typing --- 型ヒントのサポート

バージョン 3.5 で追加.

ソースコード: Lib/typing.py


Python ランタイムは、関数や変数の型アノテーションを強制しません。 型アノテーションは、型チェッカー、IDE、linterなどのサードパーティーツールで使われます。

このモジュールは型のランタイムへのサポートを提供します。最も基本的な型として:data:AnyUnionCallableTypeVarGeneric が存在します。詳細な仕様は:pep:`484`に記載があります。型ヒントの導入についての説明は:pep:`483`に記載があります。


def greeting(name: str) -> str:
    return 'Hello ' + name

関数 greeting で、実引数 name の型は str であり、返り値の型は str であることが期待されます。サブタイプも実引数として許容されます。

New features are frequently added to the typing module. The typing_extensions package provides backports of these new features to older versions of Python.

For a summary of deprecated features and a deprecation timeline, please see Deprecation Timeline of Major Features.


The documentation at https://typing.readthedocs.io/ serves as useful reference for type system features, useful typing related tools and typing best practices.

Relevant PEPs

Since the initial introduction of type hints in PEP 484 and PEP 483, a number of PEPs have modified and enhanced Python's framework for type annotations. These include:


型エイリアスは、型をエイリアスに割り当てて定義されます。 この例では、Vectorlist[float] が置き換え可能な同義語として扱われます:

Vector = list[float]

def scale(scalar: float, vector: Vector) -> Vector:
    return [scalar * num for num in vector]

# passes type checking; a list of floats qualifies as a Vector.
new_vector = scale(2.0, [1.0, -4.2, 5.4])


from collections.abc import Sequence

ConnectionOptions = dict[str, str]
Address = tuple[str, int]
Server = tuple[Address, ConnectionOptions]

def broadcast_message(message: str, servers: Sequence[Server]) -> None:

# The static type checker will treat the previous type signature as
# being exactly equivalent to this one.
def broadcast_message(
        message: str,
        servers: Sequence[tuple[tuple[str, int], dict[str, str]]]) -> None:

型ヒントとしての None は特別なケースであり、 type(None) によって置き換えられます。


Use the NewType helper to create distinct types:

from typing import NewType

UserId = NewType('UserId', int)
some_id = UserId(524313)


def get_user_name(user_id: UserId) -> str:

# passes type checking
user_a = get_user_name(UserId(42351))

# fails type checking; an int is not a UserId
user_b = get_user_name(-1)

UserId 型の変数も int の全ての演算が行えますが、その結果は常に int 型になります。 この振る舞いにより、 int が期待されるところに UserId を渡せますが、不正な方法で UserId を作ってしまうことを防ぎます。

# 'output' is of type 'int', not 'UserId'
output = UserId(23413) + UserId(54341)

Note that these checks are enforced only by the static type checker. At runtime, the statement Derived = NewType('Derived', Base) will make Derived a callable that immediately returns whatever parameter you pass it. That means the expression Derived(some_value) does not create a new class or introduce much overhead beyond that of a regular function call.

より正確に言うと、式 some_value is Derived(some_value) は実行時に常に真を返します。

It is invalid to create a subtype of Derived:

from typing import NewType

UserId = NewType('UserId', int)

# Fails at runtime and does not pass type checking
class AdminUserId(UserId): pass

しかし、 'derived' である NewType をもとにした NewType は作ることが出来ます:

from typing import NewType

UserId = NewType('UserId', int)

ProUserId = NewType('ProUserId', UserId)

そして ProUserId に対する型検査は期待通りに動作します。

より詳しくは PEP 484 を参照してください。


型エイリアスの使用は二つの型が互いに 等価 だと宣言している、ということを思い出してください。 Alias = Original とすると、静的型検査器は Alias をすべての場合において Original完全に等価 なものとして扱います。これは複雑な型シグネチャを単純化したい時に有用です。

これに対し、 NewType はある型をもう一方の型の サブタイプ として宣言します。 Derived = NewType('Derived', Original) とすると静的型検査器は DerivedOriginalサブクラス として扱います。つまり Original 型の値は Derived 型の値が期待される場所で使うことが出来ないということです。これは論理的な誤りを最小の実行時のコストで防ぎたい時に有用です。

バージョン 3.5.2 で追加.

バージョン 3.10 で変更: NewType is now a class rather than a function. There is some additional runtime cost when calling NewType over a regular function. However, this cost will be reduced in 3.11.0.


特定のシグネチャを持つコールバック関数を要求されるフレームワークでは、 Callable[[Arg1Type, Arg2Type], ReturnType] を使って型ヒントを付けます。


from collections.abc import Callable

def feeder(get_next_item: Callable[[], str]) -> None:
    # Body

def async_query(on_success: Callable[[int], None],
                on_error: Callable[[int, Exception], None]) -> None:
    # Body

async def on_update(value: str) -> None:
    # Body
callback: Callable[[str], Awaitable[None]] = on_update

型ヒントの実引数の型を ellipsis で置き換えることで呼び出しシグニチャを指定せずに callable の戻り値の型を宣言することができます: Callable[..., ReturnType]

Callables which take other callables as arguments may indicate that their parameter types are dependent on each other using ParamSpec. Additionally, if that callable adds or removes arguments from other callables, the Concatenate operator may be used. They take the form Callable[ParamSpecVariable, ReturnType] and Callable[Concatenate[Arg1Type, Arg2Type, ..., ParamSpecVariable], ReturnType] respectively.

バージョン 3.10 で変更: Callable now supports ParamSpec and Concatenate. See PEP 612 for more details.


The documentation for ParamSpec and Concatenate provides examples of usage in Callable.



from collections.abc import Mapping, Sequence

def notify_by_email(employees: Sequence[Employee],
                    overrides: Mapping[str, str]) -> None: ...

Generics can be parameterized by using a factory available in typing called TypeVar.

from collections.abc import Sequence
from typing import TypeVar

T = TypeVar('T')      # Declare type variable

def first(l: Sequence[T]) -> T:   # Generic function
    return l[0]



from typing import TypeVar, Generic
from logging import Logger

T = TypeVar('T')

class LoggedVar(Generic[T]):
    def __init__(self, value: T, name: str, logger: Logger) -> None:
        self.name = name
        self.logger = logger
        self.value = value

    def set(self, new: T) -> None:
        self.log('Set ' + repr(self.value))
        self.value = new

    def get(self) -> T:
        self.log('Get ' + repr(self.value))
        return self.value

    def log(self, message: str) -> None:
        self.logger.info('%s: %s', self.name, message)

Generic[T] を基底クラスにすることで、 LoggedVar クラスが 1 つの型引数 T をとる、と定義できます。 この定義により、クラスの本体の中でも T が型として有効になります。

The Generic base class defines __class_getitem__() so that LoggedVar[T] is valid as a type:

from collections.abc import Iterable

def zero_all_vars(vars: Iterable[LoggedVar[int]]) -> None:
    for var in vars:

A generic type can have any number of type variables. All varieties of TypeVar are permissible as parameters for a generic type:

from typing import TypeVar, Generic, Sequence

T = TypeVar('T', contravariant=True)
B = TypeVar('B', bound=Sequence[bytes], covariant=True)
S = TypeVar('S', int, str)

class WeirdTrio(Generic[T, B, S]):

Generic の引数のそれぞれの型変数は別のものでなければなりません。このため次のクラス定義は無効です:

from typing import TypeVar, Generic

T = TypeVar('T')

class Pair(Generic[T, T]):   # INVALID

Generic を用いて多重継承が可能です:

from collections.abc import Sized
from typing import TypeVar, Generic

T = TypeVar('T')

class LinkedList(Sized, Generic[T]):


from collections.abc import Mapping
from typing import TypeVar

T = TypeVar('T')

class MyDict(Mapping[str, T]):

この場合では MyDict は仮引数 T を 1 つとります。

型引数を指定せずにジェネリッククラスを使う場合、それぞれの型引数に Any を与えられたものとして扱います。 次の例では、MyIterable はジェネリックではありませんが Iterable[Any] を暗黙的に継承しています:

from collections.abc import Iterable

class MyIterable(Iterable): # Same as Iterable[Any]


from collections.abc import Iterable
from typing import TypeVar
S = TypeVar('S')
Response = Iterable[S] | int

# Return type here is same as Iterable[str] | int
def response(query: str) -> Response[str]:

T = TypeVar('T', int, float, complex)
Vec = Iterable[tuple[T, T]]

def inproduct(v: Vec[T]) -> T: # Same as Iterable[tuple[T, T]]
    return sum(x*y for x, y in v)

バージョン 3.7 で変更: Generic にあった独自のメタクラスは無くなりました。

User-defined generics for parameter expressions are also supported via parameter specification variables in the form Generic[P]. The behavior is consistent with type variables' described above as parameter specification variables are treated by the typing module as a specialized type variable. The one exception to this is that a list of types can be used to substitute a ParamSpec:

>>> from typing import Generic, ParamSpec, TypeVar

>>> T = TypeVar('T')
>>> P = ParamSpec('P')

>>> class Z(Generic[T, P]): ...
>>> Z[int, [dict, float]]
__main__.Z[int, (<class 'dict'>, <class 'float'>)]

Furthermore, a generic with only one parameter specification variable will accept parameter lists in the forms X[[Type1, Type2, ...]] and also X[Type1, Type2, ...] for aesthetic reasons. Internally, the latter is converted to the former, so the following are equivalent:

>>> class X(Generic[P]): ...
>>> X[int, str]
__main__.X[(<class 'int'>, <class 'str'>)]
>>> X[[int, str]]
__main__.X[(<class 'int'>, <class 'str'>)]

Do note that generics with ParamSpec may not have correct __parameters__ after substitution in some cases because they are intended primarily for static type checking.

