Distributing Python Modules
Release 3.9.23

Guido van Rossum
and the Python development team

luglio 09, 2025

Python Software Foundation
Email: docs@python.org

Indice

Key terms 3
Open source licensing and collaboration 5
Installing the tools 7
Reading the Python Packaging User Guide 9
How do I...? 11
5.1 ...choose a name for my project? L. e e e e e 11
5.2 ... create and distribute binary extensions? e e e e e e e e e e e e e 11
Glossary 13
Riguardo questa documentazione 27
B.1 Volontari che hanno contribuito alla documentazione di Python 27
Storia e licenza 29
C.1 Storiadel software L e e e e e e e 29
C.2 Termini e condizioni di accesso o di utilizzodi Python 30
C.2.1 PSF ACCORDO DILICENZA PER PYTHON 3923 30
C.2.2 CONTRATTO DI LICENZA DI BEOPEN.COM PER PYTHON 2.0 31
C.2.3 CNRICONTRATTO DILICENZAPERPYTHON 1.6.1. 32
C.2.4 CWICONTRATTO DI LICENZA PER PYTHON DA 09.0A 1.2 33
C.2.5 ZERO-CLAUSE BSD LICENSE FOR CODE IN THE PYTHON 3.9.23 DOCUMENTATION 33
C.3 Licenze e riconoscimenti per il software incorporato oL 34
C3.1 Mersenne TWIStEr o o v b v i i it e e e e e e e e e 34
C3.2 Socket e e 35
C.3.3 Servizi di socket asinCroneo i e e e e e e e e e e 35
C.3.4 Gestionedeicookie o L e e e e e e e e 36
C.3.5 Tracciabilita dell'esecuzione L 36
C.3.6 Funzioni UUencode e UUdecode 37
C.3.7 Chiamate di proceduraremota XML e 37
C.3.8 test_epoll L e e e e e e 38
C39 Selectkqueue L 38
C.3.10 SipHash24 39

C3.11 strtodedtoa o e e e e e e e e e 39

C3.12
C3.13
C3.14
C3.15
C3.16
C3.17
C3.18

D Copyright

Indice

74 0penSSL e e e e e e 40

BXPAL o v o e 42
LbfH . . . e e 43
ZID e 43
cfuhash e 44
libmpdec e e 44
WI3C CIANESt SUItE . . . v v v o e 45

47

49

Distributing Python Modules, Release 3.9.23

Email distutils-sig@python.org

As a popular open source development project, Python has an active supporting community of contributors and users that
also make their software available for other Python developers to use under open source license terms.

This allows Python users to share and collaborate effectively, benefiting from the solutions others have already created
to common (and sometimes even rare!) problems, as well as potentially contributing their own solutions to the common
pool.

This guide covers the distribution part of the process. For a guide to installing other Python projects, refer to the installation
guide.

Nota: For corporate and other institutional users, be aware that many organisations have their own policies around using
and contributing to open source software. Please take such policies into account when making use of the distribution and
installation tools provided with Python.

Indice 1

mailto:distutils-sig@python.org

Distributing Python Modules, Release 3.9.23

2 Indice

cAPITOLO 1

Key terms

the Python Package Index is a public repository of open source licensed packages made available for use by other
Python users

the Python Packaging Authority are the group of developers and documentation authors responsible for the main-
tenance and evolution of the standard packaging tools and the associated metadata and file format standards. They
maintain a variety of tools, documentation and issue trackers on both GitHub and Bitbucket.

distutils is the original build and distribution system first added to the Python standard library in 1998. While
direct use of distutils is being phased out, it still laid the foundation for the current packaging and distribution
infrastructure, and it not only remains part of the standard library, but its name lives on in other ways (such as the
name of the mailing list used to coordinate Python packaging standards development).

setuptools is a (largely) drop-in replacement for distutils first published in 2004. Its most notable addition
over the unmodified distutils tools was the ability to declare dependencies on other packages. It is currently
recommended as a more regularly updated alternative to distutils that offers consistent support for more recent
packaging standards across a wide range of Python versions.

wheel (in this context) is a project that adds the bdist_wheel command to distutils/setuptools. This pro-
duces a cross platform binary packaging format (called «wheels» or «wheel files» and defined in PEP 427) that
allows Python libraries, even those including binary extensions, to be installed on a system without needing to be
built locally.

https://pypi.org
https://www.pypa.io/
https://github.com/pypa
https://bitbucket.org/pypa/
https://setuptools.readthedocs.io/en/latest/
https://wheel.readthedocs.io/
https://setuptools.readthedocs.io/en/latest/
https://www.python.org/dev/peps/pep-0427

Distributing Python Modules, Release 3.9.23

4 Capitolo 1. Key terms

CAPITOLO 2

Open source licensing and collaboration

In most parts of the world, software is automatically covered by copyright. This means that other developers require
explicit permission to copy, use, modify and redistribute the software.

Open source licensing is a way of explicitly granting such permission in a relatively consistent way, allowing developers
to share and collaborate efficiently by making common solutions to various problems freely available. This leaves many
developers free to spend more time focusing on the problems that are relatively unique to their specific situation.

The distribution tools provided with Python are designed to make it reasonably straightforward for developers to make
their own contributions back to that common pool of software if they choose to do so.

The same distribution tools can also be used to distribute software within an organisation, regardless of whether that
software is published as open source software or not.

Distributing Python Modules, Release 3.9.23

6 Capitolo 2. Open source licensing and collaboration

CAPITOLO 3

Installing the tools

The standard library does not include build tools that support modern Python packaging standards, as the core development
team has found that it is important to have standard tools that work consistently, even on older versions of Python.

The currently recommended build and distribution tools can be installed by invoking the pip module at the command
line:

python -m pip install setuptools wheel twine

Nota: For POSIX users (including macOS and Linux users), these instructions assume the use of a virtual environment.

For Windows users, these instructions assume that the option to adjust the system PATH environment variable was selected
when installing Python.

The Python Packaging User Guide includes more details on the currently recommended tools.

https://packaging.python.org/guides/tool-recommendations/#packaging-tool-recommendations

Distributing Python Modules, Release 3.9.23

8 Capitolo 3. Installing the tools

capitoLo 4

Reading the Python Packaging User Guide

The Python Packaging User Guide covers the various key steps and elements involved in creating and publishing a project:
 Project structure
« Building and packaging the project
» Uploading the project to the Python Package Index
o The .pypirc file

 https://packaging.python.org/tutorials/packaging-projects/#packaging-python-projects
 https://packaging.python.org/tutorials/packaging-projects/#creating-the-package-files
 https://packaging.python.org/tutorials/packaging-projects/#uploading-the-distribution-archives
 https://packaging.python.org/specifications/pypirc/

Distributing Python Modules, Release 3.9.23

10 Capitolo 4. Reading the Python Packaging User Guide

CAPITOLO B

How do I...?

These are quick answers or links for some common tasks.

5.1 ... choose a hame for my project?

This isn’t an easy topic, but here are a few tips:
« check the Python Package Index to see if the name is already in use
« check popular hosting sites like GitHub, Bitbucket, etc to see if there is already a project with that name
 check what comes up in a web search for the name you’re considering

« avoid particularly common words, especially ones with multiple meanings, as they can make it difficult for users to
find your software when searching for it

5.2 ... create and distribute binary extensions?

This is actually quite a complex topic, with a variety of alternatives available depending on exactly what you’re aiming to
achieve. See the Python Packaging User Guide for more information and recommendations.

Vedi anche:

Python Packaging User Guide: Binary Extensions

11

https://packaging.python.org/guides/packaging-binary-extensions/

Distributing Python Modules, Release 3.9.23

12 Capitolo 5. How do I...?

APPENDICE A

Glossary

>>> The default Python prompt of the interactive shell. Often seen for code examples which can be executed interactively
in the interpreter.

. Can refer to:

o The default Python prompt of the interactive shell when entering the code for an indented code block, when
within a pair of matching left and right delimiters (parentheses, square brackets, curly braces or triple quotes),
or after specifying a decorator.

e The E11ipsis built-in constant.

2to3 A tool that tries to convert Python 2.x code to Python 3.x code by handling most of the incompatibilities which can
be detected by parsing the source and traversing the parse tree.

2to3 is available in the standard library as 1 1b2t 03; a standalone entry point is provided as Tools/scripts/
2to03. See 2to3-reference.

abstract base class Abstract base classes complement duck-typing by providing a way to define interfaces when other
techniques like hasattr () would be clumsy or subtly wrong (for example with magic methods). ABCs introduce
virtual subclasses, which are classes that don’t inherit from a class but are still recognized by isinstance () and
issubclass () ;see the abc module documentation. Python comes with many built-in ABCs for data structures
(in the collections.abc module), numbers (in the numbers module), streams (in the 1 o module), import
finders and loaders (in the importlib.abc module). You can create your own ABCs with the albbc module.

annotation A label associated with a variable, a class attribute or a function parameter or return value, used by convention
as a type hint.

Annotations of local variables cannot be accessed at runtime, but annotations of global variables, class attribu-
tes, and functions are stored in the __annotations___ special attribute of modules, classes, and functions,
respectively.

See variable annotation, function annotation, PEP 484 and PEP 526, which describe this functionality.
argument A value passed to a function (or method) when calling the function. There are two kinds of argument:

o keyword argument: an argument preceded by an identifier (e.g. name=) in a function call or passed as a value
in a dictionary preceded by * *. For example, 3 and 5 are both keyword arguments in the following calls to
complex():

13

https://www.python.org/dev/peps/pep-0484
https://www.python.org/dev/peps/pep-0526

Distributing Python Modules, Release 3.9.23

complex (real=3, imag=>5)
complex (**{'real': 3, 'imag': 5})

« positional argument: an argument that is not a keyword argument. Positional arguments can appear at the
beginning of an argument list and/or be passed as elements of an iterable preceded by *. For example, 3 and
5 are both positional arguments in the following calls:

complex (3, 5)
complex (* (3, 5))

Arguments are assigned to the named local variables in a function body. See the calls section for the rules governing
this assignment. Syntactically, any expression can be used to represent an argument; the evaluated value is assigned
to the local variable.

