typing
— 형 힌트 지원¶
버전 3.5에 추가.
소스 코드: Lib/typing.py
참고
The Python runtime does not enforce function and variable type annotations. They can be used by third party tools such as type checkers, IDEs, linters, etc.
This module provides runtime support for type hints. For the original specification of the typing system, see PEP 484. For a simplified introduction to type hints, see PEP 483.
아래의 함수는 문자열을 취하고 반환하며 다음과 같이 어노테이트 되었습니다:
def greeting(name: str) -> str:
return 'Hello ' + name
함수 greeting
에서, 인자 name
은 형 str
로, 반환형은 str
로 기대됩니다. 서브 형은 인자로 허용됩니다.
New features are frequently added to the typing
module.
The typing_extensions package
provides backports of these new features to older versions of Python.
For a summary of deprecated features and a deprecation timeline, please see Deprecation Timeline of Major Features.
더 보기
- “Typing cheat sheet”
A quick overview of type hints (hosted at the mypy docs)
- “Type System Reference” section of the mypy docs
The Python typing system is standardised via PEPs, so this reference should broadly apply to most Python type checkers. (Some parts may still be specific to mypy.)
- “Static Typing with Python”
Type-checker-agnostic documentation written by the community detailing type system features, useful typing related tools and typing best practices.
Relevant PEPs¶
Since the initial introduction of type hints in PEP 484 and PEP 483, a number of PEPs have modified and enhanced Python’s framework for type annotations:
The full list of PEPs
- PEP 544: Protocols: Structural subtyping (static duck typing)
Introducing
Protocol
and the@runtime_checkable
decorator
- PEP 585: Type Hinting Generics In Standard Collections
Introducing
types.GenericAlias
and the ability to use standard library classes as generic types
- PEP 604: Allow writing union types as
X | Y
Introducing
types.UnionType
and the ability to use the binary-or operator|
to signify a union of types
- PEP 604: Allow writing union types as
- PEP 612: Parameter Specification Variables
Introducing
ParamSpec
andConcatenate
- PEP 646: Variadic Generics
Introducing
TypeVarTuple
- PEP 655: Marking individual TypedDict items as required or potentially missing
Introducing
Required
andNotRequired
- PEP 675: Arbitrary Literal String Type
Introducing
LiteralString
- PEP 681: Data Class Transforms
Introducing the
@dataclass_transform
decorator
형 에일리어스¶
형 에일리어스는 별칭에 형을 대입하여 정의됩니다. 이 예에서, Vector
와 list[float]
는 교환 가능한 동의어로 취급됩니다:
Vector = list[float]
def scale(scalar: float, vector: Vector) -> Vector:
return [scalar * num for num in vector]
# passes type checking; a list of floats qualifies as a Vector.
new_vector = scale(2.0, [1.0, -4.2, 5.4])
형 에일리어스는 복잡한 형 서명을 단순화하는 데 유용합니다. 예를 들면:
from collections.abc import Sequence
ConnectionOptions = dict[str, str]
Address = tuple[str, int]
Server = tuple[Address, ConnectionOptions]
def broadcast_message(message: str, servers: Sequence[Server]) -> None:
...
# The static type checker will treat the previous type signature as
# being exactly equivalent to this one.
def broadcast_message(
message: str,
servers: Sequence[tuple[tuple[str, int], dict[str, str]]]) -> None:
...
Type aliases may be marked with TypeAlias
to make it explicit that
the statement is a type alias declaration, not a normal variable assignment:
from typing import TypeAlias
Vector: TypeAlias = list[float]
NewType¶
Use the NewType
helper to create distinct types:
from typing import NewType
UserId = NewType('UserId', int)
some_id = UserId(524313)
정적 형 검사기는 새 형을 원래 형의 서브 클래스인 것처럼 다룹니다. 논리 에러를 잡는 데 유용합니다:
def get_user_name(user_id: UserId) -> str:
...
# passes type checking
user_a = get_user_name(UserId(42351))
# fails type checking; an int is not a UserId
user_b = get_user_name(-1)
UserId
형의 변수에 대해 모든 int
연산을 여전히 수행할 수 있지만, 결과는 항상 int
형이 됩니다. 이것은 int
가 기대되는 모든 곳에 UserId
를 전달할 수 있지만, 잘못된 방식으로 의도하지 않게 UserId
를 만들지 않도록 합니다:
# 'output' is of type 'int', not 'UserId'
output = UserId(23413) + UserId(54341)
Note that these checks are enforced only by the static type checker. At runtime,
the statement Derived = NewType('Derived', Base)
will make Derived
a
callable that immediately returns whatever parameter you pass it. That means
the expression Derived(some_value)
does not create a new class or introduce
much overhead beyond that of a regular function call.
더욱 정확하게, 표현식 some_value is Derived(some_value)
는 실행 시간에 항상 참입니다.
It is invalid to create a subtype of Derived
:
from typing import NewType
UserId = NewType('UserId', int)
# Fails at runtime and does not pass type checking
class AdminUserId(UserId): pass
However, it is possible to create a NewType
based on a ‘derived’ NewType
:
from typing import NewType
UserId = NewType('UserId', int)
ProUserId = NewType('ProUserId', UserId)
그리고 ProUserId
에 대한 형 검사는 예상대로 작동합니다.
자세한 내용은 PEP 484를 참조하십시오.
참고
형 에일리어스를 사용하면 두 형이 서로 동등한 것으로 선언됨을 상기하십시오. Alias = Original
은 모든 경우 정적 형 검사기가 Alias
를 Original
과 정확히 동등한 것으로 취급하게 합니다. 이것은 복잡한 형 서명을 단순화하려는 경우에 유용합니다.
반면에, NewType
은 한 형을 다른 형의 서브 형으로 선언합니다. Derived = NewType('Derived', Original)
은 정적 형 검사기가 Derived
를 Original
의 서브 클래스로 취급하게 합니다. 이는 Original
형의 값이 Derived
형의 값이 예상되는 위치에서 사용될 수 없음을 의미합니다. 실행 시간 비용을 최소화하면서 논리 에러를 방지하려는 경우에 유용합니다.
버전 3.5.2에 추가.
버전 3.10에서 변경: NewType
is now a class rather than a function. As a result, there is
some additional runtime cost when calling NewType
over a regular
function.
버전 3.11에서 변경: The performance of calling NewType
has been restored to its level in
Python 3.9.
Annotating callable objects¶
Functions – or other callable objects – can be annotated using
collections.abc.Callable
or typing.Callable
.
Callable[[int], str]
signifies a function that takes a single parameter
of type int
and returns a str
.
For example:
from collections.abc import Callable, Awaitable
def feeder(get_next_item: Callable[[], str]) -> None:
... # Body
def async_query(on_success: Callable[[int], None],
on_error: Callable[[int, Exception], None]) -> None:
... # Body
async def on_update(value: str) -> None:
... # Body
callback: Callable[[str], Awaitable[None]] = on_update
The subscription syntax must always be used with exactly two values: the
argument list and the return type. The argument list must be a list of types,
a ParamSpec
, Concatenate
, or an ellipsis. The return type must
be a single type.
If a literal ellipsis ...
is given as the argument list, it indicates that
a callable with any arbitrary parameter list would be acceptable:
def concat(x: str, y: str) -> str:
return x + y
x: Callable[..., str]
x = str # OK
x = concat # Also OK
Callable
cannot express complex signatures such as functions that take a
variadic number of arguments, overloaded functions, or
functions that have keyword-only parameters. However, these signatures can be
expressed by defining a Protocol
class with a
__call__()
method:
from collections.abc import Iterable
from typing import Protocol
class Combiner(Protocol):
def __call__(self, *vals: bytes, maxlen: int | None = None) -> list[bytes]: ...
def batch_proc(data: Iterable[bytes], cb_results: Combiner) -> bytes:
for item in data:
...
def good_cb(*vals: bytes, maxlen: int | None = None) -> list[bytes]:
...
def bad_cb(*vals: bytes, maxitems: int | None) -> list[bytes]:
...
batch_proc([], good_cb) # OK
batch_proc([], bad_cb) # Error! Argument 2 has incompatible type because of
# different name and kind in the callback
Callables which take other callables as arguments may indicate that their
parameter types are dependent on each other using ParamSpec
.
Additionally, if that callable adds or removes arguments from other
callables, the Concatenate
operator may be used. They
take the form Callable[ParamSpecVariable, ReturnType]
and
Callable[Concatenate[Arg1Type, Arg2Type, ..., ParamSpecVariable], ReturnType]
respectively.
버전 3.10에서 변경: Callable
now supports ParamSpec
and Concatenate
.
See PEP 612 for more details.
더 보기
The documentation for ParamSpec
and Concatenate
provides
examples of usage in Callable
.
제네릭¶
Since type information about objects kept in containers cannot be statically inferred in a generic way, many container classes in the standard library support subscription to denote the expected types of container elements.
from collections.abc import Mapping, Sequence
class Employee: ...
# Sequence[Employee] indicates that all elements in the sequence
# must be instances of "Employee".
# Mapping[str, str] indicates that all keys and all values in the mapping
# must be strings.
def notify_by_email(employees: Sequence[Employee],
overrides: Mapping[str, str]) -> None: ...
Generics can be parameterized by using a factory available in typing
called TypeVar
.
from collections.abc import Sequence
from typing import TypeVar
T = TypeVar('T') # Declare type variable "T"
def first(l: Sequence[T]) -> T: # Function is generic over the TypeVar "T"
return l[0]
Annotating tuples¶
For most containers in Python, the typing system assumes that all elements in the container will be of the same type. For example:
from collections.abc import Mapping
# Type checker will infer that all elements in ``x`` are meant to be ints
x: list[int] = []
# Type checker error: ``list`` only accepts a single type argument:
y: list[int, str] = [1, 'foo']
# Type checker will infer that all keys in ``z`` are meant to be strings,
# and that all values in ``z`` are meant to be either strings or ints
z: Mapping[str, str | int] = {}
list
only accepts one type argument, so a type checker would emit an
error on the y
assignment above. Similarly,
Mapping
only accepts two type arguments: the first
indicates the type of the keys, and the second indicates the type of the
values.
Unlike most other Python containers, however, it is common in idiomatic Python
code for tuples to have elements which are not all of the same type. For this
reason, tuples are special-cased in Python’s typing system. tuple
accepts any number of type arguments:
# OK: ``x`` is assigned to a tuple of length 1 where the sole element is an int
x: tuple[int] = (5,)
# OK: ``y`` is assigned to a tuple of length 2;
# element 1 is an int, element 2 is a str
y: tuple[int, str] = (5, "foo")
# Error: the type annotation indicates a tuple of length 1,
# but ``z`` has been assigned to a tuple of length 3
z: tuple[int] = (1, 2, 3)
To denote a tuple which could be of any length, and in which all elements are
of the same type T
, use tuple[T, ...]
. To denote an empty tuple, use
tuple[()]
. Using plain tuple
as an annotation is equivalent to using
tuple[Any, ...]