バージョン 3.10 で変更: Generic can now be parameterized over parameter expressions. See ParamSpec and PEP 612 for more details.

ユーザーが定義したジェネリッククラスはメタクラスの衝突を起こすことなく基底クラスに抽象基底クラスをとれます。 ジェネリックメタクラスはサポートされません。 パラメータ化を行うジェネリクスの結果はキャッシュされていて、 typing モジュールのほとんどの型はハッシュ化でき、等価比較できます。


Any は特別な種類の型です。静的型検査器はすべての型を Any と互換として扱い、 Any をすべての型と互換として扱います。

これは、 Any 型の値では、任意の演算やメソッドの呼び出しが行えることを意味します:

from typing import Any

a: Any = None
a = []          # OK
a = 2           # OK

s: str = ''
s = a           # OK

def foo(item: Any) -> int:
    # Passes type checking; 'item' could be any type,
    # and that type might have a 'bar' method

Notice that no type checking is performed when assigning a value of type Any to a more precise type. For example, the static type checker did not report an error when assigning a to s even though s was declared to be of type str and receives an int value at runtime!

さらに、返り値や引数の型のないすべての関数は暗黙的に Any を使用します。

def legacy_parser(text):
    return data

# A static type checker will treat the above
# as having the same signature as:
def legacy_parser(text: Any) -> Any:
    return data

この挙動により、動的型付けと静的型付けが混在したコードを書かなければならない時に Any非常口 として使用することができます。

Any の挙動と object の挙動を対比しましょう。 Any と同様に、すべての型は object のサブタイプです。しかしながら、 Any と異なり、逆は成り立ちません: object はすべての他の型のサブタイプでは ありません

これは、ある値の型が object のとき、型検査器はこれについてのほとんどすべての操作を拒否し、これをより特殊化された変数に代入する (または返り値として利用する) ことは型エラーになることを意味します。例えば:

def hash_a(item: object) -> int:
    # Fails type checking; an object does not have a 'magic' method.

def hash_b(item: Any) -> int:
    # Passes type checking

# Passes type checking, since ints and strs are subclasses of object

# Passes type checking, since Any is compatible with all types

object は、ある値が型安全な方法で任意の型として使えることを示すために使用します。 Any はある値が動的に型付けられることを示すために使用します。

名前的部分型 vs 構造的部分型

Initially PEP 484 defined the Python static type system as using nominal subtyping. This means that a class A is allowed where a class B is expected if and only if A is a subclass of B.

前出の必要条件は、Iterable などの抽象基底クラスにも当て嵌まります。 この型付け手法の問題は、この手法をサポートするためにクラスに明確な型付けを行う必要があることで、これは pythonic ではなく、普段行っている 慣用的な Python コードへの動的型付けとは似ていません。 例えば、次のコードは PEP 484 に従ったものです

from collections.abc import Sized, Iterable, Iterator

class Bucket(Sized, Iterable[int]):
    def __len__(self) -> int: ...
    def __iter__(self) -> Iterator[int]: ...

PEP 544 によって上にあるようなクラス定義で基底クラスを明示しないコードをユーザーが書け、静的型チェッカーで BucketSizedIterable[int] 両方のサブタイプだと暗黙的に見なせるようになり、この問題が解決しました。 これは structural subtyping (構造的部分型) (あるいは、静的ダックタイピング) として知られています:

from collections.abc import Iterator, Iterable

class Bucket:  # Note: no base classes
    def __len__(self) -> int: ...
    def __iter__(self) -> Iterator[int]: ...

def collect(items: Iterable[int]) -> int: ...
result = collect(Bucket())  # Passes type check

さらに、特別なクラス Protocol のサブクラスを作ることで、新しい独自のプロトコルを作って構造的部分型というものを満喫できます。




このモジュールは、既存の標準ライブラリクラスのサブクラスかつ、 [] 内の型変数をサポートするために Generic を拡張している、いくつかの型を定義しています。 これらの型は、既存の相当するクラスが [] をサポートするように拡張されたときに Python 3.9 で廃止になりました。

余計な型は Python 3.9 で非推奨になりましたが、非推奨の警告はどれもインタープリタから通告されません。 型チェッカーがチェックするプログラムの対照が Python 3.9 もしくはそれ以降のときに、非推奨の型に目印を付けることが期待されています。

非推奨の型は、Python 3.9.0 のリリースから5年後の初めての Python バージョンで typing モジュールから削除されます。 詳しいことは PEP 585Type Hinting Generics In Standard Collections を参照してください。



これらはアノテーションの内部の型として使えますが、[] はサポートしていません。



  • 任意の型は Any と互換です。

  • Any は任意の型と互換です。

バージョン 3.11 で変更: Any can now be used as a base class. This can be useful for avoiding type checker errors with classes that can duck type anywhere or are highly dynamic.


Special type that includes only literal strings. A string literal is compatible with LiteralString, as is another LiteralString, but an object typed as just str is not. A string created by composing LiteralString-typed objects is also acceptable as a LiteralString.


def run_query(sql: LiteralString) -> ...

def caller(arbitrary_string: str, literal_string: LiteralString) -> None:
    run_query("SELECT * FROM students")  # ok
    run_query(literal_string)  # ok
    run_query("SELECT * FROM " + literal_string)  # ok
    run_query(arbitrary_string)  # type checker error
    run_query(  # type checker error
        f"SELECT * FROM students WHERE name = {arbitrary_string}"

This is useful for sensitive APIs where arbitrary user-generated strings could generate problems. For example, the two cases above that generate type checker errors could be vulnerable to an SQL injection attack.

より詳しくは:pep:675 を参照してください。

バージョン 3.11 で追加.


The bottom type, a type that has no members.

This can be used to define a function that should never be called, or a function that never returns:

from typing import Never

def never_call_me(arg: Never) -> None:

def int_or_str(arg: int | str) -> None:
    never_call_me(arg)  # type checker error
    match arg:
        case int():
            print("It's an int")
        case str():
            print("It's a str")
        case _:
            never_call_me(arg)  # ok, arg is of type Never

バージョン 3.11 で追加: On older Python versions, NoReturn may be used to express the same concept. Never was added to make the intended meaning more explicit.



from typing import NoReturn

def stop() -> NoReturn:
    raise RuntimeError('no way')

NoReturn can also be used as a bottom type, a type that has no values. Starting in Python 3.11, the Never type should be used for this concept instead. Type checkers should treat the two equivalently.

バージョン 3.5.4 で追加.

バージョン 3.6.2 で追加.


Special type to represent the current enclosed class. For example:

from typing import Self

class Foo:
   def return_self(self) -> Self:
      return self

This annotation is semantically equivalent to the following, albeit in a more succinct fashion:

from typing import TypeVar

Self = TypeVar("Self", bound="Foo")

class Foo:
   def return_self(self: Self) -> Self:
      return self

In general if something currently follows the pattern of:

class Foo:
   def return_self(self) -> "Foo":
      return self

You should use Self as calls to SubclassOfFoo.return_self would have Foo as the return type and not SubclassOfFoo.

Other common use cases include:

  • classmethods that are used as alternative constructors and return instances of the cls parameter.

  • Annotating an __enter__() method which returns self.

より詳しくは:pep:673 を参照してください。

バージョン 3.11 で追加.


Special annotation for explicitly declaring a type alias. For example:

from typing import TypeAlias

Factors: TypeAlias = list[int]

See PEP 613 for more details about explicit type aliases.

バージョン 3.10 で追加.


これらは [] を使ったアノテーションの内部の型として使え、それぞれ固有の文法があります。


タプル型; Tuple[X, Y] は、最初の要素の型が X で、2つ目の要素の型が Y であるような、2つの要素を持つタプルの型です。 空のタプルの型は Tuple[()] と書けます。

例: Tuple[T1, T2] は型変数 T1 と T2 に対応する2つの要素を持つタプルです。Tuple[int, float, str] は int と float、 string のタプルです。

同じ型の任意の長さのタプルを指定するには ellipsis リテラルを用います。例: Tuple[int, ...]。ただの TupleTuple[Any, ...] と等価で、さらに tuple と等価です。.

バージョン 3.9 で非推奨: builtins.tuple now supports subscripting ([]). See PEP 585 and Generic Alias Type.


Union type; Union[X, Y] is equivalent to X | Y and means either X or Y.

To define a union, use e.g. Union[int, str] or the shorthand int | str. Using that shorthand is recommended. Details:

  • 引数は型でなければならず、少なくとも一つ必要です。

  • ユニオン型のユニオン型は平滑化されます。例えば:

    Union[Union[int, str], float] == Union[int, str, float]
  • 引数が一つのユニオン型は消えます。例えば:

    Union[int] == int  # The constructor actually returns int
  • 冗長な実引数は飛ばされます。例えば:

    Union[int, str, int] == Union[int, str] == int | str
  • ユニオン型を比較するとき引数の順序は無視されます。例えば:

    Union[int, str] == Union[str, int]
  • You cannot subclass or instantiate a Union.

