Python T Curses 7O 5324

J—2X 3.12.4

Guido van Rossum and the Python development team

7 A 31, 2024
=P/
1 curses 2 THRIZ? 2
1.1 Python @ curses module . . . . . . . . . . e 2
2 curses 7 7V —a Y DEEN EIRT 3
3 D4R ENY R 4
4 TE*FRAFORT 6
4.1 B I T — 7
5 aA—-HYAH 8
6 & D Z <L DIER 10
ZE
A .M. Kuchling, Eric S. Raymond
Dy—2x
2.04
Bz

CDORF2XYFTIUX curses I BEY 2 — L TTF A FE— FF 4 X7 LA ZHlfHI§ 3 77K OWTER L
9,




1 curses > THIC?

curses 74 77 Vi, VT100s ® Linux 2V =)L, SEIER T/ a0 I 232> a ViiRe
Wo e 7 FRAPR=ZADHAK (X—IF)) DD, SHRIKELLZWRAZ Y — Vilie, ¥—FKR— FOULEz
FEL X5, WREA— VA OBER, DR 70—, EEOHE L W HEOEREETT S 72D O &4 72
Ha—FzYdR—FLET, WAROHHEICK o TRELELRZMH—F2MES ZehH D, LIFLITHER DR
HHET,

T 7 8HNEKT 4 AT VADBELDHIOS o TE, TRATOIDOE? | EMICE> 2D LNEVA, T
DI FRTIGARIEIRRENREMTIEH D T30, = v FREEDPIFELTVT, BEEXBROT I N TE S
D, WERIMEDH 2D DLRoTVWET, £D XS REHO—21F, HIZIRX X ¥ —N—2FR0iHAIAA
@ Unix TF, E2ICd. OS DA YA =R, I—XABEREDY —)LT, ZNBIET 77 4 BT R-1
DRI FHATREIC R 2 RNCENET 2 0B H D £3,

The curses library provides fairly basic functionality, providing the programmer with an abstraction of a
display containing multiple non-overlapping windows of text. The contents of a window can be changed in
various ways---adding text, erasing it, changing its appearance---and the curses library will figure out what
control codes need to be sent to the terminal to produce the right output. curses doesn’t provide many
user-interface concepts such as buttons, checkboxes, or dialogs; if you need such features, consider a user

interface library such as Urwid.

curses 74 77 Vit 4 BSD UNIX MIHZEINE L7z, BD AT&T 6 Hi7z Unix System V N—Y 3 ~
T% L DIEHE » FIFSREDBINIE L E L7z, BSD curses IZWVWERX U TF Y RAXNTELHT,. THiE AT&T A ~
R—=T 2 —=ADF =72V —RAEHETH 3 ncurses I8 > TEZIEX 5N FE L7z, Linux X FreeBSD O X 5 %
F =7V =R Unix ZRHLTWEEHEIE, BZ5L X T A ncurses ZRHALTOVWET, HEDIFLAY
DOFH Unix 1X System V 02— RFZHIZLTWE 7, ZITHRRZETOBRMMBFHATEZEI TS, Ly
L. BN —= 3 Y0 curses ZFDOWL D007 0754 22 Y Unix 3R TTEIEL TWARWTL & 5,

The Windows version of Python doesn’t include the curses module. A ported version called UniCurses is

available.

1.1 Python @ curses module

The Python module is a fairly simple wrapper over the C functions provided by curses; if you're already
familiar with curses programming in C, it’s really easy to transfer that knowledge to Python. The biggest dif-
ference is that the Python interface makes things simpler by merging different C functions such as addstr(),

mvaddstr (), and mvwaddstr() into a single addstr () method. You'll see this covered in more detail later.

Z® HOWTO X curses & Python Z{fio CTT7F X b0 77 0 2EL12DDAMEHE T, curses APT 12X}
TERERMHETHZ2IEEERLTVERTA; ZOHNDZHIZIE Python 24 77 VA4 KD ncurses Hi&
C B~ =27 1D ncurses DR—=IYZZMMLTLEE WV, LIV R., TOXEZERANLREZ ZREEL TN
5TL& S,


https://pypi.org/project/Urwid/
https://pypi.org/project/UniCurses/

2 curses 77— 3 DB KT

Before doing anything, curses must be initialized. This is done by calling the initscr () function, which will
determine the terminal type, send any required setup codes to the terminal, and create various internal data
structures. If successful, initscr() returns a window object representing the entire screen; this is usually

called stdscr after the name of the corresponding C variable.

import curses

stdscr = curses.initscr()

Usually curses applications turn off automatic echoing of keys to the screen, in order to be able to read keys

and only display them under certain circumstances. This requires calling the noecho () function.

