Python Frequently Asked Questions
EA WA 3.7.17

Guido van Rossum
and the Python development team

6% 28, 2023

Contents

>

o a =

1=

General Python FAQ 1
Programming FAQ 7
Design and History FAQ 35
Library and Extension FAQ 49
/7 FAQ 61
Python on Windows FAQ 69
222 A AL Qe o] & FAQ 73
“off) A FEloll sho] A o] A% o] Y& U727 FAQ 77
gol7 79
SELEE RS 91
o A}9} 2ol A 93
24 109

ol 111

CHAPTER 1

General Python FAQ

1.1 General Information

1.1.1 What is Python?

Python is an interpreted, interactive, object-oriented programming language. It incorporates modules, exceptions,
dynamic typing, very high level dynamic data types, and classes. Python combines remarkable power with very clear
syntax. It has interfaces to many system calls and libraries, as well as to various window systems, and is extensible
in C or C++. It is also usable as an extension language for applications that need a programmable interface. Finally,
Python is portable: it runs on many Unix variants, on the Mac, and on Windows 2000 and later.

To find out more, start with tutorial-index. The Beginner’s Guide to Python links to other introductory tutorials and
resources for learning Python.

1.1.2 What is the Python Software Foundation?

The Python Software Foundation is an independent non-profit organization that holds the copyright on Python versions
2.1 and newer. The PSF’s mission is to advance open source technology related to the Python programming language
and to publicize the use of Python. The PSF’s home page is at https://www.python.org/psf/.

Donations to the PSF are tax-exempt in the US. If you use Python and find it helpful, please contribute via the PSF
donation page.

1.1.3 Are there copyright restrictions on the use of Python?

You can do anything you want with the source, as long as you leave the copyrights in and display those copyrights
in any documentation about Python that you produce. If you honor the copyright rules, it’s OK to use Python for
commercial use, to sell copies of Python in source or binary form (modified or unmodified), or to sell products that
incorporate Python in some form. We would still like to know about all commercial use of Python, of course.

See the PSF license page to find further explanations and a link to the full text of the license.

The Python logo is trademarked, and in certain cases permission is required to use it. Consult the Trademark Usage
Policy for more information.

https://wiki.python.org/moin/BeginnersGuide
https://www.python.org/psf/
https://www.python.org/psf/donations/
https://www.python.org/psf/donations/
https://www.python.org/psf/license/
https://www.python.org/psf/trademarks/
https://www.python.org/psf/trademarks/

Python Frequently Asked Questions, = x] 1] A 3.7.17

1.1.4 Why was Python created in the first place?

Here’s a very brief summary of what started it all, written by Guido van Rossum:

I had extensive experience with implementing an interpreted language in the ABC group at CWI, and
from working with this group I had learned a lot about language design. This is the origin of many Python
features, including the use of indentation for statement grouping and the inclusion of very-high-level data
types (although the details are all different in Python).

I had a number of gripes about the ABC language, but also liked many of its features. It was impossi-
ble to extend the ABC language (or its implementation) to remedy my complaints — in fact its lack of
extensibility was one of its biggest problems. I had some experience with using Modula-2+ and talked
with the designers of Modula-3 and read the Modula-3 report. Modula-3 is the origin of the syntax and
semantics used for exceptions, and some other Python features.

I was working in the Amoeba distributed operating system group at CWI. We needed a better way to
do system administration than by writing either C programs or Bourne shell scripts, since Amoeba had
its own system call interface which wasn’t easily accessible from the Bourne shell. My experience with
error handling in Amoeba made me acutely aware of the importance of exceptions as a programming
language feature.

It occurred to me that a scripting language with a syntax like ABC but with access to the Amoeba system
calls would fill the need. I realized that it would be foolish to write an Amoeba-specific language, so I
decided that I needed a language that was generally extensible.

During the 1989 Christmas holidays, I had a lot of time on my hand, so I decided to give it a try. During
the next year, while still mostly working on it in my own time, Python was used in the Amoeba project
with increasing success, and the feedback from colleagues made me add many early improvements.

In February 1991, after just over a year of development, I decided to post to USENET. The rest is in
the Misc/HISTORY file.

1.1.5 What is Python good for?

Python is a high-level general-purpose programming language that can be applied to many different classes of prob-
lems.

The language comes with a large standard library that covers areas such as string processing (regular expressions,
Unicode, calculating differences between files), Internet protocols (HTTP, FTP, SMTP, XML-RPC, POP, IMAP,
CGI programming), software engineering (unit testing, logging, profiling, parsing Python code), and operating system
interfaces (system calls, filesystems, TCP/IP sockets). Look at the table of contents for library-index to get an idea
of what’s available. A wide variety of third-party extensions are also available. Consult the Python Package Index to
find packages of interest to you.

1.1.6 How does the Python version numbering scheme work?

Python versions are numbered A.B.C or A.B. A is the major version number — it is only incremented for really major
changes in the language. B is the minor version number, incremented for less earth-shattering changes. C is the
micro-level — it is incremented for each bugfix release. See PEP 6 for more information about bugfix releases.

Not all releases are bugfix releases. In the run-up to a new major release, a series of development releases are made,
denoted as alpha, beta, or release candidate. Alphas are early releases in which interfaces aren’t yet finalized; it’s
not unexpected to see an interface change between two alpha releases. Betas are more stable, preserving existing
interfaces but possibly adding new modules, and release candidates are frozen, making no changes except as needed
to fix critical bugs.

Alpha, beta and release candidate versions have an additional suffix. The suffix for an alpha version is “aN” for some
small number N, the suffix for a beta version is “bN”’ for some small number N, and the suffix for a release candidate
version is “cN” for some small number N. In other words, all versions labeled 2.0aN precede the versions labeled
2.0bN, which precede versions labeled 2.0cN, and those precede 2.0.

2 Chapter 1. General Python FAQ

https://pypi.org
https://www.python.org/dev/peps/pep-0006

Python Frequently Asked Questions, = x] 1] A 3.7.17

You may also find version numbers with a “+” suffix, e.g. “2.2+”. These are unreleased versions, built directly from
the CPython development repository. In practice, after a final minor release is made, the version is incremented to
the next minor version, which becomes the “a0” version, e.g. “2.4a0”.

See also the documentation for sys.version, sys.hexversion,and sys.version_info.

1.1.7 How do | obtain a copy of the Python source?
The latest Python source distribution is always available from python.org, at https://www.python.org/downloads/.
The latest development sources can be obtained at https://github.com/python/cpython/.

The source distribution is a gzipped tar file containing the complete C source, Sphinx-formatted documentation,
Python library modules, example programs, and several useful pieces of freely distributable software. The source
will compile and run out of the box on most UNIX platforms.

Consult the Getting Started section of the Python Developer’s Guide for more information on getting the source code
and compiling it.

1.1.8 How do | get documentation on Python?
The standard documentation for the current stable version of Python is available at https://docs.python.org/3/. PDF,
plain text, and downloadable HTML versions are also available at https://docs.python.org/3/download.html.

The documentation is written in reStructuredText and processed by the Sphinx documentation tool. The reStruc-
turedText source for the documentation is part of the Python source distribution.

1.1.9 I’ve never programmed before. Is there a Python tutorial?

There are numerous tutorials and books available. The standard documentation includes tutorial-index.

Consult the Beginner’s Guide to find information for beginning Python programmers, including lists of tutorials.

1.1.10 Is there a newsgroup or mailing list devoted to Python?

There is a newsgroup, comp. lang.python, and a mailing list, python-list. The newsgroup and mailing list are
gatewayed into each other — if you can read news it’s unnecessary to subscribe to the mailing list. comp. Iang.
python is high-traffic, receiving hundreds of postings every day, and Usenet readers are often more able to cope
with this volume.

Announcements of new software releases and events can be found in comp.lang.python.announce, a low-traffic mod-
erated list that receives about five postings per day. It’s available as the python-announce mailing list.

More info about other mailing lists and newsgroups can be found at https://www.python.org/community/lists/.

1.1.11 How do | get a beta test version of Python?

Alpha and beta releases are available from https://www.python.org/downloads/. All releases are announced on the
comp.lang.python and comp.lang. python.announce newsgroups and on the Python home page at https://www.python.
org/; an RSS feed of news is available.

You can also access the development version of Python through Git. See The Python Developer’s Guide for details.

1.1. General Information 3

https://www.python.org/downloads/
https://github.com/python/cpython/
https://devguide.python.org/setup/
https://docs.python.org/3/
https://docs.python.org/3/download.html
http://sphinx-doc.org/
https://wiki.python.org/moin/BeginnersGuide
https://mail.python.org/mailman/listinfo/python-list
https://mail.python.org/mailman/listinfo/python-announce-list
https://www.python.org/community/lists/
https://www.python.org/downloads/
https://www.python.org/
https://www.python.org/
https://devguide.python.org/

Python Frequently Asked Questions, = x] 1] A 3.7.17

1.1.12 How do | submit bug reports and patches for Python?

To report a bug or submit a patch, please use the Roundup installation at https://bugs.python.org/.

You must have a Roundup account to report bugs; this makes it possible for us to contact you if we have follow-
up questions. It will also enable Roundup to send you updates as we act on your bug. If you had previously used
SourceForge to report bugs to Python, you can obtain your Roundup password through Roundup’s password reset
procedure.

For more information on how Python is developed, consult the Python Developer’s Guide.

1.1.13 Are there any published articles about Python that | can reference?

It’s probably best to cite your favorite book about Python.
The very first article about Python was written in 1991 and is now quite outdated.

Guido van Rossum and Jelke de Boer, “Interactively Testing Remote Servers Using the Python Pro-
gramming Language”, CWI Quarterly, Volume 4, Issue 4 (December 1991), Amsterdam, pp 283-303.

1.1.14 Are there any books on Python?

Yes, there are many, and more are being published. See the python.org wiki at https://wiki.python.org/moin/
PythonBooks for a list.

You can also search online bookstores for “Python” and filter out the Monty Python references; or perhaps search for
“Python” and “language”.
1.1.15 Where in the world is www.python.org located?

The Python project’s infrastructure is located all over the world and is managed by the Python Infrastructure Team.
Details here.

1.1.16 Why is it called Python?

‘When he began implementing Python, Guido van Rossum was also reading the published scripts from “Monty Python’
s Flying Circus”, a BBC comedy series from the 1970s. Van Rossum thought he needed a name that was short, unique,
and slightly mysterious, so he decided to call the language Python.

1.1.17 Do | have to like “Monty Python’s Flying Circus”?

No, but it helps. :)

1.2 Python in the real world

1.2.1 How stable is Python?

Very stable. New, stable releases have been coming out roughly every 6 to 18 months since 1991, and this seems
likely to continue. Currently there are usually around 18 months between major releases.

The developers issue “bugfix” releases of older versions, so the stability of existing releases gradually improves. Bugfix
releases, indicated by a third component of the version number (e.g. 3.5.3, 3.6.2), are managed for stability; only
fixes for known problems are included in a bugfix release, and it’s guaranteed that interfaces will remain the same
throughout a series of bugfix releases.

4 Chapter 1. General Python FAQ

https://bugs.python.org/
https://bugs.python.org/user?@template=forgotten
https://bugs.python.org/user?@template=forgotten
https://devguide.python.org/
https://wiki.python.org/moin/PythonBooks
https://wiki.python.org/moin/PythonBooks
http://infra.psf.io
https://en.wikipedia.org/wiki/Monty_Python
https://en.wikipedia.org/wiki/Monty_Python

Python Frequently Asked Questions, = x] 1] A 3.7.17

The latest stable releases can always be found on the Python download page. There are two production-ready versions
of Python: 2.x and 3.x. The recommended version is 3.x, which is supported by most widely used libraries. Although
2.x is still widely used, it will not be maintained after January 1, 2020.

1.2.2 How many people are using Python?

There are probably tens of thousands of users, though it’s difficult to obtain an exact count.

Python is available for free download, so there are no sales figures, and it’s available from many different sites and
packaged with many Linux distributions, so download statistics don’t tell the whole story either.

The comp.lang.python newsgroup is very active, but not all Python users post to the group or even read it.

1.2.3 Have any significant projects been done in Python?

See https://www.python.org/about/success for a list of projects that use Python. Consulting the proceedings for past
Python conferences will reveal contributions from many different companies and organizations.

High-profile Python projects include the Mailman mailing list manager and the Zope application server. Several Linux
distributions, most notably Red Hat, have written part or all of their installer and system administration software in
Python. Companies that use Python internally include Google, Yahoo, and Lucasfilm Ltd.

1.2.4 What new developments are expected for Python in the future?

See https://www.python.org/dev/peps/ for the Python Enhancement Proposals (PEPs). PEPs are design documents
describing a suggested new feature for Python, providing a concise technical specification and a rationale. Look for
a PEP titled “Python X.Y Release Schedule”, where X.Y is a version that hasn’t been publicly released yet.

New development is discussed on the python-dev mailing list.

1.2.5 Is it reasonable to propose incompatible changes to Python?

In general, no. There are already millions of lines of Python code around the world, so any change in the language
that invalidates more than a very small fraction of existing programs has to be frowned upon. Even if you can provide
a conversion program, there’s still the problem of updating all documentation; many books have been written about
Python, and we don’t want to invalidate them all at a single stroke.

Providing a gradual upgrade path is necessary if a feature has to be changed. PEP 5 describes the procedure followed
for introducing backward-incompatible changes while minimizing disruption for users.

1.2.6 Is Python a good language for beginning programmers?

Yes.

It is still common to start students with a procedural and statically typed language such as Pascal, C, or a subset of
C++ or Java. Students may be better served by learning Python as their first language. Python has a very simple and
consistent syntax and a large standard library and, most importantly, using Python in a beginning programming course
lets students concentrate on important programming skills such as problem decomposition and data type design. With
Python, students can be quickly introduced to basic concepts such as loops and procedures. They can probably even
work with user-defined objects in their very first course.

For a student who has never programmed before, using a statically typed language seems unnatural. It presents
additional complexity that the student must master and slows the pace of the course. The students are trying to learn
to think like a computer, decompose problems, design consistent interfaces, and encapsulate data. While learning
to use a statically typed language is important in the long term, it is not necessarily the best topic to address in the
students’ first programming course.

1.2. Python in the real world 5

https://www.python.org/downloads/
https://www.python.org/dev/peps/pep-0373/
https://www.python.org/about/success
https://www.python.org/community/workshops/
https://www.python.org/community/workshops/
http://www.list.org
http://www.zope.org
https://www.redhat.com
https://www.python.org/dev/peps/
https://mail.python.org/mailman/listinfo/python-dev/
https://www.python.org/dev/peps/pep-0005

Python Frequently Asked Questions, = x] 1] A 3.7.17

Many other aspects of Python make it a good first language. Like Java, Python has a large standard library so
that students can be assigned programming projects very early in the course that do something. Assignments aren’
t restricted to the standard four-function calculator and check balancing programs. By using the standard library,
students can gain the satisfaction of working on realistic applications as they learn the fundamentals of programming.
Using the standard library also teaches students about code reuse. Third-party modules such as PyGame are also
helpful in extending the students’ reach.

Python’s interactive interpreter enables students to test language features while they’re programming. They can keep
a window with the interpreter running while they enter their program’s source in another window. If they can’t
remember the methods for a list, they can do something like this:

>>> L = []

>>> dir (L)

['_add__"', '__class__', '__contains_ ', '__delattr__', '__delitem__"',
' dir__ ', '__doc__', '_eq ', '__format__', '_ge__"',
'__getattribute__', '__getitem__', '_gt__ ', '__hash__', '__iadd__"',
' dmul_ ', '__dinit_ ', '__iter_ ', '_le_ ', '_len_ ', '__1t__"',

' mul_ ', '_ne_ ', '_new__', '_ _reduce_ ', '_ reduce_ex__ ',

' _repr_ ', '__reversed__ ', '_rmul__ ', '__setattr__', '__setitem__',
' _sizeof ', '_str__', '__subclasshook__', 'append',6 'clear',

'copy', 'count', 'extend', 'index', 'insert', 'pop', 'remove',

'reverse', 'sort']

>>> [d for d in dir (L) if ' ' not in d]

['append', 'clear', 'copy', 'count', 'extend', 'index', 'insert', 'pop', 'remove',
—'reverse', 'sort']

>>> help (L.append)
Help on built-in function append:

append (...)
L.append(object) —-> None —-- append object to end

>>> L.append (1)
>>> L

[1]

With the interpreter, documentation is never far from the student as they are programming.

There are also good IDEs for Python. IDLE is a cross-platform IDE for Python that is written in Python using Tkinter.
PythonWin is a Windows-specific IDE. Emacs users will be happy to know that there is a very good Python mode
for Emacs. All of these programming environments provide syntax highlighting, auto-indenting, and access to the
interactive interpreter while coding. Consult the Python wiki for a full list of Python editing environments.

If you want to discuss Python’s use in education, you may be interested in joining the edu-sig mailing list.

6 Chapter 1. General Python FAQ

https://wiki.python.org/moin/PythonEditors
https://www.python.org/community/sigs/current/edu-sig

CHAPTER 2

Programming FAQ

2.1 General Questions

2.1.1 Is there a source code level debugger with breakpoints, single-stepping,
etc.?

Yes.

Several debuggers for Python are described below, and the built-in function breakpoint () allows you to drop
into any of them.

The pdb module is a simple but adequate console-mode debugger for Python. It is part of the standard Python library,
and is documented in the Library Reference Manual. You can also write your own debugger by
using the code for pdb as an example.

The IDLE interactive development environment, which is part of the standard Python distribution (normally available
as Tools/scripts/idle), includes a graphical debugger.

PythonWin is a Python IDE that includes a GUI debugger based on pdb. The Pythonwin debugger colors breakpoints
and has quite a few cool features such as debugging non-Pythonwin programs. Pythonwin is available as part of the
Python for Windows Extensions project and as a part of the ActivePython distribution (see https://www.activestate.
com/activepython).

Boa Constructor is an IDE and GUI builder that uses wxWidgets. It offers visual frame creation and manipulation,
an object inspector, many views on the source like object browsers, inheritance hierarchies, doc string generated html
documentation, an advanced debugger, integrated help, and Zope support.

Eric is an IDE built on PyQt and the Scintilla editing component.

Pydb is a version of the standard Python debugger pdb, modified for use with DDD (Data Display Debugger), a
popular graphical debugger front end. Pydb can be found at http://bashdb.sourceforge.net/pydb/ and DDD can be
found at https://www.gnu.org/software/ddd.

There are a number of commercial Python IDEs that include graphical debuggers. They include:
* Wing IDE (https://wingware.com/)
* Komodo IDE (https://komodoide.com/)

e PyCharm (https://www.jetbrains.com/pycharm/)

https://sourceforge.net/projects/pywin32/
https://www.activestate.com/activepython
https://www.activestate.com/activepython
http://boa-constructor.sourceforge.net/
http://eric-ide.python-projects.org/
http://bashdb.sourceforge.net/pydb/
https://www.gnu.org/software/ddd
https://wingware.com/
https://komodoide.com/
https://www.jetbrains.com/pycharm/

Python Frequently Asked Questions, = x] 1] A 3.7.17

2.1.2 Is there a tool to help find bugs or perform static analysis?

Yes.

PyChecker is a static analysis tool that finds bugs in Python source code and warns about code complexity and style.
You can get PyChecker from http://pychecker.sourceforge.net/.

Pylint is another tool that checks if a module satisfies a coding standard, and also makes it possible to write plug-ins
to add a custom feature. In addition to the bug checking that PyChecker performs, Pylint offers some additional
features such as checking line length, whether variable names are well-formed according to your coding standard,
whether declared interfaces are fully implemented, and more. https://docs.pylint.org/ provides a full list of Pylint’s
features.

Static type checkers such as Mypy, Pyre, and Pytype can check type hints in Python source code.

2.1.3 How can | create a stand-alone binary from a Python script?

You don’t need the ability to compile Python to C code if all you want is a stand-alone program that users can
download and run without having to install the Python distribution first. There are a number of tools that determine
the set of modules required by a program and bind these modules together with a Python binary to produce a single
executable.

One is to use the freeze tool, which is included in the Python source tree as Tools/freeze. It converts Python
byte code to C arrays; a C compiler you can embed all your modules into a new program, which is then linked with
the standard Python modules.

It works by scanning your source recursively for import statements (in both forms) and looking for the modules in the
standard Python path as well as in the source directory (for built-in modules). It then turns the bytecode for modules
written in Python into C code (array initializers that can be turned into code objects using the marshal module) and
creates a custom-made config file that only contains those built-in modules which are actually used in the program.
It then compiles the generated C code and links it with the rest of the Python interpreter to form a self-contained
binary which acts exactly like your script.

Obviously, freeze requires a C compiler. There are several other utilities which don’t. One is Thomas Heller’s py2exe
(Windows only) at

http://www.py2exe.org/
Another tool is Anthony Tuininga’s cx_Freeze.

2.1.4 Are there coding standards or a style guide for Python programs?

Yes. The coding style required for standard library modules is documented as PEP 8.

2.2 Core Language

2.2.1 Why am | getting an UnboundLocalError when the variable has a value?

It can be a surprise to get the UnboundLocalError in previously working code when it is modified by adding an
assignment statement somewhere in the body of a function.

This code:

>>> x = 10

>>> def bar():
print (x)

>>> bar ()

10

8 Chapter 2. Programming FAQ

http://pychecker.sourceforge.net/
https://www.pylint.org/
https://docs.pylint.org/
http://mypy-lang.org/
https://pyre-check.org/
https://github.com/google/pytype
http://www.py2exe.org/
https://anthony-tuininga.github.io/cx_Freeze/
https://www.python.org/dev/peps/pep-0008

Python Frequently Asked Questions, = x] 1] A 3.7.17

works, but this code:

>>> x = 10

>>> def fool():
print (x)
x += 1

results in an UnboundLocalError:

>>> foo ()
Traceback (most recent call last):

UnboundLocalError: local variable 'x' referenced before assignment

This is because when you make an assignment to a variable in a scope, that variable becomes local to that scope
and shadows any similarly named variable in the outer scope. Since the last statement in foo assigns a new value to
%, the compiler recognizes it as a local variable. Consequently when the earlier print (x) attempts to print the
uninitialized local variable and an error results.

In the example above you can access the outer scope variable by declaring it global:

>>> x = 10

>>> def foobar():
global x
print (x)

C. x += 1

>>> foobar ()

10

This explicit declaration is required in order to remind you that (unlike the superficially analogous situation with class
and instance variables) you are actually modifying the value of the variable in the outer scope:

>>> print (x)
11

You can do a similar thing in a nested scope using the nonlocal keyword:

>>> def foo():

x = 10
def bar():
nonlocal x
print (x)
X += 1
bar ()
print (x)
>>> foo ()
10
11

2.2.2 What are the rules for local and global variables in Python?

In Python, variables that are only referenced inside a function are implicitly global. If a variable is assigned a value
anywhere within the function’s body, it’s assumed to be a local unless explicitly declared as global.

Though a bit surprising at first, a moment’s consideration explains this. On one hand, requiring g1 obal for assigned
variables provides a bar against unintended side-effects. On the other hand, if global was required for all global
references, you’d be using global all the time. You’d have to declare as global every reference to a built-in function
or to a component of an imported module. This clutter would defeat the usefulness of the global declaration for
identifying side-effects.

2.2. Core Language 9

Python Frequently Asked Questions, = x] 1] A 3.7.17

2.2.3 Why do lambdas defined in a loop with different values all return the same
result?

Assume you use a for loop to define a few different lambdas (or even plain functions), e.g.:

>>> squares = []
>>> for x in range(5):
squares.append (lambda: x**2)

This gives you a list that contains 5 lambdas that calculate x**2. You might expect that, when called, they would
return, respectively, 0, 1, 4, 9, and 1 6. However, when you actually try you will see that they all return 1 6:

>>> squares[2] ()
16
>>> squares[4] ()
16

This happens because x is not local to the lambdas, but is defined in the outer scope, and it is accessed when the
lambda is called — not when it is defined. At the end of the loop, the value of x is 4, so all the functions now return
4**2 i.e. 16. You can also verify this by changing the value of x and see how the results of the lambdas change:

>>> x = 8
>>> squares[2] ()
64

In order to avoid this, you need to save the values in variables local to the lambdas, so that they don’t rely on the value
of the global x:

>>> squares = []
>>> for x in range(5):
squares.append (lambda n=x: n**2)

Here, n=x creates a new variable n local to the lambda and computed when the lambda is defined so that it has the
same value that x had at that point in the loop. This means that the value of n will be O in the first lambda, 1 in the
second, 2 in the third, and so on. Therefore each lambda will now return the correct result:

>>> squares|[2] ()
4

>>> squares[4] ()
16

Note that this behaviour is not peculiar to lambdas, but applies to regular functions too.

2.2.4 How do | share global variables across modules?

The canonical way to share information across modules within a single program is to create a special module (often
called config or cfg). Just import the config module in all modules of your application; the module then becomes
available as a global name. Because there is only one instance of each module, any changes made to the module
object get reflected everywhere. For example:

config.py:

x =0 # Default value of the 'x' configuration setting
mod.py:

import config

config.x = 1

main.py:

10 Chapter 2. Programming FAQ

Python Frequently Asked Questions, = x] 1] A 3.7.17

import config
import mod
print (config.x)

Note that using a module is also the basis for implementing the Singleton design pattern, for the same reason.

2.2.5 What are the “best practices” for using import in a module?

In general, don’t use from modulename import *. Doing so clutters the importer’s namespace, and makes
it much harder for linters to detect undefined names.

Import modules at the top of a file. Doing so makes it clear what other modules your code requires and avoids
questions of whether the module name is in scope. Using one import per line makes it easy to add and delete module
imports, but using multiple imports per line uses less screen space.

It’s good practice if you import modules in the following order:
1. standard library modules — e.g. sys, os, getopt, re

2. third-party library modules (anything installed in Python’s site-packages directory) — e.g. mx.DateTime,
ZODB, PIL.Image, etc.

3. locally-developed modules

It is sometimes necessary to move imports to a function or class to avoid problems with circular imports. Gordon
McMillan says:

Circular imports are fine where both modules use the “import <module>” form of import. They fail
when the 2nd module wants to grab a name out of the first (“from module import name”) and the import
is at the top level. That’s because names in the 1st are not yet available, because the first module is busy
importing the 2nd.

In this case, if the second module is only used in one function, then the import can easily be moved into that function.
By the time the import is called, the first module will have finished initializing, and the second module can do its
import.

It may also be necessary to move imports out of the top level of code if some of the modules are platform-specific.
In that case, it may not even be possible to import all of the modules at the top of the file. In this case, importing the
correct modules in the corresponding platform-specific code is a good option.

Only move imports into a local scope, such as inside a function definition, if it’s necessary to solve a problem such
as avoiding a circular import or are trying to reduce the initialization time of a module. This technique is especially
helpful if many of the imports are unnecessary depending on how the program executes. You may also want to
move imports into a function if the modules are only ever used in that function. Note that loading a module the first
time may be expensive because of the one time initialization of the module, but loading a module multiple times
is virtually free, costing only a couple of dictionary lookups. Even if the module name has gone out of scope, the
module is probably available in sys .modules.

2.2.6 Why are default values shared between objects?

This type of bug commonly bites neophyte programmers. Consider this function:

def foo (mydict={}): # Danger: shared reference to one dict for all calls
. compute something ...
mydict [key] = value

return mydict

The first time you call this function, mydict contains a single item. The second time, mydict contains two items
because when foo () begins executing, mydict starts out with an item already in it.

2.2. Core Language 11

Python Frequently Asked Questions, = x] 1] A 3.7.17

It is often expected that a function call creates new objects for default values. This is not what happens. Default values
are created exactly once, when the function is defined. If that object is changed, like the dictionary in this example,
subsequent calls to the function will refer to this changed object.

By definition, immutable objects such as numbers, strings, tuples, and None, are safe from change. Changes to
mutable objects such as dictionaries, lists, and class instances can lead to confusion.

Because of this feature, it is good programming practice to not use mutable objects as default values. In-
stead, use None as the default value and inside the function, check if the parameter is None and create a new
list/dictionary/whatever if it is. For example, don’t write:

def foo(mydict={}):

but:

def foo (mydict=None) :
if mydict is None:
mydict = {} # create a new dict for local namespace

This feature can be useful. When you have a function that’s time-consuming to compute, a common technique is
to cache the parameters and the resulting value of each call to the function, and return the cached value if the same
value is requested again. This is called “memoizing”, and can be implemented like this:

Callers can only provide two parameters and optionally pass _cache by keyword
def expensive(argl, arg2, *, _cache={}):
if (argl, arg2) in _cache:
return _cache[(argl, arg2)]

Calculate the value

result = ... expensive computation

_cache|[(argl, arg2)] = result # Store result in the cache
return result

You could use a global variable containing a dictionary instead of the default value; it’s a matter of taste.

2.2.7 How can | pass optional or keyword parameters from one function to an-
other?

Collect the arguments using the * and ** specifiers in the function’s parameter list; this gives you the positional
arguments as a tuple and the keyword arguments as a dictionary. You can then pass these arguments when calling
another function by using * and **:

def f(x, *args, **kwargs):
kwargs['width'] = "14.3c’

g(x, *args, **kwargs)

12 Chapter 2. Programming FAQ

Python Frequently Asked Questions, = x] 1] A 3.7.17

2.2.8 What is the difference between arguments and parameters?

Parameters are defined by the names that appear in a function definition, whereas arguments are the values actually
passed to a function when calling it. Parameters define what types of arguments a function can accept. For example,
given the function definition:

def func(foo, bar=None, **kwargs):
pass

foo, bar and kwargs are parameters of func. However, when calling func, for example:

func (42, bar=314, extra=somevar)

the values 42, 314, and somevar are arguments.

