WA 310 F7h

int PyOS_stricmp (const char *s/, const char *s2)

B A 7R G BAL WAL o] Pt ih F

27 FEgUY

frt

FA S AU A2 8 stremp () & A9

int PyOS_strnicmp (const char *s/, const char *s2, Py_ssize_t size)

UE BA TR Qe EA W o] T tla EAE PARTE e A9 S strnemp () 9 7]
A A5 P

52

Chapter 6. 22 ¥]

The Python/C API, &] 8| A 3.7.17

6.8 2| ¥ A

PyObject* PyEval_GetBuiltins ()
Return value: Borrowed reference. @A) A3 Z# do| L} A Ad F9 =g do] glod A Aejo
A H Z 2] H] builtins 8] E A 2] & RHEHFTh

PyObject* PyEval_GetLocals ()
Return value: Borrowed reference. Return a dictionary of the local variables in the current execution frame, or
NULL if no frame is currently executing.

PyObject* PyEval_GetGlobals ()
Return value: Borrowed reference. Return a dictionary of the global variables in the current execution frame, or
NULL if no frame is currently executing.

PyFrameObject* PyEval_GetFrame ()
Return value: Borrowed reference. Return the current thread state’s frame, which is NULL if no frame is currently
executing.

int PyFrame_GetLineNumber (PyFrameObject *frame)
frameo] A A3 T & WITE WA Th

const char* PyEval_GetFuncName (PyObject *func)
func7} @<, e e AT AA funcd] o] &2 REbStaL, TR A 4O W func] B9 ol 5&
whakgh o,

const char* PyEval_GetFuncDesc (PyObject *func)
func®)] ol uhel A BAHE S wkekghy ok ukEk gholl & 94 = W A =9 ()7, ” constructor”, * instance”
2 ” object” 7} ZEH Utk PyEval GetFuncName () 2] A3} o] o] 0] funco] A o] HUt},

int PyCodec_Register (PyObject *search_function)
Aze =Y 24§48 S
Ragoz, ob 2N A $Yrhd, encodings 71X E ZEF] B4 A F
F=o] 9 =% Ptk
int PyCodec_KnownEncoding (const char *encoding)
#1738 encodingol N3] 558 79 o] Q=R ol whek 1 o]t 0 WU T o B4t P4 B FUT

PyObject* PyCodec_Encode (PyObject *object, const char *encoding, const char *errors)
Return value: New reference. & XF 78] 714k 91 71 APL

N

object is passed through the encoder function found for the given encoding using the error handling method defined
by errors. errors may be NULL to use the default method defined for the codec. Raises a LookupError if no
encoder can be found.

PyObject* PyCodec_Decode (PyObject *object, const char *encoding, const char *errors)
Return value: New reference. Y XF 78] 719k] 79 APL

object is passed through the decoder function found for the given encoding using the error handling method defined
by errors. errors may be NULL to use the default method defined for the codec. Raises a LookupError if no
encoder can be found.

®

6.8. 24X 53

4

The Python/C API, &] B{ A 3.7.17

6.9.1 T4 x3] API

In the following functions, the encoding string is looked up converted to all lower-case characters, which makes encodings
looked up through this mechanism effectively case-insensitive. If no codec is found, a KeyError is set and NULL
returned.

PyObject* PyCodec_Encoder (const char *encoding)
Return value: New reference. 5] A encoding®l] t) 3t Q1 7 -5 714 F Ut}

PyObject* PyCodec_Decoder (const char *encoding)
Return value: New reference. 591 A encoding?l] | 3+ t] 29 &5 714 3t}

PyObject* PyCodec_IncrementalEncoder (const char *encoding, const char *errors)
Return value: New reference. XA A encoding®l] ™} 3t IncrementalEncoder AR E 7}A4 3 Yt}

PyObject* PyCodec_IncrementalDecoder (const char *encoding, const char *errors)
Return value: New reference. A 7 H encoding©ll o 3+ IncrementalDecoder AR S 7FA] Ut}

PyObject* PyCodec_StreamReader (const char *encoding, PyObject *stream, const char *errors)
Return value: New reference. XA A encoding®l] W 3t St reamReader W E 8] S5 743t}

PyObject* PyCodec_StreamWriter (const char *encoding, PyObject *stream, const char *errors)
Return value: New reference. 2| %3 encoding®l| | ¢t StreamWriter M E 2] & 7FAFUTh

6.9.2 fUZE 7Y oy 27§ 552 API

int PyCodec_RegisterError (const char *name, P»Object *error)
3 A name ©.% o) 2] A2 2 B4 arorE 52T mH o] ATPY 4 gl BANIZL 4
R vtolELS ¢ sta, 915 ‘:/1’4 e f?} Ee=d nameOl error M 7} M2 A F = = wf o]

W2 3o 9 AR E UnicodeEncodeError, UnicodeDecodeError K =
UnicodeTranslateError? QAAEAE WolEo]=d, A7 5+ X]"/]’ HFo] E o] Al A~
o ol Se] AR ZAA| A 2z Ao] e ARE Bl AeLITh (o] ARE 2E S T Unicode

Exception ObjectsS FZ3FA| 2). WL _'_o]z] o 9] & WA A 7] A T':Xﬂ 7F = Al A 29 A ek
2 el 2 OA Aok B 2 Z AL ABHE AT AN T I
H]—p:]—oH o]: ‘61—141;].

P

PyObject* PyCodec_LookupError (const char *name)
Return value: New reference. Lookup the error handling callback function registered under name. As a special case
NULL can be passed, in which case the error handling callback for “strict” will be returned.

2
o =

mlk

PyObject* PyCodec_StrictErrors (PyObject *exc)
Return value: Always NULL. excE o] 2] 2 A A A Ut}

PyObject* PyCodec_IgnoreErrors (PyObject *exc)
Return value: New reference. 58 ¢8-S AVH 1, FUIZE A HE FA T}

PyObject* PyCodec_ReplaceErrors (PyObject *exc)
Return value: New reference. I = Q179 o] & ? Y U+FFFDE X &3t

PyObject* PyCodec_XMLCharRefReplaceErrors (PyObject *exc)
Return value: New reference. S+ = QAT o 2] & XML £} 222 %]

.

r f

PyObject* PyCodec_BackslashReplaceErrors (PyObject *exc)
Return value: New reference. U T E QT Y o 2] 2 W L) A] o] AFA o] = (\x, \u 2 \U) E X33}

54 Chapter 6. 22 ¥]

The Python/C API, &] 8| A 3.7.17

PyObject* PyCodec_NameReplaceErrors (PyObject *exc)
Return value: New reference. S+ TE QT Y & & \N{...} o]aA o]z Z XZsh T}

WA 3.50] F7}.

6.9. 29 5249 29 3t 55

The Python/C API, &] B{ A 3.7.17

56 Chapter 6. 22 ¥]

CHAPTER /

& AA A

Ay

o) o] g A Y} FHSA, L BANT FH AA Y ()& Bo), BE £ Y wE BE
A2) kol W AR A5 3 AU A5 A B A Bl A8 T, shol 4 o 2] 74 A g o,
PyList_New() % WEYA W, 5o o} 4 NULLe] ofd o ® ABH A e e 2= AR g} o, A=

mﬁi'

il

1:1>

27135 A 2 AA o A= o] FFE AT T Yt

7.1 Object Protocol

PyObject* Py_NotImplemented
The Not Implemented singleton, used to signal that an operation is not implemented for the given type combi-
nation.

Py RETURN_NOTIMPLEMENTED
Properly handle returning Py_Not Implemented from within a C function (that is, increment the reference
count of NotImplemented and return it).

int PyObject_Print (PyObject *o, FILE *fp, int flags)
Print an object o, on file fp. Returns —1 on error. The flags argument is used to enable certain printing options.
The only option currently supported is Py_PRINT_RAW; if given, the str () of the object is written instead of
the repr ().

int PyObject_HasAttr (PyObject *o, PyObject *attr_name)
Returns 1 if o has the attribute attr_name, and 0 otherwise. This is equivalent to the Python expression
hasattr (o, attr_name). This function always succeeds.

Note that exceptions which occur while calling __getattr__ () and __getattribute__ () methods will
get suppressed. To get error reporting use PyObject_GetAttr () instead.

int PyObject_HasAttrString (PyObject *o, const char *attr_name)
Returns 1 if o has the attribute attr_name, and 0 otherwise. This is equivalent to the Python expression
hasattr (o, attr_name). This function always succeeds.

57

The Python/C API, &] B{ A 3.7.17

Note that exceptions which occur while calling _ getattr_ () and __getattribute__ ()
methods and creating a temporary string object will get suppressed. To get error reporting use
PyObject_GetAttrString () instead.

PyObject* PyObject_GetAttr (PyObject *o, PyObject *attr_name)
Return value: New reference. Retrieve an attribute named attr_name from object o. Returns the attribute value on
success, or NULL on failure. This is the equivalent of the Python expression o.attr_name.

PyObject* PyObject_GetAttrString (PyObject *o, const char *attr_name)
Return value: New reference. Retrieve an attribute named attr_name from object o. Returns the attribute value on
success, or NULL on failure. This is the equivalent of the Python expression o.attr_name.

PyObject* PyObject_GenericGetAttr (PyObject *o, PyObject *name)
Return value: New reference. Generic attribute getter function that is meant to be put into a type object’s
tp_getattro slot. It looks for a descriptor in the dictionary of classes in the object’s MRO as well as an
attribute in the object’s ___dict__ (if present). As outlined in descriptors, data descriptors take preference over
instance attributes, while non-data descriptors don’t. Otherwise, an AttributeError is raised.

int PyObject_SetAttr (PyObject *o, PyObject *attr_name, PyObject *v)
Set the value of the attribute named attr_name, for object o, to the value v. Raise an exception and return —1 on
failure; return O on success. This is the equivalent of the Python statement o.attr_name = wv.

If v is NULL, the attribute is deleted, however this feature is deprecated in favour of using
PyObject_DelAttr ().

int PyObject_SetAttrString (PyObject *o, const char *attr_name, PyObject *v)
Set the value of the attribute named attr_name, for object o, to the value v. Raise an exception and return —1 on
failure; return O on success. This is the equivalent of the Python statement o.attr_name = wv.

If v is NULL, the attribute is deleted, however this feature is deprecated in favour of using
PyObject_DelAttrString().

int PyObject_GenericSetAttr (PyObject *o, PyObject *name, PyObject *value)
Generic attribute setter and deleter function that is meant to be put into a type object’s tp_setattro slot. It
looks for a data descriptor in the dictionary of classes in the object’s MRO, and if found it takes preference over
setting or deleting the attribute in the instance dictionary. Otherwise, the attribute is set or deleted in the object’s
__dict__ (if present). On success, O is returned, otherwise an At t ributeError is raised and -1 is returned.

int PyObject_DelAttr (PyObject *o, PyObject *attr_name)
Delete attribute named attr_name, for object 0. Returns —1 on failure. This is the equivalent of the Python statement
del o.attr_name.

int PyObject_DelAttrString (PyObject *o, const char *attr_name)
Delete attribute named attr_name, for object 0. Returns —1 on failure. This is the equivalent of the Python statement
del o.attr_name.

PyObject* PyObject_GenericGetDict (PyObject *o, void *context)
Return value: New reference. A generic implementation for the getter of a ___dict___ descriptor. It creates the
dictionary if necessary.

WA 330 7}

int PyObject_GenericSetDict (PyObject *o, PyObject *value, void *context)
A generic implementation for the setter of a ___dict___ descriptor. This implementation does not allow the
dictionary to be deleted.

W7 3.30] 7}

PyObject* PyObject_RichCompare (PyObject *ol, PyObject *02, int opid)
Return value: New reference. Compare the values of o/ and 02 using the operation specified by opid, which must
be one of Py_LT, Py_LE, Py_EQ, Py_NE, Py_GT, or Py_GE, corresponding to <, <=, ==, !=, > or >=

58 Chapter 7. 3/ A A

o]N-

The Python/C API, &] 8| A 3.7.17

respectively. This is the equivalent of the Python expression o1 op 02, where op is the operator corresponding
to opid. Returns the value of the comparison on success, or NULL on failure.

int PyObject_RichCompareBool (PyObject *ol, PyObject *02, int opid)
Compare the values of o/ and 02 using the operation specified by opid, which must be one of Py_LT, Py_LE,
Py_EQ,Py_NE, Py_GT, or Py_GE, corresponding to <, <=, ==, ! =, >, or >= respectively. Returns —1 on error,
0 if the result is false, 1 otherwise. This is the equivalent of the Python expression o1 op 02, where op is the
operator corresponding to opid.

ZF31: If ol and 02 are the same object, PyObject_RichCompareBool () will always return 1 for Py_EQ and 0
for Py_NE.

PyObject* PyObject_Repr (PyObject *0)
Return value: New reference. Compute a string representation of object o. Returns the string representation on
success, NULL on failure. This is the equivalent of the Python expression repr (o). Called by the repr ()
built-in function.

¥ A 3.4 4] ¥ 7 : This function now includes a debug assertion to help ensure that it does not silently discard
an active exception.

PyObject* PyObject_ASCII (PyObject *o)
Return value: New reference. As PyOb ject_Repr (),compute a string representation of object o, but escape the
non-ASCII characters in the string returned by PyObject_Repr () with \x, \u or \U escapes. This generates
a string similar to that returned by PyOb ject_Repr () in Python 2. Called by the ascii () built-in function.

PyObject* PyObject_Str (PyObject *o)
Return value: New reference. Compute a string representation of object 0. Returns the string representation on
success, NULL on failure. This is the equivalent of the Python expression st r (o). Called by the str () built-in
function and, therefore, by the print () function.

¥ A 3.40] 4] ¥ 7 : This function now includes a debug assertion to help ensure that it does not silently discard
an active exception.

PyObject* PyObject_Bytes (PyObject *0)
Return value: New reference. Compute a bytes representation of object 0. NULL is returned on failure and a
bytes object on success. This is equivalent to the Python expression bytes (o), when o is not an integer. Unlike
bytes (o), a TypeError is raised when o is an integer instead of a zero-initialized bytes object.

int PyObject_IsSubclass (PyObject *derived, PyObject *cls)
Return 1 if the class derived is identical to or derived from the class cls, otherwise return 0. In case of an error,
return —1.

If cls is a tuple, the check will be done against every entry in cls. The result will be 1 when at least one of the checks
returns 1, otherwise it will be 0.

If cls hasa ___subclasscheck__ () method, it will be called to determine the subclass status as described
in PEP 3119. Otherwise, derived is a subclass of cls if it is a direct or indirect subclass, i.e. contained in cls.
mro

Normally only class objects, i.e. instances of type or a derived class, are considered classes. However, objects
can override this by havinga __bases___ attribute (which must be a tuple of base classes).

int PyObject_IsInstance (PyObject *inst, PyObject *cls)
Return 1 if inst is an instance of the class cls or a subclass of cls, or 0 if not. On error, returns —1 and sets an
exception.

If cls is a tuple, the check will be done against every entry in cls. The result will be 1 when at least one of the checks
returns 1, otherwise it will be 0.

7.1. Object Protocol 59

https://www.python.org/dev/peps/pep-3119

The Python/C API, &] B{ A 3.7.17

If clshasa___instancecheck__ () method, it will be called to determine the subclass status as described in
PEP 3119. Otherwise, inst is an instance of cls if its class is a subclass of cls.

An instance inst can override what is considered its class by havinga ___class___ attribute.

An object cls can override if it is considered a class, and what its base classes are, by havinga ___bases___ attribute
(which must be a tuple of base classes).

int PyCallable_Check (PyObject *0)
Determine if the object o is callable. Return 1 if the object is callable and O otherwise. This function always
succeeds.

PyObject* PyObject_Call (PyObject *callable, PyObject *args, PyObject *kwargs)
Return value: New reference. Call a callable Python object callable, with arguments given by the tuple args, and
named arguments given by the dictionary kwargs.

args must not be NULL, use an empty tuple if no arguments are needed. If no named arguments are needed, kwargs
can be NULL.

Return the result of the call on success, or raise an exception and return NULL on failure.
This is the equivalent of the Python expression: callable (*args, **kwargs).

PyObject* PyObject_CallObject (PyObject *callable, PyObject *args)
Return value: New reference. Call a callable Python object callable, with arguments given by the tuple args. If no
arguments are needed, then args can be NULL.

Return the result of the call on success, or raise an exception and return NULL on failure.
This is the equivalent of the Python expression: callable (*args).

PyObject* PyObject_CallFunction (PyObject *callable, const char *format, ...)
Return value: New reference. Call a callable Python object callable, with a variable number of C arguments. The C
arguments are described using a Py__BuildValue () style format string. The format can be NULL, indicating
that no arguments are provided.

Return the result of the call on success, or raise an exception and return NULL on failure.

This is the equivalent of the Python expression: callable (*args).

Note that if you only pass PyObject *args, PyObject_CallFunctionObjArgs () isafaster alternative.
W A 3.4 4 ¥ 7 : The type of format was changed from char *.

PyObject* PyObject_CallMethod (PyObject *obj, const char *name, const char *format, ...)
Return value: New reference. Call the method named name of object obj with a variable number of C arguments.
The C arguments are described by a Py BuildValue () format string that should produce a tuple.

The format can be NULL, indicating that no arguments are provided.

Return the result of the call on success, or raise an exception and return NULL on failure.

This is the equivalent of the Python expression: obj.name (argl, arg2, ...).

Note that if you only pass PyObject *args, PyObject_CallMethodObjArgs () is a faster alternative.
WA 3.4 A *H 7 : The types of name and format were changed from char *.

PyObject* PyObject_CallFunctionObjArgs (PyObject *callable, ..., NULL)
Return value: New reference. Call a callable Python object callable, with a variable number of PyObject *
arguments. The arguments are provided as a variable number of parameters followed by NULL.

Return the result of the call on success, or raise an exception and return NULL on failure.

This is the equivalent of the Python expression: callable (argl, arg2, ...).

60 Chapter 7. 34 A A%

https://www.python.org/dev/peps/pep-3119

The Python/C API, &] 8| A 3.7.17

PyObject* PyObject_CallMethodObjArgs (PyObject *obj, PyObject *name, ..., NULL)
Return value: New reference. Calls a method of the Python object obj, where the name of the method is given as a
Python string object in name. It is called with a variable number of PyObject * arguments. The arguments are
provided as a variable number of parameters followed by NULL.

Return the result of the call on success, or raise an exception and return NULL on failure.

Py_hash_t PyObject_Hash (PyObject *0)
Compute and return the hash value of an object 0. On failure, return —1. This is the equivalent of the Python
expression hash (o) .

WA 3.20 4 ¥ 7 : The return type is now Py_hash_t. This is a signed integer the same size as Py_ssize_t.

Py_hash_t PyObject_HashNotImplemented (PyObject *o0)
Seta TypeError indicating that t ype (o) is not hashable and return — 1. This function receives special treatment
when stored in a t p_hash slot, allowing a type to explicitly indicate to the interpreter that it is not hashable.

int PyObject_IsTrue (PyObject *o)
Returns 1 if the object o is considered to be true, and 0 otherwise. This is equivalent to the Python expression not
not o. On failure, return —1.

int PyObject_Not (PyObject *o)
Returns 0 if the object o is considered to be true, and 1 otherwise. This is equivalent to the Python expression not
o. On failure, return —1.

PyObject* PyObject_Type (PyObject *0)
Return value: New reference. When o is non-NULL, returns a type object corresponding to the object type of object
0. On failure, raises SystemError and returns NULL. This is equivalent to the Python expression type (o).
This function increments the reference count of the return value. There’s really no reason to use this function
instead of the common expression o—>ob_type, which returns a pointer of type PyTypeOb ject *, except
when the incremented reference count is needed.

int PyObject_TypeCheck (PyObject *o, PyTypeObject *type)
Return true if the object o is of type fype or a subtype of type. Both parameters must be non-NULL.

Py_ssize_t PyObject_Size (PyObject *o)

Py_ssize_t PyObject_Length (PyObject *o)
Return the length of object o. If the object o provides either the sequence and mapping protocols, the sequence
length is returned. On error, —1 is returned. This is the equivalent to the Python expression len (o).

Py_ssize_t PyObject_LengthHint (PyObject *o, Py_ssize_t default)
Return an estimated length for the object o. First try to return its actual length, then an estimate using
__length_hint__ (), and finally return the default value. On error return —1. This is the equivalent to the
Python expression operator.length_hint (o, default).

B A 3.40] =7}

PyObject* PyObject_GetItem (PyObject *o, PyObject *key)
Return value: New reference. Return element of o corresponding to the object key or NULL on failure. This is the
equivalent of the Python expression o [key].

int PyObject_SetItem (PyObject *o, PyObject *key, PyObject *v)
Map the object key to the value v. Raise an exception and return —1 on failure; return O on success. This is the
equivalent of the Python statement o [key] = wv.

int PyObject_DelItem (PyObject *o, PyObject *key)
Remove the mapping for the object key from the object 0. Return —1 on failure. This is equivalent to the Python
statement del of[key].

PyObject* PyObject_Dir (PyObject *0)
Return value: New reference. This is equivalent to the Python expression dir (o), returning a (possibly empty)

7.1. Object Protocol 61

The Python/C API, &] B{ A 3.7.17

list of strings appropriate for the object argument, or NULL if there was an error. If the argument is NULL, this is
like the Python dir (), returning the names of the current locals; in this case, if no execution frame is active then
NULL is returned but PyErr_ Occurred () will return false.

PyObject* PyObject_GetIter (PyObject *o)
Return value: New reference. This is equivalent to the Python expression iter (o). It returns a new iterator for
the object argument, or the object itself if the object is already an iterator. Raises TypeError and returns NULL
if the object cannot be iterated.

72 A Z2EF

int PyNumber_Check (PyObject *0)
A o7t A ZEEFS A F5HA 12 vEsta, 29 %] ko™ AA
43Uk

PyObject* PyNumber_Add (PyObject *ol, PyObject *02)
Return value: New reference. Returns the result of adding o/ and 02, or NULL on failure. This is the equivalent of
the Python expression o1 + 02.

o

U o] g B

PyObject* PyNumber_Subtract (PyObject *ol, PyObject *02)
Return value: New reference. Returns the result of subtracting o2 from o/, or NULL on failure. This is the equivalent
of the Python expression o1 - o2.

PyObject* PyNumber_Multiply (PyObject *ol, PyObject *02)
Return value: New reference. Returns the result of multiplying o/ and 02, or NULL on failure. This is the equivalent
of the Python expression o1 * o2.

PyObject* PyNumber_ MatrixMultiply (PyObject *ol, PyObject *02)
Return value: New reference. Returns the result of matrix multiplication on o/ and 02, or NULL on failure. This is
the equivalent of the Python expression o1 @ o2.

B A 3.50] &7}

PyObject* PyNumber_FloorDivide (PyObject *ol, PyObject *02)
Return value: New reference. Return the floor of o/ divided by 02, or NULL on failure. This is equivalent to the
“classic” division of integers.

PyObject* PyNumber_TrueDivide (PyObject *ol, PyObject *02)
Return value: New reference. Return a reasonable approximation for the mathematical value of o/ divided by 02,
or NULL on failure. The return value is “approximate” because binary floating point numbers are approximate; it is
not possible to represent all real numbers in base two. This function can return a floating point value when passed
two integers.

PyObject* PyNumber_Remainder (PyObject *ol, PyObject *02)
Return value: New reference. Returns the remainder of dividing o/ by 02, or NULL on failure. This is the equivalent
of the Python expression o1 % o2.

PyObject* PyNumber_Divmod (PyObject *ol, PyObject *02)
Return value: New reference. See the built-in function divmod () . Returns NULL on failure. This is the equivalent
of the Python expression divmod (01, 02).

PyObject* PyNumber_Power (PyObject *ol, PyObject *02, PyObject *03)
Return value: New reference. See the built-in function pow () . Returns NULL on failure. This is the equivalent of
the Python expression pow (01, 02, 03), where 03 is optional. If 03 is to be ignored, pass Py_None in its
place (passing NULL for 03 would cause an illegal memory access).

62 Chapter 7. 34 24 A%

The Python/C API, &] 8| A 3.7.17

PyObject* PyNumber_Negative (PyObject *0)
Return value: New reference. Returns the negation of o on success, or NULL on failure. This is the equivalent of
the Python expression —o.

PyObject* PyNumber_Positive (PyObject *o)
Return value: New reference. Returns o on success, or NULL on failure. This is the equivalent of the Python
expression +o.

PyObject* PyNumber_Absolute (PyObject *0)
Return value: New reference. Returns the absolute value of o, or NULL on failure. This is the equivalent of the
Python expression abs (o) .

PyObject* PyNumber_Invert (PyObject *0)
Return value: New reference. Returns the bitwise negation of o on success, or NULL on failure. This is the equivalent
of the Python expression ~o.

PyObject* PyNumber_Lshift (PyObject *ol, PyObject *02)
Return value: New reference. Returns the result of left shifting o/ by 02 on success, or NULL on failure. This is the
equivalent of the Python expression o1 << o02.

PyObject* PyNumber_Rshift (PyObject *ol, PyObject *02)
Return value: New reference. Returns the result of right shifting o/ by 02 on success, or NULL on failure. This is
the equivalent of the Python expression o1 >> o02.

PyObject* PyNumber_And (PyObject *0l, PyObject *02)
Return value: New reference. Returns the “bitwise and” of o/ and 02 on success and NULL on failure. This is the
equivalent of the Python expression o1 & o2.

PyObject* PyNumber_Xor (PyObject *o0l, PyObject *02)
Return value: New reference. Returns the “bitwise exclusive or” of ol by 02 on success, or NULL on failure. This
is the equivalent of the Python expression o1 ~ o2.

PyObject* PyNumber_Orx (PyObject *ol, PyObject *02)
Return value: New reference. Returns the “bitwise or” of ol and 02 on success, or NULL on failure. This is the
equivalent of the Python expression o1 | o2.

PyObject* PyNumber_InPlaceAdd (PyObject *ol, PyObject *02)
Return value: New reference. Returns the result of adding o/ and 02, or NULL on failure. The operation is done
in-place when ol supports it. This is the equivalent of the Python statement 01 += 02.

PyObject* PyNumber_InPlaceSubtract (PyObject *ol, PyObject *02)
Return value: New reference. Returns the result of subtracting o2 from o/, or NULL on failure. The operation is
done in-place when ol supports it. This is the equivalent of the Python statement 01 —-= 02.

PyObject* PyNumber_InPlaceMultiply (PyObject *ol, PyObject *02)
Return value: New reference. Returns the result of multiplying o/ and 02, or NULL on failure. The operation is
done in-place when ol supports it. This is the equivalent of the Python statement 01 *= 02.

PyObject* PyNumber_InPlaceMatrixMultiply (PyObject *ol, PyObject *02)
Return value: New reference. Returns the result of matrix multiplication on o/ and 02, or NULL on failure. The
operation is done in-place when ol supports it. This is the equivalent of the Python statement 01 @= o2.

WA 3.50] F7}.

PyObject* PyNumber_InPlaceFloorDivide (PyObject *ol, PyObject *02)
Return value: New reference. Returns the mathematical floor of dividing ol by 02, or NULL on failure. The
operation is done in-place when ol supports it. This is the equivalent of the Python statement o1 //= 02.

PyObject* PyNumber_InPlaceTrueDivide (PyObject *ol, PyObject *02)
Return value: New reference. Return a reasonable approximation for the mathematical value of o/ divided by 02,
or NULL on failure. The return value is “approximate” because binary floating point numbers are approximate; it is

72. A Z2EE 63

The Python/C API, &] B{ A 3.7.17

not possible to represent all real numbers in base two. This function can return a floating point value when passed
two integers. The operation is done in-place when ol supports it.

PyObject* PyNumber_InPlaceRemainder (PyObject *ol, PyObject *02)
Return value: New reference. Returns the remainder of dividing o/ by 02, or NULL on failure. The operation is

[)

done in-place when ol supports it. This is the equivalent of the Python statement 01 %= o02.

PyObject* PyNumber_InPlacePower (PyObject *ol, PyObject *02, PyObject *03)
Return value: New reference. See the built-in function pow (). Returns NULL on failure. The operation is done
in-place when ol supports it. This is the equivalent of the Python statement 01 **= 02 wheno3is Py_None, or
an in-place variant of pow (01, 02, 03) otherwise. If 03 is to be ignored, pass Py_None in its place (passing
NULL for 03 would cause an illegal memory access).

PyObject* PyNumber_InPlaceLshift (PyObject *ol, PyObject *02)
Return value: New reference. Returns the result of left shifting o/ by 02 on success, or NULL on failure. The
operation is done in-place when ol supports it. This is the equivalent of the Python statement 01 <<= 02.

PyObject* PyNumber_InPlaceRshift (PyObject *ol, PyObject *02)
Return value: New reference. Returns the result of right shifting o/ by 02 on success, or NULL on failure. The
operation is done in-place when ol supports it. This is the equivalent of the Python statement o1 >>= 02.

PyObject* PyNumber_InPlaceAnd (PyObject *ol, PyObject *02)
Return value: New reference. Returns the “bitwise and” of o/ and 02 on success and NULL on failure. The operation
is done in-place when ol supports it. This is the equivalent of the Python statement 01 &= o02.

PyObject* PyNumber_InPlaceXor (PyObject *ol, PyObject *02)
Return value: New reference. Returns the “bitwise exclusive or” of ol by 02 on success, or NULL on failure. The
operation is done in-place when ol supports it. This is the equivalent of the Python statement 01 ~= o2.

PyObject* PyNumber_InPlaceOr (PyObject *ol, PyObject *02)
Return value: New reference. Returns the “bitwise or” of o/ and 02 on success, or NULL on failure. The operation
is done in-place when ol supports it. This is the equivalent of the Python statement o1 |= o2.

PyObject* PyNumber_Long (PyObject *0)
Return value: New reference. Returns the o converted to an integer object on success, or NULL on failure. This is
the equivalent of the Python expression int (o).

PyObject* PyNumber_Float (PyObject *0)
Return value: New reference. Returns the o converted to a float object on success, or NULL on failure. This is the
equivalent of the Python expression f1loat (o).

PyObject* PyNumber_Index (PyObject *o)
Return value: New reference. Returns the o converted to a Python int on success or NULL with a TypeError
exception raised on failure.

PyObject* PyNumber_ToBase (PyObject *n, int base)
Return value: New reference. 35 ne A bases AF&3| A HESE EX1E-S 93 T} base Q1A= 2,
8,10 == 16% dpubo]of Fruth 12,8 & 169 3%, Whebd £4L2 '0b', '00" EE '0x' 9]
A4 A A 7F Z42E ol 5 Ut no] ko] A int 7} of U, WA pyNumber_Index () 2 WP Uth.

Py_ssize_t PyNumber_AsSsize_t (PyObject *o, PyObject *exc)
o7t A4 E A A = U2 W, 0F Py_ssize_t gt & Wsto] WU Th T o] Ao, o9 7}t
2 sk -1 0] kg Utk

If o can be converted to a Python int but the attempt to convert to a Py_ssize_t value would raise an
OverflowError, then the exc argument is the type of exception that will be raised (usually IndexError or
OverflowError). If excis NULL, then the exception is cleared and the value is clippedto PY_SSIZE_T_MIN
for a negative integer or PY_SSIZE_T_MAX for a positive integer.

64 Chapter 7. 34 24 A%

The Python/C API, &] 8| A 3.7.17

int PyIndex_Check (PyObject *0)
o7} e 2 4 (tp_as_number X 2] nb_index X0 YA AFUTh ™ 15 vb&sta, 294 ¢gow
08 Wk o] Bt B AT

73 A FA2 =22 EE

int PySequence_Check (PyObject *0)
AAMZA AN Ax 22 EES Alestd 12 Wahshil, 192 of o 02 WP __getitem ()
WA} Sk sholm Fel 20 A9 dice AE FelAsk ohd B 1& whekalt Aol §2l A 2.
durg oz od 4o 7§ AAseA BEE 5 9o BEGU D o Bt 34 AFHUT

Py_ssize_t PySequence_Size (PyObject *0)

Py_ssize_t PySequence_Length (PyObject *o)
BF A A2 00 AA| 5 W3S, Aot -15 WEERU T o] 212 Theo] W £ # A len (o) &
S5k

PyObject* PySequence_Concat (PyObject *ol, PyObject *02)
Return value: New reference. Return the concatenation of o/ and 02 on success, and NULL on failure. This is the
equivalent of the Python expression 01 + o02.

PyObject* PySequence_Repeat (PyObject *o, Py_ssize_t count)
Return value: New reference. Return the result of repeating sequence object o count times, or NULL on failure.
This is the equivalent of the Python expression o * count.

PyObject* PySequence_InPlaceConcat (PyObject *ol, PyObject *02)
Return value: New reference. Return the concatenation of o/ and 02 on success, and NULL on failure. The operation
is done in-place when ol supports it. This is the equivalent of the Python expression o1 += 02.

PyObject* PySequence_InPlaceRepeat (PyObject *o, Py_ssize_t count)
Return value: New reference. Return the result of repeating sequence object o count times, or NULL on failure. The
operation is done in-place when o supports it. This is the equivalent of the Python expression o *= count.

PyObject* PySequence_GetItem (PyObject *o, Py_ssize_t i)
Return value: New reference. Return the ith element of o, or NULL on failure. This is the equivalent of the Python
expression o [1].

PyObject* PySequence_GetSlice (PyObject *o, Py_ssize_t il, Py_ssize_t i2)
Return value: New reference. Return the slice of sequence object o between i/ and i2, or NULL on failure. This is
the equivalent of the Python expression o [11:12].

int PySequence_SetItem(PyObject *0, Py_ssize_t i, PyObject *v)
2 vE 05T 0 8 2o TR AASE o5& WANAT 1 VR A3 08
U o] AL Stol W FR o [1] = veFFTHULE o g vel E FAA s

If v is NULL, the element is deleted, however this feature is deprecated in favour of using
PySequence_DelItem().

int PySequence_DelItem (PyObject *o, Py_ssize_ti)
o AA i WA S 4E AAFY Aufstd -1& HRFYTh o] AL Fo]d FF del o[i]9F
.

int PySequence_SetSlice (PyObject *o, Py_ssize_t il, Py_ssize_t i2, PyObject *v)
Al AR vE Al B AR 09] il o A i2 Abo] o] ol o th Yyt o] A2 sho] W F - o[11:12]
N L]

int PySequence_DelSlice (PyObject *o, Py_ssize_t il, Py_ssize_ti2)
A2 AR o il A i2 Aol o eFol 28 AR FUTh A FE -12 BFFYE o] AL o] A
73 del olil:i2]18F5 YTl

off

73. AE2=Z2EE 65

The Python/C API, &] B{ A 3.7.17

Py_ssize_| thSequence Count (PyObject *o, PyObject *value)
0ol A& value®] 5 VHAFUTEH F, 0[key] == valued W&l keyd & WHHgth A o) st
Y 1S ¥EEhy 1‘4-_ o] 22 gtol M FH 4 o.count (value) 2t 55 FYrTh

int PySequence_Contains (PyObject *o, PyObject *value)
ool value7} A=A FAFYTE 09 F5 F 7t valuest 2 o™ 15 1t
HEgkghu o) ol ¢ Al -1 9 R Th O] = JJrOM‘i #84 value in o%}

Py_ssize_t PySequence Index (PyObject *o, PyObject *value)
oli] == valued WEaHe A WA Qe2 2 gL o & Al -1 WA Th o AL Sho] A
X34 o.index (value) &} 35t}

PyObject* PySequence_List (PyObject *0)
Return value: New reference. Return a list object with the same contents as the sequence or iterable o, or NULL on
failure. The returned list is guaranteed to be new. This is equivalent to the Python expression 1ist (o).

PyObject* PySequence_Tuple (PyObject *o)
Return value: New reference. Return a tuple object with the same contents as the sequence or iterable o, or NULL on
failure. If o is a tuple, a new reference will be returned, otherwise a tuple will be constructed with the appropriate
contents. This is equivalent to the Python expression tuple (o).

PyObject* PySequence_Fast (PyObject *o, const char *m)
Return value: New reference. ~ Return the sequence or iterable o as an object usable by the other
PySequence_Fast * family of functions. If the object is not a sequence or iterable, raises TypeError with
m as the message text. Returns NULL on failure.

The PySequence_Fast* functions are thus named because they assume o is a PyTupleObject or a
PyListObject and access the data fields of o directly.

As a CPython implementation detail, if o is already a sequence or list, it will be returned.

Py_ssize_t PySequence_Fast_GET_SIZE (PyObject *0)
Returns the length of o, assuming that o was returned by PySequence_Fast () and that o is not NULL. The
size can also be gotten by calling PySequence_Size () on o, but PySequence_Fast_GET_SIZE () is
faster because it can assume o is a list or tuple.

PyObject* PySequence_Fast_GET_ITEM (PyObject *o, Py_ssize_t i)
Return value: Borrowed reference. Return the ith element of o, assuming that o was returned by
PySequence_Fast (), o0is not NULL, and that i is within bounds.

PyObject** PySequence_Fast_ITEMS (PyObject *o)
Return the underlying array of PyObject pointers. Assumes that o was returned by Py Sequence_Fast () and
0 is not NULL.

PaEe] 377 M B, AT § uGS A AT 5 ALl f A 2. wheba), AD27
WAE 5 gl B Aol AR S WD EDEN B ALE I 2.

PyObject* PySequence_ITEM (PyObject *o, Py_ssize_t i)
Return value: New reference. Return the ith element of o or NULL on failure. Faster form of
PySequence_GetItem () but without checking that PySequence Check () on o is true and without ad-
justment for negative indices.

66 Chapter 7. 34 A A%

The Python/C API, &] 8| A 3.7.17

74 I =2 T

PyObject_GetItem(),PyObject_SetItem() & PyObject_Delltem ()T TZRI}HAL.

int PyMapping_Check (PyObject *0)
Return 1 if the object provides mapping protocol or supports slicing, and 0 otherwise. Note that it returns 1 for
Python classes witha __getitem__ () method since in general case it is impossible to determine what type of
keys it supports. This function always succeeds.

Py_ssize_t PyMapping_Size (PyObject *0)

Py_ssize_t PyMapping_Length (PyObject *0)
4% A AR 09 7] £& MBS, AT HE 12 NBFUTE o] & Fol 8 BB len (o) 55 F
U,

PyObject* PyMapping_ GetItemString (PyObject *o, const char *key)
Return value: New reference. Return element of o corresponding to the string key or NULL on failure. This is the
equivalent of the Python expression o [key]. See also PyObject_GetItem().

int PyMapping_SetItemString (PyObject *o, const char *key, PyObject *v)
AA ool A FAFE keyE L vell Wi B Utk Asfshd -1 WU th o] AL 3pol W £ o [key] =
v} 553Ut} Pyobject_SetItem()E ZFZRIAAI L.

int PyMapping_DelItem (PyObject *o, PyObject *key)
A ool A AA| keyoll th et vl & Al AUt Asfjstd 1S WF&ty ek o] AL shol M F7 del
olkey] 8} -ES UL A2 pPyobject_Delltem ()2 B YUY

int PyMapping_DelItemString (PyObject *o, const char *key)
A ool A EALD keyoll th gt w8 S Al At Aafstd -15 wHH T o]
olkeyl & 5T

int PyMapping_HasKey (PyObject *o, PyObject *key)
w35 Ao key 7 7h 10T 12 WEEHRLaL, 1A 9hoW 02 WHEH T ol Fhol Wl BB A key in
ot FEHUL o] e FF AT
__getitem_ () MINEE &%= T LA o9+ JA D ot o8] s de
B A Pyobject GetItem ()< AFRBHIA L.

S,
flo
X,
o
%
Bl
o)
O,
D

e

int PyMapping_HasKeyString (PyObject *o, const char *key)
w133 A Aol key 717 0 W 1 WkBSET, 18A 9F0 W 0% W o). ol St W EHA key in
o8t ==t} o] 3t A A 33)

£ &0 YA BAE AAE wEE T3Sk ol 9= A o 719
O & YA PyMapping GetItemString ()< /\]——9-0]—”/\]_1_

__getitem_ () WA=
AN L. oy Ry & uk

PyObject* PyMapping_Keys (PyObject *0)
Return value: New reference. On success, return a list of the keys in object 0. On failure, return NULL.

WA 37604 A ol Aol 4Tt H 2B FES RAAS

PyObject* PyMapping_Values (PyObject *o)
Return value: New reference. On success, return a list of the values in object 0. On failure, return NULL.

WA 3TN A o Aol Pt e A=Y RES NBYEU

PyObject* PyMapping_Items (PyObject *0)
Return value: New reference. On success, return a list of the items in object o, where each item is a tuple containing
a key-value pair. On failure, return NULL.

WA 3TN WA o] el & Gk P AL FES MRS U

7.4.)| 67

ofh
h~1
l-m
il

The Python/C API, &] B{ A 3.7.17

7.5 olEHolE]l ZE2REF

S REEREERE LR Rt
int PyIter_ Check (PyObject *0)
A7) o7} ol el dl o] B] R EZS A AW FE SeF U
PyObject* PyIter_Next (PyObject *0)
Return value: New reference. Return the next value from the iteration o. The object must be an iterator (it is up to

the caller to check this). If there are no remaining values, returns NULL with no exception set. If an error occurs
while retrieving the item, returns NULL and passes along the exception.

ol olH £ o|H o] EstE F2E FAdsted, C ZEE old AL & Hojof

PyObject *iterator = PyObject_GetIter (obj);
PyObject *item;

if (iterator == NULL) {
/* propagate error */

}

while ((item = PyIter_Next (iterator))) {
/* do something with item */

/* release reference when done */
Py _DECREF (item) ;
}

Py_DECREF (iterator);

if (PyErr_Occurred()) A
/* propagate error */
}
else {
/* continue doing useful work */

}

76 H3 =22 & F

shol Aol A AL 5 G oW AR & SHi v e W v of That 4 28 gt
o £ 14 bytes S bytearray, 12 T array.arraySh 22 A3 B¢ o] EFFUTE A4t} ehol H e
£ ou] A Al 44 AT 2L S SR A B AT 5 LTk

1S F& 247 3179 9] 7} AT, (ohuhE) 2 v e] W] &3] B & FFD EHL FRIY
o} oW o A= Sk HAL glo] 24 v 3o AA|25He Ro) vk A g ch

ol e C £z M N3] m2 e AR o)l @ /)5S AFFUT ol ZREZo|E T 44 ZHo]

o B Fo A=, Fol “B T AEFH oA E WHE 5 =, 2 FY AA 7w ARE =2
& 4= A gy} o] QlE] 3] o] 2= Buffer Object Structures B o A 44 F Ut}
o 2H| 2L S A=, ARG YA SR dlojH ol thst ZAHE A7) A8 o] A RS AT 5 s
Utk (g € WA= vi7) W)
bytes 9 bytearray®} -2 7rhdt AA & spF
7FedUth ol & £9], array.arrayel 93 =&

il

[*]

r[r
e, |

el

e s,
]:o]

A& oﬂgi =EdUdt & =
Fo + A=y

H o
= El o

68 Chapter 7. 34 A A A%

The Python/C API, &] 8| A 3.7.17

£ AA 972719 27l A HNE AW AR B gAY ART 4 QES Gk
28] 2] A7 AR 3 WA E A g el F A7 Qg th

e Z0LE Wi/ HEZE PyObject_GetBuffer ()& T&8Yth;

27

owr B sx Al I 2 FE AR S| PyArg ParseTuple () (e I A F 3 hHS &5

A RBF WMH7tE = dR3A GO PyBurfer Release ()& EZ&df o FUth 18 A 8] 4o
M F4ob 28 okt BA A S 5 syt

W3 Z2A(Es Tad] “W 57 = T2 A 9] vlol Y o] B sto] W T2 2o Al =Z s dh
oz g8l L3} BA} 9l (zero-copy) S0l A WAYZ oz AL 4 Qo) R BES
Fzote 588 AR A, A9 HolEE ol zr agw oA ol HA 2T £ g5 Ut W EE =
Cegae 24 mMdd = 3on, 29 AA etolme 2|2 ALs 7] Mol 22817 A3 A W2z £5d
5 931, vle]E B W R 2] (in-memory) FA 02 F23}H Ho|HE ALst= U A2 5 dHsUTh
stol A Az H 7l =E&3tE £ dlolHF I 2, W= Pyobject ZAE 7} ok g &S C
ZzAAULH o] 2 E5) u] 2 7hthabA] TS 1 B AL 4 9l U Th B H S A Qul @ ot 2 9 8,
W2e] HAME s 4 dsych

Al -8 3k (exporting) A& 24 3H= st A A2 w3 A F2AE FRFAHAIL. HHE doB,

PyObject_GetBuffer ()& FZ A L.

Py _buffer

void *buf
SEEET EE
g4 Ry E
Wuel B 2
A% W Ge) A9, gL e BEe

void *obj
A new reference to the exporting object. The reference is owned by the consumer and automatically decre-
mented and set to NULL by PyBuffer_ Release (). The field is the equivalent of the return value of any
standard C-API function.

Al & A} (exporter) &] 5}
ridesg A& Fhol

o iy
o it
a1
o &
L o~
_‘4 —I'J
b
4 N
30 N
Ty 1o
Ly
o N
M rr

kel
=
o 'y
L3
o flo

As a special case, for temporary buffers that are wrapped by PyMemoryView FromBuffer () or
PyBuffer FillInfo () thisfield is NULL. In general, exporting objects MUST NOT use this scheme.

Py_ssize_t 1len
product (shape) * itemsize. AL g AL, s R E
9o A%, A% BH O RARE £e) 8 P2/ 24 D 2ol

((char *)buf) [0] ©°lA] ((char *)buf) [len-1] W22 AA]
oz Y7t EdRE AL FETYULE tREE o]y 8 F
PyBUF_WRITABLE$I YT}

QA%4g B
PyBUF_SIMPLE &

]
a1
X

-

int readonly
W37} 917] A4AA S el BA QUL o] D= pyaur WRITABLE S92 A 0] F

gk,

76. H Z2EF 69

The Python/C API, &] B{ A 3.7.17

Py_ssize_t itemsize
Item size in bytes of a single element. Same as the value of struct.calcsize () called on non-NULL
format values.

Important exception: If a consumer requests a buffer without the PyBUF_FORMAT flag, format will be
set to NULL, but i temsi ze still has the value for the original format.

shape©] 942 ™, product (shape) * itemsize == len ¥ X7} A% A H3IA 48 A=
itemsize® AHg3kel W E BAZ & ST
If shapeis NULL as aresult of a PyBUF_SIMPLE or a PyBUF_IWRITABLE request, the consumer must

disregard i temsize and assume itemsize ==

const char *format
A NUL terminated string in st ruct module style syntax describing the contents of a single item. If this is
NULL, "B" (unsigned bytes) is assumed.

o] == PyBUF_FORMAT Z | 12 Alo]F Ut}

int ndim
The number of dimensions the memory represents as an n-dimensional array. If itis O, bu £ points to a single
item representing a scalar. In this case, shape, strides and suboffsets MUST be NULL.
W] 2 2 PyBUF_MAX_NDIME H ot 219 & 64 2 AUt} Al Z A= o] A|3hS &53] ofF 311,
ThAH W 3 8] £ ¥ AF= PyBUF_MAX_NDIM A 744 X 2] 5= 3l o oF gt

Py_ssize_t *shape

n-AHA ldE W29 RS e = 29 ndim®] Py_ssize_t 8] Q. shape[0] * ... *
shape[ndim-1] * itemsize lend} Zolof gyt
RO ZEE shape[n] >= 02 AH Yt} shapeln] == 0% A= EWH3 Fo71 D _3HY

o} X]"‘ﬂ?i ARE S5 d S FRFAA L.
shape ¥} &2 An| A} Al &1 7] AL JY T}

Py_ssize_t *strides
7 AR A LA 7R 27 Y& AU E vlolE & A|Fdt= Z o] ndim® Py_ssize_t
HH o.

sEZolE ghe 9019 449 £ dSUTh A wdY F9, AEGo|EE HE Frol A,
4HAE strides(n] <= 09 398 A @ 4 glofoF Fuih AT L Hafal v a2

FzHAA 2
strides ¥l @& A n] 2}l A 1 7] ALt}

Py_ssize_t *suboffsets

Zo] ndim® Py_ssize_t B] Q. suboffsets[n] >=0 HW,n AR AL S whet AGE g2 2
SlE]o] 11 AJH @ Z A ZFe o X (de-referencing) & Z+ Z 0l E] o] B & nlo]E £E Ve YT}
=9 MHE Al 7k o =X (de-referencing) 7+ ‘:'“35 2] gFotof T-& VEFHUTH (A% W R g

EFolA e 2ETE).
If all suboffsets are negative (i.e. no de-referencing is needed), then this field must be NULL (the default

value).

o) 9 WG LA ol 4 o] 19 ohol Het 2] PIL)) 4 AR e ol 212 D ool A
PSS AN MK M A

suboffsets 8] @& 4 n| 2ol A &17] ALYt}
void >l‘internal
o1 AL Al B 8} (exporting) 24 o) 213 v 54 2 2 AL YTt o & S0, o 21 Al & 2 exporter)
7k % '/FE ThAl A" 4 glon, w57} OH A€ w shape, strides & suboffsets ¥ &g 3 A| 3l o
sheAol o3 Zo) 18 At o AR YT 2n A7t o) g WA AL S E YT

70 Chapter 7. 34 A A

o]N-

The Python/C API, &] 8| A 3.7.17

7.6.2 ¥ A 79

W=)7l Pyobject_GetBuffer ()5 53l A& 3= (exporting) A2 W R4S BUA A5t 9
29 =g & 2 Ego] A TUE F JonZ, AN AT 5 Y= FAES I F3-E XA
A3l flags AAFHE A& T

BRE Py buffer 2=+ 84 539 93] Z& 3R] &4A el H YTt

T2 =+ flags®] &S BA 9k 4 EukE o2 AP Aok FUth: obj, buf, len, itemsize, ndim.

readonly, format

PyBUF_WRITABLE
readonly BEE AOFUTE AR W, ABAL MEA 27 7b5 3 W HE A LAY
A B ok ST 184 how, ATAE 97 A8 WA 27] b MR E AT
= QAT 2E v At gis] B+ L F RS oF Fch
PyBUF_FORMAT
Controls the format field. If set, this field MUST be filled in correctly. Otherwise, this field MUST
be NULL.
PyBUF_WRITABLE-> Th-5 A M9 B | 9 4 Q&5 Uth PyBUF SIMPLES] 002 AoH vz,
PyBUF_WRITABLES 5 HY S IR AFEH o g 7] 7hed W€ 238 + s Uth

PyBUF_FORMAT PyBUF _SIMPLES A|2]3t 499 Za] 222 4 5T PyBUF_SIMPLE2 o] u] 3 A]
B(RE Qi kol B) & vl ghoh.

£l
m[m
B
[

shape, strides, suboffsets

e =g F2E Aode Fel e EFET gAsE oAR Ydd Ut 4 Fe e T okEell 8l
EE

SEEEEEY

23 shape | strides | suboffsets
yes yes R A

PyBUF_INDIRECT

PyBUF_STRIDES yes yes NULL

PyBUF_ND yes NULL | NULL

PyBUF_SIMPLE NULL | NULL | NULL

76. MY Z2EF 71

The Python/C API, &] B{ A 3.7.17

UZesAdL4E gAdos 248 4 gled, 2ESo|E AHE 29375 282 ¢7|= U
Egto]l= WL glow, W& C-A o] of oF Futh
24 shape | strides | suboffsets | 9144
PyBUF_C_CONTIGUOUS yes yes NULL C
PyBUF_F_CONTIGUOUS yes yes NULL F
TC -
PyBUF_ANY_CONTIGUOUS yes yes NULL CE=F
PyBUF_ND yes NULL | NULL C
B3t ed
REJFsF 2L Ao Ed 0 2] e As] Ao FUrh A, W TREZ L AF AL EEHE
zZ3e dd =Y a2 ATyt
g ®oA UL BHA %}8 A4S Jerdyrh 2 E A2 Boas] 95
PyBuffer IsContiguous ()& Z&3|oF gtk
274 shape | strides | suboffsets | <1< | readonly | format
S
PyBUF_FULL yes yes 28ty | U 0 yes
To s Eo
PyBUF_FULL_RO yes yes dastd | U 1 0 | yes
PyBUF_RECORDS yes yes NULL U 0 ves
TC -
PyBUF_RECORDS_RO yes yes NULL U 1EE0 | yes
PyBUF_STRIDED yes yes NULL U 0 NULL
TC -
PyBUF_STRIDED_RO yes yes NULL U 1EE0 [NULL
PyBUF_CONTIG yes NULL | NULL C 0 NULL
TC -
PyBUF_CONTIG_RO yes NULL | NULL C IEE0 | NULL

2 Chapter 7. 4 23] 7

°1N’

The Python/C API, &] 8| A 3.7.17

7.6.3 Ezsknjg
NumPy-~€}2l: shape 3} strides

NumPy 2~ E} vl o] :=28]& 2= itemsize, ndim, shape W strides® 2] Yth

If ndim == 0, the memory location pointed to by bu £ is interpreted as a scalar of size i temsize. In that case, both
shape and st rides are NULL.

If st ridesis NULL, the array is interpreted as a standard n-dimensional C-array. Otherwise, the consumer must access
an n-dimensional array as follows:

ptr = (char *)buf + indices[0] * strides[0] + ... + indices[n-1] * strides[n-1];
item = *((typeof (item) *)ptr);

AN AFHA=ol, burts AA M2 B] BE HAE 7D 5 dFuch AF A exporter) = o]
gz wslel RIS A T4 dsuick

def verify_structure (memlen, itemsize, ndim, shape, strides, offset):
"""Verify that the parameters represent a valid array within
the bounds of the allocated memory:
char *mem: start of the physical memory block
memlen: length of the physical memory block
offset: (char *)buf - mem
o
if offset % itemsize:
return False
if offset < 0 or offset+itemsize > memlen:
return False
if any(v $ itemsize for v in strides):
return False

if ndim <= 0:

return ndim == 0 and not shape and not strides
if 0 in shape:

return True

imin = sum(strides[j]* (shape[j]l-1) for j in range (ndim)
if strides[j] <= 0)
imax = sum(strides[j]* (shape[j]l-1) for j in range (ndim)

if strides[j] > 0)

return 0 <= offset+imin and offset+imax+titemsize <= memlen

PIL-~€}Y: shape, strides X suboffsets

=, PIL 28bed W ol = o) o5 848 7hA 2 7] 93 ook St 9187} 294
o], dul3-AQA CHld char v[2][2] [3]=2709 2-X-Q v 7}3]7]‘: 2709 Z o
%%Hﬂmmm~wwM)M]B]wmﬁmfﬁﬂﬁwﬂ%iﬂa%mmﬂﬂﬁﬁ%w
o, W28 ol A U wi A2 5 A= F 70 char x[2][3] &8 7 YTh

Here is a function that returns a pointer to the element in an N-D array pointed to by an N-dimensional index when there
are both non-NULL strides and suboffsets:

void *get_item_pointer (int ndim, wvoid *buf, Py_ssize_t *strides,
Py_ssize_t *suboffsets, Py_ssize_t *indices) {

(TS ST Ao AZ)

76. MY Z2EF 73

The Python/C API, &] B{ A 3.7.17

(o] A sl o] A A M A%)

char *pointer = (char*)buf;
int i;
for (i = 0; 1 < ndim; i++) |

pointer += strides[i] * indices[i];
if (suboffsets[i] >=0) {
pointer = *((char**)pointer) + suboffsets[i];
}
3

return (void*)pointer;

7.6.4 W5 el

) 4

int PyObject_CheckBuffer (P}Object *obyj)

obj7} ¥ 3 QB H o] 2E A At 12 Whghetal, 23 A oo 02 WA th 10] ¥WHEE o,
PyObjecteGetBuffer ()7t 8EE Zolgkal HAsHA = 5t o] e 4 45tk

int PyObject_GetBuffer (PyObject *exporter, Py_buffer *view, int flags)
Send a request to exporter to fill in view as specified by flags. If the exporter cannot provide a buffer of the exact
type, it MUST raise PyExc_BufferError, set view—>obj to NULL and return —1.

A Z3 A, views A1, view—>0biE exporterol] TS A FZ2E AA 5, 0& wHEd UL R4S
9 Az 2 g] dets A 29 (chained) W 3 ZF 21 A%, view—>0bj= exporter thAl o] AA S
F2E AUk (3 AA] F2AFE HAR).

PyObject_GetBuffer ()°l tf 3t A% yBuffer Release ()

2 9l 2 o
o] FoloF Iy th malloc () 2} free () E‘r A Hi welA], &H| A7

B!

void PyBuffer Release (Py_buffer *view)
W 3 viewE S A 3FAL view->objoll 3 Fx A+ E FaAIRUTE W37 AHEE A e, o

F4g s A mEs ol gt 18X oW Fx rrrh AT 5 glF Lk
PyObject_GetBuffer()E B3] A %2 ¥y o] o] T§+E T&3= AL o ggUtt
Py_ssize_t PyBuffer_SizeFromFormat (const char *)
format©] YAIBH= itemsized WU o] T4 oA FEE A gkFUTH

int PyBuffer_ IsContiguous (Py_buffer *view, char order)
viewZ A H W22 7} C 28t (order7} 'C) ol ZE T 2B (order7} 'F') Ao At
(order7} '2") ¥ 1. NI Th, 1817 9Fo. W 02 NHERI o). o] R B4F A3 T
void* PyBuf fer_GetPointer (Py_buffer *view, Py_ssize_t *indices)

Get the memory area pointed to by the indices inside the given view. indices must point to an array of view->ndim
indices.

int PyBuffer_ FromContiguous (Py_buffer *view, void *buf, Py_ssize_t len, char fort)
Copy contiguous len bytes from buf to view. fort canbe 'C' or 'F' (for C-style or Fortran-style ordering). 0 is
returned on success, —1 on error.

int PyBuffer ToContiguous (void *buf, Py_buffer *src, Py_ssize_t len, char order)
Copy len bytes from src to its contiguous representation in buf. order canbe 'C' or 'F' or 'A"' (for C-style or
Fortran-style ordering or either one). 0 is returned on success, —1 on error.

o] &= len = sre->len©] A A 3 g T}

74 Chapter 7. 34 214 A=

The Python/C API, &] 8| A 3.7.17

void PyBuffer_FillContiguousStrides (int ndims, Py_ssize_t *shape, Py_ssize_t *strides, int itemsize,

char order)
strides Al @& F0] A Q4 Hlo]|E 49} 0] shape & & =5 (order7} 'C' A C 2~EVY, order7} 'F!

HEET 2B g Hlo]E ~EF o= fF YT
int PyBuffer_FillInfo (Py_buffer *view, PyObject *exporter, void *buf, Py_ssize_t len, int readonly,

int flags)
readonly®l| ket 22 7] 7}-5-/d o] A7 H len 3719 buf & == 318 = A5 A (exporter) o] 3 ¥ 7] 852

7)
Ael ST b 35 9 vol 29 AAR A48 U,

flags A A= 24 F3S Vb AUt o] &= buf 7t 7] AR © 7 AN A I PyBUF_WRITABLE®)
flagso AR =0 YA ko, FF 27 A A= Wiwm A5 Ytk

On success, set view—>obj to a new reference to exporfer and return O. Otherwise, raise
PyExc_BufferError, set view—>0bj to NULL and return —1;

If this function is used as part of a getbufferproc, exporter MUST be set to the exporting object and flags must be
passed unmodified. Otherwise, exporter MUST be NULL.

7.7 Y2 W3 =2 F

WA 3058 57,
o St Fhol 4 201 4] “h& MW ZREE” APL AR E | 5T Tl M 3ok o] ZRET | Hi
ZAA FAT2x ZE 04 A FEE FHEL W) LU S A WA ZrE2E 50
T84 A A2 AAL WA AT T W DL ALY £

a2}

[e]
w2t A, PyObject_GetBuffer ()(Fv y* Ywx LW I =& 3| rg_ParseTuple () 74]":‘./]
T E =5 HA tist A BE PA L, W RE AT 5 & o PyBuffer Release ()&
23 Aol FHUh
int PyObject_AsCharBuffer (PyObject *obj, const char **buffer, Py_ssize_t *buffer_len)
22 715 JE 02 A8 T 5 Sk 217] A8 vl me) 5120 T2 £ AE 2 AT T oly AAE B
AIHE F2 W3 AE s o] A8 AWl of FU . HFshd, 02 vHstaL, buffers W22 A=
RSV, buffr_len & 5] 201 ARG, ol 2] Alol, -1 8 W53, TypeError g A4 g,

int PyObject_AsReadBuffer (PyObject *obj, const void **buffer, Py_ssize_t *buffer_len)
Aol HlolHE g3l 217 Ag vZE] f X ol tidt LA E vtk o A A= @ Al
HE ¢}7] 7Fs ¥ 9 A o]AE AP of Fth AF s, 05 WS, bufferS W 2 2]
AR 3}AL, buffer_lens W ¥ 2ol 2 AUt ol & A, —1% Hk2ke}al, TypeErrorE AR oh
int PyObject_CheckReadBuffer (Py Object *0)
o7t A M IHE ¢}7] 7hs ¥ 3 A o]A~E A Yehd 12 Wty 23 A ¢god
Ytk o] @4 B4 AT
o] G5t W E M LT HAFAL e, Y F4E TEHE T WAFE At AA P
YA L. o] RS wto W thAl Pyobject GetBuffer () S ARSI AL

W

o
tlo
r]I,
rit
i)

int PyObject_AsWriteBuffer (PyObject *obj, void **buffer, Py_ssize_t *buffer_len)
227] 7w 2] f X ofl th 3 2 E S Rtk obj A S AU E, FAFH H A E] o] &
£ Aok Fuch ZF3HH, 02 vEEeL AL, buffers W B 2] 91X 2 A QAL buffer_lens W3] Ao] &
A Ak o 8 Alof], -1& WEkEt T, TypeErrorE A A 3 o).

77. Y2 I Z2EF 75

The Python/C API, &] B{ A 3.7.17

76

Chapter 7. 34 214 A

01}1'

CHAPTER 8

o] Fe] G4t 54 shol A AR ol AW A PUh 15oNA 22 A Fo| AN ADFHE AL FL
A 7te] ohgdUth; stol A =2 1ol A AAE Wekiv] SuHE BE AR LA A drid, WA F
AXE Aok G ol 2 Sol, AR YA AA JASEY, pyDict Check ()8 AHEFHAIAL.
o] 42 spol A AR Yol “FH A Y P4 of Yk

7 11: While the functions described in this chapter carefully check the type of the objects which are passed in, many
of them do not check for NULL being passed instead of a valid object. Allowing NULL to be passed in can cause
memory access violations and immediate termination of the interpreter.

