Python 0 Curses 0000000

ooono 3.6.9

Guido van Rossum
and the Python development team

100 02, 2019

Python Software Foundation
Email: docs@python.org

O

010 cursesO0O000O?

1.1 Python [J cursesmodule e
020 cursesO0000000O0O0OO0O0OOO
030 0O0OOooooooon

040 0OO0OO0OO0OOOO
41 OO0OOD0O0 .. e e s

Oos0o bOoooOo

el DOOOOODOO

10

12

14

00O A.M. Kuchling, Eric S. Raymond

gooog 2.04

oo

Ubogoobodbd cursestdbooboobooogboboobobooboaobogboobabg
gooooo

010 cursesUJ 00 ?

curses 0O O0D0OOVTIOOs O Linnx OOO00O0O00DO0O0O0OO0O0DOOOO0O0OOO0O0OO0ODOOODOO
oboooobooboooooboooobooboooobOoboooooboooobooboooooboon
obooooooboboooobobooooobobobobooboboboobooooboboboooboobon
oboooooobobobooboobobobooooooooboobDOoboooboooDobooboooDoDboo
gbooboobooboooboobooooboo

obooooooboooobooooooobooobooboomobooboobooooboooboooooon
googoooobooooobooooooooooboooobobobooooboooobboooooooboooo
gboobooooooobooboboooboobooooboobOoooobooboOoono Xooao
goooooOoooD UnixOOooooooooSOoOoOooooOooooooOoooDooOooobooboOog
oboboogooobooboobooboboooboboobooboooboobooo

Thecurses 00000000 0DO00000O00O0O0O0DOOO0ODOOO0ODOOO0ODOOOOOOODO
gbobooobooobooobooooobooooooooooooboooboob0mobooboooooaoon
O00Ocurses0 0000000000000 O0O0OO0O0DOO0O0O0O0O0O0DOO0O0DOOCOO0OOOOccurses
goooooooooboooooooobooobobooooooobooobbobooooobooooooboDbobooo
goooobooooooboooooooooooooooobouwid OODODO0DO0OOOOOOODODOOO
oboooooooooooboooon

curses OO OO00O0OO0 BSDUNIXOOODOOOOODO; 00 AT&A&TO O OO Unix System VO DO ODOO
0000000000000 0D0000BSDeursesD 0000000 0DO0ODO0OO0O0OO0DDODO AT&T
00000000000 0000000000 neurses 1000000000 O0O0OOLinux O FreeBSD
obooooOobooobO0o UnxO00OO00OO0O00O000000000000O0 ncursesO0O00000O00O0OO
Ubooooooog UnixO SysteemVOOOOODODOOODOOOODOOODOOODOOOOODOOODOO
0000000000000 00000 cursesJ 0000000000 0OO0O0O0 UnixDODOOODOO
gbooooogooo

Windows [0 Python OO0 curses OUODODOOO0OD0OOO UniCurses 00000 OO0ODOOOODOOOO
Fredrik Lundh OO O OO the Console module OO0 O0O000D000OO0O0ODOO0ODOD cursesd00 APID
gbooooboboooooboooobobooooboboooooboooobooboooooboon
obooooog

1.1 Python O curses module

The Python module is a fairly simple wrapper over the C functions provided by curses; if you're already familiar
with curses programming in C, it’s really easy to transfer that knowledge to Python. The biggest difference is that
the Python interface makes things simpler by merging different C functions such as addstr (), mvaddstr (),

and mvwaddstr () into a single addstr () method. You’ll see this covered in more detail later.

https://pypi.org/project/urwid/
https://pypi.org/project/UniCurses
http://effbot.org/zone/console-index.htm

Python O Curses 0 OO O0O0O0O,0000 3.6.9

This HOWTO is an introduction to writing text-mode programs with curses and Python. It doesn’t attempt to be
a complete guide to the curses API; for that, see the Python library guide’s section on ncurses, and the C manual

pages for ncurses. It will, however, give you the basic ideas.