2.2.9 Why did changing list ‘y’ also change list ‘x’?

If you wrote code like:

>>>

= Il
>>> = X
>>> .append (10)
>>>
[10]
>>> x

[10]

MKOKRRX

you might be wondering why appending an element to y changed x too.
There are two factors that produce this result:

1) Variables are simply names that refer to objects. Doing y = x doesn’t create a copy of the list — it creates a
new variable y that refers to the same object x refers to. This means that there is only one object (the list), and
both x and y refer to it.

2) Lists are mutable, which means that you can change their content.

After the call to append (), the content of the mutable object has changed from [] to [10]. Since both the
variables refer to the same object, using either name accesses the modified value [10].

If we instead assign an immutable object to x:

>>> = 5 # ints are immutable

>>> = X

>>> =x + 1 # 5 can't be mutated, we are creating a new object here

XXX

>>>
6
>>> y

we can see that in this case x and y are not equal anymore. This is because integers are immutable, and when we do
x = x + 1 we are not mutating the int 5 by incrementing its value; instead, we are creating a new object (the int
6) and assigning it to x (that is, changing which object x refers to). After this assignment we have two objects (the
ints 6 and 5) and two variables that refer to them (x now refers to 6 but y still refers to 5).

Some operations (for example y . append (10) and y.sort ()) mutate the object, whereas superficially similar
operations (for example y = y + [10] and sorted (y)) create a new object. In general in Python (and in all
cases in the standard library) a method that mutates an object will return None to help avoid getting the two types
of operations confused. So if you mistakenly write v . sort () thinking it will give you a sorted copy of y, you’ll
instead end up with None, which will likely cause your program to generate an easily diagnosed error.

However, there is one class of operations where the same operation sometimes has different behaviors with different
types: the augmented assignment operators. For example, += mutates lists but not tuples or ints (a_list +=

2.2. Core Language 13

Python Frequently Asked Questions, = x] 1] A 3.7.17

[1, 2, 3] isequivalentto a_list.extend([1, 2, 3]) and mutates a_1list, whereas some_tuple
+= (1, 2, 3) and some_int += 1 create new objects).

In other words:

 If we have a mutable object (1ist, dict, set, etc.), we can use some specific operations to mutate it and
all the variables that refer to it will see the change.

* If we have an immutable object (str, int, tuple, etc.), all the variables that refer to it will always see the
same value, but operations that transform that value into a new value always return a new object.

If you want to know if two variables refer to the same object or not, you can use the is operator, or the built-in
function id ().

2.2.10 How do | write a function with output parameters (call by reference)?

Remember that arguments are passed by assignment in Python. Since assignment just creates references to objects,
there’s no alias between an argument name in the caller and callee, and so no call-by-reference per se. You can
achieve the desired effect in a number of ways.

1) By returning a tuple of the results:

def func2(a, b):
a = 'new-value' # a and b are local names
b=Db+ 1 # assigned to new objects
return a, b # return new values

x, y = 'old-value', 99

x, y = func2(x, vy)

print (x, V) # output: new-value 100

This is almost always the clearest solution.
2) By using global variables. This isn’t thread-safe, and is not recommended.

3) By passing a mutable (changeable in-place) object:

def funcl(a):

al[0] = "new-value' # 'a' references a mutable 1ist
all] = a[1] + 1 # changes a shared object

args = ['old-value', 99]

funcl (args)

print (args[0], args[l]) # output: new-value 100

4) By passing in a dictionary that gets mutated:

def func3(args):

args['a'l] = 'new-value' # args 1s a mutable dictionary
args['b'] = args['b'] + 1 # change it in-place
args {'a': 'old-value', 'b': 99}

func3 (args)
print (args['a']l, args['b'])

5) Or bundle up values in a class instance:

class callByRef:
def __ _init__ (self, **args):
for (key, value) in args.items():
setattr(self, key, value)

def func4 (args):

(F= soTAT ol AS)

14 Chapter 2. Programming FAQ

Python Frequently Asked Questions, = x] 1] A 3.7.17

(o1 sl o] A A A%)

args.a = 'new-value' # args 1is a mutable callByRef
args.b = args.b + 1 # change object in-place

args = callByRef (a='old-value', b=99)
funci4 (args)
(

print (args.a, args.b)

There’s almost never a good reason to get this complicated.

Your best choice is to return a tuple containing the multiple results.

2.2.11 How do you make a higher order function in Python?

You have two choices: you can use nested scopes or you can use callable objects. For example, suppose you wanted
to define 1inear (a,b) which returns a function £ (x) that computes the value a *x+b. Using nested scopes:

def linear(a, b):

def result (x):
return a * x + b

return result

Or using a callable object:

class linear:

def _ init_ (self, a, b):
self.a, self.b = a, b

def _ call_(self, x):
return self.a * x + self.b

In both cases,

taxes

linear (0.3, 2)

gives a callable object where taxes (10e6) == 0.3 * 10e6 + 2.

The callable object approach has the disadvantage that it is a bit slower and results in slightly longer code. However,
note that a collection of callables can share their signature via inheritance:

class exponential (linear):
_ init__ inherited
def _ call_ (self, x):
return self.a * (x ** self.b)

Object can encapsulate state for several methods:

class counter:
value = 0

def set (self, x):
self.value

X

def up(self):
self.value

self.value + 1

def down (self):

self.value self.value - 1

(F= soTAT ol AS)

2.2. Core Language 15

Python Frequently Asked Questions, = x] 1] A 3.7.17

(o1 sl o] A A A%)

count = counter ()
inc, dec, reset = count.up, count.down, count.set

Here inc (), dec () and reset () act like functions which share the same counting variable.

2.2.12 How do | copy an object in Python?

In general, try copy.copy () or copy.deepcopy () for the general case. Not all objects can be copied, but
most can.

Some objects can be copied more easily. Dictionaries have a copy () method:

’newdict = olddict.copy () ‘

Sequences can be copied by slicing:

’new_l = 10[:] ‘

2.2.13 How can | find the methods or attributes of an object?

For an instance x of a user-defined class, dir (x) returns an alphabetized list of the names containing the instance
attributes and methods and attributes defined by its class.

2.2.14 How can my code discover the nhame of an object?

Generally speaking, it can’t, because objects don’t really have names. Essentially, assignment always binds a name
to a value; the same is true of def and class statements, but in that case the value is a callable. Consider the
following code:

>>> class A:

pass
>>> B = A
>>> a = B()
>>> b = a

>>> print (b)
<__main__.A object at 0x16D07CC>
>>> print (a)
<__main__.A object at 0x16D07CC>

Arguably the class has a name: even though it is bound to two names and invoked through the name B the created
instance is still reported as an instance of class A. However, it is impossible to say whether the instance’s name is a
or b, since both names are bound to the same value.

Generally speaking it should not be necessary for your code to “know the names” of particular values. Unless you are
deliberately writing introspective programs, this is usually an indication that a change of approach might be beneficial.

In comp.lang.python, Fredrik Lundh once gave an excellent analogy in answer to this question:

The same way as you get the name of that cat you found on your porch: the cat (object) itself cannot tell
you its name, and it doesn’t really care — so the only way to find out what it’s called is to ask all your
neighbours (namespaces) if it’s their cat (object)--*

--.and don’t be surprised if you’ll find that it’s known by many names, or no name at all!

16 Chapter 2. Programming FAQ

Python Frequently Asked Questions, = x] 1] A 3.7.17

2.2.15 What’s up with the comma operator’s precedence?

Comma is not an operator in Python. Consider this session:

>>> "all ln llbll, "all
(False, 'a')

Since the comma is not an operator, but a separator between expressions the above is evaluated as if you had entered:

’(nan in llbll), ngn

|

not:

’na" in ("b", nan)

The same is true of the various assignment operators (=, += etc). They are not truly operators but syntactic delimiters

in assignment statements.

2.2.16 Is there an equivalent of C’s “?2.” ternary operator?

Yes, there is. The syntax is as follows:

[on_true] if [expression] else [on_false]

x, y = 50, 25
small x if x < y else y

Before this syntax was introduced in Python 2.5, a common idiom was to use logical operators:

[expression] and [on_true] or [on_false]

However, this idiom is unsafe, as it can give wrong results when on_true has a false boolean value. Therefore, it is

always better touse the . .. 1f ... else ... form.

2.2.17 Is it possible to write obfuscated one-liners in Python?

Yes. Usually this is done by nesting 1ambda within 1ambda. See the following three examples, due to Ulf Bartelt:

from functools import reduce

Primes < 1000
print (list (filter (None,map (lambda y:y*reduce (lambda x,y:x*y!=0,
map (lambda x,y=y:y%x,range (2, int (pow(y,0.5)+1))), 1), range(2,1000)))))

First 10 Fibonaccl numbers
print (list (map (lambda x, f=lambda x,f: (f(x-1,f)+f(x-2,f)) if x>1 else 1:
f(x,f), range(10))))

Mandelbrot set

print ((lambda Ru,Ro, Iu,Io, IM, Sx,Sy:reduce (lambda x,y:x+y,map (lambda vy,
Iu=Iu, Io=Io,Ru=Ru,Ro=Ro,Sy=Sy,L=lambda yc, Iu=Iu, Io=Io,Ru=Ru,Ro=Ro,i=IM,
Sx=Sx, Sy=Sy:reduce (lambda x,y:x+y,map (lambda x,xc=Ru,yc=yc,Ru=Ru, Ro=Ro,
i=i, Sx=Sx,F=lambda xc,yc,x,vy,k, f=lambda xc,yc,x,v,k,f: (k<=0)or (x*xt+y*y
>=4.0) or 1+f(xc,yc,x*x-y*y+xc,2.0*x*y+yc,k-1,f):f(xc,yc,x,y,k,f):chr(
64+F (Ru+x* (Ro-Ru) /Sx,yc,0,0,1)),range (Sx))) :L(Iuty* (Io-Tu)/Sy), range (Sy

y)) (=2.1, 0.7, -1.2, 1.2, 30, 80, 24))

)

\ /N /] / |__ lines on screen

174 \% / / columns on screen

/ / / maximum of "iterations"

(Th5 sl A ell A%)

2.2. Core Language

17

Python Frequently Asked Questions, = x] 1] A 3.7.17

(o1 sl o] A A A%)

/ / range on y axis
/ range on x axis

Don’t try this at home, kids!

2.2.18 What does the slash(/) in the parameter list of a function mean?

A slash in the argument list of a function denotes that the parameters prior to it are positional-only. Positional-only
parameters are the ones without an externally-usable name. Upon calling a function that accepts positional-only
parameters, arguments are mapped to parameters based solely on their position. For example, pow () is a function
that accepts positional-only parameters. Its documentation looks like this:

>>> help (pow)
Help on built-in function pow in module builtins:

pow(x, y, z=None, /)
Equivalent to x**y (with two arguments) or x**y % z (with three arguments)

Some types, such as ints, are able to use a more efficient algorithm when
invoked using the three argument form.

The slash at the end of the parameter list means that all three parameters are positional-only. Thus, calling pow ()
with keyword aguments would lead to an error:

>>> pow (x=3, y=4)
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
TypeError: pow() takes no keyword arguments

Note that as of this writing this is only documentational and no valid syntax in Python, although there is PEP 570,
which proposes a syntax for position-only parameters in Python.

2.3 Numbers and strings

2.3.1 How do | specify hexadecimal and octal integers?

To specify an octal digit, precede the octal value with a zero, and then a lower or uppercase “o”. For example, to set
the variable “a” to the octal value “10” (8 in decimal), type:

>>> a = 0010
>>> a
8

[T]

Hexadecimal is just as easy. Simply precede the hexadecimal number with a zero, and then a lower or uppercase “x”.
Hexadecimal digits can be specified in lower or uppercase. For example, in the Python interpreter:

>>> a = 0xab
>>> a

165

>>> b = 0XB2
>>> b

178

18 Chapter 2. Programming FAQ

https://www.python.org/dev/peps/pep-0570

Python Frequently Asked Questions, = x] 1] A 3.7.17

2.3.2 Why does -22 // 10 return -3?

It’s primarily driven by the desire that 1 % j have the same sign as j. If you want that, and also want:

i==(// 3 *3+ (1 %3

then integer division has to return the floor. C also requires that identity to hold, and then compilers that truncate i
// Jjneedtomake i % 7J have the same sign as i.

There are few real use cases for 1 % J when j is negative. When 7 is positive, there are many, and in virtually all
of them it’s more useful for i % jtobe >= 0. If the clock says 10 now, what did it say 200 hours ago? -190 %
12 == 2isuseful; -190 % 12 == -10 is a bug waiting to bite.

2.3.3 How do | convert a string to a number?

For integers, use the built-in int () type constructor, e.g. int ('144') == 144. Similarly, float () converts
to floating-point, e.g. float ('144"') == 144.0.

By default, these interpret the number as decimal, so that int ('0144"') == 144 and int ('0x144") raises
ValueError. int (string, base) takes the base to convert from as a second optional argument, so
int ('0x144', 16) == 324. If the base is specified as O, the number is interpreted using Python’s rules:
a leading ‘0o’ indicates octal, and ‘0x’ indicates a hex number.

Do not use the built-in function eval () if all you need is to convert strings to numbers. eval () will be significantly
slower and it presents a security risk: someone could pass you a Python expression that might have unwanted side
effects. For example, someone could pass __import__ ('os') .system("rm -rf S$HOME") which would
erase your home directory.

eval () also has the effect of interpreting numbers as Python expressions, so thate.g. eval ('09"') gives a syntax
error because Python does not allow leading ‘0’ in a decimal number (except 0’).

2.3.4 How do | convert a number to a string?

To convert, e.g., the number 144 to the string ‘144°, use the built-in type constructor st r () . If you want a hexadec-
imal or octal representation, use the built-in functions hex () or oct () . For fancy formatting, see the f-strings and
formatstrings sections, e.g. "{:04d}".format (144) yields '0144"' and "{:.3f}".format (1.0/3.0)
yields '0.333".

2.3.5 How do | modify a string in place?

You can’t, because strings are immutable. In most situations, you should simply construct a new string from the
various parts you want to assemble it from. However, if you need an object with the ability to modify in-place
unicode data, try using an 1o.StringIO object or the array module:

>>> import io

>>> s = "Hello, world"
>>> sio = i0.StringIO(s)
>>> sio.getvalue ()
'Hello, world'

>>> sio.seek (7)

5

>>> sio.write("there!")
6

>>> sio.getvalue ()
'Hello, there!'!

>>> import array
>>> a = array.array('u', s)

(Th& sl A ol A%)

2.3. Numbers and strings 19

Python Frequently Asked Questions, = x] 1] A 3.7.17

(o1 sl o] A A A%)

>>> print (a)

array('u', 'Hello, world'")
>>> a[0] = 'y’

>>> print (a)

array('u', 'yello, world'")
>>> a.tounicode ()

'yvello, world'

2.3.6 How do | use strings to call functions/methods?

There are various techniques.

The best is to use a dictionary that maps strings to functions. The primary advantage of this technique is that
the strings do not need to match the names of the functions. This is also the primary technique used to emulate
a case construct:

def al():
pass

def b():
pass

dispatch = {'go': a, 'stop': b} # Note lack of parens for funcs

dispatch[get_input ()] () # Note trailing parens to call function

Use the built-in function getattr ():

import foo
getattr (foo, 'bar') ()

Note that getattr () works on any object, including classes, class instances, modules, and so on.

This is used in several places in the standard library, like this:

class Foo:
def do_foo(self):

def do_bar (self):

f = getattr(foo_instance, 'do_' + opname)
£()

Use locals () or eval () to resolve the function name:

def myFunc () :
print ("hello")

fname = "myFunc"

f = locals () [fname]
£0

f = eval (fname)

£0

Note: Using eval () is slow and dangerous. If you don’t have absolute control over the contents of the string,
someone could pass a string that resulted in an arbitrary function being executed.

20

Chapter 2. Programming FAQ

Python Frequently Asked Questions, = x] 1] A 3.7.17

2.3.7 Is there an equivalent to Perl’s chomp() for removing trailing newlines
from strings?

Youcanuse S.rstrip ("\r\n") toremove all occurrences of any line terminator from the end of the string S
without removing other trailing whitespace. If the string S represents more than one line, with several empty lines at
the end, the line terminators for all the blank lines will be removed:

>>> lines = ("line 1 \r\n"
ll\r\nll

C. "\r\n")

>>> lines.rstrip("\n\zr")

'line 1 '

Since this is typically only desired when reading text one line at a time, using S.rstrip () this way works well.

2.3.8 Is there a scanf() or sscanf() equivalent?

Not as such.

For simple input parsing, the easiest approach is usually to split the line into whitespace-delimited words using the
split () method of string objects and then convert decimal strings to numeric values using int () or float ().
split () supports an optional “sep” parameter which is useful if the line uses something other than whitespace as
a separator.

For more complicated input parsing, regular expressions are more powerful than C’s sscanf () and better suited
for the task.

2.3.9 What does ‘UnicodeDecodeError’ or ‘UnicodeEncodeError’ error mean?

See the unicode-howto.

2.4 Performance

2.4.1 My program is too slow. How do | speed it up?

That’s a tough one, in general. First, here are a list of things to remember before diving further:
¢ Performance characteristics vary across Python implementations. This FAQ focuses on CPython.
* Behaviour can vary across operating systems, especially when talking about I/O or multi-threading.

* You should always find the hot spots in your program before attempting to optimize any code (see the profile
module).

* Writing benchmark scripts will allow you to iterate quickly when searching for improvements (see the t imeit
module).

e It is highly recommended to have good code coverage (through unit testing or any other technique) before
potentially introducing regressions hidden in sophisticated optimizations.

That being said, there are many tricks to speed up Python code. Here are some general principles which go a long
way towards reaching acceptable performance levels:

* Making your algorithms faster (or changing to faster ones) can yield much larger benefits than trying to sprinkle
micro-optimization tricks all over your code.

* Use the right data structures. Study documentation for the bltin-types and the collections module.

2.4. Performance 21

Python Frequently Asked Questions, = x] 1] A 3.7.17

¢ When the standard library provides a primitive for doing something, it is likely (although not guaranteed) to
be faster than any alternative you may come up with. This is doubly true for primitives written in C, such as
builtins and some extension types. For example, be sure to use either the 1ist.sort () built-in method or
the related sorted () function to do sorting (and see the sortinghowto for examples of moderately advanced
usage).

 Abstractions tend to create indirections and force the interpreter to work more. If the levels of indirection
outweigh the amount of useful work done, your program will be slower. You should avoid excessive abstraction,
especially under the form of tiny functions or methods (which are also often detrimental to readability).

If you have reached the limit of what pure Python can allow, there are tools to take you further away. For example,
Cython can compile a slightly modified version of Python code into a C extension, and can be used on many different
platforms. Cython can take advantage of compilation (and optional type annotations) to make your code significantly
faster than when interpreted. If you are confident in your C programming skills, you can also write a C extension
module yourself.

o ®B7):

The wiki page devoted to performance tips.

2.4.2 What is the most efficient way to concatenate many strings together?
str and bytes objects are immutable, therefore concatenating many strings together is inefficient as each concate-
nation creates a new object. In the general case, the total runtime cost is quadratic in the total string length.

To accumulate many st r objects, the recommended idiom is to place them into a list and call str. join () at the
end:

chunks = []

for s in my_strings:
chunks.append (s)

result = ''.join (chunks)

(another reasonably efficient idiom is to use io.StringIO)

To accumulate many bytes objects, the recommended idiom is to extend a bytearray object using in-place
concatenation (the += operator):

result = bytearray/()
for b in my_bytes_objects:
result += b

2.5 Sequences (Tuples/Lists)

2.5.1 How do | convert between tuples and lists?

The type constructor tuple (seq) converts any sequence (actually, any iterable) into a tuple with the same items
in the same order.

For example, tuple ([1, 2, 3]) yields (1, 2, 3) and tuple('abc') yields ('a', 'b', 'c").If
the argument is a tuple, it does not make a copy but returns the same object, so it is cheap to call tuple () when
you aren’t sure that an object is already a tuple.

The type constructor 1ist (seq) converts any sequence or iterable into a list with the same items in the same order.
For example, 1ist ((1, 2, 3))yields [1, 2, 3]andlist('abc') yields['a', 'b', 'c'].Ifthe
argument is a list, it makes a copy just like seq[:] would.

22 Chapter 2. Programming FAQ

http://cython.org
https://wiki.python.org/moin/PythonSpeed/PerformanceTips

Python Frequently Asked Questions, = x] 1] A 3.7.17

2.5.2 What’s a negative index?

Python sequences are indexed with positive numbers and negative numbers. For positive numbers 0 is the first index
1 is the second index and so forth. For negative indices -1 is the last index and -2 is the penultimate (next to last)
index and so forth. Think of seq[—-n] as the same as seg[len (seq) -n].

Using negative indices can be very convenient. For example S [:—-1] is all of the string except for its last character,
which is useful for removing the trailing newline from a string.

2.5.3 How do | iterate over a sequence in reverse order?

Use the reversed () built-in function, which is new in Python 2.4:

for x in reversed(sequence) :
do something with x ...

This won’t touch your original sequence, but build a new copy with reversed order to iterate over.

With Python 2.3, you can use an extended slice syntax:

for x in sequence[::-1]:
do something with x ...

2.5.4 How do you remove duplicates from a list?

See the Python Cookbook for a long discussion of many ways to do this:
https://code.activestate.com/recipes/52560/

If you don’t mind reordering the list, sort it and then scan from the end of the list, deleting duplicates as you go:

if mylist:
mylist.sort ()
last = mylist[-1]
for i in range(len(mylist)-2, -1, -1):
if last == mylist[i]:
del mylist[i]
else:
last = mylist[i]

If all elements of the list may be used as set keys (i.e. they are all iashable) this is often faster

mylist = list (set (mylist))

This converts the list into a set, thereby removing duplicates, and then back into a list.

2.5.5 How do you make an array in Python?

Use a list:

["this", 1, "iS", nan", narrayn]

Lists are equivalent to C or Pascal arrays in their time complexity; the primary difference is that a Python list can
contain objects of many different types.

The array module also provides methods for creating arrays of fixed types with compact representations, but they
are slower to index than lists. Also note that the Numeric extensions and others define array-like structures with
various characteristics as well.

To get Lisp-style linked lists, you can emulate cons cells using tuples:

2.5. Sequences (Tuples/Lists) 23

https://code.activestate.com/recipes/52560/

Python Frequently Asked Questions, = x] 1] A 3.7.17

lisp_list = ("like", ("this", ("example", None)))

If mutability is desired, you could use lists instead of tuples. Here the analogue of lisp caris 1isp_list [0] and
the analogue of cdris 1isp_list [1]. Only do this if you’re sure you really need to, because it’s usually a lot
slower than using Python lists.

2.5.6 How do | create a multidimensional list?

You probably tried to make a multidimensional array like this:

>>> A = [[None] * 2] * 3

This looks correct if you print it:

>>> A
[[None, None], [None, None], [None, None]]

But when you assign a value, it shows up in multiple places:

>>> A[0][0] = 5
>>> A
[[5, None], [5, None], [5, None]]

The reason is that replicating a list with * doesn’t create copies, it only creates references to the existing objects. The
* 3 creates a list containing 3 references to the same list of length two. Changes to one row will show in all rows,
which is almost certainly not what you want.

The suggested approach is to create a list of the desired length first and then fill in each element with a newly created
list:

A = [None] * 3
for i in range(3):
A[i] = [None] * 2

This generates a list containing 3 different lists of length two. You can also use a list comprehension:

w, h =2, 3
A = [[None] * w for i in range (h)]

Or, you can use an extension that provides a matrix datatype; NumPy is the best known.

2.5.7 How do | apply a method to a sequence of objects?

Use a list comprehension:

result = [obj.method() for obj in mylist]

2.5.8 Why does a_tuple[i] += [‘item’] raise an exception when the addition
works?

This is because of a combination of the fact that augmented assignment operators are assignment operators, and the
difference between mutable and immutable objects in Python.

This discussion applies in general when augmented assignment operators are applied to elements of a tuple that point
to mutable objects, but we’ll use a 1ist and += as our exemplar.

If you wrote:

24 Chapter 2. Programming FAQ

http://www.numpy.org/

Python Frequently Asked Questions, = x] 1] A 3.7.17

>>> a_tuple = (1, 2)
>>> a_tuple[0] += 1
Traceback (most recent call last):

TypeError: 'tuple' object does not support item assignment

The reason for the exception should be immediately clear: 1 is added to the object a_tuple [0] points to (1),
producing the result object, 2, but when we attempt to assign the result of the computation, 2, to element 0 of the
tuple, we get an error because we can’t change what an element of a tuple points to.

Under the covers, what this augmented assignment statement is doing is approximately this:

>>> result = a_tuple[0] + 1
>>> a_tuple[0] = result
Traceback (most recent call last):

TypeError: 'tuple' object does not support item assignment

It is the assignment part of the operation that produces the error, since a tuple is immutable.

When you write something like:

>>> a_tuple = (['foo'], 'bar')
>>> a_tuple[0] += ['item']
Traceback (most recent call last):

TypeError: 'tuple' object does not support item assignment

The exception is a bit more surprising, and even more surprising is the fact that even though there was an error, the
append worked:

>>> a_tuple[0]
["foo', 'item']

To see why this happens, you need to know that (a) if an object implements an __iadd___ magic method, it gets
called when the += augmented assignment is executed, and its return value is what gets used in the assignment
statement; and (b) for lists, __iadd___is equivalent to calling ext end on the list and returning the list. That’s why
we say that for lists, += is a “shorthand” for 1ist .extend:

>>> a_list = []
>>> a_list += [1]
>>> a_list

(1]

This is equivalent to:

>>> result = a_list.__diadd__ ([1])
>>> a_list = result

The object pointed to by a_list has been mutated, and the pointer to the mutated object is assigned back toa_1ist.
The end result of the assignment is a no-op, since it is a pointer to the same object that a_ 1ist was previously
pointing to, but the assignment still happens.

Thus, in our tuple example what is happening is equivalent to:

>>> result = a_tuple[0].__iadd__(['item'])
>>> a_tuple[0] = result
Traceback (most recent call last):

TypeError: 'tuple' object does not support item assignment

The __iadd__ succeeds, and thus the list is extended, but even though result points to the same object that
a_tuple[0] already points to, that final assignment still results in an error, because tuples are immutable.

2.5. Sequences (Tuples/Lists) 25

Python Frequently Asked Questions, = x] 1] A 3.7.17

2.5.9 | want to do a complicated sort: can you do a Schwartzian Transform in
Python?

The technique, attributed to Randal Schwartz of the Perl community, sorts the elements of a list by a metric which
maps each element to its “sort value”. In Python, use the key argument for the 1ist.sort () method:

Isorted = L[:]
Isorted.sort (key=lambda s: int(s[10:15]))

2.5.10 How can | sort one list by values from another list?

Merge them into an iterator of tuples, sort the resulting list, and then pick out the element you want.

>>> listl = ["what", "I'm", "sorting", "by"]

>>> 1ist2 = ["something", "else", "to", "sort"]

>>> pairs = zip(listl, list2)

>>> pairs = sorted(pairs)

>>> pairs

[("I'm", 'else'), ('by', 'sort'), ('sorting', 'to'), ('what', 'something')]
>>> result = [x[1] for x in pairs]

>>> result
['else', 'sort', 'to', 'something']

An alternative for the last step is:

>>> result = []
>>> for p in pairs: result.append(p[l])

If you find this more legible, you might prefer to use this instead of the final list comprehension. However, it is almost
twice as slow for long lists. Why? First, the append () operation has to reallocate memory, and while it uses some
tricks to avoid doing that each time, it still has to do it occasionally, and that costs quite a bit. Second, the expression
“result.append” requires an extra attribute lookup, and third, there’s a speed reduction from having to make all those
function calls.

2.6 Objects

2.6.1 What is a class?

A class is the particular object type created by executing a class statement. Class objects are used as templates to
create instance objects, which embody both the data (attributes) and code (methods) specific to a datatype.

A class can be based on one or more other classes, called its base class(es). It then inherits the attributes and meth-
ods of its base classes. This allows an object model to be successively refined by inheritance. You might have a
generic Mailbox class that provides basic accessor methods for a mailbox, and subclasses such as MboxMailbox,
MaildirMailbox, OutlookMailbox that handle various specific mailbox formats.

26 Chapter 2. Programming FAQ

Python Frequently Asked Questions, = x] 1] A 3.7.17

2.6.2 What is a method?

A method is a function on some object x that you normally call as x.name (arguments. ..). Methods are
defined as functions inside the class definition:

class C:
def meth(self, arg):
return arg * 2 + self.attribute

2.6.3 What is self?

Self is merely a conventional name for the first argument of a method. A method defined asmeth (self, a, b,
c) should be called as x.meth (a, b, c) for some instance x of the class in which the definition occurs; the
called method will think it is called as meth (x, a, b, c).

See also Why must ‘self” be used explicitly in method definitions and calls?.

2.6.4 How do | check if an object is an instance of a given class or of a subclass
of it?

Use the built-in function isinstance (obj, cls). Youcan check if an object is an instance of any of a number
of classes by providing a tuple instead of a single class, e.g. isinstance (obj, (classl, class2,

)), and can also check whether an object is one of Python’s built-in types, e.g. isinstance (obj, str) or
isinstance (obj, (int, float, complex)).

Note that most programs do not use isinstance () on user-defined classes very often. If you are developing the
classes yourself, a more proper object-oriented style is to define methods on the classes that encapsulate a particular
behaviour, instead of checking the object’s class and doing a different thing based on what class it is. For example,
if you have a function that does something:

def search (obj):
if isinstance (obj, Mailbox):
code to search a mailbox
elif isinstance (obj, Document) :
. # code to search a document
elif ...

