Argument Clinic How-To

oooo 3.6.9

Guido van Rossum
and the Python development team

100 02, 2019

Python Software Foundation
Email: docs@python.org

O

010

020

030

040
4.1
4.2
4.3
4.4
45
4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13
4.14
4.15
4.16
4.17
4.18
4.19
4.20
421

Argument Clinic 0 [0 0
oooooooooo
oooooooooDo

gooooao

OO00O00000000 ... e e e s e e e
Argument Clinic O 00000000 00000000 .+ ..o ..
PyArg UnpackTuple DO OO DOODOO . .. oo 0000 e e e e e e
OOOOOO .o e e e e s e s s e
Using real Argument Clinic converters, instead of “legacy converters”
Py buffer e
Advanced converters oL e e e e e e
UOO00O00O000 .. e e e s
NULLOOOOODO ... e e e e e e e
D00000000000000 .o e e e s e
USIng a return CONVEITET . . .« v v v v v v e v e e e e e e e e e e e e e e e e e e
0
Python OO ODOOOOO . .. oL e e e e e
“self converter” DI 00 . L o L o L 0L o e
UO0O000000000 .. s e e e e
D000 return D OOOO0OOO .« .00 000 e e e e e e e e e e e e e
METH_ O 0 METH_.NOARGS o e
tpnew [J tp_init functions oL oL L e
CinicOOD0OOO0O0O0O00OD000 .. e e
#ifdef DO OO . . L Lo o e
Python OO OO OO0 ArgumentClinic D OO . . .o 0000000000000

19

00O Larry Hastings

oo

Argument Clinic J CPython 0 COO0D0O0O0O00O00000OO0O0Owitin00000000O0O0OCOOO
OoooooooooooooooDoODODODbb0O0O0Cco0n ArgumentClinicDO0O00000D0DOO
OO0000 ArgumentClinic 00000000000 OCOOO

U000000Argument Clinic 0 CPython OO0 OO0 OD0OO0OO0CPython OO OO0 ODOODOODO

Argument Clinic How-To, 0 0 0 O 3.6.9

gbboobOoboooboobooooboboobooboobooboobOOobOooboOonOcCPython OO
cOoobOoobOoboooboboobObOArgumentClinic0 0000000000000 O0O0OOOOOO

O CPython O ArgumentClinic 0 0000000000000 OD0O0OO0OODOOODOOOOO0O O

[1 10 Argument Clinic [[J [

Argument Clinic 00O 0O00O0OCPython 000000000 OOO0OODOOOOOODOOOOODODODODOOO
00 ArgumentClinic 000 0000000000000 O0D0OOO0ODOOO0ODOOOOOOOOOArgument
Cinic 0000000000 DOOO0O0O0ODOODOOOCPythonOOO0O0O0O0ODOOOOOODODOOOOO
d0o0b0000obObO0o0o0oobObbOOd pyObject xargs (O PyObject xkwargs) DO OO
goo0o0oobOcOobDonoDoboooooooon

Argument Clinic 0 0000000000000 0000DO0OOC0OO00DO0O0O0O0O000DOCPythonD OO
gbooooooboobobooooooooooboboooobooobooboboobooboooobooonono
Argument Clinic 0 00000 DRYOOOOODOOO

gooobobooboobooooooooobooobooooboobboobbooboboOoooOoooOg Argument
CiniceO0000D00O000DDOO0O0000O00O0DDOO0OOO0DODOOO00OD Argument Clinic 00O DO
gooooooooooooOooooooooboOoooooOoooDboOooooDboOoooooOoobooboog
goooDoO0@bOUObDU0O0ArgumentClinic U 0000000000 OODOOODO Argument Clinic O O
o000 CpythonOOO0DO0OOOO0O0DOODOOOO0ODODODOOOOODOODOOOOOODOOODDODOOO
goobooooooOoOoo0ooooOoo0oooOoo0ooooOoboOoooooOoooDooOon)

O000ArgumentClinic U0 O0O0000000000O0O0D00O0O0O0O0OC0O0OO0O0DOOOOODOPython
oboooboooooboboobooooboboOboOobobDArgumentClinicJO0O000O0OO0OOODOOODOOO
gbooog

000000000 ArgumentClinicOO OO CPython OO DOODOOO 000000 introspection U [
000o0000o0ob0obo00bD0obUob0b0O0b0ODO introspection OO0 O O00OODOOOOOOODOO
O00D0000Argument Clinic 0000000000000 OO0ODOO

Argument Clinic 0O 0O O0000 10000000000 O0O00O00O0O0OCOOO0:00000000
oboobobooooooboobobobo0boobooDoboOobOArgument Clinic 0O OO00OOO
gboooooobobboooooboboooooboobooboooboobobobooooobooboon
gbooooooboooo

20 UOO0O0OO00OoO0oog

Argument Clinic 0 CPython OO0 O OODOD0OOOODOODOOODOO Tools/clinic/clinic.py OO0
gbooboogooobooooobooboooobobobooobo coooooobooboooooDoo:

’$ python3 Tools/clinic/clinic.py foo.c

ArgumentClinic 0000000000000 0DOOO0ODOOOODOOOO0ODO:

’/*[clinic input]

gboooobobooooobooooboboooobOobooobOOoboooooboon:

[clinic start generated code]=/

obo0o0d2000000000000 ArgumentClinicO0 0000000000 O0O0OO0O0OOODOOOO
UboooobooboOobDO ArgumentClinic”’ 00000000000

ArgumentClinic OO 0O block DO 0000000000 DOOOOOOOO00OOODOCOOOOODODO
gbOOObleckOO0OO0O0DOOO0ODOOOOODOOOOOOOODOOODOODODODOOODO Argument Clinick
block DOOOODOODOOO:

/*[clinic input]
. clinic input goes here ...
[clinic start generated code]x/
. clinic output goes here ...
/+[clinic end generated code: checksum=...]x/

Argument Clinic U0 000000000 200000000ArgumentClinic00000000000O00O0O0
go0ooooodooooO0Oooo0ooooO00DooUoUoooOO0OooOOooOooDoOooDOoOooDon

Argument Clinick block OO0 00000000000 O0OO0OOCOOOOO00O0ODODOOO0OOO0OOOODOO
oboooOo@ooooboobooboobonoO ArgumentClinic 00000000000 O0OOOODOOO
goboooboogoboooooobooooooboooooboooooo)

0000000000 ArgumentClinic0O0O00000O0O00DOOOODOO
s 0JO0D000D00OD00O (/*[clinic input]) O ODOOOOODO OOO

* ArgumentClinic 0000 OD0ODOD0ODDODOOOOCOODO ([clinic start generated code]*/
yO OooDooo oog

e 00O (/+[clinic end generated code: checksum=...]«/)0 O00O0O00O0OOOOO
ooo

- JO00O00O0ODOODOOOOODOOODOOOOOOOO

 J0O00bOO00bObOoo0bOob0bOobbO 0ObobbOo bod

Argument Clinic How-To, 0 0 0 O 3.6.9

- JO00D00OO00DOO0OO0ODOOODOO0O0O0O0200000000 ODOOO O00(Argument Clinic O
gboooboobgoooboboooboooobobobobobooboboboobobobooboo
gboooooboobooboobooogog)

