
Python Setup and Usage
출시버전 2.7.18

Guido van Rossum
and the Python development team

5월 20, 2020

Contents

1 Command line and environment 3
1.1 Command line . 3
1.2 Environment variables . 8

2 Using Python on Unix platforms 13
2.1 Getting and installing the latest version of Python . 13
2.2 Building Python . 14
2.3 Python-related paths and files . 14
2.4 Miscellaneous . 15
2.5 Editors and IDEs . 15

3 Using Python on Windows 17
3.1 Installing Python . 17
3.2 Alternative bundles . 18
3.3 Configuring Python . 18
3.4 Additional modules . 20
3.5 Compiling Python on Windows . 21
3.6 Other resources . 21

4 Using Python on a Macintosh 23
4.1 Getting and Installing MacPython . 23
4.2 The IDE . 24
4.3 Installing Additional Python Packages . 25
4.4 GUI Programming on the Mac . 25
4.5 Distributing Python Applications on the Mac . 25
4.6 Other Resources . 25

A 용어집 27

B About these documents 37
B.1 Contributors to the Python Documentation . 37

C History and License 39
C.1 History of the software . 39
C.2 Terms and conditions for accessing or otherwise using Python . 40
C.3 Licenses and Acknowledgements for Incorporated Software . 43

i

D 저작권 55

색인 57

ii

Python Setup and Usage,출시버전 2.7.18

도큐멘테이션의이부분은여러플랫폼에서파이썬환경을설정하고, 인터프리터를호출하며, 파이썬으로
작업하기더쉽게만드는것들에관한일반적인정보를다루는데할당되었습니다.

Contents 1

Python Setup and Usage,출시버전 2.7.18

2 Contents

CHAPTER1

Command line and environment

The CPython interpreter scans the command line and the environment for various settings.
CPython implementation detail: Other implementations〉 command line schemes may differ. See implementations for
further resources.

1.1 Command line

When invoking Python, you may specify any of these options:

python [-bBdEiOQsRStuUvVWxX3?] [-c command | -m module-name | script | -] [args]

The most common use case is, of course, a simple invocation of a script:

python myscript.py

1.1.1 Interface options

The interpreter interface resembles that of the UNIX shell, but provides some additional methods of invocation:
• When called with standard input connected to a tty device, it prompts for commands and executes them until an
EOF (an end-of-file character, you can produce that with Ctrl-D on UNIX or Ctrl-Z, Enter on Windows)
is read.

• When called with a file name argument or with a file as standard input, it reads and executes a script from that file.
• When called with a directory name argument, it reads and executes an appropriately named script from that direc-
tory.

• When called with -c command, it executes the Python statement(s) given as command. Here command may
contain multiple statements separated by newlines. Leading whitespace is significant in Python statements!

• When called with -m module-name, the given module is located on the Python module path and executed as a
script.

3

Python Setup and Usage,출시버전 2.7.18

In non-interactive mode, the entire input is parsed before it is executed.
An interface option terminates the list of options consumed by the interpreter, all consecutive arguments will end up in
sys.argv – note that the first element, subscript zero (sys.argv[0]), is a string reflecting the program’s source.
-c <command>

Execute the Python code in command. command can be one or more statements separated by newlines, with
significant leading whitespace as in normal module code.
If this option is given, the first element of sys.argv will be "-c" and the current directory will be added to the
start of sys.path (allowing modules in that directory to be imported as top level modules).

-m <module-name>
Search sys.path for the named module and execute its contents as the __main__ module.
Since the argument is a module name, you must not give a file extension (.py). The module-name should be
a valid Python module name, but the implementation may not always enforce this (e.g. it may allow you to use a
name that includes a hyphen).
Package names are also permitted. When a package name is supplied instead of a normal module, the interpreter
will execute <pkg>.__main__ as the main module. This behaviour is deliberately similar to the handling of
directories and zipfiles that are passed to the interpreter as the script argument.

참고: This option cannot be used with built-in modules and extension modules written in C, since they do not
have Python module files. However, it can still be used for precompiled modules, even if the original source file is
not available.

If this option is given, the first element of sys.argv will be the full path to the module file. As with the -c
option, the current directory will be added to the start of sys.path.
Many standard library modules contain code that is invoked on their execution as a script. An example is the
timeit module:

python -mtimeit -s 'setup here' 'benchmarked code here'
python -mtimeit -h # for details

더보기:

runpy.run_module() Equivalent functionality directly available to Python code

PEP 338 – Executing modules as scripts
버전 2.4에추가.
버전 2.5에서변경: The named module can now be located inside a package.
버전 2.7에서변경: Supply the package name to run a __main__ submodule. sys.argv[0] is now set to "-m"
while searching for the module (it was previously incorrectly set to "-c")

-
Read commands from standard input (sys.stdin). If standard input is a terminal, -i is implied.
If this option is given, the first element of sys.argv will be "-" and the current directory will be added to the
start of sys.path.
더보기:

runpy.run_path() Equivalent functionality directly available to Python code

4 Chapter 1. Command line and environment

https://www.python.org/dev/peps/pep-0338

Python Setup and Usage,출시버전 2.7.18

<script>
Execute the Python code contained in script, which must be a filesystem path (absolute or relative) referring to
either a Python file, a directory containing a __main__.py file, or a zipfile containing a __main__.py file.
If this option is given, the first element of sys.argv will be the script name as given on the command line.
If the script name refers directly to a Python file, the directory containing that file is added to the start of sys.
path, and the file is executed as the __main__ module.
If the script name refers to a directory or zipfile, the script name is added to the start of sys.path and the
__main__.py file in that location is executed as the __main__ module.
버전 2.5에서변경: Directories and zipfiles containing a __main__.py file at the top level are now considered
valid Python scripts.

If no interface option is given, -i is implied, sys.argv[0] is an empty string ("") and the current directory will be
added to the start of sys.path.
더보기:

tut-invoking

1.1.2 Generic options

-?
-h
--help

Print a short description of all command line options.
버전 2.5에서변경: The --help variant.

-V
--version

Print the Python version number and exit. Example output could be:

Python 2.5.1

버전 2.5에서변경: The --version variant.

1.1.3 Miscellaneous options

-b
Issue a warning when comparing unicode with bytearray. Issue an error when the option is given twice
(-bb).
Note that, unlike the corresponding Python 3.x flag, this will not emit warnings for comparisons between str and
unicode. Instead, the str instance will be implicitly decoded to unicode and Unicode comparison used.
버전 2.6에추가.

-B
If given, Python won’ t try to write .pyc or .pyo files on the import of source modules. See also
PYTHONDONTWRITEBYTECODE.
버전 2.6에추가.

-d
Turn on parser debugging output (for wizards only, depending on compilation options). See also PYTHONDEBUG.

1.1. Command line 5

Python Setup and Usage,출시버전 2.7.18

-E
Ignore all PYTHON* environment variables, e.g. PYTHONPATH and PYTHONHOME, that might be set.
버전 2.2에추가.

-i
When a script is passed as first argument or the -c option is used, enter interactive mode after executing the script
or the command, even when sys.stdin does not appear to be a terminal. The PYTHONSTARTUP file is not
read.
This can be useful to inspect global variables or a stack trace when a script raises an exception. See also
PYTHONINSPECT.

-O
Turn on basic optimizations. This changes the filename extension for compiled (bytecode) files from .pyc to
.pyo. See also PYTHONOPTIMIZE.

-OO
Discard docstrings in addition to the -O optimizations.

-Q <arg>
Division control. The argument must be one of the following:
old division of int/int and long/long return an int or long (default)
new new division semantics, i.e. division of int/int and long/long returns a float
warn old division semantics with a warning for int/int and long/long
warnall old division semantics with a warning for all uses of the division operator
더보기:

Tools/scripts/fixdiv.py for a use of warnall

PEP 238 – Changing the division operator
-R

Turn on hash randomization, so that the __hash__() values of str, bytes and datetime objects are《salted》with
an unpredictable random value. Although they remain constant within an individual Python process, they are not
predictable between repeated invocations of Python.
This is intended to provide protection against a denial-of-service caused by carefully-chosen inputs that exploit
the worst case performance of a dict construction, O(n^2) complexity. See http://www.ocert.org/advisories/
ocert-2011-003.html for details.
Changing hash values affects the order in which keys are retrieved from a dict. Although Python has never made
guarantees about this ordering (and it typically varies between 32-bit and 64-bit builds), enough real-world code
implicitly relies on this non-guaranteed behavior that the randomization is disabled by default.
See also PYTHONHASHSEED.
버전 2.6.8에추가.

-s
Don’t add the user site-packages directory to sys.path.
버전 2.6에추가.
더보기:

PEP 370 – Per user site-packages directory

6 Chapter 1. Command line and environment

https://www.python.org/dev/peps/pep-0238
http://www.ocert.org/advisories/ocert-2011-003.html
http://www.ocert.org/advisories/ocert-2011-003.html
https://www.python.org/dev/peps/pep-0370

Python Setup and Usage,출시버전 2.7.18

-S
Disable the import of the module site and the site-dependent manipulations of sys.path that it entails.

-t
Issue a warning when a source file mixes tabs and spaces for indentation in a way that makes it depend on the worth
of a tab expressed in spaces. Issue an error when the option is given twice (-tt).

-u
Force stdin, stdout and stderr to be totally unbuffered. On systems where it matters, also put stdin, stdout and stderr
in binary mode.
Note that there is internal buffering in file.readlines() and bltin-file-objects (for line in sys.
stdin) which is not influenced by this option. To work around this, you will want to use file.readline()
inside a while 1: loop.
See also PYTHONUNBUFFERED.

-v
Print a message each time a module is initialized, showing the place (filename or built-in module) from which it is
loaded. When given twice (-vv), print a message for each file that is checked for when searching for a module.
Also provides information on module cleanup at exit. See also PYTHONVERBOSE.

-W arg
Warning control. Python’s warning machinery by default prints warning messages to sys.stderr. A typical
warning message has the following form:

file:line: category: message

By default, each warning is printed once for each source line where it occurs. This option controls how often
warnings are printed.
Multiple -W options may be given; when a warning matches more than one option, the action for the last matching
option is performed. Invalid -W options are ignored (though, a warning message is printed about invalid options
when the first warning is issued).
Starting from Python 2.7, DeprecationWarning and its descendants are ignored by default. The -Wd option
can be used to re-enable them.
Warnings can also be controlled from within a Python program using the warnings module.
The simplest form of argument is one of the following action strings (or a unique abbreviation) by themselves:
ignore Ignore all warnings.
default Explicitly request the default behavior (printing each warning once per source line).
all Print a warning each time it occurs (this may generate many messages if a warning is triggered repeatedly for

the same source line, such as inside a loop).
module Print each warning only the first time it occurs in each module.
once Print each warning only the first time it occurs in the program.
error Raise an exception instead of printing a warning message.
The full form of argument is:

action:message:category:module:line

Here, action is as explained above but only applies to messages that match the remaining fields. Empty fields match
all values; trailing empty fields may be omitted. Themessage field matches the start of the warning message printed;
this match is case-insensitive. The category field matches the warning category. This must be a class name; the
match tests whether the actual warning category of the message is a subclass of the specified warning category.

1.1. Command line 7

Python Setup and Usage,출시버전 2.7.18

The full class name must be given. The module field matches the (fully-qualified) module name; this match is
case-sensitive. The line field matches the line number, where zero matches all line numbers and is thus equivalent
to an omitted line number.
더보기:

warnings – the warnings module
PEP 230 – Warning framework
PYTHONWARNINGS

-x
Skip the first line of the source, allowing use of non-Unix forms of #!cmd. This is intended for a DOS specific
hack only.

-3
Warn about Python 3.x possible incompatibilities by emitting a DeprecationWarning for features that are
removed or significantly changed in Python 3 and can’t be detected using static code analysis.
버전 2.6에추가.
See /howto/pyporting for more details.

1.1.4 Options you shouldn’t use

-J
Reserved for use by Jython.

-U
Turns all string literals into unicodes globally. Do not be tempted to use this option as it will probably break your
world. It also produces .pyc files with a different magic number than normal. Instead, you can enable unicode
literals on a per-module basis by using:

from __future__ import unicode_literals

at the top of the file. See __future__ for details.
-X

Reserved for alternative implementations of Python to use for their own purposes.

1.2 Environment variables

These environment variables influence Python’s behavior, they are processed before the command-line switches other
than -E. It is customary that command-line switches override environmental variables where there is a conflict.
PYTHONHOME

Change the location of the standard Python libraries. By default, the libraries are searched in prefix/lib/
pythonversion and exec_prefix/lib/pythonversion, where prefix and exec_prefix are
installation-dependent directories, both defaulting to /usr/local.
When PYTHONHOME is set to a single directory, its value replaces both prefix and exec_prefix. To specify
different values for these, set PYTHONHOME to prefix:exec_prefix.

PYTHONPATH
Augment the default search path for module files. The format is the same as the shell’s PATH: one or more directory
pathnames separated by os.pathsep (e.g. colons on Unix or semicolons onWindows). Non-existent directories
are silently ignored.