A better approach is to define a search () method on all the classes and just call it:

class Mailbox:
def search(self):
code to search a mailbox

class Document:
def search(self):

code to search a document

obj.search()

2.6. Objects 27

Python Frequently Asked Questions, = x] 1] A 3.7.17

2.6.5 What is delegation?

Delegation is an object oriented technique (also called a design pattern). Let’s say you have an object x and want to
change the behaviour of just one of its methods. You can create a new class that provides a new implementation of
the method you’re interested in changing and delegates all other methods to the corresponding method of x.

Python programmers can easily implement delegation. For example, the following class implements a class that
behaves like a file but converts all written data to uppercase:

class UpperOut:

def _ init_ (self, outfile):
self._outfile = outfile

def write(self, s):
self._outfile.write(s.upper())

def _ _getattr__ (self, name):
return getattr(self._outfile, name)

Here the UpperOut class redefines the write () method to convert the argument string to uppercase before calling
the underlying self._outfile.write () method. All other methods are delegated to the underlying self.
_outfile object. The delegation is accomplished via the __getattr__ method; consult the language reference
for more information about controlling attribute access.

Note that for more general cases delegation can get trickier. When attributes must be set as well as retrieved,
the class must define a __setattr__ () method too, and it must do so carefully. The basic implementation
of __setattr__ () isroughly equivalent to the following:

class X:

def _ setattr_ (self, name, value):
self. dict [name] = value

Most__setattr__ () implementations must modify self.__dict__ tostore local state for self without caus-
ing an infinite recursion.

2.6.6 How do | call a method defined in a base class from a derived class that
overrides it?

Use the built-in super () function:

class Derived (Base) :
def meth (self):
super (Derived, self) .meth()

For version prior to 3.0, you may be using classic classes: For a class definition suchas class Derived (Base) :
. you can call method meth () defined in Base (or one of Base’s base classes) as Base.meth (self,
arguments. . .). Here, Base.meth is an unbound method, so you need to provide the self argument.

28 Chapter 2. Programming FAQ

Python Frequently Asked Questions, = x] 1] A 3.7.17

2.6.7 How can | organize my code to make it easier to change the base class?

You could define an alias for the base class, assign the real base class to it before your class definition, and use the
alias throughout your class. Then all you have to change is the value assigned to the alias. Incidentally, this trick is
also handy if you want to decide dynamically (e.g. depending on availability of resources) which base class to use.
Example:

BaseAlias = <real base class>

class Derived (BaseAlias) :
def meth (self):
BaseAlias.meth (self)

2.6.8 How do | create static class data and static class methods?

Both static data and static methods (in the sense of C++ or Java) are supported in Python.

For static data, simply define a class attribute. To assign a new value to the attribute, you have to explicitly use the
class name in the assignment:

class C:
count = 0 # number of times C._ _init__ called

def _ init__ (self):
C.count = C.count + 1

def getcount (self):
return C.count # or return self.count

c.count also refers to C. count for any c such that isinstance (c, C) holds, unless overridden by c itself
or by some class on the base-class search path from c.__class__ back to C.

Caution: within a method of C, an assignment like se1f.count = 42 createsanew and unrelated instance named
“count” in self’s own dict. Rebinding of a class-static data name must always specify the class whether inside a
method or not:

C.count = 314

Static methods are possible:

class C:
@staticmethod
def static(argl, arg2, arg3):
No 'self' parameter!

However, a far more straightforward way to get the effect of a static method is via a simple module-level function:

def getcount () :
return C.count

If your code is structured so as to define one class (or tightly related class hierarchy) per module, this supplies the
desired encapsulation.

2.6. Objects 29

Python Frequently Asked Questions, = x] 1] A 3.7.17

2.6.9 How can | overload constructors (or methods) in Python?

This answer actually applies to all methods, but the question usually comes up first in the context of constructors.

In C++ you’d write

class C {
C() { cout << "No arguments\n"; }
C(int i) { cout << "Argument is " << i << "\n"; }

}

In Python you have to write a single constructor that catches all cases using default arguments. For example:

class C:
def _ init_ (self, i=None):
if i is None:
print ("No arguments")
else:
print ("Argument is", 1)

This is not entirely equivalent, but close enough in practice.

You could also try a variable-length argument list, e.g.

def __init__(self, *args):

The same approach works for all method definitions.

2.6.10 | try to use __spam and | get an error about _SomeClassName__spam.

Variable names with double leading underscores are “mangled” to provide a simple but effective way to define class
private variables. Any identifier of the form __spam (at least two leading underscores, at most one trailing under-
score) is textually replaced with _classname__spam, where classname is the current class name with any
leading underscores stripped.

This doesn’t guarantee privacy: an outside user can still deliberately access the “_classname__spam” attribute, and
private values are visible in the object’s __dict__. Many Python programmers never bother to use private variable
names at all.

2.6.11 My class defines __del__ but it is not called when | delete the object.

There are several possible reasons for this.

The del statement does not necessarily call __del__ () — it simply decrements the object’s reference count, and if
this reaches zero __del__ () is called.

If your data structures contain circular links (e.g. a tree where each child has a parent reference and each parent has
a list of children) the reference counts will never go back to zero. Once in a while Python runs an algorithm to detect
such cycles, but the garbage collector might run some time after the last reference to your data structure vanishes, so
your __del () method may be called at an inconvenient and random time. This is inconvenient if you’re trying
to reproduce a problem. Worse, the order in which object’s __del__ () methods are executed is arbitrary. You can
run gc.collect () to force a collection, but there are pathological cases where objects will never be collected.

Despite the cycle collector, it’s still a good idea to define an explicit close () method on objects to be called
whenever you’re done with them. The close () method can then remove attributes that refer to subobjects. Don’
tcall __del__ () directly—__del__ () should call close () and close () should make sure that it can be
called more than once for the same object.

30 Chapter 2. Programming FAQ

Python Frequently Asked Questions, = x] 1] A 3.7.17

Another way to avoid cyclical references is to use the weak re £ module, which allows you to point to objects without
incrementing their reference count. Tree data structures, for instance, should use weak references for their parent and
sibling references (if they need them!).

Finally, if your __del__ () method raises an exception, a warning message is printed to sys.stderr.

2.6.12 How do | get a list of all instances of a given class?

Python does not keep track of all instances of a class (or of a built-in type). You can program the class’s constructor
to keep track of all instances by keeping a list of weak references to each instance.

2.6.13 Why does the result of id () appear to be not unique?

The id () builtin returns an integer that is guaranteed to be unique during the lifetime of the object. Since in
CPython, this is the object’s memory address, it happens frequently that after an object is deleted from memory, the
next freshly created object is allocated at the same position in memory. This is illustrated by this example:

>>> 1d(1000)
13901272
>>> 1d(2000)
13901272

The two ids belong to different integer objects that are created before, and deleted immediately after execution of the
id () call. To be sure that objects whose id you want to examine are still alive, create another reference to the object:

>>> g = 1000; b = 2000
>>> id(a)
13901272
>>> id(b)
13891296

2.7 Modules

2.7.1 How do | create a .pyc file?

When a module is imported for the first time (or when the source file has changed since the current compiled file
was created) a . pyc file containing the compiled code should be created in a __pycache___ subdirectory of the
directory containing the . py file. The . pyc file will have a filename that starts with the same name as the . py file,
and ends with . pyc, with a middle component that depends on the particular python binary that created it. (See
PEP 3147 for details.)

One reason that a . pyc file may not be created is a permissions problem with the directory containing the source
file, meaning that the __pycache___ subdirectory cannot be created. This can happen, for example, if you develop
as one user but run as another, such as if you are testing with a web server.

Unless the PYTHONDONTWRITEBYTECODE environment variable is set, creation of a .pyc file is automatic if you’
re importing a module and Python has the ability (permissions, free space, etc::-) to create a __pycache___ sub-
directory and write the compiled module to that subdirectory.

Running Python on a top level script is not considered an import and no . pyc will be created. For example, if you
have a top-level module foo.py that imports another module xyz . py, when you run foo (by typing python
foo.py as a shell command), a . pyc will be created for xyz because xyz is imported, but no . pyc file will be
created for foo since foo . py isn’t being imported.

If you need to create a . pyc file for foo — that is, to create a . pyc file for a module that is not imported — you can,
using the py_compile and compileall modules.

2.7. Modules 31

https://www.python.org/dev/peps/pep-3147

Python Frequently Asked Questions, = x] 1] A 3.7.17

The py_compi le module can manually compile any module. One way is to use the compile () function in that
module interactively:

>>> import py_compile
>>> py_compile.compile('foo.py")

This will write the .pyc toa __pycache__ subdirectory in the same location as foo . py (or you can override
that with the optional parameter cfile).

You can also automatically compile all files in a directory or directories using the compileall module. You can
do it from the shell prompt by running compileall . py and providing the path of a directory containing Python
files to compile:

python -m compileall .

2.7.2 How do | find the current module name?

A module can find out its own module name by looking at the predefined global variable __name__. If this has the
value ' __main__ ', the program is running as a script. Many modules that are usually used by importing them also
provide a command-line interface or a self-test, and only execute this code after checking __name__:

def main():
print ('Running test..."')

2.7.3 How can | have modules that mutually import each other?

Suppose you have the following modules:

foo.py:

from bar import bar_var
foo_var = 1

bar.py:

from foo import foo_var
bar_var = 2

The problem is that the interpreter will perform the following steps:
* main imports foo
* Empty globals for foo are created
* foo is compiled and starts executing
¢ foo imports bar
* Empty globals for bar are created
* bar is compiled and starts executing
* bar imports foo (which is a no-op since there already is a module named foo)
* bar.foo_var = foo.foo_var

The last step fails, because Python isn’t done with interpreting foo yet and the global symbol dictionary for foo is
still empty.

32 Chapter 2. Programming FAQ

Python Frequently Asked Questions, = x] 1] A 3.7.17

The same thing happens when you use import foo, and then try to access foo. foo_var in global code.
There are (at least) three possible workarounds for this problem.

Guido van Rossum recommends avoiding all uses of from <module> import .. .,and placingall code inside
functions. Initializations of global variables and class variables should use constants or built-in functions only. This
means everything from an imported module is referenced as <module>.<name>.

Jim Roskind suggests performing steps in the following order in each module:

* exports (globals, functions, and classes that don’t need imported base classes)

* import statements

* active code (including globals that are initialized from imported values).
van Rossum doesn’t like this approach much because the imports appear in a strange place, but it does work.
Matthias Urlichs recommends restructuring your code so that the recursive import is not necessary in the first place.

These solutions are not mutually exclusive.

2.7.4 __import__(‘x.y.z’) returns <module ‘x’>; how do | get z?

Consider using the convenience function import_module () from importlib instead:

z = importlib.import_module('x.y.z"')

2.7.5 When | edit an imported module and reimport it, the changes don’t show
up. Why does this happen?

For reasons of efficiency as well as consistency, Python only reads the module file on the first time a module is
imported. If it didn’t, in a program consisting of many modules where each one imports the same basic module, the
basic module would be parsed and re-parsed many times. To force re-reading of a changed module, do this:

import importlib
import modname
importlib.reload (modname)

Warning: this technique is not 100% fool-proof. In particular, modules containing statements like

from modname import some_objects

will continue to work with the old version of the imported objects. If the module contains class definitions, existing
class instances will nor be updated to use the new class definition. This can result in the following paradoxical
behaviour:

>>> import importlib

>>> import cls

>>> ¢ = cls.C() # Create an instance of C
>>> importlib.reload(cls)

<module 'cls' from 'cls.py'>

>>> isinstance(c, cls.C) # isinstance 1is false?!?
False

The nature of the problem is made clear if you print out the “identity” of the class objects:

>>> hex (id(c.__class__))
'0x7352a0"

>>> hex (id(cls.C))
'0x4198d0"

2.7. Modules 33

Python Frequently Asked Questions, = x] 1] A 3.7.17

34

Chapter 2. Programming FAQ

CHAPTER 3

Design and History FAQ

3.1 Why does Python use indentation for grouping of statements?

Guido van Rossum believes that using indentation for grouping is extremely elegant and contributes a lot to the clarity
of the average Python program. Most people learn to love this feature after a while.

Since there are no begin/end brackets there cannot be a disagreement between grouping perceived by the parser and
the human reader. Occasionally C programmers will encounter a fragment of code like this:

if (x <= vy)
X++5;
y——i
z++;

Only the x++ statement is executed if the condition is true, but the indentation leads you to believe otherwise. Even
experienced C programmers will sometimes stare at it a long time wondering why v is being decremented even for
X > y.

Because there are no begin/end brackets, Python is much less prone to coding-style conflicts. In C there are many
different ways to place the braces. If you’re used to reading and writing code that uses one style, you will feel at least
slightly uneasy when reading (or being required to write) another style.

Many coding styles place begin/end brackets on a line by themselves. This makes programs considerably longer and
wastes valuable screen space, making it harder to get a good overview of a program. Ideally, a function should fit on
one screen (say, 20-30 lines). 20 lines of Python can do a lot more work than 20 lines of C. This is not solely due to
the lack of begin/end brackets — the lack of declarations and the high-level data types are also responsible — but the
indentation-based syntax certainly helps.

35

Python Frequently Asked Questions, = x] 1] A 3.7.17

3.2 Why am | getting strange results with simple arithmetic oper-
ations?

See the next question.

3.3 Why are floating-point calculations so inaccurate?

Users are often surprised by results like this:

>> 1.2 - 1.0
0.1999999999999999¢6

and think it is a bug in Python. It’s not. This has little to do with Python, and much more to do with how the
underlying platform handles floating-point numbers.

The f1loat type in CPython uses a C double for storage. A £1loat object’s value is stored in binary floating-point
with a fixed precision (typically 53 bits) and Python uses C operations, which in turn rely on the hardware implemen-
tation in the processor, to perform floating-point operations. This means that as far as floating-point operations are
concerned, Python behaves like many popular languages including C and Java.

Many numbers that can be written easily in decimal notation cannot be expressed exactly in binary floating-point.
For example, after:

>>> x = 1.2

the value stored for x is a (very good) approximation to the decimal value 1.2, but is not exactly equal to it. On a
typical machine, the actual stored value is:

’ 1.0011001100110011001100110011001100110011001100110011 (binary)

which is exactly:

’ 1.1999999999999999555910790149937383830547332763671875 (decimal)

The typical precision of 53 bits provides Python floats with 15-16 decimal digits of accuracy.

For a fuller explanation, please see the floating point arithmetic chapter in the Python tutorial.

3.4 Why are Python strings immutable?

There are several advantages.

One is performance: knowing that a string is immutable means we can allocate space for it at creation time, and the
storage requirements are fixed and unchanging. This is also one of the reasons for the distinction between tuples and
lists.

Another advantage is that strings in Python are considered as “elemental” as numbers. No amount of activity will
change the value 8 to anything else, and in Python, no amount of activity will change the string “eight” to anything
else.

36 Chapter 3. Design and History FAQ

Python Frequently Asked Questions, = x] 1] A 3.7.17

3.5 Why must ‘self’ be used explicitly in method definitions and
calls?

The idea was borrowed from Modula-3. It turns out to be very useful, for a variety of reasons.

First, it’s more obvious that you are using a method or instance attribute instead of a local variable. Reading sel1f.x
or self.meth () makes it absolutely clear that an instance variable or method is used even if you don’t know the
class definition by heart. In C++, you can sort of tell by the lack of a local variable declaration (assuming globals are
rare or easily recognizable) — but in Python, there are no local variable declarations, so you’d have to look up the
class definition to be sure. Some C++ and Java coding standards call for instance attributes to have an m__ prefix, so
this explicitness is still useful in those languages, too.

Second, it means that no special syntax is necessary if you want to explicitly reference or call the method from a
particular class. In C++, if you want to use a method from a base class which is overridden in a derived class,
you have to use the : : operator — in Python you can write baseclass.methodname (self, <argument
list>). Thisis particularly useful for__init__ () methods, and in general in cases where a derived class method
wants to extend the base class method of the same name and thus has to call the base class method somehow.

Finally, for instance variables it solves a syntactic problem with assignment: since local variables in Python are (by
definition!) those variables to which a value is assigned in a function body (and that aren’t explicitly declared global),
there has to be some way to tell the interpreter that an assignment was meant to assign to an instance variable instead
of to a local variable, and it should preferably be syntactic (for efficiency reasons). C++ does this through declarations,
but Python doesn’t have declarations and it would be a pity having to introduce them just for this purpose. Using the
explicit self . var solves this nicely. Similarly, for using instance variables, having to write se1f . var means that
references to unqualified names inside a method don’t have to search the instance’s directories. To put it another way,
local variables and instance variables live in two different namespaces, and you need to tell Python which namespace
to use.

3.6 Why can’t | use an assignment in an expression?

Many people used to C or Perl complain that they want to use this C idiom:

while (line = readline(f)) {
// do something with line

where in Python you’re forced to write this:

while True:
line = f.readline()
if not line:
break
do something with line

The reason for not allowing assignment in Python expressions is a common, hard-to-find bug in those other languages,
caused by this construct:

if (x = 0) {
// error handling
}
else {
// code that only works for nonzero x

}

The error is a simple typo: x = 0, which assigns 0 to the variable x, was written while the comparison x == 0 is
certainly what was intended.

Many alternatives have been proposed. Most are hacks that save some typing but use arbitrary or cryptic syntax or
keywords, and fail the simple criterion for language change proposals: it should intuitively suggest the proper meaning

3.5. Why must ‘self’ be used explicitly in method definitions and calls? 37

Python Frequently Asked Questions, = x] 1] A 3.7.17

to a human reader who has not yet been introduced to the construct.

An interesting phenomenon is that most experienced Python programmers recognize the while True idiom and
don’t seem to be missing the assignment in expression construct much; it’s only newcomers who express a strong
desire to add this to the language.

There’s an alternative way of spelling this that seems attractive but is generally less robust than the “while True”
solution:

line = f.readline()
while line:
do something with line...
line = f.readline ()

The problem with this is that if you change your mind about exactly how you get the next line (e.g. you want to
change it into sys.stdin.readline ()) you have to remember to change two places in your program — the
second occurrence is hidden at the bottom of the loop.

The best approach is to use iterators, making it possible to loop through objects using the £ o r statement. For example,
file objects support the iterator protocol, so you can write simply:

for line in f:
do something with line...

3.7 Why does Python use methods for some functionality (e.g.
list.index()) but functions for other (e.g. len(list))?

As Guido said:

(a) For some operations, prefix notation just reads better than postfix — prefix (and infix!) operations have
a long tradition in mathematics which likes notations where the visuals help the mathematician thinking
about a problem. Compare the easy with which we rewrite a formula like x*(a+b) into x*a + x*b to the
clumsiness of doing the same thing using a raw OO notation.

(b) When I read code that says len(x) I know that it is asking for the length of something. This tells
me two things: the result is an integer, and the argument is some kind of container. To the contrary,
when I read x.len(), I have to already know that x is some kind of container implementing an interface
or inheriting from a class that has a standard len(). Witness the confusion we occasionally have when a
class that is not implementing a mapping has a get() or keys() method, or something that isn’t a file has
a write() method.

—https://mail.python.org/pipermail/python-3000/2006-November/004643.html

3.8 Why is join() a string method instead of a list or tuple method?

Strings became much more like other standard types starting in Python 1.6, when methods were added which give
the same functionality that has always been available using the functions of the string module. Most of these new
methods have been widely accepted, but the one which appears to make some programmers feel uncomfortable is:

n’ ".join(['l’, l2l, l4l, '8', '16'])

which gives the result:

"1, 2, 4, 8, 16"

There are two common arguments against this usage.

38 Chapter 3. Design and History FAQ

https://mail.python.org/pipermail/python-3000/2006-November/004643.html

Python Frequently Asked Questions, = x] 1] A 3.7.17

The first runs along the lines of : “It looks really ugly using a method of a string literal (string constant)”, to which the
answer is that it might, but a string literal is just a fixed value. If the methods are to be allowed on names bound to
strings there is no logical reason to make them unavailable on literals.

The second objection is typically cast as: “I am really telling a sequence to join its members together with a string
constant”. Sadly, you aren’t. For some reason there seems to be much less difficulty with having split () as a
string method, since in that case it is easy to see that

"1, 2, 4, 8, 1le".split (", ")

is an instruction to a string literal to return the substrings delimited by the given separator (or, by default, arbitrary
runs of white space).

join () is astring method because in using it you are telling the separator string to iterate over a sequence of strings
and insert itself between adjacent elements. This method can be used with any argument which obeys the rules for
sequence objects, including any new classes you might define yourself. Similar methods exist for bytes and bytearray
objects.

3.9 How fast are exceptions?

A try/except block is extremely efficient if no exceptions are raised. Actually catching an exception is expensive. In
versions of Python prior to 2.0 it was common to use this idiom:

try:
value = mydict [key]

except KeyError:
mydict [key] = getvalue (key)
value = mydict [key]

This only made sense when you expected the dict to have the key almost all the time. If that wasn’t the case, you
coded it like this:

if key in mydict:
value = mydict[key]
else:
value = mydict[key] = getvalue (key)

For this specific case, you could also use value = dict.setdefault (key, getvalue (key)), butonly
if the getvalue () call is cheap enough because it is evaluated in all cases.

3.10 Why isn’t there a switch or case statement in Python?

You can do this easily enough with a sequence of 1f... elif... elif... else. There have been some
proposals for switch statement syntax, but there is no consensus (yet) on whether and how to do range tests. See PEP
275 for complete details and the current status.

For cases where you need to choose from a very large number of possibilities, you can create a dictionary mapping
case values to functions to call. For example:

def function_1(...):

functions = {'a': function_1,

'b': function_2,

'c': self.method_1, ...}
func = functions[value]
func ()

3.9. How fast are exceptions? 39

https://www.python.org/dev/peps/pep-0275
https://www.python.org/dev/peps/pep-0275

Python Frequently Asked Questions, = x] 1] A 3.7.17

For calling methods on objects, you can simplify yet further by using the getattr () built-in to retrieve methods
with a particular name:

def visit_a(self, ...):

def dispatch(self, wvalue):

method_name = 'visit_' + str(value)
method = getattr(self, method_name)
method ()

It’s suggested that you use a prefix for the method names, such as visit_ in this example. Without such a prefix,
if values are coming from an untrusted source, an attacker would be able to call any method on your object.

3.11 Can’tyou emulate threads in the interpreter instead of relying
on an OS-specific thread implementation?

Answer 1: Unfortunately, the interpreter pushes at least one C stack frame for each Python stack frame. Also,
extensions can call back into Python at almost random moments. Therefore, a complete threads implementation
requires thread support for C.

Answer 2: Fortunately, there is Stackless Python, which has a completely redesigned interpreter loop that avoids the
C stack.

3.12 Why can’t lambda expressions contain statements?

Python lambda expressions cannot contain statements because Python’s syntactic framework can’t handle statements
nested inside expressions. However, in Python, this is not a serious problem. Unlike lambda forms in other languages,
where they add functionality, Python lambdas are only a shorthand notation if you’re too lazy to define a function.

Functions are already first class objects in Python, and can be declared in a local scope. Therefore the only advantage
of using a lambda instead of a locally-defined function is that you don’t need to invent a name for the function —
but that’s just a local variable to which the function object (which is exactly the same type of object that a lambda
expression yields) is assigned!

3.13 Can Python be compiled to machine code, C or some other
language?

Cython compiles a modified version of Python with optional annotations into C extensions. Nuitka is an up-and-
coming compiler of Python into C++ code, aiming to support the full Python language. For compiling to Java you
can consider VOC.

40 Chapter 3. Design and History FAQ

https://github.com/stackless-dev/stackless/wiki
http://cython.org/
http://www.nuitka.net/
https://voc.readthedocs.io

Python Frequently Asked Questions, = x] 1] A 3.7.17

3.14 How does Python manage memory?

The details of Python memory management depend on the implementation. The standard implementation of Python,
CPython, uses reference counting to detect inaccessible objects, and another mechanism to collect reference cycles,
periodically executing a cycle detection algorithm which looks for inaccessible cycles and deletes the objects involved.
The gc module provides functions to perform a garbage collection, obtain debugging statistics, and tune the collector’
S parameters.

Other implementations (such as Jython or PyPy), however, can rely on a different mechanism such as a full-blown
garbage collector. This difference can cause some subtle porting problems if your Python code depends on the
behavior of the reference counting implementation.

In some Python implementations, the following code (which is fine in CPython) will probably run out of file descrip-
tors:

for file in very_long_list_of_files:
f = open(file)
c = f.read (1)

Indeed, using CPython’s reference counting and destructor scheme, each new assignment to f closes the previous
file. With a traditional GC, however, those file objects will only get collected (and closed) at varying and possibly
long intervals.

If you want to write code that will work with any Python implementation, you should explicitly close the file or use
the with statement; this will work regardless of memory management scheme:

for file in very_long_list_of_ files:
with open(file) as f£f:
c = f.read(1l)

3.15 Why doesn’t CPython use a more traditional garbage collec-
tion scheme?

For one thing, this is not a C standard feature and hence it’s not portable. (Yes, we know about the Boehm GC library.
It has bits of assembler code for most common platforms, not for all of them, and although it is mostly transparent,
it isn’t completely transparent; patches are required to get Python to work with it.)

Traditional GC also becomes a problem when Python is embedded into other applications. While in a standalone
Python it’s fine to replace the standard malloc() and free() with versions provided by the GC library, an application
embedding Python may want to have its own substitute for malloc() and free(), and may not want Python’s. Right
now, CPython works with anything that implements malloc() and free() properly.

3.16 Why isn’t all memory freed when CPython exits?

Objects referenced from the global namespaces of Python modules are not always deallocated when Python exits.
This may happen if there are circular references. There are also certain bits of memory that are allocated by the C
library that are impossible to free (e.g. a tool like Purify will complain about these). Python is, however, aggressive
about cleaning up memory on exit and does try to destroy every single object.

If you want to force Python to delete certain things on deallocation use the atexit module to run a function that
will force those deletions.

3.14. How does Python manage memory? 41

http://www.jython.org
http://www.pypy.org

Python Frequently Asked Questions, = x] 1] A 3.7.17

3.17 Why are there separate tuple and list data types?

Lists and tuples, while similar in many respects, are generally used in fundamentally different ways. Tuples can be
thought of as being similar to Pascal records or C structs; they’re small collections of related data which may be of
different types which are operated on as a group. For example, a Cartesian coordinate is appropriately represented
as a tuple of two or three numbers.

Lists, on the other hand, are more like arrays in other languages. They tend to hold a varying number of objects all
of which have the same type and which are operated on one-by-one. For example, os.listdir ('.") returnsa
list of strings representing the files in the current directory. Functions which operate on this output would generally
not break if you added another file or two to the directory.

Tuples are immutable, meaning that once a tuple has been created, you can’t replace any of its elements with a new
value. Lists are mutable, meaning that you can always change a list’s elements. Only immutable elements can be
used as dictionary keys, and hence only tuples and not lists can be used as keys.

3.18 How are lists implemented in CPython?

CPython’s lists are really variable-length arrays, not Lisp-style linked lists. The implementation uses a contiguous
array of references to other objects, and keeps a pointer to this array and the array’s length in a list head structure.

This makes indexing a list a [i] an operation whose cost is independent of the size of the list or the value of the
index.

When items are appended or inserted, the array of references is resized. Some cleverness is applied to improve the
performance of appending items repeatedly; when the array must be grown, some extra space is allocated so the next
few times don’t require an actual resize.

3.19 How are dictionaries implemented in CPython?

CPython’s dictionaries are implemented as resizable hash tables. Compared to B-trees, this gives better performance
for lookup (the most common operation by far) under most circumstances, and the implementation is simpler.

Dictionaries work by computing a hash code for each key stored in the dictionary using the hash () built-in function.
The hash code varies widely depending on the key and a per-process seed; for example, “Python” could hash to -
539294296 while “python”, a string that differs by a single bit, could hash to 1142331976. The hash code is then
used to calculate a location in an internal array where the value will be stored. Assuming that you’re storing keys that
all have different hash values, this means that dictionaries take constant time — O(1), in Big-O notation — to retrieve
a key.

3.20 Why must dictionary keys be immutable?

The hash table implementation of dictionaries uses a hash value calculated from the key value to find the key. If the
key were a mutable object, its value could change, and thus its hash could also change. But since whoever changes
the key object can’t tell that it was being used as a dictionary key, it can’t move the entry around in the dictionary.
Then, when you try to look up the same object in the dictionary it won’t be found because its hash value is different.
If you tried to look up the old value it wouldn’t be found either, because the value of the object found in that hash
bin would be different.

If you want a dictionary indexed with a list, simply convert the list to a tuple first; the function tuple (L) creates a
tuple with the same entries as the list L. Tuples are immutable and can therefore be used as dictionary keys.

Some unacceptable solutions that have been proposed:

¢ Hash lists by their address (object ID). This doesn’t work because if you construct a new list with the same
value it won’t be found; e.g.:

42 Chapter 3. Design and History FAQ

Python Frequently Asked Questions, = x] 1] A 3.7.17

mydict = {[1, 2]: '"12"}
print (mydict[[1, 211])

would raise a KeyError exception because the id of the [1, 2] used in the second line differs from that
in the first line. In other words, dictionary keys should be compared using ==, not using is.

* Make a copy when using a list as a key. This doesn’t work because the list, being a mutable object, could
contain a reference to itself, and then the copying code would run into an infinite loop.

* Allow lists as keys but tell the user not to modify them. This would allow a class of hard-to-track bugs in pro-
grams when you forgot or modified a list by accident. It also invalidates an important invariant of dictionaries:
every value in d. keys () is usable as a key of the dictionary.

e Mark lists as read-only once they are used as a dictionary key. The problem is that it’s not just the top-level
object that could change its value; you could use a tuple containing a list as a key. Entering anything as a key into
a dictionary would require marking all objects reachable from there as read-only — and again, self-referential
objects could cause an infinite loop.

