Python experimental support for free
threading

)V —2X 3.14.0a7

Guido van Rossum and the Python development team

4 8 27, 2025

=PN
1 Installation 2
2 Identifying free-threaded Python 2
3 The global interpreter lock in free-threaded Python 2
4 Thread safety 3
5 Known limitations 3
5.1 Immortalization L e e 3
5.2 Frame objects e e e e 4
5.3 Tterators L L e e e 4
5.4 Single-threaded performance L 4
6 Behavioral changes 4
6.1 Context variables L L e 4
6.2 Warning filters L L 4
5| 5

Starting with the 3.13 release, CPython has experimental support for a build of Python called free
threading where the global interpreter lock (GIL) is disabled. Free-threaded execution allows for full
utilization of the available processing power by running threads in parallel on available CPU cores. While
not all software will benefit from this automatically, programs designed with threading in mind will run

faster on multi-core hardware.

The free-threaded mode is experimental and work is ongoing to improve it: expect some bugs and

a substantial single-threaded performance hit.

This document describes the implications of free threading for Python code. See
freethreading-extensions-howto for information on how to write C extensions that support the
free-threaded build.

& 2E

PEP 703 - Making the Global Interpreter Lock Optional in CPython for an overall description of
free-threaded Python.

1 Installation

Starting with Python 3.13, the official macOS and Windows installers optionally support installing

free-threaded Python binaries. The installers are available at https://www.python.org/downloads/.

For information on other platforms, see the Installing a Free-Threaded Python, a community-maintained

installation guide for installing free-threaded Python.

When building CPython from source, the --disable-gil configure option should be used to build a
free-threaded Python interpreter.

2 Identifying free-threaded Python

To check if the current interpreter supports free-threading, python -VV and sys.version contain ”"exper-
imental free-threading build”. The new sys._is_gil_enabled() function can be used to check whether

the GIL is actually disabled in the running process.

The sysconfig.get_config_var ("Py_GIL_DISABLED") configuration variable can be used to determine
whether the build supports free threading. If the variable is set to 1, then the build supports free

threading. This is the recommended mechanism for decisions related to the build configuration.

3 The global interpreter lock in free-threaded Python

Free-threaded builds of CPython support optionally running with the GIL enabled at runtime using the

environment variable PYTHON_GIL or the command-line option -X gil.

The GIL may also automatically be enabled when importing a C-API extension module that is not

explicitly marked as supporting free threading. A warning will be printed in this case.

In addition to individual package documentation, the following websites track the status of popular

packages support for free threading:
o https://py-free-threading.github.io/tracking/

o https://hugovk.github.io/free-threaded-wheels/

https://peps.python.org/pep-0703/
https://www.python.org/downloads/
https://py-free-threading.github.io/installing_cpython/
https://py-free-threading.github.io/tracking/
https://hugovk.github.io/free-threaded-wheels/

4 Thread safety

The free-threaded build of CPython aims to provide similar thread-safety behavior at the Python level
to the default GIL-enabled build. Built-in types like dict, 1ist, and set use internal locks to protect
against concurrent modifications in ways that behave similarly to the GIL. However, Python has not
historically guaranteed specific behavior for concurrent modifications to these built-in types, so this
should be treated as a description of the current implementation, not a guarantee of current or future

behavior.

0 IR
It’s recommended to use the threading.Lock or other synchronization primitives instead of relying

on the internal locks of built-in types, when possible.

5 Known limitations

This section describes known limitations of the free-threaded CPython build.

5.1 Immortalization

The free-threaded build of the 3.13 release makes some objects immortal. Immortal objects are not
deallocated and have reference counts that are never modified. This is done to avoid reference count

contention that would prevent efficient multi-threaded scaling.

An object will be made immortal when a new thread is started for the first time after the main thread

is running. The following objects are immortalized:
« function objects declared at the module level
e method descriptors
e code objects
o module objects and their dictionaries
o classes (type objects)

Because immortal objects are never deallocated, applications that create many objects of these types

may see increased memory usage. This is expected to be addressed in the 3.14 release.

Additionally, numeric and string literals in the code as well as strings returned by sys.intern() are

also immortalized. This behavior is expected to remain in the 3.14 free-threaded build.

5.2 Frame objects

It is not safe to access frame objects from other threads and doing so may cause your program to crash .
This means that sys._current_frames () is generally not safe to use in a free-threaded build. Functions
like inspect.currentframe() and sys._getframe() are generally safe as long as the resulting frame

object is not passed to another thread.

5.3 lterators

Sharing the same iterator object between multiple threads is generally not safe and threads may see

duplicate or missing elements when iterating or crash the interpreter.

5.4 Single-threaded performance

The free-threaded build has additional overhead when executing Python code compared to the default
GIL-enabled build. In 3.13, this overhead is about 40% on the pyperformance suite. Programs that
spend most of their time in C extensions or I/O will see less of an impact. The largest impact is because
the specializing adaptive interpreter (PEP 659) is disabled in the free-threaded build. We expect to
re-enable it in a thread-safe way in the 3.14 release. This overhead is expected to be reduced in upcoming
Python release. We are aiming for an overhead of 10% or less on the pyperformance suite compared to
the default GIL-enabled build.

6 Behavioral changes

This section describes CPython behavioural changes with the free-threaded build.

6.1 Context variables

In the free-threaded build, the flag thread_inherit_context is set to true by default which causes
threads created with threading.Thread to start with a copy of the Context () of the caller of start ().
In the default GIL-enabled build, the flag defaults to false so threads start with an empty Context ().

6.2 Warning filters

In the free-threaded build, the flag context_aware_warnings is set to true by default. In the default
GIL-enabled build, the flag defaults to false. If the flag is true then the warnings.catch_warnings
context manager uses a context variable for warning filters. If the flag is false then catch_warnings

modifies the global filters list, which is not thread-safe. See the warnings module for more details.

https://pyperformance.readthedocs.io/
https://peps.python.org/pep-0659/

]
VILT 7Ry I‘,Lx% P PEP 703, 2

RIREH Python Enhancement Proposals PYTHON_GIL, 2
PYTHON_GIL, 2 PEP 659, 4

	Installation
	Identifying free-threaded Python
	The global interpreter lock in free-threaded Python
	Thread safety
	Known limitations
	Immortalization
	Frame objects
	Iterators
	Single-threaded performance

	Behavioral changes
	Context variables
	Warning filters

	索引

