hashlib --- セキュアハッシュおよびメッセージダイジェスト

ソースコード: Lib/hashlib.py


このモジュールは、セキュアハッシュやメッセージダイジェスト用のさまざまなアルゴリズムを実装したものです。FIPSのセキュアなハッシュアルゴリズムである SHA1、SHA224、SHA256、SHA384およびSHA512 (FIPS 180-2 で定義されているもの) だけでなくRSAのMD5アルゴリズム (Internet RFC 1321 で定義されています)も実装しています。「セキュアなハッシュ」と「メッセージダイジェスト」はどちらも同じ意味です。古くからあるアルゴリズムは「メッセージダイジェスト」と呼ばれていますが、最近は「セキュアハッシュ」という用語が用いられています。

注釈

adler32 や crc32 ハッシュ関数は zlib モジュールで提供されています。

警告

幾つかのアルゴリズムはハッシュの衝突に弱いことが知られています。最後の "参考" セクションを見てください。

ハッシュアルゴリズム

hash の名前が付いたコンストラクタがあります。いずれも同一で簡単なインターフェイスのあるハッシュオブジェクトを返します。例えば、SHA-256 ハッシュオブジェクトを作るには sha256() を使います。このオブジェクトには update() メソッドを用いて bytes-like オブジェクト (通常 bytes) を渡すことができます。digest()hexdigest() メソッドを用いて、それまでに渡したデータを連結したものの digest をいつでも要求することができます。

注釈

マルチスレッドにおける良好なパフォーマンスを得るために、オブジェクトの生成時または更新時に与えるデータが 2047 バイトを超えている場合、Python GIL が解除されます。

注釈

文字列オブジェクトを update() に渡すのはサポートされていません。ハッシュはバイトには機能しますが、文字には機能しないからです。

Constructors for hash algorithms that are always present in this module are sha1(), sha224(), sha256(), sha384(), sha512(), blake2b(), and blake2s(). md5() is normally available as well, though it may be missing or blocked if you are using a rare "FIPS compliant" build of Python. Additional algorithms may also be available depending upon the OpenSSL library that Python uses on your platform. On most platforms the sha3_224(), sha3_256(), sha3_384(), sha3_512(), shake_128(), shake_256() are also available.

バージョン 3.6 で追加: SHA3 (Keccak) ならびに SHAKE コンストラクタ sha3_224(), sha3_256(), sha3_384(), sha3_512(), shake_128(), shake_256()

バージョン 3.6 で追加: blake2b()blake2s() が追加されました。

バージョン 3.9 で変更: All hashlib constructors take a keyword-only argument usedforsecurity with default value True. A false value allows the use of insecure and blocked hashing algorithms in restricted environments. False indicates that the hashing algorithm is not used in a security context, e.g. as a non-cryptographic one-way compression function.

Hashlib now uses SHA3 and SHAKE from OpenSSL 1.1.1 and newer.

たとえば、b'Nobody inspects the spammish repetition' というバイト文字列のダイジェストを取得するには次のようにします:

>>> import hashlib
>>> m = hashlib.sha256()
>>> m.update(b"Nobody inspects")
>>> m.update(b" the spammish repetition")
>>> m.digest()
b'\x03\x1e\xdd}Ae\x15\x93\xc5\xfe\\\x00o\xa5u+7\xfd\xdf\xf7\xbcN\x84:\xa6\xaf\x0c\x95\x0fK\x94\x06'
>>> m.digest_size
32
>>> m.block_size
64

もっと簡潔に書くと、このようになります:

>>> hashlib.sha224(b"Nobody inspects the spammish repetition").hexdigest()
'a4337bc45a8fc544c03f52dc550cd6e1e87021bc896588bd79e901e2'
hashlib.new(name, [data, ]*, usedforsecurity=True)

一般的なコンストラクタで、第一引数にアルゴリズム名を文字列 name で受け取ります。他にも、前述のハッシュアルゴリズムだけでなく OpenSSL ライブラリーが提供するような他のアルゴリズムにアクセスすることができます。名前のあるコンストラクタの方が new() よりもずっと速いので望ましいです。

new() にOpenSSLのアルゴリズムを指定する例です:

>>> h = hashlib.new('sha256')
>>> h.update(b"Nobody inspects the spammish repetition")
>>> h.hexdigest()
'031edd7d41651593c5fe5c006fa5752b37fddff7bc4e843aa6af0c950f4b9406'

