Remote debugging attachment protocol
)—2X 3.14.0a7

Guido van Rossum and the Python development team

4 B 27, 2025
=PN
1 Locating the PyRuntime structure 2
2 Reading _Py_DebugOffsets 6
3 Locating the interpreter and thread state 7
4 Writing control information 9
5 Summary 11

This section describes the low-level protocol that enables external tools to inject and execute a Python

script within a running CPython process.

This mechanism forms the basis of the sys.remote_exec() function, which instructs a remote Python
process to execute a .py file. However, this section does not document the usage of that function.
Instead, it provides a detailed explanation of the underlying protocol, which takes as input the pid of a
target Python process and the path to a Python source file to be executed. This information supports

independent reimplementation of the protocol, regardless of programming language.

A

The execution of the injected script depends on the interpreter reaching a safe evaluation point. As

D

=3
=

a result, execution may be delayed depending on the runtime state of the target process.

Once injected, the script is executed by the interpreter within the target process the next time a safe
evaluation point is reached. This approach enables remote execution capabilities without modifying the

behavior or structure of the running Python application.
Subsequent sections provide a step-by-step description of the protocol, including techniques for locat-

1

ing interpreter structures in memory, safely accessing internal fields, and triggering code execution.
Platform-specific variations are noted where applicable, and example implementations are included to

clarify each operation.

1 Locating the PyRuntime structure

CPython places the PyRuntime structure in a dedicated binary section to help external tools find it at
runtime. The name and format of this section vary by platform. For example, .PyRuntime is used on
ELF systems, and __DATA, __PyRuntime is used on macOS. Tools can find the offset of this structure by

examining the binary on disk.

The PyRuntime structure contains CPython’ s global interpreter state and provides access to other

internal data, including the list of interpreters, thread states, and debugger support fields.

To work with a remote Python process, a debugger must first find the memory address of the PyRuntime
structure in the target process. This address can’ t be hardcoded or calculated from a symbol name,

because it depends on where the operating system loaded the binary.
The method for finding PyRuntime depends on the platform, but the steps are the same in general:
1. Find the base address where the Python binary or shared library was loaded in the target process.
2. Use the on-disk binary to locate the offset of the .PyRuntime section.
3. Add the section offset to the base address to compute the address in memory.
The sections below explain how to do this on each supported platform and include example code.
Linux (ELF)
To find the PyRuntime structure on Linux:

1. Read the process’ s memory map (for example, /proc/<pid>/maps) to find the address where the

Python executable or 1libpython was loaded.
2. Parse the ELF section headers in the binary to get the offset of the .PyRuntime section.
3. Add that offset to the base address from step 1 to get the memory address of PyRuntime.

The following is an example implementation:

def find_py_runtime_linux(pid: int) -> int:
Step 1: Try to find the Python exzecutable in memory
binary_path, base_address = find_mapped_binary(

pid, name_contains="python"

Step 2: Fallback to shared library <f exzecutable is not found
if binary_path is None:
binary_path, base_address = find_mapped_binary(
(RDR=V1Hi <)

(RIDR=I D5 DR E)

pid, name_contains="libpython"

Step 3: Parse ELF headers to get .PyRuntime section offset
section_offset = parse_elf_section_offset(

binary_path, ".PyRuntime"

Step 4: Compute PyRuntime address in memory

return base_address + section_offset

On Linux systems, there are two main approaches to read memory from another process. The first is
through the /proc filesystem, specifically by reading from /proc/ [pid] /mem which provides direct access
to the process’s memory. This requires appropriate permissions - either being the same user as the target
process or having root access. The second approach is using the process_vm_readv() system call which
provides a more efficient way to copy memory between processes. While ptrace’s PTRACE_PEEKTEXT
operation can also be used to read memory, it is significantly slower as it only reads one word at a time

and requires multiple context switches between the tracer and tracee processes.

