The Python/C API
EA WA 3.7.16

Guido van Rossum
and the Python development team

29 08, 2023

Contents

1 Introduction 3
.1 Codingstandards e e e e e e e e e 3
1.2 Include Files e 3
1.3 Useful macros o o e e e e e e 4
1.4 Objects, Types and Reference Countso it 5
1.5 EXCEPUONS v i it e e e e e e e e e e e e e e e e e e e 9
1.6 Embedding Python e e e 11
1.7 Debugging Builds e 11
2 ¢ARAHA & =2 ad o] A o] & 13
3 The Very High Level Layer 15
4 FzIA$ 21
5 Exception Handling 23
5.1 Printingand clearing L e e e e e e e e 23
5.2 Raising exceptions L. e e e e 24
5.3 Issuingwarnings oLl e e e e 26
54 Querying the error indicator e 27
5.5 SignalHandling e e e e e e 28
5.6 Exception Classes v v i i i e e e e e e e e e e e e e 29
5.7 Exception Objects L e e e e e 29
5.8 Unicode Exception Objects L e 30
5.9 Recursion Control e e e e e e 31
5.10 Standard EXCeptions e e e e e e e e e e e e e e e e e 31
5.11 Standard Warning Categories v v v v v i e e e e e e e e e e e e e e e e e 33
6 FezlE 35
6.1 Operating System UtIlities 0 0 i e e e e e e e e e 35
6.2 System Functions e e e e e e e 37
6.3 Process Control e e e e e 38
6.4 EE AEZESIT] . . e 39
6.5 HlolE HFAFE A L e, 42
6.6 Parsing arguments and building values Lo 43
6.7 BAG MBI IZUNE L 50
6.8 EIZEIA L L 52
69 FH SEAC A T L e 52
7 2B AAAS 55
7.1 Object Protocol e e 55

T2 FAFZZEET L L 60

73 AR ZEZET e e 62
T4 Wi EREET L e e e e e 64
75 OlHHOIE ZEET L L. e 65
7.6 WI ZZET .. e 66
77 2T ZEET L e 72
T AR A% I
8.1 ZIE- A L e 75
82 AP L. 77
83 A A L. 82
84 FHEIOIU A . . . e e e 107
8.5 E A L e 111
8.6 ZIEFZA . .. e 114
Initialization, Finalization, and Threads 133
9.1 Before Python Initialization e 133
9.2 Global configuration variables e 134
9.3 Initializing and finalizing the interpreter e 136
9.4 Process-wide parameters it i e 136
9.5 Thread State and the Global Interpreter Lock, 139
9.6 Sub-interpreter SUPPOTt v v v v i i e 144
9.7 Asynchronous Notifications e 145
9.8 Profilingand Tracing L. e e e e 146
9.9 Advanced Debugger Support e e e e e e e 147
9.10 Thread Local Storage SUpport o 0 v it e e e e e e e e e e e e e 147
Memory Management 151
L0.1 OVEIVIEW . . . o o i o et e e e e e e e e e e e e e e e e e 151
10.2 Raw Memory Interface e e e e 152
103 Memory Interface e 153
10.4 Objectallocators e e 154
10.5 Default Memory Allocators o o o e e e e 155
10.6 Customize Memory AIlOCators v o v v i e e e e e e e e 155
10.7 The pymalloc allocator o o o i e e e e e e e 157
10.8 tracemalloc CAPL e 157
109 Examples e 158
AA 738 29 159
1L el AR FF3E7] ..o 159
11.2 Common Object Structures e 160
11.3 Type ObJects o v v i e e e e e e e 164
11.4 Number Object Structures v v v it e e e e e e e e e e e e e e e 177
11.5 Mapping Object StrUCLUIeS v v v o it e e e e e e e e e e e e e e e e e e e 178
11.6 Sequence Object Structures Lt i e e e e e 178
11.7 Buffer Object Structures e e 179
11.8 Async Object Structuresttt e e e 180
119 7R SR YD o 181
API2} ABI B A £ o] 7] 183
$oi% 185
o] /A7 A of] #5}od 197
Bl FolA AWML FHAE ... 197
A ALg} gho] Al & 199
Cl AZEJOIY AL L. 199

C2 Folyof] A2 AUYARESHZ] 9ISt o] & F . .. 200

. 203

215

D A=

217

p—

0

=r

The Python/C API, & x] 8] A 3.7.16

o] WAL B BELS AAFAY o] ME WAL S C Cor L2 T2 0] 7k AL SH API
MBI o] A AL o] 2L extendingindex £ 3 A 2H9] Ak A 2L A 544 5k, API

Contents

The Python/C API, & x| B] A 3.7.16

2 Contents

CHAPTER 1

Introduction

The Application Programmer’s Interface to Python gives C and C++ programmers access to the Python interpreter
at a variety of levels. The API is equally usable from C++, but for brevity it is generally referred to as the Python/C
API. There are two fundamentally different reasons for using the Python/C API. The first reason is to write extension
modules for specific purposes; these are C modules that extend the Python interpreter. This is probably the most
common use. The second reason is to use Python as a component in a larger application; this technique is generally
referred to as embedding Python in an application.

Writing an extension module is a relatively well-understood process, where a “‘cookbook’ approach works well. There
are several tools that automate the process to some extent. While people have embedded Python in other applications
since its early existence, the process of embedding Python is less straightforward than writing an extension.

Many API functions are useful independent of whether you’re embedding or extending Python; moreover, most
applications that embed Python will need to provide a custom extension as well, so it’s probably a good idea to
become familiar with writing an extension before attempting to embed Python in a real application.

1.1 Coding standards

If you’re writing C code for inclusion in CPython, you must follow the guidelines and standards defined in PEP 7.
These guidelines apply regardless of the version of Python you are contributing to. Following these conventions is
not necessary for your own third party extension modules, unless you eventually expect to contribute them to Python.

1.2 Include Files

All function, type and macro definitions needed to use the Python/C API are included in your code by the following
line:

#define PY _SSIZE_T CLEAN
#include <Python.h>

This implies inclusion of the following standard headers: <stdio.h>, <string.h>, <errno.h>,<limits.
h>, <assert.h>and <stdlib.h> (if available).

Z31: Since Python may define some pre-processor definitions which affect the standard headers on some systems,
you must include Python . h before any standard headers are included.

https://www.python.org/dev/peps/pep-0007

The Python/C API, & x| B] A 3.7.16

It is recommended to always define PY_SSIZE_T_CLEAN before including Python.h. See Parsing arguments
and building values for a description of this macro.

All user visible names defined by Python.h (except those defined by the included standard headers) have one of the
prefixes Py or _Py. Names beginning with _Py are for internal use by the Python implementation and should not
be used by extension writers. Structure member names do not have a reserved prefix.

ZF31: User code should never define names that begin with Py or _Py. This confuses the reader, and jeopardizes
the portability of the user code to future Python versions, which may define additional names beginning with one of
these prefixes.

The header files are typically installed with Python. On Unix, these are located in the directories prefix/
include/pythonversion/ and exec_prefix/include/pythonversion/, where prefix and
exec_prefix are defined by the corresponding parameters to Python’s configure script and version is ' $d.
%d' % sys.version_info[:2]. On Windows, the headers are installed in prefix/include, where
prefix is the installation directory specified to the installer.

To include the headers, place both directories (if different) on your compiler’s search path for includes. Do not place
the parent directories on the search path and then use #include <pythonX.Y/Python.h>;this will break on
multi-platform builds since the platform independent headers under pre £1ix include the platform specific headers
from exec_prefix.

C++ users should note that although the API is defined entirely using C, the header files properly declare the entry
points to be extern "C". As a result, there is no need to do anything special to use the API from C++.

1.3 Useful macros

Several useful macros are defined in the Python header files. Many are defined closer to where they are useful (e.g.
Py_RETURN_NONE). Others of a more general utility are defined here. This is not necessarily a complete listing.

Py_UNREACHABLE ()
Use this when you have a code path that you do not expect to be reached. For example, in the default:
clause in a switch statement for which all possible values are covered in case statements. Use this in places
where you might be tempted to put an assert (0) or abort () call.

B A 3.70] F7}.

Py_ABS (X)
Return the absolute value of x.

B A 3.30]] &7}

Py_MIN (Xx,y)
Return the minimum value between x and y.

WA 330 27}

Py_MAX (X,y)
Return the maximum value between x and y.

W7 3.30] 71

Py_STRINGIFY (X)
Convert x to a C string. E.g. Py_STRINGIFY (123) returns "123".

W 3400 =71

Py_MEMBER_SIZE (type, member)
Return the size of a structure (t ype) member in bytes.

B A 3.6 7T

4 Chapter 1. Introduction

The Python/C API, & x] 8] A 3.7.16

Py_CHARMASK (c)
Argument must be a character or an integer in the range [-128, 127] or [0, 255]. This macro returns c cast to
anunsigned char.

Py_GETENV (s)
Like getenv(s), but returns NULL if —-E was passed on the command line (i.e. if
Py_IgnoreEnvironmentFlag is set).

Py_UNUSED (arg)
Use this for unused arguments in a function definition to silence compiler warnings, e.g. PyObject*
func (PyObject *Py_UNUSED (ignored)).

B A 3.40 F7}.

PyDoc_STRVAR (name, str)
Creates a variable with name name that can be used in docstrings. If Python is built without docstrings, the
value will be empty.

Use PyDoc_ STRVAR for docstrings to support building Python without docstrings, as specified in PEP 7.

Example:

PyDoc_STRVAR (pop_doc, "Remove and return the rightmost element.");

static PyMethodDef deque_methods[] = {
V2R
{"pop", (PyCFunction)deque_pop, METH_NOARGS, pop_doc},
/).

PyDoc_STR (str)
Creates a docstring for the given input string or an empty string if docstrings are disabled.

Use PyDoc_STR in specifying docstrings to support building Python without docstrings, as specified in PEP
7.

Example:

static PyMethodDef pysglite_row_methods[] = {
{"keys", (PyCFunction)pysqglite_row_keys, METH_NOARGS,
PyDoc_STR("Returns the keys of the row.")},
{NULL, NULL}

bi

1.4 Objects, Types and Reference Counts

Most Python/C API functions have one or more arguments as well as a return value of type PyOb ject *. This type
is a pointer to an opaque data type representing an arbitrary Python object. Since all Python object types are treated
the same way by the Python language in most situations (e.g., assignments, scope rules, and argument passing), it
is only fitting that they should be represented by a single C type. Almost all Python objects live on the heap: you
never declare an automatic or static variable of type PyOb ject, only pointer variables of type PyObject * can
be declared. The sole exception are the type objects; since these must never be deallocated, they are typically static
PyTypeObject objects.

All Python objects (even Python integers) have a fype and a reference count. An object’s type determines what kind of
object it is (e.g., an integer, a list, or a user-defined function; there are many more as explained in types). For each of
the well-known types there is a macro to check whether an object is of that type; for instance, PyList_Check (a)
is true if (and only if) the object pointed to by a is a Python list.

1.4. Objects, Types and Reference Counts 5

https://www.python.org/dev/peps/pep-0007
https://www.python.org/dev/peps/pep-0007
https://www.python.org/dev/peps/pep-0007

The Python/C API, & x| B] A 3.7.16

1.4.1 Reference Counts

The reference count is important because today’s computers have a finite (and often severely limited) memory size; it
counts how many different places there are that have a reference to an object. Such a place could be another object, or
a global (or static) C variable, or a local variable in some C function. When an object’s reference count becomes zero,
the object is deallocated. If it contains references to other objects, their reference count is decremented. Those other
objects may be deallocated in turn, if this decrement makes their reference count become zero, and so on. (There’s
an obvious problem with objects that reference each other here; for now, the solution is “don’t do that.”)

Reference counts are always manipulated explicitly. The normal way is to use the macro Py_ TNCREF () to incre-
ment an object’s reference count by one, and Py_ DECREF () to decrement it by one. The Py_ DECREF () macro
is considerably more complex than the incref one, since it must check whether the reference count becomes zero and
then cause the object’s deallocator to be called. The deallocator is a function pointer contained in the object’s type
structure. The type-specific deallocator takes care of decrementing the reference counts for other objects contained
in the object if this is a compound object type, such as a list, as well as performing any additional finalization that’
s needed. There’s no chance that the reference count can overflow; at least as many bits are used to hold the ref-
erence count as there are distinct memory locations in virtual memory (assuming sizeof (Py_ssize_t) >=
sizeof (void*)). Thus, the reference count increment is a simple operation.

It is not necessary to increment an object’s reference count for every local variable that contains a pointer to an object.
In theory, the object’s reference count goes up by one when the variable is made to point to it and it goes down by
one when the variable goes out of scope. However, these two cancel each other out, so at the end the reference count
hasn’t changed. The only real reason to use the reference count is to prevent the object from being deallocated as
long as our variable is pointing to it. If we know that there is at least one other reference to the object that lives at
least as long as our variable, there is no need to increment the reference count temporarily. An important situation
where this arises is in objects that are passed as arguments to C functions in an extension module that are called from
Python; the call mechanism guarantees to hold a reference to every argument for the duration of the call.

However, a common pitfall is to extract an object from a list and hold on to it for a while without incrementing its
reference count. Some other operation might conceivably remove the object from the list, decrementing its reference
count and possible deallocating it. The real danger is that innocent-looking operations may invoke arbitrary Python
code which could do this; there is a code path which allows control to flow back to the user from a Py DECREF (),
so almost any operation is potentially dangerous.

A safe approach is to always use the generic operations (functions whose name begins with PyObject_,
PyNumber_, PySequence_ or PyMapping_). These operations always increment the reference count of the
object they return. This leaves the caller with the responsibility to call Py DECREF () when they are done with the
result; this soon becomes second nature.

Reference Count Details

The reference count behavior of functions in the Python/C API is best explained in terms of ownership of references.
Ownership pertains to references, never to objects (objects are not owned: they are always shared). “Owning a
reference” means being responsible for calling Py DECREF on it when the reference is no longer needed. Ownership
can also be transferred, meaning that the code that receives ownership of the reference then becomes responsible for
eventually decref’ing it by calling Py DECREF () or Py_ XDECREF () when it’s no longer needed—or passing on
this responsibility (usually to its caller). When a function passes ownership of a reference on to its caller, the caller is
said to receive a new reference. When no ownership is transferred, the caller is said to borrow the reference. Nothing
needs to be done for a borrowed reference.

Conversely, when a calling function passes in a reference to an object, there are two possibilities: the function steals
a reference to the object, or it does not. Stealing a reference means that when you pass a reference to a function, that
function assumes that it now owns that reference, and you are not responsible for it any longer.

Few functions steal references; the two notable exceptions are PyList_SetItem() and
PyTuple_SetItem/(), which steal a reference to the item (but not to the tuple or list into which the item
is put!). These functions were designed to steal a reference because of a common idiom for populating a tuple or
list with newly created objects; for example, the code to create the tuple (1, 2, "three") could look like this
(forgetting about error handling for the moment; a better way to code this is shown below):

6 Chapter 1. Introduction

The Python/C API, & x] 8] A 3.7.16

PyObject *t;

t = PyTuple_New
PyTuple_SetItem
PyTuple_SetItem
PyTuple_SetItem

3)i

t, 0, PyLong_FromLong (lL));

t, 1, PyLong_FromLong(2L));

t, 2, PyUnicode_FromString("three"));

Here, PyLong FromLong () returns a new reference which is immediately stolen by PyTuple_SetItem().
When you want to keep using an object although the reference to it will be stolen, use Py TNCREF () to grab another
reference before calling the reference-stealing function.

Incidentally, PyTuple SetItem() is the only way to set tuple items; PySequence_ SetItem() and
PyObject_SetItem() refuse to do this since tuples are an immutable data type. You should only use
PyTuple_SetItem() for tuples that you are creating yourself.

Equivalent code for populating a list can be written using PyList_New () and PyList_SetItem().

However, in practice, you will rarely use these ways of creating and populating a tuple or list. There’s a generic
function, Py_BuildValue (), that can create most common objects from C values, directed by a format string.
For example, the above two blocks of code could be replaced by the following (which also takes care of the error
checking):

PyObject *tuple, *list;

tuple = Py_BuildvValue (" (iis)", 1, 2, "three");
list = Py_Buildvalue("[iis]", 1, 2, "three");

It is much more common to use PyObject_SetItem () and friends with items whose references you are only
borrowing, like arguments that were passed in to the function you are writing. In that case, their behaviour regarding
reference counts is much saner, since you don’t have to increment a reference count so you can give a reference away
(“have it be stolen”). For example, this function sets all items of a list (actually, any mutable sequence) to a given
item:

int
set_all (PyObject *target, PyObject *item)
{

Py_ssize_t i, n;

n = PyObject_Length (target);
if (n < 0)
return -1;

for (i = 0; 1 < n; 1i++) {
PyObject *index = PyLong_FromSsize_t (i);
if (!index)

return -1;
if (PyObject_SetItem(target, index, item) < 0) {
Py_DECREF (index) ;
return -1;
t
Py_DECREF (index) ;
3

return 0;

The situation is slightly different for function return values. While passing a reference to most functions does not
change your ownership responsibilities for that reference, many functions that return a reference to an object give you
ownership of the reference. The reason is simple: in many cases, the returned object is created on the fly, and the
reference you get is the only reference to the object. Therefore, the generic functions that return object references, like
PyObject_GetItem() and PySequence_GetItem (), always return a new reference (the caller becomes
the owner of the reference).

It is important to realize that whether you own a reference returned by a function depends on which function you call
only — the plumage (the type of the object passed as an argument to the function) doesn’t enter into it/ Thus, if you

1.4. Objects, Types and Reference Counts 7

The Python/C API, & x| B] A 3.7.16

extract an item from a list using PyList_Get Item (), you don’t own the reference — but if you obtain the same
item from the same list using PySequence_GetItem () (which happens to take exactly the same arguments),
you do own a reference to the returned object.

Here is an example of how you could write a function that computes the sum of the items in a list of integers; once
using PyList_GetItem(),and once using PySequence_GetItem().

long

sum_list (PyObject *list)

{
Py_ssize_t i, n;
long total = 0, value;
PyObject *item;

n = PyList_Size(list);
if (n < 0)
return -1; /* Not a list */
for (i = 0; i < n; i++) {
item = PyList_GetItem(list, 1); /* Can't fail */
if (!PyLong_Check (item)) continue; /* Skip non-integers */
value = PyLong_AsLong(item);
if (value == -1 && PyErr_Occurred())
/* Integer too big to fit in a C long, bail out */
return -1;
total += value;
}

return total;

long
sum_sequence (PyObject *sequence)
{
Py_ssize_t i, n;
long total = 0, value;
PyObject *item;
n = PySequence_Length (sequence);
if (n < 0)
return -1; /* Has no length */
for (i = 0; 1 < n; 1i++) {
item = PySequence_GetItem(sequence, 1i);
if (item == NULL)
return -1; /* Not a sequence, or other failure */
if (PyLong_Check (item)) {
value = PyLong_AsLong (item);
Py_DECREF (item) ;
if (value == -1 && PyErr_Occurred())
/* Integer too big to fit in a C long, bail out */
return -1;
total += wvalue;
}
else {
Py_DECREF (item); /* Discard reference ownership */

}

return total;

8 Chapter 1. Introduction

The Python/C API, & x] 8] A 3.7.16

1.4.2 Types

There are few other data types that play a significant role in the Python/C API; most are simple C types such as
int, long, double and char*. A few structure types are used to describe static tables used to list the functions
exported by a module or the data attributes of a new object type, and another is used to describe the value of a
complex number. These will be discussed together with the functions that use them.

1.5 Exceptions

The Python programmer only needs to deal with exceptions if specific error handling is required; unhandled excep-
tions are automatically propagated to the caller, then to the caller’s caller, and so on, until they reach the top-level
interpreter, where they are reported to the user accompanied by a stack traceback.

For C programmers, however, error checking always has to be explicit. All functions in the Python/C API can raise
exceptions, unless an explicit claim is made otherwise in a function’s documentation. In general, when a function
encounters an error, it sets an exception, discards any object references that it owns, and returns an error indicator.
If not documented otherwise, this indicator is either NULL or -1, depending on the function’s return type. A few
functions return a Boolean true/false result, with false indicating an error. Very few functions return no explicit error
indicator or have an ambiguous return value, and require explicit testing for errors with PyErr Occurred().
These exceptions are always explicitly documented.

Exception state is maintained in per-thread storage (this is equivalent to using global storage in an unthreaded applica-
tion). A thread can be in one of two states: an exception has occurred, or not. The function PyErr_Occurred ()
can be used to check for this: it returns a borrowed reference to the exception type object when an exception has
occurred, and NULL otherwise. There are a number of functions to set the exception state: PyErr_SetString ()
is the most common (though not the most general) function to set the exception state, and PyErr_Clear () clears
the exception state.

The full exception state consists of three objects (all of which can be NULL): the exception type, the corresponding
exception value, and the traceback. These have the same meanings as the Python result of sys.exc_info();
however, they are not the same: the Python objects represent the last exception being handled by a Python try --
except statement, while the C level exception state only exists while an exception is being passed on between C
functions until it reaches the Python bytecode interpreter’s main loop, which takes care of transferring it to sys.
exc_info () and friends.

Note that starting with Python 1.5, the preferred, thread-safe way to access the exception state from Python code is
to call the function sys.exc_info (), which returns the per-thread exception state for Python code. Also, the
semantics of both ways to access the exception state have changed so that a function which catches an exception will
save and restore its thread’s exception state so as to preserve the exception state of its caller. This prevents common
bugs in exception handling code caused by an innocent-looking function overwriting the exception being handled; it
also reduces the often unwanted lifetime extension for objects that are referenced by the stack frames in the traceback.

As a general principle, a function that calls another function to perform some task should check whether the called
function raised an exception, and if so, pass the exception state on to its caller. It should discard any object references
that it owns, and return an error indicator, but it should not set another exception — that would overwrite the exception
that was just raised, and lose important information about the exact cause of the error.

A simple example of detecting exceptions and passing them on is shown in the sum_sequence () example above.
It so happens that this example doesn’t need to clean up any owned references when it detects an error. The following
example function shows some error cleanup. First, to remind you why you like Python, we show the equivalent Python
code:

def incr_item(dict, key):
try:
item = dict[key]
except KeyError:
item = 0
dict[key] = item + 1

Here is the corresponding C code, in all its glory:

1.5. Exceptions 9

The Python/C API, & x| B] A 3.7.16

int

incr_item (PyObject *dict, PyObject *key)

{
/* Objects all initialized to NULL for Py_XDECREF */
PyObject *item = NULL, *const_one = NULL, *incremented_item
int rv = -1; /* Return value initialized to -1 (failure) */

item = PyObject_GetItem(dict, key);
if (item == NULL) {
/* Handle KeyError only: */
if (!PyErr_ExceptionMatches (PyExc_KeyError))
goto error;

/* Clear the error and use zero: */
PyErr_Clear();
item = PyLong_FromLong (0L) ;
if (item == NULL)
goto error;
}
const_one = PyLong_FromLong (1L) ;
if (const_one == NULL)
goto error;

incremented_item = PyNumber_Add(item, const_one);
if (incremented_item == NULL)
goto error;

if (PyObject_SetItem(dict, key, incremented_item) < 0)
goto error;

rv = 0; /* Success */

/* Continue with cleanup code */

error:
/* Cleanup code, shared by success and failure path */

/* Use Py_XDECREF () to ignore NULL references */
Py_XDECREF (item) ;

Py_XDECREF (const_one) ;

Py_XDECREF (incremented_item);

return rv; /* -1 for error, 0 for success */

= NULL;

This example represents an endorsed use of the goto statement in C!

It illustrates the use of

PyErr_ExceptionMatches () and PyErr Clear () to handle specific exceptions, and the use of
Py_XDECREF () to dispose of owned references that may be NULL (note the 'X"' in the name; Py_DECREF ()
would crash when confronted with a NULL reference). It is important that the variables used to hold owned references
are initialized to NULL for this to work; likewise, the proposed return value is initialized to —1 (failure) and only set

to success after the final call made is successful.

10

Chapter 1. Introduction

The Python/C API, & x] 8] A 3.7.16

1.6 Embedding Python

The one important task that only embedders (as opposed to extension writers) of the Python interpreter have to worry
about is the initialization, and possibly the finalization, of the Python interpreter. Most functionality of the interpreter
can only be used after the interpreter has been initialized.

The basic initialization functionis Py Tnitialize (). This initializes the table of loaded modules, and creates the
fundamental modules builtins, ___main__, and sys. It also initializes the module search path (sys.path).

Py Initialize () does not set the “script argument list” (sys.argv). If this variable is needed by Python
code that will be executed later, it must be set explicitly with a call to PySys_SetArgvEx (argc, argv,
updatepath) afterthecallto Py Tnitialize ().

On most systems (in particular, on Unix and Windows, although the details are slightly different),
Py _Initialize () calculates the module search path based upon its best guess for the location of the standard
Python interpreter executable, assuming that the Python library is found in a fixed location relative to the Python in-
terpreter executable. In particular, it looks for a directory named 1ib/pythonX. Y relative to the parent directory
where the executable named python is found on the shell command search path (the environment variable PATH).

For instance, if the Python executable is found in /usr/local/bin/python, it will assume that the libraries
arein /usr/local/lib/pythonX. Y. (Infact, this particular path is also the “fallback™ location, used when no
executable file named python is found along PATH.) The user can override this behavior by setting the environment
variable PYTHONHOME, or insert additional directories in front of the standard path by setting PYTHONPATH.

The embedding application can steer the search by calling Py_SetProgramName (file) before calling
Py_Initialize (). Note that PYTHONHOME still overrides this and PYTHONPATH is still inserted in front
of the standard path. An application that requires total control has to provide its own implementation of
Py_GetPath (), Py_GetPrefix (), Py_GetExecPrefix (), and Py _GetProgramFullPath () (all
defined in Modules/getpath.c).

Sometimes, it is desirable to “uninitialize” Python. For instance, the application may want to start over (make
another call to Py_Tnitialize ()) or the application is simply done with its use of Python and wants to
free memory allocated by Python. This can be accomplished by calling Py FinalizeEx (). The function
Py_TIsInitialized () returns true if Python is currently in the initialized state. More information about these
functions is given in a later chapter. Notice that Py_FinalizeEx () does not free all memory allocated by the
Python interpreter, e.g. memory allocated by extension modules currently cannot be released.

1.7 Debugging Builds

Python can be built with several macros to enable extra checks of the interpreter and extension modules. These
checks tend to add a large amount of overhead to the runtime so they are not enabled by default.

A full list of the various types of debugging builds is in the file Misc/SpecialBuilds. txt in the Python source
distribution. Builds are available that support tracing of reference counts, debugging the memory allocator, or low-
level profiling of the main interpreter loop. Only the most frequently-used builds will be described in the remainder
of this section.

Compiling the interpreter with the Py_ DEBUG macro defined produces what is generally meant by “a debug build” of
Python. Py_DEBUG is enabled in the Unix build by adding ——with-pydebugto the . /configure command.
It is also implied by the presence of the not-Python-specific _ DEBUG macro. When Py_DEBUG is enabled in the
Unix build, compiler optimization is disabled.

In addition to the reference count debugging described below, the following extra checks are performed:
» Extra checks are added to the object allocator.
 Extra checks are added to the parser and compiler.
* Downcasts from wide types to narrow types are checked for loss of information.

* A number of assertions are added to the dictionary and set implementations. In addition, the set object acquires
atest_c_api () method.

1.6. Embedding Python 11

The Python/C API, & x| B] A 3.7.16

* Sanity checks of the input arguments are added to frame creation.
 The storage for ints is initialized with a known invalid pattern to catch reference to uninitialized digits.
» Low-level tracing and extra exception checking are added to the runtime virtual machine.
¢ Extra checks are added to the memory arena implementation.
 Extra debugging is added to the thread module.
There may be additional checks not mentioned here.

Defining Py_ TRACE_REF'S enables reference tracing. When defined, a circular doubly linked list of active objects
is maintained by adding two extra fields to every PyObject. Total allocations are tracked as well. Upon exit,
all existing references are printed. (In interactive mode this happens after every statement run by the interpreter.)
Implied by Py_DEBUG.

Please refer to Misc/SpecialBuilds.txt in the Python source distribution for more detailed information.

12 Chapter 1. Introduction

CHAPTER 2

o] we}, shol o] CAPIE BE W EviTh MA4E AQUTh 2 WA e £ 3H 0, Aoz
71& APIE ¥4 871} APIE A1 A 31 %] Sk APIE %7157 9 ST (L2 Qe s o] = WA 922

Zol Al AF UL,
obd A=, APl & 2/3 2 ABI(vlo| v 2] T 8743) 2 F4H A 5 UTh I o= 712F L

o0} QA5137) 9 E A, A2 FES 27151 Brol 9§ v APIZ} <415] 7] &= €14 T, ABI
Aead £ gt AgHoz, 1 A BSAAF T B (S
AE T o] 27} ALGH A] b= AP frH 2ol A %@ﬂ‘%—lfr %%ijr) Egh =90 TRES
pythonXY.dl1Z} H 3= 17 H A REF F3A317] 5] oA Aot

gho] M 327, APl 457} S+ A <l
FUThE A8 e 40 28
AR AEE=FF REd AR

dEgynh

r_l_/
ﬁ
E
kv
%
Jﬂ

SuUrth o] API(“A|$+H API” 2}l
Py_LIMITED_APIE A siof Furch 1w Az g9
t7te, A A3 §lo] 2 —E 3x ¥ (x>=2) | A Z-5 5= 5]

;1
L

| Ao, P AR ABIE MER 752 & gal of gy th. o] 2 3t A & APIE AHS %} 2} Sk
7} BE- A Dot A} Sh= H 4 vho] W WA S PY_VERSION_ HEX FH(APISLABI W] o] 7] FR)O0 2
e rE

Py_LIMITED_APIE AAF| o Tt} (& Eof, Fo]# 332 A 0x03030000). ©] I}E
& shol i vl Z oA ZF AT o] Wi oA (HE FERre R °13H)E55}Z] Zyh

o] W 325E), A 35 APIO| A A& & 4 9l a4 23] PEP 3840 A & WS o)A 941 th C API
3 Aol A, A GFE APT €57} obd APT £ 4= <7 3l AP 57} obd U]tk 2 FAIH ULk,

)

13

https://www.python.org/dev/peps/pep-0384

The Python/C API, & x| B] A 3.7.16

14 Chapter 2. 3=l &8 =2 73 ulo|u]g] AE]FH o] A

CHAPTER 3

The Very High Level Layer

The functions in this chapter will let you execute Python source code given in a file or a buffer, but they will not let
you interact in a more detailed way with the interpreter.

Several of these functions accept a start symbol from the grammar as a parameter. The available start symbols are
Py_eval_input, Py_file_input, and Py_single_input. These are described following the functions
which accept them as parameters.

Note also that several of these functions take FILE* parameters. One particular issue which needs to be handled
carefully is that the FILE structure for different C libraries can be different and incompatible. Under Windows (at
least), it is possible for dynamically linked extensions to actually use different libraries, so care should be taken that
FILE* parameters are only passed to these functions if it is certain that they were created by the same library that
the Python runtime is using.

int Py_Main (int argc, wechar_t **argv)
The main program for the standard interpreter. This is made available for programs which embed Python. The
arge and argv parameters should be prepared exactly as those which are passed to a C program’s main ()
function (converted to wchar_t according to the user’s locale). It is important to note that the argument list
may be modified (but the contents of the strings pointed to by the argument list are not). The return value will
be 0 if the interpreter exits normally (i.e., without an exception), 1 if the interpreter exits due to an exception,
or 2 if the parameter list does not represent a valid Python command line.

Note that if an otherwise unhandled SystemExit is raised, this function will not return 1, but exit the
process, as long as Py_InspectFlag is not set.

int PyRun_AnyFile (FILE *fp, const char *filename)
This is a simplified interface to PyRun_AnyFileExFlags () below, leaving closeit set to 0 and flags set
to NULL.

int PyRun_AnyFileFlags (FILE *fp, const char *filename, PyCompilerFlags *flags)
This is a simplified interface to PyRun_AnyFileExFlags () below, leaving the closeit argument set to O.

int PyRun_AnyFileEx (FILE *fp, const char *filename, int closeit)
This is a simplified interface to PyRun_AnyFileExFlags () below, leaving the flags argument set to
NULL.

int PyRun_AnyFileExFlags (FILE *fp, const char *filename, int closeit, PyCompilerFlags *flags)
If fp refers to a file associated with an interactive device (console or terminal input or Unix
pseudo-terminal), return the value of PyRun_InteractiveLoop (), otherwise return the re-
sult of PyRun_SimpleFile(). filename is decoded from the filesystem encoding (sys.
getfilesystemencoding ()). If filename is NULL, this function uses " 2?2 ?" as the filename.

15

The Python/C API, & x| B] A 3.7.16

int PyRun_SimpleString (const char *command)
This is a simplified interface to PyRun_SimpleStringFlags () below, leaving the
PyCompilerFlags* argument set to NULL.

int PyRun_SimpleStringFlags (const char *command, PyCompilerFlags *flags)
Executes the Python source code from command in the __main___ module according to the flags argument.
If _ _main__ does not already exist, it is created. Returns O on success or —1 if an exception was raised. If
there was an error, there is no way to get the exception information. For the meaning of flags, see below.

Note that if an otherwise unhandled SystemExit is raised, this function will not return —1, but exit the
process, as long as Py_ InspectFlag is not set.

int PyRun_SimpleFile (FILE *fp, const char *filename)
This is a simplified interface to PyRun_SimpleFileExFlags () below, leaving closeit set to 0 and flags
set to NULL.

int PyRun_SimpleFileEx (FILE *fp, const char *filename, int closeit)
This is a simplified interface to PyRun_SimpleFileExFlags () below, leaving flags set to NULL.

int PyRun_SimpleFileExFlags (FILE *fp, const char *filename, int closeit, PyCompilerFlags *flags)
Similar to PyRun_SimpleStringFlags (), but the Python source code is read from fp instead of an
in-memory string. filename should be the name of the file, it is decoded from the filesystem encoding (sys .
getfilesystemencoding ()). If closeit is true, the file is closed before PyRun_SimpleFileExFlags re-
turns.

ZF31: On Windows, fp should be opened as binary mode (e.g. fopen (filename, "rb"). Otherwise,
Python may not handle script file with LF line ending correctly.

int PyRun_InteractiveOne (FILE *fp, const char *filename)
This is a simplified interface to PyRun_InteractiveOneFlags () below, leaving flags set to NULL.

int PyRun_InteractiveOneF1lags (FILE *fp, const char *filename, PyCompilerFlags *flags)
Read and execute a single statement from a file associated with an interactive device according to the flags
argument. The user will be prompted using sys .psland sys .ps2. filename is decoded from the filesystem
encoding (sys.getfilesystemencoding ()).

Returns 0 when the input was executed successfully, —1 if there was an exception, or an error code from the
errcode. h include file distributed as part of Python if there was a parse error. (Note that errcode.h is
not included by Python. h, so must be included specifically if needed.)

int PyRun_InteractiveLoop (FILE *fp, const char *filename)
This is a simplified interface to PyRun_InteractiveLoopFlags () below, leaving flags set to NULL.

int PyRun_InteractiveLoopFlags (FILE *fp, const char *filename, PyCompilerFlags *flags)
Read and execute statements from a file associated with an interactive device until EOF is reached. The user
will be prompted using sys.psl and sys.ps2. filename is decoded from the filesystem encoding (sys .
getfilesystemencoding ()). Returns 0 at EOF or a negative number upon failure.

int (*PyOS_InputHook) (void)
Can be set to point to a function with the prototype int func (void). The function will be called when
Python’s interpreter prompt is about to become idle and wait for user input from the terminal. The return
value is ignored. Overriding this hook can be used to integrate the interpreter’s prompt with other event loops,
as done in the Modules/_tkinter. c in the Python source code.

char* (*PyOS_ReadlineFunctionPointer) (FILE * FILE * const char *)
Can be set to point to a function with the prototype char *func (FILE *stdin, FILE *stdout,
char *prompt), overriding the default function used to read a single line of input at the interpreter’s
prompt. The function is expected to output the string prompt if it’s not NULL, and then read a line of input
from the provided standard input file, returning the resulting string. For example, The readline module
sets this hook to provide line-editing and tab-completion features.

The result must be a string allocated by PyMem RawMalloc () or PyMem RawRealloc (), or NULL if
an error occurred.

16 Chapter 3. The Very High Level Layer

The Python/C API, & x] 8] A 3.7.16

WA 3.4 A *H 7 : The result must be allocated by PyMem_RawMalloc () or PyMem_RawRealloc (),
instead of being allocated by PyMem Malloc () or PyMem_Realloc ().

struct _node* PyParser_SimpleParseString (const char *str, int start)
This is a simplified interface to PyParser_SimpleParseStringFlagsFilename () below, leaving
filename set to NULL and flags set to 0.

struct _node* PyParser_SimpleParseStringFlags (const char *swr, int start, int flags)
This is a simplified interface to PyParser_SimpleParseStringFlagsFilename () below, leaving
filename set to NULL.

struct _node* PyParser_SimpleParseStringFlagsFilename (const char *str, const char *file-
name, int start, int flags)
Parse Python source code from st using the start token start according to the flags argument. The re-
sult can be used to create a code object which can be evaluated efficiently. This is useful if a code
fragment must be evaluated many times. filename is decoded from the filesystem encoding (sys.
getfilesystemencoding()).

struct _node* PyParser_SimpleParseFile (FILE *fp, const char *filename, int start)
This is a simplified interface to PyParser SimpleParseFileFlags () below, leaving flags set to 0.

struct _node* PyParser_SimpleParseFileFlags (FILE *fp, const char *filename, int start,
int flags)
Similar to PyParser_SimpleParseStringFlagsFilename (), butthe Python source code is read
from fp instead of an in-memory string.

PyObject* PyRun_String (const char *str, int start, PyObject *globals, PyObject *locals)
Return value: New reference. This is a simplified interface to PyRun_StringFlags () below, leaving flags
set to NULL.

PyObject* PyRun_StringFlags (const char *str, int start, PyObject *globals, PyObject *locals, PyCompil-
erFlags *flags)
Return value: New reference. Execute Python source code from st in the context specified by the objects
globals and locals with the compiler flags specified by flags. globals must be a dictionary; locals can be any
object that implements the mapping protocol. The parameter start specifies the start token that should be used
to parse the source code.

Returns the result of executing the code as a Python object, or NULL if an exception was raised.

PyObject* PyRun_File (FILE *fp, const char *filename, int start, PyObject *globals, PyObject *locals)
Return value: New reference. This is a simplified interface to PyRun_FileExFlags () below, leaving
closeit set to 0 and flags set to NULL.

PyObject* PyRun_FileEx (FILE *fp, const char *filename, int start, PyObject *globals, PyObject *locals,

int closeit)
Return value: New reference. This is a simplified interface to PyRun_FileExFlags () below, leaving flags

set to NULL.

PyObject* PyRun_FileFlags (FILE *fp, const char *filename, int start, PyObject *globals, PyObject *lo-
cals, PyCompilerFlags *flags)
Return value: New reference. This is a simplified interface to PyRun_FileExFlags () below, leaving
closeit set to 0.

PyObject* PyRun_FileExFlags (FILE *fp, const char *filename, int start, PyObject *globals, PyOb-
Ject *locals, int closeit, PyCompilerFlags *flags)
Return value: New reference. Similar to PyRun_StringFlags (), but the Python source code is read
from fp instead of an in-memory string. filename should be the name of the file, it is decoded from the
filesystem encoding (sys.getfilesystemencoding ()). If closeit is true, the file is closed before
PyRun_FileExFlags () returns.

PyObject* Py_CompileString (const char *str, const char *filename, int start)
Return value: New reference. This is a simplified interface to Py_ CompileStringFlags () below, leaving
flags set to NULL.

PyObject* Py_CompileStringFlags (const char *str, const char *filename, int start, PyCompiler-
Flags *flags)

17

The Python/C API, & x| B] A 3.7.16

Return value: New reference. This is a simplified interface to Py_CompileStringExFlags () below,
with optimize set to —1.

PyObject* Py_CompileStringObject (const char *str, PyObject *filename, int start, PyCompiler-
Flags *flags, int optimize)
Return value: New reference. Parse and compile the Python source code in str, returning the resulting code
object. The start token is given by start; this can be used to constrain the code which can be compiled and should
be Py_eval_input,Py_file_input,or Py_single_input. The filename specified by filename is
used to construct the code object and may appear in tracebacks or SyntaxError exception messages. This
returns NULL if the code cannot be parsed or compiled.

The integer optimize specifies the optimization level of the compiler; a value of —1 selects the optimization
level of the interpreter as given by —O options. Explicit levels are 0 (no optimization; ___debug___is true), 1
(asserts are removed, ___debug___is false) or 2 (docstrings are removed too).

B A 3.40] =7}

PyObject* Py_CompileStringExFlags (const char *str, const char *filename, int start, PyCompiler-
Flags *flags, int optimize)
Return value: New reference. Like Py_CompileStringObject (), but filename is a byte string decoded
from the filesystem encoding (os . £sdecode ()).

B & 3.20] &7}

PyObject* PyEval_EvalCode (PyObject *co, PyObject *globals, PyObject *locals)
Return value: New reference. This is a simplified interface to PyEval_EvalCodeEx (), with just the code
object, and global and local variables. The other arguments are set to NULL.

PyObject* PyEval_EvalCodeEx (PyObject *co, PyObject *globals, PyObject *locals, PyObject
*const *args, int argcount, PyObject *const *kws, int kwcount, PyObject
*const *defs, int defcount, PyObject *kwdefs, PyObject *closure)
Return value: New reference. Evaluate a precompiled code object, given a particular environment for its evalu-
ation. This environment consists of a dictionary of global variables, a mapping object of local variables, arrays
of arguments, keywords and defaults, a dictionary of default values for keyword-only arguments and a closure
tuple of cells.

PyFrameObject
The C structure of the objects used to describe frame objects. The fields of this type are subject to change at
any time.

PyObject* PyEval_EvalFrame (PyFrameObject *f)
Return value: New reference. Evaluate an execution frame. This is a simplified interface to
PyEval_FEvalFrameEx (), for backward compatibility.

PyObject* PyEval_EvalFrameEx (PyFrameObject *f, int throwflag)
Return value: New reference. This is the main, unvarnished function of Python interpretation. It is literally
2000 lines long. The code object associated with the execution frame f is executed, interpreting bytecode and
executing calls as needed. The additional throwflag parameter can mostly be ignored - if true, then it causes
an exception to immediately be thrown; this is used for the throw () methods of generator objects.

WA 3.4 A4 ¥ 7 : This function now includes a debug assertion to help ensure that it does not silently discard
an active exception.

int PyEval_MergeCompilerFlags (PyCompilerFlags *cf)
This function changes the flags of the current evaluation frame, and returns true on success, false on failure.

int Py_eval_input
The start symbol from the Python grammar for isolated expressions; for use with Py_ CompileString ().

int Py_file_input
The start symbol from the Python grammar for sequences of statements as read from a file or other source; for
use with Py CompileString (). This is the symbol to use when compiling arbitrarily long Python source
code.

int Py_single_input
The start symbol from the Python grammar for a single statement; for use with Py_CompileString ().

18 Chapter 3. The Very High Level Layer

The Python/C API, & x] 8] A 3.7.16

This is the symbol used for the interactive interpreter loop.

struct PyCompilerFlags
This is the structure used to hold compiler flags. In cases where code is only being compiled, it is passed as
int flags, and in cases where code is being executed, it is passed as PyCompilerFlags *flags. In
this case, from __future__ import can modify flags.

Whenever PyCompilerFlags *flagsisNULL, cf_flags is treated as equal to 0, and any modifica-
tiondue to from __ future_ import is discarded.

struct PyCompilerFlags {
int cf_flags;
}

int CO_FUTURE_DIVISION

This bit can be set in flags to cause division operator / to be interpreted as “true division” according to PEP
238.

19

https://www.python.org/dev/peps/pep-0238
https://www.python.org/dev/peps/pep-0238

The Python/C API, & x| B] A 3.7.16

20 Chapter 3. The Very High Level Layer

cHAPTER 4

e
PN
)
al

o] Qo) AL vhol W AR Y Fx A4S TS © AgH T

void Py_ INCREF (PyObject *0)
Increment the reference count for object o. The object must not be NULL; if you aren’t sure that it isn’t NULL,
use Py_XINCREF ().

void Py_XINCREF (PyObject *o)
Increment the reference count for object 0. The object may be NULL, in which case the macro has no effect.

void Py_DECREF (PyObject *0)
Decrement the reference count for object 0. The object must not be NULL; if you aren’t sure that it isn’t NULL,
use Py_ XDECREF (). If the reference count reaches zero, the object’s type’s deallocation function (which
must not be NULL) is invoked.

A3 dFeA e doY golH FETEEHEE TS AFYUT (IS E0],__del ()
HAZZEJE FHa A2b A7 G A2 o). o] 23t TE M o &= Auhs] A ekA| vt
AYPH T == BE o] A A W ol A{F-FA AMAE 5 JFUth o)A Py _DECREF () 7}
TEH7] Ao A Ao =22 5 = ZE QA7 QB4 A= Ao Qlojorde 5=
Uth of| & o], gl AE0 A AAE A6t T == A E Aol 3t F2E QYA Hgo] &
APetaL, ElAE o B R E ABAISH O, AA "o 8l py_DECREF () & EE3oF U th

void Py_XDECREF (PyObject *0)
Decrement the reference count for object 0. The object may be NULL, in which case the macro has no effect;
otherwise the effect is the same as for Py_ DECREF (), and the same warning applies.

void Py_ CLEAR (PyObject *0)
Decrement the reference count for object 0. The object may be NULL, in which case the macro has no effect;
otherwise the effect is the same as for Py_ DECREF (), except that the argument is also set to NULL. The
warning for Py_ DECREF () does not apply with respect to the object passed because the macro carefully uses
a temporary variable and sets the argument to NULL before decrementing its reference count.

A A el B 2 5 Qe W] g gaAd Wit o] AR E A Aol FHU T
O BeE dolde) A% A 54 WAL 9% AQYTH: Py _TncRef (PyObject *o),
Py_DecRef (PyObject *0). ©]AEL W3] Py XINCREF ()@ Py_XDECREF ()9 =<9 T4 o

AU

~
N
f

21

The Python/C API, & x| B] A 3.7.16

e ¥4u ozt duzdl DoldAw A4S 4 AUt _py_bealloc(),
_Py_ForgetReference (),_Py NewReference () ¥ AY M4 Py _RefTotal.

22 Chapter4. #x 34

CHAPTER D

Exception Handling

The functions described in this chapter will let you handle and raise Python exceptions. It is important to understand
some of the basics of Python exception handling. It works somewhat like the POSIX errno variable: there is a
global indicator (per thread) of the last error that occurred. Most C API functions don’t clear this on success, but
will set it to indicate the cause of the error on failure. Most C API functions also return an error indicator, usually
NULL if they are supposed to return a pointer, or —1 if they return an integer (exception: the PyArg_* () functions
return 1 for success and 0 for failure).

Concretely, the error indicator consists of three object pointers: the exception’s type, the exception’s value, and the
traceback object. Any of those pointers can be NULL if non-set (although some combinations are forbidden, for
example you can’t have a non-NULL traceback if the exception type is NULL).

When a function must fail because some function it called failed, it generally doesn’t set the error indicator; the
function it called already set it. It is responsible for either handling the error and clearing the exception or returning
after cleaning up any resources it holds (such as object references or memory allocations); it should not continue
normally if it is not prepared to handle the error. If returning due to an error, it is important to indicate to the caller
that an error has been set. If the error is not handled or carefully propagated, additional calls into the Python/C API
may not behave as intended and may fail in mysterious ways.

ZF31: The error indicator is not the result of sys.exc_info (). The former corresponds to an exception that
is not yet caught (and is therefore still propagating), while the latter returns an exception after it is caught (and has
therefore stopped propagating).

5.1 Printing and clearing

void PyErr_Clear ()
Clear the error indicator. If the error indicator is not set, there is no effect.

void PyErr_PrintEx (int set_sys_last_vars)
Print a standard traceback to sy s . st derr and clear the error indicator. Unless the errorisa SystemExit.
In that case the no traceback is printed and Python process will exit with the error code specified by the
SystemEx1it instance.

Call this function only when the error indicator is set. Otherwise it will cause a fatal error!

If set_sys_last_vars is nonzero, the variables sys.last_type, sys.last_value and sys.
last_traceback will be set to the type, value and traceback of the printed exception, respectively.

23

The Python/C API, & x| B] A 3.7.16

void PyErr_Print ()
Alias for PyErr_PrintEx (1).

void PyErr_ WriteUnraisable (PyObject *obj)
This utility function prints a warning message to sys.stderr when an exception has been set but it is
impossible for the interpreter to actually raise the exception. It is used, for example, when an exception occurs
inan__del__ () method.

The function is called with a single argument obj that identifies the context in which the unraisable exception
occurred. If possible, the repr of obj will be printed in the warning message.

An exception must be set when calling this function.

5.2 Raising exceptions

These functions help you set the current thread’s error indicator. For convenience, some of these functions will always
return a NULL pointer for use in a return statement.

void PyErr_SetString (PyObject *type, const char *message)
This is the most common way to set the error indicator. The first argument specifies the exception type; it is
normally one of the standard exceptions, e.g. PyExc_Runt imeError. Youneed notincrement its reference
count. The second argument is an error message; it is decoded from 'ut£-8’.

void PyErr_SetObject (PyObject *type, PyObject *value)
This function is similar to PyErr SetString () but lets you specify an arbitrary Python object for the
“value” of the exception.

PyObject* PyErr_Format (PyObject *exception, const char *format, ...)
Return value: Always NULL. This function sets the error indicator and returns NULL. exception should be a
Python exception class. The format and subsequent parameters help format the error message; they have the
same meaning and values as in PyUnicode_FromFormat (). format is an ASCII-encoded string.

PyObject* PyErr_FormatV (PyObject *exception, const char *format, va_list vargs)
Return value: Always NULL. Same as PyErr_Format (), but taking a va_11ist argument rather than a
variable number of arguments.

WA 3.5 7}

void PyErr_SetNone (PyObject *type)
This is a shorthand for PyErr_SetObject (type, Py_None).

int PyErr_BadArgument ()
This is a shorthand for PyErr_SetString (PyExc_TypeError, message), where message indi-
cates that a built-in operation was invoked with an illegal argument. It is mostly for internal use.

PyObject* PyErr_ NoMemory ()
Return value: Always NULL. This is a shorthand for PyErr_SetNone (PyExc_MemoryError); it re-
turns NULL so an object allocation function can write return PyErr_NoMemory () ; when it runs out
of memory.

PyObject* PyErr_SetFromErrno (PyObject *type)

Return value: Always NULL. This is a convenience function to raise an exception when a C library function
has returned an error and set the C variable errno. It constructs a tuple object whose first item is the integer
errno value and whose second item is the corresponding error message (gotten from strerror ()), and
then calls PyErr_SetObject (type, object). On Unix, whenthe errno value is EINTR, indicating
an interrupted system call, this calls PyErr CheckSignals (), and if that set the error indicator, leaves it
set to that. The function always returns NULL, so a wrapper function around a system call can write return
PyErr_SetFromErrno (type) ; when the system call returns an error.

PyObject* PyErr_SetFromErrnoWithFilenameObject (PyObject *type, PyObject *filenameOb-

Jject)
Return value: Always NULL. Similar to PyErr_SetFromErrno (), with the additional behavior that if

24 Chapter 5. Exception Handling

The Python/C API, & x] 8] A 3.7.16

filenameObject is not NULL, it is passed to the constructor of #ype as a third parameter. In the case of OSError
exception, this is used to define the £ilename attribute of the exception instance.

PyObject* PyErr_SetFromErrnoWithFilenameObjects (PyObject *type, PyObject *filenameOb-

Jject, PyObject *filenameObject2)
Return value: Always NULL. Similar to PyErr _SetFromErrnoWithFilenameObject (), but takes

a second filename object, for raising errors when a function that takes two filenames fails.
WA 340 F7}.

PyObject* PyErr_SetFromErrnoWithFilename (PyObject *type, const char *filename)
Return value: Always NULL. Similar to PyErr_ SetFromErrnoWithFilenameObject (), but the
filename is given as a C string. filename is decoded from the filesystem encoding (os . fsdecode ()).

PyObject* PyErr_SetFromWindowsErr (int ierr)
Return value: Always NULL. This is a convenience function to raise WindowsError. If called
with ierr of 0, the error code returned by a call to GetLastError () is used instead. It calls the
Win32 function FormatMessage () to retrieve the Windows description of error code given by ierr
or GetLastError (), then it constructs a tuple object whose first item is the ierr value and whose
second item is the corresponding error message (gotten from FormatMessage ()), and then calls
PyErr_SetObject (PyExc_WindowsError, object). This function always returns NULL.

Auvailability: Windows.

PyObject* PyErr_SetExcFromWindowsErr (PyObject *type, int ierr)
Return value: Always NULL. Similar to PyErr_SetFromWindowsErr (), with an additional parameter
specifying the exception type to be raised.

Auvailability: Windows.

PyObject* PyErr_SetFromWindowsErrWithFilename (int ierr, const char *filename)
Return value: Always NULL. Similar to PyErr_SetFromWindowsErrWithFilenameObject (),
but the filename is given as a C string. filename is decoded from the filesystem encoding (os . fsdecode ()).

Auvailability: Windows.

PyObject* PyErr_SetExcFromWindowsErrWithFilenameObject (PyObject *type, int ierr, Py-
Object *filename)
Return value: Always NULL. Similar to PyErr_SetFromWindowsErrWithFilenameObject (),
with an additional parameter specifying the exception type to be raised.

Availability: Windows.

PyObject* PyErr_SetExcFromWindowsErrWithFilenameObjects (PyObject *type, int ierr,
PyObject *filename, PyOb-
Ject *filename?2)
Return value: Always NULL. Similarto PyErr_SetExcFromWindowsErrWithFilenameObject (),
but accepts a second filename object.

Availability: Windows.
W 340 F7}

PyObject* PyErr_SetExcFromWindowsErrWithFilename (PyObject *type, int ierr, const

char *filename)
Return value: Always NULL. Similar to PyErr_SetFromWindowsErrWithFilename (), with an ad-

ditional parameter specifying the exception type to be raised.
Auvailability: Windows.
PyObject* PyErr_SetImportError (PyObject *msg, PyObject *name, PyObject *path)
Return value: Always NULL. This is a convenience function to raise ImportError. msg will be set as the

exception’s message string. name and path, both of which can be NULL, will be set as the ImportError’s
respective name and path attributes.

WA 330 7}

5.2. Raising exceptions 25

The Python/C API, & x| B] A 3.7.16

void PyErr_SyntaxLocationObject (PyObject *filename, int lineno, int col_offset)
Set file, line, and offset information for the current exception. If the current exceptionisnota SyntaxError,
then it sets additional attributes, which make the exception printing subsystem think the exception is a
SyntaxError.

W 3400 =71

void PyErr_SyntaxLocationEx (const char *filename, int lineno, int col_offset)
Like PyErr_SyntaxLocationObject (), but filename is a byte string decoded from the filesystem
encoding (os . fsdecode ()).

B A 3.20] &7}

void PyErr_SyntaxLocation (const char *filename, int lineno)
Like PyErr_SyntaxLocationEx (), but the col_offset parameter is omitted.

void PyErr_BadInternalCall ()
This is a shorthand for PyErr_SetString (PyExc_SystemError, message), where message in-
dicates that an internal operation (e.g. a Python/C API function) was invoked with an illegal argument. It is
mostly for internal use.

5.3 Issuing warnings

Use these functions to issue warnings from C code. They mirror similar functions exported by the Python warnings
module. They normally print a warning message to sys.stderr; however, it is also possible that the user has specified
that warnings are to be turned into errors, and in that case they will raise an exception. It is also possible that the
functions raise an exception because of a problem with the warning machinery. The return value is O if no exception
is raised, or —1 if an exception is raised. (It is not possible to determine whether a warning message is actually
printed, nor what the reason is for the exception; this is intentional.) If an exception is raised, the caller should do its
normal exception handling (for example, Py DECREF () owned references and return an error value).

int PyErr_WarnEx (PyObject *category, const char *message, Py_ssize_t stack_level)
Issue a warning message. The category argument is a warning category (see below) or NULL; the message
argument is a UTF-8 encoded string. stack_level is a positive number giving a number of stack frames; the
warning will be issued from the currently executing line of code in that stack frame. A stack_level of 1 is the
function calling PyEr»_ WarnEx (), 2 is the function above that, and so forth.

Warning categories must be subclasses of PyExc_Warning; PyExc_Warning is a subclass of
PyExc_Exception; the default warning category is PyExc_RuntimeWarning. The standard Python
warning categories are available as global variables whose names are enumerated at Standard Warning Cate-
gories.

For information about warning control, see the documentation for the warnings module and the —W option
in the command line documentation. There is no C API for warning control.

PyObject* PyErr_SetImportErrorSubclass (PyObject *exception, PyObject *msg, PyObject *name,
PyObject *path)
Return value: Always NULL. Much like PyErr_Set ImportError () but this function allows for speci-
fying a subclass of ImportError to raise.

WA 3.60 F7}

int PyErr_WarnExplicitObject (PyObject *category, PyObject *message, PyObject *filename,
int lineno, PyObject *module, PyObject *registry)
Issue a warning message with explicit control over all warning attributes. This is a straightforward wrapper
around the Python function warnings.warn_explicit (), see there for more information. The module
and registry arguments may be set to NULL to get the default effect described there.

WA 3.40] =7}

int PyErr_WarnExplicit (PyObject *category, const char *message, const char *filename, int lineno,
const char *module, PyObject *registry)
Similarto PyErr_WarnExplicitObject () except that message and module are UTF-8 encoded strings,

26 Chapter 5. Exception Handling

The Python/C API, & x] 8] A 3.7.16

and filename is decoded from the filesystem encoding (os . fsdecode ()).

int PyErr_WarnFormat (PyObject *category, Py_ssize_t stack_level, const char *format, ...)
Function similar to PyErr_WarnEx (), but use PyUnicode_FromFormat () to format the warning
message. format is an ASClII-encoded string.

B A 3.20] F7}.

int PyErr_ResourceWarning (PyObject *source, Py_ssize_t stack_level, const char *format, ...)
Function similar to PyErr WarnFormat (), but category is ResourceWarning and it passes source to
warnings.WarningMessage ().

B A 3.60] F7}.

5.4 Querying the error indicator

PyObject* PyErr_Occurred ()
Return value: Borrowed reference. Test whether the error indicator is set. If set, return the exception type (the
first argument to the last call to one of the PyErr_Set* () functions or to PyErr_Restore ()). If not
set, return NULL. You do not own a reference to the return value, so you do not need to Py_ DECREF () it.

ZF31: Do not compare the return value to a specific exception; use PyErr_ ExceptionMatches ()
instead, shown below. (The comparison could easily fail since the exception may be an instance instead of a
class, in the case of a class exception, or it may be a subclass of the expected exception.)

int PyErr_ExceptionMatches (PyObject *exc)
Equivalent to PyErr_GivenExceptionMatches (PyErr_Occurred (), exc). This should only
be called when an exception is actually set; a memory access violation will occur if no exception has been
raised.

int PyErr_GivenExceptionMatches (PyObject *given, PyObject *exc)
Return true if the given exception matches the exception type in exc. If exc is a class object, this also returns
true when given is an instance of a subclass. If exc is a tuple, all exception types in the tuple (and recursively
in subtuples) are searched for a match.

void PyErr_Fetch (PyObject **ptype, PyObject **pvalue, PyObject **ptraceback)
Retrieve the error indicator into three variables whose addresses are passed. If the error indicator is not set,
set all three variables to NULL. If it is set, it will be cleared and you own a reference to each object retrieved.
The value and traceback object may be NULL even when the type object is not.

Z31: This function is normally only used by code that needs to catch exceptions or by code that needs to
save and restore the error indicator temporarily, e.g.:

{
PyObject *type, *value, *traceback;
PyErr_Fetch (&type, &value, &traceback);

/* ... code that might produce other errors ... */

PyErr_Restore (type, value, traceback);

void PyErr_ Restore (PyObject *type, PyObject *value, PyObject *traceback)
Set the error indicator from the three objects. If the error indicator is already set, it is cleared first. If the
objects are NULL, the error indicator is cleared. Do not pass a NULL type and non-NULL value or traceback.
The exception type should be a class. Do not pass an invalid exception type or value. (Violating these rules
will cause subtle problems later.) This call takes away a reference to each object: you must own a reference to

5.4. Querying the error indicator 27

The Python/C API, & x| B] A 3.7.16

each object before the call and after the call you no longer own these references. (If you don’t understand this,
don’t use this function. I warned you.)

ZF32: This function is normally only used by code that needs to save and restore the error indicator temporarily.
Use PyErr_Fetch () to save the current error indicator.

void PyErr_NormalizeException (PyObject**exc, PyObject**val, PyObject**tb)
Under certain circumstances, the values returned by PyErr_Fetch () below can be “unnormalized”, mean-
ing that *exc is a class object but *val is not an instance of the same class. This function can be used to
instantiate the class in that case. If the values are already normalized, nothing happens. The delayed normal-
ization is implemented to improve performance.

ZF31: This function does not implicitly set the __traceback___ attribute on the exception value. If setting
the traceback appropriately is desired, the following additional snippet is needed:

if (tb != NULL) <
PyException_SetTraceback (val, tb);
}

void PyErr_GetExcInfo (PyObject **ptype, PyObject **pvalue, PyObject **ptraceback)
Retrieve the exception info, as known from sys.exc_info (). This refers to an exception that was already
caught, not to an exception that was freshly raised. Returns new references for the three objects, any of which
may be NULL. Does not modify the exception info state.

ZF31: This function is not normally used by code that wants to handle exceptions. Rather, it can be used when
code needs to save and restore the exception state temporarily. Use PyErr _SetExcInfo () to restore or
clear the exception state.

WA 3.30] F7}.

void PyErr_SetExcInfo (PyObject *type, PyObject *value, PyObject *traceback)
Set the exception info, as known from sys.exc_info (). This refers to an exception that was already
caught, not to an exception that was freshly raised. This function steals the references of the arguments. To
clear the exception state, pass NULL for all three arguments. For general rules about the three arguments, see
PyErr_ Restore().

Z31: This function is not normally used by code that wants to handle exceptions. Rather, it can be used
when code needs to save and restore the exception state temporarily. Use PyErr_GetExcInfo () to read
the exception state.

B A 3.30]] &7}

5.5 Signal Handling

int PyErr_CheckSignals ()
This function interacts with Python’s signal handling. It checks whether a signal has been sent to the processes
and if so, invokes the corresponding signal handler. If the signal module is supported, this can invoke a signal
handler written in Python. In all cases, the default effect for STGINT is to raise the KeyboardInterrupt
exception. If an exception is raised the error indicator is set and the function returns - 1; otherwise the function
returns 0. The error indicator may or may not be cleared if it was previously set.

void PyErr_SetInterrupt ()
Simulate the effect of a STGINT signal arriving. The next time PyErr_ CheckSignals () is called, the

28 Chapter 5. Exception Handling

The Python/C API, & x] 8] A 3.7.16

Python signal handler for STGINT will be called.

If SIGINT isn’t handled by Python (it was set to signal .SIG_DFLor signal.SIG_IGN), this function
does nothing.

int PySignal_SetWakeupFd (int fd)
This utility function specifies a file descriptor to which the signal number is written as a single byte whenever
a signal is received. fd must be non-blocking. It returns the previous such file descriptor.

The value —1 disables the feature; this is the initial state. This is equivalentto signal.set_wakeup_£fd ()
in Python, but without any error checking. fd should be a valid file descriptor. The function should only be
called from the main thread.

WA 3.59] 4] ¥ 7 : On Windows, the function now also supports socket handles.

5.6 Exception Classes

PyObject* PyErr_NewException (const char *name, PyObject *base, PyObject *dict)
Return value: New reference. This utility function creates and returns a new exception class. The name argu-
ment must be the name of the new exception, a C string of the form module.classname. The base and
dict arguments are normally NULL. This creates a class object derived from Exception (accessible in C as
PyExc_Exception).

The __module___ attribute of the new class is set to the first part (up to the last dot) of the name argument,
and the class name is set to the last part (after the last dot). The base argument can be used to specify alternate
base classes; it can either be only one class or a tuple of classes. The dict argument can be used to specify a
dictionary of class variables and methods.

PyObject* PyErr_NewExceptionWithDoc (const char *name, const char *doc, PyObject *base, PyOb-
Ject *dict)
Return value: New reference. Same as PyErr_NewException (), except that the new exception class can
easily be given a docstring: If doc is non-NULL, it will be used as the docstring for the exception class.

B A 3.20] &7}

5.7 Exception Objects

PyObject* PyException_GetTraceback (PyObject *ex)
Return value: New reference. Return the traceback associated with the exception as a new reference, as acces-
sible from Python through __traceback__. If there is no traceback associated, this returns NULL.

int PyException_SetTraceback (PyObject *ex, PyObject *tb)
Set the traceback associated with the exception to tb. Use Py_None to clear it.

PyObject* PyException_GetContext (PyObject *ex)
Return value: New reference. Return the context (another exception instance during whose handling ex was
raised) associated with the exception as a new reference, as accessible from Python through __context__.
If there is no context associated, this returns NULL.

void PyException_SetContext (PyObject *ex, PyObject *ctx)
Set the context associated with the exception to czx. Use NULL to clear it. There is no type check to make sure
that ctx is an exception instance. This steals a reference to ctx.

PyObject* PyException_GetCause (PyObject *ex)
Return value: New reference. Return the cause (either an exception instance, or None, set by raise
from ...) associated with the exception as a new reference, as accessible from Python through
__cause__.

void PyException_SetCause (PyObject *ex, PyObject *cause)
Set the cause associated with the exception to cause. Use NULL to clear it. There is no type check to make
sure that cause is either an exception instance or None. This steals a reference to cause.

5.6. Exception Classes 29

The Python/C API, & x| B] A 3.7.16

__suppress_context__ is implicitly set to True by this function.

5.8 Unicode Exception Objects

The following functions are used to create and modify Unicode exceptions from C.

PyObject* PyUnicodeDecodeError_Create (const char *encoding, const char *object,
Py_ssize_t length, Py_ssize_t start, Py_ssize_t end,

const char *reason) . .
Return value: New reference. Create a UnicodeDecodeError object with the attributes encoding, object,

length, start, end and reason. encoding and reason are UTF-8 encoded strings.

PyObject* PyUnicodeEncodeError_Create (const char *encoding, const Py _UNICODE *object,
Py_ssize_t length, Py_ssize_t start, Py_ssize_t end,

const char *reason)))
Return value: New reference. Create a UnicodeEncodeError object with the attributes encoding, object,

length, start, end and reason. encoding and reason are UTF-8 encoded strings.

PyObject* PyUnicodeTranslateError_Create (const Py_UNICODE *object, Py_ssize_t length,
Py_ssize_t start, Py_ssize_t end, const char *rea-

son)
Return value: New reference. Create a UnicodeTranslateError object with the attributes object, length,

start, end and reason. reason is a UTF-8 encoded string.

PyObject* PyUnicodeDecodeError_GetEncoding (PyObject *exc)
PyObject* PyUnicodeEncodeError_GetEncoding (PyObject *exc)
Return value: New reference. Return the encoding attribute of the given exception object.

PyObject* PyUnicodeDecodeError_GetObject (PyObject *exc)
PyObject* PyUnicodeEncodeError_GetObject (PyObject *exc)
PyObject* PyUnicodeTranslateError_GetObject (PyObject *exc)
Return value: New reference. Return the object attribute of the given exception object.

int PyUnicodeDecodeError_GetStart (PyObject *exc, Py_ssize_t *start)

int PyUnicodeEncodeError_GetStart (PyObject *exc, Py_ssize_t *start)

int PyUnicodeTranslateError_GetStart (PyObject *exc, Py_ssize_t *start)
Get the start attribute of the given exception object and place it into *start. start must not be NULL. Return 0
on success, —1 on failure.

int PyUnicodeDecodeError_SetStart (PyObject *exc, Py_ssize_t start)
int PyUnicodeEncodeError_SetStart (PyObject *exc, Py_ssize_t start)
int PyUnicodeTranslateError_SetStart (PyObject *exc, Py_ssize_t start)
Set the start attribute of the given exception object to start. Return 0 on success, —1 on failure.

int PyUnicodeDecodeError_GetEnd (PyObject *exc, Py_ssize_t *end)

int PyUnicodeEncodeError_GetEnd (PyObject *exc, Py_ssize_t *end)

int PyUnicodeTranslateError_GetEnd (PyObject *exc, Py_ssize_t *end)
Get the end attribute of the given exception object and place it into *end. end must not be NULL. Return 0 on
success, —1 on failure.

int PyUnicodeDecodeError_SetEnd (PyObject *exc, Py_ssize_t end)
int PyUnicodeEncodeError_SetEnd (PyObject *exc, Py_ssize_t end)
int PyUnicodeTranslateError_SetEnd (PyObject *exc, Py_ssize_t end)
Set the end attribute of the given exception object to end. Return 0 on success, —1 on failure.

PyObject* PyUnicodeDecodeError_GetReason (PyObject *exc)
PyObject* PyUnicodeEncodeError_GetReason (PyObject *exc)
PyObject* PyUnicodeTranslateError_GetReason (PyObject *exc)
Return value: New reference. Return the reason attribute of the given exception object.

int PyUnicodeDecodeError_SetReason (PyObject *exc, const char *reason)
int PyUnicodeEncodeError_SetReason (PyObject *exc, const char *reason)

30 Chapter 5. Exception Handling

The Python/C API, & x] 8] A 3.7.16

int PyUnicodeTranslateError_SetReason (PyObject *exc, const char *reason)
Set the reason attribute of the given exception object to reason. Return O on success, —1 on failure.

5.9 Recursion Control

These two functions provide a way to perform safe recursive calls at the C level, both in the core and in extension
modules. They are needed if the recursive code does not necessarily invoke Python code (which tracks its recursion
depth automatically).

int Py_EnterRecursiveCall (const char *where)
Marks a point where a recursive C-level call is about to be performed.

If USE_STACKCHECK is defined, this function checks if the OS stack overflowed using
PyOS_CheckStack (). In this is the case, it sets a MemoryError and returns a nonzero value.

The function then checks if the recursion limit is reached. If this is the case, a RecursionError is set and
a nonzero value is returned. Otherwise, zero is returned.

where should be astringsuchas " in instance check" tobe concatenated tothe RecursionError
message caused by the recursion depth limit.

void Py_LeaveRecursiveCall ()
Ends a Py _FEnterRecursiveCall (). Must be called once for each successful invocation of
Py EnterRecursiveCall ().

Properly implementing tp_ repr for container types requires special recursion handling. In addition to protect-
ing the stack, tp_repr also needs to track objects to prevent cycles. The following two functions facilitate this
functionality. Effectively, these are the C equivalent to reprlib.recursive_repr ().

int Py_ReprEnter (PyObject *object)
Called at the beginning of the t o repr implementation to detect cycles.

If the object has already been processed, the function returns a positive integer. In that case the tp_repr
implementation should return a string object indicating a cycle. As examples, dict objects return { . . . } and
list objectsreturn [...].

The function will return a negative integer if the recursion limit is reached. In that case the tp_ repr imple-
mentation should typically return NULL.

Otherwise, the function returns zero and the ¢ p_ repr implementation can continue normally.

void Py_ReprLeave (PyObject *object)
Ends a Py_ReprEnter (). Must be called once for each invocation of Py_ReprEnter () that returns
Zero.

5.10 Standard Exceptions

All standard Python exceptions are available as global variables whose names are PyExc_ followed by the Python
exception name. These have the type PyObject *; they are all class objects. For completeness, here are all the
variables:

C Name Python Name Notes
PyExc_BaseException BaseException @))
PyExc_Exception Exception (D)
PyExc_ArithmeticError ArithmeticError)]
PyExc_AssertionError AssertionError
PyExc_AttributeError AttributeError
PyExc_BlockingIOError BlockingIOError

g Sl A S AS

5.9. Recursion Control

31

The Python/C API, & x| B] A 3.7.16

1- o)A ol AolA A%

C Name Python Name Notes
PyExc_BrokenPipeError BrokenPipeError
PyExc_BufferError BufferError

PyExc_ChildProcessError

ChildProcessError

PyExc_ConnectionAbortedError

ConnectionAbortedError

PyExc_ConnectionError

ConnectionError

PyExc_ConnectionRefusedError

ConnectionRefusedError

PyExc_ConnectionResetError

ConnectionResetError

PyExc_EOFError

EOFError

PyExc_FileExistsError

FileExistsError

PyExc_FileNotFoundError

FileNotFoundError

PyExc_FloatingPointError

FloatingPointError

PyExc_GeneratorExit GeneratorExit
PyExc_TImportError ImportError
PyExc_IndentationError IndentationError
PyExc_IndexError IndexError
PyExc_InterruptedError InterruptedError
PyExc_IsADirectoryError IsADirectoryError
PyExc_KeyError KeyError
PyExc_KeyboardInterrupt KeyboardInterrupt
PyExc_LookupError LookupError QY
PyExc_MemoryError MemoryError
PyExc_ModuleNotFoundError ModuleNotFoundError
PyExc_NameError NameError

PyExc_NotADirectoryError

NotADirectoryError

PyExc_NotImplementedError

NotImplementedError

PyExc_OSError

OSError

@

PyExc_OverflowError OverflowError
PyExc_PermissionError PermissionError
PyExc_ProcessLookupError ProcessLookupError
PyExc_RecursionError RecursionError
PyExc_ReferenceError ReferenceError 2)
PyExc_RuntimeError RuntimeError
PyExc_StopAsyncIteration StopAsyncIteration
PyExc_StopIteration StopIteration
PyExc_SyntaxError SyntaxError
PyExc_SystemError SystemError
PyExc_SystemExit SystemExit
PyExc_TabError TabError
PyExc_TimeoutError TimeoutError
PyExc_TypeError TypeError

PyExc_UnboundLocalError

UnboundLocalError

PyExc_UnicodeDecodeError

UnicodeDecodeError

PyExc_UnicodeEncodeError

UnicodeEncodeError

PyExc_UnicodeError UnicodeError
PyExc_UnicodeTranslateError UnicodeTranslateError
PyExc_ValueError ValueError

PyExc_ZeroDivisionError

ZeroDivisionError

B A 3.3 9 = 7 PyExc_BlockingIOError, PyExc_BrokenPipeError
PyExc_ChildProcessError, PyExc_ConnectionkError, PyExc_ConnectionAbortedError,
PyExc_ConnectionRefusedError, PyExc_ConnectionResetError
PyExc_FileExistsError, PyExc_FileNotFoundError, PyExc_InterruptedError,
PyExc_IsADirectoryError, PyExc_NotADirectoryError, PyExc_PermissionError,
PyExc_ProcessLookupError and PyExc_TimeoutError were introduced following PEP 3151.

32 Chapter 5. Exception Handling

https://www.python.org/dev/peps/pep-3151

The Python/C API, & x] 8] A 3.7.16

WA 3.50] 7}: PyExc_StopAsyncIterationand PyExc_RecursionError
WA 3.69] +7}: PyExc_ModuleNotFoundError.

These are compatibility aliases to PyExc_OSError:

C Name Notes
PyExc_EnvironmentError
PyExc_IOError

PyExc_WindowsError 3)

¥ A 3.30]| A ¥ 7 : These aliases used to be separate exception types.
Notes:
(1) This is a base class for other standard exceptions.

(2) Only defined on Windows; protect code that uses this by testing that the preprocessor macro MS_WINDOWS is
defined.

5.11 Standard Warning Categories

All standard Python warning categories are available as global variables whose names are PyExc_ followed by the
Python exception name. These have the type PyOb ject *; they are all class objects. For completeness, here are all
the variables:

C Name Python Name Notes
PyExc_Warning Warning (1)
PyExc_BytesWarning BytesWarning
PyExc_DeprecationWarning DeprecationWarning
PyExc_FutureWarning FutureWarning
PyExc_ImportWarning ImportWarning
PyExc_PendingDeprecationWarning | PendingDeprecationWarning
PyExc_ResourceWarning ResourceWarning
PyExc_RuntimeWarning RuntimeWarning
PyExc_SyntaxWarning SyntaxWarning
PyExc_UnicodeWarning UnicodeWarning
PyExc_UserWarning UserWarning

B A 3.20] £7}: PyExc_ResourceWarning.
Notes:

(1) This is a base class for other standard warning categories.

5.11. Standard Warning Categories 33

The Python/C API, & x| B] A 3.7.16

34 Chapter 5. Exception Handling

CHAPTER O

6.1 Operating System Utilities

PyObject* PyOS_FSPath (PyObject *path)
Return value: New reference. Return the file system representation for path. If the objectis a str or bytes
object, then its reference count is incremented. If the object implements the os . PathLike interface, then
__fspath__ () isreturned as long as itis a str or bytes object. Otherwise TypeError is raised and
NULL is returned.

WA 3.690 F7}

int Py_FdIsInteractive (FILE *fp, const char *filename)
Return true (nonzero) if the standard I/O file fp with name filename is deemed interactive. This is the case
for files for which isatty (fileno (fp)) is true. If the global flag Py_TnteractiveFlag is true,
this function also returns true if the filename pointer is NULL or if the name is equal to one of the strings
'<stdin>"'or '??°?"'.

void PyOS_BeforeFork ()
Function to prepare some internal state before a process fork. This should be called before calling fork () or
any similar function that clones the current process. Only available on systems where fork () is defined.

B A 3.70] &7}

void PyOS_AfterFork_Parent ()
Function to update some internal state after a process fork. This should be called from the parent process after
calling fork () or any similar function that clones the current process, regardless of whether process cloning
was successful. Only available on systems where fork () is defined.

WA 3.7 7}

void PyOS_AfterFork_Child ()
Function to update internal interpreter state after a process fork. This must be called from the child process
after calling fork (), or any similar function that clones the current process, if there is any chance the process
will call back into the Python interpreter. Only available on systems where fork () is defined.

W 3.7 7%

35

The Python/C API, & x| B] A 3.7.16

© B7):

os.register_at_fork () allows registering custom Python functions to be called by
PyOS_BeforeFork (), PyOS_AfterFork_Parent () and PyOS_AfterFork_Child().

void PyOS_AfterFork ()
Function to update some internal state after a process fork; this should be called in the new process if the
Python interpreter will continue to be used. If a new executable is loaded into the new process, this function
does not need to be called.

W A 3.75 E] 3] : This function is superseded by Py0S_AfterFork_Child().

int PyOS_CheckStack ()
Return true when the interpreter runs out of stack space. This is a reliable check, but is only available
when USE_STACKCHECK is defined (currently on Windows using the Microsoft Visual C++ compiler).
USE_STACKCHECK will be defined automatically; you should never change the definition in your own code.

PyOS_sighandler_t PyOS_getsig (int i)
Return the current signal handler for signal i. This is a thin wrapper around either sigaction () or
signal (). Do not call those functions directly! PyOS_sighandler_t is a typedef alias for void
(*) (int).

PyOS_sighandler_t PyOS_setsig (int i, PyOS_sighandler_t /)
Set the signal handler for signal i to be k; return the old signal handler. This is a thin wrapper around either
sigaction () or signal (). Do not call those functions directly! PyOS_sighandler_t is a typedef
alias for void (*) (int).

wchar_t* Py_DecodeLocale (const char* arg, size_t *size)
Decode a byte string from the locale encoding with the surrogateescape error handler: undecodable bytes
are decoded as characters in range U+DC80..U+DCFF. If a byte sequence can be decoded as a surrogate
character, escape the bytes using the surrogateescape error handler instead of decoding them.

Encoding, highest priority to lowest priority:
e UTF-8 on macOS and Android;
e UTF-8 if the Python UTF-8 mode is enabled;

* ASCIT if the LC_CTYPE locale is "C", nl1_langinfo (CODESET) returns the ASCII encoding
(or an alias), and mbstowcs () and westombs () functions uses the ISO-8859-1 encoding.

