Python Frequently Asked Questions
E2A WA 3.7.17

Guido van Rossum
and the Python development team

6< 28, 2023

Contents

>

o a =

1=

General Python FAQ 1
Programming FAQ 9
Design and History FAQ 39
Library and Extension FAQ 53
737 FAQ 65
Python on Windows FAQ 73
222 A AL Qe o] & FAQ 79
«o) ol ol o] A\ o] YLU712" FAQ 83
gol7 85
SELEE RS 99
o A}e} o)Al ~ 101
24 119

ol 121

CHAPTER 1

General Python FAQ

1.1 General Information

1.1.1 What is Python?

Python is an interpreted, interactive, object-oriented programming language. It incorporates modules, exceptions, dy-
namic typing, very high level dynamic data types, and classes. Python combines remarkable power with very clear syntax.
It has interfaces to many system calls and libraries, as well as to various window systems, and is extensible in C or C++.
It is also usable as an extension language for applications that need a programmable interface. Finally, Python is portable:
it runs on many Unix variants, on the Mac, and on Windows 2000 and later.

To find out more, start with tutorial-index. The Beginner’s Guide to Python links to other introductory tutorials and
resources for learning Python.

1.1.2 What is the Python Software Foundation?

The Python Software Foundation is an independent non-profit organization that holds the copyright on Python versions
2.1 and newer. The PSF’s mission is to advance open source technology related to the Python programming language
and to publicize the use of Python. The PSF’s home page is at https://www.python.org/psf/.

Donations to the PSF are tax-exempt in the US. If you use Python and find it helpful, please contribute via the PSF
donation page.

https://wiki.python.org/moin/BeginnersGuide
https://www.python.org/psf/
https://www.python.org/psf/donations/
https://www.python.org/psf/donations/

Python Frequently Asked Questions, = x] 1] A 3.7.17

1.1.3 Are there copyright restrictions on the use of Python?

You can do anything you want with the source, as long as you leave the copyrights in and display those copyrights in any
documentation about Python that you produce. If you honor the copyright rules, it’s OK to use Python for commercial
use, to sell copies of Python in source or binary form (modified or unmodified), or to sell products that incorporate Python
in some form. We would still like to know about all commercial use of Python, of course.

See the PSF license page to find further explanations and a link to the full text of the license.

The Python logo is trademarked, and in certain cases permission is required to use it. Consult the Trademark Usage
Policy for more information.

1.1.4 Why was Python created in the first place?

Here’s a very brief summary of what started it all, written by Guido van Rossum:

I had extensive experience with implementing an interpreted language in the ABC group at CWI, and from
working with this group I had learned a lot about language design. This is the origin of many Python fea-
tures, including the use of indentation for statement grouping and the inclusion of very-high-level data types
(although the details are all different in Python).

I had a number of gripes about the ABC language, but also liked many of its features. It was impossible to
extend the ABC language (or its implementation) to remedy my complaints — in fact its lack of extensibility
was one of its biggest problems. I had some experience with using Modula-2+ and talked with the designers
of Modula-3 and read the Modula-3 report. Modula-3 is the origin of the syntax and semantics used for
exceptions, and some other Python features.

I was working in the Amoeba distributed operating system group at CWI. We needed a better way to do
system administration than by writing either C programs or Bourne shell scripts, since Amoeba had its own
system call interface which wasn’t easily accessible from the Bourne shell. My experience with error handling
in Amoeba made me acutely aware of the importance of exceptions as a programming language feature.

It occurred to me that a scripting language with a syntax like ABC but with access to the Amoeba system
calls would fill the need. I realized that it would be foolish to write an Amoeba-specific language, so I decided
that I needed a language that was generally extensible.

During the 1989 Christmas holidays, I had a lot of time on my hand, so I decided to give it a try. During
the next year, while still mostly working on it in my own time, Python was used in the Amoeba project with
increasing success, and the feedback from colleagues made me add many early improvements.

In February 1991, after just over a year of development, I decided to post to USENET. The rest is in the
Misc/HISTORY file.

1.1.5 What is Python good for?

Python is a high-level general-purpose programming language that can be applied to many different classes of problems.

The language comes with a large standard library that covers areas such as string processing (regular expressions, Uni-
code, calculating differences between files), Internet protocols (HTTP, FTP, SMTP, XML-RPC, POP, IMAP, CGI
programming), software engineering (unit testing, logging, profiling, parsing Python code), and operating system inter-
faces (system calls, filesystems, TCP/IP sockets). Look at the table of contents for library-index to get an idea of what’s
available. A wide variety of third-party extensions are also available. Consult the Python Package Index to find packages
of interest to you.

2 Chapter 1. General Python FAQ

https://www.python.org/psf/license/
https://www.python.org/psf/trademarks/
https://www.python.org/psf/trademarks/
https://pypi.org

Python Frequently Asked Questions, = x] 1] A 3.7.17

1.1.6 How does the Python version numbering scheme work?

Python versions are numbered A.B.C or A.B. A is the major version number — it is only incremented for really major
changes in the language. B is the minor version number, incremented for less earth-shattering changes. C is the micro-level
— it is incremented for each bugfix release. See PEP 6 for more information about bugfix releases.

Not all releases are bugfix releases. In the run-up to a new major release, a series of development releases are made,
denoted as alpha, beta, or release candidate. Alphas are early releases in which interfaces aren’t yet finalized; it’s not
unexpected to see an interface change between two alpha releases. Betas are more stable, preserving existing interfaces
but possibly adding new modules, and release candidates are frozen, making no changes except as needed to fix critical
bugs.

Alpha, beta and release candidate versions have an additional suffix. The suffix for an alpha version is “aN” for some small
number N, the suffix for a beta version is “bN” for some small number N, and the suffix for a release candidate version
is “cN” for some small number N. In other words, all versions labeled 2.0aN precede the versions labeled 2.0bN, which
precede versions labeled 2.0cN, and those precede 2.0.

You may also find version numbers with a “+” suffix, e.g. “2.2+”. These are unreleased versions, built directly from the
CPython development repository. In practice, after a final minor release is made, the version is incremented to the next
minor version, which becomes the “a0” version, e.g. “2.4a0”.

See also the documentation for sys.version, sys.hexversion,and sys.version_info.

1.1.7 How do | obtain a copy of the Python source?
The latest Python source distribution is always available from python.org, at https://www.python.org/downloads/. The
latest development sources can be obtained at https://github.com/python/cpython/.

The source distribution is a gzipped tar file containing the complete C source, Sphinx-formatted documentation, Python
library modules, example programs, and several useful pieces of freely distributable software. The source will compile
and run out of the box on most UNIX platforms.

Consult the Getting Started section of the Python Developer’s Guide for more information on getting the source code and
compiling it.

1.1.8 How do | get documentation on Python?

The standard documentation for the current stable version of Python is available at https://docs.python.org/3/. PDF, plain
text, and downloadable HTML versions are also available at https://docs.python.org/3/download.html.

The documentation is written in reStructuredText and processed by the Sphinx documentation tool. The reStructuredText
source for the documentation is part of the Python source distribution.

1.1.9 I’ve never programmed before. Is there a Python tutorial?

There are numerous tutorials and books available. The standard documentation includes tutorial-index.

Consult the Beginner’s Guide to find information for beginning Python programmers, including lists of tutorials.

1.1. General Information 3

https://www.python.org/dev/peps/pep-0006
https://www.python.org/downloads/
https://github.com/python/cpython/
https://devguide.python.org/setup/
https://docs.python.org/3/
https://docs.python.org/3/download.html
http://sphinx-doc.org/
https://wiki.python.org/moin/BeginnersGuide

Python Frequently Asked Questions, = x] 1] A 3.7.17

1.1.10 Is there a newsgroup or mailing list devoted to Python?

There is a newsgroup, comp . lang. python, and a mailing list, python-list. The newsgroup and mailing list are gate-
wayed into each other — if you can read news it’s unnecessary to subscribe to the mailing list. comp. lang.pythonis
high-traffic, receiving hundreds of postings every day, and Usenet readers are often more able to cope with this volume.

Announcements of new software releases and events can be found in comp.lang.python.announce, a low-traffic moderated
list that receives about five postings per day. It’s available as the python-announce mailing list.

More info about other mailing lists and newsgroups can be found at https://www.python.org/community/lists/.

1.1.11 How do | get a beta test version of Python?

Alpha and beta releases are available from https://www.python.org/downloads/. All releases are announced on the
comp.lang.python and comp.lang.python.announce newsgroups and on the Python home page at https://www.python.org/;
an RSS feed of news is available.

You can also access the development version of Python through Git. See The Python Developer’s Guide for details.

1.1.12 How do | submit bug reports and patches for Python?

To report a bug or submit a patch, please use the Roundup installation at https://bugs.python.org/.

You must have a Roundup account to report bugs; this makes it possible for us to contact you if we have follow-up
questions. It will also enable Roundup to send you updates as we act on your bug. If you had previously used SourceForge
to report bugs to Python, you can obtain your Roundup password through Roundup’s password reset procedure.

For more information on how Python is developed, consult the Python Developer’s Guide.

1.1.13 Are there any published articles about Python that | can reference?

It’s probably best to cite your favorite book about Python.
The very first article about Python was written in 1991 and is now quite outdated.

Guido van Rossum and Jelke de Boer, “Interactively Testing Remote Servers Using the Python Programming
Language”, CWI Quarterly, Volume 4, Issue 4 (December 1991), Amsterdam, pp 283-303.

1.1.14 Are there any books on Python?
Yes, there are many, and more are being published. See the python.org wiki at https://wiki.python.org/moin/PythonBooks
for a list.

You can also search online bookstores for “Python” and filter out the Monty Python references; or perhaps search for
“Python” and “language”.

4 Chapter 1. General Python FAQ

https://mail.python.org/mailman/listinfo/python-list
https://mail.python.org/mailman/listinfo/python-announce-list
https://www.python.org/community/lists/
https://www.python.org/downloads/
https://www.python.org/
https://devguide.python.org/
https://bugs.python.org/
https://bugs.python.org/user?@template=forgotten
https://devguide.python.org/
https://wiki.python.org/moin/PythonBooks

Python Frequently Asked Questions, = x] 1] A 3.7.17

1.1.15 Where in the world is www.python.org located?

The Python project’s infrastructure is located all over the world and is managed by the Python Infrastructure Team.
Details here.

1.1.16 Why is it called Python?

When he began implementing Python, Guido van Rossum was also reading the published scripts from “Monty Python’
s Flying Circus”, a BBC comedy series from the 1970s. Van Rossum thought he needed a name that was short, unique,
and slightly mysterious, so he decided to call the language Python.

1.1.17 Do | have to like “Monty Python’s Flying Circus”?

No, but it helps. :)

1.2 Python in the real world

1.2.1 How stable is Python?

Very stable. New, stable releases have been coming out roughly every 6 to 18 months since 1991, and this seems likely
to continue. Currently there are usually around 18 months between major releases.

The developers issue “bugfix” releases of older versions, so the stability of existing releases gradually improves. Bugfix
releases, indicated by a third component of the version number (e.g. 3.5.3, 3.6.2), are managed for stability; only fixes
for known problems are included in a bugfix release, and it’s guaranteed that interfaces will remain the same throughout
a series of bugfix releases.

The latest stable releases can always be found on the Python download page. There are two production-ready versions of
Python: 2.x and 3.x. The recommended version is 3.x, which is supported by most widely used libraries. Although 2.x is
still widely used, it will not be maintained after January 1, 2020.

1.2.2 How many people are using Python?

There are probably tens of thousands of users, though it’s difficult to obtain an exact count.

Python is available for free download, so there are no sales figures, and it’s available from many different sites and packaged
with many Linux distributions, so download statistics don’t tell the whole story either.

The comp.lang.python newsgroup is very active, but not all Python users post to the group or even read it.

1.2.3 Have any significant projects been done in Python?

See https://www.python.org/about/success for a list of projects that use Python. Consulting the proceedings for past
Python conferences will reveal contributions from many different companies and organizations.

High-profile Python projects include the Mailman mailing list manager and the Zope application server. Several Linux
distributions, most notably Red Hat, have written part or all of their installer and system administration software in Python.
Companies that use Python internally include Google, Yahoo, and Lucasfilm Ltd.

1.2. Python in the real world 5

http://infra.psf.io
https://en.wikipedia.org/wiki/Monty_Python
https://en.wikipedia.org/wiki/Monty_Python
https://www.python.org/downloads/
https://www.python.org/dev/peps/pep-0373/
https://www.python.org/about/success
https://www.python.org/community/workshops/
https://www.python.org/community/workshops/
http://www.list.org
http://www.zope.org
https://www.redhat.com

Python Frequently Asked Questions, = x] 1] A 3.7.17

1.2.4 What new developments are expected for Python in the future?

See https://www.python.org/dev/peps/ for the Python Enhancement Proposals (PEPs). PEPs are design documents de-
scribing a suggested new feature for Python, providing a concise technical specification and a rationale. Look for a PEP
titled “Python X.Y Release Schedule”, where X.Y is a version that hasn’t been publicly released yet.

New development is discussed on the python-dev mailing list.

1.2.5 Is it reasonable to propose incompatible changes to Python?

In general, no. There are already millions of lines of Python code around the world, so any change in the language
that invalidates more than a very small fraction of existing programs has to be frowned upon. Even if you can provide a
conversion program, there’s still the problem of updating all documentation; many books have been written about Python,
and we don’t want to invalidate them all at a single stroke.

Providing a gradual upgrade path is necessary if a feature has to be changed. PEP 5 describes the procedure followed
for introducing backward-incompatible changes while minimizing disruption for users.

1.2.6 Is Python a good language for beginning programmers?

Yes.

It is still common to start students with a procedural and statically typed language such as Pascal, C, or a subset of C++
or Java. Students may be better served by learning Python as their first language. Python has a very simple and consistent
syntax and a large standard library and, most importantly, using Python in a beginning programming course lets students
concentrate on important programming skills such as problem decomposition and data type design. With Python, students
can be quickly introduced to basic concepts such as loops and procedures. They can probably even work with user-defined
objects in their very first course.

For a student who has never programmed before, using a statically typed language seems unnatural. It presents additional
complexity that the student must master and slows the pace of the course. The students are trying to learn to think like a
computer, decompose problems, design consistent interfaces, and encapsulate data. While learning to use a statically typed
language is important in the long term, it is not necessarily the best topic to address in the students’ first programming
course.

Many other aspects of Python make it a good first language. Like Java, Python has a large standard library so that
students can be assigned programming projects very early in the course that do something. Assignments aren’t restricted
to the standard four-function calculator and check balancing programs. By using the standard library, students can gain
the satisfaction of working on realistic applications as they learn the fundamentals of programming. Using the standard
library also teaches students about code reuse. Third-party modules such as PyGame are also helpful in extending the
students’ reach.

Python’s interactive interpreter enables students to test language features while they’re programming. They can keep a
window with the interpreter running while they enter their program’s source in another window. If they can’t remember
the methods for a list, they can do something like this:

>>> L = []

>>> dir (L)

['_add__', '__class__ ', '_ _contains_ ', '_ _delattr__ ', '_ delitem_ ',
' dir__ ', '__doc__', '_eq ', '__format__', '_ge__"',
'__getattribute__', '__getitem__', '_gt__ ', '__hash__', '__iadd__"',

' dimul_ ', '__init__ ', '__iter_ ', '_le_ ', '_len_ ', '__1t_ "',

' mul_ ', '_ne_ ', '_new__', '__reduce__ ', '_ _reduce_ex__ ',

' _repr__ ', '__reversed__ ', '__rmul__', '__setattr__', '__setitem__',

' _sizeof_ ', '__str__ ', '__subclasshook__"', 'append', 'clear',

(TF= ol ATl A%)

6 Chapter 1. General Python FAQ

https://www.python.org/dev/peps/
https://mail.python.org/mailman/listinfo/python-dev/
https://www.python.org/dev/peps/pep-0005

Python Frequently Asked Questions, = x] 1] A 3.7.17

(o] A sl o] A A M A%)

'copy', 'count', 'extend', 'index', 'insert', 'pop', 'remove',

'reverse', 'sort']

>>> [d for d in dir (L) if ' ' not in d]

["append', 'clear', 'copy', 'count', 'extend', 'index', 'insert', 'pop', 'remove',
—'reverse', 'sort']

>>> help (L.append)
Help on built-in function append:

append (...)
L.append (object) —-> None —-- append object to end

>>> L.append (1)
>>> L,

[1]

With the interpreter, documentation is never far from the student as they are programming.

There are also good IDEs for Python. IDLE is a cross-platform IDE for Python that is written in Python using Tkinter.
PythonWin is a Windows-specific IDE. Emacs users will be happy to know that there is a very good Python mode for
Emacs. All of these programming environments provide syntax highlighting, auto-indenting, and access to the interactive
interpreter while coding. Consult the Python wiki for a full list of Python editing environments.

If you want to discuss Python’s use in education, you may be interested in joining the edu-sig mailing list.

1.2. Python in the real world 7

https://wiki.python.org/moin/PythonEditors
https://www.python.org/community/sigs/current/edu-sig

Python Frequently Asked Questions, = x] 1] A 3.7.17

8 Chapter 1. General Python FAQ

CHAPTER 2

Programming FAQ

2.1 General Questions

2.1.1 Isthere a source code level debugger with breakpoints, single-stepping, etc.?

Yes.

Several debuggers for Python are described below, and the built-in function breakpoint () allows you to drop into
any of them.

The pdb module is a simple but adequate console-mode debugger for Python. It is part of the standard Python library,
and is documented in the Library Reference Manual. You can also write your own debugger by using
the code for pdb as an example.

The IDLE interactive development environment, which is part of the standard Python distribution (normally available as
Tools/scripts/idle), includes a graphical debugger.

PythonWin is a Python IDE that includes a GUI debugger based on pdb. The Pythonwin debugger colors breakpoints
and has quite a few cool features such as debugging non-Pythonwin programs. Pythonwin is available as part of the
Python for Windows Extensions project and as a part of the ActivePython distribution (see https://www.activestate.com/
activepython).

Boa Constructor is an IDE and GUI builder that uses wxWidgets. It offers visual frame creation and manipulation,
an object inspector, many views on the source like object browsers, inheritance hierarchies, doc string generated html
documentation, an advanced debugger, integrated help, and Zope support.

Eric is an IDE built on PyQt and the Scintilla editing component.

Pydb is a version of the standard Python debugger pdb, modified for use with DDD (Data Display Debugger), a popular
graphical debugger front end. Pydb can be found at http://bashdb.sourceforge.net/pydb/ and DDD can be found at
https://www.gnu.org/software/ddd.

There are a number of commercial Python IDEs that include graphical debuggers. They include:
* Wing IDE (https://wingware.com/)
* Komodo IDE (https://komodoide.com/)

https://sourceforge.net/projects/pywin32/
https://www.activestate.com/activepython
https://www.activestate.com/activepython
http://boa-constructor.sourceforge.net/
http://eric-ide.python-projects.org/
http://bashdb.sourceforge.net/pydb/
https://www.gnu.org/software/ddd
https://wingware.com/
https://komodoide.com/

Python Frequently Asked Questions, = x] 1] A 3.7.17

e PyCharm (https://www.jetbrains.com/pycharm/)

2.1.2 Is there a tool to help find bugs or perform static analysis?

Yes.

PyChecker is a static analysis tool that finds bugs in Python source code and warns about code complexity and style. You
can get PyChecker from http://pychecker.sourceforge.net/.

Pylint is another tool that checks if a module satisfies a coding standard, and also makes it possible to write plug-ins to add
a custom feature. In addition to the bug checking that PyChecker performs, Pylint offers some additional features such
as checking line length, whether variable names are well-formed according to your coding standard, whether declared
interfaces are fully implemented, and more. https://docs.pylint.org/ provides a full list of Pylint’s features.

Static type checkers such as Mypy, Pyre, and Pytype can check type hints in Python source code.

2.1.3 How can | create a stand-alone binary from a Python script?

You don’t need the ability to compile Python to C code if all you want is a stand-alone program that users can download
and run without having to install the Python distribution first. There are a number of tools that determine the set of
modules required by a program and bind these modules together with a Python binary to produce a single executable.

One is to use the freeze tool, which is included in the Python source tree as Tools/freeze. It converts Python byte
code to C arrays; a C compiler you can embed all your modules into a new program, which is then linked with the standard
Python modules.

It works by scanning your source recursively for import statements (in both forms) and looking for the modules in the
standard Python path as well as in the source directory (for built-in modules). It then turns the bytecode for modules
written in Python into C code (array initializers that can be turned into code objects using the marshal module) and
creates a custom-made config file that only contains those built-in modules which are actually used in the program. It then
compiles the generated C code and links it with the rest of the Python interpreter to form a self-contained binary which
acts exactly like your script.

Obviously, freeze requires a C compiler. There are several other utilities which don’t. One is Thomas Heller’s py2exe
(Windows only) at

http://www.py2exe.org/
Another tool is Anthony Tuininga’s cx_Freeze.

2.1.4 Are there coding standards or a style guide for Python programs?

Yes. The coding style required for standard library modules is documented as PEP 8.

2.2 Core Language

2.2.1 Why am | getting an UnboundLocalError when the variable has a value?

It can be a surprise to get the UnboundLocalError in previously working code when it is modified by adding an assignment
statement somewhere in the body of a function.

This code:

10 Chapter 2. Programming FAQ

https://www.jetbrains.com/pycharm/
http://pychecker.sourceforge.net/
https://www.pylint.org/
https://docs.pylint.org/
http://mypy-lang.org/
https://pyre-check.org/
https://github.com/google/pytype
http://www.py2exe.org/
https://anthony-tuininga.github.io/cx_Freeze/
https://www.python.org/dev/peps/pep-0008

Python Frequently Asked Questions, = x] 1] A 3.7.17

>>> x = 10

>>> def bar():
print (x)

>>> bar ()

10

works, but this code:

>>> x = 10

>>> def foo():
print (x)
x += 1

results in an UnboundLocalError:

>>> foo ()
Traceback (most recent call last):

UnboundLocalError: local variable 'x' referenced before assignment

This is because when you make an assignment to a variable in a scope, that variable becomes local to that scope and
shadows any similarly named variable in the outer scope. Since the last statement in foo assigns a new value to x, the
compiler recognizes it as a local variable. Consequently when the earlier print (x) attempts to print the uninitialized
local variable and an error results.

In the example above you can access the outer scope variable by declaring it global:

>>> x = 10

>>> def foobar():
global x
print (x)

C x += 1

>>> foobar ()

10

This explicit declaration is required in order to remind you that (unlike the superficially analogous situation with class and
instance variables) you are actually modifying the value of the variable in the outer scope:

>>> print (x)
11

You can do a similar thing in a nested scope using the nonlocal keyword:

>>> def fool():

x = 10
def bar():
nonlocal x
print (x)
X += 1
bar ()
print (x)
>>> foo ()
10
11

2.2. Core Language 11

Python Frequently Asked Questions, = x] 1] A 3.7.17

2.2.2 What are the rules for local and global variables in Python?

In Python, variables that are only referenced inside a function are implicitly global. If a variable is assigned a value
anywhere within the function’s body, it’s assumed to be a local unless explicitly declared as global.

Though a bit surprising at first, a moment’s consideration explains this. On one hand, requiring global for assigned
variables provides a bar against unintended side-effects. On the other hand, if global was required for all global
references, you’d be using global all the time. You’d have to declare as global every reference to a built-in function
or to a component of an imported module. This clutter would defeat the usefulness of the global declaration for
identifying side-effects.

2.2.3 Why do lambdas defined in a loop with different values all return the same
result?

Assume you use a for loop to define a few different lambdas (or even plain functions), e.g.:

>>> squares = []
>>> for x in range(5):
squares.append (lambda: x**2)

This gives you a list that contains 5 lambdas that calculate x* *2. You might expect that, when called, they would return,
respectively, 0, 1, 4, 9, and 1 6. However, when you actually try you will see that they all return 1 6:

>>> squares|[2] ()
16
>>> squares[4] ()
16

This happens because x is not local to the lambdas, but is defined in the outer scope, and it is accessed when the lambda
is called — not when it is defined. At the end of the loop, the value of x is 4, so all the functions now return 4**2, i.e.
16. You can also verify this by changing the value of x and see how the results of the lambdas change:

>>> x = 8
>>> squares[2] ()
64

In order to avoid this, you need to save the values in variables local to the lambdas, so that they don’t rely on the value of
the global x:

>>> squares = []
>>> for x in range(5):
squares.append (lambda n=x: n**2)

Here, n=x creates a new variable n local to the lambda and computed when the lambda is defined so that it has the same
value that x had at that point in the loop. This means that the value of n will be 0 in the first lambda, 1 in the second, 2
in the third, and so on. Therefore each lambda will now return the correct result:

>>> squares|[2] ()
4

>>> squares[4] ()
16

Note that this behaviour is not peculiar to lambdas, but applies to regular functions too.

12 Chapter 2. Programming FAQ

Python Frequently Asked Questions, = x] 1] A 3.7.17

2.2.4 How do | share global variables across modules?

The canonical way to share information across modules within a single program is to create a special module (often called
config or cfg). Just import the config module in all modules of your application; the module then becomes available as
a global name. Because there is only one instance of each module, any changes made to the module object get reflected
everywhere. For example:

config.py:

x =0 # Default value of the 'x' configuration setting
mod.py:

import config

config.x = 1

main.py:

import config
import mod
print (config.x)

Note that using a module is also the basis for implementing the Singleton design pattern, for the same reason.

2.2.5 What are the “best practices” for using import in a module?

In general, don’t use from modulename import *. Doing so clutters the importer’s namespace, and makes it
much harder for linters to detect undefined names.

Import modules at the top of a file. Doing so makes it clear what other modules your code requires and avoids questions
of whether the module name is in scope. Using one import per line makes it easy to add and delete module imports, but
using multiple imports per line uses less screen space.

It’s good practice if you import modules in the following order:
1. standard library modules — e.g. sys, os, getopt, re

2. third-party library modules (anything installed in Python’s site-packages directory) — e.g. mx.DateTime, ZODB,
PIL.Image, etc.

3. locally-developed modules

It is sometimes necessary to move imports to a function or class to avoid problems with circular imports. Gordon McMillan
says:

Circular imports are fine where both modules use the “import <module>" form of import. They fail when
the 2nd module wants to grab a name out of the first (“from module import name’) and the import is at the
top level. That’s because names in the 1st are not yet available, because the first module is busy importing
the 2nd.

In this case, if the second module is only used in one function, then the import can easily be moved into that function. By
the time the import is called, the first module will have finished initializing, and the second module can do its import.

It may also be necessary to move imports out of the top level of code if some of the modules are platform-specific. In
that case, it may not even be possible to import all of the modules at the top of the file. In this case, importing the correct
modules in the corresponding platform-specific code is a good option.

Only move imports into a local scope, such as inside a function definition, if it’s necessary to solve a problem such as
avoiding a circular import or are trying to reduce the initialization time of a module. This technique is especially helpful
if many of the imports are unnecessary depending on how the program executes. You may also want to move imports into

2.2. Core Language 13

Python Frequently Asked Questions, = x] 1] A 3.7.17

a function if the modules are only ever used in that function. Note that loading a module the first time may be expensive
because of the one time initialization of the module, but loading a module multiple times is virtually free, costing only
a couple of dictionary lookups. Even if the module name has gone out of scope, the module is probably available in
sys.modules.

2.2.6 Why are default values shared between objects?

This type of bug commonly bites neophyte programmers. Consider this function:

def foo (mydict={}): # Danger: shared reference to one dict for all calls
compute something
mydict [key] = value

return mydict

The first time you call this function, mydict contains a single item. The second time, mydict contains two items
because when foo () begins executing, mydict starts out with an item already in it.

It is often expected that a function call creates new objects for default values. This is not what happens. Default values
are created exactly once, when the function is defined. If that object is changed, like the dictionary in this example,
subsequent calls to the function will refer to this changed object.

By definition, immutable objects such as numbers, strings, tuples, and None, are safe from change. Changes to mutable
objects such as dictionaries, lists, and class instances can lead to confusion.

Because of this feature, it is good programming practice to not use mutable objects as default values. Instead, use None
as the default value and inside the function, check if the parameter is None and create a new list/dictionary/whatever if
it is. For example, don’t write:

def foo (mydict={}):

but:

def foo (mydict=None) :
if mydict is None:
mydict = {} # create a new dict for local namespace

This feature can be useful. When you have a function that’s time-consuming to compute, a common technique is to
cache the parameters and the resulting value of each call to the function, and return the cached value if the same value is
requested again. This is called “memoizing”, and can be implemented like this:

Callers can only provide two parameters and optionally pass _cache by keyword
def expensive(argl, arg2, *, _cache={}):
if (argl, arg2) in _cache:
return _cache|[(argl, arg2)]

Calculate the value

result = ... expensive computation ...

_cache|[(argl, arg2)] = result # Store result in the cache
return result

You could use a global variable containing a dictionary instead of the default value; it’s a matter of taste.

14 Chapter 2. Programming FAQ

Python Frequently Asked Questions, = x] 1] A 3.7.17

2.2.7 How can | pass optional or keyword parameters from one function to an-
other?

Collect the arguments using the * and * * specifiers in the function’s parameter list; this gives you the positional arguments
as a tuple and the keyword arguments as a dictionary. You can then pass these arguments when calling another function
by using * and * *:

def f(x, *args, **kwargs):
kwargs['width'] = "14.3c’

g(x, *args, **kwargs)

2.2.8 What is the difference between arguments and parameters?

Parameters are defined by the names that appear in a function definition, whereas arguments are the values actually passed
to a function when calling it. Parameters define what types of arguments a function can accept. For example, given the
function definition:

def func(foo, bar=None, **kwargs):
pass

foo, bar and kwargs are parameters of func. However, when calling func, for example:

func (42, bar=314, extra=somevar)

the values 42, 314, and somevar are arguments.