6 020 0000000000

30 Uoououoood

Argument Clinic 00000000000 ODOOOOOO1000000O0O0DOOOOODOODOOOODOOd
0000010000000 0000000000000000CPython0 00 O0D0OO00ODOOOOODOO
0000000000000 00 (return converter” O “selfconverter” 0 O)00 00 O000O00OO0DOOOO
doo00o0Dd0oo0ooDOo0o0oOoDoU0OoODOoooooDoooooon

gpoooog
0. 00 Cpython DD OODODOOOOODOOOODOOOOD

1. Find a Python builtin that calls either PyArg_ParseTuple () or
PyArg_ParseTupleAndKeywords (), and hasn’t been converted to work with Argument Clinic

yet. For my example 'm using _pickle.Pickler.dump ().

2. PyArg Parse000000000O00O0O0O0OOODOOOOCODOODOOOO:

0&
0!
es
es#
et
et#

0000 pyArg-ParseTuple () UDODOOOD0OO0O0ODOOOOOOOODOOOOOO0ODOOOOAr-
gumentClinic 000000000000 ODOO0O0O0O0ODOOOOOODOOOOOOODODOOOOO
oobooobooboobooobooboobooboooon

0000000000000 000000000D0000000000 pyArg.ParseTuple() O
PyArg_ParseTupleAndKeyword () U0 DOOODOODODOODODOO PyArgParse 1O OO OO
0000000000 0000 Argument Clinic 0000000 OO Argument ClinicDO0OO0OOOO
dooodoooooooooooooooooooood

3.0000oooooooboooooooooooboooon:

/*[clinic input]
[clinic start generated code]*/

4. Cutthe docstring and paste it in between the [c1inic] lines, removing all the junk that makes it a properly
quoted C string. When you’re done you should have just the text, based at the left margin, with no line wider

than 80 characters. (Argument Clinic will preserve indents inside the docstring.)

If the old docstring had a first line that looked like a function signature, throw that line away. (The docstring
doesn’t need it anymore—when you use help () on your builtin in the future, the first line will be built

automatically based on the function’s signature.)

0:

Argument Clinic How-To, 0 0 0 O 3.6.9

/*[clinic input]
Write a pickled representation of obj to the open file.
[clinic start generated code] */

5. If your docstring doesn’t have a ”summary” line, Argument Clinic will complain. So let’s make sure it has
one. The “summary” line should be a paragraph consisting of a single 80-column line at the beginning of

the docstring.

(Our example docstring consists solely of a summary line, so the sample code doesn’t have to change for

this step.)

6. Above the docstring, enter the name of the function, followed by a blank line. This should be the Python
name of the function, and should be the full dotted path to the function—it should start with the name of
the module, include any sub-modules, and if the function is a method on a class it should include the class

name too.

0:

/*[clinic input]
_pickle.Pickler.dump

Write a pickled representation of obj to the open file.
[clinic start generated code] */

7. If this is the first time that module or class has been used with Argument Clinic in this C file, you must
declare the module and/or class. Proper Argument Clinic hygiene prefers declaring these in a separate
block somewhere near the top of the C file, in the same way that include files and statics go at the top. (In

our sample code we’ll just show the two blocks next to each other.)

The name of the class and module should be the same as the one seen by Python. Check the name defined

in the PyModuleDef or PyTypeObject as appropriate.

When you declare a class, you must also specify two aspects of its type in C: the type declaration you’d use

for a pointer to an instance of this class, and a pointer to the PyTypeOb ject for this class.

0:

/*[clinic input]

module _pickle

class _pickle.Pickler "PicklerObject x" "&Pickler Type"
[clinic start generated code] */

/#[clinic input]
_pickle.Pickler.dump

Write a pickled representation of obj to the open file.
[clinic start generated code] */

8. Declare each of the parameters to the function. Each parameter should get its own line. All the parameter

lines should be indented from the function name and the docstring.

The general form of these parameter lines is as follows:

name_of_parameter: converter

8 030 0000000000

Argument Clinic How-To, 0 0 0 O 3.6.9

10.

If the parameter has a default value, add that after the converter:

name_of_parameter: converter = default_value

Argument Clinic’s support for ”default values” is quite sophisticated; please see the section below on default

values for more information.
Add a blank line below the parameters.

What’s a ’converter”? It establishes both the type of the variable used in C, and the method to convert the
Python value into a C value at runtime. For now you’re going to use what’s called a ”legacy converter’—a

convenience syntax intended to make porting old code into Argument Clinic easier.

For each parameter, copy the “format unit” for that parameter from the PyArg_Parse () format argument
and specify that as its converter, as a quoted string. (“format unit” is the formal name for the one-to-three
character substring of the format parameter that tells the argument parsing function what the type of the

variable is and how to convert it. For more on format units please see arg-parsing.)
For multicharacter format units like z #, use the entire two-or-three character string.

0:

/*[clinic input]

module _pickle

class _pickle.Pickler "PicklerObject =" "&Pickler_ Type"
[clinic start generated code] */

/*[clinic input]
_pickle.Pickler.dump

obj: 'O’

Write a pickled representation of obj to the open file.
[clinic start generated code]*/

. If your function has | in the format string, meaning some parameters have default values, you can ignore it.

Argument Clinic infers which parameters are optional based on whether or not they have default values.

If your function has $ in the format string, meaning it takes keyword-only arguments, specify » on a line

by itself before the first keyword-only argument, indented the same as the parameter lines.
(.pickle.Pickler.dump has neither, so our sample is unchanged.)

If the existing C function calls PyArg_ParseTuple () (as opposed to
PyArg_ParseTupleAndKeywords ()), then all its arguments are positional-only.

To mark all parameters as positional-only in Argument Clinic, add a / on a line by itself after the last

parameter, indented the same as the parameter lines.

Currently this is all-or-nothing; either all parameters are positional-only, or none of them are. (In the future
Argument Clinic may relax this restriction.)

0:

/*[clinic input]
module _pickle

(ooooooo)

Argument Clinic How-To, 0 0 0 O 3.6.9

11.

12.

(COOO0O0OO00o00)

class _pickle.Pickler "PicklerObject «" "&Pickler Type"
[clinic start generated code]*/

/#[clinic input]
_pickle.Pickler.dump

Write a pickled representation of obj to the open file.
[clinic start generated code] */

It’s helpful to write a per-parameter docstring for each parameter. But per-parameter docstrings are optional;

you can skip this step if you prefer.

