Python Setup and Usage

S Al H{H 3.6.15

Guido van Rossum
and the Python development team

9& 05, 2021

Contents

Command line and environment

1.1 Command line
1.2 Environment variables

Using Python on Unix platforms

2.1 Getting and installing the latest version of Python

22 BuildingPython. e
2.3 Python-related pathsand files L.
24 Miscellaneous e e

2.5 Editors and IDEs

Using Python on Windows

3.1 Installing Python

3.2 Alternative bundles e e e
3.3 Configuring Python L e e e e e e
3.4 Python Launcher for Windows e

3.5 Finding modules

3.6 Additional modules e e
3.7 Compiling Pythonon Windows 0 i e e e e e e e
3.8 Embedded Distribution e e e e e e e
3.9 OtherresoUICeS v v v v v e

Using Python on a Macintosh

4.1 Getting and Installing MacPython

4.2
4.3
4.4
4.5
4.6

§13

The IDE

Installing Additional Python Packages
GUI Programming on the Mac
Distributing Python Applicationsonthe Mac.
Other Resources

About these documents

B.1

Contributors to the Python Documentation

History and License

C.1

History of the software

33
33
34
34
35
35
35

37

51
51

53

C.2 Terms and conditions for accessing or otherwise using Python
C.3 Licenses and Acknowledgements for Incorporated Software

D =4

59

Al HHH 3.6.15

=
=

Python Setup and Usage,

Contents

Python Setup and Usage, £A| H{H™ 3.6.15

2 Contents

CHAPTER 1

Command line and environment

The CPython interpreter scans the command line and the environment for various settings.

CPython implementation detail: Other implementations) command line schemes may differ. See implementations for
further resources.

1.1 Command line

When invoking Python, you may specify any of these options:

’python [-bBdEhiIOgsSuvVWx?] [-c command | -m module-name | script | -] [args]

The most common use case is, of course, a simple invocation of a script:

’python myscript.py

1.1.1 Interface options

The interpreter interface resembles that of the UNIX shell, but provides some additional methods of invocation:

* When called with standard input connected to a tty device, it prompts for commands and executes them until an
EOF (an end-of-file character, you can produce that with Ct r1-D on UNIX or Ctr1-%, Enter on Windows)
is read.

¢ When called with a file name argument or with a file as standard input, it reads and executes a script from that file.

* When called with a directory name argument, it reads and executes an appropriately named script from that direc-
tory.

¢ When called with —c command, it executes the Python statement(s) given as command. Here command may
contain multiple statements separated by newlines. Leading whitespace is significant in Python statements!

* When called with -m module-name, the given module is located on the Python module path and executed as a
script.

Python Setup and Usage, £A| H{H™ 3.6.15

In non-interactive mode, the entire input is parsed before it is executed.

An interface option terminates the list of options consumed by the interpreter, all consecutive arguments will end up in
sys.argv —note that the first element, subscript zero (sys.argv [0]), is a string reflecting the program’s source.

—-c <command>
Execute the Python code in command. command can be one or more statements separated by newlines, with
significant leading whitespace as in normal module code.

If this option is given, the first element of sys.argv will be "—c" and the current directory will be added to the
start of sys.path (allowing modules in that directory to be imported as top level modules).

-m <module—name>
Search sys.path for the named module and execute its contents as the __main__ module.

Since the argument is a module name, you must not give a file extension (. py). The module name should be a valid
absolute Python module name, but the implementation may not always enforce this (e.g. it may allow you to use a
name that includes a hyphen).

Package names (including namespace packages) are also permitted. When a package name is supplied instead
of a normal module, the interpreter will execute <pkg>.__main___ as the main module. This behaviour is
deliberately similar to the handling of directories and zipfiles that are passed to the interpreter as the script argument.

Z31: This option cannot be used with built-in modules and extension modules written in C, since they do not
have Python module files. However, it can still be used for precompiled modules, even if the original source file is
not available.

If this option is given, the first element of sys . argv will be the full path to the module file (while the module file
is being located, the first element will be set to "-m"). As with the —c option, the current directory will be added
to the start of sys.path.

Many standard library modules contain code that is invoked on their execution as a script. An example is the
timeit module:

python —-mtimeit -s 'setup here' 'benchmarked code here'
python -mtimeit -h # for details

] B7):
runpy . run_module () Equivalent functionality directly available to Python code

PEP 338 — Executing modules as scripts
WA 3.1 4] ¥ 7 : Supply the package name to run a __main__ submodule.

H A 3.49] A ¥ 7 : namespace packages are also supported

Read commands from standard input (sys . stdin). If standard input is a terminal, -1 is implied.

If this option is given, the first element of sys.argv will be "—" and the current directory will be added to the
start of sys.path.

<script>
Execute the Python code contained in script, which must be a filesystem path (absolute or relative) referring to
either a Python file, a directory containinga __main__ .py file, or a zipfile containinga __main__.py file.

If this option is given, the first element of sys.argv will be the script name as given on the command line.

4 Chapter 1. Command line and environment

https://www.python.org/dev/peps/pep-0338

Python Setup and Usage, £A| H{H™ 3.6.15

If the script name refers directly to a Python file, the directory containing that file is added to the start of sys.
path, and the file is executed as the __main___ module.

If the script name refers to a directory or zipfile, the script name is added to the start of sys.path and the
_ _main__ .py file in that location is executed as the __main__ module.

© B7):
runpy . run_path () Equivalent functionality directly available to Python code

If no interface option is given, —1 is implied, sys.argv [0] is an empty string (" ") and the current directory will be
added to the start of sys.path. Also, tab-completion and history editing is automatically enabled, if available on your
platform (see rlcompleter-config).

o B
tut-invoking

WA 3.4 4 ¥ 7 : Automatic enabling of tab-completion and history editing.

1.1.2 Generic options

-?
-h
——help
Print a short description of all command line options.

-V
——-version
Print the Python version number and exit. Example output could be:

Python 3.6.0b2+

When given twice, print more information about the build, like:

Python 3.6.0b2+ (3.6:84a3c5003510+, Oct 26 2016, 02:33:55)
[GCC 6.2.0 20161005]

¥ A 3.6°f 37} The —VV option.

1.1.3 Miscellaneous options

-b
Issue a warning when comparing bytes or bytearray with str or bytes with int. Issue an error when the
option is given twice (-bb).
W A 3.5 A4 ¥ 7 : Affects comparisons of bytes with int.
-B
If given, Python won’t try to write .pyc files on the import of source modules. See also
PYTHONDONTWRITEBYTECODE.
-d
Turn on parser debugging output (for wizards only, depending on compilation options). See also PYTHONDEBUG.
-E

Ignore all PYTHON* environment variables, e.g. PYTHONPATH and PYTHONHOME, that might be set.

1.1. Command line 5

Python Setup and Usage, £A| H{H™ 3.6.15

-i
When a script is passed as first argument or the —c option is used, enter interactive mode after executing the script
or the command, even when sys.stdin does not appear to be a terminal. The PYTHONSTARTUP file is not
read.
This can be useful to inspect global variables or a stack trace when a script raises an exception. See also
PYTHONINSPECT.

-I
Run Python in isolated mode. This also implies -E and -s. In isolated mode sy s . path contains neither the script’
s directory nor the user’s site-packages directory. All PYTHON* environment variables are ignored, too. Further
restrictions may be imposed to prevent the user from injecting malicious code.
W 3.4 =7}

-0
Remove assert statements and any code conditional on the value of ___debug__. Augment the filename for com-
piled (bytecode) files by adding . opt —1 before the . pyc extension (see PEP 488). See also PYTHONOPTIMIZE.
WA 3594 ¥ 7 : Modify . pyc filenames according to PEP 488.

-00
Do -0 and also discard docstrings. Augment the filename for compiled (bytecode) files by adding . opt -2 before
the . pyc extension (see PEP 488).
H A 3.59 4 ¥ 7 : Modify . pyc filenames according to PEP 488.

-q
Don’t display the copyright and version messages even in interactive mode.
B A 3.20] 7}

-R
Kept for compatibility. On Python 3.3 and greater, hash randomization is turned on by default.
On previous versions of Python, this option turns on hash randomization, so that the __hash__ () values of str,
bytes and datetime are (salted) with an unpredictable random value. Although they remain constant within an
individual Python process, they are not predictable between repeated invocations of Python.
Hash randomization is intended to provide protection against a denial-of-service caused by carefully-chosen inputs
that exploit the worst case performance of a dict construction, O(n*2) complexity. See http://www.ocert.org/
advisories/ocert-2011-003.html for details.
PYTHONHASHSEED allows you to set a fixed value for the hash seed secret.
WA 3.2.39 F7}

-s
Don’tadd the user site-packages directorytosys.path.
15 =
PEP 370 — Per user site-packages directory

-S
Disable the import of the module site and the site-dependent manipulations of sys .path that it entails. Also
disable these manipulations if site is explicitly imported later (call site.main () if you want them to be
triggered).

-u
Force the binary layer of the stdout and stderr streams (which is available as their buf fer attribute) to be un-
buffered. The text I/O layer will still be line-buffered if writing to the console, or block-buffered if redirected to a
non-interactive file.

6 Chapter 1. Command line and environment

https://www.python.org/dev/peps/pep-0488
https://www.python.org/dev/peps/pep-0488
https://www.python.org/dev/peps/pep-0488
https://www.python.org/dev/peps/pep-0488
http://www.ocert.org/advisories/ocert-2011-003.html
http://www.ocert.org/advisories/ocert-2011-003.html
https://www.python.org/dev/peps/pep-0370

Python Setup and Usage, £A| H{H™ 3.6.15

See also PYTHONUNBUF FERED.

-v
Print a message each time a module is initialized, showing the place (filename or built-in module) from which it is
loaded. When given twice (—vv), print a message for each file that is checked for when searching for a module.
Also provides information on module cleanup at exit. See also PYTHONVERBOSE.

-W arg
Warning control. Python’s warning machinery by default prints warning messages to sys.stderr. A typical
warning message has the following form:
file:line: category: message
By default, each warning is printed once for each source line where it occurs. This option controls how often
warnings are printed.
Multiple —7 options may be given; when a warning matches more than one option, the action for the last matching
option is performed. Invalid —7 options are ignored (though, a warning message is printed about invalid options
when the first warning is issued).
Warnings can also be controlled from within a Python program using the warnings module.
The simplest form of argument is one of the following action strings (or a unique abbreviation):
ignore Ignore all warnings.
default Explicitly request the default behavior (printing each warning once per source line).
all Print a warning each time it occurs (this may generate many messages if a warning is triggered repeatedly for

the same source line, such as inside a loop).

module Print each warning only the first time it occurs in each module.
once Print each warning only the first time it occurs in the program.
error Raise an exception instead of printing a warning message.
The full form of argument is:
action:message:category:module:line
Here, action is as explained above but only applies to messages that match the remaining fields. Empty fields match
all values; trailing empty fields may be omitted. The message field matches the start of the warning message printed;
this match is case-insensitive. The category field matches the warning category. This must be a class name; the
match tests whether the actual warning category of the message is a subclass of the specified warning category.
The full class name must be given. The module field matches the (fully-qualified) module name; this match is
case-sensitive. The line field matches the line number, where zero matches all line numbers and is thus equivalent
to an omitted line number.
o B
warnings — the warnings module
PEP 230 — Warning framework
PYTHONWARNINGS

-x
Skip the first line of the source, allowing use of non-Unix forms of # ! cmd. This is intended for a DOS specific
hack only.

-X

Reserved for various implementation-specific options. CPython currently defines the following possible values:

1.1. Command line 7

https://www.python.org/dev/peps/pep-0230

Python Setup and Usage, £A| H{H™ 3.6.15

¢ —X faulthandler toenable faulthandler;

e —X showrefcount to output the total reference count and number of used memory blocks when the
program finishes or after each statement in the interactive interpreter. This only works on debug builds.

e -X tracemalloc to start tracing Python memory allocations using the tracemalloc module. By
default, only the most recent frame is stored in a traceback of a trace. Use -X tracemalloc=NFRAME
to start tracing with a traceback limit of NFRAME frames. See the tracemalloc.start () for more
information.

* -X showalloccount to output the total count of allocated objects for each type when the program fin-
ishes. This only works when Python was built with COUNT_ALLOCS defined.

It also allows passing arbitrary values and retrieving them through the sys._xoptions dictionary.
H A 3.2 A ¥ 7 : The —X option was added.

WA 3.3 7}: The -X faulthandler option.

WA 340 F7}: The -X showrefcount and -X tracemalloc options.

WA 3.69] 7}: The -X showalloccount option.

1.1.4 Options you shouldn’t use

-J

Reserved for use by Jython.

1.2 Environment variables

These environment variables influence Python’s behavior, they are processed before the command-line switches other
than -E or -I. It is customary that command-line switches override environmental variables where there is a conflict.

PYTHONHOME

Change the location of the standard Python libraries. By default, the libraries are searched in prefix/1ib/
pythonversion and exec_prefix/lib/pythonversion, where prefix and exec_prefix are
installation-dependent directories, both defaulting to /usr/local.

When PYTHONHOME is set to a single directory, its value replaces both prefixand exec_prefix. To specify
different values for these, set PYTHONHOME to prefix:exec_prefix.

PYTHONPATH

Augment the default search path for module files. The format is the same as the shell’s PATH: one or more directory
pathnames separated by os . pathsep (e.g. colons on Unix or semicolons on Windows). Non-existent directories
are silently ignored.

In addition to normal directories, individual PYTHONPATH entries may refer to zipfiles containing pure Python
modules (in either source or compiled form). Extension modules cannot be imported from zipfiles.

The default search path is installation dependent, but generally begins with prefix/lib/pythonversion
(see PYTHONHOME above). It is always appended to PYTHONPATH.

An additional directory will be inserted in the search path in front of PYTHONPATH as described above under
Interface options. The search path can be manipulated from within a Python program as the variable sys.path.

PYTHONSTARTUP

If this is the name of a readable file, the Python commands in that file are executed before the first prompt is
displayed in interactive mode. The file is executed in the same namespace where interactive commands are executed

Chapter 1. Command line and environment

http://www.jython.org/

Python Setup and Usage, £A| H{H™ 3.6.15

so that objects defined or imported in it can be used without qualification in the interactive session. You can also
change the prompts sys.ps1 and sys.ps2 and the hook sys.__interactivehook___in this file.

PYTHONOPTIMIZE
If this is set to a non-empty string it is equivalent to specifying the —O option. If set to an integer, it is equivalent
to specifying —O multiple times.

PYTHONDEBUG
If this is set to a non-empty string it is equivalent to specifying the —d option. If set to an integer, it is equivalent
to specifying —d multiple times.

PYTHONINSPECT
If this is set to a non-empty string it is equivalent to specifying the —1 option.

This variable can also be modified by Python code using os . environ to force inspect mode on program termi-
nation.

PYTHONUNBUFFERED
If this is set to a non-empty string it is equivalent to specifying the —u option.

PYTHONVERBOSE
If this is set to a non-empty string it is equivalent to specifying the —v option. If set to an integer, it is equivalent
to specifying —v multiple times.

PYTHONCASEOK
If this is set, Python ignores case in import statements. This only works on Windows and OS X.

PYTHONDONTWRITEBYTECODE
If this is set to a non-empty string, Python won’t try to write . pyc files on the import of source modules. This is
equivalent to specifying the —B option.

PYTHONHASHSEED
If this variable is not set or set to random, a random value is used to seed the hashes of str, bytes and datetime
objects.

If PYTHONHASHSEED is set to an integer value, it is used as a fixed seed for generating the hash() of the types
covered by the hash randomization.

Its purpose is to allow repeatable hashing, such as for selftests for the interpreter itself, or to allow a cluster of
python processes to share hash values.

The integer must be a decimal number in the range [0,4294967295]. Specifying the value O will disable hash
randomization.

WA 3.230] 7}

PYTHONIOENCODING
If this is set before running the interpreter, it overrides the encoding used for stdin/stdout/stderr, in the syntax
encodingname:errorhandler. Both the encodingname and the : errorhandler parts are optional
and have the same meaning as in str.encode ().

For stderr, the : errorhandler part is ignored; the handler will always be 'backslashreplace’.
A 3.4 4 ¥ 7 : The encodingname part is now optional.

WA 3.601 4 H 7 : On Windows, the encoding specified by this variable is ignored for interactive console
buffers unless PYTHONLEGACYWINDOWSSTDIO is also specified. Files and pipes redirected through the stan-
dard streams are not affected.

PYTHONNOUSERSITE
If this is set, Python won’t add the user site-packages directoryto sys.path.

o B7]:

1.2. Environment variables 9

Python Setup and Usage, £A| H{H™ 3.6.15

PEP 370 — Per user site-packages directory

PYTHONUSERBASE
Defines the user base directory, which is used to compute the path of the user site-packages
directory and Distutils installation paths for python setup.py install —--user.

© B7):
PEP 370 — Per user site-packages directory

PYTHONEXECUTABLE
If this environment variable is set, sys.argv [0] will be set to its value instead of the value got through the C
runtime. Only works on Mac OS X.

PYTHONWARNINGS

This is equivalent to the —v option. If set to a comma separated string, it is equivalent to specifying —w multiple
times.

PYTHONFAULTHANDLER
If this environment variable is set to a non-empty string, faulthandler.enable () is called at startup: install
a handler for SIGSEGV, SIGFPE, SIGABRT, SIGBUS and SIGILL signals to dump the Python traceback. This
is equivalent to —~X faulthandler option.

B A 3.30] &7}

PYTHONTRACEMALLOC
If this environment variable is set to a non-empty string, start tracing Python memory allocations using the
tracemalloc module. The value of the variable is the maximum number of frames stored in a traceback of
a trace. For example, PYTHONTRACEMALLOC=1 stores only the most recent frame. See the t racemalloc.
start () for more information.

WA 3.40 F71.

PYTHONASYNCIODEBUG
If this environment variable is set to a non-empty string, enable the debug mode of the asyncio module.

WA 340 F7}

PYTHONMALLOC
Set the Python memory allocators and/or install debug hooks.

Set the family of memory allocators used by Python:

e malloc: use the malloc () function of the C library for all domains (PYMEM_DOMAIN_RAW,
PYMEM_DOMAIN_MEM, PYMEM_DOMAIN_OBJ).

e pymalloc: use the pymalloc allocator for PYMEM_DOMAIN_MEM and PYMEM_DOMAIN_ORJ domains
and use the malloc () function for the PYMEM_DOMAIN_RAW domain.

Install debug hooks:
* debug: install debug hooks on top of the default memory allocator
* malloc_debug: same as malloc but also install debug hooks
e pymalloc_debug: same as pymalloc but also install debug hooks

When Python is compiled in release mode, the default is pymalloc. When compiled in debug mode, the default
is pymalloc_debug and the debug hooks are used automatically.

