itertools
— 효율적인 루핑을 위한 이터레이터를 만드는 함수¶
이 모듈은 APL, Haskell 및 SML의 구성물들에서 영감을 얻은 여러 이터레이터 빌딩 블록을 구현합니다. 각각을 파이썬에 적합한 형태로 개선했습니다.
이 모듈은 자체적으로 혹은 조합하여 유용한 빠르고 메모리 효율적인 도구의 핵심 집합을 표준화합니다. 함께 모여, 순수 파이썬에서 간결하고 효율적으로 특수화된 도구를 구성할 수 있도록 하는 “이터레이터 대수(iterator algebra)”를 형성합니다.
예를 들어, SML은 테이블 화 도구를 제공합니다: 시퀀스 f(0), f(1), ...
를 생성하는 tabulate(f)
. map()
과 count()
를 결합하여 map(f, count())
를 형성해서 파이썬에서도 같은 효과를 얻을 수 있습니다.
These tools and their built-in counterparts also work well with the high-speed
functions in the operator
module. For example, the multiplication
operator can be mapped across two vectors to form an efficient dot-product:
sum(starmap(operator.mul, zip(vec1, vec2, strict=True)))
.
무한 이터레이터:
이터레이터 |
인자 |
결과 |
예 |
---|---|---|---|
start, [step] |
start, start+step, start+2*step, … |
|
|
p |
p0, p1, … plast, p0, p1, … |
|
|
elem [,n] |
elem, elem, elem, … 끝없이 또는 최대 n 번 |
|
가장 짧은 입력 시퀀스에서 종료되는 이터레이터:
이터레이터 |
인자 |
결과 |
예 |
---|---|---|---|
p [,func] |
p0, p0+p1, p0+p1+p2, … |
|
|
p, q, … |
p0, p1, … plast, q0, q1, … |
|
|
iterable |
p0, p1, … plast, q0, q1, … |
|
|
data, selectors |
(d[0] if s[0]), (d[1] if s[1]), … |
|
|
pred, seq |
seq[n], seq[n+1], pred가 실패할 때 시작 |
|
|
pred, seq |
pred(elem)이 거짓인 seq의 요소들 |
|
|
iterable[, key] |
key(v)의 값으로 그룹화된 서브 이터레이터들 |
||
seq, [start,] stop [, step] |
seq[start:stop:step]의 요소들 |
|
|
iterable |
(p[0], p[1]), (p[1], p[2]) |
|
|
func, seq |
func(*seq[0]), func(*seq[1]), … |
|
|
pred, seq |
seq[0], seq[1], pred가 실패할 때까지 |
|
|
it, n |
it1, it2, … itn 하나의 이터레이터를 n개의 이터레이터로 나눕니다 |
||
p, q, … |
(p[0], q[0]), (p[1], q[1]), … |
|
조합형 이터레이터:
이터레이터 |
인자 |
결과 |
---|---|---|
p, q, … [repeat=1] |
데카르트 곱(cartesian product), 중첩된 for 루프와 동등합니다 |
|
p[, r] |
r-길이 튜플들, 모든 가능한 순서, 반복되는 요소 없음 |
|
p, r |
r-길이 튜플들, 정렬된 순서, 반복되는 요소 없음 |
|
p, r |
r-길이 튜플들, 정렬된 순서, 반복되는 요소 있음 |
예 |
결과 |
---|---|
|
|
|
|
|
|
|
|
이터레이터 도구 함수¶
다음 모듈 함수는 모두 이터레이터를 생성하고 반환합니다. 일부는 길이가 무한한 스트림을 제공해서, 스트림을 자르는 함수나 루프로만 액세스해야 합니다.
- itertools.accumulate(iterable[, func, *, initial=None])¶
누적 합계나 다른 이항 함수(선택적 func 인자를 통해 지정됩니다)의 누적 결과를 반환하는 이터레이터를 만듭니다.
func가 제공되면, 두 인자를 취하는 함수여야 합니다. 입력 iterable의 요소는 func에 대한 인자로 허용될 수 있는 모든 형일 수 있습니다. (예를 들어, 기본 더하기 연산에서 요소는
Decimal
이나Fraction
을 포함하는 모든 더할 수 있는 형일 수 있습니다.)일반적으로, 출력되는 요소 수는 입력 iterable과 일치합니다. 그러나, 키워드 인자 initial이 제공되면, 누적이 initial 값으로 시작하여 출력에 입력 iterable보다 하나 많은 요소가 있게 됩니다.