8.1 7] A
o Aol A<= shol 4 B ARk 42 E AR Noneol Bhs) BT T

8.1.1 & A

PyTypeObject
WZE= 7leske dl AR H = AAe C 24,
PyObject* PyType_Type
ol A2 AAIL B AA YU ol AFE typedt T2 AA AT
int PyType_Check (PyObject *0)
AR o7t B2 P AR N HYE B AADAE T3] § AANA F2 BHFY T b2 BE 4
AR S Wk Th
int PyType_CheckExact (P\Object *0)
AR o7} & AA o)A v, B AR AH o] ol

ok,

)
e
o
rE
b
o
<
Av)
o
rlu
ka1
il
oY,
o
RS
N,
o
rE
r 0

The Python/C API, &] B{ A 3.7.17

unsigned int PyType_ClearCache ()

23] A E AUtk @AY Wd B2 E vy ok
unsigned long PyType_GetFlags (PyTypeObject* type)
typed] tp_ flags WWS 93t} o] 3hp= 22 Py LIMITED APIE} A AHG8 7 A E A G T
A S 2 N E= sholyd w3z Tl ?}X* 2 ‘d Ao HAHARL tp flags AR ol h JA 2=
A 2R API 137} ob o,
WA 3.20] 7}
WA 3404 HA: H33 -2 o] A long©] o}y B} unsigned longYyrth.
void PyType_Modified (PyTypeObject *type)
B3 TR0 RE AR o @ i A4 NS FRR GUTh B ol EelRE Wol A ZYAE
502 £49 Fole o P42 A oF P

int PyType_HasFeature (PyTypeObject *o, int feature)

B AR 07} 715 feamre® ARFE 22 VHFUh B /52 Y vlE Sz BAFU T
int PyType_IS_GC (Py T)peObject *0)
B AAN =8 A7) U AQL 2FHL Jow F RAPUT. o|AL @ Zea

Py_TPFLAGS_HA VE_GC—% AAFE Y o}

int PyType_IsSubtype (PyTypeObject *a, PyTypeObject *b)
a7V b3 M B ol & wakgy o,

o] St AA B Fuk AAE UL £, _ subclasscheck__ () 7} boll B 5| EEE] 2] er<=).
issubclass () 7} T3 8t= A% 22 AALE ot W PyObjecthsSubclass ()EBZFANL

PyObject* PyType_GenericAlloc (PyTypeObject *type, Py_ssize_t nitems)
Return value: New reference. Generic handler for the tp_alloc slot of a type object. Use Python’s default
memory allocation mechanism to allocate a new instance and initialize all its contents to NULL.

PyObject* PyType_GenericNew (PyTypeObject *type, PyObject *args, PyObject *kwds)
Return value: New reference. & AA 2] tp_new €5 Y3t vt Al 7]. O tp_allocEFS AHE3}
of A AATAE BT

int PyType_Ready (PyTypeObject *type)
B ANAE v Ut 27135 SdRsHEE 2 @ AAo) o] A =& TS5 of Futh o
?}’“ = @Y Hlolx Fe2oA FEH SRS T
ol 9] & A e

PyObject* PyType_FromSpec (PyType_Spec *spec)
Return value: New reference. St50ll AEZH specC. 2 3] & AR S W& v+

PyObject* PyType FromSpecWithBases (PyType Spec *spec PyObject *bases)

e A e 5ol Wl s es £RT G, I8 B EEAL OE @ HE A ATOE
Bz + oo

WA 330 7}

void* PyType_GetSlot (PyTypeObject *type, int slot)
Return the function pointer stored in the given slot. If the result is NULL, this indicates that either the slot is
NULL, or that the function was called with invalid parameters. Callers will typically cast the result pointer into the
appropriate function type.

B & 3409 &7}

78 Chapter 8. 74 21 4] A

o]N-

The Python/C API, &] 8| A 3.7.17

8.1.2 None 74

None©|| t) 3 PyTypeObjectw 3ol A /C APIY A AH &5 A A5 YT None2 A ZEo]7] uj & (C
ofJ A ==& AFgl &) A A ofo| I EE] & AALSH= A2 SR T2 ol/f= PyNone_Check O =7k
QT

PyObject* Py_None
ZEe] BA S JEhg £ sho] A None A U th o] Aol = A =7} gyt #x 3149} B3 6o
ohe A7l 9} vk 274 = A 2o of gtk

Py_RETURN_NONE
C g5 oA Py_one® WasHE A2 St A FUTH(S, Noned] 2 A48 F714712

uEEkg o).

RE Q5L 499 27]9 “long” B4 AA 2 FHAFH Uk

o 2] Al, HH49] PyLong_As* APl £AH8h P& 4 gl (return type) -1 WHAFYUTHL R34 L
AASE A PyErr Occurred ()& ANE3AA L

PyLongObject
o] Pyobjecte] AH 2 stold A AAE Uebd Yt

PyTypeObject PyLong_Type
o] pyTypeObject A 2B A& hol A HA4= & e Uth o] A2 3to| A A S 9] int 2} -2 AA|
o] 141;].

int PyLong_Check (PyObject *p)
AA7} PyLongObject o]y PyLongObject 9] A B ol 5wk th

int PyLong_CheckExact (PyObject *p)
0127} PyLongObject Ol A2 PyLongObject®] A B & o] ofyd & w3ty th

PyObject* PyLong_FromLong (long v)
Return value: New reference. Return a new PyLongOb ject object from v, or NULL on failure.

AR AL -59 256 Aol mE Aol el A4 AA] DS AU o Mo Y= A2
%%H@ﬂi%ﬂ%ﬁﬂﬂﬁz%i%ﬂ%%uﬂﬂﬂﬂ14ﬁ°ﬁﬁd—ﬂﬂﬂ—ﬂHWﬂﬂ
ol el B2 Aolw A e Aow Berg Ut)

PyObject* PyLong_FromUnsignedLong (unsigned long v)
Return value: New reference. Return a new PyLongOb ject object from a C unsigned long, or NULL on
failure.

PyObject* PyLong_FromSsize_t (Py_ssize_tv)
Return value: New reference. Return anew PyLongObject objectfroma C Py_ssize_t, or NULL on failure.

PyObject* PyLong_FromSize_t (size_t v)
Return value: New reference. Return a new PyLongObject object from a C size_t, or NULL on failure.

PyObject* PyLong_FromLongLong (long long v)
Return value: New reference. Return a new PyLongObject object froma C long long, or NULL on failure.

PyObject* PyLong_FromUnsignedLongLong (unsigned long long v)
Return value: New reference. Return a new PyLongObject object from a C unsigned long long, or
NULL on failure.

8.2. &z} AA 79

The Python/C API, &] B{ A 3.7.17

PyObject* PyLong_FromDouble (double v)
Return value: New reference. Return anew PyLongObject object from the integer part of v, or NULL on failure.

PyObject* PyLong_FromString (const char *str, char **pend, int base)
Return value: New reference. Return a new PyLongObject based on the string value in str, which is interpreted
according to the radix in base. If pend is non-NULL, *pend will point to the first character in st which follows the
representation of the number. If base is 0, str is interpreted using the integers definition; in this case, leading zeros
in a non-zero decimal number raises a ValueError. If base is not 0, it must be between 2 and 36, inclusive.
Leading spaces and single underscores after a base specifier and between digits are ignored. If there are no digits,
ValueError will be raised.

PyObject* PyLong_FromUnicode (Py_UNICODE *u, Py_ssize_t length, int base)
Return value: New reference. U ZE A2 A|Y2E stolW A gtoz WY
U3ZE 2298 AA PyUnicode_EncodeDecimal () & A& 3}lo] vlo]E Y g
PyLong_FromString ()< A-&dto] HEHE UTh

Deprecated since version 3.3, will be removed in version 4.0: ©] A 2~} o] py UNICODE APIS] 45 ;
PyLong_FromUnicodeObject ()& AFg3t= Aoz HASAHA L.

PyObject* PyLong_FromUnicodeObject (PyObject *u, int base)
Return value: New reference. #AFE ul] FUIE A A/l 2E ol Ao
FYUIE EAY S HA PyUnicode_EncodeDecimal () 2 AF&3to] vlolEd = ¢l
PyLong_FromString ()& AF§3ho] W3 Ut
WA 330 7}

PyObject* PyLong_FromVoidPtr (void *p)

o
)
oll i
i ook
AW
iuj

Return value: ~ New reference. A E pZ HE 3ol A4+ & Wiy, XAEH S
PyLong_AsVoidPtr ()& AH&3t] Akl A 23 4= 5t

long PyLong_AsLong (PyObject *obj)
obj® C long AS WSSt obj7} PyLongObject? QA2~E A7 of YW, (ATthHH) HA
int () UﬂHE% $£3%}l9] PyLongObject 2 WA ESH T}

obj2] Frol long® Y E vlojy ™ OverflowErrors A A AUt}
& Al —1& &3t RS AS A ASE W PyErr Occurred () & AHEIA AL

long PyLong_AsLongAndOverflow (PyObject *obj, int *overflow)
obj9 C long &S ‘ﬂ-%ﬁ"q t}. obj7} PyLongObject®] QA2EA7F ol ™, (JThd) AHA
_int__ () MINE=F T&3F PyLongObject 2 HAF YT

obj2] FFo] LONG_MAX® t} T A Y LONG_MINKE T} ZF o, #overflows Z+ZF 10|y -1 2 A A3}l -1
= WUtk 2384 ko d, foverflowE 022 AT ThE o 9 7L LAY S FoverflowE 022
AR -1 W 2ol MBI T
o] Al —1L ettt RS AES A AW PyErr Occurred () & AHEIAA L

long long PyLong_AsLongLong (PyObject *obj)
0bj¢] C long long WS RI&AFUT 0bj7} PyLongObject] A" A7 oby ™, (Jthd) WA
int () WIAEE &3} PyLongObject 2 WHEZ YT}
Raise OverflowError if the value of obj is out of range for a long long.
o] Al -1& WUt R3S A AW pyErr Occurred ()& AHE3HI Al L

long long PyLong_AsLongLongAndOverflow (PyObject *obj, int *overflow)
obj?] C long long XA Y3t} obj7} PyLongObject] A2E A7 ofU ™, (A ThH) H A
int () I EE 53} PyLongObject 2 W3S}

obj2] 7ko] PY_LLONG_MAXHX T} T AU PY_LLONG_MINK T} 2O W *overflows ZtZF 10} -1 2 A
&t -1 wEgh Tk 238 A koW, FoverflowE 02 F A AT ThE o 9] 7} B SHE Foverflow

o]N-

80 Chapter 8. A A A

The Python/C API, &] 8| A 3.7.17

£ 008 HAATA -1S F49} Zo] Mg
o &} Al —1& Wt Ut R5 S Al ASIEE PyErr Occurred () & AFE3IAAI L
H A 3.29 5}7}.

Py_ssize_t PyLong_AsSsize_t (PyObject *pylong)
pylong®] CPy_ssize_t BHE WIS YT} pylongS PyLongObject? A2E Ao of gt}

pylong®] 7ko] Py_ssize_t2 HLE HojyH overflowErrors YAA Y th
el Al -1& whE3tUth B3 AL AASE W PyErr Occurred () S AHE3HI AL

unsigned long PyLong_AsUnsignedLong (PyObject *pylong)
pylong®] C unsigned long X3S W3St} pylongS PyLongObject?] AA~E Ao of gt}

pylong®] 7ko] unsigned long® W& Bojyd OoverflowErrors YA A Yt}

o8] Al (unsigned long) -1 ¥EstUth R3S A ASIE Y PyErr_Occurred () S AFR3H4]
A L.

size_t PyLong_AsSize_t (PyObject *pylong)
pylong®] C size_t THE W33 T pylonge PyLongObject 2] A~ 2 of of T,

pylong®] kol size_t9 Y E BloJy ™ OoverflowErrors YA A A Yt}
Y Al (size_t)-1L AU BE AL A ASE Y PyErr Occurred () & AL A 9.

unsigned long long PyLong_AsUnsignedLongLong (PyObject *pylong)
pylong®] C unsigned long long % -2 ¥F3Hs Ut} pylongS PyLongObject®] QIAEl Ao of &
Ok

pylong®] ko] unsigned long long® WY E Hloj W overflowErrorE WA A 7Y T}

o] A] (unsigned long long)-1< HF&stUtt 2SS A ASH A PyErr Occurred ()&
B A &

HA 3194 A 22 pylong= ©]A| TypeError7} ofy g} OverflowErrors WA A A Yt}

unsigned long PyLong_AsUnsignedLongMask (PyObject *obj)
obj2] C unsigned long &S ¥FEEU). obj7} PyLongObjectd] A2E A7 of U™, (JTHH)

WA __int__ () MINEE &3} PyLongObject 2 ST

obj2] Zrol unsigned long® HWHE Hojyd, I 2k 252 ULONG_MAX + 1 3g-S Wi3kshuty.
o8] Al (unsigned long)-1=2¥EAStUth R3S A ASIE Y PyErr_Occurred () E AFR3HA
Al 2.

unsigned long long PyLong_AsUnsignedLongLongMask (PyObject *obj)
obj®] Cunsigned long long H-E Wr3sUt} obj7} PyLongObjectd] AAE A7 olU W, (9

ttA) WA _ int_ () WIAEE &5} PyLongObject®E WHESH T}
0bj9] Zko]l unsigned long long® WY E HolUH, 71 3k9] R EE PY_ULLONG_MAX + 13U
whekety ok

o #] A] (unsigned long long)-1< ¥t Ut R3S A A Y PyErr Occurred()E
AHE A L.

double PyLong_AsDouble (PyObject *pylong)
pylong®] C double &3S ¥I3sU). pylong2 PyLongObjectd] QA E Ao of Shu T},
pylong®] Fke] doublel] ML E WU OverflowErrorg WA Yt}
ol Al -1.0& ¥k TE REA S A A PyErr Occurred () S AHE I AL L

8.2. &z} AA 81

The Python/C API, &] B{ A 3.7.17

void* PyLong_AsVoidPtr (P»Object *pylong)
o] W % —,—pylong,z_ Cvoid ZH 2 H3gh) pylongS AT 4~ glod, OverflowError7]— 13
AUt o] A2 PyLong FromVoidpPtr () 2 WEO R ol il A AMR & = 9= void ZAEHE

AR e Aol HAF UL

Returns NULL on error. Use PyErr_Occurred () to disambiguate.

8.22 Ee|d AA

oMo Al AL F45o A Fejag TP UL Py_False9 Py _Truedts F 7] £L1 94
Utk weba] Gkl A4 2 AA e £ A89A gesvth 21Uy g azE AL 5

9%t

int PyBool_Check (PyObject *0)
07} PyBool_Type Fold F& E8F Uk

PyObject* Py_False
shol i False AA. o AAE WA} Q5 UL 22 L E0} B AL ThE AR 9} v}RAAA 2
A 2] oF Fu k.

PyObject* Py_True
shol A True A4, o] AA & WA= Qe 22 AeEd BANA L T
A ela oF g oh.

Py_RETURN_FALSE
5ol A by_False® ST, B2 FeEE A A3A S/ AU

A o vF R 7FA] =

J\I

Py _RETURN_TRUE
Fool M py_True® WH#ela, F2 72 =8 483 S74A 4,

PyObject* PyBool_FromLong (long v)
Return value: New reference. v =2] ko]l k2l Py_True Y Py_Falseol st A} 2 E 9k3tgh).

8.23 H&5 A4H AA

PyFloatObject
ol Pyobjecte] AH L glo|H Re 24 AAE Yepd U

PyTypeObject PyFloat_Type
o] PyTypeObject 2R AaE spold H5 £, S Ui Utk o] 212 gto]d AFollA float
o} 2 AR YU Th

int PyFloat_Check (PyObject *p)
I} 7} PyFloatObject Y PyFloatObject] A B o] S wigtshi]ct.

int PyFloat_CheckExact (PyObject *p)
QAA}7} PyFloatObject ol ARt PyFloatObjectd A H 3 ol d ZS wi3kgh)

PyObject* PyFloat_FromString (PyObject *str)
Return value: New reference. Create a PyFloatObject object based on the string value in str, or NULL on
failure.

PyObject* PyFloat_FromDouble (double v)
Return value: New reference. Create a PyF'1oatObject object from v, or NULL on failure.

double PyFloat_AsDouble (PyObject *pyfloat)
meﬂm%QdeMeE@%ﬂ@@uqnm@%ﬂﬂﬂ@%%ﬁﬁ%ﬁWﬂﬂwwﬂw
__float__ () WA =7} L2, pyfloarS float = W 2st7] §15 o] Ml =7 WA T EH Utk o] v A

Ee A -1.05 WS B R, PyErr Occurred ()& E&5t oY & Q%ﬁﬂ of ﬂ\% =2

qw

82 Chapter 8. 74 244 A

The Python/C API, &] 8| A 3.7.17

double PyFloat_AS_DOUBLE (PyObject *pyfloat)
ol e HAAF Qlo] pyfloar &1 W€2] C double X8-S W3t

PyObject* PyFloat_GetInfo (void)
Return value: New reference. float®] AU %, H <=7k, H Azkol] A3 A H
E85 Ut st 3 float.hE ﬂa}L oFo 73 9j Ut}

double PyFloat_GetMax ()
AW 9 7F53F 3k float DBL_MAXE C double® WHEHsh T},

double PyFloat_GetMin ()
Z 4 A 73149 (normalized) %42] float DBL_MINE C doubleZ HFE-sh T},

o

et

frt

¥ 3}F3) structseq A 2EHAE

int PyFloat_ClearFreeList ()
float ZHF 5= (free list) = H] 3 U Tk A S o+ gle= F5

L
4
]

E]_]_'

r |
1t

et

8.24 Ea4 A
stojxie] B4 AA = CAPIOIA 2 uf = 74o] tf 2 o2 PAF UL Shife ghold 2213 =9
spold A o) al, Th stube AAl o ghs UEhll= C F2A QY th API= F 7HA] 5= e
e g AT

TEAZA L Has
A Mgz ol F2AE Wolsolal ARz WEste e £UHE o dFxEYgE o

o
D}*Ht‘r o] = API AA oA A YTh

Py_complex
stol ¥l Barg AR <) gk R
x oz A4

typedef struct {
double real;
double imag;
} Py_complex;

Py_complex _Py_c_sum (Py_complex left, Py_complex right)

CPy complex AL ALt T B 440 3HS v3kgh o).
Py_complex _Py_c_dif£ (Py_complex left, Py_complex right)

CPy complex B3L AF23to] T B A0 xpo] & ubaghy o}

Py_complex _Py_c_neg (Py_complex complex)
C Py _complex WS AFR51o] B4 complex?] 22 Zh< whaghyth

Py_complex _Py_c_prod (Py_complex left, Py_complex right)
CPy complex B3L AFL3to] T B A5 F& utskayr).

Py_complex _Py_c_quot (Py_complex dividend, Py_complex divisor)
C Py complex @Z AFESlo] 7 B4 Ho vyt

divisor7}nullo] 8, o] A &&= 0 W3tsl 1, errnoS EDOMO E A A skt

Py_complex _Py_c_pow (Py_complex num, Py_complex exp)
CPy_complex EHES AFR 3] nume exp A5 A w2 vHagy

H
num] null o] L exp7}] A4 7} o] W, o] WA £ 02 W88 errnod EDOMOR AR T T,

o

8.2. &z} AA 83

The Python/C API, &] B{ A 3.7.17

sholdl 23] 2 A €] B2

PyComplexObject
shol Wl B A& eh & pyobjecte] AH ¥,

PyTypeObject PyComplex_Type
o] PyTypeobiect AXEAE gho]d Ba% L e ch 3ho] A A9 complexst 2-& A7)
Itk

int PyComplex_Check (PyObject *p)

Q1R 7} PyComplexObject W PyComplexObject?] A H & o]

s
m
filo
r]I
rigt
)
A
v

int PyComplex_CheckExact (PyObject *p)
QI A} 7} PyComplexObject O] A B, PyComplexObjectd] A H 73 o] ol ¥ 2L vidshc}

PyObject* PyComplex_FromCComplex (Py_complex v)
Return value: New reference. C Py_complex 3y 2 M Z L 3lo|H B A4 AA S w5 Tth

PyObject* PyComplex_FromDoubles (double real, double imag)
Return value: New reference. real 2 imag@ M ZE-& PyComplexObject AA|E vkeg o}

double PyComplex_RealAsDouble (PyObject *op)
opd] A4-HE Cdouble® WHaHghth

double PyComplex_ImagAsDouble (PyObject *op)
opd] F4+HE CdoubleE ¥FSHsh T}

Py_complex PyComplex_AsCComplex (PyObject *op)
A opd Py_complex Fhg WHEHgU T

op7} ol B Ao AR 7} o} YA W complex_ () WAEZF Ao, o] HAEE HA opE
Bog A MBS 2 AAEE S a0 ASeHE, o AASE 1,08 ke

Y.

8.3 A|dx A

ANA2 Ax o] gt AubA Q A4k o)A ol A = A5 T o] Dol A Thol A Aojo] THI =4
Eo A2 AHE FEUT

8.3.1 nlo|E Y A

o] S el EG w7 Wt BT uf o] EF o] ofd w7 4R &6 TypeErrorE A
e},
PyBytesObject
o] PyObject®] Al H Y& stolH ulo]E G A& LEFH Ut
PyTypeObject PyBytes_Type
o] PyTypeObject?] AA® A ol #l vo|EE & e U stol# A 59 bytes$t -2 4
Al gy et
int PyBytes_Check (PyObject *0)
AH o7} ikl = Ao ALk ulol = o) AH B JdxE AW FE RBF
int PyBytes_CheckExact (PyObject *0)
A 07} whol & AA o] A% wio| 2 Fo] AH Fo] dAEAE o FE whagh T

84 Chapter 8. 74 244 A%

The Python/C API, &] 8| A 3.7.17

PyObject* PyBytes_FromString (const char *v)
Return value: New reference. Return a new bytes object with a copy of the string v as value on success, and NULL
on failure. The parameter v must not be NULL; it will not be checked.

PyObject* PyBytes_FromStringAndSize (const char *v, Py_ssize_t len)
Return value: New reference. Return a new bytes object with a copy of the string v as value and length len on
success, and NULL on failure. If v is NULL, the contents of the bytes object are uninitialized.

PyObject* PyBytes_FromFormat (const char *format, ...)
Return value New reference. C printf () -2EFY format AL 3 71 75 2] QA A}E qbolA, @3’4— g} o]
A vpol £ AR S] =718 A ST 1 obol grol £ Hho|EG AAE MAFUTH AW AAbe
C %0] 0] o} 51v] formar B ARl Y& N BAET A2e] o) g5l ok Ptk 58 £ EY EAE
et 25U

EHEA | A

%% n/a BRI

$c int S vtelE, CintE £ F Ut

5d int printf ("sd") S5 UE]

$u unsigned int | printf ("su") & =S5 FUThH!

$1d long printf ("$1d") & S5}

$1u unsigned long | printf ("s1u") 2} S5 H!

%zd Py_ssize_t printf ("$zd") & 53 }]

$zu size_t printf ("szu") & S5 FUTH!

%1 int printf ("$i") & S5 CH]

%X int printf ("sx") & S5 h!

$s const char* Jd.Ze CEAajg.

% constvoid® | C 9169 16707 £, SAEY prince/f o]@ 2 A9
FEel BlEE 0x & Aol AR THE AS Al stares A9
printf ("sp") 2 S5

QAT 5 gl T BAE T BAL Ul Bio] mE A5} Ao 1o BAH A BEL,
27} QA =AU L

PyObject* PyBytes_FromFormatV (const char *format, va_list vargs)
Return value: ~ New reference. AE3 F MY AAE HEAgE=E AL AYgFFu=

PyBytes_FromFormat ()3 25Ut}

PyObject* PyBytes_FromObject (PyObject *o)
Return value: New reference. ¥ L2 E Z-S T A= A A 02] vlo]EE 8-S 183U

0off

Py_ssize_t PyBytes_Size (PyObject *0)
Hlo|E QG A 02] 4o]E utashy o)

Py_ssize_t PyBytes_GET_SIZE (PyObject *0)
o8] AAF Q= PyBytes Size ()9 WA E A,

char* PyBytes_AsString (PyObject *o)
Return a pointer to the contents of 0. The pointer refers to the internal buffer of o, which consists of 1en (o) + 1
bytes. The last byte in the buffer is always null, regardless of whether there are any other null bytes. The data must
not be modified in any way, unless the object was just created using PyBytes_FromStringAndSize (NULL,
size). It must not be deallocated. If o is not a bytes object at all, PyBytes_AsString () returns NULL and
raises TypeError.

char* PyBytes_AS_STRING (PyObject *string)
o 2] AAF Q= PyBytes_AsString () W E J AL

' A4 A2 (d u,1d, o, zd, 20, i, x) o A1 0-9 3 Sef 2= AL EE A= TS v U

8.3. Aldx A 85

The Python/C API, &] B{ A 3.7.17

int PyBytes_AsStringAndSize (PyObject *obj, char **buffer, Py_ssize_t *length)

=9 A buffer} lengthZ A A objo] B-F 5 &L wHaghoh

If length is NULL, the bytes object may not contain embedded null bytes; if it does, the function returns —1 and a
ValueError is raised.

buffer<= 0bj9] W W S 7}2] 717 5=, 2ol F7} @ vho] E7F 23 Ut (lengtholl & 25 A
SUYth. 24| 7} pyBytes_FromStringAndSize (NULL, size) & AF&3le] WZ WEo]3 H ¢
ol HolHE s A= AUt &= Al A= < F Utk obj7t H}O] E g AA| 7} ofy
PyBytes_AsStringAndSize ()& -1& H}ﬁ-O]—J_ TypeErrorE YA A U Th

W 35004 WA o] Foll=, Hio] E QG Aol d Hio] EZL X F o] QI W TypeErrorZt S
Utk

void PyBytes_Concat (PyObject **bytes, PyObject *newpart)

Create a new bytes object in *bytes containing the contents of newpart appended to byfes; the caller will own the
new reference. The reference to the old value of byfes will be stolen. If the new object cannot be created, the old
reference to bytes will still be discarded and the value of *byfes will be set to NULL; the appropriate exception will
be set.

void PyBytes_ConcatAndDel (PyObject **bytes, PyObject *newpart)

bytesoll newpart2] W-8§-< SI&< Al vle] EE AR E *bytesoll TH5 U th o] WAL newpartd] ¥ 3 +E
ZaAgYTh

int _PyBytes_Resize (PyObject **bytes, Py_ssize_t newsize)

A way to resize a bytes object even though it is “immutable”. Only use this to build up a brand new bytes object;
don’t use this if the bytes may already be known in other parts of the code. It is an error to call this function if
the refcount on the input bytes object is not one. Pass the address of an existing bytes object as an lvalue (it may
be written into), and the new size desired. On success, *byfes holds the resized bytes object and O is returned;
the address in *byfes may differ from its input value. If the reallocation fails, the original bytes object at *byfes is
deallocated, *bytes is set to NULL, MemoryError is set, and —1 is returned.

8.3.2 nlo|E ujj g A A

PyByteArrayObject

o] pyobject?] A B &2 s}o]# bytearray Z

PyTypeObject PyByteArray_Type

27 & VrER U,

o] PyTypeObject AAE AL 5lo] A bytearray 8-S VU EFA U T 3to]l W A2 9] bytearray$ 22

A7 k.

L ERL EE]

int PyByteArray_Check (PyObject *o)

A 07} bytearray 2] A| ©] A 1} bytearray F 2] A H & AA~EH A

int PyByteArray_CheckExact (P\ Object *0)

A A 07} bytearray 2 | o] X 4k, bytearray @ 2] A H 3 AAE A= o)W FHS vk}

86

Chapter 8. A 214 A

o]N-

The Python/C API, &] 8| A 3.7.17

2% API g4

PyObject* PyByteArray_FromObject (PyObject *0)
Return value: New reference. W ¥ = & & =& -3 3= ¢ 2] 2] A A (0) 25 E A A A 22 bytearray 2} 4| &

s E UL

PyObject* PyByteArray_FromStringAndSize (const char *string, Py_ssize_t len)
Return value: New reference. Create a new bytearray object from string and its length, len. On failure, NULL is
returned.

PyObject* PyByteArray_Concat (PyObject *a, PyObject *b)

Return value: New reference. o] E W] & a 2} b o] o] £ o] A & bytearray & W] T}
Py_ssize_t PyByteArray_Size (PyObject *bytearray)

Return the size of bytearray after checking for a NULL pointer.

char* PyByteArray_AsString (PyObject *bytearray)
Return the contents of bytearray as a char array after checking for a NULL pointer. The returned array always has
an extra null byte appended.

int PyByteArray_Resize (PyObject *bytearray, Py_ssize_t len)
bytearray®] 15 191 9] 7] 2 len© % %4 3 o),

a2

olMazE £=E sl dAES s £AHE FASHA FFUHh

char* PyByteArray_AS_STRING (PyObject *bytearray)
PyByteArray AsString ()& sl3E v 4.

Py_ssize_t PyByteArray_GET_SIZE (PyObject *bytearray)
PyByteArray. Size() 9] Iz 8 A.

8.3.3 Unicode Objects and Codecs

Unicode Objects

Since the implementation of PEP 393 in Python 3.3, Unicode objects internally use a variety of representations, in order
to allow handling the complete range of Unicode characters while staying memory efficient. There are special cases for
strings where all code points are below 128, 256, or 65536; otherwise, code points must be below 1114112 (which is the
full Unicode range).

Py _UNICODE* and UTF-8 representations are created on demand and cached in the Unicode object. The
Py_UNICODE * representation is deprecated and inefficient; it should be avoided in performance- or memory-sensitive
situations.

Due to the transition between the old APIs and the new APIs, Unicode objects can internally be in two states depending
on how they were created:

 “canonical” Unicode objects are all objects created by a non-deprecated Unicode API. They use the most efficient
representation allowed by the implementation.

e “legacy” Unicode objects have been created through one of the deprecated APIs (typically
PyUnicode_FromUnicode ()) and only bear the Py_UNICODE* representation; you will have to call
PyUnicode_ READY () on them before calling any other APL

8.3. Aldx A 87

https://www.python.org/dev/peps/pep-0393

The Python/C API, &] B{ A 3.7.17

Unicode Type

These are the basic Unicode object types used for the Unicode implementation in Python:

Py_UCS4

Py_UCS2

Py_UCS1
These types are typedefs for unsigned integer types wide enough to contain characters of 32 bits, 16 bits and 8 bits,
respectively. When dealing with single Unicode characters, use Py_ UCS4.

WA 3300 27}

Py_UNICODE
This is a typedef of wchar_t, which is a 16-bit type or 32-bit type depending on the platform.

W 7 3.30| A ¥ 7 : In previous versions, this was a 16-bit type or a 32-bit type depending on whether you selected
a “narrow” or “wide” Unicode version of Python at build time.

PyASCIIObject

PyCompactUnicodeObject

PyUnicodeObject
These subtypes of PyOb ject represent a Python Unicode object. In almost all cases, they shouldn’t be used
directly, since all API functions that deal with Unicode objects take and return PyOb ject pointers.

WA 330 7}

PyTypeObject PyUnicode_Type
This instance of Py TypeObject represents the Python Unicode type. It is exposed to Python code as st r.

The following APIs are really C macros and can be used to do fast checks and to access internal read-only data of Unicode
objects:

int PyUnicode_Check (PyObject *o)
Return true if the object o is a Unicode object or an instance of a Unicode subtype.

int PyUnicode_CheckExact (PyObject *o)
Return true if the object o is a Unicode object, but not an instance of a subtype.

int PyUnicode_READY (PyObject *o)
Ensure the string object o is in the “canonical” representation. This is required before using any of the access
macros described below.

Returns O on success and —1 with an exception set on failure, which in particular happens if memory allocation
fails.

¥ A 3.39] F7}.

Py_ssize_t PyUnicode_GET_LENGTH (PyObject *0)
Return the length of the Unicode string, in code points. o has to be a Unicode object in the “canonical” represen-
tation (not checked).

WA 3.30] F7}.

Py_UCSI* PyUnicode_1BYTE_DATA (PyObject *0)

Py_UCS2* PyUnicode_2BYTE_DATA (PyObject *0)

Py_UCS4* PyUnicode_4BYTE_DATA (PyObject *0)
Return a pointer to the canonical representation cast to UCS1, UCS2 or UCS4 integer types for direct char-
acter access. No checks are performed if the canonical representation has the correct character size; use
PyUnicode_KIND () to select the right macro. Make sure PyUnicode_READY () has been called before
accessing this.

WA 3.30] =7}

88 Chapter 8. A A A

olN-

The Python/C API, &] 8| A 3.7.17

PyUnicode_WCHAR_KIND
PyUnicode_1BYTE_KIND
PyUnicode_2BYTE_KIND
PyUnicode_4BYTE_KIND

Return values of the PyUnicode KIND () macro.

WA 330 7}

int PyUnicode_KIND (PyObject *o0)
Return one of the PyUnicode kind constants (see above) that indicate how many bytes per character this Unicode
object uses to store its data. o has to be a Unicode object in the “canonical” representation (not checked).

B A 3.30] F7}.

void* PyUnicode_DATA (PyObject *o)
Return a void pointer to the raw Unicode buffer. o has to be a Unicode object in the “canonical” representation
(not checked).

B A 3.30] F7}.

void PyUnicode_WRITE (int kind, void *data, Py_ssize_t index, Py_UCS4 value)
Write into a canonical representation data (as obtained with PyUnicode_DATA ()). This macro does not do
any sanity checks and is intended for usage in loops. The caller should cache the kind value and data pointer as
obtained from other macro calls. index is the index in the string (starts at 0) and value is the new code point value
which should be written to that location.

W A 3.30] =7}

Py_UCS4 PyUnicode_READ (int kind, void *data, Py_ssize_t index)
Read a code point from a canonical representation data (as obtained with PyUnicode_DATA ()). No checks or
ready calls are performed.

W7 3.30] 7%

Py_UCS4 PyUnicode_READ_CHAR (PyObject *o, Py_ssize_t index)
Read a character from a Unicode object o, which must be in the “canonical” representation. This is less efficient
than PyUnicode_READ () if you do multiple consecutive reads.

WA 330 27}

PyUnicode_MAX_CHAR_VALUE (PyObject *0)
Return the maximum code point that is suitable for creating another string based on o, which must be in the
“canonical” representation. This is always an approximation but more efficient than iterating over the string.

WA 330 27}

int PyUnicode_ClearFreeList ()
Clear the free list. Return the total number of freed items.

Py_ssize_t PyUnicode_GET_SIZE (PyObject *0)
Return the size of the deprecated Py_ UNICODE representation, in code units (this includes surrogate pairs as 2
units). o has to be a Unicode object (not checked).

Deprecated since version 3.3, will be removed in version 4.0: Part of the old-style Unicode API, please migrate to
using PyUnicode_ GET_LENGTH ().

Py_ssize_t PyUnicode_GET_DATA_SIZE (PyObject *o)
Return the size of the deprecated Py_ UNICODE representation in bytes. o has to be a Unicode object (not checked).

Deprecated since version 3.3, will be removed in version 4.0: Part of the old-style Unicode API, please migrate to
using PyUnicode_GET_LENGTH ().

Py_UNICODE* PyUnicode_AS_UNICODE (PyObject *0)

8.3. Aldx A 89

The Python/C API, &] B{ A 3.7.17

const char* PyUnicode_AS_DATA (PyObject *0)
Return a pointer to a Py_ UNTCODE representation of the object. The returned buffer is always terminated with an
extra null code point. It may also contain embedded null code points, which would cause the string to be truncated
when used in most C functions. The AS_DATA form casts the pointer to const char *. The o argument has
to be a Unicode object (not checked).

¥ A 3.30]| 4] ¥ 7 : This macro is now inefficient — because in many cases the Py. UNTCODE representation does
not exist and needs to be created — and can fail (return NULL with an exception set). Try to port the code to use
the new PyUnicode_nBYTE_DATA () macros or use PyUnicode_WRITE () or PyUnicode READ ().

Deprecated since version 3.3, will be removed in version 4.0: Part of the old-style Unicode API, please migrate to
using the PyUnicode_nBYTE_DATA () family of macros.

Unicode Character Properties

Unicode provides many different character properties. The most often needed ones are available through these macros
which are mapped to C functions depending on the Python configuration.

int Py_UNICODE_ISSPACE (Py_UNICODE ch)
Return 1 or 0 depending on whether ch is a whitespace character.

int Py_UNICODE_ISLOWER (Py_UNICODE ch)
Return 1 or 0 depending on whether ch is a lowercase character.

int Py_UNICODE_ISUPPER (Py UNICODE ch)
Return 1 or 0 depending on whether ch is an uppercase character.

int Py_UNICODE_ISTITLE (Py UNICODE ch)
Return 1 or 0 depending on whether ch is a titlecase character.

int Py_UNICODE_ISLINEBREAK (Py_UNICODE ch)
Return 1 or 0 depending on whether c# is a linebreak character.

int Py_UNICODE_ISDECIMAL (Py UNICODE ch)
Return 1 or 0 depending on whether ch is a decimal character.

int Py _UNICODE_ISDIGIT (Py_UNICODE ch)
Return 1 or 0 depending on whether ch is a digit character.

int Py_UNICODE_ISNUMERIC (Py_ UNICODE ch)
Return 1 or 0 depending on whether c/ is a numeric character.

int Py_UNICODE_ISALPHA (Py_ UNICODE ch)
Return 1 or 0 depending on whether ch is an alphabetic character.

int Py_UNICODE_ISALNUM (Py_UNICODE ch)
Return 1 or 0 depending on whether c# is an alphanumeric character.

int Py_UNICODE_ISPRINTABLE (Py_UNICODE ch)
Return 1 or 0 depending on whether ch is a printable character. Nonprintable characters are those characters
defined in the Unicode character database as “Other” or “Separator”, excepting the ASCII space (0x20) which is
considered printable. (Note that printable characters in this context are those which should not be escaped when
repr () is invoked on a string. It has no bearing on the handling of strings written to sys.stdout or sys.
stderr.)

These APIs can be used for fast direct character conversions:

Py_UNICODE Py_UNICODE_TOLOWER (Py_UNICODE ch)
Return the character ch converted to lower case.

W A 3.3% €] =) A]: This function uses simple case mappings.

90 Chapter 8. A A A

o]N-

The Python/C API, &] 8| A 3.7.17

Py_UNICODE Py_UNICODE_TOUPPER (Py_UNICODE ch)
Return the character ch converted to upper case.

W A 3.3% €] 5 A]: This function uses simple case mappings.

Py_UNICODE Py_UNICODE_TOTITLE (Py_UNICODE ch)
Return the character ch converted to title case.

¥ A 3.35E] | A]: This function uses simple case mappings.

int Py_UNICODE_TODECIMAL (Py_UNICODE ch)
Return the character ch converted to a decimal positive integer. Return —1 if this is not possible. This macro does
not raise exceptions.

int Py_UNICODE_TODIGIT (Py_UNICODE ch)
Return the character ch converted to a single digit integer. Return —1 if this is not possible. This macro does not
raise exceptions.

double Py_UNICODE_TONUMERIC (Py_UNICODE ch)
Return the character ch converted to a double. Return —1 .0 if this is not possible. This macro does not raise
exceptions.

These APIs can be used to work with surrogates:

Py_UNICODE_IS_SURROGATE (ch)
Check if ch is a surrogate (0xD800 <= ch <= O0xDFFF).

Py_UNICODE_IS_HIGH_SURROGATE (ch)
Check if ch is a high surrogate (0xD800 <= ch <= 0xDBFF).

Py_UNICODE_IS_LOW_SURROGATE (ch)
Check if ch is a low surrogate (0xDC00 <= ch <= OxDFFF).

Py_UNICODE_JOIN_SURROGATES (high, low)
Join two surrogate characters and return a single Py_UCS4 value. high and low are respectively the leading and
trailing surrogates in a surrogate pair.

Creating and accessing Unicode strings

To create Unicode objects and access their basic sequence properties, use these APIs:

PyObject* PyUnicode_New (Py_ssize_t size, Py_UCS4 maxchar)
Return value: New reference. Create a new Unicode object. maxchar should be the true maximum code point to

be placed in the string. As an approximation, it can be rounded up to the nearest value in the sequence 127, 255,
65535, 1114111.

This is the recommended way to allocate a new Unicode object. Objects created using this function are not resizable.
W7 330 7%

PyObject* PyUnicode_FromKindAndData (int kind, const void *buffer, Py_ssize_t size)
Return value: New reference. Create a new Unicode object with the given kind (possible values are
PyUnicode_1BYTE_KIND etc., as returned by PyUnicode_KIND ()). The buffer must point to an array
of size units of 1, 2 or 4 bytes per character, as given by the kind.

WA 330 37}

PyObject* PyUnicode_FromStringAndSize (const char *u, Py_ssize_t size)
Return value: New reference. Create a Unicode object from the char buffer u. The bytes will be interpreted as being
UTF-8 encoded. The buffer is copied into the new object. If the buffer is not NULL, the return value might be a
shared object, i.e. modification of the data is not allowed.

8.3. Aldx A 91

The Python/C API, &] B{ A 3.7.17

If u is NULL, this function behaves like PyUnicode_FromUnicode () with the buffer set to NULL. This usage
is deprecated in favor of PyUnicode New ().

PyObject *PyUnicode_FromString (const char *u)
Return value: New reference. Create a Unicode object from a UTF-8 encoded null-terminated char buffer u.

PyObject* PyUnicode_FromFormat (const char *format, ...)
Return value: New reference. Take a C printf () -style format string and a variable number of arguments,
calculate the size of the resulting Python Unicode string and return a string with the values formatted into it. The
variable arguments must be C types and must correspond exactly to the format characters in the format ASCII-
encoded string. The following format characters are allowed:

Format Characters | Type Comment

5% n/a The literal % character.

%$c int A single character, represented as aCint.

$d int Equivalent to printf ("%d").

$u unsigned int Equivalent to print £ ("su").!

%1d long Equivalent to print £ ("$1d") I

$11i long Equivalent to printf ("$11i") T

%$1lu unsigned long Equivalent to print £ ("$1u").!

$11d long long Equivalent to printf ("$11d").!

$111 long long Equivalent to print £ ("$111i").!

$1lu unsigned long long Equivalent to printf ("$11u").!

5zd Py_ssize_t Equivalent to print £ ("$zd").!

$zi Py_ssize_t Equivalent to print £ ("$zi").!

%zu size_t Equivalent to printf ("$zu") R

$i int Equivalent to print £ ("$i"). T

%% int Equivalent to print £ ("$x").!

%s const char* A null-terminated C character array.

%p const void* The hex representation of a C pointer. Mostly equivalent to
printf ("$p") except that it is guaranteed to start with
the literal Ox regardless of what the platform’s printf
yields.

$A PyObject* The result of calling ascii ().

sU PyObject* A Unicode object.

SV PyObject*, const char* | A Unicode object (which may be NULL) and a
null-terminated C character array as a second parameter
(which will be used, if the first parameter is NULL).

%S PyObject* The result of calling PyObject_Str().

%R PyObject* The result of calling PyObject_Repr ().

An unrecognized format character causes all the rest of the format string to be copied as-is to the result string, and
any extra arguments discarded.

ZF31: The width formatter unit is number of characters rather than bytes. The precision formatter unit is number
of bytes for "$s" and "$V" (if the PyObject* argument is NULL), and a number of characters for "%$A",
"sU", "%S ", "$R" and "$V" (if the PyObject* argument is not NULL).

WA 3.2 4 ¥ 7 : Support for "$11d" and "$11u" added.
¥ A 3.30]|A] 7 : Support for "$11i", "$11i" and "$z1i" added.

! For integer specifiers (d, u, 1d, 1i, Iu, 11d, 11i, 1lu, zd, zi, zu, i, x): the O-conversion flag has effect even when a precision is given.

92 Chapter 8. A 214 A|

OIN-

The Python/C API, &] 8| A 3.7.17

¥ A 3.40]| A] ' 7 : Support width and precision formatter for "$s™, "$A", "$U", "$V", "$S", "SR" added.

PyObject* PyUnicode_FromFormatV (const char *format, va_list vargs)
Return value: New reference. Identical to PyUnicode FromFormat () except that it takes exactly two argu-
ments.

PyObject* PyUnicode_FromEncodedObject (PyObject *obj, const char *encoding, const char *errors)
Return value: New reference. Decode an encoded object obj to a Unicode object.

bytes, bytearray and other bytes-like objects are decoded according to the given encoding and using the error
handling defined by errors. Both can be NULL to have the interface use the default values (see Built-in Codecs for
details).

All other objects, including Unicode objects, cause a TypeError to be set.
The API returns NULL if there was an error. The caller is responsible for decref’ing the returned objects.

Py_ssize_t PyUnicode_GetLength (PyObject *unicode)
Return the length of the Unicode object, in code points.

WA 330 27}

Py_ssize_t PyUnicode_CopyCharacters (PyObject *to, Py_ssize_t to_start, PyObject *from,
Py_ssize_t from_start, Py_ssize_t how_many)
Copy characters from one Unicode object into another. This function performs character conversion when necessary
and falls back to memcpy () if possible. Returns —1 and sets an exception on error, otherwise returns the number
of copied characters.

B A 3.30] 7}

Py_ssize_t PyUnicode_Fill (PyObject *unicode, Py_ssize_t start, Py_ssize_t length, Py_UCS4 fill_char)
Fill a string with a character: write fill_char into unicode [start:start+length].
Fail if fill_char is bigger than the string maximum character, or if the string has more than 1 reference.
Return the number of written character, or return —1 and raise an exception on error.
B A 3.30] F7}.

int PyUnicode_WriteChar (PyObject *unicode, Py_ssize_t index, Py_UCS4 character)
Write a character to a string. The string must have been created through PyUnicode_New (). Since Unicode
strings are supposed to be immutable, the string must not be shared, or have been hashed yet.

This function checks that unicode is a Unicode object, that the index is not out of bounds, and that the object can
be modified safely (i.e. that it its reference count is one).

WA 330 27}

Py_UCS4 PyUnicode_ReadChar (PyObject *unicode, Py_ssize_t index)
Read a character from a string. This function checks that unicode is a Unicode object and the index is not out of
bounds, in contrast to the macro version PyUnicode READ_CHAR ().

WA 330 7}

PyObject* PyUnicode_Substring (PyObject *str, Py_ssize_t start, Py_ssize_t end)
Return value: New reference. Return a substring of str, from character index start (included) to character index end
(excluded). Negative indices are not supported.

WA 330 7}

Py_UCS4* PyUnicode_AsUCS4 (PyObject *u, Py_UCS4 *buffer, Py_ssize_t buflen, int copy_null)
Copy the string u into a UCS4 buffer, including a null character, if copy_null is set. Returns NULL and sets an
exception on error (in particular, a SystemError if buflen is smaller than the length of u). buffer is returned on
success.

8.3. Aldx A 93

The Python/C API, &] B{ A 3.7.17

WA 330 27}

Py_UCS4* PyUnicode_AsUCS4Copy (PyObject *u)
Copy the string « into a new UCS4 buffer that is allocated using PyMem Malloc (). If this fails, NULL is returned
with a MemoryError set. The returned buffer always has an extra null code point appended.

B A 3.30] F7}.

Deprecated Py_UNICODE APls

Deprecated since version 3.3, will be removed in version 4.0.

These API functions are deprecated with the implementation of PEP 393. Extension modules can continue using them,
as they will not be removed in Python 3.x, but need to be aware that their use can now cause performance and memory
hits.

PyObject* PyUnicode_FromUnicode (const Py_UNICODE *u, Py_ssize_t size)
Return value: New reference. Create a Unicode object from the Py_UNICODE buffer u of the given size. u may
be NULL which causes the contents to be undefined. It is the user’s responsibility to fill in the needed data. The
buffer is copied into the new object.

If the buffer is not NULL, the return value might be a shared object. Therefore, modification of the resulting
Unicode object is only allowed when u is NULL.

If the buffer is NULL, PyUnicode_READY () must be called once the string content has been filled before using
any of the access macros such as PyUnicode_KIND ().

Please migrate to using PyUnicode_FromKindAndData (), PyUnicode_FromWideChar () or
PyUnicode_New ().

Py_UNICODE* PyUnicode_AsUnicode (PyObject *unicode)
Return a read-only pointer to the Unicode object’s internal Py UNICODE buffer, or NULL on error. This will
create the Py_ UNICODE * representation of the object if it is not yet available. The buffer is always terminated
with an extra null code point. Note that the resulting Py_ UNTCODE string may also contain embedded null code
points, which would cause the string to be truncated when used in most C functions.

Please migrate to using PyUnicode_AsUCS4 (), PyUnicode_AsWideChar (),
PyUnicode_ReadChar () or similar new APIs.

PyObject* PyUnicode_TransformDecimalToASCII (Py_UNICODE *s, Py_ssize_t size)
Return value: New reference. Create a Unicode object by replacing all decimal digits in Py_ UNICODE buffer of
the given size by ASCII digits 0-9 according to their decimal value. Return NULL if an exception occurs.

Py_UNICODE* PyUnicode_AsUnicodeAndSize (PyObject *unicode, Py_ssize_t *size)
Like PyUnicode_AsUnicode (), but also saves the Py UNICODE () array length (excluding the extra null
terminator) in size. Note that the resulting Py_ UNTCODE * string may contain embedded null code points, which
would cause the string to be truncated when used in most C functions.

WA 330 7}

Py_UNICODE* PyUnicode_AsUnicodeCopy (PyObject *unicode)
Create a copy of a Unicode string ending with a null code point. Return NULL and raise a MemoryError
exception on memory allocation failure, otherwise return a new allocated buffer (use PyMem Free () to free the
buffer). Note that the resulting Py_ UNTCODE * string may contain embedded null code points, which would cause
the string to be truncated when used in most C functions.

B A 3.20] F7}.

Please migrate to using PyUnicode AsUCS4Copy () or similar new APIs.

94 Chapter 8. A 214 A

o]N-

https://www.python.org/dev/peps/pep-0393

The Python/C API, &] 8| A 3.7.17

Py_ssize_t PyUnicode_GetSize (PyObject *unicode)
Return the size of the deprecated Py_UNICODE representation, in code units (this includes surrogate pairs as 2
units).

Please migrate to using PyUnicode_GetLength ().
PyObject* PyUnicode_FromObject (PyObject *obj)

Return value: New reference. Copy an instance of a Unicode subtype to a new true Unicode object if necessary. If
obj is already a true Unicode object (not a subtype), return the reference with incremented refcount.

Objects other than Unicode or its subtypes will cause a TypeError.

Locale Encoding

The current locale encoding can be used to decode text from the operating system.

PyObject* PyUnicode_DecodeLocaleAndSize (const char *str, Py_ssize_t len, const char *errors)
Return value: New reference. Decode a string from UTF-8 on Android, or from the current locale encoding on
other platforms. The supported error handlers are "strict" and "surrogateescape" (PEP 383). The
decoder uses "strict™" error handler if errors is NULL. str must end with a null character but cannot contain
embedded null characters.

Use PyUnicode_DecodeFSDefaultAndSize () to decode a string from
Py_FileSystemDefaultEncoding (the locale encoding read at Python startup).

This function ignores the Python UTF-8 mode.
o ®B7]:

The Py_DecodeLocale () function.

W 330 F7}

WA 3.7 A ¥ 7 : The function now also uses the current locale encoding for the surrogateescape error
handler, except on Android. Previously, Py_DecodeLocale () was used for the surrogateescape, and
the current locale encoding was used for strict.

PyObject* PyUnicode_DecodeLocale (const char *str, const char *errors)
Return value: New reference. Similar to PyUnicode_DecodeLocaleAndSize (), but compute the string
length using strlen ().

W7 3.30] 7%

PyObject* PyUnicode_EncodeLocale (PyObject *unicode, const char *errors)
Return value: New reference. Encode a Unicode object to UTF-8 on Android, or to the current locale encod-
ing on other platforms. The supported error handlers are "strict" and "surrogateescape" (PEP 383).
The encoder uses "strict" error handler if errors is NULL. Return a bytes object. unicode cannot contain
embedded null characters.

Use PyUnicode_EncodeFSDefault () toencodeastringtoPy_FileSystemDefaultEncoding (the
locale encoding read at Python startup).

This function ignores the Python UTF-8 mode.
o B

The Py _EncodeLocale () function.

B A 3.30]] &7}

8.3. Aldx A 95

https://www.python.org/dev/peps/pep-0383
https://www.python.org/dev/peps/pep-0383

The Python/C API, &] B{ A 3.7.17

WA 3.7 4 ¥ 7 : The function now also uses the current locale encoding for the surrogateescape error
handler, except on Android. Previously, Py_EncodeLocale () was used for the surrogateescape, and
the current locale encoding was used for strict.

File System Encoding

To encode and decode file names and other environment strings, Py_FileSystemDefaultEncoding should be
used as the encoding, and Py_FileSystemDefaultEncodeErrors should be used as the error handler (PEP
383 and PEP 529). To encode file names to bytes during argument parsing, the "O&" converter should be used,
passing PyUnicode_FSConverter () asthe conversion function:

int PyUnicode_FSConverter (PyObject* obj, void* result)
ParseTuple converter: encode str objects — obtained directly or through the os.PathLike interface —
to bytes using PyUnicode_EncodeFSDefault (); bytes objects are output as-is. result must be a
PyBytesObject * which must be released when it is no longer used.

WA 310 =7}
WA 3.690 A ¥ 7 : Accepts a path-like object.

To decode file names to str during argument parsing, the "O&" converter should be used, passing
PyUnicode_FSDecoder () as the conversion function:

int PyUnicode_FSDecoder (PyObject* obj, void* result)
ParseTuple converter: decode bytes objects — obtained either directly or indirectly through the os .PathLike
interface — to st r using PyUnicode_DecodeFSDefaultAndSize (); str objects are output as-is. result
must be a PyUnicodeOb ject * which must be released when it is no longer used.

WA 320] 7}
WA 3.690 A ¥ 7 Accepts a path-like object.

PyObject* PyUnicode_DecodeFSDefaultAndSize (const char *s, Py_ssize_t size)
Return value: New reference. ~Decode a string using Py_FileSystemDefaultEncoding and the
Py_FileSystemDefaultEncodeErrors error handler.

If Py_FileSystemDefaultEncoding is not set, fall back to the locale encoding.

Py_FileSystemDefaultEncoding is initialized at startup from the locale encoding and can-

not be modified later. If you need to decode a string from the current locale encoding, use
PyUnicode_DecodeLocaleAndSize ().
o H7]:

The Py_DecodeLocale () function.
WA 3.600 A WH7: Use Py_FileSystemDefaultEncodeErrors error handler.

PyObject* PyUnicode_DecodeFSDefault (const char *s)
Return value: New reference. Decode a null-terminated string using Py_FileSystemDefaultEncoding
and the Py_FileSystemDefaultEncodeErrors error handler.

If Py_FileSystemDefaultEncoding is not set, fall back to the locale encoding.
Use PyUnicode_DecodeFSDefaultAndSize () if you know the string length.
WA 3.6004 W7 : Use Py_FileSystemDefaultEncodeErrors error handler.

PyObject* PyUnicode_EncodeFSDefault (PyObject *unicode)
Return value: New reference. Encode a Unicode object to Py_FileSystemDefaultEncoding with the
Py_FileSystemDefaultEncodeErrors error handler, and return byt es. Note that the resultingbytes
object may contain null bytes.

96 Chapter 8. A A A

o]N-

https://www.python.org/dev/peps/pep-0383
https://www.python.org/dev/peps/pep-0383
https://www.python.org/dev/peps/pep-0529

The Python/C API, &] 8| A 3.7.17

If Py_FileSystemDefaultEncoding is not set, fall back to the locale encoding.

Py_FileSystemDefaultEncoding isinitialized at startup from the locale encoding and cannot be modified
later. If you need to encode a string to the current locale encoding, use PyUnicode_EncodeLocale ().

o] ®7]:
The Py EncodeLocale () function.
WA 3200 7}

WA 3.60)4 W7 : Use Py_FileSystemDefaultEncodeErrors error handler.

wchar_t Support

wchar_t support for platforms which support it:

PyObject* PyUnicode_FromWideChar (const wchar_t *w, Py_ssize_t size)
Return value: New reference. Create a Unicode object from the wchar_t buffer w of the given size. Passing —1
as the size indicates that the function must itself compute the length, using weslen. Return NULL on failure.

Py_ssize_t PyUnicode_AsWideChar (PyObject *unicode, wchar_t *w, Py_ssize_t size)
Copy the Unicode object contents into the wchar_t buffer w. At most size wchar_t characters are copied
(excluding a possibly trailing null termination character). Return the number of wchar_t characters copied or
-1 in case of an error. Note that the resulting wchar_t* string may or may not be null-terminated. It is the
responsibility of the caller to make sure that the wchar_t * string is null-terminated in case this is required by the
application. Also, note that the wchar_t * string might contain null characters, which would cause the string to
be truncated when used with most C functions.

wchar_t* PyUnicode_AsWideCharString (PyObject *unicode, Py_ssize_t *size)
Convert the Unicode object to a wide character string. The output string always ends with a null character. If size is
not NULL, write the number of wide characters (excluding the trailing null termination character) into *size. Note
that the resulting wchar_ t string might contain null characters, which would cause the string to be truncated when
used with most C functions. If size is NULL and the wchar_t* string contains null characters a ValueError
is raised.

Returns a buffer allocated by PyMem_Alloc () (use PyMem_Free () to free it) on success. On error, returns
NULL and *size is undefined. Raises a MemoryError if memory allocation is failed.

B A 3.20] F7}.

WA 3.7 A ¥ 7 : Raises a ValueError if size is NULL and the wchar_t * string contains null characters.

Built-in Codecs

Python provides a set of built-in codecs which are written in C for speed. All of these codecs are directly usable via the
following functions.

Many of the following APIs take two arguments encoding and errors, and they have the same semantics as the ones of
the built-in st r () string object constructor.

Setting encoding to NULL causes the default encoding to be used which is ASCIL The file sys-
tem calls should use PyUnicode_FSConverter () for encoding file names. This uses the variable
Py_FileSystemDefaultEncoding internally. This variable should be treated as read-only: on some sys-
tems, it will be a pointer to a static string, on others, it will change at run-time (such as when the application invokes
setlocale).

Error handling is set by errors which may also be set to NULL meaning to use the default handling defined for the codec.
Default error handling for all built-in codecs is “strict” (ValueError is raised).

8.3. Aldx A 97

The Python/C API, &] B{ A 3.7.17

The codecs all use a similar interface. Only deviation from the following generic ones are documented for simplicity.

Generic Codecs

These are the generic codec APIs:

PyObject* PyUnicode_Decode (const char *s, Py_ssize_t size, const char *encoding, const char *errors)
Return value: New reference. Create a Unicode object by decoding size bytes of the encoded string s. encoding and
errors have the same meaning as the parameters of the same name in the st r () built-in function. The codec to
be used is looked up using the Python codec registry. Return NULL if an exception was raised by the codec.

PyObject* PyUnicode_AsEncodedString (PyObject *unicode, const char *encoding, const char *errors)
Return value: New reference. Encode a Unicode object and return the result as Python bytes object. encoding and
errors have the same meaning as the parameters of the same name in the Unicode encode () method. The codec
to be used is looked up using the Python codec registry. Return NULL if an exception was raised by the codec.

PyObject* PyUnicode_Encode (const Py_UNICODE *s, Py_ssize_t size, const char *encoding, const char *er-

rors)
Return value: New reference. Encode the Py_ UNTCODE buffer s of the given size and return a Python bytes object.

encoding and errors have the same meaning as the parameters of the same name in the Unicode encode () method.
The codec to be used is looked up using the Python codec registry. Return NULL if an exception was raised by the
codec.

Deprecated since version 3.3, will be removed in version 4.0: Part of the old-style Py_UNICODE API; please
migrate to using PyUnicode_AsEncodedString ().

UTF-8 Codecs

These are the UTF-8 codec APIs:

PyObject* PyUnicode_DecodeUTF8 (const char *s, Py_ssize_t size, const char *errors)
Return value: New reference. Create a Unicode object by decoding size bytes of the UTF-8 encoded string s. Return
NULL if an exception was raised by the codec.

PyObject* PyUnicode_DecodeUTF8Stateful (const char *s, Py_ssize t size, const char *errors,

Py_ssize_t *consumed)
Return value: New reference. If consumed is NULL, behave like PyUnicode_DecodeUTFS8 (). If consumed

is not NULL, trailing incomplete UTF-8 byte sequences will not be treated as an error. Those bytes will not be
decoded and the number of bytes that have been decoded will be stored in consumed.

PyObject* PyUnicode_AsUTF8String (PyObject *unicode)
Return value: New reference. Encode a Unicode object using UTF-8 and return the result as Python bytes object.
Error handling is “strict”. Return NULL if an exception was raised by the codec.

const char* PyUnicode_AsUTF8AndSize (PyObject *unicode, Py_ssize_t *size)
Return a pointer to the UTF-8 encoding of the Unicode object, and store the size of the encoded representation (in
bytes) in size. The size argument can be NULL; in this case no size will be stored. The returned buffer always has
an extra null byte appended (not included in size), regardless of whether there are any other null code points.

In the case of an error, NULL is returned with an exception set and no size is stored.

This caches the UTF-8 representation of the string in the Unicode object, and subsequent calls will return a pointer
to the same buffer. The caller is not responsible for deallocating the buffer.

B A 3.30]] 7}

WA 3. 79| A ¥ 7 : The return type is now const char * rather of char *.

98 Chapter 8. A A A

olN-

The Python/C API, &] 8| A 3.7.17

const char* PyUnicode_AsUTF8 (PyObject *unicode)
As PyUnicode_AsUTF8AndSize (), but does not store the size.

WA 339 F7}
WA 3.79)| A ¥ 7 : The return type is now const char * rather of char *.

PyObject* PyUnicode_EncodeUTF8 (const Py_UNICODE *s, Py_ssize_t size, const char *errors)
Return value: New reference. Encode the Py UNTCODE buffer s of the given size using UTF-8 and return a Python
bytes object. Return NULL if an exception was raised by the codec.

Deprecated since version 3.3, will be removed in version 4.0: Part of the old-style Py _UNICODE
API; please migrate to using PyUnicode AsUTF8String (), PyUnicode AsUTF8AndSize () or
PyUnicode_AsEncodedString().

UTF-32 Codecs

These are the UTF-32 codec APIs:

PyObject* PyUnicode_DecodeUTF32 (const char *s, Py_ssize_t size, const char *errors, int *byteorder)
Return value: New reference. Decode size bytes from a UTF-32 encoded buffer string and return the corresponding
Unicode object. errors (if non-NULL) defines the error handling. It defaults to “strict”.

If byteorder is non-NULL, the decoder starts decoding using the given byte order:

*byteorder == -1: little endian
*byteorder == 0: native order
*byteorder == 1: Dbig endian

If *byteorder is zero, and the first four bytes of the input data are a byte order mark (BOM), the decoder
switches to this byte order and the BOM is not copied into the resulting Unicode string. If *byteorderis -1 or
1, any byte order mark is copied to the output.

After completion, *byteorder is set to the current byte order at the end of input data.
If byteorder is NULL, the codec starts in native order mode.
Return NULL if an exception was raised by the codec.

PyObject* PyUnicode_DecodeUTF32Stateful (const char *s, Py_ssize_t size, const char *errors, int *by-

teorder, Py_ssize_t *consumed)
Return value: New reference. If consumed is NULL, behave like PyUnicode_DecodeUTF32 (). If consumed

is not NULL, PyUnicode_DecodeUTF32Staterful () will not treat trailing incomplete UTF-32 byte se-
quences (such as a number of bytes not divisible by four) as an error. Those bytes will not be decoded and the
number of bytes that have been decoded will be stored in consumed.

PyObject* PyUnicode_AsUTF32String (PyObject *unicode)
Return value: New reference. Return a Python byte string using the UTF-32 encoding in native byte order. The
string always starts with a BOM mark. Error handling is “strict”. Return NULL if an exception was raised by the
codec.

PyObject* PyUnicode_EncodeUTF32 (const Py_UNICODE *s, Py_ssize_t size, const char *errors, int byte-

order)
Return value: New reference. Return a Python bytes object holding the UTF-32 encoded value of the Unicode data

in s. Output is written according to the following byte order:

byteorder == -1: little endian
byteorder == 0: native byte order (writes a BOM mark)
byteorder == 1: Dbig endian

8.3. Aldx A 99

The Python/C API, &] B{ A 3.7.17

If byteorder is O, the output string will always start with the Unicode BOM mark (U+FEFF). In the other two
modes, no BOM mark is prepended.

If Py_ UNICODE_WIDE is not defined, surrogate pairs will be output as a single code point.
Return NULL if an exception was raised by the codec.

Deprecated since version 3.3, will be removed in version 4.0: Part of the old-style Py UNICODE API; please
migrate to using PyUnicode AsUTF32String () or PyUnicode_AsEncodedString().

