The Python Language Reference
ZA| B{H 2.7.18

Guido van Rossum
and the Python development team

5& 20, 2020

Contents

N 3
L1 OO 8 E . e e 3
1.2 BTIH e 4
FE 8N 5
2.1 T FR(LINESIUCIUIE) . . . o o v o o e e e e e e e e e e 5
22 TEFE EZE . . e 9
23 AHERI FIRIE 9
24 BIEE L e 10
2.5 AXRRE L e 13
2.6 TFERE e 14
deoje 2dd 15
30 AL LT 15
32 BEIHAIZ . e 16
33 News-styleand classicclasses e 24
34 EFUAEOlEE L 24
L] a1
41 Ol AZAMINdING) e 41
42 ol e 43
w384 45

A AR B 45
52 OFE (AIOMS) .+ v v v e e e e e e e 46
53 ZBFOIWE] L L e 51
54 AGAF AL L 54
55 AT RIE AA L e 55
56 ol AR AXL L e 55
57 AZE QAL L e 56
58 O] UIE AR L 56
59 Bl L e 57
5.10 =] AAF(Boolean Operations)o e e e e e e 60
5.11 Conditional Expressions e 60
512 ZFoR(Lambdas) e 60
513 FHA] S (Bxpression liStS) v 0 v i e e e 61
504 FEE FBFE A L 61

515 AAARRF MG

k& & (Simple statements)

6.1 EEA B e
6.2 T e
6.3 AS ST AT v i i e e e e e
0.4 PASS T it e e e e e e e e
6.5 del T . . e
6.6 Theprintstatement 0 i e e e e e e
6.7 TELUIM T . . . o v o e e e e e e e e e e
6.8 yield & e e e e
6.9 raise T . e e e e
6.10 break - e e e e e e e
6.11 continue & . . . o e
6.12 AEZE(AMport) B . o o o
6.13 global T . . i v i e e
6.14 The execstatement v i v i i i e e e e e e e e e e e e e e e e e e

H 32 (Compound statements)

728 T
T2 While T o e e s
T3 EOT B o o e e e e e e e e
S Y
TS5 WAt S e s,
7.6 TEE RO
77 S ALY
AN 825

8.1 AT IOl M TR I
8.2 T A
8.3 THENE U= .
8.4 FIA AT

8ol

About these documents

B.1 Contributors to the Python Documentation oo
History and License

C.1 Historyof the software e
C.2 Terms and conditions for accessing or otherwise using Python
C.3 Licenses and Acknowledgements for Incorporated Software

D Az

Al

63
63
64
66
67
67
67
68
68
69
69
70
70
73
73

75
76
76
76
77
79
80
81

83
83
83
84
84

85

89

99
99

101
101
102
105

117

119

The Python Language Reference, £ A| H{%& 2.7.18

o] ZFz At Aol FHI (54 713 E (core semantics)) = A oo}, =aslo el A &3t 47 35
Al AL ghrt *u‘Oﬂ/ﬂ Aol d W4dd, i g, BE559 /4 E-2 libra rymdex o 71eH o] Atk dojol
o 3} 1] & A A 91 A7) = tutorial-index o] A A FH T CoF C++ Z2 T B E YA = F Y mrwﬂw};

Al Z =t} extendlng -index &= oW & L5 A= Yo et & 29 AH WSl c-api-index 2
CICr+ 2z 2ol A A5 = olE] o) <52 A A3 714 Bk,

Contents 1

The Python Language Reference, & A| H{%& 2.7.18

2 Contents

CHAPTER 1

ol AH s ABAE v W mz 1o Hol & AW BTh A5AE FEE 3 94 o)

e AL =BT YA, FUH TE A o]0 RE Aot YA FARCIE A B
AHgaeh, o] Aelo] A SAE0] BAE E H & oHFET BEAT, FA BEHD H5A A
whETh A9 0 %, ghof oje] o] 8ol A S o] FA RO ol 12 Thal T@3ke] 1 347, o} of]
A2 A oF @ Aol w A7 Bho] THE ol B WEL Ao T Aol th W, ol Ho| vhol WS
Mg 9T Qoje] B oJ ool ek F e Aol el I Fa 5 ATk A9 FF o] XA
22 5 gtk & o §ASE 4o BT AT, ofuhE o 2o LS /R o] Foh— 12
Row 224 7|AE WEsA)

It is dangerous to add too many implementation details to a language reference document — the implementation may
change, and other implementations of the same language may work differently. On the other hand, there is currently only
one Python implementation in widespread use (although alternate implementations exist), and its particular quirks are
sometimes worth being mentioned, especially where the implementation imposes additional limitations. Therefore, you’
1l find short (implementation notes) sprinkled throughout the text.

BE sho] A PN B g BF REE 0] theheth o] A5 2 library-index of 715 o] Qe o] ol
FEgwd PAon A8 49 2E g BEES e Agach

Fesl ALk, Al Zeh 2

gtolBH S & gtojHnz 2o HIAES

30,
Auj
ofX
ofX
>
£

http://www.jython.org/

The Python Language Reference, & A| H{%& 2.7.18

Python for .NET ©] 7&-2 A4 2= CPython 72 AH-8-8FA] ¥, v U A = (managed) .NET g8 Z 2 7310 11
2l & 7

.NET g}o| B g d]-Z 3t} Bryan Lloyd 7} THE ¢l T} T AFA|3F % = Python for NET & 3] o] 2] o] A
Al-s-H ot
IronPython .NET-2 3} tf oF 5}o] A, Python.NET ¥}+= ojALILE 5t1, 3fo] W T =& NET o]

2374
A8 g AR AvYsts A3 vfo] W L3 o u} Jim Hugumn o] ¥h= 1=, Jython o] A zte] 7] &=
3o}, AFA|8F A B = IronPython 9 AFo] E o A 42 4= Q1)

PyPy &+33] sfoj oz ZA4Jd vfo V‘* 7. 29 El/\(stackleSS) Zhﬂolb}JIT Aopdele Zol e +3
ANMeE e T e Lg e AT o] ZEAES B3 v'GPUr (o] oz 229 7] ufj o)
Aej=ZeH =42 1;]74] “*‘:01/‘1 Aol ZA o thT A E = HEe Aolth AA T AH = PyPy 22 4]
Eo] Follo]A] oA 22 5 ATt

7 78e o] AYAA AL Adojoh 2FH 727 thE PH R Mol AL, BF sho] W B A oA

TR ES N EE S AHES 27 8Tk of o] g 5 T@| sl o AL o Lojof s

Hdst7] A= FH HE A FTHE BAE F2T a7 Aok

1.2 B7|'H

FEEAT B /e SAYBNF 2 B0 ARG o2 e 0o 2L He) 28d S At

name = lc_letter (lc_letter | "_")*
lc_letter = "at..."z"

A ZL name ©] 1c_letter B A &5, YA 3L o] AF2] 1c letter Y EEo] FJupaE: JE|E 1A

Hrhy Bt B 1o letter £ 'a' 9} 'z Abo]o] £} shUbth (A4 o] F AL o] BA oA 7R}

24 4ol 4 I H = o] 25 g 7 2ol th)

A 2L 0% (9 720l S nane) 3 1= 2 A AT AR ()& HFEE s T

AHEHETE; o] 7 AA A7 7P 2 AR AR () Sl Y& FEo] A=k A sk W

o ¥HEE 4= Stk Yuth; BI A, Y7l (+) = S o] WHEE YA T AFT = gl Ko,

AGBE(()2 BN AL Ao) &9 J2 5 A3, A2k /b sints Solok * o+ Al A @

A7 AZA; SHEA S Boh B3 Hold R FE Ak EAd g e Mg ER

Stk 3L E2S Relstt §ERu LS HTE FH L HE S S AT goto] e FH L

ol 22 £AY £ dtd, Fu2t F5 ol Aot A 25 A e

T2 AY S E g 2o A, F 7HA 72 7 Atk F 4 gleE 227 A e o=

#e)5]of 9O ol 2 (o] F A W EYTH) US| ASCI A F o] shiehs Solch £349T

(<...>) ool Bolgle F2L, As /5o e u P42 4EL ATt Z B AL (Ao] #A2P

2 Ashed A48 5 Ao

A5 E7 ol A2 2rhu sheiehs, TR B 49 ol Ak ol 7k ek 72 Aol g
= TR 2

A B A gE s e, B At TR B4 Bl S0 48Tk ke A (¢
=
o A

4 Chapter 1. 742

https://pythonnet.github.io/
http://ironpython.net/
http://pypy.org/
http://pypy.org/

CHAPTER 2

-
MO
MI
1z

2 38 B A 7] (lexical analyzer) 7} T o] U&=
Ade soEe Fosd 48 ac

Python uses the 7-bit ASCII character set for program text.

¥ A 2.39]] &7}: An encoding declaration can be used to indicate that string literals and comments use an encoding
different from ASCII.

For compatibility with older versions, Python only warns if it finds 8-bit characters; those warnings should be corrected
by either declaring an explicit encoding, or using escape sequences if those bytes are binary data, instead of characters.

The run-time character set depends on the I/O devices connected to the program but is generally a superset of ASCII.

Future compatibility note: It may be tempting to assume that the character set for 8-bit characters is ISO Latin-1 (an
ASCII superset that covers most western languages that use the Latin alphabet), but it is possible that in the future Unicode
text editors will become common. These generally use the UTF-8 encoding, which is also an ASCII superset, but with
very different use for the characters with ordinals 128-255. While there is no consensus on this subject yet, it is unwise
to assume either Latin-1 or UTF-8, even though the current implementation appears to favor Latin-1. This applies both
to the source character set and the run-time character set.

2.1 & 41X (Line structure)

5ol 4

[kl

2 o] 7§ =2l A QA & (logical lines) & = 4 ot

The Python Language Reference, & A| H{%& 2.7.18

211 =g|x0ol =
N

=2 A £ Z2NEWLINE EZ20 F R HHTE Yol 5 F3HA] e o] (& 5o BEFEANA EF=
Abo) BAL =814 & 7] AAE 7FEAE 4 Qlth =839 &2 YA H | AY T A A 9 = A g(line

joining) <t 2 o] whe} 3hut o] 9] & 2] A Q1 & (physical lines) 5 = —T’:‘j =t}

21.2 E2|dQ &

A physical line is a sequence of characters terminated by an end-of-line sequence. In source files and strings, any of the
standard platform line termination sequences can be used - the Unix form using ASCII LF (linefeed), the Windows form
using the ASCII sequence CR LF (return followed by linefeed), or the old Macintosh form using the ASCII CR (return)
character. All of these forms can be used equally, regardless of platform. The end of input also serves as an implicit
terminator for the final physical line.

FolS WL ws, 28 FE FAL 2 RIEA £ T8 40 £F C HY (ASCILFE £83HE \n £AHE
Eol FxdAh<S A& A JJrOMﬂAPIE A= of of et

21.3 =4

T2 AL elHEol 23 A e A 2AH#H) Z Al et 22 H A £ oA Edth SA1H A

= 2% A Hol FREA gFe ol FAL =AY S8 TEAAY FALZ o] AT EZeR

ol A A Feth

214 Ql3g MA

spol @ 23 HEL A W A F AR Fof| Yl FA4 0] A4 coding[=:]\s* ([-\w.]+) F A=,

o] #AL AZ P dAde = Aeldr) o] A4 A WA 152 £ FE 34| A3d o5& AT

QI AAL = AA ol T2 ebof gheh. whek 7 A Solehd, A AR & JA| FA R glojofdnh AR

Aol A% el F Ak sk

’# —*- coding: <encoding-name> —*-

21d] GNU Emacs | A = ¢14] @t} o2 3ly+=

’# vim: fileencoding=<encoding—-name>

which is recognized by Bram Moolenaar’s VIM. In addition, if the first bytes of the file are the UTF-8 byte-order mark
("\xef\xbb\xbf "), the declared file encoding is UTF-8 (this is supported, among others, by Microsoft’s notepad).

If an encoding is declared, the encoding name must be recognized by Python. The encoding is used for all lexical analysis,
in particular to find the end of a string, and to interpret the contents of Unicode literals. String literals are converted to
Unicode for syntactical analysis, then converted back to their original encoding before interpretation starts.

6 Chapter2. 12 &4

The Python Language Reference, £ A| H{%& 2.7.18

SHA 22N\ E A A =20 E2 2
obd o A 2AE 2ud, o e Aok 7
gl Al ol AL A€ 5

if 1900 < year < 2100 and 1 <= month <= 12 \
and 1 <= day <= 31 and 0 <= hour < 24 \
and 0 <= minute < 60 and 0 <= second < 60: # Looks like a valid date
return 1

3 Lo AT B 2o F40] £31 4 gtk o SeA L FAL AYSA Ttk o 2N EAL
SE L A% ol E ERE YA 2ATHS, £AD AH D 0] 99 of ¥l ERE I SN B AGHA T
Sol Lhro] /158 4 girh). B4R 2 E D ol 9t o 27 Sl A AT P4 09l 9] Foll S
AL Eyel ol 2yl

21.6 SA[HC = ZE
(), AHZE(1), TZEZUDMAEHERIL2 I SHA ol o9y MY ERHI &2 UYE S
oAth. ol S 01:
month_names = ['Januari', 'Februari', 'Maart', # These are the
'April', 'Mei', 'Juni', # Dutch names
'Juli', 'Augustus', 'September', # for the months
'Oktober', 'November', 'December'] # of the year

At} oloiA & BE9] Sd2TE F LA AT) F
S 70o] = NEWLINE E 20| BH5 0] 2] A] 9=t} 24)
oA L ESL HE MEE D EAASANE SEE 5] (o}l B B, o] AL FA0 %

gt

ek

217 81 &

A logical line that contains only spaces, tabs, formfeeds and possibly a comment, is ignored (i.e., no NEWLINE token is
generated). During interactive input of statements, handling of a blank line may differ depending on the implementation
of the read-eval-print loop. In the standard implementation, an entirely blank logical line (i.e. one containing not even
whitespace or a comment) terminates a multi-line statement.

2.1.8 S0{M 7|
A9 29 A ol 2= T (25029 W)L Fo] Bolng] £52 AN Hl AHEH L, o) ThA
2450 £ AR5 vl A8 Ak,

First, tabs are replaced (from left to right) by one to eight spaces such that the total number of characters up to and
including the replacement is a multiple of eight (this is intended to be the same rule as used by Unix). The total number
of spaces preceding the first non-blank character then determines the line’s indentation. Indentation cannot be split over
multiple physical lines using backslashes; the whitespace up to the first backslash determines the indentation.

2RA-ZNE TP 59 A UNIX o919 ERF A AA71S0] 545 34 wwo, he) 5
Wol 4 Soi 227 & 913 §13} 250 2% Jo] 2% AL AP e Aeo] ohch T2 ZAFENAE)

2 sl
Sol27] o Aol gle s ke A= Fof s of gt

2.1. & X (Line structure) 7

The Python Language Reference, & A| H{%& 2.7.18

ol [n
A& Ao
o N
—_— =
Rl
%, N
3 O
30, ¥

"y © 2 INDENT ¢} DEDENT E£8 Wt =)

1o
il
£
¥
~N
+
N
rlo
by
=
filo
>
o
&lv
2
O
o
X
i
flo

i
i

push); o] g2 ThA] AW = (pop) do] Atk 2= o] Y=
}atct Zh =gl A e 9] A oA £ Sy $2F0]
/\EU 71 el e FF v olftH dx ?J_Oiurxl %}‘:D‘r. o agd 23S a8 gy
6}44 INDENT EZ& THETh Eﬂ’%‘v‘rfﬂ o] g2 2~Ho Q= 3k shubo] vk St 1%;%&@%5% 2H 9

< AW AL (pop), AWl 31512 DEDENT E 22 wrEt) 31 Qo] ZojA], A€o Jolgl=0X 2 7H9)
7H UJ% DEDENT E=& vlETt},

o7l (Ao EAetE) SHtEA S22 7] | stol Z= 270 9t

R 22 97 Aol 03}
G4 sl el 912

rlomd oo i T2 g
IL ko

bty e 3o ue o

quE

i, o
N

def perm(l):
Compute the 1list of all permutations of 1
if len(l) <= 1:
return [1]
r = []
for i in range(len(l)):
s = 1[:1] + 1[4i+1:]
p = perm(s)
for x in p:
r.append(l[i:i+1] + x)
return r

tha ol ol 2] 7HA Eoj27] o8 Hol &t

def perm(l): # error: first line indented
for i in range(len(l)): # error: not indented
s = 1[:1] + 1[4i+1:]
p = perm(1l[:1] + 1[i+1:]) # error: unexpected indent

for x in p:
r.append(l[i:i+1] + x)
return r # error: inconsistent dedent

(A, A5 Al] ol el 9hA 7L A ek @A) wpA e o a2 24 7] 7F A @tk — return r 9
Eol27|7F 280 = gt A A =)

8 Chapter2. 12 &4

The Python Language Reference, £ A| H{%& 2.7.18

22 CIE EZE

NEWLINE, INDENT, DEDENT ¢}= ¥ 5 &, t}-S3} 22 §3 o & 25 o] ZA)3tc}: A8 2} (identifier), 7))
(keword), ©\E1 S (leral), 337} (perator), 723 (delimiter). (| A F3 £ % 53 o]9] o)) 3 FA}E2
o] ol A, B2 ESHt 2L HRAT. n T 4, Aol EHO 2 92, hig] mae
Ll 1 715 Y Zolo EXEE TAEE AL AT

2.3 AlEHZXl 7|/ E

Identifiers (also referred to as names) are described by the following lexical definitions:

identifier = (letter|"_") (letter | digit | "_")*
letter = lowercase | uppercase

lowercase = "at..."z"

uppercase = "ATL,L."Z"

digit i= "omr... "o

A 2= Zolof| A Bko] ¢, A o] A (case) = FEE T

& APEAEL o oo, B Qoj9] 79 =, = A 3, AWNA A AEAZ LD 5 glrh o 7] 20] G
J 31

and del from not while
as elif global or with

assert else if pass yield
break except import print

class exec in raise

continue finally is return

def for lambda try

A 2.4 4] X7 : None became a constant and is now recognized by the compiler as a name for the built-in object
None. Although it is not a keyword, you cannot assign a different object to it.

WA 2504 WA Using as and with as identifiers triggers a warning. To use them as keywords, enable the
with_statement future feature .

WA 2,600 M7 : asand with are full keywords.

2.3. AHXIQl I|RIE 9

The Python Language Reference, & A| H{%& 2.7.18

2.3.2 AlH#HZO| o2t AA

AAESGE BAR) oW H579 ABAEL 58 w7} Ak of RRe] ABAEL AT 2 WE
A sid e FEdE
_* Notimported by from module import *. The specialidentifier _ is used in the interactive interpreter to store

the result of the last evaluation; it is stored in the __builtin__ module. When not in interactive mode, _ has
no special meaning and is not defined. See section ¥ £ E (import)

#i: o% _2 5% %41} (intemationalization) 9 215 o] AH-§8 TF. o] Fellof eI A = gettext
mEo BAE B2 e

___ A=" A olF. o] o] FEL Bz el E e 1 W (£ ol He el 8 Z @A ch o Fo ek A
o d A2 o] 5L S5 v A= o] 55 A3} 1 919 2o A] =9 ek, sho] Ae] ulef w0 A =
o B 25 0] Ao)E b5 o] Atk ol| FHol 7, A AR TR BEel AgH S Aok
___olBY REASS, 43 glol £4E 4 Yk,

L 22T 0l F. o RO o FES Zehx B T A A HE H 40 FEjz AP AT Fu
Sej 29} A4 Zeh 9] (1B (private)) O HE 249 o] F S5 3 3k7] 9] elck. 4B AL (0] F)
A g R,

24 2|5 &

2 e (lteral) & R H G HE 45 AT EoPol ek,

2.4.1 String literals
TAE PHE S b 22 77 = Vs

stringliteral = [stringprefix] (shortstring | longstring)
Strll’lgpreflx ::: "r" ‘ "u“ | "ur" | IIR" I "Ull | "UR" ‘ "Urll I lluR"

| "b" | I|B" | "br" | "Brﬂ ‘ lle" | "BR"
shortstring n= "'" shortstringitem* "'" | '"' shortstringitem* '™
longstring n= "rr'v o Jongstringitem* "'''"

| Tmwmwmwa lOI’lgStrngltem* Twwmwa
shortstringitem :i= shortstringchar | escapeseq
longstringitem = longstringchar | escapeseq
shortstringchar = <any source character except "\" or newline or the quote>
longstringchar = <any source character except "\">
escapeseq = "\" <any ASCII character>

One syntactic restriction not indicated by these productions is that whitespace is not allowed between the
stringprefix and the rest of the string literal. The source character set is defined by the encoding declaration;
it is ASCII if no encoding declaration is given in the source file; see section 91 & A1 <1,

In plain English: String literals can be enclosed in matching single quotes (') or double quotes ("). They can also be
enclosed in matching groups of three single or double quotes (these are generally referred to as triple-quoted strings). The
backslash (\) character is used to escape characters that otherwise have a special meaning, such as newline, backslash
itself, or the quote character. String literals may optionally be prefixed with a letter ' r' or 'R"'; such strings are called
raw strings and use different rules for interpreting backslash escape sequences. A prefix of 'u' or 'U' makes the string
a Unicode string. Unicode strings use the Unicode character set as defined by the Unicode Consortium and ISO 10646.

10 Chapter2. 12 &4

The Python Language Reference, £ A| H{%& 2.7.18

Some additional escape sequences, described below, are available in Unicode strings. A prefixof 'b' or 'B"' isignored in
Python 2; it indicates that the literal should become a bytes literal in Python 3 (e.g. when code is automatically converted
with 2t03). A 'u' or 'b"' prefix may be followed by an 'r' prefix.

In triple-quoted strings, unescaped newlines and quotes are allowed (and are retained), except that three unescaped quotes
in a row terminate the string. (A {quote) is the character used to open the string, i.e. either ' or ".)

Unless an 'r' or 'R’ prefix is present, escape sequences in strings are interpreted according to rules similar to those
used by Standard C. The recognized escape sequences are:

F

O|AFAHO|= A|RA | 2[0] 72| Ated

\newline Ignored

\\ o AL ()

\! Aeme 3 (1)

\" o 3E (M)

\a ASCII ¥ (BEL)

\b ASCII ¥ 2~ 5| o] 2~ (BS)

\f ASCII & ¥ = (FF)

\n ASCII 2}¢l 3] = (LF)

\N{name} Character named name in the Unicode database (Unicode only)

\r ASCII 7] 2] A]] ¥ (CR)

\t ASCII 7} 2 = (TAB)

\UXXXX Character with 16-bit hex value xxxx (Unicode only) €))

\UXXXKXXXXK Character with 32-bit hex value xxxxxxxx (Unicode only) 2)

\v ASCII M| 2 = (VT)

\ 000 8R4 000 B A A= EA} (3,5)

\xhh 16 hh 2 A HH A} 4.5)
Fo AV

(1) Individual code units which form parts of a surrogate pair can be encoded using this escape sequence.

(2) Any Unicode character can be encoded this way, but characters outside the Basic Multilingual Plane (BMP) will
be encoded using a surrogate pair if Python is compiled to use 16-bit code units (the default).

(3) E2 CohvhastA =, Ao A A 8457 5 g H o,
(4) BZ Cohe e, AT T A9 167157} Al 35 o] of ek,

(5) In a string literal, hexadecimal and octal escapes denote the byte with the given value; it is not necessary that the
byte encodes a character in the source character set. In a Unicode literal, these escapes denote a Unicode character
with the given value.

Unlike Standard C, all unrecognized escape sequences are left in the string unchanged, i.e., the backslash is left in the
string. (This behavior is useful when debugging: if an escape sequence is mistyped, the resulting output is more easily
recognized as broken.) It is also important to note that the escape sequences marked as ((Unicode only)) in the table
above fall into the category of unrecognized escapes for non-Unicode string literals.

When an 'r' or 'R' prefix is present, a character following a backslash is included in the string without change, and
all backslashes are left in the string. For example, the string literal r" \n" consists of two characters: a backslash and
a lowercase 'n'. String quotes can be escaped with a backslash, but the backslash remains in the string; for example,
r"\"" is a valid string literal consisting of two characters: a backslash and a double quote; r"\ " is not a valid string
literal (even a raw string cannot end in an odd number of backslashes). Specifically, a raw string cannot end in a single
backslash (since the backslash would escape the following quote character). Note also that a single backslash followed by
a newline is interpreted as those two characters as part of the string, not as a line continuation.

Whenan 'r' or 'R’ prefix is used in conjunction witha 'u"' or ' U"' prefix, then the \ uXXXX and \UXXXXXXXX escape
sequences are processed while all other backslashes are left in the string. For example, the string literal ur"\u0062\n"

24. 2|EE 11

The Python Language Reference, & A| H{%& 2.7.18

consists of three Unicode characters: (LATIN SMALL LETTER B), (REVERSE SOLIDUS), and (LATIN SMALL
LETTER N). Backslashes can be escaped with a preceding backslash; however, both remain in the string. As a result,
\uXXXX escape sequences are only recognized when there are an odd number of backslashes.

24.2 EXIHE 2[E{E 0|o{&0][7]

Multiple adjacent string literals (delimited by whitespace), possibly using different quoting conventions, are allowed, and
their meaning is the same as their concatenation. Thus, "hello" 'world' isequivalent to "helloworld". This
feature can be used to reduce the number of backslashes needed, to split long strings conveniently across long lines, or
even to add comments to parts of strings, for example:

re.compile (" [A-Za—-z_]" # letter or underscore
"[A-Za-z0-9_]*" # letter, digit or underscore

)

Note that this feature is defined at the syntactical level, but implemented at compile time. The (+) operator must be used
to concatenate string expressions at run time. Also note that literal concatenation can use different quoting styles for each
component (even mixing raw strings and triple quoted strings).

243 <X} 2|EH

There are four types of numeric literals: plain integers, long integers, floating point numbers, and imaginary numbers.
There are no complex literals (complex numbers can be formed by adding a real number and an imaginary number).

S e Po] $EE ZPFA b Aol FoF AT 1 F 2L TR A F AR (—(FeHB 1 =2
TA" 2@ 4ot}

2.4.4 Integer and long integer literals

Integer and long integer literals are described by the following lexical definitions:

longinteger = integer ("1™ | "L")

integer = decimalinteger | octinteger | hexinteger | bininteger
decimalinteger = nonzerodigit digit* | "Q"

octinteger = "o" ("o"™ | "O") octdigit+ | "O" octdigit+

hexinteger = "o" ("x" | "X") hexdigit+

bininteger = "o" ("b" | "B") bindigit+

nonzerodigit = A

octdigit = "or..."n

bindigit = ORI

hexdigit = digit | "a"..."f" | "A"..."F"

Although both lower case '1' and upper case 'L"' are allowed as suffix for long integers, it is strongly recommended to
always use 'L "', since the letter ' 1 ' looks too much like the digit '1"'.

Plain integer literals that are above the largest representable plain integer (e.g., 2147483647 when using 32-bit arithmetic)
are accepted as if they were long integers instead.' There is no limit for long integer literals apart from what can be stored
in available memory.

! In versions of Python prior to 2.4, octal and hexadecimal literals in the range just above the largest representable plain integer but below the
largest unsigned 32-bit number (on a machine using 32-bit arithmetic), 4294967296, were taken as the negative plain integer obtained by subtracting
4294967296 from their unsigned value.

12 Chapter2. 12 &4

The Python Language Reference, £ A| H{%& 2.7.18

Some examples of plain integer literals (first row) and long integer literals (second and third rows):

7 2147483647 0177
3L 79228162514264337593543950336L 0377L 0x100000000L
79228162514264337593543950336 Oxdeadbeef

R e LEELELE
floatnumber = pointfloat | exponentfloat
pointfloat = [intpart] fraction | intpart "."
exponentfloat = (intpart | pointfloat) exponent
intpart = digit+
fraction = "." digit+
exponent = ("e" I "E") ["+" ‘ "7"] dlglt+

Note that the integer and exponent parts of floating point numbers can look like octal integers, but are interpreted using
radix 10. For example, 077e010 is legal, and denotes the same number as 77e10. The allowed range of floating point
literals is implementation-dependent. Some examples of floating point literals:

3.14 10. .001 1lel00 3.14e-10 0e0

Note that numeric literals do not include a sign; a phrase like —1 is actually an expression composed of the unary operator
— and the literal 1.

246 5| BlEE

A5 dHLe e 2L TE 4w @A
imagnumber = (floatnumber | intpart) ("j" | "J")

35 BE P ASRA009 BaSE RED Bagt 450} 22 09 Ao A gH L Ao AsE
FE00] obd AR E e BatE BEHY, 4SS U Aok o 8 Sol, (3+49). 35 AH DY
2 7R Al g £
’3.143' 10.7 105 .0019 1e1003 3.14e-107

2.5 ALx}

hedt 2L E2EL AT

+ - * o / /7 %

<< >> & | ~ ~

< > <= >= == = <>

The comparison operators <> and ! = are alternate spellings of the same operator. != is the preferred spelling; <> is
obsolescent.

2.5. ALK} 13

—_

The Python Language Reference, & A| H{%& 2.7.18

o2 EZ52 EH oA F& A} (delimiter) 2 7]-5 3}

() [] { } @
t= -= *= = //= %=

& | = A= >>= <<= * k=

The period can also occur in floating-point and imaginary literals. A sequence of three periods has a special meaning as
an ellipsis in slices. The second half of the list, the augmented assignment operators, serve lexically as delimiters, but also
perform an operation.

ThS o] Q4hE] & ASCH 2RSS ThE 25 992 A 583 v § 2oL, T e 39 P2 247

foju] s}

v n # \

Th= 2] A 5 = ASCIL 2452 sto| Mo A AHEE A ket 4G B @3 74 0] 9] 8] oA A= =
AL 24 e o=k

Ur

?

|

14 Chapter2. 7.2 A

CHAPTER 3

Hjo[E 2&

3.1 x|, 2t

Z A (Objects)= Tko] % o] H] o] E] (data) & 543} 3t Z (abstraction) o]t} s}o] M 2 T 0] B Hl o] Bl &=
AN AA 7+ BAE 2F D) (& =07 (Von Neumann)./] (2233 YA AEZE (stored program

computer)) R @S W23, £ T A ZE GA| AAE £HHT)

Every object has an identity, a type and a value. An object’s identity never changes once it has been created; you may think
of it as the object’s address in memory. The (is) operator compares the identity of two objects; the 1d () function
returns an integer representing its identity (currently implemented as its address). An object’s type is also unchangeable.'
An object’s type determines the operations that the object supports (e.g., {does it have a length?)) and also defines
the possible values for objects of that type. The type () function returns an object’s type (which is an object itself).
The value of some objects can change. Objects whose value can change are said to be mutable; objects whose value is
unchangeable once they are created are called immutable. (The value of an immutable container object that contains a
reference to a mutable object can change when the latter’s value is changed; however the container is still considered
immutable, because the collection of objects it contains cannot be changed. So, immutability is not strictly the same as
having an unchangeable value, it is more subtle.) An object’s mutability is determined by its type; for instance, numbers,
strings and tuples are immutable, while dictionaries and lists are mutable.

AA= 27 YA F o2 g5 R =t); o 225 A 94-S o (unreachable) 7}H] x| 4= 7 (garbage collect) ¥ T}
T o] 7hu| A = AE A AA] 7] ALt ofef] A=Fel= o] S HHE T — oA F2EH = AAES FANA &=
o] M| A AT ojE A o7 A=A = 7Y FH AT

CPython implementation detail: CPython currently uses a reference-counting scheme with (optional) delayed detection
of cyclically linked garbage, which collects most objects as soon as they become unreachable, but is not guaranteed to
collect garbage containing circular references. See the documentation of the gc module for information on controlling
the collection of cyclic garbage. Other implementations act differently and CPython may change. Do not depend on
immediate finalization of objects when they become unreachable (ex: always close files).

TRo] AF e FA0I UMY A AHGL 137 o 24T 5 9 A
91&ol F Aok Tk R (cryexcept) BOE A9 E e A% ANE Foba

lojm zﬂﬂﬂ o, oW Aol AA Y P& WAL Ao] Asdith AT AR A @ okF e
ong gukA ——8—*37‘01 oyt

15

The Python Language Reference, & A| H{%& 2.7.18

Some objects contain references to (external) resources such as open files or windows. It is understood that these
resources are freed when the object is garbage-collected, but since garbage collection is not guaranteed to happen, such
objects also provide an explicit way to release the external resource, usually a close () method. Programs are strongly
recommended to explicitly close such objects. The (try--finally) statement provides a convenient way to do this.

o AAE2 tf2 AA o thst F2E 283t k. o] AES AH Y (container) BF3l 2t 75,
g AE, g 5o] Aol oth o] F2EL Ad oY e R gREL, 227 AH oY
#He =g, 2o AAEY otoldlE g Huhe 32 wATh A g Ad oy o] 7haAd] s =3
= A3 7k %‘il%A ololdlE]] 7+-g whAth 2, (FE 22) £ AH oY7L 7pd AA 29 A ZLZE
Stal o, 1 7 AA 7 A A= AE ol s WA E T

Yo As BE Zvol A A7 Ak o] G Fh AR ofolAEITI 7 e FLAZAE oW
Wol Mt AL wiTh WYY A9, A G BEE Q4L AA R ofn] EAlE AA FoA 2L
A7 e 2 AL Be)E 5 ok WHo] /b AR HE ol d Ao| 31 8F A FETh A8 Sol,a = 1
b=1%,a%otg1e R 2L ANY S5 93, obd Yok HATe = [1; d = (] F,
cohdt T AR e, SYA0lw, AE BEo A W elaEde] RAHT (c = d = (] &AL
AAE c % d ol ek

32 B AS

Below is a list of the types that are built into Python. Extension modules (written in C, Java, or other languages, depending
on the implementation) can define additional types. Future versions of Python may add types to the type hierarchy (e.g.,
rational numbers, efficiently stored arrays of integers, etc.).

ofej] Urfit 2e Yol e A2 (55 o] E 2] E (special attribute)) & U2 3H= = 29
oA T A 12w i Xi]*ﬁ}ttﬂ, AREA QARG A7 Ao O}Hﬁ‘r e dezwgdd
9]t}

None ©] &2 sito] ghvk<
= 5o 2} o 74A]
oA G sl A oI e ARl

NotImplemented This type has a single value. There is a single object with this value. This object is accessed through the
built-in name Not Implemented. Numeric methods and rich comparison methods may return this value if they

do not implement the operation for the operands provided. (The interpreter will then try the reflected operation, or
some other fallback, depending on the operator.) Its truth value is true.

Ellipsis This type has a single value. There is a single object with this value. This object is accessed through the built-in

name E11ipsis. Itis used to indicate the presence of the . . . syntax in a slice. Its truth value is true.
numbers . Number ©] 452 %7} 2 E] Do o8BS 0] 7 7, 2b ANT A % oS0 AT Sl e

ok S4 AA & BWolth; 3 W gho] WS ol W Ar) MatA] ghrh sol M| £AH: G| S5l

SAHET WA A B o] ek, AW AFE L) 24 FA4e) A kS B3 ek

numbers.Integral ©|ZE2 T AU A5 HAP(FH 5) ol ot 8455 UERATH
There are three types of integers:

Plain integers These represent numbers in the range -2147483648 through 2147483647. (The range may
be larger on machines with a larger natural word size, but not smaller.) When the result of an operation
would fall outside this range, the result is normally returned as a long integer (in some cases, the exception
OverflowError israised instead). For the purpose of shift and mask operations, integers are assumed
to have a binary, 2’s complement notation using 32 or more bits, and hiding no bits from the user (i.e.,
all 4294967296 different bit patterns correspond to different values).

16 Chapter 3. H|O|E| 2!

The Python Language Reference, £ A| H{%& 2.7.18

/‘li’\% =

Long integers 0] 21-2 (744 vl 2. 2] 7} 8] et &, A o gl
(shift) &} k2 = (mask) A4Fe] H4 A wfj= o] T o] 7P H L, S5 E
complement) 2 X = =0, 2T v EVI Y& o 7 B335 FA4H A 2

Booleans These represent the truth values False and True. The two objects representing the values False
and True are the only Boolean objects. The Boolean type is a subtype of plain integers, and Boolean
values behave like the values 0 and 1, respectively, in almost all contexts, the exception being that when
converted to a string, the strings "False" or "True" are returned, respectively.