Here’s how to add a per-parameter docstring. The first line of the per-parameter docstring must be indented
further than the parameter definition. The left margin of this first line establishes the left margin for the
whole per-parameter docstring; all the text you write will be outdented by this amount. You can write as

much text as you like, across multiple lines if you wish.

0:

/*[clinic input]

module _pickle

class _pickle.Pickler "PicklerObject x" "&Pickler_ Type"
[clinic start generated code] */

/*[clinic input]
_pickle.Pickler.dump

obj: 'O
The object to be pickled.
/

Write a pickled representation of obj to the open file.
[clinic start generated code] */

Save and close the file, thenrun Tools/clinic/clinic.py onit. With luck everything worked—your

block now has output, and a . c . h file has been generated! Reopen the file in your text editor to see:

/*[clinic input]
_pickle.Pickler.dump

obj: 'O’
The object to be pickled.
/

Write a pickled representation of obj to the open file.
[clinic start generated code] */

static PyObject =
_pickle_Pickler dump (PicklerObject =xself, PyObject *obj)
/*[clinic end generated code: output=87ecadl26lel2ac7 input=552eblc0f52260d9]*/

Obviously, if Argument Clinic didn’t produce any output, it’s because it found an error in your input. Keep

fixing your errors and retrying until Argument Clinic processes your file without complaint.

For readability, most of the glue code has been generated to a . c . h file. You’ll need to include that in your

10

030 0000000000

Argument Clinic How-To, 0 0 0 O 3.6.9

13.

14.

original . c file, typically right after the clinic module block:

#include "clinic/_pickle.c.h"

Double-check that the argument-parsing code Argument Clinic generated looks basically the same as the
existing code.

First, ensure both places use the same argument-parsing function. The existing code must call either
PyArg_ParseTuple () or PyArg ParseTupleAndKeywords (); ensure that the code generated
by Argument Clinic calls the exact same function.

Second, the format string passed in to PyArg_ParseTuple () or
PyArg_ParseTupleAndKeywords () should be exactly the same as the hand-written one in the

existing function, up to the colon or semi-colon.

(Argument Clinic always generates its format strings with a : followed by the name of the function. If
the existing code’s format string ends with ;, to provide usage help, this change is harmless—don’t worry
about it.)

Third, for parameters whose format units require two arguments (like a length variable, or an encoding
string, or a pointer to a conversion function), ensure that the second argument is exactly the same between

the two invocations.

Fourth, inside the output portion of the block you’ll find a preprocessor macro defining the appropriate static
PyMethodDef structure for this builtin:

#define __ PICKLE_PICKLER DUMP_METHODDEF \
{"dump", (PyCFunction)__pickle_Pickler._dump, METH O, __pickle Pickler_dump__
—~doc__},

This static structure should be exactly the same as the existing static PyMethodDef structure for this
builtin.

If any of these items differ in any way, adjust your Argument Clinic function specification and rerun

Tools/clinic/clinic.py until they are the same.

Notice that the last line of its output is the declaration of your “impl” function. This is where the builtin’s
implementation goes. Delete the existing prototype of the function you’re modifying, but leave the open-
ing curly brace. Now delete its argument parsing code and the declarations of all the variables it dumps
the arguments into. Notice how the Python arguments are now arguments to this impl function; if the

implementation used different names for these variables, fix it.

Let’s reiterate, just because it’s kind of weird. Your code should now look like this:

static return_type
your_function_impl (...)
/*[clinic end generated code: checksum=...]*/

{

Argument Clinic generated the checksum line and the function prototype just above it. You should write

the opening (and closing) curly braces for the function, and the implementation inside.

0:

11

Argument Clinic How-To, 0 0 0 O 3.6.9

/*[clinic input]

module _pickle

class _pickle.Pickler "PicklerObject " "&Pickler Type"
[clinic start generated code] */

/+[clinic end generated code:.
—checksum=da39a3eebe6b4b0d3255bfef95601890ard80709] /

/*[clinic input]
_pickle.Pickler.dump

obj: 'O'
The object to be pickled.
/

Write a pickled representation of obj to the open file.
[clinic start generated code]*/

PyDoc_STRVAR(__pickle_Pickler_dump__doc__,
"Write a pickled representation of obj to the open file.\n"
n\nu

static PyObject =

_pickle_Pickler dump_impl (PicklerObject *self, PyObject =obj)
/*[clinic end generated code:.
—checksum=3bd30745bf206a48f8b576alda3d90f55a0a4187] */

{

/% Check whether the Pickler was initialized correctly (issue3664).

Developers often forget to call __init___ () in their subclasses, which
would trigger a segfault without this check. #*/
if (self->write == NULL) {
PyErr_Format (PicklingError,
"Pickler.__init__ () was not called by %s.__init__ ()",

Py_TYPE (self)->tp_name) ;
return NULL;

if (_Pickler_ClearBuffer(self) < 0)
return NULL;

15. Remember the macro with the PyMethodDef structure for this function? Find the existing
PyMethodDef structure for this function and replace it with a reference to the macro. (If the builtin
is at module scope, this will probably be very near the end of the file; if the builtin is a class method, this
will probably be below but relatively near to the implementation.)

Note that the body of the macro contains a trailing comma. So when you replace the existing static
PyMethodDef structure with the macro, don’t add a comma to the end.
U:
static struct PyMethodDef Pickler_methods[] = {
__ PICKLE_PICKLER_DUMP_METHODDEF
__ _PICKLE_PICKLER_CLEAR_MEMO_METHODDEF
{NULL, NULL} /* sentinel */
bi

16. Compile, then run the relevant portions of the regression-test suite. This change should not introduce any

new compile-time warnings or errors, and there should be no externally-visible change to Python’s behavior.
12 030 0000000000

Argument Clinic How-To, 0 0 0 O 3.6.9

Well, except for one difference: inspect.signature () run on your function should now provide a

valid signature!

Congratulations, you’ve ported your first function to work with Argument Clinic!

13

40 0OO0O0O0OoOd

Now that you’ve had some experience working with Argument Clinic, it’s time for some advanced topics.

41 J00O0O0OO0ODOOOO

The default value you provide for a parameter can’t be any arbitrary expression. Currently the following are

explicitly supported:

- JO00O0((@mOuoooog)

- JO0000

* Trueld Falsel None

» Simple symbolic constants like sy s .maxs1ize, which must start with the name of the module
In case you’re curious, this is implemented in from builtin () in Lib/inspect.py.

(In the future, this may need to get even more elaborate, to allow full expressions like CONSTANT - 1.)

4.2 ArgumentClinic 00 000000000000 O0O0O

Argument Clinic automatically names the functions it generates for you. Occasionally this may cause a problem,
if the generated name collides with the name of an existing C function. There’s an easy solution: override the
names used for the C functions. Just add the keyword "as" to your function declaration line, followed by the
function name you wish to use. Argument Clinic will use that function name for the base (generated) function,

then add "_impl™" to the end and use that for the name of the impl function.

