Extending and Embedding Python
EA WA 3.7.17

Guido van Rossum
and the Python development team

6% 28, 2023

Contents

D

1=

A AL 27

A2 =7 flo] &7 vHE 7]

2.1 Extending PythonwithCorC++
2.2 Defining Extension Types: Tutorial
2.3 Defining Extension Types: Assorted Topics
24 CAC++FHATS7]
25 AERAACHC++EAA=s7] ...
ol 2 $-§ =2 730 CPython et v 3317]
3. HE & z=ad stold sz L.
go17

o] A2 Ao T3}]

Bl ol Ayl FHAE
o 2t} 2ol Al &

Cl 2ZEYOI X
C2 sholwlo] AM 25k A AL3L7] 93 o) & ok

ke

C3 =g azedojd izt ehojiad Sl
2k

o
“

67

79
79

81
81
82
85

97

929

Extending and Embedding Python, &] | 3.7.17

o) BAE AR e BER oM AE =2 HE B8] A3 C U CrE RES 4450 i 49
Utk oelsl REL AR BB ol AR e A4 B AASE AT 5 Ak 3, 47
Qo] A&7 919, ol M QIE e & e S& Tz o] AT ol BAHE A%
Utk ppAge g, skt 4 A Al A o] 7] 5= Adstes 5, TAL= (BT AHZ 2 H
2295 5% HFRES ARAeln A5 BHL HolF ok

o] A& go] Mo)3l 7] 2 Al AA| 2 St Hofo tf 3t 3 A A o] x| 9L A 7)== tutorial-index =
HAA] Q.. reference-index = X T} 3 4] & 91 Al o] & o] & A5 T} library-index + SR 3t A A &, <=
HEEEE A ve|nor A A B2 AHstet, ol sl dole] 58 HAE WUt

ZA A 5ol #/C APIo|| o & 2FA g A -2 H = O] c-api-index & F R3] Al 2.

Contents 1

Extending and Embedding Python, &] | A 3.7.17

2 Contents

CHAPTER 1

A A A =

o] A A= o] B} A2 CPythono] EZ A 25 =, 4L 1wt
cffi, SWIG £} Numba 9} 22 A| A2} & F = 1}o] %
Ao S AsFch
o B7]:

sho| A 9| 7] A A& A} 2] 2 A]: wlolu]g] @A slo]l W 7] A AFLAF A A A=
5l olhe 2 7] ARS 7 s R E TR QLS Bk oyl S R
A 32 o] 2] 7}A] o]foll tha A = =] 3Tt

o) % Y t}. Cython,
£ ™ et AleE

N
o rfx
Rl
1
o,
o
v}

¢

http://cython.org/
https://cffi.readthedocs.io
http://www.swig.org
https://numba.pydata.org/
https://packaging.python.org/guides/packaging-binary-extensions/

Extending and Embedding Python, &] | A 3.7.17

4 Chapter 1. AF A= =+

CHAPTER 2

A A& o] REo A= AR =72 =& glo] CS}C++ A s o de AUt o2
A0 C e HE T ARE e Y olE its, £ 2 EFE AFste MR ES e E i Th

2.1 Extending Python with C or C++

It is quite easy to add new built-in modules to Python, if you know how to program in C. Such extension modules can
do two things that can’t be done directly in Python: they can implement new built-in object types, and they can call
C library functions and system calls.

To support extensions, the Python API (Application Programmers Interface) defines a set of functions, macros and
variables that provide access to most aspects of the Python run-time system. The Python API is incorporated in a C
source file by including the header "Python.h".

The compilation of an extension module depends on its intended use as well as on your system setup; details are given
in later chapters.

