
Python Setup and Usage
출시버전 3.6.15

Guido van Rossum
and the Python development team

9월 05, 2021

Contents

1 Command line and environment 3
1.1 Command line . 3
1.2 Environment variables . 8

2 Using Python on Unix platforms 13
2.1 Getting and installing the latest version of Python . 13
2.2 Building Python . 14
2.3 Python-related paths and files . 14
2.4 Miscellaneous . 15
2.5 Editors and IDEs . 15

3 Using Python on Windows 17
3.1 Installing Python . 17
3.2 Alternative bundles . 22
3.3 Configuring Python . 22
3.4 Python Launcher for Windows . 24
3.5 Finding modules . 27
3.6 Additional modules . 29
3.7 Compiling Python on Windows . 30
3.8 Embedded Distribution . 30
3.9 Other resources . 31

4 Using Python on a Macintosh 33
4.1 Getting and Installing MacPython . 33
4.2 The IDE . 34
4.3 Installing Additional Python Packages . 34
4.4 GUI Programming on the Mac . 35
4.5 Distributing Python Applications on the Mac . 35
4.6 Other Resources . 35

A 용어집 37

B About these documents 51
B.1 Contributors to the Python Documentation . 51

C History and License 53
C.1 History of the software . 53

i

C.2 Terms and conditions for accessing or otherwise using Python . 54
C.3 Licenses and Acknowledgements for Incorporated Software . 57

D 저작권 71

색인 73

ii

Python Setup and Usage,출시버전 3.6.15

도큐멘테이션의이부분은여러플랫폼에서파이썬환경을설정하고, 인터프리터를호출하며, 파이썬으로
작업하기더쉽게만드는것들에관한일반적인정보를다루는데할당되었습니다.

Contents 1

Python Setup and Usage,출시버전 3.6.15

2 Contents

CHAPTER1

Command line and environment

The CPython interpreter scans the command line and the environment for various settings.
CPython implementation detail: Other implementations〉 command line schemes may differ. See implementations for
further resources.

1.1 Command line

When invoking Python, you may specify any of these options:

python [-bBdEhiIOqsSuvVWx?] [-c command | -m module-name | script | -] [args]

The most common use case is, of course, a simple invocation of a script:

python myscript.py

1.1.1 Interface options

The interpreter interface resembles that of the UNIX shell, but provides some additional methods of invocation:
• When called with standard input connected to a tty device, it prompts for commands and executes them until an
EOF (an end-of-file character, you can produce that with Ctrl-D on UNIX or Ctrl-Z, Enter on Windows)
is read.

• When called with a file name argument or with a file as standard input, it reads and executes a script from that file.
• When called with a directory name argument, it reads and executes an appropriately named script from that direc-
tory.

• When called with -c command, it executes the Python statement(s) given as command. Here command may
contain multiple statements separated by newlines. Leading whitespace is significant in Python statements!

• When called with -m module-name, the given module is located on the Python module path and executed as a
script.

3

Python Setup and Usage,출시버전 3.6.15

In non-interactive mode, the entire input is parsed before it is executed.
An interface option terminates the list of options consumed by the interpreter, all consecutive arguments will end up in
sys.argv – note that the first element, subscript zero (sys.argv[0]), is a string reflecting the program’s source.
-c <command>

Execute the Python code in command. command can be one or more statements separated by newlines, with
significant leading whitespace as in normal module code.
If this option is given, the first element of sys.argv will be "-c" and the current directory will be added to the
start of sys.path (allowing modules in that directory to be imported as top level modules).

-m <module-name>
Search sys.path for the named module and execute its contents as the __main__ module.
Since the argument is amodule name, you must not give a file extension (.py). The module name should be a valid
absolute Python module name, but the implementation may not always enforce this (e.g. it may allow you to use a
name that includes a hyphen).
Package names (including namespace packages) are also permitted. When a package name is supplied instead
of a normal module, the interpreter will execute <pkg>.__main__ as the main module. This behaviour is
deliberately similar to the handling of directories and zipfiles that are passed to the interpreter as the script argument.

참고: This option cannot be used with built-in modules and extension modules written in C, since they do not
have Python module files. However, it can still be used for precompiled modules, even if the original source file is
not available.

If this option is given, the first element of sys.argv will be the full path to the module file (while the module file
is being located, the first element will be set to "-m"). As with the -c option, the current directory will be added
to the start of sys.path.
Many standard library modules contain code that is invoked on their execution as a script. An example is the
timeit module:

python -mtimeit -s 'setup here' 'benchmarked code here'
python -mtimeit -h # for details

더보기:

runpy.run_module() Equivalent functionality directly available to Python code

PEP 338 – Executing modules as scripts
버전 3.1에서변경: Supply the package name to run a __main__ submodule.
버전 3.4에서변경: namespace packages are also supported

-
Read commands from standard input (sys.stdin). If standard input is a terminal, -i is implied.
If this option is given, the first element of sys.argv will be "-" and the current directory will be added to the
start of sys.path.

<script>
Execute the Python code contained in script, which must be a filesystem path (absolute or relative) referring to
either a Python file, a directory containing a __main__.py file, or a zipfile containing a __main__.py file.
If this option is given, the first element of sys.argv will be the script name as given on the command line.

4 Chapter 1. Command line and environment

https://www.python.org/dev/peps/pep-0338

Python Setup and Usage,출시버전 3.6.15

If the script name refers directly to a Python file, the directory containing that file is added to the start of sys.
path, and the file is executed as the __main__ module.
If the script name refers to a directory or zipfile, the script name is added to the start of sys.path and the
__main__.py file in that location is executed as the __main__ module.
더보기:

runpy.run_path() Equivalent functionality directly available to Python code

If no interface option is given, -i is implied, sys.argv[0] is an empty string ("") and the current directory will be
added to the start of sys.path. Also, tab-completion and history editing is automatically enabled, if available on your
platform (see rlcompleter-config).
더보기:

tut-invoking
버전 3.4에서변경: Automatic enabling of tab-completion and history editing.

1.1.2 Generic options

-?
-h
--help

Print a short description of all command line options.
-V
--version

Print the Python version number and exit. Example output could be:

Python 3.6.0b2+

When given twice, print more information about the build, like:

Python 3.6.0b2+ (3.6:84a3c5003510+, Oct 26 2016, 02:33:55)
[GCC 6.2.0 20161005]

버전 3.6에추가: The -VV option.

1.1.3 Miscellaneous options

-b
Issue a warning when comparing bytes or bytearray with str or bytes with int. Issue an error when the
option is given twice (-bb).
버전 3.5에서변경: Affects comparisons of bytes with int.

-B
If given, Python won’ t try to write .pyc files on the import of source modules. See also
PYTHONDONTWRITEBYTECODE.

-d
Turn on parser debugging output (for wizards only, depending on compilation options). See also PYTHONDEBUG.

-E
Ignore all PYTHON* environment variables, e.g. PYTHONPATH and PYTHONHOME, that might be set.

1.1. Command line 5

Python Setup and Usage,출시버전 3.6.15

-i
When a script is passed as first argument or the -c option is used, enter interactive mode after executing the script
or the command, even when sys.stdin does not appear to be a terminal. The PYTHONSTARTUP file is not
read.
This can be useful to inspect global variables or a stack trace when a script raises an exception. See also
PYTHONINSPECT.

-I
Run Python in isolated mode. This also implies -E and -s. In isolated mode sys.path contains neither the script’
s directory nor the user’s site-packages directory. All PYTHON* environment variables are ignored, too. Further
restrictions may be imposed to prevent the user from injecting malicious code.
버전 3.4에추가.

-O
Remove assert statements and any code conditional on the value of __debug__. Augment the filename for com-
piled (bytecode) files by adding.opt-1 before the.pyc extension (seePEP 488). See alsoPYTHONOPTIMIZE.
버전 3.5에서변경: Modify .pyc filenames according to PEP 488.

-OO
Do -O and also discard docstrings. Augment the filename for compiled (bytecode) files by adding .opt-2 before
the .pyc extension (see PEP 488).
버전 3.5에서변경: Modify .pyc filenames according to PEP 488.

-q
Don’t display the copyright and version messages even in interactive mode.
버전 3.2에추가.

-R
Kept for compatibility. On Python 3.3 and greater, hash randomization is turned on by default.
On previous versions of Python, this option turns on hash randomization, so that the __hash__() values of str,
bytes and datetime are 《salted》 with an unpredictable random value. Although they remain constant within an
individual Python process, they are not predictable between repeated invocations of Python.
Hash randomization is intended to provide protection against a denial-of-service caused by carefully-chosen inputs
that exploit the worst case performance of a dict construction, O(n^2) complexity. See http://www.ocert.org/
advisories/ocert-2011-003.html for details.
PYTHONHASHSEED allows you to set a fixed value for the hash seed secret.
버전 3.2.3에추가.

-s
Don’t add the user site-packages directory to sys.path.
더보기:

PEP 370 – Per user site-packages directory
-S

Disable the import of the module site and the site-dependent manipulations of sys.path that it entails. Also
disable these manipulations if site is explicitly imported later (call site.main() if you want them to be
triggered).

-u
Force the binary layer of the stdout and stderr streams (which is available as their buffer attribute) to be un-
buffered. The text I/O layer will still be line-buffered if writing to the console, or block-buffered if redirected to a
non-interactive file.

6 Chapter 1. Command line and environment

https://www.python.org/dev/peps/pep-0488
https://www.python.org/dev/peps/pep-0488
https://www.python.org/dev/peps/pep-0488
https://www.python.org/dev/peps/pep-0488
http://www.ocert.org/advisories/ocert-2011-003.html
http://www.ocert.org/advisories/ocert-2011-003.html
https://www.python.org/dev/peps/pep-0370

Python Setup and Usage,출시버전 3.6.15

See also PYTHONUNBUFFERED.
-v

Print a message each time a module is initialized, showing the place (filename or built-in module) from which it is
loaded. When given twice (-vv), print a message for each file that is checked for when searching for a module.
Also provides information on module cleanup at exit. See also PYTHONVERBOSE.

-W arg
Warning control. Python’s warning machinery by default prints warning messages to sys.stderr. A typical
warning message has the following form:

file:line: category: message

By default, each warning is printed once for each source line where it occurs. This option controls how often
warnings are printed.
Multiple -W options may be given; when a warning matches more than one option, the action for the last matching
option is performed. Invalid -W options are ignored (though, a warning message is printed about invalid options
when the first warning is issued).
Warnings can also be controlled from within a Python program using the warnings module.
The simplest form of argument is one of the following action strings (or a unique abbreviation):
ignore Ignore all warnings.
default Explicitly request the default behavior (printing each warning once per source line).
all Print a warning each time it occurs (this may generate many messages if a warning is triggered repeatedly for

the same source line, such as inside a loop).
module Print each warning only the first time it occurs in each module.
once Print each warning only the first time it occurs in the program.
error Raise an exception instead of printing a warning message.
The full form of argument is:

action:message:category:module:line

Here, action is as explained above but only applies to messages that match the remaining fields. Empty fields match
all values; trailing empty fields may be omitted. Themessage field matches the start of the warning message printed;
this match is case-insensitive. The category field matches the warning category. This must be a class name; the
match tests whether the actual warning category of the message is a subclass of the specified warning category.
The full class name must be given. The module field matches the (fully-qualified) module name; this match is
case-sensitive. The line field matches the line number, where zero matches all line numbers and is thus equivalent
to an omitted line number.
더보기:

warnings – the warnings module
PEP 230 – Warning framework
PYTHONWARNINGS

-x
Skip the first line of the source, allowing use of non-Unix forms of #!cmd. This is intended for a DOS specific
hack only.

-X
Reserved for various implementation-specific options. CPython currently defines the following possible values:

1.1. Command line 7

https://www.python.org/dev/peps/pep-0230

Python Setup and Usage,출시버전 3.6.15

• -X faulthandler to enable faulthandler;
• -X showrefcount to output the total reference count and number of used memory blocks when the
program finishes or after each statement in the interactive interpreter. This only works on debug builds.

• -X tracemalloc to start tracing Python memory allocations using the tracemalloc module. By
default, only the most recent frame is stored in a traceback of a trace. Use -X tracemalloc=NFRAME
to start tracing with a traceback limit of NFRAME frames. See the tracemalloc.start() for more
information.

• -X showalloccount to output the total count of allocated objects for each type when the program fin-
ishes. This only works when Python was built with COUNT_ALLOCS defined.

It also allows passing arbitrary values and retrieving them through the sys._xoptions dictionary.
버전 3.2에서변경: The -X option was added.
버전 3.3에추가: The -X faulthandler option.
버전 3.4에추가: The -X showrefcount and -X tracemalloc options.
버전 3.6에추가: The -X showalloccount option.

1.1.4 Options you shouldn’t use

-J
Reserved for use by Jython.

1.2 Environment variables

These environment variables influence Python’s behavior, they are processed before the command-line switches other
than -E or -I. It is customary that command-line switches override environmental variables where there is a conflict.
PYTHONHOME

Change the location of the standard Python libraries. By default, the libraries are searched in prefix/lib/
pythonversion and exec_prefix/lib/pythonversion, where prefix and exec_prefix are
installation-dependent directories, both defaulting to /usr/local.
When PYTHONHOME is set to a single directory, its value replaces both prefix and exec_prefix. To specify
different values for these, set PYTHONHOME to prefix:exec_prefix.

PYTHONPATH
Augment the default search path for module files. The format is the same as the shell’s PATH: one or more directory
pathnames separated by os.pathsep (e.g. colons on Unix or semicolons onWindows). Non-existent directories
are silently ignored.
In addition to normal directories, individual PYTHONPATH entries may refer to zipfiles containing pure Python
modules (in either source or compiled form). Extension modules cannot be imported from zipfiles.
The default search path is installation dependent, but generally begins with prefix/lib/pythonversion
(see PYTHONHOME above). It is always appended to PYTHONPATH.
An additional directory will be inserted in the search path in front of PYTHONPATH as described above under
Interface options. The search path can be manipulated from within a Python program as the variable sys.path.

PYTHONSTARTUP
If this is the name of a readable file, the Python commands in that file are executed before the first prompt is
displayed in interactive mode. The file is executed in the same namespace where interactive commands are executed

8 Chapter 1. Command line and environment

http://www.jython.org/

Python Setup and Usage,출시버전 3.6.15

so that objects defined or imported in it can be used without qualification in the interactive session. You can also
change the prompts sys.ps1 and sys.ps2 and the hook sys.__interactivehook__ in this file.

PYTHONOPTIMIZE
If this is set to a non-empty string it is equivalent to specifying the -O option. If set to an integer, it is equivalent
to specifying -O multiple times.

PYTHONDEBUG
If this is set to a non-empty string it is equivalent to specifying the -d option. If set to an integer, it is equivalent
to specifying -d multiple times.

PYTHONINSPECT
If this is set to a non-empty string it is equivalent to specifying the -i option.
This variable can also be modified by Python code using os.environ to force inspect mode on program termi-
nation.

PYTHONUNBUFFERED
If this is set to a non-empty string it is equivalent to specifying the -u option.

PYTHONVERBOSE
If this is set to a non-empty string it is equivalent to specifying the -v option. If set to an integer, it is equivalent
to specifying -v multiple times.

PYTHONCASEOK
If this is set, Python ignores case in import statements. This only works on Windows and OS X.

PYTHONDONTWRITEBYTECODE
If this is set to a non-empty string, Python won’t try to write .pyc files on the import of source modules. This is
equivalent to specifying the -B option.

PYTHONHASHSEED
If this variable is not set or set to random, a random value is used to seed the hashes of str, bytes and datetime
objects.
If PYTHONHASHSEED is set to an integer value, it is used as a fixed seed for generating the hash() of the types
covered by the hash randomization.
Its purpose is to allow repeatable hashing, such as for selftests for the interpreter itself, or to allow a cluster of
python processes to share hash values.
The integer must be a decimal number in the range [0,4294967295]. Specifying the value 0 will disable hash
randomization.
버전 3.2.3에추가.

PYTHONIOENCODING
If this is set before running the interpreter, it overrides the encoding used for stdin/stdout/stderr, in the syntax
encodingname:errorhandler. Both the encodingname and the :errorhandler parts are optional
and have the same meaning as in str.encode().
For stderr, the :errorhandler part is ignored; the handler will always be 'backslashreplace'.
버전 3.4에서변경: The encodingname part is now optional.
버전 3.6에서 변경: On Windows, the encoding specified by this variable is ignored for interactive console
buffers unless PYTHONLEGACYWINDOWSSTDIO is also specified. Files and pipes redirected through the stan-
dard streams are not affected.

PYTHONNOUSERSITE
If this is set, Python won’t add the user site-packages directory to sys.path.
더보기:

1.2. Environment variables 9

Python Setup and Usage,출시버전 3.6.15

PEP 370 – Per user site-packages directory
PYTHONUSERBASE

Defines the user base directory, which is used to compute the path of the user site-packages
directory and Distutils installation paths for python setup.py install --user.
더보기:

PEP 370 – Per user site-packages directory
PYTHONEXECUTABLE

If this environment variable is set, sys.argv[0] will be set to its value instead of the value got through the C
runtime. Only works on Mac OS X.

PYTHONWARNINGS
This is equivalent to the -W option. If set to a comma separated string, it is equivalent to specifying -W multiple
times.

PYTHONFAULTHANDLER
If this environment variable is set to a non-empty string, faulthandler.enable() is called at startup: install
a handler for SIGSEGV, SIGFPE, SIGABRT, SIGBUS and SIGILL signals to dump the Python traceback. This
is equivalent to -X faulthandler option.
버전 3.3에추가.

PYTHONTRACEMALLOC
If this environment variable is set to a non-empty string, start tracing Python memory allocations using the
tracemalloc module. The value of the variable is the maximum number of frames stored in a traceback of
a trace. For example, PYTHONTRACEMALLOC=1 stores only the most recent frame. See the tracemalloc.
start() for more information.
버전 3.4에추가.

PYTHONASYNCIODEBUG
If this environment variable is set to a non-empty string, enable the debug mode of the asyncio module.
버전 3.4에추가.

PYTHONMALLOC
Set the Python memory allocators and/or install debug hooks.
Set the family of memory allocators used by Python:

• malloc: use the malloc() function of the C library for all domains (PYMEM_DOMAIN_RAW,
PYMEM_DOMAIN_MEM, PYMEM_DOMAIN_OBJ).

• pymalloc: use the pymalloc allocator for PYMEM_DOMAIN_MEM and PYMEM_DOMAIN_OBJ domains
and use the malloc() function for the PYMEM_DOMAIN_RAW domain.

