
The Python Language Reference
출시버전 2.7.18

Guido van Rossum
and the Python development team

5월 20, 2020

Contents

1 개요 3
1.1 대안구현들 . 3
1.2 표기법 . 4

2 구문분석 5
2.1 줄구조 (Line structure) . 5
2.2 다른토큰들 . 9
2.3 식별자와키워드 . 9
2.4 리터럴 . 10
2.5 연산자 . 13
2.6 구분자 . 14

3 데이터모델 15
3.1 객체,값,형 . 15
3.2 표준형계층 . 16
3.3 New-style and classic classes . 24
3.4 특수메서드이름들 . 24

4 실행모델 41
4.1 이름과연결 (binding) . 41
4.2 예외 . 43

5 표현식 45
5.1 산술변환 . 45
5.2 아톰 (Atoms) . 46
5.3 프라이머리 . 51
5.4 거듭제곱연산자 . 54
5.5 일항산술과비트연산 . 55
5.6 이항산술연산 . 55
5.7 시프트연산 . 56
5.8 이항비트연산 . 56
5.9 비교 . 57
5.10 논리연산 (Boolean operations) . 60
5.11 Conditional Expressions . 60
5.12 람다 (Lambdas) . 60
5.13 표현식목록 (Expression lists) . 61
5.14 값을구하는순서 . 61

i

5.15 연산자우선순위 . 61

6 단순문 (Simple statements) 63
6.1 표현식문 . 63
6.2 대입문 . 64
6.3 assert문 . 66
6.4 pass문 . 67
6.5 del문 . 67
6.6 The print statement . 67
6.7 return문 . 68
6.8 yield문 . 68
6.9 raise문 . 69
6.10 break문 . 69
6.11 continue문 . 70
6.12 임포트 (import)문 . 70
6.13 global문 . 73
6.14 The exec statement . 73

7 복합문 (Compound statements) 75
7.1 if문 . 76
7.2 while문 . 76
7.3 for문 . 76
7.4 try문 . 77
7.5 with문 . 79
7.6 함수정의 . 80
7.7 클래스정의 . 81

8 최상위요소들 83
8.1 완전한파이썬프로그램 . 83
8.2 파일입력 . 83
8.3 대화형입력 . 84
8.4 표현식입력 . 84

9 전체문법규격 85

A 용어집 89

B About these documents 99
B.1 Contributors to the Python Documentation . 99

C History and License 101
C.1 History of the software . 101
C.2 Terms and conditions for accessing or otherwise using Python . 102
C.3 Licenses and Acknowledgements for Incorporated Software . 105

D 저작권 117

색인 119

ii

The Python Language Reference,출시버전 2.7.18

이참조설명서는언어의문법과《중심개념들 (core semantics)》을설명한다. 딱딱하더라도정확하고완전해
지려고한다. 중심에서벗어난내장형, 내장함수, 모듈들의개념들은 library-index에기술되어있다. 언어에
대한비형식적인소개는 tutorial-index에서제공된다. C와 C++프로그래머를위해서는두개의설명서가따로
제공된다: extending-index 는파이썬확장모듈을작성하는방법에대한큰그림을설명하고, c-api-index 은
C/C++프로그래머에게제공되는인터페이스들을상세하게기술한다.

Contents 1

The Python Language Reference,출시버전 2.7.18

2 Contents

CHAPTER1

개요

이레퍼런스설명서는파이썬프로그래밍언어를설명한다. 자습서를목표로하고있지않다.

가능한한정확하려고노력하고있지만, 문법과구문해석이외의모든것에는형식규격보다는자연어를
사용한다. 이선택이평균적인독자들이문서를좀더잘이해하도록만들지만,동시에모호해질가능성역시
만든다. 결과적으로,만약여러분이화성에서왔고이문서만으로파이썬을다시구현하려고하면,아마도여러
가지를짐작해야할것이고결국많이다른언어를만드는것으로끝날것이다. 반면에, 여러분이파이썬을
사용하고있고언어의특정영역에대한정확한규칙에대해궁금해하고있다면거의확실히이곳에서답을
찾을수있다. 좀 더형식화된정의를보고싶다면, 아마도여러분의시간을기부하는편이좋다—그렇지
않으면클로닝기계를발명하거나 :-).
It is dangerous to add too many implementation details to a language reference document — the implementation may
change, and other implementations of the same language may work differently. On the other hand, there is currently only
one Python implementation in widespread use (although alternate implementations exist), and its particular quirks are
sometimes worth being mentioned, especially where the implementation imposes additional limitations. Therefore, you’
ll find short 《implementation notes》 sprinkled throughout the text.
모든파이썬구현에는많은내장표준모듈들이따라온다. 이것들은 library-index에기술되어있다. 언어정의에
주목할만한방식으로관계될경우몇몇내장모듈들은따로언급된다.

1.1 대안구현들

눈에띄게널리사용되는파이썬구현이존재하기는하지만,특정한관심사를가진대상들에게호소력을가진
여러대안구현들이존재한다.

알려진구현들은:

CPython 원조이기도하고가장잘관리되고있는 C로작성된파이썬구현이다. 언어의새로운기능은보통
여기에서처음등장한다.

Jython 파이썬자바구현. 이구현은자바응용프로그램을위한스크립트언어로사용되거나, 자바클래스
라이브러리를활용하는응용프로그램을만드는데사용될수있다. 종종자바라이브러리의테스트를
만드는데사용되기도한다. 더자세한정보는 Jython웹사이트에서찾을수있다.

3

http://www.jython.org/

The Python Language Reference,출시버전 2.7.18

Python for .NET 이구현은실제로는CPython구현을사용하지만,매니지드(managed) .NET응용프로그램이고
.NET라이브러리를제공한다. Bryan Lloyd가만들었다. 더자세한정보는 Python for .NET홈페이지에서
제공된다.

IronPython .NET을위한대안파이썬. Python.NET과는달리이것은 IL을생성하고, 파이썬코드를 .NET어
셈블리로직접컴파일하는완전한파이썬구현이다. Jim Hugunin이만들었는데, Jython의원저자이기도
하다. 자세한정보는 IronPython웹사이트에서얻을수있다.

PyPy 완전히파이썬으로작성된파이썬구현. 스택리스 (stackless)지원이나 JIT컴파일러와같이다른구현
에서는찾을수없는고급기능을제공한다. 이프로젝트의목표중하나는 (파이썬으로쓰였기때문에)
인터프리터수정을쉽게만들어서언어자체에대한실험을북돋는것이다. 자세한정보는 PyPy프로젝
트의홈페이지에서찾을수있다.

각 구현은이설명서에서설명되는언어와조금씩각기다른방법으로벗어나거나, 표준파이썬문서에서
다루는범위밖의특별한정보들을소개한다. 여러분이사용중인구현에대해어떤것을더알아야하는지
판단하기위해서는구현별로제공되는문서를참조할필요가있다.

1.2 표기법

구문분석과문법의기술은수정된 BNF문법표기법을사용한다. 이것은다음과같은정의스타일을사용한다.

name ::= lc_letter (lc_letter | "_")*
lc_letter ::= "a"..."z"

첫줄은 name이 lc_letter로시작하고,없거나하나이상의 lc_letter나밑줄이뒤따르는형태로구성
된다고말한다. 한편 lc_letter는 'a'와 'z'사이의문자하나다. (사실이규칙은이문서에서구문과
문법규칙에서정의되는이름들에대한규칙이다.)
개별 규칙은 이름 (위 규칙에 등장하는 name)과 ::= 로 시작한다. 세로막대 (|)는 대안들을 분리하는 데
사용된다; 이표기법에서우선순위가가장낮은연산자다. 별표 (*)는앞에나오는항목이생략되거나한번
이상반복될수있다는의미다;비슷하게,더하기 (+)는한번이상반복될수있지만생략할수는없다는뜻이고,
꺾쇠괄호 ([])로둘러싸인것은최대한번나올수있고, 생략가능하다는뜻이다. *와 +연산자는최대한
엄격하게연결된다; 우선순위가가장높다; 괄호는덩어리로묶는데사용된다. 문자열리터럴은따옴표로
둘러싸인다. 공백은토큰을분리하는용도로만사용된다. 규칙은보통한줄로표현된다;대안이많은규칙은
여러줄로표현될수도있는데,뒤따르는줄들이세로막대로시작되게만든다.

구문정의 (위에서든예와같이)에서는,두가지추가관례가사용된다: 두개의리터럴문자가세개의점으로
분리되어있으면주어진 (끝의두문자모두포함하는)범위의ASCII문자중어느하나라는뜻이다. 홑화살괄호
(<...>)안에들어있는구문은,정의되는기호에대한비형식적설명을제공한다. 즉필요한경우〈제어문자’
를설명하는데사용될수있다.

사용되는표기법이거의같다고하더라도,구문과문법정의간에는커다란차이가있다: 구문정의는입력의
개별문자에적용되는반면,문법정의는구문분석기가만들어내는토큰들에적용된다. 다음장 (《구문분석
(Lexical Analysis)》)에서사용되는모든 BNF는구문정의다;그이후의장에서는문법정의다.

4 Chapter 1. 개요

https://pythonnet.github.io/
http://ironpython.net/
http://pypy.org/
http://pypy.org/

CHAPTER2

구문분석

파이썬프로그램은파서 (parser)에의해읽힌다. 파서의입력은구문분석기 (lexical analyzer)가만들어내는
토큰 (token)들의스트림이다. 이장에서는구문분석기가어떻게파일을토큰들로분해하는지설명한다.

Python uses the 7-bit ASCII character set for program text.
버전 2.3에추가: An encoding declaration can be used to indicate that string literals and comments use an encoding
different from ASCII.
For compatibility with older versions, Python only warns if it finds 8-bit characters; those warnings should be corrected
by either declaring an explicit encoding, or using escape sequences if those bytes are binary data, instead of characters.
The run-time character set depends on the I/O devices connected to the program but is generally a superset of ASCII.
Future compatibility note: It may be tempting to assume that the character set for 8-bit characters is ISO Latin-1 (an
ASCII superset that covers most western languages that use the Latin alphabet), but it is possible that in the future Unicode
text editors will become common. These generally use the UTF-8 encoding, which is also an ASCII superset, but with
very different use for the characters with ordinals 128-255. While there is no consensus on this subject yet, it is unwise
to assume either Latin-1 or UTF-8, even though the current implementation appears to favor Latin-1. This applies both
to the source character set and the run-time character set.

2.1 줄구조 (Line structure)

파이썬프로그램은여러개의논리적인줄 (logical lines)들로나뉜다.

5

The Python Language Reference,출시버전 2.7.18

2.1.1 논리적인줄

논리적인줄의끝은NEWLINE토큰으로표현된다. 문법이허락하지않는이상 (예를들어복합문에서문장들
사이)문장은논리적인줄간의경계를가로지를수없다. 논리적인줄은명시적이거나묵시적인줄결합 (line
joining)규칙에따라하나이상의물리적인줄 (physical lines)들로구성된다.

2.1.2 물리적인줄

A physical line is a sequence of characters terminated by an end-of-line sequence. In source files and strings, any of the
standard platform line termination sequences can be used - the Unix form using ASCII LF (linefeed), the Windows form
using the ASCII sequence CR LF (return followed by linefeed), or the old Macintosh form using the ASCII CR (return)
character. All of these forms can be used equally, regardless of platform. The end of input also serves as an implicit
terminator for the final physical line.
파이썬을내장할때는,소스코드문자열은반드시줄종료문자에표준C관행 (ASCII LF를표현하는 \n문자로
줄이종료된다)을적용해서파이썬 API로전달되어야한다.

2.1.3 주석

주석은문자열리터럴에포함되지않는해시문자 (#)로시작하고물리적인줄의끝에서끝난다. 묵시적인
줄결합규칙이유효하지않은이상, 주석은논리적인줄을종료시킨다. 주석은문법이무시한다; 토큰으로
만들어지지않는다.

2.1.4 인코딩선언

파이썬스크립트의첫번째나두번째줄에있는주석이정규식 coding[=:]\s*([-\w.]+)과매치되면,
이주석은인코딩선언으로처리된다. 이정규식의첫번째그룹은소스코드파일의인코딩이름을지정한다.
인코딩선언은줄전체에홀로나와야한다. 만약두번째줄이라면,첫번째줄역시주석만있어야한다. 인코딩
선언의권장형태는두개다. 하나는

-*- coding: <encoding-name> -*-

인데 GNU Emacs에서도인식된다. 다른하나는

vim:fileencoding=<encoding-name>

which is recognized by Bram Moolenaar’s VIM. In addition, if the first bytes of the file are the UTF-8 byte-order mark
('\xef\xbb\xbf'), the declared file encoding is UTF-8 (this is supported, among others, by Microsoft’s notepad).
If an encoding is declared, the encoding name must be recognized by Python. The encoding is used for all lexical analysis,
in particular to find the end of a string, and to interpret the contents of Unicode literals. String literals are converted to
Unicode for syntactical analysis, then converted back to their original encoding before interpretation starts.

6 Chapter 2. 구문분석

The Python Language Reference,출시버전 2.7.18

2.1.5 명시적인줄결합

둘이상의물리적인줄은역슬래시문자 (\)를사용해서논리적인줄로결합할수있다: 물리적인줄이문자열
리터럴이나주석의일부가아닌역슬래시문자로끝나면, 역슬래시와뒤따르는개행문자가제거된채로,
현재만들어지고있는논리적인줄에합쳐진다. 예를들어:

if 1900 < year < 2100 and 1 <= month <= 12 \
and 1 <= day <= 31 and 0 <= hour < 24 \
and 0 <= minute < 60 and 0 <= second < 60: # Looks like a valid date

return 1

역슬래시로끝나는줄은주석이포함될수없다. 역슬래시는주석을결합하지못한다. 역슬래시는문자열
리터럴을제외한어떤토큰도결합하지못한다 (즉,문자열리터럴이외의어떤토큰도역슬래시를사용해서두
줄에나누어기록할수없다.). 문자열리터럴밖에있는역슬래시가앞에서언급한장소이외의곳에등장하는
것은문법에어긋난다.

2.1.6 묵시적인줄결합

괄호 (()),꺾쇠괄호 ([]),중괄호 ({})가사용되는표현은역슬래시없이도여러개의물리적인줄로나눌수
있다. 예를들어:

month_names = ['Januari', 'Februari', 'Maart', # These are the
'April', 'Mei', 'Juni', # Dutch names
'Juli', 'Augustus', 'September', # for the months
'Oktober', 'November', 'December'] # of the year

묵시적으로이어지는줄들은주석을포함할수있다. 이어지는줄들의들여쓰기는중요하지않다. 중간에빈
줄이들어가도된다. 묵시적으로줄결합하는줄들간에는NEWLINE토큰이만들어지지않는다. 묵시적으로
이어지는줄들은삼중따옴표된문자열들에서도등장할수있는데 (아래를보라),이경우는주석이포함될수
없다.

2.1.7 빈줄

A logical line that contains only spaces, tabs, formfeeds and possibly a comment, is ignored (i.e., no NEWLINE token is
generated). During interactive input of statements, handling of a blank line may differ depending on the implementation
of the read-eval-print loop. In the standard implementation, an entirely blank logical line (i.e. one containing not even
whitespace or a comment) terminates a multi-line statement.

2.1.8 들여쓰기

논리적인줄의제일앞에오는공백 (스페이스와탭)은줄의들여쓰기수준을계산하는데사용되고,이는다시
문장들의묶음을결정하는데사용되게된다.

First, tabs are replaced (from left to right) by one to eight spaces such that the total number of characters up to and
including the replacement is a multiple of eight (this is intended to be the same rule as used by Unix). The total number
of spaces preceding the first non-blank character then determines the line’s indentation. Indentation cannot be split over
multiple physical lines using backslashes; the whitespace up to the first backslash determines the indentation.
크로스-플랫폼호환성유의사항: UNIX이외의플랫폼에서편집기들이동작하는방식때문에, 하나의파일
내에서들여쓰기를위해탭과스페이스를섞어쓰는것은현명한선택이아니다. 다른플랫폼들에서는최대
들여쓰기수준에제한이있을수도있다는점도주의해야한다.

2.1. 줄구조 (Line structure) 7

The Python Language Reference,출시버전 2.7.18

폼피드문자는줄의처음에나올수있다;앞서설명한들여쓰기수준계산에서는무시된다. 페이지넘김문자
앞에공백이나탭이있는경우는정의되지않은효과를줄수있다 (가령, 스페이스수가 0으로초기화될수
있다).
연속된줄의들여쓰기수준은,스택을사용해서,다음과같은방법으로 INDENT와DEDENT토큰을만드는데
사용된다.

파일의첫줄을읽기전에 0하나를스택에넣는다 (push); 이값은다시꺼내는 (pop) 일이없다. 스택에넣는
값은항상스택의아래에서위로올라갈때단조증가한다. 각논리적인줄의처음에서줄의들여쓰기수준이
스택의가장위에있는값과비교된다. 같다면아무런일도일어나지않는다. 더크다면그값을스택에넣고
하나의 INDENT토큰을만든다. 더작다면이값은스택에있는값중하나여만한다. 이값보다큰모든스택의
값들을꺼내고 (pop),꺼낸횟수만큼의DEDENT토큰을만든다. 파일의끝에서,스택에남아있는 0보다큰값의
개수만큼 DEDENT토큰을만든다.
여기에 (혼란스럽다할지라도)올바르게들여쓰기된파이썬코드조각이있다:

def perm(l):
Compute the list of all permutations of l

if len(l) <= 1:
return [l]

r = []
for i in range(len(l)):

s = l[:i] + l[i+1:]
p = perm(s)
for x in p:
r.append(l[i:i+1] + x)

return r

다음예는여러가지들여쓰기에러를보여준다:

def perm(l): # error: first line indented
for i in range(len(l)): # error: not indented

s = l[:i] + l[i+1:]
p = perm(l[:i] + l[i+1:]) # error: unexpected indent
for x in p:

r.append(l[i:i+1] + x)
return r # error: inconsistent dedent

(사실, 처음세개의에러는파서가감지한다. 단지마지막에러만구문분석기가감지한다. — return r의
들여쓰기가스택에있는값과일치하지않는다.)

8 Chapter 2. 구문분석

The Python Language Reference,출시버전 2.7.18

2.1.9 토큰사이의공백

논리적인줄의처음과문자열리터럴을제외하고,공백문자인스페이스,탭,폼피드는토큰을분리하기위해
섞어쓸수있다. 두토큰을붙여쓸때다른토큰으로해석될수있는경우만토큰사이에공백이필요하다.
(예를들어, ab는하나의토큰이지만, a b는두개의토큰이다.)

2.2 다른토큰들

NEWLINE, INDENT, DEDENT와는별도로,다음과같은유형의토큰들이존재한다: 식별자 (identifier), 키워드
(keyword), 리터럴 (literal), 연산자 (operator), 구분자 (delimiter). (앞에서살펴본줄종료이외의)공백문자들은
토큰이아니지만,토큰을분리하는역할을담당한다. 모호할경우,왼쪽에서오른쪽으로읽을때,하나의토큰은
올바르고가능한한최대길이의문자열로구성되는것을선호한다.

2.3 식별자와키워드

Identifiers (also referred to as names) are described by the following lexical definitions:

identifier ::= (letter|"_") (letter | digit | "_")*
letter ::= lowercase | uppercase
lowercase ::= "a"..."z"
uppercase ::= "A"..."Z"
digit ::= "0"..."9"

식별자는길이에제한이없고,케이스 (case)는구분된다.

2.3.1 키워드

다음식별자들은예약어,또는언어의키워드,로사용되고,일반적인식별자로사용될수없다. 여기쓰여있는
것과정확히같게사용되어야한다:

and del from not while
as elif global or with
assert else if pass yield
break except import print
class exec in raise
continue finally is return
def for lambda try

버전 2.4에서변경: None became a constant and is now recognized by the compiler as a name for the built-in object
None. Although it is not a keyword, you cannot assign a different object to it.
버전 2.5에서 변경: Using as and with as identifiers triggers a warning. To use them as keywords, enable the
with_statement future feature .
버전 2.6에서변경: as and with are full keywords.

2.3. 식별자와키워드 9

The Python Language Reference,출시버전 2.7.18

2.3.2 식별자의예약영역

(키워드와는별개로)어떤부류의식별자들은특별한의미가있다. 이부류의식별자들은시작과끝의밑줄
문자패턴으로구분된다:

_* Not imported by from module import *. The special identifier _ is used in the interactive interpreter to store
the result of the last evaluation; it is stored in the __builtin__ module. When not in interactive mode, _ has
no special meaning and is not defined. See section임포트 (import)문.

참고: 이름 _은종종국제화 (internationalization)와관련되어사용된다. 이관례에관해서는 gettext
모듈의문서를참조하라.

__*__ 시스템정의이름. 이이름들은인터프리터와그구현 (표준라이브러리를포함한다)이정의한다. 현재
정의된시스템이름은특수메서드이름들섹션과그외의곳에서논의된다. 파이썬의미래버전에서는
더많은것들이정의될가능성이크다. 어떤문맥에서건,명시적으로문서로만들어진사용법을벗어나는
__*__이름의모든사용은,경고없이손상될수있다.

__* 클래스-비공개이름. 이부류의이름들을클래스정의문맥에서사용하면뒤섞인형태로변형된다. 부모
클래스와자식클래스의《비공개 (private)》어트리뷰트간의이름충돌을피하기위함이다. 식별자 (이름)
섹션을보라.

2.4 리터럴

리터럴 (literal)은몇몇내장형들의상숫값을위한표기법이다.

2.4.1 String literals

문자열리터럴은다음과같은구문정의로기술된다:

stringliteral ::= [stringprefix](shortstring | longstring)
stringprefix ::= "r" | "u" | "ur" | "R" | "U" | "UR" | "Ur" | "uR"

| "b" | "B" | "br" | "Br" | "bR" | "BR"
shortstring ::= "'" shortstringitem* "'" | '"' shortstringitem* '"'
longstring ::= "'''" longstringitem* "'''"

| '"""' longstringitem* '"""'
shortstringitem ::= shortstringchar | escapeseq
longstringitem ::= longstringchar | escapeseq
shortstringchar ::= <any source character except "\" or newline or the quote>
longstringchar ::= <any source character except "\">
escapeseq ::= "\" <any ASCII character>

One syntactic restriction not indicated by these productions is that whitespace is not allowed between the
stringprefix and the rest of the string literal. The source character set is defined by the encoding declaration;
it is ASCII if no encoding declaration is given in the source file; see section인코딩선언.
In plain English: String literals can be enclosed in matching single quotes (') or double quotes ("). They can also be
enclosed in matching groups of three single or double quotes (these are generally referred to as triple-quoted strings). The
backslash (\) character is used to escape characters that otherwise have a special meaning, such as newline, backslash
itself, or the quote character. String literals may optionally be prefixed with a letter 'r' or 'R'; such strings are called
raw strings and use different rules for interpreting backslash escape sequences. A prefix of 'u' or 'U' makes the string
a Unicode string. Unicode strings use the Unicode character set as defined by the Unicode Consortium and ISO 10646.

10 Chapter 2. 구문분석

The Python Language Reference,출시버전 2.7.18

Some additional escape sequences, described below, are available in Unicode strings. A prefix of 'b' or 'B' is ignored in
Python 2; it indicates that the literal should become a bytes literal in Python 3 (e.g. when code is automatically converted
with 2to3). A 'u' or 'b' prefix may be followed by an 'r' prefix.
In triple-quoted strings, unescaped newlines and quotes are allowed (and are retained), except that three unescaped quotes
in a row terminate the string. (A 《quote》 is the character used to open the string, i.e. either ' or ".)
Unless an 'r' or 'R' prefix is present, escape sequences in strings are interpreted according to rules similar to those
used by Standard C. The recognized escape sequences are:

이스케이프시퀀스 의미 유의사항
\newline Ignored
\\ 역슬래시 (\)
\' 작은따옴표 (')
\" 큰따옴표 (")
\a ASCII벨 (BEL)
\b ASCII백스페이스 (BS)
\f ASCII폼피드 (FF)
\n ASCII라인피드 (LF)
\N{name} Character named name in the Unicode database (Unicode only)
\r ASCII캐리지리턴 (CR)
\t ASCII가로탭 (TAB)
\uxxxx Character with 16-bit hex value xxxx (Unicode only) (1)
\Uxxxxxxxx Character with 32-bit hex value xxxxxxxx (Unicode only) (2)
\v ASCII세로탭 (VT)
\ooo 8진수 ooo로지정된문자 (3,5)
\xhh 16진수 hh로지정된문자 (4,5)

유의사항:

(1) Individual code units which form parts of a surrogate pair can be encoded using this escape sequence.
(2) Any Unicode character can be encoded this way, but characters outside the Basic Multilingual Plane (BMP) will

be encoded using a surrogate pair if Python is compiled to use 16-bit code units (the default).
(3) 표준 C와마찬가지로,최대세개의 8진수가허용된다.
(4) 표준 C와는달리,정확히두개의 16진수가제공되어야한다.
(5) In a string literal, hexadecimal and octal escapes denote the byte with the given value; it is not necessary that the

byte encodes a character in the source character set. In a Unicode literal, these escapes denote a Unicode character
with the given value.

Unlike Standard C, all unrecognized escape sequences are left in the string unchanged, i.e., the backslash is left in the
string. (This behavior is useful when debugging: if an escape sequence is mistyped, the resulting output is more easily
recognized as broken.) It is also important to note that the escape sequences marked as 《(Unicode only)》 in the table
above fall into the category of unrecognized escapes for non-Unicode string literals.
When an 'r' or 'R' prefix is present, a character following a backslash is included in the string without change, and
all backslashes are left in the string. For example, the string literal r"\n" consists of two characters: a backslash and
a lowercase 'n'. String quotes can be escaped with a backslash, but the backslash remains in the string; for example,
r"\"" is a valid string literal consisting of two characters: a backslash and a double quote; r"\" is not a valid string
literal (even a raw string cannot end in an odd number of backslashes). Specifically, a raw string cannot end in a single
backslash (since the backslash would escape the following quote character). Note also that a single backslash followed by
a newline is interpreted as those two characters as part of the string, not as a line continuation.
When an'r' or'R' prefix is used in conjunction with a'u' or'U' prefix, then the\uXXXX and\UXXXXXXXX escape
sequences are processed while all other backslashes are left in the string. For example, the string literal ur"\u0062\n"

2.4. 리터럴 11

The Python Language Reference,출시버전 2.7.18

consists of three Unicode characters: 〈LATIN SMALL LETTER B〉, 〈REVERSE SOLIDUS〉, and 〈LATIN SMALL
LETTER N〉. Backslashes can be escaped with a preceding backslash; however, both remain in the string. As a result,
\uXXXX escape sequences are only recognized when there are an odd number of backslashes.

2.4.2 문자열리터럴이어붙이기

Multiple adjacent string literals (delimited by whitespace), possibly using different quoting conventions, are allowed, and
their meaning is the same as their concatenation. Thus, "hello" 'world' is equivalent to "helloworld". This
feature can be used to reduce the number of backslashes needed, to split long strings conveniently across long lines, or
even to add comments to parts of strings, for example:

re.compile("[A-Za-z_]" # letter or underscore
"[A-Za-z0-9_]*" # letter, digit or underscore

)

Note that this feature is defined at the syntactical level, but implemented at compile time. The 〈+〉 operator must be used
to concatenate string expressions at run time. Also note that literal concatenation can use different quoting styles for each
component (even mixing raw strings and triple quoted strings).

2.4.3 숫자리터럴

There are four types of numeric literals: plain integers, long integers, floating point numbers, and imaginary numbers.
There are no complex literals (complex numbers can be formed by adding a real number and an imaginary number).
숫자리터럴이부호를포함하지않는것에주의해야한다; -1과같은구문은일항연산자〈-〈과리터럴 1로
구성된표현식이다.

2.4.4 Integer and long integer literals

Integer and long integer literals are described by the following lexical definitions:

longinteger ::= integer ("l" | "L")
integer ::= decimalinteger | octinteger | hexinteger | bininteger
decimalinteger ::= nonzerodigit digit* | "0"
octinteger ::= "0" ("o" | "O") octdigit+ | "0" octdigit+
hexinteger ::= "0" ("x" | "X") hexdigit+
bininteger ::= "0" ("b" | "B") bindigit+
nonzerodigit ::= "1"..."9"
octdigit ::= "0"..."7"
bindigit ::= "0" | "1"
hexdigit ::= digit | "a"..."f" | "A"..."F"

Although both lower case 'l' and upper case 'L' are allowed as suffix for long integers, it is strongly recommended to
always use 'L', since the letter 'l' looks too much like the digit '1'.
Plain integer literals that are above the largest representable plain integer (e.g., 2147483647 when using 32-bit arithmetic)
are accepted as if they were long integers instead.1 There is no limit for long integer literals apart from what can be stored
in available memory.

1 In versions of Python prior to 2.4, octal and hexadecimal literals in the range just above the largest representable plain integer but below the
largest unsigned 32-bit number (on a machine using 32-bit arithmetic), 4294967296, were taken as the negative plain integer obtained by subtracting
4294967296 from their unsigned value.

12 Chapter 2. 구문분석

The Python Language Reference,출시버전 2.7.18

Some examples of plain integer literals (first row) and long integer literals (second and third rows):

7 2147483647 0177
3L 79228162514264337593543950336L 0377L 0x100000000L

79228162514264337593543950336 0xdeadbeef

2.4.5 실수리터럴

실수리터럴은다음과같은구문정의로표현된다:

floatnumber ::= pointfloat | exponentfloat
pointfloat ::= [intpart] fraction | intpart "."
exponentfloat ::= (intpart | pointfloat) exponent
intpart ::= digit+
fraction ::= "." digit+
exponent ::= ("e" | "E") ["+" | "-"] digit+

Note that the integer and exponent parts of floating point numbers can look like octal integers, but are interpreted using
radix 10. For example, 077e010 is legal, and denotes the same number as 77e10. The allowed range of floating point
literals is implementation-dependent. Some examples of floating point literals:

3.14 10. .001 1e100 3.14e-10 0e0

Note that numeric literals do not include a sign; a phrase like -1 is actually an expression composed of the unary operator
- and the literal 1.

2.4.6 허수리터럴

허수리터럴은다음과같은구문정의로표현된다:

imagnumber ::= (floatnumber | intpart) ("j" | "J")

허수리터럴은실수부가 0.0인복소수를만든다. 복소수는실수와같은범위제약이적용되는한쌍의실수로
표현된다. 0이아닌실수부를갖는복소수를만들려면,실수를더하면된다. 예를들어, (3+4j). 허수리터럴의
몇가지예를든다:

3.14j 10.j 10j .001j 1e100j 3.14e-10j

2.5 연산자

다음과같은토큰들은연산자다:

+ - * ** / // %
<< >> & | ^ ~
< > <= >= == != <>

The comparison operators <> and != are alternate spellings of the same operator. != is the preferred spelling; <> is
obsolescent.

2.5. 연산자 13

The Python Language Reference,출시버전 2.7.18

2.6 구분자

다음토큰들은문법에서구분자 (delimiter)로기능한다:

() [] { } @
, : . ` = ;
+= -= *= /= //= %=
&= |= ^= >>= <<= **=

The period can also occur in floating-point and imaginary literals. A sequence of three periods has a special meaning as
an ellipsis in slices. The second half of the list, the augmented assignment operators, serve lexically as delimiters, but also
perform an operation.
다음의인쇄되는 ASCII문자들은다른토큰들일부로서특별한의미를같거나, 그밖의경우구문분석기에
유의미하다:

' " # \

다음의인쇄되는ASCII문자들은파이썬에서사용되지않는다. 문자열리터럴과주석이외의곳에서사용되는
것은조건없는에러다:

$?

14 Chapter 2. 구문분석

CHAPTER3

데이터모델

3.1 객체, 값, 형

객체 (Objects)는파이썬이데이터 (data)를추상화한것 (abstraction)이다. 파이썬프로그램의모든데이터는
객체나객체간의관계로표현된다. (폰노이만 (Von Neumann)의 《프로그램내장식컴퓨터 (stored program
computer)》모델을따르고,또그관점에서코드역시객체로표현된다.)
Every object has an identity, a type and a value. An object’s identity never changes once it has been created; you may think
of it as the object’s address in memory. The 〈is〉 operator compares the identity of two objects; the id() function
returns an integer representing its identity (currently implemented as its address). An object’s type is also unchangeable.1
An object’s type determines the operations that the object supports (e.g., 《does it have a length?》) and also defines
the possible values for objects of that type. The type() function returns an object’s type (which is an object itself).
The value of some objects can change. Objects whose value can change are said to be mutable; objects whose value is
unchangeable once they are created are called immutable. (The value of an immutable container object that contains a
reference to a mutable object can change when the latter’s value is changed; however the container is still considered
immutable, because the collection of objects it contains cannot be changed. So, immutability is not strictly the same as
having an unchangeable value, it is more subtle.) An object’s mutability is determined by its type; for instance, numbers,
strings and tuples are immutable, while dictionaries and lists are mutable.
객체는결코명시적으로파괴되지않는다;더참조되지않을때 (unreachable)가비지수거 (garbage collect)된다.
구현이가비지수거를지연시키거나아예생략하는것이허락된다—아직참조되는객체들을수거하지않는
이상가비지수거가어떤식으로구현되는지는구현의품질문제다.

CPython implementation detail: CPython currently uses a reference-counting scheme with (optional) delayed detection
of cyclically linked garbage, which collects most objects as soon as they become unreachable, but is not guaranteed to
collect garbage containing circular references. See the documentation of the gc module for information on controlling
the collection of cyclic garbage. Other implementations act differently and CPython may change. Do not depend on
immediate finalization of objects when they become unreachable (ex: always close files).
구현이제공하는추적이나디버깅장치의사용은그렇지않으면수거될수있는객체들을살아있도록만들수
있음에주의해야한다. 또한〈try…except〉문으로예외를잡는것도객체를살아있게만들수있다.

1 어떤제한된조건으로, 어떤경우에객체의형을변경하는것이가능하다. 하지만잘못다뤄지면아주괴상한결과로이어질수
있으므로일반적으로좋은생각이아니다.

15

The Python Language Reference,출시버전 2.7.18

Some objects contain references to 《external》 resources such as open files or windows. It is understood that these
resources are freed when the object is garbage-collected, but since garbage collection is not guaranteed to happen, such
objects also provide an explicit way to release the external resource, usually a close() method. Programs are strongly
recommended to explicitly close such objects. The 〈try…finally〉 statement provides a convenient way to do this.
어떤객체들은다른객체에대한참조를포함하고있다. 이런것들을컨테이너 (container)라고부른다. 튜플,
리스트,딕셔너리등이컨테이너의예다. 이참조들은컨테이너의값의일부다. 대부분은,우리가컨테이너의
값을논할때는,들어있는객체들의아이덴티티보다는값을따진다. 하지만,컨테이너의가변성에대해논할
때는직접가진객체들의아이덴티티만을따진다. 그래서, (튜플같은)불변컨테이너가가변객체로의참조를
하고있다면,그가변객체가변경되면컨테이너의값도변경된다.

형은거의모든측면에서객체가동작하는방법에영향을준다. 객체의아이엔티디가갖는중요성조차도어떤
면에서는영향을받는다: 불변형의경우, 새값을만드는연산은실제로는이미존재하는객체중에서같은
형과값을갖는것을돌려줄수있다. 반면에가변객체에서는이런것이허용되지않는다. 예를들어, a = 1;
b = 1후에, a와 b는값 1을갖는같은객체일수도있고, 아닐수도있다. 하지만 c = []; d = []후에,
c와 d는두개의서로다르고, 독립적이고, 새로만들어진빈리스트임이보장된다. (c = d = []는객은
객체를 c와 d에대입한다.)

3.2 표준형계층

Below is a list of the types that are built into Python. Extension modules (written in C, Java, or other languages, depending
on the implementation) can define additional types. Future versions of Python may add types to the type hierarchy (e.g.,
rational numbers, efficiently stored arrays of integers, etc.).
아래에 나오는 몇몇 형에 대한 설명은 〈특수 어트리뷰트 (special attribute)〉 를 나열하는 문단을 포함한다.
이것들은구현에접근할방법을제공하는데, 일반적인사용을위한것이아니다. 정의는앞으로변경될수
있다.

None 이형은하나의값만을갖는다. 이값을갖는하나의객체가존재한다. 이객체에는내장된이름 None
을통해접근한다. 여러가지상황에서값의부재를알리는데사용된다. 예를들어,명시적으로뭔가를
돌려주지않는함수의반환값이다. 논리값은거짓이다.

NotImplemented This type has a single value. There is a single object with this value. This object is accessed through the
built-in name NotImplemented. Numeric methods and rich comparison methods may return this value if they
do not implement the operation for the operands provided. (The interpreter will then try the reflected operation, or
some other fallback, depending on the operator.) Its truth value is true.

Ellipsis This type has a single value. There is a single object with this value. This object is accessed through the built-in
name Ellipsis. It is used to indicate the presence of the ... syntax in a slice. Its truth value is true.

numbers.Number 이것들은숫자리터럴에의해만들어지고,산순연산과내장산술함수들이결과로돌려준
다. 숫자객체는불변이다;한번값이만들어지면절대변하지않는다. 파이썬의숫자는당연히수학적인
숫자들과밀접하게관련되어있다,하지만컴퓨터의숫자표현상의제약을받고있다.

파이썬은정수,실수,복소수를구분한다:

numbers.Integral 이것들은수학적인정수집합 (양과음)에속하는요소들을나타낸다.
There are three types of integers:
Plain integers These represent numbers in the range -2147483648 through 2147483647. (The range may

be larger on machines with a larger natural word size, but not smaller.) When the result of an operation
would fall outside this range, the result is normally returned as a long integer (in some cases, the exception
OverflowError is raised instead). For the purpose of shift andmask operations, integers are assumed
to have a binary, 2’s complement notation using 32 or more bits, and hiding no bits from the user (i.e.,
all 4294967296 different bit patterns correspond to different values).

16 Chapter 3. 데이터모델

The Python Language Reference,출시버전 2.7.18

Long integers 이것은 (가상) 메모리가허락하는한, 제약없는범위의숫자를표현한다. 시프트
(shift)와마스크 (mask)연산이목적일때는이진표현이가정되고,음수는일종의 2의보수 (2’s
complement)로표현되는데,부호비트가왼쪽으로무한히확장된것과같은효과를준다.