대략 다음과 동등합니다:
def accumulate(iterable, func=operator.add, *, initial=None): 'Return running totals' # accumulate([1,2,3,4,5]) --> 1 3 6 10 15 # accumulate([1,2,3,4,5], initial=100) --> 100 101 103 106 110 115 # accumulate([1,2,3,4,5], operator.mul) --> 1 2 6 24 120 it = iter(iterable) total = initial if initial is None: try: total = next(it) except StopIteration: return yield total for element in it: total = func(total, element) yield total
There are a number of uses for the func argument. It can be set to
min()
for a running minimum,max()
for a running maximum, oroperator.mul()
for a running product. Amortization tables can be built by accumulating interest and applying payments:>>> data = [3, 4, 6, 2, 1, 9, 0, 7, 5, 8] >>> list(accumulate(data, operator.mul)) # running product [3, 12, 72, 144, 144, 1296, 0, 0, 0, 0] >>> list(accumulate(data, max)) # running maximum [3, 4, 6, 6, 6, 9, 9, 9, 9, 9] # Amortize a 5% loan of 1000 with 4 annual payments of 90 >>> cashflows = [1000, -90, -90, -90, -90] >>> list(accumulate(cashflows, lambda bal, pmt: bal*1.05 + pmt)) [1000, 960.0, 918.0, 873.9000000000001, 827.5950000000001]
최종 누적값만 반환하는 유사한 함수에 대해서는
functools.reduce()
를 참조하십시오.버전 3.2에 추가.
버전 3.3에서 변경: 선택적 func 매개 변수를 추가했습니다.
버전 3.8에서 변경: 선택적 initial 매개 변수를 추가했습니다.
- itertools.chain(*iterables)¶
첫 번째 이터러블에서 소진될 때까지 요소를 반환한 다음 이터러블로 넘어가고, 이런 식으로 iterables의 모든 이터러블이 소진될 때까지 진행하는 이터레이터를 만듭니다. 여러 시퀀스를 단일 시퀀스처럼 처리하는 데 사용됩니다. 대략 다음과 동등합니다:
def chain(*iterables): # chain('ABC', 'DEF') --> A B C D E F for it in iterables: for element in it: yield element
- classmethod chain.from_iterable(iterable)¶
chain()
의 대체 생성자. 게으르게 평가되는 단일 이터러블 인자에서 연쇄 입력을 가져옵니다. 대략 다음과 동등합니다:def from_iterable(iterables): # chain.from_iterable(['ABC', 'DEF']) --> A B C D E F for it in iterables: for element in it: yield element
- itertools.combinations(iterable, r)¶
입력 iterable에서 요소의 길이 r 서브 시퀀스들을 반환합니다.
The combination tuples are emitted in lexicographic ordering according to the order of the input iterable. So, if the input iterable is sorted, the output tuples will be produced in sorted order.
Elements are treated as unique based on their position, not on their value. So if the input elements are unique, there will be no repeated values in each combination.
대략 다음과 동등합니다:
def combinations(iterable, r): # combinations('ABCD', 2) --> AB AC AD BC BD CD # combinations(range(4), 3) --> 012 013 023 123 pool = tuple(iterable) n = len(pool) if r > n: return indices = list(range(r)) yield tuple(pool[i] for i in indices) while True: for i in reversed(range(r)): if indices[i] != i + n - r: break else: return indices[i] += 1 for j in range(i+1, r): indices[j] = indices[j-1] + 1 yield tuple(pool[i] for i in indices)
combinations()
의 코드는 요소가 정렬된 순서(입력 풀에서의 위치에 따라)가 아닌 항목을 걸러내어 만들어지는permutations()
의 서브 시퀀스로 표현될 수도 있습니다:def combinations(iterable, r): pool = tuple(iterable) n = len(pool) for indices in permutations(range(n), r): if sorted(indices) == list(indices): yield tuple(pool[i] for i in indices)
반환되는 항목 수는
0 <= r <= n
일 때는n! / r! / (n-r)!
이고r > n
일 때는 0입니다.
- itertools.combinations_with_replacement(iterable, r)¶
입력 iterable에서 요소의 길이 r 서브 시퀀스들을 반환하는데, 개별 요소를 두 번 이상 반복할 수 있습니다.
The combination tuples are emitted in lexicographic ordering according to the order of the input iterable. So, if the input iterable is sorted, the output tuples will be produced in sorted order.
요소는 값이 아니라 위치로 고유성을 다룹니다. 따라서 입력 요소가 고유하면, 생성된 조합도 고유합니다.