Install debug hooks:
• debug: install debug hooks on top of the default memory allocator
• malloc_debug: same as malloc but also install debug hooks
• pymalloc_debug: same as pymalloc but also install debug hooks

When Python is compiled in release mode, the default is pymalloc. When compiled in debug mode, the default
is pymalloc_debug and the debug hooks are used automatically.
If Python is configured without pymalloc support, pymalloc and pymalloc_debug are not available, the
default is malloc in release mode and malloc_debug in debug mode.
See the PyMem_SetupDebugHooks() function for debug hooks on Python memory allocators.

10 Chapter 1. Command line and environment

https://www.python.org/dev/peps/pep-0370
https://www.python.org/dev/peps/pep-0370

Python Setup and Usage,출시버전 3.6.15

버전 3.6에추가.
PYTHONMALLOCSTATS

If set to a non-empty string, Python will print statistics of the pymalloc memory allocator every time a new pymalloc
object arena is created, and on shutdown.
This variable is ignored if the PYTHONMALLOC environment variable is used to force the malloc() allocator
of the C library, or if Python is configured without pymalloc support.
버전 3.6에서변경: This variable can now also be used on Python compiled in release mode. It now has no effect
if set to an empty string.

PYTHONLEGACYWINDOWSFSENCODING
If set to a non-empty string, the default filesystem encoding and errors mode will revert to their pre-3.6 values of
〈mbcs〉 and 〈replace〉, respectively. Otherwise, the new defaults 〈utf-8〉 and 〈surrogatepass〉 are used.
This may also be enabled at runtime with sys._enablelegacywindowsfsencoding().
Availability: Windows
버전 3.6에추가: See PEP 529 for more details.

PYTHONLEGACYWINDOWSSTDIO
If set to a non-empty string, does not use the new console reader and writer. This means that Unicode characters
will be encoded according to the active console code page, rather than using utf-8.
This variable is ignored if the standard streams are redirected (to files or pipes) rather than referring to console
buffers.
Availability: Windows
버전 3.6에추가.

1.2.1 Debug-mode variables

Setting these variables only has an effect in a debug build of Python, that is, if Python was configured with the
--with-pydebug build option.
PYTHONTHREADDEBUG

If set, Python will print threading debug info.
PYTHONDUMPREFS

If set, Python will dump objects and reference counts still alive after shutting down the interpreter.

1.2. Environment variables 11

https://www.python.org/dev/peps/pep-0529

Python Setup and Usage,출시버전 3.6.15

12 Chapter 1. Command line and environment

CHAPTER2

Using Python on Unix platforms

2.1 Getting and installing the latest version of Python

2.1.1 On Linux

Python comes preinstalled on most Linux distributions, and is available as a package on all others. However there are
certain features you might want to use that are not available on your distro’s package. You can easily compile the latest
version of Python from source.
In the event that Python doesn’t come preinstalled and isn’t in the repositories as well, you can easily make packages for
your own distro. Have a look at the following links:
더보기:

https://www.debian.org/doc/manuals/maint-guide/first.en.html for Debian users
https://en.opensuse.org/Portal:Packaging for OpenSuse users
https://docs.fedoraproject.org/en-US/Fedora_Draft_Documentation/0.1/html/RPM_Guide/ch-creating-rpms.html

for Fedora users
http://www.slackbook.org/html/package-management-making-packages.html for Slackware users

2.1.2 On FreeBSD and OpenBSD

• FreeBSD users, to add the package use:

pkg install python3

• OpenBSD users, to add the package use:

pkg_add -r python

pkg_add ftp://ftp.openbsd.org/pub/OpenBSD/4.2/packages/<insert your architecture␣
↪→here>/python-<version>.tgz (다음페이지에계속)

13

https://www.debian.org/doc/manuals/maint-guide/first.en.html
https://en.opensuse.org/Portal:Packaging
https://docs.fedoraproject.org/en-US/Fedora_Draft_Documentation/0.1/html/RPM_Guide/ch-creating-rpms.html
http://www.slackbook.org/html/package-management-making-packages.html

Python Setup and Usage,출시버전 3.6.15

(이전페이지에서계속)

For example i386 users get the 2.5.1 version of Python using:

pkg_add ftp://ftp.openbsd.org/pub/OpenBSD/4.2/packages/i386/python-2.5.1p2.tgz

2.1.3 On OpenSolaris

You can get Python from OpenCSW. Various versions of Python are available and can be installed with e.g. pkgutil
-i python27.

2.2 Building Python

If you want to compile CPython yourself, first thing you should do is get the source. You can download either the latest
release’s source or just grab a fresh clone. (If you want to contribute patches, you will need a clone.)
The build process consists in the usual

./configure
make
make install

invocations. Configuration options and caveats for specific Unix platforms are extensively documented in the
README.rst file in the root of the Python source tree.

경고: make install can overwrite or masquerade the python3 binary. make altinstall is therefore
recommended instead of make install since it only installs exec_prefix/bin/pythonversion.

2.3 Python-related paths and files

These are subject to difference depending on local installation conventions; prefix (${prefix}) andexec_prefix
(${exec_prefix}) are installation-dependent and should be interpreted as for GNU software; they may be the same.
For example, on most Linux systems, the default for both is /usr.

File/directory Meaning
exec_prefix/bin/python3 Recommended location of the interpreter.
prefix/lib/pythonversion,
exec_prefix/lib/pythonversion

Recommended locations of the directories containing the standard
modules.

prefix/include/pythonversion,
exec_prefix/include/
pythonversion

Recommended locations of the directories containing the include
files needed for developing Python extensions and embedding the in-
terpreter.

14 Chapter 2. Using Python on Unix platforms

https://www.opencsw.org/
https://www.python.org/downloads/source/
https://devguide.python.org/setup/#getting-the-source-code
https://github.com/python/cpython/tree/3.6/README.rst

Python Setup and Usage,출시버전 3.6.15

2.4 Miscellaneous

To easily use Python scripts on Unix, you need to make them executable, e.g. with

$ chmod +x script

and put an appropriate Shebang line at the top of the script. A good choice is usually

#!/usr/bin/env python3

which searches for the Python interpreter in the whole PATH. However, some Unices may not have the env command,
so you may need to hardcode /usr/bin/python3 as the interpreter path.
To use shell commands in your Python scripts, look at the subprocess module.

2.5 Editors and IDEs

There are a number of IDEs that support Python programming language. Many editors and IDEs provide syntax high-
lighting, debugging tools, and PEP 8 checks.
Please go to Python Editors and Integrated Development Environments for a comprehensive list.

2.4. Miscellaneous 15

https://www.python.org/dev/peps/pep-0008
https://wiki.python.org/moin/PythonEditors
https://wiki.python.org/moin/IntegratedDevelopmentEnvironments

Python Setup and Usage,출시버전 3.6.15

16 Chapter 2. Using Python on Unix platforms

CHAPTER3

Using Python on Windows

This document aims to give an overview of Windows-specific behaviour you should know about when using Python on
Microsoft Windows.

3.1 Installing Python

Unlike most Unix systems and services, Windows does not include a system supported installation of Python. To make
Python available, the CPython team has compiled Windows installers (MSI packages) with every release for many years.
These installers are primarily intended to add a per-user installation of Python, with the core interpreter and library being
used by a single user. The installer is also able to install for all users of a single machine, and a separate ZIP file is available
for application-local distributions.

3.1.1 Supported Versions

As specified in PEP 11, a Python release only supports a Windows platform while Microsoft considers the platform under
extended support. This means that Python 3.6 supports Windows Vista and newer. If you require Windows XP support
then please install Python 3.4.

3.1.2 Installation Steps

Four Python 3.6 installers are available for download - two each for the 32-bit and 64-bit versions of the interpreter. The
web installer is a small initial download, and it will automatically download the required components as necessary. The
offline installer includes the components necessary for a default installation and only requires an internet connection for
optional features. See Installing Without Downloading for other ways to avoid downloading during installation.
After starting the installer, one of two options may be selected:

17

https://www.python.org/download/releases/
https://www.python.org/dev/peps/pep-0011

Python Setup and Usage,출시버전 3.6.15

If you select 《Install Now》:
• You will not need to be an administrator (unless a system update for the C Runtime Library is required or you
install the Python Launcher for Windows for all users)

• Python will be installed into your user directory
• The Python Launcher for Windows will be installed according to the option at the bottom of the first page
• The standard library, test suite, launcher and pip will be installed
• If selected, the install directory will be added to your PATH
• Shortcuts will only be visible for the current user

Selecting《Customize installation》will allow you to select the features to install, the installation location and other options
or post-install actions. To install debugging symbols or binaries, you will need to use this option.
To perform an all-users installation, you should select 《Customize installation》. In this case:

• You may be required to provide administrative credentials or approval
• Python will be installed into the Program Files directory
• The Python Launcher for Windows will be installed into the Windows directory
• Optional features may be selected during installation
• The standard library can be pre-compiled to bytecode
• If selected, the install directory will be added to the system PATH

• Shortcuts are available for all users

18 Chapter 3. Using Python on Windows

Python Setup and Usage,출시버전 3.6.15

3.1.3 Removing the MAX_PATH Limitation

Windows historically has limited path lengths to 260 characters. This meant that paths longer than this would not resolve
and errors would result.
In the latest versions ofWindows, this limitation can be expanded to approximately 32,000 characters. Your administrator
will need to activate the 《Enable Win32 long paths》 group policy, or set the registry value HKEY_LOCAL_MACHINE\
SYSTEM\CurrentControlSet\Control\FileSystem@LongPathsEnabled to 1.
This allows the open() function, the os module and most other path functionality to accept and return paths longer
than 260 characters when using strings. (Use of bytes as paths is deprecated on Windows, and this feature is not available
when using bytes.)
After changing the above option, no further configuration is required.
버전 3.6에서변경: Support for long paths was enabled in Python.

3.1.4 Installing Without UI

All of the options available in the installer UI can also be specified from the command line, allowing scripted installers to
replicate an installation on many machines without user interaction. These options may also be set without suppressing
the UI in order to change some of the defaults.
To completely hide the installer UI and install Python silently, pass the /quiet option. To skip past the user interaction
but still display progress and errors, pass the/passive option. The/uninstall optionmay be passed to immediately
begin removing Python - no prompt will be displayed.
All other options are passed as name=value, where the value is usually 0 to disable a feature, 1 to enable a feature, or
a path. The full list of available options is shown below.

3.1. Installing Python 19

Python Setup and Usage,출시버전 3.6.15

Name Description Default
InstallAl-
lUsers

Perform a system-wide installation. 0

TargetDir The installation directory Selected based on InstallAllUsers
DefaultAl-
lUsersTarget-
Dir

The default installation directory for all-
user installs

%ProgramFiles%\Python X.Y or
%ProgramFiles(x86)%\Python X.Y

DefaultJust-
ForMeTarget-
Dir

The default install directory for just-
for-me installs

%LocalAppData%\Programs\PythonXY or
%LocalAppData%\Programs\PythonXY-32

DefaultCus-
tomTargetDir

The default custom install directory dis-
played in the UI

(empty)

AssociateFiles Create file associations if the launcher
is also installed.

1

CompileAll Compile all .py files to .pyc. 0
PrependPath Add install and Scripts directories to

PATH and .PY to PATHEXT
0

Shortcuts Create shortcuts for the interpreter,
documentation and IDLE if installed.

1

Include_doc Install Python manual 1
Include_debug Install debug binaries 0
Include_dev Install developer headers and libraries 1
Include_exe Install python.exe and related files 1
In-
clude_launcher

Install Python Launcher for Windows. 1

Install-
Launcher-
AllUsers

Installs Python Launcher for Windows
for all users.

1

Include_lib Install standard library and extension
modules

1

Include_pip Install bundled pip and setuptools 1
In-
clude_symbols

Install debugging symbols (*.pdb) 0

Include_tcltk Install Tcl/Tk support and IDLE 1
Include_test Install standard library test suite 1
Include_tools Install utility scripts 1
LauncherOnly Only installs the launcher. This will

override most other options.
0

SimpleInstall Disable most install UI 0
SimpleIn-
stallDescrip-
tion

A custom message to display when the
simplified install UI is used.

(empty)

For example, to silently install a default, system-wide Python installation, you could use the following command (from an
elevated command prompt):

python-3.6.0.exe /quiet InstallAllUsers=1 PrependPath=1 Include_test=0

To allow users to easily install a personal copy of Python without the test suite, you could provide a shortcut with the
following command. This will display a simplified initial page and disallow customization:

20 Chapter 3. Using Python on Windows

Python Setup and Usage,출시버전 3.6.15

python-3.6.0.exe InstallAllUsers=0 Include_launcher=0 Include_test=0
SimpleInstall=1 SimpleInstallDescription="Just for me, no test suite."

(Note that omitting the launcher also omits file associations, and is only recommended for per-user installs when there is
also a system-wide installation that included the launcher.)
The options listed above can also be provided in a file named unattend.xml alongside the executable. This file
specifies a list of options and values. When a value is provided as an attribute, it will be converted to a number if possible.
Values provided as element text are always left as strings. This example file sets the same options as the previous example:

<Options>
<Option Name="InstallAllUsers" Value="no" />
<Option Name="Include_launcher" Value="0" />
<Option Name="Include_test" Value="no" />
<Option Name="SimpleInstall" Value="yes" />
<Option Name="SimpleInstallDescription">Just for me, no test suite</Option>

</Options>

3.1.5 Installing Without Downloading

As some features of Python are not included in the initial installer download, selecting those features may require an
internet connection. To avoid this need, all possible components may be downloaded on-demand to create a complete
layout that will no longer require an internet connection regardless of the selected features. Note that this download may
be bigger than required, but where a large number of installations are going to be performed it is very useful to have a
locally cached copy.
Execute the following command from Command Prompt to download all possible required files. Remember to substitute
python-3.6.0.exe for the actual name of your installer, and to create layouts in their own directories to avoid
collisions between files with the same name.

python-3.6.0.exe /layout [optional target directory]

You may also specify the /quiet option to hide the progress display.

3.1.6 Modifying an install

Once Python has been installed, you can add or remove features through the Programs and Features tool that is part of
Windows. Select the Python entry and choose 《Uninstall/Change》 to open the installer in maintenance mode.
《Modify》 allows you to add or remove features by modifying the checkboxes - unchanged checkboxes will not install or
remove anything. Some options cannot be changed in this mode, such as the install directory; to modify these, you will
need to remove and then reinstall Python completely.
《Repair》will verify all the files that should be installed using the current settings and replace any that have been removed
or modified.
《Uninstall》 will remove Python entirely, with the exception of the Python Launcher for Windows, which has its own
entry in Programs and Features.

3.1. Installing Python 21

Python Setup and Usage,출시버전 3.6.15

3.1.7 Other Platforms

With ongoing development of Python, some platforms that used to be supported earlier are no longer supported (due to
the lack of users or developers). Check PEP 11 for details on all unsupported platforms.

• Windows CE is still supported.
• The Cygwin installer offers to install the Python interpreter as well (cf. Cygwin package source, Maintainer releases)

See Python for Windows for detailed information about platforms with pre-compiled installers.
더보기:

Python on XP 《7 Minutes to 《Hello World!》》 by Richard Dooling, 2006
Installing on Windows in 《Dive into Python: Python from novice to pro》 by Mark Pilgrim, 2004, ISBN 1-59059-

356-1
For Windows users in 《Installing Python》 in 《A Byte of Python》 by Swaroop C H, 2003

3.2 Alternative bundles

Besides the standard CPython distribution, there are modified packages including additional functionality. The following
is a list of popular versions and their key features:
ActivePython Installer with multi-platform compatibility, documentation, PyWin32
Anaconda Popular scientific modules (such as numpy, scipy and pandas) and the conda package manager.
Canopy A 《comprehensive Python analysis environment》 with editors and other development tools.
WinPython Windows-specific distribution with prebuilt scientific packages and tools for building packages.
Note that these packages may not include the latest versions of Python or other libraries, and are not maintained or
supported by the core Python team.

3.3 Configuring Python

To run Python conveniently from a command prompt, you might consider changing some default environment variables
in Windows. While the installer provides an option to configure the PATH and PATHEXT variables for you, this is only
reliable for a single, system-wide installation. If you regularly use multiple versions of Python, consider using the Python
Launcher for Windows.

3.3.1 Excursus: Setting environment variables

Windows allows environment variables to be configured permanently at both the User level and the System level, or
temporarily in a command prompt.
To temporarily set environment variables, open Command Prompt and use the set command:

C:\>set PATH=C:\Program Files\Python 3.6;%PATH%
C:\>set PYTHONPATH=%PYTHONPATH%;C:\My_python_lib
C:\>python

22 Chapter 3. Using Python on Windows

https://www.python.org/dev/peps/pep-0011
http://pythonce.sourceforge.net/
https://cygwin.com/
ftp://ftp.uni-erlangen.de/pub/pc/gnuwin32/cygwin/mirrors/cygnus/release/python
http://www.tishler.net/jason/software/python/
https://www.python.org/downloads/windows/
http://dooling.com/index.php/2006/03/14/python-on-xp-7-minutes-to-hello-world/
http://www.diveintopython.net/installing_python/windows.html
http://www.diveintopython.net/
http://python.swaroopch.com/installation.html#installation-on-windows
http://python.swaroopch.com/
https://www.activestate.com/activepython/
https://www.continuum.io/downloads/
https://www.enthought.com/products/canopy/
https://winpython.github.io/

Python Setup and Usage,출시버전 3.6.15

These changes will apply to any further commands executed in that console, and will be inherited by any applications
started from the console.
Including the variable name within percent signs will expand to the existing value, allowing you to add your new value at
either the start or the end. Modifying PATH by adding the directory containing python.exe to the start is a common
way to ensure the correct version of Python is launched.
To permanently modify the default environment variables, click Start and search for 〈edit environment variables〉, or
open System properties, Advanced system settings and click the Environment Variables button. In this dialog, you can add
or modify User and System variables. To change System variables, you need non-restricted access to your machine (i.e.
Administrator rights).

참고: Windows will concatenate User variables after System variables, which may cause unexpected results when
modifying PATH.
The PYTHONPATH variable is used by all versions of Python 2 and Python 3, so you should not permanently configure
this variable unless it only includes code that is compatible with all of your installed Python versions.