2.2.9 Why did changing list ‘y’ also change list ‘x’?

If you wrote code like:

>>>

=[]
>>> = x

>>> .append (10)

KK KX

>>>
[10]
>>> x
[10]

you might be wondering why appending an element to y changed x too.
There are two factors that produce this result:

1) Variables are simply names that refer to objects. Doing y = x doesn’t create a copy of the list — it creates a new
variable y that refers to the same object x refers to. This means that there is only one object (the list), and both x
and vy refer to it.

2) Lists are mutable, which means that you can change their content.

After the call to append (), the content of the mutable object has changed from [] to [10]. Since both the variables
refer to the same object, using either name accesses the modified value [10].

If we instead assign an immutable object to x:

2.2. Core Language 15

Python Frequently Asked Questions, = x] 1] A 3.7.17

>>> =5 # ints are immutable

>>> = X

x + 1 # 5 can't be mutated, we are creating a new object here

>>>

HKoX X
|

>>>

>>> y

we can see that in this case x and y are not equal anymore. This is because integers are immutable, and when we do x
= x + 1 we are not mutating the int 5 by incrementing its value; instead, we are creating a new object (the int 6) and
assigning it to x (that is, changing which object x refers to). After this assignment we have two objects (the ints 6 and 5)
and two variables that refer to them (x now refers to 6 but vy still refers to 5).

Some operations (for example vy . append (10) and y.sort ()) mutate the object, whereas superficially similar op-
erations (forexampley = y + [10] and sorted (y)) create a new object. In general in Python (and in all cases in
the standard library) a method that mutates an object will return None to help avoid getting the two types of operations
confused. So if you mistakenly write v . sort () thinking it will give you a sorted copy of y, you’ll instead end up with
None, which will likely cause your program to generate an easily diagnosed error.

However, there is one class of operations where the same operation sometimes has different behaviors with different types:
the augmented assignment operators. For example, += mutates lists but not tuples or ints (a_list += [1, 2, 3]
isequivalentto a_list.extend ([1, 2, 3]) and mutates a_list, whereas some_tuple += (1, 2, 3)
and some_int += 1 create new objects).

In other words:

* If we have a mutable object (List, dict, set, etc.), we can use some specific operations to mutate it and all the
variables that refer to it will see the change.

« If we have an immutable object (st r, int, tuple, etc.), all the variables that refer to it will always see the same
value, but operations that transform that value into a new value always return a new object.

If you want to know if two variables refer to the same object or not, you can use the is operator, or the built-in function
id ().

2.2.10 How do | write a function with output parameters (call by reference)?

Remember that arguments are passed by assignment in Python. Since assignment just creates references to objects, there’
s no alias between an argument name in the caller and callee, and so no call-by-reference per se. You can achieve the
desired effect in a number of ways.

1) By returning a tuple of the results:

def func2(a, Db):

a = 'new-value' # a and b are local names
b=Db + 1 # assigned to new objects
return a, b # return new values

x, y = 'old-value', 99

x, v = func2(x, vy)
print (x, vy) # output: new-value 100

This is almost always the clearest solution.
2) By using global variables. This isn’t thread-safe, and is not recommended.

3) By passing a mutable (changeable in-place) object:

16 Chapter 2. Programming FAQ

Python Frequently Asked Questions, = x] 1] A 3.7.17

def funcl(a):

al0] = "new-value' # 'a' references a mutable 1ist
alfl] = a[l1] + 1 # changes a shared object

args = ['old-value', 99]

funcl (args)

print (args([0], args[l1l]) # output: new-value 100

4) By passing in a dictionary that gets mutated:

def func3(args):

args(['a'] = 'new-value' # args 1is a mutable dictionary
args['b'] = args['b'] + 1 # change it in-place
args {'a': 'old-value', 'b': 99}

func3 (args)
print (args(['a'l, args['b'])

5) Or bundle up values in a class instance:

class callByRef:
def __init__ (self, **args):
for (key, value) in args.items():
setattr(self, key, value)

def func4 (args):
args.a = 'new-value' # args 1is a mutable callByRef
args.b = args.b + 1 # change object in-place

args = callByRef (a='old-value', b=99)
funci4 (args)
print (args.a, args.b)

There’s almost never a good reason to get this complicated.
Your best choice is to return a tuple containing the multiple results.

2.2.11 How do you make a higher order function in Python?

You have two choices: you can use nested scopes or you can use callable objects. For example, suppose you wanted to
define 1inear (a,b) which returns a function f (x) that computes the value a* x+b. Using nested scopes:

def linear(a, b):

def result (x):
return a * x + b

return result

Or using a callable object:

class linear:

def _ init_ (self, a, b):
self.a, self.b = a, b

def _ call_ (self, x):
return self.a * x + self.b

2.2. Core Language 17

Python Frequently Asked Questions, = x] 1] A 3.7.17

In both cases,

taxes = linear (0.3, 2)

gives a callable object where taxes (10e6) == 0.3 * 10e6 + 2.

The callable object approach has the disadvantage that it is a bit slower and results in slightly longer code. However, note
that a collection of callables can share their signature via inheritance:

class exponential (linear):
_ init__ inherited
def _ call_ (self, x):
return self.a * (x ** self.b)

Object can encapsulate state for several methods:

class counter:
value = 0

def set (self, x):
self.value = x

def up(self):
self.value = self.value + 1

def down (self):

self.value = self.value - 1
count = counter ()
inc, dec, reset = count.up, count.down, count.set

Here inc (), dec () and reset () act like functions which share the same counting variable.

2.2.12 How do | copy an object in Python?

In general, try copy . copy () or copy.deepcopy () for the general case. Not all objects can be copied, but most
can.

Some objects can be copied more easily. Dictionaries have a copy () method:

’newdict = olddict.copy ()

Sequences can be copied by slicing:

’new_l = 1[:]

18 Chapter 2. Programming FAQ

Python Frequently Asked Questions, = x] 1] A 3.7.17

2.2.13 How can | find the methods or attributes of an object?

For an instance x of a user-defined class, dir (x) returns an alphabetized list of the names containing the instance
attributes and methods and attributes defined by its class.

2.2.14 How can my code discover the name of an object?

Generally speaking, it can’t, because objects don’t really have names. Essentially, assignment always binds a name to a
value; the same is true of def and class statements, but in that case the value is a callable. Consider the following
code:

>>> class A:

pass
>>> B = A
>>> a = B()
>>> b = a

>>> print (b)
<__main__.A object at 0x16D07CC>
>>> print (a)
<__main__.A object at 0x16D07CC>

Arguably the class has a name: even though it is bound to two names and invoked through the name B the created instance
is still reported as an instance of class A. However, it is impossible to say whether the instance’s name is a or b, since
both names are bound to the same value.

Generally speaking it should not be necessary for your code to “know the names” of particular values. Unless you are
deliberately writing introspective programs, this is usually an indication that a change of approach might be beneficial.

In comp.lang.python, Fredrik Lundh once gave an excellent analogy in answer to this question:

The same way as you get the name of that cat you found on your porch: the cat (object) itself cannot tell you
its name, and it doesn’t really care — so the only way to find out what it’s called is to ask all your neighbours
(namespaces) if it’s their cat (object)---

--.and don’t be surprised if you’ll find that it’s known by many names, or no name at all!

2.2.15 What’s up with the comma operator’s precedence?

Comma is not an operator in Python. Consider this session:

>>> "a" in "b"’ "a"
(False, 'a')

Since the comma is not an operator, but a separator between expressions the above is evaluated as if you had entered:

’(nan in llbll)’ ngw

not:

"a" in ("b", nan)

The same is true of the various assignment operators (=, += etc). They are not truly operators but syntactic delimiters in
assignment statements.

2.2. Core Language 19

Python Frequently Asked Questions, = x] 1] A 3.7.17

2.2.16 Is there an equivalent of C’s “?:” ternary operator?

Yes, there is. The syntax is as follows:

[on_true] if [expression] else [on_false]

x, y = 50, 25
small = x if x < y else y

Before this syntax was introduced in Python 2.5, a common idiom was to use logical operators:

[expression] and [on_true] or [on_false]

However, this idiom is unsafe, as it can give wrong results when on_true has a false boolean value. Therefore, it is always
better tousethe ... if ... else ... form.

2.2.17 lIs it possible to write obfuscated one-liners in Python?

Yes. Usually this is done by nesting 1ambda within 1ambda. See the following three examples, due to Ulf Bartelt:

from functools import reduce

Primes < 1000
print (list (filter (None,map (lambda y:y*reduce (lambda x,y:x*y!=0,
map (lambda x,y=y:y%x,range (2, int (pow(y,0.5)+1))),1),range(2,1000)))))

First 10 Fibonaccl numbers
print (list (map (lambda x, f=lambda x,f: (f(x-1,f)+f(x-2,f)) if x>1 else 1:
f(x,£f), range(10))))

Mandelbrot set

print ((lambda Ru,Ro, Iu, Io, IM, Sx,Sy:reduce (lambda x,y:x+y,map (lambda vy,
Iu=Iu, Io=Io,Ru=Ru,Ro=Ro,Sy=Sy,L=lambda yc, Iu=Iu, Io=Io,Ru=Ru,Ro=Ro,1i=IM,
Sx=Sx, Sy=Sy:reduce (lambda x,y:x+y,map (lambda x,xc=Ru,yc=yc,Ru=Ru, Ro=Ro,
i=i, Sx=Sx,F=lambda xc,yc,x,vy,k, f=lambda xc,yc,x,v,k,f: (k<=0)or (x*x+y*y
>=4.0) or 1+f(xc,yc,x*x-y*y+xc,2.0*x*y+yc,k-1,f):f(xc,yc,x,y,k,f):chr(

64+F (Ru+x* (Ro-Ru) /Sx,yc,0,0,1)),range(Sx))) :L(Iut+ty* (Io—-Iu)/Sy), range (Sy
y))) (-2.1, 0.7, -1.2, 1.2, 30, 80, 24))

\ /S N\ /] / |___ lines on screen

v \% / / columns on screen

/ / / maximum of "iterations'

/ / range on y axis

/ range on x axis

Don’t try this at home, kids!

20 Chapter 2. Programming FAQ

Python Frequently Asked Questions, = x] 1] A 3.7.17

2.2.18 What does the slash(/) in the parameter list of a function mean?

A slash in the argument list of a function denotes that the parameters prior to it are positional-only. Positional-only
parameters are the ones without an externally-usable name. Upon calling a function that accepts positional-only parame-
ters, arguments are mapped to parameters based solely on their position. For example, pow () is a function that accepts
positional-only parameters. Its documentation looks like this:

>>> help (pow)
Help on built-in function pow in module builtins:

pow(x, y, z=None, /)
Equivalent to x**y (with two arguments) or x**y % z (with three arguments)

Some types, such as ints, are able to use a more efficient algorithm when
invoked using the three argument form.

The slash at the end of the parameter list means that all three parameters are positional-only. Thus, calling pow () with
keyword aguments would lead to an error:

>>> pow (x=3, y=4)
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
TypeError: pow() takes no keyword arguments

Note that as of this writing this is only documentational and no valid syntax in Python, although there is PEP 570, which
proposes a syntax for position-only parameters in Python.

2.3 Numbers and strings

2.3.1 How do | specify hexadecimal and octal integers?

To specify an octal digit, precede the octal value with a zero, and then a lower or uppercase “0”. For example, to set the
variable “a” to the octal value “10” (8 in decimal), type:

>>> a = 0010
>>> a
8

€y,

Hexadecimal is just as easy. Simply precede the hexadecimal number with a zero, and then a lower or uppercase “x”.
Hexadecimal digits can be specified in lower or uppercase. For example, in the Python interpreter:

>>> a = 0xab
>>> a

165

>>> b = 0XB2
>>> b

178

2.3. Numbers and strings 21

https://www.python.org/dev/peps/pep-0570

Python Frequently Asked Questions, = x] 1] A 3.7.17

2.3.2 Why does -22 // 10 return -3?

It’s primarily driven by the desire that 1 % j have the same sign as j. If you want that, and also want:

i= @ // 3 =3+ {1573

then integer division has to return the floor. C also requires that identity to hold, and then compilers that truncate 1 //
j need to make i % j have the same sign as 1.

There are few real use cases for i % j when 7 is negative. When j is positive, there are many, and in virtually all of

them it’s more useful for 1 % Jj tobe >= 0. If the clock says 10 now, what did it say 200 hours ago? -190 % 12
== 2isuseful; -190 % 12 == -10 is a bug waiting to bite.

2.3.3 How do | convert a string to a number?

For integers, use the built-in int () type constructor, e.g. int ('144') == 144. Similarly, float () converts to
floating-point, e.g. float ('144"') == 144.0.

By default, these interpret the number as decimal, so that int ('0144') == 144 and int ('0x144") raises
ValueError. int(string, base) takes the base to convert from as a second optional argument, so
int ('0x144"', 16) == 324. If the base is specified as 0, the number is interpreted using Python’s rules: a leading
‘0o’ indicates octal, and ‘Ox’ indicates a hex number.

Do not use the built-in function eval () if all you need is to convert strings to numbers. eval () will be significantly
slower and it presents a security risk: someone could pass you a Python expression that might have unwanted side effects.
For example, someone could pass __import__ ('os') .system("rm —-rf S$HOME") which would erase your
home directory.

eval () also has the effect of interpreting numbers as Python expressions, so that e.g. eval ('09') gives a syntax
error because Python does not allow leading ‘0’ in a decimal number (except ‘0’).

2.3.4 How do | convert a number to a string?

To convert, e.g., the number 144 to the string ‘144°, use the built-in type constructor st r () . If you want a hexadecimal or
octal representation, use the built-in functions hex () or oct () . For fancy formatting, see the f-strings and formatstrings
sections, e.g. "{:04d}".format (144) yields '0144"'and "{:.3f}".format (1.0/3.0) yields '0.333".

2.3.5 How do | modify a string in place?

You can’t, because strings are immutable. In most situations, you should simply construct a new string from the various
parts you want to assemble it from. However, if you need an object with the ability to modify in-place unicode data, try
using an 1o.StringIO object or the array module:

>>> import io

>>> s = "Hello, world"
>>> sio = i1i0.StringIO(s)
>>> sio.getvalue ()
'Hello, world'

>>> sio.seek (7)

5

>>> sio.write("there!")
6

>>> sio.getvalue ()
'Hello, there!'!

(TH& ST Aol A1)

22 Chapter 2. Programming FAQ

Python Frequently Asked Questions, = x] 1] A 3.7.17

(o] A sl o] A A M A%)

>>> import array

>>> a = array.array('u', s)
>>> print (a)

array('u', 'Hello, world'")
>>> a[0] = 'y’

>>> print (a)

array('u', 'yello, world'")
>>> a.tounicode ()

'vello, world'

2.3.6 How do | use strings to call functions/methods?

There are various techniques.

* The best is to use a dictionary that maps strings to functions. The primary advantage of this technique is that the
strings do not need to match the names of the functions. This is also the primary technique used to emulate a case
construct:

def al():
pass

def b():
pass

dispatch = {'go': a, 'stop': b} # Note lack of parens for funcs

dispatch[get_input ()] () # Note trailing parens to call function

Use the built-in function getattr ():

import foo
getattr (foo, 'bar') ()

Note that getattr () works on any object, including classes, class instances, modules, and so on.

This is used in several places in the standard library, like this:

class Foo:
def do_foo(self):

def do_bar(self):

f = getattr(foo_instance, 'do_' + opname)
£0

e Use locals () oreval () toresolve the function name:

def myFunc () :
print ("hello")

fname = "myFunc"

(TF= ol ATl A%)

2.3. Numbers and strings 23

Python Frequently Asked Questions, = x] 1] A 3.7.17

(o] A sl o] A A M A%)

f = locals () [fname]

f = eval (fname)

Note: Using eval () is slow and dangerous. If you don’t have absolute control over the contents of the string,
someone could pass a string that resulted in an arbitrary function being executed.

2.3.7 Is there an equivalent to Perl’s chomp() for removing trailing newlines from
strings?

Youcanuse S.rstrip ("\r\n") toremove all occurrences of any line terminator from the end of the string S without
removing other trailing whitespace. If the string S represents more than one line, with several empty lines at the end, the
line terminators for all the blank lines will be removed:

>>> lines = ("line 1 \r\n"
1] \r\nn

L. "\r\n")

>>> lines.rstrip("\n\zr")

'line 1 '

Since this is typically only desired when reading text one line at a time, using S. rstrip () this way works well.

2.3.8 Is there a scanf() or sscanf() equivalent?

Not as such.

For simple input parsing, the easiest approach is usually to split the line into whitespace-delimited words using the
split () method of string objects and then convert decimal strings to numeric values using int () or float ().
split () supports an optional “sep” parameter which is useful if the line uses something other than whitespace as a
separator.

For more complicated input parsing, regular expressions are more powerful than C’s sscanf () and better suited for
the task.

2.3.9 What does ‘UnicodeDecodeError’ or ‘UnicodeEncodeError’ error mean?

See the unicode-howto.

2.4 Performance

2.4.1 My program is too slow. How do | speed it up?

That’s a tough one, in general. First, here are a list of things to remember before diving further:
¢ Performance characteristics vary across Python implementations. This FAQ focuses on CPython.

* Behaviour can vary across operating systems, especially when talking about I/O or multi-threading.

24 Chapter 2. Programming FAQ

Python Frequently Asked Questions, = x] 1] A 3.7.17

* You should always find the hot spots in your program before attempting to optimize any code (see the profile
module).

» Writing benchmark scripts will allow you to iterate quickly when searching for improvements (see the t imeit
module).

¢ Itis highly recommended to have good code coverage (through unit testing or any other technique) before potentially
introducing regressions hidden in sophisticated optimizations.

That being said, there are many tricks to speed up Python code. Here are some general principles which go a long way
towards reaching acceptable performance levels:

¢ Making your algorithms faster (or changing to faster ones) can yield much larger benefits than trying to sprinkle
micro-optimization tricks all over your code.

» Use the right data structures. Study documentation for the bltin-types and the collections module.

* When the standard library provides a primitive for doing something, it is likely (although not guaranteed) to be
faster than any alternative you may come up with. This is doubly true for primitives written in C, such as builtins
and some extension types. For example, be sure to use either the 1ist.sort () built-in method or the related
sorted () function to do sorting (and see the sortinghowto for examples of moderately advanced usage).

* Abstractions tend to create indirections and force the interpreter to work more. If the levels of indirection outweigh
the amount of useful work done, your program will be slower. You should avoid excessive abstraction, especially
under the form of tiny functions or methods (which are also often detrimental to readability).

If you have reached the limit of what pure Python can allow, there are tools to take you further away. For example,
Cython can compile a slightly modified version of Python code into a C extension, and can be used on many different
platforms. Cython can take advantage of compilation (and optional type annotations) to make your code significantly
faster than when interpreted. If you are confident in your C programming skills, you can also write a C extension module
yourself.

o B

The wiki page devoted to performance tips.

2.4.2 What is the most efficient way to concatenate many strings together?

str and bytes objects are immutable, therefore concatenating many strings together is inefficient as each concatenation
creates a new object. In the general case, the total runtime cost is quadratic in the total string length.

To accumulate many st r objects, the recommended idiom is to place them into a list and call str.join () atthe end:

chunks = []

for s in my_strings:
chunks.append(s)

result = ''.join (chunks)

(another reasonably efficient idiom is to use io.StringIO)

To accumulate many bytes objects, the recommended idiom is to extend a bytearray object using in-place con-
catenation (the += operator):

result = bytearray ()
for b in my_bytes_objects:
result += Db

2.4. Performance 25

http://cython.org
https://wiki.python.org/moin/PythonSpeed/PerformanceTips

Python Frequently Asked Questions, = x] 1] A 3.7.17

2.5 Sequences (Tuples/Lists)

2.5.1 How do | convert between tuples and lists?

The type constructor tuple (seq) converts any sequence (actually, any iterable) into a tuple with the same items in the
same order.

For example, tuple ([1, 2, 3]) yields (1, 2, 3) and tuple('abc') yields ('a', 'b', 'c'). If the
argument is a tuple, it does not make a copy but returns the same object, so it is cheap to call tuple () when you aren’
t sure that an object is already a tuple.

The type constructor 1ist (seq) converts any sequence or iterable into a list with the same items in the same order.
For example, 1ist ((1, 2, 3)) yields [1, 2, 3] and list('abc') yields ['a', 'b', 'c']. If the
argument is a list, it makes a copy just like seq[:] would.

2.5.2 What’s a negative index?

Python sequences are indexed with positive numbers and negative numbers. For positive numbers 0 is the first index 1 is
the second index and so forth. For negative indices -1 is the last index and -2 is the penultimate (next to last) index and
so forth. Think of seq[—n] as the same as seg[len (seq) —-n].

Using negative indices can be very convenient. For example S[:-11] is all of the string except for its last character,
which is useful for removing the trailing newline from a string.

2.5.3 How do | iterate over a sequence in reverse order?

Use the reversed () built-in function, which is new in Python 2.4:

for x in reversed(sequence) :
do something with x ...

This won’t touch your original sequence, but build a new copy with reversed order to iterate over.

With Python 2.3, you can use an extended slice syntax:

for x in sequence[::-1]:
do something with x ...

2.5.4 How do you remove duplicates from a list?

See the Python Cookbook for a long discussion of many ways to do this:
https://code.activestate.com/recipes/52560/

If you don’t mind reordering the list, sort it and then scan from the end of the list, deleting duplicates as you go:

if mylist:
mylist.sort ()
last = mylist[-1]
for i in range(len(mylist)-2, -1, -1):
if last == mylist[i]:
del mylist[i]
else:
last = mylist[i]

26 Chapter 2. Programming FAQ

https://code.activestate.com/recipes/52560/

Python Frequently Asked Questions, = x] 1] A 3.7.17

If all elements of the list may be used as set keys (i.e. they are all hashable) this is often faster

mylist = list (set(mylist))

This converts the list into a set, thereby removing duplicates, and then back into a list.

2.5.5 How do you make an array in Python?

Use a list:

["this", 1, "iS", nanu, narrayn]

Lists are equivalent to C or Pascal arrays in their time complexity; the primary difference is that a Python list can contain
objects of many different types.

The array module also provides methods for creating arrays of fixed types with compact representations, but they are
slower to index than lists. Also note that the Numeric extensions and others define array-like structures with various
characteristics as well.

To get Lisp-style linked lists, you can emulate cons cells using tuples:

lisp_list = ("like", ("this", ("example", None)))

If mutability is desired, you could use lists instead of tuples. Here the analogue of lisp caris 1isp_list [0] and the
analogue of cdris 1isp_list [1]. Only do this if you’re sure you really need to, because it’s usually a lot slower than
using Python lists.

2.5.6 How do | create a multidimensional list?

You probably tried to make a multidimensional array like this:

>>> A = [[None] * 2] * 3

This looks correct if you print it:

>>> A
[[None, None], [None, None], [None, Nonel]]

But when you assign a value, it shows up in multiple places:

>>> A[0][0] = 5
>>> A
[[5, None], [5, None], [5, None]]

The reason is that replicating a list with * doesn’t create copies, it only creates references to the existing objects. The * 3
creates a list containing 3 references to the same list of length two. Changes to one row will show in all rows, which is
almost certainly not what you want.

The suggested approach is to create a list of the desired length first and then fill in each element with a newly created list:

A = [None] * 3
for i in range(3):
A[i] = [None] * 2

This generates a list containing 3 different lists of length two. You can also use a list comprehension:

2.5. Sequences (Tuples/Lists) 27

Python Frequently Asked Questions, = x] 1] A 3.7.17

w, h =2, 3
A = [[None] * w for i in range (h)]

Or, you can use an extension that provides a matrix datatype; NumPy is the best known.

2.5.7 How do | apply a method to a sequence of objects?

Use a list comprehension:

result = [obj.method() for obj in mylist]

2.5.8 Why does a_tuple]i] += [‘item’] raise an exception when the addition works?
This is because of a combination of the fact that augmented assignment operators are assignment operators, and the
difference between mutable and immutable objects in Python.

This discussion applies in general when augmented assignment operators are applied to elements of a tuple that point to
mutable objects, but we’ll use a 11 st and += as our exemplar.

If you wrote:

>>> a_tuple = (1, 2)
>>> a_tuple[0] += 1
Traceback (most recent call last):

TypeError: 'tuple' object does not support item assignment

The reason for the exception should be immediately clear: 1 is added to the object a_tuple [0] points to (1), producing
the result object, 2, but when we attempt to assign the result of the computation, 2, to element 0 of the tuple, we get an
error because we can’t change what an element of a tuple points to.

Under the covers, what this augmented assignment statement is doing is approximately this:

>>> result = a_tuple[0] + 1
>>> a_tuple[0] = result
Traceback (most recent call last):

TypeError: 'tuple' object does not support item assignment

It is the assignment part of the operation that produces the error, since a tuple is immutable.

When you write something like:

>>> a_tuple = (['foo']l, 'bar'")
>>> a_tuple[0] += ['item']
Traceback (most recent call last):

TypeError: 'tuple' object does not support item assignment

The exception is a bit more surprising, and even more surprising is the fact that even though there was an error, the append
worked:

>>> a_tuple[0]
['foo', 'item']

28 Chapter 2. Programming FAQ

http://www.numpy.org/

Python Frequently Asked Questions, = x] 1] A 3.7.17

To see why this happens, you need to know that (a) if an object implements an ___iadd___ magic method, it gets called
when the += augmented assignment is executed, and its return value is what gets used in the assignment statement; and
(b) for lists, __iadd___is equivalent to calling extend on the list and returning the list. That’s why we say that for
lists, +=is a “shorthand” for 1ist .extend:

>>> a_list = []
>>> a_list += [1]
>>> a_list

[1]

This is equivalent to:

>>> result = a_list.__diadd__ ([1])
>>> a_list = result

The object pointed to by a_list has been mutated, and the pointer to the mutated object is assigned back to a_1ist. The
end result of the assignment is a no-op, since it is a pointer to the same object that a_ 11 st was previously pointing to,
but the assignment still happens.

Thus, in our tuple example what is happening is equivalent to:

>>> result = a_tuple[0].__iadd__(['item'])
>>> a_tuple[0] = result
Traceback (most recent call last):

TypeError: 'tuple' object does not support item assignment

The __iadd__ succeeds, and thus the list is extended, but even though result points to the same object that
a_tuple [0] already points to, that final assignment still results in an error, because tuples are immutable.

2.5.9 | want to do a complicated sort: can you do a Schwartzian Transform in
Python?

The technique, attributed to Randal Schwartz of the Perl community, sorts the elements of a list by a metric which maps
each element to its “sort value”. In Python, use the key argument for the 1ist . sort () method:

Isorted = L[:]
Isorted.sort (key=lambda s: int(s[10:15]))

2.5.10 How can | sort one list by values from another list?

Merge them into an iterator of tuples, sort the resulting list, and then pick out the element you want.

>>> listl = ["what", "I'm", "sorting", "by"]

>>> list2 = ["something", "else", "to", "sort"]

>>> pairs = zip(listl, list2)

>>> pairs = sorted(pairs)

>>> pairs

[("I'm", 'else'), ('by', 'sort'), ('sorting', 'to'), ('what', 'something')]
>>> result = [x[1] for x in pairs]

>>> result
['else', 'sort', 'to', 'something']

An alternative for the last step is:

2.5. Sequences (Tuples/Lists) 29

Python Frequently Asked Questions, = x] 1] A 3.7.17

>>> result = []
>>> for p in pairs: result.append(p[l])

If you find this more legible, you might prefer to use this instead of the final list comprehension. However, it is almost
twice as slow for long lists. Why? First, the append () operation has to reallocate memory, and while it uses some
tricks to avoid doing that each time, it still has to do it occasionally, and that costs quite a bit. Second, the expression
“result.append” requires an extra attribute lookup, and third, there’s a speed reduction from having to make all those
function calls.

2.6 Objects

2.6.1 What is a class?

A class is the particular object type created by executing a class statement. Class objects are used as templates to create
instance objects, which embody both the data (attributes) and code (methods) specific to a datatype.

A class can be based on one or more other classes, called its base class(es). It then inherits the attributes and methods of its
base classes. This allows an object model to be successively refined by inheritance. You might have a generic Mailbox
class that provides basic accessor methods for a mailbox, and subclasses such as MboxMailbox, MaildirMailbox,
OutlookMailbox that handle various specific mailbox formats.

2.6.2 What is a method?

A method is a function on some object x that you normally call as x . name (arguments. . .). Methods are defined
as functions inside the class definition:

class C:
def meth(self, arg):
return arg * 2 + self.attribute

2.6.3 What is self?

Self is merely a conventional name for the first argument of a method. A method defined as meth (self, a, b,
c) should be called as x .meth (a, b, c) for some instance x of the class in which the definition occurs; the called
method will think it is called as meth (x, a, b, c).

See also Why must ‘self’ be used explicitly in method definitions and calls?.

2.6.4 How do | check if an object is an instance of a given class or of a subclass of
it?

Use the built-in function isinstance (obj, cls). You can check if an object is an instance of any of a num-
ber of classes by providing a tuple instead of a single class, e.g. isinstance (obj, (classl, class2,

.)), and can also check whether an object is one of Python’s built-in types, e.g. isinstance (obj, str) or
isinstance (obj, (int, float, complex)).