8 Chapter 1. Command line and environment

https://www.python.org/dev/peps/pep-0230
http://www.jython.org/

Python Setup and Usage,출시버전 2.7.18

In addition to normal directories, individual PYTHONPATH entries may refer to zipfiles containing pure Python
modules (in either source or compiled form). Extension modules cannot be imported from zipfiles.
The default search path is installation dependent, but generally begins with prefix/lib/pythonversion
(see PYTHONHOME above). It is always appended to PYTHONPATH.
An additional directory will be inserted in the search path in front of PYTHONPATH as described above under
Interface options. The search path can be manipulated from within a Python program as the variable sys.path.

PYTHONSTARTUP
If this is the name of a readable file, the Python commands in that file are executed before the first prompt is
displayed in interactive mode. The file is executed in the same namespace where interactive commands are executed
so that objects defined or imported in it can be used without qualification in the interactive session. You can also
change the prompts sys.ps1 and sys.ps2 in this file.

PYTHONY2K
Set this to a non-empty string to cause the time module to require dates specified as strings to include 4-digit
years, otherwise 2-digit years are converted based on rules described in the time module documentation.

PYTHONOPTIMIZE
If this is set to a non-empty string it is equivalent to specifying the -O option. If set to an integer, it is equivalent
to specifying -O multiple times.

PYTHONDEBUG
If this is set to a non-empty string it is equivalent to specifying the -d option. If set to an integer, it is equivalent
to specifying -d multiple times.

PYTHONINSPECT
If this is set to a non-empty string it is equivalent to specifying the -i option.
This variable can also be modified by Python code using os.environ to force inspect mode on program termi-
nation.

PYTHONUNBUFFERED
If this is set to a non-empty string it is equivalent to specifying the -u option.

PYTHONVERBOSE
If this is set to a non-empty string it is equivalent to specifying the -v option. If set to an integer, it is equivalent
to specifying -v multiple times.

PYTHONCASEOK
If this is set, Python ignores case in import statements. This only works on Windows, OS X, OS/2, and RiscOS.

PYTHONDONTWRITEBYTECODE
If this is set, Python won’t try to write .pyc or .pyo files on the import of source modules. This is equivalent to
specifying the -B option.
버전 2.6에추가.

PYTHONHASHSEED
If this variable is set to random, the effect is the same as specifying the -R option: a random value is used to seed
the hashes of str, bytes and datetime objects.
If PYTHONHASHSEED is set to an integer value, it is used as a fixed seed for generating the hash() of the types
covered by the hash randomization.
Its purpose is to allow repeatable hashing, such as for selftests for the interpreter itself, or to allow a cluster of
python processes to share hash values.
The integer must be a decimal number in the range [0,4294967295]. Specifying the value 0 will lead to the same
hash values as when hash randomization is disabled.
버전 2.6.8에추가.

1.2. Environment variables 9

Python Setup and Usage,출시버전 2.7.18

PYTHONIOENCODING
Overrides the encoding used for stdin/stdout/stderr, in the syntax encodingname:errorhandler. The
:errorhandler part is optional and has the same meaning as in str.encode().
버전 2.6에추가.

PYTHONNOUSERSITE
If this is set, Python won’t add the user site-packages directory to sys.path.
버전 2.6에추가.
더보기:

PEP 370 – Per user site-packages directory
PYTHONUSERBASE

Defines the user base directory, which is used to compute the path of the user site-packages
directory and Distutils installation paths for python setup.py install --user.
버전 2.6에추가.
더보기:

PEP 370 – Per user site-packages directory
PYTHONEXECUTABLE

If this environment variable is set, sys.argv[0] will be set to its value instead of the value got through the C
runtime. Only works on Mac OS X.

PYTHONWARNINGS
This is equivalent to the -W option. If set to a comma separated string, it is equivalent to specifying -W multiple
times.

PYTHONHTTPSVERIFY
If this environment variable is set specifically to 0, then it is equivalent to implicitly calling ssl.
_https_verify_certificates() with enable=False when ssl is first imported.
Refer to the documentation of ssl._https_verify_certificates() for details.
버전 2.7.12에추가.

1.2.1 Debug-mode variables

Setting these variables only has an effect in a debug build of Python, that is, if Python was configured with the
--with-pydebug build option.
PYTHONTHREADDEBUG

If set, Python will print threading debug info.
버전 2.6에서변경: Previously, this variable was called THREADDEBUG.

PYTHONDUMPREFS
If set, Python will dump objects and reference counts still alive after shutting down the interpreter.

PYTHONMALLOCSTATS
If set, Python will print memory allocation statistics every time a new object arena is created, and on shutdown.

PYTHONSHOWALLOCCOUNT
If set and Python was compiled with COUNT_ALLOCS defined, Python will dump allocations counts into stderr
on shutdown.
버전 2.7.15에추가.

10 Chapter 1. Command line and environment

https://www.python.org/dev/peps/pep-0370
https://www.python.org/dev/peps/pep-0370

Python Setup and Usage,출시버전 2.7.18

PYTHONSHOWREFCOUNT
If set, Python will print the total reference count when the program finishes or after each statement in the interactive
interpreter.
버전 2.7.15에추가.

1.2. Environment variables 11

Python Setup and Usage,출시버전 2.7.18

12 Chapter 1. Command line and environment

CHAPTER2

Using Python on Unix platforms

2.1 Getting and installing the latest version of Python

2.1.1 On Linux

Python comes preinstalled on most Linux distributions, and is available as a package on all others. However there are
certain features you might want to use that are not available on your distro’s package. You can easily compile the latest
version of Python from source.
In the event that Python doesn’t come preinstalled and isn’t in the repositories as well, you can easily make packages for
your own distro. Have a look at the following links:
더보기:

https://www.debian.org/doc/manuals/maint-guide/first.en.html for Debian users
https://en.opensuse.org/Portal:Packaging for OpenSuse users
https://docs.fedoraproject.org/en-US/Fedora_Draft_Documentation/0.1/html/RPM_Guide/ch-creating-rpms.html

for Fedora users
http://www.slackbook.org/html/package-management-making-packages.html for Slackware users

2.1.2 On FreeBSD and OpenBSD

• FreeBSD users, to add the package use:

pkg install python3

• OpenBSD users, to add the package use:

pkg_add -r python

pkg_add ftp://ftp.openbsd.org/pub/OpenBSD/4.2/packages/<insert your architecture␣
↪→here>/python-<version>.tgz (다음페이지에계속)

13

https://www.debian.org/doc/manuals/maint-guide/first.en.html
https://en.opensuse.org/Portal:Packaging
https://docs.fedoraproject.org/en-US/Fedora_Draft_Documentation/0.1/html/RPM_Guide/ch-creating-rpms.html
http://www.slackbook.org/html/package-management-making-packages.html

Python Setup and Usage,출시버전 2.7.18

(이전페이지에서계속)

For example i386 users get the 2.5.1 version of Python using:

pkg_add ftp://ftp.openbsd.org/pub/OpenBSD/4.2/packages/i386/python-2.5.1p2.tgz

2.1.3 On OpenSolaris

You can get Python from OpenCSW. Various versions of Python are available and can be installed with e.g. pkgutil
-i python27.

2.2 Building Python

If you want to compile CPython yourself, first thing you should do is get the source. You can download either the latest
release’s source or just grab a fresh clone. (If you want to contribute patches, you will need a clone.)
The build process consists in the usual

./configure
make
make install

invocations. Configuration options and caveats for specific Unix platforms are extensively documented in the README
file in the root of the Python source tree.

경고: make install can overwrite or masquerade the python binary. make altinstall is therefore
recommended instead of make install since it only installs exec_prefix/bin/pythonversion.

2.3 Python-related paths and files

These are subject to difference depending on local installation conventions; prefix (${prefix}) andexec_prefix
(${exec_prefix}) are installation-dependent and should be interpreted as for GNU software; they may be the same.
For example, on most Linux systems, the default for both is /usr.

File/directory Meaning
exec_prefix/bin/python Recommended location of the interpreter.
prefix/lib/pythonversion,
exec_prefix/lib/pythonversion

Recommended locations of the directories containing the standard
modules.

prefix/include/pythonversion,
exec_prefix/include/
pythonversion

Recommended locations of the directories containing the include
files needed for developing Python extensions and embedding the in-
terpreter.

~/.pythonrc.py User-specific initialization file loaded by the user module; not used
by default or by most applications.

14 Chapter 2. Using Python on Unix platforms

https://www.opencsw.org/
https://www.python.org/downloads/source/
https://docs.python.org/devguide/setup.html#getting-the-source-code
https://github.com/python/cpython/tree/2.7/README

Python Setup and Usage,출시버전 2.7.18

2.4 Miscellaneous

To easily use Python scripts on Unix, you need to make them executable, e.g. with

$ chmod +x script

and put an appropriate Shebang line at the top of the script. A good choice is usually

#!/usr/bin/env python

which searches for the Python interpreter in the whole PATH. However, some Unices may not have the env command,
so you may need to hardcode /usr/bin/python as the interpreter path.
To use shell commands in your Python scripts, look at the subprocess module.

2.5 Editors and IDEs

There are a number of IDEs that support Python programming language. Many editors and IDEs provide syntax high-
lighting, debugging tools, and PEP 8 checks.
Please go to Python Editors and Integrated Development Environments for a comprehensive list.

2.4. Miscellaneous 15

https://www.python.org/dev/peps/pep-0008
https://wiki.python.org/moin/PythonEditors
https://wiki.python.org/moin/IntegratedDevelopmentEnvironments

Python Setup and Usage,출시버전 2.7.18

16 Chapter 2. Using Python on Unix platforms

CHAPTER3

Using Python on Windows

This document aims to give an overview of Windows-specific behaviour you should know about when using Python on
Microsoft Windows.

3.1 Installing Python

Unlike most Unix systems and services, Windows does not require Python natively and thus does not pre-install a version
of Python. However, the CPython team has compiled Windows installers (MSI packages) with every release for many
years.
With ongoing development of Python, some platforms that used to be supported earlier are no longer supported (due to
the lack of users or developers). Check PEP 11 for details on all unsupported platforms.

• DOS and Windows 3.x are deprecated since Python 2.0 and code specific to these systems was removed in Python
2.1.

• Up to 2.5, Python was still compatible with Windows 95, 98 and ME (but already raised a deprecation warning
on installation). For Python 2.6 (and all following releases), this support was dropped and new releases are just
expected to work on the Windows NT family.

• Windows CE is still supported.
• The Cygwin installer offers to install the Python interpreter as well (cf. Cygwin package source, Maintainer releases)

See Python for Windows (and DOS) for detailed information about platforms with precompiled installers.
더보기:

Python on XP 《7 Minutes to 《Hello World!》》 by Richard Dooling, 2006
Installing on Windows in 《Dive into Python: Python from novice to pro》 by Mark Pilgrim, 2004, ISBN 1-59059-

356-1
For Windows users in 《Installing Python》 in 《A Byte of Python》 by Swaroop C H, 2003

17

https://www.python.org/download/releases/
https://www.python.org/dev/peps/pep-0011
http://pythonce.sourceforge.net/
https://cygwin.com/
ftp://ftp.uni-erlangen.de/pub/pc/gnuwin32/cygwin/mirrors/cygnus/release/python
http://www.tishler.net/jason/software/python/
https://www.python.org/download/windows/
http://dooling.com/index.php/2006/03/14/python-on-xp-7-minutes-to-hello-world/
http://www.diveintopython.net/installing_python/windows.html
http://www.diveintopython.net/
http://python.swaroopch.com/installation.html#installation-on-windows
http://python.swaroopch.com/

Python Setup and Usage,출시버전 2.7.18

3.2 Alternative bundles

Besides the standard CPython distribution, there are modified packages including additional functionality. The following
is a list of popular versions and their key features:
ActivePython Installer with multi-platform compatibility, documentation, PyWin32
Enthought Python Distribution Popular modules (such as PyWin32) with their respective documentation, tool suite

for building extensible Python applications
Notice that these packages are likely to install older versions of Python.

3.3 Configuring Python

In order to run Python flawlessly, you might have to change certain environment settings in Windows.

3.3.1 Excursus: Setting environment variables

Windows has a built-in dialog for changing environment variables (following guide applies to XP classical view): Right-
click the icon for your machine (usually located on your Desktop and called 《My Computer》) and choose Properties
there. Then, open the Advanced tab and click the Environment Variables button.
In short, your path is:

My Computer ‣ Properties ‣ Advanced ‣ Environment Variables

In this dialog, you can add or modify User and System variables. To change System variables, you need non-restricted
access to your machine (i.e. Administrator rights).
Another way of adding variables to your environment is using the set command:

set PYTHONPATH=%PYTHONPATH%;C:\My_python_lib

To make this setting permanent, you could add the corresponding command line to your autoexec.bat. msconfig
is a graphical interface to this file.
Viewing environment variables can also be done more straight-forward: The command prompt will expand strings
wrapped into percent signs automatically:

echo %PATH%

Consult set /? for details on this behaviour.
더보기:

https://support.microsoft.com/kb/100843 Environment variables in Windows NT
https://support.microsoft.com/kb/310519 How To Manage Environment Variables in Windows XP
https://www.chem.gla.ac.uk/~louis/software/faq/q1.html Setting Environment variables, Louis J. Farrugia

18 Chapter 3. Using Python on Windows

https://www.activestate.com/activepython/
https://www.enthought.com/products/epd/
https://support.microsoft.com/kb/100843
https://support.microsoft.com/kb/310519
https://www.chem.gla.ac.uk/~louis/software/faq/q1.html

Python Setup and Usage,출시버전 2.7.18

3.3.2 Finding the Python executable

Besides using the automatically created start menu entry for the Python interpreter, you might want to start Python in the
DOS prompt. To make this work, you need to set your %PATH% environment variable to include the directory of your
Python distribution, delimited by a semicolon from other entries. An example variable could look like this (assuming the
first two entries are Windows〉 default):

C:\WINDOWS\system32;C:\WINDOWS;C:\Python25

Typing python on your command prompt will now fire up the Python interpreter. Thus, you can also execute your
scripts with command line options, see Command line documentation.

