
What’s New in Python
リリース 3.14.0a3

A. M. Kuchling

12月 21, 2024

目次

1 Summary -- release highlights 3

2 New features 3
2.1 PEP 649: deferred evaluation of annotations . 3
2.2 Improved error messages . 5
2.3 PEP 741: Python Configuration C API . 5

3 Other language changes 5

4 New modules 6

5 Improved modules 6
5.1 argparse . 6
5.2 ast . 6
5.3 concurrent.futures . 7
5.4 ctypes . 7
5.5 datetime . 7
5.6 decimal . 7
5.7 dis . 7
5.8 errno . 8
5.9 fractions . 8
5.10 functools . 8
5.11 getopt . 8
5.12 http . 9
5.13 inspect . 9
5.14 io . 9
5.15 json . 9
5.16 mimetypes . 9
5.17 multiprocessing . 10
5.18 operator . 10

1

5.19 os . 11
5.20 pathlib . 11
5.21 pdb . 11
5.22 platform . 11
5.23 pickle . 11
5.24 pydoc . 12
5.25 symtable . 12
5.26 sys . 12
5.27 sys.monitoring . 12
5.28 tkinter . 12
5.29 unicodedata . 12
5.30 unittest . 12
5.31 uuid . 12

6 Optimizations 13
6.1 asyncio . 13
6.2 io . 13

7 Deprecated 13
7.1 Pending removal in Python 3.15 . 14
7.2 Pending removal in Python 3.16 . 15
7.3 Pending removal in future versions . 16

8 Removed 19
8.1 argparse . 19
8.2 ast . 19
8.3 asyncio . 20
8.4 collections.abc . 22
8.5 email . 23
8.6 importlib . 23
8.7 itertools . 23
8.8 pathlib . 23
8.9 pkgutil . 23
8.10 pty . 23
8.11 sqlite3 . 24
8.12 typing . 24
8.13 urllib . 24
8.14 Others . 24

9 Porting to Python 3.14 24
9.1 Changes in the Python API . 24

10 Build changes 25
10.1 PEP 761: Discontinuation of PGP signatures . 25

11 C API changes 25

2

11.1 New features . 25
11.2 Porting to Python 3.14 . 28
11.3 Deprecated . 28
11.4 Removed . 29

索引 30

Editor
TBD

This article explains the new features in Python 3.14, compared to 3.13.

For full details, see the changelog.

INFO-CIRCLE 注釈

Prerelease users should be aware that this document is currently in draft form. It will be updated
substantially as Python 3.14 moves towards release, so it’s worth checking back even after reading
earlier versions.

1 Summary -- release highlights
• PEP 649: deferred evaluation of annotations

• PEP 741: Python Configuration C API

2 New features

2.1 PEP 649: deferred evaluation of annotations

The annotations on functions, classes, and modules are no longer evaluated eagerly. Instead, annotations
are stored in special-purpose annotate functions and evaluated only when necessary. This is specified in
PEP 649 and PEP 749.

This change is designed to make annotations in Python more performant and more usable in most cir-
cumstances. The runtime cost for defining annotations is minimized, but it remains possible to introspect
annotations at runtime. It is usually no longer necessary to enclose annotations in strings if they contain
forward references.

The new annotationlib module provides tools for inspecting deferred annotations. Annotations may be
evaluated in the VALUE format (which evaluates annotations to runtime values, similar to the behavior in
earlier Python versions), the FORWARDREF format (which replaces undefined names with special markers),
and the STRING format (which returns annotations as strings).

This example shows how these formats behave:

3

https://peps.python.org/pep-0649/
https://peps.python.org/pep-0749/

>>> from annotationlib import get_annotations, Format

>>> def func(arg: Undefined):

... pass

>>> get_annotations(func, format=Format.VALUE)

Traceback (most recent call last):

...

NameError: name 'Undefined' is not defined

>>> get_annotations(func, format=Format.FORWARDREF)

{'arg': ForwardRef('Undefined')}

>>> get_annotations(func, format=Format.STRING)

{'arg': 'Undefined'}

Implications for annotated code
If you define annotations in your code (for example, for use with a static type checker), then this change
probably does not affect you: you can keep writing annotations the same way you did with previous
versions of Python.

You will likely be able to remove quoted strings in annotations, which are frequently used for forward
references. Similarly, if you use from __future__ import annotations to avoid having to write strings
in annotations, you may well be able to remove that import. However, if you rely on third-party libraries
that read annotations, those libraries may need changes to support unquoted annotations before they
work as expected.

Implications for readers of __annotations__

If your code reads the __annotations__ attribute on objects, you may want to make changes in order
to support code that relies on deferred evaluation of annotations. For example, you may want to use
annotationlib.get_annotations() with the FORWARDREF format, as the dataclasses module now
does.

Related changes
The changes in Python 3.14 are designed to rework how __annotations__ works at runtime while
minimizing breakage to code that contains annotations in source code and to code that reads
__annotations__. However, if you rely on undocumented details of the annotation behavior or on
private functions in the standard library, there are many ways in which your code may not work in
Python 3.14. To safeguard your code against future changes, use only the documented functionality of
the annotationlib module.

from __future__ import annotations

In Python 3.7, PEP 563 introduced the from __future__ import annotations directive, which turns
all annotations into strings. This directive is now considered deprecated and it is expected to be removed
in a future version of Python. However, this removal will not happen until after Python 3.13, the last
version of Python without deferred evaluation of annotations, reaches its end of life in 2029. In Python
3.14, the behavior of code using from __future__ import annotations is unchanged.

4

https://peps.python.org/pep-0563/

2.2 Improved error messages

• When unpacking assignment fails due to incorrect number of variables, the error message prints
the received number of values in more cases than before. (Contributed by Tushar Sadhwani in
gh-122239.)

>>> x, y, z = 1, 2, 3, 4

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

x, y, z = 1, 2, 3, 4

^^^^^^^

ValueError: too many values to unpack (expected 3, got 4)

2.3 PEP 741: Python Configuration C API

Add a PyInitConfig C API to configure the Python initialization without relying on C structures and
the ability to make ABI-compatible changes in the future.

Complete the PEP 587 PyConfig C API by adding PyInitConfig_AddModule() which can be used to
add a built-in extension module; feature previously referred to as the “inittab” .

Add PyConfig_Get() and PyConfig_Set() functions to get and set the current runtime configuration.

PEP 587 “Python Initialization Configuration” unified all the ways to configure the Python initialization.
This PEP unifies also the configuration of the Python preinitialization and the Python initialization in
a single API. Moreover, this PEP only provides a single choice to embed Python, instead of having two
“Python” and “Isolated” choices (PEP 587), to simplify the API further.

The lower level PEP 587 PyConfig API remains available for use cases with an intentionally higher level
of coupling to CPython implementation details (such as emulating the full functionality of CPython’ s
CLI, including its configuration mechanisms).

