初期化 (initialization)、終了処理 (finalization)、スレッド

Before Python Initialization

In an application embedding Python, the Py_Initialize() function must be called before using any other Python/C API functions; with the exception of a few functions and the global configuration variables.

The following functions can be safely called before Python is initialized:

Global configuration variables

Python has variables for the global configuration to control different features and options. By default, these flags are controlled by command line options.

When a flag is set by an option, the value of the flag is the number of times that the option was set. For example, -b sets Py_BytesWarningFlag to 1 and -bb sets Py_BytesWarningFlag to 2.


Issue a warning when comparing bytes or bytearray with str or bytes with int. Issue an error if greater or equal to 2.

Set by the -b option.


Turn on parser debugging output (for expert only, depending on compilation options).

Set by the -d option and the PYTHONDEBUG environment variable.


If set to non-zero, Python won't try to write .pyc files on the import of source modules.

Set by the -B option and the PYTHONDONTWRITEBYTECODE environment variable.


Suppress error messages when calculating the module search path in Py_GetPath().

Private flag used by _freeze_importlib and frozenmain programs.


Set to 1 if the PYTHONHASHSEED environment variable is set to a non-empty string.

If the flag is non-zero, read the PYTHONHASHSEED environment variable to initialize the secret hash seed.


全ての PYTHON* 環境変数を無視します。例えば、 PYTHONPATHPYTHONHOME などです。

Set by the -E and -I options.


When a script is passed as first argument or the -c option is used, enter interactive mode after executing the script or the command, even when sys.stdin does not appear to be a terminal.

Set by the -i option and the PYTHONINSPECT environment variable.


Set by the -i option.


Run Python in isolated mode. In isolated mode sys.path contains neither the script's directory nor the user's site-packages directory.

Set by the -I option.

バージョン 3.4 で追加.


If the flag is non-zero, use the mbcs encoding instead of the UTF-8 encoding for the filesystem encoding.

Set to 1 if the PYTHONLEGACYWINDOWSFSENCODING environment variable is set to a non-empty string.

より詳しくは PEP 529 を参照をしてください。

利用可能な環境: Windows 。


If the flag is non-zero, use io.FileIO instead of WindowsConsoleIO for sys standard streams.

Set to 1 if the PYTHONLEGACYWINDOWSSTDIO environment variable is set to a non-empty string.

See PEP 528 for more details.

利用可能な環境: Windows 。


site モジュールの import と、そのモジュールが行なっていた site ごとの sys.path への操作を無効にします。後に site を明示的に import しても、これらの操作は実行されません (実行したい場合は、 site.main() を呼び出してください)。

Set by the -S option.


user site-packages directorysys.path に追加しません。

Set by the -s and -I options, and the PYTHONNOUSERSITE environment variable.


Set by the -O option and the PYTHONOPTIMIZE environment variable.


インタラクティブモードでも copyright とバージョンのメッセージを表示しません。

Set by the -q option.

バージョン 3.2 で追加.


Force the stdout and stderr streams to be unbuffered.

Set by the -u option and the PYTHONUNBUFFERED environment variable.


Print a message each time a module is initialized, showing the place (filename or built-in module) from which it is loaded. If greater or equal to 2, print a message for each file that is checked for when searching for a module. Also provides information on module cleanup at exit.

Set by the -v option and the PYTHONVERBOSE environment variable.


void Py_Initialize()

Initialize the Python interpreter. In an application embedding Python, this should be called before using any other Python/C API functions; see Before Python Initialization for the few exceptions.

This initializes the table of loaded modules (sys.modules), and creates the fundamental modules builtins, __main__ and sys. It also initializes the module search path (sys.path). It does not set sys.argv; use PySys_SetArgvEx() for that. This is a no-op when called for a second time (without calling Py_FinalizeEx() first). There is no return value; it is a fatal error if the initialization fails.


Windows では O_TEXT から O_BINARY へコンソールモードが変更されますが、これはその C ランタイムを使っているコンソールでの Python 以外の使い勝手にも影響を及ぼします。

void Py_InitializeEx(int initsigs)

initsigs1 を指定した場合、この関数は Py_Initialize() と同じように動作します。 initsigs0 を指定した場合、初期化時のシグナルハンドラの登録をスキップすることができ、これは Python の埋め込みで便利でしょう。

int Py_IsInitialized()

Python インタプリタが初期化済みであれば真(非ゼロ)を、さもなければ偽(ゼロ)を返します。Py_FinalizeEx() を呼び出した後は、Py_Initialize() を再び呼び出すまで、この関数は偽を返します。

int Py_FinalizeEx()

Undo all initializations made by Py_Initialize() and subsequent use of Python/C API functions, and destroy all sub-interpreters (see Py_NewInterpreter() below) that were created and not yet destroyed since the last call to Py_Initialize(). Ideally, this frees all memory allocated by the Python interpreter. This is a no-op when called for a second time (without calling Py_Initialize() again first). Normally the return value is 0. If there were errors during finalization (flushing buffered data), -1 is returned.

この関数が提供されている理由はいくつかあります。Python の埋め込みを行っているアプリケーションでは、アプリケーションを再起動することなく Python を再起動したいことがあります。また、動的ロード可能イブラリ (あるいは DLL) から Python インタプリタをロードするアプリケーションでは、DLL をアンロードする前に Python が確保したメモリを全て解放したいと考えるかもしれません。アプリケーション内で起きているメモリリークを追跡する際に、開発者は Python が確保したメモリをアプリケーションの終了前に解放させたいと思う場合もあります。

バグおよび注意事項: モジュールやモジュール内のオブジェクトはランダムな順番で削除されます。このため、他のオブジェクト(関数オブジェクトも含みます) やモジュールに依存するデストラクタ (__del__() メソッド) が失敗してしまうことがあります。動的にロードされるようになっている拡張モジュールが Python によってロードされていた場合、アンロードされません。 Python が確保したメモリがわずかながら解放されないかもしれません (メモリリークを発見したら、どうか報告してください)。オブジェクト間の循環参照に捕捉されているメモリは解放されないことがあります。拡張モジュールが確保したメモリは解放されないことがあります。拡張モジュールによっては、初期化ルーチンを 2 度以上呼び出すと正しく動作しないことがあります。こうした状況は、 Py_Initialize()Py_FinalizeEx() を 2 度以上呼び出すと起こり得ます。