The rules for integer representation are intended to give the most meaningful interpretation of shift and mask
operations involving negative integers and the least surprises when switching between the plain and long
integer domains. Any operation, if it yields a result in the plain integer domain, will yield the same result in
the long integer domain or when using mixed operands. The switch between domains is transparent to the
programmer.

numbers.Real (float) ©]| A &2 7|4 =59 v A & (double precision) 75 25+ =5 e
5l = ghe] W ot e E R 9 A glof A= sHE 71 Al A A (2FC U ApuE 2 E) o E}E =
kol 1tk 7o) -2 THA & (single precision) 55 4474 £8 A 987 Tk o] A5 S ALE
Bt o] F7tH = Z2A AL} W R e E -2 gho]xl ol A 7—‘.‘Zﬂ £ A&t 97k v 8
A4 o] vlul A ATk, 2 g0l F 1A S0 RE L5 S 2 Ao & HAHA BEWD A7)
ATt

numbers . Complex o 252 714 £F WAE BE 457 59 H02 BasE ehuth 23
L7 S tAL EARS FRth Bagz o AgRel SR "E

z.real & z.imag 2 A 5 9l

o] obd H4= Q194 (indexing)

) A A FRE A

0,1 n-1S& 23tk A2 a9 &

ARAzE Setol A% ANV alizj] Ei<—k<jE WS E RE FELE AUt A4 A

|_4

R8T), Sekol 2t 2L Bel AAAT Qe TS 00)A ALE £ 5 oA W o) AR o,
o @ Al A= Al A (2 (step)) THebEHE AHS-Sh= (73 210 A (extended slicing)) &= A] A §
T}:afi:j:k] E=x =i + n*k,n>=0,i<=x<j 5 NE5l= B E G & x E AH3]
AR iAo it FEdt
B AP BAAAL P AR L Ak wEold ol WY 5 grk (R AR R FEE
Eetd, I AA = 7l = A3, A3 E 5 Qv shAI L 2 AA 2R Y FEE = A4 9
A% AA = WA 5 Aok
e gL s Bw A
£z} (Strings) The items of a string are characters. There is no separate character type; a character is

represented by a string of one item. Characters represent (at least) 8-bit bytes. The built-in functions
chr () and ord () convert between characters and nonnegative integers representing the byte values.
Bytes with the values 0—127 usually represent the corresponding ASCII values, but the interpretation of
values is up to the program. The string data type is also used to represent arrays of bytes, e.g., to hold
data read from a file.

(On systems whose native character set is not ASCII, strings may use EBCDIC in their internal represen-
tation, provided the functions chr () and ord () implement a mapping between ASCII and EBCDIC,
and string comparison preserves the ASCII order. Or perhaps someone can propose a better rule?)

Unicode The items of a Unicode object are Unicode code units. A Unicode code unit is represented by a
Unicode object of one item and can hold either a 16-bit or 32-bit value representing a Unicode ordinal
(the maximum value for the ordinal is given in sys.maxunicode, and depends on how Python is
configured at compile time). Surrogate pairs may be present in the Unicode object, and will be reported
as two separate items. The built-in functions unichr () and ord () convert between code units and

17

Hl
Eh!
og
X
Ol

The Python Language Reference, & A| H{%& 2.7.18

nonnegative integers representing the Unicode ordinals as defined in the Unicode Standard 3.0. Conver-
sion from and to other encodings are possible through the Unicode method encode () and the built-in
function unicode ().

FE (Tuples) 559 52 94919 sho]l AATh F 7} o] 49 20w T L FEL Frhe
Rejd 5849 B2 02 BE 4 gtk e FEO 2 24d FE (42 U singleton) &
EA0) B2 Bol A S > UTH(TIE FAALS RS 4 o0 BAY HoE
RES U gheTh. W FEL B0 vl BB BE 4 gk

A AL A A AL BEo] A Fo MAD 4 Utk A 2227 4 (ubscription) 7} & 2ho] 4 &
£ del (AHA) £ thgo = AHgE > ek,

A F 7o) WA A AR 2 o) gl

E (Lists) 2|~E9] 322 Qlole] sto] A At} e AE
ol DO1A] BT 2 a1 (He] 09111 18] 1oL s phe

dlo] E vl g (Byte Arrays) A bytearray object is a mutable array. They are created by the built-in
bytearray () constructor. Aside from being mutable (and hence unhashable), byte arrays otherwise
provide the same interface and functionality as immutable bytes objects.

The extension module array provides an additional example of a mutable sequence type.

A% YE et ol AT L T e w0 AT S YD £ AT E ety A
cﬂq_ SR gL o] Bl H o] ET 4~ 91, WA T4 len() 2 AT ¢lof 9= 3]—31:_/] ==
o] dutA ol £ == w2 WA Al (fast membershlp testing), /\]%/\Oﬂ A SEBE g5 A A
(intersection), ?ﬂ'%ﬂ E‘(umon 2} %) 8 (difference), o) A X} J & (symmetric difference) I 222 F
AArst= Aol th

Ao oS g ve 7)o} 2o B FH o A4k 2 o] A4S

27 o] A i Aol Fo) oF Sr}: whok = Sx}7) 2T w wE H (

2% sk Gakel Sl 2+ ek

AA = MY WA A& o] 9tt:

A Sets) ©) 252 7hw S hebdith W set () AHAE BHE 5 93, add () 2L HAESS
AHgEI A Yol =4S 4

0§

214 %]t (Frozen sets) ©o] 252 B 32 ettt WA frozenset () YA AZE s 5
=1 A ¥ (frozenset) = & H o] i 5H Al 7bs stER, ohE A da ’qﬂ 2le] 7|2 AHgE
Atk

]l 3 (Mappings) ©] 21 52 01.4.4 O]‘:-ﬂé Aoz Qs = AAESY] {3t A YRl A
—L7]t§(subscr1pt notation) a [HE= al e
TE A "H‘Q"]Urdel -—ZL-/] thidol @ = ok WA T len() 2 g 28H FHE9

AR 2 o) g v W o) ek

r]r
S8
ol o3
j\)]
=2
i >
~
fru
ro
fin}
[>

9 A1) 2] (Dictionaries) o] 2152 A 499 A Jgog Ad A= AA S 3t J<
UERdth 712 AHR S 4 gl AEL 22 E, gAY 1 99 7MUY oA ot E E 7}
ofUe} gto & vl s+ ARtk gAY B&AQ Fd o], 7|9 Al gte] EF ol WA= A
A3 AL L PR FAHEE 733 7] WjEelth 712 AHEEH = A H Aee =4
HlaLo] #3k Ank P H o] AgH): ok T A/ 2T v R HH (A E £, 100 F T1.0), F
o 22 gAYy e F5S Add sk AHgE 4 Atk
S Es 7ot (...) & F Atk (G e S o] MRS Fasteh.

The extension modules dbm, gdbm,

bsddb provide additional examples of mapping types.
Z 2| & (Callable types) ©]| 2152 T4 55 AsH(@= AH Fa)ol A8E 4 = FEoth:

18 Chapter 3. H|O|E| 2!

The Python Language Reference, £ A| H{%& 2.7.18

AL& 2 o] T AR B O T AA= T AYE T HEA Xt (T Ao Ad Fan). 49
34 JJrE‘rUl] (formal parameter) &5 53} 22 7|59 52 X35t oJXP(argument) 5507

525 o]0} Bk,
£ 4= o] E 8] H E & (Special attributes):

HEZ|RE o[o|

__doc__ func_doc The function’s documentation string, or None »7] 7V
if unavailable.

__name__ func_name gt4=o] o] = 27 7t

__module__ Tt RgH EEY ol B (Rle A | 271 7
None

_ _defaults__ func_defaults | A tuple containing default argument values for 27 7Hs
those arguments that have defaults, or None if
no arguments have a default value.

__code__ func_code Astd H k429 Al (body) & UER = » 7| 7t=

F= A

__globals__ func_globals Steol A eSS 7H g g tish | el A%
e S CE RS LR
& 7F(namespace)

_ dict__ func_dict oo st o ERHEE A Y= o] & »7] 7Vs
=7k

__closure__ func_closure None ¥ &= &9 Z}-3 WS4 (free variable) o7l AL
Sl g dZdES I A(cel) 59 /&

(27 7%y Srba BAE OREY oS HEES kol U 0] FS AN
B A 2404 ¥4 : func_name is now writable.

B A 2.69| A] ¥ 7 : The double-underscore attributes __closure_ , code_ , defaults
and __globals__ were introduced as aliases for the corresponding func_ * attributes for forwards com-
patibility with Python 3.

G5 AAE 99 JEARES AT L 5 YT ANFH), A8 Sof 4ol Wy ol g
(metadata) & 2ol = AL§E 5 Uk A= HES AL 2 e QWA @ E3 Y dot-
notation) ©] AHS-EITh BA TAL 2 AFE} B Fut Y o =l HES A Aol Tl of
Sk g el B o=l e wele] 198 5 qlrk

B Aolo] BH 2 JHE AE AN RE AL Yok obelol het U Fe 162
Faster

User-defined methods A user-defined method object combines a class, a class instance (or None) and any callable
object (normally a user-defined function).

Special read-only attributes: im_self is the class instance object, im_func is the function object;
im_class is the class of im_self for bound methods or the class that asked for the method for un-
bound methods; __doc___is the method’s documentation (same as im_func.__doc_);_ name__is
the method name (same as im_func.__ _name_);__ _module__is the name of the module the method
was defined in, or None if unavailable.

B A 220 A W7 im_self used to refer to the class that defined the method.

WA 2.69 A ¥ 7 : For Python 3 forward-compatibility, im_func is also available as __func__, and
im_selfas__self

MASE 7] 4ol BE S ol Ee HES

AETh.

o
o

e 4 YEE AABTHEA W 27]& A WA

Hl
Eh!
og
X
Ol

19

The Python Language Reference, & A| H{%& 2.7.18

User-defined method objects may be created when getting an attribute of a class (perhaps via an instance of
that class), if that attribute is a user-defined function object, an unbound user-defined method object, or a
class method object. When the attribute is a user-defined method object, a new method object is only created
if the class from which it is being retrieved is the same as, or a derived class of, the class stored in the original
method object; otherwise, the original method object is used as it is.

When a user-defined method object is created by retrieving a user-defined function object from a class, its
im_self attribute is None and the method object is said to be unbound. When one is created by retrieving
a user-defined function object from a class via one of its instances, its im_ se1f attribute is the instance, and
the method object is said to be bound. In either case, the new method’s im_class attribute is the class
from which the retrieval takes place, and its im_ func attribute is the original function object.

When a user-defined method object is created by retrieving another method object from a class or instance,
the behaviour is the same as for a function object, except that the im_ func attribute of the new instance is
not the original method object but its im_ func attribute.

When a user-defined method object is created by retrieving a class method object from a class or instance, its
im_self attribute is the class itself, and its im_func attribute is the function object underlying the class
method.

When an unbound user-defined method object is called, the underlying function (im_func) is called, with
the restriction that the first argument must be an instance of the proper class (im_class) or of a derived
class thereof.

When a bound user-defined method object is called, the underlying function (im_ func) is called, inserting
the class instance (im_self) in front of the argument list. For instance, when C is a class which contains
a definition for a function £ (), and x is an instance of C, calling x. £ (1) is equivalent to calling C. f (x,
1).

When a user-defined method object is derived from a class method object, the (class instance) stored in
im_self will actually be the class itself, so that calling either x . £ (1) or C.f (1) is equivalent to calling
£ (C, 1) where f is the underlying function.

Note that the transformation from function object to (unbound or bound) method object happens each time the
attribute is retrieved from the class or instance. In some cases, a fruitful optimization is to assign the attribute
to a local variable and call that local variable. Also notice that this transformation only happens for user-
defined functions; other callable objects (and all non-callable objects) are retrieved without transformation. It
is also important to note that user-defined functions which are attributes of a class instance are not converted
to bound methods; this only happens when the function is an attribute of the class.

Al 9 o] €] 4= (Generator functions) A function or method which uses the yield statement (see section
yield <) is called a generator function. Such a function, when called, always returns an iterator object which
can be used to execute the body of the function: calling the iterator’s next () method will cause the function
to execute until it provides a value using the yield statement. When the function executes a return
statement or falls off the end, a StopIteration exception is raised and the iterator will have reached the
end of the set of values to be returned.

& 34 (Built-in functlons) W g AA= C s AL 1E]—(wrapper). g o] 2=
len () ¥math.sin() (math = i—f— W& 2 Eo|th 7F 9t} Q1 x19] 42} &
@@%D} EF QU AL EYHES: doc 25 Y EAI = Q=T
olt}; __name_ 2§ o]Folt}; _ self = None &2 AAHT FIA W U S FES

module 2 @74 old RE2 ool A = 4% None °Jtt

=]
U7 v A = (Built-in methodS) o] A& At WA 4o T
A A

rlo
(@R
%
3
p
o lo
5 &

w50l ool BA A 2719 2

A8 C 3o Agy = 711;2}]% ZE3 ok WA A= 2= allst.append() 7k A&,
alist = ﬂ/\E 7“21]1’/} o] AL, E4 7] AL AEFHE _ self TulistZ2 EAH AA=
AAHr}

Class Types Class types, or {new-style classes,) are callable. These objects normally act as factories for new

20

Chapter 3. C|O|E{ 2 &!

The Python Language Reference, £ A| H{%& 2.7.18

instances of themselves, but variations are possible for class types that override __new___ (). The arguments
of the call are passed to___new___ () and, in the typical case,to___init___ () toinitialize the new instance.

Classic Classes Class objects are described below. When a class object is called, a new class instance (also de-
scribed below) is created and returned. This implies a call to the class’s __init__ () method if it has one.
Any arguments are passedontothe __init__ () method. If thereisno ___init__ () method, the class
must be called without arguments.

ZF# & A AE A (Class instances) Class instances are described below. Class instances are callable only when
theclasshasa___call_ () method; x (arguments) isashorthandforx.__call__ (arguments).

X & (Modules) Modules are imported by the import statement (see section ¢ > E (import)). A module object

has a namespace implemented by a dictionary object (this is the dictionary referenced by the func_globals attribute
of functions defined in the module). Attribute references are translated to lookups in this dictionary, e.g., m. x
is equivalent tom.__dict__ ["x"]. A module object does not contain the code object used to initialize the
module (since it isn’t needed once the initialization is done).

JERE hYL BES o] F F IS AR o] E Eol,m.x
- 13 2tk

=597 Ag ol RE

18&m._ dict_ ["x"]

S5 RolhY £ E AU
g3 e BES

Predefined (writable) attributes: _ name___ is the module’s name; __ doc___ is the module’s documentation
string, or None if unavailable; __file__is the pathname of the file from which the module was loaded, if it
was loaded from a file. The ___file__ attribute is not present for C modules that are statically linked into the
interpreter; for extension modules loaded dynamically from a shared library, it is the pathname of the shared library
file.

Z2j| & (Classes) Both class types (new-style classes) and class objects (old-style/classic classes) are typically created by

class definitions (see section =]| 2~ A 2]). A class has a namespace implemented by a dictionary object. Class
attribute references are translated to lookups in this dictionary, e.g., C.x is translated to C.__dict__ ["x"]
(although for new-style classes in particular there are a number of hooks which allow for other means of locating
attributes). When the attribute name is not found there, the attribute search continues in the base classes. For old-
style classes, the search is depth-first, left-to-right in the order of occurrence in the base class list. New-style classes
use the more complex C3 method resolution order which behaves correctly even in the presence of (diamond)
inheritance structures where there are multiple inheritance paths leading back to a common ancestor. Additional
details on the C3 MRO used by new-style classes can be found in the documentation accompanying the 2.3 release
at https://www.python.org/download/releases/2.3/mro/.

When a class attribute reference (for class C, say) would yield a user-defined function object or an unbound user-
defined method object whose associated class is either C or one of its base classes, it is transformed into an unbound
user-defined method object whose im_class attribute is C. When it would yield a class method object, it is
transformed into a bound user-defined method object whose im_self attribute is C. When it would yield a static
method object, it is transformed into the object wrapped by the static method object. See section T] 2~ = %] E]
=-3135}7] for another way in which attributes retrieved from a class may differ from those actually contained in its
__dict__ (note that only new-style classes support descriptors).

Ses B RE YL SU2 GAYEE ANT R, oW FFE RE
A= el A& gt
S22 AAl= S 2P aE SHFEF (MR E Heh 252 5 AThS & Heh.

Special attributes: __name___is the class name; __module__ is the module name in which the class was de-
fined; __dict__ is the dictionary containing the class’s namespace; _ bases___is a tuple (possibly empty or a
singleton) containing the base classes, in the order of their occurrence in the base class list; ___doc___is the class’
s documentation string, or None if undefined.

It

CESREPHEE

i

3.2,

o

Al 21

Ol

TT RS
H&T

https://www.python.org/download/releases/2.3/mro/

The Python Language Reference, & A| H{%& 2.7.18

Z# A QA AE A (Class instances) A class instance is created by calling a class object (see above). A class instance has

Files

o

a namespace implemented as a dictionary which is the first place in which attribute references are searched. When
an attribute is not found there, and the instance’s class has an attribute by that name, the search continues with
the class attributes. If a class attribute is found that is a user-defined function object or an unbound user-defined
method object whose associated class is the class (call it C) of the instance for which the attribute reference was
initiated or one of its bases, it is transformed into a bound user-defined method object whose im_class attribute
is C and whose im_self attribute is the instance. Static method and class method objects are also transformed,
as if they had been retrieved from class C; see above under (Classes). See section U] 2~ = 3 E| 52 & 5} 7] for
another way in which attributes of a class retrieved via its instances may differ from the objects actually stored in
the class’s __dict__ . If no class attribute is found, and the object’s classhasa ___getattr___ () method, that
is called to satisfy the lookup.

AEZHE YT AA & Aadb 2o gV E JAT R A5 Fea gAY E A=A g+
oh W FE AT setattr. () Oy __delattr () WA EE Z7HAH, daEH A0 SV EE

A s tiAle] 2 M ESS T3
il

bol S50 A =EE A
5 Ade uek
1=}

ST AEYRES: __dict__ £ AEYRE gAYt __class__ & AxH29] Fejacth

A file object represents an open file. File objects are created by the open () built-in function, and also by os.
popen (), os.fdopen (), and the makefile () method of socket objects (and perhaps by other functions
or methods provided by extension modules). The objects sys.stdin, sys.stdout and sys.stderr are
initialized to file objects corresponding to the interpreter’s standard input, output and error streams. See bltin-file-
objects for complete documentation of file objects.

% (Internal types) AE 2 E7} YR A 02 AMESt= RE JS52 AHEA A mEdth AdE 22 H 9
o Ao A o] 52 Hol= WAE 5 AR TS A o7 A AF Tk

F & A (Code objects) = AA|= vlo|EZ A utAH (byte-compiled) 23 7153t go]l W T =& YE}
Yed, 2FviolE T = glas RETh = AA 2} &4 AA FHoll+ Ao 7 Ao g A A=
o] Ao F 7 (globals) (71 BolH BE) S YA H o2 Fxea YA = AA|= o™
T (context) & ZE31 QLA 9krh; B3 7] QQAIgEE o] T AA| ol AFE o AT IZE AA o=
S0 A Atk (A ™ A Tl AlE = S UEFW 7] Wi Zolth). 34 AR et g, 2= AA=

Zels Qadat S, B2, WY 4P 5 Ak 54

rlr

’

Ewola b AA ol tist ol ¥ e (A F2 PP ER) 2E1 Q1A ot

E4 Q7] AL AJEZHEE: co_name 2 49| o] 5 0|T}; co_argecount & Y 2] QAAE (7]
2ol e dAEE 2 th o Atk co_nlocals & 57 ARG s A1 WS (A
S =FAH Y Mt co_varnames £ A LS olFS A Yl FEOITHAAEY
o]Fo] WA U2t} co_cellvars + T JH T E| FRF=AG HTEY g HL I+
E Zo|t}; co_freevars = A3 ¥4 (free variables) 9] o] &S @11 9= EZ0o|t}; co_code
T HE I & B A AAE B = EAHE ol th; co_consts & HIO|E ZE7} ARG 3=
HE g Zgste FEolH; co_names £ HOlE I ETHAMRSHE o555 HAL e FEolHh
co_filename 2 ASYH ZEE AT 3L o] Fo|th; co_firstlineno + F52 A HAY
£ W3St co_lnotab S HIO|E FE A X E & HITE g3t HS TAEE A7
Zolth (ApA gt &2 ez e o] &2 FEE Fa1dtel); co_stacksize & 83 AH
A7IHA G HFE £33Th); co_flags & AEZ B9 o] Zef 1 (flag) 52 FTE AZ I3

ol

23 22 350l co_flags € A3l Y= o] th: T2 7HH W 9] AAE ol]
7] 918 AHS-= = *arguments THS AFS S HE 0x04 7F1 0] "t} 499 7Y = AAE
HtolZ o] 7])&} AF-&-3}+= **keywords £ & AHS-3IH H|E 0x08 o] 1 0] HT}; H|E 0x20 <
STt AVE ol H Y w A E o

FA4 715 AA (from __future_ import division) &3+ IE AA 7} 5 7|50 4
35 e oA AotdE A=A E HETWH 7] 93l co_flags & HIEE S ARE St} &7 54
division ©] &4 315 Aejo| A A UE o™ B E 0x2000 o] AAHAC} B E 0x10 I 0x1000

22

Chapter 3. C|O|E{ 2 &!

The Python Language Reference, £ A| H{%& 2.7.18

= o Mze) so] Mol A AL k.
co_flags o THE MIEEL ¥ ALE-E 915 of k=] o] Qrh.

Wk T= A7 §4E GEHATHY, co_consts 9 A WA F-2 4 £xgo] Ak B A
¢} © ¥ None ©]t}.

Z)Y A (Frame objects) = & & A A= 438 7] I (execution frame) = L EFH T E & o] 2 213
of 34 4 At} (ofeE Hah.

Special read-only attributes: £_back is to the previous stack frame (towards the caller), or None if this is the
bottom stack frame; £_code is the code object being executed in this frame; £_1ocals is the dictionary
used to look up local variables; £_globals is used for global variables; £_builtins is used for built-
in (intrinsic) names; £_restricted is a flag indicating whether the function is executing in restricted
execution mode; £_lasti gives the precise instruction (this is an index into the bytecode string of the code
object).

Special writable attributes: £_trace, if not None, is a function called at the start of each source code line
(this is used by the debugger); f_exc_type, f_exc_value, f_exc_traceback represent the last
exception raised in the parent frame provided another exception was ever raised in the current frame (in all
other cases they are None); £_1ineno is the current line number of the frame — writing to this from within
a trace function jumps to the given line (only for the bottom-most frame). A debugger can implement a Jump
command (aka Set Next Statement) by writing to f_lineno.

E#|o] A9 A (Traceback objects) Traceback objects represent a stack trace of an exception. A traceback
object is created when an exception occurs. When the search for an exception handler unwinds the execution
stack, at each unwound level a traceback object is inserted in front of the current traceback. When an exception
handler is entered, the stack trace is made available to the program. (See section 77y <.) It is accessible as
sys.exc_traceback, and also as the third item of the tuple returned by sys.exc_info (). The
latter is the preferred interface, since it works correctly when the program is using multiple threads. When
the program contains no suitable handler, the stack trace is written (nicely formatted) to the standard error
stream; if the interpreter is interactive, it is also made available to the user as sys.last_traceback.

5597 A8 S HES: th_next & A8 Edo] A9 TS WA (]9 7L AT =¥
WEgFog) ol Atk thE @A 7L 12 None o|th tb_frame = & ©A o 4] 9 “5“ iffﬂ‘“ ol th;
tb_lineno &+ 97} A = .4 MEE 20} tb_lasti AES }u]-o]E I g3ye e 7
ThoF of) €] 7} except A o] Ut finally B o] §l= try FollA LA O]' ,EWZ e E 1£‘5"4-4 o} e
™ 2] (last instruction) & Z & Y A A 9] & lﬂgﬂ- o= 2= 9t}

< 2}o] A YA (Slice objects) Slice objects are used to represent slices when extended slice syntax is used. This is
a slice using two colons, or multiple slices or ellipses separated by commas, e.g., a[i:j:stepl,ali:],
k:1],oral..., i:3]. They are also created by the built-in s1ice () function.

E4 9] 7] AL AJEZHEE: start & }3+ower bound) ©|t}; st op 2 A3l (upper bound) ©| T} ;
Step 2 ®l Zrolt; 7L%}° ~3=g ﬁ None ©|t}. o] S EREEZ2 014Q ol & 5 Utk

o2 AA L ste) A =E X AT,

slice.indices (self, length)
This method takes a single integer argument length and computes information about the extended slice
that the slice object would describe if applied to a sequence of length items. It returns a tuple of three
integers; respectively these are the start and stop indices and the step or stride length of the slice. Missing
or out-of-bounds indices are handled in a manner consistent with regular slices.

WA 230 271
2 €] g o A = 7 4] (Static method objects) 2~E 8 W A= AR = oA Y3t e A& A=
AR 2 Mot 3= WA o= W2 AlF ek 2HE A= A= ohE 49 AA, BE

AR MM EE ‘:E%“PD} 2HE e S Ay Fela dadag RE el d ol AA 7}
AAR 8T AL 22l A AA L], ohE ol | HBE A8 A b2 etk A=

3.2,

Hl
Eh!
og

Al

Ol

23

The Python Language Reference, & A| H{%& 2.7.18

Aae 1ghets, 28 g WS AR A= e Eo] ofUth 28 g WA= A= WF
staticmethod () Ay Y22 TrET

Z el & Wl A = A A (Class method objects) ~Ej €] WX = A X H, S WA= A JA & 2
ANE Seined, el Fla dadAz2HE O AAE AdE P40 WstE = 19
Z3) A Ze 2 A= AA 7} 5 2ZeE T of sl = 9 (AFEAF A Q] v A = (User-defined
methods)) oA AT S~ HAHE AA= WA classmethod () A A2 =T}

3.3 New-style and classic classes

Classes and instances come in two flavors: old-style (or classic) and new-style.

Up to Python 2.1 the concept of class was unrelated to the concept of t ype, and old-style classes were the only flavor
available. For an old-style class, the statement x.___class__ provides the class of x, but type (x) is always <type
'instance'>. This reflects the fact that all old-style instances, independent of their class, are implemented with a
single built-in type, called instance.

New-style classes were introduced in Python 2.2 to unify the concepts of class and type. A new-style class is simply
a user-defined type, no more, no less. If x is an instance of a new-style class, then type (x) is typically the same as
x.__class__ (although this is not guaranteed — a new-style class instance is permitted to override the value returned
forx.__class_).

The major motivation for introducing new-style classes is to provide a unified object model with a full meta-model. It also
has a number of practical benefits, like the ability to subclass most built-in types, or the introduction of (descriptors),
which enable computed properties.

For compatibility reasons, classes are still old-style by default. New-style classes are created by specifying another new-
style class (i.e. a type) as a parent class, or the (top-level type) object if no other parent is needed. The behaviour
of new-style classes differs from that of old-style classes in a number of important details in addition to what t ype ()
returns. Some of these changes are fundamental to the new object model, like the way special methods are invoked.
Others are (fixes) that could not be implemented before for compatibility concerns, like the method resolution order in
case of multiple inheritance.

While this manual aims to provide comprehensive coverage of Python’s class mechanics, it may still be lacking in some
areas when it comes to its coverage of new-style classes. Please see https://www.python.org/doc/newstyle/ for sources of
additional information.

Old-style classes are removed in Python 3, leaving only new-style classes.

34 S HME 0|F=

A class can implement certain operations that are invoked by special syntax (such as arithmetic operations or subscript-
ing and slicing) by defining methods with special names. This is Python’s approach to operator overloading, allowing
classes to define their own behavior with respect to language operators. For instance, if a class defines a method named
__getitem__ (), and x is an instance of this class, then x [1] is roughly equivalent to x.__getitem__ (i) for
old-style classes and type (x) .__getitem__ (x, 1) for new-style classes. Except where mentioned, attempts
to execute an operation raise an exception when no appropriate method is defined (typically AttributeError or
TypeError).

WAL FH e ZAAE PR), BUL TGS AR o] Tol H & S FAAW FARE Ao
Saseh IS Fol, oW A9AE N PREL A AULRE FFAY 4 SIoh A obol 2%
A= 2L wol ¢t F 4= o). (o] A $H71A] ol = W3C 2] Document Object Model 2] NodeList Q1 E 3] o] 2 t}.)

24 Chapter 3. H|O|E| 2!

https://www.python.org/doc/newstyle/

The Python Language Reference, £ A| H{%& 2.7.18

3.41 7|2X09l HAEDOIO|A|O|M

object.__new__ (cls[,])
;’EH/‘cls«l M A=E2E w57 s &9tk n ()€ 2Hg MAEg (2FA AdsHA
orol T = 593 Ao oy, A MA Az ‘j&-‘é—ﬂﬂL s Adarng Zejart A |
ou}Eo A BRAARF(EFH2 TSl ALd ASelth new () o W2 A AR A2H
o

2o0]o]oF BT (H B cls o] AAEHA),

Typical implementations create a new instance of the class by invoking the superclass’s ___new__ () method using

super (currentclass, cls)._ _new__(cls[, ...]) withappropriate arguments and then modify-

ing the newly-created instance as necessary before returning it.

TeF new () Ztes Y JA2"HA2E EHEUYE, A Ad2"d A9 init. () HIAET}
__init_ (self[, ...]) AH ETEFH U, self © M Ad2xd2old, YA ARAFELS _ new ()

2 Hdd AsR 2k
WoF pew () s AABAE EH R GO, A AAE AL init () EITEHA Y

=},

ner_() R RE EAY (st plesh 29 AN Felos} AnBs B AL o2 4
%% SHe vl LGB Th o, AHgA A et Fe) 2ol A Fes AL AxE ol 257 £
A5 A+,

object.__init__ (self[,])

Called after the instance has been created (by ___new___ ()), but before it is returned to the caller. The arguments
are those passed to the class constructor expression. If a base class has an ___init__ () method, the derived
class’s ___init__ () method, if any, must explicitly call it to ensure proper initialization of the base class part of
the instance; for example: BaseClass.__init__ (self, [args...]).

Because _ _new__ () and __init__ () work together in constructing objects (__new__ () to create it, and
__init__ () to customise it), no non-None value may be returned by __init__ (); doing so will cause a
TypeError to be raised at runtime.

object.__del__ (self)

Called when the instance is about to be destroyed. This is also called a destructor. If abase classhasa___del__ ()
method, the derived class’s ___del () method, if any, must explicitly call it to ensure proper deletion of the
base class part of the instance. Note that it is possible (though not recommended!) for the __del__ () method
to postpone destruction of the instance by creating a new reference to it. It may then be called at a later time when
this new reference is deleted. It is not guaranteed that __del__ () methods are called for objects that still exist
when the interpreter exits.

ZF31: del xdoesn’tdirectly call x.__del_ () — the former decrements the reference count for x by one,
and the latter is only called when x’s reference count reaches zero. Some common situations that may prevent
the reference count of an object from going to zero include: circular references between objects (e.g., a doubly-
linked list or a tree data structure with parent and child pointers); a reference to the object on the stack frame of a
function that caught an exception (the traceback stored in sy s . exc_t raceback keeps the stack frame alive); or
a reference to the object on the stack frame that raised an unhandled exception in interactive mode (the traceback
stored in sys.last_traceback keeps the stack frame alive). The first situation can only be remedied by
explicitly breaking the cycles; the latter two situations can be resolved by storing None in sys .exc_traceback
or sys.last_traceback. Circular references which are garbage are detected when the option cycle detector
is enabled (it’s on by default), but can only be cleaned up if there are no Python-level ___del () methods
involved. Refer to the documentation for the gc module for more information about how __del__ () methods
are handled by the cycle detector, particularly the description of the garbage value.

34.

ELMHME OIBE 25

The Python Language Reference, & A| H{%& 2.7.18

731 : Due to the precarious circumstances under which ___del__ () methods are invoked, exceptions that
occur during their execution are ignored, and a warning is printed to sys.stderr instead. Also, when
__del__ () isinvoked in response to a module being deleted (e.g., when execution of the program is done),
other globals referenced by the __del__ () method may already have been deleted or in the process of being
torn down (e.g. the import machinery shutting down). For this reason, __del () methods should do the
absolute minimum needed to maintain external invariants. Starting with version 1.5, Python guarantees that
globals whose name begins with a single underscore are deleted from their module before other globals are
deleted; if no other references to such globals exist, this may help in assuring that imported modules are still
available at the time whenthe __del () method is called.

See also the —R command-line option.

object.__repr_ _ (self)

Called by the repr () built-in function and by string conversions (reverse quotes) to compute the (official) string
representation of an object. If at all possible, this should look like a valid Python expression that could be used to
recreate an object with the same value (given an appropriate environment). If this is not possible, a string of the
form <. ..some useful description...> should be returned. The return value must be a string object.
If a class defines _ _repr () butnot ___str (), then__ _repr () is also used when an {informal})
string representation of instances of that class is required.

ol A2 YW Ao AHgH 7 w2, 2H o] TR FEE T R EHA 7 8= A o] T35

object.__str__ (self)

Called by the st r () built-in function and by the print statement to compute the (informal) string represen-
tation of an object. This differs from __repr__ () in that it does not have to be a valid Python expression: a
more convenient or concise representation may be used instead. The return value must be a string object.

object.__1t__ (self, other)
object.__le__ (self, other)
object.__eq___ (self, other)
object.__ne__ (self, other)
object.__gt___ (self, other)
object.__ge___ (self, other)

B A 2.19 7}

These are the so-called (rich comparison) methods, and are called for comparison operators in preference to
__cmp___ () below. The correspondence between operator symbols and method names is as follows: x<y calls x .
_ 1t (y),x<=ycallsx._ le_ (y),x==ycallsx.__eq_ (y),x!=yandx<>ycalx.__ne_ (y),
x>ycallsx.__ gt_ (y),and x>=ycallsx.__ge_ (y).

FRG UL A SE Fol 7 3 e Aol A S A4S TABA gk P DA (singleton)
NotImplemented & E¥& 4 AUt #A#A, AF A A v|2 ¥ False U True £ =TT AT
ol MINEx ofH Fof ghold =& 5 Atk A Bl A4FAE =2 & (Boolean context) (1S
S0l if 9 22) oA AFEH Y, shold e A3 F ARS 5hstr] sl ghol ths] bool () =
eA=aciand

There are no implied relationships among the comparison operators. The truth of x==y does not imply that x ! =y
is false. Accordingly, when defining __eq__ (), one should also define __ne___ () so that the operators will
behave as expected. See the paragraph on ___hash__ () for some important notes on creating hashable objects
which support custom comparison operations and are usable as dictionary keys.

There are no swapped-argument versions of these methods (to be used when the left argument does not sup-
port the operation but the right argument does); rather, 1t () and _ _gt__ () are each other’s reflection,
__le ()and__ge__ () areeachother’sreflection,and ___eq () and___ne () are their own reflection.

Arguments to rich comparison methods are never coerced.

26

Chapter 3. C|O|E{ 2 &!

The Python Language Reference, £ A| H{%& 2.7.18

To automatically generate ordering operations from a single root operation, see functools.
total_ordering().

object.__cmp__ (self, other)

Called by comparison operations if rich comparison (see above) is not defined. Should return a negative integer
if self < other, zero if self == other, a positive integer if self > other. If no__cmp__ (),
__eq__()or__ne__ () operation is defined, class instances are compared by object identity ({ address)). See
also the description of __hash___ () for some important notes on creating hashable objects which support custom
comparison operations and are usable as dictionary keys. (Note: the restriction that exceptions are not propagated
by ___cmp__ () has been removed since Python 1.5.)

object.__remp___ (self, other)

WA 2.1 4 ¥ 7 : No longer supported.

object.__hash__ (self)

Called by built-in function hash () and for operations on members of hashed collections including set,
frozenset, and dict. _ _hash__ () should return an integer. The only required property is that objects
which compare equal have the same hash value; it is advised to mix together the hash values of the components
of the object that also play a part in comparison of objects by packing them into a tuple and hashing the tuple.
Example:

def _ hash__ (self):
return hash((self.name, self.nick, self.color))

If a class does not definea __cmp___ () or __eqg__ () method it should not define a ___hash___ () operation
either; if it defines _ _cmp_ () or__eq () butnot___hash__ (), its instances will not be usable in hashed
collections. If a class defines mutable objects and implements a __cmp___ () or __eqg___ () method, it should
not implement ___hash___ (), since hashable collection implementations require that an object’s hash value is
immutable (if the object’s hash value changes, it will be in the wrong hash bucket).

User-defined classes have __cmp__ () and __hash__ () methods by default; with them, all objects compare
unequal (except with themselves) and x.__hash__ () returns a result derived from id (x) .

Classes which inherita ___hash__ () method from a parent class but change the meaning of __cmp__ () or
___eqg___ () such that the hash value returned is no longer appropriate (e.g. by switching to a value-based concept
of equality instead of the default identity based equality) can explicitly flag themselves as being unhashable by
setting__hash___ = None in the class definition. Doing so means that not only will instances of the class raise
an appropriate TypeError when a program attempts to retrieve their hash value, but they will also be correctly
identified as unhashable when checking isinstance (obj, collections.Hashable) (unlike classes
which define their own ___hash__ () to explicitly raise TypeError).

WA 2504 HA: _ hash__ () may now also return a long integer object; the 32-bit integer is then derived
from the hash of that object.

WA 2.60014 M7 :___hash__ may now be set to None to explicitly flag instances of a class as unhashable.

object.__nonzero___ (self)

Called to implement truth value testing and the built-in operation bool () ; should return False or True, or
their integer equivalents 0 or 1. When this method is not defined, ___I1en__ () is called, if it is defined, and the
object is considered true if its result is nonzero. If a class defines neither __Ien__ () nor __nonzero__ (), all
its instances are considered true.

object.__unicode___ (self)

Called to implement unicode () built-in; should return a Unicode object. When this method is not defined,
string conversion is attempted, and the result of string conversion is converted to Unicode using the system default
encoding.

34.

ELMHME OIBE 27

The Python Language Reference, & A| H{%& 2.7.18

342 0{EZ|FE HMA FHAE{OIO|A|O|M

SAa dadx o ERRE F2 (7], Y], x.name & 44AI8H7]) 9] o w2 M A8t7] A6l vh534

object.__getattr__ (self, name)
Called when an attribute lookup has not found the attribute in the usual places (i.e. it is not an instance attribute
nor is it found in the class tree for se1f). name is the attribute name. This method should return the (computed)
attribute value or raise an AttributeError exception.