:
x: tuple[int, ...] = (1, 2)
# These reassignments are OK: ``tuple[int, ...]`` indicates x can be of any length
x = (1, 2, 3)
x = ()
# This reassignment is an error: all elements in ``x`` must be ints
x = ("foo", "bar")
# ``y`` can only ever be assigned to an empty tuple
y: tuple[()] = ()
z: tuple = ("foo", "bar")
# These reassignments are OK: plain ``tuple`` is equivalent to ``tuple[Any, ...]``
z = (1, 2, 3)
z = ()
The type of class objects¶
A variable annotated with C
may accept a value of type C
. In
contrast, a variable annotated with type[C]
(or
typing.Type[C]
) may accept values that are classes
themselves – specifically, it will accept the class object of C
. For
example:
a = 3 # Has type ``int``
b = int # Has type ``type[int]``
c = type(a) # Also has type ``type[int]``
Note that type[C]
is covariant:
class User: ...
class ProUser(User): ...
class TeamUser(User): ...
def make_new_user(user_class: type[User]) -> User:
# ...
return user_class()
make_new_user(User) # OK
make_new_user(ProUser) # Also OK: ``type[ProUser]`` is a subtype of ``type[User]``
make_new_user(TeamUser) # Still fine
make_new_user(User()) # Error: expected ``type[User]`` but got ``User``
make_new_user(int) # Error: ``type[int]`` is not a subtype of ``type[User]``
The only legal parameters for type
are classes, Any
,
type variables, and unions of any of these types.
For example:
def new_non_team_user(user_class: type[BasicUser | ProUser]): ...
new_non_team_user(BasicUser) # OK
new_non_team_user(ProUser) # OK
new_non_team_user(TeamUser) # Error: ``type[TeamUser]`` is not a subtype
# of ``type[BasicUser | ProUser]``
new_non_team_user(User) # Also an error
type[Any]
is equivalent to type
, which is the root of Python’s
metaclass hierarchy.
사용자 정의 제네릭 형¶
사용자 정의 클래스는 제네릭 클래스로 정의 할 수 있습니다.
from typing import TypeVar, Generic
from logging import Logger
T = TypeVar('T')
class LoggedVar(Generic[T]):
def __init__(self, value: T, name: str, logger: Logger) -> None:
self.name = name
self.logger = logger
self.value = value
def set(self, new: T) -> None:
self.log('Set ' + repr(self.value))
self.value = new
def get(self) -> T:
self.log('Get ' + repr(self.value))
return self.value
def log(self, message: str) -> None:
self.logger.info('%s: %s', self.name, message)
베이스 클래스로서의 Generic[T]
는 클래스 LoggedVar
가 단일한 형 매개 변수 T
를 취한다는 것을 정의합니다. 이는 또한 T
를 클래스 바디 내에서 형으로 유효하게 만듭니다.
The Generic
base class defines __class_getitem__()
so
that LoggedVar[T]
is valid as a type:
from collections.abc import Iterable
def zero_all_vars(vars: Iterable[LoggedVar[int]]) -> None:
for var in vars:
var.set(0)
A generic type can have any number of type variables. All varieties of
TypeVar
are permissible as parameters for a generic type:
from typing import TypeVar, Generic, Sequence
T = TypeVar('T', contravariant=True)
B = TypeVar('B', bound=Sequence[bytes], covariant=True)
S = TypeVar('S', int, str)
class WeirdTrio(Generic[T, B, S]):
...
Generic
에 대한 각 형 변수 인자는 달라야 합니다. 그래서 이것은 잘못되었습니다:
from typing import TypeVar, Generic
...
T = TypeVar('T')
class Pair(Generic[T, T]): # INVALID
...
Generic
으로 다중 상속을 사용할 수 있습니다:
from collections.abc import Sized
from typing import TypeVar, Generic
T = TypeVar('T')
class LinkedList(Sized, Generic[T]):
...
When inheriting from generic classes, some type parameters could be fixed:
from collections.abc import Mapping
from typing import TypeVar
T = TypeVar('T')
class MyDict(Mapping[str, T]):
...
이 경우 MyDict
는 단일 매개 변수 T
를 갖습니다.
Using a generic class without specifying type parameters assumes
Any
for each position. In the following example, MyIterable
is
not generic but implicitly inherits from Iterable[Any]
:
from collections.abc import Iterable
class MyIterable(Iterable): # Same as Iterable[Any]
...
User-defined generic type aliases are also supported. Examples:
from collections.abc import Iterable
from typing import TypeVar
S = TypeVar('S')
Response = Iterable[S] | int
# Return type here is same as Iterable[str] | int
def response(query: str) -> Response[str]:
...
T = TypeVar('T', int, float, complex)
Vec = Iterable[tuple[T, T]]
def inproduct(v: Vec[T]) -> T: # Same as Iterable[tuple[T, T]]
return sum(x*y for x, y in v)
버전 3.7에서 변경: Generic
에는 더는 사용자 정의 메타 클래스가 없습니다.
User-defined generics for parameter expressions are also supported via parameter
specification variables in the form Generic[P]
. The behavior is consistent
with type variables’ described above as parameter specification variables are
treated by the typing module as a specialized type variable. The one exception
to this is that a list of types can be used to substitute a ParamSpec
:
>>> from typing import Generic, ParamSpec, TypeVar
>>> T = TypeVar('T')
>>> P = ParamSpec('P')
>>> class Z(Generic[T, P]): ...
...
>>> Z[int, [dict, float]]
__main__.Z[int, (<class 'dict'>, <class 'float'>)]
Furthermore, a generic with only one parameter specification variable will accept
parameter lists in the forms X[[Type1, Type2, ...]]
and also
X[Type1, Type2, ...]
for aesthetic reasons. Internally, the latter is converted
to the former, so the following are equivalent:
>>> class X(Generic[P]): ...
...
>>> X[int, str]
__main__.X[(<class 'int'>, <class 'str'>)]
>>> X[[int, str]]
__main__.X[(<class 'int'>, <class 'str'>)]
Note that generics with ParamSpec
may not have correct
__parameters__
after substitution in some cases because they
are intended primarily for static type checking.
버전 3.10에서 변경: Generic
can now be parameterized over parameter expressions.
See ParamSpec
and PEP 612 for more details.
A user-defined generic class can have ABCs as base classes without a metaclass conflict. Generic metaclasses are not supported. The outcome of parameterizing generics is cached, and most types in the typing module are hashable and comparable for equality.
Any
형¶
특수한 종류의 형은 Any
입니다. 정적 형 검사기는 모든 형을 Any
와 호환되는 것으로, Any
를 모든 형과 호환되는 것으로 취급합니다.
이것은 Any
형의 값에 대해 어떤 연산이나 메서드 호출을 수행하고, 그것을 임의의 변수에 대입할 수 있다는 것을 의미합니다:
from typing import Any
a: Any = None
a = [] # OK
a = 2 # OK
s: str = ''
s = a # OK
def foo(item: Any) -> int:
# Passes type checking; 'item' could be any type,
# and that type might have a 'bar' method
item.bar()
...
Notice that no type checking is performed when assigning a value of type
Any
to a more precise type. For example, the static type checker did
not report an error when assigning a
to s
even though s
was
declared to be of type str
and receives an int
value at
runtime!
또한, 반환형이나 매개 변수 형이 없는 모든 함수는 묵시적으로 Any
기본값을 사용합니다:
def legacy_parser(text):
...
return data
# A static type checker will treat the above
# as having the same signature as:
def legacy_parser(text: Any) -> Any:
...
return data
이 동작은 여러분이 동적으로 형이 지정되는 코드와 정적으로 형이 지정되는 코드를 혼합해야 할 때 Any
를 탈출구로 사용할 수 있도록 합니다.
Any
의 동작과 object
의 동작을 대조하십시오. Any
와 유사하게, 모든 형은 object
의 서브 형입니다. 그러나, Any
와는 달리, 그 반대는 사실이 아닙니다: object
는 다른 모든 형의 서브 형이 아닙니다.
이것은 값의 형이 object
일 때, 형 검사기가 그것에 대한 거의 모든 연산을 거부하고, 그것을 더 특수한 형의 변수에 대입(또는 그것을 반환 값으로 사용)하는 것이 형 에러임을 의미합니다. 예를 들면:
def hash_a(item: object) -> int:
# Fails type checking; an object does not have a 'magic' method.
item.magic()
...
def hash_b(item: Any) -> int:
# Passes type checking
item.magic()
...
# Passes type checking, since ints and strs are subclasses of object
hash_a(42)
hash_a("foo")
# Passes type checking, since Any is compatible with all types
hash_b(42)
hash_b("foo")
값이 형 안전한 방식으로 모든 형이 될 수 있음을 표시하려면 object
를 사용하십시오. 값이 동적으로 형이 지정됨을 표시하려면 Any
를 사용하십시오.
명목적 대 구조적 서브 타이핑¶
Initially PEP 484 defined the Python static type system as using
nominal subtyping. This means that a class A
is allowed where
a class B
is expected if and only if A
is a subclass of B
.
이 요구 사항은 이전에 Iterable
과 같은 추상 베이스 클래스에도 적용되었습니다. 이 접근 방식의 문제점은 이것을 지원하려면 클래스를 명시적으로 표시해야만 한다는 점입니다. 이는 파이썬답지 않고 관용적인 동적으로 형이 지정된 파이썬 코드에서 일반적으로 수행하는 것과는 다릅니다. 예를 들어, 이것은 PEP 484를 만족합니다:
from collections.abc import Sized, Iterable, Iterator
class Bucket(Sized, Iterable[int]):
...
def __len__(self) -> int: ...
def __iter__(self) -> Iterator[int]: ...
PEP 544는 사용자가 클래스 정의에서 명시적인 베이스 클래스 없이 위의 코드를 작성할 수 있게 함으로써 이 문제를 풀도록 합니다. 정적 형 검사기가 Bucket
을 Sized
와 Iterable[int]
의 서브 형으로 묵시적으로 취급하도록 합니다. 이것은 구조적 서브 타이핑(structural subtyping)(또는 정적 덕 타이핑)으로 알려져 있습니다:
from collections.abc import Iterator, Iterable
class Bucket: # Note: no base classes
...
def __len__(self) -> int: ...
def __iter__(self) -> Iterator[int]: ...
def collect(items: Iterable[int]) -> int: ...
result = collect(Bucket()) # Passes type check
또한, 특별한 클래스 Protocol
을 서브 클래싱 함으로써, 사용자는 새로운 사용자 정의 프로토콜을 정의하여 구조적 서브 타이핑을 완전히 누릴 수 있습니다 (아래 예를 참조하십시오).
모듈 내용¶
The typing
module defines the following classes, functions and decorators.
특수 타이핑 프리미티브¶
특수형¶
These can be used as types in annotations. They do not support subscription
using []
.
- typing.Any¶
제한되지 않는 형을 나타내는 특수형.
버전 3.11에서 변경:
Any
can now be used as a base class. This can be useful for avoiding type checker errors with classes that can duck type anywhere or are highly dynamic.
- typing.AnyStr¶
-
Definition:
AnyStr = TypeVar('AnyStr', str, bytes)
AnyStr
is meant to be used for functions that may acceptstr
orbytes
arguments but cannot allow the two to mix.예를 들면:
def concat(a: AnyStr, b: AnyStr) -> AnyStr: return a + b concat("foo", "bar") # OK, output has type 'str' concat(b"foo", b"bar") # OK, output has type 'bytes' concat("foo", b"bar") # Error, cannot mix str and bytes
Note that, despite its name,
AnyStr
has nothing to do with theAny
type, nor does it mean “any string”. In particular,AnyStr
andstr | bytes
are different from each other and have different use cases:# Invalid use of AnyStr: # The type variable is used only once in the function signature, # so cannot be "solved" by the type checker def greet_bad(cond: bool) -> AnyStr: return "hi there!" if cond else b"greetings!" # The better way of annotating this function: def greet_proper(cond: bool) -> str | bytes: return "hi there!" if cond else b"greetings!"