Note that most programs donotuse i sinstance () on user-defined classes very often. If you are developing the classes
yourself, a more proper object-oriented style is to define methods on the classes that encapsulate a particular behaviour,
instead of checking the object’s class and doing a different thing based on what class it is. For example, if you have a
function that does something:

30 Chapter 2. Programming FAQ

Python Frequently Asked Questions, = x] 1] A 3.7.17

def search (obj):
if isinstance(obj, Mailbox) :
code to search a mailbox
elif isinstance (obj, Document) :
. # code to search a document
elif

A better approach is to define a search () method on all the classes and just call it:

class Mailbox:
def search(self):
code to search a mailbox

class Document:
def search(self):

code to search a document

obj.search()

2.6.5 What is delegation?

Delegation is an object oriented technique (also called a design pattern). Let’s say you have an object x and want to
change the behaviour of just one of its methods. You can create a new class that provides a new implementation of the
method you’re interested in changing and delegates all other methods to the corresponding method of x.

Python programmers can easily implement delegation. For example, the following class implements a class that behaves
like a file but converts all written data to uppercase:

class UpperOut:

def _ init_ (self, outfile):
self._outfile = outfile

def write(self, s):
self._outfile.write (s.upper())

def _ _getattr__ (self, name):
return getattr(self._outfile, name)

Here the UpperOut class redefines the write () method to convert the argument string to uppercase before call-
ing the underlying self._outfile.write () method. All other methods are delegated to the underlying self.
_outfile object. The delegation is accomplished via the __getattr__ method; consult the language reference for
more information about controlling attribute access.

Note that for more general cases delegation can get trickier. When attributes must be set as well as retrieved, the class must
define a __setattr__ () method too, and it must do so carefully. The basic implementation of __setattr__ ()
is roughly equivalent to the following:

class X:

def _ setattr_ (self, name, value):
self. dict_ [name] = value

Most __setattr__ () implementations must modify self.__dict__ to store local state for self without causing
an infinite recursion.

2.6. Objects 31

Python Frequently Asked Questions, = x] 1] A 3.7.17

2.6.6 How do | call a method defined in a base class from a derived class that
overrides it?

Use the built-in super () function:

class Derived (Base) :
def meth (self):
super (Derived, self) .meth()

For version prior to 3.0, you may be using classic classes: For a class definition such as class Derived (Base) :
you can call method meth () defined in Base (or one of Base’s base classes) as Base.meth (self,
arguments. . .). Here, Base.meth is an unbound method, so you need to provide the self argument.

2.6.7 How can | organize my code to make it easier to change the base class?

You could define an alias for the base class, assign the real base class to it before your class definition, and use the alias
throughout your class. Then all you have to change is the value assigned to the alias. Incidentally, this trick is also handy
if you want to decide dynamically (e.g. depending on availability of resources) which base class to use. Example:

BaseAlias = <real base class>

class Derived (BaseAlias):
def meth (self):
BaseAlias.meth (self)

2.6.8 How do | create static class data and static class methods?

Both static data and static methods (in the sense of C++ or Java) are supported in Python.

For static data, simply define a class attribute. To assign a new value to the attribute, you have to explicitly use the class
name in the assignment:

class C:
count = 0 # number of times C.__init__ called

def _ init_ (self):
C.count = C.count + 1

def getcount (self):
return C.count # or return self.count

c.count also refers to C. count for any c such that isinstance (c, C) holds, unless overridden by c itself or
by some class on the base-class search path from c.___class__ back to C.

Caution: within a method of C, an assignment like self.count = 42 creates a new and unrelated instance named
“count” in sel£f’s own dict. Rebinding of a class-static data name must always specify the class whether inside a method
or not:

C.count = 314

Static methods are possible:

32 Chapter 2. Programming FAQ

Python Frequently Asked Questions, = x] 1] A 3.7.17

class C:
@staticmethod
def static(argl, arg2, arg3):
No 'self' parameter!

However, a far more straightforward way to get the effect of a static method is via a simple module-level function:

def getcount () :
return C.count

If your code is structured so as to define one class (or tightly related class hierarchy) per module, this supplies the desired
encapsulation.

2.6.9 How can | overload constructors (or methods) in Python?

This answer actually applies to all methods, but the question usually comes up first in the context of constructors.

In C++ you’d write

class C {
C() { cout << "No arguments\n"; }
C(int i) { cout << "Argument is " << i << "\n"; }

In Python you have to write a single constructor that catches all cases using default arguments. For example:

class C:
def _ init_ (self, i=None):
if i is None:
print ("No arguments")
else:
print ("Argument is", 1i)

This is not entirely equivalent, but close enough in practice.

You could also try a variable-length argument list, e.g.

def _ init__ (self, *args):

The same approach works for all method definitions.

2.6.10 | try to use __spam and | get an error about _SomeClassName__spam.

Variable names with double leading underscores are “mangled” to provide a simple but effective way to define class private
variables. Any identifier of the form ___spam (at least two leading underscores, at most one trailing underscore) is textu-
ally replaced with _classname___spam, where classname is the current class name with any leading underscores
stripped.

This doesn’t guarantee privacy: an outside user can still deliberately access the “_classname__spam” attribute, and private
values are visible in the object’s __dict__. Many Python programmers never bother to use private variable names at
all.

2.6. Objects 33

Python Frequently Asked Questions, = x] 1] A 3.7.17

2.6.11 My class defines __del__ but it is not called when | delete the object.

There are several possible reasons for this.

The del statement does not necessarily call __del__ () — it simply decrements the object’s reference count, and if this
reaches zero __del () is called.

If your data structures contain circular links (e.g. a tree where each child has a parent reference and each parent has
a list of children) the reference counts will never go back to zero. Once in a while Python runs an algorithm to detect
such cycles, but the garbage collector might run some time after the last reference to your data structure vanishes, so
your __del__ () method may be called at an inconvenient and random time. This is inconvenient if you’re trying to
reproduce a problem. Worse, the order in which object’s __del__ () methods are executed is arbitrary. You can run
gc.collect () toforce a collection, but there are pathological cases where objects will never be collected.

Despite the cycle collector, it’s still a good idea to define an explicit close () method on objects to be called when-
ever you’re done with them. The close () method can then remove attributes that refer to subobjects. Don’t call
__del__ () directly—__del__ () shouldcall close () and close () should make sure that it can be called more
than once for the same object.

Another way to avoid cyclical references is to use the weakref module, which allows you to point to objects without
incrementing their reference count. Tree data structures, for instance, should use weak references for their parent and
sibling references (if they need them!).

Finally, if your __del__ () method raises an exception, a warning message is printed to sys.stderr.

2.6.12 How do | get a list of all instances of a given class?

Python does not keep track of all instances of a class (or of a built-in type). You can program the class’s constructor to
keep track of all instances by keeping a list of weak references to each instance.

2.6.13 Why does the result of id () appear to be not unique?

The id () builtin returns an integer that is guaranteed to be unique during the lifetime of the object. Since in CPython,
this is the object’s memory address, it happens frequently that after an object is deleted from memory, the next freshly
created object is allocated at the same position in memory. This is illustrated by this example:

>>> 1d(1000)
13901272
>>> 1d(2000)
13901272

The two ids belong to different integer objects that are created before, and deleted immediately after execution of the
id () call. To be sure that objects whose id you want to examine are still alive, create another reference to the object:

>>> g = 1000; b = 2000
>>> id(a)
13901272
>>> id(b)
13891296

34 Chapter 2. Programming FAQ

Python Frequently Asked Questions, = x] 1] A 3.7.17

2.7 Modules

2.7.1 How do | create a .pyc file?

When a module is imported for the first time (or when the source file has changed since the current compiled file was
created) a . pyc file containing the compiled code should be created ina ___pycache___ subdirectory of the directory
containing the . py file. The .pyc file will have a filename that starts with the same name as the . py file, and ends
with . pyc, with a middle component that depends on the particular python binary that created it. (See PEP 3147 for
details.)

One reason that a . pyc file may not be created is a permissions problem with the directory containing the source file,
meaning that the __pycache__ subdirectory cannot be created. This can happen, for example, if you develop as one
user but run as another, such as if you are testing with a web server.

Unless the PYTHONDONTWRITEBYTECODE environment variable is set, creation of a .pyc file is automatic if you’re
importing a module and Python has the ability (permissions, free space, etc--) to create a __pycache___ subdirectory
and write the compiled module to that subdirectory.

Running Python on a top level script is not considered an import and no . pyc will be created. For example, if you have
a top-level module foo . py that imports another module xyz . py, when you run foo (by typing python foo.py
as a shell command), a . pyc will be created for xy z because xyz is imported, but no . pyc file will be created for foo
since foo.py isn’t being imported.

If you need to create a .pyc file for foo — that is, to create a . pyc file for a module that is not imported — you can,
using the py_compile and compileall modules.

The py_compile module can manually compile any module. One way is to use the compile () function in that
module interactively:

>>> import py_compile
>>> py_compile.compile('foo.py")

This will write the .pyc toa___pycache__ subdirectory in the same location as foo . py (or you can override that
with the optional parameter cfile).

You can also automatically compile all files in a directory or directories using the compileall module. You can do
it from the shell prompt by running compileall.py and providing the path of a directory containing Python files to
compile:

python -m compileall

2.7.2 How do | find the current module name?

A module can find out its own module name by looking at the predefined global variable __name__. If this has the value
'__main__ ', the program is running as a script. Many modules that are usually used by importing them also provide
a command-line interface or a self-test, and only execute this code after checking __name__:

def main () :
print ('"Running test...")

if _ name_ == '_ main__ ':
main ()

2.7. Modules 35

https://www.python.org/dev/peps/pep-3147

Python Frequently Asked Questions, = x] 1] A 3.7.17

2.7.3 How can | have modules that mutually import each other?

Suppose you have the following modules:

foo.py:

from bar import bar_var
foo_var = 1

bar.py:

from foo import foo_var
bar_var = 2

The problem is that the interpreter will perform the following steps:

* main imports foo

¢ Empty globals for foo are created

* foo is compiled and starts executing
 foo imports bar

¢ Empty globals for bar are created

* bar is compiled and starts executing

¢ bar imports foo (which is a no-op since there already is a module named foo)

¢ bar.foo_var = foo.foo_var

The last step fails, because Python isn’t done with interpreting foo yet and the global symbol dictionary for foo is still

empty.

The same thing happens when you use import foo, and then try to access foo. foo_var in global code.

There are (at least) three possible workarounds for this problem.

Guido van Rossum recommends avoiding all uses of from <module> import ..., and placing all code inside
functions. Initializations of global variables and class variables should use constants or built-in functions only. This means

everything from an imported module is referenced as <module>.<name>.

Jim Roskind suggests performing steps in the following order in each module:

« exports (globals, functions, and classes that don’t need imported base classes)

* import statements

* active code (including globals that are initialized from imported values).

van Rossum doesn’t like this approach much because the imports appear in a strange place, but it does work.

Matthias Urlichs recommends restructuring your code so that the recursive import is not necessary in the first place.

These solutions are not mutually exclusive.

36

Chapter 2. Programming FAQ

Python Frequently Asked Questions, = x] 1] A 3.7.17

2.7.4 __import__(‘x.y.z’) returns <module ‘x’>; how do | get z?

Consider using the convenience function import_module () from importlib instead:

z = importlib.import_module('x.y.z"')

2.7.5 When | edit an imported module and reimport it, the changes don’t show up.
Why does this happen?

For reasons of efficiency as well as consistency, Python only reads the module file on the first time a module is imported.
If it didn’t, in a program consisting of many modules where each one imports the same basic module, the basic module
would be parsed and re-parsed many times. To force re-reading of a changed module, do this:

import importlib
import modname
importlib.reload (modname)

Warning: this technique is not 100% fool-proof. In particular, modules containing statements like

from modname import some_objects

will continue to work with the old version of the imported objects. If the module contains class definitions, existing class
instances will not be updated to use the new class definition. This can result in the following paradoxical behaviour:

>>> import importlib

>>> import cls

>>> ¢ = cls.C() # Create an instance of C
>>> importlib.reload(cls)

<module 'cls' from 'cls.py'>

>>> isinstance(c, cls.C) # isinstance is false?!?
False

The nature of the problem is made clear if you print out the “identity” of the class objects:

>>> hex (id(c.__class_))
'0x7352a0"

>>> hex (id(cls.C))
'0x4198d0"

2.7. Modules 37

Python Frequently Asked Questions, = x] 1] A 3.7.17

38

Chapter 2. Programming FAQ

CHAPTER 3

Design and History FAQ

3.1 Why does Python use indentation for grouping of statements?

Guido van Rossum believes that using indentation for grouping is extremely elegant and contributes a lot to the clarity of
the average Python program. Most people learn to love this feature after a while.

Since there are no begin/end brackets there cannot be a disagreement between grouping perceived by the parser and the
human reader. Occasionally C programmers will encounter a fragment of code like this:

if (x <= vy)
X++5;
y——i
z++;

Only the x++ statement is executed if the condition is true, but the indentation leads you to believe otherwise. Even
experienced C programmers will sometimes stare at it a long time wondering why vy is being decremented even for x >

v.

Because there are no begin/end brackets, Python is much less prone to coding-style conflicts. In C there are many different
ways to place the braces. If you’re used to reading and writing code that uses one style, you will feel at least slightly uneasy
when reading (or being required to write) another style.

Many coding styles place begin/end brackets on a line by themselves. This makes programs considerably longer and wastes
valuable screen space, making it harder to get a good overview of a program. Ideally, a function should fit on one screen
(say, 20-30 lines). 20 lines of Python can do a lot more work than 20 lines of C. This is not solely due to the lack of
begin/end brackets — the lack of declarations and the high-level data types are also responsible — but the indentation-based
syntax certainly helps.

39

Python Frequently Asked Questions, = x] 1] A 3.7.17

3.2 Why am | getting strange results with simple arithmetic opera-
tions?

See the next question.

3.3 Why are floating-point calculations so inaccurate?

Users are often surprised by results like this:

>> 1.2 - 1.0
0.1999999999999999¢6

and think it is a bug in Python. It’s not. This has little to do with Python, and much more to do with how the underlying
platform handles floating-point numbers.

The float type in CPython uses a C double for storage. A float object’s value is stored in binary floating-point
with a fixed precision (typically 53 bits) and Python uses C operations, which in turn rely on the hardware implementation
in the processor, to perform floating-point operations. This means that as far as floating-point operations are concerned,
Python behaves like many popular languages including C and Java.

Many numbers that can be written easily in decimal notation cannot be expressed exactly in binary floating-point. For
example, after:

>>> x = 1.2

the value stored for x is a (very good) approximation to the decimal value 1 . 2, but is not exactly equal to it. On a typical
machine, the actual stored value is:

’ 1.0011001100110011001100110011001100110011001100110011 (binary)

which is exactly:

’ 1.1999999999999999555910790149937383830547332763671875 (decimal)

The typical precision of 53 bits provides Python floats with 15-16 decimal digits of accuracy.

For a fuller explanation, please see the floating point arithmetic chapter in the Python tutorial.

3.4 Why are Python strings immutable?

There are several advantages.

One is performance: knowing that a string is immutable means we can allocate space for it at creation time, and the
storage requirements are fixed and unchanging. This is also one of the reasons for the distinction between tuples and lists.

Another advantage is that strings in Python are considered as “elemental” as numbers. No amount of activity will change
the value 8 to anything else, and in Python, no amount of activity will change the string “eight” to anything else.

40 Chapter 3. Design and History FAQ

Python Frequently Asked Questions, = x] 1] A 3.7.17

3.5 Why must ‘self’ be used explicitly in method definitions and
calls?

The idea was borrowed from Modula-3. It turns out to be very useful, for a variety of reasons.

First, it’s more obvious that you are using a method or instance attribute instead of a local variable. Reading self.x
or self.meth () makes it absolutely clear that an instance variable or method is used even if you don’t know the class
definition by heart. In C++, you can sort of tell by the lack of a local variable declaration (assuming globals are rare or
easily recognizable) — but in Python, there are no local variable declarations, so you’d have to look up the class definition
to be sure. Some C++ and Java coding standards call for instance attributes to have an m__ prefix, so this explicitness is
still useful in those languages, too.

Second, it means that no special syntax is necessary if you want to explicitly reference or call the method from a particular
class. In C++, if you want to use a method from a base class which is overridden in a derived class, you have to use
the : : operator — in Python you can write baseclass.methodname (self, <argument list>). Thisis
particularly useful for __init__ () methods, and in general in cases where a derived class method wants to extend the
base class method of the same name and thus has to call the base class method somehow.

Finally, for instance variables it solves a syntactic problem with assignment: since local variables in Python are (by defi-
nition!) those variables to which a value is assigned in a function body (and that aren’t explicitly declared global), there
has to be some way to tell the interpreter that an assignment was meant to assign to an instance variable instead of to
a local variable, and it should preferably be syntactic (for efficiency reasons). C++ does this through declarations, but
Python doesn’t have declarations and it would be a pity having to introduce them just for this purpose. Using the explicit
self.var solves this nicely. Similarly, for using instance variables, having to write self .var means that references
to unqualified names inside a method don’t have to search the instance’s directories. To put it another way, local variables
and instance variables live in two different namespaces, and you need to tell Python which namespace to use.

3.6 Why can’t | use an assignment in an expression?

Many people used to C or Perl complain that they want to use this C idiom:

while (line = readline(f)) {
// do something with line

where in Python you’re forced to write this:

while True:
line = f.readline()
if not line:
break
do something with line

The reason for not allowing assignment in Python expressions is a common, hard-to-find bug in those other languages,
caused by this construct:

if (x = 0) o
// error handling

}
else {
// code that only works for nonzero x

}

3.5. Why must ‘self’ be used explicitly in method definitions and calls? 41

Python Frequently Asked Questions, = x] 1] A 3.7.17

The error is a simple typo: x = 0, which assigns O to the variable x, was written while the comparison x == 0 is
certainly what was intended.

Many alternatives have been proposed. Most are hacks that save some typing but use arbitrary or cryptic syntax or
keywords, and fail the simple criterion for language change proposals: it should intuitively suggest the proper meaning to
a human reader who has not yet been introduced to the construct.

An interesting phenomenon is that most experienced Python programmers recognize the while True idiom and don’t
seem to be missing the assignment in expression construct much; it’s only newcomers who express a strong desire to add
this to the language.

There’s an alternative way of spelling this that seems attractive but is generally less robust than the “while True” solution:

line = f.readline()
while line:
do something with line...
line = f.readline()

The problem with this is that if you change your mind about exactly how you get the next line (e.g. you want to change it
into sys.stdin.readline ()) you have to remember to change two places in your program — the second occurrence
is hidden at the bottom of the loop.

The best approach is to use iterators, making it possible to loop through objects using the for statement. For example,
Jile objects support the iterator protocol, so you can write simply:

for line in f:
do something with line...

3.7 Why does Python use methods for some functionality (e.g.
list.index()) but functions for other (e.g. len(list))?

As Guido said:

(a) For some operations, prefix notation just reads better than postfix — prefix (and infix!) operations have a
long tradition in mathematics which likes notations where the visuals help the mathematician thinking about
a problem. Compare the easy with which we rewrite a formula like x*(a+b) into x*a + x*b to the clumsiness
of doing the same thing using a raw OO notation.

(b) When I read code that says len(x) I know that it is asking for the length of something. This tells me
two things: the result is an integer, and the argument is some kind of container. To the contrary, when I
read x.len(), I have to already know that x is some kind of container implementing an interface or inheriting
from a class that has a standard len(). Witness the confusion we occasionally have when a class that is not
implementing a mapping has a get() or keys() method, or something that isn’t a file has a write() method.

—https://mail.python.org/pipermail/python-3000/2006-November/004643.html

42 Chapter 3. Design and History FAQ

https://mail.python.org/pipermail/python-3000/2006-November/004643.html

Python Frequently Asked Questions, = x] 1] A 3.7.17

3.8 Why is join() a string method instead of a list or tuple method?

Strings became much more like other standard types starting in Python 1.6, when methods were added which give the
same functionality that has always been available using the functions of the string module. Most of these new methods
have been widely accepted, but the one which appears to make some programmers feel uncomfortable is:

’H, ".join(['l', |2v, 141, '8', '16'])

which gives the result:

’"1, 2, 4, 8, 16"

There are two common arguments against this usage.

The first runs along the lines of: “It looks really ugly using a method of a string literal (string constant)”, to which the
answer is that it might, but a string literal is just a fixed value. If the methods are to be allowed on names bound to strings
there is no logical reason to make them unavailable on literals.

The second objection is typically cast as: “I am really telling a sequence to join its members together with a string
constant”. Sadly, you aren’t. For some reason there seems to be much less difficulty with having split () as a string
method, since in that case it is easy to see that

"1, 2, 4, 8, 16".split (", ")

is an instruction to a string literal to return the substrings delimited by the given separator (or, by default, arbitrary runs
of white space).

join () is astring method because in using it you are telling the separator string to iterate over a sequence of strings and
insert itself between adjacent elements. This method can be used with any argument which obeys the rules for sequence
objects, including any new classes you might define yourself. Similar methods exist for bytes and bytearray objects.

3.9 How fast are exceptions?

A try/except block is extremely efficient if no exceptions are raised. Actually catching an exception is expensive. In
versions of Python prior to 2.0 it was common to use this idiom:

try:
value = mydict [key]

except KeyError:
mydict [key] = getvalue (key)
value = mydict [key]

This only made sense when you expected the dict to have the key almost all the time. If that wasn’t the case, you coded
it like this:

if key in mydict:
value = mydict[key]
else:
value = mydict[key] = getvalue (key)

For this specific case, you could also use value = dict.setdefault (key, getvalue (key)), butonly if
the getvalue () call is cheap enough because it is evaluated in all cases.

3.8. Why is join() a string method instead of a list or tuple method? 43

Python Frequently Asked Questions, = x] 1] A 3.7.17

3.10 Why isn’t there a switch or case statement in Python?

You can do this easily enough with a sequence of if... elif... elif... else. There have been some pro-
posals for switch statement syntax, but there is no consensus (yet) on whether and how to do range tests. See PEP 275
for complete details and the current status.

For cases where you need to choose from a very large number of possibilities, you can create a dictionary mapping case
values to functions to call. For example:

def function_1(...):

functions = {'a': function_1,

'b': function_2,

'c': self.method_1, ...}
func = functions[value]
func ()

For calling methods on objects, you can simplify yet further by using the getattr () built-in to retrieve methods with
a particular name:

def visit_a(self, ...):

def dispatch(self, wvalue):

method_name = 'visit_' + str(value)
method = getattr(self, method_name)
method ()

It’s suggested that you use a prefix for the method names, such as visit_ in this example. Without such a prefix, if
values are coming from an untrusted source, an attacker would be able to call any method on your object.

3.11 Can’t you emulate threads in the interpreter instead of relying
on an OS-specific thread implementation?

Answer 1: Unfortunately, the interpreter pushes at least one C stack frame for each Python stack frame. Also, extensions
can call back into Python at almost random moments. Therefore, a complete threads implementation requires thread
support for C.

Answer 2: Fortunately, there is Stackless Python, which has a completely redesigned interpreter loop that avoids the C
stack.

44 Chapter 3. Design and History FAQ

https://www.python.org/dev/peps/pep-0275
https://github.com/stackless-dev/stackless/wiki

Python Frequently Asked Questions, = x] 1] A 3.7.17

3.12 Why can’t lambda expressions contain statements?

Python lambda expressions cannot contain statements because Python’s syntactic framework can’t handle statements
nested inside expressions. However, in Python, this is not a serious problem. Unlike lambda forms in other languages,
where they add functionality, Python lambdas are only a shorthand notation if you’re too lazy to define a function.

Functions are already first class objects in Python, and can be declared in a local scope. Therefore the only advantage of
using a lambda instead of a locally-defined function is that you don’t need to invent a name for the function — but that’s
just a local variable to which the function object (which is exactly the same type of object that a lambda expression yields)
is assigned!

3.13 Can Python be compiled to machine code, C or some other lan-
guage?

Cython compiles a modified version of Python with optional annotations into C extensions. Nuitka is an up-and-coming
compiler of Python into C++ code, aiming to support the full Python language. For compiling to Java you can consider
VOC.

3.14 How does Python manage memory?

The details of Python memory management depend on the implementation. The standard implementation of Python,
CPython, uses reference counting to detect inaccessible objects, and another mechanism to collect reference cycles, pe-
riodically executing a cycle detection algorithm which looks for inaccessible cycles and deletes the objects involved.
The gc module provides functions to perform a garbage collection, obtain debugging statistics, and tune the collector’s
parameters.

Other implementations (such as Jython or PyPy), however, can rely on a different mechanism such as a full-blown garbage
collector. This difference can cause some subtle porting problems if your Python code depends on the behavior of the
reference counting implementation.

In some Python implementations, the following code (which is fine in CPython) will probably run out of file descriptors:

for file in very_long_list_of_files:
f = open(file)
c = f.read (1)

Indeed, using CPython’s reference counting and destructor scheme, each new assignment to f closes the previous file.
With a traditional GC, however, those file objects will only get collected (and closed) at varying and possibly long intervals.

If you want to write code that will work with any Python implementation, you should explicitly close the file or use the
with statement; this will work regardless of memory management scheme:

for file in very_long_list_of_ files:
with open(file) as f:
c = f.read(1l)

3.12. Why can’t lambda expressions contain statements? 45

http://cython.org/
http://www.nuitka.net/
https://voc.readthedocs.io
http://www.jython.org
http://www.pypy.org

Python Frequently Asked Questions, = x] 1] A 3.7.17

3.15 Why doesn’t CPython use a more traditional garbage collection
scheme?

For one thing, this is not a C standard feature and hence it’s not portable. (Yes, we know about the Boehm GC library.
It has bits of assembler code for most common platforms, not for all of them, and although it is mostly transparent, it isn’
t completely transparent; patches are required to get Python to work with it.)

Traditional GC also becomes a problem when Python is embedded into other applications. While in a standalone Python
it’s fine to replace the standard malloc() and free() with versions provided by the GC library, an application embedding
Python may want to have its own substitute for malloc() and free(), and may not want Python’s. Right now, CPython
works with anything that implements malloc() and free() properly.

3.16 Why isn’t all memory freed when CPython exits?

Objects referenced from the global namespaces of Python modules are not always deallocated when Python exits. This
may happen if there are circular references. There are also certain bits of memory that are allocated by the C library that
are impossible to free (e.g. a tool like Purify will complain about these). Python is, however, aggressive about cleaning
up memory on exit and does try to destroy every single object.

If you want to force Python to delete certain things on deallocation use the atexit module to run a function that will
force those deletions.

3.17 Why are there separate tuple and list data types?

Lists and tuples, while similar in many respects, are generally used in fundamentally different ways. Tuples can be thought
of as being similar to Pascal records or C structs; they’re small collections of related data which may be of different types
which are operated on as a group. For example, a Cartesian coordinate is appropriately represented as a tuple of two or
three numbers.

Lists, on the other hand, are more like arrays in other languages. They tend to hold a varying number of objects all of
which have the same type and which are operated on one-by-one. For example, os.listdir ('.") returns a list of
strings representing the files in the current directory. Functions which operate on this output would generally not break if
you added another file or two to the directory.

Tuples are immutable, meaning that once a tuple has been created, you can’t replace any of its elements with a new
value. Lists are mutable, meaning that you can always change a list’s elements. Only immutable elements can be used as
dictionary keys, and hence only tuples and not lists can be used as keys.

3.18 How are lists implemented in CPython?

CPython’s lists are really variable-length arrays, not Lisp-style linked lists. The implementation uses a contiguous array
of references to other objects, and keeps a pointer to this array and the array’s length in a list head structure.

This makes indexing a list a [1] an operation whose cost is independent of the size of the list or the value of the index.

When items are appended or inserted, the array of references is resized. Some cleverness is applied to improve the
performance of appending items repeatedly; when the array must be grown, some extra space is allocated so the next few
times don’t require an actual resize.

46 Chapter 3. Design and History FAQ

Python Frequently Asked Questions, = x] 1] A 3.7.17

3.19 How are dictionaries implemented in CPython?

CPython’s dictionaries are implemented as resizable hash tables. Compared to B-trees, this gives better performance for
lookup (the most common operation by far) under most circumstances, and the implementation is simpler.

Dictionaries work by computing a hash code for each key stored in the dictionary using the hash () built-in function. The
hash code varies widely depending on the key and a per-process seed; for example, “Python” could hash to -539294296
while “python”, a string that differs by a single bit, could hash to 1142331976. The hash code is then used to calculate a
location in an internal array where the value will be stored. Assuming that you’re storing keys that all have different hash
values, this means that dictionaries take constant time — O(1), in Big-O notation — to retrieve a key.

3.20 Why must dictionary keys be immutable?

The hash table implementation of dictionaries uses a hash value calculated from the key value to find the key. If the key
were a mutable object, its value could change, and thus its hash could also change. But since whoever changes the key
object can’t tell that it was being used as a dictionary key, it can’t move the entry around in the dictionary. Then, when
you try to look up the same object in the dictionary it won’t be found because its hash value is different. If you tried to
look up the old value it wouldn’t be found either, because the value of the object found in that hash bin would be different.

If you want a dictionary indexed with a list, simply convert the list to a tuple first; the function tuple (L) creates a tuple
with the same entries as the list L. Tuples are immutable and can therefore be used as dictionary keys.

Some unacceptable solutions that have been proposed:

» Hash lists by their address (object ID). This doesn’t work because if you construct a new list with the same value
it won’t be found; e.g.:

mydict = {[1, 2]: '"12"}
print (mydict[[1, 211)

would raise a KeyError exception because the id of the [1, 2] used in the second line differs from that in the
first line. In other words, dictionary keys should be compared using ==, not using is.

* Make a copy when using a list as a key. This doesn’t work because the list, being a mutable object, could contain
a reference to itself, and then the copying code would run into an infinite loop.

 Allow lists as keys but tell the user not to modify them. This would allow a class of hard-to-track bugs in programs
when you forgot or modified a list by accident. It also invalidates an important invariant of dictionaries: every value
ind.keys () is usable as a key of the dictionary.