대략 다음과 동등합니다:
def combinations_with_replacement(iterable, r): # combinations_with_replacement('ABC', 2) --> AA AB AC BB BC CC pool = tuple(iterable) n = len(pool) if not n and r: return indices = [0] * r yield tuple(pool[i] for i in indices) while True: for i in reversed(range(r)): if indices[i] != n - 1: break else: return indices[i:] = [indices[i] + 1] * (r - i) yield tuple(pool[i] for i in indices)
combinations_with_replacement()
의 코드는 요소가 정렬된 순서(입력 풀에서의 위치에 따라)가 아닌 항목을 걸러내어 만들어지는product()
의 서브 시퀀스로 표현될 수도 있습니다:def combinations_with_replacement(iterable, r): pool = tuple(iterable) n = len(pool) for indices in product(range(n), repeat=r): if sorted(indices) == list(indices): yield tuple(pool[i] for i in indices)
반환되는 항목 수는
n > 0
일 때(n+r-1)! / r! / (n-1)!
입니다.버전 3.1에 추가.
- itertools.compress(data, selectors)¶
data에서 요소를 필터링하여 selectors에서
True
로 평가되는 해당 요소들만 반환하는 이터레이터를 만듭니다. data나 selectors 이터러블이 모두 소진되면 중지합니다. 대략 다음과 동등합니다:def compress(data, selectors): # compress('ABCDEF', [1,0,1,0,1,1]) --> A C E F return (d for d, s in zip(data, selectors) if s)
버전 3.1에 추가.
- itertools.count(start=0, step=1)¶
숫자 start로 시작하여 균등 간격의 값을 반환하는 이터레이터를 만듭니다. 연속적인 데이터 포인트를 생성하기 위해
map()
에 대한 인자로 종종 사용됩니다. 또한, 시퀀스 번호를 추가하기 위해zip()
과 함께 사용됩니다. 대략 다음과 동등합니다:def count(start=0, step=1): # count(10) --> 10 11 12 13 14 ... # count(2.5, 0.5) --> 2.5 3.0 3.5 ... n = start while True: yield n n += step
부동 소수점 숫자로 count 할 때,
(start + step * i for i in count())
와 같은 곱셈 코드를 대체하여 때로 더 나은 정확도를 얻을 수 있습니다.버전 3.1에서 변경: step 인자를 추가하고 정수가 아닌 인자를 허용했습니다.
- itertools.cycle(iterable)¶
iterable에서 요소를 반환하고 각 사본을 저장하는 이터레이터를 만듭니다. iterable이 소진되면, 저장된 사본에서 요소를 반환합니다. 무한히 반복합니다. 대략 다음과 동등합니다:
def cycle(iterable): # cycle('ABCD') --> A B C D A B C D A B C D ... saved = [] for element in iterable: yield element saved.append(element) while saved: for element in saved: yield element
툴킷의 이 멤버에는 iterable의 길이에 따라 상당한 보조 기억 장치가 필요할 수 있음에 유의하십시오.
- itertools.dropwhile(predicate, iterable)¶
술어(predicate)가 참인 한 iterable에서 요소를 걸러내는 이터레이터를 만듭니다; 그 후에는 모든 요소를 반환합니다. 술어(predicate)가 처음 거짓이 될 때까지 이터레이터는 아무런 출력도 생성하지 않아서 시작 소요 시간이 길어질 수 있음에 유의하십시오. 대략 다음과 동등합니다:
def dropwhile(predicate, iterable): # dropwhile(lambda x: x<5, [1,4,6,4,1]) --> 6 4 1 iterable = iter(iterable) for x in iterable: if not predicate(x): yield x break for x in iterable: yield x
- itertools.filterfalse(predicate, iterable)¶
Make an iterator that filters elements from iterable returning only those for which the predicate is false. If predicate is
None
, return the items that are false. Roughly equivalent to:def filterfalse(predicate, iterable): # filterfalse(lambda x: x%2, range(10)) --> 0 2 4 6 8 if predicate is None: predicate = bool for x in iterable: if not predicate(x): yield x
- itertools.groupby(iterable, key=None)¶
iterable에서 연속적인 키와 그룹을 반환하는 이터레이터를 만듭니다. key는 각 요소의 키값을 계산하는 함수입니다. 지정되지 않거나
None
이면, key의 기본값은 항등함수(identity function)이고 요소를 변경하지 않고 반환합니다. 일반적으로, iterable은 같은 키 함수로 이미 정렬되어 있어야 합니다.groupby()
의 작동은 유닉스의uniq
필터와 유사합니다. 키 함수의 값이 변경될 때마다 중단(break)이나 새 그룹을 생성합니다 (이것이 일반적으로 같은 키 함수를 사용하여 데이터를 정렬해야 하는 이유입니다). 이 동작은 입력 순서와 관계없이 공통 요소를 집계하는 SQL의 GROUP BY와 다릅니다.반환되는 그룹 자체는
groupby()
와 하부 이터러블(iterable)을 공유하는 이터레이터입니다. 소스가 공유되므로,groupby()
객체가 진행하면, 이전 그룹은 이 더는 보이지 않게 됩니다. 따라서, 나중에 데이터가 필요하면, 리스트로 저장해야 합니다:groups = [] uniquekeys = [] data = sorted(data, key=keyfunc) for k, g in groupby(data, keyfunc): groups.append(list(g)) # Store group iterator as a list uniquekeys.append(k)
groupby()