バージョン 3.6 で追加.

void Py_Finalize()

この関数は Py_FinalizeEx() の後方互換性バージョンで、戻り値がありません。


int Py_SetStandardStreamEncoding(const char *encoding, const char *errors)

もし Py_Initialize() が呼ばれるなら、この関数はその前に呼ばなければなりません。標準の IO において、どのエンコーディングおよびどんなエラー処理を使うかを、 str.encode() と同様の意味で指定します。

これは、環境変数が働かない時に PYTHONIOENCODING の値を上書きし、埋め込みコードが IO エンコーディングをコントロールできるようにします。

encodingerrors のどちらかまたは両方を NULL にすることで、 PYTHONIOENCODING とデフォルト値のどちらかまたは両方を使うことができます (他の設定に依存します)。

この設定 (あるいは他の設定) に関わらず、 sys.stderr は常に "backslashreplace" エラーハンドラを使うことに注意してください。

Py_FinalizeEx() を呼び出した場合は、Py_Initialize() を呼び出す前に、この関数を再度呼び出す必要があるでしょう。

成功したら 0 を、エラーの場合は 0 でない値を返します (例えば、インタプリタが初期化された後に、この関数が呼び出された場合)。

バージョン 3.4 で追加.

void Py_SetProgramName(const wchar_t *name)

この関数を呼び出すなら、最初に Py_Initialize() を呼び出すよりも前に呼び出さなければなりません。この関数はインタプリタにプログラムの main() 関数に指定した argv[0] 引数の値を教えます (ワイドキャラクタに変換されます)。この引数値は、 Py_GetPath() や、以下に示すその他の関数が、インタプリタの実行可能形式から Python ランタイムライブラリへの相対パスを取得するために使われます。デフォルトの値は 'python' です。引数はゼロ終端されたワイドキャラクタ文字列で、静的な記憶領域に入っていなければならず、その内容はプログラムの実行中に変更してはなりません。 Python インタプリタ内のコードで、この記憶領域の内容を変更するものは一切ありません。

バイト文字列を wchar_* 文字列にデコードするには Py_DecodeLocale() を使ってください。

wchar* Py_GetProgramName()

Py_SetProgramName() で設定されたプログラム名か、デフォルトのプログラム名を返します。関数が返す文字列ポインタは静的な記憶領域を返します。関数の呼び出し側はこの値を変更できません。

wchar_t* Py_GetPrefix()

プラットフォーム非依存のファイル群がインストールされている場所である prefix を返します。この値は Py_SetProgramName() でセットされたプログラム名やいくつかの環境変数をもとに、数々の複雑な規則から導出されます。例えば、プログラム名が '/usr/local/bin/python' の場合、prefix は '/usr/local' になります。関数が返す文字列ポインタは静的な記憶領域を返します; 関数の呼び出し側はこの値を変更できません。この値はトップレベルの Makefile に指定されている変数 prefix や、ビルド値に configure スクリプトに指定した --prefix 引数に対応しています。この値は Python コードからは sys.prefix として利用できます。これはUnixでのみ有用です。次に説明する関数も参照してください。

wchar_t* Py_GetExecPrefix()

プラットフォーム 依存 のファイルがインストールされている場所である exec-prefix を返します。この値は Py_SetProgramName() でセットされたプログラム名やいくつかの環境変数をもとに、数々の複雑な規則から導出されます。例えば、プログラム名が '/usr/local/bin/python' の場合、exec-prefix は '/usr/local' になります。関数が返す文字列ポインタは静的な記憶領域を返します; 関数の呼び出し側はこの値を変更できません。この値はトップレベルの Makefile に指定されている変数 exec_prefix や、ビルド値に configure スクリプトに指定した --exec-prefix 引数に対応しています。この値は Python コードからは sys.exec_prefix として利用できます。 Unixのみで有用です。

背景: プラットフォーム依存のファイル (実行形式や共有ライブラリ) が別のディレクトリツリー内にインストールされている場合、 exec-prefix は prefix と異なります。典型的なインストール形態では、プラットフォーム非依存のファイルが /usr/local に収められる一方、プラットフォーム依存のファイルは /usr/local/plat サブツリーに収められます。

一般的に、プラットフォームとは、ハードウェアとソフトウェアファミリの組み合わせを指します。例えば、Solaris 2.x を動作させている Sparc マシンは全て同じプラットフォームであるとみなしますが、Solaris 2.x を動作させている Intel マシンは違うプラットフォームになりますし、同じ Intel マシンでも Linux を動作させているならまた別のプラットフォームです。一般的には、同じオペレーティングシステムでも、メジャーリビジョンの違うものは異なるプラットフォームです。非 Unix のオペレーティングシステムの場合は話はまた別です; 非 Unix のシステムでは、インストール方法はとても異なっていて、prefix や exec-prefix には意味がなく、空文字列が設定されています。コンパイル済みの Python バイトコードはプラットフォームに依存しないので注意してください (ただし、どのバージョンの Python でコンパイルされたかには依存します!)。

システム管理者は、 mountautomount プログラムを使って、各プラットフォーム用の /usr/local/plat を異なったファイルシステムに置き、プラットフォーム間で /usr/local を共有するための設定方法を知っているでしょう。

wchar_t* Py_GetProgramFullPath()

Python 実行可能形式の完全なプログラム名を返します; この値はデフォルトのモジュール検索パスを (前述の Py_SetProgramName() で設定された) プログラム名から導出する際に副作用的に計算されます。関数が返す文字列ポインタは静的な記憶領域を返します; 関数の呼び出し側はこの値を変更できません。この値は Python コードからは sys.executable として利用できます。

wchar_t* Py_GetPath()

デフォルトのモジュール検索パスを返します; パスは (上の Py_SetProgramName() で設定された) プログラム名と、いくつかの環境変数から計算されます。戻り値となる文字列は、プラットフォーム依存のパス区切り文字で分割された一連のディレクトリ名からなります。区切り文字は Unix と Mac OS X では ':', Windows では ';' です。関数が返す文字列ポインタは静的な記憶領域を返します; 関数の呼び出し側はこの値を変更できません。 sys.path はインタプリタによってこの値で初期化され、その後にモジュールをロードする際の検索パスを変更するために修正することが可能で、たいていそうされます。

void Py_SetPath(const wchar_t *)

