
Extending and Embedding Python
Release 3.9.23

Guido van Rossum
and the Python development team

luglio 09, 2025

Python Software Foundation
Email: docs@python.org

Indice

1 Recommended third party tools 3

2 Creating extensions without third party tools 5
2.1 Extending Python with C or C++ . 5

2.1.1 A Simple Example . 6
2.1.2 Intermezzo: Errors and Exceptions . 7
2.1.3 Back to the Example . 9
2.1.4 The Module’s Method Table and Initialization Function . 9
2.1.5 Compilation and Linkage . 11
2.1.6 Calling Python Functions from C . 12
2.1.7 Extracting Parameters in Extension Functions . 14
2.1.8 Keyword Parameters for Extension Functions . 15
2.1.9 Building Arbitrary Values . 16
2.1.10 Reference Counts . 17
2.1.11 Writing Extensions in C++ . 21
2.1.12 Providing a C API for an Extension Module . 21

2.2 Defining Extension Types: Tutorial . 24
2.2.1 The Basics . 24
2.2.2 Adding data and methods to the Basic example . 28
2.2.3 Providing finer control over data attributes . 35
2.2.4 Supporting cyclic garbage collection . 40
2.2.5 Subclassing other types . 46

2.3 Defining Extension Types: Assorted Topics . 49
2.3.1 Finalization and De-allocation . 51
2.3.2 Object Presentation . 52
2.3.3 Attribute Management . 53
2.3.4 Object Comparison . 55
2.3.5 Abstract Protocol Support . 56
2.3.6 Weak Reference Support . 57
2.3.7 More Suggestions . 58

2.4 Building C and C++ Extensions . 59
2.4.1 Building C and C++ Extensions with distutils . 59
2.4.2 Distributing your extension modules . 60

2.5 Building C and C++ Extensions on Windows . 61
2.5.1 A Cookbook Approach . 61
2.5.2 Differences Between Unix and Windows . 61

i

2.5.3 Using DLLs in Practice . 62

3 Embedding the CPython runtime in a larger application 63
3.1 Embedding Python in Another Application . 63

3.1.1 Very High Level Embedding . 64
3.1.2 Beyond Very High Level Embedding: An overview . 64
3.1.3 Pure Embedding . 65
3.1.4 Extending Embedded Python . 67
3.1.5 Embedding Python in C++ . 68
3.1.6 Compiling and Linking under Unix-like systems . 68

A Glossary 69

B Riguardo questa documentazione 83
B.1 Volontari che hanno contribuito alla documentazione di Python . 83

C Storia e licenza 85
C.1 Storia del software . 85
C.2 Termini e condizioni di accesso o di utilizzo di Python . 86

C.2.1 PSF ACCORDO DI LICENZA PER PYTHON 3.9.23 . 86
C.2.2 CONTRATTO DI LICENZA DI BEOPEN.COM PER PYTHON 2.0 87
C.2.3 CNRI CONTRATTO DI LICENZA PER PYTHON 1.6.1 88
C.2.4 CWI CONTRATTO DI LICENZA PER PYTHON DA 0.9.0 A 1.2 89
C.2.5 ZERO-CLAUSE BSD LICENSE FOR CODE IN THE PYTHON 3.9.23 DOCUMENTATION 89

C.3 Licenze e riconoscimenti per il software incorporato . 90
C.3.1 Mersenne Twister . 90
C.3.2 Socket . 91
C.3.3 Servizi di socket asincrone . 91
C.3.4 Gestione dei cookie . 92
C.3.5 Tracciabilità dell’esecuzione . 92
C.3.6 Funzioni UUencode e UUdecode . 93
C.3.7 Chiamate di procedura remota XML . 93
C.3.8 test_epoll . 94
C.3.9 Select kqueue . 94
C.3.10 SipHash24 . 95
C.3.11 strtod e dtoa . 95
C.3.12 7.4 OpenSSL . 96
C.3.13 expat . 98
C.3.14 libffi . 99
C.3.15 zlib . 99
C.3.16 cfuhash . 100
C.3.17 libmpdec . 100
C.3.18 W3C C14N test suite . 101

D Copyright 103

Indice 105

ii

Extending and Embedding Python, Release 3.9.23

This document describes how to write modules in C or C++ to extend the Python interpreter with new modules. Those
modules can not only define new functions but also new object types and their methods. The document also describes how
to embed the Python interpreter in another application, for use as an extension language. Finally, it shows how to compile
and link extension modules so that they can be loaded dynamically (at run time) into the interpreter, if the underlying
operating system supports this feature.

This document assumes basic knowledge about Python. For an informal introduction to the language, see tutorial-
index. reference-index gives a more formal definition of the language. library-index documents the existing object types,
functions and modules (both built-in and written in Python) that give the language its wide application range.

For a detailed description of the whole Python/C API, see the separate c-api-index.

Indice 1

Extending and Embedding Python, Release 3.9.23

2 Indice

CAPITOLO1

Recommended third party tools

This guide only covers the basic tools for creating extensions provided as part of this version of CPython. Third party
tools like Cython, cffi, SWIG and Numba offer both simpler and more sophisticated approaches to creating C and C++
extensions for Python.

Vedi anche:

Python Packaging User Guide: Binary Extensions The Python Packaging User Guide not only covers several avai-
lable tools that simplify the creation of binary extensions, but also discusses the various reasons why creating an
extension module may be desirable in the first place.

3

http://cython.org/
https://cffi.readthedocs.io
http://www.swig.org
https://numba.pydata.org/
https://packaging.python.org/guides/packaging-binary-extensions/

Extending and Embedding Python, Release 3.9.23

4 Capitolo 1. Recommended third party tools

CAPITOLO2

Creating extensions without third party tools

This section of the guide covers creating C and C++ extensions without assistance from third party tools. It is intended
primarily for creators of those tools, rather than being a recommended way to create your own C extensions.

2.1 Extending Python with C or C++

It is quite easy to add new built-in modules to Python, if you know how to program in C. Such extension modules can do
two things that can’t be done directly in Python: they can implement new built-in object types, and they can call C library
functions and system calls.

To support extensions, the Python API (Application Programmers Interface) defines a set of functions, macros and va-
riables that provide access to most aspects of the Python run-time system. The Python API is incorporated in a C source
file by including the header "Python.h".

The compilation of an extension module depends on its intended use as well as on your system setup; details are given in
later chapters.

Nota: The C extension interface is specific to CPython, and extension modules do not work on other Python implemen-
tations. In many cases, it is possible to avoid writing C extensions and preserve portability to other implementations. For
example, if your use case is calling C library functions or system calls, you should consider using the ctypes module
or the cffi library rather than writing custom C code. These modules let you write Python code to interface with C code
and are more portable between implementations of Python than writing and compiling a C extension module.

5

https://cffi.readthedocs.io/

Extending and Embedding Python, Release 3.9.23

2.1.1 A Simple Example

Let’s create an extension module called spam (the favorite food of Monty Python fans…) and let’s say we want to create a
Python interface to the C library function system()1. This function takes a null-terminated character string as argument
and returns an integer. We want this function to be callable from Python as follows:

>>> import spam
>>> status = spam.system("ls -l")

Begin by creating a file spammodule.c. (Historically, if a module is called spam, the C file containing its imple-
mentation is called spammodule.c; if the module name is very long, like spammify, the module name can be just
spammify.c.)

The first two lines of our file can be:

#define PY_SSIZE_T_CLEAN
#include <Python.h>

which pulls in the Python API (you can add a comment describing the purpose of the module and a copyright notice if
you like).

Nota: Since Python may define some pre-processor definitions which affect the standard headers on some systems, you
must include Python.h before any standard headers are included.

It is recommended to always define PY_SSIZE_T_CLEAN before including Python.h. See Extracting Parameters in
Extension Functions for a description of this macro.

All user-visible symbols defined by Python.h have a prefix of Py or PY, except those defined in standard header files.
For convenience, and since they are used extensively by the Python interpreter, "Python.h" includes a few standard
header files: <stdio.h>, <string.h>, <errno.h>, and <stdlib.h>. If the latter header file does not exist on
your system, it declares the functions malloc(), free() and realloc() directly.

The next thing we add to our module file is the C function that will be called when the Python expression spam.
system(string) is evaluated (we’ll see shortly how it ends up being called):

static PyObject *
spam_system(PyObject *self, PyObject *args)
{

const char *command;
int sts;

if (!PyArg_ParseTuple(args, "s", &command))
return NULL;

sts = system(command);
return PyLong_FromLong(sts);

}

There is a straightforward translation from the argument list in Python (for example, the single expression "ls -l") to
the arguments passed to the C function. The C function always has two arguments, conventionally named self and args.

The self argument points to the module object for module-level functions; for a method it would point to the object
instance.

The args argument will be a pointer to a Python tuple object containing the arguments. Each item of the tuple corresponds
to an argument in the call’s argument list. The arguments are Python objects — in order to do anything with them in our
C function we have to convert them to C values. The function PyArg_ParseTuple() in the Python API checks the

1 An interface for this function already exists in the standard module os— it was chosen as a simple and straightforward example.

6 Capitolo 2. Creating extensions without third party tools

Extending and Embedding Python, Release 3.9.23

argument types and converts them to C values. It uses a template string to determine the required types of the arguments
as well as the types of the C variables into which to store the converted values. More about this later.

PyArg_ParseTuple() returns true (nonzero) if all arguments have the right type and its components have been
stored in the variables whose addresses are passed. It returns false (zero) if an invalid argument list was passed. In the
latter case it also raises an appropriate exception so the calling function can return NULL immediately (as we saw in the
example).

2.1.2 Intermezzo: Errors and Exceptions

An important convention throughout the Python interpreter is the following: when a function fails, it should set an ex-
ception condition and return an error value (usually -1 or a NULL pointer). Exception information is stored in three
members of the interpreter’s thread state. These are NULL if there is no exception. Otherwise they are the C equivalents
of the members of the Python tuple returned by sys.exc_info(). These are the exception type, exception instance,
and a traceback object. It is important to know about them to understand how errors are passed around.

The Python API defines a number of functions to set various types of exceptions.

The most common one is PyErr_SetString(). Its arguments are an exception object and a C string. The exception
object is usually a predefined object like PyExc_ZeroDivisionError. The C string indicates the cause of the error
and is converted to a Python string object and stored as the «associated value» of the exception.

Another useful function is PyErr_SetFromErrno(), which only takes an exception argument and constructs the
associated value by inspection of the global variable errno. The most general function is PyErr_SetObject(),
which takes two object arguments, the exception and its associated value. You don’t need to Py_INCREF() the objects
passed to any of these functions.

You can test non-destructively whether an exception has been set with PyErr_Occurred(). This returns the current
exception object, or NULL if no exception has occurred. You normally don’t need to call PyErr_Occurred() to see
whether an error occurred in a function call, since you should be able to tell from the return value.

When a function f that calls another function g detects that the latter fails, f should itself return an error value (usually
NULL or -1). It should not call one of the PyErr_*() functions — one has already been called by g. f ’s caller is
then supposed to also return an error indication to its caller, again without calling PyErr_*(), and so on — the most
detailed cause of the error was already reported by the function that first detected it. Once the error reaches the Python
interpreter’s main loop, this aborts the currently executing Python code and tries to find an exception handler specified by
the Python programmer.

(There are situations where a module can actually give a more detailed error message by calling another PyErr_*()
function, and in such cases it is fine to do so. As a general rule, however, this is not necessary, and can cause information
about the cause of the error to be lost: most operations can fail for a variety of reasons.)

To ignore an exception set by a function call that failed, the exception condition must be cleared explicitly by calling
PyErr_Clear(). The only time C code should call PyErr_Clear() is if it doesn’t want to pass the error on to
the interpreter but wants to handle it completely by itself (possibly by trying something else, or pretending nothing went
wrong).

Every failing malloc() call must be turned into an exception — the direct caller of malloc() (or realloc())
must call PyErr_NoMemory() and return a failure indicator itself. All the object-creating functions (for example,
PyLong_FromLong()) already do this, so this note is only relevant to those who call malloc() directly.

Also note that, with the important exception of PyArg_ParseTuple() and friends, functions that return an integer
status usually return a positive value or zero for success and -1 for failure, like Unix system calls.

Finally, be careful to clean up garbage (bymakingPy_XDECREF() orPy_DECREF() calls for objects you have already
created) when you return an error indicator!

The choice of which exception to raise is entirely yours. There are predeclared C objects corresponding to all built-in
Python exceptions, such as PyExc_ZeroDivisionError, which you can use directly. Of course, you should choose

2.1. Extending Python with C or C++ 7

Extending and Embedding Python, Release 3.9.23

exceptions wisely — don’t use PyExc_TypeError to mean that a file couldn’t be opened (that should probably be
PyExc_IOError). If something’s wrong with the argument list, the PyArg_ParseTuple() function usually raises
PyExc_TypeError. If you have an argument whose valuemust be in a particular range ormust satisfy other conditions,
PyExc_ValueError is appropriate.

You can also define a new exception that is unique to your module. For this, you usually declare a static object variable at
the beginning of your file:

static PyObject *SpamError;

and initialize it in your module’s initialization function (PyInit_spam()) with an exception object:

PyMODINIT_FUNC
PyInit_spam(void)
{

PyObject *m;

m = PyModule_Create(&spammodule);
if (m == NULL)

return NULL;

SpamError = PyErr_NewException("spam.error", NULL, NULL);
Py_XINCREF(SpamError);
if (PyModule_AddObject(m, "error", SpamError) < 0) {

Py_XDECREF(SpamError);
Py_CLEAR(SpamError);
Py_DECREF(m);
return NULL;

}

return m;
}

Note that the Python name for the exception object is spam.error. The PyErr_NewException() function may
create a class with the base class being Exception (unless another class is passed in instead of NULL), described in
bltin-exceptions.

Note also that the SpamError variable retains a reference to the newly created exception class; this is intentional! Since
the exception could be removed from the module by external code, an owned reference to the class is needed to ensure
that it will not be discarded, causing SpamError to become a dangling pointer. Should it become a dangling pointer, C
code which raises the exception could cause a core dump or other unintended side effects.

We discuss the use of PyMODINIT_FUNC as a function return type later in this sample.

The spam.error exception can be raised in your extension module using a call to PyErr_SetString() as shown
below:

static PyObject *
spam_system(PyObject *self, PyObject *args)
{

const char *command;
int sts;

if (!PyArg_ParseTuple(args, "s", &command))
return NULL;

sts = system(command);
if (sts < 0) {

PyErr_SetString(SpamError, "System command failed");

(continues on next page)

8 Capitolo 2. Creating extensions without third party tools

Extending and Embedding Python, Release 3.9.23

(continua dalla pagina precedente)

return NULL;
}
return PyLong_FromLong(sts);

}

2.1.3 Back to the Example

Going back to our example function, you should now be able to understand this statement:

if (!PyArg_ParseTuple(args, "s", &command))
return NULL;

It returns NULL (the error indicator for functions returning object pointers) if an error is detected in the argument list,
relying on the exception set by PyArg_ParseTuple(). Otherwise the string value of the argument has been copied
to the local variable command. This is a pointer assignment and you are not supposed to modify the string to which it
points (so in Standard C, the variable command should properly be declared as const char *command).

The next statement is a call to the Unix function system(), passing it the string we just got from
PyArg_ParseTuple():

sts = system(command);

Our spam.system() function must return the value of sts as a Python object. This is done using the function
PyLong_FromLong().

return PyLong_FromLong(sts);

In this case, it will return an integer object. (Yes, even integers are objects on the heap in Python!)

If you have a C function that returns no useful argument (a function returning void), the corresponding Python function
must return None. You need this idiom to do so (which is implemented by the Py_RETURN_NONE macro):

Py_INCREF(Py_None);
return Py_None;

Py_None is the C name for the special Python object None. It is a genuine Python object rather than a NULL pointer,
which means «error» in most contexts, as we have seen.

2.1.4 The Module’s Method Table and Initialization Function

I promised to show how spam_system() is called from Python programs. First, we need to list its name and address
in a «method table»:

static PyMethodDef SpamMethods[] = {
...
{"system", spam_system, METH_VARARGS,
"Execute a shell command."},

...
{NULL, NULL, 0, NULL} /* Sentinel */

};

Note the third entry (METH_VARARGS). This is a flag telling the interpreter the calling convention to be used for the
C function. It should normally always be METH_VARARGS or METH_VARARGS | METH_KEYWORDS; a value of 0
means that an obsolete variant of PyArg_ParseTuple() is used.

2.1. Extending Python with C or C++ 9

Extending and Embedding Python, Release 3.9.23

When using only METH_VARARGS, the function should expect the Python-level parameters to be passed in as a tuple
acceptable for parsing via PyArg_ParseTuple(); more information on this function is provided below.

The METH_KEYWORDS bit may be set in the third field if keyword arguments should be passed to the function. In
this case, the C function should accept a third PyObject * parameter which will be a dictionary of keywords. Use
PyArg_ParseTupleAndKeywords() to parse the arguments to such a function.

The method table must be referenced in the module definition structure:

static struct PyModuleDef spammodule = {
PyModuleDef_HEAD_INIT,
"spam", /* name of module */
spam_doc, /* module documentation, may be NULL */
-1, /* size of per-interpreter state of the module,

or -1 if the module keeps state in global variables. */
SpamMethods

};

This structure, in turn, must be passed to the interpreter in the module’s initialization function. The initialization function
must be named PyInit_name(), where name is the name of the module, and should be the only non-static item
defined in the module file:

PyMODINIT_FUNC
PyInit_spam(void)
{

return PyModule_Create(&spammodule);
}

Note that PyMODINIT_FUNC declares the function as PyObject * return type, declares any special linkage
declarations required by the platform, and for C++ declares the function as extern "C".

When the Python program imports module spam for the first time, PyInit_spam() is called. (See below for com-
ments about embedding Python.) It calls PyModule_Create(), which returns a module object, and inserts built-in
function objects into the newly created module based upon the table (an array of PyMethodDef structures) found in
the module definition. PyModule_Create() returns a pointer to the module object that it creates. It may abort with
a fatal error for certain errors, or return NULL if the module could not be initialized satisfactorily. The init function must
return the module object to its caller, so that it then gets inserted into sys.modules.

When embedding Python, the PyInit_spam() function is not called automatically unless there’s an entry in the
PyImport_Inittab table. To add the module to the initialization table, use PyImport_AppendInittab(),
optionally followed by an import of the module:

int
main(int argc, char *argv[])
{

wchar_t *program = Py_DecodeLocale(argv[0], NULL);
if (program == NULL) {

fprintf(stderr, "Fatal error: cannot decode argv[0]\n");
exit(1);

}

/* Add a built-in module, before Py_Initialize */
if (PyImport_AppendInittab("spam", PyInit_spam) == -1) {

fprintf(stderr, "Error: could not extend in-built modules table\n");
exit(1);

}

/* Pass argv[0] to the Python interpreter */

(continues on next page)

10 Capitolo 2. Creating extensions without third party tools

Extending and Embedding Python, Release 3.9.23

(continua dalla pagina precedente)

Py_SetProgramName(program);

/* Initialize the Python interpreter. Required.
If this step fails, it will be a fatal error. */

Py_Initialize();

/* Optionally import the module; alternatively,
import can be deferred until the embedded script
imports it. */

PyObject *pmodule = PyImport_ImportModule("spam");
if (!pmodule) {

PyErr_Print();
fprintf(stderr, "Error: could not import module 'spam'\n");

}

...

PyMem_RawFree(program);
return 0;

}

Nota: Removing entries fromsys.modules or importing compiledmodules intomultiple interpreters within a process
(or following a fork() without an intervening exec()) can create problems for some extension modules. Extension
module authors should exercise caution when initializing internal data structures.

A more substantial example module is included in the Python source distribution as Modules/xxmodule.c. This file
may be used as a template or simply read as an example.

Nota: Unlike our spam example, xxmodule usesmulti-phase initialization (new in Python 3.5), where a PyModuleDef
structure is returned from PyInit_spam, and creation of the module is left to the import machinery. For details on
multi-phase initialization, see PEP 489.

2.1.5 Compilation and Linkage

There are two more things to do before you can use your new extension: compiling and linking it with the Python system.
If you use dynamic loading, the details may depend on the style of dynamic loading your system uses; see the chapters
about building extension modules (chapter Building C and C++ Extensions) and additional information that pertains only
to building on Windows (chapter Building C and C++ Extensions on Windows) for more information about this.

If you can’t use dynamic loading, or if you want to make your module a permanent part of the Python interpreter, you
will have to change the configuration setup and rebuild the interpreter. Luckily, this is very simple on Unix: just place
your file (spammodule.c for example) in the Modules/ directory of an unpacked source distribution, add a line to
the file Modules/Setup.local describing your file:

spam spammodule.o

and rebuild the interpreter by running make in the toplevel directory. You can also run make in the Modules/ subdi-
rectory, but then you must first rebuild Makefile there by running “makeMakefile”. (This is necessary each time you
change the Setup file.)

If your module requires additional libraries to link with, these can be listed on the line in the configuration file as well,
for instance:

2.1. Extending Python with C or C++ 11

https://www.python.org/dev/peps/pep-0489

Extending and Embedding Python, Release 3.9.23

spam spammodule.o -lX11

2.1.6 Calling Python Functions from C

So far we have concentrated on making C functions callable from Python. The reverse is also useful: calling Python
functions from C. This is especially the case for libraries that support so-called «callback» functions. If a C interface
makes use of callbacks, the equivalent Python often needs to provide a callback mechanism to the Python programmer;
the implementation will require calling the Python callback functions from a C callback. Other uses are also imaginable.

Fortunately, the Python interpreter is easily called recursively, and there is a standard interface to call a Python function.
(I won’t dwell on how to call the Python parser with a particular string as input — if you’re interested, have a look at the
implementation of the -c command line option in Modules/main.c from the Python source code.)

Calling a Python function is easy. First, the Python program must somehow pass you the Python function object. You
should provide a function (or some other interface) to do this. When this function is called, save a pointer to the Python
function object (be careful to Py_INCREF() it!) in a global variable — or wherever you see fit. For example, the
following function might be part of a module definition:

static PyObject *my_callback = NULL;

static PyObject *
my_set_callback(PyObject *dummy, PyObject *args)
{

PyObject *result = NULL;
PyObject *temp;

if (PyArg_ParseTuple(args, "O:set_callback", &temp)) {
if (!PyCallable_Check(temp)) {

PyErr_SetString(PyExc_TypeError, "parameter must be callable");
return NULL;

}
Py_XINCREF(temp); /* Add a reference to new callback */
Py_XDECREF(my_callback); /* Dispose of previous callback */
my_callback = temp; /* Remember new callback */
/* Boilerplate to return "None" */
Py_INCREF(Py_None);
result = Py_None;

}
return result;

}

This function must be registered with the interpreter using the METH_VARARGS flag; this is described in section
The Module’s Method Table and Initialization Function. The PyArg_ParseTuple() function and its arguments are
documented in section Extracting Parameters in Extension Functions.

The macros Py_XINCREF() and Py_XDECREF() increment/decrement the reference count of an object and are safe
in the presence of NULL pointers (but note that temp will not be NULL in this context). More info on them in section
Reference Counts.

Later, when it is time to call the function, you call the C function PyObject_CallObject(). This function has two
arguments, both pointers to arbitrary Python objects: the Python function, and the argument list. The argument list must
always be a tuple object, whose length is the number of arguments. To call the Python function with no arguments, pass
in NULL, or an empty tuple; to call it with one argument, pass a singleton tuple. Py_BuildValue() returns a tuple
when its format string consists of zero or more format codes between parentheses. For example:

12 Capitolo 2. Creating extensions without third party tools

Extending and Embedding Python, Release 3.9.23

int arg;
PyObject *arglist;
PyObject *result;
...
arg = 123;
...
/* Time to call the callback */
arglist = Py_BuildValue("(i)", arg);
result = PyObject_CallObject(my_callback, arglist);
Py_DECREF(arglist);

PyObject_CallObject() returns a Python object pointer: this is the return value of the Python func-
tion. PyObject_CallObject() is «reference-count-neutral» with respect to its arguments. In the exam-
ple a new tuple was created to serve as the argument list, which is Py_DECREF()-ed immediately after the
PyObject_CallObject() call.

The return value of PyObject_CallObject() is «new»: either it is a brand new object, or it is an existing object
whose reference count has been incremented. So, unless you want to save it in a global variable, you should somehow
Py_DECREF() the result, even (especially!) if you are not interested in its value.

Before you do this, however, it is important to check that the return value isn’tNULL. If it is, the Python function terminated
by raising an exception. If the C code that called PyObject_CallObject() is called from Python, it should now
return an error indication to its Python caller, so the interpreter can print a stack trace, or the calling Python code can
handle the exception. If this is not possible or desirable, the exception should be cleared by calling PyErr_Clear().
For example:

if (result == NULL)
return NULL; /* Pass error back */

...use result...
Py_DECREF(result);

Depending on the desired interface to the Python callback function, you may also have to provide an argument list to
PyObject_CallObject(). In some cases the argument list is also provided by the Python program, through the
same interface that specified the callback function. It can then be saved and used in the same manner as the function
object. In other cases, you may have to construct a new tuple to pass as the argument list. The simplest way to do this is
to call Py_BuildValue(). For example, if you want to pass an integral event code, you might use the following code:

PyObject *arglist;
...
arglist = Py_BuildValue("(l)", eventcode);
result = PyObject_CallObject(my_callback, arglist);
Py_DECREF(arglist);
if (result == NULL)

return NULL; /* Pass error back */
/* Here maybe use the result */
Py_DECREF(result);

Note the placement of Py_DECREF(arglist) immediately after the call, before the error check! Also note that
strictly speaking this code is not complete: Py_BuildValue() may run out of memory, and this should be checked.

You may also call a function with keyword arguments by using PyObject_Call(), which supports arguments and
keyword arguments. As in the above example, we use Py_BuildValue() to construct the dictionary.

PyObject *dict;
...
dict = Py_BuildValue("{s:i}", "name", val);
result = PyObject_Call(my_callback, NULL, dict);

(continues on next page)

2.1. Extending Python with C or C++ 13

Extending and Embedding Python, Release 3.9.23

(continua dalla pagina precedente)

Py_DECREF(dict);
if (result == NULL)

return NULL; /* Pass error back */
/* Here maybe use the result */
Py_DECREF(result);

2.1.7 Extracting Parameters in Extension Functions

The PyArg_ParseTuple() function is declared as follows:

int PyArg_ParseTuple(PyObject *arg, const char *format, ...);

The arg argument must be a tuple object containing an argument list passed from Python to a C function. The format
argument must be a format string, whose syntax is explained in arg-parsing in the Python/C API Reference Manual. The
remaining arguments must be addresses of variables whose type is determined by the format string.