If Python is configured without pymalloc support, pymalloc and pymalloc_debug are not available, the
default is malloc in release mode and malloc_debug in debug mode.

See the PyMem_SetupDebugHooks () function for debug hooks on Python memory allocators.

10 Chapter 1. Command line and environment

https://www.python.org/dev/peps/pep-0370
https://www.python.org/dev/peps/pep-0370

Python Setup and Usage, £A| H{H™ 3.6.15

WA 3.600 F7F.

PYTHONMALLOCSTATS
If set to a non-empty string, Python will print statistics of the pymalloc memory allocator every time a new pymalloc
object arena is created, and on shutdown.

This variable is ignored if the PYTHONMALLOC environment variable is used to force the malloc () allocator
of the C library, or if Python is configured without pymalloc support.

H A 3.6 A ¥ 7 : This variable can now also be used on Python compiled in release mode. It now has no effect
if set to an empty string.

PYTHONLEGACYWINDOWSFSENCODING
If set to a non-empty string, the default filesystem encoding and errors mode will revert to their pre-3.6 values of
(mbcs) and (replace), respectively. Otherwise, the new defaults (utf-8) and (surrogatepass) are used.

This may also be enabled at runtime with sys._enablelegacywindowsfsencoding ().
Availability: Windows
W A 3.69 =7}: See PEP 529 for more details.

PYTHONLEGACYWINDOWSSTDIO
If set to a non-empty string, does not use the new console reader and writer. This means that Unicode characters
will be encoded according to the active console code page, rather than using utf-8.

This variable is ignored if the standard streams are redirected (to files or pipes) rather than referring to console
buffers.

Availability: Windows
B A 3.60 &7}

1.2.1 Debug-mode variables

Setting these variables only has an effect in a debug build of Python, that is, if Python was configured with the
—-—with-pydebug build option.

PYTHONTHREADDEBUG
If set, Python will print threading debug info.

PYTHONDUMPREF'S
If set, Python will dump objects and reference counts still alive after shutting down the interpreter.

1.2. Environment variables 11

https://www.python.org/dev/peps/pep-0529

Python Setup and Usage, £A| H{H™ 3.6.15

12 Chapter 1. Command line and environment

CHAPTER 2

Using Python on Unix platforms

2.1 Getting and installing the latest version of Python

2.1.1 On Linux

Python comes preinstalled on most Linux distributions, and is available as a package on all others. However there are
certain features you might want to use that are not available on your distro’s package. You can easily compile the latest
version of Python from source.

In the event that Python doesn’t come preinstalled and isn’t in the repositories as well, you can easily make packages for
your own distro. Have a look at the following links:

o ®B7]:
https://www.debian.org/doc/manuals/maint-guide/first.en.html for Debian users
https://en.opensuse.org/Portal:Packaging for OpenSuse users

https://docs.fedoraproject.org/en-US/Fedora_Draft_Documentation/0.1/html/RPM_Guide/ch-creating-rpms.html
for Fedora users

http://www.slackbook.org/html/package-management-making-packages.html for Slackware users

2.1.2 On FreeBSD and OpenBSD

¢ FreeBSD users, to add the package use:

pkg install python3

* OpenBSD users, to add the package use:

pkg_add -r python

pkg_add ftp://ftp.openbsd.org/pub/OpenBSD/4.2/packages/<insert your architecture._

here 15 thon ersion .tk:] (D]—% ﬁ]()]z]oﬂ 7:“_/_“.;)

13

https://www.debian.org/doc/manuals/maint-guide/first.en.html
https://en.opensuse.org/Portal:Packaging
https://docs.fedoraproject.org/en-US/Fedora_Draft_Documentation/0.1/html/RPM_Guide/ch-creating-rpms.html
http://www.slackbook.org/html/package-management-making-packages.html

Python Setup and Usage, £A| H{H™ 3.6.15

(o] A sl o] A o A A<)
l]

For example 1386 users get the 2.5.1 version of Python using:

pkg_add ftp://ftp.openbsd.org/pub/OpenBSD/4.2/packages/i386/python-2.5.1p2.tgz

2.1.3 On OpenSolaris

You can get Python from OpenCSW. Various versions of Python are available and can be installed with e.g. pkgutil
-1 python2T7.

2.2 Building Python

If you want to compile CPython yourself, first thing you should do is get the source. You can download either the latest
release’s source or just grab a fresh clone. (If you want to contribute patches, you will need a clone.)

The build process consists in the usual

./configure
make
make install

invocations. Configuration options and caveats for specific Unix platforms are extensively documented in the
README.rst file in the root of the Python source tree.

7 3: make install can overwrite or masquerade the python3 binary. make altinstall is therefore
recommended instead of make install since it only installs exec_prefix/bin/pythonversion.

2.3 Python-related paths and files

These are subject to difference depending on local installation conventions; prefix (${prefix})andexec_prefix
(${exec_prefix}) are installation-dependent and should be interpreted as for GNU software; they may be the same.

For example, on most Linux systems, the default for both is /usr.

File/directory Meaning

exec_prefix/bin/python3 Recommended location of the interpreter.
prefix/lib/pythonversion, Recommended locations of the directories containing the standard
exec_prefix/lib/pythonversion | modules.

prefix/include/pythonversion, Recommended locations of the directories containing the include
exec_prefix/include/ files needed for developing Python extensions and embedding the in-
pythonversion terpreter.

14 Chapter 2. Using Python on Unix platforms

https://www.opencsw.org/
https://www.python.org/downloads/source/
https://devguide.python.org/setup/#getting-the-source-code
https://github.com/python/cpython/tree/3.6/README.rst

Python Setup and Usage, £A| H{™ 3.6.15

2.4 Miscellaneous

To easily use Python scripts on Unix, you need to make them executable, e.g. with

’$ chmod +x script ‘

and put an appropriate Shebang line at the top of the script. A good choice is usually

’ #!/usr/bin/env python3 ‘

which searches for the Python interpreter in the whole PATH. However, some Unices may not have the env command,
so you may need to hardcode /usr/bin/python3 as the interpreter path.

To use shell commands in your Python scripts, look at the subprocess module.

2.5 Editors and IDEs

There are a number of IDEs that support Python programming language. Many editors and IDEs provide syntax high-
lighting, debugging tools, and PEP 8 checks.

Please go to Python Editors and Integrated Development Environments for a comprehensive list.

2.4. Miscellaneous 15

https://www.python.org/dev/peps/pep-0008
https://wiki.python.org/moin/PythonEditors
https://wiki.python.org/moin/IntegratedDevelopmentEnvironments

Python Setup and Usage, £A| H{H™ 3.6.15

16 Chapter 2. Using Python on Unix platforms

CHAPTER 3

Using Python on Windows

This document aims to give an overview of Windows-specific behaviour you should know about when using Python on
Microsoft Windows.

3.1 Installing Python

Unlike most Unix systems and services, Windows does not include a system supported installation of Python. To make
Python available, the CPython team has compiled Windows installers (MSI packages) with every release for many years.
These installers are primarily intended to add a per-user installation of Python, with the core interpreter and library being
used by a single user. The installer is also able to install for all users of a single machine, and a separate ZIP file is available
for application-local distributions.

3.1.1 Supported Versions

As specified in PEP 11, a Python release only supports a Windows platform while Microsoft considers the platform under
extended support. This means that Python 3.6 supports Windows Vista and newer. If you require Windows XP support
then please install Python 3.4.

3.1.2 Installation Steps

Four Python 3.6 installers are available for download - two each for the 32-bit and 64-bit versions of the interpreter. The
web installer is a small initial download, and it will automatically download the required components as necessary. The
offline installer includes the components necessary for a default installation and only requires an internet connection for
optional features. See Installing Without Downloading for other ways to avoid downloading during installation.

After starting the installer, one of two options may be selected:

17

https://www.python.org/download/releases/
https://www.python.org/dev/peps/pep-0011

Python Setup and Usage, £A| H{H™ 3.6.15

@ Python 3.5.0 (32-bit) Setup

Install Python 3.5.0 (32-bit)

Select Install Mow to install Python with default settings, or choose Customize to

enable or disable features.

% Install Now

C:h Users), <\ AppDatat Local\Pregrams Python' Python35-32

Includes IDLE, pip and documentaticn
Creates shortcuts and file associations

— Customize installation
Choose location and features

python
for Inzstall launcher for all users (recommended)

Wiﬂd(]ws [Add Python 3.5 to PATH

If you select (Install Now) :

Cancel

* You will not need to be an administrator (unless a system update for the C Runtime Library is required or you

install the Python Launcher for Windows for all users)

» Python will be installed into your user directory

e The Python Launcher for Windows will be installed according to the option at the bottom of the first page

¢ The standard library, test suite, launcher and pip will be installed
* If selected, the install directory will be added to your PATH

« Shortcuts will only be visible for the current user

Selecting (Customize installation) will allow you to select the features to install, the installation location and other options
or post-install actions. To install debugging symbols or binaries, you will need to use this option.

To perform an all-users installation, you should select ¢ Customize installation) . In this case:

* You may be required to provide administrative credentials or approval

* Python will be installed into the Program Files directory

» The Python Launcher for Windows will be installed into the Windows directory

» Optional features may be selected during installation
¢ The standard library can be pre-compiled to bytecode
* If selected, the install directory will be added to the system PATH

¢ Shortcuts are available for all users

18 Chapter 3

. Using Python on Windows

Python Setup and Usage, £A| H{H™ 3.6.15

3.1.3 Removing the MAX_PATH Limitation

Windows historically has limited path lengths to 260 characters. This meant that paths longer than this would not resolve
and errors would result.

In the latest versions of Windows, this limitation can be expanded to approximately 32,000 characters. Your administrator
will need to activate the { Enable Win32 long paths) group policy, or set the registry value HKEY_LOCAL_MACHINE\
SYSTEM\CurrentControlSet\Control\FileSystem@LongPathsEnabledto 1.

This allows the open () function, the os module and most other path functionality to accept and return paths longer
than 260 characters when using strings. (Use of bytes as paths is deprecated on Windows, and this feature is not available
when using bytes.)

After changing the above option, no further configuration is required.

H A 3.69] A ¥ 7 : Support for long paths was enabled in Python.

3.1.4 Installing Without Ul

All of the options available in the installer UI can also be specified from the command line, allowing scripted installers to
replicate an installation on many machines without user interaction. These options may also be set without suppressing
the Ul in order to change some of the defaults.

To completely hide the installer UT and install Python silently, pass the /quiet option. To skip past the user interaction
but still display progress and errors, pass the /passive option. The /uninstall option may be passed to immediately
begin removing Python - no prompt will be displayed.

All other options are passed as name=value, where the value is usually O to disable a feature, 1 to enable a feature, or
a path. The full list of available options is shown below.

3.1. Installing Python 19

Python Setup and Usage, £A| H{H™ 3.6.15

Name Description Default
InstallAl- Perform a system-wide installation. 0
1Users
TargetDir The installation directory Selected based on InstallAllUsers
DefaultAl- The default installation directory forall- | $ProgramFiles%$\Python X.Y or
IUsersTarget- user installs $ProgramFiles (x86) $\Python X.Y
Dir
DefaultJust- The default install directory for just- | $LocalAppData%\Programs\PythonXY or
ForMeTarget- | for-me installs %$LocalAppData%\Programs\PythonXY-32
Dir
DefaultCus- The default custom install directory dis- | (empty)
tomTargetDir | played in the Ul
AssociateFiles | Create file associations if the launcher | 1
is also installed.
CompileAll Compile all . py files to .pyc. 0
PrependPath Add install and Scripts directories to | O
PATHand .PY to PATHEXT
Shortcuts Create shortcuts for the interpreter, | 1
documentation and IDLE if installed.
Include_doc Install Python manual 1
Include_debug | Install debug binaries 0
Include_dev Install developer headers and libraries 1
Include_exe Install python.exe and related files | 1
In- Install Python Launcher for Windows. | 1
clude_launcher
Install- Installs Python Launcher for Windows | 1
Launcher- for all users.
AllUsers
Include_lib Install standard library and extension | 1
modules
Include_pip Install bundled pip and setuptools 1
In- Install debugging symbols (*.pdb) 0
clude_symbols
Include_tcltk Install Tcl/Tk support and IDLE 1
Include_test Install standard library test suite 1
Include_tools Install utility scripts 1
LauncherOnly | Only installs the launcher. This will | O
override most other options.
Simplelnstall Disable most install UL 0
Simpleln- A custom message to display when the | (empty)
stallDescrip- simplified install UT is used.
tion

For example, to silently install a default, system-wide Python installation, you could use the following command (from an
elevated command prompt):

python-3.6.0.exe /quiet InstallAllUsers=1 PrependPath=1 Include_test=0

To allow users to easily install a personal copy of Python without the test suite, you could provide a shortcut with the
following command. This will display a simplified initial page and disallow customization:

20

Chapter 3. Using Python on Windows

Python Setup and Usage, £A| H{H™ 3.6.15

python-3.6.0.exe InstallAllUsers=0 Include_launcher=0 Include_test=0
SimpleInstall=1 SimplelInstallDescription="Just for me, no test suite."

(Note that omitting the launcher also omits file associations, and is only recommended for per-user installs when there is
also a system-wide installation that included the launcher.)

The options listed above can also be provided in a file named unattend.xml alongside the executable. This file
specifies a list of options and values. When a value is provided as an attribute, it will be converted to a number if possible.
Values provided as element text are always left as strings. This example file sets the same options as the previous example:

<Options>

<Option Name="InstallAllUsers" Value="no" />

<Option Name="Include_launcher" Value="0" />

<Option Name="Include_test" Value="no" />

<Option Name="SimpleInstall" Value="yes" />

<Option Name="SimplelInstallDescription">Just for me, no test suite</Option>
</Options>

3.1.5 Installing Without Downloading

As some features of Python are not included in the initial installer download, selecting those features may require an
internet connection. To avoid this need, all possible components may be downloaded on-demand to create a complete
layout that will no longer require an internet connection regardless of the selected features. Note that this download may
be bigger than required, but where a large number of installations are going to be performed it is very useful to have a
locally cached copy.

Execute the following command from Command Prompt to download all possible required files. Remember to substitute
python-3.6.0.exe for the actual name of your installer, and to create layouts in their own directories to avoid
collisions between files with the same name.

python-3.6.0.exe /layout [optional target directory]

You may also specify the /quiet option to hide the progress display.

3.1.6 Modifying an install

Once Python has been installed, you can add or remove features through the Programs and Features tool that is part of
Windows. Select the Python entry and choose ¢ Uninstall/Change) to open the installer in maintenance mode.

{Modity) allows you to add or remove features by modifying the checkboxes - unchanged checkboxes will not install or
remove anything. Some options cannot be changed in this mode, such as the install directory; to modify these, you will
need to remove and then reinstall Python completely.

{Repair) will verify all the files that should be installed using the current settings and replace any that have been removed
or modified.

{Uninstall) will remove Python entirely, with the exception of the Python Launcher for Windows, which has its own
entry in Programs and Features.

3.1. Installing Python 21

Python Setup and Usage, £A| H{H™ 3.6.15

3.1.7 Other Platforms

With ongoing development of Python, some platforms that used to be supported earlier are no longer supported (due to
the lack of users or developers). Check PEP 11 for details on all unsupported platforms.

¢ Windows CE is still supported.

¢ The Cygwin installer offers to install the Python interpreter as well (cf. Cygwin package source, Maintainer releases)
See Python for Windows for detailed information about platforms with pre-compiled installers.
o X7
Python on XP (7 Minutes to {Hello World!)) by Richard Dooling, 2006

Installing on Windows in ¢ Dive into Python: Python from novice to pro) by Mark Pilgrim, 2004, ISBN 1-59059-
356-1

For Windows users in (Installing Python) in (A Byte of Python) by Swaroop C H, 2003

3.2 Alternative bundles

Besides the standard CPython distribution, there are modified packages including additional functionality. The following
is a list of popular versions and their key features:

ActivePython Installer with multi-platform compatibility, documentation, PyWin32

Anaconda Popular scientific modules (such as numpy, scipy and pandas) and the conda package manager.
Canopy A (comprehensive Python analysis environment) with editors and other development tools.
WinPython Windows-specific distribution with prebuilt scientific packages and tools for building packages.

Note that these packages may not include the latest versions of Python or other libraries, and are not maintained or
supported by the core Python team.

3.3 Configuring Python

To run Python conveniently from a command prompt, you might consider changing some default environment variables
in Windows. While the installer provides an option to configure the PATH and PATHEXT variables for you, this is only
reliable for a single, system-wide installation. If you regularly use multiple versions of Python, consider using the Python
Launcher for Windows.

3.3.1 Excursus: Setting environment variables

Windows allows environment variables to be configured permanently at both the User level and the System level, or
temporarily in a command prompt.

To temporarily set environment variables, open Command Prompt and use the set command:

C:\>set PATH=C:\Program Files\Python 3.6; $PATH%
C:\>set PYTHONPATH=%PYTHONPATHS;C:\My_python_lib
C:\>python

22 Chapter 3. Using Python on Windows

https://www.python.org/dev/peps/pep-0011
http://pythonce.sourceforge.net/
https://cygwin.com/
ftp://ftp.uni-erlangen.de/pub/pc/gnuwin32/cygwin/mirrors/cygnus/release/python
http://www.tishler.net/jason/software/python/
https://www.python.org/downloads/windows/
http://dooling.com/index.php/2006/03/14/python-on-xp-7-minutes-to-hello-world/
http://www.diveintopython.net/installing_python/windows.html
http://www.diveintopython.net/
http://python.swaroopch.com/installation.html#installation-on-windows
http://python.swaroopch.com/
https://www.activestate.com/activepython/
https://www.continuum.io/downloads/
https://www.enthought.com/products/canopy/
https://winpython.github.io/

Python Setup and Usage, £A| H{™ 3.6.15

These changes will apply to any further commands executed in that console, and will be inherited by any applications
started from the console.

Including the variable name within percent signs will expand to the existing value, allowing you to add your new value at
either the start or the end. Modifying PATH by adding the directory containing python . exe to the start is a common
way to ensure the correct version of Python is launched.

To permanently modify the default environment variables, click Start and search for (edit environment variables) , or
open System properties, Advanced system settings and click the Environment Variables button. In this dialog, you can add
or modify User and System variables. To change System variables, you need non-restricted access to your machine (i.e.
Administrator rights).

ZF3: Windows will concatenate User variables after System variables, which may cause unexpected results when
modifying PATH.

