
Extending and Embedding Python
출시버전 3.6.15

Guido van Rossum
and the Python development team

9월 05, 2021

Contents

1 Recommended third party tools 3

2 Creating extensions without third party tools 5
2.1 Extending Python with C or C++ . 5
2.2 Defining Extension Types: Tutorial . 24
2.3 Defining Extension Types: Assorted Topics . 48
2.4 Building C and C++ Extensions . 58
2.5 Building C and C++ Extensions on Windows . 60

3 Embedding the CPython runtime in a larger application 63
3.1 Embedding Python in Another Application . 63

A 용어집 69

B About these documents 83
B.1 Contributors to the Python Documentation . 83

C History and License 85
C.1 History of the software . 85
C.2 Terms and conditions for accessing or otherwise using Python . 86
C.3 Licenses and Acknowledgements for Incorporated Software . 89

D 저작권 103

색인 105

i

ii

Extending and Embedding Python,출시버전 3.6.15

This document describes how to write modules in C or C++ to extend the Python interpreter with new modules. Those
modules can not only define new functions but also new object types and their methods. The document also describes how
to embed the Python interpreter in another application, for use as an extension language. Finally, it shows how to compile
and link extension modules so that they can be loaded dynamically (at run time) into the interpreter, if the underlying
operating system supports this feature.
This document assumes basic knowledge about Python. For an informal introduction to the language, see tutorial-index.
reference-index gives a more formal definition of the language. library-index documents the existing object types, func-
tions and modules (both built-in and written in Python) that give the language its wide application range.
For a detailed description of the whole Python/C API, see the separate c-api-index.

Contents 1

Extending and Embedding Python,출시버전 3.6.15

2 Contents

CHAPTER1

Recommended third party tools

This guide only covers the basic tools for creating extensions provided as part of this version of CPython. Third party
tools like Cython, cffi, SWIG and Numba offer both simpler and more sophisticated approaches to creating C and C++
extensions for Python.
더보기:

Python Packaging User Guide: Binary Extensions The Python Packaging User Guide not only covers several avail-
able tools that simplify the creation of binary extensions, but also discusses the various reasons why creating an
extension module may be desirable in the first place.

3

http://cython.org/
https://cffi.readthedocs.io
http://www.swig.org
https://numba.pydata.org/
https://packaging.python.org/en/latest/extensions/

Extending and Embedding Python,출시버전 3.6.15

4 Chapter 1. Recommended third party tools

CHAPTER2

Creating extensions without third party tools

This section of the guide covers creating C and C++ extensions without assistance from third party tools. It is intended
primarily for creators of those tools, rather than being a recommended way to create your own C extensions.

2.1 Extending Python with C or C++

It is quite easy to add new built-in modules to Python, if you know how to program in C. Such extension modules can do
two things that can’t be done directly in Python: they can implement new built-in object types, and they can call C library
functions and system calls.
To support extensions, the Python API (Application Programmers Interface) defines a set of functions, macros and vari-
ables that provide access to most aspects of the Python run-time system. The Python API is incorporated in a C source
file by including the header "Python.h".
The compilation of an extension module depends on its intended use as well as on your system setup; details are given in
later chapters.

참고: The C extension interface is specific to CPython, and extension modules do not work on other Python implemen-
tations. In many cases, it is possible to avoid writing C extensions and preserve portability to other implementations. For
example, if your use case is calling C library functions or system calls, you should consider using the ctypes module
or the cffi library rather than writing custom C code. These modules let you write Python code to interface with C code
and are more portable between implementations of Python than writing and compiling a C extension module.

5

https://cffi.readthedocs.org

Extending and Embedding Python,출시버전 3.6.15

2.1.1 A Simple Example

Let’s create an extension module called spam (the favorite food of Monty Python fans…) and let’s say we want to
create a Python interface to the C library function system()1. This function takes a null-terminated character string as
argument and returns an integer. We want this function to be callable from Python as follows:

>>> import spam
>>> status = spam.system("ls -l")

Begin by creating a file spammodule.c. (Historically, if a module is called spam, the C file containing its imple-
mentation is called spammodule.c; if the module name is very long, like spammify, the module name can be just
spammify.c.)
The first line of our file can be:

#include <Python.h>

which pulls in the Python API (you can add a comment describing the purpose of the module and a copyright notice if
you like).

참고: Since Python may define some pre-processor definitions which affect the standard headers on some systems, you
must include Python.h before any standard headers are included.

All user-visible symbols defined by Python.h have a prefix of Py or PY, except those defined in standard header files.
For convenience, and since they are used extensively by the Python interpreter, "Python.h" includes a few standard
header files: <stdio.h>, <string.h>, <errno.h>, and <stdlib.h>. If the latter header file does not exist on
your system, it declares the functions malloc(), free() and realloc() directly.
The next thing we add to our module file is the C function that will be called when the Python expression spam.
system(string) is evaluated (we’ll see shortly how it ends up being called):

static PyObject *
spam_system(PyObject *self, PyObject *args)
{

const char *command;
int sts;

if (!PyArg_ParseTuple(args, "s", &command))
return NULL;

sts = system(command);
return PyLong_FromLong(sts);

}

There is a straightforward translation from the argument list in Python (for example, the single expression "ls -l") to
the arguments passed to the C function. The C function always has two arguments, conventionally named self and args.
The self argument points to the module object for module-level functions; for a method it would point to the object
instance.
The args argument will be a pointer to a Python tuple object containing the arguments. Each item of the tuple corresponds
to an argument in the call’s argument list. The arguments are Python objects — in order to do anything with them in our
C function we have to convert them to C values. The function PyArg_ParseTuple() in the Python API checks the
argument types and converts them to C values. It uses a template string to determine the required types of the arguments
as well as the types of the C variables into which to store the converted values. More about this later.

1 An interface for this function already exists in the standard module os— it was chosen as a simple and straightforward example.

6 Chapter 2. Creating extensions without third party tools

Extending and Embedding Python,출시버전 3.6.15

PyArg_ParseTuple() returns true (nonzero) if all arguments have the right type and its components have been
stored in the variables whose addresses are passed. It returns false (zero) if an invalid argument list was passed. In the
latter case it also raises an appropriate exception so the calling function can return NULL immediately (as we saw in the
example).

2.1.2 Intermezzo: Errors and Exceptions

An important convention throughout the Python interpreter is the following: when a function fails, it should set an ex-
ception condition and return an error value (usually a NULL pointer). Exceptions are stored in a static global variable
inside the interpreter; if this variable is NULL no exception has occurred. A second global variable stores the《associated
value》 of the exception (the second argument to raise). A third variable contains the stack traceback in case the error
originated in Python code. These three variables are the C equivalents of the result in Python of sys.exc_info()
(see the section on module sys in the Python Library Reference). It is important to know about them to understand how
errors are passed around.
The Python API defines a number of functions to set various types of exceptions.
The most common one is PyErr_SetString(). Its arguments are an exception object and a C string. The exception
object is usually a predefined object like PyExc_ZeroDivisionError. The C string indicates the cause of the error
and is converted to a Python string object and stored as the 《associated value》 of the exception.
Another useful function is PyErr_SetFromErrno(), which only takes an exception argument and constructs the
associated value by inspection of the global variable errno. The most general function is PyErr_SetObject(),
which takes two object arguments, the exception and its associated value. You don’t need to Py_INCREF() the objects
passed to any of these functions.
You can test non-destructively whether an exception has been set with PyErr_Occurred(). This returns the current
exception object, or NULL if no exception has occurred. You normally don’t need to call PyErr_Occurred() to see
whether an error occurred in a function call, since you should be able to tell from the return value.
When a function f that calls another function g detects that the latter fails, f should itself return an error value (usually
NULL or -1). It should not call one of the PyErr_*() functions — one has already been called by g. f’s caller is
then supposed to also return an error indication to its caller, again without calling PyErr_*(), and so on — the most
detailed cause of the error was already reported by the function that first detected it. Once the error reaches the Python
interpreter’s main loop, this aborts the currently executing Python code and tries to find an exception handler specified
by the Python programmer.
(There are situations where a module can actually give a more detailed error message by calling another PyErr_*()
function, and in such cases it is fine to do so. As a general rule, however, this is not necessary, and can cause information
about the cause of the error to be lost: most operations can fail for a variety of reasons.)
To ignore an exception set by a function call that failed, the exception condition must be cleared explicitly by calling
PyErr_Clear(). The only time C code should call PyErr_Clear() is if it doesn’t want to pass the error on to
the interpreter but wants to handle it completely by itself (possibly by trying something else, or pretending nothing went
wrong).
Every failing malloc() call must be turned into an exception — the direct caller of malloc() (or realloc())
must call PyErr_NoMemory() and return a failure indicator itself. All the object-creating functions (for example,
PyLong_FromLong()) already do this, so this note is only relevant to those who call malloc() directly.
Also note that, with the important exception of PyArg_ParseTuple() and friends, functions that return an integer
status usually return a positive value or zero for success and -1 for failure, like Unix system calls.
Finally, be careful to clean up garbage (bymakingPy_XDECREF() orPy_DECREF() calls for objects you have already
created) when you return an error indicator!
The choice of which exception to raise is entirely yours. There are predeclared C objects corresponding to all built-in
Python exceptions, such as PyExc_ZeroDivisionError, which you can use directly. Of course, you should choose

2.1. Extending Python with C or C++ 7

Extending and Embedding Python,출시버전 3.6.15

exceptions wisely — don’t use PyExc_TypeError to mean that a file couldn’t be opened (that should probably be
PyExc_IOError). If something’s wrong with the argument list, the PyArg_ParseTuple() function usually raises
PyExc_TypeError. If you have an argument whose valuemust be in a particular range ormust satisfy other conditions,
PyExc_ValueError is appropriate.
You can also define a new exception that is unique to your module. For this, you usually declare a static object variable at
the beginning of your file:

static PyObject *SpamError;

and initialize it in your module’s initialization function (PyInit_spam()) with an exception object (leaving out the
error checking for now):

PyMODINIT_FUNC
PyInit_spam(void)
{

PyObject *m;

m = PyModule_Create(&spammodule);
if (m == NULL)

return NULL;

SpamError = PyErr_NewException("spam.error", NULL, NULL);
Py_INCREF(SpamError);
PyModule_AddObject(m, "error", SpamError);
return m;

}

Note that the Python name for the exception object is spam.error. The PyErr_NewException() function may
create a class with the base class being Exception (unless another class is passed in instead of NULL), described in
bltin-exceptions.
Note also that the SpamError variable retains a reference to the newly created exception class; this is intentional! Since
the exception could be removed from the module by external code, an owned reference to the class is needed to ensure
that it will not be discarded, causing SpamError to become a dangling pointer. Should it become a dangling pointer,
C code which raises the exception could cause a core dump or other unintended side effects.
We discuss the use of PyMODINIT_FUNC as a function return type later in this sample.
The spam.error exception can be raised in your extension module using a call to PyErr_SetString() as shown
below:

static PyObject *
spam_system(PyObject *self, PyObject *args)
{

const char *command;
int sts;

if (!PyArg_ParseTuple(args, "s", &command))
return NULL;

sts = system(command);
if (sts < 0) {

PyErr_SetString(SpamError, "System command failed");
return NULL;

}
return PyLong_FromLong(sts);

}

8 Chapter 2. Creating extensions without third party tools

Extending and Embedding Python,출시버전 3.6.15

2.1.3 Back to the Example

Going back to our example function, you should now be able to understand this statement:

if (!PyArg_ParseTuple(args, "s", &command))
return NULL;

It returns NULL (the error indicator for functions returning object pointers) if an error is detected in the argument list,
relying on the exception set by PyArg_ParseTuple(). Otherwise the string value of the argument has been copied
to the local variable command. This is a pointer assignment and you are not supposed to modify the string to which it
points (so in Standard C, the variable command should properly be declared as const char *command).
The next statement is a call to the Unix function system(), passing it the string we just got from
PyArg_ParseTuple():

sts = system(command);

Our spam.system() function must return the value of sts as a Python object. This is done using the function
PyLong_FromLong().

return PyLong_FromLong(sts);

In this case, it will return an integer object. (Yes, even integers are objects on the heap in Python!)
If you have a C function that returns no useful argument (a function returning void), the corresponding Python function
must return None. You need this idiom to do so (which is implemented by the Py_RETURN_NONE macro):

Py_INCREF(Py_None);
return Py_None;

Py_None is the C name for the special Python object None. It is a genuine Python object rather than a NULL pointer,
which means 《error》 in most contexts, as we have seen.

2.1.4 The Module’s Method Table and Initialization Function

I promised to show how spam_system() is called from Python programs. First, we need to list its name and address
in a 《method table》:

static PyMethodDef SpamMethods[] = {
...
{"system", spam_system, METH_VARARGS,
"Execute a shell command."},

...
{NULL, NULL, 0, NULL} /* Sentinel */

};

Note the third entry (METH_VARARGS). This is a flag telling the interpreter the calling convention to be used for the
C function. It should normally always be METH_VARARGS or METH_VARARGS | METH_KEYWORDS; a value of 0
means that an obsolete variant of PyArg_ParseTuple() is used.
When using only METH_VARARGS, the function should expect the Python-level parameters to be passed in as a tuple
acceptable for parsing via PyArg_ParseTuple(); more information on this function is provided below.
The METH_KEYWORDS bit may be set in the third field if keyword arguments should be passed to the function. In
this case, the C function should accept a third PyObject * parameter which will be a dictionary of keywords. Use
PyArg_ParseTupleAndKeywords() to parse the arguments to such a function.
The method table must be referenced in the module definition structure:

2.1. Extending Python with C or C++ 9

Extending and Embedding Python,출시버전 3.6.15

static struct PyModuleDef spammodule = {
PyModuleDef_HEAD_INIT,
"spam", /* name of module */
spam_doc, /* module documentation, may be NULL */
-1, /* size of per-interpreter state of the module,

or -1 if the module keeps state in global variables. */
SpamMethods

};

This structure, in turn, must be passed to the interpreter in the module’s initialization function. The initialization function
must be named PyInit_name(), where name is the name of the module, and should be the only non-static item
defined in the module file:

PyMODINIT_FUNC
PyInit_spam(void)
{

return PyModule_Create(&spammodule);
}

Note that PyMODINIT_FUNC declares the function as PyObject * return type, declares any special linkage decla-
rations required by the platform, and for C++ declares the function as extern "C".
When the Python program imports module spam for the first time, PyInit_spam() is called. (See below for com-
ments about embedding Python.) It calls PyModule_Create(), which returns a module object, and inserts built-in
function objects into the newly created module based upon the table (an array of PyMethodDef structures) found in
the module definition. PyModule_Create() returns a pointer to the module object that it creates. It may abort with
a fatal error for certain errors, or return NULL if the module could not be initialized satisfactorily. The init function must
return the module object to its caller, so that it then gets inserted into sys.modules.
When embedding Python, the PyInit_spam() function is not called automatically unless there’ s an entry in the
PyImport_Inittab table. To add the module to the initialization table, use PyImport_AppendInittab(),
optionally followed by an import of the module:

int
main(int argc, char *argv[])
{

wchar_t *program = Py_DecodeLocale(argv[0], NULL);
if (program == NULL) {

fprintf(stderr, "Fatal error: cannot decode argv[0]\n");
exit(1);

}

/* Add a built-in module, before Py_Initialize */
PyImport_AppendInittab("spam", PyInit_spam);

/* Pass argv[0] to the Python interpreter */
Py_SetProgramName(program);

/* Initialize the Python interpreter. Required. */
Py_Initialize();

/* Optionally import the module; alternatively,
import can be deferred until the embedded script
imports it. */

PyImport_ImportModule("spam");

...

(다음페이지에계속)

10 Chapter 2. Creating extensions without third party tools

Extending and Embedding Python,출시버전 3.6.15

(이전페이지에서계속)

PyMem_RawFree(program);
return 0;

}

참고: Removing entries fromsys.modules or importing compiledmodules intomultiple interpreters within a process
(or following a fork() without an intervening exec()) can create problems for some extension modules. Extension
module authors should exercise caution when initializing internal data structures.

A more substantial example module is included in the Python source distribution as Modules/xxmodule.c. This file
may be used as a template or simply read as an example.

참고: Unlike our spam example, xxmodule usesmulti-phase initialization (new in Python 3.5), where a PyModuleDef
structure is returned from PyInit_spam, and creation of the module is left to the import machinery. For details on
multi-phase initialization, see PEP 489.

2.1.5 Compilation and Linkage

There are two more things to do before you can use your new extension: compiling and linking it with the Python system.
If you use dynamic loading, the details may depend on the style of dynamic loading your system uses; see the chapters
about building extension modules (chapter Building C and C++ Extensions) and additional information that pertains only
to building on Windows (chapter Building C and C++ Extensions on Windows) for more information about this.
If you can’t use dynamic loading, or if you want to make your module a permanent part of the Python interpreter, you
will have to change the configuration setup and rebuild the interpreter. Luckily, this is very simple on Unix: just place
your file (spammodule.c for example) in the Modules/ directory of an unpacked source distribution, add a line to
the file Modules/Setup.local describing your file:

spam spammodule.o

and rebuild the interpreter by running make in the toplevel directory. You can also run make in the Modules/ sub-
directory, but then you must first rebuild Makefile there by running 〈makeMakefile〉. (This is necessary each time
you change the Setup file.)
If your module requires additional libraries to link with, these can be listed on the line in the configuration file as well, for
instance:

spam spammodule.o -lX11

2.1.6 Calling Python Functions from C

So far we have concentrated on making C functions callable from Python. The reverse is also useful: calling Python
functions from C. This is especially the case for libraries that support so-called 《callback》 functions. If a C interface
makes use of callbacks, the equivalent Python often needs to provide a callback mechanism to the Python programmer;
the implementation will require calling the Python callback functions from a C callback. Other uses are also imaginable.
Fortunately, the Python interpreter is easily called recursively, and there is a standard interface to call a Python function.
(I won’t dwell on how to call the Python parser with a particular string as input — if you’re interested, have a look at the
implementation of the -c command line option in Modules/main.c from the Python source code.)

2.1. Extending Python with C or C++ 11

https://www.python.org/dev/peps/pep-0489

Extending and Embedding Python,출시버전 3.6.15

Calling a Python function is easy. First, the Python program must somehow pass you the Python function object. You
should provide a function (or some other interface) to do this. When this function is called, save a pointer to the Python
function object (be careful to Py_INCREF() it!) in a global variable — or wherever you see fit. For example, the
following function might be part of a module definition:

static PyObject *my_callback = NULL;

static PyObject *
my_set_callback(PyObject *dummy, PyObject *args)
{

PyObject *result = NULL;
PyObject *temp;

if (PyArg_ParseTuple(args, "O:set_callback", &temp)) {
if (!PyCallable_Check(temp)) {

PyErr_SetString(PyExc_TypeError, "parameter must be callable");
return NULL;

}
Py_XINCREF(temp); /* Add a reference to new callback */
Py_XDECREF(my_callback); /* Dispose of previous callback */
my_callback = temp; /* Remember new callback */
/* Boilerplate to return "None" */
Py_INCREF(Py_None);
result = Py_None;

}
return result;

}

This function must be registered with the interpreter using the METH_VARARGS flag; this is described in section The
Module’s Method Table and Initialization Function. The PyArg_ParseTuple() function and its arguments are doc-
umented in section Extracting Parameters in Extension Functions.
The macros Py_XINCREF() and Py_XDECREF() increment/decrement the reference count of an object and are safe
in the presence of NULL pointers (but note that temp will not be NULL in this context). More info on them in section
Reference Counts.
Later, when it is time to call the function, you call the C function PyObject_CallObject(). This function has two
arguments, both pointers to arbitrary Python objects: the Python function, and the argument list. The argument list must
always be a tuple object, whose length is the number of arguments. To call the Python function with no arguments, pass
in NULL, or an empty tuple; to call it with one argument, pass a singleton tuple. Py_BuildValue() returns a tuple
when its format string consists of zero or more format codes between parentheses. For example:

int arg;
PyObject *arglist;
PyObject *result;
...
arg = 123;
...
/* Time to call the callback */
arglist = Py_BuildValue("(i)", arg);
result = PyObject_CallObject(my_callback, arglist);
Py_DECREF(arglist);

PyObject_CallObject() returns a Python object pointer: this is the return value of the Python func-
tion. PyObject_CallObject() is 《reference-count-neutral》 with respect to its arguments. In the exam-
ple a new tuple was created to serve as the argument list, which is Py_DECREF()-ed immediately after the
PyObject_CallObject() call.
The return value of PyObject_CallObject() is 《new》: either it is a brand new object, or it is an existing object

12 Chapter 2. Creating extensions without third party tools

Extending and Embedding Python,출시버전 3.6.15

whose reference count has been incremented. So, unless you want to save it in a global variable, you should somehow
Py_DECREF() the result, even (especially!) if you are not interested in its value.
Before you do this, however, it is important to check that the return value isn’ t NULL. If it is, the Python function
terminated by raising an exception. If the C code that called PyObject_CallObject() is called from Python,
it should now return an error indication to its Python caller, so the interpreter can print a stack trace, or the calling
Python code can handle the exception. If this is not possible or desirable, the exception should be cleared by calling
PyErr_Clear(). For example:

if (result == NULL)
return NULL; /* Pass error back */

...use result...
Py_DECREF(result);

Depending on the desired interface to the Python callback function, you may also have to provide an argument list to
PyObject_CallObject(). In some cases the argument list is also provided by the Python program, through the
same interface that specified the callback function. It can then be saved and used in the same manner as the function
object. In other cases, you may have to construct a new tuple to pass as the argument list. The simplest way to do this is
to call Py_BuildValue(). For example, if you want to pass an integral event code, you might use the following code:

PyObject *arglist;
...
arglist = Py_BuildValue("(l)", eventcode);
result = PyObject_CallObject(my_callback, arglist);
Py_DECREF(arglist);
if (result == NULL)

return NULL; /* Pass error back */
/* Here maybe use the result */
Py_DECREF(result);

Note the placement of Py_DECREF(arglist) immediately after the call, before the error check! Also note that
strictly speaking this code is not complete: Py_BuildValue() may run out of memory, and this should be checked.
You may also call a function with keyword arguments by using PyObject_Call(), which supports arguments and
keyword arguments. As in the above example, we use Py_BuildValue() to construct the dictionary.

PyObject *dict;
...
dict = Py_BuildValue("{s:i}", "name", val);
result = PyObject_Call(my_callback, NULL, dict);
Py_DECREF(dict);
if (result == NULL)

return NULL; /* Pass error back */
/* Here maybe use the result */
Py_DECREF(result);

2.1.7 Extracting Parameters in Extension Functions

The PyArg_ParseTuple() function is declared as follows:

int PyArg_ParseTuple(PyObject *arg, const char *format, ...);

The arg argument must be a tuple object containing an argument list passed from Python to a C function. The format
argument must be a format string, whose syntax is explained in arg-parsing in the Python/C API Reference Manual. The
remaining arguments must be addresses of variables whose type is determined by the format string.

2.1. Extending Python with C or C++ 13

Extending and Embedding Python,출시버전 3.6.15

Note that while PyArg_ParseTuple() checks that the Python arguments have the required types, it cannot check
the validity of the addresses of C variables passed to the call: if you make mistakes there, your code will probably crash
or at least overwrite random bits in memory. So be careful!
Note that any Python object references which are provided to the caller are borrowed references; do not decrement their
reference count!
Some example calls:

#define PY_SSIZE_T_CLEAN /* Make "s#" use Py_ssize_t rather than int. */
#include <Python.h>

int ok;
int i, j;
long k, l;
const char *s;
Py_ssize_t size;

ok = PyArg_ParseTuple(args, ""); /* No arguments */
/* Python call: f() */

ok = PyArg_ParseTuple(args, "s", &s); /* A string */
/* Possible Python call: f('whoops!') */

ok = PyArg_ParseTuple(args, "lls", &k, &l, &s); /* Two longs and a string */
/* Possible Python call: f(1, 2, 'three') */

ok = PyArg_ParseTuple(args, "(ii)s#", &i, &j, &s, &size);
/* A pair of ints and a string, whose size is also returned */
/* Possible Python call: f((1, 2), 'three') */

{
const char *file;
const char *mode = "r";
int bufsize = 0;
ok = PyArg_ParseTuple(args, "s|si", &file, &mode, &bufsize);
/* A string, and optionally another string and an integer */
/* Possible Python calls:

f('spam')
f('spam', 'w')
f('spam', 'wb', 100000) */

}

{
int left, top, right, bottom, h, v;
ok = PyArg_ParseTuple(args, "((ii)(ii))(ii)",

&left, &top, &right, &bottom, &h, &v);
/* A rectangle and a point */
/* Possible Python call:

f(((0, 0), (400, 300)), (10, 10)) */
}

{
Py_complex c;
ok = PyArg_ParseTuple(args, "D:myfunction", &c);
/* a complex, also providing a function name for errors */

(다음페이지에계속)

14 Chapter 2. Creating extensions without third party tools

Extending and Embedding Python,출시버전 3.6.15

(이전페이지에서계속)
/* Possible Python call: myfunction(1+2j) */

}

2.1.8 Keyword Parameters for Extension Functions

The PyArg_ParseTupleAndKeywords() function is declared as follows:

int PyArg_ParseTupleAndKeywords(PyObject *arg, PyObject *kwdict,
const char *format, char *kwlist[], ...);

The arg and format parameters are identical to those of the PyArg_ParseTuple() function. The kwdict parameter
is the dictionary of keywords received as the third parameter from the Python runtime. The kwlist parameter is a NULL-
terminated list of strings which identify the parameters; the names are matched with the type information from format
from left to right. On success, PyArg_ParseTupleAndKeywords() returns true, otherwise it returns false and
raises an appropriate exception.

참고: Nested tuples cannot be parsed when using keyword arguments! Keyword parameters passed in which are not
present in the kwlist will cause TypeError to be raised.