デフォルトのモジュール検索パスを設定します。この関数が Py_Initialize() より前に呼び出された場合、 Py_GetPath() はデフォルトの検索パスを計算しようとせず、代わりにこの関数が与えた検索パスを返します。これは、 Python がアプリケーションに組み込まれていて、そのアプリケーションが全てのモジュールの場所を完全に把握しているときに便利です。パスはプラットフォーム依存の区切り文字で分割されている必要があります。区切り文字は Unix と Mac OS X では ':' 、Windows では ';' です。

また、この関数は sys.executable に特に加工されていないプログラム名 (Py_SetProgramName() を参照) をセットし、 sys.prefixsys.exec_prefix に空文字列をセットします。 Py_Initialize() が呼び出された後で、これらの値を変更する必要がある場合は、呼び出し側の責任で行います。

バイト文字列を wchar_* 文字列にデコードするには Py_DecodeLocale() を使ってください。


const char* Py_GetVersion()

Python インタプリタのバージョンを返します。バージョンは、次のような形式の文字列です

"3.0a5+ (py3k:63103M, May 12 2008, 00:53:55) \n[GCC 4.2.3]"

第一ワード (最初のスペース文字まで) は、現在の Python のバージョンです; 最初の三文字は、ピリオドで区切られたメジャーバージョンとマイナーバージョンです。関数が返す文字列ポインタは静的な記憶領域を返します; 関数の呼び出し側はこの値を変更できません。この値は Python コードからは sys.version として利用できます。

const char* Py_GetPlatform()

現在のプラットフォームのプラットフォーム識別文字列を返します。Unixでは、オペレーティングシステムの "公式の" 名前を小文字に変換し、後ろにメジャーリビジョン番号を付けた構成になっています。例えば Solaris 2.x は、SunOS 5.x, としても知られていますが、'sunos5' になります。Mac OS X では 'darwin' です。Windows では 'win' です。関数が返す文字列ポインタは静的な記憶領域を返します; 関数の呼び出し側はこの値を変更できません。この値は Python コードからは sys.platform として利用できます。

const char* Py_GetCopyright()

現在の Python バージョンに対する公式の著作権表示文字列を返します。例えば

'Copyright 1991-1995 Stichting Mathematisch Centrum, Amsterdam'

関数が返す文字列ポインタは静的な記憶領域を返します; 関数の呼び出し側はこの値を変更できません。この値は Python コードからは sys.copyright として利用できます。

const char* Py_GetCompiler()

現在使っているバージョンの Python をビルドする際に用いたコンパイラを示す文字列を、角括弧で囲った文字列を返します。例えば:


関数が返す文字列ポインタは静的な記憶領域を返します; 関数の呼び出し側はこの値を変更できません。この値は Python コードからは sys.version の一部として取り出せます。

const char* Py_GetBuildInfo()

現在使っている Python インタプリタインスタンスの、シーケンス番号とビルド日時に関する情報を返します。例えば

"#67, Aug  1 1997, 22:34:28"

関数が返す文字列ポインタは静的な記憶領域を返します; 関数の呼び出し側はこの値を変更できません。この値は Python コードからは sys.version の一部として取り出せます。

void PySys_SetArgvEx(int argc, wchar_t **argv, int updatepath)

argc および argv に基づいて sys.argv を設定します。これらの引数はプログラムの main() に渡した引数に似ていますが、最初の要素が Python インタプリタの宿主となっている実行形式の名前ではなく、実行されるスクリプト名を参照しなければならない点が違います。実行するスクリプトがない場合、 argv の最初の要素は空文字列にしてもかまいません。この関数が sys.argv の初期化に失敗した場合、致命的エラーを Py_FatalError() で知らせます。

updatepath が 0 の場合、ここまでの動作がこの関数がすることの全てです。 updatepath が 0 でない場合、この関数は sys.path を以下のアルゴリズムに基づいて修正します:

  • 存在するスクリプトの名前が argv[0] に渡された場合、そのスクリプトがある場所の絶対パスを sys.path の先頭に追加します。
  • それ以外の場合 (argc0 だったり、 argv[0] が存在するファイル名を指していない場合)、 sys.path の先頭に空の文字列を追加します。 これは現在の作業ディレクトリ (".") を先頭に追加するのと同じです。

バイト文字列を wchar_* 文字列にデコードするには Py_DecodeLocale() を使ってください。


単一のスクリプトを実行する以外の目的でPython インタプリタを埋め込んでいるアプリケーションでは、 updatepath0 を渡して、必要な場合は自分で sys.path を更新することをおすすめします。 CVE-2008-5983 を参照してください。

3.1.3 より前のバージョンでは、 PySys_SetArgv() の呼び出しが完了した後に sys.path の先頭の要素を取り出すことで、同じ効果が得られます。例えばこのように使います:

PyRun_SimpleString("import sys; sys.path.pop(0)\n");

バージョン 3.1.3 で追加.

void PySys_SetArgv(int argc, wchar_t **argv)

この関数は、 python インタプリタが -I オプション付きで実行されている場合を除き PySys_SetArgvEx()updatepath1 を設定したのと同じように動作します。

バイト文字列を wchar_* 文字列にデコードするには Py_DecodeLocale() を使ってください。

バージョン 3.4 で変更: updatepath の値は -I オプションに依存します。

void Py_SetPythonHome(const wchar_t *home)

Python の標準ライブラリがある、デフォルトの "home" ディレクトリを設定します。引数の文字列の意味については PYTHONHOME を参照してください。

引数は静的なストレージに置かれてプログラム実行中に書き換えられないようなゼロ終端の文字列であるべきです。Python インタプリタはこのストレージの内容を変更しません。

バイト文字列を wchar_* 文字列にデコードするには Py_DecodeLocale() を使ってください。

w_char* Py_GetPythonHome()

前回の Py_SetPythonHome() 呼び出しで設定されたデフォルトの "home" か、 PYTHONHOME 環境変数が設定されていればその値を返します。

スレッド状態 (thread state) とグローバルインタプリタロック (global interpreter lock)