Note that while PyArg_ParseTuple() checks that the Python arguments have the required types, it cannot check
the validity of the addresses of C variables passed to the call: if you make mistakes there, your code will probably crash
or at least overwrite random bits in memory. So be careful!

Note that any Python object references which are provided to the caller are borrowed references; do not decrement their
reference count!

Some example calls:

#define PY_SSIZE_T_CLEAN /* Make "s#" use Py_ssize_t rather than int. */
#include <Python.h>

int ok;
int i, j;
long k, l;
const char *s;
Py_ssize_t size;

ok = PyArg_ParseTuple(args, ""); /* No arguments */
/* Python call: f() */

ok = PyArg_ParseTuple(args, "s", &s); /* A string */
/* Possible Python call: f('whoops!') */

ok = PyArg_ParseTuple(args, "lls", &k, &l, &s); /* Two longs and a string */
/* Possible Python call: f(1, 2, 'three') */

ok = PyArg_ParseTuple(args, "(ii)s#", &i, &j, &s, &size);
/* A pair of ints and a string, whose size is also returned */
/* Possible Python call: f((1, 2), 'three') */

{
const char *file;
const char *mode = "r";
int bufsize = 0;
ok = PyArg_ParseTuple(args, "s|si", &file, &mode, &bufsize);
/* A string, and optionally another string and an integer */

(continues on next page)

14 Capitolo 2. Creating extensions without third party tools

Extending and Embedding Python, Release 3.9.23

(continua dalla pagina precedente)

/* Possible Python calls:
f('spam')
f('spam', 'w')
f('spam', 'wb', 100000) */

}

{
int left, top, right, bottom, h, v;
ok = PyArg_ParseTuple(args, "((ii)(ii))(ii)",

&left, &top, &right, &bottom, &h, &v);
/* A rectangle and a point */
/* Possible Python call:

f(((0, 0), (400, 300)), (10, 10)) */
}

{
Py_complex c;
ok = PyArg_ParseTuple(args, "D:myfunction", &c);
/* a complex, also providing a function name for errors */
/* Possible Python call: myfunction(1+2j) */

}

2.1.8 Keyword Parameters for Extension Functions

The PyArg_ParseTupleAndKeywords() function is declared as follows:

int PyArg_ParseTupleAndKeywords(PyObject *arg, PyObject *kwdict,
const char *format, char *kwlist[], ...);

The arg and format parameters are identical to those of the PyArg_ParseTuple() function. The kwdict parameter
is the dictionary of keywords received as the third parameter from the Python runtime. The kwlist parameter is a NULL-
terminated list of strings which identify the parameters; the names are matched with the type information from format
from left to right. On success, PyArg_ParseTupleAndKeywords() returns true, otherwise it returns false and
raises an appropriate exception.

Nota: Nested tuples cannot be parsed when using keyword arguments! Keyword parameters passed in which are not
present in the kwlist will cause TypeError to be raised.

Here is an example module which uses keywords, based on an example by Geoff Philbrick (philbrick@hks.com):

#define PY_SSIZE_T_CLEAN /* Make "s#" use Py_ssize_t rather than int. */
#include <Python.h>

static PyObject *
keywdarg_parrot(PyObject *self, PyObject *args, PyObject *keywds)
{

int voltage;
const char *state = "a stiff";
const char *action = "voom";
const char *type = "Norwegian Blue";

static char *kwlist[] = {"voltage", "state", "action", "type", NULL};

(continues on next page)

2.1. Extending Python with C or C++ 15

mailto:philbrick@hks.com

Extending and Embedding Python, Release 3.9.23

(continua dalla pagina precedente)

if (!PyArg_ParseTupleAndKeywords(args, keywds, "i|sss", kwlist,
&voltage, &state, &action, &type))

return NULL;

printf("-- This parrot wouldn't %s if you put %i Volts through it.\n",
action, voltage);

printf("-- Lovely plumage, the %s -- It's %s!\n", type, state);

Py_RETURN_NONE;
}

static PyMethodDef keywdarg_methods[] = {
/* The cast of the function is necessary since PyCFunction values
* only take two PyObject* parameters, and keywdarg_parrot() takes
* three.
*/

{"parrot", (PyCFunction)(void(*)(void))keywdarg_parrot, METH_VARARGS | METH_
↪→KEYWORDS,

"Print a lovely skit to standard output."},
{NULL, NULL, 0, NULL} /* sentinel */

};

static struct PyModuleDef keywdargmodule = {
PyModuleDef_HEAD_INIT,
"keywdarg",
NULL,
-1,
keywdarg_methods

};

PyMODINIT_FUNC
PyInit_keywdarg(void)
{

return PyModule_Create(&keywdargmodule);
}

2.1.9 Building Arbitrary Values

This function is the counterpart to PyArg_ParseTuple(). It is declared as follows:

PyObject *Py_BuildValue(const char *format, ...);

It recognizes a set of format units similar to the ones recognized by PyArg_ParseTuple(), but the arguments (which
are input to the function, not output) must not be pointers, just values. It returns a new Python object, suitable for returning
from a C function called from Python.

One difference with PyArg_ParseTuple(): while the latter requires its first argument to be a tuple (since Python
argument lists are always represented as tuples internally), Py_BuildValue() does not always build a tuple. It builds
a tuple only if its format string contains two or more format units. If the format string is empty, it returns None; if it
contains exactly one format unit, it returns whatever object is described by that format unit. To force it to return a tuple
of size 0 or one, parenthesize the format string.

Examples (to the left the call, to the right the resulting Python value):

16 Capitolo 2. Creating extensions without third party tools

Extending and Embedding Python, Release 3.9.23

Py_BuildValue("") None
Py_BuildValue("i", 123) 123
Py_BuildValue("iii", 123, 456, 789) (123, 456, 789)
Py_BuildValue("s", "hello") 'hello'
Py_BuildValue("y", "hello") b'hello'
Py_BuildValue("ss", "hello", "world") ('hello', 'world')
Py_BuildValue("s#", "hello", 4) 'hell'
Py_BuildValue("y#", "hello", 4) b'hell'
Py_BuildValue("()") ()
Py_BuildValue("(i)", 123) (123,)
Py_BuildValue("(ii)", 123, 456) (123, 456)
Py_BuildValue("(i,i)", 123, 456) (123, 456)
Py_BuildValue("[i,i]", 123, 456) [123, 456]
Py_BuildValue("{s:i,s:i}",

"abc", 123, "def", 456) {'abc': 123, 'def': 456}
Py_BuildValue("((ii)(ii)) (ii)",

1, 2, 3, 4, 5, 6) (((1, 2), (3, 4)), (5, 6))

2.1.10 Reference Counts

In languages like C or C++, the programmer is responsible for dynamic allocation and deallocation of memory on the
heap. In C, this is done using the functions malloc() and free(). In C++, the operators new and delete are used
with essentially the same meaning and we’ll restrict the following discussion to the C case.

Every block of memory allocated with malloc() should eventually be returned to the pool of available memory by
exactly one call to free(). It is important to call free() at the right time. If a block’s address is forgotten but free()
is not called for it, the memory it occupies cannot be reused until the program terminates. This is called a memory leak.
On the other hand, if a program calls free() for a block and then continues to use the block, it creates a conflict with
re-use of the block through another malloc() call. This is called using freed memory. It has the same bad consequences
as referencing uninitialized data — core dumps, wrong results, mysterious crashes.

Common causes of memory leaks are unusual paths through the code. For instance, a function may allocate a block of
memory, do some calculation, and then free the block again. Now a change in the requirements for the function may add
a test to the calculation that detects an error condition and can return prematurely from the function. It’s easy to forget
to free the allocated memory block when taking this premature exit, especially when it is added later to the code. Such
leaks, once introduced, often go undetected for a long time: the error exit is taken only in a small fraction of all calls,
and most modern machines have plenty of virtual memory, so the leak only becomes apparent in a long-running process
that uses the leaking function frequently. Therefore, it’s important to prevent leaks from happening by having a coding
convention or strategy that minimizes this kind of errors.

Since Python makes heavy use of malloc() and free(), it needs a strategy to avoid memory leaks as well as the
use of freed memory. The chosen method is called reference counting. The principle is simple: every object contains a
counter, which is incremented when a reference to the object is stored somewhere, and which is decremented when a
reference to it is deleted. When the counter reaches zero, the last reference to the object has been deleted and the object
is freed.

An alternative strategy is called automatic garbage collection. (Sometimes, reference counting is also referred to as a gar-
bage collection strategy, hence my use of «automatic» to distinguish the two.) The big advantage of automatic garbage
collection is that the user doesn’t need to call free() explicitly. (Another claimed advantage is an improvement in speed
or memory usage— this is no hard fact however.) The disadvantage is that for C, there is no truly portable automatic gar-
bage collector, while reference counting can be implemented portably (as long as the functions malloc() and free()
are available — which the C Standard guarantees). Maybe some day a sufficiently portable automatic garbage collector
will be available for C. Until then, we’ll have to live with reference counts.

While Python uses the traditional reference counting implementation, it also offers a cycle detector that works to detect
reference cycles. This allows applications to not worry about creating direct or indirect circular references; these are the

2.1. Extending Python with C or C++ 17

Extending and Embedding Python, Release 3.9.23

weakness of garbage collection implemented using only reference counting. Reference cycles consist of objects which
contain (possibly indirect) references to themselves, so that each object in the cycle has a reference count which is non-
zero. Typical reference counting implementations are not able to reclaim the memory belonging to any objects in a
reference cycle, or referenced from the objects in the cycle, even though there are no further references to the cycle itself.

The cycle detector is able to detect garbage cycles and can reclaim them. The gc module exposes a way to run the
detector (the collect() function), as well as configuration interfaces and the ability to disable the detector at runtime.
The cycle detector is considered an optional component; though it is included by default, it can be disabled at build time
using the --without-cycle-gc option to the configure script on Unix platforms (including Mac OS X). If the
cycle detector is disabled in this way, the gc module will not be available.

Reference Counting in Python

There are two macros, Py_INCREF(x) and Py_DECREF(x), which handle the incrementing and decrementing of
the reference count. Py_DECREF() also frees the object when the count reaches zero. For flexibility, it doesn’t call
free() directly — rather, it makes a call through a function pointer in the object’s type object. For this purpose (and
others), every object also contains a pointer to its type object.

The big question now remains: when to use Py_INCREF(x) and Py_DECREF(x)? Let’s first introduce some terms.
Nobody «owns» an object; however, you can own a reference to an object. An object’s reference count is now defined
as the number of owned references to it. The owner of a reference is responsible for calling Py_DECREF() when the
reference is no longer needed. Ownership of a reference can be transferred. There are three ways to dispose of an owned
reference: pass it on, store it, or call Py_DECREF(). Forgetting to dispose of an owned reference creates a memory
leak.

It is also possible to borrow2 a reference to an object. The borrower of a reference should not call Py_DECREF(). The
borrower must not hold on to the object longer than the owner from which it was borrowed. Using a borrowed reference
after the owner has disposed of it risks using freed memory and should be avoided completely3.

The advantage of borrowing over owning a reference is that you don’t need to take care of disposing of the reference on
all possible paths through the code — in other words, with a borrowed reference you don’t run the risk of leaking when
a premature exit is taken. The disadvantage of borrowing over owning is that there are some subtle situations where in
seemingly correct code a borrowed reference can be used after the owner from which it was borrowed has in fact disposed
of it.

A borrowed reference can be changed into an owned reference by calling Py_INCREF(). This does not affect the
status of the owner from which the reference was borrowed — it creates a new owned reference, and gives full owner
responsibilities (the new owner must dispose of the reference properly, as well as the previous owner).

Ownership Rules

Whenever an object reference is passed into or out of a function, it is part of the function’s interface specification whether
ownership is transferred with the reference or not.

Most functions that return a reference to an object pass on ownership with the reference. In particular, all functions whose
function it is to create a new object, such as PyLong_FromLong() and Py_BuildValue(), pass ownership to the
receiver. Even if the object is not actually new, you still receive ownership of a new reference to that object. For instance,
PyLong_FromLong() maintains a cache of popular values and can return a reference to a cached item.

Many functions that extract objects from other objects also transfer ownership with the reference, for
instance PyObject_GetAttrString(). The picture is less clear, here, however, since a few com-
mon routines are exceptions: PyTuple_GetItem(), PyList_GetItem(), PyDict_GetItem(), and
PyDict_GetItemString() all return references that you borrow from the tuple, list or dictionary.

2 The metaphor of «borrowing» a reference is not completely correct: the owner still has a copy of the reference.
3 Checking that the reference count is at least 1 does not work— the reference count itself could be in freed memory and may thus be reused for

another object!

18 Capitolo 2. Creating extensions without third party tools

Extending and Embedding Python, Release 3.9.23

The function PyImport_AddModule() also returns a borrowed reference, even though it may actually create the
object it returns: this is possible because an owned reference to the object is stored in sys.modules.

When you pass an object reference into another function, in general, the function borrows the reference from you —
if it needs to store it, it will use Py_INCREF() to become an independent owner. There are exactly two important
exceptions to this rule: PyTuple_SetItem() and PyList_SetItem(). These functions take over ownership of
the item passed to them — even if they fail! (Note that PyDict_SetItem() and friends don’t take over ownership
— they are «normal.»)

When a C function is called from Python, it borrows references to its arguments from the caller. The caller owns a
reference to the object, so the borrowed reference’s lifetime is guaranteed until the function returns. Only when such a
borrowed reference must be stored or passed on, it must be turned into an owned reference by calling Py_INCREF().

The object reference returned from a C function that is called from Python must be an owned reference — ownership is
transferred from the function to its caller.

Thin Ice

There are a few situations where seemingly harmless use of a borrowed reference can lead to problems. These all have to
do with implicit invocations of the interpreter, which can cause the owner of a reference to dispose of it.

The first and most important case to know about is using Py_DECREF() on an unrelated object while borrowing a
reference to a list item. For instance:

void
bug(PyObject *list)
{

PyObject *item = PyList_GetItem(list, 0);

PyList_SetItem(list, 1, PyLong_FromLong(0L));
PyObject_Print(item, stdout, 0); /* BUG! */

}

This function first borrows a reference to list[0], then replaces list[1] with the value 0, and finally prints the
borrowed reference. Looks harmless, right? But it’s not!

Let’s follow the control flow into PyList_SetItem(). The list owns references to all its items, so when item 1 is
replaced, it has to dispose of the original item 1. Now let’s suppose the original item 1 was an instance of a user-defined
class, and let’s further suppose that the class defined a __del__() method. If this class instance has a reference count
of 1, disposing of it will call its __del__() method.

Since it is written in Python, the __del__()method can execute arbitrary Python code. Could it perhaps do something
to invalidate the reference to item in bug()? You bet! Assuming that the list passed into bug() is accessible to
the __del__() method, it could execute a statement to the effect of del list[0], and assuming this was the last
reference to that object, it would free the memory associated with it, thereby invalidating item.

The solution, once you know the source of the problem, is easy: temporarily increment the reference count. The correct
version of the function reads:

void
no_bug(PyObject *list)
{

PyObject *item = PyList_GetItem(list, 0);

Py_INCREF(item);
PyList_SetItem(list, 1, PyLong_FromLong(0L));
PyObject_Print(item, stdout, 0);

(continues on next page)

2.1. Extending Python with C or C++ 19

Extending and Embedding Python, Release 3.9.23

(continua dalla pagina precedente)

Py_DECREF(item);
}

This is a true story. An older version of Python contained variants of this bug and someone spent a considerable amount
of time in a C debugger to figure out why his __del__() methods would fail…

The second case of problems with a borrowed reference is a variant involving threads. Normally, multiple threads in the
Python interpreter can’t get in each other’s way, because there is a global lock protecting Python’s entire object space.
However, it is possible to temporarily release this lock using the macro Py_BEGIN_ALLOW_THREADS, and to re-
acquire it using Py_END_ALLOW_THREADS. This is common around blocking I/O calls, to let other threads use the
processor while waiting for the I/O to complete. Obviously, the following function has the same problem as the previous
one:

void
bug(PyObject *list)
{

PyObject *item = PyList_GetItem(list, 0);
Py_BEGIN_ALLOW_THREADS
...some blocking I/O call...
Py_END_ALLOW_THREADS
PyObject_Print(item, stdout, 0); /* BUG! */

}

NULL Pointers

In general, functions that take object references as arguments do not expect you to pass them NULL pointers, and will
dump core (or cause later core dumps) if you do so. Functions that return object references generally return NULL only
to indicate that an exception occurred. The reason for not testing for NULL arguments is that functions often pass the
objects they receive on to other function— if each function were to test for NULL, there would be a lot of redundant tests
and the code would run more slowly.

It is better to test for NULL only at the «source:» when a pointer that may be NULL is received, for example, from
malloc() or from a function that may raise an exception.

The macros Py_INCREF() and Py_DECREF() do not check for NULL pointers — however, their variants
Py_XINCREF() and Py_XDECREF() do.

The macros for checking for a particular object type (Pytype_Check()) don’t check for NULL pointers — again,
there is much code that calls several of these in a row to test an object against various different expected types, and this
would generate redundant tests. There are no variants with NULL checking.

The C function calling mechanism guarantees that the argument list passed to C functions (args in the examples) is
never NULL— in fact it guarantees that it is always a tuple4.

It is a severe error to ever let a NULL pointer «escape» to the Python user.

4 These guarantees don’t hold when you use the «old» style calling convention — this is still found in much existing code.

20 Capitolo 2. Creating extensions without third party tools

Extending and Embedding Python, Release 3.9.23

2.1.11 Writing Extensions in C++

It is possible to write extension modules in C++. Some restrictions apply. If the main program (the Python interpreter) is
compiled and linked by the C compiler, global or static objects with constructors cannot be used. This is not a problem
if the main program is linked by the C++ compiler. Functions that will be called by the Python interpreter (in particular,
module initialization functions) have to be declared using extern "C". It is unnecessary to enclose the Python header
files in extern "C" {...}— they use this form already if the symbol __cplusplus is defined (all recent C++
compilers define this symbol).

2.1.12 Providing a C API for an Extension Module

Many extension modules just provide new functions and types to be used from Python, but sometimes the code in an
extension module can be useful for other extension modules. For example, an extension module could implement a type
«collection» which works like lists without order. Just like the standard Python list type has a C API which permits
extension modules to create and manipulate lists, this new collection type should have a set of C functions for direct
manipulation from other extension modules.

At first sight this seems easy: just write the functions (without declaring them static, of course), provide an appropriate
header file, and document the C API. And in fact this would work if all extension modules were always linked statically
with the Python interpreter. When modules are used as shared libraries, however, the symbols defined in one module
may not be visible to another module. The details of visibility depend on the operating system; some systems use one
global namespace for the Python interpreter and all extension modules (Windows, for example), whereas others require
an explicit list of imported symbols at module link time (AIX is one example), or offer a choice of different strategies
(most Unices). And even if symbols are globally visible, the module whose functions one wishes to call might not have
been loaded yet!

Portability therefore requires not tomake any assumptions about symbol visibility. Thismeans that all symbols in extension
modules should be declared static, except for the module’s initialization function, in order to avoid name clashes with
other extension modules (as discussed in section The Module’s Method Table and Initialization Function). And it means
that symbols that should be accessible from other extension modules must be exported in a different way.

Python provides a special mechanism to pass C-level information (pointers) from one extension module to another one:
Capsules. A Capsule is a Python data type which stores a pointer (void *). Capsules can only be created and accessed
via their C API, but they can be passed around like any other Python object. In particular, they can be assigned to a name
in an extension module’s namespace. Other extension modules can then import this module, retrieve the value of this
name, and then retrieve the pointer from the Capsule.

There are many ways in which Capsules can be used to export the C API of an extension module. Each function could
get its own Capsule, or all C API pointers could be stored in an array whose address is published in a Capsule. And the
various tasks of storing and retrieving the pointers can be distributed in different ways between the module providing the
code and the client modules.

Whichever method you choose, it’s important to name your Capsules properly. The function PyCapsule_New() takes
a name parameter (const char *); you’re permitted to pass in a NULL name, but we strongly encourage you to
specify a name. Properly named Capsules provide a degree of runtime type-safety; there is no feasible way to tell one
unnamed Capsule from another.

In particular, Capsules used to expose C APIs should be given a name following this convention:

modulename.attributename

The convenience function PyCapsule_Import() makes it easy to load a C API provided via a Capsule, but only if
the Capsule’s name matches this convention. This behavior gives C API users a high degree of certainty that the Capsule
they load contains the correct C API.

The following example demonstrates an approach that puts most of the burden on the writer of the exporting module,
which is appropriate for commonly used library modules. It stores all C API pointers (just one in the example!) in an

2.1. Extending Python with C or C++ 21

Extending and Embedding Python, Release 3.9.23

array of void pointers which becomes the value of a Capsule. The header file corresponding to the module provides a
macro that takes care of importing the module and retrieving its C API pointers; client modules only have to call this
macro before accessing the C API.

The exporting module is a modification of the spam module from section A Simple Example. The function spam.
system() does not call the C library function system() directly, but a function PySpam_System(), which
would of course do something more complicated in reality (such as adding «spam» to every command). This function
PySpam_System() is also exported to other extension modules.

The function PySpam_System() is a plain C function, declared static like everything else:

static int
PySpam_System(const char *command)
{

return system(command);
}

The function spam_system() is modified in a trivial way:

static PyObject *
spam_system(PyObject *self, PyObject *args)
{

const char *command;
int sts;

if (!PyArg_ParseTuple(args, "s", &command))
return NULL;

sts = PySpam_System(command);
return PyLong_FromLong(sts);

}

In the beginning of the module, right after the line

#include <Python.h>

two more lines must be added:

#define SPAM_MODULE
#include "spammodule.h"

The #define is used to tell the header file that it is being included in the exporting module, not a client module. Finally,
the module’s initialization function must take care of initializing the C API pointer array:

PyMODINIT_FUNC
PyInit_spam(void)
{

PyObject *m;
static void *PySpam_API[PySpam_API_pointers];
PyObject *c_api_object;

m = PyModule_Create(&spammodule);
if (m == NULL)

return NULL;

/* Initialize the C API pointer array */
PySpam_API[PySpam_System_NUM] = (void *)PySpam_System;

/* Create a Capsule containing the API pointer array's address */

(continues on next page)

22 Capitolo 2. Creating extensions without third party tools

Extending and Embedding Python, Release 3.9.23

(continua dalla pagina precedente)

c_api_object = PyCapsule_New((void *)PySpam_API, "spam._C_API", NULL);

if (PyModule_AddObject(m, "_C_API", c_api_object) < 0) {
Py_XDECREF(c_api_object);
Py_DECREF(m);
return NULL;

}

return m;
}

Note that PySpam_API is declared static; otherwise the pointer array would disappear when PyInit_spam()
terminates!

The bulk of the work is in the header file spammodule.h, which looks like this:

#ifndef Py_SPAMMODULE_H
#define Py_SPAMMODULE_H
#ifdef __cplusplus
extern "C" {
#endif

/* Header file for spammodule */

/* C API functions */
#define PySpam_System_NUM 0
#define PySpam_System_RETURN int
#define PySpam_System_PROTO (const char *command)

/* Total number of C API pointers */
#define PySpam_API_pointers 1

#ifdef SPAM_MODULE
/* This section is used when compiling spammodule.c */

static PySpam_System_RETURN PySpam_System PySpam_System_PROTO;

#else
/* This section is used in modules that use spammodule's API */

static void **PySpam_API;

#define PySpam_System \
(*(PySpam_System_RETURN (*)PySpam_System_PROTO) PySpam_API[PySpam_System_NUM])

/* Return -1 on error, 0 on success.
* PyCapsule_Import will set an exception if there's an error.
*/

static int
import_spam(void)
{

PySpam_API = (void **)PyCapsule_Import("spam._C_API", 0);
return (PySpam_API != NULL) ? 0 : -1;

}

#endif

(continues on next page)

2.1. Extending Python with C or C++ 23

Extending and Embedding Python, Release 3.9.23

(continua dalla pagina precedente)

#ifdef __cplusplus
}
#endif

#endif /* !defined(Py_SPAMMODULE_H) */

All that a client module must do in order to have access to the function PySpam_System() is to call the function (or
rather macro) import_spam() in its initialization function:

PyMODINIT_FUNC
PyInit_client(void)
{

PyObject *m;

m = PyModule_Create(&clientmodule);
if (m == NULL)

return NULL;
if (import_spam() < 0)

return NULL;
/* additional initialization can happen here */
return m;

}

The main disadvantage of this approach is that the file spammodule.h is rather complicated. However, the basic
structure is the same for each function that is exported, so it has to be learned only once.

Finally it should be mentioned that Capsules offer additional functionality, which is especially useful for memory al-
location and deallocation of the pointer stored in a Capsule. The details are described in the Python/C API Refe-
rence Manual in the section capsules and in the implementation of Capsules (files Include/pycapsule.h and
Objects/pycapsule.c in the Python source code distribution).

2.2 Defining Extension Types: Tutorial

Python allows the writer of a C extension module to define new types that can be manipulated from Python code, much
like the built-in str and list types. The code for all extension types follows a pattern, but there are some details that
you need to understand before you can get started. This document is a gentle introduction to the topic.

2.2.1 The Basics

The CPython runtime sees all Python objects as variables of type PyObject*, which serves as a «base type» for all
Python objects. The PyObject structure itself only contains the object’s reference count and a pointer to the object’s
«type object». This is where the action is; the type object determines which (C) functions get called by the interpreter
when, for instance, an attribute gets looked up on an object, a method called, or it is multiplied by another object. These
C functions are called «type methods».

So, if you want to define a new extension type, you need to create a new type object.

This sort of thing can only be explained by example, so here’s a minimal, but complete, module that defines a new type
named Custom inside a C extension module custom:

24 Capitolo 2. Creating extensions without third party tools

Extending and Embedding Python, Release 3.9.23

Nota: What we’re showing here is the traditional way of defining static extension types. It should be adequate for most
uses. The C API also allows defining heap-allocated extension types using the PyType_FromSpec() function, which
isn’t covered in this tutorial.