Booleans These represent the truth values False and True. The two objects representing the values False
and True are the only Boolean objects. The Boolean type is a subtype of plain integers, and Boolean
values behave like the values 0 and 1, respectively, in almost all contexts, the exception being that when
converted to a string, the strings "False" or "True" are returned, respectively.

The rules for integer representation are intended to give the most meaningful interpretation of shift and mask
operations involving negative integers and the least surprises when switching between the plain and long
integer domains. Any operation, if it yields a result in the plain integer domain, will yield the same result in
the long integer domain or when using mixed operands. The switch between domains is transparent to the
programmer.

numbers.Real (float) 이것들은기계수준의배정도 (double precision) 부동소수점수를나타낸다.
허락되는값의범위와오버플로의처리에관해서는하부기계의설계 (와 C나자바구현)에따르는
수밖에없다. 파이썬은단정도 (single precision)부동소수점수를지원하지않는다; 이것들을사용
하는이유가되는프로세서와메모리의절감은파이썬에서객체를사용하는데들어가는비용과
상쇄되어미미해진다. 그때문에두가지종류의부동소수점수로언어를복잡하게만들만한가치가
없다.

numbers.Complex 이것들은기계수준배정도부동소수점수의쌍으로복소수를나타낸다. 부동
소수점수와한계와문제점을공유한다. 복소수 z의실수부와허수부는, 읽기전용어트리뷰트
z.real와 z.imag로꺼낼수있다.

시퀀스들 음이아닌정수로인덱싱 (indexing)될수있는유한한길이의순서있는집합을나타낸다. 내장함수
len()은시퀀스가가진항목들의개수를돌려준다. 시퀀스의길이가 n일때,인덱스 (index)집합은숫자
0, 1,…, n-1을포함한다. 시퀀스 a의항목 i는 a[i]로선택된다.

시퀀스는슬라이싱도지원한다: a[i:j]는 i <= k < j를만족하는모든항목 k를선택한다. 표현식에서
사용될때,슬라이스는같은형의시퀀스다. 인덱스집합은 0에서시작되도록다시번호매겨진다.
어떤시퀀스는세번째《스텝 (step)》파라미터를사용하는《확장슬라이싱 (extended slicing)》도지원한
다: a[i:j:k]는 x = i + n*k, n >= 0, i <= x < j를만족하는모든항목 x를선택한다.

시퀀스는불변성에따라구분된다

불변시퀀스 불변시퀀스형의객체는일단만들어진후에는변경될수없다. (만약다른객체로의참조를
포함하면, 그객체는가변일수있고, 변경될수있다; 하지만, 불변객체로부터참조되는객체의
집합자체는변경될수없다.)
다음과같은형들은불변시퀀스다:

문자열 (Strings) The items of a string are characters. There is no separate character type; a character is
represented by a string of one item. Characters represent (at least) 8-bit bytes. The built-in functions
chr() and ord() convert between characters and nonnegative integers representing the byte values.
Bytes with the values 0–127 usually represent the corresponding ASCII values, but the interpretation of
values is up to the program. The string data type is also used to represent arrays of bytes, e.g., to hold
data read from a file.
(On systems whose native character set is not ASCII, strings may use EBCDIC in their internal represen-
tation, provided the functions chr() and ord() implement a mapping between ASCII and EBCDIC,
and string comparison preserves the ASCII order. Or perhaps someone can propose a better rule?)

Unicode The items of a Unicode object are Unicode code units. A Unicode code unit is represented by a
Unicode object of one item and can hold either a 16-bit or 32-bit value representing a Unicode ordinal
(the maximum value for the ordinal is given in sys.maxunicode, and depends on how Python is
configured at compile time). Surrogate pairs may be present in the Unicode object, and will be reported
as two separate items. The built-in functions unichr() and ord() convert between code units and

3.2. 표준형계층 17

The Python Language Reference,출시버전 2.7.18

nonnegative integers representing the Unicode ordinals as defined in the Unicode Standard 3.0. Conver-
sion from and to other encodings are possible through the Unicode method encode() and the built-in
function unicode().

튜플 (Tuples) 튜플의항목은임의의파이썬객체다. 두개이상의항목으로구성되는튜플은콤마로
분리된표현식의목록으로만들수있다. 하나의항목으로구성된튜플 (싱글턴,singleton)은
표현식에콤마를붙여서만들수있다 (괄호로표현식을묶을수있으므로, 표현식만으로는
튜플을만들지않는다). 빈튜플은한쌍의빈괄호로만들수있다.

가변시퀀스 가변시퀀스는만들어진후에변경될수있다. 서브스크립션 (subscription)과슬라이싱은
대입문과 del (삭제)문의대상으로사용될수있다.
현재두개의내장가변시퀀스형이있다:

리스트 (Lists) 리스트의항목은임의의파이썬객체다. 리스트는콤마로분리된표현식을꺾쇠괄호
안에넣어서만들수있다. (길이 0이나 1의리스트를만드는데별도의규칙이필요없다.)

바이트배열 (Byte Arrays) A bytearray object is a mutable array. They are created by the built-in
bytearray() constructor. Aside from being mutable (and hence unhashable), byte arrays otherwise
provide the same interface and functionality as immutable bytes objects.

The extension module array provides an additional example of a mutable sequence type.
집합형들 (Set types) 이것들은 중복 없는 불변 객체들의 순서 없고 유한한 집합을 나타낸다. 인덱싱할 수

없다. 하지만이터레이트할수있고, 내장함수 len()은집합안에있는항목들의개수를돌려준다.
집합의일반적인용도는빠른멤버십검사 (fast membership testing),시퀀스에서중복된항목제거,교집합
(intersection), 합집합 (union), 차집합 (difference), 대칭차집합 (symmetric difference)과같은집합연산을
계산하는것이다.

집합의원소들에는딕셔너리키와같은불변성규칙이적용된다. 숫자형의경우는숫자비교에관한일반
원칙이적용된다는점에주의해야한다: 만약두숫자가같다고비교되면 (예를들어, 1``과 ``1.0),
그중하나만집합에들어갈수있다.

현재두개의내장집합형이있다:

집합 (Sets) 이것들은가변집합을나타낸다. 내장set()생성자로만들수있고, add()같은메서드들을
사용해서나중에수정할수있다.

불변집합 (Frozen sets) 이것들은불변집합을나타낸다. 내장 frozenset()생성자로만들수있다.
불변집합 (frozenset)은불변이고해시가능하므로,다른집합의원소나,딕셔너리의키로사용될수
있다.

매핑 (Mappings) 이것들은임의의인덱스집합으로인덱싱되는객체들의유한한집합을나타낸다. 인덱스
표기법 (subscript notation) a[k]는매핑 a에서 k로인덱스되는항목을선택한다;이것은표현식에사용
될수도있고, 대입이나 del문장의대상이될수도있다. 내장함수 len()은매핑에포함된항목들의
개수를돌려준다.

현재한개의내장매핑형이있다:

딕셔너리 (Dictionaries) 이것들은거의임의의인덱스집합으로인덱싱되는객체들의유한한집합을
나타낸다. 키로사용할수없는것들은리스트, 딕셔너리나그외의가변형중에서아이덴티티가
아니라값으로비교되는것들뿐이다. 딕셔너리의효율적인구현이,키의해시값이도중에변경되지
않고계속같은값으로유지되도록요구하고있기때문이다. 키로사용되는숫자형의경우는숫자
비교에관한일반원칙이적용된다: 만약두숫자가같다고비교되면 (예를들어, 1``과 ``1.0),둘
다같은딕셔너리항목을인덱싱하는데사용될수있다.

딕셔너리는가변이다; {...}표기법으로만들수있다 (딕셔너리디스플레이섹션을참고하라).
The extension modules dbm, gdbm, and bsddb provide additional examples of mapping types.

콜러블 (Callable types) 이것들은함수호출연산 (호출섹션참고)이적용될수있는형들이다:

18 Chapter 3. 데이터모델

The Python Language Reference,출시버전 2.7.18

사용자정의함수 사용자정의함수객체는함수정의를통해만들어진다 (함수정의섹션참고). 함수의
형식파라미터 (formal parameter) 목록과같은개수의항목을포함하는인자 (argument) 목록으로
호출되어야한다.

특수어트리뷰트들 (Special attributes):

어트리뷰트 의미
__doc__ func_doc The function’s documentation string, or None

if unavailable.
쓰기가능

__name__ func_name 함수의이름 쓰기가능
__module__ 함수가정의된모듈의이름또는 (없는경우)

None
쓰기가능

__defaults__ func_defaults A tuple containing default argument values for
those arguments that have defaults, or None if
no arguments have a default value.

쓰기가능

__code__ func_code 컴파일된함수의바디 (body)를나타내는
코드객체

쓰기가능

__globals__ func_globals 함수의전역변수들을가진딕셔너리에대한
참조—함수가정의된모듈의전역이름
공간 (namespace)

읽기전용

__dict__ func_dict 임의의함수어트리뷰트를지원하는이름
공간.

쓰기가능

__closure__ func_closure None또는함수의자유변수 (free variable)
들에대한연결을가진셀 (cell)들의튜플.

읽기전용

《쓰기가능》하다고표시된대부분의어트리뷰트들은값이대입될때형을검사한다.

버전 2.4에서변경: func_name is now writable.
버전 2.6에서변경: The double-underscore attributes __closure__, __code__, __defaults__,
and __globals__ were introduced as aliases for the corresponding func_* attributes for forwards com-
patibility with Python 3.
함수객체는임의의어트리뷰트를읽고쓸수있도록지원하는데, 예를들어함수에메타데이터
(metadata)를 붙이는데 사용될 수 있다. 어트리뷰트를 읽거나 쓸 때는 일반적인 점 표현법 (dot-
notation)이사용된다. 현재구현은오직사용자정의함수만함수어트리뷰트를지원함에주의해야
한다. 내장함수의함수어트리뷰트는미래에지원될수있다.

함수정의에관한추가적인정보를코드객체로부터얻을수있다. 아래에나오는내부형의기술을
참고하라.

User-defined methods Auser-definedmethod object combines a class, a class instance (orNone) and any callable
object (normally a user-defined function).
Special read-only attributes: im_self is the class instance object, im_func is the function object;
im_class is the class of im_self for bound methods or the class that asked for the method for un-
bound methods; __doc__ is the method’s documentation (same as im_func.__doc__); __name__ is
the method name (same as im_func.__name__); __module__ is the name of the module the method
was defined in, or None if unavailable.
버전 2.2에서변경: im_self used to refer to the class that defined the method.
버전 2.6에서변경: For Python 3 forward-compatibility, im_func is also available as __func__, and
im_self as __self__.
메서드는기반함수의모든함수어트리뷰트들을읽을수있도록지원한다 (하지만쓰기는지원하지
않는다).

3.2. 표준형계층 19

The Python Language Reference,출시버전 2.7.18

User-defined method objects may be created when getting an attribute of a class (perhaps via an instance of
that class), if that attribute is a user-defined function object, an unbound user-defined method object, or a
class method object. When the attribute is a user-defined method object, a new method object is only created
if the class from which it is being retrieved is the same as, or a derived class of, the class stored in the original
method object; otherwise, the original method object is used as it is.
When a user-defined method object is created by retrieving a user-defined function object from a class, its
im_self attribute is None and the method object is said to be unbound. When one is created by retrieving
a user-defined function object from a class via one of its instances, its im_self attribute is the instance, and
the method object is said to be bound. In either case, the new method’s im_class attribute is the class
from which the retrieval takes place, and its im_func attribute is the original function object.
When a user-defined method object is created by retrieving another method object from a class or instance,
the behaviour is the same as for a function object, except that the im_func attribute of the new instance is
not the original method object but its im_func attribute.
When a user-defined method object is created by retrieving a class method object from a class or instance, its
im_self attribute is the class itself, and its im_func attribute is the function object underlying the class
method.
When an unbound user-defined method object is called, the underlying function (im_func) is called, with
the restriction that the first argument must be an instance of the proper class (im_class) or of a derived
class thereof.
When a bound user-defined method object is called, the underlying function (im_func) is called, inserting
the class instance (im_self) in front of the argument list. For instance, when C is a class which contains
a definition for a function f(), and x is an instance of C, calling x.f(1) is equivalent to calling C.f(x,
1).
When a user-defined method object is derived from a class method object, the 《class instance》 stored in
im_self will actually be the class itself, so that calling either x.f(1) or C.f(1) is equivalent to calling
f(C,1) where f is the underlying function.
Note that the transformation from function object to (unbound or bound) method object happens each time the
attribute is retrieved from the class or instance. In some cases, a fruitful optimization is to assign the attribute
to a local variable and call that local variable. Also notice that this transformation only happens for user-
defined functions; other callable objects (and all non-callable objects) are retrieved without transformation. It
is also important to note that user-defined functions which are attributes of a class instance are not converted
to bound methods; this only happens when the function is an attribute of the class.

제너레이터함수 (Generator functions) A function or method which uses the yield statement (see section
yield문) is called a generator function. Such a function, when called, always returns an iterator object which
can be used to execute the body of the function: calling the iterator’s next()method will cause the function
to execute until it provides a value using the yield statement. When the function executes a return
statement or falls off the end, a StopIteration exception is raised and the iterator will have reached the
end of the set of values to be returned.

내장함수 (Built-in functions) 내장함수객체는 C함수를둘러싸고있다 (wrapper). 내장함수의예로는
len()과 math.sin() (math는표준내장모듈이다)가있다. 인자의개수와형은 C함수에의해
결정된다. 특수읽기전용어트리뷰트들: __doc__은함수의설명문자열또는없는경우 None
이다; __name__은함수의이름이다; __self__는 None으로설정된다 (하지만다음항목을
보라); __module__은함수가정의된모듈의이름이거나없는경우 None이다.

내장메서드 (Built-in methods) 이것은사실내장함수의다른모습이다. 이번에는묵시적인추가의인
자로 C함수에전달되는객체를갖고있다. 내장메서드의예로는 alist.append()가있는데,
alist는리스트객체다. 이경우에,특수읽기전용어트리뷰트 __self__는 alist로표현된객체로
설정된다.

Class Types Class types, or 《new-style classes,》 are callable. These objects normally act as factories for new

20 Chapter 3. 데이터모델

The Python Language Reference,출시버전 2.7.18

instances of themselves, but variations are possible for class types that override __new__(). The arguments
of the call are passed to __new__() and, in the typical case, to __init__() to initialize the new instance.

Classic Classes Class objects are described below. When a class object is called, a new class instance (also de-
scribed below) is created and returned. This implies a call to the class’s __init__()method if it has one.
Any arguments are passed on to the __init__() method. If there is no __init__() method, the class
must be called without arguments.

클래스인스턴스 (Class instances) Class instances are described below. Class instances are callable only when
the class has a __call__()method; x(arguments) is a shorthand for x.__call__(arguments).

모듈 (Modules) Modules are imported by the import statement (see section임포트 (import)문). A module object
has a namespace implemented by a dictionary object (this is the dictionary referenced by the func_globals attribute
of functions defined in the module). Attribute references are translated to lookups in this dictionary, e.g., m.x
is equivalent to m.__dict__["x"]. A module object does not contain the code object used to initialize the
module (since it isn’t needed once the initialization is done).
어트리뷰트대입은모듈의이름공간딕셔너리를갱신한다. 예를들어, m.x = 1은 m.__dict__["x"]
= 1과같다.

특수읽기전용어트리뷰트들: __dict__는딕셔너리로표현되는모듈의이름공간이다.

CPython이모듈딕셔너리를비우는방법때문에, 딕셔너리에대한참조가남아있더라도, 모듈이스코
프를벗어나면모듈딕셔너리는비워진다. 이것을피하려면, 딕셔너리를복사하거나딕셔너리를직접
이용하는동안은모듈을잡아두어야한다.

Predefined (writable) attributes: __name__ is the module’s name; __doc__ is the module’s documentation
string, or None if unavailable; __file__ is the pathname of the file from which the module was loaded, if it
was loaded from a file. The __file__ attribute is not present for C modules that are statically linked into the
interpreter; for extension modules loaded dynamically from a shared library, it is the pathname of the shared library
file.

클래스 (Classes) Both class types (new-style classes) and class objects (old-style/classic classes) are typically created by
class definitions (see section클래스정의). A class has a namespace implemented by a dictionary object. Class
attribute references are translated to lookups in this dictionary, e.g., C.x is translated to C.__dict__["x"]
(although for new-style classes in particular there are a number of hooks which allow for other means of locating
attributes). When the attribute name is not found there, the attribute search continues in the base classes. For old-
style classes, the search is depth-first, left-to-right in the order of occurrence in the base class list. New-style classes
use the more complex C3 method resolution order which behaves correctly even in the presence of 〈diamond〉
inheritance structures where there are multiple inheritance paths leading back to a common ancestor. Additional
details on the C3 MRO used by new-style classes can be found in the documentation accompanying the 2.3 release
at https://www.python.org/download/releases/2.3/mro/.
When a class attribute reference (for class C, say) would yield a user-defined function object or an unbound user-
defined method object whose associated class is either C or one of its base classes, it is transformed into an unbound
user-defined method object whose im_class attribute is C. When it would yield a class method object, it is
transformed into a bound user-defined method object whose im_self attribute is C. When it would yield a static
method object, it is transformed into the object wrapped by the static method object. See section 디스크립터
구현하기 for another way in which attributes retrieved from a class may differ from those actually contained in its
__dict__ (note that only new-style classes support descriptors).
클래스어트리뷰트대입은클래스의딕셔너리를갱신할뿐, 어떤 경우도부모클래스의딕셔너리를
건드리지는않는다.

클래스객체는클래스인스턴스를돌려주도록 (아래를보라)호출될수있다 (위를보라).
Special attributes: __name__ is the class name; __module__ is the module name in which the class was de-
fined; __dict__ is the dictionary containing the class’s namespace; __bases__ is a tuple (possibly empty or a
singleton) containing the base classes, in the order of their occurrence in the base class list; __doc__ is the class’
s documentation string, or None if undefined.

3.2. 표준형계층 21

https://www.python.org/download/releases/2.3/mro/

The Python Language Reference,출시버전 2.7.18

클래스인스턴스 (Class instances) A class instance is created by calling a class object (see above). A class instance has
a namespace implemented as a dictionary which is the first place in which attribute references are searched. When
an attribute is not found there, and the instance’s class has an attribute by that name, the search continues with
the class attributes. If a class attribute is found that is a user-defined function object or an unbound user-defined
method object whose associated class is the class (call it C) of the instance for which the attribute reference was
initiated or one of its bases, it is transformed into a bound user-defined method object whose im_class attribute
is C and whose im_self attribute is the instance. Static method and class method objects are also transformed,
as if they had been retrieved from class C; see above under 《Classes》. See section디스크립터구현하기 for
another way in which attributes of a class retrieved via its instances may differ from the objects actually stored in
the class’s __dict__. If no class attribute is found, and the object’s class has a __getattr__()method, that
is called to satisfy the lookup.
어트리뷰트대입과삭제는인스턴스의딕셔너리를갱신할뿐,결코클래스의딕셔너리를건드리지않는
다. 만약클래스가 __setattr__()이나 __delattr__()메서드를가지면,인스턴스의딕셔너리를
갱신하는대신에그메서드들을호출한다.

어떤특별한이름들의메서드들을가지면,클래스인스턴스는숫자,시퀀스, 매핑인척할수있다. 특수
메서드이름들섹션을보라.

특수어트리뷰트들: __dict__는어트리뷰트딕셔너리다; __class__는인스턴스의클래스다.

Files A file object represents an open file. File objects are created by the open() built-in function, and also by os.
popen(), os.fdopen(), and the makefile() method of socket objects (and perhaps by other functions
or methods provided by extension modules). The objects sys.stdin, sys.stdout and sys.stderr are
initialized to file objects corresponding to the interpreter’s standard input, output and error streams. See bltin-file-
objects for complete documentation of file objects.

내부형 (Internal types) 인터프리터가내부적으로사용하는몇몇형들은사용자에게노출된다. 인터프리터의
미래버전에서이들의정의는변경될수있지만,완전함을위해여기서언급한다.

코드객체 (Code objects) 코드객체는바이트로컴파일된 (byte-compiled)실행가능한파이썬코드를나타
내는데,그냥바이트코드라고도부른다. 코드객체와함수객체간에는차이가있다;함수객체는
함수의전역공간 (globals) (함수가정의된모듈)을명시적으로참조하고있지만,코드객체는어떤
문맥 (context)도갖고있지않다;또한기본인자값들이함수객체에저장되어있지만코드객체에는
들어있지않다 (실행시간에계산되는값들을나타내기때문이다). 함수객체와는달리,코드객체는
불변이고가변객체들에대한어떤참조도 (직접혹은간접적으로도)갖고있지않다.
특수읽기전용어트리뷰트들: co_name은함수의이름이다; co_argcount는위치인자들 (기
본값이있는인자들도포함된다)의개수다; co_nlocals는함수가사용하는지역변수들 (인자
들을포함한다)의개수다; co_varnames는지역변수들의이름을담고있는튜플이다 (인자들의
이름이먼저나온다); co_cellvars는중첩된함수들이참조하는지역변수들의이름을담고있는
튜플이다; co_freevars는자유변수 (free variables)들의이름을담고있는튜플이다; co_code
는바이트코드명령시퀀스를나타내는문자열이다; co_consts는바이트코드가사용하는리
터럴을포함하는튜플이다; co_names는바이트코드가사용하는이름들을담고있는튜플이다;
co_filename은컴파일된코드를제공한파일의이름이다; co_firstlineno는함수의첫번째
줄번호다; co_lnotab은바이트코드에서의위치를줄번호로매핑하는법을문자열로인코딩한
값이다 (자세한내용은인터프리터의소스코드를참고하라); co_stacksize는필요한스택의
크기다 (지역변수를포함한다); co_flags는인터프리터의여러플래그(flag)들을정수로인코딩한
값이다.

다음과같은값들이 co_flags를위해정의되어있다: 함수가가변개수의위치인자를받아들이
기위해사용되는 *arguments문법을사용하면비트 0x04가 1이된다; 임의의키워드인자를
받아들이기위해사용하는 **keywords문법을사용하면비트 0x08이 1이된다; 비트 0x20은
함수가제너레이터일때설정된다.

퓨처기능선언 (from __future__ import division) 또한코드객체가특정기능이활성
화된상태에서컴파일되었는지를나타내기위해 co_flags의비트들을사용한다: 함수가퓨처
division이활성화된상태에서컴파일되었으면비트 0x2000이설정된다; 비트 0x10과 0x1000

22 Chapter 3. 데이터모델

The Python Language Reference,출시버전 2.7.18

는예전버전의파이썬에서사용되었다.

co_flags의다른비트들은내부사용을위해예약되어있다.

만약코드객체가함수를나타낸다면, co_consts의첫번째항목은설명문자열이거나정의되지
않으면 None이다.

프레임객체 (Frame objects) 프레임객체는실행프레임 (execution frame)을나타낸다. 트레이스백객체
에등장할수있다 (아래를보라).
Special read-only attributes: f_back is to the previous stack frame (towards the caller), or None if this is the
bottom stack frame; f_code is the code object being executed in this frame; f_locals is the dictionary
used to look up local variables; f_globals is used for global variables; f_builtins is used for built-
in (intrinsic) names; f_restricted is a flag indicating whether the function is executing in restricted
execution mode; f_lasti gives the precise instruction (this is an index into the bytecode string of the code
object).
Special writable attributes: f_trace, if not None, is a function called at the start of each source code line
(this is used by the debugger); f_exc_type, f_exc_value, f_exc_traceback represent the last
exception raised in the parent frame provided another exception was ever raised in the current frame (in all
other cases they are None); f_lineno is the current line number of the frame—writing to this from within
a trace function jumps to the given line (only for the bottom-most frame). A debugger can implement a Jump
command (aka Set Next Statement) by writing to f_lineno.

트레이스백객체 (Traceback objects) Traceback objects represent a stack trace of an exception. A traceback
object is created when an exception occurs. When the search for an exception handler unwinds the execution
stack, at each unwound level a traceback object is inserted in front of the current traceback. When an exception
handler is entered, the stack trace is made available to the program. (See section try문.) It is accessible as
sys.exc_traceback, and also as the third item of the tuple returned by sys.exc_info(). The
latter is the preferred interface, since it works correctly when the program is using multiple threads. When
the program contains no suitable handler, the stack trace is written (nicely formatted) to the standard error
stream; if the interpreter is interactive, it is also made available to the user as sys.last_traceback.
특수읽기전용어트리뷰트들: tb_next는스택트레이스의다음단계 (예외가발생한프레임
방향으로)이거나다음단계가없으면 None이다. tb_frame은현단계에서의실행프레임이다;
tb_lineno는예외가발생한줄의번호를준다; tb_lasti정확한바이트코드명령을가리킨다.
만약예외가 except절이나 finally절이없는 try문에서발생하면,줄번호와트레이스백의마지막
명령 (last instruction)은프레임객체의줄번호와다를수있다.

슬라이스객체 (Slice objects) Slice objects are used to represent slices when extended slice syntax is used. This is
a slice using two colons, or multiple slices or ellipses separated by commas, e.g., a[i:j:step], a[i:j,
k:l], or a[..., i:j]. They are also created by the built-in slice() function.
특수읽기전용어트리뷰트들: start는하한 (lower bound)이다; stop은상한 (upper bound)이다;
step은스텝값이다;각값은생략될경우 None이다. 이어트리뷰트들은임의의형이될수있다.

슬라이스객체는하나의메서드를지원한다.

slice.indices(self, length)
This method takes a single integer argument length and computes information about the extended slice
that the slice object would describe if applied to a sequence of length items. It returns a tuple of three
integers; respectively these are the start and stop indices and the step or stride length of the slice. Missing
or out-of-bounds indices are handled in a manner consistent with regular slices.
버전 2.3에추가.

스태틱메서드객체 (Static method objects) 스태틱메서드객체는위에서설명한함수객체를메서드
객체로변환하는과정을방지하는방법을제공한다. 스태틱메서드객체는다른임의의객체,보통
사용자정의메서드를둘러싼다. 스태틱메서드가클래스나클래스인스턴스로부터읽힐때객체가
실제로돌려주는것은둘러싸여있던객체인데,다른어떤변환도적용되지않은상태다. 둘러싸는

3.2. 표준형계층 23

The Python Language Reference,출시버전 2.7.18

객체는 그렇더라도, 스태틱 메서드 객체 자체는 콜러블이 아니다. 스태틱 메서드 객체는 내장
staticmethod()생성자로만든다.

클래스메서드객체 (Class method objects) 스태틱메서드객체처럼, 클래스메서드객체역시다른객
체를둘러싸는데, 클래스와클래스인스턴스로부터그객체를꺼내는방식에변화를준다. 그런
조회에서클래스메서드객체가동작하는방식에대해서는위《사용자정의메서드 (User-defined
methods)》에서설명했다. 클래스메서드객체는내장 classmethod()생성자로만든다.

3.3 New-style and classic classes

Classes and instances come in two flavors: old-style (or classic) and new-style.
Up to Python 2.1 the concept of class was unrelated to the concept of type, and old-style classes were the only flavor
available. For an old-style class, the statement x.__class__ provides the class of x, but type(x) is always <type
'instance'>. This reflects the fact that all old-style instances, independent of their class, are implemented with a
single built-in type, called instance.
New-style classes were introduced in Python 2.2 to unify the concepts of class and type. A new-style class is simply
a user-defined type, no more, no less. If x is an instance of a new-style class, then type(x) is typically the same as
x.__class__ (although this is not guaranteed – a new-style class instance is permitted to override the value returned
for x.__class__).
The major motivation for introducing new-style classes is to provide a unified object model with a full meta-model. It also
has a number of practical benefits, like the ability to subclass most built-in types, or the introduction of 《descriptors》,
which enable computed properties.
For compatibility reasons, classes are still old-style by default. New-style classes are created by specifying another new-
style class (i.e. a type) as a parent class, or the 《top-level type》 object if no other parent is needed. The behaviour
of new-style classes differs from that of old-style classes in a number of important details in addition to what type()
returns. Some of these changes are fundamental to the new object model, like the way special methods are invoked.
Others are 《fixes》 that could not be implemented before for compatibility concerns, like the method resolution order in
case of multiple inheritance.
While this manual aims to provide comprehensive coverage of Python’s class mechanics, it may still be lacking in some
areas when it comes to its coverage of new-style classes. Please see https://www.python.org/doc/newstyle/ for sources of
additional information.
Old-style classes are removed in Python 3, leaving only new-style classes.

3.4 특수메서드이름들

A class can implement certain operations that are invoked by special syntax (such as arithmetic operations or subscript-
ing and slicing) by defining methods with special names. This is Python’s approach to operator overloading, allowing
classes to define their own behavior with respect to language operators. For instance, if a class defines a method named
__getitem__(), and x is an instance of this class, then x[i] is roughly equivalent to x.__getitem__(i) for
old-style classes and type(x).__getitem__(x, i) for new-style classes. Except where mentioned, attempts
to execute an operation raise an exception when no appropriate method is defined (typically AttributeError or
TypeError).
내장형을흉내내는클래스를구현할때, 모방은모형화하는객체에말이되는수준까지만구현하는것이
중요하다. 예를들어,어떤시퀀스는개별항목들을꺼내는것만으로도잘동작할수있다. 하지만슬라이스를
꺼내는것은말이안될수있다. (이런한가지예는W3C의Document Object Model의NodeList인터페이스다.)

24 Chapter 3. 데이터모델

https://www.python.org/doc/newstyle/

The Python Language Reference,출시버전 2.7.18

3.4.1 기본적인커스터마이제이션

object.__new__(cls[, ...])
클래스 cls의새인스턴스를만들기위해호출된다. __new__()는스태틱메서드다 (그렇게선언하지
않아도되는특별한경우다)인데,첫번째인자로만들려고하는인스턴스의클래스가전달된다. 나머지
인자들은객체생성자표현 (클래스호출)에전달된것들이다. __new__()의반환값은새객체인스턴
스이어야한다 (보통 cls의인스턴스).
Typical implementations create a new instance of the class by invoking the superclass’s __new__()method using
super(currentclass, cls).__new__(cls[, ...]) with appropriate arguments and then modify-
ing the newly-created instance as necessary before returning it.
만약 __new__() 가 cls 의 인스턴스를 돌려준다면, 새 인스턴스의 __init__() 메서드가
__init__(self[, ...])처럼호출되는데, self 는새인스턴스이고, 나머지인자들은 __new__()
로전달된것들과같다.

만약 __new__()가 cls의인스턴스를돌려주지않으면, 새인스턴스의 __init__()는호출되지않
는다.

__new__()는주로불변형 (int, str, tuple과같은)의서브클래스가인스턴스생성을커스터마이즈할수
있도록하는데사용된다. 또한, 사용자정의메타클래스에서클래스생성을커스터마이즈하기위해
자주사용된다.

object.__init__(self[, ...])
Called after the instance has been created (by __new__()), but before it is returned to the caller. The arguments
are those passed to the class constructor expression. If a base class has an __init__() method, the derived
class’s __init__()method, if any, must explicitly call it to ensure proper initialization of the base class part of
the instance; for example: BaseClass.__init__(self, [args...]).
Because __new__() and __init__() work together in constructing objects (__new__() to create it, and
__init__() to customise it), no non-None value may be returned by __init__(); doing so will cause a
TypeError to be raised at runtime.

object.__del__(self)
Called when the instance is about to be destroyed. This is also called a destructor. If a base class has a __del__()
method, the derived class’s __del__() method, if any, must explicitly call it to ensure proper deletion of the
base class part of the instance. Note that it is possible (though not recommended!) for the __del__() method
to postpone destruction of the instance by creating a new reference to it. It may then be called at a later time when
this new reference is deleted. It is not guaranteed that __del__() methods are called for objects that still exist
when the interpreter exits.

참고: del x doesn’t directly call x.__del__()— the former decrements the reference count for x by one,
and the latter is only called when x’s reference count reaches zero. Some common situations that may prevent
the reference count of an object from going to zero include: circular references between objects (e.g., a doubly-
linked list or a tree data structure with parent and child pointers); a reference to the object on the stack frame of a
function that caught an exception (the traceback stored in sys.exc_traceback keeps the stack frame alive); or
a reference to the object on the stack frame that raised an unhandled exception in interactive mode (the traceback
stored in sys.last_traceback keeps the stack frame alive). The first situation can only be remedied by
explicitly breaking the cycles; the latter two situations can be resolved by storing None in sys.exc_traceback
or sys.last_traceback. Circular references which are garbage are detected when the option cycle detector
is enabled (it’ s on by default), but can only be cleaned up if there are no Python-level __del__() methods
involved. Refer to the documentation for the gc module for more information about how __del__() methods
are handled by the cycle detector, particularly the description of the garbage value.

3.4. 특수메서드이름들 25

The Python Language Reference,출시버전 2.7.18

경고: Due to the precarious circumstances under which __del__() methods are invoked, exceptions that
occur during their execution are ignored, and a warning is printed to sys.stderr instead. Also, when
__del__() is invoked in response to a module being deleted (e.g., when execution of the program is done),
other globals referenced by the __del__()method may already have been deleted or in the process of being
torn down (e.g. the import machinery shutting down). For this reason, __del__() methods should do the
absolute minimum needed to maintain external invariants. Starting with version 1.5, Python guarantees that
globals whose name begins with a single underscore are deleted from their module before other globals are
deleted; if no other references to such globals exist, this may help in assuring that imported modules are still
available at the time when the __del__() method is called.

See also the -R command-line option.
object.__repr__(self)

Called by the repr() built-in function and by string conversions (reverse quotes) to compute the《official》 string
representation of an object. If at all possible, this should look like a valid Python expression that could be used to
recreate an object with the same value (given an appropriate environment). If this is not possible, a string of the
form <...some useful description...> should be returned. The return value must be a string object.
If a class defines __repr__() but not __str__(), then __repr__() is also used when an 《informal》
string representation of instances of that class is required.
이것은디버깅에사용되기때문에,표현이풍부한정보를담고모호하지않게하는것이중요하다.

object.__str__(self)
Called by the str() built-in function and by the print statement to compute the 《informal》 string represen-
tation of an object. This differs from __repr__() in that it does not have to be a valid Python expression: a
more convenient or concise representation may be used instead. The return value must be a string object.

object.__lt__(self, other)
object.__le__(self, other)
object.__eq__(self, other)
object.__ne__(self, other)
object.__gt__(self, other)
object.__ge__(self, other)

버전 2.1에추가.
These are the so-called 《rich comparison》 methods, and are called for comparison operators in preference to
__cmp__() below. The correspondence between operator symbols andmethod names is as follows: x<y calls x.
__lt__(y), x<=y calls x.__le__(y), x==y calls x.__eq__(y), x!=y and x<>y call x.__ne__(y),
x>y calls x.__gt__(y), and x>=y calls x.__ge__(y).
풍부한 비교 메서드는 주어진 한 쌍의 인자에게 해당 연산을 구현하지 않는 경우 단일자 (singleton)
NotImplemented를돌려줄수있다. 관례상, 성공적인비교면 False나 True를돌려준다. 하지만,
이메서드는어떤형의값이건돌려줄수있다, 그래서비교연산자가논리문맥 (Boolean context) (예를
들어 if문의조건)에서사용되면, 파이썬은결과의참거짓을파악하기위해값에대해 bool()을
호출한다.

There are no implied relationships among the comparison operators. The truth of x==y does not imply that x!=y
is false. Accordingly, when defining __eq__(), one should also define __ne__() so that the operators will
behave as expected. See the paragraph on __hash__() for some important notes on creating hashable objects
which support custom comparison operations and are usable as dictionary keys.
There are no swapped-argument versions of these methods (to be used when the left argument does not sup-
port the operation but the right argument does); rather, __lt__() and __gt__() are each other’s reflection,
__le__() and __ge__() are each other’s reflection, and __eq__() and __ne__() are their own reflection.
Arguments to rich comparison methods are never coerced.

26 Chapter 3. 데이터모델

The Python Language Reference,출시버전 2.7.18

To automatically generate ordering operations from a single root operation, see functools.
total_ordering().

object.__cmp__(self, other)
Called by comparison operations if rich comparison (see above) is not defined. Should return a negative integer
if self < other, zero if self == other, a positive integer if self > other. If no __cmp__(),
__eq__() or __ne__() operation is defined, class instances are compared by object identity (《address》). See
also the description of __hash__() for some important notes on creating hashable objects which support custom
comparison operations and are usable as dictionary keys. (Note: the restriction that exceptions are not propagated
by __cmp__() has been removed since Python 1.5.)

object.__rcmp__(self, other)
버전 2.1에서변경: No longer supported.

object.__hash__(self)
Called by built-in function hash() and for operations on members of hashed collections including set,
frozenset, and dict. __hash__() should return an integer. The only required property is that objects
which compare equal have the same hash value; it is advised to mix together the hash values of the components
of the object that also play a part in comparison of objects by packing them into a tuple and hashing the tuple.
Example:

def __hash__(self):
return hash((self.name, self.nick, self.color))

If a class does not define a __cmp__() or __eq__() method it should not define a __hash__() operation
either; if it defines __cmp__() or __eq__() but not __hash__(), its instances will not be usable in hashed
collections. If a class defines mutable objects and implements a __cmp__() or __eq__() method, it should
not implement __hash__(), since hashable collection implementations require that an object’s hash value is
immutable (if the object’s hash value changes, it will be in the wrong hash bucket).
User-defined classes have __cmp__() and __hash__() methods by default; with them, all objects compare
unequal (except with themselves) and x.__hash__() returns a result derived from id(x).
Classes which inherit a __hash__() method from a parent class but change the meaning of __cmp__() or
__eq__() such that the hash value returned is no longer appropriate (e.g. by switching to a value-based concept
of equality instead of the default identity based equality) can explicitly flag themselves as being unhashable by
setting __hash__ = None in the class definition. Doing so means that not only will instances of the class raise
an appropriate TypeError when a program attempts to retrieve their hash value, but they will also be correctly
identified as unhashable when checking isinstance(obj, collections.Hashable) (unlike classes
which define their own __hash__() to explicitly raise TypeError).
버전 2.5에서변경: __hash__() may now also return a long integer object; the 32-bit integer is then derived
from the hash of that object.
버전 2.6에서변경: __hash__may now be set to None to explicitly flag instances of a class as unhashable.

object.__nonzero__(self)
Called to implement truth value testing and the built-in operation bool(); should return False or True, or
their integer equivalents 0 or 1. When this method is not defined, __len__() is called, if it is defined, and the
object is considered true if its result is nonzero. If a class defines neither __len__() nor __nonzero__(), all
its instances are considered true.

object.__unicode__(self)
Called to implement unicode() built-in; should return a Unicode object. When this method is not defined,
string conversion is attempted, and the result of string conversion is converted to Unicode using the system default
encoding.