Note that if the attribute is found through the normal mechanism, — () is not called. (This is an
intentional asymmetry between ___getattr__ () and __setattr__ ().) This is done both for efficiency
reasons and because otherwise ___getattr__ () would have no way to access other attributes of the instance.
Note that at least for instance variables, you can fake total control by not inserting any values in the instance attribute
dictionary (but instead inserting them in another object). See the __getattribute__ () method below for a
way to actually get total control in new-style classes.

object.__setattr__ (self, name, value)
Called when an attribute assignment is attempted. This is called instead of the normal mechanism (i.e. store the
value in the instance dictionary). name is the attribute name, value is the value to be assigned to it.

If _ setattr__ () wants to assign to an instance attribute, it should not simply execute self.name =
value — this would cause a recursive call to itself. Instead, it should insert the value in the dictionary of
instance attributes, e.g., self.__dict__ [name] = value. For new-style classes, rather than access-
ing the instance dictionary, it should call the base class method with the same name, for example, object.
__setattr_ (self, name, value).

object.__delattr__ (self, name)
_cetattr () HHISFAT] EYHEE g YetE thAlo] AHA BT} o] AL del ob].name o]
A S 817 91 ol b 7 815 o oF ek

More attribute access for new-style classes

The following methods only apply to new-style classes.

object.__getattribute__ (self, name)
22 Qada e RE AN2E TANY A 24 Qo] B
27V getattr () = A +HASYH, _ getattribute () 7} Al A

—‘“ [o i,
My 5
I-Oll
i n=h
o=

N

i)
o 5 o Xt

Tl

AttributeError & YL 7A ¢e ol _getamr__ = iiﬂ Al Feth ol HMAEE oE
o (Al4He) = aiTﬂurAttrlbuteError of| 9] & Qo Aok 3hr}. o] WA = o A K3} A7 (infinite
recursion) 7} 4 A sH= A2 2] Y3, +& 01;<1] B %gs} olETHE HZ37] 95 2L o

W ol FH 29 HAAEE S E5) of Sttt 01] E0],0bject.__getattribute__ (self, name

ZF31: This method may still be bypassed when looking up special methods as the result of implicit invocation via
language syntax or built-in functions. See Special method lookup for new-style classes.

28 Chapter 3. E-'"OlEA E%

The Python Language Reference, £ A| H{%& 2.7.18

Cla3EE #8517

ol e MAEEL MASE A FU 2 (0 B2 YE (descripior) S 2) &) A2 AL} L F A
(owner) Fe) 20 53T vl AL ATHI 2T YE = 257 Fe)2e) SA VR 1 R Fej2 3 St
g4 ol glojof Arh. oz oA, (JEFRE) £ o] afA T2 _dict_ 9 A2
AH4H 3 JE B REE T AT

object.__get___ (self, instance, owner)
SFA FALFA 2 EYRE A 2 Feled doda@obs
oEHES AT T u) SEAC owner £ G4 257 Fe) 20k R instance & o] E €1
227k Lol i A28 20] ALY, o 28 B 7} owner & 53] 94 liﬂ ot.
HAEE (AR o ERRE & E8lF AU AttributeError 01]94% do

object.__set___ (self, instance, value)
oA 229 QAT instance 9] S| E P HEE A 2 value 2 AH T w) FEH T}

ObjeCt __delete__ (self, instance)
FA S22 AXAEX instance 0]) EBHE S AHA| S wf] T EH)

CIA3EE S&517]

dutA o g, t23 Hel & (23 52 (binding behavior)) = 7 AA A ERHEH. AEHFE AA
27} 23 Y Z E EF (descriptor protocol) 2] W A =& o o] &) A Zq-/]ﬂl’/]-: __get__ (), et__ (),
__delete_ (). o] WINEE F stuets Ao o] °‘°fﬁ Haagyeta £ 20

olEZHE AA 29 7]—“5: T2 AA e A E oA o EFRE ‘2 SlaL, 2231, A A Sh= Aol o &
a.x+=a.__dict_ ['x'] oA A& A type(a).__dict__ ['x'] & AA type(a) & HE Z
Al 2] gt W o]~ 2 é%% 74?# 7he 499 232 49 Th

However, if the looked-up value is an object defining one of the descriptor methods, then Python may override the
default behavior and invoke the descriptor method instead. Where this occurs in the precedence chain depends on which

descriptor methods were defined and how they were called. Note that descriptors are only invoked for new style objects
or classes (ones that subclass object () or type ()).

23 g 529 A ZA L A3 (binding) ©] T} a.x. o] B RS o] 23 E =2 = a o u}et th=t}:

S0l
A4 53 PFAVHUAE L L AHE 52 SR BEA AT YE WASE 44 $5F

wjt}h: x._ _get_ (a)

olA~®lA A3} If binding to a new-style object instance, a.x is transformed into the call: type(a).

=0l
ANE
—_=

dict ['x']l.__get__ (a, type(a)).

Z#A 2 If binding to a new-style class, A.x is transformed into the call: A.__dict__ ['x'].
__get__ (None, A).

Super A%} super & A" 2o A3}, A3 super (B, obj).m() 2 obj.__class__. ro_
S AMAA EME ool ot Wol s Felan s 2O Fol 0|8 UATAHE SE T
A.__dict_ ['m'].__get_ (obj, obj.__class_).

A" Ao B9, 2ayge S29 A= old a3 HE A =7 B o = et
2ok 23 dHE get (), set. (), delete () EolBXForE FAL 5 It} Tof
_get__ () EAYTA gh=thd, ol BB HE A2, AR O A" g Eof ghol A 9 o)A
23 fy AR A S et B U2ITHET set. () oW _delete () FolLsUdE
o} 7 o] 89, o o] B] Y22 9 B (data descriptor) T}. & Tk % 2] 14| 9F=T}d vl o] B] Y 2= 3 H T} (non-data
descriptor). ®-&, dlo|E] AT HEI 7} _get. () I __set_ () & BF ZY3t= v, vld o] tjA~3
HEl=__get_ () WIAE=ERFASICL set. () I __get_ () 01 A= Eﬂo]ﬁ HAaagelE o]2da
gA el A& gholl A4 gch vk vt o] g AT HE = Jdad 2B 48] 7 Yo

34. S+ OME OIS 29

The Python Language Reference, & A| H{%& 2.7.18

g}o] M A E (staticmethod () classmethod () & &3] A) = v|dlolg 2T HEZ FH AT}
o) w2, 1At WA ST A2 A AL Bl % 4 sleh. o AL AW ARELS) e Bl s ThE
A2AEFAEHE=THE TS S T IEF e

property () 5= tolE U2z g E LA} o] wjid], A8 A= = 2 7 ¥ (property) 9] 23S

__slots__

By default, instances of both old and new-style classes have a dictionary for attribute storage. This wastes space for objects
having very few instance variables. The space consumption can become acute when creating large numbers of instances.

The default can be overridden by defining __slots__ in a new-style class definition. The __slots__ declaration takes a
sequence of instance variables and reserves just enough space in each instance to hold a value for each variable. Space is
saved because __dict__is not created for each instance.

slots
This class variable can be assigned a string, iterable, or sequence of strings with variable names used by instances. If
defined in a new-style class, __slots__ reserves space for the declared variables and prevents the automatic creation
of __dict__and __weakref__ for each instance.

B A 2.20] &7}
__slots__ AFgo AT = E

* When inheriting from a class without __slots__, the __dict__ attribute of that class will always be accessible, so a
__slots__ definition in the subclass is meaningless.

o _dict AFTIGonB JAABEAE slors_ Yol YEE A k2 A AFE R YT = gl tEH A
Foewamgog EH °l&le] 1 5} AttributeError S 4o 7ith vk = A o g7 x| ¥
Aol AR3ItiH, slots AAL BEXLE A|F20] ' dict_ ' & F7} s

WA 234 A 75‘ : Previously, adding '___dict__ ' to the _ slots__ declaration would not enable the assign-
ment of new attributes not specifically listed in the sequence of instance variable names.

o J2"autth weakref WAFTFYLBR, slots. B = Fears dadao g ofst Fx
(weak reference) & A ¥ 8HA] oF=rh. vhoF oFgh 2 Al Yol o stthd, _slors__ A A 2R Al
' _weakref_ ' E F7}3th

WA 2.30] 4] ¥ 7 : Previously, adding ' __weakref__ ' tothe _ slots__declaration would not enable support
for weak references.

o _slots__ = Zr g o]ttt AT HHE
%ﬁo}ﬂ) Ax}Ador ZA oEFYHEE lts Z Aogd ¢
A2d2Hoz AL £ gty Zela oJEHEE JATHE YS FEE 3}

e The action of a __slots___ declaration is limited to the class where it is defined. As a result, subclasses will have a
__dict__ unless they also define __slots__ (which must only contain names of any additional slots).

s Ze2TbW ol 2)20 slors_ o) HOB oS3 2L 0] 2] WHE _slors o] AATTHH, W o] 2
Sejart BB AL AN LT 4 Gl FE s ATkOlol 2 SR AR E AT YHE J4 23]
e A9t ol th. o] AL =2 WS Ao)E A ok e HlA Dok weel ks, o] HA 3]
A% AA7EF7bE Rolck,

e Nonempty __slots__ does not work for classes derived from (variable-length) built-in types such as 1ong, str
and tuple.

¢ _slots_ o BAE)99 o B L2 BT 5 Ak WBE G4 AT 5 Ak AT v,
2710l g 5He el elulsk Rold 4 ek

30 Chapter 3. E-'"OlEA E%

The Python Language Reference, £ A| H{%& 2.7.18

WPAT S slots S Z= ASw class th Qo] SR T

=
=
A 2.69| A ¥ 7 : Previously, __class__ assignment raised an error if either new or old class had __slots__

3.4.3 EciA M HAEDOIO|X|0|M
By default, new-style classes are constructed using t ype () . A class definition is read into a separate namespace and the
value of class name is bound to the result of type (name, bases, dict).

When the class definition is read, if __metaclass__ is defined then the callable assigned to it will be called instead of
type (). This allows classes or functions to be written which monitor or alter the class creation process:

¢ Modifying the class dictionary prior to the class being created.
* Returning an instance of another class — essentially performing the role of a factory function.

These steps will have to be performed in the metaclass’s ___new__ () method—type.__new__ () can then be called
from this method to create a class with different properties. This example adds a new element to the class dictionary before
creating the class:

class metacls (type) :

def _ new__ (mcs, name, bases, dict):
dict['foo'] = 'metacls was here'
return type.__new__ (mcs, name, bases, dict)

You can of course also override other class methods (or add new methods); for example defininga custom ___call__ ()
method in the metaclass allows custom behavior when the class is called, e.g. not always creating a new instance.

__metaclass___
This variable can be any callable accepting arguments for name, bases, and dict. Upon class creation, the
callable is used instead of the built-in t ype ().

B A 2.20] 7}
The appropriate metaclass is determined by the following precedence rules:
e Ifdict['__metaclass__ '] exists, it is used.

¢ Otherwise, if there is at least one base class, its metaclass is used (this looks for a _ class__ attribute first and if
not found, uses its type).

¢ Otherwise, if a global variable named __metaclass___ exists, it is used.
» Otherwise, the old-style, classic metaclass (types.ClassType) is used.

The potential uses for metaclasses are boundless. Some ideas that have been explored including logging, inter-
face checking, automatic delegation, automatic property creation, proxies, frameworks, and automatic resource lock-
ing/synchronization.

3.4.4 QAEA Ol ME ZziA HAF HAE|{OFO|A|O|M

S WM EELS isinstance () $issubclass () WA 459 712 523 AR Y3t dl A H T

£ 3], e F 2 abe. ABCMeta L =AW o] & Z 8] & (Abstract Base Class, ABC) & t}2 ABCE % &3}
dojef Feat F (WP S =FsHeh Oﬂ (7F Al o] 2 Z e 2 (virtual base class)) & 571 4= Q1A 842 1L
ol M EES FE s}

34. S+ OME OIS 31

The Python Language Reference, & A| H{%& 2.7.18

class.__instancecheck___ (self, instance)
instance 7F (A A o] A A A 2 2) class & Q1
T, isinstance (instance, class) &

class.__subclasscheck___ (self, subclass)

subclass 7t (A A o) AVt B A S &) class o) A1 B S22 HFE + Yol S EHErh O
Aol ¥, issubclass (subclass, class) = 3837 Y3 T&H}
ol A EE2 :é 29 Y (W) oA 23 H k= Aol Fo3ofF sttt AA Sl A S~
HAZZ Fogd = gtk o] A2 At sl SEFHE EF HAEEY 2359 dFAA Atk o] 4+
APPSR 1Y

o B7]:

PEP 3119 - &4 o] A Ze|lAe] 59 instancecheck_ () < 7subclasscheck () & &3
isinstance () &} issubclass () 9 & & 74/\151 u}]Z]ﬁ}% o 2Q83% 7S x3s=0], 9
7159 571 dojoll FwlolAs Fe A (abe BES HEh & 7}6};%} 3= dl ot

3.4.5 E{E A SLH LH7|

object.__call__ self[args...]

JN2AEHA7LTFAE (Z2E) W 3 = x

o o) =7 o= W, x (argl, arg2, ...)
Fdolth

s=4
__call_ (argl, arg2, ...) 9 =<4

3.4.6 ZE|O|L{E ELH LH7]

The following methods can be defined to implement container objects. Containers usually are sequences (such as
lists or tuples) or mappings (like dictionaries), but can represent other containers as well. The first set of methods is
used either to emulate a sequence or to emulate a mapping; the difference is that for a sequence, the allowable keys
should be the integers k for which 0 <= k < N where N is the length of the sequence, or slice objects, which de-
fine a range of items. (For backwards compatibility, the method _ getsliice () (see below) can also be de-
fined to handle simple, but not extended slices.) It is also recommended that mappings provide the methods keys (),
values (), items (), has_key (), get (), clear (), setdefault (), iterkeys (), itervalues(),
iteritems (),pop (),popitem(), copy (),and update () behaving similar to those for Python’s standard dic-
tionary objects. The UserDict module provides a DictMixin class to help create those methods from a base set of
__getitem _(),__setitem _ delitem__ (),and keys (). Mutable sequences should provide meth-
ods append (), count (), index (), extend (), insert (), pop (), remove (), reverse () and sort (),
like Python standard list objects. Finally, sequence types should implement addition (meaning concatenation) and mul-
tiplication (meaning repetition) by defining the methods ___add__ (), ___radd__ (), __iadd__ (), _mul__ (),
__rmul__ ()and __imul___ () described below; they should not define ___coerce__ () or other numerical opera-
tors. It is recommended that both mappings and sequences implement the _contains__ () method to allow efficient
use of the in operator; for mappings, in should be equivalent of has_key () ; for sequences, it should search through
the values. It is further recommended that both mappings and sequences implement the __iter__ () method to al-
low efficient iteration through the container; for mappings, __iter__ () should be the same as iterkeys () ; for
sequences, it should iterate through the values.

object.__len__ (self)
Called to implement the built-in function 1en () . Should return the length of the object, an integer >= 0. Also, an
object that doesn’tdefinea___nonzero__ () methodand whose ___I1en__ () method returns zero is considered
to be false in a Boolean context.

CPython implementation detail: In CPython, the length is required to be at most sys .maxsize. If the length
is larger than sys .maxsize some features (such as 1en ()) may raise OverflowError. To prevent raising
OverflowError by truth value testing, an object must definea ___ nonzero__ () method.

32 Chapter 3. E-'"OlEA E%

https://www.python.org/dev/peps/pep-3119

The Python Language Reference, £ A| H{%& 2.7.18

object.__getitem__ (self, key)
self[key] o @< FoH7] flofl E=Hrth /\Fﬂéﬁé-‘ﬂ A5 Aot egols AA W 7| 2 5 & HTh
o o]ﬁ]z\(u}okagﬂz\7};\]$q F2 Yz % b)) o] EHSE AL getitem () WA
Cﬂ“ﬁ“°ﬂf4ﬂ¢ﬂq deier 7} 2 2 39l 39, TypeError 7} 24 ¥ & glth;
ndexError & 92 # o} slc}.

ﬂj’— for FZ = A2 E2 ZutE A5 S8, X E A9 2o th3)] IndexError 7} gojd

oz Jetm gk

object.__setitem__ self key, value)
self [key] 2o thle &7 flo) = HAh _ getitem ()JJr7L o7 Z g stt). v ¢

o=, AA 7L 7100 el ghe] WA ol A 719 718 5 S5 A, Ald 2] B FEol wAE

? A= w2k A of of Fhrt. XA key 71O %%%_getltem_ () oA} 22 o] & d o Aok
3k,

object.__delitem__ (self, key)
self[key] & AHAE 7837 A8l 3 %%Tﬂ- __getitem () B} 7L F7 a3ttt uge
B5ol=, AA 7719 ”Xﬂa?ﬂ%‘f%‘ FANB2 Ao FEAIF2ERE AAE 5 de vt
FHAF oJop St FR A key 72 B _getitem () A&} 2L o E oA ok T}

object.__missing__ (self, key)
dict. getitem__ () o] dict A B E& oA 717 Ao §lo™ self [key] & FE3}7] 93
cA=acian g

object.__iter__ (self)
This method is called when an iterator is required for a container. This method should return a new iterator object

that can iterate over all the objects in the container. For mappings, it should iterate over the keys of the container,
and should also be made available as the method iterkeys ().

olefd o] 8 A GA] o] MIMEE T L7} AT A7 A4S E 5 oF k. o] &l o] E] A A ol
o 3k 571e] A B & typeiter ol 91T

object.__reversed__ (self)
reversed () W& a7 o o] Bl g) o] A (reverse iteration) 2 F+ & 51 7] Y&l (YthH) TE3tc) Ad o
Hol o= 7“11]C S 9 o2 gAst= A o5 ol B AAE =8 F oF gt}
__reversed__ () WA EZ} A FE X ¢FO0H, reversed () WERFTEAIAXZEEZ(_len ()
I getitem ())S IO E ARSI A A Z2EZE A D3 AAE2 reversed () 7F
Agste ARG o EE8A FHS AT 5+ AS vt reversed () & A&l of stk

A 2.69] F7}.

WAl DAL ARAE (in Fonot in) S BE A Ao BE ol H ol oz FAATE SA W, AH o]
AAEH &8N TIASEHSH L2 EFT HAEE Tl AT = Ut o] A AA= Adad 28 %
ek,

object.__contains__ (self, item)

WA A AR 7 A7) 93 SR o o self o AW L, 1A o AL
2ok 2ot vl AR A2, 712t Aol obviet v Bl 717} wel s o of Tk,
coneaine () § ASASA S AN B WAY YAL VA _icer_() § SRl
ASANETF, getitem () & T HE AA olE Yol 22 EFZ A ET T} membership-
test-details A A& 313} 2}.

v

34. S+ OME OIS 33

The Python Language Reference, & A| H{%& 2.7.18

3.4.7 Additional methods for emulation of sequence types

The following optional methods can be defined to further emulate sequence objects. Immutable sequences methods should
at most only define __getslice _ ();mutable sequences might define all three methods.

object.__getslice__ (self,i, j)
WA 2.05 €] 3] A] : Support slice objects as parameters to the __getitem () method. (However, built-in
types in CPython currently still implement ___getslice__ (). Therefore, you have to override it in derived
classes when implementing slicing.)

Called to implement evaluation of self [i:7j]. The returned object should be of the same type as self. Note
that missing i or j in the slice expression are replaced by zero or sys .maxsize, respectively. If negative in-
dexes are used in the slice, the length of the sequence is added to that index. If the instance does not implement
the __len__ () method, an AttributeError is raised. No guarantee is made that indexes adjusted this
way are not still negative. Indexes which are greater than the length of the sequence are not modified. If no
__getslice__ () isfound, a slice object is created instead, and passed to ___getitem _ () instead.

object.__setslice__ (self, i, j, sequence)
Called to implement assignment to self [i:j]. Same notes for i and jas for __getslice__ ().

This method is deprecated. If no _ setslice__ () is found, or for extended slicing of the form
self[i:j:k], a slice object is created, and passed to ___setitem (), instead of __ setslice ()
being called.

object.__delslice__ (self, i, J)
Called to implement deletion of self [i:j]. Same notes for i and j as for __getslice__ (). This method
is deprecated. If no __delslice__ () is found, or for extended slicing of the form self[i:7j:k], a slice
object is created, and passedto __delitem (), insteadof __delslice__ () being called.

Notice that these methods are only invoked when a single slice with a single colon is used, and the slice method is
available. For slice operations involving extended slice notation, or in absence of the slice methods, __getitem (),
__setitem__ () or__delitem__ () is called with a slice object as argument.

The following example demonstrate how to make your program or module compatible with earlier versions of Python
(assuming that methods __getitem__ (), setitem__ () and __delitem _ () support slice objects as argu-
ments):

class MyClass:
def _ _getitem__ (self, index):
def _ setitem__ (self, index, value):

def _ delitem_ (self, index):

if sys.version_info < (2, 0):
They won't be defined if version is at least 2.0 final

def _ _getslice__ (self, i, 7J):

return self[max (0, i):max (0, 3J):]
def _ _setslice__ (self, i, J, seq):

self[max (0, 1i):max(0, J):] = seq
def _ _delslice__ (self, 1i, J):

del self[max (0, 1i):max (0, j):]

Note the calls to max () ; these are necessary because of the handling of negative indices before the ___*slice_ ()
methods are called. When negative indexes are used, the __*item__ () methods receive them as provided, but the

34 Chapter 3. H|O|E| 2!

The Python Language Reference, £ A| H{%& 2.7.18

__*slice__ () methods get a {cooked) form of the index values. For each negative index value, the length of the
sequence is added to the index before calling the method (which may still result in a negative index); this is the customary
handling of negative indexes by the built-in sequence types, and the ___*item__ () methods are expected to do this as
well. However, since they should already be doing that, negative indexes cannot be passed in; they must be constrained
to the bounds of the sequence before being passed tothe ___*item__ () methods. Calling max (0, i) conveniently
returns the proper value.

object.__add__ (self, other)

object.__sub___ (self, other)

object.__mul__ (self, other)

object.__floordiv___ (self, other)

object .__mod___ (self, other)

object.__divmod___ (self, other)

object.__pow___ (self, other[, modulo])

object.__lshift__ (self, other)

object.__rshift__ (self, other)

object.__and__ (self, other)

object.__xor__ (self, other)

object.__or___ (self, other)
These methods are called to implement the binary arithmetic operations (+, -, *, //, %, divmod (), pow (),
**x <<, >> &, ~, |). For instance, to evaluate the expression x + y, where x is an instance of a class that has
an__add__ () method, x.__add__ (y) iscalled. The __divmod__ () method should be the equivalent to
using _ floordiv__ () and __mod__ (); it should not be related to __truediv__ () (described below).
Note that __pow___ () should be defined to accept an optional third argument if the ternary version of the built-in
pow () function is to be supported.

ook o] Wl EE = 3 Al E QAL o3l A4S X PEFA] 9O ™, Not Implemented & S8 oF

3},

object.__div__ (self, other)

object.__truediv___ (self, other)
The division operator (/) is implemented by these methods. The _ truediv__ () method is used when
__future__ .division is in effect, otherwise _ div.__ () is used. If only one of these two methods is
defined, the object will not support division in the alternate context; TypeError will be raised instead.

object.__radd__ (self, other)
object. rsub (self, other)
object.__rmul__ (self, other)

)

object. _rd1v_ self, other
object.__rtruediv___ (self, other)
object.__rfloordiv___ (self, other)

object.__rmod___ (self, other)
object.__rdivmod___ (self, other)
object.__rpow___ (self, other)
object.__rlshift__ (self, other)
object.__rrshift__ (self, other)
object.__rand__ (self, other)
object.__rxor___ (self, other)

34. S+ OME OIS 35

The Python Language Reference, & A| H{%& 2.7.18

object.__ror__ (self, other)

These methods are called to implement the binary arithmetic operations (+, —, *, /, %, divmod (), pow (),
*x << >>, &, 7, |) with reflected (swapped) operands. These functions are only called if the left operand does
not support the corresponding operation and the operands are of different types.” For instance, to evaluate the
expression x — vy, where y is an instance of a class that has an ___rsub__ () method, y.__rsub__ (x) is
called if x.__sub__ (y) returns Notlmplemented.

A pow() £ __rpow_ () B EEFEL AEGA ol Folslof Bk (1RA el Lol 4
72 o] V5 Bkl A Th.

F3: woF 9 22 3 AN} Yol AZ W AN} Yol MH Fej2olT, T HH Fe 2t Aste
H 28 WASE AF5Y, o] WAEI} A% A HR 5 A Fe HASRTAA SEHCh o
FAL AE Fhat 2AEY A4S AFYT £ Y2 et

object.__iadd___ (self, other)

object.__isub___ (self, other)

object.__imul__ (self, other)

object.__idiv__ (self, other)

object.__itruediv__ (self, other)

object._ _ifloordiv__ (self, other)

object.__imod___ (self, other)

object.__ipow__ (self, other[, modulo])

object.__ilshift__ (self, other)

object.__irshift__ (self, other)

object.__iand__ (self, other)

object.__ixor__ (self, other)

object.__ior__ (self, other)
These methods are called to implement the augmented arithmetic assignments (+=, —=, *=, /=, / /=, $=, **=,
<<=,>>=, &=, "=, | =). These methods should attempt to do the operation in-place (modifying self) and return the

result (which could be, but does not have to be, self). If a specific method is not defined, the augmented assignment
falls back to the normal methods. For instance, to execute the statement x += vy, where x is an instance of a class
thathasan__ iadd () method, x.___iadd__ (y) is called. If x is an instance of a class that does not define
a__ iadd () method, x.__add__ (y) andy.__ radd__ (x) are considered, as with the evaluation of x

+ v.

object._ _neg__ (self

object.__abs__ (self

)
object._ pos__ (self)
)
(

object.__invert__ (self)

A F 4t A4, +.abs (), ~) & TASA A EF AT

object._ _complex__ (self)
object.__int__ (self)
object.__long__ (self)
object.__float__ (self)

Called to implement the built-in functions complex (), int (), long (), and f1oat (). Should return a value
of the appropriate type.

object.__oct__ (self)
object.__hex__ (self)

Called to implement the built-in functions oct () and hex (). Should return a string value.

object.__index__ (self)

29 AxAE o] 2 oW, AFF A 2 MAME(__add () Z2)7F s 2 Aito] AAH A o= RO R FTr) o] Ao
AR A= T2 A e olfrTh

36

Chapter 3. C|O|E{ 2 &!

The Python Language Reference, £ A| H{%& 2.7.18

Called to implement operator.index (). Also called whenever Python needs an integer object (such as in
slicing). Must return an integer (int or long).

B A 2.5 &7}

object.__coerce___ (self, other)

Called to implement (mixed-mode) numeric arithmetic. Should either return a 2-tuple containing self and other
converted to a common numeric type, or None if conversion is impossible. When the common type would be
the type of other, it is sufficient to return None, since the interpreter will also ask the other object to attempt a
coercion (but sometimes, if the implementation of the other type cannot be changed, it is useful to do the conversion
to the other type here). A return value of Not Implemented is equivalent to returning None.

3.4.9 Coercion rules

This section used to document the rules for coercion. As the language has evolved, the coercion rules have become hard
to document precisely; documenting what one version of one particular implementation does is undesirable. Instead, here
are some informal guidelines regarding coercion. In Python 3, coercion will not be supported.

If the left operand of a % operator is a string or Unicode object, no coercion takes place and the string formatting
operation is invoked instead.

It is no longer recommended to define a coercion operation. Mixed-mode operations on types that don’t define
coercion pass the original arguments to the operation.

New-style classes (those derived from object) never invoke the _coerce__ () method in response to a binary
operator; the only time ___coerce__ () is invoked is when the built-in function coerce () is called.

For most intents and purposes, an operator that returns Not Implemented is treated the same as one that is not
implemented at all.

Below, __op__ () and __rop__ () are used to signify the generic method names corresponding to an operator;
__iop__ () is used for the corresponding in-place operator. For example, for the operator (+), _add__ ()
and___radd___ () areused for the left and right variant of the binary operator, and __iadd___ () for the in-place
variant.

For objects x and y, first x.__op___ (y) is tried. If this is not implemented or returns Not Implemented, y .
__rop___(x) istried. If this is also not implemented or returns Not Implemented, a TypeError exception
is raised. But see the following exception:

Exception to the previous item: if the left operand is an instance of a built-in type or a new-style class, and the right
operand is an instance of a proper subclass of that type or class and overrides the base’s __rop___ () method, the
right operand’s __rop___ () method is tried before the left operand’s __op___ () method.

This is done so that a subclass can completely override binary operators. Otherwise, the left operand’s ___op___ ()
method would always accept the right operand: when an instance of a given class is expected, an instance of a
subclass of that class is always acceptable.

When either operand type defines a coercion, this coercion is called before that type’s__op__ () or__rop__ ()
method is called, but no sooner. If the coercion returns an object of a different type for the operand whose coercion
is invoked, part of the process is redone using the new object.

When an in-place operator (like (+=)) is used, if the left operand implements __iop__ (), it is invoked without
any coercion. When the operation falls back to__op__ () and/or __rop__ (), the normal coercion rules apply.

Inx + vy, if xis a sequence that implements sequence concatenation, sequence concatenation is invoked.

Inx * vy, if one operand is a sequence that implements sequence repetition, and the other is an integer (int or
long), sequence repetition is invoked.

34.

ELMHME OIBE 37

The Python Language Reference, & A| H{%& 2.7.18

¢ Rich comparisons (implemented by methods __eg__ () and so on) never use coercion. Three-way comparison
(implemented by ___cmp___ ()) does use coercion under the same conditions as other binary operations use it.

¢ In the current implementation, the built-in numeric types int, long, f1loat, and complex do not use coercion.
All these types implementa ___coerce__ () method, for use by the built-in coerce () function.

WA 2.70]| 4] ¥ 7 : The complex type no longer makes implicit calls to the __coerce__ () method for mixed-
type binary arithmetic operations.

3.4.10 with £ HEAE 22| X}

B A 2.50] &7}
AR ~E A2 A} (context manager) = with T2 A3 uf 2] 3= A3 A E (context) S A 2 5= A
Atk 2E B2o] AL 9o, AUAE B2 AL Aot A
A2 E A= BE with B (with & A A Ay o
44 8T FE k.
A~ e 2| 2be] AP A & Eole thaket S7.2) Ao A (global state) & W 2817 B sl A, AL
2 7] (locking) 331 A 2 7] (unlocking) 3H= 21, €& 9t & &+ 2 5] th
Ad 2~ E #e|x}of])3t §f &AM 3t A B = typecontextmanager ol -2 T}
object.__enter__ (self)
o] AA e} A APA I ALNAE AYshth withBEL as A2 A A H thAlo] Qrhd, o] MA =9
uHE g A ATk
object.__exit__ (self, exc_type, exc_value, traceback)
o] A o} T AYN N} AYAEES FR AT FefvHEL A2
714 3th wrep AdAE Lol 9] glo] FRIATHA, Al A% B N
o

BHOF o 9] 71 Al 55 3, WA E7h o9 2 $A A7)0 4 oW (5 Bt
R

exit () MAEZ AGH o2 & thA] A0 7] A (reraise) FEE F9| 5] oF St} o] AL TE A}
(caller) o] & ¢ o]t}

¢ B.7]:
PEP 343 - (with) & T}o]# yith 2ol t)dt 74, v 4, .

3.4.11 Special method lookup for old-style classes

For old-style classes, special methods are always looked up in exactly the same way as any other method or attribute. This
is the case regardless of whether the method is being looked up explicitly as in x.__getitem__ (i) or implicitly as
inx[i].

This behaviour means that special methods may exhibit different behaviour for different instances of a single old-style
class if the appropriate special attributes are set differently:

>>> class C:

pass
>>> cl = C()
>>> c2 = C{()
>>> cl._ len_ = lambda: 5
>>> c2._ _len__ = lambda: 9

>>> len(cl)

(F= ol ATl A%

38 Chapter 3. E-'"OlEA E%

https://www.python.org/dev/peps/pep-0343

The Python Language Reference, £ A| H{%& 2.7.18

(o] A sl o] A A M A%)

>>> len(c2)

3.4.12 Special method lookup for new-style classes

For new-style classes, implicit invocations of special methods are only guaranteed to work correctly if defined on an
object’s type, not in the object’s instance dictionary. That behaviour is the reason why the following code raises an
exception (unlike the equivalent example with old-style classes):

>>> class C(object):

pass
>>> ¢ = C()
>>> c.__len__ = lambda: 5

>>> len(c)
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
TypeError: object of type 'C' has no len()

o Fae] WA 2Y e, BE AMN(E AN TPAND S A TANE nasn) b
_repr () H RS WS EF WASED Belo] Uk wok ol WAS S| B FA A 237 Y
WA 23] Z2AAE AN, G A4 AA o 3] EE5 9L v sl 5HA Bt

>>> 1 ._ _hash_ () == hash(1l)
True
>>> int._ _hash__ () == hash(int)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: descriptor '__hash__' of 'int' object needs an argument
Zejao) AAH A Fe WAEE TEE ofd Ao BRI NEE FF (e} 2ol E S (metaclass
confusion)) °]2}il Ee|il, S WA EE 23T o AAHAE 3] 6= H R 98 5 Ut

>>> type(l).__hash__ (1) == hash(1l)

True

>>> type(int).__hash__ (int) == hash(int)
True

02 57071 919 AT SR EE S FHSHE Ao o), 54 54 A= 23 & A
et Fe 29 getattribute_ () MAE A& 23] 3}

>>> class Meta (type):
def _ getattribute__ (*args):
print "Metaclass getattribute invoked"
return type.__getattribute__ (*args)

>>> class C(object) :
_ _metaclass__ = Meta
def @ len_ (self):
return 10
def _ _getattribute__ (*args):
print "Class getattribute invoked"
return object.__getattribute__ (*args)

(TF= ol ATl A%

34. S+ OME OIS 39

The Python Language Reference, & A| H{%& 2.7.18

(o] A sl o] A A M A%)

>>> ¢ = C()

>>> c.__len_ () # Explicit lookup via instance
Class getattribute invoked

10

>>> type(c).__len__ (c) # Explicit lookup via type
Metaclass getattribute invoked

10

>>> len(c) # Implicit lookup

10

40

Chapter 3. C|O|E{ 2 &!

cHAPTER 4

0>
02t
O
1

4.1 0|1} ¢1Z& (binding)

Names refer to objects. Names are introduced by name binding operations. Each occurrence of a name in the program
text refers to the binding of that name established in the innermost function block containing the use.

A block is a piece of Python program text that is executed as a unit. The following are blocks: a module, a function
body, and a class definition. Each command typed interactively is a block. A script file (a file given as standard input
to the interpreter or specified on the interpreter command line the first argument) is a code block. A script command (a
command specified on the interpreter command line with the (-c¢) option) is a code block. The file read by the built-in
function execfile () is a code block. The string argument passed to the built-in function eval () and to the exec
statement is a code block. The expression read and evaluated by the built-in function input () is a code block.

20 9% 209 (execution frame) o) A AF ATk e 92 DE P S 9 (W Qo] AHSATH

=
£ EPota, 7= B2e) AYo] Bk Fol ojti M o] BA MY S AL F AAA S FHITh

A scope defines the visibility of a name within a block. If a local variable is defined in a block, its scope includes that
block. If the definition occurs in a function block, the scope extends to any blocks contained within the defining one,
unless a contained block introduces a different binding for the name. The scope of names defined in a class block is
limited to the class block; it does not extend to the code blocks of methods — this includes generator expressions since
they are implemented using a function scope. This means that the following will fail:

class A:

a = 42

b = list(a + i for i in range(10))
o] g0l IE 5 Yol A A5 w, b /A S AT ik Az gt Ao A9t IE B o)
T e BE 232 e E5 B4 (environmenr)] 2kal F-E2 T

If a name is bound in a block, it is a local variable of that block. If a name is bound at the module level, it is a global
variable. (The variables of the module code block are local and global.) If a variable is used in a code block but not
defined there, it is a free variable.

When a name is not found at all, a NameError exception is raised. If the name refers to a local variable that has not
been bound, a UnboundLocalError exception is raised. UnboundLocalError is a subclass of NameError.

41

The Python Language Reference, & A| H{%& 2.7.18

The following constructs bind names: formal parameters to functions, i mport statements, class and function definitions
(these bind the class or function name in the defining block), and targets that are identifiers if occurring in an assignment,
for loop header, in the second position of an except clause header or after as in a with statement. The import
statement of the form from ... import * binds all names defined in the imported module, except those beginning
with an underscore. This form may only be used at the module level.

A target occurring in a del statement is also considered bound for this purpose (though the actual semantics are to
unbind the name). It is illegal to unbind a name that is referenced by an enclosing scope; the compiler will report a
SyntaxError.

@49

i

el 4 Ao wEe] AHE B Rl 5L 5 9L, 2E 5
oy
-

If a name binding operation occurs anywhere within a code block, all uses of the name within the block are treated as
references to the current block. This can lead to errors when a name is used within a block before it is bound. This rule is
subtle. Python lacks declarations and allows name binding operations to occur anywhere within a code block. The local
variables of a code block can be determined by scanning the entire text of the block for name binding operations.

