=P

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10
6.11

What’s New in Python

J1)—X 3.10.16
A. M. Kuchling

12 A 07, 2024

BIE - DU—=2ZN151 bk 4
L L igaE 4
Ay ANDAYTHFART R =T T — . . 4
Io—Xot=UDWE . . . e 5
PEP 626: Precise line numbers for debugging and other tools 9
PEP 634: BEGHI S B =20 F e e 10
Optional EncodingWarning and encoding="locale" option 15
Bey MIEEY 2L V6 15
PEP 604: New Type Union Operator 15
PEP 612: Parameter Specification Variables 16
PEP 613: TypeAlias o e 16
PEP 647: User-Defined Type Guards i 17
ZOMDEEFEE 17
W'D a—-I 19
HRENFEDa—I 19
ASYICIO v v v v v e e e e e e e e e e 19
ATGPAISE + v v v e e e e e e e e e e e e e e e e e e 19
AITAY « v v o v v e 19
asynchat, asyncore, smtpd L. oL oL 19
baseb4d e e e e e 19
bdb . . e 19
bisect e 20
CodeCS . . . e e e 20
collections.abe L Lo e 20
contextlibo L e 20
CUTSES .« v v v v v e 20

6.12
6.13
6.14
6.15
6.16
6.17
6.18
6.19
6.20
6.21
6.22
6.23
6.24
6.25
6.26
6.27
6.28
6.29
6.30
6.31
6.32
6.33
6.34
6.35
6.36
6.37
6.38
6.39
6.40
6.41
6.42
6.43
6.44
6.45
6.46
6.47
6.48
6.49
6.50

doctest L e
I TA=TAYT e
fileinput e e e e
faulthandler L e

glob Lo e e e
hashlib o o e
hmac e e
IDLE & idelelib o o e e
importlib.metadata Lo e e
INSPECE . . . o o e
itertools L e e e e

linecache

pathlib e e e e e e
TTY BT A =D e
PRIING . . o e e
py_compile . . .o L e e e e e
PyCIbr oo e e e e

shelve

SSL

SYS o e e e e e e e e e
tempfile L e e e e

Cthread e e
threading L e e e e e e

traceback . .. L L e

tyPINg . . . o e
unittest . . . L

it
FEHESE

HURR

31

32

35

10
10.1
10.2
10.3

11

12

13
13.1
13.2
13.3
13.4
13.5

14

15

16
16.1

17
17.1
17.2

]

Porting to Python 3.10

Changes in the Python syntax
Python APT OZE e
CAPIOZEE

CPython N FO—RFDEE
Build Changes

C APl DEE

PEP 652: Maintaining the Stable ABI
FIUWEERE
Porting to Python 3.10
FEHERE . L
HIBR ..

Notable security feature in 3.10.7
Notable security feature in 3.10.8

Notable Changes in 3.10.12

tarfile

Notable changes in 3.10.15

36
36
36
37

38

38

39
39
39
40
41
41

44

44

44
44

44
44
44

46

JJ—X 3.10.16
Hf 12 A 07, 2024

#REE Pablo Galindo Salgado

Z DOFHETIE Python 3.9 L L 7z Python 3.10 O#¥REZ fi#dh L £ 3. Python 3.10 X 2021 £ 10 A 4

Hi2V Y —RENFE LTz, FMICOVWTIE ZTHBRE 2 28XV,

1 E - V)—=ZINLF1F

172 72 SO RE:

o PEP 634, #&EM & -~y F: fhkk

o PEP 635, MG X -V vy F: EFR—va v M

o PEP 636, & & -~y F: Fa2—-FU T

e bpo-12782, v aANDAYFF AP F—Y v —DBERITHR— b
HES 4 75) DOFIFKRE:

o PEP 618, zip TREF = v 7 DAF 7> a VEIEHEM
4R ZOUE

e« PEP 626, 7Ny 7B XU Z0MDY —VHOIEHERITES,
FLOVE L > - ofhE:

o PEP 604, Union £ 4 7D X | Y EXTOHR

e PEP 612, 7 X —XIGEEE

o PEP 613, R4 V7 R

e PEP 647, User-Defined Type Guards
BB IFHERE L, HIBR E 7 1 HIRR:

o PEP 644, OpenSSL 1.1.1 DI 228 L

o PEP 632, distutils £ 2 — /L3 JEHEREIC

« PEP 623, PyUnicodeObject @ wstr X > N— DIEHESE - HIFRA D HE(

« PEP 624, Py UNICODE x> a—%& API OHIk

o« PEP 597, {EE® EncodingWarning % &/

2 #HL L \EkgE
21 AyIROAVTFRAMIXZ—T v —
AVTFFAMTR—V v —REBIT O L TR T 2 A1, Ay aTHOI A TEZRIICADEL

J2o BEAT TR ZIADAYTFAMIRA—Y v —%0R T 2 & &2, ERD import XA X517 % —
<y bTEET, 222 UTOTXRTOFNIETT:

https://www.python.org/dev/peps/pep-0634
https://www.python.org/dev/peps/pep-0635
https://www.python.org/dev/peps/pep-0636
https://bugs.python.org/issue?@action=redirect&bpo=12782
https://www.python.org/dev/peps/pep-0618
https://www.python.org/dev/peps/pep-0626
https://www.python.org/dev/peps/pep-0604
https://www.python.org/dev/peps/pep-0612
https://www.python.org/dev/peps/pep-0613
https://www.python.org/dev/peps/pep-0647
https://www.python.org/dev/peps/pep-0644
https://www.python.org/dev/peps/pep-0632
https://www.python.org/dev/peps/pep-0623
https://www.python.org/dev/peps/pep-0624
https://www.python.org/dev/peps/pep-0597

with (CtxManager() as example):

with (
CtxManageri(),
CtxManager2()
):

with (CtxManager1() as example,
CtxManager2()):

with (CtxManageri(),

CtxManager2() as example):

with (
CtxManager1() as examplel,

CtxManager2() as example2

By A ENZIN—TORBOBEZRIINT 2, REBOH V< HIEEHETT,

with (
CtxManager1() as examplel,
CtxManager2() as example2,

CtxManager3() as example3,

O LW, Hros—H%—i2 X% LL(1) BULOREN Z A L TWE T, #iflld PEP 617 228 L T<
72E W,

(Guido van Rossum. Pablo Galindo. Lysandros Nikolaou OEHR#kIZ & % bpo-12782. bpo-40334)

22 IS—Xyt—YDHE

SyntaxErrors

When parsing code that contains unclosed parentheses or brackets the interpreter now includes the
location of the unclosed bracket of parentheses instead of displaying SyntazFError: unexpected EOF while
parsing or pointing to some incorrect location. For instance, consider the following code (notice the

unclosed '{’):

expected = {9: 1, 18: 2, 19: 2, 27: 3, 28: 3, 29: 3, 36: 4, 37: 4,
38: 4, 39: 4, 45: 5, 46: 5, 47: 5, 48: 5, 49: 5, 54: 6,

some_other_code = foo()

https://www.python.org/dev/peps/pep-0617
https://bugs.python.org/issue?@action=redirect&bpo=12782
https://bugs.python.org/issue?@action=redirect&bpo=40334

LEION=Y a DA v Z =TV RZ, X7 —DMEL LTRILT 25/ EZHRE L TVE L

File "example.py", line 3

some_other_code = foo()

SyntaxError: invalid syntax

L2 L Python 3.10 TR XD ERLZLT I —HIENET:

File "example.py", line 1
expected = {9: 1, 18: 2, 19: 2, 27: 3, 28: 3, 29: 3, 36: 4, 37: 4,

SyntaxError: '{' was never closed

In a similar way, errors involving unclosed string literals (single and triple quoted) now point to the start
of the string instead of reporting EOF /EOL.

These improvements are inspired by previous work in the PyPy interpreter.
(Pablo Galindo ® &HH#fikiZ & % bpo-42864, Batuhan Taskaya O ERKIZ & % bpo-40176)

SyntaxError exceptions raised by the interpreter will now highlight the full error range of the expression
that constitutes the syntax error itself, instead of just where the problem is detected. In this way, instead
of displaying (before Python 3.10):

>>> foo(x, z for z in range(10), t, w)
File "<stdin>", line 1
foo(x, z for z in range(10), t, w)

SyntaxError: Generator expression must be parenthesized

now Python 3.10 will display the exception as:

>>> foo(x, z for z in range(10), t, w)
File "<stdin>", line 1
foo(x, z for z in range(10), t, w)

SyntaxError: Generator expression must be parenthesized

This improvement was contributed by Pablo Galindo in bpo-43914.

A considerable amount of new specialized messages for SyntaxError exceptions have been incorporated.

Some of the most notable ones are as follows:

o« TRy ZODHID : HFAELRL:

>>> if rocket.position > event_horizon
File "<stdin>", line 1

if rocket.position > event_horizon

SyntaxError: expected ':'

https://bugs.python.org/issue?@action=redirect&bpo=42864
https://bugs.python.org/issue?@action=redirect&bpo=40176
https://bugs.python.org/issue?@action=redirect&bpo=43914

(Pablo Galindo ®E#kIZ X 2 bpo-42997)

o WHRHDEX—F v MTHY IaDBWE FILE[HH:

>>> {x,y for x,y in zip('abcd', '1234')}
File "<stdin>", line 1

{x,y for x,y in zip('abcd', '1234')}

SyntaxError: did you forget parentheses around the comprehension target?

(Pablo Galindo ®HREAIZ &% bpo-43017)

e LI a vV T INRROMDA Y <PFELZ:

>>> items = {

Cox: 1,

Ly 2

.z: 3,

File "<stdin>", line 3
y: 2

SyntaxError: invalid syntax. Perhaps you forgot a comma?

(Pablo Galindo ®EHHBAIZ &% bpo-43822)

o BROENDEIE v aTHATHRW:

>>> try:
build_dyson_sphere()
. except NotEnoughScienceError, NotEnoughResourcesError:
File "<stdin>", line 3
except NotEnoughScienceError, NotEnoughResourcesError:

SyntaxError: multiple exception types must be parenthesized

(Pablo Galindo ®EHkIZ X % bpo-43149)

. HEQUFIAT @ LENHEELE:

>>> values = {

.ox: 1,
Ly 2,
..Z
-}

File "<stdin>", line 4

Z:

SyntaxError: expression expected after dictionary key and ':'

>>> values = {x:1, y:2, z w:3}
File "<stdin>", line 1
values = {x:1, y:2, z w:3}

(KDR=I1Z%iE<)

https://bugs.python.org/issue?@action=redirect&bpo=42997
https://bugs.python.org/issue?@action=redirect&bpo=43017
https://bugs.python.org/issue?@action=redirect&bpo=43822
https://bugs.python.org/issue?@action=redirect&bpo=43149

(FiDR— 25 D %)

SyntaxError: ':' expected after dictionary key

(Pablo Galindo ®EHRBAIZ &% bpo-43823)

e try 7B v 71T except ¥7z1d finally 70 v ZDFIE LR

>>> try:
x =2
something = 3
File "<stdin>", line 3
something = 3

SyntaxError: expected 'except' or 'finally' block

(Pablo Galindo ®EH#AIZ & % bpo-44305)

o T == ROV =2/HALTVS:

>>> if rocket.position = event_horizon:
File "<stdin>", line 1
if rocket.position = event_horizon:

SyntaxError: cannot assign to attribute here. Maybe you meant '==' instead of '='7?

(Pablo Galindo ®HEFAIZ &% bpo-43797)

o f-string T x Z{HHLTW3:

>>> f"Black holes {#*all_black_holes/ and revelations"
File "<stdin>", line 1
(*all_black_holes)

SyntaxError: f-string: cannot use starred expression here

(Pablo Galindo O EH#IZ X % bpo-41064)

IndentationErrors

Many IndentationError exceptions now have more context regarding what kind of block was expecting

an indentation, including the location of the statement:

>>> def foo():

if lel:
x = 2
File "<stdin>", line 3
x =2

IndentationError: expected an indented block after 'if' statement in line 2

https://bugs.python.org/issue?@action=redirect&bpo=43823
https://bugs.python.org/issue?@action=redirect&bpo=44305
https://bugs.python.org/issue?@action=redirect&bpo=43797
https://bugs.python.org/issue?@action=redirect&bpo=41064

AttributeErrors

When printing AttributeError, PyErr_Display() will offer suggestions of similar attribute names in

the object that the exception was raised from:

>>> collections.namedtoplo
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
AttributeError: module 'collections' has no attribute 'namedtoplo'. Did you mean: namedtuple?

ablo Galindo D EHHMAIZ Op0o-3853(
(Pablo Galind Hillick 2 1 38530)

g

£&: Notice this won’t work if PyErr_Display() is not called to display the error which
can happen if some other custom error display function is used. This is a common scenario

in some REPLs like IPython.

