=P

3.1
3.2
3.3
3.4
3.5
3.6
3.7

4.1

6.1
6.2
6.4
6.5
6.6
6.7
6.8
6.9
6.10
6.11
6.12

What’s New in Python

1)\)—2X 3.14.0a7

A. M. Kuchling

4 B 27, 2025
Summary -- release highlights 4
Incompatible changes 4
New features 4
PEP 768: Safe external debugger interface for CPython 4
Remote attaching to a running Python process with PDB 6
PEP 758 - Allow except and except™ expressions without parentheses 6
PEP 649: deferred evaluation of annotations 6
Improved error messagesot oL e e e e e e e 8
PEP 741: Python Configuration C APT, 10
A new type of interpretero 10
Other language changes 11
PEP 765: Disallow return/break/continue that exit a finally block 13
New modules 13
Improved modules 13
ATEPATSC v v v v e 13
ast .. e e 13
bdb . . L e 13
calendaro L e e 14
concurrent.futures oL oL Lo 14
CONteXtVATS L e e e e e e e e e e e e 14
CLYDES o o o e 14
datetime L e e 15
decimal oL e e 15
difflib . . . o e 15
dis . . 15
EITIIO v v v v v v e et e e e e e e e e e e e e e e e e e e 16

6.13
6.14
6.15
6.16
6.17
6.18
6.19
6.20
6.21
6.22
6.23
6.24
6.25
6.26
6.27
6.28
6.29
6.30
6.31
6.32
6.33
6.34
6.35
6.36
6.37
6.38
6.39
6.40
6.41
6.42
6.43
6.44
6.45
6.46
6.47
6.48
6.49
6.50
6.51
6.52
6.53
6.54

faulthandler 16

fomatch e 16
fractions L L e e e 16
functools L e 16
getopt . . e e 16
graphlib oL e 17
hmac e e 17
http . o e 17
imaplib e 17
INSpect . . . L e e e e 17
10 17
JSOIL v v e e e e e e e e e 18
linecache L 18
logging.handlers oL L e 18
math e 18
mimetypes e 18
multiprocessing oL L e e e e 19
operator e e e e 20
OS v v e e e e e e e e e 20
pathlib e e e e e e 21
PAb e e 21
pickle . .o e e e e e e 22
platform L e 22
PYAOC . o o e e e e e 22
socket ..o L e 22
SSl e e 22
struct ..o e 23
symtableo L 23
SVS v e e e e e e e e e e e e e e e e e 23
sys.amonitoring Lo e 23
SYSCONIE . . . v v o e e e e e 23
threading L e 23
tkinter L e e e e e 24
turtleo e e 24
EYPES « o e 24
TYDING . o o o o e e e e e e e e 24
unicodedata L Lo e 25
unittest . . .o e 25
urllib L e 25
uumid .o e e 26
Webbrowser L oL e e e 26
zZipinfo e 26
Optimizations 26

7.1
7.2
7.3
7.4

8.1
8.2
8.3

9.1
9.2
9.3
9.4
9.5
9.6
9.7
9.8
9.9
9.10
9.11
9.12
9.13
9.14

10

11

12
12.1

13
13.1
13.2
13.3
13.4
13.5

]

Deprecated
Pending removal in Python 3.15o
Pending removal in Python 3.16 o

Pending removal in future versions e

Removed

ATZPATSE + o+ v v e
ASt . . e
ASYNICIO & v v v v v e e e e e e e e e e e
collections.abe oL L e
email . . . L e
importlib . . . L e e e
itertools . . .o L e e
pathlib e e e
pkgutil . . . L e e e

saqlited . . . e e e

TYDPING . . . o e e e e e e e e e e e
urllib . . e

Others e e e
CPython Bytecode Changes

Porting to Python 3.14
Changes in the Python APT

Build changes
PEP 761: Discontinuation of PGP signatures

C API changes

New features e e

Porting to Python 3.14 e
Deprecated L e e e e e

Removed e

27
29
31
32

35
35
36
36
39
39
39
39
39
40
40
40
40
40
40

41

41
41

41
41

41
41
44
45
46
51

52

Editor
TBD

This article explains the new features in Python 3.14, compared to 3.13.

For full details, see the changelog.

0 IR
Prerelease users should be aware that this document is currently in draft form. It will be updated

substantially as Python 3.14 moves towards release, so it’s worth checking back even after reading

earlier versions.

1 Summary -- release highlights
e PEP 649: deferred evaluation of annotations
e PEP 741: Python Configuration C' API
e PEP 758: Allow except and except™ expressions without parentheses
e PEP 761: Discontinuation of PGP signatures
e PEP 765: Disallow return/break/continue that exit a finally block
e PEP 768: Safe external debugger interface for CPython

e A new type of interpreter

2 Incompatible changes

On platforms other than macOS and Windows, the default start method for multiprocessing and

ProcessPoolExecutor switches from fork to forkserver.
See (1) and (2) for details.

If you encounter NameErrors or pickling errors coming out of multiprocessing or concurrent.futures,

see the forkserver restrictions.

3 New features

3.1 PEP 768: Safe external debugger interface for CPython

PEP 768 introduces a zero-overhead debugging interface that allows debuggers and profilers to safely
attach to running Python processes. This is a significant enhancement to Python’s debugging capabilities
allowing debuggers to forego unsafe alternatives. See below for how this feature is leveraged to implement

the new pdb module’s remote attaching capabilities.

The new interface provides safe execution points for attaching debugger code without modifying the
interpreter’s normal execution path or adding runtime overhead. This enables tools to inspect and
4

https://peps.python.org/pep-0768/

interact with Python applications in real-time without stopping or restarting them — a crucial capability

for high-availability systems and production environments.

For convenience, CPython implements this interface through the sys module with a sys.remote_exec()

function:

sys.remote_exec(pid, script_path)

This function allows sending Python code to be executed in a target process at the next safe execution
point. However, tool authors can also implement the protocol directly as described in the PEP, which

details the underlying mechanisms used to safely attach to running processes.

Here’s a simple example that inspects object types in a running Python process:

import os
import sys

import tempfile

Create a temporary script
with tempfile.NamedTemporaryFile(mode='w', suffix='.py', delete=False) as f:
script_path = f.name
f.write(f"import my_debugger; my_debugger.connect({os.getpid() H")
try:
Ezecute in process with PID 1234
print ("Behold! An offering:")
sys.remote_exec(1234, script_path)
finally:
os.unlink(script_path)

The debugging interface has been carefully designed with security in mind and includes several mecha-

nisms to control access:
e A PYTHON_DISABLE_REMOTE_DEBUG environment variable.
e A -X disable-remote-debug command-line option.
e A --without-remote-debug configure flag to completely disable the feature at build time.

A key implementation detail is that the interface piggybacks on the interpreter’s existing evaluation
loop and safe points, ensuring zero overhead during normal execution while providing a reliable way for

external processes to coordinate debugging operations.
See PEP 768 for more details.

(Contributed by Pablo Galindo Salgado, Matt Wozniski, and Ivona Stojanovic in gh-131591.)

https://peps.python.org/pep-0768/
https://github.com/python/cpython/issues/131591

3.2 Remote attaching to a running Python process with PDB

The pdb module now supports remote attaching to a running Python process using a new -p PID

command-line option:

python -m pdb -p 1234

This will connect to the Python process with the given PID and allow you to debug it interactively.
Notice that due to how the Python interpreter works attaching to a remote process that is blocked in a
system call or waiting for I/O will only work once the next bytecode instruction is executed or when the

process receives a signal.

This feature leverages PEP 768 and the sys.remote_exec() function to attach to the remote process
and send the PDB commands to it.

(Contributed by Matt Wozniski and Pablo Galindo in gh-131591.)

3.3 PEP 758 - Allow except and except* expressions without parentheses

The except and except* expressions now allow parentheses to be omitted when there are multiple

exception types and the as clause is not used. For example the following expressions are now valid:

try:
release_new_sleep_token_album()
except AlbumNotFound, SongsTooGoodToBeReleased:

print("Sorry, no new album this year.")

The same applies to except* (for exception groups):
try:
release_new_sleep_token_album()

except* AlbumNotFound, SongsTooGoodToBeReleased:

print("Sorry, no new album this year.")

Check PEP 758 for more details.

(Contributed by Pablo Galindo and Brett Cannon in gh-131831.)

3.4 PEP 649: deferred evaluation of annotations

The annotations on functions, classes, and modules are no longer evaluated eagerly. Instead, annotations
are stored in special-purpose annotate functions and evaluated only when necessary. This is specified in
PEP 649 and PEP 749.

This change is designed to make annotations in Python more performant and more usable in most cir-
cumstances. The runtime cost for defining annotations is minimized, but it remains possible to introspect
annotations at runtime. It is usually no longer necessary to enclose annotations in strings if they contain

forward references.

https://peps.python.org/pep-0768/
https://github.com/python/cpython/issues/131591
https://peps.python.org/pep-0758/
https://github.com/python/cpython/issues/131831
https://peps.python.org/pep-0649/
https://peps.python.org/pep-0749/

The new annotationlib module provides tools for inspecting deferred annotations. Annotations may be
evaluated in the VALUE format (which evaluates annotations to runtime values, similar to the behavior in
earlier Python versions), the FORWARDREF format (which replaces undefined names with special markers),

and the STRING format (which returns annotations as strings).

This example shows how these formats behave:

>>> from annotationlib import get_annotations, Format
>>> def func(arg: Undefined):

pass
>>> get_annotations(func, format=Format.VALUE)

Traceback (most recent call last):

NameError: name 'Undefined' is not defined

>>> get_annotations(func, format=Format.FORWARDREF)

{'arg': ForwardRef ('Undefined', owner=<function func at Ox...>)}
>>> get_annotations(func, format=Format.STRING)

{'arg': 'Undefined'}

Implications for annotated code
If you define annotations in your code (for example, for use with a static type checker), then this change
probably does not affect you: you can keep writing annotations the same way you did with previous

versions of Python.

You will likely be able to remove quoted strings in annotations, which are frequently used for forward
references. Similarly, if you use from __future__ import annotations to avoid having to write strings
in annotations, you may well be able to remove that import. However, if you rely on third-party libraries
that read annotations, those libraries may need changes to support unquoted annotations before they

work as expected.

Implications for readers of __annotations__

If your code reads the __annotations__ attribute on objects, you may want to make changes in order
to support code that relies on deferred evaluation of annotations. For example, you may want to use
annotationlib.get_annotations() with the FORWARDREF format, as the dataclasses module now

does.

Related changes

The changes in Python 3.14 are designed to rework how __annotations__ works at runtime while
minimizing breakage to code that contains annotations in source code and to code that reads
__annotations__. However, if you rely on undocumented details of the annotation behavior or on
private functions in the standard library, there are many ways in which your code may not work in
Python 3.14. To safeguard your code against future changes, use only the documented functionality of

the annotationlib module.

from __future__ import annotations

In Python 3.7, PEP 563 introduced the from __future__ import annotations directive, which turns
all annotations into strings. This directive is now considered deprecated and it is expected to be removed
in a future version of Python. However, this removal will not happen until after Python 3.13, the last
version of Python without deferred evaluation of annotations, reaches its end of life in 2029. In Python

3.14, the behavior of code using from __future__ import annotations is unchanged.

3.5 Improved error messages

e The interpreter now provides helpful suggestions when it detects typos in Python keywords. When
a word that closely resembles a Python keyword is encountered, the interpreter will suggest the
correct keyword in the error message. This feature helps programmers quickly identify and fix

common typing mistakes. For example:

>>> whille True:
pass
Traceback (most recent call last):
File "<stdin>", line 1
whille True:

SyntaxError: invalid syntax. Did you mean 'while'?

>>> asynch def fetch_data():
pass
Traceback (most recent call last):
File "<stdin>", line 1
asynch def fetch_data():

SyntaxError: invalid syntax. Did you mean 'async'?

>>> async def foo():
awaid fetch_data()
Traceback (most recent call last):
File "<stdin>", line 2
awaid fetch_data()

SyntaxError: invalid syntax. Did you mean 'await'?

>>> raisee ValueError ("Error")
Traceback (most recent call last):
File "<stdin>", line 1
raisee ValueError ("Error")

SyntaxError: invalid syntax. Did you mean 'raise'?

8

https://peps.python.org/pep-0563/

While the feature focuses on the most common cases, some variations of misspellings may still

result in regular syntax errors. (Contributed by Pablo Galindo in gh-132449.)

o When unpacking assignment fails due to incorrect number of variables, the error message prints
the received number of values in more cases than before. (Contributed by Tushar Sadhwani in
gh-122239.)

>>x,y,2=1, 2, 3, 4
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
X, y,2=1, 2, 3, 4

ValueError: too many values to unpack (expected 3, got 4)

.

o elif statements that follow an else block now have a specific error message. (Contributed by
Steele Farnsworth in gh-129902.)

>>> if who == "me":
print("It's me!")
else:
print("It's not me!")
elif who is None:
print("Who is it?")
File "<stdin>", line 5

elif who is None:

SyntaxError: 'elif' block follows an 'else' block

o If a statement (pass, del, return, yield, raise, break, continue, assert, import, from) is
passed to the if expr after else, or one of pass, break, or continue is passed before if, then the
error message highlights where the expression is required. (Contributed by Sergey Miryanov in
gh-129515.)