If the global statement occurs within a block, all uses of the name specified in the statement refer to the binding of that
name in the top-level namespace. Names are resolved in the top-level namespace by searching the global namespace,
i.e. the namespace of the module containing the code block, and the builtins namespace, the namespace of the module
_ _builtin__ . The global namespace is searched first. If the name is not found there, the builtins namespace is
searched. The global statement must precede all uses of the name.

The builtins namespace associated with the execution of a code block is actually found by looking up the name
__builtins___ in its global namespace; this should be a dictionary or a module (in the latter case the module’s dic-
tionary is used). By default, when in the __main__module, __builtins__ isthe built-in module __builtin_
(note: no (s)); when in any other module, __builtins__ isan alias for the dictionary of the __builtin__ module
itself. __builtins__ can be set to a user-created dictionary to create a weak form of restricted execution.

CPython implementation detail: Users should not touch _ _builtins__; it is strictly an implementation detail.
Users wanting to override values in the builtins namespace should import the __builtin__ (no (s)) module and
modify its attributes appropriately.

BEoolg e EEAF dXES) A5 o IStk 2THEY WA RES FAF__main

ojzta £drh.

global & Z-& E59 o5 2 A 22 2725 zheth At W9 39 718 7H7kol A 28 A=
A3z 7 global 2 AT, I A e dgos HFAn

A class definition is an executable statement that may use and define names. These references follow the normal rules for
name resolution. The namespace of the class definition becomes the attribute dictionary of the class. Names defined at
the class scope are not visible in methods.

411 S5 75500 A5 EE
There are several cases where Python statements are illegal when used in conjunction with nested scopes that contain free
variables.

If a variable is referenced in an enclosing scope, it is illegal to delete the name. An error will be reported at compile time.

If the wild card form of import — import * —isused in a function and the function contains or is a nested block with
free variables, the compiler will raise a SyntaxError.

If exec is used in a function and the function contains or is a nested block with free variables, the compiler will raise
a SyntaxError unless the exec explicitly specifies the local namespace for the exec. (In other words, exec ob]j
would be illegal, but exec ob7j in ns would be legal.)

>

42 Chapter 4. 4!

o2
1]
B

The Python Language Reference, £ A| H{%& 2.7.18

The eval (), execfile (), and input () functions and the exec statement do not have access to the full environ-
ment for resolving names. Names may be resolved in the local and global namespaces of the caller. Free variables are not
resolved in the nearest enclosing namespace, but in the global namespace.! The exec statement and the eval () and
execfile () functions have optional arguments to override the global and local namespace. If only one namespace is
specified, it is used for both.

4.2 o2

o 9] = ofl 2 1} o £] A < %ﬂﬂlﬁ}ﬂﬁ’éﬂ FE E59 IutA < Ao 35S M= ot o7t
A A oA S8 S %_‘ AN (raised); 2|2 T = BFo|u A4 §2 A2 ofjgjrp A% 1=
E5S 2ol IE EFAA o= A=E + Aok

=
spol A ZEH= AW AT AH0SE U+=2A 22 ZAT W & dott sfold =2 1902
= AHEEA HAIH SR A E doF 5 QT oY A7) = try - except £ E A A HTE
Yl A finally = 7§E](cleanup) T E AA s bl AL =, oo & A gste Ze] oty et
oﬂ,\i oﬂﬂ 7], 131-/\ ‘[. _j_r";];(] 7] A]E@%r/}'

Fpo] W2 ol 2] A 2jol (%2 (termination)) 2 W5 AH-&3He; ol 9] A 2] 7] 7F 7 7 E A 3= A
v G A o A A3 S ﬂ]*é?t AA R ol 2o A A AT Fo] Ao A= =
(EAIY 2= 27bg AS5E A AIFA 7] E A2 o9 .

‘When an exception is not handled at all, the interpreter terminates execution of the program, or returns to its interactive
main loop. In either case, it prints a stack backtrace, except when the exception is SystemExit.

SERR= ?li?jéi—?— Ht} except AL AAE A0 Ze|ro wel AR E T AAE A FEAL)
a7 Ho]lx e aE 7he] A of gt °V\Edit WEH 72T 5 o) A 20 thek F714 <

PEEE S BNy

Exceptions can also be identified by strings, in which case the except clause is selected by object identity. An arbitrary
value can be raised along with the identifying string which can be passed to the handler.

Z31: Messages to exceptions are not part of the Python APIL. Their contents may change from one version of Python
to the next without warning and should not be relied on by code which will run under multiple versions of the interpreter.

AN ry & oA try 8, raise & NA] raise £ thdt A o] Al-FH T}

Vo] @Al o] AdE 2ol dH e REL REO AR L & AR ollE S48 gFgt7] Wl Eolch

4.2. o2 43

The Python Language Reference, & A| H{%& 2.7.18

44

Chapter 4.

CHAPTER D

H
ol
s

o] & sho] el A A}

8 59 A 0179} olol A= FA N &,
AHg T B o) T 2L BHE AL,

ofo

name .= othername

L= (semantics) 2 A ¢ o, o] B2 name 9] 552 othername & Z T}

5.1 &= tH

rioe

When a description of an arithmetic operator below uses the phrase (the numeric arguments are converted to a common
type,) the arguments are coerced using the coercion rules listed at Coercion rules. If both arguments are standard numeric
types, the following coercions are applied:

s A RJAATF RAFE O St BEarr AT

o 23 A AL, o= F ARV AL, T St AR gy

* otherwise, if either argument is a long integer, the other is converted to long integer;
* otherwise, both must be plain integers and no conversion is necessary.

Some additional rules apply for certain operators (e.g., a string left argument to the (%) operator). Extensions can define
their own coercions.

45

The Python Language Reference, & A| H{%& 2.7.18

5.2 O}& (Atoms)

Atoms are the most basic elements of expressions. The simplest atoms are identifiers or literals. Forms enclosed in reverse
quotes or in parentheses, brackets or braces are also categorized syntactically as atoms. The syntax for atoms is:

atom = identifier | literal | enclosure

enclosure = parenth_form | list_display
| generator_expression | dict_display | set_display
| string_conversion | yield_atom

5.2.1 A]Ex} (0|F)

oM O = SABE AMAL o] Zolth, T8 B4l B AL A A 7|9 = AL, o B3 A de] et
T A= ol A4 (binding) AAE B H Hh

o5 o] AA e AZE o}, o}F2 FEE 73t AA| 7 2tk o] 5ol AAH A %S W, TS 7kl ot
NameError 9|2 7} 4 ojdr}.

5187} ©]% ¥ 417 (private name mangling): 22} 2 2] o] 5435H= A EAAF AL 7 o) ge] WE=
AABL F AL 20149 WE e Bl o, 2 S o0l WS o) private name) 0.2 2159
M3 o] B 152 AW AES S0l /] Aol B 7 B2 AFDLh of WIS 1 o) T Pl Feh
L e, el o BO A o] L REWEE AAT ¥, shfel e e 2AUT 98 Sol,

Ham o] 2h= o] 58] Sef2ol A-A_ spam o] T748HH, _Ham_ spam &2 WL o] e A 217}
A E A ol FAStch M o] Fo] FTA o g AW (2554 T 4 W), T o] o gk et
W77 AT 5 Tk Fels o ol WE R 2 o] gow, MEe Ao ihx] Pth

5.2.2 2|E{™ (Literals)

Python supports string literals and various numeric literals:

literal = stringliteral | integer | longinteger
| floatnumber | imagnumber

Evaluation of a literal yields an object of the given type (string, integer, long integer, floating point number, complex
number) with the given value. The value may be approximated in the case of floating point and imaginary (complex)
literals. See section 2] E] & for details.

RE HEYS 20 volE o B8] wEol, AA 9 ololMEIElE @t BT} @ S ok TS 3k
QEW\E:[L-g].tt](_LE:/_EH BAE g%z oﬂ 01741,]_1;].5 zL/\oﬂ olouﬂ)ﬂg

z_JI = Tl ‘/]
9, Ze 3o e AAE 22 4= ek

46 Chapter 5

:
1z

—_

The Python Language Reference, £ A| H{%& 2.7.18

523 L5 Qlol| 22 &

23 Y2 P, B3R AN A s 28 BE5olnh

parenth_form = "(" [expression_list] ")"

BE o] YL BPY 252, Folol A 1 A4 BEo] AEFHE Aol Ark: BFo] Hojw St YEE
ZohE, Fol Btk 18X YoW WA 222 PHR HY @A o] AL}

W23 420 72 AAE et FE2 B/ wwol e EY Ao ALHAT}H(F, FAY W {FE2
2o AN Y $E g1 28A g 5 eh

FEo] 23 o wrEol A= Aol of el % A4bALS] AR wlj Fol et Aol Y sl of gttt o &)= W
R, 25/ B2 — BAL)A BE Gt (§18 (othing)) S AT AL REFL Fua
Ap LA QEFE o] | Al 2 AE FA & A]D}

5.24 2|AE C|AEZG0]
2|2 E faEd o]= 74] F 3 (square brackets) 2 E 2 A 4]0 Lpg] vl o] Y& 5 STh:
list_display = "[" [expression_list | list_comprehension] "1"

expression list_for
"for" target_list "

list_comprehension
list_for

in" old_expression_list [list_iter]

old_expression_1list = old_expression [("," old _expression)+ [","]]
old_expression = or_test | old_lambda_expr

list_iter = list_for | 1list_1if

list_if = "if" old _expression [list_iter]

A list display yields a new list object. Its contents are specified by providing either a list of expressions or a list compre-
hension. When a comma-separated list of expressions is supplied, its elements are evaluated from left to right and placed
into the list object in that order. When a list comprehension is supplied, it consists of a single expression followed by
at least one for clause and zero or more for or if clauses. In this case, the elements of the new list are those that
would be produced by considering each of the for or if clauses a block, nesting from left to right, and evaluating the
expression to produce a list element each time the innermost block is reached’.

5.2.5 Displays for sets and dictionaries

For constructing a set or a dictionary Python provides special syntax called (displays), each of them in two flavors:
- AFole] Y §S WA Ao It A,
« 4] Fxo A AN ES Sl ALdE e, H= A (comprehension) ©] 23l & W T}

AzAie] 35 #8452 o Rtk

comprehension = expression comp_for

comp_for = "for" target_1list "in" or_test [comp_iter]
comp_iter = comp_for | comp_1if

comp_if = "if" expression_nocond [comp_iter]

! In Python 2.3 and later releases, a list comprehension (leaks) the control variables of each for it contains into the containing scope. However,
this behavior is deprecated, and relying on it will not work in Python 3.

5.2. O}& (Atoms) 47

The Python Language Reference, & A| H{%& 2.7.18

ekl
Atk o] A9, A ABo] 0] 2458 7t for i i o] 94BN LEZoR FUY EZL o R1
ol A= EFONA 24 e 7oA weold Asolth

Note that the comprehension is executed in a separate scope, so names assigned to in the target list don’t (leak) in the
enclosing scope.

A=
74
;g—

5.2.6 AM|L1{2|0|E{ ET4! (Generator expressions)

Aoy @42 2oz A 2 e A ol H 7] o]t

generator_expression = "(" expression comp_for ")"

Avelole EALe A A ole AXE NED BHe AN BT FTE)4 BB 2 SR
R E DEREESL EE RS

Variables used in the generator expression are evaluated lazily when the __next__ () method is called for generator
object (in the same fashion as normal generators). However, the leftmost for clause is immediately evaluated, so that
an error produced by it can be seen before any other possible error in the code that handles the generator expression.
Subsequent for clauses cannot be evaluated immediately since they may depend on the previous for loop. For example:
(x*v for x in range(10) for y in bar(x)).

rr

The parentheses can be omitted on calls with only one argument. See section & = for the detail.

5.2.7 ElMUHz2| C|AZ Y| 0]

gx e taZd ol $23F (curly braces) 2 E 2] %9 7]/t o E] 2] U4 old] vlo] YL 5 Ut}

dict_display = "{" [key_ datum 1list | dict_comprehension] "}"
key_datum_list = key_datum ("," key_datum)* [","]
key_datum = expression ":" expression

dict_comprehension = expression ":" expression comp_for

gAY aEdols A 94 A BE,
AR Fel9 A/u o) e Aol AR} Fold ul, 1AELS Q%o
A= Se Aela): 77 A DAl

2504 2L 715 olel M AR 4 Arhe £A8, 2719 H% 9 ke vpx shel Fol7 Aol Hr}
gAUe Az, e 2= Qg g Aol thulsi A, ARAQ (for) 9 (if) A Fol TEOE

o

B o] 1} 2]
2e)9 ol A4S Bew @k guade] AW u, BEol AL A% gt 84Tl BEoIAE
S EER=PISEE 1o
Z15ke) Woll ek Al oL o] A E2 3 A5 o) A s
BE A ARGl AYHh) FHE 7]] FEL P
TR Yagdole A4 2%

¢

A

»

~

48 Chapter 5.

H
re
4

The Python Language Reference, £ A| H{%& 2.7.18

5.2.8 Mg ClaE0]

A dasdels
Hagdelgt 2

set_display :i= "{" (expression_list | comprehension) "}"

A dasdgele A 7hd JF AAE e, 2 W2 3G A Y AL Moz 2
HArz Hed 53 BE2o) 22 0, 1 845
Hafj Xk Fzedde] AlsE o, 2 F

AT {1} ez wEold 5 it ol FlEE e A

5.2.9 String conversions

A string conversion is an expression list enclosed in reverse (a.k.a. backward) quotes:

wrn

string_conversion = expression_list " "

A string conversion evaluates the contained expression list and converts the resulting object into a string according to rules
specific to its type.

If the object is a string, a number, None, or a tuple, list or dictionary containing only objects whose type is one of these,
the resulting string is a valid Python expression which can be passed to the built-in function eval () toyield an expression
with the same value (or an approximation, if floating point numbers are involved).

(In particular, converting a string adds quotes around it and converts ¢ funny) characters to escape sequences that are
safe to print.)

Recursive objects (for example, lists or dictionaries that contain a reference to themselves, directly or indirectly) use . . .
to indicate a recursive reference, and the result cannot be passed to eval () to get an equal value (SyntaxError will
be raised instead).

The built-in function repr () performs exactly the same conversion in its argument as enclosing it in parentheses and
reverse quotes does. The built-in function st r () performs a similar but more user-friendly conversion.

5.2.10 2= HE & Al (Yield expressions)

yield_atom "(" yield expression ")"

yield_expression = "yield" [expression_list]
WA 2.5 7}

The yield expression is only used when defining a generator function, and can only be used in the body of a function
definition. Using a yield expression in a function definition is sufficient to cause that definition to create a generator
function instead of a normal function.

When a generator function is called, it returns an iterator known as a generator. That generator then controls the execution
of a generator function. The execution starts when one of the generator’s methods is called. At that time, the execution
proceeds to the first yield expression, where it is suspended again, returning the value of expression_1list to
generator’s caller. By suspended we mean that all local state is retained, including the current bindings of local variables,
the instruction pointer, and the internal evaluation stack. When the execution is resumed by calling one of the generator’
s methods, the function can proceed exactly as if the yie1d expression was just another external call. The value of the

5.2. O} (Atoms) 49

The Python Language Reference, & A| H{%& 2.7.18

yield expression after resuming depends on the method which resumed the execution.

All of this makes generator functions quite similar to coroutines; they yield multiple times, they have more than one entry
point and their execution can be suspended. The only difference is that a generator function cannot control where should
the execution continue after it yields; the control is always transferred to the generator’s caller.

M|LA20|E{-O|E{3| O] & TIM =

o] HEAA L Al H o]l oo MA=ES A ateh A d o] e F4e] AE Aof skt A5
% gk,

A eolg 7t ojn] A3 FA off ofgfo]] o= wMINESS & ValueError 99 & 427 = Ao

Fojafof aict.

generator.next ()
Starts the execution of a generator function or resumes it at the last executed yield expression. When a gener-
ator function is resumed with a next () method, the current yield expression always evaluates to None. The
execution then continues to the next yie 1d expression, where the generator is suspended again, and the value of
the expression_1list isreturned to next ()) s caller. If the generator exits without yielding another value,
a StopIteration exception is raised.

=

generator.send (value)
Resumes the execution and (sends) a value into the generator function. The value argument becomes the result
of the current yield expression. The send () method returns the next value yielded by the generator, or raises
StopIteration if the generator exits without yielding another value. When send () is called to start the
generator, it must be called with None as the argument, because there is no yield expression that could receive
the value.

generator.throw (type[, value[, traceback]])
Raises an exception of type t ype at the point where generator was paused, and returns the next value yielded by
the generator function. If the generator exits without yielding another value, a StopIteration exception is
raised. If the generator function does not catch the passed-in exception, or raises a different exception, then that
exception propagates to the caller.

generator.close ()
Raises a GeneratorExit at the point where the generator function was paused. If the generator function then
raises StopIteration (by exiting normally, or due to already being closed) or GeneratorExit (by not
catching the exception), close returns to its caller. If the generator yields a value, a Runt imeError is raised. If
the generator raises any other exception, it is propagated to the caller. close () does nothing if the generator has
already exited due to an exception or normal exit.

of 7]ofl Al el ol Bl e} A el ol B o] F2he Ald sk et ol 7k ok

>>> def echo (value=None) :

print "Execution starts when 'next ()' is called for the first time."
try:
while True:
try:
value = (yield value)
except Exception, e:
value = e
finally:
print "Don't forget to clean up when 'close()' is called."
>>> generator = echo (1)
>>> print generator.next ()
Execution starts when 'next()' is called for the first time.

(TH& STl Aol A1)

50 Chapter 5.

H
re
4

The Python Language Reference, £ A| H{%& 2.7.18

(o] A sl o] A A M A%)

1

>>> print generator.next ()

None

>>> print generator.send(2)

2

>>> generator.throw (TypeError, "spam")

TypeError ('spam',)

>>> generator.close ()

Don't forget to clean up when 'close()' is called.

o W)

PEP 342 - A8 Ao E1 S 58 7Y Aol 5o APISL 2 AASA, 2ehe RUO 2 AHE
g5 =S B AL

5.3 Z=zlo|oqz|

mefolm el dlofol A 7bg oA BFTH: AN etk 2L ol gtk

primary = atom | attributeref | subscription | slicing | call

o] EZ|FHE Fx+ vH 3 (period) £} o] F©] F ol & Zeto]m gt}

attributeref = primary "." identifier

The primary must evaluate to an object of a type that supports attribute references, e.g., a module, list, or an instance. This
object is then asked to produce the attribute whose name is the identifier. If this attribute is not available, the exception
AttributeErrorisraised. Otherwise, the type and value of the object produced is determined by the object. Multiple
evaluations of the same attribute reference may yield different objects.

5.3.2 MEA3E M (Subscriptions)

Auaagde A2 @AY, FE P2t ig (B4 e) 449 352 Ak

subscription = primary "[" expression_list "]"

The primary must evaluate to an object of a sequence or mapping type.

zejolme sl oW, BRA BEL e 7L Wl v1B e 7] F sr Hojof B =
wl oA L 7)ol th el e AT (R B2 H ol ohie] FHE AAE ASWE A
2ol

If the primary is a sequence, the expression list must evaluate to a plain integer. If this value is negative, the length of the
sequence is added to it (so that, e.g., x [-1] selects the last item of x.) The resulting value must be a nonnegative integer
less than the number of items in the sequence, and the subscription selects the item whose index is that value (counting
from zero).

5.3. Zzjo|oqz| 51

https://www.python.org/dev/peps/pep-0342

The Python Language Reference, & A| H{%& 2.7.18

244

Eabeh BAE M we dlol8 G o) oby 1, Shite] xbere /b BAdolth

rlo

o
ot

=
=

5.3.3 &2}0|4!(Slicings)

EAVIE AT A (S Sol RAYRE ol 22 o) oA YA BEEG AU Gohlye
F@4 0k 9] e olt del Fol A 4 ek et 49 B2 o deh:
slicing = simple_slicing | extended_slicing
simple_slicing = primary "[" short_slice "]"
extended_slicing = primary "[" slice_list "]"
slice_1list = slice_item ("," slice_item)* [","]
slice_item = expression | proper_slice | ellipsis
proper_slice = short_slice | long_slice
short_slice = [lower_bound] ":" [upper_bound]
long_slice = short_slice ":" [stride]
lower_bound = expression
upper_bound = expression
stride = expression
ellipsis = oo

There is ambiguity in the formal syntax here: anything that looks like an expression list also looks like a slice list, so any
subscription can be interpreted as a slicing. Rather than further complicating the syntax, this is disambiguated by defining
that in this case the interpretation as a subscription takes priority over the interpretation as a slicing (this is the case if
the slice list contains no proper slice nor ellipses). Similarly, when the slice list has exactly one short slice and no trailing
comma, the interpretation as a simple slicing takes priority over that as an extended slicing.

The semantics for a simple slicing are as follows. The primary must evaluate to a sequence object. The lower and upper
bound expressions, if present, must evaluate to plain integers; defaults are zero and the sys.maxint, respectively. If
either bound is negative, the sequence’s length is added to it. The slicing now selects all items with index k such that i
<= k < j whereiand j are the specified lower and upper bounds. This may be an empty sequence. It is not an error
if i or j lie outside the range of valid indexes (such items don’t exist so they aren’t selected).

The semantics for an extended slicing are as follows. The primary must evaluate to a mapping object, and it is indexed
with a key that is constructed from the slice list, as follows. If the slice list contains at least one comma, the key is a tuple
containing the conversion of the slice items; otherwise, the conversion of the lone slice item is the key. The conversion
of a slice item that is an expression is that expression. The conversion of an ellipsis slice item is the built-in E11ipsis
object. The conversion of a proper slice is a slice object (see section 3 <=3 7] %) whose start, stop and step
attributes are the values of the expressions given as lower bound, upper bound and stride, respectively, substituting None
for missing expressions.

o2t 5o B2 o7 &3}

rr

s AAl s S, d e =

call = primary " (" [argument_list [","]
| expression genexpr_for] ")"
positional_arguments ["," keyword_arguments]

argument_list

[v, "™ "xn expression] (", " keyword_arguments]
[n," Wk xn eprGSSiOUJ

| keyword_ arguments ["," "*" expression]

[

", "ERN expression]

52 Chapter 5. T3 A

The Python Language Reference, £ A| H{%& 2.7.18

| "*" expression ["," keyword arguments] ["," "*x"
| "**" expression

positional_arguments = expression ("," expression)*

keyword_arguments n= keyword item ("," keyword item)*

keyword_item = identifier "=" expression

A trailing comma may be present after the positional and keyword arguments but does not affect the semantics.

The primary must evaluate to a callable object (user-defined functions, built-in functions, methods of built-in objects, class
objects, methods of class instances, and certain class instances themselves are callable; extensions may define additional
callable object types). All argument expressions are evaluated before the call is attempted. Please refer to section $H<~
7] for the syntax of formal parameter lists.

ARE Axslow, uA eI 2ol AA A AR WA G4 et g AAAA g
£559] 85 0] Dol N 2] 92 kgl Stk A& N) Lol Btk 2ckg, 4 719
QUAjukcy, A A} oS 5k & E-2 A S o] ALBHTH(A AT A WA B4 siebulE o] o] B3 e,
A 0A) S Fe gL, oA A 08 AL GTH. TFol o] u] YA S W, TypeError 919§ Uo7k,
297 ot 1 9119 e 2o A9 Yo} (& A4 o] None Sl UATE, S5 A0 . nE
AR AelH g wl, ob] APAA e SEES P4 AR HE eE S ARGEE A
1RGS-S o7l Ao D of 3 Ak ke pat) e, wewwmﬂa e AR S 7 e
AW g SR ARG AR B BE 2ol A FHAT BE o AL Fsof & Lot
wel /)8 gro] 2| 4 A 9L, op A o1 9E < el dolth e, Typerrror 4 7F BA T 219
eg_wﬂ A2 ERe] BRo| 522} U BRow AgHT.

£ 917 shetolE} o §2 A g, A4 £ 3tel 240w o
2 2 A% 4 9Tk CPython o A, AR-EL 74
£ A gsEC $AR BBl o A ST

F O

=

F

2o A SE s, AY9Es

o] &
7] 9138 PyArg_ParseTuple ()

_9L u]m

§ 4 S e SRR R 94 AR4So] YO, *identifior BUL AHE3HE §4 shebu e 7k 914
k2 & TypeError Q& do7ith; o] A%, 72 34 et dE YA AAEL 2T FZ S
Aeher) (Ex e 94 AAE0 god ¥ F2).

719 E AA7F P A st B o] 5ol S8R 9o, **identifier &

H
H
FEEE EE T

AA L 3t TypeError & do 7t} 9 i e
gAY, Fe A A7 AR gl R’ (A 9y el E dgibetth

If the syntax *expression appears in the function call, expression must evaluate to an iterable. Elements from

this iterable are treated as if they were additional positional arguments; if there are positional arguments x/, -+, xN, and
expression evaluates to a sequence y/, ‘-, yM, this is equivalent to a call with M+N positional arguments x/, --+, xN,
y])ty Y M.

A consequence of this is that although the *expression syntax may appear after some keyword arguments, it is
processed before the keyword arguments (and the * *expression argument, if any — see below). So:

>>> def f(a, b):
print a, b

>>> f(b=1, *(2,))
2 1
>>> f(a=1, *(2,))
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: f£() got multiple values for keyword argument 'a'
>>> f£(1, *(2,))
12

expression]

22 T EA 7| Y= SR} *expression B HE EF AFESE A2 dubE o] z] ¢Frl w2of], AAZ =
8 Egho] dojitA] k=1

5.3. Zzjo|oqz| 53

The Python Language Reference, & A| H{%& 2.7.18

If the syntax * *expression appears in the function call, expression must evaluate to a mapping, the contents of
which are treated as additional keyword arguments. In the case of a keyword appearing in both expression and as an
explicit keyword argument, a TypeError exception is raised.

Formal parameters using the syntax *identifier or **identifier cannot be used as positional argument slots
or as keyword argument names. Formal parameters using the syntax (sublist) cannot be used as keyword argument
names; the outermost sublist corresponds to a single unnamed argument slot, and the argument value is assigned to the
sublist using the usual tuple assignment rules after all other parameter processing is done.

BEL 9% Qo)A obe B, A oW % EelETh None d 4 YUth o] gro] oA Ak A=
28 Ao Pof Lok

Q
Q
e~
|
=
>
rt
i
o
1o
:.OLL
)
&
>
]
ko
X
rlr
[
=
>
[t
N
fofs
i
i
rlr

a9 A% B QG ANARTEE FoA AgTh A L ES B

rlr
e
o

power = primary ["**" u_expr]

TN, B 9 AFAEH L F AR D204, DAL L BRI A A% 0% gho] Tol AT}
(o] Z0] 3] A aabe] ghe okt ©A 2 A SFShE A2 ohith: ~1x%2 & -1 o] ik,

The power operator has the same semantics as the built-in pow () function, when called with two arguments: it yields
its left argument raised to the power of its right argument. The numeric arguments are first converted to a common type.
The result type is that of the arguments after coercion.

With mixed operand types, the coercion rules for binary arithmetic operators apply. For int and long int operands, the
result has the same type as the operands (after coercion) unless the second argument is negative; in that case, all arguments
are converted to float and a float result is delivered. For example, 1 0* *2 returns 100, but 10* *—2 returns 0. 01. (This
last feature was added in Python 2.2. In Python 2.1 and before, if both arguments were of integer types and the second
argument was negative, an exception was raised).

Raising 0. O to a negative power results in a ZeroDivisionError. Raising a negative number to a fractional power
results ina ValueError.

54 Chapter 5.

H
re
4

The Python Language Reference, £ A| H{%& 2.7.18

u_expr = power | "-" u_expr | "+" u_expr | "~" u_expr

(¢

2 % - (o] v) AaRbE 2 57} AR 29 e E .
QG+ (Fel2) AU T2 AR g A flo] ok

The unary ~ (invert) operator yields the bitwise inversion of its plain or long integer argument. The bitwise inversion of
x is defined as — (x+1) . It only applies to integral numbers.

A A A% BT, A7k S1HE HE 2A GHETHE, TypeBrror o 917H B 3T

o1 41 AAAE B A SAEE 2T o) D4R F ARE Q8w 57 Fol = A g o 399 of
At ARAE AAHE WA, 24 74 22w e, s 848 Aarselw, ks 49
Q45 o]}

m_expr = u_expr | m_expr "*" u_expr | m_expr "//" u_expr | m_expr "/" u_expr
| m _expr "$%" u_expr
a_expr = m_expr | a_expr "+" m expr | a_expr "-" m _expr

The * (multiplication) operator yields the product of its arguments. The arguments must either both be numbers, or
one argument must be an integer (plain or long) and the other must be a sequence. In the former case, the numbers are
converted to a common type and then multiplied together. In the latter case, sequence repetition is performed; a negative
repetition factor yields an empty sequence.

The / (division) and // (floor division) operators yield the quotient of their arguments. The numeric arguments are
first converted to a common type. Plain or long integer division yields an integer of the same type; the result is that of
mathematical division with the (floor) function applied to the result. Division by zero raises the ZeroDivisionError
exception.

a o
o= WA B AX7} 00 W zerobivisionError 9 & O Th AXELS A%7 2 4 9,
oAE £0],3.14%0.7 = 0.34 2} 2T} (3.14 7} 4*0.7 + 0.34 2} ZoBR) RER A= FA4 F
WA 5] ANRsE 2o BB E 2 A0S Foh(E 00l th: A3ke] AU T WA W Axbate] Aeighact
ey

The integer division and modulo operators are connected by the following identity: x == (x/y)*y + (x%y). In-
teger division and modulo are also connected with the built-in function divmod () : divmod (x, y) == (x/y,

x%vy) . These identities don’t hold for floating point numbers; there similar identities hold approximately where x /v is
replaced by floor (x/y) or floor (x/y) - 13,

In addition to performing the modulo operation on numbers, the % operator is also overloaded by string and unicode

2abs (x8y) < abs(y) ©] $8A 02 Fo| A, floate] 9ol 454 A (roundoff) W Foll 432 0.2 Fo] obd 4 Ytk
o £ £ 0], 30| 4 float 7} EEE 754 W &= 2 AFQl Z2REFS 7D, -1e-100 % 1e100 7}1el00 9} 22 £E5 744 7] 3l A4kd
AT}= -1e-100 + 1e100 9t $HH O 2= 1100 7 A 28] 2L kol Th. F4 math. fmod () = 257} 3 WA] AlAbe] B o]
327 Arhg F7) W #ol, o] A9 -1e-100 & B Zh olw Aol B AAAA L S& Z I 2 k.

31If x is very close to an exact integer multiple of v, it’s possible for f1oor (x/y) to be one larger than (x-x%y) /y due to rounding. In such
cases, Python returns the latter result, in order to preserve that divmod (x,y) [0] * y + x % y be very close to x.

5.6. O|g &b= AL 55

The Python Language Reference, & A| H{%& 2.7.18

objects to perform string formatting (also known as interpolation). The syntax for string formatting is described in the
Python Library Reference, section string-formatting.

¥ A 2.3 5 €] H | : The floor division operator, the modulo operator, and the divmod () function are no longer defined
for complex numbers. Instead, convert to a floating point number using the abs () function if appropriate.

The + (addition) operator yields the sum of its arguments. The arguments must either both be numbers or both sequences
of the same type. In the former case, the numbers are converted to a common type and then added together. In the latter
case, the sequences are concatenated.

- (7)) AAbE 2 AAEY AE Eoh A QA2 A TP o M

5.7 A|ZE Q1L
NZE QAL e AR FE S M9 S Zeh
shift_expr = a_expr | shift_expr ("<<" | ">>") a_expr

These operators accept plain or long integers as arguments. The arguments are converted to a common type. They shift
the first argument to the left or right by the number of bits given by the second argument.

A right shift by n bits is defined as division by pow (2, n). A left shift by » bits is defined as multiplication with
pow (2, n). Negative shift counts raise a ValueError exception.

F3: A FAANA, 95 H AR H) sys.maxsize A Aol LT A} $3 AT sys . maxsize
Bt} 39 overflowError o 2] 7} WA) glrt.

5.8 O|&t H|IE Qi4t

Al 7S] HIE A4k 27 e A E Rt
and_expr = shift_expr | and_expr "&" shift_expr
XOr_expr = and_expr | xor_expr """ and_expr
or_expr = xor_expr | or_expr "|" xor_expr

The & operator yields the bitwise AND of its arguments, which must be plain or long integers. The arguments are
converted to a common type.

The ~ operator yields the bitwise XOR (exclusive OR) of its arguments, which must be plain or long integers. The
arguments are converted to a common type.

The | operator yields the bitwise (inclusive) OR of its arguments, which must be plain or long integers. The arguments
are converted to a common type.

56 Chapter 5.

H
re
4

The Python Language Reference, £ A| H{%& 2.7.18

5.9 H|1
Cel= 2, gho] Ao A BE v AL 22 AR %%%Eﬂ b, A2 YL U E At) B3
Cel=28,a < b < c & 22 FH o] £ oA} -2 4] OH“QDP

comparison = or_expr (comp_operator or_expr)*

Comp operator ::= "<" | ">" | n__mn ‘ ">=" | "<=" | "<>" ‘ mw !="

- | "is" ["not"] I ["not"] "in"

Hl2E =87t &0} True E=False

WIE AGEA AEE 5 ATk 8 Sol,x <y <= zEx <y and y <= z S FFAH, Aol By
o 32 LA SRS Aot (BHA W F A BT x < y7F AR O™ z 9 Fh2 F3HA] Sd=Th).
HAAORF a,b,c, -, y,z7F EAA O, opl, 0p2, -+, 0opN 7} 8] 2l AAAFH, 2 opl b op2 ¢ ... y opN
z=ZtESAY HS H) 3 AN Eoltt= A S AYdllE=a opl b and b op2 ¢ and ... y opN
z & 553t

a opl b op2 c7baSbe o] oW ERe) M AE FAGA 7] W Eol, A E Sol,x < y > 2 0] A5}
A (vt o) mA] = 9 E 2h) Suh2The Aol Fo) ol of Ft.

The forms <> and ! = are equivalent; for consistency with C, ! = is preferred; where ! = is mentioned below <> is also
accepted. The <> spelling is considered obsolescent.

5.9.1 gt d|n

AR <, >, ==, >=, <=, 1= F AA Y g2 vt AAEo]l 2L L 2+ Ytk

AA, gk B A2 AA =] (B4 ot E ol Hall) ghe Zerhar Tatal glnk shoj oA A A o g
= FFAA MG th: A E S0, AA Y] ol h +HAY (canomcal) HA 2~ g 2 it gk A A <]
fro] SEE FA (& S0, ZE]Ei olERER ?—"*QL %“35101 of gtk R F AT
ITh vl A= AA 9 gho]l FAAA o e ST FF/2| 7Hd otk AR S g2 v E Bl
A2 Bojsrta Yz = Frt

Types can customize their comparison behavior by implementing a__cmp__ () method or rich comparison methods
like 1t (),described in 7] 2 o] # A~ E|ulo] A o] A

S HIA (== 1=) o 7|2 FA2 AA Y ofoldlE o 7Rk ok L

AxE s 7He] F5 H] é‘%% T, e olo|dEH & Zte 2" 1Y FF Hliae thEe £ 9]
7 B2 B ¥ tx == y 2 GABH o= F WETA B

27,

The default order comparison (<, >, <=, and >=) gives a consistent but arbitrary order.

2

i fa]

A 7} REAHA (reflexive) (5, x is y

(This unusual definition of comparison was used to simplify the definition of operations like sorting and the in and not
1in operators. In the future, the comparison rules for objects of different types are likely to change.)

£ ololHEEE 2t A2 AT0] G4 A2 bk, /8 55 Wad] SaL, AA 9 gkt g 719
5gol g el 4ol8 /0 g5 0l WRE s A%E A B9 4 vk 19 @5 L A9 M
5742 AxE o= ¥ Ba sk 93, A B gy el 18 sk gk,

o Y& 5=AF & ((typesnumeric)) 3} %5 2to] B #]8] § fractions.Fraction ¥} decimal.Decimal
o S5 2AELS, o) oo R E A NehA SH=ThE Ao AR e W, 2 OhE W E
7o))7} s a AR A5 B dolH, AUEe] w4 glo] sAe R (FueE Aew)
Suhe A W,

5.9. Hlu 57

The Python Language Reference, & A| H{%& 2.7.18

* Strings (instances of str or unicode) compare lexicographically using the numeric equivalents (the result of
the built-in function ord ()) of their characters.* When comparing an 8-bit string and a Unicode string, the 8-bit
string is converted to Unicode. If the conversion fails, the strings are considered unequal.

* Instances of tuple or 1ist can be compared only within each of their types. Equality comparison across these
types results in unequality, and ordering comparison across these types gives an arbitrary order.

These sequences compare lexicographically using comparison of corresponding elements, whereby reflexivity of
the elements is enforced.

In enforcing reflexivity of elements, the comparison of collections assumes that for a collection element x, x ==
x is always true. Based on that assumption, element identity is compared first, and element comparison is per-
formed only for distinct elements. This approach yields the same result as a strict element comparison would,
if the compared elements are reflexive. For non-reflexive elements, the result is different than for strict element
comparison.