더보기:

https://support.microsoft.com/kb/100843 Environment variables in Windows NT
https://technet.microsoft.com/en-us/library/cc754250.aspx The SET command, for temporarily modifying environ-

ment variables
https://technet.microsoft.com/en-us/library/cc755104.aspx The SETX command, for permanently modifying envi-

ronment variables
https://support.microsoft.com/kb/310519 How To Manage Environment Variables in Windows XP
https://www.chem.gla.ac.uk/~louis/software/faq/q1.html Setting Environment variables, Louis J. Farrugia

3.3.2 Finding the Python executable

버전 3.5에서변경.
Besides using the automatically created start menu entry for the Python interpreter, you might want to start Python in the
command prompt. The installer has an option to set that up for you.
On the first page of the installer, an option labelled《Add Python to PATH》may be selected to have the installer add the
install location into the PATH. The location of the Scripts\ folder is also added. This allows you to type python to
run the interpreter, and pip for the package installer. Thus, you can also execute your scripts with command line options,
see Command line documentation.
If you don’t enable this option at install time, you can always re-run the installer, select Modify, and enable it. Alterna-
tively, you can manually modify the PATH using the directions in Excursus: Setting environment variables. You need to
set your PATH environment variable to include the directory of your Python installation, delimited by a semicolon from
other entries. An example variable could look like this (assuming the first two entries already existed):

C:\WINDOWS\system32;C:\WINDOWS;C:\Program Files\Python 3.6

3.3. Configuring Python 23

https://support.microsoft.com/kb/100843
https://technet.microsoft.com/en-us/library/cc754250.aspx
https://technet.microsoft.com/en-us/library/cc755104.aspx
https://support.microsoft.com/kb/310519
https://www.chem.gla.ac.uk/~louis/software/faq/q1.html

Python Setup and Usage,출시버전 3.6.15

3.4 Python Launcher for Windows

버전 3.3에추가.
The Python launcher for Windows is a utility which aids in locating and executing of different Python versions. It allows
scripts (or the command-line) to indicate a preference for a specific Python version, and will locate and execute that
version.
Unlike the PATH variable, the launcher will correctly select the most appropriate version of Python. It will prefer per-user
installations over system-wide ones, and orders by language version rather than using the most recently installed version.

3.4.1 Getting started

From the command-line

버전 3.6에서변경.
System-wide installations of Python 3.3 and later will put the launcher on your PATH. The launcher is compatible with
all available versions of Python, so it does not matter which version is installed. To check that the launcher is available,
execute the following command in Command Prompt:

py

You should find that the latest version of Python you have installed is started - it can be exited as normal, and any additional
command-line arguments specified will be sent directly to Python.
If you have multiple versions of Python installed (e.g., 2.7 and 3.6) you will have noticed that Python 3.6 was started - to
launch Python 2.7, try the command:

py -2.7

If you want the latest version of Python 2.x you have installed, try the command:

py -2

You should find the latest version of Python 2.x starts.
If you see the following error, you do not have the launcher installed:

'py' is not recognized as an internal or external command,
operable program or batch file.

Per-user installations of Python do not add the launcher to PATH unless the option was selected on installation.

Virtual environments

버전 3.5에추가.
If the launcher is run with no explicit Python version specification, and a virtual environment (created with the standard
library venv module or the external virtualenv tool) active, the launcher will run the virtual environment’s inter-
preter rather than the global one. To run the global interpreter, either deactivate the virtual environment, or explicitly
specify the global Python version.

24 Chapter 3. Using Python on Windows

Python Setup and Usage,출시버전 3.6.15

From a script

Let’s create a test Python script - create a file called hello.py with the following contents

#! python
import sys
sys.stdout.write("hello from Python %s\n" % (sys.version,))

From the directory in which hello.py lives, execute the command:

py hello.py

You should notice the version number of your latest Python 2.x installation is printed. Now try changing the first line to
be:

#! python3

Re-executing the command should now print the latest Python 3.x information. As with the above command-line exam-
ples, you can specify a more explicit version qualifier. Assuming you have Python 2.6 installed, try changing the first line
to #! python2.6 and you should find the 2.6 version information printed.
Note that unlike interactive use, a bare 《python》 will use the latest version of Python 2.x that you have installed. This is
for backward compatibility and for compatibility with Unix, where the command python typically refers to Python 2.

From file associations

The launcher should have been associated with Python files (i.e. .py, .pyw, .pyc files) when it was installed. This
means that when you double-click on one of these files from Windows explorer the launcher will be used, and therefore
you can use the same facilities described above to have the script specify the version which should be used.
The key benefit of this is that a single launcher can support multiple Python versions at the same time depending on the
contents of the first line.

3.4.2 Shebang Lines

If the first line of a script file starts with #!, it is known as a 《shebang》 line. Linux and other Unix like operating
systems have native support for such lines and they are commonly used on such systems to indicate how a script should
be executed. This launcher allows the same facilities to be used with Python scripts on Windows and the examples above
demonstrate their use.
To allow shebang lines in Python scripts to be portable between Unix and Windows, this launcher supports a number of
〈virtual〉 commands to specify which interpreter to use. The supported virtual commands are:

• /usr/bin/env python

• /usr/bin/python

• /usr/local/bin/python

• python

For example, if the first line of your script starts with

#! /usr/bin/python

The default Python will be located and used. As many Python scripts written to work on Unix will already have this
line, you should find these scripts can be used by the launcher without modification. If you are writing a new script on
Windows which you hope will be useful on Unix, you should use one of the shebang lines starting with /usr.

3.4. Python Launcher for Windows 25

Python Setup and Usage,출시버전 3.6.15

Any of the above virtual commands can be suffixed with an explicit version (either just the major version, or the major
and minor version) - for example /usr/bin/python2.7 - which will cause that specific version to be located and
used.
The /usr/bin/env form of shebang line has one further special property. Before looking for installed Python inter-
preters, this form will search the executable PATH for a Python executable. This corresponds to the behaviour of the
Unix env program, which performs a PATH search.

3.4.3 Arguments in shebang lines

The shebang lines can also specify additional options to be passed to the Python interpreter. For example, if you have a
shebang line:

#! /usr/bin/python -v

Then Python will be started with the -v option

3.4.4 Customization

Customization via INI files

Two .ini files will be searched by the launcher - py.ini in the current user’s 《application data》 directory (i.e. the
directory returned by calling the Windows function SHGetFolderPath with CSIDL_LOCAL_APPDATA) and py.
ini in the same directory as the launcher. The same .ini files are used for both the 〈console〉 version of the launcher
(i.e. py.exe) and for the 〈windows〉 version (i.e. pyw.exe).
Customization specified in the 《application directory》 will have precedence over the one next to the executable, so a
user, who may not have write access to the .ini file next to the launcher, can override commands in that global .ini file.

Customizing default Python versions

In some cases, a version qualifier can be included in a command to dictate which version of Python will be used by the
command. A version qualifier starts with a major version number and can optionally be followed by a period (〈.〉) and a
minor version specifier. If the minor qualifier is specified, it may optionally be followed by 《-32》 to indicate the 32-bit
implementation of that version be used.
For example, a shebang line of #!python has no version qualifier, while #!python3 has a version qualifier which
specifies only a major version.
If no version qualifiers are found in a command, the environment variable PY_PYTHON can be set to specify the default
version qualifier - the default value is《2》. Note this value could specify just a major version (e.g. 《2》) or a major.minor
qualifier (e.g. 《2.6》), or even major.minor-32.
If no minor version qualifiers are found, the environment variable PY_PYTHON{major} (where {major} is the
current major version qualifier as determined above) can be set to specify the full version. If no such option is found, the
launcher will enumerate the installed Python versions and use the latest minor release found for the major version, which
is likely, although not guaranteed, to be the most recently installed version in that family.
On 64-bit Windows with both 32-bit and 64-bit implementations of the same (major.minor) Python version installed, the
64-bit version will always be preferred. This will be true for both 32-bit and 64-bit implementations of the launcher -
a 32-bit launcher will prefer to execute a 64-bit Python installation of the specified version if available. This is so the
behavior of the launcher can be predicted knowing only what versions are installed on the PC and without regard to the
order in which they were installed (i.e., without knowing whether a 32 or 64-bit version of Python and corresponding

26 Chapter 3. Using Python on Windows

Python Setup and Usage,출시버전 3.6.15

launcher was installed last). As noted above, an optional 《-32》 suffix can be used on a version specifier to change this
behaviour.
Examples:

• If no relevant options are set, the commands python and python2will use the latest Python 2.x version installed
and the command python3 will use the latest Python 3.x installed.

• The commands python3.1 and python2.7will not consult any options at all as the versions are fully specified.
• If PY_PYTHON=3, the commands python and python3 will both use the latest installed Python 3 version.
• IfPY_PYTHON=3.1-32, the commandpythonwill use the 32-bit implementation of 3.1 whereas the command
python3 will use the latest installed Python (PY_PYTHON was not considered at all as a major version was
specified.)

• If PY_PYTHON=3 and PY_PYTHON3=3.1, the commands python and python3 will both use specifically
3.1

In addition to environment variables, the same settings can be configured in the .INI file used by the launcher. The section
in the INI file is called [defaults] and the key name will be the same as the environment variables without the leading
PY_ prefix (and note that the key names in the INI file are case insensitive.) The contents of an environment variable will
override things specified in the INI file.
For example:

• Setting PY_PYTHON=3.1 is equivalent to the INI file containing:

[defaults]
python=3.1

• Setting PY_PYTHON=3 and PY_PYTHON3=3.1 is equivalent to the INI file containing:

[defaults]
python=3
python3=3.1

3.4.5 Diagnostics

If an environment variable PYLAUNCH_DEBUG is set (to any value), the launcher will print diagnostic information to
stderr (i.e. to the console). While this information manages to be simultaneously verbose and terse, it should allow you
to see what versions of Python were located, why a particular version was chosen and the exact command-line used to
execute the target Python.

3.5 Finding modules

Python usually stores its library (and thereby your site-packages folder) in the installation directory. So, if you had
installed Python to C:\Python\, the default library would reside in C:\Python\Lib\ and third-party modules
should be stored in C:\Python\Lib\site-packages\.
To completely override sys.path, create a ._pth file with the same name as the DLL (python36._pth) or the
executable (python._pth) and specify one line for each path to add to sys.path. The file based on the DLL name
overrides the one based on the executable, which allows paths to be restricted for any program loading the runtime if
desired.
When the file exists, all registry and environment variables are ignored, isolatedmode is enabled, andsite is not imported
unless one line in the file specifies import site. Blank paths and lines starting with # are ignored. Each path may

3.5. Finding modules 27

Python Setup and Usage,출시버전 3.6.15

be absolute or relative to the location of the file. Import statements other than to site are not permitted, and arbitrary
code cannot be specified.
Note that .pth files (without leading underscore) will be processed normally by the site module.
When no ._pth file is found, this is how sys.path is populated on Windows:

• An empty entry is added at the start, which corresponds to the current directory.
• If the environment variable PYTHONPATH exists, as described in Environment variables, its entries are added next.
Note that on Windows, paths in this variable must be separated by semicolons, to distinguish them from the colon
used in drive identifiers (C:\ etc.).

• Additional 《application paths》 can be added in the registry as subkeys of \SOFTWARE\
Python\PythonCore{version}\PythonPath under both the HKEY_CURRENT_USER and
HKEY_LOCAL_MACHINE hives. Subkeys which have semicolon-delimited path strings as their default
value will cause each path to be added to sys.path. (Note that all known installers only use HKLM, so HKCU
is typically empty.)

• If the environment variable PYTHONHOME is set, it is assumed as 《Python Home》. Otherwise, the path of
the main Python executable is used to locate a 《landmark file》 (either Lib\os.py or pythonXY.zip) to
deduce the 《Python Home》. If a Python home is found, the relevant sub-directories added to sys.path (Lib,
plat-win, etc) are based on that folder. Otherwise, the core Python path is constructed from the PythonPath
stored in the registry.

• If the Python Home cannot be located, no PYTHONPATH is specified in the environment, and no registry entries
can be found, a default path with relative entries is used (e.g. .\Lib;.\plat-win, etc).

If a pyvenv.cfg file is found alongside the main executable or in the directory one level above the executable, the
following variations apply:

• If home is an absolute path and PYTHONHOME is not set, this path is used instead of the path to the main executable
when deducing the home location.

The end result of all this is:
• When running python.exe, or any other .exe in the main Python directory (either an installed version, or di-
rectly from the PCbuild directory), the core path is deduced, and the core paths in the registry are ignored. Other
《application paths》 in the registry are always read.

• When Python is hosted in another .exe (different directory, embedded via COM, etc), the 《Python Home》 will
not be deduced, so the core path from the registry is used. Other 《application paths》 in the registry are always
read.

• If Python can’t find its home and there are no registry value (frozen .exe, some very strange installation setup) you
get a path with some default, but relative, paths.

For those who want to bundle Python into their application or distribution, the following advice will prevent conflicts with
other installations:

• Include a ._pth file alongside your executable containing the directories to include. This will ignore paths listed
in the registry and environment variables, and also ignore site unless import site is listed.

• If you are loading python3.dll or python36.dll in your own executable, explicitly call Py_SetPath()
or (at least) Py_SetProgramName() before Py_Initialize().

• Clear and/or overwrite PYTHONPATH and set PYTHONHOME before launching python.exe from your appli-
cation.

• If you cannot use the previous suggestions (for example, you are a distribution that allows people to run python.
exe directly), ensure that the landmark file (Lib\os.py) exists in your install directory. (Note that it will not
be detected inside a ZIP file, but a correctly named ZIP file will be detected instead.)

28 Chapter 3. Using Python on Windows

Python Setup and Usage,출시버전 3.6.15

These will ensure that the files in a system-wide installation will not take precedence over the copy of the standard library
bundled with your application. Otherwise, your users may experience problems using your application. Note that the first
suggestion is the best, as the others may still be susceptible to non-standard paths in the registry and user site-packages.

버전 3.6에서변경:
• Adds ._pth file support and removes applocal option from pyvenv.cfg.
• Adds pythonXX.zip as a potential landmark when directly adjacent to the executable.

버전 3.6부터 폐지: Modules specified in the registry under Modules (not PythonPath) may be
imported by importlib.machinery.WindowsRegistryFinder. This finder is enabled on Win-
dows in 3.6.0 and earlier, but may need to be explicitly added to sys.meta_path in the future.

3.6 Additional modules

Even though Python aims to be portable among all platforms, there are features that are unique to Windows. A couple of
modules, both in the standard library and external, and snippets exist to use these features.
The Windows-specific standard modules are documented in mswin-specific-services.

3.6.1 PyWin32

The PyWin32 module by Mark Hammond is a collection of modules for advanced Windows-specific support. This
includes utilities for:

• Component Object Model (COM)
• Win32 API calls
• Registry
• Event log
• Microsoft Foundation Classes (MFC) user interfaces

PythonWin is a sample MFC application shipped with PyWin32. It is an embeddable IDE with a built-in debugger.
더보기:

Win32 How Do I…? by Tim Golden
Python and COM by David and Paul Boddie

3.6.2 cx_Freeze

cx_Freeze is a distutils extension (see extending-distutils) which wraps Python scripts into executable Windows
programs (*.exe files). When you have done this, you can distribute your application without requiring your users to
install Python.

3.6. Additional modules 29

https://pypi.org/project/pywin32
https://www.microsoft.com/com/
https://msdn.microsoft.com/en-us/library/fe1cf721%28VS.80%29.aspx
https://web.archive.org/web/20060524042422/https://www.python.org/windows/pythonwin/
http://timgolden.me.uk/python/win32_how_do_i.html
http://www.boddie.org.uk/python/COM.html
http://cx-freeze.sourceforge.net/

Python Setup and Usage,출시버전 3.6.15

3.6.3 WConio

Since Python’s advanced terminal handling layer, curses, is restricted to Unix-like systems, there is a library exclusive
to Windows as well: Windows Console I/O for Python.
WConio is a wrapper for Turbo-C’s CONIO.H, used to create text user interfaces.

3.7 Compiling Python on Windows

If you want to compile CPython yourself, first thing you should do is get the source. You can download either the latest
release’s source or just grab a fresh checkout.
The source tree contains a build solution and project files for Microsoft Visual Studio 2015, which is the compiler used
to build the official Python releases. These files are in the PCbuild directory.
Check PCbuild/readme.txt for general information on the build process.
For extension modules, consult building-on-windows.
더보기:

Python + Windows + distutils + SWIG + gcc MinGW or 《Creating Python extensions in C/C++ with SWIG and
compiling them with MinGW gcc under Windows》 or 《Installing Python extension with distutils and without
Microsoft Visual C++》 by Sébastien Sauvage, 2003

MingW – Python extensions by Trent Apted et al, 2007

3.8 Embedded Distribution

버전 3.5에추가.
The embedded distribution is a ZIP file containing a minimal Python environment. It is intended for acting as part of
another application, rather than being directly accessed by end-users.
When extracted, the embedded distribution is (almost) fully isolated from the user’ s system, including environment
variables, system registry settings, and installed packages. The standard library is included as pre-compiled and optimized
.pyc files in a ZIP, and python3.dll, python36.dll, python.exe and pythonw.exe are all provided.
Tcl/tk (including all dependants, such as Idle), pip and the Python documentation are not included.

참고: The embedded distribution does not include the Microsoft C Runtime and it is the responsibility of the application
installer to provide this. The runtime may have already been installed on a user’s system previously or automatically via
Windows Update, and can be detected by finding ucrtbase.dll in the system directory.

Third-party packages should be installed by the application installer alongside the embedded distribution. Using pip to
manage dependencies as for a regular Python installation is not supported with this distribution, though with some care it
may be possible to include and use pip for automatic updates. In general, third-party packages should be treated as part
of the application (《vendoring》) so that the developer can ensure compatibility with newer versions before providing
updates to users.
The two recommended use cases for this distribution are described below.

30 Chapter 3. Using Python on Windows

http://newcenturycomputers.net/projects/wconio.html
https://www.python.org/downloads/source/
https://devguide.python.org/setup/#getting-the-source-code
http://sebsauvage.net/python/mingw.html
http://oldwiki.mingw.org/index.php/Python%20extensions
https://www.microsoft.com/en-us/download/details.aspx?id=48145

Python Setup and Usage,출시버전 3.6.15

3.8.1 Python Application

An application written in Python does not necessarily require users to be aware of that fact. The embedded distribution
may be used in this case to include a private version of Python in an install package. Depending on how transparent it
should be (or conversely, how professional it should appear), there are two options.
Using a specialized executable as a launcher requires some coding, but provides the most transparent experience for
users. With a customized launcher, there are no obvious indications that the program is running on Python: icons can be
customized, company and version information can be specified, and file associations behave properly. In most cases, a
custom launcher should simply be able to call Py_Main with a hard-coded command line.
The simpler approach is to provide a batch file or generated shortcut that directly calls the python.exe or pythonw.
exe with the required command-line arguments. In this case, the application will appear to be Python and not its actual
name, and users may have trouble distinguishing it from other running Python processes or file associations.
With the latter approach, packages should be installed as directories alongside the Python executable to ensure they are
available on the path. With the specialized launcher, packages can be located in other locations as there is an opportunity
to specify the search path before launching the application.