Z3: The C extension interface is specific to CPython, and extension modules do not work on other Python
implementations. In many cases, it is possible to avoid writing C extensions and preserve portability to other imple-
mentations. For example, if your use case is calling C library functions or system calls, you should consider using
the ct ypes module or the cffi library rather than writing custom C code. These modules let you write Python code
to interface with C code and are more portable between implementations of Python than writing and compiling a C
extension module.

https://cffi.readthedocs.io/

Extending and Embedding Python, &] | A 3.7.17

2.1.1 A Simple Example

Let’s create an extension module called spam (the favorite food of Monty Python fans---) and let’s say we want
to create a Python interface to the C library function system () '. This function takes a null-terminated character
string as argument and returns an integer. We want this function to be callable from Python as follows:

>>> import spam
>>> status = spam.system("ls —-1")

Begin by creating a file spammodule. c. (Historically, if a module is called spam, the C file containing its imple-
mentation is called spammodule. c; if the module name is very long, like spammi fy, the module name can be
just spammify.c.)

The first two lines of our file can be:

#define PY_SSIZE_T CLEAN
#include <Python.h>

which pulls in the Python API (you can add a comment describing the purpose of the module and a copyright notice
if you like).

Z31: Since Python may define some pre-processor definitions which affect the standard headers on some systems,
you must include Python . h before any standard headers are included.

Itis recommended to always define PY_SSIZE_T_CLEAN before including Python . h. See Extracting Parameters
in Extension Functions for a description of this macro.

All user-visible symbols defined by Python . h have a prefix of Py or PY, except those defined in standard header
files. For convenience, and since they are used extensively by the Python interpreter, "Python.h" includes a few
standard header files: <stdio.h>,<string.h>, <errno.h>,and <stdlib.h>. If the latter header file does
not exist on your system, it declares the functions malloc (), free () and realloc () directly.

The next thing we add to our module file is the C function that will be called when the Python expression spam.
system (string) is evaluated (we’ll see shortly how it ends up being called):

static PyObject *
spam_system (PyObject *self, PyObject *args)
{

const char *command;

int sts;

if (!PyArg_ParseTuple(args, "s", &command))
return NULL;

sts = system(command) ;

return PylLong_FromLong (sts);

There is a straightforward translation from the argument list in Python (for example, the single expression "1s -1")
to the arguments passed to the C function. The C function always has two arguments, conventionally named self and
args.

The self argument points to the module object for module-level functions; for a method it would point to the object
instance.

The args argument will be a pointer to a Python tuple object containing the arguments. Each item of the tuple
corresponds to an argument in the call’s argument list. The arguments are Python objects — in order to do anything
with them in our C function we have to convert them to C values. The function PyArg_ParseTuple () in the
Python API checks the argument types and converts them to C values. It uses a template string to determine the
required types of the arguments as well as the types of the C variables into which to store the converted values. More
about this later.

! An interface for this function already exists in the standard module os — it was chosen as a simple and straightforward example.

6 Chapter 2. A2z} £ glo] 83 w5 7|

Extending and Embedding Python, &] | 3.7.17

PyArg_ParseTuple () returns true (nonzero) if all arguments have the right type and its components have been
stored in the variables whose addresses are passed. It returns false (zero) if an invalid argument list was passed. In
the latter case it also raises an appropriate exception so the calling function can return NULL immediately (as we saw
in the example).

2.1.2 Intermezzo: Errors and Exceptions

An important convention throughout the Python interpreter is the following: when a function fails, it should set an
exception condition and return an error value (usually a NULL pointer). Exceptions are stored in a static global
variable inside the interpreter; if this variable is NULL no exception has occurred. A second global variable stores the
“associated value” of the exception (the second argument to raise). A third variable contains the stack traceback
in case the error originated in Python code. These three variables are the C equivalents of the result in Python of
sys.exc_info () (see the section on module sys in the Python Library Reference). It is important to know
about them to understand how errors are passed around.

The Python API defines a number of functions to set various types of exceptions.

The most common one is PyErr_SetString (). Its arguments are an exception object and a C string. The
exception object is usually a predefined object like PyExc_ZeroDivisionError. The C string indicates the
cause of the error and is converted to a Python string object and stored as the “associated value” of the exception.

Another useful functionis PyErr_SetFromErrno (), which only takes an exception argument and constructs the
associated value by inspection of the global variable errno. The most general functionis PyErr_SetObject (),
which takes two object arguments, the exception and its associated value. You don’t need to Py_ INCREF () the
objects passed to any of these functions.

