Extending and Embedding Python
E2A WA 3.7.17

Guido van Rossum
and the Python development team

6< 28, 2023

Contents

=/

1=

A ARA =T
A QA 27 glol B whE 7]

2.1 Extending PythonwithCorC++
2.2 Defining Extension Types: Tutorial
2.3 Defining Extension Types: Assorted Topics
24 CC++EAHES] oo
25 x4 /\1 CCH++FHFANEd 7]
t] 2 && =233 CPython HE}Y S W 73}7]

3. HE & z=ad stold sz L.
g1

o] A2 Ao T3}]

Bl ol Ayl FHAE
o 2k9} gho] Al

Cl AZEYOIYIA oo
C2 sho]mol AA| A3 A L A7) A o] & ok
C3 =3 sz Eojo gt eto]Ala g Fel. ..
A%

o
“

Extending and Embedding Python, &]] A 3.7.17

o] TAEMER REER ol AB 22 H S &3] Ao C U C+2 52 A5t e A dyth
olZ g RES MEE TR T oYt M Z L AA FHA HIAEES AL a]—‘{l: AsUh 3 3 dojz
A&7 f16l, ol Bz el H & T S8 Z 2 I o WA 7] = ol A= A8 ot mhA et
o=, 5t 2 A AN o] 7eS Adste A7, AR (AP Tl dHzZ B 22E 5 IAEF
g 2ES Aoty as= PHe E‘ﬂ*ﬁ”/]ﬂ'

of &A= shol el tieh 712 A A5 WA E Iyt dojof thel JA1A o] A of &7 = tutorial-index £
HAAN L eference index = ED]—BZ%@.’Q?_] Ao Y E AT i raymdex%%—iﬂ?ﬂ— AP, T4
2E ¥ A 2 5= AWstet], ol ZlEel Ao ogtﬂ_&ga@qr/}

o]
o] A/C API°1] o st Z]-/‘ﬂ?_]— A8 H 5 9] capi-index S R A L.
p

Contents 1

Extending and Embedding Python, &] | A 3.7.17

2 Contents

CHAPTER 1

AR AL ET

o] A A= o] Bl A] CPython] YR 2 |35 =, %

< WHE7] #3712 =4S e Ytk Cython, cffi,
SWIG 2} Numba &} 22 A AA} &= glo| M-S 93 Ce Cr+ LS =

wEs o st A A ey e

A&y th

o ®7]:

sto] %l |77 AHg A} A WAz nho|uie] B shol W 7] A ALg A A WA= whel 2] Bge) WAL T
spote B 7HA AHS 7 @ =S TR S Bk ok el &4 RES WEE Ao] H uig A e

ol 2] 742 o] ol tief A = =2 F o

http://cython.org/
https://cffi.readthedocs.io
http://www.swig.org
https://numba.pydata.org/
https://packaging.python.org/guides/packaging-binary-extensions/

Extending and Embedding Python, &] | A 3.7.17

4 Chapter 1. A& A Xz &

CHAPTER 2

AAAL o] REANAE AL £ £2 glol CCor BFL BE L ol Ba) A
AL CHFE BEE H AT Pl Rk, F2 =7 AR AFES

2.1 Extending Python with C or C++

It is quite easy to add new built-in modules to Python, if you know how to program in C. Such extension modules can do
two things that can’t be done directly in Python: they can implement new built-in object types, and they can call C library
functions and system calls.

To support extensions, the Python API (Application Programmers Interface) defines a set of functions, macros and vari-
ables that provide access to most aspects of the Python run-time system. The Python API is incorporated in a C source
file by including the header "Python.h".

The compilation of an extension module depends on its intended use as well as on your system setup; details are given in
later chapters.

Z31: The C extension interface is specific to CPython, and extension modules do not work on other Python implemen-
tations. In many cases, it is possible to avoid writing C extensions and preserve portability to other implementations. For
example, if your use case is calling C library functions or system calls, you should consider using the ctypes module
or the cffi library rather than writing custom C code. These modules let you write Python code to interface with C code
and are more portable between implementations of Python than writing and compiling a C extension module.

https://cffi.readthedocs.io/

Extending and Embedding Python, &] | A 3.7.17

2.1.1 A Simple Example

Let’s create an extension module called spam (the favorite food of Monty Python fans---) and let’s say we want to
create a Python interface to the C library function system () !. This function takes a null-terminated character string as
argument and returns an integer. We want this function to be callable from Python as follows:

>>> import spam
>>> status = spam.system("ls —-1")

Begin by creating a file spammodule.c. (Historically, if a module is called spam, the C file containing its imple-
mentation is called spammodule. c; if the module name is very long, like spammi fy, the module name can be just
spammify.c.)

The first two lines of our file can be:

#define PY_SSIZE_T CLEAN
#include <Python.h>

which pulls in the Python API (you can add a comment describing the purpose of the module and a copyright notice if
you like).

ZF31: Since Python may define some pre-processor definitions which affect the standard headers on some systems, you
must include Python . h before any standard headers are included.

It is recommended to always define PY_SSIZE_T_CLEAN before including Python . h. See Extracting Parameters in
Extension Functions for a description of this macro.

All user-visible symbols defined by Python . h have a prefix of Py or PY, except those defined in standard header files.
For convenience, and since they are used extensively by the Python interpreter, "Python.h" includes a few standard
header files: <stdio.h>, <string.h>, <errno.h>, and <stdlib.h>. If the latter header file does not exist on
your system, it declares the functions malloc (), free () and realloc () directly.

The next thing we add to our module file is the C function that will be called when the Python expression spam.
system (string) is evaluated (we’ll see shortly how it ends up being called):

static PyObject *
spam_system (PyObject *self, PyObject *args)
{

const char *command;

int sts;

if (!PyArg_ParseTuple(args, "s", &command))
return NULL;

sts = system(command) ;

return PylLong_FromLong (sts);

There is a straightforward translation from the argument list in Python (for example, the single expression "1s —1") to
the arguments passed to the C function. The C function always has two arguments, conventionally named self and args.

The self argument points to the module object for module-level functions; for a method it would point to the object
instance.

The args argument will be a pointer to a Python tuple object containing the arguments. Each item of the tuple corresponds
to an argument in the call’s argument list. The arguments are Python objects — in order to do anything with them in our
C function we have to convert them to C values. The function PyArg_ParseTuple () in the Python API checks the

! An interface for this function already exists in the standard module os — it was chosen as a simple and straightforward example.

6 Chapter 2. A a} =7 ¢lo] 23 w57

Extending and Embedding Python, &]] A 3.7.17

argument types and converts them to C values. It uses a template string to determine the required types of the arguments
as well as the types of the C variables into which to store the converted values. More about this later.

PyArg_ParseTuple () returns true (nonzero) if all arguments have the right type and its components have been
stored in the variables whose addresses are passed. It returns false (zero) if an invalid argument list was passed. In the
latter case it also raises an appropriate exception so the calling function can return NULL immediately (as we saw in the
example).

2.1.2 Intermezzo: Errors and Exceptions

An important convention throughout the Python interpreter is the following: when a function fails, it should set an ex-
ception condition and return an error value (usually a NULL pointer). Exceptions are stored in a static global variable
inside the interpreter; if this variable is NULL no exception has occurred. A second global variable stores the “associated
value” of the exception (the second argument to raise). A third variable contains the stack traceback in case the error
originated in Python code. These three variables are the C equivalents of the result in Python of sys.exc_info ()
(see the section on module sy s in the Python Library Reference). It is important to know about them to understand how
errors are passed around.

The Python API defines a number of functions to set various types of exceptions.

The most common one is PyErr_SetString (). Its arguments are an exception object and a C string. The exception
object is usually a predefined object like PyExc_ZeroDivisionError. The C string indicates the cause of the error
and is converted to a Python string object and stored as the “associated value” of the exception.

Another useful function is PyErr_SetFromErrno (), which only takes an exception argument and constructs the
associated value by inspection of the global variable errno. The most general function is PyErr_SetObject (),
which takes two object arguments, the exception and its associated value. You don’t need to Py__INCREF () the objects
passed to any of these functions.

You can test non-destructively whether an exception has been set with PyErr_Occurred (). This returns the current
exception object, or NULL if no exception has occurred. You normally don’t need to call PyErr_Occurred () to see
whether an error occurred in a function call, since you should be able to tell from the return value.

When a function f that calls another function g detects that the latter fails, f should itself return an error value (usually
NULL or —1). It should not call one of the PyErr_* () functions — one has already been called by g. f’s caller is
then supposed to also return an error indication to ifs caller, again without calling PyErr_* (), and so on — the most
detailed cause of the error was already reported by the function that first detected it. Once the error reaches the Python
interpreter’s main loop, this aborts the currently executing Python code and tries to find an exception handler specified
by the Python programmer.

(There are situations where a module can actually give a more detailed error message by calling another PyErr_* ()
function, and in such cases it is fine to do so. As a general rule, however, this is not necessary, and can cause information
about the cause of the error to be lost: most operations can fail for a variety of reasons.)

To ignore an exception set by a function call that failed, the exception condition must be cleared explicitly by calling
PyErr_Clear (). The only time C code should call PyErr_Clear () is if it doesn’t want to pass the error on to
the interpreter but wants to handle it completely by itself (possibly by trying something else, or pretending nothing went
wrong).

Every failing malloc () call must be turned into an exception — the direct caller of malloc () (or realloc())
must call PyErr_NoMemory () and return a failure indicator itself. All the object-creating functions (for example,
PyLong_FromLong ()) already do this, so this note is only relevant to those who callmalloc () directly.

Also note that, with the important exception of PyArg_ParseTuple () and friends, functions that return an integer
status usually return a positive value or zero for success and -1 for failure, like Unix system calls.

Finally, be careful to clean up garbage (by making Py_XDECREF () or Py_DECREF () calls for objects you have already
created) when you return an error indicator!

2.1. Extending Python with C or C++ 7

Extending and Embedding Python, &] | A 3.7.17

The choice of which exception to raise is entirely yours. There are predeclared C objects corresponding to all built-in
Python exceptions, such as PyExc_ZeroDivisionError, which you can use directly. Of course, you should choose
exceptions wisely — don’t use PyExc_TypeError to mean that a file couldn’t be opened (that should probably be
PyExc_IOError). If something’s wrong with the argument list, the PyArg_ParseTuple () function usually raises
PyExc_TypeError. If you have an argument whose value must be in a particular range or must satisfy other conditions,
PyExc_ValueError is appropriate.

You can also define a new exception that is unique to your module. For this, you usually declare a static object variable at
the beginning of your file:

static PyObject *SpamError;

and initialize it in your module’s initialization function (PyInit_spam ()) with an exception object:

PyMODINIT_FUNC
PyInit_spam(void)
{

PyObject *m;

m = PyModule_Create (&spammodule) ;
if (m == NULL)
return NULL;

SpamError = PyErr_NewException("spam.error", NULL, NULL);
Py_XINCREF (SpamError) ;
if (PyModule_AddObject (m, "error", SpamError) < 0) {
Py_XDECREF (SpamError) ;
Py_CLEAR (SpamError) ;
Py_DECREF (m) ;
return NULL;

return m;

Note that the Python name for the exception object is spam.error. The PyErr_NewException () function may
create a class with the base class being Exception (unless another class is passed in instead of NULL), described in
bltin-exceptions.

Note also that the SpamError variable retains a reference to the newly created exception class; this is intentional! Since
the exception could be removed from the module by external code, an owned reference to the class is needed to ensure
that it will not be discarded, causing SpamError to become a dangling pointer. Should it become a dangling pointer,
C code which raises the exception could cause a core dump or other unintended side effects.

We discuss the use of PyMODINIT_FUNC as a function return type later in this sample.

The spam.error exception can be raised in your extension module using a call to PyErr_SetString () as shown
below:

static PyObject *
spam_system (PyObject *self, PyObject *args)
{

const char *command;

int sts;

if (!PyArg_ParseTuple(args, "s", &command))
return NULL;
sts = system(command) ;

8 Chapter 2. A a} =7 ¢lo] 23 w57

Extending and Embedding Python, &]] A 3.7.17

(o] A sl o] A A M A%)

if (sts < 0) {
PyErr_SetString (SpamError, "System command failed");
return NULL;

}

return PyLong_FromLong(sts);

2.1.3 Back to the Example

Going back to our example function, you should now be able to understand this statement:

if (!PyArg_ParseTuple(args, "s", &command))
return NULL;

It returns NULL (the error indicator for functions returning object pointers) if an error is detected in the argument list,
relying on the exception set by PyArg_ParseTuple (). Otherwise the string value of the argument has been copied
to the local variable command. This is a pointer assignment and you are not supposed to modify the string to which it
points (so in Standard C, the variable command should properly be declared as const char *command).

The next statement is a call to the Unix function system(), passing it the string we just got from
PyArg_ParseTuple():

’sts = system (command) ;

Our spam.system () function must return the value of sts as a Python object. This is done using the function
PyLong_FromLong ().

’return PyLong_FromLong (sts) ;

In this case, it will return an integer object. (Yes, even integers are objects on the heap in Python!)

If you have a C function that returns no useful argument (a function returning void), the corresponding Python function
must return None. You need this idiom to do so (which is implemented by the Py_RETURN_NONE macro):

Py_INCREF (Py_None) ;
return Py_None;

Py_None is the C name for the special Python object None. It is a genuine Python object rather than a NULL pointer,
which means “error” in most contexts, as we have seen.

2.1.4 The Module’s Method Table and Initialization Function

I promised to show how spam_system () is called from Python programs. First, we need to list its name and address
in a “method table”:

static PyMethodDef SpamMethods[] = {

{"system", spam_system, METH_VARARGS,
"Execute a shell command."},

{NULL, NULL, 0, NULL} /* Sentinel */
bi

2.1. Extending Python with C or C++ 9

Extending and Embedding Python, &] | A 3.7.17

Note the third entry (METH_VARARGS). This is a flag telling the interpreter the calling convention to be used for the
C function. It should normally always be METH_VARARGS or METH_VARARGS | METH_KEYWORDS; a value of 0
means that an obsolete variant of PyArg_ParseTuple () is used.

When using only METH_VARARGS, the function should expect the Python-level parameters to be passed in as a tuple
acceptable for parsing via PyArg_ParseTuple () ; more information on this function is provided below.

The METH_KEYWORDS bit may be set in the third field if keyword arguments should be passed to the function. In
this case, the C function should accept a third PyObject * parameter which will be a dictionary of keywords. Use
PyArg_ParseTupleAndKeywords () to parse the arguments to such a function.

The method table must be referenced in the module definition structure:

static struct PyModuleDef spammodule = {
PyModuleDef_ HEAD_INIT,
"spam", /* name of module */
spam_doc, /* module documentation, may be NULL */
-1, /* size of per—interpreter state of the module,
or -1 if the module keeps state in global variables. */
SpamMethods
i

This structure, in turn, must be passed to the interpreter in the module’s initialization function. The initialization function
must be named PyInit_name (), where name is the name of the module, and should be the only non-static item
defined in the module file:

PyMODINIT_FUNC
PyInit_spam(void)
{

return PyModule_Create (&spammodule) ;

Note that PyYMODINIT_FUNC declares the function as PyObject * return type, declares any special linkage decla-
rations required by the platform, and for C++ declares the function as extern "C".

When the Python program imports module spam for the first time, PyInit_spam () is called. (See below for com-
ments about embedding Python.) It calls PyModule_Create (), which returns a module object, and inserts built-in
function objects into the newly created module based upon the table (an array of PyMethodDef structures) found in
the module definition. PyModule_Create () returns a pointer to the module object that it creates. It may abort with
a fatal error for certain errors, or return NULL if the module could not be initialized satisfactorily. The init function must
return the module object to its caller, so that it then gets inserted into sys .modules.

When embedding Python, the PyInit_spam () function is not called automatically unless there’s an entry in the
PyImport_Inittab table. To add the module to the initialization table, use Py Import_AppendInittab (),
optionally followed by an import of the module:

int
main (int argc, char *argv([])
{
wchar_t *program = Py_DecodelLocale(argv[0], NULL);

if (program == NULL) {
fprintf (stderr, "Fatal error: cannot decode argv[0]\n");
exit (1);

}

/* Add a built-in module, before Py Initialize */
PyImport_AppendInittab ("spam", PyInit_spam);

10 Chapter 2. A|4H7} £7 §lo] 27 w571

Extending and Embedding Python, &]] A 3.7.17

(o] A sl o] A A M A%)

/* Pass argv/[0] to the Python interpreter */
Py_SetProgramName (program) ;

/* Initialize the Python interpreter. Required. */
Py_Initialize();

/* Optionally import the module; alternatively,
import can be deferred until the embedded script
imports it. */

PyImport_ImportModule ("spam");

PyMem_RawFree (program) ;
return 0O;

Z31: Removing entries from sys . modules orimporting compiled modules into multiple interpreters within a process
(or following a fork () without an intervening exec ()) can create problems for some extension modules. Extension
module authors should exercise caution when initializing internal data structures.

A more substantial example module is included in the Python source distribution as Modules/xxmodule. c. This file
may be used as a template or simply read as an example.

ZF31: Unlike our spam example, xxmodule uses multi-phase initialization (new in Python 3.5), where a PyModuleDef
structure is returned from PyInit_spam, and creation of the module is left to the import machinery. For details on
multi-phase initialization, see PEP 489.

2.1.5 Compilation and Linkage

There are two more things to do before you can use your new extension: compiling and linking it with the Python system.
If you use dynamic loading, the details may depend on the style of dynamic loading your system uses; see the chapters
about building extension modules (chapter C2} C++ €7 1! =3} 7]) and additional information that pertains only to
building on Windows (chapter 21 =--ol| A C2} C++ &7 1l =3} 7)) for more information about this.

If you can’t use dynamic loading, or if you want to make your module a permanent part of the Python interpreter, you
will have to change the configuration setup and rebuild the interpreter. Luckily, this is very simple on Unix: just place
your file (spammodule. ¢ for example) in the Modules/ directory of an unpacked source distribution, add a line to
the file Modules/Setup.local describing your file:

spam spammodule.o

and rebuild the interpreter by running make in the toplevel directory. You can also run make in the Modules/ subdi-
rectory, but then you must first rebuild Make file there by running ‘make Makefile’. (This is necessary each time you
change the Setup file.)

If your module requires additional libraries to link with, these can be listed on the line in the configuration file as well, for
instance:

spam spammodule.o —-1X11

2.1. Extending Python with C or C++ 11

https://www.python.org/dev/peps/pep-0489

Extending and Embedding Python, &] | A 3.7.17

2.1.6 Calling Python Functions from C

So far we have concentrated on making C functions callable from Python. The reverse is also useful: calling Python
functions from C. This is especially the case for libraries that support so-called “callback” functions. If a C interface
makes use of callbacks, the equivalent Python often needs to provide a callback mechanism to the Python programmer;
the implementation will require calling the Python callback functions from a C callback. Other uses are also imaginable.

Fortunately, the Python interpreter is easily called recursively, and there is a standard interface to call a Python function.
(I'won’t dwell on how to call the Python parser with a particular string as input — if you’re interested, have a look at the
implementation of the —c command line option in Modules/main. ¢ from the Python source code.)

Calling a Python function is easy. First, the Python program must somehow pass you the Python function object. You
should provide a function (or some other interface) to do this. When this function is called, save a pointer to the Python
function object (be careful to Py__INCREF () it!) in a global variable — or wherever you see fit. For example, the
following function might be part of a module definition:

static PyObject *my_callback = NULL;

static PyObject *
my_set_callback (PyObject *dummy, PyObject *args)
{

PyObject *result = NULL;

PyObject *temp;

if (PyArg_ParseTuple(args, "O:set_callback", &temp)) {
if (!PyCallable_Check (temp)) {
PyErr_SetString (PyExc_TypeError, "parameter must be callable");
return NULL;
}

Py_XINCREF (temp) ; /* Add a reference to new callback */
Py_XDECREF (my_callback); /* Dispose of previous callback */
my_callback = temp; /* Remember new callback */

/* Boilerplate to return "None" */
Py_INCREF (Py_None) ;
result = Py_None;

}

return result;

This function must be registered with the interpreter using the METH_VARARGS flag; this is described in section 7he
Module’ s Method Table and Initialization Function. The PyArg_ParseTuple () function and its arguments are doc-
umented in section Extracting Parameters in Extension Functions.

The macros Py_XINCREF () and Py_XDECREF () increment/decrement the reference count of an object and are safe
in the presence of NULL pointers (but note that femp will not be NULL in this context). More info on them in section
Reference Counts.

Later, when it is time to call the function, you call the C function PyObject_CallObject (). This function has two
arguments, both pointers to arbitrary Python objects: the Python function, and the argument list. The argument list must
always be a tuple object, whose length is the number of arguments. To call the Python function with no arguments, pass
in NULL, or an empty tuple; to call it with one argument, pass a singleton tuple. Py_BuildValue () returns a tuple
when its format string consists of zero or more format codes between parentheses. For example:

int arg;
PyObject *arglist;
PyObject *result;

arg = 123;

12 Chapter 2. A|4H7} £7 §lo] 27 w571

Extending and Embedding Python, &]] A 3.7.17

(o] A sl o] A A M A%)

/* Time to call the callback */

arglist = Py_BuildvValue (" (i)", arg);

result = PyObject_CallObject (my_callback, arglist);
Py_DECREF (arglist);

PyObject_CallObject () returns a Python object pointer: this is the return value of the Python func-
tion. PyObject_CallObject () is “reference-count-neutral” with respect to its arguments. In the exam-
ple a new tuple was created to serve as the argument list, which is Py_DECREF ()-ed immediately after the
PyObject_CallObject () call

The return value of PyObject_CallObject () is “new”: either it is a brand new object, or it is an existing object
whose reference count has been incremented. So, unless you want to save it in a global variable, you should somehow
Py_DECREF () the result, even (especially!) if you are not interested in its value.

Before you do this, however, it is important to check that the return value isn’t NULL. If it is, the Python function
terminated by raising an exception. If the C code that called PyObject_CallObject () is called from Python,
it should now return an error indication to its Python caller, so the interpreter can print a stack trace, or the calling
Python code can handle the exception. If this is not possible or desirable, the exception should be cleared by calling
PyErr_Clear (). For example:

if (result == NULL)
return NULL; /* Pass error back */
..use result...
Py_DECREF (result);

Depending on the desired interface to the Python callback function, you may also have to provide an argument list to
PyObject_CallObject (). In some cases the argument list is also provided by the Python program, through the
same interface that specified the callback function. It can then be saved and used in the same manner as the function
object. In other cases, you may have to construct a new tuple to pass as the argument list. The simplest way to do this is
tocall Py_BuildvValue (). For example, if you want to pass an integral event code, you might use the following code:

PyObject *arglist;

arglist = Py_BuildvValue (" (1)", eventcode);
result = PyObject_CallObject (my_callback, arglist);
Py_DECREF (arglist);
if (result == NULL)
return NULL; /* Pass error back */
/* Here maybe use the result */
Py_DECREF (result) ;

Note the placement of Py_DECREF (arglist) immediately after the call, before the error check! Also note that
strictly speaking this code is not complete: Py_BuildValue () may run out of memory, and this should be checked.

You may also call a function with keyword arguments by using PyObject_Call (), which supports arguments and
keyword arguments. As in the above example, we use Py_BuildValue () to construct the dictionary.

PyObject *dict;

dict = Py_BuildvValue("{s:i}", "name", wval);
result = PyObject_Call (my_callback, NULL, dict);
Py_DECREF (dict);
if (result == NULL)

return NULL; /* Pass error back */
/* Here maybe use the result */
Py_DECREF (result) ;

2.1. Extending Python with C or C++ 13

Extending and Embedding Python, &] | A 3.7.17

2.1.7 Extracting Parameters in Extension Functions

The PyArg_ParseTuple () function is declared as follows:

int PyArg_ParseTuple (PyObject *arg, const char *format, ...);

The arg argument must be a tuple object containing an argument list passed from Python to a C function. The format
argument must be a format string, whose syntax is explained in arg-parsing in the Python/C API Reference Manual. The
remaining arguments must be addresses of variables whose type is determined by the format string.

Note that while PyArg_ParseTuple () checks that the Python arguments have the required types, it cannot check
the validity of the addresses of C variables passed to the call: if you make mistakes there, your code will probably crash
or at least overwrite random bits in memory. So be careful!

Note that any Python object references which are provided to the caller are borrowed references; do not decrement their
reference count!

Some example calls:

#define PY _SSIZE_T CLEAN /* Make "s#'" use Py_ssize_t rather than int. */
#include <Python.h>

int ok;

int i, 3;

long k, 1;

const char *s;
Py_ssize_t size;

ok = PyArg_ParseTuple (args, ""); /* No arguments */
/* Python call: f() */

ok = PyArg_ParseTuple (args, "s", &s); /* A string */
/* Possible Python call: f ('whoops!') */

ok = PyArg_ParseTuple (args, "11s", &k, &1, &s); /* Two longs and a string */
/* Possible Python call: f(1, 2, 'three') */

ok = PyArg_ParseTuple (args, " (ii)s#", &i, &3j, &s, &size);
/* A pair of ints and a string, whose size is also returned */
/* Possible Python call: f((1, 2), 'three') */

const char *file;
const char *mode = "r";
int bufsize = 0;
ok = PyArg_ParseTuple(args, "s|si", &file, &mode, &bufsize);
/* A string, and optionally another string and an integer */
/* Possible Python calls:

f('spam')

f('spam', 'w')

f('spam', 'wb', 100000) */

int left, top, right, bottom, h, v;
ok = PyArg_ParseTuple(args, " ((ii) (ii)) (ii)",

b Chapter 2. A|4H7} £7 §lo] 27 w571

Extending and Embedding Python, &]] A 3.7.17

(o] A sl o] A A M A%)

&left, &top, &right, &bottom, &h, &v);
/* A rectangle and a point */
/* Possible Python call:
f(((o0, 0), (400, 300)), (10, 10)) */

Py_complex c;

ok = PyArg_ParseTuple(args, "D:myfunction", &c);

/* a complex, also providing a function name for errors */
/* Possible Python call: myfunction (1+23) */

2.1.8 Keyword Parameters for Extension Functions

The PyArg_ParseTupleAndKeywords () function is declared as follows:

int PyArg_ParseTupleAndKeywords (PyObject *arg, PyObject *kwdict,
const char *format, char *kwlist[], ...);

The arg and format parameters are identical to those of the PyArg_ParseTuple () function. The kwdict parameter
is the dictionary of keywords received as the third parameter from the Python runtime. The kwlist parameter is a NULL-
terminated list of strings which identify the parameters; the names are matched with the type information from format
from left to right. On success, PyArg_ParseTupleAndKeywords () returns true, otherwise it returns false and
raises an appropriate exception.

ZF31: Nested tuples cannot be parsed when using keyword arguments! Keyword parameters passed in which are not
present in the kwlist will cause TypeError to be raised.

Here is an example module which uses keywords, based on an example by Geoff Philbrick (philbrick@hks.com):

#define PY_SSIZE_T CLEAN /* Make "s#'" use Py_ssize_t rather than int. */
#include <Python.h>

static PyObject *
keywdarg_parrot (PyObject *self, PyObject *args, PyObject *keywds)
{

int voltage;

const char *state = "a stiff";

const char *action = "voom";

const char *type = "Norwegian Blue";

static char *kwlist[] = {"voltage", "state", "action", "type", NULL};

if (!PyArg_ParseTupleAndKeywords (args, keywds, "i|sss", kwlist,
&voltage, &state, &action, &type))
return NULL;

printf ("-- This parrot wouldn't %s if you put %i Volts through it.\n",
action, voltage);
printf ("-- Lovely plumage, the %s -—- It's %s!\n", type, state);

(THE SOl Aol A1)

2.1. Extending Python with C or C++ 15

mailto:philbrick@hks.com

Extending and Embedding Python, &] | A 3.7.17

(o] A sl o] A A M A%)

Py_RETURN_NONE;

static PyMethodDef keywdarg_methods[] = {
/* The cast of the function is necessary since PyCFunction values
* only take two PyObject* parameters, and keywdarg parrot () takes
* three.
*/
{"parrot", (PyCFunction)keywdarg_parrot, METH_VARARGS | METH_KEYWORDS,
"Print a lovely skit to standard output."},
{NULL, NULL, O, NULL} /* sentinel */
bi

static struct PyModuleDef keywdargmodule = {
PyModuleDef_ HEAD_INIT,
"keywdarg",
NULL,
-1,
keywdarg_methods
i

PyMODINIT_FUNC
PyInit_keywdarg (void)
{

return PyModule_Create (&keywdargmodule) ;

2.1.9 Building Arbitrary Values

This function is the counterpart to PyArg_ParseTuple (). It is declared as follows:

PyObject *Py_BuildValue (const char *format, ...);

It recognizes a set of format units similar to the ones recognized by PyArg_ParseTuple (), but the arguments (which
are input to the function, not output) must not be pointers, just values. It returns a new Python object, suitable for returning
from a C function called from Python.