3.4. 특수메서드이름들 27

The Python Language Reference,출시버전 2.7.18

3.4.2 어트리뷰트액세스커스터마이제이션

클래스인스턴스의어트리뷰트참조 (읽기, 대입하기, x.name을삭제하기)의의미를변경하기위해다음과
같은메서드들이정의될수있다.

object.__getattr__(self, name)
Called when an attribute lookup has not found the attribute in the usual places (i.e. it is not an instance attribute
nor is it found in the class tree for self). name is the attribute name. This method should return the (computed)
attribute value or raise an AttributeError exception.
Note that if the attribute is found through the normal mechanism, __getattr__() is not called. (This is an
intentional asymmetry between __getattr__() and __setattr__().) This is done both for efficiency
reasons and because otherwise __getattr__() would have no way to access other attributes of the instance.
Note that at least for instance variables, you can fake total control by not inserting any values in the instance attribute
dictionary (but instead inserting them in another object). See the __getattribute__() method below for a
way to actually get total control in new-style classes.

object.__setattr__(self, name, value)
Called when an attribute assignment is attempted. This is called instead of the normal mechanism (i.e. store the
value in the instance dictionary). name is the attribute name, value is the value to be assigned to it.
If __setattr__() wants to assign to an instance attribute, it should not simply execute self.name =
value — this would cause a recursive call to itself. Instead, it should insert the value in the dictionary of
instance attributes, e.g., self.__dict__[name] = value. For new-style classes, rather than access-
ing the instance dictionary, it should call the base class method with the same name, for example, object.
__setattr__(self, name, value).

object.__delattr__(self, name)
__setattr__()과비슷하지만어트리뷰트를대입하는대신에삭제한다. 이것은 del obj.name이
객체에의미가있는경우에만구현되어야한다.

More attribute access for new-style classes

The following methods only apply to new-style classes.
object.__getattribute__(self, name)

클래스 인스턴스의 어트리뷰트 액세스를 구현하기 위해 조건 없이 호출된다. 만약 클래
스가 __getattr__() 도 함께 구현하면, __getattribute__() 가 명시적으로 호출하거나
AttributeError 를 일으키지 않는 이상 __getattr__ 는 호출되지 않는다. 이 메서드는 어트리뷰트
의 (계산된)값을돌려주거나 AttributeError예외를일으켜야한다. 이메서드에서무한재귀 (infinite
recursion)가발생하는것을막기위해, 구현은언제나필요한어트리뷰트에접근하기위해같은이름의
베이스클래스의메서드를호출해야한다. 예를들어, object.__getattribute__(self, name).

참고: This method may still be bypassed when looking up special methods as the result of implicit invocation via
language syntax or built-in functions. See Special method lookup for new-style classes.

28 Chapter 3. 데이터모델

The Python Language Reference,출시버전 2.7.18

디스크립터구현하기

다음에오는메서드들은메서드를가진클래스 (소위디스크립터 (descriptor)클래스)의인스턴스가소유자
(owner)클래스에등장할때만적용된다 (디스크립터는소유자클래스의딕셔너리나그부모클래스중하나의
딕셔너리에있어야한다). 아래의예에서, 《어트리뷰트》 는 이름이 소유자 클래스의 __dict__의키로
사용되고있는어트리뷰트를가리킨다.

object.__get__(self, instance, owner)
소유자클래스 (클래스어트리뷰트액세스)나그클래스의인스턴스 (인스턴스어트리뷰트액세스)의
어트리뷰트를취하려고할때호출된다. owner는항상소유자클래스다. 반면에 instance는어트리뷰트
참조가일어나고있는인스턴스이거나, 어트리뷰트가 owner를통해액세스되는경우 None이다. 이
메서드는 (계산된)어트리뷰트값을돌려주거나 AttributeError예외를일으켜야한다.

object.__set__(self, instance, value)
소유자클래스의인스턴스 instance의어트리뷰트를새값 value로설정할때호출된다.

object.__delete__(self, instance)
소유자클래스의인스턴스 instance의어트리뷰트를삭제할때호출된다.

디스크립터호출하기

일반적으로, 디스크립터는 《결합한동작 (binding behavior)》을 가진객체어트리뷰트다. 어트리뷰트액세
스가디스크립터프로토콜 (descriptor protocol)의메서드들에의해재정의된다: __get__(), __set__(),
__delete__(). 이메서드들중하나라도정의되어있으면,디스크립터라고부른다.

어트리뷰트액세스의기본동작은객체의딕셔너리에서어트리뷰트를읽고,쓰고,삭제하는것이다. 예를들어
a.x는 a.__dict__['x']에서시작해서 type(a).__dict__['x']를거쳐 type(a)의메타클래스를
제외한베이스클래스들을거쳐가는일련의조회로구성된다.

However, if the looked-up value is an object defining one of the descriptor methods, then Python may override the
default behavior and invoke the descriptor method instead. Where this occurs in the precedence chain depends on which
descriptor methods were defined and how they were called. Note that descriptors are only invoked for new style objects
or classes (ones that subclass object() or type()).
디스크립터호출의시작점은결합 (binding)이다, a.x. 어떻데인자들이조합되는지는 a에따라다르다:

직접호출 가장간단하면서도가장덜사용되는호출은사용자의코드가디스크립터메서드를직접호출할
때다: x.__get__(a)

인스턴스결합 If binding to a new-style object instance, a.x is transformed into the call: type(a).
__dict__['x'].__get__(a, type(a)).

클래스결합 If binding to a new-style class, A.x is transformed into the call: A.__dict__['x'].
__get__(None, A).

Super결합 super 의 인스턴스에 결합하면, 결합 super(B, obj).m() 은 obj.__class__.__mro__
를 검색해서 B 바로 다음에 나오는 베이스 클래스 A 를 찾은 후에 이렇게 디스크립터를 호출한다:
A.__dict__['m'].__get__(obj, obj.__class__).

인스턴스결합의경우, 디스크립터호출의우선순위는어떤디스크립터메서드가정의되어있는지에따라
다르다. 디스크립터는 __get__(), __set__(), __delete__()를어떤조합으로도정의할수있다. 만약
__get__()를정의하지않는다면,어트리뷰트액세스는,객체의인스턴스딕셔너리에값이있지않은이상
디스크립터객체자신을돌려준다. 만약디스크립터가 __set__()이나 __delete__()중어느하나나둘
다정의하면,데이터디스크립터 (data descriptor)다. 둘다정의하지않는다면비데이터디스크립터다 (non-data
descriptor). 보통,데이터디스크립터가 __get__()과 __set__()을모두정의하는반면,비데이터디스크
립터는 __get__()메서드만정의한다. __set__()과 __get__()이있는데이터디스크립터는이스턴스
딕셔너리에있는값에우선한다. 반면에비데이터디스크립터는인스턴스보다우선순위가낮다.

3.4. 특수메서드이름들 29

The Python Language Reference,출시버전 2.7.18

파이썬메서드 (staticmethod()와 classmethod()를포함해서)는비데이터디스크립터로구현된다.
이때문에,인스턴스는메서드를새로정의하거나덮어쓸수있다. 이것은개별인스턴스가같은클래스의다른
인스턴스들과는다른동작을얻을수있도록만든다.

property()함수는데이터디스크립터로구현된다. 이때문에, 인스턴스는프로퍼티 (property)의동작을
변경할수없다.

__slots__

By default, instances of both old and new-style classes have a dictionary for attribute storage. This wastes space for objects
having very few instance variables. The space consumption can become acute when creating large numbers of instances.
The default can be overridden by defining __slots__ in a new-style class definition. The __slots__ declaration takes a
sequence of instance variables and reserves just enough space in each instance to hold a value for each variable. Space is
saved because __dict__ is not created for each instance.
__slots__

This class variable can be assigned a string, iterable, or sequence of strings with variable names used by instances. If
defined in a new-style class, __slots__ reserves space for the declared variables and prevents the automatic creation
of __dict__ and __weakref__ for each instance.
버전 2.2에추가.

__slots__사용에관한노트

• When inheriting from a class without __slots__, the __dict__ attribute of that class will always be accessible, so a
__slots__ definition in the subclass is meaningless.

• __dict__변수가없으므로인스턴스는 __slots__정의에나열되지않은새변수를대입할수없다. 나열되지
않은변수명으로대입하려고하면 AttributeError를일으킨다. 만약동적으로새변수를대입하는
것이필요하다면, __slots__선언의문자열시퀀스에 '__dict__'를추가한다.

버전 2.3에서변경: Previously, adding '__dict__' to the __slots__ declaration would not enable the assign-
ment of new attributes not specifically listed in the sequence of instance variable names.

• 인스턴스마다 __weakref__변수가없으므로, __slots__를정의하는클래스는인스턴스에대한약한참조
(weak reference)를지원하지않는다. 만약약한참조지원이필요하다면, __slots__선언의문자열시퀀스에
'__weakref__'를추가한다.

버전 2.3에서변경: Previously, adding '__weakref__' to the __slots__ declaration would not enable support
for weak references.

• __slots__는각변수이름마다디스크립터를만드는방식으로클래스수준에서구현된다 (디스크립터
구현하기). 결과적으로, 클래스어트리뷰트는 __slots__로정의된인스턴스변수들을위한기본값을
제공할목적으로사용될수없다. 클래스어트리뷰트는디스크립터대입을무효로한다.

• The action of a __slots__ declaration is limited to the class where it is defined. As a result, subclasses will have a
__dict__ unless they also define __slots__ (which must only contain names of any additional slots).

• 클래스가베이스클래스의 __slots__에정의된이름과같은이름의변수를 __slots__에선언한다면,베이스
클래스가정의한변수는액세스할수없는상태가된다 (베이스클래스로부터디스크립터를직접조회
하는경우는예외다). 이것은프로그램을정의되지않은상태로보내게된다. 미래에는, 이를방지하기
위한검사가추가될것이다.

• Nonempty __slots__ does not work for classes derived from 《variable-length》 built-in types such as long, str
and tuple.

• __slots__에는문자열이외의이터러블을대입할수있다. 매핑도역시사용할수있다. 하지만, 미래에,
각키에대응하는값들의의미가부여될수있다.

30 Chapter 3. 데이터모델

The Python Language Reference,출시버전 2.7.18

• 두클래스가같은 __slots__을갖는경우만 __class__대입이동작한다.

버전 2.6에서변경: Previously, __class__ assignment raised an error if either new or old class had __slots__.

3.4.3 클래스생성커스터마이제이션

By default, new-style classes are constructed using type(). A class definition is read into a separate namespace and the
value of class name is bound to the result of type(name, bases, dict).
When the class definition is read, if __metaclass__ is defined then the callable assigned to it will be called instead of
type(). This allows classes or functions to be written which monitor or alter the class creation process:

• Modifying the class dictionary prior to the class being created.
• Returning an instance of another class – essentially performing the role of a factory function.

These steps will have to be performed in the metaclass’s __new__()method – type.__new__() can then be called
from this method to create a class with different properties. This example adds a new element to the class dictionary before
creating the class:

class metacls(type):
def __new__(mcs, name, bases, dict):

dict['foo'] = 'metacls was here'
return type.__new__(mcs, name, bases, dict)

You can of course also override other class methods (or add new methods); for example defining a custom __call__()
method in the metaclass allows custom behavior when the class is called, e.g. not always creating a new instance.
__metaclass__

This variable can be any callable accepting arguments for name, bases, and dict. Upon class creation, the
callable is used instead of the built-in type().
버전 2.2에추가.

The appropriate metaclass is determined by the following precedence rules:
• If dict['__metaclass__'] exists, it is used.
• Otherwise, if there is at least one base class, its metaclass is used (this looks for a __class__ attribute first and if
not found, uses its type).

• Otherwise, if a global variable named __metaclass__ exists, it is used.
• Otherwise, the old-style, classic metaclass (types.ClassType) is used.

The potential uses for metaclasses are boundless. Some ideas that have been explored including logging, inter-
face checking, automatic delegation, automatic property creation, proxies, frameworks, and automatic resource lock-
ing/synchronization.

3.4.4 인스턴스및서브클래스검사커스터마이제이션

버전 2.6에추가.
다음메서드들은 isinstance()와 issubclass()내장함수들의기본동작을재정의하는데사용된다.

특히, 메타 클래스 abc.ABCMeta는추상베이스클래스 (Abstract Base Class, ABC)를다른 ABC를포함한
임의의클래스나형 (내장형을포함한다)에《가상베이스클래스 (virtual base class)》로추가할수있게하려고
이메서드들을구현한다.

3.4. 특수메서드이름들 31

The Python Language Reference,출시버전 2.7.18

class.__instancecheck__(self, instance)
instance가 (직접적이거나간접적으로) class의인스턴스로취급될수있으면참을돌려준다. 만약정의
되면, isinstance(instance, class)를구현하기위해호출된다.

class.__subclasscheck__(self, subclass)
subclass가 (직접적이거나간접적으로) class 의서브클래스로취급될수있으면참을돌려준다. 만약
정의되면, issubclass(subclass, class)를구현하기위해호출된다.

이 메서드들은 클래스의 형 (메타 클래스)에서 조회된다는 것에 주의해야 한다. 실제 클래스에서 클래스
메서드로정의될수없다. 이것은인스턴스에대해호출되는특수메서드들의조회와일관성있다. 이경우
인스턴스는클래스자체다.

더보기:

PEP 3119 -추상베이스클래스의도입 __instancecheck__() 와 __subclasscheck__() 를 통해
isinstance() 와 issubclass() 의 동작을 커스터마이징하는 데 필요한 규약을 포함하는데, 이
기능의동기는언어에추상베이스클래스 (abc모듈을보라)를추가하고자하는데있다.

3.4.5 콜러블객체흉내내기

object.__call__(self[, args...])
인스턴스가함수처럼 《호출될》때호출된다; 이 메서드가정의되면, x(arg1, arg2, ...)는 x.
__call__(arg1, arg2, ...)의줄인표현이다.

3.4.6 컨테이너형흉내내기

The following methods can be defined to implement container objects. Containers usually are sequences (such as
lists or tuples) or mappings (like dictionaries), but can represent other containers as well. The first set of methods is
used either to emulate a sequence or to emulate a mapping; the difference is that for a sequence, the allowable keys
should be the integers k for which 0 <= k < N where N is the length of the sequence, or slice objects, which de-
fine a range of items. (For backwards compatibility, the method __getslice__() (see below) can also be de-
fined to handle simple, but not extended slices.) It is also recommended that mappings provide the methods keys(),
values(), items(), has_key(), get(), clear(), setdefault(), iterkeys(), itervalues(),
iteritems(), pop(), popitem(), copy(), and update() behaving similar to those for Python’s standard dic-
tionary objects. The UserDict module provides a DictMixin class to help create those methods from a base set of
__getitem__(), __setitem__(), __delitem__(), and keys(). Mutable sequences should provide meth-
ods append(), count(), index(), extend(), insert(), pop(), remove(), reverse() and sort(),
like Python standard list objects. Finally, sequence types should implement addition (meaning concatenation) and mul-
tiplication (meaning repetition) by defining the methods __add__(), __radd__(), __iadd__(), __mul__(),
__rmul__() and __imul__() described below; they should not define __coerce__() or other numerical opera-
tors. It is recommended that both mappings and sequences implement the __contains__()method to allow efficient
use of the in operator; for mappings, in should be equivalent of has_key(); for sequences, it should search through
the values. It is further recommended that both mappings and sequences implement the __iter__() method to al-
low efficient iteration through the container; for mappings, __iter__() should be the same as iterkeys(); for
sequences, it should iterate through the values.
object.__len__(self)

Called to implement the built-in function len(). Should return the length of the object, an integer >= 0. Also, an
object that doesn’t define a __nonzero__()method and whose __len__()method returns zero is considered
to be false in a Boolean context.
CPython implementation detail: In CPython, the length is required to be at most sys.maxsize. If the length
is larger than sys.maxsize some features (such as len()) may raise OverflowError. To prevent raising
OverflowError by truth value testing, an object must define a __nonzero__() method.

32 Chapter 3. 데이터모델

https://www.python.org/dev/peps/pep-3119

The Python Language Reference,출시버전 2.7.18

object.__getitem__(self, key)
self[key]의값을구하기위해호출된다. 시퀀스형의경우, 정수와슬라이스객체만키로허용된다.
음수인덱스 (만약클래스가시퀀스형을흉내내길원한다면)의특별한해석은 __getitem__()메서
드에달려있음에주의해야한다. 만약 key가적절하지않은형인경우, TypeError가발생할수있다;
만약시퀀스의인덱스범위를벗어나면 (음수에대한특별한해석후에), IndexError를일으켜야한다.
매핑형의경우, key가 (컨테이너에)없으면, KeyError를일으켜야한다.

참고: for루프는시퀀스의끝을올바로감지하기위해,잘못된인덱스에대해 IndexError가일어날
것으로기대하고있다.

object.__setitem__(self, key, value)
self[key]로의대입을구현하기위해호출된다. __getitem__()과같은주의가필요하다. 매핑의
경우에는,객체가키에대해값의변경이나새키의추가를허락할경우,시퀀스의경우는항목이교체될
수있을때만구현되어야한다. 잘못된 key값의경우는 __getitem__()에서와같은예외를일으켜야
한다.

object.__delitem__(self, key)
self[key]의삭제를구현하기위해호출된다. __getitem__()과같은주의가필요하다. 매핑의
경우에는,객체가키의삭제를허락할경우,시퀀스의경우는항목이시퀀스로부터제거될수있을때만
구현되어야한다. 잘못된 key값의경우는 __getitem__()에서와같은예외를일으켜야한다.

object.__missing__(self, key)
dict.__getitem__()이 dict서브클래스에서키가딕셔너리에없으면 self[key]를구현하기위해
호출한다.

object.__iter__(self)
This method is called when an iterator is required for a container. This method should return a new iterator object
that can iterate over all the objects in the container. For mappings, it should iterate over the keys of the container,
and should also be made available as the method iterkeys().
이터레이터객체역시이메서드를구현할필요가있다;자기자신을돌려줘야한다. 이터레이터객체에
대한추가의정보는 typeiter에있다.

object.__reversed__(self)
reversed()내장함수가역이터레이션 (reverse iteration)을구현하기위해 (있다면)호출한다. 컨테이
너에있는객체들을역순으로탐색하는새이터레이터객체를돌려줘야한다.

__reversed__()메서드가제공되지않으면, reversed()내장함수는시퀀스프로토콜 (__len__()
과 __getitem__())을대안으로사용한다. 시퀀스프로토콜을지원하는객체들은 reversed()가
제공하는것보다더효율적인구현을제공할수있을때만 __reversed__()를제공해야한다.

버전 2.6에추가.
멤버십검사연산자들 (in과 not in)은보통시퀀스에대한이터레이션으로구현된다. 하지만, 컨테이너
객체는더효율적인구현을다음과같은특수메서드를통해제공할수있다. 이경우객체는시퀀스일필요도
없다.

object.__contains__(self, item)
멤버십검사연산자를구현하기위해호출된다. item이 self 에있으면참을,그렇지않으면거짓을돌려
줘야한다. 매핑객체의경우,키-값쌍이아니라매핑의키가고려되어야한다.
__contains__()를정의하지않는객체의경우,멤버십검사는먼저 __iter__()를통한이터레이
션을시도한후, __getitem__()을통한낡은시퀀스이터레이션프로토콜을시도한다. membership-
test-details섹션을참고하라.

3.4. 특수메서드이름들 33

The Python Language Reference,출시버전 2.7.18

3.4.7 Additional methods for emulation of sequence types

The following optional methods can be defined to further emulate sequence objects. Immutable sequences methods should
at most only define __getslice__(); mutable sequences might define all three methods.
object.__getslice__(self, i, j)

버전 2.0부터폐지: Support slice objects as parameters to the __getitem__() method. (However, built-in
types in CPython currently still implement __getslice__(). Therefore, you have to override it in derived
classes when implementing slicing.)
Called to implement evaluation of self[i:j]. The returned object should be of the same type as self. Note
that missing i or j in the slice expression are replaced by zero or sys.maxsize, respectively. If negative in-
dexes are used in the slice, the length of the sequence is added to that index. If the instance does not implement
the __len__() method, an AttributeError is raised. No guarantee is made that indexes adjusted this
way are not still negative. Indexes which are greater than the length of the sequence are not modified. If no
__getslice__() is found, a slice object is created instead, and passed to __getitem__() instead.

object.__setslice__(self, i, j, sequence)
Called to implement assignment to self[i:j]. Same notes for i and j as for __getslice__().
This method is deprecated. If no __setslice__() is found, or for extended slicing of the form
self[i:j:k], a slice object is created, and passed to __setitem__(), instead of __setslice__()
being called.

object.__delslice__(self, i, j)
Called to implement deletion of self[i:j]. Same notes for i and j as for __getslice__(). This method
is deprecated. If no __delslice__() is found, or for extended slicing of the form self[i:j:k], a slice
object is created, and passed to __delitem__(), instead of __delslice__() being called.

Notice that these methods are only invoked when a single slice with a single colon is used, and the slice method is
available. For slice operations involving extended slice notation, or in absence of the slice methods, __getitem__(),
__setitem__() or __delitem__() is called with a slice object as argument.
The following example demonstrate how to make your program or module compatible with earlier versions of Python
(assuming that methods __getitem__(), __setitem__() and __delitem__() support slice objects as argu-
ments):

class MyClass:
...
def __getitem__(self, index):

...
def __setitem__(self, index, value):

...
def __delitem__(self, index):

...

if sys.version_info < (2, 0):
They won't be defined if version is at least 2.0 final

def __getslice__(self, i, j):
return self[max(0, i):max(0, j):]

def __setslice__(self, i, j, seq):
self[max(0, i):max(0, j):] = seq

def __delslice__(self, i, j):
del self[max(0, i):max(0, j):]

...

Note the calls to max(); these are necessary because of the handling of negative indices before the __*slice__()
methods are called. When negative indexes are used, the __*item__() methods receive them as provided, but the

34 Chapter 3. 데이터모델

The Python Language Reference,출시버전 2.7.18

__*slice__() methods get a 《cooked》 form of the index values. For each negative index value, the length of the
sequence is added to the index before calling the method (which may still result in a negative index); this is the customary
handling of negative indexes by the built-in sequence types, and the __*item__() methods are expected to do this as
well. However, since they should already be doing that, negative indexes cannot be passed in; they must be constrained
to the bounds of the sequence before being passed to the __*item__() methods. Calling max(0, i) conveniently
returns the proper value.

3.4.8 숫자형흉내내기

숫자형을흉내내기위해다음과같은메서드들을정의할수있다. 구현되는 특별한종류의숫자에의해
지원되지않는연산들 (예를들어,정수가아닌숫자들에대한비트연산들)에대응하는메서드들을정의되지
않은채로남겨두어야한다.

object.__add__(self, other)
object.__sub__(self, other)
object.__mul__(self, other)
object.__floordiv__(self, other)
object.__mod__(self, other)
object.__divmod__(self, other)
object.__pow__(self, other[, modulo])
object.__lshift__(self, other)
object.__rshift__(self, other)
object.__and__(self, other)
object.__xor__(self, other)
object.__or__(self, other)

These methods are called to implement the binary arithmetic operations (+, -, *, //, %, divmod(), pow(),
**, <<, >>, &, ^, |). For instance, to evaluate the expression x + y, where x is an instance of a class that has
an __add__() method, x.__add__(y) is called. The __divmod__() method should be the equivalent to
using __floordiv__() and __mod__(); it should not be related to __truediv__() (described below).
Note that __pow__() should be defined to accept an optional third argument if the ternary version of the built-in
pow() function is to be supported.
만약이메서드들중하나가제공된인자에대해연산을지원하지않으면, NotImplemented를돌려줘야
한다.

object.__div__(self, other)
object.__truediv__(self, other)

The division operator (/) is implemented by these methods. The __truediv__() method is used when
__future__.division is in effect, otherwise __div__() is used. If only one of these two methods is
defined, the object will not support division in the alternate context; TypeError will be raised instead.

object.__radd__(self, other)
object.__rsub__(self, other)
object.__rmul__(self, other)
object.__rdiv__(self, other)
object.__rtruediv__(self, other)
object.__rfloordiv__(self, other)
object.__rmod__(self, other)
object.__rdivmod__(self, other)
object.__rpow__(self, other)
object.__rlshift__(self, other)
object.__rrshift__(self, other)
object.__rand__(self, other)
object.__rxor__(self, other)

3.4. 특수메서드이름들 35

The Python Language Reference,출시버전 2.7.18

object.__ror__(self, other)
These methods are called to implement the binary arithmetic operations (+, -, *, /, %, divmod(), pow(),
**, <<, >>, &, ^, |) with reflected (swapped) operands. These functions are only called if the left operand does
not support the corresponding operation and the operands are of different types.2 For instance, to evaluate the
expression x - y, where y is an instance of a class that has an __rsub__() method, y.__rsub__(x) is
called if x.__sub__(y) returns NotImplemented.
삼항 pow()는 __rpow__()를호출하려고시도하지않음에주의해야한다 (그렇게하려면코어션
규칙이너무복잡해진다).

참고: 만약오른쪽피연산자의형이왼쪽피연산자의형의서브클래스이고,그서브클래스가연산의
뒤집힌메서드들제공하면, 이메서드가왼쪽연산자의뒤집히지않은메서드보다먼저호출된다. 이
동작은서브클래스가조상들의연산을재정의할수있도록한다.

object.__iadd__(self, other)
object.__isub__(self, other)
object.__imul__(self, other)
object.__idiv__(self, other)
object.__itruediv__(self, other)
object.__ifloordiv__(self, other)
object.__imod__(self, other)
object.__ipow__(self, other[, modulo])
object.__ilshift__(self, other)
object.__irshift__(self, other)
object.__iand__(self, other)
object.__ixor__(self, other)
object.__ior__(self, other)

These methods are called to implement the augmented arithmetic assignments (+=, -=, *=, /=, //=, %=, **=,
<<=, >>=, &=, ^=, |=). These methods should attempt to do the operation in-place (modifying self) and return the
result (which could be, but does not have to be, self). If a specific method is not defined, the augmented assignment
falls back to the normal methods. For instance, to execute the statement x += y, where x is an instance of a class
that has an __iadd__() method, x.__iadd__(y) is called. If x is an instance of a class that does not define
a __iadd__() method, x.__add__(y) and y.__radd__(x) are considered, as with the evaluation of x
+ y.

object.__neg__(self)
object.__pos__(self)
object.__abs__(self)
object.__invert__(self)

일항산술연산 (-, +, abs(), ~)을구현하기위해호출된다.
object.__complex__(self)
object.__int__(self)
object.__long__(self)
object.__float__(self)

Called to implement the built-in functions complex(), int(), long(), and float(). Should return a value
of the appropriate type.

object.__oct__(self)
object.__hex__(self)

Called to implement the built-in functions oct() and hex(). Should return a string value.
object.__index__(self)

2 피연산자들이같은형이면,뒤집히지않은메서드 (__add__()같은)가실패하면그연산이지원되지않는것으로간주한다. 이것이
뒤집힌메서드가호출되지않는이유다.

36 Chapter 3. 데이터모델

The Python Language Reference,출시버전 2.7.18

Called to implement operator.index(). Also called whenever Python needs an integer object (such as in
slicing). Must return an integer (int or long).
버전 2.5에추가.

object.__coerce__(self, other)
Called to implement 《mixed-mode》 numeric arithmetic. Should either return a 2-tuple containing self and other
converted to a common numeric type, or None if conversion is impossible. When the common type would be
the type of other, it is sufficient to return None, since the interpreter will also ask the other object to attempt a
coercion (but sometimes, if the implementation of the other type cannot be changed, it is useful to do the conversion
to the other type here). A return value of NotImplemented is equivalent to returning None.

3.4.9 Coercion rules

This section used to document the rules for coercion. As the language has evolved, the coercion rules have become hard
to document precisely; documenting what one version of one particular implementation does is undesirable. Instead, here
are some informal guidelines regarding coercion. In Python 3, coercion will not be supported.

• If the left operand of a % operator is a string or Unicode object, no coercion takes place and the string formatting
operation is invoked instead.

• It is no longer recommended to define a coercion operation. Mixed-mode operations on types that don’ t define
coercion pass the original arguments to the operation.

• New-style classes (those derived from object) never invoke the __coerce__()method in response to a binary
operator; the only time __coerce__() is invoked is when the built-in function coerce() is called.

• For most intents and purposes, an operator that returns NotImplemented is treated the same as one that is not
implemented at all.

• Below, __op__() and __rop__() are used to signify the generic method names corresponding to an operator;
__iop__() is used for the corresponding in-place operator. For example, for the operator 〈+〉, __add__()
and __radd__() are used for the left and right variant of the binary operator, and __iadd__() for the in-place
variant.

• For objects x and y, first x.__op__(y) is tried. If this is not implemented or returns NotImplemented, y.
__rop__(x) is tried. If this is also not implemented or returns NotImplemented, a TypeError exception
is raised. But see the following exception:

• Exception to the previous item: if the left operand is an instance of a built-in type or a new-style class, and the right
operand is an instance of a proper subclass of that type or class and overrides the base’s __rop__()method, the
right operand’s __rop__() method is tried before the left operand’s __op__() method.
This is done so that a subclass can completely override binary operators. Otherwise, the left operand’s __op__()
method would always accept the right operand: when an instance of a given class is expected, an instance of a
subclass of that class is always acceptable.

• When either operand type defines a coercion, this coercion is called before that type’s __op__() or __rop__()
method is called, but no sooner. If the coercion returns an object of a different type for the operand whose coercion
is invoked, part of the process is redone using the new object.

• When an in-place operator (like 〈+=〉) is used, if the left operand implements __iop__(), it is invoked without
any coercion. When the operation falls back to __op__() and/or __rop__(), the normal coercion rules apply.

• In x + y, if x is a sequence that implements sequence concatenation, sequence concatenation is invoked.
• In x * y, if one operand is a sequence that implements sequence repetition, and the other is an integer (int or
long), sequence repetition is invoked.

3.4. 특수메서드이름들 37

The Python Language Reference,출시버전 2.7.18

• Rich comparisons (implemented by methods __eq__() and so on) never use coercion. Three-way comparison
(implemented by __cmp__()) does use coercion under the same conditions as other binary operations use it.

• In the current implementation, the built-in numeric types int, long, float, and complex do not use coercion.
All these types implement a __coerce__() method, for use by the built-in coerce() function.
버전 2.7에서변경: The complex type no longer makes implicit calls to the __coerce__()method for mixed-
type binary arithmetic operations.

3.4.10 with문컨텍스트관리자

버전 2.5에추가.
컨텍스트관리자 (context manager)는 with문을실행할때자리잡는실행컨텍스트 (context)를정의하는객
체다. 코드블록의실행을위해,컨텍스트관리자는원하는실행시간컨텍스트로의진입과탈출을처리한다.
컨텍스트관리자는보통 with문 (with문섹션에서설명한다)으로시작되지만, 그들의메서드를호출해서
직접사용할수도있다.

컨텍스트관리자의전형적인용도에는다양한종류의전역상태 (global state)를보관하고복구하는것,자원을
로킹 (locking)하고언로킹 (unlocking)하는것,열린파일을닫는것등이있다.
컨텍스트관리자에대한더자세한정보는 typecontextmanager에나온다.
object.__enter__(self)

이객체와연관된실행시간컨텍스트에진입한다. with문은 as절로지정된대상이있다면,이메서드의
반환값을연결한다.

object.__exit__(self, exc_type, exc_value, traceback)
이객체와연관된실행시간컨텍스트를종료한다. 파라미터들은컨텍스트에서벗어나게만든예외를
기술한다. 만약컨텍스트가예외없이종료한다면,세인자모두 None이된다.

만약예외가제공되고, 메서드가예외를중지시키고싶으면 (즉확산하는것을막으려면) 참 (true)을
돌려줘야한다. 그렇지않으면예외는이메서드가종료한후에계속진행된다.

__exit__()메서드가전달된예외를다시일으키지 (reraise) 않도록주의해야한다; 이것은호출자
(caller)의책임이다.

더보기:

PEP 343 - 《with》문 파이썬 with문에대한규격,배경,예.

3.4.11 Special method lookup for old-style classes

For old-style classes, special methods are always looked up in exactly the same way as any other method or attribute. This
is the case regardless of whether the method is being looked up explicitly as in x.__getitem__(i) or implicitly as
in x[i].
This behaviour means that special methods may exhibit different behaviour for different instances of a single old-style
class if the appropriate special attributes are set differently:

>>> class C:
... pass
...
>>> c1 = C()
>>> c2 = C()
>>> c1.__len__ = lambda: 5
>>> c2.__len__ = lambda: 9
>>> len(c1)

(다음페이지에계속)

38 Chapter 3. 데이터모델

https://www.python.org/dev/peps/pep-0343

The Python Language Reference,출시버전 2.7.18

(이전페이지에서계속)
5
>>> len(c2)
9

3.4.12 Special method lookup for new-style classes

For new-style classes, implicit invocations of special methods are only guaranteed to work correctly if defined on an
object’s type, not in the object’s instance dictionary. That behaviour is the reason why the following code raises an
exception (unlike the equivalent example with old-style classes):

>>> class C(object):
... pass
...
>>> c = C()
>>> c.__len__ = lambda: 5
>>> len(c)
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
TypeError: object of type 'C' has no len()

이런 동작의 배경에 깔린 논리는, 모든 객체 (형 객체를 포함해서)들에 의해 구현되는 __hash__() 나
__repr__() 과 같은 많은 특수 메서드들과 관련이 있다. 만약 이 메서드들에 대한 묵시적인 조회가 일
반적인조회프로세스를거친다면,형객체자체에대해호출되었을때실패하게된다:

>>> 1 .__hash__() == hash(1)
True
>>> int.__hash__() == hash(int)
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
TypeError: descriptor '__hash__' of 'int' object needs an argument

클래스의연결되지않은메서드를호출하려는이런식의잘못된시도는종종 〈메타클래스혼란 (metaclass
confusion)〉이라고불리고,특수메서드를조회할때인스턴스를우회하는방법으로피할수있다.

>>> type(1).__hash__(1) == hash(1)
True
>>> type(int).__hash__(int) == hash(int)
True

올바름을추구하기위해인스턴스어트리뷰트들을우회하는것에더해,묵시적인특수메서드조회는객체의
메타클래스의 __getattribute__()메서드조차도우회한다:

>>> class Meta(type):
... def __getattribute__(*args):
... print "Metaclass getattribute invoked"
... return type.__getattribute__(*args)
...
>>> class C(object):
... __metaclass__ = Meta
... def __len__(self):
... return 10
... def __getattribute__(*args):
... print "Class getattribute invoked"
... return object.__getattribute__(*args)

(다음페이지에계속)

3.4. 특수메서드이름들 39

The Python Language Reference,출시버전 2.7.18

(이전페이지에서계속)
...
>>> c = C()
>>> c.__len__() # Explicit lookup via instance
Class getattribute invoked
10
>>> type(c).__len__(c) # Explicit lookup via type
Metaclass getattribute invoked
10
>>> len(c) # Implicit lookup
10

이런식으로 __getattribute__()절차를우회하는것은특수메서드처리의유연함을일부포기하는대신
(특수메서드가인터프리터에의해일관성있게호출되기위해서는반드시클래스객체에설정되어야한다),
인터프리터내부에서의속도최적화를위한상당한기회를제공한다.

40 Chapter 3. 데이터모델

CHAPTER4

실행모델

4.1 이름과연결 (binding)

Names refer to objects. Names are introduced by name binding operations. Each occurrence of a name in the program
text refers to the binding of that name established in the innermost function block containing the use.
A block is a piece of Python program text that is executed as a unit. The following are blocks: a module, a function
body, and a class definition. Each command typed interactively is a block. A script file (a file given as standard input
to the interpreter or specified on the interpreter command line the first argument) is a code block. A script command (a
command specified on the interpreter command line with the 〈-c〉 option) is a code block. The file read by the built-in
function execfile() is a code block. The string argument passed to the built-in function eval() and to the exec
statement is a code block. The expression read and evaluated by the built-in function input() is a code block.
코드블록은실행프레임 (execution frame)에서실행된다. 프레임은몇몇관리를위한정보 (디버깅에사용된다)
를포함하고,코드블록의실행이끝난후에어디서어떻게실행을계속할것인지를결정한다.

A scope defines the visibility of a name within a block. If a local variable is defined in a block, its scope includes that
block. If the definition occurs in a function block, the scope extends to any blocks contained within the defining one,
unless a contained block introduces a different binding for the name. The scope of names defined in a class block is
limited to the class block; it does not extend to the code blocks of methods – this includes generator expressions since
they are implemented using a function scope. This means that the following will fail:

class A:
a = 42
b = list(a + i for i in range(10))

이름이코드블록내에서사용될때,가장가깝게둘러싸고있는스코프에있는것으로검색된다. 코드블록이
볼수있는모든스코프의집합을블록의환경 (environment)이라고부른다.

If a name is bound in a block, it is a local variable of that block. If a name is bound at the module level, it is a global
variable. (The variables of the module code block are local and global.) If a variable is used in a code block but not
defined there, it is a free variable.
When a name is not found at all, a NameError exception is raised. If the name refers to a local variable that has not
been bound, a UnboundLocalError exception is raised. UnboundLocalError is a subclass of NameError.