>>> x = 1 if True else pass
Traceback (most recent call last):
File "<string>", line 1
x = 1 if True else pass

SyntaxError: expected expression after 'else', but statement is given

>>> x = continue if True else break
Traceback (most recent call last):
File "<string>", line 1

x = continue if True else break

(RDR=V1ZHiEL)

https://github.com/python/cpython/issues/132449
https://github.com/python/cpython/issues/122239
https://github.com/python/cpython/issues/129902
https://github.com/python/cpython/issues/129515

(RIDR=I D5 DR E)

SyntaxError: expected expression before 'if', but statement is given

e When incorrectly closed strings are detected, the error message suggests that the string may be

intended to be part of the string. (Contributed by Pablo Galindo in gh-88535.)

>>> "The interesting object "The important object" is very important"
Traceback (most recent call last):

SyntaxError: invalid syntax. Is this intended to be part of the string?

3.6 PEP 741: Python Configuration C API

Add a PyInitConfig C API to configure the Python initialization without relying on C structures and
the ability to make ABI-compatible changes in the future.

Complete the PEP 587 PyConfig C API by adding PyInitConfig_AddModule() which can be used to

add a built-in extension module; feature previously referred to as the “inittab” .
Add PyConfig_Get() and PyConfig_Set() functions to get and set the current runtime configuration.

PEP 587 “Python Initialization Configuration” unified all the ways to configure the Python initialization.
This PEP unifies also the configuration of the Python preinitialization and the Python initialization in
a single API. Moreover, this PEP only provides a single choice to embed Python, instead of having two
“Python” and “Isolated” choices (PEP 587), to simplify the API further.

The lower level PEP 587 PyConfig API remains available for use cases with an intentionally higher level
of coupling to CPython implementation details (such as emulating the full functionality of CPython’ s

CLI, including its configuration mechanisms).

(Contributed by Victor Stinner in gh-107954.)

o sz

PEP 741.

3.7 A new type of interpreter

A new type of interpreter has been added to CPython. It uses tail calls between small C functions that
implement individual Python opcodes, rather than one large C case statement. For certain newer com-
pilers, this interpreter provides significantly better performance. Preliminary numbers on our machines
suggest anywhere up to 30% faster Python code, and a geometric mean of 3-5% faster on pyperformance
depending on platform and architecture. The baseline is Python 3.14 built with Clang 19 without this

new interpreter.

This interpreter currently only works with Clang 19 and newer on x86-64 and AArch64 architectures.

However, we expect that a future release of GCC will support this as well.

10

https://github.com/python/cpython/issues/88535
https://peps.python.org/pep-0587/
https://github.com/python/cpython/issues/107954
https://peps.python.org/pep-0741/

This feature is opt-in for now. We highly recommend enabling profile-guided optimization with the new
interpreter as it is the only configuration we have tested and can validate its improved performance. For

further information on how to build Python, see —~—with-tail-call-interp.

0 R
This is not to be confused with tail call optimization of Python functions, which is currently not

implemented in CPython.

This new interpreter type is an internal implementation detail of the CPython interpreter. It doesn’t
change the visible behavior of Python programs at all. It can improve their performance, but doesn’t

change anything else.

A EE

This section previously reported a 9-15% geometric mean speedup. This number has since been
cautiously revised down to 3-5%. While we expect performance results to be better than what we
report, our estimates are more conservative due to a compiler bug found in Clang/LLVM 19, which
causes the normal interpreter to be slower. We were unaware of this bug, resulting in inaccurate
results. We sincerely apologize for communicating results that were only accurate for LLVM v19.1.x
and v20.1.0. In the meantime, the bug has been fixed in LLVM v20.1.1 and for the upcoming v21.1,
but it will remain unfixed for LLVM v19.1.x and v20.1.0. Thus any benchmarks with those versions

of LLVM may produce inaccurate numbers. (Thanks to Nelson Elhage for bringing this to light.)

(Contributed by Ken Jin in gh-128563, with ideas on how to implement this in CPython by Mark

Shannon, Garrett Gu, Haoran Xu, and Josh Haberman.)

4 Other language changes

e The map() built-in now has an optional keyword-only strict flag like zip() to check that all the
iterables are of equal length. (Contributed by Wannes Boeykens in gh-119793.)

e Incorrect usage of await and asynchronous comprehensions is now detected even if the code is
optimized away by the -0 command-line option. For example, python -0 -c¢ 'assert await 1'

now produces a SyntaxError. (Contributed by Jelle Zijlstra in gh-121637.)

o Writes to __debug__ are now detected even if the code is optimized away by the -0 command-line
option. For example, python -0 -c 'assert (__debug__ := 1)' now produces a SyntaxError.
(Contributed by Irit Katriel in gh-122245.)

e Add class methods float.from_number() and complex.from_number () to convert a number
to float or complex type correspondingly. They raise an error if the argument is a string.
(Contributed by Serhiy Storchaka in gh-84978.)

e Implement mixed-mode arithmetic rules combining real and complex numbers as specified by C

11

https://en.wikipedia.org/wiki/Tail_call
https://github.com/llvm/llvm-project/issues/106846
https://github.com/python/cpython/issues/128563
https://github.com/python/cpython/issues/119793
https://github.com/python/cpython/issues/121637
https://github.com/python/cpython/issues/122245
https://github.com/python/cpython/issues/84978

standards since C99. (Contributed by Sergey B Kirpichev in gh-69639.)

All Windows code pages are now supported as "cpXXX” codecs on Windows. (Contributed by
Serhiy Storchaka in gh-123803.)

super objects are now pickleable and copyable. (Contributed by Serhiy Storchaka in
gh-125767.)

The memoryview type now supports subscription, making it a generic type. (Contributed by Brian
Schubert in gh-126012.)

Support underscore and comma as thousands separators in the fractional part for floating-point
presentation types of the new-style string formatting (with format () or f-strings). (Contributed
by Sergey B Kirpichev in gh-87790.)

The bytes.fromhex() and bytearray.fromhex() methods now accept ASCII bytes and
bytes-like objects. (Contributed by Daniel Pope in gh-129349.)

\B in regular expression now matches empty input string. Now it is always the opposite of \b.
(Contributed by Serhiy Storchaka in gh-124130.)

iOS and macOS apps can now be configured to redirect stdout and stderr content to the system
log. (Contributed by Russell Keith-Magee in gh-127592.)

The iOS testbed is now able to stream test output while the test is running. The testbed can
also be used to run the test suite of projects other than CPython itself. (Contributed by Russell
Keith-Magee in gh-127592.)

Three-argument pow() now try calling __rpow__() if necessary. Previously it was only called
in two-argument pow() and the binary power operator. (Contributed by Serhiy Storchaka in
gh-130104.)

Add a built-in implementation for HMAC (RFC 2104) using formally verified code from the
HACL* project. This implementation is used as a fallback when the OpenSSL implementation of
HMAC is not available. (Contributed by Bénédikt Tran in gh-99108.)

When subclassing from a pure C type, the C slots for the new type are no longer replaced with a
wrapped version on class creation if they are not explicitly overridden in the subclass. (Contributed
by Tomasz Pytel in gh-132329.)

The command line option -c now automatically dedents its code argument before execution. The
auto-dedentation behavior mirrors textwrap.dedent (). (Contributed by Jon Crall and Steven
Sun in gh-103998.)

Improve error message when an object supporting the synchronous (resp. asynchronous) context
manager protocol is entered using async with (resp. with) instead of with (resp. async with).
(Contributed by Bénédikt Tran in gh-128398.)

12

https://github.com/python/cpython/issues/69639
https://github.com/python/cpython/issues/123803
https://github.com/python/cpython/issues/125767
https://github.com/python/cpython/issues/126012
https://github.com/python/cpython/issues/87790
https://github.com/python/cpython/issues/129349
https://github.com/python/cpython/issues/124130
https://github.com/python/cpython/issues/127592
https://github.com/python/cpython/issues/127592
https://github.com/python/cpython/issues/130104
https://datatracker.ietf.org/doc/html/rfc2104.html
https://github.com/hacl-star/hacl-star/
https://github.com/python/cpython/issues/99108
https://github.com/python/cpython/issues/132329
https://github.com/python/cpython/issues/103998
https://github.com/python/cpython/issues/128398

4.1 PEP 765: Disallow return/break/continue that exit a finally block

The compiler emits a SyntaxWarning when a return, break or continue statements appears where it

exits a finally block. This change is specified in PEP 765.

5 New modules

e annotationlib: For introspecting annotations. See PEP 749 for more details. (Contributed by
Jelle Zijlstra in gh-119180.)

6 Improved modules

6.1 argparse

e The default value of the program name for argparse.ArgumentParser now reflects the way the
Python interpreter was instructed to find the __main__ module code. (Contributed by Serhiy
Storchaka and Alyssa Coghlan in gh-66436.)

e Introduced the optional suggest on__error parameter to argparse.ArgumentParser, enabling
suggestions for argument choices and subparser names if mistyped by the user. (Contributed

by Savannah Ostrowski in gh-124456.)

6.2 ast

o Add ast.compare() for comparing two ASTs. (Contributed by Batuhan Taskaya and Jeremy
Hylton in gh-60191.)

o Add support for copy.replace() for AST nodes. (Contributed by Bénédikt Tran in gh-121141.)

e Docstrings are now removed from an optimized AST in optimization level 2. (Contributed by Irit
Katriel in gh-123958.)

o The repr () output for AST nodes now includes more information. (Contributed by Tomas R in
gh-116022.)

e ast.parse(), when called with an AST as input, now always verifies that the root node type is

appropriate. (Contributed by Irit Katriel in gh-130139.)

6.3 bdb

o The bdb module now supports the sys.monitoring backend. (Contributed by Tian Gao in
gh-124533.)

13

https://peps.python.org/pep-0765/
https://peps.python.org/pep-0749/
https://github.com/python/cpython/issues/119180
https://github.com/python/cpython/issues/66436
https://github.com/python/cpython/issues/124456
https://github.com/python/cpython/issues/60191
https://github.com/python/cpython/issues/121141
https://github.com/python/cpython/issues/123958
https://github.com/python/cpython/issues/116022
https://github.com/python/cpython/issues/130139
https://github.com/python/cpython/issues/124533

6.4 calendar

e By default, today’s date is highlighted in color in calendar’s command-line text output. This can
be controlled via the PYTHON_COLORS environment variable as well as the canonical NO_COLOR and
FORCE_COLOR environment variables. See also using-on-controlling-color. (Contributed by Hugo

van Kemenade in gh-128317.)

6.5 concurrent.futures

o Add InterpreterPoolExecutor, which exposes ”subinterpreters (multiple Python interpreters
in the same process) to Python code. This is separate from the proposed API in PEP 734.
(Contributed by Eric Snow in gh-124548.)

e The default ProcessPoolExecutor start method changed from fork to forkserver on platforms

other than macOS and Windows where it was already spawn.

If the threading incompatible fork method is required, you must explicitly request it by supplying

a multiprocessing context mp_context to ProcessPoolExecutor.

See forkserver restrictions for information and differences with the fork method and how this
change may affect existing code with mutable global shared variables and/or shared objects that

can not be automatically pickled.
(Contributed by Gregory P. Smith in gh-84559.)

e Add concurrent.futures.ProcessPoolExecutor.terminate_workers() and concurrent.
futures.ProcessPoolExecutor.kill_workers() as ways to terminate or kill all living worker

processes in the given pool. (Contributed by Charles Machalow in gh-130849.)

e Add the optional buffersize parameter to concurrent.futures.Executor.map() to limit the
number of submitted tasks whose results have not yet been yielded. If the buffer is full, iteration
over the iterables pauses until a result is yielded from the buffer. (Contributed by Enzo Bonnal
and Josh Rosenberg in gh-74028.)