#define PY_SSIZE_T_CLEAN
#include <Python.h>

typedef struct {
PyObject_HEAD
/* Type-specific fields go here. */

} CustomObject;

static PyTypeObject CustomType = {
PyVarObject_HEAD_INIT(NULL, 0)
.tp_name = "custom.Custom",
.tp_doc = PyDoc_STR("Custom objects"),
.tp_basicsize = sizeof(CustomObject),
.tp_itemsize = 0,
.tp_flags = Py_TPFLAGS_DEFAULT,
.tp_new = PyType_GenericNew,

};

static PyModuleDef custommodule = {
PyModuleDef_HEAD_INIT,
.m_name = "custom",
.m_doc = "Example module that creates an extension type.",
.m_size = -1,

};

PyMODINIT_FUNC
PyInit_custom(void)
{

PyObject *m;
if (PyType_Ready(&CustomType) < 0)

return NULL;

m = PyModule_Create(&custommodule);
if (m == NULL)

return NULL;

Py_INCREF(&CustomType);
if (PyModule_AddObject(m, "Custom", (PyObject *) &CustomType) < 0) {

Py_DECREF(&CustomType);
Py_DECREF(m);
return NULL;

}

return m;
}

Now that’s quite a bit to take in at once, but hopefully bits will seem familiar from the previous chapter. This file defines
three things:

1. What a Custom object contains: this is the CustomObject struct, which is allocated once for each Custom
instance.

2. How the Custom type behaves: this is the CustomType struct, which defines a set of flags and function pointers

2.2. Defining Extension Types: Tutorial 25

Extending and Embedding Python, Release 3.9.23

that the interpreter inspects when specific operations are requested.

3. How to initialize the custom module: this is the PyInit_custom function and the associated
custommodule struct.

The first bit is:

typedef struct {
PyObject_HEAD

} CustomObject;

This is what a Custom object will contain. PyObject_HEAD is mandatory at the start of each object struct and defines
a field called ob_base of type PyObject, containing a pointer to a type object and a reference count (these can be
accessed using the macros Py_TYPE and Py_REFCNT respectively). The reason for the macro is to abstract away the
layout and to enable additional fields in debug builds.

Nota: There is no semicolon above after the PyObject_HEAD macro. Be wary of adding one by accident: some
compilers will complain.

Of course, objects generally store additional data besides the standard PyObject_HEAD boilerplate; for example, here
is the definition for standard Python floats:

typedef struct {
PyObject_HEAD
double ob_fval;

} PyFloatObject;

The second bit is the definition of the type object.

static PyTypeObject CustomType = {
PyVarObject_HEAD_INIT(NULL, 0)
.tp_name = "custom.Custom",
.tp_doc = PyDoc_STR("Custom objects"),
.tp_basicsize = sizeof(CustomObject),
.tp_itemsize = 0,
.tp_flags = Py_TPFLAGS_DEFAULT,
.tp_new = PyType_GenericNew,

};

Nota: We recommend using C99-style designated initializers as above, to avoid listing all the PyTypeObject fields
that you don’t care about and also to avoid caring about the fields” declaration order.

The actual definition of PyTypeObject in object.h has many more fields than the definition above. The remaining
fields will be filled with zeros by the C compiler, and it’s common practice to not specify them explicitly unless you need
them.

We’re going to pick it apart, one field at a time:

PyVarObject_HEAD_INIT(NULL, 0)

This line is mandatory boilerplate to initialize the ob_base field mentioned above.

.tp_name = "custom.Custom",

The name of our type. This will appear in the default textual representation of our objects and in some error messages,
for example:

26 Capitolo 2. Creating extensions without third party tools

Extending and Embedding Python, Release 3.9.23

>>> "" + custom.Custom()
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
TypeError: can only concatenate str (not "custom.Custom") to str

Note that the name is a dotted name that includes both the module name and the name of the type within the module.
The module in this case is custom and the type is Custom, so we set the type name to custom.Custom. Using the
real dotted import path is important to make your type compatible with the pydoc and pickle modules.

.tp_basicsize = sizeof(CustomObject),

.tp_itemsize = 0,

This is so that Python knows how much memory to allocate when creating new Custom instances. tp_itemsize is
only used for variable-sized objects and should otherwise be zero.

Nota: If you want your type to be subclassable from Python, and your type has the same tp_basicsize as its base
type, you may have problems with multiple inheritance. A Python subclass of your type will have to list your type first
in its __bases__, or else it will not be able to call your type’s __new__() method without getting an error. You can
avoid this problem by ensuring that your type has a larger value for tp_basicsize than its base type does. Most of the
time, this will be true anyway, because either your base type will be object, or else you will be adding data members
to your base type, and therefore increasing its size.

We set the class flags to Py_TPFLAGS_DEFAULT.

.tp_flags = Py_TPFLAGS_DEFAULT,

All types should include this constant in their flags. It enables all of the members defined until at least Python 3.3. If you
need further members, you will need to OR the corresponding flags.

We provide a doc string for the type in tp_doc.

.tp_doc = PyDoc_STR("Custom objects"),

To enable object creation, we have to provide a tp_new handler. This is the equivalent of the Python method
__new__(), but has to be specified explicitly. In this case, we can just use the default implementation provided by
the API function PyType_GenericNew().

.tp_new = PyType_GenericNew,

Everything else in the file should be familiar, except for some code in PyInit_custom():

if (PyType_Ready(&CustomType) < 0)
return;

This initializes the Custom type, filling in a number of members to the appropriate default values, including ob_type
that we initially set to NULL.

Py_INCREF(&CustomType);
if (PyModule_AddObject(m, "Custom", (PyObject *) &CustomType) < 0) {

Py_DECREF(&CustomType);
Py_DECREF(m);
return NULL;

}

This adds the type to the module dictionary. This allows us to create Custom instances by calling the Custom class:

2.2. Defining Extension Types: Tutorial 27

Extending and Embedding Python, Release 3.9.23

>>> import custom
>>> mycustom = custom.Custom()

That’s it! All that remains is to build it; put the above code in a file called custom.c and:

from distutils.core import setup, Extension
setup(name="custom", version="1.0",

ext_modules=[Extension("custom", ["custom.c"])])

in a file called setup.py; then typing

$ python setup.py build

at a shell should produce a file custom.so in a subdirectory; move to that directory and fire up Python — you should
be able to import custom and play around with Custom objects.

That wasn’t so hard, was it?

Of course, the current Custom type is pretty uninteresting. It has no data and doesn’t do anything. It can’t even be
subclassed.

Nota: While this documentation showcases the standard distutils module for building C extensions, it is recom-
mended in real-world use cases to use the newer and better-maintained setuptools library. Documentation on how
to do this is out of scope for this document and can be found in the Python Packaging User’s Guide.

2.2.2 Adding data and methods to the Basic example

Let’s extend the basic example to add some data and methods. Let’s also make the type usable as a base class. We’ll create
a new module, custom2 that adds these capabilities:

#define PY_SSIZE_T_CLEAN
#include <Python.h>
#include "structmember.h"

typedef struct {
PyObject_HEAD
PyObject *first; /* first name */
PyObject *last; /* last name */
int number;

} CustomObject;

static void
Custom_dealloc(CustomObject *self)
{

Py_XDECREF(self->first);
Py_XDECREF(self->last);
Py_TYPE(self)->tp_free((PyObject *) self);

}

static PyObject *
Custom_new(PyTypeObject *type, PyObject *args, PyObject *kwds)
{

CustomObject *self;
self = (CustomObject *) type->tp_alloc(type, 0);

(continues on next page)

28 Capitolo 2. Creating extensions without third party tools

https://packaging.python.org/tutorials/distributing-packages/

Extending and Embedding Python, Release 3.9.23

(continua dalla pagina precedente)

if (self != NULL) {
self->first = PyUnicode_FromString("");
if (self->first == NULL) {

Py_DECREF(self);
return NULL;

}
self->last = PyUnicode_FromString("");
if (self->last == NULL) {

Py_DECREF(self);
return NULL;

}
self->number = 0;

}
return (PyObject *) self;

}

static int
Custom_init(CustomObject *self, PyObject *args, PyObject *kwds)
{

static char *kwlist[] = {"first", "last", "number", NULL};
PyObject *first = NULL, *last = NULL, *tmp;

if (!PyArg_ParseTupleAndKeywords(args, kwds, "|OOi", kwlist,
&first, &last,
&self->number))

return -1;

if (first) {
tmp = self->first;
Py_INCREF(first);
self->first = first;
Py_XDECREF(tmp);

}
if (last) {

tmp = self->last;
Py_INCREF(last);
self->last = last;
Py_XDECREF(tmp);

}
return 0;

}

static PyMemberDef Custom_members[] = {
{"first", T_OBJECT_EX, offsetof(CustomObject, first), 0,
"first name"},

{"last", T_OBJECT_EX, offsetof(CustomObject, last), 0,
"last name"},

{"number", T_INT, offsetof(CustomObject, number), 0,
"custom number"},

{NULL} /* Sentinel */
};

static PyObject *
Custom_name(CustomObject *self, PyObject *Py_UNUSED(ignored))
{

if (self->first == NULL) {
PyErr_SetString(PyExc_AttributeError, "first");

(continues on next page)

2.2. Defining Extension Types: Tutorial 29

Extending and Embedding Python, Release 3.9.23

(continua dalla pagina precedente)

return NULL;
}
if (self->last == NULL) {

PyErr_SetString(PyExc_AttributeError, "last");
return NULL;

}
return PyUnicode_FromFormat("%S %S", self->first, self->last);

}

static PyMethodDef Custom_methods[] = {
{"name", (PyCFunction) Custom_name, METH_NOARGS,
"Return the name, combining the first and last name"

},
{NULL} /* Sentinel */

};

static PyTypeObject CustomType = {
PyVarObject_HEAD_INIT(NULL, 0)
.tp_name = "custom2.Custom",
.tp_doc = PyDoc_STR("Custom objects"),
.tp_basicsize = sizeof(CustomObject),
.tp_itemsize = 0,
.tp_flags = Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE,
.tp_new = Custom_new,
.tp_init = (initproc) Custom_init,
.tp_dealloc = (destructor) Custom_dealloc,
.tp_members = Custom_members,
.tp_methods = Custom_methods,

};

static PyModuleDef custommodule = {
PyModuleDef_HEAD_INIT,
.m_name = "custom2",
.m_doc = "Example module that creates an extension type.",
.m_size = -1,

};

PyMODINIT_FUNC
PyInit_custom2(void)
{

PyObject *m;
if (PyType_Ready(&CustomType) < 0)

return NULL;

m = PyModule_Create(&custommodule);
if (m == NULL)

return NULL;

Py_INCREF(&CustomType);
if (PyModule_AddObject(m, "Custom", (PyObject *) &CustomType) < 0) {

Py_DECREF(&CustomType);
Py_DECREF(m);
return NULL;

}

return m;
}

30 Capitolo 2. Creating extensions without third party tools

Extending and Embedding Python, Release 3.9.23

This version of the module has a number of changes.

We’ve added an extra include:

#include <structmember.h>

This include provides declarations that we use to handle attributes, as described a bit later.

The Custom type now has three data attributes in its C struct, first, last, and number. The first and last variables are
Python strings containing first and last names. The number attribute is a C integer.

The object structure is updated accordingly:

typedef struct {
PyObject_HEAD
PyObject *first; /* first name */
PyObject *last; /* last name */
int number;

} CustomObject;

Because we now have data to manage, we have to be more careful about object allocation and deallocation. At a minimum,
we need a deallocation method:

static void
Custom_dealloc(CustomObject *self)
{

Py_XDECREF(self->first);
Py_XDECREF(self->last);
Py_TYPE(self)->tp_free((PyObject *) self);

}

which is assigned to the tp_dealloc member:

.tp_dealloc = (destructor) Custom_dealloc,

This method first clears the reference counts of the two Python attributes. Py_XDECREF() correctly handles the case
where its argument is NULL (which might happen here if tp_new failed midway). It then calls the tp_free member
of the object’s type (computed by Py_TYPE(self)) to free the object’s memory. Note that the object’s type might not
be CustomType, because the object may be an instance of a subclass.

Nota: The explicit cast to destructor above is needed because we defined Custom_dealloc to take a
CustomObject * argument, but the tp_dealloc function pointer expects to receive a PyObject * argument.
Otherwise, the compiler will emit a warning. This is object-oriented polymorphism, in C!

We want to make sure that the first and last names are initialized to empty strings, so we provide a tp_new
implementation:

static PyObject *
Custom_new(PyTypeObject *type, PyObject *args, PyObject *kwds)
{

CustomObject *self;
self = (CustomObject *) type->tp_alloc(type, 0);
if (self != NULL) {

self->first = PyUnicode_FromString("");
if (self->first == NULL) {

Py_DECREF(self);
return NULL;

(continues on next page)

2.2. Defining Extension Types: Tutorial 31

Extending and Embedding Python, Release 3.9.23

(continua dalla pagina precedente)

}
self->last = PyUnicode_FromString("");
if (self->last == NULL) {

Py_DECREF(self);
return NULL;

}
self->number = 0;

}
return (PyObject *) self;

}

and install it in the tp_new member:

.tp_new = Custom_new,

The tp_new handler is responsible for creating (as opposed to initializing) objects of the type. It is exposed in Python
as the __new__() method. It is not required to define a tp_new member, and indeed many extension types will
simply reuse PyType_GenericNew() as done in the first version of the Custom type above. In this case, we use the
tp_new handler to initialize the first and last attributes to non-NULL default values.

tp_new is passed the type being instantiated (not necessarily CustomType, if a subclass is instantiated) and any
arguments passed when the type was called, and is expected to return the instance created. tp_new handlers always
accept positional and keyword arguments, but they often ignore the arguments, leaving the argument handling to initializer
(a.k.a. tp_init in C or __init__ in Python) methods.

Nota: tp_new shouldn’t call tp_init explicitly, as the interpreter will do it itself.

The tp_new implementation calls the tp_alloc slot to allocate memory:

self = (CustomObject *) type->tp_alloc(type, 0);

Since memory allocation may fail, we must check the tp_alloc result against NULL before proceeding.

Nota: We didn’t fill the tp_alloc slot ourselves. Rather PyType_Ready() fills it for us by inheriting it from our
base class, which is object by default. Most types use the default allocation strategy.

Nota: If you are creating a co-operative tp_new (one that calls a base type’s tp_new or __new__()), you must not
try to determine what method to call using method resolution order at runtime. Always statically determine what type
you are going to call, and call its tp_new directly, or via type->tp_base->tp_new. If you do not do this, Python
subclasses of your type that also inherit from other Python-defined classes may not work correctly. (Specifically, you may
not be able to create instances of such subclasses without getting a TypeError.)

We also define an initialization function which accepts arguments to provide initial values for our instance:

static int
Custom_init(CustomObject *self, PyObject *args, PyObject *kwds)
{

static char *kwlist[] = {"first", "last", "number", NULL};
PyObject *first = NULL, *last = NULL, *tmp;

if (!PyArg_ParseTupleAndKeywords(args, kwds, "|OOi", kwlist,

(continues on next page)

32 Capitolo 2. Creating extensions without third party tools

Extending and Embedding Python, Release 3.9.23

(continua dalla pagina precedente)

&first, &last,
&self->number))

return -1;

if (first) {
tmp = self->first;
Py_INCREF(first);
self->first = first;
Py_XDECREF(tmp);

}
if (last) {

tmp = self->last;
Py_INCREF(last);
self->last = last;
Py_XDECREF(tmp);

}
return 0;

}

by filling the tp_init slot.

.tp_init = (initproc) Custom_init,

The tp_init slot is exposed in Python as the __init__()method. It is used to initialize an object after it’s created.
Initializers always accept positional and keyword arguments, and they should return either 0 on success or -1 on error.

Unlike the tp_new handler, there is no guarantee that tp_init is called at all (for example, the pickle module
by default doesn’t call __init__() on unpickled instances). It can also be called multiple times. Anyone can call the
__init__() method on our objects. For this reason, we have to be extra careful when assigning the new attribute
values. We might be tempted, for example to assign the first member like this:

if (first) {
Py_XDECREF(self->first);
Py_INCREF(first);
self->first = first;

}

But this would be risky. Our type doesn’t restrict the type of the first member, so it could be any kind of object. It
could have a destructor that causes code to be executed that tries to access the first member; or that destructor could
release the Global interpreter Lock and let arbitrary code run in other threads that accesses and modifies our object.

To be paranoid and protect ourselves against this possibility, we almost always reassign members before decrementing
their reference counts. When don’t we have to do this?

• when we absolutely know that the reference count is greater than 1;

• when we know that deallocation of the object1 will neither release the GIL nor cause any calls back into our type’s
code;

• when decrementing a reference count in a tp_dealloc handler on a type which doesn’t support cyclic garbage
collection2.

We want to expose our instance variables as attributes. There are a number of ways to do that. The simplest way is to
define member definitions:

1 This is true when we know that the object is a basic type, like a string or a float.
2 We relied on this in the tp_dealloc handler in this example, because our type doesn’t support garbage collection.

2.2. Defining Extension Types: Tutorial 33

Extending and Embedding Python, Release 3.9.23

static PyMemberDef Custom_members[] = {
{"first", T_OBJECT_EX, offsetof(CustomObject, first), 0,
"first name"},

{"last", T_OBJECT_EX, offsetof(CustomObject, last), 0,
"last name"},

{"number", T_INT, offsetof(CustomObject, number), 0,
"custom number"},

{NULL} /* Sentinel */
};

and put the definitions in the tp_members slot:

.tp_members = Custom_members,

Each member definition has a member name, type, offset, access flags and documentation string. See theGeneric Attribute
Management section below for details.

A disadvantage of this approach is that it doesn’t provide a way to restrict the types of objects that can be assigned to the
Python attributes. We expect the first and last names to be strings, but any Python objects can be assigned. Further, the
attributes can be deleted, setting the C pointers to NULL. Even though we can make sure the members are initialized to
non-NULL values, the members can be set to NULL if the attributes are deleted.

We define a single method, Custom.name(), that outputs the objects name as the concatenation of the first and last
names.

static PyObject *
Custom_name(CustomObject *self, PyObject *Py_UNUSED(ignored))
{

if (self->first == NULL) {
PyErr_SetString(PyExc_AttributeError, "first");
return NULL;

}
if (self->last == NULL) {

PyErr_SetString(PyExc_AttributeError, "last");
return NULL;

}
return PyUnicode_FromFormat("%S %S", self->first, self->last);

}

The method is implemented as a C function that takes a Custom (or Custom subclass) instance as the first argument.
Methods always take an instance as the first argument. Methods often take positional and keyword arguments as well, but
in this case we don’t take any and don’t need to accept a positional argument tuple or keyword argument dictionary. This
method is equivalent to the Python method:

def name(self):
return "%s %s" % (self.first, self.last)

Note that we have to check for the possibility that our first and last members are NULL. This is because they can
be deleted, in which case they are set to NULL. It would be better to prevent deletion of these attributes and to restrict
the attribute values to be strings. We’ll see how to do that in the next section.

Now that we’ve defined the method, we need to create an array of method definitions:

static PyMethodDef Custom_methods[] = {
{"name", (PyCFunction) Custom_name, METH_NOARGS,
"Return the name, combining the first and last name"

},

(continues on next page)

34 Capitolo 2. Creating extensions without third party tools

Extending and Embedding Python, Release 3.9.23

(continua dalla pagina precedente)

{NULL} /* Sentinel */
};

(note that we used the METH_NOARGS flag to indicate that the method is expecting no arguments other than self)

and assign it to the tp_methods slot:

.tp_methods = Custom_methods,

Finally, we’ll make our type usable as a base class for subclassing. We’ve written our methods carefully so far so that
they don’t make any assumptions about the type of the object being created or used, so all we need to do is to add the
Py_TPFLAGS_BASETYPE to our class flag definition:

.tp_flags = Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE,

We rename PyInit_custom() to PyInit_custom2(), update the module name in the PyModuleDef struct,
and update the full class name in the PyTypeObject struct.

Finally, we update our setup.py file to build the new module:

from distutils.core import setup, Extension
setup(name="custom", version="1.0",

ext_modules=[
Extension("custom", ["custom.c"]),
Extension("custom2", ["custom2.c"]),
])

2.2.3 Providing finer control over data attributes

In this section, we’ll provide finer control over how the first and last attributes are set in the Custom example. In
the previous version of our module, the instance variables first and last could be set to non-string values or even
deleted. We want to make sure that these attributes always contain strings.

#define PY_SSIZE_T_CLEAN
#include <Python.h>
#include "structmember.h"

typedef struct {
PyObject_HEAD
PyObject *first; /* first name */
PyObject *last; /* last name */
int number;

} CustomObject;

static void
Custom_dealloc(CustomObject *self)
{

Py_XDECREF(self->first);
Py_XDECREF(self->last);
Py_TYPE(self)->tp_free((PyObject *) self);

}

static PyObject *
Custom_new(PyTypeObject *type, PyObject *args, PyObject *kwds)
{

(continues on next page)

2.2. Defining Extension Types: Tutorial 35

Extending and Embedding Python, Release 3.9.23

(continua dalla pagina precedente)

CustomObject *self;
self = (CustomObject *) type->tp_alloc(type, 0);
if (self != NULL) {

self->first = PyUnicode_FromString("");
if (self->first == NULL) {

Py_DECREF(self);
return NULL;

}
self->last = PyUnicode_FromString("");
if (self->last == NULL) {

Py_DECREF(self);
return NULL;

}
self->number = 0;

}
return (PyObject *) self;

}

static int
Custom_init(CustomObject *self, PyObject *args, PyObject *kwds)
{

static char *kwlist[] = {"first", "last", "number", NULL};
PyObject *first = NULL, *last = NULL, *tmp;

if (!PyArg_ParseTupleAndKeywords(args, kwds, "|UUi", kwlist,
&first, &last,
&self->number))

return -1;

if (first) {
tmp = self->first;
Py_INCREF(first);
self->first = first;
Py_DECREF(tmp);

}
if (last) {

tmp = self->last;
Py_INCREF(last);
self->last = last;
Py_DECREF(tmp);

}
return 0;

}

static PyMemberDef Custom_members[] = {
{"number", T_INT, offsetof(CustomObject, number), 0,
"custom number"},

{NULL} /* Sentinel */
};

static PyObject *
Custom_getfirst(CustomObject *self, void *closure)
{

Py_INCREF(self->first);
return self->first;

}

(continues on next page)

36 Capitolo 2. Creating extensions without third party tools

Extending and Embedding Python, Release 3.9.23

(continua dalla pagina precedente)

static int
Custom_setfirst(CustomObject *self, PyObject *value, void *closure)
{

PyObject *tmp;
if (value == NULL) {

PyErr_SetString(PyExc_TypeError, "Cannot delete the first attribute");
return -1;

}
if (!PyUnicode_Check(value)) {

PyErr_SetString(PyExc_TypeError,
"The first attribute value must be a string");

return -1;
}
tmp = self->first;
Py_INCREF(value);
self->first = value;
Py_DECREF(tmp);
return 0;

}

static PyObject *
Custom_getlast(CustomObject *self, void *closure)
{

Py_INCREF(self->last);
return self->last;

}

static int
Custom_setlast(CustomObject *self, PyObject *value, void *closure)
{

PyObject *tmp;
if (value == NULL) {

PyErr_SetString(PyExc_TypeError, "Cannot delete the last attribute");
return -1;

}
if (!PyUnicode_Check(value)) {

PyErr_SetString(PyExc_TypeError,
"The last attribute value must be a string");

return -1;
}
tmp = self->last;
Py_INCREF(value);
self->last = value;
Py_DECREF(tmp);
return 0;

}

static PyGetSetDef Custom_getsetters[] = {
{"first", (getter) Custom_getfirst, (setter) Custom_setfirst,
"first name", NULL},

{"last", (getter) Custom_getlast, (setter) Custom_setlast,
"last name", NULL},

{NULL} /* Sentinel */
};

static PyObject *
Custom_name(CustomObject *self, PyObject *Py_UNUSED(ignored))

(continues on next page)

2.2. Defining Extension Types: Tutorial 37

Extending and Embedding Python, Release 3.9.23

(continua dalla pagina precedente)

{
return PyUnicode_FromFormat("%S %S", self->first, self->last);

}

static PyMethodDef Custom_methods[] = {
{"name", (PyCFunction) Custom_name, METH_NOARGS,
"Return the name, combining the first and last name"

},
{NULL} /* Sentinel */

};

static PyTypeObject CustomType = {
PyVarObject_HEAD_INIT(NULL, 0)
.tp_name = "custom3.Custom",
.tp_doc = PyDoc_STR("Custom objects"),
.tp_basicsize = sizeof(CustomObject),
.tp_itemsize = 0,
.tp_flags = Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE,
.tp_new = Custom_new,
.tp_init = (initproc) Custom_init,
.tp_dealloc = (destructor) Custom_dealloc,
.tp_members = Custom_members,
.tp_methods = Custom_methods,
.tp_getset = Custom_getsetters,

};

static PyModuleDef custommodule = {
PyModuleDef_HEAD_INIT,
.m_name = "custom3",
.m_doc = "Example module that creates an extension type.",
.m_size = -1,

};

PyMODINIT_FUNC
PyInit_custom3(void)
{

PyObject *m;
if (PyType_Ready(&CustomType) < 0)

return NULL;

m = PyModule_Create(&custommodule);
if (m == NULL)

return NULL;

Py_INCREF(&CustomType);
if (PyModule_AddObject(m, "Custom", (PyObject *) &CustomType) < 0) {

Py_DECREF(&CustomType);
Py_DECREF(m);
return NULL;

}

return m;
}

To provide greater control, over the first and last attributes, we’ll use custom getter and setter functions. Here are
the functions for getting and setting the first attribute:

38 Capitolo 2. Creating extensions without third party tools

Extending and Embedding Python, Release 3.9.23

static PyObject *
Custom_getfirst(CustomObject *self, void *closure)
{

Py_INCREF(self->first);
return self->first;

}

static int
Custom_setfirst(CustomObject *self, PyObject *value, void *closure)
{

PyObject *tmp;
if (value == NULL) {

PyErr_SetString(PyExc_TypeError, "Cannot delete the first attribute");
return -1;

}
if (!PyUnicode_Check(value)) {

PyErr_SetString(PyExc_TypeError,
"The first attribute value must be a string");

return -1;
}
tmp = self->first;
Py_INCREF(value);
self->first = value;
Py_DECREF(tmp);
return 0;

}

The getter function is passed a Custom object and a «closure», which is a void pointer. In this case, the closure is
ignored. (The closure supports an advanced usage in which definition data is passed to the getter and setter. This could,
for example, be used to allow a single set of getter and setter functions that decide the attribute to get or set based on data
in the closure.)