See also the parameter glossary entry, the FAQ question on the difference between arguments and parameters, and
PEP 362.

asynchronous context manager An object which controls the environment seen in an async with statement by
defining __aenter_ () and __aexit__ () methods. Introduced by PEP 492.

asynchronous generator A function which returns an asynchronous generator iterator. It looks like a coroutine function
defined with async def except that it contains yie1ld expressions for producing a series of values usable in an
async for loop.

Usually refers to an asynchronous generator function, but may refer to an asynchronous generator iterator in some
contexts. In cases where the intended meaning isn’t clear, using the full terms avoids ambiguity.

An asynchronous generator function may contain await expressions as wellas async for,and async with
statements.

asynchronous generator iterator An object created by a asynchronous generator function.

This is an asynchronous iterator which when called using the __anext__ () method returns an awaitable object
which will execute the body of the asynchronous generator function until the next yield expression.

Each yield temporarily suspends processing, remembering the location execution state (including local variables
and pending try-statements). When the asynchronous generator iterator effectively resumes with another awaitable
returned by ___anext__ (), it picks up where it left off. See PEP 492 and PEP 525.

asynchronous iterable An object, that can be used in an async for statement. Must return an asynchronous iterator
fromits __aiter__ () method. Introduced by PEP 492.

asynchronous iterator An object that implements the __aiter_ () and __anext__ () methods. __anext___
must return an awaitable object. async for resolves the awaitables returned by an asynchronous iterator’s
__anext__ () method until it raises a StopAsyncIteration exception. Introduced by PEP 492.

attribute A value associated with an object which is referenced by name using dotted expressions. For example, if an
object o has an attribute a it would be referenced as o.a.

awaitable An object that can be used in an await expression. Can be a coroutine or an object withan __await__ ()
method. See also PEP 492.

BDFL Benevolent Dictator For Life, a.k.a. Guido van Rossum, Python’s creator.

binary file A file object able to read and write bytes-like objects. Examples of binary files are files opened in binary mode
("rb', 'wb' or 'rb+"'), sys.stdin.buffer, sys.stdout .buffer, and instances of io.BytesIO
and gzip.GzipFile.

See also zext file for a file object able to read and write st r objects.

bytes-like object An object that supports the bufferobjects and can export a C-contiguous buffer. This includes all
bytes,bytearray,and array.array objects, as well as many common memoryview objects. Bytes-like

14 Appendice A. Glossary

https://www.python.org/dev/peps/pep-0362
https://www.python.org/dev/peps/pep-0492
https://www.python.org/dev/peps/pep-0492
https://www.python.org/dev/peps/pep-0525
https://www.python.org/dev/peps/pep-0492
https://www.python.org/dev/peps/pep-0492
https://www.python.org/dev/peps/pep-0492
https://gvanrossum.github.io/

Distributing Python Modules, Release 3.9.23

objects can be used for various operations that work with binary data; these include compression, saving to a binary
file, and sending over a socket.

Some operations need the binary data to be mutable. The documentation often refers to these as «read-write bytes-
like objects». Example mutable buffer objects include bytearray andamemoryviewof abytearray. Other
operations require the binary data to be stored in immutable objects («read-only bytes-like objects»); examples of
these include bytes and amemoryview of a bytes object.

bytecode Python source code is compiled into bytecode, the internal representation of a Python program in the CPython
interpreter. The bytecode is also cached in .pyc files so that executing the same file is faster the second time
(recompilation from source to bytecode can be avoided). This «intermediate language» is said to run on a virfual
machine that executes the machine code corresponding to each bytecode. Do note that bytecodes are not expected
to work between different Python virtual machines, nor to be stable between Python releases.

A list of bytecode instructions can be found in the documentation for the dis module.
callback A subroutine function which is passed as an argument to be executed at some point in the future.

class A template for creating user-defined objects. Class definitions normally contain method definitions which operate
on instances of the class.

class variable A variable defined in a class and intended to be modified only at class level (i.e., not in an instance of the
class).

coercion The implicit conversion of an instance of one type to another during an operation which involves two arguments
of the same type. For example, int (3.15) converts the floating point number to the integer 3, but in 3+4. 5,
each argument is of a different type (one int, one float), and both must be converted to the same type before they
can be added or it will raise a TypeError. Without coercion, all arguments of even compatible types would have
to be normalized to the same value by the programmer, e.g., f1oat (3) +4. 5 rather than just 3+4.5.

complex number An extension of the familiar real number system in which all numbers are expressed as a sum of a real
part and an imaginary part. Imaginary numbers are real multiples of the imaginary unit (the square root of —1),
often written i in mathematics or j in engineering. Python has built-in support for complex numbers, which are
written with this latter notation; the imaginary part is written with a j suffix, e.g., 3+1 3. To get access to complex
equivalents of the math module, use cmath. Use of complex numbers is a fairly advanced mathematical feature.
If you're not aware of a need for them, it’'s almost certain you can safely ignore them.

context manager An object which controls the environment seen in a with statement by defining __enter__ () and
__exit__ () methods. See PEP 343.

context variable A variable which can have different values depending on its context. This is similar to Thread-Local
Storage in which each execution thread may have a different value for a variable. However, with context variables,
there may be several contexts in one execution thread and the main usage for context variables is to keep track of
variables in concurrent asynchronous tasks. See contextvars.

contiguous A buffer is considered contiguous exactly if it is either C-contiguous or Fortran contiguous. Zero-dimensional
buffers are C and Fortran contiguous. In one-dimensional arrays, the items must be laid out in memory next to each
other, in order of increasing indexes starting from zero. In multidimensional C-contiguous arrays, the last index
varies the fastest when visiting items in order of memory address. However, in Fortran contiguous arrays, the first
index varies the fastest.

coroutine Coroutines are a more generalized form of subroutines. Subroutines are entered at one point and exited at
another point. Coroutines can be entered, exited, and resumed at many different points. They can be implemented
with the async def statement. See also PEP 492.

coroutine function A function which returns a coroutine object. A coroutine function may be defined with the async
def statement, and may contain await, async for,and async with keywords. These were introduced by
PEP 492.

CPython The canonical implementation of the Python programming language, as distributed on python.org. The term
«CPython» is used when necessary to distinguish this implementation from others such as Jython or IronPython.

15

https://www.python.org/dev/peps/pep-0343
https://www.python.org/dev/peps/pep-0492
https://www.python.org/dev/peps/pep-0492
https://www.python.org

Distributing Python Modules, Release 3.9.23

decorator A function returning another function, usually applied as a function transformation using the @wrapper
syntax. Common examples for decorators are classmethod () and staticmethod ().

The decorator syntax is merely syntactic sugar, the following two function definitions are semantically equivalent:

def f (arqg):
f = staticmethod (f)

@staticmethod
def f (arg):

The same concept exists for classes, but is less commonly used there. See the documentation for function definitions
and class definitions for more about decorators.

descriptor Any object which defines the methods ___get__ (), set__ (),or __delete__ (). When a class
attribute is a descriptor, its special binding behavior is triggered upon attribute lookup. Normally, using a.b to
get, set or delete an attribute looks up the object named b in the class dictionary for a, but if b is a descriptor,
the respective descriptor method gets called. Understanding descriptors is a key to a deep understanding of Python
because they are the basis for many features including functions, methods, properties, class methods, static methods,
and reference to super classes.

For more information about descriptors” methods, see descriptors or the Descriptor How To Guide.

dictionary An associative array, where arbitrary keys are mapped to values. The keys can be any object with
__hash__ () and __eq__ () methods. Called a hash in Perl.

dictionary comprehension A compact way to process all or part of the elements in an iterable and return a dictionary
with the results. results = {n: n ** 2 for n in range (10)} generates a dictionary containing
key n mapped to value n ** 2. See comprehensions.

dictionary view The objects returned from dict.keys (), dict.values (), and dict.items () are called
dictionary views. They provide a dynamic view on the dictionary’s entries, which means that when the dictionary
changes, the view reflects these changes. To force the dictionary view to become a full listuse 1ist (dictview).
See dict-views.

docstring A string literal which appears as the first expression in a class, function or module. While ignored when the
suite is executed, it is recognized by the compiler and put into the _ doc___ attribute of the enclosing class,
function or module. Since it is available via introspection, it is the canonical place for documentation of the object.

duck-typing A programming style which does not look at an object’s type to determine if it has the right interface;
instead, the method or attribute is simply called or used («If it looks like a duck and quacks like a duck, it must
be a duck.») By emphasizing interfaces rather than specific types, well-designed code improves its flexibility by
allowing polymorphic substitution. Duck-typing avoids tests using t ype () or isinstance (). (Note, however,
that duck-typing can be complemented with abstract base classes.) Instead, it typically employs hasattr () tests
or EAFP programming.

EAFP Easier to ask for forgiveness than permission. This common Python coding style assumes the existence of valid
keys or attributes and catches exceptions if the assumption proves false. This clean and fast style is characterized
by the presence of many try and except statements. The technique contrasts with the LBYL style common to
many other languages such as C.

expression A piece of syntax which can be evaluated to some value. In other words, an expression is an accumulation
of expression elements like literals, names, attribute access, operators or function calls which all return a value.
In contrast to many other languages, not all language constructs are expressions. There are also statements which
cannot be used as expressions, such as while. Assignments are also statements, not expressions.

extension module A module written in C or C++, using Python’s C API to interact with the core and with user code.

16 Appendice A. Glossary

Distributing Python Modules, Release 3.9.23

f-string String literals prefixed with '£' or 'F' are commonly called «f-strings» which is short for formatted string
literals. See also PEP 498.

file object An object exposing a file-oriented API (with methods such as read () or write ()) to an underlying re-
source. Depending on the way it was created, a file object can mediate access to a real on-disk file or to another
type of storage or communication device (for example standard input/output, in-memory buffers, sockets, pipes,
etc.). File objects are also called file-like objects or streams.

There are actually three categories of file objects: raw binary files, buffered binary files and text files. Their interfaces
are defined in the 1o module. The canonical way to create a file object is by using the open () function.

file-like object A synonym for file object.
finder An object that tries to find the loader for a module that is being imported.