- typing.LiteralString¶
Special type that includes only literal strings.
Any string literal is compatible with
LiteralString
, as is anotherLiteralString
. However, an object typed as juststr
is not. A string created by composingLiteralString
-typed objects is also acceptable as aLiteralString
.Example:
def run_query(sql: LiteralString) -> None: ... def caller(arbitrary_string: str, literal_string: LiteralString) -> None: run_query("SELECT * FROM students") # OK run_query(literal_string) # OK run_query("SELECT * FROM " + literal_string) # OK run_query(arbitrary_string) # type checker error run_query( # type checker error f"SELECT * FROM students WHERE name = {arbitrary_string}" )
LiteralString
is useful for sensitive APIs where arbitrary user-generated strings could generate problems. For example, the two cases above that generate type checker errors could be vulnerable to an SQL injection attack.See PEP 675 for more details.
버전 3.11에 추가.
- typing.Never¶
The bottom type, a type that has no members.
This can be used to define a function that should never be called, or a function that never returns:
from typing import Never def never_call_me(arg: Never) -> None: pass def int_or_str(arg: int | str) -> None: never_call_me(arg) # type checker error match arg: case int(): print("It's an int") case str(): print("It's a str") case _: never_call_me(arg) # OK, arg is of type Never
버전 3.11에 추가: On older Python versions,
NoReturn
may be used to express the same concept.Never
was added to make the intended meaning more explicit.
- typing.NoReturn¶
Special type indicating that a function never returns.
예를 들면:
from typing import NoReturn def stop() -> NoReturn: raise RuntimeError('no way')
NoReturn
can also be used as a bottom type, a type that has no values. Starting in Python 3.11, theNever
type should be used for this concept instead. Type checkers should treat the two equivalently.버전 3.6.2에 추가.
- typing.Self¶
Special type to represent the current enclosed class.
예를 들면:
from typing import Self, reveal_type class Foo: def return_self(self) -> Self: ... return self class SubclassOfFoo(Foo): pass reveal_type(Foo().return_self()) # Revealed type is "Foo" reveal_type(SubclassOfFoo().return_self()) # Revealed type is "SubclassOfFoo"
This annotation is semantically equivalent to the following, albeit in a more succinct fashion:
from typing import TypeVar Self = TypeVar("Self", bound="Foo") class Foo: def return_self(self: Self) -> Self: ... return self
In general, if something returns
self
, as in the above examples, you should useSelf
as the return annotation. IfFoo.return_self
was annotated as returning"Foo"
, then the type checker would infer the object returned fromSubclassOfFoo.return_self
as being of typeFoo
rather thanSubclassOfFoo
.Other common use cases include:
classmethod
s that are used as alternative constructors and return instances of thecls
parameter.Annotating an
__enter__()
method which returns self.
You should not use
Self
as the return annotation if the method is not guaranteed to return an instance of a subclass when the class is subclassed:class Eggs: # Self would be an incorrect return annotation here, # as the object returned is always an instance of Eggs, # even in subclasses def returns_eggs(self) -> "Eggs": return Eggs()
See PEP 673 for more details.
버전 3.11에 추가.
- typing.TypeAlias¶
Special annotation for explicitly declaring a type alias.
예를 들면:
from typing import TypeAlias Factors: TypeAlias = list[int]
TypeAlias
is particularly useful for annotating aliases that make use of forward references, as it can be hard for type checkers to distinguish these from normal variable assignments:from typing import Generic, TypeAlias, TypeVar T = TypeVar("T") # "Box" does not exist yet, # so we have to use quotes for the forward reference. # Using ``TypeAlias`` tells the type checker that this is a type alias declaration, # not a variable assignment to a string. BoxOfStrings: TypeAlias = "Box[str]" class Box(Generic[T]): @classmethod def make_box_of_strings(cls) -> BoxOfStrings: ...
See PEP 613 for more details.
버전 3.10에 추가.
특수 형태¶
These can be used as types in annotations. They all support subscription using
[]
, but each has a unique syntax.
- typing.Union¶
Union type;
Union[X, Y]
is equivalent toX | Y
and means either X or Y.To define a union, use e.g.
Union[int, str]
or the shorthandint | str
. Using that shorthand is recommended. Details:인자는 형이어야 하며 적어도 하나 있어야 합니다.
공용체의 공용체는 펼쳐집니다, 예를 들어:
Union[Union[int, str], float] == Union[int, str, float]
단일 인자의 공용체는 사라집니다. 예를 들어:
Union[int] == int # The constructor actually returns int
중복 인자는 건너뜁니다. 예를 들어:
Union[int, str, int] == Union[int, str] == int | str
공용체를 비교할 때, 인자 순서가 무시됩니다, 예를 들어:
Union[int, str] == Union[str, int]
You cannot subclass or instantiate a
Union
.Union[X][Y]
라고 쓸 수 없습니다.
버전 3.7에서 변경: 실행 시간에 공용체의 명시적 서브 클래스를 제거하지 않습니다.
버전 3.10에서 변경: Unions can now be written as
X | Y
. See union type expressions.
- typing.Optional¶
Optional[X]
is equivalent toX | None
(orUnion[X, None]
).이는 기본값을 갖는 선택적 인자와 같은 개념이 아님에 유의하십시오. 단지 선택적이기 때문에 기본값을 갖는 선택적 인자가 형 어노테이션에
Optional
한정자가 필요하지는 않습니다. 예를 들면:def foo(arg: int = 0) -> None: ...
한편, 명시적인
None
값이 허용되면, 인자가 선택적인지와 관계없이Optional
을 사용하는 것이 적합합니다. 예를 들면:def foo(arg: Optional[int] = None) -> None: ...
버전 3.10에서 변경: Optional can now be written as
X | None
. See union type expressions.
- typing.Concatenate¶
Special form for annotating higher-order functions.
Concatenate
can be used in conjunction with Callable andParamSpec
to annotate a higher-order callable which adds, removes, or transforms parameters of another callable. Usage is in the formConcatenate[Arg1Type, Arg2Type, ..., ParamSpecVariable]
.Concatenate
is currently only valid when used as the first argument to a Callable. The last parameter toConcatenate
must be aParamSpec
or ellipsis (...
).For example, to annotate a decorator
with_lock
which provides athreading.Lock
to the decorated function,Concatenate
can be used to indicate thatwith_lock
expects a callable which takes in aLock
as the first argument, and returns a callable with a different type signature. In this case, theParamSpec
indicates that the returned callable’s parameter types are dependent on the parameter types of the callable being passed in:from collections.abc import Callable from threading import Lock from typing import Concatenate, ParamSpec, TypeVar P = ParamSpec('P') R = TypeVar('R') # Use this lock to ensure that only one thread is executing a function # at any time. my_lock = Lock() def with_lock(f: Callable[Concatenate[Lock, P], R]) -> Callable[P, R]: '''A type-safe decorator which provides a lock.''' def inner(*args: P.args, **kwargs: P.kwargs) -> R: # Provide the lock as the first argument. return f(my_lock, *args, **kwargs) return inner @with_lock def sum_threadsafe(lock: Lock, numbers: list[float]) -> float: '''Add a list of numbers together in a thread-safe manner.''' with lock: return sum(numbers) # We don't need to pass in the lock ourselves thanks to the decorator. sum_threadsafe([1.1, 2.2, 3.3])
버전 3.10에 추가.
더 보기
PEP 612 – Parameter Specification Variables (the PEP which introduced
ParamSpec
andConcatenate
)
- typing.Literal¶
Special typing form to define “literal types”.
Literal
can be used to indicate to type checkers that the annotated object has a value equivalent to one of the provided literals.예를 들면:
def validate_simple(data: Any) -> Literal[True]: # always returns True ... Mode: TypeAlias = Literal['r', 'rb', 'w', 'wb'] def open_helper(file: str, mode: Mode) -> str: ... open_helper('/some/path', 'r') # Passes type check open_helper('/other/path', 'typo') # Error in type checker
Literal[...]
은 서브 클래싱 될 수 없습니다. 실행 시간에는, 임의의 값이Literal[...]
에 대한 형 인자로 허용되지만, 형 검사기는 제한을 부과할 수 있습니다. 리터럴 형에 대한 자세한 내용은 PEP 586을 참조하십시오.버전 3.8에 추가.
- typing.ClassVar¶
클래스 변수를 표시하기 위한 특수 형 구조물.
PEP 526에서 소개된 것처럼, ClassVar로 감싼 변수 어노테이션은 주어진 어트리뷰트가 클래스 변수로 사용되도록 의도되었으며 해당 클래스의 인스턴스에 설정되어서는 안 됨을 나타냅니다. 용법:
class Starship: stats: ClassVar[dict[str, int]] = {} # class variable damage: int = 10 # instance variable
ClassVar
는 형만 받아들이며 더는 서브 스크립트 할 수 없습니다.ClassVar
는 클래스 자체가 아니므로,isinstance()
나issubclass()
와 함께 사용하면 안 됩니다.ClassVar
는 파이썬 실행 시간 동작을 변경하지 않지만, 제삼자 형 검사기에서 사용할 수 있습니다. 예를 들어, 형 검사기는 다음 코드를 에러로 표시 할 수 있습니다:enterprise_d = Starship(3000) enterprise_d.stats = {} # Error, setting class variable on instance Starship.stats = {} # This is OK
버전 3.5.3에 추가.
- typing.Final¶
Special typing construct to indicate final names to type checkers.
Final names cannot be reassigned in any scope. Final names declared in class scopes cannot be overridden in subclasses.
예를 들면:
MAX_SIZE: Final = 9000 MAX_SIZE += 1 # Error reported by type checker class Connection: TIMEOUT: Final[int] = 10 class FastConnector(Connection): TIMEOUT = 1 # Error reported by type checker
이러한 속성에 대한 실행 시간 검사는 없습니다. 자세한 내용은 PEP 591을 참조하십시오.
버전 3.8에 추가.
- typing.Required¶
Special typing construct to mark a
TypedDict
key as required.This is mainly useful for
total=False
TypedDicts. SeeTypedDict
and PEP 655 for more details.버전 3.11에 추가.
- typing.NotRequired¶
Special typing construct to mark a
TypedDict
key as potentially missing.See
TypedDict
and PEP 655 for more details.버전 3.11에 추가.
- typing.Annotated¶
Special typing form to add context-specific metadata to an annotation.
Add metadata
x
to a given typeT
by using the annotationAnnotated[T, x]
. Metadata added usingAnnotated
can be used by static analysis tools or at runtime. At runtime, the metadata is stored in a__metadata__
attribute.If a library or tool encounters an annotation
Annotated[T, x]
and has no special logic for the metadata, it should ignore the metadata and simply treat the annotation asT
. As such,Annotated
can be useful for code that wants to use annotations for purposes outside Python’s static typing system.Using
Annotated[T, x]
as an annotation still allows for static typechecking ofT
, as type checkers will simply ignore the metadatax
. In this way,Annotated
differs from the@no_type_check
decorator, which can also be used for adding annotations outside the scope of the typing system, but completely disables typechecking for a function or class.The responsibility of how to interpret the metadata lies with the tool or library encountering an
Annotated
annotation. A tool or library encountering anAnnotated
type can scan through the metadata elements to determine if they are of interest (e.g., usingisinstance()
).- Annotated[<type>, <metadata>]
Here is an example of how you might use
Annotated
to add metadata to type annotations if you were doing range analysis:@dataclass class ValueRange: lo: int hi: int T1 = Annotated[int, ValueRange(-10, 5)] T2 = Annotated[T1, ValueRange(-20, 3)]
Details of the syntax:
Annotated
의 첫 번째 인자는 유효한 형이어야 합니다Multiple metadata elements can be supplied (
Annotated
supports variadic arguments):@dataclass class ctype: kind: str Annotated[int, ValueRange(3, 10), ctype("char")]
It is up to the tool consuming the annotations to decide whether the client is allowed to add multiple metadata elements to one annotation and how to merge those annotations.