You can test non-destructively whether an exception has been set with PyErr_Occurred (). This re-
turns the current exception object, or NULL if no exception has occurred. You normally don’t need to call
PyErr_Occurred () to see whether an error occurred in a function call, since you should be able to tell from
the return value.

‘When a function f that calls another function g detects that the latter fails, f should itself return an error value (usually
NULL or —1). It should not call one of the PyErr_* () functions — one has already been called by g. f’s caller
is then supposed to also return an error indication to its caller, again without calling PyErr_* (), and so on — the
most detailed cause of the error was already reported by the function that first detected it. Once the error reaches the
Python interpreter’s main loop, this aborts the currently executing Python code and tries to find an exception handler
specified by the Python programmer.

(There are situations where a module can actually give a more detailed error message by calling another PyErr_* ()
function, and in such cases it is fine to do so. As a general rule, however, this is not necessary, and can cause
information about the cause of the error to be lost: most operations can fail for a variety of reasons.)

To ignore an exception set by a function call that failed, the exception condition must be cleared explicitly by calling
PyErr_Clear (). The only time C code should call PyErr_Clear () is if it doesn’t want to pass the error on
to the interpreter but wants to handle it completely by itself (possibly by trying something else, or pretending nothing
went wrong).

Every failingmalloc () call must be turned into an exception — the direct caller of malloc () (or realloc ())
must call PyErr_NoMemory () and return a failure indicator itself. All the object-creating functions (for example,
PyLong_FromLong ()) already do this, so this note is only relevant to those who callmalloc () directly.

Also note that, with the important exception of PyArg_ParseTuple () and friends, functions that return an
integer status usually return a positive value or zero for success and -1 for failure, like Unix system calls.

Finally, be careful to clean up garbage (by making Py_XDECREF () or Py_DECREF () calls for objects you have
already created) when you return an error indicator!

The choice of which exception to raise is entirely yours. There are predeclared C objects corresponding to all built-in
Python exceptions, such as PyExc_ZeroDivisionError, which you can use directly. Of course, you should
choose exceptions wisely — don’t use PyExc_TypeError to mean that a file couldn’t be opened (that should
probably be PyExc_IOError). If something’s wrong with the argument list, the PyArg_ParseTuple ()
function usually raises PyExc_TypeError. If you have an argument whose value must be in a particular range or
must satisfy other conditions, PyExc_ValueError is appropriate.

2.1. Extending Python with C or C++ 7

Extending and Embedding Python, &] | A 3.7.17

You can also define a new exception that is unique to your module. For this, you usually declare a static object variable
at the beginning of your file:

static PyObject *SpamError;

and initialize it in your module’s initialization function (PyInit_spam ()) with an exception object:

PyMODINIT_FUNC
PyInit_spam(void)
{

PyObject *m;

m = PyModule_Create (&spammodule) ;
if (== NULL)
return NULL;

SpamError = PyErr_NewException ("spam.error", NULL, NULL);
Py_XINCREF (SpamError) ;
if (PyModule_AddObject (m, "error", SpamError) < 0) {
Py_XDECREF (SpamError) ;
Py_CLEAR (SpamError) ;
Py_DECREF (m) ;
return NULL;

return m;

Note that the Python name for the exception object is spam.error. The PyErr_NewException () func-
tion may create a class with the base class being Exception (unless another class is passed in instead of NULL),
described in bltin-exceptions.

Note also that the SpamError variable retains a reference to the newly created exception class; this is intentional!
Since the exception could be removed from the module by external code, an owned reference to the class is needed to
ensure that it will not be discarded, causing SpamError to become a dangling pointer. Should it become a dangling
pointer, C code which raises the exception could cause a core dump or other unintended side effects.

We discuss the use of PyMODINIT_FUNC as a function return type later in this sample.