4 O10 curses QOO 0O?

20 ecursesU OO OOOOOOOONOMO

Before doing anything, curses must be initialized. This is done by calling the initscr () function, which
will determine the terminal type, send any required setup codes to the terminal, and create various internal data
structures. If successful, initscr () returns a window object representing the entire screen; this is usually

called stdscr after the name of the corresponding C variable.

import curses
stdscr = curses.initscr()

Usually curses applications turn off automatic echoing of keys to the screen, in order to be able to read keys and

only display them under certain circumstances. This requires calling the noecho () function.

curses.noecho ()

obobOOobobOooocOobOOEnter 00000000 O0OOCOOOOOOODOOOOOODOODOOO;
00O cbreak DO DO OODO0ODOOOOODOODOOODOODOOOODOOOODOODO

curses.cbreak ()

goobobooobbO0o0d PageUpU Home DO ODDOO0OO0ODOOO0ODODOOOO0ODODOOO
gbooooobooboboooboooboooooboobooooobobooooobooboobooooboooboon
U0000000 curses000 curses.KEY LEFTOOOOOOOOOOOOOOOOOOOO curses
ggbgoboobboobooboobooboobooboobooboad

stdscr.keypad (True)

cuses U0 OO0 0OO00OOO0OO0O0OO0OO0OO0DOO0O0OOO0O0 O00OO00O000bOO000O00:

curses.nocbreak ()
stdscr.keypad (False)
curses.echo ()

cursesUO0 0000000000 0DOOO00O0OO0OOOendwin() OO0O0O0O0O0OO0OOOOOOODOO
gbooooooo

curses.endwin ()

curses OO0 O00O00O00DOO0O0O0OOO0OOO0OOO0OOOOOOO0OOOOOOOOOOOOOOOOn
gboobooobooboobooboobooboooobooooobooboboopPython oo oooOonO
gboooobooboboobooboboooboobooboooooboobboooobooboobooobooboon
gboooobooooooobooooobooboog

Python 0000000000000 0OOD0OODODOD0O0D0O0O0O0DOO curses.wrapper () DOOO
gboooobooobooboooog:

Python O Curses 0 OO O0O0O0O,0000 3.6.9

from curses import wrapper

def main (stdscr) :
Clear screen
stdscr.clear ()

This raises ZeroDivisionError when i == 10.
for i in range (0, 11):
v = 1-10
stdscr.addstr (i, 0, '10 divided by is '.format (v, 10/v))

stdscr.refresh ()
stdscr.getkey ()

wrapper (main)

The wrapper () function takes a callable object and does the initializations described above, also initializing
colors if color support is present. wrapper () then runs your provided callable. Once the callable returns,
wrapper () will restore the original state of the terminal. The callable is called inside a try...except that
catches exceptions, restores the state of the terminal, and then re-raises the exception. Therefore your terminal

won’t be left in a funny state on exception and you’ll be able to read the exception’s message and traceback.

6 D20 curses0000000O0O0O0OOOO

30 Uoooouoon

Windows are the basic abstraction in curses. A window object represents a rectangular area of the screen, and

supports methods to display text, erase it, allow the user to input strings, and so forth.

The stdscr object returned by the initscr () function is a window object that covers the entire screen. Many
programs may need only this single window, but you might wish to divide the screen into smaller windows, in
order to redraw or clear them separately. The newwin () function creates a new window of a given size, returning

the new window object.

begin_x = 20; begin_y = 7
height = 5; width = 40
win = curses.newwin (height, width, begin_y, begin_x)

Note that the coordinate system used in curses is unusual. Coordinates are always passed in the order y,x, and
the top-left corner of a window is coordinate (0,0). This breaks the normal convention for handling coordinates
where the x coordinate comes first. This is an unfortunate difference from most other computer applications, but

it’s been part of curses since it was first written, and it’s too late to change things now.

Your application can determine the size of the screen by using the curses.LINES and curses.COLS vari-
ables to obtain the y and x sizes. Legal coordinates will then extend from (0, 0) to (curses.LINES - 1,
curses.COLS - 1).

When you call a method to display or erase text, the effect doesn’t immediately show up on the display. Instead

you must call the refresh () method of window objects to update the screen.

This is because curses was originally written with slow 300-baud terminal connections in mind; with these termi-
nals, minimizing the time required to redraw the screen was very important. Instead curses accumulates changes
to the screen and displays them in the most efficient manner when you call refresh (). For example, if your
program displays some text in a window and then clears the window, there’s no need to send the original text

because they’re never visible.

In practice, explicitly telling curses to redraw a window doesn’t really complicate programming with curses much.
Most programs go into a flurry of activity, and then pause waiting for a keypress or some other action on the part
of the user. All you have to do is to be sure that the screen has been redrawn before pausing to wait for user input,

by first calling stdscr.refresh () orthe refresh () method of some other relevant window.