{curses.noecho()

BE7 TV —>aidEl, Enter F—2#HFT 2242, FXHLTICRIRISTARLERHD 3 2k
cbreak E— K2 FEIH, BEDANDBANY 77 ENZE— FeHIZEMEL 5,

[curses.cbreak()

WARIGET. I — YL F—= Page Up ® Home ¥ W o R EF —R Y DRI F -2 LF AL b2 25 —F
V=T YALLTRLET, ZNH6DY =T Y AEREELTHIET 2MNEETS 77V —>av2EF5 L5
12, curses ¥Z 4% curses.KEY_LEFT @ & 5 BRAHIRMEEIRL TITo T NET, curses TZDEHEE2XHE2
i, F—8y FE-FE2EMTT 2RLERHD £,

[stdscr.keypad(True)

curses 7 SV r—2a YEKTIEZ2DGEER X D BFEHETT, UTZHROHILELD D 3

curses.nocbreak()
stdscr.keypad(False)

curses.echo()

curses ICHAMEDEVEREEZ S LICR L E T, £ LT, endwin() PABCRFEUH L, SR % B OBREE— FI2iE
HL £7,

[curses.endwin()

curses 7 SV = a v 27Ny ¥ 5 2O—RIRREIZ. 77V 5= a YRz LRI OIREEICEIH TS
LZeREERT LELZCHADEDE DB 21245 Z 8 TT, Python TIXZOREIZa— FIgNTDdH o
T, HHETERVWANDPRE L JICEREET, X4 LAF—3dlza—-ShERA. HIZIE =
NEFESOPHEL 72D ET,

Python Tld, I oHDEMIZRIF T Ny 7% K DEHITT 57:9DIT, curses.wrapper () BE A Y R—-1+ L

3



T, ZOX VT

from curses import wrapper

def main(stdscr):
# Clear screen

stdscr.clear()

# This ratises ZeroDivisionError when ¢ == 10.
for i in range(0, 11):
v = i-10

stdscr.addstr(i, 0, '10 divided by is ' .format(v, 10/v))

stdscr.refresh()

stdscr.getkey ()

wrapper (main)

The wrapper () function takes a callable object and does the initializations described above, also initializing
colors if color support is present. wrapper() then runs your provided callable. Once the callable returns,
wrapper () will restore the original state of the terminal. The callable is called inside a try...except that
catches exceptions, restores the state of the terminal, and then re-raises the exception. Therefore your
terminal won’t be left in a funny state on exception and you’ll be able to read the exception’s message and

traceback.

394 RIENY R

Windows are the basic abstraction in curses. A window object represents a rectangular area of the screen,

and supports methods to display text, erase it, allow the user to input strings, and so forth.

The stdscr object returned by the initscr() function is a window object that covers the entire screen.
Many programs may need only this single window, but you might wish to divide the screen into smaller
windows, in order to redraw or clear them separately. The newwin() function creates a new window of a

given size, returning the new window object.

begin_x = 20; begin_y = 7
height = 5; width = 40

win = curses.newwin(height, width, begin_y, begin_x)

Note that the coordinate system used in curses is unusual. Coordinates are always passed in the order y,z,
and the top-left corner of a window is coordinate (0,0). This breaks the normal convention for handling
coordinates where the x coordinate comes first. This is an unfortunate difference from most other computer

applications, but it’s been part of curses since it was first written, and it’s too late to change things now.

Your application can determine the size of the screen by using the curses.LINES and curses.COLS variables
4




to obtain the y and z sizes. Legal coordinates will then extend from (0,0) to (curses.LINES - 1, curses.
COLS - 1).

When you call a method to display or erase text, the effect doesn’t immediately show up on the display.

Instead you must call the refresh() method of window objects to update the screen.

This is because curses was originally written with slow 300-baud terminal connections in mind; with these
terminals, minimizing the time required to redraw the screen was very important. Instead curses accumulates
changes to the screen and displays them in the most efficient manner when you call refresh(). For example,
if your program displays some text in a window and then clears the window, there’s no need to send the

original text because they’re never visible.

