dataclasses --- Data Classes

ソースコード: Lib/dataclasses.py


このモジュールは、__init__()__repr__() のような special method (特殊メソッド)を生成し、ユーザー定義のクラスに自動的に追加するデコレータや関数を提供します。このモジュールは PEP 557 に記載されました。

これらの生成されたメソッドで利用されるメンバー変数は PEP 526 型アノテーションを用いて定義されます。例えば、このコードでは:

from dataclasses import dataclass

@dataclass
class InventoryItem:
    """Class for keeping track of an item in inventory."""
    name: str
    unit_price: float
    quantity_on_hand: int = 0

    def total_cost(self) -> float:
        return self.unit_price * self.quantity_on_hand

will add, among other things, a __init__() that looks like:

def __init__(self, name: str, unit_price: float, quantity_on_hand: int = 0):
    self.name = name
    self.unit_price = unit_price
    self.quantity_on_hand = quantity_on_hand

このメソッドは自動的にクラスに追加される点に留意して下さい。上記の InventoryItem クラスの定義中にこのメソッドが直接明記されるわけではありません。

バージョン 3.7 で追加.

モジュールの内容

@dataclasses.dataclass(*, init=True, repr=True, eq=True, order=False, unsafe_hash=False, frozen=False, match_args=True, kw_only=False, slots=False, weakref_slot=False)

This function is a decorator that is used to add generated special methods to classes, as described below.

The @dataclass decorator examines the class to find fields. A field is defined as a class variable that has a type annotation. With two exceptions described below, nothing in @dataclass examines the type specified in the variable annotation.

生成されるすべてのメソッドの中でのフィールドの順序は、それらのフィールドがクラス定義に現れた順序です。

The @dataclass decorator will add various "dunder" methods to the class, described below. If any of the added methods already exist in the class, the behavior depends on the parameter, as documented below. The decorator returns the same class that it is called on; no new class is created.

If @dataclass is used just as a simple decorator with no parameters, it acts as if it has the default values documented in this signature. That is, these three uses of @dataclass are equivalent:

@dataclass
class C:
    ...

@dataclass()
class C:
    ...

@dataclass(init=True, repr=True, eq=True, order=False, unsafe_hash=False, frozen=False,
           match_args=True, kw_only=False, slots=False, weakref_slot=False)
class C:
    ...

The parameters to @dataclass are:

  • init: (デフォルトの)真の場合、 __init__() メソッドが生成されます。

    If the class already defines __init__(), this parameter is ignored.

  • repr: (デフォルトの)真の場合、 __repr__() メソッドが生成されます。 生成された repr 文字列には、クラス名、各フィールドの名前および repr 文字列が、クラス上での定義された順序で並びます。 repr から除外するように印が付けられたフィールドは、 repr 文字列には含まれません。 例えば、このようになります: InventoryItem(name='widget', unit_price=3.0, quantity_on_hand=10)

    If the class already defines __repr__(), this parameter is ignored.

  • eq: (デフォルトの)真の場合、 __eq__() メソッドが生成されます。このメソッドはクラスの比較を、そのクラスのフィールドからなるタプルを比較するように行います。比較する2つのインスタンスのクラスは同一でなければなりません。

    If the class already defines __eq__(), this parameter is ignored.

  • order: 真 (デフォルト値は False) の場合、 __lt__()__le__()__gt__()__ge__() メソッドが生成されます。これらの比較は、クラスをそのフィールドからなるタプルであるかのように取り扱います。比較される2つのインスタンスは、同一の型でなければなりません。もし order が true で、 eq に falseを指定すすると、ValueError が送出されます。

    If the class already defines any of __lt__(), __le__(), __gt__(), or __ge__(), then TypeError is raised.

  • unsafe_hash: (デフォルトの) False の場合、 eqfrozen がどう設定されているかに従って __hash__() メソッドが生成されます。

    __hash__() is used by built-in hash(), and when objects are added to hashed collections such as dictionaries and sets. Having a __hash__() implies that instances of the class are immutable. Mutability is a complicated property that depends on the programmer's intent, the existence and behavior of __eq__(), and the values of the eq and frozen flags in the @dataclass decorator.