There is a trick to get around this if you need to, but use it at your own risk: You can wrap a mutable structure inside
a class instance whichhasbotha __eq () anda__hash__ () method. You must then make sure that the hash
value for all such wrapper objects that reside in a dictionary (or other hash based structure), remain fixed while the
object is in the dictionary (or other structure).

class ListWrapper:
def _ init_ (self, the_list):
self.the_list = the_list

def _ _eqg (self, other):
return self.the_list == other.the_list

def _ hash__ (self):
1 = self.the_list
result = 98767 - len(l)*555
for i, el in enumerate(l) :
try:
result = result + (hash(el) % 9999999) * 1001 + 1
except Exception:
result = (result % 7777777) + i * 333
return result

Note that the hash computation is complicated by the possibility that some members of the list may be unhashable
and also by the possibility of arithmetic overflow.

Furthermore it must always be the case thatif o1 == o2 (ieol.__eq__ (02) is True)thenhash (ol) ==
hash (02) (ie, o1.__hash__ () == 02.__hash__ ()), regardless of whether the object is in a dictionary
or not. If you fail to meet these restrictions dictionaries and other hash based structures will misbehave.

In the case of ListWrapper, whenever the wrapper object is in a dictionary the wrapped list must not change to avoid
anomalies. Don’t do this unless you are prepared to think hard about the requirements and the consequences of not
meeting them correctly. Consider yourself warned.

3.20. Why must dictionary keys be immutable? 43

Python Frequently Asked Questions, = x] 1] A 3.7.17

3.21 Why doesn’t list.sort() return the sorted list?

In situations where performance matters, making a copy of the list just to sort it would be wasteful. Therefore,
list.sort () sorts the list in place. In order to remind you of that fact, it does not return the sorted list. This
way, you won’t be fooled into accidentally overwriting a list when you need a sorted copy but also need to keep the
unsorted version around.

If you want to return a new list, use the built-in sorted () function instead. This function creates a new list from
a provided iterable, sorts it and returns it. For example, here’s how to iterate over the keys of a dictionary in sorted
order:

for key in sorted(mydict):
do whatever with mydict [key]...

3.22 How do you specify and enforce an interface spec in Python?

An interface specification for a module as provided by languages such as C++ and Java describes the prototypes for
the methods and functions of the module. Many feel that compile-time enforcement of interface specifications helps
in the construction of large programs.

Python 2.6 adds an abc module that lets you define Abstract Base Classes (ABCs). You can then use
isinstance () and issubclass () to check whether an instance or a class implements a particular ABC.
The collections.abc module defines a set of useful ABCs such as Iterable, Container, and
MutableMapping.

For Python, many of the advantages of interface specifications can be obtained by an appropriate test discipline for
components. There is also a tool, PyChecker, which can be used to find problems due to subclassing.

A good test suite for a module can both provide a regression test and serve as a module interface specification and a
set of examples. Many Python modules can be run as a script to provide a simple “self test.” Even modules which use
complex external interfaces can often be tested in isolation using trivial “stub” emulations of the external interface.
The doctest and unittest modules or third-party test frameworks can be used to construct exhaustive test
suites that exercise every line of code in a module.

An appropriate testing discipline can help build large complex applications in Python as well as having interface
specifications would. In fact, it can be better because an interface specification cannot test certain properties of a
program. For example, the append () method is expected to add new elements to the end of some internal list; an
interface specification cannot test that your append () implementation will actually do this correctly, but it’s trivial
to check this property in a test suite.

Writing test suites is very helpful, and you might want to design your code with an eye to making it easily tested.
One increasingly popular technique, test-directed development, calls for writing parts of the test suite first, before
you write any of the actual code. Of course Python allows you to be sloppy and not write test cases at all.

3.23 Why is there no goto?

You can use exceptions to provide a “structured goto” that even works across function calls. Many feel that exceptions
can conveniently emulate all reasonable uses of the “go” or “goto” constructs of C, Fortran, and other languages. For
example:

class label (Exception): pass # declare a label
try:
if condition: raise label () # goto label

except label: # where to goto

(Th& sl AT ol AS)

44 Chapter 3. Design and History FAQ

Python Frequently Asked Questions, = x] 1] A 3.7.17

(o1 sl o] A A A%)

pass

This doesn’t allow you to jump into the middle of a loop, but that’s usually considered an abuse of goto anyway. Use
sparingly.

3.24 Why can’t raw strings (r-strings) end with a backslash?

More precisely, they can’t end with an odd number of backslashes: the unpaired backslash at the end escapes the
closing quote character, leaving an unterminated string.

Raw strings were designed to ease creating input for processors (chiefly regular expression engines) that want to do
their own backslash escape processing. Such processors consider an unmatched trailing backslash to be an error
anyway, so raw strings disallow that. In return, they allow you to pass on the string quote character by escaping it
with a backslash. These rules work well when r-strings are used for their intended purpose.

If you’re trying to build Windows pathnames, note that all Windows system calls accept forward slashes too:

f = open("/mydir/file.txt") # works fine!

If you’re trying to build a pathname for a DOS command, try e.g. one of

dir = r"\this\is\my\dos\dir" "\\"
dir = r"\this\is\my\dos\dir\ "[:-1]
"\\this\\is\\my\\dos\\dir\\"

dir

3.25 Why doesn’t Python have a “with” statement for attribute as-
signments?

Python has a ‘with’ statement that wraps the execution of a block, calling code on the entrance and exit from the
block. Some language have a construct that looks like this:

with obj:
a =1 # equivalent to obj.a = 1
total = total + 1 # obj.total = obj.total + 1

In Python, such a construct would be ambiguous.

Other languages, such as Object Pascal, Delphi, and C++, use static types, so it’s possible to know, in an unambiguous
way, what member is being assigned to. This is the main point of static typing — the compiler always knows the scope
of every variable at compile time.

Python uses dynamic types. It is impossible to know in advance which attribute will be referenced at runtime. Member
attributes may be added or removed from objects on the fly. This makes it impossible to know, from a simple reading,
what attribute is being referenced: a local one, a global one, or a member attribute?

For instance, take the following incomplete snippet:

def foo(a):
with a:
print (x)

[TP8T)

The snippet assumes that “a” must have a member attribute called “x”. However, there is nothing in Python that tells
the interpreter this. What should happen if “a” is, let us say, an integer? If there is a global variable named “x”, will
it be used inside the with block? As you see, the dynamic nature of Python makes such choices much harder.

3.24. Why can’t raw strings (r-strings) end with a backslash? 45

Python Frequently Asked Questions, = x] 1] A 3.7.17

The primary benefit of “with” and similar language features (reduction of code volume) can, however, easily be
achieved in Python by assignment. Instead of:

function(args) .mydict[index] [index].a = 21
function (args) .mydict [index] [index] .b = 42
function (args) .mydict [index] [index].c = 63

write this:

ref = function(args) .mydict[index] [index]
ref.a = 21

ref.b = 42
ref.c = 63

This also has the side-effect of increasing execution speed because name bindings are resolved at run-time in Python,
and the second version only needs to perform the resolution once.

3.26 Why are colons required for the if/while/def/class state-
ments?

The colon is required primarily to enhance readability (one of the results of the experimental ABC language). Con-
sider this:

if a == Db
print (a)

versus

if a == b:
print (a)

Notice how the second one is slightly easier to read. Notice further how a colon sets off the example in this FAQ
answer; it’s a standard usage in English.

Another minor reason is that the colon makes it easier for editors with syntax highlighting; they can look for colons to
decide when indentation needs to be increased instead of having to do a more elaborate parsing of the program text.

3.27 Why does Python allow commas at the end of lists and tu-
ples?

Python lets you add a trailing comma at the end of lists, tuples, and dictionaries:

L, 2, 3,1
(Ya|, Yb’ YCY’)
d = {
"A" [1’ 5],
"B" [e, 71, # last trailing comma is optional but good style

There are several reasons to allow this.

When you have a literal value for a list, tuple, or dictionary spread across multiple lines, it’s easier to add more
elements because you don’t have to remember to add a comma to the previous line. The lines can also be reordered
without creating a syntax error.

Accidentally omitting the comma can lead to errors that are hard to diagnose. For example:

46 Chapter 3. Design and History FAQ

Python Frequently Asked Questions, = x] 1] A 3.7.17

x = [
"fee",
"fie"
"foo",
"fum"

]

This list looks like it has four elements, but it actually contains three: “fee”, “fiefoo” and “fum”. Always adding the
comma avoids this source of error.

Allowing the trailing comma may also make programmatic code generation easier.

3.27. Why does Python allow commas at the end of lists and tuples? 47

Python Frequently Asked Questions, = x] 1] A 3.7.17

48

Chapter 3. Design and History FAQ

cHAPTER 4

Library and Extension FAQ

4.1 General Library Questions

4.1.1 How do | find a module or application to perform task X?
Check the Library Reference to see if there’s a relevant standard library module. (Eventually you’ll learn what’s in
the standard library and will be able to skip this step.)

For third-party packages, search the Python Package Index or try Google or another Web search engine. Searching
for “Python” plus a keyword or two for your topic of interest will usually find something helpful.

4.1.2 Where is the math.py (socket.py, regex.py, etc.) source file?

If you can’t find a source file for a module it may be a built-in or dynamically loaded module implemented in C, C++ or
other compiled language. In this case you may not have the source file or it may be something like mathmodule. c,
somewhere in a C source directory (not on the Python Path).

There are (at least) three kinds of modules in Python:
1) modules written in Python (.py);
2) modules written in C and dynamically loaded (.dll, .pyd, .so, .sl, etc);

3) modules written in C and linked with the interpreter; to get a list of these, type:

import sys
print (sys.builtin_module_names)

49

https://pypi.org
https://www.google.com

Python Frequently Asked Questions, = x] 1] A 3.7.17

4.1.3 How do | make a Python script executable on Unix?

You need to do two things: the script file’s mode must be executable and the first line must begin with # ! followed
by the path of the Python interpreter.

The first is done by executing chmod +x scriptfile or perhaps chmod 755 scriptfile.

The second can be done in a number of ways. The most straightforward way is to write

#!/usr/local/bin/python

as the very first line of your file, using the pathname for where the Python interpreter is installed on your platform.

If you would like the script to be independent of where the Python interpreter lives, you can use the env program.
Almost all Unix variants support the following, assuming the Python interpreter is in a directory on the user’s PATH:

#!/usr/bin/env python

Don’t do this for CGI scripts. The PATH variable for CGI scripts is often very minimal, so you need to use the actual
absolute pathname of the interpreter.

Occasionally, a user’s environment is so full that the /usr/bin/env program fails; or there’s no env program at
all. In that case, you can try the following hack (due to Alex Rezinsky):

#! /bin/sh

nww.n

exec python 50 1+"s@"

nwn

The minor disadvantage is that this defines the script’s __doc__ string. However, you can fix that by adding

doc = "nr__ .Whatever..."""

4.1.4 Is there a curses/termcap package for Python?

For Unix variants: The standard Python source distribution comes with a curses module in the Modules subdirectory,
though it’s not compiled by default. (Note that this is not available in the Windows distribution — there is no curses
module for Windows.)

The curses module supports basic curses features as well as many additional functions from ncurses and SYSV
curses such as colour, alternative character set support, pads, and mouse support. This means the module isn’t
compatible with operating systems that only have BSD curses, but there don’t seem to be any currently maintained
OSes that fall into this category.

For Windows: use the consolelib module.

4.1.5 Is there an equivalent to C’s onexit() in Python?

The atexit module provides a register function that is similar to C’s onexit ().

50 Chapter 4. Library and Extension FAQ

https://github.com/python/cpython/tree/3.7/Modules
http://effbot.org/zone/console-index.htm

Python Frequently Asked Questions, = x] 1] A 3.7.17

4.1.6 Why don’t my signal handlers work?

The most common problem is that the signal handler is declared with the wrong argument list. It is called as

handler (signum, frame)

so it should be declared with two arguments:

def handler (signum, frame):

4.2 Common tasks

4.2.1 How do | test a Python program or component?

Python comes with two testing frameworks. The doctest module finds examples in the docstrings for a module
and runs them, comparing the output with the expected output given in the docstring.

The unittest module is a fancier testing framework modelled on Java and Smalltalk testing frameworks.

To make testing easier, you should use good modular design in your program. Your program should have almost all
functionality encapsulated in either functions or class methods — and this sometimes has the surprising and delightful
effect of making the program run faster (because local variable accesses are faster than global accesses). Furthermore
the program should avoid depending on mutating global variables, since this makes testing much more difficult to do.

The “global main logic” of your program may be as simple as

if _ name_ == "_ _main_ ":
main_logic ()

at the bottom of the main module of your program.

Once your program is organized as a tractable collection of functions and class behaviours you should write test
functions that exercise the behaviours. A test suite that automates a sequence of tests can be associated with each
module. This sounds like a lot of work, but since Python is so terse and flexible it’s surprisingly easy. You can make
coding much more pleasant and fun by writing your test functions in parallel with the “production code”, since this
makes it easy to find bugs and even design flaws earlier.

“Support modules” that are not intended to be the main module of a program may include a self-test of the module.

if name == "_main__ ":

self_test ()

Even programs that interact with complex external interfaces may be tested when the external interfaces are unavail-
able by using “fake” interfaces implemented in Python.

4.2.2 How do | create documentation from doc strings?

The pydoc module can create HTML from the doc strings in your Python source code. An alternative for creating
API documentation purely from docstrings is epydoc. Sphinx can also include docstring content.

4.2. Common tasks 51

http://epydoc.sourceforge.net/
http://sphinx-doc.org

Python Frequently Asked Questions, = x] 1] A 3.7.17

4.2.3 How do | get a single keypress at a time?

For Unix variants there are several solutions. It’s straightforward to do this using curses, but curses is a fairly large
module to learn.

4.3 Threads

4.3.1 How do | program using threads?

Be sure to use the threading module and not the _thread module. The threading module builds convenient
abstractions on top of the low-level primitives provided by the _thread module.

Aahz has a set of slides from his threading tutorial that are helpful; see http://www.pythoncraft.com/OSCON2001/.

4.3.2 None of my threads seem to run: why?

As soon as the main thread exits, all threads are killed. Your main thread is running too quickly, giving the threads
no time to do any work.

A simple fix is to add a sleep to the end of the program that’s long enough for all the threads to finish:

import threading, time

def thread_task (name, n):
for i in range(n):
print (name, 1)

for i in range (10):
T = threading.Thread(target=thread_task, args=(str(i), 1i))
T.start ()

time.sleep(10) # < !

But now (on many platforms) the threads don’t run in parallel, but appear to run sequentially, one at a time! The
reason is that the OS thread scheduler doesn’t start a new thread until the previous thread is blocked.

A simple fix is to add a tiny sleep to the start of the run function:

def thread_task (name, n):
time.sleep(0.001) # <——————-————————————— !
for i in range(n):
print (name, 1i)

for i in range(10):
T = threading.Thread(target=thread_task, args=(str(i), 1))
T.start ()

time.sleep(10)

Instead of trying to guess a good delay value for time.sleep (), it’s better to use some kind of semaphore
mechanism. One idea is to use the queue module to create a queue object, let each thread append a token to the
queue when it finishes, and let the main thread read as many tokens from the queue as there are threads.

52 Chapter 4. Library and Extension FAQ

http://www.pythoncraft.com/OSCON2001/

Python Frequently Asked Questions, = x] 1] A 3.7.17

4.3.3 How do | parcel out work among a bunch of worker threads?

The easiest way is to use the new concurrent . futures module, especially the ThreadPoolExecutor
class.

Or, if you want fine control over the dispatching algorithm, you can write your own logic manually. Use the queue
module to create a queue containing a list of jobs. The Queue class maintains a list of objects and hasa . put (ob7)

method that adds items to the queue and a . get () method to return them. The class will take care of the locking
necessary to ensure that each job is handed out exactly once.

Here’s a trivial example:

import threading, queue, time

The worker thread gets jobs off the queue. When the queue is empty, it
assumes there will be no more work and exits.
(Realistically workers will run until terminated.)
def worker () :
print ('Running worker')
time.sleep(0.1)
while True:
try:
arg = g.get (block=False)
except queue.Empty:
print ('Worker', threading.currentThread(), end=' ")
print ('queue empty')
break
else:
print ('Worker', threading.currentThread(), end=' ")
print ('running with argument', arg)
time.sleep(0.5)

Create queue
g = queue.Queue ()

Start a pool of 5 workers

for i in range(5):
t = threading.Thread(target=worker, name='worker Y% (1+1))
t.start ()

Begin adding work to the queue
for i in range(50):
g.put (1)

Give threads time to run
print ('Main thread sleeping')
time.sleep (5)

‘When run, this will produce the following output:

Running worker
Running worker
Running worker
Running worker
Running worker
Main thread sleeping

Worker <Thread(worker 1, started 130283832797456)> running with argument O
Worker <Thread(worker 2, started 130283824404752)> running with argument 1
Worker <Thread(worker 3, started 130283816012048)> running with argument 2
Worker <Thread(worker 4, started 130283807619344)> running with argument 3
Worker <Thread(worker 5, started 130283799226640)> running with argument 4
Worker <Thread(worker 1, started 130283832797456)> running with argument 5

4.3. Threads 53

Python Frequently Asked Questions, = x] 1] A 3.7.17

Consult the module’s documentation for more details; the Queue class provides a featureful interface.

4.3.4 What kinds of global value mutation are thread-safe?

A global interpreter lock (GIL) is used internally to ensure that only one thread runs in the Python VM at a time. In
general, Python offers to switch among threads only between bytecode instructions; how frequently it switches can be
set via sys.setswitchinterval (). Each bytecode instruction and therefore all the C implementation code
reached from each instruction is therefore atomic from the point of view of a Python program.

In theory, this means an exact accounting requires an exact understanding of the PVM bytecode implementation. In
practice, it means that operations on shared variables of built-in data types (ints, lists, dicts, etc) that “look atomic”
really are.

For example, the following operations are all atomic (L, L1, L2 are lists, D, D1, D2 are dicts, x, y are objects, i, j are
ints):

L.append (x)
L1l.extend (L2)

x = L[1]

x = L.pop ()
L1[i:j] = L2
L.sort ()

X =y
x.field =y
D[x] =y
D1.update (D2)
D.keys ()

These aren’t:

i = 1i+1

L.append (L[-1])

L{i] = L[3J]

D[x] = D[x] + 1

Operations that replace other objects may invoke those other objects’ __del () method when their reference

count reaches zero, and that can affect things. This is especially true for the mass updates to dictionaries and lists.
‘When in doubt, use a mutex!

4.3.5 Can’t we get rid of the Global Interpreter Lock?

The global interpreter lock (GIL) is often seen as a hindrance to Python’s deployment on high-end multiprocessor
server machines, because a multi-threaded Python program effectively only uses one CPU, due to the insistence that
(almost) all Python code can only run while the GIL is held.

Back in the days of Python 1.5, Greg Stein actually implemented a comprehensive patch set (the “free threading”
patches) that removed the GIL and replaced it with fine-grained locking. Adam Olsen recently did a similar ex-
periment in his python-safethread project. Unfortunately, both experiments exhibited a sharp drop in single-thread
performance (at least 30% slower), due to the amount of fine-grained locking necessary to compensate for the removal
of the GIL.

This doesn’t mean that you can’t make good use of Python on multi-CPU machines! You just have to be creative
with dividing the work up between multiple processes rather than multiple threads. The ProcessPoolExecutor
class in the new concurrent . futures module provides an easy way of doing so; the multiprocessing
module provides a lower-level API in case you want more control over dispatching of tasks.

Judicious use of C extensions will also help; if you use a C extension to perform a time-consuming task, the extension
can release the GIL while the thread of execution is in the C code and allow other threads to get some work done.
Some standard library modules such as z1ib and hashlib already do this.

54 Chapter 4. Library and Extension FAQ

https://code.google.com/archive/p/python-safethread

Python Frequently Asked Questions, = x] 1] A 3.7.17

It has been suggested that the GIL should be a per-interpreter-state lock rather than truly global; interpreters then
wouldn’t be able to share objects. Unfortunately, this isn’t likely to happen either. It would be a tremendous amount
of work, because many object implementations currently have global state. For example, small integers and short
strings are cached; these caches would have to be moved to the interpreter state. Other object types have their own
free list; these free lists would have to be moved to the interpreter state. And so on.

And I doubt that it can even be done in finite time, because the same problem exists for 3rd party extensions. It is
likely that 3rd party extensions are being written at a faster rate than you can convert them to store all their global
state in the interpreter state.

And finally, once you have multiple interpreters not sharing any state, what have you gained over running each inter-
preter in a separate process?

4.4 Input and Output

4.41 How do | delete a file? (And other file questions:-)
Use os.remove (filename) or os.unlink (filename) ; for documentation, see the os module. The two
functions are identical; unlink () is simply the name of the Unix system call for this function.

To remove a directory, use os.rmdir (); use os.mkdir () to create one. os.makedirs (path) will cre-
ate any intermediate directories in path that don’t exist. os.removedirs (path) will remove intermediate
directories as long as they’re empty; if you want to delete an entire directory tree and its contents, use shutil.
rmtree ().

To rename a file, use os . rename (0ld_path, new_path).

To truncate a file, open it using £ = open (filename, "rb+"),and use f.truncate (offset); offset
defaults to the current seek position. There’s also os.ftruncate (fd, offset) for files opened with os.
open (), where fd is the file descriptor (a small integer).

The shut i1 module also contains a number of functions to work on files including copyfile (), copytree (),
and rmtree ().

4.4.2 How do | copy a file?

The shutil module contains a copyfile () function. Note that on MacOS 9 it doesn’t copy the resource fork
and Finder info.

4.4.3 How do | read (or write) binary data?

To read or write complex binary data formats, it’s best to use the st ruct module. It allows you to take a string
containing binary data (usually numbers) and convert it to Python objects; and vice versa.

For example, the following code reads two 2-byte integers and one 4-byte integer in big-endian format from a file:

import struct

with open(filename, "rb") as f:
s = f.read(8)
X, Yy, z = struct.unpack(">hhl", s)

The ‘>’ in the format string forces big-endian data; the letter ‘h’ reads one “short integer” (2 bytes), and ‘1’ reads one
“long integer” (4 bytes) from the string.

For data that is more regular (e.g. a homogeneous list of ints or floats), you can also use the array module.

4.4. Input and Output 55

Python Frequently Asked Questions, = x] 1] A 3.7.17

ZF31: To read and write binary data, it is mandatory to open the file in binary mode (here, passing "rb" to
open ()). If youuse "r" instead (the default), the file will be open in text mode and f . read () will return str
objects rather than bytes objects.

4.44 | can’t seem to use os.read() on a pipe created with os.popen(); why?

os.read () is alow-level function which takes a file descriptor, a small integer representing the opened file. os.
popen () creates a high-level file object, the same type returned by the built-in open () function. Thus, to read n
bytes from a pipe p created with os . popen (), you need to use p.read (n) .

4.4.5 How do | access the serial (RS232) port?

For Win32, POSIX (Linux, BSD, etc.), Jython:
http://pyserial.sourceforge.net
For Unix, see a Usenet post by Mitch Chapman:

https://groups.google.com/groups?selm=34 A04430.CF9@ohioee.com

4.4.6 Why doesn’t closing sys.stdout (stdin, stderr) really close it?

Python file objects are a high-level layer of abstraction on low-level C file descriptors.

For most file objects you create in Python via the built-in open () function, £.close () marks the Python file
object as being closed from Python’s point of view, and also arranges to close the underlying C file descriptor. This
also happens automatically in £’s destructor, when £ becomes garbage.

But stdin, stdout and stderr are treated specially by Python, because of the special status also given to them by
C. Running sys.stdout.close () marks the Python-level file object as being closed, but does not close the
associated C file descriptor.

To close the underlying C file descriptor for one of these three, you should first be sure that’s what you really want to
do (e.g., you may confuse extension modules trying to do I/O). If it is, use os.close ():

os.close(stdin.fileno())
os.close (stdout.fileno())
os.close(stderr.fileno())

Or you can use the numeric constants 0, 1 and 2, respectively.

4.5 Network/Internet Programming

4.5.1 What WWW tools are there for Python?

See the chapters titled internet and netdata in the Library Reference Manual. Python has many modules that will help
you build server-side and client-side web systems.

A summary of available frameworks is maintained by Paul Boddie at https://wiki.python.org/moin/
WebProgramming.

Cameron Laird maintains a useful set of pages about Python web technologies at http://phaseit.net/claird/comp.lang.
python/web_python.

56 Chapter 4. Library and Extension FAQ

http://pyserial.sourceforge.net
https://groups.google.com/groups?selm=34A04430.CF9@ohioee.com
https://wiki.python.org/moin/WebProgramming
https://wiki.python.org/moin/WebProgramming
http://phaseit.net/claird/comp.lang.python/web_python
http://phaseit.net/claird/comp.lang.python/web_python

Python Frequently Asked Questions, = x] 1] A 3.7.17

4.5.2 How can | mimic CGl form submission (METHOD=POST)?

I would like to retrieve web pages that are the result of POSTing a form. Is there existing code that would let me do
this easily?

Yes. Here’s a simple example that uses urllib.request:

#!/usr/local/bin/python
import urllib.request

build the query string
gs = "First=Josephine&MI=Q&Last=Public"

connect and send the server a path
req = urllib.request.urlopen('http://www.some-server.out—there'
'/cgi-bin/some-cgi-script', data=gs)
with req:
msg, hdrs = reqg.read(), reg.info()

Note that in general for percent-encoded POST operations, query strings must be quoted using urllib.parse.
urlencode (). For example, to send name=Guy Steele, Jr.:

>>> import urllib.parse
>>> urllib.parse.urlencode ({'name': 'Guy Steele, Jr.'})
'name=Guy+Steele%2C+Jr."

H H7]:
urllib-howto for extensive examples.

4.5.3 What module should | use to help with generating HTML?

You can find a collection of useful links on the Web Programming wiki page.

4.5.4 How do | send mail from a Python script?

Use the standard library module smtplib.

Here’s a very simple interactive mail sender that uses it. This method will work on any host that supports an SMTP
listener.

import sys, smtplib

fromaddr = input ("From: ")
toaddrs = input("To: ").split(',")
print ("Enter message, end with ~D:")
msg = "'
while True:

line = sys.stdin.readline ()

if not line:

break

msg += line

The actual mail send

server = smtplib.SMTP ('localhost')
server.sendmail (fromaddr, toaddrs, msqg)
server.quit ()

4.5. Network/Internet Programming 57

https://wiki.python.org/moin/WebProgramming

Python Frequently Asked Questions, = x] 1] A 3.7.17

A Unix-only alternative uses sendmail. The location of the sendmail program varies between systems; sometimes it
is /usr/1lib/sendmail, sometimes /usr/sbin/sendmail. The sendmail manual page will help you out.
Here’s some sample code:

import os

SENDMAIL = "/usr/sbin/sendmail" # sendmail location
p = os.popen (" -t —-i" % SENDMAIL, "w")
p.write("To: receiver@Rexample.com\n")
p.write("Subject: test\n")
p.write ("\n") # blank line separating headers from body
P "Some text\n")
.write ("some more text\n")
sts = p.close()
if sts != 0:
print ("Sendmail exit status", sts)

.write

el

4.5.5 How do | avoid blocking in the connect() method of a socket?

The select module is commonly used to help with asynchronous I/O on sockets.

To prevent the TCP connect from blocking, you can set the socket to non-blocking mode. Then when you do the
connect (), you will either connect immediately (unlikely) or get an exception that contains the error number as
.errno. errno.EINPROGRESS indicates that the connection is in progress, but hasn’t finished yet. Different
OSes will return different values, so you’re going to have to check what’s returned on your system.

You can use the connect_ex () method to avoid creating an exception. It will just return the errno value. To poll,
you can call connect_ex () again later — O or errno.EISCONN indicate that you’re connected — or you can
pass this socket to select to check if it’s writable.

Z}11: The asyncore module presents a framework-like approach to the problem of writing non-blocking net-
working code. The third-party Twisted library is a popular and feature-rich alternative.

4.6 Databases

4.6.1 Are there any interfaces to database packages in Python?

Yes.

Interfaces to disk-based hashes such as DBM and GDBM are also included with standard Python. There is also the
sqglite3 module, which provides a lightweight disk-based relational database.

Support for most relational databases is available. See the DatabaseProgramming wiki page for details.

4.6.2 How do you implement persistent objects in Python?

The pickle library module solves this in a very general way (though you still can’t store things like open files,
sockets or windows), and the she 1 ve library module uses pickle and (g)dbm to create persistent mappings containing
arbitrary Python objects.

58 Chapter 4. Library and Extension FAQ

https://twistedmatrix.com/trac/
https://wiki.python.org/moin/DatabaseProgramming

Python Frequently Asked Questions, = x] 1] A 3.7.17

4.7 Mathematics and Numerics

4.7.1 How do | generate random numbers in Python?

The standard module random implements a random number generator. Usage is simple:

import random
random. random ()

This returns a random floating point number in the range [0, 1).
There are also many other specialized generators in this module, such as:

* randrange (a, b) chooses an integer in the range [a, b).

e uniform(a, b) chooses afloating point number in the range [a, b).

e normalvariate (mean, sdev) samples the normal (Gaussian) distribution.
Some higher-level functions operate on sequences directly, such as:

e choice (S) chooses random element from a given sequence

e shuffle (L) shuffles a list in-place, i.e. permutes it randomly

There’s also a Random class you can instantiate to create independent multiple random number generators.