3.8.2 Embedding Python

Applications written in native code often require some form of scripting language, and the embedded Python distribution
can be used for this purpose. In general, the majority of the application is in native code, and some part will either invoke
python.exe or directly use python3.dll. For either case, extracting the embedded distribution to a subdirectory
of the application installation is sufficient to provide a loadable Python interpreter.
As with the application use, packages can be installed to any location as there is an opportunity to specify search paths
before initializing the interpreter. Otherwise, there is no fundamental differences between using the embedded distribution
and a regular installation.

3.9 Other resources

더보기:

Python Programming On Win32 《Help for Windows Programmers》 by Mark Hammond and Andy Robinson, O’
Reilly Media, 2000, ISBN 1-56592-621-8

A Python for Windows Tutorial by Amanda Birmingham, 2004
PEP 397 - Python launcher for Windows The proposal for the launcher to be included in the Python distribution.

3.9. Other resources 31

http://shop.oreilly.com/product/9781565926219.do
http://www.imladris.com/Scripts/PythonForWindows.html
https://www.python.org/dev/peps/pep-0397

Python Setup and Usage,출시버전 3.6.15

32 Chapter 3. Using Python on Windows

CHAPTER4

Using Python on a Macintosh

Author Bob Savage <bobsavage@mac.com>
Python on a Macintosh running Mac OS X is in principle very similar to Python on any other Unix platform, but there
are a number of additional features such as the IDE and the Package Manager that are worth pointing out.

4.1 Getting and Installing MacPython

Mac OS X 10.8 comes with Python 2.7 pre-installed by Apple. If you wish, you are invited to install the most recent
version of Python 3 from the Python website (https://www.python.org). A current 《universal binary》 build of Python,
which runs natively on the Mac’s new Intel and legacy PPC CPU’s, is available there.
What you get after installing is a number of things:

• A MacPython 3.6 folder in your Applications folder. In here you find IDLE, the development environ-
ment that is a standard part of official Python distributions; PythonLauncher, which handles double-clicking Python
scripts from the Finder; and the 《Build Applet》 tool, which allows you to package Python scripts as standalone
applications on your system.

• A framework /Library/Frameworks/Python.framework, which includes the Python executable and
libraries. The installer adds this location to your shell path. To uninstall MacPython, you can simply remove these
three things. A symlink to the Python executable is placed in /usr/local/bin/.

The Apple-provided build of Python is installed in /System/Library/Frameworks/Python.framework and
/usr/bin/python, respectively. You should never modify or delete these, as they are Apple-controlled and are used
by Apple- or third-party software. Remember that if you choose to install a newer Python version from python.org, you
will have two different but functional Python installations on your computer, so it will be important that your paths and
usages are consistent with what you want to do.
IDLE includes a help menu that allows you to access Python documentation. If you are completely new to Python you
should start reading the tutorial introduction in that document.
If you are familiar with Python on other Unix platforms you should read the section on running Python scripts from the
Unix shell.

33

mailto:bobsavage@mac.com
https://www.python.org

Python Setup and Usage,출시버전 3.6.15

4.1.1 How to run a Python script

Your best way to get started with Python on Mac OS X is through the IDLE integrated development environment, see
section The IDE and use the Help menu when the IDE is running.
If you want to run Python scripts from the Terminal window command line or from the Finder you first need an editor
to create your script. Mac OS X comes with a number of standard Unix command line editors, vim and emacs among
them. If you want a more Mac-like editor, BBEdit or TextWrangler from Bare Bones Software (see http://www.
barebones.com/products/bbedit/index.html) are good choices, as is TextMate (see https://macromates.com/). Other
editors include Gvim (http://macvim.org) and Aquamacs (http://aquamacs.org/).
To run your script from the Terminal window you must make sure that /usr/local/bin is in your shell search path.
To run your script from the Finder you have two options:

• Drag it to PythonLauncher
• Select PythonLauncher as the default application to open your script (or any .py script) through the finder Info
window and double-click it. PythonLauncher has various preferences to control how your script is launched.
Option-dragging allows you to change these for one invocation, or use its Preferences menu to change things glob-
ally.

4.1.2 Running scripts with a GUI

With older versions of Python, there is one Mac OS X quirk that you need to be aware of: programs that talk to the Aqua
window manager (in other words, anything that has a GUI) need to be run in a special way. Use pythonw instead of
python to start such scripts.
With Python 3.6, you can use either python or pythonw.

4.1.3 Configuration

Python on OS X honors all standard Unix environment variables such as PYTHONPATH, but setting these variables for
programs started from the Finder is non-standard as the Finder does not read your .profile or .cshrc at startup. You
need to create a file ~/.MacOSX/environment.plist. See Apple’s Technical Document QA1067 for details.
For more information on installation Python packages in MacPython, see section Installing Additional Python Packages.

4.2 The IDE

MacPython ships with the standard IDLE development environment. A good introduction to using IDLE can be found at
https://hkn.eecs.berkeley.edu/~dyoo/python/idle_intro/index.html.

4.3 Installing Additional Python Packages

There are several methods to install additional Python packages:
• Packages can be installed via the standard Python distutils mode (python setup.py install).
• Many packages can also be installed via the setuptools extension or pip wrapper, see https://pip.pypa.io/.

34 Chapter 4. Using Python on a Macintosh

http://www.barebones.com/products/bbedit/index.html
http://www.barebones.com/products/bbedit/index.html
https://macromates.com/
http://macvim.org
http://aquamacs.org/
https://hkn.eecs.berkeley.edu/~dyoo/python/idle_intro/index.html
https://pip.pypa.io/

Python Setup and Usage,출시버전 3.6.15

4.4 GUI Programming on the Mac

There are several options for building GUI applications on the Mac with Python.
PyObjC is a Python binding to Apple’s Objective-C/Cocoa framework, which is the foundation of most modern Mac
development. Information on PyObjC is available from https://pythonhosted.org/pyobjc/.
The standard Python GUI toolkit is tkinter, based on the cross-platform Tk toolkit (https://www.tcl.tk). An Aqua-
native version of Tk is bundled with OS X by Apple, and the latest version can be downloaded and installed from https:
//www.activestate.com; it can also be built from source.
wxPython is another popular cross-platform GUI toolkit that runs natively on Mac OS X. Packages and documentation
are available from http://www.wxpython.org.
PyQt is another popular cross-platform GUI toolkit that runs natively on Mac OS X. More information can be found at
https://riverbankcomputing.com/software/pyqt/intro.

4.5 Distributing Python Applications on the Mac

The《Build Applet》 tool that is placed in theMacPython 3.6 folder is fine for packaging small Python scripts on your own
machine to run as a standard Mac application. This tool, however, is not robust enough to distribute Python applications
to other users.
The standard tool for deploying standalone Python applications on the Mac is py2app. More information on installing
and using py2app can be found at http://undefined.org/python/#py2app.

4.6 Other Resources

The MacPython mailing list is an excellent support resource for Python users and developers on the Mac:
https://www.python.org/community/sigs/current/pythonmac-sig/
Another useful resource is the MacPython wiki:
https://wiki.python.org/moin/MacPython

4.4. GUI Programming on the Mac 35

https://pythonhosted.org/pyobjc/
https://www.tcl.tk
https://www.activestate.com
https://www.activestate.com
http://www.wxpython.org
https://riverbankcomputing.com/software/pyqt/intro
http://undefined.org/python/#py2app
https://www.python.org/community/sigs/current/pythonmac-sig/
https://wiki.python.org/moin/MacPython

Python Setup and Usage,출시버전 3.6.15

36 Chapter 4. Using Python on a Macintosh

APPENDIXA

용어집

>>> 대화형셸의기본파이썬프롬프트. 인터프리터에서대화형으로실행될수있는코드예에서자주볼수
있다.

... The default Python prompt of the interactive shell when entering code for an indented code block, when within
a pair of matching left and right delimiters (parentheses, square brackets, curly braces or triple quotes), or after
specifying a decorator.

2to3 파이썬 2.x 코드를 파이썬 3.x 코드로 변환하려고 시도하는 도구인데, 소스를 파싱하고 파스 트리를
탐색해서감지할수있는대부분의비호환성을다룬다.

2to3는표준라이브러리에서 lib2to3로제공된다; 독립적으로실행할수있는스크립트는 Tools/
scripts/2to3로제공된다. 2to3-reference를보세요.

abstract base class (추상베이스클래스) 추상베이스클래스는hasattr()같은다른테크닉들이불편하거나
미묘하게잘못된 (예를들어,매직메서드)경우,인터페이스를정의하는방법을제공함으로써덕타이핑
을보완한다. ABC는가상서브클래스를도입하는데,클래스를계승하지않으면서도isinstance()와
issubclass()에의해감지될수있는클래스들이다; abc모듈도큐멘테이션을보세요. 파이썬에는
많은내장 ABC들이따라오는데다음과같은것들이있다: 자료구조 (collections.abc모듈에서),
숫자 (numbers모듈에서),스트림 (io모듈에서),임포트파인더와로더 (importlib.abc모듈에서).
abc모듈을사용해서자신만의 ABC를만들수도있다.

annotation A label associated with a variable, a class attribute or a function parameter or return value, used by convention
as a type hint.
Annotations of local variables cannot be accessed at runtime, but annotations of global variables, class attributes,
and functions are stored in the __annotations__ special attribute of modules, classes, and functions, respec-
tively.
See variable annotation, function annotation, PEP 484 and PEP 526, which describe this functionality.

argument (인자) 함수를호출할때함수 (또는메서드)로전달되는값. 두종류의인자가있다:
• 키워드인자 (keyword argument): 함수호출때식별자가앞에붙은인자 (예를들어, name=)또는 **
를앞에붙인딕셔너리로전달되는인자. 예를들어, 다음과같은 complex()호출에서 3과 5는
모두키워드인자다:

37

https://www.python.org/dev/peps/pep-0484
https://www.python.org/dev/peps/pep-0526

Python Setup and Usage,출시버전 3.6.15

complex(real=3, imag=5)
complex(**{'real': 3, 'imag': 5})

• 위치인자 (positional argument): 키워드인자가아닌인자. 위치인자들은인자목록의처음에나오
거나이터러블의앞에 *를붙여전달할수있다. 예를들어, 다음과같은호출에서 3과 5는모두
위치인자다.

complex(3, 5)
complex(*(3, 5))

인자는함수바의이름붙은지역변수에대입된다. 이대입에적용되는규칙들에대해서는 calls섹션을
보세요. 문법적으로,어떤표현식이건인자로사용될수있다;구해진값이지역변수에대입된다.

용어집의파라미터항목과 FAQ질문인자와파라미터의차이와 PEP 362도보세요.
asynchronous context manager (비동기컨텍스트관리자) __aenter__()와 __aexit__()메서드를정의

함으로써 async with문에서보이는환경을제어하는객체. PEP 492로도입되었다.
asynchronous generator (비동기제너레이터) 비동기제너레이터이터레이터를돌려주는함수. async def

로정의되는코루틴함수처럼보이는데, async for루프가사용할수있는일련의값들을만드는yield
표현식을포함한다는점이다르다.

Usually refers to an asynchronous generator function, but may refer to an asynchronous generator iterator in some
contexts. In cases where the intended meaning isn’t clear, using the full terms avoids ambiguity.
비동기제너레이터함수는 await표현식과, async for문과, async with문을포함할수있다.

asynchronous generator iterator (비동기제너레이터이터레이터) 비동기제너레이터함수가만드는객체.
This is an asynchronous iterator which when called using the __anext__() method returns an awaitable object
which will execute the body of the asynchronous generator function until the next yield expression.
Each yield temporarily suspends processing, remembering the location execution state (including local variables
and pending try-statements). When the asynchronous generator iterator effectively resumes with another awaitable
returned by __anext__(), it picks up where it left off. See PEP 492 and PEP 525.

asynchronous iterable (비동기이터러블) async for문에서사용될수있는객체. __aiter__()메서드는
비동기이터레이터를돌려줘야한다. PEP 492로도입되었다.

asynchronous iterator (비동기이터레이터) An object that implements the __aiter__() and __anext__()
methods. __anext__ must return an awaitable object. async for resolves the awaitables returned by an
asynchronous iterator’s __anext__()method until it raises a StopAsyncIteration exception. Introduced
by PEP 492.

attribute (어트리뷰트) 점표현식을사용하는이름으로참조되는객체와결합한값. 예를들어,객체 o가어트
리뷰트 a를가지면, o.a처럼참조된다.

awaitable (어웨이터블) await표현식에사용할수있는객체. 코루틴 이나 __await__()메서드를가진
객체가될수있다. PEP 492를보세요.

BDFL 자비로운종신독재자 (Benevolent Dictator For Life),즉 Guido van Rossum, 파이썬의창시자.
binary file (바이너리파일) 바이트열류 객체들 을 읽고 쓸 수 있는 파일 객체. 바이너리 파일의 예로는 바

이너리모드 ('rb', 'wb' 또는 'rb+') 로열린파일, sys.stdin.buffer, sys.stdout.buffer,
io.BytesIO와 gzip.GzipFile의인스턴스를들수있다.

str객체를읽고쓸수있는파일객체에대해서는텍스트파일도참조하세요.

bytes-like object (바이트열류객체) bufferobjects를지원하고 C-연속버퍼를익스포트할수있다. 여러공통
memoryview객체들은물론이고 bytes, bytearray, array.array객체들을포함한다. 바이트열류
객체들은바이너리데이터를다루는여러가지연산들에사용될수있다; 압축, 바이너리파일로저장,
소켓을통한전송같은것들이있다.

38 Appendix A. 용어집

https://www.python.org/dev/peps/pep-0362
https://www.python.org/dev/peps/pep-0492
https://www.python.org/dev/peps/pep-0492
https://www.python.org/dev/peps/pep-0525
https://www.python.org/dev/peps/pep-0492
https://www.python.org/dev/peps/pep-0492
https://www.python.org/dev/peps/pep-0492
https://www.python.org/~guido/

Python Setup and Usage,출시버전 3.6.15

어떤연산들은바이너리데이터가가변적일필요가있다. 이런경우에도큐멘테이션은종종《읽고-쓰기
바이트열류객체》라고표현한다. 가변버퍼객체의예로는bytearray와bytearray의memoryview
가있다. 다른연산들은바이너리데이터가불변객체 (《읽기전용바이트열류객체》)에저장되도록
요구한다;이런것들의예로는 bytes와 bytes객체의 memoryview가있다.

bytecode (바이트코드) 파이썬소스코드는바이트코드로컴파일되는데, CPython 인터프리터에서파이썬
프로그램의내부표현이다. 바이트코드는 .pyc파일에캐시되어, 같은파일을두번째실행할때더
빨라지게만든다 (소스에서바이트코드로의재컴파일을피할수있다). 이《중간언어》는각바이트
코드에대응하는기계를실행하는가상기계에서실행된다고말한다. 바이트코드는서로다른파이썬
가상기계에서작동할것으로기대하지도,파이썬배포간에안정적이지도않다는것에주의해야한다.

바이트코드명령어들의목록은 dis모듈도큐멘테이션에나온다.
class (클래스) 사용자정의객체들을만들기위한주형. 클래스정의는보통클래스의인스턴스를대상으로

연산하는메서드정의들을포함한다.

class variable A variable defined in a class and intended to be modified only at class level (i.e., not in an instance of the
class).

coercion (코어션) 같은형의두인자를수반하는연산이일어나는동안,한형의인스턴스를다른형으로묵시
적으로변환하는것. 예를들어, int(3.15)는실수를정수 3으로변환한다. 하지만, 3+4.5에서, 각
인자는다른형이고 (하나는 int,다른하나는 float),둘을더하기전에같은형으로변환해야한다. 그렇지
않으면 TypeError를일으킨다. 코어션없이는,호환되는형들조차도프로그래머가같은형으로정규
화해주어야한다,예를들어,그냥 3+4.5하는대신 float(3)+4.5.

complex number (복소수) 익숙한실수시스템의확장인데,모든숫자가실수부와허수부의합으로표현된다.
허수부는실수에허수단위 (-1의제곱근)를곱한것인데,종종수학에서는 i로,공학에서는 j로표기
한다. 파이썬은후자의표기법을쓰는복소수를기본지원한다;허수부는 j접미사를붙여서표기한다,
예를들어, 3+1j. math모듈의복소수버전이필요하면, cmath를사용한다. 복소수의활용은꽤수준
높은수학적기능이다. 필요하다고느끼지못한다면,거의확실히무시해도좋다.

context manager (컨텍스트관리자) __enter__()와 __exit__()메서드를정의함으로써 with문에서보
이는환경을제어하는객체. PEP 343로도입되었다.

contiguous (연속) 버퍼는정확히C-연속 (C-contiguous)이거나포트란연속 (Fortran contiguous)일때연속이라고
여겨진다. 영차원버퍼는 C-연속이면서포트란연속이다. 일차원배열에서,항목들은서로에인접하고,
0에서시작하는오름차순인덱스의순서대로메모리에배치되어야한다. 다차원 C-연속배열에서,
메모리주소의순서대로항목들을방문할때마지막인덱스가가장빨리변한다. 하지만, 포트란연속
배열에서는,첫번째인덱스가가장빨리변한다.

coroutine (코루틴) 코루틴은서브루틴의더일반화된형태다. 서브루틴은한지점에서진입하고다른지점에서
탈출한다. 코루틴은여러다른지점에서진입하고, 탈출하고, 재개할수있다. 이것들은 async def
문으로구현할수있다. PEP 492를보세요.

coroutine function (코루틴함수) 코루틴객체를돌려주는함수. 코루틴함수는 async def문으로정의될
수있고, await와 async for와 async with키워드를포함할수있다. 이것들은 PEP 492에의해
도입되었다.

CPython 파이썬프로그래밍언어의규범적인구현인데, python.org에서배포된다. 이 구현을 Jython 이나
IronPython과같은다른것들과구별할필요가있을때용어《CPython》이사용된다.

decorator (데코레이터) 다른함수를돌려주는함수인데,보통 @wrapper문법을사용한함수변환으로적용
된다. 데코레이터의흔한예는 classmethod()과 staticmethod()다.