    By default, @dataclass will not implicitly add a __hash__() method unless it is safe to do so. Neither will it add or change an existing explicitly defined __hash__() method. Setting the class attribute __hash__ = None has a specific meaning to Python, as described in the __hash__() documentation.

    If __hash__() is not explicitly defined, or if it is set to None, then @dataclass may add an implicit __hash__() method. Although not recommended, you can force @dataclass to create a __hash__() method with unsafe_hash=True. This might be the case if your class is logically immutable but can still be mutated. This is a specialized use case and should be considered carefully.

    Here are the rules governing implicit creation of a __hash__() method. Note that you cannot both have an explicit __hash__() method in your dataclass and set unsafe_hash=True; this will result in a TypeError.

    If eq and frozen are both true, by default @dataclass will generate a __hash__() method for you. If eq is true and frozen is false, __hash__() will be set to None, marking it unhashable (which it is, since it is mutable). If eq is false, __hash__() will be left untouched meaning the __hash__() method of the superclass will be used (if the superclass is object, this means it will fall back to id-based hashing).

  • frozen: 真 (デフォルト値は False) の場合、フィールドへの代入は例外を生成します。 これにより読み出し専用の凍結されたインスタンスを模倣します。 __setattr__() あるいは __delattr__() がクラスに定義されていた場合は、 TypeError が送出されます。 後にある議論を参照してください。

  • match_args: If true (the default is True), the __match_args__ tuple will be created from the list of parameters to the generated __init__() method (even if __init__() is not generated, see above). If false, or if __match_args__ is already defined in the class, then __match_args__ will not be generated.

バージョン 3.10 で追加.

  • kw_only: If true (the default value is False), then all fields will be marked as keyword-only. If a field is marked as keyword-only, then the only effect is that the __init__() parameter generated from a keyword-only field must be specified with a keyword when __init__() is called. There is no effect on any other aspect of dataclasses. See the parameter glossary entry for details. Also see the KW_ONLY section.

バージョン 3.10 で追加.

  • slots: If true (the default is False), __slots__ attribute will be generated and new class will be returned instead of the original one. If __slots__ is already defined in the class, then TypeError is raised.

バージョン 3.10 で追加.

バージョン 3.11 で変更: If a field name is already included in the __slots__ of a base class, it will not be included in the generated __slots__ to prevent overriding them. Therefore, do not use __slots__ to retrieve the field names of a dataclass. Use fields() instead. To be able to determine inherited slots, base class __slots__ may be any iterable, but not an iterator.

  • weakref_slot: If true (the default is False), add a slot named "__weakref__", which is required to make an instance weakref-able. It is an error to specify weakref_slot=True without also specifying slots=True.

バージョン 3.11 で追加.

フィールド には、通常の Python の文法でデフォルト値を指定できます。

@dataclass
class C:
    a: int       # 'a' has no default value
    b: int = 0   # assign a default value for 'b'

この例では、生成された __init__() メソッドには ab の両方が含まれ、以下のように定義されます:

def __init__(self, a: int, b: int = 0):

デフォルト値を指定しないフィールドを、デフォルト値を指定したフィールドの後ろに定義すると、 TypeError が送出されます。これは、単一のクラスであっても、クラス継承の結果でも起きえます。

dataclasses.field(*, default=MISSING, default_factory=MISSING, init=True, repr=True, hash=None, compare=True, metadata=None, kw_only=MISSING)

For common and simple use cases, no other functionality is required. There are, however, some dataclass features that require additional per-field information. To satisfy this need for additional information, you can replace the default field value with a call to the provided field() function. For example:

@dataclass
class C:
    mylist: list[int] = field(default_factory=list)

c = C()
c.mylist += [1, 2, 3]

As shown above, the MISSING value is a sentinel object used to detect if some parameters are provided by the user. This sentinel is used because None is a valid value for some parameters with a distinct meaning. No code should directly use the MISSING value.

The parameters to field() are:

  • default: If provided, this will be the default value for this field. This is needed because the field() call itself replaces the normal position of the default value.