For parsing ELF sections, the process involves reading and interpreting the ELF file format structures
from the binary file on disk. The ELF header contains a pointer to the section header table. Each section
header contains metadata about a section including its name (stored in a separate string table), offset,
and size. To find a specific section like .PyRuntime, you need to walk through these headers and match
the section name. The section header then provdes the offset where that section exists in the file, which

can be used to calculate its runtime address when the binary is loaded into memory.
You can read more about the ELF file format in the ELF specification.

macOS (Mach-0)

To find the PyRuntime structure on macOS:

1. Call task_for_pid() to get the mach_port_t task port for the target process. This handle is

needed to read memory using APIs like mach_vm_read_overwrite and mach_vm_region.
2. Scan the memory regions to find the one containing the Python executable or 1ibpython.

3. Load the binary file from disk and parse the Mach-O headers to find the section named PyRuntime
in the __DATA segment. On macOS, symbol names are automatically prefixed with an underscore,
so the PyRuntime symbol appears as _PyRuntime in the symbol table, but the section name is not
affected.

The following is an example implementation:

def find_py_runtime_macos(pid: int) -> int:
Step 1: Get access to the process's memory
(RDR=V 1K)

https://en.wikipedia.org/wiki/Executable_and_Linkable_Format

(RIDR=I D5 DR E)

handle = get_memory_access_handle(pid)

Step 2: Try to find the Python exzecutable in memory
binary_path, base_address = find_mapped_binary(

handle, name_contains="python"

Step 3: Fallback to libpython if the exzecutable is not found
if binary_path is None:
binary_path, base_address = find_mapped_binary(

handle, name_contains="libpython"

Step 4: Parse Mach-0 headers to get __DATA,__PyRuntime section offset
section_offset = parse_macho_section_offset(

binary_path, "__DATA", "__PyRuntime"

Step 5: Compute the PyRuntime address in memory

return base_address + section_offset

On macOS, accessing another process’s memory requires using Mach-O specific APIs and file for-
mats. The first step is obtaining a task_port handle via task_for_pid(), which provides access
to the target process’s memory space. This handle enables memory operations through APIs like

mach_vm_read_overwrite().

The process memory can be examined using mach_vm_region() to scan through the virtual memory
space, while proc_regionfilename() helps identify which binary files are loaded at each memory re-
gion. When the Python binary or library is found, its Mach-O headers need to be parsed to locate the

PyRuntime structure.

The Mach-O format organizes code and data into segments and sections. The PyRuntime structure lives
in a section named __PyRuntime within the __DATA segment. The actual runtime address calculation
involves finding the __TEXT segment which serves as the binary’s base address, then locating the __DATA
segment containing our target section. The final address is computed by combining the base address

with the appropriate section offsets from the Mach-O headers.

Note that accessing another process’s memory on macOS typically requires elevated privileges - either

root, access or special security entitlements granted to the debugging process.

Windows (PE)

To find the PyRuntime structure on Windows:

1. Use the ToolHelp API to enumerate all modules loaded in the target process. This is done using

functions such as CreateToolhelp32Snapshot, Module32First, and Module32Next.

2. Identify the module corresponding to python.exe or pythonXY.d1l, where X and Y are the major

and minor version numbers of the Python version, and record its base address.

3. Locate the PyRuntim section. Due to the PE format’s 8-character limit on section names (defined
as IMAGE_SIZEOF_SHORT_NAME), the original name PyRuntime is truncated. This section contains

the PyRuntime structure.
4. Retrieve the section’ s relative virtual address (RVA) and add it to the base address of the module.