  • Union[X][Y] と書くことは出来ません。

バージョン 3.7 で変更: 明示的に書かれているサブクラスを、実行時に直和型から取り除かなくなりました。

バージョン 3.10 で変更: Unions can now be written as X | Y. See union type expressions.



Optional[X] is equivalent to X | None (or Union[X, None]).

これがデフォルト値を持つオプション引数とは同じ概念ではないということに注意してください。 デフォルト値を持つオプション引数はオプション引数であるために、型アノテーションに Optional 修飾子は必要ありません。 例えば次のようになります:

def foo(arg: int = 0) -> None:

それとは逆に、 None という値が許されていることが明示されている場合は、引数がオプションであろうとなかろうと、 Optional を使うのが好ましいです。 例えば次のようになります:

def foo(arg: Optional[int] = None) -> None:

バージョン 3.10 で変更: Optional can now be written as X | None. See union type expressions.


呼び出し可能型; Callable[[int], str] は (int) -> str の関数です。

添字表記は常に2つの値とともに使われなければなりません: 実引数のリストと返り値の型です。 実引数のリストは型のリストか ellipsis でなければなりません; 返り値の型は単一の型でなければなりません。

オプショナル引数やキーワード引数を表すための文法はありません; そのような関数型はコールバックの型として滅多に使われません。 Callable[..., ReturnType] (リテラルの Ellipsis) は任意の個数の引数をとり ReturnType を返す型ヒントを与えるために使えます。 普通の CallableCallable[..., Any] と同等で、 collections.abc.Callable でも同様です。

Callables which take other callables as arguments may indicate that their parameter types are dependent on each other using ParamSpec. Additionally, if that callable adds or removes arguments from other callables, the Concatenate operator may be used. They take the form Callable[ParamSpecVariable, ReturnType] and Callable[Concatenate[Arg1Type, Arg2Type, ..., ParamSpecVariable], ReturnType] respectively.

バージョン 3.9 で非推奨: collections.abc.Callable now supports subscripting ([]). See PEP 585 and Generic Alias Type.

バージョン 3.10 で変更: Callable now supports ParamSpec and Concatenate. See PEP 612 for more details.


The documentation for ParamSpec and Concatenate provide examples of usage with Callable.


Used with Callable and ParamSpec to type annotate a higher order callable which adds, removes, or transforms parameters of another callable. Usage is in the form Concatenate[Arg1Type, Arg2Type, ..., ParamSpecVariable]. Concatenate is currently only valid when used as the first argument to a Callable. The last parameter to Concatenate must be a ParamSpec or ellipsis (...).

For example, to annotate a decorator with_lock which provides a threading.Lock to the decorated function, Concatenate can be used to indicate that with_lock expects a callable which takes in a Lock as the first argument, and returns a callable with a different type signature. In this case, the ParamSpec indicates that the returned callable's parameter types are dependent on the parameter types of the callable being passed in:

from collections.abc import Callable
from threading import Lock
from typing import Concatenate, ParamSpec, TypeVar

P = ParamSpec('P')
R = TypeVar('R')

# Use this lock to ensure that only one thread is executing a function
# at any time.
my_lock = Lock()

def with_lock(f: Callable[Concatenate[Lock, P], R]) -> Callable[P, R]:
    '''A type-safe decorator which provides a lock.'''
    def inner(*args: P.args, **kwargs: P.kwargs) -> R:
        # Provide the lock as the first argument.
        return f(my_lock, *args, **kwargs)
    return inner

def sum_threadsafe(lock: Lock, numbers: list[float]) -> float:
    '''Add a list of numbers together in a thread-safe manner.'''
    with lock:
        return sum(numbers)

# We don't need to pass in the lock ourselves thanks to the decorator.
sum_threadsafe([1.1, 2.2, 3.3])

バージョン 3.10 で追加.


  • PEP 612 -- Parameter Specification Variables (the PEP which introduced ParamSpec and Concatenate).

  • ParamSpec and Callable.

class typing.Type(Generic[CT_co])

C と注釈が付けされた変数は C 型の値を受理します。一方で Type[C] と注釈が付けられた変数は、そのクラス自身を受理します -- 具体的には、それは Cクラスオブジェクト を受理します。例:

a = 3         # Has type 'int'
b = int       # Has type 'Type[int]'
c = type(a)   # Also has type 'Type[int]'

Type[C] は共変であることに注意してください:

class User: ...
class BasicUser(User): ...
class ProUser(User): ...
class TeamUser(User): ...

# Accepts User, BasicUser, ProUser, TeamUser, ...
def make_new_user(user_class: Type[User]) -> User:
    # ...
    return user_class()

Type[C] が共変だということは、 C の全てのサブクラスは、 C と同じシグネチャのコンストラクタとクラスメソッドを実装すべきだということになります。 型チェッカーはこの規則への違反に印を付けるべきですが、サブクラスでのコンストラクタ呼び出しで、指定された基底クラスのコンストラクタ呼び出しに適合するものは許可すべきです。 この特別な場合を型チェッカーがどう扱うべきかについては、 PEP 484 の将来のバージョンで変更されるかもしれません。

Type で許されているパラメータは、クラス、 Any型変数 あるいは、それらの直和型だけです。 例えば次のようになります:

def new_non_team_user(user_class: Type[BasicUser | ProUser]): ...

Type[Any]Type と等価で、同様に Typetype と等価です。type は Python のメタクラス階層のルートです。

バージョン 3.5.2 で追加.

バージョン 3.9 で非推奨: builtins.type now supports subscripting ([]). See PEP 585 and Generic Alias Type.


型チェッカーに、変数や関数引数と対応する与えられたリテラル (あるいはいくつかあるリテラルのうちの 1 つ) が同等な値を持つことを表すのに使える型です。

def validate_simple(data: Any) -> Literal[True]:  # always returns True

MODE = Literal['r', 'rb', 'w', 'wb']
def open_helper(file: str, mode: MODE) -> str:

open_helper('/some/path', 'r')  # Passes type check
open_helper('/other/path', 'typo')  # Error in type checker

Literal[...] はサブクラスにはできません。 実行時に、任意の値が Literal[...] の型引数として使えますが、型チェッカーが制約を課すことがあります。 リテラル型についてより詳しいことは PEP 586 を参照してください。

バージョン 3.8 で追加.

バージョン 3.9.1 で変更: Literal ではパラメータの重複を解消するようになりました。Literal オブジェクトの等値比較は順序に依存しないようになりました。Literal オブジェクトは、等値比較する際に、パラメータのうち 1 つでも hashable でない場合は TypeError を送出するようになりました。



PEP 526 で導入された通り、 ClassVar でラップされた変数アノテーションによって、ある属性はクラス変数として使うつもりであり、そのクラスのインスタンスから設定すべきではないということを示せます。使い方は次のようになります:

class Starship:
    stats: ClassVar[dict[str, int]] = {} # class variable
    damage: int = 10                     # instance variable

ClassVar は型のみを受け入れ、それ以外は受け付けられません。

ClassVar はクラスそのものではなく、isinstance()issubclass() で使うべきではありません。 ClassVar は Python の実行時の挙動を変えませんが、サードパーティの型検査器で使えます。 例えば、型チェッカーは次のコードをエラーとするかもしれません:

enterprise_d = Starship(3000)
enterprise_d.stats = {} # Error, setting class variable on instance
Starship.stats = {}     # This is OK

バージョン 3.5.3 で追加.


特別な型付けの構成要素で、名前の割り当て直しやサブクラスでのオーバーライドができないことを型チェッカーに示すためのものです。 例えば:

MAX_SIZE: Final = 9000
MAX_SIZE += 1  # Error reported by type checker

class Connection:
    TIMEOUT: Final[int] = 10

class FastConnector(Connection):
    TIMEOUT = 1  # Error reported by type checker

この機能は実行時には検査されません。 詳細については PEP 591 を参照してください。

バージョン 3.8 で追加.


Special typing constructs that mark individual keys of a TypedDict as either required or non-required respectively.

See TypedDict and PEP 655 for more details.

バージョン 3.11 で追加.


A type, introduced in PEP 593 (Flexible function and variable annotations), to decorate existing types with context-specific metadata (possibly multiple pieces of it, as Annotated is variadic). Specifically, a type T can be annotated with metadata x via the typehint Annotated[T, x]. This metadata can be used for either static analysis or at runtime. If a library (or tool) encounters a typehint Annotated[T, x] and has no special logic for metadata x, it should ignore it and simply treat the type as T. Unlike the no_type_check functionality that currently exists in the typing module which completely disables typechecking annotations on a function or a class, the Annotated type allows for both static typechecking of T (which can safely ignore x) together with runtime access to x within a specific application.

Ultimately, the responsibility of how to interpret the annotations (if at all) is the responsibility of the tool or library encountering the Annotated type. A tool or library encountering an Annotated type can scan through the annotations to determine if they are of interest (e.g., using isinstance()).

When a tool or a library does not support annotations or encounters an unknown annotation it should just ignore it and treat annotated type as the underlying type.

It's up to the tool consuming the annotations to decide whether the client is allowed to have several annotations on one type and how to merge those annotations.

Since the Annotated type allows you to put several annotations of the same (or different) type(s) on any node, the tools or libraries consuming those annotations are in charge of dealing with potential duplicates. For example, if you are doing value range analysis you might allow this:

T1 = Annotated[int, ValueRange(-10, 5)]
T2 = Annotated[T1, ValueRange(-20, 3)]

Passing include_extras=True to get_type_hints() lets one access the extra annotations at runtime.