  • default_factory: 提供されていた場合、0 引数の呼び出し可能オブジェクトでなければならず、このフィールドの初期値が必要になったときに呼び出されます。 他の目的も含めて、下で議論されているように、フィールドに可変なデフォルト値を指定するのに使えます。 defaultdefault_factory の両方を指定するとエラーになります。

  • init: (デフォルトの)真の場合、 生成される __init__() メソッドの引数にこのフィールドを含めます。

  • repr: (デフォルトの)真の場合、生成される __repr__() メソッドによって返される文字列に、このフィールドを含めます。

  • hash: これは真偽値あるいは None に設定できます。 真の場合、このフィールドは、生成された __hash__() メソッドに含まれます。 (デフォルトの) None の場合、 compare の値を使います: こうすることは普通は期待通りの振る舞いになります。 比較で使われるフィールドはハッシュに含まれるものと考えるべきです。 この値を None 以外に設定することは推奨されません。

    フィールドのハッシュ値を計算するコストが高い場合に、 hash=False だが compare=True と設定する理由が 1 つあるとすれば、フィールドが等価検査に必要かつ、その型のハッシュ値を計算するのに他のフィールドも使われることです。 フィールドがハッシュから除外されていたとしても、比較には使えます。

  • compare: (デフォルトの) 真の場合、生成される等価関数と比較関数(__eq__()__gt__() など)にこのフィールドを含めます。

  • metadata: これはマッピングあるいは None に設定できます。 None は空の辞書として扱われます。 この値は MappingProxyType() でラップされ、読み出し専用になり、 Field オブジェクトに公開されます。 これはデータクラスから使われることはなく、サードパーティーの拡張機構として提供されます。 複数のサードパーティーが各々のキーを持て、メタデータの名前空間として使えます。

  • kw_only: もし真なら、このフィールドはキーワード専用となります。これは生成された __init__() メソッドがパラメータを評価する時に利用されます。

バージョン 3.10 で追加.

If the default value of a field is specified by a call to field(), then the class attribute for this field will be replaced by the specified default value. If no default is provided, then the class attribute will be deleted. The intent is that after the @dataclass decorator runs, the class attributes will all contain the default values for the fields, just as if the default value itself were specified. For example, after:

@dataclass
class C:
    x: int
    y: int = field(repr=False)
    z: int = field(repr=False, default=10)
    t: int = 20

クラス属性 C.z10 、クラス属性 C.t20 になり、クラス属性 C.xC.y には値が設定されません。

class dataclasses.Field

Field objects describe each defined field. These objects are created internally, and are returned by the fields() module-level method (see below). Users should never instantiate a Field object directly. Its documented attributes are:

  • name: フィールド名

  • type: フィールドの型

  • default, default_factory, init, repr, hash, compare, metadata, kw_onlyfield() の宣言と同じ意味と値を持ちます。

他の属性があることもありますが、それらはプライベートであり、調べたり、依存したりしてはなりません。

dataclasses.fields(class_or_instance)

このデータクラスのフィールドを定義する Field オブジェクトをタプルで返します。 データクラスあるいはデータクラスのインスタンスを受け付けます。 データクラスやデータクラスのインスタンスが渡されなかった場合は、 TypeError を送出します。 ClassVarInitVar といった疑似フィールドは返しません。

dataclasses.asdict(obj, *, dict_factory=dict)

データクラス obj を (ファクトリ関数 dict_factory を使い) 辞書に変換します。 それぞれのデータクラスは、 name: value という組になっている、フィールドの辞書に変換されます。 データクラス、辞書、リスト、タプルは再帰的に処理されます。 その他のオブジェクトは copy.deepcopy() でコピーされます。

Example of using asdict() on nested dataclasses:

@dataclass
class Point:
     x: int
     y: int

@dataclass
class C:
     mylist: list[Point]

p = Point(10, 20)
assert asdict(p) == {'x': 10, 'y': 20}

c = C([Point(0, 0), Point(10, 4)])
assert asdict(c) == {'mylist': [{'x': 0, 'y': 0}, {'x': 10, 'y': 4}]}

To create a shallow copy, the following workaround may be used:

dict((field.name, getattr(obj, field.name)) for field in fields(obj))

asdict() raises TypeError if obj is not a dataclass instance.

dataclasses.astuple(obj, *, tuple_factory=tuple)

データクラス obj を (ファクトリ関数 tuple_factory を使い) タプルに変換します。 それぞれのデータクラスは、フィールド値のタプルに変換されます。 データクラス、辞書、リスト、タプルは再帰的に処理されます。 その他のオブジェクトは copy.deepcopy() でコピーされます。