The following is an example implementation:

def find_py_runtime_windows(pid: int) -> int:
Step 1: Try to find the Python exzecutable in memory
binary_path, base_address = find_loaded_module(

pid, name_contains="python"

Step 2: Fallback to shared pythonXY.dll if the executable is not
found
if binary_path is None:

binary_path, base_address = find_loaded_module(

pid, name_contains="python3"

Step 3: Parse PE section headers to get the RVA of the PyRuntime
section. The section name appears as "PyRuntim" due to the
8-character limit defined by the PE format (IMAGE_SIZEOF SHORT NAME).

section_rva = parse_pe_section_offset(binary_path, "PyRuntim")

Step 4: Compute PyRuntime address in memory

return base_address + section_rva

On Windows, accessing another process’s memory requires using the Windows API functions like
CreateToolhelp32Snapshot () and Module32First()/Module32Next () to enumerate loaded modules.
The OpenProcess() function provides a handle to access the target process’s memory space, enabling

memory operations through ReadProcessMemory ().

The process memory can be examined by enumerating loaded modules to find the Python binary or

DLL. When found, its PE headers need to be parsed to locate the PyRuntime structure.

The PE format organizes code and data into sections. The PyRuntime structure lives in a section named

https://learn.microsoft.com/en-us/windows/win32/api/tlhelp32/nf-tlhelp32-createtoolhelp32snapshot
https://learn.microsoft.com/en-us/windows/win32/api/tlhelp32/nf-tlhelp32-module32first
https://learn.microsoft.com/en-us/windows/win32/api/tlhelp32/nf-tlhelp32-module32next

"PyRuntim” (truncated from "PyRuntime” due to PE’s 8-character name limit). The actual runtime
address calculation involves finding the module’s base address from the module entry, then locating our
target section in the PE headers. The final address is computed by combining the base address with the

section’s virtual address from the PE section headers.

Note that accessing another process’s memory on Windows typically requires appropriate privileges -

either administrative access or the SeDebugPrivilege privilege granted to the debugging process.

2 Reading _Py__DebugOffsets

Once the address of the PyRuntime structure has been determined, the next step is to read the

_Py_DebugOffsets structure located at the beginning of the PyRuntime block.

This structure provides version-specific field offsets that are needed to safely read interpreter and thread
state memory. These offsets vary between CPython versions and must be checked before use to ensure

they are compatible.
To read and check the debug offsets, follow these steps:

1. Read memory from the target process starting at the PyRuntime address, covering the same number
of bytes as the _Py_DebugOffsets structure. This structure is located at the very start of the
PyRuntime memory block. Its layout is defined in CPython’ s internal headers and stays the same

within a given minor version, but may change in major versions.
2. Check that the structure contains valid data:
e The cookie field must match the expected debug marker.
e The version field must match the version of the Python interpreter used by the debugger.

o If either the debugger or the target process is using a pre-release version (for example, an

alpha, beta, or release candidate), the versions must match exactly.

e The free_threaded field must have the same value in both the debugger and the target

process.

3. If the structure is valid, the offsets it contains can be used to locate fields in memory. If any check

fails, the debugger should stop the operation to avoid reading memory in the wrong format.

The following is an example implementation that reads and checks _Py_DebugOffsets:

def read_debug_offsets(pid: int, py_runtime_addr: int) -> DebugOffsets:
Step 1: Read memory from the target process at the PyRuntime address
data = read_process_memory(

pid, address=py_runtime_addr, size=DEBUG_OFFSETS_SIZE

Step 2: Deserialize the raw bytes into a _Py DebugUffsets structure

debug_offsets = parse_debug_offsets(data)
(RDR=V1Hi <)

(RIDR=I D5 DR E)

Step 3: Validate the contents of the structure
if debug_offsets.cookie != EXPECTED_COOKIE:
raise RuntimeError("Invalid or missing debug cookie")
if debug_offsets.version != LOCAL_PYTHON_VERSION:
raise RuntimeError(
"Mismatch between caller and target Python versions"
)
if debug_offsets.free_threaded !'= LOCAL_FREE_THREADED:

raise RuntimeError("Mismatch in free-threaded configuration")

return debug_offsets

o

Process suspension recommended

e

==
[=]

To avoid race conditions and ensure memory consistency, it is strongly recommended that the tar-
get process be suspended before performing any operations that read or write internal interpreter
state. The Python runtime may concurrently mutate interpreter data structures—such as creating

or destroying threads—during normal execution. This can result in invalid memory reads or writes.