The spam.error exception can be raised in your extension module using a call to PyErr_SetString () as
shown below:

static PyObject *
spam_system (PyObject *self, PyObject *args)
{

const char *command;

int sts;

if (!PyArg_ParseTuple(args, "s", &command))
return NULL;

sts = system(command) ;

if (sts < 0) {
PyErr_SetString(SpamError, "System command failed");
return NULL;

}

return PylLong_FromLong (sts);

8 Chapter 2. A2z} £ glo] 83 w5 7|

Extending and Embedding Python, &] | 3.7.17

2.1.3 Back to the Example

Going back to our example function, you should now be able to understand this statement:

if (!PyArg_ParseTuple(args, "s", &command))
return NULL;

It returns NULL (the error indicator for functions returning object pointers) if an error is detected in the argument
list, relying on the exception set by PyArg_ParseTuple (). Otherwise the string value of the argument has
been copied to the local variable command. This is a pointer assignment and you are not supposed to modify the
string to which it points (so in Standard C, the variable command should properly be declared as const char
*command).

The next statement is a call to the Unix function system(), passing it the string we just got from
PyArg_ParseTuple():

’sts = system(command) ;

Our spam. system () function must return the value of st s as a Python object. This is done using the function
PyLong_FromLong ().

’return PyLong_FromLong (sts) ;

In this case, it will return an integer object. (Yes, even integers are objects on the heap in Python!)

If you have a C function that returns no useful argument (a function returning void), the corresponding Python
function must return None. You need this idiom to do so (which is implemented by the Py_ RETURN_NONE macro):

Py_INCREF (Py_None) ;
return Py_None;

Py_None is the C name for the special Python object None. It is a genuine Python object rather than a NULL
pointer, which means “error” in most contexts, as we have seen.

2.1.4 The Module’s Method Table and Initialization Function

I promised to show how spam_system () is called from Python programs. First, we need to list its name and
address in a “method table”:

static PyMethodDef SpamMethods[] = {

{"system", spam_system, METH_VARARGS,
"Execute a shell command."},

{NULL, NULL, O, NULL} /* Sentinel */
bi

Note the third entry (METH_VARARGS). This is a flag telling the interpreter the calling convention to be used for the
C function. It should normally always be METH_VARARGS or METH_VARARGS | METH_KEYWORDS; a value
of 0 means that an obsolete variant of PyArg_ParseTuple () is used.

When using only METH_ VARARGS, the function should expect the Python-level parameters to be passed in as a tuple
acceptable for parsing via PyArg_ParseTuple () ; more information on this function is provided below.

The METH_KEYWORDS bit may be set in the third field if keyword arguments should be passed to the function. In
this case, the C function should accept a third PyObject * parameter which will be a dictionary of keywords. Use
PyArg_ParseTupleAndKeywords () to parse the arguments to such a function.

The method table must be referenced in the module definition structure:

2.1. Extending Python with C or C++ 9

Extending and Embedding Python, &] | A 3.7.17

static struct PyModuleDef spammodule = {
PyModuleDef_HEAD_INIT,

"spam", /* name of module */
spam_doc, /* module documentation, may be NULL */
-1, /* size of per-interpreter state of the module,

or -1 if the module keeps state in global variables. */
SpamMethods
Hi

This structure, in turn, must be passed to the interpreter in the module’s initialization function. The initialization
function must be named PyInit_name (), where name is the name of the module, and should be the only non-
static item defined in the module file:

PyMODINIT_FUNC
PyInit_spam(void)
{

return PyModule_Create (&spammodule) ;

Note that PyYMODINIT_FUNC declares the function as PyObJject * return type, declares any special linkage
declarations required by the platform, and for C++ declares the function as extern "C".

When the Python program imports module spam for the first time, PyInit_spam() is called. (See below for
comments about embedding Python.) It calls PyModule_Create (), which returns a module object, and inserts
built-in function objects into the newly created module based upon the table (an array of PyMethodDe £ structures)
found in the module definition. PyModule_Create () returns a pointer to the module object that it creates. It
may abort with a fatal error for certain errors, or return NULL if the module could not be initialized satisfactorily.
The init function must return the module object to its caller, so that it then gets inserted into sys .modules.