The details of the syntax:

  • The first argument to Annotated must be a valid type

  • Multiple type annotations are supported (Annotated supports variadic arguments):

    Annotated[int, ValueRange(3, 10), ctype("char")]
  • Annotated must be called with at least two arguments ( Annotated[int] is not valid)

  • The order of the annotations is preserved and matters for equality checks:

    Annotated[int, ValueRange(3, 10), ctype("char")] != Annotated[
        int, ctype("char"), ValueRange(3, 10)
  • Nested Annotated types are flattened, with metadata ordered starting with the innermost annotation:

    Annotated[Annotated[int, ValueRange(3, 10)], ctype("char")] == Annotated[
        int, ValueRange(3, 10), ctype("char")
  • Duplicated annotations are not removed:

    Annotated[int, ValueRange(3, 10)] != Annotated[
        int, ValueRange(3, 10), ValueRange(3, 10)
  • Annotated can be used with nested and generic aliases:

    T = TypeVar('T')
    Vec = Annotated[list[tuple[T, T]], MaxLen(10)]
    V = Vec[int]
    V == Annotated[list[tuple[int, int]], MaxLen(10)]

バージョン 3.9 で追加.


Special typing form used to annotate the return type of a user-defined type guard function. TypeGuard only accepts a single type argument. At runtime, functions marked this way should return a boolean.

TypeGuard aims to benefit type narrowing -- a technique used by static type checkers to determine a more precise type of an expression within a program's code flow. Usually type narrowing is done by analyzing conditional code flow and applying the narrowing to a block of code. The conditional expression here is sometimes referred to as a "type guard":

def is_str(val: str | float):
    # "isinstance" type guard
    if isinstance(val, str):
        # Type of ``val`` is narrowed to ``str``
        # Else, type of ``val`` is narrowed to ``float``.

Sometimes it would be convenient to use a user-defined boolean function as a type guard. Such a function should use TypeGuard[...] as its return type to alert static type checkers to this intention.

Using -> TypeGuard tells the static type checker that for a given function:

  1. The return value is a boolean.

  2. If the return value is True, the type of its argument is the type inside TypeGuard.


def is_str_list(val: list[object]) -> TypeGuard[list[str]]:
    '''Determines whether all objects in the list are strings'''
    return all(isinstance(x, str) for x in val)

def func1(val: list[object]):
    if is_str_list(val):
        # Type of ``val`` is narrowed to ``list[str]``.
        print(" ".join(val))
        # Type of ``val`` remains as ``list[object]``.
        print("Not a list of strings!")

If is_str_list is a class or instance method, then the type in TypeGuard maps to the type of the second parameter after cls or self.

In short, the form def foo(arg: TypeA) -> TypeGuard[TypeB]: ..., means that if foo(arg) returns True, then arg narrows from TypeA to TypeB.


TypeB need not be a narrower form of TypeA -- it can even be a wider form. The main reason is to allow for things like narrowing list[object] to list[str] even though the latter is not a subtype of the former, since list is invariant. The responsibility of writing type-safe type guards is left to the user.

TypeGuard also works with type variables. See PEP 647 for more details.

バージョン 3.10 で追加.

Building generic types

These are not used in annotations. They are building blocks for creating generic types.

class typing.Generic



class Mapping(Generic[KT, VT]):
    def __getitem__(self, key: KT) -> VT:
        # Etc.


X = TypeVar('X')
Y = TypeVar('Y')

def lookup_name(mapping: Mapping[X, Y], key: X, default: Y) -> Y:
        return mapping[key]
    except KeyError:
        return default
class typing.TypeVar



T = TypeVar('T')  # Can be anything
S = TypeVar('S', bound=str)  # Can be any subtype of str
A = TypeVar('A', str, bytes)  # Must be exactly str or bytes

Type variables exist primarily for the benefit of static type checkers. They serve as the parameters for generic types as well as for generic function definitions. See Generic for more information on generic types. Generic functions work as follows:

def repeat(x: T, n: int) -> Sequence[T]:
    """Return a list containing n references to x."""
    return [x]*n

def print_capitalized(x: S) -> S:
    """Print x capitalized, and return x."""
    return x

def concatenate(x: A, y: A) -> A:
    """Add two strings or bytes objects together."""
    return x + y

Note that type variables can be bound, constrained, or neither, but cannot be both bound and constrained.

Bound type variables and constrained type variables have different semantics in several important ways. Using a bound type variable means that the TypeVar will be solved using the most specific type possible:

x = print_capitalized('a string')
reveal_type(x)  # revealed type is str

class StringSubclass(str):

y = print_capitalized(StringSubclass('another string'))
reveal_type(y)  # revealed type is StringSubclass

z = print_capitalized(45)  # error: int is not a subtype of str

Type variables can be bound to concrete types, abstract types (ABCs or protocols), and even unions of types:

U = TypeVar('U', bound=str|bytes)  # Can be any subtype of the union str|bytes
V = TypeVar('V', bound=SupportsAbs)  # Can be anything with an __abs__ method

Using a constrained type variable, however, means that the TypeVar can only ever be solved as being exactly one of the constraints given:

a = concatenate('one', 'two')
reveal_type(a)  # revealed type is str

b = concatenate(StringSubclass('one'), StringSubclass('two'))
reveal_type(b)  # revealed type is str, despite StringSubclass being passed in

c = concatenate('one', b'two')  # error: type variable 'A' can be either str or bytes in a function call, but not both

実行時に、isinstance(x, T)TypeError を送出するでしょう。一般的に、isinstance()issubclass() は型に対して使用するべきではありません。

Type variables may be marked covariant or contravariant by passing covariant=True or contravariant=True. See PEP 484 for more details. By default, type variables are invariant.

class typing.TypeVarTuple

Type variable tuple. A specialized form of type variable that enables variadic generics.

A normal type variable enables parameterization with a single type. A type variable tuple, in contrast, allows parameterization with an arbitrary number of types by acting like an arbitrary number of type variables wrapped in a tuple. For example:

T = TypeVar('T')
Ts = TypeVarTuple('Ts')

def move_first_element_to_last(tup: tuple[T, *Ts]) -> tuple[*Ts, T]:
    return (*tup[1:], tup[0])

# T is bound to int, Ts is bound to ()
# Return value is (1,), which has type tuple[int]

# T is bound to int, Ts is bound to (str,)
# Return value is ('spam', 1), which has type tuple[str, int]
move_first_element_to_last(tup=(1, 'spam'))

# T is bound to int, Ts is bound to (str, float)
# Return value is ('spam', 3.0, 1), which has type tuple[str, float, int]
move_first_element_to_last(tup=(1, 'spam', 3.0))

# This fails to type check (and fails at runtime)
# because tuple[()] is not compatible with tuple[T, *Ts]
# (at least one element is required)

Note the use of the unpacking operator * in tuple[T, *Ts]. Conceptually, you can think of Ts as a tuple of type variables (T1, T2, ...). tuple[T, *Ts] would then become tuple[T, *(T1, T2, ...)], which is equivalent to tuple[T, T1, T2, ...]. (Note that in older versions of Python, you might see this written using Unpack instead, as Unpack[Ts].)

Type variable tuples must always be unpacked. This helps distinguish type variable tuples from normal type variables:

x: Ts          # Not valid
x: tuple[Ts]   # Not valid
x: tuple[*Ts]  # The correct way to to do it

Type variable tuples can be used in the same contexts as normal type variables. For example, in class definitions, arguments, and return types:

Shape = TypeVarTuple('Shape')
class Array(Generic[*Shape]):
    def __getitem__(self, key: tuple[*Shape]) -> float: ...
    def __abs__(self) -> "Array[*Shape]": ...
    def get_shape(self) -> tuple[*Shape]: ...

Type variable tuples can be happily combined with normal type variables:

DType = TypeVar('DType')

class Array(Generic[DType, *Shape]):  # This is fine

class Array2(Generic[*Shape, DType]):  # This would also be fine

float_array_1d: Array[float, Height] = Array()     # Totally fine
int_array_2d: Array[int, Height, Width] = Array()  # Yup, fine too

However, note that at most one type variable tuple may appear in a single list of type arguments or type parameters:

x: tuple[*Ts, *Ts]                     # Not valid
class Array(Generic[*Shape, *Shape]):  # Not valid

Finally, an unpacked type variable tuple can be used as the type annotation of *args:

def call_soon(
        callback: Callable[[*Ts], None],
        *args: *Ts
) -> None:

In contrast to non-unpacked annotations of *args - e.g. *args: int, which would specify that all arguments are int - *args: *Ts enables reference to the types of the individual arguments in *args. Here, this allows us to ensure the types of the *args passed to call_soon match the types of the (positional) arguments of callback.

See PEP 646 for more details on type variable tuples.

バージョン 3.11 で追加.


A typing operator that conceptually marks an object as having been unpacked. For example, using the unpack operator * on a type variable tuple is equivalent to using Unpack to mark the type variable tuple as having been unpacked:

Ts = TypeVarTuple('Ts')
tup: tuple[*Ts]
# Effectively does:
tup: tuple[Unpack[Ts]]

In fact, Unpack can be used interchangeably with * in the context of types. You might see Unpack being used explicitly in older versions of Python, where * couldn't be used in certain places:

# In older versions of Python, TypeVarTuple and Unpack
# are located in the `typing_extensions` backports package.
from typing_extensions import TypeVarTuple, Unpack

Ts = TypeVarTuple('Ts')
tup: tuple[*Ts]         # Syntax error on Python <= 3.10!
tup: tuple[Unpack[Ts]]  # Semantically equivalent, and backwards-compatible

バージョン 3.11 で追加.

class typing.ParamSpec(name, *, bound=None, covariant=False, contravariant=False)

Parameter specification variable. A specialized version of type variables.