(Contributed by Victor Stinner in gh-107954.)

SHARE 参考

PEP 741.

3 Other language changes
• The map() built-in now has an optional keyword-only strict flag like zip() to check that all the

iterables are of equal length. (Contributed by Wannes Boeykens in gh-119793.)

• Incorrect usage of await and asynchronous comprehensions is now detected even if the code is
optimized away by the -O command-line option. For example, python -O -c 'assert await 1'

now produces a SyntaxError. (Contributed by Jelle Zijlstra in gh-121637.)

• Writes to __debug__ are now detected even if the code is optimized away by the -O command-line
5

https://github.com/python/cpython/issues/122239
https://peps.python.org/pep-0587/
https://github.com/python/cpython/issues/107954
https://peps.python.org/pep-0741/
https://github.com/python/cpython/issues/119793
https://github.com/python/cpython/issues/121637

option. For example, python -O -c 'assert (__debug__ := 1)' now produces a SyntaxError.
(Contributed by Irit Katriel in gh-122245.)

• Add class methods float.from_number() and complex.from_number() to convert a number
to float or complex type correspondingly. They raise an error if the argument is a string.
(Contributed by Serhiy Storchaka in gh-84978.)

• Implement mixed-mode arithmetic rules combining real and complex numbers as specified by C
standards since C99. (Contributed by Sergey B Kirpichev in gh-69639.)

• All Windows code pages are now supported as ”cpXXX” codecs on Windows. (Contributed by
Serhiy Storchaka in gh-123803.)

• super objects are now pickleable and copyable. (Contributed by Serhiy Storchaka in
gh-125767.)

• The memoryview type now supports subscription, making it a generic type. (Contributed by Brian
Schubert in gh-126012.)

• iOS and macOS apps can now be configured to redirect stdout and stderr content to the system
log. (Contributed by Russell Keith-Magee in gh-127592.)

• The iOS testbed is now able to stream test output while the test is running. The testbed can
also be used to run the test suite of projects other than CPython itself. (Contributed by Russell
Keith-Magee in gh-127592.)

4 New modules
• annotationlib: For introspecting annotations. See PEP 749 for more details. (Contributed by

Jelle Zijlstra in gh-119180.)

5 Improved modules

5.1 argparse

• The default value of the program name for argparse.ArgumentParser now reflects the way the
Python interpreter was instructed to find the __main__ module code. (Contributed by Serhiy
Storchaka and Alyssa Coghlan in gh-66436.)

• Introduced the optional suggest_on_error parameter to argparse.ArgumentParser, enabling
suggestions for argument choices and subparser names if mistyped by the user. (Contributed
by Savannah Ostrowski in gh-124456.)

5.2 ast

• Add ast.compare() for comparing two ASTs. (Contributed by Batuhan Taskaya and Jeremy
Hylton in gh-60191.)

• Add support for copy.replace() for AST nodes. (Contributed by Bénédikt Tran in gh-121141.)

6

https://github.com/python/cpython/issues/122245
https://github.com/python/cpython/issues/84978
https://github.com/python/cpython/issues/69639
https://github.com/python/cpython/issues/123803
https://github.com/python/cpython/issues/125767
https://github.com/python/cpython/issues/126012
https://github.com/python/cpython/issues/127592
https://github.com/python/cpython/issues/127592
https://peps.python.org/pep-0749/
https://github.com/python/cpython/issues/119180
https://github.com/python/cpython/issues/66436
https://github.com/python/cpython/issues/124456
https://github.com/python/cpython/issues/60191
https://github.com/python/cpython/issues/121141

• Docstrings are now removed from an optimized AST in optimization level 2. (Contributed by Irit
Katriel in gh-123958.)

• The repr() output for AST nodes now includes more information. (Contributed by Tomas R in
gh-116022.)

5.3 concurrent.futures

• Add InterpreterPoolExecutor, which exposes ”subinterpreters (multiple Python interpreters
in the same process) to Python code. This is separate from the proposed API in PEP 734.
(Contributed by Eric Snow in gh-124548.)

• The default ProcessPoolExecutor start method (see multiprocessing-start-methods) changed
from fork to forkserver on platforms other than macOS & Windows. If you require the thread-
ing incompatible fork start method you must explicitly request it by supplying a mp_context to
concurrent.futures.ProcessPoolExecutor. (Contributed by Gregory P. Smith in gh-84559.)

5.4 ctypes

• The layout of bit fields in Structure and Union now matches platform defaults (GCC/Clang or
MVSC) more closely. In particular, fields no longer overlap. (Contributed by Matthias Görgens
in gh-97702.)

• The Structure._layout_ class attribute can now be set to help match a non-default ABI. (Con-
tributed by Petr Viktorin in gh-97702.)

• On Windows, the COMError exception is now public. (Contributed by Jun Komoda in gh-126686.)

• On Windows, the CopyComPointer() function is now public. (Contributed by Jun Komoda in
gh-127275.)

5.5 datetime

• Add datetime.time.strptime() and datetime.date.strptime(). (Contributed by Wannes
Boeykens in gh-41431.)

5.6 decimal

• Add alternative Decimal constructor Decimal.from_number(). (Contributed by Serhiy Storchaka
in gh-121798.)

5.7 dis

• Add support for rendering full source location information of instructions, rather than only the
line number. This feature is added to the following interfaces via the show_positions keyword
argument:

– dis.Bytecode

7

https://github.com/python/cpython/issues/123958
https://github.com/python/cpython/issues/116022
https://peps.python.org/pep-0734/
https://github.com/python/cpython/issues/124548
https://github.com/python/cpython/issues/84559
https://github.com/python/cpython/issues/97702
https://github.com/python/cpython/issues/97702
https://github.com/python/cpython/issues/126686
https://github.com/python/cpython/issues/127275
https://github.com/python/cpython/issues/41431
https://github.com/python/cpython/issues/121798

– dis.dis()

– dis.distb()

– dis.disassemble()

This feature is also exposed via dis --show-positions. (Contributed by Bénédikt Tran in
gh-123165.)

• Add the dis --specialized command-line option to show specialized bytecode. (Contributed
by Bénédikt Tran in gh-127413.)

5.8 errno

• Add errno.EHWPOISON error code. (Contributed by James Roy in gh-126585.)

5.9 fractions

• Add support for converting any objects that have the as_integer_ratio() method to a Fraction.
(Contributed by Serhiy Storchaka in gh-82017.)

• Add alternative Fraction constructor Fraction.from_number(). (Contributed by Serhiy Stor-
chaka in gh-121797.)

5.10 functools

• Add support to functools.partial() and functools.partialmethod() for functools.

Placeholder sentinels to reserve a place for positional arguments. (Contributed by Dominykas
Grigonis in gh-119127.)