41

The Python Language Reference,출시버전 2.7.18

The following constructs bind names: formal parameters to functions, import statements, class and function definitions
(these bind the class or function name in the defining block), and targets that are identifiers if occurring in an assignment,
for loop header, in the second position of an except clause header or after as in a with statement. The import
statement of the form from ... import * binds all names defined in the imported module, except those beginning
with an underscore. This form may only be used at the module level.
A target occurring in a del statement is also considered bound for this purpose (though the actual semantics are to
unbind the name). It is illegal to unbind a name that is referenced by an enclosing scope; the compiler will report a
SyntaxError.
각대입이나임포트문은클래스나함수정의때문에정의되는블록내에등장할수있고, 모듈수준 (최상위
코드블록)에서등장할수도있다.
If a name binding operation occurs anywhere within a code block, all uses of the name within the block are treated as
references to the current block. This can lead to errors when a name is used within a block before it is bound. This rule is
subtle. Python lacks declarations and allows name binding operations to occur anywhere within a code block. The local
variables of a code block can be determined by scanning the entire text of the block for name binding operations.
If the global statement occurs within a block, all uses of the name specified in the statement refer to the binding of that
name in the top-level namespace. Names are resolved in the top-level namespace by searching the global namespace,
i.e. the namespace of the module containing the code block, and the builtins namespace, the namespace of the module
__builtin__. The global namespace is searched first. If the name is not found there, the builtins namespace is
searched. The global statement must precede all uses of the name.
The builtins namespace associated with the execution of a code block is actually found by looking up the name
__builtins__ in its global namespace; this should be a dictionary or a module (in the latter case the module’s dic-
tionary is used). By default, when in the __main__ module, __builtins__ is the built-in module __builtin__
(note: no 〈s〉); when in any other module, __builtins__ is an alias for the dictionary of the __builtin__module
itself. __builtins__ can be set to a user-created dictionary to create a weak form of restricted execution.
CPython implementation detail: Users should not touch __builtins__; it is strictly an implementation detail.
Users wanting to override values in the builtins namespace should import the __builtin__ (no 〈s〉) module and
modify its attributes appropriately.
모듈의이름공간은모듈이처음임포트될때자동으로만들어진다. 스크립트의메인모듈은항상 __main__
이라고불린다.

global문은같은블록의이름연결연산과같은스코프를갖는다. 자유변수의경우가장가까이서둘러싸는
스코프가 global문을포함한다면,그자유변수는전역으로취급된다.
A class definition is an executable statement that may use and define names. These references follow the normal rules for
name resolution. The namespace of the class definition becomes the attribute dictionary of the class. Names defined at
the class scope are not visible in methods.

4.1.1 동적기능과의상호작용

There are several cases where Python statements are illegal when used in conjunction with nested scopes that contain free
variables.
If a variable is referenced in an enclosing scope, it is illegal to delete the name. An error will be reported at compile time.
If the wild card form of import — import *— is used in a function and the function contains or is a nested block with
free variables, the compiler will raise a SyntaxError.
If exec is used in a function and the function contains or is a nested block with free variables, the compiler will raise
a SyntaxError unless the exec explicitly specifies the local namespace for the exec. (In other words, exec obj
would be illegal, but exec obj in ns would be legal.)

42 Chapter 4. 실행모델

The Python Language Reference,출시버전 2.7.18

The eval(), execfile(), and input() functions and the exec statement do not have access to the full environ-
ment for resolving names. Names may be resolved in the local and global namespaces of the caller. Free variables are not
resolved in the nearest enclosing namespace, but in the global namespace.1 The exec statement and the eval() and
execfile() functions have optional arguments to override the global and local namespace. If only one namespace is
specified, it is used for both.

4.2 예외

예외는에러나예외적인조건을처리하기위해코드블록의일반적인제어흐름을깨는수단이다. 에러가
감지된지점에서예외를일으킨다 (raised); 둘러싼코드블록이나직접적혹은간접적으로에러가발생한코드
블록을호출한어떤코드블록에서건예외는처리될수있다.

파이썬인터프리터는실행시간에러 (0으로나누는것같은)를감지할때예외를일으킨다. 파이썬프로그램은
raise문을사용해서명시적으로예외를일으킬수있다. 예외처리기는 try… except문으로지정된다.
그런문장에서 finally구는정리 (cleanup)코드를지정하는데사용되는데, 예외를처리하는것이아니라
앞선코드에서예외가발생하건그렇지않건실행된다.

파이썬은에러처리에《종결 (termination)》모델을사용한다;예외처리기가뭐가발생했는지발견할수있고,
바깥단계에서실행을계속할수는있지만, 에러의원인을제거한후에실패한연산을재시도할수는없다
(문제의코드조각을처음부터다시시작시키는것은예외다).
When an exception is not handled at all, the interpreter terminates execution of the program, or returns to its interactive
main loop. In either case, it prints a stack backtrace, except when the exception is SystemExit.
예외는클래스인스턴스로구분된다. except절은인스턴스의클래스에따라선택된다: 인스턴스의클래스나
그것의베이스클래스를가리켜야한다. 인스턴스는핸들러가수신할수있고예외적인조건에대한추가적인
정보를포함할수있다.

Exceptions can also be identified by strings, in which case the except clause is selected by object identity. An arbitrary
value can be raised along with the identifying string which can be passed to the handler.

참고: Messages to exceptions are not part of the Python API. Their contents may change from one version of Python
to the next without warning and should not be relied on by code which will run under multiple versions of the interpreter.

섹션 try문에서 try문, raise문에서 raise문에대한설명이제공된다.

1 이한계는이연산들때문에실행되는코드가모듈이컴파일되는시점에는존재하지않았기때문이다.

4.2. 예외 43

The Python Language Reference,출시버전 2.7.18

44 Chapter 4. 실행모델

CHAPTER5

표현식

이장은파이썬에서사용되는표현식요소들의의미를설명한다.

문법유의사항: 여기와이어지는장에서는, 구문분석이아니라문법을설명하기위해확장 BNF표기법을
사용한다. 문법규칙이다음과같은형태를가지고,

name ::= othername

뜻 (semantics)을주지않으면,이형태의 name의뜻은 othername과같다.

5.1 산술변환

When a description of an arithmetic operator below uses the phrase 《the numeric arguments are converted to a common
type,》 the arguments are coerced using the coercion rules listed at Coercion rules. If both arguments are standard numeric
types, the following coercions are applied:

• 어느한인자가복소수면다른하나는복소수로변환된다;
• 그렇지않고,어느한인자가실수면,다른하나는실수로변환된다;
• otherwise, if either argument is a long integer, the other is converted to long integer;
• otherwise, both must be plain integers and no conversion is necessary.

Some additional rules apply for certain operators (e.g., a string left argument to the 〈%〉 operator). Extensions can define
their own coercions.

45

The Python Language Reference,출시버전 2.7.18

5.2 아톰 (Atoms)

Atoms are the most basic elements of expressions. The simplest atoms are identifiers or literals. Forms enclosed in reverse
quotes or in parentheses, brackets or braces are also categorized syntactically as atoms. The syntax for atoms is:

atom ::= identifier | literal | enclosure
enclosure ::= parenth_form | list_display

| generator_expression | dict_display | set_display
| string_conversion | yield_atom

5.2.1 식별자 (이름)

아톰으로등장하는식별자는이름이다. 구문분석에대해서는식별자와키워드섹션을, 이름과연결에대한
문서는이름과연결 (binding)섹션을보면된다.

이름이객체에연결될때,아톰의값을구하면객체가나온다. 이름이연결되지않았을때,값을구하려고하면
NameError예외가일어난다.

비공개이름뒤섞기 (private name mangling): 클래스정의에등장하는식별자가두개나그이상의밑줄로
시작하고, 두 개나그이상의밑줄로끝나지않으면, 그 클래스의비공개이름 (private name)으로간주한다.
비공개이름은그들을위한코드가만들어지기전에더긴형태로변환된다. 이변환은그이름의앞에클래스
이름을삽입하는데, 클래스이름의처음에오는모든밑줄을제거한후, 하나의밑줄을추가한다. 예를들어,
Ham이라는이름의클래스에식별자 __spam이등장하면, _Ham__spam으로변환된다. 이변환은식별자가
사용되는문법적인문맥에무관하다. 변환된이름이극단적으로길면 (255자보다길면),구현이정의한잘라
내기가발생할수있다. 클래스이름이밑줄로만구성되어있으면,변환은일어나지않는다.

5.2.2 리터럴 (Literals)

Python supports string literals and various numeric literals:

literal ::= stringliteral | integer | longinteger
| floatnumber | imagnumber

Evaluation of a literal yields an object of the given type (string, integer, long integer, floating point number, complex
number) with the given value. The value may be approximated in the case of floating point and imaginary (complex)
literals. See section리터럴 for details.
모든 리터럴은 불변 데이터형에 대응하기 때문에, 객체의 아이덴티티는 값 보다 덜 중요하다. 같은 값의
리터럴에대해반복적으로값을구하면 (프로그램텍스트의같은장소에있거나다른장소에있을때)같은
객체를얻을수도있고,같은값의다른객체를얻을수도있다.

46 Chapter 5. 표현식

The Python Language Reference,출시버전 2.7.18

5.2.3 괄호안에넣은형

괄호안에넣은형은,괄호로둘러싸인생략가능한표현식목록이다:

parenth_form ::= "(" [expression_list] ")"

괄호안에넣은표현식목록은,무엇이건그표현식목록이산출하는것이된다: 목록이적어도하나의쉼표를
포함하면,튜플이된다;그렇지않으면표현식목록을구성한단일표현식이된다.

빈괄호쌍은빈튜플객체를만든다. 튜플은불변이기때문에리터럴의규칙이적용된다 (즉,두개의빈튜플은
같은객체일수도있고그렇지않을수도있다).
튜플이괄호에의해만들어지는것이아니라,쉼표연산자의사용때문이라는것에주의해야한다. 예외는빈
튜플인데, 괄호가필요하다—표현식에서괄호없는《없음 (nothing)》을허락하는것은모호함을유발하고
자주발생하는오타들이잡히지않은채로남게할것이다.

5.2.4 리스트디스플레이

리스트디스플레이는꺾쇠괄호 (square brackets)로둘러싸인표현식의나열인데비어있을수있다:

list_display ::= "[" [expression_list | list_comprehension] "]"
list_comprehension ::= expression list_for
list_for ::= "for" target_list "in" old_expression_list [list_iter]
old_expression_list ::= old_expression [("," old_expression)+ [","]]
old_expression ::= or_test | old_lambda_expr
list_iter ::= list_for | list_if
list_if ::= "if" old_expression [list_iter]

A list display yields a new list object. Its contents are specified by providing either a list of expressions or a list compre-
hension. When a comma-separated list of expressions is supplied, its elements are evaluated from left to right and placed
into the list object in that order. When a list comprehension is supplied, it consists of a single expression followed by
at least one for clause and zero or more for or if clauses. In this case, the elements of the new list are those that
would be produced by considering each of the for or if clauses a block, nesting from left to right, and evaluating the
expression to produce a list element each time the innermost block is reached1.

5.2.5 Displays for sets and dictionaries

For constructing a set or a dictionary Python provides special syntax called 《displays》, each of them in two flavors:
• 컨테이너의내용을명시적으로나열하거나,
• 일련의루프와필터링지시들을통해계산되는데,컴프리헨션 (comprehension)이라고불린다.

컴프리헨션의공통문법요소들은이렇다:

comprehension ::= expression comp_for
comp_for ::= "for" target_list "in" or_test [comp_iter]
comp_iter ::= comp_for | comp_if
comp_if ::= "if" expression_nocond [comp_iter]

1 In Python 2.3 and later releases, a list comprehension 《leaks》 the control variables of each for it contains into the containing scope. However,
this behavior is deprecated, and relying on it will not work in Python 3.

5.2. 아톰 (Atoms) 47

The Python Language Reference,출시버전 2.7.18

컴프리헨션은하나의표현식과그뒤를따르는최소한하나의 for절과없거나여러개의 for또는 if 절로
구성된다. 이경우,새컨테이너의요소들은각 for또는 if절이왼쪽에서오른쪽으로중첩된블록을이루고,
가장안쪽에있는블록에서표현식의값을구해서만들어낸것들이다.

Note that the comprehension is executed in a separate scope, so names assigned to in the target list don’t 《leak》 in the
enclosing scope.

5.2.6 제너레이터표현식 (Generator expressions)

제너레이터표현식은괄호로둘러싸인간결한제너레이터표기법이다.

generator_expression ::= "(" expression comp_for ")"

제너레이터표현식은새제너레이터객체를만든다. 문법은꺾쇠괄호나중괄호대신괄호로둘러싸인다는
점만제외하면컴프리헨션과같다.

Variables used in the generator expression are evaluated lazily when the __next__() method is called for generator
object (in the same fashion as normal generators). However, the leftmost for clause is immediately evaluated, so that
an error produced by it can be seen before any other possible error in the code that handles the generator expression.
Subsequent for clauses cannot be evaluated immediately since they may depend on the previous for loop. For example:
(x*y for x in range(10) for y in bar(x)).
The parentheses can be omitted on calls with only one argument. See section호출 for the detail.

5.2.7 딕셔너리디스플레이

딕셔너리디스플레이는중괄호 (curly braces)로둘러싸인키/데이터쌍의나열인데비어있을수있다:

dict_display ::= "{" [key_datum_list | dict_comprehension] "}"
key_datum_list ::= key_datum ("," key_datum)* [","]
key_datum ::= expression ":" expression
dict_comprehension ::= expression ":" expression comp_for

딕셔너리디스플레이는새딕셔너리객체를만든다.

쉼표로분리된키/데이터쌍의시퀀스가주어질때,그것들은왼쪽에서오른쪽으로값이구해지고딕셔너리의
엔트리들을정의한다: 각키객체는딕셔너리에대응하는데이터를저장하는데키로사용된다. 이것은키/값
목록에서같은키를여러번지정할수있다는뜻인데,그키의최종딕셔너리값은마지막에주어진것이된다.

딕셔너리컴프리헨션은, 리스트와집합컴프리헨션에대비해서, 일반적인 《for》와 《if》절앞에콜론으로
분리된두개의표현식을필요로한다. 컴프리헨션이실행될때, 만들어지는키와값요소들이만들어지는
순서대로딕셔너리에삽입된다.

킷값의형에대한제약은앞의섹션표준형계층에서나열되었다. (요약하자면,키형은해시가능해야하는데,
모든가변객체들이제외된다.) 중복된키간의충돌은감지되지않는다; 주어진키에대해저장된마지막
(구문상으로디스플레이의가장오른쪽에있는)데이터가우선한다.

48 Chapter 5. 표현식

The Python Language Reference,출시버전 2.7.18

5.2.8 집합디스플레이

집합디스플레이는중괄호 (curly braces)로표시되고,키와값을분리하는콜론 (colon)이없는것으로딕셔너리
디스플레이와구분될수있다.

set_display ::= "{" (expression_list | comprehension) "}"

집합디스플레이는새가변집합객체를만드는데, 그내용은표현식의시퀀스나컴프리헨션으로지정된다.
쉼표로분리된표현식의목록이제공될때, 그 요소들은왼쪽에서오른쪽으로값이구해지고, 집합객체에
더해진다. 컴프리헨션이제공될때,집합은컴프리헨션으로만들어지는요소들로구성된다.

빈집합은 {}으로만들어질수없다;이리터럴은빈딕셔너리를만든다.

5.2.9 String conversions

A string conversion is an expression list enclosed in reverse (a.k.a. backward) quotes:

string_conversion ::= "`" expression_list "`"

A string conversion evaluates the contained expression list and converts the resulting object into a string according to rules
specific to its type.
If the object is a string, a number, None, or a tuple, list or dictionary containing only objects whose type is one of these,
the resulting string is a valid Python expression which can be passed to the built-in function eval() to yield an expression
with the same value (or an approximation, if floating point numbers are involved).
(In particular, converting a string adds quotes around it and converts 《funny》 characters to escape sequences that are
safe to print.)
Recursive objects (for example, lists or dictionaries that contain a reference to themselves, directly or indirectly) use ...
to indicate a recursive reference, and the result cannot be passed to eval() to get an equal value (SyntaxError will
be raised instead).
The built-in function repr() performs exactly the same conversion in its argument as enclosing it in parentheses and
reverse quotes does. The built-in function str() performs a similar but more user-friendly conversion.

5.2.10 일드표현식 (Yield expressions)

yield_atom ::= "(" yield_expression ")"
yield_expression ::= "yield" [expression_list]

버전 2.5에추가.
The yield expression is only used when defining a generator function, and can only be used in the body of a function
definition. Using a yield expression in a function definition is sufficient to cause that definition to create a generator
function instead of a normal function.
When a generator function is called, it returns an iterator known as a generator. That generator then controls the execution
of a generator function. The execution starts when one of the generator’s methods is called. At that time, the execution
proceeds to the first yield expression, where it is suspended again, returning the value of expression_list to
generator’s caller. By suspended we mean that all local state is retained, including the current bindings of local variables,
the instruction pointer, and the internal evaluation stack. When the execution is resumed by calling one of the generator’
s methods, the function can proceed exactly as if the yield expression was just another external call. The value of the

5.2. 아톰 (Atoms) 49

The Python Language Reference,출시버전 2.7.18

yield expression after resuming depends on the method which resumed the execution.
All of this makes generator functions quite similar to coroutines; they yield multiple times, they have more than one entry
point and their execution can be suspended. The only difference is that a generator function cannot control where should
the execution continue after it yields; the control is always transferred to the generator’s caller.

제너레이터-이터레이터메서드

이서브섹션은제너레이터이터레이터의메서드들을설명한다. 제너레이터함수의실행을제어하는데사용될
수있다.

제너레이터가이미실행중일때아래에나오는메서드들을호출하면 ValueError예외를일으키는것에
주의해야한다.

generator.next()
Starts the execution of a generator function or resumes it at the last executed yield expression. When a gener-
ator function is resumed with a next() method, the current yield expression always evaluates to None. The
execution then continues to the next yield expression, where the generator is suspended again, and the value of
the expression_list is returned to next()〉s caller. If the generator exits without yielding another value,
a StopIteration exception is raised.

generator.send(value)
Resumes the execution and《sends》 a value into the generator function. The value argument becomes the result
of the current yield expression. The send() method returns the next value yielded by the generator, or raises
StopIteration if the generator exits without yielding another value. When send() is called to start the
generator, it must be called with None as the argument, because there is no yield expression that could receive
the value.

generator.throw(type[, value[, traceback]])
Raises an exception of type type at the point where generator was paused, and returns the next value yielded by
the generator function. If the generator exits without yielding another value, a StopIteration exception is
raised. If the generator function does not catch the passed-in exception, or raises a different exception, then that
exception propagates to the caller.

generator.close()
Raises a GeneratorExit at the point where the generator function was paused. If the generator function then
raises StopIteration (by exiting normally, or due to already being closed) or GeneratorExit (by not
catching the exception), close returns to its caller. If the generator yields a value, a RuntimeError is raised. If
the generator raises any other exception, it is propagated to the caller. close() does nothing if the generator has
already exited due to an exception or normal exit.

여기에제너레이터와제너레이터함수의동작을시연하는간단한예가있다:

>>> def echo(value=None):
... print "Execution starts when 'next()' is called for the first time."
... try:
... while True:
... try:
... value = (yield value)
... except Exception, e:
... value = e
... finally:
... print "Don't forget to clean up when 'close()' is called."
...
>>> generator = echo(1)
>>> print generator.next()
Execution starts when 'next()' is called for the first time.

(다음페이지에계속)

50 Chapter 5. 표현식

The Python Language Reference,출시버전 2.7.18

(이전페이지에서계속)
1
>>> print generator.next()
None
>>> print generator.send(2)
2
>>> generator.throw(TypeError, "spam")
TypeError('spam',)
>>> generator.close()
Don't forget to clean up when 'close()' is called.

더보기:

PEP 342 -개선된제너레이터를통한코루틴 제너레이터의 API와문법을개선해서,간단한코루틴으로사용
할수있도록만드는제안.

5.3 프라이머리

프라이머리는언어에서가장강하게결합하는연산들을나타낸다. 문법은이렇다:

primary ::= atom | attributeref | subscription | slicing | call

5.3.1 어트리뷰트참조

어트리뷰트참조는마침표 (period)와이름이뒤에붙은프라이머리다:

attributeref ::= primary "." identifier

The primary must evaluate to an object of a type that supports attribute references, e.g., a module, list, or an instance. This
object is then asked to produce the attribute whose name is the identifier. If this attribute is not available, the exception
AttributeError is raised. Otherwise, the type and value of the object produced is determined by the object. Multiple
evaluations of the same attribute reference may yield different objects.

5.3.2 서브스크립션 (Subscriptions)

서브스크립션은시퀀스 (문자열,튜플,리스트)나매핑 (딕셔너리)객체의항목을선택한다:

subscription ::= primary "[" expression_list "]"

The primary must evaluate to an object of a sequence or mapping type.
프라이머리가매핑이면, 표현식목록은값을구했을때매핑의키중하나가되어야하고, 서브스크립션은
매핑에서그키에대응하는값을선택한다. (표현식목록은정확히하나의항목을가지는경우만을제외하고는
튜플이다.)
If the primary is a sequence, the expression list must evaluate to a plain integer. If this value is negative, the length of the
sequence is added to it (so that, e.g., x[-1] selects the last item of x.) The resulting value must be a nonnegative integer
less than the number of items in the sequence, and the subscription selects the item whose index is that value (counting
from zero).

5.3. 프라이머리 51

https://www.python.org/dev/peps/pep-0342

The Python Language Reference,출시버전 2.7.18

문자열의항목은문자다. 문자는별도의데이터형이아니고,하나의문자만을가진문자열이다.

5.3.3 슬라이싱 (Slicings)

슬라이싱은시퀀스객체 (예를들어, 문자열튜플리스트)에서어떤범위의항목들을선택한다. 슬라이싱은
표현식이나대입의타깃이나 del문에사용될수있다. 슬라이싱의문법은이렇다:

slicing ::= simple_slicing | extended_slicing
simple_slicing ::= primary "[" short_slice "]"
extended_slicing ::= primary "[" slice_list "]"
slice_list ::= slice_item ("," slice_item)* [","]
slice_item ::= expression | proper_slice | ellipsis
proper_slice ::= short_slice | long_slice
short_slice ::= [lower_bound] ":" [upper_bound]
long_slice ::= short_slice ":" [stride]
lower_bound ::= expression
upper_bound ::= expression
stride ::= expression
ellipsis ::= "..."

There is ambiguity in the formal syntax here: anything that looks like an expression list also looks like a slice list, so any
subscription can be interpreted as a slicing. Rather than further complicating the syntax, this is disambiguated by defining
that in this case the interpretation as a subscription takes priority over the interpretation as a slicing (this is the case if
the slice list contains no proper slice nor ellipses). Similarly, when the slice list has exactly one short slice and no trailing
comma, the interpretation as a simple slicing takes priority over that as an extended slicing.
The semantics for a simple slicing are as follows. The primary must evaluate to a sequence object. The lower and upper
bound expressions, if present, must evaluate to plain integers; defaults are zero and the sys.maxint, respectively. If
either bound is negative, the sequence’s length is added to it. The slicing now selects all items with index k such that i
<= k < j where i and j are the specified lower and upper bounds. This may be an empty sequence. It is not an error
if i or j lie outside the range of valid indexes (such items don’t exist so they aren’t selected).
The semantics for an extended slicing are as follows. The primary must evaluate to a mapping object, and it is indexed
with a key that is constructed from the slice list, as follows. If the slice list contains at least one comma, the key is a tuple
containing the conversion of the slice items; otherwise, the conversion of the lone slice item is the key. The conversion
of a slice item that is an expression is that expression. The conversion of an ellipsis slice item is the built-in Ellipsis
object. The conversion of a proper slice is a slice object (see section 표준형계층) whose start, stop and step
attributes are the values of the expressions given as lower bound, upper bound and stride, respectively, substituting None
for missing expressions.

5.3.4 호출

호출은콜러블객체 (예를들어,함수)를빌수도있는인자들의목록으로호출한다.

call ::= primary "(" [argument_list [","]
| expression genexpr_for] ")"

argument_list ::= positional_arguments ["," keyword_arguments]
["," "*" expression] ["," keyword_arguments]
["," "**" expression]
| keyword_arguments ["," "*" expression]
["," "**" expression]

52 Chapter 5. 표현식

The Python Language Reference,출시버전 2.7.18

| "*" expression ["," keyword_arguments] ["," "**" expression]
| "**" expression

positional_arguments ::= expression ("," expression)*
keyword_arguments ::= keyword_item ("," keyword_item)*
keyword_item ::= identifier "=" expression

A trailing comma may be present after the positional and keyword arguments but does not affect the semantics.
The primary must evaluate to a callable object (user-defined functions, built-in functions, methods of built-in objects, class
objects, methods of class instances, and certain class instances themselves are callable; extensions may define additional
callable object types). All argument expressions are evaluated before the call is attempted. Please refer to section함수
정의 for the syntax of formal parameter lists.
키워드 인자가 있으면, 먼저 다음과 같이 위치 인자로 변환된다. 먼저 형식 파라미터들의 채워지지 않은
슬롯들의목록이만들어진다. N개의위치인자들이있다면, 처음 N개의슬롯에넣는다. 그다음, 각키워드
인자마다,식별자가대응하는슬롯을결정하는데사용된다 (식별자가첫번째형식파라미터의이름과같으면,
첫 번째슬롯은사용되고, 이런식으로계속한다). 슬롯이이미채워졌으면, TypeError예외를일으킨다.
그렇지않으면그인자의값을슬롯에채워넣는다 (표현식이 None이라할지라도,슬롯을채우게된다). 모든
인자가처리되었을때, 아직채워지지않은슬롯들을함수정의로부터오는대응하는기본값들로채운다.
(기본값들은함수가정의될때한번만값을구한다;그래서,리스트나딕셔너리같은가변객체들이기본값으로
사용되면해당슬롯에인자값을지정하지않은모든호출에서공유된다;보통이런상황은피해야할일이다.)
만약기본값이지정되지않고, 아직도비어있는슬롯이남아있다면, TypeError예외가발생한다. 그렇지
않으면,채워진슬롯의목록이호출의인자목록으로사용된다.

구현은위치파라미터가이름을갖지않아서, 설사문서화의목적으로이름이붙여졌다하더라도, 키워드로
공급될수없는내장함수들을제공할수있다. CPython에서,인자들을파싱하기위해 PyArg_ParseTuple()
를사용하는 C로구현된함수들이이경우다.
형식파라미터슬롯들보다많은위치인자들이있으면, *identifier문법을사용하는형식파라미터가있지
않은한, TypeError예외를일으킨다; 이 경우, 그 형식파라미터는남는위치인자들을포함하는튜플을
전달받는다 (또는남는위치인자들이없으면빈튜플).
키워드인자가형식파라미터이름에대응하지않으면, **identifier문법을사용하는형식파라미터가
있지않은한, TypeError예외를일으킨다; 이 경우, 그 형식파라미터는남는키워드인자들을포함하는
딕셔너리나,남는위치기반인자들이없으면빈 (새)딕셔너리를전달받는다.
If the syntax *expression appears in the function call, expression must evaluate to an iterable. Elements from
this iterable are treated as if they were additional positional arguments; if there are positional arguments x1,…, xN, and
expression evaluates to a sequence y1,…, yM, this is equivalent to a call with M+N positional arguments x1,…, xN,
y1, …, yM.

A consequence of this is that although the *expression syntax may appear after some keyword arguments, it is
processed before the keyword arguments (and the **expression argument, if any – see below). So:

>>> def f(a, b):
... print a, b
...
>>> f(b=1, *(2,))
2 1
>>> f(a=1, *(2,))
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
TypeError: f() got multiple values for keyword argument 'a'
>>> f(1, *(2,))
1 2

같은호출에서키워드인자와 *expression문법을모두사용하는것은일반적이지않기때문에, 실제로는
이런혼란이일어나지않는다.

5.3. 프라이머리 53

The Python Language Reference,출시버전 2.7.18

If the syntax **expression appears in the function call, expression must evaluate to a mapping, the contents of
which are treated as additional keyword arguments. In the case of a keyword appearing in both expression and as an
explicit keyword argument, a TypeError exception is raised.
Formal parameters using the syntax *identifier or **identifier cannot be used as positional argument slots
or as keyword argument names. Formal parameters using the syntax (sublist) cannot be used as keyword argument
names; the outermost sublist corresponds to a single unnamed argument slot, and the argument value is assigned to the
sublist using the usual tuple assignment rules after all other parameter processing is done.
호출은예외를일으키지않는한, 항상어떤값을돌려준다, None일수있다. 이값이어떻게계산되는지는
콜러블객체의형에달려있다.

만약그것이—

사용자정의함수면: 인자목록을전달해서함수의코드블록이실행된다. 코드블록이처음으로하는일은
형식파라미터들을인자에결합하는것이다;이것은섹션함수정의에서설명한다. 코드블록이 return
문을실행하면,함수호출의반환값을지정하게된다.

내장함수나메서드면: 결과는인터프리터에달려있다;내장함수와메서드들에대한설명은 built-in-funcs를
보면된다.

클래스객체면: 그클래스의새인스턴스가반환된다.

클래스인스턴스메서드면: 대응하는사용자정의함수가호출되는데, 그 인스턴스가첫번째인자가되는
하나만큼더긴인자목록이전달된다.

클래스인스턴스면: 그클래스는 __call__()메서드를정의해야한다; 그 효과는그메서드가호출되는
것과같다.

5.4 거듭제곱연산자

거듭제곱연산자는그것의왼쪽에붙는일항연산자보다더강하게결합한다; 그것의오른쪽에붙는일항
연산자보다는약하게결합한다. 문법은이렇다:

power ::= primary ["**" u_expr]

그래서, 괄호가없는거듭제곱과일항연산자의시퀀스에서, 연산자는오른쪽에서왼쪽으로값이구해진다
(이것이피연산자의값을구하는순서를제약하는것은아니다): -1**2은 -1이된다.

The power operator has the same semantics as the built-in pow() function, when called with two arguments: it yields
its left argument raised to the power of its right argument. The numeric arguments are first converted to a common type.
The result type is that of the arguments after coercion.
With mixed operand types, the coercion rules for binary arithmetic operators apply. For int and long int operands, the
result has the same type as the operands (after coercion) unless the second argument is negative; in that case, all arguments
are converted to float and a float result is delivered. For example, 10**2 returns 100, but 10**-2 returns 0.01. (This
last feature was added in Python 2.2. In Python 2.1 and before, if both arguments were of integer types and the second
argument was negative, an exception was raised).
Raising 0.0 to a negative power results in a ZeroDivisionError. Raising a negative number to a fractional power
results in a ValueError.

54 Chapter 5. 표현식

The Python Language Reference,출시버전 2.7.18

5.5 일항산술과비트연산

모든일항산술과비트연산자는같은우선순위를갖는다.

u_expr ::= power | "-" u_expr | "+" u_expr | "~" u_expr

일항 - (마이너스)연산자는그숫자인자의음의값을준다.
일항 + (플러스)연산자는그숫자인자의값을변경없이준다.
The unary ~ (invert) operator yields the bitwise inversion of its plain or long integer argument. The bitwise inversion of
x is defined as -(x+1). It only applies to integral numbers.
세가지경우모두,인자가올바른형을갖지않는다면, TypeError예외가발생한다.

5.6 이항산술연산

이항산술연산자는관습적인우선순위를갖는다. 이연산자중일부는일부비숫자형에도적용됨에주의해야
한다. 거듭제곱연산자와는별개로,오직두가지수준만있는데,하나는곱셈형연산자들이고,하나는덧셈형
연산자들이다.

m_expr ::= u_expr | m_expr "*" u_expr | m_expr "//" u_expr | m_expr "/" u_expr
| m_expr "%" u_expr

a_expr ::= m_expr | a_expr "+" m_expr | a_expr "-" m_expr

The * (multiplication) operator yields the product of its arguments. The arguments must either both be numbers, or
one argument must be an integer (plain or long) and the other must be a sequence. In the former case, the numbers are
converted to a common type and then multiplied together. In the latter case, sequence repetition is performed; a negative
repetition factor yields an empty sequence.
The / (division) and // (floor division) operators yield the quotient of their arguments. The numeric arguments are
first converted to a common type. Plain or long integer division yields an integer of the same type; the result is that of
mathematical division with the〈floor〉 function applied to the result. Division by zero raises theZeroDivisionError
exception.
% (모듈로, modulo)연산자는첫번째인자를두번째인자로나눈나머지를준다. 숫자인자들은먼저공통형
으로변환된다. 오른쪽인자가 0이면 ZeroDivisionError예외를일으킨다. 인자들은실수가될수있다,
예를들어, 3.14%0.7는 0.34와같다 (3.14 가 4*0.7 + 0.34와같으므로.) 모듈로연산자는항상두
번째피연산자와같은부호를갖는결과를준다 (또는 0이다);결과의절댓값은두번째피연산자의절댓값보다
작다2.

The integer division and modulo operators are connected by the following identity: x == (x/y)*y + (x%y). In-
teger division and modulo are also connected with the built-in function divmod(): divmod(x, y) == (x/y,
x%y). These identities don’t hold for floating point numbers; there similar identities hold approximately where x/y is
replaced by floor(x/y) or floor(x/y) - 13.
In addition to performing the modulo operation on numbers, the % operator is also overloaded by string and unicode

2 abs(x%y) < abs(y)이수학적으로는참이지만, float의경우에는소수점자름 (roundoff)때문에수치적으로참이아닐수있다.
예를들어,파이썬 float가 IEEE 754배정도숫자인플랫폼을가정할때, -1e-100 % 1e100가 1e100와같은부호를가지기위해,계산된
결과는 -1e-100 + 1e100인데, 수치적으로는 1e100과정확히같은값이다. 함수 math.fmod()는부호가첫번째인자의부호에
맞춰진결과를주기때문에,이경우 -1e-100을돌려준다. 어떤접근법이더적절한지는응용프로그램에달려있다.

3 If x is very close to an exact integer multiple of y, it’s possible for floor(x/y) to be one larger than (x-x%y)/y due to rounding. In such
cases, Python returns the latter result, in order to preserve that divmod(x,y)[0] * y + x % y be very close to x.

5.6. 이항산술연산 55

The Python Language Reference,출시버전 2.7.18

objects to perform string formatting (also known as interpolation). The syntax for string formatting is described in the
Python Library Reference, section string-formatting.
버전 2.3부터폐지: The floor division operator, the modulo operator, and the divmod() function are no longer defined
for complex numbers. Instead, convert to a floating point number using the abs() function if appropriate.
The + (addition) operator yields the sum of its arguments. The arguments must either both be numbers or both sequences
of the same type. In the former case, the numbers are converted to a common type and then added together. In the latter
case, the sequences are concatenated.
- (빼기)연산자는그인자들의차를준다. 숫자인자들은먼저공통형으로변환된다.

5.7 시프트연산

시프트연산은산술연산보다낮은우선순위를갖는다.

shift_expr ::= a_expr | shift_expr ("<<" | ">>") a_expr

These operators accept plain or long integers as arguments. The arguments are converted to a common type. They shift
the first argument to the left or right by the number of bits given by the second argument.
A right shift by n bits is defined as division by pow(2, n). A left shift by n bits is defined as multiplication with
pow(2, n). Negative shift counts raise a ValueError exception.

참고: 현재구현에서,우측피연산자는최대sys.maxsize일것이요구된다. 우측피연산자가sys.maxsize
보다크면 OverflowError예외가발생한다.

5.8 이항비트연산

세개의비트연산은각기다른우선순위를갖는다:

and_expr ::= shift_expr | and_expr "&" shift_expr
xor_expr ::= and_expr | xor_expr "^" and_expr
or_expr ::= xor_expr | or_expr "|" xor_expr

The & operator yields the bitwise AND of its arguments, which must be plain or long integers. The arguments are
converted to a common type.
The ^ operator yields the bitwise XOR (exclusive OR) of its arguments, which must be plain or long integers. The
arguments are converted to a common type.
The | operator yields the bitwise (inclusive) OR of its arguments, which must be plain or long integers. The arguments
are converted to a common type.

56 Chapter 5. 표현식

The Python Language Reference,출시버전 2.7.18

5.9 비교

C와는달리,파이썬에서모든비교연산은같은우선순위를갖는데,산술,시프팅,비트연산들보다낮다. 또한,
C와는달리, a < b < c와같은표현식이수학에서와같은방식으로해석된다.

comparison ::= or_expr (comp_operator or_expr)*
comp_operator ::= "<" | ">" | "==" | ">=" | "<=" | "<>" | "!="

| "is" ["not"] | ["not"] "in"

비교는논리값을준다: True또는 False

비교는자유롭게연결될수있다,예를들어, x < y <= z는 x < y and y <= z와동등한데,차이점은 y
의값을오직한번만구한다는것이다 (하지만두경우모두 x < y가거짓이면 z의값은구하지않는다).
형식적으로, a, b, c, …, y, z가표현식이고, op1, op2, …, opN가비교연산자면, a op1 b op2 c ... y opN
z는각표현식의값을최대한번만구한다는점을제외하고는 a op1 b and b op2 c and ... y opN
z와동등하다.

a op1 b op2 c가 a와 c간의어떤종류의비교도암시하지않기때문에,예를들어, x < y > z이완벽하
게 (아마이쁘지는않더라도)올바르다는것에주의해야한다.
The forms <> and != are equivalent; for consistency with C, != is preferred; where != is mentioned below <> is also
accepted. The <> spelling is considered obsolescent.

5.9.1 값비교

연산자 <, >, ==, >=, <=, !=는두객체의값을비교한다. 객체들이같은형일필요는없다.

객체, 값, 형 장은객체들이 (형과아이덴티티에더해)값을갖는다고말하고있다. 파이썬에서객체의값은
좀추상적인개념이다: 예를들어, 객체의값에대한규범적인 (canonical)액세스방법은없다. 또한, 객체의
값이특별한방식 (예를들어, 모든데이터어트리뷰트로구성되는것)으로구성되어야한다는요구사항도
없다. 비교연산자는객체의값이무엇인지에대한특정한종류의개념을구현한다. 객체의값을비교를통해
간접적으로정의한다고생각해도좋다.

Types can customize their comparison behavior by implementing a __cmp__() method or rich comparison methods
like __lt__(), described in기본적인커스터마이제이션.
동등비교 (== 와 !=) 의기본동작은객체의아이덴티티에기반을둔다. 그래서, 같은아이덴티티를갖는
인스턴스간의동등비교는같음을주고,다른아이덴티티를갖는인스턴스간의동등비교는다름을준다. 이
기본동작의동기는모든객체가반사적 (reflexive) (즉, x is y는 x == y를암시한다)이도록만들고자하는
욕구다.