When embedding Python, the PyInit_spam () function is not called automatically unless there’s an entry in the
PyImport_Inittab table. To add the module to the initialization table, use Py Import_AppendInittab (),
optionally followed by an import of the module:

int
main (int argc, char *argv([])
{
wchar_t *program = Py_DecodelLocale(argv[0], NULL);

if (program == NULL) {
fprintf (stderr, "Fatal error: cannot decode argv[0]\n");
exit (1);

/* Add a built-in module, before Py_Initialize */
PyImport_AppendInittab ("spam", PyInit_spam);

/* Pass argv/[0] to the Python interpreter */
Py_SetProgramName (program) ;

/* Initialize the Python interpreter. Required. */
Py_Initialize();

/* Optionally import the module; alternatively,
import can be deferred until the embedded script
imports it. */

PyImport_TImportModule ("spam");

PyMem_RawFree (program) ;
return 0O;

10 Chapter 2. A4} 7 glo] &4 w571

Extending and Embedding Python, &] | 3.7.17

ZF31: Removing entries from sys.modules or importing compiled modules into multiple interpreters within a
process (or following a fork () without an intervening exec ()) can create problems for some extension modules.
Extension module authors should exercise caution when initializing internal data structures.

A more substantial example module is included in the Python source distribution as Modules/xxmodule. c. This
file may be used as a template or simply read as an example.

Z31: Unlike our spam example, xxmodule uses multi-phase initialization (new in Python 3.5), where a PyMod-
uleDef structure is returned from PyInit_spam, and creation of the module is left to the import machinery. For
details on multi-phase initialization, see PEP 489.

2.1.5 Compilation and Linkage

There are two more things to do before you can use your new extension: compiling and linking it with the Python
system. If you use dynamic loading, the details may depend on the style of dynamic loading your system uses; see
the chapters about building extension modules (chapter C2} C++ 2% ¥l = 3} 7]) and additional information that
pertains only to building on Windows (chapter 1 = -¢-°|| A C2} C++ &7 1 = 3} 7]) for more information about

this.

If you can’t use dynamic loading, or if you want to make your module a permanent part of the Python interpreter,
you will have to change the configuration setup and rebuild the interpreter. Luckily, this is very simple on Unix: just
place your file (spammodule . c for example) in the Modules/ directory of an unpacked source distribution, add
a line to the file Modules/Setup. local describing your file:

spam spammodule.o

and rebuild the interpreter by running make in the toplevel directory. You can also run make in the Modules/
subdirectory, but then you must first rebuild Makefile there by running ‘make Makefile’. (This is necessary each
time you change the Setup file.)

If your module requires additional libraries to link with, these can be listed on the line in the configuration file as well,
for instance:

spam spammodule.o —-1X11

2.1.6 Calling Python Functions from C

So far we have concentrated on making C functions callable from Python. The reverse is also useful: calling Python
functions from C. This is especially the case for libraries that support so-called “callback” functions. If a C interface
makes use of callbacks, the equivalent Python often needs to provide a callback mechanism to the Python program-
mer; the implementation will require calling the Python callback functions from a C callback. Other uses are also
imaginable.

Fortunately, the Python interpreter is easily called recursively, and there is a standard interface to call a Python
function. (I won’t dwell on how to call the Python parser with a particular string as input — if you’re interested, have
a look at the implementation of the —c command line option in Modules/main. c from the Python source code.)

Calling a Python function is easy. First, the Python program must somehow pass you the Python function object.
You should provide a function (or some other interface) to do this. When this function is called, save a pointer to
the Python function object (be careful to Py_ INCREF () it!) in a global variable — or wherever you see fit. For
example, the following function might be part of a module definition:

static PyObject *my_callback = NULL;

static PyObject *

(Th& sl AT ol AS)

2.1. Extending Python with C or C++ 11

https://www.python.org/dev/peps/pep-0489

Extending and Embedding Python, &] | A 3.7.17

(o1 sl o] A A A%)

my_set_callback (PyObject *dummy, PyObject *args)
{

PyObject *result = NULL;

PyObject *temp;

if (PyArg_ParseTuple(args, "O:set_callback", &temp)) |
if (!PyCallable_Check (temp)) {
PyErr_SetString (PyExc_TypeError, "parameter must be callable");
return NULL;
}

Py_XINCREF (temp) ; /* Add a reference to new callback */
Py_XDECREF (my_callback) ; /* Dispose of previous callback */
my_callback = temp; /* Remember new callback */

/* Boilerplate to return "None" */
Py_INCREF (Py_None) ;
result = Py_None;

}

return result;

This function must be registered with the interpreter using the METH_VARARGS flag; this is described in section 7he
Module’ s Method Table and Initialization Function. The PyArg_ParseTuple () function and its arguments are
documented in section Extracting Parameters in Extension Functions.