* Mark lists as read-only once they are used as a dictionary key. The problem is that it’s not just the top-level object
that could change its value; you could use a tuple containing a list as a key. Entering anything as a key into a
dictionary would require marking all objects reachable from there as read-only — and again, self-referential objects
could cause an infinite loop.

There is a trick to get around this if you need to, but use it at your own risk: You can wrap a mutable structure inside a
class instance which hasbotha__eq_ () anda__hash__ () method. You must then make sure that the hash value
for all such wrapper objects that reside in a dictionary (or other hash based structure), remain fixed while the object is in
the dictionary (or other structure).

class ListWrapper:
def _ init_ (self, the_list):
self.the_list = the_list

def _ _eqg (self, other):
return self.the_list == other.the_list

(TH& ST Aol A1)

3.19. How are dictionaries implemented in CPython? 47

Python Frequently Asked Questions, = x] 1] A 3.7.17

(o] A sl o] A A M A%)

def _ hash_ (self):
1 = self.the_list
result = 98767 - len(l)*555
for i, el in enumerate(l):
try:
result = result + (hash(el) % 9999999) * 1001 + i
except Exception:
result = (result % 7777777) + i * 333
return result

Note that the hash computation is complicated by the possibility that some members of the list may be unhashable and
also by the possibility of arithmetic overflow.

Furthermore it must always be the case that if 01 == 02 (ieol.__eq__(02) is True) then hash (ol) ==
hash (02) (ie,0l.__hash__ () == o02.__hash__ ()), regardless of whether the object is in a dictionary or not.
If you fail to meet these restrictions dictionaries and other hash based structures will misbehave.

In the case of ListWrapper, whenever the wrapper object is in a dictionary the wrapped list must not change to avoid
anomalies. Don’t do this unless you are prepared to think hard about the requirements and the consequences of not
meeting them correctly. Consider yourself warned.

3.21 Why doesn’t list.sort() return the sorted list?

In situations where performance matters, making a copy of the list just to sort it would be wasteful. Therefore, 1ist.
sort () sorts the list in place. In order to remind you of that fact, it does not return the sorted list. This way, you won’
t be fooled into accidentally overwriting a list when you need a sorted copy but also need to keep the unsorted version
around.

If you want to return a new list, use the built-in sorted () function instead. This function creates a new list from a
provided iterable, sorts it and returns it. For example, here’s how to iterate over the keys of a dictionary in sorted order:

for key in sorted(mydict) :
do whatever with mydict [key]. ..

3.22 How do you specify and enforce an interface spec in Python?

An interface specification for a module as provided by languages such as C++ and Java describes the prototypes for the
methods and functions of the module. Many feel that compile-time enforcement of interface specifications helps in the
construction of large programs.

Python 2.6 adds an abc module that lets you define Abstract Base Classes (ABCs). You can then use isinstance ()
and issubclass () to check whether an instance or a class implements a particular ABC. The collections.abc
module defines a set of useful ABCs such as Tterable, Container, and MutableMapping.

For Python, many of the advantages of interface specifications can be obtained by an appropriate test discipline for
components. There is also a tool, PyChecker, which can be used to find problems due to subclassing.

A good test suite for a module can both provide a regression test and serve as a module interface specification and a set of
examples. Many Python modules can be run as a script to provide a simple “self test.” Even modules which use complex
external interfaces can often be tested in isolation using trivial “stub” emulations of the external interface. The doctest
and unittest modules or third-party test frameworks can be used to construct exhaustive test suites that exercise every
line of code in a module.

48 Chapter 3. Design and History FAQ

Python Frequently Asked Questions, = x] 1] A 3.7.17

An appropriate testing discipline can help build large complex applications in Python as well as having interface specifi-
cations would. In fact, it can be better because an interface specification cannot test certain properties of a program. For
example, the append () method is expected to add new elements to the end of some internal list; an interface specifica-
tion cannot test that your append () implementation will actually do this correctly, but it’s trivial to check this property
in a test suite.

Writing test suites is very helpful, and you might want to design your code with an eye to making it easily tested. One
increasingly popular technique, test-directed development, calls for writing parts of the test suite first, before you write
any of the actual code. Of course Python allows you to be sloppy and not write test cases at all.

3.23 Why is there no goto?

You can use exceptions to provide a “structured goto” that even works across function calls. Many feel that exceptions
can conveniently emulate all reasonable uses of the “go” or “goto” constructs of C, Fortran, and other languages. For
example:

class label (Exception): pass # declare a label

try:

if condition: raise label () # goto label
except label: # where to goto

pass

This doesn’t allow you to jump into the middle of a loop, but that’s usually considered an abuse of goto anyway. Use
sparingly.

3.24 Why can’t raw strings (r-strings) end with a backslash?

More precisely, they can’t end with an odd number of backslashes: the unpaired backslash at the end escapes the closing
quote character, leaving an unterminated string.

Raw strings were designed to ease creating input for processors (chiefly regular expression engines) that want to do their
own backslash escape processing. Such processors consider an unmatched trailing backslash to be an error anyway, so
raw strings disallow that. In return, they allow you to pass on the string quote character by escaping it with a backslash.
These rules work well when r-strings are used for their intended purpose.

If you’re trying to build Windows pathnames, note that all Windows system calls accept forward slashes too:

f = open("/mydir/file.txt") # works fine!

If you’re trying to build a pathname for a DOS command, try e.g. one of

dir = r"\this\is\my\dos\dir" "\\"
dir r"\this\is\my\dos\dir\ "[:-1]
dir "\\this\\is\\my\\dos\\dir\\"

3.23. Why is there no goto? 49

Python Frequently Asked Questions, = x] 1] A 3.7.17

3.25 Why doesn’t Python have a “with” statement for attribute as-
signments?

Python has a ‘with’ statement that wraps the execution of a block, calling code on the entrance and exit from the block.
Some language have a construct that looks like this:

with obj:
a =1 # equivalent to obj.a = 1
total = total + 1 # obj.total = obj.total + 1

In Python, such a construct would be ambiguous.

Other languages, such as Object Pascal, Delphi, and C++, use static types, so it’s possible to know, in an unambiguous
way, what member is being assigned to. This is the main point of static typing — the compiler always knows the scope of
every variable at compile time.

Python uses dynamic types. It is impossible to know in advance which attribute will be referenced at runtime. Member
attributes may be added or removed from objects on the fly. This makes it impossible to know, from a simple reading,
what attribute is being referenced: a local one, a global one, or a member attribute?

For instance, take the following incomplete snippet:

def foo(a):
with a:
print (x)

The snippet assumes that “a” must have a member attribute called “x”. However, there is nothing in Python that tells the
interpreter this. What should happen if “a” is, let us say, an integer? If there is a global variable named “x”, will it be
used inside the with block? As you see, the dynamic nature of Python makes such choices much harder.

The primary benefit of “with” and similar language features (reduction of code volume) can, however, easily be achieved
in Python by assignment. Instead of:

function (args) .mydict [index] [index].a = 21
function (args) .mydict [index] [index] .b = 42
function(args) .mydict[index] [index].c = 63
write this:

ref = function(args) .mydict [index] [index]
ref.a = 21

ref.b = 42

ref.c = 63

This also has the side-effect of increasing execution speed because name bindings are resolved at run-time in Python, and
the second version only needs to perform the resolution once.

50 Chapter 3. Design and History FAQ

Python Frequently Asked Questions, = x] 1] A 3.7.17

3.26 Why are colons required for the if/while/def/class statements?

The colon is required primarily to enhance readability (one of the results of the experimental ABC language). Consider
this:

if a ==
print (a)

versus

if a ==
print (a)

Notice how the second one is slightly easier to read. Notice further how a colon sets off the example in this FAQ answer;
it’s a standard usage in English.

Another minor reason is that the colon makes it easier for editors with syntax highlighting; they can look for colons to
decide when indentation needs to be increased instead of having to do a more elaborate parsing of the program text.

3.27 Why does Python allow commas at the end of lists and tuples?

Python lets you add a trailing comma at the end of lists, tuples, and dictionaries:

(1, 2, 3,1
(’a" le IC ,)
d = {
"A" [1, 5],
"B": [6, 7], # last trailing comma is optional but good style

There are several reasons to allow this.

When you have a literal value for a list, tuple, or dictionary spread across multiple lines, it’s easier to add more elements
because you don’t have to remember to add a comma to the previous line. The lines can also be reordered without creating
a syntax error.

Accidentally omitting the comma can lead to errors that are hard to diagnose. For example:

x = [
" fee",
"fie"
"fOO",
n fum"

]

This list looks like it has four elements, but it actually contains three: “fee”, “fiefoo” and “fum”. Always adding the
comma avoids this source of error.

Allowing the trailing comma may also make programmatic code generation easier.

3.26. Why are colons required for the if/while/def/class statements? 51

Python Frequently Asked Questions, = x] 1] A 3.7.17

52

Chapter 3. Design and History FAQ

cHAPTER 4

Library and Extension FAQ

4.1 General Library Questions

4.1.1 How do | find a module or application to perform task X?
Check the Library Reference to see if there’s a relevant standard library module. (Eventually you’ll learn what’s in the
standard library and will be able to skip this step.)

For third-party packages, search the Python Package Index or try Google or another Web search engine. Searching for
“Python” plus a keyword or two for your topic of interest will usually find something helpful.

4.1.2 Where is the math.py (socket.py, regex.py, etc.) source file?

If you can’t find a source file for a module it may be a built-in or dynamically loaded module implemented in C, C++ or
other compiled language. In this case you may not have the source file or it may be something like mathmodule.c,
somewhere in a C source directory (not on the Python Path).

There are (at least) three kinds of modules in Python:
1) modules written in Python (.py);
2) modules written in C and dynamically loaded (.dll, .pyd, .so, .sl, etc);

3) modules written in C and linked with the interpreter; to get a list of these, type:

import sys
print (sys.builtin_module_names)

53

https://pypi.org
https://www.google.com

Python Frequently Asked Questions, = x] 1] A 3.7.17

4.1.3 How do | make a Python script executable on Unix?

You need to do two things: the script file’s mode must be executable and the first line must begin with # ! followed by
the path of the Python interpreter.

The first is done by executing chmod +x scriptfile or perhaps chmod 755 scriptfile.

The second can be done in a number of ways. The most straightforward way is to write

#!/usr/local/bin/python

as the very first line of your file, using the pathname for where the Python interpreter is installed on your platform.

If you would like the script to be independent of where the Python interpreter lives, you can use the env program. Almost
all Unix variants support the following, assuming the Python interpreter is in a directory on the user’s PATH:

#!/usr/bin/env python

Don’t do this for CGI scripts. The PATH variable for CGI scripts is often very minimal, so you need to use the actual
absolute pathname of the interpreter.

Occasionally, a user’s environment is so full that the /usr/bin/env program fails; or there’s no env program at all.
In that case, you can try the following hack (due to Alex Rezinsky):

#! /bin/sh

nww.n

exec python 50 1+"s@"
mmnn

The minor disadvantage is that this defines the script’s __doc__ string. However, you can fix that by adding

doc = ""r_ . Whatever..."""

4.1.4 Is there a curses/termcap package for Python?

For Unix variants: The standard Python source distribution comes with a curses module in the Modules subdirectory,
though it’s not compiled by default. (Note that this is not available in the Windows distribution — there is no curses
module for Windows.)

The curses module supports basic curses features as well as many additional functions from ncurses and SYSV curses
such as colour, alternative character set support, pads, and mouse support. This means the module isn’t compatible with
operating systems that only have BSD curses, but there don’t seem to be any currently maintained OSes that fall into this
category.

For Windows: use the consolelib module.

4.1.5 Is there an equivalent to C’s onexit() in Python?

The atexit module provides a register function that is similar to C’s onexit ().

54 Chapter 4. Library and Extension FAQ

https://github.com/python/cpython/tree/3.7/Modules
http://effbot.org/zone/console-index.htm

Python Frequently Asked Questions, = x] 1] A 3.7.17

4.1.6 Why don’t my signal handlers work?

The most common problem is that the signal handler is declared with the wrong argument list. It is called as

handler (signum, frame)

so it should be declared with two arguments:

def handler (signum, frame):

4.2 Common tasks

4.2.1 How do | test a Python program or component?

Python comes with two testing frameworks. The doctest module finds examples in the docstrings for a module and
runs them, comparing the output with the expected output given in the docstring.

The unittest module is a fancier testing framework modelled on Java and Smalltalk testing frameworks.

To make testing easier, you should use good modular design in your program. Your program should have almost all
functionality encapsulated in either functions or class methods — and this sometimes has the surprising and delightful
effect of making the program run faster (because local variable accesses are faster than global accesses). Furthermore the
program should avoid depending on mutating global variables, since this makes testing much more difficult to do.

The “global main logic” of your program may be as simple as

if _ name_ == "_ _main_ ":

main_logic ()

at the bottom of the main module of your program.

Once your program is organized as a tractable collection of functions and class behaviours you should write test functions
that exercise the behaviours. A test suite that automates a sequence of tests can be associated with each module. This
sounds like a lot of work, but since Python is so terse and flexible it’s surprisingly easy. You can make coding much more
pleasant and fun by writing your test functions in parallel with the “production code”, since this makes it easy to find bugs
and even design flaws earlier.

“Support modules” that are not intended to be the main module of a program may include a self-test of the module.

if name == "_main__ ":

self_test ()

Even programs that interact with complex external interfaces may be tested when the external interfaces are unavailable
by using “fake” interfaces implemented in Python.

4.2, Common tasks 55

Python Frequently Asked Questions, = x] 1] A 3.7.17

4.2.2 How do | create documentation from doc strings?

The pydoc module can create HTML from the doc strings in your Python source code. An alternative for creating API
documentation purely from docstrings is epydoc. Sphinx can also include docstring content.

4.2.3 How do | get a single keypress at a time?

For Unix variants there are several solutions. It’s straightforward to do this using curses, but curses is a fairly large module
to learn.

4.3 Threads

4.3.1 How do | program using threads?

Be sure to use the threading module and not the _thread module. The threading module builds convenient
abstractions on top of the low-level primitives provided by the _thread module.

Aahz has a set of slides from his threading tutorial that are helpful; see http://www.pythoncraft.com/OSCON2001/.

4.3.2 None of my threads seem to run: why?

As soon as the main thread exits, all threads are killed. Your main thread is running too quickly, giving the threads no
time to do any work.

A simple fix is to add a sleep to the end of the program that’s long enough for all the threads to finish:

import threading, time

def thread_task (name, n):
for i in range(n):
print (name, 1)

for i in range(10):
T = threading.Thread(target=thread_task, args=(str(i), 1i))
T.start ()

time.sleep(10) # <~ !

But now (on many platforms) the threads don’t run in parallel, but appear to run sequentially, one at a time! The reason
is that the OS thread scheduler doesn’t start a new thread until the previous thread is blocked.

A simple fix is to add a tiny sleep to the start of the run function:

def thread_task (name, n):
time.sleep (0.001) # < !
for i in range(n):
print (name, 1)

for i in range (10):
T = threading.Thread(target=thread_task, args=(str(i), 1))
T.start ()

time.sleep(10)

56 Chapter 4. Library and Extension FAQ

http://epydoc.sourceforge.net/
http://sphinx-doc.org
http://www.pythoncraft.com/OSCON2001/

Python Frequently Asked Questions, = x] 1] A 3.7.17

Instead of trying to guess a good delay value for t ime . sleep (), it’s better to use some kind of semaphore mechanism.
One idea is to use the queue module to create a queue object, let each thread append a token to the queue when it finishes,
and let the main thread read as many tokens from the queue as there are threads.

4.3.3 How do | parcel out work among a bunch of worker threads?

The easiest way is to use the new concurrent . futures module, especially the ThreadPoolExecutor class.

Or, if you want fine control over the dispatching algorithm, you can write your own logic manually. Use the queue
module to create a queue containing a list of jobs. The Queue class maintains a list of objects and has a . put (obj)
method that adds items to the queue and a .get () method to return them. The class will take care of the locking
necessary to ensure that each job is handed out exactly once.

Here’s a trivial example:

import threading, queue, time

The worker thread gets jobs off the queue. When the queue is empty, it
assumes there will be no more work and exits.
(Realistically workers will run until terminated.)
def worker () :
print ('Running worker"')
time.sleep(0.1)
while True:
try:
arg = g.get (block=False)
except queue.Empty:

print ('Worker', threading.currentThread(), end="' ")
print ('queue empty')
break

else:

print ('Worker', threading.currentThread(), end=' ")
print ('running with argument', arg)
time.sleep(0.5)

Create queue
d = queue.Queue ()

Start a pool of 5 workers

for i in range(5):
t = threading.Thread(target=worker, name='worker Y% (i+1))
t.start ()

Begin adding work to the queue
for i in range (50):
g.put (1)

Give threads time to run
print ('Main thread sleeping')
time.sleep (5)

When run, this will produce the following output:

Running worker
Running worker
Running worker
Running worker

(TH& ST Aol A1)

4.3. Threads 57

Python Frequently Asked Questions, = x] 1] A 3.7.17

(o] A sl o] A A M A%)

Running worker
Main thread sleeping

Worker <Thread(worker 1, started 130283832797456)> running with argument 0
Worker <Thread(worker 2, started 130283824404752)> running with argument 1
Worker <Thread(worker 3, started 130283816012048)> running with argument 2
Worker <Thread(worker 4, started 130283807619344)> running with argument 3
Worker <Thread(worker 5, started 130283799226640)> running with argument 4
Worker <Thread(worker 1, started 130283832797456)> running with argument 5

Consult the module’s documentation for more details; the Queue class provides a featureful interface.

4.3.4 What kinds of global value mutation are thread-safe?

A global interpreter lock (GIL) is used internally to ensure that only one thread runs in the Python VM at a time. In
general, Python offers to switch among threads only between bytecode instructions; how frequently it switches can be set
via sys.setswitchinterval (). Each bytecode instruction and therefore all the C implementation code reached
from each instruction is therefore atomic from the point of view of a Python program.

In theory, this means an exact accounting requires an exact understanding of the PVM bytecode implementation. In
practice, it means that operations on shared variables of built-in data types (ints, lists, dicts, etc) that “look atomic” really
are.

For example, the following operations are all atomic (L, L1, L2 are lists, D, D1, D2 are dicts, x, y are objects, i, j are
ints):

L.append (x)
L1l.extend (L2)

x = L[1]

x = L.pop ()
L1[1i:3] = L2
L.sort ()

X =Yy
x.field =y
D[x] =y
D1.update (D2)
D.keys ()

These aren’t:

i = 1i+1

L.append(L[-1])

L{i] = L[3]

D[x] = D[x] + 1

Operations that replace other objects may invoke those other objects’ __del__ () method when their reference count

reaches zero, and that can affect things. This is especially true for the mass updates to dictionaries and lists. When in
doubt, use a mutex!

58 Chapter 4. Library and Extension FAQ

Python Frequently Asked Questions, = x] 1] A 3.7.17

4.3.5 Can’t we get rid of the Global Interpreter Lock?

The global interpreter lock (GIL) is often seen as a hindrance to Python’s deployment on high-end multiprocessor server
machines, because a multi-threaded Python program effectively only uses one CPU, due to the insistence that (almost) all
Python code can only run while the GIL is held.

Back in the days of Python 1.5, Greg Stein actually implemented a comprehensive patch set (the “free threading” patches)
that removed the GIL and replaced it with fine-grained locking. Adam Olsen recently did a similar experiment in his
python-safethread project. Unfortunately, both experiments exhibited a sharp drop in single-thread performance (at least
30% slower), due to the amount of fine-grained locking necessary to compensate for the removal of the GIL.

This doesn’t mean that you can’t make good use of Python on multi-CPU machines! You just have to be creative with
dividing the work up between multiple processes rather than multiple threads. The ProcessPoolExecutor class
in the new concurrent . futures module provides an easy way of doing so; the multiprocessing module
provides a lower-level API in case you want more control over dispatching of tasks.

Judicious use of C extensions will also help; if you use a C extension to perform a time-consuming task, the extension
can release the GIL while the thread of execution is in the C code and allow other threads to get some work done. Some
standard library modules such as z1ib and hash1ib already do this.

It has been suggested that the GIL should be a per-interpreter-state lock rather than truly global; interpreters then wouldn’
t be able to share objects. Unfortunately, this isn’t likely to happen either. It would be a tremendous amount of work,
because many object implementations currently have global state. For example, small integers and short strings are cached;
these caches would have to be moved to the interpreter state. Other object types have their own free list; these free lists
would have to be moved to the interpreter state. And so on.

And I doubt that it can even be done in finite time, because the same problem exists for 3rd party extensions. It is likely
that 3rd party extensions are being written at a faster rate than you can convert them to store all their global state in the
interpreter state.

And finally, once you have multiple interpreters not sharing any state, what have you gained over running each interpreter
in a separate process?

4.4 Input and Output

4.4.1 How do | delete a file? (And other file questions:--)

Use os.remove (filename) oros.unlink (filename) ;for documentation, see the os module. The two func-
tions are identical; unlink () is simply the name of the Unix system call for this function.

To remove a directory, use os.rmdir ();use os.mkdir () to create one. os .makedirs (path) will create any
intermediate directories in path that don’t exist. os.removedirs (path) will remove intermediate directories as
long as they’re empty; if you want to delete an entire directory tree and its contents, use shutil.rmtree ().

To rename a file, use os.rename (01ld_path, new_path).

To truncate afile, openitusing £ = open (filename, "rb+"),anduse f.truncate (offset);offsetdefaults
to the current seek position. There’s also os . ftruncate (fd, offset) for files opened with os . open (), where
fd is the file descriptor (a small integer).

The shut i1 module also contains a number of functions to work on files including copyfile (), copytree (), and
rmtree ().

4.4. Input and Output 59

https://code.google.com/archive/p/python-safethread

Python Frequently Asked Questions, = x] 1] A 3.7.17

4.4.2 How do | copy a file?

The shutil module contains a copyfile () function. Note that on MacOS 9 it doesn’t copy the resource fork and
Finder info.

4.4.3 How do | read (or write) binary data?

To read or write complex binary data formats, it’s best to use the st ruct module. It allows you to take a string containing
binary data (usually numbers) and convert it to Python objects; and vice versa.

For example, the following code reads two 2-byte integers and one 4-byte integer in big-endian format from a file:

import struct

with open(filename, "rb") as f:
s = f.read(8)
X, Yy, 2z = struct.unpack(">hhl", s)

The “>’ in the format string forces big-endian data; the letter ‘h’ reads one “short integer” (2 bytes), and ‘1’ reads one
“long integer” (4 bytes) from the string.

For data that is more regular (e.g. a homogeneous list of ints or floats), you can also use the array module.

Z31: To read and write binary data, it is mandatory to open the file in binary mode (here, passing "rb" to open ()).
If you use "r" instead (the default), the file will be open in text mode and f.read () will return str objects rather
than bytes objects.

4.4.4 | can’t seem to use os.read() on a pipe created with os.popen(); why?

os.read () is a low-level function which takes a file descriptor, a small integer representing the opened file. os.
popen () creates a high-level file object, the same type returned by the built-in open () function. Thus, to read n bytes
from a pipe p created with os.popen (), youneed to use p.read (n).

4.4.5 How do | access the serial (RS232) port?

For Win32, POSIX (Linux, BSD, etc.), Jython:
http://pyserial.sourceforge.net

For Unix, see a Usenet post by Mitch Chapman:
https://groups.google.com/groups?selm=34A04430.CF9 @ohioee.com

60 Chapter 4. Library and Extension FAQ

http://pyserial.sourceforge.net
https://groups.google.com/groups?selm=34A04430.CF9@ohioee.com

Python Frequently Asked Questions, = x] 1] A 3.7.17

4.4.6 Why doesn’t closing sys.stdout (stdin, stderr) really close it?

Python file objects are a high-level layer of abstraction on low-level C file descriptors.

For most file objects you create in Python via the built-in open () function, £.close () marks the Python file object
as being closed from Python’s point of view, and also arranges to close the underlying C file descriptor. This also happens
automatically in £’s destructor, when £ becomes garbage.

But stdin, stdout and stderr are treated specially by Python, because of the special status also given to them by C. Running
sys.stdout.close () marks the Python-level file object as being closed, but does not close the associated C file
descriptor.

To close the underlying C file descriptor for one of these three, you should first be sure that’s what you really want to do
(e.g., you may confuse extension modules trying to do I/O). If it is, use os.close ():

os.close(stdin.fileno())
os.close(stdout.fileno())
os.close (stderr.fileno())

Or you can use the numeric constants 0, 1 and 2, respectively.

4.5 Network/Internet Programming

4.5.1 What WWW tools are there for Python?

See the chapters titled internet and netdata in the Library Reference Manual. Python has many modules that will help
you build server-side and client-side web systems.

A summary of available frameworks is maintained by Paul Boddie at https://wiki.python.org/moin/WebProgramming.

Cameron Laird maintains a useful set of pages about Python web technologies at http://phaseit.net/claird/comp.lang.
python/web_python.

4.5.2 How can | mimic CGl form submission (METHOD=POST)?

I would like to retrieve web pages that are the result of POSTing a form. Is there existing code that would let me do this
easily?

Yes. Here’s a simple example that uses urllib.request:

#!/usr/local/bin/python
import urllib.request

build the query string
gs = "First=Josephine&MI=Q&Last=Public"

connect and send the server a path
req = urllib.request.urlopen('http://www.some-server.out—there'
'/cgi-bin/some-cgi-script', data=qgs)
with req:
msg, hdrs = req.read(), req.info ()

Note that in general for percent-encoded POST operations, query strings must be quoted using urllib.parse.
urlencode (). For example, to send name=Guy Steele, Jr.:

4.5. Network/Internet Programming 61

https://wiki.python.org/moin/WebProgramming
http://phaseit.net/claird/comp.lang.python/web_python
http://phaseit.net/claird/comp.lang.python/web_python

Python Frequently Asked Questions, = x] 1] A 3.7.17

>>> import urllib.parse
>>> urllib.parse.urlencode ({'name': 'Guy Steele, Jr.'})
'name=Guy+Steele%2C+Jr."

o ®B7]:
urllib-howto for extensive examples.
4.5.3 What module should | use to help with generating HTML?

You can find a collection of useful links on the Web Programming wiki page.

4.5.4 How do | send mail from a Python script?

Use the standard library module smtplib.

Here’s a very simple interactive mail sender that uses it. This method will work on any host that supports an SMTP
listener.

import sys, smtplib

fromaddr = input ("From: ")
toaddrs = input ("To: ").split(',")
print ("Enter message, end with *D:")
msg = "'
while True:

line = sys.stdin.readline()

if not line:

break

msg += line

The actual mail send

server = smtplib.SMTP ('localhost"')
server.sendmail (fromaddr, toaddrs, msqg)
server.quit ()

A Unix-only alternative uses sendmail. The location of the sendmail program varies between systems; sometimes it is
/usr/lib/sendmail, sometimes /usr/sbin/sendmail. The sendmail manual page will help you out. Here’s
some sample code:

import os

SENDMAIL = "/usr/sbin/sendmail" # sendmail location
= os.popen (" -t —1i" % SENDMAIL, "w'")
.write("To: receiver@example.com\n")

"Subject: test\n")

"\n") # blank line separating headers from body

p

P
p.write
p.write
P
p

.write ("Some text\n")
.write ("some more text\n")
sts = p.close()
if sts != 0:

print ("Sendmail exit status", sts)

62 Chapter 4. Library and Extension FAQ

https://wiki.python.org/moin/WebProgramming

Python Frequently Asked Questions, = x] 1] A 3.7.17

4.5.5 How do | avoid blocking in the connect() method of a socket?

The select module is commonly used to help with asynchronous I/O on sockets.

To prevent the TCP connect from blocking, you can set the socket to non-blocking mode. Then when you do the
connect (), you will either connect immediately (unlikely) or get an exception that contains the error number as .
errno. errno.EINPROGRESS indicates that the connection is in progress, but hasn’t finished yet. Different OSes
will return different values, so you’re going to have to check what’s returned on your system.

You can use the connect_ex () method to avoid creating an exception. It will just return the errno value. To poll, you
can call connect_ex () again later — 0 or errno.EISCONN indicate that you’re connected — or you can pass this
socket to select to check if it’s writable.

ZF11: The asyncore module presents a framework-like approach to the problem of writing non-blocking networking
code. The third-party Twisted library is a popular and feature-rich alternative.

4.6 Databases

4.6.1 Are there any interfaces to database packages in Python?

Yes.

Interfaces to disk-based hashes such as DBM and GDBM are also included with standard Python. Thereisalsothe sglite3
module, which provides a lightweight disk-based relational database.

Support for most relational databases is available. See the DatabaseProgramming wiki page for details.

4.6.2 How do you implement persistent objects in Python?

The pickle library module solves this in a very general way (though you still can’t store things like open files, sockets
or windows), and the shelve library module uses pickle and (g)dbm to create persistent mappings containing arbitrary
Python objects.

4.7 Mathematics and Numerics

4.7.1 How do | generate random numbers in Python?

The standard module random implements a random number generator. Usage is simple:

import random
random. random ()

This returns a random floating point number in the range [0, 1).
There are also many other specialized generators in this module, such as:
* randrange (a, b) chooses an integer in the range [a, b).
e uniform(a, b) chooses a floating point number in the range [a, b).

* normalvariate (mean, sdev) samples the normal (Gaussian) distribution.

4.6. Databases 63

https://twistedmatrix.com/trac/
https://wiki.python.org/moin/DatabaseProgramming

Python Frequently Asked Questions, = x] 1] A 3.7.17

Some higher-level functions operate on sequences directly, such as:
e choice (S) chooses random element from a given sequence
* shuffle (L) shuffles a list in-place, i.e. permutes it randomly

There’s also a Random class you can instantiate to create independent multiple random number generators.