3.3.3 Finding modules

Python usually stores its library (and thereby your site-packages folder) in the installation directory. So, if you had
installed Python to C:\Python\, the default library would reside in C:\Python\Lib\ and third-party modules
should be stored in C:\Python\Lib\site-packages\.
This is how sys.path is populated on Windows:

• An empty entry is added at the start, which corresponds to the current directory.
• If the environment variable PYTHONPATH exists, as described in Environment variables, its entries are added next.
Note that on Windows, paths in this variable must be separated by semicolons, to distinguish them from the colon
used in drive identifiers (C:\ etc.).

• Additional 《application paths》 can be added in the registry as subkeys of \SOFTWARE\
Python\PythonCore{version}\PythonPath under both the HKEY_CURRENT_USER and
HKEY_LOCAL_MACHINE hives. Subkeys which have semicolon-delimited path strings as their default
value will cause each path to be added to sys.path. (Note that all known installers only use HKLM, so HKCU
is typically empty.)

• If the environment variable PYTHONHOME is set, it is assumed as 《Python Home》. Otherwise, the path of the
main Python executable is used to locate a 《landmark file》 (Lib\os.py) to deduce the 《Python Home》. If
a Python home is found, the relevant sub-directories added to sys.path (Lib, plat-win, etc) are based on
that folder. Otherwise, the core Python path is constructed from the PythonPath stored in the registry.

• If the Python Home cannot be located, no PYTHONPATH is specified in the environment, and no registry entries
can be found, a default path with relative entries is used (e.g. .\Lib;.\plat-win, etc).

The end result of all this is:
• When running python.exe, or any other .exe in the main Python directory (either an installed version, or di-
rectly from the PCbuild directory), the core path is deduced, and the core paths in the registry are ignored. Other
《application paths》 in the registry are always read.

• When Python is hosted in another .exe (different directory, embedded via COM, etc), the 《Python Home》 will
not be deduced, so the core path from the registry is used. Other 《application paths》 in the registry are always
read.

• If Python can’t find its home and there is no registry (eg, frozen .exe, some very strange installation setup) you get
a path with some default, but relative, paths.

3.3. Configuring Python 19

Python Setup and Usage,출시버전 2.7.18

3.3.4 Executing scripts

Python scripts (files with the extension .py) will be executed by python.exe by default. This executable opens a
terminal, which stays open even if the program uses a GUI. If you do not want this to happen, use the extension .pyw
which will cause the script to be executed by pythonw.exe by default (both executables are located in the top-level of
your Python installation directory). This suppresses the terminal window on startup.
You can also make all .py scripts execute with pythonw.exe, setting this through the usual facilities, for example
(might require administrative rights):

1. Launch a command prompt.
2. Associate the correct file group with .py scripts:

assoc .py=Python.File

3. Redirect all Python files to the new executable:

ftype Python.File=C:\Path\to\pythonw.exe "%1" %*

3.4 Additional modules

Even though Python aims to be portable among all platforms, there are features that are unique to Windows. A couple of
modules, both in the standard library and external, and snippets exist to use these features.
The Windows-specific standard modules are documented in mswin-specific-services.

3.4.1 PyWin32

The PyWin32 module by Mark Hammond is a collection of modules for advanced Windows-specific support. This
includes utilities for:

• Component Object Model (COM)
• Win32 API calls
• Registry
• Event log
• Microsoft Foundation Classes (MFC) user interfaces

PythonWin is a sample MFC application shipped with PyWin32. It is an embeddable IDE with a built-in debugger.
더보기:

Win32 How Do I…? by Tim Golden
Python and COM by David and Paul Boddie

20 Chapter 3. Using Python on Windows

https://pypi.org/project/pywin32
https://www.microsoft.com/com/
https://msdn.microsoft.com/en-us/library/fe1cf721%28VS.80%29.aspx
https://web.archive.org/web/20060524042422/https://www.python.org/windows/pythonwin/
http://timgolden.me.uk/python/win32_how_do_i.html
http://www.boddie.org.uk/python/COM.html

Python Setup and Usage,출시버전 2.7.18

3.4.2 Py2exe

Py2exe is a distutils extension (see extending-distutils) which wraps Python scripts into executable Windows pro-
grams (*.exe files). When you have done this, you can distribute your application without requiring your users to install
Python.

3.4.3 WConio

Since Python’s advanced terminal handling layer, curses, is restricted to Unix-like systems, there is a library exclusive
to Windows as well: Windows Console I/O for Python.
WConio is a wrapper for Turbo-C’s CONIO.H, used to create text user interfaces.

3.5 Compiling Python on Windows

If you want to compile CPython yourself, first thing you should do is get the source. You can download either the latest
release’s source or just grab a fresh checkout.
For Microsoft Visual C++, which is the compiler with which official Python releases are built, the source tree contains
solutions/project files. View the readme.txt in their respective directories:

Directory MSVC version Visual Studio version
PC/VC6/ 6.0 97
PC/VS7.1/ 7.1 2003
PC/VS8.0/ 8.0 2005
PCbuild/ 9.0 2008

Note that not all of these build directories are fully supported. Read the release notes to see which compiler version the
official releases for your version are built with.
Check PC/readme.txt for general information on the build process.
For extension modules, consult building-on-windows.
더보기:

Python + Windows + distutils + SWIG + gcc MinGW or 《Creating Python extensions in C/C++ with SWIG and
compiling them with MinGW gcc under Windows》 or 《Installing Python extension with distutils and without
Microsoft Visual C++》 by Sébastien Sauvage, 2003

MingW – Python extensions by Trent Apted et al, 2007

3.6 Other resources

더보기:

Python Programming On Win32 《Help for Windows Programmers》 by Mark Hammond and Andy Robinson, O’
Reilly Media, 2000, ISBN 1-56592-621-8

A Python for Windows Tutorial by Amanda Birmingham, 2004

3.5. Compiling Python on Windows 21

http://www.py2exe.org/
http://newcenturycomputers.net/projects/wconio.html
https://www.python.org/downloads/source/
https://docs.python.org/devguide/setup.html#getting-the-source-code
http://sebsauvage.net/python/mingw.html
http://oldwiki.mingw.org/index.php/Python%20extensions
http://shop.oreilly.com/product/9781565926219.do
http://www.imladris.com/Scripts/PythonForWindows.html

Python Setup and Usage,출시버전 2.7.18

22 Chapter 3. Using Python on Windows

CHAPTER4

Using Python on a Macintosh

Author Bob Savage <bobsavage@mac.com>
Python on a Macintosh running Mac OS X is in principle very similar to Python on any other Unix platform, but there
are a number of additional features such as the IDE and the Package Manager that are worth pointing out.
The Mac-specific modules are documented in mac-specific-services.
Python on Mac OS 9 or earlier can be quite different from Python on Unix or Windows, but is beyond the scope of this
manual, as that platform is no longer supported, starting with Python 2.4. See http://www.cwi.nl/~jack/macpython for
installers for the latest 2.3 release for Mac OS 9 and related documentation.

4.1 Getting and Installing MacPython

Mac OS X 10.8 comes with Python 2.7 pre-installed by Apple. If you wish, you are invited to install the most recent
version of Python from the Python website (https://www.python.org). A current 《universal binary》 build of Python,
which runs natively on the Mac’s new Intel and legacy PPC CPU’s, is available there.
What you get after installing is a number of things:

• A MacPython 2.7 folder in your Applications folder. In here you find IDLE, the development environ-
ment that is a standard part of official Python distributions; PythonLauncher, which handles double-clicking Python
scripts from the Finder; and the 《Build Applet》 tool, which allows you to package Python scripts as standalone
applications on your system.

• A framework /Library/Frameworks/Python.framework, which includes the Python executable and
libraries. The installer adds this location to your shell path. To uninstall MacPython, you can simply remove these
three things. A symlink to the Python executable is placed in /usr/local/bin/.

The Apple-provided build of Python is installed in /System/Library/Frameworks/Python.framework and
/usr/bin/python, respectively. You should never modify or delete these, as they are Apple-controlled and are used
by Apple- or third-party software. Remember that if you choose to install a newer Python version from python.org, you
will have two different but functional Python installations on your computer, so it will be important that your paths and
usages are consistent with what you want to do.

23

mailto:bobsavage@mac.com
http://www.cwi.nl/~jack/macpython
https://www.python.org

Python Setup and Usage,출시버전 2.7.18

IDLE includes a help menu that allows you to access Python documentation. If you are completely new to Python you
should start reading the tutorial introduction in that document.
If you are familiar with Python on other Unix platforms you should read the section on running Python scripts from the
Unix shell.

4.1.1 How to run a Python script

Your best way to get started with Python on Mac OS X is through the IDLE integrated development environment, see
section The IDE and use the Help menu when the IDE is running.
If you want to run Python scripts from the Terminal window command line or from the Finder you first need an editor
to create your script. Mac OS X comes with a number of standard Unix command line editors, vim and emacs among
them. If you want a more Mac-like editor, BBEdit or TextWrangler from Bare Bones Software (see http://www.
barebones.com/products/bbedit/index.html) are good choices, as is TextMate (see https://macromates.com/). Other
editors include Gvim (http://macvim.org) and Aquamacs (http://aquamacs.org/).
To run your script from the Terminal window you must make sure that /usr/local/bin is in your shell search path.
To run your script from the Finder you have two options:

• Drag it to PythonLauncher
• Select PythonLauncher as the default application to open your script (or any .py script) through the finder Info
window and double-click it. PythonLauncher has various preferences to control how your script is launched.
Option-dragging allows you to change these for one invocation, or use its Preferences menu to change things glob-
ally.

4.1.2 Running scripts with a GUI

With older versions of Python, there is one Mac OS X quirk that you need to be aware of: programs that talk to the Aqua
window manager (in other words, anything that has a GUI) need to be run in a special way. Use pythonw instead of
python to start such scripts.
With Python 2.7, you can use either python or pythonw.

4.1.3 Configuration

Python on OS X honors all standard Unix environment variables such as PYTHONPATH, but setting these variables for
programs started from the Finder is non-standard as the Finder does not read your .profile or .cshrc at startup. You
need to create a file ~/.MacOSX/environment.plist. See Apple’s Technical Document QA1067 for details.
For more information on installation Python packages in MacPython, see section Installing Additional Python Packages.

4.2 The IDE

MacPython ships with the standard IDLE development environment. A good introduction to using IDLE can be found at
https://hkn.eecs.berkeley.edu/~dyoo/python/idle_intro/index.html.

24 Chapter 4. Using Python on a Macintosh

http://www.barebones.com/products/bbedit/index.html
http://www.barebones.com/products/bbedit/index.html
https://macromates.com/
http://macvim.org
http://aquamacs.org/
https://hkn.eecs.berkeley.edu/~dyoo/python/idle_intro/index.html

Python Setup and Usage,출시버전 2.7.18

4.3 Installing Additional Python Packages

There are several methods to install additional Python packages:
• Packages can be installed via the standard Python distutils mode (python setup.py install).
• Many packages can also be installed via the setuptools extension or pip wrapper, see https://pip.pypa.io/.

4.4 GUI Programming on the Mac

There are several options for building GUI applications on the Mac with Python.
PyObjC is a Python binding to Apple’s Objective-C/Cocoa framework, which is the foundation of most modern Mac
development. Information on PyObjC is available from https://pythonhosted.org/pyobjc/.
The standard Python GUI toolkit is Tkinter, based on the cross-platform Tk toolkit (https://www.tcl.tk). An Aqua-
native version of Tk is bundled with OS X by Apple, and the latest version can be downloaded and installed from https:
//www.activestate.com; it can also be built from source.
wxPython is another popular cross-platform GUI toolkit that runs natively on Mac OS X. Packages and documentation
are available from http://www.wxpython.org.
PyQt is another popular cross-platform GUI toolkit that runs natively on Mac OS X. More information can be found at
https://riverbankcomputing.com/software/pyqt/intro.

4.5 Distributing Python Applications on the Mac

The《Build Applet》 tool that is placed in theMacPython 2.7 folder is fine for packaging small Python scripts on your own
machine to run as a standard Mac application. This tool, however, is not robust enough to distribute Python applications
to other users.
The standard tool for deploying standalone Python applications on the Mac is py2app. More information on installing
and using py2app can be found at http://undefined.org/python/#py2app.