• Allow the initial parameter of functools.reduce() to be passed as a keyword argument. (Con-
tributed by Sayandip Dutta in gh-125916.)

5.11 getopt

• Add support for options with optional arguments. (Contributed by Serhiy Storchaka in gh-126374.)

• Add support for returning intermixed options and non-option arguments in order. (Contributed
by Serhiy Storchaka in gh-126390.)

8

https://github.com/python/cpython/issues/123165
https://github.com/python/cpython/issues/127413
https://github.com/python/cpython/issues/126585
https://github.com/python/cpython/issues/82017
https://github.com/python/cpython/issues/121797
https://github.com/python/cpython/issues/119127
https://github.com/python/cpython/issues/125916
https://github.com/python/cpython/issues/126374
https://github.com/python/cpython/issues/126390

5.12 http

• Directory lists and error pages generated by the http.server module allow the browser to apply
its default dark mode. (Contributed by Yorik Hansen in gh-123430.)

5.13 inspect

• inspect.signature() takes a new argument annotation_format to control the annotationlib.

Format used for representing annotations. (Contributed by Jelle Zijlstra in gh-101552.)

• inspect.Signature.format() takes a new argument unquote_annotations. If true, string anno-
tations are displayed without surrounding quotes. (Contributed by Jelle Zijlstra in gh-101552.)

• Add function inspect.ispackage() to determine whether an object is a package or not. (Con-
tributed by Zhikang Yan in gh-125634.)

5.14 io

• Reading text from a non-blocking stream with read may now raise a BlockingIOError if the
operation cannot immediately return bytes. (Contributed by Giovanni Siragusa in gh-109523.)

5.15 json

• Add notes for JSON serialization errors that allow to identify the source of the error. (Contributed
by Serhiy Storchaka in gh-122163.)

• Enable the json module to work as a script using the -m switch: python -m json. See the JSON
command-line interface documentation. (Contributed by Trey Hunner in gh-122873.)

5.16 mimetypes

• Add MS and RFC 8081 MIME types for fonts:

– Embedded OpenType: application/vnd.ms-fontobject

– OpenType Layout (OTF) font/otf

– TrueType: font/ttf

– WOFF 1.0 font/woff

– WOFF 2.0 font/woff2

(Contributed by Sahil Prajapati and Hugo van Kemenade in gh-84852.)

• Add RFC 9559 MIME types for Matroska audiovisual data container structures, containing:

– audio with no video: audio/matroska (.mka)

– video: video/matroska (.mkv)

– stereoscopic video: video/matroska-3d (.mk3d)

9

https://github.com/python/cpython/issues/123430
https://github.com/python/cpython/issues/101552
https://github.com/python/cpython/issues/101552
https://github.com/python/cpython/issues/125634
https://github.com/python/cpython/issues/109523
https://github.com/python/cpython/issues/122163
https://github.com/python/cpython/issues/122873
https://datatracker.ietf.org/doc/html/rfc8081.html
https://github.com/python/cpython/issues/84852
https://datatracker.ietf.org/doc/html/rfc9559.html

(Contributed by Hugo van Kemenade in gh-89416.)

• Add MIME types for images with RFCs:

– RFC 1494: CCITT Group 3 (.g3)

– RFC 3362: Real-time Facsimile, T.38 (.t38)

– RFC 3745: JPEG 2000 (.jp2), extension (.jpx) and compound (.jpm)

– RFC 3950: Tag Image File Format Fax eXtended, TIFF-FX (.tfx)

– RFC 4047: Flexible Image Transport System (.fits)

– RFC 7903: Enhanced Metafile (.emf) and Windows Metafile (.wmf)

(Contributed by Hugo van Kemenade in gh-85957.)

5.17 multiprocessing

• The default start method (see multiprocessing-start-methods) changed from fork to forkserver
on platforms other than macOS & Windows where it was already spawn. If you require
the threading incompatible fork start method you must explicitly request it using a context
from multiprocessing.get_context() (preferred) or change the default via multiprocessing.

set_start_method(). (Contributed by Gregory P. Smith in gh-84559.)

• multiprocessing’s "forkserver" start method now authenticates its control socket to avoid
solely relying on filesystem permissions to restrict what other processes could cause the forkserver
to spawn workers and run code. (Contributed by Gregory P. Smith for gh-97514.)

• The multiprocessing proxy objects for list and dict types gain previously overlooked missing meth-
ods:

– clear() and copy() for proxies of list.

– fromkeys(), reversed(d), d | {}, {} | d, d |= {'b': 2} for proxies of dict.

(Contributed by Roy Hyunjin Han for gh-103134.)

5.18 operator

• Two new functions operator.is_none() and operator.is_not_none() have been added, such
that operator.is_none(obj) is equivalent to obj is None and operator.is_not_none(obj)

is equivalent to obj is not None. (Contributed by Raymond Hettinger and Nico Mexis in
gh-115808.)

10

https://github.com/python/cpython/issues/89416
https://datatracker.ietf.org/doc/html/rfc1494.html
https://datatracker.ietf.org/doc/html/rfc3362.html
https://datatracker.ietf.org/doc/html/rfc3745.html
https://datatracker.ietf.org/doc/html/rfc3950.html
https://datatracker.ietf.org/doc/html/rfc4047.html
https://datatracker.ietf.org/doc/html/rfc7903.html
https://github.com/python/cpython/issues/85957
https://github.com/python/cpython/issues/84559
https://github.com/python/cpython/issues/97514
https://github.com/python/cpython/issues/103134
https://github.com/python/cpython/issues/115808

5.19 os

• Add the os.reload_environ() function to update os.environ and os.environb with changes
to the environment made by os.putenv(), by os.unsetenv(), or made outside Python in the
same process. (Contributed by Victor Stinner in gh-120057.)

• Add the SCHED_DEADLINE and SCHED_NORMAL constants to the os module. (Contributed by James
Roy in gh-127688.)

5.20 pathlib

• Add methods to pathlib.Path to recursively copy or move files and directories:

– copy() copies a file or directory tree to a destination.

– copy_into() copies into a destination directory.

– move() moves a file or directory tree to a destination.

– move_into() moves into a destination directory.

(Contributed by Barney Gale in gh-73991.)

5.21 pdb

• Hardcoded breakpoints (breakpoint() and pdb.set_trace()) now reuse the most recent Pdb

instance that calls set_trace(), instead of creating a new one each time. As a result, all the
instance specific data like display and commands are preserved across hardcoded breakpoints.
(Contributed by Tian Gao in gh-121450.)

• Add a new argument mode to pdb.Pdb. Disable the restart command when pdb is in inline

mode. (Contributed by Tian Gao in gh-123757.)

5.22 platform

• Add platform.invalidate_caches() to invalidate the cached results.

(Contributed by Bénédikt Tran in gh-122549.)

5.23 pickle

• Set the default protocol version on the pickle module to 5. For more details, see pickle protocols.