64 Chapter 4. Library and Extension FAQ

CHAPTER D

we,
0>
X,
2
=
fru
o
oflt
o
f
%
o
rlr
£
o}
td
i
o
0
fru
rd
mln
i&

agEY $4, 84, o % Ut extending-
3w
o

index Ao A

B e F ol

TFEYT Crrol S C B84 7152 AT h 3ho] 4 I 2T E (include) 3+ 5919 extern "Cv
.. B WA T AH zelE} BT 2 G5 Lol extern "CrE A AFAA L. BYAE 7
A o]t 4 = (static) Cr+ A4 & A -2 Azl obd L]

T = 2ol weh, o 22 wel C 22 A she o2 7HA] i tol ?l%‘%r/}-

Cython¥} & Pyrex+ 2F7F A 9 1o 4 & 24]-& Hhol&

S Pyens A5 A8 1619 C APLE W54 ot HA 44 4 AR

AR ool FAFo] gl A Cu C++ 2ho] Bz 2] of th gt ?_Eiﬁﬂo]éﬂréﬁ%}‘ﬂ olH 2] 9] v o] ¥ & 3}
P4E SWIGH 22 72 B 5 A5k SIP,C % Chr 2ol reie] 292 o] &
Syt

65

http://cython.org
https://www.cosc.canterbury.ac.nz/greg.ewing/python/Pyrex/
http://www.swig.org
https://riverbankcomputing.com/software/sip/intro
http://cxx.sourceforge.net/
http://www.boost.org/libs/python/doc/index.html
https://github.com/scipy/weave

Python Frequently Asked Questions, = x] 1] A 3.7.17

Coll Al Qele] shold EL o]RA AP 5 A&7

o] & 43} 0]— HASY & 4= PyRun_SimpleString () ©|H, o] 2E _ main_ o] AEHAE A
498 04 B9 AAS Ao 4T 02 BEAD Synearseror 2 AN HAR
S usshuch o B2 Ao]E Y5H, PyRun_String () & AFRSHA Al 2 ; Python/pythonrun.col =

PyRun_SimpleString() ii% %"}_6‘]—@ Al

5.5 Coll 4] 92 ¢] shol sl E&41E oA Frhe 4 A&z

o A Y& PyRun_String () start 7] & Py_eval_input2 Al-&3}e] SEHAAIL; EE
P

g8
A3, B gL WY

o},

5.6 shol® 27| o] 4] CZHL oY A 22 F72

ol A7) §ol wret ohEych

E 3¢

= ze pu
2 AAY AW A GRS BAFUL HAAEE WET FLE A
PyList_GetItem().

3}351al PyTuple_GetItem()
&Yt} PyListSize () &

b

Hlo] E g ol A&, PyBytes_Size () = Z
% ZAHE AFHY . ol ol = A1 O W8 & A 901 OO serten) £
AT % ol F25H A 2.

To test the type of an object, first make sure it isn’t NULL, and then use PyBytes_Check (), PyTuple_Check (),
PyList_Check (), etc.

A9 2 Aol AZEHE ol AR T DEE APLE SIGUIC-AA D8 Tnclude/

abstract.hd YO A L. PySequence_Length (), PySequence_GetItem() SH Z L IEZ B E
7Y FtolH Al A} QA EFH oA & 4= S Bl oy gl £ X (PyNumber_ Index))<} PyMapping API

_q] uH_uJJ/].7¥O I;]—E U}O 0_3_6]— _LEE::ZO x]_d-cqu.'

5.7 Py_BuildValue() Z AH§3to] 9] Zolo] 53¢ vt e 7ol
ol 7}2?
H

28 4 g Uth B4 PyTuple_Pack () AHESHAIA 2.

5.8 Coll 4] 27¢] WA =5 omA| 523z

PyObject_CallMethod() &&= AAY 49 HAEE &5t tl AHSEE = s Uth w7l W=
AR, TET WA EY o] F, Py_Buildvalue () ol AHEH = A} 22 2R FA4E D A FJUh

PyObject *
PyObject_CallMethod (PyObject *object, const char *method_name,
const char *arg_format, ...);

WA E7} 9 BE AA A FEFUTH- gl SR B o] B 253tk ukEk GhS Py_DECREF ()
3 92 of 2 Holl A YT
o2 o], A7 10,002 7 AH 9 “seek” B A T2 TZate W (3 AA EE 7T 7A T oh:

66 Chapter 5. &-3/13 FAQ

Python Frequently Asked Questions, = x] 1] A 3.7.17

res = PyObject_CallMethod(f, "seek", "(ii)", 10, 0);
if (res == NULL) {
an exception occurred

}
else {

Py_DECREF (res) ;
}
PyObject_CallObject ()£ FA AR EF et F2& G322, A} Qlo] +E T E3)8]d, format
0 R (E ADFIL, Y QAR F4E TENAY, ANE BER FHUL o o] ()

5.9 PyErr_Print() ¢] &3 (== stdout/stderr2 Q== 2 E) S o|d
A FEy7i?

o] FEo A, write () HIAEE A D3t AAE I HAHA L. o] AAE sys.stdoutTsys.stderr
o] thABFA A L. print_errorE TE5 AL BF Edo]2AM v AU Zo] ASIHE R FAA L. Ted YL
o] B write () HIAE7F HUY = 2o g2 ZHUth

olgdA st= 7MF A WL i0.5tringlo EHE A= A YT

>>> import io, sys

>>> sys.stdout = i0.StringIO()

>>> print ('foo')

>>> print ('hello world!"'")

>>> sys.stderr.write(sys.stdout.getvalue())
foo

hello world!

e A9 SRk ASA Y AA L LT 2EU T

>>> import io, sys
>>> class StdoutCatcher (io.TextIOBase) :
def _ init_ (self):
self.data = []
def write(self, stuff):
self.data.append(stuff)

>>> import sys

>>> sys.stdout = StdoutCatcher ()

>>> print ('foo')

>>> print ('hello world!")

>>> sys.stderr.write(''.join(sys.stdout.data))
foo

hello world!

5.9. PyErr_Print() 2] %% (&=L stdout/stderr 2 QA == 2 E A)-S o=@ A F&5 U712 67

Python Frequently Asked Questions, = x] 1] A 3.7.17

5.10 Coll 4] sto]H o g A4 H Rgof o] YA JA|2gY7|?

thE 3} 2ol BE AAo) thet 2AHE &

o
>

Ytk

S
%9l

’module

PyImport_ImportModule ("<modulename>");

EE< oA YEE oA F% oW (5, sys.modulesl o7 glow), o
3] sys.modules ["<modulename>"]19] & WU} o A

&5

olom the

Wo— v v v

97 ohgol a4 Al L - ThA 2788 £ 513l sys .modulesol A

I8 s, e 2ol ZREQ JEFRE(H Eaoll A9d ZE o8l

=4

AA 2T S Yych

’attr

= PyObject_GetAttrString (module, "<attrname>");

BEo] gl Mgl B Ysh7] 918 Pyobject_SetAttrString() & EEdE AE A5

5.11 5}o] 6] A Ca+ 23 o] S A| AE] 0] 2 T 7}?

87 Apael whet of o] 14 g Al o] &Y
A0z AABA A 2. ko)1 ATkS] Al 2Ele] A5 C9) Cr Aol
—webd ¢ PRA (EAE) B 5

= 2 B
Crt Bholmelg)e) 49, 02 25 A2 o g&Uth tigte] d&UMNE B2

5.12 Setup 51212 AH§3te] BES 2P

S
JESY72
Sewp S |0 % ZLpol 3], Aol flem WE = A2t)
A AAYE Aol Do, ol e HF AodA 18 e8e

5.13 242 o9 Tlm AT 7?

o} o] YL 502 £

$408 229 34 GDBE AT), o] 22 W7k el VAL AT+ 9HUTh

_gdbinit YA (& B O 2) Th PG F A L

br _PyImport_LoadDynamicModule

1% v, GDBE Ay & uf:

$ gdb /local/bin/python

gdb) run myscript.py

gdb) continue # repeat until your extension is loaded

gdb) finish # so that your extension is loaded

gdb) br myfunction.c:50

gdb) continue

68 Chapter 5. 373/U % FAQ

Python Frequently Asked Questions, = x] 1] A 3.7.17

5.14 2% A AW A shold B ES Avtdsha AT, A7 shdo] ¢

syt g ag 547

o FEY] 273H WAL o]l He ol F4S A dste v B o thge stdol 2FH /usr/lib/
python2.x/config/ ‘?13”‘33]7 Z3E o] QLA s h
P 42, D23 39S 4o ¥ python-devel RPM-E A X| 3H4 A] €.

o8] ¢te] A9, apt-get install python-devE A3 3}A Al Q.

515 “RE Q8 AAT JLYG oA FHY 5 LU
o}

ol
vfo quﬂ/ﬂ‘_ codeop RES AHR-SH
Sol, IDLES o] 212 A1t}

Co /\1 o)Z@A = 7M1 wH e PyRun_InteractiveLoop ()5 &3 (o} H o] A =0 A),
dlolA Az E 7 4H S AP EE st= A Y YT} PyOoS_ReadlineFunctionPointer () 7} o 8]
T AR Y Y FrE e 7]5—% a3 ?ﬂ T JdSUTE AA T I E= ModuleS/readline .c%}
Parser/myreadline.cE I XA L.

=

IV EE YR S8 2208y 22 Ag oA WE
AFE A 99 E L 7|thEl= =9 PyRun_InteractiveLoop () &
PyParser_ParseString() 2 $<3%}1 e.error”’} E_EOF S}

E AL 518 AT, 088 Alex Farberd] 2ol 928 98 2L HA
U

4
Bl
Mo
1%
N
o
offt
LS
o
ofj

=3 AU o A E

#define PY _SSIZE_T CLEAN
#include <Python.h>
#include <node.h>
#include <errcode.h>
#include <grammar.h>
#include <parsetok.h>
#include <compile.h>

int testcomplete (char *code)
/* code should end in \n */

/* return -1 for error, 0 for incomplete, 1 for complete */

node *nj;
perrdetail e;

n = PyParser_ParseString(code, &_PyParser_Grammar,
Py_file_input, &e);
if (n == NULL) {
if (e.error == E_EOF)
return 0;
return -1;

}

PyNode_Free (n);

(TF sTolATell A%

514,)52 A Awo A Shol H RES AoYstn AW, % shale] gt o 2FEUR 69

Python Frequently Asked Questions, = x] 1] A 3.7.17

(o] A sl o] A A M A%)

return 1;

e A Z2AE $A9 EXYEL Py _CompileString () &8 Antdstzl z‘s}% Ayt dg el H
395 ¥, PyEval_EvalCode () & £&3t0] REstE I = AAE A HAA L. 284 god UFS
A3l dEFS AR L. Aupdo] Ay, ol 9] FZolA HAIA FAE S —%—%?‘5]—1 o] & “unexpected
EOF while parsing” & A} 9 3} B] 2 5}of of 2] Q1 2] ©+A] ¢ WL ?:] Ho] QIR E &It Al L. T2 GNU
readline ko] B8] 8] & A}83= A S o Al A o (readhneo = 3‘7_36}“ S SIGINTE F]5]'—1—1]' i
AFHh:

#include <stdio.h>
#include <readline.h>

#define PY_SSIZE_T_ CLEAN
#include <Python.h>
#include <object.h>
#include <compile.h>
#include <eval.h>

int main (int argc, char* argv([])
{
int i, j, done = 0; /* lengths of line, code */
char psl[] = ">>> ";
char ps2[] = "... ";
char *prompt = psl;
char *msg, *line, *code = NULL;
PyObject *src, *glb, *loc;
PyObject *exc, *val, *trb, *obj, *dum;

Py_Initialize ();

loc = PyDict_New ();

glb = PyDict_New ();

PyDict_SetItemString (glb, "__builtins__ ", PyEval_GetBuiltins ());

while (!done)
{

line = readline (prompt);

if (NULL == line) /* Ctrl-D pressed */
{
done = 1;
}
else

{

i = strlen (line);

if (1 > 0)

add_history (line); /* save non—empty lines */
if (NULL == code) /* nothing in code yet */
J=0;
else
j = strlen (code);
code = realloc (code, i + j + 2);
if (NULL == code) /* out of memory */

(TH& STOTATT AI)

70 Chapter 5. &-3/13 FAQ

Python Frequently Asked Questions, = x] 1] A 3.7.17

(o] A sl o] A A M A%)

exit (1);

if (
code[0]

== 3
— U\OI;

strncat (code, line,
code[i + J] "\n';
code[i + j + 11 "\O"';

i);

/*
/*

*/
*/

code was empty, soO

keep strncat happy

/*
/*

append line to code */
append '"\n' to code */

src = Py_CompileString (code, "<stdin>", Py_single_input);
if (NULL != src) /* compiled just fine - */
{
if (psl == prompt || Jx ">>> " oor */
'\n' == code[i + J - 11) /* "... " and double '\n' */
{ /* so execute it */
dum = PyEval_EvalCode (src, glb, loc);
Py_XDECREF (dum) ;
Py_XDECREF (src);
free (code);
code = NULL;
if (PyErr_Occurred ())
PyErr_Print ();
prompt = psl;
}
} /* syntax error or E_EOF? */
else if (PyErr_ExceptionMatches (PyExc_SyntaxError))
{
PyErr_Fetch (&exc, &val, &trb); /* clears exception! */
if (PyArg_ParseTuple (val, "sO", &msg, &obj) &&
!strcmp (msg, "unexpected EOF while parsing")) /* E_EOF */
{
Py_XDECREF (exc);
Py_XDECREF (val);
Py_XDECREF (trb);
prompt = ps2;
t
else /* some other syntax error */
{
PyErr_Restore (exc, val, trb);
PyErr_Print ();
free (code);
code = NULL;
prompt = psl;
}
}
else /* some non-syntax error */
{
PyErr_Print ();
free (code);
code NULL;
prompt = psl;
}
free (line);
(Th SAToTAT ol A1)
5.15. “ZEH Y B AAT YY7 L o YA FHL 5 ASUAR 71

Python Frequently Asked Questions, = x] 1] A 3.7.17

(o] A sl o] A A M A%)

}
}

Py_XDECREF (glb) ;
Py_XDECREF (loc);
Py_Finalize();
exit (0);

5.16 7 o] 2] ¢-& g++ 7|5 _ builtin_newy} __pure_virtual & o] 7
S 2 Q) 27t

=
g+ F4 BES FAOL 2 E5 W, 5o 4 S ThAl ATASIEL, g+ & AFEShel ThAl F AL (o] A
Modules Makefile of] A| LINKCC & ¥ 4 54 A1 2), g++5 AHEsto] o 229 & R 52 sk FUt (&
£9],g++ -shared -o mymodule.so mymodule.o).

517 25 oA

I38FUTh int, list, dict 53 22 W W25 45T+ d5Uth

Boost 3}o] % 2}o] B & 2] (BPL, http://www.boost.org/libs/python/doc/index. html) = C++o| A o] & 3 5l= W
= AFFUT (5, BPLS AHEste] CH+2 A" 3 SR 5S4 dsdh.

72 Chapter 5. &-3/13 FAQ

http://www.boost.org/libs/python/doc/index.html

CHAPTER O

Python on Windows FAQ

6.1 How do | run a Python program under Windows?

This is not necessarily a straightforward question. If you are already familiar with running programs from the Windows
command line then everything will seem obvious; otherwise, you might need a little more guidance.

Unless you use some sort of integrated development environment, you will end up #yping Windows commands into what
is variously referred to as a “DOS window” or “Command prompt window”. Usually you can create such a window from
your search bar by searching for cmd. You should be able to recognize when you have started such a window because
you will see a Windows “command prompt”, which usually looks like this:

’C:\>

The letter may be different, and there might be other things after it, so you might just as easily see something like:

’D:\YourName\Projects\Python>

depending on how your computer has been set up and what else you have recently done with it. Once you have started
such a window, you are well on the way to running Python programs.

You need to realize that your Python scripts have to be processed by another program called the Python interpreter. The
interpreter reads your script, compiles it into bytecodes, and then executes the bytecodes to run your program. So, how
do you arrange for the interpreter to handle your Python?

First, you need to make sure that your command window recognises the word “py” as an instruction to start the interpreter.
If you have opened a command window, you should try entering the command py and hitting return:

C:\Users\YourName> py

You should then see something like:

Python 3.6.4 (v3.6.4:d48eceb, Dec 19 2017, 06:04:45) [MSC v.1900 32 bit (Intel)] on.
—win32

Type "help", "copyright", "credits" or "license" for more information.

>>>

73

Python Frequently Asked Questions, = x] 1] A 3.7.17

You have started the interpreter in “interactive mode”. That means you can enter Python statements or expressions
interactively and have them executed or evaluated while you wait. This is one of Python’s strongest features. Check it by
entering a few expressions of your choice and seeing the results:

>>> print ("Hello")

Hello
>>> "Hello" * 3
'HelloHelloHello'

Many people use the interactive mode as a convenient yet highly programmable calculator. When you want to end your
interactive Python session, call the exit () function or hold the Ctr1 key down while you enter a Z, then hit the
“Enter” key to get back to your Windows command prompt.

You may also find that you have a Start-menu entry such as Start » Programs » Python 3.x » Python (command line) that
results in you seeing the >>> prompt in a new window. If so, the window will disappear after you call the exit ()
function or enter the Ct r1-7 character; Windows is running a single “python” command in the window, and closes it
when you terminate the interpreter.

Now that we know the py command is recognized, you can give your Python script to it. You’ll have to give either an
absolute or a relative path to the Python script. Let’s say your Python script is located in your desktop and is named
hello.py, and your command prompt is nicely opened in your home directory so you’re seeing something similar to:

C:\Users\YourName>

So now you’ll ask the py command to give your script to Python by typing py followed by your script path:

C:\Users\YourName> py Desktop\hello.py
hello

6.2 How do | make Python scripts executable?

On Windows, the standard Python installer already associates the .py extension with a file type (Python.File) and gives that
file type an open command that runs the interpreter (D: \Program Files\Python\python.exe "%$1" %*).
This is enough to make scripts executable from the command prompt as ‘foo.py’. If you’d rather be able to execute the
script by simple typing ‘foo’ with no extension you need to add .py to the PATHEXT environment variable.

6.3 Why does Python sometimes take so long to start?

Usually Python starts very quickly on Windows, but occasionally there are bug reports that Python suddenly begins to
take a long time to start up. This is made even more puzzling because Python will work fine on other Windows systems
which appear to be configured identically.

The problem may be caused by a misconfiguration of virus checking software on the problem machine. Some virus
scanners have been known to introduce startup overhead of two orders of magnitude when the scanner is configured to
monitor all reads from the filesystem. Try checking the configuration of virus scanning software on your systems to ensure
that they are indeed configured identically. McAfee, when configured to scan all file system read activity, is a particular
offender.

74 Chapter 6. Python on Windows FAQ

Python Frequently Asked Questions, = x] 1] A 3.7.17

6.4 How do | make an executable from a Python script?

See cx_Freeze for a distutils extension that allows you to create console and GUI executables from Python code. py2exe,
the most popular extension for building Python 2.x-based executables, does not yet support Python 3 but a version that
does is in development.

6.5 Is a *.pyd file the same as a DLL?

Yes, .pyd files are dll’s, but there are a few differences. If you have a DLL named foo . pyd, then it must have a function
PyInit_foo (). You can then write Python “import foo”, and Python will search for foo.pyd (as well as foo.py,
foo.pyc) and if it finds it, will attempt to call PyInit_foo () to initialize it. You do not link your .exe with foo.lib, as
that would cause Windows to require the DLL to be present.

Note that the search path for foo.pyd is PYTHONPATH, not the same as the path that Windows uses to search for foo.dlL
Also, foo.pyd need not be present to run your program, whereas if you linked your program with a dll, the dll is required.
Of course, foo.pyd is required if you want to say import foo. Ina DLL, linkage is declared in the source code with
__declspec(dllexport). Ina .pyd, linkage is defined in a list of available functions.

6.6 How can | embed Python into a Windows application?

Embedding the Python interpreter in a Windows app can be summarized as follows:

1. Do _not_ build Python into your .exe file directly. On Windows, Python must be a DLL to handle importing
modules that are themselves DLL’s. (This is the first key undocumented fact.) Instead, link to pythonNN.d11;
it is typically installed in C: \Windows\System. NN is the Python version, a number such as “33” for Python
3.3.

You can link to Python in two different ways. Load-time linking means linking against pythonNN. 1ib, while
run-time linking means linking against pythonNN.d11. (General note: pythonNN.1ib is the so-called
“import lib” corresponding to pythonNN.d11. It merely defines symbols for the linker.)

Run-time linking greatly simplifies link options; everything happens at run time. Your code mustload pythonNN .
dl1l using the Windows LoadLibraryEx () routine. The code must also use access routines and data in
pythonNN.d11 (that is, Python’s C API’s) using pointers obtained by the Windows GetProcAddress ()
routine. Macros can make using these pointers transparent to any C code that calls routines in Python’s C APIL.

Borland note: convert pythonNN. 1ib to OMF format using Coff20mf .exe first.

2. If you use SWIG, it is easy to create a Python “extension module” that will make the app’s data and methods
available to Python. SWIG will handle just about all the grungy details for you. The result is C code that you link
into your .exe file (!) You do _not_ have to create a DLL file, and this also simplifies linking.

3. SWIG will create an init function (a C function) whose name depends on the name of the extension module. For
example, if the name of the module is leo, the init function will be called initleo(). If you use SWIG shadow classes,
as you should, the init function will be called initleoc(). This initializes a mostly hidden helper class used by the
shadow class.

The reason you can link the C code in step 2 into your .exe file is that calling the initialization function is equivalent
to importing the module into Python! (This is the second key undocumented fact.)

4. In short, you can use the following code to initialize the Python interpreter with your extension module.

6.4. How do | make an executable from a Python script? 75

https://anthony-tuininga.github.io/cx_Freeze/
http://www.py2exe.org/

Python Frequently Asked Questions, = x] 1] A 3.7.17

#include "python.h"

Py_Initialize(); // Initialize Python.
initmyAppc(); // Initialize (import) the helper class.
PyRun_SimpleString ("import myApp"); // Import the shadow class.

5. There are two problems with Python’s C API which will become apparent if you use a compiler other than MSVC,
the compiler used to build pythonNN.dIL

Problem 1: The so-called “Very High Level” functions that take FILE * arguments will not work in a multi-compiler
environment because each compiler’s notion of a struct FILE will be different. From an implementation standpoint
these are very _low_ level functions.

Problem 2: SWIG generates the following code when generating wrappers to void functions:

Py_INCREF (Py_None) ;
_resultobj = Py_None;
return _resultobij;

Alas, Py_None is a macro that expands to a reference to a complex data structure called _Py_NoneStruct inside
pythonNN.dIl. Again, this code will fail in a mult-compiler environment. Replace such code by:

return Py_BuildvValue("");

It may be possible to use SWIG’s $t ypemap command to make the change automatically, though I have not been
able to get this to work (I’m a complete SWIG newbie).

6. Using a Python shell script to put up a Python interpreter window from inside your Windows app is not a good idea;
the resulting window will be independent of your app’s windowing system. Rather, you (or the wxPythonWindow
class) should create a “native” interpreter window. It is easy to connect that window to the Python interpreter. You
can redirect Python’s i/o to _any_ object that supports read and write, so all you need is a Python object (defined
in your extension module) that contains read() and write() methods.

6.7 How do | keep editors from inserting tabs into my Python source?

The FAQ does not recommend using tabs, and the Python style guide, PEP 8, recommends 4 spaces for distributed
Python code; this is also the Emacs python-mode default.

Under any editor, mixing tabs and spaces is a bad idea. MSVC is no different in this respect, and is easily configured to
use spaces: Take Tools » Options » Tabs, and for file type “Default” set “Tab size” and “Indent size” to 4, and select the
“Insert spaces” radio button.

Python raises IndentationError or TabError if mixed tabs and spaces are causing problems in leading whites-
pace. You may also run the tabnanny module to check a directory tree in batch mode.

76 Chapter 6. Python on Windows FAQ

https://www.python.org/dev/peps/pep-0008

Python Frequently Asked Questions, = x] 1] A 3.7.17

6.8 How do | check for a keypress without blocking?

Use the msvert module. This is a standard Windows-specific extension module. It defines a function kbhit () which
checks whether a keyboard hit is present, and get ch () which gets one character without echoing it.

6.8. How do | check for a keypress without blocking? 77

Python Frequently Asked Questions, = x] 1] A 3.7.17

78

Chapter 6. Python on Windows FAQ

CHAPTER /

T2 AREAF QA E 3| o]~ FAQ

%01 EE 3= 933“1] weh 2 7EX 7 dFUTH 1€ 5 R o & Fho] 30 o] AF A sk
sl 2 o

7.2.1 Tkinter

sho] o] 2 W E o = Tel/Tk 94 4 3ol ek 271 2% S1E) o o] 27} % 3] £, tkinter ek £ 9 U ek,
o] Zo] o}k 713 (sho] W] A& upol 2] v ol £ of Qo m) AN 5 A8 5] 95U th
deonol T8 Qhul B 2 35 Tkol o 8 ApA] 8 Ul 82 Tel/Tk 251 0]) & 2284414l . Tel/Tk= ¥ OS X,
AL D fYs ZUEo] AaA TIE YT

7.2.2 wxWidgets

ro

wxWidgets(https://www.wxwidgets org) = C++ 3 FAE F 50|31 o] 4 A = GUI E £ ol B g oy, &
£ Aol A Holt L SADE AT, AT, o 05X, OTK X1 25 34 94 eho] 28

Utk sFol 4, 2, Fu)5 chrat dojol Al Qo] kRS AT 4 gt

wxPython2 wxwidgets 2] T}o] A v}l & Y Ut} &4 wxWidgets vl 3 ED]— k7 S E o] A A]% A, 44

Shol W 543 F5) T2 olo] Al oA ALE T 5 Qe B 7158 A B/ % Gtk BUE wxPython

AL Absh AA AR €] 9% o,

wxWidgets 2} wxPython-& 22 32 2] 9] o] L} o]] o} gk o) 2} 44 A E o) A o] AHE-2 B st Bof
a}]/\1]/\7} ol‘__ra _-_7H AANATE 1101011,]1—/}

ol 52

Hl

off

79

https://www.python.org/downloads/
https://www.tcl.tk
https://www.wxwidgets.org
https://www.wxpython.org

Python Frequently Asked Questions, = x] 1] A 3.7.17

7.2.3 Qt

@Eﬁ@@%WMv-%ﬂ%wwxmwﬂmmgﬂﬂmma#4ga¢d Ut} PyQi= A
PySide U} B A5 3HA 0 57 $§ T2 3-8 24 318 ' Riverbank Computingl] A PyQt 2}o] Al 2~ & AfoF
Fuith. PySidet RE -8 Z2 1ol A ¥R o

QU 4.5 o] 4 LGPL o] 4l o] ue} eho] 4l 27k ol U th; E 4, 4§ 2ho] Al The Qt Company©ll A
A% ek,

IM

7.2.4 Gtk+

s}o] Mg GObject 91 E & A3 A ulol 2 A28 W GTK+ 3 2§ =g 188 ZAe 4 94 yrth ghol 4
GTK+ 3 A5 A= gtk

Gtk+ 2 = 71 & 9] 8t o] A PyGtk v}l -2 James Henstridge 7} & 3 55 U t}; <http://www.pygtk.org>5 H A 8.

7.2.5 Kivy
Kivy= 235 29 A A (A=, macOS, 2l52) e 2uld X (= F o] =,i08)E B 5 X Pdt+= 2 3b
<% GUI E}Olﬂﬂﬂ ot} o] AL s}o] M3} Cython O & ZAJE 9o v t}ofst Moo A= wl g2

g % AT

Kivy= MIT 2}o] 2 of) mhe} o 5] = 2.8

o

N o AZEYOIYYTE

7.2.6 FLTK

st M= Y etal A5 WAl E0E A5 AT FLTK 5218 9fo] 4 vl g o] PyFLTK 22 2 7]
EoA AlsEH

7.2.7 OpenGL

OpenGL 8} -2 PyOpenGLE F 2314 A L.

7.3 ol Aol ol® ZAE 54 GUI S 0] A&

PyObjc Objective-C H 2] A& AX gz M, do]d 2132 W 0S X9 Cocoa o] Heje] & AT 5
AsUh

Mark Hammond 2] Pythonwin©l| = Microsoft Foundation Classes ©l] T 3t
28 ALB St A sold Lz 1oy B0l T o Gl

QlE] 3] o] 49} 2 2 Tho] W0 2 MFC 2

80 Chapter 7. 223 x}-& 2} ¢lE] | o] 2 FAQ

https://riverbankcomputing.com/software/pyqt/intro
https://wiki.qt.io/PySide
https://techbase.kde.org/Languages/Python/Using_PyKDE_4
https://www.riverbankcomputing.com/commercial/license-faq
https://www.qt.io/licensing/
https://wiki.gnome.org/Projects/PyGObject
https://python-gtk-3-tutorial.readthedocs.io
https://python-gtk-3-tutorial.readthedocs.io
https://www.gtk.org
http://www.pygtk.org
https://kivy.org/
http://www.fltk.org
http://pyfltk.sourceforge.net
http://pyfltk.sourceforge.net
http://pyopengl.sourceforge.net
https://pypi.org/project/pyobjc/

Python Frequently Asked Questions, = x] 1] A 3.7.17

7.4 Tkinter &

7.4.1 Tkinter £& =2 7138 oA 17 (freeze) g 7}?

Freeze =P AYY §8 =
olH

= 9] 8] Tl Tk 2}

BE = =YY Tkinter $§ 22 3W L v AT w), $E =2
AR =8 A3 o] o dTh

A AL SR 2w

9} TK_LIBRARY 37 W4 & X
AT =HAYY 58 227
aff of f . o] & A Y sk= 3 7HA
2E) Ay

SAM o] &4 319 Tix & W =384, 3Fo] # 9] Modules/tkappinit.c WRoA] Tclsam_init () 5= 82
317 && 3131, libtelsam 3} libtksam 7 3 F g T (Tix gho] Hegj el = g = gls).