* the current locale encoding.

Return a pointer to a newly allocated wide character string, use PyMem RawFree () to free the memory. If
size is not NULL, write the number of wide characters excluding the null character into *size

Return NULL on decoding error or memory allocation error. If size is not NULL, *size is set to
(size_t) -1 on memory error or set to (size_t) -2 on decoding error.

Decoding errors should never happen, unless there is a bug in the C library.
Use the Py_EncodeLocale () function to encode the character string back to a byte string.
o B7|:

The PyUnicode_DecodeFSDefaultAndSize () and PyUnicode_DecodeLocaleAndSize ()
functions.

WA 3500 27}
W A 3.7 A ¥ 7 : The function now uses the UTF-8 encoding in the UTF-8 mode.

char* Py_EncodeLocale (const wchar_t *text, size_t *error_pos)
Encode a wide character string to the locale encoding with the surrogateescape error handler: surrogate char-
acters in the range U+DC80..U+DCFF are converted to bytes 0x80..0xFF.

Encoding, highest priority to lowest priority:

e UTF-8 on macOS and Android;

36 Chapter 6. €2 ¥]

The Python/C API, & x] 8] A 3.7.16

e UTF-8 if the Python UTF-8 mode is enabled;

* ASCIT if the LC_CTYPE locale is "C", nl1_langinfo (CODESET) returns the ASCII encoding
(or an alias), and mbstowcs () and westombs () functions uses the ISO-8859-1 encoding.

* the current locale encoding.
The function uses the UTF-8 encoding in the Python UTF-8 mode.

Return a pointer to a newly allocated byte string, use PyMem_Free () to free the memory. Return NULL on
encoding error or memory allocation error

If error_pos is not NULL, *error_posissetto (size_t) —1 onsuccess, or set to the index of the invalid
character on encoding error.

Use the Py_DecodeLocale () function to decode the bytes string back to a wide character string.
W A 3.7 A ¥ 7 : The function now uses the UTF-8 encoding in the UTF-8 mode.

o ®B7]:

The PyUnicode_EncodeFSDefault () and PyUnicode_EncodeLocale () functions.
WA 350 F7)

WA 3.7 A ¥ 7 : The function now supports the UTF-8 mode.

6.2 System Functions

These are utility functions that make functionality from the sys module accessible to C code. They all work with
the current interpreter thread’s sy s module’s dict, which is contained in the internal thread state structure.

PyObject *PySys_GetObject (const char *name)
Return value: Borrowed reference. Return the object name from the sy s module or NULL if it does not exist,
without setting an exception.

int PySys_SetObject (const char *name, PyObject *v)
Set name in the sy s module to v unless v is NULL, in which case name is deleted from the sys module. Returns
0 on success, —1 on error.

void PySys_ResetWarnOptions ()
Reset sys.warnoptions to an empty list. This function may be called prior to Py_Tnitialize ().

void PySys_AddWarnOption (const wchar_t *s)
Append s to sys .warnoptions. This function must be called prior to Py_Tnitialize () in order to
affect the warnings filter list.

void PySys_AddWarnOptionUnicode (PyObject *unicode)
Append unicode to sys .warnoptions.

Note: this function is not currently usable from outside the CPython implementation, as it must be called prior
to the implicit import of warningsin Py_Initialize () tobe effective, but can’t be called until enough
of the runtime has been initialized to permit the creation of Unicode objects.

void PySys_SetPath (const wchar_t *path)
Set sys . path toalist object of paths found in path which should be a list of paths separated with the platform’
s search path delimiter (: on Unix, ; on Windows).

void PySys_WriteStdout (const char *format, ...)
Write the output string described by format to sys.stdout. No exceptions are raised, even if truncation
occurs (see below).

format should limit the total size of the formatted output string to 1000 bytes or less — after 1000 bytes, the
output string is truncated. In particular, this means that no unrestricted “%s” formats should occur; these should
be limited using “%.<N>s” where <N> is a decimal number calculated so that <N> plus the maximum size of

6.2. System Functions 37

The Python/C API, & x| B] A 3.7.16

other formatted text does not exceed 1000 bytes. Also watch out for “%f”, which can print hundreds of digits
for very large numbers.

If a problem occurs, or sys . stdout is unset, the formatted message is written to the real (C level) stdout.

void PySys_WriteStderr (const char *format, ...)
As PySys_WriteStdout (), but write to sys.stderr or stderr instead.

void PySys_FormatStdout (const char *format, ...)
Function similar to PySys_WriteStdout() but format the message using PyUnicode_FromFormatV () and
don’t truncate the message to an arbitrary length.

B A 3.20 F7}.

void PySys_FormatStderr (const char *format, ...)
As PySys_FormatStdout (), but write to sys. stderr or stderr instead.

WA 3200 F7h

void PySys_AddXOption (const wchar_t *s)
Parse s as a set of —-X options and add them to the current options mapping as returned by
PySys_GetXOptions (). This function may be called prior to Py_Tnitialize ().

WA 320 F7h

PyObject *PySys_GetXOptions ()
Return value: Borrowed reference. Return the current dictionary of —X options, similarly to sys.
_xoptions. On error, NULL is returned and an exception is set.

WA 320 F7h

6.3 Process Control

void Py_FatalError (const char *message)
Print a fatal error message and kill the process. No cleanup is performed. This function should only be invoked
when a condition is detected that would make it dangerous to continue using the Python interpreter; e.g., when
the object administration appears to be corrupted. On Unix, the standard C library function abort () is called
which will attempt to produce a core file.

void Py_Exit (int status)
Exit the current process. This calls Py_FinalizeEx () and then calls the standard C library function
exit (status).If Py FinalizeEx () indicates an error, the exit status is set to 120.

H A 3.690| A ¥ 7 : Errors from finalization no longer ignored.

int Py _AtExit (void (*func)())
Register a cleanup function to be called by Py FinalizeEx (). The cleanup function will be called with no
arguments and should return no value. At most 32 cleanup functions can be registered. When the registration
is successful, Py_AtExit () returns O; on failure, it returns —1. The cleanup function registered last is
called first. Each cleanup function will be called at most once. Since Python’s internal finalization will have
completed before the cleanup function, no Python APIs should be called by func.

38 Chapter 6. €2 ¥]

The Python/C API, & x] 8] A 3.7.16

PyObject* PyImport_ImportModule (const char *name)

Return value: New reference. This is a simplified interface to Py Import_ImportModuleEx () below,
leaving the globals and locals arguments set to NULL and level set to 0. When the name argument contains
a dot (when it specifies a submodule of a package), the fromlist argument is set to the list [' * '] so that the
return value is the named module rather than the top-level package containing it as would otherwise be the
case. (Unfortunately, this has an additional side effect when name in fact specifies a subpackage instead of a
submodule: the submodules specified in the package’s __all_ _ variable are loaded.) Return a new reference
to the imported module, or NULL with an exception set on failure. A failing import of a module doesn’t leave
the module in sys.modules.

o] Fot gAY YEEE ST

PyObject* PyImport_ImportModuleNoBlock (const char *name)
Return value: New reference. o] &4 = pyImport_ImportModule ()& H A H EAY

WA 3304 WA o] 7|52 e 2HEVAXE FF S B A A A =S
g} ghol 33<>1W = Fa Ao HF 2] 540N 2E &9 FE o2 A8 17)
o ST sAL2 He 28 6kA s yth

PyObject* PyImport_ImportModuleEx (const char *name, PyObject *globals, PyObject *locals, PyOb-
Ject *fromlist)
Return value: New reference. 252 A X E StUtTh WA glol MW 84 _ import_ () & E3l 7p3 &
49+ drun.

The return value is a new reference to the imported module or top-level package, or NULL with an exception

set on failure. Like for ___import__ (), the return value when a submodule of a package was requested is
normally the top-level package, unless a non-empty fromlist was given.

OxE A= PyImport_ImportModule () A8 B2AAs ZE AR E A| AT ch

PyObject* PyImport_ImportModuleLevelObject (PyObject *name, PyObject *globals, PyOb-
Ject *locals, PyObject *fromlist, int level)
Return value: New reference. 252 YZE StYth BF _ import_ () g7t ol -5 FH S
St wl2ol, W ol 4 __import_ ()€ S8 7PFZ AW 5+ A5 Th

The return value is a new reference to the imported module or top-level package, or NULL with an exception
set on failure. Like for __import__ (), the return value when a submodule of a package was requested is
normally the top-level package, unless a non-empty fromlist was given.

WA 330 7}

PyObject* PyImport_ImportModulelevel (const char *name, PyObject *globals, PyObject *locals,
PyObject *fromlist, int level)
Return value: New reference. PyImport_ImportModuleLevelObject ()2} B]<3}A] 2, name-2
fSUFE A hA UTE-82 A7 Y E29GYuch

H A 3304 WA level®] 5 FH2 & 5185 A s
PyObject* PyImport_Import (PyObjecl *name)

Return value: New reference. ©] 212 A “AXE T S5 S E3E T4 E Ao l2Y Yt}
(BA) A 2l level 02 A& 3=, xqq] YEES SFUTh. A A2 __builtins_ o U=
__import__ () FFE SESTULh o= dA S AAH X E FZ AHE31 O]—LE7}A3§

B2 o) v gueh

of Wit A AT YEEES AT

s iy

PyObject* PyImport_ReloadModule (PyObject *m)
Return value: New reference. Reload a module. Return a new reference to the reloaded module, or NULL with
an exception set on failure (the module still exists in this case).

PyObject* PyImport_AddModuleObject (PyObject *name)
Return value: Borrowed reference. Return the module object corresponding to a module name. The name
argument may be of the form package .module. First check the modules dictionary if there’s one there,

6.4. & UYXE 3]V 39

The Python/C API, & x| B] A 3.7.16

and if not, create a new one and insert it in the modules dictionary. Return NULL with an exception set on
failure.

3 o] T RES ZEFAY YXE IR GFULh ZEo| ofF REFHA 4gow, W BE
AANE QA Ut REE YZE & ¥ PyImport_ImportModule () oy 1 WY F &
AHE A A L. named| A HOo 2 FEE o] 502 A H I A FRE o|n] E2A5HA] Gethd
TS o 2 A] k5 U Th

B A 3.30] &7}

PyObject* PyImport_AddModule (const char *name)

Return value: Borrowed reference. PyImport_AddModuleObject ()2} 85314 ¥h name-S 71 2
= X hA UTF-8 2 17 HH FA<E gyt

PyObject* PyImport_ExecCodeModule (const char *name, PyObject *co)

Return value: New reference. Given a module name (possibly of the form package.module) and a code
object read from a Python bytecode file or obtained from the built-in function compile (), load the mod-
ule. Return a new reference to the module object, or NULL with an exception set if an error occurred. name
is removed from sys.modules in error cases, even if name was already in sys.modules on entry to
PyImport_ExecCodeModule (). Leaving incompletely initialized modules in sys.modules is dan-
gerous, as imports of such modules have no way to know that the module object is an unknown (and probably
damaged with respect to the module author’s intents) state.

259 __spec_ ¥ loader_ <= otF] AAFH A Fdrid AT
2+ BEY __loader_ (AAFHJUW)E ARSI, 3—"%‘11 KR
Ardlrz AU

2E9 _ file OEFHEE FE AF Y co_filenamel Z A AFUtl 3|gsivid,
__cached_ = AAFYth

ol e ou YEE HUATGH BES A EEF UL BES A 2ESHE= =d W
PyImport_ReloadModule ()& FFZ 34

EH@QQD]— /\Jﬂ_,]

Ze
H SourceFileLoader &

name®] package.module JAlQ] Ao g FHH o]ES 71| 7|4, o]u] WEO] X A k2 3 7] X
TZ2= A3 s A A °}A‘4‘3}

PyImport_ExecCodeModuleEx ()@} PyImport_ExecCodeModuleWithPathnames ()& 3
ZHH AL

PyObject* PyImport_ExecCodeModuleEx (const char *name, PyObject *co, const char pathname)

Return value: New reference. ~PyImport_ExecCodeModule ()3 AR 2, 2 & 21 A 9
_ file_ o]EgRHE¥ENULL®] o}y EA pathname 2 2 4 A F Ut}

PyImport_ExecCodeModuleliithPathnames () & FZ 3 AL

PyObject* PyImport_ExecCodeModuleObject (PyObject *name, PyObject *co, PyObject *pathname,

PyObject *cpathname)

Return value: New reference. PyImport_ExecCodeModuleEx ()&} AR 2, & A A 9
__cached__ 9JEg{FE+= NULLO| oFY ¥ cpathname & 2 AP Utk A 7FA] & F o] A

ol AT HEE AYYrTh
WA 330 37}

PyObject* PyImport_ExecCodeModuleWithPathnames (const char *name, PyObject *co, const

char *pathname, const char *cpathname)
Return value: New reference. PyImport_ExecCodeModuleObiject ()&} -FAFSHA] B, name, path-

name B cpathname-> UTF-8 2 A7 F2+E YU th pathname®] ko]l NULLE AFH -9 o]d
Zxol cpathnamel| A £}o¥dt=A] dolul] a1 gt

A 3.20 7T

HZA 330A WA: vHloE I= A2 AIHE &2 A2 E AAT o imp.
source_from_cache () = AF&3H o)

40

Chapter 6. €2 ¥]

The Python/C API, & x] 8] A 3.7.16

long PyImport_GetMagicNumber ()
gto] npolE F = 3} (LdW .pyc 3-9) 9 i A W
Hlo] = T stdlo] A& 4nol o] 25 Ar)ek ul
whskghu o,
B 33004 M As) Al -1 W o
const char * PyImport_GetMagicTag ()
PEP 3147 B 4] 5108 HlolE T 39 o] &
implementation.cache_tag¥ 2 AZ & 4= Q)1 o] gk Al

B A 3.20] &7}

PyObject* PyImport_GetModuleDict ()
Return value: Borrowed reference. 5 T ol AL EH = U2 (YH sys.modules)E vra3y
th o) 2L A melentck £ ke W ol 9 AL

PyObject* PyImport_GetModule (PyObject *name)
Return value: New reference. Return the already imported module with the given name. If the module has not

been imported yet then returns NULL but does not set an error. Returns NULL and sets an error if the lookup
failed.

WA 3.7 F7%
PyObject* PyImport_GetImporter (PyObject *path)

Mr

(magic number) & ¥FEHe U T} w2 S =
1E A2 A8 oF gtk ole Al -1<

O

Return value: New reference. sys.path/pkg.__path__ 5 paths 9|k 3}l t] A& wkeg o},
sys.path_inporter_cache YA A 7AW % Ut ok A 54 o, A%
#52 A 2+ At %o BAD W7 sys.path_hooksE FAFUTh Fo §oW None S
BB ol AL TEANA A2 /W 5217 o] AR FEo| B HFAVE RE 5 R L
a2 E Ut} sys.path_importer_cached] Z3E A &Yt s} AA o o gt 22 ZF
ZE Wk oh
void_ y Import_ Init()
ZE AUSS 271U R A8 Iyt
void PyImport_Cleanup ()
Eg HolEs vtk R A& dyrth
void _PyImport_Fini ()
QEE vAYZL s gLk R A8
int PyImport_ImportFrozenModuleObject (PyObject *name)
Return value: New reference. name®] 2= 0] 52| = 2 & X E (frozen module) 2 £ =¥t} A &34
12, R85 A Xo1W 02, 273}l Aafjshd o9 & A skaL - 1 = E‘}‘_Z Utk 2271458
o] AZE H BE AMASHE Y Py Import_ ImportModule ()& AFE3AE A L. (RH o] &9

T«]ﬁ}“/\l — o] BEC on AXE H Y-S o A REFY)
B A 3.30]] 7}
WA 3404 HA:__file. AEFELH+= EEN BAHA d5ch

int PyImport_ImportFrozenModule (const char *name)
PyImport_ImportFrozenModuleObject ()2}]S 3dFA] 9 nameS U = 2 A tj Al UTF-8
2d3dd 2L YU

struct _frozen
o] AL freeze FEHF E|(Fo]H A2 W|E2 Tools/freeze/E JFRIAHAI)7 A =2 =
ZE H2IHEE AT F2A ¥ YUk Include/import.holl e Ao+ a3 25
Ytk

struct _frozen {
const char *name;
const unsigned char *code;
int size;

bi

(2]
S
t
it
jries
el
|
ok
N

41

https://www.python.org/dev/peps/pep-3147

The Python/C API, & x| B] A 3.7.16

const struct _frozen* PyImport_FrozenModules
This pointer is initialized to point to an array of struct _ frozen records, terminated by one whose mem-
bers are all NULL or zero. When a frozen module is imported, it is searched in this table. Third-party code
could play tricks with this to provide a dynamically created collection of frozen modules.

int PyImport_AppendInittab (const char *name, PyObject* (*initfunc)(void)
712 W EE HolEd @Y BES F7FEYLE o] A2 PyImport_ExtendInittab ()& 3
A BEIR sl A, Hol g B3 S o w1 WA T A 25 & namecl P olgoz
AZE 2 5 9lov, initfunc T3 A5 AET JZENN 235 & 273 T2 AU

Py_ Inltlalize () Aol T3 oF Pt

struct _inittab

B3 5E BS0) gt Od FEL /s 72 4 72 dHz o h3E BE
|23} 278 45 ABFUT o] B L ASCIE 1298 EAAY) ol 8L et
SZTWE by lmport_Bxtendlnittab ()3 @7 ol 8@ FEAS WAL BTl 27k
BELAF T 5 AFUTh FEAE Include/ import . nol A the 2ol Fe g Uth:

struct _inittab {
const char *name; /* ASCII encoded string */
PyObject* (*initfunc) (void);

bi

int PyImport_ ExtendInittab (struct _inittab *newtab)
Add a collection of modules to the table of built-in modules. The newtab array must end with a sentinel entry
which contains NULL for the name field; failure to provide the sentinel value can result in a memory fault.
Returns 0 on success or —1 if insufficient memory could be allocated to extend the internal table. In the event
of failure, no modules are added to the internal table. This should be called before Py Tnitialize ().

6.5 o] nbike) 2 ¢l

ol#%t FH 2 C Z =7} marshal EEF 22 t o] 4
£% gt 425t 9402 toEE 2t B4 1E1
A% A o] e 2 A3t o] A8 = shde

The module supports two versions of the data format: version O is the historical version, version 1 shares in-
terned strings in the file, and upon unmarshalling. Version 2 uses a binary format for floating point numbers.
Py_MARSHAL_VERSION indicates the current file format (currently 2).

void PyMarshal_WriteLongToFile (long value, FILE *file, int version)
long B values file2 VU Th value]) 619] 320 E Tt 7| £33 Uth; 7] long §9 327]¢}
ZA Lo, version 3+ G A2 UERY U T

void PyMarshal_WriteObjectToFile (PyObject *value, FILE *file, int version)
gtol W WA values: file= vHEZU T versione 3+ 3 41-& LR YT

PyObject* PyMarshal_WriteObjectToString (PyObject *value, int version)
Return value: New reference. "} E value 8-S E 33} nlo]|E G A & ¥l T}, version2 1Y
24 e o,

e #4548 A shE vdE e o) 92 4 duyth

long PyMarshal_ReadLongFromFile (FILE *file)
o171 sl d° FILE* S| Hlo]H 2EF o 1 C long= REgHYth o] 45 AHE5HH long?
7]% 27)9F FA Qo] 320 E gt o2 5 5T

o & Al, A3t o £ (EOFError) & A -1& WHE3

int PyMarshal_ReadShortFromFile (FILE *file)
e17] Aol @™ FILE* 9] Hlo]H 2E A C short & WHAg Ut o] S AHE-5HH short 9
718 279 BA glo] 16W]= gk 91 4 A5 Tk

e
kd

5

42 Chapter 6. €2 ¥]

The Python/C API, & x] 8] A 3.7.16

ol Al, /A3t Q] (EOFError) & A3l -1& WU T}

PyObject* PyMarshal_ReadObjectFromFile (FILE *file)
Return value: New reference. 917] 913l & FILE* 9] H] o] E] AE g o A] Fho] A AAE 93y th.

On error, sets the appropriate exception (EOFError, ValueError or TypeError) and returns NULL.

PyObject* PyMarshal_ReadLastObjectFromFile (FILE *file)
Return value: New reference. 9)7] 913 €& rILE*2] t| o] E] 2 E oA Flo] A AA & w3-sh T
|

PyMarshal_ ReadObjectFromFile ()&} &g, o] 4=t gtdoA AAE R &S A9
DA 2, U HloElE W] AT N0 21 ¥ 5 9T, FHAolA B kol =4 9
A wl Rl gl dolEeA g JH3r} 25 ¢ s Uth st ofd A= A 9=

o
-

Aol BHlo] 5 7ol o] WAL A A L.

On error, sets the appropriate exception (EOFError, ValueError or TypeError) and returns NULL.

PyObject* PyMarshal_ReadObjectFromString (const char *data, Py_ssize_t len)
Return value: New reference. data7} 7}2] 7]+ len B} o] E & £ 33}= vlo] E ¥ ¥ 2] to]E] 2E oA
shol# AA & wrekgh o).

On error, sets the appropriate exception (EOFError, ValueError or TypeError) and returns NULL.

6.6 Parsing arguments and building values

These functions are useful when creating your own extensions functions and methods. Additional information and
examples are available in extending-index.

The first three of these functions described, PyArg_ParseTuple (),
PyArg_ParseTupleAndKeywords (), and PyArg _Parse (), all use format strings which are used to
tell the function about the expected arguments. The format strings use the same syntax for each of these functions.

6.6.1 Parsing arguments

A format string consists of zero or more “format units.” A format unit describes one Python object; it is usually a single
character or a parenthesized sequence of format units. With a few exceptions, a format unit that is not a parenthesized
sequence normally corresponds to a single address argument to these functions. In the following description, the
quoted form is the format unit; the entry in (round) parentheses is the Python object type that matches the format
unit; and the entry in [square] brackets is the type of the C variable(s) whose address should be passed.

Strings and buffers

These formats allow accessing an object as a contiguous chunk of memory. You don’t have to provide raw storage
for the returned unicode or bytes area.

In general, when a format sets a pointer to a buffer, the buffer is managed by the corresponding Python object, and
the buffer shares the lifetime of this object. You won’t have to release any memory yourself. The only exceptions are
es,es#, et and et #.

However, when a Py_ bu f fer structure gets filled, the underlying buffer is locked so that the caller can subsequently
use the buffer even inside a Py_ BEGIN_ALLOW_THREADS block without the risk of mutable data being resized or
destroyed. As a result, you have to call PyBuffer Release () after you have finished processing the data (or
in any early abort case).

Unless otherwise stated, buffers are not NUL-terminated.

Some formats require a read-only bytes-like object, and set a pointer instead of a buffer structure. They work by check-
ing that the object’s PyBufferProcs.bf_releasebuffer field is NULL, which disallows mutable objects
such as bytearray.

6.6. Parsing arguments and building values 43

The Python/C API, & x| B] A 3.7.16

ZF31: For all # variants of formats (s#, y#, etc.), the type of the length argument (int or Py_ssize_t) is
controlled by defining the macro PY_SSIZE_T_CLEAN before including Python.h. If the macro was defined,
length is a Py_ssize_t rather than an int. This behavior will change in a future Python version to only support
Py_ssize_t and drop int support. It is best to always define PY_SSIZE_T_CLEAN.

s (str) [const char *] Convert a Unicode object to a C pointer to a character string. A pointer to an existing string
is stored in the character pointer variable whose address you pass. The C string is NUL-terminated. The Python
string must not contain embedded null code points; if it does, a ValueError exception is raised. Unicode
objects are converted to C strings using 'ut £-8"' encoding. If this conversion fails, a UnicodeError is
raised.

ZF31: This format does not accept bytes-like objects. If you want to accept filesystem paths and convert them to
C character strings, it is preferable to use the O& format with PyUnicode_FSConverter () as converter.

WA 3.59 4 ¥ 7 : Previously, TypeError was raised when embedded null code points were encountered
in the Python string.

s* (str or bytes-like object) [Py_buffer] This format accepts Unicode objects as well as bytes-like objects. It fills
a Py_buf fer structure provided by the caller. In this case the resulting C string may contain embedded NUL
bytes. Unicode objects are converted to C strings using 'ut £-8"' encoding.

s# (str, read-only bytes-like object) [const char *, int or Py_ssize_t] Like s*, except that it doesn’t accept
mutable objects. The result is stored into two C variables, the first one a pointer to a C string, the second
one its length. The string may contain embedded null bytes. Unicode objects are converted to C strings using
'ut £-8"' encoding.

z (str or None) [const char *] Like s, but the Python object may also be None, in which case the C pointer is
set to NULL.

z* (str, bytes-like object or None) [Py_buffer] Like s*, but the Python object may also be None, in which case
the buf member of the Py_burf fer structure is set to NULL.

z# (str, read-only byfes-like object or None) [const char *, int or Py_ssize_t] Like s#, but the Python ob-
ject may also be None, in which case the C pointer is set to NULL.

y (read-only byfes-like object) [const char *] This format converts a bytes-like object to a C pointer to a character
string; it does not accept Unicode objects. The bytes buffer must not contain embedded null bytes; if it does,
aValueError exception is raised.

H A 3.5 4] ¥ 7 : Previously, TypeError was raised when embedded null bytes were encountered in the
bytes buffer.

y* (bytes-like object) [Py_buffer] This variant on s * doesn’t accept Unicode objects, only bytes-like objects. This
is the recommended way to accept binary data.

y# (read-only bytes-like object) [const char *, int or Py_ssize_t] This variant on s# doesn’t accept Unicode
objects, only bytes-like objects.

S (bytes) [PyBytesObject *] Requires that the Python object is a bytes object, without attempting any con-
version. Raises TypeError if the object is not a bytes object. The C variable may also be declared as
PyObject *.

Y (bytearray) [PyByteArrayObject *] Requires that the Python object is a bytearray object, without at-
tempting any conversion. Raises TypeError if the object is not a bytearray object. The C variable may
also be declared as PyOb ject *.

u (str) [const Py_UNICODE *] Convert a Python Unicode object to a C pointer to a NUL-terminated buffer of
Unicode characters. You must pass the address of a Py_ UNTCODE pointer variable, which will be filled with
the pointer to an existing Unicode buffer. Please note that the width of a Py UNTCODE character depends on
compilation options (it is either 16 or 32 bits). The Python string must not contain embedded null code points;
if it does, a ValueError exception is raised.

44 Chapter 6. €2 ¥]

The Python/C API, & x] 8] A 3.7.16

A 3.59 4] ¥ 7 : Previously, TypeError was raised when embedded null code points were encountered
in the Python string.

Deprecated since version 3.3, will be removed in version 4.0: Part of the old-style Py UNICODE API; please
migrate to using PyUnicode_AsWideCharString ().

u# (str) [const Py_UNICODE *, int or Py_ssize_t] This variant on u stores into two C variables, the first
one a pointer to a Unicode data buffer, the second one its length. This variant allows null code points.

Deprecated since version 3.3, will be removed in version 4.0: Part of the old-style Py UNICODE API; please
migrate to using PyUnicode_AsWideCharString().

Z (str or None) [const Py_UNICODE *] Like u, but the Python object may also be None, in which case the
Py_UNICODE pointer is set to NULL.

Deprecated since version 3.3, will be removed in version 4.0: Part of the old-style Py UNICODE API; please
migrate to using PyUnicode_AsWideCharString().

Z# (str or None) [const Py_UNICODE *, int or Py_ssize_t] Like u#, but the Python object may also be
None, in which case the Py_ UNICODE pointer is set to NULL.

Deprecated since version 3.3, will be removed in version 4.0: Part of the old-style Py UNICODE API; please
migrate to using PyUnicode AsWideCharString().

U (str) [PyObject *] Requires that the Python object is a Unicode object, without attempting any conversion.
Raises TypeError if the object is not a Unicode object. The C variable may also be declared as
PyObject *.

w* (read-write bytes-like object) [Py_buffer] This format accepts any object which implements the read-write
buffer interface. It fills a Py__buffer structure provided by the caller. The buffer may contain embedded
null bytes. The caller have to call PyBuffer_ Release () when it is done with the buffer.

es (str) [const char *encoding, char **buffer] This variant on s is used for encoding Unicode into a character
buffer. It only works for encoded data without embedded NUL bytes.

This format requires two arguments. The first is only used as input, and must be a const char* which
points to the name of an encoding as a NUL-terminated string, or NULL, in which case 'ut £-8"' encoding
is used. An exception is raised if the named encoding is not known to Python. The second argument must be
a char**; the value of the pointer it references will be set to a buffer with the contents of the argument text.
The text will be encoded in the encoding specified by the first argument.

PyArg ParseTuple () will allocate a buffer of the needed size, copy the encoded data into this buffer and
adjust *buffer to reference the newly allocated storage. The caller is responsible for calling PyMem_ Free ()
to free the allocated buffer after use.

et (str,bytes or bytearray) [const char *encoding, char **buffer] Same as es except that byte string
objects are passed through without recoding them. Instead, the implementation assumes that the byte string
object uses the encoding passed in as parameter.

es# (str) [const char *encoding, char **buffer, int or Py_ssize_t *buffer_length] This variant on s# is
used for encoding Unicode into a character buffer. Unlike the e s format, this variant allows input data which
contains NUL characters.

It requires three arguments. The first is only used as input, and must be a const char* which points to the
name of an encoding as a NUL-terminated string, or NULL, in which case 'ut £-8"' encoding is used. An
exception is raised if the named encoding is not known to Python. The second argument must be a char* *;
the value of the pointer it references will be set to a buffer with the contents of the argument text. The text
will be encoded in the encoding specified by the first argument. The third argument must be a pointer to an
integer; the referenced integer will be set to the number of bytes in the output buffer.

There are two modes of operation:

If *buffer points a NULL pointer, the function will allocate a buffer of the needed size, copy the encoded data
into this buffer and set *buffer to reference the newly allocated storage. The caller is responsible for calling
PyMem_Free () to free the allocated buffer after usage.

6.6. Parsing arguments and building values 45

The Python/C API, & x| B] A 3.7.16

If *buffer points to a non-NULL pointer (an already allocated buffer), PyArg ParseTuple () will use this
location as the buffer and interpret the initial value of *buffer_length as the buffer size. It will then copy the
encoded data into the buffer and NUL-terminate it. If the buffer is not large enough, a ValueError will be
set.

In both cases, *buffer_length is set to the length of the encoded data without the trailing NUL byte.

et# (str,bytes or bytearray) [const char *encoding, char **buffer, int or Py_ssize_t *buffer_length]
Same as es# except that byte string objects are passed through without recoding them. Instead, the imple-
mentation assumes that the byte string object uses the encoding passed in as parameter.

Numbers
b (int) [unsigned char] Convert a nonnegative Python integer to an unsigned tiny int, stored in a C unsigned
char.

B (int) [unsigned char] Converta Python integer to a tiny int without overflow checking, stored ina C unsigned
char.

h (int) [short int] Convert a Python integer to a C short int.

H (int) [unsigned short int] Converta Python integer toa C unsigned short int, without overflow check-
ing.

i (int) [int] Convert a Python integer to a plain C int.

I (int) [unsigned int] Convert a Python integer to a C unsigned int, without overflow checking.

1 (int) [long int] Convert a Python integer toa C long int.

k (int) [unsigned long] Convert a Python integer to a C unsigned 1long without overflow checking.
L (int) [long long] Convert a Python integer to a C 1ong long.

K (int) [unsigned long long] Convert a Python integer toa C unsigned long long without overflow check-
ing.

n (int) [Py_ssize_t] Convert a Python integer toa C Py_ssize_t.

c (bytes or bytearray of length 1) [char] Convert a Python byte, represented as a bytes or bytearray
object of length 1,to a C char.

H A 3.39 4 M7 Allow bytearray objects.
C (str of length 1) [int] Convert a Python character, represented as a st r object of length 1, to a C int.
f (float) [float] Convert a Python floating point number to a C f1oat.
d (float) [double] Convert a Python floating point number to a C double.

D (complex) [Py_complex] Convert a Python complex number to a C Py_ comp1ex structure.

Other objects

O (object) [PyObject *] Store a Python object (without any conversion) in a C object pointer. The C program thus
receives the actual object that was passed. The object’s reference count is not increased. The pointer stored is
not NULL.

0! (object) [typeobject, PyObject *] Store a Python object in a C object pointer. This is similar to O, but takes two
C arguments: the first is the address of a Python type object, the second is the address of the C variable (of
type PyObject *) into which the object pointer is stored. If the Python object does not have the required
type, TypeError is raised.

O& (object) [converter, anything] Convert a Python object to a C variable through a converter function. This takes
two arguments: the first is a function, the second is the address of a C variable (of arbitrary type), converted
tovoid *. The converter function in turn is called as follows:

46 Chapter 6. €2 ¥]

The Python/C API, & x] 8] A 3.7.16

status = converter (object, address);

where object is the Python object to be converted and address is the void* argument that was passed to
the PyArg Parse* () function. The returned status should be 1 for a successful conversion and 0 if the
conversion has failed. When the conversion fails, the converter function should raise an exception and leave the
content of address unmodified.

If the converter returns Py_ CLEANUP__SUPPORTED, it may get called a second time if the argument parsing
eventually fails, giving the converter a chance to release any memory that it had already allocated. In this
second call, the object parameter will be NULL; address will have the same value as in the original call.

WA 3.1 A W7 : Py _CLEANUP_SUPPORTED was added.

p (bool) [int] Tests the value passed in for truth (a boolean predicate) and converts the result to its equivalent C
true/false integer value. Sets the int to 1 if the expression was true and 0 if it was false. This accepts any valid
Python value. See truth for more information about how Python tests values for truth.

B A 3.30] 7}

(items) (tuple) [matching-items] The object must be a Python sequence whose length is the number of format
units in items. The C arguments must correspond to the individual format units in ifems. Format units for
sequences may be nested.

It is possible to pass “long” integers (integers whose value exceeds the platform’s LONG_MAX) however no proper
range checking is done — the most significant bits are silently truncated when the receiving field is too small to receive
the value (actually, the semantics are inherited from downcasts in C — your mileage may vary).

A few other characters have a meaning in a format string. These may not occur inside nested parentheses. They are:

| Indicates that the remaining arguments in the Python argument list are optional. The C variables corresponding to
optional arguments should be initialized to their default value — when an optional argument is not specified,
PyArg_ParseTuple () does not touch the contents of the corresponding C variable(s).

$ PyArg ParseTupleAndKeywords () only: Indicates that the remaining arguments in the Python argument
list are keyword-only. Currently, all keyword-only arguments must also be optional arguments, so | must
always be specified before $ in the format string.

B A 3.30] F7}.

: The list of format units ends here; the string after the colon is used as the function name in error messages (the
“associated value” of the exception that PyArg_ParseTuple () raises).

; The list of format units ends here; the string after the semicolon is used as the error message instead of the default
error message. : and ; mutually exclude each other.

Note that any Python object references which are provided to the caller are borrowed references; do not decrement
their reference count!

Additional arguments passed to these functions must be addresses of variables whose type is determined by the format
string; these are used to store values from the input tuple. There are a few cases, as described in the list of format units
above, where these parameters are used as input values; they should match what is specified for the corresponding
format unit in that case.

For the conversion to succeed, the arg object must match the format and the format must be exhausted. On success, the
PyArg_Parse* () functions return true, otherwise they return false and raise an appropriate exception. When the
PyArg Parse* () functions fail due to conversion failure in one of the format units, the variables at the addresses
corresponding to that and the following format units are left untouched.

6.6. Parsing arguments and building values 47

The Python/C API, & x| B] A 3.7.16

API Functions

int PyArg_ParseTuple (PyObject *args, const char *format, ...)
Parse the parameters of a function that takes only positional parameters into local variables. Returns true on
success; on failure, it returns false and raises the appropriate exception.

int PyArg_VaParse (PyObject *args, const char *format, va_list vargs)
Identical to PyArg_ ParseTuple (), except that it accepts a va_list rather than a variable number of argu-
ments.

int PyArg_ParseTupleAndKeywords (PyObject *args, PyObject *kw, const char *format, char *key-

words[], ...)
Parse the parameters of a function that takes both positional and keyword parameters into local variables. The

keywords argument is a NULL-terminated array of keyword parameter names. Empty names denote positional-
only parameters. Returns true on success; on failure, it returns false and raises the appropriate exception.

W A 3.6 4 ¥ 7 : Added support for positional-only parameters.

int PyArg_VaParseTupleAndKeywords (PyObject *args, PyObject *kw, const char *format,
char *keywords[|, va_list vargs)
Identical to PyArg_ParseTupleAndKeywords (), except that it accepts a va_list rather than a variable
number of arguments.

int PyArg_ValidateKeywordArguments (PyObject *)
Ensure that the keys in the keywords argument dictionary are strings. This is only needed if
PyArg_ParseTupleAndKeywords () is not used, since the latter already does this check.

B & 3.20] &7}

int PyArg_Parse (PyObject *args, const char *format, ...)
Function used to deconstruct the argument lists of “old-style” functions — these are functions which use the
METH_OLDARGS parameter parsing method, which has been removed in Python 3. This is not recommended
for use in parameter parsing in new code, and most code in the standard interpreter has been modified to no
longer use this for that purpose. It does remain a convenient way to decompose other tuples, however, and may
continue to be used for that purpose.

int PyArg_UnpackTuple (PyObject *args, const char *name, Py_ssize_t min, Py_ssize_t max, ...)

A simpler form of parameter retrieval which does not use a format string to specify the types of the arguments.
Functions which use this method to retrieve their parameters should be declared as METH_VARARGS in func-
tion or method tables. The tuple containing the actual parameters should be passed as args; it must actually
be a tuple. The length of the tuple must be at least min and no more than max; min and max may be equal.
Additional arguments must be passed to the function, each of which should be a pointer to a PyObject *
variable; these will be filled in with the values from args; they will contain borrowed references. The variables
which correspond to optional parameters not given by args will not be filled in; these should be initialized by
the caller. This function returns true on success and false if args is not a tuple or contains the wrong number
of elements; an exception will be set if there was a failure.

This is an example of the use of this function, taken from the sources for the _weakref helper module for
weak references:

static PyObject *
weakref_ref (PyObject *self, PyObject *args)
{

PyObject *object;

PyObject *callback = NULL;

PyObject *result = NULL;

if (PyArg_UnpackTuple (args, "ref", 1, 2, &object, &callback)) |
result = PyWeakref_ NewRef (object, callback);
¥

return result;

48 Chapter 6. €2 ¥]

The Python/C API, & x] 8] A 3.7.16

The call to PyArg UnpackTuple () in this example is entirely equivalent to this call to
PyArg ParseTuple():

PyArg_ParseTuple (args, "O|O:ref", &object, &callback)

6.6.2 Building values

PyObject* Py_BuildValue (const char *format, ...)
Return value: New reference. Create a new value based on a format string similar to those accepted by the
PyArg_Parse* () family of functions and a sequence of values. Returns the value or NULL in the case of
an error; an exception will be raised if NULL is returned.

Py_BuildValue () does not always build a tuple. It builds a tuple only if its format string contains two or
more format units. If the format string is empty, it returns None; if it contains exactly one format unit, it returns
whatever object is described by that format unit. To force it to return a tuple of size O or one, parenthesize the
format string.

When memory buffers are passed as parameters to supply data to build objects, as for the s and s# for-
mats, the required data is copied. Buffers provided by the caller are never referenced by the objects cre-
ated by Py_BuildValue (). In other words, if your code invokes malloc () and passes the allocated
memory to Py_BuildValue (), your code is responsible for calling free () for that memory once
Py _BuildValue () returns.

In the following description, the quoted form is the format unit; the entry in (round) parentheses is the Python
object type that the format unit will return; and the entry in [square] brackets is the type of the C value(s) to
be passed.

The characters space, tab, colon and comma are ignored in format strings (but not within format units such as
s#). This can be used to make long format strings a tad more readable.

s (str or None) [const char *] Convert a null-terminated C string to a Python st r object using 'ut £-8"'
encoding. If the C string pointer is NULL, None is used.

s# (str or None) [const char *, int or Py_ssize_t] Convert a C string and its length to a Python st r
object using 'ut £-8"' encoding. If the C string pointer is NULL, the length is ignored and None is
returned.

y (bytes) [const char *] This converts a C string to a Python bytes object. If the C string pointer is
NULL, None is returned.

y# (bytes) [const char *, int or Py_ssize_t] This converts a C string and its lengths to a Python object.
If the C string pointer is NULL, None is returned.

z (str or None) [const char *] Same as s.
z# (str or None) [const char *, int or Py_ssize_t] Same as s#.

u (str) [const wchar_t *] Convert a null-terminated wchar_ t buffer of Unicode (UTF-16 or UCS-4) data
to a Python Unicode object. If the Unicode buffer pointer is NULL, None is returned.

u# (str) [const wchar_t *, int or Py_ssize_t] Convert a Unicode (UTF-16 or UCS-4) data buffer and
its length to a Python Unicode object. If the Unicode buffer pointer is NULL, the length is ignored and
None is returned.

U (str or None) [const char *] Same as s.

U# (str or None) [const char *, int or Py_ssize_t] Same as s#.

i (int) [int] Convert a plain C int to a Python integer object.

b (int) [char] Convert a plain C char to a Python integer object.

h (int) [short int] Convert a plain C short int to a Python integer object.

1 (int) [long int] Converta C 1long int to a Python integer object.

6.6. Parsing arguments and building values 49

The Python/C API, & x| B] A 3.7.16

B (int) [unsigned char] Converta C unsigned char to a Python integer object.

H (int) [unsigned short int] Converta C unsigned short int toa Python integer object.

I (int) [unsigned int] Converta C unsigned int to a Python integer object.

k (int) [unsigned long] Converta C unsigned long to a Python integer object.

L (int) [long long] Converta C 1long long to a Python integer object.

K (int) [unsigned long long] Convert a C unsigned long long to a Python integer object.

n (int) [Py_ssize_t] Converta C Py_ssize_t to a Python integer.

c (bytes of length 1) [char] Converta C int representing a byte to a Python bytes object of length 1.
C (str of length 1) [int] Convert a C int representing a character to Python st r object of length 1.
d (float) [double] Converta C double to a Python floating point number.

f (float) [float] Converta C f1loat to a Python floating point number.

D (complex) [Py_complex *] Converta C Py_complex structure to a Python complex number.

O (object) [PyObject *] Pass a Python object untouched (except for its reference count, which is incremented
by one). If the object passed in is a NULL pointer, it is assumed that this was caused because the call
producing the argument found an error and set an exception. Therefore, Py_BuildValue () will
return NULL but won’t raise an exception. If no exception has been raised yet, SystemError is set.

S (object) [PyObject *] Same as O.

N (object) [PyObject *] Same as O, except it doesn’t increment the reference count on the object. Useful
when the object is created by a call to an object constructor in the argument list.

O& (object) [converter, anything] Convert anything to a Python object through a converter function. The
function is called with anything (which should be compatible with void *) as its argument and should
return a “new” Python object, or NULL if an error occurred.

(items) (tuple) [matching-items] Convert a sequence of C values to a Python tuple with the same num-
ber of items.

[items] (1ist) [matching-items] Convert a sequence of C values to a Python list with the same number
of items.

{items} (dict) [matching-items] Convert a sequence of C values to a Python dictionary. Each pair of
consecutive C values adds one item to the dictionary, serving as key and value, respectively.

If there is an error in the format string, the SystemError exception is set and NULL returned.

PyObject* Py_VaBuildValue (const char *format, va_list vargs)
Return value: New reference. Identical to Py_BuildValue (), except that it accepts a va_list rather than a
variable number of arguments.

A MBI 2 RE 221G £9S 95 T4,

int PyOS_snprint £ (char *str, size_t size, const char *format, ...)
29 AL format 3} 37} Aol meksize ol EE WA HEZ sr2 FHFULH K2 R
¥ 0] A snprintf (2)E HAAL

int PyOS_vsnprint £ (char *str, size_t size, const char *format, va_list va)
2R FAD format I 7VA AR} BEZ ygof| }etsize WO ES WA GEE arZ 2E UL FH
5L H o] R] vsnprintf(2) & BEAAIL
PyOS_ snprintf()S}Pyos vsnprintf ()= E&Cglo] B & 2] 34 snprintf () & vsnprintf ()
Z 7 th 259 BAL AA 2ANA BE C LI AZA G 520 dFHH S22 B A=

A‘?JHD‘r-

50 Chapter 6. €2 ¥]

The Python/C API, & x] 8] A 3.7.16

2 2 = 9h2E A] st/ size- 1]°l A '\ o] H =5 T strofl size UFO] E(F 8 '\0' £ E 2| A
PR ST T84 25 str != NULL,size > 0% format != NULLS 33t

If the platform doesn’t have vsnprintf () and the buffer size needed to avoid truncation exceeds size by more
than 512 bytes, Python aborts witha Py_FatalError ().

o] §45 o) WhEk gh(r) & The 3} o] 345 o] of i Th:

0 <= rv < size dulj, 8 A AFAH rv ZA7Fseroll 7155 5 U T (s #rv] o] 333
"\0"' H}o] E A £)).
. rv >= size Qul, =8 H3o| AH I AFZSEH rv + 18|E Y W57} & QST str¥/ *size-
= \O'?}WD}.
ey < 0 9 S U ol ol gk el e 1€ 100" Sl s A
o= A ?%Q‘/]D}. o 2] &3t AL sk Rl wet thE Yt

U e 2AY SHAA AL Az 2 Hds ATy

double PyOS__ string to_double (const char *s, char **endptr, PyObject *overflow_exception)

B2 s& double® WS, A A] glo] X o E HAAA A YL L= ExE T2 s
7t Aol £8 30 7H 5 gloks d2 A9 stas shol M float () A7} B §3HE
2AG Gl s ek A A4 2A AT SF Aok

endptro] NULLO| ¥, AA Zx1E-& A3t Exdo] BE A4 A 219 §&3F T8 o] ofy
W vValueErrorE WAA| 7]2 -1.0& ¥ty o},

endptr o] NULLo] o}, 7}5 3k 3t W2 #AE S W8Helal *endptro] WS 7|
2HE 77 e @_7@@145} TAGY 27 MAHEVHRE A-H A R Ed
*endptro] £ AFE 9 A2 7hHe] 7| =5 A % 8FaL, ValueError & H“g Al7)a -1,

57} floate] A 817100 1% 2 g hEbd o) (18§01, 012 EAFNA 71050077 13
Fdyrh, overflow_exceptlonﬂ-NULLO]Vﬂ (BA3 B35 9 3) Py_HUGE_VAL-S ®+3}+a}l a1,
ol o= AR syt 28R ko, overflow_exception Jo|# o 2] A
Zhe Ak FUth 2 A& & DA 7L -1, 05 Rig Y F A B EEE o A
A BAE 127122 rendperg AR T L

WE F 2 o7 Y5 (18 Sof el B3 o)), 4 2% ol A 9 & HAFHIL 1.0

char* PyOS_double_to_string (double val, char format_code, int precision, int flags, int *ptype)

Al FH format_code, precision L flagsE A-23}9] double valS FA14 2 W3tsh).
format_code’= 1e?, VB, VEY, EY, g, 16! i 'rt F Shojop gtk 'r o] A%, A3
precision-& 0] oo 51w F-AB UL 'x' EW ZEE EE repr () AL AT

flags can be zero or more of the values Py_DTSF_SIGN, Py_DTSF_ADD_DOT_O0, or Py_DTSF_ALT,
or-ed together:

e Py_DTSF_SIGN means to always precede the returned string with a sign character, even if val is non-
negative.

e Py_DTSF_ADD_DOT_0 means to ensure that the returned string will not look like an integer.

e Py_DTSF_ALT means to apply “alternate” formatting rules. See the documentation for the
PyOS_snprintf () '#' specifier for details.

If ptype is non-NULL, then the value it points to will be set to one of Py DTST_FINITE,
Py_DTST_INFINITE, or Py_DTST_NAN, signifying that val is a finite number, an infinite number, or
not a number, respectively.

The return value is a pointer to buffer with the converted string or NULL if the conversion failed. The caller is
responsible for freeing the returned string by calling PyMem Free ().

B A 3.10] =7}

. BAG W@ 2y 51

The Python/C API, & x| B] A 3.7.16

int PyOS_stricmp (const char *s/, const char *s2)
W& B4 PR QE BAG ML o] B4t ta 22
AL ZA FsFUth

int PyOS_strnicmp (const char *s/, const char *s2, Py_ssize_t size)
& B2 s BAE v o] s v RS FAI STk AR A9 8 strnemp () £F

7] 27 5 g,

it

B A th= A Yk A Q3 stremp () 2

6.8 2 Z 44

PyObject* PyEval_GetBuiltins ()
Return value: Borrowed reference. @A) A8 T JojL} A Ad T = o] glod Ag = Aefg
ol E] = 2] §] 9] builtins &] 9 A 2] & wraghyth

PyObject* PyEval_GetLocals ()
Return value: Borrowed reference. Return a dictionary of the local variables in the current execution frame, or
NULL if no frame is currently executing.

PyObject* PyEval_GetGlobals ()
Return value: Borrowed reference. Return a dictionary of the global variables in the current execution frame,
or NULL if no frame is currently executing.

PyFrameObject* PyEval_GetFrame ()
Return value: Borrowed reference. Return the current thread state’s frame, which is NULL if no frame is
currently executing.

int PyFrame_GetLineNumber (PyFrameObject *frame)
frameo] A A3 T & WIE WA Th

const char* PyEval_GetFuncName (PyObject *func)
func7Y @, Feh 2 s AT AR funcs] o) &S MBI, TR O W funce] P9 o] ES
uhEkgh o,

const char* PyEval_GetFuncDesc (PyObject *func)
func?] ol wpet v FAES v th W gl o 9wl =2 <07, 7 constructor”, ”
instance” @ ” object” 7} ZEFH T} PyEval GetFuncName ()& A&} o] o] B o] H funce] A H o]

g,

6.9 79 5549 A ¢

ok

<
T

int PyCodec_Register (PyObject *search_function)
Aze =Y 24§48 S

F=o] 9 =% Ptk
int PyCodec_KnownEncoding (const char *encoding)
AR E encodingoll th3) 558 T o] glEA ol whet1 o]0 MEFULE o] Tt FHAITY

Y.

PyObject* PyCodec_Encode (PyObject *object, const char *encoding, const char *errors)
Return value: New reference. YXF 78] 719k 91 71 APL

object is passed through the encoder function found for the given encoding using the error handling method de-
fined by errors. errors may be NULL to use the default method defined for the codec. Raises a LookupError
if no encoder can be found.

PyObject* PyCodec_Decode (PyObject *object, const char *encoding, const char *errors)
Return value: New reference. 4¥F 78] 719k] 7 APL

52 Chapter 6. €2 ¥]

The Python/C API, & x] 8] A 3.7.16

object is passed through the decoder function found for the given encoding using the error handling method de-
fined by errors. errors may be NULL to use the default method defined for the codec. Raises a LookupError
if no encoder can be found.

6.9.1 9 3] API

In the following functions, the encoding string is looked up converted to all lower-case characters, which makes
encodings looked up through this mechanism effectively case-insensitive. If no codec is found, a KeyError is set
and NULL returned.

PyObject* PyCodec_Encoder (const char *encoding)
Return value: New reference. 50 A encoding®l] 3 21 7 &4E 71A 3 Yt}

PyObject* PyCodec_Decoder (const char *encoding)
Return value: New reference. <=1 A encoding®l] tj et t] Z 1 &+& 7}A 3 Ut

PyObject* PyCodec_IncrementalEncoder (const char *encoding, const char *errors)
Return value: New reference. XA A encoding®l] ™) 8} IncrementalEncoder AR E 7}A 34Ut}

PyObject* PyCodec_IncrementalDecoder (const char *encoding, const char *errors)
Return value: New reference. XA A encoding®l] ™| 3t IncrementalDecoder AR E 743 Yt}

PyObject* PyCodec_StreamReader (const char *encoding, PyObject *stream, const char *errors)
Return value: New reference. | %3 H encoding®l] t] 3t St reamReader HE 2] &+& 7}AF Ut}

PyObject* PyCodec_StreamWriter (const char *encoding, PyObject *stream, const char *errors)
Return value: New reference. | A encoding®l] T3t St reamiiriter A E] F45 7143 YT}

6.9.2 $UTC AT ofe] 274 524 API

int PyCodec_RegisterError (const char *name, PyObject *error)
x] A= name O & oﬂ a ;‘q a ;’Hﬂ '51—_r_ errors _i-dqr,]. Fd o] olmYyst _/,: g}i\:_ _‘,‘f_x]./r,]
TRl EG S s, I e /I e E 2T nameo] error Wi 7} 2 2] A
ff o] Z’tlﬂ @?2 E%TEMD}.

Z W e 3Fr} e <9 A 2 UnicodeEncodeError, UnicodeDecodeError X =
UnlcodeTranslateErrorJ AAHAE dlolEo] =4, EA7 5= :._—7(]-1/]- Hlo]| E 9] XA
20t o] 59 YE FAFE o A9 O—M*‘Oﬂtﬂﬂﬂie 1 Ut (o] A FEo= g

Unicode Exception ObjectsS ZrZ A 2). ZM-L Fo] R o9 E WA A 7] ALt —1_.—Zﬂ 7t d= A FE A9
A et Heff EAL el A AT/ A& uw N Ao Sl 0 mAS A Bes A malele
T 3E FES Vs oF Y th

AEetd 0, ol 9 -15 vk T

PyObject* PyCodec_LookupError (const char *name)
Return value: New reference. Lookup the error handling callback function registered under name. As a special
case NULL can be passed, in which case the error handling callback for “strict” will be returned.

PyObject* PyCodec_StrictErrors (PyObject *exc)
Return value: Always NULL. excE o] 2] 2 2 A 7 U o}

PyObject* PyCodec_IgnoreErrors (PyObject *exc)

Return value: New reference. 259 J8& AVH 1, FUIZ = A E FA T}
PyObject* PyCodec_ReplaceErrors (PyObject *exc)

Return value: New reference. U I E Q1T Y o 2] & ? Y U+FFFDE X &3 th
PyObject* PyCodec_XMLCharRefReplaceErrors (PyObject *exc)

Return value: New reference. T E Q179 o & & XML B2} &2 2 X &3t}

PyObject* PyCodec_BackslashReplaceErrors (PyObject *exc)
Return value: New reference. U T E Q1T Y o 2] & WM £ A] o]2A| o] = (\x, \u W \U)Z X33t

Uk, i

»
[{e]
K
i}
ol
S
B
o
N
rjE,
i
>

53

The Python/C API, & x| B] A 3.7.16

PyObject* PyCodec_NameReplaceErrors (PyObject *exc)
Return value: New reference. S+ TE QT Y & & \N{...} o]aA o]z Z XZsh T}

WA 3.50] F7}.

54 Chapter 6. €2 ¥]

CHAPTER /

o] Ao g AA S 72 A3 F79 aXﬂ 39 (ﬂl% SOLEERAZTEEEE
AlA 2 F) shol A AR 2} 45 2 = 9, Shol 2 of 9] 7} A
PyList_New ()& TS A gk 3 o] o} & NULLO] ofyd %,%ii %@5] A k2 B AE AR L Zol, Al
o 4

2 273} 7] ek Aol o]

_|>4 F-'L
_o;
_1101'
rlo
ol

7.1 Object Protocol

PyObject* Py_NotImplemented
The Not Implemented singleton, used to signal that an operation is not implemented for the given type
combination.

Py RETURN_NOTIMPLEMENTED
Properly handle returning Py Not Implemented from within a C function (that is, increment the reference
count of NotImplemented and return it).

int PyObject_Print (PyObject *o, FILE *fp, int flags)
Print an object o, on file fp. Returns —1 on error. The flags argument is used to enable certain printing options.
The only option currently supported is Py_PRINT_RAW; if given, the st r () of the object is written instead
of the repr ().

int PyObject_HasAttr (PyObject *o, PyObject *attr_name)
Returns 1 if o has the attribute attr_name, and 0 otherwise. This is equivalent to the Python expression
hasattr (o, attr_name). This function always succeeds.

Note that exceptions which occur while calling __getattr__ () and __getattribute__ () methods
will get suppressed. To get error reporting use PyObject_GetAttr () instead.

int PyObject_HasAttrString (PyObject *o, const char *attr_name)
Returns 1 if o has the attribute attr_name, and 0 otherwise. This is equivalent to the Python expression
hasattr (o, attr_name). This function always succeeds.

Note that exceptions which occur while calling _ getattr__ () and __getattribute__ ()
methods and creating a temporary string object will get suppressed. To get error reporting use
PyObject_GetAttrString () instead.

PyObject* PyObject_GetAttr (PyObject *o, PyObject *attr_name)
Return value: New reference. Retrieve an attribute named attr_name from object o. Returns the attribute value
on success, or NULL on failure. This is the equivalent of the Python expression o.attr_name.

55

The Python/C API, & x| B] A 3.7.16

PyObject* PyObject_GetAttrString (PyObject *o, const char *attr_name)
Return value: New reference. Retrieve an attribute named attr_name from object 0. Returns the attribute value
on success, or NULL on failure. This is the equivalent of the Python expression o.attr_name.

PyObject* PyObject_GenericGetAttr (PyObject *o, PyObject *name)
Return value: New reference. Generic attribute getter function that is meant to be put into a type object’s
tp_getattro slot. It looks for a descriptor in the dictionary of classes in the object’s MRO as well as an
attribute in the object’s __dict___ (if present). As outlined in descriptors, data descriptors take preference
over instance attributes, while non-data descriptors don’t. Otherwise, an AttributeError is raised.

int PyObject_SetAttr (PyObject *o, PyObject *attr_name, PyObject *v)
Set the value of the attribute named attr_name, for object o, to the value v. Raise an exception and return —1
on failure; return 0 on success. This is the equivalent of the Python statement o.attr_name = wv.

If v is NULL, the attribute is deleted, however this feature is deprecated in favour of using
PyObject_DelAttr().

int PyObject_SetAttrString (PyObject *o, const char *attr_name, PyObject *v)
Set the value of the attribute named attr_name, for object o, to the value v. Raise an exception and return —1
on failure; return O on success. This is the equivalent of the Python statement 0. attr_name = wv.

If v is NULL, the attribute is deleted, however this feature is deprecated in favour of using
PyObject_DelAttrString().

int PyObject_GenericSetAttr (PyObject *o, PyObject *name, PyObject *value)
Generic attribute setter and deleter function that is meant to be put into a type object’s tp_setattro slot.
It looks for a data descriptor in the dictionary of classes in the object’s MRO, and if found it takes preference
over setting or deleting the attribute in the instance dictionary. Otherwise, the attribute is set or deleted in the
object’s __dict___ (if present). On success, O is returned, otherwise an AttributeError is raised and
-1 is returned.

int PyObject_DelAttr (PyObject *o, PyObject *attr_name)
Delete attribute named attr_name, for object o. Returns —1 on failure. This is the equivalent of the Python
statement del o.attr_name.

int PyObject_DelAttrString (PyObject *o, const char *attr_name)
Delete attribute named attr_name, for object 0. Returns —1 on failure. This is the equivalent of the Python
statement del o.attr_name.

PyObject* PyObject_GenericGetDict (PyObject *o, void *context)
Return value: New reference. A generic implementation for the getter of a ___dict___ descriptor. It creates
the dictionary if necessary.

WA 3300 27}

int PyObject_GenericSetDict (PyObject *o, PyObject *value, void *context)
A generic implementation for the setter of a ___dict__ descriptor. This implementation does not allow the
dictionary to be deleted.

WA 330 7}

PyObject* PyObject_RichCompare (PyObject *ol, PyObject *02, int opid)
Return value: New reference. Compare the values of o/ and 02 using the operation specified by opid, which
must be one of Py_LT, Py_LE, Py_EQ, Py_NE, Py_GT, or Py_GE, corresponding to <, <=, ==, |= >,
or >= respectively. This is the equivalent of the Python expression o1 op 02, where op is the operator
corresponding to opid. Returns the value of the comparison on success, or NULL on failure.

int PyObject_RichCompareBool (PyObject *ol, PyObject *02, int opid)
Compare the values of 0] and o2 using the operation specified by opid, which must be one of Py_LT, Py_LE,
Py_EQ, Py_NE, Py_GT, or Py_GE, corresponding to <, <=, ==, ! =, >, or >= respectively. Returns —1 on
error, O if the result is false, 1 otherwise. This is the equivalent of the Python expression o1 op o2, where
op is the operator corresponding to opid.

56 Chapter 7. 3% 214 Al

ol

The Python/C API, & x] 8] A 3.7.16

ZF31: If ol and 02 are the same object, PyObject_RichCompareBool () will always return 1 for Py_EQ
and 0 for Py_NE.

PyObject* PyObject_Repr (PyObject *0)
Return value: New reference. Compute a string representation of object o. Returns the string representation on
success, NULL on failure. This is the equivalent of the Python expression repr (o). Called by the repr ()
built-in function.

W A 3.4f| A ¥ 7 : This function now includes a debug assertion to help ensure that it does not silently discard
an active exception.

PyObject* PyObject_ASCII (PyObject *0)
Return value: New reference. As PyObject_Repr (), compute a string representation of object o, but
escape the non-ASCII characters in the string returned by PyOb ject_Repr () with \x, \u or \U escapes.
This generates a string similar to that returned by PyObject_Repr () in Python 2. Called by the ascii ()
built-in function.

PyObject* PyObject_Str (PyObject *0)
Return value: New reference. Compute a string representation of object 0. Returns the string representation
on success, NULL on failure. This is the equivalent of the Python expression str (o). Called by the str ()
built-in function and, therefore, by the print () function.

W A 3.40] 4 ¥ 7 : This function now includes a debug assertion to help ensure that it does not silently discard
an active exception.

PyObject* PyObject_Bytes (PyObject *o)
Return value: New reference. Compute a bytes representation of object 0. NULL is returned on failure and
a bytes object on success. This is equivalent to the Python expression bytes (o), when o is not an integer.
Unlike bytes (o), a TypeError is raised when o is an integer instead of a zero-initialized bytes object.

int PyObject_IsSubclass (PyObject *derived, PyObject *cls)
Return 1 if the class derived is identical to or derived from the class cls, otherwise return 0. In case of an error,
return —1.

If cls is a tuple, the check will be done against every entry in cls. The result will be 1 when at least one of the
checks returns 1, otherwise it will be 0.

If clshasa__ _subclasscheck__ () method, it will be called to determine the subclass status as described
in PEP 3119. Otherwise, derived is a subclass of cls if it is a direct or indirect subclass, i.e. contained in
cls.__mro_

Normally only class objects, i.e. instances of t ype or a derived class, are considered classes. However, objects
can override this by havinga __bases___ attribute (which must be a tuple of base classes).

int PyObject_IsInstance (PyObject *inst, PyObject *cls)
Return 1 if inst is an instance of the class cls or a subclass of cls, or 0 if not. On error, returns —1 and sets an
exception.

If cls is a tuple, the check will be done against every entry in cls. The result will be 1 when at least one of the
checks returns 1, otherwise it will be 0.

If clshasa___instancecheck__ () method, it will be called to determine the subclass status as described
in PEP 3119. Otherwise, inst is an instance of cls if its class is a subclass of cls.

An instance inst can override what is considered its class by havinga __class___ attribute.

An object cls can override if it is considered a class, and what its base classes are, by having a __bases___
attribute (which must be a tuple of base classes).

int PyCallable_Check (PyObject *0)
Determine if the object o is callable. Return 1 if the object is callable and 0 otherwise. This function always
succeeds.

7.1. Object Protocol 57

https://www.python.org/dev/peps/pep-3119
https://www.python.org/dev/peps/pep-3119

The Python/C API, & x| B] A 3.7.16

PyObject* PyObject_Call (PyObject *callable, PyObject *args, PyObject *kwargs)
Return value: New reference. Call a callable Python object callable, with arguments given by the tuple args,
and named arguments given by the dictionary kwargs.

args must not be NULL, use an empty tuple if no arguments are needed. If no named arguments are needed,
kwargs can be NULL.

Return the result of the call on success, or raise an exception and return NULL on failure.
This is the equivalent of the Python expression: callable (*args, **kwargs).

PyObject* PyObject_CallObject (PyObject *callable, PyObject *args)
Return value: New reference. Call a callable Python object callable, with arguments given by the tuple args. If
no arguments are needed, then args can be NULL.

Return the result of the call on success, or raise an exception and return NULL on failure.
This is the equivalent of the Python expression: callable (*args).

PyObject* PyObject_CallFunction (PyObject *callable, const char *format, ...)
Return value: New reference. Call a callable Python object callable, with a variable number of C arguments.
The C arguments are described using a Py_BuildValue () style format string. The format can be NULL,
indicating that no arguments are provided.

Return the result of the call on success, or raise an exception and return NULL on failure.
This is the equivalent of the Python expression: callable (*args).

Note that if you only pass PyObject *args, PyObject_CallFunctionObjArgs () is a faster alter-
native.

WA 3.4 4 ¥ 7 : The type of format was changed from char *.

PyObject* PyObject_CallMethod (PyObject *obj, const char *name, const char *format, ...)
Return value: New reference. Call the method named name of object obj with a variable number of C arguments.
The C arguments are described by a Py BuildValue () format string that should produce a tuple.

The format can be NULL, indicating that no arguments are provided.
Return the result of the call on success, or raise an exception and return NULL on failure.
This is the equivalent of the Python expression: obJj.name (argl, arg2, ...).

Note that if you only pass PyObject *args, PyObject_CallMethodObjArgs () is a faster alterna-
tive.

W A 3.4 A ¥ 7 : The types of name and format were changed from char *.

PyObject* PyObject_CallFunctionObjArgs (PyObject *callable, ..., NULL)
Return value: New reference. Call a callable Python object callable, with a variable number of PyOb ject *
arguments. The arguments are provided as a variable number of parameters followed by NULL.

Return the result of the call on success, or raise an exception and return NULL on failure.
This is the equivalent of the Python expression: callable (argl, arg2, ...).

PyObject* PyObject_CallMethodObjArgs (PyObject *obj, PyObject *name, ..., NULL)
Return value: New reference. Calls a method of the Python object obj, where the name of the method is given as
a Python string object in name. It is called with a variable number of PyOb ject * arguments. The arguments
are provided as a variable number of parameters followed by NULL.

Return the result of the call on success, or raise an exception and return NULL on failure.

Py_hash_t PyObject_Hash (PyObject *0)
Compute and return the hash value of an object 0. On failure, return —1. This is the equivalent of the Python
expression hash (o) .

W A 3.20]| A ¥ 7 : The return type is now Py_hash_t. This is a signed integer the same size as Py_ssize_t.

58 Chapter 7. 34 A A=

The Python/C API, & x] 8] A 3.7.16

Py_hash_t PyObject_HashNot Implemented (PyObject *o0)
Set a TypeError indicating that type (o) is not hashable and return —1. This function receives special
treatment when stored in a tp_hash slot, allowing a type to explicitly indicate to the interpreter that it is not
hashable.

int PyObject_IsTrue (PyObject *0)
Returns 1 if the object o is considered to be true, and 0 otherwise. This is equivalent to the Python expression
not not o. On failure, return —1.

int PyObject_Not (PyObject *o)
Returns 0 if the object o is considered to be true, and 1 otherwise. This is equivalent to the Python expression
not o. On failure, return —1.

PyObject* PyObject_Type (PyObject *o)
Return value: New reference. When o is non-NULL, returns a type object corresponding to the object type
of object 0. On failure, raises SystemError and returns NULL. This is equivalent to the Python expres-
sion type (o). This function increments the reference count of the return value. There’s really no rea-
son to use this function instead of the common expression o—>ob_type, which returns a pointer of type
PyTypeObject *, except when the incremented reference count is needed.

int PyObject_TypeCheck (PyObject *o, PyTypeObject *type)
Return true if the object o is of type type or a subtype of fype. Both parameters must be non-NULL.

Py_ssize_t PyObject_Size (PyObject *o)

Py_ssize_t PyObject_Length (PyObject *o)
Return the length of object o. If the object o provides either the sequence and mapping protocols, the sequence
length is returned. On error, —1 is returned. This is the equivalent to the Python expression 1en (o).

Py_ssize_t PyObject_LengthHint (PyObject *o, Py_ssize_t default)
Return an estimated length for the object o. First try to return its actual length, then an estimate using
__length_hint__ (), and finally return the default value. On error return —1. This is the equivalent
to the Python expression operator.length_hint (o, default).

WA 3.40] =7}

PyObject* PyObject_GetItem (PyObject *o, PyObject *key)
Return value: New reference. Return element of o corresponding to the object key or NULL on failure. This is
the equivalent of the Python expression o [key].

int PyObject_SetItem (PyObject *o, PyObject *key, PyObject *v)
Map the object key to the value v. Raise an exception and return —1 on failure; return 0 on success. This is
the equivalent of the Python statement o [key] = wv.

int PyObject_DelItem (PyObject *o, PyObject *key)
Remove the mapping for the object key from the object 0. Return —1 on failure. This is equivalent to the
Python statement del o[key].

PyObject* PyObject_Dir (PyObject *0)
Return value: New reference. This is equivalent to the Python expression dir (o), returning a (possibly empty)
list of strings appropriate for the object argument, or NULL if there was an error. If the argument is NULL,
this is like the Python dir (), returning the names of the current locals; in this case, if no execution frame is
active then NULL is returned but PyErr_Occurred () will return false.

PyObject* PyObject_GetIter (PyObject *0)
Return value: New reference. This is equivalent to the Python expression iter (o). It returns a new iterator
for the object argument, or the object itself if the object is already an iterator. Raises TypeError and returns
NULL if the object cannot be iterated.

7.1. Object Protocol 59

The Python/C API, & x| B] A 3.7.16

72 A Z2EF

int PyNumber_Check (PyObject *0)
A7l 07t 7 ZREZS AFEA 12 MBI, 18A FoW AR BFFYh o] FHE
34 43T h

PyObject* PyNumber_Add (PyObject *ol, PyObject *02)
Return value: New reference. Returns the result of adding o/ and 02, or NULL on failure. This is the equivalent
of the Python expression o1 + o02.

PyObject* PyNumber_Subtract (PyObject *ol, PyObject *02)
Return value: New reference. Returns the result of subtracting 02 from ol, or NULL on failure. This is the
equivalent of the Python expression o1 — o2.

PyObject* PyNumber_Multiply (PyObject *ol, PyObject *02)
Return value: New reference. Returns the result of multiplying o/ and 02, or NULL on failure. This is the
equivalent of the Python expression o1 * o02.

PyObject* PyNumber_MatrixMultiply (PyObject *ol, PyObject *02)
Return value: New reference. Returns the result of matrix multiplication on ol and 02, or NULL on failure.
This is the equivalent of the Python expression o1 @ o2.

B A 3.50] &7}

PyObject* PyNumber_FloorDivide (PyObject *ol, PyObject *02)
Return value: New reference. Return the floor of ol divided by 02, or NULL on failure. This is equivalent to
the “classic” division of integers.

PyObject* PyNumber_TrueDivide (PyObject *ol, PyObject *02)
Return value: New reference. Return a reasonable approximation for the mathematical value of o/ divided
by 02, or NULL on failure. The return value is “approximate” because binary floating point numbers are
approximate; it is not possible to represent all real numbers in base two. This function can return a floating
point value when passed two integers.

PyObject* PyNumber_Remainder (PyObject *ol, PyObject *02)
Return value: New reference. Returns the remainder of dividing o/ by 02, or NULL on failure. This is the
equivalent of the Python expression o1 % o2.

PyObject* PyNumber_Divmod (PyObject *ol, PyObject *02)
Return value: New reference. See the built-in function divmod (). Returns NULL on failure. This is the
equivalent of the Python expression divmod (ol, 02).

PyObject* PyNumber_Power (PyObject *ol, PyObject *02, PyObject *03)
Return value: New reference. See the built-in function pow () . Returns NULL on failure. This is the equivalent
of the Python expression pow (01, 02, 03), where 03 is optional. If 03 is to be ignored, pass Py_None
in its place (passing NULL for o3 would cause an illegal memory access).

PyObject* PyNumber_Negative (PyObject *0)
Return value: New reference. Returns the negation of o on success, or NULL on failure. This is the equivalent
of the Python expression —o.

PyObject* PyNumber_Positive (PyObject *o)
Return value: New reference. Returns o on success, or NULL on failure. This is the equivalent of the Python
expression +o.

PyObject* PyNumber_Absolute (PyObject *0)
Return value: New reference. Returns the absolute value of o, or NULL on failure. This is the equivalent of the
Python expression abs (o) .

PyObject* PyNumber_Invert (PyObject *0)

Return value: New reference. Returns the bitwise negation of o on success, or NULL on failure. This is the
equivalent of the Python expression ~o.

60 Chapter 7. 34 A A=

The Python/C API, & x] 8] A 3.7.16

PyObject* PyNumber_Lshift (PyObject *ol, PyObject *02)
Return value: New reference. Returns the result of left shifting o/ by 02 on success, or NULL on failure. This
is the equivalent of the Python expression 01 << 02.

PyObject* PyNumber_Rshift (PyObject *ol, PyObject *02)
Return value: New reference. Returns the result of right shifting o/ by 02 on success, or NULL on failure. This
is the equivalent of the Python expression o1 >> o02.

PyObject* PyNumber_And (PyObject *ol, PyObject *02)
Return value: New reference. Returns the “bitwise and” of o/ and 02 on success and NULL on failure. This is
the equivalent of the Python expression o1 & o2.

PyObject* PyNumber_Xor (PyObject *ol, PyObject *02)
Return value: New reference. Returns the “bitwise exclusive or” of ol by 02 on success, or NULL on failure.
This is the equivalent of the Python expression o1 ~ o2.

PyObject* PyNumber_Or (PyObject *ol, PyObject *02)
Return value: New reference. Returns the “bitwise or” of ol and 02 on success, or NULL on failure. This is the
equivalent of the Python expression o1 | o2.

PyObject* PyNumber_InPlaceAdd (PyObject *ol, PyObject *02)
Return value: New reference. Returns the result of adding ol and o2, or NULL on failure. The operation is
done in-place when ol supports it. This is the equivalent of the Python statement 01 += 02.

PyObject* PyNumber_InPlaceSubtract (PyObject *ol, PyObject *02)
Return value: New reference. Returns the result of subtracting 02 from o/, or NULL on failure. The operation
is done in-place when ol supports it. This is the equivalent of the Python statement 01 -= 02.

PyObject* PyNumber_InPlaceMultiply (PyObject *ol, PyObject *02)
Return value: New reference. Returns the result of multiplying o/ and 02, or NULL on failure. The operation
is done in-place when ol supports it. This is the equivalent of the Python statement 01 *= o02.

PyObject* PyNumber_InPlaceMatrixMultiply (PyObject *ol, PyObject *02)
Return value: New reference. Returns the result of matrix multiplication on o/ and 02, or NULL on failure. The
operation is done in-place when ol supports it. This is the equivalent of the Python statement o1 @= o2.

B A 3.50] &7}

PyObject* PyNumber_InPlaceFloorDivide (PyObject *ol, PyObject *02)
Return value: New reference. Returns the mathematical floor of dividing o/ by 02, or NULL on failure. The
operation is done in-place when ol supports it. This is the equivalent of the Python statement o1 //= 02.

PyObject* PyNumber_InPlaceTrueDivide (PyObject *ol, PyObject *02)
Return value: New reference. Return a reasonable approximation for the mathematical value of o/ divided
by 02, or NULL on failure. The return value is “approximate” because binary floating point numbers are
approximate; it is not possible to represent all real numbers in base two. This function can return a floating
point value when passed two integers. The operation is done in-place when ol supports it.

PyObject* PyNumber_InPlaceRemainder (PyObject *ol, PyObject *02)
Return value: New reference. Returns the remainder of dividing o/ by 02, or NULL on failure. The operation
is done in-place when ol supports it. This is the equivalent of the Python statement 01 %= 02.

PyObject* PyNumber_InPlacePower (PyObject *ol, PyObject *02, PyObject *03)
Return value: New reference. See the built-in function pow (). Returns NULL on failure. The operation is
done in-place when ol supports it. This is the equivalent of the Python statement 01 **= o2 when 03 is
Py_None, or an in-place variant of pow (01, 02, 03) otherwise. If 03 is to be ignored, pass Py_None
in its place (passing NULL for o3 would cause an illegal memory access).

PyObject* PyNumber_InPlaceLshift (PyObject *ol, PyObject *02)
Return value: New reference. Returns the result of left shifting o/ by 02 on success, or NULL on failure. The
operation is done in-place when ol supports it. This is the equivalent of the Python statement 01 <<= 02.

PyObject* PyNumber_InPlaceRshift (PyObject *ol, PyObject *02)
Return value: New reference. Returns the result of right shifting o/ by 02 on success, or NULL on failure. The
operation is done in-place when ol supports it. This is the equivalent of the Python statement 01 >>= 02.

72. A =Z2EEZ 61

The Python/C API, & x| B] A 3.7.16

PyObject* PyNumber_InPlaceAnd (PyObject *ol, PyObject *02)
Return value: New reference. Returns the “bitwise and” of o/ and 02 on success and NULL on failure. The
operation is done in-place when ol supports it. This is the equivalent of the Python statement o1 &= o02.

PyObject* PyNumber_InPlaceXor (PyObject *ol, PyObject *02)
Return value: New reference. Returns the “bitwise exclusive or” of ol by 02 on success, or NULL on failure.
The operation is done in-place when ol supports it. This is the equivalent of the Python statement 01 "= o02.

PyObject* PyNumber_InPlaceOr (PyObject *ol, PyObject *02)
Return value: New reference. Returns the “bitwise or” of ol and 02 on success, or NULL on failure. The
operation is done in-place when ol supports it. This is the equivalent of the Python statement 01 |= o02.

PyObject* PyNumber_Long (PyObject *0)
Return value: New reference. Returns the o converted to an integer object on success, or NULL on failure. This
is the equivalent of the Python expression int (o).

PyObject* PyNumber_Float (PyObject *o)
Return value: New reference. Returns the o converted to a float object on success, or NULL on failure. This is
the equivalent of the Python expression f1oat (o).

PyObject* PyNumber_Index (PyObject *0)
Return value: New reference. Returns the o converted to a Python int on success or NULL with a TypeError
exception raised on failure.

PyObject* PyNumber_ToBase (PyObject *n, int base)
Return value: New reference. 3 ng& A bases /\]——9—*1] X W33 Z21d g vrsk ety o) base QA=
2,8, 10 == 16F sfifofof gyt 42,8 == 169 -7, whehd FALL '0p', '00' EE
'0x 'Y A FAAE 22 ool B U T nol J‘r°] R int7} oF U, A pyNumber_Index ()&
LiRIe=AR =

Py_ssize_t PyNumber_AsSsize_t (PyObject *o, PyObject *exc)
o7t A4 2 A 5 9108, 0% Py_ssize_t GhOE WFso] WA Th BZ 0] A 3w, 9] 7}
¥R sk -1 0] WEkE Ut

If o can be converted to a Python int but the attempt to convert to a Py_ssize_t value would raise an
OverflowError, then the exc argument is the type of exception that will be raised (usually IndexError
or OverflowError). If exc is NULL, then the exception is cleared and the value is clipped to
PY_SSIZE_T_MIN for a negative integer or PY_SSIZE_T_MAX for a positive integer.

int PyIndex_Check (PyObject *0)
o7} A ¥l A4 (tp_as_number 72 2] nb_index €5 0] YA dF5Uthd 1S vkskst, 18 %]
FoW oS WY Th o] e A AFdTh

73 A2 =Z2EZ

int PySequence_Check (P\Object *0)
AN AN DL 22 EES AFsH 1Z Whgbstal, 13 4] ¢k o 02 vhekehy o} _getitem ()
WA =7} glE sfo) il 2 el 28] 7% dice A ZelAs obd B 18 Waksle Ao el L.,
Aoz o Gof 72 A ASHA BET 5 ¢/ WL AU o Bt F4 S h

Py_ssize_t PySequence_Size (PyObject *o)

Py_ssize_t PySequence_Length (PyObject *o)
HF A ARz 0o AR 58 wHEe L, o) S 18 MG o] AL
ot F5dYTh

PyObject* PySequence_Concat (PyObject *ol, PyObject *02)
Return value: New reference. Return the concatenation of o/ and 02 on success, and NULL on failure. This is
the equivalent of the Python expression o1 + o02.