Hashlib は以下の定数属性を提供しています:

hashlib.algorithms_guaranteed

このモジュールによってすべてのプラットフォームでサポートされていることが保証されるハッシュアルゴリズムの名前を含む集合です。一部のアップストリームのベンダーが提供する奇妙な "FIPS準拠の" Pythonビルドではmd5のサポートを除外していますが、その場合であっても 'md5' がリストに含まれることに注意してください。

バージョン 3.2 で追加.

hashlib.algorithms_available

実行中の Python インタープリタで利用可能なハッシュアルゴリズム名の set です。これらの名前は new() に渡すことができます。algorithms_guaranteed は常にサブセットです。この set の中に同じアルゴリズムが違う名前で複数回現れることがあります (OpenSSL 由来)。

バージョン 3.2 で追加.

コンストラクタが返すハッシュオブジェクトには、次のような定数属性が用意されています:

hash.digest_size

生成されたハッシュのバイト数。

hash.block_size

内部で使われるハッシュアルゴリズムのブロックのバイト数。

ハッシュオブジェクトには次のような属性があります:

hash.name

このハッシュの正規名です。常に小文字で、new() の引数として渡してこのタイプの別のハッシュを生成することができます。

バージョン 3.4 で変更: name 属性は CPython には最初からありましたが、Python 3.4 までは正式に明記されていませんでした。そのため、プラットフォームによっては存在しないかもしれません。

ハッシュオブジェクトには次のようなメソッドがあります:

hash.update(data)

hash オブジェクトを bytes-like object で更新します。このメソッドの呼出しの繰り返しは、それらの引数を全て結合した引数で単一の呼び出しをした際と同じになります。すなわち m.update(a); m.update(b)m.update(a + b) と等価です。

バージョン 3.1 で変更: ハッシュアルゴリズムが OpenSSL によって提供されていて、データが 2047 バイトを超えている場合には、ハッシュの更新が実行中でも他のスレッドが実行できるように、Python GIL が解放されます。

hash.digest()

これまで update() メソッドに渡されたデータのダイジェスト値を返します。これは digest_size と同じ長さの、0 から 255 の範囲全てを含み得るバイトの列です。

hash.hexdigest()

digest() と似ていますが、倍の長さの、16進形式文字列を返します。これは、電子メールなどの非バイナリ環境で値を交換する場合に便利です。

hash.copy()

ハッシュオブジェクトのコピー ("クローン") を返します。これは、最初の部分文字列が共通なデータのダイジェストを効率的に計算するために使用します。

SHAKE 可変長ダイジェスト

The shake_128() and shake_256() algorithms provide variable length digests with length_in_bits//2 up to 128 or 256 bits of security. As such, their digest methods require a length. Maximum length is not limited by the SHAKE algorithm.

shake.digest(length)

これまで update() メソッドに渡されたデータのダイジェスト値を返します。これは length と同じ長さの、0 から 255 の範囲全てを含み得るバイトの列です。

shake.hexdigest(length)

digest() と似ていますが、倍の長さの、16進形式文字列を返します。これは、電子メールなどの非バイナリ環境で値を交換する場合に便利です。

鍵導出

鍵の導出 (derivation) と引き伸ばし (stretching) のアルゴリズムはセキュアなパスワードのハッシュ化のために設計されました。 sha1(password) のような甘いアルゴリズムは、ブルートフォース攻撃に抵抗できません。良いパスワードハッシュ化は調節可能で、遅くて、 salt を含まなければなりません。

hashlib.pbkdf2_hmac(hash_name, password, salt, iterations, dklen=None)

この関数は PKCS#5 のパスワードに基づいた鍵導出関数 2 を提供しています。疑似乱数関数として HMAC を使用しています。

文字列 hash_name は、HMAC のハッシュダイジェストアルゴリズムの望ましい名前で、例えば 'sha1' や 'sha256' です。 passwordsalt はバイト列のバッファとして解釈されます。アプリケーションとライブラリは、 password を適切な長さ (例えば 1024) に制限すべきです。 saltos.urandom() のような適切なソースからの、およそ 16 バイトかそれ以上のバイト列にするべきです。

iterations 数はハッシュアルゴリズムと計算機の能力に基づいて決めるべきです。2013 年現在の場合、 SHA-256 に対して最低でも 100,000 反復が推奨されています。

dklen は、導出された鍵の長さです。 dklenNone の場合、ハッシュアルゴリズム hash_name のダイジェストサイズが使われます。例えば SHA-512 では 64 です。

>>> import hashlib
>>> dk = hashlib.pbkdf2_hmac('sha256', b'password', b'salt', 100000)
>>> dk.hex()
'0394a2ede332c9a13eb82e9b24631604c31df978b4e2f0fbd2c549944f9d79a5'

バージョン 3.4 で追加.