A debugger may suspend execution by attaching to the process with ptrace or by sending a SIGSTOP

signal. Execution should only be resumed after debugger-side memory operations are complete.

0 R
Some tools, such as profilers or sampling-based debuggers, may operate on a running process

without suspension. In such cases, tools must be explicitly designed to handle partially updated

or inconsistent memory. For most debugger implementations, suspending the process remains the

safest and most robust approach.

3 Locating the interpreter and thread state

Before code can be injected and executed in a remote Python process, the debugger must choose a
thread in which to schedule execution. This is necessary because the control fields used to perform
remote code injection are located in the _PyRemoteDebuggerSupport structure, which is embedded in
a PyThreadState object. These fields are modified by the debugger to request execution of injected

scripts.

The PyThreadState structure represents a thread running inside a Python interpreter. It maintains the
thread’ s evaluation context and contains the fields required for debugger coordination. Locating a valid

PyThreadState is therefore a key prerequisite for triggering execution remotely.

7

A thread is typically selected based on its role or ID. In most cases, the main thread is used, but some
tools may target a specific thread by its native thread ID. Once the target thread is chosen, the debugger

must locate both the interpreter and the associated thread state structures in memory.
The relevant internal structures are defined as follows:

e PyInterpreterState represents an isolated Python interpreter instance. Each interpreter main-
tains its own set of imported modules, built-in state, and thread state list. Although most Python

applications use a single interpreter, CPython supports multiple interpreters in the same process.

o PyThreadState represents a thread running within an interpreter. It contains execution state and

the control fields used by the debugger.
To locate a thread:

1. Use the offset runtime_state.interpreters_head to obtain the address of the first interpreter

in the PyRuntime structure. This is the entry point to the linked list of active interpreters.

2. Use the offset interpreter_state.threads_main to access the main thread state associated with

the selected interpreter. This is typically the most reliable thread to target.

3. Optionally, use the offset interpreter_state.threads_head to iterate through the linked list of
all thread states. Each PyThreadState structure contains a native_thread_id field, which may be

compared to a target thread ID to find a specific thread.

1. Once a valid PyThreadState has been found, its address can be used in later steps of the protocol,

such as writing debugger control fields and scheduling execution.

The following is an example implementation that locates the main thread state:

def find_main_thread_state(
pid: int, py_runtime_addr: int, debug_offsets: DebugOffsets,
) => int:
Step 1: Read interpreters_head from PyRuntime
interp_head_ptr = (
py_runtime_addr + debug_offsets.runtime_state.interpreters_head
)
interp_addr = read_pointer(pid, interp_head_ptr)
if interp_addr ==

raise RuntimeError("No interpreter found in the target process")

Step 2: Read the threads_main pointer from the interpreter
threads_main_ptr = (

interp_addr + debug_offsets.interpreter_state.threads_main
)
thread_state_addr = read_pointer(pid, threads_main_ptr)
if thread_state_addr ==

raise RuntimeError("Main thread state is not available")
(RDR=V1Hi <)

(FiDR— 25 D %)

return thread_state_addr

The following example demonstrates how to locate a thread by its native thread ID:

def find_thread_by_id(
pid: int,
interp_addr: int,
debug_offsets: Debuglffsets,
target_tid: int,
) -> int:
Start at threads_head and walk the linked list
thread_ptr = read_pointer(
pid,

interp_addr + debug_offsets.interpreter_state.threads_head

while thread_ptr:
native_tid_ptr = (
thread_ptr + debug_offsets.thread_state.native_thread_id
)
native_tid = read_int(pid, native_tid_ptr)
if native_tid == target_tid:
return thread_ptr
thread_ptr = read_pointer(
pid,
thread_ptr + debug_offsets.thread_state.next

raise RuntimeError("Thread with the given ID was not found")

Once a valid thread state has been located, the debugger can proceed with modifying its control fields

and scheduling execution, as described in the next section.