1つ前の例の続きです:

assert astuple(p) == (10, 20)
assert astuple(c) == ([(0, 0), (10, 4)],)

To create a shallow copy, the following workaround may be used:

tuple(getattr(obj, field.name) for field in dataclasses.fields(obj))

astuple() raises TypeError if obj is not a dataclass instance.

dataclasses.make_dataclass(cls_name, fields, *, bases=(), namespace=None, init=True, repr=True, eq=True, order=False, unsafe_hash=False, frozen=False, match_args=True, kw_only=False, slots=False, weakref_slot=False, module=None)

Creates a new dataclass with name cls_name, fields as defined in fields, base classes as given in bases, and initialized with a namespace as given in namespace. fields is an iterable whose elements are each either name, (name, type), or (name, type, Field). If just name is supplied, typing.Any is used for type. The values of init, repr, eq, order, unsafe_hash, frozen, match_args, kw_only, slots, and weakref_slot have the same meaning as they do in @dataclass.

If module is defined, the __module__ attribute of the dataclass is set to that value. By default, it is set to the module name of the caller.

This function is not strictly required, because any Python mechanism for creating a new class with __annotations__ can then apply the @dataclass function to convert that class to a dataclass. This function is provided as a convenience. For example:

C = make_dataclass('C',
                   [('x', int),
                     'y',
                    ('z', int, field(default=5))],
                   namespace={'add_one': lambda self: self.x + 1})

は、次のコードと等しいです:

@dataclass
class C:
    x: int
    y: 'typing.Any'
    z: int = 5

    def add_one(self):
        return self.x + 1
dataclasses.replace(obj, /, **changes)

obj と同じ型のオブジェクトを新しく作成し、フィールドを changes にある値で置き換えます。 obj がデータクラスではなかった場合、 TypeError を送出します。 changes にある値がフィールドを指定していなかった場合も、 TypeError を送出します。

The newly returned object is created by calling the __init__() method of the dataclass. This ensures that __post_init__(), if present, is also called.

Init-only variables without default values, if any exist, must be specified on the call to replace() so that they can be passed to __init__() and __post_init__().

changes に、 init=False と定義されたフィールドが含まれているとエラーになります。 この場合 ValueError が送出されます。

Be forewarned about how init=False fields work during a call to replace(). They are not copied from the source object, but rather are initialized in __post_init__(), if they're initialized at all. It is expected that init=False fields will be rarely and judiciously used. If they are used, it might be wise to have alternate class constructors, or perhaps a custom replace() (or similarly named) method which handles instance copying.

Dataclass instances are also supported by generic function copy.replace().

dataclasses.is_dataclass(obj)

引数がデータクラスかデータクラスのインスタンスだった場合に True を返します。それ以外の場合は False を返します。

引数がデータクラスのインスタンスである (そして、データクラスそのものではない) かどうかを知る必要がある場合は、 not isinstance(obj, type) で追加のチェックをしてください:

def is_dataclass_instance(obj):
    return is_dataclass(obj) and not isinstance(obj, type)
dataclasses.MISSING

デフォルト値やdefault_factoryが設定されてない場合の番兵の値を設定します。

dataclasses.KW_ONLY

A sentinel value used as a type annotation. Any fields after a pseudo-field with the type of KW_ONLY are marked as keyword-only fields. Note that a pseudo-field of type KW_ONLY is otherwise completely ignored. This includes the name of such a field. By convention, a name of _ is used for a KW_ONLY field. Keyword-only fields signify __init__() parameters that must be specified as keywords when the class is instantiated.

このサンプルでは yz がキーワード専用フィールドとなります:

@dataclass
class Point:
    x: float
    _: KW_ONLY
    y: float
    z: float

p = Point(0, y=1.5, z=2.0)

In a single dataclass, it is an error to specify more than one field whose type is KW_ONLY.