는 대략 다음과 동등합니다:class groupby: # [k for k, g in groupby('AAAABBBCCDAABBB')] --> A B C D A B # [list(g) for k, g in groupby('AAAABBBCCD')] --> AAAA BBB CC D def __init__(self, iterable, key=None): if key is None: key = lambda x: x self.keyfunc = key self.it = iter(iterable) self.tgtkey = self.currkey = self.currvalue = object() def __iter__(self): return self def __next__(self): self.id = object() while self.currkey == self.tgtkey: self.currvalue = next(self.it) # Exit on StopIteration self.currkey = self.keyfunc(self.currvalue) self.tgtkey = self.currkey return (self.currkey, self._grouper(self.tgtkey, self.id)) def _grouper(self, tgtkey, id): while self.id is id and self.currkey == tgtkey: yield self.currvalue try: self.currvalue = next(self.it) except StopIteration: return self.currkey = self.keyfunc(self.currvalue)
- itertools.islice(iterable, stop)¶
- itertools.islice(iterable, start, stop[, step])
Make an iterator that returns selected elements from the iterable. If start is non-zero, then elements from the iterable are skipped until start is reached. Afterward, elements are returned consecutively unless step is set higher than one which results in items being skipped. If stop is
None
, then iteration continues until the iterator is exhausted, if at all; otherwise, it stops at the specified position.start가
None
이면, 이터레이션은 0에서 시작합니다. step이None
이면, step의 기본값은 1입니다.Unlike regular slicing,
islice()
does not support negative values for start, stop, or step. Can be used to extract related fields from data where the internal structure has been flattened (for example, a multi-line report may list a name field on every third line).대략 다음과 동등합니다:
def islice(iterable, *args): # islice('ABCDEFG', 2) --> A B # islice('ABCDEFG', 2, 4) --> C D # islice('ABCDEFG', 2, None) --> C D E F G # islice('ABCDEFG', 0, None, 2) --> A C E G s = slice(*args) start, stop, step = s.start or 0, s.stop or sys.maxsize, s.step or 1 it = iter(range(start, stop, step)) try: nexti = next(it) except StopIteration: # Consume *iterable* up to the *start* position. for i, element in zip(range(start), iterable): pass return try: for i, element in enumerate(iterable): if i == nexti: yield element nexti = next(it) except StopIteration: # Consume to *stop*. for i, element in zip(range(i + 1, stop), iterable): pass
- itertools.pairwise(iterable)¶
Return successive overlapping pairs taken from the input iterable.
The number of 2-tuples in the output iterator will be one fewer than the number of inputs. It will be empty if the input iterable has fewer than two values.
대략 다음과 동등합니다:
def pairwise(iterable): # pairwise('ABCDEFG') --> AB BC CD DE EF FG a, b = tee(iterable) next(b, None) return zip(a, b)
버전 3.10에 추가.
- itertools.permutations(iterable, r=None)¶
iterable에서 요소의 연속된 길이 r 순열을 반환합니다.
r이 지정되지 않았거나
None
이면, r의 기본값은 iterable의 길이이며 가능한 모든 최대 길이 순열이 생성됩니다.The permutation tuples are emitted in lexicographic order according to the order of the input iterable. So, if the input iterable is sorted, the output tuples will be produced in sorted order.
Elements are treated as unique based on their position, not on their value. So if the input elements are unique, there will be no repeated values within a permutation.
대략 다음과 동등합니다:
def permutations(iterable, r=None): # permutations('ABCD', 2) --> AB AC AD BA BC BD CA CB CD DA DB DC # permutations(range(3)) --> 012 021 102 120 201 210 pool = tuple(iterable) n = len(pool) r = n if r is None else r if r > n: return indices = list(range(n)) cycles = list(range(n, n-r, -1)) yield tuple(pool[i] for i in indices[:r]) while n: for i in reversed(range(r)): cycles[i] -= 1 if cycles[i] == 0: indices[i:] = indices[i+1:] + indices[i:i+1] cycles[i] = n - i else: j = cycles[i] indices[i], indices[-j] = indices[-j], indices[i] yield tuple(pool[i] for i in indices[:r]) break else: return
permutations()
의 코드는 반복되는 요소(입력 풀에서 같은 위치에 있는 요소)가 있는 항목을 제외하도록 걸러낸product()
의 서브 시퀀스로 표현될 수도 있습니다:def permutations(iterable, r=None): pool = tuple(iterable) n = len(pool) r = n if r is None else r for indices in product(range(n), repeat=r): if len(set(indices)) == r: yield tuple(pool[i] for i in indices)
반환되는 항목 수는
0 <= r <= n
일 때는n! / (n-r)!