In practice, explicitly telling curses to redraw a window doesn’t really complicate programming with curses
much. Most programs go into a flurry of activity, and then pause waiting for a keypress or some other action
on the part of the user. All you have to do is to be sure that the screen has been redrawn before pausing
to wait for user input, by first calling stdscr.refresh() or the refresh() method of some other relevant

window.

A pad is a special case of a window; it can be larger than the actual display screen, and only a portion of the
pad displayed at a time. Creating a pad requires the pad’s height and width, while refreshing a pad requires

giving the coordinates of the on-screen area where a subsection of the pad will be displayed.

pad = curses.newpad(100, 100)
# These loops fill the pad with letters; addch() is
# explained in the next section
for y in range(0, 99):
for x in range(0, 99):

pad.addch(y,x, ord('a') + (x*x+y*xy) % 26)

# Displays a section of the pad in the middle of the screen.

# (0,0) : coordinate of upper-left corner of pad area to display.

# (5,5) : coordinate of upper-left corner of window area to be filled
# with pad content.

# (20, 75) : coordinate of lower-right corner of window area to be

# : filled with pad content.

pad.refresh( 0,0, 5,5, 20,75)

The refresh() call displays a section of the pad in the rectangle extending from coordinate (5,5) to coor-
dinate (20,75) on the screen; the upper left corner of the displayed section is coordinate (0,0) on the pad.

Beyond that difference, pads are exactly like ordinary windows and support the same methods.

If you have multiple windows and pads on screen there is a more efficient way to update the screen and

prevent annoying screen flicker as each part of the screen gets updated. refresh() actually does two things:

1) #hzhDvY 4 ¥ FUD noutrefresh() XYy FEMUFH LT, B TICH 5, A7V —rDEE LWIREE
ERTT-XMETEHRLET,




2) doupdate () B ZIFUHI LT, 7F—AHE IR EINLEFE LWVIRBIZERT 2 L5, WERAI Y -~
TEHFLET,

Instead you can call noutrefresh() on a number of windows to update the data structure, and then call

doupdate () to update the screen.

4 TF¥RXLDRT

From a C programmer’s point of view, curses may sometimes look like a twisty maze of functions, all subtly
different. For example, addstr () displays a string at the current cursor location in the stdscr window,
while mvaddstr () moves to a given y,x coordinate first before displaying the string. waddstr () is just like
addstr (), but allows specifying a window to use instead of using stdscr by default. mvwaddstr() allows

specifying both a window and a coordinate.

FEHICH, Python 4 Y X =7 2 =R INSDFHMZRTRML TN E T, stdscr IO DD EFEED Y 4
YRUX T2 b THD, addstr() DEIBRXY v FIFEROTIBEREZHAL TN ET, @EZNALIT 4
DDA TT,

b5 SR

str £721% ch NFH| str £I2EXF ch ZEREMBIZFRRLET

str £721% ch, attr XFH) str FIELT ch BB attr ZFIH LU THEMEICERLET
Y, T, str £721& ch T4 Y RURDNE yz KBEIL str £7201& ch ZFRRLET

Y, T, str £720% ch, attr V4 ¥ FUHNOME y,z BB LB attr ZFIHLT str £721% ch 2R LET

BHECEoTERTEZTXFRAINENAATA TP TEZIEDNTEET. A—A MK TUX—F4 > Ria. 7774
o EDFFLKBRO/NEITHHL 5,

The addstr() method takes a Python string or bytestring as the value to be displayed. The contents of
bytestrings are sent to the terminal as-is. Strings are encoded to bytes using the value of the window’s

encoding attribute; this defaults to the default system encoding as returned by locale.getencoding().

The addch () methods take a character, which can be either a string of length 1, a bytestring of length 1, or

an integer.

Constants are provided for extension characters; these constants are integers greater than 255. For example,
ACS_PLMINUS is a +/- symbol, and ACS_ULCORNER is the upper left corner of a box (handy for drawing

borders). You can also use the appropriate Unicode character.

V4 Y P RBREBROBEORD A — VN IEZRATNS7D, yo BEEZS o DENTLE-TH, XFHR
NAIIRBRDBEMEICEREINE T, move(y,x) XYY FTHA—Y L EZBHSIELI LD TEET, WITHK
TNV NERRTIMARDD D7D, H—YNVHREDMBEIIVS 2 Z2REL THEENRNLZVWESITL
TVWEESI DS LNFRA; FVHLCRASMETH—YNAVDRHEIET 2 LHZES > TLEVET,

6



If your application doesn’t need a blinking cursor at all, you can call curs_set(False) to make it invisi-
ble. For compatibility with older curses versions, there’s a leaveok(bool) function that’s a synonym for
curs_set(). When bool is true, the curses library will attempt to suppress the flashing cursor, and you

won’t need to worry about leaving it in odd locations.