UTF-16 Codecs

These are the UTF-16 codec APIs:

PyObject* PyUnicode_DecodeUTF16 (const char *s, Py_ssize_t size, const char *errors, int *byteorder)

Return value: New reference. Decode size bytes from a UTF-16 encoded buffer string and return the corresponding
Unicode object. errors (if non-NULL) defines the error handling. It defaults to “strict”.

If byteorder is non-NULL, the decoder starts decoding using the given byte order:

*pbyteorder == -1: little endian
*byteorder == 0: native order
*byteorder == 1: Dbig endian

If *byteorder is zero, and the first two bytes of the input data are a byte order mark (BOM), the decoder
switches to this byte order and the BOM is not copied into the resulting Unicode string. If *byteorderis -1 or
1, any byte order mark is copied to the output (where it will result in either a \ufeff or a \uf f fe character).

After completion, *byteorder is set to the current byte order at the end of input data.
If byteorder is NULL, the codec starts in native order mode.

Return NULL if an exception was raised by the codec.

PyObject* PyUnicode_DecodeUTF1l6Stateful (const char *s, Py_ssize_t size, const char *errors, int *by-

teorder, Py_ssize_t *consumed)
Return value: New reference. If consumed is NULL, behave like PyUnicode_DecodeUTF16 (). If consumed

is not NULL, PyUnicode_DecodeUTF16Stateful () will not treat trailing incomplete UTF-16 byte se-
quences (such as an odd number of bytes or a split surrogate pair) as an error. Those bytes will not be decoded and
the number of bytes that have been decoded will be stored in consumed.

PyObject* PyUnicode_AsUTF16String (PyObject *unicode)

Return value: New reference. Return a Python byte string using the UTF-16 encoding in native byte order. The
string always starts with a BOM mark. Error handling is “strict”. Return NULL if an exception was raised by the
codec.

PyObject* PyUnicode_EncodeUTF16 (const Py_UNICODE *s, Py_ssize_t size, const char *errors, int byte-

order)
Return value: New reference. Return a Python bytes object holding the UTF-16 encoded value of the Unicode data

in s. Output is written according to the following byte order:

byteorder == -1: little endian
byteorder == 0: native byte order (writes a BOM mark)
byteorder == 1: Dbig endian

If byteorder is 0, the output string will always start with the Unicode BOM mark (U+FEFF). In the other two
modes, no BOM mark is prepended.

If Py_UNICODE_WIDE is defined, a single Py_ UNICODE value may get represented as a surrogate pair. If it is
not defined, each Py_ UNTCODE values is interpreted as a UCS-2 character.

100

Chapter 8. A 214 A

qw

The Python/C API, &] 8| A 3.7.17

Return NULL if an exception was raised by the codec.

Deprecated since version 3.3, will be removed in version 4.0: Part of the old-style Py UNICODE API; please
migrate to using PyUnicode AsUTF16String () or PyUnicode_AsEncodedString().

UTF-7 Codecs

These are the UTF-7 codec APIs:

PyObject* PyUnicode_DecodeUTF 7 (const char *s, Py_ssize_t size, const char *errors)
Return value: New reference. Create a Unicode object by decoding size bytes of the UTF-7 encoded string s. Return
NULL if an exception was raised by the codec.

PyObject* PyUnicode_DecodeUTF7Stateful (const char *s, Py_ssize t size, const char *errors,

Py_ssize_t *consumed)
Return value: New reference. If consumed is NULL, behave like PyUnicode_DecodeUTFE7 (). If consumed

is not NULL, trailing incomplete UTF-7 base-64 sections will not be treated as an error. Those bytes will not be
decoded and the number of bytes that have been decoded will be stored in consumed.

PyObject* PyUnicode_EncodeUTF7 (const Py UNICODE *s, Py_ssize_t size, int base64SetO,
int base64 WhiteSpace, const char *errors)
Return value: New reference. Encode the Py UNTCODE buffer of the given size using UTF-7 and return a Python

bytes object. Return NULL if an exception was raised by the codec.

If base64SetO is nonzero, “Set O” (punctuation that has no otherwise special meaning) will be encoded in base-64.
If base64 WhiteSpace is nonzero, whitespace will be encoded in base-64. Both are set to zero for the Python “utf-7”
codec.

Deprecated since version 3.3, will be removed in version 4.0: Part of the old-style Py UNICODE API; please
migrate to using PyUnicode_AsEncodedString().

Unicode-Escape Codecs

These are the “Unicode Escape” codec APIs:

PyObject* PyUnicode_DecodeUnicodeEscape (const char *s, Py_ssize_t size, const char *errors)
Return value: New reference. Create a Unicode object by decoding size bytes of the Unicode-Escape encoded string
s. Return NULL if an exception was raised by the codec.

PyObject* PyUnicode_AsUnicodeEscapeString (PyObject *unicode)
Return value: New reference. Encode a Unicode object using Unicode-Escape and return the result as a bytes object.
Error handling is “strict”. Return NULL if an exception was raised by the codec.

PyObject* PyUnicode_EncodeUnicodeEscape (const Py_UNICODE *s, Py_ssize_t size)
Return value: New reference. Encode the Py UNICODE buffer of the given size using Unicode-Escape and return
a bytes object. Return NULL if an exception was raised by the codec.

Deprecated since version 3.3, will be removed in version 4.0: Part of the old-style Py_UNICODE API; please
migrate to using PyUnicode_AsUnicodeEscapeString().

8.3. Aldx A 101

The Python/C API, &] B{ A 3.7.17

Raw-Unicode-Escape Codecs

These are the “Raw Unicode Escape” codec APIs:

PyObject* PyUnicode_DecodeRawUnicodeEscape (const char *s, Py_ssize_t size, const char *errors)
Return value: New reference. Create a Unicode object by decoding size bytes of the Raw-Unicode-Escape encoded
string s. Return NULL if an exception was raised by the codec.

PyObject* PyUnicode_AsRawUnicodeEscapeString (PyObject *unicode)
Return value: New reference. Encode a Unicode object using Raw-Unicode-Escape and return the result as a bytes
object. Error handling is “strict”. Return NULL if an exception was raised by the codec.

PyObject* PyUnicode_EncodeRawUnicodeEscape (const Py_UNICODE *s, Py_ssize_t size)
Return value: New reference. Encode the Py UNICODE buffer of the given size using Raw-Unicode-Escape and
return a bytes object. Return NULL if an exception was raised by the codec.

Deprecated since version 3.3, will be removed in version 4.0: Part of the old-style
Py _UNICODE API;, please migrate to using PyUnicode_AsRawUnicodeEscapeString() or
PyUnicode_AsEncodedString ().

Latin-1 Codecs

These are the Latin-1 codec APIs: Latin-1 corresponds to the first 256 Unicode ordinals and only these are accepted by
the codecs during encoding.

PyObject* PyUnicode_DecodeLatinl (const char *s, Py_ssize_t size, const char *errors)
Return value: New reference. Create a Unicode object by decoding size bytes of the Latin-1 encoded string s. Return
NULL if an exception was raised by the codec.

PyObject* PyUnicode_AsLatinlString (PyObject *unicode)
Return value: New reference. Encode a Unicode object using Latin-1 and return the result as Python bytes object.
Error handling is “strict”. Return NULL if an exception was raised by the codec.

PyObject* PyUnicode_EncodeLatinl (const Py_UNICODE *s, Py_ssize_t size, const char *errors)
Return value: New reference. Encode the Py UNTCODE buffer of the given size using Latin-1 and return a Python
bytes object. Return NULL if an exception was raised by the codec.

Deprecated since version 3.3, will be removed in version 4.0: Part of the old-style Py_UNICODE API; please
migrate to using PyUnicode AsLatinlString() or PyUnicode AsEncodedString().

ASCII Codecs

These are the ASCII codec APIs. Only 7-bit ASCII data is accepted. All other codes generate errors.

PyObject* PyUnicode_DecodeASCII (const char *s, Py_ssize_t size, const char *errors)
Return value: New reference. Create a Unicode object by decoding size bytes of the ASCII encoded string s. Return
NULL if an exception was raised by the codec.

PyObject* PyUnicode_AsASCIIString (PyObject *unicode)
Return value: New reference. Encode a Unicode object using ASCII and return the result as Python bytes object.
Error handling is “strict”. Return NULL if an exception was raised by the codec.

PyObject* PyUnicode_EncodeASCII (const Py_UNICODE *s, Py_ssize_t size, const char *errors)
Return value: New reference. Encode the Py_ UNTCODE buffer of the given size using ASCII and return a Python
bytes object. Return NULL if an exception was raised by the codec.

Deprecated since version 3.3, will be removed in version 4.0: Part of the old-style Py UNICODE API; please
migrate to using PyUnicode AsASCIIString () or PyUnicode_AsEncodedString().

102 Chapter 8. 4+ A A #|

o]N-

The Python/C API, &] 8| A 3.7.17

Character Map Codecs

This codec is special in that it can be used to implement many different codecs (and this is in fact what was done to
obtain most of the standard codecs included in the encodings package). The codec uses mapping to encode and
decode characters. The mapping objects provided must support the __getitem__ () mapping interface; dictionaries
and sequences work well.

These are the mapping codec APIs:

PyObject* PyUnicode_DecodeCharmap (const char *data, Py_ssize_t size, PyObject *mapping, const
char *errors)
Return value: New reference. Create a Unicode object by decoding size bytes of the encoded string s using the given

mapping object. Return NULL if an exception was raised by the codec.

If mapping is NULL, Latin-1 decoding will be applied. Else mapping must map bytes ordinals (integers in the range
from O to 255) to Unicode strings, integers (which are then interpreted as Unicode ordinals) or None. Unmapped
data bytes — ones which cause a LookupError, as well as ones which get mapped to None, OXFFFE or '\
ufffe', are treated as undefined mappings and cause an error.

PyObject* PyUnicode_AsCharmapString (PyObject *unicode, PyObject *mapping)
Return value: New reference. Encode a Unicode object using the given mapping object and return the result as a
bytes object. Error handling is “strict”. Return NULL if an exception was raised by the codec.

The mapping object must map Unicode ordinal integers to bytes objects, integers in the range from 0 to 255 or
None. Unmapped character ordinals (ones which cause a LookupError) as well as mapped to None are treated
as “undefined mapping” and cause an error.

PyObject* PyUnicode_EncodeCharmap (const Py_UNICODE *s, Py_ssize_t size, PyObject *mapping, const

char *errors)
Return value: New reference. Encode the Py UNICODE buffer of the given size using the given mapping object

and return the result as a bytes object. Return NULL if an exception was raised by the codec.

Deprecated since version 3.3, will be removed in version 4.0: Part of the old-style Py UNICODE API; please
migrate to using PyUnicode_AsCharmapString () or PyUnicode_AsEncodedString().

The following codec API is special in that maps Unicode to Unicode.

PyObject* PyUnicode_Translate (PyObject *unicode, PyObject *mapping, const char *errors)
Return value: New reference. Translate a Unicode object using the given mapping object and return the resulting
Unicode object. Return NULL if an exception was raised by the codec.

The mapping object must map Unicode ordinal integers to Unicode strings, integers (which are then interpreted as
Unicode ordinals) or None (causing deletion of the character). Unmapped character ordinals (ones which cause a
LookupError) are left untouched and are copied as-is.

PyObject* PyUnicode_TranslateCharmap (const Py_UNICODE *s, Py_ssize_t size, PyObject *mapping,

const char *errors)
Return value: New reference. Translate a Py UNICODE buffer of the given size by applying a character mapping

table to it and return the resulting Unicode object. Return NULL when an exception was raised by the codec.

Deprecated since version 3.3, will be removed in version 4.0: Part of the old-style Py UNTCODE API; please
migrate to using PyUnicode_Translate (). or generic codec based API

8.3. Aldx A 103

The Python/C API, &] B{ A 3.7.17

MBCS codecs for Windows

These are the MBCS codec APIs. They are currently only available on Windows and use the Win32 MBCS converters
to implement the conversions. Note that MBCS (or DBCS) is a class of encodings, not just one. The target encoding is
defined by the user settings on the machine running the codec.

PyObject* PyUnicode_DecodeMBCS (const char *s, Py_ssize_t size, const char *errors)
Return value: New reference. Create a Unicode object by decoding size bytes of the MBCS encoded string s. Return
NULL if an exception was raised by the codec.

PyObject* PyUnicode_DecodeMBCSStateful (const char *s, Py_ssize_t size, const char *errors,
Py_ssize_t *consumed)
Return value: New reference. If consumed is NULL, behave like PyUnicode_DecodeMBCS (). If consumed
is not NULL, PyUnicode_DecodeMBCSStaterful () will not decode trailing lead byte and the number of
bytes that have been decoded will be stored in consumed.

PyObject* PyUnicode_AsMBCSString (PyObject *unicode)
Return value: New reference. Encode a Unicode object using MBCS and return the result as Python bytes object.
Error handling is “strict”. Return NULL if an exception was raised by the codec.

PyObject* PyUnicode_EncodeCodePage (int code_page, PyObject *unicode, const char *errors)
Return value: New reference. Encode the Unicode object using the specified code page and return a Python bytes
object. Return NULL if an exception was raised by the codec. Use CP_ACP code page to get the MBCS encoder.

B A 3.30] &7}

PyObject* PyUnicode_EncodeMBCS (const Py_UNICODE *s, Py_ssize_t size, const char *errors)
Return value: New reference. Encode the Py UNICODE buffer of the given size using MBCS and return a Python
bytes object. Return NULL if an exception was raised by the codec.

Deprecated since version 3.3, will be removed in version 4.0: Part of the old-style Py UNICODE
API; please migrate to using PyUnicode_ AsMBCSString (), PyUnicode_EncodeCodePage () or
PyUnicode_AsEncodedString ().

Methods & Slots

Methods and Slot Functions

The following APIs are capable of handling Unicode objects and strings on input (we refer to them as strings in the
descriptions) and return Unicode objects or integers as appropriate.

They all return NULL or —1 if an exception occurs.

PyObject* PyUnicode_Concat (PyObject *left, PyObject *right)
Return value: New reference. Concat two strings giving a new Unicode string.

PyObject* PyUnicode_Split (PyObject *s, PyObject *sep, Py_ssize_t maxsplit)
Return value: New reference. Split a string giving a list of Unicode strings. If sep is NULL, splitting will be done
at all whitespace substrings. Otherwise, splits occur at the given separator. At most maxsplit splits will be done. If
negative, no limit is set. Separators are not included in the resulting list.

PyObject* PyUnicode_Splitlines (PyObject *s, int keepend)
Return value: New reference. Split a Unicode string at line breaks, returning a list of Unicode strings. CRLF is
considered to be one line break. If keepend is 0, the Line break characters are not included in the resulting strings.

PyObject* PyUnicode_Translate (PyObject *str, PyObject *table, const char *errors)
Translate a string by applying a character mapping table to it and return the resulting Unicode object.

104 Chapter 8. 74 2} A A

o]N-

The Python/C API, &] 8| A 3.7.17

The mapping table must map Unicode ordinal integers to Unicode ordinal integers or None (causing deletion of
the character).

Mapping tables need only provide the __getitem__ () interface; dictionaries and sequences work well. Un-
mapped character ordinals (ones which cause a LookupError) are left untouched and are copied as-is.

errors has the usual meaning for codecs. It may be NULL which indicates to use the default error handling.

PyObject* PyUnicode_Join (PyObject *separator, PyObject *seq)
Return value: New reference. Join a sequence of strings using the given separator and return the resulting Unicode
string.

Py_ssize_t PyUnicode_Tailmatch (PyObject *str, PyObject *substr, Py_ssize_t start, Py_ssize_t end, int di-

rection)
Return 1 if substr matches str [start :end] at the given tail end (direction == —1 means to do a prefix match,

direction == 1 a suffix match), O otherwise. Return —1 if an error occurred.

Py_ssize_t PyUnicode_Find (PyObject *str, PyObject *substr, Py_ssize_t start, Py_ssize_t end, int direction)
Return the first position of substr in str [start :end] using the given direction (direction == 1 means to do a
forward search, direction == —1 a backward search). The return value is the index of the first match; a value of —1
indicates that no match was found, and -2 indicates that an error occurred and an exception has been set.

Py_ssize_t PyUnicode_FindChar (PyObject *str, Py_UCS4 ch, Py_ssize_t start, Py_ssize_t end, int direction)
Return the first position of the character chin str [start :end] using the given direction (direction == 1 means
to do a forward search, direction == —1 a backward search). The return value is the index of the first match; a value
of —1 indicates that no match was found, and -2 indicates that an error occurred and an exception has been set.

WA 3.39 F7%
WA 3.79)| A ¥ 7 : start and end are now adjusted to behave like st r [start :end].

Py_ssize_t PyUnicode_Count (PyObject *str, PyObject *substr, Py_ssize_t start, Py_ssize_t end)
Return the number of non-overlapping occurrences of substr in str [start:end]. Return -1 if an error oc-
curred.

PyObject* PyUnicode_Replace (PyObject *str, PyObject *substr, PyObject *replstr, Py_ssize_t maxcount)
Return value: New reference. Replace at most maxcount occurrences of substr in str with replstr and return the
resulting Unicode object. maxcount == —1 means replace all occurrences.

int PyUnicode_Compare (PyObject *left, PyObject *right)
Compare two strings and return -1, 0, 1 for less than, equal, and greater than, respectively.

This function returns —1 upon failure, so one should call PyErr_Occurred () to check for errors.

int PyUnicode_CompareWithASCIIString (PyObject *uni, const char *string)
Compare a Unicode object, uni, with string and return —1, 0, 1 for less than, equal, and greater than, respectively.
It is best to pass only ASCII-encoded strings, but the function interprets the input string as ISO-8859-1 if it contains
non-ASCII characters.

This function does not raise exceptions.

PyObject* PyUnicode_RichCompare (PyObject *left, PyObject *right, int op)
Return value: New reference. Rich compare two Unicode strings and return one of the following:

e NULL in case an exception was raised
e Py_True or Py_False for successful comparisons
e Py_NotImplemented in case the type combination is unknown

Possible values for op are Py_GT, Py_GE, Py_EQ, Py_NE, Py_LT, and Py_ LE.

8.3. Aldx A 105

The Python/C API, &] B{ A 3.7.17

PyObject* PyUnicode_Format (PyObject *format, PyObject *args)
Return value: New reference. Return a new string object from format and args; this is analogous to format %
args.

int PyUnicode_Contains (PyObject *container, PyObject *element)
Check whether element is contained in container and return true or false accordingly.

element has to coerce to a one element Unicode string. —1 is returned if there was an error.

void PyUnicode_InternInPlace (PyObject **string)
Intern the argument *string in place. The argument must be the address of a pointer variable pointing to a Python
Unicode string object. If there is an existing interned string that is the same as *string, it sets *string to it (decre-
menting the reference count of the old string object and incrementing the reference count of the interned string
object), otherwise it leaves *string alone and interns it (incrementing its reference count). (Clarification: even
though there is a lot of talk about reference counts, think of this function as reference-count-neutral; you own the
object after the call if and only if you owned it before the call.)

PyObject* PyUnicode_InternFromString (const char *v)
Return value: New reference. A combination of PyUnicode FromString() and
PyUnicode_InternInPlace (), returning either a new Unicode string object that has been interned,
or a new (“owned”) reference to an earlier interned string object with the same value.

8.3.4 7 AA

PyTupleObject
o] pyObjecte] A EH P2 dold F& AAE UHeEd YT
PyTypeObject PyTuple_Type
o] PyTypeobiect Q2T A% vhol 8 FE B2 LhEhiUTh so] 2 A% tupledt 22 AR AU h

int PyTuple_Check (PyObject *p)
Pt RE AR AL RE WY A0 gl dxdad B2 EedF U

int PyTuple_CheckExact (P)Object *p)
PR E AR AT, FE 39 AH Gl AARAL SR FE BAFUT

PyObject* PyTuple_New (Py_ssize_t len)
Return value: New reference. Return a new tuple object of size len, or NULL on failure.

PyObject* PyTuple_Pack (Py_ssize_tn, ...)
Return value: New reference. Return a new tuple object of size n, or NULL on failure. The tuple values are initialized
to the subsequent n C arguments pointing to Python objects. PyTuple_Pack (2, a, b) is equivalent to
Py_Buildvalue (" (0O)", a, b).

Py_ssize_t PyTuple_Size (PyObject *p)
RE AR e £AE S oA, AP FE 278 RBF Lk
Py_ssize_t PyTuple_GET_SIZE (PyObject *p)
Return the size of the tuple p, which must be non-NULL and point to a tuple; no error checking is performed.
PyObject* PyTuple_GetItem (PyObject *p, Py_ssize_t pos)
Return value: Borrowed reference. Return the object at position pos in the tuple pointed to by p. If pos is out of
bounds, return NULL and set an IndexError exception.

PyObject* PyTuple_GET_ITEM (PyObject *p, Py_ssize_t pos)
Return value: Borrowed reference. PyTuple_GetItem ()2} B3R uh, Q1 AFE 80131A] ¢4 th

PyObject* PyTuple_GetSlice (PyObject *p, Py_ssize_t low, Py_ssize_t high)
Return value: New reference. Return the slice of the tuple pointed to by p between low and high, or NULL on

106 Chapter 8. 74 244 A

o]N-

The Python/C API, &] 8| A 3.7.17

failure. This is the equivalent of the Python expression p [low:high]. Indexing from the end of the list is not
supported.

int PyTuple_SetItem (PyObject *p, Py_ssize_t pos, PyObject *0)
Insert a reference to object o at position pos of the tuple pointed to by p. Return 0 on success. If pos is out of
bounds, return -1 and set an IndexError exception.

ZF31: This function “steals” a reference to o and discards a reference to an item already in the tuple at the affected
position.

void PyTuple_SET_ITEM (PyObject *p, Py_ssize_t pos, PyObject *0)
pyTuple_SetItem ()3 HITSFAI R, ol 2] HAbe oHA] ko 2L FE& AL o *uh* ARg-af oF

.

ZF3: This macro “steals” a reference to o, and, unlike Py Tuple SetItem (), does not discard a reference to
any item that is being replaced; any reference in the tuple at position pos will be leaked.

int _PyTuple_Resize (PyObject **p, Py_ssize_t newsize)

Can be used to resize a tuple. newsize will be the new length of the tuple. Because tuples are supposed to be
immutable, this should only be used if there is only one reference to the object. Do not use this if the tuple may
already be known to some other part of the code. The tuple will always grow or shrink at the end. Think of
this as destroying the old tuple and creating a new one, only more efficiently. Returns 0 on success. Client code
should never assume that the resulting value of *p will be the same as before calling this function. If the object
referenced by *p is replaced, the original *p is destroyed. On failure, returns —1 and sets *p to NULL, and raises
MemoryError or SystemError.

int PyTuple_ClearFreeList ()

A E5 (free lis) & AU Th Al & &5 +& &y
8.3.5 XA A EA AHA
T2 A A A2 (struct sequence) A A= namedtuple () AAY CES7EYUTH S oJETRHEE 3 FE o

WA Je AlFEYUH. F2AANF2E ”Jt Hd, 1A 54 F2AAEL Fo dEo ok g

PyTypeObject* PyStruct Sequence_NewType (PyStructSequence_Desc *desc)
Return value: New reference. ©}2] ol A H desco] Ho|HEZ M2 F2A Al B2~ P vt} 23
Ho JAAHAE pyStructSequence_New () 2 T 4 5 Yt

void PyStructSequence_InitType (PyTypeObject *type, PyStructSequence_Desc *desc)
desc2 F-2A A2 3 types AAFE] ol A 2 7]3HgH o)

int PyStructSequence_InitType2 (PyTypeObject *type, P)StructSequence_Desc *desc)
PyStructSequence_InitTypeQ} ZA g AZ3IH 0, At -12 vt}

W 3400 =71

PyStructSequence_Desc
U FEAAAS G Mg AEE 23 Yo

8.3. Aldx A 107

The Python/C API, &] B{ A 3.7.17

= Cd Bl
name const char * T2A AI 9 o] &
doc const char * pointer to docstring for the type or NULL to omit
fields PyStructSequence_Fieldpointer to NULL-terminated array with field names of the
* new type
n_in_sequenceint SOl ZoTA B & 9= 9E & (S22 AEd
4)

PyStructSequence_Field
FRAANA2e BEE 7T Uth LRAN AL FEZ2 2YIH 2, R E =& pyobject *
L FHerh pystructSequence _Desc® fields BlEY AQulAas LA A F2Q ojH JE7}
ZNeH] A E 2- gy

g [cH o]

A=

nameg const name for the field or NULL to end the list of named fields, set to
char * PyStructSequence_UnnamedField to leave unnamed

doc | const field docstring or NULL to omit
char *

char* PyStructSequence_UnnamedField
olF e AHE FAF7] A = o] 5 5 %L

PyObject* PyStructSequence_New (PyTypeObject *type)
Return value: New reference. PyStructSequence NewType () 22 THE fyped] A2~EHA~E W5 U T}

PyObject* PyStructSequence_GetItem (PyObject *p, Py_ssize_t pos)
Return value: Borrowed reference. p7} 7}2] 71= T2 A Al A 22 9 2] posel|l = AAE SeE Yk HY
AN} S A S o,

PyObject* PyStructSequence_GET_ITEM (PyObject *p, Py_ssize_t pos)
Return value: Borrowed reference. Py St ruct Sequence_GetItem ()3 553 uja 2,

void PyStruct Sequence_SetItem (PyObject *p, Py_ssize_t pos, PyObject *0)
T2A A A2 p] AE 2 posel| = FEE o= AAFJUT PyTuple SET_ITEM ()3} U7 A =2,
ol AL MR A2HAE A w vk ARE-sf o Y Th

Far: o]

b=

4= o0 of

ok

F2E FHAID

void PyStructSequence_SET_ITEM (PyObject *p, Py_ssize_t *pos, PyObject *o)
PyStructSequence_SetItem ()3 553 I Z,

b=

4= 00| of

ok

s ol F2E FAUD

108 Chapter 8. 74 244 A

o]N-

The Python/C API, &] 8| A 3.7.17

8.3.6 |2 E 7AH|

PyListObject
o] pyobjecte] A H g2 vtold 2| AE A& e UL

PyTypeObject PyList_Type
o] PyTypeobioct AABAL Fhold B AE §& eI UL o] AL sho A A2 1ist 9} 2L
AR IV Tk

int PyList_Check (PyObject *p)
p7hEAE AR B AE Wo) AH G Ao S wskgh

int PyList_CheckExact (PyObject *p)
p7h A2 AR AW P AE o AH o) Azt oh W Fe W T

PyObject* PyList_New (Py_ssize_t len)
Return value: New reference. Return a new list of length len on success, or NULL on failure.

oo fifo

3 o] 050 3%, WBG 2= A RE 0w YA, o] LE TR
PyList_SetItem ()2 AA AAZ HAB}7] Ao PySequence_SetItem ()} & FAF API
28 AESAL kol d HEo] AN E w2 4 YT

Py_ssize_t PyList_Size (PyObject *list)
listo| A] 2~E A 9] 4ol vtagiyty; o] g 2E AA o thd len (list) & T FUTh

Py_ssize_t PyList_GET_SIZE (PyObject *list)
oA AA Yl PyList_size ()9 A2 F4.

PyObject* PyList_GetItem (PyObject *list, Py_ssize_t index)
Return value: Borrowed reference. Return the object at position index in the list pointed to by /ist. The position must
be non-negative; indexing from the end of the list is not supported. If index is out of bounds (<0 or >=len(list)),

return NULL and set an IndexError exception.

PyObject* PyList_GET_ITEM (PyObject *list, Py_ssize_ti)
Return value: Borrowed reference. 9| 2] AAF QQ= PyList_GetItem ()2 W3 E & 4],

int PyList_SetItem (PyObject *list, Py_ssize_t index, PyObject *item)
Set the item at index index in list to item. Return 0 on success. If index is out of bounds, return —1 and set an

IndexError exception.

Fa: o] gz iem] M F2E “FAL FJF LE AA 9 2B oY) & FH T
FreHPUh

void PyList_SET_ITEM (PyObject *list, Py_ssize_t i, PyObject *o)
ole] A9l PyList_setltem() o] MAZ FA. AWH O 2 o] W W&o gl A B 2EE A9

ol Al&-g .

Far: o] AR = itemol] & FRE “F X217, PyList_SetItem() e D] hAIE = 5o gt
FREWYA GFUhlist o i 1A Y= FRe F5E doPynh

int PyList_Insert (PyObject *list, Py_ssize_t index, PyObject *item)
G5 item S ©) 2 lisr®) Q8] index ol AFA T TE AFFHE 02 MBI TH A3 1L uke

— Tl

St o2l S A AT LT 1ist.insert (index, item) o 3]t

8.3. Aldx A 109

The Python/C API, &] B{ A 3.7.17

int PyList_Append (PyObject *list, PyObject *item)
B AE fisr©] 2ol A7 iem F 7RI Th AT 02 WA T Adshe -1 whekea o 9] 2
A AT 1ist.append (item) o 3 G}

PyObject* PyList_GetSlice (PyObject *list, Py_ssize_t low, Py_ssize_t high)
Return value: New reference. Return a list of the objects in /ist containing the objects between low and high. Return
NULL and set an exception if unsuccessful. Analogous to 1ist [low:high]. Indexing from the end of the list
is not supported.

l

int PyList_SetSlice (PyObject *list, Py_ssize_t low, Py_ssize_t high, PyObject *itemlist)
Set the slice of list between low and high to the contents of itemlist. Analogous to 1ist [low:high] =
itemlist. The itemlist may be NULL, indicating the assignment of an empty list (slice deletion). Return 0
on success, —1 on failure. Indexing from the end of the list is not supported.

int PyList_Sort (PyObject *list)
list 5= Al Aol A AUt 4F st 02, Aafshd -15 wkgk
T gUh

int PyList_Reverse (PyObject *list)
o) FHe AN A PG AFHE 02, AAFA -1 BBFULE AL List.
reverse () 2t S5

PyObject* PyList_AsTuple (PyObject *list)
Return value: New reference. listS] W-§< Z33= A F2 AAE &3t} tuple (1ist) & 55 %

Y.

int PyList_ClearFreelist ()
A& B2 (free list) S ¥]-SUth | A9 2o 252 wskel)

B A 3.30] &7}

m°l‘

U o] AL 1ist.sort () 2

8.4 o] A

8.4.1 g1z AA|

PyDictObject
o] pyobjecte] B P2 stold gMie] AAE UdebdyTh
PyTypeObject PyDict_Type
o] PyTypeobject Aadat ol B B LU o] AL shol A A% dict o 2L
A7 Y.
int PyDict_Check (PyObject *p)
p7tdict 21 A o] A 1} dict ?‘H AB o] daEad F vk
int PyDict_CheckExact (PyObject *p)
p7tdict A o] A ¥k, dict F O] A H o] A2t AE oW g vk th
PyObject* PyDict_New ()
Return value: New reference. Return a new empty dictionary, or NULL on failure.

PyObject* PyDictProxy_New (PyObject *mapping)
Return value: New reference. 97| & 522 73 A 3F+= "8 & 9 ¢ types.MappingProxyType 2|
£ E T o Ae Aoz vl 54 22 FLe AR AT £ FAY A8 BE
wE o A T

void PyDict_Clear (PyObject *p)

7= gAY e e BE 72 4L m gt

rlr

110 Chapter 8. 74 244 A

o]N-

The Python/C API, &] 8| A 3.7.17

int PyDict_Contains (PyObject *p, PyObject *key)
YA g poll key7t 2 FHE o] l=A] FAFUTE po] 50l key2t YA SHH 15 Whhslal, 13 A 9F o
W02 WUt ol 2 ¥ -1 Wk th o] = o] W 2@ A key in potFEFUTH

PyObject* PyDict_Copy (PyObject *p)
Return value: New reference. pS} 72+ 7]’ 2 7)-3 2 23t A 9 Y Bl E Wy o

int PyDict_SetItem (PyObject *p, PyObject *key, PyObject *val)
SAUTE ol vae S ley 712 AU, keyt) APosoF S 2184 o ypeszron)
ST 4o 02, AvfstE 12 W ok

int PyDict_SetItemString (PyObject *p, const char *key, PyObject *val)
keys 712 AH&3te]l A U e poll values A YU T key= const char*o] okt 7] A=
PyUnicode FromString (key)& A8 3te] B UTH A55Hd 02, Ashshel 12 WEHg T

int PyDict_DelItem (PyObject *p, PyObject *key)
AT A 717y B2 A AT, keyis 514 715 ok T e 294 @2 Typesrros
7Yt AFstd 02, A9 d -1 HEgy ol

int PyDict_DelItemString (PyObject *p, const char *key)
YAV pol B4 keyZ AAE 719 B2 AATUTH AFHH 02, ol sk -18 e

PyObject* PyDict_GetItem (PyObject *p, PyObject *key)
Return value: Borrowed reference. Return the object from dictionary p which has a key key. Return NULL if the
key key is not present, but without setting an exception.

__hash__ ()% _eq () WIAEE TE5te 5 A= o= AAFE UL o8 1 E 409
W YAl PyDict_GetItemWithError ()E AH&E3HI Al L.

PyObject* PyDict_GetItemWithError (PyObject *p, PyObject *key)
Return value: Borrowed reference. Variant of PyDict_GetItem () that does not suppress exceptions. Return
NULL with an exception set if an exception occurred. Return NULL without an exception set if the key wasn’t
present.

PyObject* PyDict_GetItemString (Py Object *p, const char *key)
Return value: Borrowed reference. ©] 212 PyDict_GetItem ()2} Z A9} key7} PyObject *7} ofd
const char*& A FF Yt}

__hash__ ()% _eq () WAEE ZESIL A EAE AAE TE£ T DA 8= o9+ oA
AUtk o8] & do#H YAl pypict_GetItemWithError () S ARSI A Q.

PyObject* PyDict_SetDefault (PyObject *p, PyObject *key, PyObject *defaultobj)
Return value: Borrowed reference. ©] Z1-2 5}o|# 4£~Z2] dict.setdefault () 9} Z5 Uttt &A135H4
YA g poll A keyoll sl & ot= 7h= t‘}%‘r@‘% t}. 7] 7} dictol] 9129, 3 defaultobj = /EL d= defaultobj
7F R Uth o] @& keyd] A F4E 23] H AU AW SHH LR Fbske oAl g Ak
37 g
B A 3.40] F7}.

PyObject* PyDict_Items (PyObject *p)
Return value: New reference. S AV 2| R E 5 E33}E= PyListObjectE ¥ T}

PyObject* PyDict_Keys (PyObject *p)

Return value: New reference. A J 2|2l RE 7|5 £33+ PyListObjectE ¥t&g],
PyObject* PyDict_Values (PyObject *p)

Return value: New reference. S V8] p] € k2 £33} pyListObjectS WSt}

Py_ssize_t PyDict_Size (PyObject *p)

gaMu el = g5 & HP%EHW ol 9Ay el thelt len (p) &t T H YT

8.4. ol AA 111

The Python/C API, &] B{ A 3.7.17

int PyDict_Next (PyObject *p, Py_ssize_t *ppos, PyObject **pkey, PyObject **pvalue)
Iterate over all key-value pairs in the dictionary p. The Py_ssize_t referred to by ppos must be initialized to 0
prior to the first call to this function to start the iteration; the function returns true for each pair in the dictionary,
and false once all pairs have been reported. The parameters pkey and pvalue should either point to PyObject *
variables that will be filled in with each key and value, respectively, or may be NULL. Any references returned
through them are borrowed. ppos should not be altered during iteration. Its value represents offsets within the
internal dictionary structure, and since the structure is sparse, the offsets are not consecutive.

s =9

PyObject *key, *value;
Py_ssize_t pos = 0;

while (PyDict_Next (self->dict, &pos, &key, &value)) {
/* do something interesting with the values... */

}

M2 pe olEld el d Foll MAshA <
FASA R, 7] R o]l WAH A gh=

r[r
Y,
flo

Y 9AY S oleldlol= Rl 2he WA
%4 5

PyObject *key, *value;
Py_ssize_t pos = 0;

while (PyDict_Next (self->dict, &pos, &key, &value)) |
long i = PyLong_AsLong(value);
if (i == -1 && PyErr_Occurred()) {
return -1;
}
PyObject *o = PylLong_FromLong(i + 1);
if (o == NULL)
return -1;
if (PyDict_SetItem(self->dict, key, o) < 0) {
Py_DECREF (0) ;
return -1;
}
Py_DECREF (0) ;

int PyDict_Merge (PyObject *a, PyObject *b, int override)
g A bE olHEOE ™A, 7-3 A= MY a0l FIHFUT bE Y HAY
PyMapping Keys ()2} PyObject_GetItem ()5 A WUdtE BE AA LD 5 A5 YT} override7} 7o)
adll & 71E 2ol boll Al X 8h= 717F QoW wAH L, 1A ko a2t DA Sh= 7] 7 =
uf gk 7o) %7}% Utk 433td 0 Hkekstar, o &7 g shd -12 vy ok

int PyDict_Update (PyObject *a, PyObject *b)
o= Co| A PyDict_Merge(a, b, 1) 21, T HA Qo] “keys” JE T HE7} ¢S o
PyDict_Update ()7} 71-3k #2) A @A2o] tha) ol B @l o] & 812 9brhe e A9 a1, 5ol A
oAl a.update (b) 2 frAFUTE A3 3HE 02 ¥EEHstaL, ol €] 7} 3y 8t -18 Wk T

int PyDict_MergeFromSqu (PyObject *a, PyObject *seq2, int override)
seq29] 77k A0 % YA e) 0% A A IR Th seq2s 7)-gH A0 753k o] 29] o] E])
3 A7 A4 o] el 8 4o oF Fuic. 2717} 9.2 W, override) 3o] ¥ vA| vho] 5231,
a5 gkod A AR 7S F YT AF Al 0= REeha, Oﬂﬂ 7HA e -1S W o) 558
shol -2 o] @ Th(whak 7k A 9])

112 Chapter 8. 4+ A A #|

qw

The Python/C API, &] 8| A 3.7.17

def PyDict_MergeFromSeqg2 (a, seqg2, override):
for key, value in seg2:
if override or key not in a:
alkey] = value

int PyDict_ClearFreelist ()
2t E 5 (free list) = B3 U T siAlE 59 4 w3

B A 3.30] 7}
8.4.2 A A

o] oA & setd} frozenset Ao thdt F-§ APIO] thsl] M3 Ayt of 4EdsA
e Jse A4 AA ZEEFE (PyObject_CallMethod(), PyObject_RichCompareBool (),

PyObject_Hash(), PyObject_Repr (), PyObject_IsTrue (), PyObject_Print ()
2 pyObject_GetIter()E Z T Yrtrtholy FA £x =Z 2 EEFE (PyNumber_ And(),
PyNumber_Subtract (), PyNumber_Or (), PyNumber_Xor (), PyNumber_InPlaceAnd(),

PyNumber_InPlaceSubtract (), PyNumber_ InPlaceOr () W PyNumber_InPlaceXor ()< X

Fdyrh.

PySetObject
o] pyobjectd A B L& setd} frozenset AA| ZFo Y& t ol E Y= o AL LT 9
4o Qe 1A 27 (FE ARD S FAB 0|, £ Y g Wee] A 2] v

25 (H2E AF iﬂa) < 7|tk FolA PychtObjectE} vl=styrch o] XA 9 &
oM AR FNE A gk A OEH:LE]CHOF stH, 38 4 AFUTh e dAas F2A1 9
z 2571 Bt AyE APIE 53 38 oF Tt

PyTypeObject PySet_Type
o] AL glo] A set FE UEFNE PyTypeobiectd AAE AT

PyTypeObject PyFrozenSet_Type
o] AL 1}lo] A frozenset F& YUEIU = PyTypeObject?] A2E A YT
e @ @A AR BE shold AR B3 LA A AF UL MAAA R, YA FhE BE
o€l e & sho] A AR o) A 25 g o,
int PySet_Check (PyObject *p)
p7hset ALY A8 o] dsE AW FL waF o)
int PyFrozenSet_Check (PyObject *p)
p7} frozenset AA U A H o] dAEl AW 2L uiEah).

int PyAnySet_Check (PyObject *p)
p7Fset AA|, frozenset 7“Xﬂ T AE Yo AT Zg W

—

[H:I Y
tlo rlr & rlo

int PyAnySet_CheckExact (PyObject *p)
p7F set BRI} frozenset AR o)A 2 A B o] AArHAE©

_,d
i
g
oY
fifo
r 17
gt
il
<
v

int PyFrozenSet_CheckExact (PyObject *p)
p7t frozenset A o] A 4k, A B 3 9] AIATE A= ofH 3 HESHg T}

PyObject* PySet_New (PyObject *iterable)
Return value: New reference. Return a new set containing objects returned by the iterable. The iterable may be
NULL to create a new empty set. Return the new set on success or NULL on failure. Raise TypeError if iferable
is not actually iterable. The constructor is also useful for copying a set (c=set (s)).

PyObject* PyFrozenSet_New (PyObject *iterable)
Return value: New reference. Return a new frozenset containing objects returned by the iterable. The iter-

8.4. ZH ol A 113

The Python/C API, &] B{ A 3.7.17

able may be NULL to create a new empty frozenset. Return the new set on success or NULL on failure. Raise
TypeError if iterable is not actually iterable.

set o|Y frozenset Q] AAAHATEE= 759 AH go] SlAH Ao U T} T2 a2 E AEE 5

91tk

Py_ssize_t PySet_Size (PyObject *anyset)
set °]u} frozenset AA| 2 Zo]E ®¥I& gL tl len(anyset) & TS5l anyset©| set,
frozenset == A H o] Sl AEH AV} ol W PyExc_SystemErrorS WA Al YTt

Py_ssize_t PySet_GET_SIZE (PyObject *anyset)
ol g] AAF gl Pyset_size () MR P 4.

int PySet_Contains (PyObject *anyset, PyObject *key)
LAY 15, TAFHA FoW 05, o272 AstH -12 Rtk dho]¥ __contains__ ()
WA= ShE g, o i ol 4] B e DA frozenset £ = A5 MBS A U T key)
3 Al 57]——?5}?1, TypeErrorE WA Al Z Ut} anyser©] set, frozenset == A H o] AJA~HATV}

o} ¥ PyExc_SystemErrorS WA U th

int PySet_Add (PyObject *set, PyObject *key)
key S set QA AE Ao 73) TS frozenset A2®2ox FHFIF Ut
(PyTuple_SetItem ()X 3 th& AL %Q 7] Aol M =& frozenset 2] 7S NF+= d AR
4 gayth. A2eE 0L, Adstd 18 33U key7t A 753, TypeError &
A AU A 27o] ¢t MemoryError S BHA A U T ser©] set ©|UF 1 Al H 9
Ol AEl AT} of fﬂ SystemErrorS TAAl Ut}

O < set 141744 AH Yol Aa"xo= AL 5 AT, frozenset oL LA H o A

daols AR g 5 flsuth

int PySet_Discard (PyObject *set, PyObject *key)
WAL AAEE 12 Wshal, WA A Fo ™ (o d A& okA] eksyth O% whehskar, o 2] 7t
LA —12 AUt BAE 5 {le 7)ol thal] KeyErrorE WAA 7] A] k5 U T key7} 3] Al
£ 758t TypeErrorg WA YT 3Fo] discard () FINESE 28, o] &+ A 275
A= YA frozenset & 2 25 A FSHA] ob5 U T ser©] set ojuf I A B O JAA-H AT} o
PyExc_SystemError% SR A U T

PyObject* PySet_Pop (PyObject *set)
Return value: New reference. Return a new reference to an arbitrary object in the set, and removes the object from

the set. Return NULL on failure. Raise KeyError if the set is empty. Raise a SystemError if sef is not an
instance of set or its subtype.

int PySet_Clear (PyObject *set)
7129 BE 84 JFES v yh
int PySet_ClearFreeList ()
AT 55 (free list) & B S Ut} A H 52 S5

B A 3.30] &7}

gy o

it

=]
g

114 Chapter 8. A 214 A|

o]N-

The Python/C API, &] 8| A 3.7.17

8.5 g A

8.5.1 g A

shol W F49l B E B 7hA] B4 A5 Th
PyFunctionObject

ol AHEH & C F2A.

PyTypeObject PyFunction_Type

o] A& Py Typeoh ject 2] Q128 2ol vho # 34 8-S LhebdvITh. sol il =2 Tefvlo] A types.
FunctionTypel & =&FH Yt}

int PyFunction_Check (PyObject *0)
Return true if o is a function object (has type PyFunction_Type). The parameter must not be NULL.

PyObject* PyFunction_New (PyObject *code, PyObject *globals)
Return value: New reference. 7= A A| code2} A1 FHA A s+ A A S w3). globals= ol A 2 A
28 Q= A 57 = 9 o] o of Futh
The function’s docstring and name are retrieved from the code object. __module__is retrieved from globals. The

argument defaults, annotations and closure are set to NULL. __qualname__is set to the same value as the function’
S name.

PyObject* PyFunction_NewWithQualName (PyObject *code, PyObject *globals, PyObject *qualname)
Return value: New reference. As PyFunction_New (), but also allows setting the function object’s
__qualname__ attribute. qualname should be a unicode object or NULL; if NULL, the __qualname_
attribute is set to the same value as its __name___ attribute.

WA 330 7}

PyObject* PyFunction_GetCode (PyObject *op)
Return value: Borrowed reference. &5 AR op&} A #H T & AR S wiakshch

PyObject* PyFunction_GetGlobals (PyObject *op)
Return value: Borrowed reference. St 21 A op&} A#H A d AV 8] & ¥H3kshy o}

PyObject* PyFunction_GetModule (PyObject *op)

Return value: Borrowed reference. &~ 24 A 0p9/] __module_ JJEZHEE HISSU T o] AL dulA o
2 EE o2 B BALIA T, sol W REE e A A8E 5 AT

PyObject* PyFunction_GetDefaults (PyObject *op)
Return value: Borrowed reference. Return the argument default values of the function object op. This can be a tuple
of arguments or NULL.

int PyFunction_SetDefaults (PyObject *op, PyObject *defaults)
Set the argument default values for the function object op. defaults must be Py_None or a tuple.

A 93 SystemError& YAAA 7] 31 -1 ¥HEHg U o}

PyObject* PyFunction_GetClosure (PyObject *op)
Return value: Borrowed reference. Return the closure associated with the function object op. This can be NULL or
a tuple of cell objects.

int PyFunction_SetClosure (PyObject *op, PyObject *closure)
Set the closure associated with the function object op. closure must be Py_None or a tuple of cell objects.

A 95l systemErrorE WAA 7121 -1S WHEgHU T

8.5. g A 115

The Python/C API, &] B{ A 3.7.17

PyObject *PyFunction_GetAnnotations (PyObject *op)
Return value: Borrowed reference. Return the annotations of the function object op. This can be a mutable dictio-
nary or NULL.

int PyFunction_SetAnnotations (PyObject *op, PyObject *annotations)
Set the annotations for the function object op. annotations must be a dictionary or Py_None.

A3 systemErrorS WA A 7] 11 -1 wkakgh o)
8.5.2 S AE A HlA = AH

AA~HEA WA ELE pycrunctiono 3k ¥ olW Pycrunctions Zd 2 AR o 4435t
Ut} o] AQ PyMethod_New (func, NULL, class) &=L thA gk

rIr
=
fru
o
oL
i

PyTypeObject PyInstanceMethod_Type
o] PyTypeObject AAEAE Sho] R AAEA WA E &S e sto] s =2 T30 &=
A ey,
int PyInstanceMethod_Check (PyObject *0)

Return true if o is an instance method object (has type PyTnstanceMethod_Type). The parameter must not
be NULL.

kr

=5

PyObject* PyInstanceMethod_New (PyObject *func)
Return value: New reference. M| Q12E 2 Wl A= AR S v T funcs= 499 288 A A Q4] func
EorEAWAEIEZESE u] 3&5F Ty

PyObject* PyInstanceMethod_Function (PyObject *im)
Return value: Borrowed reference. A28~ WA = imT} A#H 4 2%

]

Hheh et o

PyObject* PyInstanceMethod_GET_FUNCTION (PyObject *im)
Return value: Borrowed reference. 5% AAS 38} PyInstanceMethod Function () W32 E ¥ A.

8.5.3 WA= A

HAEE A2 " (bound) T AA AUTE PIMEE G4 AFEA A Sej2 dadio] AZdg YTt
A2+ X] o2 (unbound) Wl M = (Z e Ao A4 HE HIAE) = B AEE 5 glsUth
PyTypeObject PyMethod_Type

o] PyTypeobiect AxHat shold WA E §2 e th o] 2L sho] 4 =2 190 types

MethodTypeZ =<5 U Th

int PyMethod_Check (PyObject *o)
Return true if o is a method object (has type PyMethod_Type). The parameter must not be NULL.

PyObject* PyMethod_New (PyObject *func, PyObject *self)
Return value: New reference. Return a new method object, with func being any callable object and self the instance
the method should be bound. func is the function that will be called when the method is called. self must not be
NULL.

PyObject* PyMethod_Function (PyObject *meth)
Return value: Borrowed reference. meth Wl A =2} AFHH St A A & wiagh ot
PyObject* PyMethod_GET_FUNCTION (PyObject *meth)
Return value: Borrowed reference. 2% ZAAME 9 8}= PyMethod _Function ()8 W22 WA,

PyObject* PyMethod_Sel€£ (PyObject *meth)
Return value: Borrowed reference. meth W| A =2} AAH AA~EHAE vk}

116 Chapter 8. 74 244 A

o]N-

The Python/C API, &] 8| A 3.7.17

PyObject* PyMethod_GET_SELF (PyObject *meth)
Return value: Borrowed reference. 2.5+ ZAAME 9|31+ PyMethod _Self ()9 W32 ¥ A.

int PyMethod_ClearFreelist ()
Af2ES AgUch AAE & 5 58 s,

8.5.4 A)

A AR of ¥ amzol A Fx e M-S PASHE ol AP U o3 Asuih he A7) 95
A BB o)tk 2 B S o} e 6] o o] A 5ot o
Aol o g 327 R L eh. ol 2549, 4 A7) Al o] 41 ol ke ghol g E ek olef @ A

A 2] 3% (de-referencing) = A4 H Hlo]E FE 2 HE] 9] A Yol BTt A2 A AFo7 A3z
A gyt A AL TR 2ol §854 & s
PyCellObject

A A7 o) AHgE = CTEA.
PyTypeObject PyCell_Type

A A3 ol 25 2 AL
int PyCell_Check (ob)

Return true if ob is a cell object; ob must not be NULL.

PyObject* PyCell_New (PyObject *ob)
Return value: New reference. Create and return a new cell object containing the value ob. The parameter may be
NULL.

PyObject* PyCell_Get (PyObject *cell)
Return value: New reference. A cell®] U]-8-< W3 o}

PyObject* PyCell_GET (PyObject *cell)
Return value: Borrowed reference. Return the contents of the cell cell, but without checking that cell is non-NULL
and a cell object.

int PyCell_Set (PyObject *cell, PyObject *value)
Set the contents of the cell object cell to value. This releases the reference to any current content of the cell. value
may be NULL. cell must be non-NULL; if it is not a cell object, —1 will be returned. On success, 0 will be returned.

void PyCell_SET (PyObject *cell, PyObject *value)
Sets the value of the cell object cell to value. No reference counts are adjusted, and no checks are made for safety;
cell must be non-NULL and must be a cell object.

8.5.5 7= 7|

$E A & CPython T A A4 A% AU Th 2 A
golg s vebd Yo
PyCodeObject

= AR Qs vl AE & AR CT2A. o] Yol =& AAEA WA & Ak
PyTypeObject PyCode_Type

o] 212 Python code & UE = PyTypeObject?] AA2~EH ALY
int PyCode_Check (PyObject *co)

co7} code AA|H FS v T}

int PyCode_GetNumFree (PyCodeObject *co)
col Y= A Ao NeE gy

rlr
[e]
£,
N
%
&
=2
4
2
30
B
§
rlo
>
o2
N
N
olr
rot
=]
[t

8.5. g A 117

The Python/C API, &] B{ A 3.7.17

PyCodeObject* PyCode_New (int argcount, int kwonlyargcount, int nlocals, int stacksize, int flags, PyOb-
Ject *code, PyObject *consts, PyObject *names, PyObject *varnames, PyOb-
Ject *freevars, PyObject *cellvars, PyObject *filename, PyObject *name, int first-
lineno, PyObject *Inotab)

Return value: New reference. M| = AAE vyt =2 dS =7 98 tn] 2= AA|7F 2
L2549, Al PyCode_NewEmpty ()& A& Al 2. HEolE F =9 o7} A3 WA= 7] wf &,

pyCode_New ()& 24 £E 3@ A8 shol A W Ao 248 & YgUth

PyCodeObject* PyCode_NewEmpty (const char *filename, const char *funcname, int firstlineno)
Return value: New reference. A/ A H a4 ™, St 2 3] H*RH ZHTEZE= Y T A E vESY
. 23 F= AR E exec () EEeval (0}‘“ % ol

8.6 7|e} A

8.6.1 5}l 7]

o

°] API= C 33 go| B 2] 9] W3 & A VO (FILE*) A ol & Esh= W7 3t A A of] v & »}o] %4 2 C API
o] H 4 o g o)A Yyt sfo]d 304, J+°‘J+/\E%8 MEL io BES AHEF T O]EC%T%‘
A A&} A 2T H A A2 V0 F ol A8 AS= -"4&1414 ofef ol A A3 }%?‘%450 F A} =2
APIO] T3t @ 2] 3} C e 3ol v, T2 ez H | & HuE g AdUch AR =+ 4l io
APTOl| HA238= Z o] FH YTk

l cd
rlr r%'

PyFile_FromFd (int fd, const char *name, const char *mode, int buffering, const char *encoding, const char *er-

rors, const char *newline, int closefd)
Return value: New reference. Create a Python file object from the file descriptor of an already opened file fd. The

arguments name, encoding, errors and newline can be NULL to use the defaults; buffering can be -1 to use the
default. name is ignored and kept for backward compatibility. Return NULL on failure. For a more comprehensive
description of the arguments, please refer to the io.open () function documentation.

A3: shold 2EYo AA A MAY AZS AN YO8, 085
o] o714 23 RAEAT 5 A5 UTHOHI HolH o gH 2@

W 32004 |7 name Q| EB|REE FAF T
int PyObject_AsFileDescriptor (PyObject *p)

pSf FE 7 7| EA2 int 2 U T A7 B4, o] MBHUTE 137 gow A7)
filenol) MAE7}Slom T ok A St N A5 R haeof ot 2 grel skl 714
GoE AR, A o8 AL 18 BT,

PyObject* PyFile_GetLine (PyObject *p, int n)
Return value: New reference. p.readline ([n]) 3 53 th 0] = AA poll A =S Y5 U Th
pe Y AA Y} readline () I E7F = 499 AAL 5 A5 Utk no] 00|H, £ do|e} &A
Nol A3 st =S 5 UTh nol 0E T 3, nulo] E o] 43 LA ¢l A] k5T B £ o]
HgkE = Ut F A EF, 3 2ol SA 2t ¥ X E o] v Yth 28 yno] 0K Th
o} HAG el T EE AA T Y o FA =Dt EOFError 7} A

int PyFile_WriteObject (PyObject *obj, PyObject *p, int flags)
A2 obj 3+ AA pell U flagsoll A A A= = <L
repr () Al AA|) str () o] 7ZISFE Utk A& st 0
ARE Yt

int PyFile WriteString (const char *s, PyObject *p)
A 52 39 AR pol Zuith AT W 02 WBFI, AshsHE 12 VBFTH 42T)97
AR UL}

Z#21E=Py_PRINT_RAWY YT} oA
Assld 12 vkskshgc}; A A s @ﬂﬂﬂ

s
o
=)

118 Chapter 8. 74 214 A=

The Python/C API, &] 8| A 3.7.17

8.6.2 Module Objects

PyTypeObject PyModule_Type
This instance of PyTypeObject represents the Python module type. This is exposed to Python programs as
types.ModuleType.

int PyModule_Check (PyObject *p)
Return true if p is a module object, or a subtype of a module object.

int PyModule_CheckExact (PyObject *p)
Return true if p is a module object, but not a subtype of PyModule Type.

PyObject* PyModule_NewObject (PyObject *name)
Return value: New reference. Return a new module object with the __name___ attribute set to name. The module’
s__name_ ,_ doc__,_ package_ ,and__loader__ attributes are filled in (all but __name___ are set
to None); the caller is responsible for providinga ___file_ attribute.

B A 3.30] 7}
WA 34004 H7:_ package__and __loader__ aresetto None.

PyObject* PyModule_New (const char *name)
Return value: New reference. Similar to PyModule NewObject (), but the name is a UTF-8 encoded string
instead of a Unicode object.

PyObject* PyModule_GetDict (PyObject *module)
Return value: Borrowed reference. Return the dictionary object that implements module’s namespace; this object
is the same as the __dict___ attribute of the module object. If module is not a module object (or a subtype of a
module object), SystemError is raised and NULL is returned.

It is recommended extensions use other PyModule_* () and PyObject_* () functions rather than directly
manipulate a module’s __dict__.

PyObject* PyModule_GetNameObject (PyObject *module)
Return value: New reference. Return module’s __name___ value. If the module does not provide one, or if it is
not a string, SystemError is raised and NULL is returned.

B A 3.30] F7}.

const char* PyModule_GetName (PyObject *module)
Similar to PyModule_ GetNameObject () but return the name encoded to 'ut£-8".

void* PyModule_GetState (PyObject *module)
Return the “state” of the module, that is, a pointer to the block of memory allocated at module creation time, or
NULL. See PyModuleDef.m size.

PyModuleDef* PyModule_GetDef (PyObject *module)
Return a pointer to the PyModuleDe £ struct from which the module was created, or NULL if the module wasn’
t created from a definition.

PyObject* PyModule_GetFilenameObject (PyObject *module)
Return value: New reference. Return the name of the file from which module was loaded using module’s __file_

attribute. If this is not defined, or if it is not a unicode string, raise SystemError and return NULL; otherwise
return a reference to a Unicode object.

B A 3.20] F7}.

const char* PyModule_GetFilename (PyObject *module)
Similar to PyModule_GetFilenameObject () butreturn the filename encoded to ‘utf-8’.

WA 325E 3 A : PyModule_GetFilename () raises UnicodeEncodeError on unencodable file-
names, use PyModule_ GetFilenameObject () instead.

8.6. 7|E} A 119

The Python/C API, &] B{ A 3.7.17

Initializing C modules

Modules objects are usually created from extension modules (shared libraries which export an initialization function), or
compiled-in modules (where the initialization function is added using Py Import_AppendInittab ()). See building
or extending-with-embedding for details.

The initialization function can either pass a module definition instance to PyModule Create (), and return the re-
sulting module object, or request “multi-phase initialization” by returning the definition struct itself.

PyModuleDef

The module definition struct, which holds all information needed to create a module object. There is usually only
one statically initialized variable of this type for each module.

PyModuleDef_Base m_base
Always initialize this member to PyModuleDef_HEAD_INIT.

const char *m_name
Name for the new module.

const char *m_doc
Docstring for the module; usually a docstring variable created with PyDoc_ STRVAR is used.

Py_ssize_tm_size
Module state may be kept in a per-module memory area that can be retrieved with
PyModule_GetState (), rather than in static globals. This makes modules safe for use in multi-
ple sub-interpreters.

This memory area is allocated based on m_size on module creation, and freed when the module object is
deallocated, after the m_ f ree function has been called, if present.

Setting m_size to —1 means that the module does not support sub-interpreters, because it has global state.

Setting it to a non-negative value means that the module can be re-initialized and specifies the additional
amount of memory it requires for its state. Non-negative m__size is required for multi-phase initialization.

See PEP 3121 for more details.

PyMethodDef* m_methods
A pointer to a table of module-level functions, described by PyMet hodDef values. Can be NULL if no
functions are present.

PyModuleDef _Slot* m_slots
An array of slot definitions for multi-phase initialization, terminated by a {0, NULL} entry. When using
single-phase initialization, m_slots must be NULL.

¥ A 3.50]| A ¥ 7 : Prior to version 3.5, this member was always set to NULL, and was defined as:
inquirym_reload

fraverseproc m_traverse
A traversal function to call during GC traversal of the module object, or NULL if not needed. This function
may be called before module state is allocated (PyModule GetState () may return NULL), and before
the Py_mod_exec function is executed.

inquirym_clear
A clear function to call during GC clearing of the module object, or NULL if not needed. This function may
be called before module state is allocated (PyModule_GetState () may return NULL), and before the
Py_mod_exec function is executed.

freefunc m_free
A function to call during deallocation of the module object, or NULL if not needed. This function may

120

Chapter 8. 74 A A%

https://www.python.org/dev/peps/pep-3121

The Python/C API, &] 8| A 3.7.17

be called before module state is allocated (PyModule_ GetState () may return NULL), and before the
Py_mod_exec function is executed.

Single-phase initialization

The module initialization function may create and return the module object directly. This is referred to as “single-phase
initialization”, and uses one of the following two module creation functions:

PyObject* PyModule_Create (PyModuleDef *def)
Return value: New reference. Create a new module object, given the definition in def. This behaves like
PyModule_Createl () with module_api_version set to PYTHON_API_VERSION.

PyObject* PyModule_Create2 (PyModuleDef *def, int module_api_version)
Return value: New reference. Create a new module object, given the definition in def, assuming the API version
module_api_version. If that version does not match the version of the running interpreter, a Runt imeWarning
is emitted.

ZF3: Most uses of this function should be using PyModule Create () instead; only use this if you are sure
you need it.

Before it is returned from in the initialization function, the resulting module object is typically populated using functions
like PyModule_AddObject ().

Multi-phase initialization

An alternate way to specify extensions is to request “multi-phase initialization”. Extension modules created this way
behave more like Python modules: the initialization is split between the creation phase, when the module object is created,
and the execution phase, when it is populated. The distinction is similar tothe __new__ () and __init__ () methods
of classes.

Unlike modules created using single-phase initialization, these modules are not singletons: if the sys.modules entry is
removed and the module is re-imported, a new module object is created, and the old module is subject to normal garbage
collection —as with Python modules. By default, multiple modules created from the same definition should be independent:
changes to one should not affect the others. This means that all state should be specific to the module object (using e.g.
using PyModule_GetState ()), or its contents (such as the module’s __dict__ or individual classes created with
PyType_FromSpec()).

All modules created using multi-phase initialization are expected to support sub-interpreters. Making sure multiple mod-
ules are independent is typically enough to achieve this.

To request multi-phase initialization, the initialization function (PyInit_modulename) returns a PyModuleDe £ instance
with non-empty m_slots. Before it is returned, the PyModuleDef instance must be initialized with the following
function:

PyObject* PyModuleDef_Init (PyModuleDef *def)
Return value: Borrowed reference. Ensures a module definition is a properly initialized Python object that correctly
reports its type and reference count.

Returns def cast to PyObject*, or NULL if an error occurred.
B A 3.50] &7}
The m_slots member of the module definition must point to an array of PyModuleDef_Slot structures:

PyModuleDef_Slot

8.6. 7|E} A 121

The Python/C API, &] B{ A 3.7.17

int slot
A slot ID, chosen from the available values explained below.

void* value
Value of the slot, whose meaning depends on the slot ID.

B A 3.50] &7}
The m_slots array must be terminated by a slot with id 0.
The available slot types are:

Py_mod_create
Specifies a function that is called to create the module object itself. The value pointer of this slot must point to a
function of the signature:

PyObject* create_module (PyObject *spec, PyModuleDef *def’)

The function receives a ModuleSpec instance, as defined in PEP 451, and the module definition. It should return
a new module object, or set an error and return NULL.

This function should be kept minimal. In particular, it should not call arbitrary Python code, as trying to import
the same module again may result in an infinite loop.

Multiple Py_mod_create slots may not be specified in one module definition.