For example, if we wanted to rename the C function names generated for pickle.Pickler.dump, it’d look
like this:

/#*[clinic input]
pickle.Pickler.dump as pickler_ dumper

The base function would now be named pickler_dumper (), and the impl function would now be named

pickler_dumper_impl ().

Similarly, you may have a problem where you want to give a parameter a specific Python name, but that name
may be inconvenient in C. Argument Clinic allows you to give a parameter different names in Python and in C,

using the same "as" syntax:

14

Argument Clinic How-To, 0 0 0 O 3.6.9

/*[clinic input]
pickle.Pickler.dump

obj: object

file as file_obj: object
protocol: object = NULL
*

fix_imports: bool = True

Here, the name used in Python (in the signature and the keywords array) would be f£ile, but the C variable
would be named file_obj.

You can use this to rename the self parameter too!

4.3 PyArg UnpackTuple OO OO0 O0OO

To convert a function parsing its arguments with PyArg_UnpackTuple (), simply write out all the arguments,
specifying each as an object. You may specify the t ype argument to cast the type as appropriate. All arguments

should be marked positional-only (add a / on a line by itself after the last argument).

Currently the generated code will use PyArg_ParseTuple (), but this will change soon.

44 000000

Some legacy functions have a tricky approach to parsing their arguments: they count the number of positional
arguments, then use a switch statement to call one of several different PyArg_ParseTuple () calls depend-
ing on how many positional arguments there are. (These functions cannot accept keyword-only arguments.) This
approach was used to simulate optional arguments back before PyArg ParseTupleAndKeywords () was

created.

While functions using this approach can often be converted to use PyArg_ParseTupleAndKeywords (),
optional arguments, and default values, it’s not always possible. Some of these legacy functions have behaviors
PyArg_ ParseTupleAndKeywords () doesn’t directly support. The most obvious example is the builtin
function range (), which has an optional argument on the left side of its required argument! Another example is
curses.window.addch (), which has a group of two arguments that must always be specified together. (The
arguments are called x and y; if you call the function passing in x, you must also pass in y—and if you don’t pass

in x you may not pass in y either.)

In any case, the goal of Argument Clinic is to support argument parsing for all existing CPython builtins without
changing their semantics. Therefore Argument Clinic supports this alternate approach to parsing, using what are
called optional groups. Optional groups are groups of arguments that must all be passed in together. They can be
to the left or the right of the required arguments. They can only be used with positional-only parameters.

O 0O: Optional groups are only intended for use when converting functions that make multiple calls to
PyArg_ParseTuple ()! Functions that use any other approach for parsing arguments should almost never

be converted to Argument Clinic using optional groups. Functions using optional groups currently cannot have

4.3. PyArg_UnpackTuple COOOOOOO 15

Argument Clinic How-To, 0 0 0 O 3.6.9

accurate signatures in Python, because Python just doesn’t understand the concept. Please avoid using optional
groups wherever possible.

To specify an optional group, add a [on a line by itself before the parameters you wish to group together, and a
] on aline by itself after these parameters. As an example, here’s how curses.window.addch uses optional
groups to make the first two parameters and the last parameter optional:

/*[clinic input]
curses.window.addch

[

x: 1int
X-coordinate.

y: int
Y-coordinate.

]

ch: object
Character to add.
[
attr: long
Attributes for the character.

o0:

* For every optional group, one additional parameter will be passed into the impl function representing the
group. The parameter will be an int named group_{direction}_{number}, where {direction}
is either right or left depending on whether the group is before or after the required parameters, and
{number} is a monotonically increasing number (starting at 1) indicating how far away the group is from
the required parameters. When the impl is called, this parameter will be set to zero if this group was unused,
and set to non-zero if this group was used. (By used or unused, I mean whether or not the parameters

received arguments in this invocation.)

* If there are no required arguments, the optional groups will behave as if they’re to the right of the required
arguments.

* In the case of ambiguity, the argument parsing code favors parameters on the left (before the required

parameters).
* Optional groups can only contain positional-only parameters.

* Optional groups are only intended for legacy code. Please do not use optional groups for new code.

16 040 0000000

Argument Clinic How-To, 0 0 0 O 3.6.9

4.5 Using real Argument Clinic converters, instead of ’legacy con-
verters”

To save time, and to minimize how much you need to learn to achieve your first port to Argument Clinic, the walk-
through above tells you to use ’legacy converters”. “Legacy converters” are a convenience, designed explicitly to
make porting existing code to Argument Clinic easier. And to be clear, their use is acceptable when porting code
for Python 3.4.

However, in the long term we probably want all our blocks to use Argument Clinic’s real syntax for converters.
Why? A couple reasons:

* The proper converters are far easier to read and clearer in their intent.

* There are some format units that are unsupported as “legacy converters”, because they require arguments,

and the legacy converter syntax doesn’t support specifying arguments.

* In the future we may have a new argument parsing library that isn’t restricted to what
PyArg_ParseTuple () supports; this flexibility won’t be available to parameters using legacy convert-

ers.
Therefore, if you don’t mind a little extra effort, please use the normal converters instead of legacy converters.

In a nutshell, the syntax for Argument Clinic (non-legacy) converters looks like a Python function call. However,
if there are no explicit arguments to the function (all functions take their default values), you may omit the

parentheses. Thus bool and bool () are exactly the same converters.

All arguments to Argument Clinic converters are keyword-only. All Argument Clinic converters accept the fol-

lowing arguments:

c_default The default value for this parameter when defined in C. Specifically, this will be the
initializer for the variable declared in the “parse function”. See the section on default values for

how to use this. Specified as a string.

annotation The annotation value for this parameter. Not currently supported, because PEP 8

mandates that the Python library may not use annotations.

In addition, some converters accept additional arguments. Here is a list of these arguments, along with their

meanings:

accept A set of Python types (and possibly pseudo-types); this restricts the allowable Python argu-
ment to values of these types. (This is not a general-purpose facility; as a rule it only supports

specific lists of types as shown in the legacy converter table.)
To accept None, add NoneType to this set.

bitwise Only supported for unsigned integers. The native integer value of this Python argument

will be written to the parameter without any range checking, even for negative values.

converter Only supported by the object converter. Specifies the name of a C ”converter func-
tion” to use to convert this object to a native type.

encoding Only supported for strings. Specifies the encoding to use when converting this string

from a Python str (Unicode) value into a C char « value.

4.5. Using real Argument Clinic converters, instead of ”"legacy converters” 17

Argument Clinic How-To, 0 0 0 O 3.6.9

subclass_of Only supported for the object converter. Requires that the Python value be a
subclass of a Python type, as expressed in C.

type Only supported for the object and self converters. Specifies the C type that will be used

to declare the variable. Default value is "PyObject «".

zeroes Only supported for strings. If true, embedded NUL bytes ('\\0') are permitted inside
the value. The length of the string will be passed in to the impl function, just after the string

parameter, as a parameter named <parameter_name>_length.