Here is an example module which uses keywords, based on an example by Geoff Philbrick (philbrick@hks.com):

#include "Python.h"

static PyObject *
keywdarg_parrot(PyObject *self, PyObject *args, PyObject *keywds)
{

int voltage;
char *state = "a stiff";
char *action = "voom";
char *type = "Norwegian Blue";

static char *kwlist[] = {"voltage", "state", "action", "type", NULL};

if (!PyArg_ParseTupleAndKeywords(args, keywds, "i|sss", kwlist,
&voltage, &state, &action, &type))

return NULL;

printf("-- This parrot wouldn't %s if you put %i Volts through it.\n",
action, voltage);

printf("-- Lovely plumage, the %s -- It's %s!\n", type, state);

Py_RETURN_NONE;
}

static PyMethodDef keywdarg_methods[] = {
/* The cast of the function is necessary since PyCFunction values
* only take two PyObject* parameters, and keywdarg_parrot() takes
* three.
*/

{"parrot", (PyCFunction)keywdarg_parrot, METH_VARARGS | METH_KEYWORDS,
"Print a lovely skit to standard output."},

{NULL, NULL, 0, NULL} /* sentinel */
};

(다음페이지에계속)

2.1. Extending Python with C or C++ 15

mailto:philbrick@hks.com

Extending and Embedding Python,출시버전 3.6.15

(이전페이지에서계속)

static struct PyModuleDef keywdargmodule = {
PyModuleDef_HEAD_INIT,
"keywdarg",
NULL,
-1,
keywdarg_methods

};

PyMODINIT_FUNC
PyInit_keywdarg(void)
{

return PyModule_Create(&keywdargmodule);
}

2.1.9 Building Arbitrary Values

This function is the counterpart to PyArg_ParseTuple(). It is declared as follows:

PyObject *Py_BuildValue(const char *format, ...);

It recognizes a set of format units similar to the ones recognized by PyArg_ParseTuple(), but the arguments (which
are input to the function, not output) must not be pointers, just values. It returns a new Python object, suitable for returning
from a C function called from Python.
One difference with PyArg_ParseTuple(): while the latter requires its first argument to be a tuple (since Python
argument lists are always represented as tuples internally), Py_BuildValue() does not always build a tuple. It builds
a tuple only if its format string contains two or more format units. If the format string is empty, it returns None; if it
contains exactly one format unit, it returns whatever object is described by that format unit. To force it to return a tuple
of size 0 or one, parenthesize the format string.
Examples (to the left the call, to the right the resulting Python value):

Py_BuildValue("") None
Py_BuildValue("i", 123) 123
Py_BuildValue("iii", 123, 456, 789) (123, 456, 789)
Py_BuildValue("s", "hello") 'hello'
Py_BuildValue("y", "hello") b'hello'
Py_BuildValue("ss", "hello", "world") ('hello', 'world')
Py_BuildValue("s#", "hello", 4) 'hell'
Py_BuildValue("y#", "hello", 4) b'hell'
Py_BuildValue("()") ()
Py_BuildValue("(i)", 123) (123,)
Py_BuildValue("(ii)", 123, 456) (123, 456)
Py_BuildValue("(i,i)", 123, 456) (123, 456)
Py_BuildValue("[i,i]", 123, 456) [123, 456]
Py_BuildValue("{s:i,s:i}",

"abc", 123, "def", 456) {'abc': 123, 'def': 456}
Py_BuildValue("((ii)(ii)) (ii)",

1, 2, 3, 4, 5, 6) (((1, 2), (3, 4)), (5, 6))

16 Chapter 2. Creating extensions without third party tools

Extending and Embedding Python,출시버전 3.6.15

2.1.10 Reference Counts

In languages like C or C++, the programmer is responsible for dynamic allocation and deallocation of memory on the
heap. In C, this is done using the functions malloc() and free(). In C++, the operators new and delete are used
with essentially the same meaning and we’ll restrict the following discussion to the C case.
Every block of memory allocated with malloc() should eventually be returned to the pool of available memory by
exactly one call to free(). It is important to call free() at the right time. If a block’s address is forgotten but
free() is not called for it, the memory it occupies cannot be reused until the program terminates. This is called a
memory leak. On the other hand, if a program calls free() for a block and then continues to use the block, it creates
a conflict with re-use of the block through another malloc() call. This is called using freed memory. It has the same
bad consequences as referencing uninitialized data — core dumps, wrong results, mysterious crashes.
Common causes of memory leaks are unusual paths through the code. For instance, a function may allocate a block of
memory, do some calculation, and then free the block again. Now a change in the requirements for the function may add
a test to the calculation that detects an error condition and can return prematurely from the function. It’s easy to forget
to free the allocated memory block when taking this premature exit, especially when it is added later to the code. Such
leaks, once introduced, often go undetected for a long time: the error exit is taken only in a small fraction of all calls,
and most modern machines have plenty of virtual memory, so the leak only becomes apparent in a long-running process
that uses the leaking function frequently. Therefore, it’s important to prevent leaks from happening by having a coding
convention or strategy that minimizes this kind of errors.
Since Python makes heavy use of malloc() and free(), it needs a strategy to avoid memory leaks as well as the
use of freed memory. The chosen method is called reference counting. The principle is simple: every object contains
a counter, which is incremented when a reference to the object is stored somewhere, and which is decremented when a
reference to it is deleted. When the counter reaches zero, the last reference to the object has been deleted and the object
is freed.
An alternative strategy is called automatic garbage collection. (Sometimes, reference counting is also referred to as a
garbage collection strategy, hence my use of 《automatic》 to distinguish the two.) The big advantage of automatic
garbage collection is that the user doesn’t need to call free() explicitly. (Another claimed advantage is an improvement
in speed or memory usage — this is no hard fact however.) The disadvantage is that for C, there is no truly portable
automatic garbage collector, while reference counting can be implemented portably (as long as the functions malloc()
and free() are available — which the C Standard guarantees). Maybe some day a sufficiently portable automatic
garbage collector will be available for C. Until then, we’ll have to live with reference counts.
While Python uses the traditional reference counting implementation, it also offers a cycle detector that works to detect
reference cycles. This allows applications to not worry about creating direct or indirect circular references; these are the
weakness of garbage collection implemented using only reference counting. Reference cycles consist of objects which
contain (possibly indirect) references to themselves, so that each object in the cycle has a reference count which is non-zero.
Typical reference counting implementations are not able to reclaim the memory belonging to any objects in a reference
cycle, or referenced from the objects in the cycle, even though there are no further references to the cycle itself.
The cycle detector is able to detect garbage cycles and can reclaim them. The gcmodule exposes a way to run the detector
(the collect() function), as well as configuration interfaces and the ability to disable the detector at runtime. The
cycle detector is considered an optional component; though it is included by default, it can be disabled at build time using
the --without-cycle-gc option to the configure script on Unix platforms (including Mac OS X). If the cycle
detector is disabled in this way, the gc module will not be available.

2.1. Extending Python with C or C++ 17

Extending and Embedding Python,출시버전 3.6.15

Reference Counting in Python

There are two macros, Py_INCREF(x) and Py_DECREF(x), which handle the incrementing and decrementing of
the reference count. Py_DECREF() also frees the object when the count reaches zero. For flexibility, it doesn’ t call
free() directly — rather, it makes a call through a function pointer in the object’s type object. For this purpose (and
others), every object also contains a pointer to its type object.
The big question now remains: when to use Py_INCREF(x) and Py_DECREF(x)? Let’s first introduce some terms.
Nobody 《owns》 an object; however, you can own a reference to an object. An object’s reference count is now defined
as the number of owned references to it. The owner of a reference is responsible for calling Py_DECREF() when the
reference is no longer needed. Ownership of a reference can be transferred. There are three ways to dispose of an owned
reference: pass it on, store it, or call Py_DECREF(). Forgetting to dispose of an owned reference creates a memory
leak.
It is also possible to borrow2 a reference to an object. The borrower of a reference should not call Py_DECREF(). The
borrower must not hold on to the object longer than the owner from which it was borrowed. Using a borrowed reference
after the owner has disposed of it risks using freed memory and should be avoided completely3.
The advantage of borrowing over owning a reference is that you don’t need to take care of disposing of the reference on
all possible paths through the code — in other words, with a borrowed reference you don’t run the risk of leaking when
a premature exit is taken. The disadvantage of borrowing over owning is that there are some subtle situations where in
seemingly correct code a borrowed reference can be used after the owner from which it was borrowed has in fact disposed
of it.
A borrowed reference can be changed into an owned reference by calling Py_INCREF(). This does not affect the
status of the owner from which the reference was borrowed — it creates a new owned reference, and gives full owner
responsibilities (the new owner must dispose of the reference properly, as well as the previous owner).

Ownership Rules

Whenever an object reference is passed into or out of a function, it is part of the function’s interface specification whether
ownership is transferred with the reference or not.
Most functions that return a reference to an object pass on ownership with the reference. In particular, all functions whose
function it is to create a new object, such as PyLong_FromLong() and Py_BuildValue(), pass ownership to the
receiver. Even if the object is not actually new, you still receive ownership of a new reference to that object. For instance,
PyLong_FromLong() maintains a cache of popular values and can return a reference to a cached item.
Many functions that extract objects from other objects also transfer ownership with the reference, for in-
stance PyObject_GetAttrString(). The picture is less clear, here, however, since a few com-
mon routines are exceptions: PyTuple_GetItem(), PyList_GetItem(), PyDict_GetItem(), and
PyDict_GetItemString() all return references that you borrow from the tuple, list or dictionary.
The function PyImport_AddModule() also returns a borrowed reference, even though it may actually create the
object it returns: this is possible because an owned reference to the object is stored in sys.modules.
When you pass an object reference into another function, in general, the function borrows the reference from you —
if it needs to store it, it will use Py_INCREF() to become an independent owner. There are exactly two important
exceptions to this rule: PyTuple_SetItem() and PyList_SetItem(). These functions take over ownership of
the item passed to them — even if they fail! (Note that PyDict_SetItem() and friends don’t take over ownership
— they are 《normal.》)
When a C function is called from Python, it borrows references to its arguments from the caller. The caller owns a
reference to the object, so the borrowed reference’s lifetime is guaranteed until the function returns. Only when such a
borrowed reference must be stored or passed on, it must be turned into an owned reference by calling Py_INCREF().

2 The metaphor of 《borrowing》 a reference is not completely correct: the owner still has a copy of the reference.
3 Checking that the reference count is at least 1 does not work— the reference count itself could be in freed memory and may thus be reused for

another object!

18 Chapter 2. Creating extensions without third party tools

Extending and Embedding Python,출시버전 3.6.15

The object reference returned from a C function that is called from Python must be an owned reference — ownership is
transferred from the function to its caller.

Thin Ice

There are a few situations where seemingly harmless use of a borrowed reference can lead to problems. These all have to
do with implicit invocations of the interpreter, which can cause the owner of a reference to dispose of it.
The first and most important case to know about is using Py_DECREF() on an unrelated object while borrowing a
reference to a list item. For instance:

void
bug(PyObject *list)
{

PyObject *item = PyList_GetItem(list, 0);

PyList_SetItem(list, 1, PyLong_FromLong(0L));
PyObject_Print(item, stdout, 0); /* BUG! */

}

This function first borrows a reference to list[0], then replaces list[1] with the value 0, and finally prints the
borrowed reference. Looks harmless, right? But it’s not!
Let’s follow the control flow into PyList_SetItem(). The list owns references to all its items, so when item 1 is
replaced, it has to dispose of the original item 1. Now let’s suppose the original item 1 was an instance of a user-defined
class, and let’s further suppose that the class defined a __del__() method. If this class instance has a reference count
of 1, disposing of it will call its __del__() method.
Since it is written in Python, the __del__()method can execute arbitrary Python code. Could it perhaps do something
to invalidate the reference to item in bug()? You bet! Assuming that the list passed into bug() is accessible to
the __del__() method, it could execute a statement to the effect of del list[0], and assuming this was the last
reference to that object, it would free the memory associated with it, thereby invalidating item.
The solution, once you know the source of the problem, is easy: temporarily increment the reference count. The correct
version of the function reads:

void
no_bug(PyObject *list)
{

PyObject *item = PyList_GetItem(list, 0);

Py_INCREF(item);
PyList_SetItem(list, 1, PyLong_FromLong(0L));
PyObject_Print(item, stdout, 0);
Py_DECREF(item);

}

This is a true story. An older version of Python contained variants of this bug and someone spent a considerable amount
of time in a C debugger to figure out why his __del__() methods would fail…
The second case of problems with a borrowed reference is a variant involving threads. Normally, multiple threads in
the Python interpreter can’ t get in each other’s way, because there is a global lock protecting Python’s entire object
space. However, it is possible to temporarily release this lock using the macro Py_BEGIN_ALLOW_THREADS, and to
re-acquire it using Py_END_ALLOW_THREADS. This is common around blocking I/O calls, to let other threads use the
processor while waiting for the I/O to complete. Obviously, the following function has the same problem as the previous
one:

2.1. Extending Python with C or C++ 19

Extending and Embedding Python,출시버전 3.6.15

void
bug(PyObject *list)
{

PyObject *item = PyList_GetItem(list, 0);
Py_BEGIN_ALLOW_THREADS
...some blocking I/O call...
Py_END_ALLOW_THREADS
PyObject_Print(item, stdout, 0); /* BUG! */

}

NULL Pointers

In general, functions that take object references as arguments do not expect you to pass them NULL pointers, and will
dump core (or cause later core dumps) if you do so. Functions that return object references generally return NULL only
to indicate that an exception occurred. The reason for not testing for NULL arguments is that functions often pass the
objects they receive on to other function— if each function were to test for NULL, there would be a lot of redundant tests
and the code would run more slowly.
It is better to test for NULL only at the 《source:》 when a pointer that may be NULL is received, for example, from
malloc() or from a function that may raise an exception.
The macros Py_INCREF() and Py_DECREF() do not check for NULL pointers — however, their variants
Py_XINCREF() and Py_XDECREF() do.
The macros for checking for a particular object type (Pytype_Check()) don’ t check for NULL pointers — again,
there is much code that calls several of these in a row to test an object against various different expected types, and this
would generate redundant tests. There are no variants with NULL checking.
The C function calling mechanism guarantees that the argument list passed to C functions (args in the examples) is
never NULL— in fact it guarantees that it is always a tuple4.
It is a severe error to ever let a NULL pointer 《escape》 to the Python user.

2.1.11 Writing Extensions in C++

It is possible to write extension modules in C++. Some restrictions apply. If the main program (the Python interpreter) is
compiled and linked by the C compiler, global or static objects with constructors cannot be used. This is not a problem
if the main program is linked by the C++ compiler. Functions that will be called by the Python interpreter (in particular,
module initialization functions) have to be declared using extern "C". It is unnecessary to enclose the Python header
files in extern "C" {...}— they use this form already if the symbol __cplusplus is defined (all recent C++
compilers define this symbol).

2.1.12 Providing a C API for an Extension Module

Many extension modules just provide new functions and types to be used from Python, but sometimes the code in an
extension module can be useful for other extension modules. For example, an extension module could implement a type
《collection》 which works like lists without order. Just like the standard Python list type has a C API which permits
extension modules to create and manipulate lists, this new collection type should have a set of C functions for direct
manipulation from other extension modules.
At first sight this seems easy: just write the functions (without declaring them static, of course), provide an appropriate
header file, and document the C API. And in fact this would work if all extension modules were always linked statically

4 These guarantees don’t hold when you use the 《old》 style calling convention — this is still found in much existing code.

20 Chapter 2. Creating extensions without third party tools

Extending and Embedding Python,출시버전 3.6.15

with the Python interpreter. When modules are used as shared libraries, however, the symbols defined in one module
may not be visible to another module. The details of visibility depend on the operating system; some systems use one
global namespace for the Python interpreter and all extension modules (Windows, for example), whereas others require
an explicit list of imported symbols at module link time (AIX is one example), or offer a choice of different strategies
(most Unices). And even if symbols are globally visible, the module whose functions one wishes to call might not have
been loaded yet!
Portability therefore requires not tomake any assumptions about symbol visibility. Thismeans that all symbols in extension
modules should be declared static, except for the module’s initialization function, in order to avoid name clashes with
other extension modules (as discussed in section The Module’s Method Table and Initialization Function). And it means
that symbols that should be accessible from other extension modules must be exported in a different way.
Python provides a special mechanism to pass C-level information (pointers) from one extension module to another one:
Capsules. A Capsule is a Python data type which stores a pointer (void *). Capsules can only be created and accessed
via their C API, but they can be passed around like any other Python object. In particular, they can be assigned to a name
in an extension module’s namespace. Other extension modules can then import this module, retrieve the value of this
name, and then retrieve the pointer from the Capsule.
There are many ways in which Capsules can be used to export the C API of an extension module. Each function could
get its own Capsule, or all C API pointers could be stored in an array whose address is published in a Capsule. And the
various tasks of storing and retrieving the pointers can be distributed in different ways between the module providing the
code and the client modules.
Whichever method you choose, it’s important to name your Capsules properly. The function PyCapsule_New()
takes a name parameter (const char *); you’re permitted to pass in a NULL name, but we strongly encourage you
to specify a name. Properly named Capsules provide a degree of runtime type-safety; there is no feasible way to tell one
unnamed Capsule from another.
In particular, Capsules used to expose C APIs should be given a name following this convention:

modulename.attributename

The convenience function PyCapsule_Import() makes it easy to load a C API provided via a Capsule, but only if
the Capsule’s name matches this convention. This behavior gives C API users a high degree of certainty that the Capsule
they load contains the correct C API.
The following example demonstrates an approach that puts most of the burden on the writer of the exporting module,
which is appropriate for commonly used library modules. It stores all C API pointers (just one in the example!) in an
array of void pointers which becomes the value of a Capsule. The header file corresponding to the module provides
a macro that takes care of importing the module and retrieving its C API pointers; client modules only have to call this
macro before accessing the C API.
The exporting module is a modification of the spam module from section A Simple Example. The function spam.
system() does not call the C library function system() directly, but a function PySpam_System(), which
would of course do something more complicated in reality (such as adding 《spam》 to every command). This func-
tion PySpam_System() is also exported to other extension modules.
The function PySpam_System() is a plain C function, declared static like everything else:

static int
PySpam_System(const char *command)
{

return system(command);
}

The function spam_system() is modified in a trivial way:

2.1. Extending Python with C or C++ 21

Extending and Embedding Python,출시버전 3.6.15

static PyObject *
spam_system(PyObject *self, PyObject *args)
{

const char *command;
int sts;

if (!PyArg_ParseTuple(args, "s", &command))
return NULL;

sts = PySpam_System(command);
return PyLong_FromLong(sts);

}

In the beginning of the module, right after the line

#include "Python.h"

two more lines must be added:

#define SPAM_MODULE
#include "spammodule.h"

The #define is used to tell the header file that it is being included in the exporting module, not a client module. Finally,
the module’s initialization function must take care of initializing the C API pointer array:

PyMODINIT_FUNC
PyInit_spam(void)
{

PyObject *m;
static void *PySpam_API[PySpam_API_pointers];
PyObject *c_api_object;

m = PyModule_Create(&spammodule);
if (m == NULL)

return NULL;

/* Initialize the C API pointer array */
PySpam_API[PySpam_System_NUM] = (void *)PySpam_System;

/* Create a Capsule containing the API pointer array's address */
c_api_object = PyCapsule_New((void *)PySpam_API, "spam._C_API", NULL);

if (c_api_object != NULL)
PyModule_AddObject(m, "_C_API", c_api_object);

return m;
}

Note that PySpam_API is declared static; otherwise the pointer array would disappear when PyInit_spam()
terminates!
The bulk of the work is in the header file spammodule.h, which looks like this:

#ifndef Py_SPAMMODULE_H
#define Py_SPAMMODULE_H
#ifdef __cplusplus
extern "C" {
#endif

(다음페이지에계속)

22 Chapter 2. Creating extensions without third party tools

Extending and Embedding Python,출시버전 3.6.15

(이전페이지에서계속)
/* Header file for spammodule */

/* C API functions */
#define PySpam_System_NUM 0
#define PySpam_System_RETURN int
#define PySpam_System_PROTO (const char *command)

/* Total number of C API pointers */
#define PySpam_API_pointers 1

#ifdef SPAM_MODULE
/* This section is used when compiling spammodule.c */

static PySpam_System_RETURN PySpam_System PySpam_System_PROTO;

#else
/* This section is used in modules that use spammodule's API */

static void **PySpam_API;

#define PySpam_System \
(*(PySpam_System_RETURN (*)PySpam_System_PROTO) PySpam_API[PySpam_System_NUM])

/* Return -1 on error, 0 on success.
* PyCapsule_Import will set an exception if there's an error.
*/

static int
import_spam(void)
{

PySpam_API = (void **)PyCapsule_Import("spam._C_API", 0);
return (PySpam_API != NULL) ? 0 : -1;

}

#endif

#ifdef __cplusplus
}
#endif

#endif /* !defined(Py_SPAMMODULE_H) */

All that a client module must do in order to have access to the function PySpam_System() is to call the function (or
rather macro) import_spam() in its initialization function:

PyMODINIT_FUNC
PyInit_client(void)
{

PyObject *m;

m = PyModule_Create(&clientmodule);
if (m == NULL)

return NULL;
if (import_spam() < 0)

return NULL;
/* additional initialization can happen here */

(다음페이지에계속)

2.1. Extending Python with C or C++ 23

Extending and Embedding Python,출시버전 3.6.15

(이전페이지에서계속)
return m;

}

The main disadvantage of this approach is that the file spammodule.h is rather complicated. However, the basic
structure is the same for each function that is exported, so it has to be learned only once.
Finally it should be mentioned that Capsules offer additional functionality, which is especially useful for memory al-
location and deallocation of the pointer stored in a Capsule. The details are described in the Python/C API Reference
Manual in the section capsules and in the implementation of Capsules (files Include/pycapsule.h and Objects/
pycapsule.c in the Python source code distribution).

2.2 Defining Extension Types: Tutorial

Python allows the writer of a C extension module to define new types that can be manipulated from Python code, much
like the built-in str and list types. The code for all extension types follows a pattern, but there are some details that
you need to understand before you can get started. This document is a gentle introduction to the topic.

2.2.1 The Basics

The CPython runtime sees all Python objects as variables of type PyObject*, which serves as a 《base type》 for all
Python objects. The PyObject structure itself only contains the object’s reference count and a pointer to the object’s
《type object》. This is where the action is; the type object determines which (C) functions get called by the interpreter
when, for instance, an attribute gets looked up on an object, a method called, or it is multiplied by another object. These
C functions are called 《type methods》.
So, if you want to define a new extension type, you need to create a new type object.
This sort of thing can only be explained by example, so here’s a minimal, but complete, module that defines a new type
named Custom inside a C extension module custom:

참고: What we’re showing here is the traditional way of defining static extension types. It should be adequate for most
uses. The C API also allows defining heap-allocated extension types using the PyType_FromSpec() function, which
isn’t covered in this tutorial.

#include <Python.h>

typedef struct {
PyObject_HEAD
/* Type-specific fields go here. */

} CustomObject;

static PyTypeObject CustomType = {
PyVarObject_HEAD_INIT(NULL, 0)
.tp_name = "custom.Custom",
.tp_doc = "Custom objects",
.tp_basicsize = sizeof(CustomObject),
.tp_itemsize = 0,
.tp_flags = Py_TPFLAGS_DEFAULT,
.tp_new = PyType_GenericNew,

};

(다음페이지에계속)

24 Chapter 2. Creating extensions without third party tools

Extending and Embedding Python,출시버전 3.6.15

(이전페이지에서계속)
static PyModuleDef custommodule = {

PyModuleDef_HEAD_INIT,
.m_name = "custom",
.m_doc = "Example module that creates an extension type.",
.m_size = -1,

};

PyMODINIT_FUNC
PyInit_custom(void)
{

PyObject *m;
if (PyType_Ready(&CustomType) < 0)

return NULL;

m = PyModule_Create(&custommodule);
if (m == NULL)

return NULL;

Py_INCREF(&CustomType);
PyModule_AddObject(m, "Custom", (PyObject *) &CustomType);
return m;

}

Now that’s quite a bit to take in at once, but hopefully bits will seem familiar from the previous chapter. This file defines
three things:

1. What a Custom object contains: this is the CustomObject struct, which is allocated once for each Custom
instance.

2. How the Custom type behaves: this is the CustomType struct, which defines a set of flags and function pointers
that the interpreter inspects when specific operations are requested.

3. How to initialize the custom module: this is the PyInit_custom function and the associated
custommodule struct.

The first bit is:

typedef struct {
PyObject_HEAD

} CustomObject;

This is what a Custom object will contain. PyObject_HEAD is mandatory at the start of each object struct and defines
a field called ob_base of type PyObject, containing a pointer to a type object and a reference count (these can be
accessed using the macros Py_REFCNT and Py_TYPE respectively). The reason for the macro is to abstract away the
layout and to enable additional fields in debug builds.

참고: There is no semicolon above after the PyObject_HEAD macro. Be wary of adding one by accident: some
compilers will complain.

Of course, objects generally store additional data besides the standard PyObject_HEAD boilerplate; for example, here
is the definition for standard Python floats:

typedef struct {
PyObject_HEAD
double ob_fval;

} PyFloatObject;

2.2. Defining Extension Types: Tutorial 25

Extending and Embedding Python,출시버전 3.6.15

The second bit is the definition of the type object.

static PyTypeObject CustomType = {
PyVarObject_HEAD_INIT(NULL, 0)
.tp_name = "custom.Custom",
.tp_doc = "Custom objects",
.tp_basicsize = sizeof(CustomObject),
.tp_itemsize = 0,
.tp_new = PyType_GenericNew,

};

참고: We recommend using C99-style designated initializers as above, to avoid listing all the PyTypeObject fields
that you don’t care about and also to avoid caring about the fields〉 declaration order.

The actual definition of PyTypeObject in object.h has many more fields than the definition above. The remaining
fields will be filled with zeros by the C compiler, and it’s common practice to not specify them explicitly unless you need
them.
We’re going to pick it apart, one field at a time:

PyVarObject_HEAD_INIT(NULL, 0)

This line is mandatory boilerplate to initialize the ob_base field mentioned above.

.tp_name = "custom.Custom",

The name of our type. This will appear in the default textual representation of our objects and in some error messages,
for example:

>>> "" + custom.Custom()
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
TypeError: can only concatenate str (not "custom.Custom") to str

Note that the name is a dotted name that includes both the module name and the name of the type within the module.
The module in this case is custom and the type is Custom, so we set the type name to custom.Custom. Using the
real dotted import path is important to make your type compatible with the pydoc and pickle modules.

.tp_basicsize = sizeof(CustomObject),

.tp_itemsize = 0,

This is so that Python knows how much memory to allocate when creating new Custom instances. tp_itemsize is
only used for variable-sized objects and should otherwise be zero.

참고: If you want your type to be subclassable from Python, and your type has the same tp_basicsize as its base
type, you may have problems with multiple inheritance. A Python subclass of your type will have to list your type first in
its __bases__, or else it will not be able to call your type’s __new__() method without getting an error. You can
avoid this problem by ensuring that your type has a larger value for tp_basicsize than its base type does. Most of the
time, this will be true anyway, because either your base type will be object, or else you will be adding data members
to your base type, and therefore increasing its size.

We set the class flags to Py_TPFLAGS_DEFAULT.

26 Chapter 2. Creating extensions without third party tools

Extending and Embedding Python,출시버전 3.6.15

.tp_flags = Py_TPFLAGS_DEFAULT,

All types should include this constant in their flags. It enables all of the members defined until at least Python 3.3. If you
need further members, you will need to OR the corresponding flags.
We provide a doc string for the type in tp_doc.

.tp_doc = "Custom objects",

To enable object creation, we have to provide a tp_new handler. This is the equivalent of the Python method
__new__(), but has to be specified explicitly. In this case, we can just use the default implementation provided by
the API function PyType_GenericNew().

