Extending and Embedding Python

S Al H{H 3.6.15

Guido van Rossum
and the Python development team

9& 05, 2021

Contents

D

1=

Recommended third party tools

Creating extensions without third party tools

2.1 Extending PythonwithCorC++
2.2 Defining Extension Types: Tutorial
2.3 Defining Extension Types: Assorted Topics
24 Building Cand C++ Extensions
2.5 Building C and C++ Extensions on Windows

Embedding the CPython runtime in a larger application

3.1 Embedding Python in Another Application.

gol%

About these documents

B.1 Contributors to the Python Documentation

History and License

C.1 Historyof thesoftware

C.2 Terms and conditions for accessing or otherwise using Python

A2

o
“

C.3 Licenses and Acknowledgements for Incorporated Software

63

............. 63

69

83

............. 83

Extending and Embedding Python, £A| B{Z 3.6.15

This document describes how to write modules in C or C++ to extend the Python interpreter with new modules. Those
modules can not only define new functions but also new object types and their methods. The document also describes how
to embed the Python interpreter in another application, for use as an extension language. Finally, it shows how to compile
and link extension modules so that they can be loaded dynamically (at run time) into the interpreter, if the underlying
operating system supports this feature.

This document assumes basic knowledge about Python. For an informal introduction to the language, see tutorial-index.
reference-index gives a more formal definition of the language. library-index documents the existing object types, func-
tions and modules (both built-in and written in Python) that give the language its wide application range.

For a detailed description of the whole Python/C API, see the separate c-api-index.

Contents 1

Extending and Embedding Python, £ A| B{% 3.6.15

2 Contents

CHAPTER 1

Recommended third party tools

This guide only covers the basic tools for creating extensions provided as part of this version of CPython. Third party
tools like Cython, cffi, SWIG and Numba offer both simpler and more sophisticated approaches to creating C and C++
extensions for Python.

o B

Python Packaging User Guide: Binary Extensions The Python Packaging User Guide not only covers several avail-
able tools that simplify the creation of binary extensions, but also discusses the various reasons why creating an
extension module may be desirable in the first place.

http://cython.org/
https://cffi.readthedocs.io
http://www.swig.org
https://numba.pydata.org/
https://packaging.python.org/en/latest/extensions/

Extending and Embedding Python, £ A| B{% 3.6.15

4 Chapter 1. Recommended third party tools

CHAPTER 2

Creating extensions without third party tools

This section of the guide covers creating C and C++ extensions without assistance from third party tools. It is intended
primarily for creators of those tools, rather than being a recommended way to create your own C extensions.

2.1 Extending Python with C or C++

It is quite easy to add new built-in modules to Python, if you know how to program in C. Such extension modules can do
two things that can’t be done directly in Python: they can implement new built-in object types, and they can call C library
functions and system calls.

To support extensions, the Python API (Application Programmers Interface) defines a set of functions, macros and vari-
ables that provide access to most aspects of the Python run-time system. The Python API is incorporated in a C source
file by including the header "Python.h".

The compilation of an extension module depends on its intended use as well as on your system setup; details are given in
later chapters.

Z+31: The C extension interface is specific to CPython, and extension modules do not work on other Python implemen-
tations. In many cases, it is possible to avoid writing C extensions and preserve portability to other implementations. For
example, if your use case is calling C library functions or system calls, you should consider using the ctypes module
or the cffi library rather than writing custom C code. These modules let you write Python code to interface with C code
and are more portable between implementations of Python than writing and compiling a C extension module.

https://cffi.readthedocs.org

Extending and Embedding Python, £ A| B{% 3.6.15

2.1.1 A Simple Example

Let’s create an extension module called spam (the favorite food of Monty Python fans--+) and let’s say we want to
create a Python interface to the C library function system () !. This function takes a null-terminated character string as
argument and returns an integer. We want this function to be callable from Python as follows:

>>> import spam
>>> status = spam.system("ls —-1")

Begin by creating a file spammodule.c. (Historically, if a module is called spam, the C file containing its imple-
mentation is called spammodule. c; if the module name is very long, like spammi fy, the module name can be just
spammify.c.)

The first line of our file can be:

#include <Python.h>

which pulls in the Python API (you can add a comment describing the purpose of the module and a copyright notice if
you like).

ZF31: Since Python may define some pre-processor definitions which affect the standard headers on some systems, you
must include Python . h before any standard headers are included.

All user-visible symbols defined by Python . h have a prefix of Py or PY, except those defined in standard header files.
For convenience, and since they are used extensively by the Python interpreter, "Python.h" includes a few standard
header files: <stdio.h>, <string.h>, <errno.h>, and <stdlib.h>. If the latter header file does not exist on
your system, it declares the functions malloc (), free () and realloc () directly.

The next thing we add to our module file is the C function that will be called when the Python expression spam.
system (string) is evaluated (we’ll see shortly how it ends up being called):

static PyObject *
spam_system (PyObject *self, PyObject *args)
{

const char *command;

int sts;

if (!PyArg_ParseTuple(args, "s", &command))
return NULL;

sts = system(command) ;

return PylLong_FromLong (sts);

There is a straightforward translation from the argument list in Python (for example, the single expression "1s —1") to
the arguments passed to the C function. The C function always has two arguments, conventionally named self and args.

The self argument points to the module object for module-level functions; for a method it would point to the object
instance.

The args argument will be a pointer to a Python tuple object containing the arguments. Each item of the tuple corresponds
to an argument in the call’s argument list. The arguments are Python objects — in order to do anything with them in our
C function we have to convert them to C values. The function PyArg_ParseTuple () in the Python API checks the
argument types and converts them to C values. It uses a template string to determine the required types of the arguments
as well as the types of the C variables into which to store the converted values. More about this later.

I An interface for this function already exists in the standard module os — it was chosen as a simple and straightforward example.

6 Chapter 2. Creating extensions without third party tools

Extending and Embedding Python, £A| B{Z 3.6.15

PyArg_ParseTuple () returns true (nonzero) if all arguments have the right type and its components have been
stored in the variables whose addresses are passed. It returns false (zero) if an invalid argument list was passed. In the
latter case it also raises an appropriate exception so the calling function can return NULL immediately (as we saw in the
example).

2.1.2 Intermezzo: Errors and Exceptions

An important convention throughout the Python interpreter is the following: when a function fails, it should set an ex-
ception condition and return an error value (usually a NULL pointer). Exceptions are stored in a static global variable
inside the interpreter; if this variable is NULL no exception has occurred. A second global variable stores the (associated
value) of the exception (the second argument to raise). A third variable contains the stack traceback in case the error
originated in Python code. These three variables are the C equivalents of the result in Python of sys.exc_info ()
(see the section on module sy s in the Python Library Reference). It is important to know about them to understand how
errors are passed around.

The Python API defines a number of functions to set various types of exceptions.

The most common one is PyErr_SetString (). Its arguments are an exception object and a C string. The exception
object is usually a predefined object like PyExc_ZeroDivisionError. The C string indicates the cause of the error
and is converted to a Python string object and stored as the ¢ associated value) of the exception.

Another useful function is PyErr_SetFromErrno (), which only takes an exception argument and constructs the
associated value by inspection of the global variable errno. The most general function is PyErr_SetObject (),
which takes two object arguments, the exception and its associated value. You don’t need to Py_ INCREF () the objects
passed to any of these functions.

You can test non-destructively whether an exception has been set with PyErr_Occurred (). This returns the current
exception object, or NULL if no exception has occurred. You normally don’t need to call PyErr_Occurred () to see
whether an error occurred in a function call, since you should be able to tell from the return value.

When a function f that calls another function g detects that the latter fails, f should itself return an error value (usually
NULL or —1). It should not call one of the PyErr_* () functions — one has already been called by g. f’s caller is
then supposed to also return an error indication to its caller, again without calling PyErr_* (), and so on — the most
detailed cause of the error was already reported by the function that first detected it. Once the error reaches the Python
interpreter’s main loop, this aborts the currently executing Python code and tries to find an exception handler specified
by the Python programmer.

(There are situations where a module can actually give a more detailed error message by calling another PyErr_* ()
function, and in such cases it is fine to do so. As a general rule, however, this is not necessary, and can cause information
about the cause of the error to be lost: most operations can fail for a variety of reasons.)

To ignore an exception set by a function call that failed, the exception condition must be cleared explicitly by calling
PyErr_Clear (). The only time C code should call PyErr_Clear () is if it doesn’t want to pass the error on to
the interpreter but wants to handle it completely by itself (possibly by trying something else, or pretending nothing went
wrong).

Every failing malloc () call must be turned into an exception — the direct caller of malloc () (or realloc ())
must call PyErr_NoMemory () and return a failure indicator itself. All the object-creating functions (for example,
PyLong_FromLong ()) already do this, so this note is only relevant to those who call malloc () directly.

Also note that, with the important exception of PyArg_ParseTuple () and friends, functions that return an integer
status usually return a positive value or zero for success and -1 for failure, like Unix system calls.

Finally, be careful to clean up garbage (by making Py_ XDECREF () or Py_DECREF () calls for objects you have already
created) when you return an error indicator!

The choice of which exception to raise is entirely yours. There are predeclared C objects corresponding to all built-in
Python exceptions, such as PyExc_ZeroDivisionError, which you can use directly. Of course, you should choose

2.1. Extending Python with C or C++ 7

Extending and Embedding Python, £ A| B{% 3.6.15

exceptions wisely — don’t use PyExc_TypeError to mean that a file couldn’t be opened (that should probably be
PyExc_IOError). If something’s wrong with the argument list, the PyArg_ParseTuple () function usually raises
PyExc_TypeError. If you have an argument whose value must be in a particular range or must satisfy other conditions,
PyExc_ValueError is appropriate.

You can also define a new exception that is unique to your module. For this, you usually declare a static object variable at
the beginning of your file:

static PyObject *SpamError;

and initialize it in your module’s initialization function (PyInit_spam ()) with an exception object (leaving out the
error checking for now):

PyMODINIT_FUNC
PyInit_spam(void)
{

PyObject *m;

m = PyModule_Create (&spammodule) ;
if (m == NULL)
return NULL;

SpamError = PyErr_NewException ("spam.error", NULL, NULL);
Py_INCREF (SpamError);

PyModule_AddObject (m, "error", SpamError);

return m;

Note that the Python name for the exception object is spam.error. The PyErr_NewException () function may
create a class with the base class being Exception (unless another class is passed in instead of NULL), described in
bltin-exceptions.

Note also that the SpamError variable retains a reference to the newly created exception class; this is intentional! Since
the exception could be removed from the module by external code, an owned reference to the class is needed to ensure
that it will not be discarded, causing SpamError to become a dangling pointer. Should it become a dangling pointer,
C code which raises the exception could cause a core dump or other unintended side effects.

We discuss the use of PyMODINIT_FUNC as a function return type later in this sample.

The spam.error exception can be raised in your extension module using a call to PyErr_SetString () as shown
below:

static PyObject *
spam_system (PyObject *self, PyObject *args)
{

const char *command;

int sts;

if (!PyArg_ParseTuple(args, "s", &command))
return NULL;

sts = system(command) ;

if (sts < 0) {
PyErr_SetString(SpamError, "System command failed");
return NULL;

}

return PylLong_FromLong (sts);

8 Chapter 2. Creating extensions without third party tools

Extending and Embedding Python, £A| B{Z 3.6.15

2.1.3 Back to the Example

Going back to our example function, you should now be able to understand this statement:

if (!PyArg_ParseTuple(args, "s", &command))
return NULL;

It returns NULL (the error indicator for functions returning object pointers) if an error is detected in the argument list,
relying on the exception set by PyArg_ParseTuple (). Otherwise the string value of the argument has been copied
to the local variable command. This is a pointer assignment and you are not supposed to modify the string to which it
points (so in Standard C, the variable command should properly be declared as const char *command).

The next statement is a call to the Unix function system(), passing it the string we just got from
PyArg_ParseTuple():

’sts = system(command) ;

Our spam.system () function must return the value of sts as a Python object. This is done using the function
PyLong_FromLong ().

’return PyLong_FromLong (sts) ;

In this case, it will return an integer object. (Yes, even integers are objects on the heap in Python!)

If you have a C function that returns no useful argument (a function returning void), the corresponding Python function
must return None. You need this idiom to do so (which is implemented by the Py_ RETURN_NONE macro):

Py_INCREF (Py_None) ;
return Py_None;

Py_None is the C name for the special Python object None. It is a genuine Python object rather than a NULL pointer,
which means (error) in most contexts, as we have seen.

2.1.4 The Module’s Method Table and Initialization Function

I promised to show how spam_system () is called from Python programs. First, we need to list its name and address
in a {method table) :

static PyMethodDef SpamMethods[] = {

{"system", spam_system, METH_VARARGS,
"Execute a shell command."},

{NULL, NULL, 0, NULL} /* Sentinel */
bi

Note the third entry (METH_VARARGS). This is a flag telling the interpreter the calling convention to be used for the
C function. It should normally always be METH_VARARGS or METH_VARARGS | METH_KEYWORDS; a value of 0
means that an obsolete variant of PyArg_ParseTuple () is used.

When using only METH_VARARGS, the function should expect the Python-level parameters to be passed in as a tuple
acceptable for parsing via PyArg_ParseTuple () ; more information on this function is provided below.

The METH_KEYWORDS bit may be set in the third field if keyword arguments should be passed to the function. In
this case, the C function should accept a third PyObject * parameter which will be a dictionary of keywords. Use
PyArg_ParseTupleAndKeywords () to parse the arguments to such a function.

The method table must be referenced in the module definition structure:

2.1. Extending Python with C or C++ 9

Extending and Embedding Python, £ A| B{% 3.6.15

static struct PyModuleDef spammodule = {
PyModuleDef_ HEAD_INIT,
"spam", /* name of module */
spam_doc, /* module documentation, may be NULL */
-1, /* size of per—-interpreter state of the module,
or -1 if the module keeps state in global variables. */
SpamMethods
i

This structure, in turn, must be passed to the interpreter in the module’s initialization function. The initialization function
must be named PyInit_name (), where name is the name of the module, and should be the only non-static item
defined in the module file:

PyMODINIT_FUNC
PyInit_spam(void)
{

return PyModule_Create (&spammodule) ;

Note that PyMODINIT_FUNC declares the function as PyObject * return type, declares any special linkage decla-
rations required by the platform, and for C++ declares the function as extern "C".

When the Python program imports module spam for the first time, PyInit_spam () is called. (See below for com-
ments about embedding Python.) It calls PyModule_Create (), which returns a module object, and inserts built-in
function objects into the newly created module based upon the table (an array of PyMethodDef structures) found in
the module definition. PyModule_Create () returns a pointer to the module object that it creates. It may abort with
a fatal error for certain errors, or return NULL if the module could not be initialized satisfactorily. The init function must
return the module object to its caller, so that it then gets inserted into sys .modules.

When embedding Python, the PyInit_spam () function is not called automatically unless there’s an entry in the
PyImport_Inittab table. To add the module to the initialization table, use PyImport_AppendInittab (),
optionally followed by an import of the module:

int
main (int argc, char *argv([])
{
wchar_t *program = Py_DecodelLocale(argv[0], NULL);

if (program == NULL) {
fprintf (stderr, "Fatal error: cannot decode argv[0]\n");
exit (1);

/* Add a built-in module, before Py_Initialize */
PyImport_AppendInittab ("spam", PyInit_spam);

/* Pass argv/[0] to the Python interpreter */
Py_SetProgramName (program) ;

/* Initialize the Python interpreter. Required. */
Py_Initialize();

/* Optionally import the module; alternatively,
import can be deferred until the embedded script
imports it. */

PyImport_TImportModule ("spam");

(THE sTTolAToll A1)

10 Chapter 2. Creating extensions without third party tools

Extending and Embedding Python, £A| B{Z 3.6.15

(o] A sl o] A A M A%)

PyMem_RawFree (program) ;
return O;

%ZF31: Removing entries from sys . modules or importing compiled modules into multiple interpreters within a process
(or following a fork () without an intervening exec ()) can create problems for some extension modules. Extension
module authors should exercise caution when initializing internal data structures.

A more substantial example module is included in the Python source distribution as Modules/xxmodule. c. This file
may be used as a template or simply read as an example.

ZF31: Unlike our spam example, xxmodule uses multi-phase initialization (new in Python 3.5), where a PyModuleDef
structure is returned from PyInit_spam, and creation of the module is left to the import machinery. For details on
multi-phase initialization, see PEP 489.

2.1.5 Compilation and Linkage

There are two more things to do before you can use your new extension: compiling and linking it with the Python system.
If you use dynamic loading, the details may depend on the style of dynamic loading your system uses; see the chapters
about building extension modules (chapter Building C and C++ Extensions) and additional information that pertains only
to building on Windows (chapter Building C and C++ Extensions on Windows) for more information about this.

If you can’t use dynamic loading, or if you want to make your module a permanent part of the Python interpreter, you
will have to change the configuration setup and rebuild the interpreter. Luckily, this is very simple on Unix: just place
your file (spammodule. ¢ for example) in the Modules/ directory of an unpacked source distribution, add a line to
the file Modules/Setup. local describing your file:

spam spammodule.o

and rebuild the interpreter by running make in the toplevel directory. You can also run make in the Modules/ sub-
directory, but then you must first rebuild Make £i1e there by running (make Makefile). (This is necessary each time
you change the Setup file.)

If your module requires additional libraries to link with, these can be listed on the line in the configuration file as well, for
instance:

spam spammodule.o —-1X11

2.1.6 Calling Python Functions from C

So far we have concentrated on making C functions callable from Python. The reverse is also useful: calling Python
functions from C. This is especially the case for libraries that support so-called (callback) functions. If a C interface
makes use of callbacks, the equivalent Python often needs to provide a callback mechanism to the Python programmer;
the implementation will require calling the Python callback functions from a C callback. Other uses are also imaginable.

Fortunately, the Python interpreter is easily called recursively, and there is a standard interface to call a Python function.
(I won’t dwell on how to call the Python parser with a particular string as input — if you’re interested, have a look at the
implementation of the —c command line option in Modules/main. c from the Python source code.)

2.1. Extending Python with C or C++ 11

https://www.python.org/dev/peps/pep-0489

Extending and Embedding Python, £ A| B{% 3.6.15

Calling a Python function is easy. First, the Python program must somehow pass you the Python function object. You
should provide a function (or some other interface) to do this. When this function is called, save a pointer to the Python
function object (be careful to Py_INCREF () it!) in a global variable — or wherever you see fit. For example, the
following function might be part of a module definition:

static PyObject *my_callback = NULL;

static PyObject *
my_set_callback (PyObject *dummy, PyObject *args)
{

PyObject *result = NULL;

PyObject *temp;

if (PyArg_ParseTuple (args, "O:set_callback", &temp)) |
if (!PyCallable_Check (temp)) {
PyErr_SetString (PyExc_TypeError, "parameter must be callable");
return NULL;
}

Py_XINCREF (temp) ; /* Add a reference to new callback */
Py_XDECREF (my_callback); /* Dispose of previous callback */
my_callback = temp; /* Remember new callback */

/* Boilerplate to return "None" */
Py_INCREF (Py_None) ;
result = Py_None;

}

return result;

This function must be registered with the interpreter using the METH_VARARGS flag; this is described in section 7he
Module’ s Method Table and Initialization Function. The PyArg_ParseTuple () function and its arguments are doc-
umented in section Extracting Parameters in Extension Functions.

The macros Py_XINCREF () and Py_XDECREF () increment/decrement the reference count of an object and are safe
in the presence of NULL pointers (but note that femp will not be NULL in this context). More info on them in section
Reference Counts.

Later, when it is time to call the function, you call the C function PyObject_CallObject (). This function has two
arguments, both pointers to arbitrary Python objects: the Python function, and the argument list. The argument list must
always be a tuple object, whose length is the number of arguments. To call the Python function with no arguments, pass
in NULL, or an empty tuple; to call it with one argument, pass a singleton tuple. Py_BuildvValue () returns a tuple
when its format string consists of zero or more format codes between parentheses. For example:

int arg;
PyObject *arglist;
PyObject *result;

arg = 123;

/* Time to call the callback */

arglist = Py_BuildvValue (" (i)", arg);

result = PyObject_CallObject (my_callback, arglist);
Py_DECREF (arglist);

PyObject_CallObject () returns a Python object pointer: this is the return value of the Python func-
tion. PyObject_CallObject () is (reference-count-neutral) with respect to its arguments. In the exam-
ple a new tuple was created to serve as the argument list, which is Py_DECREF ()-ed immediately after the
PyObject_CallObject () call

The return value of PyObject_CallObject () is {new) : either it is a brand new object, or it is an existing object

12 Chapter 2. Creating extensions without third party tools

Extending and Embedding Python, £A| B{Z 3.6.15

whose reference count has been incremented. So, unless you want to save it in a global variable, you should somehow
Py_DECREF () the result, even (especially!) if you are not interested in its value.

Before you do this, however, it is important to check that the return value isn’t NULL. If it is, the Python function
terminated by raising an exception. If the C code that called PyObject_CallObject () is called from Python,
it should now return an error indication to its Python caller, so the interpreter can print a stack trace, or the calling
Python code can handle the exception. If this is not possible or desirable, the exception should be cleared by calling
PyErr_Clear (). For example:

if (result == NULL)

return NULL; /* Pass error back */
...use result...
Py_DECREF (result) ;

Depending on the desired interface to the Python callback function, you may also have to provide an argument list to
PyObject_CallObject (). In some cases the argument list is also provided by the Python program, through the
same interface that specified the callback function. It can then be saved and used in the same manner as the function
object. In other cases, you may have to construct a new tuple to pass as the argument list. The simplest way to do this is
tocall Py_Buildvalue (). For example, if you want to pass an integral event code, you might use the following code:

PyObject *arglist;

arglist = Py_BuildValue (" (1)", eventcode);
result = PyObject_CallObject (my_callback, arglist);
Py_DECREF (arglist);
if (result == NULL)
return NULL; /* Pass error back */
/* Here maybe use the result */
Py_DECREF (result) ;

Note the placement of Py_DECREF (arglist) immediately after the call, before the error check! Also note that
strictly speaking this code is not complete: Py_BuildvValue () may run out of memory, and this should be checked.

You may also call a function with keyword arguments by using PyObject_Call (), which supports arguments and
keyword arguments. As in the above example, we use Py_BuildValue () to construct the dictionary.

PyObject *dict;

dict = Py_BuildvValue("{s:i}", "name", wval);
result = PyObject_Call (my_callback, NULL, dict);
Py_DECREF (dict) ;
if (result == NULL)

return NULL; /* Pass error back */
/* Here maybe use the result */
Py_DECREF (result) ;

2.1.7 Extracting Parameters in Extension Functions

The PyArg_ParseTuple () function is declared as follows:

int PyArg_ParseTuple (PyObject *arg, const char *format, ...);

The arg argument must be a tuple object containing an argument list passed from Python to a C function. The format
argument must be a format string, whose syntax is explained in arg-parsing in the Python/C API Reference Manual. The
remaining arguments must be addresses of variables whose type is determined by the format string.

2.1. Extending Python with C or C++ 13

Extending and Embedding Python, £ A| B{% 3.6.15

Note that while PyArg_ParseTuple () checks that the Python arguments have the required types, it cannot check
the validity of the addresses of C variables passed to the call: if you make mistakes there, your code will probably crash
or at least overwrite random bits in memory. So be careful!

Note that any Python object references which are provided to the caller are borrowed references; do not decrement their
reference count!

Some example calls:

#define PY_SSIZE_T _CLEAN /* Make "s#" use Py_ssize_t rather than int. */
#include <Python.h>

int ok;

int i, 3;

long k, 1;

const char *s;
Py_ssize_t size;

ok = PyArg_ParseTuple(args, ""); /* No arguments */
/* Python call: f() */

ok = PyArg_ParseTuple (args, "s", &s); /* A string */
/* Possible Python call: f('whoops!') */

ok = PyArg_ParseTuple(args, "11ls", &k, &1, &s); /* Two longs and a string */
/* Possible Python call: f(1, 2, 'three') */

ok = PyArg_ParseTuple (args, " (ii)s#", &i, &3j, &s, &size);
/* A pair of ints and a string, whose size is also returned */
/* Possible Python call: f((1, 2), 'three') */

const char *file;
const char *mode = "r";
int bufsize = 0;
ok = PyArg_ParseTuple(args, "s|si", &file, &mode, &bufsize);
/* A string, and optionally another string and an integer */
/* Possible Python calls:

f('spam')

f('spam', 'w')

f('spam', 'wb', 100000) */

int left, top, right, bottom, h, v;
ok = PyArg_ParseTuple(args, " ((ii) (ii)) (i1i)",
&left, &top, &right, &bottom, &h, &v);
/* A rectangle and a point */
/* Possible Python call:
f£(((0, 0), (400, 300)), (10, 10)) */

Py_complex c;
ok = PyArg_ParseTuple(args, "D:myfunction", &c);
/* a complex, also providing a function name for errors */

(TH& ST Aol A1)

14 Chapter 2. Creating extensions without third party tools

Extending and Embedding Python, £A| B{Z 3.6.15

(o] A sl o] A A M A%)

/* Possible Python call: myfunction (1+27) */

2.1.8 Keyword Parameters for Extension Functions

The PyArg_ParseTupleAndKeywords () function is declared as follows:

int PyArg_ParseTupleAndKeywords (PyObject *arg, PyObject *kwdict,
const char *format, char *kwlist[], ...);

The arg and format parameters are identical to those of the PyArg_ParseTuple () function. The kwdict parameter
is the dictionary of keywords received as the third parameter from the Python runtime. The kwlist parameter is a NULL-
terminated list of strings which identify the parameters; the names are matched with the type information from format
from left to right. On success, PyArg_ParseTupleAndKeywords () returns true, otherwise it returns false and
raises an appropriate exception.

Z31: Nested tuples cannot be parsed when using keyword arguments! Keyword parameters passed in which are not
present in the kwlist will cause TypeError to be raised.

Here is an example module which uses keywords, based on an example by Geoff Philbrick (philbrick@hks.com):

#include "Python.h"

static PyObject *
keywdarg_parrot (PyObject *self, PyObject *args, PyObject *keywds)
{

int voltage;

char *state = "a stiff";

char *action = "voom";

char *type = "Norwegian Blue";

static char *kwlist[] = {"voltage", "state", "action", "type", NULL};

if (!PyArg_ParseTupleAndKeywords (args, keywds, "i|sss", kwlist,
&voltage, &state, &action, &type))
return NULL;

printf ("-- This parrot wouldn't %$s if you put %i Volts through it.\n",
action, voltage);
printf ("-- Lovely plumage, the %s —- It's %s!\n", type, state);

Py_RETURN_NONE;

static PyMethodDef keywdarg_methods[] = {
/* The cast of the function is necessary since PyCFunction values
* only take two PyObject* parameters, and keywdarg parrot () takes
* three.
*/
{"parrot", (PyCFunction)keywdarg_parrot, METH_VARARGS | METH_KEYWORDS,
"Print a lovely skit to standard output."},
{NULL, NULL, 0, NULL} /* sentinel */
bi

(TH& ST Aol A1)

2.1. Extending Python with C or C++ 15

mailto:philbrick@hks.com

Extending and Embedding Python, £ A| B{% 3.6.15

(o] A sl o] A A M A%)

static struct PyModuleDef keywdargmodule = {
PyModuleDef_ HEAD_INIT,
"keywdarg",
NULL,
-1,
keywdarg_methods
i

PyMODINIT_FUNC
PyInit_keywdarg (void)
{
return PyModule_Create (&keywdargmodule) ;

2.1.9 Building Arbitrary Values

This function is the counterpart to PyArg_ParseTuple (). Itis declared as follows:

PyObject *Py_BuildValue (const char *format, ...);

It recognizes a set of format units similar to the ones recognized by PyArg_ParseTuple (), but the arguments (which
are input to the function, not output) must not be pointers, just values. It returns a new Python object, suitable for returning
from a C function called from Python.