The default order comparison (<, >, <=, and >=) gives a consistent but arbitrary order.
(This unusual definition of comparison was used to simplify the definition of operations like sorting and the in and not
in operators. In the future, the comparison rules for objects of different types are likely to change.)
다른아이덴티티를갖는인스턴스들이항상서로다르다는,기본동등비교의동작은,객체의값과값기반의
동등함에대한나름의정의를가진형들이필요로하는것과는크게다를수있다. 그런형들은자신의비교
동작을커스터마이즈할필요가있고,사실많은내장형이그렇게하고있다.

다음목록은가장중요한내장형들의비교동작을기술한다.

• 내장숫자형 ((typesnumeric)) 과표준라이브러리형 fractions.Fraction과 decimal.Decimal
에속하는숫자들은, 복소수가대소비교를지원하지않는다는제약사항만빼고는, 같거나다른형들
간의비교가가능하다. 관련된형들의한계안에서, 정밀도의손실없이수학적으로 (알고리즘적으로)
올바르게비교한다.

5.9. 비교 57

The Python Language Reference,출시버전 2.7.18

• Strings (instances of str or unicode) compare lexicographically using the numeric equivalents (the result of
the built-in function ord()) of their characters.4 When comparing an 8-bit string and a Unicode string, the 8-bit
string is converted to Unicode. If the conversion fails, the strings are considered unequal.

• Instances of tuple or list can be compared only within each of their types. Equality comparison across these
types results in unequality, and ordering comparison across these types gives an arbitrary order.
These sequences compare lexicographically using comparison of corresponding elements, whereby reflexivity of
the elements is enforced.
In enforcing reflexivity of elements, the comparison of collections assumes that for a collection element x, x ==
x is always true. Based on that assumption, element identity is compared first, and element comparison is per-
formed only for distinct elements. This approach yields the same result as a strict element comparison would,
if the compared elements are reflexive. For non-reflexive elements, the result is different than for strict element
comparison.
내장컬렉션들의사전적인비교는다음과같이이루어진다:

– 두컬렉션이같다고비교되기위해서는, 같은 형이고, 길이가 같고, 대응하는요소들의각쌍이
같다고비교되어야한다 (예를들어, [1,2] == (1,2)는거짓인데,형이다르기때문이다).

– Collections are ordered the same as their first unequal elements (for example, cmp([1,2,x], [1,2,
y]) returns the same as cmp(x,y)). If a corresponding element does not exist, the shorter collection is
ordered first (for example, [1,2] < [1,2,3] is true).

• 매핑들 (dict의인스턴스들)은같은 (key, value)쌍들을가질때,그리고오직이경우만같다고비교된다.
키와값의동등비교는반사성을강제한다.

Outcomes other than equality are resolved consistently, but are not otherwise defined.5

• Most other objects of built-in types compare unequal unless they are the same object; the choice whether one
object is considered smaller or larger than another one is made arbitrarily but consistently within one execution of
a program.

비교동작을커스터마이즈하는사용자정의클래스들은가능하다면몇가지일관성규칙을준수해야한다:

• 동등비교는반사적 (reflexive)이어야한다. 다른말로표현하면,아이덴티티가같은객체는같다고비교
되어야한다:

x is y면 x == y다.

• 비교는대칭적 (symmetric)이어야한다. 다른말로표현하면,다음과같은표현식은같은결과를주어야
한다:

x == y와 y == x

x != y와 y != x

x < y와 y > x

x <= y와 y >= x

• 비교는추이적 (transitive)이어야한다. 다음 (철저하지않은)예들이이것을예증한다:
4유니코드표준은코드포인트(code points) (예를들어,U+0041)와추상문자(abstract characters) (예를들어,《LATIN CAPITAL LETTER

A》)를구분한다. 유니코드에있는대부분의추상문자들이오직하나의코드포인트만으로표현되지만,추가로하나이상의코드포인트의
시퀀스로표현될수있는추상문자들이많이있다. 예를들어, 추상문자《LATIN CAPITAL LETTER C WITH CEDILLA》는코드위치
U+00C7 에있는한개의복합문자 (precomposed character) 나코드위치 U+0043 (LATIN CAPITAL LETTER C) 에있는기본문자 (base
character)와뒤따르는코드위치 U+0327 (COMBINING CEDILLA)에있는결합문자 (combining character)의시퀀스로표현될수있다.
The comparison operators on unicode strings compare at the level of Unicode code points. This may be counter-intuitive to humans. For example,

u"\u00C7" == u"\u0043\u0327" is False, even though both strings represent the same abstract character 《LATIN CAPITAL LETTER C
WITH CEDILLA》.
문자열을추상문자수준에서비교하려면 (즉,사람에게직관적인방법으로), unicodedata.normalize()를사용하라.
5 Earlier versions of Python used lexicographic comparison of the sorted (key, value) lists, but this was very expensive for the common case of

comparing for equality. An even earlier version of Python compared dictionaries by identity only, but this caused surprises because people expected to
be able to test a dictionary for emptiness by comparing it to {}.

58 Chapter 5. 표현식

The Python Language Reference,출시버전 2.7.18

x > y and y > z면 x > z다

x < y and y <= z“면 x < z다

• 역비교는논리적부정이되어야한다. 다른말로표현하면,다음표현식들이같은값을주어야한다:
x == y와 not x != y

x < y와 not x >= y (전순서의경우)
x > y와 not x <= y (전순서의경우)

마지막두표현식은전순서컬렉션에적용된다 (예를들어, 시퀀스에는적용되지만, 집합과 매핑은
그렇지않다). total_ordering()데코레이터또한보기바란다.

• hash()결과는동등성과일관성을유지해야한다. 같은객체들은같은해시값을같거나해시불가능으로
지정되어야한다.

Python does not enforce these consistency rules.

5.9.2 멤버십검사연산

연산자 in과 not in은멤버십을검사한다. x in s는 x가 s의멤버일때 True를,그렇지않을때 False
를준다. x not in s은 x in s의부정을준다. 딕셔너리뿐만아니라모든내장시퀀스들과집합형들이
이것을지원하는데,딕셔너리의경우는 in이딕셔너리에주어진키가있는지검사한다. list, tuple, set, frozenset,
dict, collections.deque 와같은컨테이너형들의경우, 표현식 x in y는 any(x is e or x == e for e
in y)와동등하다.

문자열과바이트열형의경우, x in y는 x가 y의서브스트링 (substring)인경우,그리고오직그경우만 True
다. 동등한검사는 y.find(x) != -1다. 빈 문자열은항상다른문자열들의서브스트링으로취급되기
때문에, "" in "abc"은 True를돌려준다.

__contains__()메서드를정의하는사용자정의클래스의경우, x in y는 y.__contains__(x)가
참을줄때 True를,그렇지않으면 False를돌려준다.

__contains__()를정의하지않지만 __iter__()를정의하는사용자정의클래스의경우, x in y는 y
를탐색할때 x == z를만족하는어떤값 z가만들어지면 True다. 탐색하는동안예외가발생하면 in이그
예외를일으킨것으로취급된다.

Lastly, the old-style iteration protocol is tried: if a class defines __getitem__(), x in y is True if and only if
there is a non-negative integer index i such that x == y[i], and all lower integer indices do not raise IndexError
exception. (If any other exception is raised, it is as if in raised that exception).
연산자 not in은 in의논리적부정으로정의된다.

5.9.3 아이덴티티비교

The operators is and is not test for object identity: x is y is true if and only if x and y are the same object. x is
not y yields the inverse truth value.6

6 자동가비지-수거 (automatic garbage-collection)와자유목록 (free lists)과디스크립터 (descriptor)의동적인성격때문에, is연산자를
인스턴스메서드들이나상수들을비교하는것과같은특정한방식으로사용할때,겉으로보기에이상한동작을감지할수있다. 더자세한
정보는그들의문서를확인하기바란다.

5.9. 비교 59

The Python Language Reference,출시버전 2.7.18

5.10 논리연산 (Boolean operations)

or_test ::= and_test | or_test "or" and_test
and_test ::= not_test | and_test "and" not_test
not_test ::= comparison | "not" not_test

In the context of Boolean operations, and also when expressions are used by control flow statements, the following values
are interpreted as false: False, None, numeric zero of all types, and empty strings and containers (including strings,
tuples, lists, dictionaries, sets and frozensets). All other values are interpreted as true. (See the __nonzero__() special
method for a way to change this.)
연산자 not은그인자가거짓이면 True를,그렇지않으면 False를준다.

표현식 x and y는먼저 x의값을구한다; x가거짓이면그값을돌려준다;그렇지않으면 y의값을구한후에
그결과를돌려준다.

표현식 x or y는먼저 x의값을구한다; x가참이면그값을돌려준다. 그렇지않으면 y의값을구한후에그
결과를돌려준다.

(Note that neither and nor or restrict the value and type they return to False and True, but rather return the last
evaluated argument. This is sometimes useful, e.g., if s is a string that should be replaced by a default value if it is empty,
the expression s or 'foo' yields the desired value. Because not has to invent a value anyway, it does not bother to
return a value of the same type as its argument, so e.g., not 'foo' yields False, not ''.)

5.11 Conditional Expressions

버전 2.5에추가.

conditional_expression ::= or_test ["if" or_test "else" expression]
expression ::= conditional_expression | lambda_expr

조건표현식은 (때로《삼항연산자 (ternary operator)》라고불린다)모든파이썬연산에서가장낮은우선순위를
갖는다.

The expression x if C else y first evaluates the condition, C (not x); if C is true, x is evaluated and its value is
returned; otherwise, y is evaluated and its value is returned.
조건표현식에대한더자세한내용은 PEP 308를참고하라.

5.12 람다 (Lambdas)

lambda_expr ::= "lambda" [parameter_list]: expression
old_lambda_expr ::= "lambda" [parameter_list]: old_expression

Lambda expressions (sometimes called lambda forms) have the same syntactic position as expressions. They are a short-
hand to create anonymous functions; the expression lambda parameters: expression yields a function object.
The unnamed object behaves like a function object defined with

def <lambda>(parameters):
return expression

60 Chapter 5. 표현식

https://www.python.org/dev/peps/pep-0308

The Python Language Reference,출시버전 2.7.18

See section 함수정의 for the syntax of parameter lists. Note that functions created with lambda expressions cannot
contain statements.

5.13 표현식목록 (Expression lists)

expression_list ::= expression ("," expression)* [","]

An expression list containing at least one comma yields a tuple. The length of the tuple is the number of expressions in
the list. The expressions are evaluated from left to right.
끝에붙는쉼표는단일튜플 (single tuple) (소위, 싱글톤 (singleton)) 을만들때만필수다; 다른모든경우에는
생략할수있다. 끝에붙는쉼표가없는단일표현식은튜플을만들지않고,그표현식의값을준다. (빈튜플을
만들려면,빈괄호쌍을사용하라: ().)

5.14 값을구하는순서

Python evaluates expressions from left to right. Notice that while evaluating an assignment, the right-hand side is evaluated
before the left-hand side.
다줄들에서,표현식은그들의끝에붙은숫자들의순서대로값이구해진다:

expr1, expr2, expr3, expr4
(expr1, expr2, expr3, expr4)
{expr1: expr2, expr3: expr4}
expr1 + expr2 * (expr3 - expr4)
expr1(expr2, expr3, *expr4, **expr5)
expr3, expr4 = expr1, expr2

5.15 연산자우선순위

The following table summarizes the operator precedences in Python, from lowest precedence (least binding) to highest
precedence (most binding). Operators in the same box have the same precedence. Unless the syntax is explicitly given,
operators are binary. Operators in the same box group left to right (except for comparisons, including tests, which all
have the same precedence and chain from left to right — see section 비교 — and exponentiation, which groups from
right to left).

5.14. 값을구하는순서 61

The Python Language Reference,출시버전 2.7.18

연산자 설명
lambda 람다표현식
if – else 조건표현식
or 논리 OR
and 논리 AND
not x 논리 NOT
in, not in, is, is not, <, <=, >, >=, <>, !=, == 비교, 멤버십검사와아이덴티티검사를포

함한다
| 비트 OR
^ 비트 XOR
& 비트 AND
<<, >> 시프트
+, - 덧셈과뺄셈
*, /, //, % Multiplication, division, remainder7
+x, -x, ~x 양,음,비트 NOT
** 거듭제곱8

x[index], x[index:index], x(arguments...), x.
attribute

서브스크립션, 슬라이싱, 호출, 어트리뷰트
참조

(expressions...), [expressions...], {key:
value...}, `expressions...`

Binding or tuple display, list display, dictionary
display, string conversion

7 %연산자는문자열포매팅에도사용된다;같은우선순위가적용된다.
8 거듭제곱연산자 **는오른쪽에오는산술이나비트일항연산자보다약하게결합한다,즉, 2**-1는 0.5다.

62 Chapter 5. 표현식

CHAPTER6

단순문 (Simple statements)

Simple statements are comprised within a single logical line. Several simple statements may occur on a single line sepa-
rated by semicolons. The syntax for simple statements is:

simple_stmt ::= expression_stmt
| assert_stmt
| assignment_stmt
| augmented_assignment_stmt
| pass_stmt
| del_stmt
| print_stmt
| return_stmt
| yield_stmt
| raise_stmt
| break_stmt
| continue_stmt
| import_stmt
| future_stmt
| global_stmt
| exec_stmt

6.1 표현식문

표현식문은값을계산하고출력하거나, (보통)프로시저 (procedure) (의미없는결과를돌려주는함수; 파이
썬에서프로시저는 None값을돌려준다)를호출하기위해 (대부분대화형으로)사용된다. 표현식문의다른
사용도허락되고때때로쓸모가있다.

expression_stmt ::= expression_list

63

The Python Language Reference,출시버전 2.7.18

표현식문은 (하나의표현식일수있는)표현식목록의값을구한다.
In interactive mode, if the value is not None, it is converted to a string using the built-in repr() function and the
resulting string is written to standard output (see section The print statement) on a line by itself. (Expression statements
yielding None are not written, so that procedure calls do not cause any output.)

6.2 대입문

대입문은이름을값에 (재)연결하고가변객체의어트리뷰트나항목들을수정한다.

assignment_stmt ::= (target_list "=")+ (expression_list | yield_expression)
target_list ::= target ("," target)* [","]
target ::= identifier

| "(" target_list ")"
| "[" [target_list] "]"
| attributeref
| subscription
| slicing

(See section프라이머리 for the syntax definitions for the last three symbols.)
대입문은표현식목록 (이것이하나의표현식일수도,쉼표로분리된목록일수도있는데,후자의경우는튜플이
만들어진다는것을기억하라)의값을구하고,왼쪽에서오른쪽으로,하나의결과객체를타깃목록의각각에
대입한다.

대입은타깃 (목록)의형태에따라재귀적으로정의된다. 타깃이가변객체의일부 (어트리뷰트참조나서
브스크립션이나슬라이싱)면, 가변객체가최종적으로대입을수행해야만하고, 그것이올바른지아닌지를
결정하고,대입이받아들여질수없으면예외를일으킬수있다. 다양한형들이주시하는규칙들과발생하는
예외들은그객체형의정의에서주어진다 (표준형계층섹션을보라).
Assignment of an object to a target list is recursively defined as follows.

• If the target list is a single target: The object is assigned to that target.
• If the target list is a comma-separated list of targets: The object must be an iterable with the same number of items
as there are targets in the target list, and the items are assigned, from left to right, to the corresponding targets.

하나의타깃에대한객체의대입은다음과같이재귀적으로정의된다.

• 타깃이식별자 (이름)면:

– If the name does not occur in a global statement in the current code block: the name is bound to the object
in the current local namespace.

– Otherwise: the name is bound to the object in the current global namespace.
그이름이이미연결되어있으면재연결된다. 이것은기존에연결되어있던객체의참조횟수가 0이
되도록만들어서, 객체가점유하던메모리가반납되고파괴자 (destructor) (갖고있다면)가호출되도록
만들수있다.

• If the target is a target list enclosed in parentheses or in square brackets: The object must be an iterable with the
same number of items as there are targets in the target list, and its items are assigned, from left to right, to the
corresponding targets.

• 타깃이어트리뷰트참조면: 참조의프라이머리표현식의값을구한다. 이것은대입가능한어트리뷰트를
가진객체를주어야하는데, 그렇지않으면 TypeError가일어난다. 그에그객체에주어진어트리뷰

64 Chapter 6. 단순문 (Simple statements)

The Python Language Reference,출시버전 2.7.18

트로객체를대입하도록요청한다; 대입을수행할수없다면예외 (보통 AttributeError이지만, 꼭
그럴필요는없다)를일으킨다.
주의사항: 객체가클래스인스턴스이고어트리뷰트참조가대입연산자의양쪽에서모두등장하면,RHS
표현식, a.x는인스턴스어트리뷰트나 (인스턴스어트리뷰트가없다면)클래스어트리뷰트를액세스할
수있다. LHS타깃 a.x는항상필요하면만들어서라도항상인스턴스어트리뷰트를설정한다. 그래서,
두 a.x가같은어트리뷰트를가리키는것은필요조건이아니다: RHS표현식이클래스어트리뷰트를
가리킨다면, LHS는대입의타깃으로새인스턴스어트리뷰트를만든다:

class Cls:
x = 3 # class variable

inst = Cls()
inst.x = inst.x + 1 # writes inst.x as 4 leaving Cls.x as 3

이설명이property()로만들어진프로퍼티(property)와같은디스크립터어트리뷰트에적용될필요는
없다.

• If the target is a subscription: The primary expression in the reference is evaluated. It should yield either a muta-
ble sequence object (such as a list) or a mapping object (such as a dictionary). Next, the subscript expression is
evaluated.
If the primary is a mutable sequence object (such as a list), the subscript must yield a plain integer. If it is negative,
the sequence’s length is added to it. The resulting value must be a nonnegative integer less than the sequence’s
length, and the sequence is asked to assign the assigned object to its item with that index. If the index is out of
range, IndexError is raised (assignment to a subscripted sequence cannot add new items to a list).
프라이머리가 (딕셔너리같은)매핑객체면, 서브스크립트는매핑의키형과호환되는형이어야하고,
매핑에그서브스크립트를객체에매핑하는키/데이터쌍을만들도록요청한다. 이때같은킷값을갖는
기존의키/값쌍을대체할수도있고, (같은값의키가존재하지않는경우) 새키/값쌍을삽입할수도
있다.

• If the target is a slicing: The primary expression in the reference is evaluated. It should yield a mutable sequence
object (such as a list). The assigned object should be a sequence object of the same type. Next, the lower and upper
bound expressions are evaluated, insofar they are present; defaults are zero and the sequence’s length. The bounds
should evaluate to (small) integers. If either bound is negative, the sequence’s length is added to it. The resulting
bounds are clipped to lie between zero and the sequence’s length, inclusive. Finally, the sequence object is asked to
replace the slice with the items of the assigned sequence. The length of the slice may be different from the length
of the assigned sequence, thus changing the length of the target sequence, if the object allows it.

현재구현에서, 타깃의문법은표현식과같게유지되고, 잘못된문법은코드생성단계에서거부되기때문에
에러메시지가덜상세해지는결과를낳고있다.

WARNING: Although the definition of assignment implies that overlaps between the left-hand side and the right-hand
side are 〈safe〉 (for example a, b = b, a swaps two variables), overlapswithin the collection of assigned-to variables
are not safe! For instance, the following program prints [0, 2]:

x = [0, 1]
i = 0
i, x[i] = 1, 2
print x

6.2. 대입문 65

The Python Language Reference,출시버전 2.7.18

6.2.1 증분대입문 (Augmented assignment statements)

증분대입문은한문장에서이항연산과대입문을합치는것이다:

augmented_assignment_stmt ::= augtarget augop (expression_list | yield_expression)
augtarget ::= identifier | attributeref | subscription | slicing
augop ::= "+=" | "-=" | "*=" | "/=" | "//=" | "%=" | "**="

| ">>=" | "<<=" | "&=" | "^=" | "|="

(See section프라이머리 for the syntax definitions for the last three symbols.)
증분대입은타깃 (일반대입문과는달리언패킹이될수없다)과표현식목록의값을구하고,둘을피연산자로
삼아대입의형에맞는이항연산을수행한후, 원래의타깃에그결과를대입한다. 타깃은오직한번만값이
구해진다.

x += 1과같은증분대입표현은 x = x + 1처럼다시쓸수있는데,정확히같은효과는아니지만비슷한
결과를준다. 증분버전에서는, x의값을오직한번만구한다. 또한, 가능할때,실제연산은제자리 (in-place)
에서수행되는데,새객체를만들고그것을타깃에대입하기보다는,예전객체를수정한다는의미다.

하나의문장에서튜플과다중타깃으로대입하는것을예외로하면, 증분대입문에의한대입은일반대입과
같은방법으로처리된다. 마찬가지로,제자리동작의가능성을예외로하면,증분대입때문에수행되는이진
연산은일반이진연산과같다.

어트리뷰트참조인타깃의경우,일반대입처럼클래스와인스턴스어트리뷰트에관한경고가적용된다.

6.3 assert문

assert문은프로그램에디버깅어서션 (debugging assertion)을삽입하는편리한방법이다:

assert_stmt ::= "assert" expression ["," expression]

간단한형태, assert expression은다음과동등하다

if __debug__:
if not expression: raise AssertionError

확장된형태, assert expression1, expression2는다음과동등하다

if __debug__:
if not expression1: raise AssertionError(expression2)

이동등성들은 __debug__과 AssertionError가같은이름의내장변수들을가리킨다고가정한다. 현재
구현에서,내장변수 __debug__은일반적인상황에서 True이고,최적화가요청되었을때 (명령행옵션 -O)
False다. 현재의코드생성기는컴파일시점에최적화가요청되면 assert문을위한코드를만들지않는다.
에러메시지에실패한표현식의소스코드를포함할필요가없음에주의하라;그것은스택트레이스의일부로
출력된다.

__debug__에대한대입은허락되지않는다. 이내장변수의값은인터프리터가시작할때결정된다.

66 Chapter 6. 단순문 (Simple statements)

The Python Language Reference,출시버전 2.7.18

6.4 pass문

pass_stmt ::= "pass"

pass는널 (null)연산이다—실행될때,아무런일도일어나지않는다. 문법적으로문장이필요하기는하지만
할일은없을때,자리를채우는용도로쓸모가있다,예를들어:

def f(arg): pass # a function that does nothing (yet)

class C: pass # a class with no methods (yet)

6.5 del문

del_stmt ::= "del" target_list

삭제는대입이정의된방식과아주비슷하게재귀적으로정의된다. 전체세부사항들을나열하는대신,여기
몇가지힌트가있다.

타깃목록의삭제는각타깃을왼쪽에서오른쪽으로재귀적으로삭제한다.

Deletion of a name removes the binding of that name from the local or global namespace, depending on whether the name
occurs in a global statement in the same code block. If the name is unbound, a NameError exception will be raised.
It is illegal to delete a name from the local namespace if it occurs as a free variable in a nested block.
어트리뷰트참조,서브스크립션,슬라이싱의삭제는관련된프라이머리객체로전달된다;슬라이싱의삭제는
일반적으로우변형의빈슬라이스를대입하는것과동등하다 (하지만이것조차슬라이싱되는객체가판단한
다).

6.6 The print statement

print_stmt ::= "print" ([expression ("," expression)* [","]]
| ">>" expression [("," expression)+ [","]])

print evaluates each expression in turn and writes the resulting object to standard output (see below). If an object is
not a string, it is first converted to a string using the rules for string conversions. The (resulting or original) string is then
written. A space is written before each object is (converted and) written, unless the output system believes it is positioned
at the beginning of a line. This is the case (1) when no characters have yet been written to standard output, (2) when
the last character written to standard output is a whitespace character except ' ', or (3) when the last write operation
on standard output was not a print statement. (In some cases it may be functional to write an empty string to standard
output for this reason.)

참고: Objects which act like file objects but which are not the built-in file objects often do not properly emulate this
aspect of the file object’s behavior, so it is best not to rely on this.

A '\n' character is written at the end, unless the print statement ends with a comma. This is the only action if the
statement contains just the keyword print.
Standard output is defined as the file object named stdout in the built-in module sys. If no such object exists, or if it

6.6. The print statement 67

The Python Language Reference,출시버전 2.7.18

does not have a write() method, a RuntimeError exception is raised.
print also has an extended form, defined by the second portion of the syntax described above. This form is sometimes
referred to as 《print chevron.》 In this form, the first expression after the >> must evaluate to a 《file-like》 object,
specifically an object that has a write() method as described above. With this extended form, the subsequent expres-
sions are printed to this file object. If the first expression evaluates to None, then sys.stdout is used as the file for
output.

6.7 return문

return_stmt ::= "return" [expression_list]

return은문법적으로클래스정의에중첩된경우가아니라,함수정의에만중첩되어나타날수있다.

표현식목록이있으면값을구하고,그렇지않으면 None으로치환된다.

return은표현식목록 (또는 None)을반환값으로해서,현재의함수호출을떠난다.
return이 finally 절을가진 try 문에서제어가벗어나도록만드는경우, 함수로부터진짜로벗어나기
전에그 finally절이실행된다.

In a generator function, the return statement is not allowed to include an expression_list. In that context, a
bare return indicates that the generator is done and will cause StopIteration to be raised.

6.8 yield문

yield_stmt ::= yield_expression

The yield statement is only used when defining a generator function, and is only used in the body of the generator
function. Using a yield statement in a function definition is sufficient to cause that definition to create a generator
function instead of a normal function.
When a generator function is called, it returns an iterator known as a generator iterator, or more commonly, a generator.
The body of the generator function is executed by calling the generator’s next() method repeatedly until it raises an
exception.
When a yield statement is executed, the state of the generator is frozen and the value of expression_list is
returned to next()〉s caller. By 《frozen》 we mean that all local state is retained, including the current bindings of
local variables, the instruction pointer, and the internal evaluation stack: enough information is saved so that the next time
next() is invoked, the function can proceed exactly as if the yield statement were just another external call.
As of Python version 2.5, the yield statement is now allowed in the try clause of a try… finally construct. If
the generator is not resumed before it is finalized (by reaching a zero reference count or by being garbage collected), the
generator-iterator’s close() method will be called, allowing any pending finally clauses to execute.
yield의뜻에대한전체세부사항들은일드표현식 (Yield expressions)섹션을참고하면된다.

참고: In Python 2.2, the yield statement was only allowed when the generators feature has been enabled. This
__future__ import statement was used to enable the feature:

from __future__ import generators

더보기:

68 Chapter 6. 단순문 (Simple statements)

The Python Language Reference,출시버전 2.7.18

PEP 255 - Simple Generators The proposal for adding generators and the yield statement to Python.
PEP 342 - Coroutines via Enhanced Generators The proposal that, among other generator enhancements, proposed

allowing yield to appear inside a try… finally block.

6.9 raise문

raise_stmt ::= "raise" [expression ["," expression ["," expression]]]

If no expressions are present, raise re-raises the last exception that was active in the current scope. If no exception is
active in the current scope, a TypeError exception is raised indicating that this is an error (if running under IDLE, a
Queue.Empty exception is raised instead).
Otherwise, raise evaluates the expressions to get three objects, using None as the value of omitted expressions. The
first two objects are used to determine the type and value of the exception.
If the first object is an instance, the type of the exception is the class of the instance, the instance itself is the value, and
the second object must be None.
If the first object is a class, it becomes the type of the exception. The second object is used to determine the exception
value: If it is an instance of the class, the instance becomes the exception value. If the second object is a tuple, it is used
as the argument list for the class constructor; if it is None, an empty argument list is used, and any other object is treated
as a single argument to the constructor. The instance so created by calling the constructor is used as the exception value.
If a third object is present and not None, it must be a traceback object (see section표준형계층), and it is substituted
instead of the current location as the place where the exception occurred. If the third object is present and not a traceback
object orNone, aTypeError exception is raised. The three-expression form ofraise is useful to re-raise an exception
transparently in an except clause, but raise with no expressions should be preferred if the exception to be re-raised was
the most recently active exception in the current scope.
예외에대한더많은정보를예외섹션에서발견할수있고, 예외를처리하는것에대한정보는 try문섹션에
있다.

6.10 break문

break_stmt ::= "break"

break는문법적으로 for나 while루프에중첩되어서만나타날수있다. 하지만그루프안의함수나클래스
정의에중첩되지는않는다.

가장가까이서둘러싸고있는루프를종료하고,그루프가 else절을갖고있다면건너뛴다 (skip).
for루프가 break로종료되면,루프제어타깃은현재값을유지한다.

break가 finally절을가 try문에서제어가벗어나도록만드는경우, 루프로부터진짜로벗어나기전에
그 finally절이실행된다.

6.10. break문 69

https://www.python.org/dev/peps/pep-0255
https://www.python.org/dev/peps/pep-0342

The Python Language Reference,출시버전 2.7.18

6.11 continue문

continue_stmt ::= "continue"

continue는문법적으로 for나 while루프에중첩되어서만나타날수있다. 하지만그루프안의함수나
클래스정의또는그루프내의 finally에중첩되지는않는다. 가장가까이서둘러싸고있는루프가다음
사이클로넘어가도록만든다.

continue가 finally절을가진 try문에서제어가벗어나도록만드는경우,다음루트사이클을시작하기
전에그 finally절이실행된다.

6.12 임포트 (import)문

import_stmt ::= "import" module ["as" name] ("," module ["as" name])*
| "from" relative_module "import" identifier ["as" name]
("," identifier ["as" name])*
| "from" relative_module "import" "(" identifier ["as" name]
("," identifier ["as" name])* [","] ")"
| "from" module "import" "*"

module ::= (identifier ".")* identifier
relative_module ::= "."* module | "."+
name ::= identifier

Import statements are executed in two steps: (1) find a module, and initialize it if necessary; (2) define a name or names
in the local namespace (of the scope where the import statement occurs). The statement comes in two forms differing
on whether it uses the from keyword. The first form (without from) repeats these steps for each identifier in the list.
The form with from performs step (1) once, and then performs step (2) repeatedly.
To understand how step (1) occurs, one must first understand how Python handles hierarchical naming of modules. To
help organize modules and provide a hierarchy in naming, Python has a concept of packages. A package can contain
other packages and modules while modules cannot contain other modules or packages. From a file system perspective,
packages are directories and modules are files.
Once the name of the module is known (unless otherwise specified, the term 《module》 will refer to both packages and
modules), searching for the module or package can begin. The first place checked is sys.modules, the cache of all
modules that have been imported previously. If the module is found there then it is used in step (2) of import.
If the module is not found in the cache, then sys.meta_path is searched (the specification for sys.meta_path
can be found in PEP 302). The object is a list of finder objects which are queried in order as to whether they know
how to load the module by calling their find_module() method with the name of the module. If the module hap-
pens to be contained within a package (as denoted by the existence of a dot in the name), then a second argument to
find_module() is given as the value of the __path__ attribute from the parent package (everything up to the last
dot in the name of the module being imported). If a finder can find the module it returns a loader (discussed later) or
returns None.
If none of the finders on sys.meta_path are able to find the module then some implicitly defined finders are queried.
Implementations of Python vary in what implicit meta path finders are defined. The one they all do define, though, is one
that handles sys.path_hooks, sys.path_importer_cache, and sys.path.
The implicit finder searches for the requested module in the 《paths》 specified in one of two places (《paths》 do not
have to be file system paths). If the module being imported is supposed to be contained within a package then the second
argument passed to find_module(), __path__ on the parent package, is used as the source of paths. If the module
is not contained in a package then sys.path is used as the source of paths.

70 Chapter 6. 단순문 (Simple statements)

https://www.python.org/dev/peps/pep-0302

The Python Language Reference,출시버전 2.7.18

Once the source of paths is chosen it is iterated over to find a finder that can handle that path. The dict at sys.
path_importer_cache caches finders for paths and is checked for a finder. If the path does not have a finder
cached then sys.path_hooks is searched by calling each object in the list with a single argument of the path, re-
turning a finder or raises ImportError. If a finder is returned then it is cached in sys.path_importer_cache
and then used for that path entry. If no finder can be found but the path exists then a value of None is stored in sys.
path_importer_cache to signify that an implicit, file-based finder that handles modules stored as individual files
should be used for that path. If the path does not exist then a finder which always returns None is placed in the cache for
the path.
If no finder can find the module then ImportError is raised. Otherwise some finder returned a loader whose
load_module() method is called with the name of the module to load (see PEP 302 for the original definition
of loaders). A loader has several responsibilities to perform on a module it loads. First, if the module already exists in
sys.modules (a possibility if the loader is called outside of the import machinery) then it is to use that module for
initialization and not a new module. But if the module does not exist in sys.modules then it is to be added to that
dict before initialization begins. If an error occurs during loading of the module and it was added to sys.modules it
is to be removed from the dict. If an error occurs but the module was already in sys.modules it is left in the dict.
The loader must set several attributes on the module. __name__ is to be set to the name of the module. __file__
is to be the 《path》 to the file unless the module is built-in (and thus listed in sys.builtin_module_names) in
which case the attribute is not set. If what is being imported is a package then __path__ is to be set to a list of paths
to be searched when looking for modules and packages contained within the package being imported. __package__
is optional but should be set to the name of package that contains the module or package (the empty string is used for
module not contained in a package). __loader__ is also optional but should be set to the loader object that is loading
the module.
If an error occurs during loading then the loader raises ImportError if some other exception is not already being
propagated. Otherwise the loader returns the module that was loaded and initialized.
When step (1) finishes without raising an exception, step (2) can begin.
The first form of import statement binds the module name in the local namespace to the module object, and then goes
on to import the next identifier, if any. If the module name is followed by as, the name following as is used as the local
name for the module.
The from form does not bind the module name: it goes through the list of identifiers, looks each one of them up in
the module found in step (1), and binds the name in the local namespace to the object thus found. As with the first
form of import, an alternate local name can be supplied by specifying 《as localname》. If a name is not found,
ImportError is raised. If the list of identifiers is replaced by a star ('*'), all public names defined in the module are
bound in the local namespace of the import statement..
The public names defined by a module are determined by checking the module’ s namespace for a variable named
__all__; if defined, it must be a sequence of strings which are names defined or imported by that module. The names
given in __all__ are all considered public and are required to exist. If __all__ is not defined, the set of public names
includes all names found in the module’s namespace which do not begin with an underscore character ('_'). __all__
should contain the entire public API. It is intended to avoid accidentally exporting items that are not part of the API (such
as library modules which were imported and used within the module).
The from form with * may only occur in a module scope. If the wild card form of import — import *— is used in
a function and the function contains or is a nested block with free variables, the compiler will raise a SyntaxError.
임포트할모듈을지정할때모듈의절대이름 (absolute name)을지정할필요는없다. 모듈이나패키지가다른
패키지안에포함될때, 같은상위패키지내에서는그패키지이름을언급할필요없이상대임포트 (relative
import)를할수있다. from뒤에지정되는패키지나모듈앞에붙이는점으로,정확한이름을지정하지않고도
현재패키지계층을얼마나거슬러올라가야하는지지정할수있다. 하나의점은이임포트를하는모듈이
존재하는현재패키지를뜻한다. 두개의점은한패키지수준을거슬러올라가는것을뜻한다. 세개의점은두
개의수준을,등등이다. 그래서 pkg패키지에있는모듈에서 from . import mod를실행하면, pkg.mod를
임포트하게된다. pkg.subpkg1안에서from ..subpkg2 import mod를실행하면pkg.subpkg2.mod
를임포트하게된다. 상대임포트에대한규격은 PEP 328안에들어있다.

6.12. 임포트 (import)문 71

https://www.python.org/dev/peps/pep-0302
https://www.python.org/dev/peps/pep-0328

The Python Language Reference,출시버전 2.7.18

importlib.import_module() is provided to support applications that determine whichmodules need to be loaded
dynamically.

6.12.1 퓨처문

A future statement is a directive to the compiler that a particular module should be compiled using syntax or semantics
that will be available in a specified future release of Python. The future statement is intended to ease migration to future
versions of Python that introduce incompatible changes to the language. It allows use of the new features on a per-module
basis before the release in which the feature becomes standard.

future_statement ::= "from" "__future__" "import" feature ["as" name]
("," feature ["as" name])*
| "from" "__future__" "import" "(" feature ["as" name]
("," feature ["as" name])* [","] ")"

feature ::= identifier
name ::= identifier

퓨처문은모듈의거의처음에나와야한다. 퓨처문앞에나올수있는줄들은:

• 모듈독스트링 (docstring) (있다면),
• 주석
• 빈줄,그리고
• 다른퓨처문들

The features recognized by Python 2.6 are unicode_literals, print_function, absolute_import,
division, generators, nested_scopes and with_statement. generators, with_statement,
nested_scopes are redundant in Python version 2.6 and above because they are always enabled.
퓨처문은구체적으로는컴파일시점에인식되고다뤄진다: 핵심구성물들의의미에대한변경은종종다른
코드생성을통해구현된다. 새기능이호환되지않는 (새로운예약어처럼)새로운문법을도입하는경우조차
가능한데,이경우는컴파일러가모듈을다르게파싱할수있다. 그런결정들은실행시점으로미뤄질수없다..

배포마다,컴파일러는어떤기능이름들이정의되어있는지알고,만약퓨처문이알지못하는기능을포함하고
있으면컴파일시점에러를일으킨다.

직접적인실행시점의개념은다른임포트문들과같다: 표준모듈 __future__, 후에설명한다,다있고,퓨처
문이실행되는시점에일반적인방법으로임포트된다.

흥미로운실행시점의개념들은퓨처문에의해활성화되는구체적인기능들에달려있다.

이런문장에는아무것도특별한것이없음에주의해야한다:

import __future__ [as name]

이것은퓨처문이아니다;아무런특별한개념이나문법적인제약이없는평범한임포트문일뿐이다.

Code compiled by an exec statement or calls to the built-in functions compile() and execfile() that occur in a
module M containing a future statement will, by default, use the new syntax or semantics associated with the future state-
ment. This can, starting with Python 2.2 be controlled by optional arguments to compile()— see the documentation
of that function for details.
대화형인터프리터프롬프트에서입력된퓨처문은인터프리터세션의남은기간효과를발생시킨다. 인
터프리터가 -i, 실행할스크립트이름이전달된다, 옵션으로시작하고, 그스크립트가퓨처문을포함하면,
스크립트가실행된이후에시작되는대화형세션에서도효과를유지한다.