Annotated
must be subscripted with at least two arguments (Annotated[int]
is not valid)The order of the metadata elements is preserved and matters for equality checks:
assert Annotated[int, ValueRange(3, 10), ctype("char")] != Annotated[ int, ctype("char"), ValueRange(3, 10) ]
Nested
Annotated
types are flattened. The order of the metadata elements starts with the innermost annotation:assert Annotated[Annotated[int, ValueRange(3, 10)], ctype("char")] == Annotated[ int, ValueRange(3, 10), ctype("char") ]
Duplicated metadata elements are not removed:
assert Annotated[int, ValueRange(3, 10)] != Annotated[ int, ValueRange(3, 10), ValueRange(3, 10) ]
Annotated
can be used with nested and generic aliases:@dataclass class MaxLen: value: int T = TypeVar("T") Vec: TypeAlias = Annotated[list[tuple[T, T]], MaxLen(10)] assert Vec[int] == Annotated[list[tuple[int, int]], MaxLen(10)]
Annotated
cannot be used with an unpackedTypeVarTuple
:Variadic: TypeAlias = Annotated[*Ts, Ann1] # NOT valid
This would be equivalent to:
Annotated[T1, T2, T3, ..., Ann1]
where
T1
,T2
, etc. areTypeVars
. This would be invalid: only one type should be passed to Annotated.By default,
get_type_hints()
strips the metadata from annotations. Passinclude_extras=True
to have the metadata preserved:>>> from typing import Annotated, get_type_hints >>> def func(x: Annotated[int, "metadata"]) -> None: pass ... >>> get_type_hints(func) {'x': <class 'int'>, 'return': <class 'NoneType'>} >>> get_type_hints(func, include_extras=True) {'x': typing.Annotated[int, 'metadata'], 'return': <class 'NoneType'>}
At runtime, the metadata associated with an
Annotated
type can be retrieved via the__metadata__
attribute:>>> from typing import Annotated >>> X = Annotated[int, "very", "important", "metadata"] >>> X typing.Annotated[int, 'very', 'important', 'metadata'] >>> X.__metadata__ ('very', 'important', 'metadata')
더 보기
- PEP 593 - Flexible function and variable annotations
The PEP introducing
Annotated
to the standard library.
버전 3.9에 추가.
- typing.TypeGuard¶
Special typing construct for marking user-defined type guard functions.
TypeGuard
can be used to annotate the return type of a user-defined type guard function.TypeGuard
only accepts a single type argument. At runtime, functions marked this way should return a boolean.TypeGuard
aims to benefit type narrowing – a technique used by static type checkers to determine a more precise type of an expression within a program’s code flow. Usually type narrowing is done by analyzing conditional code flow and applying the narrowing to a block of code. The conditional expression here is sometimes referred to as a “type guard”:def is_str(val: str | float): # "isinstance" type guard if isinstance(val, str): # Type of ``val`` is narrowed to ``str`` ... else: # Else, type of ``val`` is narrowed to ``float``. ...
Sometimes it would be convenient to use a user-defined boolean function as a type guard. Such a function should use
TypeGuard[...]
as its return type to alert static type checkers to this intention.Using
-> TypeGuard
tells the static type checker that for a given function:The return value is a boolean.
If the return value is
True
, the type of its argument is the type insideTypeGuard
.
예를 들면:
def is_str_list(val: list[object]) -> TypeGuard[list[str]]: '''Determines whether all objects in the list are strings''' return all(isinstance(x, str) for x in val) def func1(val: list[object]): if is_str_list(val): # Type of ``val`` is narrowed to ``list[str]``. print(" ".join(val)) else: # Type of ``val`` remains as ``list[object]``. print("Not a list of strings!")
If
is_str_list
is a class or instance method, then the type inTypeGuard
maps to the type of the second parameter aftercls
orself
.In short, the form
def foo(arg: TypeA) -> TypeGuard[TypeB]: ...
, means that iffoo(arg)
returnsTrue
, thenarg
narrows fromTypeA
toTypeB
.참고
TypeB
need not be a narrower form ofTypeA
– it can even be a wider form. The main reason is to allow for things like narrowinglist[object]
tolist[str]
even though the latter is not a subtype of the former, sincelist
is invariant. The responsibility of writing type-safe type guards is left to the user.TypeGuard
also works with type variables. See PEP 647 for more details.버전 3.10에 추가.
- typing.Unpack¶
Typing operator to conceptually mark an object as having been unpacked.
For example, using the unpack operator
*
on a type variable tuple is equivalent to usingUnpack
to mark the type variable tuple as having been unpacked:Ts = TypeVarTuple('Ts') tup: tuple[*Ts] # Effectively does: tup: tuple[Unpack[Ts]]
In fact,
Unpack
can be used interchangeably with*
in the context oftyping.TypeVarTuple
andbuiltins.tuple
types. You might seeUnpack
being used explicitly in older versions of Python, where*
couldn’t be used in certain places:# In older versions of Python, TypeVarTuple and Unpack # are located in the `typing_extensions` backports package. from typing_extensions import TypeVarTuple, Unpack Ts = TypeVarTuple('Ts') tup: tuple[*Ts] # Syntax error on Python <= 3.10! tup: tuple[Unpack[Ts]] # Semantically equivalent, and backwards-compatible
버전 3.11에 추가.
제네릭 형 구축하기¶
The following classes should not be used directly as annotations. Their intended purpose is to be building blocks for creating generic types.
- class typing.Generic¶
제네릭 형을 위한 추상 베이스 클래스.
제네릭 형은 일반적으로 이 클래스를 하나 이상의 형 변수로 인스턴스 화한 것을 상속하여 선언됩니다. 예를 들어, 제네릭 매핑형은 다음과 같이 정의할 수 있습니다:
class Mapping(Generic[KT, VT]): def __getitem__(self, key: KT) -> VT: ... # Etc.
이 클래스는 다음과 같이 사용할 수 있습니다:
X = TypeVar('X') Y = TypeVar('Y') def lookup_name(mapping: Mapping[X, Y], key: X, default: Y) -> Y: try: return mapping[key] except KeyError: return default
- class typing.TypeVar(name, *constraints, bound=None, covariant=False, contravariant=False)¶
형 변수.
용법:
T = TypeVar('T') # Can be anything S = TypeVar('S', bound=str) # Can be any subtype of str A = TypeVar('A', str, bytes) # Must be exactly str or bytes
Type variables exist primarily for the benefit of static type checkers. They serve as the parameters for generic types as well as for generic function and type alias definitions. See
Generic
for more information on generic types. Generic functions work as follows:def repeat(x: T, n: int) -> Sequence[T]: """Return a list containing n references to x.""" return [x]*n def print_capitalized(x: S) -> S: """Print x capitalized, and return x.""" print(x.capitalize()) return x def concatenate(x: A, y: A) -> A: """Add two strings or bytes objects together.""" return x + y
Note that type variables can be bound, constrained, or neither, but cannot be both bound and constrained.
Type variables may be marked covariant or contravariant by passing
covariant=True
orcontravariant=True
. See PEP 484 for more details. By default, type variables are invariant.Bound type variables and constrained type variables have different semantics in several important ways. Using a bound type variable means that the
TypeVar
will be solved using the most specific type possible:x = print_capitalized('a string') reveal_type(x) # revealed type is str class StringSubclass(str): pass y = print_capitalized(StringSubclass('another string')) reveal_type(y) # revealed type is StringSubclass z = print_capitalized(45) # error: int is not a subtype of str
Type variables can be bound to concrete types, abstract types (ABCs or protocols), and even unions of types:
U = TypeVar('U', bound=str|bytes) # Can be any subtype of the union str|bytes V = TypeVar('V', bound=SupportsAbs) # Can be anything with an __abs__ method
Using a constrained type variable, however, means that the
TypeVar
can only ever be solved as being exactly one of the constraints given:a = concatenate('one', 'two') reveal_type(a) # revealed type is str b = concatenate(StringSubclass('one'), StringSubclass('two')) reveal_type(b) # revealed type is str, despite StringSubclass being passed in c = concatenate('one', b'two') # error: type variable 'A' can be either str or bytes in a function call, but not both
At runtime,
isinstance(x, T)
will raiseTypeError
.- __name__¶
The name of the type variable.
- __covariant__¶
Whether the type var has been marked as covariant.
- __contravariant__¶
Whether the type var has been marked as contravariant.
- __bound__¶
The bound of the type variable, if any.
- __constraints__¶
A tuple containing the constraints of the type variable, if any.
- class typing.TypeVarTuple(name)¶
Type variable tuple. A specialized form of type variable that enables variadic generics.
용법:
T = TypeVar("T") Ts = TypeVarTuple("Ts") def move_first_element_to_last(tup: tuple[T, *Ts]) -> tuple[*Ts, T]: return (*tup[1:], tup[0])
A normal type variable enables parameterization with a single type. A type variable tuple, in contrast, allows parameterization with an arbitrary number of types by acting like an arbitrary number of type variables wrapped in a tuple. For example:
# T is bound to int, Ts is bound to () # Return value is (1,), which has type tuple[int] move_first_element_to_last(tup=(1,)) # T is bound to int, Ts is bound to (str,) # Return value is ('spam', 1), which has type tuple[str, int] move_first_element_to_last(tup=(1, 'spam')) # T is bound to int, Ts is bound to (str, float) # Return value is ('spam', 3.0, 1), which has type tuple[str, float, int] move_first_element_to_last(tup=(1, 'spam', 3.0)) # This fails to type check (and fails at runtime) # because tuple[()] is not compatible with tuple[T, *Ts] # (at least one element is required) move_first_element_to_last(tup=())
Note the use of the unpacking operator
*
intuple[T, *Ts]
. Conceptually, you can think ofTs
as a tuple of type variables(T1, T2, ...)
.tuple[T, *Ts]
would then becometuple[T, *(T1, T2, ...)]
, which is equivalent totuple[T, T1, T2, ...]
. (Note that in older versions of Python, you might see this written usingUnpack
instead, asUnpack[Ts]
.)Type variable tuples must always be unpacked. This helps distinguish type variable tuples from normal type variables:
x: Ts # Not valid x: tuple[Ts] # Not valid x: tuple[*Ts] # The correct way to do it
Type variable tuples can be used in the same contexts as normal type variables. For example, in class definitions, arguments, and return types:
Shape = TypeVarTuple("Shape") class Array(Generic[*Shape]): def __getitem__(self, key: tuple[*Shape]) -> float: ... def __abs__(self) -> "Array[*Shape]": ... def get_shape(self) -> tuple[*Shape]: ...