One difference with PyArg_ParseTuple () : while the latter requires its first argument to be a tuple (since Python
argument lists are always represented as tuples internally), Py_BuildvValue () does not always build a tuple. It builds
a tuple only if its format string contains two or more format units. If the format string is empty, it returns None; if it
contains exactly one format unit, it returns whatever object is described by that format unit. To force it to return a tuple
of size 0 or one, parenthesize the format string.

Examples (to the left the call, to the right the resulting Python value):

Py_Buildvalue ("") None
Py_Buildvalue ("i", 123) 123
Py_Buildvalue ("iii", 123, 456, 789) (123, 456, 789)
Py_Buildvalue ("s", "hello") 'hello'
Py_Buildvalue ("y", "hello") b'hello!
Py_Buildvalue ("ss", "hello", "world") ('"hello', 'world'")
Py_BuildvValue ("s#", "hello", 4) 'hell"
Py_Buildvalue ("y#", "hello", 4) b'hell'
Py_Buildvalue(" () ") ()
Py_Buildvalue (" (i)", 123) (123,)
Py_Buildvalue (" (ii)", 123, 456) (123, 4506)
Py_Buildvalue (" (i,1)", 123, 456) (123, 456)
Py_Buildvalue("[i,i]", 123, 4506) [123, 456]
Py_Buildvalue("{s:i,s:1i}",

"abc", 123, "def", 456) {'abc': 123, 'def': 456}
Py_Buildvalue (" ((ii) (1ii1)) «(ii)",

1, 2, 3, 4, 5, 6) (1, 2), (3, 4)), (5, 6))

16

Chapter 2. Creating extensions without third party tools

Extending and Embedding Python, £A| B{Z 3.6.15

2.1.10 Reference Counts

In languages like C or C++, the programmer is responsible for dynamic allocation and deallocation of memory on the
heap. In C, this is done using the functions malloc () and free (). In C++, the operators new and delete are used
with essentially the same meaning and we’ll restrict the following discussion to the C case.

Every block of memory allocated with malloc () should eventually be returned to the pool of available memory by
exactly one call to free (). It is important to call free () at the right time. If a block’s address is forgotten but
free () is not called for it, the memory it occupies cannot be reused until the program terminates. This is called a
memory leak. On the other hand, if a program calls free () for a block and then continues to use the block, it creates
a conflict with re-use of the block through another malloc () call. This is called using freed memory. It has the same
bad consequences as referencing uninitialized data — core dumps, wrong results, mysterious crashes.

Common causes of memory leaks are unusual paths through the code. For instance, a function may allocate a block of
memory, do some calculation, and then free the block again. Now a change in the requirements for the function may add
a test to the calculation that detects an error condition and can return prematurely from the function. It’s easy to forget
to free the allocated memory block when taking this premature exit, especially when it is added later to the code. Such
leaks, once introduced, often go undetected for a long time: the error exit is taken only in a small fraction of all calls,
and most modern machines have plenty of virtual memory, so the leak only becomes apparent in a long-running process
that uses the leaking function frequently. Therefore, it’s important to prevent leaks from happening by having a coding
convention or strategy that minimizes this kind of errors.

Since Python makes heavy use of malloc () and free (), it needs a strategy to avoid memory leaks as well as the
use of freed memory. The chosen method is called reference counting. The principle is simple: every object contains
a counter, which is incremented when a reference to the object is stored somewhere, and which is decremented when a
reference to it is deleted. When the counter reaches zero, the last reference to the object has been deleted and the object
is freed.

An alternative strategy is called automatic garbage collection. (Sometimes, reference counting is also referred to as a
garbage collection strategy, hence my use of (automatic) to distinguish the two.) The big advantage of automatic
garbage collection is that the user doesn’t need to call free () explicitly. (Another claimed advantage is an improvement
in speed or memory usage — this is no hard fact however.) The disadvantage is that for C, there is no truly portable
automatic garbage collector, while reference counting can be implemented portably (as long as the functions malloc ()
and free () are available — which the C Standard guarantees). Maybe some day a sufficiently portable automatic
garbage collector will be available for C. Until then, we’ll have to live with reference counts.

While Python uses the traditional reference counting implementation, it also offers a cycle detector that works to detect
reference cycles. This allows applications to not worry about creating direct or indirect circular references; these are the
weakness of garbage collection implemented using only reference counting. Reference cycles consist of objects which
contain (possibly indirect) references to themselves, so that each object in the cycle has a reference count which is non-zero.
Typical reference counting implementations are not able to reclaim the memory belonging to any objects in a reference
cycle, or referenced from the objects in the cycle, even though there are no further references to the cycle itself.

The cycle detector is able to detect garbage cycles and can reclaim them. The gc module exposes a way to run the detector
(the collect () function), as well as configuration interfaces and the ability to disable the detector at runtime. The
cycle detector is considered an optional component; though it is included by default, it can be disabled at build time using
the ——without-cycle—gc option to the configure script on Unix platforms (including Mac OS X). If the cycle
detector is disabled in this way, the gc module will not be available.

2.1. Extending Python with C or C++ 17

Extending and Embedding Python, £ A| B{% 3.6.15

Reference Counting in Python

There are two macros, Py_ INCREF (x) and Py_DECREF (x), which handle the incrementing and decrementing of
the reference count. Py_DECREF () also frees the object when the count reaches zero. For flexibility, it doesn’t call
free () directly — rather, it makes a call through a function pointer in the object’s rype object. For this purpose (and
others), every object also contains a pointer to its type object.

The big question now remains: when to use Py_ INCREF (x) and Py_DECREF (x) ? Let’s first introduce some terms.
Nobody (owns) an object; however, you can own a reference to an object. An object’s reference count is now defined
as the number of owned references to it. The owner of a reference is responsible for calling Py_DECREF () when the
reference is no longer needed. Ownership of a reference can be transferred. There are three ways to dispose of an owned
reference: pass it on, store it, or call Py_DECREF (). Forgetting to dispose of an owned reference creates a memory
leak.

It is also possible to borrow” a reference to an object. The borrower of a reference should not call Py_DECREF () . The
borrower must not hold on to the object longer than the owner from which it was borrowed. Using a borrowed reference
after the owner has disposed of it risks using freed memory and should be avoided completely”.

The advantage of borrowing over owning a reference is that you don’t need to take care of disposing of the reference on
all possible paths through the code — in other words, with a borrowed reference you don’t run the risk of leaking when
a premature exit is taken. The disadvantage of borrowing over owning is that there are some subtle situations where in
seemingly correct code a borrowed reference can be used after the owner from which it was borrowed has in fact disposed
of it.

A borrowed reference can be changed into an owned reference by calling Py_ INCREF (). This does not affect the
status of the owner from which the reference was borrowed — it creates a new owned reference, and gives full owner
responsibilities (the new owner must dispose of the reference properly, as well as the previous owner).

Ownership Rules

Whenever an object reference is passed into or out of a function, it is part of the function’s interface specification whether
ownership is transferred with the reference or not.

Most functions that return a reference to an object pass on ownership with the reference. In particular, all functions whose
function it is to create a new object, such as PyLong_FromLong () and Py_BuildValue (), pass ownership to the
receiver. Even if the object is not actually new, you still receive ownership of a new reference to that object. For instance,
PyLong_FromLong () maintains a cache of popular values and can return a reference to a cached item.

Many functions that extract objects from other objects also transfer ownership with the reference, for in-
stance PyObject_GetAttrString(). The picture is less clear, here, however, since a few com-
mon routines are exceptions: PyTuple_GetItem (), PyList_GetItem(), PyDict_GetItem(), and
PyDict_GetItemString () all return references that you borrow from the tuple, list or dictionary.

The function Py Import_AddModule () also returns a borrowed reference, even though it may actually create the
object it returns: this is possible because an owned reference to the object is stored in sy s .modules.

When you pass an object reference into another function, in general, the function borrows the reference from you —
if it needs to store it, it will use Py_INCREF () to become an independent owner. There are exactly two important
exceptions to this rule: PyTuple_SetItem() and PyList_SetItem (). These functions take over ownership of
the item passed to them — even if they fail! (Note that PyDict_SetItem () and friends don’t take over ownership
— they are {normal.))

When a C function is called from Python, it borrows references to its arguments from the caller. The caller owns a
reference to the object, so the borrowed reference’s lifetime is guaranteed until the function returns. Only when such a
borrowed reference must be stored or passed on, it must be turned into an owned reference by calling Py_ INCREF () .

2 The metaphor of (borrowing) a reference is not completely correct: the owner still has a copy of the reference.
3 Checking that the reference count is at least 1 does not work — the reference count itself could be in freed memory and may thus be reused for
another object!

18 Chapter 2. Creating extensions without third party tools

Extending and Embedding Python, £A| B{Z 3.6.15

The object reference returned from a C function that is called from Python must be an owned reference — ownership is
transferred from the function to its caller.

Thin Ice
There are a few situations where seemingly harmless use of a borrowed reference can lead to problems. These all have to
do with implicit invocations of the interpreter, which can cause the owner of a reference to dispose of it.

The first and most important case to know about is using Py_DECREF () on an unrelated object while borrowing a
reference to a list item. For instance:

void
bug (PyObject *1list)
{
PyObject *item = PyList_GetItem(list, 0);

PyList_SetItem(list, 1, PyLong_FromLong (0L)) ;
PyObject_Print (item, stdout, 0); /* BUG! */

This function first borrows a reference to 1ist [0], then replaces 1ist [1] with the value O, and finally prints the
borrowed reference. Looks harmless, right? But it’s not!

Let’s follow the control flow into PyList_SetItem (). The list owns references to all its items, so when item 1 is
replaced, it has to dispose of the original item 1. Now let’s suppose the original item 1 was an instance of a user-defined
class, and let’s further suppose that the class defined a __del__ () method. If this class instance has a reference count
of 1, disposing of it will callits __del__ () method.

Since it is written in Python, the __del__ () method can execute arbitrary Python code. Could it perhaps do something
to invalidate the reference to item in bug () ? You bet! Assuming that the list passed into bug () is accessible to
the __del__ () method, it could execute a statement to the effect of del 1ist [0], and assuming this was the last
reference to that object, it would free the memory associated with it, thereby invalidating item.

The solution, once you know the source of the problem, is easy: temporarily increment the reference count. The correct
version of the function reads:

void
no_bug (PyObject *1list)
{
PyObject *item = PyList_GetItem(list, 0);

Py_INCREF (item) ;

PyList_SetItem(list, 1, PyLong_FromLong (0L)) ;
PyObject_Print (item, stdout, 0);

Py_DECREF (item) ;

This is a true story. An older version of Python contained variants of this bug and someone spent a considerable amount
of time in a C debugger to figure out why his __del__ () methods would fail--*

The second case of problems with a borrowed reference is a variant involving threads. Normally, multiple threads in
the Python interpreter can’t get in each other’s way, because there is a global lock protecting Python’s entire object
space. However, it is possible to temporarily release this lock using the macro Py_BEGIN_ALLOW_THREADS, and to
re-acquire it using Py_ END_ALLOW_THREADS. This is common around blocking I/O calls, to let other threads use the
processor while waiting for the I/O to complete. Obviously, the following function has the same problem as the previous
one:

2.1. Extending Python with C or C++ 19

Extending and Embedding Python, £ A| B{% 3.6.15

void

bug (PyObject *1list)

{
PyObject *item = PyList_GetItem(list, 0);
Py _BEGIN_ALLOW_THREADS
...some blocking I/O call...
Py_END_ALLOW_THREADS
PyObject_Print (item, stdout, 0); /* BUG! */

NULL Pointers

In general, functions that take object references as arguments do not expect you to pass them NULL pointers, and will
dump core (or cause later core dumps) if you do so. Functions that return object references generally return NULL only
to indicate that an exception occurred. The reason for not testing for NULL arguments is that functions often pass the
objects they receive on to other function — if each function were to test for NULL, there would be a lot of redundant tests
and the code would run more slowly.

It is better to test for NULL only at the (source:) when a pointer that may be NULL is received, for example, from
malloc () or from a function that may raise an exception.

The macros Py_INCREF () and Py_DECREF () do not check for NULL pointers — however, their variants
Py_XINCREF () and Py_XDECREF () do.

The macros for checking for a particular object type (Pytype_Check ()) don’t check for NULL pointers — again,
there is much code that calls several of these in a row to test an object against various different expected types, and this
would generate redundant tests. There are no variants with NULL checking.

The C function calling mechanism guarantees that the argument list passed to C functions (args in the examples) is
never NULL — in fact it guarantees that it is always a tuple”.

It is a severe error to ever let a NULL pointer (escape) to the Python user.

2.1.11 Writing Extensions in C++

It is possible to write extension modules in C++. Some restrictions apply. If the main program (the Python interpreter) is
compiled and linked by the C compiler, global or static objects with constructors cannot be used. This is not a problem
if the main program is linked by the C++ compiler. Functions that will be called by the Python interpreter (in particular,
module initialization functions) have to be declared using extern "C". It is unnecessary to enclose the Python header
files in extern "C" {...} — they use this form already if the symbol __cplusplus is defined (all recent C++
compilers define this symbol).

2.1.12 Providing a C API for an Extension Module

Many extension modules just provide new functions and types to be used from Python, but sometimes the code in an
extension module can be useful for other extension modules. For example, an extension module could implement a type
{ collection) which works like lists without order. Just like the standard Python list type has a C API which permits
extension modules to create and manipulate lists, this new collection type should have a set of C functions for direct
manipulation from other extension modules.

At first sight this seems easy: just write the functions (without declaring them stat ic, of course), provide an appropriate
header file, and document the C API. And in fact this would work if all extension modules were always linked statically

4 These guarantees don’t hold when you use the (old) style calling convention — this is still found in much existing code.

20 Chapter 2. Creating extensions without third party tools

Extending and Embedding Python, £A| B{Z 3.6.15

with the Python interpreter. When modules are used as shared libraries, however, the symbols defined in one module
may not be visible to another module. The details of visibility depend on the operating system; some systems use one
global namespace for the Python interpreter and all extension modules (Windows, for example), whereas others require
an explicit list of imported symbols at module link time (AIX is one example), or offer a choice of different strategies
(most Unices). And even if symbols are globally visible, the module whose functions one wishes to call might not have
been loaded yet!

Portability therefore requires not to make any assumptions about symbol visibility. This means that all symbols in extension
modules should be declared st at ic, except for the module’s initialization function, in order to avoid name clashes with
other extension modules (as discussed in section 7he Module’ s Method Table and Initialization Function). And it means
that symbols that should be accessible from other extension modules must be exported in a different way.

Python provides a special mechanism to pass C-level information (pointers) from one extension module to another one:
Capsules. A Capsule is a Python data type which stores a pointer (void *). Capsules can only be created and accessed
via their C API, but they can be passed around like any other Python object. In particular, they can be assigned to a name
in an extension module’s namespace. Other extension modules can then import this module, retrieve the value of this
name, and then retrieve the pointer from the Capsule.

There are many ways in which Capsules can be used to export the C API of an extension module. Each function could
get its own Capsule, or all C API pointers could be stored in an array whose address is published in a Capsule. And the
various tasks of storing and retrieving the pointers can be distributed in different ways between the module providing the
code and the client modules.

Whichever method you choose, it’s important to name your Capsules properly. The function PyCapsule_New ()
takes a name parameter (const char *); you’re permitted to pass in a NULL name, but we strongly encourage you
to specify a name. Properly named Capsules provide a degree of runtime type-safety; there is no feasible way to tell one
unnamed Capsule from another.

In particular, Capsules used to expose C APIs should be given a name following this convention:

modulename.attributename

The convenience function PyCapsule_Import () makes it easy to load a C API provided via a Capsule, but only if
the Capsule’s name matches this convention. This behavior gives C API users a high degree of certainty that the Capsule
they load contains the correct C API.

The following example demonstrates an approach that puts most of the burden on the writer of the exporting module,
which is appropriate for commonly used library modules. It stores all C API pointers (just one in the example!) in an
array of void pointers which becomes the value of a Capsule. The header file corresponding to the module provides
a macro that takes care of importing the module and retrieving its C API pointers; client modules only have to call this
macro before accessing the C API.

The exporting module is a modification of the spam module from section A Simple Example. The function spam.
system () does not call the C library function system () directly, but a function PySpam_System (), which
would of course do something more complicated in reality (such as adding (spam) to every command). This func-
tion PySpam_System () is also exported to other extension modules.

The function Py Spam_System () is a plain C function, declared stat ic like everything else:

static int
PySpam_System (const char *command)
{

return system(command) ;

}

The function spam_system () is modified in a trivial way:

2.1. Extending Python with C or C++ 21

Extending and Embedding Python, £ A| B{% 3.6.15

static PyObject *
spam_system (PyObject *self, PyObject *args)
{

const char *command;

int sts;

if (!PyArg_ParseTuple (args, "s", &command))
return NULL;

sts = PySpam_System (command) ;

return PyLong_FromLong (sts);

In the beginning of the module, right after the line

#include "Python.h"

two more lines must be added:

#define SPAM_MODULE
#include "spammodule.h"

The #define is used to tell the header file that it is being included in the exporting module, not a client module. Finally,
the module’s initialization function must take care of initializing the C API pointer array:

PyMODINIT_FUNC

PyInit_spam(void)

{
PyObject *m;
static void *PySpam_API[PySpam_API_pointers];
PyObject *c_api_object;

m = PyModule_Create (&spammodule) ;
if (m == NULL)
return NULL;

/* Initialize the C API pointer array */
PySpam_API [PySpam_System NUM] = (void *)PySpam_System;

/* Create a Capsule containing the API pointer array's address */
c_api_object = PyCapsule_New ((void *)PySpam_API, "spam._ C_API", NULL);

if (c_api_object != NULL)
PyModule_AddObject (m, "_C_API", c_api_object);
return m;

Note that PySpam_APT is declared stat ic; otherwise the pointer array would disappear when PyInit_spam()
terminates!

The bulk of the work is in the header file spammodule . h, which looks like this:

#ifndef Py SPAMMODULE_H
#define Py SPAMMODULE_H
#ifdef cplusplus
extern "C" {

#endif

(TF STolATell A%

22 Chapter 2. Creating extensions without third party tools

Extending and Embedding Python, £A| B{Z 3.6.15

(o1 A S o] A A Al

/* Header file for spammodule */

/* C API functions */

#define PySpam_System_NUM 0

#define PySpam System RETURN int

#define PySpam_System PROTO (const char *command)

/* Total number of C API pointers */
#define PySpam API_pointers 1

#ifdef SPAM MODULE
/* This section is used when compiling spammodule.c */

static PySpam_System_RETURN PySpam_System PySpam_System_ PROTO;

#else
/* This section is used in modules that use spammodule's API */

static void **PySpam_ API;

#define PySpam_System \
(* (PySpam_System_ RETURN (*)PySpam_System PROTO) PySpam API[PySpam_System NUM])

/* Return -1 on error, 0 on success.
* PyCapsule_Import will set an exception if there's an error.
*/

static int

import_spam(void)

{

PySpam_API = (void **)PyCapsule_Import ("spam. C_API", 0);
return (PySpam_ API != NULL) 2 0 : -1;

}

#endif

#ifdef __ _cplusplus
}
#endif

#endif /* !defined(Py_SPAMMODULE_H) */

All that a client module must do in order to have access to the function PySpam_System () is to call the function (or
rather macro) import_spam () in its initialization function:

PyMODINIT_FUNC
PyInit_client (void)
{

PyObject *m;

m = PyModule_Create (&clientmodule);
if (m == NULL)
return NULL;
if (import_spam() < 0)
return NULL;
/* additional initialization can happen here */

(HF= slef Aol AI%)

2.1. Extending Python with C or C++ 23

Extending and Embedding Python, £ A| B{% 3.6.15

(o] A sl o] A A M A%)

return m;

The main disadvantage of this approach is that the file spammodule.h is rather complicated. However, the basic
structure is the same for each function that is exported, so it has to be learned only once.

Finally it should be mentioned that Capsules offer additional functionality, which is especially useful for memory al-
location and deallocation of the pointer stored in a Capsule. The details are described in the Python/C API Reference
Manual in the section capsules and in the implementation of Capsules (files Include/pycapsule.hand Objects/
pycapsule. c in the Python source code distribution).

2.2 Defining Extension Types: Tutorial

Python allows the writer of a C extension module to define new types that can be manipulated from Python code, much
like the built-in str and 1ist types. The code for all extension types follows a pattern, but there are some details that
you need to understand before you can get started. This document is a gentle introduction to the topic.

2.2.1 The Basics

The CPython runtime sees all Python objects as variables of type PyObject *, which serves as a (base type) for all
Python objects. The PyObject structure itself only contains the object’s reference count and a pointer to the object’s
{type object) . This is where the action is; the type object determines which (C) functions get called by the interpreter
when, for instance, an attribute gets looked up on an object, a method called, or it is multiplied by another object. These
C functions are called (type methods) .

So, if you want to define a new extension type, you need to create a new type object.

This sort of thing can only be explained by example, so here’s a minimal, but complete, module that defines a new type
named Custom inside a C extension module custom:

ZF31: What we’re showing here is the traditional way of defining static extension types. It should be adequate for most
uses. The C API also allows defining heap-allocated extension types using the PyType_FromSpec () function, which
isn’t covered in this tutorial.

#include <Python.h>

typedef struct {

PyObject_HEAD

/* Type-specific fields go here. */
} CustomObject;

static PyTypeObject CustomType = {
PyVarObject_HEAD_INIT (NULL, 0)
.tp_name = "custom.Custom",
.tp_doc = "Custom objects",
.tp_basicsize = sizeof (CustomObject),
.tp_itemsize = 0,
.tp_flags = Py TPFLAGS_DEFAULT,
.tp_new = PyType_GenericNew,

bi

(TH& ST Aol A1)

24 Chapter 2. Creating extensions without third party tools

Extending and Embedding Python, £A| B{Z 3.6.15

(o] A sl o] A A M A%)

static PyModuleDef custommodule = {
PyModuleDef_HEAD_INIT,
.m_name = "custom",
.m_doc = "Example module that creates an extension type.",
.m_size = -1,

bi

PyMODINIT_FUNC
PyInit_custom(void)
{
PyObject *m;
if (PyType_Ready (&CustomType) < 0)
return NULL;

m = PyModule_Create (&custommodule) ;
if (m == NULL)
return NULL;

Py_INCREF (&CustomType) ;
PyModule_AddObject (m, "Custom", (PyObject *) &CustomType);
return m;

Now that’s quite a bit to take in at once, but hopefully bits will seem familiar from the previous chapter. This file defines
three things:

1. What a Custom object contains: this is the CustomObject struct, which is allocated once for each Custom
instance.

2. How the Custom type behaves: this is the Cust omType struct, which defines a set of flags and function pointers
that the interpreter inspects when specific operations are requested.

3. How to initialize the custom module: this is the PyInit_custom function and the associated
custommodule struct.

The first bit is:

typedef struct {
PyObject_HEAD
} CustomObiject;

This is what a Custom object will contain. PyObject_HEAD is mandatory at the start of each object struct and defines
a field called ob_base of type PyObject, containing a pointer to a type object and a reference count (these can be
accessed using the macros Py_REFCNT and Py_ TYPE respectively). The reason for the macro is to abstract away the
layout and to enable additional fields in debug builds.

ZF31: There is no semicolon above after the PyObject_HEAD macro. Be wary of adding one by accident: some
compilers will complain.

Of course, objects generally store additional data besides the standard PyObject_HEAD boilerplate; for example, here
is the definition for standard Python floats:

typedef struct {
PyObject_HEAD
double ob_fval;
} PyFloatObiject;

2.2. Defining Extension Types: Tutorial 25

Extending and Embedding Python, £ A| B{% 3.6.15

The second bit is the definition of the type object.

static PyTypeObject CustomType = {
PyVarObject_HEAD_INIT (NULL, O)
.tp_name = "custom.Custom",
.tp_doc = "Custom objects",
.tp_basicsize = sizeof (CustomObject),
.tp_itemsize = 0,
.tp_new = PyType_GenericNew,

bi

ZF31: We recommend using C99-style designated initializers as above, to avoid listing all the PyTypeObject fields
that you don’t care about and also to avoid caring about the fields) declaration order.

The actual definition of PyTypeObject in object . h has many more fields than the definition above. The remaining
fields will be filled with zeros by the C compiler, and it’s common practice to not specify them explicitly unless you need
them.

We’re going to pick it apart, one field at a time:

’ PyVarObject_ HEAD_INIT (NULL, 0)

This line is mandatory boilerplate to initialize the ob_base field mentioned above.

’.tp_name = "custom.Custom",

The name of our type. This will appear in the default textual representation of our objects and in some error messages,
for example:

>>> "" 4+ custom.Custom()
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: can only concatenate str (not "custom.Custom") to str

Note that the name is a dotted name that includes both the module name and the name of the type within the module.
The module in this case is custom and the type is Custom, so we set the type name to custom.Custom. Using the
real dotted import path is important to make your type compatible with the pydoc and pickle modules.

.tp_basicsize = sizeof (CustomObject),
.tp_itemsize = 0,

This is so that Python knows how much memory to allocate when creating new Custom instances. tp_itemsize is
only used for variable-sized objects and should otherwise be zero.

ZF31: If you want your type to be subclassable from Python, and your type has the same tp_basicsize as its base
type, you may have problems with multiple inheritance. A Python subclass of your type will have to list your type first in
its __bases__, or else it will not be able to call your type’s __new___ () method without getting an error. You can
avoid this problem by ensuring that your type has a larger value for t p_basicsize than its base type does. Most of the
time, this will be true anyway, because either your base type will be object, or else you will be adding data members
to your base type, and therefore increasing its size.

We set the class flags to Py_TPFLAGS_DEFAULT.

26 Chapter 2. Creating extensions without third party tools

Extending and Embedding Python, £A| B{Z 3.6.15

.tp_flags = Py_TPFLAGS_DEFAULT,

All types should include this constant in their flags. It enables all of the members defined until at least Python 3.3. If you
need further members, you will need to OR the corresponding flags.

We provide a doc string for the type in tp_doc.

’.tp_doc = "Custom objects",

To enable object creation, we have to provide a tp_new handler. This is the equivalent of the Python method
__new__ (), but has to be specified explicitly. In this case, we can just use the default implementation provided by
the API function PyType_GenericNew ().