4.1 BtrHh>—

Characters can be displayed in different ways. Status lines in a text-based application are commonly shown
in reverse video, or a text viewer may need to highlight certain words. curses supports this by allowing you

to specify an attribute for each cell on the screen.

EEERET, zhzhobty PRLZERZEDLET, BHOEEE Y P2y FLTTFRAFORRE
A D T EMNTEETH, curses FETDMHAETDOEIHHATRET D 2 R HEANIXHIT & %722 & 5 2 I3RAE
LTINFEA, ZRSHIEFHL TV BEARDBEINEIFL TWB 720, D REHRDIF, b —RIITHIAIATEE
RENERET B ITIETT. ZZIHIELET,

B B

A_BLINK TF R AR

A _BOLD EHEEERIEAR—LFTFF b
A_DIM IR 7 % R b

A_REVERSE RERT % X b
A_STANDOUT FIHTEZRRERDNAF4 PE—F
A_UNDERLINE THMIZTF R+

DOFD, NETEZAT—RRA74 VEEEOR EHMICFERTZIE, a—F225L %3

stdscr.addstr(0, 0, "Current mode: Typing mode",
curses.A_REVERSE)

stdscr.refresh()

curses 74 77 VIEH 7 —HEEER R L TV BWMATOIZ—db P R— P LTVWET, ZARKRADOHTRD —
f&HY 72 S DIE Linux 2> Y —LT, color xterm d ZAUIH = F3,

To use color, you must call the start_color () function soon after calling initscr (), to initialize the default
color set (the curses.wrapper () function does this automatically). Once that’s done, the has_colors()
function returns TRUE if the terminal in use can actually display color. (Note: curses uses the American
spelling ’color’, instead of the Canadian/British spelling ’colour’. If you’re used to the British spelling, you’ll

have to resign yourself to misspelling it for the sake of these functions.)

The curses library maintains a finite number of color pairs, containing a foreground (or text) color and a

background color. You can get the attribute value corresponding to a color pair with the color_pair()

7



function; this can be bitwise-OR’ed with other attributes such as A_REVERSE, but again, such combinations

are not guaranteed to work on all terminals.

fle LT, 7FAMTED T —RT 1 2o THRRLET:

stdscr.addstr("Pretty text", curses.color_pair(1))

stdscr.refresh()

As T said before, a color pair consists of a foreground and background color. The init_pair(n, f, b)
function changes the definition of color pair n, to foreground color f and background color b. Color pair 0 is

hard-wired to white on black, and cannot be changed.

Colors are numbered, and start_color() initializes 8 basic colors when it activates color mode. They are:
0:black, 1:red, 2:green, 3:yellow, 4:blue, 5:magenta, 6:cyan, and 7:white. The curses module defines named

constants for each of these colors: curses.COLOR_BLACK, curses.COLOR_RED, and so forth.

RoTAELEI, #T7— 1 ZHERICRCEELTAEL &S, THLTHEHELET:

[curses.init_pair(l, curses.COLOR_RED, curses.COLOR_WHITE) }

HS—R7EEETZ L ZI120F,. BICEREINEEEOTFA NPT IS —R7ZH LVEICEE LT,
HLWTFF2 2 Z0BTHI I TEZT:

[stdscr.addstr(0,0, "RED ALERT!", curses.color_pair(1))

Very fancy terminals can change the definitions of the actual colors to a given RGB value. This lets you
change color 1, which is usually red, to purple or blue or any other color you like. Unfortunately, the Linux
console doesn’t support this, so I'm unable to try it out, and can’t provide any examples. You can check if
your terminal can do this by calling can_change_color (), which returns True if the capability is there. If

you’re lucky enough to have such a talented terminal, consult your system’s man pages for more information.

5 A—% AN

The C curses library offers only very simple input mechanisms. Python’s curses module adds a basic
text-input widget. (Other libraries such as Urwid have more extensive collections of widgets.)

T4 Y RIS ANZI/DTDD2DODXY Yy FdH D %T,

e getch() refreshes the screen and then waits for the user to hit a key, displaying the key if echo()
has been called earlier. You can optionally specify a coordinate to which the cursor should be moved

before pausing.

o getkey() does the same thing but converts the integer to a string. Individual characters are returned

as l-character strings, and special keys such as function keys return longer strings containing a key

8


https://pypi.org/project/Urwid/

name such as KEY_UP or ~G.

