What's New in Python

Release 3.7.17
A. M. Kuchling

giugno 28, 2023

Python Software Foundation
Email: docs@python.org

Indice

1 Summary - Release Highlights 4

2 New Features 5
2.1 PEP 563: Postponed Evaluation of Annotations 5
2.2 PEP 538:Legacy C Locale Coercion ittt ittt e e e 6
2.3 PEP 540: Forced UTF-8 Runtime Mode 6
2.4 PEP 553: Built-in breakpoint () v i v i i i e e e e e e e e e 7
2.5 PEP 539: New C API for Thread-Local Storage 7
2.6 PEP 562: Customization of Access to Module Attributes 7
2.7 PEP 564: New Time Functions With Nanosecond Resolution 7
2.8 PEP 565: Show DeprecationWarning in __main__ e 8
2.9 PEP 560: Core Support for t yping module and Generic Types 8
2.10 PEP 552: Hash-based .pyc Files e e 9
2.11 PEP 545: Python Documentation Translations 9
2.12 Development Runtime Mode: -Xdev L e 9

3 Other Language Changes 10

4 New Modules 10
41 CONEXLVAIS . v o v i v v e e e e e e e e e e e e e e e e e e e 10
4.2 dataclasses e e e e e e e e e e e 11
4.3 importhibresources L Lo e e e e 11

5 Improved Modules 11
5.1 argparseo o e e e e e e e e e e e 11
5.2 @SYNCIO .« . v v i e e e e e e e e e e e e e 11
5.3 bINASCIL e e e e e e e e e e e e e e e e e 13
54 calendar L e 13
5.5 colleCtionS v i e e e e e e e e e e e e 13
5.6 compileall e e e e e e 13
5.7 concurrent.futures L e e e e e e e e e e e e 13
5.8 contextlib L e e e e e 14
5.9 cProfile e 14
S50 Crypt . o o o e e e e e e e e e e e e 14

S.01 datetime oL e e e e e e 14
502 dbm ..o e 14
5.3 decimalo e e 14
S04 diS . .o e 14
S5 distutils ... oL e e e 15
506 enUM L e e e e e e e e e e e e e e 15
507 functools oL e e e e e e e 15
5.8 gC e e e e e e 15
509 hmac o e 15
5.20 http.cliento e e 15
S5.21 REP.SEIVET . . . o L o o e e e e e e e e e e e e e e e 15
522 idleliband IDLE o e 16
523 dmportlib e e e e e e e e e 16
524 00 oL e 17
525 1paddress oL . e e e e e e e e e e e e 17
5.26 IertoolS e e e e e e e e 17
527 Tocale . . o . e e e e e e e e e e e e 17
528 10ZZING .« o v o e e e e e e e e e e e e e 17
529 math . . . L L e 17
530 MIMELYPES o o vt e e e e e e e e e e e e e e e 17
531 msilib .. L. 18
5.32 multiprocessingo e e e e e e e e e e e e e e 18
533 08 i 18
534 pathlib oL e e e 18
535 pdb .o 18
536 py_compile e 19
537 pydoc ... e e 19
538 qUEUE e e e e e e e e e e e 19
539 1€ . e 19
540 signal ... L L e e e e e e e e e e 19
541 s0cket e e e e e e e 19
5.42 SOCKELSEIVET o v i e i e e e e e e e e e e e e 20
543 sqlite3 e e e e e e e e e e 20
SA4 ssl 20
SAS SIING . o o o e e e e e e e e e e e e e e e 21
546 SUDPrOCESSo e e e e e e 21
SAT SYS o v e e e e e e e e e e 21
SA8 LME . . . v v e e e e e e e e e e e e e e e e 21
549 tKINter L e e e e e 22
5.50 tracemalloc e e e 22
S5 LYPES v o o e e e e e e e e e e e e e 22
5.52 unicodedata L. e e e e e e e e e e 22
553 UNIEESt . . . v o e 22
5.54 unittest.moCK L L L e e e e 23
5.55 urllib.parse e e e e e e e e e e e e e e 23
556 UU .« ..o e 23
557 wuid ... e 23
558 WAININGS o oo i e e e e e e e e e e e 23
5.59 XML . L e e e e e e e e e 24
5.60 xmLEtree L e e e e e e 24
S5.61 XMITPC.SEIVET . . . v v v v o e 24
5.602 ZIPAPD e e e e e e e e 24
5.63 zipfileo e 24