.tp_new = PyType_GenericNew,

Everything else in the file should be familiar, except for some code in PyInit_custom():

if (PyType_Ready (&CustomType) < 0)
return;

This initializes the Cust om type, filling in a number of members to the appropriate default values, including ob_type
that we initially set to NULL.

PyModule_AddObject (m, "Custom", (PyObject *) &CustomType);

This adds the type to the module dictionary. This allows us to create Cust om instances by calling the Cust om class:

>>> import custom
>>> mycustom = custom.Custom/()

That’s it! All that remains is to build it; put the above code in a file called custom. ¢ and:

from distutils.core import setup, Extension
setup (name="custom", version="1.0",
ext_modules=[Extension ("custom", ["custom.c"])])

in a file called setup . py; then typing

$ python setup.py build

at a shell should produce a file custom. so in a subdirectory; move to that directory and fire up Python — you should
be able to import custom and play around with Custom objects.

That wasn’t so hard, was it?

Of course, the current Custom type is pretty uninteresting. It has no data and doesn’t do anything. It can’t even be
subclassed.

ZF31: While this documentation showcases the standard distutils module for building C extensions, it is recom-
mended in real-world use cases to use the newer and better-maintained setuptools library. Documentation on how
to do this is out of scope for this document and can be found in the Python Packaging User’s Guide.

2.2. Defining Extension Types: Tutorial 27

https://packaging.python.org/tutorials/distributing-packages/

Extending and Embedding Python, £ A| B{% 3.6.15

2.2.2 Adding data and methods to the Basic example

Let’s extend the basic example to add some data and methods. Let’s also make the type usable as a base class. We’ll
create a new module, custom?2 that adds these capabilities:

#include <Python.h>
#include "structmember.h"

typedef struct {
PyObject_HEAD
PyObject *first; /* first name */
PyObject *last; /* last name */
int number;

} CustomObject;

static void
Custom_dealloc (CustomObject *self)
{
Py_XDECREF (self->first);
Py_XDECREF (self->last);
Py_TYPE (self)->tp_free ((PyObject *) self);

static PyObject *
Custom_new (PyTypeObject *type, PyObject *args, PyObject *kwds)
{

CustomObject *self;

self = (CustomObject *) type->tp_alloc(type, 0);

if (self != NULL) {
self->first = PyUnicode_FromString("");
if (self->first == NULL) {

Py_DECREF (self);
return NULL;
}
self->last = PyUnicode_FromString("");
if (self->last == NULL) {
Py_DECREF (self);
return NULL;
t
self->number = 0;

3
return (PyObject *) self;

static int
Custom_init (CustomObject *self, PyObject *args, PyObject *kwds)
{
static char *kwlist[] = {"first", "last", "number", NULL};
PyObject *first = NULL, *last = NULL, *tmp;

if (!PyArg_ParseTupleAndKeywords (args, kwds, "[00i", kwlist,
sfirst, &last,
&self->number))
return -1;

if (first) |
tmp = self->first;
Py_INCREF (first);

(TH& ST Aol A1)

28 Chapter 2. Creating extensions without third party tools

Extending and Embedding Python, £A| B{Z 3.6.15

(o] A sl o] A A M A%)

self->first = first;
Py_XDECREF (tmp) ;
}
if (last) {
tmp = self->last;
Py_INCREF (last);
self->last = last;
Py_XDECREF (tmp) ;
}

return 0O;

static PyMemberDef Custom_members|]
{"first", T_OBJECT_EX,
"first name"},
{"last", T_OBJECT_EX,
"last name"},
{"number", T_INT,
"custom number"},
{NULL} /* Sentinel */
bi

static PyObject *
Custom_name (CustomObject *self,

{

offsetof (CustomObject,
offsetof (CustomObject,

offsetof (CustomObject,

= A
first), O,

last), O,

number), O,

PyObject *Py_UNUSED (ignored))

if (self->first == NULL) {
PyErr_SetString (PyExc_AttributeError, "first");
return NULL;

}

if (self->last == NULL) {
PyErr_SetString (PyExc_AttributeError, "last");

return NULL;
}

return PyUnicode_FromFormat ("%S

static PyMethodDef Custom_methods]]
{"name", (PyCFunction)
"Return the name,
}I
{NULL}

/* Sentinel */

bi

static PyTypeObject CustomType = {
PyVarObject_HEAD_INIT (NULL, O)

"custom2.Custom",

"Custom objects",

.tp_name =
.tp_doc =
.tp_basicsize =
.tp_itemsize = 0,

.tp_flags = Py_TPFLAGS_DEFAULT
.tp_new = Custom_new,
.tp_init = (initproc)
.tp_dealloc = (destructor)
.tp_members = Custom_members,
.tp_methods = Custom_methods,

bi

Custom_name,
combining the first and last name"

%$S", self->first, self->last);

= A
METH_NOARGS,

sizeof (CustomObject),

Py_TPFLAGS_BASETYPE,

Custom_init,
Custom_dealloc,

(TH& ST Aol A1)

2.2. Defining Extension Types: Tutorial

29

Extending and Embedding Python, £ A| B{% 3.6.15

(o] A sl o] A A M A%)

static PyModuleDef custommodule = {
PyModuleDef_ HEAD_INIT,
.m_name = "custom2",
.m_doc = "Example module that creates an extension type.",
.m_size = -1,

bi

PyMODINIT_FUNC
PyInit_custom?2 (void)
{
PyObject *m;
if (PyType_Ready (&CustomType) < 0)
return NULL;

m = PyModule_Create (&custommodule) ;
if (m == NULL)
return NULL;

Py_INCREF (&CustomType) ;
PyModule_AddObject (m, "Custom", (PyObject *) &CustomType);
return m;

This version of the module has a number of changes.

We’ve added an extra include:

#include <structmember.h>

This include provides declarations that we use to handle attributes, as described a bit later.

The Custom type now has three data attributes in its C struct, first, last, and number. The first and last variables are
Python strings containing first and last names. The number attribute is a C integer.

The object structure is updated accordingly:

typedef struct {
PyObject_HEAD
PyObject *first; /* first name */
PyObject *last; /* last name */
int number;

} CustomObject;

Because we now have data to manage, we have to be more careful about object allocation and deallocation. At a minimum,
we need a deallocation method:

static void
Custom_dealloc (CustomObject *self)
{
Py_XDECREF (self->first);
Py_XDECREF (self->last);
Py_TYPE (self)->tp_free ((PyObject *) self);

which is assigned to the tp_dealloc member:

30 Chapter 2. Creating extensions without third party tools

Extending and Embedding Python, £A| B{Z 3.6.15

.tp_dealloc = (destructor) Custom_dealloc,

This method first clears the reference counts of the two Python attributes. Py_XDECREF () correctly handles the case
where its argument is NULL (which might happen here if t p_new failed midway). It then calls the t p_ free member
of the object’s type (computed by Py_TYPE (self)) to free the object’s memory. Note that the object’s type might
not be CustomType, because the object may be an instance of a subclass.

ZF31: The explicit cast to destructor above is needed because we defined Custom_dealloc to take a
CustomObject * argument, but the tp_dealloc function pointer expects to receive a PyObject * argument.
Otherwise, the compiler will emit a warning. This is object-oriented polymorphism, in C!

We want to make sure that the first and last names are initialized to empty strings, so we provide a tp_new implemen-
tation:

static PyObject *
Custom_new (PyTypeObject *type, PyObject *args, PyObject *kwds)
{

CustomObject *self;

self = (CustomObject *) type->tp_alloc(type, 0);
if (self != NULL) {

self->first = PyUnicode_FromString("");

if (self->first == NULL) {

Py_DECREF (self);
return NULL;
}
self->last = PyUnicode_FromString("");
if (self->last == NULL) {
Py_DECREF (self) ;
return NULL;
}
self->number = 0;

}
return (PyObject *) self;

and install it in the t p_new member:

.tp_new = Custom_new,

The tp_new handler is responsible for creating (as opposed to initializing) objects of the type. It is exposed in Python
as the _ _new__ () method. It is not required to define a tp_new member, and indeed many extension types will
simply reuse PyType_GenericNew () as done in the first version of the Custom type above. In this case, we use
the t p_new handler to initialize the first and last attributes to non-NULL default values.

tp_new is passed the type being instantiated (not necessarily CustomType, if a subclass is instantiated) and any
arguments passed when the type was called, and is expected to return the instance created. tp_new handlers always
accept positional and keyword arguments, but they often ignore the arguments, leaving the argument handling to initializer
(ak.a. tp_initinCor__init__ in Python) methods.

Z3: tp_newshouldn’tcall tp_init explicitly, as the interpreter will do it itself.

The tp_new implementation calls the tp_alloc slot to allocate memory:

2.2. Defining Extension Types: Tutorial 31

Extending and Embedding Python, £ A| B{% 3.6.15

self = (CustomObject *) type->tp_alloc(type, 0);

Since memory allocation may fail, we must check the tp_alloc result against NULL before proceeding.

ZF31: We didn’tfill the tp_alloc slot ourselves. Rather PyType_Ready () fills it for us by inheriting it from our
base class, which is object by default. Most types use the default allocation strategy.

ZF31: If you are creating a co-operative tp_new (one that calls a base type’s tp_new or __new__ ()), you must
not try to determine what method to call using method resolution order at runtime. Always statically determine what type
you are going to call, and call its t p_new directly, or via t ype->tp_base->tp_new. If you do not do this, Python
subclasses of your type that also inherit from other Python-defined classes may not work correctly. (Specifically, you may
not be able to create instances of such subclasses without getting a TypeError.)

We also define an initialization function which accepts arguments to provide initial values for our instance:

static int
Custom_init (CustomObject *self, PyObject *args, PyObject *kwds)
{
static char *kwlist[] = {"first", "last", "number", NULL};
PyObject *first = NULL, *last = NULL, *tmp;

if (!PyArg_ParseTupleAndKeywords (args, kwds, "|00Oi", kwlist,
sfirst, &last,
&self->number))
return -1;

if (first) |
tmp = self->first;
Py_INCREF (first);
self->first = first;
Py_XDECREF (tmp) ;

}

if (last) {
tmp = self->last;
Py_INCREF (last);
self->last = last;
Py_XDECREF (tmp) ;

}

return 0;

by filling the tp_init slot.

.tp_init = (initproc) Custom_init,

The tp_init slotis exposed in Pythonasthe ___init__ () method. It is used to initialize an object after it’s created.
Initializers always accept positional and keyword arguments, and they should return either 0 on success or —1 on error.

Unlike the t p_new handler, there is no guarantee that tp_init is called at all (for example, the pickle module by
default doesn’t call __init__ () on unpickled instances). It can also be called multiple times. Anyone can call the
__init__ () method on our objects. For this reason, we have to be extra careful when assigning the new attribute
values. We might be tempted, for example to assign the £irst member like this:

32 Chapter 2. Creating extensions without third party tools

Extending and Embedding Python, £A| B{Z 3.6.15

if (first) {
Py_XDECREF (self->first);
Py_INCREF (first);
self->first = first;

But this would be risky. Our type doesn’t restrict the type of the £irst member, so it could be any kind of object. It
could have a destructor that causes code to be executed that tries to access the £1irst member; or that destructor could
release the Global interpreter Lock and let arbitrary code run in other threads that accesses and modifies our object.

To be paranoid and protect ourselves against this possibility, we almost always reassign members before decrementing
their reference counts. When don’t we have to do this?

¢ when we absolutely know that the reference count is greater than 1;

+ when we know that deallocation of the object' will neither release the GIL nor cause any calls back into our type’s
code;

* when decrementing a reference count in a t p_dealloc handler on a type which doesn’t support cyclic garbage
collection”.

We want to expose our instance variables as attributes. There are a number of ways to do that. The simplest way is to
define member definitions:

static PyMemberDef Custom_members|[] = {
{"first", T_OBJECT_EX, offsetof (CustomObject, first), O,
"first name"},
{"last", T_OBJECT_EX, offsetof (CustomObject, last), O,
"last name"},
{"number", T_INT, offsetof (CustomObject, number), O,
"custom number"},
{NULL} /* Sentinel */

bi

and put the definitions in the t p_members slot:

.tp_members = Custom_members,

Each member definition has a member name, type, offset, access flags and documentation string. See the Generic Attribute
Management section below for details.

A disadvantage of this approach is that it doesn’t provide a way to restrict the types of objects that can be assigned to the
Python attributes. We expect the first and last names to be strings, but any Python objects can be assigned. Further, the
attributes can be deleted, setting the C pointers to NULL. Even though we can make sure the members are initialized to
non-NULL values, the members can be set to NULL if the attributes are deleted.

We define a single method, Custom.name (), that outputs the objects name as the concatenation of the first and last
names.

static PyObject *
Custom_name (CustomObject *self)
{
if (self->first == NULL) {
PyErr_SetString (PyExc_AttributeError, "first");
return NULL;

(THE STToTAT ol A1)

! This is true when we know that the object is a basic type, like a string or a float.
2 We relied on this in the t p_dealloc handler in this example, because our type doesn’t support garbage collection.

2.2. Defining Extension Types: Tutorial 33

Extending and Embedding Python, £ A| B{% 3.6.15

(o] A sl o] A A M A%)

if (self->last == NULL) {
PyErr_SetString (PyExc_AttributeError, "last");
return NULL;

3

return PyUnicode_FromFormat ("%$S %S", self->first, self->last);

The method is implemented as a C function that takes a Custom (or Custom subclass) instance as the first argument.
Methods always take an instance as the first argument. Methods often take positional and keyword arguments as well, but
in this case we don’t take any and don’t need to accept a positional argument tuple or keyword argument dictionary. This
method is equivalent to the Python method:

def name (self):
return " " % (self.first, self.last)

Note that we have to check for the possibility that our first and 1ast members are NULL. This is because they can
be deleted, in which case they are set to NULL. It would be better to prevent deletion of these attributes and to restrict
the attribute values to be strings. We’ll see how to do that in the next section.

Now that we’ve defined the method, we need to create an array of method definitions:

static PyMethodDef Custom_methods|[] = {
{"name", (PyCFunction) Custom_name, METH_NOARGS,
"Return the name, combining the first and last name"
}I
{NULL} /* Sentinel */

bi

(note that we used the METH_NOARGS flag to indicate that the method is expecting no arguments other than self’)

and assign it to the tp_methods slot:

.tp_methods = Custom_methods,

Finally, we’1ll make our type usable as a base class for subclassing. We’ve written our methods carefully so far so that
they don’t make any assumptions about the type of the object being created or used, so all we need to do is to add the
Py_TPFLAGS_BASETYPE to our class flag definition:

.tp_flags = Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE,

We rename PyInit_custom() to PyInit_custom?2 (), update the module name in the PyModuleDef struct,
and update the full class name in the PyTypeObject struct.

Finally, we update our setup . py file to build the new module:

from distutils.core import setup, Extension
setup (name="custom", version="1.0",
ext_modules=]|
Extension("custom", ["custom.c"]),
Extension("custom2", ["custom2.c"]),

1)

34 Chapter 2. Creating extensions without third party tools

Extending and Embedding Python, £A| B{Z 3.6.15

2.2.3 Providing finer control over data attributes

In this section, we’ll provide finer control over how the first and last attributes are set in the Custom example. In
the previous version of our module, the instance variables first and last could be set to non-string values or even
deleted. We want to make sure that these attributes always contain strings.

#include <Python.h>
#include "structmember.h"

typedef struct {
PyObject_HEAD
PyObject *first; /* first name */
PyObject *last; /* last name */
int number;

} CustomObject;

static void
Custom_dealloc (CustomObject *self)
{
Py_XDECREF (self->first);
Py_XDECREF (self->last);
Py_TYPE (self) >tp_free ((PyObject *) self);

static PyObject *
Custom_new (PyTypeObject *type, PyObject *args, PyObject *kwds)
{

CustomObject *self;

self = (CustomObject *) type->tp_alloc(type, 0);

if (self != NULL) {
self->first = PyUnicode_FromString("");
if (self->first == NULL) {

Py_DECREF (self);
return NULL;
}
self->last = PyUnicode_FromString("");
if (self->last == NULL) H{
Py_DECREF (self);
return NULL;
}
self->number = 0;

}
return (PyObject *) self;

static int
Custom_init (CustomObject *self, PyObject *args, PyObject *kwds)
{
static char *kwlist[] = {"first", "last", "number", NULL};
PyObject *first = NULL, *last = NULL, *tmp;

if (!PyArg_ParseTupleAndKeywords (args, kwds, "|UUi", kwlist,
sfirst, &last,
&self->number))
return -1;

if (first) |
tmp = self->first;

(TH& ST Aol A1)

2.2. Defining Extension Types: Tutorial 35

Extending and Embedding Python, £ A| B{% 3.6.15

(o] A sl o] A A M A%)

Py_INCREF (first);
self->first = first;
Py_DECREF (tmp) ;
}
if (last) |
tmp = self->last;
Py_INCREF (last);
self->last = last;
Py_DECREF (tmp) ;
}

return 0;

{"number", T_INT,
"custom number"},
{NULL} /* Sentinel */

bi
static PyObject *

{
Py_INCREF (self->first);

return self->first;

static int

{
PyObject *tmp;
if (value NULL) A

return -1;
}

if (!PyUnicode_Check (value)) {

return -1;
3
tmp = self->first;
Py_INCREF (value) ;
self->first = value;
Py_DECREF (tmp) ;
return 0;

static PyObject *
Custom_getlast (CustomObject *self,
{

Py_INCREF (self->1last);

return self->last;

static int
Custom_setlast (CustomObject *self,

{

static PyMemberDef Custom_members]]
offsetof (CustomObject,

Custom_getfirst (CustomObject *self,

Custom_setfirst (CustomObject *self,

PyErr_SetString (PyExc_TypeError,

PyErr_SetString (PyExc_TypeError,
"The first attribute value must be a string");

= A

number), O,

void *closure)

PyObject *value, wvoid *closure)

"Cannot delete the first attribute");

void *closure)

PyObject *value, wvoid *closure)

(TH& ST Aol A1)

36

Chapter 2. Creating extensions without third party tools

Extending and Embedding Python, £A| B{Z 3.6.15

(o] A sl o] A A M A%)

PyObject *tmp;
if (value == NULL) {
PyErr_SetString (PyExc_TypeError, "Cannot delete the last attribute");
return -1;
;
if (!PyUnicode_Check (value)) {
PyErr_SetString (PyExc_TypeError,
"The last attribute value must be a string");
return -1;
3
tmp = self->last;
Py_INCREF (value) ;
self->last = value;
Py_DECREF (tmp) ;
return 0O;

static PyGetSetDef Custom_getsetters[] = {
{"first", (getter) Custom_getfirst, (setter) Custom_setfirst,
"first name", NULL},
{"last", (getter) Custom_getlast, (setter) Custom_setlast,
"last name", NULL},
{NULL} /* Sentinel */
bi

static PyObject *
Custom_name (CustomObject *self, PyObject *Py_UNUSED (ignored))
{

return PyUnicode_FromFormat ("%S %S", self->first, self->last);

static PyMethodDef Custom_methods|[] = {
{"name", (PyCFunction) Custom_name, METH_NOARGS,
"Return the name, combining the first and last name"
b
{NULL} /* Sentinel */

bi

static PyTypeObject CustomType = {
PyVarObject_HEAD_INIT (NULL, O)
.tp_name = "custom3.Custom",
.tp_doc = "Custom objects",
.tp_basicsize = sizeof (CustomObject),
.tp_itemsize = 0,
.tp_flags = Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE,
.tp_new = Custom_new,
.tp_init = (initproc) Custom_init,
.tp_dealloc = (destructor) Custom_dealloc,
.tp_members = Custom_members,
.tp_methods = Custom_methods,
.tp_getset = Custom_getsetters,

bi

static PyModuleDef custommodule = {
PyModuleDef_ HEAD_INIT,
.m_name = "custom3",

(=

S o] Aol A%

2.2. Defining Extension Types: Tutorial

37

Extending and Embedding Python, £ A| B{% 3.6.15

(o] A sl o] A A M A%)

.m_doc = "Example module that creates an extension type.",
.m_size = -1,

bi

PyMODINIT_FUNC
PyInit_custom3 (void)
{
PyObject *m;
if (PyType_Ready (&CustomType) < 0)
return NULL;

m = PyModule_Create (&custommodule) ;
if (m == NULL)
return NULL;

Py_INCREF (&CustomType) ;
PyModule_AddObject (m, "Custom", (PyObject *) &CustomType);
return m;

To provide greater control, over the first and last attributes, we’ll use custom getter and setter functions. Here are
the functions for getting and setting the £irst attribute:

static PyObject *
Custom_getfirst (CustomObject *self, woid *closure)
{

Py_INCREF (self->first);

return self->first;

static int
Custom_setfirst (CustomObject *self, PyObject *value, void *closure)
{
PyObject *tmp;
if (value == NULL) {
PyErr_SetString (PyExc_TypeError, "Cannot delete the first attribute");
return -1;
3
if (!PyUnicode_Check (value)) {
PyErr_SetString (PyExc_TypeError,
"The first attribute value must be a string");
return -1;
}
tmp = self->first;
Py_INCREF (value);
self->first = value;
Py_DECREF (tmp) ;
return O;

The getter function is passed a Custom object and a {closure), which is a void pointer. In this case, the closure is
ignored. (The closure supports an advanced usage in which definition data is passed to the getter and setter. This could,
for example, be used to allow a single set of getter and setter functions that decide the attribute to get or set based on data
in the closure.)

The setter function is passed the Cust om object, the new value, and the closure. The new value may be NULL, in which
case the attribute is being deleted. In our setter, we raise an error if the attribute is deleted or if its new value is not a

38 Chapter 2. Creating extensions without third party tools

Extending and Embedding Python, £A| B{Z 3.6.15

string.

We create an array of PyGet SetDef structures:

static PyGetSetDef Custom_getsetters[] = {
{"first", (getter) Custom_getfirst, (setter) Custom_setfirst,
"first name", NULL},
{"last", (getter) Custom_getlast, (setter) Custom_setlast,
"last name", NULL},
{NULL} /* Sentinel */
bi

and register it in the tp_getset slot:

.tp_getset = Custom_getsetters,

The last item in a PyGet SetDef structure is the (closure) mentioned above. In this case, we aren’t using a closure,
so we just pass NULL.

We also remove the member definitions for these attributes:

static PyMemberDef Custom_members|[] = {
{"number", T_INT, offsetof (CustomObject, number), O,
"custom number"},
{NULL} /* Sentinel */

bi

We also need to update the tp_init handler to only allow strings® to be passed:

static int

Custom_init (CustomObject *self, PyObject *args, PyObject *kwds)

{
static char *kwlist[] = {"first", "last", "number", NULL};
PyObject *first = NULL, *last = NULL, *tmp;

if (!PyArg_ParseTupleAndKeywords (args, kwds, "|UUi", kwlist,
sfirst, &last,
&self->number))
return -1;

if (first) |
tmp = self->first;
Py_INCREF (first);
self->first = first;
Py_DECREF (tmp) ;

}

if (last) {
tmp = self->last;
Py_INCREF (last);
self->last = last;
Py_DECREF (tmp) ;

}

return O;

3 We now know that the first and last members are strings, so perhaps we could be less careful about decrementing their reference counts, however,
we accept instances of string subclasses. Even though deallocating normal strings won’t call back into our objects, we can’t guarantee that deallocating
an instance of a string subclass won’t call back into our objects.

2.2. Defining Extension Types: Tutorial 39

Extending and Embedding Python, £ A| B{% 3.6.15

With these changes, we can assure that the first and 1ast members are never NULL so we can remove checks for
NULL values in almost all cases. This means that most of the Py_ XDECREF () calls can be converted to Py_ DECREF ()
calls. The only place we can’t change these calls is in the tp_dealloc implementation, where there is the possibility
that the initialization of these members failed in tp_new.

We also rename the module initialization function and module name in the initialization function, as we did before, and
we add an extra definition to the setup. py file.

2.2.4 Supporting cyclic garbage collection

Python has a cyclic garbage collector (GC) that can identify unneeded objects even when their reference counts are not
zero. This can happen when objects are involved in cycles. For example, consider:

>>> 1 = []
>>> 1.append (1)
>>> del 1

In this example, we create a list that contains itself. When we delete it, it still has a reference from itself. Its reference
count doesn’t drop to zero. Fortunately, Python’s cyclic garbage collector will eventually figure out that the list is garbage
and free it.

In the second version of the Custom example, we allowed any kind of object to be stored in the first or last
attributes*. Besides, in the second and third versions, we allowed subclassing Cust om, and subclasses may add arbitrary
attributes. For any of those two reasons, Custom objects can participate in cycles:

>>> import custom3
>>> class Derived (custom3.Custom) : pass

>>> n = Derived()
>>> n.some_attribute = n

To allow a Custom instance participating in a reference cycle to be properly detected and collected by the cyclic GC,
our Custom type needs to fill two additional slots and to enable a flag that enables these slots:

#include <Python.h>
#include "structmember.h"

typedef struct {
PyObject_HEAD
PyObject *first; /% first name */
PyObject *last; /* last name */
int number;

} CustomObject;

static int
Custom_traverse (CustomObject *self, visitproc visit, void *arg)
{

Py_VISIT(self->first);

Py_VISIT (self->last);

return 0O;

static int
Custom_clear (CustomObject *self)

{

(TF STolATell A%

4 Also, even with our attributes restricted to strings instances, the user could pass arbitrary st r subclasses and therefore still create reference cycles.