Since Python 3.3, there are two types of finder: meta path finders for use with sys .meta_path, and path entry
Jinders for use with sys .path_hooks.

See PEP 302, PEP 420 and PEP 451 for much more detail.

floor division Mathematical division that rounds down to nearest integer. The floor division operator is / /. For example,
the expression 11 // 4 evaluates to 2 in contrast to the 2 . 75 returned by float true division. Note that (-11)
// 41is -3 because that is -2 . 75 rounded downward. See PEP 238.

function A series of statements which returns some value to a caller. It can also be passed zero or more arguments which
may be used in the execution of the body. See also parameter, method, and the function section.

function annotation An annotation of a function parameter or return value.

Function annotations are usually used for type hints: for example, this function is expected to take two int
arguments and is also expected to have an int return value:

def sum_two_numbers(a: int, b: int) -> int:
return a + b

Function annotation syntax is explained in section function.
See variable annotation and PEP 484, which describe this functionality.

_ future__ A future statement, from __future__ import <feature>, directs the compiler to compile
the current module using syntax or semantics that will become standard in a future release of Python. The
__ future__ module documents the possible values of feature. By importing this module and evaluating its
variables, you can see when a new feature was first added to the language and when it will (or did) become the

default:
>>> import _ future_
>>> _ future__ .division

_Feature((2, 2, 0, 'alpha', 2), (3, 0, 0, 'alpha', 0), 8192)

garbage collection The process of freeing memory when it is not used anymore. Python performs garbage collection
via reference counting and a cyclic garbage collector that is able to detect and break reference cycles. The garbage
collector can be controlled using the gc module.

generator A function which returns a generator iterator. It looks like a normal function except that it contains yield
expressions for producing a series of values usable in a for-loop or that can be retrieved one at a time with the
next () function.

Usually refers to a generator function, but may refer to a generator iterator in some contexts. In cases where the
intended meaning isn’t clear, using the full terms avoids ambiguity.

generator iterator An object created by a generator function.

17

https://www.python.org/dev/peps/pep-0498
https://www.python.org/dev/peps/pep-0302
https://www.python.org/dev/peps/pep-0420
https://www.python.org/dev/peps/pep-0451
https://www.python.org/dev/peps/pep-0238
https://www.python.org/dev/peps/pep-0484

Distributing Python Modules, Release 3.9.23

Each yield temporarily suspends processing, remembering the location execution state (including local variables
and pending try-statements). When the generator iterator resumes, it picks up where it left off (in contrast to
functions which start fresh on every invocation).

generator expression An expression that returns an iterator. It looks like a normal expression followed by a for clau-
se defining a loop variable, range, and an optional if clause. The combined expression generates values for an
enclosing function:

>>> sum(i*i for i in range (10)) # sum of squares 0, 1, 4, ... 81
285

generic function A function composed of multiple functions implementing the same operation for different types. Which
implementation should be used during a call is determined by the dispatch algorithm.

See also the single dispatch glossary entry, the functools.singledispatch () decorator, and PEP 443.

generic type A rype that can be parameterized; typically a container class such as 1ist or dict. Used for type hints
and annotations.

For more details, see generic alias types, PEP 483, PEP 484, PEP 585, and the t yping module.
GIL See global interpreter lock.

global interpreter lock The mechanism used by the CPyrhon interpreter to assure that only one thread executes Python
bytecode at a time. This simplifies the CPython implementation by making the object model (including critical built-
in types such as dict) implicitly safe against concurrent access. Locking the entire interpreter makes it easier
for the interpreter to be multi-threaded, at the expense of much of the parallelism afforded by multi-processor
machines.

However, some extension modules, either standard or third-party, are designed so as to release the GIL when doing
computationally-intensive tasks such as compression or hashing. Also, the GIL is always released when doing I/O.

Past efforts to create a «free-threaded» interpreter (one which locks shared data at a much finer granularity) have not
been successful because performance suffered in the common single-processor case. It is believed that overcoming
this performance issue would make the implementation much more complicated and therefore costlier to maintain.

hash-based pyc A bytecode cache file that uses the hash rather than the last-modified time of the corresponding source
file to determine its validity. See pyc-invalidation.

hashable An object is hashable if it has a hash value which never changes during its lifetime (itneedsa __hash__ ()
method), and can be compared to other objects (itneedsan __eqg__ () method). Hashable objects which compare
equal must have the same hash value.

Hashability makes an object usable as a dictionary key and a set member, because these data structures use the
hash value internally.

Most of Python’s immutable built-in objects are hashable; mutable containers (such as lists or dictionaries) are not;
immutable containers (such as tuples and frozensets) are only hashable if their elements are hashable. Objects which
are instances of user-defined classes are hashable by default. They all compare unequal (except with themselves),
and their hash value is derived from their 1d ().

IDLE An Integrated Development Environment for Python. IDLE is a basic editor and interpreter environment which
ships with the standard distribution of Python.

immutable An object with a fixed value. Immutable objects include numbers, strings and tuples. Such an object cannot
be altered. A new object has to be created if a different value has to be stored. They play an important role in places
where a constant hash value is needed, for example as a key in a dictionary.

import path A list of locations (or path entries) that are searched by the path based finder for modules to import. During
import, this list of locations usually comes from sy s . path, but for subpackages it may also come from the parent
package’s __path___ attribute.

18 Appendice A. Glossary

https://www.python.org/dev/peps/pep-0443
https://www.python.org/dev/peps/pep-0483
https://www.python.org/dev/peps/pep-0484
https://www.python.org/dev/peps/pep-0585

Distributing Python Modules, Release 3.9.23

importing The process by which Python code in one module is made available to Python code in another module.
importer An object that both finds and loads a module; both a finder and loader object.

interactive Python has an interactive interpreter which means you can enter statements and expressions at the interpreter
prompt, immediately execute them and see their results. Just launch python with no arguments (possibly by
selecting it from your computer’s main menu). It is a very powerful way to test out new ideas or inspect modules
and packages (remember help (x)).

interpreted Python is an interpreted language, as opposed to a compiled one, though the distinction can be blurry be-
cause of the presence of the bytecode compiler. This means that source files can be run directly without explicitly
creating an executable which is then run. Interpreted languages typically have a shorter development/debug cycle
than compiled ones, though their programs generally also run more slowly. See also inferactive.

interpreter shutdown When asked to shut down, the Python interpreter enters a special phase where it gradually releases
all allocated resources, such as modules and various critical internal structures. It also makes several calls to the
garbage collector. This can trigger the execution of code in user-defined destructors or weakref callbacks. Code
executed during the shutdown phase can encounter various exceptions as the resources it relies on may not function
anymore (common examples are library modules or the warnings machinery).

The main reason for interpreter shutdown is that the _ _main__ module or the script being run has finished
executing.

iterable An object capable of returning its members one at a time. Examples of iterables include all sequence types (such
as list, str, and tuple) and some non-sequence types like dict, file objects, and objects of any classes you
define withan __iter__ () methodor witha__getitem__ () method that implements Sequence semantics.

Iterables can be used in a for loop and in many other places where a sequence is needed (zip (), map (), ...).
When an iterable object is passed as an argument to the built-in function iter (), it returns an iterator for the
object. This iterator is good for one pass over the set of values. When using iterables, it is usually not necessary to
call iter () or deal with iterator objects yourself. The for statement does that automatically for you, creating
a temporary unnamed variable to hold the iterator for the duration of the loop. See also iterator, sequence, and
generalor.

iterator An object representing a stream of data. Repeated calls to the iterator’s _ _next__ () method (or passing
it to the built-in function next ()) return successive items in the stream. When no more data are available a
StopIteration exception is raised instead. At this point, the iterator object is exhausted and any further calls
toits__next__ () method justraise StopIteration again. Iterators are required to havean __iter__ ()
method that returns the iterator object itself so every iterator is also iterable and may be used in most places where
other iterables are accepted. One notable exception is code which attempts multiple iteration passes. A container
object (such as a 1ist) produces a fresh new iterator each time you pass it to the iter () function or use it in a
for loop. Attempting this with an iterator will just return the same exhausted iterator object used in the previous
iteration pass, making it appear like an empty container.

More information can be found in typeiter.

key function A key function or collation function is a callable that returns a value used for sorting or ordering. For
example, locale.strxfrm() is used to produce a sort key that is aware of locale specific sort conventions.

A number of tools in Python accept key functions to control how elements are ordered or grouped.
They include min (), max (), sorted(), list.sort (), heapg.merge (), heapg.nsmallest (),
heapg.nlargest (),and itertools.groupby ().

There are several ways to create a key function. For example. the st r . Llower () method can serve as a key func-
tion for case insensitive sorts. Alternatively, a key function can be built from a 1ambda expression such as 1 ambda
r: (r[0], r[2]).Also,the operator module provides three key function constructors: attrgetter (),
itemgetter (), and methodcaller (). See the Sorting HOW TO for examples of how to create and use
key functions.

keyword argument See argument.

19

Distributing Python Modules, Release 3.9.23

lambda An anonymous inline function consisting of a single expression which is evaluated when the function is called.
The syntax to create a lambda function is 1ambda [parameters]: expression

LBYL Look before you leap. This coding style explicitly tests for pre-conditions before making calls or lookups. This
style contrasts with the EAFP approach and is characterized by the presence of many i f statements.

In a multi-threaded environment, the LBYL approach can risk introducing a race condition between «the looking»
and «the leaping». For example, the code, if key in mapping: return mapping[key] can fail if
another thread removes key from mapping after the test, but before the lookup. This issue can be solved with locks
or by using the EAFP approach.

list A built-in Python sequence. Despite its name it is more akin to an array in other languages than to a linked list since
access to elements is O(1).

list comprehension A compact way to process all or part of the elements in a sequence and return a list with the results.
result = ['{:#04x}'.format (x) for x in range(256) if x % 2 == 0] generates a list
of strings containing even hex numbers (0x..) in the range from 0 to 255. The i £ clause is optional. If omitted, all
elements in range (256) are processed.

loader An object that loads a module. It must define a method named 1oad_module (). A loader is typically returned
by a finder. See PEP 302 for details and importlib.abc.Loader for an abstract base class.

magic method An informal synonym for special method.

mapping A container object that supports arbitrary key lookups and implements the methods specified in the Mapping
or MutableMapping abstract base classes. Examples include dict, collections.defaultdict,
collections.OrderedDict and collections.Counter.

meta path finder A finder returned by a search of sys.meta_path. Meta path finders are related to, but different
from path entry finders.