One difference with PyArg_ParseTuple (): while the latter requires its first argument to be a tuple (since Python
argument lists are always represented as tuples internally), Py_BuildvValue () does not always build a tuple. It builds
a tuple only if its format string contains two or more format units. If the format string is empty, it returns None; if it
contains exactly one format unit, it returns whatever object is described by that format unit. To force it to return a tuple
of size 0 or one, parenthesize the format string.

Examples (to the left the call, to the right the resulting Python value):

Py_Buildvalue ("") None
Py_Buildvalue ("i", 123) 123

Py_Buildvalue ("iii", 123, 456, 789) (123, 456, 789)
Py_Buildvalue ("s", "hello") 'hello'
Py_Buildvalue ("y", "hello") b'hello'
Py_Buildvalue("ss", "hello", "world") ('hello', 'world')
Py_BuildvValue ("s#", "hello", 4) 'hell"
Py_Buildvalue ("y#", "hello", 4) b'hell'
Py_Buildvalue (" ()") ()
Py_Buildvalue (" (i)", 123) (123,)

10 Chapter 2. A|4H7} £7 §lo] 27 w571

Extending and Embedding Python, &]] A 3.7.17

(o] A sl o] A A M A%)

Py_Buildvalue (" (ii)", 123, 456) (123, 456)
Py_Buildvalue (" (i,i)", 123, 4506) (123, 456)
Py_Buildvalue("[i,i]", 123, 456) [123, 456]
Py_Buildvalue ("{s:i,s:i}",

"abc", 123, "def", 4506) {'abc': 123, 'def': 456}
Py_BuildValue (" ((ii) (1i)) (ii)",

1, 2, 3, 4, 5, 6) (((1, 2), (3, 4)), (5, 06))

2.1.10 Reference Counts

In languages like C or C++, the programmer is responsible for dynamic allocation and deallocation of memory on the
heap. In C, this is done using the functions malloc () and free (). In C++, the operators new and de lete are used
with essentially the same meaning and we’ll restrict the following discussion to the C case.

Every block of memory allocated with malloc () should eventually be returned to the pool of available memory by
exactly one call to free (). It is important to call free () at the right time. If a block’s address is forgotten but
free () is not called for it, the memory it occupies cannot be reused until the program terminates. This is called a
memory leak. On the other hand, if a program calls free () for a block and then continues to use the block, it creates
a conflict with re-use of the block through another malloc () call. This is called using freed memory. It has the same
bad consequences as referencing uninitialized data — core dumps, wrong results, mysterious crashes.

Common causes of memory leaks are unusual paths through the code. For instance, a function may allocate a block of
memory, do some calculation, and then free the block again. Now a change in the requirements for the function may add
a test to the calculation that detects an error condition and can return prematurely from the function. It’s easy to forget
to free the allocated memory block when taking this premature exit, especially when it is added later to the code. Such
leaks, once introduced, often go undetected for a long time: the error exit is taken only in a small fraction of all calls,
and most modern machines have plenty of virtual memory, so the leak only becomes apparent in a long-running process
that uses the leaking function frequently. Therefore, it’s important to prevent leaks from happening by having a coding
convention or strategy that minimizes this kind of errors.

Since Python makes heavy use of malloc () and free (), it needs a strategy to avoid memory leaks as well as the
use of freed memory. The chosen method is called reference counting. The principle is simple: every object contains
a counter, which is incremented when a reference to the object is stored somewhere, and which is decremented when a
reference to it is deleted. When the counter reaches zero, the last reference to the object has been deleted and the object
is freed.

An alternative strategy is called automatic garbage collection. (Sometimes, reference counting is also referred to as a
garbage collection strategy, hence my use of “automatic” to distinguish the two.) The big advantage of automatic garbage
collection is that the user doesn’t need to call free () explicitly. (Another claimed advantage is an improvement in
speed or memory usage — this is no hard fact however.) The disadvantage is that for C, there is no truly portable
automatic garbage collector, while reference counting can be implemented portably (as long as the functions malloc ()
and free () are available — which the C Standard guarantees). Maybe some day a sufficiently portable automatic
garbage collector will be available for C. Until then, we’ll have to live with reference counts.

While Python uses the traditional reference counting implementation, it also offers a cycle detector that works to detect
reference cycles. This allows applications to not worry about creating direct or indirect circular references; these are the
weakness of garbage collection implemented using only reference counting. Reference cycles consist of objects which
contain (possibly indirect) references to themselves, so that each object in the cycle has a reference count which is non-zero.
Typical reference counting implementations are not able to reclaim the memory belonging to any objects in a reference
cycle, or referenced from the objects in the cycle, even though there are no further references to the cycle itself.

The cycle detector is able to detect garbage cycles and can reclaim them. The gc module exposes a way to run the detector
(the collect () function), as well as configuration interfaces and the ability to disable the detector at runtime. The
cycle detector is considered an optional component; though it is included by default, it can be disabled at build time using

2.1. Extending Python with C or C++ 17

Extending and Embedding Python, &] | A 3.7.17

the ——without-cycle—gc option to the configure script on Unix platforms (including Mac OS X). If the cycle
detector is disabled in this way, the gc module will not be available.

Reference Counting in Python

There are two macros, Py_INCREF (x) and Py_DECREF (x), which handle the incrementing and decrementing of
the reference count. Py_DECREF () also frees the object when the count reaches zero. For flexibility, it doesn’t call
free () directly — rather, it makes a call through a function pointer in the object’s type object. For this purpose (and
others), every object also contains a pointer to its type object.

The big question now remains: when to use Py_ INCREF (x) and Py_DECREF (x) ? Let’s first introduce some terms.
Nobody “owns” an object; however, you can own a reference to an object. An object’s reference count is now defined
as the number of owned references to it. The owner of a reference is responsible for calling Py_DECREF () when the
reference is no longer needed. Ownership of a reference can be transferred. There are three ways to dispose of an owned
reference: pass it on, store it, or call Py_DECREF (). Forgetting to dispose of an owned reference creates a memory
leak.

It is also possible to borrow” a reference to an object. The borrower of a reference should not call Py_DECREF (). The
borrower must not hold on to the object longer than the owner from which it was borrowed. Using a borrowed reference
after the owner has disposed of it risks using freed memory and should be avoided completely’.

The advantage of borrowing over owning a reference is that you don’t need to take care of disposing of the reference on
all possible paths through the code — in other words, with a borrowed reference you don’t run the risk of leaking when
a premature exit is taken. The disadvantage of borrowing over owning is that there are some subtle situations where in
seemingly correct code a borrowed reference can be used after the owner from which it was borrowed has in fact disposed
of it.

A borrowed reference can be changed into an owned reference by calling Py_ INCREF (). This does not affect the
status of the owner from which the reference was borrowed — it creates a new owned reference, and gives full owner
responsibilities (the new owner must dispose of the reference properly, as well as the previous owner).

Ownership Rules

Whenever an object reference is passed into or out of a function, it is part of the function’s interface specification whether
ownership is transferred with the reference or not.

Most functions that return a reference to an object pass on ownership with the reference. In particular, all functions whose
function it is to create a new object, such as PyLong_FromLong () and Py_BuildValue (), pass ownership to the
receiver. Even if the object is not actually new, you still receive ownership of a new reference to that object. For instance,
PyLong_FromLong () maintains a cache of popular values and can return a reference to a cached item.

Many functions that extract objects from other objects also transfer ownership with the reference, for in-
stance PyObject_GetAttrString(). The picture is less clear, here, however, since a few com-
mon routines are exceptions: PyTuple_GetItem(), PyList_GetItem(), PyDict_GetItem(), and
PyDict_GetItemString () all return references that you borrow from the tuple, list or dictionary.

The function Py Import_AddModule () also returns a borrowed reference, even though it may actually create the
object it returns: this is possible because an owned reference to the object is stored in sys .modules.

When you pass an object reference into another function, in general, the function borrows the reference from you —
if it needs to store it, it will use Py_INCREF () to become an independent owner. There are exactly two important
exceptions to this rule: PyTuple_SetItem() and PyList_SetItem (). These functions take over ownership of

2 The metaphor of “borrowing” a reference is not completely correct: the owner still has a copy of the reference.
3 Checking that the reference count is at least 1 does not work — the reference count itself could be in freed memory and may thus be reused for
another object!

18 Chapter 2. A|4H7} £7 §lo] 27 w571

Extending and Embedding Python, &]] A 3.7.17

the item passed to them — even if they fail! (Note that PyDict_SetItem () and friends don’t take over ownership
— they are “normal.”)

When a C function is called from Python, it borrows references to its arguments from the caller. The caller owns a
reference to the object, so the borrowed reference’s lifetime is guaranteed until the function returns. Only when such a
borrowed reference must be stored or passed on, it must be turned into an owned reference by calling Py_ INCREF ().

The object reference returned from a C function that is called from Python must be an owned reference — ownership is
transferred from the function to its caller.

Thin Ice
There are a few situations where seemingly harmless use of a borrowed reference can lead to problems. These all have to
do with implicit invocations of the interpreter, which can cause the owner of a reference to dispose of it.

The first and most important case to know about is using Py_DECREF () on an unrelated object while borrowing a
reference to a list item. For instance:

void
bug (PyObject *1list)
{
PyObject *item = PyList_GetItem(list, 0);

PyList_SetItem(list, 1, PyLong_FromLong (0L));
PyObject_Print (item, stdout, 0); /* BUG! */

This function first borrows a reference to 1ist [0], then replaces 1ist [1] with the value O, and finally prints the
borrowed reference. Looks harmless, right? But it’s not!

Let’s follow the control flow into PyList_SetItem (). The list owns references to all its items, so when item 1 is
replaced, it has to dispose of the original item 1. Now let’s suppose the original item 1 was an instance of a user-defined
class, and let’s further suppose that the class defineda ___del__ () method. If this class instance has a reference count
of 1, disposing of it will callits __del__ () method.

Since it is written in Python, the __del__ () method can execute arbitrary Python code. Could it perhaps do something
to invalidate the reference to item in bug () ? You bet! Assuming that the list passed into bug () is accessible to
the __del__ () method, it could execute a statement to the effect of del 1ist [0], and assuming this was the last
reference to that object, it would free the memory associated with it, thereby invalidating item.

The solution, once you know the source of the problem, is easy: temporarily increment the reference count. The correct
version of the function reads:

void
no_bug (PyObject *1list)
{
PyObject *item = PyList_GetItem(list, 0);

Py_INCREF (item) ;

PyList_SetItem(list, 1, PyLong_FromLong (0L));
PyObject_Print (item, stdout, 0);

Py_DECREF (item) ;

This is a true story. An older version of Python contained variants of this bug and someone spent a considerable amount
of time in a C debugger to figure out why his __del__ () methods would fail--*

The second case of problems with a borrowed reference is a variant involving threads. Normally, multiple threads in
the Python interpreter can’t get in each other’s way, because there is a global lock protecting Python’s entire object

2.1. Extending Python with C or C++ 19

Extending and Embedding Python, &] | A 3.7.17

space. However, it is possible to temporarily release this lock using the macro Py_BEGIN_ALLOW_THREADS, and to
re-acquire it using Py_END_ALLOW_THREADS. This is common around blocking I/O calls, to let other threads use the
processor while waiting for the I/O to complete. Obviously, the following function has the same problem as the previous
one:

void
bug (PyObject *1list)
{
PyObject *item = PyList_GetItem(list, 0);
Py_BEGIN_ALLOW_THREADS
..some blocking I/O call...
Py_END_ALLOW_THREADS
PyObject_Print (item, stdout, 0); /* BUG! */

NULL Pointers

In general, functions that take object references as arguments do not expect you to pass them NULL pointers, and will
dump core (or cause later core dumps) if you do so. Functions that return object references generally return NULL only
to indicate that an exception occurred. The reason for not testing for NULL arguments is that functions often pass the
objects they receive on to other function — if each function were to test for NULL, there would be a lot of redundant tests
and the code would run more slowly.

It is better to test for NULL only at the “source:” when a pointer that may be NULL is received, for example, from
malloc () or from a function that may raise an exception.

The macros Py_INCREF () and Py_DECREF () do not check for NULL pointers — however, their variants
Py_XINCREF()andPy_XDECREF()dQ

The macros for checking for a particular object type (Pytype_Check ()) don’t check for NULL pointers — again,
there is much code that calls several of these in a row to test an object against various different expected types, and this
would generate redundant tests. There are no variants with NULL checking.

The C function calling mechanism guarantees that the argument list passed to C functions (args in the examples) is
never NULL — in fact it guarantees that it is always a tuple®.

It is a severe error to ever let a NULL pointer “escape” to the Python user.

2.1.11 Writing Extensions in C++

It is possible to write extension modules in C++. Some restrictions apply. If the main program (the Python interpreter) is
compiled and linked by the C compiler, global or static objects with constructors cannot be used. This is not a problem
if the main program is linked by the C++ compiler. Functions that will be called by the Python interpreter (in particular,
module initialization functions) have to be declared using extern "C". It is unnecessary to enclose the Python header
files in extern "C" {...} — they use this form already if the symbol __cplusplus is defined (all recent C++
compilers define this symbol).

4 These guarantees don’t hold when you use the “old” style calling convention — this is still found in much existing code.

20 Chapter 2. A4t =7 glo] 3 THE7]

Extending and Embedding Python, &]] A 3.7.17

2.1.12 Providing a C API for an Extension Module

Many extension modules just provide new functions and types to be used from Python, but sometimes the code in an
extension module can be useful for other extension modules. For example, an extension module could implement a type
“collection” which works like lists without order. Just like the standard Python list type has a C API which permits
extension modules to create and manipulate lists, this new collection type should have a set of C functions for direct
manipulation from other extension modules.

At first sight this seems easy: just write the functions (without declaring them stat i c, of course), provide an appropriate
header file, and document the C API. And in fact this would work if all extension modules were always linked statically
with the Python interpreter. When modules are used as shared libraries, however, the symbols defined in one module
may not be visible to another module. The details of visibility depend on the operating system; some systems use one
global namespace for the Python interpreter and all extension modules (Windows, for example), whereas others require
an explicit list of imported symbols at module link time (AIX is one example), or offer a choice of different strategies
(most Unices). And even if symbols are globally visible, the module whose functions one wishes to call might not have
been loaded yet!

Portability therefore requires not to make any assumptions about symbol visibility. This means that all symbols in extension
modules should be declared stat ic, except for the module’s initialization function, in order to avoid name clashes with
other extension modules (as discussed in section The Module’s Method Table and Initialization Function). And it means
that symbols that should be accessible from other extension modules must be exported in a different way.

Python provides a special mechanism to pass C-level information (pointers) from one extension module to another one:
Capsules. A Capsule is a Python data type which stores a pointer (void *). Capsules can only be created and accessed
via their C API, but they can be passed around like any other Python object. In particular, they can be assigned to a name
in an extension module’s namespace. Other extension modules can then import this module, retrieve the value of this
name, and then retrieve the pointer from the Capsule.

There are many ways in which Capsules can be used to export the C API of an extension module. Each function could
get its own Capsule, or all C API pointers could be stored in an array whose address is published in a Capsule. And the
various tasks of storing and retrieving the pointers can be distributed in different ways between the module providing the
code and the client modules.

Whichever method you choose, it’s important to name your Capsules properly. The function PyCapsule_New ()
takes a name parameter (const char *); you’re permitted to pass in a NULL name, but we strongly encourage you
to specify a name. Properly named Capsules provide a degree of runtime type-safety; there is no feasible way to tell one
unnamed Capsule from another.

In particular, Capsules used to expose C APIs should be given a name following this convention:

modulename.attributename

The convenience function PyCapsule_Import () makes it easy to load a C API provided via a Capsule, but only if
the Capsule’s name matches this convention. This behavior gives C API users a high degree of certainty that the Capsule
they load contains the correct C APL

The following example demonstrates an approach that puts most of the burden on the writer of the exporting module,
which is appropriate for commonly used library modules. It stores all C API pointers (just one in the example!) in an
array of void pointers which becomes the value of a Capsule. The header file corresponding to the module provides
a macro that takes care of importing the module and retrieving its C API pointers; client modules only have to call this
macro before accessing the C API.

The exporting module is a modification of the spam module from section A Simple Example. The function spam.
system () does not call the C library function system () directly, but a function PySpam_System (), which
would of course do something more complicated in reality (such as adding “spam” to every command). This function
PySpam_System () is also exported to other extension modules.

The function PySpam_System () is a plain C function, declared stat ic like everything else:

2.1. Extending Python with C or C++ 21

Extending and Embedding Python, &] | A 3.7.17

static int
PySpam_System (const char *command)
{

return system(command) ;

The function spam_system () is modified in a trivial way:

static PyObject *
spam_system (PyObject *self, PyObject *args)
{

const char *command;

int sts;

if (!PyArg_ParseTuple(args, "s", &command))
return NULL;

sts = PySpam_System (command) ;

return PyLong_FromLong(sts);

In the beginning of the module, right after the line

#include <Python.h>

two more lines must be added:

#define SPAM_MODULE
#include "spammodule.h"

The #define is used to tell the header file that it is being included in the exporting module, not a client module. Finally,
the module’s initialization function must take care of initializing the C API pointer array:

PyMODINIT_FUNC

PyInit_spam(void)

{
PyObject *m;
static void *PySpam_API[PySpam_API_pointers];
PyObject *c_api_object;

m = PyModule_Create (&spammodule) ;
if (m == NULL)
return NULL;

/* Initialize the C API pointer array */
PySpam_API [PySpam_System_ NUM] = (void *)PySpam_System;

/* Create a Capsule containing the API pointer array's address */
c_api_object = PyCapsule_New((void *)PySpam_API, "spam._C_API", NULL);

if (PyModule_AddObject(m, "_C_API", c_api_object) < 0) {
Py_XDECREF (c_api_object);
Py_DECREF (m) ;
return NULL;

return m;

22 Chapter 2. A4t =7 glo] 3 THE7]

Extending and Embedding Python, &]] A 3.7.17

Note that PySpam_APT is declared stat ic; otherwise the pointer array would disappear when PyInit_spam ()
terminates!

The bulk of the work is in the header file spammodule . h, which looks like this:

#ifndef Py SPAMMODULE_H
#define Py_SPAMMODULE_H
#ifdef cplusplus
extern "C" {

#endif

/* Header file for spammodule */

/* C API functions */

#define PySpam System NUM 0

#define PySpam_System RETURN int

#define PySpam System_PROTO (const char *command)

/* Total number of C API pointers */
#define PySpam API_pointers 1

#ifdef SPAM_MODULE
/* This section is used when compiling spammodule.c */

static PySpam_System_RETURN PySpam_System PySpam_System_ PROTO;

#else
/* This section is used in modules that use spammodule's API */

static void **PySpam_ API;

#define PySpam_System \
(* (PySpam_System_ RETURN (*)PySpam_System PROTO) PySpam API[PySpam_System NUM])

/* Return -1 on error, 0 on success.
* PyCapsule_Import will set an exception 1if there's an error.
*/

static int

import_spam(void)

{

PySpam_API = (void **)PyCapsule_Import ("spam._C_API", 0);
return (PySpam_ API != NULL) 2 0 : -1;

3

#endif

#ifdef __cplusplus

i
#endif

#endif /* !defined (Py_SPAMMODULE_H) */

All that a client module must do in order to have access to the function PySpam_System () is to call the function (or
rather macro) import_spam () in its initialization function:

PyMODINIT_FUNC
PyInit_client (void)

(TH& STToTAT ol A1)

2.1. Extending Python with C or C++ 23

Extending and Embedding Python, &] | A 3.7.17

(o] A sl o] A A M A%)

PyObject *m;

m = PyModule_Create (&clientmodule);
if (m == NULL)
return NULL;
if (import_spam() < 0)
return NULL;
/* additional initialization can happen here */
return m;

The main disadvantage of this approach is that the file spammodule.h is rather complicated. However, the basic
structure is the same for each function that is exported, so it has to be learned only once.

Finally it should be mentioned that Capsules offer additional functionality, which is especially useful for memory al-
location and deallocation of the pointer stored in a Capsule. The details are described in the Python/C API Reference
Manual in the section capsules and in the implementation of Capsules (files Include/pycapsule.hand Objects/
pycapsule. c in the Python source code distribution).

2.2 Defining Extension Types: Tutorial

Python allows the writer of a C extension module to define new types that can be manipulated from Python code, much
like the built-in str and 1ist types. The code for all extension types follows a pattern, but there are some details that
you need to understand before you can get started. This document is a gentle introduction to the topic.

2.2.1 The Basics

The CPython runtime sees all Python objects as variables of type PyObject *, which serves as a “base type” for all
Python objects. The PyObject structure itself only contains the object’s reference count and a pointer to the object’
s “type object”. This is where the action is; the type object determines which (C) functions get called by the interpreter
when, for instance, an attribute gets looked up on an object, a method called, or it is multiplied by another object. These
C functions are called “type methods”.

So, if you want to define a new extension type, you need to create a new type object.

This sort of thing can only be explained by example, so here’s a minimal, but complete, module that defines a new type
named Custom inside a C extension module custom:

ZF31: What we’re showing here is the traditional way of defining static extension types. It should be adequate for most
uses. The C API also allows defining heap-allocated extension types using the PyType_FromSpec () function, which
isn’t covered in this tutorial.

#define PY_SSIZE_T CLEAN
#include <Python.h>

typedef struct {

PyObject_HEAD

/* Type-specific fields go here. */
} CustomObject;

24 Chapter 2. A4t =7 glo] 3 THE7]

Extending and Embedding Python, &]] A 3.7.17

(o] A sl o] A A M A%)

static PyTypeObject CustomType = {
PyVarObject_HEAD_INIT (NULL, O)
.tp_name = "custom.Custom",
.tp_doc = "Custom objects",
.tp_basicsize = sizeof (CustomObject),
.tp_itemsize = 0,
.tp_flags = Py_TPFLAGS_DEFAULT,
.tp_new = PyType_GenericNew,

bi

static PyModuleDef custommodule = {
PyModuleDef_ HEAD_INIT,

.m_name = "custom",
.m_doc = "Example module that creates an extension type.",
.m_size = -1,

bi

PyMODINIT_FUNC
PyInit_custom(void)
{
PyObject *m;
if (PyType_Ready (&CustomType) < 0)
return NULL;

m = PyModule_Create (&custommodule) ;
if (m == NULL)
return NULL;

Py_INCREF (&CustomType) ;

if (PyModule_AddObject (m, "Custom", (PyObject *) &CustomType) < 0)
Py_DECREF (&CustomType) ;
Py_DECREF (m) ;
return NULL;

return m;

Now that’s quite a bit to take in at once, but hopefully bits will seem familiar from the previous chapter. This file defines
three things:

1. What a Custom object contains: this is the CustomObject struct, which is allocated once for each Custom
instance.

2. How the Custom type behaves: this is the Cust omType struct, which defines a set of flags and function pointers
that the interpreter inspects when specific operations are requested.

3. How to initialize the custom module: this is the PyInit_custom function and the associated
custommodule struct.

The first bit is:

typedef struct {
PyObject_HEAD
} CustomObject;

This is what a Custom object will contain. PyObject_HEAD is mandatory at the start of each object struct and defines
a field called ob_base of type PyObject, containing a pointer to a type object and a reference count (these can be

2.2. Defining Extension Types: Tutorial 25

Extending and Embedding Python, &] | A 3.7.17

accessed using the macros Py_REFCNT and Py_ TYPE respectively). The reason for the macro is to abstract away the
layout and to enable additional fields in debug builds.

Z31: There is no semicolon above after the PyObject_HEAD macro. Be wary of adding one by accident: some
compilers will complain.

Of course, objects generally store additional data besides the standard PyObject_HEAD boilerplate; for example, here
is the definition for standard Python floats:

typedef struct {
PyObject_HEAD
double ob_fval;
} PyFloatObiject;

The second bit is the definition of the type object.

static PyTypeObject CustomType = {
PyVarObject_HEAD_INIT (NULL, O0)
.tp_name = "custom.Custom",
.tp_doc = "Custom objects",
.tp_basicsize = sizeof (CustomObject),
.tp_itemsize = 0,
.tp_flags = Py_TPFLAGS_DEFAULT,
.tp_new = PyType_GenericNew,

bi

ZF31: We recommend using C99-style designated initializers as above, to avoid listing all the PyTypeObject fields
that you don’t care about and also to avoid caring about the fields’ declaration order.

The actual definition of PyTypeObject in object . h has many more fields than the definition above. The remaining
fields will be filled with zeros by the C compiler, and it’s common practice to not specify them explicitly unless you need
them.

We’re going to pick it apart, one field at a time:

’PyVarObject_HEAD_INIT(NULL, 0)

This line is mandatory boilerplate to initialize the ob_base field mentioned above.

’.tp_name = "custom.Custom",

The name of our type. This will appear in the default textual representation of our objects and in some error messages,
for example:

>>> "" + custom.Custom{()
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: can only concatenate str (not "custom.Custom") to str

Note that the name is a dotted name that includes both the module name and the name of the type within the module.
The module in this case is custom and the type is Custom, so we set the type name to custom. Custom. Using the
real dotted import path is important to make your type compatible with the pydoc and pickle modules.

.tp_basicsize = sizeof (CustomObject),
.tp_itemsize = 0,

26 Chapter 2. A4t =7 glo] 3 THE7]

Extending and Embedding Python, &]] A 3.7.17

This is so that Python knows how much memory to allocate when creating new Custom instances. tp_itemsize is
only used for variable-sized objects and should otherwise be zero.

Z31: If you want your type to be subclassable from Python, and your type has the same tp_basicsize as its base
type, you may have problems with multiple inheritance. A Python subclass of your type will have to list your type first in
its __bases__, or else it will not be able to call your type’s __new__ () method without getting an error. You can
avoid this problem by ensuring that your type has a larger value for t p_basicsize than its base type does. Most of the
time, this will be true anyway, because either your base type will be object, or else you will be adding data members
to your base type, and therefore increasing its size.

We set the class flags to Py_TPFLAGS_DEFAULT.

.tp_flags = Py_TPFLAGS_DEFAULT,

All types should include this constant in their flags. It enables all of the members defined until at least Python 3.3. If you
need further members, you will need to OR the corresponding flags.

We provide a doc string for the type in tp_doc.

.tp_doc = "Custom objects",

To enable object creation, we have to provide a tp_new handler. This is the equivalent of the Python method
__new__ (), but has to be specified explicitly. In this case, we can just use the default implementation provided by
the API function PyType_GenericNew ().

.tp_new = PyType_GenericNew,

Everything else in the file should be familiar, except for some code in PyInit_custom():

if (PyType_Ready (&CustomType) < O0)
return;

This initializes the Custom type, filling in a number of members to the appropriate default values, including ob_type
that we initially set to NULL.

Py_INCREF (&CustomType) ;

if (PyModule_AddObject (m, "Custom", (PyObject *) &CustomType) < 0) {
Py_DECREF (&CustomType) ;
Py_DECREF (m) ;
return NULL;

This adds the type to the module dictionary. This allows us to create Cust om instances by calling the Custom class:

>>> import custom
>>> mycustom = custom.Custom()

That’s it! All that remains is to build it; put the above code in a file called custom. c and:

from distutils.core import setup, Extension
setup (name="custom", version="1.0",
ext_modules=[Extension("custom", ["custom.c"])])

in a file called setup . py; then typing

2.2. Defining Extension Types: Tutorial 27

Extending and Embedding Python, &] | A 3.7.17

$ python setup.py build

at a shell should produce a file custom. so in a subdirectory; move to that directory and fire up Python — you should
be able to import custom and play around with Custom objects.

That wasn’t so hard, was it?

Of course, the current Custom type is pretty uninteresting. It has no data and doesn’t do anything. It can’t even be
subclassed.

ZF31: While this documentation showcases the standard distutils module for building C extensions, it is recom-
mended in real-world use cases to use the newer and better-maintained setuptools library. Documentation on how
to do this is out of scope for this document and can be found in the Python Packaging User’s Guide.