데코레이터문법은단지편의문법일뿐이다. 다음두함수정의는의미상으로동등하다:

def f(...):
...

f = staticmethod(f)

(다음페이지에계속)

39

https://www.python.org/dev/peps/pep-0343
https://www.python.org/dev/peps/pep-0492
https://www.python.org/dev/peps/pep-0492
https://www.python.org

Python Setup and Usage,출시버전 3.6.15

(이전페이지에서계속)
@staticmethod
def f(...):

...

같은개념이클래스에도존재하지만,덜자주쓰인다. 데코레이터에대한더자세한내용은함수정의와
클래스정의의도큐멘테이션을보면된다.

descriptor (디스크립터) 메서드 __get__()이나 __set__()이나 __delete__()를정의하는객체. 클래
스어트리뷰트가디스크립터일때,어트리뷰트조회는특별한연결작용을일으킨다. 보통, a.b를읽거나,
쓰거나, 삭제하는데사용할때, a의클래스딕셔너리에서 b라고이름붙여진객체를찾는다. 하지만 b
가디스크립터면,해당하는디스크립터메서드가호출된다. 디스크립터를이해하는것은파이썬에대한
깊은이해의열쇠인데, 함수, 메서드, 프라퍼티, 클래스메서드, 스태틱메서드, 슈퍼클래스참조등의
많은기능의기초를이루고있기때문이다.

디스크립터의메서드들에대한자세한내용은 descriptors에나온다.
dictionary (딕셔너리) 임의의 키를 값에 대응시키는 연관 배열 (associative array). 키는 __hash__() 와

__eq__()메서드를갖는모든객체가될수있다. 펄에서해시라고부른다.

dictionary view (딕셔너리뷰) dict.keys(), dict.values(), dict.items()메서드가돌려주는객체들
을딕셔너리뷰라고부른다. 이것들은딕셔너리항목들에대한동적인뷰를제공하는데,딕셔너리가변경
될때,뷰가이변화를반영한다는뜻이다. 딕셔너리뷰를완전한리스트로바꾸려면 list(dictview)
를사용하면된다. dict-views를보세요.

docstring (독스트링) 클래스, 함수, 모듈에서첫번째표현식으로나타나는문자열리터럴. 스위트가실행될
때는무시되지만,컴파일러에의해인지되어둘러싼클래스,함수,모듈의 __doc__어트리뷰트로삽입
된다. 인트로스팩션을통해사용할수있으므로,객체의도큐멘테이션을위한규범적인장소다.

duck-typing (덕타이핑) 올바른인터페이스를가졌는지판단하는데객체의형을보지않는프로그래밍스
타일; 대신, 단순히메서드나어트리뷰트가호출되거나사용된다 (《오리처럼보이고오리처럼꽥꽥
댄다면, 그것은오리다.》)특정한형대신에인터페이스를강조함으로써, 잘설계된코드는다형적인
치환을허락함으로써유연성을개선할수있다. 덕타이핑은 type()이나 isinstance()을사용한
검사를피한다. (하지만,덕타이핑이추상베이스클래스로보완될수있음에유의해야한다.) 대신에,
hasattr()검사나 EAFP프로그래밍을쓴다.

EAFP 허락보다는용서를구하기가쉽다 (Easier to ask for forgiveness than permission). 이흔히볼수있는파
이썬코딩스타일은, 올바른키나어트리뷰트의존재를가정하고, 그가정이틀리면예외를잡는다. 이
깔끔하고빠른스타일은많은 try와 except문의존재로특징지어진다. 이테크닉은 C와같은다른
많은언어에서자주사용되는 LBYL스타일과대비된다.

expression (표현식) 어떤값으로구해질수있는문법적인조각. 다른말로표현하면,표현식은리터럴,이름,
어트리뷰트액세스, 연산자, 함수들과같은값을돌려주는표현요소들을쌓아올린것이다. 다른많은
언어와대조적으로, 모든언어구성물들이표현식인것은아니다. if처럼, 표현식으로사용할수없는
문장들이있다. 대입또한문장이고,표현식이아니다.

extension module (확장모듈) C 나 C++ 로작성된모듈인데, 파이썬의 C API를사용해서핵심이나사용자
코드와상호작용한다.

f-string (f-문자열) 'f'나 'F'를앞에붙인문자열리터럴들을흔히《f-문자열》이라고부르는데,포맷문자
열리터럴의줄임말이다. PEP 498을보세요.

file object (파일객체) 하부자원에대해파일지향적 API (read()나 write()같은메서드들)를드러내는
객체. 만들어진방법에따라,파일객체는실제디스크상의파일이나다른저장장치나통신장치 (예를
들어, 표준입출력, 인-메모리버퍼, 소켓, 파이프, 등등)에대한액세스를중계할수있다. 파일객체는
파일류객체 (file-like objects)나스트림 (streams)이라고도불린다.

실제로는세부류의파일객체들이있다. 날 (raw)바이너리파일,버퍼드 (buffered)바이너리파일,텍스트
파일. 이들의인터페이스는 io모듈에서정의된다. 파일객체를만드는규범적인방법은 open()함수를
쓰는것이다.

40 Appendix A. 용어집

https://www.python.org/dev/peps/pep-0498

Python Setup and Usage,출시버전 3.6.15

file-like object (파일류객체) 파일객체의비슷한말.
finder (파인더) 임포트될모듈을위한로더를찾으려고시도하는객체.

파이썬 3.3. 이후로,두종류의파인더가있다: sys.meta_path와함께사용하는메타경로파인더와
sys.path_hooks과함께사용하는경로엔트리파인더.

더자세한내용은 PEP 302, PEP 420, PEP 451에나온다.
floor division (정수나눗셈) 가장가까운정수로내림하는수학적나눗셈. 정수나눗셈연산자는 //다. 예를

들어,표현식 11 // 4의값은 2가되지만,실수나눗셈은 2.75를돌려준다. (-11) // 4가 -2.75
를내림한 -3이됨에유의해야한다. PEP 238를보세요.

function (함수) 호출자에게어떤값을돌려주는일련의문장들. 없거나그이상의인자가전달될수있는데,
바디의실행에사용될수있다. 파라미터와메서드와 function섹션도보세요.

function annotation (함수어노테이션) An annotation of a function parameter or return value.
Function annotations are usually used for type hints: for example, this function is expected to take two int argu-
ments and is also expected to have an int return value:

def sum_two_numbers(a: int, b: int) -> int:
return a + b

Function annotation syntax is explained in section function.
See variable annotation and PEP 484, which describe this functionality.

__future__ 프로그래머가현재인터프리터와호환되지않는새언어기능들을활성화할수있도록하는가상
모듈.

__future__모듈을임포트하고그변수들의값들을구해서, 새기능이언제처음으로언어에추가되
었고,언제부터그것이기본이되는지볼수있다:

>>> import __future__
>>> __future__.division
_Feature((2, 2, 0, 'alpha', 2), (3, 0, 0, 'alpha', 0), 8192)

garbage collection (가비지수거) 더사용되지않는메모리를반납하는절차. 파이썬은참조횟수추적과참조
순환을감지하고끊을수있는순환가비지수거기를통해가비지수거를수행한다. 가비지수거기는 gc
모듈을사용해서제어할수있다.

generator (제너레이터) 제너레이터이터레이터를돌려주는함수. 일반함수처럼보이는데, 일련의값들을
만드는 yield표현식을포함한다는점이다르다. 이값들은 for-루프로사용하거나 next()함수로한
번에하나씩꺼낼수있다.

보통제너레이터함수를가리키지만, 어떤문맥에서는제너레이터이터레이터를가리킨다. 의도하는
의미가명확하지않은경우는,완전한용어를써서모호함을없앤다.

generator iterator (제너레이터이터레이터) 제너레이터함수가만드는객체.
Each yield temporarily suspends processing, remembering the location execution state (including local variables
and pending try-statements). When the generator iterator resumes, it picks up where it left off (in contrast to
functions which start fresh on every invocation).

generator expression (제너레이터표현식) 이터레이터를돌려주는표현식. 루프변수와범위를정의하는 for
표현식과생략가능한 if표현식이뒤에붙는일반표현식처럼보인다. 결합한표현식은둘러싼함수를
위한값들을만들어낸다:

>>> sum(i*i for i in range(10)) # sum of squares 0, 1, 4, ... 81
285

41

https://www.python.org/dev/peps/pep-0302
https://www.python.org/dev/peps/pep-0420
https://www.python.org/dev/peps/pep-0451
https://www.python.org/dev/peps/pep-0238
https://www.python.org/dev/peps/pep-0484

Python Setup and Usage,출시버전 3.6.15

generic function (제네릭함수) 같은연산을서로다른형들에대해구현한여러함수로구성된함수. 호출때
어떤구현이사용될지는디스패치알고리즘에의해결정된다.

싱글디스패치용어집항목과 functools.singledispatch()데코레이터와 PEP 443도보세요.
GIL 전역인터프리터록을보세요.
global interpreter lock (전역인터프리터록) 한번에오직하나의스레드가파이썬바이트코드를실행하도록

보장하기위해 CPython인터프리터가사용하는메커니즘. (dict와같은중요한내장형들을포함하는)
객체모델이묵시적으로동시액세스에대해안전하도록만들어서 CPython 구현을단순하게만든다.
인터프리터전체를로킹하는것은인터프리터를다중스레드화하기쉽게만드는대신, 다중프로세서
기계가제공하는병렬성의많은부분을희생한다.

하지만, 어떤확장모듈들은, 표준이나제삼자모두, 압축이나해싱같은계산집약적인작업을수행할
때는 GIL을반납하도록설계되었다. 또한, I/O를할때는항상 GIL을반납한다.
(훨씬더미세하게공유데이터를로킹하는)《스레드에자유로운 (free-threaded)》인터프리터를만들고자
하는과거의노력은성공적이지못했는데, 흔한단일프로세서경우의성능저하가심하기때문이다.
이성능이슈를극복하는것은구현을훨씬복잡하게만들어서유지비용이더들어갈것으로여겨지고
있다.

hashable (해시가능) 객체가일생그값이변하지않는해시값을갖고 (__hash__()메서드가필요하다),다른
객체와비교될수있으면 (__eq__()메서드가필요하다),해시가능하다고한다. 같다고비교되는해시
가능한객체들의해시값은같아야한다.

해시가능성은객체를딕셔너리의키나집합의멤버로사용할수있게하는데,이자료구조들이내부적
으로해시값을사용하기때문이다.

모든파이썬의불변내장객체들은해시가능하다. (리스트나딕셔너리같은)가변컨테이너들은그렇지
않다. 사용자정의클래스의인스턴스객체들은기본적으로해시가능하다. (자기자신을제외하고는)
모두다르다고비교되고,해시값은 id()로부터만들어진다.

IDLE 파이썬을위한통합개발환경 (Integrated Development Environment). IDLE은파이썬의표준배포판에
따라오는기초적인편집기와인터프리터환경이다.

immutable (불변) 고정된값을갖는객체. 불변객체는숫자,문자열,튜플을포함한다. 이런객체들은변경될
수없다. 새값을저장하려면새객체를만들어야한다. 변하지않는해시값이있어야하는곳에서중요한
역할을한다,예를들어,딕셔너리의키.

import path (임포트경로) 경로기반파인더가임포트할모듈을찾기위해검색하는장소들 (또는경로엔트리)
의목록. 임포트하는동안,이장소들의목록은보통 sys.path로부터온다,하지만서브패키지의경우
부모패키지의 __path__어트리뷰트로부터올수도있다.

importing (임포팅) 한모듈의파이썬코드가다른모듈의파이썬코드에서사용될수있도록하는절차.
importer (임포터) 모듈을찾기도하고로드하기도하는객체;동시에파인더이자로더객체다.
interactive (대화형) 파이썬은대화형인터프리터를갖고있는데,인터프리터프롬프트에서문장과표현식을

입력할수있고,즉각실행된결과를볼수있다는뜻이다. 인자없이단지 python을실행하라 (컴퓨터의
주메뉴에서선택하는것도가능할수있다). 새아이디어를검사하거나모듈과패키지를들여다보는
매우강력한방법이다 (help(x)를기억하세요).

interpreted (인터프리티드) 바이트코드컴파일러의존재때문에그구분이흐릿해지기는하지만, 파이썬은
컴파일언어가아니라인터프리터언어다. 이것은명시적으로실행파일을만들지않고도,소스파일을
직접실행할수있다는뜻이다. 그프로그램이좀더천천히실행되기는하지만,인터프리터언어는보통
컴파일언어보다짧은개발/디버깅주기를갖는다. 대화형도보세요.

interpreter shutdown (인터프리터종료) 종료하라는요청을받을때, 파이썬인터프리터는특별한시기에진
입하는데,모듈이나여러가지중요한내부구조들과같은모든할당된자원들을단계적으로반납한다.
또한, 가비지수거기를여러번호출한다. 사용자정의파괴자나 weakref콜백에있는코드들의실행을
시작시킬수있다. 종료시기동안실행되는코드는다양한예외들을만날수있는데, 그것이의존하는
자원들이더기능하지않을수있기때문이다 (흔한예는라이브러리모듈이나경고장치들이다).

42 Appendix A. 용어집

https://www.python.org/dev/peps/pep-0443

Python Setup and Usage,출시버전 3.6.15

인터프리터종료의주된원인은실행되는 __main__모듈이나스크립트가실행을끝내는것이다.

iterable (이터러블) 멤버들을한번에하나씩돌려줄수있는객체. 이터러블의예로는모든 (list, str, tuple
같은)시퀀스형들, dict같은몇몇비시퀀스형들,파일객체들, __iter__()나시퀀스개념을구현하
는 __getitem__()메서드를써서정의한모든클래스의객체들이있다.

이터러블은 for루프에사용될수있고,시퀀스를필요로하는다른많은곳 (zip(), map(),…)에사용
될수있다. 이터러블객체가내장함수 iter()에인자로전달되면,그객체의이터레이터를돌려준다.
이이터레이터는값들의집합을한번거치는동안유효하다. 이터러블을사용할때,보통은 iter()를
호출하거나,이터레이터객체를직접다룰필요는없다. for문은이것들을여러분을대신해서자동으로
해주는데,루프를도는동안이터레이터를잡아둘이름없는변수를만든다. 이터레이터,시퀀스,제너레
이터도보세요.

iterator (이터레이터) 데이터의스트림을표현하는객체. 이터레이터의 __next__()메서드를반복적으로
호출하면 (또는내장함수 next()로전달하면)스트림에있는항목들을차례대로돌려준다. 더이상의
데이터가없을때는대신 StopIteration예외를일으킨다. 이지점에서,이터레이터객체는소진되고,
이후의모든__next__()메서드호출은StopIteration예외를다시일으키기만한다. 이터레이터는
이터레이터객체자신을돌려주는 __iter__()메서드를가질것이요구되기때문에, 이터레이터는
이터러블이기도하고다른이터러블들을받아들이는대부분의곳에서사용될수있다. 중요한예외는
여러번의이터레이션을시도하는코드다. (list같은)컨테이너객체는 iter()함수로전달하거나
for루프에사용할때마다새이터레이터를만든다. 이런것을이터레이터에대해서수행하려고하면,
지난이터레이션에사용된이미소진된이터레이터를돌려줘서,빈컨테이너처럼보이게만든다.

typeiter에더자세한내용이있다.
key function (키함수) 키함수또는콜레이션 (collation)함수는정렬 (sorting)이나배열 (ordering)에사용되는

값을돌려주는콜러블이다. 예를들어, locale.strxfrm()은로케일특정방식을따르는정렬키를
만드는데사용된다.

파이썬의많은도구가요소들이어떻게순서지어지고묶이는지를제어하기위해키함수를받아들인다.
이런것들에는 min(), max(), sorted(), list.sort(), heapq.merge(), heapq.nsmallest(),
heapq.nlargest(), itertools.groupby()이있다.

키 함수를 만드는 데는 여러 방법이 있다. 예를 들어, str.lower() 메서드는 케이스 구분 없는 정
렬을위한키함수로사용될수있다. 대안적으로, 키 함수는 lambda표현식으로만들수도있는데,
이런식이다: lambda r: (r[0], r[2]). 또한, operator모듈은세개의키함수생성자를제공한
다: attrgetter(), itemgetter(), methodcaller(). 키함수를만들고사용하는법에대한예로
Sorting HOW TO를보세요.

keyword argument (키워드인자) 인자를보세요.
lambda (람다) 호출될때값이구해지는하나의표현식으로구성된이름없는인라인함수. 람다함수를만드는

문법은 lambda [parameters]: expression이다.

LBYL 뛰기전에보라 (Look before you leap). 이코딩스타일은호출이나조회를하기전에명시적으로사전
조건들을검사한다. 이스타일은 EAFP접근법과대비되고,많은 if문의존재로특징지어진다.

다중스레드환경에서, LBYL접근법은《보기》와《뛰기》간에경쟁조건을만들게될위험이있다. 예를
들어,코드 if key in mapping: return mapping[key]는검사후에,하지만조회전에,다른스
레드가 key를 mapping에서제거하면실패할수있다. 이런이슈는록이나 EAFP접근법을사용함으로써
해결될수있다.

list (리스트) A built-in Python sequence. Despite its name it is more akin to an array in other languages than to a linked
list since access to elements is O(1).

list comprehension (리스트컴프리헨션) 시퀀스의요소들전부또는일부를처리하고그결과를리스트로돌려
주는간결한방법. result = ['{:#04x}'.format(x) for x in range(256) if x % 2 ==
0]는 0에서 255사이에있는짝수들의 16진수 (0x..) 들을포함하는문자열의리스트를만든다. if절은
생략할수있다. 생략하면, range(256)에있는모든요소가처리된다.

43

Python Setup and Usage,출시버전 3.6.15

loader (로더) 모듈을로드하는객체. load_module()이라는이름의메서드를정의해야한다. 로더는보통
파인더가돌려준다. 자세한내용은 PEP 302를, 추상베이스클래스는 importlib.abc.Loader를
보세요.

mapping (매핑) 임의의키조회를지원하고 Mapping이나 MutableMapping추상베이스클래스에지정된
메서드들을구현하는컨테이너객체. 예로는 dict, collections.defaultdict, collections.
OrderedDict, collections.Counter를들수있다.

meta path finder (메타경로파인더) sys.meta_path의검색이돌려주는파인더. 메타경로파인더는경로
엔트리파인더와관련되어있기는하지만다르다.