The PYTHONPATH variable is used by all versions of Python 2 and Python 3, so you should not permanently configure
this variable unless it only includes code that is compatible with all of your installed Python versions.

o ®H7]:
https://support.microsoft.com/kbh/100843 Environment variables in Windows NT

https://technet.microsoft.com/en-us/library/cc754250.aspx The SET command, for temporarily modifying environ-
ment variables

https://technet.microsoft.com/en-us/library/cc755104.aspx The SETX command, for permanently modifying envi-
ronment variables

https://support.microsoft.com/kb/310519 How To Manage Environment Variables in Windows XP

https://www.chem.gla.ac.uk/~louis/software/faq/q1.html Setting Environment variables, Louis J. Farrugia

3.3.2 Finding the Python executable

B 3.5004 HA.

Besides using the automatically created start menu entry for the Python interpreter, you might want to start Python in the
command prompt. The installer has an option to set that up for you.

On the first page of the installer, an option labelled { Add Python to PATH) may be selected to have the installer add the
install location into the PATH. The location of the Scripts\ folder is also added. This allows you to type python to
run the interpreter, and pip for the package installer. Thus, you can also execute your scripts with command line options,
see Command line documentation.

If you don’t enable this option at install time, you can always re-run the installer, select Modify, and enable it. Alterna-
tively, you can manually modify the PATH using the directions in Excursus: Setting environment variables. You need to
set your PATH environment variable to include the directory of your Python installation, delimited by a semicolon from
other entries. An example variable could look like this (assuming the first two entries already existed):

C:\WINDOWS\system32;C:\WINDOWS;C:\Program Files\Python 3.6

3.3. Configuring Python 23

https://support.microsoft.com/kb/100843
https://technet.microsoft.com/en-us/library/cc754250.aspx
https://technet.microsoft.com/en-us/library/cc755104.aspx
https://support.microsoft.com/kb/310519
https://www.chem.gla.ac.uk/~louis/software/faq/q1.html

Python Setup and Usage, £A| H{H™ 3.6.15

3.4 Python Launcher for Windows

H A 330 27}

The Python launcher for Windows is a utility which aids in locating and executing of different Python versions. It allows
scripts (or the command-line) to indicate a preference for a specific Python version, and will locate and execute that
version.

Unlike the PATH variable, the launcher will correctly select the most appropriate version of Python. It will prefer per-user
installations over system-wide ones, and orders by language version rather than using the most recently installed version.

3.4.1 Getting started
From the command-line

B A 3.6004 WA,

System-wide installations of Python 3.3 and later will put the launcher on your PATH. The launcher is compatible with
all available versions of Python, so it does not matter which version is installed. To check that the launcher is available,
execute the following command in Command Prompt:

1%

You should find that the latest version of Python you have installed is started - it can be exited as normal, and any additional
command-line arguments specified will be sent directly to Python.

If you have multiple versions of Python installed (e.g., 2.7 and 3.6) you will have noticed that Python 3.6 was started - to
launch Python 2.7, try the command:

’py -2.7

If you want the latest version of Python 2.x you have installed, try the command:

’py -2

You should find the latest version of Python 2.x starts.

If you see the following error, you do not have the launcher installed:

'py' is not recognized as an internal or external command,
operable program or batch file.

Per-user installations of Python do not add the launcher to PATH unless the option was selected on installation.

Virtual environments

WA 3.5 7}

If the launcher is run with no explicit Python version specification, and a virtual environment (created with the standard
library venv module or the external virtualenv tool) active, the launcher will run the virtual environment’s inter-
preter rather than the global one. To run the global interpreter, either deactivate the virtual environment, or explicitly
specify the global Python version.

24 Chapter 3. Using Python on Windows

Python Setup and Usage, £A| H{H™ 3.6.15

From a script

Let’s create a test Python script - create a file called hel1lo . py with the following contents

#! python
import sys
sys.stdout.write("hello from Python \n" % (sys.version,))

From the directory in which hello.py lives, execute the command:

’py hello.py

You should notice the version number of your latest Python 2.x installation is printed. Now try changing the first line to
be:

’#/ python3

Re-executing the command should now print the latest Python 3.x information. As with the above command-line exam-
ples, you can specify a more explicit version qualifier. Assuming you have Python 2.6 installed, try changing the first line
to#! python2. 6 and you should find the 2.6 version information printed.

Note that unlike interactive use, a bare ¢ python) will use the latest version of Python 2.x that you have installed. This is
for backward compatibility and for compatibility with Unix, where the command python typically refers to Python 2.

From file associations

The launcher should have been associated with Python files (i.e. .py, .pyw, .pyc files) when it was installed. This
means that when you double-click on one of these files from Windows explorer the launcher will be used, and therefore
you can use the same facilities described above to have the script specify the version which should be used.

The key benefit of this is that a single launcher can support multiple Python versions at the same time depending on the
contents of the first line.

3.4.2 Shebang Lines

If the first line of a script file starts with # !, it is known as a (shebang) line. Linux and other Unix like operating
systems have native support for such lines and they are commonly used on such systems to indicate how a script should
be executed. This launcher allows the same facilities to be used with Python scripts on Windows and the examples above
demonstrate their use.

To allow shebang lines in Python scripts to be portable between Unix and Windows, this launcher supports a number of
(virtual) commands to specify which interpreter to use. The supported virtual commands are:

e /usr/bin/env python

e /usr/bin/python

e /usr/local/bin/python
* python

For example, if the first line of your script starts with

#! /usr/bin/python

The default Python will be located and used. As many Python scripts written to work on Unix will already have this
line, you should find these scripts can be used by the launcher without modification. If you are writing a new script on
Windows which you hope will be useful on Unix, you should use one of the shebang lines starting with /usr.

3.4. Python Launcher for Windows 25

Python Setup and Usage, £A| H{H™ 3.6.15

Any of the above virtual commands can be suffixed with an explicit version (either just the major version, or the major
and minor version) - for example /usr/bin/python2.7 - which will cause that specific version to be located and
used.

The /usr/bin/env form of shebang line has one further special property. Before looking for installed Python inter-
preters, this form will search the executable PATH for a Python executable. This corresponds to the behaviour of the
Unix env program, which performs a PATH search.

3.4.3 Arguments in shebang lines

The shebang lines can also specify additional options to be passed to the Python interpreter. For example, if you have a
shebang line:

#! /usr/bin/python -v

Then Python will be started with the —v option

3.4.4 Customization

Customization via INI files

Two .ini files will be searched by the launcher - py . ini in the current user’s (application data) directory (i.e. the
directory returned by calling the Windows function SHGetFolderPath with CSIDL_LOCAL_APPDATA) and py .
ini in the same directory as the launcher. The same .ini files are used for both the (console) version of the launcher
(i.e. py.exe) and for the (windows) version (i.e. pyw.exe).

Customization specified in the (application directory) will have precedence over the one next to the executable, so a
user, who may not have write access to the .ini file next to the launcher, can override commands in that global .ini file.

Customizing default Python versions

In some cases, a version qualifier can be included in a command to dictate which version of Python will be used by the
command. A version qualifier starts with a major version number and can optionally be followed by a period ((.)) and a
minor version specifier. If the minor qualifier is specified, it may optionally be followed by (-32) to indicate the 32-bit
implementation of that version be used.

For example, a shebang line of # ! python has no version qualifier, while # ! python3 has a version qualifier which
specifies only a major version.

If no version qualifiers are found in a command, the environment variable PY_PYTHON can be set to specify the default
version qualifier - the default value is 2) . Note this value could specify just a major version (e.g. 2)) or a major.minor
qualifier (e.g. (2.6)), or even major.minor-32.

If no minor version qualifiers are found, the environment variable PY_PYTHON{major} (where {major} is the
current major version qualifier as determined above) can be set to specify the full version. If no such option is found, the
launcher will enumerate the installed Python versions and use the latest minor release found for the major version, which
is likely, although not guaranteed, to be the most recently installed version in that family.

On 64-bit Windows with both 32-bit and 64-bit implementations of the same (major.minor) Python version installed, the
64-bit version will always be preferred. This will be true for both 32-bit and 64-bit implementations of the launcher -
a 32-bit launcher will prefer to execute a 64-bit Python installation of the specified version if available. This is so the
behavior of the launcher can be predicted knowing only what versions are installed on the PC and without regard to the
order in which they were installed (i.e., without knowing whether a 32 or 64-bit version of Python and corresponding

26 Chapter 3. Using Python on Windows

Python Setup and Usage, £A| H{H™ 3.6.15

launcher was installed last). As noted above, an optional (-32) suffix can be used on a version specifier to change this
behaviour.

Examples:

« If no relevant options are set, the commands python and python?2 will use the latest Python 2.x version installed
and the command python3 will use the latest Python 3.x installed.

¢ The commands python3. 1 and python2 . 7 will not consult any options at all as the versions are fully specified.
e If PY_PYTHON=3, the commands python and python3 will both use the latest installed Python 3 version.

e IfPY_PYTHON=3.1-32, the command python will use the 32-bit implementation of 3.1 whereas the command
python3 will use the latest installed Python (PY_PYTHON was not considered at all as a major version was
specified.)

e If PY_PYTHON=3 and PY_PYTHON3=3. 1, the commands python and python3 will both use specifically
3.1

In addition to environment variables, the same settings can be configured in the .INI file used by the launcher. The section
in the INIfile is called [defaults] and the key name will be the same as the environment variables without the leading
PY_ prefix (and note that the key names in the INI file are case insensitive.) The contents of an environment variable will
override things specified in the INI file.

For example:

 Setting PY_PYTHON=3. 1 is equivalent to the INI file containing:

[defaults]
python=3.1

e Setting PY_PYTHON=3 and PY_PYTHON3=3. 1 is equivalent to the INI file containing:

[defaults]
python=3
python3=3.1

3.4.5 Diagnostics

If an environment variable PYLAUNCH_DEBUG is set (to any value), the launcher will print diagnostic information to
stderr (i.e. to the console). While this information manages to be simultaneously verbose and terse, it should allow you
to see what versions of Python were located, why a particular version was chosen and the exact command-line used to
execute the target Python.

3.5 Finding modules

Python usually stores its library (and thereby your site-packages folder) in the installation directory. So, if you had
installed Python to C:\Python)\, the default library would reside in C: \Python\Lib\ and third-party modules
should be stored in C: \Python\Lib\site-packages\.

To completely override sys .path, create a . _pth file with the same name as the DLL (python36._pth) or the
executable (python._pth) and specify one line for each path to add to sys . path. The file based on the DLL name
overrides the one based on the executable, which allows paths to be restricted for any program loading the runtime if
desired.

When the file exists, all registry and environment variables are ignored, isolated mode is enabled, and s it e is notimported
unless one line in the file specifies import site. Blank paths and lines starting with # are ignored. Each path may

3.5. Finding modules 27

Python Setup and Usage, £A| H{H™ 3.6.15

be absolute or relative to the location of the file. Import statements other than to site are not permitted, and arbitrary
code cannot be specified.

Note that . pth files (without leading underscore) will be processed normally by the site module.

When no ._pth file is found, this is how sys.path is populated on Windows:

An empty entry is added at the start, which corresponds to the current directory.

If the environment variable P Y THONPA TH exists, as described in Environment variables, its entries are added next.
Note that on Windows, paths in this variable must be separated by semicolons, to distinguish them from the colon
used in drive identifiers (C: \ etc.).

Additional (application paths) can be added in the registry as subkeys of \SOFTWARE\
Python\PythonCore{version}\PythonPath under both the HKEY_CURRENT_USER and
HKEY_LOCAL_MACHINE hives. Subkeys which have semicolon-delimited path strings as their default
value will cause each path to be added to sys.path. (Note that all known installers only use HKLM, so HKCU
is typically empty.)

If the environment variable PYTHONHOME is set, it is assumed as {Python Home). Otherwise, the path of
the main Python executable is used to locate a (landmark file) (either Lib\os.py or pythonXY.zip) to
deduce the {Python Home) . If a Python home is found, the relevant sub-directories added to sys.path (Lib,
plat-win, etc) are based on that folder. Otherwise, the core Python path is constructed from the PythonPath
stored in the registry.

If the Python Home cannot be located, no PYTHONPATH is specified in the environment, and no registry entries
can be found, a default path with relative entries is used (e.g. . \Lib; .\plat—-win, etc).

If a pyvenv.cfqg file is found alongside the main executable or in the directory one level above the executable, the
following variations apply:

If home is an absolute path and PY THONHOME is not set, this path is used instead of the path to the main executable
when deducing the home location.

The end result of all this is:

When running python.exe, or any other .exe in the main Python directory (either an installed version, or di-
rectly from the PCbuild directory), the core path is deduced, and the core paths in the registry are ignored. Other
{application paths) in the registry are always read.

When Python is hosted in another .exe (different directory, embedded via COM, etc), the (Python Home) will
not be deduced, so the core path from the registry is used. Other (application paths) in the registry are always
read.

If Python can’t find its home and there are no registry value (frozen .exe, some very strange installation setup) you
get a path with some default, but relative, paths.

For those who want to bundle Python into their application or distribution, the following advice will prevent conflicts with
other installations:

Include a . _pth file alongside your executable containing the directories to include. This will ignore paths listed
in the registry and environment variables, and also ignore site unless import site is listed.

If you are loading python3.d11 or python36.d11 in your own executable, explicitly call Py_ SetPath ()
or (atleast) Py_SetProgramName () before Py_TInitialize ().

Clear and/or overwrite PYTHONPATH and set PYTHONHOME before launching python . exe from your appli-
cation.

If you cannot use the previous suggestions (for example, you are a distribution that allows people to run python.
exe directly), ensure that the landmark file (Lib\os . py) exists in your install directory. (Note that it will not
be detected inside a ZIP file, but a correctly named ZIP file will be detected instead.)

28

Chapter 3. Using Python on Windows

Python Setup and Usage, £A| H{™ 3.6.15

These will ensure that the files in a system-wide installation will not take precedence over the copy of the standard library
bundled with your application. Otherwise, your users may experience problems using your application. Note that the first
suggestion is the best, as the others may still be susceptible to non-standard paths in the registry and user site-packages.

WA 3604 ¥
e Adds ._pth file support and removes applocal option from pyvenv.cfg.
e Adds pythonXX. zip as a potential landmark when directly adjacent to the executable.

A 3.65E 9 X : Modules specified in the registry under Modules (not PythonPath) may be
imported by importlib.machinery.WindowsRegistryFinder. This finder is enabled on Win-
dows in 3.6.0 and earlier, but may need to be explicitly added to sys.meta_path in the future.

3.6 Additional modules

Even though Python aims to be portable among all platforms, there are features that are unique to Windows. A couple of
modules, both in the standard library and external, and snippets exist to use these features.

The Windows-specific standard modules are documented in mswin-specific-services.

3.6.1 PyWin32

The PyWin32 module by Mark Hammond is a collection of modules for advanced Windows-specific support. This
includes utilities for:

* Component Object Model (COM)
e Win32 API calls
* Registry
* Event log
¢ Microsoft Foundation Classes (MFC) user interfaces
PythonWin is a sample MFC application shipped with PyWin32. It is an embeddable IDE with a built-in debugger.
o B
Win32 How Do I-*+? by Tim Golden
Python and COM by David and Paul Boddie

3.6.2 cx_Freeze

cx_Freeze is a distutils extension (see extending-distutils) which wraps Python scripts into executable Windows
programs (*. exe files). When you have done this, you can distribute your application without requiring your users to
install Python.

3.6. Additional modules 29

https://pypi.org/project/pywin32
https://www.microsoft.com/com/
https://msdn.microsoft.com/en-us/library/fe1cf721%28VS.80%29.aspx
https://web.archive.org/web/20060524042422/https://www.python.org/windows/pythonwin/
http://timgolden.me.uk/python/win32_how_do_i.html
http://www.boddie.org.uk/python/COM.html
http://cx-freeze.sourceforge.net/

Python Setup and Usage, £A| H{H™ 3.6.15

3.6.3 WConio

Since Python’s advanced terminal handling layer, curses, is restricted to Unix-like systems, there is a library exclusive
to Windows as well: Windows Console I/O for Python.

WConio is a wrapper for Turbo-C’s CONIO. H, used to create text user interfaces.

3.7 Compiling Python on Windows

If you want to compile CPython yourself, first thing you should do is get the source. You can download either the latest
release’s source or just grab a fresh checkout.

The source tree contains a build solution and project files for Microsoft Visual Studio 2015, which is the compiler used
to build the official Python releases. These files are in the PCbuild directory.

Check PCbuild/readme. txt for general information on the build process.
For extension modules, consult building-on-windows.
o H7]:

Python + Windows + distutils + SWIG + gee MinGW or (Creating Python extensions in C/C++ with SWIG and
compiling them with MinGW gcc under Windows) or (Installing Python extension with distutils and without
Microsoft Visual C++) by Sébastien Sauvage, 2003

MingW — Python extensions by Trent Apted et al, 2007

3.8 Embedded Distribution

W7 3.5 F7}

The embedded distribution is a ZIP file containing a minimal Python environment. It is intended for acting as part of
another application, rather than being directly accessed by end-users.

When extracted, the embedded distribution is (almost) fully isolated from the user’s system, including environment
variables, system registry settings, and installed packages. The standard library is included as pre-compiled and optimized
.pyc files in a ZIP, and python3.d11, python36.d1l1, python.exe and pythonw.exe are all provided.
Tecl/tk (including all dependants, such as Idle), pip and the Python documentation are not included.

Z}31: The embedded distribution does not include the Microsoft C Runtime and it is the responsibility of the application
installer to provide this. The runtime may have already been installed on a user’s system previously or automatically via
Windows Update, and can be detected by finding ucrtbase.dl1l in the system directory.

Third-party packages should be installed by the application installer alongside the embedded distribution. Using pip to
manage dependencies as for a regular Python installation is not supported with this distribution, though with some care it
may be possible to include and use pip for automatic updates. In general, third-party packages should be treated as part
of the application ({ vendoring)) so that the developer can ensure compatibility with newer versions before providing
updates to users.

The two recommended use cases for this distribution are described below.

30 Chapter 3. Using Python on Windows

http://newcenturycomputers.net/projects/wconio.html
https://www.python.org/downloads/source/
https://devguide.python.org/setup/#getting-the-source-code
http://sebsauvage.net/python/mingw.html
http://oldwiki.mingw.org/index.php/Python%20extensions
https://www.microsoft.com/en-us/download/details.aspx?id=48145

Python Setup and Usage, £A| H{H™ 3.6.15

3.8.1 Python Application

An application written in Python does not necessarily require users to be aware of that fact. The embedded distribution
may be used in this case to include a private version of Python in an install package. Depending on how transparent it
should be (or conversely, how professional it should appear), there are two options.