6.6 contextvars
o Support context manager protocol by contextvars.Token. (Contributed by Andrew Svetlov in
gh-129889.)
6.7 ctypes

o The layout of bit fields in Structure and Union now matches platform defaults (GCC/Clang or
MSVC) more closely. In particular, fields no longer overlap. (Contributed by Matthias Gorgens
in gh-97702.)

o The Structure._layout_ class attribute can now be set to help match a non-default ABI. (Con-
tributed by Petr Viktorin in gh-97702.)

o The class of Structure/Union field descriptors is now available as CField, and has new attributes

14

https://no-color.org/
https://force-color.org/
https://github.com/python/cpython/issues/128317
https://peps.python.org/pep-0734/
https://github.com/python/cpython/issues/124548
https://github.com/python/cpython/issues/84559
https://github.com/python/cpython/issues/130849
https://github.com/python/cpython/issues/74028
https://github.com/python/cpython/issues/129889
https://github.com/python/cpython/issues/97702
https://github.com/python/cpython/issues/97702

to aid debugging and introspection. (Contributed by Petr Viktorin in gh-128715.)
o On Windows, the COMError exception is now public. (Contributed by Jun Komoda in gh-126686.)

e On Windows, the CopyComPointer () function is now public. (Contributed by Jun Komoda in
gh-127275.)

e ctypes.memoryview_at() now exists to create a memoryview object that refers to the supplied
pointer and length. This works like ctypes.string_at () except it avoids a buffer copy, and is typ-
ically useful when implementing pure Python callback functions that are passed dynamically-sized
buffers. (Contributed by Rian Hunter in gh-112018.)

e Complex types, c_float_complex, c_double_complex and c_longdouble_complex, are now
available if both the compiler and the 1ibffi library support complex C types. (Contributed
by Sergey B Kirpichev in gh-61103).

o Add ctypes.util.dllist() for listing the shared libraries loaded by the current process. (Con-
tributed by Brian Ward in gh-119349.)

o The ctypes.py_object type now supports subscription, making it a generic type. (Contributed
by Brian Schubert in gh-132168.)
6.8 datetime
o Add datetime.time.strptime() and datetime.date.strptime(). (Contributed by Wannes
Boeykens in gh-41431.)
6.9 decimal
o Add alternative Decimal constructor Decimal.from_number (). (Contributed by Serhiy Storchaka
in gh-121798.)
6.10 difflib

e Comparison pages with highlighted changes generated by the diff1ib.Htm1Diff class now support
dark mode. (Contributed by Jiahao Li in gh-129939.)

6.11 dis

e Add support for rendering full source location information of instructions, rather than only the
line number. This feature is added to the following interfaces via the show_positions keyword

argument:

dis.Bytecode

dis.dis()

dis.distb()

— dis.disassemble()

15

https://github.com/python/cpython/issues/128715
https://github.com/python/cpython/issues/126686
https://github.com/python/cpython/issues/127275
https://github.com/python/cpython/issues/112018
https://github.com/python/cpython/issues/61103
https://github.com/python/cpython/issues/119349
https://github.com/python/cpython/issues/132168
https://github.com/python/cpython/issues/41431
https://github.com/python/cpython/issues/121798
https://github.com/python/cpython/issues/129939

6.12

6.13

6.14

6.15

6.16

6.17

This feature is also exposed via dis --show-positions. (Contributed by Bénédikt Tran in

gh-123165.)

Add the dis --specialized command-line option to show specialized bytecode. (Contributed
by Bénédikt Tran in gh-127413.)

errno

Add errno.EHWPOISON error code. (Contributed by James Roy in gh-126585.)

faulthandler

Add support for printing the C stack trace on systems that support it via faulthandler.
dump_c_stack() or via the ¢_stack argument in faulthandler.enable(). (Contributed by Peter
Bierma in gh-127604.)

fnmatch

Added fnmatch.filterfalse() for excluding names matching a pattern. (Contributed by
Bénédikt Tran in gh-74598.)

fractions

Add support for converting any objects that have the as_integer_ratio() method to a Fraction.
(Contributed by Serhiy Storchaka in gh-82017.)

Add alternative Fraction constructor Fraction.from_number (). (Contributed by Serhiy Stor-

chaka in gh-121797.)

functools

Add support to functools.partial() and functools.partialmethod() for functools.
Placeholder sentinels to reserve a place for positional arguments. (Contributed by Dominykas

Grigonis in gh-119127.)

Allow the initial parameter of functools.reduce() to be passed as a keyword argument. (Con-
tributed by Sayandip Dutta in gh-125916.)

getopt

Add support for options with optional arguments. (Contributed by Serhiy Storchaka in gh-126374.)

Add support for returning intermixed options and non-option arguments in order. (Contributed
by Serhiy Storchaka in gh-126390.)

16

https://github.com/python/cpython/issues/123165
https://github.com/python/cpython/issues/127413
https://github.com/python/cpython/issues/126585
https://github.com/python/cpython/issues/127604
https://github.com/python/cpython/issues/74598
https://github.com/python/cpython/issues/82017
https://github.com/python/cpython/issues/121797
https://github.com/python/cpython/issues/119127
https://github.com/python/cpython/issues/125916
https://github.com/python/cpython/issues/126374
https://github.com/python/cpython/issues/126390

6.18 graphlib

e Allow graphlib.TopologicalSorter.prepare() to be called more than once as long as sorting

has not started. (Contributed by Daniel Pope in gh-130914)

6.19 hmac

e Add a built-in implementation for HMAC (RFC 2104) using formally verified code from the
HACL* project. (Contributed by Bénédikt Tran in gh-99108.)

6.20 http

o Directory lists and error pages generated by the http.server module allow the browser to apply

its default dark mode. (Contributed by Yorik Hansen in gh-123430.)

e Thehttp.server module now supports serving over HT'TPS using the http.server .HTTPSServer
class. This functionality is exposed by the command-line interface (python -m http.server)

through the following options:
— ——tls-cert <path>: Path to the TLS certificate file.
— —-tls-key <path>: Optional path to the private key file.
— ——tls-password-file <path>: Optional path to the password file for the private key.

(Contributed by Semyon Moroz in gh-85162.)

6.21 imaplib
o Add IMAP4.idle(), implementing the IMAP4 IDLE command as defined in RFC 2177. (Con-
tributed by Forest in gh-55454.)
6.22 inspect

e inspect.signature() takes a new argument annotation_format to control the annotationlib.

Format used for representing annotations. (Contributed by Jelle Zijlstra in gh-101552.)

e inspect.Signature.format() takes a new argument unquote annotations. If true, string anno-

tations are displayed without surrounding quotes. (Contributed by Jelle Zijlstra in gh-101552.)
o Add function inspect.ispackage() to determine whether an object is a package or not. (Con-
tributed by Zhikang Yan in gh-125634.)
6.23 io

e Reading text from a non-blocking stream with read may now raise a BlockingIOError if the

operation cannot immediately return bytes. (Contributed by Giovanni Siragusa in gh-109523.)

e Add protocols io.Reader and io.Writer as a simpler alternatives to the pseudo-protocols typing.

10, typing.TextI0, and typing.BinaryI0. (Contributed by Sebastian Rittau in gh-127648.)

17

https://github.com/python/cpython/issues/130914
https://datatracker.ietf.org/doc/html/rfc2104.html
https://github.com/hacl-star/hacl-star/
https://github.com/python/cpython/issues/99108
https://github.com/python/cpython/issues/123430
https://github.com/python/cpython/issues/85162
https://datatracker.ietf.org/doc/html/rfc2177.html
https://github.com/python/cpython/issues/55454
https://github.com/python/cpython/issues/101552
https://github.com/python/cpython/issues/101552
https://github.com/python/cpython/issues/125634
https://github.com/python/cpython/issues/109523
https://github.com/python/cpython/issues/127648

6.24

6.25

6.26

6.27

6.28

json

Add notes for JSON serialization errors that allow to identify the source of the error. (Contributed

by Serhiy Storchaka in gh-122163.)

Enable the json module to work as a script using the -m switch: python -m json. See the JSON

command-line interface documentation. (Contributed by Trey Hunner in gh-122873.)

By default, the output of the JSON command-line interface is highlighted in color. This can be
controlled via the PYTHON_COLORS environment variable as well as the canonical NO_COLOR and
FORCE_COLOR environment variables. See also using-on-controlling-color. (Contributed by Tomas
Roun in gh-131952.)

linecache

linecache.getline () can retrieve source code for frozen modules. (Contributed by Tian Gao in
gh-131638.)

logging.handlers

logging.handlers.QueueListener now implements the context manager protocol, allowing it to

be used in a with statement. (Contributed by Charles Machalow in gh-132106.)
Queuelistener.start now raises a RuntimeError if the listener is already started. (Contributed
by Charles Machalow in gh-132106.)

math

Added more detailed error messages for domain errors in the module. (Contributed by by Charlie
Zhao and Sergey B Kirpichev in gh-101410.)

mimetypes

Document the command-line for mimetypes. It now exits with 1 on failure instead of 0 and 2
on incorrect command-line parameters instead of 1. Also, errors are printed to stderr instead of
stdout and their text is made tighter. (Contributed by Oleg Iarygin and Hugo van Kemenade in
2h-93096.)

Add MS and RFC 8081 MIME types for fonts:
— Embedded OpenType: application/vnd.ms-fontobject
— OpenType Layout (OTF) font/otf
— TrueType: font/ttf
— WOFF 1.0 font/woff
— WOFF 2.0 font/woff2

(Contributed by Sahil Prajapati and Hugo van Kemenade in gh-84852.)
18

https://github.com/python/cpython/issues/122163
https://github.com/python/cpython/issues/122873
https://no-color.org/
https://force-color.org/
https://github.com/python/cpython/issues/131952
https://github.com/python/cpython/issues/131638
https://github.com/python/cpython/issues/132106
https://github.com/python/cpython/issues/132106
https://github.com/python/cpython/issues/101410
https://github.com/python/cpython/issues/93096
https://datatracker.ietf.org/doc/html/rfc8081.html
https://github.com/python/cpython/issues/84852

e« Add RFC 9559 MIME types for Matroska audiovisual data container structures, containing:
— audio with no video: audio/matroska (.mka)
— video: video/matroska (.mkv)
— stereoscopic video: video/matroska-3d (.mk3d)
(Contributed by Hugo van Kemenade in gh-89416.)
o Add MIME types for images with RFCs:
— RFC 1494: CCITT Group 3 (.g3)
— RFC 3362: Real-time Facsimile, T.38 (.t38)
— RFC 3745: JPEG 2000 (.jp2), extension (.jpx) and compound (.jpm)
— RFC 3950: Tag Image File Format Fax eXtended, TIFF-FX (.tfx)
— RFC 4047: Flexible Image Transport System (.fits)
— RFC 7903: Enhanced Metafile (.emf) and Windows Metafile (.wmf)
(Contributed by Hugo van Kemenade in gh-85957.)
e More MIME type changes:
— RFC 2361: Change type for .avi to video/vnd.avi and for .wav to audio/vnd.wave
— RFC 4337: Add MPEG-4 audio/mp4 (.m4a))
— RFC 5334: Add Ogg media (.oga, .ogg and .ogx)
— RFC 9639: Add FLAC audio/flac (.flac)
— De facto: Add WebM audio/webm (.weba)
— ECMA-376: Add .docx, .pptx and .x1sx types
— OASIS: Add OpenDocument .odg, .odp, .ods and .odt types
— W3C: Add EPUB application/epub+zip (.epub)
(Contributed by Hugo van Kemenade in gh-129965.)
o Add RFC 9512 application/yaml MIME type for YAML files (.yaml and .yml). (Contributed
by Sasha ”Nelie” Chernykh and Hugo van Kemenade in gh-132056.)
6.29 multiprocessing

e The default start method changed from fork to forkserver on platforms other than macOS and

Windows where it was already spawn.

19

https://datatracker.ietf.org/doc/html/rfc9559.html
https://github.com/python/cpython/issues/89416
https://datatracker.ietf.org/doc/html/rfc1494.html
https://datatracker.ietf.org/doc/html/rfc3362.html
https://datatracker.ietf.org/doc/html/rfc3745.html
https://datatracker.ietf.org/doc/html/rfc3950.html
https://datatracker.ietf.org/doc/html/rfc4047.html
https://datatracker.ietf.org/doc/html/rfc7903.html
https://github.com/python/cpython/issues/85957
https://datatracker.ietf.org/doc/html/rfc2361.html
https://datatracker.ietf.org/doc/html/rfc4337.html
https://datatracker.ietf.org/doc/html/rfc5334.html
https://datatracker.ietf.org/doc/html/rfc9639.html
https://ecma-international.org/publications-and-standards/standards/ecma-376/
https://docs.oasis-open.org/office/v1.2/cs01/OpenDocument-v1.2-cs01-part1.html#Appendix_C
https://www.w3.org/TR/epub-33/#app-media-type
https://github.com/python/cpython/issues/129965
https://datatracker.ietf.org/doc/html/rfc9512.html
https://github.com/python/cpython/issues/132056

6.30

6.31

If the threading incompatible fork method is required, you must explicitly request it via a context
from multiprocessing.get_context() (preferred) or change the default via multiprocessing.

set_start_method().

See forkserver restrictions for information and differences with the fork method and how this
change may affect existing code with mutable global shared variables and/or shared objects that

can not be automatically pickled.
(Contributed by Gregory P. Smith in gh-84559.)

multiprocessing’s "forkserver" start method now authenticates its control socket to avoid
solely relying on filesystem permissions to restrict what other processes could cause the forkserver

to spawn workers and run code. (Contributed by Gregory P. Smith for gh-97514.)

The multiprocessing proxy objects for list and dict types gain previously overlooked missing meth-

ods:

— clear() and copy () for proxies of list.

— fromkeys(), reversed(d),d | {}, {} | 4,d I= {'b': 2} for proxies of dict.
(Contributed by Roy Hyunjin Han for gh-103134.)

Add support for shared set objects via SyncManager.set(). The set() in multiprocessing.
Manager () method is now available. (Contributed by Mingyu Park in gh-129949.)