See importlib.abc.MetaPathFinder for the methods that meta path finders implement.

metaclass The class of a class. Class definitions create a class name, a class dictionary, and a list of base classes. The me-
taclass is responsible for taking those three arguments and creating the class. Most object oriented programming
languages provide a default implementation. What makes Python special is that it is possible to create custom
metaclasses. Most users never need this tool, but when the need arises, metaclasses can provide powerful, ele-
gant solutions. They have been used for logging attribute access, adding thread-safety, tracking object creation,
implementing singletons, and many other tasks.

More information can be found in metaclasses.

method A function which is defined inside a class body. If called as an attribute of an instance of that class, the method
will get the instance object as its first argument (which is usually called se1f). See function and nested scope.

method resolution order Method Resolution Order is the order in which base classes are searched for a member during
lookup. See The Python 2.3 Method Resolution Order for details of the algorithm used by the Python interpreter
since the 2.3 release.

module An object that serves as an organizational unit of Python code. Modules have a namespace containing arbitrary
Python objects. Modules are loaded into Python by the process of importing.

See also package.

module spec A namespace containing the import-related information used to load a module. An instance of
importlib.machinery.ModuleSpec.

MRO See method resolution order.
mutable Mutable objects can change their value but keep their id () . See also immutable.

named tuple The term «named tuple» applies to any type or class that inherits from tuple and whose indexable elements
are also accessible using named attributes. The type or class may have other features as well.

20 Appendice A. Glossary

https://www.python.org/dev/peps/pep-0302
https://www.python.org/download/releases/2.3/mro/

Distributing Python Modules, Release 3.9.23

Several built-in types are named tuples, including the values returned by time.localtime () and
os.stat (). Another example is sys.float_info:

>>> sys.float_info[l] # Iindexed access
1024

>>> sys.float_info.max_exp # named field access
1024

>>> isinstance(sys.float_info, tuple) # kind of tuple

True

Some named tuples are built-in types (such as the above examples). Alternatively, a named tuple can be created
from a regular class definition that inherits from t uple and that defines named fields. Such a class can be written
by hand or it can be created with the factory function collections.namedtuple (). The latter technique
also adds some extra methods that may not be found in hand-written or built-in named tuples.

namespace The place where a variable is stored. Namespaces are implemented as dictionaries. There are the local, glo-
bal and built-in namespaces as well as nested namespaces in objects (in methods). Namespaces support modularity
by preventing naming conflicts. For instance, the functions builtins.open and os.open () are distingui-
shed by their namespaces. Namespaces also aid readability and maintainability by making it clear which module
implements a function. For instance, writing random. seed () or itertools.islice () makes it clear that
those functions are implemented by the random and itertools modules, respectively.

namespace package A PEP 420 package which serves only as a container for subpackages. Namespace packages may
have no physical representation, and specifically are not like a regular package because they haveno __init__ .
py file.

See also module.

nested scope The ability to refer to a variable in an enclosing definition. For instance, a function defined inside another
function can refer to variables in the outer function. Note that nested scopes by default work only for reference and
not for assignment. Local variables both read and write in the innermost scope. Likewise, global variables read and
write to the global namespace. The nonlocal allows writing to outer scopes.

new-style class Old name for the flavor of classes now used for all class objects. In earlier Python versions, on-
ly new-style classes could use Python’s newer, versatile features like _ slots_ , descriptors, properties,
__getattribute__ (), class methods, and static methods.

object Any data with state (attributes or value) and defined behavior (methods). Also the ultimate base class of any
new-style class.

package A Python module which can contain submodules or recursively, subpackages. Technically, a package is a Python
module with an __path___ attribute.

See also regular package and namespace package.

parameter A named entity in a function (or method) definition that specifies an argument (or in some cases, arguments)
that the function can accept. There are five kinds of parameter:

« positional-or-keyword: specifies an argument that can be passed either positionally or as a keyword argument.
This is the default kind of parameter, for example foo and bar in the following:

def func(foo, bar=None) :

« positional-only: specifies an argument that can be supplied only by position. Positional-only parameters can
be defined by including a / character in the parameter list of the function definition after them, for example
posonlyl and posonly2 in the following:

def func(posonlyl, posonly2, /, positional_or_keyword) :

21

https://www.python.org/dev/peps/pep-0420

Distributing Python Modules, Release 3.9.23

» keyword-only: specifies an argument that can be supplied only by keyword. Keyword-only parameters can be
defined by including a single var-positional parameter or bare * in the parameter list of the function definition
before them, for example kw_onlyl and kw_only2 in the following:

def func(arg, *, kw_onlyl, kw_only2):

« var-positional: specifies that an arbitrary sequence of positional arguments can be provided (in addition to any
positional arguments already accepted by other parameters). Such a parameter can be defined by prepending
the parameter name with *, for example args in the following:

’def func (*args, **kwargs):

» var-keyword: specifies that arbitrarily many keyword arguments can be provided (in addition to any key-
word arguments already accepted by other parameters). Such a parameter can be defined by prepending the
parameter name with * *, for example kwargs in the example above.

Parameters can specify both optional and required arguments, as well as default values for some optional arguments.

See also the argument glossary entry, the FAQ question on the difference between arguments and parameters, the
inspect.Parameter class, the function section, and PEP 362.

path entry A single location on the import path which the path based finder consults to find modules for importing.

path entry finder A finder returned by a callable on sys.path_hooks (i.e. a path entry hook) which knows how to
locate modules given a path entry.

See importlib.abc.PathEntryFinder for the methods that path entry finders implement.

path entry hook A callable on the sys.path_hook list which returns a path entry finder if it knows how to find
modules on a specific path entry.

path based finder One of the default mera path finders which searches an import path for modules.

path-like object An object representing a file system path. A path-like object is either a st r or bytes object represen-
ting a path, or an object implementing the os . PathLike protocol. An object that supports the os .PathLike
protocol can be converted to a str or bytes file system path by calling the os. fspath () function; os.
fsdecode () and os.fsencode () can be used to guarantee a str or bytes result instead, respectively.
Introduced by PEP 519.

PEP Python Enhancement Proposal. A PEP is a design document providing information to the Python community,
or describing a new feature for Python or its processes or environment. PEPs should provide a concise technical
specification and a rationale for proposed features.

PEPs are intended to be the primary mechanisms for proposing major new features, for collecting community input
on an issue, and for documenting the design decisions that have gone into Python. The PEP author is responsible
for building consensus within the community and documenting dissenting opinions.

See PEP 1.

portion A set of files in a single directory (possibly stored in a zip file) that contribute to a namespace package, as defined
in PEP 420.

positional argument See argument.

provisional API A provisional API is one which has been deliberately excluded from the standard library’s backwards
compatibility guarantees. While major changes to such interfaces are not expected, as long as they are marked
provisional, backwards incompatible changes (up to and including removal of the interface) may occur if dee-
med necessary by core developers. Such changes will not be made gratuitously — they will occur only if serious
fundamental flaws are uncovered that were missed prior to the inclusion of the API.

Even for provisional APIs, backwards incompatible changes are seen as a «solution of last resort» - every attempt
will still be made to find a backwards compatible resolution to any identified problems.

22 Appendice A. Glossary

https://www.python.org/dev/peps/pep-0362
https://www.python.org/dev/peps/pep-0519
https://www.python.org/dev/peps/pep-0001
https://www.python.org/dev/peps/pep-0420

Distributing Python Modules, Release 3.9.23

This process allows the standard library to continue to evolve over time, without locking in problematic design
errors for extended periods of time. See PEP 411 for more details.

provisional package See provisional API.

Python 3000 Nickname for the Python 3.x release line (coined long ago when the release of version 3 was something in
the distant future.) This is also abbreviated «Py3k».

Pythonic An idea or piece of code which closely follows the most common idioms of the Python language, rather than
implementing code using concepts common to other languages. For example, a common idiom in Python is to loop
over all elements of an iterable using a for statement. Many other languages don’t have this type of construct, so
people unfamiliar with Python sometimes use a numerical counter instead:

for i in range(len(food)):
print (food[i])

As opposed to the cleaner, Pythonic method:

for piece in food:
print (piece)

qualified name A dotted name showing the «path» from a module’s global scope to a class, function or method defined
in that module, as defined in PEP 3155. For top-level functions and classes, the qualified name is the same as the
object’s name:

>>> class C:
class D:
def meth (self):
pass

>>> C.__ _qualname

lCl

>>> C.D._ gualname_
'C.D'

>>> C.D.meth. qgualname
'C.D.meth'

When used to refer to modules, the fully qualified name means the entire dotted path to the module, including any
parent packages, e.g. email .mime.text:

>>> import email.mime.text
>>> email.mime.text. name
'email.mime.text'

reference count The number of references to an object. When the reference count of an object drops to zero, it is
deallocated. Reference counting is generally not visible to Python code, but it is a key element of the CPython
implementation. The sy s module defines a get refcount () function that programmers can call to return the
reference count for a particular object.

regular package A traditional package, such as a directory containingan __init__ .py file.
See also namespace package.

__slots__ A declaration inside a class that saves memory by pre-declaring space for instance attributes and eliminating
instance dictionaries. Though popular, the technique is somewhat tricky to get right and is best reserved for rare
cases where there are large numbers of instances in a memory-critical application.

sequence An iterable which supports efficient element access using integer indices via the __getitem__ () special
method and definesa ___1en__ () method that returns the length of the sequence. Some built-in sequence types

23

https://www.python.org/dev/peps/pep-0411
https://www.python.org/dev/peps/pep-3155

Distributing Python Modules, Release 3.9.23

are list, str, tuple,and bytes. Note that dict alsosupports ___getitem__ () and__len__ (),butis
considered a mapping rather than a sequence because the lookups use arbitrary immutable keys rather than integers.