7} Tk 2ol B 2f 2] &} A Al g5k, T2 55 A3 Al kel TCL_LIBRARY
&t 7he] 7= A9 yth
Ag donin, holnel2E TG T 2TYEE S8 2219
S -+ Tix v £ 3 (http://tix.sourceforge.net/) & LH A SAM(Z Y A

A= o)9) o thE A FoIA 2, TFFUHh 22 A =rt 288 A E syt 23U V/0 =2
FZF A A3l oF Fruth Tk Xt9] xtAddInput () $23 553t 22 2Hal =, 3 7Is 2ol A I/07}
75 o Tk W9l EZ oA TET I T45 S 254 9 =&). tkinter-file-handlers S 22 34 A1 2

7.4.3 Tkintero] A 7] ulelg o] 2517 Q& UITh: o] §7h Fei 72

3t 715 £l E bind () MIXER oJHIES AZH o|HIE X277} A2l A =

HholH o] 283 3= 9] A0 7] = EA L7} gl AT focus W ol T Tk W A2
Yt} (282 18 %] 95Ut} takefocus

7.4. Tkinter 2% 81

http://tix.sourceforge.net/

Python Frequently Asked Questions, = x] 1] A 3.7.17

82

Chapter 7. 1&g A}-&2} Q€5 o]~ FAQ

CHAPTER 8

“of W AarEloll sfo] o] A= o 5y 7k FAQ

8.1 ol 4lo] Folgu7l?

tolH2 T2 e A JUtt g2 D]'%%o z= 1‘7’“01] AHSF YT ol s 97 g 7
A5 uegos JdBE 22 a3y Ao] 2 AFRT A9 Google, NASA 2 Lucasfilm Ltd. 9} 22 ,\01]/\1
Z

4%?’: Az E o] N EA7F ARE S = Pyt
o] 4

off thell o & Aok, shofd o Af A YA FE A2 Al 2

8.2 Ul AFEl o shollo] A8 o] T}

sto] o] Alx' ol AR5 o JAIRE A X7 7] & o] ﬂfjr , 1EA

2 & =2 VA 7 s b o] s Utk

. O]'“]'—‘r:— AFEHY o A2 JE US| Aol el 2RSS AAUS ALY FAL =7
FHEAS YL AP E=A] F53oF T 145}

. @%Eﬁoﬂ AAE AL S5 EE:L%JO] gto]M o g2 ZAAE 9o, gfo]H HAXE 23T 4 JlF YTt

GUIZ2 O HYEHI AL Fe] 23 HE o277l 23 $8& =2 T o] W] dF YT

e AR A= AFEH =]”‘4 o] Ax= o] lF YT o] F& 2= A|H |, 2= FolHo] x3H

Hewlett Packard &} Compaq-/] FHo 8] ¢ Y5ttt £ 35 HP/Compaq] #E] =+ 5 427}

shol W0z 2449 98 ALtk
T+

s HOSX Y AP B 5wzt 2
A Ao o} 2

:| Z
A=yt 71 Z /,l%‘/ll’/}

U

r]o

o
-

FYs 582 ARl 7| BA = shol o] A3 of

83

https://wiki.python.org/moin/BeginnersGuide

Python Frequently Asked Questions, = x] 1] A 3.7.17

8.3 shol Mg AR 4 YU

stojd o] oY A FeAol 28 AsUth

Fr7tdEAor Ao, of FAE oA A AAL & dFUth AEoAME, Aol
Z 2% FI7HA A ofo] Z& AHE Al L.

ANAF 3§ Z2 2o A shol S AP, AAT F= AT g &8 22 a0 B+ ZEsHA
A Futh sel g A A A Al AT S8 =222 A A Z2 TS ARGl oF P th

sto]xl o] G AA 2k A A= Ak, A Ask= A2 vpgHshA] ks Uth Al A S, shoj o g 2
REEF7tHe ARHA ko, 3% dF = 52T 5 AUtk BAE st oA A" g A A

T

Aok & 4 A5k

84 Chapter 8. “sl] A FE]o] 5ol o] A]5] o] YZ1712” FAQ

APPENDIX A

2to3 Tto]M 2x FTEE Ffo]M3x T ER
o

2to3 £ EF ol B oA 1ib2to3 E Al U S YA 2 AP = = 2T HEE Tools/
scripts/2to3 2 A|FE YUt} 2to3-reference 2 X A 8.

abstract base class (34 W o] A Ze]A) FAH| oA ZEd A= hasattr () ZLEHIaYdE EHGA LY
] ESHA ZEE (A& €0, A A E) %, AdE S o) AE Yot PHS ATTFOEHA ¢ Efo] 3
S R85t ABCE 7MY A B ZlaE = Ydted, S48 AS8A oA isinstance ()
2Fissubclass () ol o3 AL 5 U+ é’ é%?&‘%ﬂr, abc 25 AYAE HA L. JtolHd =W
2 W7 ABC £9] fﬂrEPOhtﬂ OS5 22 AE0] 5yt AF8 F X (collections.abe +%ﬂlﬁﬂ),
ZAF (numbers EE9A), 2EH (io & oﬂ,ﬂ) oJx E voltj9} 2 (importlib.abc EE|A]).
abc &S AMHS-SA] AHAT RS ABCE s S5 dFUTh

annotation (o] =EH| o] H) FA5ol whet 3 SIE B AR = Uy, FH A OEYRE B 5 Wi7iHS U
e gk A A E ol EQJyth

21 49| of mH o] 42 AP ATl A AT 4 glARE A Ay, Fela SA F T o] . o]
AL 4t 2E, ZH:2, F42 __annotations_ 54 JEFFE AFHUTH
o] 7I5& AW ste ¥ o inH o] A, T o] =E| o], PEP 484, PEP 5262 =34 &

]
argument (21 2}

) FFE T2 I (VM) 2 AEHE g F SR A Ut
c 719 E O_Xer WOrdargument) S 52w AEATL el 22 AAH (O £0], name=) & **
ol 2 gAYV 2 ALs = Ak A€ 0], th&3 22 complex () TENA 33745 &

w5 A9 S ARt

complex (real=3, imag=5)
complex (**{'real': 3, 'imag': 5})

85

https://www.python.org/dev/peps/pep-0484
https://www.python.org/dev/peps/pep-0526

Python Frequently Asked Questions, = x] 1] A 3.7.17

© $12) A} (positional argument): 719 = AA7} opd 217k 917 AAHE L AR 52| A gl 1}
A olel e & of ol + &] ALF 4 AFUIh o & Fol, 5} 2L 3BAN 35 &
2% 94 Ak,

complex (3, 5)
complex (* (3, 5))

Qe 4) o] o] F 2L Ao We] thg P U th of thedol 485 & F S ol thhA L calls AL
BAS. EHA0R, oj" x4 o] JAAE ASE 4 A5 UTh ol X ghel A gl g Yt
folR o] v 7|l FE 7 FAQ AE Sl 219} mf 7| = 9] 2}o] & PEP 3625 H AL

asynchronous context manager (W] %5 7] A8 AE #2]2}) _ aenter_ () & _ aexit_ (
302 M async with £olA Kol 872 Aol A4, PEP 4922 =45 g%t

asynchronous generator(H]%ﬂ AUl ole]) ul5 7] A olE olHH olE & EHF+ &5 async def
Z A= ZFHE A H Hol=d,async for FEIIAIE S = B FES HEEyield
R4S EgaTE Yol thEUTH
HE 57l Ave ey g8 7He 71 A g of ™ W ol A= 8] 5 7] Alvid ol g oE# ol H & 72l 3
wwgza%QMﬂmﬂ&ﬂw°ﬁ°L%wﬁﬁﬂ%waaia%wﬁww

=)
X
[
uli
o
1o

U57) oEEl o] 6] AH _anext__() & FEEH o8 o]E1 2 AAE F2 57, 0| 2L THE vield
A4 744 157 A dol8 §42) el AT o

Ztyielde GAIACE A& SHst, XY (AF U 7] TAduy-w 58 2F3HE) A3
AEIE 719U b5 7] Alvd el] o5 # ol E 7} __anext_ () 7t =8+ & 3] o9 o] E
B2 AAEd, gy 2oz B3]k PEP 4929} PEP 5258 H A .

asynchronous iterable (B]£ 7| o]E]2] &) async for BoA AF2E 4 = AA. __aiter_ () HAEE
H'57] ol dl o8 & =& F oF U th PEP 492 2 =95 A F YT

asynchronous iterator (B]57] o]Jg]#]|o|E]) __aiter_ () & __anext_ () WAEE Fd3}= 2A.
__anext__ = ol olHE AAE E8FHoF F§Y}. async forE StopAsyncIteration 9|97}
WA S ol 742] W) E 7] olE @l o] B9 __anext_ () WINETVF =8 FE A olEHES FUth PEP

4922 =9 3lF Utk

attribute (6] E-|HE) AE A S ALl = o207 I2EE AA S AT 7k oS S0, AA o7} A E
REaE 7HAH anJE,j Tz Yk

awaitable (o] Q]oJE]8) await T H o] AFR T = 9= AA. ZFE o]y __await_ () HIAEE 7}A
AA 7} E 4 92U Th PEP 4925 B A 2.

BDFL Z#}H] 28 £Al =X %} (Benevolent Dictator For Life), = Guido van Rossum, 3} o] % 2] A A},

binary file (v}o] 2] 3}Y) nio| ELF AA =S 91 & 5 A+ 3L AA vpol v g] 3t 9] o & nfol]
g EE ("rb', 'wb' EE 'rb+") 2 Ed 39, ys stdln buffer, sys.stdout .buffer, io.
BytesIO & gzip. G21pFlle./] OAE A

r AAE 9 5 5D AN ARAE D 5 T B,

bytes-like object (W} o] E Q5 A A)]) bufferobjects S A QD31 C-A<5 W E JA2ZE 8 5 954t} o
= memoryview 7“ AAEL ERo| bytes bytearray, array. array AAES 23yt 8}
O ELF AAE2 vtolv g tlolE & thF & o8 7HA d4absel AHEE = dsUTth o5, vholv g
L= Zi’f},iﬂ% FHAE T2 A °] 01,\1/]1;]__

o8 QE2 Wol 2 ol /AL BRI AE L. o8 BF AL FF AL)
O EERF AAetr AT YLE ZhH ¥y AR o 2= bytearray @ bytearray & memoryview

86 Appendix A. &3

https://www.python.org/dev/peps/pep-0362
https://www.python.org/dev/peps/pep-0492
https://www.python.org/dev/peps/pep-0492
https://www.python.org/dev/peps/pep-0525
https://www.python.org/dev/peps/pep-0492
https://www.python.org/dev/peps/pep-0492
https://www.python.org/dev/peps/pep-0492
https://www.python.org/dev/peps/pep-0492
https://gvanrossum.github.io/

Python Frequently Asked Questions, = x] 1] A 3.7.17

b Utk Bhe A5 e uho el ol 7k Bl AR (<917 A& vlo| EQR AH ol A £
27Utk ol & A5 ol 2 bytes9} bytes AA 9] memoryview 7} &Y Th.

bytecode (H}o]E T &) Fo|H A~ FT &= vlol|E T =2 FH31YE =4, CPython A H Z & H A T}o]
ZR I Y x4 1‘4"/}- HFO|E I =+ .pyc 3P A Hof, 22 LS F AR AT uj
o WA A EUTH (Ao A vlolE IE2 o A ATFL S 98 5 s Y. 9 “ZZ} Aoj” = 7+
Hlo] E I = o tff §-3h=]74]% A3t 7 77 oA A E T Ttk vlolE I E = /ﬂi o2
stol A 7H 71 Aol A ZHe & A2 7|t st A &, pfo] 4 vl 22 Zhol] FA A o] A & okrh= Aol & oF
EigRi=3

HO|E I = W o] 52 HEL2dis BE YA vyt

dass (ZFe|2) A2 BY AAES HE7 AT T, FH2AY= HE FH2 dxdrE e w
Asbet= Uﬂ/HE Aol 23U

classvarlable (FAH2He) A B SR T2 (S, FHAY R of| A} 7} o} 2}) ol A wk

TRH = ﬁ—?

coercion (Z.o]) 72 o F AAE 3t Abo] dojyh= ¢h P Y AxvHAETE FPo2 &
AR o R HEel= 4. oAl § §9],int (3.15) E AT E A5 3202 WSk AT 3+4.5 o A,
7k QA 2b= T2 3 o] AL (8= int, TR 3pLb= float), & T 3H7] Aol 22 o2 HEkaf of Tt
282 ¢¢o W TypeErrors oYUt FojA glojs, 8H = JFE2 AT =207 22
For Qs Folok Futh ol & 5o, 1 3+4.5 3F= Al float (3) +4.5.

complex number (5 £5%) 53 A5 A/ AH] A0, & 7’%2} tdsRe s aRe o Y
. SR E g s ‘:}H(1Y AFDHE F$ AN, TF sl = i, :o'—@}"ﬂ/ﬂh 1=
E71g Yt gto] M F A9 R7|HS 2 HAaF “;:7]31] 13Ut SR § JuAE 294
F71gUth o & £0],3+13. math 259 B4, ¥ do] R3HY, cmathE AFE U th B A9
e 2 o =254 71 YUt 283ttt =74 %ﬂ"/]"iﬂ, AL A3 FAE 33‘4‘4‘

context manager (B AE A2 A} _ enter_ () &_ exit_ () HIAEE AT o ZH with B4 K

o) 2712 Ao 31 A, PEP 34302 © 95 g5 Tk

M%) Adisd] met b e /b 4 9
b b SR

o, A9

AP ~P o o] AY2EZJE Qo AYAE Mo F 5= FAA HF 7] BlaToA
HEE FH 5= AYY contextvars s TR L.

contiguous (A<%) ¥ 3= A &S| C-AZ5 (C-contiguous)©) A EE T ﬁﬂ.—(Fortran contiguous)d W] Aot
AARZYTH AL HHA=C-A&5 o HA 2ES ALY U AL v Dol A, FEE2 A2 A -3}
3, 004 Al &ehs L 52k AP A E w R g o v X = of of It thakd C-2 <5) ol A,
W5l Fao] wATE B3R5 S WY u ohA o Au AT b e Wkt shA Y, EE T A%
W do A=, A HA A 27} 71 "“LE] 3ok

coroutine (% ¥l) Coroutines are a more generalized form of subroutines. Subroutines are entered at one point and
exited at another point. Coroutines can be entered, exited, and resumed at many different points. They can be
implemented with the async def statement. See also PEP 492.

coroutine function (Z. 58l &) T2 AAE SHFE= T4 Z2E T4 async def Fog AoJF 4
11, await & async forE]- async with 7|9 =& =3t ¢ JQH5 U o] 452 PEP 492 9 2] 3

EdE s U

CPython 5ho] 2 =212l o] 794l 78 elel, pythonoreo] A Ml EH T} o] 78S Jython o]}
IronPython ¥} Z+-2 t}-2 ZAE3 +E H 8 71 915 uff & o] “CPython” 01 A& Yt

decorator (]| Z#| 0] ¥]) t}E & =8IF+ 59U, BF Qurapper &S AMSSH g Hgto = A48
AUtk dZ g o) e 2] £3F o= classmethod () statlcmethod ?Jl/]D}.

o] E EH] He B WM

L

ohohe B Ao E ugo R S5

87

https://www.python.org/dev/peps/pep-0343
https://www.python.org/dev/peps/pep-0492
https://www.python.org/dev/peps/pep-0492
https://www.python.org

Python Frequently Asked Questions, = x] 1] A 3.7.17

def f(...):
f = staticmethod (f)

@staticmethod
def f(...):

22N dol Feao® EA3HA v E Ak 2 QU th dl Z# o] B of] o §F o] ApA 3 W82 T 9
o} Zex Ao o AHAE B P
descriptor (C] 23 HE]) WA E __get__ () |y _set__()]y _delete_ () & BYst= AA. S
2 14 EOrabE %Jl

2 EYFJETIYATYHE Y uf, 01 PHE 23 =58t Ad T8 ¢ —9—1:}
L, 22 A, A A S AFS S], ao] el /qﬂal"ﬂ A beial o] & B A AAE g5y} sHA|
b7 Y23 gHW, Gt UATHE WA= 55 ok AT HEHE olsfi st 22 kol Ao
st 722 o]l o] &4 A, T, WA E, ——Lifﬂﬂ,éiﬂi HAE, 2HE HAs, FH g F=x
o-JLaL 7159 712 E o] Fa Q7 wWE Yt
2z ge o WA =S| tf 3k 2FA 3 &S descriptors o] L34 o}

dictionary (94 2]) 999 71& Ftell &4l]% A 8] G (associative array). 7]= _ hash__ () <}
eq () MANEE ZE=E2E AA7LE & A5 UTh BolA Al gt FE U th

dictionaryview (“4}:]1:]3]-,-,- ict.keys (), dict.values (), dict.items () WA E7} E8F+= AA
< 99X E -n‘lj/]' FUth oAEL g9AMYE 55 Wﬂ%@?_-ﬁ" A s 3st=dl, 9 A
vzt a7 d o, 7]’01 W3 E vk st = ?:114‘31' gXqve FE &A% gl2EZ vty

list (dictview) & AF23FH FH Ut} dict-viewsE H A &
docstring (5 £29) Fel2, B, BRI 3 WA RALSE Yehh £49 A8 L. 29201 A
o = FAE AT Aot el g AAH A SR ZH;H A, T4, BEY __doc JEZRER 444

Utk AER AR AL Fol AT 4 Qome, AAe] AUAE AR FHA FodTh

duck-typing (¥ €}o]F) Zu}E AEF o]~ 7HF X At AAe F& B2 e z2 a9y A€
A; A, T3] WA = of 7t EEE AU AN %HD}(“OFJXWEOHJJ%XW 2 2 e o}

5} 3

al

_4

W, S 2 etk B AE|H o] 25 R Fo e, % A REE A
daﬂoi’ﬁ%oﬂ/‘*% N A5tk g Efo] g2 type () 1‘%lsmstance() S A
& ST e (G & thol ol £ 4t 0] 2l = ek % 1 8ol 501 Ho Bl
hasattr() AANGEAFP 22 89S F Ut

EAFP 32 R t}= 84 & 1317 7} i ¢} (Easier to ask for forgiveness than permission). ©] £3] & 4 9l+= 3}9|
0 nY AR, SHIE A o Ee REe] £AE 1491, 1 0] BelH o9 8 Fa
Z-3stal wh-E AE Y2 W2 tryStexcept 2 EAE S AP Yt o] HAY 2 Ce 2 thE
B8 o]0l A A ALEH = LEVL 2 Eh 3} o ol U ok,

expression (E@4)) ol® o2 734 5 9l BHAA 27 b B2 wASY,
NEPHE WAL, AR, BB 0L S Eo
Qdojghtjz Ao, BE Qo] THEEO
Q£ Sol itk 3l e o], F A4 o] ob Uitk

extension module (23 2 5) C U C++E ZAAEH B &), 3to] A9 C APIE A& A Ao} AF&2F &
Eo} 4% Agech

fotring (-8 744) £ U E0 B 2ol $9 $A4d B ES Tal SRR ol Fa e, 29 24D
gEE o 2dEd Yt PEP493 H2AL

23
e ﬂllo
>,

O
PAUREN
florlr
o

file object (3} Y A) 35 Ao ﬂ]éﬂ g R A API(read () Ywrite() Z2 HAEE)E =g +=
AA. AR By ol whe}, 5t AA = AA ta3 g -ﬂro‘ O]‘)rD}E A AU FA A (AE
Sol, m 2, Al W3, £, stol 2, 55 & BALE FAT 5 AU 32 A7

= 934 F AR (file-like objects) } 2~E F (streams) °]| 2t = EH T}

88 Appendix A. &3

https://www.python.org/dev/peps/pep-0498

Python Frequently Asked Questions, = x] 1] A 3.7.17

AAZ =M EFY 3 AA=0] A5F
HAE k. oY AHHA A E do
open() ¥FE 2= AUyt

file-like object (3} 5 AA|) o+ 21 4] o] w]<=3) 2,

finder (3}¢lt]) YZEE RES F3 2] & 2Fog 1 A| L3}

spol# 33. o] 52, F F /Y 3 E 7t 55Ut} sys.meta_path & T AFS3H= v EF A 2 If2l T
9} sys.path_hooks I} &7 AFR 1= 4 2 dE] 9}ol.

o] ZhA) 3 U] 42 PEP 302, PEP 420, PEP 451 o] Y- T}

floor division (4= YA 713 77k A4E WSt 314 YAl A5 UxAl dakats // ok dE

Eoi,ﬁfa*—.‘ 11 // 49 227 AR A UxA2 2,758 EHF YT (-11) // 47F-2.75
S WH g -30] Foll f-3l oF Tt PEP 2385 B A 8.

function (352) S& Aol Al o S EeiFE A9 EHE. QLAY L ol 4y <A 7 ALE £ &,
vit] o] Ao A= 4 stk v 7] 2 9 v A = 9} function AT B A L.

function annotation (34 o] - €| o]) <= v 7 41} w3 2he] o] = H| o] A
T oicH o dE Ut o R 3 JE E AREHUTE: & E9, o]l ¥+ F N9 int AAE Hot
= °‘ Aoz 7Ie L, Ao int ¥I3 g2 & Aoz 7 g Yk

o, W (raw) ko] 1 2] 5191, 93 = (buffered) vFo] vl 2] 3
EolA] A BUth 1Y AAE BEL FEAL PES

fn T

A3

rlr

s}
T
o

-

def sum_two_numbers(a: int, b: int) -> int:
return a + b

4= o] H| o] A B -2 function Z ol A A gtk

o] 71%5& Ayt W4 o] mH o] A I} PEP 4845 I 2314 2.
future T 2B 7 A Az B} T3 A = A Ao NS

2E.

__future_ EES YXESU I UFEY FES Tl A 7150l AA ALz Adojol F71H

AT, A HE] 270] 7| R0 H A B 5 Jevth

[kl
filo

25 A=F 5= 7S

>>> import __ future_
>>> _ future_ .division
_Feature((2, 2, 0, 'alpha', 2), (3, 0, 0, 'alpha', 0), 8192)
garbage collection (/1] 2] $:7) ¥ AH851 4 9 v R el & Wb S AR sl e Bx 4 £43) %
£ 53 7hA = AS A FUE A £ A7

ERPS
gc B82S /\F‘loﬁfﬂ Zloi =)

TS AAGFAL FE T AE =F A $ A7
& sy Th
generator (AU &o]€]) Al o]E o]E#olE] & EeFe T AW FeAYH R, ¥ gES
UEEyield BAA S T Th= Ho] U ©] FE2 for-FZ 2 ARG A U next () TR

2ol ahuba A 2 gl
HE AV ole & 7t 71 A2 ol ® W o A= Alvfd o] g ole# olH & 7| P Uth Y E3=
ou) 7} W EetA e A9, AN FAE N ZTETS Ytk
#ole]) Alvjd olE T7t e A
= ° S S, T AXY (AY "y 7] T ty-

A AEE 719Ut Ay olE olE#E ol ZF AN, it e

Al &k o) o vl g Y oh.
generator expression (A 2] o] €] & t‘ﬂl"ﬁ‘) ol olHE ST R4, Fx U5 B E AYdt+= for

A B 7testif ol Fol B vt 2dA AY BYUch 2t 292 SR T E S

RS ST

89

https://www.python.org/dev/peps/pep-0302
https://www.python.org/dev/peps/pep-0420
https://www.python.org/dev/peps/pep-0451
https://www.python.org/dev/peps/pep-0238
https://www.python.org/dev/peps/pep-0484

Python Frequently Asked Questions, = x] 1] A 3.7.17

>>> sum(i*i for i in range (10)) # sum of squares 0, 1, 4, ... 81
285

generic function (AU F4) 2 A4 A2 0hE FEof s} 7AW o] 42 THE 4. B2)
ol T@e] ALFBA L vl 2w} X darelZel 5 24P ek

A yauzx] £0]3 &E7} functools.singledispatch () Bl Z 2 ©]E] 2} PEP 443% B A 2.,
GIL A9 olgz2E = & HA L.

global interpreter lock (A9 Qe Zg|g] &) 3 Hol| 2 & sl}o] A =7} glo] M Hio|E F
) 19 (o 91 E1 5 e} AR HALE. (aicesh 20 529 4 HE L TH o)
A7) 2] FA A% A 920 ta] HAFHES BHE o] A CPython 7 A2 T ah A B
Az E AAE A2 A2 JdEZHE tF2g =367] A ves A, v Z 2 A A]
ﬂﬂ%ﬂ%%ﬂHA 1o RE2 5 AT

87, o 3
o = GIL° t‘}a%}

(R 9 v AsHA & Hl ol
'6}% 34719] =2 AF A)A %;ﬂ%tﬂ =3 E‘r"‘ JEHW %‘—C’r/l oy ﬂ 0}7}

bt }‘1:1

2, [k
N

2% 47 A2ko] obd AT S AHE

lo

hash-based pyc (3] A] 7]¥tpyc) &S FHE 317 8] G 2 3
3= vlol E T = 7] A] 5} Y. pyc-invalidation 2 ZFZ 514 &

hmmm“VV}>ﬂﬂﬂ%”1§ﬂmaﬂ%tﬂn e 23 (__hash__() WA=/ B2,
D]'E 7“11194—12]] _/,\— %10131(1}“/\-]1:7]_ -‘;1/]]-/]_ —H}‘] 7]--—'6]—\:]—]_ \41:]- 7]_‘:]_1 l:]]
== ;A 7 s AA S HAE 71—O 71—o].o]; aas i

HA] 7he e AAE gAY 71U AT AW E AR 5 QA Sk, o] A E FREOl WR A
o NS g7 WE g
R stol Y B WA AAE2 Al 7Feduth (BI2EY 94 e 2-2) 7 AH oV &2
A U T (0] L frozemset 2+2) B Aol 5L 15| R2Fo] HAl 2wk o)A
FeFUth AR A o] A2E A AAEL 7| R A 0 2 A 7heFuth (RF7] AALE Al
Blue) BT thEgy v 2E 1, A e 1id () & HE 9Eo F Utk

IDLE s}lol & 93 53 H‘Q’ 317 (Integrated Development Environment). IDLE-2 I}o] # o] 3%
weler Az A0 #7190 olEm el g $7eo.

N
=
el
r
=

immutable (B¥H) 7 A E S 2= 4. £ A= A4 EAYE, F2L 23U oA AA 52 A
A2 4 AFUth A B2 A E A AAE HEo]of Tyt WA b= Al o] 9lojof k=
oA 583 IS FUh dE 5], gAY 7

1mp0rtpath(° ZEAR) A2 7| aoly 7t dTE T RES 2] Yo AMEE= FALAE (EE AR CE
) o B2 AR E =50 o] AL EY BEEL HE sys.path ZHE FYT} A vk A B 9) 7] %] 9]
R —‘%E ﬁH?l A9l __path_ OJEFREZRH & FE JFUHY

importing (%1:—5%) St RES slo|d FE7L T2 R EQ oW FEo M AHEE 5 JEE F= Eal

A7, MﬂJFWﬂ]ﬂiiiﬂﬂﬂﬂq.

mteractlve(tﬂﬁ}fg]) stol W2)543 QlEj= lcdl, AEZelE nEx e AT BHAL
oaﬂ¢ﬂléﬁg;%aﬂ%%¢QW%%ouwﬂﬂwﬂﬂﬂmmo%@%wws@
Fee) 2ol Ad s A% AT 5 QFUTh. A okt & AAEAL RED 714§
Solth s o1$ ZE 3 3 AU th(help (x) § 7193441 2).

interpreted (IE|] E] =) vo)= 3= Asalelo) £ wo] 1 3ol 8o A7) SAY, ol e
A3+ dlojzh objet A Lol B AoiQIUTh o AL WAHOR Ay HAL WEA FIE, 22

90 Appendix A. &3

https://www.python.org/dev/peps/pep-0443

Python Frequently Asked Questions, = x] 1] A 3.7.17

sge A A8 4 9

Slo)t BT ATl o] bt &2 e g =7]

interpreter shutdown (21 €] Z 2] €] %E) %=

f
0,
v
rlr
YA
jinss
T
v
d
kI
fr
I
i o
o
TN
An)
3
3
ol
>
o
)
N,
Ir
ok
D)
=
ro,
Ay
[k
AU
v

2ohehe 29 ¢ W2 ul, ol d ez el E = S0 A 7o) 1
], BB o 4 SR Y TREN L2 BE FFH ANES WAH O ok
8, pal A A7 8 o] W B E T ALgA 9 33 At weakref o] gl T =S AP S
AAAD S &tk 5 A7 o AaE s nEE The o952 whd 4 g, 17 e] o 23}
EAUE] 8 153 88 4 27 AE (£ ol 2ol el e mEol} A2 A E I .