If Py_mod_create is not specified, the import machinery will create a normal module object using
PyModule_New (). The name is taken from spec, not the definition, to allow extension modules to dynami-
cally adjust to their place in the module hierarchy and be imported under different names through symlinks, all
while sharing a single module definition.

There is no requirement for the returned object to be an instance of PyModule_Type. Any type can be used, as
long as it supports setting and getting import-related attributes. However, only PyModule_Type instances may
be returned if the PyModuleDef has non-NULL m_traverse, m_clear, m_free; non-zero m_size; or
slots other than Py_mod_create.

Py_mod_exec
Specifies a function that is called to execute the module. This is equivalent to executing the code of a Python module:
typically, this function adds classes and constants to the module. The signature of the function is:

int exec_module (PyObject* module)
If multiple Py_mod_exec slots are specified, they are processed in the order they appear in the m_slots array.

See PEP 489 for more details on multi-phase initialization.

Low-level module creation functions

The following functions are called under the hood when using multi-phase initialization. They can be used di-
rectly, for example when creating module objects dynamically. Note that both PyModule_FromDefAndSpec and
PyModule_ExecDef must be called to fully initialize a module.

PyObject * PyModule_FromDefAndSpec (PyModuleDef *def, PyObject *spec)
Return value: New reference. ~ Create a new module object, given the definition in module and the
ModuleSpec spec. This behaves like PyModule FromDefAndSpec?2 () with module_api_version set to
PYTHON_API_VERSION.

B A 3.50] &7}

PyObject * PyModule_FromDefAndSpec2 (PyModuleDef *def, PyObject *spec, int module_api_version)
Return value: New reference. Create a new module object, given the definition in module and the ModuleSpec spec,

o]N-

122 Chapter 8. 4+ A A #|

https://www.python.org/dev/peps/pep-0451
https://www.python.org/dev/peps/pep-0489

The Python/C API, &] 8| A 3.7.17

assuming the API version module_api_version. If that version does not match the version of the running interpreter,
a RuntimeWarning is emitted.

ZF31: Most uses of this function should be using PyModule FromDefAndSpec () instead; only use this if
you are sure you need it.

WA 3.5 =7}

int PyModule_ExecDef£ (PyObject *module, PyModuleDef *def’)
Process any execution slots (Py_mod_exec) given in def.

WA 3500 7}

int PyModule_SetDocString (PyObject *module, const char *docstring)
Set the docstring for module to docstring. This function is called automatically when creating a module from
PyModuleDef, using either PyModule_Create or PyModule_FromDefAndSpec.

WA 3500 7}

int PyModule_AddFunctions (PyObject *module, PyMethodDef *functions)
Add the functions from the NULL terminated functions array to module. Refer to the PyMet hodDe £ documen-
tation for details on individual entries (due to the lack of a shared module namespace, module level “functions”
implemented in C typically receive the module as their first parameter, making them similar to instance methods
on Python classes). This function is called automatically when creating a module from PyModuleDef, using
either PyModule_Create or PyModule_FromDefAndSpec.

WA 3.50] F7}.

Support functions

The module initialization function (if using single phase initialization) or a function called from a module execution slot
(if using multi-phase initialization), can use the following functions to help initialize the module state:

int PyModule_AddObject (PyObject *module, const char *name, PyObject *value)
Add an object to module as name. This is a convenience function which can be used from the module’s initialization
function. This steals a reference to value on success. Return —1 on error, O on success.

ZF31: Unlike other functions that steal references, PyModule_AddObject () only decrements the reference
count of value on success.

This means that its return value must be checked, and calling code must Py DECREF () value manually on error.
Example usage:

Py_INCREF (spam) ;

if (PyModule_AddObject (module, "spam", spam) < 0) {
Py_DECREF (module) ;
Py_DECREF (spam) ;
return NULL;

int PyModule_AddIntConstant (PyObject *module, const char *name, long value)
Add an integer constant to module as name. This convenience function can be used from the module’s initialization
function. Return —1 on error, O on success.

8.6. 7|E} A 123

The Python/C API, &] B{ A 3.7.17

int PyModule_AddStringConstant (PyObject *module, const char *name, const char *value)
Add a string constant to module as name. This convenience function can be used from the module’s initialization
function. The string value must be NULL-terminated. Return —1 on error, O on success.

int PyModule_AddIntMacro (PyObject *module, macro)
Add an int constant to module. The name and the value are taken from macro. For example
PyModule_AddIntMacro (module, AF_INET) adds the int constant AF_INET with the value of
AF_INET to module. Return —1 on error, 0 on success.

int PyModule_AddStringMacro (PyObject *module, macro)
Add a string constant to module.

Module lookup

Single-phase initialization creates singleton modules that can be looked up in the context of the current interpreter. This
allows the module object to be retrieved later with only a reference to the module definition.

These functions will not work on modules created using multi-phase initialization, since multiple such modules can be
created from a single definition.

PyObject* PyState_FindModule (PyModuleDef *def’)
Return value: Borrowed reference. Returns the module object that was created from def for the current
interpreter. This method requires that the module object has been attached to the interpreter state with
PyState_AddModule () beforehand. In case the corresponding module object is not found or has not been
attached to the interpreter state yet, it returns NULL.

int PyState_AddModule (PyObject *module, PyModuleDef *def)
Attaches the module object passed to the function to the interpreter state. This allows the module object to be
accessible via PyState_FindModule ().

Only effective on modules created using single-phase initialization.

Python calls PyState_AddModule automatically after importing a module, so it is unnecessary (but harmless)
to call it from module initialization code. An explicit call is needed only if the module’s own init code subsequently
calls PyState_FindModule. The function is mainly intended for implementing alternative import mechanisms
(either by calling it directly, or by referring to its implementation for details of the required state updates).

Return 0 on success or -1 on failure.
WA 3.39 F7%

int PyState_RemoveModule (PyModuleDef *def)
Removes the module object created from def from the interpreter state. Return 0 on success or -1 on failure.

WA 330 &7}

8.6.3 o]E]#| o] A

ol -2 7 7He] W olH el o] B A S ATtk A, AlAL olHH OBl __getitem () HIAEE
AQake Aol A A2 AT SR 2B AR F 2 A (sentinel) 72 AHS34L, A A2 7}
FEo s e ES =01, T8 A go]l vHE of o]H ol S FEF YT
PyTypeObject PySeqIter_Type
PySeqiter New ()9 U AR ol ol @ iter () WA B4 B2 97 B 4ol o5 wrghel ol
gl ol e Aol th gk | A A
int PySeqIter_Check (op)
ope] ¥ ol pyseqliter Typeol® & & F U

ka9

124 Chapter 8. 7% 214 #|

o]N-

The Python/C API, &] 8| A 3.7.17

PyObject* PySeqIter_New (Py Objc)cl *seq)
Return value: New reference. LRF Al A2 AA| seqe} SH7 25 3l= o] H g o] & WH&sty) A|lF27)
AMBATHM A4k A IndexErrorE Y2 7]W o]H & o] o] FdTh

PyTypeObject PyCallIter_Type
pyCalllter New()2iter () W& T 7 A2 4o o) wkgted o5 gl o] ¥ AA ol et J
AA.
2

int PyCallIter_Check (0p)
op® do| pycalllter Type°|®d & &S5t}

PyObject* PyCallIter_New (PyObject *callable, PyObject *sentinel)

Return value: New reference. M| 22 o|E] gl o]l & E&F Y 1:]— 1 AR v 7 WS callable-2 v 70 W4 g o)
55U G wE Aol e AN 4 G0 2 5B o] el o] 4] T2 352 1 8o
Ut} callable©] sentinel 2} 22 < ‘ﬂ-ﬁ-t?}liﬂ olE g o] o]l 2rHE UL}

8.6.4 T~ HE A

“Oaage e AAe IR e HES 7esls AAYUT. TASS B Ade G ele] U,
PyTypeObject PyProperty_Type
WE HaaHE 5= AT F AA.

PyObject* PyDescr_NewGetSet (PyTypeObject *type, struct PyGetSetDef *getset)
Return value: New reference.

PyObject* PyDescr_NewMember (PyTypeObject *type, struct PyMemberDef *meth)
Return value: New reference.

PyObject* PyDescr_NewMethod (PyTypeObject *type, struct PyMethodDef *meth)
Return value: New reference.

PyObject* PyDescr_NewWrapper (PyTypeObject *type, struct wrapperbase *wrapper, void *wrapped)
Return value: New reference.

PyObject* PyDescr_NewClassMethod (PyTypeObject *type, PyMethodDef *method)
Return value: New reference.

int PyDescr_IsData (PyObject *descr)

2298 A descr7} HlolE] o] S| HES /|% 8T oW Fe MBeT, WASE /&5 AR
£ EHF UL desor= T2 H AR o] of FUTh; o7 AAE gsuTh

PyObject* PyWrapper_New (PyObject *, PyObject *)
Return value: New reference.

8.6.5 &elo]A A

PyTypeObject PySlice_Type
setol2 A Y @ AA|. o] 22 stol M AF slicest ZFHTh

int PySlice_Check (PyObject *ob)
Return true if ob is a slice object; ob must not be NULL.

PyObject* PySlice_New (PyObject *start, PyObject *stop, PyObject *step)
Return value: New reference. Return a new slice object with the given values. The start, stop, and step parameters
are used as the values of the slice object attributes of the same names. Any of the values may be NULL, in which
case the None will be used for the corresponding attribute. Return NULL if the new object could not be allocated.

8.6. 7|E} A 125

The Python/C API, &] B{ A 3.7.17

int PySlice_GetIndices (PyObject *slice, Py_ssize_t length, Py_ssize_t *start, Py_ssize_t *stop,

Py ssize_t *step)

Z o) 7} lengthQl A|A2E 714 51od, &glo]l 2 A A sliceol] A] start, stop X step A D25 7143 Ut} length

S e g e AN

A35E 02 MBI, oW o9 87 glol -1& WHIUTH (A2 F b Noneo] oh] 2
\}

A2 AEH A ke &, olule o9& ARt -12 HEFoh.
°] 7l5& A8 St AA = e AYYTh
WA 32004 W7 Aol slice v 7] M40 Wi 7} W4 P o] PySliceObject* G U Th

int PySlice_GetIndicesEx (PyObject *slice, Py_ssize_t length, Py_ssize_t *start, Py_ssize_t *stop,

Py_ssize_t *step, Py_ssize_t *slicelength)

PySlice GetIndices ()5 £25HA QAU T Z o) 7t lengthQl A| A AE 7FA S, &8fol 2 AR
slicel| A start, stop X step VA5 714 2 11, slicelengthol] € 2}o] 0] Z ol & A AUt W& Hojd

Qe vk ool o) A2l o AeE Ao w v,
AE3 02 NI, o 2 W o9 2 ARk 12 MHERh

Fu: o] T4t FVE AT S JE ADdrod e AAGA G Ao RI[YULE T

e
rlo

PySlice_Unpack ()&} PySlice_AdjustIndices ()2 202 AT oJoF Ut} &

// return error

}

if (PySlice_GetIndicesEx(slice, length, &start, é&stop, &step, &slicelength) < 0) |

eggoz gAR YT

if (PySlice_Unpack(slice, &start, &stop, é&step) < 0) |
// return error
3
slicelength = PySlice_AdjustIndices (length, &start, &stop, step);

#3204 A Aol slice 7] A=) 7] W= J o] PySliceObject* Az U

WA 3.6.1004 WHA: Py_LIMITED_APIZF AA T o] YA A} 0x030504003} 0x03060000 (3
F3FA] L) Abo]L} 0x03060100 o] At gro g g J= 91 oW, PySlice GetIndicesEx () &
PySlice_Unpack () & PySlice_AdjustIndices () E Al&St= vz =z ZAF Yth 2 A} starr,

o & sepe o121 % B 742 1ok

WA 3.6.15¢E 3| A: Py_LIMITED_APIZ} 0x03050400X t} ZFA 1} 0x030600003} 0x03060100
(23R b)) Aol gt & A AH 9l oW PySlice_GetIndicesEx ()& HAE F4YUch

int PySlice_Unpack (PyObject *slice Py_ssize_t *start, Py_ssize_t *stap, Py_ssize_t *step)

< gfol 2 AA 9 start, stop Y step H|] E] W] E C A4 E FETTh PY_SSIZE_T_MAXHTHZ e
p X step
PY SSIZE T MAXE Z-83| £0]1,PY_SSIZE_T MINEE}ﬂistarti}stop gPY SSIZE_T_MIN

2 283 =], -PY_SSIZE_T_MAXR T} Z2 step 742 -PY_SSIZE_T_MAXE X
ofgid -1, ¥ 5t 0= vk o
WA 3.6.10] =7}

Py_ssize_t PySlice_AdjustIndices (Py_ssize_t length, Py_ssize t “*start, Py_ssize_t

Py_ssize_t step)

€3 =Yyt

*stop,

A1 7 9 length 2 o] 8] A|AXE 7HF 51 start/stop S 2Fo] 2 QP A E 2 HFUTE A& Blold a0 g

R R ECEEEE SR SRS
Sefol o] ol B WAL 4 AT U shol A LES TH 344 Lk

126 Chapter 8.

T4 AA A

qw

The Python/C API, &] 8| A 3.7.17

WA 3.6.19] 7}

8.6.6 Ellipsis 7]

PyObject *Py_Ellipsis
Stol A E1lipsis A o] Aol WA=} QGUTh 22 40 B ste] ThE AR 9} npR A =
A elsf oF Ut py_Noned mpIHAI R A5 € AA YU

8.6.7 MemoryView 74 x|

memoryview AAE C 5 W 2AE o]~
U
PyObject *PyMemoryView_FromObject (PyObject *obj)
Return value: New reference. W 3 Q] | o] 25 A& 3}= A A ol A] memoryview 2} 2| & THEU T} obj 7}
27] 7V& 3 v 5 AlF= A 95, memoryview A A= $71/2 7|7V H 31, TE A o0 €] 7] Gl A
Al ARe] A gl whet ¢ 71/ 77 E = sy T
PyObject *PyMemoryView_FromMemory (char *mem, Py_ssize_t size, int flags)
Return value: New reference. mem=S S5 W 3 2 Al-83lo] memoryview A A E W5 YTl flags=
PyBUF_READ Y PyBUF_WRITE & 34 4 95U th
WA 3300 F7L
PyObject *PyMemoryView_FromBuffer (Py_buffer *view)
Return value: New reference. =% W ¥ T ZA| viewS ZH¥#+= memoryview 21 A& W5 Ut} 7Hadsh
ol E W ¥ 9] A&, PyMemoryView FromMemory ()7} A& H = 4+ <J Yt

ulit

e Axe vl A 2 AYE 5 Y sl A AM 2

PyObject *PyMemoryView_GetContiguous (PyObject *obj, int buffertype, char order)
Return value: New reference. W] ¥ QE| g o] 25 A2 3l= AAZHE W E e A5 HF(‘C Y ‘Fortran
order 2) 2 memoryview 2 A S W5 Ut W 2 2|7} <2 o] W memoryview 2 A= Y] W2 gl E 7]
AUtk 282 ¢kod, B alE o] ukE o] 2] 1 memoryview= A Bl EQ A A E 7hE] U th

int PyMemoryView_Check (PyObject *obj)
A A obj7} memoryview A A H FE W33t A= memoryviewd] A H ZHAE WE 5 QlE

g},

Py_buffer *PyMemoryView_GET_BUFFER (PyObject *mview)
A=A}] 3] 2] memoryview 2] B 7] BAFE O] Z O EE E&]F Ut myiews HFE A] memoryview 91
R 2ojop YT o] a2 = F2 &dekA gker® AH HAsoF Futh 23 A koW SE
Aol &y Th

Py_buffer *PyMemoryView_GET_BASE (PyObject *mview)
Return either a pointer to the exporting object that the memoryview is based on or NULL if
the memoryview has been created by one of the functions PyMemoryView FromMemory () or
PyMemoryView_FromBuffer (). mview must be a memoryview instance.

8.6. 7|E} A 127

The Python/C API, &] B{ A 3.7.17

H2E AR A T AN FAA AA Fo] A%

shol AL otal A2 2 17 AX 2 ADGUT) o 2
WA= 753 3 el AA o] kA o TS T,

L =]
ok A WAL 29E Bx AR oI,

int PyWeakref_Check (ob)
ob7} 2 AT m A AA W 2

filo
rE
riet
i
<
0

int PyWeakref_CheckRef (ob)
ob7} F2 AW & gt

int PyWeakref_CheckProxy (ob)
ob7} A AR W FE vk,

PyObject* PyWeakref_NewRef (PyObject *ob, PyObject *callback)
Return value: New reference. Return a weak reference object for the object 0ob. This will always return a new
reference, but is not guaranteed to create a new object; an existing reference object may be returned. The second
parameter, callback, can be a callable object that receives notification when ob is garbage collected; it should accept
a single parameter, which will be the weak reference object itself. callback may also be None or NULL. If 0b is
not a weakly-referencable object, or if callback is not callable, None, or NULL, this will return NULL and raise
TypeError.

PyObject* PyWeakref_ NewProxy (PyObject *ob, PyObject *callback)
Return value: New reference. Return a weak reference proxy object for the object ob. This will always return a
new reference, but is not guaranteed to create a new object; an existing proxy object may be returned. The second
parameter, callback, can be a callable object that receives notification when ob is garbage collected; it should accept
a single parameter, which will be the weak reference object itself. callback may also be None or NULL. If ob is
not a weakly-referencable object, or if callback is not callable, None, or NULL, this will return NULL and raise
TypeError.

PyObject* PyWeakref_GetObject (PyObject *ref)
Return value: Borrowed reference. ¥t Z+Z (ref) 2 28] 29 AA S vl ol 3271 & 4ol A
¢to W py Noneg HF3Hglut}.

Ha: ol Bt F2E AA e WA FEE VI Th o) = AAE A% A8 5o A7
oo E 4 922 21 92 W8 AL HL, AA ol theh F4 by TNCREF () § BEHOF FS EFUTH

PyObject* PyWeakref GET_OBJECT (PyObject *ref)
Return value: Borrowed reference. PylWeakref_GetObject ()2} FAFSIA 2 of| 2] AALS =38 8HA] k=
22 PP YT

8.6.9 &

o] A A AFg-ol thak xA| 3F A B = using-capsules S 2 3HA] A] 2.
WA 3.10] F7}
PyCapsule

o] pyObject®] ME P2 EFHT FS Yet, sfojH I=EL S HECILER EFHET F
(voiar TAH2) & Aol S C &Y wol B8P o2 & RFIA Jofd C g+
EAHE e ZEAA AR E 5 A BEsHl SFARREHEE, AU Jd2E v AYSS AFE 5t
SHAor 2= 2E Jo|H CAPIo] A~ 5 JdF T

PyCapsule_Destructor
<ol ol ek 5h3) 2} (destructor) Z) F. o] = A Aol Pk

128 Chapter 8. 74 73] 7%

The Python/C API, &] 8| A 3.7.17

typedef void (*PyCapsule_Destructor) (PyObject *);

PyCapsule_Destructor 9 2] o] u]&= pyCapsule New () S ZFZ TP A L.

int PyCapsule_CheckExact (PyObject *p)
A&7} pycapsuleold g S8 FUTH

PyObject* PyCapsule_New (void *pointer, const char *name, PyCapsule_Destructor destructor)
Return value: New reference. Create a PyCapsule encapsulating the pointer. The pointer argument may not be
NULL.

On failure, set an exception and return NULL.

The name string may either be NULL or a pointer to a valid C string. If non-NULL, this string must outlive the
capsule. (Though it is permitted to free it inside the destructor.)

If the destructor argument is not NULL, it will be called with the capsule as its argument when it is destroyed.

o] N&EE& REY JJEFHER A A3 Y, nameS modulename.attributename® X A3 oF g
th. o] g A 3tW thE R E] PyCapsule _Import ()5 A3t &S YXE T 5 5 YT

void* PyCapsule_GetPointer (PyObject *capsule, const char *name)
Retrieve the pointer stored in the capsule. On failure, set an exception and return NULL.

The name parameter must compare exactly to the name stored in the capsule. If the name stored in the capsule is
NULL, the name passed in must also be NULL. Python uses the C function st rcmp () to compare capsule names.

PyCapsule_Destructor PyCapsule_GetDestructor (PyObject *capsule)
Return the current destructor stored in the capsule. On failure, set an exception and return NULL.

It is legal for a capsule to have a NULL destructor. This makes a NULL return code somewhat ambiguous; use
PyCapsule_IsValid() or PyErr_Occurred () to disambiguate.

void* PyCapsule_GetContext (PyObject *capsule)
Return the current context stored in the capsule. On failure, set an exception and return NULL.

It is legal for a capsule to have a NULL context. This makes a NULL return code somewhat ambiguous; use
PyCapsule_IsValid() or PyErr_Occurred () to disambiguate.

const char* PyCapsule_GetName (PyObject *capsule)
Return the current name stored in the capsule. On failure, set an exception and return NULL.

It is legal for a capsule to have a NULL name. This makes a NULL return code somewhat ambiguous; use
PyCapsule_IsValid() or PyErr_Occurred () to disambiguate.

void* PyCapsule_Import (const char *name, int no_block)
BES AE AEZRHENAC AA o Ut 2AEE dEZE U} name W7
attribute A oL HEY A o 22 A Asof FUTH Aéol A%
2k A &s] dA S oF FUth no_blockeo] FolW, &F5FA 94l E%
(PyImport_ImportModuleNoBlock () S AF&3|A]). no_blocko] AR oW, REE FHGA
E gt} (PyImport_ImportModule ()& AF&3]A]).

Return the capsule’s internal pointer on success. On failure, set an exception and return NULL.

int PyCapsule_IsValid (PyObject *capsule, const char *name)
Determines whether or not capsule is a valid capsule. A valid capsule is non-NULL, passes
PyCapsule_CheckExact (), has a non-NULL pointer stored in it, and its internal name matches the
name parameter. (See PyCapsule_GetPointer () for information on how capsule names are compared.)

Z PyCapsule_IsValid ()7} ZzkS wigsld, 2 & A2 A (PyCapsule_Get () L E A& el=RE
4o 8 S E o] AF o] HAH YT

8.6. 7|E} A 129

The Python/C API, &] B{ A 3.7.17

A 7H £ 3 AL o] 531 A5 00] ohd kg WAL TE 29 oW 0% WA, o
g AoletA syt
int PyCapsule_SetContext (PyObject *capsule, void *context)
capsule J 52 AELAE ZAEE context= 4 A3t}
4338 02 M Th AsHEHE 00 ofd g WHEksha ol 9] & AR Pk,
int PyCapsule_SetDestructor (PyObject *capsule, PyCapsule_Destructor destructor)
capsule W52 3}3) A+E destructor 2 74 A g T}
4o 0= Wk Utk A et 00] ofbd ghe whEshal ol 9 & A T
int PyCapsule_SetName (PyObject *capsule, const char *name)

Set the name inside capsule to name. If non-NULL, the name must outlive the capsule. If the previous name stored
in the capsule was not NULL, no attempt is made to free it.

435k 02 WUtk A3 st 00] obd e wheskar ol o & A o

int PyCapsule_SetPointer (PyObject *capsule, void *pointer)
Set the void pointer inside capsule to pointer. The pointer may not be NULL.

4531 02 MAFUTh A5 00] ohdl ghS WAL o S A FU T

8.6.10 A& o]€] A

AMeA I8 AR stel del AW oIE olEH e E TR A9 g AR, dHow
PyGen_New () T+ PyGen_NewWithQualName ()& HA| A O 2 $&3}+= Zo] oty ?:._]E(yield)
e PR EE DECE RS
PyGenObject

Al el o) ¥ A A ol A& = C F2A.
PyTypeObject PyGen_Type

Al el ol e AR ol s o= & AA
int PyGen_Check (PyObject *ob)

Return true if ob is a generator object; ob must not be NULL.

int PyGen_CheckExact (PyObject *ob)
Return true if ob’s type is PyGen__ Type; ob must not be NULL.

PyObject* PyGen_New (PyFrameObject *frame)
Return value: New reference. Create and return a new generator object based on the frame object. A reference to
frame is stolen by this function. The argument must not be NULL.

PyObject* PyGen_NewWithQualName (PyFrameObject *frame, PyObject *name, PyObject *qualname)
Return value: New reference. Create and return a new generator object based on the frame object, with __name___
and __qualname___ set to name and qualname. A reference to frame is stolen by this function. The frame
argument must not be NULL.

130 Chapter 8. 74 244 A

o]N-

The Python/C API, &] 8| A 3.7.17

8.6.11 T F¢l 7|

WA 3.50) 27}
FE2E AA = async Z|PE=2 A AH 471 vksshE A Yy

PyCoroObject
258 AA of AHE = C A,
PyTypeObject PyCoro_Type
229 AR of 33k & AA.
int PyCoro_CheckExact (PyObject *ob)
Return true if ob’s type is PyCoro_ Type; ob must not be NULL.

PyObject* PyCoro_New (PyFrameObject *frame, PyObject *name, PyObject *qualname)
Return value: New reference. Create and return a new coroutine object based on the frame object, with __name___
and __qualname___ set to name and qualname. A reference to frame is stolen by this function. The frame
argument must not be NULL.

8.6.12 ALY A E W A

3 A 37104 WG ol 37104 RE AYAE W C API9 A W o] Pycontext,
PyContextVar W PyContext Token Al PyObject EJAEE AL =2 HAEHQSUTLH o & S0

// in 3.7.0:
PyContext *PyContext_New (void) ;

// in 3.7.1+:
PyObject *PyContext_New (void);

A B U] &2 bpo-347625 F2 A A L.

WA 3700 27}
o] Ao Al+= contextvars B E-S $ % -8 C APILY 3] xFA| 5] A g o).

PyContext
contextvars.Context AAE Y= o AR5 = C FXA.

PyContextVar
contextvars.ContextVar AAE JEI &= o] AFREH = C FZA.

PyContextToken
contextvars.Token A E YEU £ dl AFEH = C 24

PyTypeObject PyContext_Type
context & VeI = & AA.

PyTypeObject PyContextVar_Type
AP 2 W4 P2 vehe 3 A4,

PyTypeObject PyContextToken_Type
AUAE W5 =2 9L efhe 3 A4,

g A AR

int PyContext_CheckExact (PyObject *0)
Return true if o is of type PyContext_Type. o must not be NULL. This function always succeeds.

8.6. 7|E} A 131

https://bugs.python.org/issue?@action=redirect&bpo=34762

The Python/C API, &] B{ A 3.7.17

int PyContextVar_CheckExact (PyObject *0)
Return true if o is of type PyContextVar_ Type. o must not be NULL. This function always succeeds.

int PyContextToken_CheckExact (PyObject *0)
Return true if o is of type PyContext Token Type. o must not be NULL. This function always succeeds.

AdAE A B B

PyObject *PyContext_New (void)
Return value: New reference. M| ¢ Rl AEAE A& vhE YTt o 27} 8 64 NULLE REH Y oh

|

PyObject *PyContext_Copy (PyObject *ctx)
Return value: New reference. A S H ctx AR AE AR o] & EALE S dl5 Ut o 2 7} WA 31 NULL
< QSR T

PyObject *PyContext_CopyCurrent (void)
Return value: New reference. AR 28| = AYAEQ 2 BALE S w5t} o 7} 243 NULLES
W o

int PyContext_Enter (PyObject *ctx)
A~ = AA AH2ER enE ARG U AF Al 02 W2t o] Al -1 whehehy ok
int PyContext_Exit (PyObject *ctx)
ctx A AEE 0| A 331 o] A
NS, of o Al -1 HEF o
int PyContext_ClearFreeList ()
AYAE W4 AR 222 AgUth AAE F 33 58 BB o B4t B4 4T U
AU A~E Wy o
PyObject *PyContextVar_New (const char *name, PyObject *def’)
Return value: New reference. M| ContextVar AR E W5 UTH name v} 7] 4= dEZ Ad AT T2
BA0 2 AR UL df WA AeE AEAC R ARAE WS RS AR T 5 AT o2
7L g e, o] §4E NULLE BHEHgh o,
int PyContextVar_Get (PyObject *var, PyObject *default_value, PyObject **value)
A 2E N5 g2 7HA{Th 23 s 5ok o2l 7h B shel -1 NhEkela, Gho
glol ol 2 7F A sHA] ¢k o 0 vhgh ok
AAE Q571 HAH W, values 1AL 71275 EAE L H UL AAE W57 BAH A oo w
value'r= tF< 718 Ytk

* default_value, NULL©] o} H;

30
rlr
X,
o
o
A

* var®] 7123k, NULLO] o} H;
* NULL
ol AW, o] g A "id Al FRE WU

PyObject *PyContextVar_Set (PyObject *var, PyObject *value)
Return value: New reference. @A A B2 E | A vard 35S valueZ ARt} Pyobject AA| ol o 3+
ZAHE Q&3 A, of 21 7} @AY 8 NULL-& BHEHE U T}

int PyContextVar_Reset (PyObject *var, PyObject *token)
var AR A~E H45 9] A E wokens B33 PyContextVar_Set () 2 Ao AHZ A4
o] G5t AT A 02 WS, ol Al -1 MBI L

ox,
L

U,

132 Chapter 8. 4+ A A #|

o]N-

The Python/C API, &] 8| A 3.7.17

8.6.13 DateTime 7

ThFst GA o} A 7 AA| 7 datet ime REAA Al ZH UL} o] 48 A}2317] Ao, dld 312 datetime.
h7} 220 Z3hE o] of 3+ (Python.h7} L3Ha}A] 9FLo] G2 FHAA L), AukA 0 7 BE % 7]3} 3H49]
YFZ PyDateTime IMPORT M| 2E& T &k FUth a2 = C 72 Ao e 2UHE th5 W22
of| A} A}&-5| = static M4 PyDateTimeAPTIo] ¥ Th

UTC A= Eoll AN 2317] 3t a2 =

PyObject* PyDateTime_TimeZone_UTC
UTCE YEH = A1t A2 &S 983U t) datetime. timezone . utc2} 22 AA YUt}

B A 3.70] &7}
P AR
int PyDate_Check (PyObject *ob)

Return true if ob is of type PyDateTime_DateType or a subtype of PyDateTime_DateType. ob must
not be NULL.

int PyDate_CheckExact (PyObject *ob)
Return true if ob is of type PyDateTime_DateType. ob must not be NULL.

int PyDateTime_Check (PyObject *ob)
Return true if ob is of type PyDateTime_DateTimeType orasubtype of PyDateTime_DateTimeType.
ob must not be NULL.

int PyDateTime_CheckExact (PyObject *ob)
Return true if ob is of type PyDateTime_DateTimeType. ob must not be NULL.

int PyTime_Check (PyObject *ob)
Return true if 0b is of type PyDateTime_TimeType or a subtype of PyDateTime_TimeType. ob must
not be NULL.

int PyTime_CheckExact (PyObject *ob)
Return true if ob is of type PyDateTime_TimeType. ob must not be NULL.

int PyDelta_Check (PyObject *ob)
Return true if ob is of type PyDateTime_DeltaType or asubtype of PyDateTime_DeltaType. ob must
not be NULL.

int PyDelta_CheckExact (PyObject *ob)
Return true if ob is of type PyDateTime_DeltaType. ob must not be NULL.

int PyTZInfo_Check (PyObject *ob)
Return true if ob is of type PyDateTime_TZInfoType or a subtype of PyDateTime_TZInfoType. ob
must not be NULL.

int PyTZInfo_CheckExact (PyObject *ob)
Return true if ob is of type PyDateTime_TZInfoType. ob must not be NULL.

AAE M= v|a R
PyObject* PyDate_FromDate (int year, int month, int day)
Return value: New reference. AR H A, &, 42| datetime.date AR S wEgch

PyObject* PyDateTime_FromDateAndTime (int year, int month, int day, int hour, int minute, int second,

int usecond)
Return value: New reference. A9 A, 4, &, Al, B, 2 W ulo]F 2 %2 datetime.datetime AA =

wheheku o

8.6. 7|E} A 133

The Python/C API, &] B{ A 3.7.17

PyObject* PyDateTime_FromDateAndTimeAndFold (int year, int month, int day, int hour, int minute,
int second, int usecond, int fold)
Return value: New reference. A4 H d, €, 4, Al, &, &, vlo]Z % 9 fold®] datetime.datetime
A A& wEg o}

B A 3.60] &7}

PyObject* PyTime_FromTime (int hour, int minute, int second, int usecond)

Return value: New reference. A A H Al, &, 2 W ulo] 3 2 22| datetime.time A& WHEg o)
PyObject* PyTime_FromTimeAndFold (int hour, int minute, int second, int usecond, int fold)

Return value: New reference. A| A H A], &, %, v}o] 22 % L fold9] datetime.time AR E wiag).

WA 3.690 7}

PyObject* PyDelta_FromDSU (int days, int seconds, int useconds)
Return value: New reference. A1 A 4, 2 Y nfo]3 2 % & JElU &= datetime.timedelta AR S
Hkskehu o 23 nlo] 32 29} 27l datetime.timedelta Ao &3 AHH HY A A= E AHF
S 99 o

PyObject* PyTimeZone_FromOffset (PyDateTime_DeltaType* offset)
Return value: New reference. offset A A2 Y EF A= o] 0] gl A 2= A9 datetime.timezone
AAE EFTh
WA 3.70] 7}

PyObject* PyTimeZone_FromOffsetAndName (PyDateTime_DeltaType* offset, PyUnicode* name)
Return value: New reference. offset 2 A} 2} tzname name 2 2 Y EFY A &= 14 2 Z A9 datetime.
timezone AAE &S5t}
B A 3.7 &7}

Macros to extract fields from date objects. The argument must be an instance of PyDateTime_Date, including sub-
classes (such as PyDateTime_DateTime). The argument must not be NULL, and the type is not checked:

int PyDateTime_GET_YEAR (PyDateTime_Date *0)
Foint=, d-5 >

int PyDateTime_GET_ MONTH (PyDateTime_Date *0)
1ol A 12744] int 2, 42 ¥Hekehy o

int PyDateTime_GET_ DAY (PyDateTime_Date *0)
1A 317FA 9] int 2, 4-S 233y o).

Macros to extract fields from datetime objects. The argument must be an instance of PyDateTime_DateTime, in-
cluding subclasses. The argument must not be NULL, and the type is not checked:

int PyDateTime_DATE_GET_HOUR (PyDateTime_DateTime *o0)
078 237149 int 2, AlE Wk o

int PyDateTime_ DATE_GET_MINUTE (PyDateTime_DateTime *0)
058 597k#] 9] int &, & W&y ot

int PyDateTime_DATE_GET_SECOND (PyDateTime_DateTime *0)
058 597tA 9] int®, 2 W&ot

int PyDateTime_DATE_GET_MICROSECOND (PyDateTime_DateTime *0)
03] 999999712] int &, ulo] 2 & % & Wkt o}

int PyDateTime_DATE_GET_FOLD (PyDateTime_DateTime *o)
Return the fold, as an int from O through 1.

B A 3.60] &7}

134 Chapter 8. 4 A A|

olN-

The Python/C API, &] 8| A 3.7.17

Macros to extract fields from time objects. The argument must be an instance of PyDateTime_Time, including sub-
classes. The argument must not be NULL, and the type is not checked:

int PyDateTime_TIME_GET_HOUR (PyDateTime_Time *o)
BE 23712 9] int 2, Al S w3y o)

int PyDateTime_TIME_GET_MINUTE (PyDateTime_Time *o)
0% 59712 9] int 2, £-& v o}

int PyDateTime TIME GET SECOND (PyDateTime_Time *o)
FH 597kA] 9 int 2, 2E Wy ok

int PyDateTime_TIME_GET_MICROSECOND (PyDateTime_Time *0)
€] 9999997} 2] 9] int 2, ulo] T 2 2 E vt}

int PyDateTime_TIME_GET_FOLD (PyDateTime_Time *o)
Return the fold, as an int from O through 1.

B A 3.60] F7}.

Macros to extract fields from time delta objects. The argument must be an instance of PyDateTime_Delta, including
subclasses. The argument must not be NULL, and the type is not checked:

int PyDateTime_DELTA_GET_DAYS (PyDateTime Delta *0)
-999999999 o] 4] 999999999 7} 2] & int £, ¥ 4~E ¥kd-stt}.

WA 330 7}

int PyDateTime DELTA_GET_ SECONDS (PyDateTime_Delta *0)
HE 86399712 9] int2, & £ vy h

B A 3.30] &7}

int PyDateTime_DELTA_GET MICROSECONDS(PyDateTime Delta *o)
001141 999999712 9] int &, ufo] A2 % 4~ WFEgH T}

WA 330 &7}
DB APIS 73 3l= 25 A S Yl mja=:

PyObject* PyDateTime_FromTimestamp (PyObject *args)
Return value: New reference. datetime.datetime. fromtimestamp () o] A Z3sF= o] A3t QAL &
Z 2 N datetime.datetime AA S WS w33 o}

PyObject* PyDate_FromTimestamp (PyObject *args)

Return value: New reference. datetime.date.fromtimestamp () o] AE3l= o A3l Ax HF &=
A} datetime.date A S TE L WS T

8.6. 7|E} A 135

The Python/C API, &] B{ A 3.7.17

136 Chapter 8. 74 244 A%

CHAPTER 9

Initialization, Finalization, and Threads

9.1 Before Python Initialization

In an application embedding Python, the Py_ Tnitialize () function must be called before using any other Python/C
API functions; with the exception of a few functions and the global configuration variables.

The following functions can be safely called before Python is initialized:

* Configuration functions:

PyImport_AppendInittab ()
PyImport_ExtendInittab ()
PyInitFrozenExtensions ()
PyMem_ SetAllocator ()
PyMem_SetupDebugHooks ()
PyObject_SetArenaAllocator ()
Py _SetPath ()
Py_SetProgramName ()
Py_SetPythonHome ()
Py_SetStandardStreamEncoding ()
PySys_AddWarnOption ()
PySys_AddXOption ()

PySys_ResetWarnOptions ()

¢ Informative functions:

Py _IsInitialized()

PyMem_GetAllocator ()

137

The Python/C API, &] B{ A 3.7.17

— PyObject_GetArenaAllocator ()
— Py _GetBuildInfo ()
— Py_GetCompiler()
— Py _GetCopyright ()
— Py_GetPlatform()
— Py_GetVersion()
« Utilities:
— Py_DecodeLocale ()
* Memory allocators:

— PyMem_RawMalloc ()

PyMem_ RawRealloc ()
— PyMem_RawCalloc ()

— PyMem_RawFree ()

ZF31: The following functions should not be called before Py_Tnitialize(): Py _EncodeLocale(),
Py_GetPath(), Py_GetPrefix(), Py_GetExecPrefix(), Py_GetProgramFullPath(),
Py_GetPythonHome (), Py_GetProgramName () and PyEval_InitThreads ().

9.2 Global configuration variables

Python has variables for the global configuration to control different features and options. By default, these flags are
controlled by command line options.

When a flag is set by an option, the value of the flag is the number of times that the option was set. For example, —b sets
Py _BytesWarningFlagto 1l and —-bb sets Py_BytesWarningFlagto 2.

Py_BytesWarningFlag
Issue a warning when comparing bytes or bytearray with str or bytes with int. Issue an error if greater
or equal to 2.

Set by the —b option.

Py_DebugFlag
Turn on parser debugging output (for expert only, depending on compilation options).

Set by the —d option and the PYTHONDEBUG environment variable.

Py _DontWriteBytecodeFlag
If set to non-zero, Python won’t try to write . pyc files on the import of source modules.

Set by the —B option and the PYTHONDONTWRITEBYTECODE environment variable.

Py FrozenFlag
Suppress error messages when calculating the module search path in Py_GetPath ().

Private flag used by _freeze_importlib and frozenmain programs.

138 Chapter 9. Initialization, Finalization, and Threads

The Python/C API, &] 8| A 3.7.17

Py_HashRandomizationFlag
Set to 1 if the PYTHONHASHSEED environment variable is set to a non-empty string.

If the flag is non-zero, read the PYTHONHASHSEED environment variable to initialize the secret hash seed.

Py_IgnoreEnvironmentFlag
Ignore all PYTHON* environment variables, e.g. PYTHONPATH and PYTHONHOME, that might be set.

Set by the —E and - I options.

Py_InspectFlag
When a script is passed as first argument or the —c option is used, enter interactive mode after executing the script
or the command, even when sys . stdin does not appear to be a terminal.

Set by the —1 option and the PYTHONINSPECT environment variable.

Py_InteractiveFlag
Set by the —1 option.

Py_TIsolatedFlag
Run Python in isolated mode. In isolated mode sys.path contains neither the script’s directory nor the user’s
site-packages directory.

Set by the — I option.
WA 340 27}

Py_LegacyWindowsFSEncodingFlag
If the flag is non-zero, use the mbcs encoding instead of the UTF-8 encoding for the filesystem encoding.

Set to 1 if the PYTHONLEGACYWINDOWSEFSENCODING environment variable is set to a non-empty string.
See PEP 529 for more details.
Auvailability: Windows.

Py_LegacyWindowsStdioFlag
If the flag is non-zero, use 10.FileIO instead of WindowsConsoleIO for sys standard streams.

Set to 1 if the PYTHONLEGACYWINDOWSSTDIO environment variable is set to a non-empty string.
See PEP 528 for more details.
Availability: Windows.

Py_NoSiteFlag
Disable the import of the module site and the site-dependent manipulations of sys.path that it entails. Also
disable these manipulations if site is explicitly imported later (call site.main () if you want them to be
triggered).

Set by the —S option.

Py _NoUserSiteDirectory
Don’t add the user site-packages directorytosys.path.

Set by the —s and - I options, and the PYTHONNOUSERSITE environment variable.

Py_OptimizeFlag
Set by the —O option and the PYTHONOPTIMI ZE environment variable.

Py_QuietFlag
Don’t display the copyright and version messages even in interactive mode.

Set by the —q option.
B A 3.20 &7}

9.2. Global configuration variables 139

https://www.python.org/dev/peps/pep-0529
https://www.python.org/dev/peps/pep-0528

The Python/C API, &] B{ A 3.7.17

Py_UnbufferedStdioFlag

Force the stdout and stderr streams to be unbuffered.

Set by the —u option and the PYTHONUNBUFFERED environment variable.

Py_VerboseFlag

Print a message each time a module is initialized, showing the place (filename or built-in module) from which it is
loaded. If greater or equal to 2, print a message for each file that is checked for when searching for a module. Also
provides information on module cleanup at exit.

Set by the —v option and the PYTHONVERBOSE environment variable.

9.3 Initializing and finalizing the interpreter

void Py_Initialize ()

Initialize the Python interpreter. In an application embedding Python, this should be called before using any other
Python/C API functions; see Before Python Initialization for the few exceptions.

This initializes the table of loaded modules (sys .modules), and creates the fundamental modules builtins,
__main__ and sys. It also initializes the module search path (sys.path). It does not set sys.
argv; use PySys_SetArgvEx () for that. This is a no-op when called for a second time (without calling
Py_FinalizeEx () first). There is no return value; it is a fatal error if the initialization fails.

ZF31: On Windows, changes the console mode from O_TEXT to O_BINARY, which will also affect non-Python
uses of the console using the C Runtime.

void Py_InitializeEx (int initsigs)

This function works like Py, Tnitialize () if initsigs is 1. If initsigs is 0, it skips initialization registration of
signal handlers, which might be useful when Python is embedded.

int Py_IsInitialized()

Return true (nonzero) when the Python interpreter has been initialized, false (zero) if not. After
Py _FinalizeEx () is called, this returns false until Py_Tnitialize () is called again.

intPy_FinalizeEx ()

Undo all initializations made by Py Tnitialize () and subsequent use of Python/C API functions, and destroy
all sub-interpreters (see Py_NewInterpreter () below) that were created and not yet destroyed since the last
call to Py_Tnitialize (). Ideally, this frees all memory allocated by the Python interpreter. This is a no-op
when called for a second time (without calling Py_Tnitialize () again first). Normally the return value is O.
If there were errors during finalization (flushing buffered data), —1 is returned.

This function is provided for a number of reasons. An embedding application might want to restart Python without
having to restart the application itself. An application that has loaded the Python interpreter from a dynamically
loadable library (or DLL) might want to free all memory allocated by Python before unloading the DLL. During
a hunt for memory leaks in an application a developer might want to free all memory allocated by Python before
exiting from the application.

Bugs and caveats: The destruction of modules and objects in modules is done in random order; this may cause
destructors (__del__ () methods) to fail when they depend on other objects (even functions) or modules. Dy-
namically loaded extension modules loaded by Python are not unloaded. Small amounts of memory allocated by
the Python interpreter may not be freed (if you find a leak, please report it). Memory tied up in circular references
between objects is not freed. Some memory allocated by extension modules may not be freed. Some extensions
may not work properly if their initialization routine is called more than once; this can happen if an application calls
Py_Initialize () and Py FinalizeEx () more than once.

WA 3.600 F7F

140

Chapter 9. Initialization, Finalization, and Threads

The Python/C API, &] 8| A 3.7.17

void Py_Finalize ()
This is a backwards-compatible version of Py_FinalizeEx () that disregards the return value.

9.4 Process-wide parameters

int Py_SetStandardStreamEncoding (const char *encoding, const char *errors)
This function should be called before Py Initialize (), if itis called at all. It specifies which encoding and
error handling to use with standard 1O, with the same meanings as in str.encode ().

It overrides PYTHONIOENCOD ING values, and allows embedding code to control IO encoding when the environ-
ment variable does not work.

encoding and/or errors may be NULL to use PYTHONIOENCODING and/or default values (depending on other
settings).

Note that sy s . stderr always uses the “backslashreplace” error handler, regardless of this (or any other) setting.

If Py _FinalizeEx () is called, this function will need to be called again in order to affect subsequent calls to
Py Initialize().

Returns 0 if successful, a nonzero value on error (e.g. calling after the interpreter has already been initialized).
WA 340 7}

void Py_SetProgramName (const wchar_t *name)
This function should be called before Py Tnitialize () is called for the first time, if it is called at all. It
tells the interpreter the value of the argv [0] argument to the main () function of the program (converted to
wide characters). This is used by Py_ GetPath () and some other functions below to find the Python run-time
libraries relative to the interpreter executable. The default value is 'python'. The argument should point to
a zero-terminated wide character string in static storage whose contents will not change for the duration of the
program’s execution. No code in the Python interpreter will change the contents of this storage.

Use Py_DecodeLocale () to decode a bytes string to get a wchar_ * string.

wchar* Py_GetProgramName ()
Return the program name set with Py SetProgramName (), or the default. The returned string points into
static storage; the caller should not modify its value.

wchar_t* Py_GetPrefix ()
Return the prefix for installed platform-independent files. This is derived through a number of complicated rules
from the program name set with Py_ Set ProgramName () and some environment variables; for example, if the
program name is ' /usr/local/bin/python’, the prefix is ' /usr/local"'. The returned string points
into static storage; the caller should not modify its value. This corresponds to the prefix variable in the top-
level Makefile and the ——prefix argument to the configure script at build time. The value is available to
Python code as sys .prefix. Itis only useful on Unix. See also the next function.

wchar_t* Py_GetExecPrefix ()
Return the exec-prefix for installed platform-dependent files. This is derived through a number of complicated rules
from the program name set with Py_SetProgramName () and some environment variables; for example, if
the program name is ' /usr/local/bin/python’, the exec-prefixis ' /usr/local'. The returned string
points into static storage; the caller should not modify its value. This corresponds to the exec_prefix variable
in the top-level Makefile and the ——exec-prefix argument to the configure script at build time. The
value is available to Python code as sys.exec_prefix. Itis only useful on Unix.

Background: The exec-prefix differs from the prefix when platform dependent files (such as executables and shared
libraries) are installed in a different directory tree. In a typical installation, platform dependent files may be installed
inthe /usr/local/plat subtree while platform independent may be installed in /usr/local.

9.4. Process-wide parameters 141

The Python/C API, &] B{ A 3.7.17

Generally speaking, a platform is a combination of hardware and software families, e.g. Sparc machines running
the Solaris 2.x operating system are considered the same platform, but Intel machines running Solaris 2.x are
another platform, and Intel machines running Linux are yet another platform. Different major revisions of the
same operating system generally also form different platforms. Non-Unix operating systems are a different story;
the installation strategies on those systems are so different that the prefix and exec-prefix are meaningless, and set
to the empty string. Note that compiled Python bytecode files are platform independent (but not independent from
the Python version by which they were compiled!).

System administrators will know how to configure the mount or automount programs to share /usr/local
between platforms while having /usr/local/plat be a different filesystem for each platform.

wchar_t* Py_GetProgramFullPath ()

Return the full program name of the Python executable; this is computed as a side-effect of deriving the default
module search path from the program name (set by Py_SetProgramName () above). The returned string
points into static storage; the caller should not modify its value. The value is available to Python code as sys.
executable.

wchar_t* Py_GetPath ()

Return the default module search path; this is computed from the program name (set by
Py_SetProgramName () above) and some environment variables. The returned string consists of a se-
ries of directory names separated by a platform dependent delimiter character. The delimiter character is ' : '
on Unix and Mac OS X, '; ' on Windows. The returned string points into static storage; the caller should not
modify its value. The list sys.path is initialized with this value on interpreter startup; it can be (and usually is)
modified later to change the search path for loading modules.

void Py_SetPath (const wchar_t *)

Set the default module search path. If this function is called before Py Tnitialize (),then Py_GetPath ()
won’t attempt to compute a default search path but uses the one provided instead. This is useful if Python is
embedded by an application that has full knowledge of the location of all modules. The path components should be
separated by the platform dependent delimiter character, whichis ' : ' on Unix and Mac OS X, ' ; ' on Windows.

This also causes sys.executable to be set only to the raw program name (see Py_SetProgramName ())
and for sys.prefix and sys.exec_prefix to be empty. It is up to the caller to modify these if required
after calling Py_Initialize ().

Use Py_DecodeLocale () to decode a bytes string to get a wchar_ * string.

The path argument is copied internally, so the caller may free it after the call completes.

const char* Py_GetVersion ()

Return the version of this Python interpreter. This is a string that looks something like

"3.0a5+ (py3k:63103M, May 12 2008, 00:53:55) \n[GCC 4.2.3]"

The first word (up to the first space character) is the current Python version; the first three characters are the major
and minor version separated by a period. The returned string points into static storage; the caller should not modify
its value. The value is available to Python code as sys.version.

const char* Py_GetPlatform ()

Return the platform identifier for the current platform. On Unix, this is formed from the “official” name of the
operating system, converted to lower case, followed by the major revision number; e.g., for Solaris 2.x, which is
also known as SunOS 5.x, the value is ' sunos5'. On Mac OS X, itis 'darwin'. On Windows, itis 'win'.
The returned string points into static storage; the caller should not modify its value. The value is available to Python
code as sys.platform.

const char* Py_GetCopyright ()

Return the official copyright string for the current Python version, for example

'Copyright 1991-1995 Stichting Mathematisch Centrum, Amsterdam'

142

Chapter 9. Initialization, Finalization, and Threads

The Python/C API, &] 8| A 3.7.17

The returned string points into static storage; the caller should not modify its value. The value is available to Python
code as sys.copyright.

const char* Py_GetCompiler ()
Return an indication of the compiler used to build the current Python version, in square brackets, for example:

"[GCC 2.7.2.2]1"

The returned string points into static storage; the caller should not modify its value. The value is available to Python
code as part of the variable sys.version.

const char* Py_GetBuildInfo ()

Return information about the sequence number and build date and time of the current Python interpreter instance,
for example

"#67, Aug 1 1997, 22:34:28"

The returned string points into static storage; the caller should not modify its value. The value is available to Python
code as part of the variable sys.version.

void PySys_SetArgvEx (int argc, wchar_t **argvy, int updatepath)
Set sys.argv based on argc and argv. These parameters are similar to those passed to the program’s main ()
function with the difference that the first entry should refer to the script file to be executed rather than the executable
hosting the Python interpreter. If there isn’t a script that will be run, the first entry in argv can be an empty string.
If this function fails to initialize sys . argv, a fatal condition is signalled using Py_FatalError ().

If updatepath is zero, this is all the function does. If updatepath is non-zero, the function also modifies sys .path
according to the following algorithm:

« If the name of an existing script is passed in argv [0], the absolute path of the directory where the script
is located is prepended to sys.path.

» Otherwise (that is, if argc is 0 or argv [0] doesn’t point to an existing file name), an empty string is
prepended to sys . path, which is the same as prepending the current working directory (" . ").

Use Py_DecodeLocale () to decode a bytes string to get a wchar_ * string.

ZF31: Itis recommended that applications embedding the Python interpreter for purposes other than executing a
single script pass 0 as updatepath, and update sy s . path themselves if desired. See CVE-2008-5983.

On versions before 3.1.3, you can achieve the same effect by manually popping the first sy s . path element after
having called PySys_SetArgv (), for example using:

PyRun_SimpleString ("import sys; sys.path.pop(0)\n");

WA 3.1.39 F7%

void PySys_SetArgv (int argc, wchar_t **argv)
This function works like PySys_SetArgvEx () with updatepath set to 1 unless the python interpreter was
started with the —I.

Use Py_DecodeLocale () to decode a bytes string to get a wchar_ * string.
WA 3.490 A ¥ 7 : The updatepath value depends on —1T.

void Py_SetPythonHome (const wchar_t *home)
Set the default “home” directory, that is, the location of the standard Python libraries. See PYTHONHOME for the
meaning of the argument string.

9.4. Process-wide parameters 143

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-5983

The Python/C API, &] B{ A 3.7.17

The argument should point to a zero-terminated character string in static storage whose contents will not change
for the duration of the program’s execution. No code in the Python interpreter will change the contents of this
storage.

Use Py_DecodeLocale () to decode a bytes string to get a wchar_ * string.

w_char* Py_GetPythonHome ()
Return the default “home”, that is, the value set by a previous call to Py_SetPythonHome (), or the value of
the PYTHONHOME environment variable if it is set.

9.5 Thread State and the Global Interpreter Lock

The Python interpreter is not fully thread-safe. In order to support multi-threaded Python programs, there’s a global lock,
called the global interpreter lock or GIL, that must be held by the current thread before it can safely access Python objects.
Without the lock, even the simplest operations could cause problems in a multi-threaded program: for example, when
two threads simultaneously increment the reference count of the same object, the reference count could end up being
incremented only once instead of twice.

Therefore, the rule exists that only the thread that has acquired the GIL may operate on Python objects or call Python/C
API functions. In order to emulate concurrency of execution, the interpreter regularly tries to switch threads (see sys.
setswitchinterval ()). The lock is also released around potentially blocking I/O operations like reading or writing
a file, so that other Python threads can run in the meantime.

The Python interpreter keeps some thread-specific bookkeeping information inside a data structure called
PyThreadState. There’s also one global variable pointing to the current Py ThreadState: it can be retrieved
using PyThreadState_Get ().

9.5.1 Releasing the GIL from extension code

Most extension code manipulating the G/L has the following simple structure:

Save the thread state in a local variable.
Release the global interpreter lock.
Do some blocking I/O operation
Reacquire the global interpreter lock.
Restore the thread state from the local variable.

This is so common that a pair of macros exists to simplify it:

Py_BEGIN_ALLOW_THREADS
Do some blocking I/O operation
Py_END_ALLOW_THREADS

The Py BEGIN_ALLOW_THREADS macro opens a new block and declares a hidden local variable; the
Py_END_ALLOW_THREADS macro closes the block.

The block above expands to the following code:

PyThreadState *_save;

_save = PyEval_SaveThread();
Do some blocking I/O operation
PyEval_RestoreThread (_save);

144 Chapter 9. Initialization, Finalization, and Threads

The Python/C API, &] 8| A 3.7.17

Here is how these functions work: the global interpreter lock is used to protect the pointer to the current thread state.
When releasing the lock and saving the thread state, the current thread state pointer must be retrieved before the lock is
released (since another thread could immediately acquire the lock and store its own thread state in the global variable).
Conversely, when acquiring the lock and restoring the thread state, the lock must be acquired before storing the thread
state pointer.

ZF31: Calling system 1/O functions is the most common use case for releasing the GIL, but it can also be useful before
calling long-running computations which don’t need access to Python objects, such as compression or cryptographic
functions operating over memory buffers. For example, the standard z1ib and hashlib modules release the GIL
when compressing or hashing data.

9.5.2 Non-Python created threads

When threads are created using the dedicated Python APIs (such as the threading module), a thread state is automat-
ically associated to them and the code showed above is therefore correct. However, when threads are created from C (for
example by a third-party library with its own thread management), they don’t hold the GIL, nor is there a thread state
structure for them.

If you need to call Python code from these threads (often this will be part of a callback API provided by the aforementioned
third-party library), you must first register these threads with the interpreter by creating a thread state data structure, then
acquiring the GIL, and finally storing their thread state pointer, before you can start using the Python/C API. When you
are done, you should reset the thread state pointer, release the GIL, and finally free the thread state data structure.

The PyGILState_Ensure () and PyGILState_Release () functions do all of the above automatically. The
typical idiom for calling into Python from a C thread is:

PyGILState_STATE gstate;
gstate = PyGILState_Ensure();

/* Perform Python actions here. */
result = CallSomeFunction () ;
/* evaluate result or handle exception */

/* Release the thread. No Python API allowed beyond this point. */
PyGILState_Release (gstate);

Note that the PyGILState_* () functions assume there is only one global interpreter (created automatically by
Py Initialize ()). Python supports the creation of additional interpreters (using Py_NewInterpreter ()),
but mixing multiple interpreters and the PyGILState_* () API is unsupported.

Another important thing to note about threads is their behaviour in the face of the C fork () call. On most systems with
fork (), after a process forks only the thread that issued the fork will exist. That also means any locks held by other
threads will never be released. Python solves this for os. fork () by acquiring the locks it uses internally before the
fork, and releasing them afterwards. In addition, it resets any lock-objects in the child. When extending or embedding
Python, there is no way to inform Python of additional (non-Python) locks that need to be acquired before or reset after
a fork. OS facilities such as pthread_atfork () would need to be used to accomplish the same thing. Additionally,
when extending or embedding Python, calling fork () directly rather than through os . fork () (and returning to or
calling into Python) may result in a deadlock by one of Python’s internal locks being held by a thread that is defunct after
the fork. PyOS_AfterFork_Child () tries to reset the necessary locks, but is not always able to.

9.5. Thread State and the Global Interpreter Lock 145

The Python/C API, &] B{ A 3.7.17

9.5.3 High-level API

These are the most commonly used types and functions when writing C extension code, or when embedding the Python
interpreter:

PyInterpreterState
This data structure represents the state shared by a number of cooperating threads. Threads belonging to the same
interpreter share their module administration and a few other internal items. There are no public members in this
structure.

Threads belonging to different interpreters initially share nothing, except process state like available memory, open
file descriptors and such. The global interpreter lock is also shared by all threads, regardless of to which interpreter
they belong.

PyThreadState
This data structure represents the state of a single thread. The only public data member is
PyInterpreterState *interp, which points to this thread’s interpreter state.

void PyEval_InitThreads ()
Initialize and acquire the global interpreter lock. It should be called in the main thread before creating a second
thread or engaging in any other thread operations such as PyEval_ReleaseThread (tstate). It is not
needed before calling PyEval SaveThread () or PyEval RestoreThread ().

This is a no-op when called for a second time.

W A 3.79]| 4] ¥ 7 : This function is now called by Py_Tnitialize (), so you don’t have to call it yourself
anymore.

H A 3.29)| A ¥ 7 : This function cannot be called before Py_Tnitialize () anymore.

int PyEval_ThreadsInitialized()
Returns a non-zero value if PyEval_ TInitThreads () has been called. This function can be called without
holding the GIL, and therefore can be used to avoid calls to the locking API when running single-threaded.

W A 3.7 A ¥ 7 : The GIL is now initialized by Py_Tnitialize ().

PyThreadState* PyEval_SaveThread ()
Release the global interpreter lock (if it has been created and thread support is enabled) and reset the thread state
to NULL, returning the previous thread state (which is not NULL). If the lock has been created, the current thread
must have acquired it.

void PyEval_RestoreThread (PyThreadState *tstate)
Acquire the global interpreter lock (if it has been created and thread support is enabled) and set the thread state
to tstate, which must not be NULL. If the lock has been created, the current thread must not have acquired it,
otherwise deadlock ensues.

ZF31: Calling this function from a thread when the runtime is finalizing will terminate the thread, even if the
thread was not created by Python. You can use _Py_IsFinalizing() or sys.is_finalizing() to
check if the interpreter is in process of being finalized before calling this function to avoid unwanted termination.

PyThreadState* PyThreadState_Get ()
Return the current thread state. The global interpreter lock must be held. When the current thread state is NULL,
this issues a fatal error (so that the caller needn’t check for NULL).

PyThreadState* PyThreadState_Swap (PyThreadState *tstate)
Swap the current thread state with the thread state given by the argument tstate, which may be NULL. The global
interpreter lock must be held and is not released.

146 Chapter 9. Initialization, Finalization, and Threads

The Python/C API, &] 8| A 3.7.17

void PyEval_ReInitThreads ()
This function is called from PyOS_AfterFork_Child () to ensure that newly created child processes don’t
hold locks referring to threads which are not running in the child process.

The following functions use thread-local storage, and are not compatible with sub-interpreters:

PyGILState_STATE PyGILState_Ensure ()
Ensure that the current thread is ready to call the Python C API regardless of the current state of Python, or
of the global interpreter lock. This may be called as many times as desired by a thread as long as each call is
matched with a call to PyGILState_Release (). In general, other thread-related APIs may be used be-
tween PyGILState_Ensure () and PyGILState_Release () calls as long as the thread state is restored
to its previous state before the Release(). For example, normal usage of the Py_ BEGIN_ALLOW_THREADS and
Py_END_ALLOW_THREADS macros is acceptable.

The return value is an opaque “handle” to the thread state when PyGILState Ensure () was called, and must
be passed to PyGILState Release () to ensure Python is left in the same state. Even though recursive calls
are allowed, these handles cannot be shared - each unique call to PyGILState_Ensure () mustsave the handle
forits call to PyGILState Release ().

When the function returns, the current thread will hold the GIL and be able to call arbitrary Python code. Failure
is a fatal error.

Z31: Calling this function from a thread when the runtime is finalizing will terminate the thread, even if the
thread was not created by Python. You can use _Py_IsFinalizing() or sys.is_finalizing() to
check if the interpreter is in process of being finalized before calling this function to avoid unwanted termination.

void PyGILState_Release (PyGILState_STATE)
Release any resources previously acquired. After this call, Python’s state will be the same as it was prior to the

corresponding PyGILState Ensure () call (but generally this state will be unknown to the caller, hence the
use of the GILState API).

Everycallto PyGILState_Ensure () mustbe matchedbyacallto PyGILState Release () onthe same
thread.

PyThreadState* PyGILState_GetThisThreadState ()
Get the current thread state for this thread. May return NULL if no GILState API has been used on the current
thread. Note that the main thread always has such a thread-state, even if no auto-thread-state call has been made
on the main thread. This is mainly a helper/diagnostic function.

int PyGILState_Check ()
Return 1 if the current thread is holding the GIL and 0 otherwise. This function can be called from any thread
at any time. Only if it has had its Python thread state initialized and currently is holding the GIL will it return 1.
This is mainly a helper/diagnostic function. It can be useful for example in callback contexts or memory allocation
functions when knowing that the GIL is locked can allow the caller to perform sensitive actions or otherwise behave
differently.

WA 340 7}

The following macros are normally used without a trailing semicolon; look for example usage in the Python source
distribution.

Py_BEGIN_ALLOW_THREADS
This macro expands to { PyThreadState *_save; _save = PyEval_SaveThread () ;. Note that
it contains an opening brace; it must be matched with a following Py END_ALLOW_THREADS macro. See above
for further discussion of this macro.