4.6 Other Resources

The MacPython mailing list is an excellent support resource for Python users and developers on the Mac:
https://www.python.org/community/sigs/current/pythonmac-sig/
Another useful resource is the MacPython wiki:
https://wiki.python.org/moin/MacPython

4.3. Installing Additional Python Packages 25

https://pip.pypa.io/
https://pythonhosted.org/pyobjc/
https://www.tcl.tk
https://www.activestate.com
https://www.activestate.com
http://www.wxpython.org
https://riverbankcomputing.com/software/pyqt/intro
http://undefined.org/python/#py2app
https://www.python.org/community/sigs/current/pythonmac-sig/
https://wiki.python.org/moin/MacPython

Python Setup and Usage,출시버전 2.7.18

26 Chapter 4. Using Python on a Macintosh

APPENDIXA

용어집

>>> 대화형셸의기본파이썬프롬프트. 인터프리터에서대화형으로실행될수있는코드예에서자주볼수
있다.

... The default Python prompt of the interactive shell when entering code for an indented code block, when within
a pair of matching left and right delimiters (parentheses, square brackets, curly braces or triple quotes), or after
specifying a decorator.

2to3 파이썬 2.x 코드를 파이썬 3.x 코드로 변환하려고 시도하는 도구인데, 소스를 파싱하고 파스 트리를
탐색해서감지할수있는대부분의비호환성을다룬다.

2to3는표준라이브러리에서 lib2to3로제공된다; 독립적으로실행할수있는스크립트는 Tools/
scripts/2to3로제공된다. 2to3-reference를보세요.

abstract base class (추상베이스클래스) Abstract base classes complement duck-typing by providing a way to define
interfaces when other techniques like hasattr() would be clumsy or subtly wrong (for example with magic
methods). ABCs introduce virtual subclasses, which are classes that don’ t inherit from a class but are still rec-
ognized by isinstance() and issubclass(); see the abc module documentation. Python comes with
many built-in ABCs for data structures (in the collectionsmodule), numbers (in the numbersmodule), and
streams (in the io module). You can create your own ABCs with the abc module.

argument (인자) A value passed to a function (ormethod) when calling the function. There are two types of arguments:
• 키워드인자 (keyword argument): 함수호출때식별자가앞에붙은인자 (예를들어, name=)또는 **
를앞에붙인딕셔너리로전달되는인자. 예를들어, 다음과같은 complex()호출에서 3과 5는
모두키워드인자다:

complex(real=3, imag=5)
complex(**{'real': 3, 'imag': 5})

• 위치인자 (positional argument): 키워드인자가아닌인자. 위치인자들은인자목록의처음에나오
거나이터러블의앞에 *를붙여전달할수있다. 예를들어, 다음과같은호출에서 3과 5는모두
위치인자다.

complex(3, 5)
complex(*(3, 5))

27

Python Setup and Usage,출시버전 2.7.18

인자는함수바의이름붙은지역변수에대입된다. 이대입에적용되는규칙들에대해서는 calls섹션을
보세요. 문법적으로,어떤표현식이건인자로사용될수있다;구해진값이지역변수에대입된다.

See also the parameter glossary entry and the FAQ question on the difference between arguments and parameters.
attribute (어트리뷰트) 점표현식을사용하는이름으로참조되는객체와결합한값. 예를들어,객체 o가어트

리뷰트 a를가지면, o.a처럼참조된다.

BDFL 자비로운종신독재자 (Benevolent Dictator For Life),즉 Guido van Rossum, 파이썬의창시자.
bytes-like object (바이트열류객체) An object that supports the buffer protocol, like str, bytearray or

memoryview. Bytes-like objects can be used for various operations that expect binary data, such as compression,
saving to a binary file or sending over a socket. Some operations need the binary data to be mutable, in which case
not all bytes-like objects can apply.

bytecode (바이트코드) Python source code is compiled into bytecode, the internal representation of a Python program
in the CPython interpreter. The bytecode is also cached in .pyc and .pyo files so that executing the same file
is faster the second time (recompilation from source to bytecode can be avoided). This 《intermediate language》
is said to run on a virtual machine that executes the machine code corresponding to each bytecode. Do note that
bytecodes are not expected to work between different Python virtual machines, nor to be stable between Python
releases.
바이트코드명령어들의목록은 dis모듈도큐멘테이션에나온다.

class (클래스) 사용자정의객체들을만들기위한주형. 클래스정의는보통클래스의인스턴스를대상으로
연산하는메서드정의들을포함한다.

classic class Any class which does not inherit from object. See new-style class. Classic classes have been removed in
Python 3.

coercion (코어션) The implicit conversion of an instance of one type to another during an operation which involves two
arguments of the same type. For example, int(3.15) converts the floating point number to the integer 3, but
in 3+4.5, each argument is of a different type (one int, one float), and both must be converted to the same type
before they can be added or it will raise a TypeError. Coercion between two operands can be performed with
the coerce built-in function; thus, 3+4.5 is equivalent to calling operator.add(*coerce(3, 4.5))
and results in operator.add(3.0, 4.5). Without coercion, all arguments of even compatible types would
have to be normalized to the same value by the programmer, e.g., float(3)+4.5 rather than just 3+4.5.

complex number (복소수) 익숙한실수시스템의확장인데,모든숫자가실수부와허수부의합으로표현된다.
허수부는실수에허수단위 (-1의제곱근)를곱한것인데,종종수학에서는 i로,공학에서는 j로표기
한다. 파이썬은후자의표기법을쓰는복소수를기본지원한다;허수부는 j접미사를붙여서표기한다,
예를들어, 3+1j. math모듈의복소수버전이필요하면, cmath를사용한다. 복소수의활용은꽤수준
높은수학적기능이다. 필요하다고느끼지못한다면,거의확실히무시해도좋다.

context manager (컨텍스트관리자) __enter__()와 __exit__()메서드를정의함으로써 with문에서보
이는환경을제어하는객체. PEP 343로도입되었다.

CPython 파이썬프로그래밍언어의규범적인구현인데, python.org에서배포된다. 이 구현을 Jython 이나
IronPython과같은다른것들과구별할필요가있을때용어《CPython》이사용된다.

decorator (데코레이터) 다른함수를돌려주는함수인데,보통 @wrapper문법을사용한함수변환으로적용
된다. 데코레이터의흔한예는 classmethod()과 staticmethod()다.

데코레이터문법은단지편의문법일뿐이다. 다음두함수정의는의미상으로동등하다:

def f(...):
...

f = staticmethod(f)

@staticmethod

(다음페이지에계속)

28 Appendix A. 용어집

https://www.python.org/~guido/
https://www.python.org/dev/peps/pep-0343
https://www.python.org

Python Setup and Usage,출시버전 2.7.18

(이전페이지에서계속)
def f(...):

...

같은개념이클래스에도존재하지만,덜자주쓰인다. 데코레이터에대한더자세한내용은함수정의와
클래스정의의도큐멘테이션을보면된다.

descriptor (디스크립터) Any new-style object which defines the methods __get__(), __set__(), or
__delete__(). When a class attribute is a descriptor, its special binding behavior is triggered upon attribute
lookup. Normally, using a.b to get, set or delete an attribute looks up the object named b in the class dictionary for
a, but if b is a descriptor, the respective descriptor method gets called. Understanding descriptors is a key to a deep
understanding of Python because they are the basis for many features including functions, methods, properties,
class methods, static methods, and reference to super classes.
디스크립터의메서드들에대한자세한내용은 descriptors에나온다.

dictionary (딕셔너리) An associative array, where arbitrary keys are mapped to values. The keys can be any object
with __hash__() and __eq__() methods. Called a hash in Perl.

dictionary view (딕셔너리뷰) The objects returned from dict.viewkeys(), dict.viewvalues(), and
dict.viewitems() are called dictionary views. They provide a dynamic view on the dictionary’s entries,
which means that when the dictionary changes, the view reflects these changes. To force the dictionary view to
become a full list use list(dictview). See dict-views.

docstring (독스트링) 클래스, 함수, 모듈에서첫번째표현식으로나타나는문자열리터럴. 스위트가실행될
때는무시되지만,컴파일러에의해인지되어둘러싼클래스,함수,모듈의 __doc__어트리뷰트로삽입
된다. 인트로스팩션을통해사용할수있으므로,객체의도큐멘테이션을위한규범적인장소다.

duck-typing (덕타이핑) 올바른인터페이스를가졌는지판단하는데객체의형을보지않는프로그래밍스
타일; 대신, 단순히메서드나어트리뷰트가호출되거나사용된다 (《오리처럼보이고오리처럼꽥꽥
댄다면, 그것은오리다.》)특정한형대신에인터페이스를강조함으로써, 잘설계된코드는다형적인
치환을허락함으로써유연성을개선할수있다. 덕타이핑은 type()이나 isinstance()을사용한
검사를피한다. (하지만,덕타이핑이추상베이스클래스로보완될수있음에유의해야한다.) 대신에,
hasattr()검사나 EAFP프로그래밍을쓴다.

EAFP 허락보다는용서를구하기가쉽다 (Easier to ask for forgiveness than permission). 이흔히볼수있는파
이썬코딩스타일은, 올바른키나어트리뷰트의존재를가정하고, 그가정이틀리면예외를잡는다. 이
깔끔하고빠른스타일은많은 try와 except문의존재로특징지어진다. 이테크닉은 C와같은다른
많은언어에서자주사용되는 LBYL스타일과대비된다.

expression (표현식) A piece of syntax which can be evaluated to some value. In other words, an expression is an
accumulation of expression elements like literals, names, attribute access, operators or function calls which all
return a value. In contrast to many other languages, not all language constructs are expressions. There are also
statements which cannot be used as expressions, such as print or if. Assignments are also statements, not
expressions.

extension module (확장모듈) C 나 C++ 로작성된모듈인데, 파이썬의 C API를사용해서핵심이나사용자
코드와상호작용한다.

file object (파일객체) 하부자원에대해파일지향적 API (read()나 write()같은메서드들)를드러내는
객체. 만들어진방법에따라,파일객체는실제디스크상의파일이나다른저장장치나통신장치 (예를
들어, 표준입출력, 인-메모리버퍼, 소켓, 파이프, 등등)에대한액세스를중계할수있다. 파일객체는
파일류객체 (file-like objects)나스트림 (streams)이라고도불린다.

There are actually three categories of file objects: raw binary files, buffered binary files and text files. Their interfaces
are defined in the io module. The canonical way to create a file object is by using the open() function.

file-like object (파일류객체) 파일객체의비슷한말.

29

Python Setup and Usage,출시버전 2.7.18

finder (파인더) An object that tries to find the loader for a module. It must implement a method named
find_module(). See PEP 302 for details.

floor division (정수나눗셈) 가장가까운정수로내림하는수학적나눗셈. 정수나눗셈연산자는 //다. 예를
들어,표현식 11 // 4의값은 2가되지만,실수나눗셈은 2.75를돌려준다. (-11) // 4가 -2.75
를내림한 -3이됨에유의해야한다. PEP 238를보세요.

function (함수) 호출자에게어떤값을돌려주는일련의문장들. 없거나그이상의인자가전달될수있는데,
바디의실행에사용될수있다. 파라미터와메서드와 function섹션도보세요.

__future__ A pseudo-module which programmers can use to enable new language features which are not compatible
with the current interpreter. For example, the expression 11/4 currently evaluates to 2. If the module in which it
is executed had enabled true division by executing:

from __future__ import division

the expression11/4would evaluate to2.75. By importing the__future__module and evaluating its variables,
you can see when a new feature was first added to the language and when it will become the default:

>>> import __future__
>>> __future__.division
_Feature((2, 2, 0, 'alpha', 2), (3, 0, 0, 'alpha', 0), 8192)

garbage collection (가비지수거) The process of freeing memory when it is not used anymore. Python performs
garbage collection via reference counting and a cyclic garbage collector that is able to detect and break reference
cycles.

generator (제너레이터) A function which returns an iterator. It looks like a normal function except that it contains
yield statements for producing a series of values usable in a for-loop or that can be retrieved one at a time with
the next() function. Each yield temporarily suspends processing, remembering the location execution state
(including local variables and pending try-statements). When the generator resumes, it picks up where it left off (in
contrast to functions which start fresh on every invocation).

generator expression (제너레이터표현식) 이터레이터를돌려주는표현식. 루프변수와범위를정의하는 for
표현식과생략가능한 if표현식이뒤에붙는일반표현식처럼보인다. 결합한표현식은둘러싼함수를
위한값들을만들어낸다:

>>> sum(i*i for i in range(10)) # sum of squares 0, 1, 4, ... 81
285

GIL 전역인터프리터록을보세요.
global interpreter lock (전역인터프리터록) 한번에오직하나의스레드가파이썬바이트코드를실행하도록

보장하기위해 CPython인터프리터가사용하는메커니즘. (dict와같은중요한내장형들을포함하는)
객체모델이묵시적으로동시액세스에대해안전하도록만들어서 CPython 구현을단순하게만든다.
인터프리터전체를로킹하는것은인터프리터를다중스레드화하기쉽게만드는대신, 다중프로세서
기계가제공하는병렬성의많은부분을희생한다.

하지만, 어떤확장모듈들은, 표준이나제삼자모두, 압축이나해싱같은계산집약적인작업을수행할
때는 GIL을반납하도록설계되었다. 또한, I/O를할때는항상 GIL을반납한다.
(훨씬더미세하게공유데이터를로킹하는)《스레드에자유로운 (free-threaded)》인터프리터를만들고자
하는과거의노력은성공적이지못했는데, 흔한단일프로세서경우의성능저하가심하기때문이다.
이성능이슈를극복하는것은구현을훨씬복잡하게만들어서유지비용이더들어갈것으로여겨지고
있다.

hashable (해시가능) An object is hashable if it has a hash value which never changes during its lifetime (it needs a
__hash__()method), and can be compared to other objects (it needs an __eq__() or __cmp__()method).
Hashable objects which compare equal must have the same hash value.