2.2.2 Adding data and methods to the Basic example

Let’s extend the basic example to add some data and methods. Let’s also make the type usable as a base class. We’ll
create a new module, custom? that adds these capabilities:

#define PY _SSIZE_T CLEAN
#include <Python.h>
#include "structmember.h"

typedef struct {
PyObject_HEAD
PyObject *first; /* first name */
PyObject *last; /* last name */
int number;

} CustomObject;

static void
Custom_dealloc (CustomObject *self)
{
Py_XDECREF (self->first);
Py_XDECREF (self->last);
Py_TYPE (self)->tp_free ((PyObject *) self);

static PyObject *
Custom_new (PyTypeObject *type, PyObject *args, PyObject *kwds)
{

CustomObject *self;

self = (CustomObject *) type->tp_alloc(type, 0);
if (self != NULL) {

self->first = PyUnicode_FromString("");

if (self->first == NULL) {

Py_DECREF (self);
return NULL;

}
self->last = PyUnicode_FromString("");
if (self->last == NULL) {

Py_DECREF (self);
return NULL;

28 Chapter 2. A7t =7 10| 873 ¥HE7]

https://packaging.python.org/tutorials/distributing-packages/

Extending and Embedding Python, &]] A 3.7.17

(o] A sl o] A A M A%)

self->number = 0;

}
return (PyObject *) self;

static int

Custom_init (CustomObject *self, PyObject *args, PyObject *kwds)
{

static char *kwlist[] = {"first", "last", "number", NULL};
PyObject *first = NULL, *last = NULL, *tmp;

if (!PyArg_ParseTupleAndKeywords (args, kwds, "|00i", kwlist,
&sfirst, &last,
&self->number))

return -1;

if (first) |
tmp = self->first;
Py_INCREF (first);
self->first = first;
Py_XDECREF (tmp) ;

}

if (last) |
tmp = self->last;
Py_INCREF (last);
self->last = last;
Py_XDECREF (tmp) ;

}

return O;

static PyMemberDef Custom_members|[] = {

{"first", T_OBJECT_EX, offsetof (CustomObject, first), O,
"first name"},

{"last", T_OBJECT_EX, offsetof (CustomObject, last), O,
"last name"},

{"number", T_INT, offsetof (CustomObject, number), O,
"custom number"},

{NULL} /* Sentinel */

bi

static PyObject *
Custom_name (CustomObject *self, PyObject *Py_UNUSED (ignored))
{
if (self->first == NULL) {
PyErr_SetString (PyExc_AttributeError, "first");
return NULL;
}
if (self->last == NULL) {
PyErr_SetString (PyExc_AttributeError, "last");
return NULL;
}

return PyUnicode_FromFormat ("%S %S", self->first, self->last);

static PyMethodDef Custom_methods[] = {

(TH& ST Aol A1)

2.2. Defining Extension Types: Tutorial 29

Extending and Embedding Python, &] | A 3.7.17

(o] A sl o] A A M A%)

{"name", (PyCFunction) Custom_name, METH_NOARGS,
"Return the name, combining the first and last name"
}I
{NULL} /* Sentinel */

i

static PyTypeObject CustomType = {
PyVarObject_HEAD_INIT (NULL, O)
.tp_name = "custom2.Custom",
.tp_doc = "Custom objects",
.tp_basicsize = sizeof (CustomObject),
.tp_itemsize = 0,
.tp_flags = Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE,
.tp_new = Custom_new,
.tp_init = (initproc) Custom_init,
.tp_dealloc = (destructor) Custom_dealloc,
.tp_members Custom_members,
.tp_methods = Custom_methods,

bi

static PyModuleDef custommodule = {
PyModuleDef_ HEAD_INIT,

.m_name = "custom2",
.m_doc = "Example module that creates an extension type.",
.m_size = -1,

i

PyMODINIT_FUNC
PyInit_custom2 (void)
{
PyObject *m;
if (PyType_Ready (&CustomType) < 0)
return NULL;

m PyModule_Create (&custommodule) ;
if (m == NULL)
return NULL;

Py_INCREF (&CustomType) ;

if (PyModule_AddObject (m, "Custom", (PyObject *) &CustomType) < 0)
Py_DECREF (&CustomType) ;
Py_DECREF (m) ;
return NULL;

return m;

This version of the module has a number of changes.

We’ve added an extra include:

#include <structmember.h>

This include provides declarations that we use to handle attributes, as described a bit later.

The Custom type now has three data attributes in its C struct, first, last, and number. The first and last variables are

Python strings containing first and last names. The number attribute is a C integer.

30 Chapter 2. A=A &

7 o] F3 s

Extending and Embedding Python, &]] A 3.7.17

The object structure is updated accordingly:

typedef struct {
PyObject_HEAD
PyObject *first; /* first name */
PyObject *last; /* last name */
int number;

} CustomObject;

Because we now have data to manage, we have to be more careful about object allocation and deallocation. At a minimum,
we need a deallocation method:

static void
Custom_dealloc (CustomObject *self)
{
Py_XDECREF (self->first);
Py_XDECREF (self->1last);
Py_TYPE (self)->tp_free ((PyObject *) self);

which is assigned to the tp_dealloc member:

.tp_dealloc = (destructor) Custom_dealloc,

This method first clears the reference counts of the two Python attributes. Py_XDECREF () correctly handles the case
where its argument is NULL (which might happen here if tp_new failed midway). It then calls the tp_free member
of the object’s type (computed by Py_TYPE (self)) to free the object’s memory. Note that the object’s type might
not be CustomType, because the object may be an instance of a subclass.

ZF311: The explicit cast to destructor above is needed because we defined Custom_dealloc to take a
CustomObject * argument, but the tp_dealloc function pointer expects to receive a PyObject * argument.
Otherwise, the compiler will emit a warning. This is object-oriented polymorphism, in C!

We want to make sure that the first and last names are initialized to empty strings, so we provide a t p_new implemen-
tation:

static PyObject *
Custom_new (PyTypeObject *type, PyObject *args, PyObject *kwds)
{

CustomObject *self;

self = (CustomObject *) type->tp_alloc(type, 0);
if (self != NULL) {

self->first = PyUnicode_FromString("");

if (self->first == NULL) {

Py_DECREF (self);
return NULL;
}
self->last = PyUnicode_FromString("");
if (self->last == NULL) H{
Py_DECREF (self);
return NULL;
}
self->number = 0;
}
return (PyObject *) self;

2.2. Defining Extension Types: Tutorial 31

Extending and Embedding Python, &] | A 3.7.17

and install it in the tp_new member:

.tp_new = Custom_new,

The tp_new handler is responsible for creating (as opposed to initializing) objects of the type. It is exposed in Python
as the __new__ () method. It is not required to define a tp_new member, and indeed many extension types will
simply reuse PyType_GenericNew () as done in the first version of the Custom type above. In this case, we use
the tp_new handler to initialize the first and last attributes to non-NULL default values.

tp_new is passed the type being instantiated (not necessarily CustomType, if a subclass is instantiated) and any
arguments passed when the type was called, and is expected to return the instance created. tp_new handlers always
accept positional and keyword arguments, but they often ignore the arguments, leaving the argument handling to initializer
(ak.a. tp_initinCor__init__ in Python) methods.

Z3: tp_newshouldn’t call tp_init explicitly, as the interpreter will do it itself.

The tp_new implementation calls the tp_alloc slot to allocate memory:

self = (CustomObject *) type->tp_alloc(type, 0);

Since memory allocation may fail, we must check the tp_alloc result against NULL before proceeding.

ZF31: We didn’tfill the tp_alloc slot ourselves. Rather PyType_Ready () fills it for us by inheriting it from our
base class, which is object by default. Most types use the default allocation strategy.

ZF31: If you are creating a co-operative tp_new (one that calls a base type’s tp_new or __new__ ()), you must
not try to determine what method to call using method resolution order at runtime. Always statically determine what type
you are going to call, and call its t p_new directly, or via t ype->tp_base->tp_new. If you do not do this, Python
subclasses of your type that also inherit from other Python-defined classes may not work correctly. (Specifically, you may
not be able to create instances of such subclasses without getting a TypeError.)

We also define an initialization function which accepts arguments to provide initial values for our instance:

static int
Custom_init (CustomObject *self, PyObject *args, PyObject *kwds)
{
static char *kwlist[] = {"first", "last", "number", NULL};
PyObject *first = NULL, *last = NULL, *tmp;

if (!PyArg_ParseTupleAndKeywords (args, kwds, "[00i", kwlist,
sfirst, &last,
&self->number))
return -1;

if (first) |
tmp = self->first;
Py_INCREF (first);
self->first = first;
Py_XDECREF (tmp) ;

3

if (last) {
tmp = self->last;

(THS slolATell A1)

32 Chapter 2. A4t =7 glo] 3 THE7]

Extending and Embedding Python, &]] A 3.7.17

(o] A sl o] A A M A%)

Py_INCREF (last);
self->last = last;
Py_XDECREF (tmp) ;

}

return 0;

by filling the tp_init slot.

.tp_init = (initproc) Custom_init,

The tp_init slotis exposed in Pythonasthe ___init__ () method. It is used to initialize an object after it’s created.
Initializers always accept positional and keyword arguments, and they should return either 0 on success or —1 on error.

Unlike the t p_new handler, there is no guarantee that tp_init is called at all (for example, the pickle module by
default doesn’t call __init__ () on unpickled instances). It can also be called multiple times. Anyone can call the
__init__ () method on our objects. For this reason, we have to be extra careful when assigning the new attribute
values. We might be tempted, for example to assign the £irst member like this:

if (first) {
Py_XDECREF (self->first);
Py_INCREF (first);
self->first = first;

But this would be risky. Our type doesn’t restrict the type of the £irst member, so it could be any kind of object. It
could have a destructor that causes code to be executed that tries to access the £irst member; or that destructor could
release the Global interpreter Lock and let arbitrary code run in other threads that accesses and modifies our object.

To be paranoid and protect ourselves against this possibility, we almost always reassign members before decrementing
their reference counts. When don’t we have to do this?

¢ when we absolutely know that the reference count is greater than 1;

+ when we know that deallocation of the object' will neither release the GIL nor cause any calls back into our type’s
code;

» when decrementing a reference count in a tp_dealloc handler on a type which doesn’t support cyclic garbage
collection’.

We want to expose our instance variables as attributes. There are a number of ways to do that. The simplest way is to
define member definitions:

static PyMemberDef Custom_members|[] = {
{"first", T_OBJECT_EX, offsetof (CustomObject, first), O,
"first name"},
{"last", T_OBJECT_EX, offsetof (CustomObject, last), O,
"last name"},
{"number", T_INT, offsetof (CustomObject, number), O,
"custom number"},
{NULL} /* Sentinel */

bi

and put the definitions in the t p_members slot:

! This is true when we know that the object is a basic type, like a string or a float.
2 We relied on this in the t p_dealloc handler in this example, because our type doesn’t support garbage collection.

2.2. Defining Extension Types: Tutorial 33

Extending and Embedding Python, &] | A 3.7.17

.tp_members = Custom_members,

Each member definition has a member name, type, offset, access flags and documentation string. See the Generic Attribute
Management section below for details.

A disadvantage of this approach is that it doesn’t provide a way to restrict the types of objects that can be assigned to the
Python attributes. We expect the first and last names to be strings, but any Python objects can be assigned. Further, the
attributes can be deleted, setting the C pointers to NULL. Even though we can make sure the members are initialized to
non-NULL values, the members can be set to NULL if the attributes are deleted.

We define a single method, Custom.name (), that outputs the objects name as the concatenation of the first and last
names.

static PyObject *
Custom_name (CustomObject *self)
{
if (self->first == NULL) {
PyErr_SetString (PyExc_AttributeError, "first");
return NULL;
}
if (self->last == NULL) {
PyErr_SetString (PyExc_AttributeError, "last");
return NULL;
3

return PyUnicode_FromFormat ("%S %S", self->first, self->last);

The method is implemented as a C function that takes a Custom (or Custom subclass) instance as the first argument.
Methods always take an instance as the first argument. Methods often take positional and keyword arguments as well, but
in this case we don’t take any and don’t need to accept a positional argument tuple or keyword argument dictionary. This
method is equivalent to the Python method:

def name (self):
return " " % (self.first, self.last)

Note that we have to check for the possibility that our first and last members are NULL. This is because they can
be deleted, in which case they are set to NULL. It would be better to prevent deletion of these attributes and to restrict
the attribute values to be strings. We’ll see how to do that in the next section.

Now that we’ve defined the method, we need to create an array of method definitions:

static PyMethodDef Custom_methods|[] = {
{"name", (PyCFunction) Custom_name, METH_NOARGS,
"Return the name, combining the first and last name"
}I
{NULL} /* Sentinel */

bi

(note that we used the METH_NOARGS flag to indicate that the method is expecting no arguments other than self)

and assign it to the tp_methods slot:

.tp_methods = Custom_methods,

Finally, we’ll make our type usable as a base class for subclassing. We’ve written our methods carefully so far so that
they don’t make any assumptions about the type of the object being created or used, so all we need to do is to add the
Py_TPFLAGS_BASETYPE to our class flag definition:

3 Chapter 2. A4t =7 glo] 3 THE7]

Extending and Embedding Python, &]] A 3.7.17

.tp_flags = Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE,

We rename PyInit_custom() to PyInit_custom2 (), update the module name in the PyModuleDef struct,
and update the full class name in the PyTypeObject struct.

Finally, we update our setup . py file to build the new module:

from distutils.core import setup, Extension
setup (name="custom", version="1.0",
ext_modules=]|
Extension("custom", ["custom.c"]),
Extension("custom2", ["custom2.c"]),

1

2.2.3 Providing finer control over data attributes

In this section, we’ll provide finer control over how the first and last attributes are set in the Cust om example. In
the previous version of our module, the instance variables first and last could be set to non-string values or even
deleted. We want to make sure that these attributes always contain strings.

#define PY SSIZE_T CLEAN
#include <Python.h>
#include "structmember.h"

typedef struct {
PyObject_HEAD
PyObject *first; /* first name */
PyObject *last; /* last name */
int number;

} CustomObiject;

static void
Custom_dealloc (CustomObject *self)
{
Py_XDECREF (self->first);
Py_XDECREF (self->last);
Py_TYPE (self)->tp_free ((PyObject *) self);

static PyObject *
Custom_new (PyTypeObject *type, PyObject *args, PyObject *kwds)
{

CustomObject *self;

self = (CustomObject *) type->tp_alloc(type, 0);
if (self != NULL) {

self->first = PyUnicode_FromString("");

if (self->first == NULL) {

Py_DECREF (self);
return NULL;
}
self->last = PyUnicode_FromString("");
if (self->last == NULL) {
Py_DECREF (self);
return NULL;
}

self->number = 0;

(TH& ST Aol A1)

2.2. Defining Extension Types: Tutorial 35

Extending and Embedding Python, &] | A 3.7.17

(o] A sl o] A A M A%)

3
return (PyObject *) self;

static int
Custom_init (CustomObject *self, PyObject *args, PyObject *kwds)
{
static char *kwlist[] = {"first", "last", "number", NULL};
PyObject *first = NULL, *last = NULL, *tmp;

if (!PyArg_ParseTupleAndKeywords (args, kwds, "|UUi", kwlist,
sfirst, &last,
&self->number))
return -1;

if (first) |
tmp = self->first;
Py_INCREF (first);
self->first = first;
Py_DECREF (tmp) ;

}

if (last) |
tmp = self->last;
Py_INCREF (last);
self->last = last;
Py_DECREF (tmp) ;

}

return 0O;

static PyMemberDef Custom_members|[] = {
{"number", T_INT, offsetof (CustomObject, number), O,
"custom number"},
{NULL} /* Sentinel */

bi

static PyObject *
Custom_getfirst (CustomObject *self, wvoid *closure)
{

Py_INCREF (self->first);

return self->first;

static int
Custom_setfirst (CustomObject *self, PyObject *value, void *closure)
{

PyObject *tmp;

if (value == NULL) {

PyErr_SetString (PyExc_TypeError, "Cannot delete the first attribute");

return -1;
}
if (!PyUnicode_Check (value)) {
PyErr_SetString (PyExc_TypeError,
"The first attribute value must be a string");
return -1;

36 Chapter 2. A4z} =

Extending and Embedding Python, &]] A 3.7.17

(o] A sl o] A A M A%)

tmp = self->first;
Py_INCREF (value);
self->first = value;
Py_DECREF (tmp) ;
return 0;

static PyObject *
Custom_getlast (CustomObject *self,
{

Py_INCREF (self->last);

return self->last;

static int
Custom_setlast (CustomObject *self,

{
PyObject *tmp;

"The last attribute value must be a string");

if (value == NULL) {
PyErr_SetString (PyExc_TypeError,
return -1;

}

if (!PyUnicode_Check (value)) {
PyErr_SetString (PyExc_TypeError,
return -1;

}

tmp = self->last;

Py_INCREF (value);
self->last = value;
Py_DECREF (tmp) ;
return O;

static PyGetSetDef Custom_getsetters[] = {
{"first", (getter) Custom_getfirst, (setter) Custom_setfirst,
"first name", NULL},
{"last", (getter) Custom_getlast, (setter) Custom_setlast,

"last name", NULL},
{NULL} /* Sentinel */

bi

static PyObject *
Custom_name (CustomObject *self,

{

return PyUnicode_FromFormat ("%S %S",

static PyMethodDef Custom_methods|[] = {
Custom_name,
combining the first and last name"

{"name", (PyCFunction)

"Return the name,

by

{NULL} /* Sentinel */

bi

static PyTypeObject CustomType =

PyObject *Py_UNUSED (ignored))

void *closure)

PyObject *value, void *closure)

"Cannot delete the last attribute");

self->first, self->last);

METH_NOARGS,

(TH& ST Aol A1)

2.2. Defining Extension Types: Tutorial

37

Extending and Embedding Python, &] | A 3.7.17

(o] A sl o] A A M A%)

PyVarObject_HEAD_INIT (NULL,
.tp_name = "custom3.Custom",
.tp_doc "Custom objects",
.tp_basicsize
.tp_itemsize = 0,
.tp_flags
.tp_new
.tp_init
.tp_dealloc =
.tp_members
.tp_methods
.tp_getset

Custom_new,
(initproc)
(destructor)

bi

static PyModuleDef custommodule
PyModuleDef_ HEAD_INIT,

.m_name = "custom3",
.m_doc =
.m_size = -1,

bi

PyMODINIT_FUNC
PyInit_custom3 (void)
{

PyObject *m;

Py_TPFLAGS_DEFAULT |

0)

sizeof (CustomObject),

Py_TPFLAGS_BASETYPE,

Custom_init,

Custom_dealloc,
Custom_members,
Custom_methods,

Custom_getsetters,

= {

"Example module that creates an extension type.",

if (PyType_Ready (&CustomType) < 0)
return NULL;

m = PyModule_Create (&custommodule) ;

if (m == NULL)

return NULL;

Py_INCREF (&CustomType) ;
if (PyModule_AddObiject (m,
Py_DECREF (&CustomType) ;
Py_DECREF (m) ;
return NULL;

return m;

"Custom",

(PyObject *) &CustomType) < 0) |

To provide greater control, over the first and last attributes, we’ll use custom getter and setter functions. Here are
the functions for getting and setting the first attribute:

static PyObject *

Custom_getfirst (CustomObject *self,

{
Py_INCREF (self->first);
return self->first;

static int

Custom_setfirst (CustomObject *self,

{
PyObject *tmp;

void *closure)

PyObject *value, wvoid *closure)

38

Chapter 2. A&z} =

Extending and Embedding Python, &]] A 3.7.17

(o] A sl o] A A M A%)

if (value == NULL) {
PyErr_SetString (PyExc_TypeError, "Cannot delete the first attribute");
return -1;
}
if (!PyUnicode_Check (value)) {
PyErr_SetString (PyExc_TypeError,
"The first attribute value must be a string");
return -1;
}
tmp = self->first;
Py_INCREF (value);
self->first = value;
Py_DECREF (tmp) ;
return 0;

The getter function is passed a Custom object and a “closure”, which is a void pointer. In this case, the closure is
ignored. (The closure supports an advanced usage in which definition data is passed to the getter and setter. This could,
for example, be used to allow a single set of getter and setter functions that decide the attribute to get or set based on data
in the closure.)

The setter function is passed the Cust om object, the new value, and the closure. The new value may be NULL, in which
case the attribute is being deleted. In our setter, we raise an error if the attribute is deleted or if its new value is not a
string.

We create an array of PyGet SetDef structures:

static PyGetSetDef Custom_getsetters[] = {
{"first", (getter) Custom_getfirst, (setter) Custom_setfirst,
"first name", NULL},
{"last", (getter) Custom_getlast, (setter) Custom_setlast,
"last name", NULL},
{NULL} /* Sentinel */

bi

and register it in the tp_getset slot:

.tp_getset = Custom_getsetters,

The last item in a PyGet SetDe £ structure is the “closure” mentioned above. In this case, we aren’t using a closure, so
we just pass NULL.

We also remove the member definitions for these attributes:

static PyMemberDef Custom_members|[] = {
{"number", T_INT, offsetof (CustomObject, number), O,
"custom number"},
{NULL} /* Sentinel */

bi

We also need to update the t p_init handler to only allow strings® to be passed:

static int
Custom_init (CustomObject *self, PyObject *args, PyObject *kwds)

(TH& STToTAT ol A1)

3 We now know that the first and last members are strings, so perhaps we could be less careful about decrementing their reference counts, however,
we accept instances of string subclasses. Even though deallocating normal strings won’t call back into our objects, we can’t guarantee that deallocating
an instance of a string subclass won’t call back into our objects.

2.2. Defining Extension Types: Tutorial 39

Extending and Embedding Python, &] | A 3.7.17

(o] A sl o] A A M A%)

static char *kwlist[] = {"first", "last", "number", NULL};
PyObject *first = NULL, *last = NULL, *tmp;

if (!PyArg_ParseTupleAndKeywords (args, kwds, "|UUi", kwlist,
sfirst, &last,
&self->number))
return -1;

if (first) |
tmp = self->first;
Py_INCREF (first);
self->first = first;
Py_DECREF (tmp) ;

}

if (last) |
tmp = self->last;
Py_INCREF (last);
self->last = last;
Py_DECREF (tmp) ;

}

return 0O;

With these changes, we can assure that the first and 1ast members are never NULL so we can remove checks for
NULL values in almost all cases. This means that most of the Py_ XDECREF () calls can be converted to Py_ DECREF ()
calls. The only place we can’t change these calls is in the tp_dealloc implementation, where there is the possibility
that the initialization of these members failed in tp_new.

We also rename the module initialization function and module name in the initialization function, as we did before, and
we add an extra definition to the setup . py file.

2.2.4 Supporting cyclic garbage collection

Python has a cyclic garbage collector (GC) that can identify unneeded objects even when their reference counts are not
zero. This can happen when objects are involved in cycles. For example, consider:

>>> 1 = []
>>> 1.append(1l)
>>> del 1

In this example, we create a list that contains itself. When we delete it, it still has a reference from itself. Its reference
count doesn’t drop to zero. Fortunately, Python’s cyclic garbage collector will eventually figure out that the list is garbage
and free it.

In the second version of the Custom example, we allowed any kind of object to be stored in the first or last
attributes®. Besides, in the second and third versions, we allowed subclassing Cust om, and subclasses may add arbitrary
attributes. For any of those two reasons, Cust om objects can participate in cycles:

>>> import custom3
>>> class Derived (custom3.Custom) : pass

>>> n = Derived()
>>> n.some_attribute = n

4 Also, even with our attributes restricted to strings instances, the user could pass arbitrary st r subclasses and therefore still create reference cycles.

40 Chapter 2. A|4H7} £7 §lo] 27 w571

Extending and Embedding Python, &]] A 3.7.17

To allow a Custom instance participating in a reference cycle to be properly detected and collected by the cyclic GC,
our Custom type needs to fill two additional slots and to enable a flag that enables these slots:

#define PY _SSIZE_T CLEAN
#include <Python.h>
#include "structmember.h"

typedef struct {
PyObject_HEAD
PyObject *first; /* first name */
PyObject *last; /* last name */
int number;

} CustomObject;

static int
Custom_traverse (CustomObject *self, visitproc visit, void *arg)
{

Py_VISIT(self->first);

Py_VISIT (self->last);

return 0;

static int
Custom_clear (CustomObject *self)
{
Py_CLEAR(self->first);
Py_CLEAR(self->last);
return 0O;

static void
Custom_dealloc (CustomObject *self)
{
PyObject_GC_UnTrack (self);
Custom_clear (self);
Py_TYPE (self)->tp_free ((PyObject *) self);

static PyObject *
Custom_new (PyTypeObject *type, PyObject *args, PyObject *kwds)
{

CustomObject *self;

self = (CustomObject *) type->tp_alloc(type, 0);

if (self != NULL) {
self->first = PyUnicode_FromString("");
if (self->first == NULL) {

Py_DECREF (self);
return NULL;
}
self->last = PyUnicode_FromString("");
if (self->last == NULL) {
Py_DECREF (self);
return NULL;
}
self->number = 0;

}
return (PyObject *) self;

(TH& ST Aol A1)

2.2. Defining Extension Types: Tutorial 41

Extending and Embedding Python, &] | A 3.7.17

(o] A sl o] A A M A%)

static int
Custom_init (CustomObject *self, PyObject *args, PyObject *kwds)
{
static char *kwlist[] = {"first", "last", "number", NULL};
PyObject *first = NULL, *last = NULL, *tmp;

if (!PyArg_ParseTupleAndKeywords (args, kwds, "|UUi", kwlist,
sfirst, &last,
&self->number))
return -1;

if (first) |
tmp = self->first;
Py_INCREF (first);
self->first = first;
Py_DECREF (tmp) ;

}

if (last) |
tmp = self->last;
Py_INCREF (last);
self->last = last;
Py_DECREF (tmp) ;

3

return 0O;

static PyMemberDef Custom_members|[] = {
{"number", T_INT, offsetof (CustomObject, number), O,
"custom number"},
{NULL} /* Sentinel */

bi

static PyObject *
Custom_getfirst (CustomObject *self, wvoid *closure)
{

Py_INCREF (self->first);

return self->first;

static int
Custom_setfirst (CustomObject *self, PyObject *value, void *closure)
{
if (value == NULL) {
PyErr_SetString (PyExc_TypeError, "Cannot delete the first attribute");
return -1;
}
if (!PyUnicode_Check (value)) {
PyErr_SetString (PyExc_TypeError,
"The first attribute value must be a string");
return -1;
}
Py_INCREF (value);
Py_CLEAR (self->first);
self->first = value;
return 0;

42 Chapter 2. A &A= glo] &

Extending and Embedding Python, &]] A 3.7.17

(o] A sl o] A A M A%)

static PyObject *
Custom_getlast (CustomObject *self, wvoid *closure)
{

Py_INCREF (self->1last);

return self->last;

static int
Custom_setlast (CustomObject *self, PyObject *value, wvoid *closure)
{
if (value == NULL) {
PyErr_SetString (PyExc_TypeError, "Cannot delete the last attribute");
return -1;
}
if (!PyUnicode_Check (value)) {
PyErr_SetString (PyExc_TypeError,
"The last attribute value must be a string");
return -1;
}
Py_INCREF (value);
Py_CLEAR (self->last);
self->last = value;
return 0O;

static PyGetSetDef Custom_getsetters[] = {
{"first", (getter) Custom_getfirst, (setter) Custom_setfirst,
"first name", NULL},
{"last", (getter) Custom_getlast, (setter) Custom_setlast,
"last name", NULL},
{NULL} /* Sentinel */
bi

static PyObject *
Custom_name (CustomObject *self, PyObject *Py_UNUSED (ignored))
{

return PyUnicode_FromFormat ("$S %S", self->first, self->last);

static PyMethodDef Custom_methods[] = {
{"name", (PyCFunction) Custom_name, METH_NOARGS,
"Return the name, combining the first and last name"
}I
{NULL} /* Sentinel */
bi

static PyTypeObject CustomType = {
PyVarObject_HEAD_INIT (NULL, 0)
.tp_name = "custom4.Custom",
.tp_doc = "Custom objects",
.tp_basicsize = sizeof (CustomObject),
.tp_itemsize = 0,
.tp_flags = Py_TPFLAGS_DEFAULT | Py TPFLAGS_BASETYPE | Py_TPFLAGS_HAVE_GC,
.tp_new = Custom_new,

(TH& ST Aol A1)

2.2. Defining Extension Types: Tutorial

43

Extending and Embedding Python, &] | A 3.7.17

(o] A sl o] A A M A%)

.tp_init = (initproc) Custom_init,

.tp_dealloc = (destructor) Custom_dealloc,
.tp_traverse = (traverseproc) Custom_traverse,
.tp_clear = (inquiry) Custom_clear,
.tp_members = Custom_members,

.tp_methods = Custom_methods,
.tp_getset = Custom_getsetters,

bi

static PyModuleDef custommodule = {
PyModuleDef_ HEAD_INIT,

.m_name = "custom4d",
.m_doc = "Example module that creates an extension type.",
.m_size = -1,

bi

PyMODINIT_FUNC
PyInit_custom4 (void)
{
PyObject *m;
if (PyType_Ready (&CustomType) < 0)
return NULL;

m = PyModule_Create (&custommodule) ;
if (m == NULL)
return NULL;

Py_INCREF (&CustomType) ;

if (PyModule_AddObject (m, "Custom", (PyObject *) &CustomType) < 0) {
Py_DECREF (&CustomType) ;
Py_DECREF (m) ;
return NULL;

return m;

First, the traversal method lets the cyclic GC know about subobjects that could participate in cycles:

static int
Custom_traverse (CustomObject *self, visitproc visit, wvoid *arqg)
{
int vret;
if (self->first) {
vret = visit (self->first, arg);
if (vret != 0)
return vret;
}
if (self->last) {
vret = visit (self->last, arg);
if (vret != 0)
return vret;
3

return 0;

For each subobject that can participate in cycles, we need to call the visit () function, which is passed to the traversal

44 Chapter 2. A2t =+ glo] &3 wHE7]

Extending and Embedding Python, &]] A 3.7.17

method. The visit () function takes as arguments the subobject and the extra argument arg passed to the traversal
method. It returns an integer value that must be returned if it is non-zero.