이고r > n
일 때는 0입니다.
- itertools.product(*iterables, repeat=1)¶
입력 이터러블들(iterables)의 데카르트 곱.
대략 제너레이터 표현식에서의 중첩된 for-루프와 동등합니다. 예를 들어,
product(A, B)
는((x,y) for x in A for y in B)
와 같은 것을 반환합니다.중첩된 루프는 매 이터레이션마다 가장 오른쪽 요소가 진행되는 주행 거리계처럼 순환합니다. 이 패턴은 사전식 순서를 만들어서 입력의 이터러블들이 정렬되어 있다면, 곱(product) 튜플이 정렬된 순서로 방출됩니다.
이터러블의 자신과의 곱을 계산하려면, 선택적 repeat 키워드 인자를 사용하여 반복 횟수를 지정하십시오. 예를 들어,
product(A, repeat=4)
는product(A, A, A, A)
와 같은 것을 뜻합니다.이 함수는 실제 구현이 메모리에 중간 결과를 쌓지 않는다는 점을 제외하고 다음 코드와 대략 동등합니다:
def product(*args, repeat=1): # product('ABCD', 'xy') --> Ax Ay Bx By Cx Cy Dx Dy # product(range(2), repeat=3) --> 000 001 010 011 100 101 110 111 pools = [tuple(pool) for pool in args] * repeat result = [[]] for pool in pools: result = [x+[y] for x in result for y in pool] for prod in result: yield tuple(prod)
product()
가 실행되기 전에, 입력 이터러블을 완전히 소비하여, 곱을 생성하기 위해 값의 풀(pool)을 메모리에 유지합니다. 따라서, 유한 입력에만 유용합니다.
- itertools.repeat(object[, times])¶
Make an iterator that returns object over and over again. Runs indefinitely unless the times argument is specified.
대략 다음과 동등합니다:
def repeat(object, times=None): # repeat(10, 3) --> 10 10 10 if times is None: while True: yield object else: for i in range(times): yield object
A common use for repeat is to supply a stream of constant values to map or zip:
>>> list(map(pow, range(10), repeat(2))) [0, 1, 4, 9, 16, 25, 36, 49, 64, 81]
- itertools.starmap(function, iterable)¶
Make an iterator that computes the function using arguments obtained from the iterable. Used instead of
map()
when argument parameters are already grouped in tuples from a single iterable (when the data has been “pre-zipped”).The difference between
map()
andstarmap()
parallels the distinction betweenfunction(a,b)
andfunction(*c)
. Roughly equivalent to:def starmap(function, iterable): # starmap(pow, [(2,5), (3,2), (10,3)]) --> 32 9 1000 for args in iterable: yield function(*args)
- itertools.takewhile(predicate, iterable)¶
술어(predicate)가 참인 한 iterable에서 요소를 반환하는 이터레이터를 만듭니다. 대략 다음과 동등합니다:
def takewhile(predicate, iterable): # takewhile(lambda x: x<5, [1,4,6,4,1]) --> 1 4 for x in iterable: if predicate(x): yield x else: break
- itertools.tee(iterable, n=2)¶
단일 iterable에서 n 개의 독립 이터레이터를 반환합니다.
The following Python code helps explain what tee does (although the actual implementation is more complex and uses only a single underlying FIFO queue):
def tee(iterable, n=2): it = iter(iterable) deques = [collections.deque() for i in range(n)] def gen(mydeque): while True: if not mydeque: # when the local deque is empty try: newval = next(it) # fetch a new value and except StopIteration: return for d in deques: # load it to all the deques d.append(newval) yield mydeque.popleft() return tuple(gen(d) for d in deques)
Once a
tee()
has been created, the original iterable should not be used anywhere else; otherwise, the iterable could get advanced without the tee objects being informed.tee
이터레이터는 스레드 안전하지 않습니다. 원래 iterable이 스레드 안전해도, 같은tee()
호출로 반환된 이터레이터를 동시에 사용하면RuntimeError
가 발생할 수 있습니다.이 이터레이터 도구에는 상당한 보조 기억 장치가 필요할 수 있습니다 (일시적으로 저장해야 하는 데이터양에 따라 다릅니다). 일반적으로, 다른 이터레이터가 시작하기 전에 하나의 이터레이터가 대부분이나 모든 데이터를 사용하면,
tee()
대신list()
를 사용하는 것이 더 빠릅니다.