NameErrors

When printing NameError raised by the interpreter, PyErr_Display() will offer suggestions of similar

variable names in the function that the exception was raised from:

>>> schwarzschild_black_hole = None
>>> schwarschild_black_hole
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
NameError: name 'schwarschild_black_hole' is not defined. Did you mean: schwarzschild_black_

—hole?

(Pablo Galindo ®HEFAIZ &% bpo-38530)

Z&: Notice this won’t work if PyErr_Display() is not called to display the error, which
can happen if some other custom error display function is used. This is a common scenario

in some REPLs like IPython.

2.3 PEP 626: Precise line numbers for debugging and other tools

PEP 626 brings more precise and reliable line numbers for debugging, profiling and coverage tools.
Tracing events, with the correct line number, are generated for all lines of code executed and only for

lines of code that are executed.
The £f_lineno attribute of frame objects will always contain the expected line number.

The co_lnotab attribute of code objects is deprecated and will be removed in 3.12. Code that needs to

convert from offset to line number should use the new co_lines() method instead.

9

https://bugs.python.org/issue?@action=redirect&bpo=38530
https://bugs.python.org/issue?@action=redirect&bpo=38530

2.4 PEP 634: BENNZ—2 VT

Structural pattern matching has been added in the form of a match statement and case statements of
patterns with associated actions. Patterns consist of sequences, mappings, primitive data types as well
as class instances. Pattern matching enables programs to extract information from complex data types,

branch on the structure of data, and apply specific actions based on different forms of data.

Syntax and operations

The generic syntax of pattern matching is:

match subject:

case <pattern_1>:
<action_1>

case <pattern_2>:
<action_2>

case <pattern_3>:
<action_3>

case _

<action_wildcard>

A match statement takes an expression and compares its value to successive patterns given as one or

more case blocks. Specifically, pattern matching operates by:
1. using data with type and shape (the subject)
2. evaluating the subject in the match statement

3. comparing the subject with each pattern in a case statement from top to bottom until a match

is confirmed.
4. executing the action associated with the pattern of the confirmed match

5. If an exact match is not confirmed, the last case, a wildcard _, if provided, will be used as the
matching case. If an exact match is not confirmed and a wildcard case does not exist, the entire

match block is a no-op.

Declarative approach

Readers may be aware of pattern matching through the simple example of matching a subject (data
object) to a literal (pattern) with the switch statement found in C, Java or JavaScript (and many
other languages). Often the switch statement is used for comparison of an object/expression with case

statements containing literals.

More powerful examples of pattern matching can be found in languages such as Scala and Elixir. With
structural pattern matching, the approach is ”declarative” and explicitly states the conditions (the

patterns) for data to match.

While an ”imperative” series of instructions using nested ”if” statements could be used to accomplish

10

something similar to structural pattern matching, it is less clear than the “declarative” approach. Instead
the "declarative” approach states the conditions to meet for a match and is more readable through its
explicit patterns. While structural pattern matching can be used in its simplest form comparing a
variable to a literal in a case statement, its true value for Python lies in its handling of the subject’s type

and shape.

Simple pattern: match to a literal

Let’s look at this example as pattern matching in its simplest form: a value, the subject, being matched
to several literals, the patterns. In the example below, status is the subject of the match statement. The
patterns are each of the case statements, where literals represent request status codes. The associated

action to the case is executed after a match:

def http_error(status):

match status:

case 400:

return "Bad request"
case 404:

return "Not found"
case 418:

return "I'm a teapot"
case _

return "Something's wrong with the internet"

If the above function is passed a status of 418, "I'm a teapot” is returned. If the above function is
passed a status of 500, the case statement with _ will match as a wildcard, and ”"Something’s wrong
with the internet” is returned. Note the last block: the variable name, _, acts as a wildcard and insures

the subject will always match. The use of _ is optional.

BROV T A% 4 (Cor) R L THAGDET 1 DO AX—VITTEET,

case 401 | 403 | 404:
return "Not allowed"

Behavior without the wildcard

If we modify the above example by removing the last case block, the example becomes:

def http_error(status):
match status:

case 400:

return "Bad request"
case 404:

return "Not found"
case 418:

return "I'm a teapot"

Without the use of _ in a case statement, a match may not exist. If no match exists, the behavior is a

11

no-op. For example, if status of 500 is passed, a no-op occurs.

Patterns with a literal and variable

Patterns can look like unpacking assignments, and a pattern may be used to bind variables. In this

example, a data point can be unpacked to its x-coordinate and y-coordinate:

point is an (z, y) tuple
match point:
case (0, 0):
print("Origin")
case (0, y):
print (£"Y={y}")
case (x, 0):
print (£"X={x}")
case (x, y):
print (£"X=1x}, Y={y}")
case _

raise ValueError("Not a point")

The first pattern has two literals, (0, 0), and may be thought of as an extension of the literal pattern
shown above. The next two patterns combine a literal and a variable, and the variable binds a value
from the subject (point). The fourth pattern captures two values, which makes it conceptually similar

to the unpacking assignment (x, y) = point.

Patterns and classes

If you are using classes to structure your data, you can use as a pattern the class name followed by
an argument list resembling a constructor. This pattern has the ability to capture class attributes into

variables:

class Point:
x: int

y: int

def location(point):
match point:
case Point(x=0, y=0):
print("Origin is the point's location.")
case Point(x=0, y=y):
print(£"Y={y} and the point is on the y-axis.")
case Point(x=x, y=0):
print(£"X={x} and the point is on the x-axis.")
case Point():
print("The point is located somewhere else on the plane.")
case _
print ("Not a point")

12

Patterns with positional parameters

WL DD DMAAA Y F ATIINESIBPEHATE, BREOEFZRELET Bl 7—4%275R), 7F7RAD
__match_args__ FHBEHETICE > T, REZ—YOHTREEDOHERMEBELZER T2 TEET, ("X,
"y BREZINTGE. LTOTRTORR=VFEMTT (TXRTEM y 23 var ZEUWCEHEDS I N ET):

Point (1, var)
Point (1, y=var)
Point(x=1, y=var)

Point(y=var, x=1)

Nested patterns

Patterns can be arbitrarily nested. For example, if our data is a short list of points, it could be matched

like this:

match points:

case []:

print("No points in the list.")
case [Point(0, 0)]:

print("The origin is the only point in the list.")
case [Point(x, y)]:

print(f"A single point {x}, {y} is in the list.")
case [Point(0, y1), Point(0, y2)]:

print(f"Two points on the Y axis at {yl}, {y2} are in the list.")
case _

print(”Something else is found in the list.")

Complex patterns and the wildcard

To this point, the examples have used _ alone in the last case statement. A wildcard can be used in

more complex patterns, such as ('error', code, _). For example:

match test_variable:
case ('warning', code, 40):
print("A warning has been received.")
case ('error', code, _):
print(£"An error {code/ occurred.")

In the above case, test_variable will match for (’error’, code, 100) and (‘error’, code, 800).

13

Guard

NRRE = if HiZBINTEE T, ZHUE " H— K" 2N E T, H— KD false DIFE. match KD
case 70y 7 DIEICEEI L £3, H— FEFMT 2ENMEIRD HINE Z 2ICFERLTLZX W0

match point:
case Point(x, y) if x == y:
print(£"The point is located on the diagonal Y=X at {x/}.")
case Point(x, y):

print(f"Point is not on the diagonal.")

Other Key Features
Several other key features:

e Like unpacking assignments, tuple and list patterns have exactly the same meaning and actually
match arbitrary sequences. Technically, the subject must be a sequence. Therefore, an important
exception is that patterns don’t match iterators. Also, to prevent a common mistake, sequence

patterns don’t match strings.

e Sequence patterns support wildcards: [x, y, *rest] and (x, y, *rest) work similar to wild-
cards in unpacking assignments. The name after * may also be _, so (x, y, *_) matches a

sequence of at least two items without binding the remaining items.

o Mapping patterns: {"bandwidth": b, "latency": 1} captures the "bandwidth" and "latency"
values from a dict. Unlike sequence patterns, extra keys are ignored. A wildcard **rest is also

supported. (But **_ would be redundant, so is not allowed.)

o I NX—UTidas F—V—FZ2HEHL THEHZIDIAAET:

case (Point(x1l, y1), Point(x2, y2) as p2):

This binds x1, y1, x2, y2 like you would expect without the as clause, and p2 to the entire second

item of the subject.

e Most literals are compared by equality. However, the singletons True, False and None are com-

pared by identity.

o Named constants may be used in patterns. These named constants must be dotted names to

prevent the constant from being interpreted as a capture variable:

from enum import Enum
class Color(Enum):
RED = 0O
GREEN = 1
BLUE = 2

match color:
case Color.RED:

(RDR=J12Hi<)

14

(RIDR=I D5 DR E)

print ("I see red!")
case Color.GREEN:
print("Grass is green")
case Color.BLUE:
print("I'm feeling the blues :(")

For the full specification see PEP 634. Motivation and rationale are in PEP 635, and a longer tutorial
isin PEP 636.

2.5 Optional EncodingWarning and encoding="locale" option

The default encoding of TextIOWrapper and open() is platform and locale dependent. Since UTF-8 is
used on most Unix platforms, omitting encoding option when opening UTF-8 files (e.g. JSON, YAML,

TOML, Markdown) is a very common bug. For example:

BUG: "rb" mode or encoding="utf-8" should be used.
with open("data.json") as f:

data = json.load(f)

To find this type of bug, an optional EncodingWarning is added. It is emitted when sys.flags.

warn_default_encoding is true and locale-specific default encoding is used.
-X warn_default_encoding option and PYTHONWARNDEFAULTENCODING are added to enable the warning.

See io-text-encoding for more information.

3 B> MIBEET S L LS

This section covers major changes affecting PEP 484 type hints and the typing module.

3.1 PEP 604: New Type Union Operator

A new type union operator was introduced which enables the syntax X | Y. This provides a cleaner way

of expressing ’either type X or type Y’ instead of using typing.Union, especially in type hints.

In previous versions of Python, to apply a type hint for functions accepting arguments of multiple types,

typing.Union was used:

def square(number: Union[int, float]) -> Union[int, float]:

return number ** 2

Type hints can now be written in a more succinct manner:

15

https://www.python.org/dev/peps/pep-0634
https://www.python.org/dev/peps/pep-0635
https://www.python.org/dev/peps/pep-0636
https://www.python.org/dev/peps/pep-0484

def square(number: int | float) -> int | float:

return number ** 2

This new syntax is also accepted as the second argument to isinstance() and issubclass():

>>> isinstance(l, int | str)

True

See types-union and PEP 604 for more details.

(Contributed by Maggie Moss and Philippe Prados in bpo-41428, with additions by Yurii Karabas and
Serhiy Storchaka in bpo-44490.)

3.2 PEP 612: Parameter Specification Variables

Two new options to improve the information provided to static type checkers for PEP 484’s Callable

have been added to the typing module.

The first is the parameter specification variable. They are used to forward the parameter types of
one callable to another callable -- a pattern commonly found in higher order functions and decorators.
Examples of usage can be found in typing.ParamSpec. Previously, there was no easy way to type

annotate dependency of parameter types in such a precise manner.

The second option is the new Concatenate operator. It’s used in conjunction with parameter specification
variables to type annotate a higher order callable which adds or removes parameters of another callable.

Examples of usage can be found in typing.Concatenate.

See typing.Callable, typing.ParamSpec, typing.Concatenate, typing.ParamSpecArgs, typing.
ParamSpecKwargs, and PEP 612 for more details.

(Contributed by Ken Jin in bpo-41559, with minor enhancements by Jelle Zijlstra in bpo-43783. PEP
written by Mark Mendoza.)

3.3 PEP 613: TypeAlias

PEP 484 introduced the concept of type aliases, only requiring them to be top-level unannotated
assignments. This simplicity sometimes made it difficult for type checkers to distinguish between type
aliases and ordinary assignments, especially when forward references or invalid types were involved.