Python インタプリタは完全にはスレッドセーフではありません。マルチスレッドの Python プログラムをサポートするために、グローバルインタプリタロック(global interpreter lock, GIL) と呼ばれるグローバルなロックが存在していて、現在のスレッドが Python オブジェクトに安全にアクセスする前に必ずロックを獲得しなければならなくなっています。ロック機構がなければ、単純な操作でさえ、マルチスレッドプログラムの実行に問題を引き起こす可能性があります。たとえば、二つのスレッドが同じオブジェクトの参照カウントを同時にインクリメントすると、結果的に参照カウントは二回でなく一回だけしかインクリメントされないかもしれません。

このため、 GIL を獲得したスレッドだけが Python オブジェクトを操作したり、 Python/C API 関数を呼び出したりできるというルールがあります。並行処理をエミュレートするために、インタプリタは定期的にロックを解放したり獲得したりします。 (sys.setswitchinterval() を参照) このロックはブロックが起こりうる I/O 操作の付近でも解放・獲得され、 I/O を要求するスレッドが I/O 操作の完了を待つ間、他のスレッドが動作できるようにしています。

Python インタプリタはスレッドごとに必要な情報を PyThreadState と呼ばれるデータ構造の中に保存します。そしてグローバル変数として現在の PyThreadState を指すポインタを1つ持ちます。このグローバル変数は PyThreadState_Get() を使って取得できます。

拡張コード内で GIL を解放する

GIL を操作するほとんどのコードは、次のような単純な構造になります:

Save the thread state in a local variable.
Release the global interpreter lock.
... Do some blocking I/O operation ...
Reacquire the global interpreter lock.
Restore the thread state from the local variable.


... Do some blocking I/O operation ...

The Py_BEGIN_ALLOW_THREADS macro opens a new block and declares a hidden local variable; the Py_END_ALLOW_THREADS macro closes the block.

The block above expands to the following code:

PyThreadState *_save;

_save = PyEval_SaveThread();
... Do some blocking I/O operation ...

これらの関数の動作を説明します。GIL は現在のスレッド状態を指すポインタを保護するために使われます。ロックを解放してスレッド状態を退避する際、ロックを解放する前に現在のスレッド状態ポインタを取得しておかなければなりません (他のスレッドがすぐさまロックを獲得して、自らのスレッド状態をグローバル変数に保存してしまうかもしれないからです)。逆に、ロックを獲得してスレッド状態を復帰する際には、グローバル変数にスレッド状態ポインタを保存する前にロックを獲得しておかなければなりません。


GIL を解放するのはほとんどがシステムのI/O関数を呼び出す時ですが、メモリバッファに対する圧縮や暗号化のように、 Python のオブジェクトにアクセスしない長時間かかる計算処理を呼び出すときも GIL を解放することは有益です。例えば、 zlibhashlib モジュールは圧縮やハッシュ計算の前に GIL を解放します。

Python 以外で作られたスレッド

Python API を通して作られたスレッド (threading モジュールなど) では自動的にスレッド状態が割り当てられて、上記のコードは正しく動きます。しかし、(自前でスレッド管理を行う外部のライブラリなどにより)C言語でスレッドを生成した場合、そのスレッドには GIL がなく、スレッド状態データ構造体もないことに注意する必要があります。

このようなスレッドから Python コードを呼び出す必要がある場合 (外部のライブラリからコールバックするAPIなどがよくある例です)、Python/C API を呼び出す前に、スレッド状態データ構造体を生成し、GIL を獲得し、スレッド状態ポインタを保存することで、スレッドをインタプリタに登録しなければなりません。スレッドが作業を終えたら、スレッド状態ポインタをリセットして、ロックを解放し、最後にスレッド状態データ構造体のメモリを解放しなければなりません。

PyGILState_Ensure()PyGILState_Release() はこの処理を自動的に行います。 Cのスレッドから Python を呼び出す典型的な方法は以下のとおりです:

PyGILState_STATE gstate;
gstate = PyGILState_Ensure();

/* Perform Python actions here. */
result = CallSomeFunction();
/* evaluate result or handle exception */

/* Release the thread. No Python API allowed beyond this point. */

PyGILState_*() 関数は、(Py_Initialize() によって自動的に作られる) グローバルインタプリタ1つだけが存在すると仮定する事に気をつけて下さい。 Python は (Py_NewInterpreter() を使って) 追加のインタプリタを作成できることに変わりはありませんが、複数インタプリタと PyGILState_*() API を混ぜて使うことはサポートされていません。

Another important thing to note about threads is their behaviour in the face of the C fork() call. On most systems with fork(), after a process forks only the thread that issued the fork will exist. That also means any locks held by other threads will never be released. Python solves this for os.fork() by acquiring the locks it uses internally before the fork, and releasing them afterwards. In addition, it resets any Lock オブジェクト in the child. When extending or embedding Python, there is no way to inform Python of additional (non-Python) locks that need to be acquired before or reset after a fork. OS facilities such as pthread_atfork() would need to be used to accomplish the same thing. Additionally, when extending or embedding Python, calling fork() directly rather than through os.fork() (and returning to or calling into Python) may result in a deadlock by one of Python's internal locks being held by a thread that is defunct after the fork. PyOS_AfterFork_Child() tries to reset the necessary locks, but is not always able to.




このデータ構造体は、協調動作する多数のスレッド間で共有されている状態を表現します。同じインタプリタに属するスレッドはモジュール管理情報やその他いくつかの内部的な情報を共有しています。この構造体には公開 (public) のメンバはありません。



単一のスレッドの状態を表現する表現するデータ構造体です。スレッドのインタプリタ状態を指すポインタ PyInterpreterState * interp だけが公開されているデータメンバです。

void PyEval_InitThreads()

GIL を初期化し、獲得します。この関数は、主スレッドが第二のスレッドを生成する以前や、 PyEval_ReleaseThread(tstate) といった他のスレッド操作に入るよりも前に呼び出されるようにしておかなければなりません。 PyEval_SaveThread(), PyEval_RestoreThread() の前に呼び出す必要はありません。


バージョン 3.7 で変更: This function is now called by Py_Initialize(), so you don't have to call it yourself anymore.