40 Chapter 2. Creating extensions without third party tools

Extending and Embedding Python, £A| B{Z 3.6.15

(o] A sl o] A A M A%)

Py_CLEAR (self->first);
Py_CLEAR (self->last);
return O;

static void

Custom_dealloc (CustomObject *self)

{

PyObject_GC_UnTrack (self);

Custom_clear (self);

Py_TYPE (self) ->tp_free ((PyObject *) self);

static PyObject *

Custom_new (PyTypeObject *type, PyObject *args, PyObject *kwds)
{

CustomObject *self;

self = (CustomObject *) type->tp_alloc(type, 0);
if (self != NULL) {

self->first = PyUnicode_FromString("");

if (self->first == NULL) {

Py_DECREF (self);
return NULL;

}
self->last = PyUnicode_FromString("");
if (self->last == NULL) {
Py_DECREF (self);
return NULL;
}
self->number = 0;

3
return (PyObject *) self;

static int
Custom_init (CustomObject *self, PyObject *args, PyObject *kwds)
{
static char *kwlist[] = {"first", "last", "number", NULL};
PyObject *first = NULL, *last = NULL, *tmp;

if (!PyArg_ParseTupleAndKeywords (args, kwds, "|UUi", kwlist,
sfirst, &last,
&self->number))

return -1;

if (first) |
tmp = self->first;
Py_INCREF (first);
self->first = first;
Py_DECREF (tmp) ;

}

if (last) |
tmp = self->last;
Py_INCREF (last);
self->last = last;
Py_DECREF (tmp) ;

(TH& ST Aol A1)

2.2. Defining Extension Types: Tutorial 41

Extending and Embedding Python, £ A| B{% 3.6.15

(o] A sl o] A A M A%)

}

return 0;

static PyMemberDef Custom_members|[] = {
{"number", T_INT, offsetof (CustomObject, number), O,
"custom number"},
{NULL} /* Sentinel */
bi

static PyObject *
Custom_getfirst (CustomObject *self, wvoid *closure)
{

Py_INCREF (self->first);

return self->first;

static int
Custom_setfirst (CustomObject *self, PyObject *value, void *closure)

{
if (value == NULL) {

return -1;

3

if (!PyUnicode_Check (value)) {
PyErr_SetString (PyExc_TypeError,

"The first attribute value must be a string");

return -1;

}

Py_INCREF (value);

Py_CLEAR(self->first);

self->first = value;

return 0O;

static PyObject *
Custom_getlast (CustomObject *self, wvoid *closure)
{

Py_INCREF (self->1last);

return self->last;

static int
Custom_setlast (CustomObject *self, PyObject *value, wvoid *closure)

{
if (value == NULL) {

return -1;
}
if (!PyUnicode_Check (value)) {
PyErr_SetString (PyExc_TypeError,
"The last attribute value must be a string");
return -1;
}
Py_INCREF (value);
Py_CLEAR(self->last);

PyErr_SetString (PyExc_TypeError, "Cannot delete the first attribute");

PyErr_SetString (PyExc_TypeError, "Cannot delete the last attribute");

(TH& ST Aol A1)

42 Chapter 2. Creating extensions without third party tools

Extending and Embedding Python, £A| B{Z 3.6.15

(o] A sl o] A A M A%)

self->last = value;
return 0;

static PyGetSetDef Custom_getsetters[] = {
{"first", (getter) Custom_getfirst, (setter) Custom_setfirst,
"first name", NULL},
{"last", (getter) Custom_getlast, (setter) Custom_setlast,

"last name", NULL},
{NULL} /* Sentinel */
bi

static PyObject *
Custom_name (CustomObject *self, PyObject *Py_UNUSED (ignored))
{

return PyUnicode_FromFormat ("$S %S", self->first, self->last);

static PyMethodDef Custom_methods[] = {
{"name", (PyCFunction) Custom_name, METH_NOARGS,
"Return the name, combining the first and last name"
}I
{NULL} /* Sentinel */

bi

static PyTypeObject CustomType = {
PyVarObject_HEAD_INIT (NULL, 0)
.tp_name = "customé4.Custom",
.tp_doc = "Custom objects",
.tp_basicsize = sizeof (CustomObject),
.tp_itemsize = 0,
.tp_flags = Py_TPFLAGS_DEFAULT | Py TPFLAGS_BASETYPE | Py_TPFLAGS_HAVE_GC,
.tp_new = Custom_new,
.tp_init = (initproc) Custom_init,
.tp_dealloc = (destructor) Custom_dealloc,
.tp_traverse = (traverseproc) Custom_traverse,
.tp_clear = (inquiry) Custom_clear,
.tp_members = Custom_members,
.tp_methods = Custom_methods,
.tp_getset = Custom_getsetters,

bi

static PyModuleDef custommodule = {
PyModuleDef_ HEAD_INIT,
.m_name = "customd",
.m_doc = "Example module that creates an extension type.",
.m_size = -1,

bi

PyMODINIT_FUNC
PyInit_custom4 (void)
{
PyObject *m;
if (PyType_Ready (&CustomType) < 0)
return NULL;

(TH& ST Aol A1)

2.2. Defining Extension Types: Tutorial 43

Extending and Embedding Python, £ A| B{% 3.6.15

(o] A sl o] A A M A%)

m = PyModule_Create (&custommodule) ;
if (m == NULL)
return NULL;

Py_INCREF (&CustomType) ;
PyModule_AddObject (m, "Custom", (PyObject *) &CustomType);
return m;

First, the traversal method lets the cyclic GC know about subobjects that could participate in cycles:

static int
Custom_traverse (CustomObject *self, visitproc visit, void *arg)
{
int vret;
if (self->first) {
vret = visit(self->first, arg);
if (vret != 0)
return vret;
3
if (self->last) {
vret = visit(self->last, arg);
if (vret != 0)
return vret;
3

return 0O;

For each subobject that can participate in cycles, we need to call the visit () function, which is passed to the traversal
method. The visit () function takes as arguments the subobject and the extra argument arg passed to the traversal
method. It returns an integer value that must be returned if it is non-zero.

Python provides a Py_VISIT () macro that automates calling visit functions. With Py_VISIT (), we can minimize
the amount of boilerplate in Custom_traverse:

static int
Custom_traverse (CustomObject *self, visitproc visit, void *arg)
{

Py_VISIT (self->first);

Py_VISIT(self->last);

return 0O;

ZF31: The tp_traverse implementation must name its arguments exactly visit and arg in order touse Py_VISTT ().

Second, we need to provide a method for clearing any subobjects that can participate in cycles:

static int
Custom_clear (CustomObject *self)
{
Py_CLEAR (self->first);
Py_CLEAR (self->last);
return 0O;

44 Chapter 2. Creating extensions without third party tools

Extending and Embedding Python, £A| B{Z 3.6.15

Notice the use of the Py_CLEAR () macro. It is the recommended and safe way to clear data attributes of arbitrary types
while decrementing their reference counts. If you were to call Py_XDECREF () instead on the attribute before setting
it to NULL, there is a possibility that the attribute’s destructor would call back into code that reads the attribute again
(especially if there is a reference cycle).

Z3: You could emulate Py_CLEAR () by writing:

PyObject *tmp;

tmp = self->first;
self->first = NULL;
Py_XDECREF (tmp) ;

Nevertheless, it is much easier and less error-prone to always use Py_CLEAR () when deleting an attribute. Don’t try to
micro-optimize at the expense of robustness!

The deallocator Custom_dealloc may call arbitrary code when clearing attributes. It means the circular GC can be
triggered inside the function. Since the GC assumes reference count is not zero, we need to untrack the object from the
GC by calling PyObject_GC_UnTrack () before clearing members. Here is our reimplemented deallocator using
PyObject_GC_UnTrack () and Custom_clear:

static void
Custom_dealloc (CustomObject *self)
{
PyObject_GC_UnTrack (self);
Custom_clear (self);
Py_TYPE (self) >tp_free ((PyObject *) self);

Finally, we add the Py_TPFLAGS_HAVE_GC flag to the class flags:

.tp_flags = Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE | Py_TPFLAGS_HAVE_GC,

That’s pretty much it. If we had written custom tp_alloc or tp_free handlers, we’d need to modify them for cyclic
garbage collection. Most extensions will use the versions automatically provided.

2.2.5 Subclassing other types

It is possible to create new extension types that are derived from existing types. It is easiest to inherit from the built in
types, since an extension can easily use the PyTypeObject it needs. It can be difficult to share these Py TypeObject
structures between extension modules.

In this example we will create a SubLi st type that inherits from the built-in 11 st type. The new type will be completely
compatible with regular lists, but will have an additional increment () method that increases an internal counter:

>>> import sublist

>>> s = sublist.SubList (range(3))
>>> s.extend(s)

>>> print (len(s))

6

>>> print (s.increment ())

>>> print (s.increment ())

2.2. Defining Extension Types: Tutorial 45

Extending and Embedding Python, £ A| B{% 3.6.15

#include <Python.h>

typedef struct {
PyListObject list;
int state;

} SubListObject;

static PyObject *
SubList_increment (SubListObject *self, PyObject *unused)
{

self->state++;

return Pylong_FromLong (self->state);

3

static PyMethodDef SubList_methods[] = {
{"increment", (PyCFunction) SubList_increment, METH_NOARGS,
PyDoc_STR("increment state counter")},
{NULL},

bi

static int
SubList_init (SubListObject *self, PyObject *args, PyObject *kwds)
{
if (PyList_Type.tp_init ((PyObject *) self, args, kwds) < 0)
return -1;
self->state = 0;
return O;

static PyTypeObject SubListType = {
PyVarObject_HEAD_INIT (NULL, 0)

.tp_name = "sublist.SubList",

.tp_doc = "SubList objects",

.tp_basicsize = sizeof (SubListObject),

.tp_itemsize = 0,

.tp_flags = Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE,
.tp_init = (initproc) SubList_init,

.tp_methods = SubList_methods,
bi

static PyModuleDef sublistmodule = {
PyModuleDef_ HEAD_INIT,

.m_name = "sublist",
.m_doc = "Example module that creates an extension type.",
.m_size = -1,

bi

PyMODINIT_FUNC
PyInit_sublist (void)
{
PyObject *m;
SubListType.tp_base = &PyList_Type;
if (PyType_Ready (&SubListType) < 0)
return NULL;

m = PyModule_Create (&sublistmodule);
if (m == NULL)

(TH& ST Aol A1)

46 Chapter 2. Creating extensions without third party tools

Extending and Embedding Python, £A| B{Z 3.6.15

(o] A sl o] A A M A%)

return NULL;

Py_INCREF (&SubListType) ;
PyModule_AddObject (m, "SubList", (PyObject *) &SubListType);
return m;

As you can see, the source code closely resembles the Cust om examples in previous sections. We will break down the
main differences between them.

typedef struct {
PyListObject list;
int state;

} SubListObject;

The primary difference for derived type objects is that the base type’s object structure must be the first value. The base
type will already include the PyObject_HEAD () at the beginning of its structure.

When a Python object is a SubList instance, its PyObject * pointer can be safely cast to both PyListObject
* and SubListObject *:

static int
SubList_init (SubListObject *self, PyObject *args, PyObject *kwds)
{
if (PyList_Type.tp_init ((PyObject *) self, args, kwds) < 0)
return -1;
self->state = 0;
return O;

We see above how to call through to the __init___ method of the base type.

This pattern is important when writing a type with custom tp_new and tp_dealloc members. The tp_new handler
should not actually create the memory for the object with its tp_alloc, but let the base class handle it by calling its
own tp_new.

The PyTypeObject struct supports a tp_base specifying the type’s concrete base class. Due to cross-platform
compiler issues, you can’t fill that field directly with a reference to PyList_Type; it should be done later in the module
initialization function:

PyMODINIT_FUNC
PyInit_sublist (void)
{
PyObject* m;
SubListType.tp_base = &PyList_Type;
if (PyType_Ready (&SubListType) < 0)
return NULL;

m = PyModule_Create (&sublistmodule) ;
if (m == NULL)
return NULL;

Py_INCREF (&SubListType) ;
PyModule_AddObject (m, "SubList", (PyObject *) &SubListType);
return m;

2.2. Defining Extension Types: Tutorial 47

Extending and Embedding Python, £ A| B{% 3.6.15

Before calling PyType_Ready (), the type structure must have the t p_base slot filled in. When we are deriving an
existing type, it is not necessary to fill out the tp_alloc slot with PyType_GenericNew () — the allocation function
from the base type will be inherited.

After that, calling PyType_Ready () and adding the type object to the module is the same as with the basic Custom
examples.

2.3 Defining Extension Types: Assorted Topics

This section aims to give a quick fly-by on the various type methods you can implement and what they do.

Here is the definition of PyTypeObject, with some fields only used in debug builds omitted:

typedef struct _typeobject {

PyObject_VAR_HEAD
const char *tp_name; /* For printing, in format "<module>.<name>" */
Py_ssize_t tp_basicsize, tp_itemsize; /* For allocation */

/* Methods to implement standard operations */

destructor tp_dealloc;

printfunc tp_print;

getattrfunc tp_getattr;

setattrfunc tp_setattr;

PyAsyncMethods *tp_as_async; /* formerly known as tp_compare (Python 2)
or tp_reserved (Python 3) */

reprfunc tp_repr;

/* Method suites for standard classes */

PyNumberMethods *tp_as_number;
PySequenceMethods *tp_as_sequence;
PyMappingMethods *tp_as_mapping;

/* More standard operations (here for binary compatibility) */

hashfunc tp_hash;
ternaryfunc tp_call;
reprfunc tp_str;
getattrofunc tp_getattro;
setattrofunc tp_setattro;

/* Functions to access object as input/output buffer */
PyBufferProcs *tp_as_buffer;

/* Flags to define presence of optional/expanded features */
unsigned long tp_flags;

const char *tp_doc; /* Documentation string */

/* call function for all accessible objects */
traverseproc tp_traverse;

/* delete references to contained objects */
inquiry tp_clear;

(TH& STToTAT ol A1)

48

Chapter 2. Creating extensions without third party tools

Extending and Embedding Python, £A| B{Z 3.6.15

(o] A sl o] A A M A%)

/* rich comparisons */
richcmpfunc tp_richcompare;

/* weak reference enabler */
Py_ssize_t tp_weaklistoffset;

/* Iterators */
getiterfunc tp_iter;
iternextfunc tp_iternext;

/* Attribute descriptor and subclassing stuff */
struct PyMethodDef *tp_methods;

struct PyMemberDef *tp_members;

struct PyGetSetDef *tp_getset;

struct _typeobject *tp_base;

PyObject *tp_dict;

descrgetfunc tp_descr_get;

descrsetfunc tp_descr_set;

Py_ssize_t tp_dictoffset;

initproc tp_init;

allocfunc tp_alloc;

newfunc tp_new;

freefunc tp_free; /* Low-level free-memory routine */
inquiry tp_is_gc; /* For PyObject IS GC */
PyObject *tp_bases;

PyObject *tp_mro; /* method resolution order */
PyObject *tp_cache;

PyObject *tp_subclasses;

PyObject *tp_weaklist;

destructor tp_del;

/* Type attribute cache version tag. Added in version 2.6 */
unsigned int tp_version_tag;

destructor tp_finalize;

} PyTypeObiject;

Now that’s a lot of methods. Don’t worry too much though — if you have a type you want to define, the chances are very
good that you will only implement a handful of these.

As you probably expect by now, we’re going to go over this and give more information about the various handlers. We
won’t go in the order they are defined in the structure, because there is a lot of historical baggage that impacts the ordering
of the fields. It’s often easiest to find an example that includes the fields you need and then change the values to suit your
new type.

’const char *tp_name; /* For printing */

The name of the type — as mentioned in the previous chapter, this will appear in various places, almost entirely for
diagnostic purposes. Try to choose something that will be helpful in such a situation!

’Py_ssize_t tp_basicsize, tp_itemsize; /* For allocation */

These fields tell the runtime how much memory to allocate when new objects of this type are created. Python has some
built-in support for variable length structures (think: strings, tuples) which is where the tp_itemsize field comes in.
This will be dealt with later.

2.3. Defining Extension Types: Assorted Topics 49

Extending and Embedding Python, £ A| B{% 3.6.15

const char *tp_doc;

Here you can put a string (or its address) that you want returned when the Python script references obj.___doc__ to
retrieve the doc string.

Now we come to the basic type methods — the ones most extension types will implement.

2.3.1 Finalization and De-allocation

destructor tp_dealloc;

This function is called when the reference count of the instance of your type is reduced to zero and the Python interpreter
wants to reclaim it. If your type has memory to free or other clean-up to perform, you can put it here. The object itself
needs to be freed here as well. Here is an example of this function:

static void
newdatatype_dealloc (newdatatypeobject *obj)
{
free (obj->obj_UnderlyingDatatypePtr);
Py_TYPE (obj)->tp_free (obj);

One important requirement of the deallocator function is that it leaves any pending exceptions alone. This is important
since deallocators are frequently called as the interpreter unwinds the Python stack; when the stack is unwound due to
an exception (rather than normal returns), nothing is done to protect the deallocators from seeing that an exception has
already been set. Any actions which a deallocator performs which may cause additional Python code to be executed may
detect that an exception has been set. This can lead to misleading errors from the interpreter. The proper way to protect
against this is to save a pending exception before performing the unsafe action, and restoring it when done. This can be
done using the PyErr_Fetch () and PyErr_Restore () functions:

static void

my_dealloc (PyObject *obj)

{
MyObject *self = (MyObject *) obj;
PyObject *cbresult;

if (self->my_callback != NULL) {
PyObject *err_type, *err_value, *err_traceback;

/* This saves the current exception state */
PyErr_Fetch (&err_type, &err_value, &err_traceback);

cbresult = PyObject_CallObject (self->my_callback, NULL);
if (cbresult == NULL)

PyErr_WriteUnraisable (self->my_callback);
else

Py_DECREF (cbresult);

/* This restores the saved exception state */
PyErr_Restore(err_type, err_value, err_traceback);

Py_DECREF (self->my_callback);

}
Py_TYPE (obj) —>tp_free ((PyObject*)self);

50 Chapter 2. Creating extensions without third party tools

Extending and Embedding Python, £A| B{Z 3.6.15

ZF31: There are limitations to what you can safely do in a deallocator function. First, if your type supports garbage
collection (using tp_traverse and/or tp_clear), some of the object’s members can have been cleared or finalized
by the time tp_dealloc is called. Second, in tp_dealloc, your object is in an unstable state: its reference count
is equal to zero. Any call to a non-trivial object or API (as in the example above) might end up calling tp_dealloc
again, causing a double free and a crash.

Starting with Python 3.4, it is recommended not to put any complex finalization code in tp_dealloc, and instead use
the new tp_finalize type method.

o X7

PEP 442 explains the new finalization scheme.

2.3.2 Object Presentation

In Python, there are two ways to generate a textual representation of an object: the repr () function, and the str ()
function. (The print () function just calls st r () .) These handlers are both optional.

reprfunc tp_repr;
reprfunc tp_str;

The tp_repr handler should return a string object containing a representation of the instance for which it is called.
Here is a simple example:

static PyObject *
newdatatype_repr (newdatatypeobject * obj)
{
return PyUnicode_FromFormat ("Repr-ified newdatatype{{size:%d}}",
obj—->obj_UnderlyingDatatypePtr->size);

If no tp_repr handler is specified, the interpreter will supply a representation that uses the type’s tp_name and a
uniquely-identifying value for the object.

The tp_str handler is to st r () what the tp_repr handler described above is to repr () ; that is, it is called when
Python code calls str () on an instance of your object. Its implementation is very similar to the tp_repr function,
but the resulting string is intended for human consumption. If tp_str is not specified, the tp_repr handler is used
instead.

Here is a simple example:

static PyObject *
newdatatype_str (newdatatypeobject * obj)
{
return PyUnicode_FromFormat ("Stringified_newdatatype{{size:%d}}",
obj—->obj_UnderlyingDatatypePtr->size);

2.3. Defining Extension Types: Assorted Topics 51

https://www.python.org/dev/peps/pep-0442

Extending and Embedding Python, £ A| B{% 3.6.15

2.3.3 Attribute Management

For every object which can support attributes, the corresponding type must provide the functions that control how the
attributes are resolved. There needs to be a function which can retrieve attributes (if any are defined), and another to set
attributes (if setting attributes is allowed). Removing an attribute is a special case, for which the new value passed to the
handler is NULL.

Python supports two pairs of attribute handlers; a type that supports attributes only needs to implement the functions
for one pair. The difference is that one pair takes the name of the attribute as a char*, while the other accepts a
PyObject *. Each type can use whichever pair makes more sense for the implementation’s convenience.

getattrfunc tp_getattr; /* char * version */
setattrfunc tp_setattr;

S L. K/

getattrofunc tp_getattro; /* PyObject * version */

setattrofunc tp_setattro;

If accessing attributes of an object is always a simple operation (this will be explained shortly), there are generic imple-
mentations which can be used to provide the PyObject* version of the attribute management functions. The actual
need for type-specific attribute handlers almost completely disappeared starting with Python 2.2, though there are many
examples which have not been updated to use some of the new generic mechanism that is available.

Generic Attribute Management

Most extension types only use simple attributes. So, what makes the attributes simple? There are only a couple of
conditions that must be met:

1. The name of the attributes must be known when PyType_Ready () is called.

2. No special processing is needed to record that an attribute was looked up or set, nor do actions need to be taken
based on the value.

Note that this list does not place any restrictions on the values of the attributes, when the values are computed, or how
relevant data is stored.

When PyType_Ready () is called, it uses three tables referenced by the type object to create descriptors which are
placed in the dictionary of the type object. Each descriptor controls access to one attribute of the instance object. Each
of the tables is optional; if all three are NULL, instances of the type will only have attributes that are inherited from their
base type, and should leave the tp_getattro and tp_setattro fields NULL as well, allowing the base type to
handle attributes.

The tables are declared as three fields of the type object:

struct PyMethodDef *tp_methods;
struct PyMemberDef *tp_members;
struct PyGetSetDef *tp_getset;

If tp_methods is not NULL, it must refer to an array of PyMethodDef structures. Each entry in the table is an
instance of this structure:

typedef struct PyMethodDef {

const char *ml_name; /* method name */

PyCFunction ml_meth; /* implementation function */
int ml_flags; /* flags */

const char *ml_doc; /* docstring */

} PyMethodDef;

52 Chapter 2. Creating extensions without third party tools

Extending and Embedding Python, £A| B{Z 3.6.15

One entry should be defined for each method provided by the type; no entries are needed for methods inherited from a
base type. One additional entry is needed at the end; it is a sentinel that marks the end of the array. The m1_name field
of the sentinel must be NULL.

The second table is used to define attributes which map directly to data stored in the instance. A variety of primitive C
types are supported, and access may be read-only or read-write. The structures in the table are defined as:

typedef struct PyMemberDef {
char *name;
int type;
int offset;
int flags;
char *doc;
} PyMemberDef;

For each entry in the table, a descriptor will be constructed and added to the type which will be able to extract a value
from the instance structure. The type field should contain one of the type codes defined in the st ructmember.h
header; the value will be used to determine how to convert Python values to and from C values. The f1ags field is used
to store flags which control how the attribute can be accessed.

The following flag constants are defined in st ructmember . h; they may be combined using bitwise-OR.

Constant Meaning

READONLY Never writable.

READ_RESTRICTED Not readable in restricted mode.
WRITE_RESTRICTED | Not writable in restricted mode.
RESTRICTED Not readable or writable in restricted mode.

An interesting advantage of using the t p_members table to build descriptors that are used at runtime is that any attribute
defined this way can have an associated doc string simply by providing the text in the table. An application can use the
introspection API to retrieve the descriptor from the class object, and get the doc string using its __doc___ attribute.

As with the tp_methods table, a sentinel entry with a name value of NULL is required.

Type-specific Attribute Management

For simplicity, only the char* version will be demonstrated here; the type of the name parameter is the only difference
between the char* and PyObject * flavors of the interface. This example effectively does the same thing as the generic
example above, but does not use the generic support added in Python 2.2. It explains how the handler functions are called,
so that if you do need to extend their functionality, you’ll understand what needs to be done.

The tp_getattr handler is called when the object requires an attribute look-up. It is called in the same situations
where the ___getattr__ () method of a class would be called.

Here is an example:

static PyObject *
newdatatype_getattr (newdatatypeobject *obj, char *name)
{
if (strcmp(name, "data") == 0)
{
return PyLong_FromLong (obj—->data);

PyErr_Format (PyExc_AttributeError,
"'%$.50s' object has no attribute '%.400s'",

(TF= seTAT el A%)

2.3. Defining Extension Types: Assorted Topics 53

Extending and Embedding Python, £ A| B{% 3.6.15

(o] A sl o] A A M A%)

tp—>tp_name, name);
return NULL;

The tp_setattr handler is called when the __setattr__ () or _ _delattr__ () method of a class instance
would be called. When an attribute should be deleted, the third parameter will be NULL. Here is an example that simply
raises an exception; if this were really all you wanted, the t p_setattr handler should be set to NULL.

static int
newdatatype_setattr (newdatatypeobject *obj, char *name, PyObject *v)
{

PyErr_Format (PyExc_RuntimeError, "Read-only attribute: %s", name);
return -1;

2.3.4 Object Comparison

richcmpfunc tp_richcompare;

The tp_richcompare handler is called when comparisons are needed. It is analogous to the rich comparison methods,
like__1t__ (), and also called by PyObject_RichCompare () and PyObject_RichCompareBool ().

This function is called with two Python objects and the operator as arguments, where the operator is one of Py_EQ,
Py_NE,Py_LE,Py_GT,Py_LTorPy_GT. It should compare the two objects with respect to the specified operator and
return Py_True or Py_False if the comparison is successful, Py_Not Implemented to indicate that comparison
is not implemented and the other object’s comparison method should be tried, or NULL if an exception was set.

Here is a sample implementation, for a datatype that is considered equal if the size of an internal pointer is equal:

static PyObject *
newdatatype_richcmp (PyObject *objl, PyObject *obj2, int op)
{

PyObject *result;

int c, sizel, size2;

/* code to make sure that both arguments are of type
newdatatype omitted */

sizel = objl->obj_UnderlyingDatatypePtr->size;
size2 = obj2->0bj_UnderlyingDatatypePtr->size;

switch (op)
case Py_LT:
case Py_LE:
case Py_EQ:
case Py_NE:
case Py_GT:
case Py_GE:
}

result = ¢ ? Py_True : Py_False;
Py_INCREF (result);

return result;

= sizel < size2; break;
= sizel <= size2; break;
sizel == size2; break;

= sizel != size2; break;
= sizel > size2; break;
>= size2; break;

Q Q00
Il

= sizel

54 Chapter 2. Creating extensions without third party tools

Extending and Embedding Python, £A| B{Z 3.6.15

2.3.5 Abstract Protocol Support

Python supports a variety of abstract (protocols;) the specific interfaces provided to use these interfaces are documented
in abstract.

A number of these abstract interfaces were defined early in the development of the Python implementation. In particular,
the number, mapping, and sequence protocols have been part of Python since the beginning. Other protocols have
been added over time. For protocols which depend on several handler routines from the type implementation, the older
protocols have been defined as optional blocks of handlers referenced by the type object. For newer protocols there are
additional slots in the main type object, with a flag bit being set to indicate that the slots are present and should be checked
by the interpreter. (The flag bit does not indicate that the slot values are non-NULL. The flag may be set to indicate the
presence of a slot, but a slot may still be unfilled.)

PyNumberMethods *tp_as_number;
PySequenceMethods *tp_as_sequence;
PyMappingMethods *tp_as_mapping;

If you wish your object to be able to act like a number, a sequence, or a mapping object, then you place the address of
a structure that implements the C type PyNumberMethods, PySequenceMethods, or PyMappingMethods,
respectively. It is up to you to fill in this structure with appropriate values. You can find examples of the use of each of
these in the Object s directory of the Python source distribution.

hashfunc tp_hash;

This function, if you choose to provide it, should return a hash number for an instance of your data type. Here is a simple
example:

static Py_hash_t
newdatatype_hash (newdatatypeobject *obj)

{
Py_hash_t result;

result = obj->some_size + 32767 * obj->some_number;
if (result == -1)
result = -2;

return result;

Py_hash_t is a signed integer type with a platform-varying width. Returning —1 from tp_hash indicates an error,
which is why you should be careful to avoid returning it when hash computation is successful, as seen above.

ternaryfunc tp_call;

This function is called when an instance of your data type is (called) , for example, if ob7j1 is an instance of your data
type and the Python script contains obj1 ('hello'), the tp_call handler is invoked.

This function takes three arguments:

1. self is the instance of the data type which is the subject of the call. If the call is obj1 ('hello'), then self is
objl.

2. args is a tuple containing the arguments to the call. You can use PyArg_ParseTuple () to extract the argu-
ments.