P = ParamSpec('P')

Parameter specification variables exist primarily for the benefit of static type checkers. They are used to forward the parameter types of one callable to another callable -- a pattern commonly found in higher order functions and decorators. They are only valid when used in Concatenate, or as the first argument to Callable, or as parameters for user-defined Generics. See Generic for more information on generic types.

For example, to add basic logging to a function, one can create a decorator add_logging to log function calls. The parameter specification variable tells the type checker that the callable passed into the decorator and the new callable returned by it have inter-dependent type parameters:

from collections.abc import Callable
from typing import TypeVar, ParamSpec
import logging

T = TypeVar('T')
P = ParamSpec('P')

def add_logging(f: Callable[P, T]) -> Callable[P, T]:
    '''A type-safe decorator to add logging to a function.'''
    def inner(*args: P.args, **kwargs: P.kwargs) -> T:
        logging.info(f'{f.__name__} was called')
        return f(*args, **kwargs)
    return inner

def add_two(x: float, y: float) -> float:
    '''Add two numbers together.'''
    return x + y

Without ParamSpec, the simplest way to annotate this previously was to use a TypeVar with bound Callable[..., Any]. However this causes two problems:

  1. The type checker can't type check the inner function because *args and **kwargs have to be typed Any.

  2. cast() may be required in the body of the add_logging decorator when returning the inner function, or the static type checker must be told to ignore the return inner.


Since ParamSpec captures both positional and keyword parameters, P.args and P.kwargs can be used to split a ParamSpec into its components. P.args represents the tuple of positional parameters in a given call and should only be used to annotate *args. P.kwargs represents the mapping of keyword parameters to their values in a given call, and should be only be used to annotate **kwargs. Both attributes require the annotated parameter to be in scope. At runtime, P.args and P.kwargs are instances respectively of ParamSpecArgs and ParamSpecKwargs.

Parameter specification variables created with covariant=True or contravariant=True can be used to declare covariant or contravariant generic types. The bound argument is also accepted, similar to TypeVar. However the actual semantics of these keywords are yet to be decided.

バージョン 3.10 で追加.


Only parameter specification variables defined in global scope can be pickled.



Arguments and keyword arguments attributes of a ParamSpec. The P.args attribute of a ParamSpec is an instance of ParamSpecArgs, and P.kwargs is an instance of ParamSpecKwargs. They are intended for runtime introspection and have no special meaning to static type checkers.

Calling get_origin() on either of these objects will return the original ParamSpec:

P = ParamSpec("P")
get_origin(P.args)  # returns P
get_origin(P.kwargs)  # returns P

バージョン 3.10 で追加.


AnyStr is a constrained type variable defined as AnyStr = TypeVar('AnyStr', str, bytes).


def concat(a: AnyStr, b: AnyStr) -> AnyStr:
    return a + b

concat(u"foo", u"bar")  # Ok, output has type 'unicode'
concat(b"foo", b"bar")  # Ok, output has type 'bytes'
concat(u"foo", b"bar")  # Error, cannot mix unicode and bytes
class typing.Protocol(Generic)

プロトコルクラスの基底クラス。 プロトコルクラスは次のように定義されます:

class Proto(Protocol):
    def meth(self) -> int:

このようなクラスは主に構造的部分型 (静的ダックタイピング) を認識する静的型チェッカーが使います。例えば:

class C:
    def meth(self) -> int:
        return 0

def func(x: Proto) -> int:
    return x.meth()

func(C())  # Passes static type check

See PEP 544 for more details. Protocol classes decorated with runtime_checkable() (described later) act as simple-minded runtime protocols that check only the presence of given attributes, ignoring their type signatures.


class GenProto(Protocol[T]):
    def meth(self) -> T:

バージョン 3.8 で追加.


Mark a protocol class as a runtime protocol.

Such a protocol can be used with isinstance() and issubclass(). This raises TypeError when applied to a non-protocol class. This allows a simple-minded structural check, very similar to "one trick ponies" in collections.abc such as Iterable. For example:

class Closable(Protocol):
    def close(self): ...

assert isinstance(open('/some/file'), Closable)


runtime_checkable() will check only the presence of the required methods, not their type signatures. For example, ssl.SSLObject is a class, therefore it passes an issubclass() check against Callable. However, the ssl.SSLObject.__init__() method exists only to raise a TypeError with a more informative message, therefore making it impossible to call (instantiate) ssl.SSLObject.

バージョン 3.8 で追加.

Other special directives

These are not used in annotations. They are building blocks for declaring types.

class typing.NamedTuple

collections.namedtuple() の型付き版です。


class Employee(NamedTuple):
    name: str
    id: int


Employee = collections.namedtuple('Employee', ['name', 'id'])


class Employee(NamedTuple):
    name: str
    id: int = 3

employee = Employee('Guido')
assert employee.id == 3


The resulting class has an extra attribute __annotations__ giving a dict that maps the field names to the field types. (The field names are in the _fields attribute and the default values are in the _field_defaults attribute, both of which are part of the namedtuple() API.)

NamedTuple のサブクラスは docstring やメソッドも持てます:

class Employee(NamedTuple):
    """Represents an employee."""
    name: str
    id: int = 3

    def __repr__(self) -> str:
        return f'<Employee {self.name}, id={self.id}>'

NamedTuple subclasses can be generic:

class Group(NamedTuple, Generic[T]):
    key: T
    group: list[T]


Employee = NamedTuple('Employee', [('name', str), ('id', int)])

バージョン 3.6 で変更: PEP 526 変数アノテーションのシンタックスが追加されました。

バージョン 3.6.1 で変更: デフォルト値、メソッド、ドキュメンテーション文字列への対応が追加されました。

バージョン 3.8 で変更: _field_types 属性および __annotations__ 属性は OrderedDict インスタンスではなく普通の辞書になりまいた。

バージョン 3.9 で変更: Removed the _field_types attribute in favor of the more standard __annotations__ attribute which has the same information.

バージョン 3.11 で変更: Added support for generic namedtuples.

class typing.NewType(name, tp)

A helper class to indicate a distinct type to a typechecker, see NewType. At runtime it returns an object that returns its argument when called. Usage:

UserId = NewType('UserId', int)
first_user = UserId(1)

バージョン 3.5.2 で追加.

バージョン 3.10 で変更: NewType is now a class rather than a function.

class typing.TypedDict(dict)

Special construct to add type hints to a dictionary. At runtime it is a plain dict.

TypedDict declares a dictionary type that expects all of its instances to have a certain set of keys, where each key is associated with a value of a consistent type. This expectation is not checked at runtime but is only enforced by type checkers. Usage:

class Point2D(TypedDict):
    x: int
    y: int
    label: str

a: Point2D = {'x': 1, 'y': 2, 'label': 'good'}  # OK
b: Point2D = {'z': 3, 'label': 'bad'}           # Fails type check

assert Point2D(x=1, y=2, label='first') == dict(x=1, y=2, label='first')

To allow using this feature with older versions of Python that do not support PEP 526, TypedDict supports two additional equivalent syntactic forms:

  • Using a literal dict as the second argument:

    Point2D = TypedDict('Point2D', {'x': int, 'y': int, 'label': str})
  • Using keyword arguments:

    Point2D = TypedDict('Point2D', x=int, y=int, label=str)

バージョン 3.11 で非推奨、バージョン 3.13 で削除予定: The keyword-argument syntax is deprecated in 3.11 and will be removed in 3.13. It may also be unsupported by static type checkers.

The functional syntax should also be used when any of the keys are not valid identifiers, for example because they are keywords or contain hyphens. Example:

# raises SyntaxError
class Point2D(TypedDict):
    in: int  # 'in' is a keyword
    x-y: int  # name with hyphens

# OK, functional syntax
Point2D = TypedDict('Point2D', {'in': int, 'x-y': int})

By default, all keys must be present in a TypedDict. It is possible to mark individual keys as non-required using NotRequired:

class Point2D(TypedDict):
    x: int
    y: int
    label: NotRequired[str]

# Alternative syntax
Point2D = TypedDict('Point2D', {'x': int, 'y': int, 'label': NotRequired[str]})

This means that a Point2D TypedDict can have the label key omitted.

It is also possible to mark all keys as non-required by default by specifying a totality of False:

class Point2D(TypedDict, total=False):
    x: int
    y: int

# Alternative syntax
Point2D = TypedDict('Point2D', {'x': int, 'y': int}, total=False)

This means that a Point2D TypedDict can have any of the keys omitted. A type checker is only expected to support a literal False or True as the value of the total argument. True is the default, and makes all items defined in the class body required.