Type variable tuples can be happily combined with normal type variables:
DType = TypeVar('DType') Shape = TypeVarTuple('Shape') class Array(Generic[DType, *Shape]): # This is fine pass class Array2(Generic[*Shape, DType]): # This would also be fine pass class Height: ... class Width: ... float_array_1d: Array[float, Height] = Array() # Totally fine int_array_2d: Array[int, Height, Width] = Array() # Yup, fine too
However, note that at most one type variable tuple may appear in a single list of type arguments or type parameters:
x: tuple[*Ts, *Ts] # Not valid class Array(Generic[*Shape, *Shape]): # Not valid pass
Finally, an unpacked type variable tuple can be used as the type annotation of
*args
:def call_soon( callback: Callable[[*Ts], None], *args: *Ts ) -> None: ... callback(*args)
In contrast to non-unpacked annotations of
*args
- e.g.*args: int
, which would specify that all arguments areint
-*args: *Ts
enables reference to the types of the individual arguments in*args
. Here, this allows us to ensure the types of the*args
passed tocall_soon
match the types of the (positional) arguments ofcallback
.See PEP 646 for more details on type variable tuples.
- __name__¶
The name of the type variable tuple.
버전 3.11에 추가.
- class typing.ParamSpec(name, *, bound=None, covariant=False, contravariant=False)¶
Parameter specification variable. A specialized version of type variables.
용법:
P = ParamSpec('P')
Parameter specification variables exist primarily for the benefit of static type checkers. They are used to forward the parameter types of one callable to another callable – a pattern commonly found in higher order functions and decorators. They are only valid when used in
Concatenate
, or as the first argument toCallable
, or as parameters for user-defined Generics. SeeGeneric
for more information on generic types.For example, to add basic logging to a function, one can create a decorator
add_logging
to log function calls. The parameter specification variable tells the type checker that the callable passed into the decorator and the new callable returned by it have inter-dependent type parameters:from collections.abc import Callable from typing import TypeVar, ParamSpec import logging T = TypeVar('T') P = ParamSpec('P') def add_logging(f: Callable[P, T]) -> Callable[P, T]: '''A type-safe decorator to add logging to a function.''' def inner(*args: P.args, **kwargs: P.kwargs) -> T: logging.info(f'{f.__name__} was called') return f(*args, **kwargs) return inner @add_logging def add_two(x: float, y: float) -> float: '''Add two numbers together.''' return x + y
Without
ParamSpec
, the simplest way to annotate this previously was to use aTypeVar
with boundCallable[..., Any]
. However this causes two problems:The type checker can’t type check the
inner
function because*args
and**kwargs
have to be typedAny
.cast()
may be required in the body of theadd_logging
decorator when returning theinner
function, or the static type checker must be told to ignore thereturn inner
.
- args¶
- kwargs¶
Since
ParamSpec
captures both positional and keyword parameters,P.args
andP.kwargs
can be used to split aParamSpec
into its components.P.args
represents the tuple of positional parameters in a given call and should only be used to annotate*args
.P.kwargs
represents the mapping of keyword parameters to their values in a given call, and should be only be used to annotate**kwargs
. Both attributes require the annotated parameter to be in scope. At runtime,P.args
andP.kwargs
are instances respectively ofParamSpecArgs
andParamSpecKwargs
.
- __name__¶
The name of the parameter specification.
Parameter specification variables created with
covariant=True
orcontravariant=True
can be used to declare covariant or contravariant generic types. Thebound
argument is also accepted, similar toTypeVar
. However the actual semantics of these keywords are yet to be decided.버전 3.10에 추가.
참고
Only parameter specification variables defined in global scope can be pickled.
더 보기
PEP 612 – Parameter Specification Variables (the PEP which introduced
ParamSpec
andConcatenate
)
- typing.ParamSpecArgs¶
- typing.ParamSpecKwargs¶
Arguments and keyword arguments attributes of a
ParamSpec
. TheP.args
attribute of aParamSpec
is an instance ofParamSpecArgs
, andP.kwargs
is an instance ofParamSpecKwargs
. They are intended for runtime introspection and have no special meaning to static type checkers.Calling
get_origin()
on either of these objects will return the originalParamSpec
:>>> from typing import ParamSpec, get_origin >>> P = ParamSpec("P") >>> get_origin(P.args) is P True >>> get_origin(P.kwargs) is P True
버전 3.10에 추가.
기타 특수 지시자¶
These functions and classes should not be used directly as annotations. Their intended purpose is to be building blocks for creating and declaring types.
- class typing.NamedTuple¶
형 지정된(typed)
collections.namedtuple()
버전.용법:
class Employee(NamedTuple): name: str id: int
이것은 다음과 동등합니다:
Employee = collections.namedtuple('Employee', ['name', 'id'])
필드에 기본값을 부여하려면, 클래스 바디에서 그 값을 대입할 수 있습니다:
class Employee(NamedTuple): name: str id: int = 3 employee = Employee('Guido') assert employee.id == 3
기본값이 있는 필드는 기본값이 없는 모든 필드 뒤에 와야 합니다.
The resulting class has an extra attribute
__annotations__
giving a dict that maps the field names to the field types. (The field names are in the_fields
attribute and the default values are in the_field_defaults
attribute, both of which are part of thenamedtuple()
API.)NamedTuple
서브 클래스는 독스트링과 메서드도 가질 수 있습니다:class Employee(NamedTuple): """Represents an employee.""" name: str id: int = 3 def __repr__(self) -> str: return f'<Employee {self.name}, id={self.id}>'
NamedTuple
subclasses can be generic:class Group(NamedTuple, Generic[T]): key: T group: list[T]
이전 버전과 호환되는 사용법:
Employee = NamedTuple('Employee', [('name', str), ('id', int)])
버전 3.6에서 변경: PEP 526 변수 어노테이션 문법 지원을 추가했습니다.
버전 3.6.1에서 변경: 기본값, 메서드 및 독스트링에 대한 지원을 추가했습니다.
버전 3.8에서 변경:
_field_types
와__annotations__
어트리뷰트는 이제OrderedDict
인스턴스가 아닌 일반 딕셔너리입니다.버전 3.9에서 변경:
_field_types
어트리뷰트를 제거하고, 같은 정보를 가지는 더 표준적인__annotations__
어트리뷰트로 대체했습니다.버전 3.11에서 변경: Added support for generic namedtuples.
- class typing.NewType(name, tp)¶
Helper class to create low-overhead distinct types.
A
NewType
is considered a distinct type by a typechecker. At runtime, however, calling aNewType
returns its argument unchanged.용법:
UserId = NewType('UserId', int) # Declare the NewType "UserId" first_user = UserId(1) # "UserId" returns the argument unchanged at runtime
- __module__¶
The module in which the new type is defined.
- __name__¶
The name of the new type.
- __supertype__¶
The type that the new type is based on.
버전 3.5.2에 추가.
버전 3.10에서 변경:
NewType
is now a class rather than a function.
- class typing.Protocol(Generic)¶
Base class for protocol classes.
Protocol classes are defined like this:
class Proto(Protocol): def meth(self) -> int: ...
이러한 클래스는 주로 구조적 서브 타이핑(정적 덕 타이핑)을 인식하는 정적 형 검사기와 함께 사용됩니다, 예를 들어:
class C: def meth(self) -> int: return 0 def func(x: Proto) -> int: return x.meth() func(C()) # Passes static type check
See PEP 544 for more details. Protocol classes decorated with
runtime_checkable()
(described later) act as simple-minded runtime protocols that check only the presence of given attributes, ignoring their type signatures.프로토콜 클래스는 제네릭일 수 있습니다, 예를 들어:
T = TypeVar("T") class GenProto(Protocol[T]): def meth(self) -> T: ...
버전 3.8에 추가.
- @typing.runtime_checkable¶
프로토콜 클래스를 실행 시간 프로토콜로 표시합니다.
이러한 프로토콜은
isinstance()
와issubclass()
와 함께 사용할 수 있습니다. 이것은 비 프로토콜 클래스에 적용될 때TypeError
를 발생시킵니다. 이것은collections.abc
에 있는Iterable
처럼 “한 가지만 잘하는” 것과 매우 유사한 단순한 구조적 검사를 허용합니다. 예를 들면:@runtime_checkable class Closable(Protocol): def close(self): ... assert isinstance(open('/some/file'), Closable) @runtime_checkable class Named(Protocol): name: str import threading assert isinstance(threading.Thread(name='Bob'), Named)
참고
runtime_checkable()
will check only the presence of the required methods or attributes, not their type signatures or types. For example,ssl.SSLObject
is a class, therefore it passes anissubclass()
check against Callable. However, thessl.SSLObject.__init__
method exists only to raise aTypeError
with a more informative message, therefore making it impossible to call (instantiate)ssl.SSLObject
.참고
An
isinstance()
check against a runtime-checkable protocol can be surprisingly slow compared to anisinstance()
check against a non-protocol class. Consider using alternative idioms such ashasattr()
calls for structural checks in performance-sensitive code.버전 3.8에 추가.
- class typing.TypedDict(dict)¶
딕셔너리에 형 힌트를 추가하는 특수 구조. 실행 시간에 일반
dict
입니다.TypedDict
는 모든 인스턴스가 각 키가 일관된 형의 값에 연관되는, 특정한 키 집합을 갖도록 기대되는 딕셔너리 형을 선언합니다. 이 기대는 실행 시간에는 검사되지 않고, 형 검사기에서만 강제됩니다. 사용법:class Point2D(TypedDict): x: int y: int label: str a: Point2D = {'x': 1, 'y': 2, 'label': 'good'} # OK b: Point2D = {'z': 3, 'label': 'bad'} # Fails type check assert Point2D(x=1, y=2, label='first') == dict(x=1, y=2, label='first')
To allow using this feature with older versions of Python that do not support PEP 526,
TypedDict
supports two additional equivalent syntactic forms:Using a literal
dict
as the second argument:Point2D = TypedDict('Point2D', {'x': int, 'y': int, 'label': str})
Using keyword arguments:
Point2D = TypedDict('Point2D', x=int, y=int, label=str)
버전 3.11에서 폐지되었습니다, 버전 3.13에서 제거됩니다.: The keyword-argument syntax is deprecated in 3.11 and will be removed in 3.13. It may also be unsupported by static type checkers.
The functional syntax should also be used when any of the keys are not valid identifiers, for example because they are keywords or contain hyphens. Example:
# raises SyntaxError class Point2D(TypedDict): in: int # 'in' is a keyword x-y: int # name with hyphens # OK, functional syntax Point2D = TypedDict('Point2D', {'in': int, 'x-y': int})
By default, all keys must be present in a
TypedDict
. It is possible to mark individual keys as non-required usingNotRequired
:class Point2D(TypedDict): x: int y: int label: NotRequired[str] # Alternative syntax Point2D = TypedDict('Point2D', {'x': int, 'y': int, 'label': NotRequired[str]})
This means that a
Point2D
TypedDict
can have thelabel
key omitted.It is also possible to mark all keys as non-required by default by specifying a totality of
False
:class Point2D(TypedDict, total=False): x: int y: int # Alternative syntax Point2D = TypedDict('Point2D', {'x': int, 'y': int}, total=False)
This means that a
Point2D
TypedDict
can have any of the keys omitted. A type checker is only expected to support a literalFalse
orTrue
as the value of thetotal
argument.True
is the default, and makes all items defined in the class body required.Individual keys of a
total=False
TypedDict
can be marked as required usingRequired
:class Point2D(TypedDict, total=False): x: Required[int] y: Required[int] label: str # Alternative syntax Point2D = TypedDict('Point2D', { 'x': Required[int], 'y': Required[int], 'label': str }, total=False)
It is possible for a
TypedDict
type to inherit from one or more otherTypedDict
types using the class-based syntax. Usage:class Point3D(Point2D): z: int
Point3D
has three items:x
,y
andz
. It is equivalent to this definition:class Point3D(TypedDict): x: int y: int z: int
A
TypedDict
cannot inherit from a non-TypedDict
class, except forGeneric
. For example:class X(TypedDict): x: int class Y(TypedDict): y: int class Z(object): pass # A non-TypedDict class class XY(X, Y): pass # OK class XZ(X, Z): pass # raises TypeError
A
TypedDict
can be generic:T = TypeVar("T") class Group(TypedDict, Generic[T]): key: T group: list[T]
A
TypedDict
can be introspected via annotations dicts (see Annotations Best Practices for more information on annotations best practices),__total__
,__required_keys__
, and__optional_keys__
.- __total__¶
Point2D.__total__
gives the value of thetotal
argument. Example:>>> from typing import TypedDict >>> class Point2D(TypedDict): pass >>> Point2D.__total__ True >>> class Point2D(TypedDict, total=False): pass >>> Point2D.__total__ False >>> class Point3D(Point2D): pass >>> Point3D.__total__ True
This attribute reflects only the value of the
total
argument to the currentTypedDict
class, not whether the class is semantically total. For example, aTypedDict
with__total__
set to True may have keys marked withNotRequired
, or it may inherit from anotherTypedDict
withtotal=False
. Therefore, it is generally better to use__required_keys__
and__optional_keys__
for introspection.