4.7. Mathematics and Numerics

59

Python Frequently Asked Questions, = x] 1] A 3.7.17

60

Chapter 4. Library and Extension FAQ

CHAPTER D

22/ 73 FAQ
51 C2 ynte] g2 ws 7 AsU7?
ags U 34, M 9] Y AR 2 FL ZaEE YA RES CE IS 4 95Ut} extending-

index woﬂ A o] QJLLTh
R ae) 2ol 17 ol A A A E o] A ohE AT

5.2 Ci+2 Ujuke] F42 5 5 AS U7

DU, Corol S C 58 /)58 AS T, ol ¢
{ }E iR 8kar sfold QIE = ﬂﬂﬂ eI
7HA A o) A A (static) C++ A A= 7 T2 4

25 E (include) 3t =9 ol extern "C"
extern "C"E XA L. APAE

The

53 C2 2& AL o]P &t vkl &7

Sashel s Aeiol whek, of 2 & Wl C 338 B of el 1A kel gtk

Cythond} & Pyrex:= k7 A9 Fho] M F 4] wolSo|n 3P C ZES A= Avtd g Y h
Cython =} Pyrex & AF2-5HW 1lo] 4 2] C APIS WS 7] ok E BRLS ZAE 4 9] T

ﬁﬂ#ﬂmﬂﬂﬂm%%?C%G+ﬂﬂﬁﬂﬂﬂmlaaﬂﬂ¢ﬂ§3?§ﬂwﬂaaqﬂq
B g3} 48 SWIGH 22 =32 #H 3T 5= 5y th SIP, CXX, Boost T Weave = C++ Fo] 2.2 2]

ﬂ%ﬂm%ﬂqw

61

http://cython.org
https://www.cosc.canterbury.ac.nz/greg.ewing/python/Pyrex/
http://www.swig.org
https://riverbankcomputing.com/software/sip/intro
http://cxx.sourceforge.net/
http://www.boost.org/libs/python/doc/index.html
https://github.com/scipy/weave

Python Frequently Asked Questions, = x] 1] A 3.7.17

Coll 4 9ol ol shol Al 42 o HA AL 4 AHU7R

o] & 35t = H A & g4 E=PyRun_SimpleString () ©]H, 0] 25 _ main_ o] AEHAE A
AlelE ot B2 QRE {3l A3 02 whEksl (SyntaxErrorE Z38ke) o8l 7 A sk
-1& HkEshch o W Aol E Y3, PyRun_String () 2 AF&SHA A 2 ; Python/pythonrun. c
o] 9= PyRun_SimpleString () 2AE ZARIAAL

5.5 CollA] oo 9] sto] A4S oJEA F7HE 5 AFU7?

AE A J& PyRun_String () F4E start 7] & Py_eval_inputS Ab&3le] &4 A &
T 24, ekl g Rk

o= A9 ol mhe} thE U th /& o] ¥, PyTuple_Size ()& Aol E W88}l PyTuple_GetItem()
2 A A" AdEl Ao FES UYL FAEE HS 48 71X dF Yt PyListSize () 2F

PyList_GetItem().

Hlo] E oAl &=, PyBytes_Size () &= Zo]E W3E3} 1l PyBytes_AsStringAndSize () & Ztd Z o]
of th gk A& Al g gyt sto] vpo]Ed A= d (null) v EE Z T = 9lofA Cﬂ strlen()
28T 4 ggol fol 3N L

To test the type of an object, first make sure it isn’t NULL, and then use PyBytes_Check (),
PyTuple_Check (),PyList_Check (), etc.

28] FA AE H o] A7FAF 8= Tho] M A A of] tf §F 117 APIE 5 Ut XVﬂTﬂ"/H < Include/
abstract.h& 9§24 A L. PySequence_Length (),PySequence_GetItem() S} 7"8 SEEZ R
T 7Y Tl Al A2 QIEH o] &~ & 5 Q1S Uk ofy] 2} A} (PyNumber_ Index) &) £} PyMap-
pmgAPH 33 ge e g e 2 EZ2 S ALY UL

5.7 Py_BuildValue() & A8l Qo] Zole] RE& vletyhye B
A7}

28 4 g Uth B4 PyTuple_Pack () AHESHAIA 2.

5.8 Coll 4] 27¢] WA =5 omA| 523z

PyObject_CallMethod () B+ AAY A WM EE S
AR, ZEF WA T 0|2, py_Buildvalue ()9 AFEEH =

PyObject *
PyObject_CallMethod (PyObject *object, const char *method_name,
const char *arg_format, ...);

o

HAEZE Qe B AAAA Ut - Waelv A& o 2% A5yt ¥k gt
Py_DECREF () & A]2 of 2] oA A5 Th

& Eo, 912110, 022 5D AA Y “seek” MIAEE TE3 W (3L A A€ 72k 7Hg FY
oh:

62 Chapter 5. &3/ % FAQ

Python Frequently Asked Questions, = x] 1] A 3.7.17

res = PyObject_CallMethod(f, "seek", "(ii)", 10, 0);
if (res == NULL) {
an exception occurred ...

¥
else {
Py_DECREF (res) ;

}

PyObject_CallObject ()£ T4 AR HE of
format & & “()”E AEslaL, shuho] AIAE TS T

5.9 PyErr_Print() ¢] &3 (== stdout/stderr 2 2135 =2 & 7)) & o
A A5 7R

ol ZEOA, write () HIAEE A D3t AAE FIHAHA L. o] AAE sys.stdoutH sys.
stderrel t J3H Al L. prmt errorE TS AU TF Ed o] WA YF o] AFHEF FAAL.
aud 28 oy B write () MM EZFHUE X2 T

olgdA st= M A WL i0.Stringlo EHAE A= AY YT

>>> import io, sys

>>> sys.stdout = i0.StringIO()

>>> print ('foo')

>>> print ('hello world!"'")

>>> sys.stderr.write(sys.stdout.getvalue())
foo

hello world!

e AYe FAtE SR Y AA L 2w 2HU T

>>> import io, sys
>>> class StdoutCatcher (io.TextIOBase) :
def _ init_ (self):
self.data = []
def write(self, stuff):
self.data.append(stuff)

>>> import sys

>>> sys.stdout = StdoutCatcher ()

>>> print ('foo')

>>> print ('hello world!")

>>> sys.stderr.write(''.join(sys.stdout.data))
foo

hello world!

5.10 CollA] slo]x o g ZAJE R E o] DA HAAF7I2

Che 2ol BE AR e £AHE AL 4 AHUTh

’module = PyImport_ImportModule ("<modulename>");

olF] AXE 3R ko™ (F, sys.modulesd] o}3F o Eﬂ) o) AL RES 2783,
M ©h<=3] sys.modules ["<modulename>"]2] L& |l . I}
2| kol ol st Al & — A 273} =5 SFAL sys ~mOdUleS°ﬂ AZE == gk

to] R59] o] ER|RE(S 280 B BE o]F) ol IA 2T 5 JFUth

ol [1
Y ot

.
e
vl
o
;Q 9
oo
i)
m\l

5.9. PyErr_Print() ¢] & (£ stdout/stderr 2 Q1 == &) S o9A ZF5 U712 63

Python Frequently Asked Questions, = x] 1] A 3.7.17

’attr = PyObject_GetAttrString (module, "<attrname>");

Egol = ol tidshr] fel pyObject_setAttrString () & &8s A= A5 dUTh

rr

5.11 5}o] Aol 4] Ca+ Aol o] B A AE] o] 2 FLI71?

257 Aol whet ole] 74 42 WA o] dEUTE o] AYL SFOR 5
Qe Aoz RSN L. shol A ReRe Alwle] B9 CohCrt AL
48— mEkA C TRA () L FA O

2 gk

Cr+ eho B efele] B9, C5 25 AL oAU tloke] d5U7RE FRFHIN L.

Wsteld, g8
o

AN
]
= Mze shold WS A4k Aol

5.12 Setup 3} & A}-& 5t BE5 7=t make 7} A sl cy; o}

A<
JESYUR
Setup2 7oz Zrjok dtu], /3ol glod A Zz a7t Aigrct. (o] BAE s 23 A
Ais A A2aHE A o] LR3I, o] HIE YF A 211 =83 S s 7HA 7 gle A

5yt

513 2732 oA LW P

Ao 2EH 40| GDBE AHS S wl, o]l 2Ed wj7hx] 3o IS AT 5 s Uk

_gdbinit LA (E& BIA 0 2) 0h S F A L

br _PyImport_LoadDynamicModule

a9 S, GDBE A3 & uj

$ gdb /local/bin/python
gdb) run myscript.py

gdb) continue # repeat until your extension is loaded
gdb) finish # so that your extension is loaded

gdb) br myfunction.c:50

gdb) continue

514 252 A 2" A slo] X RES Auldsta AT, i 51 o]

dsdth A 2547

o) £ 1A vl L vl B2 Aok sk v BT ThFR 91U o] £E /usr/lib/
python2.x/config/ vl el 27} £ 3= o] 9% ehrvivh.
A= A9, DL AL 20 # B python-devel RPM-S 4 X 5441 A1 2.

o8] ¢te] A9, apt-get install python-devE A3 3A A Q.

64 Chapter 5. &3/ % FAQ

Python Frequently Asked Questions, = x] 1] A 3.7.17

542 5
(18 Sof, “if” ¥ A4 JANAY B

H o=
FAIBHAIRE dF o] FaSHA] kot S EH ol 2] WA A& BAIFY T
shol Ao A= codeop BEL AT 4 A5 UTH ol BES TR B4/ $A4L 23 2AGUG

2 PyRun_InteractiveLoop () & EE3FaL (ofu} H T o] A =0
g 3t=E 3= A Yyt PyOoS_ReadlineFunctionPointer ()
g 7te] 7125 A48 + = A5tk AAE I E = Modules/

readline.c® Parser/myreadline.cE IR A 2.

Y uzE YA S8 223939 22 Ao q U slo]d Az HE Ao
AFE A 8-S 7|thEl = 5 ¢ PyRun_InteractiveLoop () & 3
PyParser_ParseString() & &3l e.error7}E_EOFS} Z2 A& AALSH= A

B2 AT AL o u gt oSS Alex Farberd] FE oA 472 AL HAE 52 o A=

274 Jyt:

Col A o] ZA 3= 7HF 41 4
A

#define PY_SSIZE T CLEAN
#include <Python.h>
#include <node.h>
#include <errcode.h>
#include <grammar.h>
#include <parsetok.h>
#include <compile.h>

int testcomplete (char *code)
/* code should end in \n */
/* return -1 for error, 0 for incomplete, 1 for complete */

node *nj;
perrdetail e;

n = PyParser_ParseString(code, &_PyParser_Grammar,
Py_file_input, &e);
if (n == NULL) {
if (e.error == E_EOF)
return 0O;

return -1;

}

PyNode_Free (n);
return 1;

222 FAH BAEE Py_CompileString () 22 ALl = AJ Yt ol gl
AV Y=, pyEval_EvalCode () & $&3to] v18dH I = AAE A AlQ.
Us<= A8 489S At L. Hutdo] Asjstd, ole] FZolA WAA £ALS FE3L °oF
“unexpected EOF while parsing” B A4 ¥} v] w3} of| 2] A X &R o] B2] o] QIR E

-2 GNU readline 2}o] H & 2] & A8 3t 2 8 ol Al f U o} (readline() & S & 3t & < SIGINT S
FASA T 5 % o

#include <stdio.h>
#include <readline.h>

#define PY_SSIZE_T_ CLEAN
#include <Python.h>
#include <object.h>
#include <compile.h>

(Th& sl AT ol AS)

5.15. R E YA T B RAT YY" WA THE > DS 65

Python Frequently Asked Questions, = x] 1] A 3.7.17

(o1 sl o] A A A%)

#include <eval.h>

int main (int argc, char* argv([])

{
int i, j, done = 0; /* lengths of line, code */
char psl[] = ">>> ";
char ps2[] ...
char *prompt = psl;
char *msg, *line, *code = NULL;
PyObject *src, *glb, *loc;
PyObject *exc, *val, *trb, *obj, *dum;

Py_Initialize ();

loc = PyDict_New ();

glb = PyDict_New ();

PyDict_SetItemString (glb, " _builtins__ ", PyEval_GetBuiltins ());

while (!done)
{

line = readline (prompt);

if (NULL == line) /* Ctrl-D pressed */
{
done = 1;
3
else
{

i = strlen (line);

if (1 > 0)

add_history (line); /* save non-empty lines */
if (NULL == code) /* nothing in code yet */
j=20;
else
J = strlen (code);
code = realloc (code, i1 + j + 2);
if (NULL == code) /* out of memory */
exit (1);
if (0 == 9) /* code was empty, so */
code[0] = '"\0'; /* keep strncat happy */
strncat (code, line, 1); /* append line to code */
code[i + j] = "\n'; /* append '\n' to code */
code[i + j + 11 = '"\0"';

src = Py_CompileString (code, "<stdin>", Py_single_input);

if (NULL != src) /* compiled just fine - */
{
if (psl == prompt || JFx MS>S>S 1" oop A/
'"\n' == code[i + j - 1]) /* ", .. " and double '\n' */
{ /* so execute it */

dum = PyEval_EvalCode (src, glb, loc);
Py_XDECREF (dum) ;

Py_XDECREF (src);

free (code);

code = NULL;

if (PyErr_Occurred ())

(Th& sl AT ol AS)

66 Chapter 5. &3/ % FAQ

Python Frequently Asked Questions, = x] 1] A 3.7.17

(o1 sl o] A A A%)

PyErr_Print ();
prompt = psl;
}
} /* syntax error or E_EOF? */
else if (PyErr_ExceptionMatches (PyExc_SyntaxError))
{

PyErr_Fetch (&exc, &val, &trb); /* clears exception! */

if (PyArg_ParseTuple (val, "sO", &msg, &obj) &&

!'strcmp (msg, "unexpected EOF while parsing")) /* E_EOF */
{
Py_XDECREF (exc);
Py_XDECREF (val);
Py_XDECREF (trb);
2

’

prompt = ps
}
else /* some other syntax error */
{
PyErr_Restore (exc, val, trb);
PyErr_Print ();
free (code);
code = NULL;
prompt = psl;
}
}
else /* some non-syntax error */
{
PyErr_Print ();
free (code);
code = NULL;
prompt = psl;
}

free (line);
}

Py_XDECREF (glb) ;
Py_XDECREF (loc);
Py_Finalize();
exit (0);

5.16 A olx] x| 92 g++ 7|E _ builtin_newy} _ pure_virtual & o]®
A 2e 5 AEUN
gt Y EES FHOR TS Y, shol M S ThAl AL B, g S AHgShe] thA] W =5 (sl

Modules Makefile o] /] LINKCCS ¥ A 314 A 2), g++ 2 AL&3to] o 2| 29 4 R 5 P oF Futh
(] & E9¢],g++ -shared -o mymodule.so mymodule.o).

5.16. A% x] &2 g++ 7|S _ builtin_newy} __ pure_virtual & o] 4] 3-8 4= Q57?2 67

Python Frequently Asked Questions, = x] 1] A 3.7.17

517 dF mMA=EE=CE ?4_16121‘#91 AL stolroz THEH (S
T—._-OJ &< 3¢ 4

m‘uj
£
[>
il
rH
iy
¥
30
I
L
=

285Ut int, list, dict 53 22 YF FH2E 45T 5 5 Uh

Boost I}o] A g}o] B.& 2] (BPL, http://www.boost.org/libs/python/doc/index.html) &= C++o| A o] & 43 5=
WS A F U THE, BPLS AFR St C+ 2 A H 4 F e A8 A f?a A=y Th.

68 Chapter 5. &3/ % FAQ

http://www.boost.org/libs/python/doc/index.html

CHAPTER O

Python on Windows FAQ

6.1 How do | run a Python program under Windows?

This is not necessarily a straightforward question. If you are already familiar with running programs from the Win-
dows command line then everything will seem obvious; otherwise, you might need a little more guidance.

Unless you use some sort of integrated development environment, you will end up #yping Windows commands into
what is variously referred to as a “DOS window” or “Command prompt window”. Usually you can create such a
window from your search bar by searching for cmd. You should be able to recognize when you have started such a
window because you will see a Windows “command prompt”, which usually looks like this:

’C:\>

The letter may be different, and there might be other things after it, so you might just as easily see something like:

’D:\YourName\Projects\Python>

depending on how your computer has been set up and what else you have recently done with it. Once you have started
such a window, you are well on the way to running Python programs.

You need to realize that your Python scripts have to be processed by another program called the Python inferpreter.
The interpreter reads your script, compiles it into bytecodes, and then executes the bytecodes to run your program.
So, how do you arrange for the interpreter to handle your Python?

First, you need to make sure that your command window recognises the word “py” as an instruction to start the
interpreter. If you have opened a command window, you should try entering the command py and hitting return:

C:\Users\YourName> py

You should then see something like:

Python 3.6.4 (v3.6.4:d48eceb, Dec 19 2017, 06:04:45) [MSC v.1900 32 bit (Intel)].
—on win32

Type "help", "copyright", "credits" or "license" for more information.

>>>

You have started the interpreter in “interactive mode”. That means you can enter Python statements or expressions
interactively and have them executed or evaluated while you wait. This is one of Python’s strongest features. Check
it by entering a few expressions of your choice and seeing the results:

69

Python Frequently Asked Questions, = x] 1] A 3.7.17

>>> print ("Hello")

Hello
>>> "Hello" * 3
'HelloHelloHello'

Many people use the interactive mode as a convenient yet highly programmable calculator. When you want to end
your interactive Python session, call the exit () function or hold the Ct r1 key down while you enter a Z, then hit
the “Enter” key to get back to your Windows command prompt.

You may also find that you have a Start-menu entry such as Start » Programs » Python 3.x » Python (command line) that
results in you seeing the >>> prompt in a new window. If so, the window will disappear after you call the exit ()
function or enter the Ct r1-7 character; Windows is running a single “python” command in the window, and closes
it when you terminate the interpreter.

Now that we know the py command is recognized, you can give your Python script to it. You’ll have to give either an
absolute or a relative path to the Python script. Let’s say your Python script is located in your desktop and is named
hello.py, and your command prompt is nicely opened in your home directory so you’re seeing something similar
to:

C:\Users\YourName>

So now you’ll ask the py command to give your script to Python by typing py followed by your script path:

C:\Users\YourName> py Desktop\hello.py
hello

6.2 How do | make Python scripts executable?

On Windows, the standard Python installer already associates the .py extension with a file type (Python.File) and
gives that file type an open command that runs the interpreter (D: \Program Files\Python\python.exe
"%1"™ %*). This is enough to make scripts executable from the command prompt as ‘foo.py’. If you’d rather be
able to execute the script by simple typing ‘foo’ with no extension you need to add .py to the PATHEXT environment
variable.

6.3 Why does Python sometimes take so long to start?

Usually Python starts very quickly on Windows, but occasionally there are bug reports that Python suddenly begins
to take a long time to start up. This is made even more puzzling because Python will work fine on other Windows
systems which appear to be configured identically.

The problem may be caused by a misconfiguration of virus checking software on the problem machine. Some virus
scanners have been known to introduce startup overhead of two orders of magnitude when the scanner is configured
to monitor all reads from the filesystem. Try checking the configuration of virus scanning software on your systems
to ensure that they are indeed configured identically. McAfee, when configured to scan all file system read activity,
is a particular offender.

70 Chapter 6. Python on Windows FAQ

Python Frequently Asked Questions, = x] 1] A 3.7.17

6.4 How do | make an executable from a Python script?

See cx_Freeze for a distutils extension that allows you to create console and GUI executables from Python code.
py2exe, the most popular extension for building Python 2.x-based executables, does not yet support Python 3 but a
version that does is in development.

6.5 Is a *.pyd file the same as a DLL?

Yes, .pyd files are dllI’s, but there are a few differences. If you have a DLL named foo.pyd, then it must have a
function PyInit_foo (). You can then write Python “import foo”, and Python will search for foo.pyd (as well as
foo.py, foo.pyc) and if it finds it, will attempt to call PyInit_foo () to initialize it. You do not link your .exe with
foo.lib, as that would cause Windows to require the DLL to be present.

Note that the search path for foo.pyd is PYTHONPATH, not the same as the path that Windows uses to search for
foo.dll. Also, foo.pyd need not be present to run your program, whereas if you linked your program with a dll, the
dll is required. Of course, foo.pyd is required if you want to say import foo. InaDLL, linkage is declared in the
source code with __declspec (dllexport). Ina .pyd, linkage is defined in a list of available functions.

6.6 How can | embed Python into a Windows application?

Embedding the Python interpreter in a Windows app can be summarized as follows:

1. Do _not_ build Python into your .exe file directly. On Windows, Python must be a DLL to handle importing
modules that are themselves DLL’s. (This is the first key undocumented fact.) Instead, link to pythonNN.
dl1;itis typically installed in C: \Windows\System. NN is the Python version, a number such as “33”
for Python 3.3.

You can link to Python in two different ways. Load-time linking means linking against pythonNN.1ib,
while run-time linking means linking against pythonNN.d11. (General note: pythonNN.1lib is the
so-called “import lib” corresponding to pythonNN.d11. It merely defines symbols for the linker.)

Run-time linking greatly simplifies link options; everything happens at run time. Your code must load
pythonNN.d11 using the Windows LoadLibraryEx () routine. The code must also use access rou-
tines and data in pythonNN.d11 (that is, Python’s C API’s) using pointers obtained by the Windows
GetProcAddress () routine. Macros can make using these pointers transparent to any C code that calls
routines in Python’s C APL.

Borland note: convert pythonNN. 1ib to OMF format using Coff20mf.exe first.

2. If you use SWIG, it is easy to create a Python “extension module” that will make the app’s data and methods
available to Python. SWIG will handle just about all the grungy details for you. The result is C code that you
link into your .exe file (!) You do _not_ have to create a DLL file, and this also simplifies linking.

3. SWIG will create an init function (a C function) whose name depends on the name of the extension module.
For example, if the name of the module is leo, the init function will be called initleo(). If you use SWIG
shadow classes, as you should, the init function will be called initleoc(). This initializes a mostly hidden helper
class used by the shadow class.

The reason you can link the C code in step 2 into your .exe file is that calling the initialization function is
equivalent to importing the module into Python! (This is the second key undocumented fact.)

4. In short, you can use the following code to initialize the Python interpreter with your extension module.

#include "python.h"

Py_Initialize(); // Initialize Python.
initmyAppc(); // Initialize (import) the helper class.
PyRun_SimpleString ("import myApp"); // Import the shadow class.

6.4. How do | make an executable from a Python script? 71

https://anthony-tuininga.github.io/cx_Freeze/
http://www.py2exe.org/

Python Frequently Asked Questions, = x] 1] A 3.7.17

S.

6.7

There are two problems with Python’s C API which will become apparent if you use a compiler other than
MSVC, the compiler used to build pythonNN.dIL.

Problem 1: The so-called “Very High Level” functions that take FILE * arguments will not work in a multi-
compiler environment because each compiler’s notion of a struct FILE will be different. From an implemen-
tation standpoint these are very _low_ level functions.

Problem 2: SWIG generates the following code when generating wrappers to void functions:

Py_INCREF (Py_None) ;
_resultobj = Py_None;
return _resultobij;

Alas, Py_None is a macro that expands to a reference to a complex data structure called _Py_NoneStruct inside
pythonNN.dll. Again, this code will fail in a mult-compiler environment. Replace such code by:

return Py_BuildvValue("");

It may be possible to use SWIG’s $t ypemap command to make the change automatically, though I have not
been able to get this to work (I’'m a complete SWIG newbie).

Using a Python shell script to put up a Python interpreter window from inside your Windows app is not a
good idea; the resulting window will be independent of your app’s windowing system. Rather, you (or the
wxPythonWindow class) should create a “native” interpreter window. It is easy to connect that window to the
Python interpreter. You can redirect Python’s i/o to _any_ object that supports read and write, so all you need
is a Python object (defined in your extension module) that contains read() and write() methods.

How do | keep editors from inserting tabs into my Python
source?

The FAQ does not recommend using tabs, and the Python style guide, PEP 8, recommends 4 spaces for distributed
Python code; this is also the Emacs python-mode default.

Under any editor, mixing tabs and spaces is a bad idea. MSVC is no different in this respect, and is easily configured
to use spaces: Take Tools » Options » Tabs, and for file type “Default” set “Tab size” and “Indent size” to 4, and select
the “Insert spaces” radio button.

Python raises IndentationError or TabError if mixed tabs and spaces are causing problems in leading
whitespace. You may also run the tabnanny module to check a directory tree in batch mode.

6.8

How do | check for a keypress without blocking?

Use the msvert module. This is a standard Windows-specific extension module. It defines a function kbhit () which
checks whether a keyboard hit is present, and getch () which gets one character without echoing it.

72

Chapter 6. Python on Windows FAQ

https://www.python.org/dev/peps/pep-0008

CHAPTER /

222 AHg A 9lE] 7] o]~ FAQ

7.1 durAQ GUI A&

il

7.2 stolge] o} | ZAF 542 GUI E71¢] YR

O%H—‘%Ol GEE G gl Hef, o 17 A5 T 2% 3 A ol shol d 3ol o144

7.2.1 Tkinter

stol M) FF W ol = Tel/Tk | A 3ol ch sk A A A 3F A€ 5 o] 27} 235 =4, tkinter 231 & 9
yrth o] A o] ofutx 71 (Fho] M o] & nlo] 2] nj 2o 2EF o Jlormg) H X3 AFE3}H]
HE5UTH A2 g8k ot & Z35F= Tkof| U 3 AFA| 3F W82 Tel/Tk &3] o] A| & FZ 34 Al 2. Tcl/Tk
EHWOSX, A= 9 FHs ZUF] A T Y

7.2.2 wxWidgets

wxWidgets(https://www.wxwidgets. org) C++2 ZA " —‘?—EOLT’_ o] A1 Q1= GUI a2 ol B &g],
U2 SR EoA ol E SdRES xﬂ*ff:MD} A& W OS X, GTK, X11 7} 2% & A 9+ e} A o
EE U o), W, 205 rherat Aolol A Qo] BT S A8 4 U

wxPython-2 wxwidgets] 3}o] & w}<l ,jb]l:]— Z Al wxWidgets] 3 Bt} 27} H & o] 2] 2] 7] &= 3} A g,
S5 shol 4l B4 B OhE Ao] MDA ALS T 5 Rt B /152 AZHAE FUTE B
wxPython A& -5} 722k AR U E| 7t 9141 o).

wxWidgets 2} wxPython-> 5 3Z 2] 9] of L} A| o] g o] 29 of] 2} A -8 Al F ol A 2] AHg= & et &
og ol Mlas Sk FE B £ £ZER 0] T

73

https://www.python.org/downloads/
https://www.tcl.tk
https://www.wxwidgets.org
https://www.wxpython.org

Python Frequently Asked Questions, = x] 1] A 3.7.17

7.2.3 Qt

Qt A (PyQtu} PySide & AH-&-3}]‘/PKDE(P)’KDE‘D S 9 tupdd S A S 5 s Ut PYQt— 7Y
PySide T} o A< 38HA 2 53 %%— Z2 13RS ZAsEH R1verbank Computing©l] A] PyQt 2lo] A&
Aok St PySides M & S8 5o 9ol B2

Qt4.5 0] %2 LGPL gfo] Al 2 of ufe} ko] Al 271 Fof g oh; Tl 4§ 2ho] Al 2~ The Qt Company ol A]
Asg Yyt

7.2.4 Gtk+
3}o] & GObject Q1 EZ A3 A nlol o] & ALR-51H GTK+ 3 3
GTK+ 3 A5 A= Q5 th

Gtk+ 2 =71 913t o] A PyGtk v} 91 2 James Henstridge 7} 7 & 35 U o} ; <http://www.pygtk.org> 5 B
AL

ofo
[kl
fru
[
ey
o
X,
X,
ok

R S | N

7.2.5 Kivy
Kivy£ tl2 355 &9 AA (A=, macOS, 2]52) 2 Bubd FA| (FERCE, i05)E EF A dste
WA S HF GUI E} 1222yt o] 22 sho] 3} Cython & & 2= gl om ot W4 o] =5

A=E AT 5 Y&

Kivy= MIT gho] d 2o e} i 25 = 78 37 a2 2z e o] YT
7.2.6 FLTK
AUASHHAE Fesn A5 e W SRE A9 Al 280 FLTK 571§ sho] &l uhel e o] PyFLTK =

A=A AFH UTh

7.2.7 OpenGL

OpenGL H}21 -2 PyOpenGL-E F 2814 A L.

7.3 shol Mol ojH ZAE 4 GUI S 0] A&7

PyObjc Objective-C H 2] A& A X gto 2 A, glo]H =2 7 W2 W OS X9 Cocoa 2ol HE] 8| & AL
<

Mark Hammond €] Pythonwinol] = Microsoft Foundation Classes o1 T} 3}
SHAE AP ste] A HE stol 2 TR S o] o] 9]

Bl o] 29} £ 2 Fho] o ' MFC
u}.

Lr_,

3}
F
|

A A

7.4 Tkinter A&

7.4.1 Tkinter && = 2 738 o]E A 114 (freeze) g1 7}?
Freeze= =g Ay 2@ g 72 vt = =29 Uch Tkinter € Z2 7S 7 AT 0], S8 =8
WL S| Tl Tk ol Bl g7t D astn g 7\(_]7@@5%] A8 3 o] opd T}

NS Tl Tk ko] B & g &} ﬂﬂ] A, 22 A% AT
TCL LIBRARYE} TK LIBRARY 37 H4E AR5 e 7= AUyt

rIJEL

74 Chapter 7. 28] 2182} 21 E] 5 o]~ FAQ

https://riverbankcomputing.com/software/pyqt/intro
https://wiki.qt.io/PySide
https://techbase.kde.org/Languages/Python/Using_PyKDE_4
https://www.riverbankcomputing.com/commercial/license-faq
https://www.qt.io/licensing/
https://wiki.gnome.org/Projects/PyGObject
https://python-gtk-3-tutorial.readthedocs.io
https://python-gtk-3-tutorial.readthedocs.io
https://www.gtk.org
http://www.pygtk.org
https://kivy.org/
http://www.fltk.org
http://pyfltk.sourceforge.net
http://pyfltk.sourceforge.net
http://pyopengl.sourceforge.net
https://pypi.org/project/pyobjc/

Python Frequently Asked Questions, = x] 1] A 3.7.17

AR =Y A 8 22 I0E Jo ol Refe) 8 TATNETd ATYEE S8 22 21300
E3a] oF gyt o] & X433t 7HA] == Tix B = 3 (http://tix.sourceforge.net/) & LF <l SAM(S Y
Ay 2E)dlth

3 y
o] A3} H TixE L=, 3Fo] W9 Modules/tkappinit.c LH—‘?—Oﬂlﬂ Tclsam init () 5&
5} 1, libtclsam 3% libtksam 3+ 3 Z 3t} (Tix ko] B8l = £33 4= g5 th.