1)

ol 34 len (o)

PyObject* PySequence_Repeat (PyObject *o, Py_ssize_t count)
Return value: New reference. Return the result of repeating sequence object o count times, or NULL on failure.
This is the equivalent of the Python expression o * count.

62 Chapter 7. 34 A A=

The Python/C API, & x] 8] A 3.7.16

PyObject* PySequence_InPlaceConcat (PyObject *ol, PyObject *02)
Return value: New reference. Return the concatenation of o/ and 02 on success, and NULL on failure. The
operation is done in-place when ol supports it. This is the equivalent of the Python expression o1 += o02.

PyObject* PySequence_InPlaceRepeat (PyObject *o, Py_ssize_t count)
Return value: New reference. Return the result of repeating sequence object o count times, or NULL on failure.
The operation is done in-place when o supports it. This is the equivalent of the Python expression o *=
count.

PyObject* PySequence_GetItem (PyObject *o, Py_ssize_t i)
Return value: New reference. Return the ith element of o, or NULL on failure. This is the equivalent of the
Python expression o [1].

PyObject* PySequence_GetSlice (PyObject *o, Py_ssize_til, Py_ssize_ti2)
Return value: New reference. Return the slice of sequence object o between i/ and i2, or NULL on failure. This
is the equivalent of the Python expression o [11:12].

int PySequence_SetItem (PyObject *o, Py_ssize_t i, PyObject *v)
A3l vE oS A Lol YT ARG AN E B2 18 WS
0% BTG o] AL Tol W BFol1] - ve S UL o] B vol
ek Th
RE =]

If v is NULL, the element is deleted, however this feature is deprecated in favour of using
PySequence_DelIltem().

119_,

q
i

N
i ox

ot of4

2 o
XN g

e

int PySequence_DelItem (PyObject *o, Py_ssize_ti)
o AA i BA L4 AAFUTH Ao sHE 12 WHFU T o] AL shol A B4 del o[1] 9
FsdUTh

int PySequence_SetSlice (PyObject *o, Py_ssize_t il, Py_ssize_t i2, PyObject *v)
ARz AA vE AL AR 09] i1 A 2 Aole] Zebol o] B Y FUTh o AL Sho] A B
o[il:i2] = v&FSPUTH

int PySequence_DelSlice (PyObject *o, Py_ssize_t il, Py_ssize_ti2)
A2 A 02 il A i2 o] o] Zeho] 22 AAFU T AhFHH ~1-& WBF U o] 2L ol
T del of[il:iz2] et ES Y

Py_ssize_| thSequence Count (PyObject *o, PyObject *value)
00l A= value?] & WYL F, olkey] == valued WE3= keyd 5 kgt A
) O]"?i 1< ‘ﬂ’:?j_‘i]’b] t}h o] A2 tol AW £ 4] o.count (value) 2 55 Y 1‘/}

int PySequence_Contains (PyObject *o, PyObject *value)
ol value7t Q=7 EAFUTE 08 F5 F 5t 7 valuet 20 15 WHbstal, 2197 oW 0

QH I o e] A 18 I ol 5ol 4 84 vaive in oSt B g

Py_ssize_t PySequence_Index (PyObject *o, PyObject *value)
o[i] == values WHste A HA ddx i WA YT o F A -1 &gyt o] A
gto]HW ZHA 0. index (value) & =5 ?}\4 c}.

PyObject* PySequence_List (PyObject *0)
Return value: New reference. Return a list object with the same contents as the sequence or iterable o, or NULL
on failure. The returned list is guaranteed to be new. This is equivalent to the Python expression 1ist (o).

rlo

PyObject* PySequence_Tuple (PyObject *o)
Return value: New reference. Return a tuple object with the same contents as the sequence or iterable o, or
NULL on failure. If o is a tuple, a new reference will be returned, otherwise a tuple will be constructed with
the appropriate contents. This is equivalent to the Python expression tuple (o).

PyObject* PySequence_Fast (PyObject *o, const char *m)
Return value: New reference. Return the sequence or iterable o as an object usable by the other
PySequence_Fast* family of functions. If the object is not a sequence or iterable, raises TypeError
with m as the message text. Returns NULL on failure.

The PySequence_Fast* functions are thus named because they assume o is a PyTupleObject or a
PyListObject and access the data fields of o directly.

73. NP2 ZREF 63

The Python/C API, & x| B] A 3.7.16

As a CPython implementation detail, if o is already a sequence or list, it will be returned.

Py_ssize_t PySequence_Fast_GET_SIZE (PyObject *0)
Returns the length of 0, assuming that o was returned by Py Sequence_Fast () and that ois not NULL. The

size can also be gotten by calling PySequence_Size () ono, but PySequence_Fast_GET_SIZE()
is faster because it can assume o is a list or tuple.

PyObject* PySequence_Fast_GET_ITEM (PyObject *o, Py_ssize_t i)

Return value: Borrowed reference. Return the ith element of o, assuming that o was returned by
PySequence_Fast (), o0is not NULL, and that i is within bounds.

PyObject** PySequence_Fast__ITEMS (PyObject *0)

Return the underlying array of PyObject pointers. Assumes that o was returned by Py Sequence_Fast ()
and o is not NULL.

l2EL] 77 HAEY, Aol F5 M dS AL 5 Aol 7 st Al L. ek, Al
27l A 5 Qe BAGIA T S D EAEE AFETAIAL

PyObject* PySequence_ITEM (PyObject *o, Py_ssize_t i)
Return value: New reference. Return the ith element of o or NULL on failure. Faster form of

PySequence_GetItem() but without checking that PySequence_Check () on o is true and with-
out adjustment for negative indices.

74 |3 =2 ST

PyObject_GetItem(), PyObject_SetItem() W PyObject_Delltem()E ZFZIAA L.
int PyMapping_Check (PyObject *0)
Return 1 if the object provides mapping protocol or supports slicing, and 0 otherwise. Note that it returns 1

for Python classes witha ___getitem__ () method since in general case it is impossible to determine what

type of keys it supports. This function always succeeds.
Py_ssize_t PyMapping_Size (PyObject *0)
Py_ssize_t PyMapping_Length (PyObject *0)
43 A A 09 7] $8 NASIL, A 5HE 1.2 VAU Th o] Tho] 4 HAA
oy,
PyObject* PyMapping_GetItemString (PyObject *o, const char *key)
Return value: New reference. Return element of o corresponding to the string key or NULL on failure. This is
the equivalent of the Python expression o [key]. See also PyObject_GetItem().

int PyMapping_SetItemString (PyObject *o, const char *key, PyObject *v)

AA ool A ZAE keyE g vell visg gyt Asfstd -1 vy th o] A2 hold 7 o [key]

= v} =SSt Pyobject_SetTtem ()& JFRIAA L.

int PyMapping_DelItem (PyObject *o, PyObject *key)

7“111 ool A AAA keyoll th 3t vl sg-2 Al Adu ek Asfstd -1& >} o] A2 shol 4 del

o
1<
olkeyl S} 553 th o] AL Pyobject_Delltem ()] B3 YJUth

int PyMapping_DelItemString (PyObject *o, const char *key)
A 0o A EAHE keyoll Th3t W3 A ATk AHSHE -1 wBF T o] 2L o] A
del olkeyl$t &5 FYrh

int PyMapping_HasKey (PyObje(t *0, PyObject *key)

w38 AR ol key 7] 7 Q10T 18 WHEHSLTL, A A ¢ro T 02 WY T o] vho] A R @A
in o2 TS5t} o] & d/\ = apw Az}

__getitem_ () INEE T8k LA o8& ARl F Al 2. o] B
wo gl W Al Pyobject_GetTtem() S AHEEA AL

int PyMapping_HasKeyString (PyObject *o, const char *key)
33 AR o key 7] 7} YO 1L WSt a, 22 o 02 wHEHEH T}, o] = Tho] A
in o8 FFdULh o] T FF AT

64 Chapter 7. 34 A A=

The Python/C API, & x] 8] A 3.7.16

__getitem_ () MIAEE &5t YA ZAE AAE == S IS o= ARl
FIFAAA L. oY B E o e U4l PyMapping GetItemString ()= AFE3HIAlL.
PyObject* PyMapping_Keys (PyObject *o)
Return value: New reference. On success, return a list of the keys in object 0. On failure, return NULL.
WA 3TN WA o Aol Pt P AEL FES RBAS U
PyObject* PyMapping_Values (PyObject *o)
Return value: New reference. On success, return a list of the values in object 0. On failure, return NULL.
WA 37004 M o] Aol 7t P aEY FES HEAS U

PyObject* PyMapping_Items (PyObject *0)
Return value: New reference. On success, return a list of the items in object o, where each item is a tuple
containing a key-value pair. On failure, return NULL.

B8 37004 M o Al BT} I AE L FES WY

L)

e,

7.5 olElgo|E)l =2 &

L REEBEERT MR RS, SR Es i
int PyIter_Check (PyObject *0)
A o7} olEH olE] ZREFS AP IS ST
PyObject* PyIter_Next (PyObject *o)
Return value: New reference. Return the next value from the iteration o. The object must be an iterator (it is up

to the caller to check this). If there are no remaining values, returns NULL with no exception set. If an error
occurs while retrieving the item, returns NULL and passes along the exception.

oJE e o5 E o] B o] =5t £ 2T A4 3}e W, C DEL o] @ 402 5 ofof Fulh:

PyObject *iterator = PyObject_GetIter (obj);
PyObject *item;

if (iterator == NULL) {
/* propagate error */

}

while ((item = PyIter_Next (iterator))) {
/* do something with item */

/* release reference when done */
Py_DECREF (item) ;
I3

Py_DECREF (iterator);

if (PyErr_Occurred()) {
/* propagate error */
¥
else {
/* continue doing useful work */

}

7.5. olE]yolel =2 EE 65

The Python/C API, & x| B] A 3.7.16

76 Hy| =2 & F

o] oA AR T 4 Qe oW A= st v R v d Ee W H o] g AAMAE ok o] et
AA o= W bytes & bytearray, L8 1 array.array?} 22 45 335 o] 3 Yt} Al 4A}
gtol B ou| 2] A A A3 2 54T SR A B YT A5 Th
o) e1% B 2kt 152)7k AT, (oFuh) 2 v gl wH o) <)o) LA = BEY HAE FR
Futh ¥ FFollA = T3 BAFglol AF W o]l A 26k= Aol vhE A o
ol HECaEoA M3 22 EZ FA o= oI Ve AFTHULH o] ZR2EZ o= F 7HA SH
AsUHH:

o AL Zo A=, P ol “H T JEF o] WHEE & gl 2 F o AA7L S v H o HHE

L& 4 JA Tt o] Q¥ o) A= Buffer Object Structures B A 248 FH Ut}
o U] R} SO A=, AA 9 AA] S dl o] Bl thEF £RAEE A7) S8l of 2] A WS AHEE
AFUTH (A& S0l WA= v 7] "),

bytes #tbytearray®t 22 e A= sHE HHE vl E A F P4 o g =23 Th thE FEH =
7}5EUtT) o8 S9], array.arrayel] 95 &5 = 94X HE] blolE Zho]l € 4 S5y Th
W AEH o] 22 ARA o= 3FY AR write () WAZ=JUT: W AEHJAE T3 €A
ol ES W H Y ¢ e BE AAls 3ol 7152 + A5yt write () 7 AEE AA & Y7 8ol
ek ¢} 7] A-§ HAAM 2w 2 SHAI T, readinto () 2F 22 ThE HIAEE AAFS] Yol 227] AA| 27}
2Rtk wH AdE s olas AA7E ¢ 7]-22719F 97 AE WHE AHA R §{ot AL ARD
U= E Fyth
H 3 Q1B o] 298] 2n|A7F A AA ol s W3 E 2= W ol F 7HA7F syt

e SHlE 7| M4 E PyObject_GetBuffer ()& TE&3 Ut

o yF, wr Tl s* 34 FT 2 S AR B Pyarg ParseTuple ()(EE 1 HA & hh S

T M7 s AR5HA oW PyBuffer Release ()& &3 oF Uttt 227 31X
S 2AZ RS+ ST

th2 A9 uhe] v el o] B S sl Z2 a7 vlo] Al =Bt
£ (zero-copy) Z2hel A M AUZOZ AT 5 Y& Th W=

B[l
o
>

], 4ol 9] tlolE & FtolH 2ol A ol A 2T 5 A5
CHEREECERZY] 2 AT I = JoH, & AA golBy ez AL 7] dofl 23F317] 9
= JE] B ¢l v 2] (in-memory) FA 0 & F23}F to]HE AGst=rt

%

30
K
=
B

==

e L)
o

fr o
N
©
Lo
2 (.

o] o] B g3} 2o, W3 pyopect EAE 7} oh2 B
A B3 B AR S glruinh M sE s duk st e

ek

28 > Lapo
ofo >

A B8 (exporting) 241 & 24 3hs 2ghek A -2] 5] A F2AE BRI L. W

i
it

dozd,

Py _buffer
void *buf
Ho o o) 7 =8 29 A2 7] 7] A H. o] A2 A5 A} (exporter) &
st EE|A Ry E5 W RE XY ¢ AdsUth ol & 501, 59 stridesE AHE3HH
ol W x =782

y
g
SEREE

66 Chapter 7. 34 A A=

The Python/C API, & x] 8] A 3.7.16

void *obj
A new reference to the exporting object. The reference is owned by the consumer and automatically
decremented and set to NULL by PyBuffer Release (). The field is the equivalent of the return
value of any standard C-API function.

As a special case, for femporary buffers that are wrapped by PyMemoryView FromBuffer () or
PyBuffer FillInfo () this field is NULL. In general, exporting objects MUST NOT use this
scheme.

Py_ssize_t 1en

product(hape) * itemsize. &KW EY A, HF R E59 ZojdUrh EAL
gl A, dS xdoE BEAMEGY =83 A7 2 A 2 2 0]?4 =

((char *)buf) [0] 9lA] ((char *)buf) [len-1] HHALY AM2rEs AHEAHS B3
SAHZ M7 FEE Aot FEE YUY tREE ol 8 HS PyBUF_SIMPLE B+

PyBUF_WRITABLE$} U Th

int readonly
#317} 917] A8 A4S ehls BA 79U o] BEE pyEUr HRITABLE E2)1E Ao}
SIS
H

Py_ssize_t itemsize
Item size in bytes of a single element. Same as the value of struct.calcsize () called on non-
NULL format values.

Important exception: If a consumer requests a buffer without the PyBUF_FORMAT flag, format will
be set to NULL, but i temsi ze still has the value for the original format.

shapeo] Y2, product (shape) * itemsize == len¥A7k A% JAskn £ulzte
itemsizes A& HFHE ST 4 S5 UTh

If shape is NULL as a result of a PyBUF_SIMPLE or a PyBUF_WRITABLE request, the consumer
must disregard i temsize and assume itemsize ==

const char *format
A NUL terminated string in st ruct module style syntax describing the contents of a single item. If this
is NULL, "B" (unsigned bytes) is assumed.

o] A= pPyBUF_FORMAT Z | 1 &2 Ao]F Urch

int ndim
The number of dimensions the memory represents as an n-dimensional array. If it is O, buf points to a
single item representing a scalar. In this case, shape, st rides and suboffsets MUST be NULL.

U} 22 PyBUF_MAX_NDIME H U] XY 42 64 2 A3} AZA= o] A S =33 of

3o, thxd W 3 o] AH] A= PyBUF_MAX_NDIM XA 7FA] 2 2] 8 4= 9l o] oF gt}
Py_ssize_t *shape

n-X-Y g E W22 Y-S e+ Zo] ndim® Py_ssize_t Bl ¥, shape[0] *

* shape[ndim-1] * itemsize+x lend} Zrofokdhch

B2 shape[n] >= 0E AFF YT} shape[n] == 0 AF+=

Ut ZAISE A H = B3 wj S FRAAAIL

shape W & A u| 2t Al 1 7] A8 Jth

Py_ssize_t *strides
ZF 2RO A L AE A 27 Yo A8 HlolE & A|2dt= d o] ndim®] Py_ssize_t
HH <.

A

AR CRE

[>

sEZolE ghe Qele] 35 d 5 A5UTh AW M Pe] 3P, At EE HE ol
B B A strides(n] <= 09 398 Ao @ 5 ofoF FUTh AT HgL B4

WS FRIAAAL
strides W] @2 4 u|x}of| Al 81 7] A& Pt}

Py_ssize_t *suboffsets
Zo] ndim® Py_ssize_t Bl¥. suboffsets[n] >= 0¥, n HA XYL wet AAH 3

76. HI Z2EF 67

The Python/C API, & x| B] A 3.7.16

z9 % o]al A X E*)J -2 9 F X (de-referencing) F 7} Q1 E o] T & vl o] E =& U EHY
YUtk 29 4B @ Al 7k o FZ (de-referencing) 7} T AY 3} A 9kolof $+-& YERH YT (A<
W = r’/l FoA ~ER =

If all suboffsets are negative (i.e. no de-referencing is needed), then this field must be NULL (the default
value).

ol 739 M d A2 vpol A o|u A 2ol H e 2] (PIL) o A AFSH Utk o] 23wl & 840

WA 28k ol T & ARA g W82 E e i A2 RS AL
o

suboffsets 8] G- 4 u] x| Al & 7] A& YUth

void *internal
o] AL A F 3= (exporting) A Aol & R Ao g AFLHYULE oS , xﬂ—-—x]—
(exporter) 7t AL A A" & 49 om, | .ﬂ 7} s A€ ILH shape, strldes suboffsets) g
gﬂ‘iok '5Pt7\1 of o gt “311 = A 7ste ol AREE Ut &8 A7} o %} s HAMA= ‘3}

7.6.2 W3 QA F3

W= 7N Pyobject_GetBuffer ()& &3l A& 3+ (exporting) AA 2 W3] 84S HUA A5
HReo] =2l A 2 BEigo] A HE ¢ Jeu®, anzt= AT e A 3=
217338t 7) A flags AAHE AH&- Ut

Epy buffer 3= 24 F3 ol 8] RE3HA oA Aolg Ut

TS BT = flagse] JFES 2] a1 FAF utE Lo g YA ok dUth: oby, buf, len, itemsize,

readonly, format

PyBUF_WRITABLE
readonly AEE AlojgUth A, Ale A= ‘3‘}‘:/\1 27] 7bsq W 3 & Alg sk A
U A sl & B asfof ’%“4“/}- 1‘?32] gow, 7<ﬂ+XFL 471 Ag WY 27 s WS
Algd JA R ZE 2u Aol thsl 4373 = A3 oF ot

PyBUF_FORMAT
Controls the format field. If set, this field MUST be filled in correctly. Otherwise, this field
MUST be NULL.

PyBUF_WRITABLES TS A e ZH 1€ 4+ A5 YT PyBUF_SIMPLEC]| 002 Ao R 7,
PyBUF_WRITABLEZ 5% Ze 12 AR o] hdet 27] 7kt o & 8 4T & gl Ytk

PyBUF_FORMAT<2 PyBUF_SIMPLES A &3k 42l e] Zef 29 2 4 g5y th PyBUF_SIMPLE2 o] v]
P A B(EF Qi ulo]E)E o u]3h).

shape, strides, suboffsets

68 Chapter 7. 34 A A=

The Python/C API, & x] 8] A 3.7.16

83 shape | strides | suboffsets
SR A
PyBUF_INDIRECT yes yes 48t
yes yes NULL

PyBUF_STRIDES

PyBUF_ND yes NULL | NULL

PyBUF_SIMPLE NULL | NULL | NULL

SRR

CUHZEFASHL INAO2 89T 4 v, AEeho = A0 E 2gel71E 134 971 Tk
2 Eetol= A H 7k 9o, W& C-e% o] o] o T .
R shape | strides | suboffsets | ¥4
PyBUF_C_CONTIGUOUS yes yes NULL C
PyBUF_F_CONTIGUOUS yes yes NULL F
TC -
PyBUF_ANY_ CONTIGUOUS yes yes NULL CEEF
PyBUF_ND yes | NULL | NULL C

%QA*WZZﬂﬂAﬂL 43 Bl gt Bel 4 W ZREZ S AF S

b

EOﬂH Us %-‘43%] %—8«}?&"‘* = YEHUY. avats dSAS #dskr] 96

2
PyBuffer IsContiguous ()& Z&d oF &t}

76. WY Z2EF 69

The Python/C API, & x| B] A 3.7.16

3 shape | strides | suboffsets | A<4] | readonly | format
PyBUF_FULL yes yes dastd | U 0 yes
PyBUF_FULL_RO yes yes 28std | U TEE0 | yes
PyBUF_RECORDS yes yes NULL U 0 yes
PyBUF_RECORDS_RO yes yes NULL U 1EE0 | yes
PyBUF_STRIDED yes yes NULL u 0 NULL
PyBUF_STRIDED_RO yes yes NULL U 1 Z=E0 | NULL
PyBUF_CONTIG yes NULL | NULL C 0 NULL
PyBUF_CONTIG_RO yes | NULL | NULL C IE£0 | NULL

7.6.3 33t uig
NumPy-~€}2l: shape 3} strides

NumPy 2B} v g o] =8| & L 2= itemsize, ndim, shape W stridesZ A 2]H Yth

If ndim == 0, the memory location pointed to by bu £ is interpreted as a scalar of size i temsize. In that case,
both shape and st rides are NULL.

If strides is NULL, the array is interpreted as a standard n-dimensional C-array. Otherwise, the consumer must
access an n-dimensional array as follows:

ptr = (char *)buf + indices[0] * strides[0] + ... + indices[n-1] * strides[n-1];
item = * ((typeof (item) *)ptr);

A4 AFYR o), burs
gz e FEYL 2

e
rln

AA m R E5 e ZE AAE 7H 2 5 5 YT AlE A (exporter) £ ©]
}

g4 5y th:

def verify_structure (memlen, itemsize, ndim, shape, strides, offset):
"""Verify that the parameters represent a valid array within
the bounds of the allocated memory:
char *mem: start of the physical memory block
memlen: length of the physical memory block
offset: (char *)buf - mem
mrrn
if offset % itemsize:
return False
if offset < 0 or offset+itemsize > memlen:
return False
if any (v % itemsize for v in strides):
return False

if ndim <= 0:

return ndim == 0 and not shape and not strides
if 0 in shape:

return True

(Th5 sl A el A%)

70 Chapter 7. 32 A A

ol

The Python/C API, & x] 8] A 3.7.16

(o1 sl o] A A A%)

imin = sum(strides[j]* (shape[j]-1) for j in range (ndim)
if strides[j] <= 0)
imax = sum(strides[j]* (shape[j]-1) for j in range (ndim)

if strides[j] > 0)

return 0 <= offset+imin and offset+imaxtitemsize <= memlen

PIL-~€}¥: shape, strides 2 suboffsets

Aut 5 Qo =, PIL 28 s Goll &= AHE 9] U3 845 71A 7] 98l whetof ot 2 7 232
T AFULE A& &0, Et&3 2H C ¥l g char v[2][2] [3]E=2709 2-Ad mij & 7}\:471%271154
ZoE WdE B 45 95Ut char (*vI[2])[2]1[3]. suboﬁsets Ed A, o] F —LO]EJ% bufr9
A ZF R R A= F gl%tﬂ R o= YA b A2 5= = F /N char x([2][3] WiEES

A= AU
Here is a function that returns a pointer to the element in an N-D array pointed to by an N-dimensional index when
there are both non-NULL strides and suboffsets:

void *get_item_pointer (int ndim, wvoid *buf, Py_ssize_t *strides,
Py_ssize_t *suboffsets, Py_ssize_t *indices) {

char *pointer = (char*)buf;
int i;
for (i = 0; 1 < ndim; i++) |

pointer += strides[i] * indices[i];
if (suboffsets[i] >=0) {
pointer = * ((char**)pointer) + suboffsets[i];
t
3

return (void*)pointer;

7.6.4 W3 &4 g

int PyObject_CheckBuffer (PyObject *obj)

obj7}t W3 QB o]~ S AP 1& Whehstal, I3 A oo 05 WhEhehy . 10] wkekdE uf,
PyObject_ GetBuffer() 7F e Aoleta H } Ale dsdth ol e FFAATEUT

int PyObject_GetBuffer (PyObject *exporter, Py_buffer *view, int flags)
Send a request to exporter to fill in view as specified by flags. If the exporter cannot provide a buffer of the
exact type, it MUST raise PyExc_BufferError, set view—>0obj to NULL and return —1.

/\J_T'_-(s]—t‘ﬂ, views A 11, view—>0b3E exporterel] T 3t Af XLZE AAS, 0L vasych 24
<@g AAZ gy Al A4 H (chained) W FF A A -$, view—>0bj+ exporter Al 9]
AANE F2RET 5 JAFUTH (I A4 F24 & EAL).

PyObject_GetBuffer ()o] Ut AFAA &&-L& PyBuffer Release ()] Yt &3 &
o 2 o] ok ST malloc () 3 free () 9 FAFGLITE ek, £HlA7h Wol 2 298 Fol b,
PyBuffer Release ()% 74@'0] gt S EaloF Pt

void PyBuffer_ Release (Py_buffer *view)
W5 viewE AT view->obiol et FE R4S AN AU HH 7} o=
o, o] g REEA T ESoF dyth 28 A o Fx b AT = A5 U

PyObject_GetBuffer () S Ed] 94X 2 BF o o] 42 TE3= AL o7 YLt}

Py_ssize_t PyBuffer SizeFromFormat (const char *)
Formate] AABHE itemsize® MBAFYT o] 4 ok d TAH A FhHUTh

76. HI Z2EF 7

The Python/C API, & x| B] A 3.7.16

int PyBuffer_IsContiguous (Py_buffer *view, char order)
view= g2l W] 22| 7} C 2BFd (order7} 'C') o U ZE T 2B (order 7} 'F) Aol AV & F
St order7) 'at) W 12 WU TE 227 9Fo W 02 MU o] B4 A 4 I T

void* PyBuffer_GetPointer (Py_buffer *view, Py_ssize_t *indices)
Get the memory area pointed to by the indices inside the given view. indices must point to an array of
view—->ndim indices.

int PyBuffer_FromContiguous (Py_buffer *view, void *buf, Py_ssize_t len, char fort)
Copy contiguous len bytes from buf to view. fort canbe 'C' or 'F' (for C-style or Fortran-style ordering).
0 is returned on success, —1 on error.

int PyBuffer_ ToContiguous (void *buf, Py_buffer *src, Py_ssize_t len, char order)
Copy len bytes from src to its contiguous representation in buf. order canbe 'C' or 'F' or 'A"' (for C-style
or Fortran-style ordering or either one). 0 is returned on success, —1 on error.

o] S len = sre->len©] ¥ A 3j g T}

void PyBuffer_FillContiguousStrides (int ndims, Py_ssize_t *shape, Py_ssize_t *strides,

int itemsize, char order)
strides | DS F0] X Q4 ulo]E 429} 0] X shape S & A< (order7} 'C' W C 2EFY, order 7}
Prw EE AE) WY vo|E ~E o =R A&y

int PyBuffer_FillInfo (Py_buffer *view, PyObject *exporter, void *buf, Py_ssize_t len, int readonly,
int flags)
readonly®l We} 7] 7}g/d o] DA H len A7]9 buf & =232+ A& A (exporter) ol o] St ¥ 7
232 AFPUTh s $3 g vhol=o AAsz S A8 U
flags AR += 84 F3S VeI UL o] &5 buf 7t 917 A& 02 A QW A pyBUF_WRITABLEC]
flagsell AR = o] YA oW, G4 S 17t A Aok thHE viewS A5 th

On success, set view—>obj to a new reference to exporfer and return 0. Otherwise, raise
PyExc_BufferError, set view—>0bj to NULL and return —1;

If this function is used as part of a gerbufferproc, exporter MUST be set to the exporting object and flags must
be passed unmodified. Otherwise, exporter MUST be NULL.

7.7 Y2 W3 Z2EF

WA 305 5.
o] gt vhol Al 20 A “e-2 W 3 22 EF” API A-FF 0] 3
TA A AR 2.x FE oA S A = F Fr S AT
S T2 A H LS AL A E AT o A2 A #E e AloE = flsyTh
w2t A, Pyobject_GetBuffer ()(2Ey* Ywx W T =5 AFR-3+= PyArg ParseTuple () A 49
34) 2 ZE 0] ARl th el B2 7P 23, M HE HAD 5 QAL W pyBusfer Release ()
&3 ol EF5Uh
int PyObject_AsCharBuffer (PyObject *obj, const char **buffer, Py_ssize_t *buffer_len)
2270 dEow A8 4 gle 27 AR R e 9o et w2 WEF T obj ARE
A A IHE FA W3 AE s o]~ E AW oF FUnt FF 5, 08 WHEsaL, buffers w22
AAXNZ ARSI, buffer_lens v 5] Aol ARt o8 Ao, -1& ¥F3HElal, TypeErrorg
ARGk
int PyObject_AsReadBuffer (PyObject *obj, const void **buffer, Py_ssize_t *buffer_len)
dolo tlolB & st o7 A wlEe] S Ao thet 2AHE AT Uth obj A= TG
A ZHE 217 75 W3 QB3| o] 28 A Qs o Ut A4F5td, 02 W3hstaL, buffers H &2
AA=Z DAL, buffer_lens W3 Aol2 AT ol Aldl, -1& W33}, TypeErrorg
A7y
int PyObject_CheckReadBuffer (PyObject *0)
o7t G AN IHE ¢}7] 7hs W3 QEF o]~ E A Ustd 1 vyt 2387 Fod, 0
WUt o] e A AT U

ke
i
il
°
In)
s
i
rlo
R
&
[kl
Fu
H
it
i

ol

72 Chapter 7. 3% 214 Al

The Python/C API, & x] 8] A 3.7.16

o
L.y HauE o Al pyobject_GetBuffer () S AFR3H4
int PyObject_AsWriteBuffer (PyObject *obj, void **buffer, Py_ssize_t *buffer_len
27 7bed R

_ _len)

2 A Aol th 2AE S WU T obj AA= DD A IHE, FAF H I QAH

Hl o]~ g A A oF Ttk AFsHE, 05 W, buffers vl R 2] X2 G, buffer_lens
w3 dolz ATt olg] Alel, -1& W&k, TypeErrors A4 Tt

S5 W3 8 1A LT A S o, ol S BRI B BT o9l Aol
FoaAAe A

(]
.

73

The Python/C API, & x| B] A 3.7.16

74 Chapter 7. 34 A A=

CHAPTER 8

T AR A

o] F] 3= 54 vhold AR P AT AP Utk 25olA R Fo AAE DAL= AL

] obd U th; shel JEI’MW AAE Ao S & ° AR G5 rrd, mA 3
Fsfof Uth; ol & o, AA7F YA E A A %‘f‘tﬁ}ﬁ% A, PyDict_Check ()& AHE3HA Al
. 0] & ghol A A o “ii”ﬂﬁ* 4% syt

al: While the functions described in this chapter carefully check the type of the objects which are passed in,
many of them do not check for NULL being passed instead of a valid object. Allowing NULL to be passed in can
cause memory access violations and immediate termination of the interpreter.

8.1 7|2 AA|
o Aol A shol 4l B ARk A2 E A7 Noneol B3 A FU Tk

8.1.1 & A

PyTypeObject
WAE S 71eske ol AHEE = AA S CF2A.

PyObject* PyType_Type
o] AL @ AA Y & AR AU Fold AFE typedt 2L AA AU

int PyType_Check (PyObject *0)
A7 o7k £ AANA AR Fo] AAAAE E35e] @ AR W FL WP R RE
35 AR S T

int PyType_CheckExact (P\Object *0)
A7 07} @ Al A v, B2 Y AR o] A1 Ho] of)
Llaca il D}.

)
i
fifo
rE
4]
i)
A
£
v
rl
ko
il
oM,
o
X
N,
tjo

unsigned int PyType_ClearCache ()
WiE 23] AXNE AUk @A WA Bj 25 wkshehy

unsigned long PyType_GetFlags (PyTypeObject* type)
ype?| tp flags WHE Wk Th o] $= F 2 Py LIMITED_APIS} 37 AH-&-517] £13 2 9)

75

The Python/C API, & x| B] A 3.7.16

Utk i S8l 2 v Ex gho] A v ol b A A Ao 2 BAF AT, tp_flags AHA| o &
BA| A= A 5HE AP -‘?_7} o}y,

WA 320 F7h
B 34004 W7 vEgEg2 oA long©] oky 2t unsigned long Yyt

void PyType_Modified (PyTypeObject *type)
93} TS BE AL ol TR A4 A E FED Shth Gl o] =2 HE L} we) A el
25 TEFLR —r%f& oz ol S T ok YT

int PyType_HasFeature (PyTypeObject *o, int feature)
B A 07} 71 features 273 o MAFUTE F V)5S DL v E SR FAF Y

int PyType_IS_GC (PyTypeObject *o)
P AAZt =& A= e Ade 2ot Jod I UL oA F
Py_TPFLAGS_HAVE_GCE ZAFEYth

int PyType_IsSubtype (PyTypeObject *a, PyTypeObject *b)
a7bb3] A B ol g Wk o

o] St = AA AH gk AAFE UL &, subclasscheck_ () 7} boll 3] &5 z]
t}. issubclass () 7} £33 3t= A 22 AALE 5@ PyObject IsSubclass ()& 56}/\‘
Al L.

PyObject* PyType_GenericAlloc (PyTypeObject *type, Py_ssize_t nitems)
Return value: New reference. Generic handler for the tp_alloc slot of a type object. Use Python’s default
memory allocation mechanism to allocate a new instance and initialize all its contents to NULL.

PyObject* PyType_GenericNew (PyTypeObject *type, PyObject *args, PyObject *kwds)
Return value: New reference. & A2 tp_new €F & Y3 4t X el7]. 9 tp_allocEFS

AL Fto] A Al AEl A U}qu-

int PyType_Ready (PyTypeObject *type)
3 AAE v Pk 271312 Au e
ol Fe F o)k ol FEE X
Rhgbstan o o] & A g Th

3 A Aol s o] WA =S 5 E o T,
gk AF A 0L uee T, 98 Al 18

L
KN
=

i

PyObject* PyType_FromSpec (PyType_Spec *spec)
Return value: New reference. 350l A2 specC 2 3] & AA|E W& ¥ o}

ﬂ!I

PyObject* PyType_FromSpecWithBases (PyType_Spec *spec, PyObject *bases)
Return value: New reference. spec2. 2 3 & 2| & W& vk et o] Yo%, AAE § Fol=
bases =0 LE BE Fo] Wlo]ag o ® 2 YT o] T TE A= ThE @ I Hlolx
Fqow ARIT 4 YL 14 I;]—
w7 330 =7

void* PyType_GetSlot (PyTypeObject *type, int slot)
Return the function pointer stored in the given slot. If the result is NULL, this indicates that either the slot is

NULL, or that the function was called with invalid parameters. Callers will typically cast the result pointer into
the appropriate function type.

WA 3.40] =7}

76 Chapter 8. -4 A A=

The Python/C API, & x] 8] A 3.7.16

8.1.2 None 74

Noneol| 3t Py TypeObject+w 3o R/C APIO|A A =&5 X 95Ut Noned AZE0|7] uf &0
(Col A ==F AH&3lA]) A A oto|HIE B & AAMsHE 202 SR P 2 o]+ E PyNone_Check ()
T7E A 1/]"/]‘-

PyObject* Py_None
Zre] 225 UeEtY = gbo] A None AA G U th o] AAo|l= WA= S5 YT Zx Sl A8
o] o2 A A 9} up R /1A 2 A 2] 8 of gt

Py_RETURN_NONE
C 4 Uol M by None® WHHSHE A€ S A A2 FU T, Noned] F2 258 3744711

urEkg o).

8.2 A A

8.21 A+ AA

BEEATE 999 32719 “long” A+ AA 2 FHEF YT

2] Al, 29 PyLong_As* APIx= Ak} 2 E 4 §l& (return type)-12 WHEFUth 25
LS A ASE Y PyErr_Occurred ()& AFE3HAI Al L.

PyLongObject

of Pyobjecte) AE L sholm A4 AA S e,
PyTypeObject PyLong_Type
o] PyTypeobject A2E AL shol A4 B UEPdUTh o] AL shol M A2 ints} 28
27 9 o,
int PyLong_Check (PyObject *p)
AA7} PyLongObject o]y PyLongObject] A H ol 5 whahgy
int PyLong_CheckExact (PyObject *p)
1R} 7} PyLongObject O] A QF PyLongObjectd] A H & o] o}

=)
ks
o
r i)
rt
i)
A
v

PyObject* PyLong_FromLong (long v)
Return value: New reference. Return a new PyLongOb ject object from v, or NULL on failure.

A FHL -59F 256 At o] BE Aol el A A vl e #AF YT o] He
NAE DS A N AR DG e, sl 15] 28 7 1
Fuch. oj) shoj e} S Hojw A e Ao BYH T)

PyObject* PyLong_FromUnsignedLong (unsigned long v)

Return value: New reference. Return a new PyLongObject object from a C unsigned long, or NULL
on failure.

>£:L

PyObject* PyLong_FromSsize_t (Py_ssize_tv)
Return value: New reference. Return a new PyLongObject object froma C Py_ssize_t, or NULL on
failure.

PyObject* PyLong_FromSize_t (size_t v)
Return value: New reference. Return a new PyLongObject object from a C size_t, or NULL on failure.

PyObject* PyLong_FromLongLong (long long v)
Return value: New reference. Return a new PyLongOb ject object from a C long long, or NULL on
failure.

PyObject* PyLong_FromUnsignedLongLong (unsigned long long v)
Return value: New reference. Return anew PyLongObject object froma C unsigned long long,or
NULL on failure.

8.2. =z} AA) 77

The Python/C API, & x| B] A 3.7.16

PyObject* PyLong_FromDouble (double v)
Return value: New reference. Return a new PyLongObject object from the integer part of v, or NULL on
failure.

PyObject* PyLong_FromString (const char *str, char **pend, int base)
Return value: New reference. Return a new PyLongObject based on the string value in str, which is in-
terpreted according to the radix in base. If pend is non-NULL, *pend will point to the first character in st
which follows the representation of the number. If base is 0, st is interpreted using the integers definition;
in this case, leading zeros in a non-zero decimal number raises a ValueError. If base is not 0, it must be
between 2 and 36, inclusive. Leading spaces and single underscores after a base specifier and between digits
are ignored. If there are no digits, ValueError will be raised.

PyObject* PyLong_FromUnicode (Py_UNICODE *u, Py_ssize_t length, int base)
Return value: New reference. +U I E ALY A|A2E stolW A gtez Mgy &
F= FAEL WA pPyUnicode_EncodeDecimal () & AM&3to] nlo|EEE A7 JH t}
PyLong_FromString ()= AF&3to] HEH Ut}

o T,

Deprecated since version 3.3, will be removed in version 4.0: ©] A 2~€}D 2] Py UNICODE AP19] €+ ;
PyLong_FromUnicodeObject ()& AF& 3= 202 WA L.

PyObject* PyLong_FromUnicodeObject (PyObject *u, int base)
Return value: New reference. A4 ul] FUIE X A|F2E dlo| AW A gto g A3
FYIZE EX<¥9L HA PyUnicode_EncodeDecimal () & A& 35to] nfo 749
PyLong FromString ()< AR SFe] W3 Yt}

W 330 =7}

PyObject* PyLong_FromVoidPtr (void *p)
Return value: New reference. EQAQE pZHE TolH A
PyLong_AsVoidPtr ()& Mgt ARghol A =3 o 9l5

[
e
frd
o

long PyLong_AsLong (PyObject *obj)
obj9] C long A2 vt&StUtt obj7} PyLongObject?] AAEH AT of W, (TthH) HA
_int__ () MINE=F TE3F] PyLongObject 2 HAF YT

0bj2] 7ko] longe] WY& Hlojud overflowErrorE A YT}
off & Al —1 & Wit RS A S Al ASH Y PyErr Occurred () S AFRSHI A 2.

long PyLong_AsLongAndOverflow (PyObject *obj, int *overflow)
obj® C long 8 WUt} obj7t PyLongObjectd] AAEATE of W, (Qhthd) HA
_int__ () WINEE 23] PyLongObject 2 A&FUTh

0bj©] Fko] LONG_MAX R T} 2 A} LONG_MINRE T} 2o H, “overflows 2+ZF 10 v -1 2 A Q381
“1g WEHUTh 194 OB, foverfow 002 AR LT THE o2 7F AHE Foverflow
00% BT -1 & Bost Lol WA

gl Al -1& WE3tUth R34S A AW pyErr Occurred () S AHEBHIA L.

long long PyLong_AsLongLong (PyObject *obj)
obj®] Clong long BH S Y133t T} 0bj7} PyLongObjectd] A 2B A7 oUW, (A THE) WA
int_ () MM EE &3] PyLongObject 2 HAFY T

Raise OverflowError if the value of obj is out of range fora long long.
off & Al —1 L& Wittt RS A S Al ASH Y PyErr Occurred () S ARSI A 2.
long long PyLong_AsLongLongAndOverflow (PyObject *obj, int *overflow)

0bj9] C long long &S ¥FsLst). obj7} PyLongObjectd QIAEA7F oUW, (thd) HA
int_ () WA EE E£&3t9] PyLongObject & WA ESHU T}

obj9] Zko] PY_LLONG_MAXH T} Z Ar}PY_LLONG_MINK T} 2o W *overflows 2tz 101} -1 2
ARt -1& WEgU T 29 A o, foverflows 028 ARt ThE o2 7} HAY st
“overflows 002 A A Al 15 H A2} Zro] vgh o}

ol Al —1L WSt R3S A A A PyErr Occurred () S AH3HA] A L.
B A 3.20] &7}

78 Chapter 8. % 214 A

ol

The Python/C API, & x] 8] A 3.7.16

Py_ssize_t PyLong_AsSsize_t (PyObject *pylong)
pylong®] CPy_ssize_t BHE WSS T} pylongS PyLongObject? AAEl Ao of gt}
pylong®] 7ko]l Py_ssize_t9 ML E HojyH overflowErrors YA A Y th
g Al -1 vkt RS A3E A A ™ pyErr Occurred ()& AHE3HA Al 2.

unsigned long PyLong_AsUnsignedLong (PyObject *pylong)
pylong®] Cunsigned long BHS 933U} pylongS PyLongObject] Q12| Ao oF ST},

pylong®] ko]l unsigned longd WHE Bojyd overflowErrors WA A A Yt}

o 8] A] (unsigned long) -1 ¥IEstUth RS A S A ASte A PyErr Occurred ()& AFR
AL

size_t PyLong_AsSize_t (PyObject *pylong)
pylong®] C size_t XS W3t} pylong2 PyLongObjectd] QI E Ao of gkt
pylong®] ko] size_t9o HYE Hlo]JU OverflowErrorES 2HAA Ut}
of| H Al (size_t)-1SwtEstUch RS A S A A YA PyErr Occurred ()& AFE3HAIA] L.

unsigned long long PyLong_AsUnsignedLongLong (PyObject *pylong)
pylong®] C unsigned long long & H S WHESU T} pylongS PyLongObjectl] AAE A ook
S Th
o) .

pylong®] ko] unsigned long long® MY E Hloj W overflowErrorE WA A 7Y T}
:‘

ol 8 A] (unsigned long long)-1 & Y& 3% Yt} DAL AAFFHA
PyErr Occurred ()& A-E3H Al L.
WA 31904 HA: 29 pylong= ©] A TypeError7} ot gl OverflowErrorE YA A ZA Y th
unsigned long PyLong_AsUnsignedLongMask (PyObject *obj)
0bj®] Cunsigned long E &g W&AF YT} 0bj7} PyLongObject] AXT AT oYM, (JTHH)
WA __int_ () IIAEE SE35}9 PyLongObjectE W3S YT
obj®] Fko]l unsigned long®] M E WMol utd, 1 3te] R E R ULONG_MAX + 1 3¢S w33t
Y.
o] #] Al (unsigned long) -1 ¥ Ut R3S A ASIEYH PyErr_Occurred ()& AHg
SH Al L.
unsigned long long PyLong_AsUnsignedLongLongMask (PyObject *obj)
obj2] Cunsigned long long ¥ 2 WtE3tUt} obj7} PyLongObject] AAAE A7} oL ™,
(AohA) HA _ int_ () HIANEE 3519 PyLongObject 2 HETH T}
obj2] ko] unsigned long long®d WS wlojyd, 1 39 R EE PY_ULLONG_MAX + 1 &
AZ RS ok
of 8 A] (unsigned long long)-1 < W3 3 Y th RE S A AT
PyErr_Occurred ()& AE3HI Al L.
double PyLong_AsDouble (PyObject *pylong)
pylong®] C double &3S WISt} pylong> PyLongObjectd Q2 E Ao of Sk T},

pylong®] ko] doubled] HH & Blojyd OverflowErrors WA A YT}
oflgf Al -1.0S REEFUTh BRSYS AAS ™A pyErr Occurred () E AHESHAA 2

void* PyLong_AsVoidPtr (PyObject *pylong)
ylo] M A= pylongS C void Z A HZ HEAZ YT} pylongS WIS 4= ¢l oW, OverflowError
Z7FA YT o] A2 PyLong FromVoidPtr () 2 WHE o] X gholl thaf| ARk AMS- & 4= Q1= void
ZRJAHE Ao+ Aol EFF YT

Returns NULL on error. Use PyErr_Occurred () to disambiguate.

8.2. =z} AA) 79

The Python/C API, & x| B] A 3.7.16

8.22 Ez|d AA

FAE YL Py_False?} Py _Truedh:= F 719 27 ¢l
= F2o 485 A st 28 v o= “Hﬂie AH-&-gk
PRI

int PyBool_Check (PyObject *0)
07} PyBool_Type FolW IS 585 Yt

PyObject* Py_False
gto] A ralse A4 o] AA= WA =7 glgUth Fx 7H:EQ AR A = thE A A &} up 27}
A &2 A elsf of gyt

PyObject* Py_True
shol M True AA. o] AAE WA=} Y5 22 AeE
= 2 2] of Fu Tk,

Py RETURN_FALSE
o) A Py_False

k,g
)
B
>
rlr
o
rlu
_Iz

2 7] 9} v 27}

i

o
rlt
o
K
s
2
_'\LL
o
[
e

N

A-sHA S 7HA AU th
Py _RETURN_TRUE
oA py_TrueE WHSHSHIL, 2 72 EE A A A S 7HA1 - U T

PyObject* PyBool_FromLong (long v)
Return value: New reference. vo] =2 Zkoll kel Py_True U Py_Falseo] tf 3 A| JFZE vb3sh .

8.2.3 HE x2x M|

PyFloatObject
o] Pyobjecte] AH §L shol RE £47 A2 iU
PyTypeObject PyFloat_Type
o] PyTypeobject AXB AL shold BE 248 B UehdUth o] AL shol A AZolA
floate} 22 AA YUt
int PyFloat_Check (PyObject *p)
A7} PyFloatObject Y PyFloatObject] AH ol H & viashch

int PyFloat_CheckExact (PyObject *p)
I} 7} PyFloatObject o)A ¥k PyFloatObject AH &L ol & vtashrc}.

PyObject* PyFloat_FromString (PyObject *str)
Return value: New reference. Create a PyFloatObject object based on the string value in str, or NULL on
failure.

PyObject* PyFloat_FromDouble (double v)
Return value: New reference. Create a PyF1loatObject object from v, or NULL on failure.

double PyFloat_AsDouble (PyObject *pyfloat)
pyfloat & W82 C double £&-& WU T pyfloar 7} o] H H 5
_ float__ () WIAEZ} Qo9 pyfloarS float 2 WH33}7] 93 o] WA= .
HAEEAseE -1. 02 WSSl B g, PyErr Occurred () S £&3}to] o 215 &Hels) of Pt
double PyFloat_AS_DOUBLE (PyObject *pyfloat)
ol g AAF fLel pyfloar & W€} C double £ &S vHaHg o).

PyObject* PyFloat_GetInfo (void)
Return value: New reference. float2] A U =, 2 5=k, F A7kl & AR & E3SEstructseq A2HAE
==Yt} 3 7Y float.hE 7R oF2 g5 YUt

double PyFloat_GetMax ()
A £3 71538 73 float DBL. MAXE C double® Hheh3hu T

457 AR 7 oFU A v
]_

double PyFloat_GetMin ()
H 4 A3+ (normalized) 9F2] float DBL_MINE- C double& ¥F&stU)

80 Chapter 8. -4 A A=

The Python/C API, & x] 8] A 3.7.16

int PyFloat_ClearFreeList ()

float ZHF 55 (free list) = H]5 U TH sl A| S 4 ¢l F5 9 +5 WU
8.24 B4 AA|
gpol o] BEa AX = CAPIOA 2 o 7 49 thE Jo= FFFUL: stk ol =2 T
=29 ol AA oL, b Stk AAl Has ge UElE CF2A YT API= F 7HA 7%
2P 5 = FeE AT

TRAZA Y Hay

W7 AR o] H T FRAE WolEo]al AR WHEee e ERAHE o xS Bk ge
zw*wwow API A
Py _complex

shol #l B A o) gk 2o AP C F2A.

T2AE 4P EE FY o AW AT Th g3 o] el th

typedef struct {
double real;
double imag;
} Py_complex;

Py_complex _Py_c_sum (Py_complex left, Py_complex right)

C Py complex @S AFEslo] F B4 o2 whakghynt
Py_complex _Py_c_dif£ (Py_complex left, Py_complex right)

C Py _complex 28E& AHE3t] 7 B 449 2po] & vk th

Py_complex _Py_c_neg (Py_complex complex)
CPy_complex 8-S AH§38to] BAS complex®] &9 Fh= WHEHU T

Py_complex _Py_c_prod (Py_complex left, Py_complex right)
CPy complex B3L A}23to] T B A5 F& utska).

Py_complex _Py_c_quot (Py_complex dividend, Py_complex divisor)
CPy_complex AL AFL 3] F B A4 B8 wlsksh),

divisor7}nullo] ¥, o] | A &&= 0& vW3ts} 1, errnoS EDOMO & A A Sk},

Py_complex _Py_c_pow (Py_complex num, Py_complex exp)
C Py _complex EAE A-E3F num?) exp A5 A< w3yt

num©| null ©] 1 exp7} ¥ A7 of U ®, o] WA == 0 WHEHEtil errnoE EDOMCO 2 A QT

shol® ZA 2 A ¢] B 25

PyComplexObject
vhold B AA S U= Pyobject o] A H &,
PyTypeObject PyComplex_Type
o] PyTypeObject LB AE vlo] W B4 g ey Utk vlo] A A 359 complexst 2
2 ek,
int PyComplex_Check (PyObject *p)
QIA}7} PyComplexObject W PyComplexObject] A H & o] S uislshc}
int PyComplex_CheckExact (PyObject *p)
IR} 7} PyComplexObject Ol A ¥, PyComplexObject®] A H 3 o] o}

)
ks
o
rﬂ‘.
i
i)
A
v

PyObject* PyComplex_FromCComplex (Py_complex v)
Return value: New reference. C Py_complex FfO 2 ME L ato] A B 44 AR E w5 ch

8.2. =z} AA) 81

The Python/C API, & x| B] A 3.7.16

PyObject* PyComplex_! FromDoubles (double real, double imag)
Return value: New reference. real 2 imag@ M Z -8 PyComplexObject AA|E WFEHg o}

double PyComplex_RealAsDouble (PyObject *op)
opd] A4HE Cdouble® W th

double PyComplex_ImagAsDouble (PyObject *op)
op®] 3|+HE CdoubleE WH3Hg o}

Py_complex PyComplex_AsCComplex (PyObject *op)
g opd] Py_complex e WHU T
op7} Frol M Bag AR 7 o AT __complex A
ol Mo AAZ AHFEES TWAEE TEFYTH A S, o MASE 108 A5goR
sk g o

=
>
[t
N
30
|o
EE
-
>
[t
rlr
o,
R
<
i
i)

8.3 A|AX A

A2 AA o e LA QAL o] 7 o] A = W5 o] ol A shol A Aol o] 1FE 57
AE e

FFRNALA

8.3.1 nlo|E A A

o upo| =g w7} W47t B G) o] =G o] ofu i} WA R EE5W TypeError & WA

E& gd'

ol s
A ww
PyBytesObject
o] PyObject] A1 gL stol 4 upo| 2 AA & ey h
PyTypeObject PyBytes_Type
o] PyTypeobiecte] AAB AL Fho] 4 ulo] W B YR UTE ol A A5 bytess} T
27 A o,
int PyBytes_Check (PyObject *0)
AH o7} kel = AR o ALk ulol = Fo| AH B JAAAY FL BT
int PyBytes_CheckExact (PyObject *0)
A o7} vio] E G A A o] A ¥k, vfo] EH P 2] A H o

(e}
[>
.
[>
rr
i)
A
g
Y
tlo
rE
rit
ol
<
v

o

PyObject* PyBytes_FromString (const char *v)
Return value: New reference. Return a new bytes object with a copy of the string v as value on success, and
NULL on failure. The parameter v must not be NULL; it will not be checked.

PyObject* PyBytes_FromStringAndSize (const char *v, Py_ssize_t len)
Return value: New reference. Return a new bytes object with a copy of the string v as value and length len on
success, and NULL on failure. If v is NULL, the contents of the bytes object are uninitialized.

PyObject* PyBytes_FromFormat (const char *format, ...)
Return value: New reference. C printf ()-22€t< format TAL 3} 74 7l49] <l X]—% kol A], A3}
slo]H vlo| EE AA| o] 27)E AAbstar 1 Qtell gho]l Z W H nlo]EE AAE W b
QA= C B ol ofoF 3] formar TALo AL £ BAEI) A H of S5 oF AT 347 =
29 B o 2ot

82 Chapter 8. -4 A A=

The Python/C API, & x] 8] A 3.7.16

TAEA B A
%% n/a e d % A}
Sc int g vlo]E, Cint2 B3 U Th
5d int printf ("sd") & FS5FUH]
Su unsigned int | printf ("su") 2 S5 H]
$1d long printf ("s$1d") & =5 UcH]
$1u unsigned long | printf ("$1u") 2} =5 H!
$zd Py_ssize_t printf ("$zd") 9 53 rh!
Szu size_t printf ("szu") & F5FU !
%1 int printf ("s$i") 2 S5 h!
5x int printf ("sx") 9 ==L TH!
$s const char* 9-Z28 CEX L.
s comstvoid® | C ZOTES] 16407 5@, SAES print 7] ol ATE FEA
ATHl0] 2Bl E 0x Al Fgo] B AT AL A2 e A2
printf ("$p") 2t 55 &Y
A4 gl 2l A 2 FAE Y U A B o] BF A3 AR o 2t BEAE A wE 1L,
27} QA1 T A o,

PyObject* PyBytes_FromFormatV (const char *format, va_list vargs)

Return value: ~ New reference. A T Y AAE A= AS AYtie
PyBytes_FromFormat ()3 Z5 Ut}

PyObject* PyBytes_FromObject (PyObject *0)
Return value: New reference. ¥ 3] L2 EZ 2 T8l A4 09 vlol|EY 33 ¥istsh).

Py_ssize_t PyBytes_Size (PyObject *0)
Hlo|E W 2| 0o] 2 o] = ul3tst o},

Py_ssize_t PyBytes_GET_SIZE (PyObject *o0)
ol & AAF Qe PyBytes_Size ()9 AR 4.

char* PyBytes_AsString (PyObject *o)
Return a pointer to the contents of o.
of len (o) + 1 bytes.
other null bytes.
PyBytes_FromStringAndSize (NULL,

The pointer refers to the

The last byte in the buffer is always null,
The data must not be modified in any way, unless the object was just created using
size). It must not be deallocated. If o is not a bytes object

internal buffer of o, which consists
regardless of whether there are any

atall, PyBytes_AsString () returns NULL and raises TypeError.

char* PyBytes_AS_STRING (PyObject *string)
o 2] AAF Q= PyBytes_AsString ()2 W= A

int PyBytes_AsStringAndSize (PyObject *obj, char **buffer, Py_ssize_t *length)
=8 A buffers} lengthZ AA| obje] E-F 5 W& vHshgych

If length is NULL, the bytes object may not contain embedded null bytes; if it does, the function returns —1

and a ValueError is raised.

buffer+= obje] W5 W HE 71| 7] Al = =,

or<=t}h). AA 7 PyBytes_FromStringAndSize (NULL,

A7 ot H H ol HE A= < F Ut Ha}%g A 3 A=
W85}l 1 TypeErrorS WA A Ut}

 Hhol £ AR & whol £7} 8] o] 9109 TypeError7h A Y

7} o} W PyBytes AsStringAndSize ()= -1<

WA 3.5 4 WA o] A=
%,

void PyBytes_Concat (PyObject **bytes, PyObject *newpart)

Zo|| 27} g "ol EV} :t@;% Ut} (lengtholl

= x3t
size) & AH83t] e J%
S gy obj7} o] E G

~ s

Create a new bytes object in *byfes containing the contents of newpart appended to bytes; the caller will own
the new reference. The reference to the old value of bytes will be stolen. If the new object cannot be created,
the old reference to bytes will still be discarded and the value of *byfes will be set to NULL; the appropriate
exception will be set.

Er

A A2} (d, u, 1d, lu, zd, zu, i, x) o] A : 0-11 2

8.3. A|FAA AA

83

The Python/C API, & x| B] A 3.7.16

void PyBytes_ConcatAndDel (PyObject **bytes, PyObject *newpart)
bytes®l] newpart®] W& SEQ A vlo]E G AA & *bytesol] W5 U T} ©o] AL newpart®] Z=Z
ATE AU

int _PyBytes_Resize (PyObject **bytes, Py_ssize_t newsize)
A way to resize a bytes object even though it is “immutable”. Only use this to build up a brand new bytes
object; don’t use this if the bytes may already be known in other parts of the code. It is an error to call this
function if the refcount on the input bytes object is not one. Pass the address of an existing bytes object as an
lvalue (it may be written into), and the new size desired. On success, *byfes holds the resized bytes object and
0 is returned; the address in *byfes may differ from its input value. If the reallocation fails, the original bytes
object at *bytes is deallocated, *byfes is set to NULL, MemoryError is set, and —1 is returned.

8.3.2 nlo]E ujd A A

PyByteArrayObject
o] pyObject®] A B 32 o] A bytearray 2 A S LHEFY L T

PyTypeObject PyByteArray_ Type
o] PyTypeObject A2~H A= ulo] A bytearray 32 YEFH YT dfo] A A &2 bytearray?}
2o AR,

3 A aE

int PyByteArray_Check (PyObject *o)
A A 07} bytearray 2] A| o] A 1} bytearray & 2] A H & AA2BE AW ZS vi3hsy o},

int PyByteArray_ CheckExact (PyObject *o)
A 07} bytearray 2 A| o] A| 2, bytearray & 2] A H & A" A= ofy 'y #H-S vl

%74 API 34

PyObject* PyByteArray_FromObject (PyObject *0)
Return value: New reference. ¥ ¥ Z 2 & 28 L H 3= 499 AR (o) ZHE] W A Al 22 bytearray
AAE EelETH

PyObject* PyByteArray FromStringAndSize (const char *string, Py_ssize_t len)

Return value: New reference. Create a new bytearray object from string and its length, len. On failure, NULL
is returned.

PyObject* PyByteArray_Concat (PyObject *a, PyObject *b)
Return value: New reference. B}0| E W] & a 2} bE o] o] £ | &2 bytearray 2 ¥13-g).
Py_ssize_t PyByteArray_Size (PyObject *bytearray)
Return the size of bytearray after checking for a NULL pointer.
char* PyByteArray_AsString (PyObject *bytearray)
Return the contents of bytearray as a char array after checking for a NULL pointer. The returned array always
has an extra null byte appended.

int PyByteArray_Resize (PyObject *bytearray, Py_ssize_t len)
bytearray?] W5 52 27|15 leno 2 Z A g}

84 Chapter 8. /4 A A

ol

The Python/C API, & x] 8] A 3.7.16

LA

AMARE SEE A AL 3 Pohe EAHE FA5A Pk

char* PyByteArray_AS_STRING (PyObject *bytearray)
PyByteArray AsString ()% slaZE v 4.

Py_ssize_t PyByteArray_GET_SIZE (PyObject *bytearray)
PyByteArray_Size ()& "2 2 ¥ A.

8.3.3 Unicode Objects and Codecs

Unicode Objects

Since the implementation of PEP 393 in Python 3.3, Unicode objects internally use a variety of representations, in
order to allow handling the complete range of Unicode characters while staying memory efficient. There are special
cases for strings where all code points are below 128, 256, or 65536; otherwise, code points must be below 1114112
(which is the full Unicode range).

Py _UNICODE* and UTF-8 representations are created on demand and cached in the Unicode object. The
Py_UNICODE* representation is deprecated and inefficient; it should be avoided in performance- or memory-
sensitive situations.

Due to the transition between the old APIs and the new APIs, Unicode objects can internally be in two states depending
on how they were created:

 “canonical” Unicode objects are all objects created by a non-deprecated Unicode API. They use the most
efficient representation allowed by the implementation.

¢ “legacy” Unicode objects have been created through one of the deprecated APIs (typically
PyUnicode_FromUnicode ()) and only bear the Py_UNICODE* representation; you will have to
call PyUnicode READY () on them before calling any other API.

Unicode Type

These are the basic Unicode object types used for the Unicode implementation in Python:

Py_UCS4

Py_UCS2

Py_UCS1
These types are typedefs for unsigned integer types wide enough to contain characters of 32 bits, 16 bits and 8
bits, respectively. When dealing with single Unicode characters, use Py UCS4.

B A 3.30] &7}

Py_UNICODE
This is a typedef of wchar_t, which is a 16-bit type or 32-bit type depending on the platform.

WA 3.39 4] ¥ 7 In previous versions, this was a 16-bit type or a 32-bit type depending on whether you
selected a “narrow” or “wide” Unicode version of Python at build time.

PyASCIIObject

PyCompactUnicodeObject

PyUnicodeObject
These subtypes of PyOb ject represent a Python Unicode object. In almost all cases, they shouldn’t be used
directly, since all API functions that deal with Unicode objects take and return PyOb ject pointers.

WA 330 27}

PyTypeObject PyUnicode_Type
This instance of Py TypeOb ject represents the Python Unicode type. It is exposed to Python code as st r.

8.3. A Fx AH 85

https://www.python.org/dev/peps/pep-0393

The Python/C API, & x| B] A 3.7.16

The following APIs are really C macros and can be used to do fast checks and to access internal read-only data of
Unicode objects:

int PyUnicode_Check (PyObject *0)
Return true if the object o is a Unicode object or an instance of a Unicode subtype.

int PyUnicode_CheckExact (PyObject *o)
Return true if the object o is a Unicode object, but not an instance of a subtype.

int PyUnicode_READY (PyObject *o)
Ensure the string object o is in the “canonical” representation. This is required before using any of the access
macros described below.

Returns 0 on success and —1 with an exception set on failure, which in particular happens if memory allocation
fails.

WA 3.30] F7}.

Py_ssize_t PyUnicode_GET_LENGTH (PyObject *0)
Return the length of the Unicode string, in code points. o has to be a Unicode object in the “canonical”
representation (not checked).

WA 3.30] F7}.

Py_UCSI* PyUnicode_1BYTE_DATA (PyObject *0)

Py_UCS2* PyUnicode_2BYTE_DATA (PyObject *0)

Py_UCS4* PyUnicode_4BYTE_DATA (PyObject *0)
Return a pointer to the canonical representation cast to UCS1, UCS2 or UCS4 integer types for direct char-
acter access. No checks are performed if the canonical representation has the correct character size; use
PyUnicode_KIND () to select the right macro. Make sure PyUnicode_ READY () has been called be-
fore accessing this.

W7 3.30] 7%

PyUnicode_WCHAR_KIND
PyUnicode_1BYTE_KIND
PyUnicode_2BYTE_KIND
PyUnicode_4BYTE_KIND

Return values of the PyUnicode KIND () macro.

WA 3.30] F7}.

int PyUnicode_KIND (PyObject *0)
Return one of the PyUnicode kind constants (see above) that indicate how many bytes per character this Uni-
code object uses to store its data. o has to be a Unicode object in the “canonical” representation (not checked).

WA 330 7}

void* PyUnicode_DATA (PyObject *0)
Return a void pointer to the raw Unicode buffer. o has to be a Unicode object in the “canonical” representation
(not checked).

WA 330 7}

void PyUnicode_WRITE (int kind, void *data, Py_ssize_t index, Py_UCS4 value)
Write into a canonical representation data (as obtained with PyUnicode_DATA ()). This macro does not
do any sanity checks and is intended for usage in loops. The caller should cache the kind value and data pointer
as obtained from other macro calls. index is the index in the string (starts at 0) and value is the new code point
value which should be written to that location.

WA 330 =7}

Py_UCS4 PyUnicode_READ (int kind, void *data, Py_ssize_t index)
Read a code point from a canonical representation data (as obtained with PyUnicode_DATA ()). No checks
or ready calls are performed.

WA 3.30] F7}.

86 Chapter 8. -4 A A=

The Python/C API, & x] 8] A 3.7.16

Py_UCS4 PyUnicode_READ_CHAR (PyObject *o, Py_ssize_t index)
Read a character from a Unicode object o, which must be in the “canonical” representation. This is less efficient
than PyUnicode_READ () if you do multiple consecutive reads.

B A 3.30]] 7}

PyUnicode_MAX_CHAR_VALUE (PyObject *0)
Return the maximum code point that is suitable for creating another string based on o, which must be in the
“canonical” representation. This is always an approximation but more efficient than iterating over the string.

¥ A 3.30] F7}.

int PyUnicode_ClearFreeLlist ()
Clear the free list. Return the total number of freed items.

Py_ssize_t PyUnicode_GET_SIZE (PyObject *0)
Return the size of the deprecated Py UNICODE representation, in code units (this includes surrogate pairs as
2 units). o has to be a Unicode object (not checked).

Deprecated since version 3.3, will be removed in version 4.0: Part of the old-style Unicode API, please migrate
to using PyUnicode_GET_LENGTH ().

Py_ssize_t PyUnicode_GET_DATA_SIZE (PyObject *0)
Return the size of the deprecated Py_ UNICODE representation in bytes. o has to be a Unicode object (not
checked).

Deprecated since version 3.3, will be removed in version 4.0: Part of the old-style Unicode API, please migrate
to using PyUnicode GET_LENGTH ().

Py_UNICODE* PyUnicode_AS_UNICODE (PyObject *o)

const char* PyUnicode_AS_DATA (PyObject *0)
Return a pointer to a Py_ UNICODE representation of the object. The returned buffer is always terminated
with an extra null code point. It may also contain embedded null code points, which would cause the string to
be truncated when used in most C functions. The AS_DATA form casts the pointer to const char *. The
o argument has to be a Unicode object (not checked).

W A 3.3 4] ¥ 7 : This macro is now inefficient — because in many cases the Py_ UNICODE represen-
tation does not exist and needs to be created — and can fail (return NULL with an exception set). Try to
port the code to use the new PyUnicode_nBYTE_DATA () macros or use PyUnicode WRITE () or
PyUnicode_READ().

Deprecated since version 3.3, will be removed in version 4.0: Part of the old-style Unicode API, please migrate
to using the PyUnicode_nBYTE_DATA () family of macros.

Unicode Character Properties

Unicode provides many different character properties. The most often needed ones are available through these macros
which are mapped to C functions depending on the Python configuration.

int Py_UNICODE_ISSPACE (Py_UNICODE ch)
Return 1 or 0 depending on whether c# is a whitespace character.

int Py_UNICODE_ISLOWER (Py UNICODE ch)
Return 1 or 0 depending on whether ch is a lowercase character.

int Py_UNICODE_ISUPPER (Py_UNICODE ch)
Return 1 or 0 depending on whether c# is an uppercase character.

int Py_UNICODE_ISTITLE (Py UNICODE ch)
Return 1 or 0 depending on whether c# is a titlecase character.

int Py_UNICODE_ISLINEBREAK (Py_UNICODE ch)
Return 1 or 0 depending on whether ch is a linebreak character.

int Py _UNICODE_ISDECIMAL (Py UNICODE ch)
Return 1 or 0 depending on whether ch is a decimal character.

8.3. A Fx AH 87

The Python/C API, & x| B] A 3.7.16

int Py_UNICODE_ISDIGIT (Py_UNICODE ch)
Return 1 or 0 depending on whether ch is a digit character.

int Py_UNICODE_ISNUMERIC (Py UNICODE ch)
Return 1 or 0 depending on whether ch is a numeric character.

int Py _UNICODE_ISALPHA (Py_UNICODE ch)
Return 1 or 0 depending on whether ch is an alphabetic character.

int Py_UNICODE_ISALNUM (Py_ UNICODE ch)
Return 1 or 0 depending on whether ch is an alphanumeric character.

int Py_UNICODE_ISPRINTABLE (Py_UNICODE ch)
Return 1 or 0 depending on whether c# is a printable character. Nonprintable characters are those characters
defined in the Unicode character database as “Other” or “Separator”, excepting the ASCII space (0x20) which
is considered printable. (Note that printable characters in this context are those which should not be escaped
when repr () is invoked on a string. It has no bearing on the handling of strings written to sys.stdout
or sys.stderr.)

These APIs can be used for fast direct character conversions:

Py_UNICODE Py_UNICODE_TOLOWER (Py_UNICODE ch)
Return the character ¢/ converted to lower case.

¥ A 3.35 E] 5| A : This function uses simple case mappings.

Py_UNICODE Py_UNICODE_TOUPPER (Py_UNICODE ch)
Return the character ch converted to upper case.

¥ A 3.35 5 3| A]: This function uses simple case mappings.

Py_UNICODE Py_UNICODE_TOTITLE (Py_UNICODE ch)
Return the character ch converted to title case.

WA 3.3% €] 5| A]: This function uses simple case mappings.

int Py_UNICODE_TODECIMAL (Py_UNICODE ch)
Return the character ch converted to a decimal positive integer. Return —1 if this is not possible. This macro
does not raise exceptions.

int Py_UNICODE_TODIGIT (Py_UNICODE ch)
Return the character ch converted to a single digit integer. Return -1 if this is not possible. This macro does
not raise exceptions.

double Py_UNICODE_TONUMERIC (Py_UNICODE ch)
Return the character ch converted to a double. Return —1 . O if this is not possible. This macro does not raise
exceptions.

These APIs can be used to work with surrogates:

Py_UNICODE_IS_SURROGATE (ch)
Check if ch is a surrogate (0xD800 <= ch <= O0xDFFF).

Py_UNICODE_IS_HIGH_SURROGATE (ch)
Check if ch is a high surrogate (0xD800 <= ch <= OxDBFF).

Py_UNICODE_IS_LOW_SURROGATE (ch)
Check if ch is a low surrogate (0xDCO0 <= ch <= OxDFFF).

Py_UNICODE_JOIN_SURROGATES (high, low)
Join two surrogate characters and return a single Py_UCS4 value. high and low are respectively the leading
and trailing surrogates in a surrogate pair.

88 Chapter 8. % 214 A

ol

The Python/C API, & x] 8] A 3.7.16

Creating and accessing Unicode strings

To create Unicode objects and access their basic sequence properties, use these APIs:

PyObject* PyUnicode_New (Py_ssize_t size, Py_UCS4 maxchar)
Return value: New reference. Create a new Unicode object. maxchar should be the true maximum code point

to be placed in the string. As an approximation, it can be rounded up to the nearest value in the sequence 127,
255, 65535, 1114111.

This is the recommended way to allocate a new Unicode object. Objects created using this function are not
resizable.

WA 330 7}

PyObject* PyUnicode_FromKindAndData (int kind, const void *buffer, Py_ssize_t size)
Return value: New reference. Create a new Unicode object with the given kind (possible values are
PyUnicode_1BYTE_KIND etc., as returned by PyUnicode_KIND ()). The buffer must point to an
array of size units of 1, 2 or 4 bytes per character, as given by the kind.

WA 3.30] F7}.

PyObject* PyUnicode_FromStringAndSize (const char *u, Py_ssize_t size)
Return value: New reference. Create a Unicode object from the char buffer u. The bytes will be interpreted as
being UTF-8 encoded. The buffer is copied into the new object. If the buffer is not NULL, the return value
might be a shared object, i.e. modification of the data is not allowed.

If u is NULL, this function behaves like PyUnicode FromUnicode () with the buffer set to NULL. This
usage is deprecated in favor of PyUnicode_New ().

PyObject *PyUnicode_FromString (const char *u)
Return value: New reference. Create a Unicode object from a UTF-8 encoded null-terminated char buffer u.

PyObject* PyUnicode_FromFormat (const char *format, ...)
Return value: New reference. Take a C print £ () -style format string and a variable number of arguments,
calculate the size of the resulting Python Unicode string and return a string with the values formatted into it.
The variable arguments must be C types and must correspond exactly to the format characters in the format
ASClII-encoded string. The following format characters are allowed:

8.3. A Fx AH 89

The Python/C API, & x| B] A 3.7.16

Format Characters | Type Comment

5% n/a The literal % character.

%c int A single character, represented as aCint.
%d int Equivalent to print £ ("%d").

$u unsigned int Equivalent to print £ ("su").!

%1d long Equivalent to print £ ("%1d")0
$1i long Equivalent to printf ("$11i my 1
%$1lu unsigned long Equivalent to print £ ("$1u").!
$11d long long Equivalent to printf ("$11d").!
$111i long long Equivalent to print £ ("$111i").!
$1lu unsigned long long Equivalent to printf ("$11u").!
$zd Py_ssize_t Equivalent to print £ ("$zd").!
$zi Py_ssize_t Equivalent to print £ ("$zi").!
%zu size_t Equivalent to printf ("$zu") R
$i int Equivalent to print £ ("%i"). T
$x int Equivalent to print £ ("$x").!
%s const char* A null-terminated C character array.

P const void* The hex representation of a C pointer. Mostly
equivalent to print f ("$p") except that it is
guaranteed to start with the literal 0x regardless of
what the platform’s print £ yields.

$A PyObject* The result of calling ascii ().

$U PyObject* A Unicode object.

SV PyObject*, const char* | A Unicode object (which may be NULL) and a
null-terminated C character array as a second
parameter (which will be used, if the first parameter is
NULL).

%S PyObject* The result of calling PyObject_Str ().

%R PyObject* The result of calling PyOb ject_Repr ().

An unrecognized format character causes all the rest of the format string to be copied as-is to the result string,

and any extra arguments discarded.

3
number of bytes for "%

The width formatter unit is number of characters rather than bytes. The precision formatter unit is
s" and "$V" (if the PyObject* argument is NULL), and a number of characters

for "$A", "sU", "%S" "$R" and "$V" (if the PyObject* argument is not NULL).

WA 32004 HA
H A 33004 WA
WA

WA 34004
added.

: Support for "$11d" and "$11u" added.
Support for "$11i", "$11i" and "$zi" added.

Support width and precision formatter for "$s", "$A", "$U", "SV", "$3S", "SR"

PyObject* PyUnicode_FromFormatV (const char *format, va_list vargs)
Return value: New reference. Identical to PyUnicode FromFormat () except that it takes exactly two

arguments.

PyObject* PyUnicode_FromEncodedObject (PyObject *obj, const char *encoding, const char *errors)
Return value: New reference. Decode an encoded object obj to a Unicode object.

bytes, bytearray and other bytes-like objects are decoded according to the given encoding and using the
error handling defined by errors. Both can be NULL to have the interface use the default values (see Built-in

Codecs for details).

All other objects, including Unicode objects, cause a TypeError to be set.

The API returns NULL if there was an error. The caller is responsible for decref’ing the returned objects.

! For integer specifiers (d, u, 1d, 1i, lu, 11d, 1li, 1lu, zd, zi, zu, i, x): the O-conversion flag has effect even when a precision is given.

90

Chapter 8. 77 A Al

The Python/C API, & x] 8] A 3.7.16

Py_ssize_t PyUnicode_GetLength (PyObject *unicode)
Return the length of the Unicode object, in code points.

WA 3.30] F7}.

Py_ssize_t PyUnicode_CopyCharacters (PyObject *to, Py_ssize_t to_start, PyObject *from,
Py_ssize_t from_start, Py_ssize_t how_many)
Copy characters from one Unicode object into another. This function performs character conversion when
necessary and falls back to memcpy () if possible. Returns —1 and sets an exception on error, otherwise
returns the number of copied characters.

WA 3300 7}

Py_ssize_t PyUnicode_Fill (PyObject *unicode, Py_ssize_t start, Py_ssize_t length, Py_UCS4 fill_char)
Fill a string with a character: write fill_char into unicode [start:start+length].
Fail if fill_char is bigger than the string maximum character, or if the string has more than 1 reference.
Return the number of written character, or return —1 and raise an exception on error.
W7 330 27

int PyUnicode_WriteChar (PyObject *unicode, Py_ssize_t index, Py_UCS4 character)
Write a character to a string. The string must have been created through PyUnicode_New (). Since Unicode
strings are supposed to be immutable, the string must not be shared, or have been hashed yet.

This function checks that unicode is a Unicode object, that the index is not out of bounds, and that the object
can be modified safely (i.e. that it its reference count is one).

B A 3.30] &7}

Py_UCS4 PyUnicode_ReadChar (PyObject *unicode, Py_ssize_t index)
Read a character from a string. This function checks that unicode is a Unicode object and the index is not out
of bounds, in contrast to the macro version PyUnicode READ_CHAR().

B A 3.30]] &7}

PyObject* PyUnicode_Substring (PyObject *str, Py_ssize_t start, Py_ssize_t end)
Return value: New reference. Return a substring of str, from character index start (included) to character index
end (excluded). Negative indices are not supported.

WA 330 =7}

Py_UCS4* PyUnicode_AsUCS4 (PyObject *u, Py_UCS4 *buffer, Py_ssize_t buflen, int copy_null)
Copy the string u into a UCS4 buffer, including a null character, if copy_null is set. Returns NULL and sets an
exception on error (in particular, a SystemError if buflen is smaller than the length of u). buffer is returned
on success.

B A 3.30] &7}

Py_UCS4* PyUnicode_AsUCS4Copy (PyObject *u)
Copy the string u into a new UCS4 buffer that is allocated using PyMem_Malloc (). If this fails, NULL is
returned with a MemoryError set. The returned buffer always has an extra null code point appended.

B A 3.30]] 7}

8.3. A Fx AH 91

The Python/C API, & x| B] A 3.7.16

Deprecated Py_UNICODE APIs

Deprecated since version 3.3, will be removed in version 4.0.

These API functions are deprecated with the implementation of PEP 393. Extension modules can continue using
them, as they will not be removed in Python 3.x, but need to be aware that their use can now cause performance and
memory hits.

PyObject* PyUnicode_FromUnicode (const Py_UNICODE *u, Py_ssize_t size)

Return value: New reference. Create a Unicode object from the Py_UNICODE buffer u of the given size. u
may be NULL which causes the contents to be undefined. It is the user’s responsibility to fill in the needed
data. The buffer is copied into the new object.

If the buffer is not NULL, the return value might be a shared object. Therefore, modification of the resulting
Unicode object is only allowed when u is NULL.

If the buffer is NULL, PyUnicode_READY () must be called once the string content has been filled before
using any of the access macros such as PyUnicode KIND ().

Please migrate to using PyUnicode_FromKindAndData (), PyUnicode_ FromWideChar () or
PyUnicode_New ().

Py_UNICODE* PyUnicode_AsUnicode (PyObject *unicode)

Return a read-only pointer to the Unicode object’s internal Py_ UNICODE buffer, or NULL on error. This will
create the Py UNICODE * representation of the object if it is not yet available. The buffer is always terminated
with an extra null code point. Note that the resulting Py UNICODE string may also contain embedded null
code points, which would cause the string to be truncated when used in most C functions.

Please migrate to using PyUnicode_ AsUCS4 (), PyUnicode_AsWideChar (),
PyUnicode_ReadChar () or similar new APIs.