The macros Py_XINCREF () and Py_XDECREF () increment/decrement the reference count of an object and are
safe in the presence of NULL pointers (but note that femp will not be NULL in this context). More info on them in
section Reference Counts.

Later, when it is time to call the function, you call the C function PyObject_CallObject (). This function has
two arguments, both pointers to arbitrary Python objects: the Python function, and the argument list. The argument
list must always be a tuple object, whose length is the number of arguments. To call the Python function with no ar-
guments, pass in NULL, or an empty tuple; to call it with one argument, pass a singleton tuple. Py_BuildvValue ()
returns a tuple when its format string consists of zero or more format codes between parentheses. For example:

int arg;
PyObject *arglist;
PyObject *result;

arg = 123;

/* Time to call the callback */

arglist = Py_BuildValue (" (i)", arg);

result = PyObject_CallObject (my_callback, arglist);
Py_DECREF (arglist);

PyObject_CallObject () returns a Python object pointer: this is the return value of the Python func-
tion. PyObject_CallObject () is “reference-count-neutral” with respect to its arguments. In the exam-
ple a new tuple was created to serve as the argument list, which is Py_DECREF () -ed immediately after the
PyObject_CallObject () call.

The return value of PyObject_CallObject () is “new’: either it is a brand new object, or it is an existing object
whose reference count has been incremented. So, unless you want to save it in a global variable, you should somehow
Py_DECREF () the result, even (especially!) if you are not interested in its value.

Before you do this, however, it is important to check that the return value isn’t NULL. If it is, the Python function
terminated by raising an exception. If the C code that called PyObject_CallObject () is called from Python,
it should now return an error indication to its Python caller, so the interpreter can print a stack trace, or the calling
Python code can handle the exception. If this is not possible or desirable, the exception should be cleared by calling
PyErr_Clear (). For example:

12 Chapter 2. A4} 7 glo] &4 w571

Extending and Embedding Python, &] | 3.7.17

if (result == NULL)

return NULL; /* Pass error back */
...use result...
Py_DECREF (result) ;

Depending on the desired interface to the Python callback function, you may also have to provide an argument list
to PyObject_CallObject (). Insome cases the argument list is also provided by the Python program, through
the same interface that specified the callback function. It can then be saved and used in the same manner as the
function object. In other cases, you may have to construct a new tuple to pass as the argument list. The simplest way
to do this is to call Py_Buildvalue (). For example, if you want to pass an integral event code, you might use
the following code:

PyObject *arglist;

arglist = Py_BuildValue (" (1)", eventcode);
result = PyObject_CallObject (my_callback, arglist);
Py_DECREF (arglist);
if (result == NULL)
return NULL; /* Pass error back */
/* Here maybe use the result */
Py_DECREF (result);

Note the placement of Py_DECREF (arglist) immediately after the call, before the error check! Also note
that strictly speaking this code is not complete: Py_BuildvValue () may run out of memory, and this should be
checked.

You may also call a function with keyword arguments by using PyObject_Call (), which supports arguments
and keyword arguments. As in the above example, we use Py_BuildValue () to construct the dictionary.

PyObject *dict;

dict = Py_Buildvalue("{s:i}", "name", wval);
result = PyObject_Call (my_callback, NULL, dict);
Py_DECREF (dict);
if (result == NULL)

return NULL; /* Pass error back */
/* Here maybe use the result */
Py_DECREF (result) ;

2.1.7 Extracting Parameters in Extension Functions

The PyArg_ParseTuple () function is declared as follows:

int PyArg_ParseTuple (PyObject *arg, const char *format, ...);

The arg argument must be a tuple object containing an argument list passed from Python to a C function. The format
argument must be a format string, whose syntax is explained in arg-parsing in the Python/C API Reference Manual.
The remaining arguments must be addresses of variables whose type is determined by the format string.