- itertools.zip_longest(*iterables, fillvalue=None)¶
iterables의 각각에서 요소를 집계하는 이터레이터를 만듭니다. 이터러블들의 길이가 고르지 않으면, 누락된 값이 fillvalue로 채워집니다. 가장 긴 이터러블이 소진될 때까지 이터레이션이 계속됩니다. 대략 다음과 동등합니다:
def zip_longest(*args, fillvalue=None): # zip_longest('ABCD', 'xy', fillvalue='-') --> Ax By C- D- iterators = [iter(it) for it in args] num_active = len(iterators) if not num_active: return while True: values = [] for i, it in enumerate(iterators): try: value = next(it) except StopIteration: num_active -= 1 if not num_active: return iterators[i] = repeat(fillvalue) value = fillvalue values.append(value) yield tuple(values)
이터러블 중 하나가 무한할 수 있으면,
zip_longest()
함수는 호출 수를 제한하는 것으로 감싸야 합니다 (예를 들어islice()
나takewhile()
). 지정하지 않으면, fillvalue의 기본값은None
입니다.
Itertools 조리법¶
이 섹션에서는 기존 itertools를 빌딩 블록으로 사용하여 확장 도구 집합을 만드는 방법을 보여줍니다.
The primary purpose of the itertools recipes is educational. The recipes show
various ways of thinking about individual tools — for example, that
chain.from_iterable
is related to the concept of flattening. The recipes
also give ideas about ways that the tools can be combined — for example, how
compress()
and range()
can work together. The recipes also show patterns
for using itertools with the operator
and collections
modules as
well as with the built-in itertools such as map()
, filter()
,
reversed()
, and enumerate()
.
A secondary purpose of the recipes is to serve as an incubator. The
accumulate()
, compress()
, and pairwise()
itertools started out as
recipes. Currently, the iter_index()
recipe is being tested to see
whether it proves its worth.
실질적으로 이 모든 조리법과 더 많은 조리법이 파이썬 패키지 색인(Python Package Index)에서 찾을 수 있는 more-itertools 프로젝트로 설치할 수 있습니다:
python -m pip install more-itertools
Many of the recipes offer the same high performance as the underlying toolset. Superior memory performance is kept by processing elements one at a time rather than bringing the whole iterable into memory all at once. Code volume is kept small by linking the tools together in a functional style which helps eliminate temporary variables. High speed is retained by preferring “vectorized” building blocks over the use of for-loops and generators which incur interpreter overhead.
import collections
import math
import operator
import random
def take(n, iterable):
"Return first n items of the iterable as a list"
return list(islice(iterable, n))
def prepend(value, iterable):
"Prepend a single value in front of an iterable"
# prepend(1, [2, 3, 4]) --> 1 2 3 4
return chain([value], iterable)
def tabulate(function, start=0):
"Return function(0), function(1), ..."
return map(function, count(start))
def tail(n, iterable):
"Return an iterator over the last n items"
# tail(3, 'ABCDEFG') --> E F G
return iter(collections.deque(iterable, maxlen=n))
def consume(iterator, n=None):
"Advance the iterator n-steps ahead. If n is None, consume entirely."
# Use functions that consume iterators at C speed.
if n is None:
# feed the entire iterator into a zero-length deque
collections.deque(iterator, maxlen=0)
else:
# advance to the empty slice starting at position n
next(islice(iterator, n, n), None)
def nth(iterable, n, default=None):
"Returns the nth item or a default value"
return next(islice(iterable, n, None), default)
def all_equal(iterable):
"Returns True if all the elements are equal to each other"
g = groupby(iterable)
return next(g, True) and not next(g, False)
def quantify(iterable, pred=bool):
"Count how many times the predicate is True"
return sum(map(pred, iterable))
def ncycles(iterable, n):
"Returns the sequence elements n times"
return chain.from_iterable(repeat(tuple(iterable), n))
def batched(iterable, n):
"Batch data into tuples of length n. The last batch may be shorter."
# batched('ABCDEFG', 3) --> ABC DEF G
if n < 1:
raise ValueError('n must be at least one')
it = iter(iterable)
while batch := tuple(islice(it, n)):
yield batch
def grouper(iterable, n, *, incomplete='fill', fillvalue=None):
"Collect data into non-overlapping fixed-length chunks or blocks"
# grouper('ABCDEFG', 3, fillvalue='x') --> ABC DEF Gxx
# grouper('ABCDEFG', 3, incomplete='strict') --> ABC DEF ValueError
# grouper('ABCDEFG', 3, incomplete='ignore') --> ABC DEF
args = [iter(iterable)] * n
if incomplete == 'fill':
return zip_longest(*args, fillvalue=fillvalue)
if incomplete == 'strict':
return zip(*args, strict=True)
if incomplete == 'ignore':
return zip(*args)
else:
raise ValueError('Expected fill, strict, or ignore')
def sumprod(vec1, vec2):
"Compute a sum of products."
return sum(starmap(operator.mul, zip(vec1, vec2, strict=True)))
def sum_of_squares(it):
"Add up the squares of the input values."