7.42 0E 7|tke)= B9t Tk o MIEE Helst 2 & 5 Q& U
hoi|

LA E gLyt 28310 TE
23 9, 72 7] & Aol A

AL olg 9 th& S FoNA e, 285Ut 28] 28 =7} 3
(ZA:
St} tkinter-file-handlers S

Z o7k A A3l oF ffhz]u} Tk+= X 4 XtAddInput
V07l R w Tkl 2o 528 29 B8 558 4
FzAAN L

A5hA) e Th: ol 7 Fol Uk

HHE3 718 2l E bind () WA ER o|HlE] Add o|HE X277} A 2|5 A

7.4.3 Tkintero) A] 7] u}eldg o]

oft

21Ut focus ™ % of] Th gk Tk A2 3
wEUT(EE e 287 st

7.4. Tkinter 2 & 75

http://tix.sourceforge.net/

Python Frequently Asked Questions, = x] 1] A 3.7.17

76

Chapter 7. 223 2}-& 2} ¢lE] 5 o] A FAQ

CHAPTER 8

“9H "H 7}4_‘:'_?_ }oﬂ J}O]’VQO] Nx]ﬂo} O]AWU]'?”FAQ

ol e 2y dojdyth B2 2 22 2 7o AFREFH YT Jo|HAL 7] A2
AR 3753k 9} off Shof| 4 % de zzZ ey Ao AMEE A ¢, Google, NASA & Lucasfilm Ltd. £} 2+
FAA AR £ ZEY o] /|7t AFLEH 7 & Y T

gho]l Mol thal B & Athd, sho] 4l 9 2}F A F A HE A& Al 2

8.2 Ul AFEl o shollo] A8 o] T}

shol Aol Al2glol AXx o] AT AT A1e0] Yobd, TFA D 5 Ut B A A5 g ol
91Utk
« olulE AFHY hE S me 2P S ST o] Hha 1AL AN NS AYYTH FA L
%ﬂﬂﬁﬁé&ﬁﬂiﬂﬂﬁhﬂi sH ok g o,
- AFH BB ANA S5 22 TP o) ol oT A 90, 3ol
o GUI 2t 1 o A2 Aok she) £z o] o171
Sl eh

¢« 4R A= AFH = FolHo] AAFH o JFUth o] F& 2= A A, $el= sto| o] £3H
Hewlett- Packardi} Compaq®] AFE U] &2 A5tk £93] HP/Compaqd] & &+ 5 9 F
b sholme = AH 9L Ak

e MOSXHE ER 52z 22 B U2 58 2 AAd = 7|24 22 sho]xlo] HXA

S0} Gtk /& Aol E@eol AU

77

https://wiki.python.org/moin/BeginnersGuide

Python Frequently Asked Questions, = x] 1] A 3.7.17

8.3 slo]Wg AR T 5 A&7

gho] MW o] o] TI A =20 &8 Y5t
FE7hEAo R AAYou, ofF RAE Lo7|A R AAL 5 AgTh Aol A, A o we)
=29 FAA A ohol =& AHETHIA S

AR §-§ 22 a0 A sl AL BA ek, A A
27 BT st 8 AR AAE A NG 5§ 3
shol wlo] £ 3 A 2 B A5 ATh, A A S
A9 NE ST AL A GO, 1 ARE FRE 4 3
Ad e A B Aok & 4 AU T

%%%:_T__Ej_aﬂo] o= ZE 3R]
Z 2 IS ARGl oF Pyt

Ut A A S, sholmow
Yo EAIE ddsidd oA

8 Chapter 8. “2j U} 7€l el sto] o] A5 o] 91%1172” FAQ

APPENDIX A

ofo
2
)

>>> T3 9] 7|2 shold mEmE. AE xS Y oz ABY 5 dt T oo 4 A5 B

2t03 Tlo]HM 2x T T E Tlo|M3x T &

EelE gasl A ZAT 5 gl TR m s e thE ok
203 £ £2 ol el gl Linacos £ AFAY T FUAOR 4B 4 Y 2aWEE

Tools/scripts/2to3 & AFH Ut} 2to3- referenceE HAS

abstract base class (34 W] o] &~ S'EH/\) ZA o]~ F P At hasattr () T2 EHIaYES EHs
= q

Ak o) LA B2H (o 5ol, W4 HAE) AF, AL ol 28 A S WL AT FLEA
S Erol® & MR ABCE M3 AN ZeAE w Qaier, 2948 Asshd shonlA
% isinstance () 2 issubclass () o 3] ZAE + = SFH2EY YT} abe EE AHA

S Wl e. 9ol 0Ol L B8 U4 ABC ol mhers ol o8} 28 A8
(collections.abc BE|A]), rx}(numbers BEINA), 2EH (io EE)
29 (importlib.abc REOIA). abc ZEZ AHE3 A A4l ge] ABCE WHE $% Y5 Th

annotation (o] E|o]A) FHo| Wl 3 I E Z AIREH = HS S22 o EZHE =& T4 wj/jHs
Rk g A28 Eﬂolt"ﬂ‘%‘l}-
A o] o) iE o] d2 A3 A Zbol] AN AT 5 QAR A Mg, el S W o]
7t g, 2, '51 9] __annotations__ &4 oJEEHE AFE Yk

Elo] A& 77
o] 7]%5& Ayt v o%leﬂ ol A, 3 o] = E| o] A, PEP 484, PEP 5262 Z 234 &
argument (12h) ¢S T2 0 ¢ tUAE) 2 AgE s gk F SR AR AU Th
o 7Y <l }(keywordargument) St T2 w) A AL el 82 A (o & £01, name=) £+
x5 ool 22 AU E R AEEE AR & £, b33 22 complex () T&°A 33

5ERF 71%5 AAA Y -

complex (real=3, imag=5)
complex (**{'real': 3, 'imag': 5})

o A A QA A} (positional argument): 71 = QA X7} opd Q1 A} ol
He AU olE 2L o ool * & 2o AT = UFUTh A& S, e} 22 EE01A4 3
5= EF A AR Y

79

https://www.python.org/dev/peps/pep-0484
https://www.python.org/dev/peps/pep-0526

Python Frequently Asked Questions, = x] 1] A 3.7.17

complex (3, D5)
complex (* (3, 5))

A7 U ool o] o) 8- A9 ol o] 99 LI o] B 1o 4851 72 5ol sl
R0

A EAL. EHACRE, ofd @A o] JAARE AHREE = AFUth 73l ol A Y w4
gyt
Lo - v 7w 2T FAQ A& ol x18) v 7] ¥l 4=2] x}o] 2} PEP 3625 H A 8.
asynchronous context manager (8] 5-7] Y2 E #2|A}) __aenter_ () &__aexit_ () WAEEF
O EZM async with oA Kol S-S Alojsh= AA|. PEP 492 = 5 g5t
asynchronous generator (3157] A ole]) w5 7] Alvld ol E o g F<

°lH & =9
U‘—’Fﬂ‘“f* Holed], async for 27} /\}%@—’F e ddo gEe

gatehe Aol gy

def 2 AoH = F

TrE=vyield Efﬁ/-‘l%

PM r_vL

HE 57 Aol ¢S 7He] 7| AW, o™ 2ol A= vE 7] Aldd ol E olH e oY &
el U th o w ok o)7k BaehA) e A9k, e o8 A BB TS ik

Hl 5 7] AlF @ olE g+ await EH A F async for £3} async with & X288 5 5

ek

asynchronous generator iterator (¥]£ 7] A& o] €] o]E]d o]¥]) v]5 7] Al o] g Sl wt== A A,
Hl 5 7] o] g o] E Ad] __anext_ () € T&31W AHolEE AAE ST, o)A TS
yicld B84 744 05 7] A el ol el Bl uhel e A g gk
Zyields QAALE A E ST, TR (A AFEH 7] 5 ry-2ES EFE)
AR e E 71 FUTh b5 7] AlFdl ol o8 dolH 7} __anext_ () 7} EHF= E
olgfolHER AN H, Wyt Zo® BTt PEP 4922} PEP 5255 H A 2.

asynchronous iterable (W] 5 7] o]e]2] &) async for EolA] A& E 4= = AA. __aiter_ () HA
ctevs7] olHd olE & el oF uYth PEP 492 & = JlF YT

asynchronous iterator (B]5 7] oJE€]#|o]E]) _ aiter_ () & __anext_ () WA =E Z£d3= AA.
__anext_ =g olHE AAE Sl FoF gt} async forE StopAsyncIteration o9
79 @ 78R W5 7] ol el ol Fle] __anexc_ () MAE7} BelFk of ol B E E 4o

PEP 4922 % 9% 95Ut
attribute (] EZ|RE) FXFA S 8ot o522 2= AA L} A3 3k A& 501, AA o7t
AEeHE T AN E, 00X F2H T
awaitable (o] | o]E]E) await T A AT 4 9= AA.
ARA7FE 4 95Ut PEP 4928 B A 8.
BDFL #}H] 2% £ Al =] 2} (Benevolent Dictator For Life), = Guido van Rossum, 3}o] 21 2] A A},
binary file (9}o] L1 2] 5he]) Who| =A% A7 52 97 & 5 A 5 217, whol Y 2] 5ol o 2 wpol
HEl = ('rb', 'wb' =¥ 'rb+') 2 €8 3}Y, sys.stdin.buffer, sys.stdout .buffer,
io.BytesIO & gzip.GzipFile & Q1A
str AAE A1 2 5 Qe 5k AAol] el AL B4 519 E Bz AL,
bytes-like object (R} o] E Q7 2} A]) bufferobjects & A Y31 C-A5 HHE QA2 E S 5
5% memoryview 7“ AANEL ER0]T bytes, bytearray, array.array AA =

u}]Eoﬂa AR S vfol vz Ho]E]2 Oes oe] 7hA] A S o ALeE 2 2T}
Hhol g st & XV‘ 271S 28 A% 2L ASo] 9T

ol Q4SS vl e HolE s} ApAAY Bk A5t old A9o] AWAE FF <ol 7.
7] vho| EQF AR 2L 3

H

FZE oy await_ () HIAEE 7}X

A3k b ¥ 3 AA| 9 o2& bytearray & bytearray 9

memoryview 7 & Th CHE QAHE S uhol 2] HlolE 7t B9l AA| (“9)7] A& o= A

AR AFZEHEE QYT o]H AE9 o2+ bytes® bytes 2 A2 memoryview 7}
1%k

bytecode (H}o] E F.&) Fo]H £ FEEvlo]E FEZ A9 AE =4, CPython 91 E] Z 2] €] of| A T}o] #

s e A RA T IO E TEE oy o] AA H o, 22 1AE F WA 4G)

O webx) A BHE L o (A 0] A Hhol = S 29 AR TS 318 5 g Th. o “E7 o] =

80 Appendix A. &3

https://www.python.org/dev/peps/pep-0362
https://www.python.org/dev/peps/pep-0492
https://www.python.org/dev/peps/pep-0492
https://www.python.org/dev/peps/pep-0525
https://www.python.org/dev/peps/pep-0492
https://www.python.org/dev/peps/pep-0492
https://www.python.org/dev/peps/pep-0492
https://gvanrossum.github.io/

Python Frequently Asked Questions, = x] 1] A 3.7.17

2 shol = =] 9§31 714 € AL 14717 A ARHLkR W) vhol= IEL

MEZTE vhol i 7P 71 Al A AE A o2 JIH A =, whol i W Zhol] b A o] A = gtk

2ol Fo 8 oF Pt

Hho]E T §ol o] B2 dis R E Aol LT
class (2| 2) A2 A2 A

A4kt WA= 4o 5L EIITh

class variable (2] 2 W) Fej2olA FoH 1 Zea 2 (5, FH929 ol A7} ek 2} o
ARt A E = W,

coercion (Zo]A) 22 PO F AAE Fubsh= dAte] dojus B¢ S P A2 AE 2 PO 7
SAH g HEsh= A ol & 59, int (3.15) £ AFE A 382 WAL ARk 344.5
oA, Z+ At ThE F o] I (Bhih int, THE ShbE float), B T3H7) Aol 22 P o2 WSl of
g"/]ﬂ' 27 ¢F oW TypeErrorE oYUt FojHd glole, a8 = A4 22 T8
M7 e Poz Agge|Folor Ut o & o], 1 3+4.5 3= thAl float (3)+4.5

complex number (F2:2) 943k A4 AJAgl] gAY, BRE A7 A g Rol s Fog %3
Huth s 5RE A 54 9l (-19) Xﬂ%)E F3 A, FF 4‘1°ﬂfﬂfli,€—;‘°ﬂ/ﬂ%
2 Z271FUh Shol M2 T2 VU S 2 & BASLE V|2 ALFUL d¢RE 3 AAE
oA Z71F YL A E =91, 3+13 math 2EY BAas Aol 83, cmathE AHS Y T
450 8829 3 22 $314 75Utk o3t w72 Zetthd, A9 43 FA|

=]

t}
context manager(%’i‘é‘.éE #2]2) _enter_ () 2} _exit_ () HHEE HYFOoZH with Fo
WA, PEP 3430 2 =5 Q& th

context variable (A€ A E daE0 e o S 71 F e Hg. o= 4 A ~F =T}
ol o sf D}E FHL A 5 e 2HE-2E AF a9 STtk 28U, AUAE WS E
E3), slue A AF T o8 A 1/\1;7]_010/\01qu A E H4o £ 25 = T AA

H] 5 7] Eﬁiﬂoﬂf\i He S

contiguous (%) ¥ 3= A &3] C-A S5 (C-contiguous) ©] 71 U 32 E & A 2 (Fortran contiguous) Y 1] 455 9]
St AR A WA C Aol T EE e Akl e QA A, 7
A Z2 A3k, 001 A Al &ehs LEAE AP 29 A TR W& 2o v X5 of of 3hu o} thA}-d
C-a% Mo A, 2] 40 EATE FHEL PR 0} 0hA o} el 20} 7wl Mo
SHAI R ZEd A% w Goll A=, 3 HA Ad A7 7 ke B T

A3lE A Y YTl contextvars

coroutine (7% ¥l) Coroutines are a more generalized form of subroutines. Subroutines are entered at one point
and exited at another point. Coroutines can be entered, exited, and resumed at many different points. They
can be implemented with the async def statement. See also PEP 492.

coroutine function (ZF-€ gt) 78 AAE S8jF= ¢ TIFH 5= async def FOF A9
g 4 9}3’_, await El-async forﬁ]— async with ?]—.4 2 2383 4 95Ut o] A S -2 PEP 492
Oﬂ o5 == A5t

CPython 3}ol¥ =2 T o] 7114 9l 23 Qd, python.orgol| A v = Yt} o] F£¢ S Jython o]}

g7} 9,1% “H o] “CPython” ©] A& Ut}

decorator (d] & o]¥]) t}= = g4 9d|, 25 Quwrapper EH S /\]'g ot g wW3lo g

ALH Utk g Z g o)e 9 &3 o= classmethod () T»]—staticmethod Ak

H

ol e B BA A BPY LYYk TS F I A E v o= FEFIh

def f(...):
f = staticmethod (f)

@staticmethod
def f(...):

e, @ A5 2y ok Bl e ol elof tha o A S g2 4

https://www.python.org/dev/peps/pep-0343
https://www.python.org/dev/peps/pep-0492
https://www.python.org/dev/peps/pep-0492
https://www.python.org

Python Frequently Asked Questions, = x] 1] A 3.7.17

descriptor (23 HE]) WA= __get_ () ©Jy_set_ () o]t} _delete_ ()& B3t AA.
:”EHA AEHEVU2IHE L W], JERE 23+ 58 dZ2 FE& do7yth B,
bE A AW 2AY, A= A S o, a2 Sl gAY A bEtal o5 B3R AAE
Suyth 6}21%177}?4*3‘%113“&, dgete taagdy WA=t SEP Utk HaagdHE
olﬁﬂé} 2 gho] Mo ti gk 22 o]sf| o da] o, T, WM E, Z2HE, FElavAE, 28 Y
| A C,%ﬁ N Fz 5o B 759 728 olR 1 7l W dYth

H23 HE 9 w A =Eol of g AhAl & W]-8-2 descriptors of] U5 U T
dictionary (‘;‘/‘:]L-]E]) Aol 71 & groll A1 7]+= A& vl G (associative array). 7]+= __hash__ () 2}
_eq () MAEE 2 BE AAS 5 sl BolA o)Al eka R E U,

dictionary view (“’Uﬂb‘]ﬂ) ct.values (),dict.items () WA E7l B8 F= 2
As=9Mve | E]'_T’_—‘T'— ﬁﬁﬂﬂgc"ﬂtﬁﬂ%—nlH‘Ezﬂ“‘?ﬂ'—tﬂ /‘4
el 7t WA E o, §7F o L}D}hmﬂ‘/]r/}-u/@]ﬂﬂ e SHS g2ERZ v oW
list (dictview)E AFRSHH 2

docstring (Z2ET) Z ﬂ]i, 3,

g o= FAIE AR A5
1—?:]5]141;], o]EE/_lq NS

duck-typing (¥ E}o]3) =4lE <

Q.
EL“
FRF
o5
N
f{lg 8

o8
o

g
5[‘
Q

Z

il

f
é

o

AAA AR b B2 2lHE. 29 ETH A Y
AR F o] Eet e, 5, RES __doc_ o]ER|HER
oomz Aol AYME 9t Al Fadh

ﬂﬁ% A Bst=d AAS & HA G2 Ty
75N AGASFUL 2o AT Ho| 1 22
Nof| AE]H o] AE Az o g, ZAAE FE= Y
o 991%14‘4- 9 Efo] 2 type () Y isinstance ()
S B AR ATk (5, B chel o] 541 Aol ol B s ehm 4 98] 91510}
st t}) bl Alol|, hasattr () AAFY EAFP =2 189S 2t}

o

ot o
> o 2

ot 2, |
>

oo

o

5

=

°]

EAFP 3= R ttE= 84 & 1317] 71 4 v} (Easier to ask for forgiveness than permission). ©] &3] &2 4= Q&=
spol4l 7% ek 2, SULE J| L} o E el HES ZAE /HAek, 1 /0] BelW ol e
Yt o] @'ﬂol’i “H]'E 2B L Tl try 9t except o £ E EA A A YTLE o] HHZY L C

S} 7+ T} = wre ol o] of A x}f,iz\}ﬁﬂ LBYL 2~E} 3} o v] g Yt}

expression (2@ 4]) oJW Fro® Fo|d ¢ J= AN 27h b D& W, A2 2 HE,
o2, o SR HE WAL, AAA, FHET 2L P EAFE B 2458 ol 22 AT
e B dojsl tzAoe, BE Aol TAES A AL ol whileAd, A4
o= AL 4 gt #4 Sol ATk Bhel R Egola, A4 o] obgu o,

extension module (23 1 5) C U C++2 ZAE R Eold|, 3to] M 2] C APIE A3 A Al o] L} AFR- 2}

o
ol
-+
41
X,
g
i)
Rl
4z
it
rlr
i)
H
pech

f-string (-2 2kg) £ 1 'F S okl 2 BAL PSS
% u

EYEEEED

ELJH;}. PEP 498 S K A Q.

ﬁleobject(ﬁr%_‘ AA) 3 - HOﬂ o s xléz,aAPI(read rite() e uﬂ M= =5 g ey
(O‘ﬂ ,*L—i— %% o). “ﬂ I’J‘H-ﬂ,J_,J,J]-o])oﬂuﬁ‘g}oﬂ}\ﬂ]Q'-/F%lﬁb]l’)r
b X)) = xﬂ% o7 Az] (file-like objects)} 2~ E 7 (streams) S A E%]\/]E]-.
AAZ =M EFY gd AR =] d5 Ut G(raw) BFo] v 2] 31, ¥ ¥ = (buffered) B} o] 1 E] o,
B E v Y.]E‘O’]C\)_]_ Eio]Aatio REIA Ao UL 3d AAE vl 7 A0 vlH e
open () &+E 2= AYUnt

file-like object (,;]-0 2 A 1Y Az o L) 2

finder (3}¢lt]) JdZEFH BRES Y3 20 & Zrod 0 A 5F= AA.
gto]® 33. o] %=, F F7 A7} l5UTh sys.meta_path 2} TA AHE S v B A =
391 9} sys.path_hooks I} S AF&3l= H 2 QlE® o,

] ZA] 3 W82 PEP 302, PEP 420, PEP 451 o] V-3 Ut}

floor division (35 p3e4) 43 7 7He 442 141%‘6}% S U 35 Al dabaks /o
& Eol, 2411 // 49 gL 27k HAAL Ay A2 2,758 B UTh (-11) // 4
7} -2.752 W 8 -30] Holl G2 of Tt PEP 238S B A 2.

82 Appendix A. &3

https://www.python.org/dev/peps/pep-0498
https://www.python.org/dev/peps/pep-0302
https://www.python.org/dev/peps/pep-0420
https://www.python.org/dev/peps/pep-0451
https://www.python.org/dev/peps/pep-0238

Python Frequently Asked Questions, = x] 1] A 3.7.17

= (AU T oY AT AEE = A=
], um,] msg<>ﬂ AFLE S QLU v 7 w4 9F v A = 9} function Al AT B AL

=]
function annotation (4= o] ;B o] A1) <= w7l W= b3k 4] of 1o g o] 4,
2

5 ofEo|de YA OT P = 2 A of, o] P4t T Y int ARE
t

=
=]

Q
)

=

&
fol
nH

R
=2
X
2
ra
)
o
it
v
N
rlr
ne
L
1o
M
02i

“— T

dlol5Q Aoz 7|, SA9 in

def sum_two_numbers(a: int, b: int) -> int:
return a + b

& o] .o H| o] A -2 function o] A A gt}

°] 71%5& AWt W o) nE o] 4 7} PEP 4848 Fz oA 2
_future__ =27t AA A me B9} T A bt A Ao} 5SS BHHT 5+ Y2 Hi

N RE.

__future_ EES YZESIL I WHFEY Fhs= FollA, A 7l 50] AA A2 Aojo 7t

<, AARE 1A 0] 7] Ho] Hl=x B 2 95t}

>>> import __ future_

>>> _ future_ .division

_Feature((2, 2, 0, 'alpha', 2), (3, 0, 0, 'alpha', 0), 8192)

garbage collection (7}8] 2] 42 7)) ©] AlLE A 9= W28 2 vhgddls A}, 5o
Az +3S 7”]5}13%3_??1‘:%ﬂﬂﬂ]ﬂ-’;ﬂﬂg I RE PAR
FA7 = ge BES AFEIIA Al 4 A5 YT

generator (AU & o]E]) Al o] E o]l olE 2 BeFLE 34, duk LAY Ho|=g
W yioid £9 9% EQUHE Aol thiuIth o 4E & or £EE A ot)
st 3l Wo) bR Al 2 Qs YTk
RE A o8 48 717 A e, o\ Fuo] A& A @l ol g o] Ejelo]E] & h= Ut o=
ol o vl 7 el e AE, AT Bol MA RETL g

il rz

generator iterator (AU #] o] €] o]E]#o]€]) A& o] e 7 e A
Ztyielde AA LR A& Sk, 2 AXS (A ’esH 7 S uy-w5= Z8e)
A3 A E 71U ch Alvdeolg olg ol ZF AN, it ez Byt (eE vt

Mz A2k ok thul g Y eh.
generator expression (F| & o|g] T3 A]) o] €
for A AR b if Aol ol 2+ AW RAAN AH Uk AT 2

9% %52 B YUTh

>>> sum(i*i for i in range (10)) # sum of squares 0, 1, 4, ... 81
285

pdg

b=

TEFEAA ST 2

]-o{r

generic function (AW & &) 2 AAS A2 T2 AS o tis) 733 o g
f o] E FEH o] AR E A=t Gag ol o8 2 Ut

)
A
AZF] x] 87 23 functools.singledispatch () Bl Zd o]E & PEP 443% E A Q.
GIL © < zejH 5 & HA 8.

global interpreter lock (A9 ¢1E]Z &]E] &) 3} Hol 2 A d1}e] A EV} slo] M vlo|E 7 & 2 A5}
5 B8] 19 CPrhon SVE L AL S AU S (a1eto) 22 F AT U FBEE 2
ote) AA Bdo] FA Ao FA] A 20 el X sHE = 7hE o] 4] CPython ?@% S5
U dEzgH JAE A2 A2 JdHzEHE ds2de3str] 47 e A, o
=2 AN AAN AR FE49 B B2 AP
AT, o f B BEE L, RO A BT, GFol b A 2L AL A FA A4S Y
Wl GILE whshe % A7 9l Th £8, V0 S @ vl 34 GILE v o,

(7 B 5 A S F-5 Bl o] B 8 G t) “Lael S o] -2 2 (free-threaded)” 9 ¥ 2] B & THE 314
s B mee 4eAolA 2y, T8 B 22AAN 290 4% A7} A5 W

83

https://www.python.org/dev/peps/pep-0484
https://www.python.org/dev/peps/pep-0443

Python Frequently Asked Questions, = x] 1] A 3.7.17

Ytk o] A5 ol E SE5SE 22 7S U BERoH wheolA f A vlgol H o2 Zlew
o AR AF YT

hash-based pyc (3 A| 7] %}t pye) & % *‘& sh7] el sl G s Aol HF A AlTbo] ofd SjAIE
A}L3= ol E I = A 3t -invalidation& #Z 34 &

hashable (3] A] 7}%5) AA 7 9 1 WA = F A S 24 (__hash_ () A= 223

l 2]
h, o2 AR A HnE 5 Yol (__eq () WAEZ B3}, 5 A 7}Ls}umzmr,} z
Tha W) 2 H] = A s 3 AR £ oHAl%kO Zrolok gt
£

A AHs A AAE A e Y Ay Wgte) W A
m%agiﬂﬂﬁ%4%ﬂﬂﬂ%ﬁﬂw

ol 2 R AA 2 A 7 U th (B12EU A B 22) 7hd AE o s

@ 4 QA e, o] AR TRE o

la‘xl s Uth (FZol v frozenset Z-2) W AH U EL 159 24 E5°] slA 7t & wf vt
Al Zhe Utk AR A F o S ad A" As AAEL 7|2 Ao A Zhe U (AH]
Al AL stas) RF a2 ra va s 3, shA 2 id () 2 FE eyt
IDLE 3}o]dZ 91353 H‘ﬂ 217 (Integrated Development Environment). IDLE-2 5}-0] A 0] 3 5= uj| 3 2hoj]
wehet 71249 B3 719 e xelel 874 o
immutable (£¥) 149 s e AA. =9 AA = A4, T4, Fee TEEUD old AxS 2
HAE 5 stk A g2 A sk Al 7”7<ﬂe WS ofof duth. WaHA] o= sl Al ghel JlofoF
ste StollA 523 4TS Futh A& =], dM e 7.
import path (YZE Z2) F = 7] 910l 7 JZE S BES 27 H8 A= F42E (EE= 4=
dEL) Y 5F. YXE 3= 5 o] F2EY HF52 BHF sys.path 2HE FUTL AU A H
7)1 X2 __path_ oEFHEZRE L 4% 9JH5UTh

A=
57 7] 9] 7% 2 s
2

importing (232 €)) 3

i
1o
3;-_1,
)
)
M
§
}J,
o |
|ru
2l
Y
1o
3;-_1,
)
rx

SEo A A8 5 =S S AL

importer (JEE)) EEL F71E 33 ZE /1S sHe AA; B sl el ol 4 =] AR Gtk
interactive (] 3}%)) o] 42} Qe e H & 23 e, A zele Zgmedq £4 5
ﬁ%ﬂﬂﬁ4wML5&§%%éT%%#%W%%ﬂHWOWH“WHHmeQNﬂﬂ

*ﬂﬁ(H/] =] 7ol A ’EE—“. St AL 7Fs 2 4 AsUth. A O}Olﬂoﬁe HAAPIAY 52
A7) A& EthEE v A e J‘%?Mv}(help (x) 2 7] 5HA &

mterpreted(OlE-] ZlElx) vlolE = AHAupd o EA) wfFoll I =] Ea*ﬂﬂﬂ 3R] gk, gho] A
2 At Adoj7t ot Az g E dojdUth o] A YA H o2 Ad 51dS THEA ‘E%F—L:—
Ai LS AP AR A= YUt T 220l F o 3] A7 &= A T QU H
Z g 0101—5&% At dojEg g2 /oW A F71& 25Ut tshd = Al

interpreter shutdown (QJE]Z2Je] £8) £ 53let= RS S of, sloj A e =Z g EH =
AYgsted, Bgolv o 7 T8I W R F2EF T2 =
Sy =3 7 A A7) E o
TS AW AL S+ YH T 5 = i
Aed, 270 &3t AP EC H 75 A EE 5 AV WHEGUTH(ES o= BelEy

wEol} A3 A aww
JemelE Fr F BEo U AaPEF RS B AU

imwmmaaa>%w§°1@ﬂa BENZ L AE AN SR ARt RE st ot
tuple 22) V2 F5, dict 2 2R u AA2 BE, 319 AAS, _iter () hAA~
Ade FesHe gmnmn()WHE%NH@ﬂiiEiﬂAAﬂﬂaﬂ“*Hﬂ