Python provides a Py_VISIT () macro that automates calling visit functions. With Py_VISIT (), we can minimize
the amount of boilerplate in Custom_traverse:

static int
Custom_traverse (CustomObject *self, visitproc visit, wvoid *arqg)
{

Py_VISIT (self->first);

Py_VISIT(self->last);

return 0O;

ZF31: The tp_traverse implementation must name its arguments exactly visit and arg in order touse Py_VISIT ().

Second, we need to provide a method for clearing any subobjects that can participate in cycles:

static int
Custom_clear (CustomObject *self)
{
Py_CLEAR (self->first);
Py_CLEAR (self->last);
return O;

Notice the use of the Py_ CLEAR () macro. It is the recommended and safe way to clear data attributes of arbitrary types
while decrementing their reference counts. If you were to call Py_ XDECREF () instead on the attribute before setting
it to NULL, there is a possibility that the attribute’s destructor would call back into code that reads the attribute again
(especially if there is a reference cycle).

ZF31: You could emulate Py_CLEAR () by writing:

PyObject *tmp;

tmp = self->first;
self->first = NULL;
Py_XDECREF (tmp) ;

Nevertheless, it is much easier and less error-prone to always use Py_ CLEAR () when deleting an attribute. Don’t try to
micro-optimize at the expense of robustness!

The deallocator Custom_dealloc may call arbitrary code when clearing attributes. It means the circular GC can be
triggered inside the function. Since the GC assumes reference count is not zero, we need to untrack the object from the
GC by calling PyObject_GC_UnTrack () before clearing members. Here is our reimplemented deallocator using
PyObject_GC_UnTrack () and Custom_clear:

static void
Custom_dealloc (CustomObject *self)
{
PyObject_GC_UnTrack (self);
Custom_clear (self);
Py_TYPE (self)->tp_free ((PyObject *) self);

Finally, we add the Py_TPFLAGS_HAVE_ GC flag to the class flags:

2.2. Defining Extension Types: Tutorial 45

Extending and Embedding Python, &] | A 3.7.17

.tp_flags = Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE | Py_TPFLAGS_HAVE_GC,

That’s pretty much it. If we had written custom tp_alloc or tp_free handlers, we’d need to modify them for cyclic

garbage collection. Most extensions will use the versions automatically provided.

2.2.5 Subclassing other types

It is possible to create new extension types that are derived from existing types. It is easiest to inherit from the built in
types, since an extension can easily use the PyTypeObject it needs. It can be difficult to share these Py TypeObject

structures between extension modules.

In this example we will create a SubLi st type that inherits from the built-in 11 st type. The new type will be completely
compatible with regular lists, but will have an additional increment () method that increases an internal counter:

>>> import sublist

>>> s = sublist.SubList (range(3))
>>> s.extend(s)

>>> print (len(s))

6

>>> print (s.increment ())

>>> print (s.increment ())

#define PY SSIZE_T CLEAN
#include <Python.h>

typedef struct {
PyListObject list;
int state;

} SubListObject;

static PyObject *
SubList_increment (SubListObject *self, PyObject *unused)
{

self->statet++;

return PyLong_FromLong (self->state);

static PyMethodDef SubList_methods[] = {
{"increment", (PyCFunction) SubList_increment, METH_NOARGS,
PyDoc_STR("increment state counter")},
{NULL},

bi

static int
SubList_init (SubListObject *self, PyObject *args, PyObject *kwds)
{
if (PyList_Type.tp_init ((PyObject *) self, args, kwds) < 0)
return -1;
self->state = 0;
return 0O;

static PyTypeObject SubListType = {

(THE SOl AT ol A1)

46 Chapter 2. A4z} =

Extending and Embedding Python, &]] A 3.7.17

(o] A sl o] A A M A%)

PyVarObject_HEAD_INIT (NULL, O0)

.tp_name = "sublist.SubList",

.tp_doc = "SubList objects",

.tp_basicsize = sizeof (SubListObject),

.tp_itemsize = 0,

.tp_flags = Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE,
.tp_init = (initproc) SubList_init,

.tp_methods = SubList_methods,
bi

static PyModuleDef sublistmodule = {
PyModuleDef_ HEAD_INIT,

.m_name = "sublist",
.m_doc = "Example module that creates an extension type.",
.m_size = -1,

bi

PyMODINIT_FUNC
PyInit_sublist (void)
{
PyObject *m;
SubListType.tp_base = &PyList_Type;
if (PyType_Ready (&SubListType) < 0)
return NULL;

m = PyModule_Create (&sublistmodule);
if (m == NULL)
return NULL;

Py_INCREF (&SubListType) ;

if (PyModule_AddObject (m, "SubList", (PyObject *) &SubListType) < 0) {
Py_DECREF (&SubListType) ;
Py_DECREF (m) ;
return NULL;

return m;

As you can see, the source code closely resembles the Cust om examples in previous sections. We will break down the
main differences between them.

typedef struct {
PyListObject list;
int state;

} SubListObject;

The primary difference for derived type objects is that the base type’s object structure must be the first value. The base
type will already include the PyObject_HEAD () at the beginning of its structure.

When a Python object is a SubList instance, its PyObject * pointer can be safely cast to both PyListObject
* and SubListObject *:

static int
SubList_init (SubListObject *self, PyObject *args, PyObject *kwds)
{

if (PyList_Type.tp_init ((PyObject *) self, args, kwds) < 0)

(TH& ST Aol A1)

2.2. Defining Extension Types: Tutorial 47

Extending and Embedding Python, &] | A 3.7.17

(o] A sl o] A A M A%)

return -1;
self->state = 0;
return O;

We see above how to call through to the ___init___ method of the base type.

This pattern is important when writing a type with custom tp_new and tp_dealloc members. The t p_new handler
should not actually create the memory for the object with its tp_alloc, but let the base class handle it by calling its
own tp_new.

The PyTypeObject struct supports a tp_base specifying the type’s concrete base class. Due to cross-platform
compiler issues, you can’t fill that field directly with a reference to PyList_Type; it should be done later in the module
initialization function:

PyMODINIT_FUNC
PyInit_sublist (void)
{
PyObject* m;
SubListType.tp_base = &PyList_Type;
if (PyType_Ready (&SubListType) < 0)
return NULL;

m = PyModule_Create (&sublistmodule) ;
if (m == NULL)
return NULL;

Py_INCREF (sSubListType) ;

if (PyModule_AddObject (m, "SubList", (PyObject *) &SubListType) < 0) |
Py_DECREF (&SubListType) ;
Py_DECREF (m) ;
return NULL;

return m;

Before calling PyType_Ready (), the type structure must have the t p_base slot filled in. When we are deriving an
existing type, it is not necessary to fill out the tp_alloc slot with PyType_GenericNew () — the allocation function
from the base type will be inherited.

After that, calling PyType_Ready () and adding the type object to the module is the same as with the basic Custom
examples.

2.3 Defining Extension Types: Assorted Topics

This section aims to give a quick fly-by on the various type methods you can implement and what they do.

Here is the definition of Py TypeObject, with some fields only used in debug builds omitted:

typedef struct _typeobject {
PyObject_VAR_HEAD
const char *tp_name; /* For printing, in format "<module>.<name>" */
Py_ssize_t tp_basicsize, tp_itemsize; /* For allocation */

48 Chapter 2. A4z =

-
g2,
2L
o
ol
rﬂ
il
N,

Extending and Embedding Python, & A ¥ A 3.7.17

(o1 A S o] A A Al

/* Methods to implement standard operations */

destructor tp_dealloc;

printfunc tp_print;

getattrfunc tp_getattr;

setattrfunc tp_setattr;

PyAsyncMethods *tp_as_async; /* formerly known as tp_compare (Python 2)
or tp_reserved (Python 3) */

reprfunc tp_repr;

/* Method suites for standard classes */

PyNumberMethods *tp_as_number;
PySequenceMethods *tp_as_sequence;
PyMappingMethods *tp_as_mapping;

/* More standard operations (here for binary compatibility) */

hashfunc tp_hash;
ternaryfunc tp_call;
reprfunc tp_str;
getattrofunc tp_getattro;
setattrofunc tp_setattro;

/* Functions to access object as input/output buffer */
PyBufferProcs *tp_as_buffer;

/* Flags to define presence of optional/expanded features */
unsigned long tp_flags;

const char *tp_doc; /* Documentation string */

/* call function for all accessible objects */
traverseproc tp_traverse;

/* delete references to contained objects */
inquiry tp_clear;

/* rich comparisons */
richcmpfunc tp_richcompare;

/* weak reference enabler */
Py_ssize_t tp_weaklistoffset;

/* Iterators */
getiterfunc tp_iter;
iternextfunc tp_iternext;

/* Attribute descriptor and subclassing stuff */
struct PyMethodDef *tp_methods;

struct PyMemberDef *tp_members;

struct PyGetSetDef *tp_getset;

struct _typeobject *tp_base;

PyObject *tp_dict;

descrgetfunc tp_descr_get;

descrsetfunc tp_descr_set;

(FF= sl el Aol AI%)

2.3. Defining Extension Types: Assorted Topics 49

Extending and Embedding Python, &] | A 3.7.17

(o] A sl o] A A M A%)

Py_ssize_t tp_dictoffset;

initproc tp_init;

allocfunc tp_alloc;

newfunc tp_new;

freefunc tp_free; /* Low-level free-memory routine */
inquiry tp_is_gc; /* For PyObject IS GC */
PyObject *tp_bases;

PyObject *tp_mro; /* method resolution order */
PyObject *tp_cache;

PyObject *tp_subclasses;

PyObject *tp_weaklist;

destructor tp_del;

/* Type attribute cache version tag. Added in version 2.6 */
unsigned int tp_version_tag;

destructor tp_finalize;

} PyTypeObject;

Now that’s a /ot of methods. Don’t worry too much though — if you have a type you want to define, the chances are very
good that you will only implement a handful of these.

As you probably expect by now, we’re going to go over this and give more information about the various handlers. We
won’t go in the order they are defined in the structure, because there is a lot of historical baggage that impacts the ordering
of the fields. It’s often easiest to find an example that includes the fields you need and then change the values to suit your
new type.

’const char *tp_name; /* For printing */

The name of the type — as mentioned in the previous chapter, this will appear in various places, almost entirely for
diagnostic purposes. Try to choose something that will be helpful in such a situation!

’Py_ssize_t tp_basicsize, tp_itemsize; /* For allocation */

These fields tell the runtime how much memory to allocate when new objects of this type are created. Python has some
built-in support for variable length structures (think: strings, tuples) which is where the tp_itemsize field comes in.
This will be dealt with later.

const char *tp_doc;

Here you can put a string (or its address) that you want returned when the Python script references obj.___doc__ to
retrieve the doc string.

Now we come to the basic type methods — the ones most extension types will implement.

>0 Chapter 2. A|4H7} £7 §lo] 27 w571

Extending and Embedding Python, &]] A 3.7.17

2.3.1 Finalization and De-allocation

destructor tp_dealloc;

This function is called when the reference count of the instance of your type is reduced to zero and the Python interpreter
wants to reclaim it. If your type has memory to free or other clean-up to perform, you can put it here. The object itself
needs to be freed here as well. Here is an example of this function:

static void
newdatatype_dealloc (newdatatypeobject *obj)
{
free (obj->obj_UnderlyingDatatypePtr) ;
Py_TYPE (obj)->tp_free (obj);

One important requirement of the deallocator function is that it leaves any pending exceptions alone. This is important
since deallocators are frequently called as the interpreter unwinds the Python stack; when the stack is unwound due to
an exception (rather than normal returns), nothing is done to protect the deallocators from seeing that an exception has
already been set. Any actions which a deallocator performs which may cause additional Python code to be executed may
detect that an exception has been set. This can lead to misleading errors from the interpreter. The proper way to protect
against this is to save a pending exception before performing the unsafe action, and restoring it when done. This can be
done using the PyErr_Fetch () and PyErr_Restore () functions:

static void

my_dealloc (PyObject *obj)

{
MyObject *self = (MyObject *) obj;
PyObject *cbresult;

if (self->my_callback != NULL) {
PyObject *err_type, *err_value, *err_traceback;

/* This saves the current exception state */
PyErr_Fetch (&err_type, &err_value, &err_traceback);

cbresult = PyObject_CallObject (self->my_callback, NULL);
if (cbresult == NULL)

PyErr_WriteUnraisable (self->my_callback);
else

Py_DECREF (cbresult);

/* This restores the saved exception state */
PyErr_Restore(err_type, err_value, err_traceback);

Py_DECREF (self->my_callback);

}
Py_TYPE (obj)—>tp_free ((PyObject*)self);

ZF31: There are limitations to what you can safely do in a deallocator function. First, if your type supports garbage
collection (using tp_traverse and/or tp_clear), some of the object’s members can have been cleared or finalized
by the time tp_dealloc is called. Second, in tp_dealloc, your object is in an unstable state: its reference count
is equal to zero. Any call to a non-trivial object or API (as in the example above) might end up calling tp_dealloc
again, causing a double free and a crash.

Starting with Python 3.4, it is recommended not to put any complex finalization code in tp_dealloc, and instead use

2.3. Defining Extension Types: Assorted Topics 51

Extending and Embedding Python, &] | A 3.7.17

the new tp_finalize type method.
o B

PEP 442 explains the new finalization scheme.

2.3.2 Object Presentation

In Python, there are two ways to generate a textual representation of an object: the repr () function, and the str ()
function. (The print () function just calls st r () .) These handlers are both optional.

reprfunc tp_repr;
reprfunc tp_str;

The tp_repr handler should return a string object containing a representation of the instance for which it is called.
Here is a simple example:

static PyObject *
newdatatype_repr (newdatatypeobject * obj)
{
return PyUnicode_FromFormat ("Repr—-ified_newdatatype{{size:%d}}",
obj->obj_UnderlyingDatatypePtr->size);

If no tp_repr handler is specified, the interpreter will supply a representation that uses the type’s tp_name and a
uniquely-identifying value for the object.

The tp_str handleris to str () what the tp_repr handler described above is to repr () ; that is, it is called when
Python code calls str () on an instance of your object. Its implementation is very similar to the tp_repr function,
but the resulting string is intended for human consumption. If tp_str is not specified, the tp_repr handler is used
instead.

Here is a simple example:

static PyObject *
newdatatype_str (newdatatypeobject * obj)
{
return PyUnicode_FromFormat ("Stringified newdatatype{{size:%d}}",
obj->obj_UnderlyingDatatypePtr->size);

2.3.3 Attribute Management

For every object which can support attributes, the corresponding type must provide the functions that control how the
attributes are resolved. There needs to be a function which can retrieve attributes (if any are defined), and another to set
attributes (if setting attributes is allowed). Removing an attribute is a special case, for which the new value passed to the
handler is NULL.

Python supports two pairs of attribute handlers; a type that supports attributes only needs to implement the functions
for one pair. The difference is that one pair takes the name of the attribute as a char*, while the other accepts a
PyObject*. Each type can use whichever pair makes more sense for the implementation’s convenience.

getattrfunc tp_getattr; /* char * version */
setattrfunc tp_setattr;

%2 Chapter 2. A|4H7} £7 §lo] 27 w571

https://www.python.org/dev/peps/pep-0442

Extending and Embedding Python, &]] A 3.7.17

(o] A sl o] A A M A%)

VA V4
getattrofunc tp_getattro; /* PyObject * version */
setattrofunc tp_setattro;

If accessing attributes of an object is always a simple operation (this will be explained shortly), there are generic imple-
mentations which can be used to provide the PyObject* version of the attribute management functions. The actual
need for type-specific attribute handlers almost completely disappeared starting with Python 2.2, though there are many
examples which have not been updated to use some of the new generic mechanism that is available.

Generic Attribute Management

Most extension types only use simple attributes. So, what makes the attributes simple? There are only a couple of
conditions that must be met:

1. The name of the attributes must be known when PyType_Ready () is called.

2. No special processing is needed to record that an attribute was looked up or set, nor do actions need to be taken
based on the value.

Note that this list does not place any restrictions on the values of the attributes, when the values are computed, or how
relevant data is stored.

When PyType_Ready () is called, it uses three tables referenced by the type object to create descriptors which are
placed in the dictionary of the type object. Each descriptor controls access to one attribute of the instance object. Each of
the tables is optional; if all three are NULL, instances of the type will only have attributes that are inherited from their base
type, and should leave the tp_getattro and tp_setattro fields NULL as well, allowing the base type to handle
attributes.

The tables are declared as three fields of the type object:

struct PyMethodDef *tp_methods;
struct PyMemberDef *tp_members;
struct PyGetSetDef *tp_getset;

If tp_methods is not NULL, it must refer to an array of PyMethodDef structures. Each entry in the table is an
instance of this structure:

typedef struct PyMethodDef {

const char *ml_name; /* method name */

PyCFunction ml_meth; /* implementation function */
int ml_flags; /* flags */

const char *ml_doc; /* docstring */

} PyMethodDef;

One entry should be defined for each method provided by the type; no entries are needed for methods inherited from a
base type. One additional entry is needed at the end; it is a sentinel that marks the end of the array. The m1_name field
of the sentinel must be NULL.

The second table is used to define attributes which map directly to data stored in the instance. A variety of primitive C
types are supported, and access may be read-only or read-write. The structures in the table are defined as:

typedef struct PyMemberDef ({
const char *name;

int type;
int offset;
int flags;

(THS sTolAToll A1)

2.3. Defining Extension Types: Assorted Topics 53

Extending and Embedding Python, &] | A 3.7.17

(o] A sl o] A A M A%)

const char *doc;
} PyMemberDef;

For each entry in the table, a descriptor will be constructed and added to the type which will be able to extract a value
from the instance structure. The type field should contain one of the type codes defined in the st ructmember.h
header; the value will be used to determine how to convert Python values to and from C values. The f1ags field is used
to store flags which control how the attribute can be accessed.

The following flag constants are defined in st ructmember . h; they may be combined using bitwise-OR.

Constant Meaning

READONLY Never writable.

READ_RESTRICTED Not readable in restricted mode.
WRITE_RESTRICTED | Not writable in restricted mode.
RESTRICTED Not readable or writable in restricted mode.

An interesting advantage of using the t p_members table to build descriptors that are used at runtime is that any attribute
defined this way can have an associated doc string simply by providing the text in the table. An application can use the
introspection API to retrieve the descriptor from the class object, and get the doc string using its __doc___ attribute.

As with the tp_methods table, a sentinel entry with a name value of NULL is required.

Type-specific Attribute Management

For simplicity, only the char* version will be demonstrated here; the type of the name parameter is the only difference
between the char* and PyObject * flavors of the interface. This example effectively does the same thing as the generic
example above, but does not use the generic support added in Python 2.2. It explains how the handler functions are called,
so that if you do need to extend their functionality, you’ll understand what needs to be done.

The tp_getattr handler is called when the object requires an attribute look-up. It is called in the same situations
where the __getattr__ () method of a class would be called.

Here is an example:

static PyObject *
newdatatype_getattr (newdatatypeobject *obj, char *name)
{

if (strcmp(name, "data") == 0)

{

return Pylong_FromLong (obj->data);

PyErr_Format (PyExc_AttributeError,
"'%$.50s' object has no attribute '%.400s'",
tp->tp_name, name);

return NULL;

The tp_setattr handler is called when the _ setattr__ () or _ _delattr__ () method of a class instance
would be called. When an attribute should be deleted, the third parameter will be NULL. Here is an example that simply
raises an exception; if this were really all you wanted, the t p_setattr handler should be set to NULL.

static int
newdatatype_setattr (newdatatypeobject *obj, char *name, PyObject *v)

(THE SOl Aol A1)

> Chapter 2. A|4H7} £7 §lo] 27 w571

Extending and Embedding Python, &]] A 3.7.17

(o] A sl o] A A M A%)

PyErr_Format (PyExc_RuntimeError, "Read-only attribute: %s", name);
return -1;

2.3.4 Object Comparison

richcmpfunc tp_richcompare;

The tp_richcompare handler is called when comparisons are needed. It is analogous to the rich comparison methods,
like__1t__ (), and also called by PyObject_RichCompare () and PyObject_RichCompareBool ().

This function is called with two Python objects and the operator as arguments, where the operator is one of Py_EQ,
Py_NE,Py_LE,Py_GT,Py_LTorPy_GT. It should compare the two objects with respect to the specified operator and
return Py_True or Py_False if the comparison is successful, Py_Not Implemented to indicate that comparison
is not implemented and the other object’s comparison method should be tried, or NULL if an exception was set.

Here is a sample implementation, for a datatype that is considered equal if the size of an internal pointer is equal:

static PyObject *
newdatatype_richcmp (PyObject *objl, PyObject *obj2, int op)
{

PyObject *result;

int c, sizel, size2;

/* code to make sure that both arguments are of type
newdatatype omitted */

sizel = objl->obj_UnderlyingDatatypePtr->size;
size2 = obj2->obj_UnderlyingDatatypePtr->size;

switch (op) {

case : ¢ = sizel < size2; break;
case c = sizel <= size2; break;
case c = sizel == size2; break;
case c = sizel != size2; break;
case c = sizel > size2; break;
case c = sizel >= size2; break;

3

result = ¢ ? Py_True : Py_False;
Py_INCREF (result);

return result;

2.3. Defining Extension Types: Assorted Topics 55

Extending and Embedding Python, &] | A 3.7.17

2.3.5 Abstract Protocol Support

Python supports a variety of abstract ‘protocols;’ the specific interfaces provided to use these interfaces are documented
in abstract.

A number of these abstract interfaces were defined early in the development of the Python implementation. In particular,
the number, mapping, and sequence protocols have been part of Python since the beginning. Other protocols have
been added over time. For protocols which depend on several handler routines from the type implementation, the older
protocols have been defined as optional blocks of handlers referenced by the type object. For newer protocols there are
additional slots in the main type object, with a flag bit being set to indicate that the slots are present and should be checked
by the interpreter. (The flag bit does not indicate that the slot values are non-NULL. The flag may be set to indicate the
presence of a slot, but a slot may still be unfilled.)

PyNumberMethods *tp_as_number;
PySequenceMethods *tp_as_sequence;
PyMappingMethods *tp_as_mapping;

If you wish your object to be able to act like a number, a sequence, or a mapping object, then you place the address of
a structure that implements the C type PyNumberMethods, PySequenceMethods, or PyMappingMethods,
respectively. It is up to you to fill in this structure with appropriate values. You can find examples of the use of each of
these in the Object s directory of the Python source distribution.

hashfunc tp_hash;

This function, if you choose to provide it, should return a hash number for an instance of your data type. Here is a simple
example:

static Py_hash_t
newdatatype_hash (newdatatypeobject *obj)
{
Py_hash_t result;
result = obj->some_size + 32767 * obj->some_number;
if (result == -1)
result = —-2;
return result;

Py_hash_t is a signed integer type with a platform-varying width. Returning —1 from tp_hash indicates an error,
which is why you should be careful to avoid returning it when hash computation is successful, as seen above.

ternaryfunc tp_call;

This function is called when an instance of your data type is “called”, for example, if obj1 is an instance of your data
type and the Python script contains obj1 ('hello'), the tp_call handler is invoked.

This function takes three arguments:

1. self is the instance of the data type which is the subject of the call. If the call is obj1 ('hello'), then self is
objl.

2. args is a tuple containing the arguments to the call. You can use PyArg_ParseTuple () to extract the argu-
ments.

3. kwds is a dictionary of keyword arguments that were passed. If this is non-NULL and you support keyword argu-
ments, use PyArg_ParseTupleAndKeywords () to extract the arguments. If you do not want to support
keyword arguments and this is non-NULL, raise a TypeError with a message saying that keyword arguments are
not supported.

Here is a toy t p_call implementation:

> Chapter 2. A|4H7} £7 §lo] 27 w571

Extending and Embedding Python, &]] A 3.7.17

static PyObject *
newdatatype_call (newdatatypeobject *self, PyObject *args, PyObject *kwds)
{

PyObject *result;

const char *argl;

const char *arg2;

const char *arg3;

if (!PyArg_ParseTuple(args, "sss:call", &argl, &arg2, &arg3)) A
return NULL;

}

result = PyUnicode_FromFormat (
"Returning —-- value: [%d] argl: [%s] arg2: [%s] arg3: [
obj->obj_UnderlyingDatatypePtr->size,
argl, arg2, arg3);

return result;

oe

sl\n",

/* Iterators */
getiterfunc tp_iter;
iternextfunc tp_iternext;

These functions provide support for the iterator protocol. Both handlers take exactly one parameter, the instance for
which they are being called, and return a new reference. In the case of an error, they should set an exception and return
NULL. tp_iter corresponds to the Python __iter__ () method, while tp_iternext corresponds to the Python
__next__ () method.

Any iterable object must implement the t p__it er handler, which must return an iterator object. Here the same guidelines
apply as for Python classes:

* For collections (such as lists and tuples) which can support multiple independent iterators, a new iterator should be
created and returned by each call to tp_iter.

¢ Objects which can only be iterated over once (usually due to side effects of iteration, such as file objects) can
implement tp_iter by returning a new reference to themselves — and should also therefore implement the
tp_iternext handler.

Any iferator object should implement both tp_iter and tp_iternext. An iterator’s tp_iter handler should
return a new reference to the iterator. Its tp_iternext handler should return a new reference to the next object in
the iteration, if there is one. If the iteration has reached the end, tp_iternext may return NULL without setting an
exception, or it may set StopIteration in addition to returning NULL; avoiding the exception can yield slightly better
performance. If an actual error occurs, tp_iternext should always set an exception and return NULL.

2.3.6 Weak Reference Support

One of the goals of Python’s weak reference implementation is to allow any type to participate in the weak reference
mechanism without incurring the overhead on performance-critical objects (such as numbers).

o B

Documentation for the weakre £ module.

For an object to be weakly referencable, the extension type must do two things:

1. Include a PyObject* field in the C object structure dedicated to the weak reference mechanism. The object’s
constructor should leave it NULL (which is automatic when using the default tp_alloc).

2.3. Defining Extension Types: Assorted Topics 57

Extending and Embedding Python, &] | A 3.7.17

2. Setthe tp_weaklistoffset type member to the offset of the aforementioned field in the C object structure,
so that the interpreter knows how to access and modify that field.