- __required_keys__¶
버전 3.9에 추가.
- __optional_keys__¶
Point2D.__required_keys__
andPoint2D.__optional_keys__
returnfrozenset
objects containing required and non-required keys, respectively.Keys marked with
Required
will always appear in__required_keys__
and keys marked withNotRequired
will always appear in__optional_keys__
.For backwards compatibility with Python 3.10 and below, it is also possible to use inheritance to declare both required and non-required keys in the same
TypedDict
. This is done by declaring aTypedDict
with one value for thetotal
argument and then inheriting from it in anotherTypedDict
with a different value fortotal
:>>> class Point2D(TypedDict, total=False): ... x: int ... y: int ... >>> class Point3D(Point2D): ... z: int ... >>> Point3D.__required_keys__ == frozenset({'z'}) True >>> Point3D.__optional_keys__ == frozenset({'x', 'y'}) True
버전 3.9에 추가.
참고
If
from __future__ import annotations
is used or if annotations are given as strings, annotations are not evaluated when theTypedDict
is defined. Therefore, the runtime introspection that__required_keys__
and__optional_keys__
rely on may not work properly, and the values of the attributes may be incorrect.
추가 예제와
TypedDict
를 사용하는 자세한 규칙은 PEP 589를 참조하십시오.버전 3.8에 추가.
버전 3.11에서 변경: Added support for marking individual keys as
Required
orNotRequired
. See PEP 655.버전 3.11에서 변경: Added support for generic
TypedDict
s.
프로토콜¶
The following protocols are provided by the typing module. All are decorated
with @runtime_checkable
.
- class typing.SupportsAbs¶
반환형이 공변적(covariant)인 하나의 추상 메서드
__abs__
를 가진 ABC.
- class typing.SupportsBytes¶
하나의 추상 메서드
__bytes__
를 가진 ABC.
- class typing.SupportsComplex¶
하나의 추상 메서드
__complex__
를 가진 ABC.
- class typing.SupportsFloat¶
하나의 추상 메서드
__float__
를 가진 ABC.
- class typing.SupportsIndex¶
하나의 추상 메서드
__index__
를 가진 ABC.버전 3.8에 추가.
- class typing.SupportsInt¶
하나의 추상 메서드
__int__
를 가진 ABC.
- class typing.SupportsRound¶
반환형이 공변적(covariant)인 하나의 추상 메서드
__round__
를 가진 ABC.
ABCs for working with IO¶
함수와 데코레이터¶
- typing.cast(typ, val)¶
값을 형으로 변환합니다.
값을 변경하지 않고 반환합니다. 형 검사기에서는 반환 값이 지정된 형임을 나타내지만, 실행 시간에는 의도적으로 아무것도 확인하지 않습니다 (우리는 이것이 가능한 한 빠르기를 원합니다).
- typing.assert_type(val, typ, /)¶
Ask a static type checker to confirm that val has an inferred type of typ.
At runtime this does nothing: it returns the first argument unchanged with no checks or side effects, no matter the actual type of the argument.
When a static type checker encounters a call to
assert_type()
, it emits an error if the value is not of the specified type:def greet(name: str) -> None: assert_type(name, str) # OK, inferred type of `name` is `str` assert_type(name, int) # type checker error
This function is useful for ensuring the type checker’s understanding of a script is in line with the developer’s intentions:
def complex_function(arg: object): # Do some complex type-narrowing logic, # after which we hope the inferred type will be `int` ... # Test whether the type checker correctly understands our function assert_type(arg, int)
버전 3.11에 추가.
- typing.assert_never(arg, /)¶
Ask a static type checker to confirm that a line of code is unreachable.
Example:
def int_or_str(arg: int | str) -> None: match arg: case int(): print("It's an int") case str(): print("It's a str") case _ as unreachable: assert_never(unreachable)
Here, the annotations allow the type checker to infer that the last case can never execute, because
arg
is either anint
or astr
, and both options are covered by earlier cases.If a type checker finds that a call to
assert_never()
is reachable, it will emit an error. For example, if the type annotation forarg
was insteadint | str | float
, the type checker would emit an error pointing out thatunreachable
is of typefloat
. For a call toassert_never
to pass type checking, the inferred type of the argument passed in must be the bottom type,Never
, and nothing else.At runtime, this throws an exception when called.
더 보기
Unreachable Code and Exhaustiveness Checking has more information about exhaustiveness checking with static typing.
버전 3.11에 추가.
- typing.reveal_type(obj, /)¶
Ask a static type checker to reveal the inferred type of an expression.
When a static type checker encounters a call to this function, it emits a diagnostic with the inferred type of the argument. For example:
x: int = 1 reveal_type(x) # Revealed type is "builtins.int"
This can be useful when you want to debug how your type checker handles a particular piece of code.
At runtime, this function prints the runtime type of its argument to
sys.stderr
and returns the argument unchanged (allowing the call to be used within an expression):x = reveal_type(1) # prints "Runtime type is int" print(x) # prints "1"
Note that the runtime type may be different from (more or less specific than) the type statically inferred by a type checker.
Most type checkers support
reveal_type()
anywhere, even if the name is not imported fromtyping
. Importing the name fromtyping
, however, allows your code to run without runtime errors and communicates intent more clearly.버전 3.11에 추가.
- @typing.dataclass_transform(*, eq_default=True, order_default=False, kw_only_default=False, field_specifiers=(), **kwargs)¶
Decorator to mark an object as providing
dataclass
-like behavior.dataclass_transform
may be used to decorate a class, metaclass, or a function that is itself a decorator. The presence of@dataclass_transform()
tells a static type checker that the decorated object performs runtime “magic” that transforms a class in a similar way to@dataclasses.dataclass
.Example usage with a decorator function:
T = TypeVar("T") @dataclass_transform() def create_model(cls: type[T]) -> type[T]: ... return cls @create_model class CustomerModel: id: int name: str
On a base class:
@dataclass_transform() class ModelBase: ... class CustomerModel(ModelBase): id: int name: str
On a metaclass:
@dataclass_transform() class ModelMeta(type): ... class ModelBase(metaclass=ModelMeta): ... class CustomerModel(ModelBase): id: int name: str
The
CustomerModel
classes defined above will be treated by type checkers similarly to classes created with@dataclasses.dataclass
. For example, type checkers will assume these classes have__init__
methods that acceptid
andname
.The decorated class, metaclass, or function may accept the following bool arguments which type checkers will assume have the same effect as they would have on the
@dataclasses.dataclass
decorator:init
,eq
,order
,unsafe_hash
,frozen
,match_args
,kw_only
, andslots
. It must be possible for the value of these arguments (True
orFalse
) to be statically evaluated.The arguments to the
dataclass_transform
decorator can be used to customize the default behaviors of the decorated class, metaclass, or function:- 매개변수:
eq_default (bool) – Indicates whether the
eq
parameter is assumed to beTrue
orFalse
if it is omitted by the caller. Defaults toTrue
.order_default (bool) – Indicates whether the
order
parameter is assumed to beTrue
orFalse
if it is omitted by the caller. Defaults toFalse
.kw_only_default (bool) – Indicates whether the
kw_only
parameter is assumed to beTrue
orFalse
if it is omitted by the caller. Defaults toFalse
.field_specifiers (tuple[Callable[..., Any], ...]) – Specifies a static list of supported classes or functions that describe fields, similar to
dataclasses.field()
. Defaults to()
.**kwargs (Any) – Arbitrary other keyword arguments are accepted in order to allow for possible future extensions.
Type checkers recognize the following optional parameters on field specifiers:
¶ Parameter name
Description
init
Indicates whether the field should be included in the synthesized
__init__
method. If unspecified,init
defaults toTrue
.default
Provides the default value for the field.
default_factory
Provides a runtime callback that returns the default value for the field. If neither
default
nordefault_factory
are specified, the field is assumed to have no default value and must be provided a value when the class is instantiated.factory
An alias for the
default_factory
parameter on field specifiers.kw_only
Indicates whether the field should be marked as keyword-only. If
True
, the field will be keyword-only. IfFalse
, it will not be keyword-only. If unspecified, the value of thekw_only
parameter on the object decorated withdataclass_transform
will be used, or if that is unspecified, the value ofkw_only_default
ondataclass_transform
will be used.alias
Provides an alternative name for the field. This alternative name is used in the synthesized
__init__
method.At runtime, this decorator records its arguments in the
__dataclass_transform__
attribute on the decorated object. It has no other runtime effect.See PEP 681 for more details.
버전 3.11에 추가.
- @typing.overload¶
Decorator for creating overloaded functions and methods.
The
@overload
decorator allows describing functions and methods that support multiple different combinations of argument types. A series of@overload
-decorated definitions must be followed by exactly one non-@overload
-decorated definition (for the same function/method).@overload
-decorated definitions are for the benefit of the type checker only, since they will be overwritten by the non-@overload
-decorated definition. The non-@overload
-decorated definition, meanwhile, will be used at runtime but should be ignored by a type checker. At runtime, calling an@overload
-decorated function directly will raiseNotImplementedError
.An example of overload that gives a more precise type than can be expressed using a union or a type variable:
@overload def process(response: None) -> None: ... @overload def process(response: int) -> tuple[int, str]: ... @overload def process(response: bytes) -> str: ... def process(response): ... # actual implementation goes here
See PEP 484 for more details and comparison with other typing semantics.
버전 3.11에서 변경: Overloaded functions can now be introspected at runtime using
get_overloads()
.
- typing.get_overloads(func)¶
Return a sequence of
@overload
-decorated definitions for func.func is the function object for the implementation of the overloaded function. For example, given the definition of
process
in the documentation for@overload
,get_overloads(process)
will return a sequence of three function objects for the three defined overloads. If called on a function with no overloads,get_overloads()
returns an empty sequence.get_overloads()
can be used for introspecting an overloaded function at runtime.버전 3.11에 추가.
- typing.clear_overloads()¶
Clear all registered overloads in the internal registry.
This can be used to reclaim the memory used by the registry.
버전 3.11에 추가.
- @typing.final¶
Decorator to indicate final methods and final classes.