4 Writing control information

Once a valid PyThreadState structure has been identified, the debugger may modify control fields within
it to schedule the execution of a specified Python script. These control fields are checked periodically by
the interpreter, and when set correctly, they trigger the execution of remote code at a safe point in the

evaluation loop.

Each PyThreadState contains a _PyRemoteDebuggerSupport structure used for communication between

the debugger and the interpreter. The locations of its fields are defined by the _Py_DebugOffsets

structure and include the following;:

debugger_script_path: A fixed-size buffer that holds the full path to a
Python source file (.py). This file must be accessible and readable by the target process

when execution is triggered.

debugger_pending_call: An integer flag. Setting this to 1 tells the

interpreter that a script is ready to be executed.

eval_breaker: A field checked by the interpreter during execution.
Setting bit 5 (_PY_EVAL_PLEASE_STOP_BIT, value 1U << 5) in this field causes the interpreter

to pause and check for debugger activity.
To complete the injection, the debugger must perform the following steps:
1. Write the full script path into the debugger_script_path buffer.
2. Set debugger_pending_call to 1.

3. Read the current value of eval_breaker, set bit 5 (_PY_EVAL_PLEASE_STOP_BIT), and write the
updated value back. This signals the interpreter to check for debugger activity.

The following is an example implementation:

def inject_script(
pid: int,
thread_state_addr: int,
debug_offsets: DebugOffsets,
script_path: str
) —> None:
Compute the base offset of _PyRemoteDebuggerSupport
support_base = (
thread_state_addr +
debug_offsets.debugger_support.remote_debugger_support

Step 1: Write the script path into debugger_script_path
script_path_ptr = (
support_base +
debug_offsets.debugger_support.debugger_script_path

)
write_string(pid, script_path_ptr, script_path)

Step 2: Set debugger_pending_call to 1
pending_ptr = (
support_base +

debug_offsets.debugger_support.debugger_pending_call
(RDR=12Hi<)

10

(FiDR— 25 D %)

)
write_int(pid, pending ptr, 1)

Step 3: Set _PY EVAL_PLEASE_STOP_BIT (bit 5, walue 1 << 5) 1in

eval_breaker

eval_breaker_ptr = (
thread_state_addr +
debug_offsets.debugger_support.eval_breaker

)

breaker = read_int(pid, eval_breaker_ptr)

breaker |= (1 << 5)

write_int(pid, eval_breaker_ptr, breaker)

Once these fields are set, the debugger may resume the process (if it was suspended). The interpreter

will process the request at the next safe evaluation point, load the script from disk, and execute it.

It is the responsibility of the debugger to ensure that the script file remains present and accessible to the

target process during execution.

AR

Script execution is asynchronous. The script file cannot be deleted immediately after injection. The
debugger should wait until the injected script has produced an observable effect before removing the
file. This effect depends on what the script is designed to do. For example, a debugger might wait
until the remote process connects back to a socket before removing the script. Once such an effect is

observed, it is safe to assume the file is no longer needed.

5 Summary

To inject and execute a Python script in a remote process:

1. Locate the PyRuntime structure in the target process’ s memory.

2. Read and validate the _Py_DebugOffsets structure at the beginning of PyRuntime.
3. Use the offsets to locate a valid PyThreadState.

4. Write the path to a Python script into debugger_script_path.

5. Set the debugger_pending_call flag to 1.

6. Set _PY_EVAL_PLEASE_STOP_BIT in the eval_breaker field.

7. Resume the process (if suspended). The script will execute at the next safe evaluation point.

11

	Locating the PyRuntime structure
	Reading _Py_DebugOffsets
	Locating the interpreter and thread state
	Writing control information
	Summary