.tp_new = PyType_GenericNew,

Everything else in the file should be familiar, except for some code in PyInit_custom():

if (PyType_Ready(&CustomType) < 0)
return;

This initializes the Custom type, filling in a number of members to the appropriate default values, including ob_type
that we initially set to NULL.

PyModule_AddObject(m, "Custom", (PyObject *) &CustomType);

This adds the type to the module dictionary. This allows us to create Custom instances by calling the Custom class:

>>> import custom
>>> mycustom = custom.Custom()

That’s it! All that remains is to build it; put the above code in a file called custom.c and:

from distutils.core import setup, Extension
setup(name="custom", version="1.0",

ext_modules=[Extension("custom", ["custom.c"])])

in a file called setup.py; then typing

$ python setup.py build

at a shell should produce a file custom.so in a subdirectory; move to that directory and fire up Python — you should
be able to import custom and play around with Custom objects.
That wasn’t so hard, was it?
Of course, the current Custom type is pretty uninteresting. It has no data and doesn’ t do anything. It can’ t even be
subclassed.

참고: While this documentation showcases the standard distutils module for building C extensions, it is recom-
mended in real-world use cases to use the newer and better-maintained setuptools library. Documentation on how
to do this is out of scope for this document and can be found in the Python Packaging User’s Guide.

2.2. Defining Extension Types: Tutorial 27

https://packaging.python.org/tutorials/distributing-packages/

Extending and Embedding Python,출시버전 3.6.15

2.2.2 Adding data and methods to the Basic example

Let’s extend the basic example to add some data and methods. Let’s also make the type usable as a base class. We’ ll
create a new module, custom2 that adds these capabilities:

#include <Python.h>
#include "structmember.h"

typedef struct {
PyObject_HEAD
PyObject *first; /* first name */
PyObject *last; /* last name */
int number;

} CustomObject;

static void
Custom_dealloc(CustomObject *self)
{

Py_XDECREF(self->first);
Py_XDECREF(self->last);
Py_TYPE(self)->tp_free((PyObject *) self);

}

static PyObject *
Custom_new(PyTypeObject *type, PyObject *args, PyObject *kwds)
{

CustomObject *self;
self = (CustomObject *) type->tp_alloc(type, 0);
if (self != NULL) {

self->first = PyUnicode_FromString("");
if (self->first == NULL) {

Py_DECREF(self);
return NULL;

}
self->last = PyUnicode_FromString("");
if (self->last == NULL) {

Py_DECREF(self);
return NULL;

}
self->number = 0;

}
return (PyObject *) self;

}

static int
Custom_init(CustomObject *self, PyObject *args, PyObject *kwds)
{

static char *kwlist[] = {"first", "last", "number", NULL};
PyObject *first = NULL, *last = NULL, *tmp;

if (!PyArg_ParseTupleAndKeywords(args, kwds, "|OOi", kwlist,
&first, &last,
&self->number))

return -1;

if (first) {
tmp = self->first;
Py_INCREF(first);

(다음페이지에계속)

28 Chapter 2. Creating extensions without third party tools

Extending and Embedding Python,출시버전 3.6.15

(이전페이지에서계속)
self->first = first;
Py_XDECREF(tmp);

}
if (last) {

tmp = self->last;
Py_INCREF(last);
self->last = last;
Py_XDECREF(tmp);

}
return 0;

}

static PyMemberDef Custom_members[] = {
{"first", T_OBJECT_EX, offsetof(CustomObject, first), 0,
"first name"},

{"last", T_OBJECT_EX, offsetof(CustomObject, last), 0,
"last name"},

{"number", T_INT, offsetof(CustomObject, number), 0,
"custom number"},

{NULL} /* Sentinel */
};

static PyObject *
Custom_name(CustomObject *self, PyObject *Py_UNUSED(ignored))
{

if (self->first == NULL) {
PyErr_SetString(PyExc_AttributeError, "first");
return NULL;

}
if (self->last == NULL) {

PyErr_SetString(PyExc_AttributeError, "last");
return NULL;

}
return PyUnicode_FromFormat("%S %S", self->first, self->last);

}

static PyMethodDef Custom_methods[] = {
{"name", (PyCFunction) Custom_name, METH_NOARGS,
"Return the name, combining the first and last name"

},
{NULL} /* Sentinel */

};

static PyTypeObject CustomType = {
PyVarObject_HEAD_INIT(NULL, 0)
.tp_name = "custom2.Custom",
.tp_doc = "Custom objects",
.tp_basicsize = sizeof(CustomObject),
.tp_itemsize = 0,
.tp_flags = Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE,
.tp_new = Custom_new,
.tp_init = (initproc) Custom_init,
.tp_dealloc = (destructor) Custom_dealloc,
.tp_members = Custom_members,
.tp_methods = Custom_methods,

};

(다음페이지에계속)

2.2. Defining Extension Types: Tutorial 29

Extending and Embedding Python,출시버전 3.6.15

(이전페이지에서계속)

static PyModuleDef custommodule = {
PyModuleDef_HEAD_INIT,
.m_name = "custom2",
.m_doc = "Example module that creates an extension type.",
.m_size = -1,

};

PyMODINIT_FUNC
PyInit_custom2(void)
{

PyObject *m;
if (PyType_Ready(&CustomType) < 0)

return NULL;

m = PyModule_Create(&custommodule);
if (m == NULL)

return NULL;

Py_INCREF(&CustomType);
PyModule_AddObject(m, "Custom", (PyObject *) &CustomType);
return m;

}

This version of the module has a number of changes.
We’ve added an extra include:

#include <structmember.h>

This include provides declarations that we use to handle attributes, as described a bit later.
The Custom type now has three data attributes in its C struct, first, last, and number. The first and last variables are
Python strings containing first and last names. The number attribute is a C integer.
The object structure is updated accordingly:

typedef struct {
PyObject_HEAD
PyObject *first; /* first name */
PyObject *last; /* last name */
int number;

} CustomObject;

Because we now have data to manage, we have to be more careful about object allocation and deallocation. At a minimum,
we need a deallocation method:

static void
Custom_dealloc(CustomObject *self)
{

Py_XDECREF(self->first);
Py_XDECREF(self->last);
Py_TYPE(self)->tp_free((PyObject *) self);

}

which is assigned to the tp_dealloc member:

30 Chapter 2. Creating extensions without third party tools

Extending and Embedding Python,출시버전 3.6.15

.tp_dealloc = (destructor) Custom_dealloc,

This method first clears the reference counts of the two Python attributes. Py_XDECREF() correctly handles the case
where its argument is NULL (which might happen here if tp_new failed midway). It then calls the tp_free member
of the object’s type (computed by Py_TYPE(self)) to free the object’s memory. Note that the object’s type might
not be CustomType, because the object may be an instance of a subclass.

참고 : The explicit cast to destructor above is needed because we defined Custom_dealloc to take a
CustomObject * argument, but the tp_dealloc function pointer expects to receive a PyObject * argument.
Otherwise, the compiler will emit a warning. This is object-oriented polymorphism, in C!

We want to make sure that the first and last names are initialized to empty strings, so we provide a tp_new implemen-
tation:

static PyObject *
Custom_new(PyTypeObject *type, PyObject *args, PyObject *kwds)
{

CustomObject *self;
self = (CustomObject *) type->tp_alloc(type, 0);
if (self != NULL) {

self->first = PyUnicode_FromString("");
if (self->first == NULL) {

Py_DECREF(self);
return NULL;

}
self->last = PyUnicode_FromString("");
if (self->last == NULL) {

Py_DECREF(self);
return NULL;

}
self->number = 0;

}
return (PyObject *) self;

}

and install it in the tp_new member:

.tp_new = Custom_new,

The tp_new handler is responsible for creating (as opposed to initializing) objects of the type. It is exposed in Python
as the __new__() method. It is not required to define a tp_new member, and indeed many extension types will
simply reuse PyType_GenericNew() as done in the first version of the Custom type above. In this case, we use
the tp_new handler to initialize the first and last attributes to non-NULL default values.
tp_new is passed the type being instantiated (not necessarily CustomType, if a subclass is instantiated) and any
arguments passed when the type was called, and is expected to return the instance created. tp_new handlers always
accept positional and keyword arguments, but they often ignore the arguments, leaving the argument handling to initializer
(a.k.a. tp_init in C or __init__ in Python) methods.

참고: tp_new shouldn’t call tp_init explicitly, as the interpreter will do it itself.

The tp_new implementation calls the tp_alloc slot to allocate memory:

2.2. Defining Extension Types: Tutorial 31

Extending and Embedding Python,출시버전 3.6.15

self = (CustomObject *) type->tp_alloc(type, 0);

Since memory allocation may fail, we must check the tp_alloc result against NULL before proceeding.

참고: We didn’t fill the tp_alloc slot ourselves. Rather PyType_Ready() fills it for us by inheriting it from our
base class, which is object by default. Most types use the default allocation strategy.

참고: If you are creating a co-operative tp_new (one that calls a base type’s tp_new or __new__()), you must
not try to determine what method to call using method resolution order at runtime. Always statically determine what type
you are going to call, and call its tp_new directly, or via type->tp_base->tp_new. If you do not do this, Python
subclasses of your type that also inherit from other Python-defined classes may not work correctly. (Specifically, you may
not be able to create instances of such subclasses without getting a TypeError.)

We also define an initialization function which accepts arguments to provide initial values for our instance:

static int
Custom_init(CustomObject *self, PyObject *args, PyObject *kwds)
{

static char *kwlist[] = {"first", "last", "number", NULL};
PyObject *first = NULL, *last = NULL, *tmp;

if (!PyArg_ParseTupleAndKeywords(args, kwds, "|OOi", kwlist,
&first, &last,
&self->number))

return -1;

if (first) {
tmp = self->first;
Py_INCREF(first);
self->first = first;
Py_XDECREF(tmp);

}
if (last) {

tmp = self->last;
Py_INCREF(last);
self->last = last;
Py_XDECREF(tmp);

}
return 0;

}

by filling the tp_init slot.

.tp_init = (initproc) Custom_init,

The tp_init slot is exposed in Python as the __init__()method. It is used to initialize an object after it’s created.
Initializers always accept positional and keyword arguments, and they should return either 0 on success or -1 on error.
Unlike the tp_new handler, there is no guarantee that tp_init is called at all (for example, the pickle module by
default doesn’ t call __init__() on unpickled instances). It can also be called multiple times. Anyone can call the
__init__() method on our objects. For this reason, we have to be extra careful when assigning the new attribute
values. We might be tempted, for example to assign the first member like this:

32 Chapter 2. Creating extensions without third party tools

Extending and Embedding Python,출시버전 3.6.15

if (first) {
Py_XDECREF(self->first);
Py_INCREF(first);
self->first = first;

}

But this would be risky. Our type doesn’t restrict the type of the first member, so it could be any kind of object. It
could have a destructor that causes code to be executed that tries to access the first member; or that destructor could
release the Global interpreter Lock and let arbitrary code run in other threads that accesses and modifies our object.
To be paranoid and protect ourselves against this possibility, we almost always reassign members before decrementing
their reference counts. When don’t we have to do this?

• when we absolutely know that the reference count is greater than 1;
• when we know that deallocation of the object1 will neither release the GIL nor cause any calls back into our type’s
code;

• when decrementing a reference count in a tp_dealloc handler on a type which doesn’t support cyclic garbage
collection2.

We want to expose our instance variables as attributes. There are a number of ways to do that. The simplest way is to
define member definitions:

static PyMemberDef Custom_members[] = {
{"first", T_OBJECT_EX, offsetof(CustomObject, first), 0,
"first name"},

{"last", T_OBJECT_EX, offsetof(CustomObject, last), 0,
"last name"},

{"number", T_INT, offsetof(CustomObject, number), 0,
"custom number"},

{NULL} /* Sentinel */
};

and put the definitions in the tp_members slot:

.tp_members = Custom_members,

Each member definition has a member name, type, offset, access flags and documentation string. See theGeneric Attribute
Management section below for details.
A disadvantage of this approach is that it doesn’t provide a way to restrict the types of objects that can be assigned to the
Python attributes. We expect the first and last names to be strings, but any Python objects can be assigned. Further, the
attributes can be deleted, setting the C pointers to NULL. Even though we can make sure the members are initialized to
non-NULL values, the members can be set to NULL if the attributes are deleted.
We define a single method, Custom.name(), that outputs the objects name as the concatenation of the first and last
names.

static PyObject *
Custom_name(CustomObject *self)
{

if (self->first == NULL) {
PyErr_SetString(PyExc_AttributeError, "first");
return NULL;

}

(다음페이지에계속)
1 This is true when we know that the object is a basic type, like a string or a float.
2 We relied on this in the tp_dealloc handler in this example, because our type doesn’t support garbage collection.

2.2. Defining Extension Types: Tutorial 33

Extending and Embedding Python,출시버전 3.6.15

(이전페이지에서계속)
if (self->last == NULL) {

PyErr_SetString(PyExc_AttributeError, "last");
return NULL;

}
return PyUnicode_FromFormat("%S %S", self->first, self->last);

}

The method is implemented as a C function that takes a Custom (or Custom subclass) instance as the first argument.
Methods always take an instance as the first argument. Methods often take positional and keyword arguments as well, but
in this case we don’t take any and don’t need to accept a positional argument tuple or keyword argument dictionary. This
method is equivalent to the Python method:

def name(self):
return "%s %s" % (self.first, self.last)

Note that we have to check for the possibility that our first and last members are NULL. This is because they can
be deleted, in which case they are set to NULL. It would be better to prevent deletion of these attributes and to restrict
the attribute values to be strings. We’ll see how to do that in the next section.
Now that we’ve defined the method, we need to create an array of method definitions:

static PyMethodDef Custom_methods[] = {
{"name", (PyCFunction) Custom_name, METH_NOARGS,
"Return the name, combining the first and last name"

},
{NULL} /* Sentinel */

};

(note that we used the METH_NOARGS flag to indicate that the method is expecting no arguments other than self)
and assign it to the tp_methods slot:

.tp_methods = Custom_methods,

Finally, we’ ll make our type usable as a base class for subclassing. We’ve written our methods carefully so far so that
they don’t make any assumptions about the type of the object being created or used, so all we need to do is to add the
Py_TPFLAGS_BASETYPE to our class flag definition:

.tp_flags = Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE,

We rename PyInit_custom() to PyInit_custom2(), update the module name in the PyModuleDef struct,
and update the full class name in the PyTypeObject struct.
Finally, we update our setup.py file to build the new module:

from distutils.core import setup, Extension
setup(name="custom", version="1.0",

ext_modules=[
Extension("custom", ["custom.c"]),
Extension("custom2", ["custom2.c"]),
])

34 Chapter 2. Creating extensions without third party tools

Extending and Embedding Python,출시버전 3.6.15

2.2.3 Providing finer control over data attributes

In this section, we’ll provide finer control over how the first and last attributes are set in the Custom example. In
the previous version of our module, the instance variables first and last could be set to non-string values or even
deleted. We want to make sure that these attributes always contain strings.

#include <Python.h>
#include "structmember.h"

typedef struct {
PyObject_HEAD
PyObject *first; /* first name */
PyObject *last; /* last name */
int number;

} CustomObject;

static void
Custom_dealloc(CustomObject *self)
{

Py_XDECREF(self->first);
Py_XDECREF(self->last);
Py_TYPE(self)->tp_free((PyObject *) self);

}

static PyObject *
Custom_new(PyTypeObject *type, PyObject *args, PyObject *kwds)
{

CustomObject *self;
self = (CustomObject *) type->tp_alloc(type, 0);
if (self != NULL) {

self->first = PyUnicode_FromString("");
if (self->first == NULL) {

Py_DECREF(self);
return NULL;

}
self->last = PyUnicode_FromString("");
if (self->last == NULL) {

Py_DECREF(self);
return NULL;

}
self->number = 0;

}
return (PyObject *) self;

}

static int
Custom_init(CustomObject *self, PyObject *args, PyObject *kwds)
{

static char *kwlist[] = {"first", "last", "number", NULL};
PyObject *first = NULL, *last = NULL, *tmp;

if (!PyArg_ParseTupleAndKeywords(args, kwds, "|UUi", kwlist,
&first, &last,
&self->number))

return -1;

if (first) {
tmp = self->first;

(다음페이지에계속)

2.2. Defining Extension Types: Tutorial 35

Extending and Embedding Python,출시버전 3.6.15

(이전페이지에서계속)
Py_INCREF(first);
self->first = first;
Py_DECREF(tmp);

}
if (last) {

tmp = self->last;
Py_INCREF(last);
self->last = last;
Py_DECREF(tmp);

}
return 0;

}

static PyMemberDef Custom_members[] = {
{"number", T_INT, offsetof(CustomObject, number), 0,
"custom number"},

{NULL} /* Sentinel */
};

static PyObject *
Custom_getfirst(CustomObject *self, void *closure)
{

Py_INCREF(self->first);
return self->first;

}

static int
Custom_setfirst(CustomObject *self, PyObject *value, void *closure)
{

PyObject *tmp;
if (value == NULL) {

PyErr_SetString(PyExc_TypeError, "Cannot delete the first attribute");
return -1;

}
if (!PyUnicode_Check(value)) {

PyErr_SetString(PyExc_TypeError,
"The first attribute value must be a string");

return -1;
}
tmp = self->first;
Py_INCREF(value);
self->first = value;
Py_DECREF(tmp);
return 0;

}

static PyObject *
Custom_getlast(CustomObject *self, void *closure)
{

Py_INCREF(self->last);
return self->last;

}

static int
Custom_setlast(CustomObject *self, PyObject *value, void *closure)
{

(다음페이지에계속)

36 Chapter 2. Creating extensions without third party tools

Extending and Embedding Python,출시버전 3.6.15

(이전페이지에서계속)
PyObject *tmp;
if (value == NULL) {

PyErr_SetString(PyExc_TypeError, "Cannot delete the last attribute");
return -1;

}
if (!PyUnicode_Check(value)) {

PyErr_SetString(PyExc_TypeError,
"The last attribute value must be a string");

return -1;
}
tmp = self->last;
Py_INCREF(value);
self->last = value;
Py_DECREF(tmp);
return 0;

}

static PyGetSetDef Custom_getsetters[] = {
{"first", (getter) Custom_getfirst, (setter) Custom_setfirst,
"first name", NULL},

{"last", (getter) Custom_getlast, (setter) Custom_setlast,
"last name", NULL},

{NULL} /* Sentinel */
};

static PyObject *
Custom_name(CustomObject *self, PyObject *Py_UNUSED(ignored))
{

return PyUnicode_FromFormat("%S %S", self->first, self->last);
}

static PyMethodDef Custom_methods[] = {
{"name", (PyCFunction) Custom_name, METH_NOARGS,
"Return the name, combining the first and last name"

},
{NULL} /* Sentinel */

};

static PyTypeObject CustomType = {
PyVarObject_HEAD_INIT(NULL, 0)
.tp_name = "custom3.Custom",
.tp_doc = "Custom objects",
.tp_basicsize = sizeof(CustomObject),
.tp_itemsize = 0,
.tp_flags = Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE,
.tp_new = Custom_new,
.tp_init = (initproc) Custom_init,
.tp_dealloc = (destructor) Custom_dealloc,
.tp_members = Custom_members,
.tp_methods = Custom_methods,
.tp_getset = Custom_getsetters,

};

static PyModuleDef custommodule = {
PyModuleDef_HEAD_INIT,
.m_name = "custom3",

(다음페이지에계속)

2.2. Defining Extension Types: Tutorial 37

Extending and Embedding Python,출시버전 3.6.15

(이전페이지에서계속)
.m_doc = "Example module that creates an extension type.",
.m_size = -1,

};

PyMODINIT_FUNC
PyInit_custom3(void)
{

PyObject *m;
if (PyType_Ready(&CustomType) < 0)

return NULL;

m = PyModule_Create(&custommodule);
if (m == NULL)

return NULL;

Py_INCREF(&CustomType);
PyModule_AddObject(m, "Custom", (PyObject *) &CustomType);
return m;

}

To provide greater control, over the first and last attributes, we’ll use custom getter and setter functions. Here are
the functions for getting and setting the first attribute:

static PyObject *
Custom_getfirst(CustomObject *self, void *closure)
{

Py_INCREF(self->first);
return self->first;

}

static int
Custom_setfirst(CustomObject *self, PyObject *value, void *closure)
{

PyObject *tmp;
if (value == NULL) {

PyErr_SetString(PyExc_TypeError, "Cannot delete the first attribute");
return -1;

}
if (!PyUnicode_Check(value)) {

PyErr_SetString(PyExc_TypeError,
"The first attribute value must be a string");

return -1;
}
tmp = self->first;
Py_INCREF(value);
self->first = value;
Py_DECREF(tmp);
return 0;

}

The getter function is passed a Custom object and a 《closure》, which is a void pointer. In this case, the closure is
ignored. (The closure supports an advanced usage in which definition data is passed to the getter and setter. This could,
for example, be used to allow a single set of getter and setter functions that decide the attribute to get or set based on data
in the closure.)
The setter function is passed the Custom object, the new value, and the closure. The new value may be NULL, in which
case the attribute is being deleted. In our setter, we raise an error if the attribute is deleted or if its new value is not a

38 Chapter 2. Creating extensions without third party tools

Extending and Embedding Python,출시버전 3.6.15

string.
We create an array of PyGetSetDef structures:

static PyGetSetDef Custom_getsetters[] = {
{"first", (getter) Custom_getfirst, (setter) Custom_setfirst,
"first name", NULL},

{"last", (getter) Custom_getlast, (setter) Custom_setlast,
"last name", NULL},

{NULL} /* Sentinel */
};

and register it in the tp_getset slot:

.tp_getset = Custom_getsetters,

The last item in a PyGetSetDef structure is the 《closure》 mentioned above. In this case, we aren’t using a closure,
so we just pass NULL.
We also remove the member definitions for these attributes:

static PyMemberDef Custom_members[] = {
{"number", T_INT, offsetof(CustomObject, number), 0,
"custom number"},

{NULL} /* Sentinel */
};

We also need to update the tp_init handler to only allow strings3 to be passed:

static int
Custom_init(CustomObject *self, PyObject *args, PyObject *kwds)
{

static char *kwlist[] = {"first", "last", "number", NULL};
PyObject *first = NULL, *last = NULL, *tmp;

if (!PyArg_ParseTupleAndKeywords(args, kwds, "|UUi", kwlist,
&first, &last,
&self->number))

return -1;

if (first) {
tmp = self->first;
Py_INCREF(first);
self->first = first;
Py_DECREF(tmp);

}
if (last) {

tmp = self->last;
Py_INCREF(last);
self->last = last;
Py_DECREF(tmp);

}
return 0;

}

3 We now know that the first and last members are strings, so perhaps we could be less careful about decrementing their reference counts, however,
we accept instances of string subclasses. Even though deallocating normal strings won’t call back into our objects, we can’t guarantee that deallocating
an instance of a string subclass won’t call back into our objects.

2.2. Defining Extension Types: Tutorial 39

Extending and Embedding Python,출시버전 3.6.15

With these changes, we can assure that the first and last members are never NULL so we can remove checks for
NULL values in almost all cases. This means that most of the Py_XDECREF() calls can be converted to Py_DECREF()
calls. The only place we can’t change these calls is in the tp_dealloc implementation, where there is the possibility
that the initialization of these members failed in tp_new.
We also rename the module initialization function and module name in the initialization function, as we did before, and
we add an extra definition to the setup.py file.

2.2.4 Supporting cyclic garbage collection

Python has a cyclic garbage collector (GC) that can identify unneeded objects even when their reference counts are not
zero. This can happen when objects are involved in cycles. For example, consider:

>>> l = []
>>> l.append(l)
>>> del l

In this example, we create a list that contains itself. When we delete it, it still has a reference from itself. Its reference
count doesn’t drop to zero. Fortunately, Python’s cyclic garbage collector will eventually figure out that the list is garbage
and free it.
In the second version of the Custom example, we allowed any kind of object to be stored in the first or last
attributes4. Besides, in the second and third versions, we allowed subclassing Custom, and subclasses may add arbitrary
attributes. For any of those two reasons, Custom objects can participate in cycles:

>>> import custom3
>>> class Derived(custom3.Custom): pass
...
>>> n = Derived()
>>> n.some_attribute = n

To allow a Custom instance participating in a reference cycle to be properly detected and collected by the cyclic GC,
our Custom type needs to fill two additional slots and to enable a flag that enables these slots:

#include <Python.h>
#include "structmember.h"

typedef struct {
PyObject_HEAD
PyObject *first; /* first name */
PyObject *last; /* last name */
int number;

} CustomObject;

static int
Custom_traverse(CustomObject *self, visitproc visit, void *arg)
{

Py_VISIT(self->first);
Py_VISIT(self->last);
return 0;

}

static int
Custom_clear(CustomObject *self)
{

(다음페이지에계속)
4 Also, even with our attributes restricted to strings instances, the user could pass arbitrary str subclasses and therefore still create reference cycles.