The collections.abc.Sequence abstract base class defines a much richer interface that goes
beyond just _ getitem_ () and _ len_ (), adding count (), index(), contains__ (),
and _ _reversed__ (). Types that implement this expanded interface can be registered explicitly using
register ().

set comprehension A compact way to process all or part of the elements in an iterable and return a set with the resul-
ts. results = {c for c in 'abracadabra' if c not in 'abc'} generates the set of strings
{'r', 'd'}.See comprehensions.

single dispatch A form of generic function dispatch where the implementation is chosen based on the type of a single
argument.

slice An object usually containing a portion of a sequence. A slice is created using the subscript notation, [] with co-
lons between numbers when several are given, such as in variable_name [1:3:5]. The bracket (subscript)
notation uses s11ice objects internally.

special method A method that is called implicitly by Python to execute a certain operation on a type, such as addi-
tion. Such methods have names starting and ending with double underscores. Special methods are documented in
specialnames.

statement A statement is part of a suite (a «block» of code). A statement is either an expression or one of several
constructs with a keyword, such as 1 £, while or for.

text encoding A string in Python is a sequence of Unicode code points (in range U+0000-U+10FFFF). To store or
transfer a string, it needs to be serialized as a sequence of bytes.

Serializing a string into a sequence of bytes is known as «encoding», and recreating the string from the sequence
of bytes is known as «decoding».

There are a variety of different text serialization codecs, which are collectively referred to as «text encodings».

text file A file object able to read and write st r objects. Often, a text file actually accesses a byte-oriented datastream
and handles the fext encoding automatically. Examples of text files are files opened in text mode ('r' or 'w'),
sys.stdin, sys.stdout, and instances of io.StringIO.

See also binary file for a file object able to read and write bytes-like objects.

triple-quoted string A string which is bound by three instances of either a quotation mark (») or an apostrophe (“).
While they don’t provide any functionality not available with single-quoted strings, they are useful for a number of
reasons. They allow you to include unescaped single and double quotes within a string and they can span multiple
lines without the use of the continuation character, making them especially useful when writing docstrings.

type The type of a Python object determines what kind of object it is; every object has a type. An object’s type is
accessible asits __class___ attribute or can be retrieved with type (ob7j).

type alias A synonym for a type, created by assigning the type to an identifier.

Type aliases are useful for simplifying type hints. For example:

def remove_gray_shades (
colors: list[tuple[int, int, int]]) —-> list[tuplelint, int, int]]:
pass

could be made more readable like this:

Color = tuple[int, int, int]

def remove_gray_shades (colors: list[Color]) -> list[Color]:
pass

24 Appendice A. Glossary

Distributing Python Modules, Release 3.9.23

See typing and PEP 484, which describe this functionality.

type hint An annotation that specifies the expected type for a variable, a class attribute, or a function parameter or return
value.

Type hints are optional and are not enforced by Python but they are useful to static type analysis tools, and aid
IDEs with code completion and refactoring.

Type hints of global variables, class attributes, and functions, but not local variables, can be accessed using
typing.get_type_hints ().

See typing and PEP 484, which describe this functionality.

universal newlines A manner of interpreting text streams in which all of the following are recognized as ending a line:
the Unix end-of-line convention '\n"', the Windows convention '\r\n', and the old Macintosh convention
"\r'. See PEP 278 and PEP 3116, as well as bytes.splitlines () for an additional use.

variable annotation An annotation of a variable or a class attribute.

When annotating a variable or a class attribute, assignment is optional:

class C:
field: 'annotation'

Variable annotations are usually used for rype hints: for example this variable is expected to take int values:

count: int = 0

Variable annotation syntax is explained in section annassign.
See function annotation, PEP 484 and PEP 526, which describe this functionality.

virtual environment A cooperatively isolated runtime environment that allows Python users and applications to install
and upgrade Python distribution packages without interfering with the behaviour of other Python applications
running on the same system.

See also venv.

virtual machine A computer defined entirely in software. Python’s virtual machine executes the byfecode emitted by the
bytecode compiler.

Zen of Python Listing of Python design principles and philosophies that are helpful in understanding and using the
language. The listing can be found by typing «import this» at the interactive prompt.

25

https://www.python.org/dev/peps/pep-0484
https://www.python.org/dev/peps/pep-0484
https://www.python.org/dev/peps/pep-0278
https://www.python.org/dev/peps/pep-3116
https://www.python.org/dev/peps/pep-0484
https://www.python.org/dev/peps/pep-0526

Distributing Python Modules, Release 3.9.23

26

Appendice A. Glossary

APPENDICE B

Riguardo questa documentazione

Questi documenti sono stati generati da Sphinx a partire da sorgenti reStructuredText, un elaboratore di documenti
appositamente scritto per la documentazione di Python.

Lo sviluppo della documentazione e della sua toolchain ¢ uno lavoro svolto esclusivamente da volontari, proprio come
lo stesso Python. Se si desidera contribuire, si prega di dare un’occhiata alla pagina reporting-bugs per avere maggiori
informazioni su come farlo. Nuovi volontari sono sempre i benvenuti!

Molte grazie a:

o Fred L. Drake, Jr., il creatore del software per generare documentazione Python e scrittore di gran parte del
contenuto;

« il progetto Docutils per la creazione di reStructuredText e della suite Docutils;

« Fredrik Lundh for his Alternative Python Reference project from which Sphinx got many good ideas.

B.1 Volontari che hanno contribuito alla documentazione di Python

Molte persone hanno contribuito a scrivere il linguaggio Python, la libreria standard di Python e la documentazione di
Python. Per conoscere un elenco parziale dei volontari ¢ possibile visitare la pagina Misc/ACKS, presente nel codice
sorgente della distribuzione Python.

E solo con il contributo dei membri della comunita di Python che Python ha una documentazione cosi meravigliosa —
Grazie!

27

http://sphinx-doc.org/
http://docutils.sourceforge.net/rst.html
http://docutils.sourceforge.net/
https://github.com/python/cpython/tree/3.9/Misc/ACKS

Distributing Python Modules, Release 3.9.23

28

Appendice B. Riguardo questa documentazione

appenpice C

Storia e licenza

C.1 Storia del software

Python ¢ stato creato all'inizio degli anni “90 da Guido van Rossum allo Stichting Mathematisch Centrum (CWI, https:
/Iwww.cwi.nl/) nei Paesi Bassi a partire dal linguaggio ABC. Guido rimane I'autore principale di Python, anche se questo
include molti contributi da parte di altre persone.

Nel 1995 Guido ha continuato il suo lavoro su Python presso la Corporation for National Research Initiatives (CNRI,
vedi https://www.cnri.reston.va.us/) a Reston, Virginia, dove ha rilasciato diverse versioni del software.

In May 2000, Guido and the Python core development team moved to BeOpen.com to form the BeOpen PythonLabs
team. In October of the same year, the PythonLabs team moved to Digital Creations (now Zope Corporation; see https:
/Iwww.zope.org/). In 2001, the Python Software Foundation (PSF, see https://www.python.org/psf/) was formed, a non-
profit organization created specifically to own Python-related Intellectual Property. Zope Corporation is a sponsoring
member of the PSF.

Tutte le versioni di Python sono Open Source (vedi https://opensource.org/ per la definizione di Open Source). Stori-
camente la maggior parte, ma non tutte, le versioni di Python sono state compatibili con la GPL; la tabella seguente
riassume le varie versioni.

Rilascio Derivato da | Anno Proprietario | Compatibile con la GPL?
Da09.0al.2 | n/d 1991-1995 CWI st
Dal3al52 | 1.2 1995-1999 CNRI st
1.6 1.5.2 2000 CNRI no
2.0 1.6 2000 BeOpen.com | no
1.6.1 1.6 2001 CNRI no
2.1 2.0+1.6.1 2001 PSF no
2.0.1 2.0+1.6.1 2001 PSF st
2.1.1 2.142.0.1 2001 PSF st
212 2.1.1 2002 PSF st
2.13 2.1.2 2002 PSF st
2.2 e superiori | 2.1.1 2001-adesso | PSF si

29

https://www.cwi.nl/
https://www.cwi.nl/
https://www.cnri.reston.va.us/
https://www.zope.org/
https://www.zope.org/
https://www.python.org/psf/
https://opensource.org/

Distributing Python Modules, Release 3.9.23

Nota: GPL-compatibile non significa che stiamo distribuendo Python sotto la GPL. Tutte le licenze Python, a diffe-
renza della GPL, consentono di distribuire una versione modificata senza rendere le modifiche open source. Le licenze
compatibili con la GPL permettono di combinare Python con altri software rilasciati sotto la GPL; le altre no.

Grazie ai tanti volontari esterni che hanno lavorato sotto la direzione di Guido per rendere possibili queste release.

C.2 Termini e condizioni di accesso o di utilizzo di Python

Python software and documentation are licensed under the PSF License Agreement.

Starting with Python 3.8.6, examples, recipes, and other code in the documentation are dual licensed under the PSF
License Agreement and the Zero-Clause BSD license.

Some software incorporated into Python is under different licenses. The licenses are listed with code falling under that
license. See Licenze e riconoscimenti per il software incorporato for an incomplete list of these licenses.

C.2.1 PSF ACCORDO DI LICENZA PER PYTHON 3.9.23

1. This LICENSE AGREEMENT is between the Python Software Foundation ("PSE"),_
—and

the Individual or Organization ("Licensee") accessing and otherwise using.
—Python

3.9.23 software in source or binary form and its associated documentation.

2. Subject to the terms and conditions of this License Agreement, PSF hereby
grants Licensee a nonexclusive, royalty-free, world-wide license to.
—reproduce,
analyze, test, perform and/or display publicly, prepare derivative works,
distribute, and otherwise use Python 3.9.23 alone or in any derivative
version, provided, however, that PSF's License Agreement and PSF's notice.
—of
copyright, i.e., "Copyright © 2001-2023 Python Software Foundation; All_
—Rights
Reserved" are retained in Python 3.9.23 alone or in any derivative version
prepared by Licensee.