3. kwds is a dictionary of keyword arguments that were passed. If this is non-NULL and you support keyword ar-
guments, use PyArg_ParseTupleAndKeywords () to extract the arguments. If you do not want to support
keyword arguments and this is non-NULL, raise a TypeError with a message saying that keyword arguments are
not supported.

Here is a toy t p_call implementation:

2.3. Defining Extension Types: Assorted Topics 55

Extending and Embedding Python, £ A| B{% 3.6.15

static PyObject *
newdatatype_call (newdatatypeobject *self, PyObject *args, PyObject *kwds)
{

PyObject *result;

char *argl;

char *arg2;

char *arg3;

if (!PyArg_ParseTuple(args, "sss:call", &argl, &arg2, &arg3)) A
return NULL;

}

result = PyUnicode_FromFormat (
"Returning —-- value: [%d] argl: [%s] arg2: [%s] arg3: [
obj->obj_UnderlyingDatatypePtr->size,
argl, arg2, arg3);

return result;

oe

sl\n",

/* Iterators */
getiterfunc tp_iter;
iternextfunc tp_iternext;

These functions provide support for the iterator protocol. Both handlers take exactly one parameter, the instance for
which they are being called, and return a new reference. In the case of an error, they should set an exception and return
NULL. tp_iter corresponds to the Python __iter__ () method, while tp_iternext corresponds to the Python
__next__ () method.

Any iterable object must implement the t p__i t er handler, which must return an iterator object. Here the same guidelines
apply as for Python classes:

* For collections (such as lists and tuples) which can support multiple independent iterators, a new iterator should be
created and returned by each call to tp_iter.

¢ Objects which can only be iterated over once (usually due to side effects of iteration, such as file objects) can
implement tp_iter by returning a new reference to themselves — and should also therefore implement the
tp_iternext handler.

Any iferator object should implement both tp_iter and tp_iternext. An iterator’s tp_iter handler should
return a new reference to the iterator. Its tp_iternext handler should return a new reference to the next object in
the iteration, if there is one. If the iteration has reached the end, tp_iternext may return NULL without setting an
exception, or it may set StopIteration in addition to returning NULL; avoiding the exception can yield slightly better
performance. If an actual error occurs, tp_iternext should always set an exception and return NULL.

2.3.6 Weak Reference Support

One of the goals of Python’s weak reference implementation is to allow any type to participate in the weak reference
mechanism without incurring the overhead on performance-critical objects (such as numbers).

o ®W7):

Documentation for the weakre £ module.

For an object to be weakly referencable, the extension type must do two things:

1. Include a PyObject* field in the C object structure dedicated to the weak reference mechanism. The object’s
constructor should leave it NULL (which is automatic when using the default tp_alloc).

56 Chapter 2. Creating extensions without third party tools

Extending and Embedding Python, £A| B{Z 3.6.15

2. Setthe tp_weaklistoffset type member to the offset of the aforementioned field in the C object structure,
so that the interpreter knows how to access and modify that field.

Concretely, here is how a trivial object structure would be augmented with the required field:

typedef struct {

PyObject_HEAD

PyObject *weakreflist; /* List of weak references */
} TrivialObject;

And the corresponding member in the statically-declared type object:

static PyTypeObject TrivialType = {
PyVarObject_HEAD_INIT (NULL, 0)
/* ... other members omitted for brevity ... */
.tp_weaklistoffset = offsetof(TrivialObject, weakreflist),

bi

The only further addition is that tp_dealloc needs to clear any weak references (by calling
PyObject_ClearWeakRefs ()) if the field is non-NULL:

static void
Trivial_dealloc(TrivialObject *self)

{

/* Clear weakrefs first before calling any destructors */

if (self->weakreflist != NULL)
PyObject_ClearWeakRefs ((PyObject *) self);
/* ... remainder of destruction code omitted for brevity ... */

Py_TYPE (self)->tp_free ((PyObject *) self);

2.3.7 More Suggestions

In order to learn how to implement any specific method for your new data type, get the CPyrhon source code.
Go to the Objects directory, then search the C source files for tp_ plus the function you want (for example,
tp_richcompare). You will find examples of the function you want to implement.

When you need to verify that an object is a concrete instance of the type you are implementing, use the
PyObject_TypeCheck () function. A sample of its use might be something like the following:

if (!PyObject_TypeCheck (some_object, &MyType)) A
PyErr_SetString (PyExc_TypeError, "arg #1 not a mything");
return NULL;

o B7]:
Download CPython source releases. https://www.python.org/downloads/source/

The CPython project on GitHub, where the CPython source code is developed. https://github.com/python/
cpython

2.3. Defining Extension Types: Assorted Topics 57

https://www.python.org/downloads/source/
https://github.com/python/cpython
https://github.com/python/cpython

Extending and Embedding Python, £ A| B{% 3.6.15

2.4 Building C and C++ Extensions

A Cextension for CPython is a shared library (e.g. a . so file on Linux, . pyd on Windows), which exports an initialization
Sfunction.

To be importable, the shared library must be available on PYTHONPATH, and must be named after the module name,
with an appropriate extension. When using distutils, the correct filename is generated automatically.

The initialization function has the signature:
PyObject* PyInit_modulename (void)
It returns either a fully-initialized module, or a PyModuleDef instance. See initializing-modules for details.

For modules with ASCII-only names, the function must be named PyInit_<modulename>, with <modulename>
replaced by the name of the module. When using multi-phase-initialization, non-ASCII module names are allowed. In this
case, the initialization function name is PyInitU_<modulename>, with <modulename> encoded using Python’s
punycode encoding with hyphens replaced by underscores. In Python:

def initfunc_name (name) :

try:
suffix = b' ' + name.encode('ascii')
except UnicodeEncodeError:
suffix = b'U_' + name.encode ('punycode') .replace(b'-"', b'_")

return b'PyInit' + suffix

It is possible to export multiple modules from a single shared library by defining multiple initialization functions. However,
importing them requires using symbolic links or a custom importer, because by default only the function corresponding
to the filename is found. See the { Multiple modules in one library) section in PEP 489 for details.

2.4.1 Building C and C++ Extensions with distutils
Extension modules can be built using distutils, which is included in Python. Since distutils also supports creation of binary
packages, users don’t necessarily need a compiler and distutils to install the extension.

A distutils package contains a driver script, setup . py. This is a plain Python file, which, in the most simple case, could
look like this:

from distutils.core import setup, Extension

modulel = Extension('demo',
sources = ['demo.c'])

setup (name = 'PackageName',
version = '1.0",
description = 'This is a demo package',
ext_modules = [modulel])

With this setup . py, and a file demo . ¢, running

python setup.py build

will compile demo . ¢, and produce an extension module named demo in the build directory. Depending on the
system, the module file will end up in a subdirectory build/1lib. system, and may have a name like demo . so or
demo.pyd.

In the setup . py, all execution is performed by calling the setup function. This takes a variable number of keyword
arguments, of which the example above uses only a subset. Specifically, the example specifies meta-information to build

58 Chapter 2. Creating extensions without third party tools

https://www.python.org/dev/peps/pep-0489

Extending and Embedding Python, £A| B{Z 3.6.15

packages, and it specifies the contents of the package. Normally, a package will contain additional modules, like Python
source modules, documentation, subpackages, etc. Please refer to the distutils documentation in distutils-index to learn
more about the features of distutils; this section explains building extension modules only.

It is common to pre-compute arguments to setup (), to better structure the driver script. In the example above, the
ext_modules argument to setup () is a list of extension modules, each of which is an instance of the Extension.
In the example, the instance defines an extension named demo which is build by compiling a single source file, demo . c.

In many cases, building an extension is more complex, since additional preprocessor defines and libraries may be needed.
This is demonstrated in the example below.

from distutils.core import setup, Extension

modulel = Extension('demo',
define_macros = [('MAJOR_VERSION', '1'"),
("MINOR_VERSION', '0')1,
include_dirs = ['/usr/local/include'],
libraries = ['tcl83'],
library_dirs = ['/usr/local/lib'],
sources = ['demo.c'])
setup (name = 'PackageName',
version = '1.0",
description = 'This is a demo package',
author = 'Martin v. Loewis',
author_email = 'martin@v.loewis.de',
url = 'https://docs.python.org/extending/building’,

long_description = '''
This is really just a demo package.

[
4

ext_modules = [modulel])

In this example, setup () is called with additional meta-information, which is recommended when distribution packages
have to be built. For the extension itself, it specifies preprocessor defines, include directories, library directories, and
libraries. Depending on the compiler, distutils passes this information in different ways to the compiler. For example, on
Unix, this may result in the compilation commands

gcc -DNDEBUG —-g -03 -Wall -Wstrict-prototypes —-fPIC -DMAJOR_VERSION=1 -DMINOR_
< VERSION=0 -I/usr/local/include -I/usr/local/include/python2.2 -c demo.c -o build/
—temp.linux-1686-2.2/demo.o

gcc —-shared build/temp.linux-1686-2.2/demo.o -L/usr/local/lib -1tcl83 -o build/lib.
—1linux—-1686-2.2/demo.so

These lines are for demonstration purposes only; distutils users should trust that distutils gets the invocations right.

2.4.2 Distributing your extension modules

When an extension has been successfully build, there are three ways to use it.

End-users will typically want to install the module, they do so by running

python setup.py install

Module maintainers should produce source packages; to do so, they run

2.4. Building C and C++ Extensions 59

Extending and Embedding Python, £ A| B{% 3.6.15

python setup.py sdist

In some cases, additional files need to be included in a source distribution; this is done through a MANIFEST. in file;
see manifest for details.

If the source distribution has been build successfully, maintainers can also create binary distributions. Depending on the
platform, one of the following commands can be used to do so.

python setup.py bdist_wininst
python setup.py bdist_rpm
python setup.py bdist_dumb

2.5 Building C and C++ Extensions on Windows

This chapter briefly explains how to create a Windows extension module for Python using Microsoft Visual C++, and
follows with more detailed background information on how it works. The explanatory material is useful for both the
Windows programmer learning to build Python extensions and the Unix programmer interested in producing software
which can be successfully built on both Unix and Windows.

Module authors are encouraged to use the distutils approach for building extension modules, instead of the one described
in this section. You will still need the C compiler that was used to build Python; typically Microsoft Visual C++.

ZF31: This chapter mentions a number of filenames that include an encoded Python version number. These filenames
are represented with the version number shown as XY; in practice, ' X' will be the major version number and 'Y "' will
be the minor version number of the Python release you’re working with. For example, if you are using Python 2.2.1, XY
will actually be 22.

2.5.1 A Cookbook Approach

There are two approaches to building extension modules on Windows, just as there are on Unix: use the distutils
package to control the build process, or do things manually. The distutils approach works well for most extensions;
documentation on using distutils to build and package extension modules is available in distutils-index. If you find
you really need to do things manually, it may be instructive to study the project file for the winsound standard library
module.

2.5.2 Differences Between Unix and Windows

Unix and Windows use completely different paradigms for run-time loading of code. Before you try to build a module
that can be dynamically loaded, be aware of how your system works.

In Unix, a shared object (. so) file contains code to be used by the program, and also the names of functions and data
that it expects to find in the program. When the file is joined to the program, all references to those functions and data
in the file’s code are changed to point to the actual locations in the program where the functions and data are placed in
memory. This is basically a link operation.

In Windows, a dynamic-link library (. d11) file has no dangling references. Instead, an access to functions or data goes
through a lookup table. So the DLL code does not have to be fixed up at runtime to refer to the program’s memory; instead,
the code already uses the DLL’s lookup table, and the lookup table is modified at runtime to point to the functions and
data.

60 Chapter 2. Creating extensions without third party tools

https://github.com/python/cpython/tree/3.6/PCbuild/winsound.vcxproj

Extending and Embedding Python, £A| B{Z 3.6.15

In Unix, there is only one type of library file (. a) which contains code from several object files (. o). During the link
step to create a shared object file (. so), the linker may find that it doesn’t know where an identifier is defined. The linker
will look for it in the object files in the libraries; if it finds it, it will include all the code from that object file.

In Windows, there are two types of library, a static library and an import library (both called . 1ib). A static library is
like a Unix . a file; it contains code to be included as necessary. An import library is basically used only to reassure the
linker that a certain identifier is legal, and will be present in the program when the DLL is loaded. So the linker uses the
information from the import library to build the lookup table for using identifiers that are not included in the DLL. When
an application or a DLL is linked, an import library may be generated, which will need to be used for all future DLLs
that depend on the symbols in the application or DLL.

Suppose you are building two dynamic-load modules, B and C, which should share another block of code A. On Unix,
you would not pass A . a to the linker for B. so and C. so; that would cause it to be included twice, so that B and C would
each have their own copy. In Windows, building A.d11 will also build A. 1ib. You do pass A. 11ib to the linker for B
and C. A. 1ib does not contain code; it just contains information which will be used at runtime to access A’s code.

In Windows, using an import library is sort of like using import spam; it gives you access to spam’s names, but does
not create a separate copy. On Unix, linking with a library is more like from spam import *; it does create a
separate copy.

2.5.3 Using DLLs in Practice
Windows Python is built in Microsoft Visual C++; using other compilers may or may not work (though Borland seems
to). The rest of this section is MSVC++ specific.

When creating DLLs in Windows, you must pass pythonXY . 1ib to the linker. To build two DLLSs, spam and ni (which
uses C functions found in spam), you could use these commands:

cl /LD /I/python/include spam.c ../libs/pythonXY.lib
cl /LD /I/python/include ni.c spam.lib ../libs/pythonXY.lib

The first command created three files: spam.obj, spam.dll and spam.lib. Spam.dll does not contain
any Python functions (such as PyArg_ParseTuple ()), but it does know how to find the Python code thanks to
pythonXY.1lib.

The second command created ni.d11 (and .obj and . 11ib), which knows how to find the necessary functions from
spam, and also from the Python executable.

Not every identifier is exported to the lookup table. If you want any other modules (including Python) to be able
to see your identifiers, you have to say _declspec (dllexport), as in void _declspec (dllexport)
initspam(void) or PyObject _declspec(dllexport) *NiGetSpamData (void).

Developer Studio will throw in a lot of import libraries that you do not really need, adding about 100K to your exe-
cutable. To get rid of them, use the Project Settings dialog, Link tab, to specify ignore default libraries. Add the correct
msvcrtxx.lib to the list of libraries.

2.5. Building C and C++ Extensions on Windows 61

Extending and Embedding Python, £ A| B{% 3.6.15

62

Chapter 2. Creating extensions without third party tools

CHAPTER 3

Embedding the CPython runtime in a larger application

Sometimes, rather than creating an extension that runs inside the Python interpreter as the main application, it is desirable
to instead embed the CPython runtime inside a larger application. This section covers some of the details involved in
doing that successfully.

3.1 Embedding Python in Another Application

The previous chapters discussed how to extend Python, that is, how to extend the functionality of Python by attaching a
library of C functions to it. It is also possible to do it the other way around: enrich your C/C++ application by embedding
Python in it. Embedding provides your application with the ability to implement some of the functionality of your appli-
cation in Python rather than C or C++. This can be used for many purposes; one example would be to allow users to tailor
the application to their needs by writing some scripts in Python. You can also use it yourself if some of the functionality
can be written in Python more easily.

Embedding Python is similar to extending it, but not quite. The difference is that when you extend Python, the main
program of the application is still the Python interpreter, while if you embed Python, the main program may have nothing
to do with Python — instead, some parts of the application occasionally call the Python interpreter to run some Python
code.

So if you are embedding Python, you are providing your own main program. One of the things this main program has
to do is initialize the Python interpreter. At the very least, you have to call the function Py_Initialize (). There
are optional calls to pass command line arguments to Python. Then later you can call the interpreter from any part of the
application.

There are several different ways to call the interpreter: you can pass a string containing Python statements to
PyRun_SimpleString (), or you can pass a stdio file pointer and a file name (for identification in error messages
only) to PyRun_SimpleFile (). You can also call the lower-level operations described in the previous chapters to
construct and use Python objects.

o B7):

c-api-index The details of Python’s C interface are given in this manual. A great deal of necessary information can be
found here.

63

Extending and Embedding Python, £ A| B{% 3.6.15

3.1.1 Very High Level Embedding

The simplest form of embedding Python is the use of the very high level interface. This interface is intended to execute
a Python script without needing to interact with the application directly. This can for example be used to perform some
operation on a file.

#include <Python.h>

int
main (int argc, char *argv([])
{
wchar_t *program = Py_DecodelLocale(argv[0], NULL);
if (program == NULL) {
fprintf (stderr, "Fatal error: cannot decode argv[0]\n");
exit (1);
}
Py_SetProgramName (program); /* optional but recommended */
Py_Initialize();
PyRun_SimpleString("from time import time,ctime\n"
"print ('Today is', ctime (time()))\n");
if (Py_FinalizeEx() < 0) {
exit (120);
}
PyMem_RawFree (program) ;
return 0;

The Py_SetProgramName () function should be called before Py_TInitialize () toinform the interpreter about
paths to Python run-time libraries. Next, the Python interpreter is initialized with Py_Initialize (), followed by
the execution of a hard-coded Python script that prints the date and time. Afterwards, the Py_FinalizeEx () call
shuts the interpreter down, followed by the end of the program. In a real program, you may want to get the Python script
from another source, perhaps a text-editor routine, a file, or a database. Getting the Python code from a file can better
be done by using the PyRun_SimpleFile () function, which saves you the trouble of allocating memory space and
loading the file contents.

3.1.2 Beyond Very High Level Embedding: An overview

The high level interface gives you the ability to execute arbitrary pieces of Python code from your application, but ex-
changing data values is quite cumbersome to say the least. If you want that, you should use lower level calls. At the cost
of having to write more C code, you can achieve almost anything.

It should be noted that extending Python and embedding Python is quite the same activity, despite the different intent.
Most topics discussed in the previous chapters are still valid. To show this, consider what the extension code from Python
to C really does:

1. Convert data values from Python to C,
2. Perform a function call to a C routine using the converted values, and
3. Convert the data values from the call from C to Python.
When embedding Python, the interface code does:
1. Convert data values from C to Python,
2. Perform a function call to a Python interface routine using the converted values, and

3. Convert the data values from the call from Python to C.

64 Chapter 3. Embedding the CPython runtime in a larger application

Extending and Embedding Python, £A| B{Z 3.6.15

As you can see, the data conversion steps are simply swapped to accommodate the different direction of the cross-language
transfer. The only difference is the routine that you call between both data conversions. When extending, you call a C
routine, when embedding, you call a Python routine.

This chapter will not discuss how to convert data from Python to C and vice versa. Also, proper use of references and
dealing with errors is assumed to be understood. Since these aspects do not differ from extending the interpreter, you can
refer to earlier chapters for the required information.

3.1.3 Pure Embedding

The first program aims to execute a function in a Python script. Like in the section about the very high level interface,
the Python interpreter does not directly interact with the application (but that will change in the next section).

The code to run a function defined in a Python script is:

#include <Python.h>

int

main (int argc, char *argv([])

{
PyObject *pName, *pModule, *pFunc;
PyObject *pArgs, *pValue;
int i;

if (argc < 3) {
fprintf (stderr, "Usage: call pythonfile funcname [args]\n");
return 1;

Py_Initialize();
pName = PyUnicode_DecodeFSDefault (argv[1l]);
/* Error checking of pName left out */

pModule = PyImport_Import (pName) ;
Py_DECREF (pName) ;

if (pModule != NULL) {
pFunc = PyObject_GetAttrString (pModule, argv([2]);
/* pFunc 1s a new reference */

if (pFunc && PyCallable_Check (pFunc)) |
pArgs = PyTuple_New(argc - 3);
for (i = 0; 1 < argc - 3; ++1i) A
pValue = Pylong_FromLong (atoi (argv[i + 31));
if (!pvalue) {
Py_DECREF (pArgs) ;
Py_DECREF (pModule) ;
fprintf (stderr, "Cannot convert argument\n");
return 1;
}
/* pValue reference stolen here: */
PyTuple_SetItem(pArgs, i, pValue);
}
pValue = PyObject_CallObject (pFunc, pArgs);
Py_DECREF (pArgs) ;
if (pvValue != NULL) {
printf ("Result of call: %1d\n", PyLong_AsLong (pValue));

(TH& ST Aol A1)

3.1. Embedding Python in Another Application 65

Extending and Embedding Python, £ A| B{% 3.6.15

(o] A sl o] A A M A%)

Py_DECREF (pValue) ;

}

else {
Py_DECREF (pFunc) ;
Py_DECREF (pModule) ;
PyErr_Print ();
fprintf (stderr,"Call failed\n");
return 1;

}
else {
if (PyErr_Occurred())
PyErr_Print ();
fprintf (stderr, "Cannot find function \"%s\"\n", argv[2]);
}
Py_XDECREF (pFunc) ;
Py_DECREF (pModule) ;
i
else {
PyErr_Print ();
fprintf (stderr, "Failed to load \"%s\"\n", argv[1l]);
return 1;
}
if (Py_FinalizeEx() < 0) {
return 120;
}

return O;

This code loads a Python script using argv [1], and calls the function named in argv [2]. Its integer arguments are
the other values of the argv array. If you compile and link this program (let’s call the finished executable call), and
use it to execute a Python script, such as:

def multiply(a,b):
print ("Will compute", a, "times", b)

c =20
for i in range (0, a):
c=c¢c +Db

return c

then the result should be:

$ call multiply multiply 3 2
Will compute 3 times 2
Result of call: 6

Although the program is quite large for its functionality, most of the code is for data conversion between Python and C,
and for error reporting. The interesting part with respect to embedding Python starts with

Py_Initialize();

pName = PyUnicode_DecodeFSDefault (argv([1]);
/* Error checking of pName left out */
pModule = PyImport_Import (pName) ;

After initializing the interpreter, the script is loaded using Py Import_Import (). This routine needs a Python string
as its argument, which is constructed using the PyUnicode_FromString () data conversion routine.

66 Chapter 3. Embedding the CPython runtime in a larger application

Extending and Embedding Python, £A| B{Z 3.6.15

pFunc = PyObject_GetAttrString(pModule, argv[2]);
/* pFunc is a new reference */

if (pFunc && PyCallable_Check (pFunc)) {

}
Py_XDECREF (pFunc) ;

Once the script is loaded, the name we’ re looking for is retrieved using PyObject_GetAttrString (). If the
name exists, and the object returned is callable, you can safely assume that it is a function. The program then proceeds
by constructing a tuple of arguments as normal. The call to the Python function is then made with:

pValue = PyObject_CallObject (pFunc, pArgs);

Upon return of the function, pValue is either NULL or it contains a reference to the return value of the function. Be
sure to release the reference after examining the value.

3.1.4 Extending Embedded Python

Until now, the embedded Python interpreter had no access to functionality from the application itself. The Python API
allows this by extending the embedded interpreter. That is, the embedded interpreter gets extended with routines provided
by the application. While it sounds complex, it is not so bad. Simply forget for a while that the application starts the Python
interpreter. Instead, consider the application to be a set of subroutines, and write some glue code that gives Python access
to those routines, just like you would write a normal Python extension. For example:

static int numargs=0;

/* Return the number of arguments of the application command line */
static PyObject*
emb_numargs (PyObject *self, PyObject *args)
{
if (!PyArg_ParseTuple (args, ":numargs"))
return NULL;
return PyLong_FromLong (numargs) ;

static PyMethodDef EmbMethods[] = {
{"numargs", emb_numargs, METH_VARARGS,
"Return the number of arguments received by the process."},
{NULL, NULL, 0O, NULL}

bi

static PyModuleDef EmbModule = {
PyModuleDef_ HEAD_INIT, "emb", NULL, -1, EmbMethods,
NULL, NULL, NULL, NULL

bi

static PyObject*
PyInit_emb (void)
{
return PyModule_Create (&EmbModule) ;

Insert the above code just above the main () function. Also, insert the following two statements before the call to
Py_Initialize():

3.1. Embedding Python in Another Application 67

Extending and Embedding Python, £ A| B{% 3.6.15

numargs = argc;
PyImport_AppendInittab ("emb", &PyInit_emb);

These two lines initialize the numargs variable, and make the emb . numargs () function accessible to the embedded
Python interpreter. With these extensions, the Python script can do things like

import emb
print ("Number of arguments", emb.numargs())

In a real application, the methods will expose an API of the application to Python.

3.1.5 Embedding Python in C++

It is also possible to embed Python in a C++ program; precisely how this is done will depend on the details of the C++
system used; in general you will need to write the main program in C++, and use the C++ compiler to compile and link
your program. There is no need to recompile Python itself using C++.

3.1.6 Compiling and Linking under Unix-like systems

It is not necessarily trivial to find the right flags to pass to your compiler (and linker) in order to embed the Python
interpreter into your application, particularly because Python needs to load library modules implemented as C dynamic
extensions (. so files) linked against it.

To find out the required compiler and linker flags, you can execute the pythonX. Y-config script which is generated
as part of the installation process (a python3—config script may also be available). This script has several options,
of which the following will be directly useful to you:

* pythonX.Y-config —--cflags will give you the recommended flags when compiling:

$ /opt/bin/python3.4-config —--cflags
-I/opt/include/python3.4m -I/opt/include/python3.4m -DNDEBUG -g —-fwrapv -03 -Wall.
——Wstrict-prototypes

pythonX.Y-config --1ldflags will give you the recommended flags when linking:

$ /opt/bin/python3.4-config —--1dflags
-L/opt/lib/python3.4/config-3.4m —-lpthread -1dl1 -lutil -1m -lpython3.4m —-Xlinker -
—export-dynamic

Z31: To avoid confusion between several Python installations (and especially between the system Python and your own
compiled Python), it is recommended that you use the absolute path to pythonX. Y-config, as in the above example.

If this procedure doesn’t work for you (it is not guaranteed to work for all Unix-like platforms; however, we welcome bug
reports) you will have to read your system’s documentation about dynamic linking and/or examine Python’s Makefile
(use sysconfig.get_makefile_filename () to find its location) and compilation options. In this case, the
sysconfig module is a useful tool to programmatically extract the configuration values that you will want to combine
together. For example:

>>> import sysconfig

>>> sysconfig.get_config_var ('LIBS')
'-lpthread -1dl1 -lutil’

>>> sysconfig.get_config_var ('LINKFORSHARED')
'-Xlinker -export-dynamic'

68 Chapter 3. Embedding the CPython runtime in a larger application

APPENDIX A

oo
<2
i}

>>> T3}y o) 7|2 sto]d 2ELE. Az H A FP oz AFD 5 e A= oA AF B S
it

. The default Python prompt of the interactive shell when entering code for an indented code block, when within
a pair of matching left and right delimiters (parentheses, square brackets, curly braces or triple quotes), or after
specifying a decorator.