Using a specialized executable as a launcher requires some coding, but provides the most transparent experience for
users. With a customized launcher, there are no obvious indications that the program is running on Python: icons can be
customized, company and version information can be specified, and file associations behave properly. In most cases, a
custom launcher should simply be able to call Py_Main with a hard-coded command line.

The simpler approach is to provide a batch file or generated shortcut that directly calls the python.exe or pythonw.
exe with the required command-line arguments. In this case, the application will appear to be Python and not its actual
name, and users may have trouble distinguishing it from other running Python processes or file associations.

With the latter approach, packages should be installed as directories alongside the Python executable to ensure they are
available on the path. With the specialized launcher, packages can be located in other locations as there is an opportunity
to specify the search path before launching the application.

3.8.2 Embedding Python

Applications written in native code often require some form of scripting language, and the embedded Python distribution
can be used for this purpose. In general, the majority of the application is in native code, and some part will either invoke
python.exe or directly use python3.d11. For either case, extracting the embedded distribution to a subdirectory
of the application installation is sufficient to provide a loadable Python interpreter.

As with the application use, packages can be installed to any location as there is an opportunity to specify search paths
before initializing the interpreter. Otherwise, there is no fundamental differences between using the embedded distribution
and a regular installation.

3.9 Other resources

o B7):

Python Programming On Win32 (Help for Windows Programmers) by Mark Hammond and Andy Robinson, O’
Reilly Media, 2000, ISBN 1-56592-621-8

A Python for Windows Tutorial by Amanda Birmingham, 2004
PEP 397 - Python launcher for Windows The proposal for the launcher to be included in the Python distribution.

3.9. Other resources 31

http://shop.oreilly.com/product/9781565926219.do
http://www.imladris.com/Scripts/PythonForWindows.html
https://www.python.org/dev/peps/pep-0397

Python Setup and Usage, £A| H{H™ 3.6.15

32

Chapter 3. Using Python on Windows

cHAPTER 4

Using Python on a Macintosh

Author Bob Savage <bobsavage @mac.com>

Python on a Macintosh running Mac OS X is in principle very similar to Python on any other Unix platform, but there
are a number of additional features such as the IDE and the Package Manager that are worth pointing out.

4.1 Getting and Installing MacPython

Mac OS X 10.8 comes with Python 2.7 pre-installed by Apple. If you wish, you are invited to install the most recent
version of Python 3 from the Python website (https://www.python.org). A current {universal binary) build of Python,
which runs natively on the Mac’s new Intel and legacy PPC CPU’s, is available there.

What you get after installing is a number of things:

e AMacPython 3.6 folder in your Applications folder. In here you find IDLE, the development environ-
ment that is a standard part of official Python distributions; PythonLauncher, which handles double-clicking Python
scripts from the Finder; and the (Build Applet) tool, which allows you to package Python scripts as standalone
applications on your system.

e A framework /Library/Frameworks/Python.framework, which includes the Python executable and
libraries. The installer adds this location to your shell path. To uninstall MacPython, you can simply remove these
three things. A symlink to the Python executable is placed in /ust/local/bin/.

The Apple-provided build of Python is installed in /System/Library/Frameworks/Python. framework and
/usr/bin/python, respectively. You should never modify or delete these, as they are Apple-controlled and are used
by Apple- or third-party software. Remember that if you choose to install a newer Python version from python.org, you
will have two different but functional Python installations on your computer, so it will be important that your paths and
usages are consistent with what you want to do.

IDLE includes a help menu that allows you to access Python documentation. If you are completely new to Python you
should start reading the tutorial introduction in that document.

If you are familiar with Python on other Unix platforms you should read the section on running Python scripts from the
Unix shell.

33

mailto:bobsavage@mac.com
https://www.python.org

Python Setup and Usage, £A| H{H™ 3.6.15

4.1.1 How to run a Python script
Your best way to get started with Python on Mac OS X is through the IDLE integrated development environment, see
section The IDE and use the Help menu when the IDE is running.

If you want to run Python scripts from the Terminal window command line or from the Finder you first need an editor
to create your script. Mac OS X comes with a number of standard Unix command line editors, vim and emacs among
them. If you want a more Mac-like editor, BBEdit or TextWrangler from Bare Bones Software (see http://www.
barebones.com/products/bbedit/index.html) are good choices, as is TextMate (see https://macromates.com/). Other
editors include Gvim (http://macvim.org) and Aquamacs (http://aquamacs.org/).

To run your script from the Terminal window you must make sure that /usr/local/bin is in your shell search path.
To run your script from the Finder you have two options:
* Drag it to PythonLauncher

* Select PythonLauncher as the default application to open your script (or any .py script) through the finder Info
window and double-click it. PythonLauncher has various preferences to control how your script is launched.
Option-dragging allows you to change these for one invocation, or use its Preferences menu to change things glob-
ally.

4.1.2 Running scripts with a GUI

With older versions of Python, there is one Mac OS X quirk that you need to be aware of: programs that talk to the Aqua
window manager (in other words, anything that has a GUI) need to be run in a special way. Use pythonw instead of
python to start such scripts.

With Python 3.6, you can use either python or pythonw.

4.1.3 Configuration

Python on OS X honors all standard Unix environment variables such as PYTHONPATH, but setting these variables for
programs started from the Finder is non-standard as the Finder does not read your .profileor . cshrc atstartup. You
need to create a file ~/ .MacOSX/environment .plist. See Apple’s Technical Document QA 1067 for details.

For more information on installation Python packages in MacPython, see section Installing Additional Python Packages.

4.2 The IDE

MacPython ships with the standard IDLE development environment. A good introduction to using IDLE can be found at
https://hkn.eecs.berkeley.edu/~dyoo/python/idle_intro/index.html.

4.3 Installing Additional Python Packages

There are several methods to install additional Python packages:
» Packages can be installed via the standard Python distutils mode (python setup.py install).

* Many packages can also be installed via the setuptools extension or pip wrapper, see https://pip.pypa.io/.

34 Chapter 4. Using Python on a Macintosh

http://www.barebones.com/products/bbedit/index.html
http://www.barebones.com/products/bbedit/index.html
https://macromates.com/
http://macvim.org
http://aquamacs.org/
https://hkn.eecs.berkeley.edu/~dyoo/python/idle_intro/index.html
https://pip.pypa.io/

Python Setup and Usage, £A| H{™ 3.6.15

4.4 GUI Programming on the Mac

There are several options for building GUI applications on the Mac with Python.

PyObjC is a Python binding to Apple’s Objective-C/Cocoa framework, which is the foundation of most modern Mac
development. Information on PyObjC is available from https://pythonhosted.org/pyobjc/.

The standard Python GUI toolkit is tkinter, based on the cross-platform Tk toolkit (https://www.tcl.tk). An Aqua-
native version of Tk is bundled with OS X by Apple, and the latest version can be downloaded and installed from https:
//www.activestate.com; it can also be built from source.

wxPython is another popular cross-platform GUI toolkit that runs natively on Mac OS X. Packages and documentation
are available from http://www.wxpython.org.

PyQr is another popular cross-platform GUI toolkit that runs natively on Mac OS X. More information can be found at
https://riverbankcomputing.com/software/pyqt/intro.

4.5 Distributing Python Applications on the Mac

The ¢ Build Applet) tool that is placed in the MacPython 3.6 folder is fine for packaging small Python scripts on your own
machine to run as a standard Mac application. This tool, however, is not robust enough to distribute Python applications
to other users.

The standard tool for deploying standalone Python applications on the Mac is py2app. More information on installing
and using py2app can be found at http://undefined.org/python/#py2app.

4.6 Other Resources

The MacPython mailing list is an excellent support resource for Python users and developers on the Mac:
https://www.python.org/community/sigs/current/pythonmac-sig/
Another useful resource is the MacPython wiki:

https://wiki.python.org/moin/MacPython

4.4. GUI Programming on the Mac 35

https://pythonhosted.org/pyobjc/
https://www.tcl.tk
https://www.activestate.com
https://www.activestate.com
http://www.wxpython.org
https://riverbankcomputing.com/software/pyqt/intro
http://undefined.org/python/#py2app
https://www.python.org/community/sigs/current/pythonmac-sig/
https://wiki.python.org/moin/MacPython

Python Setup and Usage, £A| H{H™ 3.6.15

36

Chapter 4. Using Python on a Macintosh

APPENDIX A

oo
<2
i}

>>> T3}y o) 7|2 sto]d 2ELE. Az H A FP oz AFD 5 e A= oA AF B S
it

. The default Python prompt of the interactive shell when entering code for an indented code block, when within
a pair of matching left and right delimiters (parentheses, square brackets, curly braces or triple quotes), or after
specifying a decorator.

2t03 Fo]l W 2x TEE oW 3x TEZ HAFH T A E3tE 7Y, 222 BT 9tA ETE
A A FA D e Rt veed S e

2t03 = < gHol B oA 1lib2to3 E Al FHTH S HHCE AFT 4+ Y= 2T HE & Tools/
scripts/2to3 & A& H T} 2to3-reference & R M| 2.

abstract base class (34 o] A Ze]A) FAH|o| A Zd A= hasattr () ZE T2) 9.%0]%?5:6}7414-
B FRE (& £, A WA E) 4¢, ?_Ebﬂo]"‘z Aot WS Alvgd oz M 9 Efo]
< H o3tk ABCE= 7]—/\1-/\-] ZYPAE T Ydl=t], ZHAE A SR Fo fﬂ/\‘]_,_lsuistance () <
issubclass () ol Y3l ZAE 5= Y= FHAE T abe BE EFHH o HAS A S, FfolHof=
W W ABC ¢ et = 3 22 AE0] Ut} AR X (collections.abec EEOA),
=} (numbers EEA), 2EF (io BEIA]), YT E Jolt9} 2T (importlib.abc EEA]).
abc &S AMEa) A A4 RES] ABCE BHE & QT

annotation A label associated with a variable, a class attribute or a function parameter or return value, used by convention
as a type hint.

Annotations of local variables cannot be accessed at runtime, but annotations of global variables, class attributes,
and functions are stored in the __annotations___ special attribute of modules, classes, and functions, respec-
tively.

See variable annotation, ﬁmction annotation, PEP 484 and PEP 526, which describe this functionality.
argument (17} S ST T (E= VA D) E JAEH = & F 7Y AR AT
o o

IF:
- AY= u}(keywordargumem) 3 5% 0l 487} Qo] B2 AR (o & Fol, name=) T+
oLoﬂﬂommmbz AgE = 9%, o & Sol, e 2L complex () E%Oﬂ*ﬁﬂﬁ%

BF 79 E ARt

37

https://www.python.org/dev/peps/pep-0484
https://www.python.org/dev/peps/pep-0526

Python Setup and Usage, £A| H{H™ 3.6.15

complex (real=3, imag=>5)
complex (**{'real': 3, 'imag': 5})

o AR A (positional argument): 71 = AAL7F obd AR} 93] AAEL A HE2] A Fof Yo
Avolefels o ol * & 2 AT+ Ytk s o, heH 22 T2NA3F 5 = BF

92 Ay,

complex (3, 5)
complex (* (3, 5))

A= 4 uhe) o] £-2 Ao Mol hd bk of B Yol A8 = 72 Soll e A calls A4 L
HAS. EYAoR, oW BA4 7 AN ALEE 5 ATk FAA ge] Ao Mol AT

B0 29 shebu] o F53}FAQ AR A9} sheul 9] Aho] 9 PEP 362 = B A L.

asynchronous context manager (]2 7] AEYAE #AE]A}) _ aenter_ () 2 __aexit_ () HAZE A9
O EM async with-Zo|A Hol= 274 E AloJst= AA. PEP 492 & =95 At}

asynchronous generator (¥]-5 7] Al o]e]) v 5 7] A& o] o]E & o] & 815+ T4 async def
2 495 L 228 LAY ol asyne for FEFAET S Yt AU FES WELyield
E@4L ZPAThs Yol ok
Usually refers to an asynchronous generator function, but may refer to an asynchronous generator iterator in some

contexts. In cases where the intended meaning isn’t clear, using the full terms avoids ambiguity.
]S 7] AlY o) T4+ await EH AT asyne for 3} asyne with & £33

g1tk

asynchronous generator iterator (B]% 7] AU & o] €] o]e]&|o]€]) v]5 7] Ay o g 71 vt A A,

+

This is an asynchronous iterator which when called using the ___anext__ () method returns an awaitable object
which will execute the body of the asynchronous generator function until the next yield expression.

Each yield temporarily suspends processing, remembering the location execution state (including local variables
and pending try-statements). When the asynchronous generator iterator effectively resumes with another awaitable

returned by __anext___ (), it picks up where it left off. See PEP 492 and PEP 525.

asynchronous iterable (W] 5 7] o|E] 2] &) async for BoA AF2E ¢ Q= AA|. _ aiter_ () WA EE
H|5 7] olH &l o] & =5 oF gt} PEP 492 2 = ¢ it}

asynchronous iterator (B]% 7] o] €] & ©]€]) An object that implements the __aiter__ () and __anext__ ()
methods. ___anext__ must return an awaitable object. async for resolves the awaitables returned by an
asynchronous iterator’s __anext___ () method until it raises a St opAsyncIteration exception. Introduced
by PEP 492.

N

©
i)
%

attribute (] EZ|HE) AR A S 21§33l o522 IR = A
RFEaE 7AW, 0.a A8 FEch

awaitable (] g]o]E] &) await T3 A o] A}&3
A7) 7L 2 2= 9t} PEP 492 £ H A £.

BDFL #}H] -8 £ Al =] %} (Benevolent Dictator For Life), & Guido van Rossum, 3} o] %1 2] A A},

binary file (s}o]ui2) 5h) ¥l ol E21 5 7175 2 9T % 4 e 7 A, vholv el A of =)
olUg] EE ("rb', 'wb' =¥ 'rb+') 2 g9 99, sys.stdin.buffer, sys.stdout .buffer,
io.BytesIO®}gzip.GzipFile & A~

str AAE 912 5 9 5 Ao A=

=
bytes-like object (B} o] E €& A A)]) bufferobjects & A Y3} C-A <5 H

3 3t o2 Sol, A7l 0 7} o E

=

=

A= AA. ZFE oY __await__ () HAEE 7R

%o]AEE SF 2~ o]r,]_ HJE
H—a= = oS . o ©o
memoryview A EL EEo]d bytes,bytearray, array.array A5 £33t} vlo]EEH
AAE2 vlel Y g H o8 & thF & o8 7FA Axbso A2 = T o5, vhol v g st d 2 A4,
20E B3 AE 22 AE0 Ut

38 Appendix A. E0{Z!

https://www.python.org/dev/peps/pep-0362
https://www.python.org/dev/peps/pep-0492
https://www.python.org/dev/peps/pep-0492
https://www.python.org/dev/peps/pep-0525
https://www.python.org/dev/peps/pep-0492
https://www.python.org/dev/peps/pep-0492
https://www.python.org/dev/peps/pep-0492
https://www.python.org/~guido/

Python Setup and Usage, £A| H{H™ 3.6.15

o ALE2 vtolv g dlolE 7L 7P A D A 7F) o] A fo EFWH o)L FF (Ya-27)

] y 2t @3t 7P 83 AR dZ=Dbytearray $bytearray 9 memoryv1ew
4 yel dlol87FEWH AA ((¢17] A& o] EG R/ AA)) ol AFH=
+=bytes E}bytes AR 2] memoryview 7} §J D}.

bytecode (H} o] E Z & o n ¢l iEF/] E| o] A] 3}o] %
2P YR ot} HiolE 3’—5% .pyc «4’°1°ﬂ 7H/\] 510% @3 fﬂr‘?:l% T A A o
W 2] A ETH (Ao A vl E I ERY AAHATL S I T = Ah. o] (FIHA]) = ZHtolE
Foof g S3t= 71 AE A = 7 71A oA A Eitia Bl vio|E I E = AR T/PE s}o] A
7HE 71 A A Fe T AL st A =, sho] A wlj 3= 1ol ?}7‘4 Aol A & otth= Z o Fo3f of st

HlolE I & H o] 59 HE2dis EE & “ilEﬂ o] Ao V2Tt

cass (F#l2) AHEA A AR WS AT . SR Fo= B FH2o dxdaE e r
Al WA= %AE% Z 3ok

class variable A variable defined in a class and intended to be modified only at class level (i.e., not in an instance of the
class).

coercion (Z o]) 22 f'ﬂ«l 7 AARS Sk ddabe] dejibe ok 9 @) AH A e Poz 52
Aoz wgets 2. A S0, int (3.15) £ AFE A5 3 22 WAL AR 3+4.5 oA, 7
AAf= o= 3 017 (Bhobe int, T2 BHLbE floan, £ T 3l7] o) 22 Fo 2 skl of sich. 28
oW TypeError & 4otk I glol&, SRFH = FEXAT 2207 22 Jo 7 HF
Q_-gﬁ_'_o]o]: st ol & 0], 1F 3+4.5 8= 4l float (3) +4.5

complex number (] 4£5%) 953 A5 AJAE) B, BE AV Aot s oz sdAY.
B i Ao 85 B9 (19 AR E B AU, BE SN E 1 2, BN L = £
Shoh spo] M2 FAFe RIS 2 BT E 7|2 AW ?‘ﬂ—??—%j HulAbE 2994 279t
& 5°],3+1. math 25 Ko Mol 839, cmath A AT 450 282 9 &
2 5917 7 5ot Bast n7 A ERrhe, A 845 —‘jr/\lffHE Foh

nager (AYAE #2|2}) __enter_ () __exit_ () MIAEE AT o 2N with Foj|A] B
ol%gyg% dlo} k= AA. PEP 343 2 = 95 itk

53] C—?ﬂ <4 (C-contiguous) ©) A ZE & A< (Fortran contiguous) ¥ o A< o] 2fal

_‘T_l‘ O_u
rr

. C-A&olHA 2 E= AKolth LAY Hﬂoﬂoﬂ/ﬂ,ﬁo}%%%/ﬂi"ﬂ A eka,
0o Al Al ZHat= —‘?_%— A} ?l‘“*% TAHE R e]of v X5 01 oF sttt thAbd C-<A % vl G ol A,
HE2E FA49 TAUE FEEE YT uf vpx]at Ad A7} 713 whg] ¥ st} 317 ‘?}, :-L—E‘?:‘r A<
W ol A=, R AR AP A7) 7pg wke] ¥ sk
coroutme(’f-r&]) FIFEH2AETEH ¢ dutsld Fet)h A BFEHL2 3 2 H o A J Y3l o2 X Fof| A
E%tth IFEL2 o8 o2 A HA A AYstal, &3k, ANE = Atk o] AE2 async def
—E—EE 783 2= 9t} PEP 492 2 H A &
coroutine function (Z£€l ¢4) 728 AR E S8 F+= 4. TFEH 4= async def Tozg HogdE
4 911, await & async for & async with 7|9 EE £33 4= 9t} o] AE5-L PEP 492 o 9] 3]
EdFH AT
CPython }olxl g I efvy Ado]of 573 <l &], python.org ol A ¥l 2=tk o] &2 Jython o] 1t
IronPython ¥} 22 Th2 23 7+ 27} & uff 8] (CPython) 0] JAR-BoRsN
decorator (t] Z#|o]E]) t}2 I+ E S8 F= 49, B 5 Qurapper B HS AHL3 4 oz A