3. In the event Licensee prepares a derivative work that is based on or
incorporates Python 3.9.23 or any part thereof, and wants to make the
derivative work available to others as provided herein, then Licensee.

—hereby
agrees to include in any such work a brief summary of the changes made to.

—~Python
3.9.23.

4. PSF is making Python 3.9.23 available to Licensee on an "AS IS" basis.

PSEF MAKES NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF

EXAMPLE, BUT NOT LIMITATION, PSF MAKES NO AND DISCLAIMS ANY REPRESENTATION.
—OR

WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT.
—THE

USE OF PYTHON 3.9.23 WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

30 Appendice C. Storia e licenza

Distributing Python Modules, Release 3.9.23

5. PSF SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF PYTHON 3.9.23

FOR ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT.
—OF

MODIFYING, DISTRIBUTING, OR OTHERWISE USING PYTHON 3.9.23, OR ANY.
—DERIVATIVE

THEREOF, EVEN IF ADVISED OF THE POSSIBILITY THEREOF.

6. This License Agreement will automatically terminate upon a material breach.
—~of
its terms and conditions.

7. Nothing in this License Agreement shall be deemed to create any.
—relationship

of agency, partnership, or joint venture between PSF and Licensee. This.
—License

Agreement does not grant permission to use PSF trademarks or trade name in.
—a

trademark sense to endorse or promote products or services of Licensee, or.
—any

third party.

8. By copying, installing or otherwise using Python 3.9.23, Licensee agrees
to be bound by the terms and conditions of this License Agreement.

C.2.2 CONTRATTO DI LICENZA DI BEOPEN.COM PER PYTHON 2.0

BEOPEN PYTHON OPEN SOURCE LICENSE AGREEMENT VERSION 1

1. This LICENSE AGREEMENT is between BeOpen.com ("BeOpen"), having an office at
160 Saratoga Avenue, Santa Clara, CA 95051, and the Individual or Organization
("Licensee") accessing and otherwise using this software in source or binary
form and its associated documentation ("the Software").

2. Subject to the terms and conditions of this BeOpen Python License Agreement,
BeOpen hereby grants Licensee a non-exclusive, royalty-free, world-wide license
to reproduce, analyze, test, perform and/or display publicly, prepare derivative
works, distribute, and otherwise use the Software alone or in any derivative
version, provided, however, that the BeOpen Python License is retained in the
Software, alone or in any derivative version prepared by Licensee.

3. BeOpen is making the Software available to Licensee on an "AS IS" basis.
BEOPEN MAKES NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF
EXAMPLE, BUT NOT LIMITATION, BEOPEN MAKES NO AND DISCLAIMS ANY REPRESENTATION OR
WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE
USE OF THE SOFTWARE WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

4. BEOPEN SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF THE SOFTWARE FOR
ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT OF USING,
MODIFYING OR DISTRIBUTING THE SOFTWARE, OR ANY DERIVATIVE THEREOF, EVEN IF
ADVISED OF THE POSSIBILITY THEREOF.

5. This License Agreement will automatically terminate upon a material breach of
its terms and conditions.

(continues on next page)

C.2. Termini e condizioni di accesso o di utilizzo di Python 31

Distributing Python Modules, Release 3.9.23

(continua dalla pagina precedente)

This License Agreement shall be governed by and interpreted in all respects

by the law of the State of California, excluding conflict of law provisions.
Nothing in this License Agreement shall be deemed to create any relationship of
agency, partnership, or joint venture between BeOpen and Licensee. This License
Agreement does not grant permission to use BeOpen trademarks or trade names in a
trademark sense to endorse or promote products or services of Licensee, or any
third party. As an exception, the "BeOpen Python" logos available at
http://www.pythonlabs.com/logos.html may be used according to the permissions
granted on that web page.

By copying, installing or otherwise using the software, Licensee agrees to be
bound by the terms and conditions of this License Agreement.

C.2.3 CNRI CONTRATTO DI LICENZA PER PYTHON 1.6.1

This LICENSE AGREEMENT is between the Corporation for National Research
Initiatives, having an office at 1895 Preston White Drive, Reston, VA 20191
("CNRI"), and the Individual or Organization ("Licensee") accessing and
otherwise using Python 1.6.1 software in source or binary form and its
associated documentation.

Subject to the terms and conditions of this License Agreement, CNRI hereby
grants Licensee a nonexclusive, royalty-free, world-wide license to reproduce,
analyze, test, perform and/or display publicly, prepare derivative works,
distribute, and otherwise use Python 1.6.1 alone or in any derivative version,
provided, however, that CNRI's License Agreement and CNRI's notice of copyright,
i.e., "Copyright © 1995-2001 Corporation for National Research Initiatives; All
Rights Reserved" are retained in Python 1.6.1 alone or in any derivative version
prepared by Licensee. Alternately, in lieu of CNRI's License Agreement,
Licensee may substitute the following text (omitting the quotes): "Python 1.6.1
is made available subject to the terms and conditions in CNRI's License
Agreement. This Agreement together with Python 1.6.1 may be located on the
Internet using the following unique, persistent identifier (known as a handle):
1895.22/1013. This Agreement may also be obtained from a proxy server on the
Internet using the following URL: http://hdl.handle.net/1895.22/1013."

In the event Licensee prepares a derivative work that is based on or
incorporates Python 1.6.1 or any part thereof, and wants to make the derivative
work available to others as provided herein, then Licensee hereby agrees to
include in any such work a brief summary of the changes made to Python 1.6.1.

CNRI is making Python 1.6.1 available to Licensee on an "AS IS" basis. CNRI
MAKES NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF EXAMPLE,
BUT NOT LIMITATION, CNRI MAKES NO AND DISCLAIMS ANY REPRESENTATION OR WARRANTY
OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE USE OF
PYTHON 1.6.1 WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

CNRI SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF PYTHON 1.6.1 FOR
ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT OF
MODIFYING, DISTRIBUTING, OR OTHERWISE USING PYTHON 1.6.1, OR ANY DERIVATIVE
THEREOF, EVEN IF ADVISED OF THE POSSIBILITY THEREOF.

This License Agreement will automatically terminate upon a material breach of
its terms and conditions.

(continues on next page)

32

Appendice C. Storia e licenza

Distributing Python Modules, Release 3.9.23

(continua dalla pagina precedente)

7. This License Agreement shall be governed by the federal intellectual property
law of the United States, including without limitation the federal copyright
law, and, to the extent such U.S. federal law does not apply, by the law of the
Commonwealth of Virginia, excluding Virginia's conflict of law provisions.
Notwithstanding the foregoing, with regard to derivative works based on Python
1.6.1 that incorporate non-separable material that was previously distributed
under the GNU General Public License (GPL), the law of the Commonwealth of
Virginia shall govern this License Agreement only as to issues arising under or

with respect to Paragraphs 4, 5, and 7 of this License Agreement. Nothing in
this License Agreement shall be deemed to create any relationship of agency,
partnership, or joint venture between CNRI and Licensee. This License Agreement

does not grant permission to use CNRI trademarks or trade name in a trademark
sense to endorse or promote products or services of Licensee, or any third
party.

8. By clicking on the "ACCEPT" button where indicated, or by copying, installing
or otherwise using Python 1.6.1, Licensee agrees to be bound by the terms and
conditions of this License Agreement.

C.2.4 CWI CONTRATTO DI LICENZA PER PYTHON DA 0.9.0 A 1.2

Copyright © 1991 - 1995, Stichting Mathematisch Centrum Amsterdam, The
Netherlands. All rights reserved.

Permission to use, copy, modify, and distribute this software and its
documentation for any purpose and without fee is hereby granted, provided that
the above copyright notice appear in all copies and that both that copyright
notice and this permission notice appear in supporting documentation, and that
the name of Stichting Mathematisch Centrum or CWI not be used in advertising or
publicity pertaining to distribution of the software without specific, written
prior permission.

STICHTING MATHEMATISCH CENTRUM DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS
SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN NO
EVENT SHALL STICHTING MATHEMATISCH CENTRUM BE LIABLE FOR ANY SPECIAL, INDIRECT
OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE,
DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS
SOFTWARE.

C.2.5 ZERO-CLAUSE BSD LICENSE FOR CODE IN THE PYTHON 3.9.23 DOCUMEN-
TATION

Permission to use, copy, modify, and/or distribute this software for any
purpose with or without fee is hereby granted.

THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH
REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT,
INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM
LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR

(continues on next page)

C.2. Termini e condizioni di accesso o di utilizzo di Python 33

Distributing Python Modules, Release 3.9.23

(continua dalla pagina precedente)

OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
PERFORMANCE OF THIS SOFTWARE.

C.3 Licenze e riconoscimenti per il software incorporato

Questa sezione ¢ una lista incompleta, ma in crescita, di licenze e riconoscimenti per software di terze parti incorporate
nella distribuzione Python.

C.3.1 Mersenne Twister

Il modulo _random include il codice basato su un download da http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/
MT/MT2002/emt19937ar.html. I seguenti sono i commenti testuali del codice originale:

A C-program for MT19937, with initialization improved 2002/1/26.
Coded by Takuji Nishimura and Makoto Matsumoto.

Before using, initialize the state by using init_genrand (seed)
or init_by_array(init_key, key_length).

Copyright (C) 1997 - 2002, Makoto Matsumoto and Takuji Nishimura,
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

3. The names of its contributors may not be used to endorse or promote
products derived from this software without specific prior written
permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Any feedback is very welcome.
http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html
email: m-mat @ math.sci.hiroshima-u.ac.jp (remove space)

34 Appendice C. Storia e licenza

http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/MT/MT2002/emt19937ar.html
http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/MT/MT2002/emt19937ar.html

Distributing Python Modules, Release 3.9.23

C.3.2 Socket

Il modulo socket utilizza le funzioni, getaddrinfo (), e getnameinfo (), che sono codificati in file sorgenti
separati dal progetto WIDE, http://www.wide.ad.jp/.

Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
All rights reserved.

Redistribution and use in source and binary forms, with or without

modification, are permitted provided that the following conditions

are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

3. Neither the name of the project nor the names of its contributors
may be used to endorse or promote products derived from this software
without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS " 'AS IS'' AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS

OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

C.3.3 Servizi di socket asincrone

I'moduli asynchat e asyncore contengono il seguente avviso:

Copyright 1996 by Sam Rushing
All Rights Reserved

Permission to use, copy, modify, and distribute this software and
its documentation for any purpose and without fee is hereby
granted, provided that the above copyright notice appear in all
copies and that both that copyright notice and this permission
notice appear in supporting documentation, and that the name of Sam
Rushing not be used in advertising or publicity pertaining to
distribution of the software without specific, written prior
permission.

SAM RUSHING DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE,
INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN
NO EVENT SHALL SAM RUSHING BE LIABLE FOR ANY SPECIAL, INDIRECT OR
CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS
OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT,
NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

C.3. Licenze e riconoscimenti per il software incorporato 35

http://www.wide.ad.jp/

Distributing Python Modules, Release 3.9.23

C.3.4 Gestione dei cookie

Il modulo http.cookies contiene il seguente avviso:

Copyright 2000 by Timothy O'Malley <timo@alum.mit.edu>
All Rights Reserved

Permission to use, copy, modify, and distribute this software

and its documentation for any purpose and without fee is hereby
granted, provided that the above copyright notice appear in all
copies and that both that copyright notice and this permission
notice appear in supporting documentation, and that the name of
Timothy O'Malley not be used in advertising or publicity

pertaining to distribution of the software without specific, written
prior permission.

Timothy O'Malley DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS
SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS, IN NO EVENT SHALL Timothy O'Malley BE LIABLE FOR
ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
PERFORMANCE OF THIS SOFTWARE.

C.3.5 Tracciabilita dell’esecuzione

Il modulo t race contiene il seguente avviso:

portions copyright 2001, Autonomous Zones Industries, Inc., all rights...
err... reserved and offered to the public under the terms of the

Python 2.2 license.

Author: Zooko O'Whielacronx

http://zooko.com/

mailto:zooko@zooko.com

Copyright 2000, Mojam Media, Inc., all rights reserved.
Author: Skip Montanaro

Copyright 1999, Bioreason, Inc., all rights reserved.
Author: Andrew Dalke

Copyright 1995-1997, Automatrix, Inc., all rights reserved.
Author: Skip Montanaro

Copyright 1991-1995, Stichting Mathematisch Centrum, all rights reserved.

Permission to use, copy, modify, and distribute this Python software and
its associated documentation for any purpose without fee is hereby
granted, provided that the above copyright notice appears in all copies,
and that both that copyright notice and this permission notice appear in
supporting documentation, and that the name of neither Automatrix,
Bioreason or Mojam Media be used in advertising or publicity pertaining to
distribution of the software without specific, written prior permission.

36 Appendice C. Storia e licenza

Distributing Python Modules, Release 3.9.23

C.3.6 Funzioni UUencode e UUdecode

Il modulo uu contiene il seguente avviso:

Copyright 1994 by Lance Ellinghouse
Cathedral City, California Republic, United States of America.

All Rights Reserved
Permission to use, copy, modify, and distribute this software and its
documentation for any purpose and without fee is hereby granted,
provided that the above copyright notice appear in all copies and that
both that copyright notice and this permission notice appear in
supporting documentation, and that the name of Lance Ellinghouse
not be used in advertising or publicity pertaining to distribution
of the software without specific, written prior permission.
LANCE ELLINGHOUSE DISCLAIMS ALL WARRANTIES WITH REGARD TO
THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS, IN NO EVENT SHALL LANCE ELLINGHOUSE CENTRUM BE LIABLE
FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT
OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

Modified by Jack Jansen, CWI, July 1995:

— Use binascii module to do the actual line-by-line conversion
between ascii and binary. This results in a 1000-fold speedup. The C
version is still 5 times faster, though.

- Arguments more compliant with Python standard

C.3.7 Chiamate di procedura remota XML

Il modulo xmlrpc.client contiene il seguente avviso:

The XML-RPC client interface is

Copyright (c) 1999-2002 by Secret Labs AB
Copyright (c) 1999-2002 by Fredrik Lundh

By obtaining, using, and/or copying this software and/or its
associated documentation, you agree that you have read, understood,
and will comply with the following terms and conditions:

Permission to use, copy, modify, and distribute this software and
its associated documentation for any purpose and without fee is
hereby granted, provided that the above copyright notice appears in
all copies, and that both that copyright notice and this permission
notice appear in supporting documentation, and that the name of
Secret Labs AB or the author not be used in advertising or publicity
pertaining to distribution of the software without specific, written
prior permission.

SECRET LABS AB AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH REGARD
TO THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANT-
ABILITY AND FITNESS. IN NO EVENT SHALL SECRET LABS AB OR THE AUTHOR
BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY
DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS

(continues on next page)

C.3. Licenze e riconoscimenti per il software incorporato 37

Distributing Python Modules, Release 3.9.23

(continua dalla pagina precedente)

ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
OF THIS SOFTWARE.

C.3.8 test_epoll

Il modulo test_epoll contiene il seguente avviso:

Copyright (c) 2001-2006 Twisted Matrix Laboratories.

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND

NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

C.3.9 Select kqueue

Il modulo select contiene il seguente avviso per I'interfaccia kqueue:

Copyright (c) 2000 Doug White, 2006 James Knight, 2007 Christian Heimes
All rights reserved.

Redistribution and use in source and binary forms, with or without

modification, are permitted provided that the following conditions

are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS " 'AS IS'' AND

ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS

OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY

(continues on next page)

38 Appendice C. Storia e licenza

Distributing Python Modules, Release 3.9.23

(continua dalla pagina precedente)

OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

C.3.10 SipHash24

The file Python/pyhash. c contains Marek Majkowski” implementation of Dan Bernstein’s SipHash24 algorithm. It
contains the following note:

<MIT License>
Copyright (c) 2013 Marek Majkowski <marek@popcount.org>

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
</MIT License>

Original location:
https://github.com/majek/csiphash/

Solution inspired by code from:
Samuel Neves (supercop/crypto_auth/siphash24/1little)
djb (supercop/crypto_auth/siphash24/1ittle2)
Jean-Philippe Aumasson (https://131002.net/siphash/siphash24.c)

C.3.11 strtod e dtoa

Il file Python/dtoa. c, che fornisce le funzioni C dtoa e strtod per la conversione dei numeri di tipo doubles C da e
verso stringhe, ¢ derivato dal file con lo stesso nome di David M. Gay, attualmente disponibile su http://www.netlib.org/
fp/. 1l file originale, cosi come recuperato il 16 marzo 2009, contiene il seguente avviso di copyright e licenza:

/**
*

* The author of this software is David M. Gay.
*

* Copyright (c) 1991, 2000, 2001 by Lucent Technologies.

* Permission to use, copy, modify, and distribute this software for any

* purpose without fee is hereby granted, provided that this entire notice
* is included in all copies of any software which is or includes a copy

* or modification of this software and in all copies of the supporting

* documentation for such software.

* THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR IMPLIED
* WARRANTY. IN PARTICULAR, NEITHER THE AUTHOR NOR LUCENT MAKES ANY

* REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE MERCHANTABILITY

* OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR PURPOSE.

(continues on next page)

C.3. Licenze e riconoscimenti per il software incorporato 39

http://www.netlib.org/fp/
http://www.netlib.org/fp/

Distributing Python Modules, Release 3.9.23

(continua dalla pagina precedente)

*

k*/

C.3.12 7.4 OpenSSL

The modules hashlib, posix, ssl, crypt use the OpenSSL library for added performance if made available by
the operating system. Additionally, the Windows and macOS installers for Python may include a copy of the OpenSSL
libraries, so we include a copy of the OpenSSL license here:

LICENSE ISSUES

The OpenSSL toolkit stays under a dual license, i.e. both the conditions of
the OpenSSL License and the original SSLeay license apply to the toolkit.
See below for the actual license texts. Actually both licenses are BSD-style
Open Source licenses. In case of any license issues related to OpenSSL
please contact openssl-corelopenssl.org.

OpenSSL License

Copyright (c) 1998-2008 The OpenSSL Project. All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in
the documentation and/or other materials provided with the
distribution.

3. All advertising materials mentioning features or use of this
software must display the following acknowledgment:
"This product includes software developed by the OpenSSL Project
for use in the OpenSSL Toolkit. (http://www.openssl.org/)"

4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
endorse or promote products derived from this software without
prior written permission. For written permission, please contact
openssl-corelopenssl.org.

5. Products derived from this software may not be called "OpenSSL"
nor may "OpenSSL" appear in their names without prior written
permission of the OpenSSL Project.

6. Redistributions of any form whatsoever must retain the following
acknowledgment:
"This product includes software developed by the OpenSSL Project
for use in the OpenSSL Toolkit (http://www.openssl.org/)"

L S R T I R S N S S S S N S N S R e S S S N

(continues on next page)

40 Appendice C. Storia e licenza

Distributing Python Modules, Release 3.9.23

(continua dalla pagina precedente)

o S S S N S N S N .

THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT "“AS IS'' AND ANY
EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT

NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;

LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)

HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
OF THE POSSIBILITY OF SUCH DAMAGE.

This product includes cryptographic software written by Eric Young
(eay@cryptsoft.com). This product includes software written by Tim
Hudson (tjh@cryptsoft.com).

Original SSLeay License

L S A S S N IS S N S S S S e N N S N S N TS T SN S N S

Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
All rights reserved.

This package is an SSL implementation written
by Eric Young (eaylcryptsoft.com).
The implementation was written so as to conform with Netscapes SSL.

This library is free for commercial and non-commercial use as long as
the following conditions are aheared to. The following conditions
apply to all code found in this distribution, be it the RC4, RSA,
lhash, DES, etc., code; not just the SSL code. The SSL documentation
included with this distribution is covered by the same copyright terms
except that the holder is Tim Hudson (tjh@cryptsoft.com).