10

11

12

13

14

15

16

17

18

19

20

21

22

23

C API Changes

Build Changes

Optimizations

Other CPython Implementation Changes
Deprecated Python Behavior

Deprecated Python modules, functions and methods

11.1 aifc . . . o e e e
11.2 asynCio o o v oo e e e e e e
11.3 collections o e e e e e e
11.4 dbm e
I15 enum. o e e
11.6 GEUeXt . . . v v v v ot e e e e e e e e e e e
117 importlib. oL e
11.8 Tocale e e e e
11.9 macpath e
I1.10threading o i e e e e e
T1.11socket o . o e e e e e
T1.12ssl . . . o e e e e e
11.13sunau e e e e e e
T114Sys . o o e e e e e
T1I5SWave o o e e e

Deprecated functions and types of the C API
Platform Support Removals

API and Feature Removals

Module Removals

Windows-only Changes

Porting to Python 3.7

17.1 Changes in Python Behavior
17.2 Changes in the Python APT
173 Changesinthe CAPI
17.4 CPython bytecode changes
17.5 Windows-only Changes it
17.6 Other CPython implementation changes

Notable changes in Python 3.7.1
Notable changes in Python 3.7.2
Notable changes in Python 3.7.6
Notable changes in Python 3.7.10
Notable changes in Python 3.7.11

Notable security feature in 3.7.14

24

26

26

27

28

28
28
28
28
28
29
29
29
29
29
29
29
30
30
30
30

30

30

31

31

32

32
32
33
35
35
35
35

36

36

36

36

36

37

Indice 38

Editor Elvis Pranskevichus <elvis@magic.io>

This article explains the new features in Python 3.7, compared to 3.6. Python 3.7 was released on June 27, 2018. For full
details, see the changelog.

1 Summary — Release Highlights

New syntax features:
e PEP 563, postponed evaluation of type annotations.
Backwards incompatible syntax changes:
e async and await are now reserved keywords.
New library modules:
* contextvars: PEP 567 — Context Variables
* dataclasses: PEP 557 — Data Classes
e importlib.resources
New built-in features:
e PEP 553, the new breakpoint () function.
Python data model improvements:
e PEP 562, customization of access to module attributes.
e PEP 560, core support for typing module and generic types.

* the insertion-order preservation nature of dict objects has been declared to be an official part of the Python language
spec.

Significant improvements in the standard library:
¢ The asyncio module has received new features, significant usability and performance improvements.
* The t ime module gained support for functions with nanosecond resolution.
CPython implementation improvements:
¢ Avoiding the use of ASCII as a default text encoding:
— PEP 538, legacy C locale coercion
— PEP 540, forced UTF-8 runtime mode
* PEP 552, deterministic .pycs
e the new development runtime mode
e PEP 565, improved DeprecationWarning handling
C API improvements:
e PEP 539, new C API for thread-local storage

Documentation improvements:

mailto:elvis@magic.io
https://mail.python.org/pipermail/python-dev/2017-December/151283.html

e PEP 545, Python documentation translations
¢ New documentation translations: Japanese, French, and Korean.
This release features notable performance improvements in many areas. The Optimizations section lists them in detail.

For a list of changes that may affect compatibility with previous Python releases please refer to the Porting to Python 3.7
section.

2 New Features

2.1 PEP 563: Postponed Evaluation of Annotations

The advent of type hints in Python uncovered two glaring usability issues with the functionality of annotations added in
PEP 3107 and refined further in PEP 526:

* annotations could only use names which were already available in the current scope, in other words they didn’t
support forward references of any kind; and

* annotating source code had adverse effects on startup time of Python programs.

Both of these issues are fixed by postponing the evaluation of annotations. Instead of compiling code which executes
expressions in annotations at their definition time, the compiler stores the annotation in a string form equivalent to the AST
of the expression in question. If needed, annotations can be resolved at runtime using t yping.get_type_hints ().
In the common case where this is not required, the annotations are cheaper to store (since short strings are interned by
the interpreter) and make startup time faster.