30 Appendix A. 용어집

https://www.python.org/dev/peps/pep-0302
https://www.python.org/dev/peps/pep-0238

Python Setup and Usage,출시버전 2.7.18

해시가능성은객체를딕셔너리의키나집합의멤버로사용할수있게하는데,이자료구조들이내부적
으로해시값을사용하기때문이다.

All of Python’s immutable built-in objects are hashable, while no mutable containers (such as lists or dictionaries)
are. Objects which are instances of user-defined classes are hashable by default; they all compare unequal (except
with themselves), and their hash value is derived from their id().

IDLE 파이썬을위한통합개발환경 (Integrated Development Environment). IDLE은파이썬의표준배포판에
따라오는기초적인편집기와인터프리터환경이다.

immutable (불변) 고정된값을갖는객체. 불변객체는숫자,문자열,튜플을포함한다. 이런객체들은변경될
수없다. 새값을저장하려면새객체를만들어야한다. 변하지않는해시값이있어야하는곳에서중요한
역할을한다,예를들어,딕셔너리의키.

integer division Mathematical division discarding any remainder. For example, the expression 11/4 currently evaluates
to 2 in contrast to the 2.75 returned by float division. Also called floor division. When dividing two integers the
outcome will always be another integer (having the floor function applied to it). However, if one of the operands is
another numeric type (such as a float), the result will be coerced (see coercion) to a common type. For example,
an integer divided by a float will result in a float value, possibly with a decimal fraction. Integer division can be
forced by using the // operator instead of the / operator. See also __future__.

importing (임포팅) 한모듈의파이썬코드가다른모듈의파이썬코드에서사용될수있도록하는절차.
importer (임포터) 모듈을찾기도하고로드하기도하는객체;동시에파인더이자로더객체다.
interactive (대화형) 파이썬은대화형인터프리터를갖고있는데,인터프리터프롬프트에서문장과표현식을

입력할수있고,즉각실행된결과를볼수있다는뜻이다. 인자없이단지 python을실행하라 (컴퓨터의
주메뉴에서선택하는것도가능할수있다). 새아이디어를검사하거나모듈과패키지를들여다보는
매우강력한방법이다 (help(x)를기억하세요).

interpreted (인터프리티드) 바이트코드컴파일러의존재때문에그구분이흐릿해지기는하지만, 파이썬은
컴파일언어가아니라인터프리터언어다. 이것은명시적으로실행파일을만들지않고도,소스파일을
직접실행할수있다는뜻이다. 그프로그램이좀더천천히실행되기는하지만,인터프리터언어는보통
컴파일언어보다짧은개발/디버깅주기를갖는다. 대화형도보세요.

iterable (이터러블) An object capable of returning its members one at a time. Examples of iterables include all sequence
types (such as list, str, and tuple) and some non-sequence types like dict and file and objects of any
classes you define with an __iter__() or __getitem__()method. Iterables can be used in a for loop and
in many other places where a sequence is needed (zip(), map(),…). When an iterable object is passed as an
argument to the built-in function iter(), it returns an iterator for the object. This iterator is good for one pass
over the set of values. When using iterables, it is usually not necessary to call iter() or deal with iterator objects
yourself. The for statement does that automatically for you, creating a temporary unnamed variable to hold the
iterator for the duration of the loop. See also iterator, sequence, and generator.

iterator (이터레이터) An object representing a stream of data. Repeated calls to the iterator’s next() method re-
turn successive items in the stream. When no more data are available a StopIteration exception is raised
instead. At this point, the iterator object is exhausted and any further calls to its next() method just raise
StopIteration again. Iterators are required to have an __iter__() method that returns the iterator object
itself so every iterator is also iterable and may be used in most places where other iterables are accepted. One
notable exception is code which attempts multiple iteration passes. A container object (such as a list) produces
a fresh new iterator each time you pass it to the iter() function or use it in a for loop. Attempting this with
an iterator will just return the same exhausted iterator object used in the previous iteration pass, making it appear
like an empty container.
typeiter에더자세한내용이있다.

key function (키함수) 키함수또는콜레이션 (collation)함수는정렬 (sorting)이나배열 (ordering)에사용되는
값을돌려주는콜러블이다. 예를들어, locale.strxfrm()은로케일특정방식을따르는정렬키를
만드는데사용된다.

31

Python Setup and Usage,출시버전 2.7.18

A number of tools in Python accept key functions to control how elements are ordered or grouped. They in-
clude min(), max(), sorted(), list.sort(), heapq.nsmallest(), heapq.nlargest(), and
itertools.groupby().
There are several ways to create a key function. For example. the str.lower() method can serve as a key
function for case insensitive sorts. Alternatively, an ad-hoc key function can be built from a lambda expression
such as lambda r: (r[0], r[2]). Also, the operatormodule provides three key function constructors:
attrgetter(), itemgetter(), and methodcaller(). See the Sorting HOW TO for examples of how
to create and use key functions.

keyword argument (키워드인자) 인자를보세요.
lambda (람다) 호출될때값이구해지는하나의표현식으로구성된이름없는인라인함수. 람다함수를만드는

문법은 lambda [parameters]: expression이다.

LBYL 뛰기전에보라 (Look before you leap). 이코딩스타일은호출이나조회를하기전에명시적으로사전
조건들을검사한다. 이스타일은 EAFP접근법과대비되고,많은 if문의존재로특징지어진다.

다중스레드환경에서, LBYL접근법은《보기》와《뛰기》간에경쟁조건을만들게될위험이있다. 예를
들어,코드 if key in mapping: return mapping[key]는검사후에,하지만조회전에,다른스
레드가 key를 mapping에서제거하면실패할수있다. 이런이슈는록이나 EAFP접근법을사용함으로써
해결될수있다.

list (리스트) A built-in Python sequence. Despite its name it is more akin to an array in other languages than to a linked
list since access to elements is O(1).

list comprehension (리스트컴프리헨션) A compact way to process all or part of the elements in a sequence and
return a list with the results. result = ["0x%02x" % x for x in range(256) if x % 2 ==
0] generates a list of strings containing even hex numbers (0x..) in the range from 0 to 255. The if clause is
optional. If omitted, all elements in range(256) are processed.

loader (로더) An object that loads a module. It must define a method named load_module(). A loader is typically
returned by a finder. See PEP 302 for details.

magic method An informal synonym for special method.
mapping (매핑) A container object that supports arbitrary key lookups and implements the methods specified in

the Mapping or MutableMapping abstract base classes. Examples include dict, collections.
defaultdict, collections.OrderedDict and collections.Counter.

metaclass (메타클래스) 클래스의클래스. 클래스정의는클래스이름,클래스딕셔너리,베이스클래스들의
목록을만든다. 메타클래스는이세인자를받아서클래스를만드는책임을진다. 대부분의객체지향형
프로그래밍언어들은기본구현을제공한다. 파이썬을특별하게만드는것은커스텀메타클래스를만들
수있다는것이다. 대부분사용자에게는이도구가전혀필요없지만, 필요가생길때, 메타클래스는
강력하고우아한해법을제공한다. 어트리뷰트액세스의로깅 (logging),스레드안전성의추가,객체생성
추적,싱글톤구현과많은다른작업에사용됐다.

metaclasses에서더자세한내용을찾을수있다.
method (메서드) 클래스바디안에서정의되는함수. 그클래스의인스턴스의어트리뷰트로서호출되면, 그

메서드는첫번째인자 (보통 self라고불린다)로인스턴스객체를받는다. 함수와중첩된스코프를
보세요.

method resolution order (메서드결정순서) 메서드결정순서는조회하는동안멤버를검색하는베이스클래
스들의순서다. 2.3릴리스부터파이썬인터프리터에사용된알고리즘의상세한내용은 The Python 2.3
Method Resolution Order를보면된다.

module (모듈) 파이썬코드의조직화단위를담당하는객체. 모듈은임의의파이썬객체들을담는이름공간을
갖는다. 모듈은임포팅절차에의해파이썬으로로드된다.

패키지도보세요.

32 Appendix A. 용어집

https://www.python.org/dev/peps/pep-0302
https://www.python.org/download/releases/2.3/mro/
https://www.python.org/download/releases/2.3/mro/

Python Setup and Usage,출시버전 2.7.18

MRO 메서드결정순서를보세요.
mutable (가변) 가변객체는값이변할수있지만 id()는일정하게유지한다. 불변도보세요.

named tuple (네임드튜플) 인덱싱할 수 있는 요소들을 이름 붙은 어트리뷰트로도 액세스할 수 있는 모든
튜플류클래스 (예를들어, time.localtime()은 year가 t[0]처럼인덱스로도, t.tm_year처럼
어트리뷰트로도액세스할수있는튜플류객체를돌려준다.)
네임드튜플은 time.struct_time같은내장형일수도, 일반 클래스정의로만들수도있다. 모든
기능이구현된네임드튜플을팩토리함수 collections.namedtuple()로도만들수있다. 마지막
접근법은 Employee(name='jones', title='programmer')와같은스스로문서로만드는 repr
과같은확장기능도자동제공한다.

namespace (이름공간) The place where a variable is stored. Namespaces are implemented as dictionaries. There
are the local, global and built-in namespaces as well as nested namespaces in objects (in methods). Namespaces
supportmodularity by preventing naming conflicts. For instance, the functions__builtin__.open() andos.
open() are distinguished by their namespaces. Namespaces also aid readability and maintainability by making it
clear which module implements a function. For instance, writing random.seed() or itertools.izip()
makes it clear that those functions are implemented by the random and itertools modules, respectively.

nested scope (중첩된스코프) The ability to refer to a variable in an enclosing definition. For instance, a function
defined inside another function can refer to variables in the outer function. Note that nested scopes work only for
reference and not for assignment which will always write to the innermost scope. In contrast, local variables both
read and write in the innermost scope. Likewise, global variables read and write to the global namespace.

new-style class (뉴스타일클래스) Any class which inherits from object. This includes all built-in types like list
and dict. Only new-style classes can use Python’s newer, versatile features like __slots__, descriptors, prop-
erties, and __getattribute__().
More information can be found in newstyle.

object (객체) 상태 (어트리뷰트나값)를갖고동작 (메서드)이정의된모든데이터. 또한,모든뉴스타일클래스
의최종적인베이스클래스다.

package (패키지) 서브모듈들이나, 재귀적으로서브패키지들을포함할수있는파이썬모듈. 기술적으로,
패키지는 __path__어트리뷰트가있는파이썬모듈이다.

parameter (파라미터) A named entity in a function (or method) definition that specifies an argument (or in some cases,
arguments) that the function can accept. There are four types of parameters:

• 위치-키워드 (positional-or-keyword): 위치인자나키워드인자로전달될수있는인자를지정한다.
이것이기본형태의파라미터다,예를들어다음에서 foo와 bar:

def func(foo, bar=None): ...

• 위치-전용 (positional-only): 위치로만제공될수있는인자를지정한다. 파이썬은위치-전용파라미
터를정의하는문법을갖고있지않다. 하지만, 어떤매장함수들은위치-전용파라미터를갖는다
(예를들어, abs()).

• 가변-위치 (var-positional): (다른파라미터들에의해서이미받아들여진위치인자들에더해)제공될
수있는위치인자들의임의의시퀀스를지정한다. 이런파라미터는파라미터이름에 *를앞에
붙여서정의될수있다,예를들어다음에서 args:

def func(*args, **kwargs): ...

• 가변-키워드 (var-keyword): (다른파라미터들에의해서이미받아들여진키워드인자들에더해)
제공될수있는임의의개수키워드인자들을지정한다. 이런파라미터는파라미터이름에 **를
앞에붙여서정의될수있다,예를들어위의예에서 kwargs.

파라미터는선택적인자들을위한기본값뿐만아니라선택적이거나필수인자들을지정할수있다.

33

Python Setup and Usage,출시버전 2.7.18

See also the argument glossary entry, the FAQ question on the difference between arguments and parameters, and
the function section.

PEP 파이썬개선제안. PEP는파이썬커뮤니티에정보를제공하거나파이썬또는그프로세스또는환경에
대한새로운기능을설명하는설계문서다. PEP는 제안된기능에대한간결한기술사양및근거를
제공해야한다.

PEP는주요새로운기능을제안하고문제에대한커뮤니티입력을수집하며파이썬에들어간설계
결정을문서로만들기위한기본메커니즘이다. PEP작성자는커뮤니티내에서합의를구축하고반대
의견을문서화할책임이있다.

PEP 1참조하세요.
positional argument (위치인자) 인자를보세요.
Python 3000 (파이썬 3000) 파이썬 3.x배포라인의별명 (버전 3의배포가먼미래의이야기던시절에만들어진

이름이다.) 이것을《Py3k》로줄여쓰기도한다.
Pythonic (파이썬다운) 다른언어들에서일반적인개념들을사용해서코드를구현하는대신,파이썬언어에서

가장자주사용되는이디엄들을가까이따르는아이디어나코드조작. 예를들어,파이썬에서자주쓰는
이디엄은 for문을사용해서이터러블의모든요소로루핑하는것이다. 다른많은언어에는이런종류의
구성물이없으므로,파이썬에익숙하지않은사람들은대신에숫자카운터를사용하기도한다:

for i in range(len(food)):
print food[i]

더깔끔한,파이썬다운방법은이렇다:

for piece in food:
print piece

reference count (참조횟수) 객체에대한참조의개수. 객체의참조횟수가 0으로떨어지면, 메모리가반납된
다. 참조횟수추적은일반적으로파이썬코드에노출되지는않지만, CPython구현의핵심요소다. sys
모듈은특정객체의참조횟수를돌려주는 getrefcount()을정의한다.