Py_END_ALLOW_THREADS
This macro expands to PyEval_RestoreThread (_save); }. Note thatitcontains a closing brace; it must

9.5. Thread State and the Global Interpreter Lock 147

The Python/C API, &] B{ A 3.7.17

be matched with an earlier Py BEGTN_ALLOW_THREADS macro. See above for further discussion of this macro.

Py_BLOCK_THREADS
This macro expands to PyEval_RestoreThread(_save);: it
Py_END_ALLOW_THREADS without the closing brace.

e
72}

equivalent to

Py_UNBLOCK_THREADS
This macro expands to _save = PyEval_SaveThread();: it is equivalent to
Py_BEGIN_ALLOW_THREADS without the opening brace and variable declaration.

9.5.4 Low-level API

All of the following functions must be called after Py_Tnitialize ().
WA 37 A WHA: Py _Initialize () now initializes the GIL.

PyInterpreterState* PyInterpreterState_New ()
Create a new interpreter state object. The global interpreter lock need not be held, but may be held if it is necessary
to serialize calls to this function.

void PyInterpreterState_Clear (PylnterpreterState *interp)
Reset all information in an interpreter state object. The global interpreter lock must be held.

void PyInterpreterState_Delete (PylnterpreterState *interp)
Destroy an interpreter state object. The global interpreter lock need not be held. The interpreter state must have
been reset with a previous call to Py InterpreterState Clear ().

PyThreadState* PyThreadState_New (PylnterpreterState *interp)
Create a new thread state object belonging to the given interpreter object. The global interpreter lock need not be
held, but may be held if it is necessary to serialize calls to this function.

void PyThreadState_Clear (PyThreadState *tstate)
Reset all information in a thread state object. The global interpreter lock must be held.

void PyThreadState_Delete (PyThreadState *tstate)
Destroy a thread state object. The global interpreter lock need not be held. The thread state must have been reset
with a previous call to PyThreadState_Clear ().

PY_INT64_T PyInterpreterState_GetID (PylnterpreterState *interp)
Return the interpreter’s unique ID. If there was any error in doing so then -1 is returned and an error is set.

B A 3.70] =7}

PyObject* PyThreadState_GetDict ()
Return value: Borrowed reference. Return a dictionary in which extensions can store thread-specific state informa-
tion. Each extension should use a unique key to use to store state in the dictionary. It is okay to call this function
when no current thread state is available. If this function returns NULL, no exception has been raised and the caller
should assume no current thread state is available.

int PyThreadState_SetAsyncExc (unsigned long id, PyObject *exc)
Asynchronously raise an exception in a thread. The id argument is the thread id of the target thread; exc is the
exception object to be raised. This function does not steal any references to exc. To prevent naive misuse, you must
write your own C extension to call this. Must be called with the GIL held. Returns the number of thread states
modified; this is normally one, but will be zero if the thread id isn’t found. If exc is NULL, the pending exception
(if any) for the thread is cleared. This raises no exceptions.

WA 3.7 A ¥ 7 : The type of the id parameter changed from 1ong to unsigned long.

148 Chapter 9. Initialization, Finalization, and Threads

The Python/C API, &] 8| A 3.7.17

void PyEval_AcquireThread (PyThreadState *tstate)
Acquire the global interpreter lock and set the current thread state to #state, which should not be NULL. The lock
must have been created earlier. If this thread already has the lock, deadlock ensues.

PyEval_RestoreThread () is a higher-level function which is always available (even when threads have not
been initialized).

void PyEval_ReleaseThread (PyThreadState *tstate)
Reset the current thread state to NULL and release the global interpreter lock. The lock must have been created
earlier and must be held by the current thread. The #state argument, which must not be NULL, is only used to check
that it represents the current thread state — if it isn’t, a fatal error is reported.

PyEval_SaveThread () is a higher-level function which is always available (even when threads have not been
initialized).

void PyEval_AcquirelLock ()
Acquire the global interpreter lock. The lock must have been created earlier. If this thread already has the lock, a
deadlock ensues.

WA 328 E 3 X : This function does not update the current thread state. Please use
PyEval_RestoreThread () or PyEval_AcquireThread () instead.

void PyEval_ReleaseLock ()
Release the global interpreter lock. The lock must have been created earlier.

W A 3.2 K€ 5| A] : This function does not update the current thread state. Please use PyEval_SaveThread ()
or PyEval_ReleaseThread () instead.

9.6 Sub-interpreter support

While in most uses, you will only embed a single Python interpreter, there are cases where you need to create several
independent interpreters in the same process and perhaps even in the same thread. Sub-interpreters allow you to do that.
You can switch between sub-interpreters using the Py ThreadState_Swap () function. You can create and destroy
them using the following functions:

PyThreadState* Py_NewInterpreter ()
Create a new sub-interpreter. This is an (almost) totally separate environment for the execution of Python code.
In particular, the new interpreter has separate, independent versions of all imported modules, including the fun-
damental modules builtins, _ main__ and sys. The table of loaded modules (sys.modules) and the
module search path (sys.path) are also separate. The new environment has no sys.argv variable. It has
new standard I/O stream file objects sys.stdin, sys.stdout and sys . stderr (however these refer to the
same underlying file descriptors).

The return value points to the first thread state created in the new sub-interpreter. This thread state is made in the
current thread state. Note that no actual thread is created; see the discussion of thread states below. If creation
of the new interpreter is unsuccessful, NULL is returned; no exception is set since the exception state is stored in
the current thread state and there may not be a current thread state. (Like all other Python/C API functions, the
global interpreter lock must be held before calling this function and is still held when it returns; however, unlike
most other Python/C API functions, there needn’t be a current thread state on entry.)

Extension modules are shared between (sub-)interpreters as follows: the first time a particular extension is im-
ported, it is initialized normally, and a (shallow) copy of its module’s dictionary is squirreled away. When the
same extension is imported by another (sub-)interpreter, a new module is initialized and filled with the contents
of this copy; the extension’s init function is not called. Note that this is different from what happens when an
extension is imported after the interpreter has been completely re-initialized by calling Py FinalizeEx () and
Py_Initialize ();in that case, the extension’s initmodule function is called again.

9.6. Sub-interpreter support 149

The Python/C API, &] B{ A 3.7.17

void Py_EndInterpreter (PyThreadState *tstate)
Destroy the (sub-)interpreter represented by the given thread state. The given thread state must be the current
thread state. See the discussion of thread states below. When the call returns, the current thread state is NULL. All
thread states associated with this interpreter are destroyed. (The global interpreter lock must be held before calling
this function and is still held when it returns.) Py_FinalizeEx () will destroy all sub-interpreters that haven’t
been explicitly destroyed at that point.

9.6.1 Bugs and caveats

Because sub-interpreters (and the main interpreter) are part of the same process, the insulation between them isn’t perfect
— for example, using low-level file operations like os . close () they can (accidentally or maliciously) affect each other’
s open files. Because of the way extensions are shared between (sub-)interpreters, some extensions may not work properly;
this is especially likely when the extension makes use of (static) global variables, or when the extension manipulates its
module’s dictionary after its initialization. It is possible to insert objects created in one sub-interpreter into a namespace of
another sub-interpreter; this should be done with great care to avoid sharing user-defined functions, methods, instances or
classes between sub-interpreters, since import operations executed by such objects may affect the wrong (sub-)interpreter’
s dictionary of loaded modules.

Also note that combining this functionality with PyGILState_* () APIs is delicate, because these APIs assume a
bijection between Python thread states and OS-level threads, an assumption broken by the presence of sub-interpreters. It
is highly recommended that you don’t switch sub-interpreters between a pair of matching PyGILState_Ensure ()
and PyGILState_Release () calls. Furthermore, extensions (such as ctypes) using these APIs to allow calling
of Python code from non-Python created threads will probably be broken when using sub-interpreters.

9.7 Asynchronous Notifications

A mechanism is provided to make asynchronous notifications to the main interpreter thread. These notifications take the
form of a function pointer and a void pointer argument.

int Py_AddPendingCall (int (*func)(void *), void *arg)
Schedule a function to be called from the main interpreter thread. On success, O is returned and func is queued for
being called in the main thread. On failure, -1 is returned without setting any exception.

When successfully queued, func will be eventually called from the main interpreter thread with the argument arg.
It will be called asynchronously with respect to normally running Python code, but with both these conditions met:

* on a bytecode boundary;
» with the main thread holding the global interpreter lock (func can therefore use the full C API).

Sfunc must return O on success, or —1 on failure with an exception set. func won’t be interrupted to perform another
asynchronous notification recursively, but it can still be interrupted to switch threads if the global interpreter lock
is released.

This function doesn’t need a current thread state to run, and it doesn’t need the global interpreter lock.

7J31: This is a low-level function, only useful for very special cases. There is no guarantee that func will be
called as quick as possible. If the main thread is busy executing a system call, func won’t be called before the
system call returns. This function is generally not suitable for calling Python code from arbitrary C threads.
Instead, use the PyGILState API.

B A 3.10] =7}

150 Chapter 9. Initialization, Finalization, and Threads

The Python/C API, &] 8| A 3.7.17

9.8 Profiling and Tracing

The Python interpreter provides some low-level support for attaching profiling and execution tracing facilities. These are
used for profiling, debugging, and coverage analysis tools.

This C interface allows the profiling or tracing code to avoid the overhead of calling through Python-level callable objects,
making a direct C function call instead. The essential attributes of the facility have not changed; the interface allows trace
functions to be installed per-thread, and the basic events reported to the trace function are the same as had been reported
to the Python-level trace functions in previous versions.

int (*Py_tracefunc) (PyObject *obj, PyFrameObject *frame, int what, PyObject *arg)
The type of the trace function registered using PyEval_ SetProfile () and PyEval_SetTrace (). The
first parameter is the object passed to the registration function as obj, frame is the frame object to which the event
pertains, what is one of the constants PyTrace_CALL, PyTrace_EXCEPTION, PyTrace_LINE,
PyTrace_RETURN, PyTrace_C_CALL, PyTrace_C_EXCEPTION, PyTrace_C_RETURN, or
PyTrace_OPCODE, and arg depends on the value of what:

Value of what Meaning of arg

PyTrace_CALL Always Py_None.

PyTrace_EXCEPTION Exception information as returned by sys.exc_info ().
PyTrace_LINE Always Py_None.

PyTrace_RETURN Value being returned to the caller, or NULL if caused by an exception.
PyTrace_C_CALL Function object being called.

PyTrace_C_EXCEPTION | Function object being called.

PyTrace_C_RETURN Function object being called.

PyTrace_OPCODE Always Py_None.

int PyTrace_CALL
The value of the what parameter to a Py_ t race func function when a new call to a function or method is being
reported, or a new entry into a generator. Note that the creation of the iterator for a generator function is not
reported as there is no control transfer to the Python bytecode in the corresponding frame.

int PyTrace_EXCEPTION
The value of the what parameter to a Py_ t racefunc function when an exception has been raised. The callback
function is called with this value for what when after any bytecode is processed after which the exception becomes
set within the frame being executed. The effect of this is that as exception propagation causes the Python stack to
unwind, the callback is called upon return to each frame as the exception propagates. Only trace functions receives
these events; they are not needed by the profiler.

int PyTrace_LINE
The value passed as the what parameter to a Pyt racefunc function (but not a profiling function) when a
line-number event is being reported. It may be disabled for a frame by setting £_trace_lines to 0 on that
frame.

int PyTrace_RETURN
The value for the what parameter to Py_ t race func functions when a call is about to return.

int PyTrace_C_CALL
The value for the what parameter to Py_ t race func functions when a C function is about to be called.

int PyTrace_C_EXCEPTION
The value for the what parameter to Py_ t race func functions when a C function has raised an exception.

int PyTrace_C_RETURN
The value for the what parameter to Py_t race func functions when a C function has returned.

9.8. Profiling and Tracing 151

The Python/C API, &] B{ A 3.7.17

int PyTrace_OPCODE
The value for the what parameter to Py_tracefunc functions (but not profiling functions) when a new op-
code is about to be executed. This event is not emitted by default: it must be explicitly requested by setting
f_trace_opcodes to I on the frame.

void PyEval_SetProfile (Py_tracefunc func, PyObject *obj)
Set the profiler function to func. The obj parameter is passed to the function as its first parameter, and may be
any Python object, or NULL. If the profile function needs to maintain state, using a different value for obj for each
thread provides a convenient and thread-safe place to store it. The profile function is called for all monitored events
except PyTrace_LINE PyTrace_OPCODE and PyTrace_EXCEPTION.

void PyEval_SetTrace (Py_tracefunc func, PyObject *obj)
Set the tracing function to func. This is similar to PyEval_ SetProfile (), except the tracing function does
receive line-number events and per-opcode events, but does not receive any event related to C function objects
being called. Any trace function registered using PyEval_SetTrace () will not receive PyTrace_C_CALL,
PyTrace_C_EXCEPTION or PyTrace_C_RETURN as a value for the what parameter.

9.9 Advanced Debugger Support

These functions are only intended to be used by advanced debugging tools.

PylInterpreterState* PyInterpreterState_Head ()
Return the interpreter state object at the head of the list of all such objects.

PyInterpreterState* PyInterpreterState_Main ()
Return the main interpreter state object.

PylInterpreterState* PyInterpreterState_Next (PylnterpreterState *interp)
Return the next interpreter state object after interp from the list of all such objects.

PyThreadState * PyInterpreterState_ThreadHead (PylnterpreterState *interp)
Return the pointer to the first Py ThreadStat e object in the list of threads associated with the interpreter interp.

PyThreadState* PyThreadState_Next (PyThreadState *tstate)
Return the next thread state object after rstate from the list of all such objects belonging to the same
PyInterpreterState object.

9.10 Thread Local Storage Support

The Python interpreter provides low-level support for thread-local storage (TLS) which wraps the underlying native TLS
implementation to support the Python-level thread local storage API (threading.local). The CPython C level APIs
are similar to those offered by pthreads and Windows: use a thread key and functions to associate a void* value per
thread.

The GIL does not need to be held when calling these functions; they supply their own locking.

Note that Python.h does not include the declaration of the TLS APIs, you need to include pythread.h to use
thread-local storage.

ZF31: None of these API functions handle memory management on behalf of the void* values. You need to allo-
cate and deallocate them yourself. If the void* values happen to be PyOb ject *, these functions don’t do refcount
operations on them either.

152 Chapter 9. Initialization, Finalization, and Threads

The Python/C API, &] 8| A 3.7.17

9.10.1 Thread Specific Storage (TSS) API

TSS APl is introduced to supersede the use of the existing TLS API within the CPython interpreter. This API uses a new
type Py_tss_t instead of int to represent thread keys.

v A 3.79] 7}
o ®B7]:
“A New C-API for Thread-Local Storage in CPython” (PEP 539)

Py tss_t
This data structure represents the state of a thread key, the definition of which may depend on the underlying TLS
implementation, and it has an internal field representing the key’s initialization state. There are no public members
in this structure.

When Py_LIMITED_API is not defined, static allocation of this type by Py_tss_ NEEDS INIT is allowed.

Py _tss_NEEDS_INIT
This macro expands to the initializer for Py_tss_t variables. Note that this macro won’t be defined with
Py _LIMITED_API.

Dynamic Allocation

Dynamic allocation of the Py_ tss_ t, required in extension modules built with Py_LIMITED_API, where static alloca-
tion of this type is not possible due to its implementation being opaque at build time.

Py_tss_t* PyThread_tss_alloc ()
Return a value which is the same state as a value initialized with Pyt ss_NEEDS_INIT, or NULL in the case
of dynamic allocation failure.

void PyThread_tss_free (Py_1ss_t *key)
Free the given key allocated by PyThread_tss_alloc (), after first calling PyThread tss_delete ()
to ensure any associated thread locals have been unassigned. This is a no-op if the key argument is NULL.

ZF31: A freed key becomes a dangling pointer, you should reset the key to NULL.

Methods

The parameter key of these functions must not be NULL. Moreover, the behaviors of PyThread tss_set ()
and PyThread tss_get () are undefined if the given Py tss_t has not been initialized by
PyThread_tss_create().

int PyThread_tss_is_created (Py_1ss_t *key)
Return a non-zero value if the given Py_ t ss_ t has been initialized by PyThread_tss_create ().

int PyThread_tss_create (Py_tss_t *key)
Return a zero value on successful initialization of a TSS key. The behavior is undefined if the value pointed to
by the key argument is not initialized by Py_tss_NEEDS_INIT. This function can be called repeatedly on the
same key — calling it on an already initialized key is a no-op and immediately returns success.

void PyThread_tss_delete (Py_iss_t *key)
Destroy a TSS key to forget the values associated with the key across all threads, and change the key’s initialization
state to uninitialized. A destroyed key is able to be initialized again by PyThread_tss_create (). This
function can be called repeatedly on the same key — calling it on an already destroyed key is a no-op.

9.10. Thread Local Storage Support 153

https://www.python.org/dev/peps/pep-0539

The Python/C API, &] B{ A 3.7.17

int PyThread_tss_set (Py_tss_t *key, void *value)
Return a zero value to indicate successfully associating a void* value with a TSS key in the current thread. Each
thread has a distinct mapping of the key to a void* value.

void* PyThread_tss_get (Py_fss_t *key)
Return the void* value associated with a TSS key in the current thread. This returns NULL if no value is associated
with the key in the current thread.

9.10.2 Thread Local Storage (TLS) API

W A 3.75 E 3 X]: This APl is superseded by Thread Specific Storage (TSS) API.

Z+31: This version of the API does not support platforms where the native TLS key is defined in a way that cannot be
safely cast to int. On such platforms, PyThread_ create_key () will return immediately with a failure status, and
the other TLS functions will all be no-ops on such platforms.

Due to the compatibility problem noted above, this version of the API should not be used in new code.
int PyThread_create_key ()

void PyThread_delete_key (int key)

int PyThread_set_key_value (int key, void *value)

void* PyThread_get_key_value (int key)

void PyThread_delete_key_value (int key)

void PyThread_ReInitTLS ()

154 Chapter 9. Initialization, Finalization, and Threads

cHAPTER 10

Memory Management

10.1 Overview

Memory management in Python involves a private heap containing all Python objects and data structures. The manage-
ment of this private heap is ensured internally by the Python memory manager. The Python memory manager has different
components which deal with various dynamic storage management aspects, like sharing, segmentation, preallocation or
caching.

At the lowest level, a raw memory allocator ensures that there is enough room in the private heap for storing all Python-
related data by interacting with the memory manager of the operating system. On top of the raw memory allocator, several
object-specific allocators operate on the same heap and implement distinct memory management policies adapted to the
peculiarities of every object type. For example, integer objects are managed differently within the heap than strings, tuples
or dictionaries because integers imply different storage requirements and speed/space tradeoffs. The Python memory
manager thus delegates some of the work to the object-specific allocators, but ensures that the latter operate within the
bounds of the private heap.

It is important to understand that the management of the Python heap is performed by the interpreter itself and that the
user has no control over it, even if they regularly manipulate object pointers to memory blocks inside that heap. The
allocation of heap space for Python objects and other internal buffers is performed on demand by the Python memory
manager through the Python/C API functions listed in this document.

To avoid memory corruption, extension writers should never try to operate on Python objects with the functions exported
by the C library: malloc (), calloc (), realloc () and free (). This will result in mixed calls between the
C allocator and the Python memory manager with fatal consequences, because they implement different algorithms and
operate on different heaps. However, one may safely allocate and release memory blocks with the C library allocator for
individual purposes, as shown in the following example:

PyObject *res;
char *buf = (char *) malloc (BUFSIZ); /* for I/0 */

if (buf == NULL)

return PyErr_NoMemory () ;
...Do some I/O operation involving buf...
res = PyBytes_FromString(buf);

(TH& ST Aol A1)

155

The Python/C API, &] B{ A 3.7.17

(o] A sl o] A A M A%)

free(buf); /* malloc'ed */
return res;

In this example, the memory request for the I/O buffer is handled by the C library allocator. The Python memory manager
is involved only in the allocation of the bytes object returned as a result.

In most situations, however, it is recommended to allocate memory from the Python heap specifically because the latter
is under control of the Python memory manager. For example, this is required when the interpreter is extended with new
object types written in C. Another reason for using the Python heap is the desire to inform the Python memory manager
about the memory needs of the extension module. Even when the requested memory is used exclusively for internal,
highly-specific purposes, delegating all memory requests to the Python memory manager causes the interpreter to have a
more accurate image of its memory footprint as a whole. Consequently, under certain circumstances, the Python memory
manager may or may not trigger appropriate actions, like garbage collection, memory compaction or other preventive
procedures. Note that by using the C library allocator as shown in the previous example, the allocated memory for the
I/O buffer escapes completely the Python memory manager.

o ®B7]:
The PYTHONMALLOC environment variable can be used to configure the memory allocators used by Python.

The PYTHONMALLOCSTATS environment variable can be used to print statistics of the pymalloc memory allocator every
time a new pymalloc object arena is created, and on shutdown.

10.2 Raw Memory Interface

The following function sets are wrappers to the system allocator. These functions are thread-safe, the GIL does not need
to be held.

The default raw memory allocator uses the following functions: malloc (), calloc (), realloc () and free();
callmalloc (1) (orcalloc (1, 1)) when requesting zero bytes.

W2 3400 F7}

void* PyMem_RawMalloc (size_t n)
Allocates n bytes and returns a pointer of type void* to the allocated memory, or NULL if the request fails.

Requesting zero bytes returns a distinct non-NULL pointer if possible, as if PyMem_RawMalloc (1) had been
called instead. The memory will not have been initialized in any way.

void* PyMem_RawCalloc (size_t nelem, size_t elsize)
Allocates nelem elements each whose size in bytes is elsize and returns a pointer of type void* to the allocated
memory, or NULL if the request fails. The memory is initialized to zeros.

Requesting zero elements or elements of size zero bytes returns a distinct non-NULL pointer if possible, as if
PyMem_RawCalloc (1, 1) had been called instead.

WA 3.50] =7}

void* PyMem_RawRealloc (void *p, size_t n)
Resizes the memory block pointed to by p to n bytes. The contents will be unchanged to the minimum of the old
and the new sizes.

If p is NULL, the call is equivalent to PyMem_RawMalloc (n); else if n is equal to zero, the memory block is
resized but is not freed, and the returned pointer is non-NULL.

Unless p is NULL, it must have been returned by a previous call to PyMem RawMalloc (),
PyMem RawRealloc () or PyMem RawCalloc ().

156 Chapter 10. Memory Management

The Python/C API, &] 8| A 3.7.17

If the request fails, PyMem RawRealloc () returns NULL and p remains a valid pointer to the previous memory
area.

void PyMem_RawFree (void *p)
Frees the memory block pointed to by p, which must have been returned by a previous call to
PyMem_RawMalloc (), PyMem_RawRealloc () or PyMem RawCalloc(). Otherwise, or if
PyMem_RawFree (p) has been called before, undefined behavior occurs.

If p is NULL, no operation is performed.

10.3 Memory Interface

The following function sets, modeled after the ANSI C standard, but specifying behavior when requesting zero bytes, are
available for allocating and releasing memory from the Python heap.

The default memory allocator uses the pymalloc memory allocator.

74 11: The GIL must be held when using these functions.

W A 3.69]| A ¥ 7 : The default allocator is now pymalloc instead of system malloc ().

void* PyMem_Malloc (size_t n)
Allocates n bytes and returns a pointer of type void* to the allocated memory, or NULL if the request fails.

Requesting zero bytes returns a distinct non-NULL pointer if possible, as if PyMem_Malloc (1) had been called
instead. The memory will not have been initialized in any way.

void* PyMem_Calloc (size_t nelem, size_t elsize)
Allocates nelem elements each whose size in bytes is elsize and returns a pointer of type void* to the allocated
memory, or NULL if the request fails. The memory is initialized to zeros.

Requesting zero elements or elements of size zero bytes returns a distinct non-NULL pointer if possible, as if
PyMem_Calloc (1, 1) had been called instead.

B A 3.50] &7}

void* PyMem_Realloc (void *p, size_t n)
Resizes the memory block pointed to by p to n bytes. The contents will be unchanged to the minimum of the old
and the new sizes.

If p is NULL, the call is equivalent to PyMem_Malloc (n) ;else if n is equal to zero, the memory block is resized
but is not freed, and the returned pointer is non-NULL.

Unless p is NULL, it must have been returned by a previous call to PyMem _Malloc (), PyMem_Realloc ()
or PyMem_Calloc ().

If the request fails, PyMem Realloc () returns NULL and p remains a valid pointer to the previous memory
area.

void PyMem_Free (void *p)
Frees the memory block pointed to by p, which must have been returned by a previous call to PyMem Malloc (),
PyMem_Realloc () or PyMem_Calloc (). Otherwise, or if PyMem_Free (p) has been called before, un-
defined behavior occurs.

If p is NULL, no operation is performed.

The following type-oriented macros are provided for convenience. Note that TYPE refers to any C type.

10.3. Memory Interface 157

The Python/C API, &] B{ A 3.7.17

TYPE* PyMem_New (TYPE, size_t n)
Same as PyMem_Malloc (), butallocates (n * sizeof (TYPE)) bytes of memory. Returns a pointer cast
to TYPE*. The memory will not have been initialized in any way.

TYPE* PyMem_Resize (void *p, TYPE, size_t n)
Same as PyMem_Realloc (), but the memory block is resized to (n * sizeof (TYPE)) bytes. Returns a
pointer cast to TYPE*. On return, p will be a pointer to the new memory area, or NULL in the event of failure.

This is a C preprocessor macro; p is always reassigned. Save the original value of p to avoid losing memory when
handling errors.

void PyMem_Del (void *p)
Same as PyMem_Free ().

In addition, the following macro sets are provided for calling the Python memory allocator directly, without involving the
C API functions listed above. However, note that their use does not preserve binary compatibility across Python versions
and is therefore deprecated in extension modules.

¢ PyMem_MALLOC (size)

e PyMem_NEW (type, size)

e PyMem_REALLOC (ptr, size)

* PyMem_RESIZE (ptr, type, size)
e PyMem_FREE (ptr)

¢ PyMem_DEL (ptr)

10.4 Object allocators

The following function sets, modeled after the ANSI C standard, but specifying behavior when requesting zero bytes, are
available for allocating and releasing memory from the Python heap.

The default object allocator uses the pymalloc memory allocator.

7 311: The GIL must be held when using these functions.

void* PyObject_Malloc (size_t n)
Allocates n bytes and returns a pointer of type void* to the allocated memory, or NULL if the request fails.

Requesting zero bytes returns a distinct non-NULL pointer if possible, as if PyObject_Malloc (1) had been
called instead. The memory will not have been initialized in any way.

void* PyObject_Calloc (size_t nelem, size_t elsize)
Allocates nelem elements each whose size in bytes is elsize and returns a pointer of type void* to the allocated
memory, or NULL if the request fails. The memory is initialized to zeros.

Requesting zero elements or elements of size zero bytes returns a distinct non-NULL pointer if possible, as if
PyObject_Calloc (1, 1) had been called instead.

WA 3.50] F7}.

void* PyObject_Realloc (void *p, size_t n)
Resizes the memory block pointed to by p to n bytes. The contents will be unchanged to the minimum of the old
and the new sizes.

158 Chapter 10. Memory Management

The Python/C API, &] 8| A 3.7.17

If p is NULL, the call is equivalent to PyObject_Malloc (n); else if n is equal to zero, the memory block is
resized but is not freed, and the returned pointer is non-NULL.

Unless p is NULL,

PyObject_Realloc () or PyObject_Calloc ().

it must have been returned by a previous call to PyObject_Malloc (),

If the request fails, PyObject_Realloc () returns NULL and p remains a valid pointer to the previous memory

area.

void PyObject_Free (void *p)
Frees the memory block pointed to by p, which must have been returned by a previous call to

PyObject_Malloc (), PyObject_Realloc() or PyObject_Calloc(). Otherwise, or if
PyObject_Free (p) has been called before, undefined behavior occurs.
If p is NULL, no operation is performed.
10.5 Default Memory Allocators
Default memory allocators:
Configuration Name PyMem_RawMallagcPyMem_Malloc | PyOb-
ject_Malloc
Release build "pymalloc" malloc pymalloc pymalloc
Debug build "pymalloc_debug™malloc + debug pymalloc+de- | pymalloc +de-
bug bug
Release build, without py- | "malloc" malloc malloc malloc
malloc
Debug build, without py- | "malloc_debug" | malloc +debug | malloc +debug | malloc + debug
malloc

Legend:

¢ Name: value for PYTHONMALLOC environment variable

* malloc: system allocators from the standard C library, C functions:

and free ()

* pymalloc: pymalloc memory allocator

malloc (), calloc (), realloc ()

¢ “+ debug”: with debug hooks installed by PyMem_SetupDebugHooks ()

10.6 Customize Memory Allocators

WA 349 7}

PyMemAllocatorEx

Structure used to describe a memory block allocator. The structure has four fields:

10.5. Default Memory Allocators

159

The Python/C API, &] B{ A 3.7.17

Field Meaning

void *ctx user context passed as first argument
void* malloc (void *ctx, size_t size) allocate a memory block

void* calloc(void *ctx, size_t nelem, size_t | allocateamemory block initialized with
elsize) ZEeros

void* realloc(void *ctx, void *ptr, size_t allocate or resize a memory block
new_size)

void free (void *ctx, void *ptr) free a memory block

B A 3.59] 4] 7 : The PyMemAllocator structure was renamed to PyMemAllocatorEx and a new
calloc field was added.

PyMemAllocatorDomain
Enum used to identify an allocator domain. Domains:

PYMEM DOMAIN_RAW
Functions:

* PyMem RawMalloc ()
* PyMem RawRealloc ()
* PyMem RawCalloc ()
* PyMem RawFree ()

PYMEM_DOMAIN_MEM
Functions:

* PyMem Malloc(),
* PyMem Realloc()
* PyMem_ Calloc ()
* PyMem Free()

PYMEM DOMAIN_OBJ
Functions:

* PyObject_Malloc ()
e PyObject_Realloc ()
* PyObject_Calloc()
* PyObject_Free()

void PyMem_GetAllocator (PyMemAllocatorDomain domain, PyMemAllocatorEx *allocator)
Get the memory block allocator of the specified domain.

void PyMem_SetAllocator (PyMemAllocatorDomain domain, PyMemAllocatorEx *allocator)
Set the memory block allocator of the specified domain.

The new allocator must return a distinct non-NULL pointer when requesting zero bytes.

For the PYMEM DOMAIN RAW domain, the allocator must be thread-safe: the GIL is not held when the allocator
is called.

If the new allocator is not a hook (does not call the previous allocator), the PyMem_ SetupDebugHooks ()
function must be called to reinstall the debug hooks on top on the new allocator.

160 Chapter 10. Memory Management

The Python/C API, &] 8| A 3.7.17

void PyMem_SetupDebugHooks (void)
Setup hooks to detect bugs in the Python memory allocator functions.

Newly allocated memory is filled with the byte 0xCD (CLEANBYTE), freed memory is filled with the byte 0xDD
(DEADBYTE). Memory blocks are surrounded by “forbidden bytes” (FORBIDDENBYTE: byte 0xFD).

Runtime checks:
e Detect API violations, ex: PyObject_Free () called on a buffer allocated by PyMem Malloc ()
¢ Detect write before the start of the buffer (buffer underflow)
¢ Detect write after the end of the buffer (buffer overflow)

e Check that the GIL is held when allocator functions of PYMEM DOMAIN_OBJ (ex:
PyObject_Malloc ())and PYMEM DOMAIN_MEM (ex: PyMem Malloc ()) domains are called

On error, the debug hooks use the t racemalloc module to get the traceback where a memory block was allo-
cated. The traceback is only displayed if t racemalloc is tracing Python memory allocations and the memory
block was traced.

These hooks are installed by default if Python is compiled in debug mode. The PYTHONMALLOC environment
variable can be used to install debug hooks on a Python compiled in release mode.

WA 3.6 4] ¥ 7 : This function now also works on Python compiled in release mode. On error, the debug
hooks now use t racemal loc to get the traceback where a memory block was allocated. The debug hooks now
also check if the GIL is held when functions of PYMEM DOMATIN_OBJ and PYMEM _DOMATIN_MEM domains are
called.

¥ A 3.7.39]| A] ¥ 7 : Byte patterns 0xCB (CLEANBYTE), 0xDB (DEADBYTE) and 0xFB (FORBIDDENBYTE)
have been replaced with 0xCD, 0xDD and OxFD to use the same values than Windows CRT debug malloc ()
and free ().

10.7 The pymalloc allocator

Python has a pymalloc allocator optimized for small objects (smaller or equal to 512 bytes) with a short lifetime. It
uses memory mappings called “arenas” with a fixed size of 256 KiB. It falls back to PyMem RawMalloc () and
PyMem_RawRealloc () for allocations larger than 512 bytes.

pymalloc is the default allocator of the PYMEM_DOMAIN_MEM (ex: PyMem Malloc ())and PYMEM DOMAIN_OBJ
(ex: PyObject_Malloc ()) domains.

The arena allocator uses the following functions:
e VirtualAlloc () and VirtualFree () on Windows,
e mmap () and munmap () if available,

* malloc () and free () otherwise.

10.7. The pymalloc allocator 161

The Python/C API, &] B{ A 3.7.17

10.7.1 Customize pymalloc Arena Allocator

B A 3.40] 7}

PyObjectArenaAllocator
Structure used to describe an arena allocator. The structure has three fields:

Field Meaning

void *ctx user context passed as first argument
void* alloc (void *ctx, size_t size) allocate an arena of size bytes
void free(void *ctx, size_t size, void *ptr) free an arena

PyObject_GetArenaAllocator (PyObjectArenaAllocator *allocator)
Get the arena allocator.

PyObject_SetArenaAllocator (PyObjectArenaAllocator *allocator)
Set the arena allocator.

10.8 tracemalloc C API

WA 3.7 27}

int PyTraceMalloc_Track (unsigned int domain, uintptr_t ptr, size_t size)
Track an allocated memory block in the t racemal loc module.

Return 0 on success, return —1 on error (failed to allocate memory to store the trace). Return -2 if tracemalloc is

disabled.
If memory block is already tracked, update the existing trace.

int PyTraceMalloc_Untrack (unsigned int domain, uintptr_t ptr)

Untrack an allocated memory block in the t racemalloc module. Do nothing if the block was not tracked.

Return -2 if tracemalloc is disabled, otherwise return 0.

10.9 Examples

Here is the example from section Overview, rewritten so that the I/O buffer is allocated from the Python heap by using

the first function set:

PyObject *res;

char *buf = (char *) PyMem_Malloc (BUFSIZ); /* for I/0 */
if (buf == NULL)

return PyErr_NoMemory () ;
/* ...Do some I/O operation involving buf... */

res = PyBytes_FromString (buf);
PyMem_Free (buf); /* allocated with PyMem_Malloc */
return res;

The same code using the type-oriented function set:

162 Chapter 10.

Memory Management

The Python/C API, &] 8| A 3.7.17

PyObject *res;
char *buf = PyMem_New (char, BUFSIZ); /* for I/0 */

if (buf == NULL)
return PyErr_NoMemory () ;
/* ...Do some I/O operation involving buf... */

res = PyBytes_FromString (buf) ;
PyMem_Del (buf); /* allocated with PyMem_New */
return res;

Note that in the two examples above, the buffer is always manipulated via functions belonging to the same set. Indeed, it
is required to use the same memory API family for a given memory block, so that the risk of mixing different allocators
is reduced to a minimum. The following code sequence contains two errors, one of which is labeled as fatal because it
mixes two different allocators operating on different heaps.

char *bufl = PyMem_New (char, BUFSIZ);
char *buf2 = (char *) malloc (BUFSIZ);
char *buf3 = (char *) PyMem_Malloc (BUFSIZ);

PyMem_Del (buf3); /* Wrong —-—- should be PyMem Free() */

free (buf2); /* Right —-- allocated via malloc() */
free (bufl); /* Fatal —-- should be PyMem_Del () */

In addition to the functions aimed at handling raw memory blocks from the Python heap, objects in Python are allocated
and released with PyOb ject_New (), PyObject_NewVar () and PyObject_Del ().

These will be explained in the next chapter on defining and implementing new object types in C.

10.9. Examples 163

The Python/C API, &] B{ A 3.7.17

164 Chapter 10. Memory Management

cHAPTER 11

AA & A

ol FollM= A AA F= BT wf AHH = T, B H a2z dsf A

11.1 Qoll A7) Fa7]

PyObject* _PyObject_New (PyTypeObject *type)
Return value: New reference.

PyVarObject* _PyObject_NewVar (PyTypeObject *type, Py_ssize_t size)
Return value: New reference.

PyObject* PyObject_Init (PyObject *op, PyTypeObject *type)
Return value: Borrowed reference. M| 2 & 3H A opE F 7] 22 27|33V tt 27|39 AA =
QLSS T} npeo] AR 7F =2 7H) A A 7)o Fo S et W, A 719 A= = A A F el
FoAEUTH AR e Bt GFE RA Sk

PyVarObject* PyObject_InitVar (PyVarObject *op, PyTypeObject *type, Py_ssize_t size)
Return value: Borrowed reference. ©) -2 PyObject_Init ()7} +3q3t= BE AL 33511, 714
7] AR do] ARE x 7|33t}

TYPE* PyObject_New (TYPE, PyTypeObject *type)
Return value: New reference. C +ZA & TYPET} vtol A & A A typeS AH&5Fo] A 22 uho]d A
dFdut stold AR St 2 FoH A S BEE 27]§]rﬂxl EuUTh AAY] Fx Aee 1
AUtk ml2e] &3 27 3 A tp basicsize BEONA AP Yt

TYPE* PyObject_NewVar (TYPE, PyTypeObject *type, Py_ssize_t size)
Return value: New reference. C -2 A 3 TYPET} v}o]l A €l & types AL-&5to] A 22 ol AR S
gyt stold AA s H =2 %‘Jﬂﬂ d2dz & x7]§}ﬂx] dsUth 9E MR E TYPE
F2A) A8 typed] tp_itemsize BE &l Fo]RA A 7|9 size ZEE FH LI} o
e ANETATA $EU, FEEVED 218 A4 5 ATk Lo Wl 2
EF AW, WY D5 Bl Sol, Mme el B0l FARUD

void PyObject_Del (void *op)
PyObject_New () Y PyObject_NewVar ()& AH&38t AR o & W R & siAFUTh o] A2

O il

165

The Python/C API, &] B{ A 3.7.17

AA ez A Hoj 2|4
AR 7k) B2, o] BF Fo

PyObject _Py_NoneStruct
ol ol A Nonel 2 =25 = AA. o] AA e £AH R F715 £ Py_None AR E A8l Al
o 4] 223} of g o}

o B

PyModule_Create() &3 R E& @93t whFUth

5l
A
-

tp_dealloc A 7olA BEFUTh W27t HE RIS ol A
AA o] BEof AA 23 A= e+ FU T

11.2 Common Object Structures

There are a large number of structures which are used in the definition of object types for Python. This section describes
these structures and how they are used.

All Python objects ultimately share a small number of fields at the beginning of the object’s representation in memory.
These are represented by the PyObject and PyVarObject types, which are defined, in turn, by the expansions of
some macros also used, whether directly or indirectly, in the definition of all other Python objects.

PyObject
All object types are extensions of this type. This is a type which contains the information Python needs to treat
a pointer to an object as an object. In a normal “release” build, it contains only the object’s reference count and
a pointer to the corresponding type object. Nothing is actually declared to be a PyObject, but every pointer
to a Python object can be cast to a PyObject *. Access to the members must be done by using the macros
Py _REFCNT and Py_ TYPE.

PyVarObject
This is an extension of PyObject that adds the ob_size field. This is only used for objects that have some
notion of length. This type does not often appear in the Python/C API. Access to the members must be done by
using the macros Py_REFCNT, Py_TYPE,and Py_SIZE.

PyObject_HEAD
This is a macro used when declaring new types which represent objects without a varying length. The PyOb-
ject_HEAD macro expands to:

PyObject ob_base;

See documentation of PyOb ject above.

PyObject_VAR_HEAD
This is a macro used when declaring new types which represent objects with a length that varies from instance to
instance. The PyObject_ VAR_HEAD macro expands to:

PyVarObject ob_base;

See documentation of PyVaroOb ject above.

Py_TYPE (0)
This macro is used to access the ob_t ype member of a Python object. It expands to:

’(((PyObject*)(o))7>ob_type)

Py_REFCNT (0)
This macro is used to access the ob_refcnt member of a Python object. It expands to:

’(((PyObject*)(o))—>ob_refcnt)

166 Chapter 11. 214 3+& =] ¢

The Python/C API, &] 8| A 3.7.17

Py_SIZE (0)
This macro is used to access the ob__size member of a Python object. It expands to:

(((PyVarObject™) (0))-—>ob_size)

PyObject_HEAD_INIT (type)
This is a macro which expands to initialization values for a new PyOb ject type. This macro expands to:

_PyObject_EXTRA_INIT
1, type,

PyVarObject_HEAD_INIT (type, size)
This is a macro which expands to initialization values for a new PyVarObject type, including the ob_size
field. This macro expands to:

_PyObject_EXTRA_INIT
1, type, size,

PyCFunction
Type of the functions used to implement most Python callables in C. Functions of this type take two PyOb ject *
parameters and return one such value. If the return value is NULL, an exception shall have been set. If not NULL,
the return value is interpreted as the return value of the function as exposed in Python. The function must return a
new reference.

PyCFunctionWithKeywords
Type of the functions used to implement Python callables in C with signature METH_VARARGS |
METH_KEYWORDS.

_PyCFunctionFast
Type of the functions used to implement Python callables in C with signature METH FASTCALL.

_PyCFunctionFastWithKeywords
Type of the functions used to implement Python callables in C with signature METH_FASTCALL |
METH_KEYWORDS.

PyMethodDef
Structure used to describe a method of an extension type. This structure has four fields:

Field C Type Meaning

ml_name const char * name of the method

ml_meth PyCFunction | pointer to the C implementation

ml_flags | int flag bits indicating how the call should be constructed
ml_doc const char * | points to the contents of the docstring

The m1_meth is a C function pointer. The functions may be of different types, but they always return PyOb ject *.
If the function is not of the PyCFunction, the compiler will require a cast in the method table. Even though
PyCFunction defines the first parameter as PyObject *, it is common that the method implementation uses the
specific C type of the self object.

The m1_flags field is a bitfield which can include the following flags. The individual flags indicate either a calling
convention or a binding convention.

There are four basic calling conventions for positional arguments and two of them can be combined with
METH_KEYWORDS to support also keyword arguments. So there are a total of 6 calling conventions:

METH_VARARGS
This is the typical calling convention, where the methods have the type Py CFunct i on. The function expects two
PyObject * values. The first one is the self object for methods; for module functions, it is the module object.

11.2. Common Object Structures 167

The Python/C API, &] B{ A 3.7.17

The second parameter (often called args) is a tuple object representing all arguments. This parameter is typically
processed using PyArg_ParseTuple () or PyArg _UnpackTuple ().

METH_VARARGS | METH_KEYWORDS
Methods with these flags must be of type PyCFunctioniithKeywords. The function expects three parame-
ters: self, args, kwargs where kwargs is a dictionary of all the keyword arguments or possibly NULL if there are no
keyword arguments. The parameters are typically processed using PyArg ParseTupleAndKeywords ().

METH_FASTCALL
Fast calling convention supporting only positional arguments. The methods have the type _PyCFunctionFast.
The first parameter is self, the second parameter is a C array of PyOb ject * values indicating the arguments and
the third parameter is the number of arguments (the length of the array).

This is not part of the limited API.
WA 3.7 7}

METH_FASTCALL | METH_KEYWORDS
Extension of METH FASTCALL supporting also keyword arguments, with methods of type
_PyCFunctionFastWithKeywords. Keyword arguments are passed the same way as in the vector-
call protocol: there is an additional fourth PyOb ject * parameter which is a tuple representing the names of the
keyword arguments or possibly NULL if there are no keywords. The values of the keyword arguments are stored
in the args array, after the positional arguments.

This is not part of the limited API.
W 3.7 7}

METH_NOARGS
Methods without parameters don’t need to check whether arguments are given if they are listed with the
METH_NOARGS flag. They need to be of type PyCFunction. The first parameter is typically named self
and will hold a reference to the module or object instance. In all cases the second parameter will be NULL.

METH_O
Methods with a single object argument can be listed with the METH O flag, instead of invoking
PyArg ParseTuple () with a "O" argument. They have the type PyCFunction, with the self parame-
ter, and a PyOb ject * parameter representing the single argument.

These two constants are not used to indicate the calling convention but the binding when use with methods of classes.
These may not be used for functions defined for modules. At most one of these flags may be set for any given method.

METH_CLASS
The method will be passed the type object as the first parameter rather than an instance of the type. This is used
to create class methods, similar to what is created when using the classmethod () built-in function.

METH_STATIC
The method will be passed NULL as the first parameter rather than an instance of the type. This is used to create
static methods, similar to what is created when using the staticmethod () built-in function.

One other constant controls whether a method is loaded in place of another definition with the same method name.

METH_COEXIST
The method will be loaded in place of existing definitions. Without METH COEXIST, the default is to skip re-
peated definitions. Since slot wrappers are loaded before the method table, the existence of a sq_contains slot,
for example, would generate a wrapped method named ___contains__ () and preclude the loading of a corre-
sponding PyCFunction with the same name. With the flag defined, the PyCFunction will be loaded in place of the
wrapper object and will co-exist with the slot. This is helpful because calls to PyCFunctions are optimized more
than wrapper object calls.

PyMemberDef
Structure which describes an attribute of a type which corresponds to a C struct member. Its fields are:

168 Chapter 11. 214 3+& =] ¢

The Python/C API, &] 8| A 3.7.17

Field C Type Meaning

name const char * | name of the member

type int the type of the member in the C struct

offset | Py_ssize_t the offset in bytes that the member is located on the type’s object struct
flags int flag bits indicating if the field should be read-only or writable

doc const char * | points to the contents of the docstring

type can be one of many T_ macros corresponding to various C types. When the member is accessed in Python,
it will be converted to the equivalent Python type.

Macro name C type

T _SHORT short

T_INT int

T _LONG long
T_FLOAT float
T_DOUBLE double
T_STRING const char *
T_OBIJECT PyObject *
T_OBJECT_EX PyObject *
T_CHAR char

T _BYTE char

T _UBYTE unsigned char
T_UINT unsigned int
T_USHORT unsigned short
T_ULONG unsigned long
T_BOOL char
T_LONGLONG long long
T_ULONGLONG | unsigned long long
T_PYSSIZET Py_ssize_t

T_OBJECT and T_OBJECT_EX differ in that T_OBJECT returns None if the member is NULL and

T_OBJECT_EX raises an AttributeError.
T_OBJECT_EX handles use of the del statement on that attribute more correctly than T_OBJECT.

Try to use T_OBJECT_EX over T_OBJECT because

flags can be 0 for write and read access or READONLY for read-only access. Using T_STRING for type
implies READONLY. T_STRING data is interpreted as UTF-8. Only T_OBJECT and T_OBJECT_EX members
can be deleted. (They are set to NULL).

PyGetSetDef
Structure to define property-like access for a type. See also description of the Py TypeObject.tp_getset
slot.
Field C Type Meaning
name const char * | attribute name
get getter C Function to get the attribute
set setter optional C function to set or delete the attribute, if omitted the attribute is readonly
doc const char * | optional docstring
closure | void * optional function pointer, providing additional data for getter and setter

The get function takes one PyObject * parameter (the instance) and a function pointer (the associated

closure):

11.2. Common Object Structures

169

The Python/C API, &] B{ A 3.7.17

typedef PyObject * (*getter) (PyObject *, woid *);

It should return a new reference on success or NULL with a set exception on failure.

set functions take two PyOb ject * parameters (the instance and the value to be set) and a function pointer (the
associated closure):

typedef int (*setter) (PyObject *, PyObject *, wvoid *);

In case the attribute should be deleted the second parameter is NULL. Should return O on success or —1 with a set
exception on failure.

11.3 Type Objects

Perhaps one of the most important structures of the Python object system is the structure that defines a new type: the
PyTypeObject structure. Type objects can be handled using any of the PyObject_* () orPyType_* () functions,
but do not offer much that’s interesting to most Python applications. These objects are fundamental to how objects behave,
so they are very important to the interpreter itself and to any extension module that implements new types.

Type objects are fairly large compared to most of the standard types. The reason for the size is that each type object stores
a large number of values, mostly C function pointers, each of which implements a small part of the type’s functionality.
The fields of the type object are examined in detail in this section. The fields will be described in the order in which they
occur in the structure.

Typedefs: unaryfunc, binaryfunc, ternaryfunc, inquiry, intargfunc, intintargfunc, intobjargproc, intintobjargproc, objob-
jargproc, destructor, freefunc, printfunc, getattrfunc, getattrofunc, setattrfunc, setattrofunc, reprfunc, hashfunc

The structure definition for Py TypeObject can be found in Include/object .h. For convenience of reference,
this repeats the definition found there:

typedef struct _typeobject {
PyObject_VAR_HEAD
const char *tp_name; /* For printing, in format "<module>.<name>" */
Py_ssize_t tp_basicsize, tp_itemsize; /* For allocation */

/* Methods to implement standard operations */

destructor tp_dealloc;

printfunc tp_print;

getattrfunc tp_getattr;

setattrfunc tp_setattr;

PyAsyncMethods *tp_as_async; /* formerly known as tp_compare (Python 2)
or tp_reserved (Python 3) */

reprfunc tp_repr;

/* Method suites for standard classes */
PyNumberMethods *tp_as_number;
PySequenceMethods *tp_as_sequence;
PyMappingMethods *tp_as_mapping;

/* More standard operations (here for binary compatibility) */

hashfunc tp_hash;
ternaryfunc tp_call;

(TF= ol ATl A%

170 Chapter 11. 214 3+& =] ¢

The Python/C API, &] 8| A 3.7.17

(o1 A S o] A A Al

reprfunc tp_str;
getattrofunc tp_getattro;
setattrofunc tp_setattro;

/* Functions to access object as input/output buffer
PyBufferProcs *tp_as_buffer;

/* Flags to define presence of optional/expanded feat
unsigned long tp_flags;
const char *tp_doc; /* Documentation string */

/* call function for all accessible objects */
traverseproc tp_traverse;

/* delete references to contained objects */
inquiry tp_clear;

/* rich comparisons */
richcmpfunc tp_richcompare;

/* weak reference enabler */
Py_ssize_t tp_weaklistoffset;

/* Iterators */
getiterfunc tp_iter;
iternextfunc tp_iternext;

/* Attribute descriptor and subclassing stuff */
struct PyMethodDef *tp_methods;

struct PyMemberDef *tp_members;

struct PyGetSetDef *tp_getset;

struct _typeobject *tp_base;

PyObject *tp_dict;

descrgetfunc tp_descr_get;

descrsetfunc tp_descr_set;

Py_ssize_t tp_dictoffset;

initproc tp_init;

allocfunc tp_alloc;

newfunc tp_new;

freefunc tp_free; /* Low-level free-memory routine */
inquiry tp_is_gc; /* For PyObject_IS_GC */
PyObject *tp_bases;

PyObject *tp_mro; /* method resolution order */
PyObject *tp_cache;

PyObject *tp_subclasses;

PyObject *tp_weaklist;

destructor tp_del;

/* Type attribute cache version tag. Added in version
unsigned int tp_version_tag;

destructor tp_finalize;

} PyTypeObiject;

*/

ures */

2.6 */

The type object structure extends the PyVarObject structure. The ob_size field is used for dynamic types (cre-

11.3. Type Objects

171

The Python/C API, &] B{ A 3.7.17

ated by type_new (), usually called from a class statement). Note that PyType_Type (the metatype) initializes
tp_itemsize, which means that its instances (i.e. type objects) must have the ob_size field.

PyObject* PyObject . _ob_next

PyObject* PyObject . _ob_prev
These fields are only present when the macro Py_ TRACE_REF'S is defined. Their initialization to NULL is taken
care of by the PyObject_HEAD_INIT macro. For statically allocated objects, these fields always remain NULL.
For dynamically allocated objects, these two fields are used to link the object into a doubly-linked list of all live
objects on the heap. This could be used for various debugging purposes; currently the only use is to print the objects
that are still alive at the end of a run when the environment variable PY THONDUMPREF'S is set.

These fields are not inherited by subtypes.

Py_ssize_t PyObject .ob_refecnt
This is the type object’s reference count, initialized to 1 by the PyObject_HEAD_INIT macro. Note that for
statically allocated type objects, the type’s instances (objects whose ob_type points back to the type) do not
count as references. But for dynamically allocated type objects, the instances do count as references.

This field is not inherited by subtypes.

PyTypeObject* PyObject . ob_type
This is the type’s type, in other words its metatype. It is initialized by the argument to the
PyObject_HEAD_INIT macro, and its value should normally be sPyType_Type. However, for dynami-
cally loadable extension modules that must be usable on Windows (at least), the compiler complains that this is
not a valid initializer. Therefore, the convention is to pass NULL to the PyObject_HEAD_INIT macro and to
initialize this field explicitly at the start of the module’s initialization function, before doing anything else. This is
typically done like this:

Foo_Type.ob_type = &PyType_Type;

This should be done before any instances of the type are created. PyType_ Ready () checks if ob_type is
NULL, and if so, initializes it to the ob_type field of the base class. PyType_Ready () will not change this
field if it is non-zero.

This field is inherited by subtypes.

Py_ssize_t PyVarObject.ob_size
For statically allocated type objects, this should be initialized to zero. For dynamically allocated type objects, this
field has a special internal meaning.

This field is not inherited by subtypes.

const char* PyTypeObject . tp_name
Pointer to a NUL-terminated string containing the name of the type. For types that are accessible as module globals,
the string should be the full module name, followed by a dot, followed by the type name; for built-in types, it should
be just the type name. If the module is a submodule of a package, the full package name is part of the full module
name. For example, a type named T defined in module M in subpackage Q in package P should have the t p_name
initializer "P.Q.M.T".

For dynamically allocated type objects, this should just be the type name, and the module name explicitly stored in
the type dict as the value for key ' __module_ '.

For statically allocated type objects, the tp_name field should contain a dot. Everything before the last dot is made
accessible as the __module___ attribute, and everything after the last dot is made accessible as the __name___
attribute.

If no dot is present, the entire tp_name field is made accessible as the __name__ attribute, and the
__module__ attribute is undefined (unless explicitly set in the dictionary, as explained above). This means
your type will be impossible to pickle. Additionally, it will not be listed in module documentations created with
pydoc.

172 Chapter 11. 214 3+& =] ¢

The Python/C API, &] 8| A 3.7.17

This field is not inherited by subtypes.

Py_ssize_t PyTypeObject.tp_basicsize
Py_ssize_t PyTypeObject.tp_itemsize
These fields allow calculating the size in bytes of instances of the type.

There are two kinds of types: types with fixed-length instances have a zero tp_itemsize field, types with
variable-length instances have a non-zero tp__ i tems i ze field. For a type with fixed-length instances, all instances
have the same size, given in tp_basicsize.

For a type with variable-length instances, the instances must have an ob_size field, and the instance size is
tp_basicsizeplusNtimes tp_itemsize, where N is the “length” of the object. The value of N is typically
stored in the instance’s ob_size field. There are exceptions: for example, ints use a negative ob_size to
indicate a negative number, and N is abs (ob_size) there. Also, the presence of an ob_size field in the
instance layout doesn’t mean that the instance structure is variable-length (for example, the structure for the list
type has fixed-length instances, yet those instances have a meaningful ob_size field).

The basic size includes the fields in the instance declared by the macro PyObject_HEAD or
PyObject_VAR_HEAD (whichever is used to declare the instance struct) and this in turn includes the
_ob_prev and _ob_next fields if they are present. This means that the only correct way to get an initializer
for the tp_basicsize is to use the sizeof operator on the struct used to declare the instance layout. The
basic size does not include the GC header size.

These fields are inherited separately by subtypes. If the base type has a non-zero t p_ i temsi ze, it is generally not
safe to set tp_itemsize to a different non-zero value in a subtype (though this depends on the implementation
of the base type).

A note about alignment: if the variable items require a particular alignment, this should be taken care of by
the value of tp_basicsize. Example: suppose a type implements an array of double. tp itemsize
is sizeof (double). It is the programmer’s responsibility that tp_basicsize is a multiple of
sizeof (double) (assuming this is the alignment requirement for double).

destructor PyTypeObject .tp_dealloc
A pointer to the instance destructor function. This function must be defined unless the type guarantees that its
instances will never be deallocated (as is the case for the singletons None and E11ipsis).

The destructor function is called by the Py_ DECREF () and Py_XDECREF () macros when the new reference
count is zero. At this point, the instance is still in existence, but there are no references to it. The destructor function
should free all references which the instance owns, free all memory buffers owned by the instance (using the freeing
function corresponding to the allocation function used to allocate the buffer), and finally (as its last action) call the
type’s tp_ free function. If the type is not subtypable (doesn’t have the Py_ TPFLAGS_BASETYPE flag bit
set), it is permissible to call the object deallocator directly instead of via t p_ free. The object deallocator should
be the one used to allocate the instance; this is normally PyObject_Del () if the instance was allocated using
PyObject_New () orPyObject_VarNew (),or PyObject_GC_Del () if the instance was allocated using
PyObject_GC_New () or PyObject_GC_NewVar ().

This field is inherited by subtypes.

printfunc PyTypeObject .tp_print
Reserved slot, formerly used for print formatting in Python 2.x.

getattrfunc PyTypeObject .tp_getattr
An optional pointer to the get-attribute-string function.

This field is deprecated. When it is defined, it should point to a function that acts the same as the tp_getattro
function, but taking a C string instead of a Python string object to give the attribute name. The signature is

PyObject * tp_getattr (PyObject *o, char *attr_name);

11.3. Type Objects 173

The Python/C API, &] B{ A 3.7.17

This field is inherited by subtypes together with tp_getattro: a subtype inherits both tp_getattr and
tp_getattro from its base type when the subtype’s tp_getattrand tp_getattro are both NULL.

setattrfunc PyTypeObject .tp_setattr
An optional pointer to the function for setting and deleting attributes.

This field is deprecated. When it is defined, it should point to a function that acts the same as the tp_setattro
function, but taking a C string instead of a Python string object to give the attribute name. The signature is

PyObject * tp_setattr (PyObject *o, char *attr_name, PyObject *v);

The v argument is set to NULL to delete the attribute. This field is inherited by subtypes together with
tp_setattro: asubtypeinheritsboth tp_setattrand tp_setattrofrom its base type when the subtype’
s tp_setattrand tp_setattro are both NULL.

PyAsyncMethods* tp_as_async
Pointer to an additional structure that contains fields relevant only to objects which implement awaitable and asyn-
chronous iterator protocols at the C-level. See Async Object Structures for details.

H A 3.59] 37}: Formerly known as tp_compare and tp_reserved.

reprfunc PyTypeObject . tp_repr
An optional pointer to a function that implements the built-in function repr ().

The signature is the same as for PyObject_Repr (); it must return a string or a Unicode object. Ideally, this
function should return a string that, when passed to eval (), given a suitable environment, returns an object with
the same value. If this is not feasible, it should return a string starting with ' <' and ending with '>' from which
both the type and the value of the object can be deduced.

When this field is not set, a string of the form <%s object at %p> is returned, where s is replaced by the
type name, and $p by the object’s memory address.

This field is inherited by subtypes.

PyNumberMethods* tp_as_number
Pointer to an additional structure that contains fields relevant only to objects which implement the number protocol.
These fields are documented in Number Object Structures.

The tp_as_number field is not inherited, but the contained fields are inherited individually.

PySequenceMethods* tp_as_sequence
Pointer to an additional structure that contains fields relevant only to objects which implement the sequence protocol.
These fields are documented in Sequence Object Structures.

The tp_as_sequence field is not inherited, but the contained fields are inherited individually.

PyMappingMethods* tp_as_mapping
Pointer to an additional structure that contains fields relevant only to objects which implement the mapping protocol.
These fields are documented in Mapping Object Structures.

The tp_as_mapping field is not inherited, but the contained fields are inherited individually.

hashfunc PyTypeObject .tp_hash
An optional pointer to a function that implements the built-in function hash ().

The signature is the same as for PyObject_Hash ();it must return a value of the type Py_hash_t. The value -1
should not be returned as a normal return value; when an error occurs during the computation of the hash value,
the function should set an exception and return —1.

This field can be set explicitly to PyObject_HashNot Implemented () to block inheritance of the hash
method from a parent type. This is interpreted as the equivalent of __hash___ = None at the Python level,
causing isinstance (o, collections.Hashable) to correctly return False. Note that the converse

174 Chapter 11. 214 3+& =] ¢

The Python/C API, &] 8| A 3.7.17

is also true - setting __hash___ = None on a class at the Python level will result in the t p_hash slot being set
to PyObject_HashNotImplemented().

When this field is not set, an attempt to take the hash of the object raises TypeError.

This field is inherited by subtypes together with tp_richcompare: a subtype inherits both of
tp_richcompare and tp_hash, when the subtype’s tp_richcompare and tp_hash are both NULL.

ternaryfunc PyTypeObject .tp_call
An optional pointer to a function that implements calling the object. This should be NULL if the object is not
callable. The signature is the same as for PyObject_Call ().

This field is inherited by subtypes.

reprfunc PyTypeObject .tp_str
An optional pointer to a function that implements the built-in operation str (). (Note that str is a type now,
and str () calls the constructor for that type. This constructor calls PyObject_Str () to do the actual work,
and PyObject_Str () will call this handler.)

The signature is the same as for PyObject_Str (); it must return a string or a Unicode object. This function
should return a “friendly” string representation of the object, as this is the representation that will be used, among
other things, by the print () function.

When this field is not set, PyOb ject_Repr () is called to return a string representation.
This field is inherited by subtypes.

getattrofunc PyTypeObject .tp_getattro
An optional pointer to the get-attribute function.

The signature is the same as for PyObject_GetAttr (). It is usually convenient to set this field to
PyObject_GenericGetAttr (), which implements the normal way of looking for object attributes.

This field is inherited by subtypes together with tp_getattr: a subtype inherits both tp_getattr and
tp_getattro from its base type when the subtype’s tp_getattrand tp_getattro are both NULL.

setattrofunc PyTypeObject .tp_setattro
An optional pointer to the function for setting and deleting attributes.

The signature is the same as for PyObject_SetAttr (), but setting v to NULL to delete an attribute must be
supported. It is usually convenient to set this field to PyObject_GenericSetAttr (), which implements the
normal way of setting object attributes.

This field is inherited by subtypes together with tp_setattr: a subtype inherits both tp_setattr and
tp_setattro from its base type when the subtype’s tp_setattrand tp_setattro are both NULL.

PyBufferProcs* PyTypeObject .tp_as_buffer
Pointer to an additional structure that contains fields relevant only to objects which implement the buffer interface.
These fields are documented in Buffer Object Structures.

The tp_as_bufrfer field is not inherited, but the contained fields are inherited individually.

unsigned long PyTypeObject .tp_£flags
This field is a bit mask of various flags. Some flags indicate variant semantics for certain situations; others are used
to indicate that certain fields in the type object (or in the extension structures referenced via tp_as_number,
tp_as_sequence, tp_as_mapping, and tp_as_buffer) that were historically not always present are
valid; if such a flag bit is clear, the type fields it guards must not be accessed and must be considered to have a zero
or NULL value instead.

Inheritance of this field is complicated. Most flag bits are inherited individually, i.e. if the base type has a flag
bit set, the subtype inherits this flag bit. The flag bits that pertain to extension structures are strictly inherited if
the extension structure is inherited, i.e. the base type’s value of the flag bit is copied into the subtype together
with a pointer to the extension structure. The Py TPFLAGS_HAVE_GC flag bit is inherited together with the

11.3. Type Objects 175

The Python/C API, &] B{ A 3.7.17

tp_traverseand tp_clear fields, i.e. if the Py TPFLAGS_ HAVE_GC flag bit is clear in the subtype and
the tp_traverse and tp_clear fields in the subtype exist and have NULL values.