The setter function is passed the Custom object, the new value, and the closure. The new value may be NULL, in which
case the attribute is being deleted. In our setter, we raise an error if the attribute is deleted or if its new value is not a
string.

We create an array of PyGetSetDef structures:

static PyGetSetDef Custom_getsetters[] = {
{"first", (getter) Custom_getfirst, (setter) Custom_setfirst,
"first name", NULL},

{"last", (getter) Custom_getlast, (setter) Custom_setlast,
"last name", NULL},

{NULL} /* Sentinel */
};

and register it in the tp_getset slot:

.tp_getset = Custom_getsetters,

The last item in a PyGetSetDef structure is the «closure» mentioned above. In this case, we aren’t using a closure, so
we just pass NULL.

We also remove the member definitions for these attributes:

static PyMemberDef Custom_members[] = {
{"number", T_INT, offsetof(CustomObject, number), 0,
"custom number"},

(continues on next page)

2.2. Defining Extension Types: Tutorial 39

Extending and Embedding Python, Release 3.9.23

(continua dalla pagina precedente)

{NULL} /* Sentinel */
};

We also need to update the tp_init handler to only allow strings3 to be passed:

static int
Custom_init(CustomObject *self, PyObject *args, PyObject *kwds)
{

static char *kwlist[] = {"first", "last", "number", NULL};
PyObject *first = NULL, *last = NULL, *tmp;

if (!PyArg_ParseTupleAndKeywords(args, kwds, "|UUi", kwlist,
&first, &last,
&self->number))

return -1;

if (first) {
tmp = self->first;
Py_INCREF(first);
self->first = first;
Py_DECREF(tmp);

}
if (last) {

tmp = self->last;
Py_INCREF(last);
self->last = last;
Py_DECREF(tmp);

}
return 0;

}

With these changes, we can assure that the first and last members are never NULL so we can remove checks for
NULL values in almost all cases. This means that most of the Py_XDECREF() calls can be converted to Py_DECREF()
calls. The only place we can’t change these calls is in the tp_dealloc implementation, where there is the possibility
that the initialization of these members failed in tp_new.

We also rename the module initialization function and module name in the initialization function, as we did before, and
we add an extra definition to the setup.py file.

2.2.4 Supporting cyclic garbage collection

Python has a cyclic garbage collector (GC) that can identify unneeded objects even when their reference counts are not
zero. This can happen when objects are involved in cycles. For example, consider:

>>> l = []
>>> l.append(l)
>>> del l

In this example, we create a list that contains itself. When we delete it, it still has a reference from itself. Its reference
count doesn’t drop to zero. Fortunately, Python’s cyclic garbage collector will eventually figure out that the list is garbage
and free it.

3 We now know that the first and last members are strings, so perhaps we could be less careful about decrementing their reference counts, however,
we accept instances of string subclasses. Even though deallocating normal strings won’t call back into our objects, we can’t guarantee that deallocating
an instance of a string subclass won’t call back into our objects.

40 Capitolo 2. Creating extensions without third party tools

Extending and Embedding Python, Release 3.9.23

In the second version of the Custom example, we allowed any kind of object to be stored in the first or last
attributes4. Besides, in the second and third versions, we allowed subclassing Custom, and subclasses may add arbitrary
attributes. For any of those two reasons, Custom objects can participate in cycles:

>>> import custom3
>>> class Derived(custom3.Custom): pass
...
>>> n = Derived()
>>> n.some_attribute = n

To allow a Custom instance participating in a reference cycle to be properly detected and collected by the cyclic GC,
our Custom type needs to fill two additional slots and to enable a flag that enables these slots:

#define PY_SSIZE_T_CLEAN
#include <Python.h>
#include "structmember.h"

typedef struct {
PyObject_HEAD
PyObject *first; /* first name */
PyObject *last; /* last name */
int number;

} CustomObject;

static int
Custom_traverse(CustomObject *self, visitproc visit, void *arg)
{

Py_VISIT(self->first);
Py_VISIT(self->last);
return 0;

}

static int
Custom_clear(CustomObject *self)
{

Py_CLEAR(self->first);
Py_CLEAR(self->last);
return 0;

}

static void
Custom_dealloc(CustomObject *self)
{

PyObject_GC_UnTrack(self);
Custom_clear(self);
Py_TYPE(self)->tp_free((PyObject *) self);

}

static PyObject *
Custom_new(PyTypeObject *type, PyObject *args, PyObject *kwds)
{

CustomObject *self;
self = (CustomObject *) type->tp_alloc(type, 0);
if (self != NULL) {

self->first = PyUnicode_FromString("");
if (self->first == NULL) {

(continues on next page)

4 Also, even with our attributes restricted to strings instances, the user could pass arbitrary str subclasses and therefore still create reference cycles.

2.2. Defining Extension Types: Tutorial 41

Extending and Embedding Python, Release 3.9.23

(continua dalla pagina precedente)

Py_DECREF(self);
return NULL;

}
self->last = PyUnicode_FromString("");
if (self->last == NULL) {

Py_DECREF(self);
return NULL;

}
self->number = 0;

}
return (PyObject *) self;

}

static int
Custom_init(CustomObject *self, PyObject *args, PyObject *kwds)
{

static char *kwlist[] = {"first", "last", "number", NULL};
PyObject *first = NULL, *last = NULL, *tmp;

if (!PyArg_ParseTupleAndKeywords(args, kwds, "|UUi", kwlist,
&first, &last,
&self->number))

return -1;

if (first) {
tmp = self->first;
Py_INCREF(first);
self->first = first;
Py_DECREF(tmp);

}
if (last) {

tmp = self->last;
Py_INCREF(last);
self->last = last;
Py_DECREF(tmp);

}
return 0;

}

static PyMemberDef Custom_members[] = {
{"number", T_INT, offsetof(CustomObject, number), 0,
"custom number"},

{NULL} /* Sentinel */
};

static PyObject *
Custom_getfirst(CustomObject *self, void *closure)
{

Py_INCREF(self->first);
return self->first;

}

static int
Custom_setfirst(CustomObject *self, PyObject *value, void *closure)
{

if (value == NULL) {
PyErr_SetString(PyExc_TypeError, "Cannot delete the first attribute");

(continues on next page)

42 Capitolo 2. Creating extensions without third party tools

Extending and Embedding Python, Release 3.9.23

(continua dalla pagina precedente)

return -1;
}
if (!PyUnicode_Check(value)) {

PyErr_SetString(PyExc_TypeError,
"The first attribute value must be a string");

return -1;
}
Py_INCREF(value);
Py_CLEAR(self->first);
self->first = value;
return 0;

}

static PyObject *
Custom_getlast(CustomObject *self, void *closure)
{

Py_INCREF(self->last);
return self->last;

}

static int
Custom_setlast(CustomObject *self, PyObject *value, void *closure)
{

if (value == NULL) {
PyErr_SetString(PyExc_TypeError, "Cannot delete the last attribute");
return -1;

}
if (!PyUnicode_Check(value)) {

PyErr_SetString(PyExc_TypeError,
"The last attribute value must be a string");

return -1;
}
Py_INCREF(value);
Py_CLEAR(self->last);
self->last = value;
return 0;

}

static PyGetSetDef Custom_getsetters[] = {
{"first", (getter) Custom_getfirst, (setter) Custom_setfirst,
"first name", NULL},

{"last", (getter) Custom_getlast, (setter) Custom_setlast,
"last name", NULL},

{NULL} /* Sentinel */
};

static PyObject *
Custom_name(CustomObject *self, PyObject *Py_UNUSED(ignored))
{

return PyUnicode_FromFormat("%S %S", self->first, self->last);
}

static PyMethodDef Custom_methods[] = {
{"name", (PyCFunction) Custom_name, METH_NOARGS,
"Return the name, combining the first and last name"

},
{NULL} /* Sentinel */

(continues on next page)

2.2. Defining Extension Types: Tutorial 43

Extending and Embedding Python, Release 3.9.23

(continua dalla pagina precedente)

};

static PyTypeObject CustomType = {
PyVarObject_HEAD_INIT(NULL, 0)
.tp_name = "custom4.Custom",
.tp_doc = PyDoc_STR("Custom objects"),
.tp_basicsize = sizeof(CustomObject),
.tp_itemsize = 0,
.tp_flags = Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE | Py_TPFLAGS_HAVE_GC,
.tp_new = Custom_new,
.tp_init = (initproc) Custom_init,
.tp_dealloc = (destructor) Custom_dealloc,
.tp_traverse = (traverseproc) Custom_traverse,
.tp_clear = (inquiry) Custom_clear,
.tp_members = Custom_members,
.tp_methods = Custom_methods,
.tp_getset = Custom_getsetters,

};

static PyModuleDef custommodule = {
PyModuleDef_HEAD_INIT,
.m_name = "custom4",
.m_doc = "Example module that creates an extension type.",
.m_size = -1,

};

PyMODINIT_FUNC
PyInit_custom4(void)
{

PyObject *m;
if (PyType_Ready(&CustomType) < 0)

return NULL;

m = PyModule_Create(&custommodule);
if (m == NULL)

return NULL;

Py_INCREF(&CustomType);
if (PyModule_AddObject(m, "Custom", (PyObject *) &CustomType) < 0) {

Py_DECREF(&CustomType);
Py_DECREF(m);
return NULL;

}

return m;
}

First, the traversal method lets the cyclic GC know about subobjects that could participate in cycles:

static int
Custom_traverse(CustomObject *self, visitproc visit, void *arg)
{

int vret;
if (self->first) {

vret = visit(self->first, arg);
if (vret != 0)

return vret;
(continues on next page)

44 Capitolo 2. Creating extensions without third party tools

Extending and Embedding Python, Release 3.9.23

(continua dalla pagina precedente)

}
if (self->last) {

vret = visit(self->last, arg);
if (vret != 0)

return vret;
}
return 0;

}

For each subobject that can participate in cycles, we need to call the visit() function, which is passed to the traversal
method. The visit() function takes as arguments the subobject and the extra argument arg passed to the traversal
method. It returns an integer value that must be returned if it is non-zero.

Python provides a Py_VISIT() macro that automates calling visit functions. With Py_VISIT(), we can minimize
the amount of boilerplate in Custom_traverse:

static int
Custom_traverse(CustomObject *self, visitproc visit, void *arg)
{

Py_VISIT(self->first);
Py_VISIT(self->last);
return 0;

}

Nota: Thetp_traverse implementationmust name its arguments exactly visit and arg in order to use Py_VISIT().

Second, we need to provide a method for clearing any subobjects that can participate in cycles:

static int
Custom_clear(CustomObject *self)
{

Py_CLEAR(self->first);
Py_CLEAR(self->last);
return 0;

}

Notice the use of the Py_CLEAR()macro. It is the recommended and safe way to clear data attributes of arbitrary types
while decrementing their reference counts. If you were to call Py_XDECREF() instead on the attribute before setting
it to NULL, there is a possibility that the attribute’s destructor would call back into code that reads the attribute again
(especially if there is a reference cycle).

Nota: You could emulate Py_CLEAR() by writing:

PyObject *tmp;
tmp = self->first;
self->first = NULL;
Py_XDECREF(tmp);

Nevertheless, it is much easier and less error-prone to always use Py_CLEAR() when deleting an attribute. Don’t try to
micro-optimize at the expense of robustness!

The deallocator Custom_dealloc may call arbitrary code when clearing attributes. It means the circular GC can be
triggered inside the function. Since the GC assumes reference count is not zero, we need to untrack the object from the

2.2. Defining Extension Types: Tutorial 45

Extending and Embedding Python, Release 3.9.23

GC by calling PyObject_GC_UnTrack() before clearing members. Here is our reimplemented deallocator using
PyObject_GC_UnTrack() and Custom_clear:

static void
Custom_dealloc(CustomObject *self)
{

PyObject_GC_UnTrack(self);
Custom_clear(self);
Py_TYPE(self)->tp_free((PyObject *) self);

}

Finally, we add the Py_TPFLAGS_HAVE_GC flag to the class flags:

.tp_flags = Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE | Py_TPFLAGS_HAVE_GC,

That’s pretty much it. If we had written custom tp_alloc or tp_free handlers, we’d need to modify them for cyclic
garbage collection. Most extensions will use the versions automatically provided.

2.2.5 Subclassing other types

It is possible to create new extension types that are derived from existing types. It is easiest to inherit from the built in
types, since an extension can easily use the PyTypeObject it needs. It can be difficult to share these PyTypeObject
structures between extension modules.

In this example we will create a SubList type that inherits from the built-in list type. The new type will be completely
compatible with regular lists, but will have an additional increment() method that increases an internal counter:

>>> import sublist
>>> s = sublist.SubList(range(3))
>>> s.extend(s)
>>> print(len(s))
6
>>> print(s.increment())
1
>>> print(s.increment())
2

#define PY_SSIZE_T_CLEAN
#include <Python.h>

typedef struct {
PyListObject list;
int state;

} SubListObject;

static PyObject *
SubList_increment(SubListObject *self, PyObject *unused)
{

self->state++;
return PyLong_FromLong(self->state);

}

static PyMethodDef SubList_methods[] = {
{"increment", (PyCFunction) SubList_increment, METH_NOARGS,
PyDoc_STR("increment state counter")},

{NULL},

(continues on next page)

46 Capitolo 2. Creating extensions without third party tools

Extending and Embedding Python, Release 3.9.23

(continua dalla pagina precedente)

};

static int
SubList_init(SubListObject *self, PyObject *args, PyObject *kwds)
{

if (PyList_Type.tp_init((PyObject *) self, args, kwds) < 0)
return -1;

self->state = 0;
return 0;

}

static PyTypeObject SubListType = {
PyVarObject_HEAD_INIT(NULL, 0)
.tp_name = "sublist.SubList",
.tp_doc = PyDoc_STR("SubList objects"),
.tp_basicsize = sizeof(SubListObject),
.tp_itemsize = 0,
.tp_flags = Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE,
.tp_init = (initproc) SubList_init,
.tp_methods = SubList_methods,

};

static PyModuleDef sublistmodule = {
PyModuleDef_HEAD_INIT,
.m_name = "sublist",
.m_doc = "Example module that creates an extension type.",
.m_size = -1,

};

PyMODINIT_FUNC
PyInit_sublist(void)
{

PyObject *m;
SubListType.tp_base = &PyList_Type;
if (PyType_Ready(&SubListType) < 0)

return NULL;

m = PyModule_Create(&sublistmodule);
if (m == NULL)

return NULL;

Py_INCREF(&SubListType);
if (PyModule_AddObject(m, "SubList", (PyObject *) &SubListType) < 0) {

Py_DECREF(&SubListType);
Py_DECREF(m);
return NULL;

}

return m;
}

As you can see, the source code closely resembles the Custom examples in previous sections. We will break down the
main differences between them.

typedef struct {
PyListObject list;

(continues on next page)

2.2. Defining Extension Types: Tutorial 47

Extending and Embedding Python, Release 3.9.23

(continua dalla pagina precedente)

int state;
} SubListObject;

The primary difference for derived type objects is that the base type’s object structure must be the first value. The base
type will already include the PyObject_HEAD() at the beginning of its structure.

When a Python object is a SubList instance, its PyObject * pointer can be safely cast to both PyListObject
* and SubListObject *:

static int
SubList_init(SubListObject *self, PyObject *args, PyObject *kwds)
{

if (PyList_Type.tp_init((PyObject *) self, args, kwds) < 0)
return -1;

self->state = 0;
return 0;

}

We see above how to call through to the __init__ method of the base type.

This pattern is important when writing a type with custom tp_new and tp_deallocmembers. The tp_new handler
should not actually create the memory for the object with its tp_alloc, but let the base class handle it by calling its
own tp_new.

The PyTypeObject struct supports a tp_base specifying the type’s concrete base class. Due to cross-platform com-
piler issues, you can’t fill that field directly with a reference to PyList_Type; it should be done later in the module
initialization function:

PyMODINIT_FUNC
PyInit_sublist(void)
{

PyObject* m;
SubListType.tp_base = &PyList_Type;
if (PyType_Ready(&SubListType) < 0)

return NULL;

m = PyModule_Create(&sublistmodule);
if (m == NULL)

return NULL;

Py_INCREF(&SubListType);
if (PyModule_AddObject(m, "SubList", (PyObject *) &SubListType) < 0) {

Py_DECREF(&SubListType);
Py_DECREF(m);
return NULL;

}

return m;
}

Before calling PyType_Ready(), the type structure must have the tp_base slot filled in. When we are deriving an
existing type, it is not necessary to fill out the tp_alloc slot with PyType_GenericNew() – the allocation function
from the base type will be inherited.

After that, calling PyType_Ready() and adding the type object to the module is the same as with the basic Custom
examples.

48 Capitolo 2. Creating extensions without third party tools

Extending and Embedding Python, Release 3.9.23

2.3 Defining Extension Types: Assorted Topics

This section aims to give a quick fly-by on the various type methods you can implement and what they do.

Here is the definition of PyTypeObject, with some fields only used in debug builds omitted:

typedef struct _typeobject {
PyObject_VAR_HEAD
const char *tp_name; /* For printing, in format "<module>.<name>" */
Py_ssize_t tp_basicsize, tp_itemsize; /* For allocation */

/* Methods to implement standard operations */

destructor tp_dealloc;
Py_ssize_t tp_vectorcall_offset;
getattrfunc tp_getattr;
setattrfunc tp_setattr;
PyAsyncMethods *tp_as_async; /* formerly known as tp_compare (Python 2)

or tp_reserved (Python 3) */
reprfunc tp_repr;

/* Method suites for standard classes */

PyNumberMethods *tp_as_number;
PySequenceMethods *tp_as_sequence;
PyMappingMethods *tp_as_mapping;

/* More standard operations (here for binary compatibility) */

hashfunc tp_hash;
ternaryfunc tp_call;
reprfunc tp_str;
getattrofunc tp_getattro;
setattrofunc tp_setattro;

/* Functions to access object as input/output buffer */
PyBufferProcs *tp_as_buffer;

/* Flags to define presence of optional/expanded features */
unsigned long tp_flags;

const char *tp_doc; /* Documentation string */

/* call function for all accessible objects */
traverseproc tp_traverse;

/* delete references to contained objects */
inquiry tp_clear;

/* rich comparisons */
richcmpfunc tp_richcompare;

/* weak reference enabler */
Py_ssize_t tp_weaklistoffset;

/* Iterators */
getiterfunc tp_iter;

(continues on next page)

2.3. Defining Extension Types: Assorted Topics 49

Extending and Embedding Python, Release 3.9.23

(continua dalla pagina precedente)

iternextfunc tp_iternext;

/* Attribute descriptor and subclassing stuff */
struct PyMethodDef *tp_methods;
struct PyMemberDef *tp_members;
struct PyGetSetDef *tp_getset;
struct _typeobject *tp_base;
PyObject *tp_dict;
descrgetfunc tp_descr_get;
descrsetfunc tp_descr_set;
Py_ssize_t tp_dictoffset;
initproc tp_init;
allocfunc tp_alloc;
newfunc tp_new;
freefunc tp_free; /* Low-level free-memory routine */
inquiry tp_is_gc; /* For PyObject_IS_GC */
PyObject *tp_bases;
PyObject *tp_mro; /* method resolution order */
PyObject *tp_cache;
PyObject *tp_subclasses;
PyObject *tp_weaklist;
destructor tp_del;

/* Type attribute cache version tag. Added in version 2.6 */
unsigned int tp_version_tag;

destructor tp_finalize;

} PyTypeObject;

Now that’s a lot of methods. Don’t worry too much though – if you have a type you want to define, the chances are very
good that you will only implement a handful of these.

As you probably expect by now, we’re going to go over this and give more information about the various handlers. We
won’t go in the order they are defined in the structure, because there is a lot of historical baggage that impacts the ordering
of the fields. It’s often easiest to find an example that includes the fields you need and then change the values to suit your
new type.

const char *tp_name; /* For printing */

The name of the type – as mentioned in the previous chapter, this will appear in various places, almost entirely for
diagnostic purposes. Try to choose something that will be helpful in such a situation!

Py_ssize_t tp_basicsize, tp_itemsize; /* For allocation */

These fields tell the runtime how much memory to allocate when new objects of this type are created. Python has some
built-in support for variable length structures (think: strings, tuples) which is where the tp_itemsize field comes in.
This will be dealt with later.

const char *tp_doc;

Here you can put a string (or its address) that you want returned when the Python script references obj.__doc__ to
retrieve the doc string.

Now we come to the basic type methods – the ones most extension types will implement.

50 Capitolo 2. Creating extensions without third party tools

Extending and Embedding Python, Release 3.9.23

2.3.1 Finalization and De-allocation

destructor tp_dealloc;

This function is called when the reference count of the instance of your type is reduced to zero and the Python interpreter
wants to reclaim it. If your type has memory to free or other clean-up to perform, you can put it here. The object itself
needs to be freed here as well. Here is an example of this function:

static void
newdatatype_dealloc(newdatatypeobject *obj)
{

free(obj->obj_UnderlyingDatatypePtr);
Py_TYPE(obj)->tp_free((PyObject *)obj);

}

If your type supports garbage collection, the destructor should call PyObject_GC_UnTrack() before clearing any
member fields:

static void
newdatatype_dealloc(newdatatypeobject *obj)
{

PyObject_GC_UnTrack(obj);
Py_CLEAR(obj->other_obj);
...
Py_TYPE(obj)->tp_free((PyObject *)obj);

}

One important requirement of the deallocator function is that it leaves any pending exceptions alone. This is important
since deallocators are frequently called as the interpreter unwinds the Python stack; when the stack is unwound due to
an exception (rather than normal returns), nothing is done to protect the deallocators from seeing that an exception has
already been set. Any actions which a deallocator performs which may cause additional Python code to be executed may
detect that an exception has been set. This can lead to misleading errors from the interpreter. The proper way to protect
against this is to save a pending exception before performing the unsafe action, and restoring it when done. This can be
done using the PyErr_Fetch() and PyErr_Restore() functions:

static void
my_dealloc(PyObject *obj)
{

MyObject *self = (MyObject *) obj;
PyObject *cbresult;

if (self->my_callback != NULL) {
PyObject *err_type, *err_value, *err_traceback;

/* This saves the current exception state */
PyErr_Fetch(&err_type, &err_value, &err_traceback);

cbresult = PyObject_CallNoArgs(self->my_callback);
if (cbresult == NULL)

PyErr_WriteUnraisable(self->my_callback);
else

Py_DECREF(cbresult);

/* This restores the saved exception state */
PyErr_Restore(err_type, err_value, err_traceback);

Py_DECREF(self->my_callback);
(continues on next page)

2.3. Defining Extension Types: Assorted Topics 51

Extending and Embedding Python, Release 3.9.23

(continua dalla pagina precedente)

}
Py_TYPE(obj)->tp_free((PyObject*)self);

}

Nota: There are limitations to what you can safely do in a deallocator function. First, if your type supports garbage
collection (using tp_traverse and/or tp_clear), some of the object’s members can have been cleared or finalized
by the time tp_dealloc is called. Second, in tp_dealloc, your object is in an unstable state: its reference count
is equal to zero. Any call to a non-trivial object or API (as in the example above) might end up calling tp_dealloc
again, causing a double free and a crash.

Starting with Python 3.4, it is recommended not to put any complex finalization code in tp_dealloc, and instead use
the new tp_finalize type method.

Vedi anche:

PEP 442 explains the new finalization scheme.

2.3.2 Object Presentation

In Python, there are two ways to generate a textual representation of an object: the repr() function, and the str()
function. (The print() function just calls str().) These handlers are both optional.

reprfunc tp_repr;
reprfunc tp_str;

The tp_repr handler should return a string object containing a representation of the instance for which it is called.
Here is a simple example:

static PyObject *
newdatatype_repr(newdatatypeobject * obj)
{

return PyUnicode_FromFormat("Repr-ified_newdatatype{{size:%d}}",
obj->obj_UnderlyingDatatypePtr->size);

}

If no tp_repr handler is specified, the interpreter will supply a representation that uses the type’s tp_name and a
uniquely-identifying value for the object.

The tp_str handler is to str() what the tp_repr handler described above is to repr(); that is, it is called when
Python code calls str() on an instance of your object. Its implementation is very similar to the tp_repr function,
but the resulting string is intended for human consumption. If tp_str is not specified, the tp_repr handler is used
instead.

Here is a simple example:

static PyObject *
newdatatype_str(newdatatypeobject * obj)
{

return PyUnicode_FromFormat("Stringified_newdatatype{{size:%d}}",
obj->obj_UnderlyingDatatypePtr->size);

}

52 Capitolo 2. Creating extensions without third party tools

https://www.python.org/dev/peps/pep-0442

Extending and Embedding Python, Release 3.9.23

2.3.3 Attribute Management

For every object which can support attributes, the corresponding type must provide the functions that control how the
attributes are resolved. There needs to be a function which can retrieve attributes (if any are defined), and another to set
attributes (if setting attributes is allowed). Removing an attribute is a special case, for which the new value passed to the
handler is NULL.

Python supports two pairs of attribute handlers; a type that supports attributes only needs to implement the functions for
one pair. The difference is that one pair takes the name of the attribute as achar*, while the other accepts aPyObject*.
Each type can use whichever pair makes more sense for the implementation’s convenience.

getattrfunc tp_getattr; /* char * version */
setattrfunc tp_setattr;
/* ... */
getattrofunc tp_getattro; /* PyObject * version */
setattrofunc tp_setattro;

If accessing attributes of an object is always a simple operation (this will be explained shortly), there are generic imple-
mentations which can be used to provide the PyObject* version of the attribute management functions. The actual
need for type-specific attribute handlers almost completely disappeared starting with Python 2.2, though there are many
examples which have not been updated to use some of the new generic mechanism that is available.

Generic Attribute Management

Most extension types only use simple attributes. So, whatmakes the attributes simple? There are only a couple of conditions
that must be met:

1. The name of the attributes must be known when PyType_Ready() is called.

2. No special processing is needed to record that an attribute was looked up or set, nor do actions need to be taken
based on the value.

Note that this list does not place any restrictions on the values of the attributes, when the values are computed, or how
relevant data is stored.