注釈

pbkdf2_hmac の高速な実装は OpenSSL 使用版で利用可能です。Python 実装は hmac のインラインバージョンを使います。それはおよそ 3 倍遅く、GIL を解放しません。

hashlib.scrypt(password, *, salt, n, r, p, maxmem=0, dklen=64)

この関数は、 RFC 7914 で定義されるscrypt のパスワードに基づいた鍵導出関数を提供します。

passwordsaltbytes-like objects でなければなりません。アプリケーションとライブラリは、 password を適切な長さ (例えば 1024) に制限すべきです。 saltos.urandom() のような適切なソースからの、およそ 16 バイトかそれ以上のバイト列にするべきです。

n is the CPU/Memory cost factor, r the block size, p parallelization factor and maxmem limits memory (OpenSSL 1.1.0 defaults to 32 MiB). dklen is the length of the derived key.

Availability: OpenSSL 1.1+.

バージョン 3.6 で追加.

BLAKE2

BLAKE2 is a cryptographic hash function defined in RFC 7693 that comes in two flavors:

  • BLAKE2b, optimized for 64-bit platforms and produces digests of any size between 1 and 64 bytes,

  • BLAKE2s, optimized for 8- to 32-bit platforms and produces digests of any size between 1 and 32 bytes.

BLAKE2 supports keyed mode (a faster and simpler replacement for HMAC), salted hashing, personalization, and tree hashing.

このモジュールのハッシュオブジェクトは標準ライブラリーの hashlib オブジェクトの API に従います。

ハッシュオブジェクトの作成

新しいハッシュオブジェクトは、コンストラクタ関数を呼び出すことで生成されます:

hashlib.blake2b(data=b'', *, digest_size=64, key=b'', salt=b'', person=b'', fanout=1, depth=1, leaf_size=0, node_offset=0, node_depth=0, inner_size=0, last_node=False, usedforsecurity=True)
hashlib.blake2s(data=b'', *, digest_size=32, key=b'', salt=b'', person=b'', fanout=1, depth=1, leaf_size=0, node_offset=0, node_depth=0, inner_size=0, last_node=False, usedforsecurity=True)

These functions return the corresponding hash objects for calculating BLAKE2b or BLAKE2s. They optionally take these general parameters:

  • data: initial chunk of data to hash, which must be bytes-like object. It can be passed only as positional argument.

  • digest_size: 出力するダイジェストのバイト数。

  • key: key for keyed hashing (up to 64 bytes for BLAKE2b, up to 32 bytes for BLAKE2s).

  • salt: salt for randomized hashing (up to 16 bytes for BLAKE2b, up to 8 bytes for BLAKE2s).

  • person: personalization string (up to 16 bytes for BLAKE2b, up to 8 bytes for BLAKE2s).

下の表は一般的なパラメータの上限 (バイト単位) です:

Hash

digest_size

len(key)

len(salt)

len(person)

BLAKE2b

64

64

16

16

BLAKE2s

32

32

8

8

注釈

BLAKE2 specification defines constant lengths for salt and personalization parameters, however, for convenience, this implementation accepts byte strings of any size up to the specified length. If the length of the parameter is less than specified, it is padded with zeros, thus, for example, b'salt' and b'salt\x00' is the same value. (This is not the case for key.)

これらのサイズは以下に述べるモジュール constants で利用できます。

コンストラクタ関数は以下のツリーハッシングパラメタを受け付けます:

  • fanout: fanout (0 to 255, 0 if unlimited, 1 in sequential mode).

  • depth: ツリーの深さの最大値(1から255までの値で、無制限であれば255、シーケンスモードでは1)。

  • leaf_size: maximal byte length of leaf (0 to 2**32-1, 0 if unlimited or in sequential mode).

  • node_offset: node offset (0 to 2**64-1 for BLAKE2b, 0 to 2**48-1 for BLAKE2s, 0 for the first, leftmost, leaf, or in sequential mode).

  • node_depth: node depth (0 to 255, 0 for leaves, or in sequential mode).

  • inner_size: inner digest size (0 to 64 for BLAKE2b, 0 to 32 for BLAKE2s, 0 in sequential mode).