Individual keys of a total=False TypedDict can be marked as required using Required:

class Point2D(TypedDict, total=False):
    x: Required[int]
    y: Required[int]
    label: str

# Alternative syntax
Point2D = TypedDict('Point2D', {
    'x': Required[int],
    'y': Required[int],
    'label': str
}, total=False)

It is possible for a TypedDict type to inherit from one or more other TypedDict types using the class-based syntax. Usage:

class Point3D(Point2D):
    z: int

Point3D has three items: x, y and z. It is equivalent to this definition:

class Point3D(TypedDict):
    x: int
    y: int
    z: int

A TypedDict cannot inherit from a non-TypedDict class, except for Generic. For example:

class X(TypedDict):
    x: int

class Y(TypedDict):
    y: int

class Z(object): pass  # A non-TypedDict class

class XY(X, Y): pass  # OK

class XZ(X, Z): pass  # raises TypeError

T = TypeVar('T')
class XT(X, Generic[T]): pass  # raises TypeError

A TypedDict can be generic:

class Group(TypedDict, Generic[T]):
    key: T
    group: list[T]

A TypedDict can be introspected via annotations dicts (see Annotations Best Practices for more information on annotations best practices), __total__, __required_keys__, and __optional_keys__.


Point2D.__total__ gives the value of the total argument. Example:

>>> from typing import TypedDict
>>> class Point2D(TypedDict): pass
>>> Point2D.__total__
>>> class Point2D(TypedDict, total=False): pass
>>> Point2D.__total__
>>> class Point3D(Point2D): pass
>>> Point3D.__total__

バージョン 3.9 で追加.


Point2D.__required_keys__ and Point2D.__optional_keys__ return frozenset objects containing required and non-required keys, respectively.

Keys marked with Required will always appear in __required_keys__ and keys marked with NotRequired will always appear in __optional_keys__.

For backwards compatibility with Python 3.10 and below, it is also possible to use inheritance to declare both required and non-required keys in the same TypedDict . This is done by declaring a TypedDict with one value for the total argument and then inheriting from it in another TypedDict with a different value for total:

>>> class Point2D(TypedDict, total=False):
...     x: int
...     y: int
>>> class Point3D(Point2D):
...     z: int
>>> Point3D.__required_keys__ == frozenset({'z'})
>>> Point3D.__optional_keys__ == frozenset({'x', 'y'})

バージョン 3.9 で追加.

他の例や、 TypedDict を扱う詳細な規則については PEP 589 を参照してください。

バージョン 3.8 で追加.

バージョン 3.11 で変更: Added support for marking individual keys as Required or NotRequired. See PEP 655.

バージョン 3.11 で変更: Added support for generic TypedDicts.

Generic concrete collections

Corresponding to built-in types

class typing.Dict(dict, MutableMapping[KT, VT])

dict のジェネリック版です。 返り値の型のアノテーションをつけることに便利です。 引数にアノテーションをつけるためには、 Mapping のような抽象コレクション型を使うことが好ましいです。


def count_words(text: str) -> Dict[str, int]:

バージョン 3.9 で非推奨: builtins.dict now supports subscripting ([]). See PEP 585 and Generic Alias Type.

class typing.List(list, MutableSequence[T])

list のジェネリック版です。 返り値の型のアノテーションをつけるのに便利です。 引数にアノテーションをつけるためには、 SequenceIterable のような抽象コレクション型を使うことが好ましいです。


T = TypeVar('T', int, float)

def vec2(x: T, y: T) -> List[T]:
    return [x, y]

def keep_positives(vector: Sequence[T]) -> List[T]:
    return [item for item in vector if item > 0]

バージョン 3.9 で非推奨: builtins.list now supports subscripting ([]). See PEP 585 and Generic Alias Type.

class typing.Set(set, MutableSet[T])

builtins.set のジェネリック版です。 返り値の型のアノテーションをつけるのに便利です。 引数にアノテーションをつけるためには、 AbstractSet のような抽象コレクション型を使うことが好ましいです。

バージョン 3.9 で非推奨: builtins.set now supports subscripting ([]). See PEP 585 and Generic Alias Type.

class typing.FrozenSet(frozenset, AbstractSet[T_co])

builtins.frozenset のジェネリック版です。

バージョン 3.9 で非推奨: builtins.frozenset now supports subscripting ([]). See PEP 585 and Generic Alias Type.


Tuple is a special form.

Corresponding to types in collections

class typing.DefaultDict(collections.defaultdict, MutableMapping[KT, VT])

collections.defaultdict のジェネリック版です。

バージョン 3.5.2 で追加.

バージョン 3.9 で非推奨: collections.defaultdict now supports subscripting ([]). See PEP 585 and Generic Alias Type.

class typing.OrderedDict(collections.OrderedDict, MutableMapping[KT, VT])

collections.OrderedDict のジェネリック版です。

バージョン 3.7.2 で追加.

バージョン 3.9 で非推奨: collections.OrderedDict now supports subscripting ([]). See PEP 585 and Generic Alias Type.

class typing.ChainMap(collections.ChainMap, MutableMapping[KT, VT])

collections.ChainMap のジェネリック版です。

バージョン 3.5.4 で追加.

バージョン 3.6.1 で追加.

バージョン 3.9 で非推奨: collections.ChainMap now supports subscripting ([]). See PEP 585 and Generic Alias Type.

class typing.Counter(collections.Counter, Dict[T, int])

collections.Counter のジェネリック版です。

バージョン 3.5.4 で追加.

バージョン 3.6.1 で追加.

バージョン 3.9 で非推奨: collections.Counter now supports subscripting ([]). See PEP 585 and Generic Alias Type.

class typing.Deque(deque, MutableSequence[T])

collections.deque のジェネリック版です。

バージョン 3.5.4 で追加.

バージョン 3.6.1 で追加.

バージョン 3.9 で非推奨: collections.deque now supports subscripting ([]). See PEP 585 and Generic Alias Type.

Other concrete types

class typing.IO
class typing.TextIO
class typing.BinaryIO

ジェネリック型 IO[AnyStr] とそのサブクラスの TextIO(IO[str]) および BinaryIO(IO[bytes]) は、 open() 関数が返すような I/O ストリームの型を表します。

バージョン 3.8 で非推奨、バージョン 3.13 で削除予定: The typing.io namespace is deprecated and will be removed. These types should be directly imported from typing instead.

class typing.Pattern
class typing.Match

これらの型エイリアスは re.compile()re.match() の返り値の型に対応します。 これらの型 (と対応する関数) は AnyStr についてジェネリックで、Pattern[str]Pattern[bytes]Match[str]Match[bytes] と書くことで具体型にできます。

バージョン 3.8 で非推奨、バージョン 3.13 で削除予定: The typing.re namespace is deprecated and will be removed. These types should be directly imported from typing instead.

バージョン 3.9 で非推奨: Classes Pattern and Match from re now support []. See PEP 585 and Generic Alias Type.

class typing.Text

Textstr のエイリアスです。これは Python 2 のコードの前方互換性を提供するために設けられています: Python 2 では Textunicode のエイリアスです。

Text は Python 2 と Python 3 の両方と互換性のある方法で値が unicode 文字列を含んでいなければならない場合に使用してください。

def add_unicode_checkmark(text: Text) -> Text:
    return text + u' \u2713'

バージョン 3.5.2 で追加.

バージョン 3.11 で非推奨: Python 2 is no longer supported, and most type checkers also no longer support type checking Python 2 code. Removal of the alias is not currently planned, but users are encouraged to use str instead of Text wherever possible.


Corresponding to collections in collections.abc

class typing.AbstractSet(Collection[T_co])

collections.abc.Set のジェネリック版です。

バージョン 3.9 で非推奨: collections.abc.Set now supports subscripting ([]). See PEP 585 and Generic Alias Type.

class typing.ByteString(Sequence[int])

collections.abc.ByteString のジェネリック版です。

この型は bytesbytearray 、バイト列の memoryview を表します。

この型の省略形として、 bytes を上に挙げた任意の型の引数にアノテーションをつけることに使えます。

バージョン 3.9 で非推奨: collections.abc.ByteString now supports subscripting ([]). See PEP 585 and Generic Alias Type.

class typing.Collection(Sized, Iterable[T_co], Container[T_co])

collections.abc.Collection のジェネリック版です。

バージョン 3.6.0 で追加.

バージョン 3.9 で非推奨: collections.abc.Collection now supports subscripting ([]). See PEP 585 and Generic Alias Type.

class typing.Container(Generic[T_co])

collections.abc.Container のジェネリック版です。

バージョン 3.9 で非推奨: collections.abc.Container now supports subscripting ([]). See PEP 585 and Generic Alias Type.

class typing.ItemsView(MappingView, AbstractSet[tuple[KT_co, VT_co]])

collections.abc.ItemsView のジェネリック版です。

バージョン 3.9 で非推奨: collections.abc.ItemsView now supports subscripting ([]). See PEP 585 and Generic Alias Type.

class typing.KeysView(MappingView, AbstractSet[KT_co])

collections.abc.KeysView のジェネリック版です。

バージョン 3.9 で非推奨: collections.abc.KeysView now supports subscripting ([]). See PEP 585 and Generic Alias Type.

class typing.Mapping(Collection[KT], Generic[KT, VT_co])

collections.abc.Mapping のジェネリック版です。 この型は次のように使えます:

def get_position_in_index(word_list: Mapping[str, int], word: str) -> int:
    return word_list[word]

バージョン 3.9 で非推奨: collections.abc.Mapping now supports subscripting ([]). See PEP 585 and Generic Alias Type.

class typing.MappingView(Sized)

collections.abc.MappingView のジェネリック版です。

バージョン 3.9 で非推奨: collections.abc.MappingView now supports subscripting ([]). See PEP 585 and Generic Alias Type.

class typing.MutableMapping(Mapping[KT, VT])

collections.abc.MutableMapping のジェネリック版です。

バージョン 3.9 で非推奨: collections.abc.MutableMapping now supports subscripting ([]). See PEP 585 and Generic Alias Type.

class typing.MutableSequence(Sequence[T])

collections.abc.MutableSequence のジェネリック版です。

バージョン 3.9 で非推奨: collections.abc.MutableSequence now supports subscripting ([]). See PEP 585 and Generic Alias Type.

class typing.MutableSet(AbstractSet[T])

collections.abc.MutableSet のジェネリック版です。

バージョン 3.9 で非推奨: collections.abc.MutableSet now supports subscripting ([]). See PEP 585 and Generic Alias Type.

class typing.Sequence(Reversible[T_co], Collection[T_co])

collections.abc.Sequence のジェネリック版です。

バージョン 3.9 で非推奨: collections.abc.Sequence now supports subscripting ([]). See PEP 585 and Generic Alias Type.

class typing.ValuesView(MappingView, Collection[_VT_co])

collections.abc.ValuesView のジェネリック版です。

バージョン 3.9 で非推奨: collections.abc.ValuesView now supports subscripting ([]). See PEP 585 and Generic Alias Type.