메타경로파인더가구현하는메서드들에대해서는 importlib.abc.MetaPathFinder를보면된다.

metaclass (메타클래스) 클래스의클래스. 클래스정의는클래스이름,클래스딕셔너리,베이스클래스들의
목록을만든다. 메타클래스는이세인자를받아서클래스를만드는책임을진다. 대부분의객체지향형
프로그래밍언어들은기본구현을제공한다. 파이썬을특별하게만드는것은커스텀메타클래스를만들
수있다는것이다. 대부분사용자에게는이도구가전혀필요없지만, 필요가생길때, 메타클래스는
강력하고우아한해법을제공한다. 어트리뷰트액세스의로깅 (logging),스레드안전성의추가,객체생성
추적,싱글톤구현과많은다른작업에사용됐다.

metaclasses에서더자세한내용을찾을수있다.
method (메서드) 클래스바디안에서정의되는함수. 그클래스의인스턴스의어트리뷰트로서호출되면, 그

메서드는첫번째인자 (보통 self라고불린다)로인스턴스객체를받는다. 함수와중첩된스코프를
보세요.

method resolution order (메서드결정순서) 메서드결정순서는조회하는동안멤버를검색하는베이스클래
스들의순서다. 2.3릴리스부터파이썬인터프리터에사용된알고리즘의상세한내용은 The Python 2.3
Method Resolution Order를보면된다.

module (모듈) 파이썬코드의조직화단위를담당하는객체. 모듈은임의의파이썬객체들을담는이름공간을
갖는다. 모듈은임포팅절차에의해파이썬으로로드된다.

패키지도보세요.

module spec (모듈스펙) 모듈을 로드하는데 사용되는 임포트 관련 정보들을 담고 있는 이름 공간.
importlib.machinery.ModuleSpec의인스턴스.

MRO 메서드결정순서를보세요.
mutable (가변) 가변객체는값이변할수있지만 id()는일정하게유지한다. 불변도보세요.

named tuple (네임드튜플) 인덱싱할 수 있는 요소들을 이름 붙은 어트리뷰트로도 액세스할 수 있는 모든
튜플류클래스 (예를들어, time.localtime()은 year가 t[0]처럼인덱스로도, t.tm_year처럼
어트리뷰트로도액세스할수있는튜플류객체를돌려준다.)
네임드튜플은 time.struct_time같은내장형일수도, 일반 클래스정의로만들수도있다. 모든
기능이구현된네임드튜플을팩토리함수 collections.namedtuple()로도만들수있다. 마지막
접근법은 Employee(name='jones', title='programmer')와같은스스로문서로만드는 repr
과같은확장기능도자동제공한다.

namespace (이름공간) 변수가저장되는장소. 이름공간은딕셔너리로구현된다. 객체에중첩된이름공간
(메서드에서)뿐만아니라지역,전역,내장이름공간이있다. 이름공간은이름충돌을방지해서모듈성
을지원한다. 예를들어, 함수 builtins.open과 os.open()은그들의이름공간에의해구별된다.
또한,이름공간은어떤모듈이함수를구현하는지를분명하게만들어서가독성과유지보수성에도움을
준다. 예를들어, random.seed()또는 itertools.islice()라고쓰면그함수들이각각 random
과 itertools모듈에의해구현되었음이명확해진다.

namespace package (이름공간패키지) 오직서브패키지들의컨테이너로만기능하는 PEP 420패키지. 이름
공간패키지는물리적인실체가없을수도있고,특히 __init__.py파일이없으므로정규패키지와는
다르다.

44 Appendix A. 용어집

https://www.python.org/dev/peps/pep-0302
https://www.python.org/download/releases/2.3/mro/
https://www.python.org/download/releases/2.3/mro/
https://www.python.org/dev/peps/pep-0420

Python Setup and Usage,출시버전 3.6.15

모듈도보세요.

nested scope (중첩된스코프) 둘러싼정의에서변수를참조하는능력. 예를들어,다른함수내부에서정의된
함수는바깥함수에있는변수들을참조할수있다. 중첩된스코프는기본적으로는참조만가능할뿐,대
입은되지않는다는것에주의해야한다. 지역변수들은가장내부의스코프에서읽고쓴다. 마찬가지로,
전역변수들은전역이름공간에서읽고쓴다. nonlocal은바깥스코프에쓰는것을허락한다.

new-style class (뉴스타일클래스) 지금은 모든 클래스 객체에 사용되고 있는 클래스 버전의 예전 이
름. 초기의 파이썬 버전에서는, 오직 뉴스타일 클래스만 __slots__, 디스크립터, 프라퍼티,
__getattribute__(), 클래스 메서드, 스태틱 메서드와 같은 파이썬의 새롭고 다양한 기능들을
사용할수있었다.

object (객체) 상태 (어트리뷰트나값)를갖고동작 (메서드)이정의된모든데이터. 또한,모든뉴스타일클래스
의최종적인베이스클래스다.

package (패키지) 서브모듈들이나, 재귀적으로서브패키지들을포함할수있는파이썬모듈. 기술적으로,
패키지는 __path__어트리뷰트가있는파이썬모듈이다.

정규패키지와이름공간패키지도보세요.

parameter (파라미터) 함수 (또는 메서드) 정의에서 함수가 받을 수 있는 인자 (또는 어떤 경우 인자들) 를
지정하는이름붙은엔티티. 다섯종류의파라미터가있다:

• 위치-키워드 (positional-or-keyword): 위치인자나키워드인자로전달될수있는인자를지정한다.
이것이기본형태의파라미터다,예를들어다음에서 foo와 bar:

def func(foo, bar=None): ...

• 위치-전용 (positional-only): 위치로만제공될수있는인자를지정한다. 파이썬은위치-전용파라미
터를정의하는문법을갖고있지않다. 하지만, 어떤매장함수들은위치-전용파라미터를갖는다
(예를들어, abs()).

• 키워드-전용 (keyword-only): 키워드로만제공될수있는인자를지정한다. 키워드-전용파라미터는
함수정의의파라미터목록에서앞에하나의가변-위치파라미터나 *를그대로포함해서정의할
수있다. 예를들어,다음에서 kw_only1와 kw_only2:

def func(arg, *, kw_only1, kw_only2): ...

• 가변-위치 (var-positional): (다른파라미터들에의해서이미받아들여진위치인자들에더해)제공될
수있는위치인자들의임의의시퀀스를지정한다. 이런파라미터는파라미터이름에 *를앞에
붙여서정의될수있다,예를들어다음에서 args:

def func(*args, **kwargs): ...

• 가변-키워드 (var-keyword): (다른파라미터들에의해서이미받아들여진키워드인자들에더해)
제공될수있는임의의개수키워드인자들을지정한다. 이런파라미터는파라미터이름에 **를
앞에붙여서정의될수있다,예를들어위의예에서 kwargs.

파라미터는선택적인자들을위한기본값뿐만아니라선택적이거나필수인자들을지정할수있다.

인자용어집항목,인자와파라미터의차이에나오는 FAQ질문, inspect.Parameter클래스, function
섹션, PEP 362도보세요.

path entry (경로엔트리) 경로기반파인더가임포트할모듈들을찾기위해참고하는임포트경로상의하나의
장소.

path entry finder (경로엔트리파인더) sys.path_hooks에있는콜러블 (즉, 경로엔트리훅)이돌려주는
파인더인데,주어진경로엔트리로모듈을찾는방법을알고있다.

경로엔트리파인더들이구현하는메서드들은 importlib.abc.PathEntryFinder에나온다.

45

https://www.python.org/dev/peps/pep-0362

Python Setup and Usage,출시버전 3.6.15

path entry hook (경로엔트리훅) sys.path_hook리스트에있는콜러블인데,특정경로엔트리에서모듈을
찾는법을알고있다면경로엔트리파인더를돌려준다.

path based finder (경로기반파인더) 기본메타경로파인더들중하나인데,임포트경로에서모듈을찾는다.
path-like object (경로류객체) 파일시스템경로를나타내는객체. 경로류객체는경로를나타내는 str나

bytes객체이거나 os.PathLike프로토콜을구현하는객체다. os.PathLike프로토콜을지원하는
객체는 os.fspath()함수를호출해서 str나 bytes파일시스템경로로변환될수있다; 대신 os.
fsdecode()와 os.fsencode()는각각 str나 bytes결과를보장하는데사용될수있다. PEP 519
로도입되었다.

PEP 파이썬개선제안. PEP는파이썬커뮤니티에정보를제공하거나파이썬또는그프로세스또는환경에
대한새로운기능을설명하는설계문서다. PEP는 제안된기능에대한간결한기술사양및근거를
제공해야한다.

PEP는주요새로운기능을제안하고문제에대한커뮤니티입력을수집하며파이썬에들어간설계
결정을문서로만들기위한기본메커니즘이다. PEP작성자는커뮤니티내에서합의를구축하고반대
의견을문서화할책임이있다.

PEP 1참조하세요.
portion (포션) PEP 420에서정의한것처럼, 이름공간패키지에이바지하는하나의디렉터리에들어있는

파일들의집합 (zip파일에저장되는것도가능하다).
positional argument (위치인자) 인자를보세요.
provisional API (잠정API) 잠정 API는표준라이브러리의과거호환성보장으로부터신중히제외된것이다.

인터페이스의큰변화가예상되지는않지만, 잠정적이라고표시되는한, 코어개발자들이필요하다고
생각한다면과거호환성이유지되지않는변경이일어날수있다. 그런변경은불필요한방식으로일어
나지는않을것이다— API를포함하기전에놓친중대하고근본적인결함이발견된경우에만일어날
것이다.

잠정 API에서조차도,과거호환성이유지되지않는변경은《최후의수단》으로여겨진다 -모든식별된
문제들에대해과거호환성을유지하는해법을찾으려는모든시도가선행된다.

이절차는표준라이브러리가오랜시간동안잘못된설계오류에발목잡히지않고발전할수있도록
만든다. 더자세한내용은 PEP 411를보면된다.

provisional package (잠정패키지) 잠정 API를보세요.

Python 3000 (파이썬 3000) 파이썬 3.x배포라인의별명 (버전 3의배포가먼미래의이야기던시절에만들어진
이름이다.) 이것을《Py3k》로줄여쓰기도한다.

Pythonic (파이썬다운) 다른언어들에서일반적인개념들을사용해서코드를구현하는대신,파이썬언어에서
가장자주사용되는이디엄들을가까이따르는아이디어나코드조작. 예를들어,파이썬에서자주쓰는
이디엄은 for문을사용해서이터러블의모든요소로루핑하는것이다. 다른많은언어에는이런종류의
구성물이없으므로,파이썬에익숙하지않은사람들은대신에숫자카운터를사용하기도한다:

for i in range(len(food)):
print(food[i])

더깔끔한,파이썬다운방법은이렇다:

for piece in food:
print(piece)

qualified name (정규화된이름) 모듈의전역스코프에서모듈에정의된클래스,함수,메서드에이르는《경로》
를보여주는점으로구분된이름. PEP 3155에서정의된다. 최상위함수와클래스의경우에, 정규화된
이름은객체의이름과같다:

46 Appendix A. 용어집

https://www.python.org/dev/peps/pep-0519
https://www.python.org/dev/peps/pep-0001
https://www.python.org/dev/peps/pep-0420
https://www.python.org/dev/peps/pep-0411
https://www.python.org/dev/peps/pep-3155

Python Setup and Usage,출시버전 3.6.15

>>> class C:
... class D:
... def meth(self):
... pass
...
>>> C.__qualname__
'C'
>>> C.D.__qualname__
'C.D'
>>> C.D.meth.__qualname__
'C.D.meth'

모듈을가리키는데사용될때,완전히정규화된이름 (fully qualified name)은모든부모패키지들을포함
해서모듈로가는점으로분리된이름을의미한다,예를들어, email.mime.text:

>>> import email.mime.text
>>> email.mime.text.__name__
'email.mime.text'

reference count (참조횟수) 객체에대한참조의개수. 객체의참조횟수가 0으로떨어지면, 메모리가반납된
다. 참조횟수추적은일반적으로파이썬코드에노출되지는않지만, CPython구현의핵심요소다. sys
모듈은특정객체의참조횟수를돌려주는 getrefcount()을정의한다.

regular package (정규패키지) __init__.py파일을포함하는디렉터리와같은전통적인패키지.
이름공간패키지도보세요.

__slots__ 클래스내부의선언인데,인스턴스어트리뷰트들을위한공간을미리선언하고인스턴스딕셔너리를
제거함으로써메모리를절감하는효과를준다. 인기있기는하지만,이테크닉은올바르게사용하기가
좀까다로운편이라서, 메모리에민감한응용프로그램에서많은수의인스턴스가있는특별한경우로
한정하는것이좋다.

sequence (시퀀스) __getitem__()특수메서드를통해정수인덱스를사용한빠른요소액세스를지원하고,
시퀀스의길이를돌려주는 __len__()메서드를정의하는이터러블. 몇몇내장시퀀스들을나열해보면,
list, str, tuple, bytes가있다. dict또한 __getitem__()과 __len__()을지원하지만,조회에
정수대신임의의불변키를사용하기때문에시퀀스가아니라매핑으로취급된다는것에주의해야한다.

collections.abc.Sequence추상베이스클래스는 __getitem__()과 __len__()를넘어서훨
씬풍부한인터페이스를정의하는데, count(), index(), __contains__(), __reversed__()를
추가한다. 이확장된인터페이스를구현한형을 register()를사용해서명시적으로등록할수있다.

single dispatch (싱글디스패치) 구현이하나의인자의형에기초해서결정되는제네릭함수디스패치의한
형태.

slice (슬라이스) 보통시퀀스의일부를포함하는객체. 슬라이스는서브스크립트표기법을사용해서만든다.
variable_name[1:3:5]처럼, []안에서여러개의숫자를콜론으로분리한다. 꺾쇠괄호 (서브스크
립트)표기법은내부적으로 slice객체를사용한다.

special method (특수메서드) 파이썬이형에어떤연산을,덧셈같은,실행할때묵시적으로호출되는메서드.
이런메서드는두개의밑줄로시작하고끝나는이름을갖고있다. 특수메서드는 specialnames에문서로
만들어져있다.

statement (문장) 문장은스위트 (코드의《블록 (block)》)를구성하는부분이다. 문장은표현식이거나키워드
를사용하는여러가지구조물중의하나다. 가령 if, while, for.

struct sequence (구조체시퀀스) A tuple with named elements. Struct sequences expose an interface similar to named
tuple in that elements can be accessed either by index or as an attribute. However, they do not have any of the named
tuple methods like _make() or _asdict(). Examples of struct sequences include sys.float_info and
the return value of os.stat().

47

Python Setup and Usage,출시버전 3.6.15

text encoding (텍스트인코딩) 유니코드문자열을바이트열로인코딩하는코덱.
text file (텍스트파일) str 객체를 읽고 쓸 수 있는 파일 객체. 종종, 텍스트 파일은 실제로는 바이트 지향

데이터스트림을액세스하고텍스트인코딩을자동처리한다. 텍스트파일의예로는텍스트모드 ('r'
또는 'w')로열린파일, sys.stdin, sys.stdout, io.StringIO의인스턴스를들수있다.
바이트열류객체를읽고쓸수있는파일객체에대해서는바이너리파일도참조하세요.

triple-quoted string (삼중따옴표된문자열) 따옴표 (《) 나 작은따옴표 (〈) 세 개로 둘러싸인 문자열. 그냥
따옴표하나로둘러싸인문자열에없는기능을제공하지는않지만, 여러가지이유에서쓸모가있다.
이스케이프되지않은작은따옴표나큰따옴표를문자열안에포함할수있도록하고,연결문자를쓰지
않고도여러줄에걸칠수있는데,독스트링을쓸때특히쓸모있다.

type (형) 파이썬객체의형은그것이어떤종류의객체인지를결정한다;모든객체는형이있다. 객체의형은
__class__어트리뷰트로액세스할수있거나 type(obj)로얻을수있다.

type alias A synonym for a type, created by assigning the type to an identifier.
Type aliases are useful for simplifying type hints. For example:

from typing import List, Tuple

def remove_gray_shades(
colors: List[Tuple[int, int, int]]) -> List[Tuple[int, int, int]]:

pass

could be made more readable like this:

from typing import List, Tuple

Color = Tuple[int, int, int]

def remove_gray_shades(colors: List[Color]) -> List[Color]:
pass

See typing and PEP 484, which describe this functionality.
type hint An annotation that specifies the expected type for a variable, a class attribute, or a function parameter or return

value.
Type hints are optional and are not enforced by Python but they are useful to static type analysis tools, and aid IDEs
with code completion and refactoring.
Type hints of global variables, class attributes, and functions, but not local variables, can be accessed using
typing.get_type_hints().
See typing and PEP 484, which describe this functionality.

universal newlines (유니버설줄넘김) 다음과같은것들을모두줄의끝으로인식하는,텍스트스트림을해석
하는태도: 유닉스개행문자관례 '\n', 윈도우즈관례 '\r\n', 예전의매킨토시관례 '\r'. 추가적인
사용에관해서는 bytes.splitlines()뿐만아니라 PEP 278와 PEP 3116도보세요.

variable annotation (변수어노테이션) An annotation of a variable or a class attribute.
When annotating a variable or a class attribute, assignment is optional:

class C:
field: 'annotation'

Variable annotations are usually used for type hints: for example this variable is expected to take int values:

48 Appendix A. 용어집

https://www.python.org/dev/peps/pep-0484
https://www.python.org/dev/peps/pep-0484
https://www.python.org/dev/peps/pep-0278
https://www.python.org/dev/peps/pep-3116

Python Setup and Usage,출시버전 3.6.15

count: int = 0

Variable annotation syntax is explained in section annassign.
See function annotation, PEP 484 and PEP 526, which describe this functionality.

virtual environment (가상환경) 파이썬사용자와응용프로그램이, 같은시스템에서실행되는다른파이썬
응용프로그램들의동작에영향을주지않으면서,파이썬배포패키지들을설치하거나업그레이드하는
것을가능하게하는,협력적으로격리된실행환경.

venv도보세요.

virtual machine (가상기계) 소프트웨어만으로정의된컴퓨터. 파이썬의가상기계는바이트코드컴파일러가
출력하는바이트코드를실행한다.

Zen of Python (파이썬젠) 파이썬디자인원리와철학들의목록인데, 인어를이해하고사용하는데도움이
된다. 이목록은대화형프롬프트에서《import this》를입력하면보인다.

49

https://www.python.org/dev/peps/pep-0484
https://www.python.org/dev/peps/pep-0526

Python Setup and Usage,출시버전 3.6.15

50 Appendix A. 용어집

APPENDIXB

About these documents

These documents are generated from reStructuredText sources by Sphinx, a document processor specifically written for
the Python documentation.
Development of the documentation and its toolchain is an entirely volunteer effort, just like Python itself. If you want
to contribute, please take a look at the reporting-bugs page for information on how to do so. New volunteers are always
welcome!
Many thanks go to:

• Fred L. Drake, Jr., the creator of the original Python documentation toolset and writer of much of the content;
• the Docutils project for creating reStructuredText and the Docutils suite;
• Fredrik Lundh for his Alternative Python Reference project from which Sphinx got many good ideas.