Compare:

StrCache = 'Cachel[str]' # a type alias
LOG_PREFIX = 'LOG[DEBUG]' # a module constant

Now the typing module has a special value TypeAlias which lets you declare type aliases more explicitly:

16

https://www.python.org/dev/peps/pep-0604
https://bugs.python.org/issue?@action=redirect&bpo=41428
https://bugs.python.org/issue?@action=redirect&bpo=44490
https://www.python.org/dev/peps/pep-0484
https://www.python.org/dev/peps/pep-0612
https://bugs.python.org/issue?@action=redirect&bpo=41559
https://bugs.python.org/issue?@action=redirect&bpo=43783
https://www.python.org/dev/peps/pep-0484

StrCache: TypeAlias = 'Cachel[str]' # a type alias
LOG_PREFIX = 'LOG[DEBUG]' # a module constant

EDEELIE PEP 613 2Z& < 72X W,

(Contributed by Mikhail Golubev in bpo-41923.)

3.4 PEP 647: User-Defined Type Guards

TypeGuard has been added to the typing module to annotate type guard functions and improve in-
formation provided to static type checkers during type narrowing. For more information, please see

TypeGuard’s documentation, and PEP 647.

(Contributed by Ken Jin and Guido van Rossum in bpo-43766. PEP written by Eric Traut.)

4 TDDOEEEE

e The int type has a new method int.bit_count (), returning the number of ones in the binary
expansion of a given integer, also known as the population count. (Contributed by Niklas Fiekas
in bpo-29882.)

e The views returned by dict.keys (), dict.values() and dict.items() now all have a mapping
attribute that gives a types.MappingProxyType object wrapping the original dictionary. (Con-
tributed by Dennis Sweeney in bpo-40890.)

e PEP 618: The zip() function now has an optional strict flag, used to require that all the

iterables have an equal length.

« Builtin and extension functions that take integer arguments no longer accept Decimals, Fractions
and other objects that can be converted to integers only with a loss (e.g. that have the __int__()
method but do not have the __index__() method). (Contributed by Serhiy Storchaka in
bpo-37999.)

o If object.__ipow__() returns NotImplemented, the operator will correctly fall back to object.
rpow__() as expected. (Contributed by Alex Shkop in bpo-38302.)

__pow__() and object.

o Assignment expressions can now be used unparenthesized within set literals and set comprehen-

sions, as well as in sequence indexes (but not slices).

e Functions have a new __builtins__ attribute which is used to look for builtin symbols when a
function is executed, instead of looking into __globals__['__builtins__']. The attribute is
initialized from __globals__["__builtins__"] if it exists, else from the current builtins. (Con-
tributed by Mark Shannon in bpo-42990.)

e Two new builtin functions -- aiter() and anext() have been added to provide asynchronous

counterparts to iter) and next (), respectively. (Contributed by Joshua Bronson, Daniel Pope,

17

https://www.python.org/dev/peps/pep-0613
https://bugs.python.org/issue?@action=redirect&bpo=41923
https://www.python.org/dev/peps/pep-0647
https://bugs.python.org/issue?@action=redirect&bpo=43766
https://bugs.python.org/issue?@action=redirect&bpo=29882
https://bugs.python.org/issue?@action=redirect&bpo=40890
https://www.python.org/dev/peps/pep-0618
https://bugs.python.org/issue?@action=redirect&bpo=37999
https://bugs.python.org/issue?@action=redirect&bpo=38302
https://bugs.python.org/issue?@action=redirect&bpo=42990

and Justin Wang in bpo-31861.)

Static methods (@staticmethod) and class methods (@classmethod) now inherit the method at-

tributes (__module__, __name__, __qualname__, __doc__, __annotations__) and have a new

__wrapped__ attribute. Moreover, static methods are now callable as regular functions. (Con-
tributed by Victor Stinner in bpo-43682.)

Annotations for complex targets (everything beside simple name targets defined by PEP 526)
no longer cause any runtime effects with from __future__ import annotations. (Contributed

by Batuhan Taskaya in bpo-42737.)

Class and module objects now lazy-create empty annotations dicts on demand. The annotations
dicts are stored in the object’ s __dict__ for backwards compatibility. This improves the best

practices for working with __annotations__; for more information, please see annotations-howto.

(Contributed by Larry Hastings in bpo-43901.)

Annotations consist of yield, yield from, await or named expressions are now forbidden un-
der from __future__ import annotations due to their side effects. (Contributed by Batuhan
Taskaya in bpo-42725.)

Usage of unbound variables, super() and other expressions that might alter the processing
of symbol table as annotations are now rendered effectless under from __future__ import

annotations. (Contributed by Batuhan Taskaya in bpo-42725.)

Hashes of NaN values of both float type and decimal.Decimal type now depend on object
identity. Formerly, they always hashed to 0 even though NaN values are not equal to one an-
other. This caused potentially quadratic runtime behavior due to excessive hash collisions when
creating dictionaries and sets containing multiple NaNs. (Contributed by Raymond Hettinger in
bpo-43475.)

A SyntaxError (instead of a NameError) will be raised when deleting the __debug__ constant.
(Contributed by Dong-hee Na in bpo-45000.)

SyntaxError exceptions now have end_lineno and end_offset attributes. They will be None if
not determined. (Contributed by Pablo Galindo in bpo-43914.)

18

https://bugs.python.org/issue?@action=redirect&bpo=31861
https://bugs.python.org/issue?@action=redirect&bpo=43682
https://www.python.org/dev/peps/pep-0526
https://bugs.python.org/issue?@action=redirect&bpo=42737
https://bugs.python.org/issue?@action=redirect&bpo=43901
https://bugs.python.org/issue?@action=redirect&bpo=42725
https://bugs.python.org/issue?@action=redirect&bpo=42725
https://bugs.python.org/issue?@action=redirect&bpo=43475
https://bugs.python.org/issue?@action=redirect&bpo=45000
https://bugs.python.org/issue?@action=redirect&bpo=43914

5 Fif-BE'EDa—)L

e None yet.

6 XBIN-EDa—I
6.1 asyncio

Add missing connect_accepted_socket () method. (Contributed by Alex Gronholm in bpo-41332.)

6.2 argparse

Misleading phrase ”optional arguments” was replaced with "options” in argparse help. Some tests might

require adaptation if they rely on exact output match. (Contributed by Raymond Hettinger in bpo-9694.)

6.3 array

The index() method of array.array now has optional start and stop parameters. (Contributed by

Anders Lorentsen and Zackery Spytz in bpo-31956.)

6.4 asynchat, asyncore, smtpd

These modules have been marked as deprecated in their module documentation since Python 3.6. An

import-time DeprecationWarning has now been added to all three of these modules.

6.5 base64

Add base64.b32hexencode() and base64.b32hexdecode() to support the Base32 Encoding with Ex-
tended Hex Alphabet.

6.6 bdb

Add clearBreakpoints() to reset all set breakpoints. (Contributed by Irit Katriel in bpo-24160.)

19

https://bugs.python.org/issue?@action=redirect&bpo=41332
https://bugs.python.org/issue?@action=redirect&bpo=9694
https://bugs.python.org/issue?@action=redirect&bpo=31956
https://bugs.python.org/issue?@action=redirect&bpo=24160

6.7 bisect

Added the possibility of providing a key function to the APIs in the bisect module. (Contributed by
Raymond Hettinger in bpo-4356.)

6.8 codecs

Add a codecs.unregister () function to unregister a codec search function. (Contributed by Hai Shi
in bpo-41842.)

6.9 collections.abc

The __args__ of the parameterized generic for collections.abc.Callable are now consistent with
typing.Callable. collections.abc.Callable generic now flattens type parameters, similar to what
typing.Callable currently does. This means that collections.abc.Callable[[int, str], str]
will have __args__ of (int, str, str); previously this was ([int, str], str). To allow this change,
types.GenericAlias can now be subclassed, and a subclass will be returned when subscripting the
collections.abc.Callable type. Note that a TypeError may be raised for invalid forms of parameter-
izing collections.abc.Callable which may have passed silently in Python 3.9. (Contributed by Ken
Jin in bpo-42195.)

6.10 contextlib
Add a contextlib.aclosing() context manager to safely close async generators and objects representing
asynchronously released resources. (Contributed by Joongi Kim and John Belmonte in bpo-41229.)

Add asynchronous context manager support to contextlib.nullcontext(). (Contributed by Tom

Gringauz in bpo-41543.)

Add AsyncContextDecorator, for supporting usage of async context managers as decorators.

6.11 curses

The extended color functions added in ncurses 6.1 will be used transparently by curses.
color_content (), curses.init_color(), curses.init_pair(), and curses.pair_content(). A new
function, curses.has_extended_color_support(), indicates whether extended color support is pro-
vided by the underlying ncurses library. (Contributed by Jeffrey Kintscher and Hans Petter Jansson in
bpo-36982.)

The BUTTON5_* constants are now exposed in the curses module if they are provided by the underlying

curses library. (Contributed by Zackery Spytz in bpo-39273.)

20

https://bugs.python.org/issue?@action=redirect&bpo=4356
https://bugs.python.org/issue?@action=redirect&bpo=41842
https://bugs.python.org/issue?@action=redirect&bpo=42195
https://bugs.python.org/issue?@action=redirect&bpo=41229
https://bugs.python.org/issue?@action=redirect&bpo=41543
https://bugs.python.org/issue?@action=redirect&bpo=36982
https://bugs.python.org/issue?@action=redirect&bpo=39273

6.12 7—2I35X

slots

Added slots parameter in dataclasses.dataclass() decorator. (Contributed by Yurii Karabas in
bpo-42269)

Keyword-only fields

dataclasses now supports fields that are keyword-only in the generated _ init_ method. There are a

number of ways of specifying keyword-only fields.

You can say that every field is keyword-only:

from dataclasses import dataclass

@dataclass (kw_only=True)
class Birthday:

name: str

birthday: datetime.date

Both name and birthday are keyword-only parameters to the generated _ init_ method.

You can specify keyword-only on a per-field basis:

from dataclasses import dataclass

Q@dataclass
class Birthday:
name: str
birthday: datetime.date = field(kw_only=True)

Here only birthday is keyword-only. If you set kw_only on individual fields, be aware that there are
rules about re-ordering fields due to keyword-only fields needing to follow non-keyword-only fields. See

the full dataclasses documentation for details.

You can also specify that all fields following a KW__ONLY marker are keyword-only. This will probably

be the most common usage:

from dataclasses import dataclass, KW_ONLY

@dataclass

class Point:

x: float

y: float

_: KW_ONLY

z: float = 0.0
t: float = 0.0

Here, z and t are keyword-only parameters, while x and y are not. (Contributed by Eric V. Smith in

21

https://bugs.python.org/issue?@action=redirect&bpo=42269

bpo-43532.)

6.13 distutils

The entire distutils package is deprecated, to be removed in Python 3.12. Its functionality for spec-
ifying package builds has already been completely replaced by third-party packages setuptools and
packaging, and most other commonly used APIs are available elsewhere in the standard library (such as
platform, shutil, subprocess or sysconfig). There are no plans to migrate any other functionality
from distutils, and applications that are using other functions should plan to make private copies of
the code. Refer to PEP 632 for discussion.

The bdist_wininst command deprecated in Python 3.8 has been removed. The bdist_wheel command
is now recommended to distribute binary packages on Windows. (Contributed by Victor Stinner in
bpo-42802.)

6.14 doctest

When a module does not define __loader
Cannon in bpo-42133.)

fall back to __spec__.loader. (Contributed by Brett

-_—) -

6.15 T>a—F1 >4

encodings.normalize_encoding() now ignores non-ASCII characters. (Contributed by Hai Shi in
bpo-39337.)

6.16 fileinput

Add encoding and errors parameters in fileinput.input() and fileinput.FileInput. (Contributed
by Inada Naoki in bpo-43712.)

fileinput.hook_compressed() now returns TextIOWrapper object when mode is "r” and file is com-

pressed, like uncompressed files. (Contributed by Inada Naoki in bpo-5758.)

6.17 faulthandler

The faulthandler module now detects if a fatal error occurs during a garbage collector collection.
(Contributed by Victor Stinner in bpo-44466.)

22

https://bugs.python.org/issue?@action=redirect&bpo=43532
https://www.python.org/dev/peps/pep-0632
https://bugs.python.org/issue?@action=redirect&bpo=42802
https://bugs.python.org/issue?@action=redirect&bpo=42133
https://bugs.python.org/issue?@action=redirect&bpo=39337
https://bugs.python.org/issue?@action=redirect&bpo=43712
https://bugs.python.org/issue?@action=redirect&bpo=5758
https://bugs.python.org/issue?@action=redirect&bpo=44466

6.18 gc

Add audit hooks for gc.get_objects(), gc.get_referrers() and gc.get_referents(). (Contributed
by Pablo Galindo in bpo-43439.)