Please note, not every possible combination of arguments will work. Usually these arguments are implemented
by specific PyArg_ParseTuple format units, with specific behavior. For example, currently you cannot call
unsigned_short without also specifying bitwise=True. Although it’s perfectly reasonable to think this
would work, these semantics don’t map to any existing format unit. So Argument Clinic doesn’t support it. (Or,
at least, not yet.)

Below is a table showing the mapping of legacy converters into real Argument Clinic converters. On the left is the

legacy converter, on the right is the text you’d replace it with.

'B' unsigned_char (bitwise=True)

'b! unsigned_char

'c! char

c! int (accept={str})

'ad’ double

'D' Py_complex

'es' str (encoding="'name_of_encoding"')

'es#' | str(encoding="'name_of_encoding', zeroes=True)
'et! str (encoding='name_of_encoding', accept={bytes, bytearray, str})
'et#' | str(encoding='name of_encoding', accept={bytes, bytearray, str}, zeroes=True)
£ float

'h' short

'H' unsigned_short (bitwise=True)

it int

‘T unsigned_int (bitwise=True)

k! unsigned_long (bitwise=True)

'K' unsigned_long_long (bitwise=True)

'l long

'L long long

'n' Py_ssize_t

'O object

ol object (subclass_of="'&PySomething Type"')

'0&! object (converter="'name_of _c_function')

'p! bool

'S PyBytesObject

's'! str

's#' str (zeroes=True)

gboogoooo

18 040 0000000

Argument Clinic How-To, 0 0 0 O 3.6.9

O 1-0000000000

TSk Py buffer (accept={buffer, str})

'y’ unicode

'u' Py_UNICODE

"uf! Py_UNICODE (zeroes=True)

YWk Py buffer (accept={rwbuffer})

'Yy'!' PyByteArrayObject

Ty str (accept={bytes})

"y#! str (accept={robuffer}, zeroes=True)

yx! Py buffer

A Py _UNICODE (accept={str, NoneType})

A Py UNICODE (accept={str, NoneType}, zeroes=True)
'z! str (accept={str, NoneType})

Tz str (accept={str, NoneType}, zeroes=True)
Tz Py buffer (accept={buffer, str, NoneType})

As an example, here’s our sample pickle.Pickler.dump using the proper converter:

/*[clinic input]
pickle.Pickler.dump

obj: object
The object to be pickled.
/

Write a pickled representation of obj to the open file.
[clinic start generated code] */

Argument Clinic will show you all the converters it has available. For each converter it’ll show you all the
parameters it accepts, along with the default value for each parameter. Just run Tools/clinic/clinic.py

——converters to see the full list.

4.6 Py buffer

When using the Py buffer converter (or the 'sx"', "wx', "xy', or 'z«"' legacy converters), you must not
call PyBuffer Release () on the provided buffer. Argument Clinic generates code that does it for you (in the
parsing function).

4.7 Advanced converters

Remember those format units you skipped for your first time because they were advanced? Here’s how to handle

those too.

The trick is, all those format units take arguments—either conversion functions, or types, or strings specifying
an encoding. (But "legacy converters” don’t support arguments. That’s why we skipped them for your first
function.) The argument you specified to the format unit is now an argument to the converter; this argument is

either converter (for 0&), subclass_of (for O!), or encoding (for all the format units that start with e).

4.6. Py_ buffer 19

Argument Clinic How-To, 0 0 0 O 3.6.9

When using subclass_of, you may also want to use the other custom argument for object () : type, which
lets you set the type actually used for the parameter. For example, if you want to ensure that the object is a subclass
of PyUnicode_Type, you probably want to use the converter object (type='PyUnicodeObject «',
subclass_of="'&PyUnicode_Type').

One possible problem with using Argument Clinic: it takes away some possible flexibility for the format units
starting with e. When writing a PyArg_Parse call by hand, you could theoretically decide at runtime what
encoding string to pass in to PyArg_ParseTuple (). But now this string must be hard-coded at Argument-
Clinic-preprocessing-time. This limitation is deliberate; it made supporting this format unit much easier, and may
allow for future optimizations. This restriction doesn’t seem unreasonable; CPython itself always passes in static

hard-coded encoding strings for parameters whose format units start with e.

48 D 00OO0O0DOODOO

Default values for parameters can be any of a number of values. At their simplest, they can be string, int, or float

literals:

foo: str = "abc"
bar: int = 123
bat: float = 45.6

They can also use any of Python’s built-in constants:

yep: bool = True
nope: bool = False
nada: object = None

There’s also special support for a default value of NULL, and for simple expressions, documented in the following

sections.

49 NULL OO OODOO

For string and object parameters, you can set them to None to indicate that there’s no default. However, that
means the C variable will be initialized to Py_None. For convenience’s sakes, there’s a special value called NULL
for just this reason: from Python’s perspective it behaves like a default value of None, but the C variable is

initialized with NULL.

410 D00 OO0ODOODOOOOOODOO

The default value for a parameter can be more than just a literal value. It can be an entire expression, using
math operators and looking up attributes on objects. However, this support isn’t exactly simple, because of some

non-obvious semantics.

Consider the following example:

20 040 0000000

Argument Clinic How-To, 0 0 0 O 3.6.9

foo: Py_ssize_t = sys.maxsize - 1

sys.maxsize can have different values on different platforms. Therefore Argument Clinic can’t simply evalu-
ate that expression locally and hard-code it in C. So it stores the default in such a way that it will get evaluated at

runtime, when the user asks for the function’s signature.

What namespace is available when the expression is evaluated? It’s evaluated in the context of the module the

builtin came from. So, if your module has an attribute called "max_widgets”, you may simply use it:

foo: Py_ssize_t = max_widgets

If the symbol isn’t found in the current module, it fails over to looking in sys.modules. That’s how it can
find sys.maxsize for example. (Since you don’t know in advance what modules the user will load into their

interpreter, it’s best to restrict yourself to modules that are preloaded by Python itself.)

Evaluating default values only at runtime means Argument Clinic can’t compute the correct equivalent C default
value. So you need to tell it explicitly. When you use an expression, you must also specify the equivalent

expression in C, using the c_default parameter to the converter:

foo: Py_ssize_t (c_default="PY_SSIZE_T_MAX - 1") = sys.maxsize - 1

Another complication: Argument Clinic can’t know in advance whether or not the expression you supply is valid.
It parses it to make sure it looks legal, but it can’t actually know. You must be very careful when using expressions

to specify values that are guaranteed to be valid at runtime!

Finally, because expressions must be representable as static C values, there are many restrictions on legal expres-
sions. Here’s a list of Python features you’re not permitted to use:

oooooo

e JOOOO if0O (3 if foo else 5).