=l
=
rr
P
zo
<
o C

)]

AN

2 o}

e zeE $EO FU AAL ADH L _main_ BEo}AITYE AL
] L BE

U

iterable (o]E)2] &) WSS 3 Mol SHA B2 5 5 Gl AR o) H e el o2& BE (Qist,str tuple
) ADL YE, dict 2L BE 0 A2 FE, HD AAE, _iter () hAD~AGE 7
FE_getiten_0) AN=E HA BAT 2E e ANl A
GERE for £l 489 S 9T, AULE BLL ok HHE WL R (eip () map(). =) o

/‘}%—%i‘rﬁl’“bli}. olH & 7<ﬂ7}141%‘?}$lter() ol

2l g
EHE U o] O]E%Eﬂol'ﬂ“ BHEY AL T W AXE T %E?&WD} 01‘3 %% /\}%Q uf,
BE2iter() Egﬂﬂ‘/‘r ol olH AAE AH thE B8+ UFUTH for F2) AES o9
S tAlEA X} o7 FFEH, FEZE S 5 oHAHE FotE o) F sl HFE UYL

olE g ol B}, A] A, AL H o] = A Q.
iterator (o]E]#o]E]) TlolEl2] ~2EHS BHAFE= A o]E e olE 9 __next_ () WINEE W B Aoz
TEIE (EE 141” < next () 2 ALEH) 2EH & FEES AU E 22FUTh ¢ ¢
Akol ¢ o]Ei7} S uj= gl StopIt ration o9 & 0‘27‘143}. o] 21 ol A, o] El & o] E] A A=
A2ZE 1, o] %9 E'_ __next__ () WA E $&2 Stoplteration o9& thA] 27|78k g
ol Bl & o] B} = o]] &f| o] E] A A Z}"J S EHFE_iter_ () WINEE 7HA Z o] 875 7| wZ o, o]

H#olH = olH e Eo| 7| & ota thE o|H e EE5S Wolsol+ -‘?"’?'— Lol A AREE £ F YT
Z83to o= oy HY oJH Y oS A Ed= ZEY YT (list Z2) AH oY AA|= iter ()

2 AGstAY for Tz o AFSE ufuitt A o] B o] E] & e Y T O]ﬁ 2= ol el g o] Ef o] th 3}
A e ste] A o, X o] gl @l o] A of] A& o]u] AZH olEH o] H & FHAA, W AE ol A -
HolA vy th
typeiter o] T ZpA §F W &-©] Q51 Th

key function (7]) 7] S == Z ¢ o] A (collation) T+= A H (sorting) o]} HH < (ordering) o] AF& 5 =
e EHFEZHEYYL o & £9],locale.strxfrm() S ZAL EA PSS W= A 7|15
Tte = o AR YT
gto] Mol W =77t R AE o] o EA A Ao A A Fol =R & Aot f38l 7] & HotE Ut
ol AEoE=min(),max (), sorted (), list.sort (), heapg.merge (), heapg.nsmallest ()
heapg.nlargest (), itertools.groupby () ©] A& T}

7] & HE=de oy ol dsUTh dE 9], str.lower () MIAEE AlolA & e
GEE A9 B4m A5 5 AeUIT FAA O, o] B lanbdas AL UE SE 0
g, old 44Ut lambda r: (r[0], r[2]). =3 operator wEe A Al 7 Be AAAE
A FgU Tl attrgetter (), itemgetter (), methodcaller (). 7] &¢4E &L /\]-3‘6]-ﬂ o
) 3t o] Sorting HOW TO & H A 2.

keyword argument (7] ¥ & 21z} 21} & H A Q.

lambda (¥t} =2 o gto] LA &= st 134 07 TAH o] & Q=
= EHL lambda [parameters]: expression YUY T}

LBYL % 7] Aof X 2} (Look before you leap). ©] T ~ElL L T ZE oy 23] & 317] Aoj HA|H o2 AFA

2452 AU o] 2842 FAFP U A R 3L, W2 if 2o EA 2 S A o1 th

o5 28 = S0 A, LBYL W& “H 7|7 “H 7" Il BB 245 W57 2 s1del sk

& 59, ZE if key in mapping: return mappinglkey] &= ZHA} &9, 31X 2 23] A,

e

eHol B g 48 BE

91

Python Frequently Asked Questions, = x] 1] A 3.7.17

T2 22 E 7} keyE mappingo) A A A SHE A5 5 51T o] & of
Aggozn A 4 dFh

list (}] 2 E) W3 sto] W A g, 12 o] 2o|x Bal1, Qi thst A A7) 0] 7] wj&ol, A A gl AE
(linked list) H t}= t} 2 o] o] v A} AL ok

list comprehension (2] 2= 22| AH) AU~ 845 AN B A0 AT 2 AAE P oE £
21_7]—756}H1—,j result = ['{:#04x}'.format (x) for x in range(256) if x % ==

1 & 00l A 255 Atole]l = F4E9 16X (0x.) 525 T wAEY g 2EF 5 UTh if

Zé% /\gahal./\ 01/\1/]1—4_ /\ga’cd—‘?ﬂ,range(256)0ﬂ]%E%ﬁ_ﬁ_]—ﬂﬂ%qﬂ—

loader (2¢]) EE& £E31= Al load_module () ©]2te o] 59 WA EE FYsioF FUth 2o+
E gy 7t =3 EF Utk AT WL S PEP 302 &, 4 djo] A~ Zdl A~ &= lmportllb.abc.Loader
—%E/ﬂ]}l.

magic method (W] 2] WA &) 5= v A= o w3414 Ql v 3k
mapping (W] 3F) 499 7] 23] & A ¥ 3t Mapping ©] U MutableMapping A #l o]~ A o AR

HAEELS F35tE AdH o)y AA. o]Z& dict, collections.defaultdict, collections.
OrderedDict, collections.Counter ‘3 = 4 95y

meta path finder (W€} 2 5}Qlt]) sys.meta_path o] FAAo] FF+ sl vgt A& s+ 4=
AME2] 341 o A-E o] 7]+ AT T U T
HE A2 3k g 7t 23 A =S e A= importlib.abc.MetaPathFinder & B 3
Yt

metaclass (W€} Zel2) S 29 S S =S ol &, Eda
E52 WEUth WE S A s o] Al JAAE WotA SH@aE wEE Ade A
AFY 2z dolE2 7]E:r”§§ At stol < t
~E0E 5 e a ,MD}. o2 AL 7ﬂL JETIE A 2

N x

£ SOlY EAFP W<

N

)

B
k)
=
=
o

A 2~
SO AN B R ASE TR S OE Ao A B el
metaclasses ol 4] T} XA 3 U &2 3¢

method (W] A &) Z 2 uit] okojl A A 9] . =
WA E A WA A (BE self gt B 2 A2AEA AR S w5) 85 9F 5345 A 7S
2 HAS.

method resolution order (M| M= 274 <A]) WA= 27 A& ﬂ St S W E A= Hola Z
50 AU 23 Dol A5 E vhol A Qe Z el o] AL§H %312 59 A & 18-S The Python
2.3 Method Resolution Order& H W 1t}

module (2.§) o)W F=9] 243} 9l & wshe A4l REL o9 soldl AA S B ol F F0L
71—/\141;} _01_“:/] xe}q]_J—HJ]_o]moiicﬂl/]q_
714 = A2,

module spec (R E A2¥) 25 230 AEEH = o
importlib.machinery.ModuleSpec & Q12" A,

MRO WA= 274 =4 & BAL
mutable (7}H) 71 A A= gho]l & ¢ AA R id() = LATFA FAEYL 2 E HAL

i, o
rlr
%
T
[
o My
i)
[
o
ro
>
rT
[>
o
2
[t
)
o 4

named tuple (U] Y E 5Z) The term “named tuple” applies to any type or class that inherits from tuple and whose
indexable elements are also accessible using named attributes. The type or class may have other features as well.

Several built-in types are named tuples, including the values returned by time.localtime () and os.
stat (). Another example is sys.float_info:

92 Appendix A. &3

https://www.python.org/dev/peps/pep-0302
https://www.python.org/download/releases/2.3/mro/
https://www.python.org/download/releases/2.3/mro/

Python Frequently Asked Questions, = x] 1] A 3.7.17

>>> sys.float_info[l] # indexed access
1024

>>> sys.float_info.max_exp # named field access
1024

>>> isinstance(sys.float_info, tuple) # kind of tuple

True

Some named tuples are built-in types (such as the above examples). Alternatively, a named tuple can be created
from a regular class definition that inherits from tuple and that defines named fields. Such a class can be written
by hand or it can be created with the factory function collections.namedtuple (). The latter technique
also adds some extra methods that may not be found in hand-written or built-in named tuples.

namespace (°]5 57hH HE7F AR = A4 o5 2 9V EE AP YT AAldd T HE o5 T3
(A= A B3k oty et X9, A9, Y& o] &3] AFUTh o8 2 o8 555
EEAS ALY UTLE o & £E0], &4 builtins.open Fos.open() < 159 o]& F
TFEP YT E3L o] F2 oW BREO] 5 E FHI=AE B el A TS
By 228 Ut o & 59, random. seed () B+ itertools.islice () 8t 2
E°| Z+Z random ¥} itertools BE & +H o] B Yk

namespace package (|5 37+ # 7] X)) 22 A E 371252 AE o] 2R 7] 58 PEP 420 3 7] #]. o] &
7N 2 A A AAVL e = AL, 58] __init_ .py 3ol flermE A+t 9 7] 4] &=

EERS]oY

2E X HASL.

(3
oX,
1o
=2
>
e
Bl
et
L
N
ol

nested scope (ZEHH AT =) £

58, o8 o), e F5 Uy 2
3 FHP 20zt | RHoRE FEW ST

Pt g Frel e WSS 228 5 dUrh
[e=]
l

2, e 54 Gthe Ao 2o sk FUTh A WSS L b R 2mmel A g1 LUtk
MAAA R, A WS ES A ol FVeIA 934U nonlocal S MR AT I AE AL

S etatuet.
new-style class (3 2B Zejs) AZ S BE Sehx AMo] ASHT Yr s
g 2719 vtolA o ! B
__getattribute_ (), FH;E AT, 2 E HA B9} 22 Ftol Mo A F
EER T eI
object () A]) el (1EZHE =2
2 o A5 A o)A 2 A
package (3]7]#]) A B RESo|th A7 HCE AH 7 A5
7] A= _path__ o|EFFEZ} = vtold REdYch
At 714 o] 2 B2 971 A = HA L.
parameter (M| 75 T (= WA E) H ool A FrpTh ke
st ol 22 AEHE. b FR7Y WiAAEs 7 ds Ut
E (positional-or-keyword):] 2] A2\ 7] 9 = Q12 2 AEd 4 &= AAE AFFUth
o) A0l 714 Wehe] wl ARSIt o & Sof ol A foo 9} bar:

Y
k]
ol
DL
=
>
I
©
o
o
(i
td
rln
o
o
o,
H
=
td
rln
4r
[>
u
ne
iy
o)

+
30,
rr
ro,
>
kA
rlr
2
rg
oM,
o
rO
kY
gl_[g
et
N
o2

.

def func (foo, bar=None) :

o 9 X-A & (positional-only): QA 2T Al-52 4= &= AAE A FFUTh sho] M2 9 x]-1d-§ vfj 7
HEE Aosle TS 203 JA G Uth A o i F 52 AA-AE A&
ZrE UL (A & 91, abs ().

s 1N E-AE (keyword-only): 71N EZ2 T A5 2 = & AAE AA UL 71 P=-AE& v
=3 oo mi/ g B2 oA gof shute] ZPA-9 X vy« E a2 2894 Fel g
T As YT A& 5o, thxol A kw_onlyl &} kw_only2:

https://www.python.org/dev/peps/pep-0420

Python Frequently Asked Questions, = x] 1] A 3.7.17

def func(arg, *, kw_onlyl, kw_only2):

» 7H¥-91 %] (var-positional): (FFE AW 5ol A o] v] WolEe] A 94 A5l Ha) A5
% 9 AA A5 99 AALE AF AT oA vl A5 w94 o] ol * & Sl
ol 398 5 ABUTh A8 Sof theoll A args

def func(*args, **kwargs):

« AN E (var-keyword): (FE WA S ol o34 o]] Wo}E ol 9= QXS B)
A % 9 A9l A AR AAEE AR ol 7 oA RE S o] ol - F
ol £oi 4 AP 5 g th A8 5o} 919 allol A kwargs.

S A RSS9 8 R ol A Aol AL B4 AXEL AT 4 YLtk

2
AA} Gl 7] 5, Q1 Ape} v 7| 4=9] Apolof] L} = FAQ A&, inspect .Parameter |2, function

path entry (32 A=) 22 73 sholt] 7 JEE G RESS 27 93] Farshs dEE A2 g St
.

=2 XN
AR dEZ A Eo] FH3}E= WA EEL importlib.abe.PathEntryFinder o Y4t}

path entry hook (2 QlE 2] &) sys.path_hook FAEQ J=ZEAH, EH A2 AdED A EE
=S ¢y Ydud J2 JdEF Iy E EHF YT

path based finder (% 2 7] 5pele]) 712 vt 4= sHolel s 5 shupeld], 42 F= oA BE
Y.

path-like object (27 AA|) 3L A28 A2 E Uetll= AA. AE2F AA= A2E dE &= str Y
bytes A o] At} os.PathLike T2 EZE T 3= AA YT os.PathLike T2 EZ S A Y
st= AA= os. fspath () FFE TEA str Lbytes L A 2" 22 A8d 5 gy
th4l os. fsdecode () 2 os.fsencode () & Z+Zt str U bytes 2345 EAst=0 AR E &+ U5

Utk PEP 5192 =95 iU th

o

o
b
oy

PEP 5ho] 4 7] 41] ok, PEPL= 5ol AR Elo] AR E A Z8A L sho] W B 1 T2 A& EE $70
e AZe 7152 Agshs 44 EAQUTH PEPE Aok 75 t @ 1128 71& A E 2 A
A28 oF ok,

PEP= T8 2R 75 Al st Ao that AFUE e
7 =

2 +23km shol Wo] Sof7t 47 2
4e RN BEZ] 9% /)8 WAYZ AUk PEP A4 AL AR

=]
AR E oA FelE 55k ik

portion (£ H) PEP 420 o] 4| A2 3t AA T, ol & 87 571 Aol o] upA 3k Shibe] Cielel 2o Eol gt
St S 0] 41 ip h ol AFH = A= 7bs g Th.

positional argument ($] 2] 212} Q1A & H A Q.

provisional API (Z+A API) T4 API= & glol B 2|9 I 7 53
o} AE s o] 20 F ME}7} o AE] A= kA v, A A o] 2kl EAH = § T Nl AtEe]
A7 B B o] §AH A g WA o] Aol 5= Ytk 1 W7
ol A= e AT — APLE ZF37] Aol 3 F ooty 2

94 Appendix A. &3

https://www.python.org/dev/peps/pep-0362
https://www.python.org/dev/peps/pep-0519
https://www.python.org/dev/peps/pep-0001
https://www.python.org/dev/peps/pep-0420

Python Frequently Asked Questions, = x] 1] A 3.7.17

o] A= BT gtol B 7t ;M A Fo A RE AA Lol s A A g AT YRS
SEUT B A8 8-S PEP 411 B F U T

provisional package (Z+A 2 7] x]) &7 API & B A L.

Python 3000 (3}0] %1 3000) }o] % 3.x vl 2kle] HH (M 39 vj27}F ¥ w2 o] o]of7| | A]F o ghEo] 7]
ool th) ol AL Py’ & B0l 7% ek

Pythonic (s}o] A th) THE Qo] 5ol A AukA 9l A EL Al A 2
1A A5 AHEE S o Q5 ko] Mt ofolrlofu} 3E =

£ 2Rk o2, ol Aofel
, sho] Mol A A5 a

E o]
AT E for £ A3 ClEeli RE 8 he s gae Aaus ne @e delds o
5o FAEC] 9onE, vho Hol 058 ke AREL Al 24} A E & S Gtk

for i in range(len(food)):
print (food[i])

B 28 ol drke P e ol dath

for piece in food:
print (piece)

qualified name (J 1315 o] &) REQ A 2FZ oA REO AYH ZFH 2, T, A= ol2=«“F 2~
2 HolFE=Hog ZHY o] & PEP 3155 oA A HUTh A e 220 AL, AF3Hd
ol 5 7“11]«] o5 THUth:

>>> class C:
class D:
def meth (self):
pass

>>> C.__qualname_

lCl

>>> C.D._ _gualname_
'C.D'

>>> C.D.meth._ qualname_
'C.D.meth'

BES 7tE 7| =d AHRE o, A3 AF3E o) 2 (fully qualified name)S RE R 7 7| A 5L £ T
SN BER Ve Jo2 "'—ﬂ% O] YuFYth 9 E £9],email .mime. text:

>>> import email.mime.text
>>> email.mime.text. name
'email .mime.text'

reference count (R 314) A Ao o3t F=x29 7S, 7“?1].,] | ’“7]—0 o7 Wol X, v &g s} gy
Utk 22 3¢ 332 gtz oz go]ld F= o = QZ] = %}7\] , CPython :r“ﬂ«] A e APy

sys BE2 5 AAY Fx A +E 585+ getrefcount (7‘*431'1/] th.

regular package (47 97| A]) __init__ .py 3¥E& 2F3= U E“H g} g2 AT A A 7] A.
ol5 w7 A & HA L.

_slots__ Z YR AAQl, A AEHAAEYFEES HSHFHS g AL AAEA G E
A A @33’3‘1 HEeE Zaste 235 FUh A7) A7= A, o] Ha YL EulE A AE-8171 7
Z 712 L HolghA], vRE o vAs 28 28 T A] Bl £ AAEAT Q= EWEHI AL
S sl= Zlo] 5 UL

sequence (A|F2X) __getitem_ () 55 Uﬂ/ﬁ ZEFO AT AIdAE A2 Q4 ANAE X Y3},
Al 2] dolE EHF+E=_ len “ﬂ'ﬂ—‘:—% Aojsl= olHHE 22 WA A AAES YEE Y,
list, str, tuple, bytes 7} 01—1/]1’/} dict TE3F_ getitem_ () Z__len_ () & AA3A v

https://www.python.org/dev/peps/pep-0411
https://www.python.org/dev/peps/pep-3155

Python Frequently Asked Questions, = x] 1] A 3.7.17

23)0] A2 A A9 9] B0 718 ALgel7) Rl A2} ohe) BjP e s HF AT Aol Fe
sfok gk

collections.abc.Sequence A Wlo]| A ZF AL getitem () F__len_ ()2 do]A &
A FHE QB FH o]~ E A 5l= F‘ﬂ, count (), index (), _ _contains__ (), __reversed_ ()&
F7 Ut o) &34 AE o]~ E T3S F S register () EAMEHNA YAH L2 SET F UF

Y.
single dispatch (42 T] 25 x]) 73 0] ahre] Qlxbe] Yo 7| xe) A ARH = Av 2 24 tas A B

FEy.
Slice (&2ho]) HE AU o] QRE FHAE A, Sebol Ak A8 2TNE LA UL ABHA BEY
t}. variable_name[1:3:5] fﬂﬁé,] SHAA A Ao AE F2o2 Byt tgiEs (B

[
2FHE) Z7IH S W F AL R slice AAE A FUTH
special method (55~ Wl A =) Fto]xlo] Pof o A4k, QA 22, AT o FAIHC=E QEQ WA E.
olF MIMEE F /Y €EE AFLA EUE o5& #A d5 Utk 55 vl A =+ specialnames Oﬂ
AR ‘ﬂ"é‘ﬂxﬁ O]/\‘/]f%
statement (=) -2 A9 E (ZE9] “EF(block)”) & FA5H FEAUTE 82 594 o] AL 7]9
tE 7\}3-75}? 04?4 7HA F2E F9 st YT 719 if, while, for.

text encoding () AE Q17 4)) FUTE EXE S Hlo|EER Q7 Y3st= Fd,
[}

m

=

text file ()2 5}Q)) str ANE 93 L 5 9 52 A4H. FF, 92E 32 44
EAEYLS AN LRI G iE A5 & A% AL GUh GAE FA o2

— B =

= 'w') 2 49 999, sys.stdin, sys.stdout, i0.StringI0o 9 AAEHAE & 4 9IH LT

el E AR A & 9T & 5 e 5L AR o) el vlo] e e £ FEeA L,

triple-quoted string (3 w2 % & FA1Y) W23) U A2 O) M M2 S8R 2AE. 23
&3 R YA AL §le 715 S AlE A = AT o8] 7HA] o] froll A £R 7 JlF U Th
]’\71] o]z QZ] %} a%u}%i‘% SR E TAE ol 2 = JEE 5, AE FAE 27

type () shol 4 A7]9] &£ A2 AAFITH BE AL Fo] 5 AR
Ve e E R A A S s (o S gy

type alias (3 o] o)) B2 AW Aol]I 5te] W50l A= o] 5
Qo Qelol 2t 3 AEE Beslsts o R8T o8 U

from typing import List, Tuple

def remove_gray_shades (
colors: List[Tuple[int, int, int]]) -> List[Tuplelint, int, int]]:
pass

sohest 2ol § 97 47 BE 4 5t

from typing import List, Tuple

Color = Tuple[int, int, int]

def remove_gray_shades (colors: List[Color]) -> List[Color]:
pass
o] 7] 5& A 9Y3t= typingd PEP 4845 F 2314 8
type hint (3 A=) W5, Felo o el HE R 4 ol hAS U uke g A i Fe AR S o H|

o] A.

96 Appendix A. &3

https://www.python.org/dev/peps/pep-0484

Python Frequently Asked Questions, = x] 1] A 3.7.17

Y SlE = A8 Aol w mlo] o A A A= FF Ut AT A 3 £ =50 783 IDE
gz AL YAEF S FHYLH
A9 AeE ALdeta, A9 HEy, FPa JEHRE E 49 3 JdE &= typing
get_type_hints () & AFE3lo] AN 2T 4= 5Tt
o] 715 A3t typingd PEP 4845 IR 3IA 8

universal newlines (FUHAE & 37) O3 T2 AES EF 29 o2 AA 3=, H2E AEY S)4
ST Y2 NS EXFEE '\n', A== I "\r\n", AL M N EA] FH '\r'. F7}F <l
Abg o] B A= bytes.splitlines () 2uko}L] 2} PEP 278 9} PEP 3116 = 2 4] £.

variable annotation (14> o]k E|o]) My = FP 2 o] ERHEL] of g o] A,
HeEe FdlaEREY ojHolAE Gl tf Y-S A8 ALyt

class C:
field: 'annotation'

W4 ool de YA o R § IR AGHUTH o Sol, o] WSt int g /ML A0 Ay
U
count: int = 0

A o] mH o] 4d #-2 Al A annassign ol A 428 T}
o] 7]5& A Y3t T ol =H o] A, PEP 484 2 PEP 5265 FX 34

|
virtual environment (7} 3 7) Tho]| W A} 2219t S8 g o], 2 A AH A AT L ThE 1))
& 22 T dF= FA ?%SD‘H sho] 4 f = JHﬂﬂ%% AAsHAY e o] =6t
A€ s s, de Ao 498 A9 37

(]
a.
ol

P
L

X
L.

r

venv & HA Q.

o8 AFE. shol el 44k 7| A uho| & B Ak # 7}

virtual machine (7} 71A4]) AZEgojglo g A =]
Feoe o= neg AAg,

Zen of Python (3ol 41) 3ol 4l T 19l 22l o) AeH5e] =it 2lo] S o] 58t AHE-ahe o] Eg ol
Ptk o] S t)34y ZETE A “inport this” & YA BT}

97

https://www.python.org/dev/peps/pep-0484
https://www.python.org/dev/peps/pep-0278
https://www.python.org/dev/peps/pep-3116
https://www.python.org/dev/peps/pep-0484
https://www.python.org/dev/peps/pep-0526

Python Frequently Asked Questions, = x] 1] A 3.7.17

98

Appendix A. &3

APPENDIX B

o] 417 A of] 3]

o] WAL reStructuredText 2220 4] TS o] 2 A0.2, shol AWM S 95 S5 A2E 24 qel 7]
Sphinx & A& 5 YT}

A S o B AT BA I AEL Shol A A & DA 2 A A O = AAR AR = YU 7] o] 1
Aeh, ko] WPlol ol 2 A B = reporting-bugs o] 2| & FALFAAI L. A 22 ARRAAL A AT
YeH

S B0/ Be BAE =dUG
* Fred L. Drake, Jr., 92 sto]H A A = 3o 2 o)A w2 Zrl=9] 27}
« reStructuredText 2} Docutils 29 EE Y= = Docutils ZZ A E,

e Fredrik Lundh, Z72] Alternative Python Reference 3Z 2 A E of] A] Sphinx 7} -2 o}o]t] o] & A KUt

Abghe] sholal lof, spojd & efojH e W stolul A Aol 7o FF Utk 7]ojxpe] B2 A

99

http://docutils.sourceforge.net/rst.html
http://sphinx-doc.org/
http://docutils.sourceforge.net/
http://effbot.org/zone/pyref.htm
https://github.com/python/cpython/tree/3.7/Misc/ACKS

Python Frequently Asked Questions, = x] 1] A 3.7.17

100 Appendix B. o] 47 A o] #3}o]

apPENDIX C

>

oA A} 2ho] Al

|"..|.4

C.1 2ZEY o] Ia}

o] W2 ABCElE= dojo] TAAZ A Y &= 9] Stichting Mathematisch Centrum (CWI https://www.cwi.nl/
ZFx) 9] Guido van Rossum ol &J3fl 1990 d 0] Zxtol] whEo] H5UTh dho] o= th2 AHEE9 B2 33 0]
323 QA T, Guido= 3ho] W o] =8 A 2= o} gl Ut

1995, Guido+ Virginia 2] Reston 01] ¢l += Corporation for National Research Initiatives(CNRI, https://www.cnri.

reston.va.us/ FFZ) o A sholH =Y 74] 7, o] Lo A ozl AL 2z EY oS ZA S YT

In May 2000, Guido and the Python core development team moved to BeOpen.com to form the BeOpen PythonLabs
team. In October of the same year, the PythonLabs team moved to Digital Creations (now Zope Corporation; see https:
/Iwww.zope.org/). In 2001, the Python Software Foundation (PSF, see https://www.python.org/psf/) was formed, a non-
profit organization created specifically to own Python-related Intellectual Property. Zope Corporation is a sponsoring
member of the PSF.

)

EE golH a2 I/ LAYt (FI 22 Ao o oH/H = https://opensource.org/lE 234 Al
©). Ao, £ (A v A Y& obguith shol 4 Wi E T GPLI SHF U olele] B thre
Wz e 2ok Aguth

vl 32 32+ s S | Sl 2 2F GPL = 32

09.0~1.2 | n/a 1991-1995 | CWI yes

13~152 | 12 1995-1999 | CNRI yes

1.6 1.5.2 2000 CNRI no

2.0 1.6 2000 BeOpen.com | no

1.6.1 1.6 2001 CNRI no

2.1 2.0+1.6.1 2001 PSF no

2.0.1 2.0+1.6.1 2001 PSF yes

2.1.1 2.142.0.1 2001 PSF yes

212 2.1.1 2002 PSF yes

213 212 2002 PSF yes

2.2 oA+ 2.1.1 2001-&#] | PSF yes

101

https://www.cwi.nl/
https://www.cnri.reston.va.us/
https://www.cnri.reston.va.us/
https://www.zope.org/
https://www.zope.org/
https://www.python.org/psf/
https://opensource.org

Python Frequently Asked Questions, = x] 8] A 3.7.17

23 GPLY SRATHE 4L 927} GPLE sho] AL w2 aths 2L o aiA & 5 th BE soldl
Tol A= GPLI} B o} 21 3e] WAS T/ 2% WhEA 3 24 F vl 8L ES 4 97 Tk GPL
5% 2ol AL 5o AT GPL 3o MR T2 £ ES01E 29T 5 7 FUth e A5 124

Easagieg

Guido] A= 3}of| o] Wi ZE 7hsstAl vhe W2 o F AHA B AAS ol Al A= -H Utk

C2 sjol ol A A5} A T A18517] §1 o] & ok

C.2.1 PSF LICENSE AGREEMENT FOR PYTHON 3.7.17

1. This LICENSE AGREEMENT is between the Python Software Foundation ("PSE"),._
—and

the Individual or Organization ("Licensee") accessing and otherwise using.
—~Python

3.7.17 software in source or binary form and its associated documentation.

2. Subject to the terms and conditions of this License Agreement, PSF hereby
grants Licensee a nonexclusive, royalty-free, world-wide license to.
—reproduce,
analyze, test, perform and/or display publicly, prepare derivative works,
distribute, and otherwise use Python 3.7.17 alone or in any derivative
version, provided, however, that PSF's License Agreement and PSF's notice.
—of
copyright, i.e., "Copyright © 2001-2023 Python Software Foundation; All._
—Rights
Reserved" are retained in Python 3.7.17 alone or in any derivative version
prepared by Licensee.

3. In the event Licensee prepares a derivative work that is based on or
incorporates Python 3.7.17 or any part thereof, and wants to make the
derivative work available to others as provided herein, then Licensee.

—hereby
agrees to include in any such work a brief summary of the changes made to.

—Python
3.7.17.

4. PSF is making Python 3.7.17 available to Licensee on an "AS IS" basis.

PSF MAKES NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF

EXAMPLE, BUT NOT LIMITATION, PSEF MAKES NO AND DISCLAIMS ANY REPRESENTATION.
—OR

WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT.
—THE

USE OF PYTHON 3.7.17 WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

5. PSF SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF PYTHON 3.7.17
FOR ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT.
—OF
MODIFYING, DISTRIBUTING, OR OTHERWISE USING PYTHON 3.7.17, OR ANY.
—~DERIVATIVE

102 Appendix C. & x}¢} glo] A A

Python Frequently Asked Questions, = x] 1] A 3.7.17

THEREOF, EVEN IF ADVISED OF THE POSSIBILITY THEREOEF.

6. This License Agreement will automatically terminate upon a material breach.
—~of
its terms and conditions.

7. Nothing in this License Agreement shall be deemed to create any.
—relationship

of agency, partnership, or joint venture between PSF and Licensee. This.
—~License

Agreement does not grant permission to use PSF trademarks or trade name in.
—a

trademark sense to endorse or promote products or services of Licensee, or.
—any

third party.