2t03 Fo]l W 2x TEE oW 3x TEZ HAFH T A E3tE 7Y, 222 BT 9tA ETE
A A FA D e Rt veed S e

2t03 = < gHol B oA 1lib2to3 E Al FHTH S HHCE AFT 4+ Y= 2T HE & Tools/
scripts/2to3 & A& H T} 2to3-reference & R M| 2.

abstract base class (34 o] A Ze]A) FAH|o| A Zd A= hasattr () ZE T2) 9.%0]%?5:6}7414-
B FRE (& £, A WA E) 4¢, ?_Ebﬂo]"‘z Aot WS Alvgd oz M 9 Efo]
< H o3tk ABCE= 7]—/\1-/\-] ZYPAE T Ydl=t], ZHAE A SR Fo fﬂ/\‘]_,_lsuistance () <
issubclass () ol Y3l ZAE 5= Y= FHAE T abe BE EFHH o HAS A S, FfolHof=
W W ABC ¢ et = 3 22 AE0] Ut} AR X (collections.abec EEOA),
=} (numbers EEA), 2EF (io BEIA]), YT E Jolt9} 2T (importlib.abc EEA]).
abc &S AMEa) A A4 RES] ABCE BHE & QT

annotation A label associated with a variable, a class attribute or a function parameter or return value, used by convention
as a type hint.

Annotations of local variables cannot be accessed at runtime, but annotations of global variables, class attributes,
and functions are stored in the __annotations___ special attribute of modules, classes, and functions, respec-
tively.

See variable annotation, ﬁmction annotation, PEP 484 and PEP 526, which describe this functionality.
argument (17} S ST T (E= VA D) E JAEH = & F 7Y AR AT
o o

IF:
- AY= u}(keywordargumem) 3 5% 0l 487} Qo] B2 AR (o & Fol, name=) T+
oLoﬂﬂommmbz AgE = 9%, o & Sol, e 2L complex () E%Oﬂ*ﬁﬂﬁ%

BF 79 E ARt

69

https://www.python.org/dev/peps/pep-0484
https://www.python.org/dev/peps/pep-0526

Extending and Embedding Python, £ A| B{% 3.6.15

complex (real=3, imag=>5)
complex (**{'real': 3, 'imag': 5})

o 9 2] AR} (positional argument): 7| N = AA}7F old QAR f A AAFEL AR FHE2] 229 UL
AvolE 2] £ 9 ¢hofl * & B AGT 5 Utk & S0, 2R Z2 T EoA 3 F 5= EF

92 Ay,

complex (3, 5)
complex (* (3, 5))

A= 4 uhe) o] £-2 Ao Mol hd bk of B Yol A8 = 72 Soll e A calls A4 L
HAS. EYAoR, oW BA4 7 AN ALEE 5 ATk FAA ge] Ao Mol AT

g0 9] shelnl e §53} FAQ AF Ae} shehu]E o) Aol 9} PEP 362 % HA| L.

asynchronous context manager (]2 7] AEYAE #AE]A}) _ aenter_ () 2 __aexit_ () HAZE A9
FoEM async with ZollA Hole &4 & Alolst= A A PEP 492 2 = 4= Aot

asynchronous generator (¥]-5 7] Al o]e]) v 5 7] A& o] o]E & o] & 815+ T4 async def
2ARAH 2R A5 AE Holetl, async for F2IMARE = Qe 4d S WEEyield
E@4L ZPAThs Yol ok
Usually refers to an asynchronous generator function, but may refer to an asynchronous generator iterator in some
contexts. In cases where the intended meaning isn’t clear, using the full terms avoids ambiguity.

g1tk

asynchronous generator iterator (B]% 7] AU & o] €] o]e]&|o]€]) v]5 7] Ay o g 71 vt A A,

]S 7] AlY o) T4+ await EH AT asyne for 3} asyne with & £33

+

This is an asynchronous iterator which when called using the __anext___ () method returns an awaitable object
which will execute the body of the asynchronous generator function until the next yield expression.

Each yield temporarily suspends processing, remembering the location execution state (including local variables
and pending try-statements). When the asynchronous generator iterator effectively resumes with another awaitable

returned by __anext___ (), it picks up where it left off. See PEP 492 and PEP 525.

asynchronous iterable (W] 5 7] o|E] 2] &) async for BoA AF2E ¢ Q= AA|. _ aiter_ () WA EE
H|5 7] olH &l o] & =5 oF gt} PEP 492 2 = ¢ it}

asynchronous iterator (B]% 7] o] €] & ©]€]) An object that implements the __aiter__ () and __anext__ ()
methods. ___anext__ must return an awaitable object. async for resolves the awaitables returned by an
asynchronous iterator’s __anext___ () method until it raises a St opAsyncIteration exception. Introduced
by PEP 492.

attribute (= H2) BEEAL AHEE ol B0z B2t AR} A3 gL o & Fol, AR 0 7o E
HEaE 7HH, 0a A Fxdh

awaitable (o] 9] o]E] &) await A Ao AHG T
AA7FE 4= AT PEP 492 £ H A 8.

BDFL #}H] 2 ¢ £ Al =2 2} (Benevolent Dictator For Life), < Guido van Rossum, I} o] % 2] ZA] 2},

binary file (9oL 2) shel) Wl 5 A S & AT & 4 g 4 A, dhol el 3o o2)
olUg] EE ("rb', 'wb' =¥ 'rb+') 2 g9 99, sys.stdin.buffer, sys.stdout .buffer,
io.BytesIO @} gzip.GzipFile & A~

=

=

A= AA. ZFE oY __await__ () HAEE 7R

=
bytes-like object (B} o] E €& A A)]) bufferobjects & A Y3} C-A <5 H

%O]/\YLE SF 2~ o]r,]_ HJE
H—a= = oS . o ©o
memoryview A EL EEo]d bytes,bytearray, array.array A5 £33t} vlo]EEH
AAE2 vlel Y g H o8 & thF & o8 7FA Axbso A2 = T o5, vhol v g st d 2 A4,
20E B3 AE 22 AE0 Ut

70 Appendix A. E0{Z!

https://www.python.org/dev/peps/pep-0362
https://www.python.org/dev/peps/pep-0492
https://www.python.org/dev/peps/pep-0492
https://www.python.org/dev/peps/pep-0525
https://www.python.org/dev/peps/pep-0492
https://www.python.org/dev/peps/pep-0492
https://www.python.org/dev/peps/pep-0492
https://www.python.org/~guido/

Extending and Embedding Python, £A| B{Z 3.6.15

o ALE2 vtolv g dlolE 7L 7P A D A 7F) o] A fo EFWH o)L FF (Ya-27)

] y 2t @3t 7P 83 AR dZ=Dbytearray $bytearray 9 memoryv1ew
4 yel dlol87FEWH AA ((¢17] A& o] EG R/ AA)) ol AFH=
+=bytes E}bytes AR 2] memoryview 7} §J D}.

bytecode (H} o] E Z & o n ¢l iEF/] E| o] A] 3}o] %
2P YR ot} HiolE 3’—5% .pyc «4’°1°ﬂ 7H/\] 510% @3 fﬂr‘?:l% T A A o
W 2] A ETH (Ao A vl E I ERY AAHATL S I T = Ah. o] (FIHA]) = ZHtolE
Foof g S3t= 71 AE A = 7 71A oA A Eitia Bl vio|E I E = AR T/PE s}o] A
7HE 71 A A Fe T AL st A =, sho] A wlj 3= 1ol ?}7‘4 Aol A & otth= Z o Fo3f of st

HlolE I & H o] 59 HE2dis EE & “ilEﬂ o] Ao V2Tt

cass (F#l2) AHEA A AR WS AT . SR Fo= B FH2o dxdaE e r
Al WA= %AE% Z 3ok

class variable A variable defined in a class and intended to be modified only at class level (i.e., not in an instance of the
class).

coercion (Z o]) 22 f'ﬂ«l 7 AARS Sk ddabe] dejibe ok 9 @) AH A e Poz 52
Aoz wgets 2. A S0, int (3.15) £ AFE A5 3 22 WAL AR 3+4.5 oA, 7
AAf= o= 3 017 (Bhobe int, T2 BHLbE floan, £ T 3l7] o) 22 Fo 2 skl of sich. 28
oW TypeError & 4otk I glol&, SRFH = FEXAT 2207 22 Jo 7 HF
Q_-gﬁ_'_o]o]: st ol & 0], 1F 3+4.5 8= 4l float (3) +4.5

complex number (] 4£5%) 953 A5 AJAE) B, BE AV Aot s oz sdAY.
B i Ao 85 B9 (19 AR E B AU, BE SN E 1 2, BN L = £
Shoh spo] M2 FAFe RIS 2 BT E 7|2 AW ?‘ﬂ—??—%j HulAbE 2994 279t
& 5°],3+1. math 25 Ko Mol 839, cmath A AT 450 282 9 &
2 5917 7 5ot Bast n7 A ERrhe, A 845 —‘jr/\lffHE Foh

nager (AYAE #2|2}) __enter_ () __exit_ () MIAEE AT o 2N with Foj|A] B
ol%gyg% dlo} k= AA. PEP 343 2 = 95 itk

53] C—?ﬂ <4 (C-contiguous) ©) A ZE & A< (Fortran contiguous) ¥ o A< o] 2fal

_‘T_l‘ O_u
rr

. C-A&olHA 2 E= AKolth LAY Hﬂoﬂoﬂ/ﬂ,ﬁo}%%%/ﬂi"ﬂ A eka,
0o Al Al ZHat= —‘?_%— A} ?l‘“*% TAHE R e]of v X5 01 oF sttt thAbd C-<A % vl G ol A,
HE2E FA49 TAUE FEEE YT uf vpx]at Ad A7} 713 whg] ¥ st} 317 ‘?}, :-L—E‘?:‘r A<
W ol A=, R AR AP A7) 7pg wke] ¥ sk
coroutme(’f-r&]) FIFEH2AETEH ¢ dutsld Fet)h A BFEHL2 3 2 H o A J Y3l o2 X Fof| A
E%tth IFEL2 o8 o2 A HA A AYstal, &3k, ANE = Atk o] AE2 async def
—E—EE 783 2= 9t} PEP 492 2 H A &
coroutine function (Z£€l ¢4) 728 AR E S8 F+= 4. TFEH 4= async def Tozg HogdE
4 911, await & async for & async with 7|9 EE £33 4= 9t} o] AE5-L PEP 492 o 9] 3]
EdFH AT
CPython }olxl g I efvy Ado]of 573 <l &], python.org ol A ¥l 2=tk o] &2 Jython o] 1t
IronPython ¥} 22 Th2 23 7+ 27} & uff 8] (CPython) 0] JAR-BoRsN
decorator (t] Z#|o]E]) t}2 I+ E S8 F= 49, B 5 Qurapper B HS AHL3 4 oz A

H}h dZd ole]e &3 o= classmethod () I staticmethod () 1’/]-.
g o]y FH2 oA Ao FHY Bolth v F &4 Fo & 9 v|do = F53:

def f£(...):

f = staticmethod (f)

(TH& SOTAT AI)

71

https://www.python.org/dev/peps/pep-0343
https://www.python.org/dev/peps/pep-0492
https://www.python.org/dev/peps/pep-0492
https://www.python.org

Extending and Embedding Python, £ A| B{% 3.6.15

(o] A sl o] A A M A%)

@staticmethod
def f(...):

2ol S o= EA AR, @ Ab 22k vl Z e ol Blof th 3 ¥ AAMIRE W &2 o B o] 2
S Ao o =HE ol dS B A

descriptor (CJ A3 HE]) WA= _ get_ () o]y} __set

() °ly__de _0OE i

2 oEREZYAIHE L uf, 01 PHE 23 =58 A2 AES doith B5,abE JALY,
2 A, A A S AFE S], a 9 FEla 9V oA b et o] & B AAE Feth sHA WD
ZFaayEd, s gt Dl*ﬂ%lEi HAME7F S EETh UA2aHEE o] d sl 212 vfo] Mo tfst
722 ols e g1, g, WA s, ZelE, S A, 2HE AE, FHEHS FR 59
e 759 712 E o] 71 7] wlEolth
23 HE o WA =Eof t)sk 2}A| 8F W82 descriptors o] L-2T}

dictionary (54 2]) 422 71E gholl dl-3A 71 A& vl @ (associative array). 7]+ __hash__ () <}

_eq__() MIAEE 2E BE A E 5 Ak DA A ek 2k

dictionaryview(‘:‘/ﬁﬂﬂ]w dict.keys(),dict.values(),dict.items () HIANE7}EHFE AAE
gAyeE Rt H 2k o] AL gAY e FES S 54 HE Zﬂ+6}~tﬂ gAvE 7RI A
Q uf, 57} o] WslE vk strh Soth gV e B & F/]"Ei‘ﬂ}lﬁﬂ“‘ list (dictview)

£ AR5 F ok dict-views & BA Q.
docstring (FAE8) 2ol R REeIA 3 WA RV 02 ehfr AL Y A=/ 499

BAIE A, A5k elo] o) AAF o] Fel Feh, B, BES] doc_ O EUHER 4
e} EgaR 4 B Y 5 gon e, A w U ol S AT A AL

duck- typmg(‘* E}Ol% SHFE AE T o] 2E ZHH A Adeted AA Y FS BHA e 22T &
gd; A, &es] A EU o EYREVTSEH AU AGHATH (LA H Holx 22X H A=
E‘*_T‘/P‘ﬂ,lﬂ% 2Eth)y)) SHT F Ao AHH o)A E FRFOoEHN, & HAH ZE= P HQ
A2 ST o =N FANS NAT 5 Aok H Bro] B2 type (O]UrlSlnStance() %’\}%}
AALE Tgtth (AT 9 Elo] g o] =4 o]~ Zef s 2 HebE 5 Qg ol ol #f of sttt thaled],
hasattr () AAFPVEAFP =2 18 W& &t}

EAFP 32t H o= &A1 E L3}7]) 7} 4] o} (Easier to ask for forgiveness than permission). o] £3] 2 4= 9l = 5}
ol I AEYS, EHFE U JEERES EXE 7ML, 1 7ol E8W oq]ﬂ% =t
23RS wWE 2 Y-S B try 9 except £ EAE SRR A o] HAYL2Co 22 GE
w2 Aofof| A 2}F AMR-E = LBYL aa}%jyjr EHH] 9t}

2]
extension module (83 2 5) C U C++ 2 A=

BE A, vhe]#e] C APIE AHE3l Al 3 4] o] L} A8}
FEo} AT ALt
f-string (-2 A1) '£' ' & o 22 A HEHEES E3) (-EAE) olgtn RE], =W 4
o g8l d o EQ o) PEP 498 & H A 8.
file object (3} AA) s} Aol sl 5k Y A FA API (read () Ywrite () 22 HAES) & =8+
AA. ol Byl wet, 5 Ax = AA ta3 A st oy o2 A AU FA A (o &
£, %2F 9459, w2 W, &7, stol =, 55) o thet AN~ E FAT = Qloh Y A=

A= AR (file-like objects) & 2~E F (streams) ©]| 2} % & 2T}

AAZE N FE7Y 3 AAE o] Atk ' (raw) HEo] Lﬂ 2] 3+, ¥ 3 = (buffered) o] U] 2] 3}, H]l A E
td. o] 59 QA H o]~ io BEA FoH 3d AAE Tt=E= 7 HA A WH 2 open () 45
2= Zlolth.

72 Appendix A. E0{Z!

https://www.python.org/dev/peps/pep-0498

Extending and Embedding Python, £A| B{Z 3.6.15

file-like object (3} L5 AA) oL 214 9 w3 &
finder (3}Qlt]) JdXEF BES st =0 & oy A =3 AA.

lo]# 3.3, o] &g, F 7o ol 7} QIt}: sys.meta_path 2} T ALRS= e} 4 2 spolr 9
sys.path_hooks I} &/ AFR3= A2 dE] 92lH.

o A4 & W& PEP 302, PEP 420, PEP 451 o] }-& T},

floor division (34~ U=A) 713 717he A4 2 YW= 83 1A, A5 Al d4Axs= // th A&
Eﬂ,ﬁﬁﬂ 1177 49 g2 2 AHAAR, A% AL 2.75 8 EHEh (-11) // 47h-2.75
S 9 3 -3 o] Foll §o]sf ok Zth PEP 238 S H A2
function (35) TE A A ol & £ F £ A BZE. AU T o) a7k A 5 e,
vit] o] Ao AFRE 4 Qi) vhebu| e 9 WAl = @} function A AT B A Q.

function annotation (4> o] ;= €| o] A) An annotation of a function parameter or return value.

Function annotations are usually used for type hints: for example, this function is expected to take two int argu-
ments and is also expected to have an int return value:

def sum_two_numbers(a: int, b: int) -> int:
return a + b

Function annotation syntax is explained in section function.
See variable annotation and PEP 484, which describe this functionality.

_future__ 27 AR AHZEE L} SRR ke M Ao 7552 E4FT S AL E 8= 7
2E.
__future_ EES YEESI I WMLEY g 7l A 750l dA Ao ool 714
AL, AAFE A o] 7|2 o] HeA & 5 ATk

=~

>>> import __ future_
>>> _ future__ .division
_Feature((2, 2, 0, 'alpha', 2), (3, 0, 0, 'alpha', 0), 8192)
garbage collection (7}8] 2] 4~ 4) T A25] b= v 28| & vhdstE= 2 Ak «4’ AR St Bl S
98 AL BL 5 U £ A 7718 Bal A A4S SR AR 577 go

wES AL A Aol 5 AL,

generator (AU & o]€]) Al o|E e e & BeiFE T4 I FFAH
BEEyield 84S 28T Fo] thE T o] FEL for-FEZE AFE 3 A U next () T4 3
wof stk AW 4= gl
HE Avdole 45 7te] 71 Ak o | F 9 oA &= Al # o E o]E g olE & 7tel7th o =3k
o) 7} 254 %}8 e, G & 3 .

generator iterator (A U] o] €] o]g]d|o]€]) Ao E T4 v

l

Each yield temporarily suspends processing, remembering the location execution state (including local variables
and pending try-statements). When the generator iterator resumes, it picks up where it left off (in contrast to
functions which start fresh on every invocation).

generator expression (AUl el o] €] £A4)) o] Bl @] o] E] & Bei2t B4, 22 Mol Wel S A5t for
FHAH AL Aeeic BAL0] Fof Fr AW EAA AP B AFA B L TR TS
A% FEL PEo Wk
>>> sum(i*i for i in range (10)) # sum of squares 0, 1, 4, ... 81

285

73

https://www.python.org/dev/peps/pep-0302
https://www.python.org/dev/peps/pep-0420
https://www.python.org/dev/peps/pep-0451
https://www.python.org/dev/peps/pep-0238
https://www.python.org/dev/peps/pep-0484

Extending and Embedding Python, £ A| B{% 3.6.15

o,

generic function ()] 2] ‘-’F) 2 AN Az gE e del 7+ o8 Forr A S S50
da 4

ojwW 3 o] AL E A= t] AT X gl Fol g 2=t
AE=Ra PN B &O%Xt} =3} functools.singledispatch () BT o|E|} PEP 443 = H A Q.

GIL A Q| ze|E 5 2 HAl..

global interpreter lock (& QJE]z2]¥] F) g WMo 27 sfrte] 2 =7} vpo]d wpo]E 1= & AP F
257 3l CPython AB 2] B 7L ALE 3He Wl AU S, (dict & 22 F2d R
A7) o] BAH 02 5A AN o] tha) hAEE S BE oA CPython TS
JelZ e H A€ 2Ase A2 AHZYHE thead =867 47 BEE Uil oS Z2AA
AAZL AT S FEAS B REL AT
A, of | B BEE S, EFOIG AMA E, FFIGHY 2 AL YAA FAE £
w+= GIL & WhEst= 5 AAH ek =3 V0E & wi+ 34 GIL & whdgich

(B Y A 51 HI ol B E 27 5he) (L =0l At 22 (free-threaded)) JH 22 H & vHE31%}
A o] oA

S AL e HEHolA B, o z2AA 299 45 Astrt Aek] Rk
o] 4% o448 FHL AL TALS B4 a7 BhEol4 §4 8o B SolZ ACR o AR 1
ot}

hashable (3] 4] 7}5) 74717} 248 1 gko] W17 ok A ZES 27 (__hash__ () WA=} Basith, e
AAD) 2] 05 % S (e () MAE I D8 Sk, A T ST G e ol

7b5e AR S| A kS Lofof et
A s AS AAE Ao A A gl R AEE A 9 s, o AR T2 E o] YA
o2 AN e A8 W 2ol
T droj e B WA AA =2 Al 7Hestth (BlA2EYU 9- Y 22) 7 AH oY &2]
S A 8A 4] Bel sl Aae AAE L B S AR A5 Sl (] AL A9 51
BEEUOEva bas i, A2 id () 2 FE BEo
IDLE 3}o] - #1353 71 37 (Integrated Development Environment). IDLE-2 3} o] 4 o] 3 & uf| 32 3o
et |20l BA /19 ez el g B ol

immutable (%) T4 9 2E A4, 29 AR £ 27, EAY, FEL ERAT. o) AR 5L WAL
S gleh. A 2hS A5 el | Al 23] & ehE o] of Shrk. MakA] ok o Al gko] 1ol of s Eol A F-2.2

qeS it ol & S, gA v gl 7.
import path (Y E FEF) A& 7|NEapelt 7 9=
[e]

11
2
&s;
r (
td
il
1o
)
o
rx,
&
[
N
O
rlu
fd
|
1o
&
-
rx
&
[
=2,
>
>
oo
i)
4
30
L
f
o
rlr
iy
>;1'4

importing (

importer (Y2 ¥) RES 27| % 8ol 2= 37| % sk AA; FAloll 9l T o] A} = Aot
o

interactive (c}5}9) o] 0 € tfo}Y QlE| 2ol e & 20 glev], A zele =gaEol) £ RN L
QAL+ 95, 57 APH ATE B 4 vk Foltk. A glo] B python & AW sket (AHE S
Folpel A A B A% 5@ 5 Aeh. Al obolHolE AARAL BER 5714 Selrhu s
w9 g g o)tk (help (x) § 7195 L

interpreted (&} 22 E]£) vho]= 3= Astele] £ A wlEol 2 7o) B A 7] AT, sho] ML
A5hed Aol 7} oh 2t AE ZelE Aofrh, o] AL WA AL A AL WA YIE, A4 HAL
A7 AW 4 drhe Tolth 1z Tade] & 6 AW AW) E AT, AHZH Aol BE

A5 Aol i} BE AT ¥ #718 ZHeth g5 = BAL.

interpreter shutdown (4B Z2]E] $.2) $25tehe 89 W& w), 3|4l A = e 50T 79 2
b, B ol /X FR A MR FREN LS RE WP AASL B o whga)
£, 714 577 & ol e M B2 Th AHSA A9 5 ALt weakref ol 9t TES o] AL
NAAD 5 ek F2 A7) B AN mEE e o9 5L whd 4 e, 120 9 EHE
A0S0l H 715517 9242 4 97 WlEol T (E8 o ol Heje] BE o} AL A Sl Th

74 Appendix A. E0{Z!

https://www.python.org/dev/peps/pep-0443

Extending and Embedding Python, £A| B{Z 3.6.15

A ZEH $59 FH YA AYF = __main BEOIUA2THETAYS ZY = Zolh

iterable (0] E]2]E) AHES W A EHE 5 U= AA. o HHEY o2& R E(1ist, str, tuple
ZOYANBAFE, dict Z2 22 u A B2 FE, 91D AA S, __iter_ () YA A= AES F3 5
£ __getitem_ () WIANEE WA A BE Fejr9 7“Xﬂ o] 9t}
OlEiEiat for ZZA AL E ¢ YT, A F2E LR T =2 B2 3L (zip (), map ()°ﬂ A&

Atk ol HE AA 7 WG T iter () o AAE % %_"51%,—"’-7“%1]4 OlEii‘ﬂ"lEi =Tt

°l OlEiﬂlolEiL%}‘:El@J%f?} AA= T FEICE o HYES AT, BE 1ter()%
TE3AL, olHEolH AAE A H g D8+ Ut for 2 13\4%% qgHES A OH/H XPEOE
AFed, FZE = FA)HH O EE FotE ol & e HEE WET o H# o H, AlA 2, Al
°lH &= EHLL-

iterator (o] E]#|o]E]) t]o|E|S] ~2EH S E?ﬂ 3= A olH#o]EHY __next_ () MAEEHIEHo T
&3 (EL \417“ S next () 2 G 2EH JE=FEHES XP?JM}EEE%*D} T o]/9]
dl o] E1 7} WW Stoplte tion ool & doith 1 A1 oA, o] e dl o] ¥ AA = A= L,
0] %9 E%_next il 1‘: TEL st OpIteratlon o 9] & thA] F o 7] 7] qk gtet o] B # o] E =
o]] & o] E] A XVJ% %Eﬂ ite) MIANEE 7}X‘ A o] L—TLQ 71 Fﬂ]% of, olH o] E| =
olH el &o| 7| % 3tal th & OlEiEi—‘é—%—% E‘:‘O}C o] &= gl & o] oA AR D} Q239 e=
olg] Mo o]H o] dE A =3t =T (1ist 7‘°)?4Eﬂ o] 7”?<ﬂther() T2 AL AY
for FZ o AR & ufjulc} A o] # o] H & TEth o)™ Z1-E o] E & o] ¥ of] i3l 1—’F yshe] AL sk,

Ak o el g o] Aol ALgH o]u] 27 F o] el 2 o] Bl 2 S HA, ¥l Al o] A Kol A BET)
typeiter o] T Z}A| 3F Y] -& 0] Qlth
key function (7] $t¢) 7] T4 =+ igﬂ o] A (collation) T4+ ;g =] (sorting) o]} Wl & (ordering) of] AH&=] =

He EHlFe Y E 5 O]D}. o & £0], locale.strxfrm() 2 2ALd EAFA YA S == AE 7|5
HeE T AHEE T

o] R o] g =7 R A5 0] o] BA 4] A A AL Fol=AE Alofstr] A8 7] TE wol=<th
olfl AEoEmin (), max (), sorted(),list.sort (), heapg.merge (), heapg.nsmallest (),
heapg.nlargest (), itertools.groupby () ©] AT}

7l S o= de oy Wl dth dE £9], str.lower () WAEE Aolx TE = A
22 93} 7 61'*; ApgE 2 - Atk gFoew, 7 F4= Lambda 3 RAA R s £ g,
o] A elt}: lambda r: (r[0], r[2]).%E3 Operator BE2M MY 7] g5 B3RS AlF S
T}: attrgetter (), itemgetter (), methodcaller (). 7] &4E WHETL AR Sl= Ho U3l o 2

Sorting HOW TO & H A 2.
keyword argument (7] 9] & 21z} 2z} & H A Q.

lambda (FTh 558 o) gro] P AL shike] 94 02 THE o) F gl e B Prh PSS HEL

EWHL lambda [parameters]: expression ©|t}.