Concretely, here is how a trivial object structure would be augmented with the required field:

typedef struct {

PyObject_HEAD

PyObject *weakreflist; /* List of weak references */
} TrivialObject;

And the corresponding member in the statically-declared type object:

static PyTypeObject TrivialType = {
PyVarObject_HEAD_INIT (NULL, 0)
/* ... other members omitted for brevity ... */
.tp_weaklistoffset = offsetof(TrivialObject, weakreflist),

bi

The only further addition is that tp_dealloc needs to clear any weak references (by calling
PyObject_ClearWeakRefs ()) if the field is non-NULL:

static void
Trivial_dealloc(TrivialObject *self)

{

/* Clear weakrefs first before calling any destructors */

if (self->weakreflist != NULL)
PyObject_ClearWeakRefs ((PyObject *) self);
/* ... remainder of destruction code omitted for brevity ... */

Py_TYPE (self)->tp_free ((PyObject *) self);

2.3.7 More Suggestions

In order to learn how to implement any specific method for your new data type, get the CPyrhon source code.
Go to the Objects directory, then search the C source files for tp_ plus the function you want (for example,
tp_richcompare). You will find examples of the function you want to implement.

When you need to verify that an object is a concrete instance of the type you are implementing, use the
PyObject_TypeCheck () function. A sample of its use might be something like the following:

if (!PyObject_TypeCheck (some_object, &MyType)) A
PyErr_SetString (PyExc_TypeError, "arg #1 not a mything");
return NULL;

o B7]:
Download CPython source releases. https://www.python.org/downloads/source/

The CPython project on GitHub, where the CPython source code is developed. https://github.com/python/
cpython

%8 Chapter 2. A|4H7} £7 §lo] 27 w571

https://www.python.org/downloads/source/
https://github.com/python/cpython
https://github.com/python/cpython

Extending and Embedding Python, &]] A 3.7.17

2.4 C2} Ct++ F3 W =3}y

of
Jo
A}
o,
T
®
Ach
s
<
i)
2
ulit
il
E2
AC)
A
[>
rr
S
o
H
o
rr

CPython®] C &4& 273} g5 YH U=

.pyd).

AZE &5 9loeju, &f 2ho] 2 e 2] 7} PYTHONPATHC| 9lofof 31, B & ol 5= wa} A3 F4A&

= z)o]of Ut} distutils S AFL235H, 1812 91 o] 2 o] ApZ o 7 AAFH T}

275 B4t 03T 2L ABE 2EUT:

PyObject* PyInit_modulename (void)

&A3s] 2718H R E oY PyModuleDef A2EAE whagHYTh ZFA| $F W82 initializing-modules & 33X

A 2.

ASCIIZ %} o] 2 0] R o] &L 7} R E9 A, &9 o] 58 PyInit_<modulename>o]ojof Ut} o] 7]

A] <modulename>S REY o502 X ?}@’\4 t}. multi- phase -initialization S A}-& S+ ulf ASCII 7} ofd 2 &
o] Z o] 3 LH \413]- o] AL, 2713} T4 0] 52 PyInitU_<modulename>©°] W <modulename>2 1}o] 3

9] punycode Q1T J O 2 ?_]i%]ﬂjl sto] 25 WEE A th Iho] Rl o A:

def initfunc_name (name) :

try:
suffix = b'_ " + name.encode('ascii')
except UnicodeEncodeError:
suffix = b'U_' + name.encode ('punycode') .replace(b'-"', b'_")

return b'PyInit' + suffix

ofe] 2715 B4 Aol 5] Y Fh olHel ol ofe] RES YRY 5 AFUTh T}, 0|52
Q== selw Y YA A8 o EHE Ao FUTh NEA O 39 o Fof AP
w3 A 7 W AU Th AA S UGS PEP 4899] “3 eho] Hejel o] o}] RE” AL HE TN S,

2.4.1 distutils 2 C2} C++ A Wl & 5} 7]
B4 252 vpo| Ao 24 distutils & A FFe] D=8 5= 95U). distutils 7} vlol v 8] 9 7] 2] 9] A&
x] A7) df Eoll, AHE A= B2 A X 8t7] 918 & 7 3hd 2 &} distutils 7F E 2 1A = kUt

distutils 947] 2] of = Eefo]] 22 Y= setup.py7t ol YHUTh o] 2L FE sl A s oI, T 7
2 7heka 4ol ol @ Ayt

from distutils.core import setup, Extension

modulel = Extension('demo',
sources = ['demo.c'])
setup (name = 'PackageName',
version = '1.0",
description = 'This is a demo package',
ext_modules = [modulel])

o] setup.py2} 3} demo.cE Th-5& AP H

python setup.py build

demo.cE LS, build YA H g o demozts B RES A4 FUTH A &g we}, ZE 5t
build/lib.system 3}9 T & Hglo] E°] 7}, demo.soU demo.pyds} -2 o] &S 7148 4= AF5 YT
setup.pyolAl, BE AL setup F45 TE810] £HFUTH o] AL TS 7P = QAAE WolE
th 919 oo A= dFE ARG FUTE FAFLE, o] = 3|7 AE 253]'7] Fgkve Y %]

2.4. C2C++ U3}

[$)]
©

https://www.python.org/dev/peps/pep-0489

Extending and Embedding Python, &] | A 3.7.17

A7) 2 e fES AFFUTh dutHo g, 7| A= ol £ BE, A, AH 717 53 2 7}
BEo] g Urth distutils 2] 7]%5 ol o & A4 & W] -§-2 distutils-index 2] distutils 48 A& FZ2 34 A L; ©]
oA g RES YEste AW A8 dUTh

b 2 Albshe Ze] QubAguth 919

o x AL 3
o ?_]' ext modules O]X]-— ﬁXLE’_%E’/] E]iEUﬂ, Zr R EL Extension?d AAEH A

°ﬂQLH setup (_
Utk o) oA, Q2B A s G2 42 542 demo. o Ao Sto] WE T demorhe B8 Ao GU o
B 49, G948 WESE AL o BIATUTH ks, F4Q A2/ A9} ol nel e AR

% 917] W= AT o] = okef ol A o A FHLI T

from distutils.core import setup, Extension

modulel = Extension('demo',
define_macros = [('MAJOR_VERSION', '1'"),
("MINOR_VERSION', '0')1,
include_dirs = ['/usr/local/include'],
libraries = ['tcl83'],
library_dirs = ['/usr/local/lib'],
sources = ['demo.c'])
setup (name = 'PackageName',
version = '1.0",
description = 'This is a demo package',
author = 'Martin v. Loewis',
author_email = 'martin@v.loewis.de',
url = 'https://docs.python.org/extending/building’,
long_description = '''
This is really just a demo package.
"'I
ext_modules = [modulel])
o oo A1, setup () & F7F e AU E EEH M, WE 714 A= oF Tl BFH Uk I <A o

h A, A2 7] zu AFE HEe) gholu il o deiel 2 ol nel e
w}e}, distutils = o] AW E Thra oy e w AnkAelol BT of & Bol, § 1ol A
A5 B o ool W 5 YTt

gcc -DNDEBUG —-g -03 -Wall -Wstrict-prototypes —-fPIC -DMAJOR_VERSION=1 -DMINOR_
—VERSION=0 -I/usr/local/include -I/usr/local/include/python2.2 -c demo.c -o build/
—temp.linux-1686-2.2/demo.o

gcc —-shared build/temp.linux-1686-2.2/demo.o -L/usr/local/lib -1tcl83 -o build/lib.
—1linux—-1686-2.2/demo.so

o] 2 oA HH A AUt} distutils AHE-A}= distutils 7} ZHFE A T &3kl Wojof gyt

python setup.py install

®

e 2be 42 5171 A Aok FUTh el el W, o DA AP}

Extending and Embedding Python, &]] A 3.7.17

python setup.py sdist

wjoll whel, F71 9L E 4 ol s oF gut; o] 22 MANIFEST.in 34 S 53] 3 H Ut}
ZLA| 3F U] 82 manifest & #+ .
sz 4EAoE WESH, HeAE ol e EE BE & 5T SUE o, o] 2 93
e W H % S E AR e 5 AT

python setup.py bdist_wininst
python setup.py bdist_rpm
python setup.py bdist_dumb

o] 7ol Al = Microsoft Visual C++5 AF&-8lo] slo] A & A= e RS vte = S 7heks] AW s,
o) %74 BES) % whalol vt wr AN A ARE AFFUL AW ARE oho M %S Y=okt
He e Aes setovsl fUL AL e B AT AL UE &5 i 22 =9 0] Al 2ol
BAo] Y FU2 2w aeln Rrol A fEFIT

25 AAe & Bae dEsket o] AdolA dste A thAl distutils 2 WA S AR S Aol 5
Uth. ghol A& A Esl= o ARSE C AId ot 01 46] a3yt EE Mlcrosoft Vlsual C++9 1/] =

Fa: o] FollAE 2
EYUeld A HS Z 3
Bl 32 ©] - (minor) ¥

251 g3 HH

Freaol AT, A=A 3

=

Sho] W= m A~ ﬂﬂﬂﬂ%g

z 24 E}‘/]DP dlstutlls A2 i —Er FA & AFdunh;

distutils& /\}4‘3—6‘}01] A 2E5S ANEF T 37 A= B o o) A - distutils- 1ndex°ﬂ =B
TEoZ YT ¢yt O*D}Ud, winsound < gfo]H e g B %-4 ZZAE Y& A7 2ol o] 2
AU,
252 Y29 A5 9] zto] A

[IRRORRCE o

s0) e R IR ALY TESG T2 IR N 2 0T o 4E =
Frohvlolele] o] &2 ZHFUT vhdo] x2 o] AFT W), 5hYe] T Ut Gt ol H Y BE
227} g9 vl B 7} v 22l of ol 7] H me 1Mo AA A E A= AAB YT o] AL
EAoE P Adduh

M=

=¥ (dangling) F27F 5 U th thAl, S dl ol g ol
2olAUrth wela DLL Z =+ 22 389 w2 &
2l, =& o|n] DLLY| =2 H o] &g ARS8 91,
=549k

A= oA, 57 A ol uelel (1)) HAole)
et A At Fx o]

153
o
0.
"O
0 =
=N
N
o
oft e,
:‘uJL_',

Fusds, @b 539 eholue e e (.a) @ g, ¥ LRAE (o) LI} EFF U
FROHAEHA(50)S HE/ AT P2 BANA, AL BN JAANE S5 2L VA

https://github.com/python/cpython/tree/3.7/PCbuild/winsound.vcxproj

Extending and Embedding Python, &] | A 3.7.17

T AdsUh A= golBY Y L BAE stdoA 2AES FFUTH e, 1 L BEAE gtUo| B E
I 2¥FUT

A= o=, 7 7HA 39 gtolBeje], B4 gto|Bele|g X E gfo]lB g7 dFYTh(E o} . libgta
FUh. A4 gelBg el FU2 a9y E5Uth 2838 o) x3E I =7 Eo] YFUTH Y2 E
glolBeje] e 7|2 A o2 57 AEAF Aol DLLe] 2EE uf Z 2 Il 2A6HA Atk FAE
A7 7] 1A T AREH U th whebA] A= Q2 E gto| B 2] 9] F B S AH&-ste] DLL | Z3e 2] k-2
A AE AFR ot FX H O ES A FE YT 3 o +8& ZEIWYDLLo] 38 o, dXE o] B 27}
W= 5 dsUrh o] AL 8 EE:’-?@O]‘/}DLLQ AES AFE Sk, o] £ B & DLLoJ| ARg-3l of
k.

e IZ= E5AE FHolckstes, 7718 54 25 25 B9 CE R Egitial 7 oh %9"\"“/‘11’
B.so2}C.soof th3l ﬂiz-\ as zj%‘rs]—x] ok~)Tk A el BSFC 7 242 ApAl o] BAE S ZHA| o o] &=
H 23 A FUth A=A =,A.dl1E LESIHA. 1ibE BEFH YT Oﬂﬁi%}%B_ﬂ-Cﬁ] el FAR
A.libE A FYth A.lib% FEE LA FUTh A9 Azl A9] I T o] AA| A Eh= o] AHEE
RS g R R

AZE oA, dEE gto] B 2| & AFEdh= 22 import spam& AHE-Sh= 2T vl Th o] 212 2 9
ool AN AT ¢ JYEF AT HEL HAMHL S WA= G5 Uth Y20 A, etol B eje} T8+
AL from spam import *&} T ¥ TH HE R BEARS w5 T

2.5.3 DLL& A & A}-&3}7]

U= % F}o] -2 Microsoft Visual C++=Z D EF 55U hH T2 A3 I HE AHS3hE 22 %79(@ TE YA
2P e TE ASUH(ENEE He 2 Z2A¥h. o] AH Y v A] B2 MSVC++of 7 3 &3 o
A= o)A DLLE %5 o, pythonXY.libg ¥ A A3 oF Futh F 7§19 DLL, spam} (spamof] 3l +=

CH4E ASso) nis WES W, The e AT 4+ davth

cl /LD /I/python/include spam.c ../libs/pythonXY.lib
cl /LD /I/python/include ni.c spam.lib ../libs/pythonXY.lib

A AR HH L M MY FdE WHEJS YT span. obj, spam.dll ¥ spam.lib. Spam.dl1-2 s}o] A
g4 (7]-Eﬂ PyArg_ParseTuple ())& E£&5FA A" pythonXY.lib & glojH I =& Z=v1H S

F A HE S ni . d11(2E I .obj% . 1ib)S BEUHFYTE spam T} sho] W A Y 5o A 23 I+ S
e S L dsyth
EEAEAE F2 HoER YWEMAE deUt v ZE @l 23 o] AEAE & 5 I

SFe8] ¥, void _declspec (dllexport) initspam(void) Y} PyObject _declspec (dllexport)
*NiGetSpamData (void) A8 _declspec (dllexport) 2t A A& of gt}

Developer Stud10 S AAZ QA 2w o E golBHTE dAdo]A A e ¢F 100KE =7}
Syt o] AES Al A Y, =2 AE HA U3} ARLE 53 ignore default librariesS A A3 Al 2. SHFE
msvcrtxx. lib% glolH e g BZo 27134 A L.

62 Chapter 2. A4z} & F ¢lo] &7 whE 7]

CHAPTER 3

38 % AFgEI T el A A £ g BEE o4,
ol gshe Aol v gk of ol o] & B HO R 13
o 213

w
o
i
olo
ofo
(&
U
[
o
2
k5
o
X
=
o
o
N

14
)
-
rx
o
mfy ot

ol
ok
rr
oL
1_IE
AN
@)
%
4>
lo

o
o
[
)
A

¥
i)
o
X
=2
re
.
_(‘)L
2
&
o
r¥
1o
N

:‘?LL
oo
o
v}
it
ok

O,
i)Y
Lox

3

Kl ok o
Rt ol 22 2

{2

4

o

rlo

@

<

+

+

N ok

o

)

e

)

o

rx

M

l

2
2
©
pa

o e
fo |
<
2 (o
2 fu
B>~
o oo
1 gt
A4y
0,

Mooy
Jo
>
i)
<
o
=
o,
N
N
N,

[o o 18 ofd tot
FU U o 4z ot

lut

il
oN TN gl
S ok
fr o o

© r]o

Q7 B AAUTh AR 7)5E o

B [> oo ok ok 0
S Hl 0N O ox U ofo XLl

mop C &=

>

N
N
N
rlo oo -

R & ol

R

oo

ofo

[k

f

3
T g

o o
et

ofo
o ot [
fo o
ol i o
30
i o)
o C

=

©
X

<

o

[o o,
rlo
&
)

z §&
f>
<
o

-
9

[ooty O g
%,

e

i)

o

% rlo

c

m o
o I
o qf
N

[k

fu

[J

lo

2

ey

2

oo 2,

oo %
S

e

Jot 18,

[kl e

_,d
4y
P

o

3%
) o
Ly
Iy

£ o
by T
L e
o W
b2
o &
2

Hy

e

o [k Lo &
o
Jz
=2,
2
o

)
[
o Wi

M
&
>
)
o
=
il
=

I AFsHA gUth o] W Ql =& 1ol o
ot} F 4% Py_Initialize() 48 SE3oF
o

14
ot
v
& ol
£
o
M
rlo
D)
>
Lo

2 d 53
). gho
B2 A} e
dEHzZEEHE TE3=
PyRun_SimpleString ()
< PyRun_SimpleFile ()
W AH S WET AL 5

iv
rr
&
)
X
rO
il
[k
AC)
P
N,
ot

1
AzUTh 18 g 5o 28 T2 139} oj

Mrr &£
e 2o, [k

ol

e

ol
>
%0,
oy
A
u

o
=2
od
ot

il 1N
O,
>
i
=
L,
ol
rlr
>,
e

n:
)
2P0 T,

ggé—‘o
Ify
Lol o
S e
!
0,

i)Y

i

o

tH

ol

o

o ¥7):

c-api-index 3}0] #9] C Q€] 5] o] 2] tf 3 ApA| &)82 o] vl ol AUtk AR Fu s} Bol A%
Ut

63

Extending and Embedding Python, &] | A 3.7.17

shol A& WS 7bg ke el o9 4 E o) A% S s A YT of AE ok
S8 Z2Id7 A% 45 48T A2 glol o8 AAHES A7) A AU o] AL o & o]
shelol tia) ol | 14he FaAlshE o A8 4 AFUTh

#define PY_SSIZE_T_ CLEAN
#include <Python.h>

int
main (int argc, char *argv[])
{
wchar_t *program = Py_DecodeLocale(argv[0], NULL);

if (program == NULL) {
fprintf (stderr, "Fatal error: cannot decode argv[0]\n");
exit (1) ;

}

Py_SetProgramName (program); /* optional but recommended */

Py_Initialize();
PyRun_SimpleString ("from time import time,ctime\n"
"print ('Today is', ctime (time()))\n");

if (Py_FinalizeEx () < 0) {

exit (120);
}
PyMem_RawFree (program) ;
return O;

gtolB e glo st AR E AdH zZ e e oA &l 7] Al
Py Initialize() Rt} BA TE&FH oo FdYrth 3o 2, gto] A ZH+E Py_Initialize()
2 27189 3, R A S A5k stE t

3 Z eyt A Z2 I e stol A
A2THEE UL A2 (ote 92E A7) 29, 5 Huo]x) ol A 7kA & ¢ AUt 3Y
oAl sto]lW IEE I+ 212 PyRun_SimpleFile () & AHESHH o & &+ e, ¥R 10
gtsta 3 Y e HAZ RS EolsUth

)
o
—4
=

o

(

ofo
o
fru
[r

3.1.2 v 2pE S dolA: 7L

D5E AH o)At $§ Z2 IR0 P ol i IES AP S Yt SHLS AFHA W, H 4
dlolE g meHahe o] W MARG YT 12 A9 A5 o] 22 AsloF gtk § BeC
SEE Ao sHE A, AL BE A2 BT 5 AHUT

Shol g #743hE A% ol Mg U FsHe AL T o olx B8k 3 T2 FF ol ek Gl £3)
oF it o] 4 Gl A £ F B 22 FA L o] 5| FEAFUL o AL WA, shol Ao A C2 g
SEAAAR S D2 AN DA 2

[e)
= H
1. HlolElghE The] Ao A Cr W hata,

2. A e ALg3hel vl A AEjTo) 2 £ O P4
3. 35 E0 N 2 Hol ghe sl Ao A C Y

64 Chapter 3. & 2 $-§ = 2 730] CPython HE}el& v #5}7]

Extending and Embedding Python, &]] A 3.7.17

HARAT, olE W8 EA S Aol 2 Ao The B 437 A9 Desl wBAY e §AU A
Ae FuolE W ko] TFehE 2UAYTh S4B W ECFUL TE5a, WAL Wl o4 2EL

TEFUC

o] ol A shol el 4 C2 o o] B 2 A&HsHE ¥ 3 1 Wl = bl o] B & A 8she ol #a) A= 41
S QT £ T 32 $ulE A8 olel § BhEE A8 olsfeT Arkn Ak olel e Sde
Aol eE e Ash e oo old Bl AL AUE BLT 4 9%t

AR Z2a9e ol Aa el e BT AR AL ZHE UL e 25 E) A o
2o T ol A gh7dol, shol A A m el El ojZelA ol A A AT A 5A AHUTHEA T oh

stold 2N oY BB AYse Do T F 2L h

#define PY _SSIZE_T CLEAN
#include <Python.h>

int

main (int argc, char *argv([])

{
PyObject *pName, *pModule, *pFunc;
PyObject *pArgs, *pValue;
int i;

if (argc < 3) {
fprintf (stderr, "Usage: call pythonfile funcname [args]\n")
return 1;

Py_Initialize();
pName = PyUnicode_DecodeFSDefault (argv([1]);
/* Error checking of pName left out */

pModule = PyImport_Import (pName) ;
Py_DECREF (pName) ;

if (pModule != NULL) {
pFunc = PyObject_GetAttrString(pModule, argv[2]);
/* pFunc 1s a new reference */

if (pFunc && PyCallable_Check (pFunc)) {
pArgs = PyTuple_New(argc - 3);
for (i = 0; i < argc - 3; ++1i) {
pValue = PyLong_FromLong (atoi (argv([i + 3]));
if (!pvalue) {
Py_DECREF (pArgs) ;
Py_DECREF (pModule) ;
fprintf (stderr, "Cannot convert argument\n")
return 1;
}
/* pValue reference stolen here: */
PyTuple_SetItem(pArgs, i, pValue);
}
pValue = PyObject_CallObject (pFunc, pArgs);
Py_DECREF (pArgs) ;

(TH& ST Aol A1)

31. ©E & Zzagel sto] Yistr] 65

Extending and Embedding Python, &] | A 3.7.17

(o] A sl o] A A M A%)

if (pValue != NULL) {
printf ("Result of call: %$1d\n", PyLong_AsLong (pValue));
Py_DECREF (pValue) ;
}
else {
Py_DECREF (pFunc) ;
Py_DECREF (pModule) ;
PyErr_Print ();
fprintf (stderr,"Call failed\n")
return 1;

}
else {
if (PyErr_Occurred())
PyErr_Print () ;
fprintf (stderr, "Cannot find function \"%s\"\n", argv[2]);
}
Py_XDECREF (pFunc) ;
Py_DECREF (pModule) ;
}
else {
PyErr_Print ();
fprintf (stderr, "Failed to load \"%s\"\n", argv[1l]);
return 1;
3
if (Py_FinalizeEx () < 0) {
return 120;
3

return O;

-~

O

| 7= argy 1] 8 A8 5] ol d £AYEE 22T, argy(2] A4 B
AAE arav A1 9SO GHE VT of 22T E 25 A5 T (2
BEAT, BT 22 shold A EE AY sk ol A Tt

A sE2d Ut A
28 callolgty

Q

def multiply(a,b):

print ("Will compute", a, "times", b)
c =20
for i in range (0, a):
c=c¢c+b
return c

2w A3 The 3 otk T Th:

$ call multiply multiply 3 2
Will compute 3 times 2
Result of call: 6

22290l 5T 4T 2 Bl AW B8 22 ol 43 C Aols) olE WE ol 2 A
AQUT) shol A AT BAE SR RS Oe AT Adgn

Py_Initialize();

pName = PyUnicode_DecodeFSDefault (argv([1]);
/* Error checking of pName left out */
pModule = PyImport_Import (pName) ;

EZ P HE 27|33 &, AT YPE = PyImport_Import () & AFE3lo] ZE=H YT} o] £ EH L QA Z

66 Chapter 3. & 2 $-§ = 2 730] CPython HE}el& v #5}7]

Extending and Embedding Python, &]] A 3.7.17

glo] W EXF-E QF3=4|, PyUnicode_FromString () HlolE] W3 FH & AL-&3}o] FAAE YLt

pFunc = PyObject_GetAttrString (pModule, argv[2]);
/* pFunc is a new reference */

if (pFunc && PyCallable_Check (pFunc)) {

}
Py_XDECREF (pFunc) ;

Qg ~aYEst 2ERW, 997} 23 It o .k
o, ol g o] EA 5k, Wk A 7L 2o Eolw, 10] dret hAsA 44T S+ &k 19 o
22 9L A% FES QA Yo FASe AP 28 T ol A5 TFL o

SEREEL=E

i
o
lav]
=
O
o
[
D
Q
l("‘
()
0]
o
bS]
t
t
=
n
t
B
o
o]
0
et
>
>,
ofo
ok
2
o
%

pValue = PyObject_CallObject (pFunc, pArgs);

Upon return of the function, pvalue is either NULL or it contains a reference to the return value of the function. Be
sure to release the reference after examining the value.

23744 WA sl A Qe el B o) A o)A A 9] 7)ol M AT 5 QiU Th sho] A APLE
W38 dE =g FIFon oA HEFUh Z, N8 dHzelHE S5 m2 IR A AF
st o 38Uk Bae SeA T 19 Ym AL g5 $A 28 =2 o] o4l
A melEE A RBTHE AL oM P A L. A, $§ Z2 IS A8 FEo Yo 55, Ay
sho] 4 24 A3 AR Y Stol Mol A AT Felo] AN 2T+ JES A4 TEB AU L. o8

static int numargs=0;

/* Return the number of arguments of the application command line */
static PyObject*
emb_numargs (PyObject *self, PyObject *args)
{
if (!PyArg_ParseTuple (args, ":numargs"))
return NULL;
return Pylong_FromLong (numargs) ;

static PyMethodDef EmbMethods[] = {
{"numargs", emb_numargs, METH_VARARGS,
"Return the number of arguments received by the process."},
{NULL, NULL, 0O, NULL}
bi

static PyModuleDef EmbModule = {
PyModuleDef_ HEAD_INIT, "emb", NULL, -1, EmbMethods,
NULL, NULL, NULL, NULL

bi

static PyObject*
PyInit_emb (void)
{
return PyModule_Create (&EmbModule) ;

3. he -8 222 Yo] shold WYt po

Extending and Embedding Python, &] | A 3.7.17

b
fof
e
2
=2
i)
o
ol
Sl

A ZEEmain () T vtE Yo FYSFHAI L. T3 Py_Initialize () ol o
AL ol 5l A .

numargs = argc;
PyImport_AppendInittab ("emb", &PyInit_emb);

O

l F €2 numargs M4E £7]3}48131, emb . numargs () 55 WH Sto| A A Z | E 7 AN AT 4=
AEE HsUth ol &S 59, JolH A3 HdEE= S T2 AHFS T3 = A5t

import emb
print ("Number of arguments", emb.numargs())

AA & ZE2 YA, o] HHL2 S& T2 APIE vhol Mol =& P

3.1.5 C++2 3}o] % U73}7]

ol Co+ L2 0 Y3k 215 7hs ot o] A o] of 91| 3= =
Aol 2 lauth AW o2 C++2 v 22 I3 ZA Skl C+ 7
!