H}h dZd ole]e &3 o= classmethod () I staticmethod () 1’/]-.
g o]y FH2 oA Ao FHY Bolth v F &4 Fo & 9 v|do = F53:

def f£(...):

f = staticmethod (f)

(TH& SOTAT AI)

39

https://www.python.org/dev/peps/pep-0343
https://www.python.org/dev/peps/pep-0492
https://www.python.org/dev/peps/pep-0492
https://www.python.org

Python Setup and Usage, £A| H{H™ 3.6.15

(o] A sl o] A A M A%)

@staticmethod
def f(...):

2ol S o= EA AR, @ Ab 22k vl Z e ol Blof th 3 ¥ AAMIRE W &2 o B o] 2
S Ao o =HE ol dS B A

descriptor (CJ A3 HE]) WA= _ get_ () o]y} __set

() °ly__de _0OE i

2 oEREZYAIHE L uf, 01 PHE 23 =58 A2 AES doith B5,abE JALY,
2 A, A A S AFE S], a 9 FEla 9V oA b et o] & B AAE Feth sHA WD
ZFaayEd, s gt Dl*ﬂ%lEi HAME7F S EETh UA2aHEE o] d sl 212 vfo] Mo tfst
722 ols e g1, g, WA s, ZelE, S A, 2HE AE, FHEHS FR 59
e 759 712 E o] 71 7] wlEolth
23 HE o WA =Eof t)sk 2}A| 8F W82 descriptors o] L-2T}

dictionary (54 2]) 422 71E gholl dl-3A 71 A& vl @ (associative array). 7]+ __hash__ () <}

_eq__() MIAEE 2E BE A E 5 Ak DA A ek 2k

dictionaryview(‘:‘/ﬁﬂﬂ]w dict.keys(),dict.values(),dict.items () HIANE7}EHFE AAE
gAyeE Rt H 2k o] AL gAY e FES S 54 HE Zﬂ+6}~tﬂ gAvE 7RI A
Q uf, 57} o] WslE vk strh Soth gV e B & F/]"Ei‘ﬂ}lﬁﬂ“‘ list (dictview)

£ AR5 F ok dict-views & BA Q.
docstring (FAE8) 2ol R REeIA 3 WA RV 02 ehfr AL Y A=/ 499

BAIE A, A5k elo] o) AAF o] Fel Feh, B, BES] doc_ O EUHER 4
e} EgaR 4 B Y 5 gon e, A w U ol S AT A AL

duck- typmg(‘* E}Ol% ZHFE QJAEH]2 E MR A At AAY F& BA G Z2IHY ~
B Al s IS AEYFREGSZESHAYASHT ((LBAH Hol gy #=
Eﬂi}‘ﬂ,lﬂ% 28 thy) EA E Ao AHH) AE FRTgozN, F AAE TP FHq
A2 oz FAZS MAE = ok § Eo] B2 type (Olb‘rlsmstance() %/\P%}
AALE F 3t (3HA e G glo] o] A4 Hjoj A ZE o~ 2 BEE 5= 9lZ ol 529§ oF st} tAl,
hasattr () AAFPVEAFP =2 18 W& &t}

EAFP & 2&t2 = 845 F317] 7} 4 o} (Easier to ask for forgiveness than permission). ©] &3] 8 4= 9l+= 3}
ol IY A8, SHFE 7| o EFRES EAE 7ML, I 7H ol EEld oq]ﬂ% =t
ZEota e AE Y W try $except £ ESAE SAA A o] HlAY 2 Ce 22 thE
w2 Aofof| A 2}F AMR-E = LBYL aa}%jyjr uﬁu]gu}_

2]
extension module (83 2 5) C U C++ 2 A=

BE A, vhe]#e] C APIE AHE3l Al 3 4] o] L} A8}
FEo} AT ALt
f-string (-2 A1) '£' ' & o 22 A HEHEES E3) (-EAE) olgtn RE], =W 4
o g8l d o EQ o) PEP 498 & H A 8.
file object (3} AA) s} Aol sl 5k Y A FA API (read () Ywrite () 22 HAES) & =8+
AA. ol Byl wet, 5 Ax = AA ta3 A st oy o2 A AU FA A (o &
£, %2F 9459, w2 W, &7, stol =, 55) o thet AN~ E FAT = Qloh Y A=

A= AR (file-like objects) & 2~E F (streams) ©]| 2} % & 2T}

AAZE N FE7Y 3 AAE o] Atk ' (raw) HEo] Lﬂ 2] 3+, ¥ 3 = (buffered) o] U] 2] 3}, H]l A E
td. o] 59 QA H o]~ io BEA FoH 3d AAE Tt=E= 7 HA A WH 2 open () 45
2= Zlolth.

40 Appendix A. E0{Z!

https://www.python.org/dev/peps/pep-0498

Python Setup and Usage, £A| H{™ 3.6.15

file-like object (3} L5 AA) oL 214 9 w3 &
finder (3}Qlt]) JdXEF BES st =0 & oy A =3 AA.

lo]# 3.3, o] &g, F 7o ol 7} QIt}: sys.meta_path 2} T ALRS= e} 4 2 spolr 9
sys.path_hooks I} &/ AFR3= A2 dE] 92lH.

o A4 & W& PEP 302, PEP 420, PEP 451 o] }-& T},

floor division (34~ U=A) 713 717he A4 2 YW= 83 1A, A5 Al d4Axs= // th A&
Eﬂ,ﬁﬁﬂ 1177 49 g2 2 AHAAR, A% AL 2.75 8 EHEh (-11) // 47h-2.75
S 9 3 -3 o] Foll §o]sf ok Zth PEP 238 S H A2
function (35) TE A A ol & £ F £ A BZE. AU T o) a7k A 5 e,
vit] o] Ao AFRE 4 Qi) vhebu| e 9 WAl = @} function A AT B A Q.

function annotation (4> o] ;= €| o] A) An annotation of a function parameter or return value.

Function annotations are usually used for type hints: for example, this function is expected to take two int argu-
ments and is also expected to have an int return value:

def sum_two_numbers(a: int, b: int) -> int:
return a + b

Function annotation syntax is explained in section function.
See variable annotation and PEP 484, which describe this functionality.

_future__ 27 AR AHZEE L} SRR ke M Ao 7552 E4FT S AL E 8= 7
2E.
__future_ EES YEESI I WMLEY g 7l A 750l dA Ao ool 714
AL, AAFE A o] 7|2 o] HeA & 5 ATk

=~

>>> import __ future_
>>> _ future__ .division
_Feature((2, 2, 0, 'alpha', 2), (3, 0, 0, 'alpha', 0), 8192)
garbage collection (7}8] 2] 4~ 4) T A25] b= v 28| & vhdstE= 2 Ak «4’ AR St Bl S
98 AL BL 5 U £ A 7718 Bal A A4S SR AR 577 go

wES AL A Aol 5 AL,

generator (AU & o]€]) Al o|E e e & BeiFE T4 I FFAH
BEEyield 84S 28T Fo] thE T o] FEL for-FEZE AFE 3 A U next () T4 3
wof stk AW 4= gl
HE Avdole 45 7te] 71 Ak o | F 9 oA &= Al # o E o]E g olE & 7tel7th o =3k
o) 7} 254 %}8 e, G & 3 .

generator iterator (A U] o] €] o]g]d|o]€]) Ao E T4 v

l

Each yield temporarily suspends processing, remembering the location execution state (including local variables
and pending try-statements). When the generator iterator resumes, it picks up where it left off (in contrast to
functions which start fresh on every invocation).

generator expression (AUl el o] €] £A4)) o] Bl @] o] E] & Bei2t B4, 22 Mol Wel S A5t for
FHAH AL Aeeic BAL0] Fof Fr AW EAA AP B AFA B L TR TS
A% FEL PEo Wk
>>> sum(i*i for i in range (10)) # sum of squares 0, 1, 4, ... 81

285

41

https://www.python.org/dev/peps/pep-0302
https://www.python.org/dev/peps/pep-0420
https://www.python.org/dev/peps/pep-0451
https://www.python.org/dev/peps/pep-0238
https://www.python.org/dev/peps/pep-0484

Python Setup and Usage, £A| H{H™ 3.6.15

o,

generic function ()] 2] ‘-’F) 2 AN Az gE e del 7+ o8 Forr A S S50
da 4

ojwW 3 o] AL E A= t] AT X gl Fol g 2=t
AE=Ra PN B &O%Xt} =3} functools.singledispatch () BT o|E|} PEP 443 = H A Q.

GIL A Q| ze|E 5 2 HAl..

global interpreter lock (& QJE]z2]¥] F) g WMo 27 sfrte] 2 =7} vpo]d wpo]E 1= & AP F
257 3l CPython AB 2] B 7L ALE 3He Wl AU S, (dict & 22 F2d R
A3 BWo ZAA 0% A A 20] el AT 5 9501 4] Chython 7L
JelZ e H A€ 2Ase A2 AHZYHE thead =867 47 BEE Uil oS Z2AA
AAZL AT S FEAS B REL AT
A, of | B BEE S, EFOIG AMA E, FFIGHY 2 AL YAA FAE £
m = GIL & ¥hdst= 5 AAE ek =8, 1/0E T vl 3/ GIL & w3t

(B Y A 51 HI ol B E 27 5he) (L =0l At 22 (free-threaded)) JH 22 H & vHE31%}
A o] oA

S AL e HEHolA B, o z2AA 299 45 Astrt Aek] Rk
o] 4% o448 FHL AL TALS B4 a7 BhEol4 §4 8o B SolZ ACR o AR 1
ot}

hashable (3] 4] 7}5) 74717} 248 1 gko] W17 ok A ZES 27 (__hash__ () WA=} Basith, e
AAD) 2] 05 % S (e () MAE I D8 Sk, A T ST G e ol

7b5e AR S| A kS Lofof et
A s AS AAE Ao A A gl R AEE A 9 s, o AR T2 E o] YA
o2 AN e A8 W 2ol
T droj e B WA AA =2 Al 7Hestth (BlA2EYU 9- Y 22) 7 AH oY &2]
S A 8A 4] Bel sl Aae AAE L B S AR A5 Sl (] AL A9 51
BEEUOEva bas i, A2 id () 2 FE BEo
IDLE 3}o] - #1353 71 37 (Integrated Development Environment). IDLE-2 3} o] 4 o] 3 & uf| 32 3o
et |20l BA /19 ez el g B ol

immutable (%) T4 9 2E A4, 29 AR £ 27, EAY, FEL ERAT. o) AR 5L WAL
S gleh. A 2hS A5 el | Al 23] & ehE o] of Shrk. MakA] ok o Al gko] 1ol of s Eol A F-2.2

qeS it ol & S, gA v gl 7.
import path (Y E FEF) A& 7|NEapelt 7 9=
[e]

11
2
&s;
r (
td
il
1o
)
o
rx,
&
[
N
O
rlu
fd
|
1o
&
-
rx
&
[
=2,
>
>
oo
i)
4
30
L
f
o
rlr
iy
>;1'4

importing (

importer (Y2 ¥) RES 27| % 8ol 2= 37| % sk AA; FAloll 9l T o] A} = Aot
o

interactive (c}5}9) o] 0 € tfo}Y QlE| 2ol e & 20 glev], A zele =gaEol) £ RN L
QAL+ 95, 57 APH ATE B 4 vk Foltk. A glo] B python & AW sket (AHE S
Folpel A A B A% 5@ 5 Aeh. Al obolHolE AARAL BER 5714 Selrhu s
w9 g g o)tk (help (x) § 7195 L

interpreted (&} 22 E]£) vho]= 3= Astele] £ A wlEol 2 7o) B A 7] AT, sho] ML
A5hed Aol 7} oh 2t AE ZelE Aofrh, o] AL WA AL A AL WA YIE, A4 HAL
A7 AW 4 drhe Tolth 1z Tade] & 6 AW AW) E AT, AHZH Aol BE

A5 Aol i} BE AT ¥ #718 ZHeth g5 = BAL.

interpreter shutdown (4B Z2]E] $.2) $25tehe 89 W& w), 3|4l A = e 50T 79 2
b, B ol /X FR A MR FREN LS RE WP AASL B o whga)
£, 714 577 & ol e M B2 Th AHSA A9 5 ALt weakref ol 9t TES o] AL
NAAD 5 ek F2 A7) B AN mEE e o9 5L whd 4 e, 120 9 EHE
A0S0l H 715517 9242 4 97 WlEol T (E8 o ol Heje] BE o} AL A Sl Th

42 Appendix A. E0{Z!

https://www.python.org/dev/peps/pep-0443

Python Setup and Usage, £A| H{H™ 3.6.15

A ZEH $59 FH YA AYF = __main BEOIUA2THETAYS ZY = Zolh

iterable (0] E]2]E) AHES W A EHE 5 U= AA. o HHEY o2& R E(1ist, str, tuple
ZOYANBAFE, dict Z2 22 u A B2 FE, 91D AA S, __iter_ () YA A= AES F3 5
£ __getitem_ () WIANEE WA A BE Fejr9 7“Xﬂ o] 9t}
OlEiEiat for ZZA AL E ¢ YT, A F2E LR T =2 B2 3L (zip (), map ()°ﬂ A&

Atk ol HE AA 7 WG T iter () o AAE % %_"51%,—"’-7“%1]4 OlEii‘ﬂ"lEi =Tt

°l OlEiﬂlolEiL%}‘:El@J%f?} AA= T FEICE o HYES AT, BE 1ter()%
TE3AL, olHEolH AAE A H g D8+ Ut for 2 13\4%% qgHES A OH/H XPEOE
AFed, FZE = FA)HH O EE FotE ol & e HEE WET o H# o H, AlA 2, Al
°lH &= EHLL-

iterator (o] E]#|o]E]) t]o|E|S] ~2EH S E?ﬂ 3= A olH#o]EHY __next_ () MAEEHIEHo T
&3 (EL \417“ S next () 2 G 2EH JE=FEHES XP?JM}EEE%*D} T o]/9]
dl o] E1 7} WW Stoplte tion ool & doith 1 A1 oA, o] e dl o] ¥ AA = A= L,
0] %9 E%_next il 1‘: TEL st OpIteratlon o 9] & thA] F o 7] 7] qk gtet o] B # o] E =
o]] & o] E] A XVJ% %Eﬂ ite) MIANEE 7}X‘ A o] L—TLQ 71 Fﬂ]% of, olH o] E| =
olH el &o| 7| % 3tal th & OlEiEi—‘é—%—% E‘:‘O}C o] &= gl & o] oA AR D} Q239 e=
olg] Mo o]H o] dE A =3t =T (1ist 7‘°)?4Eﬂ o] 7”?<ﬂther() T2 AL AY
for FZ o AR & ufjulc} A o] # o] H & TEth o)™ Z1-E o] E & o] ¥ of] i3l 1—’F yshe] AL sk,

Ak o el g o] Aol ALgH o]u] 27 F o] el 2 o] Bl 2 S HA, ¥l Al o] A Kol A BET)
typeiter o] T Z}A| 3F Y] -& 0] Qlth
key function (7] $t¢) 7] T4 =+ igﬂ o] A (collation) T4+ ;g =] (sorting) o]} Wl & (ordering) of] AH&=] =

He EHlFe Y E 5 O]D}. o & £0], locale.strxfrm() 2 2ALd EAFA YA S == AE 7|5
HeE T AHEE T

o] R o] g =7 R A5 0] o] BA 4] A A AL Fol=AE Alofstr] A8 7] TE wol=<th
olfl AEoEmin (), max (), sorted(),list.sort (), heapg.merge (), heapg.nsmallest (),
heapg.nlargest (), itertools.groupby () ©] AT}

7l S o= de oy Wl dth dE £9], str.lower () WAEE Aolx TE = A
22 93} 7 61'*; ApgE 2 - Atk gFoew, 7 F4= Lambda 3 RAA R s £ g,
o] A elt}: lambda r: (r[0], r[2]).%E3 Operator BE2M MY 7] g5 B3RS AlF S
T}: attrgetter (), itemgetter (), methodcaller (). 7] &4E WHETL AR Sl= Ho U3l o 2

Sorting HOW TO & H A 2.
keyword argument (7] 9] & 21z} 2z} & H A Q.

lambda (FTh 558 o) gro] P AL shike] 94 02 THE o) F gl e B Prh PSS HEL

EWHL lambda [parameters]: expression ©|t}.