A pad is a special case of a window; it can be larger than the actual display screen, and only a portion of the pad
displayed at a time. Creating a pad requires the pad’s height and width, while refreshing a pad requires giving the

coordinates of the on-screen area where a subsection of the pad will be displayed.

pad = curses.newpad (100, 100)

These loops fill the pad with letters; addch() 1is
explained in the next section

for y in range (0, 99):

ooooooo)

Python O Curses 0 OO O0O0O0O,0000 3.6.9

(COOO0O0OO00o00)

for x in range (0, 99):
pad.addch(y,x, ord('a') + (xxxtyxy) % 26)

Displays a section of the pad in the middle of the screen.

(0,0) : coordinate of upper-left corner of pad area to display.

(5,5) : coordinate of upper-left corner of window area to be filled
with pad content.

(20, 75) : coordinate of lower-right corner of window area to be

: filled with pad content.

pad.refresh(0,0, 5,5, 20,75)

The refresh () call displays a section of the pad in the rectangle extending from coordinate (5,5) to coordinate
(20,75) on the screen; the upper left corner of the displayed section is coordinate (0,0) on the pad. Beyond that

difference, pads are exactly like ordinary windows and support the same methods.

gbooogoooooooobooooobobooooboobooooboooobDobbooobooDboOoo
gbobooooooobobobobooooooobobobobooobobOobOobOn refresh(()
gboooooobooooooboooo

1) 0000000000 noutrefresh () 00000000 ODOOODOOODOOODOODOO
goboboboobooboooboobooo

2) doupdate () DO OOO0OOOOO0O0OODOOO0OOODOOOOODOOOOODOOOOODOOOOOO
oboooooooooo

OO0O0OOnoutrefresh() JO0O0O0O0OO0OO0OO0OO0OODOOOOOOOOOOOODOOOOODOO
doupdate () DO OOO0OODOOO0OODOOOOOOODOO

8 030000000000

40 0OO0O0O0OoOd

cioobbDOoOOooOoOoooobobDOCOcrsesd 000000000 OO0OOOOODODOOOOOOODODOO
gob0OD0 addstr () U stdscxr 00000000000 0000000D00D0000000O mvaddstr ()
gbboobbyxO0OOODOOODOOO0OOOO0OO0OO0OO000O00 waddstr() OO0O0OO addstr() OOO
ob00ooo0o0o0ooon stdscr00000000000O00O0D000D000DO00 mvwaddstr () OO0
gbobooooobooooooboooo

O0000PythonDOOOO0O0O0ODODOOOOO00DDOODOOOO00DO0DO stdscxr0O0D0O0OOOOO
Ubob0o00ob0O0obO0ob00b0Ogn addstr () UOO0O0OO0O0OO0OO0DOOOOOOODOOOOOOOOODOO
obobooo40000000

oo oo

str 000 ch 000 ser00000 chOODDOODOOODOOO

str 000 ch, attr 000 ser 00000 chODOD0 ey OODOO0O0DOO0DOODOOODOO

v, x,str 000 ch 000000000 ywOODOO s&r000 chOODOO0ODO

yvx,str000 chyarrr | 000000000 ywOOOOODO ey OOD00O0O svr 000 chOODODOO
ad

gbobooooboooboooobooooooobobooobbooobooboboOoboooboOoOooboooboon
gboooooobooooobooboooooon

The addstr () method takes a Python string or bytestring as the value to be displayed. The contents of
bytestrings are sent to the terminal as-is. Strings are encoded to bytes using the value of the window’s encoding

attribute; this defaults to the default system encoding as returned by locale.getpreferredencoding ().

The addch () methods take a character, which can be either a string of length 1, a bytestring of length 1, or an

integer.

Constants are provided for extension characters; these constants are integers greater than 255. For example,
ACS_PLMINUS is a +/- symbol, and ACS_ULCORNER is the upper left corner of a box (handy for drawing bor-

ders). You can also use the appropriate Unicode character.

ooboooooooboooboooboooooooooooobyxObOOoobOOOoOoOOoOoboOooooono
gobgboodgbooobobboobodobdd move(y,x) UO0OO0O00O0O0OOOOOOOOOOOOO
obboooooboboooooobooooogooboboooboobDoboooboooDobooboooDoDboo
gbobooboobooboooooooooboooo;bobobooboobooooooboooooooooon
obooooooon

If your application doesn’t need a blinking cursor at all, you can call curs_set (False) to make it invisi-
ble. For compatibility with older curses versions, there’s a leaveok (bool) function that’s a synonym for
curs_set (). When bool is true, the curses library will attempt to suppress the flashing cursor, and you won’t

need to worry about leaving it in odd locations.