A5 P 28 oF Ttk Crr ALETFO] kol A A THA

w
o
Jo
40
[
)
ug

N R E e EL

=)
ki)
S 50 |

sz WAs] Sl A% L (@ G ol AAH ST BE Ao &
| E3] sho]fo] Al Al F2H C 54 HA(.s0 3 07 TAH ho] Hee)
Yk,

JE Zowd, A dx9 dF = AAH pythonx.Y-config ATHEE
p3-config A2YEE AHE b5 T 4 AR UITh o) 22U =l o1 410
L oy B AAH §L3 AT}

* pythonX.Y-config —-cflagst A3 S o] A% FH1E AFFUch:

o w,
o Lo

1 (Lo,
N
A

Hﬂfﬁqb

fru

(ri rlr
A é_]lm olo

i

Tl
S o,
<

I

5

poA LRI e Y

[o o2 ko
Hondroh o Sk ek,

b}

X

i

o
NS

o X2
Kopu
my

rlo

pa)

m]n rr

$ /opt/bin/python3.4-config --cflags
-I/opt/include/python3.4m -I/opt/include/python3.4m -DNDEBUG -g —-fwrapv -03 -Wall.
—-Wstrict-prototypes

pythonX.Y-config --ldflags+ ¥3 Y A% A1 E AT}

$ /opt/bin/python3.4-config —--1dflags
-L/opt/lib/python3.4/config-3.4m -lpthread -1dl -lutil -1lm -lpython3.4m -Xlinker -
—export—dynamic

Fa: o ol A 7k (53] AlA" Fhol R o] gl Fo] A Autd st upo] A 7he]) E2Hg 3] 5t W,
H-/] O‘ﬂﬂ' Zo] pythonX.Y-config?] A A2 E AL3= Aol =S5 U

ol a7t A ES 8l et et (RE FY2AE SR FNA Zsstes A2 B4 A d5Uth
SHAIRE W I B E -ﬂoﬂ?ﬁ‘%‘:}) T4 g3 A AIAFY AHAE = A/ o) FFo] M Makefiled}
(ZYAE oW sysconfig.get_makefile_filename () S AFRSAAI L) ASY S-S AA oF
gyt oluf, sysconfig BRE-2 o]0l Z@stel+ 74 ghs 222 W WA o2 55k o {83

=Ryt ol & Bl

68 Chapter 3. & 2 $-§ = 2 730] CPython HE}el& v #5}7]

Extending and Embedding Python, &]] A 3.7.17

>>> import sysconfig

>>> gysconfig.get_config_var ('LIBS"')
'-lpthread -1dl1 -lutil’

>>> sysconfig.get_config_var ('LINKFORSHARED')
'-Xlinker -export-dynamic'

31. & & =2l stolH sty 69

Extending and Embedding Python, &] | A 3.7.17

70

Chapter 3. ©] 2 && 2] CPython HeldS Wi

APPENDIX A

2to3 Tto]M 2x FTEE Ffo]M3x T ER
o

2to3 £ EF ol B oA 1ib2to3 E Al U S YA 2 AP = = 2T HEE Tools/
scripts/2to3 2 A|FE YUt} 2to3-reference 2 X A 8.

abstract base class (34 W o] A Ze]A) FAH| oA ZEd A= hasattr () ZLEHIaYdE EHGA LY
HBHA AEEH (& 5], A MAE) Af, AHH o)A E BYst= = ATTF2EH 4 Elo]
S BT ABCE 7 Al B A S E?JK}LH] ZH2E ASTA O WA E isinstance ()
2} issubclass () o o8 ZA 2 4= A+ E?ﬂ ?JHE}, abc BE AWAE BA L. gto]Ho =@
2 W& ABC £9] Fﬂra}"htﬂ o3 22 250l »1 Yth: A5 F & (collections.abc 4_%'01]/‘1),
ZAF (numbers EE9A), 2EH (io & oﬂ,ﬂ) oJx E voltj9} 2 (importlib.abc EE|A]).
abc &S AMHS-SA] AHAT RS ABCE s S5 dFUTh

annotation (o] - E|o]A) FFof w2} & I E 2 AL EH = W, S JESHE =& ¢ uiES
Hksk 7k A A ol Ed Yt

A o] o mE o] 2 A3 ARl A AT 5 AT, A A, Sl S4B e o]k o
AL 4t 2E, ZH:2, F42 __annotations_ 54 JEFFE AFHUTH
o] 715 AWt W5 o] H] Ol A, 3H4= o] - H| o] A, PEP 484, PEP 5262 F 2314 8
argument (212} FF-E ST uf] & HAE) 2 AL E 7L F EFY A7 ds Ut
- 719 OLX} (key wardargument) S T2 AR Gl 22 A (A& £91, name=) & **
ol 2 gMY ez AL = AAL A& 5ol b3 22 complex () TE0A 3345 =

25 A9 AR -

complex (real=3, imag=5)
complex (**{'real': 3, 'imag': 5})

71

https://www.python.org/dev/peps/pep-0484
https://www.python.org/dev/peps/pep-0526

Extending and Embedding Python, &] | A 3.7.17

o 9 X AR} (positional argument): 7)Y E A X7} obd AR}, 9 x] AAEL Q12 B29] 2o L}
A olH e £ o ol » & 2ol A2 5 A5 A& & =
EF A ARG Y

B2
kv
dlo
d)
iy -
rlo
fofs
e
2
>
s

complex (3, 5)
complex (* (3, 5))

AAb= & vl o] o] & 22 A ¥]EH‘?JQ‘J ol i) oll A8 = i F Sl hal A = calls =
HAL. AR, ojd @401 AAE AHE 5 sy th 7l K gho] A1 4—@]“1?3%‘4‘4
g0 7 o] vj 7] 4 FE 3} FAQ ‘% A AR} w7 Tfﬂ Aol 2} PEP 3625 H A 2.
asynchronous context manager (V] 5-7] 1Y AE #Ag|A}) _aenter_ () & __aexit_ () AINEE A9
O ZH async with FojA] B]% A& Aol st= AA|. PEP 492E =45 95U th
asynchronous generator(H]%ﬂ AUl ole]) ul5 7] A olE olHH olE & EHF+ &5 async def
2AH 2R I Holet, async for F7PAR T Qe 49 g2 WEEyield

B@AL EacE Fol ey

B 5] AV E ol 8 B8 7Hel 7 A, of @ Fe| A)57 A el o] o] EelolE & 742l Y
wqua%QMﬂmﬂﬂﬂw°ﬁ°L%wgﬁﬂ%wﬂaia%ﬂ%qw

U57) oEEl o] 6] AH _anext__() & FEEH o8 o]E1 2 AAE F2 57, 0| 2L THE vield
A4 744 157 A dol8 §42) el AT o

Ztyielde GAIACE A& SHst, XY (AF U 7] TAduy-w 58 2F3HE) A3
AEIE 719U b5 7] Alvd el] o5 # ol E 7} __anext_ () 7t =8+ & 3] o9 o] E
B2 AAEd, gy 2oz B3]k PEP 4929} PEP 5258 H A .

asynchronous iterable (B]£ 7| o]E]2] &) async for BoA AF2E 4 = AA. __aiter_ () HAEE
H'57] ol dl o8 & =& F oF U th PEP 492 2 =95 A F YT

asynchronous iterator (B]57] o]Jg]#]|o|E]) __aiter_ () & __anext_ () WAEE Fd3}= 2A.
__anext__ = ol olHE AAE E8FHoF F§Y}. async forE StopAsyncIteration 9|97}
WA S ol 742] W) E 7] olE @l o] B9 __anext_ () WINETVF =8 FE A olEHES FUth PEP

4922 =9 3lF Utk

attribute (6] E-|HE) AE A S ALl = o207 I2EE AA S AT 7k oS S0, AA o7} A E
REaE 7HAH anJE,j Tz Yk

awaitable (o] Q]oJE]8) await T H o] AFR T = 9= AA. ZFE o]y __await_ () HIAEE 7}A
AA 7} E 4 92U Th PEP 4925 B A 2.

BDFL Z#}H] 28 £Al =X %} (Benevolent Dictator For Life), = Guido van Rossum, 3} o] % 2] A A},

binary file (v}o] 2] 3}Y) nio| ELF AA =S 91 & 5 A+ 3L AA vpol v g] 3t 9] o & nfol]
g EE ("rb', 'wb' EE 'rb+") 2 Ed 39, ys stdln buffer, sys.stdout .buffer, io.
BytesIO & gzip. G21pFlle./] OAE A

r AAE 9 5 5D AN ARAE D 5 T B,

bytes-like object (W} o] E Q5 A A)]) bufferobjects S A QD31 C-A<5 W E JA2ZE 8 5 954t} o
= memoryview 7“ AAEL ERo| bytes bytearray, array. array AAES 23yt 8}
O ELF AAE2 vtolv g tlolE & thF & o8 7HA d4absel AHEE = dsUTth o5, vholv g
L= Zi’f},iﬂ% FHAE T2 A °] 01,\1/]1;]__

o8 QE2 Wol 2 ol /AL BRI AE L. o8 BF AL FF AL)
O EERF AAetr AT YLE ZhH ¥y AR o 2= bytearray @ bytearray & memoryview

72 Appendix A. &3

https://www.python.org/dev/peps/pep-0362
https://www.python.org/dev/peps/pep-0492
https://www.python.org/dev/peps/pep-0492
https://www.python.org/dev/peps/pep-0525
https://www.python.org/dev/peps/pep-0492
https://www.python.org/dev/peps/pep-0492
https://www.python.org/dev/peps/pep-0492
https://www.python.org/dev/peps/pep-0492
https://gvanrossum.github.io/

Extending and Embedding Python, &]] A 3.7.17

b Utk Bhe A5 e uho el ol 7k Bl AR (<917 A& vlo| EQR AH ol A £
27Utk ol & A5 ol 2 bytes9} bytes AA 9] memoryview 7} &Y Th.

bytecode (H}o]E T &) Fo|H A~ FT &= vlol|E T =2 FH31YE =4, CPython A H Z & H A T}o]
ZR I Y x4 1‘4"/}- HFO|E I =+ .pyc 3P A Hof, 22 LS F AR AT uj
o WA A EUTH (Ao A vlolE IE2 o A ATFL S 98 5 s Y. 9 “ZZ} Aoj” = 7+
Hlo] E I = o tff §-3h=]74]% A3t 7 77 oA A E T Ttk vlolE I E = /ﬂi o2
stol A 7H 71 Aol A ZHe & A2 7|t st A &, pfo] 4 vl 22 Zhol] FA A o] A & okrh= Aol & oF
EigRi=3

HO|E I = W o] 52 HEL2dis BE YA vyt

dass (ZFe|2) A2 BY AAES HE7 AT T, FH2AY= HE FH2 dxdrE e w
Asbet= Uﬂ/HE Aol 23U

classvarlable (FAH2He) A B SR T2 (S, FHAY R of| A} 7} o} 2}) ol A wk

TRH = ﬁ—?

coercion (Z.o]) 72 o F AAE 3t Abo] dojyh= ¢h P Y AxvHAETE FPo2 &
AR o R HEel= 4. oAl § §9],int (3.15) E AT E A5 3202 WSk AT 3+4.5 o A,
7k QA 2b= T2 3 o] AL (8= int, TR 3pLb= float), & T 3H7] Aol 22 o2 HEkaf of Tt
282 ¢¢o W TypeErrors oYUt FojA glojs, 8H = JFE2 AT =207 22
For Qs Folok Futh ol & 5o, 1 3+4.5 3F= Al float (3) +4.5.

complex number (5 £5%) 53 A5 A/ AH] A0, & 7’%2} tdsRe s aRe o Y
. SR E g s ‘:}H(1Y AFDHE F$ AN, TF sl = i, :o'—@}"ﬂ/ﬂh 1=
E71g Yt gto] M F A9 R7|HS 2 HAaF “;:7]31] 13Ut SR § JuAE 294
F71gUth o & £0],3+13. math 259 B4, ¥ do] R3HY, cmathE AFE U th B A9
e 2 o =254 71 YUt 283ttt =74 %ﬂ"/]"iﬂ, AL A3 FAE 33‘4‘4‘

context manager (B AE A2 A} _ enter_ () &_ exit_ () HIAEE AT o ZH with B4 K

o) 2712 Ao 31 A, PEP 34302 © 95 g5 Tk

M%) Adisd] met b e /b 4 9
b b SR

o, A9

AP ~P o o] AY2EZJE Qo AYAE Mo F 5= FAA HF 7] BlaToA
HEE FH 5= AYY contextvars s TR L.

contiguous (A<%) ¥ 3= A &S| C-AZ5 (C-contiguous)©) A EE T ﬁﬂ.—(Fortran contiguous)d W] Aot
AARZYTH AL HHA=C-A&5 o HA 2ES ALY U AL v Dol A, FEE2 A2 A -3}
3, 004 Al &ehs L 52k AP A E w R g o v X = of of It thakd C-2 <5) ol A,
W5l Fao] wATE B3R5 S WY u ohA o Au AT b e Wkt shA Y, EE T A%
W do A=, A HA A 27} 71 "“LE] 3ok

coroutine (% ¥l) Coroutines are a more generalized form of subroutines. Subroutines are entered at one point and
exited at another point. Coroutines can be entered, exited, and resumed at many different points. They can be
implemented with the async def statement. See also PEP 492.

coroutine function (Z. 58l &) T2 AAE SHFE= T4 Z2E T4 async def Fog AoJF 4
11, await & async forE]- async with 7|9 =& =3t ¢ JQH5 U o] 452 PEP 492 9 2] 3

EdE s U

CPython 5ho] 2 =212l o] 794l 78 elel, pythonoreo] A Ml EH T} o] 78S Jython o]}
IronPython ¥} Z+-2 t}-2 ZAE3 +E H 8 71 915 uff & o] “CPython” 01 A& Yt

decorator (]| Z#| 0] ¥]) t}E & =8IF+ 59U, BF Qurapper &S AMSSH g Hgto = A48
AUtk dZ g o) e 2] £3F o= classmethod () statlcmethod ?Jl/]D}.

o] E EH] He B WM

L

ohohe B Ao E ugo R S5

73

https://www.python.org/dev/peps/pep-0343
https://www.python.org/dev/peps/pep-0492
https://www.python.org/dev/peps/pep-0492
https://www.python.org

Extending and Embedding Python, &] | A 3.7.17

def f(...):
f = staticmethod (f)

@staticmethod
def f(...):

22N dol Feao® EA3HA v E Ak 2 QU th dl Z# o] B of] o §F o] ApA 3 W82 T 9
o} Zex Ao o AHAE B P
descriptor (C] 23 HE]) WA E __get__ () |y _set__()]y _delete_ () & BYst= AA. S
2 14 EOrabE %Jl

2 EYFJETIYATYHE Y uf, 01 PHE 23 =58t Ad T8 ¢ —9—1:}
L, 22 A, A A S AFS S], ao] el /qﬂal"ﬂ A beial o] & B A AAE g5y} sHA|
b7 Y23 gHW, Gt UATHE WA= 55 ok AT HEHE olsfi st 22 kol Ao
st 722 o]l o] &4 A, T, WA E, ——Lifﬂﬂ,éiﬂi HAE, 2HE HAs, FH g F=x
o-JLaL 7159 712 E o] Fa Q7 wWE Yt
2z ge o WA =S| tf 3k 2FA 3 &S descriptors o] L34 o}

dictionary (94 2]) 999 71& Ftell &4l]% A 8] G (associative array). 7]= _ hash__ () <}
eq () MANEE ZE=E2E AA7LE & A5 UTh BolA Al gt FE U th

dictionaryview (“4}:]1:]3]-,-,- ict.keys (), dict.values (), dict.items () WA E7} E8F+= AA
< 99X E -n‘lj/]' FUth oAEL g9AMYE 55 Wﬂ%@?_-ﬁ" A s 3st=dl, 9 A
vzt a7 d o, 7]’01 W3 E vk st = ?:114‘31' gXqve FE &A% gl2EZ vty

list (dictview) & AF23FH FH Ut} dict-viewsE H A &
docstring (5 £29) Fel2, B, BRI 3 WA RALSE Yehh £49 A8 L. 29201 A
o = FAE AT Aot el g AAH A SR ZH;H A, T4, BEY __doc JEZRER 444

Utk AER AR AL Fol AT 4 Qome, AAe] AUAE AR FHA FodTh

duck-typing (¥ €}o]F) Zu}E AEF o]~ 7HF X At AAe F& B2 e z2 a9y A€
A; A, T3] WA = of 7t EEE AU AN %HD}(“OFJXWEOHJJ%XW 2 2 e o}

5} 3

al

_4

W, S 2 etk B AE|H o] 25 R Fo e, % A REE A
daﬂoi’ﬁ%oﬂ/‘*% N A5tk g Efo] g2 type () 1‘%lsmstance() S A
& ST e (G & thol ol £ 4t 0] 2l = ek % 1 8ol 501 Ho Bl
hasattr() AANGEAFP 22 89S F Ut

EAFP 32 R t}= 84 & 1317 7} i ¢} (Easier to ask for forgiveness than permission). ©] £3] & 4 9l+= 3}9|
0 nY AR, SHIE A o Ee REe] £AE 1491, 1 0] BelH o9 8 Fa
Z-3stal wh-E AE Y2 W2 tryStexcept 2 EAE S AP Yt o] HAY 2 Ce 2 thE
B8 o]0l A A ALEH = LEVL 2 Eh 3} o ol U ok,

expression (E@4)) ol® o2 734 5 9l BHAA 27 b B2 wASY,
NEPHE WAL, AR, BB 0L S Eo
Qdojghtjz Ao, BE Qo] THEEO
Q£ Sol itk 3l e o], F A4 o] ob Uitk

extension module (23 2 5) C U C++E ZAAEH B &), 3to] A9 C APIE A& A Ao} AF&2F &
Eo} 4% Agech

fotring (-8 744) £ U E0 B 2ol $9 $A4d B ES Tal SRR ol Fa e, 29 24D
gEE o 2dEd Yt PEP493 H2AL

23
e ﬂllo
>,

O
PAUREN
florlr
o

file object (3} Y A) 35 Ao ﬂ]éﬂ g R A API(read () Ywrite() Z2 HAEE)E =g +=
AA. AR By ol whe}, 5t AA = AA ta3 g -ﬂro‘ O]‘)rD}E A AU FA A (AE
Sol, m 2, Al W3, £, stol 2, 55 & BALE FAT 5 AU 32 A7

= 934 F AR (file-like objects) } 2~E F (streams) °]| 2t = EH T}

74 Appendix A. &3

https://www.python.org/dev/peps/pep-0498

Extending and Embedding Python, &]] A 3.7.17

AAZ =M EFY 3 AA=0] A5F
HAE k. oY AHHA A E do
open() ¥FE 2= AUyt

file-like object (3} 5 AA|) o+ 21 4] o] w]<=3) 2,

finder (3}¢lt]) YZEE RES F3 2] & 2Fog 1 A| L3}

spol# 33. o] 52, F F /Y 3 E 7t 55Ut} sys.meta_path & T AFS3H= v EF A 2 If2l T
9} sys.path_hooks I} &7 AFR 1= 4 2 dE] 9}ol.

o] ZhA) 3 U] 42 PEP 302, PEP 420, PEP 451 o] Y- T}

floor division (4= YA 713 77k A4E WSt 314 YAl A5 UxAl dakats // ok dE

Eoi,ﬁfa*—.‘ 11 // 49 227 AR A UxA2 2,758 EHF YT (-11) // 47F-2.75
S WH g -30] Foll f-3l oF Tt PEP 2385 B A 8.

function (352) S& Aol Al o S EeiFE A9 EHE. QLAY L ol 4y <A 7 ALE £ &,
vit] o] Ao A= 4 stk v 7] 2 9 v A = 9} function AT B A L.

function annotation (34 o] - €| o]) <= v 7 41} w3 2he] o] = H| o] A
T oicH o dE Ut o R 3 JE E AREHUTE: & E9, o]l ¥+ F N9 int AAE Hot
= °‘ Aoz 7Ie L, Ao int ¥I3 g2 & Aoz 7 g Yk

o, W (raw) ko] 1 2] 5191, 93 = (buffered) vFo] vl 2] 3
EolA] A BUth 1Y AAE BEL FEAL PES

fn T

A3

rlr

s}
T
o

-

def sum_two_numbers(a: int, b: int) -> int:
return a + b

4= o] H| o] A B -2 function Z ol A A gtk

o] 71%5& Ayt W4 o] mH o] A I} PEP 4845 I 2314 2.
future T 2B 7 A Az B} T3 A = A Ao NS

2E.

__future_ EES YXESU I UFEY FES Tl A 7150l AA ALz Adojol F71H

AT, A HE] 270] 7| R0 H A B 5 Jevth

[kl
filo

25 A=F 5= 7S

>>> import __ future_
>>> _ future_ .division
_Feature((2, 2, 0, 'alpha', 2), (3, 0, 0, 'alpha', 0), 8192)
garbage collection (/1] 2] $:7) ¥ AH851 4 9 v R el & Wb S AR sl e Bx 4 £43) %
£ 53 7hA = AS A FUE A £ A7

ERPS
gc B82S /\F‘loﬁfﬂ Zloi =)

TS AAGFAL FE T AE =F A $ A7
& sy Th
generator (AU &o]€]) Al o]E o]E#olE] & EeFe T AW FeAYH R, ¥ gES
UEEyield BAA S T Th= Ho] U ©] FE2 for-FZ 2 ARG A U next () TR

2ol ahuba A 2 gl
HE AV ole & 7t 71 A2 ol ® W o A= Alvfd o] g ole# olH & 7| P Uth Y E3=
ou) 7} W EetA e A9, AN FAE N ZTETS Ytk
#ole]) Alvjd olE T7t e A
= ° S S, T AXY (AY "y 7] T ty-

A AEE 719Ut Ay olE olE#E ol ZF AN, it e

Al &k o) o vl g Y oh.
generator expression (A 2] o] €] & t‘ﬂl"ﬁ‘) ol olHE ST R4, Fx U5 B E AYdt+= for

A B 7testif ol Fol B vt 2dA AY BYUch 2t 292 SR T E S

RS ST

75

https://www.python.org/dev/peps/pep-0302
https://www.python.org/dev/peps/pep-0420
https://www.python.org/dev/peps/pep-0451
https://www.python.org/dev/peps/pep-0238
https://www.python.org/dev/peps/pep-0484

Extending and Embedding Python, &] | A 3.7.17

>>> sum(i*i for i in range (10)) # sum of squares 0, 1, 4, ... 81
285

generic function (AU F4) 2 A4 A2 0hE FEof s} 7AW o] 42 THE 4. B2)
ol T@e] ALFBA L vl 2w} X darelZel 5 24P ek

A yauzx] £0]3 &E7} functools.singledispatch () Bl Z 2 ©]E] 2} PEP 443% B A 2.,
GIL A9 olgz2E = & HA L.

global interpreter lock (A9 Qe Zg|g] &) 3 Hol| 2 & sl}o] A =7} glo] M Hio|E F
) 19 (o 91 E1 5 e} AR HALE. (aicesh 20 529 4 HE L TH o)
A7) 2] FA A% A 920 ta] HAFHES BHE o] A CPython 7 A2 T ah A B
Az E AAE A2 A2 JdEZHE tF2g =367] A ves A, v Z 2 A A]
ﬂﬂ%ﬂ%%ﬂHA 1o RE2 5 AT

87, o 3
o = GIL° t‘}a%}

(R 9 v AsHA & Hl ol
'6}% 34719] =2 AF A)A %;ﬂ%tﬂ =3 E‘r"‘ JEHW %‘—C’r/l oy ﬂ 0}7}

bt }‘1:1

2, [k
N

2% 47 A2ko] obd AT S AHE

lo

hash-based pyc (3] A] 7]¥tpyc) &S FHE 317 8] G 2 3
3= vlol E T = 7] A] 5} Y. pyc-invalidation 2 ZFZ 514 &

hmmm“VV}>ﬂﬂﬂ%”1§ﬂmaﬂ%tﬂn e 23 (__hash__() WA=/ B2,
D]'E 7“11194—12]] _/,\— %10131(1}“/\-]1:7]_ -‘;1/]]-/]_ —H}‘] 7]--—'6]—\:]—]_ \41:]- 7]_‘:]_1 l:]]
== ;A 7 s AA S HAE 71—O 71—o].o]; aas i

HA] 7he e AAE gAY 71U AT AW E AR 5 QA Sk, o] A E FREOl WR A
o NS g7 WE g
R stol Y B WA AAE2 Al 7Feduth (BI2EY 94 e 2-2) 7 AH oV &2
A U T (0] L frozemset 2+2) B Aol 5L 15| R2Fo] HAl 2wk o)A
FeFUth AR A o] A2E A AAEL 7| R A 0 2 A 7heFuth (RF7] AALE Al
Blue) BT thEgy v 2E 1, A e 1id () & HE 9Eo F Utk

IDLE s}lol & 93 53 H‘Q’ 317 (Integrated Development Environment). IDLE-2 I}o] # o] 3%
weler Az A0 #7190 olEm el g $7eo.

N
=
el
r
=

immutable (B¥H) 7 A E S 2= 4. £ A= A4 EAYE, F2L 23U oA AA 52 A
A2 4 AFUth A B2 A E A AAE HEo]of Tyt WA b= Al o] 9lojof k=
oA 583 IS FUh dE 5], gAY 7

1mp0rtpath(° ZEAR) A2 7| aoly 7t dTE T RES 2] Yo AMEE= FALAE (EE AR CE
) o B2 AR E =50 o] AL EY BEEL HE sys.path ZHE FYT} A vk A B 9) 7] %] 9]
R —‘%E ﬁH?l A9l __path_ OJEFREZRH & FE JFUHY

importing (%1:—5%) St RES slo|d FE7L T2 R EQ oW FEo M AHEE 5 JEE F= Eal

A7, MﬂJFWﬂ]ﬂiiiﬂﬂﬂﬂq.

mteractlve(tﬂﬁ}fg]) stol W2)543 QlEj= lcdl, AEZelE nEx e AT BHAL
oaﬂ¢ﬂléﬁg;%aﬂ%%¢QW%%ouwﬂﬂwﬂﬂﬂmmo%@%wws@
Fee) 2ol Ad s A% AT 5 QFUTh. A okt & AAEAL RED 714§
Solth s o1$ ZE 3 3 AU th(help (x) § 7193441 2).

interpreted (IE|] E] =) vo)= 3= Asalelo) £ wo] 1 3ol 8o A7) SAY, ol e
A3+ dlojzh objet A Lol B AoiQIUTh o AL WAHOR Ay HAL WEA FIE, 22

76 Appendix A. &3

https://www.python.org/dev/peps/pep-0443

Extending and Embedding Python, &]] A 3.7.17

sge A A8 4 9

Slo)t BT ATl o] bt &2 e g =7]

interpreter shutdown (21 €] Z 2] €] %E) %=

f
0,
v
rlr
YA
jinss
T
v
d
kI
fr
I
i o
o
TN
An)
3
3
ol
>
o
)
N,
Ir
ok
D)
=
ro,
Ay
[k
AU
v

2ohehe 29 ¢ W2 ul, ol d ez el E = S0 A 7o) 1
], BB o 4 SR Y TREN L2 BE FFH ANES WAH O ok
8, pal A A7 8 o] W B E T ALgA 9 33 At weakref o] gl T =S AP S
AAAD S &tk 5 A7 o AaE s nEE The o952 whd 4 g, 17 e] o 23}
EAUE] 8 153 88 4 27 AE (£ ol 2ol el e mEol} A2 A E I .