Usability-wise, annotations now support forward references, making the following syntax valid:

class C:
@classmethod
def from_string(cls, source: str) —-> C:

def validate_b(self, obj: B) —-> bool:

class B:

Since this change breaks compatibility, the new behavior needs to be enabled on a per-module basis in Python 3.7 using
a__ future__ import:

from _ future__ import annotations

It will become the default in Python 3.10.
Vedi anche:

PEP 563 — Postponed evaluation of annotations PEP written and implemented by Lukasz Langa.

https://docs.python.org/ja/
https://docs.python.org/fr/
https://docs.python.org/ko/
https://www.python.org/dev/peps/pep-3107
https://www.python.org/dev/peps/pep-0526
https://www.python.org/dev/peps/pep-0563

2.2 PEP 538: Legacy C Locale Coercion

An ongoing challenge within the Python 3 series has been determining a sensible default strategy for handling the «7-
bit ASCII» text encoding assumption currently implied by the use of the default C or POSIX locale on non-Windows
platforms.

PEP 538 updates the default interpreter command line interface to automatically coerce that locale to an available UTF-8
based locale as described in the documentation of the new PYTHONCOERCECLOCALE environment variable. Automati-
cally setting LC__ CTYPE this way means that both the core interpreter and locale-aware C extensions (such as readline)
will assume the use of UTF-8 as the default text encoding, rather than ASCIL.

The platform support definition in PEP 11 has also been updated to limit full text handling support to suitably configured
non-ASCII based locales.

As part of this change, the default error handler for stdin and stdout is now surrogateescape (rather than
strict) when using any of the defined coercion target locales (currently C. UTF -8, C.ut £8, and UTF -8). The default
error handler for stderr continues to be backslashreplace, regardless of locale.

Locale coercion is silent by default, but to assist in debugging potentially locale related integration problems, explicit
warnings (emitted directly on stderr) can be requested by setting PYTHONCOERCECLOCALE=warn. This setting
will also cause the Python runtime to emit a warning if the legacy C locale remains active when the core interpreter is
initialized.

While PEP 538’s locale coercion has the benefit of also affecting extension modules (such as GNU readline), as well
as child processes (including those running non-Python applications and older versions of Python), it has the downside of
requiring that a suitable target locale be present on the running system. To better handle the case where no suitable target
locale is available (as occurs on RHEL/CentOS 7, for example), Python 3.7 also implements PEP 540: Forced UTF-8
Runtime Mode.

Vedi anche:

PEP 538 — Coercing the legacy C locale to a UTF-8 based locale PEP written and implemented by Nick Coghlan.

2.3 PEP 540: Forced UTF-8 Runtime Mode

The new —X ut £8 command line option and PYTHONUTF' 8 environment variable can be used to enable the CPython
UTF-8 mode.

When in UTF-8 mode, CPython ignores the locale settings, and uses the UTF-8 encoding by default. The error handlers
for sys.stdin and sys.stdout streams are set to surrogateescape.

The forced UTF-8 mode can be used to change the text handling behavior in an embedded Python interpreter without
changing the locale settings of an embedding application.

While PEP 540’s UTF-8 mode has the benefit of working regardless of which locales are available on the running system,
it has the downside of having no effect on extension modules (such as GNU readline), child processes running non-
Python applications, and child processes running older versions of Python. To reduce the risk of corrupting text data when
communicating with such components, Python 3.7 also implements PEP 540: Forced UTF-8 Runtime Mode).

The UTF-8 mode is enabled by default when the locale is C or POSIX, and the PEP 538 locale coercion feature fails to
change it to a UTF-8 based alternative (whether that failure is due to PYTHONCOERCECLOCALE=0 being set, LC_ALL
being set, or the lack of a suitable target locale).

Vedi anche:

PEP 540 — Add a new UTF-8 mode PEP written and implemented by Victor Stinner

https://www.python.org/dev/peps/pep-0538
https://www.python.org/dev/peps/pep-0011
https://www.python.org/dev/peps/pep-0538
https://www.python.org/dev/peps/pep-0538
https://www.python.org/dev/peps/pep-0540
https://www.python.org/dev/peps/pep-0538
https://www.python.org/dev/peps/pep-0540

2.4 PEP 553: Built-in breakpoint ()

Python 3.7 includes the new built-in breakpoint () function as an easy and consistent way to enter the Python
debugger.

Built-in breakpoint () calls sys.breakpointhook (). By default, the latter imports pdb and then calls pdb .
set_trace (), but by binding sys.breakpointhook () to the function of your choosing, breakpoint () can
enter any debugger. Additionally, the environment variable PYTHONBREAKPOINT can be set to the callable of your
debugger of choice. Set PYTHONBREAKPOINT=0 to completely disable built-in breakpoint ().