LBYL 7] Aol B &} (Look before you leap). ©] T 2E}L 2 ST E0|L} 23
2AES AADE o Aerd L EAFP AT HUIE W, B i £ 22 54
U 28 = oA, LBYL H2H-& (H7]) & (H7]) ol A 202
E0],7FE1if key in mapping: return mappinglkey] = AA} &9, o, =
| = 7} key & mapping | A1 4| A 54 @ 5 k. o] A o] F o L} EARP 2 & A8 FO 2 A
sdd + Sth

list (2] 2 E) A built-in Python sequence. Despite its name it is more akin to an array in other languages than to a linked
list since access to elements is O(1).

list comprehension (2] A E HAZ a3l A) AP QA5 AR T JHE Aty 1 2HE PJAERE B

F= 743, result = ['{:#04x}'.format (x) for x in range (256) if x % ==
T 001 A] 255 Atolof Qle= H4E2 16ZJ-r(0X) ES TP EAEY g EE WETH if B
32%‘? At Aekstd, range (256) o Y= B 847 A 2"

Python Setup and Usage, £A| H{H™ 3.6.15

loader (2t]) &S ZE3H= A4l load_module () olgh= o] 59 HIANEE FYslof sttt 2= HE
goly 7 23 & AA S {2 PEP 302 &, A4 v o]~ 28~ &= importlib.abc.Loader &
HA L.

mapping ("]3) 2] 7] 23] 5 A Y5} Mapping ©] U MutableMapping 574 W o] S| o] 2=
HAEES FT8SE= Aol AA. 2+ dict, collections.defaultdict, collections.
OrderedDict, collections.Counter & 5 4 Ut}

meta path finder (W€} 2 5}Qlt]) sys.meta_path o] FAMo] ZF+ sl vgt A& s+ 4=
E el oF F#EE o] 9 7]& A th= ok

H el F 2 7t FE 5= WA =S | Al+= importlib.abc.MetaPathFinder & W "t}

metaclass (e} ZF2|) SR FeHja Fex FY = S o5, FWH2 9, Hlolx FPAES
EES BETh HE FH At o Al AAE Hol FAE B IS Ak Ug7E e A A&
Y AdojEL 7|8 FHS Al&3tt) sho] WS S5 Bte= A2 ALY YE FYPAE WS
T Age Aotk EE AREA A= o] =7 A 8 AT Zo 7t A A uf, vE ZH A
7FE3tal fofst s S Alw et o EEHE A 29 27 (logging), 28| = b e] =7 A A A4
FA, AZE T 2 o2 FYol A
metaclasses | A T Z}A| S W8-S 2HS 4= QU).

method (] A1) 22 2 whe) kol 4])% = 4.) HEEA S
HAEs A A A (R self gt 2dTh Z Jd2d2 AXNE Btk T g sHd 252
HAL.

method resolution order (WA & ZA $A]) WA E 2A A= 2351
259 £AH 23 DA dhojd dE x| E o AMgE dare
Method Resolution Order S H ¥ H ¢}

module (25) 308 Z=0) 243} the] & kel A7, RE-L glolo] sholul AR EL e ol F FNE
etk 28-S Qs Ao 9 sol oz zEH,

W77 = HAL.

module spec (25 2¥) R &5 S 23 =4 AL
importlib.machinery.ModuleSpec ¢ ¢l

Iy o

MRO HAZ= 24 =4 & BA L.

mutable (7}¥) 7FH A& o]l A& 5 QAR id () & SASHA AT 208 = HAL

named tuple (V| YE FZ) dIdAAT F A E S AES F B2 JEYREET AN T F Y= EE
EZR ZY2 (E 9], time.localtime () S year 7}t [0] A AEAE L t.tm_year A
AEeRERE ANET 4 Yt FEF AAE B E0h)
YAE FE2 time.struct_time T2 WA F L 5, ¢ FH 2 Y2 vt 5 ok BE
7ol FEEVYLE FE2 Y 34 collections.namedtuple () 2% & 4 o). vpx| 2
HAZHL2 Employee (name="'jones', title='programmer') & Z2 227 BAZ 7T = repr
I 22 A 75 % A Al st

namespace (o5 7)) W7t A5 L G4, o2 TS gAY Z TRAT AR SHE o] T B
(MM = oA Bk oty Ao, A, WA o] 5 F7ke] YUth o] F T2 ol5 TS YAGNA ZEA
2 A Y3t} o E Eo], T4 builtins.open T os.open () & 159 FEE

o
w3, 0] 2 B7HS ol o] P48 TANLAL LB TS0l A HE AT} f A
Zt} o9& £9], random.seed () =& itertools.islice() Bt 2 W
7 itertools &) s F+EH 5ol Haf Kt
namespace package (°]5 &7 |71 X)) &2 A B 3| 7] A 5] AH o] E T 7] 5 3= PEP 420 3 7] #]. o] &
T A= AN ARl 5 YA, 53] __init_.py FLo] B R AHf 3 7] 4] &=

thE o,

44 Appendix A. E0{Z!

https://www.python.org/dev/peps/pep-0302
https://www.python.org/download/releases/2.3/mro/
https://www.python.org/download/releases/2.3/mro/
https://www.python.org/dev/peps/pep-0420

Python Setup and Usage, £A| H{H™ 3.6.15

EEZ HASL.

nested scope (53 € 2 :Z) SER Ao oA A E FXoe 5. & 5o, e T W RolA B =
e nkg g °ﬂ JeHFES Az S Ut FHY 2FZE= 7| EFo g = Fx s B,
Y& FH A kethe Ao FYsiof sttt A A2 7 5o 23z oA ¢lal &t wpA A &,
A Mps2 A o] F T34 ¢l 22t} nonlocal 2 HHZ A3 o] 2= 215 3=ttt

new-style class (¢ 2Bt Fel2) A2 EE g—a]/\ AN AEHIL = A2 WA oA o
5. 2719 FolH W AN E, 24 F2EY EEHAUP __slots_, A HH, =3 H,
__getattribute_ (), ZHA2 WA E, 2 E WA 2L Fol WY BT TSI N 5ELS

}ilﬁi‘* 0104E+
object (A A) AE} (1= HEY) 2 T2 (WA) o] Aol H RE o[E. B, BE raE}d Fe) s
o) HE A o)~ Zeh).

package (] 7] 2]) A E ZESo|L}, Al Aoz A A I 9] A=
371X &=_ _path_ A EZHEZ} Y& sto|H EEo|t}

AT 3717 9 o) 2 B0 AAA = BAL
parameter (S}kvIE) 915 (£ MAE) Ao HET B S e 7 (B oE A A7) 8
e B e e, 1A 558 ShelH)
o A X-719 = (positional-or-keyword): 91 #| QA U 7|99 = A2 2 AL 4= Q= ARE XA st}
712 9

o] A 9] gl o] shetul et ol & S0 vkl Al foo £} bar:

def func (foo, bar=None) :

=
=

« 912)-A§ (positional-only): X 2% AFD 5 9t AAE A A} vpo AL A X-7§ ety
B2 Aofste 2L 23 A 3Tk AW, ojE A F45L 9 X-A8 e EHE 2E
(€ &9, abs ().

o | =-A & (keyword-only): 71 EZ T A FE 5= U= AXE A
T 49 shetuE EE5 oA ol 3putbe] 7R X] 3hehu| B L+
F Atk & 59, Oﬂ A kw_onlyl 2} kw_only2:

’def func (arg, *, kw_onlyl, kw_only2):

o 7PA-91 A (var-positional): (T} 3}etu] E] S0 Al o] u] Rol5o] A 9] A AAEof B 3)) A2
T A= A A=Y 01-4-4 AlA2E A Attt ol & hetn| Bl & Fhetu| B o] Fof * & el
Eofl/ﬂ Aold o Utk oAl & 0] thZoll Al args:

def func(*args, **kwargs):

o 7PH-719) = (var-keyword): (Th2 Shetu] Bl Sofl]3| A o] n] Wol5 o A 7] 9= ARFS o o sl)
Asd e 4o s 719 = dAES A4 o™ stetv|H = stetul | o] Fof *x &
ol Bo A HolF 4=), o & S0 92| ol o A kwargs.
St e AE A AAELS 93k 7| B gHmul o} gt A A o] AL} B4 AAELS 2 AF 4 9l
1A} 8o S, Q1 x}2} vletu] el Q] A}o] o] L} 2= FAQ &, inspect .Parameter &2, function
A, PEP 362 = B A &
path entry (2 QlE2]) 42 7Nk viele] 7t Q2 EF RESS 27] 918 Fashe J2E 42 4o e
2} A

~
é

path entry finder (7 2 QI E 2] u}elt]) sys.path_hooks
kel Ad], FARN A2 dED] 2 RES Z= WS € T

AZ AdED FJAHE0] L= WA EEL importlib.abc.PathEntryFinder of Y2t}

=

45

https://www.python.org/dev/peps/pep-0362

Python Setup and Usage, £A| H{H™ 3.6.15

path entry hook (% 2 QIE 8] &) sys.path_hook B|AE Y= ZFe| 80, EA A= dED i ZES

FEMe 2R o 4z e 9od & SeEnh
path based finder (7 2 7|4l 5}elt]) 7| E Hel A2 3oy E F -a}uroL]uﬂ AT E AZ A REL =1}
path-like object (3 2% A7) 5+ A28 A2 2 vehls A4, A2F AAE 422 Vehls ser 1}

bytes AA| o] A} os.Pathlike T2 EEZ S F33= 7“74]13]-. os.PathLike Z2EZ S X Yst+=

AA = os.fspath () FFE TS A str 1erytes Hd A2" FrE dAsE 5 gl Al os.

fsdecode () & os.fsencode () = ZZt str Ybytes 23E B ASt=t] AFE 4= 9t} PEP 519

2 =99 ek
PEP 5}o]#l 7) 4l A ok, PEP= sho] l AR Elo] 4B E 2|53k A1} gho] W

et MELR 7|5 AWt AA EATh PEP+ A|<HH 759 EH?E 7‘}7%} 71 APEF H

Al-&-3l oF gkt

PEP:= 2 22 75 S A

2Re EAE BE7] #1387

AL EA% T Aol ek

PEP 1 Z=3}A4 8.
portion (3£ 4) PEP 420 o| 4] A2 3l AAH, o] & F 7t 9 7] A o] o]u}A] 5= dHe] tldE o] o=

SFQES) A Y @p SHol] A4 £ A= FHs ek,
positional argument ($] 2] Q12}) <A} E H A Q.

provisional API (/4 API) A API= & glo| B8] I A S84 Ao 2 HE 4l

A

st A NG ARUE 4L 54 5 shol Aol Soi k4
2] AYZolth PEP 2475 ARUE el A #8758k

—

of
ol
&Y
fo
2}
Y
o,
o

QUE o] 220] = WA} o A4 A= A B, FR A ol e EAIE & B, o} AASo] AesTha
A7 EThE 3 SR 0] §AH A i WAool 4+ YUtk TAMAL BFe WA o dof
YA 952 Aelth— APIE Z33t7] Aol 2 Frista 2R A Agte] BAH 4ol v Aot
Aoltk.
A7 APII A 2215, 37 B84 0] $AH A = WAL (A7) 50 02 o ARG - R E A8
A el 7 SHE S fASGE AN Folt BE AL} AR

=%

o) AR EF Folud et ol A7 B BEH A4 ool BB A AL WAL S 9
w=t} ¢ A3 W22 PEP 411 &

provisional package (23 2| 7] X]) &4 API & B A L.

Python 3000 (sFo] 2 3000) ol 3.x w32 2hle] 8
o] Folth) o] A= (Py3k) 2 £o] 27|% 3t}

Pythonic (s}o] A the) The 910 5ol 4 QA9 S 2 Agal A =S FASH= 4], 5ho] A Qofol 4
VA AR £ oA Al mh s ool ol RS 2 o § ol Sl ol A7 2k
ot P for T2 AHESA] olElB B9 BE 848 F3 5= Ao|th thE B2 dojoll= old T /Y
FAEO] OB, shol ol o %) FE AREL thAlo] A 7L E B AR E Beh:

(M7 3] WE7 A B2 o] o]okr] | A Bol TS of

for i in range(len(food)):
print (food[i])

o 2T, st Athe P e o ek

for piece in food:
print (piece)

qualified name (357 31€ o]5) ZE2 A A7 zox REo| FolH Fefx, T, vAEc] o] 2 & (FR)
%E®2L24°E¥—Er% o) %. PEP 3155 o | ol Fh. 249 Fol Zel2e] B9ol, A73Hd
ol &2 A9 o] 53 2t

46 Appendix A. E0{Z!

https://www.python.org/dev/peps/pep-0519
https://www.python.org/dev/peps/pep-0001
https://www.python.org/dev/peps/pep-0420
https://www.python.org/dev/peps/pep-0411
https://www.python.org/dev/peps/pep-3155

Python Setup and Usage, £A| H{™ 3.6.15

>>> class C:
class D:
def meth (self):

pass
>>> C._ _qualname_
IC’
>>> C.D.__qualname___
'c.D'
>>> C.D.meth._ qualname_
'C.D.meth'’
EE< 77 AR , 4R 3] A13LA o] (fully qualified name) & 2= R 1 7| A 5& £
A EERE 7= A Oi—rﬂ% o] &85 9 n| T} E]-, o & £90],email .mime.text:

>>> import email.mime.text
>>> email.mime.text. name
'email.mime.text'

reference count (= 3142) AA| ol &k Fxo] 4. A Fx A571002 Hox W, W= g 7} vhg =
o ZAR 3 FAHL dH o2 go|l o =& F Xl A 2k, CPython 738 2] & 3 A 84t sys
E%% 54 AAY F=R JA4E 58 F £ getrefcount () & F st}

regular package (7 3| 7]A)) __init_ .py YL L= 1’4 Ae g e AEAQ I 7] A.
712 & BA L.

_slots__ Felx o] AAdd, AxE A ojELF
AAZGo 2z HReE Aot 95
7R HolgtA, vl R eEo Ie S8 2=
gt 2ol Erh

sequence (X] @) —_getitem () ELHAMES 55 A4 AU A AGTWE Q4 AN
/\134/‘«1 7‘01 Eﬂ] —len__() UﬂfﬂE%Xéf’J‘}%o HHE 22 YF A dAE
)

ol& &7l

~

collections.abc. Sequence =4 ﬁﬂ o)A FeAE_ _getitem () I __len_ () EHAA
A FH3 A EH o]~ E A=], count (), index (), _contains__ (), reversed () &
F7hgtt}. o] EgH ?_Eiﬁﬂ O|2E T3S P& register () EAMEIMNA YA HLZ 5ET 5 9]

single dispatch (J 2 t]A 9] x]) & o] s} QA2 F o 715—5“/‘1 A== A= g4 gasfA e st
).

slice (eto]2) H5 A A2 o RS 23eh= A Selolae A H ATHE 71U S AHSSA TETh
variable_name[1:3:5] A&, [] ¢l A oA 7Y AE ZE2o 2 EEdt) 2425 (ME 23
HE) Z7IH2 W R A= slice A& AHE-3Shoh

special method (5= WX £) 3}o]do] o ojwl A4k, T &2, A3
A A= AS WER AHHT BrhE o 52 27 Atk &

5ol A slet.

statement (F73) TF-2 2 E (ZEY (E5F (block))) & T8 FEolth 282 32384 o] AU 7|9 =
£ A8k o 81 7HA] F2E 59 shutth 719 if, while, for.

struct sequence (-2 A] A]P2) A tuple with named elements. Struct sequences expose an interface similar to named
tuple in that elements can be accessed either by index or as an attribute. However, they do not have any of the named
tuple methods like _make () or _asdict (). Examples of struct sequences include sys.float_info and
the return value of os.stat ().

S BAAOR TEEE AL,
= = specialnames ©]] & A E

47

Python Setup and Usage, £A| H{H™ 3.6.15

ol

2249,

o}

rlr

text encoding (]| AE 217 4Y) FUIE B S vlo|EdR o F
text file (J2E 5}9) str AA & ej1L & %1% Id AA. 5 G2E IS AAZ = vl E A #F
ol mmza 423k s 12 & A% AN YT GaE sl o2 e daE R
¢, sys.stdin, sys.stdout, io. StrlngIOJ A~EAE & 4 Uk

AT A L AA o e A vtol v e] 9t d = FzsiA 8.

triple-quoted string (31 w3 € £2149) w3 () W FF2 0238 (O *ﬂ Me M 2L 23
02 SR SeAA BAL Qi 715S AFHAL @A, o] /A ol FAM L7
ojaAolz A he AL EY 2L EE
Fuz ol So] ZA e, F2EFS & 53 &

type (3) ho]41 AN G T30 o ¥ S 72 AANAAE FH UL RE A& Go Slek AN Y
_class_oi_E]HEE AN 2~T 5 (obj

type alias A synonym for a type, created by assigning the type to an identifier.

Type aliases are useful for simplifying fype hints. For example:

from typing import List, Tuple

def remove_gray_shades (
colors: List[Tuple[int, int, int]]) -> List[Tuplel[int, int, int]]:
pass

could be made more readable like this:

from typing import List, Tuple
Color = Tuple[int, int, int]

def remove_gray_shades (colors: List[Color]) -> List[Color]:
pass

See typing and PEP 484, which describe this functionality.
type hint An annotation that specifies the expected type for a variable, a class attribute, or a function parameter or return

value.

Type hints are optional and are not enforced by Python but they are useful to static type analysis tools, and aid IDEs
with code completion and refactoring.

Type hints of global variables, class attributes, and functions, but not local variables, can be accessed using
typing.get_type_hints ().
See typing and PEP 484, which describe this functionality.

universal newlines (FUH A & d7)) thSH 22 AES BEF 29 EL2 A4 s, HAE 2EH S 54
Bho B U2 AW BA Bel \nt, AESE Tel \r\n', o B8] WTIEA] Tel \r . FohA <)
AFg-of] #3fA = bytes.splitlines () ¥4 o}y 2} PEP 278 &} PEP 3116 = E/\ﬂﬁ.

J

variable annotation (4> o] = €| 0]) An annotation of a variable or a class attribute.

When annotating a variable or a class attribute, assignment is optional:

class C:
field: 'annotation'

Variable annotations are usually used for #ype hints: for example this variable is expected to take int values:

48 Appendix A. E0{Z!

https://www.python.org/dev/peps/pep-0484
https://www.python.org/dev/peps/pep-0484
https://www.python.org/dev/peps/pep-0278
https://www.python.org/dev/peps/pep-3116

Python Setup and Usage, £A| H{H™ 3.6.15

count: int = 0

Variable annotation syntax is explained in section annassign.
See function annotation, PEP 484 and PEP 526, which describe this functionality.

virtual environment (7} 3+7) Sho] W AF2 A9 28 =2 g o], 2L XA AHA] AP E = T2 mlo|
& zr2IHEY Em’ﬂ FEFS FA %}Etﬂ/\i F}o] 4l wf 3= 71 Ase AAFAY Jad ol =8
;q o V55 B,y Ao g E]‘Q_ A3 317,
venv & HA 8.

virtual machine (7} 7] A]) £ Z EQJolvto 2 HojH AFH. o] o 74 71 A= viol E I = Hutd 7t
Yt vbolE = 2 APk

Zen of Python (3}o]# Al) 3}o

12 ol Yg]e} AtS o] EEoly, ol
Atk o] 2E2 81y L g

At , 9l
Eo|A (import this) & Y3}

49

https://www.python.org/dev/peps/pep-0484
https://www.python.org/dev/peps/pep-0526

Python Setup and Usage, £A| H{H™ 3.6.15

50

Appendix A. E0{Z!

APPENDIX B

About these documents

These documents are generated from reStructuredText sources by Sphinx, a document processor specifically written for
the Python documentation.

Development of the documentation and its toolchain is an entirely volunteer effort, just like Python itself. If you want
to contribute, please take a look at the reporting-bugs page for information on how to do so. New volunteers are always
welcome!

Many thanks go to:
* Fred L. Drake, Jr., the creator of the original Python documentation toolset and writer of much of the content;
* the Docutils project for creating reStructuredText and the Docutils suite;

* Fredrik Lundh for his Alternative Python Reference project from which Sphinx got many good ideas.

B.1 Contributors to the Python Documentation

Many people have contributed to the Python language, the Python standard library, and the Python documentation. See
Misc/ACKS in the Python source distribution for a partial list of contributors.

It is only with the input and contributions of the Python community that Python has such wonderful documentation —
Thank You!