PyObject* PyUnicode_TransformDecimalToASCII (Py_UNICODE *s, Py_ssize_t size)

Return value: New reference. Create a Unicode object by replacing all decimal digits in Py UNICODE buffer
of the given size by ASCII digits 0-9 according to their decimal value. Return NULL if an exception occurs.

Py_UNICODE* PyUnicode_AsUnicodeAndSize (PyObject *unicode, Py_ssize_t *size)

Like PyUnicode _AsUnicode (), but also saves the Py UNICODE () array length (excluding the extra
null terminator) in size. Note that the resulting Py UNICODE * string may contain embedded null code points,
which would cause the string to be truncated when used in most C functions.

B A 3.30] F7}.

Py_UNICODE* PyUnicode_AsUnicodeCopy (PyObject *unicode)

Create a copy of a Unicode string ending with a null code point. Return NULL and raise a MemoryError
exception on memory allocation failure, otherwise return a new allocated buffer (use PyMem Free () to free
the buffer). Note that the resulting Py_ UNICODE * string may contain embedded null code points, which
would cause the string to be truncated when used in most C functions.

B A 3.2 =7}

Please migrate to using PyUnicode_AsUCS4Copy () or similar new APIs.

Py_ssize_t PyUnicode_GetSize (PyObject *unicode)

Return the size of the deprecated Py_ UNICODE representation, in code units (this includes surrogate pairs as
2 units).

Please migrate to using PyUnicode_GetLength ().

PyObject* PyUnicode_FromObject (PyObject *obj)

Return value: New reference. Copy an instance of a Unicode subtype to a new true Unicode object if necessary.
If obj is already a true Unicode object (not a subtype), return the reference with incremented refcount.

Objects other than Unicode or its subtypes will cause a TypeError.

92

Chapter 8. 77 A Al

https://www.python.org/dev/peps/pep-0393

The Python/C API, & x] 8] A 3.7.16

Locale Encoding

The current locale encoding can be used to decode text from the operating system.

PyObject* PyUnicode_DecodeLocaleAndSize (const char *str, Py_ssize_t len, const char *errors)
Return value: New reference. Decode a string from UTF-8 on Android, or from the current locale encoding
on other platforms. The supported error handlers are "strict" and "surrogateescape" (PEP 383).
The decoder uses "strict™ error handler if errors is NULL. str must end with a null character but cannot
contain embedded null characters.

Use PyUnicode_DecodeFSDefaultAndSize () to decode a string from
Py_FileSystemDefaultEncoding (the locale encoding read at Python startup).

This function ignores the Python UTF-8 mode.
o ®B7]:

The Py_DecodeLocale () function.

w7 330 7%

¥ A 3.79]| A ¥ 7 : The function now also uses the current locale encoding for the surrogateescape
error handler, except on Android. Previously, Py_DecodeLocale () was used for the
surrogateescape, and the current locale encoding was used for strict.

PyObject* PyUnicode_DecodeLocale (const char *str, const char *errors)
Return value: New reference. Similar to PyUnicode_DecodeLocaleAndSize (), but compute the
string length using strlen ().

B A 3.30] F7}.

PyObject* PyUnicode_EncodelLocale (PyObject *unicode, const char *errors)
Return value: New reference. Encode a Unicode object to UTF-8 on Android, or to the current locale encoding
on other platforms. The supported error handlers are "strict" and "surrogateescape" (PEP 383).
The encoder uses " st rict " error handler if errorsis NULL. Return a bytes object. unicode cannot contain
embedded null characters.

Use PyUnicode_EncodeFSDefault () toencodeastringtoPy_FileSystemDefaultEncoding
(the locale encoding read at Python startup).

This function ignores the Python UTF-8 mode.
© B7]:

The Py_EncodeLocale () function.

W 330 F7}

¥ A 3.79]| A ¥ 7 : The function now also uses the current locale encoding for the surrogateescape
error handler, except on Android. Previously, Py _EncodeLocale () was used for the
surrogateescape, and the current locale encoding was used for strict.

File System Encoding

To encode and decode file names and other environment strings, Py_FileSystemDefaultEncoding should
be used as the encoding, and Py_FileSystemDefaultEncodeErrors should be used as the error handler
(PEP 383 and PEP 529). To encode file names to bytes during argument parsing, the "O&" converter should be
used, passing PyUnicode_FSConverter () asthe conversion function:

int PyUnicode_FSConverter (PyObject* obj, void* result)
ParseTuple converter: encode str objects — obtained directly or through the os.PathLike interface —

to bytes using PyUnicode_EncodeFSDefault ();bytes objects are output as-is. result must be a
PyBytesOb ject * which must be released when it is no longer used.

B A 3.10] =7}

8.3. A Fx AH 93

https://www.python.org/dev/peps/pep-0383
https://www.python.org/dev/peps/pep-0383
https://www.python.org/dev/peps/pep-0383
https://www.python.org/dev/peps/pep-0529

The Python/C API, & x| B] A 3.7.16

WA 3.690 4 ¥ 7 : Accepts a path-like object.

To decode file names to str during argument parsing, the "O&" converter should be used, passing
PyUnicode_FSDecoder () as the conversion function:

int PyUnicode_FSDecoder (PyObject* obj, void* result)

ParseTuple converter: decode bytes objects — obtained either directly or indirectly through the os.
PathLike interface — to str using PyUnicode_DecodeFSDefaultAndSize (); str objects are
output as-is. result must be a PyUnicodeObject * which must be released when it is no longer used.

B A 320 F7}.
WA 3.6 A X7 Accepts a path-like object.

PyObject* PyUnicode_DecodeFSDefaultAndSize (const char *s, Py_ssize_t size)

Return value: New reference. Decode a string using Py_FileSystemDefaultEncoding and the
Py_FileSystemDefaultEncodeErrors error handler.

If Py_FileSystemDefaultEncoding is not set, fall back to the locale encoding.

Py_FileSystemDefaultEncoding is initialized at startup from the locale encoding and can-
not be modified later. If you need to decode a string from the current locale encoding, use
PyUnicode_DecodeLocaleAndSize ().

o] ®B7]:
The Py _DecodelLocale () function.

WA 3.6014 WA : Use Py_FileSystemDefaultEncodeErrors error handler.

PyObject* PyUnicode_DecodeFSDefault (const char *s)

Return value: New reference. Decode a null-terminated stringusing Py_FileSystemDefaultEncoding
and the Py_FileSystemDefaultEncodeErrors error handler.

If Py_FileSystemDefaultEncoding is not set, fall back to the locale encoding.
Use PyUnicode_DecodeFSDefaultAndSize () if you know the string length.

WA 3.690A W7 : Use Py_FileSystemDefaultEncodeErrors error handler.

PyObject* PyUnicode_EncodeFSDefault (PyObject *unicode)

Return value: New reference. Encode a Unicode object to Py_FileSystemDefaultEncoding with the
Py_FileSystemDefaultEncodeErrors error handler, and return bytes. Note that the resulting
bytes object may contain null bytes.

If Py_FileSystemDefaultEncoding is not set, fall back to the locale encoding.

Py_FileSystemDefaultEncoding is initialized at startup from the locale encoding and can-
not be modified later. If you need to encode a string to the current locale encoding, use
PyUnicode_EncodeLocale ().

o 17
The Py_EncodeLocale () function.
WA 3.20] 7}

WA 3.6091A4 W7 : Use Py_FileSystemDefaultEncodeErrors error handler.

94

Chapter 8. 77 A Al

The Python/C API, & x] 8] A 3.7.16

wchar_t Support

wchar_t support for platforms which support it:

PyObject* PyUnicode_FromWideChar (const wchar_t *w, Py_ssize_t size)
Return value: New reference. Create a Unicode object from the wchar_t buffer w of the given size. Passing
-1 as the size indicates that the function must itself compute the length, using weslen. Return NULL on failure.

Py_ssize_t PyUnicode_AsWideChar (PyObject *unicode, wchar_t *w, Py_ssize_t size)
Copy the Unicode object contents into the wchar_t buffer w. At most size wchar_t characters are copied
(excluding a possibly trailing null termination character). Return the number of wchar_t characters copied
or —1 in case of an error. Note that the resulting wchar_t* string may or may not be null-terminated. It is
the responsibility of the caller to make sure that the wchar_t * string is null-terminated in case this is required
by the application. Also, note that the wchar_t * string might contain null characters, which would cause the
string to be truncated when used with most C functions.

wchar_t* PyUnicode_AsWideCharString (PyObject *unicode, Py_ssize_t *size)
Convert the Unicode object to a wide character string. The output string always ends with a null character. If
size is not NULL, write the number of wide characters (excluding the trailing null termination character) into
*size. Note that the resulting wchar_t string might contain null characters, which would cause the string
to be truncated when used with most C functions. If size is NULL and the wchar_t* string contains null
characters a ValueError is raised.

Returns a buffer allocated by PyMem_Alloc () (use PyMem Free () to free it) on success. On error,
returns NULL and *size is undefined. Raises a MemoryError if memory allocation is failed.

B A 3.20] F7}.

WA 3.70]| 4] ¥ 7 : Raises a ValueError if sizeis NULL and the wchar_t * string contains null charac-
ters.

Built-in Codecs

Python provides a set of built-in codecs which are written in C for speed. All of these codecs are directly usable via
the following functions.

Many of the following APIs take two arguments encoding and errors, and they have the same semantics as the ones
of the built-in str () string object constructor.

Setting encoding to NULL causes the default encoding to be used which is ASCIL. The file sys-
tem calls should use PyUnicode_ FSConverter () for encoding file names. This uses the variable
Py_FileSystemDefaultEncoding internally. This variable should be treated as read-only: on some sys-
tems, it will be a pointer to a static string, on others, it will change at run-time (such as when the application invokes
setlocale).

Error handling is set by errors which may also be set to NULL meaning to use the default handling defined for the
codec. Default error handling for all built-in codecs is “strict” (ValueError is raised).

The codecs all use a similar interface. Only deviation from the following generic ones are documented for simplicity.

Generic Codecs

These are the generic codec APIs:

PyObject* PyUnicode_Decode (const char *s, Py_ssize_t size, const char *encoding, const char *errors)
Return value: New reference. Create a Unicode object by decoding size bytes of the encoded string s. encoding
and errors have the same meaning as the parameters of the same name in the str () built-in function. The
codec to be used is looked up using the Python codec registry. Return NULL if an exception was raised by the
codec.

8.3. A Fx AH 95

The Python/C API, & x| B] A 3.7.16

PyObject* PyUnicode_AsEncodedString (PyObject *unicode, const char *encoding, const char *er-

rors)
Return value: New reference. Encode a Unicode object and return the result as Python bytes object. encoding

and errors have the same meaning as the parameters of the same name in the Unicode encode () method.
The codec to be used is looked up using the Python codec registry. Return NULL if an exception was raised
by the codec.

PyObject* PyUnicode_Encode (const Py _UNICODE *s, Py_ssize_t size, const char *encoding, const

char *errors)
Return value: New reference. Encode the Py UNICODE buffer s of the given size and return a Python bytes

object. encoding and errors have the same meaning as the parameters of the same name in the Unicode
encode () method. The codec to be used is looked up using the Python codec registry. Return NULL if an
exception was raised by the codec.

Deprecated since version 3.3, will be removed in version 4.0: Part of the old-style Py_ UNTCODE API; please
migrate to using PyUnicode_AsEncodedString ().

UTF-8 Codecs

These are the UTF-8 codec APIs:

PyObject* PyUnicode_DecodeUTF8 (const char *s, Py_ssize_t size, const char *errors)
Return value: New reference. Create a Unicode object by decoding size bytes of the UTF-8 encoded string s.
Return NULL if an exception was raised by the codec.

PyObject* PyUnicode_DecodeUTF8Stateful (const char *s, Py_ssize_t size, const char *errors,

Py_ssize_t *consumed)
Return value: New reference. If consumed is NULL, behave like PyUnicode_DecodeUTFS8 (). If con-

sumed is not NULL, trailing incomplete UTF-8 byte sequences will not be treated as an error. Those bytes will
not be decoded and the number of bytes that have been decoded will be stored in consumed.

PyObject* PyUnicode_AsUTF8String (PyObject *unicode)
Return value: New reference. Encode a Unicode object using UTF-8 and return the result as Python bytes
object. Error handling is “strict”. Return NULL if an exception was raised by the codec.

const char* PyUnicode_AsUTF8AndSize (PyObject *unicode, Py_ssize_t *size)
Return a pointer to the UTF-8 encoding of the Unicode object, and store the size of the encoded representation
(in bytes) in size. The size argument can be NULL; in this case no size will be stored. The returned buffer always
has an extra null byte appended (not included in size), regardless of whether there are any other null code points.

In the case of an error, NULL is returned with an exception set and no size is stored.

This caches the UTF-8 representation of the string in the Unicode object, and subsequent calls will return a
pointer to the same buffer. The caller is not responsible for deallocating the buffer.

B A 3.30]] &7}
WA 3.79]| 4] ¥ 7 : The return type is now const char * rather of char *.

const char* PyUnicode_AsUTF8 (PyObject *unicode)
As PyUnicode_ AsUTF8AndSize (), but does not store the size.

B A 3.30] F7}.
WA 3.79]| 4] ¥ 7 : The return type is now const char * rather of char *.

PyObject* PyUnicode_EncodeUTF8 (const Py_UNICODE *s, Py_ssize_t size, const char *errors)
Return value: New reference. Encode the Py UNICODE buffer s of the given size using UTF-8 and return a
Python bytes object. Return NULL if an exception was raised by the codec.

Deprecated since version 3.3, will be removed in version 4.0: Part of the old-style Py UNICODE
API; please migrate to using PyUnicode AsUTF8String (), PyUnicode AsUTF8AndSize () or
PyUnicode_AsEncodedString().

96 Chapter 8. -4 A A=

The Python/C API, & x] 8] A 3.7.16

UTF-32 Codecs

These are the UTF-32 codec APIs:

PyObject* PyUnicode_DecodeUTF32 (const char *s, Py_ssize_t size, const char *errors, int *byteorder)
Return value: New reference. Decode size bytes from a UTF-32 encoded buffer string and return the corre-
sponding Unicode object. errors (if non-NULL) defines the error handling. It defaults to “strict”.

If byteorder is non-NULL, the decoder starts decoding using the given byte order:

*byteorder == -1: little endian
*byteorder == 0: native order
*byteorder == 1: Dbig endian

If *byteorder is zero, and the first four bytes of the input data are a byte order mark (BOM), the decoder
switches to this byte order and the BOM is not copied into the resulting Unicode string. If *byteorder is
-1 or 1, any byte order mark is copied to the output.

After completion, *byteorder is set to the current byte order at the end of input data.
If byteorder is NULL, the codec starts in native order mode.
Return NULL if an exception was raised by the codec.

PyObject* PyUnicode_DecodeUTF32Stateful (const char *s, Py_ssize_t size, const char *errors,

int *byteorder, Py_ssize_t *consumed)
Return value: New reference. If consumed is NULL, behave like PyUnicode_DecodeUTF32 (). If con-

sumed is not NULL, PyUnicode_DecodeUTF32Stateful () will not treat trailing incomplete UTF-32
byte sequences (such as a number of bytes not divisible by four) as an error. Those bytes will not be decoded
and the number of bytes that have been decoded will be stored in consumed.

PyObject* PyUnicode_AsUTF32String (PyObject *unicode)
Return value: New reference. Return a Python byte string using the UTF-32 encoding in native byte order. The
string always starts with a BOM mark. Error handling is “strict”. Return NULL if an exception was raised by
the codec.

PyObject* PyUnicode_EncodeUTF32 (const Py_UNICODE *s, Py_ssize_t size, const char *errors, int by-

teorder)
Return value: New reference. Return a Python bytes object holding the UTF-32 encoded value of the Unicode

data in s. Output is written according to the following byte order:

byteorder == -1: little endian
byteorder == 0: native byte order (writes a BOM mark)
byteorder == 1: Dbig endian

If byteorder is 0, the output string will always start with the Unicode BOM mark (U+FEFF). In the other two
modes, no BOM mark is prepended.

If Py_UNICODE_WIDE is not defined, surrogate pairs will be output as a single code point.
Return NULL if an exception was raised by the codec.

Deprecated since version 3.3, will be removed in version 4.0: Part of the old-style Py_ UNTCODE API; please
migrate to using PyUnicode AsUTEF32String () or PyUnicode_AsEncodedString ().

8.3. A Fx AH 97

The Python/C API, & x| B] A 3.7.16

UTF-16 Codecs

These are the UTF-16 codec APIs:

PyObject* PyUnicode_DecodeUTF16 (const char *s, Py_ssize_t size, const char *errors, int *byteorder)
Return value: New reference. Decode size bytes from a UTF-16 encoded buffer string and return the corre-
sponding Unicode object. errors (if non-NULL) defines the error handling. It defaults to “strict”.

If byteorder is non-NULL, the decoder starts decoding using the given byte order:

*byteorder == -1: little endian
*byteorder == 0: native order
*byteorder == 1: Dbig endian

If *byteorder is zero, and the first two bytes of the input data are a byte order mark (BOM), the decoder
switches to this byte order and the BOM is not copied into the resulting Unicode string. If *byteorder is
-1 or 1, any byte order mark is copied to the output (where it will result in either a \ufeff ora \ufffe
character).

After completion, *byteorder is set to the current byte order at the end of input data.
If byteorder is NULL, the codec starts in native order mode.
Return NULL if an exception was raised by the codec.

PyObject* PyUnicode_DecodeUTF16Stateful (const char *s, Py_ssize_t size, const char *errors,
int *byteorder, Py_ssize_t *consumed)
Return value: New reference. If consumed is NULL, behave like PyUnicode_DecodeUTF16 (). If con-
sumed is not NULL, PyUnicode_DecodeUTF16Stateful () will not treat trailing incomplete UTF-16
byte sequences (such as an odd number of bytes or a split surrogate pair) as an error. Those bytes will not be
decoded and the number of bytes that have been decoded will be stored in consumed.

PyObject* PyUnicode_AsUTF16String (PyObject *unicode)
Return value: New reference. Return a Python byte string using the UTF-16 encoding in native byte order. The
string always starts with a BOM mark. Error handling is “strict”. Return NULL if an exception was raised by
the codec.

PyObject* PyUnicode_EncodeUTF16 (const Py_UNICODE *s, Py_ssize_t size, const char *errors, int by-

teorder)
Return value: New reference. Return a Python bytes object holding the UTF-16 encoded value of the Unicode

data in s. Output is written according to the following byte order:

byteorder == -1: little endian
byteorder == 0: native byte order (writes a BOM mark)
byteorder == 1: Dbig endian

If byteorder is 0, the output string will always start with the Unicode BOM mark (U+FEFF). In the other two
modes, no BOM mark is prepended.

If Py_ UNICODE_WIDE is defined, a single Py_ UNTCODE value may get represented as a surrogate pair. If
it is not defined, each Py_ UNICODE values is interpreted as a UCS-2 character.

Return NULL if an exception was raised by the codec.

Deprecated since version 3.3, will be removed in version 4.0: Part of the old-style Py_ UNTCODE API; please
migrate to using PyUnicode AsUTF16String () or PyUnicode_AsEncodedString().

98 Chapter 8. -4 A A=

The Python/C API, & x] 8] A 3.7.16

UTF-7 Codecs

These are the UTF-7 codec APIs:

PyObject* PyUnicode_DecodeUTF7 (const char *s, Py_ssize_t size, const char *errors)
Return value: New reference. Create a Unicode object by decoding size bytes of the UTF-7 encoded string s.
Return NULL if an exception was raised by the codec.

PyObject* PyUnicode_DecodeUTF7Stateful (const char *s, Py_ssize_t size, const char *errors,

Py_ssize_t *consumed)
Return value: New reference. If consumed is NULL, behave like PyUnicode_DecodeUTF7 (). If con-

sumed is not NULL, trailing incomplete UTF-7 base-64 sections will not be treated as an error. Those bytes
will not be decoded and the number of bytes that have been decoded will be stored in consumed.

PyObject* PyUnicode_EncodeUTF7 (const Py UNICODE *s, Py_ssize_t size, int base64SetO,
int base64 WhiteSpace, const char *errors)
Return value: New reference. Encode the Py UNICODE buffer of the given size using UTF-7 and return a

Python bytes object. Return NULL if an exception was raised by the codec.

If base64SetO is nonzero, “Set O” (punctuation that has no otherwise special meaning) will be encoded in
base-64. If base64 WhiteSpace is nonzero, whitespace will be encoded in base-64. Both are set to zero for the
Python “utf-7” codec.

Deprecated since version 3.3, will be removed in version 4.0: Part of the old-style Py UNICODE API; please
migrate to using PyUnicode AsEncodedString ().

Unicode-Escape Codecs

These are the “Unicode Escape” codec APIs:

PyObject* PyUnicode_DecodeUnicodeEscape (const char *s, Py_ssize_t size, const char *errors)
Return value: New reference. Create a Unicode object by decoding size bytes of the Unicode-Escape encoded
string s. Return NULL if an exception was raised by the codec.

PyObject* PyUnicode_AsUnicodeEscapeString (PyObject *unicode)
Return value: New reference. Encode a Unicode object using Unicode-Escape and return the result as a bytes
object. Error handling is “strict”. Return NULL if an exception was raised by the codec.

PyObject* PyUnicode_EncodeUnicodeEscape (const Py_UNICODE *s, Py_ssize_t size)
Return value: New reference. Encode the Py UNICODE buffer of the given size using Unicode-Escape and
return a bytes object. Return NULL if an exception was raised by the codec.

Deprecated since version 3.3, will be removed in version 4.0: Part of the old-style Py UNTCODE API; please
migrate to using PyUnicode_AsUnicodeEscapeString().

Raw-Unicode-Escape Codecs

These are the “Raw Unicode Escape” codec APIs:

PyObject* PyUnicode_DecodeRawUnicodeEscape (const char *s, Py_ssize_t size, const char *er-

rors)
Return value: New reference. Create a Unicode object by decoding size bytes of the Raw-Unicode-Escape

encoded string s. Return NULL if an exception was raised by the codec.

PyObject* PyUnicode_AsRawUnicodeEscapeString (PyObject *unicode)
Return value: New reference. Encode a Unicode object using Raw-Unicode-Escape and return the result as a
bytes object. Error handling is “strict”. Return NULL if an exception was raised by the codec.

PyObject* PyUnicode_EncodeRawUnicodeEscape (const Py_UNICODE *s, Py_ssize_t size)
Return value: New reference. Encode the Py_ UNICODE buffer of the given size using Raw-Unicode-Escape
and return a bytes object. Return NULL if an exception was raised by the codec.

8.3. A Fx AH 99

The Python/C API, & x| B] A 3.7.16

Deprecated since version 3.3, will be removed in version 4.0: Part of the old-style
Py _UNICODE API; please migrate to using PyUnicode_AsRawUnicodeEscapeString () or
PyUnicode_AsEncodedString ().

Latin-1 Codecs

These are the Latin-1 codec APIs: Latin-1 corresponds to the first 256 Unicode ordinals and only these are accepted
by the codecs during encoding.

PyObject* PyUnicode_DecodeLatinl (const char *s, Py_ssize_t size, const char *errors)
Return value: New reference. Create a Unicode object by decoding size bytes of the Latin-1 encoded string s.
Return NULL if an exception was raised by the codec.

PyObject* PyUnicode_AsLatinlString (PyObject *unicode)
Return value: New reference. Encode a Unicode object using Latin-1 and return the result as Python bytes
object. Error handling is “strict”. Return NULL if an exception was raised by the codec.

PyObject* PyUnicode_EncodeLatinl (const Py_UNICODE *s, Py_ssize_t size, const char *errors)
Return value: New reference. Encode the Py UNICODE buffer of the given size using Latin-1 and return a
Python bytes object. Return NULL if an exception was raised by the codec.

Deprecated since version 3.3, will be removed in version 4.0: Part of the old-style Py UNICODE API; please
migrate to using PyUnicode_AsLatinlString () or PyUnicode AsEncodedString().

ASCII Codecs

These are the ASCII codec APIs. Only 7-bit ASCII data is accepted. All other codes generate errors.

PyObject* PyUnicode_DecodeASCII (const char *s, Py_ssize_t size, const char *errors)
Return value: New reference. Create a Unicode object by decoding size bytes of the ASCII encoded string s.
Return NULL if an exception was raised by the codec.

PyObject* PyUnicode_AsASCIIString (PyObject *unicode)
Return value: New reference. Encode a Unicode object using ASCII and return the result as Python bytes
object. Error handling is “strict”. Return NULL if an exception was raised by the codec.

PyObject* PyUnicode_EncodeASCII (const Py_UNICODE *s, Py_ssize_t size, const char *errors)
Return value: New reference. Encode the Py UNICODE buffer of the given size using ASCII and return a
Python bytes object. Return NULL if an exception was raised by the codec.

Deprecated since version 3.3, will be removed in version 4.0: Part of the old-style Py UNTICODE API; please
migrate to using PyUnicode AsASCIIString () or PyUnicode AsEncodedString ().

Character Map Codecs

This codec is special in that it can be used to implement many different codecs (and this is in fact what was done
to obtain most of the standard codecs included in the encodings package). The codec uses mapping to encode
and decode characters. The mapping objects provided must support the __getitem__ () mapping interface;
dictionaries and sequences work well.

These are the mapping codec APIs:

PyObject* PyUnicode_DecodeCharmap (const char *data, Py_ssize_t size, PyObject *mapping, const

char *errors)
Return value: New reference. Create a Unicode object by decoding size bytes of the encoded string s using the

given mapping object. Return NULL if an exception was raised by the codec.

If mapping is NULL, Latin-1 decoding will be applied. Else mapping must map bytes ordinals (integers in the
range from O to 255) to Unicode strings, integers (which are then interpreted as Unicode ordinals) or None.
Unmapped data bytes — ones which cause a LookupError, as well as ones which get mapped to None,
OxFFFE or '\ufffe', are treated as undefined mappings and cause an error.

100 Chapter 8. -4 A A=

The Python/C API, & x] 8] A 3.7.16

PyObject* PyUnicode_AsCharmapString (PyObject *unicode, PyObject *mapping)
Return value: New reference. Encode a Unicode object using the given mapping object and return the result as
a bytes object. Error handling is “strict”. Return NULL if an exception was raised by the codec.

The mapping object must map Unicode ordinal integers to bytes objects, integers in the range from 0 to 255 or
None. Unmapped character ordinals (ones which cause a LookupError) as well as mapped to None are
treated as “undefined mapping” and cause an error.

PyObject* PyUnicode_EncodeCharmap (const Py_UNICODE *s, Py_ssize_t size, PyObject *mapping,

const char *errors)
Return value: New reference. Encode the Py_ UNTCODE buffer of the given size using the given mapping object

and return the result as a bytes object. Return NULL if an exception was raised by the codec.

Deprecated since version 3.3, will be removed in version 4.0: Part of the old-style Py UNICODE API; please
migrate to using PyUnicode_AsCharmapString () or PyUnicode_ AsEncodedString().

The following codec API is special in that maps Unicode to Unicode.

PyObject* PyUnicode_Translate (PyObject *unicode, PyObject *mapping, const char *errors)
Return value: New reference. Translate a Unicode object using the given mapping object and return the resulting
Unicode object. Return NULL if an exception was raised by the codec.

The mapping object must map Unicode ordinal integers to Unicode strings, integers (which are then interpreted
as Unicode ordinals) or None (causing deletion of the character). Unmapped character ordinals (ones which
cause a LookupError) are left untouched and are copied as-is.

PyObject* PyUnicode_TranslateCharmap (const Py_UNICODE *s, Py_ssize_t size, PyObject *map-

ping, const char *errors)
Return value: New reference. Translate a Py_UNICODE buffer of the given size by applying a character

mapping table to it and return the resulting Unicode object. Return NULL when an exception was raised by the
codec.

Deprecated since version 3.3, will be removed in version 4.0: Part of the old-style Py UNICODE API; please
migrate to using PyUnicode_Translate (). or generic codec based API

MBCS codecs for Windows

These are the MBCS codec APIs. They are currently only available on Windows and use the Win32 MBCS converters
to implement the conversions. Note that MBCS (or DBCS) is a class of encodings, not just one. The target encoding
is defined by the user settings on the machine running the codec.

PyObject* PyUnicode_DecodeMBCS (const char *s, Py_ssize_t size, const char *errors)
Return value: New reference. Create a Unicode object by decoding size bytes of the MBCS encoded string s.
Return NULL if an exception was raised by the codec.

PyObject* PyUnicode_DecodeMBCSStateful (const char *s, Py_ssize_t size, const char *errors,

Py_ssize_t *consumed)
Return value: New reference. If consumed is NULL, behave like PyUnicode_DecodeMBCS (). If con-

sumed is not NULL, PyUnicode_DecodeMBCSStateful () will not decode trailing lead byte and the
number of bytes that have been decoded will be stored in consumed.

PyObject* PyUnicode_AsMBCSString (PyObject *unicode)
Return value: New reference. Encode a Unicode object using MBCS and return the result as Python bytes
object. Error handling is “strict”. Return NULL if an exception was raised by the codec.

PyObject* PyUnicode_EncodeCodePage (int code_page, PyObject *unicode, const char *errors)
Return value: New reference. Encode the Unicode object using the specified code page and return a Python
bytes object. Return NULL if an exception was raised by the codec. Use CP_ACP code page to get the MBCS
encoder.

B A 3.30] &7}

PyObject* PyUnicode_EncodeMBCS (const Py_UNICODE *s, Py_ssize_t size, const char *errors)
Return value: New reference. Encode the Py_ UNTCODE buffer of the given size using MBCS and return a
Python bytes object. Return NULL if an exception was raised by the codec.

8.3. A Fx AH 101

The Python/C API, & x| B] A 3.7.16

Deprecated since version 3.3, will be removed in version 4.0: Part of the old-style Py UNICODE
API,; please migrate to using PyUnicode_AsMBCSString (), PyUnicode_EncodeCodePage () or
PyUnicode_AsEncodedString ().

Methods & Slots

Methods and Slot Functions

The following APIs are capable of handling Unicode objects and strings on input (we refer to them as strings in the
descriptions) and return Unicode objects or integers as appropriate.

They all return NULL or —1 if an exception occurs.

PyObject* PyUnicode_Concat (PyObject *left, PyObject *right)
Return value: New reference. Concat two strings giving a new Unicode string.

PyObject* PyUnicode_Split (PyObject *s, PyObject *sep, Py_ssize_t maxsplit)
Return value: New reference. Split a string giving a list of Unicode strings. If sep is NULL, splitting will be
done at all whitespace substrings. Otherwise, splits occur at the given separator. At most maxsplit splits will
be done. If negative, no limit is set. Separators are not included in the resulting list.

PyObject* PyUnicode_Splitlines (PyObject *s, int keepend)
Return value: New reference. Split a Unicode string at line breaks, returning a list of Unicode strings. CRLF
is considered to be one line break. If keepend is O, the Line break characters are not included in the resulting
strings.

PyObject* PyUnicode_Translate (PyObject *str, PyObject *table, const char *errors)
Translate a string by applying a character mapping table to it and return the resulting Unicode object.

The mapping table must map Unicode ordinal integers to Unicode ordinal integers or None (causing deletion
of the character).

Mapping tables need only provide the __getitem__ () interface; dictionaries and sequences work well.
Unmapped character ordinals (ones which cause a LookupError) are left untouched and are copied as-is.

errors has the usual meaning for codecs. It may be NULL which indicates to use the default error handling.

PyObject* PyUnicode_Join (PyObject *separator, PyObject *seq)
Return value: New reference. Join a sequence of strings using the given separator and return the resulting
Unicode string.

Py_ssize_t PyUnicode_Tailmatch (PyObject *str, PyObject *substr, Py_ssize_t start, Py_ssize_t end,

' int direction)))
Return 1 if substr matches str [start:end] at the given tail end (direction == -1 means to do a prefix

match, direction == 1 a suffix match), 0 otherwise. Return —1 if an error occurred.

Py_ssize_t PyUnicode_Find (PyObject *str, PyObject *substr, Py_ssize_t start, Py_ssize_t end, int direc-
tion)
Return the first position of substr in str [start :end] using the given direction (direction == 1 means to
do a forward search, direction == —1 a backward search). The return value is the index of the first match; a
value of —1 indicates that no match was found, and -2 indicates that an error occurred and an exception has
been set.

Py_ssize_t PyUnicode_FindChar (PyObject *str, Py_UCS4 ch, Py_ssize_t start, Py_ssize_t end, int di-

rection)
Return the first position of the character ch in str [start:end] using the given direction (direction ==
1 means to do a forward search, direction == —1 a backward search). The return value is the index of the

first match; a value of —1 indicates that no match was found, and —2 indicates that an error occurred and an
exception has been set.

B A 3.30] F7}.

WA 3.79| A ¥ 7 : start and end are now adjusted to behave like str [start :end].

102 Chapter 8. -4 A A=

The Python/C API, & x] 8] A 3.7.16

Py_ssize_t PyUnicode_Count (PyObject *str, PyObject *substr, Py_ssize_t start, Py_ssize_t end)
Return the number of non-overlapping occurrences of substr in str [start:end]. Return -1 if an error
occurred.

PyObject* PyUnicode_Replace (PyObject *str, PyObject *substr, PyObject *replstr, Py_ssize_t max-

count)
Return value: New reference. Replace at most maxcount occurrences of substr in str with replstr and return the
resulting Unicode object. maxcount == —1 means replace all occurrences.

int PyUnicode_Compare (PyObject *left, PyObject *right)
Compare two strings and return —1, 0, 1 for less than, equal, and greater than, respectively.

This function returns —1 upon failure, so one should call PyErr_Occurred () to check for errors.

int PyUnicode_CompareWithASCIIString (PyObject *uni, const char *string)
Compare a Unicode object, uni, with string and return -1, 0, 1 for less than, equal, and greater than, respec-
tively. It is best to pass only ASCII-encoded strings, but the function interprets the input string as ISO-8859-1
if it contains non-ASCII characters.

This function does not raise exceptions.

PyObject* PyUnicode_RichCompare (PyObject *left, PyObject *right, int op)
Return value: New reference. Rich compare two Unicode strings and return one of the following:

e NULL in case an exception was raised
e Py_True or Py_False for successful comparisons
e Py_NotImplemented in case the type combination is unknown
Possible values for op are Py_GT, Py_GE, Py_FEQ, Py_NE, Py_LT,and Py_LE.

PyObject* PyUnicode_Format (PyObject *format, PyObject *args)
Return value: New reference. Return a new string object from format and args; this is analogous to format

o)

% args.

int PyUnicode_Contains (PyObject *container, PyObject *element)
Check whether element is contained in container and return true or false accordingly.

element has to coerce to a one element Unicode string. —1 is returned if there was an error.

void PyUnicode_InternInPlace (PyObject **string)
Intern the argument *string in place. The argument must be the address of a pointer variable pointing to a
Python Unicode string object. If there is an existing interned string that is the same as *string, it sets *string to it
(decrementing the reference count of the old string object and incrementing the reference count of the interned
string object), otherwise it leaves *string alone and interns it (incrementing its reference count). (Clarification:
even though there is a lot of talk about reference counts, think of this function as reference-count-neutral; you
own the object after the call if and only if you owned it before the call.)

PyObject* PyUnicode_InternFromString (const char *v)
Return value: New reference. A combination of PyUnicode FromString() and
PyUnicode_InternInPlace (), returning either a new Unicode string object that has been in-
terned, or a new (“owned”) reference to an earlier interned string object with the same value.

8.3.4 % AA)

PyTupleObject
o] pyObject®] MH &L stold FZ A& Uebd Ut

PyTypeObject PyTuple_Type
o] PyTypeObject AXE A
k.

int PyTuple_Check (PyObject *p)
PPt RE AR O AY FE B A

< b U shol A A9 tuplest 2 AH Y

rlr
k=)
o
X
Sl
i

[
ol
1o
o,
[>
rT
[>
=)
ks
fijo
it
na
iy
<
i)

8.3. A|AX A 103

The Python/C API, & x| B] A 3.7.16

int PyTuple_CheckExact (PyObject *p)
p7HFE AR Ol AR, FE B A8 o Aadat oW 3 B FUh

PyObject* PyTuple_New (Py_ssize_t len)
Return value: New reference. Return a new tuple object of size len, or NULL on failure.

PyObject* PyTuple_Pack (Py_ssize_tn, ...)
Return value: New reference. Return a new tuple object of size n, or NULL on failure. The tuple values are
initialized to the subsequent n C arguments pointing to Python objects. PyTuple_Pack (2, a, b) is
equivalent to Py_Buildvalue (" (OO)", a, b).

Py_ssize_t PyTuple_Size (PyObject *p)
T AA ol gk £JAE S ol sl FE2] 27

Py_ssize_t PyTuple_GET_SIZE (PyObject *p)
Return the size of the tuple p, which must be non-NULL and point to a tuple; no error checking is performed.

ru[m

shaH g o,

PyObject* PyTuple_GetItem (PyObject *p, Py_ssize_t pos)
Return value: Borrowed reference. Return the object at position pos in the tuple pointed to by p. If pos is out
of bounds, return NULL and set an IndexError exception.

PyObject* PyTuple_GET_ITEM (PyObject *p, Py_ssize_t pos)
Return value: Borrowed reference. PyTuple_GetItem ()2} B|S2SFA, AXE &38R k5]

PyObject* PyTuple_GetSlice (PyObject *p, Py_ssize_t low, Py_ssize_t high)
Return value: New reference. Return the slice of the tuple pointed to by p between low and high, or NULL on
failure. This is the equivalent of the Python expression p [low:high]. Indexing from the end of the list is
not supported.

int PyTuple_SetItem (PyObject *p, Py_ssize_t pos, PyObject *o)
Insert a reference to object o at position pos of the tuple pointed to by p. Return 0 on success. If pos is out of
bounds, return —1 and set an IndexError exception.

#11: This function “steals” a reference to o and discards a reference to an item already in the tuple at the
affected position.

void PyTuple_SET_ITEM (PyObject *p, Py_ssize_t pos, PyObject *o)
PyTuple_SetItem ()} ¥R T o 2] FAAbE oFA] Fom M 28 FES A= ol * vk A-8-3)

o gk

ZF31: This macro “steals” a reference to o, and, unlike Py Tuple_SetItem (), does not discard a reference
to any item that is being replaced; any reference in the tuple at position pos will be leaked.

int _PyTuple_Resize (PyObject **p, Py_ssize_t newsize)

Can be used to resize a tuple. newsize will be the new length of the tuple. Because tuples are supposed to be
immutable, this should only be used if there is only one reference to the object. Do nor use this if the tuple
may already be known to some other part of the code. The tuple will always grow or shrink at the end. Think
of this as destroying the old tuple and creating a new one, only more efficiently. Returns 0 on success. Client
code should never assume that the resulting value of *p will be the same as before calling this function. If the
object referenced by *p is replaced, the original *p is destroyed. On failure, returns —1 and sets *p to NULL,
and raises MemoryError or SystemError.

int PyTuple_ClearFreeList ()
A B2 (free lis) & A& U Th S AE & B2 45 wagyrh

104 Chapter 8. -4 A A=

The Python/C API, & x] 8] A 3.7.16

8.3.5 T7XA| Al A2 A

FZ A A B (struct sequence) A A= namedtuple () AR CS7IEYUTH S oJEFHEE 535 3
S AN - S A AL, T A A DAE PE R, BA 5 P A A S el
e,
PyTypeObject* PyStructSequence_NewType (PyStructSequence_Desc *desc)
Return value: New reference. o}e] ol A HH desco] HIo|E| 2 MEZE FZ2A Al D2 FS YT
A3 g9 AABEAE PyStructSequence_New () 2 s 4= 5 U Th

void PyStructSequence_InitType (PyTypeObject *type, PyStructSequence_Desc *desc)
desc2 T2 A A A2 F types AR E] A 27133)

int PyStructSequence_InitType2 (PyTypeObject *type, PyStructSequence_Desc *desc)
PyStructSequence_InitType®} ZA 9 AZ3H 0L, Aojstd -1 vtdshyrc}

WA 3.40] F7}

PyStructSequence_Desc
e A AAs P e A RE g

4= C3¥ of vl
name const char * TE2A AL FY ol &
doc const char * pointer to docstring for the type or NULL to omit
fields PyStructSequence_Fiel gointer to NULL-terminated array with field names of
* the new type
n_in_sequengeint Sl A 2ol A B+ 9 95 & (2= A48 d
g

PyStructSequence_Field

F2A ARz BEE AePU F2A ARLE FEE 2y, BE dut
PyObject* & FH 3} PyStructSequence Desc? fields Hl€ 9] AUl A= XA A
A2 ojd 2 7} ZleH A E A- g
g [Cc3 ER
=
name const name for the field or NULL to end the list of named fields, set to
char * PyStructSequence_UnnamedField to leave unnamed
doc | const field docstring or NULL to omit
char *

char* PyStructSequence_UnnamedField
JE Yt AU AT J3 B o8] B4 gk
PyObject* PyStructSequence_New (PyTypeObject *type)

Return value: New reference. PyStructSequence NewType () &2 THE typel] A A2E A5 W5

Y.

PyObject* PyStruct Sequence_GetItem (PyObject *p, Py_ssize_t pos)
Return value: Borrowed reference. p7} 7}8] 71 £ Z A Al B2 $ A posoll Y= 2AAE &5}
W) AAE 4 2] U

PyObject* PyStructSequence_GET_ITEM (PyObject *p, Py_ssize_t pos)
Return value: Borrowed reference. Py St ruct Sequence_GetItem () S5 mja 2,

void PyStructSequence_SetItem (P)Object *p, Py_ssize_t pos, PyObject *o)

TE2AAE2p A2 posell Q= BEE o= AT pyTuple SET ITEM() 3} npzt7}
A2, 0l AL N2 A2EHAE AL w vk AFg-3 oF Iy th.

Fa: o] deod i F2E“FH UL

8.3. A|AX A 105

The Python/C API, & x| B] A 3.7.16

void PyStructSequence_SET_ITEM (PyObject *p, Py_ssize_t *pos, PyObject *0)
PyStructSequence_SetItem ()3 553 wjaZ,

Fa: o] o hEd Fx2E “FH P

8.3.6 g AE A

PyListObject
o] Pyobjecte] AR BL shold e]AE AAE et

PyTypeObject PyList_Type
o] PyTypeobject AxT At stol Al P AE §& gyt o AL shol A% 9] 1ist 9 22
A YTk

int PyList_Check (PyObject *p)
PP SIS A I AE o] A8 g AT AY B HETU

int PyList_CheckExact (PyObject *p)
p7hElAE AR ol A w B AE B An P dAAT oh W 22 Wb o

PyObject* PyList_New (Py_ssize_t len)
Return value: New reference. Return a new list of length len on success, or NULL on failure.

Fa: lenc) 0K T W, 9HSE 22 E AX Y FH2 NULLE AFF ULk etA ZE 5
PyList_SetItem ()& A AA AR Z AASEH7] Aol PySequence_SetItem ()2} & F4F API

s Y
48 AgSAY stol A o AR S =2 T 5 st

Py_ssize_t PyList_Size (PyObject *list)
listo| A] 2~E A 9] 4ol kgt o] g 2E AA o thd len (list) & T FUTh

Py_ssize_t PyList_GET_SIZE (PyObject *list)
o] AA Q= PyList_Size () o WAZ F4].

PyObject* PyList_GetItem (PyObject *list, Py_ssize_t index)
Return value: Borrowed reference. Return the object at position index in the list pointed to by /ist. The position
must be non-negative; indexing from the end of the list is not supported. If index is out of bounds (<0 or
>=len(list)), return NULL and set an IndexError exception.

PyObject* PyList_GET_ITEM (PyObject *list, Py_ssize_t i)
Return value: Borrowed reference. o8] AA} QQ& PyList_GetItem ()2 W3 ZE &4l

int PyList_SetItem (PyObject *list, Py_ssize_t index, PyObject *item)
Set the item at index index in list to ifem. Return O on success. If index is out of bounds, return —1 and set an
IndexError exception.

of
oSt
fifo
e
rlr
Ho
©
Ach

N
m
2
©
=
%0
rlr
o
B[
2
)
%

U‘—’Ft itemol th et F2E “F A 1L
U

void PyList_SET_ITEM (PyObject *list, Py_ssize_t i, PyObject *0)
ol At gl PyList_setTtem()o] AR P4, WA= o] H&o] gle M B2EE

A-¢-< ol AHE Ytk

3 o] AR L jtemol] N3 FRE “FT X7, PyList_Setltem() I & AT E 2o
et F2E HEA FsUthlisr o i A0l Y= F2E FFE LoPYh

106 Chapter 8. -4 A A=

The Python/C API, & x] 8] A 3.7.16

int PyList_Insert (PyObject *list, Py_ssize_t index, PyObject *item)
G5 item 2 ©) AL lisr] 2182 index %ol A AU TR AFEE 02 wAgUTH A 12
Hkskslal o 9] & A AU 1ist.insert (index, item) ol 3|33t

int PyList_Append (PyObject *list, PyObject *item)
2 2E list®] 2o AA iteme F7HF U Th BF3HE 02 NHF U h Ashshe 1L whakat
£ AUt} list.append (item) of 3 B ch

PyObject* PyList_GetSlice (PyObject *list, Py_ssize_t low, Py_ssize_t high)
Return value: New reference. Return a list of the objects in list containing the objects between low and high.
Return NULL and set an exception if unsuccessful. Analogousto 1ist [low:high]. Indexing from the end
of the list is not supported.

o €]

Rl

int PyList_SetSlice (PyObject *list, Py_ssize_t low, Py_ssize_t high, PyObject *itemlist)
Set the slice of list between low and high to the contents of ifemlist. Analogous to 1ist [low:high] =
itemlist. The itemlist may be NULL, indicating the assignment of an empty list (slice deletion). Return 0
on success, —1 on failure. Indexing from the end of the list is not supported.

int PyList_Sort (PyObject *list)
list 35S A Ao A AE Yt Z&3td 0, Afstd -12 kgt o] A2 1ist.sort ()
2} F 5 Th

int PyList_Reverse (PyObject *list)
liste] FEZ A AN A FAFS UL AFstH 0, A5t
reverse () 2} 5 T

PyObject* PyList_AsTuple (PyObject *list)
Return value: New reference. list®] U] -&
FedYTH

int PyList_ClearFreelist ()
2§ B 2 (free lis) & 1] gL T} 314]

WA 330 7}

ns)
iR
o
rE
rlt
d
A
=
o
N
o
—
o
[}
e

filo
]
%
=)
rlr
=
Sl
i
=
é
it
r]I
it
i)
_\1
=
o
o

o)

'_l
0]

-
-

)]

o
Io

i
odh
I
o
of
4
et
rE
r q
i)
v
O

8.4 lElo|L] A

8.4.1 91z AA|

PyDictObject
o] pyobject] B P2 stold gMie] AAE UedTh
PyTypeObject PyDict_Type
o] PyTypeObject 2" aE ol Y g g Yep iUtk o] A stold A 52 dict £}
2 AR QU
int PyDict_Check (PyObject *p)
p7tdict x| o] At} dict F o] A/ H o] AW FS vt

int PyDict_CheckExact (PyObject *p)
p7} dict AR o] A 9k, dict P B FO] QJAHAE o}

A
a)
Y
tlo
rE
riot
ol
<
v

PyObject* PyDict_New ()
Return value: New reference. Return a new empty dictionary, or NULL on failure.

PyObject* PyDictProxy_New (PyObject *mapping)
Return value: New reference. 2}7] A8 52& ZAA5t= wjF & —°A 5l t ypes.MappingProxyType
AAE YT o] 22 dutd o 2 v] 53 2 FE Y I Y =H S WA 7] 36l
HE d=+=d AEE Y

void PyDict_Clear (PyObject *p)
71E gAY Y ZE 7]-3 S v yth

8.4. ol A7) 107

The Python/C API, & x| B] A 3.7.16

int PyDict_Contains (PyObject *p, PyObject *key)
AT poll key7h E 35 of QA FAGU Tk po] FF ol keysh A3 1L WHEaLL, 1R A
o™ 02 WM e W 12 MG o) & ol A BB key in pS ST
PyObject* PyDict_Copy (PyObject *p)
Return value: New reference. p2} 772 7]-3F & X &3= Al A1 2] & wkshgh o

H

int PyDict_SetItem (PyObject *p, PyObject *key, PyObject *val)
YA 2 poll values key 71 2 AF U o keyw= s Al 7hs sl oF Utk 29 A 9 © ™ TypeError
h AR AF o 02, Ao sHe 12 B o

int PyDict_SetItemString (PyObject *p, const char *key, PyObject *val)
keyE 71 2 AH&-8to] AU] pol| values A A FH th. key= const char*o] ok Futt. 7] AA=
PyUnicode_FromString (key) & AH&3to] WU th A3t 05, Aot -1 Wk

int PyDict_DelItem (PyObject *p, PyObject *key)
gM U2 poll A 717 keyd FES AATUH. key= A 7HsdloF dunh 28] ko
TypeErrorZ} B AR TH AF6HH 05, Ao std -1 W&

int PyDict_DelItemString (PyObject *p, const char *key)
9T poll A EAE key2 A1 B H 719] F 52 A AFUTE AFohd 0=, Aofstd -12 whshet
Uk,

PyObject* PyDict_GetItem (PyObject *p, PyObject *key)
Return value: Borrowed reference. Return the object from dictionary p which has a key key. Return NULL if
the key key is not present, but without setting an exception.

_hash__ ()%} _eq_ () HIANEE SE3E 5 DA e AP YL oy R E A
S #HWH YA PyDict_GetItemWithError ()5 AFESHI A L.

PyObject* PyDict_GetItemWithError (PyObject *p, PyObject *key)
Return value: Borrowed reference. Variant of PyDict_GetItem () that does not suppress exceptions. Re-
turn NULL with an exception set if an exception occurred. Return NULL without an exception set if the key
wasn’t present.

PyObject* PyDict_GetItemString (PyObject *p, const char *key)
Return value: Borrowed reference. ©| Z21- PyDict_GetItem ()2t Z AT} key?} Pyobject *7} o
const char*Z A AH Yt}

__hash__ ()%} _eq () MAEE 3233 QA AL A S dEE 5 B
AAFEYL oy RuE Ao o)Al PyDict _GetItemWithError () S AHE3HEAI L.

PyObject* PyDict_SetDefault (PyObject *p, PyObject *key, PyObject *defaultobj)
Return value: Borrowed reference. ©] 212 u}o| ¥ 5 9] dict.setdefault () &} Z5Uth A5}
A, gAY g poll A keyoll 3l Bat= gt v T} 7] 7} dictol]l 1.2, 3k defaultobj 2 4k Y= A,
defauliohj 7} WEVE UITh. o] Bt keys] A B8 23 2 AIIS A FHAL 2 BAE A
SRR EEE

WA 340 27}
PyObject* PyDict_Items (PyObject *p)
Return value: New reference. S AV 2] RE &E-& E33}E= PyListObjectE ¥ T}
PyObject* PyDict_Keys (PyObject *p)
Return value: New reference. S 8] & 7|& ¥ 33}= PyListObjectE W3}

L

U,

PyObject* PyDict_Values (PyObject *p)
Return value: New reference. SV 8] pS] RE 3k £S5} PyListObjectS ¥HEghy T}

Py_ssize_t PyDict_Size (PyObject *p)
gAdele] de F5 & iUt ol "gM e ol thE len (p) & 5 U

int PyDict_Next (PyObject *p, Py_ssize_t *ppos, PyObject **pkey, PyObject **pvalue)
Iterate over all key-value pairs in the dictionary p. The Py_ssize_t referred to by ppos must be initialized
to O prior to the first call to this function to start the iteration; the function returns true for each pair in the
dictionary, and false once all pairs have been reported. The parameters pkey and pvalue should either point
to PyObject * variables that will be filled in with each key and value, respectively, or may be NULL. Any

108 Chapter 8. % 214 A

ol

The Python/C API, & x] 8] A 3.7.16

references returned through them are borrowed. ppos should not be altered during iteration. Its value represents
offsets within the internal dictionary structure, and since the structure is sparse, the offsets are not consecutive.

& =4

PyObject *key, *value;
Py_ssize_t pos = 0;

while (PyDict_Next (self->dict, &pos, &key, &value)) |

/* do something interesting with the values... */
}
gxydzp 1E1fﬂl°1ﬁ%°ﬂ‘?*;73311/\1%‘&%‘\45}.‘ﬂfﬁlﬁﬂéolﬂfﬂ]ol‘e“‘fﬂ%ﬁtﬂ st
A4S BEAAD 7] A ARHA GE DG 1H AL A B

PyObject *key, *value;
Py_ssize_t pos = 0;

while (PyDict_Next (self->dict, &pos, &key, &value)) |
long i = PyLong_AsLong(value);
if (i == -1 && PyErr_Occurred()) {
return -1;
}
PyObject *o = PyLong_FromLong (i + 1);
if (o == NULL)
return -1;
if (PyDict_SetItem(self->dict, key, o) < 0) {
Py_DECREF (0) ;
return -1;
}
Py_DECREF (0) ;

int PyDict_Merge (PyObject *a, PyObject *b, int override)
g A bE olHH O E StHA, 7]-3k = 9 acl i7}§‘4l’+ b YA At
PyMapping Keys ()%} PyObject_GetItem()E A Q3= E'_‘: AA L 5 IS5 ULt override
7H o1, aoll Sl 71 Akl bol A AA B 717} 90w TAF T, T8 A 20w ash A sh
A7 e e A o] F1E U 4B o8 08 W, o9} A 1% WE T

int PyDict_Update (PyObject *a, PyObject *b)
o]+& Co| A pyDict_Merge(a, b, 1) Za, F WA 2z} “keys” o] EE]HE 7}
PyDict Update ()74 71-gk 9] A1) o) ol el o] = 37 STk A A9 348, shol
oM a.update (b) 9 SAFRHI Tk A2 5H 02 WEHatT, o9 7} WA ahe -1 WEket

int PyDict_MergeFromSeq2 (PyObject *a, PyObject *seq2, int override)
seq29] 73k Ao = YA 0B AANFAT AR seq2e 71-3k A0Z 753 Do) 29
ol E AAE A st= olH el E AA o dUtt S5 7|7k e, overrlde7P Frold whx| o]
SElstar, 282 ko A MA 7 ST 4 Al 05 WSk, o9 7 A s -1 wksk

Gtk 558 shol M2 o] F5 U THNE gt Al9))

gl

def PyDict_MergeFromSeq2(a, seqg2, override):
for key, value in seqg2:
if override or key not in a:
alkey] = value

int PyDict_ClearFreelist ()
A5 52 (free list) & WU Tk A G2 o) S48 Bk

WA 330 &7}

8.4. Aol A 109

The Python/C API, & x| B] A 3.7.16

8.4.2 2% A

o] Aol setI} frozenset A o o gt 5§ APIof| thal 2A 3] Ayt ol YE= A &
L 7se FA4 AA T2 EEF (PyObject_CallMethod (), PyObject_RichCompareBool (),
PyObject_Hash(), PyObject_Repr(), PyObject_IsTrue(), PyObject_Print ()
9 PyObject_Getlter()E X T 3J Y} o EA 22 =2 EZ (PyNumber And(),
PyNumber_Subtract (), PyNumber_Or (), PyNumber_Xor(), PyNumber_InPlaceAnd(),
PyNumber_InPlaceSubtract (), PyNumber_InPlaceOr() W PyNumber_ InPlaceXor ()<
Z4dYTh.
PySetObject
o] Pyobjecte] AH WL set 3} frozenset A4 TF9) YR o] e S B o A T o]
Ao e AL 14 27 (FE AL S FAD ol 23 0lF ATL WEe 4 2]
| = E] ‘:'E(EV\E ?ﬂ""“ﬂe‘) = 7Fel Atk AollA pypictobject 9 HISUTE o] F24)| 9]
Lo ol AE 3MAA &2 Ao g HFFHookstn, HAE = AFUth B dNL&e 72
Ao s 2287 Bl A9 E APIE 535 3 5) oF Fth
PyTypeObject PySet_Type
o] AL Fto] M set S UYEN = PyTypeObject? AA2EH AT}

PyTypeObject PyFrozenSet_Type
o] AL 3}o] M frozenset FE LENY = Py Typeobiectd AAE AU TH
e @ AN AR s BE shold Aol ti# EAH A A5G Th VAR, A4 o B
o€ el & shol A AA I A AEFI L.
int PySet_Check (PyObject *p)
p7hset AR AE B drdaw 22 wagh
int PyFrozenSet_Check (PyObject *p)
p7h frozenset AR U A H Fo| dadad 2 Ao

int PyAnySet_Check (PyObject *p)
p7F set AA|, frozenset 7“Xﬂ T AHE Yo AT Zg W

rln

int PyAnySet_CheckExact (PyObject *p)
p7F set BRI} frozenset AR o)A 2 A B o] AdAHAE©

_,d
<
g
oY
filo
r T
it
s
<
v

int PyFrozenSet_CheckExact (PyObject *p)
p7} frozenser AA6l AW, A5 o] 6 AH AL ofL]B & AT

PyObject* PySet_New (PyObject *iterable)
Return value: New reference. Return a new set containing objects returned by the iterable. The iterable may
be NULL to create a new empty set. Return the new set on success or NULL on failure. Raise TypeError if
iterable is not actually iterable. The constructor is also useful for copying a set (c=set (s)).

PyObject* PyFrozenSet_New (PyObject *iterable)
Return value: New reference. Return a new frozenset containing objects returned by the iterable. The
iterable may be NULL to create a new empty frozenset. Return the new set on success or NULL on failure.
Raise TypeError if iferable is not actually iterable.

set O] frozenset] AAEAFEE 59 AH o] B O o2 5ol a2z & AHE S
2~ O]!;L]q_
T AR\ .

Py_ssize_t PySet_Size (PyObject *anyset)
set °]Y} frozenset AA S Zo]E ¥iE St} len (anyset) 2 S5 YT} anysero] set,
frozenset & A H g2 AJAE AV} ol PyExc_SystemErrorE WA A Yt}

Py_ssize_t PySet_GET_SIZE (PyObject *anyset)
oflg] AAF = pyset_size() o] Mz F4].

int PySet_Contains (PyObject *anyset, PyObject *key)
LAY 15, BAE A o’ 05, ol 72 sk 12 WUt 3ol W _ contains_ ()
Hl A Eoks 2, o] s siAl Eﬂ%if} A= YAl frozenset & & 25 ¥ 2o} A] k5 U T key

110 Chapter 8. -4 A A=

The Python/C API, & x] 8] A 3.7.16

7} 3 Al E7Fs 3, TypeErrorg B A Al I U Th. anyser©] set, frozenset T A/ H 9| A
HA7F oYW PyExc_SystemErrorS WA Al A U th

int PySet_Add (PyObject *set, PyObject *key)

keyE set A 2" 2o F7FF Ytk EI frozenset A2V 2 E ZFF I
(PyTuple_SetItem()A3E th& iEOﬂ =5 7] Ao MEL frozenset2] F}S = d At
23 4 g5 h. AT 02, Asetd 12 w3 T key?} Sl A] E715 319, TypeError

E AU AZE 3ol “D}‘Eﬂ MemoryErrorE WA Utk sero] set o]} L A H
o] S AE AT} 0}14 9 SystemErrorE WA 7 Uth
B4t set olLh 129 A1 ge] Aagsol e S 5 QAT frozenset o] th 1 A1 gel
dool = AL 3 4 gl
int PySet_Discard (PyObject *set, PyObject *key)
2 3 A A E W 12 ke, B A go v (b d U A by Th 0 whkalaL, of
A

)

l)- ojo

e 28 BRI RAT S G Ao o sevmrrorE BN ST o
7L Al E715 3 TypeErrorE WA A Ut} 1o /VQ discard () WA ESE &g, o] 4=
Al BE7Hs5E A2 YA frozenset & 2 A5 WHESHA] k5 U T Se;o] set oL} T A B &9 oA

HA7F oYW PyExc_SystemErrors WAA 7 1411]—.

PyObject* PySet_Pop (PyObject *set)
Return value: New reference. Return a new reference to an arbitrary object in the set, and removes the object
from the set. Return NULL on failure. Raise KeyError if the set is empty. Raise a SystemError if sef is
not an instance of set or its subtype.

int PySet_Clear (PyObject *set)
£ BE 24 Age wgUTh

int PySet_ClearFreeList ()
A = 2 (free lis) & W] S U T S| A9 FEo) 4

W7 3.30] 7%

it

gt o

=]
gl

8.5

ut

=Ny
)

Al

8.5.1 3t

4>
&

A
shol W 4ok BAlE B A4A) B4 AT

PyFunctionObject
ol AHEH = CP2A.

PyTypeObject PyFunction_Type
O] AL PyTypeObjectl A2E o0l
types.FunctionTypel & =< T

dpol o F2 vErd Ytk dtold =2 I v oA

int PyFunction_Check (PyObject *0)
Return true if o is a function object (has type PyFunction_Type). The parameter must not be NULL.

PyObject* PyFunction_New (PyObject *code, PyObject *globals)
Return value: New reference. = 2 A| code2} ATE A e+ AR S 2133 o). globals= 4ol A
AT 5 de A ik e 9y g eolofof gyt

The function’s docstring and name are retrieved from the code object. __module__ is retrieved from globals.
The argument defaults, annotations and closure are set to NULL. __qualname__is set to the same value as the
function’s name.

PyObject* PyFunction_NewWithQualName (PyObject *code, PyObject *globals, PyObject *qualname)
Return value: New reference. As PyFunction_New (), but also allows setting the function object’s
__qualname___ attribute. qualname should be a unicode object or NULL; if NULL, the __qualname_
attribute is set to the same value as its __name___ attribute.

WA 330 27}

8.5. g 7| 111

The Python/C API, & x| B] A 3.7.16

PyObject* PyFunction_GetCode (PyObject *op)
Return value: Borrowed reference. St 21 A op&} AdHH Z = A A& wirEghh

PyObject* PyFunction_GetGlobals (PyObject *op)
Return value: Borrowed reference. &5~ 2 A op2} ATH A

18
a0
2
=
)
it
rE
riot
i)
A
v

PyObject* PyFunction_GetModule (PyObject *op)
Return value: Borrowed reference. 5 21 A op2] __module__ o] E] HEE utgght} o] 22 gv
o2 RE |2 S BADI AR, ol A HER hE AN AT+ YFUTh
PyObject* PyFunction_GetDefaults (PyObject *op)
Return value: Borrowed reference. Return the argument default values of the function object op. This can be a
tuple of arguments or NULL.
int PyFunction_SetDefaults (PyObject *op, PyObject *defaults)
Set the argument default values for the function object op. defaults must be Py_None or a tuple.

A3 8 systemError& WA A 7] 21 -1-& &S o)
PyObject* PyFunction_GetClosure (PyObject *op)

Return value: Borrowed reference. Return the closure associated with the function object op. This can be NULL
or a tuple of cell objects.

int PyFunction_SetClosure (PyObject *op, PyObject *closure)
Set the closure associated with the function object op. closure must be Py_None or a tuple of cell objects.

A 95t systemErrorE YWAA 7] 21 -1 WhEshU o}

PyObject *PyFunction_GetAnnotations (PyObject *op)
Return value: Borrowed reference. Return the annotations of the function object op. This can be a mutable
dictionary or NULL.

int PyFunction_SetAnnotations (PyObject *op, PyObject *annotations)
Set the annotations for the function object op. annotations must be a dictionary or Py_None.

A8l systemErrorE WAYA 7131 -1& HHESHU T
AAEIA HAHE A

2
Ol A~HA A HAEE pycFunction®] 3t @l ol n PycFrunctionE F#A AA| o A A= MES
v 91Ut} o] A 9] pyMethod_New (func, NULL, class) $&&

nﬂw

PyTypeObject PyInstanceMethod_Type
o] PyTypecbject A2 AL ol Al AAEA HAE §E LhebiUTh sho] s Z2 1o
=EH A FHUTh

int PyInstanceMethod_Check (PyObject *0)

Return true if o is an instance method object (has type PyInstanceMethod_Type). The parameter must
not be NULL.

PyObject* PyInstanceMethod_New (PyObject *func)
Return value: New reference. M| A2~E 2 WA= AR E ¥) funces 999 Z8& A Ay,
funce= A2BA A= T2] 359 g UL

PyObject* PyInstanceMethod_Function (PyObject *im)
Return value: Borrowed reference. A12~8 2 WA E im3T} AFH T4 AAE wiaghoh

UL,

PyObject* PyInstanceMethod_GET_FUNCTION (PyObject *im)
Return value: Borrowed reference. 2.5 A AV S 1|3} PyInstanceMethod Function ()9 |3 &2

7,

112 Chapter 8. -4 A A=

The Python/C API, & x] 8] A 3.7.16

8.5.3 "X = A A

w4 S o A (bound) T4 A U Tk WA = A o)
2175 2] 92 (unbound) W A = (222 AR|o] AAH B AL) = Hx A8 5 gLt

PyTypeObject PyMethod_Type
o] pyTypeObject AT AE Sto] A HlANE S EPY UL o] A2 vlo]fl =2 T3¢ types.
MethodTypeZ =<5 U Th

int PyMethod_Check (PyObject *o)
Return true if o is a method object (has type PyMethod_Type). The parameter must not be NULL.

PyObject* PyMethod_New (PyObject *func, PyObject *self)
Return value: New reference. Return a new method object, with func being any callable object and self the
instance the method should be bound. func is the function that will be called when the method is called. self
must not be NULL.

PyObject* PyMethod_Function (PyObject *meth)
Return value: Borrowed reference. meth Wl A =2} AFAH Sk A A & wiagh ot

PyObject* PyMethod_GET_FUNCTION (Py Object *meth)
Return value: Borrowed reference. 2.5F FAAME ¥ 38}= PyMethod _Function ()9 W22 WA,

PyObject* PyMethod_Sel€£ (PyObject *meth)
Return value: Borrowed reference. meth W| A =2} AAH AA~EHAE ubEgh o}

PyObject* PyMethod_GET_SELF (PyObject *meth)
Return value: Borrowed reference. 2.5 ZAAMS 3|3l PyMethod _Self ()9 W32 ¥ A.

int PyMethod_ClearFreelist ()
A% 252 AgUch AR & 2+ wEFch

8.5.4 A 7

A WA Y ATz FRIE WSE FHIE U AU oY S M U}Eh = A5t
S8 A AR L BE I H T g A2 228 29 A9 A0l G W AT o
230l oo oh el 4 7} 2 B ULk ol 25, 4 2] A oA Ao g 9 gho] A8 LI,
ol st A AA| 2] & #Z (de-referencing) = YA H Hlo]|E T = E-‘?—Ei./] Qo] FQ3th; BAA A
AFow Az A gsUth A AA € e 3ol &k syt
PyCellObject
A AA o AHgH = C F2A.
PyTypeObject PyCell_Type
A AR HFFE B AR,
int PyCell_Check (ob)
Return true if ob is a cell object; ob must not be NULL.
PyObject* PyCell_New (PyObject *ob)
Return value: New reference. Create and return a new cell object containing the value ob. The parameter may
be NULL.

PyObject* PyCell_Get (PyObject *cell)
Return value: New reference. A cell®] U-8-S ¥F3Hg U o}

PyObject* PyCell_GET (PyObject *cell)
Return value: Borrowed reference. Return the contents of the cell cell, but without checking that cell is non-
NULL and a cell object.

int PyCell_Set (PyObject *cell, PyObject *value)
Set the contents of the cell object cell to value. This releases the reference to any current content of the cell.
value may be NULL. cell must be non-NULL; if it is not a cell object, —1 will be returned. On success, 0 will
be returned.

8.5. g 7| 113

The Python/C API, & x| B] A 3.7.16

void PyCell_SET (PyObject *cell, PyObject *value)
Sets the value of the cell object cell to value. No reference counts are adjusted, and no checks are made for
safety; cell must be non-NULL and must be a cell object.

S5 AR|E CPython A9 A42 AR AFYUTH 2 AR & obg ol Bl 9A e AW 5T

F= ol 2 Lhepu)

PyCodeObject
FE AR Aste o A8E e AR CF2A. o P =& AREA WHD £ st

PyTypeObject PyCode_Type
o] 212 Python code & UE = PyTypeObject? AA2~EH A UL

int PyCode_Check (PyObject *co)
co7} code AW A& wiatal o},

int PyCode_GetNumFree (PyCodeObject *co)
cooll D A W59 ASE W T

PyCodeObject* PyCode_New (int argcount, int kwonlyargcount, int nlocals, int stacksize, int flags, PyOb-
Ject *code, PyObject *consts, PyObject *names, PyObject *varnames, Py-
Object *freevars, PyObject *cellvars, PyObject *filename, PyObject *name,
int firstlineno, PyObject *Inotab)
Return value: New reference. M| = AAE wigstUrct Z 84S =7 93 tjn)
234, A PyCode NewEmpty ()& AH& Al 2. Bl E I 29| A &7} 245
PyCode New ()8 A7 £2318 A kol A o) 74 4 ATk

247

7] o)

e

=
7

fi

o

=

PyCodeObject* PyCode_NewEmpty (const char *filename, const char *funcname, int firstlineno)
Return value: New reference. A1 34, SrH A A WA & ASE ZrE= A Wl I &= AAE WS
FUth A3 I= AA & exec () Exeval () 3= A2 EHY UL

8.6 7|E} A
8.6.1 3} A

o] APIE:C 5 2ho] 1#] 2] 9] 131 % B VO (FILE) Aol 93kt g 5+ AR o] @ 5ol 4 2C
API2] 32 o § el o 9] LI T, ol 3ol 4, e 2EPL A2 E 10 BEZ AR FUD, o REL
£ AA) A52 W e 52 L V0 9o o] 2] A% A ek ofehol A ABIHE Tt o] 2 3
A 22 APIo) T3t e C A solm, 22 A el e o] Y5 o B g 9% AUk A4 nEE
o4l 1o APTef Al 23k Ao] F4 Tk

PyFile_FromFd (int fd, const char *name, const char *mode, int buffering, const char *encoding, const
char *errors, const char *newline, int closefd)
Return value: New reference. Create a Python file object from the file descriptor of an already opened file fd.

The arguments name, encoding, errors and newline can be NULL to use the defaults; buffering can be -1 to
use the default. name is ignored and kept for backward compatibility. Return NULL on failure. For a more
comprehensive description of the arguments, please refer to the 1o .open () function documentation.

A shold 2EY o] AAAA MY ASL AATL Jon, 08 £ 3 7] & 2}
EFsE o o7 X 2 BALBAT 5 A5 UTHOHD Hol 89 o) 4 RE 2A),

B A 32004 HA: name S EZHEE F A Th

int PyObject_AsFileDescriptor (PyObject *p)
pof BAE 51 7| S X2 int 2 WEFUTE AR 7L A5, go] MBPUTh 2127 gow A

114 Chapter 8. 7 24| A

ol

The Python/C API, & x] 8] A 3.7.16

§k8k8) of 311, 1 gko]

i)
e

PyObject* PyFile_GetLine (PyObject *p, int n)
Return value: New reference. p.readline ([n]) 3 S5t} o] 4= AA pollA st =S 5
Utk pe 3td AA Y readline () AIAE7F Q= 429 AA D & 5 nol 0011, &9
dolot HA Qo] s &= ‘3475‘414 nol 0Xth 29, nHto] E o] 2 shd ol A g A] kU T
EdAT F0] E‘}@r —’F% Utk 7 A9 25, 34 ol SA =2etd ®l FA-F o] vkgkg vt
I tbno] oKty 2o, dolgt J)r?ilo‘ol F =S AA, 7Y ol A =2 EOFError 7t
LA o

int PyFile_WriteObject (PyObject *obj, PyObject *p, int ﬂags
AA objE v+ 7%*1ﬂp°ﬂ LU th flagsoll A A= = 4 S L& Py PRINT_RAWY YT F0f
A9, repr () A AA Y str () o] ZISHUth AFsHH 02, Aot -1 vkt A 2 &
o 27k 2 FH Ut

int PyFile WriteString (const char *s, PyObject *p)
TAE 55 5t AA poll FUth BF et 02 WHEkek L, A oA -1 vk T A =5k o 9] 7t
A7E T

8.6.2 Module Objects

PyTypeObject PyModule_Type
This instance of PyTypeObject represents the Python module type. This is exposed to Python programs
as types.ModuleType.

int PyModule_Check (PyObject *p)
Return true if p is a module object, or a subtype of a module object.

int PyModule_CheckExact (PyObject *p)
Return true if p is a module object, but not a subtype of PyModule Type.

PyObject* PyModule_NewObject (PyObject *name)
Return value: New reference. Return a new module object with the __name__ attribute set to name.
The module’s _ _name_ , _ doc__,_ package_ ,and _ loader___ attributes are filled in (all but
__name___are set to None); the caller is responsible for providinga __file_ attribute.

WA 330 27}
B A 3404 M. _ package_ _and___loader__ are setto None.

PyObject* PyModule_New (const char *name)
Return value: New reference. Similar to PyModule_ NewObject (), but the name is a UTF-8 encoded
string instead of a Unicode object.

PyObject* PyModule_GetDict (PyObject *module)
Return value: Borrowed reference. Return the dictionary object that implements module’ s namespace; this
object is the same as the __dict___ attribute of the module object. If module is not a module object (or a
subtype of a module object), SystemError is raised and NULL is returned.

It is recommended extensions use other PyModule_* () and PyObject_* () functions rather than directly
manipulate a module’s __dict___

PyObject* PyModule_GetNameObject (PyObject *module)
Return value: New reference. Return module’s ___name___ value. If the module does not provide one, or if it
is not a string, SystemError is raised and NULL is returned.

WA 330 &7}

const char* PyModule_GetName (PyObject *module)
Similar to PyModule_GetNameObject () but return the name encoded to 'ut £-8"'.

void* PyModule_GetState (PyObject *module)
Return the “state” of the module, that is, a pointer to the block of memory allocated at module creation time,
or NULL. See PyModuleDef.m_size.

8.6. 7]E} 7214 115

The Python/C API, & x| B] A 3.7.16

PyModuleDef* PyModule_GetDef£ (PyObject *module)
Return a pointer to the PyModuleDef struct from which the module was created, or NULL if the module
wasn’t created from a definition.

PyObject* PyModule_GetFilenameObject (PyObject *module)
Return value: New reference. Return the name of the file from which module was loaded using module’s
__ file__ attribute. If this is not defined, or if it is not a unicode string, raise SystemError and return
NULL; otherwise return a reference to a Unicode object.

WA 320 =7}

const char* PyModule_GetFilename (PyObject *module)
Similar to PyModule_GetFilenameObject () but return the filename encoded to ‘utf-8’.

WA 328E HA]: PyModule_GetFilename () raises UnicodeEncodeError on unencodable file-
names, use PyModule_GetFilenameObject () instead.

Initializing C modules

Modules objects are usually created from extension modules (shared libraries which export an initialization function),
or compiled-in modules (where the initialization function is added using Py Import_AppendInittab ()). See
building or extending-with-embedding for details.

The initialization function can either pass a module definition instance to PyModule Create (), and return the
resulting module object, or request “multi-phase initialization” by returning the definition struct itself.

PyModuleDef
The module definition struct, which holds all information needed to create a module object. There is usually
only one statically initialized variable of this type for each module.

PyModuleDef_Base m_base
Always initialize this member to PyModuleDef_HEAD_INIT.

const char *m_name
Name for the new module.

const char *m_doc
Docstring for the module; usually a docstring variable created with PyDoc_ STRVAR is used.

Py_ssize_tm_size
Module state may be kept in a per-module memory area that can be retrieved with
PyModule_GetState (), rather than in static globals. This makes modules safe for use in
multiple sub-interpreters.

This memory area is allocated based on m_size on module creation, and freed when the module object is
deallocated, after the m_ f ree function has been called, if present.

Setting m_size to —1 means that the module does not support sub-interpreters, because it has global
state.

Setting it to a non-negative value means that the module can be re-initialized and specifies the additional
amount of memory it requires for its state. Non-negative m_s1i ze is required for multi-phase initializa-
tion.

See PEP 3121 for more details.
PyMethodDef* m_methods

A pointer to a table of module-level functions, described by PyMet hodDe £ values. Can be NULL if no
functions are present.

PyModuleDef _Slot* m_slots
An array of slot definitions for multi-phase initialization, terminated by a {0, NULL} entry. When
using single-phase initialization, m_slots must be NULL.

W A 3.50]| A ¥ 7 : Prior to version 3.5, this member was always set to NULL, and was defined as:

116 Chapter 8. % 214 A

ol

https://www.python.org/dev/peps/pep-3121

The Python/C API, & x] 8] A 3.7.16

inquiry m_reload

traverseproc m_traverse
A traversal function to call during GC traversal of the module object, or NULL if not needed. This
function may be called before module state is allocated (PyModule_GetState () may return NULL),
and before the Py_mod_exec function is executed.

inquirym_clear
A clear function to call during GC clearing of the module object, or NULL if not needed. This function
may be called before module state is allocated (PyModule_GetState () may return NULL), and
before the Py_mod_exec function is executed.

freefunc m_free
A function to call during deallocation of the module object, or NULL if not needed. This function may
be called before module state is allocated (PyModule GetState () may return NULL), and before
the Py_mod_exec function is executed.

Single-phase initialization

The module initialization function may create and return the module object directly. This is referred to as “single-
phase initialization”, and uses one of the following two module creation functions:

PyObject* PyModule_Create (PyModuleDef *def’)
Return value: New reference. Create a new module object, given the definition in def. This behaves like
PyModule_Createl () with module_api_version set to PYTHON_API_VERSTION.

PyObject* PyModule_Create2 (PyModuleDef *def, int module_api_version)
Return value: New reference. Create a new module object, given the definition in def, assuming the
API version module_api_version. 1If that version does not match the version of the running interpreter, a
RuntimeWarning is emitted.

ZF3: Most uses of this function should be using PyModule_Create () instead; only use this if you are
sure you need it.

Before it is returned from in the initialization function, the resulting module object is typically populated using func-
tions like PyModule_ AddObject ().

Multi-phase initialization

An alternate way to specify extensions is to request “multi-phase initialization”. Extension modules created this way
behave more like Python modules: the initialization is split between the creation phase, when the module object is cre-
ated, and the execution phase, when it is populated. The distinction is similar tothe __new__ () and__init__ ()

methods of classes.

Unlike modules created using single-phase initialization, these modules are not singletons: if the sys.modules entry
is removed and the module is re-imported, a new module object is created, and the old module is subject to normal
garbage collection — as with Python modules. By default, multiple modules created from the same definition should
be independent: changes to one should not affect the others. This means that all state should be specific to the module
object (using e.g. using PyModule GetState ()),or its contents (such as the module’s __dict__ orindividual
classes created with Py Type_ FromSpec ()).

All modules created using multi-phase initialization are expected to support sub-interpreters. Making sure multiple
modules are independent is typically enough to achieve this.

To request multi-phase initialization, the initialization function (PylInit_modulename) returns a PyModuleDef in-
stance with non-empty m_slots. Before it is returned, the PyModuleDef instance must be initialized with the
following function:

8.6. 7]E} 7214 117

The Python/C API, & x| B] A 3.7.16

PyObject* PyModuleDef_Init (PyModuleDef *def)
Return value: Borrowed reference. Ensures a module definition is a properly initialized Python object that
correctly reports its type and reference count.

Returns def cast to PyObject*, or NULL if an error occurred.
B A 3.50] &7}
The m_slots member of the module definition must point to an array of PyModuleDef_Slot structures:

PyModuleDef_Slot

int slot
A slot ID, chosen from the available values explained below.

void* value
Value of the slot, whose meaning depends on the slot ID.

B A 3.50] &7}
The m_slots array must be terminated by a slot with id 0.
The available slot types are:

Py_mod_create
Specifies a function that is called to create the module object itself. The value pointer of this slot must point
to a function of the signature:

PyObject* create_module (PyObject *spec, PyModuleDef *def’)

The function receives a ModuleSpec instance, as defined in PEP 451, and the module definition. It should
return a new module object, or set an error and return NULL.