  • last_node: boolean indicating whether the processed node is the last one (False for sequential mode).

Explanation of tree mode parameters.

See section 2.10 in BLAKE2 specification for comprehensive review of tree hashing.

定数

blake2b.SALT_SIZE
blake2s.SALT_SIZE

ソルト長(コンストラクタが受け付けれる最大長)

blake2b.PERSON_SIZE
blake2s.PERSON_SIZE

Personalization string length (maximum length accepted by constructors).

blake2b.MAX_KEY_SIZE
blake2s.MAX_KEY_SIZE

最大キー長

blake2b.MAX_DIGEST_SIZE
blake2s.MAX_DIGEST_SIZE

ハッシュ関数が出力しうるダイジェストの最大長

使用例

簡単なハッシュ化

To calculate hash of some data, you should first construct a hash object by calling the appropriate constructor function (blake2b() or blake2s()), then update it with the data by calling update() on the object, and, finally, get the digest out of the object by calling digest() (or hexdigest() for hex-encoded string).

>>> from hashlib import blake2b
>>> h = blake2b()
>>> h.update(b'Hello world')
>>> h.hexdigest()
'6ff843ba685842aa82031d3f53c48b66326df7639a63d128974c5c14f31a0f33343a8c65551134ed1ae0f2b0dd2bb495dc81039e3eeb0aa1bb0388bbeac29183'

As a shortcut, you can pass the first chunk of data to update directly to the constructor as the positional argument:

>>> from hashlib import blake2b
>>> blake2b(b'Hello world').hexdigest()
'6ff843ba685842aa82031d3f53c48b66326df7639a63d128974c5c14f31a0f33343a8c65551134ed1ae0f2b0dd2bb495dc81039e3eeb0aa1bb0388bbeac29183'

You can call hash.update() as many times as you need to iteratively update the hash:

>>> from hashlib import blake2b
>>> items = [b'Hello', b' ', b'world']
>>> h = blake2b()
>>> for item in items:
...     h.update(item)
>>> h.hexdigest()
'6ff843ba685842aa82031d3f53c48b66326df7639a63d128974c5c14f31a0f33343a8c65551134ed1ae0f2b0dd2bb495dc81039e3eeb0aa1bb0388bbeac29183'

Using different digest sizes

BLAKE2 はダイジェストの長さを、BLAKE2bでは64バイトまで、BLAKE2sでは32バイトまでのダイジェスト長を指定できます。例えばSHA-1を、出力を同じ長さのままでBLAKE2bで置き換えるには、BLAKE2bに20バイトのダイジェストを生成するように指示できます:

>>> from hashlib import blake2b
>>> h = blake2b(digest_size=20)
>>> h.update(b'Replacing SHA1 with the more secure function')
>>> h.hexdigest()
'd24f26cf8de66472d58d4e1b1774b4c9158b1f4c'
>>> h.digest_size
20
>>> len(h.digest())
20

Hash objects with different digest sizes have completely different outputs (shorter hashes are not prefixes of longer hashes); BLAKE2b and BLAKE2s produce different outputs even if the output length is the same:

>>> from hashlib import blake2b, blake2s
>>> blake2b(digest_size=10).hexdigest()
'6fa1d8fcfd719046d762'
>>> blake2b(digest_size=11).hexdigest()
'eb6ec15daf9546254f0809'
>>> blake2s(digest_size=10).hexdigest()
'1bf21a98c78a1c376ae9'
>>> blake2s(digest_size=11).hexdigest()
'567004bf96e4a25773ebf4'

Keyed hashing

Keyed hashing can be used for authentication as a faster and simpler replacement for Hash-based message authentication code (HMAC). BLAKE2 can be securely used in prefix-MAC mode thanks to the indifferentiability property inherited from BLAKE.

This example shows how to get a (hex-encoded) 128-bit authentication code for message b'message data' with key b'pseudorandom key':

>>> from hashlib import blake2b
>>> h = blake2b(key=b'pseudorandom key', digest_size=16)
>>> h.update(b'message data')
>>> h.hexdigest()
'3d363ff7401e02026f4a4687d4863ced'

As a practical example, a web application can symmetrically sign cookies sent to users and later verify them to make sure they weren't tampered with:

>>> from hashlib import blake2b
>>> from hmac import compare_digest
>>>
>>> SECRET_KEY = b'pseudorandomly generated server secret key'
>>> AUTH_SIZE = 16
>>>
>>> def sign(cookie):
...     h = blake2b(digest_size=AUTH_SIZE, key=SECRET_KEY)
...     h.update(cookie)
...     return h.hexdigest().encode('utf-8')
>>>
>>> def verify(cookie, sig):
...     good_sig = sign(cookie)
...     return compare_digest(good_sig, sig)
>>>
>>> cookie = b'user-alice'
>>> sig = sign(cookie)
>>> print("{0},{1}".format(cookie.decode('utf-8'), sig))
user-alice,b'43b3c982cf697e0c5ab22172d1ca7421'
>>> verify(cookie, sig)
True
>>> verify(b'user-bob', sig)
False
>>> verify(cookie, b'0102030405060708090a0b0c0d0e0f00')
False

Even though there's a native keyed hashing mode, BLAKE2 can, of course, be used in HMAC construction with hmac module:

>>> import hmac, hashlib
>>> m = hmac.new(b'secret key', digestmod=hashlib.blake2s)
>>> m.update(b'message')
>>> m.hexdigest()
'e3c8102868d28b5ff85fc35dda07329970d1a01e273c37481326fe0c861c8142'

Randomized hashing

By setting salt parameter users can introduce randomization to the hash function. Randomized hashing is useful for protecting against collision attacks on the hash function used in digital signatures.

Randomized hashing is designed for situations where one party, the message preparer, generates all or part of a message to be signed by a second party, the message signer. If the message preparer is able to find cryptographic hash function collisions (i.e., two messages producing the same hash value), then they might prepare meaningful versions of the message that would produce the same hash value and digital signature, but with different results (e.g., transferring $1,000,000 to an account, rather than $10). Cryptographic hash functions have been designed with collision resistance as a major goal, but the current concentration on attacking cryptographic hash functions may result in a given cryptographic hash function providing less collision resistance than expected. Randomized hashing offers the signer additional protection by reducing the likelihood that a preparer can generate two or more messages that ultimately yield the same hash value during the digital signature generation process --- even if it is practical to find collisions for the hash function. However, the use of randomized hashing may reduce the amount of security provided by a digital signature when all portions of the message are prepared by the signer.

(NIST SP-800-106 "Randomized Hashing for Digital Signatures")

In BLAKE2 the salt is processed as a one-time input to the hash function during initialization, rather than as an input to each compression function.

警告

Salted hashing (or just hashing) with BLAKE2 or any other general-purpose cryptographic hash function, such as SHA-256, is not suitable for hashing passwords. See BLAKE2 FAQ for more information.

>>> import os
>>> from hashlib import blake2b
>>> msg = b'some message'
>>> # Calculate the first hash with a random salt.
>>> salt1 = os.urandom(blake2b.SALT_SIZE)
>>> h1 = blake2b(salt=salt1)
>>> h1.update(msg)
>>> # Calculate the second hash with a different random salt.
>>> salt2 = os.urandom(blake2b.SALT_SIZE)
>>> h2 = blake2b(salt=salt2)
>>> h2.update(msg)
>>> # The digests are different.
>>> h1.digest() != h2.digest()
True

Personalization

Sometimes it is useful to force hash function to produce different digests for the same input for different purposes. Quoting the authors of the Skein hash function:

We recommend that all application designers seriously consider doing this; we have seen many protocols where a hash that is computed in one part of the protocol can be used in an entirely different part because two hash computations were done on similar or related data, and the attacker can force the application to make the hash inputs the same. Personalizing each hash function used in the protocol summarily stops this type of attack.

(The Skein Hash Function Family, p. 21)

BLAKE2は person 引数にバイト列を渡すことでパーソナライズできます:

>>> from hashlib import blake2b
>>> FILES_HASH_PERSON = b'MyApp Files Hash'
>>> BLOCK_HASH_PERSON = b'MyApp Block Hash'
>>> h = blake2b(digest_size=32, person=FILES_HASH_PERSON)
>>> h.update(b'the same content')
>>> h.hexdigest()
'20d9cd024d4fb086aae819a1432dd2466de12947831b75c5a30cf2676095d3b4'
>>> h = blake2b(digest_size=32, person=BLOCK_HASH_PERSON)
>>> h.update(b'the same content')
>>> h.hexdigest()
'cf68fb5761b9c44e7878bfb2c4c9aea52264a80b75005e65619778de59f383a3'

Personalization together with the keyed mode can also be used to derive different keys from a single one.