• Add notes for pickle serialization errors that allow to identify the source of the error. (Contributed
by Serhiy Storchaka in gh-122213.)

11

https://github.com/python/cpython/issues/120057
https://github.com/python/cpython/issues/127688
https://github.com/python/cpython/issues/73991
https://github.com/python/cpython/issues/121450
https://github.com/python/cpython/issues/123757
https://github.com/python/cpython/issues/122549
https://github.com/python/cpython/issues/122213

5.24 pydoc

• Annotations in help output are now usually displayed in a format closer to that in the original
source. (Contributed by Jelle Zijlstra in gh-101552.)

5.25 symtable

• Expose the following symtable.Symbol methods:

– is_comp_cell()

– is_comp_iter()

– is_free_class()

(Contributed by Bénédikt Tran in gh-120029.)

5.26 sys

• The previously undocumented special function sys.getobjects(), which only exists in specialized
builds of Python, may now return objects from other interpreters than the one it’s called in.

5.27 sys.monitoring

Two new events are added: BRANCH_LEFT and BRANCH_RIGHT. The BRANCH event is deprecated.

5.28 tkinter

• Make tkinter widget methods after() and after_idle() accept arguments passed by keyword.
(Contributed by Zhikang Yan in gh-126899.)

5.29 unicodedata

• The Unicode database has been updated to Unicode 16.0.0.

5.30 unittest

• unittest output is now colored by default. This can be controlled via the PYTHON_COLORS envi-
ronment variable as well as the canonical NO_COLOR and FORCE_COLOR environment variables. See
also using-on-controlling-color. (Contributed by Hugo van Kemenade in gh-127221.)

• unittest discovery supports namespace package as start directory again. It was removed in Python
3.11. (Contributed by Jacob Walls in gh-80958.)

5.31 uuid

• Add support for UUID version 8 via uuid.uuid8() as specified in RFC 9562. (Contributed by
Bénédikt Tran in gh-89083.)

12

https://github.com/python/cpython/issues/101552
https://github.com/python/cpython/issues/120029
https://github.com/python/cpython/issues/126899
https://no-color.org/
https://force-color.org/
https://github.com/python/cpython/issues/127221
https://github.com/python/cpython/issues/80958
https://datatracker.ietf.org/doc/html/rfc9562.html
https://github.com/python/cpython/issues/89083

6 Optimizations

6.1 asyncio

• asyncio now uses double linked list implementation for native tasks which speeds up execution by
10% on standard pyperformance benchmarks and reduces memory usage. (Contributed by Kumar
Aditya in gh-107803.)

6.2 io

• io which provides the built-in open() makes less system calls when opening regular files as well
as reading whole files. Reading a small operating system cached file in full is up to 15% faster.
pathlib.Path.read_bytes() has the most optimizations for reading a file’s bytes in full. (Con-
tributed by Cody Maloney and Victor Stinner in gh-120754 and gh-90102.)

7 Deprecated
• argparse:

– Passing the undocumented keyword argument prefix_chars to add_argument_group() is now
deprecated. (Contributed by Savannah Ostrowski in gh-125563.)

– Deprecated the argparse.FileType type converter. Anything with resource management
should be done downstream after the arguments are parsed. (Contributed by Serhiy Storchaka
in gh-58032.)

• asyncio: asyncio.iscoroutinefunction() is deprecated and will be removed in Python 3.16,
use inspect.iscoroutinefunction() instead. (Contributed by Jiahao Li and Kumar Aditya in
gh-122875.)

• builtins: Passing a complex number as the real or imag argument in the complex() constructor
is now deprecated; it should only be passed as a single positional argument. (Contributed by
Serhiy Storchaka in gh-109218.)

• os: Soft deprecate os.popen() and os.spawn* functions. They should no longer be used to write
new code. The subprocess module is recommended instead. (Contributed by Victor Stinner in
gh-120743.)

• symtable: Deprecate symtable.Class.get_methods() due to the lack of interest. (Contributed
by Bénédikt Tran in gh-119698.)

• urllib.parse: Accepting objects with false values (like 0 and []) except empty strings, byte-like
objects and None in urllib.parse functions parse_qsl() and parse_qs() is now deprecated.
(Contributed by Serhiy Storchaka in gh-116897.)

13

https://github.com/python/cpython/issues/107803
https://github.com/python/cpython/issues/120754
https://github.com/python/cpython/issues/90102
https://github.com/python/cpython/issues/125563
https://github.com/python/cpython/issues/58032
https://github.com/python/cpython/issues/122875
https://github.com/python/cpython/issues/109218
https://github.com/python/cpython/issues/120743
https://github.com/python/cpython/issues/119698
https://github.com/python/cpython/issues/116897

7.1 Pending removal in Python 3.15

• The import system:

– Setting __cached__ on a module while failing to set __spec__.cached is deprecated. In
Python 3.15, __cached__ will cease to be set or take into consideration by the import system
or standard library. (gh-97879)

– Setting __package__ on a module while failing to set __spec__.parent is deprecated. In
Python 3.15, __package__ will cease to be set or take into consideration by the import system
or standard library. (gh-97879)

• ctypes:

– The undocumented ctypes.SetPointerType() function has been deprecated since Python
3.13.

• http.server:

– The obsolete and rarely used CGIHTTPRequestHandler has been deprecated since Python 3.13.
No direct replacement exists. Anything is better than CGI to interface a web server with a
request handler.

– The --cgi flag to the python -m http.server command-line interface has been deprecated
since Python 3.13.

• locale:

– The getdefaultlocale() function has been deprecated since Python 3.11. Its removal was
originally planned for Python 3.13 (gh-90817), but has been postponed to Python 3.15. Use
getlocale(), setlocale(), and getencoding() instead. (Contributed by Hugo van Keme-
nade in gh-111187.)

• pathlib:

– PurePath.is_reserved() has been deprecated since Python 3.13. Use os.path.

isreserved() to detect reserved paths on Windows.

• platform:

– java_ver() has been deprecated since Python 3.13. This function is only useful for Jython
support, has a confusing API, and is largely untested.

• threading:

– RLock() will take no arguments in Python 3.15. Passing any arguments has been deprecated
since Python 3.14, as the Python version does not permit any arguments, but the C version
allows any number of positional or keyword arguments, ignoring every argument.

• types:

14

https://github.com/python/cpython/issues/97879
https://github.com/python/cpython/issues/97879
https://github.com/python/cpython/issues/90817
https://github.com/python/cpython/issues/111187

– types.CodeType: Accessing co_lnotab was deprecated in PEP 626 since 3.10 and was
planned to be removed in 3.12, but it only got a proper DeprecationWarning in 3.12. May
be removed in 3.15. (Contributed by Nikita Sobolev in gh-101866.)