Add multiprocessing.Process.interrupt() which terminates the child process by sending
SIGINT. This enables "finally” clauses and printing stack trace for the terminated process. (Con-
tributed by Artem Pulkin in gh-131913.)

operator

Two new functions operator.is_none() and operator.is_not_none() have been added, such
that operator.is_none(obj) is equivalent to obj is None and operator.is_not_none(obj)
is equivalent to obj is not Nome. (Contributed by Raymond Hettinger and Nico Mexis in
gh-115808.)

0s

Add the os.reload_environ() function to update os.environ and os.environb with changes
to the environment made by os.putenv(), by os.unsetenv(), or made outside Python in the

same process. (Contributed by Victor Stinner in gh-120057.)

Add the SCHED_DEADLINE and SCHED_NORMAL constants to the os module. (Contributed by James
Roy in gh-127688.)

Add the os.readinto () function to read into a buffer object from a file descriptor. (Contributed

by Cody Maloney in gh-129205.)

20

https://github.com/python/cpython/issues/84559
https://github.com/python/cpython/issues/97514
https://github.com/python/cpython/issues/103134
https://github.com/python/cpython/issues/129949
https://github.com/python/cpython/issues/131913
https://github.com/python/cpython/issues/115808
https://github.com/python/cpython/issues/120057
https://github.com/python/cpython/issues/127688
https://github.com/python/cpython/issues/129205

6.32 pathlib
¢ Add methods to pathlib.Path to recursively copy or move files and directories:
— copy () copies a file or directory tree to a destination.

— copy_into() copies into a destination directory.

move () moves a file or directory tree to a destination.

move_into () moves into a destination directory.
(Contributed by Barney Gale in gh-73991.)

e Add pathlib.Path.info attribute, which stores an object implementing the pathlib.types.
PathInfo protocol (also new). The object supports querying the file type and internally caching
stat () results. Path objects generated by iterdir() are initialized with file type information
gleaned from scanning the parent directory. (Contributed by Barney Gale in gh-125413.)

6.33 pdb

e Hardcoded breakpoints (breakpoint() and pdb.set_trace()) now reuse the most recent Pdb
instance that calls set_trace(), instead of creating a new one each time. As a result, all the
instance specific data like display and commands are preserved across hardcoded breakpoints.
(Contributed by Tian Gao in gh-121450.)

e Add a new argument mode to pdb.Pdb. Disable the restart command when pdb is in inline
mode. (Contributed by Tian Gao in gh-123757.)

e A confirmation prompt will be shown when the user tries to quit pdb in inline mode. y, Y, <Enter>
or EOF will confirm the quit and call sys.exit(), instead of raising bdb.BdbQuit. (Contributed
by Tian Gao in gh-124704.)

o Inline breakpoints like breakpoint () or pdb.set_trace() will always stop the program at calling

frame, ignoring the skip pattern (if any). (Contributed by Tian Gao in gh-130493.)

e <tab> at the beginning of the line in pdb multi-line input will fill in a 4-space indentation now,

instead of inserting a \t character. (Contributed by Tian Gao in gh-130471.)
o $_asynctask is added to access the current asyncio task if applicable. (Contributed by Tian Gao
in gh-124367.)

e pdb now supports two backends: sys.settrace() and sys.monitoring. Using pdb CLI or
breakpoint () will always use the sys.monitoring backend. Explicitly instantiating pdb.Pdb
and its derived classes will use the sys.settrace() backend by default, which is configurable.

(Contributed by Tian Gao in gh-124533.)

21

https://github.com/python/cpython/issues/73991
https://github.com/python/cpython/issues/125413
https://github.com/python/cpython/issues/121450
https://github.com/python/cpython/issues/123757
https://github.com/python/cpython/issues/124704
https://github.com/python/cpython/issues/130493
https://github.com/python/cpython/issues/130471
https://github.com/python/cpython/issues/124367
https://github.com/python/cpython/issues/124533

6.34 pickle
e Set the default protocol version on the pickle module to 5. For more details, see pickle protocols.

o Add notes for pickle serialization errors that allow to identify the source of the error. (Contributed
by Serhiy Storchaka in gh-122213.)

6.35 platform
o Add platform.invalidate_caches() to invalidate the cached results. (Contributed by Bénédikt
Tran in gh-122549.)
6.36 pydoc

e Annotations in help output are now usually displayed in a format closer to that in the original

source. (Contributed by Jelle Zijlstra in gh-101552.)

6.37 socket

e Improve and fix support for Bluetooth sockets.

— Fix support of Bluetooth sockets on NetBSD and DragonFly BSD. (Contributed by Serhiy
Storchaka in gh-132429.)

— Fix support for BTPROTO_HCI on FreeBSD. (Contributed by Victor Stinner in gh-111178.)
— Add support for BTPROTO_SCO on FreeBSD. (Contributed by Serhiy Storchaka in gh-85302.)

— Add support for cid and bdaddr_type in the address for BTPROTO_L2CAP on FreeBSD. (Con-
tributed by Serhiy Storchaka in gh-132429.)

— Add support for channel in the address for BTPROTO_HCI on Linux. (Contributed by Serhiy
Storchaka in gh-70145.)

— Accept an integer as the address for BTPROTO_HCI on Linux (Contributed by Serhiy Storchaka
in gh-132099.)

— Return cid in getsockname() for BTPROTO_L2CAP. (Contributed by Serhiy Storchaka in
gh-132429.)

— Add many new constants. (Contributed by Serhiy Storchaka in gh-132734.)

6.38 ssl

e Indicate through ss1.HAS_PHA whether the ss1 module supports TLSv1.3 post-handshake client
authentication (PHA). (Contributed by Will Childs-Klein in gh-128036.)

22

https://github.com/python/cpython/issues/122213
https://github.com/python/cpython/issues/122549
https://github.com/python/cpython/issues/101552
https://github.com/python/cpython/issues/132429
https://github.com/python/cpython/issues/111178
https://github.com/python/cpython/issues/85302
https://github.com/python/cpython/issues/132429
https://github.com/python/cpython/issues/70145
https://github.com/python/cpython/issues/132099
https://github.com/python/cpython/issues/132429
https://github.com/python/cpython/issues/132734
https://github.com/python/cpython/issues/128036

6.39

6.40

6.41

6.42

6.43

6.44

struct
Support the float complex and double complex C types in the struct module (formatting
characters 'F' and 'D', respectively) if the compiler has C11 complex arithmetic. (Contributed
by Sergey B Kirpichev in gh-121249.)
symtable
Expose the following symtable.Symbol methods:

— is_comp_cell()

— is_comp_iter()

— is_free_class()

(Contributed by Bénédikt Tran in gh-120029.)

sys

The previously undocumented special function sys.getobjects (), which only exists in specialized

builds of Python, may now return objects from other interpreters than the one it’s called in.

Add sys._is_immortal () for determining if an object is immortal. (Contributed by Peter Bierma
in gh-128509.)

On FreeBSD, sys.platform doesn’t contain the major version anymore. It is always 'freebsd',

instead of 'freebsd13' or 'freebsdi14'.

Raise DeprecationWarning for sys._clear_type_cache(). This function was deprecated in
Python 3.13 but it didn’t raise a runtime warning.

sys.monitoring

Two new events are added: BRANCH_LEFT and BRANCH_RIGHT. The BRANCH event is deprecated.

sysconfig

Add ABIFLAGS key to sysconfig.get_config_vars() on Windows. (Contributed by Xuehai Pan
in gh-131799.)

threading

threading.Thread.start () now sets the operating system thread name to threading.Thread.

name. (Contributed by Victor Stinner in gh-59705.)

23

https://github.com/python/cpython/issues/121249
https://github.com/python/cpython/issues/120029
https://github.com/python/cpython/issues/128509
https://github.com/python/cpython/issues/131799
https://github.com/python/cpython/issues/59705

6.45

6.46

6.47

6.48

tkinter

Make tkinter widget methods after () and after_idle() accept arguments passed by keyword.
(Contributed by Zhikang Yan in gh-126899.)

turtle

Add context managers for turtle.fill(), turtle.poly() and turtle.no_animation(). (Con-
tributed by Marie Roald and Yngve Mardal Moe in gh-126350.)

types

types.UnionType is now an alias for typing.Union. See below for more details. (Contributed by

Jelle Zijlstra in gh-105499.)

typing

types.UnionType and typing.Union are now aliases for each other, meaning that both old-style
unions (created with Union[int, str]) and new-style unions (int | str) now create instances
of the same runtime type. This unifies the behavior between the two syntaxes, but leads to some

differences in behavior that may affect users who introspect types at runtime:

— Both syntaxes for creating a union now produce the same string representation in repr().
For example, repr(Union[int, str]) is now "int | str" instead of "typing.Union[int,

str]".

— Unions created using the old syntax are no longer cached. Previously, running Union[int,
str] multiple times would return the same object (Union[int, str] is Unionl[int, str]
would be True), but now it will return two different objects. Users should use == to compare
unions for equality, not is. New-style unions have never been cached this way. This change
could increase memory usage for some programs that use a large number of unions created
by subscripting typing.Union. However, several factors offset this cost: unions used in anno-
tations are no longer evaluated by default in Python 3.14 because of PEP 649; an instance
of types.UnionType is itself much smaller than the object returned by Union[] was on prior
Python versions; and removing the cache also saves some space. It is therefore unlikely that

this change will cause a significant increase in memory usage for most users.

— Previously, old-style unions were implemented using the private class typing.
_UnionGenericAlias. This class is no longer needed for the implementation, but it has been
retained for backward compatibility, with removal scheduled for Python 3.17. Users should
use documented introspection helpers like typing.get_origin() and typing.get_args()

instead of relying on private implementation details.

— It is now possible to use typing.Union itself in isinstance() checks. For example,

isinstance(int | str, typing.Union) will return True; previously this raised TypeError.

— The __args__ attribute of typing.Union objects is no longer writable.

24

https://github.com/python/cpython/issues/126899
https://github.com/python/cpython/issues/126350
https://github.com/python/cpython/issues/105499
https://peps.python.org/pep-0649/

— It is no longer possible to set any attributes on typing.Union objects. This only ever worked
for dunder attributes on previous versions, was never documented to work, and was subtly

broken in many cases.

(Contributed by Jelle Zijlstra in gh-105499.)

6.49 unicodedata

e The Unicode database has been updated to Unicode 16.0.0.

6.50 unittest

e unittest output is now colored by default. This can be controlled via the PYTHON_COLORS envi-
ronment variable as well as the canonical NO_COLOR and FORCE_COLOR environment variables. See

also using-on-controlling-color. (Contributed by Hugo van Kemenade in gh-127221.)

 unittest discovery supports namespace package as start directory again. It was removed in Python
3.11. (Contributed by Jacob Walls in gh-80958.)

e A number of new methods were added in the TestCase class that provide more specialized tests.

— assertHasAttr() and assertNotHasAttr() check whether the object has a particular at-
tribute.

— assertIsSubclass() and assertNotIsSubclass() check whether the object is a subclass of

a particular class, or of one of a tuple of classes.

— assertStartsWith(Q), assertNotStartsWith(), assertEndsWith() and
assertNotEndsWith() check whether the Unicode or byte string starts or ends with

particular string(s).

(Contributed by Serhiy Storchaka in gh-71339.)

6.51 urllib

o Upgrade HTTP digest authentication algorithm for urllib.request by supporting SHA-256 di-
gest authentication as specified in RFC 7616. (Contributed by Calvin Bui in gh-128193.)

e Improve ergonomics and standards compliance when parsing and emitting file: URLs.
In urllib.request.url2pathname():
— Accept a complete URL when the new require_scheme argument is set to true.
— Discard URL authorities that resolve to a local IP address.

— Raise URLError if a URL authority doesn’t resolve to a local IP address, except on Windows

where we return a UNC path.
In urllib.request.pathname2url ():

— Return a complete URL when the new add__scheme argument is set to true.

25

https://github.com/python/cpython/issues/105499
https://no-color.org/
https://force-color.org/
https://github.com/python/cpython/issues/127221
https://github.com/python/cpython/issues/80958
https://github.com/python/cpython/issues/71339
https://datatracker.ietf.org/doc/html/rfc7616.html
https://github.com/python/cpython/issues/128193

— Include an empty URL authority when a path begins with a slash. For example, the path
/etc/hosts is converted to the URL ///etc/hosts.

On Windows, drive letters are no longer converted to uppercase, and : characters not following a

drive letter no longer cause an OSError exception to be raised.

(Contributed by Barney Gale in gh-125866.)

6.52 uuid

e Add support for UUID versions 6, 7, and 8 via uuid.uuid6(), uvuid.uuid7(), and uwuid.uuid8()
respectively, as specified in RFC 9562. (Contributed by Bénédikt Tran in gh-89083.)

e uuid.NIL and uuid.MAX are now available to represent the Nil and Max UUID formats as defined
by RFC 9562. (Contributed by Nick Pope in gh-128427.)

Allow to generate multiple UUIDs at once via python -m uuid --count. (Contributed by Simon
Legner in gh-131236.)

6.53 webbrowser

e Names in the BROWSER environment variable can now refer to already registered browsers for the

webbrowser module, instead of always generating a new browser command.