Ol EL2 for FZ O AHE 9}1, ANA~E Q2 3= o2 B2 X (zip(), map (),)
of Ahg2 = 5t olE%‘ﬂ AN W S iter () o ARZ ALHH, T A H 9 olH
=¥ F YL 9 1E1E1101E%%k‘:4 ATS A AXE Futh olHHE

iter () & &3 olEl & o] E] AAE 2 %iaqv‘r forff

Al HH g o g | F rﬂ,TzéEt—%C& o] ¥ =

th. ol Bl o] E], Al A, Al El o] B = HA L.

iterator (0] E]#|o]E]) tlolEle] AEHDL FH3t= AA|. o|ElFo)EY __next_ () HIAEEHMIEHO
EQEO}“%(EE“W e next () 2 AGstd) 2EH = T %%i}alrﬂiiﬁ Yt o
o] AFe]] o] E] 7} §1-& wj= th Al StopIteration o9& GO 7 th o] XA A, o]E] g o] E] A

o2l
lo
i
)
Y
N
Id
b
Y
oy
o
M
_]n‘.
2 [o
yo fl
M2

rﬂ
r{o
r[o
>
08‘*;14
Au
rlr
|E§
Q
H
]

ﬂl

84 Appendix A. &3

Python Frequently Asked Questions, = x] 1] A 3.7.17

A= 2RET,0]T BE next_ () HIAEIZEZLS StopIteratlon o 9] & tjA] € o 7] 7]k
?JHD} o] Eﬂ o] ¥ o] ¥ &l o] ¥ A ZH‘_%% FE__iter_ () HIAEZE 7P71 ﬂo] 8957
ufjZof], olE gl o] H = o] Bl gl & o] 7| = st thE o HHEEZ ‘?%0}c o] t 9] oA A2
T AFULE 83t el & oy e O]Eiffﬂo]"q% Lot I=EY YT (llst Z-2) 7" oY
7“?<ﬂL iter () ¥R AD}AY for FZo| AHEE wfjuir} AY]E%“—HO]HE EUth o™
A= olg d o]l of thal| A 3 ste] i &td] ol g gl o] Mol AHEH oju] 2= 015131] olE| &

EF A, W AE o] YA T HolA v ‘4“/}
typeiter ol T ZpA| sk W §-o] dF Ut}
key function (7] $4*) 7] 3 &= Z 8] o] A (collation) F<=+= 7d & (sorting) ©] 1} ¥ & (ordering) ol AH-§-=]

=S EEFEZHEYYUL 9 & 59, locale.strxfrm() 2 2A|L EF P& ==
39S e d A E U,

ojR Y W =T QA4 F 0| ofBA A oA AL Fol=AFE Alolstr] f&f 7] F4E ot
=94t} oA A5 E=min (), max (), sorted(), list.sort (), heapg.merge (), heapq.
nsmallest (), heapg.nlargest (), itertools.groupby () ¢ AFYtc}

i)

7] §4+E e tﬂ”@lfﬂ““ﬁ o] AFULh & E°],str.lower () HIAEE AolA & gl
AEE A7 42 AHEE syt titd o=, 7] e lambda i‘?ﬂ’ﬂlii s =
O]I‘Eﬂ o] Ay} lambda r: (r[0], r[2]). =3} operator REZ A /9] 7] &
AAAE AFgdYTh: attrgetter (), itemgetter (), methodcaller (). 7] T4+ = ?}%T_

AL-&-3l= ol o gk o] Sorting HOW TO & E A &
keyword argument (7] 9] E 21z} <1xF & B AM 2.
lambda (Fth S&E off gro] Fal A= shte] x4 02 249 ol F gl ekl . "ot

b
et

2~
T

U= E2HL lambda [parameters]: expression YUYt}

LBYL % 7] Ao X 2} (Look before you leap). ©] T 2B} L T ZFo| L} 23] & 317] Aol HA|H o7 ALA
2AEE AU o] ABAL EAFP A R, B i Bel £A2 SAA o Y .
|3 etz A= %7301]/‘1 LBYL R “H 7|78t “H 7" 7o)l A 274E WA 2 Al ds5U
t}. o & 59|, FE if key in mapping: return mapplng[key] AN B0, 312 9 23]
Aoll, b8 28 =7} keyE mappingoll A Al AstH A& 4 Q5 o]E% o] g7+ F o]y EAFP
A2We AT e 4D 5 dsUh

list (F]2E) U7 slo] W A A, I o] Bo= B35, P4 tfdt A7 0(1) o] 7] wjEof, AZ
2 E (linked hst)iv} o2 Aol mj A -FA YL

list comprehension (2] A& AZ |3 H) A/ DAY QAE AR E= YR E sty 1 A4S gAER
=8 FE FESH W, result = ['{:#04x}'.format (x) for x in range(256) if x
S 2 = 0] 00 4] 255 Abolol Gt ASE 1614 (0x.) £ FRHE BALE Posd
RHEUT if 4 AR5 5tk AR, range (256) o Y B E 2474 A2 R U o

loader (2t]) 2E2 ZE3F= Al load_module () °]2he= o] 59 WA EE FodfofF Ut 20+
BE g 785 Y AT W2 PEP 302 &, =4 v o]~ 8]~ & importlib.abe.

Loader & HA| 8.
magic method (W] & WA =) 5 v A = 9 v]F A A Q] v 232
mapping (7]3) 429 7] 23 & A ¥ '3]—1 Mapping ©] Y MutableMapping F4+ #l o]~ 2~

o AAFH HAHNEEE F+33= A o]y AA. 9 Z+= dict, collections.defaultdict,
collections.OrderedDict,collections.Counter & & 4 55U TH

meta path finder (W€} 7 2 9}QIH]) sys.meta_path o HAo] FefFE vpelr]. vg F2 st =
AR dEe] 3pQlH of FHAE o] Q7= AW thE U T
el A2 3t g7t FHet= A EE A= importlib.abc.MetaPathFinder & X3
Huyoh

metaclass (W€} Ze =) Fefne] Sefa. SdA A= Fedls o) F U2 9M e wolx S s
o E5g R Yth HE F 2 o Al AAE wopA SHAE TEE A e FYth Y2
AA AT Z2 e 0*0%‘: 71 FES ﬂl*?:MDP gto] W& S BEE AL AxH
met FR2E W ke AQUth HEE AR APAE o] =77 A B8 AL Bt

85

https://www.python.org/dev/peps/pep-0302

Python Frequently Asked Questions, = x] 1] A 3.7.17

K
o
o

O EFRE M 22 2 7] (logging),

o, v
= 9z 210 A2 52U T,

Hre 2es
o V]

FEEECEE R
metaclasses o A © Z}AM|SF 8-S 3+

method (WA =) Z &2 vit] ol A o 5]
I HAEE A HA QA (BE self

~FZERHASQ.

method resolution order (M| A= A £4]) WA= 2H ¢A+= 23] 5t= <
U250 £A YT 23 2 ARE o Az Eo] AgH L7 o] 4
Python 2.3 Method Resolution Order& 2. Yt}

module (RF) 3ol @ T =2] 243} B9 S GRS A7, BES 999 ol AN ES B o F
302 25U BES 955 2] o3 spold oz 2EF

574 = HA L

module spec (2E 23]) 2§ 2ealor A8HE dze gd 4RSS Gu 9t o2 27
importlib.machinery.ModuleSpec & QIAH A,

MRO WA= 274 =4 & BA L.

mutable (7}¥) 7bH A= ghol & 5 ARt id () € A FAGUS 20 = HAl L.

o

1

[» o
L
O:

e

o, 1ok
:Oll_l“

N
@ 3o MM

e 4 oy s
)
ol

)
52 1t

ox
Ao mjy
o
N
Ao
o
flo ¢
oo
rlu

[
I

o
k

i
kv
~q
fru

ro >
[>
(R
[P
1=
i—%

e
43
ofy
°
Iy

named tuple (U] Y & &) The term “named tuple” applies to any type or class that inherits from tuple and whose
indexable elements are also accessible using named attributes. The type or class may have other features as
well.

Several built-in types are named tuples, including the values returned by time.localtime () and os.
stat (). Another example is sys.float_info:

>>> gsys.float_info[1l] # indexed access
1024

>>> sys.float_info.max_exp # named field access
1024

>>> isinstance(sys.float_info, tuple) # kind of tuple

True

Some named tuples are built-in types (such as the above examples). Alternatively, a named tuple can be created
from a regular class definition that inherits from tuple and that defines named fields. Such a class can be
written by hand or it can be created with the factory function collections.namedtuple (). The latter
technique also adds some extra methods that may not be found in hand-written or built-in named tuples.

namespace (|5 57h) W7t AZE = Fa ol F2 dAY R AP U AAl S HE o) &
T (A E oA Eek oty A, A, WA o] 5 Tl dsUTh o5 TN o5 FES
WA A REAAS AU o & 591, 9 builtins.open & os.open() < 159 o] &
0] 25 FRFUL E8, o8 08 o REO| B4 FHIEAE E oA BEIA
71543 § A B4 =S YT ol & £9, random. seed () £+ itertools.islice ()
gtal 2 1 35 0] Zh 2t random 3 itertools EEO &3 +HE QSo] W HUTh.

namespace package (0] % 27t 171 2)) 2.2 A B 317) 4 S 2] AE| o] 2 v 753 PEP 420 5] 7] 4],
o) AL B A AAT QL $E A, 53 _init__.py Hdo] glomw A7
57] %) sh= tHEU)

HEEZHEAS.
nested scope (5 HE A272Z) SR FYoA H4E T2t 9.
7Fed #, 2 H A Fethe Aol F2 8] oF

FUth v R, A A4E2 A Y o5 3ol A 3L YT nonlocal 2 HFZ A5 o
2= AL =y

new-style class (7 2ElY Fel2) A F2 € el AAd ALEHID e Fda WA oA o
5. 2719 stolH MAdqAE, 23 F2oed FYav __slots_, H2AYHE, ZeksE,

86 Appendix A. &3

https://www.python.org/download/releases/2.3/mro/
https://www.python.org/download/releases/2.3/mro/
https://www.python.org/dev/peps/pep-0420

Python Frequently Asked Questions, = x] 1] A 3.7.17

__getattribute_ (), ZH & WA E, 2EE A =9} 22 go| Mo AFIL IS 7T E

N }£L51‘k 3&04"L1E+

object (AA) FEl (JEHFEYZH & 21 FF (MAE) o] Aod ZE HolH. =3, ZE FoEd
S o HFHA A V\EEH/\?JHT/P-

package (3 7]2]) N E 255]L} A7 Aoz A ﬁﬂ?']zlg%f—tﬂ@—’? Ae Fold 25, 7eH o,

H 7 A= _path SJEFHE} Q= FolH 7 Eqp}_
Bt A7 A & o] F FH A = BA L.
parameter (W7 85) 5 (£ B A S) Gl A Bk 0 gl <A (e oW AR AAS) &
ARt o5 & AEHE. A S/ iAEs7 A5
E (positional-or-keyword):] %] 21 A} L} 7]%%}01 Z]} ERAGE 4 9= AxE AT

. 92-719)

yrth o] Z o] 712 FEj] mi7i =g Ut ol & o] tholl A foo 2} bar:
def func(foo, bar=None):

o 1 A-A & (positional-only): | A 2T Al52 4= A= AAE AZ T Fo] S 9 A-A&
AT E Bt e 23 YA syt sHA R o @ uf i T2 9 A]-A 8w

BN
ZEZUTH (A E £, abs ().

HT-E
o 1Y =-A§ (keyword-only): 71N =2 T Alg2 = = AAE AZFULE 7| H=-A8 w7
He e T FY Y w7 g B0l Al kol shite 7]'tﬂ A iU+ E I 2 38l A

Aoad 4+ AdF Ytk dE =9, b2l A kw_onlyl 2} kw_only2:

def func(arg, *, kw_onlyl, kw_only2):

o 7P8-91 3 (var-positional): (CFE)W 4E o] 23] A o] m] oS ol 92 A Ta)
AED 5 Y= AR AAS] deojo] AAAS A F T o A v A MS= v A5 o] 2o
« 2 oo HolA 48 4 LU, ol 2 Sof ULl A args:

’def func (*args, **kwargs):

¢ A (var-keyword): (FFE PRS- S] 934 o] v] ol So] 1 719 = Sl akEof B
AZE % 9 999 A% AT AAES A AFUL o2 AR oA A o] Sl
5 ol BolA BoE 5 AFUTH Al E S0l A ool A kwargs.

RS A A AAFES 95 7 B e oh o A8 Ao AL A% AAES AAE 5 9
Uk,

Q1AL g0 7 &5, oAxje} v/ A2 Zpolo] 2= FAQ A&, inspect.Parameter £,
function @, PEP 362% H A 9.

pathentry (B2 QlE2]) 4= 7|8k 9elr] 7FJAXE S REES 37| 930
shite] 4.

path entry finder (3 2 A1 E2] 5}eIt)) sys.path_hooks o & Fel 8 (F, 42 =2) o] B F
£ ololt] o, Fold A =g 2 BES e PEe du dF U

AZAEZ Q5o +AI}E=HAEEL importlib.abe.PathEntryFinder o] U3 Th

path entry hook (2 & QlE2] &) sys.path_hook B|AEJ 9= ZEQd, EA A2 dEZ A R
ESFeHES LTI A2 AED A & =HFUh

path based finder (3 2 7|4t 5}elt]) 713 v]e} 2 2 51oltl = & shibele, Y¥E A= o RELS 3
Z

path-like object (FE 7 AA) 52 A28 A2 2 e AR, A2F AAE A2 S ey str

Ubytes AA o] A}t os.PathLike T2 EZS T HSE= AA YY) os.PathLike Z2EF

= APst= AA = os. fspath () T 5 TEMA str thbytes Y A/2E Frr HE 5

J5 Ut} Al os. fsdecode () £ os.fsencode () & ZZt str Y bytes 2345 H 3 3+=1
}%% T A5 YTH PEPS19E = Y= Y5 th

z

o
=4

ks
R
31-4
rr
kel

LE Q2 A

87

https://www.python.org/dev/peps/pep-0362
https://www.python.org/dev/peps/pep-0519

Python Frequently Asked Questions, = x] 1] A 3.7.17

PEP 5ol 7)1 7% PEP= 3ol & A5 1] 19 A0 8 A% 51 ol e 2w s 2
o he 22 75 A ahe A EAAUTH PEPE AIE 71500 S e 1A% 714 A E
2AS AT ek
PEPE 78 A% 7158 A oksha Aol B @ AR 4 shol el Eof 7k 47

o
SERE RS

A e] e el
N ERCEVE R BE RIS

PEP 1 &=z 34 8.

portion (£) PEP 420 o A] % 2] & 214 &, o] F 37k 3 7] A of] e]upA] 3h= shrte] v e ol £o] =
SIS0 A @ip Lol AZEE AT 75T

positional argument ($] 2] ?12}) QI#} £ H A Q.

provisional API (Z+d API) 7 APl= %= gto| B89 I A T84 B4

A, Cleislel a0 2 W o g5 S 9 el 3 AN
ST RO A TR o] FAH A b Mol Yol Qv ad WL B
Ao doj At ke AT — APIE E3et7] Mol 51 o5t 2RA Aol

A Afolvt dojd AP Yt
APIO A 25, T A T34 o]
H A= tsl AA 8=

G BF vhol nef el oW A B AR
Yok § A 82 PEP 411€ 28 F 1)

provisional package (24 2] 7] 2]) &4 API & BEA|

Python 3000 (5}0] 4 3000) T}o] % 3.x vl 2}ole] W H (¥ A 39] WjE 7} W u]#)e] o]of7| & A Ao uh
Eol3 o] Folth) °] A& “Py3k” & S0] 27| = Yt

Pythonic (g}o] Qi thg) thE ol EolA drtA A /g ES AHRslA ZEE Fd 3k A, stol4d o
of ol A 7H A AHE S = ol A S Aol mhe
A A 2 oY Y2 for & AHEEA] o F 2
ol ol d 5 e FAE] YO8 2, ol 4
A8 = ok

o
T
O

n

2O Y il ko i
ol gy A% o Mok fo

ol

for i in range(len(food)):
print (food[i])

o 25 e spol ok 2 ol FF Y th:

for piece in food:
print (piece)

qualified name (g 77349 0] 8) LES| Ao ~mz oA BEo| Aol H Feh2, T4, WA Eo] o] 27
278 Hol3k o THE o E. PEP 3155 o A A Bt HAHS] Be} Zejao] A5l
R7EE o) 2L AR o o 27 2HU T

>>> class C:
class D:
def meth (self):
pass

>>> C.__qualname___

ICI

>>> C.D._ _gualname_
'C.D'

>>> C.D.meth. qualname_
'C.D.meth'

252 7t 7] AHSE ul, &3] BF3E ol 5 (fully qualified name)& 5 F 5 I 7| A ==
ZPAA 2R 7te Aor 2eld olF2 g ol & S°], email .mime. text:

88 Appendix A. &3

https://www.python.org/dev/peps/pep-0001
https://www.python.org/dev/peps/pep-0420
https://www.python.org/dev/peps/pep-0411
https://www.python.org/dev/peps/pep-3155

Python Frequently Asked Questions, = x] 1] A 3.7.17

>>> import email.mime.text
>>> email.mime.text._ name_
'email .mime.text'

reference count (312 312 2719 0j3 229 A%, AAe] B2 2474002 Woj AW, vw e 7}
149141—/], Tz §] FALZ IUtA o7 ol H I = wEH A= AR CPyth(m T3 ;A
= Ao FZ A4 E E8F = getrefcount () & FogYth

regular package (JF #| 7] A)) __init_ .py FLL 3= vjdE g g Z‘i%@ el g} 7] #].
ol wH7IA = EAL

slots ez 2] Aeleln, d2Hs o 2eREES A E0L v)e AelsT Aau s A
e E AATLEN W2 ﬂe éuﬂ%ﬁﬂ%—éq"/k 217] 7]+ A g, 9] EﬂE’- 2 22 A
AHEH71 7 | 7R HoletA, MR glof U1t 38 22 oA B2 £ AAEAT =
Sud A9 e ARt Aol $0th

sequence (A]A2) __getitem_ () %—’F HAEE 33 A5 AG2E A SHE 84 ANAE A9
a3, A A2 2|8 BHFE _len_ () WAEE Aelai oelel . B Y AA2ES
ULd 2, 1ist, str, tuple,bytes 7} 45YT} dict =3 getitem_ () I __len_ ()
& A AeA T, 230l A o4l Qoo 2 7| E ALEa] W Rol AL oh e} B A
FAThe Ao 793 oF ST
collections.abc.Sequence FA Hlolx Fd A= _ getitem () & __len ()=
oA R ZHSE QA EHo~E AHYd=0, count (), index (), _ contains__ (),

AR o] 44H A H ol 2 FHD BE register () 5 AL

__reversed_ ()& F
FEREETE TP
2])

single dispatch (2 T]A3)) 73 o] shihe] 1AL ol 7|2 A A S = Al E e Ha3) A <

slice (&glo]x) B Al o AR E 233t Al Seolae B ATHE 7S AMLSA vy
Urth variable_name[1:3:5] A §, [] oA o 7o) A S22 = FePUch 2

(HE 229 E) 2/H L JEAOR slice A7E A3 o,

special method (55~ | A =) sto]® o] Yol o A4S, B4 22, A3 uf ?’\lﬁ'gi TE = A
C.oEHAEE Tl EER /\] Zhskal Eube ol 2L 5 U th 54 v A =+ specialnames
of FA & =04 O]Al/]r/}

statement (F7) &4 29 E (Z 29| “EF (block)”) & FA = F2 YU 23L& T4 o] AY
71 EE AHEote o8 A 28 F9] st Ut 7F if, while, for.

text encoding (JAE Q3 Y) FUIE FALES vlo]EGE QT Y3t= AH.
o

text file () AE 519) str AAE 1 & 5 A= 3t A4 $F, d2E 5142 AA 2= Hpo]E A&
WOl AE g & A28k 5 -5 250 & A5 ATk GAE o] ozt gt me
('r'EE='w)E 99 99, sys.stdin, sys.stdout, io. StrlngIO«] AI~EHAE &5 Y5

Y.

el 2GR A & 9T 2 5 Dk 5 AR Bl A o] v e 5 £ BasAL

triple-quoted string (413 T3t € Bohed) W () o} ALWET () A A2 EAA £AD 2
The s Stz oA Eahde] St 5 S ATHAL G, o8 A ol el Zut 5]
U o 2ACZ HA) e FLWELE] 2HLRE FAY ol RV 4 JES 81, A
248 24 GAE o) 2ol AW 4 v, SAEDS 2w 55 28 d5 U

type () shold Ao e 20| oW F5e) ANAXNE AR P TH RE AR = Fol AHUTh
AR YL __class__ o ERER AMAT 4 YA type (ob)) & DS 4 AT

type alias (3 o] 2]}) B2 AW Aho] T 3he] WS A=] o],

=
g Qo at o AT Hadse o 8 FUTh oS S

from typing import List, Tuple

(Th& sl AT ol A%

89

Python Frequently Asked Questions, = x] 1] A 3.7.17

(o1 sl o] A A A%)

def remove_gray_shades (
colors: List[Tuple[int, int, int]]) -> List[Tuplel[int, int, int]]:

pass

e el 8 97 47 s 5 95U

from typing import List, Tuple

Color = Tuple[int, int, int]

def remove_gray_shades (colors: List[Color]) -> List[Color]:

pass

0] 7158 A3t typingd PEP 4845 A2 1A S
type hint (3 &) W, Fefa o) EGRE 9 94 w74 1wkt gre] 7w = 3

2 WMa2 A , W2 AJEZRE 9 49 3 FE+ typing
get_type_hints () & AH&3t] AN 2T 4 dFUTh

o] 7152 A3} typingd} PEP 4845 FZ3A| 2
universal newlines (U ¥ A & J7) o237 7,5% AEL nE Zol Zog olAsl: HAE iE% o
AT B g AR BA B \nt, AES = Bel \r\a, AL WAEA Bl ¢

F71A 2l AFR-of] TE| A= bytes. splltllnes () 29t o} 2} PEP 278 2} PEP 3116 = E/‘ﬂfﬂ_.

variable annotation (H* o] o] A) Hy = FHP 2 o EGHEL] o] - H o] Al
HeEe ZdaoEREY ojHolAS G uf Y2 A8 AL yt):

class C:
field: 'annotation'

Hp o H oM dWtH o7 3 SIER AREHUTH o & S0, ol e & int = 7HE 2o R
EEREE
count: int = 0

Ha o] mH o] A -2 A A annassign ol A A g o}
o] - €] o] A, PEP 484 2 PEP 5262 &

N
o,
By
ko

ol 7S AYdl= o

virtual environment (7}4} $17) s}o] /\]-&x]-g} S& Z2 o], T2 A adH oA AdE = thE F}o]
HNEE ZRIAYPEY & J&FS FA %}Ef’“ﬂ sto] A w2 ol 7| A E& A X A Y 18 o]
Eote A 7hsotA st @A o R Aejd As $HA.

venv & HA| Q.

virtual machine (7}4} 7| A]) 2= Egjojwto g
Y7t 28 dt= vio| E I =8 AU

Zen of Python (3}o] Al) sho]H T2}l Ao} a9 EE5Ad|, Qo] & o]s) st ARS8t == ©]
HUth o] 552 U3y ZEZE oA “import this” & Y ¥stH HYich

398 AFH. 5o A9 7bg AL vhol = HE A5k

90 Appendix A. &3

https://www.python.org/dev/peps/pep-0484
https://www.python.org/dev/peps/pep-0484
https://www.python.org/dev/peps/pep-0278
https://www.python.org/dev/peps/pep-3116
https://www.python.org/dev/peps/pep-0484
https://www.python.org/dev/peps/pep-0526

APPENDIX B

o] AT Aol st

o] A AL reStructuredText 220 A BHE 0] X Ao 2 slo] W A YA S 93] E83] A 2E A 2 a7
2l Sphinx & AHg- 8% 1T,

A9} o] B 93t EA 9 A2 sho]# 2A| 2} u}xﬁ}x]; 2 QB A ALY g Q) 7] o5}

AT, o] W ol th & %E reporting-bugs 3] o] A = } A9, MEL AYEAIR= A A L}

2o 3h oy

S B0/ Be BAE =dUG
* Fred L. Drake, Jr., 92 sto]H A A = 3o 2 o)A w2 Zrl=9] 27}
« reStructuredText 2} Docutils 29 EE Y= = Docutils ZZ A E,

u—

* Fredrik Lundh, ~2.2] Alternative Python Reference = 2 A & of| A Sphinx 7} &2 o} o]t o] & L ¢l &5 Ut

jEnu

B.1 slo]d AwAle] THAES

Aol 71l FFUth 7o Ake] RE A Q)

91

http://docutils.sourceforge.net/rst.html
http://sphinx-doc.org/
http://docutils.sourceforge.net/
http://effbot.org/zone/pyref.htm
https://github.com/python/cpython/tree/3.7/Misc/ACKS

Python Frequently Asked Questions, = x] 1] A 3.7.17

92

Appendix B. o] A7 Aol #3}]

appeENDIX C

oA A9} o] Al

CA 2zEgeld o4

g}o] -2 ABCgt:= Qo] o] T A A& 4] v 2HE 9] Stichting Mathematisch Centrum (CWI https://www.cwi.nl/
2+ %) 2] Guido van Rossum©l] 9] 3l 1990 o] Zuko]l W& o] F <5 Uth Tlo| Mo = thE2 AlgE9) W 23]
o] 2= A v, Guido= Tho] # o] 8 AR} o} 9) A»]D}

1995, Guido+= Virginia 2] Reston Oﬂ 21+ Corporation for National Research Initiatives(CNRI, https://www.cnri.

reston.va.us/ FF2) o A s}o] A =+ 74] 7, o] oA ozl AL 2z EY oS ZA S YT

In May 2000, Guido and the Python core development team moved to BeOpen.com to form the BeOpen Python-
Labs team. In October of the same year, the PythonLabs team moved to Digital Creations (now Zope Corporation;
see https://www.zope.org/). In 2001, the Python Software Foundation (PSF, see https://www.python.org/pst/) was
formed, a non-profit organization created specifically to own Python-related Intellectual Property. Zope Corporation
is a sponsoring member of the PSF.

ZE Jol vz F7) /\/\?JHD]-(—'—7H A2 Ao sl A= https://opensource.org/ S 22 &4

O
= 5 =
AlL). AAA oz, tf 72 (3HAIRE A F = obd U th) Jhol W vz a2 GPL S2hg Ut ofef o] 2+
e M ERe 2 ke AUt
vl 32 324 e 3| 3l a2 GPL = 3?
09.0~12 | n/a 1991-1995 | CWI yes
13~152 | 1.2 1995-1999 | CNRI yes
1.6 1.5.2 2000 CNRI no
2.0 1.6 2000 BeOpen.com | no
1.6.1 1.6 2001 CNRI no
2.1 2.0+1.6.1 | 2001 PSF no
2.0.1 2.0+1.6.1 | 2001 PSF yes
2.1.1 2.142.0.1 | 2001 PSF yes
212 2.1.1 2002 PSF yes
2.13 2.1.2 2002 PSF yes
2.2 o] 2.1.1 2001-# A | PSF yes

Fa: GPLY} z&dtE A2 2| 7FGPLE o] d 2 v x3ohE S dnstA = syt EE
ghol A gholAla= GPLI 2] of 2o WA S 37/ 222 WA G A vdS w2 5 A

93

https://www.cwi.nl/
https://www.cnri.reston.va.us/
https://www.cnri.reston.va.us/
https://www.zope.org/
https://www.python.org/psf/
https://opensource.org

Python Frequently Asked Questions, = x] 8] A 3.7.17

gttt GPL €3 glo] Al 9lo] W3 GPL 3ol Y d T2 2z EF o] & 2¢s 4= oA & o2
A2 194 5t

Guido®] 2| £ 5}ol o] W EE 7H5 317 BE BL 9% AARAAF oA A= F T

C.2 shol el A 25kA v} 4H&3t7] 913 0|8 o

C.2.1 PSF LICENSE AGREEMENT FOR PYTHON 3.7.17

1. This LICENSE AGREEMENT is between the Python Software Foundation.
— ("PSF"), and

the Individual or Organization ("Licensee") accessing and otherwise.
—using Python

3.7.17 software in source or binary form and its associated.
—documentation.

2. Subject to the terms and conditions of this License Agreement, PSF.
—hereby

grants Licensee a nonexclusive, royalty-free, world-wide license to.
—reproduce,

analyze, test, perform and/or display publicly, prepare derivative.
—works,

distribute, and otherwise use Python 3.7.17 alone or in any derivative

version, provided, however, that PSF's License Agreement and PSF's.
—notice of

copyright, i.e., "Copyright © 2001-2023 Python Software Foundation; All._
—Rights

Reserved" are retained in Python 3.7.17 alone or in any derivative.
—version

prepared by Licensee.

3. In the event Licensee prepares a derivative work that is based on or
incorporates Python 3.7.17 or any part thereof, and wants to make the
derivative work available to others as provided herein, then Licensee.

—hereby
agrees to include in any such work a brief summary of the changes made.

—~to Python
3.7.17.

4. PSF is making Python 3.7.17 available to Licensee on an "AS IS" basis.

PSEF MAKES NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY.
—OF

EXAMPLE, BUT NOT LIMITATION, PSF MAKES NO AND DISCLAIMS ANY.
—REPRESENTATION OR

WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR.
—THAT THE

USE OF PYTHON 3.7.17 WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

5. PSF SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF PYTHON 3.7.17

FOR ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A._
—RESULT OF

MODIFYING, DISTRIBUTING, OR OTHERWISE USING PYTHON 3.7.17, OR ANY.
—~DERIVATIVE

THEREOF, EVEN IF ADVISED OF THE POSSIBILITY THEREOEF.