>>> from hashlib import blake2s
>>> from base64 import b64decode, b64encode
>>> orig_key = b64decode(b'Rm5EPJai72qcK3RGBpW3vPNfZy5OZothY+kHY6h21KM=')
>>> enc_key = blake2s(key=orig_key, person=b'kEncrypt').digest()
>>> mac_key = blake2s(key=orig_key, person=b'kMAC').digest()
>>> print(b64encode(enc_key).decode('utf-8'))
rbPb15S/Z9t+agffno5wuhB77VbRi6F9Iv2qIxU7WHw=
>>> print(b64encode(mac_key).decode('utf-8'))
G9GtHFE1YluXY1zWPlYk1e/nWfu0WSEb0KRcjhDeP/o=

ツリーモード

これが二つの葉ノードからなる最小の木をハッシュする例です:

  10
 /  \
00  01

次の例では、64バイトの内部桁が使われ、32バイトの最終的なダイジェストを返しています:

>>> from hashlib import blake2b
>>>
>>> FANOUT = 2
>>> DEPTH = 2
>>> LEAF_SIZE = 4096
>>> INNER_SIZE = 64
>>>
>>> buf = bytearray(6000)
>>>
>>> # Left leaf
... h00 = blake2b(buf[0:LEAF_SIZE], fanout=FANOUT, depth=DEPTH,
...               leaf_size=LEAF_SIZE, inner_size=INNER_SIZE,
...               node_offset=0, node_depth=0, last_node=False)
>>> # Right leaf
... h01 = blake2b(buf[LEAF_SIZE:], fanout=FANOUT, depth=DEPTH,
...               leaf_size=LEAF_SIZE, inner_size=INNER_SIZE,
...               node_offset=1, node_depth=0, last_node=True)
>>> # Root node
... h10 = blake2b(digest_size=32, fanout=FANOUT, depth=DEPTH,
...               leaf_size=LEAF_SIZE, inner_size=INNER_SIZE,
...               node_offset=0, node_depth=1, last_node=True)
>>> h10.update(h00.digest())
>>> h10.update(h01.digest())
>>> h10.hexdigest()
'3ad2a9b37c6070e374c7a8c508fe20ca86b6ed54e286e93a0318e95e881db5aa'

クレジット:

BLAKE2 は*Jean-Philippe Aumasson*、 Luca HenzenWilli Meier そして Raphael C.-W. Phan によって作成された SHA-3 の最終候補である BLAKE を元に、Jean-Philippe AumassonSamuel NevesZooko Wilcox-O'Hearn, そして Christian Winnerlein によって設計されました。

それは、 Daniel J. Bernstein によって設計されたChaCha 暗号由来のアルゴリズムを用いています。

標準ライブラリは pyblake2 モジュールを基礎として実装されています。 このモジュールは Dmitry Chestnykh によって、Samuel Neves が作成した C実装を元に書かれました。 このドキュメントは、pyblake2 からコピーされ、Dmitry Chestnykh によって書かれました。

Christian Heimes によって、一部のCコードがPython向けに書き直されました。

以下の public domain dedicationが、Cのハッシュ関数実装と、拡張コードと、このドキュメントに適用されます:

To the extent possible under law, the author(s) have dedicated all copyright and related and neighboring rights to this software to the public domain worldwide. This software is distributed without any warranty.

You should have received a copy of the CC0 Public Domain Dedication along with this software. If not, see https://creativecommons.org/publicdomain/zero/1.0/.

The following people have helped with development or contributed their changes to the project and the public domain according to the Creative Commons Public Domain Dedication 1.0 Universal:

  • Alexandr Sokolovskiy

参考

hmac モジュール

ハッシュを用いてメッセージ認証コードを生成するモジュールです。

base64 モジュール

バイナリハッシュを非バイナリ環境用にエンコードするもうひとつの方法です。

https://blake2.net

BLAKE2 の公式ウェブサイト

https://csrc.nist.gov/csrc/media/publications/fips/180/2/archive/2002-08-01/documents/fips180-2.pdf

FIPS 180-2 のセキュアハッシュアルゴリズムについての説明。

https://en.wikipedia.org/wiki/Cryptographic_hash_function#Cryptographic_hash_algorithms (日本語版: https://暗号学的ハッシュ関数)

どのアルゴリズムにどんな既知の問題があって、それが実際に利用する際にどう影響するかについての Wikipedia の記事。

https://www.ietf.org/rfc/rfc2898.txt

PKCS #5: Password-Based Cryptography Specification Version 2.0