- J00000ODODOOODDOOOO (x[1, 2, 31).
e List/set/dict 000D O0OOOOOOO

* Tuple/list/set/dict literals.

4.11 Using a return converter

By default the impl function Argument Clinic generates for you returns PyObject . But your C function often
computes some C type, then converts it into the PyObject « at the last moment. Argument Clinic handles
converting your inputs from Python types into native C types—why not have it convert your return value from a
native C type into a Python type too?

That’s what a “return converter” does. It changes your impl function to return some C type, then adds code to the

generated (non-impl) function to handle converting that value into the appropriate PyObject =.

The syntax for return converters is similar to that of parameter converters. You specify the return converter like it

was a return annotation on the function itself. Return converters behave much the same as parameter converters;

4.11. Using a return converter 21

Argument Clinic How-To, 0 0 0 O 3.6.9

they take arguments, the arguments are all keyword-only, and if you’re not changing any of the default arguments
you can omit the parentheses.

(If you use both "as" and a return converter for your function, the "as" should come before the return converter.)

There’s one additional complication when using return converters: how do you indicate an error has occurred?
Normally, a function returns a valid (non-NULL) pointer for success, and NULL for failure. But if you use an
integer return converter, all integers are valid. How can Argument Clinic detect an error? Its solution: each return
converter implicitly looks for a special value that indicates an error. If you return that value, and an error has been
set (PyErr_Occurred () returns a true value), then the generated code will propagate the error. Otherwise it

will encode the value you return like normal.

Currently Argument Clinic supports only a few return converters:

bool

int

unsigned int
long

unsigned int
size_t
Py_ssize_t
float

double
DecodeFSDefault

None of these take parameters. For the first three, return -1 to indicate error. For DecodeFSDefault, the return

type is char «;return a NULL pointer to indicate an error.

(There’s also an experimental NoneType converter, which lets you return Py_None on success or NULL on
failure, without having to increment the reference count on Py_None. I’'m not sure it adds enough clarity to be

worth using.)

To see all the return converters Argument Clinic supports, along with their parameters (if any), just run Tools/

clinic/clinic.py ——converters for the full list.

412 0000000

If you have a number of functions that look similar, you may be able to use Clinic’s “clone” feature. When you

clone an existing function, you reuse:
* its parameters, including
- 0ooo
- Jooopoooooo
- Joooooo

- gbhooboboobooon

gg@ooobooboooobooooboboooo)g

e return J 00O O 0O

22 040 0000000

Argument Clinic How-To, 0 0 0 O 3.6.9

The only thing not copied from the original function is its docstring; the syntax allows you to specify a new
docstring.

Here’s the syntax for cloning a function:

/*[clinic input]
module.class.new_function [as c_basename] = module.class.existing_function

Docstring for new_function goes here.
[clinic start generated code] */

(The functions can be in different modules or classes. I wrote module.class in the sample just to illustrate

that you must use the full path to both functions.)

Sorry, there’s no syntax for partially-cloning a function, or cloning a function then modifying it. Cloning is an
all-or nothing proposition.

Also, the function you are cloning from must have been previously defined in the current file.

413 Python OO OO OO OO

The rest of the advanced topics require you to write Python code which lives inside your C file and modifies

Argument Clinic’s runtime state. This is simple: you simply define a Python block.

A Python block uses different delimiter lines than an Argument Clinic function block. It looks like this:

/*[python input]
python code goes here
[python start generated code] */

All the code inside the Python block is executed at the time it’s parsed. All text written to stdout inside the block
is redirected into the "output” after the block.

As an example, here’s a Python block that adds a static integer variable to the C code:

/*[python input]

print ('static int __ignored_unused_variable _ = 0;')
[python start generated code] */

static int ___ignored_unused_variable__ = 0;
/*[python checksum:...]*/

4.14 ’self converter” 0 0 0

Argument Clinic automatically adds a “’self” parameter for you using a default converter. It automatically sets the
type of this parameter to the “pointer to an instance” you specified when you declared the type. However, you
can override Argument Clinic’s converter and specify one yourself. Just add your own se1f parameter as the first

parameter in a block, and ensure that its converter is an instance of self_converter or a subclass thereof.

What’s the point? This lets you override the type of self, or give it a different default name.

4.13. PythonOOOOOOOO 23

Argument Clinic How-To, 0 0 0 O 3.6.9

How do you specify the custom type you want to cast self to? If you only have one or two functions with the
same type for self, you can directly use Argument Clinic’s existing self converter, passing in the type you

want to use as the t ype parameter:

/*[clinic input]
_pickle.Pickler.dump
self: self(type="PicklerObject =")
obj: object
/

Write a pickled representation of the given object to the open file.
[clinic start generated code] */

On the other hand, if you have a lot of functions that will use the same type for self£, it’s best to create your own

converter, subclassing self_converter but overwriting the t ype member:

/#[python input]

class PicklerObject_converter (self_converter) :
type = "PicklerObject x"

[python start generated code]*/

/#*[clinic input]

_pickle.Pickler.dump
self: PicklerObject
obj: object

/

Write a pickled representation of the given object to the open file.
[clinic start generated code] */

415 D00 OO0OOOOoOOOOg

As we hinted at in the previous section... you can write your own converters! A converter is simply a Python class
that inherits from CConverter. The main purpose of a custom converter is if you have a parameter using the

0& format unit—parsing this parameter means calling a PyArg_ParseTuple () “converter function”.

Your converter class should be named »somethingx_converter. If the name follows this convention, then
your converter class will be automatically registered with Argument Clinic; its name will be the name of your

class with the _converter suffix stripped off. (This is accomplished with a metaclass.)

You shouldn’t subclass CConverter.__init__. Instead, you should write a converter_init () func-
tion. converter_init () always accepts a self parameter; after that, all additional parameters must be
keyword-only. Any arguments passed in to the converter in Argument Clinic will be passed along to your

converter_init ().

There are some additional members of CConverter you may wish to specify in your subclass. Here’s the
current list:

type The C type to use for this variable. t ype should be a Python string specifying the type, e.g. int. If this
is a pointer type, the type string should end with ' *'.

24 040 0000000

Argument Clinic How-To, 0 0 0 O 3.6.9

default The Python default value for this parameter, as a Python value. Or the magic value unspecified
if there is no default.

py-default default as it should appear in Python code, as a string. Or None if there is no default.
c_default default as it should appear in C code, as a string. Or None if there is no default.

c_ignored default The default value used to initialize the C variable when there is no default, but not
specifying a default may result in an “uninitialized variable” warning. This can easily happen when using
option groups—although properly-written code will never actually use this value, the variable does get
passed in to the impl, and the C compiler will complain about the ’use” of the uninitialized value. This

value should always be a non-empty string.
converter The name of the C converter function, as a string.

impl by reference A boolean value. If true, Argument Clinic will add a & in front of the name of the

variable when passing it into the impl function.

parse by reference A boolean value. If true, Argument Clinic will add a & in front of the name of the

variable when passing it into PyArg_ParseTuple ().