Python O Curses 0 OO O0O0O0O,0000 3.6.9

41 000000

Characters can be displayed in different ways. Status lines in a text-based application are commonly shown in
reverse video, or a text viewer may need to highlight certain words. curses supports this by allowing you to specify
an attribute for each cell on the screen.

oboooooobobooooboobobooooobooboobooboOobobooooobooboboooooon
UbobooobooboobobU0bb0asesJO0000D0O0O0OO0OOOODOODOOOOOOODOODODOO
gboooooobooobooobboooboooobooobooooooooboooobooobooobooobooaoon
gbooooboboooooboooobooboboobooboooooo

oo go

A_BLINK gooooao

A_BOLD gboooooboooooon
A_DIM gooooao

A_REVERSE gooooo

A_STANDOUT googoboooboobooobgon
A_UNDERLINE | DOOOOODOO

oboooboooboooooboooobOobooboobobobooboOoboooooboon:

stdscr.addstr (0, 0, "Current mode: Typing mode",
curses.A_REVERSE)
stdscr.refresh ()

curses 0000000 O0O0OOOOOOOO0OOOODOOOO0OOOOOOOOOOOOOOOOOODOAO
000000000 LinnxO0OOOOOOcolorxtermOO0O00O0O0O0O0O

To use color, you must call the start_color () function soon after calling initscr (), to initialize the default
color set (the curses.wrapper () function does this automatically). Once that’s done, the has_colors ()
function returns TRUE if the terminal in use can actually display color. (Note: curses uses the American spelling
"color’, instead of the Canadian/British spelling ’colour’. If you’re used to the British spelling, you’ll have to

resign yourself to misspelling it for the sake of these functions.)

The curses library maintains a finite number of color pairs, containing a foreground (or text) color and a back-
ground color. You can get the attribute value corresponding to a color pair with the color_pair () function; this
can be bitwise-OR’ed with other attributes such as A_REVERSE, but again, such combinations are not guaranteed

to work on all terminals.

gboooooboooboooooboo 1oboooooooa:

stdscr.addstr ("Pretty text", curses.color_pair(l))
stdscr.refresh ()

As I said before, a color pair consists of a foreground and background color. The init_pair(n, £, b)
function changes the definition of color pair n, to foreground color f and background color b. Color pair O is

hard-wired to white on black, and cannot be changed.

Colors are numbered, and start_color () initializes 8 basic colors when it activates color mode. They are:

0O:black, 1:red, 2:green, 3:yellow, 4:blue, 5:magenta, 6:cyan, and 7:white. The curses module defines named

10 040 0000000

Python O Curses 0O OO QOQOO,0000 3.6.9

constants for each of these colors: curses.COLOR_BLACK, curses .COLOR_RED, and so forth.

gboooobooobool1oooboboooooboooobobooooboooon:

’curses.init_pair(l, curses.COLOR_RED, curses.COLOR_WHITE)

gboooobobooooobooooboboooboobooboooooboooobobooobooobon
gboooooboooobooboooobooboon:

stdscr.addstr (0,0, "RED ALERT!", curses.color_pair(l))

Very fancy terminals can change the definitions of the actual colors to a given RGB value. This lets you change
color 1, which is usually red, to purple or blue or any other color you like. Unfortunately, the Linux console
doesn’t support this, so I’'m unable to try it out, and can’t provide any examples. You can check if your terminal
can do this by calling can_change_color (), which returns True if the capability is there. If you’re lucky

enough to have such a talented terminal, consult your system’s man pages for more information.

41, 000000 11

0350 ouodd

The C curses library offers only very simple input mechanisms. Python’s curses module adds a basic text-input

widget. (Other libraries such as Urwid have more extensive collections of widgets.)
goooooooooooooo200000O00OOODODOO

* getch () refreshes the screen and then waits for the user to hit a key, displaying the key if echo () has
been called earlier. You can optionally specify a coordinate to which the cursor should be moved before

pausing.

* getkey () does the same thing but converts the integer to a string. Individual characters are returned as
I-character strings, and special keys such as function keys return longer strings containing a key name such
as KEY_UP or "G.