バージョン 3.10 で追加.

exception dataclasses.FrozenInstanceError

frozen=True 付きで定義されたデータクラスで、暗黙的に定義された __setattr__() または __delattr__() が呼び出されたときに送出されます。これは AttributeError のサブクラスです。

初期化後の処理

dataclasses.__post_init__()

When defined on the class, it will be called by the generated __init__(), normally as self.__post_init__(). However, if any InitVar fields are defined, they will also be passed to __post_init__() in the order they were defined in the class. If no __init__() method is generated, then __post_init__() will not automatically be called.

他の機能と組み合わせることで、他の 1 つ以上のフィールドに依存しているフィールドが初期化できます。 例えば次のようにできます:

@dataclass
class C:
    a: float
    b: float
    c: float = field(init=False)

    def __post_init__(self):
        self.c = self.a + self.b

The __init__() method generated by @dataclass does not call base class __init__() methods. If the base class has an __init__() method that has to be called, it is common to call this method in a __post_init__() method:

class Rectangle:
    def __init__(self, height, width):
        self.height = height
        self.width = width

@dataclass
class Square(Rectangle):
    side: float

    def __post_init__(self):
        super().__init__(self.side, self.side)

Note, however, that in general the dataclass-generated __init__() methods don't need to be called, since the derived dataclass will take care of initializing all fields of any base class that is a dataclass itself.

下にある初期化限定変数についての節で、 __post_init__() にパラメータを渡す方法を参照してください。 replace()init=False であるフィールドをどう取り扱うかについての警告も参照してください。

クラス変数

One of the few places where @dataclass actually inspects the type of a field is to determine if a field is a class variable as defined in PEP 526. It does this by checking if the type of the field is typing.ClassVar. If a field is a ClassVar, it is excluded from consideration as a field and is ignored by the dataclass mechanisms. Such ClassVar pseudo-fields are not returned by the module-level fields() function.

初期化限定変数

Another place where @dataclass inspects a type annotation is to determine if a field is an init-only variable. It does this by seeing if the type of a field is of type dataclasses.InitVar. If a field is an InitVar, it is considered a pseudo-field called an init-only field. As it is not a true field, it is not returned by the module-level fields() function. Init-only fields are added as parameters to the generated __init__() method, and are passed to the optional __post_init__() method. They are not otherwise used by dataclasses.

例えば、あるフィールドがデータベースから初期化されると仮定して、クラスを作成するときには値が与えられない次の場合を考えます:

@dataclass
class C:
    i: int
    j: int | None = None
    database: InitVar[DatabaseType | None] = None

    def __post_init__(self, database):
        if self.j is None and database is not None:
            self.j = database.lookup('j')

c = C(10, database=my_database)

このケースでは、 fields()ijField オブジェクトは返しますが、 databaseField オブジェクトは返しません。

凍結されたインスタンス

It is not possible to create truly immutable Python objects. However, by passing frozen=True to the @dataclass decorator you can emulate immutability. In that case, dataclasses will add __setattr__() and __delattr__() methods to the class. These methods will raise a FrozenInstanceError when invoked.

There is a tiny performance penalty when using frozen=True: __init__() cannot use simple assignment to initialize fields, and must use __setattr__().

継承

When the dataclass is being created by the @dataclass decorator, it looks through all of the class's base classes in reverse MRO (that is, starting at object) and, for each dataclass that it finds, adds the fields from that base class to an ordered mapping of fields. After all of the base class fields are added, it adds its own fields to the ordered mapping. All of the generated methods will use this combined, calculated ordered mapping of fields. Because the fields are in insertion order, derived classes override base classes. An example:

@dataclass
class Base:
    x: Any = 15.0
    y: int = 0

@dataclass
class C(Base):
    z: int = 10
    x: int = 15

最終的に出来上がるフィールドのリストは x, y, z の順番になります。 最終的な x の型は、 クラス C で指定されている通り int です。

C の生成された __init__() メソッドは次のようになります:

def __init__(self, x: int = 15, y: int = 0, z: int = 10):

Re-ordering of keyword-only parameters in __init__()

__init__() で必要なパラメータが算出されると、キーワード専用引数は他の一般的な(非キーワード専用)パラメータの後に移動します。これは、すべてのキーワード専用引数は、非キーワード専用パラメータの末尾にこなければならないという、キーワード専用パラメータのPythonの実装の都合で必要なことです。

このサンプルでは、 Base.yBase.wD.t がキーワード専用フィールドで、 Base.xD.z が通常のフィールドです:

@dataclass
class Base:
    x: Any = 15.0
    _: KW_ONLY
    y: int = 0
    w: int = 1

@dataclass
class D(Base):
    z: int = 10
    t: int = field(kw_only=True, default=0)

The generated __init__() method for D will look like:

def __init__(self, x: Any = 15.0, z: int = 10, *, y: int = 0, w: int = 1, t: int = 0):

パラメータは、フィールドのリストの表示方法によって並べ替えられます。通常のフィールドから派生したパラメータの後に、キーワードのみのフィールドから派生したパラメータが続きます。

The relative ordering of keyword-only parameters is maintained in the re-ordered __init__() parameter list.

デフォルトファクトリ関数

field()default_factory を指定した場合、そのフィールドのデフォルト値が必要とされたときに、引数無しで呼び出されます。 これは例えば、リストの新しいインスタンスを作成するために使います:

mylist: list = field(default_factory=list)

If a field is excluded from __init__() (using init=False) and the field also specifies default_factory, then the default factory function will always be called from the generated __init__() function. This happens because there is no other way to give the field an initial value.

可変なデフォルト値

Python はメンバ変数のデフォルト値をクラス属性に保持します。 データクラスを使っていない、この例を考えてみましょう:

class C:
    x = []
    def add(self, element):
        self.x.append(element)

o1 = C()
o2 = C()
o1.add(1)
o2.add(2)
assert o1.x == [1, 2]
assert o1.x is o2.x

クラス C の 2 つのインスタンスが、予想通り同じクラス変数 x を共有していることに注意してください。

データクラスを使っているこのコードが もし仮に 有効なものだとしたら:

@dataclass
class D:
    x: list = []      # This code raises ValueError
    def add(self, element):
        self.x.append(element)

データクラスは次のようなコードを生成するでしょう:

class D:
    x = []
    def __init__(self, x=x):
        self.x = x
    def add(self, element):
        self.x.append(element)

assert D().x is D().x

This has the same issue as the original example using class C. That is, two instances of class D that do not specify a value for x when creating a class instance will share the same copy of x. Because dataclasses just use normal Python class creation they also share this behavior. There is no general way for Data Classes to detect this condition. Instead, the @dataclass decorator will raise a ValueError if it detects an unhashable default parameter. The assumption is that if a value is unhashable, it is mutable. This is a partial solution, but it does protect against many common errors.

デフォルトファクトリ関数を使うのが、フィールドのデフォルト値として可変な型の新しいインスタンスを作成する手段です:

@dataclass
class D:
    x: list = field(default_factory=list)

assert D().x is not D().x

バージョン 3.11 で変更: Instead of looking for and disallowing objects of type list, dict, or set, unhashable objects are now not allowed as default values. Unhashability is used to approximate mutability.

Descriptor-typed fields

Fields that are assigned descriptor objects as their default value have the following special behaviors:

  • The value for the field passed to the dataclass's __init__() method is passed to the descriptor's __set__() method rather than overwriting the descriptor object.

  • Similarly, when getting or setting the field, the descriptor's __get__() or __set__() method is called rather than returning or overwriting the descriptor object.

  • To determine whether a field contains a default value, @dataclass will call the descriptor's __get__() method using its class access form: descriptor.__get__(obj=None, type=cls). If the descriptor returns a value in this case, it will be used as the field's default. On the other hand, if the descriptor raises AttributeError in this situation, no default value will be provided for the field.

class IntConversionDescriptor:
    def __init__(self, *, default):
        self._default = default

    def __set_name__(self, owner, name):
        self._name = "_" + name

    def __get__(self, obj, type):
        if obj is None:
            return self._default

        return getattr(obj, self._name, self._default)

    def __set__(self, obj, value):
        setattr(obj, self._name, int(value))

@dataclass
class InventoryItem:
    quantity_on_hand: IntConversionDescriptor = IntConversionDescriptor(default=100)

i = InventoryItem()
print(i.quantity_on_hand)   # 100
i.quantity_on_hand = 2.5    # calls __set__ with 2.5
print(i.quantity_on_hand)   # 2

Note that if a field is annotated with a descriptor type, but is not assigned a descriptor object as its default value, the field will act like a normal field.