Vedi anche:

PEP 553 — Built-in breakpoint() PEP written and implemented by Barry Warsaw

2.5 PEP 539: New C API for Thread-Local Storage

While Python provides a C API for thread-local storage support; the existing Thread Local Storage (TLS) API has used
int to represent TLS keys across all platforms. This has not generally been a problem for officially-support platforms,
but that is neither POSIX-compliant, nor portable in any practical sense.

PEP 539 changes this by providing a new Thread Specific Storage (TSS) API to CPython which supersedes use of the
existing TLS API within the CPython interpreter, while deprecating the existing API. The TSS API uses a new type
Py_tss_t instead of int to represent TSS keys—an opaque type the definition of which may depend on the underlying
TLS implementation. Therefore, this will allow to build CPython on platforms where the native TLS key is defined in a
way that cannot be safely cast to int.

Note that on platforms where the native TLS key is defined in a way that cannot be safely cast to int, all functions of the
existing TLS API will be no-op and immediately return failure. This indicates clearly that the old API is not supported
on platforms where it cannot be used reliably, and that no effort will be made to add such support.

Vedi anche:

PEP 539 — A New C-API for Thread-Local Storage in CPython PEP written by Erik M. Bray; implementation by
Masayuki Yamamoto.

2.6 PEP 562: Customization of Access to Module Attributes

Python 3.7 allows defining __getattr__ () on modules and will call it whenever a module attribute is otherwise not
found. Defining __dir__ () on modules is now also allowed.

A typical example of where this may be useful is module attribute deprecation and lazy loading.
Vedi anche:

PEP 562 — Module __getattr_ _and __dir__ PEP written and implemented by Ivan Levkivskyi

2.7 PEP 564: New Time Functions With Nanosecond Resolution

The resolution of clocks in modern systems can exceed the limited precision of a floating point number returned by the
time.time () function and its variants. To avoid loss of precision, PEP 564 adds six new «nanosecond» variants of
the existing timer functions to the t ime module:

e time.clock_gettime_ns ()
e time.clock_settime_ns ()

e time.monotonic_ns ()

https://www.python.org/dev/peps/pep-0553
https://www.python.org/dev/peps/pep-0539
https://www.python.org/dev/peps/pep-0539
https://www.python.org/dev/peps/pep-0562
https://www.python.org/dev/peps/pep-0564

e time.perf_counter_ns()
* time.process_time_ns()
* time.time_ns ()
The new functions return the number of nanoseconds as an integer value.

Measurements show that on Linux and Windows the resolution of t ime .time_ns () is approximately 3 times better
than that of time.time ().

Vedi anche:

PEP 564 — Add new time functions with nanosecond resolution PEP written and implemented by Victor Stinner

2.8 PEP 565: Show DeprecationWarning in __main___

The default handling of DeprecationWarning has been changed such that these warnings are once more shown by
default, but only when the code triggering them is running directly in the __main__ module. As a result, developers of
single file scripts and those using Python interactively should once again start seeing deprecation warnings for the APIs
they use, but deprecation warnings triggered by imported application, library and framework modules will continue to be
hidden by default.

As a result of this change, the standard library now allows developers to choose between three different deprecation
warning behaviours:

e FutureWarning: always displayed by default, recommended for warnings intended to be seen by application
end users (e.g. for deprecated application configuration settings).

e DeprecationWarning: displayed by default only in __main__ and when running tests, recommended for
warnings intended to be seen by other Python developers where a version upgrade may result in changed behaviour
Or an error.

e PendingDeprecationWarning: displayed by default only when running tests, intended for cases where a
future version upgrade will change the warning category to DeprecationWarning or FutureWarning.

Previously both DeprecationWarning and PendingDeprecationWarning were only visible when running
tests, which meant that developers primarily writing single file scripts or using Python interactively could be surprised by
breaking changes in the APIs they used.