LBYL 7] Aol B &} (Look before you leap). ©] T 2E}L 2 ST E0|L} 23
2AES AADE o Aerd L EAFP AT HUIE W, B i £ 22 54
U 28 = oA, LBYL H2H-& (H7]) & (H7]) ol A 202
E0],7FE1if key in mapping: return mappinglkey] = AA} &9, o, =
| = 7} key & mapping | A1 4| A 54 @ 5 k. o] A o] F o L} EARP 2 & A8 FO 2 A
sdd + Sth

list (2] 2 E) A built-in Python sequence. Despite its name it is more akin to an array in other languages than to a linked
list since access to elements is O(1).

list comprehension (2] A E HAZ a3l A) AP QA5 AR T JHE Aty 1 2HE PJAERE B

F= 743, result = ['{:#04x}'.format (x) for x in range (256) if x % ==
T 001 A] 255 Atolof Qle= H4E2 16ZJ-r(0X) ES TP EAEY g EE WETH if B
32%‘? At Aekstd, range (256) o Y= B 847 A 2"

Extending and Embedding Python, £ A| B{% 3.6.15

loader (2t]) &S ZE3H= A4l load_module () olgh= o] 59 HIANEE FYslof sttt 2= HE
goly 7 23 & AA S {2 PEP 302 &, A4 v o]~ 28~ &= importlib.abc.Loader &
HA L.

mapping ("]3) 2] 7] 23] 5 A Y5} Mapping ©] U MutableMapping 574 W o] S| o] 2=
HAEES FT8SE= Aol AA. 2+ dict, collections.defaultdict, collections.
OrderedDict, collections.Counter & 5 4 Ut}

meta path finder (W€} 2 5}Qlt]) sys.meta_path o] FAMo] ZF+ sl vgt A& s+ 4=
E el oF F#EE o] 9 7]& A th= ok

H el F 2 7t FE 5= WA =S | Al+= importlib.abc.MetaPathFinder & W "t}

metaclass (e} ZF2|) SR FeHja Fex FY = S o5, FWH2 9, Hlolx FPAES
EES BETh HE FH At o Al AAE Hol FAE B IS Ak Ug7E e A A&
Y AdojEL 7|8 FHS Al&3tt) sho] WS S5 Bte= A2 ALY YE FYPAE WS
T Age Aotk EE AREA A= o] =7 A 8 AT Zo 7t A A uf, vE ZH A
7FE3tal fofst s S Alw et o EEHE A 29 27 (logging), 28| = b e] =7 A A A4
FA, AZE T 2 o2 FYol A
metaclasses | A T Z}A| S W8-S 2HS 4= QU).

method (] A1) 22 2 whe) kol 4])% = 4.) HEEA S
HAEs A A A (R self gt 2dTh Z Jd2d2 AXNE Btk T g sHd 252
HAL.

method resolution order (WA & ZA $A]) WA E 2A A= 2351
259 £AH 23 DA dhojd dE x| E o AMgE dare
Method Resolution Order S H ¥ H ¢}

module (25) 308 Z=0) 243} the] & kel A7, RE-L glolo] sholul AR EL e ol F FNE
etk 28-S Qs Ao 9 sol oz zEH,

W77 = HAL.

module spec (25 2¥) R &5 S 23 =4 AL
importlib.machinery.ModuleSpec ¢ ¢l

Iy o

MRO HAZ= 24 =4 & BA L.

mutable (7}¥) 7FH A& o]l A& 5 QAR id () & SASHA AT 208 = HAL

named tuple (V| YE FZ) dIdAAT F A E S AES F B2 JEYREET AN T F Y= EE
EZR ZY2 (E 9], time.localtime () S year 7}t [0] A AEAE L t.tm_year A
AEeRERE ANET 4 Yt FEF AAE B E0h)
YAE FE2 time.struct_time T2 WA F L 5, ¢ FH 2 Y2 vt 5 ok BE
7ol FEEVYLE FE2 Y 34 collections.namedtuple () 2% & 4 o). vpx| 2
HAZHL2 Employee (name="'jones', title='programmer') & Z2 227 BAZ 7T = repr
I 22 A 75 % A Al st

namespace (o5 7)) W7t A5 L G4, o2 TS gAY Z TRAT AR SHE o] T B
(MM = oA Bk oty Ao, A, WA o] 5 F7ke] YUth o] F T2 ol5 TS YAGNA ZEA
2 A Y3t} o E Eo], T4 builtins.open T os.open () & 159 FEE

o
w3, 0] 2 B7HS ol o] P48 TANLAL LB TS0l A HE AT} f A
Zt} o9& £9], random.seed () =& itertools.islice() Bt 2 W
7 itertools &) s F+EH 5ol Haf Kt
namespace package (°]5 &7 |71 X)) &2 A B 3| 7] A 5] AH o] E T 7] 5 3= PEP 420 3 7] #]. o] &
T A= AN ARl 5 YA, 53] __init_.py FLo] B R AHf 3 7] 4] &=

thE o,

76 Appendix A. E0{Z!

https://www.python.org/dev/peps/pep-0302
https://www.python.org/download/releases/2.3/mro/
https://www.python.org/download/releases/2.3/mro/
https://www.python.org/dev/peps/pep-0420

Extending and Embedding Python, £A| B{Z 3.6.15

EEZ HASL.

nested scope (53 € 2 :Z) SER Ao oA A E FXoe 5. & 5o, e T W RolA B =
e nkg g °ﬂ JeHFES Az S Ut FHY 2FZE= 7| EFo g = Fx s B,
Y& FH A kethe Ao FYsiof sttt A A2 7 5o 23z oA ¢lal &t wpA A &,
A Mps2 A o] F T34 ¢l 22t} nonlocal 2 HHZ A3 o] 2= 215 3=ttt

new-style class (¢ 2Bt Fel2) A2 EE g—a]/\ AN AEHIL = A2 WA oA o
5. 2719 FolH W AN E, 24 F2EY EEHAUP __slots_, A HH, =3 H,
__getattribute_ (), ZHA2 WA E, 2 E WA 2L Fol WY BT TSI N 5ELS

}ilﬁi‘* 0104E+
object (A A) AE} (1= HEY) 2 T2 (WA) o] Aol H RE o[E. B, BE raE}d Fe) s
o) HE A o)~ Zeh).

package (] 7] 2]) A E ZESo|L}, Al Aoz A A I 9] A=
371X &=_ _path_ A EZHEZ} Y& sto|H EEo|t}

AT 3717 9 o) 2 B0 AAA = BAL
parameter (S}kvIE) 915 (£ MAE) Ao HET B S e 7 (B oE A A7) 8
e B e e, 1A 558 ShelH)
o A X-719 = (positional-or-keyword): 91 #| QA U 7|99 = A2 2 AL 4= Q= ARE XA st}
712 9

o] A 9] gl o] shetul et ol & S0 vkl Al foo £} bar:

def func (foo, bar=None) :

=
=

« 912)-A§ (positional-only): X 2% AFD 5 9t AAE A A} vpo AL A X-7§ ety
B2 Aofste 2L 23 A 3Tk AW, ojE A F45L 9 X-A8 e EHE 2E
(€ &9, abs ().

o | =-A & (keyword-only): 71 EZ T A FE 5= U= AXE A
T 49 shetuE EE5 oA ol 3putbe] 7R X] 3hehu| B L+
F Atk & 59, Oﬂ A kw_onlyl 2} kw_only2:

’def func (arg, *, kw_onlyl, kw_only2):

o 7PA-91 A (var-positional): (T} 3}etu] E] S0 Al o] u] Rol5o] A 9] A AAEof B 3)) A2
T A= A A=Y 01-4-4 AlA2E A Attt ol & hetn| Bl & Fhetu| B o] Fof * & el
Eofl/ﬂ Aold o Utk oAl & 0] thZoll Al args:

def func(*args, **kwargs):

o 7PH-719) = (var-keyword): (Th2 Shetu] Bl Sofl]3| A o] n] Wol5 o A 7] 9= ARFS o o sl)
Asd e 4o s 719 = dAES A4 o™ stetv|H = stetul | o] Fof *x &
ol Bo A HolF 4=), o & S0 92| ol o A kwargs.
St e AE A AAELS 93k 7| B gHmul o} gt A A o] AL} B4 AAELS 2 AF 4 9l
1A} 8o S, Q1 x}2} vletu] el Q] A}o] o] L} 2= FAQ &, inspect .Parameter &2, function
A, PEP 362 = B A &
path entry (2 QlE2]) 42 7Nk viele] 7t Q2 EF RESS 27] 918 Fashe J2E 42 4o e
2} A

~
é

path entry finder (7 2 QI E 2] u}elt]) sys.path_hooks
kel Ad], FARN A2 dED] 2 RES Z= WS € T

AZ AdED FJAHE0] L= WA EEL importlib.abc.PathEntryFinder of Y2t}

=

77

https://www.python.org/dev/peps/pep-0362

Extending and Embedding Python, £ A| B{% 3.6.15

path entry hook (% 2 QIE 8] &) sys.path_hook B|AE Y= ZFe| 80, EA A= dED i ZES

FEMe 2R o 4z e 9od & SeEnh
path based finder (7 2 7|4l 5}elt]) 7| E Hel A2 3oy E F -a}uroL]uﬂ AT E AZ A REL =1}
path-like object (3 2% A7) 5+ A28 A2 2 vehls A4, A2F AAE 422 Vehls ser 1}

bytes AA| o] A} os.Pathlike T2 EEZ S F33= 7“74]13]-. os.PathLike Z2EZ S X Yst+=

AA = os.fspath () FFE TS A str 1erytes Hd A2" FrE dAsE 5 gl Al os.

fsdecode () & os.fsencode () = ZZt str Ybytes 23E B ASt=t] AFE 4= 9t} PEP 519

2 =99 ek
PEP s}o]# 7) 4l A ok, PEP= sho] # 7 F U] Elol] % 1 & A%t 7 1} sho] W

et MELR 7|5 AWt AA EATh PEP+ A|<HH 759 EH?E 7‘}7%} 71 APEF H

Al-&-3l oF gkt

PEP:= 2 22 75 S A

2Re EAE BE7] #1387

o Ae 248 T e gk,

PEP 1 Z=3}A4 8.
portion (3£ 4) PEP 420 o| 4] A2 3l AAH, o] & F 7t 9 7] A o] o]u}A] 5= dHe] tldE o] o=

SFQES) A Y @p SHol] A4 £ A= FHs ek,
positional argument ($] 2] Q12}) <A} E H A Q.

provisional API (/4 API) A API= & glo| B8] I A S84 Ao 2 HE 4l

A

st A NG ARUE 4L 54 5 shol Aol Soi k4
2] AYZolth PEP 2475 ARUE el A #8758k

—

of
ol
&Y
fo
2}
Y
o,
o

QU e} sl o] 220) 2 M3} o) A A, R Aol b FAIH & B, Fo] ALAE o] B8 Fria
A ARohe A THo] RAF A g Mol Aol 4+ ek T WAL BA G YAz o]
UA £ 92 olth— APIE E @5/ Aol £ Frhstn 2R Aol AW Aol v ot
2ol
A7 APLO| A 2 A1, A T84 o] §AH A b WAL (A 50 $0h) 0 o AT RE 499
EAS el A TR S AASE Y oot wE A AGATH

=%

o) AR EF Folud et ol A7 B BEH A4 ool BB A AL WAL S 9
w=t} ¢ A3 W22 PEP 411 &

provisional package (23 2| 7] X]) &4 API & B A L.

Python 3000 (sFo] 2 3000) ol 3.x w32 2hle] 8
o] Folth) o] A= (Py3k) 2 £o] 27|% 3t}

Pythonic (s}o] A the) The 910 5ol 4 QA9 S 2 Agal A =S FASH= 4], 5ho] A Qofol 4
VA AR £ oA Al mh s ool ol RS 2 o § ol Sl ol A7 2k
ot P for T2 AHESA] olElB B9 BE 848 F3 5= Ao|th thE B2 dojoll= old T /Y
FAEO] OB, shol ol o %) FE AREL thAlo] A 7L E B AR E Beh:

(M7 3] WE7 A B2 o] o]okr] | A Bol TS of

for i in range(len(food)):
print (food[i])

o 2T, st Athe P e o ek

for piece in food:
print (piece)

qualified name (357 31€ o]5) ZE2 A A7 zox REo| FolH Fefx, T, vAEc] o] 2 & (FR)
%E®2L24°E¥—Er% o) %. PEP 3155 o | ol Fh. 249 Fol Zel2e] B9ol, A73Hd
ol &2 A9 o] 53 2t

78 Appendix A. E0{Z!

https://www.python.org/dev/peps/pep-0519
https://www.python.org/dev/peps/pep-0001
https://www.python.org/dev/peps/pep-0420
https://www.python.org/dev/peps/pep-0411
https://www.python.org/dev/peps/pep-3155

Extending and Embedding Python, £A| B{Z 3.6.15

>>> class C:
class D:
def meth (self):

pass
>>> C._ _qualname_
IC’
>>> C.D.__qualname___
'c.D'
>>> C.D.meth._ qualname_
'C.D.meth'’
EE< 77 AR , 4R 3] A13LA o] (fully qualified name) & 2= R 1 7| A 5& £
A EERE 7= A Oi—rﬂ% o] &85 9 n| T} E]-, o & £90],email .mime.text:

>>> import email.mime.text
>>> email.mime.text. name
'email.mime.text'

reference count (= 3142) AA| ol &k Fxo] 4. A Fx A571002 Hox W, W= g 7} vhg =
o ZAR 3 FAHL dH o2 go|l o =& F Xl A 2k, CPython 738 2] & 3 A 84t sys
E%% 54 AAY F=R JA4E 58 F £ getrefcount () & F st}

regular package (7 3| 7]A)) __init_ .py YL L= 1’4 Ae g e AEAQ I 7] A.
712 & BA L.

_slots__ Felx o] AAdd, AxE A ojELF
AAZGo 2z HReE Aot 95
7R HolgtA, vl R eEo Ie S8 2=
gt 2ol Erh

sequence (X] @) —_getitem () ELHAMES 55 A4 AU A AGTWE Q4 AN
/\134/‘«1 7‘01 Eﬂ] —len__() UﬂfﬂE%Xéf’J‘}%o HHE 22 YF A dAE
)

ol& &7l

~

collections.abc. Sequence =4 ﬁﬂ o)A FeAE_ _getitem () I __len_ () EHAA
A FH3 A EH o]~ E A=], count (), index (), _contains__ (), reversed () &
F7hgtt}. o] EgH ?_Eiﬁﬂ O|2E T3S P& register () EAMEIMNA YA HLZ 5ET 5 9]

single dispatch (J 2 t]A 9] x]) & o] s} QA2 F o 715—5“/‘1 A== A= g4 gasfA e st
).

slice (eto]2) H5 A A2 o RS 23eh= A Selolae A H ATHE 71U S AHSSA TETh
variable_name[1:3:5] A&, [] ¢l A oA 7Y AE ZE2o 2 EEdt) 2425 (ME 23
HE) Z7IH2 W R A= slice A& AHE-3Shoh

special method (5= WX £) 3}o]do] o ojwl A4k, T &2, A3
A A= AS WER AHHT BrhE o 52 27 Atk &

5ol A slet.

statement (F73) TF-2 2 E (ZEY (E5F (block))) & T8 FEolth 282 32384 o] AU 7|9 =
£ A8k o 81 7HA] F2E 59 shutth 719 if, while, for.

struct sequence (-2 A] A]P2) A tuple with named elements. Struct sequences expose an interface similar to named
tuple in that elements can be accessed either by index or as an attribute. However, they do not have any of the named
tuple methods like _make () or _asdict (). Examples of struct sequences include sys.float_info and
the return value of os.stat ().

3, HoR &= HAE.
4= 1] A & 3= specialnames ©f A} E

79

Extending and Embedding Python, £ A| B{% 3.6.15

ol

2249,

o}

rlr

text encoding (]| AE 217 4Y) FUIE B S vlo|EdR o F
text file (J2E 5}9) str AA & ej1L & %1% Id AA. 5 G2E IS AAZ = vl E A #F
ol mmza 423k s 12 & A% AN YT GaE sl o2 e daE R
¢, sys.stdin, sys.stdout, io. StrlngIOJ A~EAE & 4 Uk

AT A L AA o e A vtol v e] 9t d = FzsiA 8.

triple-quoted string (31 w3 € £2149) w3 () W FF2 0238 (O *ﬂ Me M 2L 23
02 SR SeAA BAL Qi 715S AFHAL @A, o] /A ol FAM L7
ojaAolz A he AL EY 2L EE
Fuz ol So] ZA e, F2EFS & 53 &

type (3) ho]41 AN G T30 o ¥ S 72 AANAAE FH UL RE A& Go Slek AN Y
_class_oi_E]HEE AN 2~T 5 (obj

type alias A synonym for a type, created by assigning the type to an identifier.

Type aliases are useful for simplifying fype hints. For example:

from typing import List, Tuple

def remove_gray_shades (
colors: List[Tuple[int, int, int]]) -> List[Tuplel[int, int, int]]:
pass

could be made more readable like this:

from typing import List, Tuple
Color = Tuple[int, int, int]

def remove_gray_shades (colors: List[Color]) -> List[Color]:
pass

See typing and PEP 484, which describe this functionality.
type hint An annotation that specifies the expected type for a variable, a class attribute, or a function parameter or return

value.

Type hints are optional and are not enforced by Python but they are useful to static type analysis tools, and aid IDEs
with code completion and refactoring.

Type hints of global variables, class attributes, and functions, but not local variables, can be accessed using
typing.get_type_hints ().
See typing and PEP 484, which describe this functionality.

universal newlines (FUH A & d7)) thSH 22 AES BEF 29 EL2 A4 s, HAE 2EH S 54
Bho B U2 AW BA Bel \nt, AESE Tel \r\n', o B8] WTIEA] Tel \r . FohA <)
AFg-of] #3fA = bytes.splitlines () ¥4 o}y 2} PEP 278 &} PEP 3116 = E/\ﬂﬁ.

J

variable annotation (4> o] = €| 0]) An annotation of a variable or a class attribute.

When annotating a variable or a class attribute, assignment is optional:

class C:
field: 'annotation'

Variable annotations are usually used for #ype hints: for example this variable is expected to take int values:

80 Appendix A. E0{Z!

https://www.python.org/dev/peps/pep-0484
https://www.python.org/dev/peps/pep-0484
https://www.python.org/dev/peps/pep-0278
https://www.python.org/dev/peps/pep-3116

Extending and Embedding Python, £A| B{Z 3.6.15

count: int = 0

Variable annotation syntax is explained in section annassign.
See function annotation, PEP 484 and PEP 526, which describe this functionality.

virtual environment (7} 3+7) Sho] W AF2 A9 28 =2 g o], 2L XA AHA] AP E = T2 mlo|
& zr2IHEY Em’ﬂ FEFS FA %}Etﬂ/\i F}o] 4l wf 3= 71 Ase AAFAY Jad ol =8
;q o V55 B,y Ao g E]‘Q_ A3 317,
venv & HA 8.

virtual machine (7} 7] A]) £ Z EQJolvto 2 HojH AFH. o] o 74 71 A= viol E I = Hutd 7t
Yt vbolE = 2 APk

Zen of Python (3}o]# Al) 3}o

12 ol Yg]e} AtS o] EEoly, ol
Atk o] 2E2 81y L g

At , 9l
Eo|A (import this) & Y3}

81

https://www.python.org/dev/peps/pep-0484
https://www.python.org/dev/peps/pep-0526

Extending and Embedding Python, £ A| B{% 3.6.15

82

Appendix A. E0{Z!

APPENDIX B

About these documents

These documents are generated from reStructuredText sources by Sphinx, a document processor specifically written for
the Python documentation.

Development of the documentation and its toolchain is an entirely volunteer effort, just like Python itself. If you want
to contribute, please take a look at the reporting-bugs page for information on how to do so. New volunteers are always
welcome!

Many thanks go to:
* Fred L. Drake, Jr., the creator of the original Python documentation toolset and writer of much of the content;
* the Docutils project for creating reStructuredText and the Docutils suite;

* Fredrik Lundh for his Alternative Python Reference project from which Sphinx got many good ideas.

B.1 Contributors to the Python Documentation

Many people have contributed to the Python language, the Python standard library, and the Python documentation. See
Misc/ACKS in the Python source distribution for a partial list of contributors.

It is only with the input and contributions of the Python community that Python has such wonderful documentation —
Thank You!

83

http://docutils.sourceforge.net/rst.html
http://sphinx-doc.org/
http://docutils.sourceforge.net/
http://effbot.org/zone/pyref.htm
https://github.com/python/cpython/tree/3.6/Misc/ACKS

Extending and Embedding Python, £ A| B{% 3.6.15

84

Appendix B. About these documents

apPENDIX C

History and License

C.1 History of the software

Python was created in the early 1990s by Guido van Rossum at Stichting Mathematisch Centrum (CWI, see https://www.
cwi.nl/) in the Netherlands as a successor of a language called ABC. Guido remains Python’s principal author, although
it includes many contributions from others.

In 1995, Guido continued his work on Python at the Corporation for National Research Initiatives (CNRI, see https:
/Iwww.cnri.reston.va.us/) in Reston, Virginia where he released several versions of the software.

In May 2000, Guido and the Python core development team moved to BeOpen.com to form the BeOpen PythonLabs
team. In October of the same year, the PythonLabs team moved to Digital Creations (now Zope Corporation; see https:
/Iwww.zope.org/). In 2001, the Python Software Foundation (PSF, see https://www.python.org/psf/) was formed, a non-
profit organization created specifically to own Python-related Intellectual Property. Zope Corporation is a sponsoring
member of the PSF.

All Python releases are Open Source (see https://opensource.org/ for the Open Source Definition). Historically, most,
but not all, Python releases have also been GPL-compatible; the table below summarizes the various releases.

Release Derived from | Year Owner GPL compatible?
0.9.0thru 1.2 | n/a 1991-1995 | CWI yes
1.3thrul52 | 1.2 1995-1999 | CNRI yes
1.6 1.5.2 2000 CNRI no
2.0 1.6 2000 BeOpen.com | no
1.6.1 1.6 2001 CNRI no
2.1 2.0+1.6.1 2001 PSF no
2.0.1 2.0+1.6.1 2001 PSF yes
2.1.1 2.142.0.1 2001 PSF yes
2.12 2.1.1 2002 PSF yes
2.13 2.1.2 2002 PSF yes
2.2 and above | 2.1.1 2001-now | PSF yes

85

https://www.cwi.nl/
https://www.cwi.nl/
https://www.cnri.reston.va.us/
https://www.cnri.reston.va.us/
https://www.zope.org/
https://www.zope.org/
https://www.python.org/psf/
https://opensource.org/

Extending and Embedding Python, S A| B{A 3.6.15

ZF31: GPL-compatible doesn’t mean that we’re distributing Python under the GPL. All Python licenses, unlike the
GPL, let you distribute a modified version without making your changes open source. The GPL-compatible licenses make
it possible to combine Python with other software that is released under the GPL; the others don’t.

Thanks to the many outside volunteers who have worked under Guido’s direction to make these releases possible.

C.2 Terms and conditions for accessing or otherwise using Python

C.2.1 PSF LICENSE AGREEMENT FOR PYTHON 3.6.15

1. This LICENSE AGREEMENT is between the Python Software Foundation ("PSEF"),.
—and

the Individual or Organization ("Licensee") accessing and otherwise using.
—Python

3.6.15 software in source or binary form and its associated documentation.

2. Subject to the terms and conditions of this License Agreement, PSF hereby
grants Licensee a nonexclusive, royalty-free, world-wide license to.
—reproduce,
analyze, test, perform and/or display publicly, prepare derivative works,
distribute, and otherwise use Python 3.6.15 alone or in any derivative
version, provided, however, that PSF's License Agreement and PSF's notice.
—of
copyright, i.e., "Copyright © 2001-2021 Python Software Foundation; All._
—Rights
Reserved" are retained in Python 3.6.15 alone or in any derivative version
prepared by Licensee.

3. In the event Licensee prepares a derivative work that is based on or
incorporates Python 3.6.15 or any part thereof, and wants to make the
derivative work available to others as provided herein, then Licensee.

—~hereby
agrees to include in any such work a brief summary of the changes made to.

—Python
3.6.15.

4. PSF is making Python 3.6.15 available to Licensee on an "AS IS" basis.

PSF MAKES NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF

EXAMPLE, BUT NOT LIMITATION, PSF MAKES NO AND DISCLAIMS ANY REPRESENTATION.
—0OR

WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT.
—THE

USE OF PYTHON 3.6.15 WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

5. PSF SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF PYTHON 3.6.15

FOR ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT.
—OF

MODIFYING, DISTRIBUTING, OR OTHERWISE USING PYTHON 3.6.15, OR ANY.
—DERIVATIVE

THEREOF, EVEN IF ADVISED OF THE POSSIBILITY THEREOF.

86 Appendix C. History and License

Extending and Embedding Python, £A| B{Z 3.6.15

6. This License Agreement will automatically terminate upon a material breach.
—of
its terms and conditions.

7. Nothing in this License Agreement shall be deemed to create any.
—relationship

of agency, partnership, or joint venture between PSF and Licensee. This.
—License

Agreement does not grant permission to use PSF trademarks or trade name in.
—a

trademark sense to endorse or promote products or services of Licensee, or.
—any

third party.

8. By copying, installing or otherwise using Python 3.6.15, Licensee agrees
to be bound by the terms and conditions of this License Agreement.

C.2.2 BEOPEN.COM LICENSE AGREEMENT FOR PYTHON 2.0

BEOPEN PYTHON OPEN SOURCE LICENSE AGREEMENT VERSION 1

1. This LICENSE AGREEMENT is between BeOpen.com ("BeOpen"), having an office at
160 Saratoga Avenue, Santa Clara, CA 95051, and the Individual or Organization
("Licensee") accessing and otherwise using this software in source or binary
form and its associated documentation ("the Software").

2. Subject to the terms and conditions of this BeOpen Python License Agreement,
BeOpen hereby grants Licensee a non-exclusive, royalty-free, world-wide license
to reproduce, analyze, test, perform and/or display publicly, prepare derivative
works, distribute, and otherwise use the Software alone or in any derivative
version, provided, however, that the BeOpen Python License is retained in the
Software, alone or in any derivative version prepared by Licensee.

3. BeOpen is making the Software available to Licensee on an "AS IS" basis.
BEOPEN MAKES NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF
EXAMPLE, BUT NOT LIMITATION, BEOPEN MAKES NO AND DISCLAIMS ANY REPRESENTATION OR
WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE
USE OF THE SOFTWARE WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

4. BEOPEN SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF THE SOFTWARE FOR
ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT OF USING,
MODIFYING OR DISTRIBUTING THE SOFTWARE, OR ANY DERIVATIVE THEREOF, EVEN IF
ADVISED OF THE POSSIBILITY THEREOEF.

5. This License Agreement will automatically terminate upon a material breach of
its terms and conditions.

6. This License Agreement shall be governed by and interpreted in all respects
by the law of the State of California, excluding conflict of law provisions.
Nothing in this License Agreement shall be deemed to create any relationship of
agency, partnership, or joint venture between BeOpen and Licensee. This License
Agreement does not grant permission to use BeOpen trademarks or trade names in a
trademark sense to endorse or promote products or services of Licensee, or any
third party. As an exception, the "BeOpen Python" logos available at

(THS STl Aol A1)

C.2. Terms and conditions for accessing or otherwise using Python 87

Extending and Embedding Python, £ A| B{% 3.6.15

(o] A sl o] A A M A%)

http://www.pythonlabs.com/logos.html may be used according to the permissions
granted on that web page.