40 Chapter 2. Creating extensions without third party tools

Extending and Embedding Python,출시버전 3.6.15

(이전페이지에서계속)
Py_CLEAR(self->first);
Py_CLEAR(self->last);
return 0;

}

static void
Custom_dealloc(CustomObject *self)
{

PyObject_GC_UnTrack(self);
Custom_clear(self);
Py_TYPE(self)->tp_free((PyObject *) self);

}

static PyObject *
Custom_new(PyTypeObject *type, PyObject *args, PyObject *kwds)
{

CustomObject *self;
self = (CustomObject *) type->tp_alloc(type, 0);
if (self != NULL) {

self->first = PyUnicode_FromString("");
if (self->first == NULL) {

Py_DECREF(self);
return NULL;

}
self->last = PyUnicode_FromString("");
if (self->last == NULL) {

Py_DECREF(self);
return NULL;

}
self->number = 0;

}
return (PyObject *) self;

}

static int
Custom_init(CustomObject *self, PyObject *args, PyObject *kwds)
{

static char *kwlist[] = {"first", "last", "number", NULL};
PyObject *first = NULL, *last = NULL, *tmp;

if (!PyArg_ParseTupleAndKeywords(args, kwds, "|UUi", kwlist,
&first, &last,
&self->number))

return -1;

if (first) {
tmp = self->first;
Py_INCREF(first);
self->first = first;
Py_DECREF(tmp);

}
if (last) {

tmp = self->last;
Py_INCREF(last);
self->last = last;
Py_DECREF(tmp);

(다음페이지에계속)

2.2. Defining Extension Types: Tutorial 41

Extending and Embedding Python,출시버전 3.6.15

(이전페이지에서계속)
}
return 0;

}

static PyMemberDef Custom_members[] = {
{"number", T_INT, offsetof(CustomObject, number), 0,
"custom number"},

{NULL} /* Sentinel */
};

static PyObject *
Custom_getfirst(CustomObject *self, void *closure)
{

Py_INCREF(self->first);
return self->first;

}

static int
Custom_setfirst(CustomObject *self, PyObject *value, void *closure)
{

if (value == NULL) {
PyErr_SetString(PyExc_TypeError, "Cannot delete the first attribute");
return -1;

}
if (!PyUnicode_Check(value)) {

PyErr_SetString(PyExc_TypeError,
"The first attribute value must be a string");

return -1;
}
Py_INCREF(value);
Py_CLEAR(self->first);
self->first = value;
return 0;

}

static PyObject *
Custom_getlast(CustomObject *self, void *closure)
{

Py_INCREF(self->last);
return self->last;

}

static int
Custom_setlast(CustomObject *self, PyObject *value, void *closure)
{

if (value == NULL) {
PyErr_SetString(PyExc_TypeError, "Cannot delete the last attribute");
return -1;

}
if (!PyUnicode_Check(value)) {

PyErr_SetString(PyExc_TypeError,
"The last attribute value must be a string");

return -1;
}
Py_INCREF(value);
Py_CLEAR(self->last);

(다음페이지에계속)

42 Chapter 2. Creating extensions without third party tools

Extending and Embedding Python,출시버전 3.6.15

(이전페이지에서계속)
self->last = value;
return 0;

}

static PyGetSetDef Custom_getsetters[] = {
{"first", (getter) Custom_getfirst, (setter) Custom_setfirst,
"first name", NULL},

{"last", (getter) Custom_getlast, (setter) Custom_setlast,
"last name", NULL},

{NULL} /* Sentinel */
};

static PyObject *
Custom_name(CustomObject *self, PyObject *Py_UNUSED(ignored))
{

return PyUnicode_FromFormat("%S %S", self->first, self->last);
}

static PyMethodDef Custom_methods[] = {
{"name", (PyCFunction) Custom_name, METH_NOARGS,
"Return the name, combining the first and last name"

},
{NULL} /* Sentinel */

};

static PyTypeObject CustomType = {
PyVarObject_HEAD_INIT(NULL, 0)
.tp_name = "custom4.Custom",
.tp_doc = "Custom objects",
.tp_basicsize = sizeof(CustomObject),
.tp_itemsize = 0,
.tp_flags = Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE | Py_TPFLAGS_HAVE_GC,
.tp_new = Custom_new,
.tp_init = (initproc) Custom_init,
.tp_dealloc = (destructor) Custom_dealloc,
.tp_traverse = (traverseproc) Custom_traverse,
.tp_clear = (inquiry) Custom_clear,
.tp_members = Custom_members,
.tp_methods = Custom_methods,
.tp_getset = Custom_getsetters,

};

static PyModuleDef custommodule = {
PyModuleDef_HEAD_INIT,
.m_name = "custom4",
.m_doc = "Example module that creates an extension type.",
.m_size = -1,

};

PyMODINIT_FUNC
PyInit_custom4(void)
{

PyObject *m;
if (PyType_Ready(&CustomType) < 0)

return NULL;

(다음페이지에계속)

2.2. Defining Extension Types: Tutorial 43

Extending and Embedding Python,출시버전 3.6.15

(이전페이지에서계속)
m = PyModule_Create(&custommodule);
if (m == NULL)

return NULL;

Py_INCREF(&CustomType);
PyModule_AddObject(m, "Custom", (PyObject *) &CustomType);
return m;

}

First, the traversal method lets the cyclic GC know about subobjects that could participate in cycles:

static int
Custom_traverse(CustomObject *self, visitproc visit, void *arg)
{

int vret;
if (self->first) {

vret = visit(self->first, arg);
if (vret != 0)

return vret;
}
if (self->last) {

vret = visit(self->last, arg);
if (vret != 0)

return vret;
}
return 0;

}

For each subobject that can participate in cycles, we need to call the visit() function, which is passed to the traversal
method. The visit() function takes as arguments the subobject and the extra argument arg passed to the traversal
method. It returns an integer value that must be returned if it is non-zero.
Python provides a Py_VISIT() macro that automates calling visit functions. With Py_VISIT(), we can minimize
the amount of boilerplate in Custom_traverse:

static int
Custom_traverse(CustomObject *self, visitproc visit, void *arg)
{

Py_VISIT(self->first);
Py_VISIT(self->last);
return 0;

}

참고: Thetp_traverse implementationmust name its arguments exactly visit and arg in order to usePy_VISIT().

Second, we need to provide a method for clearing any subobjects that can participate in cycles:

static int
Custom_clear(CustomObject *self)
{

Py_CLEAR(self->first);
Py_CLEAR(self->last);
return 0;

}

44 Chapter 2. Creating extensions without third party tools

Extending and Embedding Python,출시버전 3.6.15

Notice the use of the Py_CLEAR()macro. It is the recommended and safe way to clear data attributes of arbitrary types
while decrementing their reference counts. If you were to call Py_XDECREF() instead on the attribute before setting
it to NULL, there is a possibility that the attribute’s destructor would call back into code that reads the attribute again
(especially if there is a reference cycle).

참고: You could emulate Py_CLEAR() by writing:

PyObject *tmp;
tmp = self->first;
self->first = NULL;
Py_XDECREF(tmp);

Nevertheless, it is much easier and less error-prone to always use Py_CLEAR() when deleting an attribute. Don’t try to
micro-optimize at the expense of robustness!

The deallocator Custom_dealloc may call arbitrary code when clearing attributes. It means the circular GC can be
triggered inside the function. Since the GC assumes reference count is not zero, we need to untrack the object from the
GC by calling PyObject_GC_UnTrack() before clearing members. Here is our reimplemented deallocator using
PyObject_GC_UnTrack() and Custom_clear:

static void
Custom_dealloc(CustomObject *self)
{

PyObject_GC_UnTrack(self);
Custom_clear(self);
Py_TYPE(self)->tp_free((PyObject *) self);

}

Finally, we add the Py_TPFLAGS_HAVE_GC flag to the class flags:

.tp_flags = Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE | Py_TPFLAGS_HAVE_GC,

That’s pretty much it. If we had written custom tp_alloc or tp_free handlers, we’d need to modify them for cyclic
garbage collection. Most extensions will use the versions automatically provided.

2.2.5 Subclassing other types

It is possible to create new extension types that are derived from existing types. It is easiest to inherit from the built in
types, since an extension can easily use the PyTypeObject it needs. It can be difficult to share these PyTypeObject
structures between extension modules.
In this example we will create a SubList type that inherits from the built-in list type. The new type will be completely
compatible with regular lists, but will have an additional increment() method that increases an internal counter:

>>> import sublist
>>> s = sublist.SubList(range(3))
>>> s.extend(s)
>>> print(len(s))
6
>>> print(s.increment())
1
>>> print(s.increment())
2

2.2. Defining Extension Types: Tutorial 45

Extending and Embedding Python,출시버전 3.6.15

#include <Python.h>

typedef struct {
PyListObject list;
int state;

} SubListObject;

static PyObject *
SubList_increment(SubListObject *self, PyObject *unused)
{

self->state++;
return PyLong_FromLong(self->state);

}

static PyMethodDef SubList_methods[] = {
{"increment", (PyCFunction) SubList_increment, METH_NOARGS,
PyDoc_STR("increment state counter")},

{NULL},
};

static int
SubList_init(SubListObject *self, PyObject *args, PyObject *kwds)
{

if (PyList_Type.tp_init((PyObject *) self, args, kwds) < 0)
return -1;

self->state = 0;
return 0;

}

static PyTypeObject SubListType = {
PyVarObject_HEAD_INIT(NULL, 0)
.tp_name = "sublist.SubList",
.tp_doc = "SubList objects",
.tp_basicsize = sizeof(SubListObject),
.tp_itemsize = 0,
.tp_flags = Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE,
.tp_init = (initproc) SubList_init,
.tp_methods = SubList_methods,

};

static PyModuleDef sublistmodule = {
PyModuleDef_HEAD_INIT,
.m_name = "sublist",
.m_doc = "Example module that creates an extension type.",
.m_size = -1,

};

PyMODINIT_FUNC
PyInit_sublist(void)
{

PyObject *m;
SubListType.tp_base = &PyList_Type;
if (PyType_Ready(&SubListType) < 0)

return NULL;

m = PyModule_Create(&sublistmodule);
if (m == NULL)

(다음페이지에계속)

46 Chapter 2. Creating extensions without third party tools

Extending and Embedding Python,출시버전 3.6.15

(이전페이지에서계속)
return NULL;

Py_INCREF(&SubListType);
PyModule_AddObject(m, "SubList", (PyObject *) &SubListType);
return m;

}

As you can see, the source code closely resembles the Custom examples in previous sections. We will break down the
main differences between them.

typedef struct {
PyListObject list;
int state;

} SubListObject;

The primary difference for derived type objects is that the base type’s object structure must be the first value. The base
type will already include the PyObject_HEAD() at the beginning of its structure.
When a Python object is a SubList instance, its PyObject * pointer can be safely cast to both PyListObject
* and SubListObject *:

static int
SubList_init(SubListObject *self, PyObject *args, PyObject *kwds)
{

if (PyList_Type.tp_init((PyObject *) self, args, kwds) < 0)
return -1;

self->state = 0;
return 0;

}

We see above how to call through to the __init__ method of the base type.
This pattern is important when writing a type with custom tp_new and tp_deallocmembers. The tp_new handler
should not actually create the memory for the object with its tp_alloc, but let the base class handle it by calling its
own tp_new.
The PyTypeObject struct supports a tp_base specifying the type’s concrete base class. Due to cross-platform
compiler issues, you can’t fill that field directly with a reference to PyList_Type; it should be done later in the module
initialization function:

PyMODINIT_FUNC
PyInit_sublist(void)
{

PyObject* m;
SubListType.tp_base = &PyList_Type;
if (PyType_Ready(&SubListType) < 0)

return NULL;

m = PyModule_Create(&sublistmodule);
if (m == NULL)

return NULL;

Py_INCREF(&SubListType);
PyModule_AddObject(m, "SubList", (PyObject *) &SubListType);
return m;

}

2.2. Defining Extension Types: Tutorial 47

Extending and Embedding Python,출시버전 3.6.15

Before calling PyType_Ready(), the type structure must have the tp_base slot filled in. When we are deriving an
existing type, it is not necessary to fill out the tp_alloc slot with PyType_GenericNew() – the allocation function
from the base type will be inherited.
After that, calling PyType_Ready() and adding the type object to the module is the same as with the basic Custom
examples.

2.3 Defining Extension Types: Assorted Topics

This section aims to give a quick fly-by on the various type methods you can implement and what they do.
Here is the definition of PyTypeObject, with some fields only used in debug builds omitted:

typedef struct _typeobject {
PyObject_VAR_HEAD
const char *tp_name; /* For printing, in format "<module>.<name>" */
Py_ssize_t tp_basicsize, tp_itemsize; /* For allocation */

/* Methods to implement standard operations */

destructor tp_dealloc;
printfunc tp_print;
getattrfunc tp_getattr;
setattrfunc tp_setattr;
PyAsyncMethods *tp_as_async; /* formerly known as tp_compare (Python 2)

or tp_reserved (Python 3) */
reprfunc tp_repr;

/* Method suites for standard classes */

PyNumberMethods *tp_as_number;
PySequenceMethods *tp_as_sequence;
PyMappingMethods *tp_as_mapping;

/* More standard operations (here for binary compatibility) */

hashfunc tp_hash;
ternaryfunc tp_call;
reprfunc tp_str;
getattrofunc tp_getattro;
setattrofunc tp_setattro;

/* Functions to access object as input/output buffer */
PyBufferProcs *tp_as_buffer;

/* Flags to define presence of optional/expanded features */
unsigned long tp_flags;

const char *tp_doc; /* Documentation string */

/* call function for all accessible objects */
traverseproc tp_traverse;

/* delete references to contained objects */
inquiry tp_clear;

(다음페이지에계속)

48 Chapter 2. Creating extensions without third party tools

Extending and Embedding Python,출시버전 3.6.15

(이전페이지에서계속)
/* rich comparisons */
richcmpfunc tp_richcompare;

/* weak reference enabler */
Py_ssize_t tp_weaklistoffset;

/* Iterators */
getiterfunc tp_iter;
iternextfunc tp_iternext;

/* Attribute descriptor and subclassing stuff */
struct PyMethodDef *tp_methods;
struct PyMemberDef *tp_members;
struct PyGetSetDef *tp_getset;
struct _typeobject *tp_base;
PyObject *tp_dict;
descrgetfunc tp_descr_get;
descrsetfunc tp_descr_set;
Py_ssize_t tp_dictoffset;
initproc tp_init;
allocfunc tp_alloc;
newfunc tp_new;
freefunc tp_free; /* Low-level free-memory routine */
inquiry tp_is_gc; /* For PyObject_IS_GC */
PyObject *tp_bases;
PyObject *tp_mro; /* method resolution order */
PyObject *tp_cache;
PyObject *tp_subclasses;
PyObject *tp_weaklist;
destructor tp_del;

/* Type attribute cache version tag. Added in version 2.6 */
unsigned int tp_version_tag;

destructor tp_finalize;

} PyTypeObject;

Now that’s a lot of methods. Don’t worry too much though – if you have a type you want to define, the chances are very
good that you will only implement a handful of these.
As you probably expect by now, we’re going to go over this and give more information about the various handlers. We
won’t go in the order they are defined in the structure, because there is a lot of historical baggage that impacts the ordering
of the fields. It’s often easiest to find an example that includes the fields you need and then change the values to suit your
new type.

const char *tp_name; /* For printing */

The name of the type – as mentioned in the previous chapter, this will appear in various places, almost entirely for
diagnostic purposes. Try to choose something that will be helpful in such a situation!

Py_ssize_t tp_basicsize, tp_itemsize; /* For allocation */

These fields tell the runtime how much memory to allocate when new objects of this type are created. Python has some
built-in support for variable length structures (think: strings, tuples) which is where the tp_itemsize field comes in.
This will be dealt with later.

2.3. Defining Extension Types: Assorted Topics 49

Extending and Embedding Python,출시버전 3.6.15

const char *tp_doc;

Here you can put a string (or its address) that you want returned when the Python script references obj.__doc__ to
retrieve the doc string.
Now we come to the basic type methods – the ones most extension types will implement.

2.3.1 Finalization and De-allocation

destructor tp_dealloc;

This function is called when the reference count of the instance of your type is reduced to zero and the Python interpreter
wants to reclaim it. If your type has memory to free or other clean-up to perform, you can put it here. The object itself
needs to be freed here as well. Here is an example of this function:

static void
newdatatype_dealloc(newdatatypeobject *obj)
{

free(obj->obj_UnderlyingDatatypePtr);
Py_TYPE(obj)->tp_free(obj);

}

One important requirement of the deallocator function is that it leaves any pending exceptions alone. This is important
since deallocators are frequently called as the interpreter unwinds the Python stack; when the stack is unwound due to
an exception (rather than normal returns), nothing is done to protect the deallocators from seeing that an exception has
already been set. Any actions which a deallocator performs which may cause additional Python code to be executed may
detect that an exception has been set. This can lead to misleading errors from the interpreter. The proper way to protect
against this is to save a pending exception before performing the unsafe action, and restoring it when done. This can be
done using the PyErr_Fetch() and PyErr_Restore() functions:

static void
my_dealloc(PyObject *obj)
{

MyObject *self = (MyObject *) obj;
PyObject *cbresult;

if (self->my_callback != NULL) {
PyObject *err_type, *err_value, *err_traceback;

/* This saves the current exception state */
PyErr_Fetch(&err_type, &err_value, &err_traceback);

cbresult = PyObject_CallObject(self->my_callback, NULL);
if (cbresult == NULL)

PyErr_WriteUnraisable(self->my_callback);
else

Py_DECREF(cbresult);

/* This restores the saved exception state */
PyErr_Restore(err_type, err_value, err_traceback);

Py_DECREF(self->my_callback);
}
Py_TYPE(obj)->tp_free((PyObject*)self);

}

50 Chapter 2. Creating extensions without third party tools

Extending and Embedding Python,출시버전 3.6.15

참고: There are limitations to what you can safely do in a deallocator function. First, if your type supports garbage
collection (using tp_traverse and/or tp_clear), some of the object’s members can have been cleared or finalized
by the time tp_dealloc is called. Second, in tp_dealloc, your object is in an unstable state: its reference count
is equal to zero. Any call to a non-trivial object or API (as in the example above) might end up calling tp_dealloc
again, causing a double free and a crash.
Starting with Python 3.4, it is recommended not to put any complex finalization code in tp_dealloc, and instead use
the new tp_finalize type method.
더보기:

PEP 442 explains the new finalization scheme.

2.3.2 Object Presentation

In Python, there are two ways to generate a textual representation of an object: the repr() function, and the str()
function. (The print() function just calls str().) These handlers are both optional.

reprfunc tp_repr;
reprfunc tp_str;

The tp_repr handler should return a string object containing a representation of the instance for which it is called.
Here is a simple example:

static PyObject *
newdatatype_repr(newdatatypeobject * obj)
{

return PyUnicode_FromFormat("Repr-ified_newdatatype{{size:%d}}",
obj->obj_UnderlyingDatatypePtr->size);

}

If no tp_repr handler is specified, the interpreter will supply a representation that uses the type’s tp_name and a
uniquely-identifying value for the object.
The tp_str handler is to str() what the tp_repr handler described above is to repr(); that is, it is called when
Python code calls str() on an instance of your object. Its implementation is very similar to the tp_repr function,
but the resulting string is intended for human consumption. If tp_str is not specified, the tp_repr handler is used
instead.
Here is a simple example:

static PyObject *
newdatatype_str(newdatatypeobject * obj)
{

return PyUnicode_FromFormat("Stringified_newdatatype{{size:%d}}",
obj->obj_UnderlyingDatatypePtr->size);

}

2.3. Defining Extension Types: Assorted Topics 51

https://www.python.org/dev/peps/pep-0442

Extending and Embedding Python,출시버전 3.6.15

2.3.3 Attribute Management

For every object which can support attributes, the corresponding type must provide the functions that control how the
attributes are resolved. There needs to be a function which can retrieve attributes (if any are defined), and another to set
attributes (if setting attributes is allowed). Removing an attribute is a special case, for which the new value passed to the
handler is NULL.
Python supports two pairs of attribute handlers; a type that supports attributes only needs to implement the functions
for one pair. The difference is that one pair takes the name of the attribute as a char*, while the other accepts a
PyObject*. Each type can use whichever pair makes more sense for the implementation’s convenience.

getattrfunc tp_getattr; /* char * version */
setattrfunc tp_setattr;
/* ... */
getattrofunc tp_getattro; /* PyObject * version */
setattrofunc tp_setattro;

If accessing attributes of an object is always a simple operation (this will be explained shortly), there are generic imple-
mentations which can be used to provide the PyObject* version of the attribute management functions. The actual
need for type-specific attribute handlers almost completely disappeared starting with Python 2.2, though there are many
examples which have not been updated to use some of the new generic mechanism that is available.

Generic Attribute Management

Most extension types only use simple attributes. So, what makes the attributes simple? There are only a couple of
conditions that must be met:

1. The name of the attributes must be known when PyType_Ready() is called.
2. No special processing is needed to record that an attribute was looked up or set, nor do actions need to be taken

based on the value.
Note that this list does not place any restrictions on the values of the attributes, when the values are computed, or how
relevant data is stored.
When PyType_Ready() is called, it uses three tables referenced by the type object to create descriptors which are
placed in the dictionary of the type object. Each descriptor controls access to one attribute of the instance object. Each
of the tables is optional; if all three are NULL, instances of the type will only have attributes that are inherited from their
base type, and should leave the tp_getattro and tp_setattro fields NULL as well, allowing the base type to
handle attributes.
The tables are declared as three fields of the type object:

struct PyMethodDef *tp_methods;
struct PyMemberDef *tp_members;
struct PyGetSetDef *tp_getset;

If tp_methods is not NULL, it must refer to an array of PyMethodDef structures. Each entry in the table is an
instance of this structure:

typedef struct PyMethodDef {
const char *ml_name; /* method name */
PyCFunction ml_meth; /* implementation function */
int ml_flags; /* flags */
const char *ml_doc; /* docstring */

} PyMethodDef;

52 Chapter 2. Creating extensions without third party tools

Extending and Embedding Python,출시버전 3.6.15

One entry should be defined for each method provided by the type; no entries are needed for methods inherited from a
base type. One additional entry is needed at the end; it is a sentinel that marks the end of the array. The ml_name field
of the sentinel must be NULL.
The second table is used to define attributes which map directly to data stored in the instance. A variety of primitive C
types are supported, and access may be read-only or read-write. The structures in the table are defined as:

typedef struct PyMemberDef {
char *name;
int type;
int offset;
int flags;
char *doc;

} PyMemberDef;

For each entry in the table, a descriptor will be constructed and added to the type which will be able to extract a value
from the instance structure. The type field should contain one of the type codes defined in the structmember.h
header; the value will be used to determine how to convert Python values to and from C values. The flags field is used
to store flags which control how the attribute can be accessed.
The following flag constants are defined in structmember.h; they may be combined using bitwise-OR.

Constant Meaning
READONLY Never writable.
READ_RESTRICTED Not readable in restricted mode.
WRITE_RESTRICTED Not writable in restricted mode.
RESTRICTED Not readable or writable in restricted mode.

An interesting advantage of using the tp_members table to build descriptors that are used at runtime is that any attribute
defined this way can have an associated doc string simply by providing the text in the table. An application can use the
introspection API to retrieve the descriptor from the class object, and get the doc string using its __doc__ attribute.
As with the tp_methods table, a sentinel entry with a name value of NULL is required.

Type-specific Attribute Management

For simplicity, only the char* version will be demonstrated here; the type of the name parameter is the only difference
between the char* and PyObject* flavors of the interface. This example effectively does the same thing as the generic
example above, but does not use the generic support added in Python 2.2. It explains how the handler functions are called,
so that if you do need to extend their functionality, you’ll understand what needs to be done.
The tp_getattr handler is called when the object requires an attribute look-up. It is called in the same situations
where the __getattr__() method of a class would be called.
Here is an example:

static PyObject *
newdatatype_getattr(newdatatypeobject *obj, char *name)
{

if (strcmp(name, "data") == 0)
{

return PyLong_FromLong(obj->data);
}

PyErr_Format(PyExc_AttributeError,
"'%.50s' object has no attribute '%.400s'",

(다음페이지에계속)

2.3. Defining Extension Types: Assorted Topics 53

Extending and Embedding Python,출시버전 3.6.15

(이전페이지에서계속)
tp->tp_name, name);

return NULL;
}

The tp_setattr handler is called when the __setattr__() or __delattr__() method of a class instance
would be called. When an attribute should be deleted, the third parameter will be NULL. Here is an example that simply
raises an exception; if this were really all you wanted, the tp_setattr handler should be set to NULL.

static int
newdatatype_setattr(newdatatypeobject *obj, char *name, PyObject *v)
{

PyErr_Format(PyExc_RuntimeError, "Read-only attribute: %s", name);
return -1;

}

2.3.4 Object Comparison

richcmpfunc tp_richcompare;

The tp_richcompare handler is called when comparisons are needed. It is analogous to the rich comparisonmethods,
like __lt__(), and also called by PyObject_RichCompare() and PyObject_RichCompareBool().
This function is called with two Python objects and the operator as arguments, where the operator is one of Py_EQ,
Py_NE, Py_LE, Py_GT, Py_LT or Py_GT. It should compare the two objects with respect to the specified operator and
return Py_True or Py_False if the comparison is successful, Py_NotImplemented to indicate that comparison
is not implemented and the other object’s comparison method should be tried, or NULL if an exception was set.
Here is a sample implementation, for a datatype that is considered equal if the size of an internal pointer is equal:

static PyObject *
newdatatype_richcmp(PyObject *obj1, PyObject *obj2, int op)
{

PyObject *result;
int c, size1, size2;

/* code to make sure that both arguments are of type
newdatatype omitted */

size1 = obj1->obj_UnderlyingDatatypePtr->size;
size2 = obj2->obj_UnderlyingDatatypePtr->size;

switch (op) {
case Py_LT: c = size1 < size2; break;
case Py_LE: c = size1 <= size2; break;
case Py_EQ: c = size1 == size2; break;
case Py_NE: c = size1 != size2; break;
case Py_GT: c = size1 > size2; break;
case Py_GE: c = size1 >= size2; break;
}
result = c ? Py_True : Py_False;
Py_INCREF(result);
return result;

}

54 Chapter 2. Creating extensions without third party tools

Extending and Embedding Python,출시버전 3.6.15

2.3.5 Abstract Protocol Support

Python supports a variety of abstract 〈protocols;〉 the specific interfaces provided to use these interfaces are documented
in abstract.
A number of these abstract interfaces were defined early in the development of the Python implementation. In particular,
the number, mapping, and sequence protocols have been part of Python since the beginning. Other protocols have
been added over time. For protocols which depend on several handler routines from the type implementation, the older
protocols have been defined as optional blocks of handlers referenced by the type object. For newer protocols there are
additional slots in the main type object, with a flag bit being set to indicate that the slots are present and should be checked
by the interpreter. (The flag bit does not indicate that the slot values are non-NULL. The flag may be set to indicate the
presence of a slot, but a slot may still be unfilled.)

PyNumberMethods *tp_as_number;
PySequenceMethods *tp_as_sequence;
PyMappingMethods *tp_as_mapping;

If you wish your object to be able to act like a number, a sequence, or a mapping object, then you place the address of
a structure that implements the C type PyNumberMethods, PySequenceMethods, or PyMappingMethods,
respectively. It is up to you to fill in this structure with appropriate values. You can find examples of the use of each of
these in the Objects directory of the Python source distribution.

hashfunc tp_hash;

This function, if you choose to provide it, should return a hash number for an instance of your data type. Here is a simple
example:

static Py_hash_t
newdatatype_hash(newdatatypeobject *obj)
{

Py_hash_t result;
result = obj->some_size + 32767 * obj->some_number;
if (result == -1)

result = -2;
return result;

}

Py_hash_t is a signed integer type with a platform-varying width. Returning -1 from tp_hash indicates an error,
which is why you should be careful to avoid returning it when hash computation is successful, as seen above.

ternaryfunc tp_call;

This function is called when an instance of your data type is 《called》, for example, if obj1 is an instance of your data
type and the Python script contains obj1('hello'), the tp_call handler is invoked.
This function takes three arguments:

1. self is the instance of the data type which is the subject of the call. If the call is obj1('hello'), then self is
obj1.

2. args is a tuple containing the arguments to the call. You can use PyArg_ParseTuple() to extract the argu-
ments.

3. kwds is a dictionary of keyword arguments that were passed. If this is non-NULL and you support keyword ar-
guments, use PyArg_ParseTupleAndKeywords() to extract the arguments. If you do not want to support
keyword arguments and this is non-NULL, raise a TypeError with a message saying that keyword arguments are
not supported.