Vedi anche:

PEP 565 — Show DeprecationWarning in __main__ PEP written and implemented by Nick Coghlan

2.9 PEP 560: Core Support for typing module and Generic Types

Initially PEP 484 was designed in such way that it would not introduce any changes to the core CPython interpreter.
Now type hints and the t yping module are extensively used by the community, so this restriction is removed. The PEP
introduces two special methods __class_getitem__ () and __mro_entries__, these methods are now used
by most classes and special constructs in typing. As a result, the speed of various operations with types increased up
to 7 times, the generic types can be used without metaclass conflicts, and several long standing bugs in t yping module
are fixed.

Vedi anche:

PEP 560 — Core support for typing module and generic types PEP written and implemented by Ivan Levkivskyi

https://www.python.org/dev/peps/pep-0564/#annex-clocks-resolution-in-python
https://www.python.org/dev/peps/pep-0564
https://www.python.org/dev/peps/pep-0565
https://www.python.org/dev/peps/pep-0484
https://www.python.org/dev/peps/pep-0560

2.10 PEP 552: Hash-based .pyc Files

Python has traditionally checked the up-to-dateness of bytecode cache files (i.e., . pyc files) by comparing the source
metadata (last-modified timestamp and size) with source metadata saved in the cache file header when it was generated.
While effective, this invalidation method has its drawbacks. When filesystem timestamps are too coarse, Python can miss
source updates, leading to user confusion. Additionally, having a timestamp in the cache file is problematic for build
reproducibility and content-based build systems.

PEP 552 extends the pyc format to allow the hash of the source file to be used for invalidation instead of the source
timestamp. Such .pyc files are called «hash-based». By default, Python still uses timestamp-based invalidation and
does not generate hash-based . pyc files at runtime. Hash-based . pyc files may be generated with py_compile or
compileall.

Hash-based . pyc files come in two variants: checked and unchecked. Python validates checked hash-based . pyc files
against the corresponding source files at runtime but doesn’t do so for unchecked hash-based pycs. Unchecked hash-based
.pyec files are a useful performance optimization for environments where a system external to Python (e.g., the build
system) is responsible for keeping . pyc files up-to-date.

See pyc-invalidation for more information.
Vedi anche:

PEP 552 — Deterministic pycs PEP written and implemented by Benjamin Peterson

2.11 PEP 545: Python Documentation Translations

PEP 545 describes the process of creating and maintaining Python documentation translations.
Three new translations have been added:

* Japanese: https://docs.python.org/ja/

¢ French: https://docs.python.org/fr/

e Korean: https://docs.python.org/ko/
Vedi anche:

PEP 545 — Python Documentation Translations PEP written and implemented by Julien Palard, Inada Naoki, and
Victor Stinner.

2.12 Development Runtime Mode: -X dev

The new -X dev command line option or the new PYTHONDEVMODE environment variable can be used to enable
CPython’s development mode. When in development mode, CPython performs additional runtime checks that are too
expensive to be enabled by default. See —X dev documentation for the full description of the effects of this mode.

https://reproducible-builds.org/
https://reproducible-builds.org/
https://www.python.org/dev/peps/pep-0552
https://www.python.org/dev/peps/pep-0552
https://www.python.org/dev/peps/pep-0545
https://docs.python.org/ja/
https://docs.python.org/fr/
https://docs.python.org/ko/
https://www.python.org/dev/peps/pep-0545

3 Other Language Changes

* An await expression and comprehensions containing an async for clause were illegal in the expressions in
formatted string literals due to a problem with the implementation. In Python 3.7 this restriction was lifted.

¢ More than 255 arguments can now be passed to a function, and a function can now have more than 255 parameters.
(Contributed by Serhiy Storchaka in bpo-12844 and bpo-18896.)

* bytes.fromhex () and bytearray.fromhex () now ignore all ASCII whitespace, not only spaces.
(Contributed by Robert Xiao in bpo-28927.)

* str, bytes, and bytearray gained support for the new i sascii () method, which can be used to test if a
string or bytes contain only the ASCII characters. (Contributed by INADA Naoki in bpo-32677.)

e ImportError now displays module name and module __file_ pathwhen from ... import ... fails.
(Contributed by Matthias Bussonnier in bpo-29546.)

¢ Circular imports involving absolute imports with binding a submodule to a name are now supported. (Contributed
by Serhiy Storchaka in bpo-30024.)

e object.__format__(x, '') is now equivalent to str (x) rather than format (str (self), '').
(Contributed by Serhiy Storchaka in bpo-28974.)