This makes it possible to set BROWSER to the value of one of the supported browsers on macOS.

6.54 zipinfo

e Added ZipInfo._for_archive to resolve suitable defaults for a ZipInfo object as used by
ZipFile.writestr. (Contributed by Bénédikt Tran in gh-123424.)

o zipfile.ZipFile.writestr() now respect SOURCE_DATE_EPOCH that distributions can set cen-
trally and have build tools consume this in order to produce reproducible output. (Contributed

by Jiahao Li in gh-91279.)

7 Optimizations

e The import time for several standard library modules has been improved, including ast, asyncio,
base64, cmd, csv, gettext, importlib.util, locale, mimetypes, optparse, pickle, pprint,

pstats, socket, subprocess, threading, tomllib, and zipfile.

(Contributed by Adam Turner, Bénédikt Tran, Chris Markiewicz, Eli Schwartz, Hugo van Keme-
nade, Jelle Zijlstra, and others in gh-118761.)

26

https://github.com/python/cpython/issues/125866
https://datatracker.ietf.org/doc/html/rfc9562.html
https://github.com/python/cpython/issues/89083
https://datatracker.ietf.org/doc/html/rfc9562.html
https://github.com/python/cpython/issues/128427
https://github.com/python/cpython/issues/131236
https://github.com/python/cpython/issues/123424
https://github.com/python/cpython/issues/91279
https://github.com/python/cpython/issues/118761

7.1 asyncio

e asyncio now uses double linked list implementation for native tasks which speeds up execution by
10% on standard pyperformance benchmarks and reduces memory usage. (Contributed by Kumar
Aditya in gh-107803.)

e asyncio has new utility functions for introspecting and printing the program’s call graph:
asyncio.capture_call_graph() and asyncio.print_call_graph(). (Contributed by Yury Se-
livanov, Pablo Galindo Salgado, and Lukasz Langa in gh-91048.)

7.2 baseb64

e Improve the performance of base64.bi16decode () by up to ten times, and reduce the import time
of base64 by up to six times. (Contributed by Bénédikt Tran, Chris Markiewicz, and Adam
Turner in gh-118761.)

7.3 io

e io which provides the built-in open() makes less system calls when opening regular files as well
as reading whole files. Reading a small operating system cached file in full is up to 15% faster.
pathlib.Path.read_bytes() has the most optimizations for reading a file’s bytes in full. (Con-
tributed by Cody Maloney and Victor Stinner in gh-120754 and gh-90102.)

7.4 uuid

e Improve generation of UUID objects via their dedicated functions:

— uuid3() and uuid5() are both roughly 40% faster for 16-byte names and 20% faster for

1024-byte names. Performance for longer names remains unchanged.
— uuid4 () and uwuid8() are 30% and 40% faster respectively.

(Contributed by Bénédikt Tran in gh-128150.)

7.5 zlib

e On Windows, z1ib-ng is now used as the implementation of the z1ib module. This should produce
compatible and comparable results with better performance, though it is worth noting that z1lib.
Z_BEST_SPEED (1) may result in significantly less compression than the previous implementation
(while also significantly reducing the time taken to compress). (Contributed by Steve Dower in

gh-91349.)

8 Deprecated
e argparse:

— Passing the undocumented keyword argument prefiz_chars to add_argument_group() is now

deprecated. (Contributed by Savannah Ostrowski in gh-125563.)

27

https://github.com/python/cpython/issues/107803
https://github.com/python/cpython/issues/91048
https://github.com/python/cpython/issues/118761
https://github.com/python/cpython/issues/120754
https://github.com/python/cpython/issues/90102
https://github.com/python/cpython/issues/128150
https://github.com/python/cpython/issues/91349
https://github.com/python/cpython/issues/125563

— Deprecated the argparse.FileType type converter. Anything with resource management
should be done downstream after the arguments are parsed. (Contributed by Serhiy Storchaka
in gh-58032.)

e asyncio:

— asyncio.iscoroutinefunction() is deprecated and will be removed in Python 3.16; use
inspect.iscoroutinefunction() instead. (Contributed by Jiahao Li and Kumar Aditya in
gh-122875.)

— asyncio policy system is deprecated and will be removed in Python 3.16. In particular, the

following classes and functions are deprecated:
* asyncio.AbstractEventLoopPolicy
* asyncio.DefaultEventLoopPolicy
* asyncio.WindowsSelectorEventLoopPolicy
* asyncio.WindowsProactorEventLoopPolicy
* asyncio.get_event_loop_policy()
* asyncio.set_event_loop_policy()
* asyncio.set_event_loop()

Users should use asyncio.run() or asyncio.Runner with loop_ factory to use the desired

event loop implementation.

For example, to use asyncio.SelectorEventLoop on Windows:

import asyncio

async def main():

asyncio.run(main(), loop_factory=asyncio.SelectorEventLoop)

(Contributed by Kumar Aditya in gh-127949.)

e builtins: Passing a complex number as the real or imag argument in the complex() constructor
is now deprecated; it should only be passed as a single positional argument. (Contributed by
Serhiy Storchaka in gh-109218.)

e functools: Calling the Python implementation of functools.reduce() with function or sequence

as keyword arguments is now deprecated. (Contributed by Kirill Podoprigora in gh-121676.)

e nturl2path: This module is now deprecated. Call urllib.request.url2pathname() and
pathname2url () instead. (Contributed by Barney Gale in gh-125866.)

28

https://github.com/python/cpython/issues/58032
https://github.com/python/cpython/issues/122875
https://github.com/python/cpython/issues/127949
https://github.com/python/cpython/issues/109218
https://github.com/python/cpython/issues/121676
https://github.com/python/cpython/issues/125866

o os: Soft deprecate os.popen() and os.spawn* functions. They should no longer be used to write
new code. The subprocess module is recommended instead. (Contributed by Victor Stinner in
gh-120743.)

e pathlib: pathlib.PurePath.as_uri() is deprecated and will be removed in Python 3.19. Use
pathlib.Path.as_uri() instead. (Contributed by Barney Gale in gh-123599.)

e pdb: The undocumented pdb.Pdb. curframe_locals attribute is now a deprecated read-only prop-
erty. The low overhead dynamic frame locals access added in Python 3.13 by PEP 667 means the
frame locals cache reference previously stored in this attribute is no longer needed. Derived de-
buggers should access pdb.Pdb.curframe.f_locals directly in Python 3.13 and later versions.
(Contributed by Tian Gao in gh-124369 and gh-125951.)

o symtable: Deprecate symtable.Class.get_methods() due to the lack of interest. (Contributed
by Bénédikt Tran in gh-119698.)

o urllib.parse: Accepting objects with false values (like 0 and []) except empty strings, byte-like
objects and None in urllib.parse functions parse_qsl() and parse_gs() is now deprecated.
(Contributed by Serhiy Storchaka in gh-116897.)

8.1 Pending removal in Python 3.15

e The import system:

— Setting __cached__ on a module while failing to set __spec__.cached is deprecated. In
Python 3.15, __
or standard library. (gh-97879)

cached__ will cease to be set or take into consideration by the import system

— Setting __package__ on a module while failing to set __spec__.parent is deprecated. In
Python 3.15, __package__ will cease to be set or take into consideration by the import system
or standard library. (gh-97879)

e ctypes:

— The undocumented ctypes.SetPointerType() function has been deprecated since Python
3.13.

e http.server:

— The obsolete and rarely used CGIHTTPRequestHandler has been deprecated since Python 3.13.
No direct replacement exists. Anything is better than CGI to interface a web server with a

request handler.

— The --cgi flag to the python -m http.server command-line interface has been deprecated

since Python 3.13.
e importlib:
— load_module () method: use exec_module() instead.

e locale:

29

https://github.com/python/cpython/issues/120743
https://github.com/python/cpython/issues/123599
https://github.com/python/cpython/issues/124369
https://github.com/python/cpython/issues/125951
https://github.com/python/cpython/issues/119698
https://github.com/python/cpython/issues/116897
https://github.com/python/cpython/issues/97879
https://github.com/python/cpython/issues/97879

— The getdefaultlocale() function has been deprecated since Python 3.11. Its removal was
originally planned for Python 3.13 (gh-90817), but has been postponed to Python 3.15. Use
getlocale(), setlocale(), and getencoding() instead. (Contributed by Hugo van Keme-
nade in gh-111187.)

e pathlib:

— PurePath.is_reserved() has been deprecated since Python 3.13. Use os.path.

isreserved() to detect reserved paths on Windows.
e platform:

— java_ver() has been deprecated since Python 3.13. This function is only useful for Jython

support, has a confusing API, and is largely untested.
e sysconfig:

— The check_home argument of sysconfig.is_python_build() has been deprecated since
Python 3.12.

e threading:

— RLock() will take no arguments in Python 3.15. Passing any arguments has been deprecated
since Python 3.14, as the Python version does not permit any arguments, but the C version

allows any number of positional or keyword arguments, ignoring every argument.
e types:

— types.CodeType: Accessing co_lnotab was deprecated in PEP 626 since 3.10 and was
planned to be removed in 3.12, but it only got a proper DeprecationWarning in 3.12. May
be removed in 3.15. (Contributed by Nikita Sobolev in gh-101866.)

e typing:

— The undocumented keyword argument syntax for creating NamedTuple classes (for exam-
ple, Point = NamedTuple("Point", x=int, y=int)) hasbeen deprecated since Python 3.13.

Use the class-based syntax or the functional syntax instead.

— The typing.no_type_check_decorator() decorator function has been deprecated since
Python 3.13. After eight years in the typing module, it has yet to be supported by any

major type checker.
e wave:

— The getmark (), setmark(), and getmarkers() methods of the Wave_read and Wave_write

classes have been deprecated since Python 3.13.
e zipimport:

— load_module() has been deprecated since Python 3.10. Use exec_module() instead. (Con-
tributed by Jiahao Li in gh-125746.)

30

https://github.com/python/cpython/issues/90817
https://github.com/python/cpython/issues/111187
https://peps.python.org/pep-0626/
https://github.com/python/cpython/issues/101866
https://github.com/python/cpython/issues/125746

8.2 Pending removal in Python 3.16
e The import system:

— Setting __loader__ on a module while failing to set __spec__.loader is deprecated. In
Python 3.16
or the standard library.

loader__ will cease to be set or taken into consideration by the import system

) -

e array:

— The 'u' format code (wchar_t) has been deprecated in documentation since Python 3.3 and
at runtime since Python 3.13. Use the 'w' format code (Py_UCS4) for Unicode characters

instead.
e asyncio:

— asyncio.iscoroutinefunction() is deprecated and will be removed in Python 3.16; use
inspect.iscoroutinefunction() instead. (Contributed by Jiahao Li and Kumar Aditya in
gh-122875.)

— asyncio policy system is deprecated and will be removed in Python 3.16. In particular, the

following classes and functions are deprecated:
* asyncio.AbstractEventLoopPolicy
*x asyncio.DefaultEventLoopPolicy
* asyncio.WindowsSelectorEventLoopPolicy
* asyncio.WindowsProactorEventLoopPolicy
* asyncio.get_event_loop_policy()
* asyncio.set_event_loop_policy()

Users should use asyncio.run() or asyncio.Runner with loop_factory to use the desired

event loop implementation.

For example, to use asyncio.SelectorEventLoop on Windows:

import asyncio

async def main():

asyncio.run(main(), loop_factory=asyncio.SelectorEventLoop)

(Contributed by Kumar Aditya in gh-127949.)

e builtins:

31

https://github.com/python/cpython/issues/122875
https://github.com/python/cpython/issues/127949

— Bitwise inversion on boolean types, ~True or ~False has been deprecated since Python 3.12,
as it produces surprising and unintuitive results (-2 and -1). Use not x instead for the logical
negation of a Boolean. In the rare case that you need the bitwise inversion of the underlying

integer, convert to int explicitly (~int(x)).
e functools:

— Calling the Python implementation of functools.reduce() with function or sequence as

keyword arguments has been deprecated since Python 3.14.
e shutil:

— The ExecError exception has been deprecated since Python 3.14. It has not been used by

any function in shutil since Python 3.4, and is now an alias of RuntimeError.
e symtable:
— The Class.get_methods method has been deprecated since Python 3.14.
e syS:

— The _enablelegacywindowsfsencoding() function has been deprecated since Python 3.13.
Use the PYTHONLEGACYWINDOWSFSENCODING environment variable instead.

e sysconfig:

— The sysconfig.expand_makefile_vars() function has been deprecated since Python 3.14.

Use the vars argument of sysconfig.get_paths() instead.
e tarfile:
— The undocumented and unused TarFile.tarfile attribute has been deprecated since Python
3.13.
8.3 Pending removal in future versions

The following APIs will be removed in the future, although there is currently no date scheduled for their

removal.
e argparse:
— Nesting argument groups and nesting mutually exclusive groups are deprecated.

— Passing the undocumented keyword argument prefiz._chars to add_argument_group() is now

deprecated.
— The argparse.FileType type converter is deprecated.
o array’s 'u' format code (gh-57281)
e builtins:

— bool(NotImplemented).