6.19 glob

Add the root__dir and dir_fd parameters in glob() and iglob() which allow to specify the root directory
for searching. (Contributed by Serhiy Storchaka in bpo-38144.)

6.20 hashlib

The hashlib module requires OpenSSL 1.1.1 or newer. (Contributed by Christian Heimes in PEP 644
and bpo-43669.)

The hashlib module has preliminary support for OpenSSL 3.0.0. (Contributed by Christian Heimes in
bpo-38820 and other issues.)

The pure-Python fallback of pbkdf2_hmac() is deprecated. In the future PBKDF2-HMAC will only
be available when Python has been built with OpenSSL support. (Contributed by Christian Heimes in
bpo-43880.)

6.21 hmac

The hmac module now uses OpenSSL’s HMAC implementation internally. (Contributed by Christian
Heimes in bpo-40645.)

6.22 IDLE X idelelib

Make IDLE invoke sys.excepthook() (when started without -n’). User hooks were previously ignored.
(Contributed by Ken Hilton in bpo-43008.)

Rearrange the settings dialog. Split the General tab into Windows and Shell/Ed tabs. Move help
sources, which extend the Help menu, to the Extensions tab. Make space for new options and shorten
the dialog. The latter makes the dialog better fit small screens. (Contributed by Terry Jan Reedy in
bpo-40468.) Move the indent space setting from the Font tab to the new Windows tab. (Contributed
by Mark Roseman and Terry Jan Reedy in bpo-33962.)

The changes above were backported to a 3.9 maintenance release.

Add a Shell sidebar. Move the primary prompt ('»>’) to the sidebar. Add secondary prompts (’...) to
the sidebar. Left click and optional drag selects one or more lines of text, as with the editor line number

sidebar. Right click after selecting text lines displays a context menu with ’copy with prompts’ This

23

https://bugs.python.org/issue?@action=redirect&bpo=43439
https://bugs.python.org/issue?@action=redirect&bpo=38144
https://www.python.org/dev/peps/pep-0644
https://bugs.python.org/issue?@action=redirect&bpo=43669
https://bugs.python.org/issue?@action=redirect&bpo=38820
https://bugs.python.org/issue?@action=redirect&bpo=43880
https://bugs.python.org/issue?@action=redirect&bpo=40645
https://bugs.python.org/issue?@action=redirect&bpo=43008
https://bugs.python.org/issue?@action=redirect&bpo=40468
https://bugs.python.org/issue?@action=redirect&bpo=33962

zips together prompts from the sidebar with lines from the selected text. This option also appears on

the context menu for the text. (Contributed by Tal Einat in bpo-37903.)

Use spaces instead of tabs to indent interactive code. This makes interactive code entries ’look right’.
Making this feasible was a major motivation for adding the shell sidebar. (Contributed by Terry Jan
Reedy in bpo-37892.)

Highlight the new soft keywords match, case, and _ in pattern-matching statements. However, this
highlighting is not perfect and will be incorrect in some rare cases, including some _-s in case patterns.
(Contributed by Tal Einat in bpo-44010.)

New in 3.10 maintenance releases.

Apply syntax highlighting to .pyi files. (Contributed by Alex Waygood and Terry Jan Reedy in
bpo-45447.)

Include prompts when saving Shell with inputs and outputs. (Contributed by Terry Jan Reedy in
¢h-95191.)

6.23 importlib.metadata

Feature parity with importlib_metadata 4.6 (history).

importlib.metadata entry points now provide a nicer experience for selecting entry points by group and
name through a new importlib.metadata.EntryPoints class. See the Compatibility Note in the docs

for more info on the deprecation and usage.

Added importlib.metadata.packages_distributions() for resolving top-level Python modules and

packages to their importlib.metadata.Distribution.

6.24 inspect

When a module does not define __loader__, fall back to __spec__.loader. (Contributed by Brett
Cannon in bpo-42133.)

Add inspect.get_annotations(), which safely computes the annotations defined on an object. It
works around the quirks of accessing the annotations on various types of objects, and makes very few
assumptions about the object it examines. inspect.get_annotations() can also correctly un-stringize
stringized annotations. inspect.get_annotations() is now considered best practice for accessing the
annotations dict defined on any Python object; for more information on best practices for working with
annotations, please see annotations-howto. Relatedly, inspect.signature(), inspect.Signature.
from_callable(), and inspect.Signature.from_function() now call inspect.get_annotations()
to retrieve annotations. This means inspect.signature() and inspect.Signature.from_callable()

can also now un-stringize stringized annotations. (Contributed by Larry Hastings in bpo-43817.)

24

https://bugs.python.org/issue?@action=redirect&bpo=37903
https://bugs.python.org/issue?@action=redirect&bpo=37892
https://bugs.python.org/issue?@action=redirect&bpo=44010
https://bugs.python.org/issue?@action=redirect&bpo=45447
https://github.com/python/cpython/issues/95191
https://importlib-metadata.readthedocs.io/en/latest/history.html
https://bugs.python.org/issue?@action=redirect&bpo=42133
https://bugs.python.org/issue?@action=redirect&bpo=43817

6.25 itertools

Add itertools.pairwise(). (Contributed by Raymond Hettinger in bpo-38200.)

6.26 linecache

When a module does not define __loader
Cannon in bpo-42133.)

fall back to __spec__.loader. (Contributed by Brett

p— —_—

6.27 os

Add os.cpu_count () support for VxWorks RTOS. (Contributed by Peixing Xin in bpo-41440.)

Add a new function os.eventfd() and related helpers to wrap the eventfd2 syscall on Linux. (Con-

tributed by Christian Heimes in bpo-41001.)

Add os.splice() that allows to move data between two file descriptors without copying between kernel
address space and user address space, where one of the file descriptors must refer to a pipe. (Contributed
by Pablo Galindo in bpo-41625.)

Add 0_EVTONLY, O_FSYNC, 0_SYMLINK and O_NOFOLLOW_ANY for macOS. (Contributed by Dong-hee Na
in bpo-43106.)

As of 3.10.15, os.mkdir () and os.makedirs() on Windows now support passing a mode value of 00700
to apply access control to the new directory. This implicitly affects tempfile.mkdtemp() and is a
mitigation for CVE-2024-4030. Other values for mode continue to be ignored. (Contributed by Steve
Dower in gh-118486.)

6.28 os.path

os.path.realpath() now accepts a strict keyword-only argument. When set to True, OSError is raised

if a path doesn’t exist or a symlink loop is encountered. (Contributed by Barney Gale in bpo-43757.)

6.29 pathlib

Add slice support to PurePath.parents. (Contributed by Joshua Cannon in bpo-35498.)

Add negative indexing support to PurePath.parents. (Contributed by Yaroslav Pankovych in
bpo-21041.)

Add Path.hardlink_to method that supersedes link_to(). The new method has the same argument
order as symlink_to(). (Contributed by Barney Gale in bpo-39950.)

pathlib.Path.stat() and chmod() now accept a follow symlinks keyword-only argument for consis-

tency with corresponding functions in the os module. (Contributed by Barney Gale in bpo-39906.)
25

https://bugs.python.org/issue?@action=redirect&bpo=38200
https://bugs.python.org/issue?@action=redirect&bpo=42133
https://bugs.python.org/issue?@action=redirect&bpo=41440
https://bugs.python.org/issue?@action=redirect&bpo=41001
https://bugs.python.org/issue?@action=redirect&bpo=41625
https://bugs.python.org/issue?@action=redirect&bpo=43106
https://github.com/python/cpython/issues/118486
https://bugs.python.org/issue?@action=redirect&bpo=43757
https://bugs.python.org/issue?@action=redirect&bpo=35498
https://bugs.python.org/issue?@action=redirect&bpo=21041
https://bugs.python.org/issue?@action=redirect&bpo=39950
https://bugs.python.org/issue?@action=redirect&bpo=39906

6.30 7Sy b7 x—L

Add platform.freedesktop_os_release() to retrieve operation system identification from freedesk-

top.org os-release standard file. (Contributed by Christian Heimes in bpo-28468.)

6.31 pprint

pprint.pprint () now accepts a new underscore_numbers keyword argument. (Contributed by sblon-
don in bpo-42914.)

pprint can now pretty-print dataclasses.dataclass instances. (Contributed by Lewis Gaul in
bpo-43080.)

6.32 py__compile

Add --quiet option to command-line interface of py_compile. (Contributed by Gregory Schevchenko
in bpo-38731.)

6.33 pyclbr
Add an end_lineno attribute to the Function and Class objects in the tree returned by pyclbr.

readline() and pyclbr.readline_ex(). It matches the existing (start) lineno. (Contributed by
Aviral Srivastava in bpo-38307.)

6.34 shelve

The shelve module now uses pickle.DEFAULT_PROTOCOL by default instead of pickle protocol 3 when
creating shelves. (Contributed by Zackery Spytz in bpo-34204.)

26

https://www.freedesktop.org/software/systemd/man/os-release.html
https://www.freedesktop.org/software/systemd/man/os-release.html
https://bugs.python.org/issue?@action=redirect&bpo=28468
https://bugs.python.org/issue?@action=redirect&bpo=42914
https://bugs.python.org/issue?@action=redirect&bpo=43080
https://bugs.python.org/issue?@action=redirect&bpo=38731
https://bugs.python.org/issue?@action=redirect&bpo=38307
https://bugs.python.org/issue?@action=redirect&bpo=34204

6.35 statistics

Add covariance(), Pearson’s correlation(), and simple linear_regression() functions. (Con-
tributed by Tymoteusz Wolodzko in bpo-38490.)

6.36 site

fall back to __spec__.loader. (Contributed by Brett

g} pp—

When a module does not define __loader

Cannon in bpo-42133.)

6.37 socket

The exception socket.timeout is now an alias of TimeoutError. (Contributed by Christian Heimes in
bpo-42413.)

Add option to create MPTCP sockets with IPPROTO_MPTCP (Contributed by Rui Cunha in bpo-43571.)

Add IP_RECVTOS option to receive the type of service (ToS) or DSCP/ECN fields (Contributed by Georg
Sauthoft in bpo-44077.)

6.38 ssl

The ssl module requires OpenSSL 1.1.1 or newer. (Contributed by Christian Heimes in PEP 644 and
bpo-43669.)

The ssl module has preliminary support for OpenSSL 3.0.0 and new option 0P_IGNORE_UNEXPECTED_EOF.
(Contributed by Christian Heimes in bpo-38820, bpo-43794, bpo-43788, bpo-43791, bpo-43799,
bpo-43920, bpo-43789, and bpo-43811.)

Deprecated function and use of deprecated constants now result in a DeprecationWarning. ssl.
SSLContext.options has OP_NO_SSLv2 and OP_NO_SSLv3 set by default and therefore cannot warn
about setting the flag again. The deprecation section has a list of deprecated features. (Contributed by
Christian Heimes in bpo-43880.)

The ssl module now has more secure default settings. Ciphers without forward secrecy or SHA-1 MAC
are disabled by default. Security level 2 prohibits weak RSA, DH, and ECC keys with less than 112 bits
of security. SSLContext defaults to minimum protocol version TLS 1.2. Settings are based on Hynek
Schlawack’s research. (Contributed by Christian Heimes in bpo-43998.)

The deprecated protocols SSL 3.0, TLS 1.0, and TLS 1.1 are no longer officially supported. Python does
not block them actively. However OpenSSL build options, distro configurations, vendor patches, and

cipher suites may prevent a successful handshake.

Add a timeout parameter to the ssl.get_server_certificate() function. (Contributed by Zackery
Spytz in bpo-31870.)

27

https://bugs.python.org/issue?@action=redirect&bpo=38490
https://bugs.python.org/issue?@action=redirect&bpo=42133
https://bugs.python.org/issue?@action=redirect&bpo=42413
https://bugs.python.org/issue?@action=redirect&bpo=43571
https://bugs.python.org/issue?@action=redirect&bpo=44077
https://www.python.org/dev/peps/pep-0644
https://bugs.python.org/issue?@action=redirect&bpo=43669
https://bugs.python.org/issue?@action=redirect&bpo=38820
https://bugs.python.org/issue?@action=redirect&bpo=43794
https://bugs.python.org/issue?@action=redirect&bpo=43788
https://bugs.python.org/issue?@action=redirect&bpo=43791
https://bugs.python.org/issue?@action=redirect&bpo=43799
https://bugs.python.org/issue?@action=redirect&bpo=43920
https://bugs.python.org/issue?@action=redirect&bpo=43789
https://bugs.python.org/issue?@action=redirect&bpo=43811
https://bugs.python.org/issue?@action=redirect&bpo=43880
https://bugs.python.org/issue?@action=redirect&bpo=43998
https://bugs.python.org/issue?@action=redirect&bpo=31870

The ssl module uses heap-types and multi-phase initialization. (Contributed by Christian Heimes in
bpo-42333.)