Copyright remains Eric Young's, and as such any Copyright notices in

the code are not to be removed.

If this package is used in a product, Eric Young should be given attribution
as the author of the parts of the library used.

This can be in the form of a textual message at program startup or

in documentation (online or textual) provided with the package.

Redistribution and use in source and binary forms, with or without

modification, are permitted provided that the following conditions

are met:

1. Redistributions of source code must retain the copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

3. All advertising materials mentioning features or use of this software
must display the following acknowledgement:

"This product includes cryptographic software written by
Eric Young (eay@cryptsoft.com)"
The word 'cryptographic' can be left out if the rouines from the library

(continues on next page)

C.3. Licenze e riconoscimenti per il software incorporato 41

Distributing Python Modules, Release 3.9.23

(continua dalla pagina precedente)

being used are not cryptographic related :-).

4. If you include any Windows specific code (or a derivative thereof) from
the apps directory (application code) you must include an acknowledgement:
"This product includes software written by Tim Hudson (tjh@cryptsoft.com)"

THIS SOFTWARE IS PROVIDED BY ERIC YOUNG " "AS IS'' AND

ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS

OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

The licence and distribution terms for any publically available version or
derivative of this code cannot be changed. i.e. this code cannot simply be
copied and put under another distribution licence

[including the GNU Public Licence.]
/

EE T R S R S N N SR S N S S SR S

C.3.13 expat

Lestensione pyexpat ¢ costruita usando una copia dei sorgenti expat a meno che la build non sia configurata con
——with-system-expat:

Copyright (c) 1998, 1999, 2000 Thai Open Source Software Center Ltd
and Clark Cooper

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

42 Appendice C. Storia e licenza

Distributing Python Modules, Release 3.9.23

C.3.14 libffi

Lestensione _ctypes € costruita usando una copia dei sorgenti libffi a meno che la build non sia configurata con
—-with-system-1ibffi :

Copyright (c) 1996-2008 Red Hat, Inc and others.

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
‘'Software''), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED ""AS IS'', WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.

C.3.15 zlib

Lestensione z11ib ¢ costruita usando una copia dei sorgenti zlib se la versione zlib trovata sul sistema & troppo vecchia
per essere usata per la build:

Copyright (C) 1995-2011 Jean-loup Gailly and Mark Adler

This software is provided 'as-is', without any express or implied
warranty. In no event will the authors be held liable for any damages
arising from the use of this software.

Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it
freely, subject to the following restrictions:

1. The origin of this software must not be misrepresented; you must not
claim that you wrote the original software. If you use this software
in a product, an acknowledgment in the product documentation would be
appreciated but is not required.

2. Altered source versions must be plainly marked as such, and must not be
misrepresented as being the original software.

3. This notice may not be removed or altered from any source distribution.

Jean-loup Gailly Mark Adler
jloup@gzip.org madler@alumni.caltech.edu

C.3. Licenze e riconoscimenti per il software incorporato 43

Distributing Python Modules, Release 3.9.23

C.3.16 cfuhash

L'implementazione della tabella hash utilizzata da t racemalloc si basa sul progetto cfuhash:

Copyright (c) 2005 Don Owens
All rights reserved.

This code is released under the BSD license:

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following
disclaimer in the documentation and/or other materials provided
with the distribution.

* Neither the name of the author nor the names of its
contributors may be used to endorse or promote products derived
from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
OF THE POSSIBILITY OF SUCH DAMAGE.

C.3.17 libmpdec

Il modulo _decimal & costruito usando una copia della libreria libmpdec a meno che la build non sia configurata con
——with-system-1libmpdec":

Copyright (c) 2008-2020 Stefan Krah. All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

(continues on next page)

44 Appendice C. Storia e licenza

Distributing Python Modules, Release 3.9.23

(continua dalla pagina precedente)

THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS "AS IS" AND

ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS

OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

C.3.18 W3C C14N test suite

The C14N 2.0 test suite in the test package (Lib/test/xmltestdata/c14n-20/) was retrieved from the W3C
website at https://www.w3.org/TR/xml-c14n2-testcases/ and is distributed under the 3-clause BSD license:

Copyright (c) 2013 W3C(R) (MIT, ERCIM, Keio, Beihang),
All Rights Reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

* Redistributions of works must retain the original copyright notice,

this list of conditions and the following disclaimer.

Redistributions in binary form must reproduce the original copyright

notice, this list of conditions and the following disclaimer in the

documentation and/or other materials provided with the distribution.

* Neither the name of the W3C nor the names of its contributors may be
used to endorse or promote products derived from this work without
specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

C.3. Licenze e riconoscimenti per il software incorporato 45

https://www.w3.org/TR/xml-c14n2-testcases/

Distributing Python Modules, Release 3.9.23

46

Appendice C. Storia e licenza

APPENDICE D

Copyright

Python e questa documentazione sono protetti da:

Copyright © 2001-2023 Python Software Foundation. All rights reserved.

Copyright © 2000 BeOpen.com. Tutti i diritti riservati.

Copyright © 1995-2000 Corporation for National Research Initiatives. Tutti i diritti riservati.
Copyright © 1991-1995 Stichting Mathematisch Centrum. Tutti i diritti riservati.

Fare riferimento a Storia e licenza per informazioni complete su licenza e permessi.

47

Distributing Python Modules, Release 3.9.23

48

Appendice D. Copyright

Indice

Non-alphabetical

..., 13
2to3,13

>>> 13

_ future_ ,17
__slots_ ,23

A

abstract base class, 13
annotation, 13
argument, 13

asynchronous context manager, 14
asynchronous generator, 14
asynchronous generator iterator, 14
asynchronous iterable, 14
asynchronous iterator, 14

attribute, 14
awaitable, 14

B

BDFL, 14

binary file, 14
bytecode, 15
bytes—-1like object, 14

C

callback, 15
C-contiguous, 15
class, 15

class variable, 15
coercion, 15

complex number, 15
context manager, 15
context variable, 15
contiguous, 15
coroutine, 15
coroutine function, 15
CPython, 15

D

decorator, 16
descriptor, 16
dictionary, 16

dictionary comprehension, 16

dictionary view, 16
docstring, 16
duck-typing, 16

E

EAFP, 16
expression, 16
extension module, 16

F

f-string, 17

file object, 17
file-like object, 17
finder, 17

floor division, 17
Fortran contiguous, 15
function, 17

function annotation, 17

G

garbage collection, 17
generator, 17

generator expression, 18

generator iterator, 17
generic function, 18
generic type, 18

GIL, 18

global interpreter lock, 18

Fl

hash-based pyc, 18
hashable, 18

IDLE, 18

49

Distributing Python Modules, Release 3.9.23

immutable, 18

import path, 18
importer, 19
importing, 19
interactive, 19
interpreted, 19
interpreter shutdown, 19
iterable, 19

iterator, 19

K

key function, 19
keyword argument, 19

L

lambda, 20

LBYL, 20

list, 20

list comprehension, 20
loader, 20

M

magic
method, 20
magic method, 20
mapping, 20
meta path finder, 20
metaclass, 20
method, 20
magic, 20
special, 24
method resolution order, 20
module, 20
module spec, 20
MRO, 20
mutable, 20

N

named tuple, 20
namespace, 21
namespace package, 21
nested scope, 21
new-style class,21

O
object, 21
F)
package, 21

parameter, 21

path based finder, 22
path entry, 22

path entry finder, 22

path entry hook, 22
path-like object, 22
PEP, 22

portion, 22

positional argument, 22
provisional API,22
provisional package, 23
PyPI

(see Python Package Index

Python 3000, 23
Python Enhancement Proposals

PEP 1,22

PEP 238,17
PEP 278,25
PEP 302,17,20
PEP 343,15
PEP 362, 14,22
PEP 411,23
PEP 420,17,21,22
PEP 427,3
PEP 443,18
PEP 451,17
PEP 483,18
PEP 484,13,17,18,25
PEP 492, 14,15
PEP 498,17
PEP 519,22
PEP 525,14
PEP 526,13,25
PEP 585,18
PEP 3116,25
PEP 3155,23

Python Package Index (PyPl),7
Pythonic, 23

Q

qualified name, 23

R

reference count, 23
regular package, 23

S

sequence, 23

set comprehension, 24
single dispatch, 24
slice, 24

special

method, 24

special method, 24
statement, 24

T

text encoding, 24

(PyPI)),7

50

Indice

Distributing Python Modules, Release 3.9.23

text file, 24
triple—-quoted string, 24
type, 24

type alias,?24

type hint, 25

U

universal newlines, 25

\Y

variable annotation, 25
virtual environment, 25
virtual machine, 25

Z

Zen of Python,25

Indice 51

	Key terms
	Open source licensing and collaboration
	Installing the tools
	Reading the Python Packaging User Guide
	How do I…?
	… choose a name for my project?
	… create and distribute binary extensions?

	Glossary
	Riguardo questa documentazione
	Volontari che hanno contribuito alla documentazione di Python

	Storia e licenza
	Storia del software
	Termini e condizioni di accesso o di utilizzo di Python
	PSF ACCORDO DI LICENZA PER PYTHON 3.9.23
	CONTRATTO DI LICENZA DI BEOPEN.COM PER PYTHON 2.0
	CNRI CONTRATTO DI LICENZA PER PYTHON 1.6.1
	CWI CONTRATTO DI LICENZA PER PYTHON DA 0.9.0 A 1.2
	ZERO-CLAUSE BSD LICENSE FOR CODE IN THE PYTHON 3.9.23 DOCUMENTATION

	Licenze e riconoscimenti per il software incorporato
	Mersenne Twister
	Socket
	Servizi di socket asincrone
	Gestione dei cookie
	Tracciabilità dell’esecuzione
	Funzioni UUencode e UUdecode
	Chiamate di procedura remota XML
	test_epoll
	Select kqueue
	SipHash24
	strtod e dtoa
	7.4 OpenSSL
	expat
	libffi
	zlib
	cfuhash
	libmpdec
	W3C C14N test suite

	Copyright
	Indice