The following bit masks are currently defined; these can be ORed together using the | operator to form the value of
the tp_ flags field. The macro PyType_HasFeature () takes a type and a flags value, #p and f, and checks
whether tp->tp_flags & £ isnon-zero.

Py_TPFLAGS_HEAPTYPE
This bit is set when the type object itself is allocated on the heap. In this case, the ob_type field of its
instances is considered a reference to the type, and the type object is INCREF’ed when a new instance is
created, and DECREF’ed when an instance is destroyed (this does not apply to instances of subtypes; only
the type referenced by the instance’s ob_type gets INCREF’ed or DECREF’ed).

Py_TPFLAGS_BASETYPE
This bit is set when the type can be used as the base type of another type. If this bit is clear, the type cannot
be subtyped (similar to a “final” class in Java).

Py_TPFLAGS_READY
This bit is set when the type object has been fully initialized by Py Type_Ready ().

Py_TPFLAGS_READYING
This bit is set while Py Type_ Ready () is in the process of initializing the type object.

Py_TPFLAGS_HAVE_GC
This bit is set when the object supports garbage collection. If this bit is set, instances must be created using
PyObject_GC_New () and destroyed using PyObject_GC_Del (). More information in section <=2+
7Fe) A] =% A Y. This bit also implies that the GC-related fields tp traverse and tp_clear are
present in the type object.

Py_TPFLAGS_DEFAULT
This is a bitmask of all the bits that pertain to the existence of certain fields in the type object and its extension
structures. Currently, it includes the following bits: Py_TPFLAGS_HAVE_STACKLESS_EXTENSION,
Py_TPFLAGS_HAVE_VERSION_TAG.

Py_TPFLAGS_LONG_SUBCLASS
Py_TPFLAGS_LIST_SUBCLASS
Py_TPFLAGS_TUPLE_SUBCLASS
Py_TPFLAGS_BYTES_SUBCLASS
Py_TPFLAGS_UNICODE_SUBCLASS
Py_TPFLAGS_DICT_SUBCLASS
Py_TPFLAGS_BASE_EXC_SUBCLASS

Py_TPFLAGS_TYPE_SUBCLASS
These flags are used by functions such as PyLong_Check () to quickly determine if a type is a subclass
of a built-in type; such specific checks are faster than a generic check, like PyObject_IsInstance ().
Custom types that inherit from built-ins should have their tp_f1ags set appropriately, or the code that
interacts with such types will behave differently depending on what kind of check is used.

Py_TPFLAGS_HAVE_FINALIZE
This bit is set when the tp_ finalize slotis present in the type structure.

WA 349 7}

const char* PyTypeObject . tp_doc

An optional pointer to a NUL-terminated C string giving the docstring for this type object. This is exposed as the
__doc___ attribute on the type and instances of the type.

176

Chapter 11. 254 3 =

The Python/C API, &] 8| A 3.7.17

This field is not inherited by subtypes.

traverseproc PyTypeObject . tp_traverse
An optional pointer to a traversal function for the garbage collector. This is only used if the
Py_TPFLAGS_HAVE_GC flag bit is set. More information about Python’s garbage collection scheme can be
found in section <=3} 78] A =% A L.

The tp_traverse pointer is used by the garbage collector to detect reference cycles. A typical implementation
of a tp_traverse function simply calls Py_VISIT () on each of the instance’s members that are Python
objects that the instance owns. For example, this is function local_traverse () fromthe _thread extension
module:

static int
local_traverse (localobject *self, visitproc visit, woid *arg)
{

Py_VISIT (self->args);

Py_VISIT (self->kw);

Py_VISIT (self->dict);

return 0;

Note that Py VISIT () is called only on those members that can participate in reference cycles. Although there
is also a sel f->key member, it can only be NULL or a Python string and therefore cannot be part of a reference
cycle.

On the other hand, even if you know a member can never be part of a cycle, as a debugging aid you may want to
visit it anyway just so the gc module’s get _referents () function will include it.

7 1: When implementing tp_traverse, only the members that the instance owns (by having strong
references to them) must be visited. For instance, if an object supports weak references viathe tp_weaklist
slot, the pointer supporting the linked list (what #p_weaklist points to) must not be visited as the instance does
not directly own the weak references to itself (the weakreference list is there to support the weak reference
machinery, but the instance has no strong reference to the elements inside it, as they are allowed to be removed
even if the instance is still alive).

Note that Py VISIT () requires the visit and arg parameters to local_traverse () to have these specific
names; don’t name them just anything.

This field is inherited by subtypes together with tp_clear and the Py TPFLAGS_HAVE_GC flag bit: the flag
bit, tp_traverse,and tp_clear are all inherited from the base type if they are all zero in the subtype.

inquiry PyTypeObject .tp_clear
An optional pointer to a clear function for the garbage collector. This is only used if the Py TPFLAGS_HAVE_GC
flag bit is set.

The tp_clear member function is used to break reference cycles in cyclic garbage detected by the garbage
collector. Taken together, all tp_clear functions in the system must combine to break all reference cycles. This
is subtle, and if in any doubt supply a tp_clear function. For example, the tuple type does not implement a
tp_clear function, because it’s possible to prove that no reference cycle can be composed entirely of tuples.
Therefore the t p_clear functions of other types must be sufficient to break any cycle containing a tuple. This
isn’t immediately obvious, and there’s rarely a good reason to avoid implementing tp_clear.

Implementations of tp_ clear should drop the instance’s references to those of its members that may be Python
objects, and set its pointers to those members to NULL, as in the following example:

11.3. Type Objects 177

The Python/C API, &] B{ A 3.7.17

static int

local_clear (localobject *self)

{
Py_CLEAR (self->key);
Py_CLEAR (self->args);
Py_CLEAR (self->kw);
Py_CLEAR (self->dict);
return 0;

The Py_CLEAR () macro should be used, because clearing references is delicate: the reference to the contained
object must not be decremented until after the pointer to the contained object is set to NULL. This is because
decrementing the reference count may cause the contained object to become trash, triggering a chain of reclamation
activity that may include invoking arbitrary Python code (due to finalizers, or weakref callbacks, associated with
the contained object). If it’s possible for such code to reference self again, it’s important that the pointer to
the contained object be NULL at that time, so that self knows the contained object can no longer be used. The
Py_CLEAR () macro performs the operations in a safe order.

Because the goal of tp_clear functions is to break reference cycles, it’s not necessary to clear contained ob-
jects like Python strings or Python integers, which can’t participate in reference cycles. On the other hand, it
may be convenient to clear all contained Python objects, and write the type’s tp_dealloc function to invoke
tp_clear.

More information about Python’s garbage collection scheme can be found in section <=2} 7} 1] 2] 4=%] 2] €.

This field is inherited by subtypes together with tp_traverse and the Py_ TPFLAGS_HAVE_GC flag bit: the
flag bit, tp_traverse, and tp_clear are all inherited from the base type if they are all zero in the subtype.

richcmpfunc PyTypeObject .tp_richcompare

An optional pointer to the rich comparison function, whose signature is PyObject
*tp_richcompare (PyObject *a, PyObject *b, int op). The first parameter is guaran-
teed to be an instance of the type that is defined by Py TypeObject.

The function should return the result of the comparison (usually Py_True or Py_False). If the comparison
is undefined, it must return Py_Not Implemented, if another error occurred it must return NULL and set an
exception condition.

ZF31: 1f you want to implement a type for which only a limited set of comparisons makes sense (e.g. == and ! =,
but not < and friends), directly raise TypeError in the rich comparison function.

This field is inherited by subtypes together with t p_hash: a subtype inherits tp_richcompareand tp_hash
when the subtype’s tp_richcompare and tp_hash are both NULL.

The following constants are defined to be used as the third argument for tp_ richcompare and for
PyObject_RichCompare ():

Constant | Comparison
Py LT <

Py_LE <=

Py_EOQ ==

Py_NE =

Py _GT >

Py_GE >=

The following macro is defined to ease writing rich comparison functions:

178

=

Chapter 11. 23] 73 2

J

The Python/C API, &] 8| A 3.7.17

PyObject *Py_RETURN_RICHCOMPARE (VAL_A, VAL_B, int op)
Return Py_True or Py_False from the function, depending on the result of a comparison. VAL_A and
VAL_B must be orderable by C comparison operators (for example, they may be C ints or floats). The third
argument specifies the requested operation, as for PyObject_RichCompare ().

The return value’s reference count is properly incremented.
On error, sets an exception and returns NULL from the function.
WA 3.7 =7}

Py_ssize_t PyTypeObject.tp_weaklistoffset
If the instances of this type are weakly referenceable, this field is greater than zero and contains the offset in
the instance structure of the weak reference list head (ignoring the GC header, if present); this offset is used by
PyObject_ClearWeakRefs () andthe PyWeakref_* () functions. The instance structure needs to include
a field of type PyOb ject * which is initialized to NULL.

Do not confuse this field with tp_weak 11 st; that is the list head for weak references to the type object itself.

This field is inherited by subtypes, but see the rules listed below. A subtype may override this offset; this means
that the subtype uses a different weak reference list head than the base type. Since the list head is always found via
tp_weaklistoffset, this should not be a problem.

When a type defined by a class statement has no ___slots__ declaration, and none of its base types are weakly
referenceable, the type is made weakly referenceable by adding a weak reference list head slot to the instance layout
and setting the tp_weaklistoffset of thatslot’s offset.

When a type’s ___slots__ declaration contains a slot named __weakref__, that slot becomes the weak ref-
erence list head for instances of the type, and the slot’s offset is stored in the type’s tp_weaklistoffset.

When a type’s __slots___ declaration does not contain a slot named ___weakref__, the type inherits its
tp_weaklistoffset from its base type.

getiterfunc PyTypeObject .tp_iter
An optional pointer to a function that returns an iterator for the object. Its presence normally signals that the
instances of this type are iterable (although sequences may be iterable without this function).

This function has the same signature as PyObject_GetIter ().
This field is inherited by subtypes.

iternextfunc PyTypeObject .tp_iternext
An optional pointer to a function that returns the next item in an iterator. When the iterator is exhausted, it must
return NULL; a StopIteration exception may or may not be set. When another error occurs, it must return
NULL too. Its presence signals that the instances of this type are iterators.

Iterator types should also define the tp_ i t er function, and that function should return the iterator instance itself
(not a new iterator instance).

This function has the same signature as Py Iter_ Next ().
This field is inherited by subtypes.

struct PyMethodDef* PyTypeObject . tp_methods
An optional pointer to a static NULL-terminated array of PyMethodDef structures, declaring regular methods
of this type.

For each entry in the array, an entry is added to the type’s dictionary (see tp_dict below) containing a method
descriptor.

This field is not inherited by subtypes (methods are inherited through a different mechanism).

11.3. Type Objects 179

The Python/C API, &] B{ A 3.7.17

struct PyMemberDef* PyTypeObject .tp_members

An optional pointer to a static NULL-terminated array of PyMemberDe £ structures, declaring regular data mem-
bers (fields or slots) of instances of this type.

For each entry in the array, an entry is added to the type’s dictionary (see tp_dict below) containing a member
descriptor.

This field is not inherited by subtypes (members are inherited through a different mechanism).

struct PyGetSetDef* PyTypeObject .tp_getset

An optional pointer to a static NULL-terminated array of PyGet Set De £ structures, declaring computed attributes
of instances of this type.

For each entry in the array, an entry is added to the type’s dictionary (see tp_dict below) containing a getset
descriptor.

This field is not inherited by subtypes (computed attributes are inherited through a different mechanism).

PyTypeObject* PyTypeObject .tp_base

An optional pointer to a base type from which type properties are inherited. At this level, only single inheritance
is supported; multiple inheritance require dynamically creating a type object by calling the metatype.

This field is not inherited by subtypes (obviously), but it defaults to sPyBaseObject_Type (which to Python
programmers is known as the type object).

PyObject* PyTypeObject .tp_dict

The type’s dictionary is stored here by Py Type_Ready ().

This field should normally be initialized to NULL before PyType_Ready is called; it may also be initialized to
a dictionary containing initial attributes for the type. Once Py Type_Ready () has initialized the type, extra
attributes for the type may be added to this dictionary only if they don’t correspond to overloaded operations (like
__add__()).

This field is not inherited by subtypes (though the attributes defined in here are inherited through a different mech-
anism).

7d31: 1Itis not safe to use PyDict_SetItem() on or otherwise modify tp_dict with the dictionary
C-APIL

descrgetfunc PyTypeObject .tp_descr_get

An optional pointer to a “descriptor get” function.

The function signature is

PyObject * tp_descr_get (PyObject *self, PyObject *obj, PyObject *type);

This field is inherited by subtypes.

descrsetfunc PyTypeObject .tp_descr_set

An optional pointer to a function for setting and deleting a descriptor’s value.

The function signature is

int tp_descr_set (PyObject *self, PyObject *obj, PyObject *value);

The value argument is set to NULL to delete the value. This field is inherited by subtypes.

Py_ssize_t PyTypeObject .tp_dictoffset

If the instances of this type have a dictionary containing instance variables, this field is non-zero and con-

180

Chapter 11. 254 3 =

The Python/C API, &] 8| A 3.7.17

tains the offset in the instances of the type of the instance variable dictionary; this offset is used by
PyObject_GenericGetAttr().

Do not confuse this field with tp_dict; that is the dictionary for attributes of the type object itself.

If the value of this field is greater than zero, it specifies the offset from the start of the instance structure. If the value
is less than zero, it specifies the offset from the end of the instance structure. A negative offset is more expensive to
use, and should only be used when the instance structure contains a variable-length part. This is used for example
to add an instance variable dictionary to subtypes of str or tuple. Note that the tp_basicsize field should
account for the dictionary added to the end in that case, even though the dictionary is not included in the basic
object layout. On a system with a pointer size of 4 bytes, tp_dictoffset should be set to —4 to indicate that
the dictionary is at the very end of the structure.

The real dictionary offset in an instance can be computed from a negative tp_dictoffset as follows:

dictoffset = tp_basicsize + abs(ob_size) *tp_itemsize + tp_dictoffset
if dictoffset is not aligned on sizeof (void*) :
round up to sizeof (void*)

where tp_basicsize, tp_itemsizeand tp_dictoffset are taken from the type object, and ob_size
is taken from the instance. The absolute value is taken because ints use the sign of ob_size to store
the sign of the number. (There’s never a need to do this calculation yourself; it is done for you by
_PyObject_GetDictPtr().)

This field is inherited by subtypes, but see the rules listed below. A subtype may override this offset; this means that
the subtype instances store the dictionary at a difference offset than the base type. Since the dictionary is always
found via tp_dictoffset, this should not be a problem.

When a type defined by a class statementhasno ___slots___ declaration, and none of its base types has an instance
variable dictionary, a dictionary slot is added to the instance layout and the tp_dictoffset is set to that slot’s
offset.

When a type defined by a class statement has a ___slots___ declaration, the type inherits its tp_dictoffset
from its base type.

(Adding aslotnamed __dict__tothe ___slots__ declaration does not have the expected effect, it just causes
confusion. Maybe this should be added as a feature just like _weakref though.)

initproc PyTypeObject .tp_init
An optional pointer to an instance initialization function.

This function corresponds tothe __init__ () method of classes. Like __init__ (), itis possible to create an
instance without calling __init__ (), and it is possible to reinitialize an instance by calling its __init__ ()
method again.

The function signature is

int tp_init (PyObject *self, PyObject *args, PyObject *kwds)

The self argument is the instance to be initialized; the args and kwds arguments represent positional and keyword
arguments of the callto __init__ ().

The tp_init function, if not NULL, is called when an instance is created normally by calling its type, after the
type’s t p_new function has returned an instance of the type. If the £ p_ new function returns an instance of some
other type that is not a subtype of the original type, no t p_ init function is called; if tp_new returns an instance
of a subtype of the original type, the subtype’s tp_init is called.

This field is inherited by subtypes.

allocfunc PyTypeObject .tp_alloc
An optional pointer to an instance allocation function.

11.3. Type Objects 181

The Python/C API, &] B{ A 3.7.17

The function signature is

PyObject *tp_alloc(PyTypeObject *self, Py_ssize_t nitems)

The purpose of this function is to separate memory allocation from memory initialization. It should return a
pointer to a block of memory of adequate length for the instance, suitably aligned, and initialized to zeros, but
with ob_refcnt set to 1 and ob_type set to the type argument. If the type’s tp_itemsize is non-zero,
the object’s ob_s1ize field should be initialized to nitems and the length of the allocated memory block should
betp_basicsize + nitems*tp_itemsize, rounded up toa multiple of sizeof (void*) ;otherwise,
nitems is not used and the length of the block should be tp_basicsize.

Do not use this function to do any other instance initialization, not even to allocate additional memory; that should
be done by tp_new.

This field is inherited by static subtypes, but not by dynamic subtypes (subtypes created by a class statement); in
the latter, this field is always set to PyType_ GenericAlloc (), to force a standard heap allocation strategy.
That is also the recommended value for statically defined types.

newfunc PyTypeObject.tp_new

An optional pointer to an instance creation function.

If this function is NULL for a particular type, that type cannot be called to create new instances; presumably there
is some other way to create instances, like a factory function.

The function signature is

PyObject *tp_new (PyTypeObject *subtype, PyObject *args, PyObject *kwds)

The subtype argument is the type of the object being created; the args and kwds arguments represent positional
and keyword arguments of the call to the type. Note that subtype doesn’t have to equal the type whose tp_new
function is called; it may be a subtype of that type (but not an unrelated type).

The tp_new function should call subtype—->tp_alloc (subtype, nitems) to allocate space for the
object, and then do only as much further initialization as is absolutely necessary. Initialization that can safely be
ignored or repeated should be placed in the tp_ init handler. A good rule of thumb is that for immutable types,
all initialization should take place in tp_new, while for mutable types, most initialization should be deferred to
tp_init.

This field is inherited by subtypes, except it is not inherited by static types whose tp_base is NULL or
&PyBaseObject_Type.

destructor PyTypeObject .tp_free

An optional pointer to an instance deallocation function. Its signature is freefunc:

void tp_free(void *)

An initializer that is compatible with this signature is PyOb ject_Free ().

This field is inherited by static subtypes, but not by dynamic subtypes (subtypes created by a class statement); in
the latter, this field is set to a deallocator suitable to match Py Type GenericAlloc () and the value of the
Py_TPFLAGS_HAVE_GC flag bit.

inquiry PyTypeObject .tp_is_gc

An optional pointer to a function called by the garbage collector.

The garbage collector needs to know whether a particular object is collectible or not. Normally, it is sufficient to look
at the object’s type’s tp_ f1ags field, and check the Py TPFLAGS_HAVE_ GC flag bit. But some types have a
mixture of statically and dynamically allocated instances, and the statically allocated instances are not collectible.
Such types should define this function; it should return 1 for a collectible instance, and 0 for a non-collectible
instance. The signature is

182

Chapter 11. 254 3 =

The Python/C API, &] 8| A 3.7.17

int tp_is_gc (PyObject *self)

(The only example of this are types themselves. The metatype, Py Type_ Type, defines this function to distinguish
between statically and dynamically allocated types.)

This field is inherited by subtypes.

PyObject* PyTypeObject .tp_bases
Tuple of base types.

This is set for types created by a class statement. It should be NULL for statically defined types.
This field is not inherited.

PyObject* PyTypeObject .tp_mro
Tuple containing the expanded set of base types, starting with the type itself and ending with object, in Method
Resolution Order.
This field is not inherited; it is calculated fresh by Py Type_Ready ().

destructor PyTypeObiject .tp_finalize
An optional pointer to an instance finalization function. Its signature is destructor:

void tp_finalize (PyObject *)

If tp_finalizeisset, the interpreter calls it once when finalizing an instance. It is called either from the garbage
collector (if the instance is part of an isolated reference cycle) or just before the object is deallocated. Either way,
it is guaranteed to be called before attempting to break reference cycles, ensuring that it finds the object in a sane
state.

tp_finalize should not mutate the current exception status; therefore, a recommended way to write a non-
trivial finalizer is:

static void
local_finalize (PyObject *self)
{

PyObject *error_type, *error_value, *error_traceback;

/* Save the current exception, if any. */
PyErr_Fetch (&error_type, &error_value, &error_traceback);

VA V4

/* Restore the saved exception. */
PyErr_Restore (error_type, error_value, error_traceback);

For this field to be taken into account (even through inheritance), you must also set the
Py TPFLAGS_HAVE_FINALIZE ﬂags bit.

This field is inherited by subtypes.
B & 3409 7}

15 A

“Safe object finalization” (PEP 442)

PyObject* PyTypeObject .tp_cache
Unused. Not inherited. Internal use only.

11.3. Type Objects 183

https://www.python.org/dev/peps/pep-0442

The Python/C API, &] B{ A 3.7.17

PyObject* PyTypeObject .tp_subclasses
List of weak references to subclasses. Not inherited. Internal use only.

PyObject* PyTypeObject .tp_weaklist
Weak reference list head, for weak references to this type object. Not inherited. Internal use only.

The remaining fields are only defined if the feature test macro COUNT_ALLOCS is defined, and are for internal use only.
They are documented here for completeness. None of these fields are inherited by subtypes.

Py_ssize_t PyTypeObject.tp_allocs
Number of allocations.

Py_ssize_t PyTypeObject.tp_frees
Number of frees.

Py_ssize_t PyTypeObject.tp_maxalloc
Maximum simultaneously allocated objects.

PyTypeObject* PyTypeObject .tp_next
Pointer to the next type object with a non-zero tp_allocs field.

Also, note that, in a garbage collected Python, tp_dealloc may be called from any Python thread, not just the thread which
created the object (if the object becomes part of a refcount cycle, that cycle might be collected by a garbage collection
on any thread). This is not a problem for Python API calls, since the thread on which tp_dealloc is called will own the
Global Interpreter Lock (GIL). However, if the object being destroyed in turn destroys objects from some other C or
C++ library, care should be taken to ensure that destroying those objects on the thread which called tp_dealloc will not
violate any assumptions of the library.

11.4 Number Object Structures

PyNumberMethods
This structure holds pointers to the functions which an object uses to implement the number protocol. Each function
is used by the function of similar name documented in the <= A} == 2 & = section.

Here is the structure definition:

typedef struct {
binaryfunc nb_add;

binaryfunc
binaryfunc
binaryfunc
binaryfunc

nb_subtract;
nb_multiply;

nb_remainder;

nb_divmod;

ternaryfunc nb_power;

unaryfunc nb_negative;
unaryfunc nb_positive;
unaryfunc nb_absolute;

inquiry nb_.

bool;

unaryfunc nb_invert;

binaryfunc
binaryfunc
binaryfunc
binaryfunc
binaryfunc

nb_lshift;
nb_rshift;
nb_and;
nb_xor;
nb_or;

unaryfunc nb_int;
void *nb_reserved;
unaryfunc nb_float;

(TF= ol ATl A%)

Chapter 11. A &]

4

The Python/C API, &] 8| A 3.7.17

(o] A sl o] A A M A%)

binaryfunc nb_inplace_add;
binaryfunc nb_inplace_subtract;
binaryfunc nb_inplace_multiply;
binaryfunc nb_inplace_remainder;
ternaryfunc nb_inplace_power;
binaryfunc nb_inplace_1lshift;
binaryfunc nb_inplace_rshift;
binaryfunc nb_inplace_and;
binaryfunc nb_inplace_xor;
binaryfunc nb_inplace_or;

binaryfunc nb_floor_divide;
binaryfunc nb_true_divide;
binaryfunc nb_inplace_floor_divide;
binaryfunc nb_inplace_true_divide;

unaryfunc nb_index;
binaryfunc nb_matrix_multiply;

binaryfunc nb_inplace_matrix_multiply;
} PyNumberMethods;

ZF31: Binary and ternary functions must check the type of all their operands, and implement the necessary
conversions (at least one of the operands is an instance of the defined type). If the operation is not defined for the
given operands, binary and ternary functions must return Py_Not Implemented, if another error occurred they
must return NULL and set an exception.

Z31: The nb_reserved field should always be NULL. It was previously called nb_1ong, and was renamed
in Python 3.0.1.

11.5 Mapping Object Structures

PyMappingMethods
This structure holds pointers to the functions which an object uses to implement the mapping protocol. It has three
members:

lenfunc PyMappingMethods .mp_length
This function is used by PyMapping Size () and PyObject_Size (), and has the same signature. This slot
may be set to NULL if the object has no defined length.

binaryfunc PyMappingMethods .mp_subscript
This function is used by PyOb ject_GetItem() and PySequence_GetSlice (), and has the same signa-
ture as PyObject_GetItem (). This slot must be filled for the PyMapping Check () function to return 1,
it can be NULL otherwise.

objobjargproc PyMappingMethods .mp_ass_subscript
This function is used by PyObject_SetItem(), PyObject_Delltem(), PyObject_SetSlice ()
and PyObject_DelSlice (). It has the same signature as PyObject_SetItem (), but v can also be set to
NULL to delete an item. If this slot is NULL, the object does not support item assignment and deletion.

11.5. Mapping Object Structures 185

The Python/C API, &] B{ A 3.7.17

11.6 Sequence Object Structures

PySequenceMethods

This structure holds pointers to the functions which an object uses to implement the sequence protocol.

lenfunc PySequenceMethods.sq_length

This function is used by PySequence_Size () and PyObject_Size (), and has the same signature. It is
also used for handling negative indices via the sqg_itemand the sqg_ass_itemslots.

binaryfunc PySequenceMethods.sq concat

This function is used by PySequence_Concat () and has the same signature. It is also used by the + operator,
after trying the numeric addition via the nb_add slot.

ssizeargfunc PySequenceMethods.sq_repeat

This function is used by PySequence_Repeat () and has the same signature. It is also used by the * operator,
after trying numeric multiplication via the nb_multiply slot.

ssizeargfunc PySequenceMethods.sq _item

This function is used by PySequence_GetItem() and has the same signature. It is also used by
PyObject_GetItem (), after trying the subscription via the mp_subscript slot. This slot must be filled
for the PySequence_Check () function to return 1, it can be NULL otherwise.

Negative indexes are handled as follows: if the sg_length slot is filled, it is called and the sequence length is
used to compute a positive index which is passed to sg_item. If sg_length is NULL, the index is passed as
is to the function.

ssizeobjargproc PySequenceMethods.sq_ass_item

This function is used by PySequence_SetItem() and has the same signature. It is also used by
PyObject_SetItem() and PyObject_DelItem (), after trying the item assignment and deletion via the
mp_ass_subscript slot. This slot may be left to NULL if the object does not support item assignment and
deletion.

objobjproc PySequenceMethods.sq_contains

This function may be used by PySequence_Contains () and has the same signature. This slot may be left to
NULL, in this case PySequence_Contains () simply traverses the sequence until it finds a match.

binaryfunc PySequenceMethods.sq_inplace_concat

This function is used by PySequence_InPlaceConcat () and has the same signature. It should modify its
first operand, and return it. This slot may be left to NULL, in this case PySequence_InPlaceConcat () will
fall back to PySequence_Concat (). It is also used by the augmented assignment +=, after trying numeric
in-place addition via the nb_inplace_add slot.

ssizeargfunc PySequenceMethods.sq_inplace_repeat

This function is used by PySequence_InPlaceRepeat () and has the same signature. It should modify its
first operand, and return it. This slot may be left to NULL, in this case PySequence_InPlaceRepeat () will
fall back to PySequence_Repeat (). It is also used by the augmented assignment *=, after trying numeric
in-place multiplication via the nb_inplace_multiply slot.

186

Chapter 11. 254 3 =

The Python/C API, &] 8| A 3.7.17

11.7 Buffer Object Structures

PyBufferProcs
This structure holds pointers to the functions required by the Bujfer protocol. The protocol defines how an exporter
object can expose its internal data to consumer objects.

getbufferproc PyBufferProcs .bf_getbuffer
The signature of this function is:

int (PyObject *exporter, Py_buffer *view, int flags);

Handle a request to exporter to fill in view as specified by flags. Except for point (3), an implementation of this
function MUST take these steps:

(1) Check if the request can be met. If not, raise PyExc_BufferError, set view—->0bj to NULL and
return —1.

(2) Fill in the requested fields.
(3) Increment an internal counter for the number of exports.
(4) Set view->o0b7j to exporter and increment view—>ob .
(5) Return 0.
If exporter is part of a chain or tree of buffer providers, two main schemes can be used:

¢ Re-export: Each member of the tree acts as the exporting object and sets view—>obj to a new reference to
itself.

e Redirect: The buffer request is redirected to the root object of the tree. Here, view—>ob7j will be a new
reference to the root object.

The individual fields of view are described in section Buffer structure, the rules how an exporter must react to specific
requests are in section Buffer request types.

All memory pointed to in the Py__buf fer structure belongs to the exporter and must remain valid until there are
no consumers left. format, shape, strides, suboffsetsand internal are read-only for the consumer.

PyBuffer FillInfo () provides an easy way of exposing a simple bytes buffer while dealing correctly with
all request types.

PyObject_GetBuffer () is the interface for the consumer that wraps this function.

releasebufferproc PyBufferProcs .bf_releasebuffer
The signature of this function is:

void (PyObject *exporter, Py_buffer *view);

Handle a request to release the resources of the buffer. If no resources need to be released, PyBufferProcs.
bf_releasebuffer may be NULL. Otherwise, a standard implementation of this function will take these
optional steps:

(1) Decrement an internal counter for the number of exports.
(2) If the counter is 0, free all memory associated with view.

The exporter MUST use the internal field to keep track of buffer-specific resources. This field is guaranteed
to remain constant, while a consumer MAY pass a copy of the original buffer as the view argument.

This function MUST NOT decrement view—>obj, since that is done automatically in PyBuffer_Release ()
(this scheme is useful for breaking reference cycles).

11.7. Buffer Object Structures 187

The Python/C API, &] B{ A 3.7.17

PyBuffer Release () is the interface for the consumer that wraps this function.

11.8 Async Object Structures

WA 3.50] 27}

PyAsyncMethods
This structure holds pointers to the functions required to implement awaitable and asynchronous iterator objects.

Here is the structure definition:

typedef struct {
unaryfunc am_await;
unaryfunc am_aiter;
unaryfunc am_anext;
} PyAsyncMethods;

unaryfunc PyAsyncMethods .am_await
The signature of this function is:

PyObject *am_await (PyObject *self)

The returned object must be an iterator, i.e. PyIter Check () mustreturn 1 for it.
This slot may be set to NULL if an object is not an awaitable.

unaryfunc PyAsyncMethods.am_aiter
The signature of this function is:

PyObject *am_aiter (PyObject *self)

Must return an awaitable object. See __anext__ () for details.
This slot may be set to NULL if an object does not implement asynchronous iteration protocol.

unaryfunc PyAsyncMethods . am_anext
The signature of this function is:

’Pyobject *am_anext (PyObject *self)

Must return an awaitable object. See __anext__ () for details. This slot may be set to NULL.

11.9 &3} 7}u) %] 3] A ¥

<3 FxE o= 7MAE A S-S sto] 2 A Y-S FA AH oYY 5 Y= thE AA Y
“Zdl o7 Ql AA P A Yol Bt thE 7“iﬂ°ﬂ tf st F2E A AGsHA FAL ZP%é 7HE A
q]ﬂlé*i‘ﬂ/‘ﬂ%‘ﬁ}%%% ZHRA] =R ol th gk o WA A QA A AS AT 87 s th
A" VF S s W, & AAY tp flags DT 7} Py TPFLAGS HAVE GCE E?}—oﬂ oF 3t
tp_traverse A8|7] S AFdfoF FUth Fo A2V AT}F 7O, tp clear THE AlF 3l oF
ok
Py_TPFLAGS_HAVE_GC
ol Zeja7t AAH F AA= A7 AHEH S M oFFUh B E S& olH st AAE
e o]y A2t shRls Yt

188 Chapter 11. 214 3+& =] ¢

The Python/C API, &] 8| A 3.7.17

A" ol W@ Y AP A= F 7HA A& 58l oF Fth
1. AAS W2 8+= PyObject_GC_New () Y PyObject_GC_NewVar ()5 AF&3to] &F&) of gt}
2. 2 e oo st F2E 238 ¢ Q= RE D=7 27385, PyObject_GC_Track ()& &
23 ok gk,
TYPE* PyObject_GC_New (TYPE, PyTypeObject *type)
PyObject_New () St FAVSFAIRY, Py TPFLAGS_HAVE GC Z 27} AAE Aeoly AAE 9 A

TYPE* PyObject_GC_NewVar (TYPE, PyTypeObject *type, Py_ssize_t size)
PyObject_NewVar ()2} G AV8FA By, Py TPFLAGS _HAVE _GC Z#27F A A H A" oy AAE 9
sk 4.

TYPE* PyObject_GC_Resize (TYPE, PyVarObject *op, Py_ssize_t newsize)
Resize an object allocated by PyObject_NewVar (). Returns the resized object or NULL on failure. op must
not be tracked by the collector yet.

void PyObject_GC_Track (PyObject *op)
TR 717 F A8k AE ol A Al AA opE F7HFUTE 7] oAl 71X k2 A7t 3=
Sglomz 2ANE 59 AN S BN FULE tp traverse 42717k FATE R E B}
FRAAY TEH ok FUITH BE AR BHE 2 Tk
void _PyObject_GC_TRACK (PyObject *op)
PyObject_GC_Track ()9 W22 WA, B 5=
WA 3.6-7F F| A o] fa 2 sho] 4 3.8 A AHA|H 35Ut
uhR A 2, A 9] B3 A A (deallocator) = W53 F 4 L F53oF Ik
L o2 Ae i & Fxdhs 2E7HF a3 H 7] Ao, pyobject _GC_UnTrack ()& TEd oF gt
2. A9 W B 2= PyObject _GC_Del ()5 AR88to] &3 3 A= of of Fth.
void PyObject_GC_Del (void *op)
PyObject_GC _New () W PyObject_GC_NewVar () S AF-g3te] AR o = v 22| & 3 A4 ot
void PyObject_GC_UnTrack (void *op)
SR 77} F A sk A oy AR ol A op Z zﬂ = Xﬂ ekl qq. PyObject_GC_Track ()& o] A
ol thal ThAl B & 3to] 22 A7) Aol THA Z274ek 4= 1ol -2 BHAIA . B AR (tp_dealloc
A7) e tp_traverse A 7] A A& = -QE7} 23} 57] Aol AA ol Hell o] g 2 E 6
oF ShU T},
void _PyObject_GC_UNTRACK (PyObject *op)
PyObject_GC_UnTrack ()9 22 WA, &F ZE+=

S~
ofo

F
WA 365 57 o] Wi I &= gho] M 3.800| 4] AHA| = 5 T
tp_traverse A8 7= O+ 2+] &4 wj /) W5 E WolE Ut

int (*visitproc) (PyObject *object, void *arg)
tp_traverse A g 7]o] AEE &= WEA} 9] &, o] = B = AR S object R, tp_traverse
A 719 Al HA) 7] APE arg®E SEF o] of Futh stolM Fole &3 7 A F A E FEH 5]
SYo 2] WA BB AR UUTH ALE AT A EA BB A oF T DR E Uk

tp_traverse 2 2]7]= ta g o]ofoF &t}

int (*traverseproc) (PyObject *self, visitproc visit, void *arg)
Traversal function for a container object. Implementations must call the visit function for each object directly
contained by self, with the parameters to visit being the contained object and the arg value passed to the handler.
The visit function must not be called with a NULL object argument. If visit returns a non-zero value that value
should be returned immediately.

317 wolof g th.

11.9. <3 718]x] 7 A Y 189

The Python/C API, &] B{ A 3.7.17

tp_traverse A 2]7] A4 & &<3str] fal, py _visiT() A2 Al FH U o] 22 E AHESHE |,
tp_traverse T8 AR o5& &3] visit 2 arg® X A3 oF T T}:

void Py_VISIT (PyObject *o)

If o0 is not NULL, call the visit callback, with arguments o and arg. If visit returns a non-zero value, then return it.
Using this macro, tp_ t raverse handlers look like:

static int

my_traverse (Noddy *self, visitproc visit, woid *arg)

{
Py_VISIT (self->foo0);
Py_VISIT (self->bar);
return O;

The tp_clear handler must be of the i nguiry type, or NULL if the object is immutable.
int (*inquiry) (PyObject *self

)
A2 S WIS F I
olHMAEE] T AR}
thsll Py _DECREF () & E &3]

ol HNEE TEFTH

-

190 Chapter 11. 214 3+& =] ¢

CHAPTER 12

API2} ABI B A 2 o] 7]

PY_VERSION_HEX+ ©@d A2 AFH Jjo] A v d HEdUch
0

o & S0] PY_VERSION_HEX7} 0x030401a22 AAEH W, 7|2 WA AR L o} 22 vwa oz U E
AR A et Zde 4 sy oh

bko] | W] E (7] oY | &
E <= A
1 1-8 PY MAJOR_VERSION (3.4.1a29] 3)
2 9-16 PY_MINOR_VERSION (3.4.1a29] 4)
3 17-24 PY_MICRO_VERSION (3.4.1a2%] 1)
4 25-28 PY RELEASE_LEVEL (¥} 0xA, H| E}= 0xB, Bl T H = 0xC, F
F2 0xF). o] oo X+ Lgatg Yt
29-32 PY_RELEASE_SERIAL(3.4.1a29 2,3 < ujZ=0)

wetA 3.4.1a2= 1634 ¥4 0x030401a2Yg Yt}
RE F0]A vl 32 = Include/patchlevel.hol] A 2] Ut}

191

https://github.com/python/cpython/tree/3.7/Include/patchlevel.h

The Python/C API, &] B{ A 3.7.17

192 Chapter 12. API¢} ABI ¥ A & 0] 7]

APPENDIX A

2to3 Tto]M 2x FTEE Ffo]M3x T ER
o

2to3 £ EF ol B oA 1ib2to3 E Al U S YA 2 AP = = 2T HEE Tools/
scripts/2to3 2 A|FE YUt} 2to3-reference 2 X A 8.

abstract base class (34 W o] A Ze]A) FAH| oA ZEd A= hasattr () ZLEHIaYdE EHGA LY
] ESHA ZEE (A& €0, A A E) %, AdE S o) AE Yot PHS ATTFOEHA ¢ Efo] 3
S R85t ABCE 7MY A B ZlaE = Ydted, S48 AS8A oA isinstance ()
2Fissubclass () ol o3 AL 5 U+ é’ é%?&‘%ﬂr, abc 25 AYAE HA L. JtolHd =W
2 W7 ABC £9] fﬂrEPOhtﬂ OS5 22 AE0] 5yt AF8 F X (collections.abe +%ﬂlﬁﬂ),
ZAF (numbers EE9A), 2EH (io & oﬂ,ﬂ) oJx E voltj9} 2 (importlib.abc EE|A]).
abc &S AMHS-SA] AHAT RS ABCE s S5 dFUTh

annotation (o] =EH| o] H) FA5ol whet 3 SIE B AR = Uy, FH A OEYRE B 5 Wi7iHS U
e gk A A E ol EQJyth

21 49| of mH o] 42 AP ATl A AT 4 glARE A Ay, Fela SA F T o] . o]
AL 4t 2E, ZH:2, F42 __annotations_ 54 JEFFE AFHUTH
o] 7I5& AW ste ¥ o inH o] A, T o] =E| o], PEP 484, PEP 5262 =34 &

]
argument (21 2}

) FFE T2 I (VM) 2 AEHE g F SR A Ut
c 719 E O_Xer WOrdargument) S 52w AEATL el 22 AAH (O £0], name=) & **
ol 2 gAYV 2 ALs = Ak A€ 0], th&3 22 complex () TENA 33745 &

w5 A9 S ARt

complex (real=3, imag=5)
complex (**{'real': 3, 'imag': 5})

193

https://www.python.org/dev/peps/pep-0484
https://www.python.org/dev/peps/pep-0526

The Python/C API, &] B{ A 3.7.17

o 9 X AR} (positional argument): 7)Y E A X7} obd AR}, 9 x] AAEL Q12 B29] 2o L}
A olH e £ o ol » & 2ol A2 5 A5 A& & =
EF A ARG Y

B2
kv
dlo
d)
iy -
rlo
fofs
e
2
>
s

complex (3, 5)
complex (* (3, 5))

AAb= vy o] 5 22 A A W lﬂmﬂﬂ - o]t el A 85 = 7t 25 ol sl A= calls D=
BA2 Ao, o E40)d A2 A8 5 ATk 792 ko] Ao wrol B H U,
g0 7 o] vj 7] 4 FE 3} FAQ ‘%0 Ak} v 7 o Tfﬂ Aol 2} PEP 3625 H A 2.

asynchronous context manager (1]5 7] Z E #E|AP) __aenter_ () & __aexit_ () HIAEE AHY
O ZH async with FojA] B]% S Alost= A, PEP 4922 = 95 <5 th

asynchronous generator ®E 7] Addele]) v)E5 7] Alvd olH olEdolH & B8 F+E
2 ARH = AR A A H Y Holet],async for FEIMAEE 4 e G S Wt yield
234 :-L-f:‘: r/}‘— Aol thF Yt
BEHlE7l Ade ey & 7 71 A % ol ™ F o A= vl 5 7] Al #l ol g oE g ol ¥ & 727
Yt 945—3]'*‘594“17}“ﬂﬂ5]’x] A A, FAT GAENA ESTS 040;}\41:]-,

U57) oEEl o] 6] AH _anext__() & FEEH o8 o]E1 2 AAE F2 57, 0| 2L THE vield
A4 744 157 A dol8 §42) el AT o

Ztyielde GAIACE A& SHst, XY (AF U 7] TAduy-w 58 2F3HE) A3
AEIE 719U b5 7] Alvd el] o5 # ol E 7} __anext_ () 7t =8+ & 3] o9 o] E
B2 AAEd, gy 2oz B3]k PEP 4929} PEP 5258 H A .

asynchronous iterable (B]£ 7| o]E]2] &) async for BoA AF2E 4 = AA. __aiter_ () HAEE
H'57] ol dl o8 & =& F oF U th PEP 492 2 =95 A F YT

asynchronous iterator (B]57] o]Jg]#]|o|E]) __aiter_ () & __anext_ () WAEE Fd3}= 2A.
__anext__ = ol olHE AAE E8FHoF F§Y}. async forE StopAsyncIteration 9|97}
WA S ol 742] W) E 7] olE @l o] B9 __anext_ () WINETVF =8 FE A olEHES FUth PEP

4928 == A5t
attribute (6] E-|HE) AE A S ALl = o207 I2EE AA S AT 7k oS S0, AA o7} A E
REaE 7HAH Oaﬂ‘“’é Tz Yk
awaitable (o] f]o]E] &) await A A AL E = &= AA|. IZFH oy __await_ () HAEE 713
AR 7L E & Q) PEP 4922 KA .

BDFL Z#}H] 28 £Al =X %} (Benevolent Dictator For Life), = Guido van Rossum, 3} o] % 2] A A},

binary file (9}o] 2] Shel) o] =5 A 5L AT & 5 Qe 92 AL whol el el o 2 vl
g EE ("rb', 'wb' EE 'rb+") 2 Ed 39, ys stdin buffer, sys.stdout .buffer, io.
BytesIO 2} gzip. G21pFlle./] AEHAE

str AAE 91 & 4 A

bytes-like object (B}o]EHF AA) Wy 22 B £ A G312 C-A5 HHE A2z E T 4 JdF5 YT o
zE memoryview ﬂ%—% E2=2o0|1 bytes bytearray, array. array A A > gt
OJEGF AA =2 vtolv g HlolH & thF = o 7HA] dAkE A2 5 UE
A2 A%, 5\—7“% TS AL LTS AE °] O]Al/]r/]'-

d Ao =T
o Q14+ 2 wo] i) o o] 87} /WA Y B2} s h o] d B 9ol AWAE B A T-27] ol
O EERF AAetr AT YLE ZhH ¥y AR o 2= bytearray @ bytearray & memoryview

194 Appendix A. &3

https://www.python.org/dev/peps/pep-0362
https://www.python.org/dev/peps/pep-0492
https://www.python.org/dev/peps/pep-0492
https://www.python.org/dev/peps/pep-0525
https://www.python.org/dev/peps/pep-0492
https://www.python.org/dev/peps/pep-0492
https://www.python.org/dev/peps/pep-0492
https://www.python.org/dev/peps/pep-0492
https://gvanrossum.github.io/

The Python/C API, &] 8| A 3.7.17

7F AFULh o2 Axts2 vlely g dl o] B 7 B AA| (“217] A§ vl ELF{F AA) o] AAEHES
LF3YL} olH A5 o 2= bytes@bytes AA| S memoryview 7} 5 U T}

bytecode (H}o]E T &) Fo|H A~ FT &= vlol|E T =2 FH31YE =4, CPython A H Z & H A T}o]
ZR I YR 59 O]E T+ .pyc FLo A Ho, 2 3L S F HA AP o
o w2 A E YT (& Hfo| E ”‘:E«l AARLE I 5 dFYTh. o] “ZZ} Aoj” = 7+
Hlo] E F = o tf-§-3F+=]7%]% AP st= 71 717 o A A E Tt G Hlo|E e = A& T2
stol A 7H 71 Aol A ZHe & A2 7|t st A &, pfo] 4 vl 22 Zhol] FA A o] A & okrh= Aol & oF
EigRi=3

°
o
—“#EHJ

|>

HlolE F = o5 BEE2 dis BE AHA o Uyt

cass (F22) AHEA B AAES HE7 AT T FH2 A B T dadas e R
A sbal= Uﬂ/HE Aogeg 23 YTH

classvarlable (B2 SH2A FogH 1 A =2 (5, W29 R of| A 7} o} g}) ol A 1t

FAHE= ﬁ—?

coercion (Z.o]A) 22 o] F AAE FHlsl= Axto] dojh= oL P AAHAEE PO T &
AlH o g HE3E= 2. A& E0],int (3.15) = AFE A5 302 HBAF Y A 9 3+4.5 o A],
ZF A A= o2 ol AL (Bt int, THE 3= float), 5 T 3H7] Aof 2 P o=z wEhs)of gt
I3 oW TypeErrors oYtk IA4M Qo s¥H = PR AT 220 W7 22
Po g HrslefFoof Tt ol & S0, 1 3+4.5 3F= th4l £loat (3) +4.5.

complex number (8 2) 953 A4 A Ado A, BE 7’%2} FAgRel s oz xdFHY
ot} R Ago 54 ‘:}H(19 AlFHE FHot A, FF oAM= 15, :o'-ﬁi}"ﬂ/ﬂh 1=
E718Uth holHS A2 B7HS 2 BAas “;:7]31] 13U} s § FAuALE B9 A
F71gUth o & £0],3+13. math 259 B4, ¥ do] R3HY, cmathE AFE U th B A9
g2 £E 525794 754Utk E 88ttty »=7]7 %ﬂ"/]’“ﬂ, AL g43] FANE fyg‘/]"/}

context manager (B AE A2 A} _ enter_ () &_ exit_ () HIAEE AT o ZH with B4 K

o) 3 4S A o] sl AA. PEP 3430 % % 9% 95T

M%) Adisd] met b e /b 4 9
S ol cdE-22 Agas) ATy

A Ael =l o7 AT EAM°Am0ﬂﬂw¢E@EQ %E%%N@ﬂ%ﬂﬂéﬂﬂﬂ
HEE FA S AU U contextvarsE FRFAHAIL.

contiguous (A<%) ¥ 3= A &S| C-AZ5 (C-contiguous)©) A EE T ﬁﬂ.—(Fortran contiguous)d W] Aot
AARZYTH AL HHA=C-A&5 o HA 2ES ALY U AL v Dol A, FEE2 A2 A -3}
3, 004 Al &ehs L 52k AP A E w R g o v X = of of It thakd C-2 <5) ol A,
HEE F49 CAUZE FEES LT vpA et A A7) 74 wke] Wy o) sHA| th 2 ES A%
W ol A=, A HA A AT} 7 ““LE] L Iasi=

coroutine (% ¥l) Coroutines are a more generalized form of subroutines. Subroutines are entered at one point and
exited at another point. Coroutines can be entered, exited, and resumed at many different points. They can be
implemented with the async def statement. See also PEP 492.

coroutine function (Z. 58l &) T2 AAE SHFE= T4 Z2E T4 async def Fog AoJF 4
11, await & async forE]- async with 7|9 =& =3t ¢ JQH5 U o] 452 PEP 492 9 2] 3

EdE s U

CPython 3}o]# g 2™ dojo] i1 2 ¢l 78 oy, python.orgoll A Wl = F Ut} o] &L Jython ©] 1}
IronPython 7} 22 thg A5 78 E F 27} 912 olf & ©] “CPython” o] AUt

decorator (W] Z #|o]E]) T}E T4+ 5 E8]F = 3|, 5 Qurapper EHS ARSI vdor AR
AUtk dZ g o) e 2] £3F o= classmethod () statlcmethod ?Jl/]D}.

el 22 &A A 2 d B

.4
b7
b=
0

L

ohohe B Ao E ugo R S5

195

https://www.python.org/dev/peps/pep-0343
https://www.python.org/dev/peps/pep-0492
https://www.python.org/dev/peps/pep-0492
https://www.python.org

The Python/C API, &] B{ A 3.7.17

def f(...):
f = staticmethod (f)

@staticmethod
def f(...):

22 lge] FeaoE SA3HA B & A 2 Y Utk dlZ# o] g o] T §F] A S Y82 T4 H Y
A A o dPAE K Ut

descriptor (C] A3 HE]) WA E __get_ () o]} __set_ () O]LJ-_delete_ £ Aolst= AA. 29
X oJEH E7]"3V\3%]Ei°]fq1°1 PRE I =58 A F8& oyt BF,abs ¢
L, 2 A, A A S AFSE o, 0] Sl /qﬁil"ﬂ b A€ 5y A B
b7 Y23 gHW, Gt UATHE WA= 55 3l 3= 212 s}o] o
i3t 22 ol G4y, &, HAE, :E-—ﬂﬂ,—g‘iﬂi]"1 , 2H 8 wHAE, FFHs FX
S B 75 V2 E olF Y7 WlE P YT

Y23 HE 9 HA =S o & A g Wj-8- descriptors o] U3 T}

dictionary (94 g]) 429 71E kel th&A]% A 8] G (associative array). 7]= _ hash__ () <}
_eq () WMINEE ZE EE AAZLE A5t BollA siA et RE YT

dictionary view (94 2] H) dict.keys (), dict.values (), dict.items () HAE7} S8 FE= A A
== 9A4YE Fe BEUTE o]AE2 9A Y & E?'é"ﬂtﬂﬂ%a?l% Al-sst=d, 94

el 7k g o, 7P°lt“i§‘r—‘§&g§ﬁ‘:‘r%—‘£%ll4‘>} gy fE Sdd e AER A HY

list (dictview) & AF23FH FH Ut} dict-viewsE H A &
docstring (5 £29) Fel2, B, BRI 3 WA RALSE Yehh £49 A8 L. 29201 A
o = FAE AT Aot el g AAH A SR ZH;H A, T4, BEY __doc JEZRER 444

Utk AER AR AL Fol AT 4 Qome, AAe] AUAE AR FHA FodTh

duck-typing (9 €}o]F) &n}= 9l O|AE 7HH A ddet=d AAe & BHA e 2Ty AF
d; Al T3] WA =L o %E 7t 25 AU AR %HE}(“OﬂﬂaﬂolL*ﬂﬂa 2 2 e o}
5l 3 o]
A

_4

W, S 2 etk B | eS|l Ag FxtoRM, 2 AR TEE YRR
o}al—a‘l-oiaﬁ_ﬁ_oi/“% 7R 55U g ElolH L2 type ()]\/]-151nstance() S A
£ 5151010 (S, €] Ehol o] Sl 9] =l b ele = 9ol 50 shob du]ch
hasattr() AANGEAFP 22 89S F Ut

EAFP 32 R t}= 84 & 1317 7} i ¢} (Easier to ask for forgiveness than permission). ©] £3] & 4 9l+= 3}9|
0 nY AR, SHIE A o Ee REe] £AE 1491, 1 0] BelH o9 8 Fa
Z-3stal wh-E AE Y2 W2 tryStexcept 2 EAE S AP Yt o] HAY 2 Ce 2 thE
RS QAojoll A AL AFEE £ LBVL 2 ehel 7 vl 5 U .

expression (@ 2]) old o Fald 4 = THAA 27 th & 2R T,
NEPHE WAL, AR, BB 0L S Eo
Qdojghtjz Ao, BE Qo] THEEO
s B4 Eo] YT vl e £ o], 84 o] o,

extension module (23 2 5) C U C++E ZAAEH B &), 3to] A9 C APIE A& A Ao} AF&2F &
o 4% A8k

fotring (-8 744) £ U E0 B 2ol $9 $A4d B ES Tal SRR ol Fa e, 29 24D
gEE o 2dEd Yt PEP493 HAlQ

23
e ﬂllo
>,

O
PAUREN
florlr
o

file object (3} Y A) 35 Ao ﬂ]éﬂ g R A API(read () Ywrite() Z2 HAEE)E =g +=
AA. AR By ol whe}, 5t AA = AA ta3 g -ﬂro‘ O]‘)rD}E A AU FA A (AE
Sol, m 2, Al W3, £, stol 2, 55 & BALE FAT 5 AU 32 A7

= 934 F AR (file-like objects) } 2~E F (streams) °]| 2t = EH T}

196 Appendix A. &3

https://www.python.org/dev/peps/pep-0498

The Python/C API, &] 8| A 3.7.17

AR zE A RRe 3 AR S0 %
e 9. o] 59 Aol At io
open () & 2& AYYrh

file-like object (3} AA|) 1< 72 4] 9] w523k 2,

finder (3}1t]) dXEF RES S =0 & 2281 A =3 AA.

spol# 33. o] 52, F F /Y 3 E 7t 55Ut} sys.meta_path & T AFS3H= v EF A 2 If2l T
9} sys.path_hooks I} &7 AFR 1= 4 2 dE] 9}ol.

o] ZhA) 3 U] 42 PEP 302, PEP 420, PEP 451 o] Y- T}

floor division (4= YA 713 77k A4E WSt 314 YAl A5 UxAl dakats // ok dE

Eoi,ﬁfa*—.‘ 11 // 49 227 AR A UxA2 2,758 EHF YT (-11) // 47F-2.75
S WH g -30] Foll f-3l oF Tt PEP 2385 B A 8.

function (352) S& Aol Al o S EeiFE A9 EHE. QLAY L ol 4y <A 7 ALE £ &,
vit] o] Ao A= 4 stk v 7] 2 9 v A = 9} function AT B A L.

function annotation (34 o] - €| o]) <= v 7 41} w3 2he] o] = H| o] A
T oicH o dE Ut o R 3 JE E AREHUTE: & E9, o]l ¥+ F N9 int AAE Hot
= °‘ Aoz 7Ie L, Ao int ¥I3 g2 & Aoz 7 g Yk

o, W (raw) ko] 1 2] 5191, 93 = (buffered) vFo] vl 2] 3
EolA] A BUth 1Y AAE BEL FEAL PES

fn T

rlr

s}
T
o

-

def sum_two_numbers(a: int, b: int) -> int:
return a + b

S o . H| o] A 2 2 function Z ol A A4 g T}

o] 7158 AHY3l= g o] =H o| A 3} PEP 4845 I Z 314 8.
_future__ =207 AR Qe Z e TR A=A A V)5 E

2E.

__future_ RES YEESFIL I HFTEY FES Tl Al 750l AA Aoz dojof F71x

R, AAFE] 22 0] 7|2 0] H=A & 5 d5Uth

[kl
filo

25 A=F 5= 7S

>>> import __ future_
>>> _ future_ .division
_Feature((2, 2, 0, 'alpha', 2), (3, 0, 0, 'alpha', 0), 8192)

garbage collection (/1] 2] $:7) ¥ AH851 4 9 v R el & Wb S AR sl e Bx 4 £43) %
S AASL FZ T Y= & A A E S8l 7HRA S AE S F Y TR A AT =
go RES ALEHA A = Ao

generator (AU @ o|&]) Al o]E o]E g olH & F8FE TF. At A5 H Hol=t, -9 ==
UEFyield BAAS XTI Fo] YT o] FIEL for-FZE AFE S A U next () T E

2 ulo] sl Ad 5 gl
BE AV o g 58 7tel 71 A e, of ¥ o A Al e o] | o] Bel o] e & 7bel P Th o £ 5he
)7t 25 A) e AL, AT BB M BEFS AT
glole]) AlvieolH Tt itEs A
= © g Fohsta, 1929 (1 MEET 7] 9 uy-
A AEE 719Utk Al d el ol g olE e olg 7 A, Wt e
A2l gh4ot ohe g Y oh.
generator expression (A U & o] €] 3% fﬂé}) SlH P oHE SHRE 234, 22 W45l ¥ E HoFl= for
A ST is ol Holl B QU AN AW Btk 2FF BN IR T4 E T

RS ST

197

https://www.python.org/dev/peps/pep-0302
https://www.python.org/dev/peps/pep-0420
https://www.python.org/dev/peps/pep-0451
https://www.python.org/dev/peps/pep-0238
https://www.python.org/dev/peps/pep-0484

The Python/C API, &] B{ A 3.7.17

>>> sum(i*i for i in range (10)) # sum of squares 0, 1, 4, ... 81
285

generic function (AU F4) 2 A4 A2 0hE FEof s} 7AW o] 42 THE 4. B2)
ol T@e] ALFBA L vl 2w} X darelZel 5 24P ek

A yauzx] £0]3 &E7} functools.singledispatch () Bl Z 2 ©]E] 2} PEP 443% B A 2.,
GIL A9 olgz2E = & HA L.

global interpreter lock (A9 Qe Zg|g] &) 3 Hol| 2 & sl}o] A =7} glo] M Hio|E F
) 19 (o 91 E1 5 e} AR HALE. (aicesh 20 529 4 HE L TH o)
A7) 2] FA A% A 920 ta] HAFHES BHE o] A CPython 7 A2 T ah A B
Az E AAE A2 A2 JdEZHE tF2g =367] A ves A, v Z 2 A A]
ﬂﬂ%ﬂ%%ﬂHA 1o RE2 5 AT

87, o 3
o = GIL° t‘}a%}

(R 9 v AsHA & Hl ol
'6}% 34719] =2 AF A)A %;ﬂ%tﬂ =3 E‘r"‘ JEHW %‘—C’r/l oy ﬂ 0}7}

bt }‘1:1

2, [k
N

2% 47 A2ko] obd AT S AHE

lo

hash-based pyc (3] A] 7]¥tpyc) &S FHE 317 8] G 2 3
3= vlol E T = 7] A] 5} Y. pyc-invalidation 2 ZFZ 514 &

hmmm“VV}>ﬂﬂﬂ%”1§ﬂmaﬂ%tﬂn e 23 (__hash__() WA=/ B2,
D]'E 7“11194—12]] _/,\— %10131(1}“/\-]1:7]_ -‘;1/]]-/]_ —H}‘] 7]--—'6]—\:]—]_ \41:]- 7]_‘:]_1 l:]]
== ;A 7 s AA S HAE 71—O 71—o].o]; aas i

HA] 7he e AAE gAY 71U AT AW E AR 5 QA Sk, o] A E FREOl WR A
o NS g7 WE g
R stol Y B WA AAE2 Al 7Feduth (BI2EY 94 e 2-2) 7 AH oV &2
A U T (0] L frozemset 2+2) B Aol 5L 15| R2Fo] HAl 2wk o)A
FeFUth AR A o] A2E A AAEL 7| R A 0 2 A 7heFuth (RF7] AALE Al
Blue) BT thEgy v 2E 1, A e 1id () & HE 9Eo F Utk

IDLE s}lol & 93 53 H‘Q’ 317 (Integrated Development Environment). IDLE-2 I}o] # o] 3%
weler Az A0 #7190 olEm el g $7eo.

N
=
el
r
=

immutable (B¥H) 7 A E S 2= 4. £ A= A4 EAYE, F2L 23U oA AA 52 A
A2 4 AFUth A B2 A E A AAE HEo]of Tyt WA b= Al o] 9lojof k=
oA 583 IS FUh dE 5], gAY 7

1mp0rtpath(° ZEAR) A2 7| aoly 7t dTE T RES 2] Yo AMEE= FALAE (EE AR CE
) o B2 AR E =50 o] AL EY BEEL HE sys.path ZHE FYT} A vk A B 9) 7] %] 9]
R —‘%E ﬁH?l A9l __path_ OJEFREZRH & FE JFUHY

importing (%1:—5%) St RES slo|d FE7L T2 R EQ oW FEo M AHEE 5 JEE F= Eal

A7, MﬂJFWﬂ]ﬂiiiﬂﬂﬂﬂq.

mteractlve(tﬂﬁ}fg]) stol W2)543 QlEj= lcdl, AEZelE nEx e AT BHAL
oaﬂ¢ﬂléﬁg;%aﬂ%%¢QW%%ouwﬂﬂwﬂﬂﬂmmo%@%wws@
Fee) 2ol Ad s A% AT 5 QFUTh. A okt & AAEAL RED 714§
Solth s o1$ ZE 3 3 AU th(help (x) § 7193441 2).

interpreted (IE|] E] =) vo)= 3= Asalelo) £ wo] 1 3ol 8o A7) SAY, ol e
A3+ dlojzh objet A Lol B AoiQIUTh o AL WAHOR Ay HAL WEA FIE, 22

198 Appendix A. &3

https://www.python.org/dev/peps/pep-0443

The Python/C API, &] 8| A 3.7.17

sge A A8 4 9

Slo)t BT ATl o] bt &2 e g =7]

interpreter shutdown (21 €] Z 2] €] %E) %=

f
0,
v
rlr
YA
jinss
T
v
d
kI
fr
I
i o
o
TN
An)
3
3
ol
>
o
)
N,
Ir
ok
D)
=
ro,
Ay
[k
AU
v

2ohehe 29 ¢ W2 ul, ol d ez el E = S0 A 7o) 1
], BB o 4 SR Y TREN L2 BE FFH ANES WAH O ok
8, pal A A7 8 o] W B E T ALgA 9 33 At weakref o] gl T =S AP S
AAAD S &tk 5 A7 o AaE s nEE The o952 whd 4 g, 17 e] o 23}
EAUE] 8 153 88 4 27 AE (£ ol 2ol el e mEol} A2 A E I .