When PyType_Ready() is called, it uses three tables referenced by the type object to create descriptors which are
placed in the dictionary of the type object. Each descriptor controls access to one attribute of the instance object. Each
of the tables is optional; if all three are NULL, instances of the type will only have attributes that are inherited from their
base type, and should leave the tp_getattro and tp_setattro fields NULL as well, allowing the base type to
handle attributes.

The tables are declared as three fields of the type object:

struct PyMethodDef *tp_methods;
struct PyMemberDef *tp_members;
struct PyGetSetDef *tp_getset;

If tp_methods is not NULL, it must refer to an array of PyMethodDef structures. Each entry in the table is an
instance of this structure:

typedef struct PyMethodDef {
const char *ml_name; /* method name */
PyCFunction ml_meth; /* implementation function */
int ml_flags; /* flags */
const char *ml_doc; /* docstring */

} PyMethodDef;

2.3. Defining Extension Types: Assorted Topics 53

Extending and Embedding Python, Release 3.9.23

One entry should be defined for each method provided by the type; no entries are needed for methods inherited from a
base type. One additional entry is needed at the end; it is a sentinel that marks the end of the array. The ml_name field
of the sentinel must be NULL.

The second table is used to define attributes which map directly to data stored in the instance. A variety of primitive C
types are supported, and access may be read-only or read-write. The structures in the table are defined as:

typedef struct PyMemberDef {
const char *name;
int type;
int offset;
int flags;
const char *doc;

} PyMemberDef;

For each entry in the table, a descriptor will be constructed and added to the type which will be able to extract a value
from the instance structure. The type field should contain one of the type codes defined in the structmember.h
header; the value will be used to determine how to convert Python values to and from C values. The flags field is used
to store flags which control how the attribute can be accessed.

The following flag constants are defined in structmember.h; they may be combined using bitwise-OR.

Constant Meaning
READONLY Never writable.
READ_RESTRICTED Not readable in restricted mode.
WRITE_RESTRICTED Not writable in restricted mode.
RESTRICTED Not readable or writable in restricted mode.

An interesting advantage of using the tp_members table to build descriptors that are used at runtime is that any attribute
defined this way can have an associated doc string simply by providing the text in the table. An application can use the
introspection API to retrieve the descriptor from the class object, and get the doc string using its __doc__ attribute.

As with the tp_methods table, a sentinel entry with a name value of NULL is required.

Type-specific Attribute Management

For simplicity, only the char* version will be demonstrated here; the type of the name parameter is the only difference
between the char* and PyObject* flavors of the interface. This example effectively does the same thing as the generic
example above, but does not use the generic support added in Python 2.2. It explains how the handler functions are called,
so that if you do need to extend their functionality, you’ll understand what needs to be done.

The tp_getattr handler is called when the object requires an attribute look-up. It is called in the same situations
where the __getattr__() method of a class would be called.

Here is an example:

static PyObject *
newdatatype_getattr(newdatatypeobject *obj, char *name)
{

if (strcmp(name, "data") == 0)
{

return PyLong_FromLong(obj->data);
}

PyErr_Format(PyExc_AttributeError,
"'%.50s' object has no attribute '%.400s'",

(continues on next page)

54 Capitolo 2. Creating extensions without third party tools

Extending and Embedding Python, Release 3.9.23

(continua dalla pagina precedente)

tp->tp_name, name);
return NULL;

}

The tp_setattr handler is called when the __setattr__() or __delattr__() method of a class instance
would be called. When an attribute should be deleted, the third parameter will be NULL. Here is an example that simply
raises an exception; if this were really all you wanted, the tp_setattr handler should be set to NULL.

static int
newdatatype_setattr(newdatatypeobject *obj, char *name, PyObject *v)
{

PyErr_Format(PyExc_RuntimeError, "Read-only attribute: %s", name);
return -1;

}

2.3.4 Object Comparison

richcmpfunc tp_richcompare;

The tp_richcompare handler is called when comparisons are needed. It is analogous to the rich comparison methods,
like __lt__(), and also called by PyObject_RichCompare() and PyObject_RichCompareBool().

This function is called with two Python objects and the operator as arguments, where the operator is one of Py_EQ,
Py_NE, Py_LE, Py_GE, Py_LT or Py_GT. It should compare the two objects with respect to the specified operator and
return Py_True or Py_False if the comparison is successful, Py_NotImplemented to indicate that comparison
is not implemented and the other object’s comparison method should be tried, or NULL if an exception was set.

Here is a sample implementation, for a datatype that is considered equal if the size of an internal pointer is equal:

static PyObject *
newdatatype_richcmp(PyObject *obj1, PyObject *obj2, int op)
{

PyObject *result;
int c, size1, size2;

/* code to make sure that both arguments are of type
newdatatype omitted */

size1 = obj1->obj_UnderlyingDatatypePtr->size;
size2 = obj2->obj_UnderlyingDatatypePtr->size;

switch (op) {
case Py_LT: c = size1 < size2; break;
case Py_LE: c = size1 <= size2; break;
case Py_EQ: c = size1 == size2; break;
case Py_NE: c = size1 != size2; break;
case Py_GT: c = size1 > size2; break;
case Py_GE: c = size1 >= size2; break;
}
result = c ? Py_True : Py_False;
Py_INCREF(result);
return result;

}

2.3. Defining Extension Types: Assorted Topics 55

Extending and Embedding Python, Release 3.9.23

2.3.5 Abstract Protocol Support

Python supports a variety of abstract “protocols;” the specific interfaces provided to use these interfaces are documented
in abstract.

A number of these abstract interfaces were defined early in the development of the Python implementation. In particular,
the number, mapping, and sequence protocols have been part of Python since the beginning. Other protocols have been
added over time. For protocols which depend on several handler routines from the type implementation, the older protocols
have been defined as optional blocks of handlers referenced by the type object. For newer protocols there are additional
slots in the main type object, with a flag bit being set to indicate that the slots are present and should be checked by the
interpreter. (The flag bit does not indicate that the slot values are non-NULL. The flag may be set to indicate the presence
of a slot, but a slot may still be unfilled.)

PyNumberMethods *tp_as_number;
PySequenceMethods *tp_as_sequence;
PyMappingMethods *tp_as_mapping;

If you wish your object to be able to act like a number, a sequence, or a mapping object, then you place the address of
a structure that implements the C type PyNumberMethods, PySequenceMethods, or PyMappingMethods,
respectively. It is up to you to fill in this structure with appropriate values. You can find examples of the use of each of
these in the Objects directory of the Python source distribution.

hashfunc tp_hash;

This function, if you choose to provide it, should return a hash number for an instance of your data type. Here is a simple
example:

static Py_hash_t
newdatatype_hash(newdatatypeobject *obj)
{

Py_hash_t result;
result = obj->some_size + 32767 * obj->some_number;
if (result == -1)

result = -2;
return result;

}

Py_hash_t is a signed integer type with a platform-varying width. Returning -1 from tp_hash indicates an error,
which is why you should be careful to avoid returning it when hash computation is successful, as seen above.

ternaryfunc tp_call;

This function is called when an instance of your data type is «called», for example, if obj1 is an instance of your data
type and the Python script contains obj1('hello'), the tp_call handler is invoked.

This function takes three arguments:

1. self is the instance of the data type which is the subject of the call. If the call is obj1('hello'), then self is
obj1.

2. args is a tuple containing the arguments to the call. You can use PyArg_ParseTuple() to extract the
arguments.

3. kwds is a dictionary of keyword arguments that were passed. If this is non-NULL and you support keyword ar-
guments, use PyArg_ParseTupleAndKeywords() to extract the arguments. If you do not want to support
keyword arguments and this is non-NULL, raise a TypeError with a message saying that keyword arguments
are not supported.

Here is a toy tp_call implementation:

56 Capitolo 2. Creating extensions without third party tools

Extending and Embedding Python, Release 3.9.23

static PyObject *
newdatatype_call(newdatatypeobject *self, PyObject *args, PyObject *kwds)
{

PyObject *result;
const char *arg1;
const char *arg2;
const char *arg3;

if (!PyArg_ParseTuple(args, "sss:call", &arg1, &arg2, &arg3)) {
return NULL;

}
result = PyUnicode_FromFormat(

"Returning -- value: [%d] arg1: [%s] arg2: [%s] arg3: [%s]\n",
obj->obj_UnderlyingDatatypePtr->size,
arg1, arg2, arg3);

return result;
}

/* Iterators */
getiterfunc tp_iter;
iternextfunc tp_iternext;

These functions provide support for the iterator protocol. Both handlers take exactly one parameter, the instance for
which they are being called, and return a new reference. In the case of an error, they should set an exception and return
NULL. tp_iter corresponds to the Python __iter__() method, while tp_iternext corresponds to the Python
__next__() method.

Any iterable object must implement the tp_iter handler, which must return an iterator object. Here the same guidelines
apply as for Python classes:

• For collections (such as lists and tuples) which can support multiple independent iterators, a new iterator should be
created and returned by each call to tp_iter.

• Objects which can only be iterated over once (usually due to side effects of iteration, such as file objects) can
implement tp_iter by returning a new reference to themselves – and should also therefore implement the
tp_iternext handler.

Any iterator object should implement both tp_iter and tp_iternext. An iterator’s tp_iter handler should
return a new reference to the iterator. Its tp_iternext handler should return a new reference to the next object in
the iteration, if there is one. If the iteration has reached the end, tp_iternext may return NULL without setting an
exception, or it may set StopIteration in addition to returning NULL; avoiding the exception can yield slightly better
performance. If an actual error occurs, tp_iternext should always set an exception and return NULL.

2.3.6 Weak Reference Support

One of the goals of Python’s weak reference implementation is to allow any type to participate in the weak reference
mechanism without incurring the overhead on performance-critical objects (such as numbers).

Vedi anche:

Documentation for the weakref module.

For an object to be weakly referencable, the extension type must do two things:

1. Include a PyObject* field in the C object structure dedicated to the weak reference mechanism. The object’s
constructor should leave it NULL (which is automatic when using the default tp_alloc).

2.3. Defining Extension Types: Assorted Topics 57

Extending and Embedding Python, Release 3.9.23

2. Set the tp_weaklistoffset type member to the offset of the aforementioned field in the C object structure,
so that the interpreter knows how to access and modify that field.

Concretely, here is how a trivial object structure would be augmented with the required field:

typedef struct {
PyObject_HEAD
PyObject *weakreflist; /* List of weak references */

} TrivialObject;

And the corresponding member in the statically-declared type object:

static PyTypeObject TrivialType = {
PyVarObject_HEAD_INIT(NULL, 0)
/* ... other members omitted for brevity ... */
.tp_weaklistoffset = offsetof(TrivialObject, weakreflist),

};

The only further addition is that tp_dealloc needs to clear any weak references (by calling
PyObject_ClearWeakRefs()) if the field is non-NULL:

static void
Trivial_dealloc(TrivialObject *self)
{

/* Clear weakrefs first before calling any destructors */
if (self->weakreflist != NULL)

PyObject_ClearWeakRefs((PyObject *) self);
/* ... remainder of destruction code omitted for brevity ... */
Py_TYPE(self)->tp_free((PyObject *) self);

}

2.3.7 More Suggestions

In order to learn how to implement any specific method for your new data type, get the CPython source code.
Go to the Objects directory, then search the C source files for tp_ plus the function you want (for example,
tp_richcompare). You will find examples of the function you want to implement.

When you need to verify that an object is a concrete instance of the type you are implementing, use the
PyObject_TypeCheck() function. A sample of its use might be something like the following:

if (!PyObject_TypeCheck(some_object, &MyType)) {
PyErr_SetString(PyExc_TypeError, "arg #1 not a mything");
return NULL;

}

Vedi anche:

Download CPython source releases. https://www.python.org/downloads/source/

The CPython project on GitHub, where the CPython source code is developed. https://github.com/python/
cpython

58 Capitolo 2. Creating extensions without third party tools

https://www.python.org/downloads/source/
https://github.com/python/cpython
https://github.com/python/cpython

Extending and Embedding Python, Release 3.9.23

2.4 Building C and C++ Extensions

AC extension for CPython is a shared library (e.g. a.so file on Linux,.pyd onWindows), which exports an initialization
function.

To be importable, the shared library must be available on PYTHONPATH, and must be named after the module name,
with an appropriate extension. When using distutils, the correct filename is generated automatically.

The initialization function has the signature:

PyObject* PyInit_modulename(void)

It returns either a fully-initialized module, or a PyModuleDef instance. See initializing-modules for details.

For modules with ASCII-only names, the function must be named PyInit_<modulename>, with <modulename>
replaced by the name of the module. When using multi-phase-initialization, non-ASCII module names are allowed. In this
case, the initialization function name is PyInitU_<modulename>, with <modulename> encoded using Python’s
punycode encoding with hyphens replaced by underscores. In Python:

def initfunc_name(name):
try:

suffix = b'_' + name.encode('ascii')
except UnicodeEncodeError:

suffix = b'U_' + name.encode('punycode').replace(b'-', b'_')
return b'PyInit' + suffix

It is possible to export multiple modules from a single shared library by definingmultiple initialization functions. However,
importing them requires using symbolic links or a custom importer, because by default only the function corresponding
to the filename is found. See the «Multiple modules in one library» section in PEP 489 for details.

2.4.1 Building C and C++ Extensions with distutils

Extension modules can be built using distutils, which is included in Python. Since distutils also supports creation of binary
packages, users don’t necessarily need a compiler and distutils to install the extension.

A distutils package contains a driver script, setup.py. This is a plain Python file, which, in the most simple case, could
look like this:

from distutils.core import setup, Extension

module1 = Extension('demo',
sources = ['demo.c'])

setup (name = 'PackageName',
version = '1.0',
description = 'This is a demo package',
ext_modules = [module1])

With this setup.py, and a file demo.c, running

python setup.py build

will compile demo.c, and produce an extension module named demo in the build directory. Depending on the system,
the module file will end up in a subdirectory build/lib.system, and may have a name like demo.so or demo.
pyd.

In the setup.py, all execution is performed by calling the setup function. This takes a variable number of keyword
arguments, of which the example above uses only a subset. Specifically, the example specifies meta-information to build

2.4. Building C and C++ Extensions 59

https://www.python.org/dev/peps/pep-0489

Extending and Embedding Python, Release 3.9.23

packages, and it specifies the contents of the package. Normally, a package will contain additional modules, like Python
source modules, documentation, subpackages, etc. Please refer to the distutils documentation in distutils-index to learn
more about the features of distutils; this section explains building extension modules only.

It is common to pre-compute arguments to setup(), to better structure the driver script. In the example above, the
ext_modules argument to setup() is a list of extension modules, each of which is an instance of the Extension.
In the example, the instance defines an extension named demo which is build by compiling a single source file, demo.c.

In many cases, building an extension is more complex, since additional preprocessor defines and libraries may be needed.
This is demonstrated in the example below.

from distutils.core import setup, Extension

module1 = Extension('demo',
define_macros = [('MAJOR_VERSION', '1'),

('MINOR_VERSION', '0')],
include_dirs = ['/usr/local/include'],
libraries = ['tcl83'],
library_dirs = ['/usr/local/lib'],
sources = ['demo.c'])

setup (name = 'PackageName',
version = '1.0',
description = 'This is a demo package',
author = 'Martin v. Loewis',
author_email = 'martin@v.loewis.de',
url = 'https://docs.python.org/extending/building',
long_description = '''

This is really just a demo package.
''',

ext_modules = [module1])

In this example, setup() is called with additional meta-information, which is recommended when distribution packages
have to be built. For the extension itself, it specifies preprocessor defines, include directories, library directories, and
libraries. Depending on the compiler, distutils passes this information in different ways to the compiler. For example, on
Unix, this may result in the compilation commands

gcc -DNDEBUG -g -O3 -Wall -Wstrict-prototypes -fPIC -DMAJOR_VERSION=1 -DMINOR_
↪→VERSION=0 -I/usr/local/include -I/usr/local/include/python2.2 -c demo.c -o build/
↪→temp.linux-i686-2.2/demo.o

gcc -shared build/temp.linux-i686-2.2/demo.o -L/usr/local/lib -ltcl83 -o build/lib.
↪→linux-i686-2.2/demo.so

These lines are for demonstration purposes only; distutils users should trust that distutils gets the invocations right.

2.4.2 Distributing your extension modules

When an extension has been successfully built, there are three ways to use it.

End-users will typically want to install the module, they do so by running

python setup.py install

Module maintainers should produce source packages; to do so, they run

60 Capitolo 2. Creating extensions without third party tools

Extending and Embedding Python, Release 3.9.23

python setup.py sdist

In some cases, additional files need to be included in a source distribution; this is done through a MANIFEST.in file;
see manifest for details.

If the source distribution has been built successfully, maintainers can also create binary distributions. Depending on the
platform, one of the following commands can be used to do so.

python setup.py bdist_wininst
python setup.py bdist_rpm
python setup.py bdist_dumb

2.5 Building C and C++ Extensions on Windows

This chapter briefly explains how to create a Windows extension module for Python using Microsoft Visual C++, and
follows with more detailed background information on how it works. The explanatory material is useful for both the
Windows programmer learning to build Python extensions and the Unix programmer interested in producing software
which can be successfully built on both Unix and Windows.

Module authors are encouraged to use the distutils approach for building extension modules, instead of the one described
in this section. You will still need the C compiler that was used to build Python; typically Microsoft Visual C++.

Nota: This chapter mentions a number of filenames that include an encoded Python version number. These filenames
are represented with the version number shown as XY; in practice, 'X' will be the major version number and 'Y' will
be the minor version number of the Python release you’re working with. For example, if you are using Python 2.2.1, XY
will actually be 22.

2.5.1 A Cookbook Approach

There are two approaches to building extension modules on Windows, just as there are on Unix: use the distutils
package to control the build process, or do things manually. The distutils approach works well for most extensions; docu-
mentation on using distutils to build and package extension modules is available in distutils-index. If you find you
really need to do things manually, it may be instructive to study the project file for the winsound standard library module.

2.5.2 Differences Between Unix and Windows

Unix and Windows use completely different paradigms for run-time loading of code. Before you try to build a module
that can be dynamically loaded, be aware of how your system works.

In Unix, a shared object (.so) file contains code to be used by the program, and also the names of functions and data
that it expects to find in the program. When the file is joined to the program, all references to those functions and data
in the file’s code are changed to point to the actual locations in the program where the functions and data are placed in
memory. This is basically a link operation.

In Windows, a dynamic-link library (.dll) file has no dangling references. Instead, an access to functions or data goes
through a lookup table. So the DLL code does not have to be fixed up at runtime to refer to the program’s memory; instead,
the code already uses the DLL’s lookup table, and the lookup table is modified at runtime to point to the functions and
data.

2.5. Building C and C++ Extensions on Windows 61

https://github.com/python/cpython/tree/3.9/PCbuild/winsound.vcxproj

Extending and Embedding Python, Release 3.9.23

In Unix, there is only one type of library file (.a) which contains code from several object files (.o). During the link
step to create a shared object file (.so), the linker may find that it doesn’t know where an identifier is defined. The linker
will look for it in the object files in the libraries; if it finds it, it will include all the code from that object file.

In Windows, there are two types of library, a static library and an import library (both called .lib). A static library is
like a Unix .a file; it contains code to be included as necessary. An import library is basically used only to reassure the
linker that a certain identifier is legal, and will be present in the program when the DLL is loaded. So the linker uses the
information from the import library to build the lookup table for using identifiers that are not included in the DLL. When
an application or a DLL is linked, an import library may be generated, which will need to be used for all future DLLs
that depend on the symbols in the application or DLL.

Suppose you are building two dynamic-load modules, B and C, which should share another block of code A. On Unix,
you would not pass A.a to the linker for B.so and C.so; that would cause it to be included twice, so that B and C would
each have their own copy. In Windows, building A.dll will also build A.lib. You do pass A.lib to the linker for B
and C. A.lib does not contain code; it just contains information which will be used at runtime to access A’s code.

InWindows, using an import library is sort of like using import spam; it gives you access to spam’s names, but does not
create a separate copy. On Unix, linking with a library is more like from spam import *; it does create a separate
copy.

2.5.3 Using DLLs in Practice

Windows Python is built in Microsoft Visual C++; using other compilers may or may not work. The rest of this section
is MSVC++ specific.

When creating DLLs inWindows, you must pass pythonXY.lib to the linker. To build two DLLs, spam and ni (which
uses C functions found in spam), you could use these commands:

cl /LD /I/python/include spam.c ../libs/pythonXY.lib
cl /LD /I/python/include ni.c spam.lib ../libs/pythonXY.lib

The first command created three files: spam.obj, spam.dll and spam.lib. Spam.dll does not contain any
Python functions (such as PyArg_ParseTuple()), but it does know how to find the Python code thanks to
pythonXY.lib.

The second command created ni.dll (and .obj and .lib), which knows how to find the necessary functions from
spam, and also from the Python executable.

Not every identifier is exported to the lookup table. If you want any other modules (including Python) to be able
to see your identifiers, you have to say _declspec(dllexport), as in void _declspec(dllexport)
initspam(void) or PyObject _declspec(dllexport) *NiGetSpamData(void).

Developer Studio will throw in a lot of import libraries that you do not really need, adding about 100K to your execu-
table. To get rid of them, use the Project Settings dialog, Link tab, to specify ignore default libraries. Add the correct
msvcrtxx.lib to the list of libraries.

62 Capitolo 2. Creating extensions without third party tools

CAPITOLO3

Embedding the CPython runtime in a larger application

Sometimes, rather than creating an extension that runs inside the Python interpreter as the main application, it is desirable
to instead embed the CPython runtime inside a larger application. This section covers some of the details involved in doing
that successfully.

3.1 Embedding Python in Another Application

The previous chapters discussed how to extend Python, that is, how to extend the functionality of Python by attaching a
library of C functions to it. It is also possible to do it the other way around: enrich your C/C++ application by embedding
Python in it. Embedding provides your application with the ability to implement some of the functionality of your appli-
cation in Python rather than C or C++. This can be used for many purposes; one example would be to allow users to tailor
the application to their needs by writing some scripts in Python. You can also use it yourself if some of the functionality
can be written in Python more easily.

Embedding Python is similar to extending it, but not quite. The difference is that when you extend Python, the main
program of the application is still the Python interpreter, while if you embed Python, the main program may have nothing
to do with Python — instead, some parts of the application occasionally call the Python interpreter to run some Python
code.

So if you are embedding Python, you are providing your own main program. One of the things this main program has to
do is initialize the Python interpreter. At the very least, you have to call the function Py_Initialize(). There are
optional calls to pass command line arguments to Python. Then later you can call the interpreter from any part of the
application.

There are several different ways to call the interpreter: you can pass a string containing Python statements to
PyRun_SimpleString(), or you can pass a stdio file pointer and a file name (for identification in error messa-
ges only) to PyRun_SimpleFile(). You can also call the lower-level operations described in the previous chapters
to construct and use Python objects.

Vedi anche:

c-api-index The details of Python’s C interface are given in this manual. A great deal of necessary information can be
found here.

63

Extending and Embedding Python, Release 3.9.23

3.1.1 Very High Level Embedding

The simplest form of embedding Python is the use of the very high level interface. This interface is intended to execute
a Python script without needing to interact with the application directly. This can for example be used to perform some
operation on a file.

#define PY_SSIZE_T_CLEAN
#include <Python.h>

int
main(int argc, char *argv[])
{

wchar_t *program = Py_DecodeLocale(argv[0], NULL);
if (program == NULL) {

fprintf(stderr, "Fatal error: cannot decode argv[0]\n");
exit(1);

}
Py_SetProgramName(program); /* optional but recommended */
Py_Initialize();
PyRun_SimpleString("from time import time,ctime\n"

"print('Today is', ctime(time()))\n");
if (Py_FinalizeEx() < 0) {

exit(120);
}
PyMem_RawFree(program);
return 0;

}

The Py_SetProgramName() function should be called before Py_Initialize() to inform the interpreter about
paths to Python run-time libraries. Next, the Python interpreter is initialized with Py_Initialize(), followed by the
execution of a hard-coded Python script that prints the date and time. Afterwards, the Py_FinalizeEx() call shuts
the interpreter down, followed by the end of the program. In a real program, you may want to get the Python script from
another source, perhaps a text-editor routine, a file, or a database. Getting the Python code from a file can better be done
by using the PyRun_SimpleFile() function, which saves you the trouble of allocating memory space and loading
the file contents.

3.1.2 Beyond Very High Level Embedding: An overview

The high level interface gives you the ability to execute arbitrary pieces of Python code from your application, but ex-
changing data values is quite cumbersome to say the least. If you want that, you should use lower level calls. At the cost
of having to write more C code, you can achieve almost anything.

It should be noted that extending Python and embedding Python is quite the same activity, despite the different intent.
Most topics discussed in the previous chapters are still valid. To show this, consider what the extension code from Python
to C really does:

1. Convert data values from Python to C,

2. Perform a function call to a C routine using the converted values, and

3. Convert the data values from the call from C to Python.

When embedding Python, the interface code does:

1. Convert data values from C to Python,

2. Perform a function call to a Python interface routine using the converted values, and

3. Convert the data values from the call from Python to C.

64 Capitolo 3. Embedding the CPython runtime in a larger application

Extending and Embedding Python, Release 3.9.23

As you can see, the data conversion steps are simply swapped to accommodate the different direction of the cross-language
transfer. The only difference is the routine that you call between both data conversions. When extending, you call a C
routine, when embedding, you call a Python routine.

This chapter will not discuss how to convert data from Python to C and vice versa. Also, proper use of references and
dealing with errors is assumed to be understood. Since these aspects do not differ from extending the interpreter, you can
refer to earlier chapters for the required information.

3.1.3 Pure Embedding

The first program aims to execute a function in a Python script. Like in the section about the very high level interface,
the Python interpreter does not directly interact with the application (but that will change in the next section).