バージョン 3.2 で変更: この関数は Py_Initialize() より前に呼び出すことができなくなりました。

int PyEval_ThreadsInitialized()

Returns a non-zero value if PyEval_InitThreads() has been called. This function can be called without holding the GIL, and therefore can be used to avoid calls to the locking API when running single-threaded.

バージョン 3.7 で変更: The GIL is now initialized by Py_Initialize().

PyThreadState* PyEval_SaveThread()

Release the global interpreter lock (if it has been created and thread support is enabled) and reset the thread state to NULL, returning the previous thread state (which is not NULL). If the lock has been created, the current thread must have acquired it.

void PyEval_RestoreThread(PyThreadState *tstate)

Acquire the global interpreter lock (if it has been created and thread support is enabled) and set the thread state to tstate, which must not be NULL. If the lock has been created, the current thread must not have acquired it, otherwise deadlock ensues.

PyThreadState* PyThreadState_Get()

現在のスレッド状態を返します。GIL を保持していなければなりません。現在のスレッド状態が NULL なら、(呼び出し側が NULL チェックをしなくてすむように) この関数は致命的エラーを起こすようになっています。

PyThreadState* PyThreadState_Swap(PyThreadState *tstate)

現在のスレッド状態を tstate に指定したスレッド状態と入れ変えます。tstateNULL の場合があります。GIL を保持していなければならず、解放しません。

void PyEval_ReInitThreads()

This function is called from PyOS_AfterFork_Child() to ensure that newly created child processes don't hold locks referring to threads which are not running in the child process.


PyGILState_STATE PyGILState_Ensure()

Pythonの状態やGILに関わらず、実行中スレッドでPython C APIの呼び出しが可能となるようにします。この関数はスレッド内で何度でも呼び出すことができますが、必ず全ての呼び出しに対応して PyGILState_Release() を呼び出す必要があります。通常、 PyGILState_Ensure() 呼び出しと PyGILState_Release() 呼び出しの間でこれ以外のスレッド関連API を使用することができますが、Release()の前にスレッド状態は復元されていなければなりません。例えば、通常の Py_BEGIN_ALLOW_THREADS マクロと Py_END_ALLOW_THREADS は使用することができます。

戻り値は PyGILState_Ensure() 呼び出し時のスレッド状態を隠蔽した"ハンドル"で、 PyGILState_Release() に渡してPythonを同じ状態に保たなければなりません。再起呼び出しも可能ですが、ハンドルを共有することは できません - それぞれの PyGILState_Ensure() 呼び出しでハンドルを保存し、対応する PyGILState_Release() 呼び出しで渡してください。

関数から復帰したとき、実行中のスレッドはGILを所有していて、任意の Python コードを実行できます。処理の失敗は致命的なエラーです。

void PyGILState_Release(PyGILState_STATE)

獲得したすべてのリソースを解放します。この関数を呼び出すと、Pythonの状態は対応する PyGILState_Ensure() を呼び出す前と同じとなります (通常、この状態は呼び出し元でははわかりませんので、GILState APIを利用するようにしてください)。

PyGILState_Ensure() を呼び出す場合は、必ず同一スレッド内で対応する PyGILState_Release() を呼び出してください。

PyThreadState* PyGILState_GetThisThreadState()

このスレッドの現在のスレッドの状態を取得します。これまで現在のスレッドで GILState API を使ったことが無い場合は、NULL が返ります。メインスレッドで自身のスレッド状態に関する呼び出しを全くしないとしても、メインスレッドは常にスレッド状態の情報を持っていることに注意してください。こうなっている目的は主にヘルパ機能もしくは診断機能のためです。

int PyGILState_Check()

現在のスレッドが GILを保持しているならば 1 を、そうでなければ 0 を返します。この関数はいつでもどのスレッドからでも呼び出すことができます。 Python スレッドの状態が初期化されており、現在 GIL を保持している場合にのみ 1 を返します。これは主にヘルパー/診断用の関数です。この関数は、例えばコールバックのコンテキストやメモリ割り当て機能で有益でしょう。なぜなら、 GIL がロックされていると知っていれば、呼び出し元は sensitive な行動を実行することができ、そうでなければ異なるやりかたで振る舞うことができるからです。

バージョン 3.4 で追加.

以下のマクロは、通常末尾にセミコロンを付けずに使います; Python ソース配布物内の使用例を見てください。


This macro expands to { PyThreadState *_save; _save = PyEval_SaveThread();. Note that it contains an opening brace; it must be matched with a following Py_END_ALLOW_THREADS macro. See above for further discussion of this macro.


This macro expands to PyEval_RestoreThread(_save); }. Note that it contains a closing brace; it must be matched with an earlier Py_BEGIN_ALLOW_THREADS macro. See above for further discussion of this macro.


This macro expands to PyEval_RestoreThread(_save);: it is equivalent to Py_END_ALLOW_THREADS without the closing brace.


This macro expands to _save = PyEval_SaveThread();: it is equivalent to Py_BEGIN_ALLOW_THREADS without the opening brace and variable declaration.


All of the following functions must be called after Py_Initialize().

バージョン 3.7 で変更: Py_Initialize() now initializes the GIL.

PyInterpreterState* PyInterpreterState_New()

新しいインタプリタ状態オブジェクトを生成します。GIL を保持しておく必要はありませんが、この関数を次々に呼び出す必要がある場合には保持しておいたほうがよいでしょう。

void PyInterpreterState_Clear(PyInterpreterState *interp)

インタプリタ状態オブジェクト内の全ての情報をリセットします。GIL を保持していなければなりません。

void PyInterpreterState_Delete(PyInterpreterState *interp)

インタプリタ状態オブジェクトを破壊します。GIL を保持しておく必要はありません。インタプリタ状態は PyInterpreterState_Clear() であらかじめリセットしておかなければなりません。

PyThreadState* PyThreadState_New(PyInterpreterState *interp)

指定したインタプリタオブジェクトに属する新たなスレッド状態オブジェクトを生成します。GIL を保持しておく必要はありませんが、この関数を次々に呼び出す必要がある場合には保持しておいたほうがよいでしょう。

void PyThreadState_Clear(PyThreadState *tstate)

スレッド状態オブジェクト内の全ての情報をリセットします。GIL を保持していなければなりません。

void PyThreadState_Delete(PyThreadState *tstate)

スレッド状態オブジェクトを破壊します。GIL を保持する必要はありません。スレッド状態は PyThreadState_Clear() であらかじめリセットしておかなければなりません。

PY_INT64_T PyInterpreterState_GetID(PyInterpreterState *interp)

Return the interpreter's unique ID. If there was any error in doing so then -1 is returned and an error is set.