Note that while PyArg_ParseTuple () checks that the Python arguments have the required types, it cannot check
the validity of the addresses of C variables passed to the call: if you make mistakes there, your code will probably
crash or at least overwrite random bits in memory. So be careful!

Note that any Python object references which are provided to the caller are borrowed references; do not decrement
their reference count!

Some example calls:

#define PY_SSIZE_T CLEAN /* Make "s#'" use Py_ssize_t rather than int. */
#include <Python.h>

2.1. Extending Python with C or C++ 13

Extending and Embedding Python, &] | A 3.7.17

int ok;

int 1, J;

long k, 1;

const char *s;
Py_ssize_t size;

ok = PyArg_ParseTuple(args, ""); /* No arguments */
/* Python call: f() */
ok = PyArg_ParseTuple (args, "s", &s); /* A string */
/* Possible Python call: f('whoops!') */
ok = PyArg_ParseTuple(args, "11s", &k, &1, &s); /* Two longs and a string */
/* Possible Python call: f(1, 2, 'three') */
ok = PyArg_ParseTuple (args, " (ii)s#", &i, &3, &s, &size);
/* A pair of ints and a string, whose size is also returned */
/* Possible Python call: f((1, 2), 'three') */
{
const char *file;
const char *mode = "r";
int bufsize = 0;
ok = PyArg_ParseTuple (args, "s|si", &file, &mode, &bufsize);
/* A string, and optionally another string and an integer */
/* Possible Python calls:
f('spam')
f('spam', 'w')
f('spam', 'wb', 100000) */
}
{
int left, top, right, bottom, h, v;
ok = PyArg_ParseTuple (args, " ((ii) (ii)) (ii)",
&left, s&top, &right, &bottom, &h, &v);
/* A rectangle and a point */
/* Possible Python call:
£(((0, 0), (400, 300)), (10, 10)) */
}

Py_complex c;

ok PyArg_ParseTuple (args, "D:myfunction", &c);

/* a complex, also providing a function name for errors
/* Possible Python call: myfunction (1+27) */

*/

2.1.8 Keyword Parameters for Extension Functions

The PyArg_ParseTupleAndKeywords () function is declared as follows:

int PyArg_ParseTupleAndKeywords (PyObject *arg,
const char *format,

PyObject *kwdict,

char *kwlist|[],)

The arg and format parameters are identical to those of the PyArg_ParseTuple () function. The kwdict param-
eter is the dictionary of keywords received as the third parameter from the Python runtime. The kwlist parameter is
a NULL-terminated list of strings which identify the parameters; the names are matched with the type information

14 Chapter 2. A4z} = glo] HLE 7]

=%

Extending and Embedding Python, &] | 3.7.17

from format from left to right. On success, PyArg_ParseTupleAndKeywords () returns true, otherwise it
returns false and raises an appropriate exception.

Z31: Nested tuples cannot be parsed when using keyword arguments! Keyword parameters passed in which are
not present in the kwlist will cause TypeError to be raised.

Here is an example module which uses keywords, based on an example by Geoff Philbrick (philbrick@hks.com):

#define PY SSIZE_T CLEAN /* Make "s#'" use Py_ssize_t rather than int. */
#include <Python.h>

static PyObject *
keywdarg_parrot (PyObject *self, PyObject *args, PyObject *keywds)
{

int voltage;

const char *state = "a stiff";

const char *action = "voom";

const char *type = "Norwegian Blue";

static char *kwlist[] = {"voltage", "state", "action", "type", NULL};

if (!PyArg_ParseTupleAndKeywords (args, keywds, "i|sss", kwlist,
&voltage, &state, &action, &type))
return NULL;

printf ("-- This parrot wouldn't %s if you put %i Volts through it.\n",
action, voltage);
printf ("-- Lovely plumage, the %s —-— It's %s!\n", type, state);

Py_RETURN_NONE;

static PyMethodDef keywdarg_methods[] = {
/* The cast of the function is necessary since PyCFunction values
* only take two PyObject* parameters, and keywdarg parrot () takes
* three.
*/
{"parrot", (PyCFunction)keywdarg_parrot, METH_VARARGS | METH_KEYWORDS,
"Print a lovely skit to standard output."},
{NULL, NULL, 0, NULL} /* sentinel */
bi

static struct PyModuleDef keywdargmodule = {
PyModuleDef_ HEAD_INIT,
"keywdarg",
NULL,
-1,
keywdarg_methods
bi