Here is a toy tp_call implementation:

2.3. Defining Extension Types: Assorted Topics 55

Extending and Embedding Python,출시버전 3.6.15

static PyObject *
newdatatype_call(newdatatypeobject *self, PyObject *args, PyObject *kwds)
{

PyObject *result;
char *arg1;
char *arg2;
char *arg3;

if (!PyArg_ParseTuple(args, "sss:call", &arg1, &arg2, &arg3)) {
return NULL;

}
result = PyUnicode_FromFormat(

"Returning -- value: [%d] arg1: [%s] arg2: [%s] arg3: [%s]\n",
obj->obj_UnderlyingDatatypePtr->size,
arg1, arg2, arg3);

return result;
}

/* Iterators */
getiterfunc tp_iter;
iternextfunc tp_iternext;

These functions provide support for the iterator protocol. Both handlers take exactly one parameter, the instance for
which they are being called, and return a new reference. In the case of an error, they should set an exception and return
NULL. tp_iter corresponds to the Python __iter__() method, while tp_iternext corresponds to the Python
__next__() method.
Any iterable object must implement the tp_iter handler, whichmust return an iterator object. Here the same guidelines
apply as for Python classes:

• For collections (such as lists and tuples) which can support multiple independent iterators, a new iterator should be
created and returned by each call to tp_iter.

• Objects which can only be iterated over once (usually due to side effects of iteration, such as file objects) can
implement tp_iter by returning a new reference to themselves – and should also therefore implement the
tp_iternext handler.

Any iterator object should implement both tp_iter and tp_iternext. An iterator’s tp_iter handler should
return a new reference to the iterator. Its tp_iternext handler should return a new reference to the next object in
the iteration, if there is one. If the iteration has reached the end, tp_iternext may return NULL without setting an
exception, or it may set StopIteration in addition to returningNULL; avoiding the exception can yield slightly better
performance. If an actual error occurs, tp_iternext should always set an exception and return NULL.

2.3.6 Weak Reference Support

One of the goals of Python’s weak reference implementation is to allow any type to participate in the weak reference
mechanism without incurring the overhead on performance-critical objects (such as numbers).
더보기:

Documentation for the weakref module.
For an object to be weakly referencable, the extension type must do two things:

1. Include a PyObject* field in the C object structure dedicated to the weak reference mechanism. The object’s
constructor should leave it NULL (which is automatic when using the default tp_alloc).

56 Chapter 2. Creating extensions without third party tools

Extending and Embedding Python,출시버전 3.6.15

2. Set the tp_weaklistoffset type member to the offset of the aforementioned field in the C object structure,
so that the interpreter knows how to access and modify that field.

Concretely, here is how a trivial object structure would be augmented with the required field:

typedef struct {
PyObject_HEAD
PyObject *weakreflist; /* List of weak references */

} TrivialObject;

And the corresponding member in the statically-declared type object:

static PyTypeObject TrivialType = {
PyVarObject_HEAD_INIT(NULL, 0)
/* ... other members omitted for brevity ... */
.tp_weaklistoffset = offsetof(TrivialObject, weakreflist),

};

The only further addition is that tp_dealloc needs to clear any weak references (by calling
PyObject_ClearWeakRefs()) if the field is non-NULL:

static void
Trivial_dealloc(TrivialObject *self)
{

/* Clear weakrefs first before calling any destructors */
if (self->weakreflist != NULL)

PyObject_ClearWeakRefs((PyObject *) self);
/* ... remainder of destruction code omitted for brevity ... */
Py_TYPE(self)->tp_free((PyObject *) self);

}

2.3.7 More Suggestions

In order to learn how to implement any specific method for your new data type, get the CPython source code.
Go to the Objects directory, then search the C source files for tp_ plus the function you want (for example,
tp_richcompare). You will find examples of the function you want to implement.
When you need to verify that an object is a concrete instance of the type you are implementing, use the
PyObject_TypeCheck() function. A sample of its use might be something like the following:

if (!PyObject_TypeCheck(some_object, &MyType)) {
PyErr_SetString(PyExc_TypeError, "arg #1 not a mything");
return NULL;

}

더보기:

Download CPython source releases. https://www.python.org/downloads/source/
The CPython project on GitHub, where the CPython source code is developed. https://github.com/python/

cpython

2.3. Defining Extension Types: Assorted Topics 57

https://www.python.org/downloads/source/
https://github.com/python/cpython
https://github.com/python/cpython

Extending and Embedding Python,출시버전 3.6.15

2.4 Building C and C++ Extensions

AC extension for CPython is a shared library (e.g. a.so file on Linux, .pyd onWindows), which exports an initialization
function.
To be importable, the shared library must be available on PYTHONPATH, and must be named after the module name,
with an appropriate extension. When using distutils, the correct filename is generated automatically.
The initialization function has the signature:
PyObject* PyInit_modulename(void)
It returns either a fully-initialized module, or a PyModuleDef instance. See initializing-modules for details.
For modules with ASCII-only names, the function must be named PyInit_<modulename>, with <modulename>
replaced by the name of themodule. When usingmulti-phase-initialization, non-ASCII module names are allowed. In this
case, the initialization function name is PyInitU_<modulename>, with <modulename> encoded using Python’s
punycode encoding with hyphens replaced by underscores. In Python:

def initfunc_name(name):
try:

suffix = b'_' + name.encode('ascii')
except UnicodeEncodeError:

suffix = b'U_' + name.encode('punycode').replace(b'-', b'_')
return b'PyInit' + suffix

It is possible to export multiple modules from a single shared library by definingmultiple initialization functions. However,
importing them requires using symbolic links or a custom importer, because by default only the function corresponding
to the filename is found. See the 《Multiple modules in one library》 section in PEP 489 for details.

2.4.1 Building C and C++ Extensions with distutils

Extension modules can be built using distutils, which is included in Python. Since distutils also supports creation of binary
packages, users don’t necessarily need a compiler and distutils to install the extension.
A distutils package contains a driver script, setup.py. This is a plain Python file, which, in the most simple case, could
look like this:

from distutils.core import setup, Extension

module1 = Extension('demo',
sources = ['demo.c'])

setup (name = 'PackageName',
version = '1.0',
description = 'This is a demo package',
ext_modules = [module1])

With this setup.py, and a file demo.c, running

python setup.py build

will compile demo.c, and produce an extension module named demo in the build directory. Depending on the
system, the module file will end up in a subdirectory build/lib.system, and may have a name like demo.so or
demo.pyd.
In the setup.py, all execution is performed by calling the setup function. This takes a variable number of keyword
arguments, of which the example above uses only a subset. Specifically, the example specifies meta-information to build

58 Chapter 2. Creating extensions without third party tools

https://www.python.org/dev/peps/pep-0489

Extending and Embedding Python,출시버전 3.6.15

packages, and it specifies the contents of the package. Normally, a package will contain additional modules, like Python
source modules, documentation, subpackages, etc. Please refer to the distutils documentation in distutils-index to learn
more about the features of distutils; this section explains building extension modules only.
It is common to pre-compute arguments to setup(), to better structure the driver script. In the example above, the
ext_modules argument to setup() is a list of extension modules, each of which is an instance of the Extension.
In the example, the instance defines an extension named demo which is build by compiling a single source file, demo.c.
In many cases, building an extension is more complex, since additional preprocessor defines and libraries may be needed.
This is demonstrated in the example below.

from distutils.core import setup, Extension

module1 = Extension('demo',
define_macros = [('MAJOR_VERSION', '1'),

('MINOR_VERSION', '0')],
include_dirs = ['/usr/local/include'],
libraries = ['tcl83'],
library_dirs = ['/usr/local/lib'],
sources = ['demo.c'])

setup (name = 'PackageName',
version = '1.0',
description = 'This is a demo package',
author = 'Martin v. Loewis',
author_email = 'martin@v.loewis.de',
url = 'https://docs.python.org/extending/building',
long_description = '''

This is really just a demo package.
''',

ext_modules = [module1])

In this example, setup() is called with additional meta-information, which is recommended when distribution packages
have to be built. For the extension itself, it specifies preprocessor defines, include directories, library directories, and
libraries. Depending on the compiler, distutils passes this information in different ways to the compiler. For example, on
Unix, this may result in the compilation commands

gcc -DNDEBUG -g -O3 -Wall -Wstrict-prototypes -fPIC -DMAJOR_VERSION=1 -DMINOR_
↪→VERSION=0 -I/usr/local/include -I/usr/local/include/python2.2 -c demo.c -o build/
↪→temp.linux-i686-2.2/demo.o

gcc -shared build/temp.linux-i686-2.2/demo.o -L/usr/local/lib -ltcl83 -o build/lib.
↪→linux-i686-2.2/demo.so

These lines are for demonstration purposes only; distutils users should trust that distutils gets the invocations right.

2.4.2 Distributing your extension modules

When an extension has been successfully build, there are three ways to use it.
End-users will typically want to install the module, they do so by running

python setup.py install

Module maintainers should produce source packages; to do so, they run

2.4. Building C and C++ Extensions 59

Extending and Embedding Python,출시버전 3.6.15

python setup.py sdist

In some cases, additional files need to be included in a source distribution; this is done through a MANIFEST.in file;
see manifest for details.
If the source distribution has been build successfully, maintainers can also create binary distributions. Depending on the
platform, one of the following commands can be used to do so.

python setup.py bdist_wininst
python setup.py bdist_rpm
python setup.py bdist_dumb

2.5 Building C and C++ Extensions on Windows

This chapter briefly explains how to create a Windows extension module for Python using Microsoft Visual C++, and
follows with more detailed background information on how it works. The explanatory material is useful for both the
Windows programmer learning to build Python extensions and the Unix programmer interested in producing software
which can be successfully built on both Unix and Windows.
Module authors are encouraged to use the distutils approach for building extension modules, instead of the one described
in this section. You will still need the C compiler that was used to build Python; typically Microsoft Visual C++.

참고: This chapter mentions a number of filenames that include an encoded Python version number. These filenames
are represented with the version number shown as XY; in practice, 'X' will be the major version number and 'Y' will
be the minor version number of the Python release you’re working with. For example, if you are using Python 2.2.1, XY
will actually be 22.

2.5.1 A Cookbook Approach

There are two approaches to building extension modules on Windows, just as there are on Unix: use the distutils
package to control the build process, or do things manually. The distutils approach works well for most extensions;
documentation on using distutils to build and package extension modules is available in distutils-index. If you find
you really need to do things manually, it may be instructive to study the project file for the winsound standard library
module.

2.5.2 Differences Between Unix and Windows

Unix and Windows use completely different paradigms for run-time loading of code. Before you try to build a module
that can be dynamically loaded, be aware of how your system works.
In Unix, a shared object (.so) file contains code to be used by the program, and also the names of functions and data
that it expects to find in the program. When the file is joined to the program, all references to those functions and data
in the file’s code are changed to point to the actual locations in the program where the functions and data are placed in
memory. This is basically a link operation.
In Windows, a dynamic-link library (.dll) file has no dangling references. Instead, an access to functions or data goes
through a lookup table. So the DLL code does not have to be fixed up at runtime to refer to the program’s memory; instead,
the code already uses the DLL’s lookup table, and the lookup table is modified at runtime to point to the functions and
data.

60 Chapter 2. Creating extensions without third party tools

https://github.com/python/cpython/tree/3.6/PCbuild/winsound.vcxproj

Extending and Embedding Python,출시버전 3.6.15

In Unix, there is only one type of library file (.a) which contains code from several object files (.o). During the link
step to create a shared object file (.so), the linker may find that it doesn’t know where an identifier is defined. The linker
will look for it in the object files in the libraries; if it finds it, it will include all the code from that object file.
In Windows, there are two types of library, a static library and an import library (both called .lib). A static library is
like a Unix .a file; it contains code to be included as necessary. An import library is basically used only to reassure the
linker that a certain identifier is legal, and will be present in the program when the DLL is loaded. So the linker uses the
information from the import library to build the lookup table for using identifiers that are not included in the DLL. When
an application or a DLL is linked, an import library may be generated, which will need to be used for all future DLLs
that depend on the symbols in the application or DLL.
Suppose you are building two dynamic-load modules, B and C, which should share another block of code A. On Unix,
you would not pass A.a to the linker for B.so and C.so; that would cause it to be included twice, so that B and C would
each have their own copy. In Windows, building A.dll will also build A.lib. You do pass A.lib to the linker for B
and C. A.lib does not contain code; it just contains information which will be used at runtime to access A’s code.
In Windows, using an import library is sort of like using import spam; it gives you access to spam’s names, but does
not create a separate copy. On Unix, linking with a library is more like from spam import *; it does create a
separate copy.

2.5.3 Using DLLs in Practice

Windows Python is built in Microsoft Visual C++; using other compilers may or may not work (though Borland seems
to). The rest of this section is MSVC++ specific.
When creating DLLs inWindows, you must pass pythonXY.lib to the linker. To build two DLLs, spam and ni (which
uses C functions found in spam), you could use these commands:

cl /LD /I/python/include spam.c ../libs/pythonXY.lib
cl /LD /I/python/include ni.c spam.lib ../libs/pythonXY.lib

The first command created three files: spam.obj, spam.dll and spam.lib. Spam.dll does not contain
any Python functions (such as PyArg_ParseTuple()), but it does know how to find the Python code thanks to
pythonXY.lib.
The second command created ni.dll (and .obj and .lib), which knows how to find the necessary functions from
spam, and also from the Python executable.
Not every identifier is exported to the lookup table. If you want any other modules (including Python) to be able
to see your identifiers, you have to say _declspec(dllexport), as in void _declspec(dllexport)
initspam(void) or PyObject _declspec(dllexport) *NiGetSpamData(void).
Developer Studio will throw in a lot of import libraries that you do not really need, adding about 100K to your exe-
cutable. To get rid of them, use the Project Settings dialog, Link tab, to specify ignore default libraries. Add the correct
msvcrtxx.lib to the list of libraries.

2.5. Building C and C++ Extensions on Windows 61

Extending and Embedding Python,출시버전 3.6.15

62 Chapter 2. Creating extensions without third party tools

CHAPTER3

Embedding the CPython runtime in a larger application

Sometimes, rather than creating an extension that runs inside the Python interpreter as the main application, it is desirable
to instead embed the CPython runtime inside a larger application. This section covers some of the details involved in
doing that successfully.

3.1 Embedding Python in Another Application

The previous chapters discussed how to extend Python, that is, how to extend the functionality of Python by attaching a
library of C functions to it. It is also possible to do it the other way around: enrich your C/C++ application by embedding
Python in it. Embedding provides your application with the ability to implement some of the functionality of your appli-
cation in Python rather than C or C++. This can be used for many purposes; one example would be to allow users to tailor
the application to their needs by writing some scripts in Python. You can also use it yourself if some of the functionality
can be written in Python more easily.
Embedding Python is similar to extending it, but not quite. The difference is that when you extend Python, the main
program of the application is still the Python interpreter, while if you embed Python, the main program may have nothing
to do with Python — instead, some parts of the application occasionally call the Python interpreter to run some Python
code.
So if you are embedding Python, you are providing your own main program. One of the things this main program has
to do is initialize the Python interpreter. At the very least, you have to call the function Py_Initialize(). There
are optional calls to pass command line arguments to Python. Then later you can call the interpreter from any part of the
application.
There are several different ways to call the interpreter: you can pass a string containing Python statements to
PyRun_SimpleString(), or you can pass a stdio file pointer and a file name (for identification in error messages
only) to PyRun_SimpleFile(). You can also call the lower-level operations described in the previous chapters to
construct and use Python objects.
더보기:

c-api-index The details of Python’s C interface are given in this manual. A great deal of necessary information can be
found here.

63

Extending and Embedding Python,출시버전 3.6.15

3.1.1 Very High Level Embedding

The simplest form of embedding Python is the use of the very high level interface. This interface is intended to execute
a Python script without needing to interact with the application directly. This can for example be used to perform some
operation on a file.

#include <Python.h>

int
main(int argc, char *argv[])
{

wchar_t *program = Py_DecodeLocale(argv[0], NULL);
if (program == NULL) {

fprintf(stderr, "Fatal error: cannot decode argv[0]\n");
exit(1);

}
Py_SetProgramName(program); /* optional but recommended */
Py_Initialize();
PyRun_SimpleString("from time import time,ctime\n"

"print('Today is', ctime(time()))\n");
if (Py_FinalizeEx() < 0) {

exit(120);
}
PyMem_RawFree(program);
return 0;

}

The Py_SetProgramName() function should be called before Py_Initialize() to inform the interpreter about
paths to Python run-time libraries. Next, the Python interpreter is initialized with Py_Initialize(), followed by
the execution of a hard-coded Python script that prints the date and time. Afterwards, the Py_FinalizeEx() call
shuts the interpreter down, followed by the end of the program. In a real program, you may want to get the Python script
from another source, perhaps a text-editor routine, a file, or a database. Getting the Python code from a file can better
be done by using the PyRun_SimpleFile() function, which saves you the trouble of allocating memory space and
loading the file contents.

3.1.2 Beyond Very High Level Embedding: An overview

The high level interface gives you the ability to execute arbitrary pieces of Python code from your application, but ex-
changing data values is quite cumbersome to say the least. If you want that, you should use lower level calls. At the cost
of having to write more C code, you can achieve almost anything.
It should be noted that extending Python and embedding Python is quite the same activity, despite the different intent.
Most topics discussed in the previous chapters are still valid. To show this, consider what the extension code from Python
to C really does:

1. Convert data values from Python to C,
2. Perform a function call to a C routine using the converted values, and
3. Convert the data values from the call from C to Python.

When embedding Python, the interface code does:
1. Convert data values from C to Python,
2. Perform a function call to a Python interface routine using the converted values, and
3. Convert the data values from the call from Python to C.

64 Chapter 3. Embedding the CPython runtime in a larger application

Extending and Embedding Python,출시버전 3.6.15

As you can see, the data conversion steps are simply swapped to accommodate the different direction of the cross-language
transfer. The only difference is the routine that you call between both data conversions. When extending, you call a C
routine, when embedding, you call a Python routine.
This chapter will not discuss how to convert data from Python to C and vice versa. Also, proper use of references and
dealing with errors is assumed to be understood. Since these aspects do not differ from extending the interpreter, you can
refer to earlier chapters for the required information.

3.1.3 Pure Embedding

The first program aims to execute a function in a Python script. Like in the section about the very high level interface,
the Python interpreter does not directly interact with the application (but that will change in the next section).
The code to run a function defined in a Python script is:

#include <Python.h>

int
main(int argc, char *argv[])
{

PyObject *pName, *pModule, *pFunc;
PyObject *pArgs, *pValue;
int i;

if (argc < 3) {
fprintf(stderr,"Usage: call pythonfile funcname [args]\n");
return 1;

}

Py_Initialize();
pName = PyUnicode_DecodeFSDefault(argv[1]);
/* Error checking of pName left out */

pModule = PyImport_Import(pName);
Py_DECREF(pName);

if (pModule != NULL) {
pFunc = PyObject_GetAttrString(pModule, argv[2]);
/* pFunc is a new reference */

if (pFunc && PyCallable_Check(pFunc)) {
pArgs = PyTuple_New(argc - 3);
for (i = 0; i < argc - 3; ++i) {

pValue = PyLong_FromLong(atoi(argv[i + 3]));
if (!pValue) {

Py_DECREF(pArgs);
Py_DECREF(pModule);
fprintf(stderr, "Cannot convert argument\n");
return 1;

}
/* pValue reference stolen here: */
PyTuple_SetItem(pArgs, i, pValue);

}
pValue = PyObject_CallObject(pFunc, pArgs);
Py_DECREF(pArgs);
if (pValue != NULL) {

printf("Result of call: %ld\n", PyLong_AsLong(pValue));

(다음페이지에계속)

3.1. Embedding Python in Another Application 65

Extending and Embedding Python,출시버전 3.6.15

(이전페이지에서계속)
Py_DECREF(pValue);

}
else {

Py_DECREF(pFunc);
Py_DECREF(pModule);
PyErr_Print();
fprintf(stderr,"Call failed\n");
return 1;

}
}
else {

if (PyErr_Occurred())
PyErr_Print();

fprintf(stderr, "Cannot find function \"%s\"\n", argv[2]);
}
Py_XDECREF(pFunc);
Py_DECREF(pModule);

}
else {

PyErr_Print();
fprintf(stderr, "Failed to load \"%s\"\n", argv[1]);
return 1;

}
if (Py_FinalizeEx() < 0) {

return 120;
}
return 0;

}

This code loads a Python script using argv[1], and calls the function named in argv[2]. Its integer arguments are
the other values of the argv array. If you compile and link this program (let’s call the finished executable call), and
use it to execute a Python script, such as:

def multiply(a,b):
print("Will compute", a, "times", b)
c = 0
for i in range(0, a):

c = c + b
return c

then the result should be:

$ call multiply multiply 3 2
Will compute 3 times 2
Result of call: 6

Although the program is quite large for its functionality, most of the code is for data conversion between Python and C,
and for error reporting. The interesting part with respect to embedding Python starts with

Py_Initialize();
pName = PyUnicode_DecodeFSDefault(argv[1]);
/* Error checking of pName left out */
pModule = PyImport_Import(pName);

After initializing the interpreter, the script is loaded using PyImport_Import(). This routine needs a Python string
as its argument, which is constructed using the PyUnicode_FromString() data conversion routine.

66 Chapter 3. Embedding the CPython runtime in a larger application

Extending and Embedding Python,출시버전 3.6.15

pFunc = PyObject_GetAttrString(pModule, argv[2]);
/* pFunc is a new reference */

if (pFunc && PyCallable_Check(pFunc)) {
...

}
Py_XDECREF(pFunc);

Once the script is loaded, the name we’ re looking for is retrieved using PyObject_GetAttrString(). If the
name exists, and the object returned is callable, you can safely assume that it is a function. The program then proceeds
by constructing a tuple of arguments as normal. The call to the Python function is then made with:

pValue = PyObject_CallObject(pFunc, pArgs);

Upon return of the function, pValue is either NULL or it contains a reference to the return value of the function. Be
sure to release the reference after examining the value.

3.1.4 Extending Embedded Python

Until now, the embedded Python interpreter had no access to functionality from the application itself. The Python API
allows this by extending the embedded interpreter. That is, the embedded interpreter gets extended with routines provided
by the application. While it sounds complex, it is not so bad. Simply forget for a while that the application starts the Python
interpreter. Instead, consider the application to be a set of subroutines, and write some glue code that gives Python access
to those routines, just like you would write a normal Python extension. For example:

static int numargs=0;

/* Return the number of arguments of the application command line */
static PyObject*
emb_numargs(PyObject *self, PyObject *args)
{

if(!PyArg_ParseTuple(args, ":numargs"))
return NULL;

return PyLong_FromLong(numargs);
}

static PyMethodDef EmbMethods[] = {
{"numargs", emb_numargs, METH_VARARGS,
"Return the number of arguments received by the process."},

{NULL, NULL, 0, NULL}
};

static PyModuleDef EmbModule = {
PyModuleDef_HEAD_INIT, "emb", NULL, -1, EmbMethods,
NULL, NULL, NULL, NULL

};

static PyObject*
PyInit_emb(void)
{

return PyModule_Create(&EmbModule);
}

Insert the above code just above the main() function. Also, insert the following two statements before the call to
Py_Initialize():

3.1. Embedding Python in Another Application 67

Extending and Embedding Python,출시버전 3.6.15

numargs = argc;
PyImport_AppendInittab("emb", &PyInit_emb);

These two lines initialize the numargs variable, and make the emb.numargs() function accessible to the embedded
Python interpreter. With these extensions, the Python script can do things like

import emb
print("Number of arguments", emb.numargs())

In a real application, the methods will expose an API of the application to Python.

3.1.5 Embedding Python in C++

It is also possible to embed Python in a C++ program; precisely how this is done will depend on the details of the C++
system used; in general you will need to write the main program in C++, and use the C++ compiler to compile and link
your program. There is no need to recompile Python itself using C++.

3.1.6 Compiling and Linking under Unix-like systems

It is not necessarily trivial to find the right flags to pass to your compiler (and linker) in order to embed the Python
interpreter into your application, particularly because Python needs to load library modules implemented as C dynamic
extensions (.so files) linked against it.
To find out the required compiler and linker flags, you can execute the pythonX.Y-config script which is generated
as part of the installation process (a python3-config script may also be available). This script has several options,
of which the following will be directly useful to you:

• pythonX.Y-config --cflags will give you the recommended flags when compiling:

$ /opt/bin/python3.4-config --cflags
-I/opt/include/python3.4m -I/opt/include/python3.4m -DNDEBUG -g -fwrapv -O3 -Wall␣
↪→-Wstrict-prototypes

• pythonX.Y-config --ldflags will give you the recommended flags when linking:

$ /opt/bin/python3.4-config --ldflags
-L/opt/lib/python3.4/config-3.4m -lpthread -ldl -lutil -lm -lpython3.4m -Xlinker -
↪→export-dynamic

참고: To avoid confusion between several Python installations (and especially between the system Python and your own
compiled Python), it is recommended that you use the absolute path to pythonX.Y-config, as in the above example.

If this procedure doesn’t work for you (it is not guaranteed to work for all Unix-like platforms; however, we welcome bug
reports) you will have to read your system’s documentation about dynamic linking and/or examine Python’s Makefile
(use sysconfig.get_makefile_filename() to find its location) and compilation options. In this case, the
sysconfig module is a useful tool to programmatically extract the configuration values that you will want to combine
together. For example:

>>> import sysconfig
>>> sysconfig.get_config_var('LIBS')
'-lpthread -ldl -lutil'
>>> sysconfig.get_config_var('LINKFORSHARED')
'-Xlinker -export-dynamic'

68 Chapter 3. Embedding the CPython runtime in a larger application

APPENDIXA

용어집

>>> 대화형셸의기본파이썬프롬프트. 인터프리터에서대화형으로실행될수있는코드예에서자주볼수
있다.

... The default Python prompt of the interactive shell when entering code for an indented code block, when within
a pair of matching left and right delimiters (parentheses, square brackets, curly braces or triple quotes), or after
specifying a decorator.

2to3 파이썬 2.x 코드를 파이썬 3.x 코드로 변환하려고 시도하는 도구인데, 소스를 파싱하고 파스 트리를
탐색해서감지할수있는대부분의비호환성을다룬다.