It’s possible to not wait for the user using the nodelay() window method. After nodelay(True), getch()
and getkey() for the window become non-blocking. To signal that no input is ready, getch() returns
curses.ERR (a value of -1) and getkey () raises an exception. There’s also a halfdelay() function, which
can be used to (in effect) set a timer on each getch(); if no input becomes available within a specified delay

(measured in tenths of a second), curses raises an exception.

The getch() method returns an integer; if it’s between 0 and 255, it represents the ASCII code of the key
pressed. Values greater than 255 are special keys such as Page Up, Home, or the cursor keys. You can compare
the value returned to constants such as curses.KEY_PPAGE, curses.KEY_HOME, or curses.KEY_LEFT. The

main loop of your program may look something like this:

while True:

c = stdscr.getch()

if ¢ == ord('p'):
PrintDocument ()

elif ¢ == ord('q'):
break # Ezit the while loop

elif == curses.KEY_HOME:
x=y=0

The curses.ascii module supplies ASCII class membership functions that take either integer or 1-character
string arguments; these may be useful in writing more readable tests for such loops. It also supplies conversion
functions that take either integer or 1-character-string arguments and return the same type. For example,

curses.ascii.ctrl() returns the control character corresponding to its argument.

There’s also a method to retrieve an entire string, getstr (). It isn’t used very often, because its functionality
is quite limited; the only editing keys available are the backspace key and the Enter key, which terminates

the string. It can optionally be limited to a fixed number of characters.

curses.echo () # Enable echoing of characters

# Get a 15-character string, with the cursor on the top line
s = stdscr.getstr(0,0, 15)

The curses.textpad module supplies a text box that supports an Emacs-like set of keybindings. Various
methods of the Textbox class support editing with input validation and gathering the edit results either

with or without trailing spaces. Here’s an example:

import curses

from curses.textpad import Textbox, rectangle

def main(stdscr):
stdscr.addstr(0, 0, "Enter IM message: (hit Ctrl-G to send)")
(RDR=212Hi <)




(AIDR=I 25 DfE X))

editwin = curses.newwin(5,30, 2,1)
rectangle(stdscr, 1,0, 1+5+1, 1+30+1)

stdscr.refresh()
box = Textbox(editwin)

# Let the user edit until Ctrl-G is struck.
box.edit ()

# Get resulting contents

message = box.gather()

EHRDZFMIOVTIEITIA T IVD FF 2 X b curses.textpad S L T2,

6 XDZDBEH

ZD HOWTO TIEWL DDA EH, A7V —VRAIZ1L AV Y IR xterm 4 VAR Y ADPBIT AL XY
FEEZZRE, IZOVWTIERK->TVERA, LA L. Python @ curses X 2= DI74 7T VUR=IJITVE
RPBRDFARLTVET, KIZhre/RE2NETT,

If you're in doubt about the detailed behavior of the curses functions, consult the manual pages for your
curses implementation, whether it’s ncurses or a proprietary Unix vendor’s. The manual pages will document
any quirks, and provide complete lists of all the functions, attributes, and ACS_* characters available to

you.

Because the curses API is so large, some functions aren’t supported in the Python interface. Often this isn’t
because they're difficult to implement, but because no one has needed them yet. Also, Python doesn’t yet
support the menu library associated with ncurses. Patches adding support for these would be welcome; see

the Python Developer’s Guide to learn more about submitting patches to Python.
e Writing Programs with NCURSES: a lengthy tutorial for C programmers.
e The ncurses man page
e The ncurses FAQ
o 7Use curses... don’t swear”: curses % 721% Urwid %z o ThiR Zfl#$ % PyCon 2013 #EHY 74 T3,

e 7Console Applications with Urwid”: video of a PyCon CA 2012 talk demonstrating some applications

written using Urwid.

10



https://devguide.python.org/
https://invisible-island.net/ncurses/ncurses-intro.html
https://linux.die.net/man/3/ncurses
https://invisible-island.net/ncurses/ncurses.faq.html
https://www.youtube.com/watch?v=eN1eZtjLEnU
https://pyvideo.org/video/1568/console-applications-with-urwid

	curses ってなに?
	Python の curses module

	curses アプリケーションの起動と終了
	ウィンドウとパッド
	テキストの表示
	属性とカラー

	ユーザ入力
	より多くの情報