더보기:

72 Chapter 6. 단순문 (Simple statements)

The Python Language Reference,출시버전 2.7.18

PEP 236 -백투더 __future__ __future__메커니즘에대한최초의제안.

6.13 global문

global_stmt ::= "global" identifier ("," identifier)*

global문은현재코드블록전체에적용되는선언이다. 나열된식별자들이전역으로해석되어야한다는
뜻이다. global 선언없이자유변수들이전역을가리킬수있기는하지만, global없이전역변수에값을
대입하는것은불가능하다.

global문에나열된이름들은같은코드블록에서 global문앞에등장할수없다.

Names listed in a global statement must not be defined as formal parameters or in a for loop control target, class
definition, function definition, or import statement.
CPython implementation detail: The current implementation does not enforce the latter two restrictions, but programs
should not abuse this freedom, as future implementations may enforce them or silently change themeaning of the program.
Programmer’s note: global is a directive to the parser. It applies only to code parsed at the same time as the
global statement. In particular, a global statement contained in an exec statement does not affect the code block
containing the exec statement, and code contained in an exec statement is unaffected by global statements in the
code containing the exec statement. The same applies to the eval(), execfile() and compile() functions.

6.14 The exec statement

exec_stmt ::= "exec" or_expr ["in" expression ["," expression]]

This statement supports dynamic execution of Python code. The first expression should evaluate to either a Unicode
string, a Latin-1 encoded string, an open file object, a code object, or a tuple. If it is a string, the string is parsed as a suite
of Python statements which is then executed (unless a syntax error occurs).1 If it is an open file, the file is parsed until
EOF and executed. If it is a code object, it is simply executed. For the interpretation of a tuple, see below. In all cases,
the code that’s executed is expected to be valid as file input (see section파일입력). Be aware that the return and
yield statements may not be used outside of function definitions even within the context of code passed to the exec
statement.
In all cases, if the optional parts are omitted, the code is executed in the current scope. If only the first expression after
in is specified, it should be a dictionary, which will be used for both the global and the local variables. If two expressions
are given, they are used for the global and local variables, respectively. If provided, locals can be any mapping object.
Remember that at module level, globals and locals are the same dictionary. If two separate objects are given as globals
and locals, the code will be executed as if it were embedded in a class definition.
The first expression may also be a tuple of length 2 or 3. In this case, the optional parts must be omitted.
The form exec(expr, globals) is equivalent to exec expr in globals, while the form exec(expr,
globals, locals) is equivalent to exec expr in globals, locals. The tuple form of exec provides
compatibility with Python 3, where exec is a function rather than a statement.
버전 2.4에서변경: Formerly, locals was required to be a dictionary.
As a side effect, an implementation may insert additional keys into the dictionaries given besides those corresponding to
variable names set by the executed code. For example, the current implementation may add a reference to the dictionary
of the built-in module __builtin__ under the key __builtins__ (!).

1 Note that the parser only accepts the Unix-style end of line convention. If you are reading the code from a file, make sure to use universal newlines
mode to convert Windows or Mac-style newlines.

6.14. The exec statement 73

https://www.python.org/dev/peps/pep-0236

The Python Language Reference,출시버전 2.7.18

Programmer’s hints: dynamic evaluation of expressions is supported by the built-in function eval(). The built-in
functions globals() and locals() return the current global and local dictionary, respectively, which may be useful
to pass around for use by exec.

74 Chapter 6. 단순문 (Simple statements)

CHAPTER7

복합문 (Compound statements)

복합문은다른문장들 (의그룹들)을포함한다;어떤방법으로그다른문장들의실행에영향을주거나제어한
다. 간단하게표현할때,전체복합문을한줄로쓸수있기는하지만,일반적으로복합문은여러줄에걸친다.

The if, while and for statements implement traditional control flow constructs. try specifies exception handlers
and/or cleanup code for a group of statements. Function and class definitions are also syntactically compound statements.
Compound statements consist of one or more 〈clauses.〉A clause consists of a header and a 〈suite.〉 The clause headers
of a particular compound statement are all at the same indentation level. Each clause header begins with a uniquely
identifying keyword and ends with a colon. A suite is a group of statements controlled by a clause. A suite can be one or
more semicolon-separated simple statements on the same line as the header, following the header’s colon, or it can be one
or more indented statements on subsequent lines. Only the latter form of suite can contain nested compound statements;
the following is illegal, mostly because it wouldn’t be clear to which if clause a following else clause would belong:

if test1: if test2: print x

Also note that the semicolon binds tighter than the colon in this context, so that in the following example, either all or
none of the print statements are executed:

if x < y < z: print x; print y; print z

요약하면:

compound_stmt ::= if_stmt
| while_stmt
| for_stmt
| try_stmt
| with_stmt
| funcdef
| classdef
| decorated

suite ::= stmt_list NEWLINE | NEWLINE INDENT statement+ DEDENT
statement ::= stmt_list NEWLINE | compound_stmt
stmt_list ::= simple_stmt (";" simple_stmt)* [";"]

75

The Python Language Reference,출시버전 2.7.18

Note that statements always end in a NEWLINE possibly followed by a DEDENT. Also note that optional continuation
clauses always begin with a keyword that cannot start a statement, thus there are no ambiguities (the 〈dangling else〉
problem is solved in Python by requiring nested if statements to be indented).
명확함을위해다음에오는절들에서나오는문법규칙들은각절을별도의줄에놓도록포매팅한다.

7.1 if문

if문은조건부실행에사용된다:

if_stmt ::= "if" expression ":" suite
("elif" expression ":" suite)*
["else" ":" suite]

참이되는것을발견할때까지표현식들의값을하나씩차례대로구해서정확히하나의스위트를선택한다
(참과거짓의정의는논리연산 (Boolean operations)섹션을보라); 그런다음그스위트를실행한다 (그리고는
if문의다른어떤부분도실행되거나값이구해지지않는다). 모든표현식들이거짓이면 else절의스위트가
(있다면)실행된다.

7.2 while문

while문은표현식이참인동안실행을반복하는데사용된다:

while_stmt ::= "while" expression ":" suite
["else" ":" suite]

이것은표현식을반복적으로검사하고, 참이면, 첫번째스위트를실행한다; 표현식이거짓이면 (처음부터
거짓일수도있다) else절의스위트가 (있다면)실행되고루프를종료한다.
첫번째스위트에서실행되는 break문은 else절을실행하지않고루프를종료한다. 첫번째스위트에서
실행되는 continue문은스위트의나머지부분을건너뛰고표현식의검사로돌아간다.

7.3 for문

for문은 (문자열,튜플,리스트같은)시퀀스나다른이터러블객체의요소들을이터레이트하는데사용된다:

for_stmt ::= "for" target_list "in" expression_list ":" suite
["else" ":" suite]

The expression list is evaluated once; it should yield an iterable object. An iterator is created for the result of the
expression_list. The suite is then executed once for each item provided by the iterator, in the order of ascending
indices. Each item in turn is assigned to the target list using the standard rules for assignments, and then the suite is exe-
cuted. When the items are exhausted (which is immediately when the sequence is empty), the suite in the else clause,
if present, is executed, and the loop terminates.
A break statement executed in the first suite terminates the loop without executing the else clause’ s suite. A
continue statement executed in the first suite skips the rest of the suite and continues with the next item, or with

76 Chapter 7. 복합문 (Compound statements)

The Python Language Reference,출시버전 2.7.18

the else clause if there was no next item.
The suite may assign to the variable(s) in the target list; this does not affect the next item assigned to it.
The target list is not deleted when the loop is finished, but if the sequence is empty, it will not have been assigned to at all
by the loop. Hint: the built-in function range() returns a sequence of integers suitable to emulate the effect of Pascal’
s for i := a to b do; e.g., range(3) returns the list [0, 1, 2].

참고: There is a subtlety when the sequence is being modified by the loop (this can only occur for mutable sequences,
e.g. lists). An internal counter is used to keep track of which item is used next, and this is incremented on each iteration.
When this counter has reached the length of the sequence the loop terminates. This means that if the suite deletes the
current (or a previous) item from the sequence, the next item will be skipped (since it gets the index of the current item
which has already been treated). Likewise, if the suite inserts an item in the sequence before the current item, the current
item will be treated again the next time through the loop. This can lead to nasty bugs that can be avoided by making a
temporary copy using a slice of the whole sequence, e.g.,

for x in a[:]:
if x < 0: a.remove(x)

7.4 try문

try문은문장그룹에대한예외처리기나정리 (cleanup)코드또는그둘모두를지정하는데사용된다.

try_stmt ::= try1_stmt | try2_stmt
try1_stmt ::= "try" ":" suite

("except" [expression [("as" | ",") identifier]] ":" suite)+
["else" ":" suite]
["finally" ":" suite]

try2_stmt ::= "try" ":" suite
"finally" ":" suite

버전 2.5에서변경: In previous versions of Python, try…except…finally did not work. try…except had
to be nested in try…finally.

Theexcept clause(s) specify one ormore exception handlers. When no exception occurs in thetry clause, no exception
handler is executed. When an exception occurs in the try suite, a search for an exception handler is started. This search
inspects the except clauses in turn until one is found that matches the exception. An expression-less except clause, if
present, must be last; it matches any exception. For an except clause with an expression, that expression is evaluated, and
the clause matches the exception if the resulting object is《compatible》with the exception. An object is compatible with
an exception if it is the class or a base class of the exception object, or a tuple containing an item compatible with the
exception.
except절중어느것도예외와매치되지않으면,예외처리기검색은둘러싼코드와호출스택에서계속된다.1

만약 except절의헤더에있는표현식의값을구할때예외가발생하면,원래의처리기검색은취소되고둘러싼
코드와호출스택에서새예외에대해검사가시작된다 (try문전체가예외를일으킨것으로취급된다).
When a matching except clause is found, the exception is assigned to the target specified in that except clause, if present,
and the except clause’s suite is executed. All except clauses must have an executable block. When the end of this block
is reached, execution continues normally after the entire try statement. (This means that if two nested handlers exist for

1 다른예외를일으키는 finally절이있지않은한예외는호출스택으로퍼진다. 그새예외는예전의것을잃어버리게만든다.

7.4. try문 77

The Python Language Reference,출시버전 2.7.18

the same exception, and the exception occurs in the try clause of the inner handler, the outer handler will not handle the
exception.)
Before an except clause’s suite is executed, details about the exception are assigned to three variables in the sysmodule:
sys.exc_type receives the object identifying the exception; sys.exc_value receives the exception’s parameter;
sys.exc_traceback receives a traceback object (see section 표준형계층) identifying the point in the program
where the exception occurred. These details are also available through the sys.exc_info() function, which returns
a tuple (exc_type, exc_value, exc_traceback). Use of the corresponding variables is deprecated in favor
of this function, since their use is unsafe in a threaded program. As of Python 1.5, the variables are restored to their
previous values (before the call) when returning from a function that handled an exception.
The optional else clause is executed if the control flow leaves the try suite, no exception was raised, and no return,
continue, or break statement was executed. Exceptions in the else clause are not handled by the preceding
except clauses.
If finally is present, it specifies a 〈cleanup〉 handler. The try clause is executed, including any except and else
clauses. If an exception occurs in any of the clauses and is not handled, the exception is temporarily saved. The finally
clause is executed. If there is a saved exception, it is re-raised at the end of the finally clause. If the finally clause
raises another exception or executes a return or break statement, the saved exception is discarded:

>>> def f():
... try:
... 1/0
... finally:
... return 42
...
>>> f()
42

finally절을실행하는동안예외정보는프로그램에제공되지않는다.

try…finally문의 try스위트에서 return, break, continue문이실행될때, finally절도 〈나가는
길에〉 실행된다. finally 절에서는 continue 문을 사용할 수 없다. (그 이유는 현재 구현에 있는 문제
때문이다—이제약은미래에제거될수있다).
함수의반환값은마지막에실행된 return문으로결정된다. finally절이항상실행되기때문에, finally
절에서실행되는 return문이항상마지막에실행되는것이된다:

>>> def foo():
... try:
... return 'try'
... finally:
... return 'finally'
...
>>> foo()
'finally'

예외에관한추가의정보는예외섹션에서찾을수있고, 예외를일으키기위해 raise문을사용하는것에
관한정보는 raise문섹션에서찾을수있다.

78 Chapter 7. 복합문 (Compound statements)

The Python Language Reference,출시버전 2.7.18

7.5 with문

버전 2.5에추가.
with문은블록의실행을컨텍스트관리자 (with문컨텍스트관리자섹션을보라)가정의한메서드들로감싸는
데사용된다. 이것은흔한 try…except…finally사용패턴을편리하게재사용할수있도록캡슐화할수
있도록한다.

with_stmt ::= "with" with_item ("," with_item)* ":" suite
with_item ::= expression ["as" target]

하나의《item》을사용하는 with문의실행은다음과같이진행된다:

1. 컨텍스트관리자를얻기위해컨텍스트표현식 (with_item에주어진 expression)의값을구한다.
2. 나중에사용하기위해컨텍스트관리자의 __exit__()가로드된다.

3. 컨텍스트관리자의 __enter__()메서드를호출한다.

4. with문에타깃이포함되었으면,그것에 __enter__()의반환값을대입한다.

참고: with문은 __enter__()메서드가에러없이돌아왔을때, __exit__()가항상호출됨을
보장한다. 그래서, 타깃에대입하는동안에러가발생하면, 스위트안에서에러가발생한것과같이
취급된다. 아래의 6단계를보라.

5. 스위트가실행된다.
6. The context manager’s __exit__() method is invoked. If an exception caused the suite to be exited, its type,

value, and traceback are passed as arguments to __exit__(). Otherwise, three None arguments are supplied.
If the suite was exited due to an exception, and the return value from the __exit__() method was false, the
exception is reraised. If the return value was true, the exception is suppressed, and execution continues with the
statement following the with statement.
스위트가예외이외의이유로종료되면, __exit__()의반환값은무시되고,해당종료의종류에맞는
위치에서실행을계속한다.

하나보다많은항목을주면,컨텍스트관리자는 with문이중첩된것처럼진행한다:

with A() as a, B() as b:
suite

는다음과동등하다

with A() as a:
with B() as b:

suite

참고: In Python 2.5, the with statement is only allowed when the with_statement feature has been enabled. It is
always enabled in Python 2.6.

버전 2.7에서변경: 다중컨텍스트표현식의지원
더보기:

PEP 343 - 《with》문 파이썬 with문의규격,배경,예.

7.5. with문 79

https://www.python.org/dev/peps/pep-0343

The Python Language Reference,출시버전 2.7.18

7.6 함수정의

함수정의는사용자정의함수객체 (표준형계층섹션을보라)를정의한다:

decorated ::= decorators (classdef | funcdef)
decorators ::= decorator+
decorator ::= "@" dotted_name ["(" [argument_list [","]] ")"] NEWLINE
funcdef ::= "def" funcname "(" [parameter_list] ")" ":" suite
dotted_name ::= identifier ("." identifier)*
parameter_list ::= (defparameter ",")*

("*" identifier ["," "**" identifier]
| "**" identifier
| defparameter [","])

defparameter ::= parameter ["=" expression]
sublist ::= parameter ("," parameter)* [","]
parameter ::= identifier | "(" sublist ")"
funcname ::= identifier

함수정의는실행할수있는문장이다. 실행하면현재지역이름공간의함수이름을함수객체 (함수의실행
가능한코드를둘러싼래퍼 (wrapper)). 이함수객체는현재의이름공간에대한참조를포함하는데, 함수가
호출될때전역이름공간으로사용된다.

함수정의는함수의바디를실행하지않는다. 함수가호출될때실행된다.2

A function definition may be wrapped by one or more decorator expressions. Decorator expressions are evaluated when
the function is defined, in the scope that contains the function definition. The result must be a callable, which is invoked
with the function object as the only argument. The returned value is bound to the function name instead of the function
object. Multiple decorators are applied in nested fashion. For example, the following code:

@f1(arg)
@f2
def func(): pass

is equivalent to:

def func(): pass
func = f1(arg)(f2(func))

When one or more top-level parameters have the form parameter = expression, the function is said to have 《default
parameter values.》 For a parameter with a default value, the corresponding argument may be omitted from a call, in
which case the parameter’s default value is substituted. If a parameter has a default value, all following parameters must
also have a default value — this is a syntactic restriction that is not expressed by the grammar.
Default parameter values are evaluated when the function definition is executed. This means that the expression
is evaluated once, when the function is defined, and that the same 《pre-computed》 value is used for each call. This
is especially important to understand when a default parameter is a mutable object, such as a list or a dictionary: if the
function modifies the object (e.g. by appending an item to a list), the default value is in effect modified. This is generally
not what was intended. A way around this is to use None as the default, and explicitly test for it in the body of the
function, e.g.:

def whats_on_the_telly(penguin=None):
if penguin is None:

penguin = []

(다음페이지에계속)
2 함수바디의첫번째문장으로등장하는문자열리터럴은함수의 __doc__어트리뷰트로변환되어함수의독스트링이된다.

80 Chapter 7. 복합문 (Compound statements)

The Python Language Reference,출시버전 2.7.18

(이전페이지에서계속)
penguin.append("property of the zoo")
return penguin

Function call semantics are described inmore detail in section호출. A function call always assigns values to all parameters
mentioned in the parameter list, either from position arguments, from keyword arguments, or from default values. If the
form 《*identifier》 is present, it is initialized to a tuple receiving any excess positional parameters, defaulting to
the empty tuple. If the form 《**identifier》 is present, it is initialized to a new dictionary receiving any excess
keyword arguments, defaulting to a new empty dictionary.
It is also possible to create anonymous functions (functions not bound to a name), for immediate use in expressions. This
uses lambda expressions, described in section람다 (Lambdas). Note that the lambda expression is merely a shorthand
for a simplified function definition; a function defined in a《def》 statement can be passed around or assigned to another
name just like a function defined by a lambda expression. The 《def》 form is actually more powerful since it allows the
execution of multiple statements.
Programmer’s note: Functions are first-class objects. A 《def》 form executed inside a function definition defines
a local function that can be returned or passed around. Free variables used in the nested function can access the local
variables of the function containing the def. See section이름과연결 (binding) for details.

7.7 클래스정의

클래스정의는클래스객체 (표준형계층섹션을보라)를정의한다:

classdef ::= "class" classname [inheritance] ":" suite
inheritance ::= "(" [expression_list] ")"
classname ::= identifier

A class definition is an executable statement. It first evaluates the inheritance list, if present. Each item in the inheritance
list should evaluate to a class object or class type which allows subclassing. The class’s suite is then executed in a new
execution frame (see section 이름과 연결 (binding)), using a newly created local namespace and the original global
namespace. (Usually, the suite contains only function definitions.) When the class’s suite finishes execution, its execution
frame is discarded but its local namespace is saved.3 A class object is then created using the inheritance list for the base
classes and the saved local namespace for the attribute dictionary. The class name is bound to this class object in the
original local namespace.
Programmer’s note: Variables defined in the class definition are class variables; they are shared by all instances. To
create instance variables, they can be set in a method with self.name = value. Both class and instance variables
are accessible through the notation 《self.name》, and an instance variable hides a class variable with the same name
when accessed in this way. Class variables can be used as defaults for instance variables, but using mutable values there
can lead to unexpected results. For new-style classes, descriptors can be used to create instance variables with different
implementation details.
Class definitions, like function definitions, may be wrapped by one or more decorator expressions. The evaluation rules
for the decorator expressions are the same as for functions. The result must be a class object, which is then bound to the
class name.

3 클래스바디의첫번째문장으로등장하는문자열리터럴은그이름공간의 __doc__항목으로변환되어클래스의독스트링이된다.

7.7. 클래스정의 81

The Python Language Reference,출시버전 2.7.18

82 Chapter 7. 복합문 (Compound statements)

CHAPTER8

최상위요소들

파이썬인터프리터는여러가지출처로부터입력을얻을수있다: 표준입력이나프로그램인자로전달된
스크립트,대화형으로입력된것,모듈소스파일등등. 이장은이경우들에사용되는문법을제공한다.

8.1 완전한파이썬프로그램

While a language specification need not prescribe how the language interpreter is invoked, it is useful to have a notion
of a complete Python program. A complete Python program is executed in a minimally initialized environment: all
built-in and standard modules are available, but none have been initialized, except for sys (various system services),
__builtin__ (built-in functions, exceptions and None) and __main__. The latter is used to provide the local and
global namespace for execution of the complete program.
완전한파이썬프로그램의문법은다음섹션에서설명되는파일입력의경우다.

인터프리터는대화형으로실행될수도있다; 이경우, 완전한프로그램을읽어서실행하지않고, 한번에한
문장 (복합문도가능하다)씩읽어서실행한다. 초기환경은완전한프로그램과같다;각문장은 __main__의
이름공간에서실행된다.

A complete program can be passed to the interpreter in three forms: with the -c string command line option, as a file
passed as the first command line argument, or as standard input. If the file or standard input is a tty device, the interpreter
enters interactive mode; otherwise, it executes the file as a complete program.

8.2 파일입력

비대화형파일로부터읽힌모든입력은같은형태를취한다:

file_input ::= (NEWLINE | statement)*

이문법은다음과같은상황에서사용된다:

83

The Python Language Reference,출시버전 2.7.18

• (파일이나문자열로부터온)완전한파이썬프로그램을파싱할때;
• 모듈을파싱할때;
• when parsing a string passed to the exec statement;

8.3 대화형입력

대화형모드에서의입력은다음과같은문법규칙을사용한다:

interactive_input ::= [stmt_list] NEWLINE | compound_stmt NEWLINE

(최상위)복합문은대화형모드에서빈줄을붙여줘야함에유념해야한다; 파서가입력의끝을감지하는데
필요하다.

8.4 표현식입력

There are two forms of expression input. Both ignore leading whitespace. The string argument to eval() must have
the following form:

eval_input ::= expression_list NEWLINE*

The input line read by input() must have the following form:

input_input ::= expression_list NEWLINE

Note: to read 〈raw〉 input line without interpretation, you can use the built-in function raw_input() or the
readline() method of file objects.

84 Chapter 8. 최상위요소들

CHAPTER9

전체문법규격

이것이파서제너레이터가읽고,파이썬소스파일을파싱하는데사용되는전체파이썬문법규칙이다:

Grammar for Python

Note: Changing the grammar specified in this file will most likely
require corresponding changes in the parser module
(../Modules/parsermodule.c). If you can't make the changes to
that module yourself, please co-ordinate the required changes
with someone who can; ask around on python-dev for help. Fred
Drake <fdrake@acm.org> will probably be listening there.

NOTE WELL: You should also follow all the steps listed in PEP 306,
"How to Change Python's Grammar"

Start symbols for the grammar:
single_input is a single interactive statement;
file_input is a module or sequence of commands read from an input file;
eval_input is the input for the eval() and input() functions.
NB: compound_stmt in single_input is followed by extra NEWLINE!
single_input: NEWLINE | simple_stmt | compound_stmt NEWLINE
file_input: (NEWLINE | stmt)* ENDMARKER
eval_input: testlist NEWLINE* ENDMARKER

decorator: '@' dotted_name ['(' [arglist] ')'] NEWLINE
decorators: decorator+
decorated: decorators (classdef | funcdef)
funcdef: 'def' NAME parameters ':' suite
parameters: '(' [varargslist] ')'
varargslist: ((fpdef ['=' test] ',')*

('*' NAME [',' '**' NAME] | '**' NAME) |
fpdef ['=' test] (',' fpdef ['=' test])* [','])

fpdef: NAME | '(' fplist ')'
fplist: fpdef (',' fpdef)* [',']

(다음페이지에계속)

85

The Python Language Reference,출시버전 2.7.18

(이전페이지에서계속)
stmt: simple_stmt | compound_stmt
simple_stmt: small_stmt (';' small_stmt)* [';'] NEWLINE
small_stmt: (expr_stmt | print_stmt | del_stmt | pass_stmt | flow_stmt |

import_stmt | global_stmt | exec_stmt | assert_stmt)
expr_stmt: testlist (augassign (yield_expr|testlist) |

('=' (yield_expr|testlist))*)
augassign: ('+=' | '-=' | '*=' | '/=' | '%=' | '&=' | '|=' | '^=' |

'<<=' | '>>=' | '**=' | '//=')
For normal assignments, additional restrictions enforced by the interpreter
print_stmt: 'print' ([test (',' test)* [',']] |

'>>' test [(',' test)+ [',']])
del_stmt: 'del' exprlist
pass_stmt: 'pass'
flow_stmt: break_stmt | continue_stmt | return_stmt | raise_stmt | yield_stmt
break_stmt: 'break'
continue_stmt: 'continue'
return_stmt: 'return' [testlist]
yield_stmt: yield_expr
raise_stmt: 'raise' [test [',' test [',' test]]]
import_stmt: import_name | import_from
import_name: 'import' dotted_as_names
import_from: ('from' ('.'* dotted_name | '.'+)

'import' ('*' | '(' import_as_names ')' | import_as_names))
import_as_name: NAME ['as' NAME]
dotted_as_name: dotted_name ['as' NAME]
import_as_names: import_as_name (',' import_as_name)* [',']
dotted_as_names: dotted_as_name (',' dotted_as_name)*
dotted_name: NAME ('.' NAME)*
global_stmt: 'global' NAME (',' NAME)*
exec_stmt: 'exec' expr ['in' test [',' test]]
assert_stmt: 'assert' test [',' test]

compound_stmt: if_stmt | while_stmt | for_stmt | try_stmt | with_stmt | funcdef |␣
↪→classdef | decorated
if_stmt: 'if' test ':' suite ('elif' test ':' suite)* ['else' ':' suite]
while_stmt: 'while' test ':' suite ['else' ':' suite]
for_stmt: 'for' exprlist 'in' testlist ':' suite ['else' ':' suite]
try_stmt: ('try' ':' suite

((except_clause ':' suite)+
['else' ':' suite]
['finally' ':' suite] |

'finally' ':' suite))
with_stmt: 'with' with_item (',' with_item)* ':' suite
with_item: test ['as' expr]
NB compile.c makes sure that the default except clause is last
except_clause: 'except' [test [('as' | ',') test]]
suite: simple_stmt | NEWLINE INDENT stmt+ DEDENT

Backward compatibility cruft to support:
[x for x in lambda: True, lambda: False if x()]
even while also allowing:
lambda x: 5 if x else 2
(But not a mix of the two)
testlist_safe: old_test [(',' old_test)+ [',']]
old_test: or_test | old_lambdef
old_lambdef: 'lambda' [varargslist] ':' old_test

(다음페이지에계속)

86 Chapter 9. 전체문법규격

The Python Language Reference,출시버전 2.7.18

(이전페이지에서계속)

test: or_test ['if' or_test 'else' test] | lambdef
or_test: and_test ('or' and_test)*
and_test: not_test ('and' not_test)*
not_test: 'not' not_test | comparison
comparison: expr (comp_op expr)*
comp_op: '<'|'>'|'=='|'>='|'<='|'<>'|'!='|'in'|'not' 'in'|'is'|'is' 'not'
expr: xor_expr ('|' xor_expr)*
xor_expr: and_expr ('^' and_expr)*
and_expr: shift_expr ('&' shift_expr)*
shift_expr: arith_expr (('<<'|'>>') arith_expr)*
arith_expr: term (('+'|'-') term)*
term: factor (('*'|'/'|'%'|'//') factor)*
factor: ('+'|'-'|'~') factor | power
power: atom trailer* ['**' factor]
atom: ('(' [yield_expr|testlist_comp] ')' |

'[' [listmaker] ']' |
'{' [dictorsetmaker] '}' |
'`' testlist1 '`' |
NAME | NUMBER | STRING+)

listmaker: test (list_for | (',' test)* [','])
testlist_comp: test (comp_for | (',' test)* [','])
lambdef: 'lambda' [varargslist] ':' test
trailer: '(' [arglist] ')' | '[' subscriptlist ']' | '.' NAME
subscriptlist: subscript (',' subscript)* [',']
subscript: '.' '.' '.' | test | [test] ':' [test] [sliceop]
sliceop: ':' [test]
exprlist: expr (',' expr)* [',']
testlist: test (',' test)* [',']
dictorsetmaker: ((test ':' test (comp_for | (',' test ':' test)* [','])) |

(test (comp_for | (',' test)* [','])))

classdef: 'class' NAME ['(' [testlist] ')'] ':' suite

arglist: (argument ',')* (argument [',']
|'*' test (',' argument)* [',' '**' test]
|'**' test)

The reason that keywords are test nodes instead of NAME is that using NAME
results in an ambiguity. ast.c makes sure it's a NAME.
argument: test [comp_for] | test '=' test

list_iter: list_for | list_if
list_for: 'for' exprlist 'in' testlist_safe [list_iter]
list_if: 'if' old_test [list_iter]

comp_iter: comp_for | comp_if
comp_for: 'for' exprlist 'in' or_test [comp_iter]
comp_if: 'if' old_test [comp_iter]

testlist1: test (',' test)*

not used in grammar, but may appear in "node" passed from Parser to Compiler
encoding_decl: NAME

yield_expr: 'yield' [testlist]

87

The Python Language Reference,출시버전 2.7.18

88 Chapter 9. 전체문법규격

APPENDIXA

용어집

>>> 대화형셸의기본파이썬프롬프트. 인터프리터에서대화형으로실행될수있는코드예에서자주볼수
있다.

... The default Python prompt of the interactive shell when entering code for an indented code block, when within
a pair of matching left and right delimiters (parentheses, square brackets, curly braces or triple quotes), or after
specifying a decorator.

2to3 파이썬 2.x 코드를 파이썬 3.x 코드로 변환하려고 시도하는 도구인데, 소스를 파싱하고 파스 트리를
탐색해서감지할수있는대부분의비호환성을다룬다.

2to3는표준라이브러리에서 lib2to3로제공된다; 독립적으로실행할수있는스크립트는 Tools/
scripts/2to3로제공된다. 2to3-reference를보세요.

abstract base class (추상베이스클래스) Abstract base classes complement duck-typing by providing a way to define
interfaces when other techniques like hasattr() would be clumsy or subtly wrong (for example with magic
methods). ABCs introduce virtual subclasses, which are classes that don’t inherit from a class but are still recognized
by isinstance() and issubclass(); see the abcmodule documentation. Python comes with many built-
in ABCs for data structures (in the collectionsmodule), numbers (in the numbersmodule), and streams (in
the io module). You can create your own ABCs with the abc module.

argument (인자) A value passed to a function (ormethod) when calling the function. There are two types of arguments:
• 키워드인자 (keyword argument): 함수호출때식별자가앞에붙은인자 (예를들어, name=)또는 **
를앞에붙인딕셔너리로전달되는인자. 예를들어, 다음과같은 complex()호출에서 3과 5는
모두키워드인자다:

complex(real=3, imag=5)
complex(**{'real': 3, 'imag': 5})

• 위치인자 (positional argument): 키워드인자가아닌인자. 위치인자들은인자목록의처음에나오
거나이터러블의앞에 *를붙여전달할수있다. 예를들어, 다음과같은호출에서 3과 5는모두
위치인자다.

complex(3, 5)
complex(*(3, 5))

89

The Python Language Reference,출시버전 2.7.18

인자는함수바의이름붙은지역변수에대입된다. 이대입에적용되는규칙들에대해서는호출섹션을
보세요. 문법적으로,어떤표현식이건인자로사용될수있다;구해진값이지역변수에대입된다.

See also the parameter glossary entry and the FAQ question on the difference between arguments and parameters.
attribute (어트리뷰트) 점표현식을사용하는이름으로참조되는객체와결합한값. 예를들어,객체 o가어트

리뷰트 a를가지면, o.a처럼참조된다.

BDFL 자비로운종신독재자 (Benevolent Dictator For Life),즉 Guido van Rossum, 파이썬의창시자.
bytes-like object (바이트열류객체) An object that supports the buffer protocol, like str, bytearray or

memoryview. Bytes-like objects can be used for various operations that expect binary data, such as compression,
saving to a binary file or sending over a socket. Some operations need the binary data to be mutable, in which case
not all bytes-like objects can apply.

bytecode (바이트코드) Python source code is compiled into bytecode, the internal representation of a Python program
in the CPython interpreter. The bytecode is also cached in .pyc and .pyo files so that executing the same file
is faster the second time (recompilation from source to bytecode can be avoided). This 《intermediate language》
is said to run on a virtual machine that executes the machine code corresponding to each bytecode. Do note that
bytecodes are not expected to work between different Python virtual machines, nor to be stable between Python
releases.
바이트코드명령어들의목록은 dis모듈도큐멘테이션에나온다.

class (클래스) 사용자정의객체들을만들기위한주형. 클래스정의는보통클래스의인스턴스를대상으로
연산하는메서드정의들을포함한다.

classic class Any class which does not inherit from object. See new-style class. Classic classes have been removed in
Python 3.

coercion (코어션) The implicit conversion of an instance of one type to another during an operation which involves two
arguments of the same type. For example, int(3.15) converts the floating point number to the integer 3, but
in 3+4.5, each argument is of a different type (one int, one float), and both must be converted to the same type
before they can be added or it will raise a TypeError. Coercion between two operands can be performed with
the coerce built-in function; thus, 3+4.5 is equivalent to calling operator.add(*coerce(3, 4.5))
and results in operator.add(3.0, 4.5). Without coercion, all arguments of even compatible types would
have to be normalized to the same value by the programmer, e.g., float(3)+4.5 rather than just 3+4.5.

complex number (복소수) 익숙한실수시스템의확장인데,모든숫자가실수부와허수부의합으로표현된다.
허수부는실수에허수단위 (-1의제곱근)를곱한것인데,종종수학에서는 i로,공학에서는 j로표기
한다. 파이썬은후자의표기법을쓰는복소수를기본지원한다;허수부는 j접미사를붙여서표기한다,
예를들어, 3+1j. math모듈의복소수버전이필요하면, cmath를사용한다. 복소수의활용은꽤수준
높은수학적기능이다. 필요하다고느끼지못한다면,거의확실히무시해도좋다.

context manager (컨텍스트관리자) __enter__()와 __exit__()메서드를정의함으로써 with문에서보
이는환경을제어하는객체. PEP 343로도입되었다.

CPython 파이썬프로그래밍언어의규범적인구현인데, python.org에서배포된다. 이 구현을 Jython 이나
IronPython과같은다른것들과구별할필요가있을때용어《CPython》이사용된다.

decorator (데코레이터) 다른함수를돌려주는함수인데,보통 @wrapper문법을사용한함수변환으로적용
된다. 데코레이터의흔한예는 classmethod()과 staticmethod()다.

데코레이터문법은단지편의문법일뿐이다. 다음두함수정의는의미상으로동등하다:

def f(...):
...

f = staticmethod(f)

@staticmethod

(다음페이지에계속)

90 Appendix A. 용어집

https://www.python.org/~guido/
https://www.python.org/dev/peps/pep-0343
https://www.python.org

The Python Language Reference,출시버전 2.7.18

(이전페이지에서계속)
def f(...):

...

같은개념이클래스에도존재하지만,덜자주쓰인다. 데코레이터에대한더자세한내용은함수정의와
클래스정의의도큐멘테이션을보면된다.

descriptor (디스크립터) Any new-style object which defines the methods __get__(), __set__(), or
__delete__(). When a class attribute is a descriptor, its special binding behavior is triggered upon attribute
lookup. Normally, using a.b to get, set or delete an attribute looks up the object named b in the class dictionary for
a, but if b is a descriptor, the respective descriptor method gets called. Understanding descriptors is a key to a deep
understanding of Python because they are the basis for many features including functions, methods, properties,
class methods, static methods, and reference to super classes.
디스크립터의메서드들에대한자세한내용은디스크립터구현하기에나온다.

dictionary (딕셔너리) An associative array, where arbitrary keys are mapped to values. The keys can be any object
with __hash__() and __eq__() methods. Called a hash in Perl.

dictionary view (딕셔너리뷰) The objects returned from dict.viewkeys(), dict.viewvalues(), and
dict.viewitems() are called dictionary views. They provide a dynamic view on the dictionary’s entries,
which means that when the dictionary changes, the view reflects these changes. To force the dictionary view to
become a full list use list(dictview). See dict-views.

docstring (독스트링) 클래스, 함수, 모듈에서첫번째표현식으로나타나는문자열리터럴. 스위트가실행될
때는무시되지만,컴파일러에의해인지되어둘러싼클래스,함수,모듈의 __doc__어트리뷰트로삽입
된다. 인트로스팩션을통해사용할수있으므로,객체의도큐멘테이션을위한규범적인장소다.

duck-typing (덕타이핑) 올바른인터페이스를가졌는지판단하는데객체의형을보지않는프로그래밍스
타일; 대신, 단순히메서드나어트리뷰트가호출되거나사용된다 (《오리처럼보이고오리처럼꽥꽥
댄다면, 그것은오리다.》)특정한형대신에인터페이스를강조함으로써, 잘설계된코드는다형적인
치환을허락함으로써유연성을개선할수있다. 덕타이핑은 type()이나 isinstance()을사용한
검사를피한다. (하지만,덕타이핑이추상베이스클래스로보완될수있음에유의해야한다.) 대신에,
hasattr()검사나 EAFP프로그래밍을쓴다.

EAFP 허락보다는용서를구하기가쉽다 (Easier to ask for forgiveness than permission). 이흔히볼수있는파
이썬코딩스타일은, 올바른키나어트리뷰트의존재를가정하고, 그가정이틀리면예외를잡는다. 이
깔끔하고빠른스타일은많은 try와 except문의존재로특징지어진다. 이테크닉은 C와같은다른
많은언어에서자주사용되는 LBYL스타일과대비된다.

expression (표현식) A piece of syntax which can be evaluated to some value. In other words, an expression is an
accumulation of expression elements like literals, names, attribute access, operators or function calls which all
return a value. In contrast to many other languages, not all language constructs are expressions. There are also
statements which cannot be used as expressions, such as print or if. Assignments are also statements, not
expressions.

extension module (확장모듈) C 나 C++ 로작성된모듈인데, 파이썬의 C API를사용해서핵심이나사용자
코드와상호작용한다.

file object (파일객체) 하부자원에대해파일지향적 API (read()나 write()같은메서드들)를드러내는
객체. 만들어진방법에따라,파일객체는실제디스크상의파일이나다른저장장치나통신장치 (예를
들어, 표준입출력, 인-메모리버퍼, 소켓, 파이프, 등등)에대한액세스를중계할수있다. 파일객체는
파일류객체 (file-like objects)나스트림 (streams)이라고도불린다.