B.1 Contributors to the Python Documentation

Many people have contributed to the Python language, the Python standard library, and the Python documentation. See
Misc/ACKS in the Python source distribution for a partial list of contributors.
It is only with the input and contributions of the Python community that Python has such wonderful documentation –
Thank You!

51

http://docutils.sourceforge.net/rst.html
http://sphinx-doc.org/
http://docutils.sourceforge.net/
http://effbot.org/zone/pyref.htm
https://github.com/python/cpython/tree/3.6/Misc/ACKS

Python Setup and Usage,출시버전 3.6.15

52 Appendix B. About these documents

APPENDIXC

History and License

C.1 History of the software

Python was created in the early 1990s by Guido van Rossum at Stichting Mathematisch Centrum (CWI, see https://www.
cwi.nl/) in the Netherlands as a successor of a language called ABC. Guido remains Python’s principal author, although
it includes many contributions from others.
In 1995, Guido continued his work on Python at the Corporation for National Research Initiatives (CNRI, see https:
//www.cnri.reston.va.us/) in Reston, Virginia where he released several versions of the software.
In May 2000, Guido and the Python core development team moved to BeOpen.com to form the BeOpen PythonLabs
team. In October of the same year, the PythonLabs team moved to Digital Creations (now Zope Corporation; see https:
//www.zope.org/). In 2001, the Python Software Foundation (PSF, see https://www.python.org/psf/) was formed, a non-
profit organization created specifically to own Python-related Intellectual Property. Zope Corporation is a sponsoring
member of the PSF.
All Python releases are Open Source (see https://opensource.org/ for the Open Source Definition). Historically, most,
but not all, Python releases have also been GPL-compatible; the table below summarizes the various releases.

Release Derived from Year Owner GPL compatible?
0.9.0 thru 1.2 n/a 1991-1995 CWI yes
1.3 thru 1.5.2 1.2 1995-1999 CNRI yes
1.6 1.5.2 2000 CNRI no
2.0 1.6 2000 BeOpen.com no
1.6.1 1.6 2001 CNRI no
2.1 2.0+1.6.1 2001 PSF no
2.0.1 2.0+1.6.1 2001 PSF yes
2.1.1 2.1+2.0.1 2001 PSF yes
2.1.2 2.1.1 2002 PSF yes
2.1.3 2.1.2 2002 PSF yes
2.2 and above 2.1.1 2001-now PSF yes

53

https://www.cwi.nl/
https://www.cwi.nl/
https://www.cnri.reston.va.us/
https://www.cnri.reston.va.us/
https://www.zope.org/
https://www.zope.org/
https://www.python.org/psf/
https://opensource.org/

Python Setup and Usage,출시버전 3.6.15

참고: GPL-compatible doesn’t mean that we’re distributing Python under the GPL. All Python licenses, unlike the
GPL, let you distribute a modified version without making your changes open source. The GPL-compatible licenses make
it possible to combine Python with other software that is released under the GPL; the others don’t.

Thanks to the many outside volunteers who have worked under Guido’s direction to make these releases possible.

C.2 Terms and conditions for accessing or otherwise using Python

C.2.1 PSF LICENSE AGREEMENT FOR PYTHON 3.6.15

1. This LICENSE AGREEMENT is between the Python Software Foundation ("PSF"),␣
↪→and

the Individual or Organization ("Licensee") accessing and otherwise using␣
↪→Python

3.6.15 software in source or binary form and its associated documentation.

2. Subject to the terms and conditions of this License Agreement, PSF hereby
grants Licensee a nonexclusive, royalty-free, world-wide license to␣

↪→reproduce,
analyze, test, perform and/or display publicly, prepare derivative works,
distribute, and otherwise use Python 3.6.15 alone or in any derivative
version, provided, however, that PSF's License Agreement and PSF's notice␣

↪→of
copyright, i.e., "Copyright © 2001-2021 Python Software Foundation; All␣

↪→Rights
Reserved" are retained in Python 3.6.15 alone or in any derivative version
prepared by Licensee.

3. In the event Licensee prepares a derivative work that is based on or
incorporates Python 3.6.15 or any part thereof, and wants to make the
derivative work available to others as provided herein, then Licensee␣

↪→hereby
agrees to include in any such work a brief summary of the changes made to␣

↪→Python
3.6.15.

4. PSF is making Python 3.6.15 available to Licensee on an "AS IS" basis.
PSF MAKES NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF
EXAMPLE, BUT NOT LIMITATION, PSF MAKES NO AND DISCLAIMS ANY REPRESENTATION␣

↪→OR
WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT␣

↪→THE
USE OF PYTHON 3.6.15 WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

5. PSF SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF PYTHON 3.6.15
FOR ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT␣

↪→OF
MODIFYING, DISTRIBUTING, OR OTHERWISE USING PYTHON 3.6.15, OR ANY␣

↪→DERIVATIVE
THEREOF, EVEN IF ADVISED OF THE POSSIBILITY THEREOF.

54 Appendix C. History and License

Python Setup and Usage,출시버전 3.6.15

6. This License Agreement will automatically terminate upon a material breach␣
↪→of

its terms and conditions.

7. Nothing in this License Agreement shall be deemed to create any␣
↪→relationship

of agency, partnership, or joint venture between PSF and Licensee. This␣
↪→License

Agreement does not grant permission to use PSF trademarks or trade name in␣
↪→a

trademark sense to endorse or promote products or services of Licensee, or␣
↪→any

third party.

8. By copying, installing or otherwise using Python 3.6.15, Licensee agrees
to be bound by the terms and conditions of this License Agreement.

C.2.2 BEOPEN.COM LICENSE AGREEMENT FOR PYTHON 2.0

BEOPEN PYTHON OPEN SOURCE LICENSE AGREEMENT VERSION 1

1. This LICENSE AGREEMENT is between BeOpen.com ("BeOpen"), having an office at
160 Saratoga Avenue, Santa Clara, CA 95051, and the Individual or Organization
("Licensee") accessing and otherwise using this software in source or binary
form and its associated documentation ("the Software").

2. Subject to the terms and conditions of this BeOpen Python License Agreement,
BeOpen hereby grants Licensee a non-exclusive, royalty-free, world-wide license
to reproduce, analyze, test, perform and/or display publicly, prepare derivative
works, distribute, and otherwise use the Software alone or in any derivative
version, provided, however, that the BeOpen Python License is retained in the
Software, alone or in any derivative version prepared by Licensee.

3. BeOpen is making the Software available to Licensee on an "AS IS" basis.
BEOPEN MAKES NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF
EXAMPLE, BUT NOT LIMITATION, BEOPEN MAKES NO AND DISCLAIMS ANY REPRESENTATION OR
WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE
USE OF THE SOFTWARE WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

4. BEOPEN SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF THE SOFTWARE FOR
ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT OF USING,
MODIFYING OR DISTRIBUTING THE SOFTWARE, OR ANY DERIVATIVE THEREOF, EVEN IF
ADVISED OF THE POSSIBILITY THEREOF.

5. This License Agreement will automatically terminate upon a material breach of
its terms and conditions.

6. This License Agreement shall be governed by and interpreted in all respects
by the law of the State of California, excluding conflict of law provisions.
Nothing in this License Agreement shall be deemed to create any relationship of
agency, partnership, or joint venture between BeOpen and Licensee. This License
Agreement does not grant permission to use BeOpen trademarks or trade names in a
trademark sense to endorse or promote products or services of Licensee, or any
third party. As an exception, the "BeOpen Python" logos available at

(다음페이지에계속)

C.2. Terms and conditions for accessing or otherwise using Python 55

Python Setup and Usage,출시버전 3.6.15

(이전페이지에서계속)
http://www.pythonlabs.com/logos.html may be used according to the permissions
granted on that web page.

7. By copying, installing or otherwise using the software, Licensee agrees to be
bound by the terms and conditions of this License Agreement.

C.2.3 CNRI LICENSE AGREEMENT FOR PYTHON 1.6.1

1. This LICENSE AGREEMENT is between the Corporation for National Research
Initiatives, having an office at 1895 Preston White Drive, Reston, VA 20191
("CNRI"), and the Individual or Organization ("Licensee") accessing and
otherwise using Python 1.6.1 software in source or binary form and its
associated documentation.

2. Subject to the terms and conditions of this License Agreement, CNRI hereby
grants Licensee a nonexclusive, royalty-free, world-wide license to reproduce,
analyze, test, perform and/or display publicly, prepare derivative works,
distribute, and otherwise use Python 1.6.1 alone or in any derivative version,
provided, however, that CNRI's License Agreement and CNRI's notice of copyright,
i.e., "Copyright © 1995-2001 Corporation for National Research Initiatives; All
Rights Reserved" are retained in Python 1.6.1 alone or in any derivative version
prepared by Licensee. Alternately, in lieu of CNRI's License Agreement,
Licensee may substitute the following text (omitting the quotes): "Python 1.6.1
is made available subject to the terms and conditions in CNRI's License
Agreement. This Agreement together with Python 1.6.1 may be located on the
Internet using the following unique, persistent identifier (known as a handle):
1895.22/1013. This Agreement may also be obtained from a proxy server on the
Internet using the following URL: http://hdl.handle.net/1895.22/1013."

3. In the event Licensee prepares a derivative work that is based on or
incorporates Python 1.6.1 or any part thereof, and wants to make the derivative
work available to others as provided herein, then Licensee hereby agrees to
include in any such work a brief summary of the changes made to Python 1.6.1.

4. CNRI is making Python 1.6.1 available to Licensee on an "AS IS" basis. CNRI
MAKES NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF EXAMPLE,
BUT NOT LIMITATION, CNRI MAKES NO AND DISCLAIMS ANY REPRESENTATION OR WARRANTY
OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE USE OF
PYTHON 1.6.1 WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

5. CNRI SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF PYTHON 1.6.1 FOR
ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT OF
MODIFYING, DISTRIBUTING, OR OTHERWISE USING PYTHON 1.6.1, OR ANY DERIVATIVE
THEREOF, EVEN IF ADVISED OF THE POSSIBILITY THEREOF.

6. This License Agreement will automatically terminate upon a material breach of
its terms and conditions.

7. This License Agreement shall be governed by the federal intellectual property
law of the United States, including without limitation the federal copyright
law, and, to the extent such U.S. federal law does not apply, by the law of the
Commonwealth of Virginia, excluding Virginia's conflict of law provisions.
Notwithstanding the foregoing, with regard to derivative works based on Python
1.6.1 that incorporate non-separable material that was previously distributed

(다음페이지에계속)

56 Appendix C. History and License

Python Setup and Usage,출시버전 3.6.15

(이전페이지에서계속)
under the GNU General Public License (GPL), the law of the Commonwealth of
Virginia shall govern this License Agreement only as to issues arising under or
with respect to Paragraphs 4, 5, and 7 of this License Agreement. Nothing in
this License Agreement shall be deemed to create any relationship of agency,
partnership, or joint venture between CNRI and Licensee. This License Agreement
does not grant permission to use CNRI trademarks or trade name in a trademark
sense to endorse or promote products or services of Licensee, or any third
party.

8. By clicking on the "ACCEPT" button where indicated, or by copying, installing
or otherwise using Python 1.6.1, Licensee agrees to be bound by the terms and
conditions of this License Agreement.

C.2.4 CWI LICENSE AGREEMENT FOR PYTHON 0.9.0 THROUGH 1.2

Copyright © 1991 - 1995, Stichting Mathematisch Centrum Amsterdam, The
Netherlands. All rights reserved.

Permission to use, copy, modify, and distribute this software and its
documentation for any purpose and without fee is hereby granted, provided that
the above copyright notice appear in all copies and that both that copyright
notice and this permission notice appear in supporting documentation, and that
the name of Stichting Mathematisch Centrum or CWI not be used in advertising or
publicity pertaining to distribution of the software without specific, written
prior permission.

STICHTING MATHEMATISCH CENTRUM DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS
SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN NO
EVENT SHALL STICHTING MATHEMATISCH CENTRUM BE LIABLE FOR ANY SPECIAL, INDIRECT
OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE,
DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS
SOFTWARE.

C.3 Licenses and Acknowledgements for Incorporated Software

This section is an incomplete, but growing list of licenses and acknowledgements for third-party software incorporated in
the Python distribution.

C.3.1 Mersenne Twister

The _random module includes code based on a download from http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/
MT2002/emt19937ar.html. The following are the verbatim comments from the original code:

A C-program for MT19937, with initialization improved 2002/1/26.
Coded by Takuji Nishimura and Makoto Matsumoto.

Before using, initialize the state by using init_genrand(seed)
or init_by_array(init_key, key_length).

(다음페이지에계속)

C.3. Licenses and Acknowledgements for Incorporated Software 57

http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/MT2002/emt19937ar.html
http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/MT2002/emt19937ar.html

Python Setup and Usage,출시버전 3.6.15

(이전페이지에서계속)
Copyright (C) 1997 - 2002, Makoto Matsumoto and Takuji Nishimura,
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

3. The names of its contributors may not be used to endorse or promote
products derived from this software without specific prior written
permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Any feedback is very welcome.
http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html
email: m-mat @ math.sci.hiroshima-u.ac.jp (remove space)

C.3.2 Sockets

The socket module uses the functions, getaddrinfo(), and getnameinfo(), which are coded in separate
source files from the WIDE Project, http://www.wide.ad.jp/.

Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
1. Redistributions of source code must retain the above copyright

notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright

notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

3. Neither the name of the project nor the names of its contributors
may be used to endorse or promote products derived from this software
without specific prior written permission.

(다음페이지에계속)

58 Appendix C. History and License

http://www.wide.ad.jp/

Python Setup and Usage,출시버전 3.6.15

(이전페이지에서계속)
THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

C.3.3 Floating point exception control

The source for the fpectl module includes the following notice:

/ Copyright (c) 1996. \

| The Regents of the University of California. |
| All rights reserved. |
| |
| Permission to use, copy, modify, and distribute this software for |
| any purpose without fee is hereby granted, provided that this en- |
| tire notice is included in all copies of any software which is or |
| includes a copy or modification of this software and in all |
| copies of the supporting documentation for such software. |
| |
| This work was produced at the University of California, Lawrence |
| Livermore National Laboratory under contract no. W-7405-ENG-48 |
| between the U.S. Department of Energy and The Regents of the |
| University of California for the operation of UC LLNL. |
| |
| DISCLAIMER |
| |
| This software was prepared as an account of work sponsored by an |
| agency of the United States Government. Neither the United States |
| Government nor the University of California nor any of their em- |
| ployees, makes any warranty, express or implied, or assumes any |
| liability or responsibility for the accuracy, completeness, or |
| usefulness of any information, apparatus, product, or process |
| disclosed, or represents that its use would not infringe |
| privately-owned rights. Reference herein to any specific commer- |
| cial products, process, or service by trade name, trademark, |
| manufacturer, or otherwise, does not necessarily constitute or |
| imply its endorsement, recommendation, or favoring by the United |
| States Government or the University of California. The views and |
| opinions of authors expressed herein do not necessarily state or |
| reflect those of the United States Government or the University |
| of California, and shall not be used for advertising or product |
\ endorsement purposes. /

C.3. Licenses and Acknowledgements for Incorporated Software 59

Python Setup and Usage,출시버전 3.6.15

C.3.4 Asynchronous socket services

The asynchat and asyncore modules contain the following notice:

Copyright 1996 by Sam Rushing

All Rights Reserved

Permission to use, copy, modify, and distribute this software and
its documentation for any purpose and without fee is hereby
granted, provided that the above copyright notice appear in all
copies and that both that copyright notice and this permission
notice appear in supporting documentation, and that the name of Sam
Rushing not be used in advertising or publicity pertaining to
distribution of the software without specific, written prior
permission.

SAM RUSHING DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE,
INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN
NO EVENT SHALL SAM RUSHING BE LIABLE FOR ANY SPECIAL, INDIRECT OR
CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS
OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT,
NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

C.3.5 Cookie management

The http.cookies module contains the following notice:

Copyright 2000 by Timothy O'Malley <timo@alum.mit.edu>

All Rights Reserved

Permission to use, copy, modify, and distribute this software
and its documentation for any purpose and without fee is hereby
granted, provided that the above copyright notice appear in all
copies and that both that copyright notice and this permission
notice appear in supporting documentation, and that the name of
Timothy O'Malley not be used in advertising or publicity
pertaining to distribution of the software without specific, written
prior permission.

Timothy O'Malley DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS
SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS, IN NO EVENT SHALL Timothy O'Malley BE LIABLE FOR
ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
PERFORMANCE OF THIS SOFTWARE.

60 Appendix C. History and License

Python Setup and Usage,출시버전 3.6.15

C.3.6 Execution tracing

The trace module contains the following notice:

portions copyright 2001, Autonomous Zones Industries, Inc., all rights...
err... reserved and offered to the public under the terms of the
Python 2.2 license.
Author: Zooko O'Whielacronx
http://zooko.com/
mailto:zooko@zooko.com

Copyright 2000, Mojam Media, Inc., all rights reserved.
Author: Skip Montanaro

Copyright 1999, Bioreason, Inc., all rights reserved.
Author: Andrew Dalke

Copyright 1995-1997, Automatrix, Inc., all rights reserved.
Author: Skip Montanaro

Copyright 1991-1995, Stichting Mathematisch Centrum, all rights reserved.

Permission to use, copy, modify, and distribute this Python software and
its associated documentation for any purpose without fee is hereby
granted, provided that the above copyright notice appears in all copies,
and that both that copyright notice and this permission notice appear in
supporting documentation, and that the name of neither Automatrix,
Bioreason or Mojam Media be used in advertising or publicity pertaining to
distribution of the software without specific, written prior permission.

C.3.7 UUencode and UUdecode functions

The uu module contains the following notice:

Copyright 1994 by Lance Ellinghouse
Cathedral City, California Republic, United States of America.