2to3는표준라이브러리에서 lib2to3로제공된다; 독립적으로실행할수있는스크립트는 Tools/
scripts/2to3로제공된다. 2to3-reference를보세요.

abstract base class (추상베이스클래스) 추상베이스클래스는hasattr()같은다른테크닉들이불편하거나
미묘하게잘못된 (예를들어,매직메서드)경우,인터페이스를정의하는방법을제공함으로써덕타이핑
을보완한다. ABC는가상서브클래스를도입하는데,클래스를계승하지않으면서도isinstance()와
issubclass()에의해감지될수있는클래스들이다; abc모듈도큐멘테이션을보세요. 파이썬에는
많은내장 ABC들이따라오는데다음과같은것들이있다: 자료구조 (collections.abc모듈에서),
숫자 (numbers모듈에서),스트림 (io모듈에서),임포트파인더와로더 (importlib.abc모듈에서).
abc모듈을사용해서자신만의 ABC를만들수도있다.

annotation A label associated with a variable, a class attribute or a function parameter or return value, used by convention
as a type hint.
Annotations of local variables cannot be accessed at runtime, but annotations of global variables, class attributes,
and functions are stored in the __annotations__ special attribute of modules, classes, and functions, respec-
tively.
See variable annotation, function annotation, PEP 484 and PEP 526, which describe this functionality.

argument (인자) 함수를호출할때함수 (또는메서드)로전달되는값. 두종류의인자가있다:
• 키워드인자 (keyword argument): 함수호출때식별자가앞에붙은인자 (예를들어, name=)또는 **
를앞에붙인딕셔너리로전달되는인자. 예를들어, 다음과같은 complex()호출에서 3과 5는
모두키워드인자다:

69

https://www.python.org/dev/peps/pep-0484
https://www.python.org/dev/peps/pep-0526

Extending and Embedding Python,출시버전 3.6.15

complex(real=3, imag=5)
complex(**{'real': 3, 'imag': 5})

• 위치인자 (positional argument): 키워드인자가아닌인자. 위치인자들은인자목록의처음에나오
거나이터러블의앞에 *를붙여전달할수있다. 예를들어, 다음과같은호출에서 3과 5는모두
위치인자다.

complex(3, 5)
complex(*(3, 5))

인자는함수바의이름붙은지역변수에대입된다. 이대입에적용되는규칙들에대해서는 calls섹션을
보세요. 문법적으로,어떤표현식이건인자로사용될수있다;구해진값이지역변수에대입된다.

용어집의파라미터항목과 FAQ질문인자와파라미터의차이와 PEP 362도보세요.
asynchronous context manager (비동기컨텍스트관리자) __aenter__()와 __aexit__()메서드를정의

함으로써 async with문에서보이는환경을제어하는객체. PEP 492로도입되었다.
asynchronous generator (비동기제너레이터) 비동기제너레이터이터레이터를돌려주는함수. async def

로정의되는코루틴함수처럼보이는데, async for루프가사용할수있는일련의값들을만드는yield
표현식을포함한다는점이다르다.

Usually refers to an asynchronous generator function, but may refer to an asynchronous generator iterator in some
contexts. In cases where the intended meaning isn’t clear, using the full terms avoids ambiguity.
비동기제너레이터함수는 await표현식과, async for문과, async with문을포함할수있다.

asynchronous generator iterator (비동기제너레이터이터레이터) 비동기제너레이터함수가만드는객체.
This is an asynchronous iterator which when called using the __anext__() method returns an awaitable object
which will execute the body of the asynchronous generator function until the next yield expression.
Each yield temporarily suspends processing, remembering the location execution state (including local variables
and pending try-statements). When the asynchronous generator iterator effectively resumes with another awaitable
returned by __anext__(), it picks up where it left off. See PEP 492 and PEP 525.

asynchronous iterable (비동기이터러블) async for문에서사용될수있는객체. __aiter__()메서드는
비동기이터레이터를돌려줘야한다. PEP 492로도입되었다.

asynchronous iterator (비동기이터레이터) An object that implements the __aiter__() and __anext__()
methods. __anext__ must return an awaitable object. async for resolves the awaitables returned by an
asynchronous iterator’s __anext__()method until it raises a StopAsyncIteration exception. Introduced
by PEP 492.

attribute (어트리뷰트) 점표현식을사용하는이름으로참조되는객체와결합한값. 예를들어,객체 o가어트
리뷰트 a를가지면, o.a처럼참조된다.

awaitable (어웨이터블) await표현식에사용할수있는객체. 코루틴 이나 __await__()메서드를가진
객체가될수있다. PEP 492를보세요.

BDFL 자비로운종신독재자 (Benevolent Dictator For Life),즉 Guido van Rossum, 파이썬의창시자.
binary file (바이너리파일) 바이트열류 객체들 을 읽고 쓸 수 있는 파일 객체. 바이너리 파일의 예로는 바

이너리모드 ('rb', 'wb' 또는 'rb+') 로열린파일, sys.stdin.buffer, sys.stdout.buffer,
io.BytesIO와 gzip.GzipFile의인스턴스를들수있다.

str객체를읽고쓸수있는파일객체에대해서는텍스트파일도참조하세요.

bytes-like object (바이트열류객체) bufferobjects를지원하고 C-연속버퍼를익스포트할수있다. 여러공통
memoryview객체들은물론이고 bytes, bytearray, array.array객체들을포함한다. 바이트열류
객체들은바이너리데이터를다루는여러가지연산들에사용될수있다; 압축, 바이너리파일로저장,
소켓을통한전송같은것들이있다.

70 Appendix A. 용어집

https://www.python.org/dev/peps/pep-0362
https://www.python.org/dev/peps/pep-0492
https://www.python.org/dev/peps/pep-0492
https://www.python.org/dev/peps/pep-0525
https://www.python.org/dev/peps/pep-0492
https://www.python.org/dev/peps/pep-0492
https://www.python.org/dev/peps/pep-0492
https://www.python.org/~guido/

Extending and Embedding Python,출시버전 3.6.15

어떤연산들은바이너리데이터가가변적일필요가있다. 이런경우에도큐멘테이션은종종《읽고-쓰기
바이트열류객체》라고표현한다. 가변버퍼객체의예로는bytearray와bytearray의memoryview
가있다. 다른연산들은바이너리데이터가불변객체 (《읽기전용바이트열류객체》)에저장되도록
요구한다;이런것들의예로는 bytes와 bytes객체의 memoryview가있다.

bytecode (바이트코드) 파이썬소스코드는바이트코드로컴파일되는데, CPython 인터프리터에서파이썬
프로그램의내부표현이다. 바이트코드는 .pyc파일에캐시되어, 같은파일을두번째실행할때더
빨라지게만든다 (소스에서바이트코드로의재컴파일을피할수있다). 이《중간언어》는각바이트
코드에대응하는기계를실행하는가상기계에서실행된다고말한다. 바이트코드는서로다른파이썬
가상기계에서작동할것으로기대하지도,파이썬배포간에안정적이지도않다는것에주의해야한다.

바이트코드명령어들의목록은 dis모듈도큐멘테이션에나온다.
class (클래스) 사용자정의객체들을만들기위한주형. 클래스정의는보통클래스의인스턴스를대상으로

연산하는메서드정의들을포함한다.

class variable A variable defined in a class and intended to be modified only at class level (i.e., not in an instance of the
class).

coercion (코어션) 같은형의두인자를수반하는연산이일어나는동안,한형의인스턴스를다른형으로묵시
적으로변환하는것. 예를들어, int(3.15)는실수를정수 3으로변환한다. 하지만, 3+4.5에서, 각
인자는다른형이고 (하나는 int,다른하나는 float),둘을더하기전에같은형으로변환해야한다. 그렇지
않으면 TypeError를일으킨다. 코어션없이는,호환되는형들조차도프로그래머가같은형으로정규
화해주어야한다,예를들어,그냥 3+4.5하는대신 float(3)+4.5.

complex number (복소수) 익숙한실수시스템의확장인데,모든숫자가실수부와허수부의합으로표현된다.
허수부는실수에허수단위 (-1의제곱근)를곱한것인데,종종수학에서는 i로,공학에서는 j로표기
한다. 파이썬은후자의표기법을쓰는복소수를기본지원한다;허수부는 j접미사를붙여서표기한다,
예를들어, 3+1j. math모듈의복소수버전이필요하면, cmath를사용한다. 복소수의활용은꽤수준
높은수학적기능이다. 필요하다고느끼지못한다면,거의확실히무시해도좋다.

context manager (컨텍스트관리자) __enter__()와 __exit__()메서드를정의함으로써 with문에서보
이는환경을제어하는객체. PEP 343로도입되었다.

contiguous (연속) 버퍼는정확히C-연속 (C-contiguous)이거나포트란연속 (Fortran contiguous)일때연속이라고
여겨진다. 영차원버퍼는 C-연속이면서포트란연속이다. 일차원배열에서,항목들은서로에인접하고,
0에서시작하는오름차순인덱스의순서대로메모리에배치되어야한다. 다차원 C-연속배열에서,
메모리주소의순서대로항목들을방문할때마지막인덱스가가장빨리변한다. 하지만, 포트란연속
배열에서는,첫번째인덱스가가장빨리변한다.

coroutine (코루틴) 코루틴은서브루틴의더일반화된형태다. 서브루틴은한지점에서진입하고다른지점에서
탈출한다. 코루틴은여러다른지점에서진입하고, 탈출하고, 재개할수있다. 이것들은 async def
문으로구현할수있다. PEP 492를보세요.

coroutine function (코루틴함수) 코루틴객체를돌려주는함수. 코루틴함수는 async def문으로정의될
수있고, await와 async for와 async with키워드를포함할수있다. 이것들은 PEP 492에의해
도입되었다.

CPython 파이썬프로그래밍언어의규범적인구현인데, python.org에서배포된다. 이 구현을 Jython 이나
IronPython과같은다른것들과구별할필요가있을때용어《CPython》이사용된다.

decorator (데코레이터) 다른함수를돌려주는함수인데,보통 @wrapper문법을사용한함수변환으로적용
된다. 데코레이터의흔한예는 classmethod()과 staticmethod()다.

데코레이터문법은단지편의문법일뿐이다. 다음두함수정의는의미상으로동등하다:

def f(...):
...

f = staticmethod(f)

(다음페이지에계속)

71

https://www.python.org/dev/peps/pep-0343
https://www.python.org/dev/peps/pep-0492
https://www.python.org/dev/peps/pep-0492
https://www.python.org

Extending and Embedding Python,출시버전 3.6.15

(이전페이지에서계속)
@staticmethod
def f(...):

...

같은개념이클래스에도존재하지만,덜자주쓰인다. 데코레이터에대한더자세한내용은함수정의와
클래스정의의도큐멘테이션을보면된다.

descriptor (디스크립터) 메서드 __get__()이나 __set__()이나 __delete__()를정의하는객체. 클래
스어트리뷰트가디스크립터일때,어트리뷰트조회는특별한연결작용을일으킨다. 보통, a.b를읽거나,
쓰거나, 삭제하는데사용할때, a의클래스딕셔너리에서 b라고이름붙여진객체를찾는다. 하지만 b
가디스크립터면,해당하는디스크립터메서드가호출된다. 디스크립터를이해하는것은파이썬에대한
깊은이해의열쇠인데, 함수, 메서드, 프라퍼티, 클래스메서드, 스태틱메서드, 슈퍼클래스참조등의
많은기능의기초를이루고있기때문이다.

디스크립터의메서드들에대한자세한내용은 descriptors에나온다.
dictionary (딕셔너리) 임의의 키를 값에 대응시키는 연관 배열 (associative array). 키는 __hash__() 와

__eq__()메서드를갖는모든객체가될수있다. 펄에서해시라고부른다.

dictionary view (딕셔너리뷰) dict.keys(), dict.values(), dict.items()메서드가돌려주는객체들
을딕셔너리뷰라고부른다. 이것들은딕셔너리항목들에대한동적인뷰를제공하는데,딕셔너리가변경
될때,뷰가이변화를반영한다는뜻이다. 딕셔너리뷰를완전한리스트로바꾸려면 list(dictview)
를사용하면된다. dict-views를보세요.

docstring (독스트링) 클래스, 함수, 모듈에서첫번째표현식으로나타나는문자열리터럴. 스위트가실행될
때는무시되지만,컴파일러에의해인지되어둘러싼클래스,함수,모듈의 __doc__어트리뷰트로삽입
된다. 인트로스팩션을통해사용할수있으므로,객체의도큐멘테이션을위한규범적인장소다.

duck-typing (덕타이핑) 올바른인터페이스를가졌는지판단하는데객체의형을보지않는프로그래밍스
타일; 대신, 단순히메서드나어트리뷰트가호출되거나사용된다 (《오리처럼보이고오리처럼꽥꽥
댄다면, 그것은오리다.》)특정한형대신에인터페이스를강조함으로써, 잘설계된코드는다형적인
치환을허락함으로써유연성을개선할수있다. 덕타이핑은 type()이나 isinstance()을사용한
검사를피한다. (하지만,덕타이핑이추상베이스클래스로보완될수있음에유의해야한다.) 대신에,
hasattr()검사나 EAFP프로그래밍을쓴다.

EAFP 허락보다는용서를구하기가쉽다 (Easier to ask for forgiveness than permission). 이흔히볼수있는파
이썬코딩스타일은, 올바른키나어트리뷰트의존재를가정하고, 그가정이틀리면예외를잡는다. 이
깔끔하고빠른스타일은많은 try와 except문의존재로특징지어진다. 이테크닉은 C와같은다른
많은언어에서자주사용되는 LBYL스타일과대비된다.

expression (표현식) 어떤값으로구해질수있는문법적인조각. 다른말로표현하면,표현식은리터럴,이름,
어트리뷰트액세스, 연산자, 함수들과같은값을돌려주는표현요소들을쌓아올린것이다. 다른많은
언어와대조적으로, 모든언어구성물들이표현식인것은아니다. if처럼, 표현식으로사용할수없는
문장들이있다. 대입또한문장이고,표현식이아니다.

extension module (확장모듈) C 나 C++ 로작성된모듈인데, 파이썬의 C API를사용해서핵심이나사용자
코드와상호작용한다.

f-string (f-문자열) 'f'나 'F'를앞에붙인문자열리터럴들을흔히《f-문자열》이라고부르는데,포맷문자
열리터럴의줄임말이다. PEP 498을보세요.

file object (파일객체) 하부자원에대해파일지향적 API (read()나 write()같은메서드들)를드러내는
객체. 만들어진방법에따라,파일객체는실제디스크상의파일이나다른저장장치나통신장치 (예를
들어, 표준입출력, 인-메모리버퍼, 소켓, 파이프, 등등)에대한액세스를중계할수있다. 파일객체는
파일류객체 (file-like objects)나스트림 (streams)이라고도불린다.

실제로는세부류의파일객체들이있다. 날 (raw)바이너리파일,버퍼드 (buffered)바이너리파일,텍스트
파일. 이들의인터페이스는 io모듈에서정의된다. 파일객체를만드는규범적인방법은 open()함수를
쓰는것이다.

72 Appendix A. 용어집

https://www.python.org/dev/peps/pep-0498

Extending and Embedding Python,출시버전 3.6.15

file-like object (파일류객체) 파일객체의비슷한말.
finder (파인더) 임포트될모듈을위한로더를찾으려고시도하는객체.

파이썬 3.3. 이후로,두종류의파인더가있다: sys.meta_path와함께사용하는메타경로파인더와
sys.path_hooks과함께사용하는경로엔트리파인더.

더자세한내용은 PEP 302, PEP 420, PEP 451에나온다.
floor division (정수나눗셈) 가장가까운정수로내림하는수학적나눗셈. 정수나눗셈연산자는 //다. 예를

들어,표현식 11 // 4의값은 2가되지만,실수나눗셈은 2.75를돌려준다. (-11) // 4가 -2.75
를내림한 -3이됨에유의해야한다. PEP 238를보세요.

function (함수) 호출자에게어떤값을돌려주는일련의문장들. 없거나그이상의인자가전달될수있는데,
바디의실행에사용될수있다. 파라미터와메서드와 function섹션도보세요.

function annotation (함수어노테이션) An annotation of a function parameter or return value.
Function annotations are usually used for type hints: for example, this function is expected to take two int argu-
ments and is also expected to have an int return value:

def sum_two_numbers(a: int, b: int) -> int:
return a + b

Function annotation syntax is explained in section function.
See variable annotation and PEP 484, which describe this functionality.

__future__ 프로그래머가현재인터프리터와호환되지않는새언어기능들을활성화할수있도록하는가상
모듈.

__future__모듈을임포트하고그변수들의값들을구해서, 새기능이언제처음으로언어에추가되
었고,언제부터그것이기본이되는지볼수있다:

>>> import __future__
>>> __future__.division
_Feature((2, 2, 0, 'alpha', 2), (3, 0, 0, 'alpha', 0), 8192)

garbage collection (가비지수거) 더사용되지않는메모리를반납하는절차. 파이썬은참조횟수추적과참조
순환을감지하고끊을수있는순환가비지수거기를통해가비지수거를수행한다. 가비지수거기는 gc
모듈을사용해서제어할수있다.

generator (제너레이터) 제너레이터이터레이터를돌려주는함수. 일반함수처럼보이는데, 일련의값들을
만드는 yield표현식을포함한다는점이다르다. 이값들은 for-루프로사용하거나 next()함수로한
번에하나씩꺼낼수있다.

보통제너레이터함수를가리키지만, 어떤문맥에서는제너레이터이터레이터를가리킨다. 의도하는
의미가명확하지않은경우는,완전한용어를써서모호함을없앤다.

generator iterator (제너레이터이터레이터) 제너레이터함수가만드는객체.
Each yield temporarily suspends processing, remembering the location execution state (including local variables
and pending try-statements). When the generator iterator resumes, it picks up where it left off (in contrast to
functions which start fresh on every invocation).

generator expression (제너레이터표현식) 이터레이터를돌려주는표현식. 루프변수와범위를정의하는 for
표현식과생략가능한 if표현식이뒤에붙는일반표현식처럼보인다. 결합한표현식은둘러싼함수를
위한값들을만들어낸다:

>>> sum(i*i for i in range(10)) # sum of squares 0, 1, 4, ... 81
285

73

https://www.python.org/dev/peps/pep-0302
https://www.python.org/dev/peps/pep-0420
https://www.python.org/dev/peps/pep-0451
https://www.python.org/dev/peps/pep-0238
https://www.python.org/dev/peps/pep-0484

Extending and Embedding Python,출시버전 3.6.15

generic function (제네릭함수) 같은연산을서로다른형들에대해구현한여러함수로구성된함수. 호출때
어떤구현이사용될지는디스패치알고리즘에의해결정된다.

싱글디스패치용어집항목과 functools.singledispatch()데코레이터와 PEP 443도보세요.
GIL 전역인터프리터록을보세요.
global interpreter lock (전역인터프리터록) 한번에오직하나의스레드가파이썬바이트코드를실행하도록

보장하기위해 CPython인터프리터가사용하는메커니즘. (dict와같은중요한내장형들을포함하는)
객체모델이묵시적으로동시액세스에대해안전하도록만들어서 CPython 구현을단순하게만든다.
인터프리터전체를로킹하는것은인터프리터를다중스레드화하기쉽게만드는대신, 다중프로세서
기계가제공하는병렬성의많은부분을희생한다.

하지만, 어떤확장모듈들은, 표준이나제삼자모두, 압축이나해싱같은계산집약적인작업을수행할
때는 GIL을반납하도록설계되었다. 또한, I/O를할때는항상 GIL을반납한다.
(훨씬더미세하게공유데이터를로킹하는)《스레드에자유로운 (free-threaded)》인터프리터를만들고자
하는과거의노력은성공적이지못했는데, 흔한단일프로세서경우의성능저하가심하기때문이다.
이성능이슈를극복하는것은구현을훨씬복잡하게만들어서유지비용이더들어갈것으로여겨지고
있다.

hashable (해시가능) 객체가일생그값이변하지않는해시값을갖고 (__hash__()메서드가필요하다),다른
객체와비교될수있으면 (__eq__()메서드가필요하다),해시가능하다고한다. 같다고비교되는해시
가능한객체들의해시값은같아야한다.

해시가능성은객체를딕셔너리의키나집합의멤버로사용할수있게하는데,이자료구조들이내부적
으로해시값을사용하기때문이다.

모든파이썬의불변내장객체들은해시가능하다. (리스트나딕셔너리같은)가변컨테이너들은그렇지
않다. 사용자정의클래스의인스턴스객체들은기본적으로해시가능하다. (자기자신을제외하고는)
모두다르다고비교되고,해시값은 id()로부터만들어진다.

IDLE 파이썬을위한통합개발환경 (Integrated Development Environment). IDLE은파이썬의표준배포판에
따라오는기초적인편집기와인터프리터환경이다.

immutable (불변) 고정된값을갖는객체. 불변객체는숫자,문자열,튜플을포함한다. 이런객체들은변경될
수없다. 새값을저장하려면새객체를만들어야한다. 변하지않는해시값이있어야하는곳에서중요한
역할을한다,예를들어,딕셔너리의키.

import path (임포트경로) 경로기반파인더가임포트할모듈을찾기위해검색하는장소들 (또는경로엔트리)
의목록. 임포트하는동안,이장소들의목록은보통 sys.path로부터온다,하지만서브패키지의경우
부모패키지의 __path__어트리뷰트로부터올수도있다.

importing (임포팅) 한모듈의파이썬코드가다른모듈의파이썬코드에서사용될수있도록하는절차.
importer (임포터) 모듈을찾기도하고로드하기도하는객체;동시에파인더이자로더객체다.
interactive (대화형) 파이썬은대화형인터프리터를갖고있는데,인터프리터프롬프트에서문장과표현식을

입력할수있고,즉각실행된결과를볼수있다는뜻이다. 인자없이단지 python을실행하라 (컴퓨터의
주메뉴에서선택하는것도가능할수있다). 새아이디어를검사하거나모듈과패키지를들여다보는
매우강력한방법이다 (help(x)를기억하세요).

interpreted (인터프리티드) 바이트코드컴파일러의존재때문에그구분이흐릿해지기는하지만, 파이썬은
컴파일언어가아니라인터프리터언어다. 이것은명시적으로실행파일을만들지않고도,소스파일을
직접실행할수있다는뜻이다. 그프로그램이좀더천천히실행되기는하지만,인터프리터언어는보통
컴파일언어보다짧은개발/디버깅주기를갖는다. 대화형도보세요.

interpreter shutdown (인터프리터종료) 종료하라는요청을받을때, 파이썬인터프리터는특별한시기에진
입하는데,모듈이나여러가지중요한내부구조들과같은모든할당된자원들을단계적으로반납한다.
또한, 가비지수거기를여러번호출한다. 사용자정의파괴자나 weakref콜백에있는코드들의실행을
시작시킬수있다. 종료시기동안실행되는코드는다양한예외들을만날수있는데, 그것이의존하는
자원들이더기능하지않을수있기때문이다 (흔한예는라이브러리모듈이나경고장치들이다).

74 Appendix A. 용어집

https://www.python.org/dev/peps/pep-0443

Extending and Embedding Python,출시버전 3.6.15

인터프리터종료의주된원인은실행되는 __main__모듈이나스크립트가실행을끝내는것이다.

iterable (이터러블) 멤버들을한번에하나씩돌려줄수있는객체. 이터러블의예로는모든 (list, str, tuple
같은)시퀀스형들, dict같은몇몇비시퀀스형들,파일객체들, __iter__()나시퀀스개념을구현하
는 __getitem__()메서드를써서정의한모든클래스의객체들이있다.

이터러블은 for루프에사용될수있고,시퀀스를필요로하는다른많은곳 (zip(), map(),…)에사용
될수있다. 이터러블객체가내장함수 iter()에인자로전달되면,그객체의이터레이터를돌려준다.
이이터레이터는값들의집합을한번거치는동안유효하다. 이터러블을사용할때,보통은 iter()를
호출하거나,이터레이터객체를직접다룰필요는없다. for문은이것들을여러분을대신해서자동으로
해주는데,루프를도는동안이터레이터를잡아둘이름없는변수를만든다. 이터레이터,시퀀스,제너레
이터도보세요.

iterator (이터레이터) 데이터의스트림을표현하는객체. 이터레이터의 __next__()메서드를반복적으로
호출하면 (또는내장함수 next()로전달하면)스트림에있는항목들을차례대로돌려준다. 더이상의
데이터가없을때는대신 StopIteration예외를일으킨다. 이지점에서,이터레이터객체는소진되고,
이후의모든__next__()메서드호출은StopIteration예외를다시일으키기만한다. 이터레이터는
이터레이터객체자신을돌려주는 __iter__()메서드를가질것이요구되기때문에, 이터레이터는
이터러블이기도하고다른이터러블들을받아들이는대부분의곳에서사용될수있다. 중요한예외는
여러번의이터레이션을시도하는코드다. (list같은)컨테이너객체는 iter()함수로전달하거나
for루프에사용할때마다새이터레이터를만든다. 이런것을이터레이터에대해서수행하려고하면,
지난이터레이션에사용된이미소진된이터레이터를돌려줘서,빈컨테이너처럼보이게만든다.

typeiter에더자세한내용이있다.
key function (키함수) 키함수또는콜레이션 (collation)함수는정렬 (sorting)이나배열 (ordering)에사용되는

값을돌려주는콜러블이다. 예를들어, locale.strxfrm()은로케일특정방식을따르는정렬키를
만드는데사용된다.

파이썬의많은도구가요소들이어떻게순서지어지고묶이는지를제어하기위해키함수를받아들인다.
이런것들에는 min(), max(), sorted(), list.sort(), heapq.merge(), heapq.nsmallest(),
heapq.nlargest(), itertools.groupby()이있다.

키 함수를 만드는 데는 여러 방법이 있다. 예를 들어, str.lower() 메서드는 케이스 구분 없는 정
렬을위한키함수로사용될수있다. 대안적으로, 키 함수는 lambda표현식으로만들수도있는데,
이런식이다: lambda r: (r[0], r[2]). 또한, operator모듈은세개의키함수생성자를제공한
다: attrgetter(), itemgetter(), methodcaller(). 키함수를만들고사용하는법에대한예로
Sorting HOW TO를보세요.

keyword argument (키워드인자) 인자를보세요.
lambda (람다) 호출될때값이구해지는하나의표현식으로구성된이름없는인라인함수. 람다함수를만드는

문법은 lambda [parameters]: expression이다.

LBYL 뛰기전에보라 (Look before you leap). 이코딩스타일은호출이나조회를하기전에명시적으로사전
조건들을검사한다. 이스타일은 EAFP접근법과대비되고,많은 if문의존재로특징지어진다.

다중스레드환경에서, LBYL접근법은《보기》와《뛰기》간에경쟁조건을만들게될위험이있다. 예를
들어,코드 if key in mapping: return mapping[key]는검사후에,하지만조회전에,다른스
레드가 key를 mapping에서제거하면실패할수있다. 이런이슈는록이나 EAFP접근법을사용함으로써
해결될수있다.

list (리스트) A built-in Python sequence. Despite its name it is more akin to an array in other languages than to a linked
list since access to elements is O(1).

list comprehension (리스트컴프리헨션) 시퀀스의요소들전부또는일부를처리하고그결과를리스트로돌려
주는간결한방법. result = ['{:#04x}'.format(x) for x in range(256) if x % 2 ==
0]는 0에서 255사이에있는짝수들의 16진수 (0x..) 들을포함하는문자열의리스트를만든다. if절은
생략할수있다. 생략하면, range(256)에있는모든요소가처리된다.