=l
=
rr
P
zo
<
o C

)]

AN

2 o}

e zeE $EO FU AAL ADH L _main_ BEo}AITYE AL
] L BE

U

iterable (o]E)2] &) WSS 3 Mol SHA B2 5 5 Gl AR o) H e el o2& BE (Qist,str tuple
) ADL YE, dict 2L BE 0 A2 FE, HD AAE, _iter () hAD~AGE 7
FE_getiten_0) AN=E HA BAT 2E e ANl A
GERE for £l 489 S 9T, AULE BLL ok HHE WL R (eip () map(). =) o

/‘}%—%i‘rﬁl’“bli}. olH & 7<ﬂ7}141%‘?}$lter() ol

2l g
EHE U o] O]E%Eﬂol'ﬂ“ BHEY AL T W AXE T %E?&WD} 01‘3 %% /\}%Q uf,
BE2iter() Egﬂﬂ‘/‘r ol olH AAE AH thE B8+ UFUTH for F2) AES o9
S tAlEA X} o7 FFEH, FEZE S 5 oHAHE FotE o) F sl HFE UYL

olE g ol B}, A] A, AL H o] = A Q.
iterator (o]E]#o]E]) TlolEl2] ~2EHS BHAFE= A o]E e olE 9 __next_ () WINEE W B Aoz
TEIE (EE 141” < next () 2 ALEH) 2EH & FEES AU E 22FUTh ¢ ¢
Akol ¢ o]Ei7} S uj= gl StopIt ration o9 & 0‘27‘143}. o] 21 ol A, o] El & o] E] A A=
A2ZE 1, o] %9 E'_ __next__ () WA E $&2 Stoplteration o9& thA] 27|78k g
ol Bl & o] B} = o]] &f| o] E] A A Z}"J S EHFE_iter_ () WINEE 7HA Z o] 875 7| wZ o, o]

H#olH = olH e Eo| 7| & ota thE o|H e EE5S Wolsol+ -‘?"’?'— Lol A AREE £ F YT
Z83to o= oy HY oJH Y oS A Ed= ZEY YT (list Z2) AH oY AA|= iter ()

2 AGstAY for Tz o AFSE ufuitt A o] B o] E] & e Y T O]ﬁ 2= ol el g o] Ef o] th 3}
A e ste] A o, X o] gl @l o] A of] A& o]u] AZH olEH o] H & FHAA, W AE ol A -
HolA vy th
typeiter o] T ZpA §F W &-©] Q51 Th

key function (7]) 7] S == Z ¢ o] A (collation) T+= A H (sorting) o]} HH < (ordering) o] AF& 5 =
e EHFEZHEYYL o & £9],locale.strxfrm() S ZAL EA PSS W= A 7|15
Tte = o AR YT
gto] Mol W =77t R AE o] o EA A Ao A A Fol =R & Aot f38l 7] & HotE Ut
ol AEoE=min(),max (), sorted (), list.sort (), heapg.merge (), heapg.nsmallest ()
heapg.nlargest (), itertools.groupby () ©] A& T}

7] & HE=de oy ol dsUTh dE 9], str.lower () MIAEE AlolA & e
GEE A9 B4m A5 5 AeUIT FAA O, o] B lanbdas AL UE SE 0
g, old 44Ut lambda r: (r[0], r[2]). =3 operator wEe A Al 7 Be AAAE
A FgU Tl attrgetter (), itemgetter (), methodcaller (). 7] &¢4E &L /\]-3‘6]-ﬂ o
) 3t o] Sorting HOW TO & H A 2.

keyword argument (7] ¥ & 21z} 21} & H A Q.

lambda (¥t} =2 o gto] LA &= st 134 07 TAH o] & Q=
= EHL lambda [parameters]: expression YUY T}

LBYL % 7] Aof X 2} (Look before you leap). ©] T ~ElL L T ZE oy 23] & 317] Aoj HA|H o2 AFA

2452 AU o] 2842 FAFP U A R 3L, W2 if 2o EA 2 S A o1 th

o5 28 = S0 A, LBYL W& “H 7|7 “H 7" Il BB 245 W57 2 s1del sk

& 59, ZE if key in mapping: return mappinglkey] &= ZHA} &9, 31X 2 23] A,

e

eHol B g 48 BE

199

The Python/C API, &] B{ A 3.7.17

T2 28 =7} keyS mappingol A A A A5 5 A5UTh ol H of
Aggowm D 5 A5

list (2] 22) W7 sfolwd A 72, 12 o] Foll £ B8, Aol 3 AA|27k0(1) o] 7] w2, AR B A=
(linked list) H t}= t} 2 o] o] v A} AL ok

list comprehension (2] AE A= g3 H) A A2 QA5 HAR T YRE Xsty 1 2HE JAER %Eﬂ

Z‘—7]—756P‘ﬂl-,j result = ['{:#04x}"'.format (x) for x in range (256) if x % ==

] £ 00014 255 Atol ol gl A5 1635 (0x.) 5& st TALY B2EE UF YT if
BEAEE 5 92 th A, range (256) 9 T ZE 247 AelF T

loader (£t]) 252 2E3F= 24, load_module () o|gte o] 52 MINE=E Aok FUth 2H+=
= voly 7 28 S5 Yt ARAISE W82 PEP 302 &, &4 e Ea lmportllb.abc.Loader
%E*ﬂfﬂ_.

magic method (W] 2] WA &) 5= v A= o w3414 Ql v 3k
mapping (W] 3F) 499 7] 23] & A ¥ 3t Mapping ©] U MutableMapping A #l o]~ A o AR

HAEELS F35tE AdH o)y AA. o]Z& dict, collections.defaultdict, collections.
OrderedDict, collections.Counter ‘3 = 4 95y

meta path finder (W€} 2 5}Qlt]) sys.meta_path o] FAAo] FF+ sl vgt A& s+ 4=
AME2] 341 o A-E o] 7]+ AT T U T
HEl AZ2 37 3= HAEE A= importlib.abe.MetaPathFinder & X g
Yt

metaclass (W€} Zel2) S 29 S S =S ol &, Eda
E52 VUt Hlg @A o] Al RS Hopx S AE vtEE AAdS
A 22y A5 7]E:r”§§ AS Ut stol A& t
~E0E 5 e a ,MD}. o *}31}01]ﬂlL JETIE A 2

- on

£ SOlY EAFP W<

N

S

B
k)
=
=
o

a M
SO AN B R ASE TR S OE Ao A B el
metaclasses ol 4] T} XA 3 U &2 3¢

method (W] A &) Z 2 uit] okojl A A 9] . =
A= A AR A2 (BE self S B 2 JdAdA AR E s Uch §5 9 S HE 235
== KN

method resolution order (M| M= 274 <A]) WA= 27 A& ﬂ St S W E A= Hola Z
50 AU 23 Dol A5 E vhol A Qe Z el o] AL§H %312 59 A & 18-S The Python
2.3 Method Resolution Order& H W 1t}

module (2.§) o)W F=9] 243} 9l & wshe A4l REL o9 soldl AA S B ol F F0L
71—/\141;} _01_“:/] xe}q]_/]—HJ]_o]y\qoiicgqq_
714 = A2,

module spec (R E A2¥) 25 230 AEEH = o
importlib.machinery.ModuleSpec & Q12" A,

MRO WA= 274 =4 & BAL
mutable (7}H) 71 A A= gho]l & ¢ AA R id() = LATFA FAEYL 2 E HAL

i o
rlr
%
> oy o
[
o My
B)
[>
1o
ro
[>
rT
[>
1o
2
m
Ach
o 4

named tuple (U] Y E 5Z) The term “named tuple” applies to any type or class that inherits from tuple and whose
indexable elements are also accessible using named attributes. The type or class may have other features as well.

Several built-in types are named tuples, including the values returned by time.localtime () and os.
stat (). Another example is sys.float_info:

200 Appendix A. &3

https://www.python.org/dev/peps/pep-0302
https://www.python.org/download/releases/2.3/mro/
https://www.python.org/download/releases/2.3/mro/

The Python/C API, &] 8| A 3.7.17

>>> sys.float_info[l] # indexed access
1024

>>> sys.float_info.max_exp # named field access
1024

>>> isinstance(sys.float_info, tuple) # kind of tuple

True

Some named tuples are built-in types (such as the above examples). Alternatively, a named tuple can be created
from a regular class definition that inherits from tuple and that defines named fields. Such a class can be written
by hand or it can be created with the factory function collections.namedtuple (). The latter technique
also adds some extra methods that may not be found in hand-written or built-in named tuples.

namespace (°]5 57hH HE7F AR = A4 o5 2 9V EE AP YT AAldd T HE o5 T3
(FIA = A Bk ofby et X9, A, Y o] 5 &3] AFUTH ol§ FH2 ol§ &< FAA
EEAS ALZULE ol & S0, &5 builtins.open & os.open () & 159 o & F1tel 93l
TEHP YT E3L o] F2 oW BREo] 58 FHIEAE 2B HEAA M5 74
BHE4Ao 222 ZYrth o & E0], random. seed () == itertools.islice () 81 29 1 &4

0] 27 random # itertools Bl oo F & ¢l5o] H el AU

namespace package (o] & 27+ 97] %)) © 4 A1 57| 2 S 2] AE o] =27 7] %58l PEP 420 7] 7] A o] &
AN B HA AN QS S YT, 58] __init__.py shdo] Qlomw A 774 o

EERS]oY

2E X HASL.

(3
oX,
1o
=2
>
e
Bl
et
L
N
ol

nested scope (ZEHH AT =) £

58, o8 o), e F5 Uy 2
3 FHP 20zt | RHoRE FEW ST

Pt g Frel e WSS 228 5 dUrh
[e=]
l

2,09 54 ghth Ao Fosok g Th S MAEE 4 R Amael 4 93 %yt
A E, A WSEL DY o] F FeIA 934U nonlocal HHE AT mo| AL AL

S etatuet.
new-style class (3 2B Zejs) AZ S BE Sehx AMo] ASHT Yr s
g 2719 vtolA o ! B
__getattribute_ (), FH;E AT, 2 E HA B9} 22 Ftol Mo A F
EER T eI
object () A]) el (1EZHE =2
2 o A5 A o)A 2 A
package (3]7]#]) A B RESo|th A7 HCE AH 7 A5
7] A= _path__ o|EFFEZ} = vtold REdYch
At 714 o] 2 B2 971 A = HA L.
parameter (M| 75 T (= WA E) H ool A FrpTh ke
st ol 22 AEHE. b FR7Y WiAAEs 7 ds Ut
E (positional-or-keyword):] 2] A2\ 7] 9 = Q12 2 AEd 4 &= AAE AFFUth
o) A0l 714 Wehe] wl ARSIt o & Sof ol A foo 9} bar:

Y
k]
ol
DL
=
>
I
©
o
o
(i
td
rln
o
o
o,
H
=
td
rln
4r
[>
u
ne
iy
o)

+
30,
rr
ro,
>
kA
rlr
2
rg
oM,
o
rO
kY
gl_[g
et
B
o2

.

def func (foo, bar=None) :

o 9 X-A & (positional-only): QA 2T Al-52 4= &= AAE A FFUTh sho] M2 9 x]-1d-§ vfj 7
HEE Aosle TS 203 JA G Uth A o i F 52 AA-AE A&
ZrE UL (A & 91, abs ().

s 1N E-AE (keyword-only): 71N EZ2 T A5 2 = & AAE AA UL 71 P=-AE& v
=3 oo mi/ g B2 oA gof shute] ZPA-9 X vy« E a2 2894 Fel g
T As YT A& 5o, thxol A kw_onlyl &} kw_only2:

201

https://www.python.org/dev/peps/pep-0420

The Python/C API, &] B{ A 3.7.17

def func(arg, *, kw_onlyl, kw_only2):

» 7H¥-91 %] (var-positional): (FFE AW 5ol A o] v] WolEe] A 94 A5l Ha) A5
% 9 AA A5 99 AALE AF AT oA vl A5 w94 o] ol * & Sl
ol 398 5 ABUTh A8 Sof theoll A args

def func(*args, **kwargs):

« PR E (var-keyword): (T2 Vi RS0 23] A o] u] WolS R A= AAFE ol T 5)
A3 5 Yt 429 NS AYE A4S AFFUE ol A A A o) 5 <+ &

5,_
Qo] Boja] Aol 4= dF UL dl & £ 9] ool A kwargs.
WS A AAEL 95 7| Hzmul ol gt B A o] AL D4 A AEL 2 AT 2 9T

A7} AR T, AAR} w7 M 4=2] ZFo]of] 12 = FAQ 2%, inspect .Parameter 22, function
A, PEP 3625 H A 2.

path entry (2 A=2)) 47 73 5olE] HQEE FREES 27 A9 Bushe AL 42 4 el
.

A=
o)
%
A %

= XN
AR dEZ A Eo] FH3}E= WA EEL importlib.abe.PathEntryFinder o Y4t}

path entry hook (2 QlE 2] &) sys.path_hook FAEQ J=ZEAH, EH A2 AdED A EE
=S ¢y Ydud J2 JdEF Iy E EHF YT

path based finder (2 7|9} 2}elt]) 7| & W e} A2 3ol E = s, AT E F=E oA EE
Ytk

path-like object (J 27 ZAA|) 3t Al2d FE2E Uetl+= A4l AE2F AAl= 42 UEH = str U
bytes A o] At} os.PathLike T2 EFS 7H3l= AAYYT os.Pathlike ZEZ2EF S XY
St A= os. fspath () 58 TS A str Ubytes A A/ F2 2 Had 5 5yt
th4l os. fsdecode () 2 os.fsencode () & Z+Zt str U bytes 2345 EAst=0 AR E &+ U5

Utk PEP 5192 =95 iU th

o

filo
e
oy

PEP 5ho] 4 7] 41] ok, PEPL= 5ol AR Elo] AR E A Z8A L sho] W B 1 T2 A& EE $70
e AZe 7152 Agshs 44 EAQUTH PEPE Aok 75 t @ 1128 71& A E 2 A
A28 oF ok,

PEP= T8 2R 75 Al st Ao that AFUE e
7 =

2 +23km shol Wo] Sof7t 47 2
4e RN BEZ] 9% /)8 WAYZ AUk PEP A4 AL AR

=
AFUE ol el & F535kaL Wil

portion (£ H) PEP 420 o] 4| A2 3t AA T, ol & 87 571 Aol o] upA 3k Shibe] Cielel 2o Eol gt
St S 0] 41 ip h ol AFH = A= 7bs g Th.

positional argument ($] 2] 212} Q1A & H A Q.

provisional API (Z+A API) T4 API= & glol B 2|9 I 7 53
o} AE s o] 20 F ME}7} o AE] A= kA v, A A o] 2kl EAH = § T Nl AtEe]
A7 B B o] §AH A g WA o] Aol 5= Ytk 1 W7
ol A= e AT — APLE ZF37] Aol 3 F ooty 2

202 Appendix A. &3

https://www.python.org/dev/peps/pep-0362
https://www.python.org/dev/peps/pep-0519
https://www.python.org/dev/peps/pep-0001
https://www.python.org/dev/peps/pep-0420

The Python/C API, &] 8| A 3.7.17

o) Artt EF holEelelzt L A FO FRE AA LRol BB A FLFAY F Y=
U B A8 082 PEP 411 HW g Ut
[e)

provisional package (Z+A 2 7] x]) &7 API & B A L.

Python 3000 (3}o] % 3000) 3}o] % 3.x wiaE 24Q12] ™ (W7 39 wi2 71 A njef o] o]ok7| | A& vhEo| 3]
o] Zo|t}) o] AL “Py3k” & Zo] 27| % T q,

Pythonic (}o] #t}g) T2 Aoj S A dubE A NP ES AFESIA T =8 3= thAl, slo] 2 A ofof A
71 A AR E £ ol B ES 77kl 2 ofoltoju I E 27} o & o, Spol oA AFF 2=

AT E for £ A3 OJEE B RE 802 FYIIE ATk e Be oot oldl
5o FAEC] 9onE, vho Hol 058 ke AREL Al 24} A E & S Gtk

for i in range(len(food)):
print (food[i])

2%, sho] Arhe WY& oI5 th:

for piece in food:
print (piece)

qualified name (J 1315 o] &) REQ A 2FZ oA REO AYH ZFH 2, T, A= ol2=«“F 2~

EHAFEHOoR F2H o] 5. PEP 3155 o| A Ao gt H 4 st Fefj29] Ao, B34
oL A o) 23} 2L
>>> class C:
class D:
def meth (self):
pass

>>> C.__qualname_
o
>>> C.D._ _gualname_
'C.D'
>>> C.D.meth._ qualname_
'C.D.meth'

BES 7tE 7| =d AHRE o, A3 AF3E o) 2 (fully qualified name)S RE R 7 7| A 5L £ T
SN BER Ve Jo2 "'—ﬂ% O] YuFYth 9 E £9],email .mime. text:

>>> import email.mime.text
>>> email.mime.text. name
'email .mime.text'

reference count (R 314) A Ao o3t F=x29 7S, 7“?1].,] | ’“7]—0 o7 Wol X, v &g s} gy
Utk 22 3¢ 332 gtz oz go]ld F= o = QZ] = %}7\] , CPython ?‘544 A e APy
sys BE2 5 AAY Fx A +E 585+ getrefcount (7‘*431'1/] th.

regular package (JF 7] X)) _init_ .py 34 X33t T E“Ei g} g2 AT A A 7] A.

olF ¥ IH7A = HAL.

_slots__ Z YR AAQl, A AEHAAEYFEES HSHFHS g AL AAEA G E
11]74‘@33’3‘1 HR2 e & A= 235 FUth A7) 7]+ A g o] Hla Y2 SHlE A AFE-317] 7}
Z 712 L HolghA], vRE o vAs 28 28 T A] Bl £ AAEAT Q= EWEHI AL
S sl= Zlo] 5 UL

sequence (A|F2X) __getitem_ () 55 Uﬂ/ﬁ ZEFO AT AIdAE A2 Q4 ANAE X Y3},
Al 2] dolE EHF+E=_ len Uﬂ/ﬂE% Aojsl= olHHE 22 WA A AAES YEE Y,
list, str, tuple, bytes 7} 01—1/]1’/} dict TE3F_ getitem_ () Z__len_ () & AA3A v

https://www.python.org/dev/peps/pep-0411
https://www.python.org/dev/peps/pep-3155

The Python/C API, &] B{ A 3.7.17

230 A5 P4 Qele] B0 718 A W Rel AD 27t oh ek WP o2 AF Ak R 2
sh ok g o,

collections.abc.Sequence A Wlo]| A ZF AL getitem () F__len_ ()2 do]A &
A FHE QB FH o]~ E A 5l= F‘ﬂ, count (), index (), _ _contains__ (), __reversed_ ()&
F7 Ut o) &34 AE o]~ E T3S F S register () EAMEHNA YAH L2 SET F UF

Y.
single dispatch (42 T] 25 x]) 73 0] ahre] Qlxbe] Yo 7| xe) A ARH = Av 2 24 tas A B

FEy.
slice (Eelo]n) HE AlA A o YR E 283 AAl. Setol2e AR 2T HE R7HS AFSSIA Y
t}. variable_name[1:3:5] fﬂﬁé,] SHAA A Ao AE F2o2 Byt tgiEs (B

[
2FHE) Z7IH S W F AL R slice AAE A FUTH
special method (55~ Wl A =) Fto]xlo] Pof o A4k, QA 22, AT o FAIHC=E QEQ WA E.
olF MIMEE F /Y €EE AFLA EUE o5& #A d5 Utk 55 vl A =+ specialnames Oﬂ
AR ‘ﬂ"é‘ﬂxﬁ O]/\‘/]f%
statement (=) -2 A9 E (ZE9] “EF(block)”) & FA5H FEAUTE 82 594 o] AL 7]9
tE 7\}3-75}? 04?4 7HA F2E F9 st YT 719 if, while, for.

text encoding (| AE 217 9) FUTE BEXIS vlo]EGR Q7P 3E= Fd,
o

m

=

text file ()2 5}Q)) str ANE 93 L 5 9 52 A4H. FF, 92E 32 44
EAEYLS AN LRI G iE A5 & A% AL GUh GAE FA o2

— B =

= 'w') 2 49 999, sys.stdin, sys.stdout, i0.StringI0o 9 AAEHAE & 4 9IH LT

el E AR A & 9T & 5 e 5L AR o) el vlo] e e £ FEeA L,

triple-quoted string (3 w2 % & FA1Y) W23) U A2 O) M M2 S8R 2AE. 23
&3 R YA AL §le 715 S AlE A = AT o8] 7HA] o] froll A £R 7 JlF U Th
]’\71] o]z QZ] %} a%u}%i‘% SR E TAE ol 2 = JEE 5, AE FAE 27

type () shol 4 A7]9] &£ A2 AAFITH BE AL Fo] 5 AR
Ve e E R A A S s (o S gy

type alias (3 o] o)) B2 AW Aol]I 5te] W50l A= o] 5
Qo Qelol 2t 3 AEE Beslsts o R8T o8 U

from typing import List, Tuple

def remove_gray_shades (
colors: List[Tuple[int, int, int]]) -> List[Tuplelint, int, int]]:
pass

sohest 2ol § 97 47 BE 4 5t

from typing import List, Tuple

Color = Tuple[int, int, int]

def remove_gray_shades (colors: List[Color]) -> List[Color]:
pass
o] 7] 5& A 9Y3t= typingd PEP 4845 F 2314 8
type hint (3 A=) W5, Felo o el HE R 4 ol hAS U uke g A i Fe AR S o H|

o] A.

204 Appendix A. &3

https://www.python.org/dev/peps/pep-0484

The Python/C API, &] 8| A 3.7.17

Y SlE = A8 Aol w mlo] o A A A= FF Ut AT A 3 £ =50 783 IDE
gz AL YAEF S FHYLH
A9 AeE ALdeta, A9 HEy, FPa JEHRE E 49 3 JdE &= typing
get_type_hints () & AFE3lo] AN 2T 4= 5Tt
o] 715 A3t typingd PEP 4845 IR 3IA 8

universal newlines (FUHAE & 37) O3 T2 AES EF 29 o2 AA 3=, H2E AEY S)4
ST Y2 NS EXFEE '\n', A== I "\r\n", AL M N EA] FH '\r'. F7}F <l
Abg o] B A= bytes.splitlines () 2uko}L] 2} PEP 278 9} PEP 3116 = 2 4] £.

variable annotation (14> o]k E|o]) My = FP 2 o] ERHEL] of g o] A,
HeEe FdlaEREY ojHolAE Gl tf Y-S A8 ALyt

class C:
field: 'annotation'

M olElolde A os o =g A UTH A& So, ol Met int 2 AL AR Ay
U
count: int = 0

A o] mH o] 4d #-2 Al A annassign ol A 428 T}
o] 7]5& A Y3t T ol =H o] A, PEP 484 2 PEP 5265 FX 34

|
virtual environment (7} 3 7) Tho]| W A} 2219t S8 g o], 2 A AH A AT L ThE 1))
& 22 T dF= FA ?%SD‘H sho] 4 f = JHﬂﬂ%% AAsHAY e o] =6t
A€ s s, de Ao 498 A9 37

(]
a.
ol

P
L

X
L.

r

venv & HA Q.

o8 AFE. shol el 44k 7| A uho| & B Ak # 7}

virtual machine (7} 71A4]) AZEgojglo g A =]
Feoe o= neg AAg,

Zen of Python (3ol 41) 3ol 4l T 19l 22l o) AeH5e] =it 2lo] S o] 58t AHE-ahe o] Eg ol
Ptk o] S t)34y ZETE A “inport this” & YA BT}

205

https://www.python.org/dev/peps/pep-0484
https://www.python.org/dev/peps/pep-0278
https://www.python.org/dev/peps/pep-3116
https://www.python.org/dev/peps/pep-0484
https://www.python.org/dev/peps/pep-0526

The Python/C API, &] B{ A 3.7.17

206 Appendix A. &3

APPENDIX B

o] 417 A of] 3]

o] WAL reStructuredText 2220 4] TS o] 2 A0.2, shol AWM S 95 S5 A2E 24 qel 7]
Sphinx & A& 5 YT}

A S o B AT BA I AEL Shol A A & DA 2 A A O = AAR AR = YU 7] o] 1
Aeh, ko] WPlol ol 2 A B = reporting-bugs o] 2| & FALFAAI L. A 22 ARRAAL A AT
YeH

S B0/ Be BAE =dUG
* Fred L. Drake, Jr., 92 sto]H A A = 3o 2 o)A w2 Zrl=9] 27}
« reStructuredText 2} Docutils 29 EE Y= = Docutils ZZ A E,

e Fredrik Lundh, Z72] Alternative Python Reference 3Z 2 A E of] A] Sphinx 7} -2 o}o]t] o] & A KUt

Abghe] sholal lof, spojd & efojH e W stolul A Aol 7o FF Utk 7]ojxpe] B2 A

207

http://docutils.sourceforge.net/rst.html
http://sphinx-doc.org/
http://docutils.sourceforge.net/
http://effbot.org/zone/pyref.htm
https://github.com/python/cpython/tree/3.7/Misc/ACKS

The Python/C API, &] B{ A 3.7.17

208 Appendix B. o] 47 A o] #3}o]

apPENDIX C

>

oA A} 2ho] Al

|"..|.4

C.1 2ZEY o] Ia}

o] W2 ABCElE= dojo] TAAZ A Y &= 9] Stichting Mathematisch Centrum (CWI https://www.cwi.nl/
ZFx) 9] Guido van Rossum ol &J3fl 1990 d 0] Zxtol] whEo] H5UTh dho] o= th2 AHEE9 B2 33 0]
323 QA T, Guido= 3ho] W o] =8 A 2= o} gl Ut

1995, Guido+ Virginia 2] Reston 01] ¢l += Corporation for National Research Initiatives(CNRI, https://www.cnri.

reston.va.us/ FFZ) o A sholH =Y 74] 7, o] Lo A ozl AL 2z EY oS ZA S YT

In May 2000, Guido and the Python core development team moved to BeOpen.com to form the BeOpen PythonLabs
team. In October of the same year, the PythonLabs team moved to Digital Creations (now Zope Corporation; see https:
/Iwww.zope.org/). In 2001, the Python Software Foundation (PSF, see https://www.python.org/psf/) was formed, a non-
profit organization created specifically to own Python-related Intellectual Property. Zope Corporation is a sponsoring
member of the PSF.

)

EE golH a2 I/ LAYt (FI 22 Ao o oH/H = https://opensource.org/lE 234 Al
©). Ao, £ (A v A Y& obguith shol 4 Wi E T GPLI SHF U olele] B thre
Wz e 2ok Aguth

vl 32 32+ s S | Sl 2 2F GPL = 32

09.0~1.2 | n/a 1991-1995 | CWI yes

13~152 | 12 1995-1999 | CNRI yes

1.6 1.5.2 2000 CNRI no

2.0 1.6 2000 BeOpen.com | no

1.6.1 1.6 2001 CNRI no

2.1 2.0+1.6.1 2001 PSF no

2.0.1 2.0+1.6.1 2001 PSF yes

2.1.1 2.142.0.1 2001 PSF yes

212 2.1.1 2002 PSF yes

213 212 2002 PSF yes

2.2 oA+ 2.1.1 2001-&#] | PSF yes

209

https://www.cwi.nl/
https://www.cnri.reston.va.us/
https://www.cnri.reston.va.us/
https://www.zope.org/
https://www.zope.org/
https://www.python.org/psf/
https://opensource.org

The Python/C API, & x| v A 3.7.17

#3: GPL 58T AL 9271 GPLE shol ¥ & wjZ otk AL ol ujaha = B5UTh BE shol 4l
eho Ml 4= GPL3} Bhe) of o] MAS 3/ 242 BEA 93+ 4H W AS WS & 914 Fch GPL
53 gho] Ml Tho] W} GPL Shofl WEH 0he £z E oS AT 4 A FUTH 2 ASL 124

Easagieg

Guido] A= 3}of| o] Wi ZE 7hsstAl vhe W2 o F AHA B AAS ol Al A= -H Utk

C2 sjol ol A A5} A T A18517] §1 o] & ok

C.2.1 PSF LICENSE AGREEMENT FOR PYTHON 3.7.17

1. This LICENSE AGREEMENT is between the Python Software Foundation ("PSE"),._
—and

the Individual or Organization ("Licensee") accessing and otherwise using.
—~Python

3.7.17 software in source or binary form and its associated documentation.

2. Subject to the terms and conditions of this License Agreement, PSF hereby
grants Licensee a nonexclusive, royalty-free, world-wide license to.
—reproduce,
analyze, test, perform and/or display publicly, prepare derivative works,
distribute, and otherwise use Python 3.7.17 alone or in any derivative
version, provided, however, that PSF's License Agreement and PSF's notice.
—of
copyright, i.e., "Copyright © 2001-2023 Python Software Foundation; All._
—Rights
Reserved" are retained in Python 3.7.17 alone or in any derivative version
prepared by Licensee.

3. In the event Licensee prepares a derivative work that is based on or
incorporates Python 3.7.17 or any part thereof, and wants to make the
derivative work available to others as provided herein, then Licensee.

—hereby
agrees to include in any such work a brief summary of the changes made to.

—Python
3.7.17.

4. PSF is making Python 3.7.17 available to Licensee on an "AS IS" basis.

PSF MAKES NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF

EXAMPLE, BUT NOT LIMITATION, PSEF MAKES NO AND DISCLAIMS ANY REPRESENTATION.
—OR

WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT.
—THE

USE OF PYTHON 3.7.17 WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

5. PSF SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF PYTHON 3.7.17
FOR ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT.
—OF
MODIFYING, DISTRIBUTING, OR OTHERWISE USING PYTHON 3.7.17, OR ANY.
—~DERIVATIVE

210 Appendix C. & x}¢} glo] A A

The Python/C API, &] 8| A 3.7.17

THEREOF, EVEN IF ADVISED OF THE POSSIBILITY THEREOEF.

6. This License Agreement will automatically terminate upon a material breach.
—~of
its terms and conditions.

7. Nothing in this License Agreement shall be deemed to create any.
—relationship

of agency, partnership, or joint venture between PSF and Licensee. This.
—~License

Agreement does not grant permission to use PSF trademarks or trade name in.
—a

trademark sense to endorse or promote products or services of Licensee, or.
—any

third party.

8. By copying, installing or otherwise using Python 3.7.17, Licensee agrees
to be bound by the terms and conditions of this License Agreement.

C.2.2 BEOPEN.COM LICENSE AGREEMENT FOR PYTHON 2.0

BEOPEN PYTHON OPEN SOURCE LICENSE AGREEMENT VERSION 1

1. This LICENSE AGREEMENT is between BeOpen.com ("BeOpen"), having an office at
160 Saratoga Avenue, Santa Clara, CA 95051, and the Individual or Organization
("Licensee") accessing and otherwise using this software in source or binary
form and its associated documentation ("the Software").

2. Subject to the terms and conditions of this BeOpen Python License Agreement,
BeOpen hereby grants Licensee a non-exclusive, royalty-free, world-wide license
to reproduce, analyze, test, perform and/or display publicly, prepare derivative
works, distribute, and otherwise use the Software alone or in any derivative
version, provided, however, that the BeOpen Python License is retained in the
Software, alone or in any derivative version prepared by Licensee.

3. BeOpen is making the Software available to Licensee on an "AS IS" basis.
BEOPEN MAKES NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF
EXAMPLE, BUT NOT LIMITATION, BEOPEN MAKES NO AND DISCLAIMS ANY REPRESENTATION OR
WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE
USE OF THE SOFTWARE WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

4. BEOPEN SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF THE SOFTWARE FOR
ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT OF USING,
MODIFYING OR DISTRIBUTING THE SOFTWARE, OR ANY DERIVATIVE THEREOF, EVEN IF
ADVISED OF THE POSSIBILITY THEREOEF.

5. This License Agreement will automatically terminate upon a material breach of
its terms and conditions.

6. This License Agreement shall be governed by and interpreted in all respects
by the law of the State of California, excluding conflict of law provisions.
Nothing in this License Agreement shall be deemed to create any relationship of
agency, partnership, or joint venture between BeOpen and Licensee. This License
Agreement does not grant permission to use BeOpen trademarks or trade names in a
trademark sense to endorse or promote products or services of Licensee, or any

(TF sTolATell A%

C.2. sholol AA|A8A AHE57] 1% o] & oF e 211

The Python/C API, &] B{ A 3.7.17

(o] A sl o] A A M A%)

third party. As an exception, the "BeOpen Python" logos available at
http://www.pythonlabs.com/logos.html may be used according to the permissions
granted on that web page.

7. By copying, installing or otherwise using the software, Licensee agrees to be
bound by the terms and conditions of this License Agreement.

C.2.3 CNRI LICENSE AGREEMENT FOR PYTHON 1.6.1

1. This LICENSE AGREEMENT is between the Corporation for National Research
Initiatives, having an office at 1895 Preston White Drive, Reston, VA 20191
("CNRI"), and the Individual or Organization ("Licensee") accessing and
otherwise using Python 1.6.1 software in source or binary form and its
associated documentation.

2. Subject to the terms and conditions of this License Agreement, CNRI hereby
grants Licensee a nonexclusive, royalty-free, world-wide license to reproduce,
analyze, test, perform and/or display publicly, prepare derivative works,
distribute, and otherwise use Python 1.6.1 alone or in any derivative version,
provided, however, that CNRI's License Agreement and CNRI's notice of copyright,
i.e., "Copyright © 1995-2001 Corporation for National Research Initiatives; All
Rights Reserved" are retained in Python 1.6.1 alone or in any derivative version
prepared by Licensee. Alternately, in lieu of CNRI's License Agreement,
Licensee may substitute the following text (omitting the quotes): "Python 1.6.1
is made available subject to the terms and conditions in CNRI's License
Agreement. This Agreement together with Python 1.6.1 may be located on the
Internet using the following unique, persistent identifier (known as a handle):
1895.22/1013. This Agreement may also be obtained from a proxy server on the
Internet using the following URL: http://hdl.handle.net/1895.22/1013."

3. In the event Licensee prepares a derivative work that is based on or
incorporates Python 1.6.1 or any part thereof, and wants to make the derivative
work available to others as provided herein, then Licensee hereby agrees to
include in any such work a brief summary of the changes made to Python 1.6.1.

4. CNRI is making Python 1.6.1 available to Licensee on an "AS IS" basis. CNRI
MAKES NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF EXAMPLE,
BUT NOT LIMITATION, CNRI MAKES NO AND DISCLAIMS ANY REPRESENTATION OR WARRANTY
OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE USE OF
PYTHON 1.6.1 WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

5. CNRI SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF PYTHON 1.6.1 FOR
ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT OF
MODIFYING, DISTRIBUTING, OR OTHERWISE USING PYTHON 1.6.1, OR ANY DERIVATIVE
THEREOF, EVEN IF ADVISED OF THE POSSIBILITY THEREOF.

6. This License Agreement will automatically terminate upon a material breach of
its terms and conditions.

7. This License Agreement shall be governed by the federal intellectual property
law of the United States, including without limitation the federal copyright
law, and, to the extent such U.S. federal law does not apply, by the law of the
Commonwealth of Virginia, excluding Virginia's conflict of law provisions.
Notwithstanding the foregoing, with regard to derivative works based on Python

(TH& SOTATl A1)

212 Appendix C. < x}¢} glo] A A

The Python/C API, &] 8| A 3.7.17

(o] A sl o] A A M A%)

1.6.1 that incorporate non-separable material that was previously distributed
under the GNU General Public License (GPL), the law of the Commonwealth of
Virginia shall govern this License Agreement only as to issues arising under or
with respect to Paragraphs 4, 5, and 7 of this License Agreement. Nothing in
this License Agreement shall be deemed to create any relationship of agency,
partnership, or joint venture between CNRI and Licensee. This License Agreement
does not grant permission to use CNRI trademarks or trade name in a trademark
sense to endorse or promote products or services of Licensee, or any third
party.

8. By clicking on the "ACCEPT" button where indicated, or by copying, installing
or otherwise using Python 1.6.1, Licensee agrees to be bound by the terms and
conditions of this License Agreement.

C.2.4 CWI LICENSE AGREEMENT FOR PYTHON 0.9.0 THROUGH 1.2

Copyright © 1991 - 1995, Stichting Mathematisch Centrum Amsterdam, The
Netherlands. All rights reserved.

Permission to use, copy, modify, and distribute this software and its
documentation for any purpose and without fee is hereby granted, provided that
the above copyright notice appear in all copies and that both that copyright
notice and this permission notice appear in supporting documentation, and that
the name of Stichting Mathematisch Centrum or CWI not be used in advertising or
publicity pertaining to distribution of the software without specific, written
prior permission.

STICHTING MATHEMATISCH CENTRUM DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS
SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN NO
EVENT SHALL STICHTING MATHEMATISCH CENTRUM BE LIABLE FOR ANY SPECIAL, INDIRECT
OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE,
DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS
SOFTWARE.

A& Shol 41 W ol ZIHE A4 2 ZE G ool T B LA A W SO Gl ehol M) 5219)

C.3.1 W=z EQ ¥

_random EE-2 http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/MT2002/emt19937ar.html o] A U] &
S mEo] Zue REE ERFULL 02 o) 2= 24 adw §7 AQ Ut

A C-program for MT19937, with initialization improved 2002/1/26.
Coded by Takuji Nishimura and Makoto Matsumoto.

Before using, initialize the state by using init_genrand(seed)
or init_by_array(init_key, key_length).

(THE STl Aol A1)

C.3. 3 H 2z EY oo thdt glo] Al A L &9l 213

http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/MT2002/emt19937ar.html

The Python/C API, &] B{ A 3.7.17

(o] A sl o] A A M A%)

Copyright (C) 1997 - 2002, Makoto Matsumoto and Takuji Nishimura,
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

3. The names of its contributors may not be used to endorse or promote
products derived from this software without specific prior written
permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Any feedback is very welcome.
http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html
email: m-mat @ math.sci.hiroshima-u.ac.jp (remove space)

C.3.2 427

socket B EL2 getaddrinfo () 2} getnameinfo () T4 E AU T} o] &2 WIDE Project, http://www.
wide.ad.jp/, | A & B a2 342 I 5y

Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
All rights reserved.

Redistribution and use in source and binary forms, with or without

modification, are permitted provided that the following conditions

are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

3. Neither the name of the project nor the names of its contributors
may be used to endorse or promote products derived from this software
without specific prior written permission.

(TH& ST Aol A1)

214 Appendix C. < x}¢} glo] A A

http://www.wide.ad.jp/
http://www.wide.ad.jp/

The Python/C API, &] 8| A 3.7.17

(o] A sl o] A A M A%)

THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS " "AS IS'' AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS

OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

C.3.3 H]Z7] 27 AH)

>

o
Fl
%
d
<
o

asynchat# asyncore R o} 22 Fo| AHS

Copyright 1996 by Sam Rushing
All Rights Reserved

Permission to use, copy, modify, and distribute this software and
its documentation for any purpose and without fee is hereby
granted, provided that the above copyright notice appear in all
copies and that both that copyright notice and this permission
notice appear in supporting documentation, and that the name of Sam
Rushing not be used in advertising or publicity pertaining to
distribution of the software without specific, written prior
permission.

SAM RUSHING DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE,
INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN
NO EVENT SHALL SAM RUSHING BE LIABLE FOR ANY SPECIAL, INDIRECT OR
CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS
OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT,
NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

C.34 F7| &=

http.cookies REL T}gT 22 9 A2 ¥ BT

Copyright 2000 by Timothy O'Malley <timo@alum.mit.edu>
All Rights Reserved

Permission to use, copy, modify, and distribute this software

and its documentation for any purpose and without fee is hereby
granted, provided that the above copyright notice appear in all
copies and that both that copyright notice and this permission
notice appear in supporting documentation, and that the name of
Timothy O'Malley not be used in advertising or publicity

pertaining to distribution of the software without specific, written

(TH& ST Aol A1)

i
B
[t
(m

C3. =%

slolol that eholdls 9 53l 215

The Python/C API, &] B{ A 3.7.17

(o] A sl o] A A M A%)

prior permission.

Timothy O'Malley DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS
SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS, IN NO EVENT SHALL Timothy O'Malley BE LIABLE FOR
ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
PERFORMANCE OF THIS SOFTWARE.

C.3.5 A3 >3

trace REL O3 2 39 ALgHS £33t}

portions copyright 2001, Autonomous Zones Industries, Inc., all rights...
err... reserved and offered to the public under the terms of the

Python 2.2 license.

Author: Zooko O'Whielacronx

http://zooko.com/

mailto:zooko@zooko.com

Copyright 2000, Mojam Media, Inc., all rights reserved.
Author: Skip Montanaro

Copyright 1999, Bioreason, Inc., all rights reserved.
Author: Andrew Dalke

Copyright 1995-1997, Automatrix, Inc., all rights reserved.
Author: Skip Montanaro

Copyright 1991-1995, Stichting Mathematisch Centrum, all rights reserved.

Permission to use, copy, modify, and distribute this Python software and
its associated documentation for any purpose without fee is hereby
granted, provided that the above copyright notice appears in all copies,
and that both that copyright notice and this permission notice appear in
supporting documentation, and that the name of neither Automatrix,
Bioreason or Mojam Media be used in advertising or publicity pertaining to
distribution of the software without specific, written prior permission.

C.3.6 UUencode %! UUdecode &+

wu RES TR 2L 7o) 4GS THTh

Copyright 1994 by Lance Ellinghouse
Cathedral City, California Republic, United States of America.

All Rights Reserved
Permission to use, copy, modify, and distribute this software and its
documentation for any purpose and without fee is hereby granted,
provided that the above copyright notice appear in all copies and that
both that copyright notice and this permission notice appear in

(TH& ST Aol A1)

216 Appendix C. < x}¢} glo] A A

The Python/C API, &] 8| A 3.7.17

(o] A sl o] A A M A%)

supporting documentation, and that the name of Lance Ellinghouse

not be used in advertising or publicity pertaining to distribution

of the software without specific, written prior permission.

LANCE ELLINGHOUSE DISCLAIMS ALL WARRANTIES WITH REGARD TO

THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS, IN NO EVENT SHALL LANCE ELLINGHOUSE CENTRUM BE LIABLE

FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT
OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

Modified by Jack Jansen, CWI, July 1995:

— Use binascii module to do the actual line-by-line conversion
between ascii and binary. This results in a 1000-fold speedup. The C
version is still 5 times faster, though.

- Arguments more compliant with Python standard

C.3.7 XML 94 =324 55

xmlrpe.client RE-S The 3 22 29 A3 e

The XML-RPC client interface is

Copyright (c) 1999-2002 by Secret Labs AB
Copyright (c) 1999-2002 by Fredrik Lundh

By obtaining, using, and/or copying this software and/or its
associated documentation, you agree that you have read, understood,
and will comply with the following terms and conditions:

Permission to use, copy, modify, and distribute this software and
its associated documentation for any purpose and without fee is
hereby granted, provided that the above copyright notice appears in
all copies, and that both that copyright notice and this permission
notice appear in supporting documentation, and that the name of
Secret Labs AB or the author not be used in advertising or publicity
pertaining to distribution of the software without specific, written
prior permission.

SECRET LABS AB AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH REGARD
TO THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANT-
ABILITY AND FITNESS. IN NO EVENT SHALL SECRET LABS AB OR THE AUTHOR
BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY
DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
OF THIS SOFTWARE.

o

C3. =g azE

oy ol Tt 2lo] Al A & &2l 217

=4

The Python/C API, &] B{ A 3.7.17

C.3.8 test_epoll

test_epoll REL U 22 £ A G =234

Copyright (c) 2001-2006 Twisted Matrix Laboratories.

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND

NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

C.3.9 Select kqueue

select BE-2 kqueue Q1 E 3] o] 2ol thal The 3} 2 9] AgHS ERFU T

Copyright (c) 2000 Doug White, 2006 James Knight, 2007 Christian Heimes
All rights reserved.

Redistribution and use in source and binary forms, with or without

modification, are permitted provided that the following conditions

are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS "~ "AS IS'' AND

ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. 1IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS

OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

218 Appendix C. < x}¢} glo] A A

The Python/C API, &] 8| A 3.7.17

C.3.10 SipHash24

3¢ Python/pyhash.c 9|+ Dan Bernstein®] SipHash24 ¢ 11 2] = 2] Marek Majkowski & -3 o] 3£ 3} of
AFUTh 7)o a3 22 Wgo] Z3E o 5T

<MIT License>
Copyright (c) 2013 Marek Majkowski <marek@popcount.org>

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
</MIT License>

Original location:
https://github.com/majek/csiphash/

Solution inspired by code from:
Samuel Neves (supercop/crypto_auth/siphash24/1little)
djb (supercop/crypto_auth/siphash24/little2)
Jean-Philippe Aumasson (https://131002.net/siphash/siphash24.c)

C.3.11 strtod 2} dtoa

C double 7} 214 719 W3S 93k C &4 dtoa &} strtod S A F 3t 91Y Python/dtoa.c = A A http:
[Iwww.netlib.org/fp/ o] A €& 4= = David M. Gay2] 22 o] &) oA A= <5t} 20093 34
160 W2 A& gtdol = b33 22 A &d 2 gholAlx g7 285 o] JFUth:

/**

*

* The author of this software is David M. Gay.

*

* Copyright (c) 1991, 2000, 2001 by Lucent Technologies.

*

* Permission to use, copy, modify, and distribute this software for any

* purpose without fee is hereby granted, provided that this entire notice
* is included in all copies of any software which is or includes a copy

* or modification of this software and in all copies of the supporting

* documentation for such software.

*

* THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR IMPLIED
*

WARRANTY. IN PARTICULAR, NEITHER THE AUTHOR NOR LUCENT MAKES ANY
* REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE MERCHANTABILITY
* OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR PURPOSE.

*

***/

C3. =%

i
By
&
(m
:‘_‘2’
2
&
)
ok
i)
-
x
[
N,
o>
r o

219

http://www.netlib.org/fp/
http://www.netlib.org/fp/

The Python/C API, &] B{ A 3.7.17

C.3.12 OpenSSL

R & hashlib, posix, ssl, crypt & &% A A7} AR = A std F712] 4452 913 OpenSSL o] B
H e & AU Th =3 A5 99l W OS X shol# A2 2 132 OpenSSL Bho| B g AMR S 288 4=
Ao B, of 7]of OpenSSL gho] Al AHRE S 23t}

LICENSE ISSUES

The OpenSSL toolkit stays under a dual license, i.e. both the conditions of
the OpenSSL License and the original SSLeay license apply to the toolkit.
See below for the actual license texts. Actually both licenses are BSD-style
Open Source licenses. In case of any license issues related to OpenSSL
please contact openssl-core@openssl.org.

OpenSSL License

Copyright (c) 1998-2008 The OpenSSL Project. All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in
the documentation and/or other materials provided with the
distribution.

3. All advertising materials mentioning features or use of this
software must display the following acknowledgment:
"This product includes software developed by the OpenSSL Project
for use in the OpenSSL Toolkit. (http://www.openssl.org/)"

4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
endorse or promote products derived from this software without
prior written permission. For written permission, please contact
openssl-corelopenssl.org.

5. Products derived from this software may not be called "OpenSSL"
nor may "OpenSSL" appear in their names without prior written
permission of the OpenSSL Project.

6. Redistributions of any form whatsoever must retain the following
acknowledgment:
"This product includes software developed by the OpenSSL Project
for use in the OpenSSL Toolkit (http://www.openssl.org/)"

THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT " "AS IS'' AND ANY
EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE ARE DISCLAIMED. 1IN NO EVENT SHALL THE OpenSSL PROJECT OR
ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT

L T R S I S N S R T S N IS S N S N S S NS S SN S S S S S S SR P S S N .

(TH& ST Aol A1)

220 Appendix C. < x}¢} glo] A A

The Python/C API, &] 8| A 3.7.17

(o] A sl o] A A M A%)

0% ok X ok ok o ok X % X %

NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;

LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)

HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
OF THE POSSIBILITY OF SUCH DAMAGE.

This product includes cryptographic software written by Eric Young
(eay@cryptsoft.com). This product includes software written by Tim
Hudson (tjh@cryptsoft.com).

Original SSLeay License

L A I S N S N IS S S S N S N TS N N S S A N S N S S S S N N

Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
All rights reserved.

This package is an SSL implementation written
by Eric Young (eay@cryptsoft.com).
The implementation was written so as to conform with Netscapes SSL.

This library is free for commercial and non-commercial use as long as
the following conditions are aheared to. The following conditions
apply to all code found in this distribution, be it the RC4, RSA,
lhash, DES, etc., code; not just the SSL code. The SSL documentation
included with this distribution is covered by the same copyright terms
except that the holder is Tim Hudson (tjh@cryptsoft.com).

Copyright remains Eric Young's, and as such any Copyright notices in

the code are not to be removed.

If this package is used in a product, Eric Young should be given attribution
as the author of the parts of the library used.

This can be in the form of a textual message at program startup or

in documentation (online or textual) provided with the package.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
1. Redistributions of source code must retain the copyright
notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
3. All advertising materials mentioning features or use of this software
must display the following acknowledgement:
"This product includes cryptographic software written by
Eric Young (eay@cryptsoft.com)"
The word 'cryptographic' can be left out if the rouines from the library
being used are not cryptographic related :-).
4. If you include any Windows specific code (or a derivative thereof) from
the apps directory (application code) you must include an acknowledgement:
"This product includes software written by Tim Hudson (tjh@cryptsoft.com)"

(TH& ST Aol A1)

C3. =g azE

o

oy ol Tt 2lo] Al A & &2l 221

=4

The Python/C API, &] B{ A 3.7.17

(o] A sl o] A A M A%)

THIS SOFTWARE IS PROVIDED BY ERIC YOUNG " "AS IS'' AND

ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. 1IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS

OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

The licence and distribution terms for any publically available version or
derivative of this code cannot be changed. i.e. this code cannot simply be
copied and put under another distribution licence

[including the GNU Public Licence.]

L S A I S S N S N S

/

C.3.13 expat

pyexpat &2 WEE —~with-system-expat & 7454 &+ 3, = expat 25 ARES AFE-5H

WEgych

Copyright (c) 1998, 1999, 2000 Thai Open Source Software Center Ltd
and Clark Cooper

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

222 Appendix C. < x}¢} glo] A A

The Python/C API, &] 8| A 3.7.17

C.3.14 libffi

_ctypes AL WCE —_yith-system-1ibffi & FA A &= 3 £ H libfi &2 AFE-S AFR-3 o]

HEg Yt

Copyright (c) 1996-2008 Red Hat, Inc and others.

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
‘*Software''), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED " "AS IS'', WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.

C.3.15 zlib

21ib B A2 E A BAH 2lib 0 A 0] W 2 e ol A W= o] AHSE 4 Yow, EFHE Alib 24 G
Apg-8to] W =g U T

Copyright (C) 1995-2011 Jean-loup Gailly and Mark Adler

This software is provided 'as-is', without any express or implied

warranty. In no event will the authors be held liable for any damages

arising from the use of this software.

Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it
freely, subject to the following restrictions:

1. The origin of this software must not be misrepresented; you must not
claim that you wrote the original software. If you use this software
in a product, an acknowledgment in the product documentation would be
appreciated but is not required.

2. Altered source versions must be plainly marked as such, and must not be
misrepresented as being the original software.

3. This notice may not be removed or altered from any source distribution.

Jean-loup Gailly Mark Adler
jloup@gzip.org madler@alumni.caltech.edu

C3. =%

i
B
[t
(m

slolol that eholdls 9 53l 223

The Python/C API, &] B{ A 3.7.17

C.3.16 cfuhash

>

tracemalloc o 98l A}25 = A H o] B2 3L cfuhash ZE2AEE 7|ulo g2 3 t}:

Copyright (c) 2005 Don Owens
All rights reserved.

This code is released under the BSD license:

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following
disclaimer in the documentation and/or other materials provided
with the distribution.

* Neither the name of the author nor the names of its
contributors may be used to endorse or promote products derived
from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
OF THE POSSIBILITY OF SUCH DAMAGE.

C.3.17 libmpdec

_decimal RE2 YE=E ——with-system-libmpdec & FASIA] &+ 3F, Z 34 libmpdec A2 AFE S

g3l MEg LT

Copyright (c) 2008-2016 Stefan Krah. All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

(TH& ST Aol A1)

224 Appendix C. < x}¢} glo] A A

The Python/C API, &] 8| A 3.7.17

(o] A sl o] A A M A%)

THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS "AS IS" AND

ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. 1IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS

OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

C3. =% 225

i
By
&
(m
)
2
&
)
rk
i)
-
x
[
N,
o>
r o

The Python/C API, &] B{ A 3.7.17

226 Appendix C. < x}¢} glo] A A

APPENDIX D

sho] 3} o] WA
Copyright © 2001-2023 Python Software Foundation. All rights reserved.

Copyright © 2000 BeOpen.com. All rights reserved.

Copyright © 1995-2000 Corporation for National Research Initiatives. All rights reserved.
Copyright © 1991-1995 Stichting Mathematisch Centrum. All rights reserved.

WA 2ol 0 AL AT ARE o AL9) 2ho] 4l o A Al F T

227

The Python/C API, &] B{ A 3.7.17

228 Appendix D. 24

1z
ro,

Non-alphabetical

..., 193

2to3, 193

>>> 193

__all__ (package variable), 39
__dict__ (module attribute), 119
__doc___ (module attribute), 119
_ file_ (module attribute), 119

_ future_ ,197
_ import_
o, 39
_ loader__ (module attribute), 119
_ _main_

52 E, 11, 140, 149

__name___ (module attribute), 119
__ package__ (module attribute), 119
__slots__,203
_frozen (CH| o] ¥ &4l), 41

_inittab (CH°]E &2]), 42

_Py_c dlff(C +), 83

_Py_c_neg (C&<%),83

_Py_c_pow (C &), 83

_Py_c_prod (C &%), 83

_Py_c_quot (C &), 83

_Py_c_sum (C <), 83
_Py_NoneStruct (C %), 166
_PyBytes_Resize (C &), 86
_PyCFunctionFast (CH| o] ¥ &4), 167
_PyCFunctionFastWithKeywords (C Hl o] & &

A1), 167

_PyImport_Fini (C UV\) 41

_PyImport_Init (C &%), 41
_PyObject_GC_TRACK (C &), 189
_PyObject_GC_UNTRACK (C), 189
_PyObject_New (C &), 165

_PyObject_NewVar (C), 165

_PyTuple_Resize (C &), 107
_thread

2 F, 146

A
bytearray, 86
bytes, 84
Capsule, 128
complex number, 83
dictionary, 110
file, 118
floating point, 82
frozenset, 113
function, 115
instancemethod, 116
integer, 79
list, 109
long integer, 79
mapping, 110
memoryview, 127

method, 116
module, 119
None, 79

numeric, 79
sequence, 84
set, 113
tuple, 106
type, 6,77

A

abort (), 38
abs
LH 2} 3] _.,_’ 63
abstract base class (54} H| 9]
annotation (] H| o] A), 193
argument (€13}, 193
argv (in module sys), 143
ascii
W B, 59
asynchronous context manager (H]% 7] A=
2E FeEj A, 194
asynchronous generator (H]% 7] A\ g o] §),
194

2 F#), 193

229

The Python/C API, &] B{ A 3.7.17

asynchronous generator iterator (H]% 7]
A @ o) g o g & o] H), 194

asynchronous iterable (H]57] °|E & E), 194

asynchronous iterator (H]% 7] ©] g & o] §),
194

attribute (9JEZ|HE), 194

awaitable (o]§llo]EH £), 194

B

BDFL, 194
binary file (8}o]\ g 9}Y), 194
buffer interface

(see buffer protocol), 68
buffer object

(see buffer protocol), 68
buffer protocol, 68
builtins

B2 5,11, 140, 149
bytearray

A, 86
bytecode (¥} E
bytes

A A, 84

w7 g4, 59
bytes—-1like object (H}o]EE R

C

FE) 195

AA), 194

calloc (), 155
Capsule
A, 128

C-contiguous, 71, 195
class (E3), 195
class variable (E3 2
classmethod

W7 e, 168
cleanup functions, 38
close () (in module os), 149
CO_FUTURE_DIVISION (C ®4), 19
code object, 117
coercion (Zo]A), 195
compile

W g, 40
complex number

A, 83
complex number (B4
context manager (A HE
context variable (AHAE
contiguous, 71
contiguous (%), 195
copyright (in module sys), 142
coroutine (ZFH), 195
coroutine function (ZFHE
CPython, 195
create_module (C &), 122

H), 195

2,195
| ~E #2| 2}), 195
W), 195

o), 195

D

decorator (H]Zd °]€), 195
descriptor (2= HE), 196
dictionary

A, 110
dictionary (944 &), 196
dictionary view (A1 g H), 196
divmod

g g, 62
docstring (52EH), 196
duck-typing (4 BFo]33), 196

E

EAFP, 196
EOFError (built-in exception), 118
exc_info () (in module sys), 10
exec_module (C &), 122
exec_prefix, 4

executable (in module sys), 142
exit (), 38

expression (& 4]), 196
extension module (3% X

F
f-string (fEAF4E), 196
file

AA, 118
file object (< AA), 196
file—-like object (Z}LdF A, 197
finder (3} 4), 197
float

0 B4, 64
floating point

A, 82
floor division (B4 A, 197
Fortran contiguous, 71, 195
free (), 155
freeze utility,42
frozenset

AA, 113
function

AA, 115
function (&%), 197
function annotation (&

G

garbage collection (78] A =74), 197

generator, 197

generator (A & ©] E), 197

generator expression, 197

generator expression (AU # olE &3 4]), 197

generator iterator (AU o] o] H & o] H),
197

2E), 196

Ho]A), 197

230

=
ro,

The Python/C API, &] 8| A 3.7.17

generic function (A" <), 198
GIL, 198
global interpreter lock, 144

global interpreter lock (¥ QEH Z g H
=), 198

F{

hash

W3 &4, 61, 174
hash-based pyc (G} A] 713k pyc), 198
hashable (3] A] 7}%), 198

IDLE, 198
immutable (£%), 198
import path(YXE F =), 198
importer (¥ X ¥), 198
importing (Y 3xH), 198
incr_item(), 10, 11
inquiry (CHle]¥ & 4]), 190
instancemethod

AA, 116
int

W g, o4
integer

A, 79
interactive (W3}d), 198
interpreted (UEZE E), 198
interpreter lock, 144
interpreter shutdown (AEZZE £5),199
iterable (°]E1 & E), 199
iterator (o] Eld o]), 199

K

key function (7] &%), 199
KeyboardInterrupt (built-in exception), 29
keyword argument (7] ¥ = 21z}, 199

L

lambda (&t}), 199
LBYL, 199
len
W3 g4, 61, 65,67, 109, 111, 114
list
A4, 109
list (F12E), 200
list comprehension (BE|2E AZ g3 A), 200
loader (2H), 200
lock, interpreter, 144
long integer
A, 79
LONG_MAX, 80

M
magic

method, 200
magic method (W] 3 WA =), 200
main (), 141, 143
malloc (), 155
mapping

AR, 110
mapping (73), 200
memoryview

AA, 127
meta path finder (WE} AZE 3}elH), 200
metaclass (W EF F), 200
METH_CLASS (W7 W4, 168
METH_COEXIST (W73 ¥4), 168
METH_FASTCALL (W& ®H<), 168
METH_NOARGS (W& <), 168
METH_O (W7 ¥ 4), 168
METH_STATIC (W& W), 168
METH_VARARGS (W7 W), 167
method

magic, 200

special, 204

AA, 116
method (WA =), 200
method resolution order (WA E ZAA <A,

200

MethodType (in module types), 115, 116
module

search path, 11, 140, 142

AA, 119
module (& &), 200
module spec (RE 23 200
modules (in module sys), 39, 140
ModuleType (in module types), 119
MRO, 200
mutable (7}H), 200

N

named tuple (U Y= FZ), 200
namespace (°] & &7hH), 201
namespace package (0|5 &7t 9]7]A)), 201
nested scope (EFH £~37Z),201
new-style class (F+2E<Y Z82), 201
None

A, 79
numeric

AR, 79

O

object
code, 117
object (AA)), 201

=
=

231

The Python/C API, &] B{ A 3.7.17

OverflowError (built-in exception), 80, 81

P

package (3] 7] A)), 201

package variable

__all_ ,39
parameter (W] 7] 4), 201
PATH, 11
path

module search, 11, 140, 142
path (in module sys), 11, 140, 142
path based finder (AZ 7|9 5}l H), 202
path entry (4 E dEz]), 202
path entry finder (BZE EE 521t]), 202
path entry hook (B & JdEZT %), 202
path-like object (AEZF ZAA)), 202
PEP, 202
platform (in module sys), 142
portion (EA), 202
positional argument (§] %] ¢z}, 202
pow

W3 g4, 62, 64
prefix, 4
provisional API (A API), 202
provisional package (A 1]7]A]), 203
Py_ABS (CUW|Z &), 4
Py_AddPendingCall (C &%), 150
Py_AddPendingCall (), 150
Py_AtExit (C), 38
Py_BEGIN_ALLOW_THREADS, 144
Py_BEGIN_ALLOW_THREADS (C Uﬂii), 147
Py_BLOCK_THREADS (C W] 2 &), 148
Py_buffer (CH o] ¥ &4l), 69
Py_buffer.buf (C@H W), 69
Py_buffer.format (C HW¥ HF), 70
Py_buffer.internal (C ¥ H W), 70
Py_buffer.itemsize (C ¥ H W), 69
Py_buffer.len (C ¥y W), 69
Py_buffer.ndim (C ® 8 W), 70
Py_buffer.obj (C ¥¥ W), 69
Py_buffer.readonly (C /s W), 69
Py_buffer.shape (CHWH M), 70
Py_buffer.strides (C @y W), 70
Py_buffer.suboffsets (C ¥y W), 70
Py_Buildvalue (C &), 49
Py_BytesWarningFlag (C), 138
Py_CHARMASK (CU| 3 &), 5
Py_CLEAR (C &%), 21
Py_CompileString (C &%), 18
Py_CompileString (), 19
Py_CompileStringExFlags (C &), 18
Py_CompileStringFlags (C &), 18
Py_CompileStringObject (C &), 18
Py_complex (C H| o] ¥ & 4]), 83

Py_DebugFlag (C), 138
Py_DecodeLocale (C &%), 36
Py_DECREF (C &), 21
Py_DECREF (), 6
Py_DontWriteBytecodeFlag (C W), 138
Py_Ellipsis (C¥H%), 127
Py_EncodeLocale (C &%), 36
Py_END_ALLOW_THREADS, 144
Py_END_ALLOW_THREADS (o UHE.E_), 147
Py_EndInterpreter (C <), 149
Py_EnterRecursiveCall (C &%), 31
Py_eval_input (C ¥), 19
Py_Exit (C &), 38
Py_False (C ¥), 82
Py_FatalError (C g<), 38
Py_FatalError (), 143
Py_FdIsInteractive (C &), 35
Py_file_input (C¥%), 19
Py_Finalize (C &%), 141
Py_FinalizeEx (C &), 140
Py_FinalizeEx (), 38, 140, 149, 150
Py_FrozenFlag (C W), 138
Py_GetBuildInfo (C g<), 143
Py_GetCompiler (C <), 143
Py_GetCopyright (C &%), 142
Py_GETENV (CWl 3 &), 5
Py_GetExecPrefix (C &%), 141
Py_GetExecPrefix (), 11
Py_GetPath (C &), 142
Py_GetPath (), 11, 141, 142
Py_GetPlatform (CB‘LA) 142
Py_GetPrefix (C &), 141
Py_GetPrefix (), 11
Py_GetProgramFullPath (C &), 142
Py_GetProgramFullPath (), I1
Py_GetProgramName (C), 141
Py_GetPythonHome (C $), 144
Py_GetVersion (C &), 142
Py_HashRandomizationFlag (C %), 138
Py_IgnoreEnvironmentFlag (C W), 139
Py_INCREF (C &), 21
Py_INCREF (), 6
Py_Initialize (C 61"\) 140
Py_Initialize(), 11,141,149
Py_InitializeEx (C 5,\—) 140
Py_InspectFlag (C %), 139
Py_InteractiveFlag (C W), 139
Py_IsInitialized (C &), 140
Py_TIsInitialized(), 12
Py_IsolatedFlag (C %), 139
Py_LeaveRecursiveCall (C &%), 32
Py_LegacyWindowsFSEncodingFlag (C W),
139
Py_LegacyWindowsStdioFlag (C ¥5), 139