51

http://docutils.sourceforge.net/rst.html
http://sphinx-doc.org/
http://docutils.sourceforge.net/
http://effbot.org/zone/pyref.htm
https://github.com/python/cpython/tree/3.6/Misc/ACKS

Python Setup and Usage, £A| H{H™ 3.6.15

52

Appendix B. About these documents

apPENDIX C

History and License

C.1 History of the software

Python was created in the early 1990s by Guido van Rossum at Stichting Mathematisch Centrum (CWI, see https://www.
cwi.nl/) in the Netherlands as a successor of a language called ABC. Guido remains Python’s principal author, although
it includes many contributions from others.

In 1995, Guido continued his work on Python at the Corporation for National Research Initiatives (CNRI, see https:
/Iwww.cnri.reston.va.us/) in Reston, Virginia where he released several versions of the software.

In May 2000, Guido and the Python core development team moved to BeOpen.com to form the BeOpen PythonLabs
team. In October of the same year, the PythonLabs team moved to Digital Creations (now Zope Corporation; see https:
/Iwww.zope.org/). In 2001, the Python Software Foundation (PSF, see https://www.python.org/psf/) was formed, a non-
profit organization created specifically to own Python-related Intellectual Property. Zope Corporation is a sponsoring
member of the PSF.

All Python releases are Open Source (see https://opensource.org/ for the Open Source Definition). Historically, most,
but not all, Python releases have also been GPL-compatible; the table below summarizes the various releases.

Release Derived from | Year Owner GPL compatible?
0.9.0thru 1.2 | n/a 1991-1995 | CWI yes
1.3thrul52 | 1.2 1995-1999 | CNRI yes
1.6 1.5.2 2000 CNRI no
2.0 1.6 2000 BeOpen.com | no
1.6.1 1.6 2001 CNRI no
2.1 2.0+1.6.1 2001 PSF no
2.0.1 2.0+1.6.1 2001 PSF yes
2.1.1 2.142.0.1 2001 PSF yes
2.12 2.1.1 2002 PSF yes
2.13 2.1.2 2002 PSF yes
2.2 and above | 2.1.1 2001-now | PSF yes

53

https://www.cwi.nl/
https://www.cwi.nl/
https://www.cnri.reston.va.us/
https://www.cnri.reston.va.us/
https://www.zope.org/
https://www.zope.org/
https://www.python.org/psf/
https://opensource.org/

Python Setup and Usage, £A| B{™ 3.6.15

ZF31: GPL-compatible doesn’t mean that we’re distributing Python under the GPL. All Python licenses, unlike the
GPL, let you distribute a modified version without making your changes open source. The GPL-compatible licenses make
it possible to combine Python with other software that is released under the GPL; the others don’t.

Thanks to the many outside volunteers who have worked under Guido’s direction to make these releases possible.

C.2 Terms and conditions for accessing or otherwise using Python

C.2.1 PSF LICENSE AGREEMENT FOR PYTHON 3.6.15

1. This LICENSE AGREEMENT is between the Python Software Foundation ("PSEF"),.
—and

the Individual or Organization ("Licensee") accessing and otherwise using.
—Python

3.6.15 software in source or binary form and its associated documentation.

2. Subject to the terms and conditions of this License Agreement, PSF hereby
grants Licensee a nonexclusive, royalty-free, world-wide license to.
—reproduce,
analyze, test, perform and/or display publicly, prepare derivative works,
distribute, and otherwise use Python 3.6.15 alone or in any derivative
version, provided, however, that PSF's License Agreement and PSF's notice.
—of
copyright, i.e., "Copyright © 2001-2021 Python Software Foundation; All._
—Rights
Reserved" are retained in Python 3.6.15 alone or in any derivative version
prepared by Licensee.

3. In the event Licensee prepares a derivative work that is based on or
incorporates Python 3.6.15 or any part thereof, and wants to make the
derivative work available to others as provided herein, then Licensee.

—~hereby
agrees to include in any such work a brief summary of the changes made to.

—Python
3.6.15.

4. PSF is making Python 3.6.15 available to Licensee on an "AS IS" basis.

PSF MAKES NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF

EXAMPLE, BUT NOT LIMITATION, PSF MAKES NO AND DISCLAIMS ANY REPRESENTATION.
—0OR

WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT.
—THE

USE OF PYTHON 3.6.15 WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

5. PSF SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF PYTHON 3.6.15

FOR ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT.
—OF

MODIFYING, DISTRIBUTING, OR OTHERWISE USING PYTHON 3.6.15, OR ANY.
—DERIVATIVE

THEREOF, EVEN IF ADVISED OF THE POSSIBILITY THEREOF.

54 Appendix C. History and License

Python Setup and Usage, £A| H{™ 3.6.15

6. This License Agreement will automatically terminate upon a material breach.
—of
its terms and conditions.

7. Nothing in this License Agreement shall be deemed to create any.
—relationship

of agency, partnership, or joint venture between PSF and Licensee. This.
—License

Agreement does not grant permission to use PSF trademarks or trade name in.
—a

trademark sense to endorse or promote products or services of Licensee, or.
—any

third party.

8. By copying, installing or otherwise using Python 3.6.15, Licensee agrees
to be bound by the terms and conditions of this License Agreement.

C.2.2 BEOPEN.COM LICENSE AGREEMENT FOR PYTHON 2.0

BEOPEN PYTHON OPEN SOURCE LICENSE AGREEMENT VERSION 1

1. This LICENSE AGREEMENT is between BeOpen.com ("BeOpen"), having an office at
160 Saratoga Avenue, Santa Clara, CA 95051, and the Individual or Organization
("Licensee") accessing and otherwise using this software in source or binary
form and its associated documentation ("the Software").

2. Subject to the terms and conditions of this BeOpen Python License Agreement,
BeOpen hereby grants Licensee a non-exclusive, royalty-free, world-wide license
to reproduce, analyze, test, perform and/or display publicly, prepare derivative
works, distribute, and otherwise use the Software alone or in any derivative
version, provided, however, that the BeOpen Python License is retained in the
Software, alone or in any derivative version prepared by Licensee.

3. BeOpen is making the Software available to Licensee on an "AS IS" basis.
BEOPEN MAKES NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF
EXAMPLE, BUT NOT LIMITATION, BEOPEN MAKES NO AND DISCLAIMS ANY REPRESENTATION OR
WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE
USE OF THE SOFTWARE WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

4. BEOPEN SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF THE SOFTWARE FOR
ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT OF USING,
MODIFYING OR DISTRIBUTING THE SOFTWARE, OR ANY DERIVATIVE THEREOF, EVEN IF
ADVISED OF THE POSSIBILITY THEREOEF.

5. This License Agreement will automatically terminate upon a material breach of
its terms and conditions.

6. This License Agreement shall be governed by and interpreted in all respects
by the law of the State of California, excluding conflict of law provisions.
Nothing in this License Agreement shall be deemed to create any relationship of
agency, partnership, or joint venture between BeOpen and Licensee. This License
Agreement does not grant permission to use BeOpen trademarks or trade names in a
trademark sense to endorse or promote products or services of Licensee, or any
third party. As an exception, the "BeOpen Python" logos available at

(THS STl Aol A1)

C.2. Terms and conditions for accessing or otherwise using Python 55

Python Setup and Usage, £A| H{H™ 3.6.15

(o] A sl o] A A M A%)

http://www.pythonlabs.com/logos.html may be used according to the permissions
granted on that web page.

By copying, installing or otherwise using the software, Licensee agrees to be
bound by the terms and conditions of this License Agreement.

C.2.3 CNRI LICENSE AGREEMENT FOR PYTHON 1.6.1

This LICENSE AGREEMENT is between the Corporation for National Research
Initiatives, having an office at 1895 Preston White Drive, Reston, VA 20191
("CNRI"), and the Individual or Organization ("Licensee") accessing and
otherwise using Python 1.6.1 software in source or binary form and its
associated documentation.

Subject to the terms and conditions of this License Agreement, CNRI hereby
grants Licensee a nonexclusive, royalty-free, world-wide license to reproduce,
analyze, test, perform and/or display publicly, prepare derivative works,
distribute, and otherwise use Python 1.6.1 alone or in any derivative version,
provided, however, that CNRI's License Agreement and CNRI's notice of copyright,
i.e., "Copyright © 1995-2001 Corporation for National Research Initiatives; All
Rights Reserved" are retained in Python 1.6.1 alone or in any derivative version
prepared by Licensee. Alternately, in lieu of CNRI's License Agreement,
Licensee may substitute the following text (omitting the quotes): "Python 1.6.1
is made available subject to the terms and conditions in CNRI's License
Agreement. This Agreement together with Python 1.6.1 may be located on the
Internet using the following unique, persistent identifier (known as a handle):
1895.22/1013. This Agreement may also be obtained from a proxy server on the
Internet using the following URL: http://hdl.handle.net/1895.22/1013."

In the event Licensee prepares a derivative work that is based on or
incorporates Python 1.6.1 or any part thereof, and wants to make the derivative
work available to others as provided herein, then Licensee hereby agrees to
include in any such work a brief summary of the changes made to Python 1.6.1.

CNRI is making Python 1.6.1 available to Licensee on an "AS IS" basis. CNRI
MAKES NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF EXAMPLE,
BUT NOT LIMITATION, CNRI MAKES NO AND DISCLAIMS ANY REPRESENTATION OR WARRANTY
OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE USE OF
PYTHON 1.6.1 WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

CNRI SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF PYTHON 1.6.1 FOR
ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT OF
MODIFYING, DISTRIBUTING, OR OTHERWISE USING PYTHON 1.6.1, OR ANY DERIVATIVE
THEREOF, EVEN IF ADVISED OF THE POSSIBILITY THEREOEF.

This License Agreement will automatically terminate upon a material breach of
its terms and conditions.

This License Agreement shall be governed by the federal intellectual property
law of the United States, including without limitation the federal copyright
law, and, to the extent such U.S. federal law does not apply, by the law of the
Commonwealth of Virginia, excluding Virginia's conflict of law provisions.
Notwithstanding the foregoing, with regard to derivative works based on Python
1.6.1 that incorporate non-separable material that was previously distributed

(TH& SOTATl A1)

56

Appendix C. History and License

Python Setup and Usage, £A| H{™ 3.6.15

(o] A sl o] A A M A%)

under the GNU General Public License (GPL), the law of the Commonwealth of
Virginia shall govern this License Agreement only as to issues arising under or
with respect to Paragraphs 4, 5, and 7 of this License Agreement. Nothing in
this License Agreement shall be deemed to create any relationship of agency,
partnership, or joint venture between CNRI and Licensee. This License Agreement
does not grant permission to use CNRI trademarks or trade name in a trademark
sense to endorse or promote products or services of Licensee, or any third
party.

8. By clicking on the "ACCEPT" button where indicated, or by copying, installing
or otherwise using Python 1.6.1, Licensee agrees to be bound by the terms and
conditions of this License Agreement.

C.2.4 CWI LICENSE AGREEMENT FOR PYTHON 0.9.0 THROUGH 1.2

Copyright © 1991 - 1995, Stichting Mathematisch Centrum Amsterdam, The
Netherlands. All rights reserved.

Permission to use, copy, modify, and distribute this software and its
documentation for any purpose and without fee is hereby granted, provided that
the above copyright notice appear in all copies and that both that copyright
notice and this permission notice appear in supporting documentation, and that
the name of Stichting Mathematisch Centrum or CWI not be used in advertising or
publicity pertaining to distribution of the software without specific, written
prior permission.

STICHTING MATHEMATISCH CENTRUM DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS
SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN NO
EVENT SHALL STICHTING MATHEMATISCH CENTRUM BE LIABLE FOR ANY SPECIAL, INDIRECT
OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE,
DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS
SOFTWARE .

C.3 Licenses and Acknowledgements for Incorporated Software

This section is an incomplete, but growing list of licenses and acknowledgements for third-party software incorporated in
the Python distribution.

C.3.1 Mersenne Twister

The _random module includes code based on a download from http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/
MT2002/emt19937ar.html. The following are the verbatim comments from the original code:

A C-program for MT19937, with initialization improved 2002/1/26.
Coded by Takuji Nishimura and Makoto Matsumoto.

Before using, initialize the state by using init_genrand(seed)
or init_by_array(init_key, key_length).

(THS SOl AT ol A1)

C.3. Licenses and Acknowledgements for Incorporated Software 57

http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/MT2002/emt19937ar.html
http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/MT2002/emt19937ar.html

Python Setup and Usage, £A| H{H™ 3.6.15

(o] A sl o] A A M A%)

Copyright (C) 1997 - 2002, Makoto Matsumoto and Takuji Nishimura,
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

3. The names of its contributors may not be used to endorse or promote
products derived from this software without specific prior written
permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. 1IN NO EVENT SHALL THE COPYRIGHT OWNER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Any feedback is very welcome.
http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html
email: m—-mat @ math.sci.hiroshima-u.ac.jp (remove space)

C.3.2 Sockets

The socket module uses the functions, getaddrinfo (), and getnameinfo (), which are coded in separate
source files from the WIDE Project, http://www.wide.ad.jp/.

Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
All rights reserved.

Redistribution and use in source and binary forms, with or without

modification, are permitted provided that the following conditions

are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

3. Neither the name of the project nor the names of its contributors
may be used to endorse or promote products derived from this software
without specific prior written permission.

(TH& ST Aol A1)

58 Appendix C. History and License

http://www.wide.ad.jp/

Python Setup and Usage, £A| H{™ 3.6.15

(o] A sl o] A A M A%)

THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS " "AS IS'' AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. 1IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS

OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

C.3.3 Floating point exception control

The source for the fpect 1 module includes the following notice:

/ Copyright (c) 1996. \
The Regents of the University of California.
All rights reserved.

Permission to use, copy, modify, and distribute this software for
any purpose without fee is hereby granted, provided that this en-—
tire notice is included in all copies of any software which is or
includes a copy or modification of this software and in all
copies of the supporting documentation for such software.

This work was produced at the University of California, Lawrence
Livermore National Laboratory under contract no. W-7405-ENG-48
between the U.S. Department of Energy and The Regents of the
University of California for the operation of UC LLNL.

DISCLAIMER

This software was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States
Government nor the University of California nor any of their em-
ployees, makes any warranty, express or implied, or assumes any
liability or responsibility for the accuracy, completeness, or
usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe
privately-owned rights. Reference herein to any specific commer-
cial products, process, or service Dby trade name, trademark,
manufacturer, or otherwise, does not necessarily constitute or
imply its endorsement, recommendation, or favoring by the United
States Government or the University of California. The views and
opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or the University
of California, and shall not be used for advertising or product
\ endorsement purposes. /

C.3. Licenses and Acknowledgements for Incorporated Software 59

Python Setup and Usage, £A| H{H™ 3.6.15

C.3.4 Asynchronous socket services

The asynchat and asyncore modules contain the following notice:

Copyright 1996 by Sam Rushing
All Rights Reserved

Permission to use, copy, modify, and distribute this software and
its documentation for any purpose and without fee is hereby
granted, provided that the above copyright notice appear in all
copies and that both that copyright notice and this permission
notice appear in supporting documentation, and that the name of Sam
Rushing not be used in advertising or publicity pertaining to
distribution of the software without specific, written prior
permission.

SAM RUSHING DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE,
INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN
NO EVENT SHALL SAM RUSHING BE LIABLE FOR ANY SPECIAL, INDIRECT OR
CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS
OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT,
NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

C.3.5 Cookie management

The http.cookies module contains the following notice:

Copyright 2000 by Timothy O'Malley <timo@alum.mit.edu>
All Rights Reserved

Permission to use, copy, modify, and distribute this software

and its documentation for any purpose and without fee is hereby
granted, provided that the above copyright notice appear in all
copies and that both that copyright notice and this permission
notice appear in supporting documentation, and that the name of
Timothy O'Malley not be used in advertising or publicity

pertaining to distribution of the software without specific, written
prior permission.

Timothy O'Malley DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS
SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS, IN NO EVENT SHALL Timothy O'Malley BE LIABLE FOR
ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
PERFORMANCE OF THIS SOFTWARE.

60 Appendix C. History and License

Python Setup and Usage, £A| H{™ 3.6.15

C.3.6 Execution tracing

The t race module contains the following notice:

portions copyright 2001, Autonomous Zones Industries, Inc., all rights...
err... reserved and offered to the public under the terms of the

Python 2.2 license.

Author: Zooko O'Whielacronx

http://zooko.com/

mailto:zooko@zooko.com

Copyright 2000, Mojam Media, Inc., all rights reserved.
Author: Skip Montanaro

Copyright 1999, Bioreason, Inc., all rights reserved.
Author: Andrew Dalke

Copyright 1995-1997, Automatrix, Inc., all rights reserved.
Author: Skip Montanaro

Copyright 1991-1995, Stichting Mathematisch Centrum, all rights reserved.

Permission to use, copy, modify, and distribute this Python software and
its associated documentation for any purpose without fee is hereby
granted, provided that the above copyright notice appears in all copies,
and that both that copyright notice and this permission notice appear in
supporting documentation, and that the name of neither Automatrix,
Bioreason or Mojam Media be used in advertising or publicity pertaining to
distribution of the software without specific, written prior permission.

C.3.7 UUencode and UUdecode functions

The uu module contains the following notice:

Copyright 1994 by Lance Ellinghouse
Cathedral City, California Republic, United States of America.

All Rights Reserved
Permission to use, copy, modify, and distribute this software and its
documentation for any purpose and without fee is hereby granted,
provided that the above copyright notice appear in all copies and that
both that copyright notice and this permission notice appear in
supporting documentation, and that the name of Lance Ellinghouse
not be used in advertising or publicity pertaining to distribution
of the software without specific, written prior permission.
LANCE ELLINGHOUSE DISCLAIMS ALL WARRANTIES WITH REGARD TO
THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS, IN NO EVENT SHALL LANCE ELLINGHOUSE CENTRUM BE LIABLE
FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT
OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

Modified by Jack Jansen, CWI, July 1995:
— Use binascii module to do the actual line-by-line conversion
between ascii and binary. This results in a 1000-fold speedup. The C

(TF= ol ATl A%

C.3. Licenses and Acknowledgements for Incorporated Software 61

Python Setup and Usage, £A| H{H™ 3.6.15

(o] A sl o] A A M A%)

version is still 5 times faster, though.
- Arguments more compliant with Python standard

C.3.8 XML Remote Procedure Calls

The xmlrpc.client module contains the following notice:

The XML-RPC client interface is

Copyright (c) 1999-2002 by Secret Labs AB
Copyright (c) 1999-2002 by Fredrik Lundh

By obtaining, using, and/or copying this software and/or its
associated documentation, you agree that you have read, understood,
and will comply with the following terms and conditions:

Permission to use, copy, modify, and distribute this software and
its associated documentation for any purpose and without fee is
hereby granted, provided that the above copyright notice appears in
all copies, and that both that copyright notice and this permission
notice appear in supporting documentation, and that the name of
Secret Labs AB or the author not be used in advertising or publicity
pertaining to distribution of the software without specific, written
prior permission.