75

Extending and Embedding Python,출시버전 3.6.15

loader (로더) 모듈을로드하는객체. load_module()이라는이름의메서드를정의해야한다. 로더는보통
파인더가돌려준다. 자세한내용은 PEP 302를, 추상베이스클래스는 importlib.abc.Loader를
보세요.

mapping (매핑) 임의의키조회를지원하고 Mapping이나 MutableMapping추상베이스클래스에지정된
메서드들을구현하는컨테이너객체. 예로는 dict, collections.defaultdict, collections.
OrderedDict, collections.Counter를들수있다.

meta path finder (메타경로파인더) sys.meta_path의검색이돌려주는파인더. 메타경로파인더는경로
엔트리파인더와관련되어있기는하지만다르다.

메타경로파인더가구현하는메서드들에대해서는 importlib.abc.MetaPathFinder를보면된다.

metaclass (메타클래스) 클래스의클래스. 클래스정의는클래스이름,클래스딕셔너리,베이스클래스들의
목록을만든다. 메타클래스는이세인자를받아서클래스를만드는책임을진다. 대부분의객체지향형
프로그래밍언어들은기본구현을제공한다. 파이썬을특별하게만드는것은커스텀메타클래스를만들
수있다는것이다. 대부분사용자에게는이도구가전혀필요없지만, 필요가생길때, 메타클래스는
강력하고우아한해법을제공한다. 어트리뷰트액세스의로깅 (logging),스레드안전성의추가,객체생성
추적,싱글톤구현과많은다른작업에사용됐다.

metaclasses에서더자세한내용을찾을수있다.
method (메서드) 클래스바디안에서정의되는함수. 그클래스의인스턴스의어트리뷰트로서호출되면, 그

메서드는첫번째인자 (보통 self라고불린다)로인스턴스객체를받는다. 함수와중첩된스코프를
보세요.

method resolution order (메서드결정순서) 메서드결정순서는조회하는동안멤버를검색하는베이스클래
스들의순서다. 2.3릴리스부터파이썬인터프리터에사용된알고리즘의상세한내용은 The Python 2.3
Method Resolution Order를보면된다.

module (모듈) 파이썬코드의조직화단위를담당하는객체. 모듈은임의의파이썬객체들을담는이름공간을
갖는다. 모듈은임포팅절차에의해파이썬으로로드된다.

패키지도보세요.

module spec (모듈스펙) 모듈을 로드하는데 사용되는 임포트 관련 정보들을 담고 있는 이름 공간.
importlib.machinery.ModuleSpec의인스턴스.

MRO 메서드결정순서를보세요.
mutable (가변) 가변객체는값이변할수있지만 id()는일정하게유지한다. 불변도보세요.

named tuple (네임드튜플) 인덱싱할 수 있는 요소들을 이름 붙은 어트리뷰트로도 액세스할 수 있는 모든
튜플류클래스 (예를들어, time.localtime()은 year가 t[0]처럼인덱스로도, t.tm_year처럼
어트리뷰트로도액세스할수있는튜플류객체를돌려준다.)
네임드튜플은 time.struct_time같은내장형일수도, 일반 클래스정의로만들수도있다. 모든
기능이구현된네임드튜플을팩토리함수 collections.namedtuple()로도만들수있다. 마지막
접근법은 Employee(name='jones', title='programmer')와같은스스로문서로만드는 repr
과같은확장기능도자동제공한다.

namespace (이름공간) 변수가저장되는장소. 이름공간은딕셔너리로구현된다. 객체에중첩된이름공간
(메서드에서)뿐만아니라지역,전역,내장이름공간이있다. 이름공간은이름충돌을방지해서모듈성
을지원한다. 예를들어, 함수 builtins.open과 os.open()은그들의이름공간에의해구별된다.
또한,이름공간은어떤모듈이함수를구현하는지를분명하게만들어서가독성과유지보수성에도움을
준다. 예를들어, random.seed()또는 itertools.islice()라고쓰면그함수들이각각 random
과 itertools모듈에의해구현되었음이명확해진다.

namespace package (이름공간패키지) 오직서브패키지들의컨테이너로만기능하는 PEP 420패키지. 이름
공간패키지는물리적인실체가없을수도있고,특히 __init__.py파일이없으므로정규패키지와는
다르다.

76 Appendix A. 용어집

https://www.python.org/dev/peps/pep-0302
https://www.python.org/download/releases/2.3/mro/
https://www.python.org/download/releases/2.3/mro/
https://www.python.org/dev/peps/pep-0420

Extending and Embedding Python,출시버전 3.6.15

모듈도보세요.

nested scope (중첩된스코프) 둘러싼정의에서변수를참조하는능력. 예를들어,다른함수내부에서정의된
함수는바깥함수에있는변수들을참조할수있다. 중첩된스코프는기본적으로는참조만가능할뿐,대
입은되지않는다는것에주의해야한다. 지역변수들은가장내부의스코프에서읽고쓴다. 마찬가지로,
전역변수들은전역이름공간에서읽고쓴다. nonlocal은바깥스코프에쓰는것을허락한다.

new-style class (뉴스타일클래스) 지금은 모든 클래스 객체에 사용되고 있는 클래스 버전의 예전 이
름. 초기의 파이썬 버전에서는, 오직 뉴스타일 클래스만 __slots__, 디스크립터, 프라퍼티,
__getattribute__(), 클래스 메서드, 스태틱 메서드와 같은 파이썬의 새롭고 다양한 기능들을
사용할수있었다.

object (객체) 상태 (어트리뷰트나값)를갖고동작 (메서드)이정의된모든데이터. 또한,모든뉴스타일클래스
의최종적인베이스클래스다.

package (패키지) 서브모듈들이나, 재귀적으로서브패키지들을포함할수있는파이썬모듈. 기술적으로,
패키지는 __path__어트리뷰트가있는파이썬모듈이다.

정규패키지와이름공간패키지도보세요.

parameter (파라미터) 함수 (또는 메서드) 정의에서 함수가 받을 수 있는 인자 (또는 어떤 경우 인자들) 를
지정하는이름붙은엔티티. 다섯종류의파라미터가있다:

• 위치-키워드 (positional-or-keyword): 위치인자나키워드인자로전달될수있는인자를지정한다.
이것이기본형태의파라미터다,예를들어다음에서 foo와 bar:

def func(foo, bar=None): ...

• 위치-전용 (positional-only): 위치로만제공될수있는인자를지정한다. 파이썬은위치-전용파라미
터를정의하는문법을갖고있지않다. 하지만, 어떤매장함수들은위치-전용파라미터를갖는다
(예를들어, abs()).

• 키워드-전용 (keyword-only): 키워드로만제공될수있는인자를지정한다. 키워드-전용파라미터는
함수정의의파라미터목록에서앞에하나의가변-위치파라미터나 *를그대로포함해서정의할
수있다. 예를들어,다음에서 kw_only1와 kw_only2:

def func(arg, *, kw_only1, kw_only2): ...

• 가변-위치 (var-positional): (다른파라미터들에의해서이미받아들여진위치인자들에더해)제공될
수있는위치인자들의임의의시퀀스를지정한다. 이런파라미터는파라미터이름에 *를앞에
붙여서정의될수있다,예를들어다음에서 args:

def func(*args, **kwargs): ...

• 가변-키워드 (var-keyword): (다른파라미터들에의해서이미받아들여진키워드인자들에더해)
제공될수있는임의의개수키워드인자들을지정한다. 이런파라미터는파라미터이름에 **를
앞에붙여서정의될수있다,예를들어위의예에서 kwargs.

파라미터는선택적인자들을위한기본값뿐만아니라선택적이거나필수인자들을지정할수있다.

인자용어집항목,인자와파라미터의차이에나오는 FAQ질문, inspect.Parameter클래스, function
섹션, PEP 362도보세요.

path entry (경로엔트리) 경로기반파인더가임포트할모듈들을찾기위해참고하는임포트경로상의하나의
장소.

path entry finder (경로엔트리파인더) sys.path_hooks에있는콜러블 (즉, 경로엔트리훅)이돌려주는
파인더인데,주어진경로엔트리로모듈을찾는방법을알고있다.

경로엔트리파인더들이구현하는메서드들은 importlib.abc.PathEntryFinder에나온다.

77

https://www.python.org/dev/peps/pep-0362

Extending and Embedding Python,출시버전 3.6.15

path entry hook (경로엔트리훅) sys.path_hook리스트에있는콜러블인데,특정경로엔트리에서모듈을
찾는법을알고있다면경로엔트리파인더를돌려준다.

path based finder (경로기반파인더) 기본메타경로파인더들중하나인데,임포트경로에서모듈을찾는다.
path-like object (경로류객체) 파일시스템경로를나타내는객체. 경로류객체는경로를나타내는 str나

bytes객체이거나 os.PathLike프로토콜을구현하는객체다. os.PathLike프로토콜을지원하는
객체는 os.fspath()함수를호출해서 str나 bytes파일시스템경로로변환될수있다; 대신 os.
fsdecode()와 os.fsencode()는각각 str나 bytes결과를보장하는데사용될수있다. PEP 519
로도입되었다.

PEP 파이썬개선제안. PEP는파이썬커뮤니티에정보를제공하거나파이썬또는그프로세스또는환경에
대한새로운기능을설명하는설계문서다. PEP는 제안된기능에대한간결한기술사양및근거를
제공해야한다.

PEP는주요새로운기능을제안하고문제에대한커뮤니티입력을수집하며파이썬에들어간설계
결정을문서로만들기위한기본메커니즘이다. PEP작성자는커뮤니티내에서합의를구축하고반대
의견을문서화할책임이있다.

PEP 1참조하세요.
portion (포션) PEP 420에서정의한것처럼, 이름공간패키지에이바지하는하나의디렉터리에들어있는

파일들의집합 (zip파일에저장되는것도가능하다).
positional argument (위치인자) 인자를보세요.
provisional API (잠정API) 잠정 API는표준라이브러리의과거호환성보장으로부터신중히제외된것이다.

인터페이스의큰변화가예상되지는않지만, 잠정적이라고표시되는한, 코어개발자들이필요하다고
생각한다면과거호환성이유지되지않는변경이일어날수있다. 그런변경은불필요한방식으로일어
나지는않을것이다— API를포함하기전에놓친중대하고근본적인결함이발견된경우에만일어날
것이다.

잠정 API에서조차도,과거호환성이유지되지않는변경은《최후의수단》으로여겨진다 -모든식별된
문제들에대해과거호환성을유지하는해법을찾으려는모든시도가선행된다.

이절차는표준라이브러리가오랜시간동안잘못된설계오류에발목잡히지않고발전할수있도록
만든다. 더자세한내용은 PEP 411를보면된다.

provisional package (잠정패키지) 잠정 API를보세요.

Python 3000 (파이썬 3000) 파이썬 3.x배포라인의별명 (버전 3의배포가먼미래의이야기던시절에만들어진
이름이다.) 이것을《Py3k》로줄여쓰기도한다.

Pythonic (파이썬다운) 다른언어들에서일반적인개념들을사용해서코드를구현하는대신,파이썬언어에서
가장자주사용되는이디엄들을가까이따르는아이디어나코드조작. 예를들어,파이썬에서자주쓰는
이디엄은 for문을사용해서이터러블의모든요소로루핑하는것이다. 다른많은언어에는이런종류의
구성물이없으므로,파이썬에익숙하지않은사람들은대신에숫자카운터를사용하기도한다:

for i in range(len(food)):
print(food[i])

더깔끔한,파이썬다운방법은이렇다:

for piece in food:
print(piece)

qualified name (정규화된이름) 모듈의전역스코프에서모듈에정의된클래스,함수,메서드에이르는《경로》
를보여주는점으로구분된이름. PEP 3155에서정의된다. 최상위함수와클래스의경우에, 정규화된
이름은객체의이름과같다:

78 Appendix A. 용어집

https://www.python.org/dev/peps/pep-0519
https://www.python.org/dev/peps/pep-0001
https://www.python.org/dev/peps/pep-0420
https://www.python.org/dev/peps/pep-0411
https://www.python.org/dev/peps/pep-3155

Extending and Embedding Python,출시버전 3.6.15

>>> class C:
... class D:
... def meth(self):
... pass
...
>>> C.__qualname__
'C'
>>> C.D.__qualname__
'C.D'
>>> C.D.meth.__qualname__
'C.D.meth'

모듈을가리키는데사용될때,완전히정규화된이름 (fully qualified name)은모든부모패키지들을포함
해서모듈로가는점으로분리된이름을의미한다,예를들어, email.mime.text:

>>> import email.mime.text
>>> email.mime.text.__name__
'email.mime.text'

reference count (참조횟수) 객체에대한참조의개수. 객체의참조횟수가 0으로떨어지면, 메모리가반납된
다. 참조횟수추적은일반적으로파이썬코드에노출되지는않지만, CPython구현의핵심요소다. sys
모듈은특정객체의참조횟수를돌려주는 getrefcount()을정의한다.

regular package (정규패키지) __init__.py파일을포함하는디렉터리와같은전통적인패키지.
이름공간패키지도보세요.

__slots__ 클래스내부의선언인데,인스턴스어트리뷰트들을위한공간을미리선언하고인스턴스딕셔너리를
제거함으로써메모리를절감하는효과를준다. 인기있기는하지만,이테크닉은올바르게사용하기가
좀까다로운편이라서, 메모리에민감한응용프로그램에서많은수의인스턴스가있는특별한경우로
한정하는것이좋다.

sequence (시퀀스) __getitem__()특수메서드를통해정수인덱스를사용한빠른요소액세스를지원하고,
시퀀스의길이를돌려주는 __len__()메서드를정의하는이터러블. 몇몇내장시퀀스들을나열해보면,
list, str, tuple, bytes가있다. dict또한 __getitem__()과 __len__()을지원하지만,조회에
정수대신임의의불변키를사용하기때문에시퀀스가아니라매핑으로취급된다는것에주의해야한다.

collections.abc.Sequence추상베이스클래스는 __getitem__()과 __len__()를넘어서훨
씬풍부한인터페이스를정의하는데, count(), index(), __contains__(), __reversed__()를
추가한다. 이확장된인터페이스를구현한형을 register()를사용해서명시적으로등록할수있다.

single dispatch (싱글디스패치) 구현이하나의인자의형에기초해서결정되는제네릭함수디스패치의한
형태.

slice (슬라이스) 보통시퀀스의일부를포함하는객체. 슬라이스는서브스크립트표기법을사용해서만든다.
variable_name[1:3:5]처럼, []안에서여러개의숫자를콜론으로분리한다. 꺾쇠괄호 (서브스크
립트)표기법은내부적으로 slice객체를사용한다.

special method (특수메서드) 파이썬이형에어떤연산을,덧셈같은,실행할때묵시적으로호출되는메서드.
이런메서드는두개의밑줄로시작하고끝나는이름을갖고있다. 특수메서드는 specialnames에문서로
만들어져있다.

statement (문장) 문장은스위트 (코드의《블록 (block)》)를구성하는부분이다. 문장은표현식이거나키워드
를사용하는여러가지구조물중의하나다. 가령 if, while, for.

struct sequence (구조체시퀀스) A tuple with named elements. Struct sequences expose an interface similar to named
tuple in that elements can be accessed either by index or as an attribute. However, they do not have any of the named
tuple methods like _make() or _asdict(). Examples of struct sequences include sys.float_info and
the return value of os.stat().

79

Extending and Embedding Python,출시버전 3.6.15

text encoding (텍스트인코딩) 유니코드문자열을바이트열로인코딩하는코덱.
text file (텍스트파일) str 객체를 읽고 쓸 수 있는 파일 객체. 종종, 텍스트 파일은 실제로는 바이트 지향

데이터스트림을액세스하고텍스트인코딩을자동처리한다. 텍스트파일의예로는텍스트모드 ('r'
또는 'w')로열린파일, sys.stdin, sys.stdout, io.StringIO의인스턴스를들수있다.
바이트열류객체를읽고쓸수있는파일객체에대해서는바이너리파일도참조하세요.

triple-quoted string (삼중따옴표된문자열) 따옴표 (《) 나 작은따옴표 (〈) 세 개로 둘러싸인 문자열. 그냥
따옴표하나로둘러싸인문자열에없는기능을제공하지는않지만, 여러가지이유에서쓸모가있다.
이스케이프되지않은작은따옴표나큰따옴표를문자열안에포함할수있도록하고,연결문자를쓰지
않고도여러줄에걸칠수있는데,독스트링을쓸때특히쓸모있다.

type (형) 파이썬객체의형은그것이어떤종류의객체인지를결정한다;모든객체는형이있다. 객체의형은
__class__어트리뷰트로액세스할수있거나 type(obj)로얻을수있다.

type alias A synonym for a type, created by assigning the type to an identifier.
Type aliases are useful for simplifying type hints. For example:

from typing import List, Tuple

def remove_gray_shades(
colors: List[Tuple[int, int, int]]) -> List[Tuple[int, int, int]]:

pass

could be made more readable like this:

from typing import List, Tuple

Color = Tuple[int, int, int]

def remove_gray_shades(colors: List[Color]) -> List[Color]:
pass

See typing and PEP 484, which describe this functionality.
type hint An annotation that specifies the expected type for a variable, a class attribute, or a function parameter or return

value.
Type hints are optional and are not enforced by Python but they are useful to static type analysis tools, and aid IDEs
with code completion and refactoring.
Type hints of global variables, class attributes, and functions, but not local variables, can be accessed using
typing.get_type_hints().
See typing and PEP 484, which describe this functionality.

universal newlines (유니버설줄넘김) 다음과같은것들을모두줄의끝으로인식하는,텍스트스트림을해석
하는태도: 유닉스개행문자관례 '\n', 윈도우즈관례 '\r\n', 예전의매킨토시관례 '\r'. 추가적인
사용에관해서는 bytes.splitlines()뿐만아니라 PEP 278와 PEP 3116도보세요.

variable annotation (변수어노테이션) An annotation of a variable or a class attribute.
When annotating a variable or a class attribute, assignment is optional:

class C:
field: 'annotation'

Variable annotations are usually used for type hints: for example this variable is expected to take int values:

80 Appendix A. 용어집

https://www.python.org/dev/peps/pep-0484
https://www.python.org/dev/peps/pep-0484
https://www.python.org/dev/peps/pep-0278
https://www.python.org/dev/peps/pep-3116

Extending and Embedding Python,출시버전 3.6.15

count: int = 0

Variable annotation syntax is explained in section annassign.
See function annotation, PEP 484 and PEP 526, which describe this functionality.

virtual environment (가상환경) 파이썬사용자와응용프로그램이, 같은시스템에서실행되는다른파이썬
응용프로그램들의동작에영향을주지않으면서,파이썬배포패키지들을설치하거나업그레이드하는
것을가능하게하는,협력적으로격리된실행환경.

venv도보세요.

virtual machine (가상기계) 소프트웨어만으로정의된컴퓨터. 파이썬의가상기계는바이트코드컴파일러가
출력하는바이트코드를실행한다.

Zen of Python (파이썬젠) 파이썬디자인원리와철학들의목록인데, 인어를이해하고사용하는데도움이
된다. 이목록은대화형프롬프트에서《import this》를입력하면보인다.

81

https://www.python.org/dev/peps/pep-0484
https://www.python.org/dev/peps/pep-0526

Extending and Embedding Python,출시버전 3.6.15

82 Appendix A. 용어집

APPENDIXB

About these documents

These documents are generated from reStructuredText sources by Sphinx, a document processor specifically written for
the Python documentation.
Development of the documentation and its toolchain is an entirely volunteer effort, just like Python itself. If you want
to contribute, please take a look at the reporting-bugs page for information on how to do so. New volunteers are always
welcome!
Many thanks go to:

• Fred L. Drake, Jr., the creator of the original Python documentation toolset and writer of much of the content;
• the Docutils project for creating reStructuredText and the Docutils suite;
• Fredrik Lundh for his Alternative Python Reference project from which Sphinx got many good ideas.

B.1 Contributors to the Python Documentation

Many people have contributed to the Python language, the Python standard library, and the Python documentation. See
Misc/ACKS in the Python source distribution for a partial list of contributors.
It is only with the input and contributions of the Python community that Python has such wonderful documentation –
Thank You!

83

http://docutils.sourceforge.net/rst.html
http://sphinx-doc.org/
http://docutils.sourceforge.net/
http://effbot.org/zone/pyref.htm
https://github.com/python/cpython/tree/3.6/Misc/ACKS

Extending and Embedding Python,출시버전 3.6.15

84 Appendix B. About these documents

APPENDIXC

History and License

C.1 History of the software

Python was created in the early 1990s by Guido van Rossum at Stichting Mathematisch Centrum (CWI, see https://www.
cwi.nl/) in the Netherlands as a successor of a language called ABC. Guido remains Python’s principal author, although
it includes many contributions from others.
In 1995, Guido continued his work on Python at the Corporation for National Research Initiatives (CNRI, see https:
//www.cnri.reston.va.us/) in Reston, Virginia where he released several versions of the software.
In May 2000, Guido and the Python core development team moved to BeOpen.com to form the BeOpen PythonLabs
team. In October of the same year, the PythonLabs team moved to Digital Creations (now Zope Corporation; see https:
//www.zope.org/). In 2001, the Python Software Foundation (PSF, see https://www.python.org/psf/) was formed, a non-
profit organization created specifically to own Python-related Intellectual Property. Zope Corporation is a sponsoring
member of the PSF.
All Python releases are Open Source (see https://opensource.org/ for the Open Source Definition). Historically, most,
but not all, Python releases have also been GPL-compatible; the table below summarizes the various releases.

Release Derived from Year Owner GPL compatible?
0.9.0 thru 1.2 n/a 1991-1995 CWI yes
1.3 thru 1.5.2 1.2 1995-1999 CNRI yes
1.6 1.5.2 2000 CNRI no
2.0 1.6 2000 BeOpen.com no
1.6.1 1.6 2001 CNRI no
2.1 2.0+1.6.1 2001 PSF no
2.0.1 2.0+1.6.1 2001 PSF yes
2.1.1 2.1+2.0.1 2001 PSF yes
2.1.2 2.1.1 2002 PSF yes
2.1.3 2.1.2 2002 PSF yes
2.2 and above 2.1.1 2001-now PSF yes

85

https://www.cwi.nl/
https://www.cwi.nl/
https://www.cnri.reston.va.us/
https://www.cnri.reston.va.us/
https://www.zope.org/
https://www.zope.org/
https://www.python.org/psf/
https://opensource.org/

Extending and Embedding Python,출시버전 3.6.15

참고: GPL-compatible doesn’t mean that we’re distributing Python under the GPL. All Python licenses, unlike the
GPL, let you distribute a modified version without making your changes open source. The GPL-compatible licenses make
it possible to combine Python with other software that is released under the GPL; the others don’t.

Thanks to the many outside volunteers who have worked under Guido’s direction to make these releases possible.

C.2 Terms and conditions for accessing or otherwise using Python

C.2.1 PSF LICENSE AGREEMENT FOR PYTHON 3.6.15

1. This LICENSE AGREEMENT is between the Python Software Foundation ("PSF"),␣
↪→and

the Individual or Organization ("Licensee") accessing and otherwise using␣
↪→Python

3.6.15 software in source or binary form and its associated documentation.

2. Subject to the terms and conditions of this License Agreement, PSF hereby
grants Licensee a nonexclusive, royalty-free, world-wide license to␣

↪→reproduce,
analyze, test, perform and/or display publicly, prepare derivative works,
distribute, and otherwise use Python 3.6.15 alone or in any derivative
version, provided, however, that PSF's License Agreement and PSF's notice␣

↪→of
copyright, i.e., "Copyright © 2001-2021 Python Software Foundation; All␣

↪→Rights
Reserved" are retained in Python 3.6.15 alone or in any derivative version
prepared by Licensee.

3. In the event Licensee prepares a derivative work that is based on or
incorporates Python 3.6.15 or any part thereof, and wants to make the
derivative work available to others as provided herein, then Licensee␣

↪→hereby
agrees to include in any such work a brief summary of the changes made to␣

↪→Python
3.6.15.

4. PSF is making Python 3.6.15 available to Licensee on an "AS IS" basis.
PSF MAKES NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF
EXAMPLE, BUT NOT LIMITATION, PSF MAKES NO AND DISCLAIMS ANY REPRESENTATION␣

↪→OR
WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT␣

↪→THE
USE OF PYTHON 3.6.15 WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

5. PSF SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF PYTHON 3.6.15
FOR ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT␣

↪→OF
MODIFYING, DISTRIBUTING, OR OTHERWISE USING PYTHON 3.6.15, OR ANY␣

↪→DERIVATIVE
THEREOF, EVEN IF ADVISED OF THE POSSIBILITY THEREOF.

86 Appendix C. History and License

Extending and Embedding Python,출시버전 3.6.15

6. This License Agreement will automatically terminate upon a material breach␣
↪→of

its terms and conditions.

7. Nothing in this License Agreement shall be deemed to create any␣
↪→relationship

of agency, partnership, or joint venture between PSF and Licensee. This␣
↪→License

Agreement does not grant permission to use PSF trademarks or trade name in␣
↪→a

trademark sense to endorse or promote products or services of Licensee, or␣
↪→any

third party.

8. By copying, installing or otherwise using Python 3.6.15, Licensee agrees
to be bound by the terms and conditions of this License Agreement.

C.2.2 BEOPEN.COM LICENSE AGREEMENT FOR PYTHON 2.0

BEOPEN PYTHON OPEN SOURCE LICENSE AGREEMENT VERSION 1

1. This LICENSE AGREEMENT is between BeOpen.com ("BeOpen"), having an office at
160 Saratoga Avenue, Santa Clara, CA 95051, and the Individual or Organization
("Licensee") accessing and otherwise using this software in source or binary
form and its associated documentation ("the Software").

2. Subject to the terms and conditions of this BeOpen Python License Agreement,
BeOpen hereby grants Licensee a non-exclusive, royalty-free, world-wide license
to reproduce, analyze, test, perform and/or display publicly, prepare derivative
works, distribute, and otherwise use the Software alone or in any derivative
version, provided, however, that the BeOpen Python License is retained in the
Software, alone or in any derivative version prepared by Licensee.

3. BeOpen is making the Software available to Licensee on an "AS IS" basis.
BEOPEN MAKES NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF
EXAMPLE, BUT NOT LIMITATION, BEOPEN MAKES NO AND DISCLAIMS ANY REPRESENTATION OR
WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE
USE OF THE SOFTWARE WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

4. BEOPEN SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF THE SOFTWARE FOR
ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT OF USING,
MODIFYING OR DISTRIBUTING THE SOFTWARE, OR ANY DERIVATIVE THEREOF, EVEN IF
ADVISED OF THE POSSIBILITY THEREOF.