__slots__ A declaration inside a new-style class that saves memory by pre-declaring space for instance attributes and
eliminating instance dictionaries. Though popular, the technique is somewhat tricky to get right and is best reserved
for rare cases where there are large numbers of instances in a memory-critical application.

sequence (시퀀스) An iterable which supports efficient element access using integer indices via the __getitem__()
special method and defines a len()method that returns the length of the sequence. Some built-in sequence types
are list, str, tuple, and unicode. Note that dict also supports __getitem__() and __len__(),
but is considered a mapping rather than a sequence because the lookups use arbitrary immutable keys rather than
integers.

slice (슬라이스) An object usually containing a portion of a sequence. A slice is created using the subscript no-
tation, [] with colons between numbers when several are given, such as in variable_name[1:3:5].
The bracket (subscript) notation uses slice objects internally (or in older versions, __getslice__() and
__setslice__()).

special method (특수메서드) 파이썬이형에어떤연산을,덧셈같은,실행할때묵시적으로호출되는메서드.
이런메서드는두개의밑줄로시작하고끝나는이름을갖고있다. 특수메서드는 specialnames에문서로
만들어져있다.

statement (문장) 문장은스위트 (코드의《블록 (block)》)를구성하는부분이다. 문장은표현식이거나키워드
를사용하는여러가지구조물중의하나다. 가령 if, while, for.

struct sequence (구조체시퀀스) A tuple with named elements. Struct sequences expose an interface similiar to named
tuple in that elements can be accessed either by index or as an attribute. However, they do not have any of the named
tuple methods like _make() or _asdict(). Examples of struct sequences include sys.float_info and
the return value of os.stat().

34 Appendix A. 용어집

https://www.python.org/dev/peps/pep-0001

Python Setup and Usage,출시버전 2.7.18

triple-quoted string (삼중따옴표된문자열) 따옴표 (《) 나 작은따옴표 (〈) 세 개로 둘러싸인 문자열. 그냥
따옴표하나로둘러싸인문자열에없는기능을제공하지는않지만, 여러가지이유에서쓸모가있다.
이스케이프되지않은작은따옴표나큰따옴표를문자열안에포함할수있도록하고,연결문자를쓰지
않고도여러줄에걸칠수있는데,독스트링을쓸때특히쓸모있다.

type (형) 파이썬객체의형은그것이어떤종류의객체인지를결정한다;모든객체는형이있다. 객체의형은
__class__어트리뷰트로액세스할수있거나 type(obj)로얻을수있다.

universal newlines (유니버설줄넘김) A manner of interpreting text streams in which all of the following are recog-
nized as ending a line: the Unix end-of-line convention '\n', the Windows convention '\r\n', and the old
Macintosh convention '\r'. See PEP 278 and PEP 3116, as well as str.splitlines() for an additional
use.

virtual environment (가상환경) 파이썬사용자와응용프로그램이, 같은시스템에서실행되는다른파이썬
응용프로그램들의동작에영향을주지않으면서,파이썬배포패키지들을설치하거나업그레이드하는
것을가능하게하는,협력적으로격리된실행환경.

virtual machine (가상기계) 소프트웨어만으로정의된컴퓨터. 파이썬의가상기계는바이트코드컴파일러가
출력하는바이트코드를실행한다.

Zen of Python (파이썬젠) 파이썬디자인원리와철학들의목록인데, 인어를이해하고사용하는데도움이
된다. 이목록은대화형프롬프트에서《import this》를입력하면보인다.

35

https://www.python.org/dev/peps/pep-0278
https://www.python.org/dev/peps/pep-3116

Python Setup and Usage,출시버전 2.7.18

36 Appendix A. 용어집

APPENDIXB

About these documents

These documents are generated from reStructuredText sources by Sphinx, a document processor specifically written for
the Python documentation.
Development of the documentation and its toolchain is an entirely volunteer effort, just like Python itself. If you want
to contribute, please take a look at the reporting-bugs page for information on how to do so. New volunteers are always
welcome!
Many thanks go to:

• Fred L. Drake, Jr., the creator of the original Python documentation toolset and writer of much of the content;
• the Docutils project for creating reStructuredText and the Docutils suite;
• Fredrik Lundh for his Alternative Python Reference project from which Sphinx got many good ideas.

B.1 Contributors to the Python Documentation

Many people have contributed to the Python language, the Python standard library, and the Python documentation. See
Misc/ACKS in the Python source distribution for a partial list of contributors.
It is only with the input and contributions of the Python community that Python has such wonderful documentation –
Thank You!

37

http://docutils.sourceforge.net/rst.html
http://sphinx-doc.org/
http://docutils.sourceforge.net/
http://effbot.org/zone/pyref.htm
https://github.com/python/cpython/tree/2.7/Misc/ACKS

Python Setup and Usage,출시버전 2.7.18

38 Appendix B. About these documents

APPENDIXC

History and License

C.1 History of the software

Python was created in the early 1990s by Guido van Rossum at Stichting Mathematisch Centrum (CWI, see https://www.
cwi.nl/) in the Netherlands as a successor of a language called ABC. Guido remains Python’s principal author, although
it includes many contributions from others.
In 1995, Guido continued his work on Python at the Corporation for National Research Initiatives (CNRI, see https:
//www.cnri.reston.va.us/) in Reston, Virginia where he released several versions of the software.
In May 2000, Guido and the Python core development team moved to BeOpen.com to form the BeOpen PythonLabs
team. In October of the same year, the PythonLabs team moved to Digital Creations (now Zope Corporation; see https:
//www.zope.org/). In 2001, the Python Software Foundation (PSF, see https://www.python.org/psf/) was formed, a non-
profit organization created specifically to own Python-related Intellectual Property. Zope Corporation is a sponsoring
member of the PSF.
All Python releases are Open Source (see https://opensource.org/ for the Open Source Definition). Historically, most,
but not all, Python releases have also been GPL-compatible; the table below summarizes the various releases.

Release Derived from Year Owner GPL compatible?
0.9.0 thru 1.2 n/a 1991-1995 CWI yes
1.3 thru 1.5.2 1.2 1995-1999 CNRI yes
1.6 1.5.2 2000 CNRI no
2.0 1.6 2000 BeOpen.com no
1.6.1 1.6 2001 CNRI no
2.1 2.0+1.6.1 2001 PSF no
2.0.1 2.0+1.6.1 2001 PSF yes
2.1.1 2.1+2.0.1 2001 PSF yes
2.1.2 2.1.1 2002 PSF yes
2.1.3 2.1.2 2002 PSF yes
2.2 and above 2.1.1 2001-now PSF yes

39

https://www.cwi.nl/
https://www.cwi.nl/
https://www.cnri.reston.va.us/
https://www.cnri.reston.va.us/
https://www.zope.org/
https://www.zope.org/
https://www.python.org/psf/
https://opensource.org/

Python Setup and Usage,출시버전 2.7.18

참고: GPL-compatible doesn’t mean that we’re distributing Python under the GPL. All Python licenses, unlike the
GPL, let you distribute a modified version without making your changes open source. The GPL-compatible licenses make
it possible to combine Python with other software that is released under the GPL; the others don’t.

Thanks to the many outside volunteers who have worked under Guido’s direction to make these releases possible.

C.2 Terms and conditions for accessing or otherwise using Python

C.2.1 PSF LICENSE AGREEMENT FOR PYTHON 2.7.18

1. This LICENSE AGREEMENT is between the Python Software Foundation ("PSF"),␣
↪→and

the Individual or Organization ("Licensee") accessing and otherwise using␣
↪→Python

2.7.18 software in source or binary form and its associated documentation.

2. Subject to the terms and conditions of this License Agreement, PSF hereby
grants Licensee a nonexclusive, royalty-free, world-wide license to␣

↪→reproduce,
analyze, test, perform and/or display publicly, prepare derivative works,
distribute, and otherwise use Python 2.7.18 alone or in any derivative
version, provided, however, that PSF's License Agreement and PSF's notice␣

↪→of
copyright, i.e., "Copyright © 2001-2020 Python Software Foundation; All␣

↪→Rights
Reserved" are retained in Python 2.7.18 alone or in any derivative version
prepared by Licensee.

3. In the event Licensee prepares a derivative work that is based on or
incorporates Python 2.7.18 or any part thereof, and wants to make the
derivative work available to others as provided herein, then Licensee␣

↪→hereby
agrees to include in any such work a brief summary of the changes made to␣

↪→Python
2.7.18.

4. PSF is making Python 2.7.18 available to Licensee on an "AS IS" basis.
PSF MAKES NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF
EXAMPLE, BUT NOT LIMITATION, PSF MAKES NO AND DISCLAIMS ANY REPRESENTATION␣

↪→OR
WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT␣

↪→THE
USE OF PYTHON 2.7.18 WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

5. PSF SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF PYTHON 2.7.18
FOR ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT␣

↪→OF
MODIFYING, DISTRIBUTING, OR OTHERWISE USING PYTHON 2.7.18, OR ANY␣

↪→DERIVATIVE
THEREOF, EVEN IF ADVISED OF THE POSSIBILITY THEREOF.

40 Appendix C. History and License

Python Setup and Usage,출시버전 2.7.18

6. This License Agreement will automatically terminate upon a material breach␣
↪→of

its terms and conditions.

7. Nothing in this License Agreement shall be deemed to create any␣
↪→relationship

of agency, partnership, or joint venture between PSF and Licensee. This␣
↪→License

Agreement does not grant permission to use PSF trademarks or trade name in␣
↪→a

trademark sense to endorse or promote products or services of Licensee, or␣
↪→any

third party.

8. By copying, installing or otherwise using Python 2.7.18, Licensee agrees
to be bound by the terms and conditions of this License Agreement.

C.2.2 BEOPEN.COM LICENSE AGREEMENT FOR PYTHON 2.0

BEOPEN PYTHON OPEN SOURCE LICENSE AGREEMENT VERSION 1

1. This LICENSE AGREEMENT is between BeOpen.com ("BeOpen"), having an office at
160 Saratoga Avenue, Santa Clara, CA 95051, and the Individual or Organization
("Licensee") accessing and otherwise using this software in source or binary
form and its associated documentation ("the Software").

2. Subject to the terms and conditions of this BeOpen Python License Agreement,
BeOpen hereby grants Licensee a non-exclusive, royalty-free, world-wide license
to reproduce, analyze, test, perform and/or display publicly, prepare derivative
works, distribute, and otherwise use the Software alone or in any derivative
version, provided, however, that the BeOpen Python License is retained in the
Software, alone or in any derivative version prepared by Licensee.

3. BeOpen is making the Software available to Licensee on an "AS IS" basis.
BEOPEN MAKES NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF
EXAMPLE, BUT NOT LIMITATION, BEOPEN MAKES NO AND DISCLAIMS ANY REPRESENTATION OR
WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE
USE OF THE SOFTWARE WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

4. BEOPEN SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF THE SOFTWARE FOR
ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT OF USING,
MODIFYING OR DISTRIBUTING THE SOFTWARE, OR ANY DERIVATIVE THEREOF, EVEN IF
ADVISED OF THE POSSIBILITY THEREOF.

5. This License Agreement will automatically terminate upon a material breach of
its terms and conditions.

6. This License Agreement shall be governed by and interpreted in all respects
by the law of the State of California, excluding conflict of law provisions.
Nothing in this License Agreement shall be deemed to create any relationship of
agency, partnership, or joint venture between BeOpen and Licensee. This License
Agreement does not grant permission to use BeOpen trademarks or trade names in a
trademark sense to endorse or promote products or services of Licensee, or any
third party. As an exception, the "BeOpen Python" logos available at

(다음페이지에계속)

C.2. Terms and conditions for accessing or otherwise using Python 41

Python Setup and Usage,출시버전 2.7.18

(이전페이지에서계속)
http://www.pythonlabs.com/logos.html may be used according to the permissions
granted on that web page.

7. By copying, installing or otherwise using the software, Licensee agrees to be
bound by the terms and conditions of this License Agreement.

C.2.3 CNRI LICENSE AGREEMENT FOR PYTHON 1.6.1

1. This LICENSE AGREEMENT is between the Corporation for National Research
Initiatives, having an office at 1895 Preston White Drive, Reston, VA 20191
("CNRI"), and the Individual or Organization ("Licensee") accessing and
otherwise using Python 1.6.1 software in source or binary form and its
associated documentation.