W4 Aeasel A el W the s 2o) o fol itk
e Ao 2ohT vl R 7 Qe E, 2 Fol T, Aol 7t 21, Y ohE 24

-= 59] 7} Aol
2oha W olo AT (A2 Sol, [1,2) = (1,2) £ ARAE], Fol Bh27] w2 o]th,

— Collections are ordered the same as their first unequal elements (for example, cmp ([1,2,x]1, [1,2,
y 1) returns the same as cmp (x, y)). If a corresponding element does not exist, the shorter collection is
ordered first (for example, [1,2] < [1,2,3] is true).

e M|FE (dict o] A2EAE) 2 T2 (key, value) BSS 71 wl], 18|31 27 o] ¢t iy v w)
719} zhel T5 Hla= WAMA S A o)

Outcomes other than equality are resolved consistently, but are not otherwise defined.’

¢ Most other objects of built-in types compare unequal unless they are the same object; the choice whether one
object is considered smaller or larger than another one is made arbitrarily but consistently within one execution of
a program.

Wl SRS AR vlo| 2ot AL A A FUASL AFesiThe B X di4 722 E490 oF Bk
« 55 W WAL (reflexive) o] o] oF BT, THE B2 EASY, ool HE|E] 7} 22 AR 2o Wl
ksl

ja=
is yHx == y T}
+ tl A & (symmetric) 0] o] oF Sttt T2 HE A, of2 3 T2 2342 e AAE Fojof

i of
2 df
e

X

3
SLH

x == y &y == x
x 1=y&y I=x
x < y2y > x
x <= yoy >= x
* H 3L & 5 o] A (transitive) o] o] oF o}, th (B A 814 ¢-2) ol 0] o] A& o5 Trh:

fHUIE BFLS I ZAE (code points) (9 5 £ 1, U+0041) £} 524+ £ A} (abstract characters) (o] 5 E°1, (LATIN CAPITAL LETTER
A))E TRITE FURSA Sl PR 24 RS0l 24 Shipe] = ZAEWO R RAT A, 2712 S} o o] FE T
AA2g2 289 5 e FAEAEC] Bol itk A& £0], 74 &7 (LATIN CAPITAL LETTER C WITH CEDILLA) += 3= 4]
U+00C7 ol Q= 3t 7| o] B8+ & 2} (precomposed character) & .= $] %] U+0043 (LATIN CAPITAL LETTER C) ©f 1+ 7] & &=} (base
character) 9} Fm2 & 7= 9] %) U+0327 (COMBINING CEDILLA) il 1= A3 &2 (combining character) 2] Al %ii 299 4 ok
The comparison operators on unicode strings compare at the level of Unicode code points. This may be counter-intuitive to humans. For example,
u"\u00C7" == u"\u0043\u0327" is False, even though both strings represent the same abstract character (LATIN CAPITAL LETTER C
WITH CEDILLA) .
TAE S F4 A 2 A e E (5, AFgAl A A #H A MY 2 2), unicodedata.normalize () & AMS3lE)
5 Earlier versions of Python used lexicographic comparison of the sorted (key, value) lists, but this was very expensive for the common case of
comparing for equality. An even earlier version of Python compared dictionaries by identity only, but this caused surprises because people expected to
be able to test a dictionary for emptiness by comparing it to { }.

58 Chapter 5. F 514!

The Python Language Reference, £ A| H{%& 2.7.18

x>y and y > z®¥x > zT}

x<yandy<=z“® x < z T}

e Juat =27 BAo| FHojof et thE wE ¥, oS FHAES0] 2L S Fofof Firt
x == y¬ x !=vy
x < y¬ x >= y(A LA F9)
x > y9not x <= y(A£A9 49
upA e F 2l A2 A A A AEHTH (A E Eol, Ald 2ol A A v g wf g2
32 A ¢th). total_ordering () BlZ# o] g 3t B 7] vpt},

+ hash () AT FEAT QBAL AATCk BTE 2L ANEL 2L NG ZAV A B0 ®

e o oF whek

Python does not enforce these consistency rules.

[($)]

9.2 T ZAF A

Wﬁ

SR in B not in e WMAS A

ZTth x not in s x in s
01312 A A=, 9 ee A¢
dict, collections.deque 2} 22

in y) 2553k
AT utol Ed Yo A9, x in yixrbyo AH 2
th s ey find(x) = 1Tk WAL
o] B, "" in "abc" & True & ¥ &
_Contains () HAEE oot A2 F Fel29 B9, x in y Ey.__contains__(x) 7}
G 20 True &, 29X oW False & S8 &0}

__contains__ () & ;g_,]é—}x] OrA W iter () 2 Aod= ALA AL FeAY A x in vy
SN x == z & WFH3E oE Fhz 7t HEAH True T G35 ol 7 A S in o] 1
Aol E dol Aoz HFHL)

Lastly, the old-style iteration protocol is tried: if a class defines __getitem (), x in vy is True if and only if
there is a non-negative integer index i such that x == y[i], and all lower integer indices do not raise IndexError
exception. (If any other exception is raised, it is as if in raised that exception).

AR} not in& inf =8|A EA o7 HoH}
= T

strmg) AL, 187 23 1 AL True
EEAIEY N AEZYO R HATHT

oo{l [l'ﬂ
O:
o g
rlu

N;

5.9.3 O}O|HIE|E| H|®

The operators i s and is not test for object identity: x is vy is true if and only if x and y are the same object. x is
not vy yields the inverse truth value.®

6 A5 7HH| A -7 (automatlc garbage-collection) 2} 1§ 55 (free lists) ¥} T 2 3§ ¥ (descriptor) o] &2 Q1 A 4 w]Fof], is A4S
AAHA A EE| A4S E S B Lok A7 2L EAB PR A8 ul, Ao 2|0 o] 42 5 A4S AT 5 e F A
HHE 150 BAE s/ sheteh

5.9. Hlu 59

The Python Language Reference, & A| H{%& 2.7.18

5.10 =2| ¢iAH(Boolean operations)

or_test RE and_test | or_test "or" and_test
and_test = not_test | and_test "and" not_test
not_test = comparison | "not" not_test

In the context of Boolean operations, and also when expressions are used by control flow statements, the following values
are interpreted as false: False, None, numeric zero of all types, and empty strings and containers (including strings,
tuples, lists, dictionaries, sets and frozensets). All other values are interpreted as true. (Seethe __nonzero__ () special
method for a way to change this.)

A2} not & L AA7F AR oA True &, 1A ¢F oW False £ £Th

T WA X TS FAh 7t AR I S EH T 2R A oy o g 73 Fol

rlr

W4 x or vt AAY e TAHa 7t FolW 1 e BelETh 13X GoW o] e T T 1

2
d3E EEH

(Note that neither and nor or restrict the value and type they return to False and True, but rather return the last
evaluated argument. This is sometimes useful, e.g., if s is a string that should be replaced by a default value if it is empty,
the expression s or 'foo' yields the desired value. Because not has to invent a value anyway, it does not bother to
return a value of the same type as its argument, so e.g., not 'foo' yields False,not ''.)

5.11 Conditional Expressions

W7 2.5 7}

conditional_expression = or_test ["1f" or_test "else" expression]
expression n= conditional_expression | lambda_expr
2 BAALS (W2 (4T A2} (temary operator)) 2k BATH BE Tho] #l AAatel A 7HY e S M9 &

et

The expression x if C else vy first evaluates the condition, C (not x); if C is true, x is evaluated and its value is
returned; otherwise, y is evaluated and its value is returned.

23 2@ tig o AA S 82 PEP 308 & Fastet

5.12 ZiC}(Lambdas)

lambda_expr = "lambda" [parameter_list]: expression
old_lambda_expr 1= "lambda" [parameter_list]: old_expression

Lambda expressions (sometimes called lambda forms) have the same syntactic position as expressions. They are a short-
hand to create anonymous functions; the expression lambda parameters: expression yieldsafunction object.
The unnamed object behaves like a function object defined with

def <lambda> (parameters) :
return expression

60 Chapter 5.

H
re
4

https://www.python.org/dev/peps/pep-0308

The Python Language Reference, £ A| H{%& 2.7.18

See section $F<= % ©] for the syntax of parameter lists. Note that functions created with lambda expressions cannot
contain statements.

5.13 E g4l 2 £ (Expression lists)

expression_list = expression ("," expression)* [","]

An expression list containing at least one comma yields a tuple. The length of the tuple is the number of expressions in
the list. The expressions are evaluated from left to right.

Lo E= JduEE G 5= (single tuple) (A%, A E (singleton)) S WS w it Ao o2 2R E A=
At = Qth o B ARV dd 23 FE2S UHEA @, 2 58 S Frh (N {FES
s, W 25 S AFESE: ()

514 g 75

i
1>

=AM

Python evaluates expressions from left to right. Notice that while evaluating an assignment, the right-hand side is evaluated
before the left-hand side.

g EsoA, AL 259 2ol 22 ASY SAHE ol Fel

exprl, expr2, expr3, expri4
(exprl, expr2, expr3, expri4)
{exprl: expr2, expr3: expréd}

exprl + expr2 * (expr3 - exprd)
exprl (expr2, expr3, *expr4, **exprb)
expr3, exprd4 = exprl, expr2

The following table summarizes the operator precedences in Python, from lowest precedence (least binding) to highest
precedence (most binding). Operators in the same box have the same precedence. Unless the syntax is explicitly given,
operators are binary. Operators in the same box group left to right (except for comparisons, including tests, which all
have the same precedence and chain from left to right — see section H| 77 — and exponentiation, which groups from
right to left).

\l

514, g2 ¢ 61

g

oh
rr
H>
x

The Python Language Reference, & A| H{%& 2.7.18

PPN Ay
lambda g A
if—-else ERELE
or +=2] OR
and =g] AND
not x +=2] NOT
Tn, not im is, 15 not, <, <=3, 5, <, 1=, == uL, WOl AT ofelal e e AAE
e
| B E OR
~ H] E XOR
& H| E AND
<<, >> A|ZE
e EEERE
* /1% Multiplication, division, remainder’
+x, -X, ~X &+, H1 E NOT
= ASAF
x[index], x[index:index], x (arguments...), x. | ABAIAHA, &g, &, JJETZHE
attribute Fd
(expressions...), [expressions...], {key: | Binding or tuple display, list display, dictionary
value...}, ‘expressions...’ display, string conversion
Ty AabAte EAG EiHo = AMg AT 2 S 7 H4ET
S AFAF AL+ £ 0 8& 0] e AkEo U N E 4 & AxxiR T oFslA Ageith, &, 2% % -1+ 0.5 T
62 Chapter 5. T3 A

CHAPTER O

Tt F (Simple statements)

Simple statements are comprised within a single logical line. Several simple statements may occur on a single line sepa-
rated by semicolons. The syntax for simple statements is:

simple_stmt = expression_stmt
| assert_stmt

| assignment_stmt

| augmented_assignment_stmt
| pass_stmt

| del_stmt

| print_stmt

| return_stmt

| yield stmt

| raise_stmt

| break_stmt

| continue_stmt

| import_stmt

| future_stmt

| global_stmt

| exec_stmt

6.1 E3Al &

A FL 32 At 288 A L (B E) ZE A A (procedure) (2 1] Gl 23E 85+ 55 3o
o X ZE A A= None S EHFHE 3E317] Y8 (WEE U3y Oi) AFgE T 2384 Bl 2
A= EE T uju 2 £2 71 QT

expression_stmt = expression_list

63

The Python Language Reference, & A| H{%& 2.7.18

U RS (S BAAY 5 Ub) BAA B2 ge Fon

In interactive mode, if the value is not None, it is converted to a string using the built-in repr () function and the
resulting string is written to standard output (see section The print statement) on a line by itself. (Expression statements
yielding None are not written, so that procedure calls do not cause any output.)

6.2 CHUZE

HYES ol 52 gl (M) AF3kT 7 AA Y o= REY FESS SR BT
assignment_stmt = (target_list "=")+ (expression_list | yield expression)
target_list = target ("," target)* [","]
target = identifier
| "(" target_1list ")"
| "[" [target_1list] "1"
| attributeref
| subscription
| slicing
(See section 3 2} o] 1 2] for the syntax definitions for the last three symbols.)
YL EHA B2 (0] Z0) it RPN 25, 4R Hel8 BSA S5 g, Fabo) J9E FIo)
UEAERE AE 195N of S FoD, ARAA 22FO 2, Shiie] A3} ANE A F 3] Al

ﬂﬂ%f%“%%ﬂ%ﬂﬂﬂﬂﬂﬂﬁaiﬁﬂ%ﬂ»ﬂﬂﬂﬂ%ﬁﬂﬂ%%@@ﬂ%é%i%ﬁ
Boaagael &etel4) v, b A HE A= TS
A e, ol o] Mol EolA 4 goH 9E o2 4 ek, HUe 5ol F
o9 5L 1 AR Hof Aol A FolRTh(E= A5 A4S Heh.

Assignment of an object to a target list is recursively defined as follows.

+
o
ol

%]
-
e

ol
L
_l-J

‘- m
o

o

judj
|,

i
ﬁ

o
=

AW
A

et

« If the target list is a single target: The object is assigned to that target.

* If the target list is a comma-separated list of targets: The object must be an iterable with the same number of items
as there are targets in the target list, and the items are assigned, from left to right, to the corresponding targets.

shukel Bl vhak A1 o) Q)L Tk} ol AT A o= Fof Ak,
« E}7o] AR} (o] F) |

— If the name does not occur in a g1 oba 1 statement in the current code block: the name is bound to the object
in the current local namespace.

— Otherwise: the name is bound to the object in the current global namespace.

T ol gel olv) A dslo) 9o AAAAT o)A s Ads|of 9 AR B2 A£7H00)
S22 vhgol A, 4717k A5t o 2 el 7 Wbt 2 919 A (destructor) (22 EHE) 7} £ 2
v 4 glek

* If the target is a target list enclosed in parentheses or in square brackets: The object must be an iterable with the
same number of items as there are targets in the target list, and its items are assigned, from left to right, to the
corresponding targets.

BAd dlmegE Fad: 32y asln LHU ge 2Ac oA A AL T A=ay

A2 AA = of3t=d|, 228 A ko™ TypeError 7} Loj o} 2o I AR o oA

64 Chapter 6. Ci=3Z (Simple statements)

The Python Language Reference, £ A| H{%& 2.7.18

ER ARAE UYSES 23T S s 5 ok o 9] (BF AttributeError oA % &
Jg et gh & 9on
Fo MG AR BN Q2E 20T A2 HE FEIFhY AL FEOI A BT 55, RHS
E84,a.x 5 A2U2 EYHEL (2D 2 o ELHET} Grte) 2o 2 o B HES AN 2T
T Utk LHS B2l a.x = @4 2251 wEolMets §4d dadx oJERES AA3h A,
Ta.x 7} 2EOEYRES Fe)7lE AL Bex7o] oprh: RHS R4 0] 2o o] Bl HES
7helZthe, LHS & o] B2 Al dAg s o g HES whET)
class Cls

x = 3 # class variable
inst = Cls ()
inst.x = inst.x + 1 # writes inst.x as 4 leaving Cls.x as 3

o] o] property () & =] Z 25 ¥ (property) 2} T2 AT HE o] ER|RE J 82 o+

ATt

« If the target is a subscription: The primary expression in the reference is evaluated. It should yield either a muta-
ble sequence object (such as a list) or a mapping object (such as a dictionary). Next, the subscript expression is
evaluated.

If the primary is a mutable sequence object (such as a list), the subscript must yield a plain integer. If it is negative,
the sequence’s length is added to it. The resulting value must be a nonnegative integer less than the sequence’s
length, and the sequence is asked to assign the assigned object to its item with that index. If the index is out of
range, IndexError is raised (assignment to a subscripted sequence cannot add new items to a list).

zeolw el 7h(FH 2 22) ol AMT, A8 23 YEL v 7] W3} T8 = g olojof 31,
ol 1 ME AIHES AR wfg st 7/t olH B2 e F 2T ojuf 22 AS e
71EY 713 e AE 5 AL, (B2 #7117 EA A e) M AR AN =
Slct.

* If the target is a slicing: The primary expression in the reference is evaluated. It should yield a mutable sequence
object (such as a list). The assigned object should be a sequence object of the same type. Next, the lower and upper
bound expressions are evaluated, insofar they are present; defaults are zero and the sequence’s length. The bounds
should evaluate to (small) integers. If either bound is negative, the sequence’s length is added to it. The resulting
bounds are clipped to lie between zero and the sequence’s length, inclusive. Finally, the sequence object is asked to
replace the slice with the items of the assigned sequence. The length of the slice may be different from the length
of the assigned sequence, thus changing the length of the target sequence, if the object allows it.

A FHAA, B2l FH2 AT 2A FASH A, 2R S 22 A DAA ARE 7] w2
of 2] WA A 7} @ AAls A& A4S $aL AT
WARNING: Although the definition of assignment implies that overlaps between the left-hand side and the right-hand

side are (safe) (forexamplea, b = b, a swapstwo variables), overlaps within the collection of assigned-to variables
are not safe! For instance, the following program prints [0, 2]:

[0}

6.2. CHRIZE 65

I

The Python Language Reference, & A| H{%& 2.7.18

6.2.1 &2 2 F (Augmented assignment statements)

SE AT T EFANA ol AdA TS FA = Aotk

augmented_assignment_stmt = augtarget augop (expression_list | yield expression)
augtarget = identifier | attributeref | subscription | slicing
augop ::: "+:" nwn__m | mik_n | "/:" "//:" | "%:" | LI o g |

| Ny s—n | "= ‘ ne="m | nA_mn | n|="

(See section 3 2} o] 1 2] for the syntax definitions for the last three symbols.)

RO B (AN Y BT 9 o 7o) B 5 ch B R A BE9 e 7o, B2 A AR
Arot th o] o st o] 3 AL s E, %3114 EtZlo] 1 A& i dstet B2 2 2] 3k H il gho]
e

kel BN R EF thE B0 W,)2 o) g o g2 Q) 9
e gos Ao AAAL, Axtel B A4S N2 5, S o)< Wl Bl £ = o]
QAL Ank o)A 44k 2k

6.3 assert &

assert =2 X 2 7 o] Tj1] 7] o] A} A (debugging assertion) 2 4F ¢ &= H 2] 31 #Y o] T}

assert_stmt = "assert" expression [", expression]

73t e, assert expression 2 U3 5 3CH

if debug,
if not expression: raise AssertionError

245 Y E, assert expressionl, expression2 = U3 553t}

if _ _debug___
if not expressionl: raise AssertionError (expression2)

X rlo
|

debug_TJrAssertionError VL o2 WA HSEEL e At A s &
debug___ 2 4HFA Ql AF3lo]| A True 0] 1,] A3} 7} S
False T} @Al I = QA 7|+& 'ﬂﬂro‘ Aol 2 A7t 2 = H assert 22 H TS =},
01]?4 WA R o] A THAL AAFEE ZTFT IRV} QL 3} TAL AH EFojag g Z
4990,

__debug__ ol 3 th 2 &2 2] =tk o] W W] g2 AB 2z H A A o 2

66 Chapter 6. Ci=3Z (Simple statements)

The Python Language Reference, £ A| H{%& 2.7.18

6.4 pass &

pass_stmt = "pass"
pass & '8 (null) ﬁ*&ﬂﬂ‘r—*&bﬂ% o, ol A= doj A Feth EHA R B0l B35 AR
Fde e, AHEAFE SRR LRI UL A E SOl
def f (arg): pass # a function that does nothing (yet)
class C: pass # a class with no methods (yet)
=
65 del —.:
del_stmt = "del" target_1list

AAE t dol Beld WA ofF v sk A7l Aoz Foldnt AA AR ARES tdsthe tAl, 917
R 7HA] A ETL -

B 559 AL A BAL BN LEROR A A2 AR)

Deletion of a name removes the binding of that name from the local or global namespace, depending on whether the name
occurs in a global statement in the same code block. If the name is unbound, a NameError exception will be raised.

It is illegal to delete a name from the local namespace if it occurs as a free variable in a nested block.

JEFRE FE, ARAIYM, &0 49 Al B Zetol v AR ADDT); Lol 4o ARl
Qubx 02 90 GO Wl Sebol 2% Y SHe A% FS ST (AW o AR A Sebol 4 5 & ARt Y
oh.

-

6.6 The print statement

print_stmt = "print" ([expression ("," expression)* [","]]
| ">>" expression [("," expression)+ [","11)

print evaluates each expression in turn and writes the resulting object to standard output (see below). If an object is
not a string, it is first converted to a string using the rules for string conversions. The (resulting or original) string is then
written. A space is written before each object is (converted and) written, unless the output system believes it is positioned
at the beginning of a line. This is the case (1) when no characters have yet been written to standard output, (2) when
the last character written to standard output is a whitespace character except ' ', or (3) when the last write operation
on standard output was not a print statement. (In some cases it may be functional to write an empty string to standard
output for this reason.)

ZF31: Objects which act like file objects but which are not the built-in file objects often do not properly emulate this
aspect of the file object’s behavior, so it is best not to rely on this.

A '"\n' character is written at the end, unless the print statement ends with a comma. This is the only action if the
statement contains just the keyword print.

Standard output is defined as the file object named stdout in the built-in module sys. If no such object exists, or if it

6.6. The print statement 67

The Python Language Reference, & A| H{%& 2.7.18

does not have a write () method, a RuntimeError exception is raised.

print also has an extended form, defined by the second portion of the syntax described above. This form is sometimes
referred to as { print chevron.) In this form, the first expression after the >> must evaluate to a (file-like) object,
specifically an object that has a write () method as described above. With this extended form, the subsequent expres-
sions are printed to this file object. If the first expression evaluates to None, then sys. stdout is used as the file for
output.

6.7 return &

return_stmt = "return" [expression_list]
return & BPA O Feh2 ool FHA A7k oh e, 4 Ao ow A o) ek £ gk,
A FFo] glod g #3511, 19 A 922 H None O & | ZH T
+ None)< WESH gl o & S| A, A9 T+ &

return ©] finally A< 7b try oA Aloj7F ol ye & vi=
Aol 1 finally Bo] A=}

In a generator function, the return statement is not allowed to include an expression_Ilist. In that context, a
bare return indicates that the generator is done and will cause StopIteration to be raised.

|

=
return & £d4 BE (&

Z

eN
=
<, GeuRE AR Wl

rjﬁ

6.8 yield &

yield_stmt = yield expression

The yield statement is only used when defining a generator function, and is only used in the body of the generator
function. Using a yield statement in a function definition is sufficient to cause that definition to create a generator
function instead of a normal function.

When a generator function is called, it returns an iterator known as a generator iterator, or more commonly, a generator.
The body of the generator function is executed by calling the generator’s next () method repeatedly until it raises an
exception.

When a yield statement is executed, the state of the generator is frozen and the value of expression_list is
returned to next ()) s caller. By (frozen) we mean that all local state is retained, including the current bindings of
local variables, the instruction pointer, and the internal evaluation stack: enough information is saved so that the next time
next () is invoked, the function can proceed exactly as if the yie1d statement were just another external call.

As of Python version 2.5, the yield statement is now allowed in the t ry clause of a t ry -+ finally construct. If
the generator is not resumed before it is finalized (by reaching a zero reference count or by being garbage collected), the
generator-iterator’s close () method will be called, allowing any pending finally clauses to execute.

yield 2 2o thal AA A F ALFEL A= 33 A (Yield expressions) AL 21 5HH H ol

ZF31: In Python 2.2, the yield statement was only allowed when the generators feature has been enabled. This
__future__ import statement was used to enable the feature:

from _ future__ import generators

o ®B7):

68 Chapter 6. Ci=3Z (Simple statements)

The Python Language Reference, £ A| H{%& 2.7.18

PEP 255 - Simple Generators The proposal for adding generators and the yie1d statement to Python.

PEP 342 - Coroutines via Enhanced Generators The proposal that, among other generator enhancements, proposed
allowing yield to appear insidea try -+ finally block.

= =
6.9 raise &

n

raise_stmt = "raise" [expression ["," expression [", expression]]]

If no expressions are present, raise re-raises the last exception that was active in the current scope. If no exception is
active in the current scope, a TypeError exception is raised indicating that this is an error (if running under IDLE, a
Queue .Empty exception is raised instead).

Otherwise, raise evaluates the expressions to get three objects, using None as the value of omitted expressions. The
first two objects are used to determine the rype and value of the exception.

If the first object is an instance, the type of the exception is the class of the instance, the instance itself is the value, and
the second object must be None.

If the first object is a class, it becomes the type of the exception. The second object is used to determine the exception
value: If it is an instance of the class, the instance becomes the exception value. If the second object is a tuple, it is used
as the argument list for the class constructor; if it is None, an empty argument list is used, and any other object is treated
as a single argument to the constructor. The instance so created by calling the constructor is used as the exception value.

If a third object is present and not None, it must be a traceback object (see section 3£ =3 7] %), and it is substituted
instead of the current location as the place where the exception occurred. If the third object is present and not a traceback
objector None, a TypeError exception is raised. The three-expression form of ra i se is useful to re-raise an exception
transparently in an except clause, but ra i se with no expressions should be preferred if the exception to be re-raised was
the most recently active exception in the current scope.

Aol et B W2 AEE o 2] AdoA TAD 5 L, ol & Aelste Aol i AH =y & A
ATt

6.10 break &

break_stmt = "break"

breakt BMALR for thuhile 2o 5 W o] AT U 4 Q). 31710 1 23 <be) B4} oo
e EE R E

g Aol A Eei 9]

%
for 2x 7} break 2 £ 8

N
pu)
2
i
ki
S
rd
i
rlr
o,
o
t
[kl
fru
4z
)
2
X
fru
pi)
9
AW
N
2
=2

break 7} finally BE 7} try Zol A A
I finally Aol A Hch

6.10. break & 69

https://www.python.org/dev/peps/pep-0255
https://www.python.org/dev/peps/pep-0342

The Python Language Reference, & A| H{%& 2.7.18

6.11 continue &

continue_stmt = "continue"
continue + —‘?—H‘j?ﬁ,gi for Y while ZZo| X o] VeG4 o} A g 1 = oko] k1)
o2 e Ex 1 Rx U9 finally ol FHHAE Gk AR AR S AL Yt F2A O

o2 Yol =S e,

continue 7} finally A& AR try BN Aol ol HES BEE 39, g £2 Aol 22 A 23]
Ao 1 finally Ao] AP =T}

6.12 2 E E (import) &

import_stmt = "import" module ["as" name]l ("," module ["as" name])*
| "from" relative_module "import" identifier ["as" name]
("," identifier ["as" name])*
| "from" relative _module "import" " (" identifier ["as" name]
("," identifier ["as" name]l)* [","] ")"
| "from" module "import" "*"

module = (identifier ".")* identifier

relative_module = "."* module | "."+

name = identifier

Import statements are executed in two steps: (1) find a module, and initialize it if necessary; (2) define a name or names
in the local namespace (of the scope where the import statement occurs). The statement comes in two forms differing
on whether it uses the from keyword. The first form (without from) repeats these steps for each identifier in the list.
The form with £rom performs step (1) once, and then performs step (2) repeatedly.

To understand how step (1) occurs, one must first understand how Python handles hierarchical naming of modules. To
help organize modules and provide a hierarchy in naming, Python has a concept of packages. A package can contain
other packages and modules while modules cannot contain other modules or packages. From a file system perspective,
packages are directories and modules are files.

Once the name of the module is known (unless otherwise specified, the term (module) will refer to both packages and
modules), searching for the module or package can begin. The first place checked is sys.modules, the cache of all
modules that have been imported previously. If the module is found there then it is used in step (2) of import.

If the module is not found in the cache, then sys.meta_path is searched (the specification for sys .meta_path
can be found in PEP 302). The object is a list of finder objects which are queried in order as to whether they know
how to load the module by calling their find_module () method with the name of the module. If the module hap-
pens to be contained within a package (as denoted by the existence of a dot in the name), then a second argument to
find_module () is given as the value of the __path___ attribute from the parent package (everything up to the last
dot in the name of the module being imported). If a finder can find the module it returns a loader (discussed later) or
returns None.

If none of the finders on sys.meta_path are able to find the module then some implicitly defined finders are queried.
Implementations of Python vary in what implicit meta path finders are defined. The one they all do define, though, is one
that handles sys.path_hooks, sys.path_importer_cache, and sys.path.

The implicit finder searches for the requested module in the (paths) specified in one of two places ({paths) do not
have to be file system paths). If the module being imported is supposed to be contained within a package then the second
argument passed to £ind_module (), ___on the parent package, is used as the source of paths. If the module
is not contained in a package then sys . path is used as the source of paths.

70 Chapter 6. Th&=2 (Simple statements)

https://www.python.org/dev/peps/pep-0302

The Python Language Reference, £ A| H{%& 2.7.18

Once the source of paths is chosen it is iterated over to find a finder that can handle that path. The dict at sys.
path_importer_cache caches finders for paths and is checked for a finder. If the path does not have a finder
cached then sys.path_hooks is searched by calling each object in the list with a single argument of the path, re-
turning a finder or raises ImportError. If a finder is returned then it is cached in sys.path_importer_cache
and then used for that path entry. If no finder can be found but the path exists then a value of None is stored in sys.
path_importer_cache to signify that an implicit, file-based finder that handles modules stored as individual files
should be used for that path. If the path does not exist then a finder which always returns None is placed in the cache for
the path.

If no finder can find the module then ImportError is raised. Otherwise some finder returned a loader whose
load_module () method is called with the name of the module to load (see PEP 302 for the original definition
of loaders). A loader has several responsibilities to perform on a module it loads. First, if the module already exists in
sys.modules (a possibility if the loader is called outside of the import machinery) then it is to use that module for
initialization and not a new module. But if the module does not exist in sys .modules then it is to be added to that
dict before initialization begins. If an error occurs during loading of the module and it was added to sys.modules it
is to be removed from the dict. If an error occurs but the module was already in sy s .modules it is left in the dict.

The loader must set several attributes on the module. __name___ is to be set to the name of the module. ___file
is to be the (path) to the file unless the module is built-in (and thus listed in sys.builtin_module_names) in
which case the attribute is not set. If what is being imported is a package then __path__ is to be set to a list of paths
to be searched when looking for modules and packages contained within the package being imported. __package_
is optional but should be set to the name of package that contains the module or package (the empty string is used for
module not contained in a package). __loader___is also optional but should be set to the loader object that is loading
the module.

If an error occurs during loading then the loader raises ImportError if some other exception is not already being
propagated. Otherwise the loader returns the module that was loaded and initialized.

When step (1) finishes without raising an exception, step (2) can begin.

The first form of import statement binds the module name in the local namespace to the module object, and then goes
on to import the next identifier, if any. If the module name is followed by a s, the name following a s is used as the local
name for the module.

The from form does not bind the module name: it goes through the list of identifiers, looks each one of them up in
the module found in step (1), and binds the name in the local namespace to the object thus found. As with the first
form of import, an alternate local name can be supplied by specifying (as localname). If a name is not found,
ImportError israised. If the list of identifiers is replaced by a star (' * '), all public names defined in the module are
bound in the local namespace of the import statement..

The public names defined by a module are determined by checking the module’s namespace for a variable named
__all__;if defined, it must be a sequence of strings which are names defined or imported by that module. The names
givenin__all__ are all considered public and are required to exist. If __al1l___isnot defined, the set of public names
includes all names found in the module’ s namespace which do not begin with an underscore character (' _'). __all_
should contain the entire public API. It is intended to avoid accidentally exporting items that are not part of the API (such
as library modules which were imported and used within the module).

The fromform with * may only occur in a module scope. If the wild card form of import — import * —isused in
a function and the function contains or is a nested block with free variables, the compiler will raise a SyntaxError.

AEZEF RES ART o] 25 H) o] 5 (absolute name) = A8 F 3+ gty BEO|Y 37| A7} th &
-’H7]Z] otof] =3He uf], Z-2 A 9 7] A Yol A= T 9 7] A o] & AFT I Qo] A U X E (relative
import) & & 4~ It} rrom ¥ ol AR H = 7| A} BE ol £ o] st o]l 55 Z]qu‘]'x] S
ASS 4 T 9
7|

§2

o4 4719 Joh A &2l SLFSHeA A4 4 SlEk Shils] 38 o) JEES st el
EA st @A 7| A E Kotk 7 Y AL S AHNA ES AsE e AS LStk Al Y A T
el 2%, SS o)tk Te) A pkg JH'?’WOﬂ A= EEA from . impor S A3 3, pkg.mod &
AxEFA At pkg. subpkgl QA from . .subpkg2 import mod & A3 }VE pkg.subpkg2.mod
€ dZESH Ak A dEE viet 1 A2 PEP 328 <ol S0l gl

[U("'
=
o)
Q

Sl
>

6.12. UEE (import) & 71

https://www.python.org/dev/peps/pep-0302
https://www.python.org/dev/peps/pep-0328

The Python Language Reference, & A| H{%& 2.7.18

importlib.import_module () isprovided to support applications that determine which modules need to be loaded
dynamically.

6.121 FX &

A future statement is a directive to the compiler that a particular module should be compiled using syntax or semantics
that will be available in a specified future release of Python. The future statement is intended to ease migration to future
versions of Python that introduce incompatible changes to the language. It allows use of the new features on a per-module
basis before the release in which the feature becomes standard.

future_statement = "from" "__ future_ " "import" feature ["as" name]
("," feature ["as" name])*
| "from" "__ future_ " "import" " (" feature ["as" name]
("," feature ["as" name])* [","] ")"
feature = identifier
name n= identifier
FA 22 259 AY Aol Yok stk 4 F doll s F d= E52:
e 25 =2 E ¥ (docstring) (Y THH),
.« 34
« W2 a8
- e FA BE

The features recognized by Python 2.6 are unicode_literals, print_function, absolute_import,
division, generators, nested_scopes and with_statement. generators, with_statement,
nested_scopes are redundant in Python version 2.6 and above because they are always enabled.

FAELFADRE ATL A A4 T oG Ak A FHEES) SJujo] YA WAL 55 ohE
FE AL B FRAT A 75 0] BRE A P AR G AR) AR EHE EoHE A2
7bedd], o] 47 ALt RES vEA S Aok 28 A2 AP AH ez v 5 gl
wjEulch, Aot e olw 7)% o] 5 o] FeiH o]] L, vhokF A Fo] %A Fah: 75 EFetT
glow Astd AA o2l g dorh

AHAJNAG A M2 the dXE REHX ZTh BEF EE_ future_, T A&t} o} 911, 74
o] AHs = A o] AAI PPos JEEHT

SHEZ A AH NEE2 FA 2l & 243 = FAAA 750l 29U

ol &l Bl obE A% S8 e zlo] gl-ol 93 of gheh

import _ future__ [as name]

1AL FA Fol ohth; obR R WG Aok BH A A o] G BT YZE B ok,
Code compiled by an exec statement or calls to the built-in functions compile () and execfile () that occur in a
module M containing a future statement will, by default, use the new syntax or semantics associated with the future state-

ment. This can, starting with Python 2.2 be controlled by optional arguments to compile () — see the documentation
of that function for details.

U3ld JEzElE TExZEOA JHH] £L 9 = A
Bz g7} -1, AR AT YE o] 2o] ALHT}, S HO & A ié}i’lﬁf’—ﬂ‘fﬂvﬂ B zorety
~AREA AR o) Fol ARE L U5 AT B8 74 Bk

] B7):

72 Chapter 6. Th&=2 (Simple statements)

The Python Language Reference, £ A| H{%& 2.7.18

PEP 236 - ¥ 2 ©] _ future__ _ future__ W] #H U Z o] ol 2 %X 2] A<k

6.13 global &

global_stmt

= "global" identifier ("," identifier)*

global & @A) 7= B2 AA | A5 £ Aotk YdW 4 @A5o] Ao 545 ofof i
Zeolth global A1 §lo] 2 5o A 72 5 A7 = AT, global §lo] A W g
o 3k A2 E7Hs 3tk

global ol WdH o] 5L L2 ZE 850X global & ¥l 58 5 gith

Names listed in a g1obal statement must not be defined as formal parameters or in a for loop control target, class
definition, function definition, or import statement.

CPython implementation detail: The current implementation does not enforce the latter two restrictions, but programs
should not abuse this freedom, as future implementations may enforce them or silently change the meaning of the program.

Programmer’s note: global is a directive to the parser. It applies only to code parsed at the same time as the
global statement. In particular, a gl obal statement contained in an exec statement does not affect the code block
containing the exec statement, and code contained in an exec statement is unaffected by global statements in the
code containing the exec statement. The same applies to the eval (), execfile () and compile () functions.

6.14 The exec statement

ln"

exec_stmt = "exec" or_expr | expression ["," expression]]

This statement supports dynamic execution of Python code. The first expression should evaluate to either a Unicode
string, a Latin-1 encoded string, an open file object, a code object, or a tuple. If it is a string, the string is parsed as a suite
of Python statements which is then executed (unless a syntax error occurs).! If it is an open file, the file is parsed until
EOF and executed. If it is a code object, it is simply executed. For the interpretation of a tuple, see below. In all cases,
the code that’s executed is expected to be valid as file input (see section 3+ ¢} =1). Be aware that the return and
yield statements may not be used outside of function definitions even within the context of code passed to the exec
statement.

In all cases, if the optional parts are omitted, the code is executed in the current scope. If only the first expression after
in is specified, it should be a dictionary, which will be used for both the global and the local variables. If two expressions
are given, they are used for the global and local variables, respectively. If provided, locals can be any mapping object.
Remember that at module level, globals and locals are the same dictionary. If two separate objects are given as globals
and locals, the code will be executed as if it were embedded in a class definition.