Here’s the simplest example of a custom converter, from Modules/zlibmodule. c:

/*[python input]

class ssize t_converter (CConverter) :
type = 'Py_ssize t'
converter = 'ssize_ t_converter'

[python start generated code] */
/*[python end generated code: output=da39a3eebe6b4b0d input=35521e4e733823c7]*/

This block adds a converter to Argument Clinic named ssize_t. Parameters declared as ssize_t will
be declared as type Py.ssize_t, and will be parsed by the 'O&' format unit, which will call the

ssize_t_converter converter function. ssize_t variables automatically support default values.

More sophisticated custom converters can insert custom C code to handle initialization and cleanup. You can see

more examples of custom converters in the CPython source tree; grep the C files for the string CConverter.

416 JO00O0D return 00000 0OO0O

Writing a custom return converter is much like writing a custom converter. Except it’s somewhat simpler, because

return converters are themselves much simpler.

Return converters must subclass CReturnConverter. There are no examples yet of custom return converters,
because they are not widely used yet. If you wish to write your own return converter, please read Tools/

clinic/clinic.py, specifically the implementation of CReturnConverter and all its subclasses.

416. D000 return0 0000000 25

Argument Clinic How-To, 0 0 0 O 3.6.9

4.17 METH O O METH NOARGS

To convert a function using METH_O, make sure the function’s single argument is using the object converter,

and mark the arguments as positional-only:

/*[clinic input]
meth_o_sample

argument: object
/

[clinic start generated code] */

To convert a function using METH_NOARGS, just don’t specify any arguments.

You can still use a self converter, a return converter, and specify a type argument to the object converter for
METH_O.

4.18 tp_new I tp_init functions

You can convert tp_new and tp_init functions. Just name them __new__or __init__as appropriate. Notes:

* The function name generated for __new__doesn’t end in __new__like it would by default. It’s just the name

of the class, converted into a valid C identifier.
* No PyMethodDef #define is generated for these functions.
e _init__functions return int, not PyObject =.
* Use the docstring as the class docstring.

* Although __new__and __init__ functions must always accept both the args and kwargs objects, when
converting you may specify any signature for these functions that you like. (If your function doesn’t support
keywords, the parsing function generated will throw an exception if it receives any.)

419 ClinicOO00OOD0OO0OOODOOO

It can be inconvenient to have Clinic’s output interspersed with your conventional hand-edited C code. Luckily,
Clinic is configurable: you can buffer up its output for printing later (or earlier!), or write its output to a separate

file. You can also add a prefix or suffix to every line of Clinic’s generated output.

While changing Clinic’s output in this manner can be a boon to readability, it may result in Clinic code using
types before they are defined, or your code attempting to use Clinic-generated code before it is defined. These
problems can be easily solved by rearranging the declarations in your file, or moving where Clinic’s generated
code goes. (This is why the default behavior of Clinic is to output everything into the current block; while many
people consider this hampers readability, it will never require rearranging your code to fix definition-before-use

problems.)

Let’s start with defining some terminology:

26 040 0000000

Argument Clinic How-To, 0 0 0 O 3.6.9

field A field, in this context, is a subsection of Clinic’s output. For example, the #define for the
PyMethodDef structure is a field, called methoddef_define. Clinic has seven different fields it can

output per function definition:

docstring_prototype
docstring_definition
methoddef_define
impl_prototype
parser_prototype
parser_definition
impl_definition

All the names are of the form " <a>_", where "<a>" is the semantic object represented (the parsing
function, the impl function, the docstring, or the methoddef structure) and " " represents what kind of
statement the field is. Field names that end in " _prototype™" represent forward declarations of that thing,
without the actual body/data of the thing; field names that end in "_definition" represent the actual
definition of the thing, with the body/data of the thing. ("methoddef" is special, it’s the only one that

ends with "_define", representing that it’s a preprocessor #define.)
destination A destination is a place Clinic can write output to. There are five built-in destinations:
block The default destination: printed in the output section of the current Clinic block.

buffer A text buffer where you can save text for later. Text sent here is appended to the end of any

existing text. It’s an error to have any text left in the buffer when Clinic finishes processing a file.

file A separate “clinic file” that will be created automatically by Clinic. The filename chosen for the file
is {basename}.clinic{extension}, where basename and extension were assigned the
output from os.path.splitext () run on the current file. (Example: the £ile destination for

_pickle.c would be written to _pickle.clinic.c.)
Important: When using a £i1e destination, you must check in the generated file!

two-pass A buffer like buf fer. However, a two-pass buffer can only be dumped once, and it prints out

all text sent to it during all processing, even from Clinic blocks after the dumping point.
suppress The text is suppressed—thrown away.
Clinic defines five new directives that let you reconfigure its output.

The first new directive is dump:

dump <destination>

This dumps the current contents of the named destination into the output of the current block, and empties it. This

only works with buf fer and two-pass destinations.

The second new directive is out put. The most basic form of cutput is like this:

output <field> <destination>

This tells Clinic to output field to destination. output also supports a special meta-destination, called

everything, which tells Clinic to output all fields to that destination.

output has a number of other functions:

419. ClinicO0O0OO0OOO0OOOOOO 27

Argument Clinic How-To, 0 0 0 O 3.6.9

output push
output pop
output preset <preset>

output push and output pop allow you to push and pop configurations on an internal configuration stack,
so that you can temporarily modify the output configuration, then easily restore the previous configuration. Sim-
ply push before your change to save the current configuration, then pop when you wish to restore the previous
configuration.

output preset sets Clinic’s output to one of several built-in preset configurations, as follows:
block Clinic’s original starting configuration. Writes everything immediately after the input block.

Suppress the parser_prototype and docstring_prototype, write everything else to
block.

file Designed to write everything to the “clinic file” that it can. You then #include this file
near the top of your file. You may need to rearrange your file to make this work, though usu-
ally this just means creating forward declarations for various typedef and PyTypeObject

definitions.

Suppress the parser_prototype and docstring.prototype, write the

impl_definition to block, and write everything else to file.
The default filename is "{dirname}/clinic/{basename}.h".

buffer Save up most of the output from Clinic, to be written into your file near the end. For
Python files implementing modules or builtin types, it’s recommended that you dump the buffer
just above the static structures for your module or builtin type; these are normally very near
the end. Using buffer may require even more editing than £ile, if your file has static
PyMethodDef arrays defined in the middle of the file.

Suppress the parser_prototype, impl prototype, and docstring_prototype,
write the impl_definition to block, and write everything else to file.

two-pass Similar to the buf fer preset, but writes forward declarations to the t wo-pass buffer,
and definitions to the buffer. This is similar to the buffer preset, but may require less
editing than buffer. Dump the two—pass buffer near the top of your file, and dump the
buffer near the end just like you would when using the buf fer preset.