It’s possible to not wait for the user using the nodelay () window method. After nodelay (True), getch ()
and getkey () for the window become non-blocking. To signal that no input is ready, getch () returns
curses.ERR (a value of -1) and getkey () raises an exception. There’s also a halfdelay () function,
which can be used to (in effect) set a timer on each getch () ; if no input becomes available within a specified

delay (measured in tenths of a second), curses raises an exception.

The getch () method returns an integer; if it’s between O and 255, it represents the ASCII code of the key
pressed. Values greater than 255 are special keys such as Page Up, Home, or the cursor keys. You can compare
the value returned to constants such as curses.KEY_PPAGE, curses.KEY_HOME, or curses .KEY_LEFT.

The main loop of your program may look something like this:

while True:
c = stdscr.getch()

if ¢ == ord('p'"):
PrintDocument ()
elif ¢ == ord('qg'):
break # Exit the while loop
elif ¢ == curses.KEY_HOME:
x =y =0

The curses.ascii module supplies ASCII class membership functions that take either integer or 1-character
string arguments; these may be useful in writing more readable tests for such loops. It also supplies conver-
sion functions that take either integer or 1-character-string arguments and return the same type. For example,

curses.ascii.ctrl () returns the control character corresponding to its argument.

There’s also a method to retrieve an entire string, getstr (). Itisn’t used very often, because its functionality is
quite limited; the only editing keys available are the backspace key and the Enter key, which terminates the string.

It can optionally be limited to a fixed number of characters.

curses.echo () # Enable echoing of characters

ooooooo)

12

https://pypi.org/project/urwid/

Python O Curses 0O OO QOQOO,0000 3.6.9

(COOO0O0OO00o00)

Get a l15-character string, with the cursor on the top line
s = stdscr.getstr (0,0, 15)

The curses.textpad module supplies a text box that supports an Emacs-like set of keybindings. Various
methods of the Textbox class support editing with input validation and gathering the edit results either with or

without trailing spaces. Here’s an example:

import curses
from curses.textpad import Textbox, rectangle

def main (stdscr) :
stdscr.addstr (0, 0, "Enter IM message: (hit Ctrl-G to send)")

editwin = curses.newwin (5,30, 2,1)
rectangle (stdscr, 1,0, 1+5+1, 1+30+1)
stdscr.refresh ()

box = Textbox (editwin)

Let the user edit until Ctrl-G is struck.
box.edit ()

Get resulting contents
message = box.gather ()

goboboooboobooboobo0bOonbO curses.textpadDOOOOO0OOOO

13

el UUODOOOO

b HOwWTOO O OOOOOoOoOooooooOooooboooboooDOxtermOOOOOOOOOOOO
oboooooboobobobooooobobo0oboo0ob0dPythond curses00ooooooonO
gbooboobooobooboboooboboobobooooa

curses 10 000000000000 O0DO0O0O00O0O ncursesd 0000000000000 UnixOO
Ubobooboob0Ob0casesd 000000 0ODO0ODOOOOOODOODODOOOODOODODOO
googoboboooboboboboooboouob acs~b00ooobobooobobobooobo
gbooog

Because the curses API is so large, some functions aren’t supported in the Python interface. Often this isn’t
because they’re difficult to implement, but because no one has needed them yet. Also, Python doesn’t yet support
the menu library associated with ncurses. Patches adding support for these would be welcome; see the Python

Developer’s Guide to learn more about submitting patches to Python.
* Writing Programs with NCURSES: CO OO UO0OOO0OODOOO0OOODOOOOOOODOO
encurses 1O OOOOOO
e The ncurses FAQ
* “Use curses... don’tswear”: curses U0 0 Urwid OO0 OO0O0D0O0OOO PyCon2013 00000000

» “Console Applications with Urwid”: Urwid OO 0000000000000 OCOO0O0O0OCODOO0OO
ooooogonD pyConCA201200000000

14

https://devguide.python.org/
https://devguide.python.org/
http://invisible-island.net/ncurses/ncurses-intro.html
http://linux.die.net/man/3/ncurses
http://invisible-island.net/ncurses/ncurses.faq.html
https://www.youtube.com/watch?v=eN1eZtjLEnU
http://www.pyvideo.org/video/1568/console-applications-with-urwid

	curses ってなに?
	Python の curses module

	curses アプリケーションの起動と終了
	ウィンドウとパッド
	テキストの表示
	属性とカラー

	ユーザ入力
	より多くの情報