A new verify flag VERIFY_X509_PARTIAL_CHAIN has been added. (Contributed by 10x in bpo-40849.)

6.39 sqlite3

Add audit events for connect/handle(), enable_load_extension(), and load_extension(). (Con-
tributed by Erlend E. Aasland in bpo-43762.)

6.40 sys

Add sys.orig_argv attribute: the list of the original command line arguments passed to the Python

executable. (Contributed by Victor Stinner in bpo-23427.)

Add sys.stdlib_module_names, containing the list of the standard library module names. (Contributed

by Victor Stinner in bpo-42955.)

6.41 tempfile
As of 3.10.15 on Windows, the default mode 00700 used by tempfile.mkdtemp() now limits access to

the new directory due to changes to os.mkdir (). This is a mitigation for CVE-2024-4030. (Contributed
by Steve Dower in gh-118486.)

6.42 _thread

_thread.interrupt_main() now takes an optional signal number to simulate (the default is still signal.

SIGINT). (Contributed by Antoine Pitrou in bpo-43356.)

6.43 threading

Add threading.gettrace() and threading.getprofile() to retrieve the functions set by threading.
settrace() and threading.setprofile() respectively. (Contributed by Mario Corchero in bpo-42251.)

Add threading.__excepthook__ to allow retrieving the original value of threading.excepthook() in

case it is set to a broken or a different value. (Contributed by Mario Corchero in bpo-42308.)

28

https://bugs.python.org/issue?@action=redirect&bpo=42333
https://bugs.python.org/issue?@action=redirect&bpo=40849
https://bugs.python.org/issue?@action=redirect&bpo=43762
https://bugs.python.org/issue?@action=redirect&bpo=23427
https://bugs.python.org/issue?@action=redirect&bpo=42955
https://github.com/python/cpython/issues/118486
https://bugs.python.org/issue?@action=redirect&bpo=43356
https://bugs.python.org/issue?@action=redirect&bpo=42251
https://bugs.python.org/issue?@action=redirect&bpo=42308

6.44 traceback

The format_exception(), format_exception_only(), and print_exception() functions can now take
an exception object as a positional-only argument. (Contributed by Zackery Spytz and Matthias Bus-

sonnier in bpo-26389.)

6.45 types

Reintroduce the types.EllipsisType, types.NoneType and types.NotImplementedType classes, pro-
viding a new set of types readily interpretable by type checkers. (Contributed by Bas van Beek in
bpo-41810.)

6.46 typing

For major changes, see B & > MIBFET 237 L LVEEE.

The behavior of typing.Literal was changed to conform with PEP 586 and to match the behavior of
static type checkers specified in the PEP.

1. Literal now de-duplicates parameters.
2. Equality comparisons between Literal objects are now order independent.

3. Literal comparisons now respect types. For example, Literal [0] == Literal[False] previ-
ously evaluated to True. It is now False. To support this change, the internally used type cache

now supports differentiating types.

4. Literal objects will now raise a TypeError exception during equality comparisons if any of their
parameters are not hashable. Note that declaring Literal with unhashable parameters will not

throw an error:

>>> from typing import Literal

>>> Literal[{0}]

>>> Literal[{0}] == Literal[{False}]

Traceback (most recent call last):
File "<stdin>", line 1, in <module>

TypeError: unhashable type: 'set'

(bpo-42345 T® Yurii Karabas D E#AIZ & 3)

Add new function typing.is_typeddict () to introspect if an annotation is a typing.TypedDict. (Con-
tributed by Patrick Reader in bpo-41792.)

Subclasses of typing.Protocol which only have data variables declared will now raise a TypeError when
checked with isinstance unless they are decorated with runtime_checkable (). Previously, these checks
passed silently. Users should decorate their subclasses with the runtime_checkable() decorator if they

want runtime protocols. (Contributed by Yurii Karabas in bpo-38908.)

29

https://bugs.python.org/issue?@action=redirect&bpo=26389
https://bugs.python.org/issue?@action=redirect&bpo=41810
https://www.python.org/dev/peps/pep-0586
https://bugs.python.org/issue?@action=redirect&bpo=42345
https://bugs.python.org/issue?@action=redirect&bpo=41792
https://bugs.python.org/issue?@action=redirect&bpo=38908

Importing from the typing.io and typing.re submodules will now emit DeprecationWarning. These
submodules have been deprecated since Python 3.8 and will be removed in a future version of Python.
Anything belonging to those submodules should be imported directly from typing instead. (Contributed
by Sebastian Rittau in bpo-38291.)

6.47 unittest

Add new method assertNoLogs () to complement the existing assertLogs (). (Contributed by Kit Yan
Choi in bpo-39385.)

6.48 urllib.parse

Python versions earlier than Python 3.10 allowed using both ; and & as query parameter separators in
urllib.parse.parse_gs() and urllib.parse.parse_gsl(). Due to security concerns, and to conform
with newer W3C recommendations, this has been changed to allow only a single separator key, with & as
the default. This change also affects cgi.parse() and cgi.parse_multipart() as they use the affected
functions internally. For more details, please see their respective documentation. (Contributed by Adam
Goldschmidt, Senthil Kumaran and Ken Jin in bpo-42967.)

The presence of newline or tab characters in parts of a URL allows for some forms of attacks. Following
the WHATWG specification that updates RFC 3986, ASCII newline \n, \r and tab \t characters are
stripped from the URL by the parser in urllib.parse preventing such attacks. The removal charac-
ters are controlled by a new module level variable urllib.parse._UNSAFE_URL_BYTES_TO_REMOVE. (See
bpo-43882)

6.49 xml

Add a LexicalHandler class to the xml.sax.handler module. (Contributed by Jonathan Gossage and
Zackery Spytz in bpo-35018.)

30

https://bugs.python.org/issue?@action=redirect&bpo=38291
https://bugs.python.org/issue?@action=redirect&bpo=39385
https://bugs.python.org/issue?@action=redirect&bpo=42967
https://datatracker.ietf.org/doc/html/rfc3986.html
https://bugs.python.org/issue?@action=redirect&bpo=43882
https://bugs.python.org/issue?@action=redirect&bpo=35018

6.50 zipimport

Add methods related to PEP 451: find_spec(), zipimport.zipimporter.create_module(), and

zipimport.zipimporter.exec_module(). (Contributed by Brett Cannon in bpo-42131.)

Add invalidate_caches () method. (Contributed by Desmond Cheong in bpo-14678.)

7 =iEt

Constructors str(), bytes() and bytearray () are now faster (around 30--40% for small objects).
(Contributed by Serhiy Storchaka in bpo-41334.)

The runpy module now imports fewer modules. The python3 -m module-name command startup
time is 1.4x faster in average. On Linux, python3 -I -m module-name imports 69 modules on
Python 3.9, whereas it only imports 51 modules (-18) on Python 3.10. (Contributed by Victor
Stinner in bpo-41006 and bpo-41718.)

The LOAD_ATTR instruction now uses new "per opcode cache” mechanism. It is about 36% faster
now for regular attributes and 44% faster for slots. (Contributed by Pablo Galindo and Yury
Selivanov in bpo-42093 and Guido van Rossum in bpo-42927, based on ideas implemented originally
in PyPy and MicroPython.)

When building Python with --enable-optimizations now -fno-semantic-interposition is
added to both the compile and link line. This speeds builds of the Python interpreter created
with -—enable-shared with gcc by up to 30%. See this article for more details. (Contributed by
Victor Stinner and Pablo Galindo in bpo-38980.)

Use a new output buffer management code for bz2 / 1zma / z1ib modules, and add .readall()
function to _compression.DecompressReader class. bz2 decompression is now 1.09x ~ 1.17x
faster, lzma decompression 1.20x ~ 1.32x faster, GzipFile.read(-1) 1.11x ~ 1.18x faster. (Con-
tributed by Ma Lin, reviewed by Gregory P. Smith, in bpo-41486)

When using stringized annotations, annotations dicts for functions are no longer created when
the function is created. Instead, they are stored as a tuple of strings, and the function object
lazily converts this into the annotations dict on demand. This optimization cuts the CPU time
needed to define an annotated function by half. (Contributed by Yurii Karabas and Inada Naoki
in bpo-42202.)

Substring search functions such as strl in str2 and str2.find(strl) now sometimes use
Crochemore & Perrin’s "Two-Way” string searching algorithm to avoid quadratic behavior on

long strings. (Contributed by Dennis Sweeney in bpo-41972)

Add micro-optimizations to _PyType_Lookup() to improve type attribute cache lookup perfor-
mance in the common case of cache hits. This makes the interpreter 1.04 times faster on average.
(Contributed by Dino Viehland in bpo-43452.)

The following built-in functions now support the faster PEP 590 vectorcall calling convention:

31

https://www.python.org/dev/peps/pep-0451
https://bugs.python.org/issue?@action=redirect&bpo=42131
https://bugs.python.org/issue?@action=redirect&bpo=14678
https://bugs.python.org/issue?@action=redirect&bpo=41334
https://bugs.python.org/issue?@action=redirect&bpo=41006
https://bugs.python.org/issue?@action=redirect&bpo=41718
https://bugs.python.org/issue?@action=redirect&bpo=42093
https://bugs.python.org/issue?@action=redirect&bpo=42927
https://developers.redhat.com/blog/2020/06/25/red-hat-enterprise-linux-8-2-brings-faster-python-3-8-run-speeds/
https://bugs.python.org/issue?@action=redirect&bpo=38980
https://bugs.python.org/issue?@action=redirect&bpo=41486
https://bugs.python.org/issue?@action=redirect&bpo=42202
https://bugs.python.org/issue?@action=redirect&bpo=41972
https://bugs.python.org/issue?@action=redirect&bpo=43452
https://www.python.org/dev/peps/pep-0590

map(), filter(), reversed(), bool() and float(). (Contributed by Dong-hee Na and Jeroen
Demeyer in bpo-43575, bpo-43287, bpo-41922, bpo-41873 and bpo-41870.)

e BZ2File performance is improved by removing internal RLock. This makes BZ2File thread unsafe
in the face of multiple simultaneous readers or writers, just like its equivalent classes in gzip and

1zma have always been. (Contributed by Inada Naoki in bpo-43785.)

8 JEHER

e Currently Python accepts numeric literals immediately followed by keywords, for example Oin
x, lor x, 0if lelse 2. It allows confusing and ambiguous expressions like [0x1for x in y]
(which can be interpreted as [0x1 for x in y] or [0x1f or x in yl). Starting in this release,
a deprecation warning is raised if the numeric literal is immediately followed by one of keywords
and, else, for, if, in, is and or. In future releases it will be changed to syntax warning, and

finally to syntax error. (Contributed by Serhiy Storchaka in bpo-43833.)

e Starting in this release, there will be a concerted effort to begin cleaning up old import semantics
that were kept for Python 2.7 compatibility. Specifically, find_loader () /find_module() (super-
seded by find_spec()), load_module() (superseded by exec_module()), module_repr() (which

the import system takes care of for you), the __package__ attribute (superseded by __spec__.

parent), the __loader__ attribute (superseded by __spec__.loader), and the __cached__ at-
tribute (superseded by __spec__.cached) will slowly be removed (as well as other classes and
methods in importlib). ImportWarning and/or DeprecationWarning will be raised as appropri-

ate to help identify code which needs updating during this transition.

e The entire distutils namespace is deprecated, to be removed in Python 3.12. Refer to the module

changes section for more information.

o Non-integer arguments to random.randrange () are deprecated. The ValueError is deprecated in

favor of a TypeError. (Contributed by Serhiy Storchaka and Raymond Hettinger in bpo-37319.)

e The various load_module() methods of importlib have been documented as deprecated since
Python 3.6, but will now also trigger a DeprecationWarning. Use exec_module() instead. (Con-

tributed by Brett Cannon in bpo-26131.)

e zimport.zipimporter.load_module() has been deprecated in preference for exec_module().
(Contributed by Brett Cannon in bpo-26131.)

e The use of load_module() by the import system now triggers an ImportWarning as

exec_module() is preferred. (Contributed by Brett Cannon in bpo-26131.)

e The wuse of importlib.abc.MetaPathFinder.find_module() and importlib.abc.
PathEntryFinder.find_module() by the import system now trigger an ImportWarning
as importlib.abc.MetaPathFinder.find_spec() and importlib.abc.PathEntryFinder.
find_spec() are preferred, respectively. You can use importlib.util.spec_from_loader() to

help in porting. (Contributed by Brett Cannon in bpo-42134.)