All Rights Reserved
Permission to use, copy, modify, and distribute this software and its
documentation for any purpose and without fee is hereby granted,
provided that the above copyright notice appear in all copies and that
both that copyright notice and this permission notice appear in
supporting documentation, and that the name of Lance Ellinghouse
not be used in advertising or publicity pertaining to distribution
of the software without specific, written prior permission.
LANCE ELLINGHOUSE DISCLAIMS ALL WARRANTIES WITH REGARD TO
THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS, IN NO EVENT SHALL LANCE ELLINGHOUSE CENTRUM BE LIABLE
FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT
OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

Modified by Jack Jansen, CWI, July 1995:
- Use binascii module to do the actual line-by-line conversion

between ascii and binary. This results in a 1000-fold speedup. The C

(다음페이지에계속)

C.3. Licenses and Acknowledgements for Incorporated Software 61

Python Setup and Usage,출시버전 3.6.15

(이전페이지에서계속)
version is still 5 times faster, though.

- Arguments more compliant with Python standard

C.3.8 XML Remote Procedure Calls

The xmlrpc.client module contains the following notice:

The XML-RPC client interface is

Copyright (c) 1999-2002 by Secret Labs AB
Copyright (c) 1999-2002 by Fredrik Lundh

By obtaining, using, and/or copying this software and/or its
associated documentation, you agree that you have read, understood,
and will comply with the following terms and conditions:

Permission to use, copy, modify, and distribute this software and
its associated documentation for any purpose and without fee is
hereby granted, provided that the above copyright notice appears in
all copies, and that both that copyright notice and this permission
notice appear in supporting documentation, and that the name of
Secret Labs AB or the author not be used in advertising or publicity
pertaining to distribution of the software without specific, written
prior permission.

SECRET LABS AB AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH REGARD
TO THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANT-
ABILITY AND FITNESS. IN NO EVENT SHALL SECRET LABS AB OR THE AUTHOR
BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY
DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
OF THIS SOFTWARE.

C.3.9 test_epoll

The test_epoll module contains the following notice:

Copyright (c) 2001-2006 Twisted Matrix Laboratories.

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF

(다음페이지에계속)

62 Appendix C. History and License

Python Setup and Usage,출시버전 3.6.15

(이전페이지에서계속)
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

C.3.10 Select kqueue

The select module contains the following notice for the kqueue interface:

Copyright (c) 2000 Doug White, 2006 James Knight, 2007 Christian Heimes
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
1. Redistributions of source code must retain the above copyright

notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright

notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

C.3.11 SipHash24

The file Python/pyhash.c contains Marek Majkowski〉 implementation of Dan Bernstein’s SipHash24 algorithm.
The contains the following note:

<MIT License>
Copyright (c) 2013 Marek Majkowski <marek@popcount.org>

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
</MIT License>

(다음페이지에계속)

C.3. Licenses and Acknowledgements for Incorporated Software 63

Python Setup and Usage,출시버전 3.6.15

(이전페이지에서계속)
Original location:

https://github.com/majek/csiphash/

Solution inspired by code from:
Samuel Neves (supercop/crypto_auth/siphash24/little)
djb (supercop/crypto_auth/siphash24/little2)
Jean-Philippe Aumasson (https://131002.net/siphash/siphash24.c)

C.3.12 strtod and dtoa

The file Python/dtoa.c, which supplies C functions dtoa and strtod for conversion of C doubles to and from strings,
is derived from the file of the same name by David M. Gay, currently available from http://www.netlib.org/fp/. The
original file, as retrieved on March 16, 2009, contains the following copyright and licensing notice:

/**
*
* The author of this software is David M. Gay.
*
* Copyright (c) 1991, 2000, 2001 by Lucent Technologies.
*
* Permission to use, copy, modify, and distribute this software for any
* purpose without fee is hereby granted, provided that this entire notice
* is included in all copies of any software which is or includes a copy
* or modification of this software and in all copies of the supporting
* documentation for such software.
*
* THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR IMPLIED
* WARRANTY. IN PARTICULAR, NEITHER THE AUTHOR NOR LUCENT MAKES ANY
* REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE MERCHANTABILITY
* OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR PURPOSE.
*
***/

C.3.13 OpenSSL

The modules hashlib, posix, ssl, crypt use the OpenSSL library for added performance if made available by the
operating system. Additionally, the Windows and Mac OS X installers for Python may include a copy of the OpenSSL
libraries, so we include a copy of the OpenSSL license here:

LICENSE ISSUES
==============

The OpenSSL toolkit stays under a dual license, i.e. both the conditions of
the OpenSSL License and the original SSLeay license apply to the toolkit.
See below for the actual license texts. Actually both licenses are BSD-style
Open Source licenses. In case of any license issues related to OpenSSL
please contact openssl-core@openssl.org.

OpenSSL License

/* ==
* Copyright (c) 1998-2008 The OpenSSL Project. All rights reserved.

(다음페이지에계속)

64 Appendix C. History and License

http://www.netlib.org/fp/

Python Setup and Usage,출시버전 3.6.15

(이전페이지에서계속)
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
*
* 3. All advertising materials mentioning features or use of this
* software must display the following acknowledgment:
* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
*
* 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
* endorse or promote products derived from this software without
* prior written permission. For written permission, please contact
* openssl-core@openssl.org.
*
* 5. Products derived from this software may not be called "OpenSSL"
* nor may "OpenSSL" appear in their names without prior written
* permission of the OpenSSL Project.
*
* 6. Redistributions of any form whatsoever must retain the following
* acknowledgment:
* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit (http://www.openssl.org/)"
*
* THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
* EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
* ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
* OF THE POSSIBILITY OF SUCH DAMAGE.
* ==
*
* This product includes cryptographic software written by Eric Young
* (eay@cryptsoft.com). This product includes software written by Tim
* Hudson (tjh@cryptsoft.com).
*
*/

Original SSLeay License

/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)

(다음페이지에계속)

C.3. Licenses and Acknowledgements for Incorporated Software 65

Python Setup and Usage,출시버전 3.6.15

(이전페이지에서계속)
* All rights reserved.
*
* This package is an SSL implementation written
* by Eric Young (eay@cryptsoft.com).
* The implementation was written so as to conform with Netscapes SSL.
*
* This library is free for commercial and non-commercial use as long as
* the following conditions are aheared to. The following conditions
* apply to all code found in this distribution, be it the RC4, RSA,
* lhash, DES, etc., code; not just the SSL code. The SSL documentation
* included with this distribution is covered by the same copyright terms
* except that the holder is Tim Hudson (tjh@cryptsoft.com).
*
* Copyright remains Eric Young's, and as such any Copyright notices in
* the code are not to be removed.
* If this package is used in a product, Eric Young should be given attribution
* as the author of the parts of the library used.
* This can be in the form of a textual message at program startup or
* in documentation (online or textual) provided with the package.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* "This product includes cryptographic software written by
* Eric Young (eay@cryptsoft.com)"
* The word 'cryptographic' can be left out if the rouines from the library
* being used are not cryptographic related :-).
* 4. If you include any Windows specific code (or a derivative thereof) from
* the apps directory (application code) you must include an acknowledgement:
* "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
*
* THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* The licence and distribution terms for any publically available version or
* derivative of this code cannot be changed. i.e. this code cannot simply be
* copied and put under another distribution licence
* [including the GNU Public Licence.]
*/

66 Appendix C. History and License

Python Setup and Usage,출시버전 3.6.15

C.3.14 expat

The pyexpat extension is built using an included copy of the expat sources unless the build is configured
--with-system-expat:

Copyright (c) 1998, 1999, 2000 Thai Open Source Software Center Ltd
and Clark Cooper

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

C.3.15 libffi

The _ctypes extension is built using an included copy of the libffi sources unless the build is configured
--with-system-libffi:

Copyright (c) 1996-2008 Red Hat, Inc and others.

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
``Software''), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED ``AS IS'', WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.

C.3. Licenses and Acknowledgements for Incorporated Software 67

Python Setup and Usage,출시버전 3.6.15

C.3.16 zlib

The zlib extension is built using an included copy of the zlib sources if the zlib version found on the system is too old
to be used for the build:

Copyright (C) 1995-2011 Jean-loup Gailly and Mark Adler

This software is provided 'as-is', without any express or implied
warranty. In no event will the authors be held liable for any damages
arising from the use of this software.

Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it
freely, subject to the following restrictions:

1. The origin of this software must not be misrepresented; you must not
claim that you wrote the original software. If you use this software
in a product, an acknowledgment in the product documentation would be
appreciated but is not required.

2. Altered source versions must be plainly marked as such, and must not be
misrepresented as being the original software.

3. This notice may not be removed or altered from any source distribution.

Jean-loup Gailly Mark Adler
jloup@gzip.org madler@alumni.caltech.edu

C.3.17 cfuhash

The implementation of the hash table used by the tracemalloc is based on the cfuhash project:

Copyright (c) 2005 Don Owens
All rights reserved.

This code is released under the BSD license:

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following
disclaimer in the documentation and/or other materials provided
with the distribution.

* Neither the name of the author nor the names of its
contributors may be used to endorse or promote products derived
from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS

(다음페이지에계속)

68 Appendix C. History and License

Python Setup and Usage,출시버전 3.6.15

(이전페이지에서계속)
FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
OF THE POSSIBILITY OF SUCH DAMAGE.

C.3.18 libmpdec

The _decimal module is built using an included copy of the libmpdec library unless the build is configured
--with-system-libmpdec:

Copyright (c) 2008-2016 Stefan Krah. All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

C.3. Licenses and Acknowledgements for Incorporated Software 69

Python Setup and Usage,출시버전 3.6.15

70 Appendix C. History and License

APPENDIXD

저작권

파이썬과이도큐멘테이션은:

Copyright © 2001-2021 Python Software Foundation. All rights reserved.
Copyright © 2000 BeOpen.com. All rights reserved.
Copyright © 1995-2000 Corporation for National Research Initiatives. All rights reserved.
Copyright © 1991-1995 Stichting Mathematisch Centrum. All rights reserved.

전체라이센스및사용권한정보는 History and License에서제공한다.

71

Python Setup and Usage,출시버전 3.6.15

72 Appendix D. 저작권

색인

Non-alphabetical
..., 37
-?

command line option, 5
2to3, 37
>>>, 37
__future__, 41
__slots__, 47

A
abstract base class (추상베이스클래스), 37
annotation, 37
argument (인자), 37
asynchronous context manager (비동기 컨텍

스트관리자), 38
asynchronous generator (비동기제너레이터),

38
asynchronous generator iterator (비동기

제너레이터이터레이터), 38
asynchronous iterable (비동기이터러블), 38
asynchronous iterator (비동기이터레이터), 38
attribute (어트리뷰트), 38
awaitable (어웨이터블), 38

B
-B

command line option, 5
-b

command line option, 5
BDFL, 38
binary file (바이너리파일), 38
bytecode (바이트코드), 39
bytes-like object (바이트열류객체), 38

C
-c <command>

command line option, 4
C-contiguous, 39
class (클래스), 39

class variable, 39
coercion (코어션), 39
command line option

-?, 5
-B, 5
-b, 5
-c <command>, 4
-d, 5
-E, 5
-h, 5
--help, 5
-I, 6
-i, 5
-J, 8
-m <module-name>, 4
-O, 6
-OO, 6
-q, 6
-R, 6
-S, 6
-s, 6
-u, 6
-V, 5
-v, 7
--version, 5
-W arg, 7
-X, 7
-x, 7

complex number (복소수), 39
context manager (컨텍스트관리자), 39
contiguous (연속), 39
coroutine (코루틴), 39
coroutine function (코루틴함수), 39
CPython, 39

D
-d

command line option, 5
decorator (데코레이터), 39
descriptor (디스크립터), 40

73

Python Setup and Usage,출시버전 3.6.15

dictionary (딕셔너리), 40
dictionary view (딕셔너리뷰), 40
docstring (독스트링), 40
duck-typing (덕타이핑), 40

E
-E

command line option, 5
EAFP, 40
exec_prefix, 14
expression (표현식), 40
extension module (확장모듈), 40

F
f-string (f-문자열), 40
file object (파일객체), 40
file-like object (파일류객체), 41
finder (파인더), 41
floor division (정수나눗셈), 41
Fortran contiguous, 39
function (함수), 41
function annotation (함수어노테이션), 41

G
garbage collection (가비지수거), 41
generator, 41
generator (제너레이터), 41
generator expression, 41
generator expression (제너레이터표현식), 41
generator iterator (제너레이터이터레이터), 41
generic function (제네릭함수), 42
GIL, 42
global interpreter lock (전역 인터프리터

록), 42

H
-h

command line option, 5
hashable (해시가능), 42
--help

command line option, 5

I
-I

command line option, 6
-i

command line option, 5
IDLE, 42
immutable (불변), 42
import path (임포트경로), 42
importer (임포터), 42
importing (임포팅), 42
interactive (대화형), 42

interpreted (인터프리티드), 42
interpreter shutdown (인터프리터종료), 42
iterable (이터러블), 43
iterator (이터레이터), 43

J
-J

command line option, 8

K
key function (키함수), 43
keyword argument (키워드인자), 43

L
lambda (람다), 43
LBYL, 43
list (리스트), 43
list comprehension (리스트컴프리헨션), 43
loader (로더), 44

M
-m <module-name>

command line option, 4
mapping (매핑), 44
meta path finder (메타경로파인더), 44
metaclass (메타클래스), 44
method (메서드), 44
method resolution order (메서드 결정 순서),

44
module (모듈), 44
module spec (모듈스펙), 44
MRO, 44
mutable (가변), 44

N
named tuple (네임드튜플), 44
namespace (이름공간), 44
namespace package (이름공간패키지), 44
nested scope (중첩된스코프), 45
new-style class (뉴스타일클래스), 45

O
-O

command line option, 6
object (객체), 45
-OO

command line option, 6

P
package (패키지), 45
parameter (파라미터), 45
PATH, 8, 15, 18, 20, 23, 24, 26
path based finder (경로기반파인더), 46

74 색인

Python Setup and Usage,출시버전 3.6.15

path entry (경로엔트리), 45
path entry finder (경로엔트리파인더), 45
path entry hook (경로엔트리훅), 46
path-like object (경로류객체), 46
PATHEXT, 20
PEP, 46
portion (포션), 46
positional argument (위치인자), 46
prefix, 14
provisional API (잠정 API), 46
provisional package (잠정패키지), 46
Python 3000 (파이썬 3000), 46
PYTHON*, 5, 6
PYTHONDEBUG, 5
PYTHONDONTWRITEBYTECODE, 5
PYTHONHASHSEED, 6, 9
PYTHONHOME, 5, 8, 28
Pythonic (파이썬다운), 46
PYTHONINSPECT, 6
PYTHONLEGACYWINDOWSSTDIO, 9
PYTHONMALLOC, 11
PYTHONOPTIMIZE, 6
PYTHONPATH, 5, 8, 23, 28, 34
PYTHONSTARTUP, 6
PYTHONUNBUFFERED, 7
PYTHONVERBOSE, 7
PYTHONWARNINGS, 7

Q
-q

command line option, 6
qualified name (정규화된이름), 46

R
-R

command line option, 6
reference count (참조횟수), 47
regular package (정규패키지), 47

S
-S

command line option, 6
-s

command line option, 6
sequence (시퀀스), 47
single dispatch (싱글디스패치), 47
slice (슬라이스), 47
special method (특수메서드), 47
statement (문장), 47
struct sequence (구조체시퀀스), 47

T
text encoding (텍스트인코딩), 48

text file (텍스트파일), 48
triple-quoted string (삼중따옴표된문자열),

48
type (형), 48
type alias, 48
type hint, 48

U
-u

command line option, 6
universal newlines (유니버설줄넘김), 48

V
-V

command line option, 5
-v

command line option, 7
variable annotation (변수어노테이션), 48
--version

command line option, 5
virtual environment (가상환경), 49
virtual machine (가상기계), 49

W
-W arg

command line option, 7

X
-X

command line option, 7
-x

command line option, 7

Y
파이썬 향상 제안

PEP 1, 46
PEP 8, 15
PEP 11, 17, 22
PEP 230, 7
PEP 238, 41
PEP 278, 48
PEP 302, 41, 44
PEP 338, 4
PEP 343, 39
PEP 362, 38, 45
PEP 370, 6, 9, 10
PEP 397, 31
PEP 411, 46
PEP 420, 41, 44, 46
PEP 443, 42
PEP 451, 41
PEP 484, 37, 41, 48, 49
PEP 488, 6

색인 75

Python Setup and Usage,출시버전 3.6.15

PEP 492, 38, 39
PEP 498, 40
PEP 519, 46
PEP 525, 38
PEP 526, 37, 49
PEP 529, 11
PEP 3116, 48
PEP 3155, 46

환경 변수
exec_prefix, 14
PATH, 8, 15, 18, 20, 23, 24, 26
PATHEXT, 20
prefix, 14
PYTHON*, 5, 6
PYTHONASYNCIODEBUG, 10
PYTHONCASEOK, 9
PYTHONDEBUG, 5, 9
PYTHONDONTWRITEBYTECODE, 5, 9
PYTHONDUMPREFS, 11
PYTHONEXECUTABLE, 10
PYTHONFAULTHANDLER, 10
PYTHONHASHSEED, 6, 9
PYTHONHOME, 5, 8, 28
PYTHONINSPECT, 6, 9
PYTHONIOENCODING, 9
PYTHONLEGACYWINDOWSFSENCODING, 11
PYTHONLEGACYWINDOWSSTDIO, 9, 11
PYTHONMALLOC, 10, 11
PYTHONMALLOCSTATS, 11
PYTHONNOUSERSITE, 9
PYTHONOPTIMIZE, 6, 9
PYTHONPATH, 5, 8, 23, 28, 34
PYTHONSTARTUP, 6, 8
PYTHONTHREADDEBUG, 11
PYTHONTRACEMALLOC, 10
PYTHONUNBUFFERED, 7, 9
PYTHONUSERBASE, 10
PYTHONVERBOSE, 7, 9
PYTHONWARNINGS, 7, 10

Z
Zen of Python (파이썬젠), 49

76 색인

	Command line and environment
	Command line
	Environment variables

	Using Python on Unix platforms
	Getting and installing the latest version of Python
	Building Python
	Python-related paths and files
	Miscellaneous
	Editors and IDEs

	Using Python on Windows
	Installing Python
	Alternative bundles
	Configuring Python
	Python Launcher for Windows
	Finding modules
	Additional modules
	Compiling Python on Windows
	Embedded Distribution
	Other resources

	Using Python on a Macintosh
	Getting and Installing MacPython
	The IDE
	Installing Additional Python Packages
	GUI Programming on the Mac
	Distributing Python Applications on the Mac
	Other Resources

	용어집
	About these documents
	Contributors to the Python Documentation

	History and License
	History of the software
	Terms and conditions for accessing or otherwise using Python
	Licenses and Acknowledgements for Incorporated Software

	저작권
	색인