The code to run a function defined in a Python script is:

#define PY_SSIZE_T_CLEAN
#include <Python.h>

int
main(int argc, char *argv[])
{

PyObject *pName, *pModule, *pFunc;
PyObject *pArgs, *pValue;
int i;

if (argc < 3) {
fprintf(stderr,"Usage: call pythonfile funcname [args]\n");
return 1;

}

Py_Initialize();
pName = PyUnicode_DecodeFSDefault(argv[1]);
/* Error checking of pName left out */

pModule = PyImport_Import(pName);
Py_DECREF(pName);

if (pModule != NULL) {
pFunc = PyObject_GetAttrString(pModule, argv[2]);
/* pFunc is a new reference */

if (pFunc && PyCallable_Check(pFunc)) {
pArgs = PyTuple_New(argc - 3);
for (i = 0; i < argc - 3; ++i) {

pValue = PyLong_FromLong(atoi(argv[i + 3]));
if (!pValue) {

Py_DECREF(pArgs);
Py_DECREF(pModule);
fprintf(stderr, "Cannot convert argument\n");
return 1;

}
/* pValue reference stolen here: */
PyTuple_SetItem(pArgs, i, pValue);

}
pValue = PyObject_CallObject(pFunc, pArgs);
Py_DECREF(pArgs);
if (pValue != NULL) {

(continues on next page)

3.1. Embedding Python in Another Application 65

Extending and Embedding Python, Release 3.9.23

(continua dalla pagina precedente)

printf("Result of call: %ld\n", PyLong_AsLong(pValue));
Py_DECREF(pValue);

}
else {

Py_DECREF(pFunc);
Py_DECREF(pModule);
PyErr_Print();
fprintf(stderr,"Call failed\n");
return 1;

}
}
else {

if (PyErr_Occurred())
PyErr_Print();

fprintf(stderr, "Cannot find function \"%s\"\n", argv[2]);
}
Py_XDECREF(pFunc);
Py_DECREF(pModule);

}
else {

PyErr_Print();
fprintf(stderr, "Failed to load \"%s\"\n", argv[1]);
return 1;

}
if (Py_FinalizeEx() < 0) {

return 120;
}
return 0;

}

This code loads a Python script using argv[1], and calls the function named in argv[2]. Its integer arguments are
the other values of the argv array. If you compile and link this program (let’s call the finished executable call), and
use it to execute a Python script, such as:

def multiply(a,b):
print("Will compute", a, "times", b)
c = 0
for i in range(0, a):

c = c + b
return c

then the result should be:

$ call multiply multiply 3 2
Will compute 3 times 2
Result of call: 6

Although the program is quite large for its functionality, most of the code is for data conversion between Python and C,
and for error reporting. The interesting part with respect to embedding Python starts with

Py_Initialize();
pName = PyUnicode_DecodeFSDefault(argv[1]);
/* Error checking of pName left out */
pModule = PyImport_Import(pName);

After initializing the interpreter, the script is loaded using PyImport_Import(). This routine needs a Python string
as its argument, which is constructed using the PyUnicode_FromString() data conversion routine.

66 Capitolo 3. Embedding the CPython runtime in a larger application

Extending and Embedding Python, Release 3.9.23

pFunc = PyObject_GetAttrString(pModule, argv[2]);
/* pFunc is a new reference */

if (pFunc && PyCallable_Check(pFunc)) {
...

}
Py_XDECREF(pFunc);

Once the script is loaded, the name we’re looking for is retrieved using PyObject_GetAttrString(). If the name
exists, and the object returned is callable, you can safely assume that it is a function. The program then proceeds by
constructing a tuple of arguments as normal. The call to the Python function is then made with:

pValue = PyObject_CallObject(pFunc, pArgs);

Upon return of the function, pValue is either NULL or it contains a reference to the return value of the function. Be
sure to release the reference after examining the value.

3.1.4 Extending Embedded Python

Until now, the embedded Python interpreter had no access to functionality from the application itself. The Python API
allows this by extending the embedded interpreter. That is, the embedded interpreter gets extended with routines provided
by the application.While it sounds complex, it is not so bad. Simply forget for a while that the application starts the Python
interpreter. Instead, consider the application to be a set of subroutines, and write some glue code that gives Python access
to those routines, just like you would write a normal Python extension. For example:

static int numargs=0;

/* Return the number of arguments of the application command line */
static PyObject*
emb_numargs(PyObject *self, PyObject *args)
{

if(!PyArg_ParseTuple(args, ":numargs"))
return NULL;

return PyLong_FromLong(numargs);
}

static PyMethodDef EmbMethods[] = {
{"numargs", emb_numargs, METH_VARARGS,
"Return the number of arguments received by the process."},

{NULL, NULL, 0, NULL}
};

static PyModuleDef EmbModule = {
PyModuleDef_HEAD_INIT, "emb", NULL, -1, EmbMethods,
NULL, NULL, NULL, NULL

};

static PyObject*
PyInit_emb(void)
{

return PyModule_Create(&EmbModule);
}

Insert the above code just above the main() function. Also, insert the following two statements before the call to
Py_Initialize():

3.1. Embedding Python in Another Application 67

Extending and Embedding Python, Release 3.9.23

numargs = argc;
PyImport_AppendInittab("emb", &PyInit_emb);

These two lines initialize the numargs variable, and make the emb.numargs() function accessible to the embedded
Python interpreter. With these extensions, the Python script can do things like

import emb
print("Number of arguments", emb.numargs())

In a real application, the methods will expose an API of the application to Python.

3.1.5 Embedding Python in C++

It is also possible to embed Python in a C++ program; precisely how this is done will depend on the details of the C++
system used; in general you will need to write the main program in C++, and use the C++ compiler to compile and link
your program. There is no need to recompile Python itself using C++.

3.1.6 Compiling and Linking under Unix-like systems

It is not necessarily trivial to find the right flags to pass to your compiler (and linker) in order to embed the Python
interpreter into your application, particularly because Python needs to load library modules implemented as C dynamic
extensions (.so files) linked against it.

To find out the required compiler and linker flags, you can execute the pythonX.Y-config script which is generated
as part of the installation process (a python3-config script may also be available). This script has several options,
of which the following will be directly useful to you:

• pythonX.Y-config --cflags will give you the recommended flags when compiling:

$ /opt/bin/python3.4-config --cflags
-I/opt/include/python3.4m -I/opt/include/python3.4m -DNDEBUG -g -fwrapv -O3 -Wall␣
↪→-Wstrict-prototypes

• pythonX.Y-config --ldflags will give you the recommended flags when linking:

$ /opt/bin/python3.4-config --ldflags
-L/opt/lib/python3.4/config-3.4m -lpthread -ldl -lutil -lm -lpython3.4m -Xlinker -
↪→export-dynamic

Nota: To avoid confusion between several Python installations (and especially between the system Python and your own
compiled Python), it is recommended that you use the absolute path to pythonX.Y-config, as in the above example.

If this procedure doesn’t work for you (it is not guaranteed to work for all Unix-like platforms; however, we welcome bug
reports) you will have to read your system’s documentation about dynamic linking and/or examine Python’s Makefile
(use sysconfig.get_makefile_filename() to find its location) and compilation options. In this case, the
sysconfig module is a useful tool to programmatically extract the configuration values that you will want to combine
together. For example:

>>> import sysconfig
>>> sysconfig.get_config_var('LIBS')
'-lpthread -ldl -lutil'
>>> sysconfig.get_config_var('LINKFORSHARED')
'-Xlinker -export-dynamic'

68 Capitolo 3. Embedding the CPython runtime in a larger application

APPENDICEA

Glossary

>>> The default Python prompt of the interactive shell. Often seen for code examples which can be executed interactively
in the interpreter.

... Can refer to:

• The default Python prompt of the interactive shell when entering the code for an indented code block, when
within a pair of matching left and right delimiters (parentheses, square brackets, curly braces or triple quotes),
or after specifying a decorator.

• The Ellipsis built-in constant.

2to3 A tool that tries to convert Python 2.x code to Python 3.x code by handling most of the incompatibilities which can
be detected by parsing the source and traversing the parse tree.

2to3 is available in the standard library as lib2to3; a standalone entry point is provided as Tools/scripts/
2to3. See 2to3-reference.

abstract base class Abstract base classes complement duck-typing by providing a way to define interfaces when other
techniques like hasattr()would be clumsy or subtly wrong (for example with magic methods). ABCs introduce
virtual subclasses, which are classes that don’t inherit from a class but are still recognized by isinstance() and
issubclass(); see the abcmodule documentation. Python comes with many built-in ABCs for data structures
(in the collections.abc module), numbers (in the numbers module), streams (in the io module), import
finders and loaders (in the importlib.abc module). You can create your own ABCs with the abc module.

annotation A label associated with a variable, a class attribute or a function parameter or return value, used by convention
as a type hint.

Annotations of local variables cannot be accessed at runtime, but annotations of global variables, class attribu-
tes, and functions are stored in the __annotations__ special attribute of modules, classes, and functions,
respectively.

See variable annotation, function annotation, PEP 484 and PEP 526, which describe this functionality.

argument A value passed to a function (or method) when calling the function. There are two kinds of argument:

• keyword argument: an argument preceded by an identifier (e.g. name=) in a function call or passed as a value
in a dictionary preceded by **. For example, 3 and 5 are both keyword arguments in the following calls to
complex():

69

https://www.python.org/dev/peps/pep-0484
https://www.python.org/dev/peps/pep-0526

Extending and Embedding Python, Release 3.9.23

complex(real=3, imag=5)
complex(**{'real': 3, 'imag': 5})

• positional argument: an argument that is not a keyword argument. Positional arguments can appear at the
beginning of an argument list and/or be passed as elements of an iterable preceded by *. For example, 3 and
5 are both positional arguments in the following calls:

complex(3, 5)
complex(*(3, 5))

Arguments are assigned to the named local variables in a function body. See the calls section for the rules governing
this assignment. Syntactically, any expression can be used to represent an argument; the evaluated value is assigned
to the local variable.

See also the parameter glossary entry, the FAQ question on the difference between arguments and parameters, and
PEP 362.

asynchronous context manager An object which controls the environment seen in an async with statement by
defining __aenter__() and __aexit__() methods. Introduced by PEP 492.

asynchronous generator A function which returns an asynchronous generator iterator. It looks like a coroutine function
defined with async def except that it contains yield expressions for producing a series of values usable in an
async for loop.

Usually refers to an asynchronous generator function, but may refer to an asynchronous generator iterator in some
contexts. In cases where the intended meaning isn’t clear, using the full terms avoids ambiguity.

An asynchronous generator function may contain await expressions as well as async for, and async with
statements.

asynchronous generator iterator An object created by a asynchronous generator function.

This is an asynchronous iterator which when called using the __anext__() method returns an awaitable object
which will execute the body of the asynchronous generator function until the next yield expression.

Each yield temporarily suspends processing, remembering the location execution state (including local variables
and pending try-statements). When the asynchronous generator iterator effectively resumes with another awaitable
returned by __anext__(), it picks up where it left off. See PEP 492 and PEP 525.

asynchronous iterable An object, that can be used in an async for statement. Must return an asynchronous iterator
from its __aiter__() method. Introduced by PEP 492.

asynchronous iterator An object that implements the __aiter__() and __anext__() methods. __anext__
must return an awaitable object. async for resolves the awaitables returned by an asynchronous iterator’s
__anext__() method until it raises a StopAsyncIteration exception. Introduced by PEP 492.

attribute A value associated with an object which is referenced by name using dotted expressions. For example, if an
object o has an attribute a it would be referenced as o.a.

awaitable An object that can be used in an await expression. Can be a coroutine or an object with an __await__()
method. See also PEP 492.

BDFL Benevolent Dictator For Life, a.k.a. Guido van Rossum, Python’s creator.

binary file A file object able to read and write bytes-like objects. Examples of binary files are files opened in binary mode
('rb', 'wb' or 'rb+'), sys.stdin.buffer, sys.stdout.buffer, and instances of io.BytesIO
and gzip.GzipFile.

See also text file for a file object able to read and write str objects.

bytes-like object An object that supports the bufferobjects and can export a C-contiguous buffer. This includes all
bytes, bytearray, and array.array objects, as well as many common memoryview objects. Bytes-like

70 Appendice A. Glossary

https://www.python.org/dev/peps/pep-0362
https://www.python.org/dev/peps/pep-0492
https://www.python.org/dev/peps/pep-0492
https://www.python.org/dev/peps/pep-0525
https://www.python.org/dev/peps/pep-0492
https://www.python.org/dev/peps/pep-0492
https://www.python.org/dev/peps/pep-0492
https://gvanrossum.github.io/

Extending and Embedding Python, Release 3.9.23

objects can be used for various operations that work with binary data; these include compression, saving to a binary
file, and sending over a socket.

Some operations need the binary data to be mutable. The documentation often refers to these as «read-write bytes-
like objects». Examplemutable buffer objects includebytearray and amemoryview of abytearray. Other
operations require the binary data to be stored in immutable objects («read-only bytes-like objects»); examples of
these include bytes and a memoryview of a bytes object.

bytecode Python source code is compiled into bytecode, the internal representation of a Python program in the CPython
interpreter. The bytecode is also cached in .pyc files so that executing the same file is faster the second time
(recompilation from source to bytecode can be avoided). This «intermediate language» is said to run on a virtual
machine that executes the machine code corresponding to each bytecode. Do note that bytecodes are not expected
to work between different Python virtual machines, nor to be stable between Python releases.

A list of bytecode instructions can be found in the documentation for the dis module.

callback A subroutine function which is passed as an argument to be executed at some point in the future.

class A template for creating user-defined objects. Class definitions normally contain method definitions which operate
on instances of the class.

class variable A variable defined in a class and intended to be modified only at class level (i.e., not in an instance of the
class).

coercion The implicit conversion of an instance of one type to another during an operation which involves two arguments
of the same type. For example, int(3.15) converts the floating point number to the integer 3, but in 3+4.5,
each argument is of a different type (one int, one float), and both must be converted to the same type before they
can be added or it will raise a TypeError. Without coercion, all arguments of even compatible types would have
to be normalized to the same value by the programmer, e.g., float(3)+4.5 rather than just 3+4.5.

complex number An extension of the familiar real number system in which all numbers are expressed as a sum of a real
part and an imaginary part. Imaginary numbers are real multiples of the imaginary unit (the square root of -1),
often written i in mathematics or j in engineering. Python has built-in support for complex numbers, which are
written with this latter notation; the imaginary part is written with a j suffix, e.g., 3+1j. To get access to complex
equivalents of the math module, use cmath. Use of complex numbers is a fairly advanced mathematical feature.
If you’re not aware of a need for them, it’s almost certain you can safely ignore them.

context manager An object which controls the environment seen in a with statement by defining __enter__() and
__exit__() methods. See PEP 343.

context variable A variable which can have different values depending on its context. This is similar to Thread-Local
Storage in which each execution thread may have a different value for a variable. However, with context variables,
there may be several contexts in one execution thread and the main usage for context variables is to keep track of
variables in concurrent asynchronous tasks. See contextvars.

contiguous A buffer is considered contiguous exactly if it is either C-contiguous or Fortran contiguous. Zero-dimensional
buffers are C and Fortran contiguous. In one-dimensional arrays, the items must be laid out in memory next to each
other, in order of increasing indexes starting from zero. In multidimensional C-contiguous arrays, the last index
varies the fastest when visiting items in order of memory address. However, in Fortran contiguous arrays, the first
index varies the fastest.

coroutine Coroutines are a more generalized form of subroutines. Subroutines are entered at one point and exited at
another point. Coroutines can be entered, exited, and resumed at many different points. They can be implemented
with the async def statement. See also PEP 492.

coroutine function A function which returns a coroutine object. A coroutine function may be defined with the async
def statement, and may contain await, async for, and async with keywords. These were introduced by
PEP 492.

CPython The canonical implementation of the Python programming language, as distributed on python.org. The term
«CPython» is used when necessary to distinguish this implementation from others such as Jython or IronPython.

71

https://www.python.org/dev/peps/pep-0343
https://www.python.org/dev/peps/pep-0492
https://www.python.org/dev/peps/pep-0492
https://www.python.org

Extending and Embedding Python, Release 3.9.23

decorator A function returning another function, usually applied as a function transformation using the @wrapper
syntax. Common examples for decorators are classmethod() and staticmethod().

The decorator syntax is merely syntactic sugar, the following two function definitions are semantically equivalent:

def f(arg):
...

f = staticmethod(f)

@staticmethod
def f(arg):

...

The same concept exists for classes, but is less commonly used there. See the documentation for function definitions
and class definitions for more about decorators.

descriptor Any object which defines the methods __get__(), __set__(), or __delete__(). When a class
attribute is a descriptor, its special binding behavior is triggered upon attribute lookup. Normally, using a.b to
get, set or delete an attribute looks up the object named b in the class dictionary for a, but if b is a descriptor,
the respective descriptor method gets called. Understanding descriptors is a key to a deep understanding of Python
because they are the basis for many features including functions, methods, properties, class methods, static methods,
and reference to super classes.

For more information about descriptors” methods, see descriptors or the Descriptor How To Guide.

dictionary An associative array, where arbitrary keys are mapped to values. The keys can be any object with
__hash__() and __eq__() methods. Called a hash in Perl.

dictionary comprehension A compact way to process all or part of the elements in an iterable and return a dictionary
with the results. results = {n: n ** 2 for n in range(10)} generates a dictionary containing
key n mapped to value n ** 2. See comprehensions.

dictionary view The objects returned from dict.keys(), dict.values(), and dict.items() are called
dictionary views. They provide a dynamic view on the dictionary’s entries, which means that when the dictionary
changes, the view reflects these changes. To force the dictionary view to become a full list use list(dictview).
See dict-views.

docstring A string literal which appears as the first expression in a class, function or module. While ignored when the
suite is executed, it is recognized by the compiler and put into the __doc__ attribute of the enclosing class,
function or module. Since it is available via introspection, it is the canonical place for documentation of the object.

duck-typing A programming style which does not look at an object’s type to determine if it has the right interface;
instead, the method or attribute is simply called or used («If it looks like a duck and quacks like a duck, it must
be a duck.») By emphasizing interfaces rather than specific types, well-designed code improves its flexibility by
allowing polymorphic substitution. Duck-typing avoids tests using type() or isinstance(). (Note, however,
that duck-typing can be complemented with abstract base classes.) Instead, it typically employs hasattr() tests
or EAFP programming.

EAFP Easier to ask for forgiveness than permission. This common Python coding style assumes the existence of valid
keys or attributes and catches exceptions if the assumption proves false. This clean and fast style is characterized
by the presence of many try and except statements. The technique contrasts with the LBYL style common to
many other languages such as C.

expression A piece of syntax which can be evaluated to some value. In other words, an expression is an accumulation
of expression elements like literals, names, attribute access, operators or function calls which all return a value.
In contrast to many other languages, not all language constructs are expressions. There are also statements which
cannot be used as expressions, such as while. Assignments are also statements, not expressions.

extension module A module written in C or C++, using Python’s C API to interact with the core and with user code.

72 Appendice A. Glossary

Extending and Embedding Python, Release 3.9.23

f-string String literals prefixed with 'f' or 'F' are commonly called «f-strings» which is short for formatted string
literals. See also PEP 498.

file object An object exposing a file-oriented API (with methods such as read() or write()) to an underlying re-
source. Depending on the way it was created, a file object can mediate access to a real on-disk file or to another
type of storage or communication device (for example standard input/output, in-memory buffers, sockets, pipes,
etc.). File objects are also called file-like objects or streams.

There are actually three categories of file objects: raw binary files, buffered binary files and text files. Their interfaces
are defined in the io module. The canonical way to create a file object is by using the open() function.

file-like object A synonym for file object.

finder An object that tries to find the loader for a module that is being imported.

Since Python 3.3, there are two types of finder: meta path finders for use with sys.meta_path, and path entry
finders for use with sys.path_hooks.

See PEP 302, PEP 420 and PEP 451 for much more detail.

floor division Mathematical division that rounds down to nearest integer. The floor division operator is //. For example,
the expression 11 // 4 evaluates to 2 in contrast to the 2.75 returned by float true division. Note that (-11)
// 4 is -3 because that is -2.75 rounded downward. See PEP 238.

function A series of statements which returns some value to a caller. It can also be passed zero or more arguments which
may be used in the execution of the body. See also parameter, method, and the function section.

function annotation An annotation of a function parameter or return value.

Function annotations are usually used for type hints: for example, this function is expected to take two int
arguments and is also expected to have an int return value:

def sum_two_numbers(a: int, b: int) -> int:
return a + b

Function annotation syntax is explained in section function.

See variable annotation and PEP 484, which describe this functionality.

__future__ A future statement, from __future__ import <feature>, directs the compiler to compile
the current module using syntax or semantics that will become standard in a future release of Python. The
__future__ module documents the possible values of feature. By importing this module and evaluating its
variables, you can see when a new feature was first added to the language and when it will (or did) become the
default:

>>> import __future__
>>> __future__.division
_Feature((2, 2, 0, 'alpha', 2), (3, 0, 0, 'alpha', 0), 8192)

garbage collection The process of freeing memory when it is not used anymore. Python performs garbage collection
via reference counting and a cyclic garbage collector that is able to detect and break reference cycles. The garbage
collector can be controlled using the gc module.

generator A function which returns a generator iterator. It looks like a normal function except that it contains yield
expressions for producing a series of values usable in a for-loop or that can be retrieved one at a time with the
next() function.

Usually refers to a generator function, but may refer to a generator iterator in some contexts. In cases where the
intended meaning isn’t clear, using the full terms avoids ambiguity.

generator iterator An object created by a generator function.

73

https://www.python.org/dev/peps/pep-0498
https://www.python.org/dev/peps/pep-0302
https://www.python.org/dev/peps/pep-0420
https://www.python.org/dev/peps/pep-0451
https://www.python.org/dev/peps/pep-0238
https://www.python.org/dev/peps/pep-0484

Extending and Embedding Python, Release 3.9.23

Each yield temporarily suspends processing, remembering the location execution state (including local variables
and pending try-statements). When the generator iterator resumes, it picks up where it left off (in contrast to
functions which start fresh on every invocation).

generator expression An expression that returns an iterator. It looks like a normal expression followed by a for clau-
se defining a loop variable, range, and an optional if clause. The combined expression generates values for an
enclosing function:

>>> sum(i*i for i in range(10)) # sum of squares 0, 1, 4, ... 81
285

generic function A function composed ofmultiple functions implementing the same operation for different types.Which
implementation should be used during a call is determined by the dispatch algorithm.

See also the single dispatch glossary entry, the functools.singledispatch() decorator, and PEP 443.

generic type A type that can be parameterized; typically a container class such as list or dict. Used for type hints
and annotations.

For more details, see generic alias types, PEP 483, PEP 484, PEP 585, and the typing module.

GIL See global interpreter lock.

global interpreter lock The mechanism used by the CPython interpreter to assure that only one thread executes Python
bytecode at a time. This simplifies the CPython implementation bymaking the object model (including critical built-
in types such as dict) implicitly safe against concurrent access. Locking the entire interpreter makes it easier
for the interpreter to be multi-threaded, at the expense of much of the parallelism afforded by multi-processor
machines.

However, some extension modules, either standard or third-party, are designed so as to release the GIL when doing
computationally-intensive tasks such as compression or hashing. Also, the GIL is always released when doing I/O.

Past efforts to create a «free-threaded» interpreter (one which locks shared data at a much finer granularity) have not
been successful because performance suffered in the common single-processor case. It is believed that overcoming
this performance issue would make the implementation much more complicated and therefore costlier to maintain.

hash-based pyc A bytecode cache file that uses the hash rather than the last-modified time of the corresponding source
file to determine its validity. See pyc-invalidation.

hashable An object is hashable if it has a hash value which never changes during its lifetime (it needs a __hash__()
method), and can be compared to other objects (it needs an __eq__()method). Hashable objects which compare
equal must have the same hash value.

Hashability makes an object usable as a dictionary key and a set member, because these data structures use the
hash value internally.

Most of Python’s immutable built-in objects are hashable; mutable containers (such as lists or dictionaries) are not;
immutable containers (such as tuples and frozensets) are only hashable if their elements are hashable. Objects which
are instances of user-defined classes are hashable by default. They all compare unequal (except with themselves),
and their hash value is derived from their id().

IDLE An Integrated Development Environment for Python. IDLE is a basic editor and interpreter environment which
ships with the standard distribution of Python.

immutable An object with a fixed value. Immutable objects include numbers, strings and tuples. Such an object cannot
be altered. A new object has to be created if a different value has to be stored. They play an important role in places
where a constant hash value is needed, for example as a key in a dictionary.

import path A list of locations (or path entries) that are searched by the path based finder for modules to import. During
import, this list of locations usually comes from sys.path, but for subpackages it may also come from the parent
package’s __path__ attribute.

74 Appendice A. Glossary

https://www.python.org/dev/peps/pep-0443
https://www.python.org/dev/peps/pep-0483
https://www.python.org/dev/peps/pep-0484
https://www.python.org/dev/peps/pep-0585

Extending and Embedding Python, Release 3.9.23

importing The process by which Python code in one module is made available to Python code in another module.

importer An object that both finds and loads a module; both a finder and loader object.

interactive Python has an interactive interpreter which means you can enter statements and expressions at the interpreter
prompt, immediately execute them and see their results. Just launch python with no arguments (possibly by
selecting it from your computer’s main menu). It is a very powerful way to test out new ideas or inspect modules
and packages (remember help(x)).

interpreted Python is an interpreted language, as opposed to a compiled one, though the distinction can be blurry be-
cause of the presence of the bytecode compiler. This means that source files can be run directly without explicitly
creating an executable which is then run. Interpreted languages typically have a shorter development/debug cycle
than compiled ones, though their programs generally also run more slowly. See also interactive.

interpreter shutdown When asked to shut down, the Python interpreter enters a special phase where it gradually releases
all allocated resources, such as modules and various critical internal structures. It also makes several calls to the
garbage collector. This can trigger the execution of code in user-defined destructors or weakref callbacks. Code
executed during the shutdown phase can encounter various exceptions as the resources it relies on may not function
anymore (common examples are library modules or the warnings machinery).

The main reason for interpreter shutdown is that the __main__ module or the script being run has finished
executing.

iterable An object capable of returning its members one at a time. Examples of iterables include all sequence types (such
as list, str, and tuple) and some non-sequence types like dict, file objects, and objects of any classes you
define with an __iter__() method or with a __getitem__() method that implements Sequence semantics.