Corresponding to other types in collections.abc

class typing.Iterable(Generic[T_co])

collections.abc.Iterable のジェネリック版です。

バージョン 3.9 で非推奨: collections.abc.Iterable now supports subscripting ([]). See PEP 585 and Generic Alias Type.

class typing.Iterator(Iterable[T_co])

collections.abc.Iterator のジェネリック版です。

バージョン 3.9 で非推奨: collections.abc.Iterator now supports subscripting ([]). See PEP 585 and Generic Alias Type.

class typing.Generator(Iterator[T_co], Generic[T_co, T_contra, V_co])

ジェネレータはジェネリック型 Generator[YieldType, SendType, ReturnType] によってアノテーションを付けられます。例えば:

def echo_round() -> Generator[int, float, str]:
    sent = yield 0
    while sent >= 0:
        sent = yield round(sent)
    return 'Done'

typing モジュールの多くの他のジェネリクスと違い GeneratorSendType は共変や不変ではなく、反変として扱われることに注意してください。

もしジェネレータが値を返すだけの場合は、 SendTypeReturnTypeNone を設定してください:

def infinite_stream(start: int) -> Generator[int, None, None]:
    while True:
        yield start
        start += 1

代わりに、ジェネレータを Iterable[YieldType]Iterator[YieldType] という返り値の型でアノテーションをつけることもできます:

def infinite_stream(start: int) -> Iterator[int]:
    while True:
        yield start
        start += 1

バージョン 3.9 で非推奨: collections.abc.Generator now supports subscripting ([]). See PEP 585 and Generic Alias Type.

class typing.Hashable

An alias to collections.abc.Hashable.

class typing.Reversible(Iterable[T_co])

collections.abc.Reversible のジェネリック版です。

バージョン 3.9 で非推奨: collections.abc.Reversible now supports subscripting ([]). See PEP 585 and Generic Alias Type.

class typing.Sized

An alias to collections.abc.Sized.

Asynchronous programming

class typing.Coroutine(Awaitable[V_co], Generic[T_co, T_contra, V_co])

collections.abc.Coroutine のジェネリック版です。 変性と型変数の順序は Generator のものと対応しています。例えば次のようになります:

from collections.abc import Coroutine
c: Coroutine[list[str], str, int]  # Some coroutine defined elsewhere
x = c.send('hi')                   # Inferred type of 'x' is list[str]
async def bar() -> None:
    y = await c                    # Inferred type of 'y' is int

バージョン 3.5.3 で追加.

バージョン 3.9 で非推奨: collections.abc.Coroutine now supports subscripting ([]). See PEP 585 and Generic Alias Type.

class typing.AsyncGenerator(AsyncIterator[T_co], Generic[T_co, T_contra])

非同期ジェネレータはジェネリック型 AsyncGenerator[YieldType, SendType] によってアノテーションを付けられます。例えば:

async def echo_round() -> AsyncGenerator[int, float]:
    sent = yield 0
    while sent >= 0.0:
        rounded = await round(sent)
        sent = yield rounded

通常のジェネレータと違って非同期ジェネレータは値を返せないので、ReturnType 型引数はありません。Generator と同様に、SendType は反変的に振る舞います。

ジェネレータが値を yield するだけなら、SendTypeNone にします:

async def infinite_stream(start: int) -> AsyncGenerator[int, None]:
    while True:
        yield start
        start = await increment(start)

あるいは、ジェネレータが AsyncIterable[YieldType]AsyncIterator[YieldType] のいずれかの戻り値型を持つとアノテートします:

async def infinite_stream(start: int) -> AsyncIterator[int]:
    while True:
        yield start
        start = await increment(start)

バージョン 3.6.1 で追加.

バージョン 3.9 で非推奨: collections.abc.AsyncGenerator now supports subscripting ([]). See PEP 585 and Generic Alias Type.

class typing.AsyncIterable(Generic[T_co])

collections.abc.AsyncIterable のジェネリック版です。

バージョン 3.5.2 で追加.

バージョン 3.9 で非推奨: collections.abc.AsyncIterable now supports subscripting ([]). See PEP 585 and Generic Alias Type.

class typing.AsyncIterator(AsyncIterable[T_co])

collections.abc.AsyncIterator のジェネリック版です。

バージョン 3.5.2 で追加.

バージョン 3.9 で非推奨: collections.abc.AsyncIterator now supports subscripting ([]). See PEP 585 and Generic Alias Type.

class typing.Awaitable(Generic[T_co])

collections.abc.Awaitable のジェネリック版です。

バージョン 3.5.2 で追加.

バージョン 3.9 で非推奨: collections.abc.Awaitable now supports subscripting ([]). See PEP 585 and Generic Alias Type.


class typing.ContextManager(Generic[T_co])

contextlib.AbstractContextManager のジェネリック版です。

バージョン 3.5.4 で追加.

バージョン 3.6.0 で追加.

バージョン 3.9 で非推奨: contextlib.AbstractContextManager now supports subscripting ([]). See PEP 585 and Generic Alias Type.

class typing.AsyncContextManager(Generic[T_co])

contextlib.AbstractAsyncContextManager のジェネリック版です。

バージョン 3.5.4 で追加.

バージョン 3.6.2 で追加.

バージョン 3.9 で非推奨: contextlib.AbstractAsyncContextManager now supports subscripting ([]). See PEP 585 and Generic Alias Type.


These protocols are decorated with runtime_checkable().

class typing.SupportsAbs

返り値の型と共変な抽象メソッド __abs__ を備えた ABC です。

class typing.SupportsBytes

抽象メソッド __bytes__ を備えた ABC です。

class typing.SupportsComplex

抽象メソッド __complex__ を備えた ABC です。

class typing.SupportsFloat

抽象メソッド __float__ を備えた ABC です。

class typing.SupportsIndex

抽象メソッド __index__ を備えた ABC です。

バージョン 3.8 で追加.

class typing.SupportsInt

抽象メソッド __int__ を備えた ABC です。

class typing.SupportsRound

返り値の型と共変な抽象メソッド __round__ を備えた ABC です。

Functions and decorators

typing.cast(typ, val)


この関数は値を変更せずに返します。 型検査器に対して、返り値が指定された型を持っていることを通知しますが、実行時には意図的に何も検査しません。 (その理由は、処理をできる限り速くしたかったためです。)

typing.assert_type(val, typ, /)

Ask a static type checker to confirm that val has an inferred type of typ.

When the type checker encounters a call to assert_type(), it emits an error if the value is not of the specified type:

def greet(name: str) -> None:
    assert_type(name, str)  # OK, inferred type of `name` is `str`
    assert_type(name, int)  # type checker error

At runtime this returns the first argument unchanged with no side effects.

This function is useful for ensuring the type checker's understanding of a script is in line with the developer's intentions:

def complex_function(arg: object):
    # Do some complex type-narrowing logic,
    # after which we hope the inferred type will be `int`
    # Test whether the type checker correctly understands our function
    assert_type(arg, int)

バージョン 3.11 で追加.

typing.assert_never(arg, /)

Ask a static type checker to confirm that a line of code is unreachable.


def int_or_str(arg: int | str) -> None:
    match arg:
        case int():
            print("It's an int")
        case str():
            print("It's a str")
        case _ as unreachable:

Here, the annotations allow the type checker to infer that the last case can never execute, because arg is either an int or a str, and both options are covered by earlier cases. If a type checker finds that a call to assert_never() is reachable, it will emit an error. For example, if the type annotation for arg was instead int | str | float, the type checker would emit an error pointing out that unreachable is of type float. For a call to assert_never to pass type checking, the inferred type of the argument passed in must be the bottom type, Never, and nothing else.

At runtime, this throws an exception when called.


Unreachable Code and Exhaustiveness Checking has more information about exhaustiveness checking with static typing.

バージョン 3.11 で追加.

typing.reveal_type(obj, /)

Reveal the inferred static type of an expression.

When a static type checker encounters a call to this function, it emits a diagnostic with the type of the argument. For example:

x: int = 1
reveal_type(x)  # Revealed type is "builtins.int"

This can be useful when you want to debug how your type checker handles a particular piece of code.