• typing:

– The undocumented keyword argument syntax for creating NamedTuple classes (for exam-
ple, Point = NamedTuple("Point", x=int, y=int)) has been deprecated since Python 3.13.
Use the class-based syntax or the functional syntax instead.

– The typing.no_type_check_decorator() decorator function has been deprecated since
Python 3.13. After eight years in the typing module, it has yet to be supported by any
major type checker.

• wave:

– The getmark(), setmark(), and getmarkers() methods of the Wave_read and Wave_write

classes have been deprecated since Python 3.13.

7.2 Pending removal in Python 3.16

• The import system:

– Setting __loader__ on a module while failing to set __spec__.loader is deprecated. In
Python 3.16, __loader__ will cease to be set or taken into consideration by the import system
or the standard library.

• array:

– The 'u' format code (wchar_t) has been deprecated in documentation since Python 3.3 and
at runtime since Python 3.13. Use the 'w' format code (Py_UCS4) for Unicode characters
instead.

• asyncio:

– asyncio.iscoroutinefunction() is deprecated and will be removed in Python 3.16, use
inspect.iscoroutinefunction() instead. (Contributed by Jiahao Li and Kumar Aditya in
gh-122875.)

• builtins:

– Bitwise inversion on boolean types, ~True or ~False has been deprecated since Python 3.12,
as it produces surprising and unintuitive results (-2 and -1). Use not x instead for the logical
negation of a Boolean. In the rare case that you need the bitwise inversion of the underlying
integer, convert to int explicitly (~int(x)).

• shutil:

– The ExecError exception has been deprecated since Python 3.14. It has not been used by
any function in shutil since Python 3.4, and is now an alias of RuntimeError.

15

https://peps.python.org/pep-0626/
https://github.com/python/cpython/issues/101866
https://github.com/python/cpython/issues/122875

• symtable:

– The Class.get_methods method has been deprecated since Python 3.14.

• sys:

– The _enablelegacywindowsfsencoding() function has been deprecated since Python 3.13.
Use the PYTHONLEGACYWINDOWSFSENCODING environment variable instead.

• tarfile:

– The undocumented and unused TarFile.tarfile attribute has been deprecated since Python
3.13.

7.3 Pending removal in future versions

The following APIs will be removed in the future, although there is currently no date scheduled for their
removal.

• argparse:

– Nesting argument groups and nesting mutually exclusive groups are deprecated.

– Passing the undocumented keyword argument prefix_chars to add_argument_group() is now
deprecated.

– The argparse.FileType type converter is deprecated.

• array’s 'u' format code (gh-57281)

• builtins:

– bool(NotImplemented).

– Generators: throw(type, exc, tb) and athrow(type, exc, tb) signature is deprecated:
use throw(exc) and athrow(exc) instead, the single argument signature.

– Currently Python accepts numeric literals immediately followed by keywords, for example 0in
x, 1or x, 0if 1else 2. It allows confusing and ambiguous expressions like [0x1for x in y]

(which can be interpreted as [0x1 for x in y] or [0x1f or x in y]). A syntax warning
is raised if the numeric literal is immediately followed by one of keywords and, else, for, if,
in, is and or. In a future release it will be changed to a syntax error. (gh-87999)

– Support for __index__() and __int__() method returning non-int type: these methods will
be required to return an instance of a strict subclass of int.

– Support for __float__() method returning a strict subclass of float: these methods will be
required to return an instance of float.

– Support for __complex__() method returning a strict subclass of complex: these methods
will be required to return an instance of complex.

– Delegation of int() to __trunc__() method.

16

https://github.com/python/cpython/issues/57281
https://github.com/python/cpython/issues/87999

– Passing a complex number as the real or imag argument in the complex() constructor is now
deprecated; it should only be passed as a single positional argument. (Contributed by Serhiy
Storchaka in gh-109218.)

• calendar: calendar.January and calendar.February constants are deprecated and replaced by
calendar.JANUARY and calendar.FEBRUARY. (Contributed by Prince Roshan in gh-103636.)

• codeobject.co_lnotab: use the codeobject.co_lines() method instead.

• datetime:

– utcnow(): use datetime.datetime.now(tz=datetime.UTC).

– utcfromtimestamp(): use datetime.datetime.fromtimestamp(timestamp, tz=datetime.

UTC).

• gettext: Plural value must be an integer.

• importlib:

– load_module() method: use exec_module() instead.

– cache_from_source() debug_override parameter is deprecated: use the optimization param-
eter instead.

• importlib.metadata:

– EntryPoints tuple interface.

– Implicit None on return values.

• logging: the warn() method has been deprecated since Python 3.3, use warning() instead.

• mailbox: Use of StringIO input and text mode is deprecated, use BytesIO and binary mode
instead.

• os: Calling os.register_at_fork() in multi-threaded process.

• pydoc.ErrorDuringImport: A tuple value for exc_info parameter is deprecated, use an exception
instance.

• re: More strict rules are now applied for numerical group references and group names in regular
expressions. Only sequence of ASCII digits is now accepted as a numerical reference. The group
name in bytes patterns and replacement strings can now only contain ASCII letters and digits and
underscore. (Contributed by Serhiy Storchaka in gh-91760.)

• sre_compile, sre_constants and sre_parse modules.

• shutil: rmtree()’s onerror parameter is deprecated in Python 3.12; use the onexc parameter
instead.

• ssl options and protocols:

– ssl.SSLContext without protocol argument is deprecated.

17

https://github.com/python/cpython/issues/109218
https://github.com/python/cpython/issues/103636
https://github.com/python/cpython/issues/91760

– ssl.SSLContext: set_npn_protocols() and selected_npn_protocol() are deprecated:
use ALPN instead.

– ssl.OP_NO_SSL* options

– ssl.OP_NO_TLS* options

– ssl.PROTOCOL_SSLv3

– ssl.PROTOCOL_TLS

– ssl.PROTOCOL_TLSv1

– ssl.PROTOCOL_TLSv1_1

– ssl.PROTOCOL_TLSv1_2

– ssl.TLSVersion.SSLv3

– ssl.TLSVersion.TLSv1

– ssl.TLSVersion.TLSv1_1

• sysconfig.is_python_build() check_home parameter is deprecated and ignored.

• threading methods:

– threading.Condition.notifyAll(): use notify_all().

– threading.Event.isSet(): use is_set().

– threading.Thread.isDaemon(), threading.Thread.setDaemon(): use threading.Thread.
daemon attribute.

– threading.Thread.getName(), threading.Thread.setName(): use threading.Thread.

name attribute.

– threading.currentThread(): use threading.current_thread().

– threading.activeCount(): use threading.active_count().

• typing.Text (gh-92332).

• unittest.IsolatedAsyncioTestCase: it is deprecated to return a value that is not None from a
test case.