¢ In order to better support dynamic creation of stack traces, t ypes.TracebackType can now be instantiated
from Python code, and the tb_next attribute on tracebacks is now writable. (Contributed by Nathaniel J. Smith
in bpo-30579.)

* When using the —m switch, sys.path[0] is now eagerly expanded to the full starting directory path, rather than
being left as the empty directory (which allows imports from the current working directory at the time when an
import occurs) (Contributed by Nick Coghlan in bpo-33053.)

e The new —X importtime option or the PYTHONPROFILEIMPORTTIME environment variable can be used to
show the timing of each module import. (Contributed by Victor Stinner in bpo-31415.)

4 New Modules

4.1 contextvars
The new contextvars module and a set of new C APIs introduce support for context variables. Context variables are
conceptually similar to thread-local variables. Unlike TLS, context variables support asynchronous code correctly.

The asyncio and decimal modules have been updated to use and support context variables out of the box. Particularly
the active decimal context is now stored in a context variable, which allows decimal operations to work with the correct
context in asynchronous code.

Vedi anche:

PEP 567 — Context Variables PEP written and implemented by Yury Selivanov

10

https://bugs.python.org/issue?@action=redirect&bpo=12844
https://bugs.python.org/issue?@action=redirect&bpo=18896
https://bugs.python.org/issue?@action=redirect&bpo=28927
https://bugs.python.org/issue?@action=redirect&bpo=32677
https://bugs.python.org/issue?@action=redirect&bpo=29546
https://bugs.python.org/issue?@action=redirect&bpo=30024
https://bugs.python.org/issue?@action=redirect&bpo=28974
https://bugs.python.org/issue?@action=redirect&bpo=30579
https://bugs.python.org/issue?@action=redirect&bpo=33053
https://bugs.python.org/issue?@action=redirect&bpo=31415
https://www.python.org/dev/peps/pep-0567

4.2 dataclasses

The new dataclass () decorator provides a way to declare data classes. A data class describes its attributes using class
variable annotations. Its constructor and other magic methods, suchas __repr__ (),__eqg _(),and __hash__ ()
are generated automatically.

Example:

@dataclass
class Point:
x: float
y: float
z: float = 0.0

p = Point (1.5, 2.5)
print (p) # produces "Point (x=1.5, y=2.5, z=0.0)"

Vedi anche:

PEP 557 — Data Classes PEP written and implemented by Eric V. Smith

4.3 importlib.resources

The new importlib.resources module provides several new APIs and one new ABC for access to, opening,
and reading resources inside packages. Resources are roughly similar to files inside packages, but they needn’t be actual
files on the physical file system. Module loaders can provide a get_resource_reader () function which returns a
importlib.abc.ResourceReader instance to support this new API. Built-in file path loaders and zip file loaders
both support this.

Contributed by Barry Warsaw and Brett Cannon in bpo-32248.
Vedi anche:

importlib_resources — a PyPI backport for earlier Python versions.

5 Improved Modules

5.1 argparse

The new ArgumentParser.parse_intermixed_args () method allows intermixing options and positional
arguments. (Contributed by paul.j3 in bpo-14191.)

5.2 asyncio

The asyncio module has received many new features, usability and performance improvements. Notable changes
include:

e The new provisional asyncio.run () function can be used to run a coroutine from synchronous code by
automatically creating and destroying the event loop. (Contributed by Yury Selivanov in bpo-32314.)

* asyncio gained support for contextvars. loop.call_soon(), loop.call_soon_threadsafe (),
loop.call_later(),loop.call_at (),andFuture.add_done_callback () have anew optional
keyword-only context parameter. Tasks now track their context automatically. See PEP 567 for more details.
(Contributed by Yury Selivanov in bpo-32436.)

11

https://www.python.org/dev/peps/pep-0557
https://bugs.python.org/issue?@action=redirect&bpo=32248
http://importlib-resources.readthedocs.io/en/latest/
https://bugs.python.org/issue?@action=redirect&bpo=14191
https://bugs.python.org/issue?@action=redirect&bpo=32314
https://www.python.org/dev/peps/pep-0567
https://bugs.python.org/issue?@action=redirect&bpo=32436

The new asyncio.create_task() function has been added as a shortcut to
asyncio.get_event_loop () .create_task (). (Contributed by Andrew Svetlov in bpo-32311.)

The new loop.start_tls () method can be used to upgrade an existing connection to TLS. (Contributed by
Yury Selivanov in bpo-23749.)