The first expression may also be a tuple of length 2 or 3. In this case, the optional parts must be omitted.
The form exec (expr, globals) is equivalent to exec expr in globals, while the form exec (expr,
globals, locals) isequivalent to exec expr in globals, locals. The tuple form of exec provides
compatibility with Python 3, where exec is a function rather than a statement.

WA 2.4 A XA 7 : Formerly, locals was required to be a dictionary.

As a side effect, an implementation may insert additional keys into the dictionaries given besides those corresponding to
variable names set by the executed code. For example, the current implementation may add a reference to the dictionary
of the built-in module __builtin__ underthe key _ builtins__ (!).

! Note that the parser only accepts the Unix-style end of line convention. If you are reading the code from a file, make sure to use universal newlines
mode to convert Windows or Mac-style newlines.

6.14. The exec statement 73

https://www.python.org/dev/peps/pep-0236

The Python Language Reference, & A| H{%& 2.7.18

Programmer’s hints: dynamic evaluation of expressions is supported by the built-in function eval (). The built-in
functions globals () and locals () return the current global and local dictionary, respectively, which may be useful
to pass around for use by exec.

74 Chapter 6. Th&=2 (Simple statements)

CHAPTER /

T

&2 (Compound statements)

The if, while and for statements implement traditional control flow constructs. try specifies exception handlers
and/or cleanup code for a group of statements. Function and class definitions are also syntactically compound statements.

Compound statements consist of one or more (clauses.) A clause consists of a header and a (suite.) The clause headers
of a particular compound statement are all at the same indentation level. Each clause header begins with a uniquely
identifying keyword and ends with a colon. A suite is a group of statements controlled by a clause. A suite can be one or
more semicolon-separated simple statements on the same line as the header, following the header’s colon, or it can be one
or more indented statements on subsequent lines. Only the latter form of suite can contain nested compound statements;
the following is illegal, mostly because it wouldn’t be clear to which 1 £ clause a following e 1 se clause would belong:

’if testl: if test2: print x

Also note that the semicolon binds tighter than the colon in this context, so that in the following example, either all or
none of the print statements are executed:

’if x <y < z: print x; print y; print z

8ofsh:
compound_stmt = if_stmt
| while_stmt
| for_stmt
| try_stmt
| with_stmt
| funcdef
| classdef
| decorated
suite o= stmt_1ist NEWLINE NEWLINE INDENT statement+ DEDENT
statement = stmt_1list NEWLINE | compound_stmt
stmt_list = simple_stmt (";" simple_stmt)* [";"]

75

The Python Language Reference, & A| H{%& 2.7.18

Note that statements always end in a NEWLINE possibly followed by a DEDENT. Also note that optional continuation
clauses always begin with a keyword that cannot start a statement, thus there are no ambiguities (the (dangling else)
problem is solved in Python by requiring nested 1 £ statements to be indented).

WS 95 ool 9t AEOIA et 2 FHEL 2 4S MY Fo] 3= o)tk
- =
71 if Tl.'
iF B AR Ao A TH:
if_stmt = "if" expression ":" suite
("elif" expression ":" suite)*
["else" ":" suite]
20l 3 A2 WAL ds1A TANS B2 G AAYR 254 J 39 o) 2928 A9 G
23 AR 2] Aol =g oA (Boolean operations) A B}, 18t} 1 A EE APt} (2=
LF R R oW Hw AWE Ak grol THA A FETh. RE FAAZo] Aol else Y| A=}
(Ahd) A=At
7.2 while
while T2 Z @2 o] 3l F At AL vhE sl o] AFEHT}:
while_stmt = "while" expression ":" suite
["else™ ":" suite]
AL BHAL WRA 0T ST, oW, A WA 29 =S AARTH BAA] AW (AT H
AALSE deh clse 4] AAEI (ATh) AAH D F28 AT

]
A MR ~QEAN A A= = break B else DS AYFA 1 FZ2E FHSh A HA A E A
AP E = continue B2 2 EL Yu A &S AVH L 349 3 2

for B (BAD, FE, P2 22) A2 G2 ol HHE AR 845 L o] g do|=std A HTh

for_stmt = "for" target_list "in" expression_list ":" suite
["else" ":" suite]

The expression list is evaluated once; it should yield an iterable object. An iterator is created for the result of the
expression_list. The suite is then executed once for each item provided by the iterator, in the order of ascending
indices. Each item in turn is assigned to the target list using the standard rules for assignments, and then the suite is exe-
cuted. When the items are exhausted (which is immediately when the sequence is empty), the suite in the e 1 se clause,
if present, is executed, and the loop terminates.

A break statement executed in the first suite terminates the loop without executing the else clause’s suite. A
continue statement executed in the first suite skips the rest of the suite and continues with the next item, or with

76 Chapter 7. £%}& (Compound statements)

The Python Language Reference, £ A| H{%& 2.7.18

the e se clause if there was no next item.
The suite may assign to the variable(s) in the target list; this does not affect the next item assigned to it.

The target list is not deleted when the loop is finished, but if the sequence is empty, it will not have been assigned to at all
by the loop. Hint: the built-in function range () returns a sequence of integers suitable to emulate the effect of Pascal’
sfor i := a to b do;e.g, range (3) returns the list [0, 1, 2].

ZF31: There is a subtlety when the sequence is being modified by the loop (this can only occur for mutable sequences,
e.g. lists). An internal counter is used to keep track of which item is used next, and this is incremented on each iteration.
When this counter has reached the length of the sequence the loop terminates. This means that if the suite deletes the
current (or a previous) item from the sequence, the next item will be skipped (since it gets the index of the current item
which has already been treated). Likewise, if the suite inserts an item in the sequence before the current item, the current
item will be treated again the next time through the loop. This can lead to nasty bugs that can be avoided by making a
temporary copy using a slice of the whole sequence, e.g.,

for x in al[:]:
if x < 0: a.remove (x)

74 try &

try 22 28 2ol gt 9] 221 71v A 2 (cleanup) T = == 11 5 RFE AF sk o AHSA

try_stmt = tryl_stmt | try2_stmt
tryl_stmt = "try" ":" suite
("except" [expression [("as" | ",") identifier]] ":" suite)+
["else" ":" suite]
["finally" ":" suite]
try2_stmt = "try" ":" suite
"finally" ":" suite

A 2.59] 4] X 7 : In previous versions of Python, t ry+-except- finally did not work. try--except had
tobe nestedin try---finally.

The except clause(s) specify one or more exception handlers. When no exception occurs in the t ry clause, no exception
handler is executed. When an exception occurs in the ¢ ry suite, a search for an exception handler is started. This search
inspects the except clauses in turn until one is found that matches the exception. An expression-less except clause, if
present, must be last; it matches any exception. For an except clause with an expression, that expression is evaluated, and
the clause matches the exception if the resulting object is compatible) with the exception. An object is compatible with
an exception if it is the class or a base class of the exception object, or a tuple containing an item compatible with the

exception.

except d 5 o] A& o Q] X F %] ko, 9] Hel7] AL EeM ZEL FTF 2E A ALHT

Rkt except A9 Fl|tiof] = 2 H A9 gt & ul o2 7 sk, Ao 431 7] @Q%H—I—Q—L—an\}
Tt 3 E 2 A Ao tis AT AIRE T (try & DAL E Do Aoz HFAT.

When a matching except clause is found, the exception is assigned to the target specified in that except clause, if present,
and the except clause’s suite is executed. All except clauses must have an executable block. When the end of this block
is reached, execution continues normally after the entire try statement. (This means that if two nested handlers exist for

'O2 o9 8 Qo) rinally o] QA G oot & 2dog 5ATE 2 A Y& A9 AL deojw A HETH

74. txry & 77

The Python Language Reference, & A| H{%& 2.7.18

the same exception, and the exception occurs in the try clause of the inner handler, the outer handler will not handle the
exception.)

Before an except clause’s suite is executed, details about the exception are assigned to three variables in the sy s module:
sys.exc_type receives the object identifying the exception; sys.exc_value receives the exception’s parameter;
sys.exc_traceback receives a traceback object (see section 3£ <3 7] <) identifying the point in the program
where the exception occurred. These details are also available through the sys.exc_info () function, which returns
atuple (exc_type, exc_value, exc_traceback). Use of the corresponding variables is deprecated in favor
of this function, since their use is unsafe in a threaded program. As of Python 1.5, the variables are restored to their
previous values (before the call) when returning from a function that handled an exception.

The optional e se clause is executed if the control flow leaves the ¢ ry suite, no exception was raised, and no return,
continue, or break statement was executed. Exceptions in the else clause are not handled by the preceding
except clauses.

If finally is present, it specifies a (cleanup) handler. The t ry clause is executed, including any except and else
clauses. If an exception occurs in any of the clauses and is not handled, the exception is temporarily saved. The finally
clause is executed. If there is a saved exception, it is re-raised at the end of the finally clause. If the finally clause
raises another exception or executes a return or break statement, the saved exception is discarded:

>>> def f():
try:
1/0
finally:
return 42
>>> f ()
42

Finally A AR S)9 ARE 2 ado] A3 A ok
try-finally B try 2 EA] return, break, continue ®o] APD ul], finally BT (Y7}=
Zoy APHAC} finally oA E continue B2 AL S 4 QUth (I o]+ A o Y= FA
ool th — o] Al F2 m ol A AF 5 ATh.

o] wksk g2 vpA uto] AR H returnFOE AR AT finally Bo] PG AYH 7| wfj&oll, finally
oA A8 = return o] FA4F npA o] A3 = A o] Art:

>>> def fool():
try:
return 'try'
finally:
return 'finally'
>>> foo ()
'finally'

o 9lefl B F7he] R o9 AAoNN R 5 UL, N A E DO 7] B raise & AEFE Aol
B8 AR raise T AR A 2L % 9l

78 Chapter 7. £%}& (Compound statements)

The Python Language Reference, £ A| H{%& 2.7.18

7.5 with &

ith BE B2 AP AYAE B (uith T 7825 B2l 4 AR L Weh A A DANES R 74
try--except--finally A2 S A2 A AL S

-|>
¥ o

bt
I
oy
3
ot

o
4> rr

S g,

with_stmt "with" with_item ("," with_item)* ":" suite
with_item = expression ["as" target]

she] (item) & AHE3HE with 9 A2 the 3} o] XY)
1. A ~E #2547 A3l AH2E 4] (with_item o]3] expression) o] gt F3trt.
2. YFo| AH23H7) el AElAE AR exit_ () ZFEEHTL
3. AY2E A A enter () WANEE TET T

h&ol BtZlo] 2= o, 2A __enter_ () o k3 gh-& st

>
s

3 with %%_enter_() YA =7} o g 9l 1 oS ul, exit () NI ITEHES
BAso 2 A, e ol tidst= otk ol g 7 H A S, A9 E <ol A o 2] 7} kA 3 A 3} Zo)
HFH) ot 6HAE Kk

T

5. 29 =71 A,

6. The context manager’s ___exit__ () method is invoked. If an exception caused the suite to be exited, its type,
value, and traceback are passed as argumentsto ___exit__ (). Otherwise, three None arguments are supplied.

If the suite was exited due to an exception, and the return value from the __exit__ () method was false, the
exception is reraised. If the return value was true, the exception is suppressed, and execution continues with the
statement following the wi t h statement.

~YET A o)9e) o] §2 FRHW, exic () o N FL EAH T, AP ER) SR B
170l A A3 e A%,
S HT B FES Fu, AHAE BelAl wich £l FHE AAY AAAT)

rlr

with A() as a, B() as b:
suite

+ bt 5

with A() as a:
with B() as b:
suite

ZF3: In Python 2.5, the wi t h statement is only allowed when the with_statement feature has been enabled. It is
always enabled in Python 2.6.

WA 27004 M7 TS AdAE
o] B7):
PEP 343 - (with) ¥ 3}o]® with &2 72, v} 4, 9.

49}

=
re

75. with & 79

https://www.python.org/dev/peps/pep-0343

The Python Language Reference, & A| H{%& 2.7.18

7.6 g4 H9

ol

B4 Rl A BY B4 AR (E2F A5 AL Beh & o B

decorated = decorators (classdef | funcdef)
decorators = decorator+
decorator = "Q" dotted_name ["(" [argument_Ilist [","]] ")"] NEWLINE
funcdef = "def" funcname " (" [parameter_list] ")" ":" suite
dotted_name = identifier ("." identifier)*
parameter_list = (defparameter ",")*

("*" identifier ["," "x*" identifier]

| "**" jdentifier
| defparameter [","])

defparameter = parameter ["=" expression]

sublist = parameter ("," parameter)* [","]

parameter = identifier | " (" sublist "™)"

funcname = identifier
A5 Aol AT 5 e BFolck AWt A Ao o] F Fhe] I o] 5L T AA (F5 A
5@ EE F 2 93 (wrappen). o T AL BAY ol kel th3 F2E 2P, G5
s2d) A ol Fo AgHTh
B4 Aol B v s AetA ok F5rt5EE o YA

A function definition may be wrapped by one or more decorator expressions. Decorator expressions are evaluated when
the function is defined, in the scope that contains the function definition. The result must be a callable, which is invoked
with the function object as the only argument. The returned value is bound to the function name instead of the function
object. Multiple decorators are applied in nested fashion. For example, the following code:

Qfl (arg)
Qf2
def func(): pass

is equivalent to:

def func(): pass
func = fl(arg) (£2 (func))

When one or more top-level parameters have the form parameter = expression, the function is said to have (default
parameter values.) For a parameter with a default value, the corresponding argument may be omitted from a call, in
which case the parameter’s default value is substituted. If a parameter has a default value, all following parameters must
also have a default value — this is a syntactic restriction that is not expressed by the grammar.

Default parameter values are evaluated when the function definition is executed. This means that the expression
is evaluated once, when the function is defined, and that the same (pre-computed) value is used for each call. This
is especially important to understand when a default parameter is a mutable object, such as a list or a dictionary: if the
function modifies the object (e.g. by appending an item to a list), the default value is in effect modified. This is generally
not what was intended. A way around this is to use None as the default, and explicitly test for it in the body of the
function, e.g.:

def whats_on_the_telly (penguin=None) :
if penguin is None:
penguin = []

2G4 me] A WA BFoR 5o BAD AHEL §49 _doc ojEelWER B} 4ol SAE o Hrk

The Python Language Reference, £ A| H{%& 2.7.18

(o] A sl o] A A M A%)

penguin.append ("property of the zoo")
return penguin

Function call semantics are described in more detail in section & <. A function call always assigns values to all parameters
mentioned in the parameter list, either from position arguments, from keyword arguments, or from default values. If the
form (*identifier) is present, it is initialized to a tuple receiving any excess positional parameters, defaulting to
the empty tuple. If the form ¢(**identifier) is present, it is initialized to a new dictionary receiving any excess
keyword arguments, defaulting to a new empty dictionary.

It is also possible to create anonymous functions (functions not bound to a name), for immediate use in expressions. This
uses lambda expressions, described in section 2T} (Lambdas). Note that the lambda expression is merely a shorthand
for a simplified function definition; a function defined in a { de) statement can be passed around or assigned to another
name just like a function defined by a lambda expression. The (def) form is actually more powerful since it allows the
execution of multiple statements.

Programmer’s note: Functions are first-class objects. A (def) form executed inside a function definition defines
a local function that can be returned or passed around. Free variables used in the nested function can access the local
variables of the function containing the def. See section ©]| &3} A Z (binding) for details.

=

7.7 SciA Ao

Zejn gole Feha AN (EEE A5 A4S Beh 2 JBTh

classdef = "class" classname [inheritance] ":" suite
inheritance = "(" [expression_list] ")"

classname = identifier

A class definition is an executable statement. It first evaluates the inheritance list, if present. Each item in the inheritance
list should evaluate to a class object or class type which allows subclassing. The class’s suite is then executed in a new
execution frame (see section ©] 5 3} 9 Z (binding)), using a newly created local namespace and the original global
namespace. (Usually, the suite contains only function definitions.) When the class’s suite finishes execution, its execution
frame is discarded but its local namespace is saved.® A class object is then created using the inheritance list for the base
classes and the saved local namespace for the attribute dictionary. The class name is bound to this class object in the
original local namespace.

Programmer’s note: Variables defined in the class definition are class variables; they are shared by all instances. To
create instance variables, they can be set in a method with self.name = value. Both class and instance variables
are accessible through the notation (self.name), and an instance variable hides a class variable with the same name
when accessed in this way. Class variables can be used as defaults for instance variables, but using mutable values there
can lead to unexpected results. For new-style classes, descriptors can be used to create instance variables with different
implementation details.

Class definitions, like function definitions, may be wrapped by one or more decorator expressions. The evaluation rules
for the decorator expressions are the same as for functions. The result must be a class object, which is then bound to the
class name.

The Python Language Reference, & A| H{%& 2.7.18

82 Chapter 7. £%}& (Compound statements)

CHAPTER 8

-

8.1 2txict mo|M ==

While a language specification need not prescribe how the language interpreter is invoked, it is useful to have a notion
of a complete Python program. A complete Python program is executed in a minimally initialized environment: all
built-in and standard modules are available, but none have been initialized, except for sys (various system services),
__builtin__ (built-in functions, exceptions and None) and __main__. The latter is used to provide the local and
global namespace for execution of the complete program.

FAT ol M 22 IR RS oh AN AHE = T 49 3
KX
=

o] T2kl A ARk

A complete program can be passed to the interpreter in three forms: with the —c string command line option, as a file
passed as the first command line argument, or as standard input. If the file or standard input is a tty device, the interpreter
enters interactive mode; otherwise, it executes the file as a complete program.

8.2 T o/

e Y AR RE A8 RE 4L 22 FEHE Aay
file_input = (NEWLINE | statement)*

o] £L g7 L Aol A AL BT

83

The Python Language Reference, & A| H{%& 2.7.18

BAGRIE L) 4G shol

L

r
‘

&
[l
Fu
[
)
o
k=)
o,
it
£

W33 o)A Qe et 2L B AL Ag ATk

interactive_input = [stmt_list] NEWLINE | compound_stmt NEWLINE

@49 BB oY REol A 0 FL R Gl R0 Aok AL AGe) BE AATE
2 2 5ok,

8.4 E3A U™

There are two forms of expression input. Both ignore leading whitespace. The string argument to eval () must have
the following form:

eval_input = expression_list NEWLINE¥*

The input line read by input () must have the following form:

input_input = expression_list NEWLINE

Note: to read (raw) input line without interpretation, you can use the built-in function raw_input () or the
readline () method of file objects.

0>
d0

84 Chapter 8. b

b

o
B>
o

CHAPTER 9

HMH 28 7

= 73

o] Aol kA Al ol B 7} e} L, shold ax hdg sHd skt AHE = A A ol A

H

Grammar for Python
Note: Changing the grammar specified in this file will most likely
require corresponding changes in the parser module
(../Modules/parsermodule.c). If you can't make the changes to
that module yourself, please co-ordinate the required changes
with someone who can; ask around on python-dev for help. Fred
Drake <fdrake@acm.org> will probably be listening there.

RS

#
#
#
#

NOTE WELL: You should
"How to Change Python

Start symbols for the
single_input is
file_input is a

also follow all the steps listed in PEP 306,
's Grammar"

grammar:
a single interactive statement;
module or sequence of commands read from an input file;

eval_input is the input for the eval() and input () functions.

NB: compound_stmt in single_input is followed by extra NEWLINE!
single_input: NEWLINE | simple_stmt | compound_stmt NEWLINE
file_input: (NEWLINE | stmt)* ENDMARKER

eval_input:

testlist NEWLINE* ENDMARKER

decorator: '@' dotted_name ['(' [arglist] ')'] NEWLINE
decorators: decorator+
decorated: decorators (classdef | funcdef)
funcdef: 'def' NAME parameters ':' suite
parameters: '(' [varargslist] ')’
varargslist: ((fpdef ['=' test] ',')*
("*'" NAME [',' '**' NAME] | '**' NAME) |
fpdef ['="' test] (',' fpdef ['=' test])* [','])
fpdef: NAME | ' (' fplist ')'
fplist: fpdef (',' fpdef)* [',']

(Th= el Aol A%

85

The Python Language Reference, & A| H{%& 2.7.18

(o] A sl o] A A M A%)

stmt: simple_stmt | compound_stmt

simple_stmt: small_stmt (';' small_stmt)* [';'] NEWLINE

small_stmt: (expr_stmt | print_stmt | del_stmt | pass_stmt | flow_stmt |
import_stmt | global_stmt | exec_stmt | assert_stmt)

expr_stmt: testlist (augassign (yield_expr|testlist) |
("=" (yield_expr|testlist))*)

augassign: ('"+=" | "—=" | Tx=' | /=" | T&=" | Tg=' | '|=' | '""=" |
TK<=T | Te>=r | tAx=t | /=T
For normal assignments, additional restrictions enforced by the interpreter
print_stmt: 'print' ([test (',' test)* [','] 1 |
'>>" test [('," test)+ [','] 1)

del_stmt: 'del' exprlist
pass_stmt: 'pass'

flow_stmt: break_stmt | continue_stmt | return_stmt | raise_stmt | yield_stmt
break_stmt: 'break'
continue_stmt: 'continue'
return_stmt: 'return' [testlist]
yield_stmt: yield_expr
raise_stmt: 'raise' [test [',' test [',' test]]]
import_stmt: import_name | import_from
import_name: 'import' dotted_as_names
import_from: ('from' ('.'* dotted_name | '.'+)
"import" ('*' | '"(' import_as_names ')' | import_as_names))

import_as_name: NAME ['as' NAME]
dotted_as_name: dotted_name ['as' NAME]

import_as_names: import_as_name (',' import_as_name)* [', ']
dotted_as_names: dotted_as_name (',' dotted_as_name)*
dotted_name: NAME ('.' NAME) *

global_stmt: 'global' NAME (',' NAME)*

exec_stmt: 'exec' expr ['in' test [',' test]]

assert_stmt: 'assert' test [',' test]

compound_stmt: if_stmt | while_stmt | for_stmt | try_stmt | with_stmt | funcdef |_
—~classdef | decorated

if_stmt: '"if' test ':' suite ('elif' test ':' suite)* ['else' ':' suite]
while_stmt: 'while' test ':' suite ['else' ':' suite]
for_stmt: 'for' exprlist 'in' testlist ':' suite ['else' ':' suite]
try_stmt: ('try' ':' suite
((except_clause ':' suite)+
[Telse' ":' suite]
["finally" ":' suite] |
"finally' ':' suite))
with_stmt: 'with' with_item (',' with_item)* ':' suite
with_item: test ['as' expr]
NB compile.c makes sure that the default except clause is last
except_clause: 'except' [test [('as' | ',") test]]

suite: simple_stmt | NEWLINE INDENT stmt+ DEDENT

Backward compatibility cruft to support:

[x for x in lambda: True, lambda: False 1if x()]
even while also allowing:

lambda x: 5 if x else 2

(But not a mix of the two)

testlist_safe: old_test [(',' old_test)+ [',']]
old_test: or_test | old_lambdef
old_lambdef: 'lambda' [varargslist] ':' old_test

(TH& ST Aol A1)

The Python Language Reference, £ A| H{%& 2.7.18

(o] A sl o] A A M A%)

test: or_test ['if' or_test 'else' test] | lambdef
or_test: and_test ('or' and_test)*
and_test: not_test ('and' not_test)*
not_test: 'not' not_test | comparison
comparison: expr (comp_op expr)*
comp_op: '<'|['>'"|'=="|">="['<="["<>"["I="|"in'|'not' 'in'|'is'|'is' 'not'
expr: xor_expr ('|' xor_expr)*
xor_expr: and_expr ('”' and_expr)*
and_expr: shift_expr ('&' shift_expr)*
shift_expr: arith_expr (('<<'['>>') arith_expr)*
arith_expr: term (('+'|'-") term)*
term: factor (('*"|'/'['$"'"|"//') factor)*
factor: ('+'|'-'"|'~") factor | power
power: atom trailer* ['**' factor]
atom: ('(' [yield_ expr|testlist_comp] ')' |

"[" [listmaker] ']' |

'{" [dictorsetmaker] '}' |

"' testlistl "' |

NAME | NUMBER | STRING+)
listmaker: test (list_for | ('," test)* [','])
testlist_comp: test (comp_for | (',' test)* [','])
lambdef: 'lambda' [varargslist] ':' test
trailer: ' (' [arglist] '")'" | '[' subscriptlist ']' | '.' NAME
subscriptlist: subscript (',' subscript)* [',']
subscript: ".'" '".'" '.'" | test | [test] ':' [test] [sliceop]
sliceop: ':' [test]
exprlist: expr (',' expr)* [',']
testlist: test (',' test)* [',']
dictorsetmaker: ((test ':' test (comp_for | (',' test ':' test)* [','])) |

(test (comp_for | ('," test)* [',"'])))
classdef: 'class' NAME [' (' [testlist] ")'] ':' suite
arglist: (argument ',')* (argument [',']
["*" test (',' argument)* [',' '"**' test]
["**T test)

The reason that keywords are test nodes instead of NAME is that using NAME
results in an ambiguity. ast.c makes sure it's a NAME.
argument: test [comp_for] | test '=' test

list_iter: list_for | 1list_if

list_for: '"for' exprlist 'in' testlist_safe [list_iter]
list_if: '"if' old_test [list_iter]

comp_iter: comp_for | comp_if

comp_for: '"for' exprlist 'in' or_test [comp_iter]
comp_if: 'if' old_test [comp_iter]

testlistl: test (',' test)™*

not used in grammar, but may appear in "node" passed from Parser to Compiler
encoding_decl: NAME

yield_expr: 'yield' [testlist]

87

The Python Language Reference, & A| H{%& 2.7.18

88 Chapter 9. i 2 4

APPENDIX A

>>> T8}y Ao 7] & vfo|H EZE. AH x| HoA g oz APE 5 9l ZE oA AF & 5
it
. The default Python prompt of the interactive shell when entering code for an indented code block, when within

a pair of matching left and right delimiters (parentheses, square brackets, curly braces or triple quotes), or after
specifying a decorator.

2t03 oW 2x T EE Fo|H3x TEE HIH I A ESE ZFQUY], 228 JASL 2~ EFE
TS FAE 5 e T HEad S v
2103 & 3 2ho] Hef el ol A libztosixl %D} P02 AT 5 Yt 23 PEE Tools/

scripts/2to3 2 Al FHt}. 2to3-reference E E A L

abstract base class (54} #j| o] A~ Zal| A) Abstract base classes complement duck-typing by providing a way to define
interfaces when other techniques like hasattr () would be clumsy or subtly wrong (for example with magic
methods). ABCs introduce virtual subclasses, which are classes that don’t inherit from a class but are still recognized
by isinstance () and issubclass () ;see the abc module documentation. Python comes with many built-
in ABCs for data structures (in the collections module), numbers (in the numbe r s module), and streams (in
the 1o module). You can create your own ABCs with the abc module.

argument (21 Z}) A value passed to a function (or method) when calling the function. There are two types of arguments:

o 719 = AR} (keyword argument): T4 5= W /“tﬂz}ﬂ— Qo] BL& 2} (| & 0, name=) = **
< ol 2 gMv e AgH = ‘ﬂXP. AL S, th5 22 complex () L&A 3345 &
719 = AR

complex (real=3, imag=5)
complex (**{'real': 3, 'imag': 5})

AAE L A} 259 Ao 1

o] AR} (positional argument): 7| ¥ = < A AT | L
ALt A 5o, deH 22 EENA 335 = BF

AL} o] B 2] & 9] ghol] » & Eol
AR Ak,

complex (3, D5)
complex (* (3, 5))

89

The Python Language Reference, & A| H{%& 2.7.18

Mol hg Ak o) theel 485 & Ao AL 52 4L
A Az AHgE 5 Ak P A ghol A9 Aol AT

See also the parameter glossary entry and the FAQ question on the difference between arguments and parameters.

attribute (] EZ|HE) AR A S AMS 3= o] 502 FRF = QA 23 3L o & 9], AA o 7H A E
YREaE 7MY, 0a A FxHT)

BDFL #}d] 2% £ Al = 2] 2} (Benevolent Dictator For Life), = Guido van Rossum, 3}o] 21 2] A A},

bytes-like object (B} o] E Q5 W A]) An object that supports the buffer protocol, like str, bytearray or
memoryview. Bytes-like objects can be used for various operations that expect binary data, such as compression,
saving to a binary file or sending over a socket. Some operations need the binary data to be mutable, in which case
not all bytes-like objects can apply.

bytecode (B} o] E . &) Python source code is compiled into bytecode, the internal representation of a Python program
in the CPython interpreter. The bytecode is also cached in . pyc and . pyo files so that executing the same file
is faster the second time (recompilation from source to bytecode can be avoided). This (intermediate language)
is said to run on a virtual machine that executes the machine code corresponding to each bytecode. Do note that
bytecodes are not expected to work between different Python virtual machines, nor to be stable between Python

releases.
dlo]E TE Welol 5o B dis BE EFWH o] Ao Yot}

cdass (F:2) AHSAHY AAES HEV] A . FH2 Fo= BF FH2Yg dadA2E AR
Audste WA= Hol 5L T

classic class Any class which does not inherit from object. See new-style class. Classic classes have been removed in
Python 3.

coercion (Z.0]A) The implicit conversion of an instance of one type to another during an operation which involves two
arguments of the same type. For example, int (3.15) converts the floating point number to the integer 3, but
in 3+4 .5, each argument is of a different type (one int, one float), and both must be converted to the same type
before they can be added or it will raise a TypeError. Coercion between two operands can be performed with
the coerce built-in function; thus, 3+4 .5 is equivalent to calling operator.add (*coerce (3, 4.5))
and results in operator.add (3.0, 4.5). Without coercion, all arguments of even compatible types would
have to be normalized to the same value by the programmer, e.g., f1loat (3) +4. 5 rather than just 3+4. 5.

complex number (B4 %) Q<3 A4 A Ad Q] 3390, RE 27 A4Bel d|4He) dto g AT
slefe Ayl s ‘jr-ﬂ (-1 «1 AF2)E FSH A, TF T AA= 1 2, —-—ﬂoﬂ/\i%j 72 %7
sttt spo| X2 219 RV S 2w HATE 7|2 AHh slaF = § JuALE 294 F7]3

A& £0], 3+13. nach 25| Ha% W A0 DR, cnach E AT, Hadbe) 1L $F
2 538 75 olth BRethy =717 RIATHE, A FA3 A= F

context manager (AEAE AR _ enter_ () & __exit__ () HIAEE AT O ZN withFAA K
o]% 372 Aol st AA. PEP 343 2 = Y5 gith.

CPython o]l Z 2w Adoje] FHZA A 73 Ay, python.org o A Bl ZE ¢}, o] £& L Jython o] L}
IronPython 3} Z+2 t} 2 A5 78 F g 7} 92 ul] 8] (CPython) ©] A-&H T}

decorator (H| Z#|o]E]) t}E T+E =T+ T5U, EF Qurapper THE A
=t g Z g o] &£t o= classmethod () ¥ staticmethod () T
210

el e 2Lt W) B Wolok The £ F4 B9 o n4

ok
e
5
rE

fow A8

FSL

oz 5o

def f(...):

f = staticmethod (f)

@staticmethod

(THS sTolATell A1)

90 Appendix A. E0{Z!

https://www.python.org/~guido/
https://www.python.org/dev/peps/pep-0343
https://www.python.org

The Python Language Reference, £ A| H{%& 2.7.18

(o] A sl o] A A M A%)

def f£(...):

2L o) 2e) ool E EASA T, & A 290 o ma o] B0l B g o AP B) &2 5
ol He] o) EuE ol de W Heh,

descriptor (t] 2= ¥ E]) Any new-style object which defines the methods _ get_ (), _ set_ (), or
__delete__ (). When a class attribute is a descriptor, its special binding behavior is triggered upon attribute
lookup. Normally, using a.b to get, set or delete an attribute looks up the object named b in the class dictionary for
a, but if b is a descriptor, the respective descriptor method gets called. Understanding descriptors is a key to a deep
understanding of Python because they are the basis for many features including functions, methods, properties,
class methods, static methods, and reference to super classes.

Haa 9 WA =S thg 2AA e &2 taa 5 E 767 of 2o

dictionary () 4] 2]) An associative array, where arbitrary keys are mapped to values. The keys can be any object
with _ _hash__ () and__eq__ () methods. Called a hash in Perl.

o,

o 9}

dictionary view (5 412 H) The objects returned from dict.viewkeys (), dict.viewvalues (), and
dict.viewitems () are called dictionary views. They provide a dynamic view on the dictionary’s entries,
which means that when the dictionary changes, the view reflects these changes. To force the dictionary view to
become a full list use 1ist (dictview). See dict-views.

docstring (52 EF) FEfx, 5, REOA A WA 2840 = UrE‘rUrt TX]’O:] B EE. 29 EVAHE
= FAIE A Aot o] o) AR o] Fe s, T, REY __doc_ olEYHER 4Y
Ath JERAHAS T ARG T - long, AR =FdH ol AS 93 A ot

duck-typing (¢ E}Ol% ZHFE QA EH o2 E M =X At AA Y FS A e T2
B thAl, T3] A Eu o] E g e

-,‘?—Eﬂigﬂﬂ‘%/\}“‘l%q(((—-—ﬂﬂaéEo]i 2l A
ﬂ%t}tﬂ,lﬂ% gth)) S F thAlel SEsol2E Fxdeen, FHAH Z=E= T
A8 o N FALES NAE 4 Atk 9 BFo] B2 type () ©lt isinstance () & AHESH
AN an}u} (3FA) uh, & E}o] 3 o %—*Juﬂﬂﬁ%aﬂiii%}% T Aol T of et thAlel,

hasattr () AANY EAFP Z 2 22 & &1}

EAFP & 2tH)= &A1 S 3177} 4 o} (Easier to ask for forgiveness than permission). ©] £3] &2 4= gl& 3}
ol Y AEFY L, ZHE U ol EYRES EAE M8, 2 7ol W A& E et o
ZES AL e A Y2 W try o except B EAE EZA Ak o] HAZH2Ce 22 o E

W2 dofoll A A= A= = LBYL 2~ 814 37} th vl E ot

expression (23 2]) A piece of syntax which can be evaluated to some value. In other words, an expression is an
accumulation of expression elements like literals, names, attribute access, operators or function calls which all
return a value. In contrast to many other languages, not all language constructs are expressions. There are also
statements which cannot be used as expressions, such as print or if. Assignments are also statements, not
expressions.

extension module (33 2E) C U C++ 2 A H ZE A, 3] # 2 C APIE AL-&3] A 34 o] L} AF&-2}
A=} A} Ag et

file object (7421 Z4A]) 3+ Ao thh 9+ A A API (read () Uurite) 2L HNEE) 2 St
A3, W50l 2 el mreh, 5He) AR & AA| 123 4o shelolu ke A3 B A 3A) (o] 2
Sol, £ 95, d-vmel Ms, 24, shol =, S5) ol the AA2E FAT S ek 9 AR

LA R AA (file-like objects) } 2~E ¥ (streams) ©| 2} = & 2T}

There are actually three categories of file objects: raw binary files, buffered binary files and text files. Their interfaces
are defined in the i o module. The canonical way to create a file object is by using the open () function.

file-like object (3} Y -F AA) s+ 214 2] nv]<=3F o

91

The Python Language Reference, & A| H{%& 2.7.18

finder (¥} 21]) An object that tries to find the loader for a module. It must implement a method named
find_module (). See PEP 302 for details.

floor divison (3 WP 71 ZL7He A5 U ASHe 500 el A% el @A /) o ol
o), BAA 11 // 49 2 AHA Y, A5 AL 2.75 8 Bl ETh (-11) // 47}-2.75
£ W% % -3 o] Holl $2)3)of Fe}. PEP 238 & HA 2.

function (F5) T2 707 ol g€ BelFt Ao BFE. QAL T o149 A4 A2 5 gl
ule)e] Aol AH-g8 4 glck. shebulE 9 WA= 9} g Ae) AAE BA K.
__future__ A pseudo-module which programmers can use to enable new language features which are not compatible

with the current interpreter. For example, the expression 11 /4 currently evaluates to 2. If the module in which it
is executed had enabled true division by executing:

from _ future__ import division

the expression 11 /4 would evaluate to 2 . 75. By importingthe ___future__ module and evaluating its variables,
you can see when a new feature was first added to the language and when it will become the default:

>>> import __ future_
>>> _ future__ .division
_Feature((2, 2, 0, 'alpha', 2), (3, 0, 0, 'alpha', 0), 8192)

garbage collection (7}8] 2] 4>#]) The process of freeing memory when it is not used anymore. Python performs
garbage collection via reference counting and a cyclic garbage collector that is able to detect and break reference
cycles.

generator (A] & ©]€]) A function which returns an iterator. It looks like a normal function except that it contains
yield statements for producing a series of values usable in a for-loop or that can be retrieved one at a time with
the next () function. Each yield temporarily suspends processing, remembering the location execution state
(including local variables and pending try-statements). When the generator resumes, it picks up where it left off (in
contrast to functions which start fresh on every invocation).

generator expression (AU #| o8] £ 2]) o|HHoHE ST BHA. T A1 E A Yd= for
FAAR AL P i Ao ol BE AU EAA A Btk AFF BAN L EHR T2
A gL B
>>> sum(i*i for i in range (10)) # sum of squares 0, 1, 4, ... 81

285

GIL A ¢zl = S HASL
global interpreter lock (H % JIE]Z2|E] &) T Hof] &4 shite] g =7} gfojd o] E S = & APse =

R AA3E7] $138l CPython Q1E] Z 2] E] 7} AP%}L Uﬂ?M Z. (dict 4 22 F8FYUFIFES 2F3e)
AA Bdo] FAHE FA] °‘“ﬂ/‘°ﬂ g8l AAFEF vhs o] A CPython THE dEsHA e
JdHzeH AAE 2= AL AdHZHE éﬂﬂ_ﬂﬁm A =g, oE Z 2 A A
Z1AZF Al Eshe HEa Ao we HES A st

3HA] g, OW A REELS, BF0] Hﬂ”x} T gdEol g aA e A Aok ol ZS AT
o= GIL 2 ¥ 3st= = A A= 9 ‘}I/OEUHEH“ FAF GIL & whdalioh

A4 o ulM A 1 Hl o1 El & 27 3he) (28 E o A2 -2 (free-threaded)) 2V E]Z B & WS A}
st AL =82 e HolA X, TR G Z2AM A7 A5 At A eH] w2 ol
55 d=

A E3FHA whE o] A ‘ITZ] 314‘10] HEoj2 Ao® o AX 1L

hashable (3l A] 7}%5) An object is hashable if it has a hash value which never changes during its lifetime (it needs a
___hash___ () method), and can be compared to other objects (itneedsan __eq__ () or __cmp___ () method).
Hashable objects which compare equal must have the same hash value.