• urllib.parse deprecated functions: urlparse() instead

– splitattr()

– splithost()

– splitnport()

– splitpasswd()

18

https://github.com/python/cpython/issues/92332

– splitport()

– splitquery()

– splittag()

– splittype()

– splituser()

– splitvalue()

– to_bytes()

• wsgiref: SimpleHandler.stdout.write() should not do partial writes.

• xml.etree.ElementTree: Testing the truth value of an Element is deprecated. In a future release
it will always return True. Prefer explicit len(elem) or elem is not None tests instead.

• zipimport.zipimporter.load_module() is deprecated: use exec_module() instead.

8 Removed

8.1 argparse

• Remove the type, choices, and metavar parameters of argparse.BooleanOptionalAction. They
were deprecated since 3.12.

• Calling add_argument_group() on an argument group, and calling add_argument_group() or
add_mutually_exclusive_group() on a mutually exclusive group now raise exceptions. This
nesting was never supported, often failed to work correctly, and was unintentionally exposed
through inheritance. This functionality has been deprecated since Python 3.11. (Contributed by
Savannah Ostrowski in gh-127186.)

8.2 ast

• Remove the following classes. They were all deprecated since Python 3.8, and have emitted
deprecation warnings since Python 3.12:

– ast.Bytes

– ast.Ellipsis

– ast.NameConstant

– ast.Num

– ast.Str

Use ast.Constant instead. As a consequence of these removals, user-defined visit_Num,
visit_Str, visit_Bytes, visit_NameConstant and visit_Ellipsis methods on custom ast.

NodeVisitor subclasses will no longer be called when the NodeVisitor subclass is visiting an

19

https://github.com/python/cpython/issues/127186

AST. Define a visit_Constant method instead.

Also, remove the following deprecated properties on ast.Constant, which were present for com-
patibility with the now-removed AST classes:

– ast.Constant.n

– ast.Constant.s

Use ast.Constant.value instead.

(Contributed by Alex Waygood in gh-119562.)

8.3 asyncio

• Remove the following classes and functions. They were all deprecated and emitted deprecation
warnings since Python 3.12:

– asyncio.get_child_watcher()

– asyncio.set_child_watcher()

– asyncio.AbstractEventLoopPolicy.get_child_watcher()

– asyncio.AbstractEventLoopPolicy.set_child_watcher()

– asyncio.AbstractChildWatcher

– asyncio.FastChildWatcher

– asyncio.MultiLoopChildWatcher

– asyncio.PidfdChildWatcher

– asyncio.SafeChildWatcher

– asyncio.ThreadedChildWatcher

(Contributed by Kumar Aditya in gh-120804.)

• Removed implicit creation of event loop by asyncio.get_event_loop(). It now raises a
RuntimeError if there is no current event loop. (Contributed by Kumar Aditya in gh-126353.)

There’s a few patterns that use asyncio.get_event_loop(), most of them can be replaced with
asyncio.run().

If you’re running an async function, simply use asyncio.run().

Before:

async def main():

...

(次のページに続く)

20

https://github.com/python/cpython/issues/119562
https://github.com/python/cpython/issues/120804
https://github.com/python/cpython/issues/126353

(前のページからの続き)

loop = asyncio.get_event_loop()

try:

loop.run_until_complete(main())

finally:

loop.close()

After:

async def main():

...

asyncio.run(main())

If you need to start something, e.g. a server listening on a socket and then run forever, use
asyncio.run() and an asyncio.Event.

Before:

def start_server(loop):

...

loop = asyncio.get_event_loop()

try:

start_server(loop)

loop.run_forever()

finally:

loop.close()

After:

def start_server(loop):

...

async def main():

start_server(asyncio.get_running_loop())

await asyncio.Event().wait()

asyncio.run(main())

If you need to run something in an event loop, then run some blocking code around it, use
asyncio.Runner.

Before:

21

async def operation_one():

...

def blocking_code():

...

async def operation_two():

...

loop = asyncio.get_event_loop()

try:

loop.run_until_complete(operation_one())

blocking_code()

loop.run_until_complete(operation_two())

finally:

loop.close()

After:

async def operation_one():

...

def blocking_code():

...

async def operation_two():

...

with asyncio.Runner() as runner:

runner.run(operation_one())

blocking_code()

runner.run(operation_two())

8.4 collections.abc

• Remove collections.abc.ByteString. It had previously raised a DeprecationWarning since
Python 3.12.

22

8.5 email

• Remove the isdst parameter from email.utils.localtime(). (Contributed by Hugo van Keme-
nade in gh-118798.)

8.6 importlib

• Remove deprecated importlib.abc classes:

– importlib.abc.ResourceReader

– importlib.abc.Traversable

– importlib.abc.TraversableResources

Use importlib.resources.abc classes instead:

– importlib.resources.abc.Traversable

– importlib.resources.abc.TraversableResources

(Contributed by Jason R. Coombs and Hugo van Kemenade in gh-93963.)

8.7 itertools

• Remove itertools support for copy, deepcopy, and pickle operations. These had previously raised
a DeprecationWarning since Python 3.12. (Contributed by Raymond Hettinger in gh-101588.)

8.8 pathlib

• Remove support for passing additional keyword arguments to pathlib.Path. In previous versions,
any such arguments are ignored.

• Remove support for passing additional positional arguments to pathlib.PurePath.

relative_to() and is_relative_to(). In previous versions, any such arguments are joined
onto other.

8.9 pkgutil

• Remove deprecated pkgutil.get_loader() and pkgutil.find_loader(). These had previously
raised a DeprecationWarning since Python 3.12. (Contributed by Bénédikt Tran in gh-97850.)

8.10 pty

• Remove deprecated pty.master_open() and pty.slave_open(). They had previously raised a
DeprecationWarning since Python 3.12. Use pty.openpty() instead. (Contributed by Nikita
Sobolev in gh-118824.)

23

https://github.com/python/cpython/issues/118798
https://github.com/python/cpython/issues/93963
https://github.com/python/cpython/issues/101588
https://github.com/python/cpython/issues/97850
https://github.com/python/cpython/issues/118824

8.11 sqlite3

• Remove version and version_info from sqlite3. (Contributed by Hugo van Kemenade in
gh-118924.)

• Disallow using a sequence of parameters with named placeholders. This had previously raised a
DeprecationWarning since Python 3.12; it will now raise a sqlite3.ProgrammingError. (Con-
tributed by Erlend E. Aasland in gh-118928 and gh-101693.)

8.12 typing

• Remove typing.ByteString. It had previously raised a DeprecationWarning since Python 3.12.

8.13 urllib

• Remove deprecated Quoter class from urllib.parse. It had previously raised a
DeprecationWarning since Python 3.11. (Contributed by Nikita Sobolev in gh-118827.)

• Remove deprecated URLopener and FancyURLopener classes from urllib.request. They had
previously raised a DeprecationWarning since Python 3.3.

myopener.open() can be replaced with urlopen(), and myopener.retrieve() can be replaced
with urlretrieve(). Customizations to the opener classes can be replaced by passing customized
handlers to build_opener().