2. Subject to the terms and conditions of this License Agreement, CNRI hereby
grants Licensee a nonexclusive, royalty-free, world-wide license to reproduce,
analyze, test, perform and/or display publicly, prepare derivative works,
distribute, and otherwise use Python 1.6.1 alone or in any derivative version,
provided, however, that CNRI's License Agreement and CNRI's notice of copyright,
i.e., "Copyright © 1995-2001 Corporation for National Research Initiatives; All
Rights Reserved" are retained in Python 1.6.1 alone or in any derivative version
prepared by Licensee. Alternately, in lieu of CNRI's License Agreement,
Licensee may substitute the following text (omitting the quotes): "Python 1.6.1
is made available subject to the terms and conditions in CNRI's License
Agreement. This Agreement together with Python 1.6.1 may be located on the
Internet using the following unique, persistent identifier (known as a handle):
1895.22/1013. This Agreement may also be obtained from a proxy server on the
Internet using the following URL: http://hdl.handle.net/1895.22/1013."

3. In the event Licensee prepares a derivative work that is based on or
incorporates Python 1.6.1 or any part thereof, and wants to make the derivative
work available to others as provided herein, then Licensee hereby agrees to
include in any such work a brief summary of the changes made to Python 1.6.1.

4. CNRI is making Python 1.6.1 available to Licensee on an "AS IS" basis. CNRI
MAKES NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF EXAMPLE,
BUT NOT LIMITATION, CNRI MAKES NO AND DISCLAIMS ANY REPRESENTATION OR WARRANTY
OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE USE OF
PYTHON 1.6.1 WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

5. CNRI SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF PYTHON 1.6.1 FOR
ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT OF
MODIFYING, DISTRIBUTING, OR OTHERWISE USING PYTHON 1.6.1, OR ANY DERIVATIVE
THEREOF, EVEN IF ADVISED OF THE POSSIBILITY THEREOF.

6. This License Agreement will automatically terminate upon a material breach of
its terms and conditions.

7. This License Agreement shall be governed by the federal intellectual property
law of the United States, including without limitation the federal copyright
law, and, to the extent such U.S. federal law does not apply, by the law of the
Commonwealth of Virginia, excluding Virginia's conflict of law provisions.
Notwithstanding the foregoing, with regard to derivative works based on Python
1.6.1 that incorporate non-separable material that was previously distributed

(다음페이지에계속)

42 Appendix C. History and License

Python Setup and Usage,출시버전 2.7.18

(이전페이지에서계속)
under the GNU General Public License (GPL), the law of the Commonwealth of
Virginia shall govern this License Agreement only as to issues arising under or
with respect to Paragraphs 4, 5, and 7 of this License Agreement. Nothing in
this License Agreement shall be deemed to create any relationship of agency,
partnership, or joint venture between CNRI and Licensee. This License Agreement
does not grant permission to use CNRI trademarks or trade name in a trademark
sense to endorse or promote products or services of Licensee, or any third
party.

8. By clicking on the "ACCEPT" button where indicated, or by copying, installing
or otherwise using Python 1.6.1, Licensee agrees to be bound by the terms and
conditions of this License Agreement.

C.2.4 CWI LICENSE AGREEMENT FOR PYTHON 0.9.0 THROUGH 1.2

Copyright © 1991 - 1995, Stichting Mathematisch Centrum Amsterdam, The
Netherlands. All rights reserved.

Permission to use, copy, modify, and distribute this software and its
documentation for any purpose and without fee is hereby granted, provided that
the above copyright notice appear in all copies and that both that copyright
notice and this permission notice appear in supporting documentation, and that
the name of Stichting Mathematisch Centrum or CWI not be used in advertising or
publicity pertaining to distribution of the software without specific, written
prior permission.

STICHTING MATHEMATISCH CENTRUM DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS
SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN NO
EVENT SHALL STICHTING MATHEMATISCH CENTRUM BE LIABLE FOR ANY SPECIAL, INDIRECT
OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE,
DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS
SOFTWARE.

C.3 Licenses and Acknowledgements for Incorporated Software

This section is an incomplete, but growing list of licenses and acknowledgements for third-party software incorporated in
the Python distribution.

C.3.1 Mersenne Twister

The _random module includes code based on a download from http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/
MT2002/emt19937ar.html. The following are the verbatim comments from the original code:

A C-program for MT19937, with initialization improved 2002/1/26.
Coded by Takuji Nishimura and Makoto Matsumoto.

Before using, initialize the state by using init_genrand(seed)
or init_by_array(init_key, key_length).

(다음페이지에계속)

C.3. Licenses and Acknowledgements for Incorporated Software 43

http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/MT2002/emt19937ar.html
http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/MT2002/emt19937ar.html

Python Setup and Usage,출시버전 2.7.18

(이전페이지에서계속)
Copyright (C) 1997 - 2002, Makoto Matsumoto and Takuji Nishimura,
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

3. The names of its contributors may not be used to endorse or promote
products derived from this software without specific prior written
permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Any feedback is very welcome.
http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html
email: m-mat @ math.sci.hiroshima-u.ac.jp (remove space)

C.3.2 Sockets

The socket module uses the functions, getaddrinfo(), and getnameinfo(), which are coded in separate
source files from the WIDE Project, http://www.wide.ad.jp/.

Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
1. Redistributions of source code must retain the above copyright

notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright

notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

3. Neither the name of the project nor the names of its contributors
may be used to endorse or promote products derived from this software
without specific prior written permission.

(다음페이지에계속)

44 Appendix C. History and License

http://www.wide.ad.jp/

Python Setup and Usage,출시버전 2.7.18

(이전페이지에서계속)
THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

C.3.3 Floating point exception control

The source for the fpectl module includes the following notice:

/ Copyright (c) 1996. \

| The Regents of the University of California. |
| All rights reserved. |
| |
| Permission to use, copy, modify, and distribute this software for |
| any purpose without fee is hereby granted, provided that this en- |
| tire notice is included in all copies of any software which is or |
| includes a copy or modification of this software and in all |
| copies of the supporting documentation for such software. |
| |
| This work was produced at the University of California, Lawrence |
| Livermore National Laboratory under contract no. W-7405-ENG-48 |
| between the U.S. Department of Energy and The Regents of the |
| University of California for the operation of UC LLNL. |
| |
| DISCLAIMER |
| |
| This software was prepared as an account of work sponsored by an |
| agency of the United States Government. Neither the United States |
| Government nor the University of California nor any of their em- |
| ployees, makes any warranty, express or implied, or assumes any |
| liability or responsibility for the accuracy, completeness, or |
| usefulness of any information, apparatus, product, or process |
| disclosed, or represents that its use would not infringe |
| privately-owned rights. Reference herein to any specific commer- |
| cial products, process, or service by trade name, trademark, |
| manufacturer, or otherwise, does not necessarily constitute or |
| imply its endorsement, recommendation, or favoring by the United |
| States Government or the University of California. The views and |
| opinions of authors expressed herein do not necessarily state or |
| reflect those of the United States Government or the University |
| of California, and shall not be used for advertising or product |
\ endorsement purposes. /

C.3. Licenses and Acknowledgements for Incorporated Software 45

Python Setup and Usage,출시버전 2.7.18

C.3.4 MD5 message digest algorithm

The source code for the md5 module contains the following notice:

Copyright (C) 1999, 2002 Aladdin Enterprises. All rights reserved.

This software is provided 'as-is', without any express or implied
warranty. In no event will the authors be held liable for any damages
arising from the use of this software.

Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it
freely, subject to the following restrictions:

1. The origin of this software must not be misrepresented; you must not
claim that you wrote the original software. If you use this software
in a product, an acknowledgment in the product documentation would be
appreciated but is not required.

2. Altered source versions must be plainly marked as such, and must not be
misrepresented as being the original software.

3. This notice may not be removed or altered from any source distribution.

L. Peter Deutsch
ghost@aladdin.com

Independent implementation of MD5 (RFC 1321).

This code implements the MD5 Algorithm defined in RFC 1321, whose
text is available at

http://www.ietf.org/rfc/rfc1321.txt
The code is derived from the text of the RFC, including the test suite
(section A.5) but excluding the rest of Appendix A. It does not include
any code or documentation that is identified in the RFC as being
copyrighted.

The original and principal author of md5.h is L. Peter Deutsch
<ghost@aladdin.com>. Other authors are noted in the change history
that follows (in reverse chronological order):

2002-04-13 lpd Removed support for non-ANSI compilers; removed
references to Ghostscript; clarified derivation from RFC 1321;
now handles byte order either statically or dynamically.

1999-11-04 lpd Edited comments slightly for automatic TOC extraction.
1999-10-18 lpd Fixed typo in header comment (ansi2knr rather than md5);

added conditionalization for C++ compilation from Martin
Purschke <purschke@bnl.gov>.

1999-05-03 lpd Original version.

46 Appendix C. History and License

Python Setup and Usage,출시버전 2.7.18

C.3.5 Asynchronous socket services

The asynchat and asyncore modules contain the following notice:

Copyright 1996 by Sam Rushing

All Rights Reserved

Permission to use, copy, modify, and distribute this software and
its documentation for any purpose and without fee is hereby
granted, provided that the above copyright notice appear in all
copies and that both that copyright notice and this permission
notice appear in supporting documentation, and that the name of Sam
Rushing not be used in advertising or publicity pertaining to
distribution of the software without specific, written prior
permission.

SAM RUSHING DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE,
INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN
NO EVENT SHALL SAM RUSHING BE LIABLE FOR ANY SPECIAL, INDIRECT OR
CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS
OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT,
NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

C.3.6 Cookie management

The Cookie module contains the following notice:

Copyright 2000 by Timothy O'Malley <timo@alum.mit.edu>

All Rights Reserved

Permission to use, copy, modify, and distribute this software
and its documentation for any purpose and without fee is hereby
granted, provided that the above copyright notice appear in all
copies and that both that copyright notice and this permission
notice appear in supporting documentation, and that the name of
Timothy O'Malley not be used in advertising or publicity
pertaining to distribution of the software without specific, written
prior permission.

Timothy O'Malley DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS
SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS, IN NO EVENT SHALL Timothy O'Malley BE LIABLE FOR
ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
PERFORMANCE OF THIS SOFTWARE.

C.3. Licenses and Acknowledgements for Incorporated Software 47

Python Setup and Usage,출시버전 2.7.18

C.3.7 Execution tracing

The trace module contains the following notice:

portions copyright 2001, Autonomous Zones Industries, Inc., all rights...
err... reserved and offered to the public under the terms of the
Python 2.2 license.
Author: Zooko O'Whielacronx
http://zooko.com/
mailto:zooko@zooko.com

Copyright 2000, Mojam Media, Inc., all rights reserved.
Author: Skip Montanaro

Copyright 1999, Bioreason, Inc., all rights reserved.
Author: Andrew Dalke

Copyright 1995-1997, Automatrix, Inc., all rights reserved.
Author: Skip Montanaro

Copyright 1991-1995, Stichting Mathematisch Centrum, all rights reserved.

Permission to use, copy, modify, and distribute this Python software and
its associated documentation for any purpose without fee is hereby
granted, provided that the above copyright notice appears in all copies,
and that both that copyright notice and this permission notice appear in
supporting documentation, and that the name of neither Automatrix,
Bioreason or Mojam Media be used in advertising or publicity pertaining to
distribution of the software without specific, written prior permission.

C.3.8 UUencode and UUdecode functions

The uu module contains the following notice:

Copyright 1994 by Lance Ellinghouse
Cathedral City, California Republic, United States of America.

All Rights Reserved
Permission to use, copy, modify, and distribute this software and its
documentation for any purpose and without fee is hereby granted,
provided that the above copyright notice appear in all copies and that
both that copyright notice and this permission notice appear in
supporting documentation, and that the name of Lance Ellinghouse
not be used in advertising or publicity pertaining to distribution
of the software without specific, written prior permission.
LANCE ELLINGHOUSE DISCLAIMS ALL WARRANTIES WITH REGARD TO
THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS, IN NO EVENT SHALL LANCE ELLINGHOUSE CENTRUM BE LIABLE
FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT
OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

Modified by Jack Jansen, CWI, July 1995:
- Use binascii module to do the actual line-by-line conversion

between ascii and binary. This results in a 1000-fold speedup. The C

(다음페이지에계속)

48 Appendix C. History and License

Python Setup and Usage,출시버전 2.7.18

(이전페이지에서계속)
version is still 5 times faster, though.

- Arguments more compliant with Python standard

C.3.9 XML Remote Procedure Calls

The xmlrpclib module contains the following notice:

The XML-RPC client interface is

Copyright (c) 1999-2002 by Secret Labs AB
Copyright (c) 1999-2002 by Fredrik Lundh

By obtaining, using, and/or copying this software and/or its
associated documentation, you agree that you have read, understood,
and will comply with the following terms and conditions:

Permission to use, copy, modify, and distribute this software and
its associated documentation for any purpose and without fee is
hereby granted, provided that the above copyright notice appears in
all copies, and that both that copyright notice and this permission
notice appear in supporting documentation, and that the name of
Secret Labs AB or the author not be used in advertising or publicity
pertaining to distribution of the software without specific, written
prior permission.

SECRET LABS AB AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH REGARD
TO THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANT-
ABILITY AND FITNESS. IN NO EVENT SHALL SECRET LABS AB OR THE AUTHOR
BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY
DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
OF THIS SOFTWARE.

C.3.10 test_epoll

The test_epoll contains the following notice:

Copyright (c) 2001-2006 Twisted Matrix Laboratories.