32

https://bugs.python.org/issue?@action=redirect&bpo=43575
https://bugs.python.org/issue?@action=redirect&bpo=43287
https://bugs.python.org/issue?@action=redirect&bpo=41922
https://bugs.python.org/issue?@action=redirect&bpo=41873
https://bugs.python.org/issue?@action=redirect&bpo=41870
https://bugs.python.org/issue?@action=redirect&bpo=43785
https://bugs.python.org/issue?@action=redirect&bpo=43833
https://bugs.python.org/issue?@action=redirect&bpo=37319
https://bugs.python.org/issue?@action=redirect&bpo=26131
https://bugs.python.org/issue?@action=redirect&bpo=26131
https://bugs.python.org/issue?@action=redirect&bpo=26131
https://bugs.python.org/issue?@action=redirect&bpo=42134

The use of importlib.abc.PathEntryFinder.find_loader () by the import system now triggers
an ImportWarning as importlib.abc.PathEntryFinder.find_spec() is preferred. You can use
importlib.util.spec_from_loader() to help in porting. (Contributed by Brett Cannon in
bpo-43672.)

The various implementations of importlib.abc.MetaPathFinder.find_module() (importlib.
machinery.BuiltinImporter.find_module(), importlib.machinery.FrozenImporter.
find_module(), importlib.machinery.WindowsRegistryFinder.find_module(), importlib.
machinery.PathFinder.find_module(), importlib.abc.MetaPathFinder.find_module ()
), importlib.abc.PathEntryFinder.find_module() (importlib.machinery.FileFinder.
find_module()), and importlib.abc.PathEntryFinder.find_loader() (importlib.
machinery.FileFinder.find_loader()) now raise DeprecationWarning and are slated for
removal in Python 3.12 (previously they were documented as deprecated in Python 3.4).
(Contributed by Brett Cannon in bpo-42135.)

importlib.abc.Finder is deprecated (including its sole method, find_module()). Both
importlib.abc.MetaPathFinder and importlib.abc.PathEntryFinder no longer inherit from
the class. Users should inherit from one of these two classes as appropriate instead. (Contributed

by Brett Cannon in bpo-42135.)

The deprecations of imp, importlib.find_loader (), importlib.util.set_package_wrapper (),
importlib.util.set_loader_wrapper(), importlib.util.module_for_loader(), pkgutil.
ImpImporter, and pkgutil.ImpLoader have all been updated to list Python 3.12 as the slated
version of removal (they began raising DeprecationWarning in previous versions of Python).

(Contributed by Brett Cannon in bpo-43720.)

The import system now uses the __spec__ attribute on modules before falling back on
module_repr() for a module’s __repr__() method. Removal of the use of module_repr() is
scheduled for Python 3.12. (Contributed by Brett Cannon in bpo-42137.)

importlib.abc.Loader.module_repr(), importlib.machinery.FrozenLoader.
module_repr(), and importlib.machinery.BuiltinLoader.module_repr() are deprecated and

slated for removal in Python 3.12. (Contributed by Brett Cannon in bpo-42136.)

sqlite3.0ptimizedUnicode has been undocumented and obsolete since Python 3.3, when it was
made an alias to str. It is now deprecated, scheduled for removal in Python 3.12. (Contributed
by Erlend E. Aasland in bpo-42264.)

The undocumented built-in function sqlite3. enable_shared_cache is now deprecated, scheduled
for removal in Python 3.12. Its use is strongly discouraged by the SQLite3 documentation. See
the SQLite3 docs for more details. If a shared cache must be used, open the database in URI mode

using the cache=shared query parameter. (Contributed by Erlend E. Aasland in bpo-24464.)
BUR®D threading XV v NIZIEHERRICIRD £ L7 ¢
— threading.currentThread => threading.current_thread()

— threading.activeCount => threading.active_count ()

33

https://bugs.python.org/issue?@action=redirect&bpo=43672
https://bugs.python.org/issue?@action=redirect&bpo=42135
https://bugs.python.org/issue?@action=redirect&bpo=42135
https://bugs.python.org/issue?@action=redirect&bpo=43720
https://bugs.python.org/issue?@action=redirect&bpo=42137
https://bugs.python.org/issue?@action=redirect&bpo=42136
https://bugs.python.org/issue?@action=redirect&bpo=42264
https://sqlite.org/c3ref/enable_shared_cache.html
https://bugs.python.org/issue?@action=redirect&bpo=24464

threading.Condition.notifyAll => threading.Condition.notify_all()

threading.Event.isSet => threading.Event.is_set()
— threading.Thread.setName => threading.Thread.name

— threading.thread.getName => threading.Thread.name

threading.Thread.isDaemon => threading.Thread.daemon

threading.Thread.setDaemon => threading.Thread.daemon
(Contributed by Jelle Zijlstra in gh-87889.)

e pathlib.Path.link_to() is deprecated and slated for removal in Python 3.12. Use pathlib.
Path.hardlink_to() instead. (Contributed by Barney Gale in bpo-39950.)

e cgi.log() is deprecated and slated for removal in Python 3.12. (Contributed by Inada Naoki in
bpo-41139.)

e The following ssl features have been deprecated since Python 3.6, Python 3.7, or OpenSSL 1.1.0

and will be removed in 3.11:

— OP_NO_SSLv2, O0OP_NO_SSLv3, OP_NO_TLSvi, OP_NO_TLSvi_1, OP_NO_TLSv1l_2, and
OP_NO_TLSv1_3 are replaced by sslSSLContext.minimum_version and sslSSLContext.

maximum_version.

— PROTOCOL_SSLv2, PROTOCOL_SSLv3, PROTOCOL_SSLv23, PROTOCOL_TLSv1,
PROTOCOL_TLSv1_1, PROTOCOL_TLSv1_2, and PROTOCOL_TLS are deprecated in favor of
PROTOCOL_TLS_CLIENT and PROTOCOL_TLS_SERVER

— wrap_socket () is replaced by ssl.SSLContext.wrap_socket ()
— match_hostname ()
— RAND_pseudo_bytes (), RAND_egd ()

— NPN features like ssl.SSLSocket.selected_npn_protocol() and ssl.SSLContext.
set_npn_protocols() are replaced by ALPN.

o The threading debug (PYTHONTHREADDEBUG environment variable) is deprecated in Python 3.10
and will be removed in Python 3.12. This feature requires a debug build of Python. (Contributed
by Victor Stinner in bpo-44584.)

e Importing from the typing.io and typing.re submodules will now emit DeprecationWarning.
These submodules will be removed in a future version of Python. Anything belonging to these
submodules should be imported directly from typing instead. (Contributed by Sebastian Rittau
in bpo-38291.)

34

https://github.com/python/cpython/issues/87889
https://bugs.python.org/issue?@action=redirect&bpo=39950
https://bugs.python.org/issue?@action=redirect&bpo=41139
https://bugs.python.org/issue?@action=redirect&bpo=44584
https://bugs.python.org/issue?@action=redirect&bpo=38291

HIBR

e Removed special methods __int__, __float__, __floordiv__, __mod__, __divmod__,
__rfloordiv__, __rmod__ and __rdivmod__ of the complex class. They always raised a
TypeError. (Contributed by Serhiy Storchaka in bpo-41974.)

e The ParserBase.error() method from the private and undocumented _markupbase module has
been removed. html.parser.HTMLParser is the only subclass of ParserBase and its error()

implementation was already removed in Python 3.5. (Contributed by Berker Peksag in bpo-31844.)

e Removed the unicodedata.ucnhash_CAPI attribute which was an internal PyCapsule object. The
related private _PyUnicode_Name_CAPI structure was moved to the internal C API. (Contributed
by Victor Stinner in bpo-42157.)

e Removed the parser module, which was deprecated in 3.9 due to the switch to the new PEG
parser, as well as all the C source and header files that were only being used by the old parser,

including node.h, parser.h, graminit.h and grammar.h.

e Removed the Public C API functions PyParser_SimpleParseStringFlags,
PyParser_SimpleParseStringFlagsFilename, PyParser_SimpleParseFileFlags and

PyNode_Compile that were deprecated in 3.9 due to the switch to the new PEG parser.

e Removed the formatter module, which was deprecated in Python 3.4. It is somewhat obsolete,
little used, and not tested. It was originally scheduled to be removed in Python 3.6, but such
removals were delayed until after Python 2.7 EOL. Existing users should copy whatever classes
they use into their code. (Contributed by Dong-hee Na and Terry J. Reedy in bpo-42299.)

e Removed the PyModule_GetWarningsModule () function that was useless now due to the _warn-

ings module was converted to a builtin module in 2.6. (Contributed by Hai Shi in bpo-42599.)

e« Remove deprecated aliases to collections-abstract-base-classes from the collections module.
(Contributed by Victor Stinner in bpo-37324.)

e The loop parameter has been removed from most of asyncio’s high-level API following deprecation

in Python 3.8. The motivation behind this change is multifold:
1. This simplifies the high-level API.

2. The functions in the high-level API have been implicitly getting the current thread’s running
event loop since Python 3.7. There isn’t a need to pass the event loop to the API in most

normal use cases.

3. Event loop passing is error-prone especially when dealing with loops running in different
threads.

Note that the low-level API will still accept Loop. See Python API MZE for examples of how to

replace existing code.

(Contributed by Yurii Karabas, Andrew Svetlov, Yury Selivanov and Kyle Stanley in bpo-42392.)

35

https://bugs.python.org/issue?@action=redirect&bpo=41974
https://bugs.python.org/issue?@action=redirect&bpo=31844
https://bugs.python.org/issue?@action=redirect&bpo=42157
https://bugs.python.org/issue?@action=redirect&bpo=42299
https://bugs.python.org/issue?@action=redirect&bpo=42599
https://bugs.python.org/issue?@action=redirect&bpo=37324
https://bugs.python.org/issue?@action=redirect&bpo=42392

10 Porting to Python 3.10

DXy a YTEERRDEELANT T 4 v 7RI YDRBBEZEZPD LAV —-FOEFRERIIELEI:

10.1 Changes in the Python syntax

e Deprecation warning is now emitted when compiling previously valid syntax if the numeric literal
is immediately followed by a keyword (like in Oin x). In future releases it will be changed to
syntax warning, and finally to a syntax error. To get rid of the warning and make the code
compatible with future releases just add a space between the numeric literal and the following
keyword. (Contributed by Serhiy Storchaka in bpo-43833.)

10.2 Python APl OZEE

e The etype parameters of the format_exception(), format_exception_only(), and
print_exception() functions in the traceback module have been renamed to exc. (Con-

tributed by Zackery Spytz and Matthias Bussonnier in bpo-26389.)

e atexit: At Python exit, if a callback registered with atexit.register () fails, its exception is
now logged. Previously, only some exceptions were logged, and the last exception was always

silently ignored. (Contributed by Victor Stinner in bpo-42639.)

e collections.abc.Callable generic now flattens type parameters, similar to what typing.
Callable currently does. This means that collections.abc.Callable[[int, str], str] will
have __args__ of (int, str, str); previously this was ([int, str], str). Code which ac-
cesses the arguments via typing.get_args() or __args__ need to account for this change.
Furthermore, TypeError may be raised for invalid forms of parameterizing collections.abc.

Callable which may have passed silently in Python 3.9. (Contributed by Ken Jin in bpo-42195.)

o socket.htons() and socket.ntohs() now raise OverflowError instead of DeprecationWarning
if the given parameter will not fit in a 16-bit unsigned integer. (Contributed by Erlend E. Aasland
in bpo-42393.)

e The loop parameter has been removed from most of asyncio’s high-level API following deprecation
in Python 3.8.

A coroutine that currently looks like this:

async def foo(loop):

await asyncio.sleep(l, loop=loop)

Should be replaced with this:

async def foo():

await asyncio.sleep(1)

36

https://bugs.python.org/issue?@action=redirect&bpo=43833
https://bugs.python.org/issue?@action=redirect&bpo=26389
https://bugs.python.org/issue?@action=redirect&bpo=42639
https://bugs.python.org/issue?@action=redirect&bpo=42195
https://bugs.python.org/issue?@action=redirect&bpo=42393

If foo() was specifically designed not to run in the current thread’s running event loop (e.g.
running in another thread’s event loop), consider using asyncio.run_coroutine_threadsafe()

instead.
(Contributed by Yurii Karabas, Andrew Svetlov, Yury Selivanov and Kyle Stanley in bpo-42392.)

o The types.FunctionType constructor now inherits the current builtins if the globals dictionary
has no "__builtins__" key, rather than using {"None": None} as builtins: same behavior as
eval() and exec() functions. Defining a function with def function(...): ... in Python is
not affected, globals cannot be overridden with this syntax: it also inherits the current builtins.