(Contributed by Barney Gale in gh-84850.)

8.14 Others

• Using NotImplemented in a boolean context will now raise a TypeError. It had previously raised
a DeprecationWarning since Python 3.9. (Contributed by Jelle Zijlstra in gh-118767.)

• The int() built-in no longer delegates to __trunc__(). Classes that want to support conversion
to integer must implement either __int__() or __index__(). (Contributed by Mark Dickinson
in gh-119743.)

9 Porting to Python 3.14
This section lists previously described changes and other bugfixes that may require changes to your code.

9.1 Changes in the Python API

• functools.partial is now a method descriptor. Wrap it in staticmethod() if you want to pre-
serve the old behavior. (Contributed by Serhiy Storchaka and Dominykas Grigonis in gh-121027.)

• The locale.nl_langinfo() function now sets temporarily the LC_CTYPE locale in some cases.
This temporary change affects other threads. (Contributed by Serhiy Storchaka in gh-69998.)

24

https://github.com/python/cpython/issues/118924
https://github.com/python/cpython/issues/118928
https://github.com/python/cpython/issues/101693
https://github.com/python/cpython/issues/118827
https://github.com/python/cpython/issues/84850
https://github.com/python/cpython/issues/118767
https://github.com/python/cpython/issues/119743
https://github.com/python/cpython/issues/121027
https://github.com/python/cpython/issues/69998

10 Build changes

10.1 PEP 761: Discontinuation of PGP signatures

PGP signatures will not be available for CPython 3.14 and onwards. Users verifying artifacts must use
Sigstore verification materials for verifying CPython artifacts. This change in release process is specified
in PEP 761.

11 C API changes

11.1 New features

• Add PyLong_GetSign() function to get the sign of int objects. (Contributed by Sergey B Kir-
pichev in gh-116560.)

• Add a new PyUnicodeWriter API to create a Python str object:

– PyUnicodeWriter_Create()

– PyUnicodeWriter_DecodeUTF8Stateful()

– PyUnicodeWriter_Discard()

– PyUnicodeWriter_Finish()

– PyUnicodeWriter_Format()

– PyUnicodeWriter_WriteChar()

– PyUnicodeWriter_WriteRepr()

– PyUnicodeWriter_WriteStr()

– PyUnicodeWriter_WriteSubstring()

– PyUnicodeWriter_WriteUCS4()

– PyUnicodeWriter_WriteUTF8()

– PyUnicodeWriter_WriteWideChar()

(Contributed by Victor Stinner in gh-119182.)

• Add PyIter_NextItem() to replace PyIter_Next(), which has an ambiguous return value. (Con-
tributed by Irit Katriel and Erlend Aasland in gh-105201.)

• Py_Finalize() now deletes all interned strings. This is backwards incompatible to any
C-Extension that holds onto an interned string after a call to Py_Finalize() and is then reused
after a call to Py_Initialize(). Any issues arising from this behavior will normally result in
crashes during the execution of the subsequent call to Py_Initialize() from accessing uninitial-
ized memory. To fix, use an address sanitizer to identify any use-after-free coming from an interned
string and deallocate it during module shutdown. (Contributed by Eddie Elizondo in gh-113601.)

25

https://www.python.org/downloads/metadata/sigstore/
https://peps.python.org/pep-0761/
https://github.com/python/cpython/issues/116560
https://github.com/python/cpython/issues/119182
https://github.com/python/cpython/issues/105201
https://github.com/python/cpython/issues/113601

• Add PyLong_IsPositive(), PyLong_IsNegative() and PyLong_IsZero() for checking if
PyLongObject is positive, negative, or zero, respectively. (Contributed by James Roy and Sergey
B Kirpichev in gh-126061.)

• Add new functions to convert C <stdint.h> numbers from/to Python int:

– PyLong_AsInt32()

– PyLong_AsInt64()

– PyLong_AsUInt32()

– PyLong_AsUInt64()

– PyLong_FromInt32()

– PyLong_FromInt64()

– PyLong_FromUInt32()

– PyLong_FromUInt64()

(Contributed by Victor Stinner in gh-120389.)

• Add PyBytes_Join(sep, iterable) function, similar to sep.join(iterable) in Python. (Con-
tributed by Victor Stinner in gh-121645.)

• Add Py_HashBuffer() to compute and return the hash value of a buffer. (Contributed by Antoine
Pitrou and Victor Stinner in gh-122854.)

• Add functions to get and set the current runtime Python configuration (PEP 741):

– PyConfig_Get()

– PyConfig_GetInt()

– PyConfig_Set()

– PyConfig_Names()

(Contributed by Victor Stinner in gh-107954.)

• Add functions to configure the Python initialization (PEP 741):

– Py_InitializeFromInitConfig()

– PyInitConfig_AddModule()

– PyInitConfig_Create()

– PyInitConfig_Free()

– PyInitConfig_FreeStrList()

– PyInitConfig_GetError()

26

https://github.com/python/cpython/issues/126061
https://github.com/python/cpython/issues/120389
https://github.com/python/cpython/issues/121645
https://github.com/python/cpython/issues/122854
https://peps.python.org/pep-0741/
https://github.com/python/cpython/issues/107954
https://peps.python.org/pep-0741/

– PyInitConfig_GetExitCode()

– PyInitConfig_GetInt()

– PyInitConfig_GetStr()

– PyInitConfig_GetStrList()

– PyInitConfig_HasOption()

– PyInitConfig_SetInt()

– PyInitConfig_SetStr()

– PyInitConfig_SetStrList()

(Contributed by Victor Stinner in gh-107954.)

• Add a new import and export API for Python int objects (PEP 757):

– PyLong_GetNativeLayout();

– PyLong_Export();

– PyLong_FreeExport();

– PyLongWriter_Create();

– PyLongWriter_Finish();

– PyLongWriter_Discard().

(Contributed by Victor Stinner in gh-102471.)

• Add PyType_GetBaseByToken() and Py_tp_token slot for easier superclass identification, which
attempts to resolve the type checking issue mentioned in PEP 630 (gh-124153).

• Add PyUnicode_Equal() function to the limited C API: test if two strings are equal. (Contributed
by Victor Stinner in gh-124502.)

• Add PyType_Freeze() function to make a type immutable. (Contributed by Victor Stinner in
gh-121654.)

• Add PyUnstable_Object_EnableDeferredRefcount() for enabling deferred reference counting,
as outlined in PEP 703.

• The Unicode Exception Objects C API now raises a TypeError if its exception argument is not a
UnicodeError object. (Contributed by Bénédikt Tran in gh-127691.)

• Add PyMonitoring_FireBranchLeftEvent() and PyMonitoring_FireBranchRightEvent() for
generating BRANCH_LEFT and BRANCH_RIGHT events, respectively.