94 Appendix C. & x}¢} glo]AlA

Python Frequently Asked Questions, = x] 1] A 3.7.17

6.

This License Agreement will automatically terminate upon a material..

—breach of

7.

its terms and conditions.

Nothing in this License Agreement shall be deemed to create any.

—relationship

of agency, partnership, or joint venture between PSF and Licensee. .

—This License

Agreement does not grant permission to use PSF trademarks or trade name.

—in a

trademark sense to endorse or promote products or services of Licensee,.

—O0or any

8.

third party.

By copying, installing or otherwise using Python 3.7.17, Licensee agrees
to be bound by the terms and conditions of this License Agreement.

C.2.2 BEOPEN.COM LICENSE AGREEMENT FOR PYTHON 2.0

BEOPEN PYTHON OPEN SOURCE LICENSE AGREEMENT VERSION 1

This LICENSE AGREEMENT is between BeOpen.com ("BeOpen"), having an office at
160 Saratoga Avenue, Santa Clara, CA 95051, and the Individual or Organization
("Licensee") accessing and otherwise using this software in source or binary
form and its associated documentation ("the Software").

Subject to the terms and conditions of this BeOpen Python License Agreement,
BeOpen hereby grants Licensee a non-exclusive, royalty-free, world-wide license
to reproduce, analyze, test, perform and/or display publicly, prepare derivative
works, distribute, and otherwise use the Software alone or in any derivative
version, provided, however, that the BeOpen Python License is retained in the
Software, alone or in any derivative version prepared by Licensee.

BeOpen is making the Software available to Licensee on an "AS IS" basis.

BEOPEN MAKES NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF
EXAMPLE, BUT NOT LIMITATION, BEOPEN MAKES NO AND DISCLAIMS ANY REPRESENTATION OR
WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE
USE OF THE SOFTWARE WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

BEOPEN SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF THE SOFTWARE FOR
ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT OF USING,
MODIFYING OR DISTRIBUTING THE SOFTWARE, OR ANY DERIVATIVE THEREOF, EVEN IF
ADVISED OF THE POSSIBILITY THEREOF.

This License Agreement will automatically terminate upon a material breach of
its terms and conditions.

This License Agreement shall be governed by and interpreted in all respects

by the law of the State of California, excluding conflict of law provisions.
Nothing in this License Agreement shall be deemed to create any relationship of
agency, partnership, or joint venture between BeOpen and Licensee. This License
Agreement does not grant permission to use BeOpen trademarks or trade names in a
trademark sense to endorse or promote products or services of Licensee, or any
third party. As an exception, the "BeOpen Python" logos available at
http://www.pythonlabs.com/logos.html may be used according to the permissions
granted on that web page.

By copying, installing or otherwise using the software, Licensee agrees to be
bound by the terms and conditions of this License Agreement.

C2. stolHo] A 23t AN} ALR-57] 913 o] & okt 95

Python Frequently Asked Questions, = x] 1] A 3.7.17

C.2.3 CNRI LICENSE AGREEMENT FOR PYTHON 1.6.1

This LICENSE AGREEMENT is between the Corporation for National Research
Initiatives, having an office at 1895 Preston White Drive, Reston, VA 20191
("CNRI"), and the Individual or Organization ("Licensee") accessing and
otherwise using Python 1.6.1 software in source or binary form and its
associated documentation.

Subject to the terms and conditions of this License Agreement, CNRI hereby
grants Licensee a nonexclusive, royalty-free, world-wide license to reproduce,
analyze, test, perform and/or display publicly, prepare derivative works,
distribute, and otherwise use Python 1.6.1 alone or in any derivative version,
provided, however, that CNRI's License Agreement and CNRI's notice of copyright,
i.e., "Copyright © 1995-2001 Corporation for National Research Initiatives; All
Rights Reserved" are retained in Python 1.6.1 alone or in any derivative version
prepared by Licensee. Alternately, in lieu of CNRI's License Agreement,
Licensee may substitute the following text (omitting the quotes): "Python 1.6.1
is made available subject to the terms and conditions in CNRI's License
Agreement. This Agreement together with Python 1.6.1 may be located on the
Internet using the following unique, persistent identifier (known as a handle):
1895.22/1013. This Agreement may also be obtained from a proxy server on the
Internet using the following URL: http://hdl.handle.net/1895.22/1013."

In the event Licensee prepares a derivative work that is based on or
incorporates Python 1.6.1 or any part thereof, and wants to make the derivative
work available to others as provided herein, then Licensee hereby agrees to
include in any such work a brief summary of the changes made to Python 1.6.1.

CNRI is making Python 1.6.1 available to Licensee on an "AS IS" basis. CNRI
MAKES NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF EXAMPLE,
BUT NOT LIMITATION, CNRI MAKES NO AND DISCLAIMS ANY REPRESENTATION OR WARRANTY
OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE USE OF
PYTHON 1.6.1 WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

CNRI SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF PYTHON 1.6.1 FOR
ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT OF
MODIFYING, DISTRIBUTING, OR OTHERWISE USING PYTHON 1.6.1, OR ANY DERIVATIVE
THEREOF, EVEN IF ADVISED OF THE POSSIBILITY THEREOEF.

This License Agreement will automatically terminate upon a material breach of
its terms and conditions.

This License Agreement shall be governed by the federal intellectual property
law of the United States, including without limitation the federal copyright
law, and, to the extent such U.S. federal law does not apply, by the law of the
Commonwealth of Virginia, excluding Virginia's conflict of law provisions.
Notwithstanding the foregoing, with regard to derivative works based on Python
1.6.1 that incorporate non-separable material that was previously distributed
under the GNU General Public License (GPL), the law of the Commonwealth of
Virginia shall govern this License Agreement only as to issues arising under or
with respect to Paragraphs 4, 5, and 7 of this License Agreement. Nothing in
this License Agreement shall be deemed to create any relationship of agency,
partnership, or joint venture between CNRI and Licensee. This License Agreement
does not grant permission to use CNRI trademarks or trade name in a trademark
sense to endorse or promote products or services of Licensee, or any third
party.

By clicking on the "ACCEPT" button where indicated, or by copying, installing
or otherwise using Python 1.6.1, Licensee agrees to be bound by the terms and
conditions of this License Agreement.

96

Appendix C. < x}¢} glo] Al A

Python Frequently Asked Questions, = x] 1] A 3.7.17

C.2.4 CWI LICENSE AGREEMENT FOR PYTHON 0.9.0 THROUGH 1.2

Copyright © 1991 - 1995, Stichting Mathematisch Centrum Amsterdam, The
Netherlands. All rights reserved.

Permission to use, copy, modify, and distribute this software and its
documentation for any purpose and without fee is hereby granted, provided that
the above copyright notice appear in all copies and that both that copyright
notice and this permission notice appear in supporting documentation, and that
the name of Stichting Mathematisch Centrum or CWI not be used in advertising or
publicity pertaining to distribution of the software without specific, written
prior permission.

STICHTING MATHEMATISCH CENTRUM DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS
SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN NO
EVENT SHALL STICHTING MATHEMATISCH CENTRUM BE LIABLE FOR ANY SPECIAL, INDIRECT
OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE,
DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS
SOFTWARE.

o] AL sho]m Wl ETo] EEE AR £ZES o] T BAAAA T Fol T 3
59 B5dYrh

rr
)
)
rZ
[>
1o

C.3.1 w24 E9AH

_random B & http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/MT2002/emt19937ar.html of| A]
delwe Sed 70 e 8 g FLch e A wEe] F4S IhE $7 AU h

A C-program for MT19937, with initialization improved 2002/1/26.
Coded by Takuji Nishimura and Makoto Matsumoto.

Before using, initialize the state by using init_genrand (seed)
or init_by_array(init_key, key_length).

Copyright (C) 1997 - 2002, Makoto Matsumoto and Takuji Nishimura,
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

3. The names of its contributors may not be used to endorse or promote
products derived from this software without specific prior written
permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR

(Th& sl AT ol AS)

%

C3. 38 2z Egolo] Uit ehol A 2 53 97

http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/MT2002/emt19937ar.html

Python Frequently Asked Questions, = x] 1] A 3.7.17

(o1 sl o] A A A%)

A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR

PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS

SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Any feedback is very welcome.
http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html
email: m-mat @ math.sci.hiroshima-u.ac.jp (remove space)

C.3.2 427

socket BREL getaddrinfo () £} getnameinfo () T+ 5 ALYt} o] 52 WIDE Project, http:
[Iwww.wide.ad.jp/, A Al & HBE A2 5 Z TP F o] 5T

Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
All rights reserved.

Redistribution and use in source and binary forms, with or without

modification, are permitted provided that the following conditions

are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

3. Neither the name of the project nor the names of its contributors
may be used to endorse or promote products derived from this software
without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS "~ "AS IS'' AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. 1IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS

OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

C.3.3 ¥]Z7] 27 A

[>

asynchat3 asyncore BE2 U3 -2 39 AMghS 233t

Copyright 1996 by Sam Rushing
All Rights Reserved
Permission to use, copy, modify, and distribute this software and

its documentation for any purpose and without fee is hereby
granted, provided that the above copyright notice appear in all

(Th& sl AT ol A%

98 Appendix C. S x}¢} glo]Al A

http://www.wide.ad.jp/
http://www.wide.ad.jp/

Python Frequently Asked Questions, = x] 1] A 3.7.17

(o1 sl o] A A A%)

copies and that both that copyright notice and this permission
notice appear in supporting documentation, and that the name of Sam
Rushing not be used in advertising or publicity pertaining to
distribution of the software without specific, written prior
permission.

SAM RUSHING DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE,
INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN
NO EVENT SHALL SAM RUSHING BE LIABLE FOR ANY SPECIAL, INDIRECT OR
CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS
OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT,
NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

C.3.4 F7] &<

http.cookies REL T} 28 7o) A3 E g ch:

Copyright 2000 by Timothy O'Malley <timo@alum.mit.edu>
All Rights Reserved

Permission to use, copy, modify, and distribute this software

and its documentation for any purpose and without fee is hereby
granted, provided that the above copyright notice appear in all
copies and that both that copyright notice and this permission
notice appear in supporting documentation, and that the name of
Timothy O'Malley not be used in advertising or publicity

pertaining to distribution of the software without specific, written
prior permission.

Timothy O'Malley DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS
SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS, IN NO EVENT SHALL Timothy O'Malley BE LIABLE FOR
ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
PERFORMANCE OF THIS SOFTWARE.

C35 A3 37

trace REL Th3 0 22 £ AHS @Y h

portions copyright 2001, Autonomous Zones Industries, Inc., all rights...

err... reserved and offered to the public under the terms of the
Python 2.2 license.

Author: Zooko O'Whielacronx

http://zooko.com/

mailto:zooko@zooko.com

Copyright 2000, Mojam Media, Inc., all rights reserved.
Author: Skip Montanaro

Copyright 1999, Bioreason, Inc., all rights reserved.
Author: Andrew Dalke

(F= sMoTAT ol AS)

%

C3. E3d 2zEgolo] T ol A2 8 5

99

Python Frequently Asked Questions, = x] 1] A 3.7.17

(o1 sl o] A A A%)

Copyright 1995-1997, Automatrix, Inc., all rights reserved.
Author: Skip Montanaro

Copyright 1991-1995, Stichting Mathematisch Centrum, all rights reserved.

Permission to use, copy, modify, and distribute this Python software and
its associated documentation for any purpose without fee is hereby
granted, provided that the above copyright notice appears in all copies,
and that both that copyright notice and this permission notice appear in
supporting documentation, and that the name of neither Automatrix,
Bioreason or Mojam Media be used in advertising or publicity pertaining to
distribution of the software without specific, written prior permission.

C.3.6 UUencode %! UUdecode &+5~

o B ES e 2 7o) S E P

Copyright 1994 by Lance Ellinghouse
Cathedral City, California Republic, United States of America.

All Rights Reserved
Permission to use, copy, modify, and distribute this software and its
documentation for any purpose and without fee is hereby granted,
provided that the above copyright notice appear in all copies and that
both that copyright notice and this permission notice appear in
supporting documentation, and that the name of Lance Ellinghouse
not be used in advertising or publicity pertaining to distribution
of the software without specific, written prior permission.
LANCE ELLINGHOUSE DISCLAIMS ALL WARRANTIES WITH REGARD TO
THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS, IN NO EVENT SHALL LANCE ELLINGHOUSE CENTRUM BE LIABLE
FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT
OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

Modified by Jack Jansen, CWI, July 1995:

— Use binascii module to do the actual line-by-line conversion
between ascii and binary. This results in a 1000-fold speedup. The C
version is still 5 times faster, though.

- Arguments more compliant with Python standard

C3.7 XML YA =2 AA T2

xmlrpe.client RES 0T 28 5o AgHe wdach

The XML-RPC client interface is

Copyright (c) 1999-2002 by Secret Labs AB
Copyright (c) 1999-2002 by Fredrik Lundh

By obtaining, using, and/or copying this software and/or its
associated documentation, you agree that you have read, understood,
and will comply with the following terms and conditions:

Permission to use, copy, modify, and distribute this software and
its associated documentation for any purpose and without fee is

(F= sMoTAT ol AS)

100 Appendix C. & x}¢} glo] A A

Python Frequently Asked Questions, = x] 1] A 3.7.17

(el

bl

L

o] A oAl A A%)

hereby granted, provided that the above copyright notice appears in
all copies, and that both that copyright notice and this permission
notice appear in supporting documentation, and that the name of
Secret Labs AB or the author not be used in advertising or publicity
pertaining to distribution of the software without specific, written
prior permission.

SECRET LABS AB AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH REGARD
TO THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANT-
ABILITY AND FITNESS. IN NO EVENT SHALL SECRET LABS AB OR THE AUTHOR
BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY
DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
OF THIS SOFTWARE.

C.3.8 test_epoll

test_epoll REL b3t 28 79| AL 2FFUh

Copyright (c) 2001-2006 Twisted Matrix Laboratories.

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND

NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

C.3.9 Select kqueue

select 252 kqueue Q1 E 3] o] 2ol thal The 3} 22 Fo] AGHe ERE UL

Copyright (c) 2000 Doug White, 2006 James Knight, 2007 Christian Heimes
All rights reserved.

Redistribution and use in source and binary forms, with or without

modification, are permitted provided that the following conditions

are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

(F= sMoTAT ol AS)

%

C3. E3d 2zEgolo] T ol A2 8 5

101

Python Frequently Asked Questions, = x] 1] A 3.7.17

(o1 sl o] A A A%)

THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS "~ "AS IS'' AND

ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. 1IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS

OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

C.3.10 SipHash24

3} Python/pyhash. c o] += Dan Bernstein 2] SipHash24 211 2] & 2] Marek Majkowski 2] =& o] 3£ 3}5] o]
AU o 7)ol = o 22 W&ol 2 o] JlsUth:

<MIT License>
Copyright (c) 2013 Marek Majkowski <marek@popcount.org>

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
</MIT License>

Original location:
https://github.com/majek/csiphash/

Solution inspired by code from:
Samuel Neves (supercop/crypto_auth/siphash24/1little)
djb (supercop/crypto_auth/siphash24/little2)
Jean-Philippe Aumasson (https://131002.net/siphash/siphash24.c)

C.3.11 strtod ¢} dtoa

C double 7} F21Yd 71o] H3HE 93 C T4 dtoa &} strtod S A|-Z3t= 3 <Y Python/dtoa.c = X
http://www.netlib.org/fp/ o] A Q& 4= 9= David M. Gay 9] 22 o] £9] 3} Yol A A 95 U Tt} 2009
d3d 16g0] 2 A& pdoll= thad 22 A2 2 gro] Al F 27 23 o] gyt

/*********************~k****k*******~k******************************

*

* The author of this software is David M. Gay.

*

* Copyright (c) 1991, 2000, 2001 by Lucent Technologies.

*

* Permission to use, copy, modify, and distribute this software for any

* purpose without fee is hereby granted, provided that this entire notice
*

is included in all copies of any software which is or includes a copy
or modification of this software and in all copies of the supporting
documentation for such software.

*

*

(Th& sl A oll A%)

102 Appendix C. S x}¢} glo]Al A

http://www.netlib.org/fp/

Python Frequently Asked Questions, = x] 1] A 3.7.17

(o1 sl o] A A A%)

* THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR IMPLIED
* WARRANTY. IN PARTICULAR, NEITHER THE AUTHOR NOR LUCENT MAKES ANY

* REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE MERCHANTABILITY

* OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR PURPOSE.

*

***/

C.3.12 OpenSSL

E hashlib, posix, ssl, crypt & & Alﬂ]*PﬂJZ7}4 A 52 93 OpenSSL
olBy g & AUt 3 9= W OS X 3} d 4] L2 W2 OpenSSL 2ho] B 2j] AHE S
e 4 9lom g, o] 7] o] OpenSSL gho] Al A AFE-S 233)

RO

LICENSE ISSUES

The OpenSSL toolkit stays under a dual license, i.e. both the conditions of
the OpenSSL License and the original SSLeay license apply to the toolkit.
See below for the actual license texts. Actually both licenses are BSD-style
Open Source licenses. In case of any license issues related to OpenSSL
please contact openssl-corelopenssl.org.

OpenSSL License

Copyright (c) 1998-2008 The OpenSSL Project. All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in
the documentation and/or other materials provided with the
distribution.

3. All advertising materials mentioning features or use of this
software must display the following acknowledgment:
"This product includes software developed by the OpenSSL Project
for use in the OpenSSL Toolkit. (http://www.openssl.org/)

4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
endorse or promote products derived from this software without
prior written permission. For written permission, please contact
openssl-core@openssl.org.

5. Products derived from this software may not be called "OpenSSL"
nor may "OpenSSL" appear in their names without prior written
permission of the OpenSSL Project.

6. Redistributions of any form whatsoever must retain the following
acknowledgment:
"This product includes software developed by the OpenSSL Project
for use in the OpenSSL Toolkit (http://www.openssl.org/)"

L T R S e R S N S S S S N S N S S S S N S S S e S S I

(F= soTAT ol A

3}

)
w
e
d
rﬂ
lkl

Edofol th3t gho]dl 2 g &< 103

Python Frequently Asked Questions, = x] 1] A 3.7.17

(o1 sl o] A A A%)

ERE T R S e N S S N S N S S .

THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT " "AS IS'' AND ANY
EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT

NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;

LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)

HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
OF THE POSSIBILITY OF SUCH DAMAGE.

This product includes cryptographic software written by Eric Young
(eay@cryptsoft.com). This product includes software written by Tim
Hudson (tjh@cryptsoft.com).

Original SSLeay License

LG S SR I N N S N S S N S S S S T I R S N S S N I S .

Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
All rights reserved.

This package is an SSL implementation written
by Eric Young (eay@cryptsoft.com).
The implementation was written so as to conform with Netscapes SSL.

This library is free for commercial and non-commercial use as long as
the following conditions are aheared to. The following conditions
apply to all code found in this distribution, be it the RC4, RSA,
lhash, DES, etc., code; not just the SSL code. The SSL documentation
included with this distribution is covered by the same copyright terms
except that the holder is Tim Hudson (tjh@cryptsoft.com).

Copyright remains Eric Young's, and as such any Copyright notices in

the code are not to be removed.

If this package is used in a product, Eric Young should be given attribution
as the author of the parts of the library used.

This can be in the form of a textual message at program startup or

in documentation (online or textual) provided with the package.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
1. Redistributions of source code must retain the copyright
notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
3. All advertising materials mentioning features or use of this software
must display the following acknowledgement:
"This product includes cryptographic software written by
Eric Young (eay@cryptsoft.com)"
The word 'cryptographic' can be left out if the rouines from the library
being used are not cryptographic related :-).
4. If you include any Windows specific code (or a derivative thereof) from
the apps directory (application code) you must include an acknowledgement:
"This product includes software written by Tim Hudson (tjh@cryptsoft.com)"

(Th& sl AT ol AS)

104

Appendix C. S x}¢} glo]Al A

Python Frequently Asked Questions, = x] 1] A 3.7.17

(o1 sl o] A A A%)

THIS SOFTWARE IS PROVIDED BY ERIC YOUNG " "AS IS'' AND

ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS

OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

The licence and distribution terms for any publically available version or
derivative of this code cannot be changed. i.e. this code cannot simply be
copied and put under another distribution licence

[including the GNU Public Licence.]
/

b T R S S S N S N S

C.3.13 expat

pyexpat &2 WU E & ——yith-system-expat & FA3}A| b= 3t E3H expat A AHES ALE

stof Wl =g

Copyright (c) 1998, 1999, 2000 Thai Open Source Software Center Ltd
and Clark Cooper

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

C.3.14 libffi

_ctypes &AL It & ——with-system—-1libffi & FA 3R &= 3l ESHH libfli &2 AFE-S AL

shof =g Ytk

Copyright (c) 1996-2008 Red Hat, Inc and others.

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
*Software''), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,

(TF& sl A ol A%)

%

C3. = Lz e oo thF o]l A g 52l 105

Python Frequently Asked Questions, = x] 1] A 3.7.17

(o1 sl o] A A A%)

distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED " "AS IS'', WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.

C.3.15 zlib

21ib e A2 Fol A WA dib WA o] YT es ol A e AT & glow,

AR g Stel e U Th

]

3}
=4

)
N
o
B>
>

Copyright (C) 1995-2011 Jean-loup Gailly and Mark Adler

This software is provided 'as-is', without any express or implied
warranty. In no event will the authors be held liable for any damages
arising from the use of this software.

Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it
freely, subject to the following restrictions:

1. The origin of this software must not be misrepresented; you must not
claim that you wrote the original software. If you use this software
in a product, an acknowledgment in the product documentation would be
appreciated but is not required.

2. Altered source versions must be plainly marked as such, and must not be
misrepresented as being the original software.

3. This notice may not be removed or altered from any source distribution.

Jean-loup Gailly Mark Adler
jloup@gzip.org madler@alumni.caltech.edu

C.3.16 cfuhash

tracemalloc o] 9J3l AFR T = A H o] &9 F+8 & cfuhash ZZAEE 7|ulo 7 ghr}:

Copyright (c) 2005 Don Owens
All rights reserved.

This code is released under the BSD license:
Redistribution and use in source and binary forms, with or without

modification, are permitted provided that the following conditions
are met:

(Th& sl AT ol A%

106 Appendix C. & x}¢} glo] A A

Python Frequently Asked Questions, = x] 1] A 3.7.17

(o1 sl o] A A A%)

* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following
disclaimer in the documentation and/or other materials provided
with the distribution.

* Neither the name of the author nor the names of its
contributors may be used to endorse or promote products derived
from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
OF THE POSSIBILITY OF SUCH DAMAGE.

C.3.17 libmpdec

_decimal R E2 WUEE —-—with-system-libmpdec & F+A3}1A] ¢+ 3, 2 3HE libmpdec A2~ AR

& AHgstel ek

Copyright (c) 2008-2016 Stefan Krah. All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS "AS IS" AND

ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. 1IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS

OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

%

C3. = Lz e oo thF o]l A g 52l 107

Python Frequently Asked Questions, = x] 1] A 3.7.17

108 Appendix C. & x}¢} glo] A A

APPENDIX D

sho] 3} o] WA
Copyright © 2001-2023 Python Software Foundation. All rights reserved.

Copyright © 2000 BeOpen.com. All rights reserved.

Copyright © 1995-2000 Corporation for National Research Initiatives. All rights reserved.
Copyright © 1991-1995 Stichting Mathematisch Centrum. All rights reserved.

WA 2ol 0 AL AT ARE o AL9) 2ho] 4l o A Al F T

109

Python Frequently Asked Questions, = x] 1] A 3.7.17

110 Appendix D. #]z4

)
ro

Non-alphabetical

e 79

2to03,79

>>> 79

_ future_ ,83
_ slots_ ,89

A

abstract base class (54 #|o]2

annotation (o] =€ o] A), 79

argument

difference from parameter, 12

argument (¢12}), 79

asynchronous context manager (H]%7] A
H2E Fejat), 80

asynchronous generator (B]% 7] A4 & o]
E), 80

asynchronous generator iterator (H]57]
Al alol 8 o] el o]), 80

asynchronous iterable (H]% 7] o]E2] &), 80

asynchronous iterator (8] 7] o & & o] H),
80

attribute (9] EZHE), 80

awaitable (o]9l] o] E]E), 80

B
BDFL, 80
binary file (¥lo]1]g] 5}Y), 80
bytecode (¥H}o]E F X&), 80
bytes—like object (VH}o]E

C

C—-contiguous, 81
class (Z82), 81

Se2), 79

& A4, 80

class variable (F|2 W), 81
coercion (Z o] 4), 81

complex number (B4, 81

context manager (AE2E #He|A}), 81
context variable (AEIAE W), 81
contiguous (%), 81

coroutine (ZFH), 81

coroutine function (ZFHE), 81

CPython, 81

D

decorator (dZ & °]H), 81
descriptor (2= 3 H), 82
dictionary (9414 &]), 82
dictionary view (dA g H), 82
docstring (BEAEH), 82
duck-typing (5 E}o]3), 82

E

EAFP, 82
expression (¥ 4)]), 82
extension module (73 EE), 82

F

f-string (FEAFY), 82

file object (T} A, 82
file-like object (¥ F AA), 82
finder (3}21), 82

floor division (A4 A, 82
Fortran contlguous, 81

function (&%), 83
function annotation (&4 o] H|o]A), 83

G

garbage collection (Z7FH]A] =74), 83

generator, 83

generator (A & o] E), 83

generator expression, 83

generator expression (AU olE Z &4,
83

generator iterator (AU o]E o|E g olH),
83

generic function (A4 <), 83

GIL, 83

global interpreter lock (A< QE=
=), 83

215

Fi
hash-based pyc (] A] 714k pyc), 84
hashable (3] A] 7}%), 84

IDLE, 84

111

Python Frequently Asked Questions, = x] 1] A 3.7.17

immutable (£9), 84

import path(YXE H=Z), 84
importer (Y32 H), 84
importing (Y 3xH), 84
interactive (t)39), 84
interpreted (A E Z g E L), 84
interpreter shutdown (QJEZ
iterable (°]E]EHE), 84
iterator (°]E & o] ¥), 84

K

key function (7] &), 85
keyword argument (7] = A}, 85

L

lambda (&1}, 85

LBYL, 85

list (B]2E), 85

list comprehension (BAE HAZZ3A), 85
loader (ZH), 85

M
magic

method, 85
magic method (W] & HA]E), 85
mapping (7§°3), 85
meta path finder (WE} 3 & 5121 0), 85
metaclass (HEF E3), 85
method

magic, 85

special, 89
method (WA Z), 86

ZlE $8),84

method resolution order (WAE ZA <A,

86
module (2E), 86
module spec (EE &%), 86
MRO, 86
mutable (7}H), 86

N

named tuple (MYE EZ), 86

namespace (°]& &7}, 86

namespace package (¢]& &7+ 3 7] X)), 86
nested scope (FHH 27 E), 86
new-style class (2 €Y E32), 86

O

object (AA)), 87

P

package (3] 7] X)), 87
parameter

difference from argument, 12
parameter (W] 7] HS), 87
PATH, 50
path based finder (FZ 7|4l 3}l H), 87
path entry (A=Z JdET),87

path entry finder (AZ JdEg J}O]Eﬂ) 87
path entry hook (A=Z OJEE] =), 8
path-like object (FEF ZAA)), 87
PEP, 88

portion (E4), 88

positional argument ($]X] <12}, 88
provisional API (A API), 88
provisional package (ZA 9 7] X)), 88
Python 3000 (3+o] A 3000), 88
PYTHONDONTWRITEBYTECODE, 31
Pythonic (Z}o] M THL), 88

Q

qualified name (B34 °] &), 88

R

reference count (ZFZ 34, 89
regular package (BF 3 7] A)), 89

S

sequence (A] A 2), 89
single dispatch (A2 t29x]), 89
slice (£8}o]2), 89
special

method, 89
special method (£
statement (£7%), 89

T

TCL_LIBRARY, 74

text encoding (HlAE <13 H), 89
text file (H2E 3}Y), 89
TK_LIBRARY, 74

FHAE), 89

triple—-quoted string (A& wW2x & B}
2), 89

type (%), 89

type alias (¥ o d2lo]2), 89

type hint (8 31 E), 90

universal newlines (FUBAd & d7), 90

V

variable annotation (HS o] ¥ o]A), 90
virtual environment (7} 273), 90
virtual machine (7} 7] A), 90

1
PEP 5
PEP 6,
PEP 8
PEP 238,82
PEP
PEP 278,90
PEP 302, 82,85

112

3
e

Python Frequently Asked Questions, = x] 1] A 3.7.17

Z

PEP
PEP
PEP
PEP
PEP
PEP
PEP
PEP
PEP
PEP
PEP
PEP
PEP
PEP
PEP
PEP

2~
T

343, 81

362, 80, 87
411, 88
420, 82, 86, 88
443,83
451,82
484,79, 83,90
492, 80, 81
498, 82

519, 87

525, 80
526,79, 90
570, 18
3116, 90
3147, 31
3155, 88

PATH, 50
PYTHONDONTWRITEBYTECODE, 31
TCL_LIBRARY, 74

TK_LIBRARY, 74

Zen of Python (Fto]H Al), 90

=
ro

113

	General Python FAQ
	Programming FAQ
	Design and History FAQ
	Library and Extension FAQ
	확장/내장 FAQ
	Python on Windows FAQ
	그래픽 사용자 인터페이스 FAQ
	“왜 내 컴퓨터에 파이썬이 설치되어 있습니까?” FAQ
	용어집
	이 설명서에 관하여
	역사와 라이센스
	저작권
	색인