92 Appendix A. E0{Z!

https://www.python.org/dev/peps/pep-0302
https://www.python.org/dev/peps/pep-0238

The Python Language Reference, £ A| H{%& 2.7.18

AN A5 S AANE G A WG] W ALEE 5 QA S, o] AR TR YFA
©= A G A W E ol k.

All of Python’s immutable built-in objects are hashable, while no mutable containers (such as lists or dictionaries)
are. Objects which are instances of user-defined classes are hashable by default; they all compare unequal (except
with themselves), and their hash value is derived from their id ().

IDLE 3}o] & 93 53} 7l 3t 317 (Integrated Development Environment). IDLE- 3}o] 4 o] & & wl & 3oj)
wehe s 71249 Bl 7lek AEz el e B0l

immutable (38) 7AH 34 2 A7, 29 AA = 52, EAL, FEL £} o)d A EL A
2 ok Al 3 A4 ™ A A A 2 S ojof Bt WatA o 8l Algte] glojof sk Fol A %
AL gt} o2 Sof, S 7).

integer division Mathematical division discarding any remainder. For example, the expression 11/ 4 currently evaluates
to 2 in contrast to the 2. 75 returned by float division. Also called floor division. When dividing two integers the
outcome will always be another integer (having the floor function applied to it). However, if one of the operands is
another numeric type (such as a f1oat), the result will be coerced (see coercion) to a common type. For example,
an integer divided by a float will result in a float value, possibly with a decimal fraction. Integer division can be
forced by using the // operator instead of the / operator. See also __future__

importing (Y ¥ %) 3 259} shol W TE} o 25 sholul TN AL 5 TS s A

importer (Y ZE]) EEL 2V %5 511 2 37| E st AA|; T Ao 5Foly o] 21 ARt}

interactive (] 3}1%) sho] W2 ti3}y Qe = 2jE] S 23 e, AEZejE 25z EoA 24 284S
YL 913, 52 A9 AE 2 4 loke Felg. AR} glo) B python & AW} AFE

FHlol A AEsts A% 7Hsd 5 Ath. A otoltjol & AASI AU 53 7| A& Solvtl &

W5 2 It (help (x) B 71 SA),

interpreted (QJE]Z2JE]E) ulo]E F & Axde| o &R uf B 7 FHo] SR 7] &= A 1l sfo]H &
254 Slol 7k ofv| ek Qe el Bl Qloleh. o AL A H oz A 5l i&“ﬂwLE££~%%
A3 AW 5 Irhe Folth, 1 zz o] & 5 A5 AW AL AT, AE e H Ao BE

A5t Aol Rt gL AT w7 2718 2tk o5 RAR.

iterable (]]3] &) An object capable of returning its members one at a time. Examples of iterables include all sequence
types (such as 1ist, str, and tuple) and some non-sequence types like dict and £ile and objects of any
classes you define withan __iter () or__getitem _ () method Iterables can be used in a for loop and
in many other places where a sequence is needed (zip (), map (), *--). When an iterable object is passed as an
argument to the built-in function iter (), it returns an iterator for the object. This iterator is good for one pass
over the set of values. When using iterables, it is usually not necessary to call iter () or deal with iterator objects
yourself. The for statement does that automatically for you, creating a temporary unnamed variable to hold the
iterator for the duration of the loop. See also iterator, sequence, and generator.

iterator (©] €]]| ©]E]) An object representing a stream of data. Repeated calls to the iterator’s next () method re-
turn successive items in the stream. When no more data are available a StopIteration exception is raised
instead. At this point, the iterator object is exhausted and any further calls to its next () method just raise
StopIteration again. Iterators are required to have an ___iter_ () method that returns the iterator object
itself so every iterator is also iterable and may be used in most places where other iterables are accepted. One
notable exception is code which attempts multiple iteration passes. A container object (such as a 1ist) produces
a fresh new iterator each time you pass it to the iter () function or use it in a for loop. Attempting this with
an iterator will just return the same exhausted iterator object used in the previous iteration pass, making it appear
like an empty container.

typeiter ©f T ZpA] &k Uj-8-o] Qltt.

key function (7]) 7] Sk == F & o] A (collation) 4= A & (sorting) ©] L Bl & (ordering) o] A} &5 =
< E8FE= 29 S °l t}. o & E0°], locale.strxfrm() 2 Z2AL EF P S 2= HE 7| &
= = o AR E T

The Python Language Reference, & A| H{%& 2.7.18

A number of tools in Python accept key functions to control how elements are ordered or grouped. They in-
clude min (), max (), sorted (), list.sort (), heapg.nsmallest (), heapg.nlargest (), and
itertools.groupby ().

There are several ways to create a key function. For example. the str.lower () method can serve as a key
function for case insensitive sorts. Alternatively, an ad-hoc key function can be built from a Iambda expression
suchas lambda r: (r[0], r[2]). Also,the operator module provides three key function constructors:
attrgetter (), itemgetter (),and methodcaller (). See the Sorting HOW TO for examples of how
to create and use key functions.

keyword argument (7] ¢ & 21z} <12} & HA Q.

lambda (Fth =2 of Fto] FlA =3ty 294 o2 FAE o] gle Akl 3. 2 & BEs
EHL lambda [parameters]: expression ©|T}.

LBYL % 7] Aof X 2} (Look before you leap). ©] T A~E}I-& T & o}
AES AAst) o] 2812 EAFP F2H A Rl H oL, W2 i = o]
T 2= S, LBYL H2H2 (E71) & (A7) ol B 2ded=A 2 A3
E0],FEif key in mapping: return mappinglkey] = AA} 3o, 3} A 9k %3] =
8 =7} key & mapping A 2| A3k A4 Z 5 STk o] o] Fol L} EARP F 2 AHS 3o 2 A
2 5 At
list (8] 2E) A built-in Python sequence. Despite its name it is more akin to an array in other languages than to a linked
list since access to elements is O(1).

Y
o
Hg %N
f
2
fu
A
o,
N

list comprehension (2] 2 E 7 Z 2|31 A) A compact way to process all or part of the elements in a sequence and
return a list with the results. result = ["0x%02x" % x for x in range (256) if x % ==
0] generates a list of strings containing even hex numbers (0x..) in the range from O to 255. The i f clause is
optional. If omitted, all elements in range (256) are processed.

loader (£t]) An object that loads a module. It must define a method named 1oad_module (). A loader is typically
returned by a finder. See PEP 302 for details.

magic method An informal synonym for special method.

mapping (W]) A container object that supports arbitrary key lookups and implements the methods specified in
the Mapping or MutableMapping abstract base classes. Examples include dict, collections.
defaultdict, collections.OrderedDict and collections.Counter.

metaclass (e} Ze)2) Zel28l Zels. Zels A Zol2 o5, Zoh2 YAV, Wl FoaEe
558 weth Me Fehat o A QA4S Bobd 2U2E oL g At iel A4 433
ZgIa Ao E2 712 FES AT ATk golu S Hﬂs}ﬂ] el Ao AnE HE FPAE TE
% Sk Aole) 38 g Aol AL o £/l d8 A2 @A, Ao} 4w, ve 2ot
748 ekl f-opgt | j 2 Al T gth A E B JHE HA 29 Eﬂ (logging), A ¥ & eFA A o] =7}, Ax) A A

27, A2 E 7T BE T2 Ao A8 H),
3 7] 2xE{upo] Al o] 4 o A B A 3

7]
method (H] A &) % 2 by ko A A oE = 3k
1WA QA (RE self el EHUH &2

=

o
X
o
b
30,
=

method resolution order (W] A& Z A £ A]) WA= A A=
259 FAth 23 e R E Fho] QB 2 F/]E%ﬂ A
Method Resolution Order & X ¥ H ¢}
mOdllle (E’-“é’) -T]rol”‘q T 2A3 A9 E GIots AA. RE2 999 sl AA &L Fe o5 T
=0 B2 dxd A g H-ﬂr‘ﬂ”ﬂ—o—ii‘:ﬂr/}
ﬁH 717 = HA L.

94 Appendix A. E0{Z!

https://www.python.org/dev/peps/pep-0302
https://www.python.org/download/releases/2.3/mro/
https://www.python.org/download/releases/2.3/mro/

The Python Language Reference, £ A| H{%& 2.7.18

MRO "X = A3 <=4 E HA Q.

named tuple (1] 9 = AL T A BAES T B2 AEYRERZE YA 2T 5 = BE
FEF N2 (& £, time.localtime () 2 year 7kt [0] A AHAZE, t.tm_year A H
NEZRERE A 2T + e FEF AAE &)
Hd= S time.struct_time Z2 WAT I &, dut P2 FY=2 s o5) B E
7% °] AU IE FZ2S HEe &4 collections.namedtuple () 2% ¥HE 5=) vpA| g}

=
LE
ployee (name="'jones', title='programmer') &} T2 A22F EFAZE TE=repr
I 22 F4 75 % AHs AlFsth

namespace (©] S &7} The place where a variable is stored. Namespaces are implemented as dictionaries. There
are the local, global and built-in namespaces as well as nested namespaces in objects (in methods). Namespaces
support modularity by preventing naming conflicts. For instance, the functions __builtin__.open () andos.
open () are distinguished by their namespaces. Namespaces also aid readability and maintainability by making it
clear which module implements a function. For instance, writing random. seed () or itertools.izip ()
makes it clear that those functions are implemented by the random and itertools modules, respectively.

nested scope (£ %] ¥ 23 =) The ability to refer to a variable in an enclosing definition. For instance, a function
defined inside another function can refer to variables in the outer function. Note that nested scopes work only for
reference and not for assignment which will always write to the innermost scope. In contrast, local variables both
read and write in the innermost scope. Likewise, global variables read and write to the global namespace.

new-style class (5+ 2 €} Z#2) Any class which inherits from object. This includes all built-in types like 1ist
and dict. Only new-style classes can use Python’s newer, versatile features like ___slots__, descriptors, prop-
erties,and ___getattribute__ ().

More information can be found in New-style and classic classes.

object (Z)A]) A} (AEBHEY) E 21 52 (FAE) o] HYH REHolE. =
o] HFA A ol et

package (3}7]2]) N H RESo|Lh AA AR NE 7 ASS D 5 = Fold 25 VeHLg,
7] A= _ path_ o]EFHET} Q= sto| W BEo|Th

parameter (3}2}1]E]) A named entity in a function (or method) definition that specifies an argument (or in some cases,
arguments) that the function can accept. There are four types of parameters:

o AA-719 = (positional-or-keyword):] 2] A2 L} 7] 9] = Q2L 2 AdE 4= Q= AAE A A s

o] A o] 7|2 el o] she}ul e}, o] & Sof T}2ol A foo 9} bar:

ot
[>

 BE e 27

def func (foo, bar=None) :

o 9 X)-A & (positional-only): $) X Z T A 2= & Q= ARE A3}, o] WL 9] x]-A-L vletu]
BlE Aot £ 2al A Stk 8hx 0
(& E0°1,abs ().

» 7PA-$1X] (var-positional): (P& Shekv] B Sl o)A o]] Whob5ol 2l 9] X QA5 o] t3)) A5
2 9l 91 %] oR}E9] 9o AWAE 2 ATT) o] A Thebu]E = shahu]E o] Bof * & oo
BolA ol £ gtk g o thEoll Al args:

Kl

def func(*args, **kwargs):

o 7VA-7| 9 & (var-keyword): (T}2 S}Eln| g &
Asd A= 99 g 7IH = AAsS A A3 o™

ol Zoi A FeE 5 ATk A E 5ol 99 o oA kwargs.
1

shebrl e A8 A S-S 9% 7R olet A Ao ALt B4 AAES AAY 4 9ok

of o] Al o] n] Wrol= o] R 7)Y = ARE o B 3f)
sfebu e & sebul g o] Bof +x &

95

The Python Language Reference, & A| H{%& 2.7.18

See also the argument glossary entry, the FAQ question on the difference between arguments and parameters, and
the a5~ A 2] section.

PEP 3}o] A 7§ A <k PEP+= stol % AFUE o] AR E AF3tAL Fho] A & T ZRA A EE 379
gt 2R 755 AWete AA EA4th PEPE AtE 7|5l st HE S 7|s A D 2AE

A58 oF gk,

PEPL: 8 M2 7152 A5t B4 Bt AR UE 92 575w 5ol do] Sojzk 4
24 BAR WS/ 9% /18 AU Zolth PEP 4445 ARUE el A o8 753k v
ﬂﬁ%%ﬁﬂ@ﬂﬂﬂ%ﬂ

positional argument (¢}] 12} QA & H A Q.

Python 3000 (3}o] % 3000) vho] 2 3.x v & 2ple] M (WA 39 w271 A v ef & o]okr||H Al FHof] ThEo] A
o] olt}l) o] AL (Py3k) & Zo] 27| % 3t}

Pythonic (3}o] AThe) THE Qloj ol A YbA ol AP M3 ZES 7 5HE T4, sho] A Qlojol
713 A% AR S £ ol E S kol mEk ofeltolit = 2 o & Fol, ol Aol A 2
ot Qe for & ALGE A o EeBe] BE 242 £HSE oItk THE BE Qojot o] e FRel
dEol gene, aeltio] 4A B ATEE o A0] S LIS A B B

for i in range(len(food)):
print food[i]

o 2T, shol A the P e o ek

for piece in food:

print piece

reference count (2 315) A A o th gk =9 7. AR Q) F= A7F002 oA, v 227} v
ok Fx 3 _il" % dtH o7 vlol FEof =EH A ‘: ‘3% Ak, CPython 7@ 2] 34 @ 4T} sys
BEEL EA AN FXR I4E E8F = getrefcount (o] ghrt.

__slots__ A declaration inside a new-style class that saves memory by pre-declaring space for instance attributes and
eliminating instance dictionaries. Though popular, the technique is somewhat tricky to get right and is best reserved
for rare cases where there are large numbers of instances in a memory-critical application.

sequence (X]| @) An iterable which supports efficient element access using integer indices viathe _getitem ()
special method and defines a 1en () method that returns the length of the sequence. Some built-in sequence types
are list, str, tuple, and unicode. Note that dict also supports __getitem () and __len__ (),

but is considered a mapping rather than a sequence because the lookups use arbitrary immutable keys rather than
integers.

slice (£ 2}o]2~) An object usually containing a portion of a sequence. A slice is created using the subscript no-
tation, [] with colons between numbers when several are given, such as in variable_name[1:3:5].
The bracket (subscript) notation uses s1ice objects internally (or in older versions,
_ _setslice__ ()).

getslice__ () and

special method (&4 WA &) Flo| o] Fof o] A4S, TlAl 2
oA HME=E F 79 UIZE/«]ﬂo} Zys o2
EAZ o)A T

statement (Z7) £732 2 E (ZEQ (EX(block))) & FASHE FEolth 282 84 oAU 7IH =
£ ARg Sk o8] 7HAl F2E Y stuth 7H if, while, for.

struct sequence (- 2 A] A]P2A) A tuple with named elements. Struct sequences expose an interface similiar to named
tuple in that elements can be accessed either by index or as an attribute. However, they do not have any of the named

tuple methods like _make () or _asdict (). Examples of struct sequences include sys.float_info and
the return value of os.stat ().

96 Appendix A. E0{Z!

https://www.python.org/dev/peps/pep-0001

The Python Language Reference, £ A| H{%& 2.7.18

triple- quoted string (%5 w52 9 49 % (O A2 x (OA M2 SR 224, 1
w5 3 StUE S A A 1= AR of 2] 7}A] o] frell A &R 7} QlTh
ojaFA o]l Z H A 2 A2uFE Y U RE FAYE ol 2FE £ JEF 51, AE BAE 2
RANE oAy Eo A =, 5AEHS E W 53 &

type (&) shol ZAle] WL 170] o ek s Al ol Utk AR Fo
__class__°9E EHE%EE WA 2T Y AU type (ob)) B 2 F AT

universal newlines (-1 ¥4 = 3 7)) A manner of interpreting text streams in which all of the following are recog-

nized as ending a line: the Unix end-of-line convention '\n', the Windows convention '\r\n"', and the old
Macintosh convention '\r'. See PEP 278 and PEP 3116, as well as str.splitlines () for an additional

use.

virtual environment (7} 7)) v}o] A AL-& Z]—E]— S8 z2ao], T2 AaHA AgH = thE sho|#
s&zrIdE9 %—. oéﬁok%?— A ko /\1 spol i w2 7| A 2 AR AY 2 o =8t
A= 7hssH s, Ao s ﬂ%%

virtual machine (7} 7)A]) 4z Egjojwro = @94% AZE. sho| Mo A4 7 A= vl E T = At A}
S Yt Hho|E = & ATt

Zen of Python (}o] %1 Al) sho]x tjztQl Aot Aet5o] F5 A, Aol & olsf st A&t ol ==l
ot o] 552 U3t 2 F2EoX (import this) & Y8 Hlth

97

https://www.python.org/dev/peps/pep-0278
https://www.python.org/dev/peps/pep-3116

The Python Language Reference, & A| H{%& 2.7.18

98 Appendix A. £0{%!

APPENDIX B

About these documents

These documents are generated from reStructuredText sources by Sphinx, a document processor specifically written for
the Python documentation.

Development of the documentation and its toolchain is an entirely volunteer effort, just like Python itself. If you want
to contribute, please take a look at the reporting-bugs page for information on how to do so. New volunteers are always
welcome!

Many thanks go to:
* Fred L. Drake, Jr., the creator of the original Python documentation toolset and writer of much of the content;
* the Docutils project for creating reStructuredText and the Docutils suite;

* Fredrik Lundh for his Alternative Python Reference project from which Sphinx got many good ideas.

B.1 Contributors to the Python Documentation

Many people have contributed to the Python language, the Python standard library, and the Python documentation. See
Misc/ACKS in the Python source distribution for a partial list of contributors.

It is only with the input and contributions of the Python community that Python has such wonderful documentation —
Thank You!

99

http://docutils.sourceforge.net/rst.html
http://sphinx-doc.org/
http://docutils.sourceforge.net/
http://effbot.org/zone/pyref.htm
https://github.com/python/cpython/tree/2.7/Misc/ACKS

The Python Language Reference, & A| H{%& 2.7.18

100 Appendix B. About these documents

apPENDIX C

History and License

C.1 History of the software

Python was created in the early 1990s by Guido van Rossum at Stichting Mathematisch Centrum (CWI, see https://www.
cwi.nl/) in the Netherlands as a successor of a language called ABC. Guido remains Python’s principal author, although
it includes many contributions from others.

In 1995, Guido continued his work on Python at the Corporation for National Research Initiatives (CNRI, see https:
/Iwww.cnri.reston.va.us/) in Reston, Virginia where he released several versions of the software.

In May 2000, Guido and the Python core development team moved to BeOpen.com to form the BeOpen PythonLabs
team. In October of the same year, the PythonLabs team moved to Digital Creations (now Zope Corporation; see https:
/Iwww.zope.org/). In 2001, the Python Software Foundation (PSF, see https://www.python.org/psf/) was formed, a non-
profit organization created specifically to own Python-related Intellectual Property. Zope Corporation is a sponsoring
member of the PSF.

All Python releases are Open Source (see https://opensource.org/ for the Open Source Definition). Historically, most,
but not all, Python releases have also been GPL-compatible; the table below summarizes the various releases.

Release Derived from | Year Owner GPL compatible?
0.9.0thru 1.2 | n/a 1991-1995 | CWI yes
1.3thrul52 | 1.2 1995-1999 | CNRI yes
1.6 1.5.2 2000 CNRI no
2.0 1.6 2000 BeOpen.com | no
1.6.1 1.6 2001 CNRI no
2.1 2.0+1.6.1 2001 PSF no
2.0.1 2.0+1.6.1 2001 PSF yes
2.1.1 2.142.0.1 2001 PSF yes
2.12 2.1.1 2002 PSF yes
2.13 2.1.2 2002 PSF yes
2.2 and above | 2.1.1 2001-now | PSF yes

101

https://www.cwi.nl/
https://www.cwi.nl/
https://www.cnri.reston.va.us/
https://www.cnri.reston.va.us/
https://www.zope.org/
https://www.zope.org/
https://www.python.org/psf/
https://opensource.org/

The Python Language Reference, &A| H{% 2.7.18

ZF31: GPL-compatible doesn’t mean that we’re distributing Python under the GPL. All Python licenses, unlike the
GPL, let you distribute a modified version without making your changes open source. The GPL-compatible licenses make
it possible to combine Python with other software that is released under the GPL; the others don’t.

Thanks to the many outside volunteers who have worked under Guido’s direction to make these releases possible.

C.2 Terms and conditions for accessing or otherwise using Python

C.2.1 PSF LICENSE AGREEMENT FOR PYTHON 2.7.18

1. This LICENSE AGREEMENT is between the Python Software Foundation ("PSEF"),.
—and

the Individual or Organization ("Licensee") accessing and otherwise using.
—Python

2.7.18 software in source or binary form and its associated documentation.

2. Subject to the terms and conditions of this License Agreement, PSF hereby
grants Licensee a nonexclusive, royalty-free, world-wide license to.
—reproduce,
analyze, test, perform and/or display publicly, prepare derivative works,
distribute, and otherwise use Python 2.7.18 alone or in any derivative
version, provided, however, that PSF's License Agreement and PSF's notice.
—of
copyright, i.e., "Copyright © 2001-2020 Python Software Foundation; All._
—Rights
Reserved" are retained in Python 2.7.18 alone or in any derivative version
prepared by Licensee.

3. In the event Licensee prepares a derivative work that is based on or
incorporates Python 2.7.18 or any part thereof, and wants to make the
derivative work available to others as provided herein, then Licensee.

—~hereby
agrees to include in any such work a brief summary of the changes made to.

—Python
2.7.18.

4. PSF is making Python 2.7.18 available to Licensee on an "AS IS" basis.

PSF MAKES NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF

EXAMPLE, BUT NOT LIMITATION, PSF MAKES NO AND DISCLAIMS ANY REPRESENTATION.
—0OR

WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT.
—THE

USE OF PYTHON 2.7.18 WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

5. PSF SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF PYTHON 2.7.18

FOR ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT.
—OF

MODIFYING, DISTRIBUTING, OR OTHERWISE USING PYTHON 2.7.18, OR ANY.
—DERIVATIVE

THEREOF, EVEN IF ADVISED OF THE POSSIBILITY THEREOF.

102 Appendix C. History and License

The Python Language Reference, £ A| H{%& 2.7.18

6. This License Agreement will automatically terminate upon a material breach.
—of
its terms and conditions.

7. Nothing in this License Agreement shall be deemed to create any.
—relationship

of agency, partnership, or joint venture between PSF and Licensee. This.
—License

Agreement does not grant permission to use PSF trademarks or trade name in.
—a

trademark sense to endorse or promote products or services of Licensee, or.
—any

third party.

8. By copying, installing or otherwise using Python 2.7.18, Licensee agrees
to be bound by the terms and conditions of this License Agreement.

C.2.2 BEOPEN.COM LICENSE AGREEMENT FOR PYTHON 2.0

BEOPEN PYTHON OPEN SOURCE LICENSE AGREEMENT VERSION 1

1. This LICENSE AGREEMENT is between BeOpen.com ("BeOpen"), having an office at
160 Saratoga Avenue, Santa Clara, CA 95051, and the Individual or Organization
("Licensee") accessing and otherwise using this software in source or binary
form and its associated documentation ("the Software").

2. Subject to the terms and conditions of this BeOpen Python License Agreement,
BeOpen hereby grants Licensee a non-exclusive, royalty-free, world-wide license
to reproduce, analyze, test, perform and/or display publicly, prepare derivative
works, distribute, and otherwise use the Software alone or in any derivative
version, provided, however, that the BeOpen Python License is retained in the
Software, alone or in any derivative version prepared by Licensee.

3. BeOpen is making the Software available to Licensee on an "AS IS" basis.
BEOPEN MAKES NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF
EXAMPLE, BUT NOT LIMITATION, BEOPEN MAKES NO AND DISCLAIMS ANY REPRESENTATION OR
WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE
USE OF THE SOFTWARE WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

4. BEOPEN SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF THE SOFTWARE FOR
ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT OF USING,
MODIFYING OR DISTRIBUTING THE SOFTWARE, OR ANY DERIVATIVE THEREOF, EVEN IF
ADVISED OF THE POSSIBILITY THEREOEF.

5. This License Agreement will automatically terminate upon a material breach of
its terms and conditions.

6. This License Agreement shall be governed by and interpreted in all respects
by the law of the State of California, excluding conflict of law provisions.
Nothing in this License Agreement shall be deemed to create any relationship of
agency, partnership, or joint venture between BeOpen and Licensee. This License
Agreement does not grant permission to use BeOpen trademarks or trade names in a
trademark sense to endorse or promote products or services of Licensee, or any
third party. As an exception, the "BeOpen Python" logos available at

(THS STl Aol A1)

C.2. Terms and conditions for accessing or otherwise using Python 103

The Python Language Reference, & A| H{%& 2.7.18

(o] A sl o] A A M A%)

http://www.pythonlabs.com/logos.html may be used according to the permissions
granted on that web page.

7. By copying, installing or otherwise using the software, Licensee agrees to be
bound by the terms and conditions of this License Agreement.

C.2.3 CNRI LICENSE AGREEMENT FOR PYTHON 1.6.1

1. This LICENSE AGREEMENT is between the Corporation for National Research
Initiatives, having an office at 1895 Preston White Drive, Reston, VA 20191
("CNRI"), and the Individual or Organization ("Licensee") accessing and
otherwise using Python 1.6.1 software in source or binary form and its
associated documentation.

2. Subject to the terms and conditions of this License Agreement, CNRI hereby
grants Licensee a nonexclusive, royalty-free, world-wide license to reproduce,
analyze, test, perform and/or display publicly, prepare derivative works,
distribute, and otherwise use Python 1.6.1 alone or in any derivative version,
provided, however, that CNRI's License Agreement and CNRI's notice of copyright,
i.e., "Copyright © 1995-2001 Corporation for National Research Initiatives; All
Rights Reserved" are retained in Python 1.6.1 alone or in any derivative version
prepared by Licensee. Alternately, in lieu of CNRI's License Agreement,
Licensee may substitute the following text (omitting the quotes): "Python 1.6.1
is made available subject to the terms and conditions in CNRI's License
Agreement. This Agreement together with Python 1.6.1 may be located on the
Internet using the following unique, persistent identifier (known as a handle):
1895.22/1013. This Agreement may also be obtained from a proxy server on the
Internet using the following URL: http://hdl.handle.net/1895.22/1013."

3. In the event Licensee prepares a derivative work that is based on or
incorporates Python 1.6.1 or any part thereof, and wants to make the derivative
work available to others as provided herein, then Licensee hereby agrees to
include in any such work a brief summary of the changes made to Python 1.6.1.

4., CNRI is making Python 1.6.1 available to Licensee on an "AS IS" basis. CNRI
MAKES NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF EXAMPLE,
BUT NOT LIMITATION, CNRI MAKES NO AND DISCLAIMS ANY REPRESENTATION OR WARRANTY
OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE USE OF
PYTHON 1.6.1 WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

5. CNRI SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF PYTHON 1.6.1 FOR
ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT OF
MODIFYING, DISTRIBUTING, OR OTHERWISE USING PYTHON 1.6.1, OR ANY DERIVATIVE
THEREOF, EVEN IF ADVISED OF THE POSSIBILITY THEREOEF.

6. This License Agreement will automatically terminate upon a material breach of
its terms and conditions.

7. This License Agreement shall be governed by the federal intellectual property
law of the United States, including without limitation the federal copyright
law, and, to the extent such U.S. federal law does not apply, by the law of the
Commonwealth of Virginia, excluding Virginia's conflict of law provisions.
Notwithstanding the foregoing, with regard to derivative works based on Python
1.6.1 that incorporate non-separable material that was previously distributed

(TH& SOTATl A1)

104 Appendix C. History and License

The Python Language Reference, £ A| H{%& 2.7.18

(o] A sl o] A A M A%)

under the GNU General Public License (GPL), the law of the Commonwealth of
Virginia shall govern this License Agreement only as to issues arising under or
with respect to Paragraphs 4, 5, and 7 of this License Agreement. Nothing in
this License Agreement shall be deemed to create any relationship of agency,
partnership, or joint venture between CNRI and Licensee. This License Agreement
does not grant permission to use CNRI trademarks or trade name in a trademark
sense to endorse or promote products or services of Licensee, or any third
party.

8. By clicking on the "ACCEPT" button where indicated, or by copying, installing
or otherwise using Python 1.6.1, Licensee agrees to be bound by the terms and
conditions of this License Agreement.

C.2.4 CWI LICENSE AGREEMENT FOR PYTHON 0.9.0 THROUGH 1.2

Copyright © 1991 - 1995, Stichting Mathematisch Centrum Amsterdam, The
Netherlands. All rights reserved.

Permission to use, copy, modify, and distribute this software and its
documentation for any purpose and without fee is hereby granted, provided that
the above copyright notice appear in all copies and that both that copyright
notice and this permission notice appear in supporting documentation, and that
the name of Stichting Mathematisch Centrum or CWI not be used in advertising or
publicity pertaining to distribution of the software without specific, written
prior permission.

STICHTING MATHEMATISCH CENTRUM DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS
SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN NO
EVENT SHALL STICHTING MATHEMATISCH CENTRUM BE LIABLE FOR ANY SPECIAL, INDIRECT
OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE,
DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS
SOFTWARE .

C.3 Licenses and Acknowledgements for Incorporated Software

This section is an incomplete, but growing list of licenses and acknowledgements for third-party software incorporated in
the Python distribution.

C.3.1 Mersenne Twister

The _random module includes code based on a download from http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/
MT2002/emt19937ar.html. The following are the verbatim comments from the original code:

A C-program for MT19937, with initialization improved 2002/1/26.
Coded by Takuji Nishimura and Makoto Matsumoto.

Before using, initialize the state by using init_genrand(seed)
or init_by_array(init_key, key_length).

(THS SOl AT ol A1)

C.3. Licenses and Acknowledgements for Incorporated Software 105

http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/MT2002/emt19937ar.html
http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/MT2002/emt19937ar.html

The Python Language Reference, & A| H{%& 2.7.18

(o] A sl o] A A M A%)

Copyright (C) 1997 - 2002, Makoto Matsumoto and Takuji Nishimura,
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

3. The names of its contributors may not be used to endorse or promote
products derived from this software without specific prior written
permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. 1IN NO EVENT SHALL THE COPYRIGHT OWNER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Any feedback is very welcome.
http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html
email: m—-mat @ math.sci.hiroshima-u.ac.jp (remove space)

C.3.2 Sockets

The socket module uses the functions, getaddrinfo (), and getnameinfo (), which are coded in separate
source files from the WIDE Project, http://www.wide.ad.jp/.

Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
All rights reserved.

Redistribution and use in source and binary forms, with or without

modification, are permitted provided that the following conditions

are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

3. Neither the name of the project nor the names of its contributors
may be used to endorse or promote products derived from this software
without specific prior written permission.

(TH& ST Aol A1)

106 Appendix C. History and License

http://www.wide.ad.jp/

The Python Language Reference, £ A| H{%& 2.7.18

(o] A sl o] A A M A%)

THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS " "AS IS'' AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. 1IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS

OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

C.3.3 Floating point exception control

The source for the fpect 1 module includes the following notice:

/ Copyright (c) 1996. \
The Regents of the University of California.
All rights reserved.

Permission to use, copy, modify, and distribute this software for
any purpose without fee is hereby granted, provided that this en-—
tire notice is included in all copies of any software which is or
includes a copy or modification of this software and in all
copies of the supporting documentation for such software.

This work was produced at the University of California, Lawrence
Livermore National Laboratory under contract no. W-7405-ENG-48
between the U.S. Department of Energy and The Regents of the
University of California for the operation of UC LLNL.

DISCLAIMER

This software was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States
Government nor the University of California nor any of their em-
ployees, makes any warranty, express or implied, or assumes any
liability or responsibility for the accuracy, completeness, or
usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe
privately-owned rights. Reference herein to any specific commer-
cial products, process, or service Dby trade name, trademark,
manufacturer, or otherwise, does not necessarily constitute or
imply its endorsement, recommendation, or favoring by the United
States Government or the University of California. The views and
opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or the University
of California, and shall not be used for advertising or product
\ endorsement purposes. /

C.3. Licenses and Acknowledgements for Incorporated Software 107

The Python Language Reference, & A| H{%& 2.7.18

C.3.4 MD5 message digest algorithm

The source code for the md5 module contains the following notice:

Copyright (C) 1999, 2002 Aladdin Enterprises. All rights reserved.

This software is provided 'as-is', without any express or implied
warranty. In no event will the authors be held liable for any damages
arising from the use of this software.

Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it
freely, subject to the following restrictions:

1. The origin of this software must not be misrepresented; you must not
claim that you wrote the original software. If you use this software
in a product, an acknowledgment in the product documentation would be
appreciated but is not required.

2. Altered source versions must be plainly marked as such, and must not be
misrepresented as being the original software.

3. This notice may not be removed or altered from any source distribution.

L. Peter Deutsch
ghost@aladdin.com

Independent implementation of MD5 (RFC 1321).

This code implements the MD5 Algorithm defined in RFC 1321, whose
text is available at

http://www.ietf.org/rfc/rfcl321.txt
The code is derived from the text of the RFC, including the test suite
(section A.5) but excluding the rest of Appendix A. It does not include
any code or documentation that is identified in the RFC as being
copyrighted.

The original and principal author of md5.h is L. Peter Deutsch
<ghost@aladdin.com>. Other authors are noted in the change history
that follows (in reverse chronological order):

2002-04-13 lpd Removed support for non-ANSI compilers; removed
references to Ghostscript; clarified derivation from RFC 1321;
now handles byte order either statically or dynamically.

1999-11-04 lpd Edited comments slightly for automatic TOC extraction.

1999-10-18 1lpd Fixed typo in header comment (ansi2knr rather than md5);
added conditionalization for C++ compilation from Martin
Purschke <purschke@bnl.gov>.

1999-05-03 1lpd Original version.

108 Appendix C. History and License

The Python Language Reference, £ A| H{%& 2.7.18

C.3.5 Asynchronous socket services

The asynchat and asyncore modules contain the following notice:

Copyright 1996 by Sam Rushing
All Rights Reserved

Permission to use, copy, modify, and distribute this software and
its documentation for any purpose and without fee is hereby
granted, provided that the above copyright notice appear in all
copies and that both that copyright notice and this permission
notice appear in supporting documentation, and that the name of Sam
Rushing not be used in advertising or publicity pertaining to
distribution of the software without specific, written prior
permission.

SAM RUSHING DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE,
INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN
NO EVENT SHALL SAM RUSHING BE LIABLE FOR ANY SPECIAL, INDIRECT OR
CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS
OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT,
NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

C.3.6 Cookie management

The Cookie module contains the following notice:

Copyright 2000 by Timothy O'Malley <timo@alum.mit.edu>
All Rights Reserved

Permission to use, copy, modify, and distribute this software

and its documentation for any purpose and without fee is hereby
granted, provided that the above copyright notice appear in all
copies and that both that copyright notice and this permission
notice appear in supporting documentation, and that the name of
Timothy O'Malley not be used in advertising or publicity

pertaining to distribution of the software without specific, written
prior permission.

Timothy O'Malley DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS
SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS, IN NO EVENT SHALL Timothy O'Malley BE LIABLE FOR
ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
PERFORMANCE OF THIS SOFTWARE.

C.3. Licenses and Acknowledgements for Incorporated Software 109

The Python Language Reference, & A| H{%& 2.7.18

C.3.7 Execution tracing

The t race module contains the following notice:

portions copyright 2001, Autonomous Zones Industries, Inc., all rights...
err... reserved and offered to the public under the terms of the

Python 2.2 license.

Author: Zooko O'Whielacronx

http://zooko.com/

mailto:zooko@zooko.com

Copyright 2000, Mojam Media, Inc., all rights reserved.
Author: Skip Montanaro

Copyright 1999, Bioreason, Inc., all rights reserved.
Author: Andrew Dalke

Copyright 1995-1997, Automatrix, Inc., all rights reserved.
Author: Skip Montanaro

Copyright 1991-1995, Stichting Mathematisch Centrum, all rights reserved.