This function should be kept minimal. In particular, it should not call arbitrary Python code, as trying to import
the same module again may result in an infinite loop.

Multiple Py_mod_create slots may not be specified in one module definition.

If Py_mod_create is not specified, the import machinery will create a normal module object using
PyModule_New (). The name is taken from spec, not the definition, to allow extension modules to dynam-
ically adjust to their place in the module hierarchy and be imported under different names through symlinks,
all while sharing a single module definition.

There is no requirement for the returned object to be an instance of PyModule_Type. Any type can be
used, as long as it supports setting and getting import-related attributes. However, only PyModule_Type
instances may be returned if the PyModuleDef has non-NULL m_traverse, m_clear, m_free; non-
zero m__s1ize; or slots other than Py_mod_create.

Py_mod_exec
Specifies a function that is called to execute the module. This is equivalent to executing the code of a Python
module: typically, this function adds classes and constants to the module. The signature of the function is:

int exec_module (PyObject* module)
If multiple Py_mod_exec slots are specified, they are processed in the order they appear in the m_slots array.

See PEP 489 for more details on multi-phase initialization.

118 Chapter 8. -4 A A=

https://www.python.org/dev/peps/pep-0451
https://www.python.org/dev/peps/pep-0489

The Python/C API, & x] 8] A 3.7.16

Low-level module creation functions

The following functions are called under the hood when using multi-phase initialization. They can be used directly,
for example when creating module objects dynamically. Note that both PyModule_FromDefAndSpec and
PyModule_ExecDef must be called to fully initialize a module.

PyObject * PyModule_FromDefAndSpec (PyModuleDef *def, PyObject *spec)
Return value: New reference. Create a new module object, given the definition in module and the Mod-
uleSpec spec. This behaves like PyModule FromDefAndSpec?Z () with module_api_version set to
PYTHON_API_VERSION.

WA 3.5 =7}

PyObject * PyModule_FromDefAndSpec2 (PyModuleDef *def, PyObject *spec, int mod-
ule_api_version)
Return value: New reference. Create a new module object, given the definition in module and the ModuleSpec
spec, assuming the API version module_api_version. If that version does not match the version of the running
interpreter, a Runt imeWarning is emitted.

ZF31: Most uses of this function should be using PyModule_ FromDefAndSpec () instead; only use this
if you are sure you need it.

WA 3.5 =7}

int PyModule_ExecDef£ (PyObject *module, PyModuleDef *def’)
Process any execution slots (Py_mod_exec) given in def.

B A 3.50] &7}

int PyModule_SetDocString (PyObject *module, const char *docstring)
Set the docstring for module to docstring. This function is called automatically when creating a module from
PyModuleDef, using either PyModule_Create or PyModule_FromDefAndSpec.

B A 3.50] &7}

int PyModule_AddFunctions (PyObject *module, PyMethodDef *functions)
Add the functions from the NULL terminated functions array to module. Refer to the PyMethodDef doc-
umentation for details on individual entries (due to the lack of a shared module namespace, module level
“functions” implemented in C typically receive the module as their first parameter, making them similar to
instance methods on Python classes). This function is called automatically when creating a module from
PyModuleDef, using either PyModule_Create or PyModule_FromDefAndSpec.

WA 3.5 7}

Support functions

The module initialization function (if using single phase initialization) or a function called from a module execution
slot (if using multi-phase initialization), can use the following functions to help initialize the module state:

int PyModule_AddObject (PyObject *module, const char *name, PyObject *value)
Add an object to module as name. This is a convenience function which can be used from the module’s
initialization function. This steals a reference to value on success. Return —1 on error, O on success.

ZF31: Unlike other functions that steal references, PyModule_AddObJject () only decrements the refer-
ence count of value on success.

This means that its return value must be checked, and calling code must Py_ DECREF () value manually on
error. Example usage:

8.6. 7]E} 7214 119

The Python/C API, & x| B] A 3.7.16

Py_INCREF (spam) ;

if (PyModule_AddObject (module, "spam", spam) < 0) {
Py_DECREF (module) ;
Py_DECREF (spam) ;
return NULL;

int PyModule_AddIntConstant (PyObject *module, const char *name, long value)
Add an integer constant to module as name. This convenience function can be used from the module’s initial-
ization function. Return —1 on error, 0 on success.

int PyModule_AddStringConstant (PyObject *module, const char *name, const char *value)
Add a string constant to module as name. This convenience function can be used from the module’s initializa-
tion function. The string value must be NULL-terminated. Return —1 on error, O on success.

int PyModule_AddIntMacro (PyObject *module, macro)
Add an int constant to module. The name and the value are taken from macro. For example
PyModule_AddIntMacro (module, AF_INET) adds the int constant AF_INET with the value of
AF_INET to module. Return —1 on error, 0 on success.

int PyModule_AddStringMacro (PyObject *module, macro)
Add a string constant to module.

Module lookup

Single-phase initialization creates singleton modules that can be looked up in the context of the current interpreter.
This allows the module object to be retrieved later with only a reference to the module definition.

These functions will not work on modules created using multi-phase initialization, since multiple such modules can
be created from a single definition.

PyObject* PyState_FindModule (PyModuleDef *def)
Return value: Borrowed reference. Returns the module object that was created from def for the current
interpreter. This method requires that the module object has been attached to the interpreter state with
PyState_AddModule () beforehand. In case the corresponding module object is not found or has not
been attached to the interpreter state yet, it returns NULL.

int PyState_AddModule (PyObject *module, PyModuleDef *def)
Attaches the module object passed to the function to the interpreter state. This allows the module object to be
accessible via PyState_FindModule ().

Only effective on modules created using single-phase initialization.

Python calls PyState_AddModule automatically after importing a module, so it is unnecessary (but harm-
less) to call it from module initialization code. An explicit call is needed only if the module’s own init code
subsequently calls PyState_FindModule. The function is mainly intended for implementing alternative
import mechanisms (either by calling it directly, or by referring to its implementation for details of the required
state updates).

Return 0 on success or -1 on failure.
WA 3.39 F7%

int PyState_RemoveModule (PyModuleDef *def)
Removes the module object created from def from the interpreter state. Return 0 on success or -1 on failure.

WA 330 7}

120 Chapter 8. % 214 A

ol

The Python/C API, & x] 8] A 3.7.16

8.6.3 o|E]d|o])¥] A |

shol e % o] g olEl@lolE AAE AT YU A, AAL olE e ol HE _getitem ()
MASE AL Aol AL AT T, EAL TR AN T2 S enine) 32 A1 35H,
A2 7 5o el 2B TEIIL, SR AT ghol Wk of o] el o] 42 FE T

PyTypeObject PySeqIter_Type
pysegTter New ()2t W A2 Foll thet iter () W 59 & AR
olElel o] & A Aol thEt & AA.

int PySeqIter_Check (0p)
op®] Fo| pysegiter TypeolH FZ EHFYTH

PyObject* PySeqIter_New (PyObject *seq)
Return value: New reference. R¢ Al 2 A A seq} 7| 253l o|E | o] & Wy th Al A~
7k B AT YA Aol A IndexErrorE Y27 W o] E g o] o] FdyTh

PyTypeObject PyCallIter_Type
PyCallTter New()®titer () W o] 7 AAF 4ol o3l nkedd o 2l o] ¥ A A ol that
3 AA.

anis}

Aol o] & whehe

[e:

int PyCallIter_Check (0p)
op® do| pycalllter Type°|®d & &5t}

PyObject* PyCallIter_New (PyObject *callable, PyObject *sentinel)
Return value: New reference.]| 22 o]E] g o] & 8|S Uth. A WA w7} ¥ callable-2 v 7] W4
Bo B2 AL LE Sold B E AL S puich 2 T2 ol oldal e pa e
wk3ls) of St} callable©) sentinel 2} Z+2 ul3l5e o) Bl o] o] 22Utk

8.6.4 T]2z%E A

“TaI e e Az A% o EARES 7 &de AALUT TASL @ AR ST 5]
=
PyTypeObject PyProperty_Type
W aayy 52 A9 3 AA.
PyObject* PyDescr_NewGet Set (PyTypeObject *type, struct PyGetSetDef *getset)

Return value: New reference.

PyObject* PyDescr_NewMember (PyTypeObject *type, struct PyMemberDef *meth)
Return value: New reference.

PyObject* PyDescr_NewMethod (PyTypeObject *type, struct PyMethodDef *meth)
Return value: New reference.

PyObject* PyDescr_NewWrapper (PyTypeObject *type, struct wrapperbase *wrapper, void *wrapped)
Return value: New reference.

PyObject* PyDescr_NewClassMethod (PyTypeObject *type, PyMethodDef *method)
Return value: New reference.

int PyDescr_IsData (PyObject *descr)

Y2 HE AA descr7t Hl o] B o] EE|REE 7] &5t

ARg 2 F U desere U HE AA| o of Ut &7 AAE flsuth
PyObject* PyWrapper_New (PyObject *, PyObject *)

Return value: New reference.

8.6. 7]E} 7214 121

The Python/C API, & x| B] A 3.7.16

8.6.5 &elo|A AA|

PyTypeObject PySlice_Type
Zefol 2 A9 W A o] AL Frol M AE slicest ZaTh

int PySlice_Check (PyObject *ob)
Return true if ob is a slice object; ob must not be NULL.

PyObject* PySlice_New (PyObject *start, PyObject *stop, PyObject *step)
Return value: New reference. Return a new slice object with the given values. The start, stop, and step param-
eters are used as the values of the slice object attributes of the same names. Any of the values may be NULL,
in which case the None will be used for the corresponding attribute. Return NULL if the new object could not
be allocated.

int PySlice_GetIndices (PyObject *slice, Py_ssize_t length, Py_ssize_t *start, Py_ssize_t *stop,
Py_ssize_t *step)
Z o] 7} length?l Al A5 71 3Lo], &8bol 2 A A sliceol] A start, stop & step A D25 7HAF Y.
length B vk & e~ F o 2] 2 A 2] g Th

338k 02 Whebstar, o o 9] AF flo] -1 WAF U (AE X F St rhNone o] ofy il
e A 2] b 3 olul«= o9& A s -1 W Th.

o] 7% A BT AAE ke AYUTh
B0 3,200 4 W73 Aol = slice T 7 W4] i} W4 & o] Pysliceobiect * A th

int PySlice_GetIndicesEx (PyObject *slice, Py_ssize_t length, Py_ssize_t *start, Py_ssize_t *stop,
Py_ssize_t *step, Py_ssize_t *slicelength)
PySlice GetIndices ()5 &ustA A gyt Z o] 7t lengthQ AR 2E 714 5o, £8ol &
A A sliceol| A start, stop L step VBl A2 74A 11, slicelengtholl < 2Fo] 22] 2 O] S A 1Y
E Yo dd Al Aduk &alo]é,] ;qag} g ¥l o g 2 yc)

335 0 WS, e W o9 S 45l 18 MFF ok

BT: o Bok 218 28T 5 9k AAAolE AAAA U ACE DEFUT. T2
PySlice_Unpack ()Q}PySllce_AdjustIndlces ()Y =gto =g \:Hxﬂﬂoiolt gyt =

if (PySlice_GetIndicesEx(slice, length, é&start, &stop, &step, &slicelength) <o
=0) A
// return error

}

< HeoZ gAg Ut

if (PySlice_Unpack(slice, &start, &stop, &step) < 0) {
// return error

}
slicelength = PySlice_AdjustIndices (length, &start, &stop, step);

WA 32004 WA Aol = slice Wi 7] M ~2] w7} W4 & o] PysliceObject* 5 U T

WA 3.6.10 A4 HMA: Py_LIMITED_APIZ} A A= o] ¢lA] }ﬂur 0x030504003} 003060000
(2331 A] 9F2) /\}o]b}0xo3060100 o] A9 Fko 7 H A= oM PySlice_GetIndicesEx ()
—PySllce _Unpack (-»]-PySllce_AdjustIndlces) E }—QLS}%UHE_EE—T’-?E%‘IJD}. ol =}
start, stop A step= o 2] H FH7FE U}

WA 3.6.15E #A:py_LIMITED_APIZ}0x03050400K Tt} 2-A 1} 0x03060000 003060100
(2384) Abole] oz A gl om pySlice_GetIndicesEx ()& 9 AH F4JUch

int PySlice_Unpack (PyObject *slice Py_ssize_t *start, Py_ssize_t *stop, Py_ssize_t *step)
< gtol 2 A A 9 start, stop H step Hlo]EH WHE C A4 E FE5F YT PY_SSIZE_T _MAXHE
T} 2 3+S PY _SSIZE_T MAXEZE X873 EOI A, PY_SSIZE_T_MINX T} 22 start 2} stop Zh<

122 Chapter 8. -4 A A=

The Python/C API, & x] 8] A 3.7.16

PY_SSIZE_T_MINZ Z-£3] &£0|3, -PY_SSIZE_T_MAXR T} 22 step t= -PY_SSIZE_T_MAX
Z83) =9tk

o -1, 4F3tH 02 vyt

WA 3.6.10] =7}

Py_ssize_t PySlice_AdjustIndices (Py_ssize_t length, Py_ssize_t *start, Py_ssize_t *stop,
Py_ssize_t step)
A A length Zo]o] A|AXE 7} 5} start/stop S o]~ QS ZA T WY E Hojd
Qe st duk sebol o) Hejoh AT WA o= Ak,

°]
<ehol2d] Zol & vty rnh 34 4Fd Ut sl ZEE S &34 s
HZA 3.6.19 F7}.

8.6.6 Ellipsis 74

PyObject *Py_Ellipsis
sho] W El1ipsis 24 o] AA o= A=A} QaUch B2 A59F B ste] the A7 2 v}
A2 A oF It Py _Noned uf IR E AZ E

8.6.7 MemoryView 7} x|

memoryview A E C 4% v oAEH o] A8 the AM Y n}AAA 2 A & Y= Ho|d AA 2

==y

PyObject *PyMemoryView_FromObject (PyObject *obj)
Return value: New reference. ¥] Q1 E] #] o] 25 A& 3= 2 A ol A memoryview 2 A & | %1/] t}. obj
7F 2 7] 7Hs s W3 AlgS A Astd memoryVleW A= N 71/227| 7 = a1, 18 A ko 97
Aol AL AlZ AL Aol whet 8l 71/227)7h B 5 gl ek,

PyObject *PyMemoryView_ FromMemory (char *mem, Py_ssize_t size, int flags)

Return value: New reference. memS 3F5 ¥ 5 2 AF-83}o] memoryview 2 A & WS Uth flugss
PyBUF_READ U PyBUF_WRITE % 3tU ¥ & g5 th

B A 3.30] 7}

PyObject *PyMemoryView_FromBuffer (Py_buffer *view)
Return value: New reference Fo] A W5 L ZA) viewE A= memoryview 21 A& W5 U Th sk
Hlol E W ¥ o] A=, PyMemoryView FromMemory () 7 A& H &= g+ dUtt.

PyObject *PyMemoryView_GetContiguous (PyObject *obj, int buffertype, char order)
Return value: New reference. ¥ 3 Q] F| o] A5 Ao sl= AN ZRE 289 AL HF(C Y F
ortran order) memoryview 21 A& w5 U T} W 2 2] 7} A4 o] ' memoryview 2 A= A8 W2
2] E 7H AUtk 23] oW, B o] vhE o] 2] 1L memoryview= A} ¥ E QG AAE 7l 3

e},

int PyMemoryView_Check (PyObject *obj)

A obj7F memoryview A H & WU oh A& memoryviewd] AH FPAE WHE ¢l
SUth

Py_buffer *PyMemoryView_GET_BUFFER (PyObject *mview)
Al &2} ¥ 3 2] memoryview 2] H] &7 BAHRE 9] Z 1 H & &8 F U th mviews= BFE A] memoryview

At solof Gtk of AR E B2 FAsA om M3 Aok G 134 gow
FE A7) AUk

Py_buffer *PyMemoryView_GET_BASE (PyObject *mview)
Return either a pointer to the exporting object that the memoryview is based on or NULL if

the memoryview has been created by one of the functions PyMemoryView_FromMemory () or
PyMemoryView_FromBuffer (). mview must be a memoryview instance.

8.6. 7]E} 7214 123

The Python/C API, & x| B] A 3.7.16

A, o

S Hx2 17 AN 31 23] % o]
AL, Ao e 2 A e,

9l
k.

REE AR FASE T A AR
ek g o) AR) meb AL
int PyWeakref_Check (ob)

ob7} & ARG =2 A] A S gy o

int PyWeakref_CheckRef (ob)
ob7} Fx AW L& Wyt

int PyWeakref_CheckProxy (ob)
ob7h A AA W S whggh o,

PyObject* PyWeakref_NewRef (PyObject *ob, PyObject *callback)
Return value: New reference. Return a weak reference object for the object 0ob. This will always return a new
reference, but is not guaranteed to create a new object; an existing reference object may be returned. The
second parameter, callback, can be a callable object that receives notification when ob is garbage collected; it
should accept a single parameter, which will be the weak reference object itself. callback may also be None
or NULL. If ob is not a weakly-referencable object, or if callback is not callable, None, or NULL, this will
return NULL and raise TypeError.

PyObject* PyWeakref_ NewProxy (PyObject *ob, PyObject *callback)
Return value: New reference. Return a weak reference proxy object for the object ob. This will always return
a new reference, but is not guaranteed to create a new object; an existing proxy object may be returned. The
second parameter, callback, can be a callable object that receives notification when ob is garbage collected; it
should accept a single parameter, which will be the weak reference object itself. callback may also be None
or NULL. If ob is not a weakly-referencable object, or if callback is not callable, None, or NULL, this will
return NULL and raise TypeError.

PyObject* PyWeakref_GetObject (PyObject *ref)

Return value: Borrowed reference. 23t % (ref) 28] Z 29 AA| & witagt} #2271 g+ Ao}
QA koW Py_None2 W& st}

Fa: ol e Fxd AR N Ud FxE HAFUL o= AXE AL A T
AA7F A2 ¢ QS &3 JES & AL star, A sl &4 py INCREF ()& E&38©
HS =gyt

PyObject* PyWeakref_ GET_OBJECT (PyObject *ref)
Return value: Borrowed reference. Pylicakref GetObject ()2 FAFSEA wh, ol 8] AALE 43 31]
devaEE TP YL

8.6.9 &

o] Az AH-gof tf 8t ZkA] 3F A B = using-capsules & F 234 A L.
B A 3.1 E7F
PyCapsule

o PyObject] AN P BEWH kS e M, ol IES B GECATE BEYY
Gvoidr EOAHR)S ADe o 5t C #3 BE H§FUE o] AL A BENA AW C
UEEAHE HE R RN ABY 2 Sm i 35 4B QU dus s e

A8t 507 2Ed BEC 4o H CAPI] A2 4 5T

PyCapsule_Destructor
1ol o g+ 93 2} (destructor) F9 7. o] F A HojP)

typedef void (*PyCapsule_Destructor) (PyObject *);

PyCapsule_Destructor 2] o] u]&= pyCapsule New () S ZFZ TP A L.

124 Chapter 8. -4 A A=

The Python/C API, & x] 8] A 3.7.16

int PyCapsule_CheckExact (PyObject *p)
A&7} pycapsuleold F2 EHFUTH

PyObject* PyCapsule_New (void *pointer, const char *name, PyCapsule_Destructor destructor)
Return value: New reference. Create a PyCapsule encapsulating the pointer. The pointer argument may not
be NULL.

On failure, set an exception and return NULL.

The name string may either be NULL or a pointer to a valid C string. If non-NULL, this string must outlive the
capsule. (Though it is permitted to free it inside the destructor.)

If the destructor argument is not NULL, it will be called with the capsule as its argument when it is destroyed.

o] &S REQ JJEFYHEZR AASHY, nameS modulename.attributename® A A3 of
Ut} o= A 3 o2 B E 9] PyCapsule Import ()& AFE3lY] &S YXE &+ UK

g},

void* PyCapsule_GetPointer (PyObject *capsule, const char *name)
Retrieve the pointer stored in the capsule. On failure, set an exception and return NULL.

The name parameter must compare exactly to the name stored in the capsule. If the name stored in the capsule
is NULL, the name passed in must also be NULL. Python uses the C function st rcmp () to compare capsule
names.

PyCapsule_Destructor PyCapsule_GetDestructor (PyObject *capsule)
Return the current destructor stored in the capsule. On failure, set an exception and return NULL.

It is legal for a capsule to have a NULL destructor. This makes a NULL return code somewhat ambiguous; use
PyCapsule_IsValid () or PyErr_Occurred () to disambiguate.

void* PyCapsule_GetContext (PyObject *capsule)
Return the current context stored in the capsule. On failure, set an exception and return NULL.

It is legal for a capsule to have a NULL context. This makes a NULL return code somewhat ambiguous; use
PyCapsule_IsValid () or PyErr Occurred () to disambiguate.

const char* PyCapsule_GetName (PyObject *capsule)
Return the current name stored in the capsule. On failure, set an exception and return NULL.

It is legal for a capsule to have a NULL name. This makes a NULL return code somewhat ambiguous; use
PyCapsule_IsValid () or PyErr_Occurred () to disambiguate.

void* PyCapsule_Import (const char *name, int no_block)
2EY AL oJEFGHENA C AA o thdt £UAEHE AZE Tt name " 7] M4 = module.
attribute A8 o=l HEY AA o2 Aol AUtk A%l AFH names, o ¥
A3t B2el YA o FUTh noblocko] FolW, BB A ¥ BES AXE U}
(PyImport_ImportModuleNoBlock ()& /\}-QL;H A1). no_blocko] AR ¥, RE5S BHHA I
EZE 3t} (PyImport_ImportModule ()& AHE3l A)).

Return the capsule’s internal pointer on success. On failure, set an exception and return NULL.

int PyCapsule_IsValid (PyObject *capsule, const char *name)
Determines whether or not capsule is a valid capsule. A valid capsule is non-NULL, passes
PyCapsule_CheckExact (),hasanon-NULL pointer stored in it, and its internal name matches the name
parameter. (See PyCapsule_GetPointer () for information on how capsule names are compared.)

&, PyCapsule_IsValid ()7} 33k< W&sld, BE J A (PyCapsule_Get () &2 A &3l
BEET)o 3t S E0] AFcto] EAH YT

A7 FEIL AL o 27} LA 00] ohd ghe AT TE TEA) ghow 0 Wk T
o] g AsfstA YsuTh

int PyCapsule_SetContext (PyObject *capsule, void *context)
capsule J 7] G A~E X AEE context 2 /4 gt}

458k 02 WUtk Al st 00] obd ghe vhskal ol 9 & A

8.6. 7]E} 7214 125

The Python/C API, & x| B] A 3.7.16

int PyCapsule_SetDestructor (PyObject *capsule, PyCapsule_Destructor destructor)
capsule W3- 2] 2}3) 242 destructor 2 2 A g T},

4 E3HE 02 WU Tk A5l 8H9 00] obd g2 wkakekan of)

int PyCapsule_SetName (PyObject *capsule, const char *name)
Set the name inside capsule to name. If non-NULL, the name must outlive the capsule. If the previous name
stored in the capsule was not NULL, no attempt is made to free it.

d&std 0= U o Al st 00] obd ghe whebskal o 9] & A gt

int PyCapsule_SetPointer (PyObject *capsule, void *pointer)
Set the void pointer inside capsule to pointer. The pointer may not be NULL.

339 02 WA TE A3 5E 00] obd ghS WS o9 S APk

i
%

.

a4

8.6.10 A& o]€] AA]

A el o B A AL Fhol o] Aie o] E] ol ElE o] El & TS $)a) AFRaE AR YUTh dubAe
Z PyGen_New () e PyGen_NewWithQualName () S WA A O 2 ST &3l= ZAo] ol 3t 4=
(yield) sh= &5 o] Bl @l o] Eslo] whE o F Ut
PyGenObject

A # ol e AR ol A &= C F2A.
PyTypeObject PyGen_Type

A el ol e AR ol s st= 3 AA
int PyGen_Check (PyObject *ob)

Return true if ob is a generator object; ob must not be NULL.

int PyGen_CheckExact (PyObject *ob)
Return true if ob’s type is PyGen_ Type; ob must not be NULL.

PyObject* PyGen_New (PyFrameObject *frame)
Return value: New reference. Create and return a new generator object based on the frame object. A reference
to frame is stolen by this function. The argument must not be NULL.

PyObject* PyGen_NewWithQualName (PyFrameObject *frame, PyObject *name, PyObject *qualname)
Return value: New reference. Create and return a new generator object based on the frame object, with
__name___and __qualname___set to name and qualname. A reference to frame is stolen by this function.
The frame argument must not be NULL.

8.6.11 T F¢l x|

B A 3590 E7}
229 AL async 719 EE AAE F47hw@sHe A ch
PyCoroObject
FFE AR ol AHEE = C F2A.
PyTypeObject PyCoro_Type
228 AR o F st @ A,
int PyCoro_CheckExact (PyObject *ob)
Return true if ob’s type is PyCoro_ Type; ob must not be NULL.
PyObject* PyCoro_New (PyFrameObject *frame, PyObject *name, PyObject *qualname)
Return value: New reference. Create and return a new coroutine object based on the frame object, with

__name___and __qualname___set to name and qualname. A reference to frame is stolen by this function.
The frame argument must not be NULL.

126 Chapter 8. -4 A A=

The Python/C API, & x] 8] A 3.7.16

8.6.12 AEAE W A

WA 371004 WA Tfol 37104 EE AHAE 3
PyContextVar W PyContextToken thAl Pyobject EQEE AR SIEE HAEH GG UL o E &

o]:

// in 3.7.0:
PyContext *PyContext_New (void) ;

// in 3.7.1+:
PyObject *PyContext_New (void);

ZRA B W82 bpo-347625 FE A L.

A 3.7 7}
o] Ao+ contextvars EES]38t 58 C APl t 3] A 3] A gt
PyContext

contextvars.Context AA S Ve = o] AFRE = C FXA.

PyContextVar
contextvars.ContextVar AA|E Yt & o A2 += C FZA.

PyContextToken
contextvars.Token ZAAE YW= o AFREH = C XA

PyTypeObject PyContext_Type
context & VeI = & AA.

PyTypeObject PyContextVar_Type
AHAE WL 2 Vel = & A A

PyTypeObject PyContextToken_Type
;qEﬂ/\Etﬂ E=Z3S L].ﬂ.],ﬂ‘—b‘ﬂ 71J;<1]

g A AR
int PyContext_CheckExact (PyObject *0)

Return true if o is of type PyContext_Type. o must not be NULL. This function always succeeds.

int PyContextVar_CheckExact (PyObject *0)
Return true if o is of type PyContextVar_Type. o must not be NULL. This function always succeeds.

int PyContextToken_CheckExact (PyObject *o)
Return true if o is of type PyContext Token_Type. o must not be NULL. This function always succeeds.

AdAE A B B

PyObject *PyContext_New (void)
Return value: New reference. |2 ¥l AHAE AAE w5y} o &7 2A A NULLE 933

e},

PyObject *PyContext_Copy (PyObject *ctx)
Return value: New reference. A2 H ctx AHAE A o] &2 BALE S w5 Ut} o &7 EA A
NULLE WHEHehy ok

PyObject *PyContext_CopyCurrent (void)
Return value: New reference. QA ~H = AEA~EQ k2 BALE S 1}

< gty ok

E]n
i)
e}
=2
it
N
N
s
23
o,
ok
)
Z
c
£
£

int PyContext_Enter (PyObject *ctx)
AA) 2= A ANAER S AAGUTH AT A 02 NBHI, o A -1 WHAFU T

8.6. 7]E} 7214 127

https://bugs.python.org/issue?@action=redirect&bpo=34762

The Python/C API, & x| B] A 3.7.16

int PyContext_Exit (PyObject *ctx)
cx AR AEE W FABe o] 4 AU AES WA 2 0] AA) AYAER BAGUTE AT A
0= Whghstar, o 2] Al -1 RESHg o}
int PyContext_ClearFreeList ()
aaaz WA ERE ARG D F GRS DRI o] e T AB

2~ /\

PyObject *PyContextVar_New (const char *name, PyObject *def’)
Return value: New reference. M| ContextVar A E W5 UTH name M 7] A= JQEZ A 3}
QW2 B0z ABH UL dof T WSE HE Ao AEAE Me] RGS ART &
gLk, ol 2174 S, o] - NULLS W o

int PyContextVar_Get (PyObject *var, PyObject *default value, PyObject **value)
A 2E M4 g AAGUTh 2381 5o o) 7h BASY 1L wkaketaL, gro] QA9
galol ol 7 A sk gkod 02 wHEEY) D}-

A9 2E Hp7} %HH W value'= 1AL 74e)7)= 2o E 7 AUt AdAE WSrL wAE
oro W, value= T2 7] A Uth:

* default_value, NULL] o} H;

e var®] 718 gk, NULL o] o} H;

e NULL
2ol AT W, o] Fat 270 e A BEE WS L)

PyObject *PyContextVar_Set (PyObject *var, PyObject *value)
Return value: New reference. A A AGNAE | A vard] 32 valueZ A3t} pyobject A o
Oha F Qe METHAL, o 27 2 5P NULLE B o

int PyContextVar_Reset (PyObject *var, PyObject *token)
var ZE 2 E W 0] A E wkeng W33t PyContextVar_Set () $% A AE|2 A A TY
t}. o] ?}" T AT A 0 ¥kgkstar, of| 8 Al -1-& vhgkgh o

8.6.13 DateTime 7 A

th st A2t A AA7F datetime EEONA AlFH UL o & AFEsH] Ao, dlH 34
datetime.h7} &2of 235 oo 3131 (Python.h7} ‘L?ﬂ’s}x] Aol FYFAHAIL), dutg o g
P E zﬂﬁ}?ﬂ’*q QB E pyDateTime_ IMPORT W{ZE2E QE—HOFE}HD} PSR C—?ixﬂﬂ] o st
ZOEHE ot} | IZ ZE oA AFREH = static WS PyDateTimeAPIo| @<)

UTC A ZEoll AM 237 st vfa =

PyObject* PyDateTime_TimeZone_UTC
UTCE Yet = A7) AZES W8Sttt} datetime. timezone . utc2} 22 AA Y}
WA 379 F7}

g A AR

int PyDate_Check (PyObject *ob)

Return true if ob is of type PyDateTime_DateType or a subtype of PyDateTime_DateType. ob
must not be NULL.

int PyDate_CheckExact (PyObject *ob)
Return true if ob is of type PyDateTime_DateType. ob must not be NULL.

int PyDateTime_Check (PyObject *ob)
Return true if ob is of type PyDateTime_DateTimeType or a subtype of
PyDateTime_DateTimeType. ob must not be NULL.

int PyDateTime_CheckExact (PyObject *ob)
Return true if ob is of type PyDateTime_DateTimeType. ob must not be NULL.

128 Chapter 8. -4 A A=

The Python/C API, & x] 8] A 3.7.16

int PyTime_Check (PyObject *ob)
Return true if ob is of type PyDateTime_TimeType or a subtype of PyDateTime_TimeType. 0b
must not be NULL.

int PyTime_CheckExact (PyObject *ob)
Return true if ob is of type PyDateTime_TimeType. ob must not be NULL.

int PyDelta_Check (PyObject *ob)
Return true if ob is of type PyDateTime_DeltaType or a subtype of PyDateTime_DeltaType. 0b
must not be NULL.

int PyDelta_CheckExact (PyObject *ob)
Return true if ob is of type PyDateTime_DeltaType. ob must not be NULL.

int PyTZInfo_Check (PyObject *ob)
Return true if ob is of type PyDateTime_TZInfoType or a subtype of PyDateTime_TZInfoType.
ob must not be NULL.

int PyTZInfo_CheckExact (PyObject *ob)
Return true if ob is of type PyDateTime_TZInfoType. ob must not be NULL.

AAE NEL IR

PyObject* PyDate_FromDate (int year, int month, int day)
Return value: New reference. A1 A9 1, ¥, 49 datetime.date AR E ¥t}

PyObject* PyDateTime_FromDateAndTime (int year, int month, int day, int hour, int minute, int second,
int usecond) .
Return value: New reference. A1 H 3, ¥, 4, Al, &, X2 D ufo]a 2 %2] datetime.datetime 4

A ey

PyObject* PyDateTime_FromDateAndTimeAndFold (int year, int month, int day, int hour, int minute,
int second, int usecond, int fold)
Return value: New reference. A1 A E 'd, ¥, 4, Al, &, &, ulo]Z 2 % W fold®] datetime.datetime
27 WEsh

B A 3.60] F7}.

PyObject* PyTime_FromTime (int hour, int minute, int second, int usecond)
Return value: New reference. A/ A A], &2, 2 2 ulo]| 3 2 29| datetime.time AR S Wk3tshy

£

I

PyObject* PyTime_FromTimeAndFold (int hour, int minute, int second, int usecond, int fold)
Return value: New reference. A1 3 A A, &, 2, nlo]a 2% 4 fold9] datetime.time A E W33}

[Rh=
WA 3.60 =7}

PyObject* PyDelta_FromDSU (int days, int seconds, int useconds)
Return value: New reference. A A H &, & W ulo]a 2% & YJEY &= datetime.timedelta
AR E ey} 23 vfo]Z 2 %9} 27 datetime.timedelta Aol A& AHH HEY o
PEEREE PR N

PyObject* PyTimeZone_FromOffset (PyDateTime_DeltaType* offset)
Return value: New reference. offset AAZ YEFY R &= o] 5 o] gle 14 L Z A datetime.
timezone AAE 3 F1th

WA 3.7 7}

PyObject* PyTimeZone_FromOf fsetAndName (PyDateTime_DeltaType* offset, PyUnicode* name)
Return value: New reference. offset 1 A}2} tzname name 2. E Y EFW R &= 1A L ZA19] datetime.
timezone AAE 3 F1th

WA 3.7 7}

Macros to extract fields from date objects. The argument must be an instance of PyDateTime_Date, including
subclasses (such as PyDateTime_DateTime). The argument must not be NULL, and the type is not checked:

8.6. 7]E} 7214 129

The Python/C API, & x| B] A 3.7.16

int PyDateTime_| GET _YEAR (PyDateTime_Date *0)
& int2, W& gt

int PyDateTime_GET_MONTH (PyDateTime_Date *o)
1ol A 12742 9] int =2, ¥ & RF&-3h o)

int PyDateTime_GET_ DAY (PyDateTime_Date *0)
1o A 317kA1 9] int 2, 42 Jhhghy o

Macros to extract fields from datetime objects. The argument must be an instance of PyDateTime_DateTime,
including subclasses. The argument must not be NULL, and the type is not checked:

int PyDateTime_DATE_GET_HOUR (PyDateTime_DateTime *o0)
R 237149 in(2, A2 WHEE T

int PyDateTime_DATE_GET_MINUTE (PyDateTime_DateTime *o)
HE 597179 int 2, B vkaksg o)

int PyDateTime DATE GET SECOND (PyDateTime_DateTime *0)
HE 597FA 9] int &2, 25 ¥I3shU T,

int PyDateTime_DATE_GET_MICROSECOND (PyDateTime_DateTime *0)
0+-€] 999999712 9] int 2, nfo] T2 2 & gtk

int PyDateTime_DATE_GET_FOLD (PyDateTime_DateTime *o)
Return the fold, as an int from O through 1.

WA 3.600 =7}

Macros to extract fields from time objects. The argument must be an instance of PyDateTime_Time, including
subclasses. The argument must not be NULL, and the type is not checked:

int PyDateTime_TIME_GET_HOUR (PyDateTime_Time *o)
0¥ 237k2] 9] int 2, A S WH3h o}

int PyDateTime_TIME_GET_MINUTE (PyDateTime_Time *0)
FH 597kA 9 int =2, E< Wy ok

int PyDateTime TIME GET SECOND (PyDateTime_Time *o)
HE 597149 int 2, & wigsh

int PyDateTime_TIME_GET_MICROSECOND (PyDateTime_Time *o0)
L€} 999999742 9] int 2, nfo] T2 2 & Whekgt T},

int PyDateTime_TIME_GET_FOLD (PyDateTime_Time *o)
Return the fold, as an int from O through 1.

WA 3.60 =7}

Macros to extract fields from time delta objects. The argument must be an instance of PyDateTime_Delta,
including subclasses. The argument must not be NULL, and the type is not checked:

int PyDateTime_DELTA_GET_DAYS (PyDateTime_Delta *0)
-999999999 oj] A 999999999 71 2] 9] int =2, & & widsh T}

WA 3.30] F7}.

int PyDateTime DELTA_GET_ SECONDS (PyDateTime_Delta *0)
HE 863997149 int2, = 42 w3 uh

WA 330 7}

int PyDateTime_DELTA_GET MICROSECONDS (PyDateTime_Delta *o)
00l 4] 999999 7} 2] 9] int &, vlo] I 2% & w3 dh o}

H 2 3.301] —%7}.

130 Chapter 8. 74 244 A&

The Python/C API, & x] 8] A 3.7.16

PyObject* PyDateTime_FromTimestamp (PyObject *args)
Return value: New reference. datetime.datetime. fromtimestamp () o] AE3}= o & g3t 2=}
EZ 2 A datetime.datetime AA|E 9= vksksy o).

PyObject* PyDate_FromTimestamp (PyObject *args)
Return value: New reference. datetime.date.fromtimestamp () o] A&d}= o] A3l A F=
2 N datetime.date AA S W= v o)

8.6. 7]E} 7214 131

The Python/C API, & x| B] A 3.7.16

132 Chapter 8. -4 A A=

CHAPTER 9

Initialization, Finalization, and Threads

9.1 Before Python Initialization

In an application embedding Python, the Py_Tnitialize () function must be called before using any other
Python/C API functions; with the exception of a few functions and the global configuration variables.

The following functions can be safely called before Python is initialized:
* Configuration functions:
— PyImport_AppendInittab ()
— PyImport_ExtendInittab ()
— PyInitFrozenExtensions ()
— PyMem_ SetAllocator ()
— PyMem_ SetupDebugHooks ()
— PyObject_SetArenaAllocator ()
- Py_SetPath ()
— Py _SetProgramName ()
— Py_SetPythonHome ()
— Py _SetStandardStreamEncoding ()
— PySys_AddWarnOption ()
— PySys_AddXOption ()
— PySys_ResetWarnOptions ()
¢ Informative functions:

— Py _IsInitialized()

PyMem_GetAllocator ()

— PyObject_GetArenaAllocator ()

Py _GetBuildInfo()

Py_GetCompiler ()

133

The Python/C API, & x| B] A 3.7.16

— Py _GetCopyright ()
— Py_GetPlatform/()
— Py _GetVersion /()
« Utilities:
— Py _DecodeLocale ()
* Memory allocators:
— PyMem RawMalloc ()
— PyMem_RawRealloc ()

— PyMem_RawCalloc ()

PyMem_RawFree ()

ZF31: The following functions should not be called before Py_Tnitialize (): Py_EncodeLocale (),
Py_GetPath(), Py_GetPrefix(), Py_GetExecPrefix(), Py_GetProgramFullPath(),
Py_GetPythonHome (), Py_GetProgramName () and PyEval_InitThreads ().

9.2 Global configuration variables

Python has variables for the global configuration to control different features and options. By default, these flags are
controlled by command line options.

When a flag is set by an option, the value of the flag is the number of times that the option was set. For example, b
sets Py_BytesWarningFlagto |l and -bb sets Py_BytesWarningFlagto?2.

Py_BytesWarningFlag
Issue a warning when comparing bytes or bytearray with str or bytes with int. Issue an error if
greater or equal to 2.

Set by the —b option.

Py_DebugFlag
Turn on parser debugging output (for expert only, depending on compilation options).

Set by the —d option and the PYTHONDEBUG environment variable.

Py _DontWriteBytecodeFlag
If set to non-zero, Python won’t try to write . pyc files on the import of source modules.

Set by the —B option and the PYTHONDONTWRITEBYTECODE environment variable.

Py_FrozenFlag
Suppress error messages when calculating the module search path in Py_GetPath ().

Private flag used by _freeze_importlib and frozenmain programs.

Py_HashRandomizationFlag
Set to 1 if the PYTHONHASHSEED environment variable is set to a non-empty string.

If the flag is non-zero, read the PYTHONHASHSEED environment variable to initialize the secret hash seed.

Py_IgnoreEnvironmentFlag
Ignore all PYTHON* environment variables, e.g. PYTHONPATH and PYTHONHOME, that might be set.

Set by the —E and - T options.

Py_InspectFlag
When a script is passed as first argument or the —c option is used, enter interactive mode after executing the
script or the command, even when sys . stdin does not appear to be a terminal.

134 Chapter 9. Initialization, Finalization, and Threads

The Python/C API, & x] 8] A 3.7.16

Set by the —1 option and the PYTHONINSPECT environment variable.

Py_InteractiveFlag
Set by the —1 option.

Py _TIsolatedFlag
Run Python in isolated mode. In isolated mode sys.path contains neither the script’s directory nor the
user’s site-packages directory.

Set by the — I option.
WA 340 27}

Py_LegacyWindowsFSEncodingFlag
If the flag is non-zero, use the mbcs encoding instead of the UTF-8 encoding for the filesystem encoding.

Set to 1 if the PYTHONLEGACYWINDOWSEFSENCODING environment variable is set to a non-empty string.
See PEP 529 for more details.
Auvailability: Windows.

Py_LegacyWindowsStdioFlag
If the flag is non-zero, use 10.FileIO instead of WindowsConsoleIO for sys standard streams.

Set to 1 if the PYTHONLEGACYWINDOWSSTDIO environment variable is set to a non-empty string.
See PEP 528 for more details.
Auvailability: Windows.

Py_NoSiteFlag
Disable the import of the module site and the site-dependent manipulations of sys.path that it entails.
Also disable these manipulations if site is explicitly imported later (call site.main () if you want them
to be triggered).

Set by the —S option.

Py_NoUserSiteDirectory
Don’t add the user site-packages directoryto sys.path.

Set by the —s and - I options, and the PYTHONNOUSERSITE environment variable.

Py_OptimizeFlag
Set by the —O option and the PYTHONOPTIMI ZE environment variable.

Py_QuietFlag
Don’t display the copyright and version messages even in interactive mode.

Set by the —q option.
B A 3.20] F7}.
Py_UnbufferedsStdioFlag
Force the stdout and stderr streams to be unbuffered.

Set by the —u option and the PYTHONUNBUFFERED environment variable.

Py_VerboseFlag
Print a message each time a module is initialized, showing the place (filename or built-in module) from which
it is loaded. If greater or equal to 2, print a message for each file that is checked for when searching for a
module. Also provides information on module cleanup at exit.

Set by the —v option and the PYTHONVERBOSE environment variable.

9.2. Global configuration variables 135

https://www.python.org/dev/peps/pep-0529
https://www.python.org/dev/peps/pep-0528

The Python/C API, & x| B] A 3.7.16

9.3 Initializing and finalizing the interpreter

void Py_Initialize ()

Initialize the Python interpreter. In an application embedding Python, this should be called before using any
other Python/C API functions; see Before Python Initialization for the few exceptions.

This initializes the table of loaded modules (sys.modules), and creates the fundamental modules
builtins, __main__ and sys. It also initializes the module search path (sys.path). It does not set
sys.argv;use PySys_SetArgvEx () for that. This is a no-op when called for a second time (without
calling Py_FinalizeEx () first). There is no return value; it is a fatal error if the initialization fails.

ZF31: On Windows, changes the console mode from O_TEXT to O_BINARY, which will also affect non-
Python uses of the console using the C Runtime.

void Py_InitializeEx (int initsigs)

This function works like Py Tnitialize () if initsigsis 1. If initsigs is O, it skips initialization registration
of signal handlers, which might be useful when Python is embedded.

intPy_IsInitialized()

Return true (nonzero) when the Python interpreter has been initialized, false (zero) if not. After
Py _FinalizeEx () is called, this returns false until Py_Tnitialize () is called again.

int Py_FinalizeEx ()

Undo all initializations made by Py Tnitialize () and subsequent use of Python/C API functions, and
destroy all sub-interpreters (see Py_NewInterpreter () below) that were created and not yet destroyed
since the last call to Py Initialize (). Ideally, this frees all memory allocated by the Python interpreter.
This is a no-op when called for a second time (without calling Py_ Tnitialize () again first). Normally
the return value is 0. If there were errors during finalization (flushing buffered data), —1 is returned.

This function is provided for a number of reasons. An embedding application might want to restart Python
without having to restart the application itself. An application that has loaded the Python interpreter from a
dynamically loadable library (or DLL) might want to free all memory allocated by Python before unloading the
DLL. During a hunt for memory leaks in an application a developer might want to free all memory allocated
by Python before exiting from the application.

Bugs and caveats: The destruction of modules and objects in modules is done in random order; this may
cause destructors (__del__ () methods) to fail when they depend on other objects (even functions) or mod-
ules. Dynamically loaded extension modules loaded by Python are not unloaded. Small amounts of memory
allocated by the Python interpreter may not be freed (if you find a leak, please report it). Memory tied up in
circular references between objects is not freed. Some memory allocated by extension modules may not be
freed. Some extensions may not work properly if their initialization routine is called more than once; this can
happen if an application calls Py _Tnitialize () and Py _FinalizeEx () more than once.

B A 3.60] &7}

void Py_Finalize ()

This is a backwards-compatible version of Py_FinalizeEx () that disregards the return value.

9.4 Process-wide parameters

int Py_SetStandardStreamEncoding (const char *encoding, const char *errors)

This function should be called before Py Initialize (), if itis called at all. It specifies which encoding
and error handling to use with standard IO, with the same meanings as in str.encode ().

It overrides PYTHONIOENCODING values, and allows embedding code to control IO encoding when the
environment variable does not work.

encoding and/or errors may be NULL to use PY THONIOENCOD ING and/or default values (depending on other
settings).

136

Chapter 9. Initialization, Finalization, and Threads

The Python/C API, & x] 8] A 3.7.16

Note that sys.stderr always uses the “backslashreplace” error handler, regardless of this (or any other)
setting.

If Py FinalizeEx () is called, this function will need to be called again in order to affect subsequent calls
toPy_Initialize().

Returns 0 if successful, a nonzero value on error (e.g. calling after the interpreter has already been initialized).
WA 3400 F7}.

void Py_ SetProgramName (const wchar_t *name)
This function should be called before Py Tnitialize () is called for the first time, if it is called at all. It
tells the interpreter the value of the argv [0] argument to the main () function of the program (converted
to wide characters). This is used by Py_GetPath () and some other functions below to find the Python run-
time libraries relative to the interpreter executable. The default value is 'python'. The argument should
point to a zero-terminated wide character string in static storage whose contents will not change for the duration
of the program’s execution. No code in the Python interpreter will change the contents of this storage.

Use Py_DecodeLocale () to decode a bytes string to get a wchar_ * string.

wchar* Py_GetProgramName ()
Return the program name set with Py Set ProgramName (), or the default. The returned string points into
static storage; the caller should not modify its value.

wchar_t* Py_GetPrefix ()
Return the prefix for installed platform-independent files. This is derived through a number of complicated rules
from the program name set with Py Set ProgramName () and some environment variables; for example, if
the program name is ' /usr/local/bin/python’, the prefixis ' /usr/local'. The returned string
points into static storage; the caller should not modify its value. This corresponds to the prefix variable in
the top-level Makefile and the ——prefix argument to the configure script at build time. The value is
available to Python code as sys.prefix. Itis only useful on Unix. See also the next function.

wchar_t* Py_GetExecPrefix ()

Return the exec-prefix for installed platform-dependent files. This is derived through a number of com-
plicated rules from the program name set with Py SetProgramName () and some environment vari-
ables; for example, if the program name is ' /usr/local/bin/python’', the exec-prefix is ' /usr/
local'. The returned string points into static storage; the caller should not modify its value. This corre-
sponds to the exec_prefix variable in the top-level Makefile and the ——exec—prefix argument to
the configure script at build time. The value is available to Python code as sys.exec_prefix. Itis
only useful on Unix.

Background: The exec-prefix differs from the prefix when platform dependent files (such as executables and
shared libraries) are installed in a different directory tree. In a typical installation, platform dependent files
may be installed in the /usr/local/plat subtree while platform independent may be installed in /usr/
local.

Generally speaking, a platform is a combination of hardware and software families, e.g. Sparc machines run-
ning the Solaris 2.x operating system are considered the same platform, but Intel machines running Solaris 2.x
are another platform, and Intel machines running Linux are yet another platform. Different major revisions of
the same operating system generally also form different platforms. Non-Unix operating systems are a different
story; the installation strategies on those systems are so different that the prefix and exec-prefix are meaning-
less, and set to the empty string. Note that compiled Python bytecode files are platform independent (but not
independent from the Python version by which they were compiled!).

System administrators will know how to configure the mount or automount programs to share /usr/
local between platforms while having /usr/local/plat be a different filesystem for each platform.

wchar_t* Py_GetProgramFullPath ()
Return the full program name of the Python executable; this is computed as a side-effect of deriving the default
module search path from the program name (set by Py_SetProgramName () above). The returned string
points into static storage; the caller should not modify its value. The value is available to Python code as
sys.executable.

wchar_t* Py_GetPath ()
Return the default module search path; this is computed from the program name (set by

9.4. Process-wide parameters 137

The Python/C API, & x| B] A 3.7.16

Py_SetProgramName () above) and some environment variables. The returned string consists of a
series of directory names separated by a platform dependent delimiter character. The delimiter character is
':' on Unix and Mac OS X, '; ' on Windows. The returned string points into static storage; the caller
should not modify its value. The list sys . path is initialized with this value on interpreter startup; it can be
(and usually is) modified later to change the search path for loading modules.

void Py_SetPath (const wchar_t *)
Set the default module search path. If this function is called before Py _Tnitialize (), then
Py_GetPath () won’t attempt to compute a default search path but uses the one provided instead. This
is useful if Python is embedded by an application that has full knowledge of the location of all modules. The
path components should be separated by the platform dependent delimiter character, which is ' : ' on Unix
and Mac OS X, '; ' on Windows.

This also causes sys.executable to be set only to the raw program name (see
Py_SetProgramName ()) and for sys.prefix and sys.exec_prefix to be empty. It is up
to the caller to modify these if required after calling Py_Initialize ().

Use Py_DecodeLocale () to decode a bytes string to get a wchar_ * string.
The path argument is copied internally, so the caller may free it after the call completes.

const char* Py_GetVersion ()
Return the version of this Python interpreter. This is a string that looks something like

"3.0a5+ (py3k:63103M, May 12 2008, 00:53:55) \n[GCC 4.2.3]"

The first word (up to the first space character) is the current Python version; the first three characters are the
major and minor version separated by a period. The returned string points into static storage; the caller should
not modify its value. The value is available to Python code as sys.version.

const char* Py_GetPlatform ()
Return the platform identifier for the current platform. On Unix, this is formed from the “official” name of
the operating system, converted to lower case, followed by the major revision number; e.g., for Solaris 2.x,
which is also known as SunOS 5.x, the value is ' sunos5"'. On Mac OS X, itis 'darwin’'. On Windows,
itis "win'. The returned string points into static storage; the caller should not modify its value. The value is
available to Python code as sys.platform.

const char* Py_GetCopyright ()
Return the official copyright string for the current Python version, for example

'Copyright 1991-1995 Stichting Mathematisch Centrum, Amsterdam'’

The returned string points into static storage; the caller should not modify its value. The value is available to
Python code as sys.copyright.

const char* Py_GetCompiler ()
Return an indication of the compiler used to build the current Python version, in square brackets, for example:

"[GCC 2.7.2.2]"

The returned string points into static storage; the caller should not modify its value. The value is available to
Python code as part of the variable sys.version.

const char* Py_GetBuildInfo ()
Return information about the sequence number and build date and time of the current Python interpreter
instance, for example

"#67, Aug 1 1997, 22:34:28"

The returned string points into static storage; the caller should not modify its value. The value is available to
Python code as part of the variable sys.version.

void PySys_SetArgvEx (int argc, wchar_t **argvy, int updatepath)
Set sys.argv based on argc and argv. These parameters are similar to those passed to the program’s
main () function with the difference that the first entry should refer to the script file to be executed rather

138 Chapter 9. Initialization, Finalization, and Threads

The Python/C API, & x] 8] A 3.7.16

than the executable hosting the Python interpreter. If there isn’t a script that will be run, the first entry in
argv can be an empty string. If this function fails to initialize sys . argv, a fatal condition is signalled using
Py FatalError().

If updatepath is zero, this is all the function does. If updatepath is non-zero, the function also modifies sys .
path according to the following algorithm:

 If the name of an existing script is passed in argv [0], the absolute path of the directory where the
script is located is prepended to sy s .path.

» Otherwise (that is, if argc is 0 or argv [0] doesn’t point to an existing file name), an empty string is
prepended to sys . path, which is the same as prepending the current working directory (" . ").

Use Py_DecodeLocale () to decode a bytes string to get a wchar_ * string.

Z31: Ttis recommended that applications embedding the Python interpreter for purposes other than executing
a single script pass 0 as updatepath, and update sy s . path themselves if desired. See CVE-2008-5983.

On versions before 3.1.3, you can achieve the same effect by manually popping the first sys . path element
after having called PySys_SetArgv (), for example using:

PyRun_SimpleString ("import sys; sys.path.pop(0)\n");

WA 3.1.390 F7%

void PySys_SetArgv (int argc, wchar_t **argv)
This function works like PySys_SetArgvEx () with updatepath set to 1 unless the python interpreter
was started with the —T.

Use Py_DecodeLocale () to decode a bytes string to get a wchar_ * string.
W A 3.490 A M7 : The updatepath value depends on —1T.

void Py_SetPythonHome (const wchar_t *home)
Set the default “home” directory, that is, the location of the standard Python libraries. See PYTHONHOME for
the meaning of the argument string.

The argument should point to a zero-terminated character string in static storage whose contents will not change
for the duration of the program’s execution. No code in the Python interpreter will change the contents of this
storage.

Use Py_DecodeLocale () to decode a bytes string to get a wchar_ * string.

w_char* Py_GetPythonHome ()
Return the default “home”, that is, the value set by a previous call to Py_ SetPythonHome (), or the value
of the PYTHONHOME environment variable if it is set.

9.5 Thread State and the Global Interpreter Lock

The Python interpreter is not fully thread-safe. In order to support multi-threaded Python programs, there’s a global
lock, called the global interpreter lock or GIL, that must be held by the current thread before it can safely access
Python objects. Without the lock, even the simplest operations could cause problems in a multi-threaded program:
for example, when two threads simultaneously increment the reference count of the same object, the reference count
could end up being incremented only once instead of twice.

Therefore, the rule exists that only the thread that has acquired the G/ may operate on Python objects or call Python/C
API functions. In order to emulate concurrency of execution, the interpreter regularly tries to switch threads (see
sys.setswitchinterval ()). Thelockis also released around potentially blocking I/O operations like reading
or writing a file, so that other Python threads can run in the meantime.

9.5. Thread State and the Global Interpreter Lock 139

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-5983

The Python/C API, & x| B] A 3.7.16

The Python interpreter keeps some thread-specific bookkeeping information inside a data structure called
PyThreadState. There’s also one global variable pointing to the current Py ThreadState: it can be retrieved
using PyThreadState_Get ().

9.5.1 Releasing the GIL from extension code

Most extension code manipulating the GI/L has the following simple structure:

Save the thread state in a local variable.
Release the global interpreter lock.
. Do some blocking I/O operation
Reacquire the global interpreter lock.
Restore the thread state from the local variable.

This is so common that a pair of macros exists to simplify it:

Py_BEGIN_ALLOW_THREADS
. Do some blocking I/O operation
Py_END_ALLOW_THREADS

The Py BEGIN_ALLOW_THREADS macro opens a new block and declares a hidden local variable; the
Py_END_ALLOW_THREADS macro closes the block.

The block above expands to the following code:

PyThreadState *_save;

_save = PyEval_sSaveThread();
. Do some blocking I/O operation
PyEval_RestoreThread(_save);

Here is how these functions work: the global interpreter lock is used to protect the pointer to the current thread state.
When releasing the lock and saving the thread state, the current thread state pointer must be retrieved before the
lock is released (since another thread could immediately acquire the lock and store its own thread state in the global
variable). Conversely, when acquiring the lock and restoring the thread state, the lock must be acquired before storing
the thread state pointer.

Z31: Calling system I/O functions is the most common use case for releasing the GIL, but it can also be useful before
calling long-running computations which don’t need access to Python objects, such as compression or cryptographic
functions operating over memory buffers. For example, the standard z1ib and hashlib modules release the GIL
when compressing or hashing data.

9.5.2 Non-Python created threads

When threads are created using the dedicated Python APIs (such as the threading module), a thread state is
automatically associated to them and the code showed above is therefore correct. However, when threads are created
from C (for example by a third-party library with its own thread management), they don’t hold the GIL, nor is there
a thread state structure for them.

If you need to call Python code from these threads (often this will be part of a callback API provided by the afore-
mentioned third-party library), you must first register these threads with the interpreter by creating a thread state
data structure, then acquiring the GIL, and finally storing their thread state pointer, before you can start using the
Python/C API. When you are done, you should reset the thread state pointer, release the GIL, and finally free the
thread state data structure.

The PyGILState_Ensure () and PyGILState_Release () functions do all of the above automatically.
The typical idiom for calling into Python from a C thread is:

140 Chapter 9. Initialization, Finalization, and Threads

The Python/C API, & x] 8] A 3.7.16

PyGILState_STATE gstate;
gstate = PyGILState_Ensure();

/* Perform Python actions here. */
result = CallSomeFunction();
/* evaluate result or handle exception */

/* Release the thread. No Python API allowed beyond this point. */
PyGILState_Release (gstate);

Note that the PyGILState_* () functions assume there is only one global interpreter (created automatically by
Py _Initialize ()).Pythonsupports the creation of additional interpreters (using Py NewInterpreter ()),
but mixing multiple interpreters and the PyGILState_* () API is unsupported.

Another important thing to note about threads is their behaviour in the face of the C fork () call. On most systems
with fork (), after a process forks only the thread that issued the fork will exist. That also means any locks held
by other threads will never be released. Python solves this for os. fork () by acquiring the locks it uses internally
before the fork, and releasing them afterwards. In addition, it resets any lock-objects in the child. When extending
or embedding Python, there is no way to inform Python of additional (non-Python) locks that need to be acquired
before or reset after a fork. OS facilities such as pthread_atfork () would need to be used to accomplish the
same thing. Additionally, when extending or embedding Python, calling fork () directly rather than through os.
fork () (and returning to or calling into Python) may result in a deadlock by one of Python’s internal locks being
held by a thread that is defunct after the fork. PyOS_AfterFork_Child () tries to reset the necessary locks,
but is not always able to.

9.5.3 High-level API

These are the most commonly used types and functions when writing C extension code, or when embedding the
Python interpreter:

PyInterpreterState
This data structure represents the state shared by a number of cooperating threads. Threads belonging to the
same interpreter share their module administration and a few other internal items. There are no public members
in this structure.

Threads belonging to different interpreters initially share nothing, except process state like available memory,
open file descriptors and such. The global interpreter lock is also shared by all threads, regardless of to which
interpreter they belong.

PyThreadState
This data structure represents the state of a single thread. @ The only public data member is
PyInterpreterState *interp, which points to this thread’s interpreter state.

void PyEval_InitThreads ()
Initialize and acquire the global interpreter lock. It should be called in the main thread before creating a second
thread or engaging in any other thread operations such as PyEval_ReleaseThread (tstate). Itis not
needed before calling PyEval SaveThread () or PyEval RestoreThread ().

This is a no-op when called for a second time.

W A 3.7 A ¥ 7 : This function is now called by Py_Tnitialize (), soyoudon’thave to call it yourself
anymore.

A 3.20]| 4] ¥ 7 : This function cannot be called before Py Tnitialize () anymore.

int PyEval_ThreadsInitialized ()
Returns a non-zero value if PyEval_TnitThreads () hasbeen called. This function can be called without
holding the GIL, and therefore can be used to avoid calls to the locking API when running single-threaded.

¥ A 3.79| 4] ¥ 7 : The GIL is now initialized by Py_Tnitialize ().

PyThreadState* PyEval_SaveThread ()
Release the global interpreter lock (if it has been created and thread support is enabled) and reset the thread

9.5. Thread State and the Global Interpreter Lock 141

The Python/C API, & x| B] A 3.7.16

state to NULL, returning the previous thread state (which is not NULL). If the lock has been created, the current
thread must have acquired it.

void PyEval_RestoreThread (PyThreadState *tstate)
Acquire the global interpreter lock (if it has been created and thread support is enabled) and set the thread state
to tstate, which must not be NULL. If the lock has been created, the current thread must not have acquired it,
otherwise deadlock ensues.

Z31: Calling this function from a thread when the runtime is finalizing will terminate the thread, even if the
thread was not created by Python. You can use _Py_IsFinalizing() or sys.is_finalizing()
to check if the interpreter is in process of being finalized before calling this function to avoid unwanted termi-
nation.

PyThreadState* PyThreadState_Get ()
Return the current thread state. The global interpreter lock must be held. When the current thread state is
NULL, this issues a fatal error (so that the caller needn’t check for NULL).

PyThreadState* PyThreadState_Swap (PyThreadState *tstate)
Swap the current thread state with the thread state given by the argument #state, which may be NULL. The
global interpreter lock must be held and is not released.

void PyEval_ReInitThreads ()
This function is called from PyOS_AfterFork_Child () toensure that newly created child processes don’
t hold locks referring to threads which are not running in the child process.

The following functions use thread-local storage, and are not compatible with sub-interpreters:

PyGILState_STATE PyGILState_Ensure ()
Ensure that the current thread is ready to call the Python C API regardless of the current state of Python,
or of the global interpreter lock. This may be called as many times as desired by a thread as long as
each call is matched with a call to PyGILState Release (). In general, other thread-related APIs
may be used between PyGILState Ensure () and PyGILState_Release () calls as long as the
thread state is restored to its previous state before the Release(). For example, normal usage of the
Py_BEGIN_ALLOW_THREADS and Py_END_ALLOW_THREADS macros is acceptable.

The return value is an opaque “handle” to the thread state when PyGILState Ensure () was called, and
must be passed to PyGILState_Release () to ensure Python is left in the same state. Even though
recursive calls are allowed, these handles cannot be shared - each unique call to PyGILState Ensure ()
must save the handle for its call to PyGILState Release ().

When the function returns, the current thread will hold the GIL and be able to call arbitrary Python code.
Failure is a fatal error.

Z31: Calling this function from a thread when the runtime is finalizing will terminate the thread, even if the
thread was not created by Python. You can use _Py_IsFinalizing() or sys.is_finalizing/()
to check if the interpreter is in process of being finalized before calling this function to avoid unwanted termi-
nation.

void PyGILState_Release (PyGILState_STATE)
Release any resources previously acquired. After this call, Python’s state will be the same as it was prior to the
corresponding PyGILState Ensure () call (but generally this state will be unknown to the caller, hence
the use of the GILState API).

Every callto PyGILState_Ensure () must be matched by acall to PyGILState Release () onthe
same thread.

PyThreadState* PyGILState_GetThisThreadState ()
Get the current thread state for this thread. May return NULL if no GILState API has been used on the current
thread. Note that the main thread always has such a thread-state, even if no auto-thread-state call has been
made on the main thread. This is mainly a helper/diagnostic function.

142 Chapter 9. Initialization, Finalization, and Threads

The Python/C API, & x] 8] A 3.7.16

int PyGILState_Check ()
Return 1 if the current thread is holding the GIL and 0 otherwise. This function can be called from any thread
at any time. Only if it has had its Python thread state initialized and currently is holding the GIL will it return
1. This is mainly a helper/diagnostic function. It can be useful for example in callback contexts or memory
allocation functions when knowing that the GIL is locked can allow the caller to perform sensitive actions or
otherwise behave differently.

B A 3.40] =7}

The following macros are normally used without a trailing semicolon; look for example usage in the Python source
distribution.

Py_BEGIN_ALLOW_THREADS
This macro expands to { PyThreadState *_save; _save = PyEval_SaveThread() ;. Note
that it contains an opening brace; it must be matched with a following Py END_ALLOW_THREAD.S macro.
See above for further discussion of this macro.

Py_END_ALLOW_THREADS
This macro expands to PyEval_RestoreThread (_save); }. Note that it contains a closing brace; it
must be matched with an earlier Py BEGIN_ALLOW_THREADS macro. See above for further discussion of
this macro.

Py_BLOCK_THREADS
This macro expands to PyEval_RestoreThread(_save);: it
Py_END_ALLOW_THREADS without the closing brace.

—-
«w

equivalent to

Py_UNBLOCK_THREADS
This macro expands to _save = PyEval_SaveThread();: it
Py_BEGIN_ALLOW_THREADS without the opening brace and variable declaration.

—

s equivalent to

9.5.4 Low-level API

All of the following functions must be called after Py_Tnitialize ().
WA 37 YMA: Py _Initialize () now initializes the GIL.

PylnterpreterState* PyInterpreterState_New ()
Create a new interpreter state object. The global interpreter lock need not be held, but may be held if it is
necessary to serialize calls to this function.

void PyInterpreterState_Clear (PylnterpreterState *interp)
Reset all information in an interpreter state object. The global interpreter lock must be held.

void PyInterpreterState_Delete (PylnterpreterState *interp)
Destroy an interpreter state object. The global interpreter lock need not be held. The interpreter state must
have been reset with a previous call to Py InterpreterState_Clear ().

PyThreadState* PyThreadState_New (PylnterpreterState *interp)
Create a new thread state object belonging to the given interpreter object. The global interpreter lock need not
be held, but may be held if it is necessary to serialize calls to this function.

void PyThreadState_Clear (PyThreadState *tstate)
Reset all information in a thread state object. The global interpreter lock must be held.

void PyThreadState_Delete (PyThreadState *tstate)
Destroy a thread state object. The global interpreter lock need not be held. The thread state must have been
reset with a previous call to PyThreadState _Clear ().

PY_INT64_T PyInterpreterState_GetID (PylnterpreterState *interp)
Return the interpreter’s unique ID. If there was any error in doing so then -1 is returned and an error is set.

B A 3.70] &7}

PyObject* PyThreadState_GetDict ()
Return value: Borrowed reference. Return a dictionary in which extensions can store thread-specific state

9.5. Thread State and the Global Interpreter Lock 143

The Python/C API, & x| B] A 3.7.16

information. Each extension should use a unique key to use to store state in the dictionary. It is okay to call
this function when no current thread state is available. If this function returns NULL, no exception has been
raised and the caller should assume no current thread state is available.

int PyThreadState_SetAsyncExc (unsigned long id, PyObject *exc)
Asynchronously raise an exception in a thread. The id argument is the thread id of the target thread; exc is the
exception object to be raised. This function does not steal any references to exc. To prevent naive misuse, you
must write your own C extension to call this. Must be called with the GIL held. Returns the number of thread
states modified; this is normally one, but will be zero if the thread id isn’t found. If exc is NULL, the pending
exception (if any) for the thread is cleared. This raises no exceptions.

WA 3.7 A ¥ 7 : The type of the id parameter changed from 1ong to unsigned long.

void PyEval_AcquireThread (PyThreadState *tstate)
Acquire the global interpreter lock and set the current thread state to tstate, which should not be NULL. The
lock must have been created earlier. If this thread already has the lock, deadlock ensues.

PyEval_RestoreThread () is a higher-level function which is always available (even when threads have
not been initialized).

void PyEval_ReleaseThread (PyThreadState *tstate)
Reset the current thread state to NULL and release the global interpreter lock. The lock must have been created
earlier and must be held by the current thread. The #state argument, which must not be NULL, is only used to
check that it represents the current thread state — if it isn’t, a fatal error is reported.

PyEval_SaveThread () is a higher-level function which is always available (even when threads have not
been initialized).

void PyEval_AcquirelLock ()
Acquire the global interpreter lock. The lock must have been created earlier. If this thread already has the
lock, a deadlock ensues.

WA 32K E] ¥ A : This function does not update the current thread state. Please use
PyEval_RestoreThread () or PyEval_AcquireThread () instead.

void PyEval_ReleaseLock ()
Release the global interpreter lock. The lock must have been created earlier.

WA 32K E] ¥ A : This function does not update the current thread state. Please use
PyEval_SaveThread () or PyEval_ReleaseThread () instead.

9.6 Sub-interpreter support

While in most uses, you will only embed a single Python interpreter, there are cases where you need to create several
independent interpreters in the same process and perhaps even in the same thread. Sub-interpreters allow you to do
that. You can switch between sub-interpreters using the Py ThreadState_Swap () function. You can create and
destroy them using the following functions:

PyThreadState* Py_NewInterpreter ()
Create a new sub-interpreter. This is an (almost) totally separate environment for the execution of Python
code. In particular, the new interpreter has separate, independent versions of all imported modules, including
the fundamental modules builtins, _ main__ and sys. The table of loaded modules (sys .modules)
and the module search path (sys . path) are also separate. The new environment has no sy s . argv variable.
It has new standard I/O stream file objects sys.stdin, sys.stdout and sys.stderr (however these
refer to the same underlying file descriptors).

The return value points to the first thread state created in the new sub-interpreter. This thread state is made
in the current thread state. Note that no actual thread is created; see the discussion of thread states below. If
creation of the new interpreter is unsuccessful, NULL is returned; no exception is set since the exception state
is stored in the current thread state and there may not be a current thread state. (Like all other Python/C API
functions, the global interpreter lock must be held before calling this function and is still held when it returns;
however, unlike most other Python/C API functions, there needn’t be a current thread state on entry.)

144 Chapter 9. Initialization, Finalization, and Threads

The Python/C API, & x] 8] A 3.7.16

Extension modules are shared between (sub-)interpreters as follows: the first time a particular extension is
imported, it is initialized normally, and a (shallow) copy of its module’s dictionary is squirreled away. When the
same extension is imported by another (sub-)interpreter, a new module is initialized and filled with the contents
of this copy; the extension’s init function is not called. Note that this is different from what happens when an
extension is imported after the interpreter has been completely re-initialized by calling Py_FinalizeEx ()
and Py_Tnitialize ();in that case, the extension’s initmodule function is called again.

void Py_EndInterpreter (PyThreadState *tstate)
Destroy the (sub-)interpreter represented by the given thread state. The given thread state must be the current
thread state. See the discussion of thread states below. When the call returns, the current thread state is NULL.
All thread states associated with this interpreter are destroyed. (The global interpreter lock must be held before
calling this function and is still held when it returns.) Py_FinalizeEx () will destroy all sub-interpreters
that haven’t been explicitly destroyed at that point.

9.6.1 Bugs and caveats

Because sub-interpreters (and the main interpreter) are part of the same process, the insulation between them isn’
t perfect — for example, using low-level file operations like os.close () they can (accidentally or maliciously)
affect each other’s open files. Because of the way extensions are shared between (sub-)interpreters, some extensions
may not work properly; this is especially likely when the extension makes use of (static) global variables, or when
the extension manipulates its module’s dictionary after its initialization. It is possible to insert objects created in
one sub-interpreter into a namespace of another sub-interpreter; this should be done with great care to avoid sharing
user-defined functions, methods, instances or classes between sub-interpreters, since import operations executed by
such objects may affect the wrong (sub-)interpreter’s dictionary of loaded modules.

Also note that combining this functionality with PyGILState_* () APIs is delicate, because these APIs as-
sume a bijection between Python thread states and OS-level threads, an assumption broken by the presence of
sub-interpreters. It is highly recommended that you don’t switch sub-interpreters between a pair of matching
PyGILState_Ensure () and PyGILState_ Release () calls. Furthermore, extensions (such as ctypes)
using these APIs to allow calling of Python code from non-Python created threads will probably be broken when
using sub-interpreters.

9.7 Asynchronous Notifications

A mechanism is provided to make asynchronous notifications to the main interpreter thread. These notifications take
the form of a function pointer and a void pointer argument.

int Py_AddPendingCall (int (*func)(void *), void *arg)
Schedule a function to be called from the main interpreter thread. On success, 0 is returned and func is queued
for being called in the main thread. On failure, —1 is returned without setting any exception.

When successfully queued, func will be eventually called from the main interpreter thread with the argument
arg. It will be called asynchronously with respect to normally running Python code, but with both these con-
ditions met:

* on a bytecode boundary;
 with the main thread holding the global interpreter lock (func can therefore use the full C API).

func must return O on success, or —1 on failure with an exception set. func won’t be interrupted to perform
another asynchronous notification recursively, but it can still be interrupted to switch threads if the global
interpreter lock is released.

This function doesn’t need a current thread state to run, and it doesn’t need the global interpreter lock.

7 3: This is a low-level function, only useful for very special cases. There is no guarantee that func
will be called as quick as possible. If the main thread is busy executing a system call, func won’t be called

9.7. Asynchronous Notifications 145

The Python/C API, & x| B] A 3.7.16

before the system call returns. This function is generally not suitable for calling Python code from arbitrary
C threads. Instead, use the PyGILState API.

B A 3.10]] &7}

9.8 Profiling and Tracing

The Python interpreter provides some low-level support for attaching profiling and execution tracing facilities. These
are used for profiling, debugging, and coverage analysis tools.

This C interface allows the profiling or tracing code to avoid the overhead of calling through Python-level callable
objects, making a direct C function call instead. The essential attributes of the facility have not changed; the interface
allows trace functions to be installed per-thread, and the basic events reported to the trace function are the same as
had been reported to the Python-level trace functions in previous versions.

int (*Py_tracefunc) (PyObject *obj, PyFrameObject *frame, int what, PyObject *arg)
The type of the trace function registered using PyEval_ SetProfile () and PyEval_SetTrace ().
The first parameter is the object passed to the registration function as obyj, frame is the frame object to which the
event pertains, what is one of the constants PyTrace_CALL, PyTrace_EXCEPTION, PyTrace_LINE,
PyTrace_RETURN, PyTrace_C_CALL, PyTrace_C_EXCEPTION, PyTrace_C_RETURN, or
PyTrace_OPCODE, and arg depends on the value of what:

Value of what Meaning of arg

PyTrace_CALL Always Py_None.

PyTrace_EXCEPTION Exception information as returned by sys.exc_info ().
PyTrace_LINE Always Py_None.

PyTrace_RETURN Value being returned to the caller, or NULL if caused by an exception.
PyTrace_C_CALL Function object being called.

PyTrace_C_EXCEPTION | Function object being called.

PyTrace_C_RETURN Function object being called.

PyTrace_OPCODE Always Py_None.

int PyTrace_CALL
The value of the what parameter to a Py_ t racefunc function when a new call to a function or method is
being reported, or a new entry into a generator. Note that the creation of the iterator for a generator function
is not reported as there is no control transfer to the Python bytecode in the corresponding frame.

int PyTrace_EXCEPTION
The value of the what parameter to a Pyt racefunc function when an exception has been raised. The
callback function is called with this value for what when after any bytecode is processed after which the
exception becomes set within the frame being executed. The effect of this is that as exception propagation
causes the Python stack to unwind, the callback is called upon return to each frame as the exception propagates.
Only trace functions receives these events; they are not needed by the profiler.

int PyTrace_LINE
The value passed as the what parameter to a Py_ t race func function (but not a profiling function) when a
line-number event is being reported. It may be disabled for a frame by setting £_trace_lines to 0 on that
frame.

int PyTrace_RETURN
The value for the what parameter to Py_ t race func functions when a call is about to return.

int PyTrace_C_CALL
The value for the what parameter to Py_ t race func functions when a C function is about to be called.

int PyTrace_C_EXCEPTION
The value for the what parameter to Py_ t race func functions when a C function has raised an exception.

146 Chapter 9. Initialization, Finalization, and Threads

The Python/C API, & x] 8] A 3.7.16

int PyTrace_C_RETURN
The value for the what parameter to Py_ t race func functions when a C function has returned.

int PyTrace_OPCODE
The value for the what parameter to Py_tracefunc functions (but not profiling functions) when a new
opcode is about to be executed. This event is not emitted by default: it must be explicitly requested by setting
f_trace_opcodes to I on the frame.

void PyEval_SetProfile (Py_tracefunc func, PyObject *obj)
Set the profiler function to func. The obj parameter is passed to the function as its first parameter, and may
be any Python object, or NULL. If the profile function needs to maintain state, using a different value for obj
for each thread provides a convenient and thread-safe place to store it. The profile function is called for all
monitored events except PyTrace_LINE PyTrace_OPCODE and PyTrace_EXCEPTION.

void PyEval_SetTrace (Py_tracefunc func, PyObject *obj)
Set the tracing function to func. This is similar to PyEval_ SetProfile (), except the tracing function
does receive line-number events and per-opcode events, but does not receive any event related to C func-
tion objects being called. Any trace function registered using PyEval_ SetTrace () will not receive
PyTrace_C_CALL, PyTrace_C_EXCEPTION or PyTrace_C_RETURN as a value for the what pa-
rameter.

9.9 Advanced Debugger Support

These functions are only intended to be used by advanced debugging tools.

PylnterpreterState* PyInterpreterState_Head ()
Return the interpreter state object at the head of the list of all such objects.

PylnterpreterState* PyInterpreterState_Main ()
Return the main interpreter state object.

PyInterpreterState* PyInterpreterState_Next (PylnterpreterState *interp)
Return the next interpreter state object after interp from the list of all such objects.

PyThreadState * PyInterpreterState_ThreadHead (PylnterpreterState *interp)
Return the pointer to the first PyThreadState object in the list of threads associated with the interpreter
interp.

PyThreadState* PyThreadState_Next (PyThreadState *tstate)
Return the next thread state object after #state from the list of all such objects belonging to the same
PyInterpreterState object.

9.10 Thread Local Storage Support

The Python interpreter provides low-level support for thread-local storage (TLS) which wraps the underlying native
TLS implementation to support the Python-level thread local storage API (threading.local). The CPython
C level APIs are similar to those offered by pthreads and Windows: use a thread key and functions to associate a
void* value per thread.

The GIL does not need to be held when calling these functions; they supply their own locking.

Note that Python . h does not include the declaration of the TLS APIs, you need to include pythread.h to use
thread-local storage.

ZF31: None of these API functions handle memory management on behalf of the void* values. You need to
allocate and deallocate them yourself. If the void* values happen to be PyObject *, these functions don’t do
refcount operations on them either.

9.9. Advanced Debugger Support 147

The Python/C API, & x| B] A 3.7.16

9.10.1 Thread Specific Storage (TSS) API

TSS API is introduced to supersede the use of the existing TLS API within the CPython interpreter. This API uses
anew type Py_tss_t instead of int to represent thread keys.

B A 3.79] 7}
o B
“A New C-API for Thread-Local Storage in CPython” (PEP 539)

Py tss_t
This data structure represents the state of a thread key, the definition of which may depend on the underlying
TLS implementation, and it has an internal field representing the key’s initialization state. There are no public
members in this structure.

When Py_LIMITED_API is not defined, static allocation of this type by Py tss_NEEDS_INIT is allowed.

Py_tss_NEEDS_INIT

This macro expands to the initializer for Py_ tss_ t variables. Note that this macro won’t be defined with
Py _LIMITED_API.

Dynamic Allocation

Dynamic allocation of the Py_tss_ t, required in extension modules built with Py_LIMITED_API, where static
allocation of this type is not possible due to its implementation being opaque at build time.

Py_tss_t* PyThread_tss_alloc ()
Return a value which is the same state as a value initialized with Py_tss_NEEDS INIT, or NULL in the
case of dynamic allocation failure.

void PyThread_tss_free (Py_1ss_t *key)
Free the given key allocated by PyThread tss_alloc(), after first calling
PyThread_tss_delete () to ensure any associated thread locals have been unassigned. This is a
no-op if the key argument is NULL.

ZF31: A freed key becomes a dangling pointer, you should reset the key to NULL.