Decorating a method with
@final
indicates to a type checker that the method cannot be overridden in a subclass. Decorating a class with@final
indicates that it cannot be subclassed.예를 들면:
class Base: @final def done(self) -> None: ... class Sub(Base): def done(self) -> None: # Error reported by type checker ... @final class Leaf: ... class Other(Leaf): # Error reported by type checker ...
이러한 속성에 대한 실행 시간 검사는 없습니다. 자세한 내용은 PEP 591을 참조하십시오.
버전 3.8에 추가.
버전 3.11에서 변경: The decorator will now attempt to set a
__final__
attribute toTrue
on the decorated object. Thus, a check likeif getattr(obj, "__final__", False)
can be used at runtime to determine whether an objectobj
has been marked as final. If the decorated object does not support setting attributes, the decorator returns the object unchanged without raising an exception.
- @typing.no_type_check¶
어노테이션이 형 힌트가 아님을 나타내는 데코레이터.
This works as a class or function decorator. With a class, it applies recursively to all methods and classes defined in that class (but not to methods defined in its superclasses or subclasses). Type checkers will ignore all annotations in a function or class with this decorator.
@no_type_check
mutates the decorated object in place.
- @typing.no_type_check_decorator¶
다른 데코레이터에
no_type_check()
효과를 주는 데코레이터.이것은 데코레이트 된 함수를
no_type_check()
로 감싸는 무언가로 데코레이터를 감쌉니다.
- @typing.type_check_only¶
Decorator to mark a class or function as unavailable at runtime.
이 데코레이터 자체는 실행 시간에 사용할 수 없습니다. 주로, 구현이 비공개 클래스의 인스턴스를 반환할 때, 형 스텁 파일에 정의된 클래스를 표시하기 위한 용도입니다:
@type_check_only class Response: # private or not available at runtime code: int def get_header(self, name: str) -> str: ... def fetch_response() -> Response: ...
비공개 클래스의 인스턴스를 반환하는 것은 좋지 않음에 유의하십시오. 일반적으로 그러한 클래스를 공개로 만드는 것이 바람직합니다.
인트로스펙션 도우미¶
- typing.get_type_hints(obj, globalns=None, localns=None, include_extras=False)¶
함수, 메서드, 모듈 또는 클래스 객체에 대한 형 힌트가 포함된 딕셔너리를 반환합니다.
This is often the same as
obj.__annotations__
. In addition, forward references encoded as string literals are handled by evaluating them inglobals
andlocals
namespaces. For a classC
, return a dictionary constructed by merging all the__annotations__
alongC.__mro__
in reverse order.The function recursively replaces all
Annotated[T, ...]
withT
, unlessinclude_extras
is set toTrue
(seeAnnotated
for more information). For example:class Student(NamedTuple): name: Annotated[str, 'some marker'] assert get_type_hints(Student) == {'name': str} assert get_type_hints(Student, include_extras=False) == {'name': str} assert get_type_hints(Student, include_extras=True) == { 'name': Annotated[str, 'some marker'] }
참고
get_type_hints()
does not work with imported type aliases that include forward references. Enabling postponed evaluation of annotations (PEP 563) may remove the need for most forward references.버전 3.9에서 변경: Added
include_extras
parameter as part of PEP 593. See the documentation onAnnotated
for more information.버전 3.11에서 변경: Previously,
Optional[t]
was added for function and method annotations if a default value equal toNone
was set. Now the annotation is returned unchanged.
- typing.get_origin(tp)¶
Get the unsubscripted version of a type: for a typing object of the form
X[Y, Z, ...]
returnX
.If
X
is a typing-module alias for a builtin orcollections
class, it will be normalized to the original class. IfX
is an instance ofParamSpecArgs
orParamSpecKwargs
, return the underlyingParamSpec
. ReturnNone
for unsupported objects.Examples:
assert get_origin(str) is None assert get_origin(Dict[str, int]) is dict assert get_origin(Union[int, str]) is Union P = ParamSpec('P') assert get_origin(P.args) is P assert get_origin(P.kwargs) is P
버전 3.8에 추가.
- typing.get_args(tp)¶
Get type arguments with all substitutions performed: for a typing object of the form
X[Y, Z, ...]
return(Y, Z, ...)
.If
X
is a union orLiteral
contained in another generic type, the order of(Y, Z, ...)
may be different from the order of the original arguments[Y, Z, ...]
due to type caching. Return()
for unsupported objects.Examples:
assert get_args(int) == () assert get_args(Dict[int, str]) == (int, str) assert get_args(Union[int, str]) == (int, str)
버전 3.8에 추가.
- typing.is_typeddict(tp)¶
Check if a type is a
TypedDict
.For example:
class Film(TypedDict): title: str year: int assert is_typeddict(Film) assert not is_typeddict(list | str) # TypedDict is a factory for creating typed dicts, # not a typed dict itself assert not is_typeddict(TypedDict)
버전 3.10에 추가.
- class typing.ForwardRef¶
Class used for internal typing representation of string forward references.
For example,
List["SomeClass"]
is implicitly transformed intoList[ForwardRef("SomeClass")]
.ForwardRef
should not be instantiated by a user, but may be used by introspection tools.참고
PEP 585 generic types such as
list["SomeClass"]
will not be implicitly transformed intolist[ForwardRef("SomeClass")]
and thus will not automatically resolve tolist[SomeClass]
.버전 3.7.4에 추가.
상수¶
- typing.TYPE_CHECKING¶
A special constant that is assumed to be
True
by 3rd party static type checkers. It isFalse
at runtime.용법:
if TYPE_CHECKING: import expensive_mod def fun(arg: 'expensive_mod.SomeType') -> None: local_var: expensive_mod.AnotherType = other_fun()
첫 번째 어노테이션은 따옴표로 묶여야 합니다, “전방 참조”로 만들어서 인터프리터 실행 시간에
expensive_mod
참조를 숨깁니다. 지역 변수에 대한 형 어노테이션은 평가되지 않기 때문에, 두 번째 어노테이션을 따옴표로 묶을 필요는 없습니다.참고
If
from __future__ import annotations
is used, annotations are not evaluated at function definition time. Instead, they are stored as strings in__annotations__
. This makes it unnecessary to use quotes around the annotation (see PEP 563).버전 3.5.2에 추가.
Deprecated aliases¶
This module defines several deprecated aliases to pre-existing
standard library classes. These were originally included in the typing
module in order to support parameterizing these generic classes using []
.
However, the aliases became redundant in Python 3.9 when the
corresponding pre-existing classes were enhanced to support []
(see
PEP 585).
The redundant types are deprecated as of Python 3.9. However, while the aliases may be removed at some point, removal of these aliases is not currently planned. As such, no deprecation warnings are currently issued by the interpreter for these aliases.
If at some point it is decided to remove these deprecated aliases, a deprecation warning will be issued by the interpreter for at least two releases prior to removal. The aliases are guaranteed to remain in the typing module without deprecation warnings until at least Python 3.14.
Type checkers are encouraged to flag uses of the deprecated types if the program they are checking targets a minimum Python version of 3.9 or newer.
Aliases to built-in types¶
- class typing.Dict(dict, MutableMapping[KT, VT])¶
Deprecated alias to
dict
.Note that to annotate arguments, it is preferred to use an abstract collection type such as
Mapping
rather than to usedict
ortyping.Dict
.이 형은 다음과 같이 사용할 수 있습니다:
def count_words(text: str) -> Dict[str, int]: ...
버전 3.9부터 폐지됨:
builtins.dict
now supports subscripting ([]
). See PEP 585 and 제네릭 에일리어스 형.
- class typing.List(list, MutableSequence[T])¶
Deprecated alias to
list
.Note that to annotate arguments, it is preferred to use an abstract collection type such as
Sequence
orIterable
rather than to uselist
ortyping.List
.이 형은 다음과 같이 사용될 수 있습니다:
T = TypeVar('T', int, float) def vec2(x: T, y: T) -> List[T]: return [x, y] def keep_positives(vector: Sequence[T]) -> List[T]: return [item for item in vector if item > 0]
버전 3.9부터 폐지됨:
builtins.list
now supports subscripting ([]
). See PEP 585 and 제네릭 에일리어스 형.
- class typing.Set(set, MutableSet[T])¶
Deprecated alias to
builtins.set
.Note that to annotate arguments, it is preferred to use an abstract collection type such as
AbstractSet
rather than to useset
ortyping.Set
.버전 3.9부터 폐지됨:
builtins.set
now supports subscripting ([]
). See PEP 585 and 제네릭 에일리어스 형.
- class typing.FrozenSet(frozenset, AbstractSet[T_co])¶
Deprecated alias to
builtins.frozenset
.버전 3.9부터 폐지됨:
builtins.frozenset
now supports subscripting ([]
). See PEP 585 and 제네릭 에일리어스 형.
- typing.Tuple¶
Deprecated alias for
tuple
.tuple
andTuple
are special-cased in the type system; see Annotating tuples for more details.버전 3.9부터 폐지됨:
builtins.tuple
now supports subscripting ([]
). See PEP 585 and 제네릭 에일리어스 형.
- class typing.Type(Generic[CT_co])¶
Deprecated alias to
type
.See The type of class objects for details on using
type
ortyping.Type
in type annotations.버전 3.5.2에 추가.
버전 3.9부터 폐지됨:
builtins.type
now supports subscripting ([]
). See PEP 585 and 제네릭 에일리어스 형.
Aliases to types in collections
¶
- class typing.DefaultDict(collections.defaultdict, MutableMapping[KT, VT])¶
Deprecated alias to
collections.defaultdict
.버전 3.5.2에 추가.
버전 3.9부터 폐지됨:
collections.defaultdict
now supports subscripting ([]
). See PEP 585 and 제네릭 에일리어스 형.
- class typing.OrderedDict(collections.OrderedDict, MutableMapping[KT, VT])¶
Deprecated alias to
collections.OrderedDict
.버전 3.7.2에 추가.
버전 3.9부터 폐지됨:
collections.OrderedDict
now supports subscripting ([]
). See PEP 585 and 제네릭 에일리어스 형.
- class typing.ChainMap(collections.ChainMap, MutableMapping[KT, VT])¶
Deprecated alias to
collections.ChainMap
.버전 3.6.1에 추가.
버전 3.9부터 폐지됨:
collections.ChainMap
now supports subscripting ([]
). See PEP 585 and 제네릭 에일리어스 형.
- class typing.Counter(collections.Counter, Dict[T, int])¶
Deprecated alias to
collections.Counter
.버전 3.6.1에 추가.
버전 3.9부터 폐지됨:
collections.Counter
now supports subscripting ([]
). See PEP 585 and 제네릭 에일리어스 형.
- class typing.Deque(deque, MutableSequence[T])¶
Deprecated alias to
collections.deque
.버전 3.6.1에 추가.
버전 3.9부터 폐지됨:
collections.deque
now supports subscripting ([]
). See PEP 585 and 제네릭 에일리어스 형.
Aliases to other concrete types¶
- class typing.Pattern¶
- class typing.Match¶
Deprecated aliases corresponding to the return types from
re.compile()
andre.match()
.These types (and the corresponding functions) are generic over
AnyStr
.Pattern
can be specialised asPattern[str]
orPattern[bytes]
;Match
can be specialised asMatch[str]
orMatch[bytes]
.버전 3.8에서 폐지되었습니다, 버전 3.13에서 제거됩니다.: The
typing.re
namespace is deprecated and will be removed. These types should be directly imported fromtyping
instead.버전 3.9부터 폐지됨:
re
의 클래스Pattern
과Match
는 이제[]
를 지원합니다. PEP 585와 제네릭 에일리어스 형을 참조하십시오.