(Contributed by Victor Stinner in bpo-42990.)

10.3 C APl OEE

e The C API functions PyParser_SimpleParseStringFlags, PyParser_SimpleParseStringFlagsFilename,
PyParser_SimpleParseFileFlags, PyNode_Compile and the type used by these functions, struct

_node, were removed due to the switch to the new PEG parser.

Source should be now be compiled directly to a code object using, for example,
Py_CompileString(). The resulting code object can then be evaluated using, for example,

PyEval_EvalCode().
Specifically:

— A call to PyParser_SimpleParseStringFlags followed by PyNode_Compile can be replaced
by calling Py_CompileString().

— There is no direct replacement for PyParser_SimpleParseFileFlags. To compile code from
a FILE * argument, you will need to read the file in C and pass the resulting buffer to

Py_CompileString().

— To compile a file given a char * filename, explicitly open the file, read it and compile
the result. One way to do this is using the io module with PyImport_ImportModule(),
PyObject_CallMethod(), PyBytes_AsString() and Py_CompileString(), as sketched be-

low. (Declarations and error handling are omitted.)

io_module = Import_ImportModule("io");

fileobject = PyObject_CallMethod(io_module, "open", "ss", filename, "rb");
source_bytes_object = PyObject_CallMethod(fileobject, "read", "");

result = PyObject_CallMethod(fileobject, '"close", "");

source_buf = PyBytes_AsString(source_bytes_object);

code = Py_CompileString(source_buf, filename, Py_file_input);

— For FrameObject objects, the f_lasti member now represents a wordcode offset instead of
a simple offset into the bytecode string. This means that this number needs to be multiplied
by 2 to be used with APIs that expect a byte offset instead (like PyCode_Addr2Line() for
example). Notice as well that the f_lasti member of FrameObject objects is not considered

stable: please use PyFrame_GetLineNumber () instead.

37

https://bugs.python.org/issue?@action=redirect&bpo=42392
https://bugs.python.org/issue?@action=redirect&bpo=42990

11 CPython N1 FO—FODZEE

e The MAKE_FUNCTION instruction now accepts either a dict or a tuple of strings as the function’s
annotations. (Contributed by Yurii Karabas and Inada Naoki in bpo-42202.)

12 Build Changes

e PEP 644: Python now requires OpenSSL 1.1.1 or newer. OpenSSL 1.0.2 is no longer supported.
(Contributed by Christian Heimes in bpo-43669.)

o The C99 functions snprintf () and vsnprintf () are now required to build Python. (Contributed
by Victor Stinner in bpo-36020.)

o sqlite3 requires SQLite 3.7.15 or higher. (Contributed by Sergey Fedoseev and Erlend E. Aasland
in bpo-40744 and bpo-40810.)

o The atexit module must now always be built as a built-in module. (Contributed by Victor Stinner
in bpo-42639.)

e Add --disable-test-modules option to the configure script: don’t build nor install test mod-

ules. (Contributed by Xavier de Gaye, Thomas Petazzoni and Peixing Xin in bpo-27640.)

e Add --with-wheel-pkg-dir=PATH option to the ./configure script. If specified, the ensurepip
module looks for setuptools and pip wheel packages in this directory: if both are present, these

wheel packages are used instead of ensurepip bundled wheel packages.

Some Linux distribution packaging policies recommend against bundling dependencies. For ex-
ample, Fedora installs wheel packages in the /usr/share/python-wheels/ directory and don’t

install the ensurepip._bundled package.
(Contributed by Victor Stinner in bpo-42856.)

e Add a new configure --without-static-libpython option to not build the libpythonMAJOR.
MINOR.a static library and not install the python.o object file.

(Contributed by Victor Stinner in bpo-43103.)

e The configure script now uses the pkg-config utility, if available, to detect the location of
Tcl/Tk headers and libraries. As before, those locations can be explicitly specified with the
--with-tcltk-includes and --with-tcltk-1ibs configuration options. (Contributed by Mano-

lis Stamatogiannakis in bpo-42603.)

e Add --with-openssl-rpath option to configure script. The option simplifies building Python
with a custom OpenSSL installation, e.g. ./configure --with-openssl=/path/to/openssl
--with-openssl-rpath=auto. (Contributed by Christian Heimes in bpo-43466.)

38

https://bugs.python.org/issue?@action=redirect&bpo=42202
https://www.python.org/dev/peps/pep-0644
https://bugs.python.org/issue?@action=redirect&bpo=43669
https://bugs.python.org/issue?@action=redirect&bpo=36020
https://bugs.python.org/issue?@action=redirect&bpo=40744
https://bugs.python.org/issue?@action=redirect&bpo=40810
https://bugs.python.org/issue?@action=redirect&bpo=42639
https://bugs.python.org/issue?@action=redirect&bpo=27640
https://bugs.python.org/issue?@action=redirect&bpo=42856
https://bugs.python.org/issue?@action=redirect&bpo=43103
https://bugs.python.org/issue?@action=redirect&bpo=42603
https://bugs.python.org/issue?@action=redirect&bpo=43466

13 C APl OX&E

13.1 PEP 652: Maintaining the Stable ABI

The Stable ABI (Application Binary Interface) for extension modules or embedding Python is now
explicitly defined. stable describes C API and ABI stability guarantees along with best practices for
using the Stable ABI.

(Contributed by Petr Viktorin in PEP 652 and bpo-43795.)

13.2 L L iKaE

e The result of PyNumber_Index() now always has exact type int. Previously, the result could have

been an instance of a subclass of int. (Contributed by Serhiy Storchaka in bpo-40792.)

e Add a new orig_argv member to the PyConfig structure: the list of the original command line

arguments passed to the Python executable. (Contributed by Victor Stinner in bpo-23427.)

e The PyDateTime_DATE_GET_TZINFO() and PyDateTime_TIME_GET_TZINFO() macros have been
added for accessing the tzinfo attributes of datetime.datetime and datetime.time objects.

(Contributed by Zackery Spytz in bpo-30155.)

o Add a PyCodec_Unregister() function to unregister a codec search function. (Contributed by
Hai Shi in bpo-41842.)

e The PyIter_Send() function was added to allow sending value into iterator without raising

StopIteration exception. (Contributed by Vladimir Matveev in bpo-41756.)

e Add PyUnicode_AsUTF8AndSize() to the limited C API. (Contributed by Alex Gaynor in
bpo-41784.)

o Add PyModule_AddObjectRef () function: similar to PyModule_AddObject() but don’t steal a

reference to the value on success. (Contributed by Victor Stinner in bpo-1635741.)

o Add Py_NewRef () and Py_XNewRef () functions to increment the reference count of an object and

return the object. (Contributed by Victor Stinner in bpo-42262.)

o The PyType_FromSpecWithBases() and PyType_FromModuleAndSpec() functions now accept a
single class as the bases argument. (Contributed by Serhiy Storchaka in bpo-42423.)

o The PyType_FromModuleAndSpec() function now accepts NULL tp_doc slot. (Contributed by
Hai Shi in bpo-41832.)

o The PyType_GetSlot() function can accept static types. (Contributed by Hai Shi and Petr
Viktorin in bpo-41073.)

o Add a new PySet_CheckExact () function to the C-API to check if an object is an instance of set
but not an instance of a subtype. (Contributed by Pablo Galindo in bpo-43277.)

39

https://www.python.org/dev/peps/pep-0652
https://bugs.python.org/issue?@action=redirect&bpo=43795
https://bugs.python.org/issue?@action=redirect&bpo=40792
https://bugs.python.org/issue?@action=redirect&bpo=23427
https://bugs.python.org/issue?@action=redirect&bpo=30155
https://bugs.python.org/issue?@action=redirect&bpo=41842
https://bugs.python.org/issue?@action=redirect&bpo=41756
https://bugs.python.org/issue?@action=redirect&bpo=41784
https://bugs.python.org/issue?@action=redirect&bpo=1635741
https://bugs.python.org/issue?@action=redirect&bpo=42262
https://bugs.python.org/issue?@action=redirect&bpo=42423
https://bugs.python.org/issue?@action=redirect&bpo=41832
https://bugs.python.org/issue?@action=redirect&bpo=41073
https://bugs.python.org/issue?@action=redirect&bpo=43277

e Add PyErr_SetInterruptEx() which allows passing a signal number to simulate. (Contributed
by Antoine Pitrou in bpo-43356.)

o The limited C API is now supported if Python is built in debug mode (if the Py_DEBUG macro
is defined). In the limited C API, the Py_INCREF() and Py_DECREF() functions are now imple-
mented as opaque function calls, rather than accessing directly the PyObject.ob_refcnt member,
if Python is built in debug mode and the Py_LIMITED_API macro targets Python 3.10 or newer.
It became possible to support the limited C API in debug mode because the PyObject structure

is the same in release and debug mode since Python 3.8 (see bpo-36465).

The limited C API is still not supported in the -—-with-trace-refs special build (Py_TRACE_REFS
macro). (Contributed by Victor Stinner in bpo-43688.)

e Add the Py_Is(x, y) function to test if the z object is the y object, the same as x is y in
Python. Add also the Py_IsNone(), Py_IsTrue(), Py_IsFalse() functions to test if an object
is, respectively, the None singleton, the True singleton or the False singleton. (Contributed by

Victor Stinner in bpo-43753.)

¢ Add new functions to control the garbage collector from C code: PyGC_Enable(), PyGC_Disable(),
PyGC_IsEnabled(). These functions allow to activate, deactivate and query the state of the

garbage collector from C code without having to import the gc module.

e Add a new Py_TPFLAGS_DISALLOW_INSTANTIATION type flag to disallow creating type instances.
(Contributed by Victor Stinner in bpo-43916.)

e Add a new Py_TPFLAGS_IMMUTABLETYPE type flag for creating immutable type objects: type at-
tributes cannot be set nor deleted. (Contributed by Victor Stinner and Erlend E. Aasland in
bpo-43908.)

13.3 Porting to Python 3.10

e The PY_SSIZE_T_CLEAN macro must now be defined to use PyArg_ParseTuple() and
Py_BuildValue() formats which use #: es#, et#, s#, u#, y#, z#, U# and Z#. See arg-parsing
and PEP 353. (Contributed by Victor Stinner in bpo-40943.)

e Since Py_REFCNT() is changed to the inline static function, Py_REFCNT(obj) = new_refcnt
must be replaced with Py_SET_REFCNT (obj, new_refcnt): see Py_SET_REFCNT() (available since
Python 3.9). For backward compatibility, this macro can be used:

#if PY_VERSION_HEX < 0z030900A4
define Py_SET REFCNT(obj, refent) ((Py_REFCNT(obj) = (refent)), (votid)0)
#endif

(Contributed by Victor Stinner in bpo-39573.)

e Calling PyDict_GetItem() without GIL held had been allowed for historical reason. It is no longer
allowed. (Contributed by Victor Stinner in bpo-40839.)

40

https://bugs.python.org/issue?@action=redirect&bpo=43356
https://bugs.python.org/issue?@action=redirect&bpo=36465
https://bugs.python.org/issue?@action=redirect&bpo=43688
https://bugs.python.org/issue?@action=redirect&bpo=43753
https://bugs.python.org/issue?@action=redirect&bpo=43916
https://bugs.python.org/issue?@action=redirect&bpo=43908
https://www.python.org/dev/peps/pep-0353
https://bugs.python.org/issue?@action=redirect&bpo=40943
https://bugs.python.org/issue?@action=redirect&bpo=39573
https://bugs.python.org/issue?@action=redirect&bpo=40839

e PyUnicode_FromUnicode (NULL, size) and PyUnicode_FromStringAndSize(NULL, size) raise
DeprecationWarning now. Use PyUnicode_New() to allocate Unicode object without initial data.
(Contributed by Inada Naoki in bpo-36346.)

e The private _PyUnicode_Name_CAPI structure of the PyCapsule API unicodedata.ucnhash_CAPI
has been moved to the internal C API. (Contributed by Victor Stinner in bpo-42157.)

e Py_GetPathQ), Py_GetPrefix (), Py_GetExecPrefix (), Py_GetProgramFullPath(),
Py_GetPythonHome() and Py_GetProgramName() functions now return NULL if called be-
fore Py_Initialize() (before Python is initialized). Use the new init-config API to get the
init-path-config. (Contributed by Victor Stinner in bpo-42260.)

e PyList_SET_ITEM(), PyTuple_SET_ITEM() and PyCell_SET() macros can no longer be used as
l-value or r-value. For example, x = PyList_SET_ITEM(a, b, c) and PyList_SET_ITEM(a, b,
¢) = x now fail with a compiler error. It prevents bugs like if (PyList_SET_ITEM (a, b, c) <
0) ... test. (Contributed by Zackery Spytz and Victor Stinner in bpo-30459.)

e The non-limited API files odictobject.h, parser_interface.h, picklebufobject.h, pyarena.
h, pyctype.h, pydebug.h, pyfpe.h, and pytime.h have been moved to the Include/cpython
directory. These files must not be included directly, as they are already included in Python.
h; see api-includes. If they have been included directly, consider including Python.h instead.
(Contributed by Nicholas Sim in bpo-35134.)

e Use the Py_TPFLAGS_IMMUTABLETYPE type flag to create immutable type objects. Do not
rely on Py_TPFLAGS_HEAPTYPE to decide if a type object is mutable or not; check if
Py_TPFLAGS_IMMUTABLETYPE is set instead. (Contributed by Victor Stinner and Erlend E. Aasland
in bpo-43908.)

o The undocumented function Py_FrozenMain has been removed from the limited API. The function

is mainly useful for custom builds of Python. (Contributed by Petr Viktorin in bpo-26241.)