=l
=
rr
P
zo
<
o C

)]

AN

2 o}

e zeE $EO FU AAL ADH L _main_ BEo}AITYE AL
] L BE

U

iterable (o]E)2] &) WSS 3 Mol SHA B2 5 5 Gl AR o) H e el o2& BE (Qist,str tuple
) ADL YE, dict 2L BE 0 A2 FE, HD AAE, _iter () hAD~AGE 7
FE_getiten_0) AN=E HA BAT 2E e ANl A
GERE for £l 489 S 9T, AULE BLL ok HHE WL R (eip () map(). =) o

/‘}%—%i‘rﬁl’“bli}. olH & 7<ﬂ7}141%‘?}$lter() ol

2l g
EHE U o] O]E%Eﬂol'ﬂ“ BHEY AL T W AXE T %E?&WD} 01‘3 %% /\}%Q uf,
BE2iter() Egﬂﬂ‘/‘r ol olH AAE AH thE B8+ UFUTH for F2) AES o9
S tAlEA X} o7 FFEH, FEZE S 5 oHAHE FotE o) F sl HFE UYL

olE g ol B}, A] A, AL H o] = A Q.
iterator (o]E]#o]E]) TlolEl2] ~2EHS BHAFE= A o]E e olE 9 __next_ () WINEE W B Aoz
TEIE (EE 141” < next () 2 ALEH) 2EH & FEES AU E 22FUTh ¢ ¢
Akol ¢ o]Ei7} S uj= gl StopIt ration o9 & 0‘27‘143}. o] 21 ol A, o] El & o] E] A A=
A2ZE 1, o] %9 E'_ __next__ () WA E $&2 Stoplteration o9& thA] 27|78k g
ol Bl & o] B} = o]] &f| o] E] A A Z}"J S EHFE_iter_ () WINEE 7HA Z o] 875 7| wZ o, o]

H#olH = olH e Eo| 7| & ota thE o|H e EE5S Wolsol+ -‘?"’?'— Lol A AREE £ F YT
Z83to o= oy HY oJH Y oS A Ed= ZEY YT (list Z2) AH oY AA|= iter ()

2 AGstAY for Tz o AFSE ufuitt A o] B o] E] & e Y T O]ﬁ 2= ol el g o] Ef o] th 3}
A e ste] A o, X o] gl @l o] A of] A& o]u] AZH olEH o] H & FHAA, W AE ol A -
HolA vy th
typeiter o] T ZpA §F W &-©] Q51 Th

key function (7]) 7] S == Z ¢ o] A (collation) T+= A H (sorting) o]} HH < (ordering) o] AF& 5 =
e EHFEZHEYYL o & £9],locale.strxfrm() S ZAL EA PSS W= A 7|15
Tte = o AR YT
gto] Mol W =77t R AE o] o EA A Ao A A Fol =R & Aot f38l 7] & HotE Ut
ol AEoE=min(),max (), sorted (), list.sort (), heapg.merge (), heapg.nsmallest ()
heapg.nlargest (), itertools.groupby () ©] A& T}

7] & HE=de oy ol dsUTh dE 9], str.lower () MIAEE AlolA & e
GEE A9 B4m A5 5 AeUIT FAA O, o] B lanbdas AL UE SE 0
g, old 44Ut lambda r: (r[0], r[2]). =3 operator wEe A Al 7 Be AAAE
A FgU Tl attrgetter (), itemgetter (), methodcaller (). 7] &¢4E &L /\]-3‘6]-ﬂ o
) 3t o] Sorting HOW TO & H A 2.

keyword argument (7] ¥ & 21z} 21} & H A Q.

lambda (¥t} =2 o gto] LA &= st 134 07 TAH o] & Q=
= EHL lambda [parameters]: expression YUY T}

LBYL % 7] Aof X 2} (Look before you leap). ©] T ~ElL L T ZE oy 23] & 317] Aoj HA|H o2 AFA

2452 AU o] 2842 FAFP U A R 3L, W2 if 2o EA 2 S A o1 th

o5 28 = S0 A, LBYL W& “H 7|7 “H 7" Il BB 245 W57 2 s1del sk

& 59, ZE if key in mapping: return mappinglkey] &= ZHA} &9, 31X 2 23] A,

e

eHol B g 48 BE

77

Extending and Embedding Python, &] | A 3.7.17

T2 22 E 7} keyE mappingo) A A A SHE A5 5 51T o] & of
Aggozn A 4 dFh

list (}] 2 E) W3 sto] W A g, 12 o] 2o|x Bal1, Qi thst A A7) 0] 7] wj&ol, A A gl AE
(linked list) H t}= t} 2 o] o] v A} AL ok

list comprehension (2] 2= 22| AH) AU~ 845 AN B A0 AT 2 AAE P oE £
21_7]—756}H1—,j result = ['{:#04x}'.format (x) for x in range(256) if x % ==

1 & 00l A 255 Atole]l = F4E9 16X (0x.) 525 T wAEY g 2EF 5 UTh if

Zé% /\gahal./\ 01/\1/]1—4_ /\ga’cd—‘?ﬂ,range(256)0ﬂ]%E%ﬁ_ﬁ_]—ﬂﬂ%qﬂ—

loader (2¢]) EE& £E31= Al load_module () ©]2te o] 59 WA EE FYsioF FUth 2o+
E ol 7t =3 E Utk AR 3 L2 PEP 302 &, =4 H| o] &~ %EHC—Elmportllb.abc.Loader
£ HAQ.

magic method (W] 2] WA &) 5= v A= o w3414 Ql v 3k
mapping (W] 3F) 499 7] 23] & A ¥ 3t Mapping ©] U MutableMapping A #l o]~ A o AR

HAEELS F35tE AdH o)y AA. o]Z& dict, collections.defaultdict, collections.
OrderedDict, collections.Counter ‘3 = 4 95y

meta path finder (W€} 2 5}Qlt]) sys.meta_path o] FAAo] FF+ sl vgt A& s+ 4=
AME2] 341 o A-E o] 7]+ AT T U T
HE A2 3k g 7t 23 A =S e A= importlib.abc.MetaPathFinder & B 3
Yt

metaclass (W€} Zel2) S 29 S S =S ol &, Eda
E52 WEUth WE S A s o] Al JAAE WotA SH@aE wEE Ade A
AFY 2z dolE2 7]E:r”§§ At stol < t
~E0E 5 e a ,MD}. o2 AL 7ﬂL JETIE A 2

N x

£ SOlY EAFP W<

N

S

B
k)
=
=
o

A 2~
SO AN B R ASE TR S OE Ao A B el
metaclasses ol 4] T} XA 3 U &2 3¢

method (W] A &) Z 2 uit] okojl A A 9] . =
WA E A WA A (BE self gt B 2 A2AEA AR S w5) 85 9F 5345 A 7S
2 HAS.

method resolution order (M| M= 274 <A]) WA= 27 A& ﬂ St S W E A= Hola Z
50 AU 23 Dol A5 E vhol A Qe Z el o] AL§H %312 59 A & 18-S The Python
2.3 Method Resolution Order& H W 1t}

module (2.§) o)W F=9] 243} 9l & wshe A4l REL o9 soldl AA S B ol F F0L
71—/\141;} _01_“:/] xe}q]_J—HJ]_o]moiicﬂl/]q_
714 = A2,

module spec (R E A2¥) 25 230 AEEH = o
importlib.machinery.ModuleSpec & Q12" A,

MRO WA= 274 =4 & BAL
mutable (7}H) 71 A A= gho]l & ¢ AA R id() = LATFA FAEYL 2 E HAL

i o
rlr
%
> oy o
[
o My
B)
[>
1o
ro
[>
rT
[>
1o
2
m
Ach
o 4

named tuple (U] Y E 5Z) The term “named tuple” applies to any type or class that inherits from tuple and whose
indexable elements are also accessible using named attributes. The type or class may have other features as well.

Several built-in types are named tuples, including the values returned by time.localtime () and os.
stat (). Another example is sys.float_info:

78 Appendix A. &3

https://www.python.org/dev/peps/pep-0302
https://www.python.org/download/releases/2.3/mro/
https://www.python.org/download/releases/2.3/mro/

Extending and Embedding Python, &]] A 3.7.17

>>> sys.float_info[l] # indexed access
1024

>>> sys.float_info.max_exp # named field access
1024

>>> isinstance(sys.float_info, tuple) # kind of tuple

True

Some named tuples are built-in types (such as the above examples). Alternatively, a named tuple can be created
from a regular class definition that inherits from tuple and that defines named fields. Such a class can be written
by hand or it can be created with the factory function collections.namedtuple (). The latter technique
also adds some extra methods that may not be found in hand-written or built-in named tuples.

namespace (°]5 57hH HE7F AR = A4 o5 2 9V EE AP YT AAldd T HE o5 T3
(A= A B3k oty et X9, A9, Y& o] &3] AFUTh o8 2 o8 555
EEAS ALY UTLE o & £E0], &4 builtins.open Fos.open() < 159 o]& F
TFEP YT E3L o] F2 oW BREO] 5 E FHI=AE B el A TS
By 228 Ut o & 59, random. seed () B+ itertools.islice () 8t 2
E°| Z+Z random ¥} itertools BE & +H o] B Yk

namespace package (o] & 27+ 97] %)) © 4 A1 57| 2 S 2] AE o] =27 7] %58l PEP 420 7] 7] A o] &
AN B HA AN QS S YT, 58] __init__.py shdo] Qlomw A 774 o

EERS]oY

2E X HASL.

(3
oX,
1o
=2
>
e
Bl
et
L
N
ol

nested scope (ZEHH AT =) £

58, o8 o), e F5 Uy 2
3 FHP 20zt | RHoRE FEW ST

Pt g Frel e WSS 228 5 dUrh
[e=]
l

2,09 54 ghth Ao Fosok g Th S MAEE 4 R Amael 4 93 %yt
A E, A WSEL DY o] F FeIA 934U nonlocal HHE AT mo| AL AL

S etatuet.
new-style class (3 2B Zejs) AZ S BE Sehx AMo] ASHT Yr s
g 2719 vtolA o ! B
__getattribute_ (), FH;E AT, 2 E HA B9} 22 Ftol Mo A F
EER T eI
object () A]) el (1EZHE =2
2 o A5 A o)A 2 A
package (3]7]#]) A B RESo|th A7 HCE AH 7 A5
7] A= _path__ o|EFFEZ} = vtold REdYch
At 714 o] 2 B2 971 A = HA L.
parameter (M| 75 T (= WA E) H ool A FrpTh ke
st ol 22 AEHE. b FR7Y WiAAEs 7 ds Ut
E (positional-or-keyword):] 2] A2\ 7] 9 = Q12 2 AEd 4 &= AAE AFFUth
o) A0l 714 Wehe] wl ARSIt o & Sof ol A foo 9} bar:

Y
k]
ol
DL
=
>
I
©
o
o
(i
td
rln
o
o
o,
H
=
td
rln
4r
[>
u
ne
iy
o)

+
30,
rr
ro,
>
kA
rlr
2
rg
oM,
o
rO
kY
gl_[g
et
B
o2

.

def func (foo, bar=None) :

o 9 X-A & (positional-only): QA 2T Al-52 4= &= AAE A FFUTh sho] M2 9 x]-1d-§ vfj 7
HEE Aosle TS 203 JA G Uth A o i F 52 AA-AE A&
ZrE UL (A & 91, abs ().

s 1N E-AE (keyword-only): 71N EZ2 T A5 2 = & AAE AA UL 71 P=-AE& v
=3 oo mi/ g B2 oA gof shute] ZPA-9 X vy« E a2 2894 Fel g
T As YT A& 5o, thxol A kw_onlyl &} kw_only2:

https://www.python.org/dev/peps/pep-0420

Extending and Embedding Python, &] | A 3.7.17

def func(arg, *, kw_onlyl, kw_only2):

» 7H¥-91 %] (var-positional): (FFE AW 5ol A o] v] WolEe] A 94 A5l Ha) A5
% 9 AA A5 99 AALE AF AT oA vl A5 w94 o] ol * & Sl
ol 398 5 ABUTh A8 Sof theoll A args

def func(*args, **kwargs):

« PR E (var-keyword): (T2 Vi RS0 23] A o] u] WolS R A= AAFE ol T 5)
A3 5 Yt 429 NS AYE A4S AFFUE ol A A A o) 5 <+ &

5,_
Qo] Boja] Aol 4= dF UL dl & £ 9] ool A kwargs.
WS A AAEL 95 7| Hzmul ol gt B A o] AL D4 A AEL 2 AT 2 9T

A7} AR T, AAR} w7 M 4=2] ZFo]of] 12 = FAQ 2%, inspect .Parameter 22, function
A, PEP 3625 H A 2.

path entry (2 A=2)) 47 73 5olE] HQEE FREES 27 A9 Bushe AL 42 4 el
.

A=
o)
%
A %

= XN
AR dEZ A Eo] FH3}E= WA EEL importlib.abe.PathEntryFinder o Y4t}

path entry hook (2 QlE 2] &) sys.path_hook FAEQ J=ZEAH, EH A2 AdED A EE
=S ¢y Ydud J2 JdEF Iy E EHF YT

path based finder (2 7|9} 2}elt]) 7| & W e} A2 3ol E = s, AT E F=E oA EE
Ytk

path-like object (J 27 ZAA|) 3t Al2d FE2E Uetl+= A4l AE2F AAl= 42 UEH = str U
bytes A o] At} os.PathLike T2 EFS 7H3l= AAYYT os.Pathlike ZEZ2EF S XY
St A= os. fspath () 58 TS A str Ubytes A A/ F2 2 Had 5 5yt
th4l os. fsdecode () 2 os.fsencode () & Z+Zt str U bytes 2345 EAst=0 AR E &+ U5

Utk PEP 5192 =95 iU th

o

filo
e
oy

PEP 5ho] 4 7] 41] ok, PEPL= 5ol AR Elo] AR E A Z8A L sho] W B 1 T2 A& EE $70
e AZe 7152 Agshs 44 EAQUTH PEPE Aok 75 t @ 1128 71& A E 2 A
A28 oF ok,

PEP= T8 2R 75 Al st Ao that AFUE e
7 =

2 +23km shol Wo] Sof7t 47 2
4e RN BEZ] 9% /)8 WAYZ AUk PEP A4 AL AR

=
AFUE ol el & F535kaL Wil

portion (£ H) PEP 420 o] 4| A2 3t AA T, ol & 87 571 Aol o] upA 3k Shibe] Cielel 2o Eol gt
St S 0] 41 ip h ol AFH = A= 7bs g Th.

positional argument ($] 2] 212} Q1A & H A Q.

provisional API (Z+A API) T4 API= & glol B 2|9 I 7 53
o} AE s o] 20 F ME}7} o AE] A= kA v, A A o] 2kl EAH = § T Nl AtEe]
A7 B B o] §AH A g WA o] Aol 5= Ytk 1 W7
ol A= e AT — APLE ZF37] Aol 3 F ooty 2

80 Appendix A. &3

https://www.python.org/dev/peps/pep-0362
https://www.python.org/dev/peps/pep-0519
https://www.python.org/dev/peps/pep-0001
https://www.python.org/dev/peps/pep-0420

Extending and Embedding Python, &]] A 3.7.17

o] A= BT gtol B 7t ;M A Fo A RE AA Lol s A A g AT YRS
SEUT B A8 8-S PEP 411 B F U T

provisional package (Z+A 2 7] x]) &7 API & B A L.

Python 3000 (3}0] %1 3000) }o] % 3.x vl 2kle] HH (M 39 vj27}F ¥ w2 o] o]of7| | A]F o ghEo] 7]
ool th) ol AL Py’ & B0l 7% ek

Pythonic (s}o] A th) THE Qo] 5ol A AukA 9l A EL Al A 2
1A A5 AHEE S o Q5 ko] Mt ofolrlofu} 3E =

£ 2Rk o2, ol Aofel
, sho] Mol A A5 a

E o]
AT E for £ A3 ClEeli RE 8 he s gae Aaus ne @e delds o
5o FAEC] 9onE, vho Hol 058 ke AREL Al 24} A E & S Gtk

for i in range(len(food)):
print (food[i])

B 28 ol drke P e ol dath

for piece in food:
print (piece)

qualified name (J 1315 o] &) REQ A 2FZ oA REO AYH ZFH 2, T, A= ol2=«“F 2~
2 HolFE=Hog ZHY o] & PEP 3155 oA A HUTh A e 220 AL, AF3Hd
ol 5 7“11]«] o5 THUth:

>>> class C:
class D:
def meth (self):
pass

>>> C.__qualname_

lCl

>>> C.D._ _gualname_
'C.D'

>>> C.D.meth._ qualname_
'C.D.meth'

BES 7tE 7| =d AHRE o, A3 AF3E o) 2 (fully qualified name)S RE R 7 7| A 5L £ T
SN BER Ve Jo2 "'—ﬂ% O] YuFYth 9 E £9],email .mime. text:

>>> import email.mime.text
>>> email.mime.text. name
'email .mime.text'

reference count (R 314) A Ao o3t F=x29 7S, 7“?1].,] | ’“7]—0 o7 Wol X, v &g s} gy
Utk 22 3¢ 332 gtz oz go]ld F= o = QZ] = %}7\] , CPython :r“ﬂ«] A e APy

sys BE2 5 AAY Fx A +E 585+ getrefcount (7‘*431'1/] th.

regular package (47 97| A]) __init__ .py 3¥E& 2F3= U E“H g} g2 AT A A 7] A.
ol5 w7 A & HA L.

_slots__ Z YR AAQl, A AEHAAEYFEES HSHFHS g AL AAEA G E
A A @33’3‘1 HEeE Zaste 235 FUh A7) A7= A, o] Ha YL EulE A AE-8171 7
Z 712 L HolghA], vRE o vAs 28 28 T A] Bl £ AAEAT Q= EWEHI AL
S sl= Zlo] 5 UL

sequence (A|F2X) __getitem_ () 55 Uﬂ/ﬁ ZEFO AT AIdAE A2 Q4 ANAE X Y3},
Al 2] dolE EHF+E=_ len “ﬂ'ﬂ—‘:—% Aojsl= olHHE 22 WA A AAES YEE Y,
list, str, tuple, bytes 7} 01—1/]1’/} dict TE3F_ getitem_ () Z__len_ () & AA3A v

https://www.python.org/dev/peps/pep-0411
https://www.python.org/dev/peps/pep-3155

Extending and Embedding Python, &] | A 3.7.17

230 A5 P4 Qele] B0 718 A W Rel AD 27t oh ek WP o2 AF Ak R 2
sh ok g o,

collections.abc.Sequence A Wlo]| A ZF AL getitem () F__len_ ()2 do]A &
A FHE QB FH o]~ E A 5l= F‘ﬂ, count (), index (), _ _contains__ (), __reversed_ ()&
F7 Ut o) &34 AE o]~ E T3S F S register () EAMEHNA YAH L2 SET F UF

Y.
single dispatch (42 T] 25 x]) 73 0] ahre] Qlxbe] Yo 7| xe) A ARH = Av 2 24 tas A B

FEy.
slice (Eelo]n) HE AlA A o YR E 283 AAl. Setol2e AR 2T HE R7HS AFSSIA Y
t}. variable_name[1:3:5] fﬂﬁé,] SHAA A Ao AE F2o2 Byt tgiEs (B

[
2FHE) Z7IH S W F AL R slice AAE A FUTH
special method (55~ Wl A =) Fto]xlo] Pof o A4k, QA 22, AT o FAIHC=E QEQ WA E.
olF MIMEE F /Y €EE AFLA EUE o5& #A d5 Utk 55 vl A =+ specialnames Oﬂ
AR ‘ﬂ"é‘ﬂxﬁ O]/\‘/]f%
statement (=) -2 A9 E (ZE9] “EF(block)”) & FA5H FEAUTE 82 594 o] AL 7]9
tE 7\}3-75}? 04?4 7HA F2E F9 st YT 719 if, while, for.

text encoding (| AE 217 9) FUTE BEXIS vlo]EGR Q7P 3E= Fd,
o

m

=

text file ()2 5}Q)) str ANE 93 L 5 9 52 A4H. FF, 92E 32 44
EAEYLS AN LRI G iE A5 & A% AL GUh GAE FA o2

— B =

= 'w') 2 49 999, sys.stdin, sys.stdout, i0.StringI0o 9 AAEHAE & 4 9IH LT

el E AR A & 9T & 5 e 5L AR o) el vlo] e e £ FEeA L,

triple-quoted string (3 w2 % & FA1Y) W23) U A2 O) M M2 S8R 2AE. 23
&3 R YA AL §le 715 S AlE A = AT o8] 7HA] o] froll A £R 7 JlF U Th
]’\71] o]z QZ] %} a%u}%i‘% SR E TAE ol 2 = JEE 5, AE FAE 27

type () shol 4 A7]9] &£ A2 AAFITH BE AL Fo] 5 AR
Ve e E R A A S s (o S gy

type alias (3 o] o)) B2 AW Aol]I 5te] W50l A= o] 5
Qo Qelol 2t 3 AEE Beslsts o R8T o8 U

from typing import List, Tuple

def remove_gray_shades (
colors: List[Tuple[int, int, int]]) -> List[Tuplelint, int, int]]:
pass

sohest 2ol § 97 47 BE 4 5t

from typing import List, Tuple

Color = Tuple[int, int, int]

def remove_gray_shades (colors: List[Color]) -> List[Color]:
pass
o] 7] 5& A 9Y3t= typingd PEP 4845 F 2314 8
type hint (3 A=) W5, Felo o el HE R 4 ol hAS U uke g A i Fe AR S o H|

o] A.

82 Appendix A. &3

https://www.python.org/dev/peps/pep-0484

Extending and Embedding Python, &]] A 3.7.17

Y SlE = A8 Aol w mlo] o A A A= FF Ut AT A 3 £ =50 783 IDE
gz AL YAEF S FHYLH
A9 AeE ALdeta, A9 HEy, FPa JEHRE E 49 3 JdE &= typing
get_type_hints () & AFE3lo] AN 2T 4= 5Tt
o] 715 A3t typingd PEP 4845 IR 3IA 8

universal newlines (FUHAE & 37) O3 T2 AES EF 29 o2 AA 3=, H2E AEY S)4
ST Y2 NS EXFEE '\n', A== I "\r\n", AL M N EA] FH '\r'. F7}F <l
Abg o] B A= bytes.splitlines () 2uko}L] 2} PEP 278 9} PEP 3116 = 2 4] £.

variable annotation (14> o]k E|o]) My = FP 2 o] ERHEL] of g o] A,
HeEe FdlaEREY ojHolAE Gl tf Y-S A8 ALyt

class C:
field: 'annotation'

M olElolde A os o =g A UTH A& So, ol Met int 2 AL AR Ay
U
count: int = 0

A o] mH o] 4d #-2 Al A annassign ol A 428 T}
o] 7]5& A Y3t T ol =H o] A, PEP 484 2 PEP 5265 FX 34

|
virtual environment (7} 3 7) Tho]| W A} 2219t S8 g o], 2 A AH A AT L ThE 1))
& 22 T dF= FA ?%SD‘H sho] 4 f = JHﬂﬂ%% AAsHAY e o] =6t
A€ s s, de Ao 498 A9 37

(]
a.
ol

P
L

X
L.

r

venv & HA Q.

o8 AFE. shol el 44k 7| A uho| & B Ak # 7}

virtual machine (7} 71A4]) AZEgojglo g A =]
Feoe o= neg AAg,

Zen of Python (3ol 41) 3ol 4l T 19l 22l o) AeH5e] =it 2lo] S o] 58t AHE-ahe o] Eg ol
Ptk o] S t)34y ZETE A “inport this” & YA BT}

83

https://www.python.org/dev/peps/pep-0484
https://www.python.org/dev/peps/pep-0278
https://www.python.org/dev/peps/pep-3116
https://www.python.org/dev/peps/pep-0484
https://www.python.org/dev/peps/pep-0526

Extending and Embedding Python, &] | A 3.7.17

84

Appendix A. &3

APPENDIX B

o] 417 A of] 3]

o] WAL reStructuredText 2220 4] TS o] 2 A0.2, shol AWM S 95 S5 A2E 24 qel 7]
Sphinx & A& 5 YT}

A S o B AT BA I AEL Shol A A & DA 2 A A O = AAR AR = YU 7] o] 1
Aeh, ko] WPlol ol 2 A B = reporting-bugs o] 2| & FALFAAI L. A 22 ARRAAL A AT
YeH

S B0/ Be BAE =dUG
* Fred L. Drake, Jr., 92 sto]H A A = 3o 2 o)A w2 Zrl=9] 27}
« reStructuredText 2} Docutils 29 EE Y= = Docutils ZZ A E,

e Fredrik Lundh, Z72] Alternative Python Reference 3Z 2 A E of] A] Sphinx 7} -2 o}o]t] o] & A KUt

Abghe] sholal lof, spojd & efojH e W stolul A Aol 7o FF Utk 7]ojxpe] B2 A

85

http://docutils.sourceforge.net/rst.html
http://sphinx-doc.org/
http://docutils.sourceforge.net/
http://effbot.org/zone/pyref.htm
https://github.com/python/cpython/tree/3.7/Misc/ACKS

Extending and Embedding Python, &] | A 3.7.17

86

Appendix B. o] 447 Aol #a}o]

apPENDIX C

>

oA A} 2ho] Al

|"..|.4

C.1 2ZEY o] Ia}

o] W2 ABCElE= dojo] TAAZ A Y &= 9] Stichting Mathematisch Centrum (CWI https://www.cwi.nl/
ZFx) 9] Guido van Rossum ol &J3fl 1990 d 0] Zxtol] whEo] H5UTh dho] o= th2 AHEE9 B2 33 0]
323 QA T, Guido= 3ho] W o] =8 A 2= o} gl Ut

1995, Guido+ Virginia 2] Reston 01] ¢l += Corporation for National Research Initiatives(CNRI, https://www.cnri.

reston.va.us/ FFZ) o A sholH =Y 74] 7, o] Lo A ozl AL 2z EY oS ZA S YT

In May 2000, Guido and the Python core development team moved to BeOpen.com to form the BeOpen PythonLabs
team. In October of the same year, the PythonLabs team moved to Digital Creations (now Zope Corporation; see https:
/Iwww.zope.org/). In 2001, the Python Software Foundation (PSF, see https://www.python.org/psf/) was formed, a non-
profit organization created specifically to own Python-related Intellectual Property. Zope Corporation is a sponsoring
member of the PSF.

)

EE golH a2 I/ LAYt (FI 22 Ao o oH/H = https://opensource.org/lE 234 Al
©). Ao, £ (A v A Y& obguith shol 4 Wi E T GPLI SHF U olele] B thre
W g 8 oFe A o,

vl 32 32+ s S | Sl 2 2F GPL = 32

09.0~1.2 | n/a 1991-1995 | CWI yes

13~152 | 12 1995-1999 | CNRI yes

1.6 1.5.2 2000 CNRI no

2.0 1.6 2000 BeOpen.com | no

1.6.1 1.6 2001 CNRI no

2.1 2.0+1.6.1 2001 PSF no

2.0.1 2.0+1.6.1 2001 PSF yes

2.1.1 2.142.0.1 2001 PSF yes

212 2.1.1 2002 PSF yes

213 212 2002 PSF yes

2.2 oA+ 2.1.1 2001-&#] | PSF yes

87

https://www.cwi.nl/
https://www.cnri.reston.va.us/
https://www.cnri.reston.va.us/
https://www.zope.org/
https://www.zope.org/
https://www.python.org/psf/
https://opensource.org

Extending and Embedding Python, & x] ¥} A 3.7.17

#3: GPL 58T AL 9271 GPLE shol ¥ & wjZ otk AL ol ujaha = B5UTh BE shol 4l
eho Ml 4= GPL3} Bhe) of o] MAS 3/ 242 BEA 93+ 4H W AS WS & 914 Fch GPL
53 gho] Ml Tho] W} GPL Shofl WEH 0he £z E oS AT 4 A FUTH 2 ASL 124

Easagieg

Guido] A= 3}of| o] Wi ZE 7hsstAl vhe W2 o F AHA B AAS ol Al A= -H Utk

C2 sjol ol A A5} A T A18517] §1 o] & ok

C.2.1 PSF LICENSE AGREEMENT FOR PYTHON 3.7.17

1. This LICENSE AGREEMENT is between the Python Software Foundation ("PSE"),._
—and

the Individual or Organization ("Licensee") accessing and otherwise using.
—~Python

3.7.17 software in source or binary form and its associated documentation.

2. Subject to the terms and conditions of this License Agreement, PSF hereby
grants Licensee a nonexclusive, royalty-free, world-wide license to.
—reproduce,
analyze, test, perform and/or display publicly, prepare derivative works,
distribute, and otherwise use Python 3.7.17 alone or in any derivative
version, provided, however, that PSF's License Agreement and PSF's notice.
—of
copyright, i.e., "Copyright © 2001-2023 Python Software Foundation; All._
—Rights
Reserved" are retained in Python 3.7.17 alone or in any derivative version
prepared by Licensee.

3. In the event Licensee prepares a derivative work that is based on or
incorporates Python 3.7.17 or any part thereof, and wants to make the
derivative work available to others as provided herein, then Licensee.

—hereby
agrees to include in any such work a brief summary of the changes made to.

—Python
3.7.17.

4. PSF is making Python 3.7.17 available to Licensee on an "AS IS" basis.

PSF MAKES NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF

EXAMPLE, BUT NOT LIMITATION, PSEF MAKES NO AND DISCLAIMS ANY REPRESENTATION.
—OR

WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT.
—THE

USE OF PYTHON 3.7.17 WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

5. PSF SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF PYTHON 3.7.17
FOR ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT.
—OF
MODIFYING, DISTRIBUTING, OR OTHERWISE USING PYTHON 3.7.17, OR ANY.
—~DERIVATIVE

88 Appendix C. & x}¢} glo] A A

Extending and Embedding Python, &]] A 3.7.17

THEREOF, EVEN IF ADVISED OF THE POSSIBILITY THEREOEF.

6. This License Agreement will automatically terminate upon a material breach.
—~of
its terms and conditions.

7. Nothing in this License Agreement shall be deemed to create any.
—relationship

of agency, partnership, or joint venture between PSF and Licensee. This.
—~License

Agreement does not grant permission to use PSF trademarks or trade name in.
—a

trademark sense to endorse or promote products or services of Licensee, or.
—any

third party.

8. By copying, installing or otherwise using Python 3.7.17, Licensee agrees
to be bound by the terms and conditions of this License Agreement.

C.2.2 BEOPEN.COM LICENSE AGREEMENT FOR PYTHON 2.0

BEOPEN PYTHON OPEN SOURCE LICENSE AGREEMENT VERSION 1

1. This LICENSE AGREEMENT is between BeOpen.com ("BeOpen"), having an office at
160 Saratoga Avenue, Santa Clara, CA 95051, and the Individual or Organization
("Licensee") accessing and otherwise using this software in source or binary
form and its associated documentation ("the Software").

2. Subject to the terms and conditions of this BeOpen Python License Agreement,
BeOpen hereby grants Licensee a non-exclusive, royalty-free, world-wide license
to reproduce, analyze, test, perform and/or display publicly, prepare derivative
works, distribute, and otherwise use the Software alone or in any derivative
version, provided, however, that the BeOpen Python License is retained in the
Software, alone or in any derivative version prepared by Licensee.