- class typing.Text¶
Deprecated alias for
str
.Text
is provided to supply a forward compatible path for Python 2 code: in Python 2,Text
is an alias forunicode
.Text
를 사용하여 값이 파이썬 2와 파이썬 3 모두와 호환되는 방식으로 유니코드 문자열을 포함해야 함을 나타내십시오:def add_unicode_checkmark(text: Text) -> Text: return text + u' \u2713'
버전 3.5.2에 추가.
버전 3.11부터 폐지됨: Python 2 is no longer supported, and most type checkers also no longer support type checking Python 2 code. Removal of the alias is not currently planned, but users are encouraged to use
str
instead ofText
.
Aliases to container ABCs in collections.abc
¶
- class typing.AbstractSet(Collection[T_co])¶
Deprecated alias to
collections.abc.Set
.버전 3.9부터 폐지됨:
collections.abc.Set
now supports subscripting ([]
). See PEP 585 and 제네릭 에일리어스 형.
- class typing.ByteString(Sequence[int])¶
이 형은
bytes
,bytearray
및 바이트 시퀀스의memoryview
형을 나타냅니다.버전 3.9에서 폐지되었습니다, 버전 3.14에서 제거됩니다.: Prefer
typing_extensions.Buffer
, or a union likebytes | bytearray | memoryview
.
- class typing.Collection(Sized, Iterable[T_co], Container[T_co])¶
Deprecated alias to
collections.abc.Collection
.버전 3.6에 추가.
버전 3.9부터 폐지됨:
collections.abc.Collection
now supports subscripting ([]
). See PEP 585 and 제네릭 에일리어스 형.
- class typing.Container(Generic[T_co])¶
Deprecated alias to
collections.abc.Container
.버전 3.9부터 폐지됨:
collections.abc.Container
now supports subscripting ([]
). See PEP 585 and 제네릭 에일리어스 형.
- class typing.ItemsView(MappingView, AbstractSet[tuple[KT_co, VT_co]])¶
Deprecated alias to
collections.abc.ItemsView
.버전 3.9부터 폐지됨:
collections.abc.ItemsView
now supports subscripting ([]
). See PEP 585 and 제네릭 에일리어스 형.
- class typing.KeysView(MappingView, AbstractSet[KT_co])¶
Deprecated alias to
collections.abc.KeysView
.버전 3.9부터 폐지됨:
collections.abc.KeysView
now supports subscripting ([]
). See PEP 585 and 제네릭 에일리어스 형.
- class typing.Mapping(Collection[KT], Generic[KT, VT_co])¶
Deprecated alias to
collections.abc.Mapping
.이 형은 다음과 같이 사용할 수 있습니다:
def get_position_in_index(word_list: Mapping[str, int], word: str) -> int: return word_list[word]
버전 3.9부터 폐지됨:
collections.abc.Mapping
now supports subscripting ([]
). See PEP 585 and 제네릭 에일리어스 형.
- class typing.MappingView(Sized)¶
Deprecated alias to
collections.abc.MappingView
.버전 3.9부터 폐지됨:
collections.abc.MappingView
now supports subscripting ([]
). See PEP 585 and 제네릭 에일리어스 형.
- class typing.MutableMapping(Mapping[KT, VT])¶
Deprecated alias to
collections.abc.MutableMapping
.버전 3.9부터 폐지됨:
collections.abc.MutableMapping
now supports subscripting ([]
). See PEP 585 and 제네릭 에일리어스 형.
- class typing.MutableSequence(Sequence[T])¶
Deprecated alias to
collections.abc.MutableSequence
.버전 3.9부터 폐지됨:
collections.abc.MutableSequence
now supports subscripting ([]
). See PEP 585 and 제네릭 에일리어스 형.
- class typing.MutableSet(AbstractSet[T])¶
Deprecated alias to
collections.abc.MutableSet
.버전 3.9부터 폐지됨:
collections.abc.MutableSet
now supports subscripting ([]
). See PEP 585 and 제네릭 에일리어스 형.
- class typing.Sequence(Reversible[T_co], Collection[T_co])¶
Deprecated alias to
collections.abc.Sequence
.버전 3.9부터 폐지됨:
collections.abc.Sequence
now supports subscripting ([]
). See PEP 585 and 제네릭 에일리어스 형.
- class typing.ValuesView(MappingView, Collection[_VT_co])¶
Deprecated alias to
collections.abc.ValuesView
.버전 3.9부터 폐지됨:
collections.abc.ValuesView
now supports subscripting ([]
). See PEP 585 and 제네릭 에일리어스 형.
Aliases to asynchronous ABCs in collections.abc
¶
- class typing.Coroutine(Awaitable[ReturnType], Generic[YieldType, SendType, ReturnType])¶
Deprecated alias to
collections.abc.Coroutine
.The variance and order of type variables correspond to those of
Generator
, for example:from collections.abc import Coroutine c: Coroutine[list[str], str, int] # Some coroutine defined elsewhere x = c.send('hi') # Inferred type of 'x' is list[str] async def bar() -> None: y = await c # Inferred type of 'y' is int
버전 3.5.3에 추가.
버전 3.9부터 폐지됨:
collections.abc.Coroutine
now supports subscripting ([]
). See PEP 585 and 제네릭 에일리어스 형.
- class typing.AsyncGenerator(AsyncIterator[YieldType], Generic[YieldType, SendType])¶
Deprecated alias to
collections.abc.AsyncGenerator
.비동기 제너레이터는 제네릭 형
AsyncGenerator[YieldType, SendType]
으로 어노테이트할 수 있습니다. 예를 들면:async def echo_round() -> AsyncGenerator[int, float]: sent = yield 0 while sent >= 0.0: rounded = await round(sent) sent = yield rounded
일반 제너레이터와 달리, 비동기 제너레이터는 값을 반환할 수 없기 때문에,
ReturnType
형 매개 변수가 없습니다.Generator
와 마찬가지로,SendType
은 반변적(contravariant)으로 행동합니다.제너레이터가 값을 일드(yield)하기만 하면,
SendType
을None
으로 설정하십시오:async def infinite_stream(start: int) -> AsyncGenerator[int, None]: while True: yield start start = await increment(start)
또는,
AsyncIterable[YieldType]
이나AsyncIterator[YieldType]
중 하나의 반환형을 갖는 것으로 제너레이터를 어노테이트 하십시오:async def infinite_stream(start: int) -> AsyncIterator[int]: while True: yield start start = await increment(start)
버전 3.6.1에 추가.
버전 3.9부터 폐지됨:
collections.abc.AsyncGenerator
now supports subscripting ([]
). See PEP 585 and 제네릭 에일리어스 형.
- class typing.AsyncIterable(Generic[T_co])¶
Deprecated alias to
collections.abc.AsyncIterable
.버전 3.5.2에 추가.
버전 3.9부터 폐지됨:
collections.abc.AsyncIterable
now supports subscripting ([]
). See PEP 585 and 제네릭 에일리어스 형.
- class typing.AsyncIterator(AsyncIterable[T_co])¶
Deprecated alias to
collections.abc.AsyncIterator
.버전 3.5.2에 추가.
버전 3.9부터 폐지됨:
collections.abc.AsyncIterator
now supports subscripting ([]
). See PEP 585 and 제네릭 에일리어스 형.
- class typing.Awaitable(Generic[T_co])¶
Deprecated alias to
collections.abc.Awaitable
.버전 3.5.2에 추가.
버전 3.9부터 폐지됨:
collections.abc.Awaitable
now supports subscripting ([]
). See PEP 585 and 제네릭 에일리어스 형.
Aliases to other ABCs in collections.abc
¶
- class typing.Iterable(Generic[T_co])¶
Deprecated alias to
collections.abc.Iterable
.버전 3.9부터 폐지됨:
collections.abc.Iterable
now supports subscripting ([]
). See PEP 585 and 제네릭 에일리어스 형.
- class typing.Iterator(Iterable[T_co])¶
Deprecated alias to
collections.abc.Iterator
.버전 3.9부터 폐지됨:
collections.abc.Iterator
now supports subscripting ([]
). See PEP 585 and 제네릭 에일리어스 형.
- typing.Callable¶
Deprecated alias to
collections.abc.Callable
.See Annotating callable objects for details on how to use
collections.abc.Callable
andtyping.Callable
in type annotations.버전 3.9부터 폐지됨:
collections.abc.Callable
now supports subscripting ([]
). See PEP 585 and 제네릭 에일리어스 형.버전 3.10에서 변경:
Callable
now supportsParamSpec
andConcatenate
. See PEP 612 for more details.
- class typing.Generator(Iterator[YieldType], Generic[YieldType, SendType, ReturnType])¶
Deprecated alias to
collections.abc.Generator
.제너레이터는 제네릭 형
Generator[YieldType, SendType, ReturnType]
으로 어노테이트할 수 있습니다. 예를 들면:def echo_round() -> Generator[int, float, str]: sent = yield 0 while sent >= 0: sent = yield round(sent) return 'Done'
typing 모듈의 다른 많은 제네릭과 달리
Generator
의SendType
은 공변적(covariant)이거나 불변적(invariant)이 아니라 반변적(contravariant)으로 행동함에 유의하십시오.제너레이터가 값을 일드(yield)하기만 하면,
SendType
과ReturnType
을None
으로 설정하십시오:def infinite_stream(start: int) -> Generator[int, None, None]: while True: yield start start += 1
또는,
Iterable[YieldType]
이나Iterator[YieldType]
중 하나의 반환형을 갖는 것으로 제너레이터를 어노테이트 하십시오:def infinite_stream(start: int) -> Iterator[int]: while True: yield start start += 1
버전 3.9부터 폐지됨:
collections.abc.Generator
now supports subscripting ([]
). See PEP 585 and 제네릭 에일리어스 형.
- class typing.Hashable¶
Alias to
collections.abc.Hashable
.
- class typing.Reversible(Iterable[T_co])¶
Deprecated alias to
collections.abc.Reversible
.버전 3.9부터 폐지됨:
collections.abc.Reversible
now supports subscripting ([]
). See PEP 585 and 제네릭 에일리어스 형.
- class typing.Sized¶
Alias to
collections.abc.Sized
.
Aliases to contextlib
ABCs¶
- class typing.ContextManager(Generic[T_co])¶
Deprecated alias to
contextlib.AbstractContextManager
.버전 3.5.4에 추가.
버전 3.9부터 폐지됨:
contextlib.AbstractContextManager
now supports subscripting ([]
). See PEP 585 and 제네릭 에일리어스 형.
- class typing.AsyncContextManager(Generic[T_co])¶
Deprecated alias to
contextlib.AbstractAsyncContextManager
.버전 3.6.2에 추가.
버전 3.9부터 폐지됨:
contextlib.AbstractAsyncContextManager
now supports subscripting ([]
). See PEP 585 and 제네릭 에일리어스 형.
Deprecation Timeline of Major Features¶
Certain features in typing
are deprecated and may be removed in a future
version of Python. The following table summarizes major deprecations for your
convenience. This is subject to change, and not all deprecations are listed.
Feature |
Deprecated in |
Projected removal |
PEP/issue |
---|---|---|---|
|
3.8 |
3.13 |
|
|
3.9 |
Undecided (see Deprecated aliases for more information) |
|
3.9 |
3.14 |
||
3.11 |
Undecided |