8. By copying, installing or otherwise using Python 3.7.17, Licensee agrees
to be bound by the terms and conditions of this License Agreement.

C.2.2 BEOPEN.COM LICENSE AGREEMENT FOR PYTHON 2.0

BEOPEN PYTHON OPEN SOURCE LICENSE AGREEMENT VERSION 1

1. This LICENSE AGREEMENT is between BeOpen.com ("BeOpen"), having an office at
160 Saratoga Avenue, Santa Clara, CA 95051, and the Individual or Organization
("Licensee") accessing and otherwise using this software in source or binary
form and its associated documentation ("the Software").

2. Subject to the terms and conditions of this BeOpen Python License Agreement,
BeOpen hereby grants Licensee a non-exclusive, royalty-free, world-wide license
to reproduce, analyze, test, perform and/or display publicly, prepare derivative
works, distribute, and otherwise use the Software alone or in any derivative
version, provided, however, that the BeOpen Python License is retained in the
Software, alone or in any derivative version prepared by Licensee.

3. BeOpen is making the Software available to Licensee on an "AS IS" basis.
BEOPEN MAKES NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF
EXAMPLE, BUT NOT LIMITATION, BEOPEN MAKES NO AND DISCLAIMS ANY REPRESENTATION OR
WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE
USE OF THE SOFTWARE WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

4. BEOPEN SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF THE SOFTWARE FOR
ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT OF USING,
MODIFYING OR DISTRIBUTING THE SOFTWARE, OR ANY DERIVATIVE THEREOF, EVEN IF
ADVISED OF THE POSSIBILITY THEREOEF.

5. This License Agreement will automatically terminate upon a material breach of
its terms and conditions.

6. This License Agreement shall be governed by and interpreted in all respects
by the law of the State of California, excluding conflict of law provisions.
Nothing in this License Agreement shall be deemed to create any relationship of
agency, partnership, or joint venture between BeOpen and Licensee. This License
Agreement does not grant permission to use BeOpen trademarks or trade names in a
trademark sense to endorse or promote products or services of Licensee, or any

(TF sTolATell A%

C.2. sholol AA|A8A AHE57] 1% o] & oF e 103

Python Frequently Asked Questions, = x] 1] A 3.7.17

(o] A sl o] A A M A%)

third party. As an exception, the "BeOpen Python" logos available at
http://www.pythonlabs.com/logos.html may be used according to the permissions
granted on that web page.

7. By copying, installing or otherwise using the software, Licensee agrees to be
bound by the terms and conditions of this License Agreement.

C.2.3 CNRI LICENSE AGREEMENT FOR PYTHON 1.6.1

1. This LICENSE AGREEMENT is between the Corporation for National Research
Initiatives, having an office at 1895 Preston White Drive, Reston, VA 20191
("CNRI"), and the Individual or Organization ("Licensee") accessing and
otherwise using Python 1.6.1 software in source or binary form and its
associated documentation.

2. Subject to the terms and conditions of this License Agreement, CNRI hereby
grants Licensee a nonexclusive, royalty-free, world-wide license to reproduce,
analyze, test, perform and/or display publicly, prepare derivative works,
distribute, and otherwise use Python 1.6.1 alone or in any derivative version,
provided, however, that CNRI's License Agreement and CNRI's notice of copyright,
i.e., "Copyright © 1995-2001 Corporation for National Research Initiatives; All
Rights Reserved" are retained in Python 1.6.1 alone or in any derivative version
prepared by Licensee. Alternately, in lieu of CNRI's License Agreement,
Licensee may substitute the following text (omitting the quotes): "Python 1.6.1
is made available subject to the terms and conditions in CNRI's License
Agreement. This Agreement together with Python 1.6.1 may be located on the
Internet using the following unique, persistent identifier (known as a handle):
1895.22/1013. This Agreement may also be obtained from a proxy server on the
Internet using the following URL: http://hdl.handle.net/1895.22/1013."

3. In the event Licensee prepares a derivative work that is based on or
incorporates Python 1.6.1 or any part thereof, and wants to make the derivative
work available to others as provided herein, then Licensee hereby agrees to
include in any such work a brief summary of the changes made to Python 1.6.1.

4. CNRI is making Python 1.6.1 available to Licensee on an "AS IS" basis. CNRI
MAKES NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF EXAMPLE,
BUT NOT LIMITATION, CNRI MAKES NO AND DISCLAIMS ANY REPRESENTATION OR WARRANTY
OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE USE OF
PYTHON 1.6.1 WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

5. CNRI SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF PYTHON 1.6.1 FOR
ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT OF
MODIFYING, DISTRIBUTING, OR OTHERWISE USING PYTHON 1.6.1, OR ANY DERIVATIVE
THEREOF, EVEN IF ADVISED OF THE POSSIBILITY THEREOF.

6. This License Agreement will automatically terminate upon a material breach of
its terms and conditions.

7. This License Agreement shall be governed by the federal intellectual property
law of the United States, including without limitation the federal copyright
law, and, to the extent such U.S. federal law does not apply, by the law of the
Commonwealth of Virginia, excluding Virginia's conflict of law provisions.
Notwithstanding the foregoing, with regard to derivative works based on Python

(TH& SOTATl A1)

104 Appendix C. < x}¢} glo] A A

Python Frequently Asked Questions, = x] 1] A 3.7.17

(o] A sl o] A A M A%)

1.6.1 that incorporate non-separable material that was previously distributed
under the GNU General Public License (GPL), the law of the Commonwealth of
Virginia shall govern this License Agreement only as to issues arising under or
with respect to Paragraphs 4, 5, and 7 of this License Agreement. Nothing in
this License Agreement shall be deemed to create any relationship of agency,
partnership, or joint venture between CNRI and Licensee. This License Agreement
does not grant permission to use CNRI trademarks or trade name in a trademark
sense to endorse or promote products or services of Licensee, or any third
party.

8. By clicking on the "ACCEPT" button where indicated, or by copying, installing
or otherwise using Python 1.6.1, Licensee agrees to be bound by the terms and
conditions of this License Agreement.

C.2.4 CWI LICENSE AGREEMENT FOR PYTHON 0.9.0 THROUGH 1.2

Copyright © 1991 - 1995, Stichting Mathematisch Centrum Amsterdam, The
Netherlands. All rights reserved.

Permission to use, copy, modify, and distribute this software and its
documentation for any purpose and without fee is hereby granted, provided that
the above copyright notice appear in all copies and that both that copyright
notice and this permission notice appear in supporting documentation, and that
the name of Stichting Mathematisch Centrum or CWI not be used in advertising or
publicity pertaining to distribution of the software without specific, written
prior permission.

STICHTING MATHEMATISCH CENTRUM DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS
SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN NO
EVENT SHALL STICHTING MATHEMATISCH CENTRUM BE LIABLE FOR ANY SPECIAL, INDIRECT
OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE,
DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS
SOFTWARE.

A& Shol 41 W ol ZIHE A4 2 ZE G ool T B LA A W SO Gl ehol M) 5219)

C.3.1 W=z EQ ¥

_random EE-2 http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/MT2002/emt19937ar.html o] A U] &
S mEo] Zue REE ERFULL 02 o) 2= 24 adw §7 AQ Ut

A C-program for MT19937, with initialization improved 2002/1/26.
Coded by Takuji Nishimura and Makoto Matsumoto.

Before using, initialize the state by using init_genrand(seed)
or init_by_array(init_key, key_length).

(THE STl Aol A1)

C3. xd Lz e oo thF o]l g 52l 105

http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/MT2002/emt19937ar.html

Python Frequently Asked Questions, = x] 1] A 3.7.17

(o] A sl o] A A M A%)

Copyright (C) 1997 - 2002, Makoto Matsumoto and Takuji Nishimura,
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

3. The names of its contributors may not be used to endorse or promote
products derived from this software without specific prior written
permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Any feedback is very welcome.
http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html
email: m-mat @ math.sci.hiroshima-u.ac.jp (remove space)

C.3.2 427

socket B EL2 getaddrinfo () 2} getnameinfo () T4 E AU T} o] &2 WIDE Project, http://www.
wide.ad.jp/, | A & B a2 342 I 5y

Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
All rights reserved.

Redistribution and use in source and binary forms, with or without

modification, are permitted provided that the following conditions

are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

3. Neither the name of the project nor the names of its contributors
may be used to endorse or promote products derived from this software
without specific prior written permission.

(TH& ST Aol A1)

106 Appendix C. < x}¢} glo] A A

http://www.wide.ad.jp/
http://www.wide.ad.jp/

Python Frequently Asked Questions, = x] 1] A 3.7.17

(o] A sl o] A A M A%)

THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS " "AS IS'' AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS

OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

C.3.3 H]Z7] 27 AH)

>

o
Fl
%
d
v
o

asynchat# asyncore R o} 22 Fo| AHS

Copyright 1996 by Sam Rushing
All Rights Reserved

Permission to use, copy, modify, and distribute this software and
its documentation for any purpose and without fee is hereby
granted, provided that the above copyright notice appear in all
copies and that both that copyright notice and this permission
notice appear in supporting documentation, and that the name of Sam
Rushing not be used in advertising or publicity pertaining to
distribution of the software without specific, written prior
permission.

SAM RUSHING DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE,
INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN
NO EVENT SHALL SAM RUSHING BE LIABLE FOR ANY SPECIAL, INDIRECT OR
CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS
OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT,
NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

C.34 F7| &=

http.cookies REL T}gT 22 9 A2 ¥ BT

Copyright 2000 by Timothy O'Malley <timo@alum.mit.edu>
All Rights Reserved

Permission to use, copy, modify, and distribute this software

and its documentation for any purpose and without fee is hereby
granted, provided that the above copyright notice appear in all
copies and that both that copyright notice and this permission
notice appear in supporting documentation, and that the name of
Timothy O'Malley not be used in advertising or publicity

pertaining to distribution of the software without specific, written

(TH& ST Aol A1)

i
B
[t
(m

C3. =%

slolol that eholdls 9 53l 107

Python Frequently Asked Questions, = x] 1] A 3.7.17

(o] A sl o] A A M A%)

prior permission.

Timothy O'Malley DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS
SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS, IN NO EVENT SHALL Timothy O'Malley BE LIABLE FOR
ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
PERFORMANCE OF THIS SOFTWARE.

C.3.5 A3 >3

trace REL O3 2 39 ALgHS £33t}

portions copyright 2001, Autonomous Zones Industries, Inc., all rights...
err... reserved and offered to the public under the terms of the

Python 2.2 license.

Author: Zooko O'Whielacronx

http://zooko.com/

mailto:zooko@zooko.com

Copyright 2000, Mojam Media, Inc., all rights reserved.
Author: Skip Montanaro

Copyright 1999, Bioreason, Inc., all rights reserved.
Author: Andrew Dalke

Copyright 1995-1997, Automatrix, Inc., all rights reserved.
Author: Skip Montanaro

Copyright 1991-1995, Stichting Mathematisch Centrum, all rights reserved.

Permission to use, copy, modify, and distribute this Python software and
its associated documentation for any purpose without fee is hereby
granted, provided that the above copyright notice appears in all copies,
and that both that copyright notice and this permission notice appear in
supporting documentation, and that the name of neither Automatrix,
Bioreason or Mojam Media be used in advertising or publicity pertaining to
distribution of the software without specific, written prior permission.

C.3.6 UUencode %! UUdecode &+

wu RES TR 2L 7o) 4GS THTh

Copyright 1994 by Lance Ellinghouse
Cathedral City, California Republic, United States of America.

All Rights Reserved
Permission to use, copy, modify, and distribute this software and its
documentation for any purpose and without fee is hereby granted,
provided that the above copyright notice appear in all copies and that
both that copyright notice and this permission notice appear in

(TH& ST Aol A1)

108 Appendix C. < x}¢} glo] A A

Python Frequently Asked Questions, = x] 1] A 3.7.17

(o] A sl o] A A M A%)

supporting documentation, and that the name of Lance Ellinghouse

not be used in advertising or publicity pertaining to distribution

of the software without specific, written prior permission.

LANCE ELLINGHOUSE DISCLAIMS ALL WARRANTIES WITH REGARD TO

THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS, IN NO EVENT SHALL LANCE ELLINGHOUSE CENTRUM BE LIABLE

FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT
OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

Modified by Jack Jansen, CWI, July 1995:

— Use binascii module to do the actual line-by-line conversion
between ascii and binary. This results in a 1000-fold speedup. The C
version is still 5 times faster, though.

- Arguments more compliant with Python standard

C.3.7 XML 94 =324 55

xmlrpe.client RE-S The 3 22 29 A3 e

The XML-RPC client interface is

Copyright (c) 1999-2002 by Secret Labs AB
Copyright (c) 1999-2002 by Fredrik Lundh

By obtaining, using, and/or copying this software and/or its
associated documentation, you agree that you have read, understood,
and will comply with the following terms and conditions:

Permission to use, copy, modify, and distribute this software and
its associated documentation for any purpose and without fee is
hereby granted, provided that the above copyright notice appears in
all copies, and that both that copyright notice and this permission
notice appear in supporting documentation, and that the name of
Secret Labs AB or the author not be used in advertising or publicity
pertaining to distribution of the software without specific, written
prior permission.

SECRET LABS AB AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH REGARD
TO THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANT-
ABILITY AND FITNESS. IN NO EVENT SHALL SECRET LABS AB OR THE AUTHOR
BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY
DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
OF THIS SOFTWARE.

C3. =%

i
By
&
(m
:‘_‘2’
2
&
)
ok
i)
-
x
[
N,
o>
r o

109

Python Frequently Asked Questions, = x] 1] A 3.7.17

C.3.8 test_epoll

test_epoll REL U 22 £ A G =234

Copyright (c) 2001-2006 Twisted Matrix Laboratories.

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND

NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

C.3.9 Select kqueue

select BE-2 kqueue Q1 E 3] o] 2ol thal The 3} 2 9] AgHS ERFU T

Copyright (c) 2000 Doug White, 2006 James Knight, 2007 Christian Heimes
All rights reserved.

Redistribution and use in source and binary forms, with or without

modification, are permitted provided that the following conditions

are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS "~ "AS IS'' AND

ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. 1IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS

OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

110 Appendix C. < x}¢} glo] A A

Python Frequently Asked Questions, = x] 1] A 3.7.17

C.3.10 SipHash24

3¢ Python/pyhash.c 9|+ Dan Bernstein®] SipHash24 ¢ 11 2] = 2] Marek Majkowski & -3 o] 3£ 3} of
AFUTh 7)o a3 22 Wgo] Z3E o 5T

<MIT License>
Copyright (c) 2013 Marek Majkowski <marek@popcount.org>

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
</MIT License>

Original location:
https://github.com/majek/csiphash/

Solution inspired by code from:
Samuel Neves (supercop/crypto_auth/siphash24/1little)
djb (supercop/crypto_auth/siphash24/little2)
Jean-Philippe Aumasson (https://131002.net/siphash/siphash24.c)

C.3.11 strtod 2} dtoa

C double 7} 214 719 W3S 93k C &4 dtoa &} strtod S A F 3t 91Y Python/dtoa.c = A A http:
[Iwww.netlib.org/fp/ o] A €& 4= = David M. Gay2] 22 o] &) oA A= <5t} 20093 34
160 W2 A& gtdol = b33 22 A &d 2 gholAlx g7 285 o] JFUth:

/**

*

* The author of this software is David M. Gay.

*

* Copyright (c) 1991, 2000, 2001 by Lucent Technologies.

*

* Permission to use, copy, modify, and distribute this software for any

* purpose without fee is hereby granted, provided that this entire notice
* is included in all copies of any software which is or includes a copy

* or modification of this software and in all copies of the supporting

* documentation for such software.

*

* THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR IMPLIED
*

WARRANTY. IN PARTICULAR, NEITHER THE AUTHOR NOR LUCENT MAKES ANY
* REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE MERCHANTABILITY
* OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR PURPOSE.

*

***/

C3. =%

i
By
&
(m
:‘_‘2’
2
&
)
ok
i)
-
x
[
N,
o>
r o

111

http://www.netlib.org/fp/
http://www.netlib.org/fp/

Python Frequently Asked Questions, = x] 1] A 3.7.17

C.3.12 OpenSSL

R & hashlib, posix, ssl, crypt & &% A A7} AR = A std F712] 4452 913 OpenSSL o] B
H e & AU Th =3 A5 99l W OS X shol# A2 2 132 OpenSSL Bho| B g AMR S 288 4=
Ao B, of 7]of OpenSSL gho] Al AHRE S 23t}

LICENSE ISSUES

The OpenSSL toolkit stays under a dual license, i.e. both the conditions of
the OpenSSL License and the original SSLeay license apply to the toolkit.
See below for the actual license texts. Actually both licenses are BSD-style
Open Source licenses. In case of any license issues related to OpenSSL
please contact openssl-core@openssl.org.

OpenSSL License

Copyright (c) 1998-2008 The OpenSSL Project. All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in
the documentation and/or other materials provided with the
distribution.

3. All advertising materials mentioning features or use of this
software must display the following acknowledgment:
"This product includes software developed by the OpenSSL Project
for use in the OpenSSL Toolkit. (http://www.openssl.org/)"

4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
endorse or promote products derived from this software without
prior written permission. For written permission, please contact
openssl-corelopenssl.org.

5. Products derived from this software may not be called "OpenSSL"
nor may "OpenSSL" appear in their names without prior written
permission of the OpenSSL Project.

6. Redistributions of any form whatsoever must retain the following
acknowledgment:
"This product includes software developed by the OpenSSL Project
for use in the OpenSSL Toolkit (http://www.openssl.org/)"

THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT " "AS IS'' AND ANY
EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE ARE DISCLAIMED. 1IN NO EVENT SHALL THE OpenSSL PROJECT OR
ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT

L T R S I S N S R T S N IS S N S N S S NS S SN S S S S S S SR P S S N .

(TH& ST Aol A1)

112 Appendix C. < x}¢} glo] A A

Python Frequently Asked Questions, = x] 1] A 3.7.17

(o] A sl o] A A M A%)

0% ok X ok ok o ok X % X %

NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;

LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)

HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
OF THE POSSIBILITY OF SUCH DAMAGE.

This product includes cryptographic software written by Eric Young
(eay@cryptsoft.com). This product includes software written by Tim
Hudson (tjh@cryptsoft.com).

Original SSLeay License

L A I S N S N IS S S S N S N TS N N S S A N S N S S S S N N

Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
All rights reserved.

This package is an SSL implementation written
by Eric Young (eay@cryptsoft.com).
The implementation was written so as to conform with Netscapes SSL.

This library is free for commercial and non-commercial use as long as
the following conditions are aheared to. The following conditions
apply to all code found in this distribution, be it the RC4, RSA,
lhash, DES, etc., code; not just the SSL code. The SSL documentation
included with this distribution is covered by the same copyright terms
except that the holder is Tim Hudson (tjh@cryptsoft.com).

Copyright remains Eric Young's, and as such any Copyright notices in

the code are not to be removed.

If this package is used in a product, Eric Young should be given attribution
as the author of the parts of the library used.

This can be in the form of a textual message at program startup or

in documentation (online or textual) provided with the package.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
1. Redistributions of source code must retain the copyright
notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
3. All advertising materials mentioning features or use of this software
must display the following acknowledgement:
"This product includes cryptographic software written by
Eric Young (eay@cryptsoft.com)"
The word 'cryptographic' can be left out if the rouines from the library
being used are not cryptographic related :-).
4. If you include any Windows specific code (or a derivative thereof) from
the apps directory (application code) you must include an acknowledgement:
"This product includes software written by Tim Hudson (tjh@cryptsoft.com)"

(TH& ST Aol A1)

C3. =%

i
By
&
(m
:‘_‘2’
2
2
)
ok
i)
s
x
[
N,
o>
r o

113

Python Frequently Asked Questions, = x] 1] A 3.7.17

(o] A sl o] A A M A%)

THIS SOFTWARE IS PROVIDED BY ERIC YOUNG " "AS IS'' AND

ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. 1IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS

OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

The licence and distribution terms for any publically available version or
derivative of this code cannot be changed. i.e. this code cannot simply be
copied and put under another distribution licence

[including the GNU Public Licence.]

L S A I S S N S N S

/

C.3.13 expat

pyexpat &2 WEE —~with-system-expat & 7454 &+ 3, = expat 25 ARES AFE-5H

WEgych

Copyright (c) 1998, 1999, 2000 Thai Open Source Software Center Ltd
and Clark Cooper

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

114 Appendix C. < x}¢} glo] A A

Python Frequently Asked Questions, = x] 1] A 3.7.17

C.3.14 libffi

_ctypes AL WCE —_yith-system-1ibffi & FA A &= 3 £ H libfi &2 AFE-S AFR-3 o]

HEg Yt

Copyright (c) 1996-2008 Red Hat, Inc and others.

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
‘*Software''), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED " "AS IS'', WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.

C.3.15 zlib

21ib B A2 E A BAH 2lib 0 A 0] W 2 e ol A W= o] AHSE 4 Yow, EFHE Alib 24 G
Apg-8to] W =g U T

Copyright (C) 1995-2011 Jean-loup Gailly and Mark Adler

This software is provided 'as-is', without any express or implied

warranty. In no event will the authors be held liable for any damages

arising from the use of this software.

Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it
freely, subject to the following restrictions:

1. The origin of this software must not be misrepresented; you must not
claim that you wrote the original software. If you use this software
in a product, an acknowledgment in the product documentation would be
appreciated but is not required.

2. Altered source versions must be plainly marked as such, and must not be
misrepresented as being the original software.

3. This notice may not be removed or altered from any source distribution.

Jean-loup Gailly Mark Adler
jloup@gzip.org madler@alumni.caltech.edu

i
B
[t
(m

C3. % sojol that efol s g Sal 15

Python Frequently Asked Questions, = x] 1] A 3.7.17

C.3.16 cfuhash

>

tracemalloc o 98l A}25 = A H o] B2 3L cfuhash ZE2AEE 7|ulo g2 3 t}:

Copyright (c) 2005 Don Owens
All rights reserved.

This code is released under the BSD license:

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following
disclaimer in the documentation and/or other materials provided
with the distribution.

* Neither the name of the author nor the names of its
contributors may be used to endorse or promote products derived
from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
OF THE POSSIBILITY OF SUCH DAMAGE.

C.3.17 libmpdec

_decimal RE2 YE=E ——with-system-libmpdec & FASIA] &+ 3F, Z 34 libmpdec A2 AFE S

g3l MEg LT

Copyright (c) 2008-2016 Stefan Krah. All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

(TH& ST Aol A1)

116 Appendix C. < x}¢} glo] A A

Python Frequently Asked Questions, = x] 1] A 3.7.17

(o] A sl o] A A M A%)

THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS "AS IS" AND

ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. 1IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS

OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

C3. =% 117

i
By
&
(m
)
2
&
)
rk
i)
-
x
[
N,
o|
r o

Python Frequently Asked Questions, = x] 1] A 3.7.17

118 Appendix C. < x}¢} glo] A A

APPENDIX D

sho] 3} o] WA
Copyright © 2001-2023 Python Software Foundation. All rights reserved.

Copyright © 2000 BeOpen.com. All rights reserved.

Copyright © 1995-2000 Corporation for National Research Initiatives. All rights reserved.
Copyright © 1991-1995 Stichting Mathematisch Centrum. All rights reserved.

WA 2ol 0 AL AT ARE o AL9) 2ho] 4l o A Al F T

119

Python Frequently Asked Questions, = x] 1] A 3.7.17

120 Appendix D. 24

1z
ro,

Non-alphabetical

..., 85

2to3, 85

>>>, 85

_ future_ ,89
_ slots_ ,95

A

abstract base class (FA H|o]2 Zd), 85
annotation (o] k= H| o] A), 85
argument
difference from parameter, 15
argument (Q12}), 85
asynchronous context manager (8] % 7] Z €l
2~ E HeE A, 86
asynchronous generator (H]% 7] A4 &) o]),
86
asynchronous generator iterator (H]% 7]
A al o8 o] el g o]), 86
asynchronous iterable (H]5 7] o]E & £), 86
asynchronous iterator (8]% 7] o€ & °]¥), 86
attribute (o] EZHE), 86
awaitable (o]9l]°]E]E), 86

B

BDFL, 86

binary file (H}°]g] 3}Y), 86
bytecode (H}°]E F X&), 87

bytes—1like object (B}o]EEHF AA)), 86

C

C-contiguous, 87

class (E3), 87

class variable (Fd2 W), 87
coercion (Fo]A), 87

complex number (B4), 87

context manager (FAHYX2E F#H2| A}, 87
context variable (FAH2E W), 87
contiguous (¥9<), 87

coroutine (ZFH), 87
coroutine function (ZFHE &), 87
CPython, 87

D

decorator (d Zd°]€), 87
descriptor (2= HH), 88
dictionary (541 2]), 88
dictionary view (244 g 1), 88
docstring (52~ EH), 88
duck-typing (¥ Et°]3), 88

E

EAFP, 88
expression (X34)), 88
extension module (B 2 E), 88

F

f-string (FEAFY), 88

file object (< AA), 88

file-like object (L& AA]), 89
finder (3}21), 89

floor division (4 Y=, 89

Fortran contiguous, 87

function (&), 89

function annotation (& o]k H|o]A), 89

G

garbage collection (7FH]A] 4=7), 89

generator, 89

generator (A1 ¥ o] E), 89

generator expression, 89

generator expression (AU d o8 &3 4]), 89

generator iterator (AU @ o]¥ o] E# o] H),
89

generic function (AY]E g<), 90

GIL, 90

global interpreter lock (<Y <A¥ =g H
=), 90

121

Python Frequently Asked Questions, = x] 1] A 3.7.17

Fl

hash-based pyc (G} A] 714k pyc), 90
hashable (3] A] 7}%), 90

IDLE, 90

immutable (&%), 90

import path(¥YZE ZH=Z), 90

importer (Y ZH), 90

importing (Y =H), 90

interactive (H3}¥), 90

interpreted (UEHZEEE), 90
interpreter shutdown (JEZEE £8),91
iterable (°]E] & E), 91

iterator (o] E & °]), 91

K
key function (7] &), 91
keyword argument (7] = AR}, 91

L

lambda (&t}), 91

LBYL, 91

list (B2E), 92

list comprehension (BAE #HZZ3A), 92
loader (2H), 92

M

magic
method, 92
magic method (7] 2 WA &), 92
mapping (7§3), 92
meta path finder (WE} Z & 1}21t), 92
metaclass (WEZ8), 92
method
magic, 92
special, 96
method (WA =), 92
method resolution order (WA E ZAA <A,
92
module (R &), 92
module spec (RE £d) 92
MRO, 92
mutable (7}4), 92

N

named tuple (MYE EZ) 92

namespace (°] & 271, 93

namespace package (0|5 &7+ 9 7]A)), 93
nested scope (EHH 27 2:),93
new-style class (F2EY 8 2), 93

O

object (AA)), 93

F)

package (3] 7] A)), 93
parameter

difference from argument, 15
parameter (W 7] ¥H), 93
PATH, 54
path based finder (AZ 7]¥l 5}2lt]), 94
path entry (A= AE=2]), 94
path entry finder (AZ AEZ 32 H), 94
path entry hook (FE dEZ %), %
path-like object (FEZF ZAA|), 94
PEP, 94
portion (£4), 94
positional argument (¥ X] Q1A}), 94
provisional API (FHA API), 94
provisional package (A 7] A)), 95
Python 3000 (3}o]# 3000), 95
PYTHONDONTWRITEBYTECODE, 35
Pythonic (3}o] A THE), 95

Q

qualified name (F4134 ©]&), 95

R

reference count (X 34, 95
regular package (A 7] A]), 95

S

sequence (A| @), 95
single dispatch (AF Y2 X]), 96
slice (£8}o]2), 96
special

method, 96
special method (E4 WA E), 96
statement (%), 96

T

TCL_LIBRARY, 81

text encoding (Hl2~E Q1379), 96

text file (A12~E 3}Y), 96

TK_LIBRARY, 81

triple—-quoted string (A% W% JH EA1Y),
96

type (3), 96

type alias (8 9| dglojx), 96

type hint (& 31 E), 96

u

universal newlines (FUWA = 37),97

V

variable annotation (‘HZ o] ¥ o]A), 97
virtual environment (7} 273), 97

122

=
=

Python Frequently Asked Questions, = x] 1] A 3.7.17

virtual machine (7} 7] A), 97

Y
slol A &g A<t
PEP 1,9
PEP 5
PEP 6
PEP 8, 10,76
PEP 238, 89
PEP 275,44
PEP 278,97
PEP 302, 89,92
PEP 343,87
PEP 362, 86,94
PEP 411,95
PEP 420, 89, 93,94
PEP 443,90
PEP 451,89
PEP 484, 85, 89,96, 97
PEP 492, 86, 87
PEP 498, 88
PEP 519,9%
PEP 525,86
PEP 526, 85,97
PEP 570,21
PEP 3116,97
PEP 3147,35
PEP 3155,95
373w
PATH, 54
PYTHONDONTWRITEBYTECODE, 35
TCL_LIBRARY, 81
TK_LIBRARY, 81

,9
6
3

>
i

Z

Zen of Python (o4 A), 97

=
ro

123

	General Python FAQ
	Programming FAQ
	Design and History FAQ
	Library and Extension FAQ
	확장/내장 FAQ
	Python on Windows FAQ
	그래픽 사용자 인터페이스 FAQ
	“왜 내 컴퓨터에 파이썬이 설치되어 있습니까?” FAQ
	용어집
	이 설명서에 관하여
	역사와 라이센스
	저작권
	색인