5. This License Agreement will automatically terminate upon a material breach of
its terms and conditions.

6. This License Agreement shall be governed by and interpreted in all respects
by the law of the State of California, excluding conflict of law provisions.
Nothing in this License Agreement shall be deemed to create any relationship of
agency, partnership, or joint venture between BeOpen and Licensee. This License
Agreement does not grant permission to use BeOpen trademarks or trade names in a
trademark sense to endorse or promote products or services of Licensee, or any
third party. As an exception, the "BeOpen Python" logos available at

(다음페이지에계속)

C.2. Terms and conditions for accessing or otherwise using Python 87

Extending and Embedding Python,출시버전 3.6.15

(이전페이지에서계속)
http://www.pythonlabs.com/logos.html may be used according to the permissions
granted on that web page.

7. By copying, installing or otherwise using the software, Licensee agrees to be
bound by the terms and conditions of this License Agreement.

C.2.3 CNRI LICENSE AGREEMENT FOR PYTHON 1.6.1

1. This LICENSE AGREEMENT is between the Corporation for National Research
Initiatives, having an office at 1895 Preston White Drive, Reston, VA 20191
("CNRI"), and the Individual or Organization ("Licensee") accessing and
otherwise using Python 1.6.1 software in source or binary form and its
associated documentation.

2. Subject to the terms and conditions of this License Agreement, CNRI hereby
grants Licensee a nonexclusive, royalty-free, world-wide license to reproduce,
analyze, test, perform and/or display publicly, prepare derivative works,
distribute, and otherwise use Python 1.6.1 alone or in any derivative version,
provided, however, that CNRI's License Agreement and CNRI's notice of copyright,
i.e., "Copyright © 1995-2001 Corporation for National Research Initiatives; All
Rights Reserved" are retained in Python 1.6.1 alone or in any derivative version
prepared by Licensee. Alternately, in lieu of CNRI's License Agreement,
Licensee may substitute the following text (omitting the quotes): "Python 1.6.1
is made available subject to the terms and conditions in CNRI's License
Agreement. This Agreement together with Python 1.6.1 may be located on the
Internet using the following unique, persistent identifier (known as a handle):
1895.22/1013. This Agreement may also be obtained from a proxy server on the
Internet using the following URL: http://hdl.handle.net/1895.22/1013."

3. In the event Licensee prepares a derivative work that is based on or
incorporates Python 1.6.1 or any part thereof, and wants to make the derivative
work available to others as provided herein, then Licensee hereby agrees to
include in any such work a brief summary of the changes made to Python 1.6.1.

4. CNRI is making Python 1.6.1 available to Licensee on an "AS IS" basis. CNRI
MAKES NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF EXAMPLE,
BUT NOT LIMITATION, CNRI MAKES NO AND DISCLAIMS ANY REPRESENTATION OR WARRANTY
OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE USE OF
PYTHON 1.6.1 WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

5. CNRI SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF PYTHON 1.6.1 FOR
ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT OF
MODIFYING, DISTRIBUTING, OR OTHERWISE USING PYTHON 1.6.1, OR ANY DERIVATIVE
THEREOF, EVEN IF ADVISED OF THE POSSIBILITY THEREOF.

6. This License Agreement will automatically terminate upon a material breach of
its terms and conditions.

7. This License Agreement shall be governed by the federal intellectual property
law of the United States, including without limitation the federal copyright
law, and, to the extent such U.S. federal law does not apply, by the law of the
Commonwealth of Virginia, excluding Virginia's conflict of law provisions.
Notwithstanding the foregoing, with regard to derivative works based on Python
1.6.1 that incorporate non-separable material that was previously distributed

(다음페이지에계속)

88 Appendix C. History and License

Extending and Embedding Python,출시버전 3.6.15

(이전페이지에서계속)
under the GNU General Public License (GPL), the law of the Commonwealth of
Virginia shall govern this License Agreement only as to issues arising under or
with respect to Paragraphs 4, 5, and 7 of this License Agreement. Nothing in
this License Agreement shall be deemed to create any relationship of agency,
partnership, or joint venture between CNRI and Licensee. This License Agreement
does not grant permission to use CNRI trademarks or trade name in a trademark
sense to endorse or promote products or services of Licensee, or any third
party.

8. By clicking on the "ACCEPT" button where indicated, or by copying, installing
or otherwise using Python 1.6.1, Licensee agrees to be bound by the terms and
conditions of this License Agreement.

C.2.4 CWI LICENSE AGREEMENT FOR PYTHON 0.9.0 THROUGH 1.2

Copyright © 1991 - 1995, Stichting Mathematisch Centrum Amsterdam, The
Netherlands. All rights reserved.

Permission to use, copy, modify, and distribute this software and its
documentation for any purpose and without fee is hereby granted, provided that
the above copyright notice appear in all copies and that both that copyright
notice and this permission notice appear in supporting documentation, and that
the name of Stichting Mathematisch Centrum or CWI not be used in advertising or
publicity pertaining to distribution of the software without specific, written
prior permission.

STICHTING MATHEMATISCH CENTRUM DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS
SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN NO
EVENT SHALL STICHTING MATHEMATISCH CENTRUM BE LIABLE FOR ANY SPECIAL, INDIRECT
OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE,
DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS
SOFTWARE.

C.3 Licenses and Acknowledgements for Incorporated Software

This section is an incomplete, but growing list of licenses and acknowledgements for third-party software incorporated in
the Python distribution.

C.3.1 Mersenne Twister

The _random module includes code based on a download from http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/
MT2002/emt19937ar.html. The following are the verbatim comments from the original code:

A C-program for MT19937, with initialization improved 2002/1/26.
Coded by Takuji Nishimura and Makoto Matsumoto.

Before using, initialize the state by using init_genrand(seed)
or init_by_array(init_key, key_length).

(다음페이지에계속)

C.3. Licenses and Acknowledgements for Incorporated Software 89

http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/MT2002/emt19937ar.html
http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/MT2002/emt19937ar.html

Extending and Embedding Python,출시버전 3.6.15

(이전페이지에서계속)
Copyright (C) 1997 - 2002, Makoto Matsumoto and Takuji Nishimura,
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

3. The names of its contributors may not be used to endorse or promote
products derived from this software without specific prior written
permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Any feedback is very welcome.
http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html
email: m-mat @ math.sci.hiroshima-u.ac.jp (remove space)

C.3.2 Sockets

The socket module uses the functions, getaddrinfo(), and getnameinfo(), which are coded in separate
source files from the WIDE Project, http://www.wide.ad.jp/.

Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
1. Redistributions of source code must retain the above copyright

notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright

notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

3. Neither the name of the project nor the names of its contributors
may be used to endorse or promote products derived from this software
without specific prior written permission.

(다음페이지에계속)

90 Appendix C. History and License

http://www.wide.ad.jp/

Extending and Embedding Python,출시버전 3.6.15

(이전페이지에서계속)
THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

C.3.3 Floating point exception control

The source for the fpectl module includes the following notice:

/ Copyright (c) 1996. \

| The Regents of the University of California. |
| All rights reserved. |
| |
| Permission to use, copy, modify, and distribute this software for |
| any purpose without fee is hereby granted, provided that this en- |
| tire notice is included in all copies of any software which is or |
| includes a copy or modification of this software and in all |
| copies of the supporting documentation for such software. |
| |
| This work was produced at the University of California, Lawrence |
| Livermore National Laboratory under contract no. W-7405-ENG-48 |
| between the U.S. Department of Energy and The Regents of the |
| University of California for the operation of UC LLNL. |
| |
| DISCLAIMER |
| |
| This software was prepared as an account of work sponsored by an |
| agency of the United States Government. Neither the United States |
| Government nor the University of California nor any of their em- |
| ployees, makes any warranty, express or implied, or assumes any |
| liability or responsibility for the accuracy, completeness, or |
| usefulness of any information, apparatus, product, or process |
| disclosed, or represents that its use would not infringe |
| privately-owned rights. Reference herein to any specific commer- |
| cial products, process, or service by trade name, trademark, |
| manufacturer, or otherwise, does not necessarily constitute or |
| imply its endorsement, recommendation, or favoring by the United |
| States Government or the University of California. The views and |
| opinions of authors expressed herein do not necessarily state or |
| reflect those of the United States Government or the University |
| of California, and shall not be used for advertising or product |
\ endorsement purposes. /

C.3. Licenses and Acknowledgements for Incorporated Software 91

Extending and Embedding Python,출시버전 3.6.15

C.3.4 Asynchronous socket services

The asynchat and asyncore modules contain the following notice:

Copyright 1996 by Sam Rushing

All Rights Reserved

Permission to use, copy, modify, and distribute this software and
its documentation for any purpose and without fee is hereby
granted, provided that the above copyright notice appear in all
copies and that both that copyright notice and this permission
notice appear in supporting documentation, and that the name of Sam
Rushing not be used in advertising or publicity pertaining to
distribution of the software without specific, written prior
permission.

SAM RUSHING DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE,
INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN
NO EVENT SHALL SAM RUSHING BE LIABLE FOR ANY SPECIAL, INDIRECT OR
CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS
OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT,
NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

C.3.5 Cookie management

The http.cookies module contains the following notice:

Copyright 2000 by Timothy O'Malley <timo@alum.mit.edu>

All Rights Reserved

Permission to use, copy, modify, and distribute this software
and its documentation for any purpose and without fee is hereby
granted, provided that the above copyright notice appear in all
copies and that both that copyright notice and this permission
notice appear in supporting documentation, and that the name of
Timothy O'Malley not be used in advertising or publicity
pertaining to distribution of the software without specific, written
prior permission.

Timothy O'Malley DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS
SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS, IN NO EVENT SHALL Timothy O'Malley BE LIABLE FOR
ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
PERFORMANCE OF THIS SOFTWARE.

92 Appendix C. History and License

Extending and Embedding Python,출시버전 3.6.15

C.3.6 Execution tracing

The trace module contains the following notice:

portions copyright 2001, Autonomous Zones Industries, Inc., all rights...
err... reserved and offered to the public under the terms of the
Python 2.2 license.
Author: Zooko O'Whielacronx
http://zooko.com/
mailto:zooko@zooko.com

Copyright 2000, Mojam Media, Inc., all rights reserved.
Author: Skip Montanaro

Copyright 1999, Bioreason, Inc., all rights reserved.
Author: Andrew Dalke

Copyright 1995-1997, Automatrix, Inc., all rights reserved.
Author: Skip Montanaro

Copyright 1991-1995, Stichting Mathematisch Centrum, all rights reserved.

Permission to use, copy, modify, and distribute this Python software and
its associated documentation for any purpose without fee is hereby
granted, provided that the above copyright notice appears in all copies,
and that both that copyright notice and this permission notice appear in
supporting documentation, and that the name of neither Automatrix,
Bioreason or Mojam Media be used in advertising or publicity pertaining to
distribution of the software without specific, written prior permission.

C.3.7 UUencode and UUdecode functions

The uu module contains the following notice:

Copyright 1994 by Lance Ellinghouse
Cathedral City, California Republic, United States of America.

All Rights Reserved
Permission to use, copy, modify, and distribute this software and its
documentation for any purpose and without fee is hereby granted,
provided that the above copyright notice appear in all copies and that
both that copyright notice and this permission notice appear in
supporting documentation, and that the name of Lance Ellinghouse
not be used in advertising or publicity pertaining to distribution
of the software without specific, written prior permission.
LANCE ELLINGHOUSE DISCLAIMS ALL WARRANTIES WITH REGARD TO
THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS, IN NO EVENT SHALL LANCE ELLINGHOUSE CENTRUM BE LIABLE
FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT
OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

Modified by Jack Jansen, CWI, July 1995:
- Use binascii module to do the actual line-by-line conversion

between ascii and binary. This results in a 1000-fold speedup. The C

(다음페이지에계속)

C.3. Licenses and Acknowledgements for Incorporated Software 93

Extending and Embedding Python,출시버전 3.6.15

(이전페이지에서계속)
version is still 5 times faster, though.

- Arguments more compliant with Python standard

C.3.8 XML Remote Procedure Calls

The xmlrpc.client module contains the following notice:

The XML-RPC client interface is

Copyright (c) 1999-2002 by Secret Labs AB
Copyright (c) 1999-2002 by Fredrik Lundh

By obtaining, using, and/or copying this software and/or its
associated documentation, you agree that you have read, understood,
and will comply with the following terms and conditions:

Permission to use, copy, modify, and distribute this software and
its associated documentation for any purpose and without fee is
hereby granted, provided that the above copyright notice appears in
all copies, and that both that copyright notice and this permission
notice appear in supporting documentation, and that the name of
Secret Labs AB or the author not be used in advertising or publicity
pertaining to distribution of the software without specific, written
prior permission.

SECRET LABS AB AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH REGARD
TO THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANT-
ABILITY AND FITNESS. IN NO EVENT SHALL SECRET LABS AB OR THE AUTHOR
BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY
DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
OF THIS SOFTWARE.

C.3.9 test_epoll

The test_epoll module contains the following notice:

Copyright (c) 2001-2006 Twisted Matrix Laboratories.

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF

(다음페이지에계속)

94 Appendix C. History and License

Extending and Embedding Python,출시버전 3.6.15

(이전페이지에서계속)
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

C.3.10 Select kqueue

The select module contains the following notice for the kqueue interface:

Copyright (c) 2000 Doug White, 2006 James Knight, 2007 Christian Heimes
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
1. Redistributions of source code must retain the above copyright

notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright

notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

C.3.11 SipHash24

The file Python/pyhash.c contains Marek Majkowski〉 implementation of Dan Bernstein’s SipHash24 algorithm.
The contains the following note:

<MIT License>
Copyright (c) 2013 Marek Majkowski <marek@popcount.org>

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
</MIT License>

(다음페이지에계속)

C.3. Licenses and Acknowledgements for Incorporated Software 95

Extending and Embedding Python,출시버전 3.6.15

(이전페이지에서계속)
Original location:

https://github.com/majek/csiphash/

Solution inspired by code from:
Samuel Neves (supercop/crypto_auth/siphash24/little)
djb (supercop/crypto_auth/siphash24/little2)
Jean-Philippe Aumasson (https://131002.net/siphash/siphash24.c)

C.3.12 strtod and dtoa

The file Python/dtoa.c, which supplies C functions dtoa and strtod for conversion of C doubles to and from strings,
is derived from the file of the same name by David M. Gay, currently available from http://www.netlib.org/fp/. The
original file, as retrieved on March 16, 2009, contains the following copyright and licensing notice:

/**
*
* The author of this software is David M. Gay.
*
* Copyright (c) 1991, 2000, 2001 by Lucent Technologies.
*
* Permission to use, copy, modify, and distribute this software for any
* purpose without fee is hereby granted, provided that this entire notice
* is included in all copies of any software which is or includes a copy
* or modification of this software and in all copies of the supporting
* documentation for such software.
*
* THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR IMPLIED
* WARRANTY. IN PARTICULAR, NEITHER THE AUTHOR NOR LUCENT MAKES ANY
* REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE MERCHANTABILITY
* OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR PURPOSE.
*
***/

C.3.13 OpenSSL

The modules hashlib, posix, ssl, crypt use the OpenSSL library for added performance if made available by the
operating system. Additionally, the Windows and Mac OS X installers for Python may include a copy of the OpenSSL
libraries, so we include a copy of the OpenSSL license here:

LICENSE ISSUES
==============

The OpenSSL toolkit stays under a dual license, i.e. both the conditions of
the OpenSSL License and the original SSLeay license apply to the toolkit.
See below for the actual license texts. Actually both licenses are BSD-style
Open Source licenses. In case of any license issues related to OpenSSL
please contact openssl-core@openssl.org.

OpenSSL License

/* ==
* Copyright (c) 1998-2008 The OpenSSL Project. All rights reserved.

(다음페이지에계속)

96 Appendix C. History and License

http://www.netlib.org/fp/

Extending and Embedding Python,출시버전 3.6.15

(이전페이지에서계속)
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
*
* 3. All advertising materials mentioning features or use of this
* software must display the following acknowledgment:
* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
*
* 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
* endorse or promote products derived from this software without
* prior written permission. For written permission, please contact
* openssl-core@openssl.org.
*
* 5. Products derived from this software may not be called "OpenSSL"
* nor may "OpenSSL" appear in their names without prior written
* permission of the OpenSSL Project.
*
* 6. Redistributions of any form whatsoever must retain the following
* acknowledgment:
* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit (http://www.openssl.org/)"
*
* THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
* EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
* ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
* OF THE POSSIBILITY OF SUCH DAMAGE.
* ==
*
* This product includes cryptographic software written by Eric Young
* (eay@cryptsoft.com). This product includes software written by Tim
* Hudson (tjh@cryptsoft.com).
*
*/

Original SSLeay License

/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)

(다음페이지에계속)

C.3. Licenses and Acknowledgements for Incorporated Software 97

Extending and Embedding Python,출시버전 3.6.15

(이전페이지에서계속)
* All rights reserved.
*
* This package is an SSL implementation written
* by Eric Young (eay@cryptsoft.com).
* The implementation was written so as to conform with Netscapes SSL.
*
* This library is free for commercial and non-commercial use as long as
* the following conditions are aheared to. The following conditions
* apply to all code found in this distribution, be it the RC4, RSA,
* lhash, DES, etc., code; not just the SSL code. The SSL documentation
* included with this distribution is covered by the same copyright terms
* except that the holder is Tim Hudson (tjh@cryptsoft.com).
*
* Copyright remains Eric Young's, and as such any Copyright notices in
* the code are not to be removed.
* If this package is used in a product, Eric Young should be given attribution
* as the author of the parts of the library used.
* This can be in the form of a textual message at program startup or
* in documentation (online or textual) provided with the package.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* "This product includes cryptographic software written by
* Eric Young (eay@cryptsoft.com)"
* The word 'cryptographic' can be left out if the rouines from the library
* being used are not cryptographic related :-).
* 4. If you include any Windows specific code (or a derivative thereof) from
* the apps directory (application code) you must include an acknowledgement:
* "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
*
* THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* The licence and distribution terms for any publically available version or
* derivative of this code cannot be changed. i.e. this code cannot simply be
* copied and put under another distribution licence
* [including the GNU Public Licence.]
*/

98 Appendix C. History and License

Extending and Embedding Python,출시버전 3.6.15

C.3.14 expat

The pyexpat extension is built using an included copy of the expat sources unless the build is configured
--with-system-expat:

Copyright (c) 1998, 1999, 2000 Thai Open Source Software Center Ltd
and Clark Cooper

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

C.3.15 libffi

The _ctypes extension is built using an included copy of the libffi sources unless the build is configured
--with-system-libffi:

Copyright (c) 1996-2008 Red Hat, Inc and others.

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
``Software''), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED ``AS IS'', WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.

C.3. Licenses and Acknowledgements for Incorporated Software 99

Extending and Embedding Python,출시버전 3.6.15

C.3.16 zlib

The zlib extension is built using an included copy of the zlib sources if the zlib version found on the system is too old
to be used for the build:

Copyright (C) 1995-2011 Jean-loup Gailly and Mark Adler

This software is provided 'as-is', without any express or implied
warranty. In no event will the authors be held liable for any damages
arising from the use of this software.

Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it
freely, subject to the following restrictions:

1. The origin of this software must not be misrepresented; you must not
claim that you wrote the original software. If you use this software
in a product, an acknowledgment in the product documentation would be
appreciated but is not required.

2. Altered source versions must be plainly marked as such, and must not be
misrepresented as being the original software.

3. This notice may not be removed or altered from any source distribution.

Jean-loup Gailly Mark Adler
jloup@gzip.org madler@alumni.caltech.edu

C.3.17 cfuhash

The implementation of the hash table used by the tracemalloc is based on the cfuhash project:

Copyright (c) 2005 Don Owens
All rights reserved.

This code is released under the BSD license:

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following
disclaimer in the documentation and/or other materials provided
with the distribution.

* Neither the name of the author nor the names of its
contributors may be used to endorse or promote products derived
from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS

(다음페이지에계속)

100 Appendix C. History and License

Extending and Embedding Python,출시버전 3.6.15

(이전페이지에서계속)
FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
OF THE POSSIBILITY OF SUCH DAMAGE.

C.3.18 libmpdec

The _decimal module is built using an included copy of the libmpdec library unless the build is configured
--with-system-libmpdec:

Copyright (c) 2008-2016 Stefan Krah. All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

C.3. Licenses and Acknowledgements for Incorporated Software 101

Extending and Embedding Python,출시버전 3.6.15

102 Appendix C. History and License

APPENDIXD

저작권

파이썬과이도큐멘테이션은:

Copyright © 2001-2021 Python Software Foundation. All rights reserved.
Copyright © 2000 BeOpen.com. All rights reserved.
Copyright © 1995-2000 Corporation for National Research Initiatives. All rights reserved.
Copyright © 1991-1995 Stichting Mathematisch Centrum. All rights reserved.

전체라이센스및사용권한정보는 History and License에서제공한다.

103

Extending and Embedding Python,출시버전 3.6.15

104 Appendix D. 저작권

색인

Non-alphabetical
..., 69
2to3, 69
>>>, 69
__future__, 73
__slots__, 79

A
abstract base class (추상베이스클래스), 69
annotation, 69
argument (인자), 69
asynchronous context manager (비동기 컨텍

스트관리자), 70
asynchronous generator (비동기제너레이터),

70
asynchronous generator iterator (비동기

제너레이터이터레이터), 70
asynchronous iterable (비동기이터러블), 70
asynchronous iterator (비동기이터레이터), 70
attribute (어트리뷰트), 70
awaitable (어웨이터블), 70

B
BDFL, 70
binary file (바이너리파일), 70
bytecode (바이트코드), 71
bytes-like object (바이트열류객체), 70

C
C-contiguous, 71
class (클래스), 71
class variable, 71
coercion (코어션), 71
complex number (복소수), 71
context manager (컨텍스트관리자), 71
contiguous (연속), 71
coroutine (코루틴), 71
coroutine function (코루틴함수), 71
CPython, 71

D
deallocation, object, 50
decorator (데코레이터), 71
descriptor (디스크립터), 72
dictionary (딕셔너리), 72
dictionary view (딕셔너리뷰), 72
docstring (독스트링), 72
duck-typing (덕타이핑), 72

E
EAFP, 72
expression (표현식), 72
extension module (확장모듈), 72

F
f-string (f-문자열), 72
file object (파일객체), 72
file-like object (파일류객체), 73
finalization, of objects, 50
finder (파인더), 73
floor division (정수나눗셈), 73
Fortran contiguous, 71
function (함수), 73
function annotation (함수어노테이션), 73

G
garbage collection (가비지수거), 73
generator, 73
generator (제너레이터), 73
generator expression, 73
generator expression (제너레이터표현식), 73
generator iterator (제너레이터이터레이터), 73
generic function (제네릭함수), 74
GIL, 74
global interpreter lock (전역 인터프리터

록), 74

H
hashable (해시가능), 74

105

Extending and Embedding Python,출시버전 3.6.15

I
IDLE, 74
immutable (불변), 74
import path (임포트경로), 74
importer (임포터), 74
importing (임포팅), 74
interactive (대화형), 74
interpreted (인터프리티드), 74
interpreter shutdown (인터프리터종료), 74
iterable (이터러블), 75
iterator (이터레이터), 75

K
key function (키함수), 75
keyword argument (키워드인자), 75

L
lambda (람다), 75
LBYL, 75
list (리스트), 75
list comprehension (리스트컴프리헨션), 75
loader (로더), 76

M
mapping (매핑), 76
meta path finder (메타경로파인더), 76
metaclass (메타클래스), 76
method (메서드), 76
method resolution order (메서드 결정 순서),

76
module (모듈), 76
module spec (모듈스펙), 76
MRO, 76
mutable (가변), 76

N
named tuple (네임드튜플), 76
namespace (이름공간), 76
namespace package (이름공간패키지), 76
nested scope (중첩된스코프), 77
new-style class (뉴스타일클래스), 77

O
object

deallocation, 50
finalization, 50

object (객체), 77

P
package (패키지), 77
parameter (파라미터), 77
path based finder (경로기반파인더), 78
path entry (경로엔트리), 77

path entry finder (경로엔트리파인더), 77
path entry hook (경로엔트리훅), 78
path-like object (경로류객체), 78
PEP, 78
Philbrick, Geoff, 15
portion (포션), 78
positional argument (위치인자), 78
provisional API (잠정 API), 78
provisional package (잠정패키지), 78
PyArg_ParseTuple(), 13
PyArg_ParseTupleAndKeywords(), 15
PyErr_Fetch(), 50
PyErr_Restore(), 50
PyInit_modulename (C함수), 58
PyObject_CallObject(), 12
Python 3000 (파이썬 3000), 78
Pythonic (파이썬다운), 78
PYTHONPATH, 58

Q
qualified name (정규화된이름), 78

R
READ_RESTRICTED, 53
READONLY, 53
reference count (참조횟수), 79
regular package (정규패키지), 79
repr

내장 함수, 51
RESTRICTED, 53

S
sequence (시퀀스), 79
single dispatch (싱글디스패치), 79
slice (슬라이스), 79
special method (특수메서드), 79
statement (문장), 79
string

object representation, 51
struct sequence (구조체시퀀스), 79

T
text encoding (텍스트인코딩), 80
text file (텍스트파일), 80
triple-quoted string (삼중따옴표된문자열),

80
type (형), 80
type alias, 80
type hint, 80

U
universal newlines (유니버설줄넘김), 80

106 색인

Extending and Embedding Python,출시버전 3.6.15

V
variable annotation (변수어노테이션), 80
virtual environment (가상환경), 81
virtual machine (가상기계), 81

W
WRITE_RESTRICTED, 53

X
내장 함수

repr, 51

Y
파이썬 향상 제안

PEP 1, 78
PEP 238, 73
PEP 278, 80
PEP 302, 73, 76
PEP 343, 71
PEP 362, 70, 77
PEP 411, 78
PEP 420, 73, 76, 78
PEP 442, 51
PEP 443, 74
PEP 451, 73
PEP 484, 69, 73, 80, 81
PEP 489, 11, 58
PEP 492, 70, 71
PEP 498, 72
PEP 519, 78
PEP 525, 70
PEP 526, 69, 81
PEP 3116, 80
PEP 3155, 78

환경 변수
PYTHONPATH, 58

Z
Zen of Python (파이썬젠), 81

색인 107

	Recommended third party tools
	Creating extensions without third party tools
	Extending Python with C or C++
	Defining Extension Types: Tutorial
	Defining Extension Types: Assorted Topics
	Building C and C++ Extensions
	Building C and C++ Extensions on Windows

	Embedding the CPython runtime in a larger application
	Embedding Python in Another Application

	용어집
	About these documents
	Contributors to the Python Documentation

	History and License
	History of the software
	Terms and conditions for accessing or otherwise using Python
	Licenses and Acknowledgements for Incorporated Software

	저작권
	색인