3. BeOpen is making the Software available to Licensee on an "AS IS" basis.
BEOPEN MAKES NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF
EXAMPLE, BUT NOT LIMITATION, BEOPEN MAKES NO AND DISCLAIMS ANY REPRESENTATION OR
WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE
USE OF THE SOFTWARE WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

4. BEOPEN SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF THE SOFTWARE FOR
ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT OF USING,
MODIFYING OR DISTRIBUTING THE SOFTWARE, OR ANY DERIVATIVE THEREOF, EVEN IF
ADVISED OF THE POSSIBILITY THEREOEF.

5. This License Agreement will automatically terminate upon a material breach of
its terms and conditions.

6. This License Agreement shall be governed by and interpreted in all respects
by the law of the State of California, excluding conflict of law provisions.
Nothing in this License Agreement shall be deemed to create any relationship of
agency, partnership, or joint venture between BeOpen and Licensee. This License
Agreement does not grant permission to use BeOpen trademarks or trade names in a
trademark sense to endorse or promote products or services of Licensee, or any

(TF sTolATell A%

C.2. sholol AA|A8A AHE57] 1% o] & oF e 89

Extending and Embedding Python, &] | A 3.7.17

(o] A sl o] A A M A%)

third party. As an exception, the "BeOpen Python" logos available at
http://www.pythonlabs.com/logos.html may be used according to the permissions
granted on that web page.

By copying, installing or otherwise using the software, Licensee agrees to be
bound by the terms and conditions of this License Agreement.

C.2.3 CNRI LICENSE AGREEMENT FOR PYTHON 1.6.1

This LICENSE AGREEMENT is between the Corporation for National Research
Initiatives, having an office at 1895 Preston White Drive, Reston, VA 20191
("CNRI"), and the Individual or Organization ("Licensee") accessing and
otherwise using Python 1.6.1 software in source or binary form and its
associated documentation.

Subject to the terms and conditions of this License Agreement, CNRI hereby
grants Licensee a nonexclusive, royalty-free, world-wide license to reproduce,
analyze, test, perform and/or display publicly, prepare derivative works,
distribute, and otherwise use Python 1.6.1 alone or in any derivative version,
provided, however, that CNRI's License Agreement and CNRI's notice of copyright,
i.e., "Copyright © 1995-2001 Corporation for National Research Initiatives; All
Rights Reserved" are retained in Python 1.6.1 alone or in any derivative version
prepared by Licensee. Alternately, in lieu of CNRI's License Agreement,
Licensee may substitute the following text (omitting the quotes): "Python 1.6.1
is made available subject to the terms and conditions in CNRI's License
Agreement. This Agreement together with Python 1.6.1 may be located on the
Internet using the following unique, persistent identifier (known as a handle):
1895.22/1013. This Agreement may also be obtained from a proxy server on the
Internet using the following URL: http://hdl.handle.net/1895.22/1013."

In the event Licensee prepares a derivative work that is based on or
incorporates Python 1.6.1 or any part thereof, and wants to make the derivative
work available to others as provided herein, then Licensee hereby agrees to
include in any such work a brief summary of the changes made to Python 1.6.1.

CNRI is making Python 1.6.1 available to Licensee on an "AS IS" basis. CNRI
MAKES NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF EXAMPLE,
BUT NOT LIMITATION, CNRI MAKES NO AND DISCLAIMS ANY REPRESENTATION OR WARRANTY
OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE USE OF
PYTHON 1.6.1 WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

CNRI SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF PYTHON 1.6.1 FOR
ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT OF
MODIFYING, DISTRIBUTING, OR OTHERWISE USING PYTHON 1.6.1, OR ANY DERIVATIVE
THEREOF, EVEN IF ADVISED OF THE POSSIBILITY THEREOF.

This License Agreement will automatically terminate upon a material breach of
its terms and conditions.

This License Agreement shall be governed by the federal intellectual property
law of the United States, including without limitation the federal copyright
law, and, to the extent such U.S. federal law does not apply, by the law of the
Commonwealth of Virginia, excluding Virginia's conflict of law provisions.
Notwithstanding the foregoing, with regard to derivative works based on Python

(TH& SOTATl A1)

90

Appendix C. < x}¢} glo] A A

Extending and Embedding Python, &]] A 3.7.17

(o] A sl o] A A M A%)

1.6.1 that incorporate non-separable material that was previously distributed
under the GNU General Public License (GPL), the law of the Commonwealth of
Virginia shall govern this License Agreement only as to issues arising under or
with respect to Paragraphs 4, 5, and 7 of this License Agreement. Nothing in
this License Agreement shall be deemed to create any relationship of agency,
partnership, or joint venture between CNRI and Licensee. This License Agreement
does not grant permission to use CNRI trademarks or trade name in a trademark
sense to endorse or promote products or services of Licensee, or any third
party.

8. By clicking on the "ACCEPT" button where indicated, or by copying, installing
or otherwise using Python 1.6.1, Licensee agrees to be bound by the terms and
conditions of this License Agreement.

C.2.4 CWI LICENSE AGREEMENT FOR PYTHON 0.9.0 THROUGH 1.2

Copyright © 1991 - 1995, Stichting Mathematisch Centrum Amsterdam, The
Netherlands. All rights reserved.

Permission to use, copy, modify, and distribute this software and its
documentation for any purpose and without fee is hereby granted, provided that
the above copyright notice appear in all copies and that both that copyright
notice and this permission notice appear in supporting documentation, and that
the name of Stichting Mathematisch Centrum or CWI not be used in advertising or
publicity pertaining to distribution of the software without specific, written
prior permission.

STICHTING MATHEMATISCH CENTRUM DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS
SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN NO
EVENT SHALL STICHTING MATHEMATISCH CENTRUM BE LIABLE FOR ANY SPECIAL, INDIRECT
OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE,
DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS
SOFTWARE.

A& Shol 41 W ol ZIHE A4 2 ZE G ool T B LA A W SO Gl ehol M) 5219)

C.3.1 W=z EQ ¥

_random EE-2 http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/MT2002/emt19937ar.html o] A U] &
S mEo] Zue REE ERFULL 02 o) 2= 24 adw §7 AQ Ut

A C-program for MT19937, with initialization improved 2002/1/26.
Coded by Takuji Nishimura and Makoto Matsumoto.

Before using, initialize the state by using init_genrand(seed)
or init_by_array(init_key, key_length).

(THE STl Aol A1)

C3. xd Lz e oo thF o]l g 52l 1

http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/MT2002/emt19937ar.html

Extending and Embedding Python, &] | A 3.7.17

(o] A sl o] A A M A%)

Copyright (C) 1997 - 2002, Makoto Matsumoto and Takuji Nishimura,
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

3. The names of its contributors may not be used to endorse or promote
products derived from this software without specific prior written
permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Any feedback is very welcome.
http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html
email: m-mat @ math.sci.hiroshima-u.ac.jp (remove space)

C.3.2 427

socket B EL2 getaddrinfo () 2} getnameinfo () T4 E AU T} o] &2 WIDE Project, http://www.
wide.ad.jp/, | A & B a2 342 I 5y

Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
All rights reserved.

Redistribution and use in source and binary forms, with or without

modification, are permitted provided that the following conditions

are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

3. Neither the name of the project nor the names of its contributors
may be used to endorse or promote products derived from this software
without specific prior written permission.

(TH& ST Aol A1)

92 Appendix C. < x}¢} glo] A A

http://www.wide.ad.jp/
http://www.wide.ad.jp/

Extending and Embedding Python, &]] A 3.7.17

(o] A sl o] A A M A%)

THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS " "AS IS'' AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS

OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

C.3.3 H]Z7] 27 AH)

>

o
Fl
%
d
v
o

asynchat# asyncore R o} 22 Fo| AHS

Copyright 1996 by Sam Rushing
All Rights Reserved

Permission to use, copy, modify, and distribute this software and
its documentation for any purpose and without fee is hereby
granted, provided that the above copyright notice appear in all
copies and that both that copyright notice and this permission
notice appear in supporting documentation, and that the name of Sam
Rushing not be used in advertising or publicity pertaining to
distribution of the software without specific, written prior
permission.

SAM RUSHING DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE,
INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN
NO EVENT SHALL SAM RUSHING BE LIABLE FOR ANY SPECIAL, INDIRECT OR
CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS
OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT,
NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

C.34 F7| &=

http.cookies REL T}gT 22 9 A2 ¥ BT

Copyright 2000 by Timothy O'Malley <timo@alum.mit.edu>
All Rights Reserved

Permission to use, copy, modify, and distribute this software

and its documentation for any purpose and without fee is hereby
granted, provided that the above copyright notice appear in all
copies and that both that copyright notice and this permission
notice appear in supporting documentation, and that the name of
Timothy O'Malley not be used in advertising or publicity

pertaining to distribution of the software without specific, written

(TH& ST Aol A1)

i
B
[t
(m

C3. =%

slolol that eholdls 9 53l 93

Extending and Embedding Python, &] | A 3.7.17

(o] A sl o] A A M A%)

prior permission.

Timothy O'Malley DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS
SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS, IN NO EVENT SHALL Timothy O'Malley BE LIABLE FOR
ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
PERFORMANCE OF THIS SOFTWARE.

C.3.5 A3 >3

trace REL O3 2 39 ALgHS £33t}

portions copyright 2001, Autonomous Zones Industries, Inc., all rights...
err... reserved and offered to the public under the terms of the

Python 2.2 license.

Author: Zooko O'Whielacronx

http://zooko.com/

mailto:zooko@zooko.com

Copyright 2000, Mojam Media, Inc., all rights reserved.
Author: Skip Montanaro

Copyright 1999, Bioreason, Inc., all rights reserved.
Author: Andrew Dalke

Copyright 1995-1997, Automatrix, Inc., all rights reserved.
Author: Skip Montanaro

Copyright 1991-1995, Stichting Mathematisch Centrum, all rights reserved.

Permission to use, copy, modify, and distribute this Python software and
its associated documentation for any purpose without fee is hereby
granted, provided that the above copyright notice appears in all copies,
and that both that copyright notice and this permission notice appear in
supporting documentation, and that the name of neither Automatrix,
Bioreason or Mojam Media be used in advertising or publicity pertaining to
distribution of the software without specific, written prior permission.

C.3.6 UUencode %! UUdecode &+

wu RES TR 2L 7o) 4GS THTh

Copyright 1994 by Lance Ellinghouse
Cathedral City, California Republic, United States of America.

All Rights Reserved
Permission to use, copy, modify, and distribute this software and its
documentation for any purpose and without fee is hereby granted,
provided that the above copyright notice appear in all copies and that
both that copyright notice and this permission notice appear in

(TH& ST Aol A1)

94 Appendix C. < x}¢} glo] A A

Extending and Embedding Python, &]] A 3.7.17

(o] A sl o] A A M A%)

supporting documentation, and that the name of Lance Ellinghouse

not be used in advertising or publicity pertaining to distribution

of the software without specific, written prior permission.

LANCE ELLINGHOUSE DISCLAIMS ALL WARRANTIES WITH REGARD TO

THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS, IN NO EVENT SHALL LANCE ELLINGHOUSE CENTRUM BE LIABLE

FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT
OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

Modified by Jack Jansen, CWI, July 1995:

— Use binascii module to do the actual line-by-line conversion
between ascii and binary. This results in a 1000-fold speedup. The C
version is still 5 times faster, though.

- Arguments more compliant with Python standard

C.3.7 XML 94 =324 55

xmlrpe.client RE-S The 3 22 29 A3 e

The XML-RPC client interface is

Copyright (c) 1999-2002 by Secret Labs AB
Copyright (c) 1999-2002 by Fredrik Lundh

By obtaining, using, and/or copying this software and/or its
associated documentation, you agree that you have read, understood,
and will comply with the following terms and conditions:

Permission to use, copy, modify, and distribute this software and
its associated documentation for any purpose and without fee is
hereby granted, provided that the above copyright notice appears in
all copies, and that both that copyright notice and this permission
notice appear in supporting documentation, and that the name of
Secret Labs AB or the author not be used in advertising or publicity
pertaining to distribution of the software without specific, written
prior permission.

SECRET LABS AB AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH REGARD
TO THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANT-
ABILITY AND FITNESS. IN NO EVENT SHALL SECRET LABS AB OR THE AUTHOR
BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY
DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
OF THIS SOFTWARE.

C3. =%

i
By
&
(m
:‘_‘2’
2
&
)
ok
i)
-
x
[
N,
o>
r o

95

Extending and Embedding Python, &] | A 3.7.17

C.3.8 test_epoll

test_epoll REL U 22 £ A G =234

Copyright (c) 2001-2006 Twisted Matrix Laboratories.

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND

NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

C.3.9 Select kqueue

select BE-2 kqueue Q1 E 3] o] 2ol thal The 3} 2 9] AgHS ERFU T

Copyright (c) 2000 Doug White, 2006 James Knight, 2007 Christian Heimes
All rights reserved.

Redistribution and use in source and binary forms, with or without

modification, are permitted provided that the following conditions

are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS "~ "AS IS'' AND

ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. 1IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS

OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

96 Appendix C. < x}¢} glo] A A

Extending and Embedding Python, &]] A 3.7.17

C.3.10 SipHash24

3¢ Python/pyhash.c 9|+ Dan Bernstein®] SipHash24 ¢ 11 2] = 2] Marek Majkowski & -3 o] 3£ 3} of
AFUTh 7)o a3 22 Wgo] Z3E o 5T

<MIT License>
Copyright (c) 2013 Marek Majkowski <marek@popcount.org>

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
</MIT License>

Original location:
https://github.com/majek/csiphash/

Solution inspired by code from:
Samuel Neves (supercop/crypto_auth/siphash24/1little)
djb (supercop/crypto_auth/siphash24/little2)
Jean-Philippe Aumasson (https://131002.net/siphash/siphash24.c)

C.3.11 strtod 2} dtoa

C double 7} 214 719 W3S 93k C &4 dtoa &} strtod S A F 3t 91Y Python/dtoa.c = A A http:
[Iwww.netlib.org/fp/ o] A €& 4= = David M. Gay2] 22 o] &) oA A= <5t} 20093 34
160 W2 A& gtdol = b33 22 A &d 2 gholAlx g7 285 o] JFUth:

/**

*

* The author of this software is David M. Gay.

*

* Copyright (c) 1991, 2000, 2001 by Lucent Technologies.

*

* Permission to use, copy, modify, and distribute this software for any

* purpose without fee is hereby granted, provided that this entire notice
* is included in all copies of any software which is or includes a copy

* or modification of this software and in all copies of the supporting

* documentation for such software.

*

* THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR IMPLIED
*

WARRANTY. IN PARTICULAR, NEITHER THE AUTHOR NOR LUCENT MAKES ANY
* REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE MERCHANTABILITY
* OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR PURPOSE.

*

***/

C3. =%

i
By
&
(m
:‘_‘2’
2
&
)
ok
i)
-
x
[
N,
o>
r o

97

http://www.netlib.org/fp/
http://www.netlib.org/fp/

Extending and Embedding Python, &] | A 3.7.17

C.3.12 OpenSSL

R & hashlib, posix, ssl, crypt & &% A A7} AR = A std F712] 4452 913 OpenSSL o] B
H e & AU Th =3 A5 99l W OS X shol# A2 2 132 OpenSSL Bho| B g AMR S 288 4=
Ao B, of 7]of OpenSSL gho] Al AHRE S 23t}

LICENSE ISSUES

The OpenSSL toolkit stays under a dual license, i.e. both the conditions of
the OpenSSL License and the original SSLeay license apply to the toolkit.
See below for the actual license texts. Actually both licenses are BSD-style
Open Source licenses. In case of any license issues related to OpenSSL
please contact openssl-core@openssl.org.

OpenSSL License

Copyright (c) 1998-2008 The OpenSSL Project. All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in
the documentation and/or other materials provided with the
distribution.

3. All advertising materials mentioning features or use of this
software must display the following acknowledgment:
"This product includes software developed by the OpenSSL Project
for use in the OpenSSL Toolkit. (http://www.openssl.org/)"

4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
endorse or promote products derived from this software without
prior written permission. For written permission, please contact
openssl-corelopenssl.org.

5. Products derived from this software may not be called "OpenSSL"
nor may "OpenSSL" appear in their names without prior written
permission of the OpenSSL Project.

6. Redistributions of any form whatsoever must retain the following
acknowledgment:
"This product includes software developed by the OpenSSL Project
for use in the OpenSSL Toolkit (http://www.openssl.org/)"

THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT " "AS IS'' AND ANY
EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE ARE DISCLAIMED. 1IN NO EVENT SHALL THE OpenSSL PROJECT OR
ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT

L T R S I S N S R T S N IS S N S N S S NS S SN S S S S S S SR P S S N .

(TH& ST Aol A1)

98 Appendix C. < x}¢} glo] A A

Extending and Embedding Python, &]] A 3.7.17

(o] A sl o] A A M A%)

0% ok X ok ok o ok X % X %

NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;

LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)

HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
OF THE POSSIBILITY OF SUCH DAMAGE.

This product includes cryptographic software written by Eric Young
(eay@cryptsoft.com). This product includes software written by Tim
Hudson (tjh@cryptsoft.com).

Original SSLeay License

L A I S N S N IS S S S N S N TS N N S S A N S N S S S S N N

Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
All rights reserved.

This package is an SSL implementation written
by Eric Young (eay@cryptsoft.com).
The implementation was written so as to conform with Netscapes SSL.

This library is free for commercial and non-commercial use as long as
the following conditions are aheared to. The following conditions
apply to all code found in this distribution, be it the RC4, RSA,
lhash, DES, etc., code; not just the SSL code. The SSL documentation
included with this distribution is covered by the same copyright terms
except that the holder is Tim Hudson (tjh@cryptsoft.com).

Copyright remains Eric Young's, and as such any Copyright notices in

the code are not to be removed.

If this package is used in a product, Eric Young should be given attribution
as the author of the parts of the library used.

This can be in the form of a textual message at program startup or

in documentation (online or textual) provided with the package.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
1. Redistributions of source code must retain the copyright
notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
3. All advertising materials mentioning features or use of this software
must display the following acknowledgement:
"This product includes cryptographic software written by
Eric Young (eay@cryptsoft.com)"
The word 'cryptographic' can be left out if the rouines from the library
being used are not cryptographic related :-).
4. If you include any Windows specific code (or a derivative thereof) from
the apps directory (application code) you must include an acknowledgement:
"This product includes software written by Tim Hudson (tjh@cryptsoft.com)"

(TH& ST Aol A1)

C3. =g azE

o

ool tht 2ol A g 52l 99

=4

Extending and Embedding Python, &] | A 3.7.17

(o] A sl o] A A M A%)

THIS SOFTWARE IS PROVIDED BY ERIC YOUNG " "AS IS'' AND

ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. 1IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS

OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

The licence and distribution terms for any publically available version or
derivative of this code cannot be changed. i.e. this code cannot simply be
copied and put under another distribution licence

[including the GNU Public Licence.]

L S A I S S N S N S

/

C.3.13 expat

pyexpat &2 WEE —~with-system-expat & 7454 &+ 3, = expat 25 ARES AFE-5H

WEgych

Copyright (c) 1998, 1999, 2000 Thai Open Source Software Center Ltd
and Clark Cooper

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

100 Appendix C. < x}¢} glo] A A

Extending and Embedding Python, &]] A 3.7.17

C.3.14 libffi

_ctypes AL WCE —_yith-system-1ibffi & FA A &= 3 £ H libfi &2 AFE-S AFR-3 o]

HEg Yt

Copyright (c) 1996-2008 Red Hat, Inc and others.

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
‘*Software''), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED " "AS IS'', WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.

C.3.15 zlib

21ib B A2 E A BAH 2lib 0 A 0] W 2 e ol A W= o] AHSE 4 Yow, EFHE Alib 24 G
Apg-8to] W =g U T

Copyright (C) 1995-2011 Jean-loup Gailly and Mark Adler

This software is provided 'as-is', without any express or implied

warranty. In no event will the authors be held liable for any damages

arising from the use of this software.

Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it
freely, subject to the following restrictions:

1. The origin of this software must not be misrepresented; you must not
claim that you wrote the original software. If you use this software
in a product, an acknowledgment in the product documentation would be
appreciated but is not required.

2. Altered source versions must be plainly marked as such, and must not be
misrepresented as being the original software.

3. This notice may not be removed or altered from any source distribution.

Jean-loup Gailly Mark Adler
jloup@gzip.org madler@alumni.caltech.edu

i
B
[t
(m

c3. =% gofoll thet ehol 2 @) 101

Extending and Embedding Python, &] | A 3.7.17

C.3.16 cfuhash

>

tracemalloc o 98l A}25 = A H o] B2 3L cfuhash ZE2AEE 7|ulo g2 3 t}:

Copyright (c) 2005 Don Owens
All rights reserved.

This code is released under the BSD license:

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following
disclaimer in the documentation and/or other materials provided
with the distribution.

* Neither the name of the author nor the names of its
contributors may be used to endorse or promote products derived
from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
OF THE POSSIBILITY OF SUCH DAMAGE.

C.3.17 libmpdec

_decimal RE2 YE=E ——with-system-libmpdec & FASIA] &+ 3F, Z 34 libmpdec A2 AFE S

g3l MEg LT

Copyright (c) 2008-2016 Stefan Krah. All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

(TH& ST Aol A1)

102 Appendix C. < x}¢} glo] A A

Extending and Embedding Python, &]] A 3.7.17

(o] A sl o] A A M A%)

THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS "AS IS" AND

ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. 1IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS

OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

C3. =% 103

i
By
&
(m
)
2
&
)
rk
i)
-
x
[
N,
o>
r o

Extending and Embedding Python, &] | A 3.7.17

104 Appendix C. < x}¢} glo] A A

APPENDIX D

sho] 3} o] WA
Copyright © 2001-2023 Python Software Foundation. All rights reserved.

Copyright © 2000 BeOpen.com. All rights reserved.

Copyright © 1995-2000 Corporation for National Research Initiatives. All rights reserved.
Copyright © 1991-1995 Stichting Mathematisch Centrum. All rights reserved.

WA 2ol 0 AL AT ARE o AL9) 2ho] 4l o A Al F T

105

Extending and Embedding Python, &] | A 3.7.17

106 Appendix D. 24

1z
2

Non-alphabetical

A |

2to3,71

>>> 71

_ future_ ,75
__slots_ ,81

A

abstract base class (4 Hlo|2x), 71

annotation (o] = H| o] A), 71

argument (¢1#}), 71

asynchronous context manager (H]% 7] 7=
2E A A, 72

asynchronous generator (H]% 7] A& o]),
72

asynchronous generator iterator (H|%§ 7]
A ol g ol el o H), 72

asynchronous iterable (H]Z 7] o|E & &), 72

asynchronous iterator (H]% 7] o] € # °]H),72

attribute (A]EZHE), 72

awaitable (9Jfl°|HE), 72

B

BDFL, 72

binary file (d}°]\ g 5}Y), 72
bytecode (H}o]|E T &), 73

bytes-like object (Hfo]ELF AA)), 72

C

C-contiguous, 73

class (28 2), 73

class variable (E 2 W¥H4), 73
coercion (Zo]A), 73

complex number (B49),73

context manager (ZAHX2E #e]A}), 73
context variable (FAEHAE WS), 73
contiguous (9%), 73

coroutine (Z5H), 73

coroutine function (ZFH &), 73

CPython, 73

D

deallocation, object,5l
decorator (HZd|°]g), 73
descriptor (23 HE]), 74
dictionary (944 &), 74
dictionary view (94 \4yzg 1), 74
docstring (5EA~EH), 74
duck-typing (4 E}°]3), 74

E

EAFP, 74
expression (X3¢ 4]), 74
extension module (3% E§&), 74

F

f-string (FEAFY), 74

file object (<Y AA), 74

file—like object (< F AA), 75
finalization, of objects,5l

finder (3} H), 75

floor division (A4 Y=A), 75

Fortran contiguous, 73

function (&), 75

function annotation (& o]k H|o]A), 75

G

garbage collection (7FH]A] 7)), 75

generator, 75

generator (AU # o] ¥), 75

generator expression,75

generator expression (AU d o8 &&4]), 75

generator iterator (AU @ o]¥ o] E# o] H),
75

generic function (AY]E <), 76

GIL, 76

global interpreter lock (<Y <A¥ =g H
=),76

107

Extending and Embedding Python, &] | A 3.7.17

H
hash-based pyc (G} A] 714k pyc), 76
hashable (3] A] 7}%), 76

IDLE, 76

immutable (%), 76

import path(YZE F =), 76

importer (YEE), 76

importing (YEH), 76

interactive (t)3-3), 76

interpreted (A E Z 2 E| L), 76
interpreter shutdown (JEZZEH £8),77
iterable (9] & &), 77

iterator (o] €@ o] ¥), 77

K

key function (7] &), 77
keyword argument (7|9 = QAAP), 77

L

lambda (¥1}), 77

LBYL, 77

list (B|2E), 78

list comprehension (BAE HZ23A), 78
loader (£4H), 78

M

magic
method, 78
magic method (W] 2 WA &), 78
mapping (W133), 78
meta path finder (WE} F & 5121 0), 78
metaclass (HEF 23 2), 78
method
magic, 78
special, 82
method (WA =), 78
method resolution order (WA E Z2A
78
module (&), 78
module spec (RE £ d) 78
MRO, 78
mutable (7}9), 78

N

named tuple (MUY= 5&),78
namespace (°]& 271,79
namespace package (]S Z'7PJH7]X]) 79

/\
jLE

deallocation, 51
finalization, 5l
object (AA)), 79

P

package (3] 7] X)), 79

parameter (W7, 79

path based finder (AZ 7]¥l 15}2lt), 80
path entry (= AE2), 80

path entry finder (AZ AEZ 3+2H), 80
path entry hook (BE JdEZ £), 80
path-like object (FEZF ZAA), 80
PEP, 80

Philbrick, Geoff, 15

portion (E4), 80

positional argument (§ %] <A}, 80
provisional API (Z+A API), 80
provisional package (FA 1]7]A)), 81
PyArg_ParseTuple (), 14
PyArg_ParseTupleAndKeywords (), 15
PyErr_Fetch (), 51

PyErr_Restore (), 51
PyInit_modulename (C &), 59
PyObject_CallObject (), 12

Python 3000 (3}o] % 3000), 81
Pythonic (3}o] i t}2), 81

PYTHONPATH, 59

Q

qualified name (F4184 ©]&), 81

R

READ_RESTRICTED, 54

READONLY, 54

reference count (FZ 34$), 81
regular package (BT 3 7] X)), 81

repr
Wg g, 52
RESTRICTED, 54

sequence (A|#A2), 81
single dispatch (A& Y
slice (£8}o]2), 82
special

method, 82
special method (54
statement (£3), 82

23 %)), 82

HA=), 82

N9 Amm string
nested scope (33 i) object representation,52
new-style class (F2EY %"EH/\) 79
object text encoding (HlAE <917 1), 82
108 Al

Extending and Embedding Python, &]] A 3.7.17

text file (Hl2E 5}4), 82

triple—-quoted string (4= w21 d £x19),
82

type (3), 82

type alias (3 o delo]x), 82

type hint (3 31 E), 82

U

universal newlines (U = 37), 83

Vv

variable annotation (4 o] xH|o]A), 83
virtual environment (7} 37), 83
virtual machine (Z7}A 7] A), 83

W

WRITE_RESTRICTED, 54

X
Rk

nt

S
ZaN
repr, 52

Y

sho] % FFAF A <F
PEP 1,80
PEP 238,75
PEP 278,83
PEP 302,75,78
PEP 343,73
PEP 362,72,80
PEP 411, 8l
PEP 420,75,79, 80
PEP 442,52
PEP 443,76
PEP 451,75
PEP 484,71,75, 82,83
PEP 489,11,59
PEP 492,72,73
PEP 498,74
PEP 519, 80
PEP 525,72
PEP 526,71,83
PEP 3116,83
PEP 3155, 81

A W
PYTHONPATH, 59

N

Zen of Python (Fo]H Al), 83

=
ro

109

	권장 제삼자 도구
	제삼자 도구 없이 확장 만들기
	Extending Python with C or C++
	Defining Extension Types: Tutorial
	Defining Extension Types: Assorted Topics
	C와 C++ 확장 빌드하기
	윈도우에서 C와 C++ 확장 빌드하기

	더 큰 응용 프로그램에 CPython 런타임을 내장하기
	다른 응용 프로그램에 파이썬 내장하기

	용어집
	이 설명서에 관하여
	파이썬 설명서의 공헌자들

	역사와 라이센스
	소프트웨어의 역사
	파이썬에 액세스하거나 사용하기 위한 이용 약관
	포함된 소프트웨어에 대한 라이센스 및 승인

	저작권
	색인