Methods

The parameter key of these functions must not be NULL. Moreover, the behaviors of PyThread tss_set ()
and PyThread_tss_get () are undefined if the given Py _tss_t has not been initialized by
PyThread_tss_create().

int PyThread_tss_is_created (Py_iss_t *key)
Return a non-zero value if the given Py_ tss_ t has been initialized by PyThread_tss_create ().

int PyThread_tss_create (Py_tss_t *key)
Return a zero value on successful initialization of a TSS key. The behavior is undefined if the value pointed to
by the key argument is not initialized by Pyt ss_NEEDS_INIT. This function can be called repeatedly on
the same key — calling it on an already initialized key is a no-op and immediately returns success.

void PyThread_tss_delete (Py_tss_t *key)
Destroy a TSS key to forget the values associated with the key across all threads, and change the key’s initial-
ization state to uninitialized. A destroyed key is able to be initialized again by Py Thread_tss_create ().
This function can be called repeatedly on the same key — calling it on an already destroyed key is a no-op.

int PyThread_tss_set (Py_tss_t *key, void *value)
Return a zero value to indicate successfully associating a void* value with a TSS key in the current thread.
Each thread has a distinct mapping of the key to a void* value.

148 Chapter 9. Initialization, Finalization, and Threads

https://www.python.org/dev/peps/pep-0539

The Python/C API, & x] 8] A 3.7.16

void* PyThread_tss_get (Py_1ss_t *key)
Return the void* value associated with a TSS key in the current thread. This returns NULL if no value is
associated with the key in the current thread.

9.10.2 Thread Local Storage (TLS) API

WA 3. 75 €] 3 A : This AP is superseded by Thread Specific Storage (TSS) API.

Z+31: This version of the API does not support platforms where the native TLS key is defined in a way that cannot
be safely cast to int. On such platforms, PyThread _create_key () will return immediately with a failure
status, and the other TLS functions will all be no-ops on such platforms.

Due to the compatibility problem noted above, this version of the API should not be used in new code.
int PyThread_create_key ()

void PyThread_delete_key (int key)

int PyThread_set_key_value (int key, void *value)

void* PyThread_get_key_value (int key)

void PyThread_delete_key_value (int key)

void PyThread_ReInitTLS ()

9.10. Thread Local Storage Support 149

The Python/C API, & x| B] A 3.7.16

150 Chapter 9. Initialization, Finalization, and Threads

cHAPTER 10

Memory Management

10.1 Overview

Memory management in Python involves a private heap containing all Python objects and data structures. The man-
agement of this private heap is ensured internally by the Python memory manager. The Python memory manager
has different components which deal with various dynamic storage management aspects, like sharing, segmentation,
preallocation or caching.

At the lowest level, a raw memory allocator ensures that there is enough room in the private heap for storing all
Python-related data by interacting with the memory manager of the operating system. On top of the raw memory
allocator, several object-specific allocators operate on the same heap and implement distinct memory management
policies adapted to the peculiarities of every object type. For example, integer objects are managed differently within
the heap than strings, tuples or dictionaries because integers imply different storage requirements and speed/space
tradeoffs. The Python memory manager thus delegates some of the work to the object-specific allocators, but ensures
that the latter operate within the bounds of the private heap.

It is important to understand that the management of the Python heap is performed by the interpreter itself and that
the user has no control over it, even if they regularly manipulate object pointers to memory blocks inside that heap.
The allocation of heap space for Python objects and other internal buffers is performed on demand by the Python
memory manager through the Python/C API functions listed in this document.

To avoid memory corruption, extension writers should never try to operate on Python objects with the functions
exported by the C library: malloc (), calloc (), realloc () and free (). This will result in mixed calls
between the C allocator and the Python memory manager with fatal consequences, because they implement different
algorithms and operate on different heaps. However, one may safely allocate and release memory blocks with the C
library allocator for individual purposes, as shown in the following example:

PyObject *res;
char *buf = (char *) malloc (BUFSIZ); /* for I/0 */

if (buf == NULL)
return PyErr_NoMemory () ;
...Do some I/O operation involving buf...
res = PyBytes_FromString (buf);
free(buf); /* malloc'ed */
return res;

In this example, the memory request for the I/O buffer is handled by the C library allocator. The Python memory
manager is involved only in the allocation of the bytes object returned as a result.

151

The Python/C API, & x| B] A 3.7.16

In most situations, however, it is recommended to allocate memory from the Python heap specifically because the
latter is under control of the Python memory manager. For example, this is required when the interpreter is extended
with new object types written in C. Another reason for using the Python heap is the desire to inform the Python
memory manager about the memory needs of the extension module. Even when the requested memory is used
exclusively for internal, highly-specific purposes, delegating all memory requests to the Python memory manager
causes the interpreter to have a more accurate image of its memory footprint as a whole. Consequently, under certain
circumstances, the Python memory manager may or may not trigger appropriate actions, like garbage collection,
memory compaction or other preventive procedures. Note that by using the C library allocator as shown in the
previous example, the allocated memory for the I/O buffer escapes completely the Python memory manager.

o] ®7]:
The PYTHONMALLOC environment variable can be used to configure the memory allocators used by Python.

The PYTHONMALLOCSTATS environment variable can be used to print statistics of the pymalloc memory allocator
every time a new pymalloc object arena is created, and on shutdown.

10.2 Raw Memory Interface

The following function sets are wrappers to the system allocator. These functions are thread-safe, the GIL does not
need to be held.

The default raw memory allocator uses the following functions: malloc (), calloc (), realloc() and
free();callmalloc (1) (or calloc (1, 1)) when requesting zero bytes.

WA 3409 7}

void* PyMem_RawMalloc (size_t n)
Allocates n bytes and returns a pointer of type void* to the allocated memory, or NULL if the request fails.

Requesting zero bytes returns a distinct non-NULL pointer if possible, as if PyMem_RawMalloc (1) had
been called instead. The memory will not have been initialized in any way.

void* PyMem_RawCalloc (size_t nelem, size_t elsize)
Allocates nelem elements each whose size in bytes is elsize and returns a pointer of type void* to the allocated
memory, or NULL if the request fails. The memory is initialized to zeros.

Requesting zero elements or elements of size zero bytes returns a distinct non-NULL pointer if possible, as if
PyMem_RawCalloc (1, 1) had been called instead.

WA 3500 7}

void* PyMem_RawRealloc (void *p, size_t n)
Resizes the memory block pointed to by p to n bytes. The contents will be unchanged to the minimum of the
old and the new sizes.

If p is NULL, the call is equivalent to PyMem_RawMalloc (n); else if # is equal to zero, the memory block
is resized but is not freed, and the returned pointer is non-NULL.

Unless p is NULL, it must have been returned by a previous call to PyMem RawMalloc (),
PyMem RawRealloc () or PyMem RawCalloc ().

If the request fails, PyMem_RawRealloc () returns NULL and p remains a valid pointer to the previous
memory area.

void PyMem_RawFree (void *p)
Frees the memory block pointed to by p, which must have been returned by a previous call to
PyMem_RawMalloc (), PyMem_ RawRealloc () or PyMem RawCalloc (). Otherwise, or if
PyMem_RawFree (p) has been called before, undefined behavior occurs.

If p is NULL, no operation is performed.

152 Chapter 10. Memory Management

The Python/C API, & x] 8] A 3.7.16

10.3 Memory Interface

The following function sets, modeled after the ANSI C standard, but specifying behavior when requesting zero bytes,
are available for allocating and releasing memory from the Python heap.

The default memory allocator uses the pymalloc memory allocator.

7 11: The GIL must be held when using these functions.

¥ A 3.69]| A ¥ 7 : The default allocator is now pymalloc instead of system malloc ().

void* PyMem_Malloc (size_t n)
Allocates n bytes and returns a pointer of type void* to the allocated memory, or NULL if the request fails.

Requesting zero bytes returns a distinct non-NULL pointer if possible, as if PyMem_Malloc (1) had been
called instead. The memory will not have been initialized in any way.

void* PyMem_Calloc (size_t nelem, size_t elsize)
Allocates nelem elements each whose size in bytes is elsize and returns a pointer of type void* to the allocated
memory, or NULL if the request fails. The memory is initialized to zeros.

Requesting zero elements or elements of size zero bytes returns a distinct non-NULL pointer if possible, as if
PyMem_Calloc (1, 1) had been called instead.

B A 3.50] &7}

void* PyMem_Realloc (void *p, size_t n)
Resizes the memory block pointed to by p to n bytes. The contents will be unchanged to the minimum of the
old and the new sizes.

If p is NULL, the call is equivalent to PyMem_Malloc (n); else if n is equal to zero, the memory block is
resized but is not freed, and the returned pointer is non-NULL.

Unless pis NULL, it must have been returned by a previous call to PyMem_Malloc (), PyMem_Realloc ()
or PyMem_Calloc ().

If the request fails, PyMem_Realloc () returns NULL and p remains a valid pointer to the previous memory
area.

void PyMem_Free (void *p)
Frees the memory block pointed to by p, which must have been returned by a previous call to
PyMem_Malloc (), PyMem Realloc () or PyMem_Calloc (). Otherwise, or if PyMem_Free (p)
has been called before, undefined behavior occurs.

If p is NULL, no operation is performed.
The following type-oriented macros are provided for convenience. Note that TYPE refers to any C type.

TYPE* PyMem_New (TYPE, size_t n)
Same as PyMem_Malloc (), butallocates (n * sizeof (TYPE)) bytes of memory. Returns a pointer
cast to TYPE*. The memory will not have been initialized in any way.

TYPE* PyMem_Resize (void *p, TYPE, size_t n)
Same as PyMem_Realloc (),butthe memory block isresizedto (n * sizeof (TYPE)) bytes. Returns
a pointer cast to TYPE *. On return, p will be a pointer to the new memory area, or NULL in the event of failure.

This is a C preprocessor macro; p is always reassigned. Save the original value of p to avoid losing memory
when handling errors.

void PyMem_Del (void *p)
Same as PyMem_Free ().

In addition, the following macro sets are provided for calling the Python memory allocator directly, without involving
the C API functions listed above. However, note that their use does not preserve binary compatibility across Python
versions and is therefore deprecated in extension modules.

10.3. Memory Interface 153

The Python/C API, & x| B] A 3.7.16

PyMem_MALLOC (size)

PyMem_NEW (type, size)
PyMem_REALLOC (ptr, size)
PyMem_RESIZE (ptr, type, size)
PyMem_FREE (ptr)

PyMem_DEL (ptr)

10.4 Object allocators

The following function sets, modeled after the ANSI C standard, but specifying behavior when requesting zero bytes,
are available for allocating and releasing memory from the Python heap.

The default object allocator uses the pymalloc memory allocator.

7 3: The GIL must be held when using these functions.

void* PyObject_Malloc (size_t n)

Allocates n bytes and returns a pointer of type void* to the allocated memory, or NULL if the request fails.

Requesting zero bytes returns a distinct non-NULL pointer if possible, as if PyObject_Malloc (1) had
been called instead. The memory will not have been initialized in any way.

void* PyObject_Calloc (size_t nelem, size_t elsize)

Allocates nelem elements each whose size in bytes is elsize and returns a pointer of type void* to the allocated
memory, or NULL if the request fails. The memory is initialized to zeros.

Requesting zero elements or elements of size zero bytes returns a distinct non-NULL pointer if possible, as if
PyObject_Calloc (1, 1) had been called instead.

WA 3.50] F7}.

void* PyObject_Realloc (void *p, size_t n)

Resizes the memory block pointed to by p to n bytes. The contents will be unchanged to the minimum of the
old and the new sizes.

If p is NULL, the call is equivalent to PyObject_Malloc (n);else if n is equal to zero, the memory block
is resized but is not freed, and the returned pointer is non-NULL.

Unless p is NULL, it must have been returned by a previous call to PyObject_Malloc(),
PyObject_Realloc () or PyObject_Calloc ().

If the request fails, PyObject_Realloc () returns NULL and p remains a valid pointer to the previous
memory area.

void PyObject_Free (void *p)

Frees the memory block pointed to by p, which must have been returned by a previous call to
PyObject_Malloc (), PyObject_Realloc () or PyObject_Calloc (). Otherwise, or if
PyObject_Free (p) has been called before, undefined behavior occurs.

If p is NULL, no operation is performed.

154

Chapter 10. Memory Management

The Python/C API, & x] 8] A 3.7.16

10.5 Default Memory Allocators

Default memory allocators:

Configuration Name PyMem_RawMallpd®yMem_Malloc | PyOb-
ject_Malloc
Release build "pymalloc" malloc pymalloc pymalloc
Debug build "pymalloc_debugthalloc +debug | pymalloc + | pymalloc +
debug debug
Release build, without py- | "malloc" malloc malloc malloc
malloc
Debug build, without py- | "malloc_debug"| malloc +debug | malloc + de- | malloc + de-
malloc bug bug
Legend:

and free ()

pymalloc: pymalloc memory allocator

10.6 Customize Memory Alloc

WA 349 F7}
PyMemAllocatorEx

Name: value for PYTHONMALLOC environment variable

ators

malloc: system allocators from the standard C library, C functions: malloc (),calloc (), realloc ()

“+ debug”: with debug hooks installed by PyMem SetupDebugHooks ()

Structure used to describe a memory block allocator. The structure has four fields:

Field

Meaning

void *ctx

user context passed as first argument

void* malloc (void *ctx,

size_t size)

allocate a memory block

void* calloc(void *ctx,
size_t elsize)

size_t nelemn,

allocate a memory block initialized
with zeros

void* realloc(void *ctx, void

new_size)

*ptr, size_t

allocate or resize a memory block

void free(void *ctx,

void *ptr)

free a memory block

¥ A 3.5 4] A : The PyMemAllocator structure was renamed to PyMemAllocatorEx and a new

calloc field was added.

PyMemAllocatorDomain

Enum used to identify an allocator domain. Domains:

PYMEM_DOMAIN_RAW
Functions:

* PyMem RawMalloc ()
* PyMem RawRealloc ()
* PyMem RawCalloc()
* PyMem RawFree ()

PYMEM DOMAIN_MEM
Functions:

10.5. Default Memory Allocators

155

The Python/C API, & x| B] A 3.7.16

* PyMem Malloc(),
* PyMem Realloc ()
e PyMem_Calloc /()
* PyMem Free()

PYMEM DOMAIN_OBJ
Functions:

e PyObject_Malloc()
* PyObject_Realloc ()
e PyObject_Calloc()

* PyObject_Free()

void PyMem_GetAllocator (PyMemAllocatorDomain domain, PyMemAllocatorEx *allocator)

Get the memory block allocator of the specified domain.

void PyMem_SetAllocator (PyMemAllocatorDomain domain, PyMemAllocatorEx *allocator)

Set the memory block allocator of the specified domain.
The new allocator must return a distinct non-NULL pointer when requesting zero bytes.

For the PYMEM DOMAIN RAW domain, the allocator must be thread-safe: the GIL is not held when the
allocator is called.

If the new allocator is not a hook (does not call the previous allocator), the PyMem SetupDebugHooks ()
function must be called to reinstall the debug hooks on top on the new allocator.

void PyMem_SetupDebugHooks (void)

Setup hooks to detect bugs in the Python memory allocator functions.

Newly allocated memory is filled with the byte 0xCD (CLEANBYTE), freed memory is filled with the byte
0xDD (DEADBYTE). Memory blocks are surrounded by “forbidden bytes” (FORBIDDENBYTE: byte 0xED).

Runtime checks:
» Detect API violations, ex: PyObject_Free () called on a buffer allocated by PyMem_Malloc ()
¢ Detect write before the start of the buffer (buffer underflow)
¢ Detect write after the end of the buffer (buffer overflow)

e Check that the GIL is held when allocator functions of PYMEM DOMAIN_OBJ (ex:
PyObject_Malloc()) and PYMEM_DOMAIN_MEM (ex: PyMem Malloc ()) domains are
called

On error, the debug hooks use the t racemalloc module to get the traceback where a memory block was
allocated. The traceback is only displayed if tracemalloc is tracing Python memory allocations and the
memory block was traced.

These hooks are installed by default if Python is compiled in debug mode. The PYTHONMALLOC environment
variable can be used to install debug hooks on a Python compiled in release mode.

¥ A 3.6°1 A ¥ 7 : This function now also works on Python compiled in release mode. On error, the debug
hooks now use t racemalloc to get the traceback where a memory block was allocated. The debug hooks
now also check if the GIL is held when functions of PYMEM DOMAIN_OBJ and PYMEM _DOMAIN_MEM
domains are called.

WA 3739 A W 7: Byte patterns 0xCB (CLEANBYTE), OxDB (DEADBYTE) and OxFB
(FORBIDDENBYTE) have been replaced with 0xCD, 0xDD and OxFD to use the same values than Windows
CRT debugmalloc () and free ().

156

Chapter 10. Memory Management

The Python/C API, & x] 8] A 3.7.16

10.7 The pymalloc allocator

Python has a pymalloc allocator optimized for small objects (smaller or equal to 512 bytes) with a short lifetime. It
uses memory mappings called “arenas” with a fixed size of 256 KiB. It falls back to PyMem RawMalloc () and
PyMem_RawRealloc () for allocations larger than 512 bytes.

pymalloc is the default allocator of the PYMEM _DOMAIN_MEM (ex: PyMem_Malloc()) and
PYMEM_DOMAIN_OBJ (ex: PyObject_Malloc ()) domains.

The arena allocator uses the following functions:
e VirtualAlloc () and VirtualFree () on Windows,
e mmap () and munmap () if available,

e malloc () and free () otherwise.

10.7.1 Customize pymalloc Arena Allocator

WA 3409 7}

PyObjectArenalAllocator
Structure used to describe an arena allocator. The structure has three fields:

Field Meaning

void *ctx user context passed as first argument
void* alloc (void *ctx, size_t size) allocate an arena of size bytes
void free(void *ctx, size_t size, void free an arena

*ptr)

PyObject_GetArenaAllocator (PyObjectArenaAllocator *allocator)
Get the arena allocator.

PyObject_SetArenaAllocator (PyObjectArenaAllocator *allocator)
Set the arena allocator.

10.8 tracemalloc C API

WA 3,790 E7}

int PyTraceMalloc_Track (unsigned int domain, uintptr_t ptr, size_t size)
Track an allocated memory block in the t racemalloc module.

Return 0 on success, return —1 on error (failed to allocate memory to store the trace). Return -2 if tracemalloc
is disabled.

If memory block is already tracked, update the existing trace.

int PyTraceMalloc_Untrack (unsigned int domain, uintptr_t ptr)
Untrack an allocated memory block in the t racemalloc module. Do nothing if the block was not tracked.

Return -2 if tracemalloc is disabled, otherwise return O.

10.7. The pymalloc allocator 157

The Python/C API, & x| B] A 3.7.16

10.9 Examples

Here is the example from section Overview, rewritten so that the I/O buffer is allocated from the Python heap by
using the first function set:

PyObject *res;

char *buf = (char *) PyMem_Malloc (BUFSIZ); /* for I/0 */
if (buf == NULL)

return PyErr_NoMemory () ;
/* ...Do some I/O operation involving buf... */

res = PyBytes_FromString (buf);
PyMem_Free (buf); /* allocated with PyMem Malloc */
return res;

The same code using the type-oriented function set:

PyObject *res;
char *buf = PyMem_New (char, BUFSIZ); /* for I/0 */

if (buf == NULL)
return PyErr_NoMemory () ;
/* ...Do some I/O operation involving buf... */

res = PyBytes_FromString (buf) ;
PyMem_Del (buf); /* allocated with PyMem_ New */
return res;

Note that in the two examples above, the buffer is always manipulated via functions belonging to the same set. Indeed,
it is required to use the same memory API family for a given memory block, so that the risk of mixing different
allocators is reduced to a minimum. The following code sequence contains two errors, one of which is labeled as
fatal because it mixes two different allocators operating on different heaps.

char *bufl = PyMem_New (char, BUFSIZ);
char *buf2 (char *) malloc (BUFSIZ);
char *buf3 = (char *) PyMem_Malloc (BUFSIZ);

PyMem_Del (buf3); /* Wrong —-- should be PyMem_ Free() */

free (buf2); /* Right —-- allocated via malloc() */
free (bufl); /* Fatal —-- should be PyMem_Del () */

In addition to the functions aimed at handling raw memory blocks from the Python heap, objects in Python are
allocated and released with PyOb ject_New (), PyObject_NewVar () and PyObject_Del ().

These will be explained in the next chapter on defining and implementing new object types in C.

158 Chapter 10. Memory Management

cHAPTER 11

A 78 A9

ol FollM= A AA F= BT wf AHH = T, B H a2z dsf A

1.1 ol A4 Zs17)

PyObject* _PyObject_New (PyTypeObject *type)
Return value: New reference.

PyVarObject* _PyObject_NewVar (PyTypeObject *type, Py_ssize_t size)
Return value: New reference.

PyObject* PyObject_Init (PyObject *op, PyTypeObject *type)
Return value: Borrowed reference. M & & 3FH AA opE A} 7] A2 2 27|ttt 27|34
AN HBG U npeo] AA 7L € B A 24 710] Hol TS LEHRH, A 7le] gAIE &
A Qe FA4E Ut A O Det JFE wA gL

PyVarObject* PyObject_InitVar (PyVarObject *op, PyTypeObject *type, Py_ssize_t size)
Return value: Borrowed reference. ©) -2 PyObject_Init () 7} 48 dt= ZE A S 333511, 714
7] Ao do] HHE 5715}1“4 =2

TYPE* PyObject_New (TYPE, PyTypeObject *type)
Return value: New reference. C 7 ZA) & TYPEF} 5to) A & A A typeS AH-&-31o] |22 Fo| AW AAE
Gt stol A AA S| vl 2 o= A] k2 "QE% Z2713}= 2] k5T AAle Fx a1
ol HUth W= &3 37+ B AAY tp_basicsize BEAA A F YT

TYPE* PyObject_NewVar (TYPE, PyTypeObject *type, Py_ssize_t size)
Return value: New reference. C 7-22)| & TYPE} s}o]l A €} & rypes /\}—9-7'5}04 A2 sto]l A AAE
dEgUH sto] W AA dH g FojH A k2 dEE 571§¥ﬂ11 Gttt @9d W R 2= TYPE
—TLZiJ]Oﬂ 3l ryped] tp_itemsize BEO] &3] o] 7|9 size ZEE 3§ UL o] &= {FEY
2eAANE TATH fEUITh FEL BE T 28 2AT 5 A5yt 2L TP 2=
Hﬂ‘éé ZTAFI™E, @G STt EolEo], vRe B a4 FFF T

void PyObject_Del (void *op)
PyObject_New () W PyObject_NewVar ()& A&t AR ol @39 W22 & A FLch o]
< gdutgor Ao o AQH tp_dealloc A7]oA TEH Utk 27t He F&
o] A 7} o B2, 0] T& Fofl= AR BEof HA2s)A= <k H T

rol S

159

The Python/C API, & x| B] A 3.7.16

PyObject _Py_NoneStruct
gfo] R o A None2 & =25 = A o] AA| o th3t £AH &2 F 715 = Py _None W22 E A
34 2 A 23 of g o,

o 17

PyModule_Create () ¥4 REg @33t vh54th

11.2 Common Object Structures

There are a large number of structures which are used in the definition of object types for Python. This section
describes these structures and how they are used.

All Python objects ultimately share a small number of fields at the beginning of the object’s representation in memory.
These are represented by the PyOb ject and PyVarObject types, which are defined, in turn, by the expansions
of some macros also used, whether directly or indirectly, in the definition of all other Python objects.

PyObject
All object types are extensions of this type. This is a type which contains the information Python needs to treat
a pointer to an object as an object. In a normal “release” build, it contains only the object’s reference count and
a pointer to the corresponding type object. Nothing is actually declared to be a PyOb ject, but every pointer
to a Python object can be cast to a PyOb ject *. Access to the members must be done by using the macros
Py_REFCNT and Py_ TYPE.

PyVarObject
This is an extension of PyObject that adds the ob_size field. This is only used for objects that have some
notion of length. This type does not often appear in the Python/C API. Access to the members must be done
by using the macros Py REFCNT, Py_TYPE,and Py_SIZE.

PyObject_HEAD
This is a macro used when declaring new types which represent objects without a varying length. The PyOb-
ject_HEAD macro expands to:

PyObject ob_base;

See documentation of PyOb ject above.

PyObject_VAR_HEAD
This is a macro used when declaring new types which represent objects with a length that varies from instance
to instance. The PyObject_VAR_HEAD macro expands to:

PyVarObject ob_base;

See documentation of PyVarOb ject above.

Py_TYPE (0)
This macro is used to access the ob_t ype member of a Python object. It expands to:

’(((PyObject*)(o))7>ob_type)

Py_REFCNT (0)
This macro is used to access the ob_refcnt member of a Python object. It expands to:

’(((PyObject*)(o))7>ob_refcnt)

Py_SIZE (0)
This macro is used to access the ob_size member of a Python object. It expands to:

’(((PyVarObject*)(o))7>ob_size)

PyObject_HEAD_INIT (type)
This is a macro which expands to initialization values for a new PyOb ject type. This macro expands to:

160 Chapter 11. 24 & 2 ¢

The Python/C API, & x] 8] A 3.7.16

_PyObject_EXTRA_INIT
1, type,

PyVarObject_HEAD_INIT (type, size)
This is a macro which expands to initialization values for anew PyVarObject type, including the ob_size
field. This macro expands to:

_PyObject_EXTRA_INIT
1, type, size,

PyCFunction
Type of the functions used to implement most Python callables in C. Functions of this type take two
PyObject * parameters and return one such value. If the return value is NULL, an exception shall have
been set. If not NULL, the return value is interpreted as the return value of the function as exposed in Python.
The function must return a new reference.

PyCFunctionWithKeywords
Type of the functions used to implement Python callables in C with signature METH_VARARGS |
METH_KEYWORDS.

_PyCFunctionFast
Type of the functions used to implement Python callables in C with signature METH FASTCALL.

_PyCFunctionFastWithKeywords
Type of the functions used to implement Python callables in C with signature METH_FASTCALL |
METH_KEYWORDS.

PyMethodDef
Structure used to describe a method of an extension type. This structure has four fields:

Field C Type Meaning

ml_name const char * | name of the method

ml_meth PyCFunction | pointer to the C implementation

ml_flags | int flag bits indicating how the call should be constructed
ml_doc const char * | points to the contents of the docstring

The m1_meth is a C function pointer. The functions may be of different types, but they always return PyObject *.
If the function is not of the PyCFunction, the compiler will require a cast in the method table. Even though
PyCFunction defines the first parameter as PyOb ject *, it is common that the method implementation uses the
specific C type of the self object.

The m1_flags field is a bitfield which can include the following flags. The individual flags indicate either a calling
convention or a binding convention.

There are four basic calling conventions for positional arguments and two of them can be combined with
METH_KEYWORDS to support also keyword arguments. So there are a total of 6 calling conventions:

METH_VARARGS
This is the typical calling convention, where the methods have the type PyCFunct ion. The function expects
two PyObject * values. The first one is the self object for methods; for module functions, it is the module
object. The second parameter (often called args) is a tuple object representing all arguments. This parameter
is typically processed using PyArg_ParseTuple () or PyArg _UnpackTuple ().

METH_VARARGS | METH_KEYWORDS
Methods with these flags must be of type PyCFunctionWithKeywords. The function expects
three parameters: self, args, kwargs where kwargs is a dictionary of all the keyword arguments or
possibly NULL if there are no keyword arguments. The parameters are typically processed using
PyArg_ParseTupleAndKeywords ().

METH_FASTCALL
Fast calling convention supporting only positional arguments. The methods have the type

11.2. Common Object Structures 161

The Python/C API, & x| B] A 3.7.16

_PyCFunctionFast. The first parameter is self, the second parameter is a C array of PyObject *
values indicating the arguments and the third parameter is the number of arguments (the length of the array).

This is not part of the limited API.
B A 3.70] &7}

METH_FASTCALL | METH_KEYWORDS
Extension of METH _FASTCALIL supporting also keyword arguments, with methods of type
_PyCFunctionFastWithKeywords. Keyword arguments are passed the same way as in the
vectorcall protocol: there is an additional fourth PyOb ject * parameter which is a tuple representing the
names of the keyword arguments or possibly NULL if there are no keywords. The values of the keyword
arguments are stored in the args array, after the positional arguments.

This is not part of the limited API.
HZA 3.7 F7}

METH_NOARGS
Methods without parameters don’t need to check whether arguments are given if they are listed with the
METH_NOARGS flag. They need to be of type PyCFunction. The first parameter is typically named self
and will hold a reference to the module or object instance. In all cases the second parameter will be NULL.

METH_O
Methods with a single object argument can be listed with the METH O flag, instead of invoking
PyArg ParseTuple () with a "O" argument. They have the type PyCFunct ion, with the self pa-
rameter, and a PyOb ject * parameter representing the single argument.

These two constants are not used to indicate the calling convention but the binding when use with methods of classes.
These may not be used for functions defined for modules. At most one of these flags may be set for any given method.

METH_CLASS
The method will be passed the type object as the first parameter rather than an instance of the type. This is
used to create class methods, similar to what is created when using the classmethod () built-in function.

METH_STATIC
The method will be passed NULL as the first parameter rather than an instance of the type. This is used to
create static methods, similar to what is created when using the stat icmethod () built-in function.

One other constant controls whether a method is loaded in place of another definition with the same method name.

METH_COEXIST
The method will be loaded in place of existing definitions. Without METH_COEXIST, the default is to skip
repeated definitions. Since slot wrappers are loaded before the method table, the existence of a sq_contains
slot, for example, would generate a wrapped method named __contains__ () and preclude the loading of
a corresponding PyCFunction with the same name. With the flag defined, the PyCFunction will be loaded in
place of the wrapper object and will co-exist with the slot. This is helpful because calls to PyCFunctions are
optimized more than wrapper object calls.

PyMemberDef
Structure which describes an attribute of a type which corresponds to a C struct member. Its fields are:

Field C Type Meaning

name const char * | name of the member

type int the type of the member in the C struct

offset | Py_ssize_t the offset in bytes that the member is located on the type’s object struct
flags int flag bits indicating if the field should be read-only or writable

doc const char * | points to the contents of the docstring

type can be one of many T_ macros corresponding to various C types. When the member is accessed in
Python, it will be converted to the equivalent Python type.

162 Chapter 11. A 33 =<

The Python/C API, & x] 8] A 3.7.16

Macro name C type

T _SHORT short

T_INT int

T _LONG long
T_FLOAT float
T_DOUBLE double
T_STRING const char *
T_OBIJECT PyObject *
T_OBJECT_EX PyObject *
T_CHAR char

T_BYTE char
T_UBYTE unsigned char
T_UINT unsigned int
T_USHORT unsigned short
T_ULONG unsigned long
T_BOOL char
T_LONGLONG long long
T_ULONGLONG | unsigned long long
T_PYSSIZET Py_ssize_t

T_OBJECT and T_OBJECT_EX differ in that T_OBJECT returns None if the member is NULL and
T_OBJECT_EX raises an AttributeError. Try to use T_OBJECT_EX over T_OBJECT because
T_OBJECT_EX handles use of the del statement on that attribute more correctly than T_OBJECT.

flags can be 0 for write and read access or READONLY for read-only access. Using T_STRING for type
implies READONLY. T__STRING data is interpreted as UTF-8. Only T_OBJECT and T_OBJECT_EX mem-
bers can be deleted. (They are set to NULL).

PyGetSetDef
Structure to define property-like access for a type. See also description of the Py TypeObject.tp_getset
slot.
Field C Type Meaning
name const char * | attribute name
get getter C Function to get the attribute
set setter optional C function to set or delete the attribute, if omitted the attribute is readonly
doc const char * | optional docstring
clo- void * optional function pointer, providing additional data for getter and setter
sure

The get function takes one PyOb ject * parameter (the instance) and a function pointer (the associated
closure):

typedef PyObject * (*getter) (PyObject *, woid *);

It should return a new reference on success or NULL with a set exception on failure.

set functions take two PyOb ject * parameters (the instance and the value to be set) and a function pointer
(the associated closure):

typedef int (*setter) (PyObject *, PyObject *, wvoid *);

In case the attribute should be deleted the second parameter is NULL. Should return O on success or —1 with
a set exception on failure.

11.2. Common Object Structures 163

The Python/C API, & x| B] A 3.7.16

11.3 Type Objects

Perhaps one of the most important structures of the Python object system is the structure that defines a new type:
the Py TypeOb ject structure. Type objects can be handled using any of the PyObject_* () or PyType_* ()
functions, but do not offer much that’s interesting to most Python applications. These objects are fundamental to how
objects behave, so they are very important to the interpreter itself and to any extension module that implements new

types.

Type objects are fairly large compared to most of the standard types. The reason for the size is that each type object
stores a large number of values, mostly C function pointers, each of which implements a small part of the type’s
functionality. The fields of the type object are examined in detail in this section. The fields will be described in the
order in which they occur in the structure.

Typedefs: unaryfunc, binaryfunc, ternaryfunc, inquiry, intargfunc, intintargfunc, intobjargproc, intintobjargproc,
objobjargproc, destructor, freefunc, printfunc, getattrfunc, getattrofunc, setattrfunc, setattrofunc, reprfunc, hashfunc

The structure definition for Py TypeObject can be found in Tnclude/object .h. For convenience of refer-
ence, this repeats the definition found there:

typedef struct _typeobject {
PyObject_VAR_HEAD
const char *tp_name; /* For printing, in format "<module>.<name>" */
Py_ssize_t tp_basicsize, tp_itemsize; /* For allocation */

/* Methods to implement standard operations */

destructor tp_dealloc;

printfunc tp_print;

getattrfunc tp_getattr;

setattrfunc tp_setattr;

PyAsyncMethods *tp_as_async; /* formerly known as tp_compare (Python 2)
or tp_reserved (Python 3) */

reprfunc tp_repr;

/* Method suites for standard classes */

PyNumberMethods *tp_as_number;
PySequenceMethods *tp_as_sequence;
PyMappingMethods *tp_as_mapping;

/* More standard operations (here for binary compatibility) */

hashfunc tp_hash;
ternaryfunc tp_call;
reprfunc tp_str;
getattrofunc tp_getattro;
setattrofunc tp_setattro;

/* Functions to access object as input/output buffer */
PyBufferProcs *tp_as_buffer;

/* Flags to define presence of optional/expanded features */
unsigned long tp_flags;

const char *tp_doc; /* Documentation string */

/* call function for all accessible objects */
traverseproc tp_traverse;

/* delete references to contained objects */
inquiry tp_clear;

(Th& sl AT ol AS)

164 Chapter 11. A 33 =<

The Python/C API, & x] 8] A 3.7.16

(o1 sl o] A A A%)

/* rich comparisons */
richcmpfunc tp_richcompare;

/* weak reference enabler */
Py_ssize_t tp_weaklistoffset;

/* Iterators */
getiterfunc tp_iter;
iternextfunc tp_iternext;

/* Attribute descriptor and subclassing stuff */
struct PyMethodDef *tp_methods;

struct PyMemberDef *tp_members;

struct PyGetSetDef *tp_getset;

struct _typeobject *tp_base;

PyObject *tp_dict;

descrgetfunc tp_descr_get;

descrsetfunc tp_descr_set;

Py_ssize_t tp_dictoffset;

initproc tp_init;

allocfunc tp_alloc;

newfunc tp_new;

freefunc tp_free; /* Low-level free-memory routine */
inquiry tp_is_gc; /* For PyObject_IS_GC */
PyObject *tp_bases;

PyObject *tp_mro; /* method resolution order */
PyObject *tp_cache;

PyObject *tp_subclasses;

PyObject *tp_weaklist;

destructor tp_del;

/* Type attribute cache version tag. Added in version 2.6 */
unsigned int tp_version_tag;

destructor tp_finalize;

} PyTypeObject;

The type object structure extends the Py VarOb ject structure. The ob_size field is used for dynamic types (cre-
ated by type_new (), usually called from a class statement). Note that Py Type_ Type (the metatype) initializes
tp_1itemsize, which means that its instances (i.e. type objects) must have the ob_size field.

PyObject* PyObject . _ob_next

PyObject* PyObject . _ob_prev
These fields are only present when the macro Py_TRACE_REFS is defined. Their initialization to NULL
is taken care of by the PyObject_HEAD_INIT macro. For statically allocated objects, these fields always
remain NULL. For dynamically allocated objects, these two fields are used to link the object into a doubly-linked
list of all live objects on the heap. This could be used for various debugging purposes; currently the only use is
to print the objects that are still alive at the end of a run when the environment variable PYTHONDUMPREF'S
is set.

These fields are not inherited by subtypes.

Py_ssize_t PyObject.ob_refcnt
This is the type object’s reference count, initialized to 1 by the PyObject_HEAD_INIT macro. Note that
for statically allocated type objects, the type’s instances (objects whose ob_t ype points back to the type) do
not count as references. But for dynamically allocated type objects, the instances do count as references.

This field is not inherited by subtypes.

PyTypeObject* PyObject . ob_type
This is the type’s type, in other words its metatype. It is initialized by the argument to the

11.3. Type Objects 165

The Python/C API, & x| B] A 3.7.16

PyObject_HEAD_INIT macro, and its value should normally be §PyType_Type. However, for dynam-
ically loadable extension modules that must be usable on Windows (at least), the compiler complains that this
is not a valid initializer. Therefore, the convention is to pass NULL to the PyObject_HEAD_INIT macro
and to initialize this field explicitly at the start of the module’s initialization function, before doing anything
else. This is typically done like this:

Foo_Type.ob_type = &PyType_Type;

This should be done before any instances of the type are created. Py Type_Ready () checks if ob_type
is NULL, and if so, initializes it to the ob_type field of the base class. PyType_Ready () will not change
this field if it is non-zero.

This field is inherited by subtypes.

Py_ssize_t PyVarObject .ob_size

For statically allocated type objects, this should be initialized to zero. For dynamically allocated type objects,
this field has a special internal meaning.

This field is not inherited by subtypes.

const char* PyTypeObject . tp_name

Pointer to a NUL-terminated string containing the name of the type. For types that are accessible as module
globals, the string should be the full module name, followed by a dot, followed by the type name; for built-in
types, it should be just the type name. If the module is a submodule of a package, the full package name is
part of the full module name. For example, a type named T defined in module M in subpackage Q in package
P should have the tp_ name initializer "P.Q .M. T".

For dynamically allocated type objects, this should just be the type name, and the module name explicitly
stored in the type dict as the value for key ' __module__ '.

For statically allocated type objects, the tp_name field should contain a dot. Everything before the last dot
is made accessible as the __module__ attribute, and everything after the last dot is made accessible as the
___name___ attribute.

If no dot is present, the entire tp_name field is made accessible as the __name___ attribute, and the
__module___ attribute is undefined (unless explicitly set in the dictionary, as explained above). This means
your type will be impossible to pickle. Additionally, it will not be listed in module documentations created
with pydoc.

This field is not inherited by subtypes.

Py_ssize_t PyTypeObject.tp_basicsize
Py_ssize_t PyTypeObject.tp_itemsize

These fields allow calculating the size in bytes of instances of the type.

There are two kinds of types: types with fixed-length instances have a zero tp_ i temsi ze field, types with
variable-length instances have a non-zero tp_itemsize field. For a type with fixed-length instances, all
instances have the same size, given in tp_basicsize.

For a type with variable-length instances, the instances must have an ob_s1ize field, and the instance size
is tp_basicsize plus N times tp_itemsize, where N is the “length” of the object. The value of
N is typically stored in the instance’s ob_size field. There are exceptions: for example, ints use a negative
ob_size toindicate a negative number, and Nis abs (ob_size) there. Also, the presence of an ob_size
field in the instance layout doesn’t mean that the instance structure is variable-length (for example, the structure
for the list type has fixed-length instances, yet those instances have a meaningful ob_s1ize field).

The basic size includes the fields in the instance declared by the macro PyObject_HEAD or
PyObject_VAR_HEAD (whichever is used to declare the instance struct) and this in turn includes the
_ob_prev and _ob_next fields if they are present. This means that the only correct way to get an ini-
tializer for the tp_basicsize is to use the sizeof operator on the struct used to declare the instance
layout. The basic size does not include the GC header size.

These fields are inherited separately by subtypes. If the base type has a non-zero tp_itemsize, it is gen-
erally not safe to set tp_itemsize to a different non-zero value in a subtype (though this depends on the
implementation of the base type).

166

Chapter 11. 2] 78 2 ¢

The Python/C API, & x] 8] A 3.7.16

A note about alignment: if the variable items require a particular alignment, this should be taken care of by the
value of tp_basicsize. Example: suppose a type implements an array of double. tp_itemsize
is sizeof (double). It is the programmer’s responsibility that tp_basicsize is a multiple of
sizeof (double) (assuming this is the alignment requirement for double).

destructor PyTypeObject .tp_dealloc
A pointer to the instance destructor function. This function must be defined unless the type guarantees that its
instances will never be deallocated (as is the case for the singletons None and E11ipsis).

The destructor function is called by the Py DECREF () and Py_XDECREF () macros when the new
reference count is zero. At this point, the instance is still in existence, but there are no references
to it. The destructor function should free all references which the instance owns, free all memory
buffers owned by the instance (using the freeing function corresponding to the allocation function used
to allocate the buffer), and finally (as its last action) call the type’s tp_rfree function. If the type
is not subtypable (doesn’t have the Py TPFLAGS BASETYPE flag bit set), it is permissible to call
the object deallocator directly instead of via tp_free. The object deallocator should be the one
used to allocate the instance; this is normally PyObject_Del () if the instance was allocated using
PyObject_New () or PyObject_VarNew (), or PyObject_GC_Del () if the instance was allocated
using PyObject_GC_New () or PyObject_GC_NewVar ().

This field is inherited by subtypes.

printfunc PyTypeObject .tp_print
Reserved slot, formerly used for print formatting in Python 2.x.

getattrfunc PyTypeObject .tp_getattr
An optional pointer to the get-attribute-string function.

This field is deprecated. When it is defined, it should point to a function that acts the same as the
tp_getattro function, but taking a C string instead of a Python string object to give the attribute name.
The signature is

PyObject * tp_getattr (PyObject *o, char *attr_name);

This field is inherited by subtypes together with t p_getattro: a subtype inherits both tp_getattr and
tp_getattro from its base type when the subtype’s tp_getattrand tp_getattro are both NULL.

setattrfunc PyTypeObject .tp_setattr
An optional pointer to the function for setting and deleting attributes.

This field is deprecated. When it is defined, it should point to a function that acts the same as the
tp_setattro function, but taking a C string instead of a Python string object to give the attribute name.
The signature is

PyObject * tp_setattr (PyObject *o, char *attr_name, PyObject *v);

The v argument is set to NULL to delete the attribute. This field is inherited by subtypes together with
tp_setattro: a subtype inherits both tp_setattr and tp_setattro from its base type when the
subtype’s tp_setattrand tp_setattro are both NULL.

PyAsyncMethods* tp_as_async
Pointer to an additional structure that contains fields relevant only to objects which implement awaitable and
asynchronous iterator protocols at the C-level. See Async Object Structures for details.

¥ A 3.59] & 7}: Formerly known as tp_compare and tp_reserved.

reprfunc PyTypeObject . tp_repr
An optional pointer to a function that implements the built-in function repr ().

The signature is the same as for PyObject_Repr (); it must return a string or a Unicode object. Ideally,
this function should return a string that, when passed to eval (), given a suitable environment, returns an
object with the same value. If this is not feasible, it should return a string starting with ' <' and ending with
'>"' from which both the type and the value of the object can be deduced.

11.3. Type Objects 167

The Python/C API, & x| B] A 3.7.16

When this field is not set, a string of the form <%s object at $%$p> isreturned, where $s is replaced by
the type name, and $p by the object’s memory address.

This field is inherited by subtypes.

PyNumberMethods* tp_as_number
Pointer to an additional structure that contains fields relevant only to objects which implement the number
protocol. These fields are documented in Number Object Structures.

The tp_as_number field is not inherited, but the contained fields are inherited individually.

PySequenceMethods* tp_as_sequence
Pointer to an additional structure that contains fields relevant only to objects which implement the sequence
protocol. These fields are documented in Sequence Object Structures.

The tp_as_sequence field is not inherited, but the contained fields are inherited individually.

PyMappingMethods* tp_as_mapping
Pointer to an additional structure that contains fields relevant only to objects which implement the mapping
protocol. These fields are documented in Mapping Object Structures.

The tp_as_mapping field is not inherited, but the contained fields are inherited individually.

hashfunc PyTypeObject .tp_hash
An optional pointer to a function that implements the built-in function hash ().

The signature is the same as for PyOb ject_Hash (); it must return a value of the type Py_hash_t. The
value —1 should not be returned as a normal return value; when an error occurs during the computation of the
hash value, the function should set an exception and return - 1.

This field can be set explicitly to PyOb ject_HashNot Implemented () to block inheritance of the hash
method from a parent type. This is interpreted as the equivalent of __hash__ = None at the Python
level, causing isinstance (o, collections.Hashable) to correctly return False. Note that the
converse is also true - setting __hash___ = None on a class at the Python level will result in the tp_hash
slot being set to PyOb ject_HashNot Implemented ().

When this field is not set, an attempt to take the hash of the object raises TypeError.

This field is inherited by subtypes together with tp_richcompare: a subtype inherits both of
tp_richcompare and tp_hash, when the subtype’s tp_richcompare and tp_hash are both
NULL.

ternaryfunc PyTypeObject .tp_call
An optional pointer to a function that implements calling the object. This should be NULL if the object is not
callable. The signature is the same as for PyObject_Call ().

This field is inherited by subtypes.

reprfunc PyTypeObject .tp_str
An optional pointer to a function that implements the built-in operation st r () . (Note that st r is a type now,
and str () calls the constructor for that type. This constructor calls PyObject_Str () to do the actual
work, and PyObject_Str () will call this handler.)

The signature is the same as for PyOb ject_Str ();it must return a string or a Unicode object. This function
should return a “friendly” string representation of the object, as this is the representation that will be used,
among other things, by the print () function.

When this field is not set, PyOb ject_Repr () is called to return a string representation.
This field is inherited by subtypes.

getattrofunc PyTypeObject .tp_getattro
An optional pointer to the get-attribute function.

The signature is the same as for PyObject_GetAttr (). It is usually convenient to set this field to
PyObject_GenericGetAttr (), which implements the normal way of looking for object attributes.

This field is inherited by subtypes together with tp_getattr: a subtype inherits both tp_getattr and
tp_getattro from its base type when the subtype’s tp_getattrand tp_getattro are both NULL.

168 Chapter 11. 24 & 2 ¢

The Python/C API, & x] 8] A 3.7.16

setattrofunc PyTypeObject .tp_setattro
An optional pointer to the function for setting and deleting attributes.

The signature is the same as for PyObject_SetAttr (), butsetting vto NULL to delete an attribute must be
supported. It is usually convenient to set this field to PyOb ject_GenericSetAttr (), which implements
the normal way of setting object attributes.

This field is inherited by subtypes together with tp_setattr: a subtype inherits both tp_setattr and
tp_setattro from its base type when the subtype’s tp_setattrand tp_setattro are both NULL.

PyBufferProcs* PyTypeObject .tp_as_buffer
Pointer to an additional structure that contains fields relevant only to objects which implement the buffer in-
terface. These fields are documented in Buffer Object Structures.

The tp_as_buffer field is not inherited, but the contained fields are inherited individually.

unsigned long PyTypeObject .tp_£flags
This field is a bit mask of various flags. Some flags indicate variant semantics for certain situations; oth-
ers are used to indicate that certain fields in the type object (or in the extension structures referenced via
tp_as_number, tp_as_sequence, tp_as_mapping, and tp_as_buffer) that were historically
not always present are valid; if such a flag bit is clear, the type fields it guards must not be accessed and must
be considered to have a zero or NULL value instead.

Inheritance of this field is complicated. Most flag bits are inherited individually, i.e. if the base type has a flag
bit set, the subtype inherits this flag bit. The flag bits that pertain to extension structures are strictly inherited if
the extension structure is inherited, i.e. the base type’s value of the flag bit is copied into the subtype together
with a pointer to the extension structure. The Py TPFLAGS_HAVE_GC flag bit is inherited together with the
tp_traverseand tp_clear fields, i.e. if the Py TPFLAGS_HAVE_GC flag bit is clear in the subtype
and the tp_traverse and tp_clear fields in the subtype exist and have NULL values.

The following bit masks are currently defined; these can be ORed together using the | operator to form the
value of the tp_ flags field. The macro Py Type HasFeature () takes a type and a flags value, #p and
f, and checks whether tp—->tp_flags & f isnon-zero.

Py_TPFLAGS_HEAPTYPE
This bit is set when the type object itself is allocated on the heap. In this case, the ob_t ype field of its
instances is considered a reference to the type, and the type object is INCREF’ed when a new instance
is created, and DECREF’ed when an instance is destroyed (this does not apply to instances of subtypes;
only the type referenced by the instance’s ob_type gets INCREF’ed or DECREF’ed).

Py_TPFLAGS_BASETYPE
This bit is set when the type can be used as the base type of another type. If this bit is clear, the type
cannot be subtyped (similar to a “final” class in Java).

Py_TPFLAGS_READY
This bit is set when the type object has been fully initialized by Py Type_Ready ().

Py_TPFLAGS_READYING
This bit is set while Py Type_Ready () is in the process of initializing the type object.

Py_TPFLAGS_HAVE_GC
This bit is set when the object supports garbage collection. If this bit is set, instances must be created
using PyObject_GC_New () and destroyed using PyObject_GC_Del (). More information in
section <=2+ 7}H] A 5=%] #] . This bit also implies that the GC-related fields tp_traverse and
tp_clear are present in the type object.

Py_TPFLAGS_DEFAULT
This is a bitmask of all the bits that pertain to the existence of certain fields in the
type object and its extension structures. Currently, it includes the following bits:
Py_TPFLAGS_HAVE_STACKLESS_EXTENSION, Py_TPFLAGS_HAVE_VERSION_TAG.

Py_TPFLAGS_LONG_SUBCLASS
Py_TPFLAGS_LIST_SUBCLASS

Py_TPFLAGS_TUPLE_SUBCLASS

11.3. Type Objects 169

The Python/C API, & x| B] A 3.7.16

Py_TPFLAGS_BYTES_SUBCLASS
Py_TPFLAGS_UNICODE_SUBCLASS
Py_TPFLAGS_DICT_SUBCLASS
Py_TPFLAGS_BASE_EXC_SUBCLASS

Py_TPFLAGS_TYPE_SUBCLASS
These flags are used by functions such as PyLong Check () to quickly determine if a type
is a subclass of a built-in type; such specific checks are faster than a generic check, like
PyObject_IsInstance (). Custom types that inherit from built-ins should have their tp_flags
set appropriately, or the code that interacts with such types will behave differently depending on what
kind of check is used.

Py_TPFLAGS_HAVE_FINALIZE
This bit is set when the tp_finalize slotis present in the type structure.

B A 3.409] E7}

const char* PyTypeObject . tp_doc

An optional pointer to a NUL-terminated C string giving the docstring for this type object. This is exposed as
the __doc___ attribute on the type and instances of the type.

This field is not inherited by subtypes.

traverseproc PyTypeObject .tp_traverse

An optional pointer to a traversal function for the garbage collector. This is only used if the
Py_TPFLAGS_HAVE_GC flag bit is set. More information about Python’s garbage collection scheme can be
found in section <=2+ 7}H] X =% 2] 9.

The tp_traverse pointer is used by the garbage collector to detect reference cycles. A typical imple-
mentation of a tp_ t raverse function simply calls Py VISIT () on each of the instance’s members that
are Python objects that the instance owns. For example, this is function 1ocal_traverse () from the
_thread extension module:

static int
local_traverse (localobject *self, visitproc visit, wvoid *arg)
{

Py_VISIT (self->args);

Py_VISIT (self->kw);

Py_VISIT (self->dict);

return 0;

Note that Py VISTT () is called only on those members that can participate in reference cycles. Although
there is also a self->key member, it can only be NULL or a Python string and therefore cannot be part of
a reference cycle.

On the other hand, even if you know a member can never be part of a cycle, as a debugging aid you may want
to visit it anyway just so the gc module’s get _referents () function will include it.

743 : When implementing tp_traverse, only the members that the instance owns (by having
strong references to them) must be visited. For instance, if an object supports weak references via the
tp_weaklist slot, the pointer supporting the linked list (what p_weaklist points to) must not be visited
as the instance does not directly own the weak references to itself (the weakreference list is there to support
the weak reference machinery, but the instance has no strong reference to the elements inside it, as they
are allowed to be removed even if the instance is still alive).

Note that Py VISIT () requires the visit and arg parametersto Local_traverse () tohave these specific
names; don’t name them just anything.

This field is inherited by subtypes together with tp_clear and the Py TPFLAGS_HAVE_GC flag bit: the
flagbit, tp_traverse,and t p_clear are all inherited from the base type if they are all zero in the subtype.

170

Chapter 11. 2] 78 2 ¢

The Python/C API, & x] 8] A 3.7.16

inquiry PyTypeObject .tp_clear
An optional pointer to a clear function for the garbage collector. This is only used if the
Py_TPFLAGS_HAVE_GC flag bit is set.

The tp_clear member function is used to break reference cycles in cyclic garbage detected by the garbage
collector. Taken together, all tp_ clear functions in the system must combine to break all reference cycles.
This is subtle, and if in any doubt supply a t p_clear function. For example, the tuple type does not imple-
ment a tp_ clear function, because it’s possible to prove that no reference cycle can be composed entirely
of tuples. Therefore the t p_clear functions of other types must be sufficient to break any cycle containing
a tuple. This isn’t immediately obvious, and there’s rarely a good reason to avoid implementing tp_clear.

Implementations of tp_clear should drop the instance’s references to those of its members that may be
Python objects, and set its pointers to those members to NULL, as in the following example:

static int

local_clear (localobject *self)

{
Py_CLEAR (self->key);
Py_CLEAR(self->args);
Py_CLEAR (self->kw);
Py_CLEAR (self->dict);
return O;

The Py_CLEAR () macro should be used, because clearing references is delicate: the reference to the con-
tained object must not be decremented until after the pointer to the contained object is set to NULL. This is
because decrementing the reference count may cause the contained object to become trash, triggering a chain
of reclamation activity that may include invoking arbitrary Python code (due to finalizers, or weakref callbacks,
associated with the contained object). If it’s possible for such code to reference self again, it’s important that
the pointer to the contained object be NULL at that time, so that self knows the contained object can no longer
be used. The Py_ CLEAR () macro performs the operations in a safe order.

Because the goal of tp_clear functions is to break reference cycles, it’s not necessary to clear contained
objects like Python strings or Python integers, which can’t participate in reference cycles. On the other hand,
it may be convenient to clear all contained Python objects, and write the type’s tp_dealloc function to
invoke tp_clear.

More information about Python’s garbage collection scheme can be found in section <=2+ 7}1] 2] 4=%] 2] 2.

This field is inherited by subtypes together with tp_traverse and the Py TPFLAGS HAVE_GC flag bit:
the flag bit, tp_traverse, and tp_clear are all inherited from the base type if they are all zero in the
subtype.

richcmpfunc PyTypeObject .tp_richcompare
An optional pointer to the rich comparison function, whose signature is PyObject
*tp_richcompare (PyObject *a, PyObject *b, int op). The first parameter is guar-
anteed to be an instance of the type that is defined by Py TypeObject.

The function should return the result of the comparison (usually Py_True or Py_False). If the comparison
is undefined, it must return Py_Not Implemented, if another error occurred it must return NULL and set
an exception condition.

ZF31: If you want to implement a type for which only a limited set of comparisons makes sense (e.g. == and
!'=, but not < and friends), directly raise TypeError in the rich comparison function.

This field is inherited by subtypes together with tp_hash: a subtype inherits tp_richcompare and
tp_hash when the subtype’s tp_richcompare and tp_hash are both NULL.

The following constants are defined to be used as the third argument for tp_richcompare and for
PyObject_RichCompare():

11.3. Type Objects 171

The Python/C API, & x| B] A 3.7.16

Constant | Comparison
Py_LT <

Py_LE <=

Py_EQ ==

Py_NE 1=

Py_GT >

Py_GE >=

The following macro is defined to ease writing rich comparison functions:

PyObject *Py_RETURN_RICHCOMPARE (VAL_A, VAL_B, int op)
Return Py_True or Py_False from the function, depending on the result of a comparison. VAL_A
and VAL_B must be orderable by C comparison operators (for example, they may be C ints or floats).
The third argument specifies the requested operation, as for PyObject_RichCompare ().

The return value’s reference count is properly incremented.
On error, sets an exception and returns NULL from the function.

v A 3.79] E7}

Py_ssize_t PyTypeObject.tp_weaklistoffset

If the instances of this type are weakly referenceable, this field is greater than zero and contains the offset in
the instance structure of the weak reference list head (ignoring the GC header, if present); this offset is used
by PyObject_ClearWeakRefs () and the PyWeakref_* () functions. The instance structure needs
to include a field of type PyObject * which is initialized to NULL.

Do not confuse this field with t p_ weak 11 st; that is the list head for weak references to the type object itself.

This field is inherited by subtypes, but see the rules listed below. A subtype may override this offset; this means
that the subtype uses a different weak reference list head than the base type. Since the list head is always found
via tp_weaklistoffset, this should not be a problem.

When a type defined by a class statement has no ___slots__ declaration, and none of its base types are
weakly referenceable, the type is made weakly referenceable by adding a weak reference list head slot to the
instance layout and setting the tp_weaklistoffset of that slot’s offset.

When a type’s __slots__ declaration contains a slot named __ weakref__ , that slot becomes
the weak reference list head for instances of the type, and the slot’s offset is stored in the type’s
tp_weaklistoffset.

When a type’s ___slots___ declaration does not contain a slot named ___weakref
tp_weaklistoffset from its base type.

, the type inherits its

getiterfunc PyTypeObject .tp_iter

An optional pointer to a function that returns an iterator for the object. Its presence normally signals that the
instances of this type are iterable (although sequences may be iterable without this function).

This function has the same signature as PyOb ject_GetIter ().

This field is inherited by subtypes.

iternextfunc PyTypeObject .tp_iternext

An optional pointer to a function that returns the next item in an iterator. When the iterator is exhausted, it
must return NULL; a StopIteration exception may or may not be set. When another error occurs, it must
return NULL too. Its presence signals that the instances of this type are iterators.

Iterator types should also define the tp_ i t er function, and that function should return the iterator instance
itself (not a new iterator instance).

This function has the same signature as Py Iter_ Next ().

This field is inherited by subtypes.

172

Chapter 11. 2] 78 2 ¢

The Python/C API, & x] 8] A 3.7.16

struct PyMethodDef* PyTypeObject . tp_methods
An optional pointer to a static NULL-terminated array of PyMethodDef structures, declaring regular meth-
ods of this type.

For each entry in the array, an entry is added to the type’s dictionary (see tp_dict below) containing a
method descriptor.

This field is not inherited by subtypes (methods are inherited through a different mechanism).

struct PyMemberDef* PyTypeObject . tp_members
An optional pointer to a static NULL-terminated array of PyMemberDef structures, declaring regular data
members (fields or slots) of instances of this type.

For each entry in the array, an entry is added to the type’s dictionary (see tp_dict below) containing a
member descriptor.

This field is not inherited by subtypes (members are inherited through a different mechanism).

struct PyGetSetDef* PyTypeObject .tp_getset
An optional pointer to a static NULL-terminated array of PyGetSetDef structures, declaring computed
attributes of instances of this type.

For each entry in the array, an entry is added to the type’s dictionary (see t p_dict below) containing a getset
descriptor.

This field is not inherited by subtypes (computed attributes are inherited through a different mechanism).

PyTypeObject* PyTypeObject .tp_base
An optional pointer to a base type from which type properties are inherited. At this level, only single inheritance
is supported; multiple inheritance require dynamically creating a type object by calling the metatype.

This field is not inherited by subtypes (obviously), but it defaults to sPyBaseObject_Type (which to
Python programmers is known as the type object).

PyObject* PyTypeObject .tp_dict
The type’s dictionary is stored here by Py Type_ Ready ().

This field should normally be initialized to NULL before PyType_Ready is called; it may also be initialized to
a dictionary containing initial attributes for the type. Once Py Type_Ready () has initialized the type, extra
attributes for the type may be added to this dictionary only if they don’t correspond to overloaded operations
(like __add__()).

This field is not inherited by subtypes (though the attributes defined in here are inherited through a different
mechanism).

7 1: Itis notsafe touse PyDict_Set Item () on or otherwise modify tp_dict with the dictionary
C-APL

descrgetfunc PyTypeObject .tp_descr_get
An optional pointer to a “descriptor get” function.

The function signature is

PyObject * tp_descr_get (PyObject *self, PyObject *obj, PyObject *type);

This field is inherited by subtypes.

descrsetfunc PyTypeObject .tp_descr_set
An optional pointer to a function for setting and deleting a descriptor’s value.

The function signature is

int tp_descr_set (PyObject *self, PyObject *obj, PyObject *value);

The value argument is set to NULL to delete the value. This field is inherited by subtypes.

11.3. Type Objects 173

The Python/C API, & x| B] A 3.7.16

Py_ssize_t PyTypeObject.tp_dictoffset

If the instances of this type have a dictionary containing instance variables, this field is non-zero and
contains the offset in the instances of the type of the instance variable dictionary; this offset is used by
PyObject_GenericGetAttr ().

Do not confuse this field with tp_dict; that is the dictionary for attributes of the type object itself.

If the value of this field is greater than zero, it specifies the offset from the start of the instance structure. If
the value is less than zero, it specifies the offset from the end of the instance structure. A negative offset is
more expensive to use, and should only be used when the instance structure contains a variable-length part.
This is used for example to add an instance variable dictionary to subtypes of str or tuple. Note that the
tp_basicsize field should account for the dictionary added to the end in that case, even though the dictio-
nary is not included in the basic object layout. On a system with a pointer size of 4 bytes, tp_dictoffset
should be set to —4 to indicate that the dictionary is at the very end of the structure.

The real dictionary offset in an instance can be computed from a negative tp_dictoffset as follows:

dictoffset = tp_basicsize + abs(ob_size)*tp_itemsize + tp_dictoffset
if dictoffset is not aligned on sizeof (void*) :
round up to sizeof (void*)

where tp_basicsize, tp_itemsize and tp_dictoffset are taken from the type object, and
ob_size is taken from the instance. The absolute value is taken because ints use the sign of ob_size
to store the sign of the number. (There’s never a need to do this calculation yourself; it is done for you by
_PyObject_GetDictPtr().)

This field is inherited by subtypes, but see the rules listed below. A subtype may override this offset; this means
that the subtype instances store the dictionary at a difference offset than the base type. Since the dictionary is
always found via tp_dictoffset, this should not be a problem.

When a type defined by a class statement has no ___slots___ declaration, and none of its base types has an
instance variable dictionary, a dictionary slot is added to the instance layout and the tp_dictoffset is set
to that slot’s offset.

When a type defined by a class statement has a ___slots__ declaration, the type inherits its
tp_dictoffset from its base type.

(Adding a slot named __dict__ tothe __slots__ declaration does not have the expected effect, it just
causes confusion. Maybe this should be added as a feature just like __weakref___ though.)

initproc PyTypeObject .tp_init

An optional pointer to an instance initialization function.

This function corresponds to the __init__ () method of classes. Like __init__ (), it is possible to
create an instance without calling __init__ (), and it is possible to reinitialize an instance by calling its
__init__ () method again.

The function signature is

int tp_init (PyObject *self, PyObject *args, PyObject *kwds)

The self argument is the instance to be initialized; the args and kwds arguments represent positional and keyword
arguments of the callto __init__ ().

The tp_init function, if not NULL, is called when an instance is created normally by calling its type, after
the type’s tp_new function has returned an instance of the type. If the £t p_ new function returns an instance
of some other type that is not a subtype of the original type, no tp_init function is called; if tp_new
returns an instance of a subtype of the original type, the subtype’s tp_init is called.

This field is inherited by subtypes.

allocfunc PyTypeObject .tp_alloc

An optional pointer to an instance allocation function.

The function signature is

174

Chapter 11. 2] 78 2 ¢

The Python/C API, & x] 8] A 3.7.16

PyObject *tp_alloc (PyTypeObject *self, Py_ssize_t nitems)

The purpose of this function is to separate memory allocation from memory initialization. It should return a
pointer to a block of memory of adequate length for the instance, suitably aligned, and initialized to zeros, but
with ob_refcnt set to 1 and ob_type set to the type argument. If the type’s tp_itemsize is non-
zero, the object’s ob_s1i ze field should be initialized to nitems and the length of the allocated memory block
shouldbe tp_basicsize + nitems*tp_itemsize,rounded uptoamultiple of sizeof (void*);
otherwise, nifems is not used and the length of the block should be tp_basicsize.

Do not use this function to do any other instance initialization, not even to allocate additional memory; that
should be done by tp_new.

This field is inherited by static subtypes, but not by dynamic subtypes (subtypes created by a class statement); in
the latter, this field is always set to Py Type_GenericAlloc (), toforce a standard heap allocation strategy.
That is also the recommended value for statically defined types.

newfunc PyTypeObject .tp_new
An optional pointer to an instance creation function.

If this function is NULL for a particular type, that type cannot be called to create new instances; presumably
there is some other way to create instances, like a factory function.

The function signature is

PyObject *tp_new (PyTypeObject *subtype, PyObject *args, PyObject *kwds)

The subtype argument is the type of the object being created; the args and kwds arguments represent positional
and keyword arguments of the call to the type. Note that subtype doesn’t have to equal the type whose tp_new
function is called; it may be a subtype of that type (but not an unrelated type).

The tp_new function should call subtype->tp_alloc (subtype, nitems) to allocate space for
the object, and then do only as much further initialization as is absolutely necessary. Initialization that can
safely be ignored or repeated should be placed in the tp_init handler. A good rule of thumb is that for
immutable types, all initialization should take place in tp_new, while for mutable types, most initialization
should be deferred to tp_init.

This field is inherited by subtypes, except it is not inherited by static types whose tp_base is NULL or
&PyBaseObject_Type.

destructor PyTypeObiject .tp_free
An optional pointer to an instance deallocation function. Its signature is freefunc:

void tp_free(void *)

An initializer that is compatible with this signature is PyObject_Free ().

This field is inherited by static subtypes, but not by dynamic subtypes (subtypes created by a class statement);
in the latter, this field is set to a deallocator suitable to match Py Type_ GenericAlloc () and the value of
the Py_TPFLAGS_HAVE_GC flag bit.

inquiry PyTypeObject .tp_is_gc
An optional pointer to a function called by the garbage collector.

The garbage collector needs to know whether a particular object is collectible or not. Normally, it is sufficient
to look at the object’s type’s tp_ flags field, and check the Py TPFLAGS HAVE_GC flag bit. But some
types have a mixture of statically and dynamically allocated instances, and the statically allocated instances are
not collectible. Such types should define this function; it should return 1 for a collectible instance, and O for a
non-collectible instance. The signature is

int tp_is_gc (PyObject *self)

(The only example of this are types themselves. The metatype, Py Type_Type, defines this function to
distinguish between statically and dynamically allocated types.)

This field is inherited by subtypes.

11.3. Type Objects 175

The Python/C API, & x| B] A 3.7.16

PyObject* PyTypeObject .tp_bases
Tuple of base types.

This is set for types created by a class statement. It should be NULL for statically defined types.
This field is not inherited.

PyObject* PyTypeObject .tp_mro
Tuple containing the expanded set of base types, starting with the type itself and ending with object, in
Method Resolution Order.

This field is not inherited; it is calculated fresh by Py Type_Ready ().

destructor PyTypeObiject .tp_finalize
An optional pointer to an instance finalization function. Its signature is destructor:

void tp_finalize (PyObject *)

If tp_finalizeis set, the interpreter calls it once when finalizing an instance. It is called either from the
garbage collector (if the instance is part of an isolated reference cycle) or just before the object is deallocated.
Either way, it is guaranteed to be called before attempting to break reference cycles, ensuring that it finds the
object in a sane state.

tp_finalize should not mutate the current exception status; therefore, a recommended way to write a
non-trivial finalizer is:

static void
local_finalize (PyObject *self)
{

PyObject *error_type, *error_value, *error_traceback;

/* Save the current exception, if any. */
PyErr_Fetch (&error_type, &error_value, &error_traceback);

VA V4

/* Restore the saved exception. */
PyErr_Restore (error_type, error_value, error_traceback);

For this field to be taken into account (even through inheritance), you must also set the
Py_TPFLAGS_HAVE_FINALIZETthbﬁ

This field is inherited by subtypes.
W7 3.40] 71

] ®7):

“Safe object finalization” (PEP 442)

PyObject* PyTypeObject .tp_cache
Unused. Not inherited. Internal use only.

PyObject* PyTypeObject .tp_subclasses
List of weak references to subclasses. Not inherited. Internal use only.

PyObject* PyTypeObject . tp_weaklist
Weak reference list head, for weak references to this type object. Not inherited. Internal use only.

The remaining fields are only defined if the feature test macro COUNT_ALLOCS is defined, and are for internal use
only. They are documented here for completeness. None of these fields are inherited by subtypes.

Py_ssize_t PyTypeObject.tp_allocs
Number of allocations.

Py_ssize_t PyTypeObject.tp_frees
Number of frees.

176 Chapter 11. 24 & 2 ¢

https://www.python.org/dev/peps/pep-0442

The Python/C API, & x] 8] A 3.7.16

Py_ssize_t PyTypeObject.tp_maxalloc
Maximum simultaneously allocated objects.

PyTypeObject* PyTypeObject .tp_next

Pointer to the next type object with a non-zero tp_allocs field.

Also, note that, in a garbage collected Python, tp_dealloc may be called from any Python thread, not just the thread
which created the object (if the object becomes part of a refcount cycle, that cycle might be collected by a garbage
collection on any thread). This is not a problem for Python API calls, since the thread on which tp_dealloc is called
will own the Global Interpreter Lock (GIL). However, if the object being destroyed in turn destroys objects from
some other C or C++ library, care should be taken to ensure that destroying those objects on the thread which called

tp_dealloc will not violate any assumptions of the library.

11.4 Number Object Structures

PyNumberMethods

This structure holds pointers to the functions which an object uses to implement the number protocol. Each
function is used by the function of similar name documented in the 5= A} 3 & & = section.

Here is the structure definition:

typedef struct {
binaryfunc nb_add;
binaryfunc nb_subtract;
binaryfunc nb_multiply;
binaryfunc nb_remainder;
binaryfunc nb_divmod;
ternaryfunc nb_power;
unaryfunc nb_negative;
unaryfunc nb_positive;
unaryfunc nb_absolute;
inquiry nb_bool;
unaryfunc nb_invert;
binaryfunc nb_lshift;
binaryfunc nb_rshift;
binaryfunc nb_and;
binaryfunc nb_xor;
binaryfunc nb_or;
unaryfunc nb_int;
void *nb_reserved;
unaryfunc nb_float;

binaryfunc nb_inplace_add;
binaryfunc nb_inplace_subtract;
binaryfunc nb_inplace_multiply;
binaryfunc nb_inplace_remainder;
ternaryfunc nb_inplace_power;
binaryfunc nb_inplace_1lshift;
binaryfunc nb_inplace_rshift;
binaryfunc nb_inplace_and;
binaryfunc nb_inplace_xor;
binaryfunc nb_inplace_or;

binaryfunc nb_floor_divide;
binaryfunc nb_true_divide;
binaryfunc nb_inplace_floor_divide;
binaryfunc nb_inplace_true_divide;

unaryfunc nb_index;

binaryfunc nb_matrix_multiply;

(Th& sl AT ol AS)

11.4. Number Object Structures

177

The Python/C API, & x| B] A 3.7.16

(o1 sl o] A A A%)

binaryfunc nb_inplace_matrix_multiply;
} PyNumberMethods;

Z+31: Binary and ternary functions must check the type of all their operands, and implement the necessary
conversions (at least one of the operands is an instance of the defined type). If the operation is not defined
for the given operands, binary and ternary functions must return Py_Not Implemented, if another error
occurred they must return NULL and set an exception.

Zr31: The nb_reserved field should always be NULL. It was previously called nb_1long, and was
renamed in Python 3.0.1.

11.5 Mapping Object Structures

PyMappingMethods
This structure holds pointers to the functions which an object uses to implement the mapping protocol. It has
three members:

lenfunc PyMappingMethods.mp_length
This function is used by PyMapping Size () and PyObject_Size (), and has the same signature. This
slot may be set to NULL if the object has no defined length.

binaryfunc PyMappingMethods .mp_subscript
This function is used by PyObject_GetItem() and PySequence_GetSlice (), and has the same
signature as PyObject_GetItem (). This slot must be filled for the PyMapping Check () function to
return 1, it can be NULL otherwise.

objobjargproc PyMappingMethods .mp_ass_subscript
This function is used by PyObject_SetItem(), PyObject_DelItem(),
PyObject_SetSlice() and PyObject_DelSlice(). It has the same signature as
PyObject_SetItem(), but v can also be set to NULL to delete an item. If this slot is NULL, the
object does not support item assignment and deletion.

11.6 Sequence Object Structures

PySequenceMethods
This structure holds pointers to the functions which an object uses to implement the sequence protocol.

lenfunc PySequenceMethods.sq length
This function is used by PySequence_Size () and PyObject_Size (), and has the same signature. It
is also used for handling negative indices via the sg_itemand the sg_ass_ itemslots.

binaryfunc PySequenceMethods.sq_concat
This function is used by PySequence_Concat () and has the same signature. It is also used by the +
operator, after trying the numeric addition via the nb_add slot.

ssizeargfunc PySequenceMethods.sq_ repeat
This function is used by PySequence_Repeat () and has the same signature. It is also used by the *
operator, after trying numeric multiplication via the nb_multiply slot.

ssizeargfunc PySequenceMethods.sq_item
This function is used by PySequence_GetItem() and has the same signature. It is also used by
PyObject_GetItem/(), after trying the subscription via the mp_subscript slot. This slot must be
filled for the PySequence_Check () function to return 1, it can be NULL otherwise.

178 Chapter 11. 24 & 2 ¢

The Python/C API, & x] 8] A 3.7.16

Negative indexes are handled as follows: if the sq_length slotis filled, it is called and the sequence length is
used to compute a positive index which is passed to sq_item. If sq_length is NULL, the index is passed
as is to the function.

ssizeobjargproc PySequenceMethods.sq_ass_item
This function is used by PySequence_SetItem() and has the same signature. It is also used by
PyObject_SetItem() and PyObject_DelItem (), after trying the item assignment and deletion via
the mp_ass_subscript slot. This slot may be left to NULL if the object does not support item assignment
and deletion.

objobjproc PySequenceMethods.sq_contains
This function may be used by PySequence_Contains () and has the same signature. This slot may be
left to NULL, in this case PySequence_Contains () simply traverses the sequence until it finds a match.

binaryfunc PySequenceMethods.sq_inplace_concat
This function is used by PySequence_ InPlaceConcat () and has the same signature. It
should modify its first operand, and return it. = This slot may be left to NULL, in this case
PySequence_InPlaceConcat () will fall back to PySequence_Concat (). Itis also used by the
augmented assignment +=, after trying numeric in-place addition via the nb_inplace_add slot.

ssizeargfunc PySequenceMethods.sq_inplace_repeat
This function is used by PySequence_ InPlaceRepeat () and has the same signature. It
should modify its first operand, and return it. This slot may be left to NULL, in this case
PySequence_InPlaceRepeat () will fall back to PySequence_Repeat (). Itis also used by the
augmented assignment *=, after trying numeric in-place multiplication via the nb_inplace_multiply
slot.

11.7 Buffer Object Structures

PyBufferProcs
This structure holds pointers to the functions required by the Buffer protocol. The protocol defines how an
exporter object can expose its internal data to consumer objects.

getbufferproc PyBufferProcs .bf_getbuffer
The signature of this function is:

int (PyObject *exporter, Py_buffer *view, int flags);

Handle a request to exporter to fill in view as specified by flags. Except for point (3), an implementation of this
function MUST take these steps:

(1) Check if the request can be met. If not, raise PyExc_BufferError, set view—>0bj to NULL and
return —1.

(2) Fill in the requested fields.
(3) Increment an internal counter for the number of exports.
(4) Set view->o0b7j to exporter and increment view—>o0bj.
(5) Return 0.
If exporter is part of a chain or tree of buffer providers, two main schemes can be used:

* Re-export: Each member of the tree acts as the exporting object and sets view—>ob j to a new reference
to itself.

» Redirect: The buffer request is redirected to the root object of the tree. Here, view—>obj will be a
new reference to the root object.

The individual fields of view are described in section Buffer structure, the rules how an exporter must react to
specific requests are in section Buffer request types.

11.7. Buffer Object Structures 179

The Python/C API, & x| B] A 3.7.16

All memory pointed to in the Py_ buf fer structure belongs to the exporter and must remain valid until there

are no consumers left. format, shape, strides, suboffsets and internal are read-only for the
consumer.

PyBuffer FillInfo () provides an easy way of exposing a simple bytes buffer while dealing correctly
with all request types.

PyObject_GetBuffer () is the interface for the consumer that wraps this function.

releasebufferproc PyBufferProcs .bf_releasebuffer
The signature of this function is:

void (PyObject *exporter, Py_buffer *view);

Handle a request to release the resources of the buffer. If no resources need to be released,

PyBufferProcs.bf_releasebuffer may be NULL. Otherwise, a standard implementation of this
function will take these optional steps:

(1) Decrement an internal counter for the number of exports.
(2) If the counter is 0, free all memory associated with view.

The exporter MUST use the i nt ernal field to keep track of buffer-specific resources. This field is guaranteed
to remain constant, while a consumer MAY pass a copy of the original buffer as the view argument.

This function MUST NOT decrement view->obj, since that is done automatically in
PyBuffer Release () (this scheme is useful for breaking reference cycles).

PyBuffer Release () is the interface for the consumer that wraps this function.

11.8 Async Object Structures

WA 359 F7F
PyAsyncMethods

This structure holds pointers to the functions required to implement awaitable and asynchronous iterator ob-
jects.

Here is the structure definition:

typedef struct {
unaryfunc am_await;
unaryfunc am_aiter;
unaryfunc am_anext;
} PyAsyncMethods;

unaryfunc PyAsyncMethods.am_await
The signature of this function is:

PyObject *am_await (PyObject *self)

The returned object must be an iterator, i.e. PyIter Check () mustreturn 1 for it.
This slot may be set to NULL if an object is not an awaitable.

unaryfunc PyAsyncMethods.am_aiter
The signature of this function is:

PyObject *am_aiter (PyObject *self)

Must return an awaitable object. See __anext__ () for details.

This slot may be set to NULL if an object does not implement asynchronous iteration protocol.

180 Chapter 11. 24 & 2 ¢

The Python/C API, & x] 8] A 3.7.16

unaryfunc PyAsyncMethods . am_anext
The signature of this function is:

’Pyobject *am_anext (PyObject *self)

Must return an awaitable object. See __anext__ () for details. This slot may be set to NULL.

11.9 23} 7}u) %) 227 29

2% 422 TYSE AAE BA 5L S ol A9 A DL A AH o] YD 5 gl hE AR
“A"e| V" o AR B A o] BT hE AA o) 3 F2E AFHA AL, A% (4
S} RAD) o e B2 A FE AuA S B ofH YAHA AAL AT BRI}
gk

A

olvgd S v, & AAQ tp flags BEJ} Py TPFLAGS_HAVE_GCE ESH3)| of 311
Ag AlgafoF Futh o dadart 7bdel|, tp_clear T+ A3 oF

=

tp_traverse A& 7] +3

.

Py_TPFLAGS_HAVE_GC
o] S} 17t AAW Wl AA L of 7o) AW FHL F5s ok Ptk B2 913 ol A AN 2
ZH o) AA kil shAl5 U T

Aol B A= F 7HA A& S5l oF gt

1. AR Wl R 8]l= Pyobject_GC_New() Y PyObject_GC_NewVar ()& AFE3Fo] &v}3) oF &
Utk
2. 2 AEH oYt IR E XFT Y= BEZE7M 278, PyObject_GC_Track ()&
SEf oF FYTh
TYPE* PyObject_GC_New (TYPE, PyTypeObject *type)

PyObject_New ()&} FAVSHA| 9}, Py TPFLAGS _HAVE_GC Z#| 27 AAH Ad ol AANE 9
EIRAR

TYPE* PyObject_GC_NewVar (TYPE, PyTypeObject *type, Py_ssize_t size)
PyObject_NewVar ()& G AVSHA W, Py TPFLAGS _HAVE GC Z# 17} AAH Ad ol AAE
A3t A.