13.4 FEERR

e The PyUnicode_InternImmortal() function is now deprecated and will be removed in Python

3.12: use PyUnicode_InternInPlace() instead. (Contributed by Victor Stinner in bpo-41692.)

13.5 HIFR
o Removed Py_UNICODE_str* functions manipulating Py_UNICODE* strings. (Contributed by Inada
Naoki in bpo-41123.)
— Py_UNICODE_strlen: use PyUnicode_GetLength() or PyUnicode_GET_LENGTH
— Py_UNICODE_strcat: use PyUnicode_CopyCharacters() or PyUnicode_FromFormat ()

— Py_UNICODE_strcpy, Py_UNICODE_strncpy: use PyUnicode_CopyCharacters() or
PyUnicode_Substring()

41

https://bugs.python.org/issue?@action=redirect&bpo=36346
https://bugs.python.org/issue?@action=redirect&bpo=42157
https://bugs.python.org/issue?@action=redirect&bpo=42260
https://bugs.python.org/issue?@action=redirect&bpo=30459
https://bugs.python.org/issue?@action=redirect&bpo=35134
https://bugs.python.org/issue?@action=redirect&bpo=43908
https://bugs.python.org/issue?@action=redirect&bpo=26241
https://bugs.python.org/issue?@action=redirect&bpo=41692
https://bugs.python.org/issue?@action=redirect&bpo=41123

— Py_UNICODE_strcmp: use PyUnicode_Compare ()
— Py_UNICODE_strncmp: use PyUnicode_Tailmatch()
— Py_UNICODE_strchr, Py_UNICODE_strrchr: use PyUnicode_FindChar ()

Removed PyUnicode_GetMax (). Please migrate to new (PEP 393) APIs. (Contributed by Inada
Naoki in bpo-41103.)

Removed PyLong_FromUnicode(). Please migrate to PyLong_FromUnicodeObject(). (Con-
tributed by Inada Naoki in bpo-41103.)

Removed PyUnicode_AsUnicodeCopy (). Please wuse PyUnicode_AsUCS4Copy() or
PyUnicode_AsWideCharString() (Contributed by Inada Naoki in bpo-41103.)

Removed _Py_CheckRecursionLimit variable: it has been replaced by ceval.recursion_limit

of the PyInterpreterState structure. (Contributed by Victor Stinner in bpo-41834.)

Removed undocumented macros Py_ALLOW_RECURSION and Py_END_ALLOW_RECURSION and the
recursion_critical field of the PyInterpreterState structure. (Contributed by Serhiy Stor-
chaka in bpo-41936.)

Removed the undocumented Py0S_InitInterrupts() function. Initializing Python already im-
plicitly installs signal handlers: see PyConfig.install_signal_handlers. (Contributed by Vic-
tor Stinner in bpo-41713.)

Remove the PyAST_Validate() function. It is no longer possible to build a AST object (mod_ty
type) with the public C API. The function was already excluded from the limited C API (PEP
384). (Contributed by Victor Stinner in bpo-43244.)

Remove the symtable.h header file and the undocumented functions:

— PyST_GetScope ()

PySymtable_Build()

PySymtable_BuildObject ()
— PySymtable_Free()

— Py_SymtableString()

— Py_SymtableStringObject ()

The Py_SymtableString() function was part the stable ABI by mistake but it could not be used,
because the symtable.h header file was excluded from the limited C API.

Use Python symtable module instead. (Contributed by Victor Stinner in bpo-43244.)

Remove Py0S_ReadlineFunctionPointer() from the limited C API headers and from python3.
d11, the library that provides the stable ABI on Windows. Since the function takes a FILE#
argument, its ABI stability cannot be guaranteed. (Contributed by Petr Viktorin in bpo-43868.)

42

https://www.python.org/dev/peps/pep-0393
https://bugs.python.org/issue?@action=redirect&bpo=41103
https://bugs.python.org/issue?@action=redirect&bpo=41103
https://bugs.python.org/issue?@action=redirect&bpo=41103
https://bugs.python.org/issue?@action=redirect&bpo=41834
https://bugs.python.org/issue?@action=redirect&bpo=41936
https://bugs.python.org/issue?@action=redirect&bpo=41713
https://www.python.org/dev/peps/pep-0384
https://www.python.org/dev/peps/pep-0384
https://bugs.python.org/issue?@action=redirect&bpo=43244
https://bugs.python.org/issue?@action=redirect&bpo=43244
https://bugs.python.org/issue?@action=redirect&bpo=43868

e Remove ast.h, asdl.h, and Python-ast.h header files. These functions were undocumented and
excluded from the limited C API. Most names defined by these header files were not prefixed by
Py and so could create names conflicts. For example, Python-ast.h defined a Yield macro which
was conflict with the Yield name used by the Windows <winbase.h> header. Use the Python
ast module instead. (Contributed by Victor Stinner in bpo-43244.)

e Remove the compiler and parser functions using struct _mod type, because the public AST C

API was removed:
— PyAST_Compile()
— PyAST_CompileEx ()
— PyAST_CompileObject ()
— PyFuture_FromAST()
— PyFuture_FromASTObject ()
— PyParser_ASTFromFile()
— PyParser_ASTFromFileObject ()
— PyParser_ASTFromFilename ()
— PyParser_ASTFromString()
— PyParser_ASTFromStringObject ()

These functions were undocumented and excluded from the limited C API. (Contributed by Victor

Stinner in bpo-43244.)
e Remove the pyarena.h header file with functions:

— PyArena_New()

PyArena_Free()

PyArena_Malloc()
— PyArena_AddPyObject ()

These functions were undocumented, excluded from the limited C API, and were only used inter-

nally by the compiler. (Contributed by Victor Stinner in bpo-43244.)

o The PyThreadState.use_tracing member has been removed to optimize Python. (Contributed
by Mark Shannon in bpo-43760.)

43

https://bugs.python.org/issue?@action=redirect&bpo=43244
https://bugs.python.org/issue?@action=redirect&bpo=43244
https://bugs.python.org/issue?@action=redirect&bpo=43244
https://bugs.python.org/issue?@action=redirect&bpo=43760

14 Notable security feature in 3.10.7

Converting between int and str in bases other than 2 (binary), 4, 8 (octal), 16 (hexadecimal), or 32
such as base 10 (decimal) now raises a ValueError if the number of digits in string form is above a limit
to avoid potential denial of service attacks due to the algorithmic complexity. This is a mitigation for
CVE-2020-10735. This limit can be configured or disabled by environment variable, command line flag,
or sys APIs. See the integer string conversion length limitation documentation. The default limit is

4300 digits in string form.

15 Notable security feature in 3.10.8

The deprecated mailcap module now refuses to inject unsafe text (filenames, MIME types, parameters)
into shell commands. Instead of using such text, it will warn and act as if a match was not found (or for

test commands, as if the test failed). (Contributed by Petr Viktorin in gh-98966.)

16 Notable Changes in 3.10.12

16.1 tarfile

e The extraction methods in tarfile, and shutil.unpack_archive (), have a new a filter argument
that allows limiting tar features than may be surprising or dangerous, such as creating files outside
the destination directory. See tarfile-extraction-filter for details. In Python 3.12; use without the
filter argument will show a DeprecationWarning. In Python 3.14, the default will switch to
'data’'. (Contributed by Petr Viktorin in PEP 706.)

17 Notable changes in 3.10.15

17.1 ipaddress

o Fixed is_global and is_private behavior in IPv4Address, IPv6Address, IPv4Network and
IPv6Network.

17.2 email

e Headers with embedded newlines are now quoted on output.

The generator will now refuse to serialize (write) headers that are improperly folded or delimited,
such that they would be parsed as multiple headers or joined with adjacent data. If you need to
turn this safety feature off, set verify_generated_headers. (Contributed by Bas Bloemsaat and

Petr Viktorin in gh-121650.)

44

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-10735
https://github.com/python/cpython/issues/98966
https://www.python.org/dev/peps/pep-0706
https://github.com/python/cpython/issues/121650

e email.utils.getaddresses() and email.utils.parseaddr() now return ('', '') 2-tuples
in more situations where invalid email addresses are encountered, instead of potentially in-
accurate values. An optional strict parameter was added to these two functions: use
strict=False to get the old behavior, accepting malformed inputs. getattr(email.utils,
'supports_strict_parsing', False) can be used to check if the strict paramater is available.
(Contributed by Thomas Dwyer and Victor Stinner for gh-102988 to improve the CVE-2023-27043
fix.)

45

https://github.com/python/cpython/issues/102988

46

e
T7ILT 7Ry RS

RAEH
PYTHONTHREADDEBUG, 34
PYTHONWARNDEFAULTENCODING, 15

P

Python Enhancement Proposals

PEP 353, 40

PEP 384, 42

PEP 393, 42

PEP 451, 31

PEP 484, 15, 16

PEP 526, 18

PEP 586, 29

PEP 590, 31

PEP 597, 4

PEP 604, 4, 16

PEP 612, 4, 16

PEP 613, 4, 17

PEP 617, 5

PEP 618, 4, 17

PEP 623, 4

PEP 624, 4

PEP 626, 4

PEP 632, 4, 22

PEP 634, 4, 15

PEP 635, 4, 15

PEP 636, 4, 15

PEP 644, 4, 23, 27, 38

PEP 647, 4, 17

PEP 652, 39

PEP 706, 44
PYTHONTHREADDEBUG, 34
PYTHONWARNDEFAULTENCODING, 15

R

RFC
RFC 3986, 30

	概要 -- リリースハイライト
	新しい機能
	カッコ内のコンテキストマネージャー
	エラーメッセージの改善
	PEP 626: Precise line numbers for debugging and other tools
	PEP 634: 構造的パターンマッチ
	Optional EncodingWarning and encoding="locale" option

	型ヒントに関連する新しい機能
	PEP 604: New Type Union Operator
	PEP 612: Parameter Specification Variables
	PEP 613: TypeAlias
	PEP 647: User-Defined Type Guards

	その他の言語変更
	新たなモジュール
	改良されたモジュール
	asyncio
	argparse
	array
	asynchat, asyncore, smtpd
	base64
	bdb
	bisect
	codecs
	collections.abc
	contextlib
	curses
	データクラス
	distutils
	doctest
	エンコーディング
	fileinput
	faulthandler
	gc
	glob
	hashlib
	hmac
	IDLE と idelelib
	importlib.metadata
	inspect
	itertools
	linecache
	os
	os.path
	pathlib
	プラットフォーム
	pprint
	py_compile
	pyclbr
	shelve
	statistics
	site
	socket
	ssl
	sqlite3
	sys
	tempfile
	_thread
	threading
	traceback
	types
	typing
	unittest
	urllib.parse
	xml
	zipimport

	最適化
	非推奨
	削除
	Porting to Python 3.10
	Changes in the Python syntax
	Python API の変更
	C API の変更

	CPython バイトコードの変更
	Build Changes
	C API の変更
	PEP 652: Maintaining the Stable ABI
	新しい機能
	Porting to Python 3.10
	非推奨
	削除

	Notable security feature in 3.10.7
	Notable security feature in 3.10.8
	Notable Changes in 3.10.12
	tarfile

	Notable changes in 3.10.15
	ipaddress
	email

	索引