# sum_of_squares([10, 20, 30]) -> 1400
return sumprod(*tee(it))
def transpose(it):
"Swap the rows and columns of the input."
# transpose([(1, 2, 3), (11, 22, 33)]) --> (1, 11) (2, 22) (3, 33)
return zip(*it, strict=True)
def matmul(m1, m2):
"Multiply two matrices."
# matmul([(7, 5), (3, 5)], [[2, 5], [7, 9]]) --> (49, 80), (41, 60)
n = len(m2[0])
return batched(starmap(sumprod, product(m1, transpose(m2))), n)
def convolve(signal, kernel):
# See: https://betterexplained.com/articles/intuitive-convolution/
# convolve(data, [0.25, 0.25, 0.25, 0.25]) --> Moving average (blur)
# convolve(data, [1, -1]) --> 1st finite difference (1st derivative)
# convolve(data, [1, -2, 1]) --> 2nd finite difference (2nd derivative)
kernel = tuple(kernel)[::-1]
n = len(kernel)
window = collections.deque([0], maxlen=n) * n
for x in chain(signal, repeat(0, n-1)):
window.append(x)
yield sumprod(kernel, window)
def polynomial_from_roots(roots):
"""Compute a polynomial's coefficients from its roots.
(x - 5) (x + 4) (x - 3) expands to: x³ -4x² -17x + 60
"""
# polynomial_from_roots([5, -4, 3]) --> [1, -4, -17, 60]
expansion = [1]
for r in roots:
expansion = convolve(expansion, (1, -r))
return list(expansion)
def polynomial_eval(coefficients, x):
"""Evaluate a polynomial at a specific value.
Computes with better numeric stability than Horner's method.
"""
# Evaluate x³ -4x² -17x + 60 at x = 2.5
# polynomial_eval([1, -4, -17, 60], x=2.5) --> 8.125
n = len(coefficients)
if n == 0:
return x * 0 # coerce zero to the type of x
powers = map(pow, repeat(x), reversed(range(n)))
return sumprod(coefficients, powers)
def iter_index(iterable, value, start=0):
"Return indices where a value occurs in a sequence or iterable."
# iter_index('AABCADEAF', 'A') --> 0 1 4 7
try:
seq_index = iterable.index
except AttributeError:
# Slow path for general iterables
it = islice(iterable, start, None)
i = start - 1
try:
while True:
yield (i := i + operator.indexOf(it, value) + 1)
except ValueError:
pass
else:
# Fast path for sequences
i = start - 1
try:
while True:
yield (i := seq_index(value, i+1))
except ValueError:
pass
def sieve(n):
"Primes less than n"
# sieve(30) --> 2 3 5 7 11 13 17 19 23 29
data = bytearray((0, 1)) * (n // 2)
data[:3] = 0, 0, 0
limit = math.isqrt(n) + 1
for p in compress(range(limit), data):
data[p*p : n : p+p] = bytes(len(range(p*p, n, p+p)))
data[2] = 1
return iter_index(data, 1) if n > 2 else iter([])
def factor(n):
"Prime factors of n."
# factor(99) --> 3 3 11
for prime in sieve(math.isqrt(n) + 1):
while True:
quotient, remainder = divmod(n, prime)
if remainder:
break
yield prime
n = quotient
if n == 1:
return
if n > 1:
yield n
def flatten(list_of_lists):
"Flatten one level of nesting"
return chain.from_iterable(list_of_lists)
def repeatfunc(func, times=None, *args):
"""Repeat calls to func with specified arguments.