TYPE* PyObject_GC_Resize (TYPE, PyVarObject *op, Py_ssize_t newsize)
Resize an object allocated by PyObject_NewVar (). Returns the resized object or NULL on failure. op
must not be tracked by the collector yet.

void PyObject_GC_Track (PyObject *op)

TRy A5t AEl o)y A Fdol AA opE SIS TR 7= ol 71X 92 Al 2ol A
Py om®E FARE T ARV KRBk ??:MDP tp_traverse 27|17} A= BE
2=7} %EOHZW ZTEfoF FUTh HE AR ERE 2A YU
void _PyObject_GC_TRACK (PyObject *op)
PyObject_GC_Track ()9 M3 E A, B4 R E o= AFR 51X Dolol gt
W 3.67E 7 A]: o] i 2R & o] A 3.8 A AHA = 5 U T
R 7EA 2, A A 2] & s Al 2} (deallocator) = B 28k 5 2| -2 F 3 oF g T
1. 2 Aoy & Fxste A7t £ &3} 97 Ao, Pyobject_GC_UnTrack ()& &3 oF &

Utk
2. AA Y] W] Pyobject_GC_Del ()5 AH-&3to] & 3| A= of of gt

void PyObject_GC_Del (void *op)
PyObject_GC_New () W PyObject_GC_NewVar ()& AH-&3te] AA o E3H w2 & A

e,

11.9. <3 71n]x] 3 A Y 181

The Python/C API, & x| B] A 3.7.16

void PyObject_GC_UnTrack (void *op)
FR717F A5k AE oY A Aol M op AAE A AU Pyobject _GC_Track ()& ©]
AA e thefl Al skl 324 AA FAdel oAl 71 o AZoll Fo st Al L. s A=t
(tp_dealloc A8 7)) & tp_traverse A2 7oA A= BE7F F 23} = 7] Zof] Aol o
3l o] ¢4-2 TE ok T T,

void _PyObject_GC_UNTRACK (PyObject *op)
PyObject_GC_UnTrack ()S W2 Z ¥ A. & 2 Eo|= AFR 31X Dofof g Th

WA 3.65E 3 A: o] JZ 2 & o] A 3.80 4] AHAIH <5
tp_traverse A8 7] th23 2L 3o T4 wji 4 E

int (*visitproc) (PyObject *object, void *arg)
to_craverse Aol AL & AR §ool Y. o) Gt GATE AN E obia 2,
tp_traverse Ag|7]o] Al HA W7 M4E ag® Ea—ﬂ ofof &t Itold Hoj= £ 7}
0] X WA S TR A3 ol o] BEA BE A FLITH ASAT AAY PEA G E A
ofgdae AUk

tp_traverse A2 7% th & ol olof Ftk:

int (*traverseproc) (PyObject *self, visitproc visit, void *arg)
Traversal function for a container object. Implementations must call the visit function for each object directly
contained by self, with the parameters to visit being the contained object and the arg value passed to the handler.
The visit function must not be called with a NULL object argument. If visit returns a non-zero value that value
should be returned immediately.

tp_traverse A7) AL 31t Y&l py visiT() AR AZHUTh o] |2 EE A}L3}
B, tp_traverse —7—54 o 01 2}9] o] &2 A &3] visit 2} argZ A A3 oF gt}
void Py_VISIT (PyObject *0)

If o is not NULL, call the visir callback, with arguments o and arg. If visit returns a non-zero value, then return
it. Using this macro, tp_ t raverse handlers look like:

static int
my_traverse (Noddy *self, visitproc visit, woid *arqg)
{

Py_VISIT (self->foo0);

Py_VISIT (self->bar);

return 0;

}

The tp_clear handler must be of the i nquiry type, or NULL if the object is immutable.

int (*inquiry) (PyObject *self')
F2 ¢3S ANS 5 9t B2 AU B9 AN 32 282 49 44T

Z] R
nZ ol AEE Ho T g TEFES TR AA I FEMoF FUTh
(FA Z=xol 38l Py_DECREF () & TE3FA] Al L). o] AA7F F=x &8 Fosta A&
TR 7 AR5 o] MM EE T &3 T

182 Chapter 11. A 33 =<

CHAPTER 12

API2} ABI H A & 0] 7]

PY_VERSION_HEX+ T ¥ AT E AF T H Fo]H v HE gyt

O:

o & S 0] PY VERSION HEX7} 0x030401a2% AAT W, 7|2 HA AR = ot} 23} 72 vpalo 2 32
HE A2 A g 3to] 3h& 4= JF Y

A [EE (A | =

o] At EA)

E

1 1-8 PY MAJOR_VERSION (3.4.1a29] 3)

2 9-16 PY MINOR_VERSION (3.4.1a29] 4)

3 17-24 PY_MICRO_VERSION(3.4.1a29] 1)

4 25-28 PY_RELEASE_LEVEL (¥ 3}+= 0xA, W] El= 0xB, |3 £ B = 0xC,
HEL 0xF). o] J A= Iutd Yyt

29-32 PY_RELEASE_SERIAL(3.4.1a29] 2,3 Z =% 0)

webA 3.4.1a25 164 WA 0x030401a2 YU Tth
R E Fo] R v 3 2 & Include/patchlevel.hol] & 2] 5 Yt}

183

https://github.com/python/cpython/tree/3.7/Include/patchlevel.h

The Python/C API, & x| B] A 3.7.16

184 Chapter 12. API¢} ABI 1A £ o]7]

APPENDIX A

ofo
2
)

>>> T3 9] 7|2 shold mEmE. AE xS Y oz ABY 5 dt T oo 4 A5 B

2t03 Tlo]HM 2x T T E Tlo|M3x T &

EelE gasl A ZAT 5 gl TR m s e thE ok
203 £ £2 ol el gl Linacos £ AFAY T FUAOR 4B 4 Y 2aWEE

Tools/scripts/2to3 & AFH Ut} 2to3- referenceE HAS

abstract base class (34 W] o] &~ S'EH/\) ZA o]~ F P At hasattr () T2 EHIaYES EHs
= q

Ak o) LA B2H (o 5ol, W4 HAE) AF, AL ol 28 A S WL AT FLEA
S Erol® & MR ABCE M3 AN ZeAE w Qaier, 2948 Asshd shonlA
% isinstance () 2 issubclass () o 3] ZAE + = SFH2EY YT} abe EE AHA

S Wl e. 9ol 0Ol L B8 U4 ABC ol mhers ol o8} 28 A8
(collections.abc BE|A]), rx}(numbers BEINA), 2EH (io EE)
29 (importlib.abc REOIA). abc ZEZ AHE3 A A4l ge] ABCE WHE $% Y5 Th

annotation (o] E|o]A) FHo| Wl 3 I E Z AIREH = HS S22 o EZHE =& T4 wj/jHs
Rk g A28 Eﬂolt"ﬂ‘%‘l}-
A o] o) iE o] d2 A3 A Zbol] AN AT 5 QAR A Mg, el S W o]
7t g, 2, '51 9] __annotations__ &4 oJEEHE AFE Yk

Elo] A& 77
o] 7]%5& Ayt v o%leﬂ ol A, 3 o] = E| o] A, PEP 484, PEP 5262 Z 234 &
argument (12h) ¢S T2 0 ¢ tUAE) 2 AgE s gk F SR AR AU Th
o 7Y <l }(keywordargument) St T2 w) A AL el 82 A (o & £01, name=) £+
x5 ool 22 AU E R AEEE AR & £, b33 22 complex () T&°A 33

5ERF 71%5 AAA Y -

complex (real=3, imag=5)
complex (**{'real': 3, 'imag': 5})

o A A QA A} (positional argument): 71 = QA X7} opd Q1 A} ol
He AU olE 2L o ool * & 2o AT = UFUTh A& S, e} 22 EE01A4 3
5= EF A AR Y

185

https://www.python.org/dev/peps/pep-0484
https://www.python.org/dev/peps/pep-0526

The Python/C API, & x| B] A 3.7.16

complex (3, D5)
complex (* (3, 5))

AAbe 4 v 9 o] & 22 Al "ol i g Ytk OlEH?Ml A8 = 4 ‘éoﬂﬂﬁﬁfﬂtcaﬂs
B il

e mAlg. BRAoE, ojd B84 A AR AEE 4+ d5Uth TalA kol Ao] WMol
2IE=Rsiag
Sl v 53 FAQ A7 A2} v 7H ¥ 4=9] X}o] £} PEP 3625 WA 8.

asynchronous context manager (°]57] AY A€ #A2]2}) _ aenter_ () &F__aexit_ () WAEEA
3o 2 M async with oA Hols B4 & Alojst= AA. PEP 4922 = Y5 5 Th

asynchronous generator (‘3157] Al ole]) |5 7] Al ol E o] B 7 F<

°|e & 5
$52AH BolL, asyne for FEAAEL S 1E LA FES U

ghatthe gl thE Ut

def 2 AoH &= =F

TrE=vyield Efﬁ/-‘l%

PM r_vL

HE 57 Aol ¢S 7He] 7| AW, o™ 2ol A= vE 7] Aldd ol E olH e oY &
el U th o w ok o)7k BaehA) e A9k, e o8 A BB TS ik

HE 7] Al olE &4+ await B AT asyne for 3} async with ¥ =38 4+ J5

ek

asynchronous generator iterator (¥]£ 7] A& o] €] o]E]d o]¥]) v]5 7] Al o] g Sl wt== A A,
H5 7] o]l gl o8 QY __anext__ () & EE3tW ofSllolHE AAE 5851, o] A2 T
yicld B84 744 05 7] A el ol el Bl uhel e A g gk
Zyields QAALE A E ST, TR (A AFEH 7] 5 ry-2ES EFE)
A A E 719Ut vl5 7] Al dEl ol o]Hd ol ¥ 7} __anext_ () 7} EH T+ E 39
olgfolHER AN H, Wyt Zo® BTt PEP 4922} PEP 5255 H A 2.

asynchronous iterable (B]£ 7] o]E]2] &) async for ZoA A}2E = U+ AA. __aiter_ () WA
ctevs7] olHd olE & el oF uYth PEP 492 & = JlF YT

asynchronous iterator (B]5 7] oJE€]#|o]E]) _ aiter_ () & __anext_ () WA =E Z£d3= AA.
__anext_ =g olHE AAE Sl FoF gt} async forE StopAsyncIteration o9
7} A 3w 742 ¥)-E- 7]]E%’fﬂ °o]E] 9] __anext_ () HINE7} EHFE ofdlolHES FUTH

PEP 4922 = = 915 th

attribute (2] HE) AE VLS A5 o] Fo2 F2H L ARG AT W g oE Fol, A o7}
JELHEaB AW, 0.0 ¥ F2FUTH

awaitable (o] | o]E]E) await T A AT 4 9= AA.
AA7FE 4 Q51U T PEP 4928 H A 8.

BDFL #}H] 2% £ Al =] 2} (Benevolent Dictator For Life), = Guido van Rossum, 3}o] 21 2] A A},

H

FZE oy await_ () HIAEE 7}X

binary file (s}o] U1 2] she]) vho =47 AA 52 97 % % 9 52 A7), whol U e shele] o 2 whol
HEl = ('rb', 'wb' =¥ 'rb+') 2 €8 3}Y, sys.stdin.buffer, sys.stdout .buffer,
io.BytesIO & gzip.GzipFile & JAAHAE & 4 Y5
str AAE 9T 2 5 e B AAol AN B A 5o £ 2o 8.

bytes-ike abject (who] S) 3] =2 =% & A AT C-AL 3 E I LTE T2 GFUT
o8] FF memoryview 7“Xﬂ =2 EE£9]3l bytes, bytearray, array.array AA&& 83
U0k WOl = Q5 A B Hfol e ol ol Bl & TR ol 2] 71 QakE ol ALEE 4 Sle T 9,
woluie] % A%, £AS BY A% 2L Aol etk
o1 & EL vl e ol Bl AU D07k Atk o8 A9l AR AE 55

27| vlo| EE{ AA" et 2T 7}‘5 W AA 9] o 2= bytearray & bytearray 9
memoryview 7 %tk ThE QAE L uhol v e HlolE 7t £ AA (4)7] A8 wjol= A5
AR o AAYEE @ F3Yr}; o ALY 2= bytes? bytes AA| 2 memoryview 7}
1%k

bytecode (H}o] E F.&) Fo]H £ FEEvlo]E FEZ A9 AE =4, CPython 91 E] Z 2] €] of| A T}o] #
s e A RA T IO E TEE oy o] AA H o, 22 1AE F WA 4G)
6 WebA A BT (Aol A] ho & T E 2o A A5k S 518 5 DI Th. o] 7 dle]” &

rul%\1

re

186 Appendix A. &3

https://www.python.org/dev/peps/pep-0362
https://www.python.org/dev/peps/pep-0492
https://www.python.org/dev/peps/pep-0492
https://www.python.org/dev/peps/pep-0525
https://www.python.org/dev/peps/pep-0492
https://www.python.org/dev/peps/pep-0492
https://www.python.org/dev/peps/pep-0492
https://gvanrossum.github.io/

The Python/C API, & x] 8] A 3.7.16

Zh o] E I E o v-5-3h= 7] A& A ‘JJ%}% 74t 717 el A A et a g bt
A2 T2 st A A A ANA 2 ‘
2ol ¢l of gtk
HholE BT ol 5e] 252 dis BE AA o 2T

cdass (Fe =) AHEA AL AR S BE7] AT FF. WA= BT S dadaEdjdes
Aqbehe WA E B9 5 ERTh

class variable (Fe] 2 M%) Zej 2ol A He)E 1 Feh A 55 (F, Zeh29) AxH A0 A 7 ok of
MRE A= .

coercion (ZolA) 22 3o = 9

FAIA Oi tﬂ%ﬁ“}% A&

2
i
rlr
offt
e
ol
ol
{0
rO

2H2ETE Y

t}. 3t]f&,:«;+4 5

} o 2 W 3ta of
T Z27%)

ﬁd
i
rr
=
g
=0, 1 o,
o oy
w
|o
Fu
&
b
Egg

E“/IEP. 1‘%‘Z] %o .
M7 g2 Jo2 AfselFolok Futh A€ =0], 193
o

2
|_]
<
O
0
=
o

+
S

complex number (52:4) 535 A5 Al 2dle]], BE A/ AFRe} SR oz 19
HUth R Ao &5 d9 (-1 AlFD) & Fot A, 35 A= 18, FTolA =
2 Z7|FYTh gol M2 F 21 R7|HE 2 BAFE VR AAFUL seE e § JuAE
B 578Ut} o & S0],3+19. math RE2 B4 W Aol D31, cmaths AFE 3 o)
EL5o 827 £F 52 53514 7e g Ut d83tha =7 A X SThE, A A FA
e FHYTH

context manager (AY A E #2|A}) __enter_ () 2F__exit_ () HIAEZE AT S22 H with &2

|

A Kol B34S Alo] st A PEP 34302 T 5 & th

context variable (AEl A€ W) AdAE wat o2 kS 712 £ Q= Ak, ol 4 A Ag st
Hof o 5 D]'E Fe N e b2 Aad v sd ULt 28y, AH2E A4S
F3l, shite] A Ag = of 7 ﬂH”\Eﬂ' A F Yo AHAE A5 F E 5+ FTAA

A £ ZAx3AAN L

Ea
H| 5 7] Eﬁiﬂoﬂfﬂ HEE A= A9y Th contextvars
C-

contiguous (%) ¥ 3= A &3] C-A S5 (C-contiguous) ©] 71 U 32 E & A 2 (Fortran contiguous) Y 1] 455 9]
D3 ol A Utk AR W CA%ol WA TES A% UTE AA2 o] Lol A, T2
/‘1E°ﬂ A 3L, 001 A Al 28 L B2k A8 29 At & o & 2] of]) X] =] of of gt} thakd

Lo, MR FAY CANE FEES YT uf vpA g A d A7) 71 wke] |
Sk 0 B e 3 A A A] W

coroutine (7% ¥l) Coroutines are a more generalized form of subroutines. Subroutines are entered at one point
and exited at another point. Coroutines can be entered, exited, and resumed at many different points. They
can be implemented with the async def statement. See also PEP 492.

coroutine function (ZF-€ gt) 78 AAE S8jF= ¢ TIFH 5= async def FOF A9

= 4 9}3’_, await El-async forﬁ]— async with 7]‘14 E 233t 4 95Ut o] AE2 PEP 492

01]4011 A= Sy

CPython o] 2z Aojo] 374 2 o1 3 Qd, python.orgo| A ¥l ZH Yt}. o] 73S Jython o] 1}
g 9,1% EH &o] “CPython” o] A& Ut}

decorator (W] Z#o|¥]) t+& = &4, B5 ewrapper ¥ S /\}*‘l Eigi el K SRS
ALH Utk g Z g o)e 9 &3 o= classmethod () T»]—staticmethod Ak
H

ol e B BA A BPY LYYk TS F I A E v o= FEFIh

def f(...):

f = staticmethod (f)

@staticmethod

def f(...):

22 Ade] Felaolx 2A AR, @ A5 2 d Ut H Z o] B of th 3t B ZpA g &2 T
EEEE I FEPERE T ERE

187

https://www.python.org/dev/peps/pep-0343
https://www.python.org/dev/peps/pep-0492
https://www.python.org/dev/peps/pep-0492
https://www.python.org

The Python/C API, & x| B] A 3.7.16

descriptor (23 HE]) WA= __get_ () ©Jy_set_ () o]t} _delete_ ()& B3t AA.
’EHA AEYREZIUATHEH I o], JEYHE 23 =523 A2 &S oy} HEF,
bE A AW 2AY, A= A S o, a2 Sl gAY A bEtal o5 B3R AAE
Suyth dﬂ%bﬂﬂ*i%ﬂf&, dgete taagdy WA=t SEP Utk HaagdHE
olﬁﬂé} 2 gho] Mo ti gk 22 o]sf| o da] o, T, WM E, Z2HE, FElavAE, 28 Y
| A C,%ﬁ N Fz 5o B 759 728 olR 1 7l W dYth

Y2 HE Q) WA =Sl o3k 2kA & W &2 descriptors of] L34 T

dictionary (“:’,/‘:]L‘]E]) 99 9] 7] & gholl &A1 7] = AF v Q (associative array). 7]+= _ _hash__ () &}
_eq__ () MAHEE ZEEE QAT E = AUtk oA A gta 5 Y Th

dictionary view (“"K%L-]ﬂ H) ,dict.values(),dict.items () HA =7} S F= 4
AsSgxdE | E]’-T’——‘T'— E‘.ﬁﬁ'ﬂﬂgc"ﬂrﬂﬂ%—;JH‘Ezﬂ““?ﬂ'—tﬂ /‘:]
el 7t WA E o, §7F o = XY9Uth gAY RE At glaER vyl

list (dictview)E AFRSHH . dict-views S H A 8.

docstring (5229) 29}, U< A A BEA 02 Gehtbs 249 dH Y. A9 =7 A
2wl A A 5, F 5k e AA s o] S Ze s, B, BES _doc_ ojEelHER
AIH I AEZ AT AL Fomg, AR AHAE AT PEA FaIh,

duck-typing (] €}o]F) Zu}E < H 7}%1% 2 Adsted AA S P& BA e 22T
i%ﬂﬂ‘%’\? HUt e A 7 Hola 22X
Ao olE]H o] A~ S 7L2zﬂ-o§4q A AAE ==Y
2 AsY D}- Y Eteo] B2 type () ©]ttisinstance ()
= AHEE AARE gt (AR 9 Erolsg o] 4 | o] &~ %EHQEE%% T Aol o sf of
FUtth) thAlel, hasattr () AARG EAFP Z2 2892 U T

o
a
~
o}
<
0
b

oo
)
r'%
- (i
ﬁEr[o
s

o
_E,OR

o—gH

S oot ot O

ot 2, |

5

=
(]
—

EAFP 3= R ttE= 84 & 1317] 71 4 v} (Easier to ask for forgiveness than permission). ©] &3] &2 4= Q&=
spol4l 7% ek 2, SULE J| L} o E el HES ZAE /HAek, 1 /0] BelW ol e
Yt o] %1._710],57_ “H]'E 2B L Tl try 9t except o £ E EA A A YTLE o] HHZY L C

S} 7+ T} = wre ol o] of A x}f,iz\}i’uﬂ LBYL 2~E} 3} o v] g Yt}

expression (2@ 4]) oJW Fro® Fo|d ¢ J= AN 27h b D& W, A2 2 HE,
o, A EZYRE QM AL T3 22 e ST E X 455 Fob & AUt
te gL dojel iz Ao R, BE Qo] TS0l BAAA AL b Ut whileA W, BEA
0% A S Yt T Fol AFUTh B =& Fgolw, EHA o] obul ek

extension module (273 &) C U C++2 ZAH REY|, ulo] W] C APIS AH&3| A 3 4] o]} A2}

o
ol
-
41
X,
g
i)
Rl
4z
it
rlr
fin)
H
pech

f-string (-EA1g) '£' U 'F' & o] B ExE gHEES
TAHE g HE 9 YDAt PEP 498 & H A Q.
2

file object (3} A A|) 5 o] 3l oY A FA API(read () Ywrite () 2L HAEE)E =2
= 7”1] Eoil HJ of e}, 3+ AA = “Xﬂ 1'4/\3 2e] 3d O]‘)r"/}e ?qﬂ% A 54l A
(12 So), £2 428, dlvl=e ww, 27, vl =, 55) o gt A~ 2 S % LUt

i XS} 7“ xﬂ% g dF A] (file-like objects)\} 2~E (streams) olgt1E B3 E]—.

AA 2= A B57o 5td AA =] A5 UL & (raw) vlol] 2] 312, W 3] = (buffered) vfo] 1] 2] 312,
BlAE 919,) Qe Hio]latio BEANA AAEUth 3ld AA & vt A e
open() ¥+E

ol &
file-like object (J]-° FAA) 3t A 9 njss g

finder (3}¢1t]) YZEE RES AT 20 & o a1 A= AA.
ol % 33. o] F &, F FF A7t JF YT sys.meta_path 2} T AFE3hE B A =2
Q1T & sys.path_hooks I} @A AbEh= 4 = A E 2] 3}QlH.

] ZA] 3 W82 PEP 302, PEP 420, PEP 451 o] V-3 Ut}

floor division (35 p3e4) 43 7 7He 442 141%‘6}% S U 35 Al dabaks /o
& Eol, 2411 // 49 gL 27k HAAL Ay A2 2,758 B UTh (-11) // 4
7} -2.752 W 8 -30] Holl G2 of Tt PEP 238S B A 2.

188 Appendix A. &3

https://www.python.org/dev/peps/pep-0498
https://www.python.org/dev/peps/pep-0302
https://www.python.org/dev/peps/pep-0420
https://www.python.org/dev/peps/pep-0451
https://www.python.org/dev/peps/pep-0238

The Python/C API, & x] 8] A 3.7.16

= (AU T oY AT AEE = A=
], um,] msg<>ﬂ AFLE S QLU v 7 w4 9F v A = 9} function Al AT B AL

=]
function annotation (4= o] ;B o] A1) <= w7l W= b3k 4] of 1o g o] 4,
2

5 ofEo|de YA OT P = 2 A of, o] P4t T Y int ARE
t

=
=]

Q
)

=

&
fol
nH

R
=2
X
2
ra
)
o
it
v
N
rlr
ne
L
1o
M
02i

“ T

dlol5Q Aoz 7|, SA9 in

def sum_two_numbers(a: int, b: int) -> int:
return a + b

& o] .o H| o] A -2 function o] A A gt}

°] 71%5& AWt W o) nE o] 4 7} PEP 4848 Fz oA 2
_future__ =27t AA A me B9} T A bt A Ao} 5SS BHHT 5+ Y2 Hi

N RE.

__future_ EES YZESIL I WHFEY Fhs= FollA, A 7l 50] AA A2 Aojo 7t

<, AARE 1A 0] 7] Ho] Hl=x B 2 95t}

>>> import __ future_

>>> _ future_ .division

_Feature((2, 2, 0, 'alpha', 2), (3, 0, 0, 'alpha', 0), 8192)

garbage collection (7}8] 2] 42 7)) ©] AlLE A 9= W28 2 vhgddls A}, 5o
Az +3S 7”]5}13%3_??1‘:%ﬂﬂﬂ]ﬂ-’;ﬂﬂg I RE PAR
FA7 = ge BES AFEIIA Al 4 A5 YT

generator (AU & o]E]) Al o] E o]l olE 2 BeFLE 34, duk LAY Ho|=g
W yioid £9 9% EQUHE Aol thiuIth o 4E & or £EE A ot)
st 3l Wo) bR Al 2 Qs YTk
RE A o8 48 717 A e, o\ Fuo] A& A @l ol g o] Ejelo]E] & h= Ut o=
ol o vl 7 el e AE, AT Bol MA RETL g

il rz

generator iterator (AU #] o] €] o]E]#o]€]) A& o] e 7 e A
Ztyield: YA A SR A& St a, T XY (A HLER 7] T ay-252 2T3H)
A8 e E 71Utk Al d el olH e ol H 7t AREE, od 2o 2 B (EEntth

Mz A2k ok thul g Y eh.
generator expression (F| & o|g] T3 A]) o] €
for A AR b if Aol ol 2+ AW RAAN AH Uk AT 2

9% %52 B YUTh

>>> sum(i*i for i in range (10)) # sum of squares 0, 1, 4, ... 81
285

pdg

b=

SR IR G 5E

]-o{r

generic function (AW & &) 2 AAS A2 T2 AS o tis) 733 o g
f o] E FEH o] AR E A=t Gag ol o8 2 Ut

)
A
AZF] x] 87 23 functools.singledispatch () Bl Zd o]E & PEP 443% E A Q.
GIL A< Qe zglE 5 & BA LS.

global interpreter lock (A9 ¢1E]Z &]E] &) 3} Hol 2 A d1}e] A EV} slo] M vlo|E 7 & 2 A5}
5 B8] 19 CPrhon SVE L AL S AU S (a1eto) 22 F AT U FBEE 2
ote) AA Bdo] FA Ao FA] A 20 el X sHE = 7hE o] 4] CPython ?@% S5
U dEzgH JAE A2 A2 JdHzEHE ds2de3str] 47 e A, o
=2 AN AAN AR FE49 B B2 AP
AT, o f B BEE L, RO A BT, GFol b A 2L AL A FA A4S Y
Wl GILE whshe % A7 9l Th £8, V0 S @ vl 34 GILE v o,

(A T 2] A5 B 0] B 8 1) 28 S 0] 2 22 (free-threaded)” 1 2 2] B & THE 114}
S B9 wde AT AR By, T vd Z2AA 499 4% A7 4517 w2

189

https://www.python.org/dev/peps/pep-0484
https://www.python.org/dev/peps/pep-0443

The Python/C API, & x| B] A 3.7.16

Ytk o] A5 ol E SE5SE 22 7S U BERoH wheolA f A vlgol H o2 Zlew
o AR AF YT

hash-based pyc (3 A| 7] %}t pye) & % *‘& sh7] el sl G s Aol HF A AlTbo] ofd SjAIE
A}L3= ol E I = A 3t -invalidation& #Z 34 &

hashable (3] A] 7}%5) AA 7 9 1 WA = F A S 24 (__hash_ () A= 223

l 2]
h, o2 AR A HnE 5 Yol (__eq () WAEZ B3}, 5 A 7}Ls}umzmr,} z
Tha W) 2 H] = A s 3 AR £ oHAl%kO Zrolok gt
£

A AHs A AAE A e Y Ay Wgte) W A
m%agiﬂﬂﬁ%4%ﬂﬂﬂ%ﬁﬂw

ol 2 R AA 2 A 7 U th (B12EU A B 22) 7hd AE o s

@ 4 QA e, o] AR TRE o

la‘xl s Uth (FZol v frozenset Z-2) W AH U EL 159 24 E5°] slA 7t & wf vt
Al Zhe Utk AR A F o S ad A" As AAEL 7|2 Ao A Zhe U (AH]
Al AL stas) RF a2 ra va s 3, shA 2 id () 2 FE eyt
IDLE 3}o]dZ 91353 H‘ﬂ 217 (Integrated Development Environment). IDLE-2 5}-0] A 0] 3 5= uj| 3 2hoj]
wehet 71249 B3 719 e xelel 874 o
immutable (£¥) 149 s e AA. =9 AA = A4, T4, Fee TEEUD old AxS 2
HAE 5 stk A g2 A sk Al 7”7<ﬂe WS ofof duth. WaHA] o= sl Al ghel JlofoF
ste StollA 523 4TS Futh A& =], dM e 7.
import path (YZE Z2) F = 7] 910l 7 JZE S BES 27 H8 A= F42E (EE= 4=
dEL) Y 5F. YXE 3= 5 o] F2EY HF52 BHF sys.path 2HE FUTL AU A H
7)1 X2 __path_ oEFHEZRE L 4% 9JH5UTh

v
s 71 7)2] A R w s
L

importing (232 €)) 3

i
1o
3;-_1,
)
o
M
§
N
o |
|ru
2l
Y
1o
3;-_1,
)
rx,

SEo A A8 5 =S S AL

importer (JEE) BEE 2715 51 22 5% sH= AA; FA 0 shole] o) 2] AA ek,
interactive (C]3139) oo 4 h3lY QEmel8E 23 g, ANz 2EmEd A 24 21
ﬁ%ﬂﬂﬁ4wML5&§%%éT%%#%W%%ﬂHWOWH“WHHmeQNﬂﬂ

*ﬂﬁ(H/] =] 7ol A ’EE—“. St AL 7Fs 2 4 AsUth. A O}Olﬂoﬁe HAAPIAY 52
A7) A& EthEE v A e J‘%?Mv}(help (x) 2 7] 5HA &

mterpreted(OlE-] ZlElx) vlolE = AHAupd o EA) wfFoll I =] Ea*ﬂﬂﬂ 3R] gk, gho] A
2 At Adoj7t ot Az g E dojdUth o] A YA H o2 Ad 51dS THEA ‘E%F—L:—
Ai LS AP AR A= YUt T 220l F o 3] A7 &= A T QU H
Z g 0101—5&% At dojEg g2 /oW A F71& 25Ut tshd = Al

interpreter shutdown (QJE]Z2Je] £8) £ 53let= RS S of, sloj A e =Z g EH =
AYgsted, Bgolv o 7 T8I W R F2EF T2 =
Sy =3 7 A A7) E o
TS AW AL S+ YH T 5 = i
Aed, 270 &3t AP EC H 75 A EE 5 AV WHEGUTH(ES o= BelEy

wEol} A3 A aww
JemelE Fr F BEo U AaPEF RS B AU

iterable (o] E12| &) ”ﬂ:tﬁ% =l ‘?i°ﬂ st E2lE 4 e AA. olHY 29 dE2s E%(list, str,
tuple Z22) Al 82 P55, dict 22 RE U A I P 5, 9bd AA| 5, _iter () Y AAS
MdE F8oh= __getitem () FINEE XA YT EE Feh29 7”211501 °"“‘4er

Ol EL2 for FZ O AHE 9}1, ANA~E Q2 3= o2 B2 X (zip(), map (),)
of Ahg2 = 5t olE%‘ﬂ AN W S iter () o ARZ ALHH, T A H 9 olH
=¥ F YL 9 1E1E1101E%%k‘:4 ATS A AXE Futh olHHE

iter () & &3 olEl & o] E] AAE 2 %iaqv‘r forff

Al HH g o g | F rﬂ,TzéEt—%C& o] ¥ =

th. ol Bl o] E], Al A, Al El o] B = HA L.

iterator (0] E]#|o]E]) tlolEle] AEHDL FH3t= AA|. o|ElFo)EY __next_ () HIAEEHMIEHO
EQEO}“%(EE“W e next () 2 AGstd) 2EH = T %%i}alrﬂiiﬁ Yt o
o] AFe]] o] E] 7} §1-& wj= th Al StopIteration o9& GO 7 th o] XA A, o]E] g o] E] A

o2l
lo
i
)
Y
N
Id
=
g
oy
o
M
_]n‘.
2 o
yo fl
M2

rﬂ
r{o
r[o
>
08‘*;14
Au
rlr
|E§
Q
H
]

ﬂl

190 Appendix A. &3

The Python/C API, & x] 8] A 3.7.16

A= 2RET,0]T BE next_ () HIAEIZEZLS StopIteratlon o 9] & tjA] € o 7] 7]k
?JHD} o] Eﬂ o] ¥ o] ¥ &l o] ¥ A ZH‘_%% FE__iter_ () HIAEZE 7P71 ﬂo] 8957
ufjZof], olE gl o] H = o] Bl gl & o] 7| = st thE o HHEEZ ‘?%0}c o] t 9] oA A2
T AFULE 83t el & oy e O]Eiffﬂo]"q% Lot I=EY YT (llst Z-2) 7" oY
7“?<ﬂL iter () ¥R AD}AY for FZo| AHEE wfjuir} AY]E%“—HO]HE EUth o™
A= olg d o]l of thal| A 3 ste] i &td] ol g gl o] Mol AHEH oju] 2= 015131] olE| &

EF A, W AE o] YA T HolA v ‘4“/}
typeiter ol T ZpA| sk W §-o] dF Ut}
key function (7] $4*) 7] 3 &= Z 8] o] A (collation) F<=+= 7d & (sorting) ©] 1} ¥ & (ordering) ol AH-§-=]

=S EEFE ZHEYYL dE 9], locale.strxfrm() 2 2AY EF YA S =&
Ad 712 = o A E YT

ojR Y W =T QA4 F 0| ofBA A oA AL Fol=AFE Alolstr] f&f 7] F4E ot
=94t} oA A5 E=min (), max (), sorted(), list.sort (), heapg.merge (), heapq.
nsmallest (), heapg.nlargest (), itertools.groupby () ¢ AFYtc}

i)

7] 48 HEE e oY t‘“ﬁ ol AFUh AE S0f, str.lower () MIAEE Aol 77 §l&
AEE 93 7] T4 2 ALE 5 JdSUTh Ao 7] T4 lambda ﬁ?a*—‘.gi s TR
O]I‘Eﬂ old A dyrc}: lambda r: (r[0], r[2]). T3} operator RE-Z A 7]9] 7] &4

MRS AT YT attrgetter (), itemgetter (), methodcaller (). 7] &5 ‘i’l‘E
AL-&-3l= ol o gk o] Sorting HOW TO & E A &

keyword argument (7] 9] E 21z} <1xF & B AM 2.
lambda (Fth S&E off gro] Fal A= shte] x4 02 249 ol F gl ekl . "ot

f
i-J

%
]

2~
T

U= E2HL lambda [parameters]: expression YUYt}

LBYL % 7] Ao X 2} (Look before you leap). ©] T 2B} L T ZFo| L} 23] & 317] Aol HA|H o7 ALA
ZAEE AAFYUT o] 28 Y2 FAFP FEH I vl = oL, W2 if 7o SR S A HYTh
03 g = %7301]/‘1 LBYL HH 2 “H7]7e}“H7]” Tholl A 2702 WA 2 Aol Y54
t}. o & 59|, FE if key in mapping: return mapplng[key] AAF Z o, 3R T 23]
Aoll, b8 28 =7} keyE mappingoll A Al AstH A& 4 Q5 O]E* o] 4t % ©| 1} EAFP
Aoue AsFowm A + AUk

list (F]2E) U7 slo] W A A, I o] Bo= B35, P4 tfdt A7 0(1) o] 7] wjEof, AZ
2 E (linked hst)iv} o2 Aol mj A -FA YL

list comprehension (2] A& AZ |3 H) A/ DAY QAE AR E= YR E sty 1 A4S gAER
=8 FE FESH W, result = ['{:#04x}'.format (x) for x in range(256) if x
% 2 == 0] £ 004 255 Afolof] Q= B4E9 1674 (0x.) 5= 283 TAEY B2EE
TtEULh if A2 ST 4+ 9}/\‘41‘/]'- "“a:?f]' H, range (256) o = EE 847 A F Yt

loader (2t]) 2E2 ZE3F= Al load_module () °]2he= o] 59 WA EE FodfofF Ut 20+
RE 519t 7} S 2t} A48 8-S PEP 302 2, %4 w] o]~ 27~ = import1ib.abc.

Loader & HA| 8.
magic method (W] & WA =) 5= v A = o u]FA Al vk T
mapping (W]3) ¥4 9] 7] 23 & A A f‘?}I'- Mapping ©] 4 MutableMapping 7 Wlo]x Fef &

o AAFH HAHNEEE F+33= A o]y AA. 9 Z+= dict, collections.defaultdict,
collections.OrderedDict,collections.Counter & & 4 55U TH

meta path finder (W€} 7 2 9}QIH]) sys.meta_path o HAo] FefFE vpelr]. vg F2 st =
A Q=g whelt o Bas of 971k S e chE T
el A2 3t g7t FHet= A EE A= importlib.abc.MetaPathFinder & X3
F o

metaclass (W€} Ze =) Fefne] Sefa. SdA A= Fedls o) F U2 9M e wolx S s
o E5g R Yth HE F 2 o Al AAE wopA SHAE TEE A e FYth Y2
AA AT Z2 e 0*0%‘: 71 FES ﬂl*?:MDP gto] W& S BEE AL AxH
met FR2E W ke AQUth HEE AR APAE o] =77 A B8 AL Bt

191

https://www.python.org/dev/peps/pep-0302

The Python/C API, & x| B] A 3.7.16

R
o
o

O EFRE M 22 2 7] (logging),

o, v
= 9z 210 A2 52U T,

Hre 2es
o V]

FEEECEE R
metaclasses o A © Z}AM|SF 8-S 3+

method (WA =) Z &2 vit] ol A o 5]
I HAEE A HA QA (BE self

AFZ EHASL.

method resolution order (M| A= A £4]) WA= 2H ¢A+= 23] 5t= <
U250 £A YT 23 2 ARE o Az Eo] AgH L7 o] 4
Python 2.3 Method Resolution Order& 2. Yt}

module (25) s}o] W TEo) 243} B9 & kel Az REL 909 shold AASS B o] B
B 25U BEL Juy A ofe) stoli o 2 =g

574 = HA L

module spec (2E 23]) 2§ 2ealor A8HE dze gd 4RSS Gu 9t o2 27
importlib.machinery.ModuleSpec & QIAH A,

MRO WA= 274 =4 & BA L.

mutable (7}¥) 7bH A= ghol & 5 ARt id () € A FAGUS 20 = HAl L.

o

1

[» o
L
O:

ol

o, 1ok
:Oll_l“

N
@ 3o MM

Me > oy oz
2
ot

)
52 1t

o,
Ao mjy
A
N
Ao
-
flo ¢
oo
rlu

[
I

o
k

i
kv
~q
fru

ro >
[>
ﬂlr
> 1>
1=
i—%

e
43
ofy
°
Iy

named tuple (U] Y & &) The term “named tuple” applies to any type or class that inherits from tuple and whose
indexable elements are also accessible using named attributes. The type or class may have other features as
well.

Several built-in types are named tuples, including the values returned by time.localtime () and os.
stat (). Another example is sys.float_info:

>>> gsys.float_info[1l] # indexed access
1024

>>> sys.float_info.max_exp # named field access
1024

>>> isinstance(sys.float_info, tuple) # kind of tuple

True

Some named tuples are built-in types (such as the above examples). Alternatively, a named tuple can be created
from a regular class definition that inherits from tuple and that defines named fields. Such a class can be
written by hand or it can be created with the factory function collections.namedtuple (). The latter
technique also adds some extra methods that may not be found in hand-written or built-in named tuples.

namespace (|5 57h) W7t AZE = Fa ol F2 dAY R AP U AAl S HE o) &
T (A E oA Eek oty A, A, WA o] 5 Tl dsUTh o5 TN o5 FES
WA A REAAS AU o & 591, 9 builtins.open & os.open() < 159 o] &
0] 25 FRFUL E8, o8 08 o REO| B4 FHIEAE E oA BEIA
71543 § A B4 =S YT ol & £9, random. seed () £+ itertools.islice ()
gtal 2 1 35 0] Zh 2t random 3 itertools EEO &3 +HE QSo] W HUTh.

namespace package (0] % 27t 171 2)) 2.2 A B 317) 4 S 2] AE| o] 2 v 753 PEP 420 5] 7] 4],
o) AL B A AAT QL $E A, 53 _init__.py Hdo] glomw A7
57] %) sh= tHEU)

HEEZHEAS.
nested scope (5 HE A272Z) SR FYoA H4E T2t 9.
7Fed #, 2 H A Fethe Aol F2 8] oF

FUth v R, A A4E2 A Y o5 3ol A 3L YT nonlocal 2 HFZ A5 o
2= AL =y

new-style class (7 2ElY Fel2) A F2 € el AAd ALEHID e Fda WA oA o
5. 2719 stolH MAdqAE, 23 F2oed FYav __slots_, H2AYHE, ZeksE,

192 Appendix A. &3

https://www.python.org/download/releases/2.3/mro/
https://www.python.org/download/releases/2.3/mro/
https://www.python.org/dev/peps/pep-0420

The Python/C API, & x] 8] A 3.7.16

__getattribute_ (), Y2 HA L, 2HE A 2L glo| W NET s 7S5 E

N }£L51‘k 3&04"L1E+

object (AA]) el (G1EREV) & 2t TF (MAE) o] AoJd BE oy, E3, BE F2EY
S o HFHA A V\EEH/\?JH"/P-

package (3 7]2]) N E 255]L} A7 Aoz A ﬁﬂ?']zlg%f—tﬂ@—’? Ae Fold 25, 7eH o,

H 7 A= _path SJEFHE} Q= FolH 7 Eqp}_
Bt A7 A & o] F FH A = BA L.
parameter (FI7H) 1 (= WA =) Aol A F7H S 5 9l AA (e oW A5 AXE) &
A7 o= o] 5 B2 ﬁﬂEl O ZF ARSI A5
E (positional-or-keyword):] %] 21 A} L} 7]%%}01 Z]} ERAGE 4 9= AxE AT

. 92-719)

yrth o] Z o] 712 FEj] mi7i =g Ut ol & o] tholl A foo 2} bar:
def func(foo, bar=None):

o 1 A-A & (positional-only): | A 2T Al52 4= A= AAE AZ T Fo] S 9 A-A&
AT E Bt e 23 YA syt sHA R o @ uf i T2 9 A]-A 8w

BN
ZEZUTH (A E £, abs ().

SE
» A=A (keyword-only): 7| =2 T AFE 5 9t AAE ARG Th 719 =28 w7
W4 g4 A o)) vl 7S 2 Z ol A gholl Bhke] Zhu-91 A v Mg} <2 2e) 2 23kl A

Aoad 4+ AdF Ytk dE =9, b2l A kw_onlyl 2} kw_only2:

def func(arg, *, kw_onlyl, kw_only2):

71851 3] (var-posiionaly: (2 o) A5 E 0])3} A o u] WolE ol A 1 AxE] B3l
AED 5 Y= AR AAS] deojo] AAAS A F T o A v A MS= v A5 o] 2o
« 2 oo HolA 48 4 LU, ol 2 Sof ULl A args:

’def func (*args, **kwargs):

+ P71 (ar-keyword): (FFE w1 50 o151 4 o] o] Wb}l 2 719 = Aol Esl)
AZE 4+ 9t 299 A% AAE AAEL ABFUT ol @ QS E v ARS o] Fof
x5 Qo] Fo A HogE 5 JdFUTH oAl & =0 A9 ool A kwargs.

WM A AAEE A5 B R ohU e A o] AL} A% ARES AHT 5 9
Uk,

A7} §oj 7] =, AIA9) iAWl Aholo] 1} FAQ A, inspect .Parameter 272,
function @, PEP 362% H A 9.

path entry (32 =) 47 /3 5}lE] H YRE T REEL 271 99
Bhitel

path entry finder (g 2 1 E2] 3}Q1t]) sys.path_hooks ol = F& L (5, A= =] 5) o] 85
= I e, FoR AR Qe 2 RES Fe S € AsUTh

AZAEZ Q5o +AI}E=HAEEL importlib.abe.PathEntryFinder o] U3 Th

path entry hook (2 & QlE2] &) sys.path_hook B|AEJ 9= ZEQd, EA A2 dEZ A R
ESFeHES LTI A2 AED A & =HFUh

path based finder (% 2 7] shelt]) 712 ve} 4% Folt s & shpole], Y¥e A= oA RES 2
Z

path-like object (FE 7 AA) 52 A28 A2 2 e AR, A2F AAE A2 S ey str

Ubytes AA o] A}t os.PathLike T2 EZS T HSE= AA YY) os.PathLike Z2EF

= APst= AA = os. fspath () T 5 TEMA str thbytes Y A/2E Frr HE 5

J5 Ut} Al os. fsdecode () £ os.fsencode () & ZZt str Y bytes 2345 H 3 3+=1
}%% T A5 YTH PEPS19E = Y= Y5 th

z

o
=4

ks
R
o
rr
kel

E 4= e

193

https://www.python.org/dev/peps/pep-0362
https://www.python.org/dev/peps/pep-0519

The Python/C API, & x| B] A 3.7.16

PEP 5ol 7)1 7% PEP= 3ol & A5 1] 19 A0 8 A% 51 ol e 2w s 2
o he 22 75 A ahe A EAAUTH PEPE AIE 71500 S e 1A% 714 A E
2AS AT ek
PEPE 78 A% 7158 A oksha Aol B @ AR 4 shol el Eof 7k 47

o
SERE RS

A e] e el
N ERCEVE R BE RIS

PEP 1 &=z 34 8.

portion (£) PEP 420 o A] % 2] & 214 &, o] F 37k 3 7] A of] e]upA] 3h= shrte] v e ol £o] =
SIS0 A @ip Lol AZEE AT 75T

positional argument ($] 2] ?12}) QI#} £ H A Q.

provisional API (Z+d API) 7 APl= %= gto| B89 I A T84 B4

A, Cleislel a0 2 W o g5 S 9 el 3 AN
ST RO A TR o] FAH A b Mol Yol Qv ad WL B
Ao doj At ke AT — APIE E3et7] Mol 51 o5t 2RA Aol

A Afolvt dojd AP Yt
APIO A 25, T A T34 o]
H A= tsl AA 8=

G BF vhol nef el oW A B AR
Yok § A 82 PEP 411€ 28 F 1)

provisional package (24 2] 7] 2]) &4 API & BEA|

Python 3000 (5}0] 4 3000) T}o] % 3.x vl 2}ole] W H (¥ A 39] WjE 7} W u]#)e] o]of7| & A Ao uh
Eol3 o] Folth) °] A& “Py3k” & S0] 27| = Yt

Pythonic (3}o]¥th2) TE dojsolM ANt S5 ARSI L =5 7Ask= tial, sl o
N A AR A7 AT o AEL Aol fhe t
A A 22 ol A2 for #& AHEEIA o E 2
Qojoll = ol £7 2] 74 B0 Yem g, shol 4
AHE8E7 = ot

o
T
O

n

2O Y il ko i
ol gy A% o Mok fo

ol

for i in range(len(food)):
print (food[i])

o 25 e spol ok 2 ol FF Y th:

for piece in food:
print (piece)

qualified name (g 77349 0] 8) LES| Ao ~mz oA BEo| Aol H Feh2, T4, WA Eo] o] 27
278 Hol3k o THE o E. PEP 3155 o A A Bt HAHS] Be} Zejao] A5l
R7EE o) 2L AR o o 27 2HU T

>>> class C:
class D:
def meth (self):
pass

>>> C.__qualname___

ICI

>>> C.D._ _gualname_
'C.D'

>>> C.D.meth. qualname_
'C.D.meth'

252 7t 7] AHSE ul, &3] BF3E ol 5 (fully qualified name)& 5 F 5 I 7| A ==
ZPAA 2R 7te Aor 2eld olF2 g ol & S°], email .mime. text:

194 Appendix A. &3

https://www.python.org/dev/peps/pep-0001
https://www.python.org/dev/peps/pep-0420
https://www.python.org/dev/peps/pep-0411
https://www.python.org/dev/peps/pep-3155

The Python/C API, & x] 8] A 3.7.16

>>> import email.mime.text
>>> email.mime.text._ name_
'email .mime.text'

reference count (312 312 2719 0j3 229 A%, AAe] B2 2474002 Woj AW, vw e 7}
149141—/], Tz §] FALZ IUtA o7 ol H I = wEH A= AR CPyth(m T3 ;A
= Ao FZ A4 E E8F = getrefcount () & FogYth

regular package (JF #| 7] A)) __init_ .py FLL 3= vjdE g g Z‘i%@ el g} 7] #].
ol wH7IA = EAL

slots ez 2] Aeleln, d2Hs o 2eREES A E0L v)e AelsT Aau s A
e E AATLEN W2 ﬂe éuﬂ%ﬁﬂ%—éq"/k 217] 7]+ A g, 9] EﬂE’- 2 22 A
AHEH71 7 | 7R HoletA, MR glof U1t 38 22 oA B2 £ AAEAT =
Sud A9 e ARt Aol $0th

sequence (A]A2) __getitem_ () %—’F HAEE 33 A5 AG2E A SHE 84 ANAE A9
a3, A A2 2|8 BHFE _len_ () WAEE Aelai oelel . B Y AA2ES
ULd 2, 1ist, str, tuple,bytes 7} 45YT} dict =3 getitem_ () I __len_ ()
& A AeA T, 230l A o4l Qoo 2 7| E ALEa] W Rol AL oh e} B A
FAThe Ao 793 oF ST
collections.abc.Sequence FA Hlolx Fd A= _ getitem () & __len ()=
oA R ZHSE QA EHo~E AHYd=0, count (), index (), _ contains__ (),

AR o] 44H A H ol 2 FHD BE register () 5 AL

__reversed_ ()& F
AHAdeR 5584 dan.
2])

single dispatch (2 T]A3)) 73 o] shihe] 1AL ol 7|2 A A S = Al E e Ha3) A <

slice (&glo]x) B Al o AR E 233t Al Seolae B ATHE 7S AMLSA vy
Urth variable_name[1:3:5] A §, [] oA o 7o) A S22 = FePUch 2

(HE 229 E) 2/H L JEAOR slice A7E A3 o,

special method (55~ | A =) sto]® o] Yol o A4S, B4 22, A3 uf ?’\lﬁ'gi TE = A
C.oEHAEE Tl EER /\] Zhskal Eube ol 2L 5 U th 54 v A =+ specialnames
of FA & =04 O]Al/]r/}

statement (F7) &4 29 E (Z 29| “EF (block)”) & FA = F2 YU 23L& T4 o] AY
71 EE AHEote o8 A 28 F9] st Ut 7F if, while, for.

text encoding (]2 E 2137 9) FUIE EXAES Hlo]ELE AT Y3 ZH.
o

textfile (2 54e]) str AR E A7 £ 5 UE 7Y 47, 35, GAE LS A2 vo = A
o B AE & oAl Asha] At o151 2 A% AE It BAE Hel) o2l At mE
('r'EE='w)E 99 99, sys.stdin, sys.stdout, io. StrlngIO«] AAEHAE EFT IS

Y.

el 2GR A & 9T 2 5 Dk 5 AR Bl A o] v e 5 £ BasAL

triple-quoted string (413 T3t € Bohed) W () o} ALWET () A A2 EAA £AD 2
The s Stz oA Eahde] St 5 S ATHAL G, o8 A ol el Zut 5]
U o 2ACZ HA) e FLWELE] 2HLRE FAY ol RV 4 JES 81, A
248 24 GAE o) 2ol AW 4 v, SAEDS 2w 55 28 d5 U

type () shold Ao e 20| oW F5e) ANAXNE AR P TH RE AR = Fol AHUTh
AR YL __class__ o ERER AMAT 4 YA type (ob)) & DS 4 AT

type alias (3 o] 2]}) B2 AW Aho] T 3he] WS A=] o],

=
g Qo at o AT Hadse o 8 FUTh oS S

from typing import List, Tuple

(Th& sl AT ol A%

195

The Python/C API, & x| B] A 3.7.16

(o1 sl o] A A A%)

def remove_gray_shades (
colors: List[Tuple[int, int, int]]) -> List[Tuplel[int, int, int]]:

pass

e el 8 97 47 s 5 95U

from typing import List, Tuple

Color = Tuple[int, int, int]

def remove_gray_shades (colors: List[Color]) -> List[Color]:

pass

0] 7158 A3t typingd PEP 4845 A2 1A S
type hint (3 &) W, Fefa o) EGRE 9 94 w74 1wkt gre] 7w = 3

2 WMa2 A , W2 AJEZRE 9 49 3 FE+ typing
get_type_hints () & AH&3t] AN 2T 4 dFUTh

o] 7152 A3} typingd} PEP 4845 FZ3A| 2
universal newlines (U ¥ A & J7) o237 7,5% AEL nE Zol Zog olAsl: HAE iE% o
AT B g AR BA B \nt, AES = Bel \r\a, AL WAEA Bl ¢

F71A 2l AFR-of] TE| A= bytes. splltllnes () 29t o} 2} PEP 278 2} PEP 3116 = E/‘ﬂfﬂ_.

variable annotation (H* o] o] A) Hy = FHP 2 o EGHEL] o] - H o] Al
HeEe ZdaoEREY ojHolAS G uf Y2 A8 AL yt):

class C:
field: 'annotation'

Hp o H oM dWtH o7 3 SIER AREHUTH o & S0, ol e & int = 7HE 2o R
EEREE
count: int = 0

Ha o] mH o] A -2 A A annassign ol A A g o}
o] - €] o] A, PEP 484 2 PEP 5262 &

N
o,
By
ko

ol 7S AYdl= o

virtual environment (7}4} $17) s}o] /\]-&x]-g} S& Z2 o], T2 A adH oA AdE = thE F}o]
HNEE ZRIAYPEY & J&FS FA %}Ef’“ﬂ sto] A w2 ol 7| A E& A X A Y 18 o]
Eote A 7hsotA st @A o R Aejd As $HA.

venv & HA| Q.

virtual machine (7}4} 7| A]) 2= Egjojwto g
Y7t 28 dt= vio| E I =8 AU

Zen of Python (3}o] Al) sho]H T2}l Ao} a9 EE5Ad|, Qo] & o]s) st ARS8t == ©]
HUth o] 552 U3y ZEZE oA “import this” & Y ¥stH HYich

398 AFH. 5o A9 7bg AL vhol = HE A5k

196 Appendix A. &3

https://www.python.org/dev/peps/pep-0484
https://www.python.org/dev/peps/pep-0484
https://www.python.org/dev/peps/pep-0278
https://www.python.org/dev/peps/pep-3116
https://www.python.org/dev/peps/pep-0484
https://www.python.org/dev/peps/pep-0526

APPENDIX B

o] AT Aol st

o] A AL reStructuredText 220 A BHE 0] X Ao 2 slo] W A YA S 93] E83] A 2E A 2 a7
2l Sphinx & AHg- 8% 1T,

A9} o] B 93t EA 9 A2 sho]# 2A| 2} u}xﬁ}x]; 2 QB A ALY g Q) 7] o5}

AT, o] W ol th & %E reporting-bugs 3] o] A = } A9, MEL AYEAIR= A A L}

2o 3h oy

S B0/ Be BAE =dUG
* Fred L. Drake, Jr., 92 sto]H A A = 3o 2 o)A w2 Zrl=9] 27}
« reStructuredText 2} Docutils 29 EE Y= = Docutils ZZ A E,

u—

* Fredrik Lundh, ~2.2] Alternative Python Reference = 2 A & of| A Sphinx 7} &2 o} o]t o] & L ¢l &5 Ut

jEnu

B.1 slo]d AwAle] THAES

Aol 71l FFUth 7o Ake] RE A Q)

197

http://docutils.sourceforge.net/rst.html
http://sphinx-doc.org/
http://docutils.sourceforge.net/
http://effbot.org/zone/pyref.htm
https://github.com/python/cpython/tree/3.7/Misc/ACKS

The Python/C API, & x| B] A 3.7.16

198 Appendix B. o] A7 Aol Fskod

appeENDIX C

oA A9} o] Al

CA 2zEgeld o4

g}o] -2 ABCgt:= Qo] o] T A A& 4] v 2HE 9] Stichting Mathematisch Centrum (CWI https://www.cwi.nl/
2+ %) 2] Guido van Rossum©l] 9] 3l 1990 o] Zuko]l W& o] F <5 Uth Tlo| Mo = thE2 AlgE9) W 23]
o] 2= A v, Guido= Tho] # o] 8 AR} o} 9) A»]D}

1995, Guido+= Virginia 2] Reston Oﬂ 21+ Corporation for National Research Initiatives(CNRI, https://www.cnri.

reston.va.us/ FF2) o A s}o] A =+ 74] 7, o] oA ozl AL 2z EY oS ZA S YT

In May 2000, Guido and the Python core development team moved to BeOpen.com to form the BeOpen Python-
Labs team. In October of the same year, the PythonLabs team moved to Digital Creations (now Zope Corporation;
see https://www.zope.org/). In 2001, the Python Software Foundation (PSF, see https://www.python.org/pst/) was
formed, a non-profit organization created specifically to own Python-related Intellectual Property. Zope Corporation
is a sponsoring member of the PSF.

ZE Jol vz F7) /\/\?JHD]-(—'—7H A2 Ao sl A= https://opensource.org/ S 22 &4

O
= 5 =
AlL). AAA oz, tf 72 (3HAIRE A F = obd U th) Jhol W vz a2 GPL S2hg Ut ofef o] 2+
e M ERe 2 ke AUt
vl 32 324 e 3| 3l a2 GPL = 3?
09.0~12 | n/a 1991-1995 | CWI yes
13~152 | 1.2 1995-1999 | CNRI yes
1.6 1.5.2 2000 CNRI no
2.0 1.6 2000 BeOpen.com | no
1.6.1 1.6 2001 CNRI no
2.1 2.0+1.6.1 | 2001 PSF no
2.0.1 2.0+1.6.1 | 2001 PSF yes
2.1.1 2.142.0.1 | 2001 PSF yes
212 2.1.1 2002 PSF yes
2.13 2.1.2 2002 PSF yes
2.2 o] 2.1.1 2001-# A | PSF yes

Fa: GPLY} z&dtE A2 2| 7FGPLE o] d 2 v x3ohE S dnstA = syt EE
ghol A gholAla= GPLI 2] of 2o WA S 37/ 222 WA G A vdS w2 5 A

199

https://www.cwi.nl/
https://www.cnri.reston.va.us/
https://www.cnri.reston.va.us/
https://www.zope.org/
https://www.python.org/psf/
https://opensource.org

The Python/C API, & x|] A 3.7.16

gttt GPL €3 glo] Al 9lo] W3 GPL 3ol Y d T2 2z EF o] & 2¢s 4= oA & o2
A2 194 5t

Guido®] 2| £ 5}ol o] W EE 7H5 317 BE BL 9% AARAAF oA A= F T

C.2 shol el A 25kA v} 4H&3t7] 913 0|8 o

C.2.1 PSF LICENSE AGREEMENT FOR PYTHON 3.7.16

1. This LICENSE AGREEMENT is between the Python Software Foundation.
— ("PSF"), and

the Individual or Organization ("Licensee") accessing and otherwise.
—using Python

3.7.16 software in source or binary form and its associated.
—documentation.

2. Subject to the terms and conditions of this License Agreement, PSF.
—hereby

grants Licensee a nonexclusive, royalty-free, world-wide license to.
—reproduce,

analyze, test, perform and/or display publicly, prepare derivative.
—works,

distribute, and otherwise use Python 3.7.16 alone or in any derivative

version, provided, however, that PSF's License Agreement and PSF's.
—notice of

copyright, i.e., "Copyright © 2001-2023 Python Software Foundation; All._
—Rights

Reserved" are retained in Python 3.7.16 alone or in any derivative.
—version

prepared by Licensee.

3. In the event Licensee prepares a derivative work that is based on or
incorporates Python 3.7.16 or any part thereof, and wants to make the
derivative work available to others as provided herein, then Licensee.

—hereby
agrees to include in any such work a brief summary of the changes made.

—~to Python
3.7.16.

4. PSF is making Python 3.7.16 available to Licensee on an "AS IS" basis.

PSEF MAKES NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY.
—OF

EXAMPLE, BUT NOT LIMITATION, PSF MAKES NO AND DISCLAIMS ANY.
—REPRESENTATION OR

WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR.
—THAT THE

USE OF PYTHON 3.7.16 WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

5. PSF SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF PYTHON 3.7.16

FOR ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A._
—RESULT OF

MODIFYING, DISTRIBUTING, OR OTHERWISE USING PYTHON 3.7.16, OR ANY.
—~DERIVATIVE

THEREOF, EVEN IF ADVISED OF THE POSSIBILITY THEREOEF.

200 Appendix C. < x}¢} glo] Al A

The Python/C API, & x] 8] A 3.7.16

6. This License Agreement will automatically terminate upon a material.
—breach of
its terms and conditions.

7. Nothing in this License Agreement shall be deemed to create any.
—relationship

of agency, partnership, or joint venture between PSF and Licensee. .
—~This License

Agreement does not grant permission to use PSF trademarks or trade name.
—in a

trademark sense to endorse or promote products or services of Licensee,.
—~Or any

third party.

8. By copying, installing or otherwise using Python 3.7.16, Licensee agrees
to be bound by the terms and conditions of this License Agreement.

C.2.2 BEOPEN.COM LICENSE AGREEMENT FOR PYTHON 2.0

BEOPEN PYTHON OPEN SOURCE LICENSE AGREEMENT VERSION 1

1. This LICENSE AGREEMENT is between BeOpen.com ("BeOpen"), having an office at
160 Saratoga Avenue, Santa Clara, CA 95051, and the Individual or Organization
("Licensee") accessing and otherwise using this software in source or binary
form and its associated documentation ("the Software").

2. Subject to the terms and conditions of this BeOpen Python License Agreement,
BeOpen hereby grants Licensee a non-exclusive, royalty-free, world-wide license
to reproduce, analyze, test, perform and/or display publicly, prepare derivative
works, distribute, and otherwise use the Software alone or in any derivative
version, provided, however, that the BeOpen Python License is retained in the
Software, alone or in any derivative version prepared by Licensee.

3. BeOpen is making the Software available to Licensee on an "AS IS" basis.
BEOPEN MAKES NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF
EXAMPLE, BUT NOT LIMITATION, BEOPEN MAKES NO AND DISCLAIMS ANY REPRESENTATION OR
WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE
USE OF THE SOFTWARE WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

4. BEOPEN SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF THE SOFTWARE FOR
ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT OF USING,
MODIFYING OR DISTRIBUTING THE SOFTWARE, OR ANY DERIVATIVE THEREOF, EVEN IF
ADVISED OF THE POSSIBILITY THEREOF.

5. This License Agreement will automatically terminate upon a material breach of
its terms and conditions.

6. This License Agreement shall be governed by and interpreted in all respects
by the law of the State of California, excluding conflict of law provisions.
Nothing in this License Agreement shall be deemed to create any relationship of
agency, partnership, or joint venture between BeOpen and Licensee. This License
Agreement does not grant permission to use BeOpen trademarks or trade names in a
trademark sense to endorse or promote products or services of Licensee, or any
third party. As an exception, the "BeOpen Python" logos available at
http://www.pythonlabs.com/logos.html may be used according to the permissions
granted on that web page.

7. By copying, installing or otherwise using the software, Licensee agrees to be
bound by the terms and conditions of this License Agreement.

C2. stolHo] A 23t AN} ALR-57] 913 o] & okt 201

The Python/C API, & x| B] A 3.7.16

C.2.3 CNRI LICENSE AGREEMENT FOR PYTHON 1.6.1

1. This LICENSE AGREEMENT is between the Corporation for National Research
Initiatives, having an office at 1895 Preston White Drive, Reston, VA 20191
("CNRI"), and the Individual or Organization ("Licensee") accessing and
otherwise using Python 1.6.1 software in source or binary form and its
associated documentation.

2. Subject to the terms and conditions of this License Agreement, CNRI hereby
grants Licensee a nonexclusive, royalty-free, world-wide license to reproduce,
analyze, test, perform and/or display publicly, prepare derivative works,
distribute, and otherwise use Python 1.6.1 alone or in any derivative version,
provided, however, that CNRI's License Agreement and CNRI's notice of copyright,
i.e., "Copyright © 1995-2001 Corporation for National Research Initiatives; All
Rights Reserved" are retained in Python 1.6.1 alone or in any derivative version
prepared by Licensee. Alternately, in lieu of CNRI's License Agreement,
Licensee may substitute the following text (omitting the quotes): "Python 1.6.1
is made available subject to the terms and conditions in CNRI's License
Agreement. This Agreement together with Python 1.6.1 may be located on the
Internet using the following unique, persistent identifier (known as a handle):
1895.22/1013. This Agreement may also be obtained from a proxy server on the
Internet using the following URL: http://hdl.handle.net/1895.22/1013."

3. In the event Licensee prepares a derivative work that is based on or
incorporates Python 1.6.1 or any part thereof, and wants to make the derivative
work available to others as provided herein, then Licensee hereby agrees to
include in any such work a brief summary of the changes made to Python 1.6.1.

4. CNRI is making Python 1.6.1 available to Licensee on an "AS IS" basis. CNRI
MAKES NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF EXAMPLE,
BUT NOT LIMITATION, CNRI MAKES NO AND DISCLAIMS ANY REPRESENTATION OR WARRANTY
OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE USE OF
PYTHON 1.6.1 WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

5. CNRI SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF PYTHON 1.6.1 FOR
ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT OF
MODIFYING, DISTRIBUTING, OR OTHERWISE USING PYTHON 1.6.1, OR ANY DERIVATIVE
THEREOF, EVEN IF ADVISED OF THE POSSIBILITY THEREOEF.

6. This License Agreement will automatically terminate upon a material breach of
its terms and conditions.

7. This License Agreement shall be governed by the federal intellectual property
law of the United States, including without limitation the federal copyright
law, and, to the extent such U.S. federal law does not apply, by the law of the
Commonwealth of Virginia, excluding Virginia's conflict of law provisions.
Notwithstanding the foregoing, with regard to derivative works based on Python
1.6.1 that incorporate non-separable material that was previously distributed
under the GNU General Public License (GPL), the law of the Commonwealth of
Virginia shall govern this License Agreement only as to issues arising under or

with respect to Paragraphs 4, 5, and 7 of this License Agreement. Nothing in
this License Agreement shall be deemed to create any relationship of agency,
partnership, or joint venture between CNRI and Licensee. This License Agreement

does not grant permission to use CNRI trademarks or trade name in a trademark
sense to endorse or promote products or services of Licensee, or any third
party.

8. By clicking on the "ACCEPT" button where indicated, or by copying, installing
or otherwise using Python 1.6.1, Licensee agrees to be bound by the terms and
conditions of this License Agreement.

202 Appendix C. < x}¢} glo] Al A

The Python/C API, & x] 8] A 3.7.16

C.2.4 CWI LICENSE AGREEMENT FOR PYTHON 0.9.0 THROUGH 1.2

Copyright © 1991 - 1995, Stichting Mathematisch Centrum Amsterdam, The
Netherlands. All rights reserved.

Permission to use, copy, modify, and distribute this software and its
documentation for any purpose and without fee is hereby granted, provided that
the above copyright notice appear in all copies and that both that copyright
notice and this permission notice appear in supporting documentation, and that
the name of Stichting Mathematisch Centrum or CWI not be used in advertising or
publicity pertaining to distribution of the software without specific, written
prior permission.

STICHTING MATHEMATISCH CENTRUM DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS
SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN NO
EVENT SHALL STICHTING MATHEMATISCH CENTRUM BE LIABLE FOR ANY SPECIAL, INDIRECT
OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE,
DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS
SOFTWARE.

o] AL sho]m Wl ETo] EEE AR £ZES o] T BAAAA T Fol T 3
59 B5dYrh

rr
)
)
rZ
[>
1o

C.3.1 w24 E9AH

_random B & http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/MT2002/emt19937ar.html of| A]
delwe Sed 70 e 8 g FLch e A wEe] F4S IhE $7 AU h

A C-program for MT19937, with initialization improved 2002/1/26.
Coded by Takuji Nishimura and Makoto Matsumoto.

Before using, initialize the state by using init_genrand (seed)
or init_by_array(init_key, key_length).

Copyright (C) 1997 - 2002, Makoto Matsumoto and Takuji Nishimura,
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

3. The names of its contributors may not be used to endorse or promote
products derived from this software without specific prior written
permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR

(Th& sl AT ol AS)

%

C3. E3d 2zEgolo] T ol A2 8 5 203

http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/MT2002/emt19937ar.html

The Python/C API, & x| B] A 3.7.16

(o1 sl o] A A A%)

A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR

PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS

SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Any feedback is very welcome.
http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html
email: m-mat @ math.sci.hiroshima-u.ac.jp (remove space)

C.3.2 427

socket BREL getaddrinfo () £} getnameinfo () T+ 5 ALYt} o] 52 WIDE Project, http:
[Iwww.wide.ad.jp/, A Al & HBE A2 5 Z TP F o] 5T

Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
All rights reserved.

Redistribution and use in source and binary forms, with or without

modification, are permitted provided that the following conditions

are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

3. Neither the name of the project nor the names of its contributors
may be used to endorse or promote products derived from this software
without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS "~ "AS IS'' AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. 1IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS

OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

C.3.3 ¥]Z7] 27 A

[>

asynchat3 asyncore BE2 U3 -2 39 AMghS 233t

Copyright 1996 by Sam Rushing
All Rights Reserved
Permission to use, copy, modify, and distribute this software and

its documentation for any purpose and without fee is hereby
granted, provided that the above copyright notice appear in all

(Th& sl AT ol A%

204 Appendix C. S x}¢} glo]Al A

http://www.wide.ad.jp/
http://www.wide.ad.jp/

The Python/C API, & x] 8] A 3.7.16

(o1 sl o] A A A%)

copies and that both that copyright notice and this permission
notice appear in supporting documentation, and that the name of Sam
Rushing not be used in advertising or publicity pertaining to
distribution of the software without specific, written prior
permission.

SAM RUSHING DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE,
INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN
NO EVENT SHALL SAM RUSHING BE LIABLE FOR ANY SPECIAL, INDIRECT OR
CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS
OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT,
NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

C.3.4 F7] &<

http.cookies REL T} 28 7o) A3 E g ch:

Copyright 2000 by Timothy O'Malley <timo@alum.mit.edu>
All Rights Reserved

Permission to use, copy, modify, and distribute this software

and its documentation for any purpose and without fee is hereby
granted, provided that the above copyright notice appear in all
copies and that both that copyright notice and this permission
notice appear in supporting documentation, and that the name of
Timothy O'Malley not be used in advertising or publicity

pertaining to distribution of the software without specific, written
prior permission.

Timothy O'Malley DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS
SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS, IN NO EVENT SHALL Timothy O'Malley BE LIABLE FOR
ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
PERFORMANCE OF THIS SOFTWARE.

C35 A3 37

trace REL Th3 0 22 £ AHS @Y h

portions copyright 2001, Autonomous Zones Industries, Inc., all rights...

err... reserved and offered to the public under the terms of the
Python 2.2 license.

Author: Zooko O'Whielacronx

http://zooko.com/

mailto:zooko@zooko.com

Copyright 2000, Mojam Media, Inc., all rights reserved.
Author: Skip Montanaro

Copyright 1999, Bioreason, Inc., all rights reserved.
Author: Andrew Dalke

(F= sMoTAT ol AS)

%

C3. E3d 2zEgolo] T ol A2 8 5

205

The Python/C API, & x| B] A 3.7.16

(o1 sl o] A A A%)

Copyright 1995-1997, Automatrix, Inc., all rights reserved.
Author: Skip Montanaro

Copyright 1991-1995, Stichting Mathematisch Centrum, all rights reserved.

Permission to use, copy, modify, and distribute this Python software and
its associated documentation for any purpose without fee is hereby
granted, provided that the above copyright notice appears in all copies,
and that both that copyright notice and this permission notice appear in
supporting documentation, and that the name of neither Automatrix,
Bioreason or Mojam Media be used in advertising or publicity pertaining to
distribution of the software without specific, written prior permission.

C.3.6 UUencode %! UUdecode &+5~

o B ES e 2 7o) S E P

Copyright 1994 by Lance Ellinghouse
Cathedral City, California Republic, United States of America.

All Rights Reserved
Permission to use, copy, modify, and distribute this software and its
documentation for any purpose and without fee is hereby granted,
provided that the above copyright notice appear in all copies and that
both that copyright notice and this permission notice appear in
supporting documentation, and that the name of Lance Ellinghouse
not be used in advertising or publicity pertaining to distribution
of the software without specific, written prior permission.
LANCE ELLINGHOUSE DISCLAIMS ALL WARRANTIES WITH REGARD TO
THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS, IN NO EVENT SHALL LANCE ELLINGHOUSE CENTRUM BE LIABLE
FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT
OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

Modified by Jack Jansen, CWI, July 1995:

— Use binascii module to do the actual line-by-line conversion
between ascii and binary. This results in a 1000-fold speedup. The C
version is still 5 times faster, though.

- Arguments more compliant with Python standard

C3.7 XML YA =2 AA T2

xmlrpe.client RES 0T 28 5o AgHe wdach

The XML-RPC client interface is

Copyright (c) 1999-2002 by Secret Labs AB
Copyright (c) 1999-2002 by Fredrik Lundh

By obtaining, using, and/or copying this software and/or its
associated documentation, you agree that you have read, understood,
and will comply with the following terms and conditions:

Permission to use, copy, modify, and distribute this software and
its associated documentation for any purpose and without fee is

(F= sMoTAT ol AS)

206 Appendix C. & x}¢} glo] A A

The Python/C API, & x] 8] A 3.7.16

(el

bl

L

o] A oAl A A%)

hereby granted, provided that the above copyright notice appears in
all copies, and that both that copyright notice and this permission
notice appear in supporting documentation, and that the name of
Secret Labs AB or the author not be used in advertising or publicity
pertaining to distribution of the software without specific, written
prior permission.

SECRET LABS AB AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH REGARD
TO THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANT-
ABILITY AND FITNESS. IN NO EVENT SHALL SECRET LABS AB OR THE AUTHOR
BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY
DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
OF THIS SOFTWARE.

C.3.8 test_epoll

test_epoll REL b3t 28 79| AL 2FFUh

Copyright (c) 2001-2006 Twisted Matrix Laboratories.

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND

NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

C.3.9 Select kqueue

select 252 kqueue Q1 E 3] o] 2ol thal The 3} 22 Fo] AGHe ERE UL

Copyright (c) 2000 Doug White, 2006 James Knight, 2007 Christian Heimes
All rights reserved.

Redistribution and use in source and binary forms, with or without

modification, are permitted provided that the following conditions

are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

(F= sMoTAT ol AS)

%

C3. E3d 2zEgolo] T ol A2 8 5

207

The Python/C API, & x| B] A 3.7.16

(o1 sl o] A A A%)

THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS "~ "AS IS'' AND

ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. 1IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS

OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

C.3.10 SipHash24

3} Python/pyhash. c o] += Dan Bernstein 2] SipHash24 211 2] & 2] Marek Majkowski 2] =& o] 3£ 3}5] o]
AFUTH 7)o &= 53 T2 W§o] 3E o FU T

<MIT License>
Copyright (c) 2013 Marek Majkowski <marek@popcount.org>

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
</MIT License>

Original location:
https://github.com/majek/csiphash/

Solution inspired by code from:
Samuel Neves (supercop/crypto_auth/siphash24/1little)
djb (supercop/crypto_auth/siphash24/little2)
Jean-Philippe Aumasson (https://131002.net/siphash/siphash24.c)

C.3.11 strtod ¢} dtoa

C double 7} F21Yd 71o] H3HE 93 C T4 dtoa &} strtod S A|-Z3t= 3 <Y Python/dtoa.c = X
http://www.netlib.org/fp/ o] A Q& 4= 9= David M. Gay 9] 22 o] £9] 3} Yol A A 95 U Tt} 2009
d3g 16Ye] b2 9 gt o= thS 3 22 A LA E gholAl s IR 7 2FE o] syt

/*********************~k****k*******~k******************************

*

* The author of this software is David M. Gay.

*

* Copyright (c) 1991, 2000, 2001 by Lucent Technologies.

*

* Permission to use, copy, modify, and distribute this software for any

* purpose without fee is hereby granted, provided that this entire notice
*

is included in all copies of any software which is or includes a copy
or modification of this software and in all copies of the supporting
documentation for such software.

*

*

(Th& sl A oll A%)

208 Appendix C. & x}¢} glo] A A

http://www.netlib.org/fp/

The Python/C API, & x] 8] A 3.7.16

(o1 sl o] A A A%)

* THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR IMPLIED
* WARRANTY. IN PARTICULAR, NEITHER THE AUTHOR NOR LUCENT MAKES ANY

* REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE MERCHANTABILITY

* OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR PURPOSE.

*

***/

C.3.12 OpenSSL

E hashlib, posix, ssl, crypt & & A ‘}Fﬂ Z719] A%5S ¢35 OpenSSL
olBy g & AUt 3 9= W OS X 3} d 4] L2 W2 OpenSSL 2ho] B 2j] AHE S
e 4 9lom g, o] 7] o] OpenSSL gho] Al A AFE-S 233)

RO

LICENSE ISSUES

The OpenSSL toolkit stays under a dual license, i.e. both the conditions of
the OpenSSL License and the original SSLeay license apply to the toolkit.
See below for the actual license texts. Actually both licenses are BSD-style
Open Source licenses. In case of any license issues related to OpenSSL
please contact openssl-corelopenssl.org.

OpenSSL License

Copyright (c) 1998-2008 The OpenSSL Project. All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in
the documentation and/or other materials provided with the
distribution.

3. All advertising materials mentioning features or use of this
software must display the following acknowledgment:
"This product includes software developed by the OpenSSL Project
for use in the OpenSSL Toolkit. (http://www.openssl.org/)

4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
endorse or promote products derived from this software without
prior written permission. For written permission, please contact
openssl-core@openssl.org.

5. Products derived from this software may not be called "OpenSSL"
nor may "OpenSSL" appear in their names without prior written
permission of the OpenSSL Project.

6. Redistributions of any form whatsoever must retain the following
acknowledgment:
"This product includes software developed by the OpenSSL Project
for use in the OpenSSL Toolkit (http://www.openssl.org/)"

L T R S e R S N S S S S N S N S S S S N S S S e S S I

(F= soTAT ol A

C3. =%

rkﬂ
lkl

Edofol th3t gho]dl 2 g &< 209

The Python/C API, & x| B] A 3.7.16

(o1 sl o] A A A%)

ERE T R S e N S S N S N S S .

THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT " "AS IS'' AND ANY
EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT

NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;

LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)

HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
OF THE POSSIBILITY OF SUCH DAMAGE.

This product includes cryptographic software written by Eric Young
(eay@cryptsoft.com). This product includes software written by Tim
Hudson (tjh@cryptsoft.com).

Original SSLeay License

LG S SR I N N S N S S N S S S S T I R S N S S N I S .

Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
All rights reserved.

This package is an SSL implementation written
by Eric Young (eay@cryptsoft.com).
The implementation was written so as to conform with Netscapes SSL.

This library is free for commercial and non-commercial use as long as
the following conditions are aheared to. The following conditions
apply to all code found in this distribution, be it the RC4, RSA,
lhash, DES, etc., code; not just the SSL code. The SSL documentation
included with this distribution is covered by the same copyright terms
except that the holder is Tim Hudson (tjh@cryptsoft.com).

Copyright remains Eric Young's, and as such any Copyright notices in

the code are not to be removed.

If this package is used in a product, Eric Young should be given attribution
as the author of the parts of the library used.