27

https://github.com/python/cpython/issues/107954
https://peps.python.org/pep-0757/
https://github.com/python/cpython/issues/102471
https://peps.python.org/pep-0630/#type-checking
https://peps.python.org/pep-0630/
https://github.com/python/cpython/issues/124153
https://github.com/python/cpython/issues/124502
https://github.com/python/cpython/issues/121654
https://peps.python.org/pep-0703/
https://github.com/python/cpython/issues/127691

11.2 Porting to Python 3.14

• In the limited C API 3.14 and newer, Py_TYPE() and Py_REFCNT() are now implemented as an
opaque function call to hide implementation details. (Contributed by Victor Stinner in gh-120600
and gh-124127.)

11.3 Deprecated

• The Py_HUGE_VAL macro is soft deprecated, use Py_INFINITY instead. (Contributed by Sergey B
Kirpichev in gh-120026.)

• Macros Py_IS_NAN, Py_IS_INFINITY and Py_IS_FINITE are soft deprecated, use instead isnan,
isinf and isfinite available from math.h since C99. (Contributed by Sergey B Kirpichev in
gh-119613.)

• The previously undocumented function PySequence_In() is soft deprecated. Use
PySequence_Contains() instead. (Contributed by Yuki Kobayashi in gh-127896.)

Pending removal in Python 3.15
• The bundled copy of libmpdecimal.

• The PyImport_ImportModuleNoBlock(): Use PyImport_ImportModule() instead.

• PyWeakref_GetObject() and PyWeakref_GET_OBJECT(): Use PyWeakref_GetRef() instead.

• Py_UNICODE type and the Py_UNICODE_WIDE macro: Use wchar_t instead.

• Python initialization functions:

– PySys_ResetWarnOptions(): Clear sys.warnoptions and warnings.filters instead.

– Py_GetExecPrefix(): Get sys.base_exec_prefix and sys.exec_prefix instead.

– Py_GetPath(): Get sys.path instead.

– Py_GetPrefix(): Get sys.base_prefix and sys.prefix instead.

– Py_GetProgramFullPath(): Get sys.executable instead.

– Py_GetProgramName(): Get sys.executable instead.

– Py_GetPythonHome(): Get PyConfig.home or the PYTHONHOME environment variable instead.

Pending removal in future versions
The following APIs are deprecated and will be removed, although there is currently no date scheduled
for their removal.

• Py_TPFLAGS_HAVE_FINALIZE: Unneeded since Python 3.8.

• PyErr_Fetch(): Use PyErr_GetRaisedException() instead.

• PyErr_NormalizeException(): Use PyErr_GetRaisedException() instead.

28

https://github.com/python/cpython/issues/120600
https://github.com/python/cpython/issues/124127
https://github.com/python/cpython/issues/120026
https://github.com/python/cpython/issues/119613
https://github.com/python/cpython/issues/127896

• PyErr_Restore(): Use PyErr_SetRaisedException() instead.

• PyModule_GetFilename(): Use PyModule_GetFilenameObject() instead.

• PyOS_AfterFork(): Use PyOS_AfterFork_Child() instead.

• PySlice_GetIndicesEx(): Use PySlice_Unpack() and PySlice_AdjustIndices() instead.

• PyUnicode_AsDecodedObject(): Use PyCodec_Decode() instead.

• PyUnicode_AsDecodedUnicode(): Use PyCodec_Decode() instead.

• PyUnicode_AsEncodedObject(): Use PyCodec_Encode() instead.

• PyUnicode_AsEncodedUnicode(): Use PyCodec_Encode() instead.

• PyUnicode_READY(): Unneeded since Python 3.12

• PyErr_Display(): Use PyErr_DisplayException() instead.

• _PyErr_ChainExceptions(): Use _PyErr_ChainExceptions1() instead.

• PyBytesObject.ob_shash member: call PyObject_Hash() instead.

• PyDictObject.ma_version_tag member.

• Thread Local Storage (TLS) API:

– PyThread_create_key(): Use PyThread_tss_alloc() instead.

– PyThread_delete_key(): Use PyThread_tss_free() instead.

– PyThread_set_key_value(): Use PyThread_tss_set() instead.

– PyThread_get_key_value(): Use PyThread_tss_get() instead.

– PyThread_delete_key_value(): Use PyThread_tss_delete() instead.

– PyThread_ReInitTLS(): Unneeded since Python 3.7.

• The PyMonitoring_FireBranchEvent function is deprecated and should be replaced with calls to
PyMonitoring_FireBranchLeftEvent() and PyMonitoring_FireBranchRightEvent().

11.4 Removed

• Creating immutable types with mutable bases was deprecated since 3.12 and now raises a
TypeError.

29

30

索引

アルファベット以外
環境変数

PYTHON_COLORS, 12
PYTHONHOME, 28
PYTHONLEGACYWINDOWSFSENCODING,

16

P
Python Enhancement Proposals

PEP 563, 4
PEP 587, 5

PEP 626, 15
PEP 630, 27
PEP 649, 3
PEP 703, 27
PEP 734, 7
PEP 741, 5, 26
PEP 749, 3, 6
PEP 757, 27
PEP 761, 25

PYTHON_COLORS, 12
PYTHONHOME, 28
PYTHONLEGACYWINDOWSFSENCODING, 16

R
RFC

RFC 1494, 10
RFC 3362, 10
RFC 3745, 10
RFC 3950, 10
RFC 4047, 10
RFC 7903, 10
RFC 8081, 9
RFC 9559, 9
RFC 9562, 12

	Summary -- release highlights
	New features
	PEP 649: deferred evaluation of annotations
	Implications for annotated code
	Implications for readers of __annotations__
	Related changes
	from __future__ import annotations

	Improved error messages
	PEP 741: Python Configuration C API

	Other language changes
	New modules
	Improved modules
	argparse
	ast
	concurrent.futures
	ctypes
	datetime
	decimal
	dis
	errno
	fractions
	functools
	getopt
	http
	inspect
	io
	json
	mimetypes
	multiprocessing
	operator
	os
	pathlib
	pdb
	platform
	pickle
	pydoc
	symtable
	sys
	sys.monitoring
	tkinter
	unicodedata
	unittest
	uuid

	Optimizations
	asyncio
	io

	Deprecated
	Pending removal in Python 3.15
	Pending removal in Python 3.16
	Pending removal in future versions

	Removed
	argparse
	ast
	asyncio
	collections.abc
	email
	importlib
	itertools
	pathlib
	pkgutil
	pty
	sqlite3
	typing
	urllib
	Others

	Porting to Python 3.14
	Changes in the Python API

	Build changes
	PEP 761: Discontinuation of PGP signatures

	C API changes
	New features
	Porting to Python 3.14
	Deprecated
	Pending removal in Python 3.15
	Pending removal in future versions

	Removed

	索引