バージョン 3.7 で追加.

PyObject* PyThreadState_GetDict()
Return value: Borrowed reference.

拡張モジュールがスレッド固有の状態情報を保存できるような辞書を返します。各々の拡張モジュールが辞書に状態情報を保存するためには唯一のキーを使わなければなりません。現在のスレッド状態がない時にこの関数を呼び出してもかまいません。この関数が NULL を返す場合、例外はまったく送出されず、呼び出し側は現在のスレッド状態が利用できないと考えなければなりません。

int PyThreadState_SetAsyncExc(unsigned long id, PyObject *exc)

スレッド内で非同期的に例外を送出します。 id 引数はターゲットとなるスレッドのスレッド id です; exc は送出する例外オブジェクトです。この関数は exc に対する参照を一切盗み取りません。安直な間違いを防ぐため、この関数を呼び出すには独自に C 拡張モジュールを書かなければなりません。 GIL を保持した状態で呼び出さなければなりません。状態が変更されたスレッドの数を返します; 通常は 1 ですが、スレッドが見付からなかった場合は 0 になることもあります。 excNULL の場合は、このスレッドのまだ送出されていない例外は (何であれ) 消去されます。この場合は例外を送出しません。

バージョン 3.7 で変更: The type of the id parameter changed from long to unsigned long.

void PyEval_AcquireThread(PyThreadState *tstate)

GIL を獲得し、現在のスレッド状態を tstate に設定します。 tstateNULL であってはなりません。ロックはあらかじめ作成されていなければなりません。この関数を呼び出したスレッドがすでにロックを獲得している場合、デッドロックに陥ります。

PyEval_RestoreThread() is a higher-level function which is always available (even when threads have not been initialized).

void PyEval_ReleaseThread(PyThreadState *tstate)

現在のスレッド状態をリセットして NULL にし、GIL を解放します。ロックはあらかじめ作成されていなければならず、かつ現在のスレッドが保持していなければなりません。tstateNULL であってはなりませんが、その値が現在のスレッド状態を表現しているかどうかを調べるためにだけ使われます --- もしそうでなければ、致命的エラーが報告されます。

PyEval_SaveThread() is a higher-level function which is always available (even when threads have not been initialized).

void PyEval_AcquireLock()


バージョン 3.2 で非推奨: この関数は現在のスレッドの状態を更新しません。代わりに PyEval_RestoreThread() もしくは PyEval_AcquireThread() を使用してください。

void PyEval_ReleaseLock()


バージョン 3.2 で非推奨: この関数は現在のスレッドの状態を更新しません。代わりに PyEval_SaveThread() もしくは PyEval_ReleaseThread() を使用してください。


ほとんどの場合は埋め込む Python インタプリタは1つだけですが、いくつかの場合に同一プロセス内、あるいは同一スレッド内で、複数の独立したインタプリタを作成する必要があります。サブインタプリタはこれを可能にします。 PyThreadState_Swap() 関数を使ってサブインタプリタを切り替えることができます。以下の関数を使ってサブインタプリタの作成と削除を行えます:

PyThreadState* Py_NewInterpreter()

新しいサブインタプリタ (sub-interpreter) を生成します。サブインタプリタとは、(ほぼ完全に) 個別に分割された Python コードの実行環境です。特に、新しいサブインタプリタは、 import されるモジュール全てについて個別のバージョンを持ち、これには基盤となるモジュール builtins, __main__ および sys も含まれます。ロード済みのモジュールからなるテーブル (sys.modules) およびモジュール検索パス (sys.path) もサブインタプリタ毎に別個のものになります。新たなサブインタプリタ環境には sys.argv 変数がありません。また、サブインタプリタは新たな標準 I/O ストリーム sys.stdin, sys.stdout, sys.stderr を持ちます (とはいえ、これらのストリームは根底にある同じファイル記述子を参照しています)。

戻り値は、新たなサブインタプリタが生成したスレッド状態 (thread state) オブジェクトのうち、最初のものを指しています。このスレッド状態が現在のスレッド状態 (current thread state) になります。実際のスレッドが生成されるわけではないので注意してください; 下記のスレッド状態に関する議論を参照してください。新たなインタプリタの生成に失敗すると、NULL を返します; 例外状態はセットされませんが、これは例外状態が現在のスレッド状態に保存されることになっていて、現在のスレッド状態なるものが存在しないことがあるからです。(他の Python/C API 関数のように、この関数を呼び出す前にはGILが保持されていなければならず、関数が処理を戻した際にも保持されたままになります; しかし、他の Python/C API 関数とは違い、関数から戻ったときの現在のスレッド状態が関数に入るときと同じとは限らないので注意してください。)

拡張モジュールは以下のような形で (サブ) インタプリタ間で共有されます: ある特定の拡張モジュールを最初に import すると、モジュールを通常通りに初期化し、そのモジュールの辞書の (浅い) コピーをしまい込んでおきます。他の (サブ) インタプリタが同じ拡張モジュールを import すると、新たなモジュールを初期化し、先ほどのコピーの内容で辞書の値を埋めます; 拡張モジュールの init 関数は呼び出されません。この挙動は、 Py_FinalizeEx() および Py_Initialize() を呼び出してインタプリタを完全に再初期化した後に拡張モジュールを import した際の挙動とは異なるので注意してください; 再初期化後に import を行うと、拡張モジュールの initmodule は再度 呼び出されます

void Py_EndInterpreter(PyThreadState *tstate)

指定されたスレッド状態 tstate で表現される (サブ) インタプリタを抹消します。 tstate は現在のスレッド状態でなければなりません。下記のスレッド状態に関する議論を参照してください。関数呼び出しが戻ったとき、現在のスレッド状態は NULL になっています。このインタプリタに関連付けられた全てのスレッド状態は抹消されます。 (この関数を呼び出す前にはGILを保持しておかなければならず、ロックは関数が戻ったときも保持されています。) Py_FinalizeEx() は、その時点で明示的に抹消されていない全てのサブインタプリタを抹消します。