32

https://github.com/python/cpython/issues/57281

— Generators: throw(type, exc, tb) and athrow(type, exc, tb) signature is deprecated:

use throw(exc) and athrow(exc) instead, the single argument signature.

— Currently Python accepts numeric literals immediately followed by keywords, for example 0in
X, lor x, 0if lelse 2. It allows confusing and ambiguous expressions like [0x1for x in y]
(which can be interpreted as [0x1 for x in y] or [0x1f or x in y]). A syntax warning
is raised if the numeric literal is immediately followed by one of keywords and, else, for, if,

in, is and or. In a future release it will be changed to a syntax error. (gh-87999)

— Support for __index__() and __int__() method returning non-int type: these methods will

be required to return an instance of a strict subclass of int.

— Support for __float__() method returning a strict subclass of float: these methods will be

required to return an instance of float.

— Support for __complex__() method returning a strict subclass of complex: these methods

will be required to return an instance of complex.
— Delegation of int () to __trunc__() method.

— Passing a complex number as the real or imag argument in the complex() constructor is now
deprecated; it should only be passed as a single positional argument. (Contributed by Serhiy
Storchaka in gh-109218.)

calendar: calendar.January and calendar.February constants are deprecated and replaced by

calendar.JANUARY and calendar.FEBRUARY. (Contributed by Prince Roshan in gh-103636.)
codeobject.co_lnotab: use the codeobject.co_lines() method instead.
datetime:

— utcnow(): use datetime.datetime.now(tz=datetime.UTC).

— utcfromtimestamp(): use datetime.datetime.fromtimestamp(timestamp, tz=datetime.
UTC).

gettext: Plural value must be an integer.
importlib:

— cache_from_source() debug override parameter is deprecated: use the optimization param-

eter instead.
importlib.metadata:
— EntryPoints tuple interface.
— Implicit None on return values.
logging: the warn() method has been deprecated since Python 3.3, use warning() instead.

mailbox: Use of StringlO input and text mode is deprecated, use BytesIO and binary mode

instead.

33

https://github.com/python/cpython/issues/87999
https://github.com/python/cpython/issues/109218
https://github.com/python/cpython/issues/103636

e os: Calling os.register_at_fork() in multi-threaded process.

e pydoc.ErrorDuringImport: A tuple value for exc_ info parameter is deprecated, use an exception

instance.

e re: More strict rules are now applied for numerical group references and group names in regular
expressions. Only sequence of ASCII digits is now accepted as a numerical reference. The group
name in bytes patterns and replacement strings can now only contain ASCII letters and digits and

underscore. (Contributed by Serhiy Storchaka in gh-91760.)
e sre_compile, sre_constants and sre_parse modules.

e shutil: rmtree()’s onerror parameter is deprecated in Python 3.12; use the onexc parameter

instead.
e ssl options and protocols:
— ssl.8SLContext without protocol argument is deprecated.

— ssl.SSLContext: set_npn_protocols() and selected_npn_protocol() are deprecated:
use ALPN instead.

— ss1.0P_NO_SSL* options
— ss1.0P_NO_TLS* options
— ss1.PROTOCOL_SSLv3
— ss1.PROTOCOL_TLS
— ss1.PROTOCOL_TLSv1
— ss1.PROTOCOL_TLSv1_1
— ss1.PROTOCOL_TLSv1_2
— ssl.TLSVersion.SSLv3
— ssl1.TLSVersion.TLSv1
— ssl1.TLSVersion.TLSv1_1
e threading methods:
— threading.Condition.notifyAl1(): use notify_all().
— threading.Event.isSet(): use is_set().

— threading.Thread.isDaemon(), threading.Thread.setDaemon(): use threading.Thread.

daemon attribute.

— threading.Thread.getName(), threading.Thread.setName(): use threading.Thread.

name attribute.
— threading. currentThread(): use threading.current_thread().

34

https://github.com/python/cpython/issues/91760

— threading.activeCount (): use threading.active_count ().
o typing.Text (gh-92332).

o The internal class typing._UnionGenericAlias is no longer used to implement typing.Union.
To preserve compatibility with users using this private class, a compatibility shim will be provided
until at least Python 3.17. (Contributed by Jelle Zijlstra in gh-105499.)

e unittest.IsolatedAsyncioTestCase: it is deprecated to return a value that is not None from a

test case.
e urllib.parse deprecated functions: urlparse() instead
— splitattr()
— splithost()
— splitnport ()
— splitpasswd()
— splitport()
— splitquery()
— splittag()
— splittype()
— splituser()
— splitvalue()
— to_bytes(
o wsgiref: SimpleHandler.stdout.write() should not do partial writes.

e xml.etree.ElementTree: Testing the truth value of an Element is deprecated. In a future release

it will always return True. Prefer explicit len(elem) or elem is not None tests instead.

e sys._clear_type_cache() is deprecated: use sys._clear_internal_caches() instead.

9 Removed

9.1 argparse

o Remove the type, choices, and metavar parameters of argparse.BooleanOptionalAction. They

were deprecated since 3.12.

e Calling add_argument_group() on an argument group, and calling add_argument_group() or
add_mutually_exclusive_group() on a mutually exclusive group now raise exceptions. This

nesting was never supported, often failed to work correctly, and was unintentionally exposed

35

https://github.com/python/cpython/issues/92332
https://github.com/python/cpython/issues/105499

through inheritance. This functionality has been deprecated since Python 3.11. (Contributed by
Savannah Ostrowski in gh-127186.)

9.2 ast

e Remove the following classes. They were all deprecated since Python 3.8, and have emitted

deprecation warnings since Python 3.12:
— ast.Bytes

— ast.Ellipsis

ast.NameConstant

ast.Num

ast.Str

Use ast.Constant instead. As a consequence of these removals, user-defined visit_Num,
visit_Str, visit_Bytes, visit_NameConstant and visit_Ellipsis methods on custom ast.
NodeVisitor subclasses will no longer be called when the NodeVisitor subclass is visiting an

AST. Define a visit_Constant method instead.

Also, remove the following deprecated properties on ast.Constant, which were present for com-

patibility with the now-removed AST classes:
— ast.Constant.n
— ast.Constant.s

Use ast.Constant.value instead. (Contributed by Alex Waygood in gh-119562.)

9.3 asyncio

e Remove the following classes and functions. They were all deprecated and emitted deprecation

warnings since Python 3.12:

asyncio.get_child_watcher()

— asyncio.set_child_watcher ()

— asyncio.AbstractEventLoopPolicy.get_child_watcher()
— asyncio.AbstractEventLoopPolicy.set_child_watcher()
— asyncio.AbstractChildWatcher

— asyncio.FastChildWatcher

— asyncio.MultiLoopChildWatcher

— asyncio.PidfdChildWatcher

— asyncio.SafeChildWatcher

36

https://github.com/python/cpython/issues/127186
https://github.com/python/cpython/issues/119562

— asyncio.ThreadedChildWatcher
(Contributed by Kumar Aditya in gh-120804.)

Removed implicit creation of event loop by asyncio.get_event_loop(). It now raises a

RuntimeError if there is no current event loop. (Contributed by Kumar Aditya in gh-126353.)

There’s a few patterns that use asyncio.get_event_loop(), most of them can be replaced with

asyncio.run().
If you’re running an async function, simply use asyncio.run().

Before:

async def main():

loop = asyncio.get_event_loop()
try:
loop.run_until_complete(main())
finally:
loop.close()

After:

async def main():

asyncio.run(main())

If you need to start something, e.g. a server listening on a socket and then run forever, use

asyncio.run() and an asyncio.Event.

Before:

def start_server(loop):

loop = asyncio.get_event_loop()
try:
start_server (loop)
loop.run_forever ()
finally:
loop.close()

After:

37

https://github.com/python/cpython/issues/120804
https://github.com/python/cpython/issues/126353

def start_server(loop):

async def main():
start_server(asyncio.get_running_loop())

await asyncio.Event() .wait()

asyncio.run(main())

If you need to run something in an event loop, then run some blocking code around it, use

asyncio.Runner.

Before:

async def operation_one():

def blocking_code():

async def operation_two():

loop = asyncio.get_event_loop()
try:
loop.run_until_complete (operation_one())
blocking_code()
loop.run_until_complete (operation_two())
finally:
loop.close()

After:

async def operation_one():

def blocking_code():

async def operation_two():

with asyncio.Runner() as runner:
(RDR—D1Hi<)

38

(FiDR— 25 D %)
runner.run(operation_one())
blocking_code ()

runner .run(operation_two())

9.4 collections.abc
e Remove collections.abc.ByteString. It had previously raised a DeprecationWarning since
Python 3.12.
9.5 email
o Remove the isdst parameter from email.utils.localtime (). (Contributed by Hugo van Keme-
nade in gh-118798.)
9.6 importlib
e Remove deprecated importlib.abc classes:
— importlib.abc.ResourceReader
— importlib.abc.Traversable
— importlib.abc.TraversableResources
Use importlib.resources.abc classes instead:
— importlib.resources.abc.Traversable
— importlib.resources.abc.TraversableResources

(Contributed by Jason R. Coombs and Hugo van Kemenade in gh-93963.)

9.7 itertools
e Remove itertools support for copy, deepcopy, and pickle operations. These had previously raised
a DeprecationWarning since Python 3.12. (Contributed by Raymond Hettinger in gh-101588.)
9.8 pathlib

e Remove support for passing additional keyword arguments to pathlib.Path. In previous versions,

any such arguments are ignored.

e Remove support for passing additional positional arguments to pathlib.PurePath.
relative_to() and is_relative_to(). In previous versions, any such arguments are joined

onto other.

39

https://github.com/python/cpython/issues/118798
https://github.com/python/cpython/issues/93963
https://github.com/python/cpython/issues/101588

9.9 pkgutil

9.10

9.11

9.12

9.13

9.14

Remove deprecated pkgutil.get_loader() and pkgutil.find_loader (). These had previously
raised a DeprecationWarning since Python 3.12. (Contributed by Bénédikt Tran in gh-97850.)

pty

Remove deprecated pty.master_open() and pty.slave_open(). They had previously raised a
DeprecationWarning since Python 3.12. Use pty.openpty() instead. (Contributed by Nikita
Sobolev in gh-118824.)

sqlite3

Remove version and version_info from sqlite3. (Contributed by Hugo van Kemenade in

gh-118924.)

Disallow using a sequence of parameters with named placeholders. This had previously raised a
DeprecationWarning since Python 3.12; it will now raise a sqlite3.ProgrammingError. (Con-
tributed by Erlend E. Aasland in gh-118928 and gh-101693.)

typing
Remove typing.ByteString. It had previously raised a DeprecationWarning since Python 3.12.

typing.TypeAliasType now supports star unpacking.

urllib

Remove deprecated Quoter class from urllib.parse. It had previously raised a

DeprecationWarning since Python 3.11. (Contributed by Nikita Sobolev in gh-118827.)

Remove deprecated URLopener and FancyURLopener classes from urllib.request. They had

previously raised a DeprecationWarning since Python 3.3.

myopener.open() can be replaced with urlopen(), and myopener.retrieve() can be replaced
with urlretrieve (). Customizations to the opener classes can be replaced by passing customized

handlers to build_opener (). (Contributed by Barney Gale in gh-84850.)

Others

Using NotImplemented in a boolean context will now raise a TypeError. It had previously raised

a DeprecationWarning since Python 3.9. (Contributed by Jelle Zijlstra in gh-118767.)

The int () built-in no longer delegates to __trunc__(). Classes that want to support conversion
to integer must implement either __int__() or __index__(). (Contributed by Mark Dickinson

in gh-119743.)

40

https://github.com/python/cpython/issues/97850
https://github.com/python/cpython/issues/118824
https://github.com/python/cpython/issues/118924
https://github.com/python/cpython/issues/118928
https://github.com/python/cpython/issues/101693
https://github.com/python/cpython/issues/118827
https://github.com/python/cpython/issues/84850
https://github.com/python/cpython/issues/118767
https://github.com/python/cpython/issues/119743

10 CPython Bytecode Changes

« Replaced the opcode BINARY_SUBSCR by BINARY_OP with oparg NB_SUBSCR. (Contributed by Irit
Katriel in gh-100239.)

11 Porting to Python 3.14

This section lists previously described changes and other bugfixes that may require changes to your code.

11.1 Changes in the Python API

e functools.partial is now a method descriptor. Wrap it in staticmethod() if you want to pre-

serve the old behavior. (Contributed by Serhiy Storchaka and Dominykas Grigonis in gh-121027.)

e The locale.nl_langinfo() function now sets temporarily the LC_CTYPE locale in some cases.

This temporary change affects other threads. (Contributed by Serhiy Storchaka in gh-69998.)

e types.UnionType is now an alias for typing.Union, causing changes in some behaviors. See above
for more details. (Contributed by Jelle Zijlstra in gh-105499.)

12 Build changes

o GNU Autoconf 2.72 is now required to generate configure. (Contributed by Erlend Aasland in
gh-115765.)

o #pragma-based linking with python3*.1ib can now be switched off with Py_NO_LINK_LIB. (Con-
tributed by Jean-Christophe Fillion-Robin in gh-82909.)
12.1 PEP 761: Discontinuation of PGP signatures

PGP signatures will not be available for CPython 3.14 and onwards. Users verifying artifacts must use
Sigstore verification materials for verifying CPython artifacts. This change in release process is specified
in PEP 761.