232

=
ro,

The Python/C API, &] 8| A 3.7.17

Py_Main (C &%), 15

Py_MAX (CWl3 &), 5

Py_MEMBER_SIZE (CW|3 &), 5

Py_MIN(CW3Z &), 5

Py_mod_create (C W), 122

Py_mod_exec (C HS), 122

Py_NewInterpreter (C &), 149

Py_None (C ¥5), 79

Py_NoSiteFlag (C W), 139

Py_NotImplemented (C W), 57

Py_NoUserSiteDirectory (C ¥), 139

Py_OptimizeFlag (C¥<), 139

Py_PRINT_RAW, 118

Py_QuietFlag (C ¥<), 139

Py_REFCNT (CUW| 32 &), 166

Py_ReprEnter (C &), 32

Py_ReprLeave (C &), 32

Py_RETURN_FALSE (C Wl 3 &), 82

Py_RETURN_NONE (C Wl 3 &), 79

Py_RETURN_NOTIMPLEMENTED (C "} 2 &), 57

Py_RETURN_RICHCOMPARE (C &), 178

Py_RETURN_TRUE (C "l 3 &), 82

Py_SetPath (C &), 142

Py_SetPath (), 142

Py_SetProgramName (C &), 141

Py_SetProgramName (), 11, 140142

Py_SetPythonHome (C &%), 143

Py_SetStandardStreamEncoding (C &), 141

Py_single_input (C <), 19

Py_SIZE (CHl=ZR), 166

PY_SSIZE_T_MAX, 81

Py_STRINGIFY (CUl3&),5

Py_TPFLAGS_BASE_EXC_SUBCLASS (W& W),
176

Py_TPFLAGS_BASETYPE (W& ¥H4), 176

Py_TPFLAGS_BYTES_SUBCLASS (W& W), 176

Py_TPFLAGS_DEFAULT (W& W), 176

Py_TPFLAGS_DICT_SUBCLASS (W& ¥H<4), 176

Py_TPFLAGS_HAVE_FINALIZE (W3 ®¥H<4), 176

Py_TPFLAGS_HAVE_GC (W& W), 176

Py_TPFLAGS_HEAPTYPE (W H4), 176

Py_TPFLAGS_LIST_SUBCLASS (W7 W), 176

Py_TPFLAGS_LONG_SUBCLASS (W& ¥H<4), 176

Py_TPFLAGS_READY (W& W), 176

Py_TPFLAGS_READYING (W ®¥H4), 176

Py_TPFLAGS_TUPLE_SUBCLASS (W& W), 176

Py_TPFLAGS_TYPE_SUBCLASS (W7 W), 176

Py_TPFLAGS_UNICODE_SUBCLASS (W & M),
176

Py_tracefunc (CH o] g & A, 151

Py_True (C ¥5), 82

Py_tss_NEEDS_INIT (C "3 &), 153

Py_tss_t (CH|oE ¥4, 153

Py_TYPE (C"lZ &), 166

Py_UCS1 (C H| o] & 3 A)), 88
Py_UCS2 (CHl o] E & 4]), 88
Py_UCS4 (CHl o] E & 4]), 88
Py_UNBLOCK_THREADS (C "] 2 &), 148
Py_UnbufferedStdioFlag (C ¥), 139
Py_UNICODE (C ©| o] ¥ & 4]), 88
Py_UNICODE_IS_HIGH_SURROGATE (C®|=Z &), 91
Py_UNICODE_IS_LOW_SURROGATE (C "= &), 91
Py_UNICODE_IS_SURROGATE (C U3 &), 91
Py_UNICODE_ISALNUM (C), 90
Py_UNICODE_ISALPHA (C <), 90
Py_UNICODE_ISDECIMAL (C &%), 90
Py_UNICODE_ISDIGIT (C <), 90
Py_UNICODE_ISLINEBREAK (C &), 90
Py_UNICODE_ISLOWER (C &), 90
Py_UNICODE_ISNUMERIC (C &), 90
Py_UNICODE_ISPRINTABLE (C &), 90
Py_UNICODE_ISSPACE (C <), 90
Py_UNICODE_ISTITLE (C <), 90
Py_UNICODE_ISUPPER (C), 90
Py_UNICODE_JOIN_SURROGATES (C W= &), 91
Py_UNICODE_TODECIMAL (C &%), 91
Py_UNICODE_TODIGIT (C ¥<), 91
Py_UNICODE_TOLOWER (C), 90
Py_UNICODE_TONUMERIC (C &), 91
Py_UNICODE_TOTITLE (C), 91
Py_UNICODE_TOUPPER (C), 90
Py_UNREACHABLE (CU| 3 &), 4
Py_UNUSED (C"| 2 &), 5
Py_VaBuildvalue (C &), 51
Py_VerboseFlag (C), 140
Py_VISIT (C &), 190
Py_XDECREF (C &), 21
Py_XDECREF (), 11
Py_XINCREF (C <), 21
PyAnySet_Check (C <), 113
PyAnySet_CheckExact (C &), 113
PyArg_Parse (C &%), 48
PyArg_ParseTuple (C &), 48
PyArg_ParseTupleAndKeywords (C e), 48
PyArg_UnpackTuple (C &), 49
PyArg_ValidateKeywordArguments (C &),
48
PyArg_VaParse (C 3), 48
PyArg_VaParseTupleAndKeywords (C &), 48
PyASCITObject (CHl o€l & 4)), 88
PyAsyncMethods (C B o] ¥ & 41), 188
PyAsyncMethods.am_aiter (C ®WH H4), 188
PyAsyncMethods.am_anext (C @8 W), 188
PyAsyncMethods.am_await (C @8 W), 188
PyBool_Check (C &), 82
PyBool_FromLong (C &), 82
PyBUF_ANY_CONTIGUOUS (C Wl 3 &), 72
PyBUF_C_CONTIGUOUS (CP| 3 &), 72

259

233

The Python/C API, &] B{ A 3.7.17

PyBUF_CONTIG (C i3 &), 72
PyBUF_CONTIG_RO (C U3 &), 72
PyBUF_F_CONTIGUOUS (CW|3Z &), 72
PyBUF_FORMAT (C " =2 &), 71
PyBUF_FULL (C Wj 3 &), 72
PyBUF_FULL_RO (CU|3 &), 72
PyBUF_INDIRECT (CW| 3 &), 71
PyBUF_ND (C "} =2 &), 71,72
PyBUF_RECORDS (C M| =2 &), 72
PyBUF_RECORDS_RO (C W3 &), 72
PyBUF_SIMPLE (C "3 &), 71
PyBUF_STRIDED (C "3 &), 72
PyBUF_STRIDED_RO (C W3 &), 72
PyBUF_STRIDES (C W= &), 71
PyBUF_WRITABLE (C Wl 3 &), 71
PyBuffer_ FillContiguousStrides (C &
74
PyBuffer_ FillInfo (C &), 75
PyBuffer_FromContiguous (C 3), 74
PyBuffer_GetPointer (C &), 74
PyBuffer_IsContiguous (C &%), 74
PyBuffer_Release (C &%), 74
PyBuffer_SizeFromFormat (C &), 74
PyBuffer_ToContiguous (C &%), 74
PyBufferProcs, 68
PyBufferProcs (C H o] ¥ & 4), 187
PyBufferProcs.bf_getbuffer (C Wy W),
187
PyBufferProcs.bf_releasebuffer (C ¥WH ¥
), 187
PyByteArray_ AS_STRING (C &), 87
PyByteArray_AsString (C k), 87
PyByteArray_Check (C &%), 86
PyByteArray_CheckExact (C &), 86
PyByteArray_Concat (C g), 87
PyByteArray_ FromObject (C &), 87
PyByteArray_ FromStringAndSize (C &), 87
PyByteArray_GET_SIZE (C &%), 87
PyByteArray_Resize (C &), 87
PyByteArray_Size (C g), 87
PyByteArray_Type (C), 86
PyByteArrayObject (C H o] & &4]), 86
PyBytes_AS_STRING (C &4, 85
PyBytes_AsString (C &%), 85
PyBytes_AsStringAndSize (C &), 85
PyBytes_Check (C &), 84
PyBytes_CheckExact (C g), 84
PyBytes_Concat (C), 86
PyBytes_ConcatAndDel (C &%), 86
PyBytes_FromFormat (C &), 85
PyBytes_FromFormatV (C &), 85
PyBytes_FromObject (C &), 85
PyBytes_FromString (C &), 84
PyBytes_FromStringAndSize (C &%), 85

),

PyBytes_GET_SIZE (C &%), 85
PyBytes_Size (C &), 85
PyBytes_Type (C Y1), 84
PyBytesObject (C H o] & 2l), 84
PyCallable_Check (C @'—T—) 60
PyCallIter_Check (C &%), 125
PyCalllter_New (C &), 125
PyCallIter_ Type (C), 125
PyCapsule (C H| o] E] & 24]), 128
PyCapsule_CheckExact (C &), 129
PyCapsule_Destructor (C o] E] HA)), 128
PyCapsule_GetContext (C &), 129
PyCapsule_GetDestructor (C &), 129
PyCapsule_GetName (C &), 129
PyCapsule_GetPointer (C &), 129
PyCapsule_Import (CB‘LA) 129
PyCapsule_IsValid (C &%), 129
PyCapsule_New (C &), 129
PyCapsule_SetContext (C &%), 130
PyCapsule_SetDestructor (C &), 130
PyCapsule_SetName (C <), 130
PyCapsule_SetPointer (C &%), 130
PyCell_Check (C &), 117
PyCell_GET (C &), 117
PyCell_Get (C &), 117
PyCell_New (C <), 117
PyCell_SET (C &), 117
PyCell_Set (C &), 117
PyCell_Type (C¥HF), 117
PyCellObject (CH|o]E &4, 117
PyCFunction (C B o] ¥ & 4)), 167
PyCFunctionWithKeywords (CHlolH
PyCode_Check (C &), 117
PyCode_GetNumFree (C &), 117
PyCode_New (C &), 117
PyCode_NewEmpty (C3), 118
PyCode_Type (C), 117
PyCodec_BackslashReplaceErrors (C &),
54
PyCodec_Decode (C <), 53
PyCodec_Decoder (C &), 54
PyCodec_Encode (C), 5%
PyCodec_Encoder (C &%), 5
PyCodec_IgnoreErrors (C g —,—)
PyCodec_IncrementalDecoder (C U]’—’T—) 54
PyCodec_IncrementalEncoder (C &), 54
PyCodec_KnownEncoding (C &), 53
PyCodec_LookupError (C &), 54
PyCodec_NameReplaceErrors (C &), 54
PyCodec_Register (C &), 53
PyCodec_RegisterError (C &), 54
PyCodec_ReplaceErrors (C &), 54
PyCodec_StreamReader (C &), 54
PyCodec_StreamWriter (C &), 54

F4), 167

234

=
ro,

The Python/C API, &] 8| A 3.7.17

PyCodec_StrictErrors (C &%), 54
PyCodec_XMLCharRefReplaceErrors (C &),
54
PyCodeObject (CHl°]E & A, 117
PyCompactUnicodeObject (C o] & & 4]), 88
PyCompilerFlags (CHl°]E &4), 19
PyComplex_AsCComplex (C &), 84
PyComplex_Check (C &%), 84
PyComplex_CheckExact (C &%), 84
PyComplex_FromCComplex (C &), 84
PyComplex_FromDoubles (C &), 84
PyComplex_ImagAsDouble (C &), 84
PyComplex_RealAsDouble (C &), 84
PyComplex_Type (C ¥H5), 84
PyComplexObject (C t| o] ¥ & 4)), 84
PyContext (C t] o] E] & A]), 131
PyContext_CheckExact (C &%), 131
PyContext_ClearFreeList (C &%), 132
PyContext_Copy (C &), 132
PyContext_CopyCurrent (C &), 132
PyContext_Enter (C &), 132
PyContext_Exit (C &4, 132
PyContext_New (C &), 132
PyContext_Type (CWHF), 131
PyContextToken (C B o] ¥ & 41), 131
PyContextToken_CheckExact (C &), 132
PyContextToken_Type (C W), 131
PyContextVar (C H o] ¥ &4]), 131
PyContextVar_CheckExact (C &), 131
PyContextVar_Get (C &%), 132
PyContextVar_New (C &), 132
PyContextVar_Reset (Cb‘]'/\) 132
PyContextVar_Set (C &%), 132
PyContextVar_Type (C ¥<), 131
PyCoro_CheckExact (C &%), 131
PyCoro_New (C &), 131
PyCoro_Type (C ¥<), 131
PyCoroObiject (C o] ¥ &4, 131
PyDate_Check (C &), 133
PyDate_CheckExact (C &), 133
PyDate_FromDate (C &%), 133
PyDate_FromTimestamp (C &), 135
PyDateTime_Check (C &%), 133
PyDateTime_CheckExact (C &), 133
PyDateTime DATE_GET_FOLD (C &<2), 134
PyDateTime DATE_GET_HOUR (C 8<2), 134
PyDateTime_DATE_GET_MICROSECOND (C ‘6]’7‘)
134
PyDateTime DATE_GET MINUTE (C &), 134
PyDateTime_DATE_GET_SECOND (C &), 134
PyDateTime DELTA_GET_DAYS (C 3), 135
PyDateTime_DELTA_GET_MICROSECONDS (C &
25,135
PyDateTime DELTA_GET_SECONDS (C &), 135

PyDateTime_FromDateAndTime (C &), 133
PyDateTime_FromDateAndTimeAndFold (C &
), 133
PyDateTime_FromTimestamp (C &), 135
PyDateTime_GET_DAY (C), 134
PyDateTime_GET_MONTH (C &%), 134
PyDateTime_GET_YEAR (C &), 134
PyDateTime_ TIME_GET_FOLD (C &), 135
PyDateTime_TIME_GET_HOUR (C &), 135
PyDateTime_TIME_GET_MICROSECOND (C &),
135
PyDateTime TIME_GET_ MINUTE (C &<2), 135
PyDateTime_TIME_GET_SECOND (C <), 135
PyDateTime_TimeZone_UTC (C), 133
PyDelta_Check (C <), 1?3
PyDelta_CheckExact (C %), 133
PyDelta_FromDSU (C &%), 134
PyDescr_IsData (C &), 125
PyDescr_NewClassMethod (C &), 125
PyDescr_NewGetSet (C &), 125
PyDescr_NewMember (C), 125
PyDescr_NewMethod (C &), 125
PyDescr_NewWrapper (C8), 125
PyDict_Check (C &%), 110
PyDict_CheckExact (C &), 110
PyDict_Clear (C &), 110
PyDict_ClearFreeList (C &%), 113
PyDict_Contains (C &%), 110
PyDict_Copy (C &), 111
PyDict_DelItem (C <), 111
PyDict_DelItemString (C &), 111
PyDict_GetItem (C), 111
PyDict_GetItemString (C &%), 111
PyDict_GetItemWithError (C &), 111
PyDict_TItems (C &), 111
PyDict_Keys (C &), 111
PyDict_Merge (C &), 112
PyDict_MergeFromSeqg2 (C &), 112
PyDict_New (C &), 110
PyDict_Next (C &), 111
PyDict_SetDefault (C &), 111
PyDict_SetItem (C <), 111
PyDict_ SetItemStrlng (C&), 111
PyDict_Size (C &%), 111
PyDict_Type (C H4), 110
PyDict_Update (C &), 112
PyDict_Values (C &), 111
PyDictObject (C Ul]Ei 32, 110
PyDictProxy_New (C &%), 110
PyDoc_STR(C |3 &), 5
PyDoc_STRVAR (CHlZ &), 5
PyErr_BadArgument (C), 24
PyErr_BadInternalCall (C &), 26
PyErr_CheckSignals (C &), 29

259

235

The Python/C API, &] B{ A 3.7.17

PyErr_Clear (C &%), 24
PyErr_Clear(),9,11
PyErr_ExceptionMatches (C &), 27
PyErr_ExceptionMatches (), 11
PyErr_Fetch (C &), 28
PyErr_Format (C &), 24
PyErr_FormatV (C &), 24
PyErr_GetExcInfo (C &%), 28

PyErr_GivenExceptionMatches (C &), 27

PyErr_NewException (C g<), 29
PyErr_NewExceptionWithDoc (C &%), 30
PyErr_NoMemory (C <), 25
PyErr_NormalizeException (C &%), 28
PyErr_Occurred (C &), 27
PyErr_Occurred(), 9
PyErr_Print (C & —,—) 24
PyErr_PrintEx (C &), 24
PyErr_ResourceWarning (C &), 27
PyErr_Restore (C), 28
PyErr_SetExcFromWindowsErr (C g<), 25

PyErr_SetExcFromWindowsErrWithFilename

(C &), 26

PyEval_AcquireThread(), 146
PyEval_EvalCode (C &), 18
PyEval_EvalCodeEx (C &), 18
PyEval_EvalFrame (C &), 18
PyEval_EvalFrameEx (C @'—T—) 18
PyEval_GetBuiltins (C &), 53
PyEval_GetFrame (C U]'—’f—) 53
PyEval_GetFuncDesc (C &), 53
PyEval_GetFuncName (C), 53
PyEval_GetGlobals (C &), 53
PyEval_GetLocals (C &%), 53
PyEval_InitThreads (C &), 146
PyEval_InitThreads (), 140
PyEval_MergeCompilerFlags (C g<), 19
PyEval_ReInitThreads (C &), 146
PyEval_ReleaseLock (Cﬂ'/\) 149
PyEval_ReleaseThread (C &%), 149
PyEval_ReleaseThread(), 146
PyEval_RestoreThread (C &%), 146
PyEval_RestoreThread (), 145, 146
PyEval_SaveThread (C &), 146
PyEval_SaveThread (), 145, 146

PyErr_ SetEchromWindowsErrWithFilenameObByEVal SetProfile (C &), 152

(C =), 25

PyEval_SetTrace (C &%), 152

PyErr_SetExcFromWindowsErrWithFilenameObBgEtal_ThreadsInitialized (C $), 146

(C &), 25
PyErr_SetExcInfo (C &%), 29
PyErr_SetFromErrno (C &), 25

PyErr_SetFromErrnoWithFilename (C &),

25

PyErr_SetFromErrnoWithFilenameObject (C

&), 25

PyErr_ SetFromErrnoWithFilenameobjects

C &), 25
PyErr_SetFromW1ndowsErr (C &), 25
PyErr_SetFromWindowsErrWithFilename

&), 25
PyErr_SetImportError (C &F), 26

PyErr_SetImportErrorSubclass (C &), 27

PyErr_SetInterrupt (C 34,29
PyErr_SetNone (C &), 24
PyErr_SetObject (C &%), 24
PyErr_SetString (C &%), 24
PyErr_SetString(),9
PyErr_SyntaxLocation (C ?ﬂ'—’r—) 26
PyErr_SyntaxLocationEx (C &), 26
PyErr_SyntaxLocationObject (C &), 26
PyErr_WarnEx (C &), 26
PyErr_WarnExplicit (C &), 27

PyErr WarnExpllc1tObject (C3), 27
PyErr_WarnFormat (C &%), 27
PyErr_WriteUnraisable (C &), 24
PyEval_AcquireLock (C &), 149
PyEval_AcquireThread (C &%), 148

PyExc_ArithmeticError, 32
PyExc_AssertionError, 32
PyExc_AttributeError, 32
PyExc_BaseException, 32
PyExc_BlockingIOError, 32
PyExc_BrokenPipeError, 32
PyExc_BufferError, 32
PyExc_BytesWarning, 34
PyExc_ChildProcessError, 32
PyExc_ConnectionAbortedError, 32
PyExc_ConnectionError, 32
PyExc_ConnectionRefusedError, 32
PyExc_ConnectionResetError, 32
PyExc_DeprecationWarning, 34
PyExc_EnvironmentError, 33
PyExc_EOFError, 32
PyExc_Exception, 32
PyExc_FileExistsError, 32
PyExc_FileNotFoundError, 32
PyExc_FloatingPointError, 32
PyExc_FutureWarning, 34
PyExc_GeneratorExit, 32
PyExc_ImportError, 32
PyExc_ImportWarning, 34
PyExc_IndentationError, 32
PyExc_IndexError, 32
PyExc_InterruptedError, 32
PyExc_IOError, 33
PyExc_IsADirectoryError, 32

236

=
ro,

The Python/C API, &] 8| A 3.7.17

PyExc_KeyboardInterrupt, 32
PyExc_KeyError, 32
PyExc_LookupError, 32
PyExc_MemoryError, 32
PyExc_ModuleNotFoundError, 32
PyExc_NameError, 32
PyExc_NotADirectoryError, 32
PyExc_NotImplementedError, 32
PyExc_OSError, 32
PyExc_OverflowError, 32
PyExc_PendingDeprecationWarning, 34
PyExc_PermissionError, 32
PyExc_ProcessLookupError, 32
PyExc_RecursionError, 32
PyExc_ReferenceError, 32
PyExc_ResourceWarning, 34
PyExc_RuntimeError, 32
PyExc_RuntimeWarning, 34
PyExc_StopAsyncIteration, 32
PyExc_StopIteration, 32
PyExc_SyntaxError, 32
PyExc_SyntaxWarning, 34
PyExc_SystemError, 32
PyExc_SystemExit, 32
PyExc_TabError, 32
PyExc_TimeoutError, 32
PyExc_TypeError, 32
PyExc_UnboundLocalError, 32
PyExc_UnicodeDecodeError, 32
PyExc_UnicodeEncodeError, 32
PyExc_UnicodeError, 32
PyExc_UnicodeTranslateError, 32
PyExc_UnicodeWarning, 34
PyExc_UserWarning, 34
PyExc_ValueError, 32
PyExc_Warning, 34
PyExc_WindowsError, 33
PyExc_ZeroDivisionError, 32
PyException_GetCause (C &), 30
PyException_GetContext (C &), 30
PyException_GetTraceback (C &%), 30
PyException_SetCause (C &), 30
PyException_SetContext (C &), 30
PyException_SetTraceback (C &%), 30
PyFile_FromFd (C &%), 118
PyFile_GetLine (C <), 118
PyFile_WriteObject (C &), 118
PyFile_WriteString (C &), 118
PyFloat_AS_DOUBLE (C g4, 83
PyFloat_AsDouble (C &), 82
PyFloat_Check (C &), 82
PyFloat_CheckExact (C g), 82
PyFloat_ClearFreeList (C &), 83
PyFloat_FromDouble (C 3<), 82

PyFloat_FromString (C &), 82
PyFloat_GetInfo (C &%), 83
PyFloat_GetMax (C g<), 83
PyFloat_GetMin (C <), 83
PyFloat_Type (C ¥), 82
PyFloatObject (C o] ¥ &4l), 82
PyFrame_GetLineNumber (C &%), 53
PyFrameObject (C Hl o] € &4), 18
PyFrozenSet_Check (C &), 113
PyFrozenSet_CheckExact (C &), 113
PyFrozenSet_New (C &%), 113
PyFrozenSet_Type (C ¥5), 113
PyFunction_Check (C g), 115
PyFunction_GetAnnotations (C &%), 115
PyFunction_GetClosure (C &), 115
PyFunction_GetCode (C), 115
PyFunction_GetDefaults (C &), 115
PyFunction_GetGlobals (C &%), 115
PyFunction_GetModule (C &%), 115
PyFunction_New (C 8<), 115
PyFunction_NewWithQualName (C), 115
PyFunction_SetAnnotations (C &%), 116
PyFunction_SetClosure (C &), 115
PyFunction_SetDefaults (C &%), 115
PyFunction_Type (C), 115
PyFunctionObject (CHl o & &4]), 115
PyGen_Check (C &%), 130
PyGen_CheckExact (C &%), 130
PyGen_New (C g), 130
PyGen_NewWithQualName (C &%), 130
PyGen_Type (C W), 130
PyGenObject (C o] & & Al), 130
PyGetSetDef (C o] ¥ & Al), 169
PyGILState_Check (C &%), 147
PyGILState_Ensure (C &), 147
PyGILState_GetThisThreadState (C &), 147
PyGILState_Release (C S), 147
PyImport_AddModule (C <), 40
PyImport_AddModuleObject (C &%), 40
PyImport_AppendInittab (C &), 42
PyImport_Cleanup (C g), 41
PyImport_ExecCodeModule (C <), 40
PyImport_ExecCodeModuleEx (C &), 40
PyImport_ExecCodeModuleObject (C &), 40
PyImport_ExecCodeModuleWithPathnames (C
F22), 40
PyImport_ExtendInittab (C &), 42
PyImport_FrozenModules (C), 42
PyImport_GetImporter (CU]'/\) 41
PyImport_GetMagicNumber (C &), 41
PyImport_GetMagicTag (C &%), 41
PyImport_GetModule (C &), 41
PyImport_GetModuleDict (C &), 41
PyImport_Import (C &%), 39

259

237

The Python/C API, &] B{ A 3.7.17

PyImport_ImportFrozenModule (C &), 41
PyImport_ImportFrozenModuleObject (C &
T), 41
PyImport_ImportModule (C &), 3
PyImport_ImportModuleEx (C “Q‘f,\—) 39
PyImport_ImportModuleLevel (C &), 39
PyImport_ImportModuleLevelObject (C &
), 39
PyImport_ImportModuleNoBlock (C &), 39
PyImport_ReloadModule (C &), 39
PyIndex_Check (C &), 64
PyInstanceMethod_Check (C &), 116
PyInstanceMethod_Function (C &%), 116
PyInstanceMethod_GET_FUNCTION(C <), 116
PyInstanceMethod_New (C &), 116
PyInstanceMethod_Type (C ¥), 116
PyInterpreterState (C Ul o] E] §Al), 146
PyInterpreterState_Clear (C &%), 148
PyInterpreterState_Delete (C &), 148
PyInterpreterState_GetID (C &), 148
PyInterpreterState_Head (C &), 152
PyInterpreterState_Main (C &4, 152
PyInterpreterState_New (C &), 148
PyInterpreterState_Next (C &), 152
PyInterpreterState_ThreadHead (C &), 152
PyIter_Check (C &), 68
PyIter_Next (C &%), 68
PyList_Append (C &), 109
PyList_AsTuple (C ¥), 110
PyList_Check (C &%), 109
PyList_CheckExact (C &), 109
PyList_ClearFreeList (€&, 110
PyList_GET_ITEM (C &%), 109
PyList_GET_SIZE (C &%), 109
PyList_GetItem (C &), 109
PyList_GetItem(),8
PyList_GetSlice (C¥), 110
PyList_Insert (C &), 109
PyList_New (C &), 109
PyList_Reverse (C &), 110
PyList_SET_ITEM (C &%), 109
PyList_SetItem (C g<), 109
PyList_SetItem(),7
PyList_SetSlice (C &%), 110
PyList_Size (C &%), 109
PyList_Sort (C &%), 110
PyList_Type (C ¥, 109
PyListObject (CH]]E1 3 A1), 109
PyLong_AsDouble (C +), 81
PyLong_AsLong (C 3), 80
PyLong_AsLongAndOverflow (C ¥), 80
PyLong_AsLongLong (C g<), 80
PyLong_AsLongLongAndOverflow (C &), 80
PyLong_AsSize_t (C &%), 81

PyLong_AsSsize_t (C &%), 81
PyLong_AsUnsignedLong (C <), 81
PyLong_AsUnsignedLongLong (C $), 81
PyLong_AsUnsignedLongLongMask (C &), 81
PyLong_. AsUnsignedLongMask (C3), 81
PyLong_AsVoidPtr (C &), 81
PyLong_Check (C &%), 79
PyLong_CheckExact (C &), 79
PyLong_FromDouble (C &), 79
PyLong_FromLong (C ¥<), 79
PyLong_FromLongLong (C &), 79
PyLong_FromSize_t (C &%), 79
PyLong_FromSsize_t (C &), 79
PyLong_FromString (C €), 80
PyLong_FromUnicode (C &), 80
PyLong_FromUnicodeObject (C k), 80
PyLong_FromUnsignedLong (C &), 79
PyLong_FromUnsignedLongLong (C &), 79
PyLong_FromVoidPtr (C &), 80
PyLong_Type (C HF), 79
PyLongObject (CHl ol ¥ &4]), 79
PyMapping_Check (C '5]'—/,\—) 67
PyMapping_DelItem (C &), 67
PyMapping_DelItemString (C 3 —’,\—) 67
PyMapping_GetItemString (C &), 67
PyMapping_HasKey (C ¥F), 67
PyMapping_HasKeyString (C &), 67
PyMapping_Items (C &), 67
PyMapping_Keys (C g), 67
PyMapping_Length (C ¥), 67
PyMapping_SetItemString (C &), 67
PyMapping_Size (C 6]'/\) 67
PyMapping_Values (C &%), 67
PyMappingMethods (C g o] ¥ & 4]), 185
PyMappingMethods.mp_ass_subscript (C ¥
H W), 185
PyMappingMethods.mp_length (C W W),
185
PyMappingMethods.mp_subscript (C W8 W
), 185
PyMarshal_ReadLastObjectFromFile (C &
), 43
PyMarshal_ReadLongFromFile (C '6]'/\) 43
PyMarshal_ReadObjectFromFile (C &), 43
PyMarshal_ReadObjectFromString (C &),
43
PyMarshal_ReadShortFromFile (C €<), 43
PyMarshal_WriteLongToFile (C U]'/\) 42
PyMarshal_WriteObjectToFile (C &), 42
PyMarshal_ WriteObjectToString (C &%), 43
PyMem_Calloc (C &%), 157
PyMem_Del (C &), 158
PYMEM_DOMAIN_MEM (C #<), 160
PYMEM_DOMAIN_OBRJ (C ¥, 160

238

=
ro,

The Python/C API, &] 8| A 3.7.17

PYMEM_DOMAIN_RAW (C ¥, 160
PyMem_Free (C &), 157
PyMem_GetAllocator (C &), 160
PyMem_Malloc (C &), 157

PyMem_New (C t), 157
PyMem_RawCalloc (C &%), 156
PyMem_RawFree (C‘51"\) 157
PyMem_RawMalloc (C &%), 156
PyMem_RawRealloc (C &), 156
PyMem_Realloc (C <), 157
PyMem_Resize (C &), 158
PyMem_SetAllocator (C &), 160
PyMem_SetupDebugHooks (C &), 160
PyMemAllocatorDomain (C B o] €l 3 Al), 160
PyMemAllocatorEx (C Bl o] g & 4l), 159
PyMemberDef (C H| o] & & “) 168
PyMemoryView_Check (C &), 127
PyMemoryView_FromBuffer (C g), 127
PyMemoryView_FromMemory (C 3), 127
PyMemoryView_FromObject (C), 127
PyMemoryView_GET_BASE (C &), 127
PyMemoryView_GET_BUFFER (C &), 127
PyMemoryView_GetContiguous (C g, 127
PyMethod_Check (C &), 116
PyMethod_ClearFreeList (C &), 117
PyMethod_Function (C &), 116
PyMethod_ GET_FUNCTION (C 84), 116
PyMethod_GET_SELF (C &), 116
PyMethod_New (C &), 116
PyMethod_Self (C &), 116
PyMethod_Type (C W), 116
PyMethodDef (C t] o] E] & A]), 167
PyModule_AddFunctions (C &), 123
PyModule_AddIntConstant (C &), 123
PyModule_AddIntMacro (C &%), 124
PyModule_AddObject (C &), 123
PyModule_AddStringConstant (C <), 123
PyModule_AddStringMacro (C &), 124
PyModule_Check (C &), 119
PyModule_CheckExact (C &%), 119
PyModule_Create (C &%), 121
PyModule_Create2 (C &), 121
PyModule_ExecDef (C &%), 123
PyModule_FromDefAndSpec (C &), 122
PyModule_FromDefAndSpec?2 (C g), 122
PyModule_GetDef (C &%), 119
PyModule_GetDict (C &), 119
PyModule_GetFilename (C &), 119
PyModule_GetFilenameObject (C &), 119
PyModule_GetName (C &), 119
PyModule_GetNameObiject (C &), 119
PyModule_GetState (C &), 119
PyModule_New (C &), 119
PyModule_NewObject (C <), 119

PyModule_SetDocString (C &), 123
PyModule_Type (C W), 119

PyModuleDef (C H o] ¥ §4]), 120
PyModuleDef_Init (C), 121
PyModuleDef_Slot (CHl°]E &4, 121
PyModuleDef_Slot.slot (C #Hw W), 121
PyModuleDef_Slot.value (CHW W), 122
PyModuleDef.m_base (C HH W), 120
PyModuleDef.m_clear (C @4 W), 120
PyModuleDef.m_doc (C HWH W), 120
PyModuleDef.m_free (C W8 W), 120
PyModuleDef .m_methods (C ®W¥ W), 120
PyModuleDef .m_name (C ®1 W), 120
PyModuleDef.m_reload (C ¥WH W), 120
PyModuleDef.m_size (C WH W), 120
PyModuleDef.m_slots (C W H W), 120
PyModuleDef.m_traverse (C HWH W), 120
PyNumber_Absolute (C &%), 63
PyNumber_Add (C &), 62

PyNumber_And (C &), 63
PyNumber_AsSsize_t (C S), 64
PyNumber_Check (C &), 62
PyNumber_Divmod (C &), 62
PyNumber_Float (C), 64
PyNumber_FloorDivide (C &%), 62
PyNumber_Index (C g<), 64
PyNumber_InPlaceAdd (C &), 63
PyNumber_InPlaceAnd (C &), 64
PyNumber_InPlaceFloorDivide (C &), 63
PyNumber_InPlaceLshift (C &%), 64

PyNumber_InPlaceMatrixMultiply (C k<),

63
PyNumber_InPlaceMultiply (C &%), 63
PyNumber_InPlaceOr (C &), 64
PyNumber_InPlacePower (C &), 64
PyNumber_InPlaceRemainder (C &), 64
PyNumber_InPlaceRshift (C &), 64
PyNumber_InPlaceSubtract (C &%), 63
PyNumber_InPlaceTrueDivide (C &%), 63
PyNumber_InPlaceXor (C &), 64
PyNumber_Invert (C &), 63
PyNumber_Long (C &), 64
PyNumber_Lshift (C &), 63
PyNumber_MatrixMultiply (C &), 62
PyNumber_Multiply (C €), 62
PyNumber_Negative (C gt), 62
PyNumber_Or (C &), 63
PyNumber_Positive (C), 63
PyNumber_Power (C), 62
PyNumber_Remainder (C &), 62
PyNumber_Rshift (C &), 63
PyNumber_Subtract (C &), 62
PyNumber_ToBase (C &), 64
PyNumber_TrueDivide (C &%), 62

259

239

The Python/C API, &] B{ A 3.7.17

PyNumber_Xor (C &), 63
PyNumberMethods (C B ¢] & 4]), 184
PyObiject (C Hl o] & Al), 166
PyObject_AsCharBuffer (C &%), 75
PyObject_ASCII (C <), 59
PyObject_AsFileDescriptor (C &%), 118
PyObject_AsReadBuffer (C &%), 75
PyObject_AsWriteBuffer (C &), 75
PyObject_Bytes (C &), 59
PyObject_Call (C <), 60
PyObject_CallFunction (C &), 60
PyObject_CallFunctionObjArgs (C &%), 60
PyObject_CallMethod (C &), 60
PyObject_CallMethodObijArgs (C &), 60
PyObject_CallObject (C &), 60
PyObject_Calloc (C &), 158
PyObject_CheckBuffer (C &%), 74
PyObject_CheckReadBuffer (C &%), 75
PyObject_Del (C &), 165
PyObject_DelAttr (C &), 58
PyObject_DelAttrString (C &), 58
PyObject_Delltem (C &), 61
PyObject_Dir (C &), 61
PyObject_Free (C &), 159
PyObject_GC_Del (C <), 189
PyObject_GC_New (C &), 189
PyObject_GC_NewVar (C), 189
PyObject_GC_Resize (C &), 189
PyObject_GC_Track (C &), 189
PyObject_GC_UnTrack (C &%), 189
PyObject_GenericGetAttr (C <), 58
PyObject_GenericGetDict (Cﬁ"\) 58
PyObject_GenericSetAttr (C), 58
PyObject_GenericSetDict (C &), 58
PyObject_GetArenaAllocator (C &), 162
PyObject_GetAttr (C &), 58
PyObject_GetAttrString (C &), 58
PyObject_GetBuffer (C &), 74
PyObject_GetItem (C &), 61
PyObject_GetIter (C &), 62
PyObject_HasAttr (C &), 57
PyObject_HasAttrString (C &), 57
PyObject_Hash (C &), 61
PyObject_HashNotImplemented (C &), 61
PyObject_HEAD (C "3 &), 166
PyObject_HEAD_INIT (CW|3Z &), 167
PyObject_Init (C &), 165
PyObject_InitVar (Cﬁ'/\) 165
PyObject_IsInstance (C &%), 59
PyObject_IsSubclass (C &), 59
PyObject_IsTrue (C &%), 61
PyObject_Length (C &%), 61
PyObject_LengthHint (C &), 61
PyObject_Malloc (C &%), 158

PyObject_New (C &), 165
PyObject_NewVar (C &), 165
PyObject_Not (C &%), 61
PyObject ._ob_next (C Wy W), 172
PyObject. ob_prev (CH W), 172
PyObject_Print (C &), 57
PyObject_Realloc (C&), 158
PyObject_Repr (C &), 59
PyObject_RichCompare (C &), 58
PyObject_RichCompareBool (C &), 59
PyObject_SetArenaAllocator (C &%), 162
PyObject_SetAttr (C &), 58
PyObject_SetAttrString (C &), 58
PyObject_SetItem (C &), 61
PyObject_Size (C &), 61
PyObject_Str (C 37”\) 59
PyObject_Type (C &), 61
PyObject_TypeCheck (C &), 61
PyObject_VAR_HEAD (C "] 32 &), 166
PyObjectArenalAllocator (C H o] ¥ & Al) 162
PyObject.ob_refcnt (C W8 W), 172
PyObject.ob_type (C W1 ¥HF), 172
PyOS_AfterFork (C &), 36
PyOS_AfterFork_Child (C &%), 35
PyOS_AfterFork_Parent (C &), 35
PyOS_BeforeFork (C &), 35
PyOS_CheckStack (C &%), 36
PyOS_double_to_string (C &%), 52
PyOS_FSPath (C &%), 35
PyOS_getsig (C &%), 36
PyOS_InputHook (C %), 16
PyOS_ReadlineFunctionPointer (C), 16
PyOS_setsig (C &%), 36
PyOS_snprintf (C &), 51
PyOS_stricmp (C &), 52
PyOS_string_to_double (C &%), 51
PyOS_strnicmp (C &), 52
PyOS_vsnprintf (C &), 51
PyParser_SimpleParseFile (C &), 17
PyParser_SimpleParseFileFlags (C gy, 17
PyParser_SimpleParseString (C $), 17
PyParser_SimpleParseStringFlags (C &),
17
PyParser_SimpleParseStringFlagsFilename
(C &), 17
PyProperty_Type (C), 125
PyRun_AnyFile (C &), 15
PyRun_AnyFileEx (C 3<), 15
PyRun_AnyFileExFlags (C &%), 15
PyRun_AnyFileFlags (C &), 15
PyRun_File (C &), 17
PyRun_FileEx (C &%), 17
PyRun_FileExFlags (C &), 17
PyRun_FileFlags (C &%), 17

240

=
ro,

The Python/C API, &] 8| A 3.7.17

PyRun_InteractiveLoop (C &%), 16
PyRun_InteractiveLoopFlags (C &%), 16
PyRun_InteractiveOne (C &%), 16
PyRun_InteractiveOneFlags (C <), 16
PyRun_SimpleFile (C 3‘:}—’,\—) 16
PyRun_SimpleFileEx (C &), 16
PyRun_SimpleFileExFlags (C &%), 16
PyRun_SimpleString (C &), 16
PyRun_SimpleStringFlags (C), 16
PyRun_String (C &), 17
PyRun_StringFlags (C &), 17
PySeqgIter_Check (C &%), 124
PySeqlter_New (C &), 124
PySeqlIter_Type (C ¥, 124
PySequence_Check (C &), 65
PySequence_Concat (C 6]'/\) 65
PySequence_Contains (C &%), 66
PySequence_Count (C &), 65
PySequence_DelItem (C &), 65
PySequence_DelSlice (C &), 65
PySequence_Fast (C <), 66
PySequence_Fast_GET_ITEM (Cﬂ—’F) 66
PySequence_Fast_GET_SIZE (C &), 66
PySequence_Fast_ITEMS (C &), 66
PySequence_GetItem (C &), 65
PySequence_GetItem(), 8
PySequence_GetSlice (C &), 65
PySequence_Index (C &), 66
PySequence_InPlaceConcat (C &%), 65
PySequence_InPlaceRepeat (C &), 65
PySequence_ITEM (C ¥<), 66
PySequence_Length (C), 65
PySequence_List (C &%), 66

PySet_Add (C &), 114

PySet_Check (C &%), 113

PySet_Clear (C &%), 114
PySet_ClearFreelList (C &), 114
PySet_Contains (C?}—’F) 114
PySet_Discard (C &), 114
PySet_GET_SIZE (C &), 114

PySet_New (C &), 113

PySet_Pop (C &), 114

PySet_Size (C&), 114

PySet_Type (C H), 113

PySetObject (CH o] ¥ &4, 113
PySignal_SetWakeupFd (C &%), 29
PySlice_AdjustIndices (C &), 126
PySlice_Check (C <), 125
PySlice_GetIndices (Cﬂ'/\) 125
PySlice_GetIndicesEx (C &%), 126
PySlice_New (C?ﬂ'—’,\—) 125

PySlice_Type (C ¥), 125
PySlice_Unpack (C), 126
PyState_AddModule (C &), 124
PyState_FindModule (C b‘]'—/,\—) 124
PyState_RemoveModule (C &), 124
PyStructSequence_Desc (C] o] E] & 4]), 107
PyStructSequence_Field (C H°o]¥ &4, 108
PyStructSequence_GET_ITEM (C &), 108
PyStructSequence_GetItem (C &%), 108
PyStructSequence_InitType (C &), 107
PyStructSequence_InitType2 (C &), 107
PyStructSequence_New (C &), 108
PyStructSequence_NewType (C &), 107
PyStructSequence_SET ITEM(CU]'/\) 108
PyStructSequence_SetItem (C &%), 108

PySequence_Repeat (C &), 65 PyStructSequence_UnnamedField (C¥HF), 108
PySequence_SetItem (C), 65 PySys_AddWarnOption (C &), 37
PySequence_SetSlice (C &), 65 PySys_AddWarnOptionUnicode (C &), 3
PySequence_Size (C ¥<), 65 PySys_AddxOption (C ¥), 38
PySequence_Tuple (C), 66 PySys_FormatStderr (C &), 38
PySequenceMethods (C B o] E & 4]), 186 PySys_FormatStdout (C &), 38
PySequenceMethods.sq_ass_item (C ™ ¥ W PySys_GetObject (C UL—T—) 37

), 186 PySys_GetXOptions (C &), 38
PySequenceMethods.sq concat (C ¥¥ W), PySys_ResetWarnOptions (C &), 37

186 PySys_SetArgv (C), 143
PySequenceMethods.sq _contains (C ®¥ W PySys_SetArgv (), 140

), 186 PySys_SetArgvEx (C &), 143
PySequenceMethods.sq inplace_concat (C PySys_SetArgvEx (), l1, 140

W AW, 186 PySys_SetObject (C &), 37
PySequenceMethods.sq_inplace_repeat (C PySys_SetPath (C &), '%7

W HS), 186 PySys_WriteStderr (C &), 38
PySequenceMethods.sq_item (C W W), 186 PySys_WriteStdout (C &), 38
PySequenceMethods.sq_length (C WY W), Python 3000 (3] 3000), 203

186 PYTHON*, 139
PySequenceMethods.sq repeat (C ¥4 W), PYTHONDEBUG, 138

186 PYTHONDONTWRITEBYTECODE, 138
A o] 241

The Python/C API, &] B{ A 3.7.17

PYTHONDUMPREFS, 172
PYTHONHASHSEED, 139

PYTHONHOME, 11, 139, 143, 144
Pythonic (3}o] H TH2), 203
PYTHONINSPECT, 139
PYTHONIOENCODING, 141
PYTHONLEGACYWINDOWSFSENCODING, 139
PYTHONLEGACYWINDOWSSTDIO, 139
PYTHONMALLOC, 156, 159, 161
PYTHONMALLOCSTATS, 156
PYTHONNOUSERSITE, 139
PYTHONOPTIMIZE, 139

PYTHONPATH, 11, 139
PYTHONUNBUFFERED,
PYTHONVERBOSE, 140
PyThread_create_key (C &), 154
PyThread_delete_key (C &%), 154
PyThread_delete_key_value (C &%), 154
PyThread_get_key_value (C &), 154
PyThread_ReInitTLS (C g<), 154
PyThread_set_key_value (C), 154
PyThread_tss_alloc (C &), 153
PyThread_tss_create (C &%), 153
PyThread_tss_delete (C &), 153
PyThread_tss_free (C &), 153
PyThread_tss_get (C &), 154
PyThread_tss_is_created (C &%), 153
PyThread_tss_set (C &%), 153
PyThreadState, 144

PyThreadState (C H| o] E] & 4), 146
PyThreadState_Clear (C &), 148
PyThreadState_Delete (C &), 148
PyThreadState_Get (C &), 146
PyThreadState_GetDict (C &), 148
PyThreadState_New (C &), 148
PyThreadState_Next (C g<), 152
PyThreadState_SetAsyncExc (C $), 148
PyThreadState_Swap (C &), 146
PyTime_Check (C &), 133
PyTime_CheckExact (C &), 133
PyTime_FromTime (C &%), 134
PyTime_FromTimeAndFold (C §<), 134
PyTimeZone_FromOffset (C &), 134
PyTimeZone_FromOffsetAndName (C &%), 134
PyTrace_C_CALL (C), 151
PyTrace_C_EXCEPTION (C ¥%), 151
PyTrace_C_RETURN (C ¥4), 151
PyTrace_CALL (C ¥%), 151
PyTrace_EXCEPTION (C %), 151
PyTrace_LINE (C ¥%), 151
PyTrace_OPCODE (C), 151
PyTrace_RETURN (C ¥ 4), 151
PyTraceMalloc_Track (C &%), 162
PyTraceMalloc_Untrack (C &%), 162

140

PyTuple_Check (C &), 106
PyTuple_CheckExact (C g<), 106
PyTuple_ClearFreeList (C &%), 107
PyTuple_GET_ITEM (C), 106
PyTuple_GET_SIZE (C ¥), 106
PyTuple_GetItem (C'GL/\) 106
PyTuple_GetSlice (C &), 106

PyTuple_New (C), 106
PyTuple_Pack (C &), 106
PyTuple SET_ITEM(C h), 107
PyTuple_SetItem (C &%), 107
PyTuple_ SetItem() 7
PyTuple_Size (C &), 106
PyTuple_Type (C M), 106
PyTupleObject (C Wl o] E 3 4]), 106
PyType_Check (C &), 77
PyType_CheckExact (C &), 77
PyType_ClearCache (C &), 77
PyType_FromSpec (C &), 78
PyType_FromSpecWithBases (C &), 78
PyType_GenericAlloc (C &), 78
PyType_GenericNew (C &), 78
PyType_GetFlags (C &), 78
PyType_GetSlot (C &), 78
PyType_HasFeature (C $), 78
PyType_IS_GC (C &), 78
PyType_IsSubtype (C &), 78
PyType_Modified (C &), 78
PyType_Ready (C &), 78
PyType_Type (C ¥, 77
PyTypeObject (C H o]¥ &), 77

PyTypeObject
PyTypeObject
PyTypeObject
PyTypeObject
PyTypeObject
PyTypeObject
PyTypeObject
PyTypeObject
PyTypeObject
PyTypeObject
PyTypeObject
PyTypeObject
PyTypeObject
PyTypeObject
180
PyTypeObject
PyTypeObject
PyTypeObject
PyTypeObject
PyTypeObject
PyTypeObject
PyTypeObject
PyTypeObject

.tp_alloc (CHW W), 181
.tp_allocs (C¥W A
.tp_as_buffer (CHW® H$), 175
.tp_base (C WH W), 180
.tp_bases (C 8 H), 183
.tp_basicsize (C@W ¥
.tp_cache (C ¥¥ W), 183
.tp_call(CHw H
.tp_clear (CW A, 177
.tp_dealloc (C W W), 173
.tp_descr_get (C®¥® ¥4, 180
.tp_descr_set (CH¥H A
.tp_dict (CHw WHE), 180
.tp_dictoffset (C WH WA,

), 184

), 173

), 175

), 180

.tp_doc (C ¥H W), 176
.tp_finalize (CWW W), 183
.tp_flags (C 8 W), 175
.tp_free (CHW WHE), 182
.tp_frees (CAW HS), 184
.tp_getattr (C¥W W), 173
.tp_getattro (C¥W W), 175
.tp_getset (C HWB HF), 180

242

Q)

The Python/C API, &] 8| A 3.7.17

PyTypeObject.tp_hash (C ®H W), 174
PyTypeObject.tp_init (C HH W), 181
PyTypeObject.tp_is_gc (CHH W), 182

PyTypeObiject.tp_itemsize (C W W), 173
PyTypeObject.tp_iter (C W W), 179
PyTypeObject.tp_iternext (C Wy W), 179
PyTypeObject.tp_maxalloc (C HWH W), 184
PyTypeObiject.tp_members (C W8 W), 179
PyTypeObject .tp_methods (C HH W), 179
PyTypeObject.tp_mro (C ®H W), 183
PyTypeObiject.tp_name (C W1 HF), 172
PyTypeObject.tp_new (C W1 HS), 182

PyTypeObject.tp_next (C W1 W), 184
PyTypeObject.tp_print (C @Y W), 173
PyTypeObject.tp_repr (C W W), 174
PyTypeObject.tp_richcompare (C W W),
178
PyTypeObject.tp_setattr (C W M), 174
PyTypeObject.tp_setattro (CHWH W), 175
PyTypeObject.tp_str (CHH W), 175
PyTypeObject.tp_subclasses (C "W W),
183
PyTypeObject.tp_traverse (C W8 H), 177
PyTypeObject.tp_weaklist (CHH W), 184
PyTypeObject.tp_weaklistoffset (C HH W
2,179

PyTZInfo_Check (C &), 133
PyTZInfo_CheckExact (C &%), 133
PyUnicode_1BYTE_DATA (C &%), 88
PyUnicode_1BYTE_KIND (C "] = &), 88
PyUnicode_2BYTE_DATA (C &), 88
PyUnicode_2BYTE_KIND (CHHELE) 88
PyUnicode_4BYTE_DATA (C &%), 88
PyUnicode_4BYTE_KIND (C Wi 3 &), 88
PyUnicode_AS_DATA (C &), 89
PyUnicode_AS_UNICODE (C &%), 89
PyUnicode_AsASCIIString (C &), 102
PyUnicode_AsCharmapString (C &), 103
PyUnicode_AsEncodedString (C &%), 98
PyUnicode_AsLatinilString (C &%), 102
PyUnicode_AsMBCSString (C &), 104
PyUnicode_AsRawUnicodeEscapeString (C &
2,102
PyUnicode_AsUCS4 (C &), 93
PyUnicode_AsUCS4Copy (C &), 94
PyUnicode_AsUnicode (C &), 94
PyUnicode_AsUnicodeAndSize (C &), 94
PyUnicode_AsUnicodeCopy (C ¥), 94
PyUnicode_AsUnicodeEscapeString (C &),
101
PyUnicode_AsUTF8 (C &%), 98
PyUnicode_AsUTF8AndSize (C <), 98
PyUnicode_AsUTF8String (C &), 98
PyUnicode_AsUTF16String (C &%), 100

PyUnicode_AsUTF32String (C &), 99
PyUnicode_AsWideChar (C &%), 97
PyUnicode_AsWideCharString (C &), 97
PyUnicode_Check (C <), 88
PyUnicode_CheckExact (C &), 88
PyUnicode_ClearFreeList (C &), 89
PyUnicode_Compare (C &), 105
PyUnicode_CompareWithASCIIString (C S
22,105
PyUnicode_Concat (C &), 104
PyUnicode_Contains (C &), 106
PyUnicode_CopyCharacters (C &%), 93
PyUnicode_Count (C &), 105
PyUnicode_DATA (C <), 89
PyUnicode_Decode (C &), 98
PyUnicode_ DecodeASCII(Cﬂ"\) 102
PyUnicode_DecodeCharmap (C <), 103
PyUnicode_DecodeFSDefault (C &), 96
PyUnicode_DecodeFSDefaultAndSize (C &
), 96
PyUnicode_DecodeLatinl (C <), 102
PyUnicode_DecodeLocale (C &), 95
PyUnicode_DecodeLocaleAndSize (C &), 95
PyUnicode_DecodeMBCS (C &), 104
PyUnicode_DecodeMBCSStateful (C &), 104
PyUnicode_DecodeRawUnicodeEscape (C &
2,102
PyUnicode_DecodeUnicodeEscape (C &), 101
PyUnicode_DecodeUTF7 (C &%), 101
PyUnicode_DecodeUTF7Stateful (C &), 101
PyUnicode_DecodeUTF8 (C &), 98
PyUnicode_DecodeUTF8Stateful (C &), 98
PyUnicode_DecodeUTF16 (C &%), 100
PyUnicode_DecodeUTF16Stateful (C &), 100
PyUnicode_DecodeUTF32 (C &), 99
PyUnicode_DecodeUTF32Stateful (C &%), 99
PyUnicode_Encode (C &), 98
PyUnicode_EncodeASCII (C &%), 102
PyUnicode_EncodeCharmap (C <), 103
PyUnicode_EncodeCodePage (C &%), 104
PyUnicode_EncodeFSDefault (C &), 96
PyUnicode_EncodeLatinl (C &), 102
PyUnicode_EncodelLocale (C &+4r), 95
PyUnicode_EncodeMBCS (C &), 104
PyUnicode_EncodeRawUnicodeEscape (C
22,102
PyUnicode_EncodeUnicodeEscape (C &), 101
PyUnicode_EncodeUTF7 (Cﬂ'/\) 101
PyUnicode_EncodeUTF8 (C &%), 99
PyUnicode_EncodeUTF16 (C &), 100
PyUnicode_EncodeUTF32 (C &), 99
PyUnicode_Fill (C <), 93
PyUnicode_Find (C g<), 105
PyUnicode_FindChar (C &), 105

259

243

The Python/C API, &] B{ A 3.7.17

PyUnicode_Format (C &%), 105
PyUnicode_FromEncodedObiject (C &), 93
PyUnicode_FromFormat (C &%), 92
PyUnicode_FromFormatV (C &), 93
PyUnicode_ FromKindAndData (C&),91
PyUnicode_FromObject (C &%), 95
PyUnicode_FromString (C <), 92
PyUnicode_FromString(), 111
PyUnicode_FromStringAndSize (C g<), 91
PyUnicode_FromUnicode (C &), 94
PyUnicode_FromWideChar (C &), 97
PyUnicode_FSConverter (C &), 96
PyUnicode_FSDecoder (C &), 96
PyUnicode_GET_DATA_SIZE (C &), 89
PyUnicode_GET_LENGTH (C &), 88
PyUnicode_GET_SIZE (Cﬂ’\) 89
PyUnicode_GetLength (C &), 93
PyUnicode_GetSize (C &), 94
PyUnicode_InternFromString (C &), 106
PyUnicode_InternInPlace (C &), 106
PyUnicode_Join (C &), 105
PyUnicode_KIND (C &), 89
PyUnicode_MAX_CHAR_VALUE (C &%), 89
PyUnicode_New (C g<), 91
PyUnicode_READ (C &), 89
PyUnicode_READ_CHAR (C <), 89
PyUnicode_ReadChar (C &), 93
PyUnicode_READY (C &%), 88
PyUnicode_Replace (C &), 105
PyUnicode_RichCompare (C &), 105
PyUnicode_Split (C &), 104
PyUnicode_Splitlines (C‘d‘/\) 104
PyUnicode_Substring (C &), 93
PyUnicode_Tailmatch (C &), 105
PyUnicode_TransformDecimalToASCII (C &
), 94
PyUnicode_Translate (C <), 103, 104
PyUnicode_TranslateCharmap (C &), 103
PyUnicode_Type (C W), 88
PyUnicode_WCHAR_KIND (C "] Z &), 88
PyUnicode_WRITE (C &%), 89
PyUnicode_WriteChar (C <), 93
PyUnicodeDecodeError_Create (C), 30
PyUnicodeDecodeError_GetEncoding (C &
), 31
PyUnicodeDecodeError_GetEnd (C <), 31
PyUnicodeDecodeError_GetObject (C &
31
PyUnicodeDecodeError_GetReason (C &),
31
PyUnicodeDecodeError_GetStart (C &), 31
PyUnicodeDecodeError_SetEnd (C <), 31
PyUnicodeDecodeError_SetReason (C &),
31

H T)’

PyUnicodeDecodeError_SetStart (C &%), 31
PyUnicodeEncodeError_Create (C), 30
PyUnicodeEncodeError_GetEncoding (C &
), 31
PyUnicodeEncodeError_GetEnd (C g<), 31
PyUnicodeEncodeError_GetObject (C
31
PyUnicodeEncodeError_GetReason (C
31
PyUnicodeEncodeError_GetStart (C &), 31
PyUnicodeEncodeError_SetEnd (C &), 31
PyUnicodeEncodeError_SetReason (C &),
31
PyUnicodeEncodeError_SetStart (C &), 31
PyUnicodeObject (C t]o]E & Al), 88

651— —/;_)9

6‘:" Z’__)7

PyUnicodeTranslateError_Create (C &),
30
PyUnicodeTranslateError_GetEnd (C &),
31
PyUnicodeTranslateError_GetObject (C &
A~
), 31
PyUnicodeTranslateError_GetReason (C &
<
), 31
PyUnicodeTranslateError_GetStart (C ¢
AN
), 31
PyUnicodeTranslateError_SetEnd (C &),
31
PyUnicodeTranslateError_SetReason (C &
), 31
PyUnicodeTranslateError_SetStart (C
S
), 31

PyVarObject (CH|o]¥ &4]), 166
PyVarObject HEAD_INIT (C W3 &), 167
PyVarObject.ob_size (C @H W), 172
PyWeakref_Check (C &%), 128
PyWeakref_CheckProxy (C &), 128
PyWeakref_CheckRef (C g), 128
PyWeakref_GET_OBJECT (C &), 128
PyWeakref_GetObject (C &), 128
PyWeakref_NewProxy (C §), 128
PyWeakref_ NewRef (C &), 128
PyWrapper_New (C &), 125

Q

qualified name (F134H ©]F), 203
R
realloc (), 155

reference count (=X 34), 203
regular package (A5 3 7] A]), 203
repr

g &=, 59, 174

244

=
ro,

The Python/C API, &] 8| A 3.7.17

S

sdterr

stdin stdout, 141
search

path, module, 11, 140, 142
sequence

A, 84
sequence (A] A 2), 203
set

AA, 113
set_all(),8
setswitchinterval ()
SIGINT, 29
signal

25,29
single dispatch (A&
SIZE_MAX, 81
slice (£8}o]2), 204
special

method, 204
special method (54
statement (%), 204
staticmethod

W7 g4, 168
stderr (in module sys), 149
stdin

stdout sdterr, 141
stdin (in module sys), 149
stdout

sdterr, stdin, 141
stdout (in module sys), 149
strerror (), 25

(in module sys), 144

o239 A)), 204

) A £, 204

AA, 6,77

W2 g4, 61
type (3), 204
type alias (3 o dgoj2), 204
type hint (¥ 31 E), 204

u

ULONG_MAX,S]
universal newlines (FUWA &4

V

variable annotation (R4
version (in module sys), 142, 143
virtual environment (7} 273), 205
virtual machine (7} 7] A), 205
visitproc (CH o] &4l), 189

X
W7

), 205

=l o] A), 205

n

:":
__import___
abs, 63
ascii, 59
bytes, 59
classmethod, 168
compile, 40

divmod, 62

float, 64

hash, 61, 174

int, 64

len, 61, 65, 67,109, 111, 114
pow, 62, 64

repr, 59, 174

, 39

string staticmethod, 168
PyObject_Str (C function), 59 tuple, 66, 110
sum_list (),8 type, 61
sum_sequence (), 9, 10 2 E
5ys __main__, 11,140, 149
2F, 11, 140, 149 _thread, 146
SystemError (built-in exception), 119 builtins, 11, 140, 149
T signal, 29
sys, 11, 140, 149
text encoding (HlAE 213 H), 204
text file (AIAE 1}19), 204 Y
tp_as_async (C W ¥5), 174 v}o] A A} A oF
tp_as_mapping (C @ W), 174 PEP 1,202
tp_as_number (C W), 174 PEP 7,3,5
tp_as_sequence (C AW H), 174 PEP 238, 19, 197
traverseproc (C Bl 0| E] §4), 189 PEP 278,205
triple—quoted string (A& wW2% ¥ Ex14), PEP 302: 197, 200
204 PEP 343,195
tupl;jﬂ 06 PEP 362,194,202
W 4, 66, 110 Ser e 1y
type
Ao 245

RS

The Python/C API, &] B{ A 3.7.17

PEP 393,87,9%4
PEP 411,203
PEP 420,197,201, 202
PEP 442,183
PEP 443,198
PEP 451,122,197
PEP 484,193,197, 204, 205
PEP 489,122
PEP 492,194, 195
PEP 498,196
PEP 519,202
PEP 525,194
PEP 526, 193,205
PEP 528,139
PEP 529,96, 139
PEP 539,153
PEP 3116, 205
PEP 3119,59, 60
PEP 3121, 120
PEP 3147,41
PEP 3151, 33
PEP 3155, 203

7 W
exec_prefix, 4
PATH, 11
prefix, 4
PYTHON*, 139
PYTHONDEBUG, 138
PYTHONDONTWRITEBYTECODE, 138
PYTHONDUMPREF'S, 172
PYTHONHASHSEED, 139
PYTHONHOME, 11, 139, 143, 144
PYTHONINSPECT, 139
PYTHONIOENCODING, 141
PYTHONLEGACYWINDOWSEFSENCODING, 139
PYTHONLEGACYWINDOWSSTDIO, 139
PYTHONMALLOC, 156, 159, 161
PYTHONMALLOCSTATS, 156
PYTHONNOUSERSITE, 139
PYTHONOPTIMIZE, 139
PYTHONPATH, 11, 139
PYTHONUNBUFFERED, 140
PYTHONVERBOSE, 140

Z

Zen of Python (o] Al), 205

246

=
ro,

	Introduction
	Coding standards
	Include Files
	Useful macros
	Objects, Types and Reference Counts
	Exceptions
	Embedding Python
	Debugging Builds

	안정적인 응용 프로그램 바이너리 인터페이스
	The Very High Level Layer
	참조 횟수
	Exception Handling
	Printing and clearing
	Raising exceptions
	Issuing warnings
	Querying the error indicator
	Signal Handling
	Exception Classes
	Exception Objects
	Unicode Exception Objects
	Recursion Control
	Standard Exceptions
	Standard Warning Categories

	유틸리티
	Operating System Utilities
	System Functions
	Process Control
	모듈 임포트 하기
	데이터 마샬링 지원
	Parsing arguments and building values
	문자열 변환과 포매팅
	리플렉션
	코덱 등록소와 지원 함수

	추상 객체 계층
	Object Protocol
	숫자 프로토콜
	시퀀스 프로토콜
	매핑 프로토콜
	이터레이터 프로토콜
	버퍼 프로토콜
	낡은 버퍼 프로토콜

	구상 객체 계층
	기본 객체
	숫자 객체
	시퀀스 객체
	컨테이너 객체
	함수 객체
	기타 객체

	Initialization, Finalization, and Threads
	Before Python Initialization
	Global configuration variables
	Initializing and finalizing the interpreter
	Process-wide parameters
	Thread State and the Global Interpreter Lock
	Sub-interpreter support
	Asynchronous Notifications
	Profiling and Tracing
	Advanced Debugger Support
	Thread Local Storage Support

	Memory Management
	Overview
	Raw Memory Interface
	Memory Interface
	Object allocators
	Default Memory Allocators
	Customize Memory Allocators
	The pymalloc allocator
	tracemalloc C API
	Examples

	객체 구현 지원
	힙에 객체 할당하기
	Common Object Structures
	Type Objects
	Number Object Structures
	Mapping Object Structures
	Sequence Object Structures
	Buffer Object Structures
	Async Object Structures
	순환 가비지 수집 지원

	API와 ABI 버전 붙이기
	용어집
	이 설명서에 관하여
	파이썬 설명서의 공헌자들

	역사와 라이센스
	소프트웨어의 역사
	파이썬에 액세스하거나 사용하기 위한 이용 약관
	포함된 소프트웨어에 대한 라이센스 및 승인

	저작권
	색인