There are actually three categories of file objects: raw binary files, buffered binary files and text files. Their interfaces
are defined in the io module. The canonical way to create a file object is by using the open() function.

file-like object (파일류객체) 파일객체의비슷한말.

91

The Python Language Reference,출시버전 2.7.18

finder (파인더) An object that tries to find the loader for a module. It must implement a method named
find_module(). See PEP 302 for details.

floor division (정수나눗셈) 가장가까운정수로내림하는수학적나눗셈. 정수나눗셈연산자는 //다. 예를
들어,표현식 11 // 4의값은 2가되지만,실수나눗셈은 2.75를돌려준다. (-11) // 4가 -2.75
를내림한 -3이됨에유의해야한다. PEP 238를보세요.

function (함수) 호출자에게어떤값을돌려주는일련의문장들. 없거나그이상의인자가전달될수있는데,
바디의실행에사용될수있다. 파라미터와메서드와함수정의섹션도보세요.

__future__ A pseudo-module which programmers can use to enable new language features which are not compatible
with the current interpreter. For example, the expression 11/4 currently evaluates to 2. If the module in which it
is executed had enabled true division by executing:

from __future__ import division

the expression11/4would evaluate to2.75. By importing the__future__module and evaluating its variables,
you can see when a new feature was first added to the language and when it will become the default:

>>> import __future__
>>> __future__.division
_Feature((2, 2, 0, 'alpha', 2), (3, 0, 0, 'alpha', 0), 8192)

garbage collection (가비지수거) The process of freeing memory when it is not used anymore. Python performs
garbage collection via reference counting and a cyclic garbage collector that is able to detect and break reference
cycles.

generator (제너레이터) A function which returns an iterator. It looks like a normal function except that it contains
yield statements for producing a series of values usable in a for-loop or that can be retrieved one at a time with
the next() function. Each yield temporarily suspends processing, remembering the location execution state
(including local variables and pending try-statements). When the generator resumes, it picks up where it left off (in
contrast to functions which start fresh on every invocation).

generator expression (제너레이터표현식) 이터레이터를돌려주는표현식. 루프변수와범위를정의하는 for
표현식과생략가능한 if표현식이뒤에붙는일반표현식처럼보인다. 결합한표현식은둘러싼함수를
위한값들을만들어낸다:

>>> sum(i*i for i in range(10)) # sum of squares 0, 1, 4, ... 81
285

GIL 전역인터프리터록을보세요.
global interpreter lock (전역인터프리터록) 한번에오직하나의스레드가파이썬바이트코드를실행하도록

보장하기위해 CPython인터프리터가사용하는메커니즘. (dict와같은중요한내장형들을포함하는)
객체모델이묵시적으로동시액세스에대해안전하도록만들어서 CPython 구현을단순하게만든다.
인터프리터전체를로킹하는것은인터프리터를다중스레드화하기쉽게만드는대신, 다중프로세서
기계가제공하는병렬성의많은부분을희생한다.

하지만, 어떤확장모듈들은, 표준이나제삼자모두, 압축이나해싱같은계산집약적인작업을수행할
때는 GIL을반납하도록설계되었다. 또한, I/O를할때는항상 GIL을반납한다.
(훨씬더미세하게공유데이터를로킹하는)《스레드에자유로운 (free-threaded)》인터프리터를만들고자
하는과거의노력은성공적이지못했는데, 흔한단일프로세서경우의성능저하가심하기때문이다.
이성능이슈를극복하는것은구현을훨씬복잡하게만들어서유지비용이더들어갈것으로여겨지고
있다.

hashable (해시가능) An object is hashable if it has a hash value which never changes during its lifetime (it needs a
__hash__()method), and can be compared to other objects (it needs an __eq__() or __cmp__()method).
Hashable objects which compare equal must have the same hash value.

92 Appendix A. 용어집

https://www.python.org/dev/peps/pep-0302
https://www.python.org/dev/peps/pep-0238

The Python Language Reference,출시버전 2.7.18

해시가능성은객체를딕셔너리의키나집합의멤버로사용할수있게하는데,이자료구조들이내부적
으로해시값을사용하기때문이다.

All of Python’s immutable built-in objects are hashable, while no mutable containers (such as lists or dictionaries)
are. Objects which are instances of user-defined classes are hashable by default; they all compare unequal (except
with themselves), and their hash value is derived from their id().

IDLE 파이썬을위한통합개발환경 (Integrated Development Environment). IDLE은파이썬의표준배포판에
따라오는기초적인편집기와인터프리터환경이다.

immutable (불변) 고정된값을갖는객체. 불변객체는숫자,문자열,튜플을포함한다. 이런객체들은변경될
수없다. 새값을저장하려면새객체를만들어야한다. 변하지않는해시값이있어야하는곳에서중요한
역할을한다,예를들어,딕셔너리의키.

integer division Mathematical division discarding any remainder. For example, the expression 11/4 currently evaluates
to 2 in contrast to the 2.75 returned by float division. Also called floor division. When dividing two integers the
outcome will always be another integer (having the floor function applied to it). However, if one of the operands is
another numeric type (such as a float), the result will be coerced (see coercion) to a common type. For example,
an integer divided by a float will result in a float value, possibly with a decimal fraction. Integer division can be
forced by using the // operator instead of the / operator. See also __future__.

importing (임포팅) 한모듈의파이썬코드가다른모듈의파이썬코드에서사용될수있도록하는절차.
importer (임포터) 모듈을찾기도하고로드하기도하는객체;동시에파인더이자로더객체다.
interactive (대화형) 파이썬은대화형인터프리터를갖고있는데,인터프리터프롬프트에서문장과표현식을

입력할수있고,즉각실행된결과를볼수있다는뜻이다. 인자없이단지 python을실행하라 (컴퓨터의
주메뉴에서선택하는것도가능할수있다). 새아이디어를검사하거나모듈과패키지를들여다보는
매우강력한방법이다 (help(x)를기억하세요).

interpreted (인터프리티드) 바이트코드컴파일러의존재때문에그구분이흐릿해지기는하지만, 파이썬은
컴파일언어가아니라인터프리터언어다. 이것은명시적으로실행파일을만들지않고도,소스파일을
직접실행할수있다는뜻이다. 그프로그램이좀더천천히실행되기는하지만,인터프리터언어는보통
컴파일언어보다짧은개발/디버깅주기를갖는다. 대화형도보세요.

iterable (이터러블) An object capable of returning its members one at a time. Examples of iterables include all sequence
types (such as list, str, and tuple) and some non-sequence types like dict and file and objects of any
classes you define with an __iter__() or __getitem__()method. Iterables can be used in a for loop and
in many other places where a sequence is needed (zip(), map(),…). When an iterable object is passed as an
argument to the built-in function iter(), it returns an iterator for the object. This iterator is good for one pass
over the set of values. When using iterables, it is usually not necessary to call iter() or deal with iterator objects
yourself. The for statement does that automatically for you, creating a temporary unnamed variable to hold the
iterator for the duration of the loop. See also iterator, sequence, and generator.

iterator (이터레이터) An object representing a stream of data. Repeated calls to the iterator’s next() method re-
turn successive items in the stream. When no more data are available a StopIteration exception is raised
instead. At this point, the iterator object is exhausted and any further calls to its next() method just raise
StopIteration again. Iterators are required to have an __iter__() method that returns the iterator object
itself so every iterator is also iterable and may be used in most places where other iterables are accepted. One
notable exception is code which attempts multiple iteration passes. A container object (such as a list) produces
a fresh new iterator each time you pass it to the iter() function or use it in a for loop. Attempting this with
an iterator will just return the same exhausted iterator object used in the previous iteration pass, making it appear
like an empty container.
typeiter에더자세한내용이있다.

key function (키함수) 키함수또는콜레이션 (collation)함수는정렬 (sorting)이나배열 (ordering)에사용되는
값을돌려주는콜러블이다. 예를들어, locale.strxfrm()은로케일특정방식을따르는정렬키를
만드는데사용된다.

93

The Python Language Reference,출시버전 2.7.18

A number of tools in Python accept key functions to control how elements are ordered or grouped. They in-
clude min(), max(), sorted(), list.sort(), heapq.nsmallest(), heapq.nlargest(), and
itertools.groupby().
There are several ways to create a key function. For example. the str.lower() method can serve as a key
function for case insensitive sorts. Alternatively, an ad-hoc key function can be built from a lambda expression
such as lambda r: (r[0], r[2]). Also, the operatormodule provides three key function constructors:
attrgetter(), itemgetter(), and methodcaller(). See the Sorting HOW TO for examples of how
to create and use key functions.

keyword argument (키워드인자) 인자를보세요.
lambda (람다) 호출될때값이구해지는하나의표현식으로구성된이름없는인라인함수. 람다함수를만드는

문법은 lambda [parameters]: expression이다.

LBYL 뛰기전에보라 (Look before you leap). 이코딩스타일은호출이나조회를하기전에명시적으로사전
조건들을검사한다. 이스타일은 EAFP접근법과대비되고,많은 if문의존재로특징지어진다.

다중스레드환경에서, LBYL접근법은《보기》와《뛰기》간에경쟁조건을만들게될위험이있다. 예를
들어,코드 if key in mapping: return mapping[key]는검사후에,하지만조회전에,다른스
레드가 key를 mapping에서제거하면실패할수있다. 이런이슈는록이나 EAFP접근법을사용함으로써
해결될수있다.

list (리스트) A built-in Python sequence. Despite its name it is more akin to an array in other languages than to a linked
list since access to elements is O(1).

list comprehension (리스트컴프리헨션) A compact way to process all or part of the elements in a sequence and
return a list with the results. result = ["0x%02x" % x for x in range(256) if x % 2 ==
0] generates a list of strings containing even hex numbers (0x..) in the range from 0 to 255. The if clause is
optional. If omitted, all elements in range(256) are processed.

loader (로더) An object that loads a module. It must define a method named load_module(). A loader is typically
returned by a finder. See PEP 302 for details.

magic method An informal synonym for special method.
mapping (매핑) A container object that supports arbitrary key lookups and implements the methods specified in

the Mapping or MutableMapping abstract base classes. Examples include dict, collections.
defaultdict, collections.OrderedDict and collections.Counter.

metaclass (메타클래스) 클래스의클래스. 클래스정의는클래스이름,클래스딕셔너리,베이스클래스들의
목록을만든다. 메타클래스는이세인자를받아서클래스를만드는책임을진다. 대부분의객체지향형
프로그래밍언어들은기본구현을제공한다. 파이썬을특별하게만드는것은커스텀메타클래스를만들
수있다는것이다. 대부분사용자에게는이도구가전혀필요없지만, 필요가생길때, 메타클래스는
강력하고우아한해법을제공한다. 어트리뷰트액세스의로깅 (logging),스레드안전성의추가,객체생성
추적,싱글톤구현과많은다른작업에사용됐다.

클래스생성커스터마이제이션에서더자세한내용을찾을수있다.

method (메서드) 클래스바디안에서정의되는함수. 그클래스의인스턴스의어트리뷰트로서호출되면, 그
메서드는첫번째인자 (보통 self라고불린다)로인스턴스객체를받는다. 함수와중첩된스코프를
보세요.

method resolution order (메서드결정순서) 메서드결정순서는조회하는동안멤버를검색하는베이스클래
스들의순서다. 2.3릴리스부터파이썬인터프리터에사용된알고리즘의상세한내용은 The Python 2.3
Method Resolution Order를보면된다.

module (모듈) 파이썬코드의조직화단위를담당하는객체. 모듈은임의의파이썬객체들을담는이름공간을
갖는다. 모듈은임포팅절차에의해파이썬으로로드된다.

패키지도보세요.

94 Appendix A. 용어집

https://www.python.org/dev/peps/pep-0302
https://www.python.org/download/releases/2.3/mro/
https://www.python.org/download/releases/2.3/mro/

The Python Language Reference,출시버전 2.7.18

MRO 메서드결정순서를보세요.
mutable (가변) 가변객체는값이변할수있지만 id()는일정하게유지한다. 불변도보세요.

named tuple (네임드튜플) 인덱싱할 수 있는 요소들을 이름 붙은 어트리뷰트로도 액세스할 수 있는 모든
튜플류클래스 (예를들어, time.localtime()은 year가 t[0]처럼인덱스로도, t.tm_year처럼
어트리뷰트로도액세스할수있는튜플류객체를돌려준다.)
네임드튜플은 time.struct_time같은내장형일수도, 일반 클래스정의로만들수도있다. 모든
기능이구현된네임드튜플을팩토리함수 collections.namedtuple()로도만들수있다. 마지막
접근법은 Employee(name='jones', title='programmer')와같은스스로문서로만드는 repr
과같은확장기능도자동제공한다.

namespace (이름공간) The place where a variable is stored. Namespaces are implemented as dictionaries. There
are the local, global and built-in namespaces as well as nested namespaces in objects (in methods). Namespaces
supportmodularity by preventing naming conflicts. For instance, the functions__builtin__.open() andos.
open() are distinguished by their namespaces. Namespaces also aid readability and maintainability by making it
clear which module implements a function. For instance, writing random.seed() or itertools.izip()
makes it clear that those functions are implemented by the random and itertools modules, respectively.

nested scope (중첩된스코프) The ability to refer to a variable in an enclosing definition. For instance, a function
defined inside another function can refer to variables in the outer function. Note that nested scopes work only for
reference and not for assignment which will always write to the innermost scope. In contrast, local variables both
read and write in the innermost scope. Likewise, global variables read and write to the global namespace.

new-style class (뉴스타일클래스) Any class which inherits from object. This includes all built-in types like list
and dict. Only new-style classes can use Python’s newer, versatile features like __slots__, descriptors, prop-
erties, and __getattribute__().
More information can be found in New-style and classic classes.

object (객체) 상태 (어트리뷰트나값)를갖고동작 (메서드)이정의된모든데이터. 또한,모든뉴스타일클래스
의최종적인베이스클래스다.

package (패키지) 서브모듈들이나, 재귀적으로서브패키지들을포함할수있는파이썬모듈. 기술적으로,
패키지는 __path__어트리뷰트가있는파이썬모듈이다.

parameter (파라미터) A named entity in a function (or method) definition that specifies an argument (or in some cases,
arguments) that the function can accept. There are four types of parameters:

• 위치-키워드 (positional-or-keyword): 위치인자나키워드인자로전달될수있는인자를지정한다.
이것이기본형태의파라미터다,예를들어다음에서 foo와 bar:

def func(foo, bar=None): ...

• 위치-전용 (positional-only): 위치로만제공될수있는인자를지정한다. 파이썬은위치-전용파라미
터를정의하는문법을갖고있지않다. 하지만, 어떤매장함수들은위치-전용파라미터를갖는다
(예를들어, abs()).

• 가변-위치 (var-positional): (다른파라미터들에의해서이미받아들여진위치인자들에더해)제공될
수있는위치인자들의임의의시퀀스를지정한다. 이런파라미터는파라미터이름에 *를앞에
붙여서정의될수있다,예를들어다음에서 args:

def func(*args, **kwargs): ...

• 가변-키워드 (var-keyword): (다른파라미터들에의해서이미받아들여진키워드인자들에더해)
제공될수있는임의의개수키워드인자들을지정한다. 이런파라미터는파라미터이름에 **를
앞에붙여서정의될수있다,예를들어위의예에서 kwargs.

파라미터는선택적인자들을위한기본값뿐만아니라선택적이거나필수인자들을지정할수있다.

95

The Python Language Reference,출시버전 2.7.18

See also the argument glossary entry, the FAQ question on the difference between arguments and parameters, and
the함수정의 section.

PEP 파이썬개선제안. PEP는파이썬커뮤니티에정보를제공하거나파이썬또는그프로세스또는환경에
대한새로운기능을설명하는설계문서다. PEP는 제안된기능에대한간결한기술사양및근거를
제공해야한다.

PEP는주요새로운기능을제안하고문제에대한커뮤니티입력을수집하며파이썬에들어간설계
결정을문서로만들기위한기본메커니즘이다. PEP작성자는커뮤니티내에서합의를구축하고반대
의견을문서화할책임이있다.

PEP 1참조하세요.
positional argument (위치인자) 인자를보세요.
Python 3000 (파이썬 3000) 파이썬 3.x배포라인의별명 (버전 3의배포가먼미래의이야기던시절에만들어진

이름이다.) 이것을《Py3k》로줄여쓰기도한다.
Pythonic (파이썬다운) 다른언어들에서일반적인개념들을사용해서코드를구현하는대신,파이썬언어에서

가장자주사용되는이디엄들을가까이따르는아이디어나코드조작. 예를들어,파이썬에서자주쓰는
이디엄은 for문을사용해서이터러블의모든요소로루핑하는것이다. 다른많은언어에는이런종류의
구성물이없으므로,파이썬에익숙하지않은사람들은대신에숫자카운터를사용하기도한다:

for i in range(len(food)):
print food[i]

더깔끔한,파이썬다운방법은이렇다:

for piece in food:
print piece

reference count (참조횟수) 객체에대한참조의개수. 객체의참조횟수가 0으로떨어지면, 메모리가반납된
다. 참조횟수추적은일반적으로파이썬코드에노출되지는않지만, CPython구현의핵심요소다. sys
모듈은특정객체의참조횟수를돌려주는 getrefcount()을정의한다.

__slots__ A declaration inside a new-style class that saves memory by pre-declaring space for instance attributes and
eliminating instance dictionaries. Though popular, the technique is somewhat tricky to get right and is best reserved
for rare cases where there are large numbers of instances in a memory-critical application.

sequence (시퀀스) An iterable which supports efficient element access using integer indices via the __getitem__()
special method and defines a len()method that returns the length of the sequence. Some built-in sequence types
are list, str, tuple, and unicode. Note that dict also supports __getitem__() and __len__(),
but is considered a mapping rather than a sequence because the lookups use arbitrary immutable keys rather than
integers.

slice (슬라이스) An object usually containing a portion of a sequence. A slice is created using the subscript no-
tation, [] with colons between numbers when several are given, such as in variable_name[1:3:5].
The bracket (subscript) notation uses slice objects internally (or in older versions, __getslice__() and
__setslice__()).

special method (특수메서드) 파이썬이형에어떤연산을,덧셈같은,실행할때묵시적으로호출되는메서드.
이런메서드는두개의밑줄로시작하고끝나는이름을갖고있다. 특수메서드는특수메서드이름들에
문서로만들어져있다.

statement (문장) 문장은스위트 (코드의《블록 (block)》)를구성하는부분이다. 문장은표현식이거나키워드
를사용하는여러가지구조물중의하나다. 가령 if, while, for.

struct sequence (구조체시퀀스) A tuple with named elements. Struct sequences expose an interface similiar to named
tuple in that elements can be accessed either by index or as an attribute. However, they do not have any of the named
tuple methods like _make() or _asdict(). Examples of struct sequences include sys.float_info and
the return value of os.stat().

96 Appendix A. 용어집

https://www.python.org/dev/peps/pep-0001

The Python Language Reference,출시버전 2.7.18

triple-quoted string (삼중따옴표된문자열) 따옴표 (《) 나 작은따옴표 (〈) 세 개로 둘러싸인 문자열. 그냥
따옴표하나로둘러싸인문자열에없는기능을제공하지는않지만, 여러가지이유에서쓸모가있다.
이스케이프되지않은작은따옴표나큰따옴표를문자열안에포함할수있도록하고,연결문자를쓰지
않고도여러줄에걸칠수있는데,독스트링을쓸때특히쓸모있다.

type (형) 파이썬객체의형은그것이어떤종류의객체인지를결정한다;모든객체는형이있다. 객체의형은
__class__어트리뷰트로액세스할수있거나 type(obj)로얻을수있다.

universal newlines (유니버설줄넘김) A manner of interpreting text streams in which all of the following are recog-
nized as ending a line: the Unix end-of-line convention '\n', the Windows convention '\r\n', and the old
Macintosh convention '\r'. See PEP 278 and PEP 3116, as well as str.splitlines() for an additional
use.

virtual environment (가상환경) 파이썬사용자와응용프로그램이, 같은시스템에서실행되는다른파이썬
응용프로그램들의동작에영향을주지않으면서,파이썬배포패키지들을설치하거나업그레이드하는
것을가능하게하는,협력적으로격리된실행환경.

virtual machine (가상기계) 소프트웨어만으로정의된컴퓨터. 파이썬의가상기계는바이트코드컴파일러가
출력하는바이트코드를실행한다.

Zen of Python (파이썬젠) 파이썬디자인원리와철학들의목록인데, 인어를이해하고사용하는데도움이
된다. 이목록은대화형프롬프트에서《import this》를입력하면보인다.

97

https://www.python.org/dev/peps/pep-0278
https://www.python.org/dev/peps/pep-3116

The Python Language Reference,출시버전 2.7.18

98 Appendix A. 용어집

APPENDIXB

About these documents

These documents are generated from reStructuredText sources by Sphinx, a document processor specifically written for
the Python documentation.
Development of the documentation and its toolchain is an entirely volunteer effort, just like Python itself. If you want
to contribute, please take a look at the reporting-bugs page for information on how to do so. New volunteers are always
welcome!
Many thanks go to:

• Fred L. Drake, Jr., the creator of the original Python documentation toolset and writer of much of the content;
• the Docutils project for creating reStructuredText and the Docutils suite;
• Fredrik Lundh for his Alternative Python Reference project from which Sphinx got many good ideas.

B.1 Contributors to the Python Documentation

Many people have contributed to the Python language, the Python standard library, and the Python documentation. See
Misc/ACKS in the Python source distribution for a partial list of contributors.
It is only with the input and contributions of the Python community that Python has such wonderful documentation –
Thank You!

99

http://docutils.sourceforge.net/rst.html
http://sphinx-doc.org/
http://docutils.sourceforge.net/
http://effbot.org/zone/pyref.htm
https://github.com/python/cpython/tree/2.7/Misc/ACKS

The Python Language Reference,출시버전 2.7.18

100 Appendix B. About these documents

APPENDIXC

History and License

C.1 History of the software

Python was created in the early 1990s by Guido van Rossum at Stichting Mathematisch Centrum (CWI, see https://www.
cwi.nl/) in the Netherlands as a successor of a language called ABC. Guido remains Python’s principal author, although
it includes many contributions from others.
In 1995, Guido continued his work on Python at the Corporation for National Research Initiatives (CNRI, see https:
//www.cnri.reston.va.us/) in Reston, Virginia where he released several versions of the software.
In May 2000, Guido and the Python core development team moved to BeOpen.com to form the BeOpen PythonLabs
team. In October of the same year, the PythonLabs team moved to Digital Creations (now Zope Corporation; see https:
//www.zope.org/). In 2001, the Python Software Foundation (PSF, see https://www.python.org/psf/) was formed, a non-
profit organization created specifically to own Python-related Intellectual Property. Zope Corporation is a sponsoring
member of the PSF.
All Python releases are Open Source (see https://opensource.org/ for the Open Source Definition). Historically, most,
but not all, Python releases have also been GPL-compatible; the table below summarizes the various releases.

Release Derived from Year Owner GPL compatible?
0.9.0 thru 1.2 n/a 1991-1995 CWI yes
1.3 thru 1.5.2 1.2 1995-1999 CNRI yes
1.6 1.5.2 2000 CNRI no
2.0 1.6 2000 BeOpen.com no
1.6.1 1.6 2001 CNRI no
2.1 2.0+1.6.1 2001 PSF no
2.0.1 2.0+1.6.1 2001 PSF yes
2.1.1 2.1+2.0.1 2001 PSF yes
2.1.2 2.1.1 2002 PSF yes
2.1.3 2.1.2 2002 PSF yes
2.2 and above 2.1.1 2001-now PSF yes

101

https://www.cwi.nl/
https://www.cwi.nl/
https://www.cnri.reston.va.us/
https://www.cnri.reston.va.us/
https://www.zope.org/
https://www.zope.org/
https://www.python.org/psf/
https://opensource.org/

The Python Language Reference,출시버전 2.7.18

참고: GPL-compatible doesn’t mean that we’re distributing Python under the GPL. All Python licenses, unlike the
GPL, let you distribute a modified version without making your changes open source. The GPL-compatible licenses make
it possible to combine Python with other software that is released under the GPL; the others don’t.

Thanks to the many outside volunteers who have worked under Guido’s direction to make these releases possible.

C.2 Terms and conditions for accessing or otherwise using Python

C.2.1 PSF LICENSE AGREEMENT FOR PYTHON 2.7.18

1. This LICENSE AGREEMENT is between the Python Software Foundation ("PSF"),␣
↪→and

the Individual or Organization ("Licensee") accessing and otherwise using␣
↪→Python

2.7.18 software in source or binary form and its associated documentation.

2. Subject to the terms and conditions of this License Agreement, PSF hereby
grants Licensee a nonexclusive, royalty-free, world-wide license to␣

↪→reproduce,
analyze, test, perform and/or display publicly, prepare derivative works,
distribute, and otherwise use Python 2.7.18 alone or in any derivative
version, provided, however, that PSF's License Agreement and PSF's notice␣

↪→of
copyright, i.e., "Copyright © 2001-2020 Python Software Foundation; All␣

↪→Rights
Reserved" are retained in Python 2.7.18 alone or in any derivative version
prepared by Licensee.

3. In the event Licensee prepares a derivative work that is based on or
incorporates Python 2.7.18 or any part thereof, and wants to make the
derivative work available to others as provided herein, then Licensee␣

↪→hereby
agrees to include in any such work a brief summary of the changes made to␣

↪→Python
2.7.18.

4. PSF is making Python 2.7.18 available to Licensee on an "AS IS" basis.
PSF MAKES NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF
EXAMPLE, BUT NOT LIMITATION, PSF MAKES NO AND DISCLAIMS ANY REPRESENTATION␣

↪→OR
WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT␣

↪→THE
USE OF PYTHON 2.7.18 WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

5. PSF SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF PYTHON 2.7.18
FOR ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT␣

↪→OF
MODIFYING, DISTRIBUTING, OR OTHERWISE USING PYTHON 2.7.18, OR ANY␣

↪→DERIVATIVE
THEREOF, EVEN IF ADVISED OF THE POSSIBILITY THEREOF.

102 Appendix C. History and License

The Python Language Reference,출시버전 2.7.18

6. This License Agreement will automatically terminate upon a material breach␣
↪→of

its terms and conditions.

7. Nothing in this License Agreement shall be deemed to create any␣
↪→relationship

of agency, partnership, or joint venture between PSF and Licensee. This␣
↪→License

Agreement does not grant permission to use PSF trademarks or trade name in␣
↪→a

trademark sense to endorse or promote products or services of Licensee, or␣
↪→any

third party.

8. By copying, installing or otherwise using Python 2.7.18, Licensee agrees
to be bound by the terms and conditions of this License Agreement.

C.2.2 BEOPEN.COM LICENSE AGREEMENT FOR PYTHON 2.0

BEOPEN PYTHON OPEN SOURCE LICENSE AGREEMENT VERSION 1

1. This LICENSE AGREEMENT is between BeOpen.com ("BeOpen"), having an office at
160 Saratoga Avenue, Santa Clara, CA 95051, and the Individual or Organization
("Licensee") accessing and otherwise using this software in source or binary
form and its associated documentation ("the Software").

2. Subject to the terms and conditions of this BeOpen Python License Agreement,
BeOpen hereby grants Licensee a non-exclusive, royalty-free, world-wide license
to reproduce, analyze, test, perform and/or display publicly, prepare derivative
works, distribute, and otherwise use the Software alone or in any derivative
version, provided, however, that the BeOpen Python License is retained in the
Software, alone or in any derivative version prepared by Licensee.

3. BeOpen is making the Software available to Licensee on an "AS IS" basis.
BEOPEN MAKES NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF
EXAMPLE, BUT NOT LIMITATION, BEOPEN MAKES NO AND DISCLAIMS ANY REPRESENTATION OR
WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE
USE OF THE SOFTWARE WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

4. BEOPEN SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF THE SOFTWARE FOR
ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT OF USING,
MODIFYING OR DISTRIBUTING THE SOFTWARE, OR ANY DERIVATIVE THEREOF, EVEN IF
ADVISED OF THE POSSIBILITY THEREOF.

5. This License Agreement will automatically terminate upon a material breach of
its terms and conditions.

6. This License Agreement shall be governed by and interpreted in all respects
by the law of the State of California, excluding conflict of law provisions.
Nothing in this License Agreement shall be deemed to create any relationship of
agency, partnership, or joint venture between BeOpen and Licensee. This License
Agreement does not grant permission to use BeOpen trademarks or trade names in a
trademark sense to endorse or promote products or services of Licensee, or any
third party. As an exception, the "BeOpen Python" logos available at

(다음페이지에계속)

C.2. Terms and conditions for accessing or otherwise using Python 103

The Python Language Reference,출시버전 2.7.18

(이전페이지에서계속)
http://www.pythonlabs.com/logos.html may be used according to the permissions
granted on that web page.

7. By copying, installing or otherwise using the software, Licensee agrees to be
bound by the terms and conditions of this License Agreement.

C.2.3 CNRI LICENSE AGREEMENT FOR PYTHON 1.6.1

1. This LICENSE AGREEMENT is between the Corporation for National Research
Initiatives, having an office at 1895 Preston White Drive, Reston, VA 20191
("CNRI"), and the Individual or Organization ("Licensee") accessing and
otherwise using Python 1.6.1 software in source or binary form and its
associated documentation.

2. Subject to the terms and conditions of this License Agreement, CNRI hereby
grants Licensee a nonexclusive, royalty-free, world-wide license to reproduce,
analyze, test, perform and/or display publicly, prepare derivative works,
distribute, and otherwise use Python 1.6.1 alone or in any derivative version,
provided, however, that CNRI's License Agreement and CNRI's notice of copyright,
i.e., "Copyright © 1995-2001 Corporation for National Research Initiatives; All
Rights Reserved" are retained in Python 1.6.1 alone or in any derivative version
prepared by Licensee. Alternately, in lieu of CNRI's License Agreement,
Licensee may substitute the following text (omitting the quotes): "Python 1.6.1
is made available subject to the terms and conditions in CNRI's License
Agreement. This Agreement together with Python 1.6.1 may be located on the
Internet using the following unique, persistent identifier (known as a handle):
1895.22/1013. This Agreement may also be obtained from a proxy server on the
Internet using the following URL: http://hdl.handle.net/1895.22/1013."

3. In the event Licensee prepares a derivative work that is based on or
incorporates Python 1.6.1 or any part thereof, and wants to make the derivative
work available to others as provided herein, then Licensee hereby agrees to
include in any such work a brief summary of the changes made to Python 1.6.1.

4. CNRI is making Python 1.6.1 available to Licensee on an "AS IS" basis. CNRI
MAKES NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF EXAMPLE,
BUT NOT LIMITATION, CNRI MAKES NO AND DISCLAIMS ANY REPRESENTATION OR WARRANTY
OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE USE OF
PYTHON 1.6.1 WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

5. CNRI SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF PYTHON 1.6.1 FOR
ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT OF
MODIFYING, DISTRIBUTING, OR OTHERWISE USING PYTHON 1.6.1, OR ANY DERIVATIVE
THEREOF, EVEN IF ADVISED OF THE POSSIBILITY THEREOF.

6. This License Agreement will automatically terminate upon a material breach of
its terms and conditions.

7. This License Agreement shall be governed by the federal intellectual property
law of the United States, including without limitation the federal copyright
law, and, to the extent such U.S. federal law does not apply, by the law of the
Commonwealth of Virginia, excluding Virginia's conflict of law provisions.
Notwithstanding the foregoing, with regard to derivative works based on Python
1.6.1 that incorporate non-separable material that was previously distributed

(다음페이지에계속)

104 Appendix C. History and License

The Python Language Reference,출시버전 2.7.18

(이전페이지에서계속)
under the GNU General Public License (GPL), the law of the Commonwealth of
Virginia shall govern this License Agreement only as to issues arising under or
with respect to Paragraphs 4, 5, and 7 of this License Agreement. Nothing in
this License Agreement shall be deemed to create any relationship of agency,
partnership, or joint venture between CNRI and Licensee. This License Agreement
does not grant permission to use CNRI trademarks or trade name in a trademark
sense to endorse or promote products or services of Licensee, or any third
party.

8. By clicking on the "ACCEPT" button where indicated, or by copying, installing
or otherwise using Python 1.6.1, Licensee agrees to be bound by the terms and
conditions of this License Agreement.

C.2.4 CWI LICENSE AGREEMENT FOR PYTHON 0.9.0 THROUGH 1.2

Copyright © 1991 - 1995, Stichting Mathematisch Centrum Amsterdam, The
Netherlands. All rights reserved.

Permission to use, copy, modify, and distribute this software and its
documentation for any purpose and without fee is hereby granted, provided that
the above copyright notice appear in all copies and that both that copyright
notice and this permission notice appear in supporting documentation, and that
the name of Stichting Mathematisch Centrum or CWI not be used in advertising or
publicity pertaining to distribution of the software without specific, written
prior permission.

STICHTING MATHEMATISCH CENTRUM DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS
SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN NO
EVENT SHALL STICHTING MATHEMATISCH CENTRUM BE LIABLE FOR ANY SPECIAL, INDIRECT
OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE,
DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS
SOFTWARE.

C.3 Licenses and Acknowledgements for Incorporated Software

This section is an incomplete, but growing list of licenses and acknowledgements for third-party software incorporated in
the Python distribution.

C.3.1 Mersenne Twister

The _random module includes code based on a download from http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/
MT2002/emt19937ar.html. The following are the verbatim comments from the original code:

A C-program for MT19937, with initialization improved 2002/1/26.
Coded by Takuji Nishimura and Makoto Matsumoto.

Before using, initialize the state by using init_genrand(seed)
or init_by_array(init_key, key_length).

(다음페이지에계속)

C.3. Licenses and Acknowledgements for Incorporated Software 105

http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/MT2002/emt19937ar.html
http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/MT2002/emt19937ar.html

The Python Language Reference,출시버전 2.7.18

(이전페이지에서계속)
Copyright (C) 1997 - 2002, Makoto Matsumoto and Takuji Nishimura,
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

3. The names of its contributors may not be used to endorse or promote
products derived from this software without specific prior written
permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Any feedback is very welcome.
http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html
email: m-mat @ math.sci.hiroshima-u.ac.jp (remove space)

C.3.2 Sockets

The socket module uses the functions, getaddrinfo(), and getnameinfo(), which are coded in separate
source files from the WIDE Project, http://www.wide.ad.jp/.

Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
1. Redistributions of source code must retain the above copyright

notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright

notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

3. Neither the name of the project nor the names of its contributors
may be used to endorse or promote products derived from this software
without specific prior written permission.

(다음페이지에계속)

106 Appendix C. History and License

http://www.wide.ad.jp/

The Python Language Reference,출시버전 2.7.18

(이전페이지에서계속)
THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

C.3.3 Floating point exception control

The source for the fpectl module includes the following notice:

/ Copyright (c) 1996. \

| The Regents of the University of California. |
| All rights reserved. |
| |
| Permission to use, copy, modify, and distribute this software for |
| any purpose without fee is hereby granted, provided that this en- |
| tire notice is included in all copies of any software which is or |
| includes a copy or modification of this software and in all |
| copies of the supporting documentation for such software. |
| |
| This work was produced at the University of California, Lawrence |
| Livermore National Laboratory under contract no. W-7405-ENG-48 |
| between the U.S. Department of Energy and The Regents of the |
| University of California for the operation of UC LLNL. |
| |
| DISCLAIMER |
| |
| This software was prepared as an account of work sponsored by an |
| agency of the United States Government. Neither the United States |
| Government nor the University of California nor any of their em- |
| ployees, makes any warranty, express or implied, or assumes any |
| liability or responsibility for the accuracy, completeness, or |
| usefulness of any information, apparatus, product, or process |
| disclosed, or represents that its use would not infringe |
| privately-owned rights. Reference herein to any specific commer- |
| cial products, process, or service by trade name, trademark, |
| manufacturer, or otherwise, does not necessarily constitute or |
| imply its endorsement, recommendation, or favoring by the United |
| States Government or the University of California. The views and |
| opinions of authors expressed herein do not necessarily state or |
| reflect those of the United States Government or the University |
| of California, and shall not be used for advertising or product |
\ endorsement purposes. /

C.3. Licenses and Acknowledgements for Incorporated Software 107

The Python Language Reference,출시버전 2.7.18

C.3.4 MD5 message digest algorithm

The source code for the md5 module contains the following notice:

Copyright (C) 1999, 2002 Aladdin Enterprises. All rights reserved.

This software is provided 'as-is', without any express or implied
warranty. In no event will the authors be held liable for any damages
arising from the use of this software.

Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it
freely, subject to the following restrictions:

1. The origin of this software must not be misrepresented; you must not
claim that you wrote the original software. If you use this software
in a product, an acknowledgment in the product documentation would be
appreciated but is not required.

2. Altered source versions must be plainly marked as such, and must not be
misrepresented as being the original software.

3. This notice may not be removed or altered from any source distribution.

L. Peter Deutsch
ghost@aladdin.com

Independent implementation of MD5 (RFC 1321).

This code implements the MD5 Algorithm defined in RFC 1321, whose
text is available at

http://www.ietf.org/rfc/rfc1321.txt
The code is derived from the text of the RFC, including the test suite
(section A.5) but excluding the rest of Appendix A. It does not include
any code or documentation that is identified in the RFC as being
copyrighted.

The original and principal author of md5.h is L. Peter Deutsch
<ghost@aladdin.com>. Other authors are noted in the change history
that follows (in reverse chronological order):

2002-04-13 lpd Removed support for non-ANSI compilers; removed
references to Ghostscript; clarified derivation from RFC 1321;
now handles byte order either statically or dynamically.

1999-11-04 lpd Edited comments slightly for automatic TOC extraction.
1999-10-18 lpd Fixed typo in header comment (ansi2knr rather than md5);

added conditionalization for C++ compilation from Martin
Purschke <purschke@bnl.gov>.

1999-05-03 lpd Original version.