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF

(다음페이지에계속)

C.3. Licenses and Acknowledgements for Incorporated Software 49

Python Setup and Usage,출시버전 2.7.18

(이전페이지에서계속)
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

C.3.11 Select kqueue

The select and contains the following notice for the kqueue interface:

Copyright (c) 2000 Doug White, 2006 James Knight, 2007 Christian Heimes
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
1. Redistributions of source code must retain the above copyright

notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright

notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

C.3.12 strtod and dtoa

The file Python/dtoa.c, which supplies C functions dtoa and strtod for conversion of C doubles to and from strings,
is derived from the file of the same name by David M. Gay, currently available from http://www.netlib.org/fp/. The
original file, as retrieved on March 16, 2009, contains the following copyright and licensing notice:

/**
*
* The author of this software is David M. Gay.
*
* Copyright (c) 1991, 2000, 2001 by Lucent Technologies.
*
* Permission to use, copy, modify, and distribute this software for any
* purpose without fee is hereby granted, provided that this entire notice
* is included in all copies of any software which is or includes a copy
* or modification of this software and in all copies of the supporting
* documentation for such software.
*
* THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR IMPLIED

(다음페이지에계속)

50 Appendix C. History and License

http://www.netlib.org/fp/

Python Setup and Usage,출시버전 2.7.18

(이전페이지에서계속)
* WARRANTY. IN PARTICULAR, NEITHER THE AUTHOR NOR LUCENT MAKES ANY
* REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE MERCHANTABILITY
* OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR PURPOSE.
*
***/

C.3.13 OpenSSL

The modules hashlib, posix, ssl, crypt use the OpenSSL library for added performance if made available by the
operating system. Additionally, the Windows and Mac OS X installers for Python may include a copy of the OpenSSL
libraries, so we include a copy of the OpenSSL license here:

LICENSE ISSUES
==============

The OpenSSL toolkit stays under a dual license, i.e. both the conditions of
the OpenSSL License and the original SSLeay license apply to the toolkit.
See below for the actual license texts. Actually both licenses are BSD-style
Open Source licenses. In case of any license issues related to OpenSSL
please contact openssl-core@openssl.org.

OpenSSL License

/* ==
* Copyright (c) 1998-2008 The OpenSSL Project. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
*
* 3. All advertising materials mentioning features or use of this
* software must display the following acknowledgment:
* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
*
* 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
* endorse or promote products derived from this software without
* prior written permission. For written permission, please contact
* openssl-core@openssl.org.
*
* 5. Products derived from this software may not be called "OpenSSL"
* nor may "OpenSSL" appear in their names without prior written
* permission of the OpenSSL Project.
*
* 6. Redistributions of any form whatsoever must retain the following
* acknowledgment:

(다음페이지에계속)

C.3. Licenses and Acknowledgements for Incorporated Software 51

Python Setup and Usage,출시버전 2.7.18

(이전페이지에서계속)
* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit (http://www.openssl.org/)"
*
* THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
* EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
* ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
* OF THE POSSIBILITY OF SUCH DAMAGE.
* ==
*
* This product includes cryptographic software written by Eric Young
* (eay@cryptsoft.com). This product includes software written by Tim
* Hudson (tjh@cryptsoft.com).
*
*/

Original SSLeay License

/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
* All rights reserved.
*
* This package is an SSL implementation written
* by Eric Young (eay@cryptsoft.com).
* The implementation was written so as to conform with Netscapes SSL.
*
* This library is free for commercial and non-commercial use as long as
* the following conditions are aheared to. The following conditions
* apply to all code found in this distribution, be it the RC4, RSA,
* lhash, DES, etc., code; not just the SSL code. The SSL documentation
* included with this distribution is covered by the same copyright terms
* except that the holder is Tim Hudson (tjh@cryptsoft.com).
*
* Copyright remains Eric Young's, and as such any Copyright notices in
* the code are not to be removed.
* If this package is used in a product, Eric Young should be given attribution
* as the author of the parts of the library used.
* This can be in the form of a textual message at program startup or
* in documentation (online or textual) provided with the package.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software

(다음페이지에계속)

52 Appendix C. History and License

Python Setup and Usage,출시버전 2.7.18

(이전페이지에서계속)
* must display the following acknowledgement:
* "This product includes cryptographic software written by
* Eric Young (eay@cryptsoft.com)"
* The word 'cryptographic' can be left out if the rouines from the library
* being used are not cryptographic related :-).
* 4. If you include any Windows specific code (or a derivative thereof) from
* the apps directory (application code) you must include an acknowledgement:
* "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
*
* THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* The licence and distribution terms for any publically available version or
* derivative of this code cannot be changed. i.e. this code cannot simply be
* copied and put under another distribution licence
* [including the GNU Public Licence.]
*/

C.3.14 expat

The pyexpat extension is built using an included copy of the expat sources unless the build is configured
--with-system-expat:

Copyright (c) 1998, 1999, 2000 Thai Open Source Software Center Ltd
and Clark Cooper

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

C.3. Licenses and Acknowledgements for Incorporated Software 53

Python Setup and Usage,출시버전 2.7.18

C.3.15 libffi

The _ctypes extension is built using an included copy of the libffi sources unless the build is configured
--with-system-libffi:

Copyright (c) 1996-2008 Red Hat, Inc and others.

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
``Software''), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED ``AS IS'', WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.

C.3.16 zlib

The zlib extension is built using an included copy of the zlib sources if the zlib version found on the system is too old
to be used for the build:

Copyright (C) 1995-2010 Jean-loup Gailly and Mark Adler

This software is provided 'as-is', without any express or implied
warranty. In no event will the authors be held liable for any damages
arising from the use of this software.

Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it
freely, subject to the following restrictions:

1. The origin of this software must not be misrepresented; you must not
claim that you wrote the original software. If you use this software
in a product, an acknowledgment in the product documentation would be
appreciated but is not required.

2. Altered source versions must be plainly marked as such, and must not be
misrepresented as being the original software.

3. This notice may not be removed or altered from any source distribution.

Jean-loup Gailly Mark Adler
jloup@gzip.org madler@alumni.caltech.edu

54 Appendix C. History and License

APPENDIXD

저작권

파이썬과이도큐멘테이션은:

Copyright © 2001-2020 Python Software Foundation. All rights reserved.
Copyright © 2000 BeOpen.com. All rights reserved.
Copyright © 1995-2000 Corporation for National Research Initiatives. All rights reserved.
Copyright © 1991-1995 Stichting Mathematisch Centrum. All rights reserved.

전체라이센스및사용권한정보는 History and License에서제공한다.

55

Python Setup and Usage,출시버전 2.7.18

56 Appendix D. 저작권

색인

Non-alphabetical
..., 27
-?

command line option, 5
%PATH%, 19
2to3, 27
-3

command line option, 8
>>>, 27
__future__, 30
__slots__, 34

A
abstract base class (추상베이스클래스), 27
argument (인자), 27
attribute (어트리뷰트), 28

B
-B

command line option, 5
-b

command line option, 5
BDFL, 28
bytecode (바이트코드), 28
bytes-like object (바이트열류객체), 28

C
-c <command>

command line option, 4
class (클래스), 28
classic class, 28
coercion (코어션), 28
command line option

-?, 5
-3, 8
-B, 5
-b, 5
-c <command>, 4
-d, 5

-E, 5
-h, 5
--help, 5
-i, 6
-J, 8
-m <module-name>, 4
-O, 6
-OO, 6
-Q <arg>, 6
-R, 6
-S, 6
-s, 6
-t, 7
-U, 8
-u, 7
-V, 5
-v, 7
--version, 5
-W arg, 7
-X, 8
-x, 8

complex number (복소수), 28
context manager (컨텍스트관리자), 28
CPython, 28

D
-d

command line option, 5
decorator (데코레이터), 28
descriptor (디스크립터), 29
dictionary (딕셔너리), 29
dictionary view (딕셔너리뷰), 29
docstring (독스트링), 29
duck-typing (덕타이핑), 29

E
-E

command line option, 5
EAFP, 29

57

Python Setup and Usage,출시버전 2.7.18

exec_prefix, 14
expression (표현식), 29
extension module (확장모듈), 29

F
file object (파일객체), 29
file-like object (파일류객체), 29
finder (파인더), 30
floor division (정수나눗셈), 30
function (함수), 30

G
garbage collection (가비지수거), 30
generator, 30
generator (제너레이터), 30
generator expression, 30
generator expression (제너레이터표현식), 30
GIL, 30
global interpreter lock (전역 인터프리터

록), 30

H
-h

command line option, 5
hashable (해시가능), 30
--help

command line option, 5

I
-i

command line option, 6
IDLE, 31
immutable (불변), 31
importer (임포터), 31
importing (임포팅), 31
integer division, 31
interactive (대화형), 31
interpreted (인터프리티드), 31
iterable (이터러블), 31
iterator (이터레이터), 31

J
-J

command line option, 8

K
key function (키함수), 31
keyword argument (키워드인자), 32

L
lambda (람다), 32
LBYL, 32
list (리스트), 32

list comprehension (리스트컴프리헨션), 32
loader (로더), 32

M
-m <module-name>

command line option, 4
magic

method, 32
magic method, 32
mapping (매핑), 32
metaclass (메타클래스), 32
method

magic, 32
special, 34

method (메서드), 32
method resolution order (메서드 결정 순서),

32
module (모듈), 32
MRO, 33
mutable (가변), 33

N
named tuple (네임드튜플), 33
namespace (이름공간), 33
nested scope (중첩된스코프), 33
new-style class (뉴스타일클래스), 33

O
-O

command line option, 6
object (객체), 33
-OO

command line option, 6

P
package (패키지), 33
parameter (파라미터), 33
PATH, 8, 15
PEP, 34
positional argument (위치인자), 34
prefix, 14
Python 3000 (파이썬 3000), 34
PYTHON*, 6
PYTHONDEBUG, 5
PYTHONDONTWRITEBYTECODE, 5
PYTHONHASHSEED, 6, 9
PYTHONHOME, 6, 8, 9, 19
Pythonic (파이썬다운), 34
PYTHONINSPECT, 6
PYTHONOPTIMIZE, 6
PYTHONPATH, 6, 9, 19, 24
PYTHONSTARTUP, 6
PYTHONUNBUFFERED, 7

58 색인

Python Setup and Usage,출시버전 2.7.18

PYTHONVERBOSE, 7
PYTHONWARNINGS, 8

Q
-Q <arg>

command line option, 6

R
-R

command line option, 6
reference count (참조횟수), 34

S
-S

command line option, 6
-s

command line option, 6
sequence (시퀀스), 34
slice (슬라이스), 34
special

method, 34
special method (특수메서드), 34
statement (문장), 34
struct sequence (구조체시퀀스), 34

T
-t

command line option, 7
triple-quoted string (삼중따옴표된문자열),

35
type (형), 35

U
-U

command line option, 8
-u

command line option, 7
universal newlines (유니버설줄넘김), 35

V
-V

command line option, 5
-v

command line option, 7
--version

command line option, 5
virtual environment (가상환경), 35
virtual machine (가상기계), 35

W
-W arg

command line option, 7

X
-X

command line option, 8
-x

command line option, 8

Y
파이썬 향상 제안

PEP 1, 34
PEP 8, 15
PEP 11, 17
PEP 230, 8
PEP 238, 6, 30
PEP 278, 35
PEP 302, 30, 32
PEP 338, 4
PEP 343, 28
PEP 370, 6, 10
PEP 3116, 35

환경 변수
%PATH%, 19
exec_prefix, 14
PATH, 8, 15
prefix, 14
PYTHON*, 6
PYTHONCASEOK, 9
PYTHONDEBUG, 5, 9
PYTHONDONTWRITEBYTECODE, 5, 9
PYTHONDUMPREFS, 10
PYTHONEXECUTABLE, 10
PYTHONHASHSEED, 6, 9
PYTHONHOME, 6, 8, 9, 19
PYTHONHTTPSVERIFY, 10
PYTHONINSPECT, 6, 9
PYTHONIOENCODING, 9
PYTHONMALLOCSTATS, 10
PYTHONNOUSERSITE, 10
PYTHONOPTIMIZE, 6, 9
PYTHONPATH, 6, 8, 9, 19, 24
PYTHONSHOWALLOCCOUNT, 10
PYTHONSHOWREFCOUNT, 10
PYTHONSTARTUP, 6, 9
PYTHONTHREADDEBUG, 10
PYTHONUNBUFFERED, 7, 9
PYTHONUSERBASE, 10
PYTHONVERBOSE, 7, 9
PYTHONWARNINGS, 8, 10
PYTHONY2K, 9

Z
Zen of Python (파이썬젠), 35

색인 59

	Command line and environment
	Command line
	Environment variables

	Using Python on Unix platforms
	Getting and installing the latest version of Python
	Building Python
	Python-related paths and files
	Miscellaneous
	Editors and IDEs

	Using Python on Windows
	Installing Python
	Alternative bundles
	Configuring Python
	Additional modules
	Compiling Python on Windows
	Other resources

	Using Python on a Macintosh
	Getting and Installing MacPython
	The IDE
	Installing Additional Python Packages
	GUI Programming on the Mac
	Distributing Python Applications on the Mac
	Other Resources

	용어집
	About these documents
	Contributors to the Python Documentation

	History and License
	History of the software
	Terms and conditions for accessing or otherwise using Python
	Licenses and Acknowledgements for Incorporated Software

	저작권
	색인