サブインタプリタ (とメインインタプリタ) は同じプロセスの一部分なので、インタプリタ間の隔離は完璧ではありません --- 例えば、 os.close() のような低レベルのファイル操作を使うと、 (偶然なり故意なりに) 互いのインタプリタ下にある開かれたファイルに影響を及ぼせてしまいます。拡張モジュールを (サブ) インタプリタ間で共有する方法のせいで、拡張モジュールによっては正しく動作しないかもしれません; 拡張モジュールが (静的な) グローバル変数を利用している場合や、拡張モジュールが初期化後に自身のモジュール辞書を操作する場合には特にそうです。一つのサブインタプリタで生成されたオブジェクトは他のサブインタプリタの名前空間への挿入が可能です; ユーザ定義関数、メソッド、インスタンスおよびクラスをサブインタプリタをサブインタプリタ間で共有しないように十分注意してください。というのは、これらの共有オブジェクトが実行した import 文は間違った (サブ) インタプリタのロード済みモジュール辞書に影響を及ぼす場合があるからです。

サブインタプリタを PyGILState_*() API と組み合わせるのが難しいことにも注意してください。これらのAPIはPythonのスレッド状態とOSレベルスレッドが1対1で対応していることを前提にしていて、サブインタプリタが存在するとその前提が崩れるからです。対応する PyGILState_Ensure()PyGILState_Release() の呼び出しのペアの間では、サブインタプリタの切り替えを行わないことを強く推奨します。さらに、(ctypes のような)これらのAPIを使ってPythonの外で作られたスレッドから Pythonコードを実行している拡張モジュールはサブインタプリタを使うと壊れる可能性があります。


インタプリタのメインスレッドに非同期な通知を行うために提供されている仕組みです。これらの通知は関数ポインタと void ポインタ引数という形態を取ります。

int Py_AddPendingCall(int (*func)(void *), void *arg)

インタプリタのメインスレッドから関数が呼び出される予定を組みます。成功すると 0 が返り、func はメインスレッドの呼び出しキューに詰められます。失敗すると、例外をセットせずに -1 が返ります。

無事にキューに詰められると、funcいつかは必ず インタプリタのメインスレッドから、arg を引数として呼び出されます。この関数は、通常の実行中の Python コードに対して非同期に呼び出されますが、次の両方の条件に合致したときに呼び出されます:

  • bytecode 境界上にいるとき、
  • メインスレッドが global interpreter lock を保持している (すなわち func が全ての C API を呼び出せる) とき。

成功したら func0 を返さねばならず、失敗したら -1 を返し例外をセットしなければいけません。func は、他の非同期通知を行うために、さらに割り込まれることはありませんが、グローバルインタプリタロックが解放された場合は、スレッドの切り替えによって割り込まれる可能性が残っています。



これは、非常に特別な場合にのみ役立つ、低レベルな関数です。 func が可能な限り早く呼び出される保証はありません。メインスレッドがシステムコールを実行するのに忙しい場合は、 func はシステムコールが返ってくるまで呼び出されないでしょう。この関数は一般的には、任意の C スレッドから Python コードを呼び出すのには 向きません 。これの代わりに、 PyGILState API を使用してください。

バージョン 3.1 で追加.

プロファイルとトレース (profiling and tracing)

Python インタプリタは、プロファイル: 分析 (profile) や実行のトレース: 追跡 (trace) といった機能を組み込むために低水準のサポートを提供しています。このサポートは、プロファイルやデバッグ、適用範囲分析 (coverage analysis) ツールなどに使われます。

この C インタフェースは、プロファイルやトレース作業時に、Python レベルの呼び出し可能オブジェクトが呼び出されることによるオーバヘッドを避け、直接 C 関数呼び出しが行えるようにしています。プロファイルやトレース機能の本質的な特性は変わっていません; インタフェースではトレース関数をスレッドごとにインストールでき、トレース関数に報告される基本イベント (basic event) は以前のバージョンにおいて Python レベルのトレース関数で報告されていたものと同じです。

int (*Py_tracefunc)(PyObject *obj, PyFrameObject *frame, int what, PyObject *arg)

The type of the trace function registered using PyEval_SetProfile() and PyEval_SetTrace(). The first parameter is the object passed to the registration function as obj, frame is the frame object to which the event pertains, what is one of the constants PyTrace_CALL, PyTrace_EXCEPTION, PyTrace_LINE, PyTrace_RETURN, PyTrace_C_CALL, PyTrace_C_EXCEPTION, PyTrace_C_RETURN, or PyTrace_OPCODE, and arg depends on the value of what:

what の値 arg の意味
PyTrace_CALL Always Py_None.
PyTrace_EXCEPTION sys.exc_info() の返す例外情報です。
PyTrace_LINE Always Py_None.
PyTrace_RETURN 呼び出し側に返される予定の値か、例外によって関数を抜ける場合は NULL です。
PyTrace_C_CALL 呼び出される関数オブジェクト。
PyTrace_C_EXCEPTION 呼び出される関数オブジェクト。
PyTrace_C_RETURN 呼び出される関数オブジェクト。
PyTrace_OPCODE Always Py_None.
int PyTrace_CALL

関数やメソッドが新たに呼び出されたり、ジェネレータが新たなエントリの処理に入ったことを報告する際の、 Py_tracefuncwhat の値です。イテレータやジェネレータ関数の生成は、対応するフレーム内の Python バイトコードに制御の委譲 (control transfer) が起こらないため報告されないので注意してください。


例外が送出された際の Py_tracefuncwhat の値です。現在実行されているフレームで例外がセットされ、何らかのバイトコードが処理された後に、 what にこの値がセットされた状態でコールバック関数が呼び出されます。この結果、例外の伝播によって Python が呼び出しスタックを逆戻りする際に、各フレームから処理が戻るごとにコールバック関数が呼び出されます。トレース関数だけがこれらのイベントを受け取ります; プロファイラはこの種のイベントを必要としません。

int PyTrace_LINE

The value passed as the what parameter to a Py_tracefunc function (but not a profiling function) when a line-number event is being reported. It may be disabled for a frame by setting f_trace_lines to 0 on that frame.