13 C API changes

13.1 New features

o Add PyLong_GetSign() function to get the sign of int objects. (Contributed by Sergey B Kir-
pichev in gh-116560.)

e Add a new PyUnicodeWriter API to create a Python str object:

PyUnicodeWriter_Create()

PyUnicodeWriter_DecodeUTF8Stateful ()

PyUnicodeWriter_Discard()

— PyUnicodeWriter_Finish()
41

https://github.com/python/cpython/issues/100239
https://github.com/python/cpython/issues/121027
https://github.com/python/cpython/issues/69998
https://github.com/python/cpython/issues/105499
https://github.com/python/cpython/issues/115765
https://github.com/python/cpython/issues/82909
https://www.python.org/downloads/metadata/sigstore/
https://peps.python.org/pep-0761/
https://github.com/python/cpython/issues/116560

— PyUnicodeWriter_Format ()

— PyUnicodeWriter_WriteChar ()

— PyUnicodeWriter_WriteRepr ()

— PyUnicodeWriter_WriteStr()

— PyUnicodeWriter_WriteSubstring()

— PyUnicodeWriter_WriteUCS4()

— PyUnicodeWriter_WriteUTF8()

— PyUnicodeWriter_WriteWideChar ()
(Contributed by Victor Stinner in gh-119182.)

o Add PyIter_NextItem() to replace PyIter_Next (), which has an ambiguous return value. (Con-
tributed by Irit Katriel and Erlend Aasland in gh-105201.)

e Add PyLong_IsPositive(), PyLong_IsNegative() and PyLong_IsZero() for checking if
PyLongObject is positive, negative, or zero, respectively. (Contributed by James Roy and Sergey
B Kirpichev in gh-126061.)

e Add new functions to convert C <stdint.h> numbers from/to Python int:

PyLong_AsInt32()

PyLong_AsInt64()
— PyLong_AsUInt32()

— PyLong_AsUInt64()

PyLong_FromInt32()

PyLong_FromInt64()

PyLong_FromUInt32()
— PyLong_FromUInt64()
(Contributed by Victor Stinner in gh-120389.)

o Add PyBytes_Join(sep, iterable) function, similar to sep.join(iterable) in Python. (Con-
tributed by Victor Stinner in gh-121645.)

o Add Py_HashBuffer() to compute and return the hash value of a buffer. (Contributed by Antoine
Pitrou and Victor Stinner in gh-122854.)

o Add functions to get and set the current runtime Python configuration (PEP 741):
— PyConfig_Get()
— PyConfig_GetInt()

42

https://github.com/python/cpython/issues/119182
https://github.com/python/cpython/issues/105201
https://github.com/python/cpython/issues/126061
https://github.com/python/cpython/issues/120389
https://github.com/python/cpython/issues/121645
https://github.com/python/cpython/issues/122854
https://peps.python.org/pep-0741/

— PyConfig_Set()

— PyConfig_Names()
(Contributed by Victor Stinner in gh-107954.)

o Add functions to configure the Python initialization (PEP 741):

— Py_InitializeFromInitConfig()

— PyInitConfig_AddModule ()

— PyInitConfig Create()

— PyInitConfig_Free()

— PyInitConfig_FreeStrList ()

— PyInitConfig_GetError()

— PyInitConfig_GetExitCode()

— PyInitConfig GetInt ()

— PyInitConfig_GetStr()

— PyInitConfig_GetStrList()

— PyInitConfig HasOption()

— PyInitConfig_SetInt()

— PyInitConfig_SetStr()

— PyInitConfig_SetStrList()
(Contributed by Victor Stinner in gh-107954.)

e Add a new import and export API for Python int objects (PEP 757):

PyLong_GetNativeLayout Q);
— PyLong_Export ();

— PyLong_FreeExport();

PyLongWriter_Create();

PyLongWriter_Finish();

PyLongWriter_Discard().
(Contributed by Sergey B Kirpichev and Victor Stinner in gh-102471.)

e Add PyType_GetBaseByToken() and Py_tp_token slot for easier superclass identification, which
attempts to resolve the type checking issue mentioned in PEP 630 (gh-124153).

43

https://github.com/python/cpython/issues/107954
https://peps.python.org/pep-0741/
https://github.com/python/cpython/issues/107954
https://peps.python.org/pep-0757/
https://github.com/python/cpython/issues/102471
https://peps.python.org/pep-0630/#type-checking
https://peps.python.org/pep-0630/
https://github.com/python/cpython/issues/124153

e Add PyUnicode_Equal() function to the limited C API: test if two strings are equal. (Contributed
by Victor Stinner in gh-124502.)

e Add PyType_Freeze() function to make a type immutable. (Contributed by Victor Stinner in
gh-121654.)

o Add PyUnstable_0Object_EnableDeferredRefcount() for enabling deferred reference counting,
as outlined in PEP 703.

o Add PyMonitoring_FireBranchLeftEvent () and PyMonitoring_FireBranchRightEvent() for
generating BRANCH_LEFT and BRANCH_RIGHT events, respectively.

e Add Py_fopen() function to open a file. Similar to the fopen() function, but the path parameter
is a Python object and an exception is set on error. Add also Py_fclose() function to close a file.
(Contributed by Victor Stinner in gh-127350.)

e Add support of nullable arguments in PyArg_ParseTuple() and similar functions. Adding 7
after any format unit makes None be accepted as a value. (Contributed by Serhiy Storchaka in
gh-112068.)

e The k and K formats in PyArg_ParseTuple() and similar functions now use __index__() if
available, like all other integer formats. (Contributed by Serhiy Storchaka in gh-112068.)

e Add macros Py_PACK_VERSION() and Py_PACK_FULL_VERSION() for bit-packing Python version
numbers. (Contributed by Petr Viktorin in gh-128629.)

e Add PyUnstable_IsImmortal() for determining whether an object is immortal, for debugging

purposes.

e Add PyImport_ImportModuleAttr() and PyImport_ImportModuleAttrString() helper func-
tions to import a module and get an attribute of the module. (Contributed by Victor Stinner
in gh-128911.)

e Add support for a new p format unit in Py_BuildValue() that allows to take a C integer and
produce a Python bool object. (Contributed by Pablo Galindo in bpo-45325.)

13.2 Limited C API changes

e In the limited C API 3.14 and newer, Py_TYPE() and Py_REFCNT() are now implemented as an
opaque function call to hide implementation details. (Contributed by Victor Stinner in gh-120600
and gh-124127.)

e Remove the PySequence_Fast_GET_SIZE, PySequence_Fast_GET_ITEM and
PySequence_Fast_ITEMS macros from the limited C API, since these macros never worked
in the limited C API. Keep PySequence_Fast() in the limited C APIL. (Contributed by Victor
Stinner in gh-91417.)

44

https://github.com/python/cpython/issues/124502
https://github.com/python/cpython/issues/121654
https://peps.python.org/pep-0703/
https://github.com/python/cpython/issues/127350
https://github.com/python/cpython/issues/112068
https://github.com/python/cpython/issues/112068
https://github.com/python/cpython/issues/128629
https://github.com/python/cpython/issues/128911
https://bugs.python.org/issue?@action=redirect&bpo=45325
https://github.com/python/cpython/issues/120600
https://github.com/python/cpython/issues/124127
https://github.com/python/cpython/issues/91417

13.3 Porting to Python 3.14

e Py _Finalize() now deletes all interned strings. This is backwards incompatible to any
C-Extension that holds onto an interned string after a call to Py_Finalize() and is then reused
after a call to Py_Initialize(). Any issues arising from this behavior will normally result in
crashes during the execution of the subsequent call to Py_Initialize() from accessing uninitial-
ized memory. To fix, use an address sanitizer to identify any use-after-free coming from an interned

string and deallocate it during module shutdown. (Contributed by Eddie Elizondo in gh-113601.)

e The Unicode Exception Objects C API now raises a TypeError if its exception argument is not a

UnicodeError object. (Contributed by Bénédikt Tran in gh-127691.)
e Private functions promoted to public C APIs:

— _PyBytes_Join(): PyBytes_Join().

_PyLong_IsNegative(): PyLong_IsNegative().

_PyLong_IsPositive(): PyLong_IsPositive().
— _PyLong_IsZero(): PyLong_IsZero().

— _PyLong_Sign(): PyLong_GetSign().

_PyUnicodeWriter_Dealloc(): PyUnicodeWriter_Discard().

_PyUnicodeWriter_Finish(): PyUnicodeWriter_Finish().

_PyUnicodeWriter_Init(): use PyUnicodeWriter_Create().
— _PyUnicodeWriter_Prepare(): (no replacement).

— _PyUnicodeWriter_PrepareKind(): (no replacement).

_PyUnicodeWriter_WriteChar(): PyUnicodeWriter_WriteChar().

_PyUnicodeWriter_WriteStr(): PyUnicodeWriter_WriteStr().
— _PyUnicodeWriter_WriteSubstring(): PyUnicodeWriter_WriteSubstring().
— _PyUnicode_EQ(): PyUnicode_Equal().

— _PyUnicode_Equal(): PyUnicode_Equal().

_Py_GetConfig(): PyConfig_Get() and PyConfig_GetInt ().

_Py_HashBytes(): Py_HashBuffer().

_Py_fopen_obj(): Py_fopen().

The pythoncapi-compat project can be used to get most of these new functions on Python 3.13

and older.

45

https://github.com/python/cpython/issues/113601
https://github.com/python/cpython/issues/127691
https://github.com/python/pythoncapi-compat/

13.4 Deprecated

The Py_HUGE_VAL macro is soft deprecated, use Py_INFINITY instead. (Contributed by Sergey B
Kirpichev in gh-120026.)

Macros Py_IS_NAN, Py_IS_INFINITY and Py_IS_FINITE are soft deprecated, use instead isnan,
isinf and isfinite available from math.h since C99. (Contributed by Sergey B Kirpichev in
gh-119613.)

Non-tuple sequences are deprecated as argument for the (items) format unit in
PyArg_ParseTuple() and other argument parsing functions if items contains format units which

store a borrowed buffer or a borrowed reference. (Contributed by Serhiy Storchaka in gh-50333.)

The previously undocumented function PySequence_In() 1is soft deprecated. Use

PySequence_Contains() instead. (Contributed by Yuki Kobayashi in gh-127896.)

The PyMonitoring_FireBranchEvent function is deprecated and should be replaced with calls to

PyMonitoring_FireBranchLeftEvent () and PyMonitoring FireBranchRightEvent ().
The following private functions are deprecated and planned for removal in Python 3.18:
— _PyBytes_Join(): use PyBytes_Join().

— _PyDict_GetItemStringWithError(): use PyDict_GetItemStringRef ().

_PyDict_Pop(): use PyDict_Pop().

_PyLong_Sign(): use PyLong_GetSign().
— _PyLong_FromDigits() and _PyLong_New(): use PyLongWriter_Create().
— _PyThreadState_UncheckedGet (): use PyThreadState_GetUnchecked().

— _PyUnicode_AsString(): use PyUnicode_AsUTF8().

_PyUnicodeWriter_Init(): replace _PyUnicodeWriter_Init(&writer) with writer =

PyUnicodeWriter_Create(0).

— _PyUnicodeWriter_Finish(): replace _PyUnicodeWriter_Finish(&writer) with

PyUnicodeWriter_Finish(writer).

— _PyUnicodeWriter_Dealloc(): replace _PyUnicodeWriter_Dealloc(&writer) with

PyUnicodeWriter_Discard(writer).

_PyUnicodeWriter_WriteChar(): replace _PyUnicodeWriter_WriteChar(&writer, ch)
with PyUnicodeWriter_WriteChar(writer, ch).

— _PyUnicodeWriter_WriteStr(): replace _PyUnicodeWriter WriteStr(&writer, str)
with PyUnicodeWriter_WriteStr(writer, str).

— _PyUnicodeWriter_WriteSubstring(): replace _PyUnicodeWriter_WriteSubstring(&writer,

str, start, end) with PyUnicodeWriter_WriteSubstring(writer, str, start, end).

46

https://github.com/python/cpython/issues/120026
https://github.com/python/cpython/issues/119613
https://github.com/python/cpython/issues/50333
https://github.com/python/cpython/issues/127896

_PyUnicodeWriter_WriteASCIIString(): replace _PyUnicodeWriter_WriteASCIIString(&writer,
str) with PyUnicodeWriter_WriteUTF8(writer, str).

— _PyUnicodeWriter_WriteLatinlString(): replace _PyUnicodeWriter_WriteLatinlString(&writer,
str) with PyUnicodeWriter_WriteUTF8(writer, str).

— _Py_HashPointer(): use Py_HashPointer().

_Py_fopen_obj(): use Py_fopen().

The pythoncapi-compat project can be used to get these new public functions on Python 3.13 and
older. (Contributed by Victor Stinner in gh-128863.)