This can be in the form of a textual message at program startup or

in documentation (online or textual) provided with the package.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
1. Redistributions of source code must retain the copyright
notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
3. All advertising materials mentioning features or use of this software
must display the following acknowledgement:
"This product includes cryptographic software written by
Eric Young (eay@cryptsoft.com)"
The word 'cryptographic' can be left out if the rouines from the library
being used are not cryptographic related :-).
4. If you include any Windows specific code (or a derivative thereof) from
the apps directory (application code) you must include an acknowledgement:
"This product includes software written by Tim Hudson (tjh@cryptsoft.com)"

(Th& sl AT ol AS)

210

Appendix C. S x}¢} glo]Al A

The Python/C API, & x] 8] A 3.7.16

(o1 sl o] A A A%)

THIS SOFTWARE IS PROVIDED BY ERIC YOUNG " "AS IS'' AND

ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS

OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

The licence and distribution terms for any publically available version or
derivative of this code cannot be changed. i.e. this code cannot simply be
copied and put under another distribution licence

[including the GNU Public Licence.]
/

b T R S S S N S N S

C.3.13 expat

pyexpat &2 WU E & ——yith-system-expat & FA3}A| b= 3t E3H expat A AHES ALE

stof Wl =g

Copyright (c) 1998, 1999, 2000 Thai Open Source Software Center Ltd
and Clark Cooper

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

C.3.14 libffi

_ctypes &AL It & ——with-system—-1libffi & FA 3R &= 3l ESHH libfli &2 AFE-S AL

shof =g Ytk

Copyright (c) 1996-2008 Red Hat, Inc and others.

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
*Software''), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,

(TF& sl A ol A%)

C3. = Lz e oo thF o]l A g 52l 211

%

The Python/C API, & x| B] A 3.7.16

(o1 sl o] A A A%)

distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED " "AS IS'', WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.

C.3.15 zlib

21ib e A2 Fol A WA dib WA o] YT es ol A e AT & glow,

AR g Stel e U Th

]

3}
=4

)
N
o
B>
>

Copyright (C) 1995-2011 Jean-loup Gailly and Mark Adler

This software is provided 'as-is', without any express or implied
warranty. In no event will the authors be held liable for any damages
arising from the use of this software.

Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it
freely, subject to the following restrictions:

1. The origin of this software must not be misrepresented; you must not
claim that you wrote the original software. If you use this software
in a product, an acknowledgment in the product documentation would be
appreciated but is not required.

2. Altered source versions must be plainly marked as such, and must not be
misrepresented as being the original software.

3. This notice may not be removed or altered from any source distribution.

Jean-loup Gailly Mark Adler
jloup@gzip.org madler@alumni.caltech.edu

C.3.16 cfuhash

tracemalloc o] 9J3l AFR T = A H o] &9 F+8 & cfuhash ZZAEE 7|ulo 7 ghr}:

Copyright (c) 2005 Don Owens
All rights reserved.

This code is released under the BSD license:
Redistribution and use in source and binary forms, with or without

modification, are permitted provided that the following conditions
are met:

(Th& sl AT ol A%

212 Appendix C. S x}¢} glo]Al A

The Python/C API, & x] 8] A 3.7.16

(o1 sl o] A A A%)

* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following
disclaimer in the documentation and/or other materials provided
with the distribution.

* Neither the name of the author nor the names of its
contributors may be used to endorse or promote products derived
from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
OF THE POSSIBILITY OF SUCH DAMAGE.

C.3.17 libmpdec

_decimal R E2 WUEE —-—with-system-libmpdec & F+A3}1A] ¢+ 3, 2 3HE libmpdec A2~ AR

& AHgstel ek

Copyright (c) 2008-2016 Stefan Krah. All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS "AS IS" AND

ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. 1IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS

OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

%

C3. = Lz e oo thF o]l A g 52l 213

The Python/C API, & x| B] A 3.7.16

214 Appendix C. S x}¢} glo]Al A

APPENDIX D

sho] 3} o] WA
Copyright © 2001-2023 Python Software Foundation. All rights reserved.

Copyright © 2000 BeOpen.com. All rights reserved.

Copyright © 1995-2000 Corporation for National Research Initiatives. All rights reserved.
Copyright © 1991-1995 Stichting Mathematisch Centrum. All rights reserved.

WA 2ol 0 AL AT ARE o AL9) 2ho] 4l o A Al F T

215

The Python/C API, & x| B] A 3.7.16

216 Appendix D. #]z4

)
ro

Non-alphabetical

., 185
2to3, 185
>>> 185
__all__ (package variable), 39
__dict__ (module attribute), 115
__doc___ (module attribute), 115
_ file_ (module attribute), 115, 116

_ future_ , 189
_ import_
w7 4, 39
_ loader__ (module attribute), 115
_ _main_

&, 11,136, 144
__name___ (module attribute), 115
__ package__ (module attribute), 115
__slots_ ,195
_frozen (CH|o]E @A), 41
_inittab (CH°]E 3 4]), 42
_Py_c_diff (C F), 81
_Py_c_neg (C &%), 81
_Py_c_pow (C &), 81
_Py_c_prod (C &), 81
_Py_c_quot (C &), 81
_Py_c_sum (C &), 81
_Py_NoneStruct (C ‘?ﬂ—’,\—) 159
_PyBytes_Resize (C &), 84
_PyCFunctionFast (CH| o] ¥ &4l), 161
_PyCFunctionFastWithKeywords (C dH| ©] E
g4, 161
_PyImport_Fini (C UV\) 41
_PyImport_Init (C &%), 41
_PyObject_GC_TRACK (C &%), 181
_PyObject_GC_UNTRACK (C), 182
_PyObject_New (C &), 159
_PyObject_NewVar (C g<), 159
_PyTuple_Resize (C &), 104
_thread
2F, 141
27
bytearray, 84
bytes, 82
Capsule, 124

complex number, 81
dictionary, 107
file, 114

floating point, 80
frozenset, 110
function, 111
instancemethod, 112
integer, 77

list, 106

long integer, 77
mapping, 107
memoryview, 123
method, 113

module, 115

None, 77

numeric, 77
sequence, 82

set, 110

tuple, 103

type, 5,75

A

abort (), 38
abs
W B4, 60

abstract base class (F4
185

annotation (o] = H| o] A), 185

argument (21 %}), 185

argv (in module sys), 138

ascii

LHXI- DT7 57

asynchronous context manager (¥]%7] A
g~ 7Hel 7)), 186

asynchronous generator (¥ % 7] Ay d o]
H), 186

asynchronous generator iterator (H]%7]
A ol e o] E & o] E]), 186

asynchronous iterable (H]% 7] o] & E),
186

asynchronous iterator (H]% 7]
186

attribute (9] EZHE), 186

awaitable (o] gl ol &), 186

Hlolx 2,

olg &l o §),

217

The Python/C API, & x| B] A 3.7.16

B

BDFL, 186
binary file (H}°]\g] 5}Y), 186
buffer interface

(see buffer protocol), 65
buffer object

(see buffer protocol), 65
buffer protocol, 65
builtins

2 &, 11,136, 144
bytearray

22, 84
bytecode (M} E T &), 186
bytes

A, 82

W7g g, 57
bytes-like object (Hfo]E A H AA), 186

C

calloc (), 151
Capsule

AA, 124
C-contiguous, 69, 187
class (E#), 187
class variable (Fd 2 W), 187
classmethod

W g, 162
cleanup functions, 38
close () (in module os), 145
CO_FUTURE_DIVISION (C ¥%), 19
code object, 114
coercion (Zo]A), 187
compile

w7t g, 40
complex number

AA, 81
complex number (E4F), 187
context manager (AEAE #HE| A}, 187
context variable (AYAE W), 187
contiguous, 69
contiguous (%), 187
copyright (in module sys), 138
coroutine (Z5H), 187
coroutine function (ZFE <), 187
CPython, 187
create_module (C &), 118

D

decorator (¢ Zd ©]¥]), 187
descriptor (423 HH), 188
dictionary

A, 107
dictionary (94142]), 188
dictionary view ("dA1 g &), 188
divmod

W7 g, 60
docstring (5AE), 188
duck-typing (¥ E}o]), 188

E

EAFP, 188

EOFError (built-in exception), 115
exc_info () (in module sys), 9
exec_module (C &%), 118
exec_prefix, 4

executable (in module sys), 137

exit (), 38

expression (X3 4]), 188
extension module (E& 2 &), 188

F
f-string (~E2}4), 188
file
AA, 114
file object (< AA)), 188
file-like object (3L HF ZAA), 188
finder (3}91H), 188
float
W g, 62
floating point
A, 80
floor division (A4 Y=Al), 188
Fortran contiguous, 69, 187
free (), 151
freeze utility, 4l
frozenset
AA, 110
function
AA, 111
function (&%), 189
function annotation (84 o] Ho]A), 189

G

garbage collection (7}8]A] 4=74), 189

generator, 189

generator (A4 & °]), 189

generator expression, 189

generator expression (AU ol Z &4,
189

generator iterator (AU o]E o|E g olH),
189

generic function (AU g &), 189

GIL, 189

global interpreter lock, 139

global interpreter lock (A< QAE Z | H
=), 189

F{
hash
w7 g4, 58, 168
hash-based pyc (S| A] 713} pyc), 190
hashable (3] A] 7}%), 190

IDLE, 190
immutable (%), 190

218

3
e

The Python/C API, & x] 8] A 3.7.16

import path(YXE F =), 190
importer (¥ X ¥), 190
importing (Y 21), 190
incr_item(),9, 10
inquiry (C @l o] ¥ & 4]), 182
instancemethod

AA, 112
int

W g, 62
integer

AA, 77
interactive (th3}+3), 190
interpreted (IHZE E &), 190
interpreter lock, 139
interpreter shutdown (QJEHZEH £7), 190
iterable (9] E 8] &), 190
iterator (°]E & o] ¥), 190

key function (7] &), 191
KeyboardInterrupt (built-in exception), 28
keyword argument (7] X 21}, 191

L

lambda (Zt}), 191
LBYL, 191
len
W3 g4, 59, 62, 64, 106, 108, 110
list
AR, 106
list (B|2E), 191
list comprehension (E|2E AXZF3NA), 191
loader (24), 191
lock, interpreter, 139
long integer
AA, 77
LONG_MAX, 78

M

magic

method, 191
magic method (W] 3 WA), 191
main (), 136138
malloc (), 151
mapping

A, 107
mapping (W] 33), 191
memoryview

A, 123
meta path finder (WE} F & 3121 1H), 191
metaclass (WE Z8), 191
METH_CLASS (W73 W4, 162
METH_COEXIST (W& W), 162
METH_FASTCALL (W& W), 161
METH_NOARGS (U7 ¥ <), 162
METH_O (W& W), 162
METH_STATIC (W3 W), 162
METH_VARARGS (W& W), 161

method

magic, 191

special, 195

AA, 113
method (WA =), 192
method resolution order (WAE AA 4A]),

192

MethodType (in module types), 111, 113
module

search path, 11, 136138

AA, 115
module (X&), 192
module spec (& £d) 192
modules (in module sys), 39, 136
ModuleType (in module types), 115
MRO, 192
mutable (7}9), 192

N

named tuple (U YE £Z) 192
namespace (0] 5 &7}), 192
namespace package (°]E Z7F 3 7] A]), 192
nested scope (FHH 27 2),192
new-style class (F2EY i 2), 192
None

WA, 77
numeric

AA, 77

O

object
code, 114
object (AA), 193
OverflowError (built-in exception), 78, 79

P

package (3] 7] A]), 193
package variable

all .39
parameter (W] 7]), 193
PATH, 11
path

module search, 11, 136138
path (in module sys), 11, 136138
path based finder (AZ 7|¥tg9lH), 193
path entry (A= AE=z]), 193
path entry finder (BZE dEZ 521t]), 193
path entry hook (A& JdEZ %), 193
path-like object (BEF ZAA)), 193
PEP, 194
platform (in module sys), 138
portion (Z4), 194
positional argument (%] %] <14}, 194
pow

& g4, 60, 61
prefix, 4
provisional API (A API), 194
provisional package (FA 37 X)), 194

2] o
b B B4

219

The Python/C API, & x| B] A 3.7.16

Py_ABS (CHl3Z &), 4
Py_AddPendingCall (C <), 145
Py_AddPendingCall () , 145

Py_AtExit (C), 3
Py_BEGIN_ALLOW_THREADS, 140
Py_BEGIN_ALLOW_THREADS (C |3 &), 143
Py_BLOCK_THREADS (C W3 &), 143
Py_buffer (CH] o] ¥ &4, 66

Py_buffer.
Py_buffer.
Py_buffer.
Py_buffer.
Py_buffer.
.ndim (C 98 M), 67

Py_buffer

Py_buffer.
.readonly (C W8 W), 67

Py_buffer

Py_buffer.
.strides (C ¥y W), 67
Py_buffer.

Py_buffer

buf (C WH ¥, 66
format (C ®WH ¥), 67
internal (C @8 HS$), 68
itemsize (C WY HE), 67
len (C W W), 67

obj (C W W), 66
shape (C W¥] ¥H), 67

suboffsets (C AW W), 67

Py_Buildvalue (C &), 49
Py_BytesWarningFlag (C), 134
Py_CHARMASK (CWlZ &), 4

Py_CLEAR (C &), 21
Py_CompileString (C g), 17
Py_CompileString(), 18
Py_CompileStringExFlags (C &), 18
Py_CompileStringFlags (C b‘]'/\) 17
Py_CompileStringObiject (C &), 18
Py_complex (C H| o] ¥ & 4]), 81
Py_DebugFlag (C ¥), 134
Py_DecodeLocale (C &), 36
Py_DECREF (C gt), 21
Py_DECREF (), 6
Py_DontWriteBytecodeFlag (C W), 134
Py_Ellipsis (C¥<), 123
Py_EncodeLocale (C &%), 36
Py_END_ALLOW_THREADS, 140
Py_END_ALLOW_THREADS (C W] 2 &), 143
Py_EndInterpreter (C g<), 145
Py_EnterRecursiveCall (C &%), 31
Py_eval_input (C %), 18

Py_Exit (C &), 38

Py_False (C ¥%), 80

Py_FatalError (C <), 38
Py_FatalError (), 138
Py_FdIsInteractive (C &), 35
Py_file_input (CH%), 18
Py_Finalize (C &), 136
Py_FinalizeEx (C &), 136
Py_FinalizeEx (), 38, 136, 144, 145
Py_FrozenFlag (C¥<), 134
Py_GetBuildInfo (C &%), 138
Py_GetCompiler (C <), 138
Py_GetCopyright (C &%), 138
Py_GETENV (CH|3Z &), 5
Py_GetExecPrefix (C &%), 137
Py_GetExecPrefix (), Il
Py_GetPath (C <), 137

Py_GetPath (), 11, 137 138
Py_GetPlatform (C &), 138
Py_GetPrefix (C &), 137
Py_GetPrefix (), 11
Py_GetProgramFullPath (C &), 137
Py_GetProgramFullPath(), 11
Py_GetProgramName (C $<), 137
Py_GetPythonHome (C ¥<), 139
Py_GetVersion (C), 138
Py_HashRandomizationFlag (C <), 134
Py_IgnoreEnvironmentFlag (C ¥HS), 134
Py_INCREF (C ¥), 21
Py_INCREF (), 6
Py_Initialize (C &), 136
Py_Initialize (), 11,136,137, 144
Py_InitializeEx (C 61'/\) 136
Py_InspectFlag (C ¥4, 134
Py_InteractiveFlag (C¥%), 135
Py_IsInitialized (C &%), 136
Py_IsInitialized(), Il
Py_IsolatedFlag (C W), 135
Py_LeaveRecursiveCall (C &%), 31
Py_LegacyWindowsFSEncodingFlag (C
135
Py_LegacyWindowsStdioFlag (C W), 135
Py_Main (C &), 15
Py_MAX (CHlE &), 4
Py_MEMBER_SIZE (CU|3Z &), 4
Py_MIN(CWl3Z), 4
Py_mod_create (C W), 118
Py_mod_exec (C HS), 118
Py_NewlInterpreter (C &), 144
Py_None (C H%), 77
Py_NoSiteFlag (C ¥%), 135
Py_NotImplemented (C YY), 55
Py_NoUserSiteDirectory (C ¥), 135
Py_OptimizeFlag (C W), 135
Py_PRINT_RAW, 115
Py_QuietFlag (C¥%), 135
Py_REFCNT (C |3 &), 160
Py_ReprEnter (C &), 31
Py_ReprLeave (C &), 31
Py_RETURN_FALSE (C W] 32 &), 80
Py_RETURN_NONE (C "l 2 &), 77
Py_RETURN_NOTIMPLEMENTED (C W} 32 &), 55
Py_RETURN_RICHCOMPARE (C &), 172
Py_RETURN_TRUE (C W] 3 &), 80
Py_SetPath (Cg<), 138
Py_SetPath (), 137
Py_SetProgramName (C $), 137
Py_SetProgramName (), 11, 136, 137
Py_SetPythonHome (C ﬂ") 139
Py_SetStandardStreamEncoding (C ¥
136
Py_single_input (C A%
Py_SIZE (CHl=Z &), 160
PY_SSIZE_T_MAX, 79
Py_STRINGIFY (CUla), 4

), 18

W),

),

220

3
e

The Python/C API, & x] 8] A 3.7.16

Py_TPFLAGS_BASE_EXC_SUBCLASS (W& W),
170

Py_TPFLAGS_BASETYPE (W7 ¥ <4), 169

Py_TPFLAGS_BYTES_SUBCLASS (W& ¥ 4), 169

Py_TPFLAGS_DEFAULT (W& W), 169

Py_TPFLAGS_DICT_SUBCLASS (W& ¥H<4), 170

Py_TPFLAGS_HAVE_FINALIZE (W% H<4), 170

Py_TPFLAGS_HAVE_GC (W& W), 169

Py_TPFLAGS_HEAPTYPE (W7 H4), 169

Py_TPFLAGS_LIST_SUBCLASS (W& ¥4), 169

Py_TPFLAGS_LONG_SUBCLASS (W& ¥ 4), 169

Py_TPFLAGS_READY (W7 ¥ 4), 169

Py_TPFLAGS_READYING (W7 ®¥H<4), 169

Py_TPFLAGS_TUPLE_SUBCLASS (W7 ¥ 4), 169

Py_TPFLAGS_TYPE_SUBCLASS (W& ®H<), 170

Py_TPFLAGS_UNICODE_SUBCLASS (W& W),
170

Py_tracefunc (C o] 3 A, 146

Py_True (C ¥5), 80

Py_tss_NEEDS_INIT (C "] 32 &), 148

Py_tss_t (CH| o E & A)), 148

Py_TYPE (C®l=2 &), 160

Py_UCS1 (CH o] 3 A, 85

Py_UCS2 (C Hl°]E & A, 85

Py_UCS4 (Cdl°o]E & A, 85

Py_UNBLOCK_THREADS (C Wl I &), 143

Py_UnbufferedStdioFlag (C ¥), 135

Py_UNICODE (C H| o] & & 4]), 85

Py_UNICODE_IS_HIGH_SURROGATE (C "l = &),
88

Py_UNICODE_IS_LOW_SURROGATE (C w3 &),
88

Py_UNICODE_IS_SURROGATE (C =2 2), 88

Py_UNICODE_ISALNUM (C <), 88

Py_UNICODE_ISALPHA (C), 88

Py_UNICODE_ISDECIMAL (C &%), 87

Py_UNICODE_ISDIGIT (C <), 88

Py_UNICODE_ISLINEBREAK (C &), 87

Py_UNICODE_ISLOWER (C <), 87

Py_UNICODE_ISNUMERIC (C &%), 88

Py_UNICODE_ISPRINTABLE (C &%), 88

Py_UNICODE_ISSPACE (C &), 87

Py_UNICODE_ISTITLE (C &), 87

Py_UNICODE_ISUPPER (C <), 87

Py_UNICODE_JOIN_SURROGATES (C "= &), 88

Py_UNICODE_TODECIMAL (C &%), 88

Py_UNICODE_TODIGIT (C &), 88

Py_UNICODE_TOLOWER (C SF), 88

Py_UNICODE_TONUMERIC (C g4, 88

Py_UNICODE_TOTITLE (C <), 88

Py_UNICODE_TOUPPER (C <), 88

Py_UNREACHABLE (CUW| 3 &), 4

Py_UNUSED (CHl 3 &), 5

Py_vaBuildvalue (C &%), 50

Py_VerboseFlag (C %), 135

Py_VISIT (C &%), 182

Py_XDECREF (C &), 21

Py_XDECREF (), 10

Py_XINCREF (C &%), 21
PyAnySet_Check (C &), 110
PyAnySet_CheckExact (C &%), 110
PyArg_Parse (C &), 48
PyArg_ParseTuple (C 3), 48
PyArg_ParseTupleAndKeywords (C), 48
PyArg_UnpackTuple (C &), 48
PyArg_ValidateKeywordArguments (C &),
48
PyArg_VaParse (C &), 48
PyArg_VaParseTupleAndKeywords (C &
48
PyASCIIObject (C o] ¥ & 4l), 85
PyAsyncMethods (C B ©] E] & 41), 180
PyAsyncMethods.am_aiter (C HH), 180
PyAsyncMethods.am_anext (C ®H H), 180
PyAsyncMethods.am_await (C @8 HS), 180
PyBool_Check (C &%), 80
PyBool_FromLong (C g<), 80
PyBUF_ANY_CONTIGUOUS (CWj3Z &), 69
PyBUF_C_CONTIGUOUS (C "} Z &), 69
PyBUF_CONTIG (C "= &), 70
PyBUF_CONTIG_RO (C U3 &), 70
PyBUF_F_CONTIGUOUS (C |32 &), 69
PyBUF_FORMAT (C "l 2 &), 68
PyBUF_FULL (C "j 3. &), 70
PyBUF_FULL_RO (C "= &), 70
PyBUF_INDIRECT (C Wl 2 &), 69
PyBUF_ND (C "} =2 &), 69
PyBUF_RECORDS (C "] =2 £), 70
PyBUF_RECORDS_RO (C Wi =2 &), 70
PyBUF_SIMPLE (C "] 3 &), 69
PyBUF_STRIDED (C "3 &), 70
PyBUF_STRIDED_RO (C "= &), 70
PyBUF_STRIDES (C "2 &), 69
PyBUF_WRITABLE (C W3 &), 68
PyBuffer_FillContiguousStrides (C &),
72
PyBuffer_FillInfo (C <), 72
PyBuffer_FromContiguous (C &), 72
PyBuffer_GetPointer (C &), 72
PyBuffer_IsContiguous (C &%), 71
PyBuffer_Release (C &%), 71
PyBuffer_SizeFromFormat (C &), 71
PyBuffer_ToContiguous (C &), 72
PyBufferProcs, 66
PyBufferProcs (C H o] ¥ &), 179
PyBufferProcs.bf_getbuffer (C Wy HI),
179
PyBufferProcs.bf_releasebuffer (C ¥ H
), 180
PyByteArray_ AS_STRING (C &), 85
PyByteArray_ AsString (C &), 84
PyByteArray_Check (C &%), 84
PyByteArray_CheckExact (C &), 84
PyByteArray_Concat (C g), 84
PyByteArray_FromObject (C &), 84

),

9]

221

The Python/C API, & x| B] A 3.7.16

PyByteArray_FromStringAndSize (C &),
84
PyByteArray_GET_SIZE (C &%), 85
PyByteArray_ Resize (C &), 84
PyByteArray_Size (CT<), 84
PyByteArray_Type (C ¥), 84
PyByteArrayObject (C Bl o] & 4]), 84
PyBytes_AS_STRING (C &), 83
PyBytes_AsString (C ¥), 83
PyBytes_AsStringAndSize (C &), 83
PyBytes_Check (C &), 82
PyBytes_CheckExact (C&4), 82
PyBytes_Concat (C &), 83
PyBytes_ConcatAndDel (C &%), 84
PyBytes_FromFormat (C &), 82
PyBytes_FromFormatV (C &), 83
PyBytes_FromObject (C &), 83
PyBytes_FromString (C &), 82
PyBytes_FromStringAndSize (C), 82
PyBytes_GET_SIZE (C), 83
PyBytes_Size (C b‘1'—,—) 83
PyBytes_Type (C ¥5), 82
PyBytesObject (C o] ¥ & 4]), 82
PyCallable_Check (C &%), 57
PyCallIter_Check (C &), 121
PyCallIlter_New (Cﬁ}’\) 121
PyCallIter_Type (C H), 121
PyCapsule (Ct|o]E] & 4]), 124
PyCapsule_CheckExact (C &%), 124
PyCapsule_Destructor (C Hl o] E 3 4], 124
PyCapsule_GetContext (C &), 125
PyCapsule_GetDestructor (C ¥), 125
PyCapsule_GetName (C &), 125
PyCapsule_GetPointer (C &%), 125
PyCapsule_Import (C &%), 125
PyCapsule_IsValid (C <), 125
PyCapsule_New (C $), 125
PyCapsule_SetContext (C &%), 125
PyCapsule_SetDestructor (C &), 125
PyCapsule_SetName (C &), 126
PyCapsule_SetPointer (C &), 126
PyCell_Check (C &), 113
PyCell_GET (C &), 113
PyCell_Get (C &), 113
PyCell_New (C &), 113
PyCell_SET (C &), 113
PyCell_Set (C&<), 113
PyCell_Type (C¥S), 113
PyCellObject (CHo]E &4, 113
PyCFunction (C H°o]E & A)), 161

PyCFunctionWithKeywords (C H o] E 8§ &),

161
PyCode_Check (C &), 114
PyCode_GetNumFree (C &), 114
PyCode_New (C &), 114
PyCode_NewEmpty (C &), 114
PyCode_Type (C M), 114

PyCodec_BackslashReplaceErrors (C &),
53
PyCodec_Decode (C &), 52
PyCodec_Decoder (C &), 53
PyCodec_Encode (C <), 52
PyCodec_Encoder (C &%), 53
PyCodec_IgnoreErrors (C &), 53
PyCodec_IncrementalDecoder (C ¥), 53
PyCodec_IncrementalEncoder (C ¥<), 53
PyCodec_KnownEncoding (C &), 52
PyCodec_LookupError (C &), 53
PyCodec_NameReplaceErrors (C &%), 53
PyCodec_Register (C &), 52
PyCodec_RegisterError (C &%), 53
PyCodec_ReplaceErrors (C &), 53
PyCodec_StreamReader (C &), 53
PyCodec_StreamWriter (C &%), 53
PyCodec_StrictErrors (C &), 53
PyCodec_XMLCharRefReplaceErrors (C &
), 53
PyCodeObject (C H o] & A, 114
PyCompactUnicodeObject (C Hl o] & & Al), 85
PyCompilerFlags (C Hl°]E &4, 19
PyComplex_AsCComplex (C &), 82
PyComplex_Check (C g), 81
PyComplex_CheckExact (C &), 81
PyComplex_FromCComplex (C), 81
PyComplex_FromDoubles (C &), 81
PyComplex_ImagAsDouble (C &), 82
PyComplex_RealAsDouble (C &), 82
PyComplex_Type (C ¥), 81
PyComplexObject (C Hl o] E & 4), 81
PyContext (C H| o] E] & 4]), 127
PyContext_CheckExact (C &%), 127
PyContext_ClearFreeList (C &), 128
PyContext_Copy (C &), 127
PyContext_CopyCurrent (C &), 127
PyContext_Enter (C &%), 127
PyContext_Exit (C &), 127
PyContext_New (C &), 127
PyContext_Type (CH), 127
PyContextToken (C H o] E & 4), 127
PyContextToken_CheckExact (C &%), 127
PyContextToken_Type (C HF), 127
PyContextVar (C H°]E & A]), 127
PyContextVar_CheckExact (C &), 127
PyContextVar_Get (C &), 128
PyContextVar_New (C &), 128
PyContextVar_Reset (C g4, 128
PyContextVar_Set (C &), 128
PyContextVar_Type (C), 127
PyCoro_CheckExact (C &), 126
PyCoro_New (C &), 126
PyCoro_Type (C), 126
PyCoroObject (C H o] 3 A, 126
PyDate_Check (C &), 128
PyDate_CheckExact (C &), 128
PyDate_FromDate (C &%), 129

222

3
e

The Python/C API, & x] 8] A 3.7.16

PyDate_FromTimestamp (C &), 131
PyDateTime_Check (C &%), 128
PyDateTime_CheckExact (C &), 128
PyDateTime DATE_GET_FOLD (C &<2), 130
PyDateTime_DATE_GET_HOUR (C &), 130
PyDateTime_DATE_GET_MICROSECOND (C é}
2, 130
PyDateTime DATE_GET_MINUTE (C &4<2), 130
PyDateTime DATE_GET_SECOND (C &), 130
PyDateTime_DELTA_GET_DAYS (C &), 130
PyDateTlme_DELTA_GET_MICROSECONDS(C?}

2~
), 130

PyDateTime_DELTA_GET_SECONDS (C &),
130

PyDateTime_FromDateAndTime (C &), 129
PyDateTime_FromDateAndTimeAndFold (C g
2,129
PyDateTime_FromTimestamp (C &%), 130
PyDateTime_GET_DAY (C &), 130
PyDateTime_GET_MONTH (C &), 130
PyDateTime_GET_YEAR (C &), 129
PyDateTime TIME_GET_FOLD (C &), 130
PyDateTime_TIME_GET_HOUR (C &%), 130
PyDateTime TIME_GET_MICROSECOND (C g
24,130
PyDateTime_TIME_GET_MINUTE (C &), 130
PyDateTime TIME_GET_SECOND (C <), 130
PyDateTime_TimeZone_UTC (C W), 128
PyDelta_Check (C &), 129
PyDelta_CheckExact (C g<), 129
PyDelta_FromDSU (C &%), 129
PyDescr_IsData (C &), 121
PyDescr_NewClassMethod (C &), 121
PyDescr_NewGetSet (C &), 121
PyDescr_NewMember (C &), 121
PyDescr_NewMethod (C &), 121
PyDescr_NewWrapper (C &), 121
PyDict_Check (C &), 107
PyDict_CheckExact (C <), 107
PyDict_Clear (C &), 107
PyDict_ClearFreeList (C &%), 109
PyDict_Contains (C &%), 107
PyDict_Copy (C &), 108
PyDict_DelItem (C &), 108
PyDict_DelItemString (C &), 108
PyDict_GetItem (C g<), 108
PyDict_GetItemString (C &), 108
PyDict_GetItemWithError (C <), 108
PyDict_TItems (C &), 108
PyDict_Keys (C &%), 108
PyDict_Merge (C &), 109
PyDict_MergeFromSeq2 (C <), 109
PyDict_New (C <), 107
PyDict_Next (C &%), 108
PyDict_SetDefault (C &%), 108
PyDict_SetItem (C ¥, 108
PyDict_SetItemString (C &), 108
PyDict_Size (C &), 108

PyDict_Type (C —’F—) 107
PyDict_Update (C &), 109
PyDict_Values (C &), 108
PyDictObject (CHl°]E & A, 107
PyDictProxy_New (C g), 107
PyDoc_STR(CHP|E &), 5
PyDoc_STRVAR (C Pl 3 &), 5
PyErr_BadArgument (C €), 24
PyErr_BadInternalCall (C &%), 26
PyErr_CheckSignals (C &), 28
PyErr_Clear (C &%), 23
PyErr_Clear (), 9,10
PyErr_ExceptionMatches (C &), 27
PyErr_ExceptionMatches (), 10
PyErr_Fetch (C &), 27
PyErr_Format (C &), 24
PyErr_FormatV (C &), 24
PyErr_GetExcInfo (C &%), 28
PyErr_GivenExceptionMatches (C &), 27
PyErr_NewException (C &), 29
PyErr_NewExceptionWithDoc (C ¥<), 29
PyErr_NoMemory (C), 24
PyErr_NormalizeException (C &), 28
PyErr_Occurred (C), 27
PyErr_Occurred(),9
PyErr_Print (C &), 24
PyErr_PrintEx (C), 23
PyErr_ResourceWarning (C &), 27
PyErr_Restore (C &), 27
PyErr_SetExcFromWindowsErr (C g<), 25
PyErr_SetExcFromWindowsErrWithFilename
(C 32, 25

PyErr_ SetEchromWindowsErrWithFilenameobject

C 3, 25

PyErr_SetEchromWindowsErrWithFilenameObjects

(C &), 25
PyErr_SetExcInfo (C z>‘]"\) 28
PyErr_SetFromErrno (C), 24
PyErr_SetFromErrnoWithFilename (C &),
25
PyErr_SetFromErrnoWithFilenameObject
(C 34, 24
PyErr_SetFromErrnoWithFilenameObjects
(C 34, 25
PyErr_SetFromWindowsErr (C &), 25
PyErr_SetFromWindowsErrWithFilename (C
o), 25
PyErr_SetImportError (C &), 25
PyErr_SetImportErrorSubclass (C &%), 26
PyErr_SetInterrupt (C &), 28
PyErr_SetNone (C &), 24
PyErr_SetObject (C &%), 24
PyErr_SetString (C &), 24
PyErr_SetString(),9
PyErr_SyntaxLocation (C &), 26
PyErr_SyntaxLocationEx (C &), 26
PyErr_SyntaxLocationObject (C ¥), 25
PyErr_WarnEx (C &), 26

9]

223

The Python/C API, & x| B] A 3.7.16

PyErr_WarnExplicit (C &), 26
PyErr_WarnExplicitObject (C &), 26
PyErr_WarnFormat (C &%), 27
PyErr_WriteUnraisable (C &), 24
PyEval_AcquirelLock (C &), 144
PyEval_AcquireThread (C &%), 144
PyEval_AcquireThread(), 141
PyEval_EvalCode (C &%), 18
PyEval_EvalCodeEx (C &), 18
PyEval_EvalFrame (C &), 18
PyEval_EvalFrameEx (C &), 18
PyEval_GetBuiltins (C &), 52
PyEval_GetFrame (C &%), 52
PyEval_GetFuncDesc (C g), 52
PyEval_GetFuncName (C g<), 52
PyEval_GetGlobals (C &), 52
PyEval_GetLocals (C &%), 52
PyEval_InitThreads (C &), 141
PyEval_InitThreads (), 136
PyEval_MergeCompilerFlags (C ¥), 18
PyEval_ReInitThreads (C &%), 142
PyEval_ReleaseLock (C &), 144
PyEval_ReleaseThread (C &), 144
PyEval_ReleaseThread(), 141
PyEval_RestoreThread (C &), 142
PyEval_RestoreThread (), 140, 141
PyEval_SaveThread (C &%), 141
PyEval_SaveThread (), 140, 141
PyEval_SetProfile (C &%), 147
PyEval_SetTrace (C &%), 147

PyEval_ThreadsInitialized (C &%), 141

PyExc_ArithmeticError, 31
PyExc_AssertionError, 31
PyExc_AttributeError, 31
PyExc_BaseException, 31
PyExc_BlockingIOError, 31
PyExc_BrokenPipeError, 31
PyExc_BufferError, 31
PyExc_BytesWarning, 33
PyExc_ChildProcessError, 31
PyExc_ConnectionAbortedError, 31
PyExc_ConnectionError, 31
PyExc_ConnectionRefusedError, 31
PyExc_ConnectionResetError, 31
PyExc_DeprecationWarning, 33
PyExc_EnvironmentError, 33
PyExc_EOFError, 31
PyExc_Exception, 31
PyExc_FileExistsError, 31
PyExc_FileNotFoundError, 31
PyExc_FloatingPointError, 31
PyExc_FutureWarning, 33
PyExc_GeneratorExit, 31
PyExc_ImportError, 31
PyExc_ImportWarning, 33
PyExc_IndentationError, 31
PyExc_IndexError, 31
PyExc_InterruptedError, 31

PyExc_IOError, 33
PyExc_IsADirectoryError, 31
PyExc_KeyboardInterrupt, 31
PyExc_KeyError, 31
PyExc_LookupError, 31
PyExc_MemoryError, 31
PyExc_ModuleNotFoundError, 31
PyExc_NameError, 31
PyExc_NotADirectoryError, 31
PyExc_NotImplementedError, 31
PyExc_OSError, 31
PyExc_OverflowError, 31
PyExc_PendingDeprecationWarning, 33
PyExc_PermissionError, 31
PyExc_ProcessLookupError, 31
PyExc_RecursionError, 31
PyExc_ReferenceError, 31
PyExc_ResourceWarning, 33
PyExc_RuntimeError, 31
PyExc_RuntimeWarning, 33
PyExc_StopAsyncIteration, 31
PyExc_StopIteration, 31
PyExc_SyntaxError, 31
PyExc_SyntaxWarning, 33
PyExc_SystemError, 31
PyExc_SystemExit, 31
PyExc_TabError, 31
PyExc_TimeoutError, 31
PyExc_TypeError, 31
PyExc_UnboundLocalError, 31
PyExc_UnicodeDecodeError, 31
PyExc_UnicodeEncodeError, 31
PyExc_UnicodeError, 31
PyExc_UnicodeTranslateError, 31
PyExc_UnicodeWarning, 33
PyExc_UserWarning, 33
PyExc_ValueError, 31
PyExc_Warning, 33
PyExc_WindowsError, 33
PyExc_ZeroDivisionError, 31
PyException_GetCause (C &), 29
PyException_GetContext (C &), 29
PyException_GetTraceback (C &%), 29
PyException_SetCause (C &), 29
PyException_SetContext (C &), 29
PyException_SetTraceback (C &%), 29
PyFile_FromFd (C &), 114
PyFile_GetLine (C <), 115
PyFile_WriteObject (C &), 115
PyFile_WriteString (C &), 115
PyFloat_AS_DOUBLE (C &%), 80
PyFloat_AsDouble (C &), 80
PyFloat_Check (C <), 80
PyFloat_CheckExact (C 3<), 80
PyFloat_ClearFreeList (C &%), 80
PyFloat_FromDouble (C <), 80
PyFloat_FromString (C &), 80
PyFloat_GetInfo (C &%), 80

224

3
e

The Python/C API, & x] 8] A 3.7.16

PyFloat_GetMax (C), 80
PyFloat_GetMin (C &), 80
PyFloat_Type (C ¥ 5), 80
PyFloatObject (C H| o] E] & 21), 80
PyFrame_GetLineNumber (C &), 52
PyFrameObject (C H| 9] i AN, 18
PyFrozenSet_Check (C &), 110
PyFrozenSet_CheckExact (C &), 110
PyFrozenSet_New (C &%), 110
PyFrozenSet_Type (C W), 110
PyFunction_Check (C &%), 111
PyFunction_GetAnnotations (C &%), 112
PyFunction_GetClosure (C &), 112
PyFunction_GetCode (C g<), 111
PyFunction_GetDefaults (C &), 112
PyFunction_GetGlobals (C &), 112
PyFunction_GetModule (Cc&d4), 112
PyFunction_New (C &), 111
PyFunction_NewWithQualName (C &), 111
PyFunction_SetAnnotations (C &%), 112
PyFunction_SetClosure (C &), 112
PyFunction_SetDefaults (C &), 112
PyFunction_Type (C HS), 111
PyFunctionObject (C o] A, 111
PyGen_Check (C &), 126
PyGen_CheckExact (C &), 126
PyGen_New (C 3), 126
PyGen_NewWithQualName (C &), 126
PyGen_Type (C), 126
PyGenObject (C to]E & A, 126
PyGetSetDef (C H| o E & A]), 163
PyGILState_Check (C &), 142
PyGILState_Ensure (C &), 142
PyGILState_GetThisThreadState (C &
142
PyGILState_Release (C <), 142
PyImport_AddModule (C <), 40
PyImport_AddModuleObject (C &%), 39
PyImport_AppendInittab (C &), 42
PyImport_Cleanup (C $), 41
PyImport_ExecCodeModule (C &), 40
PyImport_ExecCodeModuleEx (C &), 40
PyImport_ExecCodeModuleObject (C &
40
PyImport_ExecCodeModuleWithPathnames
(C &), 40
PyImport_ExtendInittab (C &), 42
PyImport_FrozenModules (C W), 41
PyImport_GetImporter (C "Q‘—T—) 41
PyImport_GetMagicNumber (C T, 40
PyImport_GetMagicTag (C &), 41
PyImport_GetModule (C &), 41
PyImport_GetModuleDict (C &), 41
PyImport_Import (C &%), 39
PyImport_ImportFrozenModule (C &), 41
PyImport_ImportFrozenModuleObject (C St
T), 41
PyImport_ImportModule (C &), 39

3H),

),

PyImport_ImportModuleEx (C &), 39
PyImport_ImportModuleLevel (C &%), 39
PyImport_ImportModuleLevelObject (C S
), 39
PyImport_ImportModuleNoBlock (C &), 39
PyImport_ReloadModule (C &%), 39
PyIndex_Check (C &), 62
PyInstanceMethod_Check (C &), 112
PyInstanceMethod_Function (C &%), 112
PyInstanceMethod_GET_FUNCTION (C St<),
112
PyInstanceMethod_New (C &%), 112
PyInstanceMethod_Type (C ¥ 5), 112
PyInterpreterState (CH| o ¥ &4), 141
PyInterpreterState_Clear (C <), 143
PyInterpreterState_Delete (C &), 143
PyInterpreterState_GetID (C"ﬂ”\) 143
PyInterpreterState_Head (C &), 147
PyInterpreterState_Main (C &), 147
PyInterpreterState_New (C &), 143
PyInterpreterState_Next (C ¥<), 147
PyInterpreterState_ThreadHead (C &),
147
PyIter_Check (C &%), 65
PyIter_Next (C &%), 65
PyList_Append (C g), 107
PyList_AsTuple (C &), 107
PyList_Check (C &%), 106
PyList_CheckExact (C &%), 106
PyList_ClearFreeList (C &%), 107
PyList_GET_ITEM (C &%), 106
PyList_GET_SIZE (C &%), 106
PyList_GetItem (C &), 106
PyList_GetItem(),8
PyList_GetSlice (C &%), 107
PyList_Insert (C &), 106
PyList_New (C &), 106
PyList_Reverse (C &), 107
PyList_SET_ITEM (C), 106
PyList_SetItem (C &), 106
PyList_SetItem(),6
PyList_SetSlice (C &%), 107
PyList_Size (C &5), 106
PyList_Sort (C &%), 107
PyList_Type (C), 106
PyListObject (C o] g & A, 106
PyLong_AsDouble (C ¥<), 79
PyLong_AsLong (C &), 78
PyLong_AsLongAndOverflow (CT4), 78
PyLong_AsLongLong (C &), 78
PyLong_AsLongLongAndOverflow (C &), 78
PyLong_AsSize_t (C <), 79
PyLong_AsSsize_t (C <), 79
PyLong_AsUnsignedLong (C &), 79
PyLong_AsUnsignedLongLong (C <), 79
PyLong_AsUnsignedLongLongMask (C &),
79
PyLong_AsUnsignedLongMask (C ¥<), 79

9]

225

The Python/C API, & x| B] A 3.7.16

PyLong_AsVoidPtr (C &), 79
PyLong_Check (C &), 77
PyLong_CheckExact (C &), 77
PyLong_FromDouble (C &), 77
PyLong_FromLong (C $<), 77
PyLong_FromLongLong (C g4, 77
PyLong_FromSize_t (C 3 —’F—) 77
PyLong_FromSsize_t (C &), 77
PyLong_FromString (C &), 78
PyLong_FromUnicode (C), 78
PyLong_FromUnicodeObject (C &%), 78
PyLong_FromUnsignedLong (C &), 77
PyLong_FromUnsignedLongLong (C &), 77
PyLong_FromVoidPtr (C &), 78
PyLong_Type (C HE), 77
PyLongObiject (C H o] ¥ &4, 77
PyMapping_Check (C “51'/\) 64
PyMapping_DelItem (C), 64
PyMapping_DelItemString (C ¥), 64
PyMapping_GetItemString (C), 64
PyMapping_HasKey (C ¥<), 64
PyMapping_ HasKeyStrlng (C &), 64
PyMapping_Items (C €), 65
PyMapping_Keys (C &), 65
PyMapping_Length (C g<), 64
PyMapping_SetItemString (C
PyMapping_Size (C &), 64
PyMapping_Values (C &%), 65
PyMappingMethods (C B o] ¥ & A, 178
PyMappingMethods.mp_ass_subscript (CH
H ®g), 178
PyMappingMethods.mp_length (C W8 H)
178
PyMappingMethods.mp_subscript (C ® 8 ¥
22).178
PyMarshal_ ReadLastObjectFromFile (C 3
), 43
PyMarshal_ReadLongFromFile (C $<), 42
PyMarshal_ReadObjectFromFile (C &), 43
PyMarshal_ReadObjectFromString (C &),
43
PyMarshal_ReadShortFromFile (C g<), 42
PyMarshal_ WriteLongToFile (C &), 42
PyMarshal WriteObjectToFile (C &), 42
PyMarshal_ WriteObjectToString (C &),
42
PyMem_Calloc (C &), 153
PyMem_Del (C St), 153
PYMEM_DOMAIN_MEM (C ¥ 4), 155
PYMEM_DOMAIN_OBJ (C ¥<), 156
PYMEM_DOMAIN_RAW (C %), 155
PyMem_Free (C g, 153
PyMem_GetAllocator (C &), 156
PyMem_Malloc (C &), 153
PyMem_New (C &), 153
PyMem_RawCalloc (C &%), 152
PyMem_RawFree (C &), 152
PyMem_RawMalloc (C &), 152

o), 64

PyMem_RawRealloc (C &%), 152
PyMem_Realloc (C &), 153
PyMem_Resize (C &), 153
PyMem_SetAllocator (C &), 156
PyMem_SetupDebugHooks (C &), 156
PyMemAllocatorDomain (C B o] & & A]), 155
PyMemAllocatorEx (C Gl o] &4l), 155
PyMemberDef (C B o] € & A]), 162
PyMemoryView_Check (C &), 123
PyMemoryView_FromBuffer (C $), 123
PyMemoryView_FromMemory (C &), 123
PyMemoryView_FromObject (C &), 123
PyMemoryView_GET_BASE (C &), 123
PyMemoryView_GET_BUFFER (C), 123
PyMemoryView_GetContiguous (C g<), 123
PyMethod_Check (C <), 113
PyMethod_ClearFreeList (C &), 113
PyMethod_Function (C &), 113
PyMethod_GET_FUNCTION (C &%), 113
PyMethod_GET_SELF (C &), 113
PyMethod_New (C &), 113
PyMethod_Self (C &), 113
PyMethod_Type (C ¥), 113
PyMethodDef (C o] ¥] & 4]), 161
PyModule_AddFunctions (C &%), 119
PyModule_AddIntConstant (C <), 120
PyModule_AddIntMacro (C &%), 120
PyModule_AddObject (C &), 119
PyModule_AddStringConstant (C &), 120
PyModule_AddStringMacro (C &), 120
PyModule_Check (C &), 115
PyModule_CheckExact (C &), 115
PyModule_Create (C 37'/\) 117
PyModule_Create2 (C &), 117
PyModule_ExecDef (C &), 119
PyModule_FromDefAndSpec (C &), 119
PyModule_FromDefAndSpec2 (C ¥<), 119
PyModule_GetDef (C &%), 116
PyModule_GetDict (C &%), 115
PyModule_GetFilename (C &), 116
PyModule_GetFilenameObject (C &), 116
PyModule_GetName (C &), 115
PyModule_GetNameObject (C &), 115
PyModule_GetState (C &), 115
PyModule_New (C &), 115
PyModule_NewObject (C &), 115
PyModule_SetDocString (C &), 119
PyModule_Type (C ¥), 115

PyModuleDef (C H o] E] & Al), 116
PyModuleDef_Init (C &%), 117
PyModuleDef_Slot (CH o] & A, 118
PyModuleDef_Slot.slot (C W W), 118
PyModuleDef_Slot.value (C®H W), 118
PyModuleDef.m_base (C W8 W), 116
PyModuleDef.m_clear (C W8 WS, 117
PyModuleDef.m_doc (C ¥ W), 116
PyModuleDef.m_free (CHH W), 117
PyModuleDef .m_methods (C ®l¥ W), 116

226

9]

The Python/C API, & x] 8] A 3.7.16

PyModuleDef.m_name (C ® 8 W), 116
PyModuleDef.m_reload (C | W), 117
PyModuleDef.m_size (CHH W), 116
PyModuleDef.m_slots (C ¥ W) 116

PyModuleDef.m_traverse (C W8 W), 117
PyNumber_Absolute (C &%), 60
PyNumber_add (C &%), 60
PyNumber_And (C &), 61
PyNumber_AsSsize_t (C), 62
PyNumber_Check (C &), 60
PyNumber_Divmod (C &%), 60
PyNumber_Float (C &), 62
PyNumber_FloorDivide (C &%), 60
PyNumber_Index (C &), 62
PyNumber_InPlaceAdd (C &), 61
PyNumber_InPlaceAnd (C &%), 61
PyNumber_InPlaceFloorDivide (C &), 61
PyNumber_InPlaceLshift (C &), 61
PyNumber_InPlaceMatrixMultiply (C &),
61
PyNumber_InPlaceMultiply (C &), 61
PyNumber_InPlaceOr (C '5]'/\) 62
PyNumber_InPlacePower (C &%), 61
PyNumber_InPlaceRemainder (C &%), 61
PyNumber_InPlaceRshift (C & —’r—) 61
PyNumber_InPlaceSubtract (C &), 61
PyNumber_InPlaceTrueDivide (C &), 61
PyNumber_InPlaceXor (C &%), 62
PyNumber_Invert (C &%), 60
PyNumber_Long (C), 62
PyNumber_Lshift (C &), 60
PyNumber_MatrixMultiply (C ¥<), 60
PyNumber_Multiply (C 3]'/\) 60
PyNumber_Negative (C &), 60
PyNumber_Or (C &), 61
PyNumber_Positive (C &%), 60
PyNumber_Power (C <), 60
PyNumber_Remainder (C &), 60
PyNumber_Rshift (C &), 61
PyNumber_Subtract (C &), 60
PyNumber_ToBase (C &), 62
PyNumber_TrueDivide (C &), 60
PyNumber_Xor (C &%), 61
PyNumberMethods (C Bl o] E &41), 177
PyObiject (C Hl o] ¥ & Al), 160
PyObject_AsCharBuffer (C &), 72
PyObject_ASCII (C =), 57
PyObject_AsFileDescriptor (C¥<), 114
PyObject_AsReadBuffer (C &), 72
PyObject_AsWriteBuffer (C &), 73
PyObject_Bytes (C &), 57
PyObject_Call (C <), 57
PyObject_CallFunction (C &), 58
PyObject_CallFunctionObjArgs (C &), 58
PyObject_CallMethod (C &), 58
PyObject_CallMethodObjArgs (C &), 58
PyObject_CallObject (C &), 58
PyObject_Calloc (C &), 154

PyObject_CheckBuffer (C &%), 71
PyObject_CheckReadBuffer (C &%), 72
PyObject_Del (C &%), 159
PyObject_DelAttr (C &), 56
PyObject_DelAttrString (C &), 56
PyObject_Delltem (C &%), 59
PyObject_Dir (C &), 59

PyObject_Free (C &), 154
PyObject_GC_Del (C &%), 181
PyObject_GC_New (C &), 181
PyObject_GC_NewVar (C &), 181
PyObject_GC_Resize (C &), 181
PyObject_GC_Track (C &), 181
PyObject_GC_UnTrack (C &), 181
PyObject_GenericGetAttr (C &), 5
PyObject_GenericGetDict (C <), 56
PyObject_GenericSetAttr (C “ﬂ"\), 56
PyObject_GenericSetDict (C &), 56
PyObject_GetArenaAllocator (C &), 157
PyObject_GetAttr (C &), 55
PyObject_GetAttrString (C &), 56
PyObject_GetBuffer (C g4, 71
PyObject_GetItem (C &), 59
PyObject_GetIter (C &), 59
PyObject_HasAttr (C &), 55
PyObject_HasAttrString (C
PyObject_Hash (C), 58
PyObject_HashNotImplemented (C &), 58
PyObject_HEAD (C "3 &), 160
PyObject_HEAD_INIT (CU|3 &), 160
PyObject_Init (C &), 159
PyObject_InitVar (C &), 159
PyObject_IsInstance (C &), 57
PyObject_IsSubclass (C &), 57
PyObject_IsTrue (C &%), 59
PyObject_Length (C &%), 59
PyObject_LengthHint (C &), 59
PyObject_Malloc (C &%), 154
PyObject_New (C &5), 159
PyObject_NewVar (C &%), 159
PyObject_Not (C &), 59
PyObject._ob_next (C W8 W), 165
PyObject._ob_prev (C ¥y W), 165
PyObject_Print (C &), 55
PyObject_Realloc (C &%), 154
PyObject_Repr (C &), 57
PyObject_RichCompare (C &), 56
PyObject_RichCompareBool (C), 56
PyObject_ SetArenaAllocator (C &), 157
PyObject_SetAttr (C &), 56
PyObject_SetAttrString (C ¥
PyObject_SetItem (C &), 59
PyObject_Size (C &), 59
PyObject_str (C &%), 57
PyObject_Type (C &), 59
PyObject_TypeCheck (C &), 59
PyObject_VAR_HEAD (C "] 2 £), 160
PyObjectArenalAllocator (C H| o] g & 4A)), 157

&), 55

Fr), 56

9]

227

The Python/C API, & x| B] A 3.7.16

PyObject.ob_refcnt (C ¥ 8 W), 165
PyObiject .ob_type (C Wy W), 165
PyOS_AfterFork (C &), 36
PyOS_AfterFork_Child (C &%), 3
PyOS_AfterFork_Parent (C), 35
PyOS_BeforeFork (C '51'/\) 35
PyOS_CheckStack (C &%), 36
PyOS_double_to strlng (Cc st
PyOS_FSPath (C &), 3
Py0OS_getsig (C 31'—’,\—) 36
PyOS_InputHook (C %), 16
PyOS_ReadlineFunctionPointer (C %), 16
PyOS_setsig (C &), 36
PyOS_snprintf (C), 50
PyOS_stricmp (C ¥), 51
PyOS_string_to_double (C F), 51
PyOS_strnicmp (C“ﬂ"\)
PyOS_vsnprintf (C &), 5()
PyParser_SimpleParseFile (C &), 17
PyParser_SimpleParseFileFlags (C %
17
PyParser_SimpleParseString (C &), 17

<),

PySequence_Fast_ITEMS (C &), 64
PySequence_GetItem (C), 63
PySequence_GetItem(), 8
PySequence_GetSlice (C &), 63
PySequence_Index (C ¥), 63
PySequence_InPlaceConcat (C'ﬂ"\) 62
PySequence_InPlaceRepeat (C &), 63
PySequence_ITEM (C), 64
PySequence_Length (C &), 62
PySequence_List (C &), 63
PySequence_Repeat (C &), 62
PySequence_SetItem (C), 63
PySequence_SetSlice (C &), 63
PySequence_Size (C &%), 62
PySequence_Tuple (C &), 63
PySequenceMethods (C Bl o] E & &1), 178
PySequenceMethods.sq_ass_item (C ®8 ¥
22).179
PySequenceMethods.sq_concat (C Wy
2,178
PySequenceMethods.sq_contains (C @ ¥ W
22,179

PyParser_SimpleParseStringFlags (C & PySequenceMethods.sq inplace_concat (C

), 17

A "), 179

PyParser_SimpleParseStringFlagsFilenamePySequenceMethods.sq inplace_repeat (C

(C&), 17
PyProperty_Type (C HF), 121
PyRun_AnyFile (C &), 15
PyRun_AnyFileEx (C g), 15
PyRun_AnyFileExFlags (C &), 15
PyRun_AnyFileFlags (C &), 15
PyRun_File (C &), 17
PyRun_FileEx (C &), 17
PyRun_FileExFlags (C &), 17
PyRun_FileFlags (Cg), 17
PyRun_InteractiveLoop (C &%), 16
PyRun_InteractiveLoopFlags (C <), 16
PyRun_InteractiveOne (C &%), 16
PyRun_InteractiveOneFlags (C &%), 16
PyRun_SimpleFile (C €), 16
PyRun_SimpleFileEx (C &), 16
PyRun_SimpleFileExFlags (C ¥), 16
PyRun_SimpleString (C &), 15
PyRun_SimpleStringFlags (C &), 16
PyRun_String (C &), 17
PyRun_StringFlags (C &), 17
PySeqgIter_Check (C &), 121
PySeqlter_New (C &), 121
PySeqglter_Type (C ‘Eﬂfy\—) 121
PySequence_Check (C & —’r—) 62
PySequence_Concat (C &), 62
PySequence_Contains (C &), 63
PySequence_Count (C 61’—’,\—) 63
PySequence_DelItem (C &), 63
PySequence_DelSlice (C g4, 63
PySequence_Fast (C &%), 63
PySequence_Fast_GET_ITEM (C &), 64
PySequence_Fast_GET_SIZE (C &), 64

A WA, 179
PySequenceMethods.sq item (C HW W),
178
PySequenceMethods.sq_length (C W4
22,178
PySequenceMethods.sq_repeat (C WH
2,178
PySet_Add (C &), 111
PySet_Check (C &), 110
PySet_Clear (C &), 111
PySet_ClearFreelList (C &%), 111
PySet_Contains (C &), 110
PySet_Discard (C &), 111
PySet_GET_SIZE (C &), 110
PySet_New (C g), 110
PySet_Pop (C &), 111
PySet_Size (C &), 110
PySet_Type (C HS), 110
PySetObject (CH o] & &Al), 110
PySignal_SetWakeupFd (C &%), 29
PySlice_AdjustIndices (C &), 123
PySlice_Check (C &), 122
PySlice_GetIndices (C <), 122
PySlice_ GetIndicesEx (C &), 122
PySlice_New (C &), 122
PySlice_Type (C M), 122
PySlice_Unpack (C), 122
PyState_AddModule (C &), 120
PyState_FindModule (C &), 120
PyState_RemoveModule (C &%), 120
PyStructSequence_Desc (CH o] & 4]), 105
PyStructSequence_Field (C o] g & 4], 105
PyStructSequence_GET_ITEM (C &), 105

228

9]

The Python/C API, & x] 8] A 3.7.16

PyStructSequence_GetItem (C &%), 105 PyThreadState (C H o] ¥ &4), 141
PyStructSequence_InitType (C &), 105 PyThreadState_Clear (C &), 143
PyStructSequence_InitType2 (C &), 105 PyThreadState_Delete (C &), 143
PyStructSequence_New (C &), 105 PyThreadState_Get (C &), 142
PyStructSequence_NewType (C ¥5), 105 PyThreadState_GetDict (C &), 143
PyStructSequence_SET_ITEM (C &k4r), 105 PyThreadState_New (C '5]'/\) 143
PyStructSequence_SetItem (C &%), 105 PyThreadState_Next (C g), 147
PyStructSequence_UnnamedField (C ¥ 4), PyThreadState_SetAsyncExc (C &), 144
105 PyThreadState_Swap (C g<), 142
PySys_AddWarnOption (C &), 37 PyTime_Check (C &), 128
PySys_AddWarnOptionUnicode (C &), 37 PyTime_CheckExact (C &%), 129
PySys_AddxOption (C g<), 38 PyTime_FromTime (C &%), 129
PySys_FormatStderr (C &), 38 PyTime_FromTimeAndFold (C &), 129
PySys_FormatStdout (C g<), 38 PyTimeZone_FromOffset (C &), 129
PySys_GetObject (C &%), 37 PyTimeZone_FromOffsetAndName (C T+),
PySys_GetXOptions (C), 38 129
PySys_ResetWarnOptions (C &), 37 PyTrace_C_CALL (C H), 146
PySys_SetArgv (C &), 139 PyTrace_C_EXCEPTION (C ¥H<), 146
PySys_SetArgv (), 136 PyTrace_C_RETURN (C <), 146
PySys_SetArgvEx (C 3F), 138 PyTrace_CALL (C W), 146
PySys_SetArgvEx (), 11,136 PyTrace_EXCEPTION (C ®<), 146
PySys_SetObject (C sk, 37 PyTrace_LINE (C ¥, 146
PySys_SetPath (C &), 37 PyTrace_OPCODE (C <), 147
PySys_WriteStderr (C &%), 38 PyTrace_RETURN (C W), 146
PySys_WriteStdout (C &), 37 PyTraceMalloc_Track (C &), 157
Python 3000 (3}o] A 3000), 194 PyTraceMalloc_Untrack (C &), 157
PYTHON¥*, 134 PyTuple_Check (C &), 103
PYTHONDEBUG, 134 PyTuple_CheckExact (C &), 103
PYTHONDONTWRITEBYTECODE, 134 PyTuple_ClearFreeList (C &%), 104
PYTHONDUMPREFS, 165 PyTuple GET_ITEM (C &), 104
PYTHONHASHSEED, 134 PyTuple GET_SIZE (C &), 104
PYTHONHOME, 11, 134, 139 PyTuple_GetItem (C <), 104
Pythonic (Z}o] #Mth2), 194 PyTuple_GetSlice (C &%), 104
PYTHONINSPECT, 135 PyTuple_New (C 3+), 104
PYTHONIOENCODING, 136 PyTuple_Pack (C 3<2), 104
PYTHONLEGACYWINDOWSEFSENCODING, 135 PyTuple_SET_ITEM c 6]')\) 104
PYTHONLEGACYWINDOWSSTDIO, 135 PyTuple_SetItem (C 6]'-/;\—) 104
PYTHONMALLOC, 152, 155, 156 PyTuple_SetItem(),6
PYTHONMALLOCSTATS, 152 PyTuple_Size (C &%), 104
PYTHONNOUSERSITE, 135 PyTuple_Type (C ¥), 103
PYTHONOPTIMIZE, 135 PyTupleObiject (C Hl o] 34, 103
PYTHONPATH, 11, 134 PyType_Check (C &), 75
PYTHONUNBUFFERED, 135 PyType_CheckExact (C &), 75
PYTHONVERBOSE, 135 PyType_ClearCache (C &%), 75
PyThread_create_key (C &%), 149 PyType_FromSpec (C &%), 76
PyThread_delete_key (C &), 149 PyType_FromSpecWithBases (C &%), 76
PyThread_delete_key_value (C &), 149 PyType_GenericAlloc (C &), 76
PyThread_get_key_value (C), 149 PyType_GenericNew (C &), 76
PyThread_ReInitTLS (C &), 149 PyType_GetFlags (C &4, 75
PyThread_set_key_value (C &), 149 PyType_GetSlot (C& —’r—) 76
PyThread_tss_alloc (C g<), 148 PyType_HasFeature (C &), 76
PyThread_tss_create (C &), 148 PyType_IS_GC (C &), 76
PyThread_tss_delete (C &), 148 PyType_IsSubtype (C &), 76
PyThread_tss_free (C &%), 148 PyType_Modified (C &%), 76
PyThread_tss_get (C &%), 148 PyType_Ready (C &), 76
PyThread_tss_is_created (C &), 148 PyType_Type (C HF), 75
PyThread_tss_set (C &), 148 PyTypeObiject (C o] g A, 75
PyThreadState, 139 PyTypeObject.tp_alloc (C#HW W), 174

A Q) 229

The Python/C API, & x| B] A 3.7.16

PyTypeObject.
PyTypeObject.

169

PyTypeObject.
PyTypeObject.
.tp_basicsize (C ®WH ¥

PyTypeObject
166
PyTypeObject

PyTypeObject.
PyTypeObject.
PyTypeObject.
PyTypeObject.

173
PyTypeObject
173

PyTypeObject.
.tp_dictoffset (C W8 WHS)

PyTypeObject
173
PyTypeObject

PyTypeObiject.
PyTypeObject.
PyTypeObject.
PyTypeObject.
.tp_getattr (C W W), 167

PyTypeObject

PyTypeObject.
.tp_getset (C ¥4 A

PyTypeObject

PyTypeObject.
PyTypeObject.
PyTypeObject.
.tp_itemsize (CHB ¥, 166

PyTypeObject

PyTypeObject.
PyTypeObject.
.tp_maxalloc (CHW HE

PyTypeObject

PyTypeObject.
PyTypeObject.
PyTypeObject.
PyTypeObject.
PyTypeObject.
PyTypeObject.
PyTypeObject.
PyTypeObject.
.tp_richcompare (C W H W

PyTypeObject
), 171
PyTypeObject

PyTypeObject.
.tp_str (CHWH W), 168

PyTypeObject

PyTypeObject.

176

PyTypeObject.
PyTypeObject.
.tp_weaklistoffset (C W H

PyTypeObject

.tp_setattr (CHW W

tp_allocs (CHH W4, 176
tp_as_buffer (C Wy WH

tp_base (C W ¥4, 173
tp_bases (C W8 WHH), 176

.tp_cache (C¥H W), 176

tp_call (C ¥ ¥M4), 168
tp_clear (CHH W), 171
tp_dealloc (CH8 W), 167
tp_descr_get (C WH ¥),

.tp_descr_set (C Wy W),

tp_dict (CH® W4, 173

.tp_doc (C ¥ W), 170

tp_finalize (CH WS, 176
tp_flags (C AW W), 169
tp_free (C¥WY ¥4, 175
tp_frees (C W W), 176

tp_getattro (CHH M), 168
), 173
tp_hash (C 9y ¥H4), 168
tp_init (C®W W), 174
tp_is_gc (CHW W), 175

tp_iter (C ¥ H), 172
tp_iternext (CHH W), 172
), 176
tp_members (C A8 W), 173
tp_methods (CHH W), 172
tp_mro (C ¥ ¥, 176
tp_name (C HH M), 166
tp_new (CHH HS), 175
tp_next (CHW¥ W), 177
tp_print (C Wy W), 167
tp_repr (C AW W), 167

S
), 167
tp_setattro (CHH HF), 169
tp_subclasses (C W HF),

tp_traverse (CHH HS), 170
tp_weaklist (CHH HS), 176

W), 172
PyTZInfo_Check (C &), 129
PyTZInfo_CheckExact (C &%), 129
PyUnicode_1BYTE_DATA (C &%), 86
PyUnicode_1BYTE_KIND (C Wj3 &), 86
PyUnicode_2BYTE_DATA (C &%), 86
PyUnicode_2BYTE_KIND (C "] 3 &), 86

PyUnicode_4BYTE_DATA (C &5), 86
PyUnicode_4BYTE_KIND (C Wl 3 2), 86
PyUnicode_AS_DATA (C &), 87
PyUnicode_AS_UNICODE (C &), 87
PyUnicode_AsASCIIString (C &), 100
PyUnicode AsCharmapStrlng(CﬁiA)IOI
PyUnicode_AsEncodedString (C &%), 95
PyUnicode_AsLatinilString (C &%), 100
PyUnicode_AsMBCSString (C &), 101
PyUnicode_AsRawUnicodeEscapeString (C
KP&)QQ
PyUnicode_AsUCS4 (C &), 91
PyUnicode_AsUCS4Copy (C &), 91
PyUnicode_AsUnicode (C &), 92
PyUnicode_AsUnicodeAndSize (C &), 92
PyUnicode_AsUnicodeCopy (C <), 92
PyUnicode_AsUnicodeEscapeString (C &
), 99
PyUnicode_AsUTF8 (C &%), 96
PyUnicode_AsUTF8AndSize (C &), 96
PyUnicode_AsUTF8String (C &), 96
PyUnicode AsUTFl6String(C5¢’O 98
PyUnicode_AsUTF32String (C &), 97
PyUnicode_AsWideChar (C &%), 95
PyUnicode_AsWideCharString (C &), 95
PyUnicode_Check (C &%), 86
PyUnicode_CheckExact (C &), 86
PyUnicode_ClearFreeList (C &), 87
PyUnicode_Compare (C &), 103
PyUnicode_CompareWithASCIIString (C S
22,103
PyUnicode_Concat (C &), 102
PyUnicode_ Contalns(CﬁiA)log
PyUnicode_CopyCharacters (C &), 91
PyUnicode_Count (C &%), 102
PyUnicode_DATA (C <), 86
PyUnicode_Decode (C &), 95
PyUnicode_DecodeASCII (C &%), 100
PyUnicode_DecodeCharmap (C &), 100
PyUnicode_DecodeFSDefault (C &), 94
PyUnicode_DecodeFSDefaultAndSize (C S
22), 94
PyUnicode_DecodeLatinl (C &), 100
PyUnicode_DecodeLocale (C &), 93

PyUnicode_DecodeLocaleAndSize (C &),
93

PyUnicode_DecodeMBCS (C &), 101

PyUnicode_DecodeMBCSStateful (C 3TH),
101

PyUnicode_DecodeRawUnicodeEscape (C &
), 99

PyUnicode_DecodeUnicodeEscape (C),
99

PyUnicode_DecodeUTF7 (C &%), 99
PyUnicode_DecodeUTF7Stateful (C &%), 99
PyUnicode_DecodeUTF8 (C &4), 96
PyUnicode_DecodeUTF8Stateful (C &), 96
PyUnicode_DecodeUTF16 (C <), 98

230

3
e

The Python/C API, & x] 8] A 3.7.16

PyUnicode_DecodeUTF16Stateful (C &),
98
PyUnicode_DecodeUTF32 (C &), 97
PyUnicode_DecodeUTF32Stateful (C
97
PyUnicode_Encode (C &%), 96
PyUnicode_EncodeASCII (C 3 —’F) 100
PyUnicode_EncodeCharmap (C &), 101
PyUnicode_EncodeCodePage (C &), 101
PyUnicode_EncodeFSDefault (C &), 94
PyUnicode_EncodeLatinl (C &), 100
PyUnicode_EncodeLocale (C &), 93
PyUnicode_EncodeMBCS (C &), 101
PyUnicode_EncodeRawUnicodeEscape (C S
22), 99
PyUnicode_EncodeUnicodeEscape (C &
99
PyUnicode_EncodeUTF7 (C &%), 99
PyUnicode_EncodeUTF8 (C &%), 96
PyUnicode_EncodeUTF16 (C &), 98
PyUnicode_EncodeUTF32 (C <), 97
PyUnicode_Fill (CKFA) 91
PyUnicode_Find (C g), 102
PyUnicode_FindChar (C g4, 102
PyUnicode_Format (C &%), 103
PyUnicode_FromEncodedObject (C <), 90
PyUnicode_FromFormat (C &%), 89
PyUnicode_FromFormatV (C &), 90
PyUnicode_FromKindAndData (C &), 89
PyUnicode_FromObject (C &%), 92
PyUnicode_FromString (C &), 89
PyUnicode_FromString (), 108
PyUnicode_FromStringAndSize (C &), 89
PyUnicode_FromUnicode (C &%), 92
PyUnicode_FromWideChar (C g<), 95
PyUnicode_FSConverter (C &), 93
PyUnicode_FSDecoder (C &), 94
PyUnicode_ GET_DATA_SIZE (C &), 87
PyUnicode_GET_LENGTH (C &%), 86
PyUnicode_GET_SIZE (C <), 87
PyUnicode_GetLength (C &), 91
PyUnicode_GetSize (C &), 92
PyUnicode_InternFromString (C &), 103
PyUnicode_InternInPlace (C &), 103
PyUnicode_Join (C &), 102
PyUnicode_KIND (C <), 86
PyUnicode_MAX_CHAR_VALUE (C &), 87
PyUnicode_New (C gt), 89
PyUnicode_READ (C &), 86
PyUnicode_READ_CHAR (C &), 86
PyUnicode_ReadChar (C g<), 91
PyUnicode_READY (C &), 86
PyUnicode_Replace (C &), 103
PyUnicode_RichCompare (C &), 103
PyUnicode_Split (C &%), 102
PyUnicode_Splitlines (C &), 102
PyUnicode_Substring (C &%), 91
PyUnicode_Tailmatch (C &%), 102

=1 A~
h),

<),

PyUnicode_TransformDecimalToASCII (CE

PN

), 92
PyUnicode_Translate (C &), 101, 102
PyUnicode_TranslateCharmap (C &), 101
PyUnicode_Type (C <), 85
PyUnicode_WCHAR_KIND (C = 2), 86
PyUnicode_WRITE (C &%), 86
PyUnicode_WriteChar (C &), 91
PyUnicodeDecodeError_Create (C), 30
PyUnicodeDecodeError_GetEncoding (C $F

S

<), 30
PyUnicodeDecodeError_GetEnd (C &), 30
PyUnicodeDecodeError_GetObject (C &),

30
PyUnicodeDecodeError_GetReason (C &),
30
PyUnicodeDecodeError_GetStart (C &),
30

PyUnicodeDecodeError_SetEnd (C &), 30
PyUnicodeDecodeError_SetReason (C &),
30
PyUnicodeDecodeError_SetStart (C &),
30
PyUnicodeEncodeError_Create (C), 30
PyUnicodeEncodeError_GetEncoding (C S
), 30
PyUnicodeEncodeError_GetEnd (C &), 30
PyUnicodeEncodeError_GetObject (C &),
30
PyUnicodeEncodeError_GetReason (C &),
30
PyUnicodeEncodeError_GetStart (C),
30
PyUnicodeEncodeError_SetEnd (C &), 30
PyUnicodeEncodeError_SetReason (C &),
30
PyUnicodeEncodeError_SetStart (C),
30
PyUnicodeObiject (C Bl] E &4l), 85
PyUnicodeTranslateError_Create (C &),

30
PyUnicodeTranslateError_GetEnd (C &),

30
PyUnicodeTranslateError_GetObject (CE

A~

), 30
PyUnicodeTranslateError_GetReason (C St

S

<), 30
PyUnicodeTranslateError_GetStart (C &

P

<), 30
PyUnicodeTranslateError_SetEnd (C &),

30
PyUnicodeTranslateError_SetReason (C St

S

<), 30
PyUnicodeTranslateError_SetStart (C &

), 30

PyVarObject (C Hl o] ¥ & 4]), 160
PyVarObject_HEAD_INIT (C"j=Z &), 161
PyVarObject.ob_size (C @ W), 166

9]

231

The Python/C API, & x| B] A 3.7.16

PyWeakref_Check (C &%), 124
PyWeakref_CheckProxy (C &%), 124
PyWeakref_CheckRef (C g<), 124
PyWeakref_ GET_OBJECT (C &), 124
PyWeakref_GetObject (C &), 124
PyWeakref_NewProxy (C &), 124
PyWeakref_NewRef (C &%), 124
PyWrapper_New (C 3), 121

Q

qualified name (B3}E o] &), 194

R

realloc (), 151
reference count (FZ 34), 195
regular package (AF 3} 7] A]), 195
repr

W& a2, 57, 167

S

sdterr

stdin stdout, 136
search

path, module, 11, 136138
sequence

24, 82
sequence (A] @), 195
set

AA, 110
set_all(),7
setswitchinterval () (in module sys), 139
SIGINT, 28
signal

25,28
single dispatch (A& Y] X]), 195
SIZE_MAX, 79
slice (£8}o]2), 195
special

method, 195
special method (E4 WA E), 195
statement (7)), 195
staticmethod

w7t g, 162
stderr (in module sys), 144
stdin

stdout sdterr, 136
stdin (in module sys), 144
stdout

sdterr, stdin, 136
stdout (in module sys), 144
strerror (), 24

string
PyObject_Str (C function), 57
sum_list(),8
sum_sequence (), 8,9
sys

25, 11,136,144
SystemError (built-in exception), 115, 116

T

text encoding (HIAE Q17 1), 195
text file (H2E 3}4), 195
tp_as_async (C ¥ W), 167
tp_as_mapping (C Wy W), 168
tp_as_number (C W W), 168
tp_as_sequence (C ¥y M), 168
traverseproc (C H o] ¥ & 4]), 182
triple-quoted string (& W% @ Ex}
o), 195

tuple

A, 103

W3 sk, 63, 107
type

AA, S, 75

w7 g4, 59
type (&), 195
type alias (3 olgdelol), 195
type hint (& 31 E), 196

U

ULONG_MAX, 79
universal newlines (FUBAd & d7), 196

\Y

variable annotation (W5 o] H|o]A), 196
version (in module sys), 138

virtual environment (7} 7)), 196
virtual machine (7} 7] A), 196
visitproc (CHo]E &4]), 182

X

w7 g
__import_ ,39
abs, 60
ascii, 57
bytes, 57
classmethod, 162
compile, 40
divmod, 60
float, 62
hash, 58, 168
int, 62
len, 59, 62, 64, 106, 108, 110
pow, 60, 61
repr, 57, 167
staticmethod, 162
tuple, 63, 107
type, 59

2E
_ _main_ , 11,136, 144
_thread, 141
builtins, 11, 136, 144
signal, 28
sys, 11, 136, 144

ot

Y
_T;}o] »

A

ok

Ak xﬂ e}

[e] pul

232

3
e

The Python/C API, & x] 8] A 3.7.16

PEP 1,194
PEP 7,3,5
PEP 238,19, 188
PEP 278,196
PEP 302,188,191
PEP 343,187
PEP 362,186,193
PEP 383,93
PEP 384,13
PEP 393,85,92
PEP 411,194
PEP 420, 188,192, 194
PEP 442,176
PEP 443,189
PEP 451,118, 188
PEP 484, 185,189, 196
PEP 489,118
PEP 492,186, 187
PEP 4098, 188
PEP 5109, 193
PEP 525,186
PEP 526, 185, 196
PEP 528,135
PEP 529,93, 135
PEP 539, 148
PEP 3116, 196
PEP 3119, 57
PEP 3121,116
PEP 3147,41
PEP 3151,32
PEP 3155, 194

27 M
exec_prefix, 4
PATH, 11
prefix, 4
PYTHON*, 134
PYTHONDEBUG, 134
PYTHONDONTWRITEBYTECODE, 134
PYTHONDUMPREF'S, 165
PYTHONHASHSEED, 134
PYTHONHOME, 11, 134, 139
PYTHONINSPECT, 135
PYTHONIOENCODING, 136
PYTHONLEGACYWINDOWSFSENCODING, 135
PYTHONLEGACYWINDOWSSTDIO, 135
PYTHONMALLOC, 152, 155, 156
PYTHONMALLOCSTATS, 152
PYTHONNOUSERSITE, 135
PYTHONOPTIMIZE, 135
PYTHONPATH, 11, 134
PYTHONUNBUFFERED, 135
PYTHONVERBOSE, 135

Z

Zen of Python (Fo]# A), 196

233

=
ro,

	Introduction
	Coding standards
	Include Files
	Useful macros
	Objects, Types and Reference Counts
	Exceptions
	Embedding Python
	Debugging Builds

	안정적인 응용 프로그램 바이너리 인터페이스
	The Very High Level Layer
	참조 횟수
	Exception Handling
	Printing and clearing
	Raising exceptions
	Issuing warnings
	Querying the error indicator
	Signal Handling
	Exception Classes
	Exception Objects
	Unicode Exception Objects
	Recursion Control
	Standard Exceptions
	Standard Warning Categories

	유틸리티
	Operating System Utilities
	System Functions
	Process Control
	모듈 임포트 하기
	데이터 마샬링 지원
	Parsing arguments and building values
	문자열 변환과 포매팅
	리플렉션
	코덱 등록소와 지원 함수

	추상 객체 계층
	Object Protocol
	숫자 프로토콜
	시퀀스 프로토콜
	매핑 프로토콜
	이터레이터 프로토콜
	버퍼 프로토콜
	낡은 버퍼 프로토콜

	구상 객체 계층
	기본 객체
	숫자 객체
	시퀀스 객체
	컨테이너 객체
	함수 객체
	기타 객체

	Initialization, Finalization, and Threads
	Before Python Initialization
	Global configuration variables
	Initializing and finalizing the interpreter
	Process-wide parameters
	Thread State and the Global Interpreter Lock
	Sub-interpreter support
	Asynchronous Notifications
	Profiling and Tracing
	Advanced Debugger Support
	Thread Local Storage Support

	Memory Management
	Overview
	Raw Memory Interface
	Memory Interface
	Object allocators
	Default Memory Allocators
	Customize Memory Allocators
	The pymalloc allocator
	tracemalloc C API
	Examples

	객체 구현 지원
	힙에 객체 할당하기
	Common Object Structures
	Type Objects
	Number Object Structures
	Mapping Object Structures
	Sequence Object Structures
	Buffer Object Structures
	Async Object Structures
	순환 가비지 수집 지원

	API와 ABI 버전 붙이기
	용어집
	이 설명서에 관하여
	파이썬 설명서의 공헌자들

	역사와 라이센스
	소프트웨어의 역사
	파이썬에 액세스하거나 사용하기 위한 이용 약관
	포함된 소프트웨어에 대한 라이센스 및 승인

	저작권
	색인