SECRET LABS AB AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH REGARD
TO THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANT-
ABILITY AND FITNESS. 1IN NO EVENT SHALL SECRET LABS AB OR THE AUTHOR
BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY
DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
OF THIS SOFTWARE.

C.3.9 test_epoll

The test_epoll module contains the following notice:

Copyright (c) 2001-2006 Twisted Matrix Laboratories.

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF

(TH& ST Aol A1)

62 Appendix C. History and License

Python Setup and Usage, £A| H{™ 3.6.15

(o] A sl o] A A M A%)

MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND

NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

C.3.10 Select kqueue

The select module contains the following notice for the kqueue interface:

Copyright (c) 2000 Doug White, 2006 James Knight, 2007 Christian Heimes
All rights reserved.

Redistribution and use in source and binary forms, with or without

modification, are permitted provided that the following conditions

are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS " "AS IS'' AND

ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS

OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

C.3.11 SipHash24

The file Python/pyhash. c contains Marek Majkowski) implementation of Dan Bernstein’s SipHash24 algorithm.
The contains the following note:

<MIT License>
Copyright (c) 2013 Marek Majkowski <marek@popcount.org>

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
</MIT License>

(TH& ST Aol A1)

C.3. Licenses and Acknowledgements for Incorporated Software 63

Python Setup and Usage, £A| H{H™ 3.6.15

(o] A sl o] A A M A%)

Original location:
https://github.com/majek/csiphash/

Solution inspired by code from:
Samuel Neves (supercop/crypto_auth/siphash24/1little)
djb (supercop/crypto_auth/siphash24/little2)
Jean-Philippe Aumasson (https://131002.net/siphash/siphash24.c)

C.3.12 strtod and dtoa

The file Python/dtoa. c, which supplies C functions dtoa and strtod for conversion of C doubles to and from strings,
is derived from the file of the same name by David M. Gay, currently available from http://www.netlib.org/fp/. The
original file, as retrieved on March 16, 2009, contains the following copyright and licensing notice:

/**

*

* The author of this software is David M. Gay.
*

Copyright (c) 1991, 2000, 2001 by Lucent Technologies.

* % o

Permission to use, copy, modify, and distribute this software for any
purpose without fee is hereby granted, provided that this entire notice
is included in all copies of any software which is or includes a copy
or modification of this software and in all copies of the supporting
documentation for such software.

* % ok X

*

* THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR IMPLIED
* WARRANTY. IN PARTICULAR, NEITHER THE AUTHOR NOR LUCENT MAKES ANY

* REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE MERCHANTABILITY

* OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR PURPOSE.

***/

C.3.13 OpenSSL

The modules hashlib, posix, ss1, crypt use the OpenSSL library for added performance if made available by the
operating system. Additionally, the Windows and Mac OS X installers for Python may include a copy of the OpenSSL
libraries, so we include a copy of the OpenSSL license here:

LICENSE ISSUES

The OpenSSL toolkit stays under a dual license, i.e. both the conditions of
the OpenSSL License and the original SSLeay license apply to the toolkit.
See below for the actual license texts. Actually both licenses are BSD-style
Open Source licenses. In case of any license issues related to OpenSSL
please contact openssl-core@openssl.org.

OpenSSL License

/* - - - =

* Copyright (c) 1998-2008 The OpenSSL Project. All rights reserved.

(TH& ST Aol A1)

64 Appendix C. History and License

http://www.netlib.org/fp/

Python Setup and Usage, £A| H{™ 3.6.15

(o] A sl o] A A M A%)

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in
the documentation and/or other materials provided with the
distribution.

3. All advertising materials mentioning features or use of this
software must display the following acknowledgment:
"This product includes software developed by the OpenSSL Project
for use in the OpenSSL Toolkit. (http://www.openssl.org/)"

4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
endorse or promote products derived from this software without
prior written permission. For written permission, please contact
openssl-corelopenssl.org.

5. Products derived from this software may not be called "OpenSSL"
nor may "OpenSSL" appear in their names without prior written
permission of the OpenSSL Project.

6. Redistributions of any form whatsoever must retain the following
acknowledgment:
"This product includes software developed by the OpenSSL Project
for use in the OpenSSL Toolkit (http://www.openssl.org/)"

THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT " "AS IS'' AND ANY
EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT

NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;

LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)

HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
OF THE POSSIBILITY OF SUCH DAMAGE.

This product includes cryptographic software written by Eric Young
(eay@cryptsoft.com). This product includes software written by Tim
Hudson (tjh@cryptsoft.com).

L I I A I N N S N IS S S S S i S N N R S S S N S S S T SN S N S S S T S ST S S N S N .

Original SSLeay License

/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)

(TH& ST Aol A1)

C.3. Licenses and Acknowledgements for Incorporated Software 65

Python Setup and Usage, £A| H{H™ 3.6.15

(o] A sl o] A A M A%)

EE I S S R I S S N S N S S S S S S e e . N S NS S S N T N S T TS S N S S S S S ST SN S S S S S S N

All rights reserved.

This package is an SSL implementation written
by Eric Young (eaylcryptsoft.com).
The implementation was written so as to conform with Netscapes SSL.

This library is free for commercial and non-commercial use as long as
the following conditions are aheared to. The following conditions
apply to all code found in this distribution, be it the RC4, RSA,
lhash, DES, etc., code; not just the SSL code. The SSL documentation
included with this distribution is covered by the same copyright terms
except that the holder is Tim Hudson (tjh@cryptsoft.com).

Copyright remains Eric Young's, and as such any Copyright notices in

the code are not to be removed.

If this package is used in a product, Eric Young should be given attribution
as the author of the parts of the library used.

This can be in the form of a textual message at program startup or

in documentation (online or textual) provided with the package.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
1. Redistributions of source code must retain the copyright
notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
3. All advertising materials mentioning features or use of this software
must display the following acknowledgement:
"This product includes cryptographic software written by
Eric Young (eay@cryptsoft.com)"
The word 'cryptographic' can be left out if the rouines from the library
being used are not cryptographic related :-).
4. If you include any Windows specific code (or a derivative thereof) from
the apps directory (application code) you must include an acknowledgement:
"This product includes software written by Tim Hudson (tjh@cryptsoft.com)"

THIS SOFTWARE IS PROVIDED BY ERIC YOUNG " "AS IS'' AND

ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS

OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

The licence and distribution terms for any publically available version or
derivative of this code cannot be changed. i.e. this code cannot simply be
copied and put under another distribution licence

[including the GNU Public Licence.]
/

66

Appendix C. History and License

Python Setup and Usage, £A| H{™ 3.6.15

C.3.14 expat

The pyexpat extension is built using an included copy of the expat sources unless the build is configured
—-with-system-expat:

Copyright (c) 1998, 1999, 2000 Thai Open Source Software Center Ltd
and Clark Cooper

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

C.3.15 libffi

The _ctypes extension is built using an included copy of the libffi sources unless the build is configured
——with-system—-1ibffi:

Copyright (c) 1996-2008 Red Hat, Inc and others.

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software''), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED " "AS IS'', WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.

C.3. Licenses and Acknowledgements for Incorporated Software 67

Python Setup and Usage, £A| H{H™ 3.6.15

C.3.16 zlib

The z11ib extension is built using an included copy of the zlib sources if the zlib version found on the system is too old
to be used for the build:

Copyright (C) 1995-2011 Jean-loup Gailly and Mark Adler

This software is provided 'as-is', without any express or implied
warranty. In no event will the authors be held liable for any damages
arising from the use of this software.

Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it
freely, subject to the following restrictions:

1. The origin of this software must not be misrepresented; you must not
claim that you wrote the original software. If you use this software
in a product, an acknowledgment in the product documentation would be
appreciated but is not required.

2. Altered source versions must be plainly marked as such, and must not be
misrepresented as being the original software.

3. This notice may not be removed or altered from any source distribution.

Jean—-loup Gailly Mark Adler
jloup@gzip.org madler@alumni.caltech.edu

C.3.17 cfuhash

The implementation of the hash table used by the t racemalloc is based on the cfuhash project:

Copyright (c) 2005 Don Owens
All rights reserved.

This code is released under the BSD license:

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following
disclaimer in the documentation and/or other materials provided
with the distribution.

* Neither the name of the author nor the names of its
contributors may be used to endorse or promote products derived
from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS

(TH& ST Aol A1)

68 Appendix C. History and License

Python Setup and Usage, £A| H{™ 3.6.15

(o] A sl o] A A M A%)

FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
OF THE POSSIBILITY OF SUCH DAMAGE.

C.3.18 libmpdec

The _decimal module is built using an included copy of the libmpdec library unless the build is configured
—-with-system-libmpdec:

Copyright (c) 2008-2016 Stefan Krah. All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS "AS IS" AND

ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. 1IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS

OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

C.3. Licenses and Acknowledgements for Incorporated Software 69

Python Setup and Usage, £A| H{H™ 3.6.15

70

Appendix C. History and License

APPENDIX D

sho] A3} o] EFRE o] AL
Copyright © 2001-2021 Python Software Foundation. All rights reserved.

Copyright © 2000 BeOpen.com. All rights reserved.

Copyright © 1995-2000 Corporation for National Research Initiatives. All rights reserved.
Copyright © 1991-1995 Stichting Mathematisch Centrum. All rights reserved.

AA 2ol Al W AR A A X = History and License ol A1 A& 3T},

71

Python Setup and Usage, £A| H{H™ 3.6.15

72

Appendix D. X z}#

1=
ro

Non-alphabetical
37

command line option,5

2to3,37

>>> 37

_ future_ ,41
_ slots_ ,47

A

abstract base class (A4 Hlo|x F82), 37

annotation, 37

argument (Q12}), 37

asynchronous context manager (M]3 7] 7 €
2E #e]A}, 38

asynchronous generator (8% 7] A\ g o]),
38

asynchronous generator iterator (H| & 7]
Al alol e o]l o]), 38

asynchronous iterable (H]5 7] o]E & &), 38

asynchronous iterator (8]% 7] o€ & o]¥), 38

attribute (9] E T HE), 38

awaitable (o]9J] o] E] &), 38

B
-B

command line option,5
-b

command line option,5
BDFL, 38
binary file (d}°]\ g 5}Y), 38
bytecode (H}o]E F &), 39
bytes—1like object (H}o]|E Y

C

—-c <command>

command line option,4
C-contiguous, 39
class (Z82), 39

7 AA), 38

class variable, 39
coercion (o] A), 39
command line option

-2,5

-B,5

-b, 5

-c <command>, 4

-4,5

-E,5

-h,5

—--help, 5

-1,6

-i,5

-J,8

-m <module-name>, 4

-0, 6

-00, 6

-q, 6

-R, 6

-S,6

-s,6

-u, 6

-V, 5

-v, 7

—--version,5

-W arg, 7

-X,7

-x,7
complex number (E49), 39
context manager (AE2E FHe]A}), 39
contiguous (A%), 39
coroutine (ZFH), 39
coroutine function (ZFHE), 39
CPython, 39

D
-d

command line option,5
decorator (d/Z 3 °]H), 39
descriptor (J2ZHE), 40

73

Python Setup and Usage, £A| H{H™ 3.6.15

dictionary (941 2]), 40 interpreted (QAE Z 2 E|E), 42

dictionary view (944 g &), 40 interpreter shutdown (AEZZE £

docstring (E2E F), 40 iterable (9] #HE), 43

duck-typing (5§ €}o]3), 40 iterator (°]El @ o] E]), 43

E J

-E -J

command line option,5 command line option, 8

EAFP, 40

exec_prefix, 14 K

expression (E&4), 40 key function (7] &4),43

extension module (B3 2E), 40 keyword argument (7] E <z}, 43

F L

f-string (fEAF2), 40 lambda (F1}), 43

file object (<L AA, 40 LBYL, 43

file-like object (I¥F AA), 41 list (Y 2E), 43

finder (¥}<1H), 41 list comprehension (B|&E #HZE3A), 43

floor division (B4 UxAl), 41 loader (24), 44

Fortran contiguous, 39

function (&), 41 M

function annotation (&4 o] = H|o]A), 41 “m <module-name>

G command line option,4
mapping (733), 44

garbage collection (7FH]A] +A), 41 meta path finder (W|E} A& 5}QlH), 44

generator, 41 metaclass (H E}F Fe2), 44

generator (A4 & °] ¥), 41 method (WA =), 44

generator expression,4l method resolution order (WA E AA <A,

generator expression (AlUd olE Z&4]), 41 44

generator iterator (AYdelE olH & olH), 41 podule (RE), 44

generic function (AU " &), 42 module spec (RE), 44

GIL, 42 MRO, 44

global interpreter lock (A JHZ2H putable (7}9), 44

), 42

N

named tuple (U Y= £Z) 4

F{

-h namespace (0|5 &7}, 44

command line option,5 namespace package (0|5 &7+ 371 A)), 44
hashable (3] A] 7}%), 42 nested scope (EHH £~2FZ), 45
--help new-style class (F2EY ZE2), 45

command line option,5

| O

-0

-1 command line option,6

command line option,6 object (AA), 45
-1 -00

command line option,5 command line option,6
IDLE,42
immutable (£W), 42 P
i t th(YZE AR .
Jl_mport paO]:E; p &), 42 package (3] 7] X)), 45
%mpor §r(i), parameter (3}8+1] E), 45
importing (niﬂo)d“z PATH, 8, 15, 18, 20, 23, 24, 26
interactive (FH3}3), 42 path based finder (FE 7]ut 3}ely), 46

74 Aol

Python Setup and Usage, £A| H{™ 3.6.15

path entry (F = JdE=), 45

path entry finder (AZ JdEg 5t 4), 45
path entry hook (A= dEZF &), 46
path-like object (BEF AA)), 46
PATHEXT, 20

PEP, 46

portion (E4), 46

positional argument (8 %] Q1A}), 46
prefix, 14

provisional API (A API), 46
provisional package (FFA 3]7]A)), 46
Python 3000 (o] % 3000), 46
PYTHON*, 5, 6

PYTHONDEBUG, 5
PYTHONDONTWRITEBYTECODE, 5
PYTHONHASHSEED, 6, 9
PYTHONHOME, 5, 8, 28

Pythonic (3}o] M TH), 46
PYTHONINSPECT, 6
PYTHONLEGACYWINDOWSSTDIO, 9
PYTHONMALLOC, 11
PYTHONOPTIMIZE, 6

PYTHONPATH, 5, 8, 23, 28, 34
PYTHONSTARTUP, 6
PYTHONUNBUFFERED, 7
PYTHONVERBOSE, 7
PYTHONWARNINGS, 7

-q
command line option,6
qualified name (BAH3}E o] £), 46

-R

command line option,6
reference count (ZFX 3 4), 47
regular package (A 3 7] A)), 47

S
-5

command line option,6
-s

command line option,6
sequence (A| A 2), 47
single dispatch (A& Yol X]),47
slice (£g}o]), 47
special method (E4 HAE), 47
statement (%), 47
struct sequence (F-ZA| A|A2), 47

T

text encoding (HlAE <917 1), 48

text file (Hl2E 54),48

triple—-quoted string (A% 2% H EX19),
48

type (%), 48

type alias, 48

type hint, 48

-u
command line option,6
universal newlines (FUB¥A & d7),48

Vv
-V
command line option,5
-v
command line option,7
variable annotation (34 o]k o] A), 48
-—-version
command line option,5
virtual environment (7} 7)), 49
virtual machine (7} 7] A), 49

W

-W arg
command line option,7

command line option,7

command line option,7

Trepd T e
PEP 1,46
PEP 8,15
PEP 11,17,22
PEP 230,7
PEP 238,41
PEP 278,48
PEP 302,41, 44
PEP 338,4
PEP 343,39
PEP 362,38,45
PEP 370,6,9, 10
PEP 397,31
PEP 411,46
PEP 420,41, 44,46
PEP 443,42
PEP 451,41
PEP 484,37,41,48,49
PEP 488,6

AHO|
1 -

75

Python Setup and Usage, £A| H{H™ 3.6.15

Zd

Z

zZen

PEP 492, 38,39
PEP 498,40
PEP 519,46
PEP 525,38
PEP 526,37, 49
PEP 529,11
PEP 3116,48
PEP 3155,46

U4
exec_prefix, 14
PATH, 8, 15, 18, 20, 23, 24, 26
PATHEXT, 20
prefix, 14
PYTHON*, 5, 6
PYTHONASYNCIODERUG, 10
PYTHONCASEOK, 9
PYTHONDEBRUG, 5, 9
PYTHONDONTWRITEBYTECODE, 5, 9
PYTHONDUMPREFS, 11
PYTHONEXECUTABLE, 10
PYTHONFAULTHANDLER, 10
PYTHONHASHSEED, 6, 9
PYTHONHOME, 5, 8, 28
PYTHONINSPECT, 6, 9
PYTHONIOENCODING, 9
PYTHONLEGACYWINDOWSFSENCODING, 11
PYTHONLEGACYWINDOWSSTDIO, 9, 11
PYTHONMALLOC, 10, 11
PYTHONMALLOCSTATS, 11
PYTHONNOUSERSITE, 9
PYTHONOPTIMIZE, 6,9
PYTHONPATH, 5, 8, 23, 28, 34
PYTHONSTARTUP, 6, 8
PYTHONTHREADDERUG, 11
PYTHONTRACEMALLOC, 10
PYTHONUNBUFFERED, 7, 9
PYTHONUSERBASE, 10
PYTHONVERBOSE, 7, 9
PYTHONWARNINGS, 7, 10

of Python (Io]# A), 49

76

it

	Command line and environment
	Command line
	Environment variables

	Using Python on Unix platforms
	Getting and installing the latest version of Python
	Building Python
	Python-related paths and files
	Miscellaneous
	Editors and IDEs

	Using Python on Windows
	Installing Python
	Alternative bundles
	Configuring Python
	Python Launcher for Windows
	Finding modules
	Additional modules
	Compiling Python on Windows
	Embedded Distribution
	Other resources

	Using Python on a Macintosh
	Getting and Installing MacPython
	The IDE
	Installing Additional Python Packages
	GUI Programming on the Mac
	Distributing Python Applications on the Mac
	Other Resources

	용어집
	About these documents
	Contributors to the Python Documentation

	History and License
	History of the software
	Terms and conditions for accessing or otherwise using Python
	Licenses and Acknowledgements for Incorporated Software

	저작권
	색인