By copying, installing or otherwise using the software, Licensee agrees to be
bound by the terms and conditions of this License Agreement.

C.2.3 CNRI LICENSE AGREEMENT FOR PYTHON 1.6.1

This LICENSE AGREEMENT is between the Corporation for National Research
Initiatives, having an office at 1895 Preston White Drive, Reston, VA 20191
("CNRI"), and the Individual or Organization ("Licensee") accessing and
otherwise using Python 1.6.1 software in source or binary form and its
associated documentation.

Subject to the terms and conditions of this License Agreement, CNRI hereby
grants Licensee a nonexclusive, royalty-free, world-wide license to reproduce,
analyze, test, perform and/or display publicly, prepare derivative works,
distribute, and otherwise use Python 1.6.1 alone or in any derivative version,
provided, however, that CNRI's License Agreement and CNRI's notice of copyright,
i.e., "Copyright © 1995-2001 Corporation for National Research Initiatives; All
Rights Reserved" are retained in Python 1.6.1 alone or in any derivative version
prepared by Licensee. Alternately, in lieu of CNRI's License Agreement,
Licensee may substitute the following text (omitting the quotes): "Python 1.6.1
is made available subject to the terms and conditions in CNRI's License
Agreement. This Agreement together with Python 1.6.1 may be located on the
Internet using the following unique, persistent identifier (known as a handle):
1895.22/1013. This Agreement may also be obtained from a proxy server on the
Internet using the following URL: http://hdl.handle.net/1895.22/1013."

In the event Licensee prepares a derivative work that is based on or
incorporates Python 1.6.1 or any part thereof, and wants to make the derivative
work available to others as provided herein, then Licensee hereby agrees to
include in any such work a brief summary of the changes made to Python 1.6.1.

CNRI is making Python 1.6.1 available to Licensee on an "AS IS" basis. CNRI
MAKES NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF EXAMPLE,
BUT NOT LIMITATION, CNRI MAKES NO AND DISCLAIMS ANY REPRESENTATION OR WARRANTY
OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE USE OF
PYTHON 1.6.1 WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

CNRI SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF PYTHON 1.6.1 FOR
ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT OF
MODIFYING, DISTRIBUTING, OR OTHERWISE USING PYTHON 1.6.1, OR ANY DERIVATIVE
THEREOF, EVEN IF ADVISED OF THE POSSIBILITY THEREOEF.

This License Agreement will automatically terminate upon a material breach of
its terms and conditions.

This License Agreement shall be governed by the federal intellectual property
law of the United States, including without limitation the federal copyright
law, and, to the extent such U.S. federal law does not apply, by the law of the
Commonwealth of Virginia, excluding Virginia's conflict of law provisions.
Notwithstanding the foregoing, with regard to derivative works based on Python
1.6.1 that incorporate non-separable material that was previously distributed

(TH& SOTATl A1)

88

Appendix C. History and License

Extending and Embedding Python, £A| B{Z 3.6.15

(o] A sl o] A A M A%)

under the GNU General Public License (GPL), the law of the Commonwealth of
Virginia shall govern this License Agreement only as to issues arising under or
with respect to Paragraphs 4, 5, and 7 of this License Agreement. Nothing in
this License Agreement shall be deemed to create any relationship of agency,
partnership, or joint venture between CNRI and Licensee. This License Agreement
does not grant permission to use CNRI trademarks or trade name in a trademark
sense to endorse or promote products or services of Licensee, or any third
party.

8. By clicking on the "ACCEPT" button where indicated, or by copying, installing
or otherwise using Python 1.6.1, Licensee agrees to be bound by the terms and
conditions of this License Agreement.

C.2.4 CWI LICENSE AGREEMENT FOR PYTHON 0.9.0 THROUGH 1.2

Copyright © 1991 - 1995, Stichting Mathematisch Centrum Amsterdam, The
Netherlands. All rights reserved.

Permission to use, copy, modify, and distribute this software and its
documentation for any purpose and without fee is hereby granted, provided that
the above copyright notice appear in all copies and that both that copyright
notice and this permission notice appear in supporting documentation, and that
the name of Stichting Mathematisch Centrum or CWI not be used in advertising or
publicity pertaining to distribution of the software without specific, written
prior permission.

STICHTING MATHEMATISCH CENTRUM DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS
SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN NO
EVENT SHALL STICHTING MATHEMATISCH CENTRUM BE LIABLE FOR ANY SPECIAL, INDIRECT
OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE,
DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS
SOFTWARE .

C.3 Licenses and Acknowledgements for Incorporated Software

This section is an incomplete, but growing list of licenses and acknowledgements for third-party software incorporated in
the Python distribution.

C.3.1 Mersenne Twister

The _random module includes code based on a download from http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/
MT2002/emt19937ar.html. The following are the verbatim comments from the original code:

A C-program for MT19937, with initialization improved 2002/1/26.
Coded by Takuji Nishimura and Makoto Matsumoto.

Before using, initialize the state by using init_genrand(seed)
or init_by_array(init_key, key_length).

(THS SOl AT ol A1)

C.3. Licenses and Acknowledgements for Incorporated Software 89

http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/MT2002/emt19937ar.html
http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/MT2002/emt19937ar.html

Extending and Embedding Python, £ A| B{% 3.6.15

(o] A sl o] A A M A%)

Copyright (C) 1997 - 2002, Makoto Matsumoto and Takuji Nishimura,
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

3. The names of its contributors may not be used to endorse or promote
products derived from this software without specific prior written
permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. 1IN NO EVENT SHALL THE COPYRIGHT OWNER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Any feedback is very welcome.
http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html
email: m—-mat @ math.sci.hiroshima-u.ac.jp (remove space)

C.3.2 Sockets

The socket module uses the functions, getaddrinfo (), and getnameinfo (), which are coded in separate
source files from the WIDE Project, http://www.wide.ad.jp/.

Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
All rights reserved.

Redistribution and use in source and binary forms, with or without

modification, are permitted provided that the following conditions

are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

3. Neither the name of the project nor the names of its contributors
may be used to endorse or promote products derived from this software
without specific prior written permission.

(TH& ST Aol A1)

90 Appendix C. History and License

http://www.wide.ad.jp/

Extending and Embedding Python, £A| B{Z 3.6.15

(o] A sl o] A A M A%)

THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS " "AS IS'' AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. 1IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS

OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

C.3.3 Floating point exception control

The source for the fpect 1 module includes the following notice:

/ Copyright (c) 1996. \
The Regents of the University of California.
All rights reserved.

Permission to use, copy, modify, and distribute this software for
any purpose without fee is hereby granted, provided that this en-—
tire notice is included in all copies of any software which is or
includes a copy or modification of this software and in all
copies of the supporting documentation for such software.

This work was produced at the University of California, Lawrence
Livermore National Laboratory under contract no. W-7405-ENG-48
between the U.S. Department of Energy and The Regents of the
University of California for the operation of UC LLNL.

DISCLAIMER

This software was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States
Government nor the University of California nor any of their em-
ployees, makes any warranty, express or implied, or assumes any
liability or responsibility for the accuracy, completeness, or
usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe
privately-owned rights. Reference herein to any specific commer-
cial products, process, or service Dby trade name, trademark,
manufacturer, or otherwise, does not necessarily constitute or
imply its endorsement, recommendation, or favoring by the United
States Government or the University of California. The views and
opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or the University
of California, and shall not be used for advertising or product
\ endorsement purposes. /

C.3. Licenses and Acknowledgements for Incorporated Software 91

Extending and Embedding Python, £ A| B{% 3.6.15

C.3.4 Asynchronous socket services

The asynchat and asyncore modules contain the following notice:

Copyright 1996 by Sam Rushing
All Rights Reserved

Permission to use, copy, modify, and distribute this software and
its documentation for any purpose and without fee is hereby
granted, provided that the above copyright notice appear in all
copies and that both that copyright notice and this permission
notice appear in supporting documentation, and that the name of Sam
Rushing not be used in advertising or publicity pertaining to
distribution of the software without specific, written prior
permission.

SAM RUSHING DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE,
INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN
NO EVENT SHALL SAM RUSHING BE LIABLE FOR ANY SPECIAL, INDIRECT OR
CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS
OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT,
NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

C.3.5 Cookie management

The http.cookies module contains the following notice:

Copyright 2000 by Timothy O'Malley <timo@alum.mit.edu>
All Rights Reserved

Permission to use, copy, modify, and distribute this software

and its documentation for any purpose and without fee is hereby
granted, provided that the above copyright notice appear in all
copies and that both that copyright notice and this permission
notice appear in supporting documentation, and that the name of
Timothy O'Malley not be used in advertising or publicity

pertaining to distribution of the software without specific, written
prior permission.

Timothy O'Malley DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS
SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS, IN NO EVENT SHALL Timothy O'Malley BE LIABLE FOR
ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
PERFORMANCE OF THIS SOFTWARE.

92 Appendix C. History and License

Extending and Embedding Python, £A| B{Z 3.6.15

C.3.6 Execution tracing

The t race module contains the following notice:

portions copyright 2001, Autonomous Zones Industries, Inc., all rights...
err... reserved and offered to the public under the terms of the

Python 2.2 license.

Author: Zooko O'Whielacronx

http://zooko.com/

mailto:zooko@zooko.com

Copyright 2000, Mojam Media, Inc., all rights reserved.
Author: Skip Montanaro

Copyright 1999, Bioreason, Inc., all rights reserved.
Author: Andrew Dalke

Copyright 1995-1997, Automatrix, Inc., all rights reserved.
Author: Skip Montanaro

Copyright 1991-1995, Stichting Mathematisch Centrum, all rights reserved.

Permission to use, copy, modify, and distribute this Python software and
its associated documentation for any purpose without fee is hereby
granted, provided that the above copyright notice appears in all copies,
and that both that copyright notice and this permission notice appear in
supporting documentation, and that the name of neither Automatrix,
Bioreason or Mojam Media be used in advertising or publicity pertaining to
distribution of the software without specific, written prior permission.

C.3.7 UUencode and UUdecode functions

The uu module contains the following notice:

Copyright 1994 by Lance Ellinghouse
Cathedral City, California Republic, United States of America.

All Rights Reserved
Permission to use, copy, modify, and distribute this software and its
documentation for any purpose and without fee is hereby granted,
provided that the above copyright notice appear in all copies and that
both that copyright notice and this permission notice appear in
supporting documentation, and that the name of Lance Ellinghouse
not be used in advertising or publicity pertaining to distribution
of the software without specific, written prior permission.
LANCE ELLINGHOUSE DISCLAIMS ALL WARRANTIES WITH REGARD TO
THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS, IN NO EVENT SHALL LANCE ELLINGHOUSE CENTRUM BE LIABLE
FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT
OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

Modified by Jack Jansen, CWI, July 1995:
— Use binascii module to do the actual line-by-line conversion
between ascii and binary. This results in a 1000-fold speedup. The C

(TF= ol ATl A%

C.3. Licenses and Acknowledgements for Incorporated Software 93

Extending and Embedding Python, £ A| B{% 3.6.15

(o] A sl o] A A M A%)

version is still 5 times faster, though.
- Arguments more compliant with Python standard

C.3.8 XML Remote Procedure Calls

The xmlrpc.client module contains the following notice:

The XML-RPC client interface is

Copyright (c) 1999-2002 by Secret Labs AB
Copyright (c) 1999-2002 by Fredrik Lundh

By obtaining, using, and/or copying this software and/or its
associated documentation, you agree that you have read, understood,
and will comply with the following terms and conditions:

Permission to use, copy, modify, and distribute this software and
its associated documentation for any purpose and without fee is
hereby granted, provided that the above copyright notice appears in
all copies, and that both that copyright notice and this permission
notice appear in supporting documentation, and that the name of
Secret Labs AB or the author not be used in advertising or publicity
pertaining to distribution of the software without specific, written
prior permission.

SECRET LABS AB AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH REGARD
TO THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANT-
ABILITY AND FITNESS. 1IN NO EVENT SHALL SECRET LABS AB OR THE AUTHOR
BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY
DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
OF THIS SOFTWARE.

C.3.9 test_epoll

The test_epoll module contains the following notice:

Copyright (c) 2001-2006 Twisted Matrix Laboratories.

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF

(TH& ST Aol A1)

94 Appendix C. History and License

Extending and Embedding Python, £A| B{Z 3.6.15

(o] A sl o] A A M A%)

MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND

NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

C.3.10 Select kqueue

The select module contains the following notice for the kqueue interface:

Copyright (c) 2000 Doug White, 2006 James Knight, 2007 Christian Heimes
All rights reserved.

Redistribution and use in source and binary forms, with or without

modification, are permitted provided that the following conditions

are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS " "AS IS'' AND

ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS

OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

C.3.11 SipHash24

The file Python/pyhash. c contains Marek Majkowski) implementation of Dan Bernstein’s SipHash24 algorithm.
The contains the following note:

<MIT License>
Copyright (c) 2013 Marek Majkowski <marek@popcount.org>

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
</MIT License>

(TH& ST Aol A1)

C.3. Licenses and Acknowledgements for Incorporated Software 95

Extending and Embedding Python, £ A| B{% 3.6.15

(o] A sl o] A A M A%)

Original location:
https://github.com/majek/csiphash/

Solution inspired by code from:
Samuel Neves (supercop/crypto_auth/siphash24/1little)
djb (supercop/crypto_auth/siphash24/little2)
Jean-Philippe Aumasson (https://131002.net/siphash/siphash24.c)

C.3.12 strtod and dtoa

The file Python/dtoa. c, which supplies C functions dtoa and strtod for conversion of C doubles to and from strings,
is derived from the file of the same name by David M. Gay, currently available from http://www.netlib.org/fp/. The
original file, as retrieved on March 16, 2009, contains the following copyright and licensing notice:

/**
*

* The author of this software is David M. Gay.
*

* Copyright (c) 1991, 2000, 2001 by Lucent Technologies.

*

* Permission to use, copy, modify, and distribute this software for any

* purpose without fee is hereby granted, provided that this entire notice
is included in all copies of any software which is or includes a copy

* or modification of this software and in all copies of the supporting

* documentation for such software.

*

* THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR IMPLIED
* WARRANTY. IN PARTICULAR, NEITHER THE AUTHOR NOR LUCENT MAKES ANY

* REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE MERCHANTABILITY

* OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR PURPOSE.

***/

C.3.13 OpenSSL

The modules hashlib, posix, ss1, crypt use the OpenSSL library for added performance if made available by the
operating system. Additionally, the Windows and Mac OS X installers for Python may include a copy of the OpenSSL
libraries, so we include a copy of the OpenSSL license here:

LICENSE ISSUES

The OpenSSL toolkit stays under a dual license, i.e. both the conditions of
the OpenSSL License and the original SSLeay license apply to the toolkit.
See below for the actual license texts. Actually both licenses are BSD-style
Open Source licenses. In case of any license issues related to OpenSSL
please contact openssl-core@openssl.org.

OpenSSL License

/* - - - =

* Copyright (c) 1998-2008 The OpenSSL Project. All rights reserved.

(TH& ST Aol A1)

96 Appendix C. History and License

http://www.netlib.org/fp/

Extending and Embedding Python, £A| B{Z 3.6.15

(o] A sl o] A A M A%)

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in
the documentation and/or other materials provided with the
distribution.

3. All advertising materials mentioning features or use of this
software must display the following acknowledgment:
"This product includes software developed by the OpenSSL Project
for use in the OpenSSL Toolkit. (http://www.openssl.org/)"

4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
endorse or promote products derived from this software without
prior written permission. For written permission, please contact
openssl-corelopenssl.org.

5. Products derived from this software may not be called "OpenSSL"
nor may "OpenSSL" appear in their names without prior written
permission of the OpenSSL Project.

6. Redistributions of any form whatsoever must retain the following
acknowledgment:
"This product includes software developed by the OpenSSL Project
for use in the OpenSSL Toolkit (http://www.openssl.org/)"

THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT " "AS IS'' AND ANY
EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT

NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;

LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)

HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
OF THE POSSIBILITY OF SUCH DAMAGE.

This product includes cryptographic software written by Eric Young
(eay@cryptsoft.com). This product includes software written by Tim
Hudson (tjh@cryptsoft.com).

L I I A I N N S N IS S S S S i S N N R S S S N S S S T SN S N S S S T S ST S S N S N .

Original SSLeay License

/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)

(TH& ST Aol A1)

C.3. Licenses and Acknowledgements for Incorporated Software 97

Extending and Embedding Python, £ A| B{% 3.6.15

(o] A sl o] A A M A%)

EE I S S R I S S N S N S S S S S S e e . N S NS S S N T N S T TS S N S S S S S ST SN S S S S S S N

All rights reserved.

This package is an SSL implementation written
by Eric Young (eaylcryptsoft.com).
The implementation was written so as to conform with Netscapes SSL.

This library is free for commercial and non-commercial use as long as
the following conditions are aheared to. The following conditions
apply to all code found in this distribution, be it the RC4, RSA,
lhash, DES, etc., code; not just the SSL code. The SSL documentation
included with this distribution is covered by the same copyright terms
except that the holder is Tim Hudson (tjh@cryptsoft.com).

Copyright remains Eric Young's, and as such any Copyright notices in

the code are not to be removed.

If this package is used in a product, Eric Young should be given attribution
as the author of the parts of the library used.

This can be in the form of a textual message at program startup or

in documentation (online or textual) provided with the package.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
1. Redistributions of source code must retain the copyright
notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
3. All advertising materials mentioning features or use of this software
must display the following acknowledgement:
"This product includes cryptographic software written by
Eric Young (eay@cryptsoft.com)"
The word 'cryptographic' can be left out if the rouines from the library
being used are not cryptographic related :-).
4. If you include any Windows specific code (or a derivative thereof) from
the apps directory (application code) you must include an acknowledgement:
"This product includes software written by Tim Hudson (tjh@cryptsoft.com)"

THIS SOFTWARE IS PROVIDED BY ERIC YOUNG " "AS IS'' AND

ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS

OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

The licence and distribution terms for any publically available version or
derivative of this code cannot be changed. i.e. this code cannot simply be
copied and put under another distribution licence

[including the GNU Public Licence.]
/

98

Appendix C. History and License

Extending and Embedding Python, £A| B{Z 3.6.15

C.3.14 expat

The pyexpat extension is built using an included copy of the expat sources unless the build is configured
—-with-system-expat:

Copyright (c) 1998, 1999, 2000 Thai Open Source Software Center Ltd
and Clark Cooper

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

C.3.15 libffi

The _ctypes extension is built using an included copy of the libffi sources unless the build is configured
——with-system—-1ibffi:

Copyright (c) 1996-2008 Red Hat, Inc and others.

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software''), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED " "AS IS'', WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.

C.3. Licenses and Acknowledgements for Incorporated Software 99

Extending and Embedding Python, £ A| B{% 3.6.15

C.3.16 zlib

The z11ib extension is built using an included copy of the zlib sources if the zlib version found on the system is too old
to be used for the build:

Copyright (C) 1995-2011 Jean-loup Gailly and Mark Adler

This software is provided 'as-is', without any express or implied
warranty. In no event will the authors be held liable for any damages
arising from the use of this software.

Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it
freely, subject to the following restrictions:

1. The origin of this software must not be misrepresented; you must not
claim that you wrote the original software. If you use this software
in a product, an acknowledgment in the product documentation would be
appreciated but is not required.

2. Altered source versions must be plainly marked as such, and must not be
misrepresented as being the original software.

3. This notice may not be removed or altered from any source distribution.

Jean—-loup Gailly Mark Adler
jloup@gzip.org madler@alumni.caltech.edu

C.3.17 cfuhash

The implementation of the hash table used by the t racemalloc is based on the cfuhash project:

Copyright (c) 2005 Don Owens
All rights reserved.

This code is released under the BSD license:

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following
disclaimer in the documentation and/or other materials provided
with the distribution.

* Neither the name of the author nor the names of its
contributors may be used to endorse or promote products derived
from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS

(TH& ST Aol A1)

100 Appendix C. History and License

Extending and Embedding Python, £A| B{Z 3.6.15

(o] A sl o] A A M A%)

FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
OF THE POSSIBILITY OF SUCH DAMAGE.

C.3.18 libmpdec

The _decimal module is built using an included copy of the libmpdec library unless the build is configured
—-with-system-libmpdec:

Copyright (c) 2008-2016 Stefan Krah. All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS "AS IS" AND

ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. 1IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS

OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

C.3. Licenses and Acknowledgements for Incorporated Software 101

Extending and Embedding Python, £ A| B{% 3.6.15

102 Appendix C. History and License

APPENDIX D

sho] A3} o] EFRE o] AL
Copyright © 2001-2021 Python Software Foundation. All rights reserved.

Copyright © 2000 BeOpen.com. All rights reserved.

Copyright © 1995-2000 Corporation for National Research Initiatives. All rights reserved.
Copyright © 1991-1995 Stichting Mathematisch Centrum. All rights reserved.

AA 2ol Al W AR A A X = History and License ol A1 A& 3T},

=

103

Extending and Embedding Python, £ A| B{% 3.6.15

104 Appendix D. X z}#

1=
ro

Non-alphabetical

..., 09

2to3, 69

>>> 69

__ future_ ,73
__slots_ ,79

A

abstract base class (F

annotation, 69

argument (212}, 69

asynchronous context manager (9%
2E HAE A, 70

asynchronous generator (8] % 7] A # o]),
70

asynchronous generator iterator (¥] % 7]
Al alol e o]l g o] &), 70

asynchronous iterable (H]Z7] o]E & £), 70

asynchronous iterator (8]%7] o]Ed# o]&), 70

attribute (MEZHE), 70

awaitable (o]9J]°]E] &), 70

B

BDFL, 70

binary file (H}e]\g] 5+Y), 70
bytecode (H}o|E F &), 71
bytes—like object (H}o]EER

C

C-contiguous, 71

class (Ed), 71

class variable, 71

coercion (Zo]A), 71

complex number (B4%F), 71

context manager (DHX2E # A}, 71
contiguous (A%), 71

coroutine (ZFH), 71

Aol 2~ E), 69

7] Ad

— 1

24, 70

coroutine function (ZF¥ &), 71

CPython, 71

D

deallocation, object, 50
decorator (d|Zd °]H), 71
descriptor (H2ZHE), 72
dictionary (944 &), 72
dictionary view (94 yzg 1), 72
docstring (FAEH), 72
duck-typing (¥ Et°]3), 72

E

EAFP, 72
expression (X3 4]), 72

extension module (%3 EE§), 72

f-string (}”——E—Z]-oaﬂ), 72

file object (3} A, 72

file—-like object (F<F AXA), 73
finalization, of objects, 50

finder (3}Q1), 73

floor division (A4 =4, 73

Fortran contiguous, 71

function (&), 73

function annotation (&4 o]k H|o]A), 73

G

garbage collection (7FH]A] 7)), 73

generator, 73

generator (A & o] E), 73

generator expression,73

generator expression (AU #olH £34]), 73

generator iterator (Alv# e]¥ o]EdH o]¥]),73

generic function (AU g <), 74

GIL, 74

global interpreter lock (A ¥
=), 74

ol E] =

2l H

H

hashable (3] A] 7}%), 74

105

Extending and Embedding Python, £ A| B{% 3.6.15

IDLE, 74

immutable (%), 74

import path(YXE F=),74
importer (Y X ¥), 74
importing (Y *EH), 74
interactive (t)3+8), 74
interpreted (A E Z 2 E| L), 74
interpreter shutdown (AE =
iterable (°]E & &), 75
iterator (°]E @ o] E]), 75

K
key function (7] <), 75
keyword argument (Z]¥E A2}, 75

L

lambda (¥t}h), 75

LBYL, 75

list (B 2E),75

list comprehension (BE|2E AZEINA), 75
loader (29), 76

M

mapping (W§33), 76

meta path finder (WE}F FZ 5121 0H), 76

metaclass (HEF E3), 76

method (WA =), 76

method resolution order (WAE 2 A
76

module (X&), 76

module spec (RE 24 76

MRO, 76

mutable (7}9), 76

N

named tuple (M|Y9= F=),76
namespace (°]& &7, 76

YE £3), 74

A),

r4>

namespace package (0|5 &7t 371 A)), 76
nested scope (EF¥H 23 _—Z) 77
new-style class (72 EY Ed2), 77
object

deallocation, 50
finalization, 50
object (AA)), 77

F)

package (3 7] A1), 77

parameter (329), 77

path based finder (AZ 7|9l 5}l t), 78
path entry (F=E AEH), 77

path entry finder (AZ JQEF 32 49), 77
path entry hook (A =Z OﬂEE] =), 78
path-like object (AZF AA,7

PEP, 78

Philbrick, Geoff, 15

portion (EA), 78

positional argument (%] %] Q1A}), 78
provisional API (A API), 78
provisional package (ZFA 17| X)), 78
PyArg_ParseTuple (), 13
PyArg_ParseTupleAndKeywords (), 15
PyErr_Fetch (), 50

PyErr_Restore (), 50
PyInit_modulename (C &), 58
PyObject_CallObject (), 12

Python 3000 (Z}o] % 3000), 78
Pythonic (3}o] M), 78
PYTHONPATH, 58

Q

qualified name (B34 o] &), 78

R

READ_RESTRICTED, 53
READONLY, 53
reference count (%
regular package (&
repr

S A Y

RESTRICTED, 53

S

sequence (A]@2), 79

Z35),79
T 71 A), 79

single dispatch (AF Y29 x]), 79
slice (£8}o]2), 79
special method (E4 WA E), 79

statement (3,79
string

object representation,5l
struct sequence (FRA A|F2), 79

T

text encoding (Hl2~E Q137 d), 80

text file (H2E 5Y), 80

triple—quoted string (A& W% H EALY),
80

type (3), 80

type alias, 80

type hint, 80

universal newlines (FUHA & g7), 80

106

Extending and Embedding Python, £A| B{Z 3.6.15

Vv

variable annotation (HZ o] =g o]A), 80
virtual environment (7} 373), 81
virtual machine (7} 7] A), 81

W

WRITE_RESTRICTED, 53

X

ST g

repr, 51

Y

TN g S

PEP
PEP
PEP
PEP
PEP
PEP
PEP
PEP
PEP
PEP
PEP
PEP
PEP
PEP
PEP
PEP
PEP
PEP
PEP
PEP

B U4

1,78

238,73

278, 80

302, 73,76
343,71

362, 70,77
411,78
420,73,76,78
442,51
443,74
451,73
484,69, 73, 80, 81
489,11, 58
492,70,71
498,72
519,78
525,70
526, 69, 81
3116, 80
3155, 78

PYTHONPATH, 58

N

Zen of Python (Fto]# A), 81

107

	Recommended third party tools
	Creating extensions without third party tools
	Extending Python with C or C++
	Defining Extension Types: Tutorial
	Defining Extension Types: Assorted Topics
	Building C and C++ Extensions
	Building C and C++ Extensions on Windows

	Embedding the CPython runtime in a larger application
	Embedding Python in Another Application

	용어집
	About these documents
	Contributors to the Python Documentation

	History and License
	History of the software
	Terms and conditions for accessing or otherwise using Python
	Licenses and Acknowledgements for Incorporated Software

	저작권
	색인