Suppresses the impl prototype, write the impl definition to block, write
docstring_prototype, methoddef_define, and parser_prototype to
two—-pass, write everything else to buffer.

partial-buffer Similar to the buffer preset, but writes more things to block, only writing
the really big chunks of generated code to buf fer. This avoids the definition-before-use prob-
lem of buf fer completely, at the small cost of having slightly more stuff in the block’s output.

Dump the buf fer near the end, just like you would when using the buf fer preset.

Suppresses the impl_prototype, write the docstring.definition and

parser_definition tobuffer, write everything else to block.

The third new directive is destination:

28 040 0000000

Argument Clinic How-To, 0 0 0 O 3.6.9

destination <name> <command> [...]

This performs an operation on the destination named name.
There are two defined subcommands: new and clear.

The new subcommand works like this:

destination <name> new <type>

This creates a new destination with name <name> and type <type>.

There are five destination types:
suppress Throws the text away.
block Writes the text to the current block. This is what Clinic originally did.
buffer A simple text buffer, like the buffer” builtin destination above.

file A text file. The file destination takes an extra argument, a template to use for building the
filename, like so:

destination <name> new <type> <file_template>
The template can use three strings internally that will be replaced by bits of the filename:
{path} The full path to the file, including directory and full filename.
{dirname} The name of the directory the file is in.
{basename} Just the name of the file, not including the directory.

{basename _root} Basename with the extension clipped off (everything up to but not
including the last °.”).

{basename_extension} The last’.” and everything after it. If the basename does not

contain a period, this will be the empty string.

If there are no periods in the filename, {basename} and {filename} are the same, and

{extension} is empty. ”{basename }{extension}” is always exactly the same as “’{filename}”.”
two-pass A two-pass buffer, like the “two-pass” builtin destination above.

The clear subcommand works like this:

destination <name> clear

It removes all the accumulated text up to this point in the destination. (I don’t know what you’d need this for, but

I thought maybe it’d be useful while someone’s experimenting.)

The fourth new directive is set:

set line_prefix "string"
set line_suffix "string"

419. ClinicO0O0OO0OOO0OOOOOO 29

Argument Clinic How-To, 0 0 0 O 3.6.9

set lets you set two internal variables in Clinic. 1ine_prefix is a string that will be prepended to every line

of Clinic’s output; 1ine_suffix is a string that will be appended to every line of Clinic’s output.
0000oo0o0o00ooO00ooo0o0oo:
{block comment start} Turns into the string / , the start-comment text sequence for C files.
{block comment end} Turns into the string /, the end-comment text sequence for C files.

The final new directive is one you shouldn’t need to use directly, called preserve:

’preserve

This tells Clinic that the current contents of the output should be kept, unmodified. This is used internally by
Clinic when dumping output into £1ile files; wrapping it in a Clinic block lets Clinic use its existing checksum
functionality to ensure the file was not modified by hand before it gets overwritten.

4.20 #ifdef D OO O

If you’re converting a function that isn’t available on all platforms, there’s a trick you can use to make life a little

easier. The existing code probably looks like this:

#1ifdef HAVE_FUNCTIONNAME
static module_functionname (...)

{

}
#endif /+ HAVE_FUNCTIONNAME x/

And then in the PyMethodDef structure at the bottom the existing code will have:

#ifdef HAVE_FUNCTIONNAME
{'functionname', ... },
#endif /+ HAVE_FUNCTIONNAME =«/

In this scenario, you should enclose the body of your impl function inside the #ifdef, like so:

#ifdef HAVE_FUNCTIONNAME
/*[clinic input]
module. functionname

[clinic start generated code] */
static module_functionname (...)

{

}
#endif /+ HAVE_FUNCTIONNAME x/

Then, remove those three lines from the PyMethodDef structure, replacing them with the macro Argument

Clinic generated:

MODULE_FUNCTIONNAME_METHODDEF

30 040 0000000

Argument Clinic How-To, 0 0 0 O 3.6.9

(You can find the real name for this macro inside the generated code. Or you can calculate it yourself: it’s the name
of your function as defined on the first line of your block, but with periods changed to underscores, uppercased,
and "_METHODDEF" added to the end.)

Perhaps you’re wondering: what if HAVE FUNCTIONNAME isn’t defined? The
MODULE_FUNCTIONNAME_METHODDEF macro won’t be defined either!

Here’s where Argument Clinic gets very clever. It actually detects that the Argument Clinic block might be

deactivated by the #1ifdef. When that happens, it generates a little extra code that looks like this:

#ifndef MODULE_FUNCTIONNAME METHODDEF
#define MODULE_FUNCTIONNAME_METHODDEF
#endif /+ !defined (MODULE_FUNCTIONNAME_METHODDEF) x/

That means the macro always works. If the function is defined, this turns into the correct structure, including the
trailing comma. If the function is undefined, this turns into nothing.

However, this causes one ticklish problem: where should Argument Clinic put this extra code when using the
”block” output preset? It can’t go in the output block, because that could be deactivated by the #1i fdef. (That’s
the whole point!)

In this situation, Argument Clinic writes the extra code to the “buffer” destination. This may mean that you get a

complaint from Argument Clinic:

Warning in file "Modules/posixmodule.c" on line 12357:
Destination buffer 'buffer' not empty at end of file, emptying.

When this happens, just open your file, find the dump buffer block that Argument Clinic added to your file
(it’ll be at the very bottom), then move it above the PyMethodDef structure where that macro is used.

4.21 Python DO OO0 OO Argument Clinic 0 00O

It’s actually possible to use Argument Clinic to preprocess Python files. There’s no point to using Argument Clinic
blocks, of course, as the output wouldn’t make any sense to the Python interpreter. But using Argument Clinic to

run Python blocks lets you use Python as a Python preprocessor!

Since Python comments are different from C comments, Argument Clinic blocks embedded in Python files look
slightly different. They look like this:

#/+[python input]

#print ("def foo(): pass")
#[python start generated code]*/
def foo(): pass

#/+[python checksum:...]*/

4.21. PythonO OO OO0OO Argument Clinic 0 OO 31

	Argument Clinic の目的
	基本的な概念と使用法
	関数を変換してみよう
	高度なトピック
	シンボルのデフォルト値
	Argument Clinic が生成した関数と変数をリネームする
	PyArg_UnpackTuple による関数の変換
	オプション群
	Using real Argument Clinic converters, instead of "legacy converters"
	Py_buffer
	Advanced converters
	引数のデフォルト値
	NULL デフォルト値
	デフォルト値として指定された式
	Using a return converter
	既存関数の複製
	Python コードの呼び出し
	"self converter" の利用
	カスタムコンバータを書く
	カスタム return コンバータを書く
	METH_O と METH_NOARGS
	tp_new と tp_init functions
	Clinic 出力の変更とリダイレクト
	#ifdef トリック
	Python ファイル内での Argument Clinic の利用