Pending removal in Python 3.15

The bundled copy of 1ibmpdecimal.
The PyImport_ImportModuleNoBlock(): Use PyImport_ImportModule() instead.

PyWeakref_GetObject () and PyWeakref GET_OBJECT(): Use PyWeakref_GetRef () instead. The
pythoncapi-compat project can be used to get PyWeakref_GetRef () on Python 3.12 and older.

Py_UNICODE type and the Py_UNICODE_WIDE macro: Use wchar_t instead.
PyUnicode_AsDecodedObject (): Use PyCodec_Decode () instead.

PyUnicode_AsDecodedUnicode(): Use PyCodec_Decode() instead; Note that some codecs (for

example, "base64”) may return a type other than str, such as bytes.
PyUnicode_AsEncodedObject(): Use PyCodec_Encode () instead.

PyUnicode_AsEncodedUnicode(): Use PyCodec_Encode() instead; Note that some codecs (for

example, "base64”) may return a type other than bytes, such as str.
Python initialization functions, deprecated in Python 3.13:
— Py_GetPath(): Use PyConfig_Get("module_search_paths") (sys.path) instead.

— Py_GetPrefix(): Use PyConfig_Get("base_prefix") (sys.base_prefix) instead. Use

PyConfig_Get("prefix") (sys.prefix) if virtual environments need to be handled.

— Py_GetExecPrefix(): Use PyConfig_Get("base_exec_prefix") (sys.base_exec_prefix)
instead. Use PyConfig_Get("exec_prefix") (sys.exec_prefix) if virtual environments

need to be handled.
— Py_GetProgramFullPath(): Use PyConfig_Get ("executable") (sys.executable) instead.
— Py_GetProgramName (): Use PyConfig_Get ("executable") (sys.executable) instead.

— Py_GetPythonHome (): Use PyConfig_Get("home") or the PYTHONHOME environment variable

instead.

The pythoncapi-compat project can be used to get PyConfig_Get () on Python 3.13 and older.

47

https://github.com/python/pythoncapi-compat/
https://github.com/python/cpython/issues/128863
https://github.com/python/pythoncapi-compat/
https://github.com/python/pythoncapi-compat/

e Functions to configure Python’s initialization, deprecated in Python 3.11:

PySys_SetArgvEx(): Set PyConfig.argv instead.
— PySys_SetArgv(): Set PyConfig.argv instead.

— Py_SetProgramName (): Set PyConfig.program_name instead.

Py_SetPythonHome (): Set PyConfig.home instead.

PySys_ResetWarnOptions(): Clear sys.warnoptions and warnings.filters instead.
The Py_InitializeFromConfig() API should be used with PyConfig instead.
e Global configuration variables:
— Py_DebugFlag: Use PyConfig.parser_debug or PyConfig_Get ("parser_debug") instead.
— Py_VerboseFlag: Use PyConfig.verbose or PyConfig_Get ("verbose") instead.
— Py_QuietFlag: Use PyConfig.quiet or PyConfig_Get("quiet") instead.

— Py_InteractiveFlag: Use PyConfig.interactive or PyConfig_Get("interactive") in-

stead.
— Py_InspectFlag: Use PyConfig.inspect or PyConfig_Get ("inspect") instead.

— Py_OptimizeFlag: Use PyConfig.optimization_level or
PyConfig_Get("optimization_level") instead.

— Py_NoSiteFlag: Use PyConfig.site_import or PyConfig Get("site_import") instead.

— Py_BytesWarningFlag: Use PyConfig.bytes_warning or PyConfig_Get ("bytes_warning")

instead.

— Py_FrozenFlag: Use PyConfig.pathconfig_warnings or
PyConfig_Get("pathconfig_warnings") instead.

— Py_IgnoreEnvironmentFlag: Use PyConfig.use_environment or

PyConfig_Get("use_environment") instead.

— Py_DontWriteBytecodeFlag: Use PyConfig.write_bytecode or
PyConfig_Get("write_bytecode") instead.

— Py_NoUserSiteDirectory: Use PyConfig.user_site_directory or

PyConfig_Get("user_site_directory") instead.

— Py_UnbufferedStdioFlag: Use PyConfig.buffered_stdio or
PyConfig_Get("buffered_stdio") instead.

— Py_HashRandomizationFlag: Use PyConfig.use_hash_seed and PyConfig.hash_seed or
PyConfig_Get("hash_seed") instead.

— Py_IsolatedFlag: Use PyConfig.isolated or PyConfig_Get("isolated") instead.

48

— Py_LegacyWindowsFSEncodingFlag: Use PyPreConfig.legacy_windows_fs_encoding or

PyConfig_Get("legacy_windows_fs_encoding") instead.

— Py_LegacyWindowsStdioFlag: Use PyConfig.legacy_windows_stdio or
PyConfig_Get("legacy_windows_stdio") instead.

— Py_FileSystemDefaultEncoding, Py_HasFileSystemDefaultEncoding: Use PyConfig.

filesystem_encoding or PyConfig_Get("filesystem_encoding") instead.

— Py_FileSystemDefaultEncodeErrors: Use PyConfig.filesystem_errors or

PyConfig_Get("filesystem_errors") instead.

— Py_UTF8Mode: Use PyPreConfig.utf8_mode or PyConfig_Get ("utf8_mode") instead. (see
Py_PrelInitialize())

The Py_InitializeFromConfig() API should be used with PyConfig to set these options. Or
PyConfig_Get () can be used to get these options at runtime.
Pending removal in Python 3.18

o Deprecated private functions (gh-128863):

— _PyBytes_Join(): use PyBytes_Join().

_PyDict_GetItemStringWithError(): use PyDict_GetItemStringRef ().

_PyDict_Pop(): PyDict_Pop().

_PyLong_Sign(): use PyLong_GetSign().
— _PyLong_FromDigits() and _PyLong_New(): use PyLongWriter_Create().

— _PyThreadState_UncheckedGet (): use PyThreadState_GetUnchecked().

_PyUnicode_AsString(): use PyUnicode_AsUTF8().

_PyUnicodeWriter_Init(): replace _PyUnicodeWriter_Init(&writer) with writer =

PyUnicodeWriter_Create(0).

— _PyUnicodeWriter_Finish(): replace _PyUnicodeWriter_Finish(&writer) with

PyUnicodeWriter_Finish(writer).

— _PyUnicodeWriter_Dealloc(): replace _PyUnicodeWriter_Dealloc(&writer) with

PyUnicodeWriter_Discard(writer).

_PyUnicodeWriter_WriteChar(): replace _PyUnicodeWriter_WriteChar(&writer, ch)

with PyUnicodeWriter_WriteChar(writer, ch).

— _PyUnicodeWriter_WriteStr(): replace _PyUnicodeWriter_WriteStr(&writer, str)

with PyUnicodeWriter_WriteStr(writer, str).

_PyUnicodeWriter_WriteSubstring(): replace _PyUnicodeWriter_WriteSubstring(&writer,

str, start, end) with PyUnicodeWriter_WriteSubstring(writer, str, start, end).

49

https://github.com/python/cpython/issues/128863

_PyUnicodeWriter_WriteASCIIString(): replace _PyUnicodeWriter_WriteASCIIString(&writer,
str) with PyUnicodeWriter_WriteUTF8(writer, str).

— _PyUnicodeWriter_WriteLatinlString(): replace _PyUnicodeWriter_WriteLatinlString(&writer,
str) with PyUnicodeWriter_WriteUTF8(writer, str).

— _PyUnicodeWriter_Prepare(): (no replacement).

_PyUnicodeWriter_PrepareKind(): (no replacement).

_Py_HashPointer(): use Py_HashPointer().
— _Py_fopen_obj(): use Py_fopen().
The pythoncapi-compat project can be used to get these new public functions on Python 3.13 and

older.

Pending removal in future versions
The following APIs are deprecated and will be removed, although there is currently no date scheduled

for their removal.
e Py_TPFLAGS_HAVE_FINALIZE: Unneeded since Python 3.8.
e PyErr_Fetch(): Use PyErr_GetRaisedException() instead.
o PyErr_NormalizeException(): Use PyErr_GetRaisedException() instead.
e PyErr_Restore(): Use PyErr_SetRaisedException() instead.
e PyModule_GetFilename(): Use PyModule_GetFilenameObject () instead.
e Py0S_AfterFork(): Use Py0S_AfterFork_Child() instead.
o PySlice_GetIndicesEx(): Use PySlice_Unpack() and PySlice_AdjustIndices() instead.
e PyUnicode_READY(): Unneeded since Python 3.12
o PyErr _Display(): Use PyErr_DisplayException() instead.
e _PyErr_ChainExceptions(): Use _PyErr_ChainExceptions1() instead.
o PyBytesObject.ob_shash member: call PyObject_Hash() instead.

o Thread Local Storage (TLS) API:

PyThread_create_key(): Use PyThread_tss_alloc() instead.

PyThread_delete_key(): Use PyThread_tss_free() instead.
— PyThread_set_key_value(): Use PyThread_tss_set () instead.

— PyThread_get_key_value(): Use PyThread_tss_get () instead.

PyThread_delete_key_value(): Use PyThread_tss_delete() instead.

50

https://github.com/python/pythoncapi-compat/

— PyThread_ReInitTLS(): Unneeded since Python 3.7.

13.5 Removed

o Creating immutable types with mutable bases was deprecated since 3.12 and now raises a

TypeError.

e Remove PyDictObject.ma_version_tag member which was deprecated since Python 3.12. Use

the PyDict_AddWatcher () APT instead. (Contributed by Sam Gross in gh-124296.)

e Remove the private _Py_InitializeMain() function. It was a provisional API added to Python

3.8 by PEP 587. (Contributed by Victor Stinner in gh-129033.)

51

https://github.com/python/cpython/issues/124296
https://peps.python.org/pep-0587/
https://github.com/python/cpython/issues/129033

52

=5l
LT 7Ry RIS

BRIEEH
BROWSER, 26
PYTHON_COLORS, 14, 18, 25
PYTHON_DISABLE_REMOTE_DEBUG, 5
PYTHONHOME, 47
PYTHONLEGACYWINDOWSFSENCODING,
32

B

BROWSER, 26

P

Python Enhancement Proposals
PEP 563, 8
PEP 587, 10, 51
PEP 626, 30

PEP 630, 43

PEP 649, 6, 24

PEP 703, 44

PEP 734, 14

PEP 741, 10, 42, 43

PEP 749, 6, 13

PEP 757, 43

PEP 758, 6

PEP 761, 41

PEP 765, 13

PEP 768, 46
PYTHON_COLORS, 14, 18, 25
PYTHON_DISABLE_REMOTE_DEBUG, 5
PYTHONHOME, 47
PYTHONLEGACYWINDOWSFSENCODING, 32

R

RFC

RFC
RFC
RFC
RFC
RFC
RFC
RFC
RFC
RFC
RFC
RFC
RFC
RFC
RFC
RFC
RFC
RFC

1494, 19
2104, 12, 17
2177, 17
2361, 19
3362, 19
3745, 19
3950, 19
4047, 19
4337, 19
5334, 19
7616, 25
7903, 19
8081, 18
9512, 19
9559, 19
9562, 26
9639, 19

	Summary -- release highlights
	Incompatible changes
	New features
	PEP 768: Safe external debugger interface for CPython
	Remote attaching to a running Python process with PDB
	PEP 758 – Allow except and except* expressions without parentheses
	PEP 649: deferred evaluation of annotations
	Implications for annotated code
	Implications for readers of __annotations__
	Related changes
	from __future__ import annotations

	Improved error messages
	PEP 741: Python Configuration C API
	A new type of interpreter

	Other language changes
	PEP 765: Disallow return/break/continue that exit a finally block

	New modules
	Improved modules
	argparse
	ast
	bdb
	calendar
	concurrent.futures
	contextvars
	ctypes
	datetime
	decimal
	difflib
	dis
	errno
	faulthandler
	fnmatch
	fractions
	functools
	getopt
	graphlib
	hmac
	http
	imaplib
	inspect
	io
	json
	linecache
	logging.handlers
	math
	mimetypes
	multiprocessing
	operator
	os
	pathlib
	pdb
	pickle
	platform
	pydoc
	socket
	ssl
	struct
	symtable
	sys
	sys.monitoring
	sysconfig
	threading
	tkinter
	turtle
	types
	typing
	unicodedata
	unittest
	urllib
	uuid
	webbrowser
	zipinfo

	Optimizations
	asyncio
	base64
	io
	uuid
	zlib

	Deprecated
	Pending removal in Python 3.15
	Pending removal in Python 3.16
	Pending removal in future versions

	Removed
	argparse
	ast
	asyncio
	collections.abc
	email
	importlib
	itertools
	pathlib
	pkgutil
	pty
	sqlite3
	typing
	urllib
	Others

	CPython Bytecode Changes
	Porting to Python 3.14
	Changes in the Python API

	Build changes
	PEP 761: Discontinuation of PGP signatures

	C API changes
	New features
	Limited C API changes
	Porting to Python 3.14
	Deprecated
	Pending removal in Python 3.15
	Pending removal in Python 3.18
	Pending removal in future versions

	Removed

	索引