108 Appendix C. History and License

The Python Language Reference,출시버전 2.7.18

C.3.5 Asynchronous socket services

The asynchat and asyncore modules contain the following notice:

Copyright 1996 by Sam Rushing

All Rights Reserved

Permission to use, copy, modify, and distribute this software and
its documentation for any purpose and without fee is hereby
granted, provided that the above copyright notice appear in all
copies and that both that copyright notice and this permission
notice appear in supporting documentation, and that the name of Sam
Rushing not be used in advertising or publicity pertaining to
distribution of the software without specific, written prior
permission.

SAM RUSHING DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE,
INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN
NO EVENT SHALL SAM RUSHING BE LIABLE FOR ANY SPECIAL, INDIRECT OR
CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS
OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT,
NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

C.3.6 Cookie management

The Cookie module contains the following notice:

Copyright 2000 by Timothy O'Malley <timo@alum.mit.edu>

All Rights Reserved

Permission to use, copy, modify, and distribute this software
and its documentation for any purpose and without fee is hereby
granted, provided that the above copyright notice appear in all
copies and that both that copyright notice and this permission
notice appear in supporting documentation, and that the name of
Timothy O'Malley not be used in advertising or publicity
pertaining to distribution of the software without specific, written
prior permission.

Timothy O'Malley DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS
SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS, IN NO EVENT SHALL Timothy O'Malley BE LIABLE FOR
ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
PERFORMANCE OF THIS SOFTWARE.

C.3. Licenses and Acknowledgements for Incorporated Software 109

The Python Language Reference,출시버전 2.7.18

C.3.7 Execution tracing

The trace module contains the following notice:

portions copyright 2001, Autonomous Zones Industries, Inc., all rights...
err... reserved and offered to the public under the terms of the
Python 2.2 license.
Author: Zooko O'Whielacronx
http://zooko.com/
mailto:zooko@zooko.com

Copyright 2000, Mojam Media, Inc., all rights reserved.
Author: Skip Montanaro

Copyright 1999, Bioreason, Inc., all rights reserved.
Author: Andrew Dalke

Copyright 1995-1997, Automatrix, Inc., all rights reserved.
Author: Skip Montanaro

Copyright 1991-1995, Stichting Mathematisch Centrum, all rights reserved.

Permission to use, copy, modify, and distribute this Python software and
its associated documentation for any purpose without fee is hereby
granted, provided that the above copyright notice appears in all copies,
and that both that copyright notice and this permission notice appear in
supporting documentation, and that the name of neither Automatrix,
Bioreason or Mojam Media be used in advertising or publicity pertaining to
distribution of the software without specific, written prior permission.

C.3.8 UUencode and UUdecode functions

The uu module contains the following notice:

Copyright 1994 by Lance Ellinghouse
Cathedral City, California Republic, United States of America.

All Rights Reserved
Permission to use, copy, modify, and distribute this software and its
documentation for any purpose and without fee is hereby granted,
provided that the above copyright notice appear in all copies and that
both that copyright notice and this permission notice appear in
supporting documentation, and that the name of Lance Ellinghouse
not be used in advertising or publicity pertaining to distribution
of the software without specific, written prior permission.
LANCE ELLINGHOUSE DISCLAIMS ALL WARRANTIES WITH REGARD TO
THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS, IN NO EVENT SHALL LANCE ELLINGHOUSE CENTRUM BE LIABLE
FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT
OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

Modified by Jack Jansen, CWI, July 1995:
- Use binascii module to do the actual line-by-line conversion

between ascii and binary. This results in a 1000-fold speedup. The C

(다음페이지에계속)

110 Appendix C. History and License

The Python Language Reference,출시버전 2.7.18

(이전페이지에서계속)
version is still 5 times faster, though.

- Arguments more compliant with Python standard

C.3.9 XML Remote Procedure Calls

The xmlrpclib module contains the following notice:

The XML-RPC client interface is

Copyright (c) 1999-2002 by Secret Labs AB
Copyright (c) 1999-2002 by Fredrik Lundh

By obtaining, using, and/or copying this software and/or its
associated documentation, you agree that you have read, understood,
and will comply with the following terms and conditions:

Permission to use, copy, modify, and distribute this software and
its associated documentation for any purpose and without fee is
hereby granted, provided that the above copyright notice appears in
all copies, and that both that copyright notice and this permission
notice appear in supporting documentation, and that the name of
Secret Labs AB or the author not be used in advertising or publicity
pertaining to distribution of the software without specific, written
prior permission.

SECRET LABS AB AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH REGARD
TO THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANT-
ABILITY AND FITNESS. IN NO EVENT SHALL SECRET LABS AB OR THE AUTHOR
BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY
DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
OF THIS SOFTWARE.

C.3.10 test_epoll

The test_epoll contains the following notice:

Copyright (c) 2001-2006 Twisted Matrix Laboratories.

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF

(다음페이지에계속)

C.3. Licenses and Acknowledgements for Incorporated Software 111

The Python Language Reference,출시버전 2.7.18

(이전페이지에서계속)
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

C.3.11 Select kqueue

The select and contains the following notice for the kqueue interface:

Copyright (c) 2000 Doug White, 2006 James Knight, 2007 Christian Heimes
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
1. Redistributions of source code must retain the above copyright

notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright

notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

C.3.12 strtod and dtoa

The file Python/dtoa.c, which supplies C functions dtoa and strtod for conversion of C doubles to and from strings,
is derived from the file of the same name by David M. Gay, currently available from http://www.netlib.org/fp/. The
original file, as retrieved on March 16, 2009, contains the following copyright and licensing notice:

/**
*
* The author of this software is David M. Gay.
*
* Copyright (c) 1991, 2000, 2001 by Lucent Technologies.
*
* Permission to use, copy, modify, and distribute this software for any
* purpose without fee is hereby granted, provided that this entire notice
* is included in all copies of any software which is or includes a copy
* or modification of this software and in all copies of the supporting
* documentation for such software.
*
* THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR IMPLIED

(다음페이지에계속)

112 Appendix C. History and License

http://www.netlib.org/fp/

The Python Language Reference,출시버전 2.7.18

(이전페이지에서계속)
* WARRANTY. IN PARTICULAR, NEITHER THE AUTHOR NOR LUCENT MAKES ANY
* REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE MERCHANTABILITY
* OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR PURPOSE.
*
***/

C.3.13 OpenSSL

The modules hashlib, posix, ssl, crypt use the OpenSSL library for added performance if made available by the
operating system. Additionally, the Windows and Mac OS X installers for Python may include a copy of the OpenSSL
libraries, so we include a copy of the OpenSSL license here:

LICENSE ISSUES
==============

The OpenSSL toolkit stays under a dual license, i.e. both the conditions of
the OpenSSL License and the original SSLeay license apply to the toolkit.
See below for the actual license texts. Actually both licenses are BSD-style
Open Source licenses. In case of any license issues related to OpenSSL
please contact openssl-core@openssl.org.

OpenSSL License

/* ==
* Copyright (c) 1998-2008 The OpenSSL Project. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
*
* 3. All advertising materials mentioning features or use of this
* software must display the following acknowledgment:
* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
*
* 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
* endorse or promote products derived from this software without
* prior written permission. For written permission, please contact
* openssl-core@openssl.org.
*
* 5. Products derived from this software may not be called "OpenSSL"
* nor may "OpenSSL" appear in their names without prior written
* permission of the OpenSSL Project.
*
* 6. Redistributions of any form whatsoever must retain the following
* acknowledgment:

(다음페이지에계속)

C.3. Licenses and Acknowledgements for Incorporated Software 113

The Python Language Reference,출시버전 2.7.18

(이전페이지에서계속)
* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit (http://www.openssl.org/)"
*
* THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
* EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
* ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
* OF THE POSSIBILITY OF SUCH DAMAGE.
* ==
*
* This product includes cryptographic software written by Eric Young
* (eay@cryptsoft.com). This product includes software written by Tim
* Hudson (tjh@cryptsoft.com).
*
*/

Original SSLeay License

/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
* All rights reserved.
*
* This package is an SSL implementation written
* by Eric Young (eay@cryptsoft.com).
* The implementation was written so as to conform with Netscapes SSL.
*
* This library is free for commercial and non-commercial use as long as
* the following conditions are aheared to. The following conditions
* apply to all code found in this distribution, be it the RC4, RSA,
* lhash, DES, etc., code; not just the SSL code. The SSL documentation
* included with this distribution is covered by the same copyright terms
* except that the holder is Tim Hudson (tjh@cryptsoft.com).
*
* Copyright remains Eric Young's, and as such any Copyright notices in
* the code are not to be removed.
* If this package is used in a product, Eric Young should be given attribution
* as the author of the parts of the library used.
* This can be in the form of a textual message at program startup or
* in documentation (online or textual) provided with the package.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software

(다음페이지에계속)

114 Appendix C. History and License

The Python Language Reference,출시버전 2.7.18

(이전페이지에서계속)
* must display the following acknowledgement:
* "This product includes cryptographic software written by
* Eric Young (eay@cryptsoft.com)"
* The word 'cryptographic' can be left out if the rouines from the library
* being used are not cryptographic related :-).
* 4. If you include any Windows specific code (or a derivative thereof) from
* the apps directory (application code) you must include an acknowledgement:
* "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
*
* THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* The licence and distribution terms for any publically available version or
* derivative of this code cannot be changed. i.e. this code cannot simply be
* copied and put under another distribution licence
* [including the GNU Public Licence.]
*/

C.3.14 expat

The pyexpat extension is built using an included copy of the expat sources unless the build is configured
--with-system-expat:

Copyright (c) 1998, 1999, 2000 Thai Open Source Software Center Ltd
and Clark Cooper

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

C.3. Licenses and Acknowledgements for Incorporated Software 115

The Python Language Reference,출시버전 2.7.18

C.3.15 libffi

The _ctypes extension is built using an included copy of the libffi sources unless the build is configured
--with-system-libffi:

Copyright (c) 1996-2008 Red Hat, Inc and others.

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
``Software''), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED ``AS IS'', WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.

C.3.16 zlib

The zlib extension is built using an included copy of the zlib sources if the zlib version found on the system is too old
to be used for the build:

Copyright (C) 1995-2010 Jean-loup Gailly and Mark Adler

This software is provided 'as-is', without any express or implied
warranty. In no event will the authors be held liable for any damages
arising from the use of this software.

Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it
freely, subject to the following restrictions:

1. The origin of this software must not be misrepresented; you must not
claim that you wrote the original software. If you use this software
in a product, an acknowledgment in the product documentation would be
appreciated but is not required.

2. Altered source versions must be plainly marked as such, and must not be
misrepresented as being the original software.

3. This notice may not be removed or altered from any source distribution.

Jean-loup Gailly Mark Adler
jloup@gzip.org madler@alumni.caltech.edu

116 Appendix C. History and License

APPENDIXD

저작권

파이썬과이도큐멘테이션은:

Copyright © 2001-2020 Python Software Foundation. All rights reserved.
Copyright © 2000 BeOpen.com. All rights reserved.
Copyright © 1995-2000 Corporation for National Research Initiatives. All rights reserved.
Copyright © 1991-1995 Stichting Mathematisch Centrum. All rights reserved.

전체라이센스및사용권한정보는 History and License에서제공한다.

117

The Python Language Reference,출시버전 2.7.18

118 Appendix D. 저작권

색인

Non-alphabetical
..., 89
%=

augmented assignment, 66
&=

augmented assignment, 66
*

in function calls, 53
글, 81

**
in function calls, 53
글, 81

**=
augmented assignment, 66

*=
augmented assignment, 66

+=
augmented assignment, 66

//=
augmented assignment, 66

/=
augmented assignment, 66

2to3, 89
<<=

augmented assignment, 66
=

assignment statement, 64
-=

augmented assignment, 66
>>=

augmented assignment, 66
>>>, 89
@

글, 80
^=

augmented assignment, 66
__abs__() (object메서드), 36
__add__() (object메서드), 35
__all__ (optional module attribute), 71

__and__() (object메서드), 35
__bases__ (class attribute), 21
__builtin__

모듈, 73, 83
__builtins__, 73
__call__() (object method), 54
__call__() (object메서드), 32
__class__ (instance attribute), 22
__closure__ (function attribute), 19
__cmp__() (object메서드), 27
__code__ (function attribute), 19
__coerce__() (object메서드), 37
__complex__() (object메서드), 36
__contains__() (object메서드), 33
__debug__, 66
__defaults__ (function attribute), 19
__del__() (object메서드), 25
__delattr__() (object메서드), 28
__delete__() (object메서드), 29
__delitem__() (object메서드), 33
__delslice__() (object메서드), 34
__dict__ (class attribute), 21
__dict__ (function attribute), 19
__dict__ (instance attribute), 22, 28
__dict__ (module attribute), 21
__div__() (object메서드), 35
__divmod__() (object메서드), 35
__doc__ (class attribute), 21
__doc__ (function attribute), 19
__doc__ (method attribute), 19
__doc__ (module attribute), 21
__enter__() (object메서드), 38
__eq__() (object메서드), 26
__exit__() (object메서드), 38
__file__, 71
__file__ (module attribute), 21
__float__() (object메서드), 36
__floordiv__() (object메서드), 35
__future__, 92
__ge__() (object메서드), 26

119

The Python Language Reference,출시버전 2.7.18

__get__() (object메서드), 29
__getattr__() (object메서드), 28
__getattribute__() (object메서드), 28
__getitem__() (mapping object method), 24
__getitem__() (object메서드), 32
__getslice__() (object메서드), 34
__globals__ (function attribute), 19
__gt__() (object메서드), 26
__hash__() (object메서드), 27
__hex__() (object메서드), 36
__iadd__() (object메서드), 36
__iand__() (object메서드), 36
__idiv__() (object메서드), 36
__ifloordiv__() (object메서드), 36
__ilshift__() (object메서드), 36
__imod__() (object메서드), 36
__imul__() (object메서드), 36
__index__() (object메서드), 36
__init__() (object method), 21
__init__() (object메서드), 25
__instancecheck__() (class메서드), 31
__int__() (object메서드), 36
__invert__() (object메서드), 36
__ior__() (object메서드), 36
__ipow__() (object메서드), 36
__irshift__() (object메서드), 36
__isub__() (object메서드), 36
__iter__() (object메서드), 33
__itruediv__() (object메서드), 36
__ixor__() (object메서드), 36
__le__() (object메서드), 26
__len__() (mapping object method), 27
__len__() (object메서드), 32
__loader__, 71
__long__() (object메서드), 36
__lshift__() (object메서드), 35
__lt__() (object메서드), 26
__main__

모듈, 42, 83
__metaclass__ (내장변수), 31
__missing__() (object메서드), 33
__mod__() (object메서드), 35
__module__ (class attribute), 21
__module__ (function attribute), 19
__module__ (method attribute), 19
__mul__() (object메서드), 35
__name__, 71
__name__ (class attribute), 21
__name__ (function attribute), 19
__name__ (method attribute), 19
__name__ (module attribute), 21
__ne__() (object메서드), 26
__neg__() (object메서드), 36
__new__() (object메서드), 25

__nonzero__() (object method), 32
__nonzero__() (object메서드), 27
__oct__() (object메서드), 36
__or__() (object메서드), 35
__package__, 71
__path__, 70, 71
__pos__() (object메서드), 36
__pow__() (object메서드), 35
__radd__() (object메서드), 35
__rand__() (object메서드), 35
__rcmp__() (object메서드), 27
__rdiv__() (object메서드), 35
__rdivmod__() (object메서드), 35
__repr__() (object메서드), 26
__reversed__() (object메서드), 33
__rfloordiv__() (object메서드), 35
__rlshift__() (object메서드), 35
__rmod__() (object메서드), 35
__rmul__() (object메서드), 35
__ror__() (object메서드), 35
__rpow__() (object메서드), 35
__rrshift__() (object메서드), 35
__rshift__() (object메서드), 35
__rsub__() (object메서드), 35
__rtruediv__() (object메서드), 35
__rxor__() (object메서드), 35
__set__() (object메서드), 29
__setattr__() (object method), 28
__setattr__() (object메서드), 28
__setitem__() (object메서드), 33
__setslice__() (object메서드), 34
__slots__, 96
__slots__ (내장변수), 30
__str__() (object메서드), 26
__sub__() (object메서드), 35
__subclasscheck__() (class메서드), 32
__truediv__() (object메서드), 35
__unicode__() (object메서드), 27
__xor__() (object메서드), 35
|=

augmented assignment, 66
객체

Boolean, 17
built-in function, 20, 54
built-in method, 20, 54
callable, 18, 52
class, 21, 54, 81
class instance, 21, 22, 54
complex, 17
dictionary, 18, 21, 27, 48, 51, 65
Ellipsis, 16
file, 22, 84
floating point, 17
frame, 23

120 색인

The Python Language Reference,출시버전 2.7.18

frozenset, 18
function, 19, 20, 54, 80
generator, 22, 48, 50
immutable, 17
immutable sequence, 17
instance, 21, 22, 54
integer, 16
list, 18, 47, 51, 52, 65
long integer, 17
mapping, 18, 22, 51, 65
method, 19, 20, 54
module, 21, 51
mutable, 18, 64, 65
mutable sequence, 18
None, 16, 64
NotImplemented, 16
numeric, 16, 22
plain integer, 16
recursive, 49
sequence, 17, 22, 51, 52, 59, 65, 76
set, 18, 49
set type, 18
slice, 33
string, 17, 51, 52
traceback, 23, 69, 78
tuple, 18, 51, 52, 61
unicode, 17
user-defined function, 19, 54, 80
user-defined method, 19

글
*, 81
**, 81
@, 80
assert, 66
break, 69, 76, 78
class, 81
continue, 70, 76, 78
def, 80
del, 25, 67
exec, 73
for, 69, 70, 76
from, 41
global, 64, 67, 73
if, 76
import, 21, 70
pass, 67
print, 26, 67
raise, 69
return, 68, 78
try, 23, 77
while, 69, 70, 76
with, 38, 79
yield, 68

연산자

and, 60
in, 59
is, 59
is not, 59
not, 60
not in, 59
or, 60

예외
AssertionError, 66
AttributeError, 51
GeneratorExit, 50
ImportError, 71
NameError, 46
RuntimeError, 67
StopIteration, 50, 68
TypeError, 55
ValueError, 56
ZeroDivisionError, 55

A
abs

내장 함수, 36
abstract base class (추상베이스클래스), 89
addition, 56
and

bitwise, 56
연산자, 60

anonymous
function, 60

argument
call semantics, 52
function, 18
function definition, 80

argument (인자), 89
arithmetic

conversion, 45
operation, binary, 55
operation, unary, 55

array
모듈, 18

as
import statement, 70
with statement, 79

ASCII@ASCII, 4, 10, 11, 14, 17
assert

글, 66
AssertionError

예외, 66
assertions

debugging, 66
assignment

attribute, 64
augmented, 66
class attribute, 21

색인 121

The Python Language Reference,출시버전 2.7.18

class instance attribute, 22
slicing, 65
statement, 18, 64
subscription, 65
target list, 64

atom, 46
attribute, 16

assignment, 64
assignment, class, 21
assignment, class instance, 22
class, 21
class instance, 22
deletion, 67
generic special, 16
reference, 51
special, 16

attribute (어트리뷰트), 90
AttributeError

예외, 51
augmented

assignment, 66

B
back-quotes, 26, 49
backslash character, 7
backward

quotes, 26, 49
BDFL, 90
binary

arithmetic operation, 55
bitwise operation, 56

binary literal, 12
binding

global name, 73
name, 41, 64, 70, 71, 80, 81

bitwise
and, 56
operation, binary, 56
operation, unary, 55
or, 56
xor, 56

blank line, 7
block, 41

code, 41
BNF, 4, 45
Boolean

operation, 60
객체, 17

break
글, 69, 76, 78

bsddb
모듈, 18

built-in
method, 20

built-in function
call, 54
객체, 20, 54

built-in method
call, 54
객체, 20, 54

byte, 17
bytearray, 18
bytecode, 22
bytecode (바이트코드), 90
bytes-like object (바이트열류객체), 90

C
C, 11

language, 16, 17, 20, 57
call, 52

built-in function, 54
built-in method, 54
class instance, 54
class object, 21, 54
function, 18, 54
instance, 32, 54
method, 54
procedure, 64
user-defined function, 54

callable
객체, 18, 52

chaining
comparisons, 57

character, 17, 51
character set, 17
chr

내장 함수, 17
class

attribute, 21
attribute assignment, 21
classic, 24
constructor, 25
definition, 68, 81
instance, 22
name, 81
new-style, 24
old-style, 24
객체, 21, 54, 81
글, 81

class (클래스), 90
class instance

attribute, 22
attribute assignment, 22
call, 54
객체, 21, 22, 54

class object
call, 21, 54

classic class, 90

122 색인

The Python Language Reference,출시버전 2.7.18

clause, 75
close() (generator메서드), 50
cmp

내장 함수, 27
co_argcount (code object attribute), 22
co_cellvars (code object attribute), 22
co_code (code object attribute), 22
co_consts (code object attribute), 22
co_filename (code object attribute), 22
co_firstlineno (code object attribute), 22
co_flags (code object attribute), 22
co_freevars (code object attribute), 22
co_lnotab (code object attribute), 22
co_name (code object attribute), 22
co_names (code object attribute), 22
co_nlocals (code object attribute), 22
co_stacksize (code object attribute), 22
co_varnames (code object attribute), 22
code

block, 41
code object, 22
coercion (코어션), 90
comma, 47

trailing, 61, 67
command line, 83
comment, 6
comparison, 57

string, 17
comparisons, 26, 27

chaining, 57
compile

내장 함수, 73
complex

literal, 12
number, 17
객체, 17
내장 함수, 36

complex number (복소수), 90
compound

statement, 75
comprehensions

list, 47
Conditional

expression, 60
conditional

expression, 60
constant, 10
constructor

class, 25
container, 16, 21
context manager, 38
context manager (컨텍스트관리자), 90
continue

글, 70, 76, 78

conversion
arithmetic, 45
string, 26, 49, 64

coroutine, 50
CPython, 90

D
dangling

else, 76
data, 15

type, 16
type, immutable, 46

datum, 48
dbm

모듈, 18
debugging

assertions, 66
decimal literal, 12
decorator (데코레이터), 90
DEDENT token, 8, 76
def

글, 80
default

parameter value, 80
definition

class, 68, 81
function, 68, 80

del
글, 25, 67

deletion
attribute, 67
target, 67
target list, 67

delimiters, 14
descriptor (디스크립터), 91
destructor, 25, 64
dictionary

display, 48
객체, 18, 21, 27, 48, 51, 65

dictionary (딕셔너리), 91
dictionary view (딕셔너리뷰), 91
display

dictionary, 48
list, 47
set, 49
tuple, 47

division, 55
divmod

내장 함수, 35, 36
docstring, 81
docstring (독스트링), 91
documentation string, 23
duck-typing (덕타이핑), 91

색인 123

The Python Language Reference,출시버전 2.7.18

E
EAFP, 91
EBCDIC, 17
elif

키워드, 76
Ellipsis

객체, 16
else

dangling, 76
키워드, 69, 76, 78

empty
list, 47
tuple, 18, 47

encoding declarations (source file), 6
environment, 41
error handling, 43
errors, 43
escape sequence, 11
eval

내장 함수, 73, 84
evaluation

order, 61
exc_info (in module sys), 23
exc_traceback (in module sys), 23, 78
exc_type (in module sys), 78
exc_value (in module sys), 78
except

키워드, 77
exception, 43, 69

handler, 23
raising, 69

exception handler, 43
exclusive

or, 56
exec

글, 73
execfile

내장 함수, 73
execution

frame, 41, 81
restricted, 42
stack, 23

execution model, 41
expression, 45

Conditional, 60
conditional, 60
generator, 48
lambda, 60, 81
list, 61, 63, 64
statement, 63
yield, 49

expression (표현식), 91
extended

slicing, 52

extended print statement, 68
extended slicing, 17
extension

module, 16
extension module (확장모듈), 91

F
f_back (frame attribute), 23
f_builtins (frame attribute), 23
f_code (frame attribute), 23
f_exc_traceback (frame attribute), 23
f_exc_type (frame attribute), 23
f_exc_value (frame attribute), 23
f_globals (frame attribute), 23
f_lasti (frame attribute), 23
f_lineno (frame attribute), 23
f_locals (frame attribute), 23
f_restricted (frame attribute), 23
f_trace (frame attribute), 23
False, 17
file

객체, 22, 84
file object (파일객체), 91
file-like object (파일류객체), 91
finally

키워드, 6870, 77, 78
find_module

finder, 70
finder, 70

find_module, 70
finder (파인더), 92
float

내장 함수, 36
floating point

number, 17
객체, 17

floating point literal, 12
floor division (정수나눗셈), 92
for

글, 69, 70, 76
frame

execution, 41, 81
객체, 23

free
variable, 41, 67

from
글, 41
키워드, 70

frozenset
객체, 18

func_closure (function attribute), 19
func_code (function attribute), 19
func_defaults (function attribute), 19
func_dict (function attribute), 19

124 색인

The Python Language Reference,출시버전 2.7.18

func_doc (function attribute), 19
func_globals (function attribute), 19
func_name (function attribute), 19
function

anonymous, 60
argument, 18
call, 18, 54
call, user-defined, 54
definition, 68, 80
generator, 49, 68
name, 80
user-defined, 19
객체, 19, 20, 54, 80

function (함수), 92
future

statement, 72

G
garbage collection, 15
garbage collection (가비지수거), 92
gdbm

모듈, 18
generator, 92

expression, 48
function, 20, 49, 68
iterator, 20, 68
객체, 22, 48, 50

generator (제너레이터), 92
generator expression, 92
generator expression (제너레이터표현식), 92
GeneratorExit

예외, 50
generic

special attribute, 16
GIL, 92
global

name binding, 73
namespace, 19
글, 64, 67, 73

global interpreter lock (전역 인터프리터
록), 92

globals
내장 함수, 73

grammar, 4
grouping, 7

H
handle an exception, 43
handler

exception, 23
hash

내장 함수, 27
hash character, 6
hashable, 48

hashable (해시가능), 92
hex

내장 함수, 36
hexadecimal literal, 12
hierarchy

type, 16

I
id

내장 함수, 15
identifier, 9, 46
identity

test, 59
identity of an object, 15
IDLE, 93
if

글, 76
im_class (method attribute), 20
im_func (method attribute), 19, 20
im_self (method attribute), 19, 20
imaginary literal, 12
immutable

data type, 46
object, 46, 48
객체, 17

immutable (불변), 93
immutable object, 15
immutable sequence

객체, 17
immutable types

subclassing, 25
import

글, 21, 70
importer (임포터), 93
ImportError

예외, 71
importing (임포팅), 93
in

연산자, 59
키워드, 76

inclusive
or, 56

INDENT token, 8
indentation, 7
index operation, 17
indices() (slice메서드), 23
inheritance, 81
input, 84

raw, 84
내장 함수, 84

instance
call, 32, 54
class, 22
객체, 21, 22, 54

색인 125

The Python Language Reference,출시버전 2.7.18

int
내장 함수, 36

integer, 17
representation, 17
객체, 16

integer division, 93
integer literal, 12
interactive (대화형), 93
interactive mode, 83
internal type, 22
interpreted (인터프리티드), 93
interpreter, 83
inversion, 55
invocation, 18
is

연산자, 59
is not

연산자, 59
item

sequence, 51
string, 51

item selection, 17
iterable (이터러블), 93
iterator (이터레이터), 93

J
Java

language, 17

K
key, 48
key function (키함수), 93
key/datum pair, 48
keyword, 9
keyword argument (키워드인자), 94

L
lambda

expression, 60, 81
lambda (람다), 94
language

C, 16, 17, 20, 57
Java, 17
Pascal, 77

last_traceback (in module sys), 23
LBYL, 94
leading whitespace, 7
len

내장 함수, 17, 18, 32
lexical analysis, 5
lexical definitions, 4
line continuation, 7
line joining, 6, 7
line structure, 5

list
assignment, target, 64
comprehensions, 47
deletion target, 67
display, 47
empty, 47
expression, 61, 63, 64
target, 64, 76
객체, 18, 47, 51, 52, 65

list (리스트), 94
list comprehension (리스트컴프리헨션), 94
literal, 10, 46
load_module

loader, 71
loader, 71

load_module, 71
loader (로더), 94
locals

내장 함수, 73
logical line, 6
long

내장 함수, 36
long integer

객체, 17
long integer literal, 12
loop

over mutable sequence, 77
statement, 69, 70, 76

loop control
target, 69

M
magic

method, 94
magic method, 94
makefile() (socket method), 22
mangling

name, 46
mapping

객체, 18, 22, 51, 65
mapping (매핑), 94
membership

test, 59
metaclass (메타클래스), 94
method

built-in, 20
call, 54
magic, 94
special, 96
user-defined, 19
객체, 19, 20, 54

method (메서드), 94
method resolution order (메서드 결정 순서),

94

126 색인

The Python Language Reference,출시버전 2.7.18

minus, 55
module

extension, 16
importing, 70
namespace, 21
객체, 21, 51

module (모듈), 94
modulo, 55
MRO, 95
multiplication, 55
mutable

객체, 18, 64, 65
mutable (가변), 95
mutable object, 15
mutable sequence

loop over, 77
객체, 18

N
name, 9, 41, 46

binding, 41, 64, 70, 71, 80, 81
binding, global, 73
class, 81
function, 80
mangling, 46
rebinding, 64
unbinding, 67

named tuple (네임드튜플), 95
NameError

예외, 46
NameError (built-in exception), 41
names

private, 46
namespace, 41

global, 19
module, 21

namespace (이름공간), 95
negation, 55
nested scope (중첩된스코프), 95
new-style class (뉴스타일클래스), 95
newline

suppression, 67
NEWLINE token, 6, 76
next() (generator메서드), 50
None

객체, 16, 64
not

연산자, 60
not in

연산자, 59
notation, 4
NotImplemented

객체, 16
null

operation, 67
number, 12

complex, 17
floating point, 17

numeric
객체, 16, 22

numeric literal, 12

O
object, 15

code, 22
immutable, 46, 48

object (객체), 95
oct

내장 함수, 36
octal literal, 12
open

내장 함수, 22
operation

binary arithmetic, 55
binary bitwise, 56
Boolean, 60
null, 67
shifting, 56
unary arithmetic, 55
unary bitwise, 55

operator
overloading, 24
precedence, 61
ternary, 60

operators, 13
or

bitwise, 56
exclusive, 56
inclusive, 56
연산자, 60

ord
내장 함수, 17

order
evaluation, 61

output, 64, 67
standard, 64, 67

OverflowError (built-in exception), 16
overloading

operator, 24

P
package, 70
package (패키지), 95
parameter

call semantics, 53
function definition, 79
value, default, 80

parameter (파라미터), 95

색인 127

The Python Language Reference,출시버전 2.7.18

parenthesized form, 47
parser, 5
Pascal

language, 77
pass

글, 67
PEP, 96
physical line, 6, 7, 11
plain integer

객체, 16
plain integer literal, 12
plus, 55
popen() (in module os), 22
positional argument (위치인자), 96
pow

내장 함수, 35, 36
precedence

operator, 61
primary, 51
print

글, 26, 67
private

names, 46
procedure

call, 64
program, 83
Python 3000 (파이썬 3000), 96
Pythonic (파이썬다운), 96

Q
quotes

backward, 26, 49
reverse, 26, 49

R
raise

글, 69
raise an exception, 43
raising

exception, 69
range

내장 함수, 77
raw input, 84
raw string, 10
raw_input

내장 함수, 84
readline() (file method), 84
rebinding

name, 64
recursive

객체, 49
reference

attribute, 51
reference count (참조횟수), 96

reference counting, 15
relative

import, 71
repr

내장 함수, 26, 49, 64
representation

integer, 17
reserved word, 9
restricted

execution, 42
return

글, 68, 78
reverse

quotes, 26, 49
RuntimeError

예외, 67

S
scope, 41
send() (generator메서드), 50
sequence

item, 51
객체, 17, 22, 51, 52, 59, 65, 76

sequence (시퀀스), 96
set

display, 49
객체, 18, 49

set type
객체, 18

shifting
operation, 56

simple
statement, 63

singleton
tuple, 18

slice, 52
객체, 33
내장 함수, 23

slice (슬라이스), 96
slicing, 17, 18, 52

assignment, 65
extended, 52

source character set, 6
space, 7
special

attribute, 16
attribute, generic, 16
method, 96

special method (특수메서드), 96
stack

execution, 23
trace, 23

standard
output, 64, 67

128 색인

The Python Language Reference,출시버전 2.7.18

Standard C, 11
standard input, 83
start (slice object attribute), 23, 52
statement

assignment, 18, 64
assignment, augmented, 66
compound, 75
expression, 63
future, 72
loop, 69, 70, 76
simple, 63

statement (문장), 96
statement grouping, 7
stderr (in module sys), 22
stdin (in module sys), 22
stdio, 22
stdout (in module sys), 22, 67
step (slice object attribute), 23, 52
stop (slice object attribute), 23, 52
StopIteration

예외, 50, 68
str

내장 함수, 26, 49
string

comparison, 17
conversion, 26, 49, 64
item, 51
Unicode, 10
객체, 17, 51, 52

string literal, 10
struct sequence (구조체시퀀스), 96
subclassing

immutable types, 25
subscription, 17, 18, 51

assignment, 65
subtraction, 56
suite, 75
suppression

newline, 67
syntax, 4, 45
sys

모듈, 67, 78, 83
sys.exc_info, 23
sys.exc_traceback, 23
sys.last_traceback, 23
sys.meta_path, 70
sys.modules, 70
sys.path, 70
sys.path_hooks, 70
sys.path_importer_cache, 70
sys.stderr, 22
sys.stdin, 22
sys.stdout, 22
SystemExit (built-in exception), 43

T
tab, 7
target, 64

deletion, 67
list, 64, 76
list assignment, 64
list, deletion, 67
loop control, 69

tb_frame (traceback attribute), 23
tb_lasti (traceback attribute), 23
tb_lineno (traceback attribute), 23
tb_next (traceback attribute), 23
termination model, 43
ternary

operator, 60
test

identity, 59
membership, 59

throw() (generator메서드), 50
token, 5
trace

stack, 23
traceback

객체, 23, 69, 78
trailing

comma, 61, 67
triple-quoted string (삼중따옴표된문자열),

97
triple-quoted string, 10
True, 17
try

글, 23, 77
tuple

display, 47
empty, 18, 47
singleton, 18
객체, 18, 51, 52, 61

type, 16
data, 16
hierarchy, 16
immutable data, 46
내장 함수, 15

type (형), 97
type of an object, 15
TypeError

예외, 55
types, internal, 22

U
unary

arithmetic operation, 55
bitwise operation, 55

unbinding
name, 67

색인 129

The Python Language Reference,출시버전 2.7.18

UnboundLocalError, 41
unichr

내장 함수, 17
Unicode, 17
unicode

객체, 17
내장 함수, 17, 27

Unicode Consortium, 10
universal newlines (유니버설줄넘김), 97
UNIX, 83
unreachable object, 15
unrecognized escape sequence, 11
user-defined

function, 19
function call, 54
method, 19

user-defined function
객체, 19, 54, 80

user-defined method
객체, 19

V
value

default parameter, 80
value of an object, 15
ValueError

예외, 56
values

writing, 64, 67
variable

free, 41, 67
virtual environment (가상환경), 97
virtual machine (가상기계), 97

W
while

글, 69, 70, 76
whitespace, 7
with

글, 38, 79
writing

values, 64, 67

X
내장 함수

abs, 36
chr, 17
cmp, 27
compile, 73
complex, 36
divmod, 35, 36
eval, 73, 84
execfile, 73
float, 36

globals, 73
hash, 27
hex, 36
id, 15
input, 84
int, 36
len, 17, 18, 32
locals, 73
long, 36
oct, 36
open, 22
ord, 17
pow, 35, 36
range, 77
raw_input, 84
repr, 26, 49, 64
slice, 23
str, 26, 49
type, 15
unichr, 17
unicode, 17, 27

모듈
__builtin__, 73, 83
__main__, 42, 83
array, 18
bsddb, 18
dbm, 18
gdbm, 18
sys, 67, 78, 83

xor
bitwise, 56

Y
키워드

elif, 76
else, 69, 76, 78
except, 77
finally, 6870, 77, 78
from, 70
in, 76
yield, 49

파이썬 향상 제안
PEP 1, 96
PEP 236, 73
PEP 238, 92
PEP 255, 69
PEP 278, 97
PEP 302, 70, 71, 92, 94
PEP 308, 60
PEP 328, 71
PEP 342, 51, 69
PEP 343, 38, 79, 90
PEP 3116, 97
PEP 3119, 32

130 색인

The Python Language Reference,출시버전 2.7.18

yield
expression, 49
글, 68
키워드, 49

Z
Zen of Python (파이썬젠), 97
ZeroDivisionError

예외, 55

색인 131

	개요
	대안 구현들
	표기법

	구문 분석
	줄 구조(Line structure)
	다른 토큰들
	식별자와 키워드
	리터럴
	연산자
	구분자

	데이터 모델
	객체, 값, 형
	표준형 계층
	New-style and classic classes
	특수 메서드 이름들

	실행 모델
	이름과 연결(binding)
	예외

	표현식
	산술 변환
	아톰 (Atoms)
	프라이머리
	거듭제곱 연산자
	일 항 산술과 비트 연산
	이항 산술 연산
	시프트 연산
	이항 비트 연산
	비교
	논리 연산(Boolean operations)
	Conditional Expressions
	람다(Lambdas)
	표현식 목록(Expression lists)
	값을 구하는 순서
	연산자 우선순위

	단순문(Simple statements)
	표현식 문
	대입문
	assert 문
	pass 문
	del 문
	The print statement
	return 문
	yield 문
	raise 문
	break 문
	continue 문
	임포트(import) 문
	global 문
	The exec statement

	복합문(Compound statements)
	if 문
	while 문
	for 문
	try 문
	with 문
	함수 정의
	클래스 정의

	최상위 요소들
	완전한 파이썬 프로그램
	파일 입력
	대화형 입력
	표현식 입력

	전체 문법 규격
	용어집
	About these documents
	Contributors to the Python Documentation

	History and License
	History of the software
	Terms and conditions for accessing or otherwise using Python
	Licenses and Acknowledgements for Incorporated Software

	저작권
	색인