Permission to use, copy, modify, and distribute this Python software and
its associated documentation for any purpose without fee is hereby
granted, provided that the above copyright notice appears in all copies,
and that both that copyright notice and this permission notice appear in
supporting documentation, and that the name of neither Automatrix,
Bioreason or Mojam Media be used in advertising or publicity pertaining to
distribution of the software without specific, written prior permission.

C.3.8 UUencode and UUdecode functions

The uu module contains the following notice:

Copyright 1994 by Lance Ellinghouse
Cathedral City, California Republic, United States of America.

All Rights Reserved
Permission to use, copy, modify, and distribute this software and its
documentation for any purpose and without fee is hereby granted,
provided that the above copyright notice appear in all copies and that
both that copyright notice and this permission notice appear in
supporting documentation, and that the name of Lance Ellinghouse
not be used in advertising or publicity pertaining to distribution
of the software without specific, written prior permission.
LANCE ELLINGHOUSE DISCLAIMS ALL WARRANTIES WITH REGARD TO
THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS, IN NO EVENT SHALL LANCE ELLINGHOUSE CENTRUM BE LIABLE
FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT
OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

Modified by Jack Jansen, CWI, July 1995:
— Use binascii module to do the actual line-by-line conversion
between ascii and binary. This results in a 1000-fold speedup. The C

(TF= ol ATl A%

110 Appendix C. History and License

The Python Language Reference, £ A| H{%& 2.7.18

(o] A sl o] A A M A%)

version is still 5 times faster, though.
- Arguments more compliant with Python standard

C.3.9 XML Remote Procedure Calls

The xmlrpclib module contains the following notice:

The XML-RPC client interface is

Copyright (c) 1999-2002 by Secret Labs AB
Copyright (c) 1999-2002 by Fredrik Lundh

By obtaining, using, and/or copying this software and/or its
associated documentation, you agree that you have read, understood,
and will comply with the following terms and conditions:

Permission to use, copy, modify, and distribute this software and
its associated documentation for any purpose and without fee is
hereby granted, provided that the above copyright notice appears in
all copies, and that both that copyright notice and this permission
notice appear in supporting documentation, and that the name of
Secret Labs AB or the author not be used in advertising or publicity
pertaining to distribution of the software without specific, written
prior permission.

SECRET LABS AB AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH REGARD
TO THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANT-
ABILITY AND FITNESS. 1IN NO EVENT SHALL SECRET LABS AB OR THE AUTHOR
BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY
DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
OF THIS SOFTWARE.

C.3.10 test_epoll

The test_epoll contains the following notice:

Copyright (c) 2001-2006 Twisted Matrix Laboratories.

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF

(TH& ST Aol A1)

C.3. Licenses and Acknowledgements for Incorporated Software 111

The Python Language Reference, & A| H{%& 2.7.18

(o] A sl o] A A M A%)

MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND

NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION

WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

C.3.11 Select kqueue

The select and contains the following notice for the kqueue interface:

Copyright (c) 2000 Doug White, 2006 James Knight, 2007 Christian Heimes
All rights reserved.

Redistribution and use in source and binary forms, with or without

modification, are permitted provided that the following conditions

are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS "~ "AS IS'' AND

ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS

OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

C.3.12 strtod and dtoa

The file Python/dtoa . ¢, which supplies C functions dtoa and strtod for conversion of C doubles to and from strings,
is derived from the file of the same name by David M. Gay, currently available from http://www.netlib.org/fp/. The
original file, as retrieved on March 16, 2009, contains the following copyright and licensing notice:

/*************~k***********~k~k*************************************
*

* The author of this software is David M. Gay.
*

* Copyright (c) 1991, 2000, 2001 by Lucent Technologies.

* Permission to use, copy, modify, and distribute this software for any

* purpose without fee is hereby granted, provided that this entire notice
* is included in all copies of any software which is or includes a copy

* or modification of this software and in all copies of the supporting

* documentation for such software.

* THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR IMPLIED

(TH& ST Aol A1)

112 Appendix C. History and License

http://www.netlib.org/fp/

The Python Language Reference, £ A|

H{™ 2.7.18

(o] A sl o] A A M A%)

* WARRANTY. 1IN PARTICULAR, NEITHER THE AUTHOR NOR LUCENT MAKES ANY
* REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE MERCHANTABILITY
* OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR PURPOSE.

*

***/

C.3.13 OpenSSL

The modules hashlib, posix, ssl, crypt use the OpenSSL library for added performance if made available by the
operating system. Additionally, the Windows and Mac OS X installers for Python may include a copy of the OpenSSL

libraries, so we include a copy of the OpenSSL license here:

LICENSE ISSUES

The OpenSSL toolkit stays under a dual license, i.e. both the conditions of
the OpenSSL License and the original SSLeay license apply to the toolkit.
See below for the actual license texts. Actually both licenses are BSD-style
Open Source licenses. In case of any license issues related to OpenSSL
please contact openssl-corelopenssl.org.

OpenSSL License

/ * = [e [==

* Copyright (c) 1998-2008 The OpenSSL Project. All rights reserved.

* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:

* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.

* 2. Redistributions in binary form must reproduce the above copyright

* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.

* 3. All advertising materials mentioning features or use of this

* software must display the following acknowledgment:
* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit. (http://www.openssl.org/)"

* 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to

* endorse or promote products derived from this software without

* prior written permission. For written permission, please contact
* openssl-core@openssl.org.

*

* 5. Products derived from this software may not be called "OpenSSL"

*

nor may "OpenSSL" appear in their names without prior written

* permission of the OpenSSL Project.
*
* 6. Redistributions of any form whatsoever must retain the following
* acknowledgment :
(TF= seTAT ol AI%)

C.3. Licenses and Acknowledgements for Incorporated Software

113

The Python Language Reference, & A| H{%& 2.7.18

(o] A sl o] A A M A%)

"This product includes software developed by the OpenSSL Project
for use in the OpenSSL Toolkit (http://www.openssl.org/)"

THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT " "AS IS'' AND ANY
EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE ARE DISCLAIMED. 1IN NO EVENT SHALL THE OpenSSL PROJECT OR
ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT

NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;

LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)

HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
OF THE POSSIBILITY OF SUCH DAMAGE.

This product includes cryptographic software written by Eric Young
(eay@cryptsoft.com). This product includes software written by Tim
Hudson (tjh@cryptsoft.com).

Original SSLeay License

*

L S SR T S S S . S S S S S T

*

*

Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
All rights reserved.

This package is an SSL implementation written
by Eric Young (eay@cryptsoft.com).
The implementation was written so as to conform with Netscapes SSL.

This library is free for commercial and non-commercial use as long as
the following conditions are aheared to. The following conditions
apply to all code found in this distribution, be it the RC4, RSA,
lhash, DES, etc., code; not just the SSL code. The SSL documentation
included with this distribution is covered by the same copyright terms
except that the holder is Tim Hudson (tjh@cryptsoft.com).

Copyright remains Eric Young's, and as such any Copyright notices in

the code are not to be removed.

If this package is used in a product, Eric Young should be given attribution
as the author of the parts of the library used.

This can be in the form of a textual message at program startup or

in documentation (online or textual) provided with the package.

Redistribution and use in source and binary forms, with or without

modification, are permitted provided that the following conditions

are met:

1. Redistributions of source code must retain the copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

3. All advertising materials mentioning features or use of this software

(TH& ST Aol A1)

114

Appendix C. History and License

The Python Language Reference, £ A| H{%& 2.7.18

(o] A sl o] A A M A%)

* must display the following acknowledgement:

* "This product includes cryptographic software written by

* Eric Young (eay@cryptsoft.com)"”

* The word 'cryptographic' can be left out if the rouines from the library

* being used are not cryptographic related :-).

* 4. If you include any Windows specific code (or a derivative thereof) from

* the apps directory (application code) you must include an acknowledgement:
* "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"

* THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ""AS IS'' AND

* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE

* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE

* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS

* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)

* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF

* SUCH DAMAGE.

* The licence and distribution terms for any publically available version or
* derivative of this code cannot be changed. 1i.e. this code cannot simply be
* copied and put under another distribution licence

* [including the GNU Public Licence.]

C.3.14 expat

The pyexpat extension is built using an included copy of the expat sources unless the build is configured
—--with-system-expat:

Copyright (c) 1998, 1999, 2000 Thai Open Source Software Center Ltd
and Clark Cooper

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

C.3. Licenses and Acknowledgements for Incorporated Software 115

The Python Language Reference, & A| H{%& 2.7.18

C.3.15 libffi

The _ctypes extension is built using an included copy of the libfli sources unless the build is configured
——with-system-1ibffi:

Copyright (c) 1996-2008 Red Hat, Inc and others.

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
‘*Software''), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED " "AS IS'', WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.

C.3.16 zlib

The z11ib extension is built using an included copy of the zlib sources if the zlib version found on the system is too old
to be used for the build:

Copyright (C) 1995-2010 Jean-loup Gailly and Mark Adler

This software is provided 'as-is', without any express or implied
warranty. In no event will the authors be held liable for any damages
arising from the use of this software.

Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it
freely, subject to the following restrictions:

1. The origin of this software must not be misrepresented; you must not
claim that you wrote the original software. If you use this software
in a product, an acknowledgment in the product documentation would be
appreciated but is not required.

2. Altered source versions must be plainly marked as such, and must not be
misrepresented as being the original software.

3. This notice may not be removed or altered from any source distribution.

Jean-loup Gailly Mark Adler
jloup@gzip.org madler@alumni.caltech.edu

116 Appendix C. History and License

APPENDIX D

sho] A3} o] EFRE o] AL
Copyright © 2001-2020 Python Software Foundation. All rights reserved.

Copyright © 2000 BeOpen.com. All rights reserved.

Copyright © 1995-2000 Corporation for National Research Initiatives. All rights reserved.
Copyright © 1991-1995 Stichting Mathematisch Centrum. All rights reserved.

AA 2ol Al W AR A A X = History and License ol A1 A& 3T},

=

117

The Python Language Reference, & A| H{%& 2.7.18

118 Appendix D. x{Zt#

1=
ro

Non-alphabetical

89

oo
Il

augmented
&=
augmented

assignment, 66

assignment, 66

in function calls,53

2,81

* *

in function calls,53

2,81

* k=

augmented

augmented
+=

augmented
//=

augmented
/=

augmented
2to3, 89
<<=

augmented

assignment, 66
assignment, 66
assignment, 66
assignment, 66

assignment, 66

assignment, 66

assignment statement, 64

augmented
>>=

augmented
>>> 89

augmented

assignment, 66

assignment, 66

assignment, 66

__abs__ () (object Ml A=), 36
__add__ () (object Wl =), 35

__all__ (optional module attribute), 71

__and__ () (object | =), 35
_ _bases__ (class attribute), 21
_ _builtin_
8 5,73,83
__builtins_ ,73
__call__ () (object method), 54
__call__ () (object WA =), 32
_ class__ (instance attribute), 22
__closure__ (function attribute), 19

__cmp__ () (object Bl &), 27
___code___ (function attribute), 19
__coerce__ () (object Ml A =), 37
__complex__ () (object M| A =), 36
__contains__ () (object M| A &), 33
__debug__, 66

__defaults__ (function attribute), 19
__del__ () (object A=), 25
__delattr__ () (object MIA =), 28
__delete_ () (object W]A =), 29
__delitem__ () (object WA =), 33
__delslice__ () (object M| A E), 34

__dict__ (class attribute), 21
__dict__ (function attribute), 19
__dict__ (instance attribute), 22, 28
__dict__ (module attribute), 21
__div__ () (object M| =), 35
__divmod__ () (object Wl A =), 35
__doc__ (class attribute), 21
__doc___ (function attribute), 19
__doc___ (method attribute), 19
__doc__ (module attribute), 21

__enter__ () (object W] A =), 38
__eq__ () (object M| =), 26
__exit__ () (object M| A=), 38

_ file_ ,71

_ file_ (module attribute), 21

_ float__ () (object W] A &), 36

_ floordiv__ () (object M| A &), 35
_ future_ ,92

__ge__ () (object M| A =), 26

119

The Python Language Reference, & A| H{%& 2.7.18

__get__ () (object M|A =), 29
__getattr__ () (object WA =), 28
__getattribute__ () (object WA XZ), 28
__getitem__ () (mapping object method), 24
__getitem__ () (object M]A =), 32
__getslice_ () (object M|A), 34
__globals__ (function attribute), 19
__gt__ () (object H| A =), 26
__hash__ () (object | A &), 27
__hex__ () (object | A=), 36
__iadd__ () (object A =), 36
__iand__ () (object Wl A =), 36
__idiv__() (object A), 36
__ifloordiv__ () (object M| X =), 36
__ilshift__ () (object M| X =), 36
__imod__ () (object W] A =), 36
__imul__ () (object WA =), 36
__index__ () (object M| A &), 36
__init__ () (object method), 21
__init__ () (object WA E), 25
__instancecheck__ () (class W] A &), 31
__int__ () (object M| =), 36
__invert__ () (object Ml A =), 36
__ior__ () (object M| A =), 36
__ipow__ () (object WA =), 36
__irshift__ () (object |X =), 36
__isub__ () (object] =), 36
__iter__ () (object WA =), 33
__itruediv__ () (object M| A=), 36
__ixor__ () (object M| A =), 36
__le_ () (object M| A =), 26
_ _len__ () (mapping object method), 27
__len__ () (object A =), 32
_ loader_ ,71
__long__ () (object | A =), 36
__1shift__ () (object WA =), 35
__1t__ () (object Wl A =), 26
__main___

2 5 42,83
_ metaclass__ (W& W4, 31
__missing__ () (object WA =), 33
__mod__ () (object | =), 35

_ _module__ (class attribute), 21
__module___ (function attribute), 19
__module___ (method attribute), 19
_mul__ () (object Wl =), 35

_ _name__ ,71

__name___(class attribute), 21
__name___ (function attribute), 19
__name___ (method attribute), 19
__name___ (module attribute), 21

__nonzero___ () (object method), 32
__nonzero__ () (object A=), 27
__oct__ () (object Wl A =), 36
__or__() (object M=), 35
__package_ ,71
__path_ ,70,71
__pos__ () (object Wl =), 36
__pow__ () (object {| A=), 35
__radd__ () (object H| A =), 35
rand__ () (object W] A E), 35
__rcmp__ () (object ©lA &), 27
_ rdiv__ () (object H| A =), 35
__rdivmod__ () (object WA =), 35
__repr__ () (object Wl A =), 26
__reversed__ () (object M| A &), 33
_ rfloordiv__ () (object M| A &), 35
__rlshift_ () (object M|A =), 35
__rmod__ () (object W] A =), 35
__rmul__ () (object WA =), 35
__ror__() (object | =), 35
__rpow__ () (object W] A E), 35
__rrshift_ () (object MIAZ=), 35
__rshift__ () (objea WA =), 35
__rsub__ () (object H| A =), 35
__rtruediv__ () (object M| A &), 35
__rxor__ () (object W] A E), 35
__set__ () (object M| =), 29
__setattr__ () (object method), 28
__setattr__ () (object WA X=),28
__setitem_ () (object MIA =), 33
__setslice__ () (object M| A=), 34
__slots_ ,96

_ slots__ (W& ¥4, 30
__str__ () (object Wl =), 26
__sub__ () (object M| =), 35
__subclasscheck__ () (class M| A £), 32
__truediv__ () (object WA =), 35
__unicode__ () (object M| X =), 27
__xor__ () (object ¥l A &), 35
|:
augmented assignment, 66
ik
Boolean, 17
built-in function, 20, 54
built-in method, 20, 54
callable, 18,52
class, 21, 54, 81
class instance, 21,22, 54
complex, 17
dictionary, 18,21, 27,48, 51, 65
Ellipsis, 16

__ne__ () (object M| A), 26 file, 22,84

__neg__() (object M| A =), 36 floating point, 17

__new__ () (object | X =), 25 frame, 23

120 AHO|

The Python Language Reference, £ A| H{%& 2.7.18

frozenset, 18 and, 60
function, 19, 20, 54, 80 in, 59
generator, 22, 48, 50 is, 59
immutable, 17 is not, 59
immutable sequence, 17 not, 60
instance, 21, 22, 54 not in, 59
integer, 16 or, 60
list, 18,47,51, 52,65 A<
long integer, 17 AssertionError, 66
mapping, 18,22, 51, 65 AttributeError, 51
method, 19, 20, 54 GeneratorExit, 50
module, 21, 51 ImportError, 71
mutable, 18, 64, 65 NameError, 46
mutable sequence, 18 RuntimeError, 67
None, 16, 64 StopIteration, 50, 68
NotImplemented, 16 TypeError, 55
numeric, 16, 22 ValueError, 56
plain integer, 16 ZeroDivisionError, 55
recursive, 49
sequence, 17, 22,51, 52,59, 65,76 A
set, 18,49 abs
set type, 18 “fEF Sh4, 36
slice, 33 abstract base class (F4 o] Zd), 89
string, 17,51,52 addition, 56
traceback, 23, 69, 78 and
tuple, 18,51, 52, 61 bitwise, 56
unicode, 17 S AF=F 60
user—-defined function, 19,54, 80 anonymous
user—-defined method, 19 function, 60
= argument
*, 81 call semantics, 52
** 81 function, 18
@, 80 function definition, 80
assert, 66 argument (S1A}), 89
break, 69, 76, 78 arithmetic
class, 81 conversion, 45
continue, 70, 76, 78 operation, binary, 55
def, 80 operation, unary, 55
del, 25, 67 array
exec, 73 25, 18
for, 69, 70, 76 as
from, 41 import statement, 70
global, 64,67,73 with statement, 79
if,76 ASCII@ASCITI,4, 10,11, 14,17
import, 21, 70 assert
pass, 67 2,606
print, 26, 67 AssertionError
raise, 69 <, 66
return, 68, 78 assertions
try, 23,77 debugging, 66
while, 69, 70, 76 assignment
with, 38,79 attribute, 64
yield, 68 augmented, 66
o k= class attribute, 21
AHO| 121

The Python Language Reference, & A| H{%& 2.7.18

class instance attribute, 22

slicing, 65
statement, 18, 64
subscription, 65
target list, 64

atom, 46

attribute, 16
assignment, 64
assignment, class, 21

assignment, class instance, 22

class, 21
class instance, 22
deletion, 67
generic special, 16
reference, 51
special, 16
attribute (MJEZHE), 90
AttributeError
<<, 51
augmented
assignment, 66

B

back-quotes, 26, 49
backslash character,7
backward
quotes, 26, 49
BDFL, 90
binary
arithmetic operation, 55
bitwise operation, 56
binary literal, 2
binding
global name, 73
name, 41, 64, 70, 71, 80, 81
bitwise
and, 56
operation,binary, 56
operation, unary, 55
or, 56
xor, 56
blank line,7
block, 41
code, 41
BNF, 4, 45
Boolean
operation, 60
AL 17
break
2,69,76,78
bsddb
25 18
built-in
method, 20

built-in function
call, 54
A, 20, 54
built-in method
call, 54
A, 20, 54
byte, 17
bytearray, 18
bytecode, 22
bytecode (H}o]|E F &), 90
bytes—like object (H}o|EEH

C

c, 11
language, 16, 17, 20, 57

call, 52
built—-in function, 54
built-in method, 54
class instance, 54
class object, 21,54
function, 18, 54
instance, 32, 54
method, 54
procedure, 64
user—-defined function, 54

callable
A, 18, 52

chaining
comparisons, 57

character, 17,51

character set, 17

chr
e wrs, 17

class
attribute, 21
attribute assignment, 21
classic, 24
constructor, 25
definition, 68, 81
instance, 22
name, 81
new-style, 24
old-style, 24
A, 21, 54, 81
2,81

class (8 2), 90

class instance
attribute, 22
attribute assignment, 22
call, 54
AL 21, 22, 54

class object
call, 21, 54

classic class, 90

AA, 90

122

it

The Python Language Reference, £ A| H{%& 2.7.18

clause, 75
close () (generator W A E), 50
cmp

SIS w27
co_argcount (code object attribute), 22
co_cellvars (code object attribute), 22
co_code (code object attribute), 22
co_consts (code object attribute), 22
co_filename (code object attribute), 22
co_firstlineno (code object attribute), 22
co_flags (code object attribute), 22
co_freevars (code object attribute), 22
co_lnotab (code object attribute), 22
co_name (code object attribute), 22
co_names (code object attribute), 22
co_nlocals (code object attribute), 22
co_stacksize (code object attribute), 22
co_varnames (code object attribute), 22
code

block, 41
code object, 22
coercion (Zo]A), 90
comma, 47

trailing, 61, 67
command line, 83
comment, 6
comparison, 57

string, 17
comparisons, 26, 27

chaining, 57
compile

SiEoErs, 73
complex

literal, 12

number, 17

AL 17

SiE e, 36
complex number (B4), 90
compound

statement, 75
comprehensions

list,47
Conditional

expression, 60
conditional

expression, 60
constant, 10
constructor

class, 25
container, 16, 21
context manager, 38
context manager (AEAE FHE| A}, 90
continue

2,70,76,78

conversion
arithmetic, 45
string, 26, 49, 64

coroutine, 50

CPython, 90

D
dangling

else, 76
data, 15

type, 16

type, immutable, 46
datum, 48
dbm

3%, 18
debugging

assertions, 66
decimal literal, 12
decorator (d/Z 3 °]€), 90
DEDENT token, 8,76
def

2,80
default

parameter value, 80
definition

class, 68, 81

function, 68, 80
del

2,25,67
deletion

attribute, 67

target, 67

target list, 67
delimiters, 14
descriptor (A= HH), 91
destructor, 25, 64
dictionary

display, 48

A, 18,21, 27,48, 51, 65
dictionary (944 %), 91
dictionary view (844 g ¥) 91
display

dictionary, 48

list, 47

set, 49

tuple, 47
division, 55
divmod

SiEE g+, 35,36
docstring, 81
docstring (E2~EH), 91
documentation string, 23
duck-typing (4 B}e]3), 91

123

The Python Language Reference, & A| H{%& 2.7.18

E

EAFP, 91
EBCDIC, 17
elif
"I E, 76
Ellipsis
A, 16
else
dangling, 76
S E, 69,76, 78

empty
list, 47
tuple, 18,47

encoding declarations (source file), 6

environment, 41
error handling,43
errors, 43
escape sequence, 11
eval
SiE b4+, 73, 84
evaluation
order, 61
exc_info (in module sys), 23
exc_traceback (in module sys), 23,78
exc_type (in module sys), 78
exc_value (in module sys), 78
except
e, 7T
exception, 43, 69
handler, 23
raising, 69
exception handler,43
exclusive
or, 56
exec
2,73
execfile
SiE s, 73
execution
frame, 41, 81
restricted, 42
stack, 23
execution model, 41
expression,45
Conditional, 60
conditional, 60
generator, 48
lambda, 60, 81
list, 61,063,064
statement, 63

extended print statement, 68
extended slicing, 17
extension

module, 16
extension module (B# 2 &), 91

F

f_back (frame attribute), 23
f_builtins (frame attribute), 23
f_code (frame attribute), 23
f_exc_traceback (frame attribute), 23
f_exc_type (frame attribute), 23
f_exc_value (frame attribute), 23
f_globals (frame attribute), 23
f_lasti (frame attribute), 23
f_lineno (frame attribute), 23
f_locals (frame attribute), 23
f_restricted (frame attribute), 23
f_trace (frame attribute), 23
False, 17
file

i), 22, 84
file object (3} AA)), 91
file—-like object (F<F AA), 91
finally

S =, 6870,77,78
find_module

finder, 70
finder, 70

find_module, 70
finder (3}), 92
float

e wrs, 36
floating point

number, 17

A, 17
floating point literal, 12
floor division (B4 U=, 92
for

2,69,70,76
frame

execution, 41, 81

A, 23
free

variable, 41, 67
from

2,41

AIHE,70
frozenset

AL 18

yield, 49 func_closure (function attribute), 19
expression (& 4]), 91 func_code (function attribute), 19
extended func_defaults (function attribute), 19
slicing, 52 func_dict (function attribute), 19
124 AHO|

The Python Language Reference, £ A| H{%& 2.7.18

func_doc (function attribute), 19
func_globals (function attribute), 19
func_name (function attribute), 19
function
anonymous, 60
argument, 18
call, 18, 54
call, user—-defined, 54
definition, 68, 80
generator, 49, 68
name, 80
user—defined, 19
A, 19, 20, 54, 80
function (&), 92
future
statement, 72

G

garbage collection, 15
garbage collection (7F8]A] 7)), 92
gdbm
25,18
generator, 92
expression, 48
function, 20, 49, 68
iterator, 20, 68
A, 22, 48, 50
generator (A g o]), 92
generator expression,92
generator expression (AUd@ olE &4, 92
GeneratorExit
<, 50
generic
special attribute, 16
GIL, 92
global
name binding, 73
namespace, 19
2,64,67,73
global interpreter lock (A< 9 ¥ = g H
=), 92
globals
SiEoEs, 73
grammar, 4
grouping, 7

F{

handle an exception,43
handler

exception, 23
hash

e s, 27
hash character, 6
hashable, 48

hashable (3] A] 7}%), 92
hex

ShE w36
hexadecimal literal, 12
hierarchy

type, 16

|
id

SiE s, 1S
identifier, 9,46
identity

test, 59
identity of an object, 15
IDLE, 93
if

2,76
im_class (method attribute), 20
im_ func (method attribute), 19, 20
im_self (method attribute), 19, 20
imaginary literal, 12
immutable

data type, 46

object, 46, 48

AL 17
immutable (£W), 93
immutable object, 15
immutable sequence

AL 17
immutable types

subclassing, 25
import

2,21,70
importer (¥ X H), 93
ImportError

A<, 71
importing (¥4 xH), 93
in

o LH=, 59

I E,76
inclusive

or, 56
INDENT token,8
indentation, 7
index operation, 17
indices () (slice Ml A &), 23
inheritance, 81
input, 84

raw, 84

S s, 84
instance

call, 32,54

class, 22

AL 21, 22, 54

AHO|
1 -

125

The Python Language Reference, & A| H{%& 2.7.18

int

HE s, 36
integer, 17

representation, 17

a3, 16
integer division, 93
integer literal, 12
interactive (th39), 93
interactive mode, 83
internal type, 22
interpreted (QAE Z 2 E X), 93
interpreter, 83
inversion, 55
invocation, 18

is
a L=, 59
is not
o L= 59
item
sequence, 51
string, 51

item selection, 17
iterable (°]E & £), 93
iterator (°]€d o] E), 93

J

Java
language, 17

K

key, 48

key function (7] <), 93
key/datum pair, 48

keyword, 9

keyword argument (7] = 212}, 94

L

lambda

expression, 60, 81
lambda (&t}), 94
language

c, 16,17, 20, 57

Java, 17

Pascal, 77
last_traceback (in module sys), 23
LBYL, 94
leading whitespace,7
len

SHE SR, 17, 18,32
lexical analysis,5
lexical definitions,4
line continuation,?7
line joining,6,7
line structure,5

list
assignment, target, 64
comprehensions, 47
deletion target, 67
display, 47
empty, 47
expression, 61, 63, 64
target, 64,76
AL 18,47,51, 52,65
list (Y 2E), 94

list comprehension (B|2E AZE3NA), 94

literal, 10, 46
load_module
loader, 71
loader, 71
load_module, 71
loader (24), 94
locals
SN w s, 73
logical line, 6
long
SiE w36
long integer
AL 17
long integer literal, 12
loop
over mutable sequence, 77
statement, 69, 70, 76
loop control
target, 69

M

magic
method, 94
magic method, 94
makefile () (socket method), 22
mangling
name, 46
mapping
A, 18, 22, 51, 65
mapping ("3), 94
membership
test, 59
metaclass (W EF Z3), 94
method
built-in, 20
call, 54
magic, 94
special, 96
user—defined, 19
a0, 19, 20, 54
method (WA &), 94

method resolution order (WAE ZAA <A,

94

126

it

The Python Language Reference, £ A| H{%& 2.7.18

minus, 55
module
extension, 16
importing, 70
namespace, 21
AL 21, 51
module (X&), 94
modulo, 55
MRO, 95
multiplication, 55
mutable
WA, 18, 64, 65
mutable (7}W), 95
mutable object, 15
mutable sequence
loop over, 77
AL 18

N

name, 9, 41, 46
binding, 41, 64, 70, 71, 80, 81
binding, global, 73
class, 81
function, 80
mangling, 46
rebinding, 64
unbinding, 67
named tuple (M|Y9= F=),95
NameError
A<, 46
NameError (built-in exception), 41
names
private, 46
namespace, 41
global, 19
module, 21
namespace (°] & &7}, 95
negation, 55
nested scope (FHH £~F2Z),95
new-style class (F2EFY Z#2), 95
newline
suppression, 67
NEWLINE token,6,76
next () (generator M| A =), 50

operation, 67
number, 12

complex, 17

floating point, 17
numeric

A, 16, 22

numeric literal, 12

O

object, 15
code, 22
immutable, 46, 48
object (AA)), 95
oct
S w A, 36
octal literal, 12
open
SiEE wrs, 22
operation
binary arithmetic, 55
binary bitwise, 56
Boolean, 60
null, 67
shifting, 56
unary arithmetic, 55
unary bitwise, 55
operator
overloading, 24
precedence, 61
ternary, 60
operators, 13
or
bitwise, 56
exclusive, 56
inclusive, 56
o LF=r, 60
ord
SiEoEs, 17
order
evaluation, 61
output, 64, 67
standard, 64, 67
OverflowError (built-in exception), 16
overloading

None operator, 24
A, 16, 64
not P
°._'j' <=, 60 package, 70
not in package (3] 7] A)), 95
3,59 parameter
notation, 4 call semantics,53
NotImplemented function definition, 79
A, 16 value, default, 80
null parameter (321), 95
AHO| 127

The Python Language Reference, & A| H{%& 2.7.18

parenthesized form,47
parser, 5
Pascal

language, 77
pass

2,67
PEP, 96
physical line,6,7, 11
plain integer

AL 16
plain integer literal, 12
plus, 55
popen () (in module os), 22
positional argument (§ %] 212}, 96
pow

SiE g, 35,36
precedence

operator, 61
primary, 51
print

2,26, 67
private

names, 46
procedure

call, 64
program, 83
Python 3000 (o] % 3000), 96
Pythonic (3Z}o] M TH), 96

Q

quotes
backward, 26, 49
reverse, 26, 49

R

raise

2,69
raise an exception,43
raising

exception, 69
range

SHEE ks, 77
raw input, 84
raw string, 10
raw_input

SiE s, 84
readline () (file method), 84
rebinding

name, 64
recursive

A, 49
reference

attribute, 51
reference count (ZZx 3), 96

reference counting, 15
relative
import, 71
repr
SiEE g, 26,49, 64
representation
integer, 17
reserved word,9
restricted
execution, 42
return
2,68,78
reverse
quotes, 26, 49
RuntimeError

A, 67

S

scope, 41
send () (generator W] A &), 50
sequence
item, 51
A, 17,22, 51, 52, 59, 65,76
sequence (A]&A2), 96
set
display, 49
AL 18, 49
set type
AL 18
shifting
operation, 56
simple
statement, 63
singleton
tuple, 18
slice, 52
I, 33
ShE s, 23
slice (£8}o]2), 96
slicing, 17, 18,52
assignment, 65
extended, 52
source character set,6
space, 7
special
attribute, 16
attribute, generic, 16
method, 96
special method (54 WA E), 96
stack
execution, 23
trace, 23
standard
output, 64, 67

128

it

The Python Language Reference, £ A| H{%& 2.7.18

Standard C, 11 T

standard input, 83 tab, 7

start (slice object attribute), 23, 52 target, 64

statement deletion, 67
assignment, 18, 64 list, 64,76
assignment, augmented, 66 list assignment, 64
compound, 75 list,deletion, 67
expression, 63 loop control, 69
future, 72 tb_frame (traceback attribute), 23
loop, 69, 70, 76 tb_lasti (traceback attribute), 23
simple, 63 tb_lineno (traceback attribute), 23

statement (&%), 96 tb_next (traceback attribute), 23

statement grouping,7 termination model, 43

stderr (in module sys), 22 ternary

stdin (in module sys), 22 operator, 60

stdio, 22 test
stdout (in module sys), 22, 67 identity, 59
step (slice object attribute), 23, 52 membership, 59
stop (slice object attribute), 23, 52 throw () (generator T A =), 50
StopIteration token, 5
1<, 50, 68 trace
str stack, 23
SNE A, 26,49 traceback
string A, 23, 69, 78
comparison, 17 trailing
conversion, 26, 49, 64 comma, 61, 67
item, 51 triple-quoted string (A& 2% H EX19),
Unicode, 10 97
A, 17, 51,52 triple-quoted string, 10
string literal, 10 True, 17
struct sequence (F-Z A A|A2X), 96 try
subclassing 2,23,77
immutable types, 25 tuple
subscription, 17, 18,51 display, 47
assignment, 65 empty, 18,47
subtraction, 56 singleton, I8
suite, 75 A, 18,51, 52,61
suppression type, 16
newline, 67 data, 16
syntax, 4, 45 hierarchy, 16
SYs immutable data, 46
1 %,67,78,83 HE E A, 15
sys.exc_info, 23 type (3), 97
sys.exc_traceback, 23 type of an object, 15
sys.last_traceback, 23 TypeError
sys.meta_path, 70 <], 55
sys.modules, 70 types, internal,?22
sys.path, 70
sys.path_hooks, 70 U
sys.path_importer_cache, 70 unary

sys.stderr, 22

sys.stdin, 22

sys.stdout, 22

SystemExit (built-in exception), 43

arithmetic operation, 55

bitwise operation, 55
unbinding

name, 67

AHO| 129

The Python Language Reference, & A| H{%& 2.7.18

UnboundLocalError, 41
unichr
SiEE rE, 17
Unicode, 17
unicode
A, 17
S 24, 17,27
Unicode Consortium, 10
universal newlines ((F+UWA = 3d7), 97
UNIX, 83
unreachable object, 15
unrecognized escape sequence, 11
user-defined
function, 19
function call, 54
method, 19
user—-defined function
a0, 19, 54, 80
user-defined method

globals, 73
hash, 27

hex, 36

id, 15

input, 84

int, 36

len, 17,18, 32
locals, 73
long, 36

oct, 36

open, 22

ord, 17

pow, 35, 36
range, 77
raw_input, 84
repr, 26, 49, 64
slice, 23

str, 26,49
type, 15

A, 19 unichr, 17
unicode, 17,27
v .
value _ _builtin_ ,73,83
default parameter, 80 __main__ ,42,83
value of an object, 15 array, 18
ValueError bsddb, 18
<], 56 dbm, 18
values gdbm, 18
writing, 64, 67 sys, 67,78, 83
variable XOor
free, 41, 67 bitwise, 56
virtual environment (7} #7), 97
virtual machine (7} 71A), 97 Y
Y E
W elif, 76
while else, 69, 76, 78
2,69, 70,76 except, 77
whitespace, 7 finally, 6870,77,78
with from, 70
2,38,79 in, 76
writing yield, 49
values, 64, 67 i Il el -~ B |
PEP 1,96
)(PEP 236,73
Sz oA PEP 238,92
abs, 36 PEP 255,69
chr, 17 PEP 278,97
cmp, 27 PEP 302,70,71,92,94
compile, 73 PEP 308,60
complex, 36 PEP 328,71
divmod, 35, 36 PEP 342,51,69
eval, 73, 84 PEP 343, 38,79, 90
execfile, 73 PEP 3116,97
float, 36 PEP 3119,32
130 AHO|

The Python Language Reference, £ A| H{%& 2.7.18

yield
expression, 49
, 68
19 =,49

Z

Zen of Python (3to]A Al), 97
ZeroDivisionError
1<, 55

e 131

	개요
	대안 구현들
	표기법

	구문 분석
	줄 구조(Line structure)
	다른 토큰들
	식별자와 키워드
	리터럴
	연산자
	구분자

	데이터 모델
	객체, 값, 형
	표준형 계층
	New-style and classic classes
	특수 메서드 이름들

	실행 모델
	이름과 연결(binding)
	예외

	표현식
	산술 변환
	아톰 (Atoms)
	프라이머리
	거듭제곱 연산자
	일 항 산술과 비트 연산
	이항 산술 연산
	시프트 연산
	이항 비트 연산
	비교
	논리 연산(Boolean operations)
	Conditional Expressions
	람다(Lambdas)
	표현식 목록(Expression lists)
	값을 구하는 순서
	연산자 우선순위

	단순문(Simple statements)
	표현식 문
	대입문
	assert 문
	pass 문
	del 문
	The print statement
	return 문
	yield 문
	raise 문
	break 문
	continue 문
	임포트(import) 문
	global 문
	The exec statement

	복합문(Compound statements)
	if 문
	while 문
	for 문
	try 문
	with 문
	함수 정의
	클래스 정의

	최상위 요소들
	완전한 파이썬 프로그램
	파일 입력
	대화형 입력
	표현식 입력

	전체 문법 규격
	용어집
	About these documents
	Contributors to the Python Documentation

	History and License
	History of the software
	Terms and conditions for accessing or otherwise using Python
	Licenses and Acknowledgements for Incorporated Software

	저작권
	색인