Iterables can be used in a for loop and in many other places where a sequence is needed (zip(), map(), …).
When an iterable object is passed as an argument to the built-in function iter(), it returns an iterator for the
object. This iterator is good for one pass over the set of values. When using iterables, it is usually not necessary to
call iter() or deal with iterator objects yourself. The for statement does that automatically for you, creating
a temporary unnamed variable to hold the iterator for the duration of the loop. See also iterator, sequence, and
generator.

iterator An object representing a stream of data. Repeated calls to the iterator’s __next__() method (or passing
it to the built-in function next()) return successive items in the stream. When no more data are available a
StopIteration exception is raised instead. At this point, the iterator object is exhausted and any further calls
to its __next__()method just raise StopIteration again. Iterators are required to have an __iter__()
method that returns the iterator object itself so every iterator is also iterable and may be used in most places where
other iterables are accepted. One notable exception is code which attempts multiple iteration passes. A container
object (such as a list) produces a fresh new iterator each time you pass it to the iter() function or use it in a
for loop. Attempting this with an iterator will just return the same exhausted iterator object used in the previous
iteration pass, making it appear like an empty container.

More information can be found in typeiter.

key function A key function or collation function is a callable that returns a value used for sorting or ordering. For
example, locale.strxfrm() is used to produce a sort key that is aware of locale specific sort conventions.

A number of tools in Python accept key functions to control how elements are ordered or grouped.
They include min(), max(), sorted(), list.sort(), heapq.merge(), heapq.nsmallest(),
heapq.nlargest(), and itertools.groupby().

There are several ways to create a key function. For example. the str.lower()method can serve as a key func-
tion for case insensitive sorts. Alternatively, a key function can be built from a lambda expression such as lambda
r: (r[0], r[2]). Also, theoperatormodule provides three key function constructors:attrgetter(),
itemgetter(), and methodcaller(). See the Sorting HOW TO for examples of how to create and use
key functions.

keyword argument See argument.

75

Extending and Embedding Python, Release 3.9.23

lambda An anonymous inline function consisting of a single expression which is evaluated when the function is called.
The syntax to create a lambda function is lambda [parameters]: expression

LBYL Look before you leap. This coding style explicitly tests for pre-conditions before making calls or lookups. This
style contrasts with the EAFP approach and is characterized by the presence of many if statements.

In a multi-threaded environment, the LBYL approach can risk introducing a race condition between «the looking»
and «the leaping». For example, the code, if key in mapping: return mapping[key] can fail if
another thread removes key from mapping after the test, but before the lookup. This issue can be solved with locks
or by using the EAFP approach.

list A built-in Python sequence. Despite its name it is more akin to an array in other languages than to a linked list since
access to elements is O(1).

list comprehension A compact way to process all or part of the elements in a sequence and return a list with the results.
result = ['{:#04x}'.format(x) for x in range(256) if x % 2 == 0] generates a list
of strings containing even hex numbers (0x..) in the range from 0 to 255. The if clause is optional. If omitted, all
elements in range(256) are processed.

loader An object that loads a module. It must define a method named load_module(). A loader is typically returned
by a finder. See PEP 302 for details and importlib.abc.Loader for an abstract base class.

magic method An informal synonym for special method.

mapping A container object that supports arbitrary key lookups and implements the methods specified in the Mapping
or MutableMapping abstract base classes. Examples include dict, collections.defaultdict,
collections.OrderedDict and collections.Counter.

meta path finder A finder returned by a search of sys.meta_path. Meta path finders are related to, but different
from path entry finders.

See importlib.abc.MetaPathFinder for the methods that meta path finders implement.

metaclass The class of a class. Class definitions create a class name, a class dictionary, and a list of base classes. The me-
taclass is responsible for taking those three arguments and creating the class. Most object oriented programming
languages provide a default implementation. What makes Python special is that it is possible to create custom
metaclasses. Most users never need this tool, but when the need arises, metaclasses can provide powerful, ele-
gant solutions. They have been used for logging attribute access, adding thread-safety, tracking object creation,
implementing singletons, and many other tasks.

More information can be found in metaclasses.

method A function which is defined inside a class body. If called as an attribute of an instance of that class, the method
will get the instance object as its first argument (which is usually called self). See function and nested scope.

method resolution order Method Resolution Order is the order in which base classes are searched for a member during
lookup. See The Python 2.3 Method Resolution Order for details of the algorithm used by the Python interpreter
since the 2.3 release.

module An object that serves as an organizational unit of Python code. Modules have a namespace containing arbitrary
Python objects. Modules are loaded into Python by the process of importing.

See also package.

module spec A namespace containing the import-related information used to load a module. An instance of
importlib.machinery.ModuleSpec.

MRO See method resolution order.

mutable Mutable objects can change their value but keep their id(). See also immutable.

named tuple The term «named tuple» applies to any type or class that inherits from tuple and whose indexable elements
are also accessible using named attributes. The type or class may have other features as well.

76 Appendice A. Glossary

https://www.python.org/dev/peps/pep-0302
https://www.python.org/download/releases/2.3/mro/

Extending and Embedding Python, Release 3.9.23

Several built-in types are named tuples, including the values returned by time.localtime() and
os.stat(). Another example is sys.float_info:

>>> sys.float_info[1] # indexed access
1024
>>> sys.float_info.max_exp # named field access
1024
>>> isinstance(sys.float_info, tuple) # kind of tuple
True

Some named tuples are built-in types (such as the above examples). Alternatively, a named tuple can be created
from a regular class definition that inherits from tuple and that defines named fields. Such a class can be written
by hand or it can be created with the factory function collections.namedtuple(). The latter technique
also adds some extra methods that may not be found in hand-written or built-in named tuples.

namespace The place where a variable is stored. Namespaces are implemented as dictionaries. There are the local, glo-
bal and built-in namespaces as well as nested namespaces in objects (in methods). Namespaces support modularity
by preventing naming conflicts. For instance, the functions builtins.open and os.open() are distingui-
shed by their namespaces. Namespaces also aid readability and maintainability by making it clear which module
implements a function. For instance, writing random.seed() or itertools.islice()makes it clear that
those functions are implemented by the random and itertools modules, respectively.

namespace package A PEP 420 package which serves only as a container for subpackages. Namespace packages may
have no physical representation, and specifically are not like a regular package because they have no __init__.
py file.

See also module.

nested scope The ability to refer to a variable in an enclosing definition. For instance, a function defined inside another
function can refer to variables in the outer function. Note that nested scopes by default work only for reference and
not for assignment. Local variables both read and write in the innermost scope. Likewise, global variables read and
write to the global namespace. The nonlocal allows writing to outer scopes.

new-style class Old name for the flavor of classes now used for all class objects. In earlier Python versions, on-
ly new-style classes could use Python’s newer, versatile features like __slots__, descriptors, properties,
__getattribute__(), class methods, and static methods.

object Any data with state (attributes or value) and defined behavior (methods). Also the ultimate base class of any
new-style class.

package APythonmodulewhich can contain submodules or recursively, subpackages. Technically, a package is a Python
module with an __path__ attribute.

See also regular package and namespace package.

parameter A named entity in a function (or method) definition that specifies an argument (or in some cases, arguments)
that the function can accept. There are five kinds of parameter:

• positional-or-keyword: specifies an argument that can be passed either positionally or as a keyword argument.
This is the default kind of parameter, for example foo and bar in the following:

def func(foo, bar=None): ...

• positional-only: specifies an argument that can be supplied only by position. Positional-only parameters can
be defined by including a / character in the parameter list of the function definition after them, for example
posonly1 and posonly2 in the following:

def func(posonly1, posonly2, /, positional_or_keyword): ...

77

https://www.python.org/dev/peps/pep-0420

Extending and Embedding Python, Release 3.9.23

• keyword-only: specifies an argument that can be supplied only by keyword. Keyword-only parameters can be
defined by including a single var-positional parameter or bare * in the parameter list of the function definition
before them, for example kw_only1 and kw_only2 in the following:

def func(arg, *, kw_only1, kw_only2): ...

• var-positional: specifies that an arbitrary sequence of positional arguments can be provided (in addition to any
positional arguments already accepted by other parameters). Such a parameter can be defined by prepending
the parameter name with *, for example args in the following:

def func(*args, **kwargs): ...

• var-keyword: specifies that arbitrarily many keyword arguments can be provided (in addition to any key-
word arguments already accepted by other parameters). Such a parameter can be defined by prepending the
parameter name with **, for example kwargs in the example above.

Parameters can specify both optional and required arguments, as well as default values for some optional arguments.

See also the argument glossary entry, the FAQ question on the difference between arguments and parameters, the
inspect.Parameter class, the function section, and PEP 362.

path entry A single location on the import path which the path based finder consults to find modules for importing.

path entry finder A finder returned by a callable on sys.path_hooks (i.e. a path entry hook) which knows how to
locate modules given a path entry.

See importlib.abc.PathEntryFinder for the methods that path entry finders implement.

path entry hook A callable on the sys.path_hook list which returns a path entry finder if it knows how to find
modules on a specific path entry.

path based finder One of the default meta path finders which searches an import path for modules.

path-like object An object representing a file system path. A path-like object is either a str or bytes object represen-
ting a path, or an object implementing the os.PathLike protocol. An object that supports the os.PathLike
protocol can be converted to a str or bytes file system path by calling the os.fspath() function; os.
fsdecode() and os.fsencode() can be used to guarantee a str or bytes result instead, respectively.
Introduced by PEP 519.

PEP Python Enhancement Proposal. A PEP is a design document providing information to the Python community,
or describing a new feature for Python or its processes or environment. PEPs should provide a concise technical
specification and a rationale for proposed features.

PEPs are intended to be the primary mechanisms for proposing major new features, for collecting community input
on an issue, and for documenting the design decisions that have gone into Python. The PEP author is responsible
for building consensus within the community and documenting dissenting opinions.

See PEP 1.

portion A set of files in a single directory (possibly stored in a zip file) that contribute to a namespace package, as defined
in PEP 420.

positional argument See argument.

provisional API A provisional API is one which has been deliberately excluded from the standard library’s backwards
compatibility guarantees. While major changes to such interfaces are not expected, as long as they are marked
provisional, backwards incompatible changes (up to and including removal of the interface) may occur if dee-
med necessary by core developers. Such changes will not be made gratuitously – they will occur only if serious
fundamental flaws are uncovered that were missed prior to the inclusion of the API.

Even for provisional APIs, backwards incompatible changes are seen as a «solution of last resort» - every attempt
will still be made to find a backwards compatible resolution to any identified problems.

78 Appendice A. Glossary

https://www.python.org/dev/peps/pep-0362
https://www.python.org/dev/peps/pep-0519
https://www.python.org/dev/peps/pep-0001
https://www.python.org/dev/peps/pep-0420

Extending and Embedding Python, Release 3.9.23

This process allows the standard library to continue to evolve over time, without locking in problematic design
errors for extended periods of time. See PEP 411 for more details.

provisional package See provisional API.

Python 3000 Nickname for the Python 3.x release line (coined long ago when the release of version 3 was something in
the distant future.) This is also abbreviated «Py3k».

Pythonic An idea or piece of code which closely follows the most common idioms of the Python language, rather than
implementing code using concepts common to other languages. For example, a common idiom in Python is to loop
over all elements of an iterable using a for statement. Many other languages don’t have this type of construct, so
people unfamiliar with Python sometimes use a numerical counter instead:

for i in range(len(food)):
print(food[i])

As opposed to the cleaner, Pythonic method:

for piece in food:
print(piece)

qualified name A dotted name showing the «path» from a module’s global scope to a class, function or method defined
in that module, as defined in PEP 3155. For top-level functions and classes, the qualified name is the same as the
object’s name:

>>> class C:
... class D:
... def meth(self):
... pass
...
>>> C.__qualname__
'C'
>>> C.D.__qualname__
'C.D'
>>> C.D.meth.__qualname__
'C.D.meth'

When used to refer to modules, the fully qualified name means the entire dotted path to the module, including any
parent packages, e.g. email.mime.text:

>>> import email.mime.text
>>> email.mime.text.__name__
'email.mime.text'

reference count The number of references to an object. When the reference count of an object drops to zero, it is
deallocated. Reference counting is generally not visible to Python code, but it is a key element of the CPython
implementation. The sys module defines a getrefcount() function that programmers can call to return the
reference count for a particular object.

regular package A traditional package, such as a directory containing an __init__.py file.

See also namespace package.

__slots__ A declaration inside a class that saves memory by pre-declaring space for instance attributes and eliminating
instance dictionaries. Though popular, the technique is somewhat tricky to get right and is best reserved for rare
cases where there are large numbers of instances in a memory-critical application.

sequence An iterable which supports efficient element access using integer indices via the __getitem__() special
method and defines a __len__() method that returns the length of the sequence. Some built-in sequence types

79

https://www.python.org/dev/peps/pep-0411
https://www.python.org/dev/peps/pep-3155

Extending and Embedding Python, Release 3.9.23

are list, str, tuple, and bytes. Note that dict also supports __getitem__() and __len__(), but is
considered a mapping rather than a sequence because the lookups use arbitrary immutable keys rather than integers.

The collections.abc.Sequence abstract base class defines a much richer interface that goes
beyond just __getitem__() and __len__(), adding count(), index(), __contains__(),
and __reversed__(). Types that implement this expanded interface can be registered explicitly using
register().

set comprehension A compact way to process all or part of the elements in an iterable and return a set with the resul-
ts. results = {c for c in 'abracadabra' if c not in 'abc'} generates the set of strings
{'r', 'd'}. See comprehensions.

single dispatch A form of generic function dispatch where the implementation is chosen based on the type of a single
argument.

slice An object usually containing a portion of a sequence. A slice is created using the subscript notation, [] with co-
lons between numbers when several are given, such as in variable_name[1:3:5]. The bracket (subscript)
notation uses slice objects internally.

special method A method that is called implicitly by Python to execute a certain operation on a type, such as addi-
tion. Such methods have names starting and ending with double underscores. Special methods are documented in
specialnames.

statement A statement is part of a suite (a «block» of code). A statement is either an expression or one of several
constructs with a keyword, such as if, while or for.

text encoding A string in Python is a sequence of Unicode code points (in range U+0000–U+10FFFF). To store or
transfer a string, it needs to be serialized as a sequence of bytes.

Serializing a string into a sequence of bytes is known as «encoding», and recreating the string from the sequence
of bytes is known as «decoding».

There are a variety of different text serialization codecs, which are collectively referred to as «text encodings».

text file A file object able to read and write str objects. Often, a text file actually accesses a byte-oriented datastream
and handles the text encoding automatically. Examples of text files are files opened in text mode ('r' or 'w'),
sys.stdin, sys.stdout, and instances of io.StringIO.

See also binary file for a file object able to read and write bytes-like objects.

triple-quoted string A string which is bound by three instances of either a quotation mark (») or an apostrophe (“).
While they don’t provide any functionality not available with single-quoted strings, they are useful for a number of
reasons. They allow you to include unescaped single and double quotes within a string and they can span multiple
lines without the use of the continuation character, making them especially useful when writing docstrings.

type The type of a Python object determines what kind of object it is; every object has a type. An object’s type is
accessible as its __class__ attribute or can be retrieved with type(obj).

type alias A synonym for a type, created by assigning the type to an identifier.

Type aliases are useful for simplifying type hints. For example:

def remove_gray_shades(
colors: list[tuple[int, int, int]]) -> list[tuple[int, int, int]]:

pass

could be made more readable like this:

Color = tuple[int, int, int]

def remove_gray_shades(colors: list[Color]) -> list[Color]:
pass

80 Appendice A. Glossary

Extending and Embedding Python, Release 3.9.23

See typing and PEP 484, which describe this functionality.

type hint An annotation that specifies the expected type for a variable, a class attribute, or a function parameter or return
value.

Type hints are optional and are not enforced by Python but they are useful to static type analysis tools, and aid
IDEs with code completion and refactoring.

Type hints of global variables, class attributes, and functions, but not local variables, can be accessed using
typing.get_type_hints().

See typing and PEP 484, which describe this functionality.

universal newlines A manner of interpreting text streams in which all of the following are recognized as ending a line:
the Unix end-of-line convention '\n', the Windows convention '\r\n', and the old Macintosh convention
'\r'. See PEP 278 and PEP 3116, as well as bytes.splitlines() for an additional use.

variable annotation An annotation of a variable or a class attribute.

When annotating a variable or a class attribute, assignment is optional:

class C:
field: 'annotation'

Variable annotations are usually used for type hints: for example this variable is expected to take int values:

count: int = 0

Variable annotation syntax is explained in section annassign.

See function annotation, PEP 484 and PEP 526, which describe this functionality.

virtual environment A cooperatively isolated runtime environment that allows Python users and applications to install
and upgrade Python distribution packages without interfering with the behaviour of other Python applications
running on the same system.

See also venv.

virtual machine A computer defined entirely in software. Python’s virtual machine executes the bytecode emitted by the
bytecode compiler.

Zen of Python Listing of Python design principles and philosophies that are helpful in understanding and using the
language. The listing can be found by typing «import this» at the interactive prompt.

81

https://www.python.org/dev/peps/pep-0484
https://www.python.org/dev/peps/pep-0484
https://www.python.org/dev/peps/pep-0278
https://www.python.org/dev/peps/pep-3116
https://www.python.org/dev/peps/pep-0484
https://www.python.org/dev/peps/pep-0526

Extending and Embedding Python, Release 3.9.23

82 Appendice A. Glossary

APPENDICEB

Riguardo questa documentazione

Questi documenti sono stati generati da Sphinx a partire da sorgenti reStructuredText, un elaboratore di documenti
appositamente scritto per la documentazione di Python.

Lo sviluppo della documentazione e della sua toolchain è uno lavoro svolto esclusivamente da volontari, proprio come
lo stesso Python. Se si desidera contribuire, si prega di dare un’occhiata alla pagina reporting-bugs per avere maggiori
informazioni su come farlo. Nuovi volontari sono sempre i benvenuti!

Molte grazie a:

• Fred L. Drake, Jr., il creatore del software per generare documentazione Python e scrittore di gran parte del
contenuto;

• il progetto Docutils per la creazione di reStructuredText e della suite Docutils;

• Fredrik Lundh for his Alternative Python Reference project from which Sphinx got many good ideas.

B.1 Volontari che hanno contribuito alla documentazione di Python

Molte persone hanno contribuito a scrivere il linguaggio Python, la libreria standard di Python e la documentazione di
Python. Per conoscere un elenco parziale dei volontari è possibile visitare la pagina Misc/ACKS, presente nel codice
sorgente della distribuzione Python.

È solo con il contributo dei membri della comunità di Python che Python ha una documentazione così meravigliosa —
Grazie!

83

http://sphinx-doc.org/
http://docutils.sourceforge.net/rst.html
http://docutils.sourceforge.net/
https://github.com/python/cpython/tree/3.9/Misc/ACKS

Extending and Embedding Python, Release 3.9.23

84 Appendice B. Riguardo questa documentazione

APPENDICEC

Storia e licenza

C.1 Storia del software

Python è stato creato all’inizio degli anni “90 da Guido van Rossum allo Stichting Mathematisch Centrum (CWI, https:
//www.cwi.nl/) nei Paesi Bassi a partire dal linguaggio ABC. Guido rimane l’autore principale di Python, anche se questo
include molti contributi da parte di altre persone.

Nel 1995 Guido ha continuato il suo lavoro su Python presso la Corporation for National Research Initiatives (CNRI,
vedi https://www.cnri.reston.va.us/) a Reston, Virginia, dove ha rilasciato diverse versioni del software.

In May 2000, Guido and the Python core development team moved to BeOpen.com to form the BeOpen PythonLabs
team. In October of the same year, the PythonLabs team moved to Digital Creations (now Zope Corporation; see https:
//www.zope.org/). In 2001, the Python Software Foundation (PSF, see https://www.python.org/psf/) was formed, a non-
profit organization created specifically to own Python-related Intellectual Property. Zope Corporation is a sponsoring
member of the PSF.

Tutte le versioni di Python sono Open Source (vedi https://opensource.org/ per la definizione di Open Source). Stori-
camente la maggior parte, ma non tutte, le versioni di Python sono state compatibili con la GPL; la tabella seguente
riassume le varie versioni.

Rilascio Derivato da Anno Proprietario Compatibile con la GPL?
Da 0.9.0 a 1.2 n/d 1991-1995 CWI sì
Da 1.3 a 1.5.2 1.2 1995-1999 CNRI sì
1.6 1.5.2 2000 CNRI no
2.0 1.6 2000 BeOpen.com no
1.6.1 1.6 2001 CNRI no
2.1 2.0+1.6.1 2001 PSF no
2.0.1 2.0+1.6.1 2001 PSF sì
2.1.1 2.1+2.0.1 2001 PSF sì
2.1.2 2.1.1 2002 PSF sì
2.1.3 2.1.2 2002 PSF sì
2.2 e superiori 2.1.1 2001-adesso PSF sì

85

https://www.cwi.nl/
https://www.cwi.nl/
https://www.cnri.reston.va.us/
https://www.zope.org/
https://www.zope.org/
https://www.python.org/psf/
https://opensource.org/

Extending and Embedding Python, Release 3.9.23

Nota: GPL-compatibile non significa che stiamo distribuendo Python sotto la GPL. Tutte le licenze Python, a diffe-
renza della GPL, consentono di distribuire una versione modificata senza rendere le modifiche open source. Le licenze
compatibili con la GPL permettono di combinare Python con altri software rilasciati sotto la GPL; le altre no.

Grazie ai tanti volontari esterni che hanno lavorato sotto la direzione di Guido per rendere possibili queste release.

C.2 Termini e condizioni di accesso o di utilizzo di Python

Python software and documentation are licensed under the PSF License Agreement.

Starting with Python 3.8.6, examples, recipes, and other code in the documentation are dual licensed under the PSF
License Agreement and the Zero-Clause BSD license.

Some software incorporated into Python is under different licenses. The licenses are listed with code falling under that
license. See Licenze e riconoscimenti per il software incorporato for an incomplete list of these licenses.

C.2.1 PSF ACCORDO DI LICENZA PER PYTHON 3.9.23

1. This LICENSE AGREEMENT is between the Python Software Foundation ("PSF"),␣
↪→and

the Individual or Organization ("Licensee") accessing and otherwise using␣
↪→Python

3.9.23 software in source or binary form and its associated documentation.

2. Subject to the terms and conditions of this License Agreement, PSF hereby
grants Licensee a nonexclusive, royalty-free, world-wide license to␣

↪→reproduce,
analyze, test, perform and/or display publicly, prepare derivative works,
distribute, and otherwise use Python 3.9.23 alone or in any derivative
version, provided, however, that PSF's License Agreement and PSF's notice␣

↪→of
copyright, i.e., "Copyright © 2001-2023 Python Software Foundation; All␣

↪→Rights
Reserved" are retained in Python 3.9.23 alone or in any derivative version
prepared by Licensee.

3. In the event Licensee prepares a derivative work that is based on or
incorporates Python 3.9.23 or any part thereof, and wants to make the
derivative work available to others as provided herein, then Licensee␣

↪→hereby
agrees to include in any such work a brief summary of the changes made to␣

↪→Python
3.9.23.

4. PSF is making Python 3.9.23 available to Licensee on an "AS IS" basis.
PSF MAKES NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF
EXAMPLE, BUT NOT LIMITATION, PSF MAKES NO AND DISCLAIMS ANY REPRESENTATION␣

↪→OR
WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT␣

↪→THE
USE OF PYTHON 3.9.23 WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

86 Appendice C. Storia e licenza

Extending and Embedding Python, Release 3.9.23

5. PSF SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF PYTHON 3.9.23
FOR ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT␣

↪→OF
MODIFYING, DISTRIBUTING, OR OTHERWISE USING PYTHON 3.9.23, OR ANY␣

↪→DERIVATIVE
THEREOF, EVEN IF ADVISED OF THE POSSIBILITY THEREOF.

6. This License Agreement will automatically terminate upon a material breach␣
↪→of

its terms and conditions.

7. Nothing in this License Agreement shall be deemed to create any␣
↪→relationship

of agency, partnership, or joint venture between PSF and Licensee. This␣
↪→License

Agreement does not grant permission to use PSF trademarks or trade name in␣
↪→a

trademark sense to endorse or promote products or services of Licensee, or␣
↪→any

third party.

8. By copying, installing or otherwise using Python 3.9.23, Licensee agrees
to be bound by the terms and conditions of this License Agreement.

C.2.2 CONTRATTO DI LICENZA DI BEOPEN.COM PER PYTHON 2.0

BEOPEN PYTHON OPEN SOURCE LICENSE AGREEMENT VERSION 1

1. This LICENSE AGREEMENT is between BeOpen.com ("BeOpen"), having an office at
160 Saratoga Avenue, Santa Clara, CA 95051, and the Individual or Organization
("Licensee") accessing and otherwise using this software in source or binary
form and its associated documentation ("the Software").

2. Subject to the terms and conditions of this BeOpen Python License Agreement,
BeOpen hereby grants Licensee a non-exclusive, royalty-free, world-wide license
to reproduce, analyze, test, perform and/or display publicly, prepare derivative
works, distribute, and otherwise use the Software alone or in any derivative
version, provided, however, that the BeOpen Python License is retained in the
Software, alone or in any derivative version prepared by Licensee.

3. BeOpen is making the Software available to Licensee on an "AS IS" basis.
BEOPEN MAKES NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF
EXAMPLE, BUT NOT LIMITATION, BEOPEN MAKES NO AND DISCLAIMS ANY REPRESENTATION OR
WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE
USE OF THE SOFTWARE WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

4. BEOPEN SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF THE SOFTWARE FOR
ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT OF USING,
MODIFYING OR DISTRIBUTING THE SOFTWARE, OR ANY DERIVATIVE THEREOF, EVEN IF
ADVISED OF THE POSSIBILITY THEREOF.

5. This License Agreement will automatically terminate upon a material breach of
its terms and conditions.

(continues on next page)

C.2. Termini e condizioni di accesso o di utilizzo di Python 87

Extending and Embedding Python, Release 3.9.23

(continua dalla pagina precedente)

6. This License Agreement shall be governed by and interpreted in all respects
by the law of the State of California, excluding conflict of law provisions.
Nothing in this License Agreement shall be deemed to create any relationship of
agency, partnership, or joint venture between BeOpen and Licensee. This License
Agreement does not grant permission to use BeOpen trademarks or trade names in a
trademark sense to endorse or promote products or services of Licensee, or any
third party. As an exception, the "BeOpen Python" logos available at
http://www.pythonlabs.com/logos.html may be used according to the permissions
granted on that web page.

7. By copying, installing or otherwise using the software, Licensee agrees to be
bound by the terms and conditions of this License Agreement.

C.2.3 CNRI CONTRATTO DI LICENZA PER PYTHON 1.6.1

1. This LICENSE AGREEMENT is between the Corporation for National Research
Initiatives, having an office at 1895 Preston White Drive, Reston, VA 20191
("CNRI"), and the Individual or Organization ("Licensee") accessing and
otherwise using Python 1.6.1 software in source or binary form and its
associated documentation.