Example: repeatfunc(random.random)
"""
if times is None:
return starmap(func, repeat(args))
return starmap(func, repeat(args, times))
def triplewise(iterable):
"Return overlapping triplets from an iterable"
# triplewise('ABCDEFG') --> ABC BCD CDE DEF EFG
for (a, _), (b, c) in pairwise(pairwise(iterable)):
yield a, b, c
def sliding_window(iterable, n):
# sliding_window('ABCDEFG', 4) --> ABCD BCDE CDEF DEFG
it = iter(iterable)
window = collections.deque(islice(it, n), maxlen=n)
if len(window) == n:
yield tuple(window)
for x in it:
window.append(x)
yield tuple(window)
def roundrobin(*iterables):
"roundrobin('ABC', 'D', 'EF') --> A D E B F C"
# Recipe credited to George Sakkis
num_active = len(iterables)
nexts = cycle(iter(it).__next__ for it in iterables)
while num_active:
try:
for next in nexts:
yield next()
except StopIteration:
# Remove the iterator we just exhausted from the cycle.
num_active -= 1
nexts = cycle(islice(nexts, num_active))
def partition(pred, iterable):
"Use a predicate to partition entries into false entries and true entries"
# partition(is_odd, range(10)) --> 0 2 4 6 8 and 1 3 5 7 9
t1, t2 = tee(iterable)
return filterfalse(pred, t1), filter(pred, t2)
def before_and_after(predicate, it):
""" Variant of takewhile() that allows complete
access to the remainder of the iterator.
>>> it = iter('ABCdEfGhI')
>>> all_upper, remainder = before_and_after(str.isupper, it)
>>> ''.join(all_upper)
'ABC'
>>> ''.join(remainder) # takewhile() would lose the 'd'
'dEfGhI'
Note that the first iterator must be fully
consumed before the second iterator can
generate valid results.
"""
it = iter(it)
transition = []
def true_iterator():
for elem in it:
if predicate(elem):
yield elem
else:
transition.append(elem)
return
def remainder_iterator():
yield from transition
yield from it
return true_iterator(), remainder_iterator()
def subslices(seq):
"Return all contiguous non-empty subslices of a sequence"
# subslices('ABCD') --> A AB ABC ABCD B BC BCD C CD D
slices = starmap(slice, combinations(range(len(seq) + 1), 2))
return map(operator.getitem, repeat(seq), slices)
def powerset(iterable):
"powerset([1,2,3]) --> () (1,) (2,) (3,) (1,2) (1,3) (2,3) (1,2,3)"
s = list(iterable)
return chain.from_iterable(combinations(s, r) for r in range(len(s)+1))
def unique_everseen(iterable, key=None):
"List unique elements, preserving order. Remember all elements ever seen."
# unique_everseen('AAAABBBCCDAABBB') --> A B C D
# unique_everseen('ABBcCAD', str.lower) --> A B c D
seen = set()
if key is None:
for element in filterfalse(seen.__contains__, iterable):
seen.add(element)
yield element
# For order preserving deduplication,
# a faster but non-lazy solution is:
# yield from dict.fromkeys(iterable)
else:
for element in iterable:
k = key(element)
if k not in seen:
seen.add(k)
yield element
# For use cases that allow the last matching element to be returned,
# a faster but non-lazy solution is:
# t1, t2 = tee(iterable)
# yield from dict(zip(map(key, t1), t2)).values()
def unique_justseen(iterable, key=None):
"List unique elements, preserving order. Remember only the element just seen."
# unique_justseen('AAAABBBCCDAABBB') --> A B C D A B
# unique_justseen('ABBcCAD', str.lower) --> A B c A D
return map(next, map(operator.itemgetter(1), groupby(iterable, key)))
def iter_except(func, exception, first=None):
""" Call a function repeatedly until an exception is raised.
Converts a call-until-exception interface to an iterator interface.
Like builtins.iter(func, sentinel) but uses an exception instead
of a sentinel to end the loop.
Examples:
iter_except(functools.partial(heappop, h), IndexError) # priority queue iterator
iter_except(d.popitem, KeyError) # non-blocking dict iterator
iter_except(d.popleft, IndexError) # non-blocking deque iterator
iter_except(q.get_nowait, Queue.Empty) # loop over a producer Queue
iter_except(s.pop, KeyError) # non-blocking set iterator
"""
try:
if first is not None:
yield first() # For database APIs needing an initial cast to db.first()
while True:
yield func()
except exception:
pass
def first_true(iterable, default=False, pred=None):
"""Returns the first true value in the iterable.
If no true value is found, returns *default*
If *pred* is not None, returns the first item
for which pred(item) is true.
"""
# first_true([a,b,c], x) --> a or b or c or x
# first_true([a,b], x, f) --> a if f(a) else b if f(b) else x
return next(filter(pred, iterable), default)
def nth_combination(iterable, r, index):
"Equivalent to list(combinations(iterable, r))[index]"
pool = tuple(iterable)
n = len(pool)
c = math.comb(n, r)
if index < 0:
index += c
if index < 0 or index >= c:
raise IndexError
result = []
while r:
c, n, r = c*r//n, n-1, r-1
while index >= c:
index -= c
c, n = c*(n-r)//n, n-1
result.append(pool[-1-n])
return tuple(result)