The new loop.sock_recv_into () method allows reading data from a socket directly into a provided buffer
making it possible to reduce data copies. (Contributed by Antoine Pitrou in bpo-31819.)

The new asyncio.current_task () function returns the currently running Task instance, and the new
asyncio.all_tasks () function returns a set of all existing Task instances in a given loop. The Task.
current_task () and Task.all_tasks () methods have been deprecated. (Contributed by Andrew
Svetlov in bpo-32250.)

The new provisional Buf feredProtocol class allows implementing streaming protocols with manual control
over the receive buffer. (Contributed by Yury Selivanov in bpo-32251.)

The new asyncio.get_running_loop () function returns the currently running loop, and raises a
RuntimeError if no loop is running. This is in contrast with asyncio.get_event_loop (), which will
create a new event loop if none is running. (Contributed by Yury Selivanov in bpo-32269.)

The new StreamWriter.wait_closed () coroutine method allows waiting until the stream writer is clo-
sed. The new StreamWriter.is_closing () method can be used to determine if the writer is closing.
(Contributed by Andrew Svetlov in bpo-32391.)

The new loop.sock_sendfile () coroutine method allows sending files using os.sendfile when
possible. (Contributed by Andrew Svetlov in bpo-32410.)

The new Future.get_loop () and Task.get_loop () methods return the instance of the loop on which
a task or a future were created. Server.get_loop () allows doing the same for asyncio.Server objects.
(Contributed by Yury Selivanov in bpo-32415 and Srinivas Reddy Thatiparthy in bpo-32418.)

It is now possible to control how instances of asyncio.Server begin serving. Previously, the ser-
ver would start serving immediately when created. The new start_serving keyword argument to loop.
create_server () and loop.create_unix_server (), as well as Server.start_serving(),
and Server.serve_forever () canbe used to decouple server instantiation and serving. The new Server.
is_serving () method returns True if the server is serving. Server objects are now asynchronous context
managers:

srv = await loop.create_server(...)

async with srv:
some code

At this point, srv is closed and no longer accepts new connections.

(Contributed by Yury Selivanov in bpo-32662.)

Callback objects returned by 1loop.call_later () gained the new when () method which returns an absolute
scheduled callback timestamp. (Contributed by Andrew Svetlov in bpo-32741.)

The loop.create_datagram_endpoint () method gained support for Unix sockets. (Contributed by
Quentin Dawans in bpo-31245.)

The asyncio.open_connection (), asyncio.start_server () functions, loop.
create_connection (), loop.create_server(), loop.create_accepted_socket ()

methods and their corresponding UNIX socket variants now accept the ssi_handshake_timeout keyword argument.
(Contributed by Neil Aspinall in bpo-29970.)

The new Handle.cancelled () method returns True if the callback was cancelled. (Contributed by Marat
Sharafutdinov in bpo-31943.)

12

https://bugs.python.org/issue?@action=redirect&bpo=32311
https://bugs.python.org/issue?@action=redirect&bpo=23749
https://bugs.python.org/issue?@action=redirect&bpo=31819
https://bugs.python.org/issue?@action=redirect&bpo=32250
https://bugs.python.org/issue?@action=redirect&bpo=32251
https://bugs.python.org/issue?@action=redirect&bpo=32269
https://bugs.python.org/issue?@action=redirect&bpo=32391
https://bugs.python.org/issue?@action=redirect&bpo=32410
https://bugs.python.org/issue?@action=redirect&bpo=32415
https://bugs.python.org/issue?@action=redirect&bpo=32418
https://bugs.python.org/issue?@action=redirect&bpo=32662
https://bugs.python.org/issue?@action=redirect&bpo=32741
https://bugs.python.org/issue?@action=redirect&bpo=31245
https://bugs.python.org/issue?@action=redirect&bpo=29970
https://bugs.python.org/issue?@action=redirect&bpo=31943

» The asyncio source has been converted to use the async/await syntax. (Contributed by Andrew Svetlov in
bpo-32193.)

e The new ReadTransport.is_reading () method can be used to determine the reading state of
the transport. Additionally, calls to ReadTransport.resume_reading() and ReadTransport.
pause_reading () are now idempotent. (Contributed by Yury Selivanov in bpo-32356.)

* Loop methods which accept socket paths now support passing path-like objects. (Contributed by Yury Selivanov
in bpo-32066.)