PyMODINIT_FUNC
PyInit_keywdarg (void)
{
return PyModule_Create (&keywdargmodule) ;

2.1. Extending Python with C or C++ 15

mailto:philbrick@hks.com

Extending and Embedding Python, &] | A 3.7.17

2.1.9 Building Arbitrary Values

This function is the counterpart to PyArg_ParseTuple (). Itis declared as follows:

PyObject *Py_BuildValue (const char *format, ...);

It recognizes a set of format units similar to the ones recognized by PyArg_ParseTuple (), but the arguments
(which are input to the function, not output) must not be pointers, just values. It returns a new Python object, suitable
for returning from a C function called from Python.

One difference with PyArg_ParseTuple () : while the latter requires its first argument to be a tuple (since Python
argument lists are always represented as tuples internally), Py_BuildValue () does not always build a tuple. It
builds a tuple only if its format string contains two or more format units. If the format string is empty, it returns
None; if it contains exactly one format unit, it returns whatever object is described by that format unit. To force it to
return a tuple of size O or one, parenthesize the format string.

Examples (to the left the call, to the right the resulting Python value):

Py_Buildvalue ("" None
Py_Buildvalue ("i", 123) 123
Py_Buildvalue ("1i 123, 456, 789) (123, 456, 789)
Py_BuildvValue ("s", "hello") 'hello'
Py_Buildvalue ("y", "hello") b'hello'
Py_Buildvalue ("ss", "hello", "world") ('"hello', 'world')
Py_BuildvValue ("s#", "hello", 4) 'hell'
Py_BuildvValue ("y#", "hello", 4) b'hell'
Py_Buildvalue (" ()") ()
Py_Buildvalue (" (i)", 123) (123,)
Py_Buildvalue (" (ii)", 123, 456) (123, 4506)
Py_Buildvalue (" (i,1)", 123, 456) (123, 456)
Py_Buildvalue("[i,1]", 123, 456) [123, 456]
Py_Buildvalue("{s:i,s:i}",

"abc", 123, "def", 456) {'abc': 123, 'def': 456}
Py_BuildValue (" ((ii) (ii)) (ii)",

1, 2, 3, 4, 5, 6) (1, 2), (3, 4)), (5, 6))

2.1.10 Reference Counts

In languages like C or C++, the programmer is responsible for dynamic allocation and deallocation of memory on
the heap. In C, this is done using the functions malloc () and free (). In C++, the operators new and delete
are used with essentially the same meaning and we’ll restrict the following discussion to the C case.

Every block of memory allocated with malloc () should eventually be returned to the pool of available memory
by exactly one call to free (). Itis important to call free () at the right time. If a block’s address is forgotten but
free () is not called for it, the memory it occupies cannot be reused until the program terminates. This is called
a memory leak. On the other hand, if a program calls free () for a block and then continues to use the block, it
creates a conflict with re-use of the block through another malloc () call. This is called using freed memory. It has
the same bad consequences as referencing uninitialized data — core dumps, wrong results, mysterious crashes.

Common causes of memory leaks are unusual paths through the code. For instance, a function may allocate a block
of memory, do some calculation, and then free the block again. Now a change in the requirements for the function
may add a test to the calculation that detects an error condition and can return prematurely from the function. It’s
easy to forget to free the allocated memory block when taking this premature exit, especially when it is added later
to the code. Such leaks, once introduced, often go undetected for a long time: the error exit is taken only in a small
fraction of all calls, and most modern machines have plenty of virtual memory, so the leak only becomes apparent
in a long-running process that uses the leaking function frequently. Therefore, it’s important to prevent leaks from
happening by having a coding convention or strategy that minimizes this kind of errors.

Since Python makes heavy use of malloc () and free (), it needs a strategy to avoid memory leaks as well as the
use of freed memory. The chosen method is called reference counting. The principle is simple: every object