2. Subject to the terms and conditions of this License Agreement, CNRI hereby
grants Licensee a nonexclusive, royalty-free, world-wide license to reproduce,
analyze, test, perform and/or display publicly, prepare derivative works,
distribute, and otherwise use Python 1.6.1 alone or in any derivative version,
provided, however, that CNRI's License Agreement and CNRI's notice of copyright,
i.e., "Copyright © 1995-2001 Corporation for National Research Initiatives; All
Rights Reserved" are retained in Python 1.6.1 alone or in any derivative version
prepared by Licensee. Alternately, in lieu of CNRI's License Agreement,
Licensee may substitute the following text (omitting the quotes): "Python 1.6.1
is made available subject to the terms and conditions in CNRI's License
Agreement. This Agreement together with Python 1.6.1 may be located on the
Internet using the following unique, persistent identifier (known as a handle):
1895.22/1013. This Agreement may also be obtained from a proxy server on the
Internet using the following URL: http://hdl.handle.net/1895.22/1013."

3. In the event Licensee prepares a derivative work that is based on or
incorporates Python 1.6.1 or any part thereof, and wants to make the derivative
work available to others as provided herein, then Licensee hereby agrees to
include in any such work a brief summary of the changes made to Python 1.6.1.

4. CNRI is making Python 1.6.1 available to Licensee on an "AS IS" basis. CNRI
MAKES NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF EXAMPLE,
BUT NOT LIMITATION, CNRI MAKES NO AND DISCLAIMS ANY REPRESENTATION OR WARRANTY
OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE USE OF
PYTHON 1.6.1 WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

5. CNRI SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF PYTHON 1.6.1 FOR
ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT OF
MODIFYING, DISTRIBUTING, OR OTHERWISE USING PYTHON 1.6.1, OR ANY DERIVATIVE
THEREOF, EVEN IF ADVISED OF THE POSSIBILITY THEREOF.

6. This License Agreement will automatically terminate upon a material breach of
its terms and conditions.

(continues on next page)

88 Appendice C. Storia e licenza

Extending and Embedding Python, Release 3.9.23

(continua dalla pagina precedente)

7. This License Agreement shall be governed by the federal intellectual property
law of the United States, including without limitation the federal copyright
law, and, to the extent such U.S. federal law does not apply, by the law of the
Commonwealth of Virginia, excluding Virginia's conflict of law provisions.
Notwithstanding the foregoing, with regard to derivative works based on Python
1.6.1 that incorporate non-separable material that was previously distributed
under the GNU General Public License (GPL), the law of the Commonwealth of
Virginia shall govern this License Agreement only as to issues arising under or
with respect to Paragraphs 4, 5, and 7 of this License Agreement. Nothing in
this License Agreement shall be deemed to create any relationship of agency,
partnership, or joint venture between CNRI and Licensee. This License Agreement
does not grant permission to use CNRI trademarks or trade name in a trademark
sense to endorse or promote products or services of Licensee, or any third
party.

8. By clicking on the "ACCEPT" button where indicated, or by copying, installing
or otherwise using Python 1.6.1, Licensee agrees to be bound by the terms and
conditions of this License Agreement.

C.2.4 CWI CONTRATTO DI LICENZA PER PYTHON DA 0.9.0 A 1.2

Copyright © 1991 - 1995, Stichting Mathematisch Centrum Amsterdam, The
Netherlands. All rights reserved.

Permission to use, copy, modify, and distribute this software and its
documentation for any purpose and without fee is hereby granted, provided that
the above copyright notice appear in all copies and that both that copyright
notice and this permission notice appear in supporting documentation, and that
the name of Stichting Mathematisch Centrum or CWI not be used in advertising or
publicity pertaining to distribution of the software without specific, written
prior permission.

STICHTING MATHEMATISCH CENTRUM DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS
SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN NO
EVENT SHALL STICHTING MATHEMATISCH CENTRUM BE LIABLE FOR ANY SPECIAL, INDIRECT
OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE,
DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS
SOFTWARE.

C.2.5 ZERO-CLAUSE BSD LICENSE FOR CODE IN THE PYTHON 3.9.23 DOCUMEN-
TATION

Permission to use, copy, modify, and/or distribute this software for any
purpose with or without fee is hereby granted.

THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH
REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT,
INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM
LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR

(continues on next page)

C.2. Termini e condizioni di accesso o di utilizzo di Python 89

Extending and Embedding Python, Release 3.9.23

(continua dalla pagina precedente)

OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
PERFORMANCE OF THIS SOFTWARE.

C.3 Licenze e riconoscimenti per il software incorporato

Questa sezione è una lista incompleta, ma in crescita, di licenze e riconoscimenti per software di terze parti incorporate
nella distribuzione Python.

C.3.1 Mersenne Twister

Il modulo _random include il codice basato su un download da http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/
MT/MT2002/emt19937ar.html. I seguenti sono i commenti testuali del codice originale:

A C-program for MT19937, with initialization improved 2002/1/26.
Coded by Takuji Nishimura and Makoto Matsumoto.

Before using, initialize the state by using init_genrand(seed)
or init_by_array(init_key, key_length).

Copyright (C) 1997 - 2002, Makoto Matsumoto and Takuji Nishimura,
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

3. The names of its contributors may not be used to endorse or promote
products derived from this software without specific prior written
permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Any feedback is very welcome.
http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html
email: m-mat @ math.sci.hiroshima-u.ac.jp (remove space)

90 Appendice C. Storia e licenza

http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/MT/MT2002/emt19937ar.html
http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/MT/MT2002/emt19937ar.html

Extending and Embedding Python, Release 3.9.23

C.3.2 Socket

Il modulo socket utilizza le funzioni, getaddrinfo(), e getnameinfo(), che sono codificati in file sorgenti
separati dal progetto WIDE, http://www.wide.ad.jp/.

Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
1. Redistributions of source code must retain the above copyright

notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright

notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

3. Neither the name of the project nor the names of its contributors
may be used to endorse or promote products derived from this software
without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

C.3.3 Servizi di socket asincrone

I moduli asynchat e asyncore contengono il seguente avviso:

Copyright 1996 by Sam Rushing

All Rights Reserved

Permission to use, copy, modify, and distribute this software and
its documentation for any purpose and without fee is hereby
granted, provided that the above copyright notice appear in all
copies and that both that copyright notice and this permission
notice appear in supporting documentation, and that the name of Sam
Rushing not be used in advertising or publicity pertaining to
distribution of the software without specific, written prior
permission.

SAM RUSHING DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE,
INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN
NO EVENT SHALL SAM RUSHING BE LIABLE FOR ANY SPECIAL, INDIRECT OR
CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS
OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT,
NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

C.3. Licenze e riconoscimenti per il software incorporato 91

http://www.wide.ad.jp/

Extending and Embedding Python, Release 3.9.23

C.3.4 Gestione dei cookie

Il modulo http.cookies contiene il seguente avviso:

Copyright 2000 by Timothy O'Malley <timo@alum.mit.edu>

All Rights Reserved

Permission to use, copy, modify, and distribute this software
and its documentation for any purpose and without fee is hereby
granted, provided that the above copyright notice appear in all
copies and that both that copyright notice and this permission
notice appear in supporting documentation, and that the name of
Timothy O'Malley not be used in advertising or publicity
pertaining to distribution of the software without specific, written
prior permission.

Timothy O'Malley DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS
SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS, IN NO EVENT SHALL Timothy O'Malley BE LIABLE FOR
ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
PERFORMANCE OF THIS SOFTWARE.

C.3.5 Tracciabilità dell’esecuzione

Il modulo trace contiene il seguente avviso:

portions copyright 2001, Autonomous Zones Industries, Inc., all rights...
err... reserved and offered to the public under the terms of the
Python 2.2 license.
Author: Zooko O'Whielacronx
http://zooko.com/
mailto:zooko@zooko.com

Copyright 2000, Mojam Media, Inc., all rights reserved.
Author: Skip Montanaro

Copyright 1999, Bioreason, Inc., all rights reserved.
Author: Andrew Dalke

Copyright 1995-1997, Automatrix, Inc., all rights reserved.
Author: Skip Montanaro

Copyright 1991-1995, Stichting Mathematisch Centrum, all rights reserved.

Permission to use, copy, modify, and distribute this Python software and
its associated documentation for any purpose without fee is hereby
granted, provided that the above copyright notice appears in all copies,
and that both that copyright notice and this permission notice appear in
supporting documentation, and that the name of neither Automatrix,
Bioreason or Mojam Media be used in advertising or publicity pertaining to
distribution of the software without specific, written prior permission.

92 Appendice C. Storia e licenza

Extending and Embedding Python, Release 3.9.23

C.3.6 Funzioni UUencode e UUdecode

Il modulo uu contiene il seguente avviso:

Copyright 1994 by Lance Ellinghouse
Cathedral City, California Republic, United States of America.

All Rights Reserved
Permission to use, copy, modify, and distribute this software and its
documentation for any purpose and without fee is hereby granted,
provided that the above copyright notice appear in all copies and that
both that copyright notice and this permission notice appear in
supporting documentation, and that the name of Lance Ellinghouse
not be used in advertising or publicity pertaining to distribution
of the software without specific, written prior permission.
LANCE ELLINGHOUSE DISCLAIMS ALL WARRANTIES WITH REGARD TO
THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS, IN NO EVENT SHALL LANCE ELLINGHOUSE CENTRUM BE LIABLE
FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT
OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

Modified by Jack Jansen, CWI, July 1995:
- Use binascii module to do the actual line-by-line conversion

between ascii and binary. This results in a 1000-fold speedup. The C
version is still 5 times faster, though.

- Arguments more compliant with Python standard

C.3.7 Chiamate di procedura remota XML

Il modulo xmlrpc.client contiene il seguente avviso:

The XML-RPC client interface is

Copyright (c) 1999-2002 by Secret Labs AB
Copyright (c) 1999-2002 by Fredrik Lundh

By obtaining, using, and/or copying this software and/or its
associated documentation, you agree that you have read, understood,
and will comply with the following terms and conditions:

Permission to use, copy, modify, and distribute this software and
its associated documentation for any purpose and without fee is
hereby granted, provided that the above copyright notice appears in
all copies, and that both that copyright notice and this permission
notice appear in supporting documentation, and that the name of
Secret Labs AB or the author not be used in advertising or publicity
pertaining to distribution of the software without specific, written
prior permission.

SECRET LABS AB AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH REGARD
TO THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANT-
ABILITY AND FITNESS. IN NO EVENT SHALL SECRET LABS AB OR THE AUTHOR
BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY
DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS

(continues on next page)

C.3. Licenze e riconoscimenti per il software incorporato 93

Extending and Embedding Python, Release 3.9.23

(continua dalla pagina precedente)

ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
OF THIS SOFTWARE.

C.3.8 test_epoll

Il modulo test_epoll contiene il seguente avviso:

Copyright (c) 2001-2006 Twisted Matrix Laboratories.

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

C.3.9 Select kqueue

Il modulo select contiene il seguente avviso per l’interfaccia kqueue:

Copyright (c) 2000 Doug White, 2006 James Knight, 2007 Christian Heimes
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
1. Redistributions of source code must retain the above copyright

notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright

notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY

(continues on next page)

94 Appendice C. Storia e licenza

Extending and Embedding Python, Release 3.9.23

(continua dalla pagina precedente)

OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

C.3.10 SipHash24

The file Python/pyhash.c contains Marek Majkowski” implementation of Dan Bernstein’s SipHash24 algorithm. It
contains the following note:

<MIT License>
Copyright (c) 2013 Marek Majkowski <marek@popcount.org>

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
</MIT License>

Original location:
https://github.com/majek/csiphash/

Solution inspired by code from:
Samuel Neves (supercop/crypto_auth/siphash24/little)
djb (supercop/crypto_auth/siphash24/little2)
Jean-Philippe Aumasson (https://131002.net/siphash/siphash24.c)

C.3.11 strtod e dtoa

Il file Python/dtoa.c, che fornisce le funzioni C dtoa e strtod per la conversione dei numeri di tipo doubles C da e
verso stringhe, è derivato dal file con lo stesso nome di David M. Gay, attualmente disponibile su http://www.netlib.org/
fp/. Il file originale, così come recuperato il 16 marzo 2009, contiene il seguente avviso di copyright e licenza:

/**
*
* The author of this software is David M. Gay.
*
* Copyright (c) 1991, 2000, 2001 by Lucent Technologies.
*
* Permission to use, copy, modify, and distribute this software for any
* purpose without fee is hereby granted, provided that this entire notice
* is included in all copies of any software which is or includes a copy
* or modification of this software and in all copies of the supporting
* documentation for such software.
*
* THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR IMPLIED
* WARRANTY. IN PARTICULAR, NEITHER THE AUTHOR NOR LUCENT MAKES ANY
* REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE MERCHANTABILITY
* OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR PURPOSE.

(continues on next page)

C.3. Licenze e riconoscimenti per il software incorporato 95

http://www.netlib.org/fp/
http://www.netlib.org/fp/

Extending and Embedding Python, Release 3.9.23

(continua dalla pagina precedente)

*
***/

C.3.12 7.4 OpenSSL

The modules hashlib, posix, ssl, crypt use the OpenSSL library for added performance if made available by
the operating system. Additionally, the Windows and macOS installers for Python may include a copy of the OpenSSL
libraries, so we include a copy of the OpenSSL license here:

LICENSE ISSUES
==============

The OpenSSL toolkit stays under a dual license, i.e. both the conditions of
the OpenSSL License and the original SSLeay license apply to the toolkit.
See below for the actual license texts. Actually both licenses are BSD-style
Open Source licenses. In case of any license issues related to OpenSSL
please contact openssl-core@openssl.org.

OpenSSL License

/* ==
* Copyright (c) 1998-2008 The OpenSSL Project. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
*
* 3. All advertising materials mentioning features or use of this
* software must display the following acknowledgment:
* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
*
* 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
* endorse or promote products derived from this software without
* prior written permission. For written permission, please contact
* openssl-core@openssl.org.
*
* 5. Products derived from this software may not be called "OpenSSL"
* nor may "OpenSSL" appear in their names without prior written
* permission of the OpenSSL Project.
*
* 6. Redistributions of any form whatsoever must retain the following
* acknowledgment:
* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit (http://www.openssl.org/)"
*

(continues on next page)

96 Appendice C. Storia e licenza

Extending and Embedding Python, Release 3.9.23

(continua dalla pagina precedente)

* THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
* EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
* ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
* OF THE POSSIBILITY OF SUCH DAMAGE.
* ==
*
* This product includes cryptographic software written by Eric Young
* (eay@cryptsoft.com). This product includes software written by Tim
* Hudson (tjh@cryptsoft.com).
*
*/

Original SSLeay License

/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
* All rights reserved.
*
* This package is an SSL implementation written
* by Eric Young (eay@cryptsoft.com).
* The implementation was written so as to conform with Netscapes SSL.
*
* This library is free for commercial and non-commercial use as long as
* the following conditions are aheared to. The following conditions
* apply to all code found in this distribution, be it the RC4, RSA,
* lhash, DES, etc., code; not just the SSL code. The SSL documentation
* included with this distribution is covered by the same copyright terms
* except that the holder is Tim Hudson (tjh@cryptsoft.com).
*
* Copyright remains Eric Young's, and as such any Copyright notices in
* the code are not to be removed.
* If this package is used in a product, Eric Young should be given attribution
* as the author of the parts of the library used.
* This can be in the form of a textual message at program startup or
* in documentation (online or textual) provided with the package.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* "This product includes cryptographic software written by
* Eric Young (eay@cryptsoft.com)"
* The word 'cryptographic' can be left out if the rouines from the library

(continues on next page)

C.3. Licenze e riconoscimenti per il software incorporato 97

Extending and Embedding Python, Release 3.9.23

(continua dalla pagina precedente)

* being used are not cryptographic related :-).
* 4. If you include any Windows specific code (or a derivative thereof) from
* the apps directory (application code) you must include an acknowledgement:
* "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
*
* THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* The licence and distribution terms for any publically available version or
* derivative of this code cannot be changed. i.e. this code cannot simply be
* copied and put under another distribution licence
* [including the GNU Public Licence.]
*/

C.3.13 expat

L’estensione pyexpat è costruita usando una copia dei sorgenti expat a meno che la build non sia configurata con
--with-system-expat:

Copyright (c) 1998, 1999, 2000 Thai Open Source Software Center Ltd
and Clark Cooper

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

98 Appendice C. Storia e licenza

Extending and Embedding Python, Release 3.9.23

C.3.14 libffi

L’estensione _ctypes è costruita usando una copia dei sorgenti libffi a meno che la build non sia configurata con
--with-system-libffi`:

Copyright (c) 1996-2008 Red Hat, Inc and others.

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
``Software''), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED ``AS IS'', WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.

C.3.15 zlib

L’estensione zlib è costruita usando una copia dei sorgenti zlib se la versione zlib trovata sul sistema è troppo vecchia
per essere usata per la build:

Copyright (C) 1995-2011 Jean-loup Gailly and Mark Adler

This software is provided 'as-is', without any express or implied
warranty. In no event will the authors be held liable for any damages
arising from the use of this software.

Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it
freely, subject to the following restrictions:

1. The origin of this software must not be misrepresented; you must not
claim that you wrote the original software. If you use this software
in a product, an acknowledgment in the product documentation would be
appreciated but is not required.

2. Altered source versions must be plainly marked as such, and must not be
misrepresented as being the original software.

3. This notice may not be removed or altered from any source distribution.

Jean-loup Gailly Mark Adler
jloup@gzip.org madler@alumni.caltech.edu

C.3. Licenze e riconoscimenti per il software incorporato 99

Extending and Embedding Python, Release 3.9.23

C.3.16 cfuhash

L’implementazione della tabella hash utilizzata da tracemalloc si basa sul progetto cfuhash:

Copyright (c) 2005 Don Owens
All rights reserved.

This code is released under the BSD license:

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following
disclaimer in the documentation and/or other materials provided
with the distribution.

* Neither the name of the author nor the names of its
contributors may be used to endorse or promote products derived
from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
OF THE POSSIBILITY OF SUCH DAMAGE.

C.3.17 libmpdec

Il modulo _decimal è costruito usando una copia della libreria libmpdec a meno che la build non sia configurata con
--with-system-libmpdec`:

Copyright (c) 2008-2020 Stefan Krah. All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

(continues on next page)

100 Appendice C. Storia e licenza

Extending and Embedding Python, Release 3.9.23

(continua dalla pagina precedente)

THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

C.3.18 W3C C14N test suite

The C14N 2.0 test suite in the test package (Lib/test/xmltestdata/c14n-20/) was retrieved from theW3C
website at https://www.w3.org/TR/xml-c14n2-testcases/ and is distributed under the 3-clause BSD license:

Copyright (c) 2013 W3C(R) (MIT, ERCIM, Keio, Beihang),
All Rights Reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

* Redistributions of works must retain the original copyright notice,
this list of conditions and the following disclaimer.

* Redistributions in binary form must reproduce the original copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

* Neither the name of the W3C nor the names of its contributors may be
used to endorse or promote products derived from this work without
specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

C.3. Licenze e riconoscimenti per il software incorporato 101

https://www.w3.org/TR/xml-c14n2-testcases/

Extending and Embedding Python, Release 3.9.23

102 Appendice C. Storia e licenza

APPENDICED

Copyright

Python e questa documentazione sono protetti da:

Copyright © 2001-2023 Python Software Foundation. All rights reserved.

Copyright © 2000 BeOpen.com. Tutti i diritti riservati.

Copyright © 1995-2000 Corporation for National Research Initiatives. Tutti i diritti riservati.

Copyright © 1991-1995 Stichting Mathematisch Centrum. Tutti i diritti riservati.

Fare riferimento a Storia e licenza per informazioni complete su licenza e permessi.

103

Extending and Embedding Python, Release 3.9.23

104 Appendice D. Copyright

Indice

Non-alphabetical
..., 69
2to3, 69
>>>, 69
__future__, 73
__slots__, 79

A
abstract base class, 69
annotation, 69
argument, 69
asynchronous context manager, 70
asynchronous generator, 70
asynchronous generator iterator, 70
asynchronous iterable, 70
asynchronous iterator, 70
attribute, 70
awaitable, 70

B
BDFL, 70
binary file, 70
bytecode, 71
bytes-like object, 70

C
callback, 71
C-contiguous, 71
class, 71
class variable, 71
coercion, 71
complex number, 71
context manager, 71
context variable, 71
contiguous, 71
coroutine, 71
coroutine function, 71
CPython, 71

D
deallocation, object, 51
decorator, 72
descriptor, 72
dictionary, 72
dictionary comprehension, 72
dictionary view, 72
docstring, 72
duck-typing, 72

E
EAFP, 72
expression, 72
extension module, 72

F
f-string, 73
file object, 73
file-like object, 73
finalization, of objects, 51
finder, 73
floor division, 73
Fortran contiguous, 71
function, 73
function annotation, 73
funzione built-in

repr, 52

G
garbage collection, 73
generator, 73
generator expression, 74
generator iterator, 73
generic function, 74
generic type, 74
GIL, 74
global interpreter lock, 74

H
hash-based pyc, 74

105

Extending and Embedding Python, Release 3.9.23

hashable, 74

I
IDLE, 74
immutable, 74
import path, 74
importer, 75
importing, 75
interactive, 75
interpreted, 75
interpreter shutdown, 75
iterable, 75
iterator, 75

K
key function, 75
keyword argument, 75

L
lambda, 76
LBYL, 76
list, 76
list comprehension, 76
loader, 76

M
magic

method, 76
magic method, 76
mapping, 76
meta path finder, 76
metaclass, 76
method, 76

magic, 76
special, 80

method resolution order, 76
module, 76
module spec, 76
MRO, 76
mutable, 76

N
named tuple, 76
namespace, 77
namespace package, 77
nested scope, 77
new-style class, 77

O
object, 77

deallocation, 51
finalization, 51

P
package, 77
parameter, 77
path based finder, 78
path entry, 78
path entry finder, 78
path entry hook, 78
path-like object, 78
PEP, 78
Philbrick, Geoff, 15
portion, 78
positional argument, 78
provisional API, 78
provisional package, 79
PyArg_ParseTuple(), 14
PyArg_ParseTupleAndKeywords(), 15
PyErr_Fetch(), 51
PyErr_Restore(), 51
PyInit_modulename (funzione C), 59
PyObject_CallObject(), 12
Python 3000, 79
Python Enhancement Proposals

PEP 1, 78
PEP 238, 73
PEP 278, 81
PEP 302, 73, 76
PEP 343, 71
PEP 362, 70, 78
PEP 411, 79
PEP 420, 73, 77, 78
PEP 442, 52
PEP 443, 74
PEP 451, 73
PEP 483, 74
PEP 484, 69, 73, 74, 81
PEP 489, 11, 59
PEP 492, 70, 71
PEP 498, 73
PEP 519, 78
PEP 525, 70
PEP 526, 69, 81
PEP 585, 74
PEP 3116, 81
PEP 3155, 79

Pythonic, 79
PYTHONPATH, 59

Q
qualified name, 79

R
READ_RESTRICTED, 54
READONLY, 54

106 Indice

Extending and Embedding Python, Release 3.9.23

reference count, 79
regular package, 79
repr

funzione built-in, 52
RESTRICTED, 54

S
sequence, 79
set comprehension, 80
single dispatch, 80
slice, 80
special

method, 80
special method, 80
statement, 80
string

object representation, 52

T
text encoding, 80
text file, 80
triple-quoted string, 80
type, 80
type alias, 80
type hint, 81

U
universal newlines, 81

V
variabile d'ambiente, PYTHONPATH, 59
variable annotation, 81
virtual environment, 81
virtual machine, 81

W
WRITE_RESTRICTED, 54

Z
Zen of Python, 81

Indice 107

	Recommended third party tools
	Creating extensions without third party tools
	Extending Python with C or C++
	A Simple Example
	Intermezzo: Errors and Exceptions
	Back to the Example
	The Module’s Method Table and Initialization Function
	Compilation and Linkage
	Calling Python Functions from C
	Extracting Parameters in Extension Functions
	Keyword Parameters for Extension Functions
	Building Arbitrary Values
	Reference Counts
	Writing Extensions in C++
	Providing a C API for an Extension Module

	Defining Extension Types: Tutorial
	The Basics
	Adding data and methods to the Basic example
	Providing finer control over data attributes
	Supporting cyclic garbage collection
	Subclassing other types

	Defining Extension Types: Assorted Topics
	Finalization and De-allocation
	Object Presentation
	Attribute Management
	Object Comparison
	Abstract Protocol Support
	Weak Reference Support
	More Suggestions

	Building C and C++ Extensions
	Building C and C++ Extensions with distutils
	Distributing your extension modules

	Building C and C++ Extensions on Windows
	A Cookbook Approach
	Differences Between Unix and Windows
	Using DLLs in Practice

	Embedding the CPython runtime in a larger application
	Embedding Python in Another Application
	Very High Level Embedding
	Beyond Very High Level Embedding: An overview
	Pure Embedding
	Extending Embedded Python
	Embedding Python in C++
	Compiling and Linking under Unix-like systems

	Glossary
	Riguardo questa documentazione
	Volontari che hanno contribuito alla documentazione di Python

	Storia e licenza
	Storia del software
	Termini e condizioni di accesso o di utilizzo di Python
	PSF ACCORDO DI LICENZA PER PYTHON 3.9.23
	CONTRATTO DI LICENZA DI BEOPEN.COM PER PYTHON 2.0
	CNRI CONTRATTO DI LICENZA PER PYTHON 1.6.1
	CWI CONTRATTO DI LICENZA PER PYTHON DA 0.9.0 A 1.2
	ZERO-CLAUSE BSD LICENSE FOR CODE IN THE PYTHON 3.9.23 DOCUMENTATION

	Licenze e riconoscimenti per il software incorporato
	Mersenne Twister
	Socket
	Servizi di socket asincrone
	Gestione dei cookie
	Tracciabilità dell’esecuzione
	Funzioni UUencode e UUdecode
	Chiamate di procedura remota XML
	test_epoll
	Select kqueue
	SipHash24
	strtod e dtoa
	7.4 OpenSSL
	expat
	libffi
	zlib
	cfuhash
	libmpdec
	W3C C14N test suite

	Copyright
	Indice