int PyTrace_RETURN

The value for the what parameter to Py_tracefunc functions when a call is about to return.

int PyTrace_C_CALL

C関数を呼び出す直前に Py_tracefunc 関数の what パラメタとして渡す値です。


C関数が例外を送出したときに Py_tracefunc 関数の what パラメタとして渡す値です。

int PyTrace_C_RETURN

C関数から戻るときに Py_tracefunc 関数の what パラメタとして渡す値です。

int PyTrace_OPCODE

The value for the what parameter to Py_tracefunc functions (but not profiling functions) when a new opcode is about to be executed. This event is not emitted by default: it must be explicitly requested by setting f_trace_opcodes to 1 on the frame.

void PyEval_SetProfile(Py_tracefunc func, PyObject *obj)

Set the profiler function to func. The obj parameter is passed to the function as its first parameter, and may be any Python object, or NULL. If the profile function needs to maintain state, using a different value for obj for each thread provides a convenient and thread-safe place to store it. The profile function is called for all monitored events except PyTrace_LINE PyTrace_OPCODE and PyTrace_EXCEPTION.

void PyEval_SetTrace(Py_tracefunc func, PyObject *obj)

Set the tracing function to func. This is similar to PyEval_SetProfile(), except the tracing function does receive line-number events and per-opcode events, but does not receive any event related to C function objects being called. Any trace function registered using PyEval_SetTrace() will not receive PyTrace_C_CALL, PyTrace_C_EXCEPTION or PyTrace_C_RETURN as a value for the what parameter.

高度なデバッガサポート (advanced debugger support)


PyInterpreterState* PyInterpreterState_Head()


PyInterpreterState* PyInterpreterState_Next(PyInterpreterState *interp)

インタプリタ状態オブジェクトからなるリストのうち、interp の次にあるものを返します。

PyThreadState * PyInterpreterState_ThreadHead(PyInterpreterState *interp)

インタプリタ interp に関連付けられているスレッドからなるリストのうち、先頭にある PyThreadState オブジェクトを返します。

PyThreadState* PyThreadState_Next(PyThreadState *tstate)

tstate と同じ PyInterpreterState オブジェクトに属しているスレッド状態オブジェクトのうち、 tstate の次にあるものを返します。

Thread Local Storage Support

The Python interpreter provides low-level support for thread-local storage (TLS) which wraps the underlying native TLS implementation to support the Python-level thread local storage API (threading.local). The CPython C level APIs are similar to those offered by pthreads and Windows: use a thread key and functions to associate a void* value per thread.

The GIL does not need to be held when calling these functions; they supply their own locking.

Note that Python.h does not include the declaration of the TLS APIs, you need to include pythread.h to use thread-local storage.


None of these API functions handle memory management on behalf of the void* values. You need to allocate and deallocate them yourself. If the void* values happen to be PyObject*, these functions don't do refcount operations on them either.

Thread Specific Storage (TSS) API

TSS API is introduced to supersede the use of the existing TLS API within the CPython interpreter. This API uses a new type Py_tss_t instead of int to represent thread keys.

バージョン 3.7 で追加.


"A New C-API for Thread-Local Storage in CPython" (PEP 539)


This data structure represents the state of a thread key, the definition of which may depend on the underlying TLS implementation, and it has an internal field representing the key's initialization state. There are no public members in this structure.

When Py_LIMITED_API is not defined, static allocation of this type by Py_tss_NEEDS_INIT is allowed.


This macro expands to the initializer for Py_tss_t variables. Note that this macro won't be defined with Py_LIMITED_API.

Dynamic Allocation

Dynamic allocation of the Py_tss_t, required in extension modules built with Py_LIMITED_API, where static allocation of this type is not possible due to its implementation being opaque at build time.

Py_tss_t* PyThread_tss_alloc()

Return a value which is the same state as a value initialized with Py_tss_NEEDS_INIT, or NULL in the case of dynamic allocation failure.

void PyThread_tss_free(Py_tss_t *key)

Free the given key allocated by PyThread_tss_alloc(), after first calling PyThread_tss_delete() to ensure any associated thread locals have been unassigned. This is a no-op if the key argument is NULL.


A freed key becomes a dangling pointer, you should reset the key to NULL.


The parameter key of these functions must not be NULL. Moreover, the behaviors of PyThread_tss_set() and PyThread_tss_get() are undefined if the given Py_tss_t has not been initialized by PyThread_tss_create().

int PyThread_tss_is_created(Py_tss_t *key)

Return a non-zero value if the given Py_tss_t has been initialized by PyThread_tss_create().

int PyThread_tss_create(Py_tss_t *key)

Return a zero value on successful initialization of a TSS key. The behavior is undefined if the value pointed to by the key argument is not initialized by Py_tss_NEEDS_INIT. This function can be called repeatedly on the same key -- calling it on an already initialized key is a no-op and immediately returns success.

void PyThread_tss_delete(Py_tss_t *key)

Destroy a TSS key to forget the values associated with the key across all threads, and change the key's initialization state to uninitialized. A destroyed key is able to be initialized again by PyThread_tss_create(). This function can be called repeatedly on the same key -- calling it on an already destroyed key is a no-op.

int PyThread_tss_set(Py_tss_t *key, void *value)

Return a zero value to indicate successfully associating a void* value with a TSS key in the current thread. Each thread has a distinct mapping of the key to a void* value.

void* PyThread_tss_get(Py_tss_t *key)

Return the void* value associated with a TSS key in the current thread. This returns NULL if no value is associated with the key in the current thread.

Thread Local Storage (TLS) API

バージョン 3.7 で非推奨: This API is superseded by Thread Specific Storage (TSS) API.


This version of the API does not support platforms where the native TLS key is defined in a way that cannot be safely cast to int. On such platforms, PyThread_create_key() will return immediately with a failure status, and the other TLS functions will all be no-ops on such platforms.

Due to the compatibility problem noted above, this version of the API should not be used in new code.

int PyThread_create_key()
void PyThread_delete_key(int key)
int PyThread_set_key_value(int key, void *value)
void* PyThread_get_key_value(int key)
void PyThread_delete_key_value(int key)
void PyThread_ReInitTLS()