The function returns its argument unchanged, which allows using it within an expression:

x = reveal_type(1)  # Revealed type is "builtins.int"

Most type checkers support reveal_type() anywhere, even if the name is not imported from typing. Importing the name from typing allows your code to run without runtime errors and communicates intent more clearly.

At runtime, this function prints the runtime type of its argument to stderr and returns it unchanged:

x = reveal_type(1)  # prints "Runtime type is int"
print(x)  # prints "1"

バージョン 3.11 で追加.


dataclass_transform may be used to decorate a class, metaclass, or a function that is itself a decorator. The presence of @dataclass_transform() tells a static type checker that the decorated object performs runtime "magic" that transforms a class, giving it dataclasses.dataclass()-like behaviors.

Example usage with a decorator function:

T = TypeVar("T")

def create_model(cls: type[T]) -> type[T]:
    return cls

class CustomerModel:
    id: int
    name: str

On a base class:

class ModelBase: ...

class CustomerModel(ModelBase):
    id: int
    name: str

On a metaclass:

class ModelMeta(type): ...

class ModelBase(metaclass=ModelMeta): ...

class CustomerModel(ModelBase):
    id: int
    name: str

The CustomerModel classes defined above will be treated by type checkers similarly to classes created with @dataclasses.dataclass. For example, type checkers will assume these classes have __init__ methods that accept id and name.

The decorated class, metaclass, or function may accept the following bool arguments which type checkers will assume have the same effect as they would have on the @dataclasses.dataclass decorator: init, eq, order, unsafe_hash, frozen, match_args, kw_only, and slots. It must be possible for the value of these arguments (True or False) to be statically evaluated.

The arguments to the dataclass_transform decorator can be used to customize the default behaviors of the decorated class, metaclass, or function:

  • eq_default indicates whether the eq parameter is assumed to be True or False if it is omitted by the caller.

  • order_default indicates whether the order parameter is assumed to be True or False if it is omitted by the caller.

  • kw_only_default indicates whether the kw_only parameter is assumed to be True or False if it is omitted by the caller.

  • field_specifiers specifies a static list of supported classes or functions that describe fields, similar to dataclasses.field().

  • Arbitrary other keyword arguments are accepted in order to allow for possible future extensions.

Type checkers recognize the following optional arguments on field specifiers:

  • init indicates whether the field should be included in the synthesized __init__ method. If unspecified, init defaults to True.

  • default provides the default value for the field.

  • default_factory provides a runtime callback that returns the default value for the field. If neither default nor default_factory are specified, the field is assumed to have no default value and must be provided a value when the class is instantiated.

  • factory is an alias for default_factory.

  • kw_only indicates whether the field should be marked as keyword-only. If True, the field will be keyword-only. If False, it will not be keyword-only. If unspecified, the value of the kw_only parameter on the object decorated with dataclass_transform will be used, or if that is unspecified, the value of kw_only_default on dataclass_transform will be used.

  • alias provides an alternative name for the field. This alternative name is used in the synthesized __init__ method.

At runtime, this decorator records its arguments in the __dataclass_transform__ attribute on the decorated object. It has no other runtime effect.

より詳しくは:pep:681 を参照してください。

バージョン 3.11 で追加.


@overload デコレータを使うと、引数の型の複数の組み合わせをサポートする関数やメソッドを書けるようになります。 @overload 付きの定義を並べた後ろに、(同じ関数やメソッドの) @overload 無しの定義が来なければなりません。 @overload 付きの定義は型チェッカーのためでしかありません。 というのも、 @overload 付きの定義は @overload 無しの定義で上書きされるからです。 後者は実行時に使われますが、型チェッカーからは無視されるべきなのです。 実行時には、 @overload 付きの関数を直接呼び出すと NotImplementedError を送出します。 次のコードはオーバーロードを使うことで直和型や型変数を使うよりもより正確な型が表現できる例です:

def process(response: None) -> None:
def process(response: int) -> tuple[int, str]:
def process(response: bytes) -> str:
def process(response):
    <actual implementation>

See PEP 484 for more details and comparison with other typing semantics.

バージョン 3.11 で変更: Overloaded functions can now be introspected at runtime using get_overloads().


Return a sequence of @overload-decorated definitions for func. func is the function object for the implementation of the overloaded function. For example, given the definition of process in the documentation for @overload, get_overloads(process) will return a sequence of three function objects for the three defined overloads. If called on a function with no overloads, get_overloads() returns an empty sequence.

get_overloads() can be used for introspecting an overloaded function at runtime.

バージョン 3.11 で追加.


Clear all registered overloads in the internal registry. This can be used to reclaim the memory used by the registry.

バージョン 3.11 で追加.


A decorator to indicate to type checkers that the decorated method cannot be overridden, and the decorated class cannot be subclassed. For example:

class Base:
    def done(self) -> None:
class Sub(Base):
    def done(self) -> None:  # Error reported by type checker

class Leaf:
class Other(Leaf):  # Error reported by type checker

この機能は実行時には検査されません。 詳細については PEP 591 を参照してください。

バージョン 3.8 で追加.

バージョン 3.11 で変更: The decorator will now set the __final__ attribute to True on the decorated object. Thus, a check like if getattr(obj, "__final__", False) can be used at runtime to determine whether an object obj has been marked as final. If the decorated object does not support setting attributes, the decorator returns the object unchanged without raising an exception.



This works as class or function decorator. With a class, it applies recursively to all methods and classes defined in that class (but not to methods defined in its superclasses or subclasses).



別のデコレータに no_type_check() の効果を与えるデコレータです。

これは何かの関数をラップするデコレータを no_type_check() でラップします。



このデコレータ自身は実行時には使えません。 このデコレータは主に、実装がプライベートクラスのインスタンスを返す場合に、型スタブファイルに定義されているクラスに対して印を付けるためのものです:

class Response:  # private or not available at runtime
    code: int
    def get_header(self, name: str) -> str: ...

def fetch_response() -> Response: ...

プライベートクラスのインスタンスを返すのは推奨されません。 そのようなクラスは公開クラスにするのが望ましいです。

Introspection helpers

typing.get_type_hints(obj, globalns=None, localns=None, include_extras=False)


This is often the same as obj.__annotations__. In addition, forward references encoded as string literals are handled by evaluating them in globals and locals namespaces. For a class C, return a dictionary constructed by merging all the __annotations__ along C.__mro__ in reverse order.

The function recursively replaces all Annotated[T, ...] with T, unless include_extras is set to True (see Annotated for more information). For example:

class Student(NamedTuple):
    name: Annotated[str, 'some marker']

get_type_hints(Student) == {'name': str}
get_type_hints(Student, include_extras=False) == {'name': str}
get_type_hints(Student, include_extras=True) == {
    'name': Annotated[str, 'some marker']


get_type_hints() does not work with imported type aliases that include forward references. Enabling postponed evaluation of annotations (PEP 563) may remove the need for most forward references.

バージョン 3.9 で変更: Added include_extras parameter as part of PEP 593.

バージョン 3.11 で変更: Previously, Optional[t] was added for function and method annotations if a default value equal to None was set. Now the annotation is returned unchanged.



For a typing object of the form X[Y, Z, ...] these functions return X and (Y, Z, ...). If X is a generic alias for a builtin or collections class, it gets normalized to the original class. If X is a union or Literal contained in another generic type, the order of (Y, Z, ...) may be different from the order of the original arguments [Y, Z, ...] due to type caching. For unsupported objects return None and () correspondingly. Examples:

assert get_origin(Dict[str, int]) is dict
assert get_args(Dict[int, str]) == (int, str)

assert get_origin(Union[int, str]) is Union
assert get_args(Union[int, str]) == (int, str)

バージョン 3.8 で追加.


Check if a type is a TypedDict.


class Film(TypedDict):
    title: str
    year: int

is_typeddict(Film)  # => True
is_typeddict(list | str)  # => False

バージョン 3.10 で追加.

class typing.ForwardRef

文字列による前方参照の内部的な型付け表現に使われるクラスです。 例えば、 List["SomeClass"] は暗黙的に List[ForwardRef("SomeClass")] に変換されます。 このクラスはユーザーがインスタンス化するべきではなく、イントロスペクションツールに使われるものです。


PEP 585 generic types such as list["SomeClass"] will not be implicitly transformed into list[ForwardRef("SomeClass")] and thus will not automatically resolve to list[SomeClass].

バージョン 3.7.4 で追加.



サードパーティーの静的型検査器が True と仮定する特別な定数です。 実行時には False になります。使用例:

    import expensive_mod

def fun(arg: 'expensive_mod.SomeType') -> None:
    local_var: expensive_mod.AnotherType = other_fun()

The first type annotation must be enclosed in quotes, making it a "forward reference", to hide the expensive_mod reference from the interpreter runtime. Type annotations for local variables are not evaluated, so the second annotation does not need to be enclosed in quotes.


If from __future__ import annotations is used, annotations are not evaluated at function definition time. Instead, they are stored as strings in __annotations__. This makes it unnecessary to use quotes around the annotation (see PEP 563).

バージョン 3.5.2 で追加.

Deprecation Timeline of Major Features

Certain features in typing are deprecated and may be removed in a future version of Python. The following table summarizes major deprecations for your convenience. This is subject to change, and not all deprecations are listed.


Deprecated in

Projected removal


typing.io and typing.re submodules




typing versions of standard collections



PEP 585