* In asyncio TCP sockets on Linux are now created with TCP_NODELAY flag set by default. (Contributed by
Yury Selivanov and Victor Stinner in bpo-27456.)

» Exceptions occurring in cancelled tasks are no longer logged. (Contributed by Yury Selivanov in bpo-30508.)

e New WindowsSelectorEventLoopPolicy and WindowsProactorEventLoopPolicy classes.
(Contributed by Yury Selivanov in bpo-33792.)

Several asyncio APIs have been deprecated.

5.3 binascii

The b2a_uu () function now accepts an optional backtick keyword argument. When it’s true, zeros are represented by
' ' instead of spaces. (Contributed by Xiang Zhang in bpo-30103.)

5.4 calendar

The HTMLCalendar class has new class attributes which ease the customization of CSS classes in the produced HTML
calendar. (Contributed by Oz Tiram in bpo-30095.)

5.5 collections

collections.namedtuple () now supports default values. (Contributed by Raymond Hettinger in bpo-32320.)

5.6 compileall

compileall.compile_dir () learned the new invalidation_mode parameter, which can be used to enable
hash-based .pyc invalidation. The invalidation mode can also be specified on the command line using the new
—-—invalidation-mode argument. (Contributed by Benjamin Peterson in bpo-31650.)

5.7 concurrent.futures

ProcessPoolExecutor and ThreadPoolExecutor now support the new initializer and initargs constructor
arguments. (Contributed by Antoine Pitrou in bpo-21423.)

The ProcessPoolExecutor can now take the multiprocessing context via the new mp_context argument.
(Contributed by Thomas Moreau in bpo-31540.)

13

https://bugs.python.org/issue?@action=redirect&bpo=32193
https://bugs.python.org/issue?@action=redirect&bpo=32356
https://bugs.python.org/issue?@action=redirect&bpo=32066
https://bugs.python.org/issue?@action=redirect&bpo=27456
https://bugs.python.org/issue?@action=redirect&bpo=30508
https://bugs.python.org/issue?@action=redirect&bpo=33792
https://bugs.python.org/issue?@action=redirect&bpo=30103
https://bugs.python.org/issue?@action=redirect&bpo=30095
https://bugs.python.org/issue?@action=redirect&bpo=32320
https://bugs.python.org/issue?@action=redirect&bpo=31650
https://bugs.python.org/issue?@action=redirect&bpo=21423
https://bugs.python.org/issue?@action=redirect&bpo=31540

5.8 contextlib

The new nullcontext () is a simpler and faster no-op context manager than Exit Stack. (Contributed by Jesse-
Bakker in bpo-10049.)

The new asynccontextmanager (), AbstractAsyncContextManager, and AsyncExitStack have
been added to complement their synchronous counterparts. (Contributed by Jelle Zijlstra in bpo-29679 and bpo-30241,
and by Alexander Mohr and Ilya Kulakov in bpo-29302.)

5.9 cProfile

The cProfile command line now accepts -m module_name asan alternative to script path. (Contributed by Sanyam
Khurana in bpo-21862.)

5.10 crypt

The crypt module now supports the Blowfish hashing method. (Contributed by Serhiy Storchaka in bpo-31664.)

The mksalt () function now allows specifying the number of rounds for hashing. (Contributed by Serhiy Storchaka in
bpo-31702.)

5.11 datetime

The new datetime.fromisoformat () method constructs a datet ime object from a string in one of the formats
output by datetime.isoformat (). (Contributed by Paul Ganssle in bpo-15873.)

The t zinfo class now supports sub-minute offsets. (Contributed by Alexander Belopolsky in bpo-5288.)

5.12 dbm

dbm . dumb now supports reading read-only files and no longer writes the index file when it is not changed.

5.13 decimal

The decimal module now uses context variables to store the decimal context. (Contributed by Yury Selivanov in bpo-
32630.)

5.14 dis

The dis () function is now able to disassemble nested code objects (the code of comprehensions, generator expressions
and nested functions, and the code used for building nested classes). The maximum depth of disassembly recursion is
controlled by the new depth parameter. (Contributed by Serhiy Storchaka in bpo-11822.)

14

https://bugs.python.org/issue?@action=redirect&bpo=10049
https://bugs.python.org/issue?@action=redirect&bpo=29679
https://bugs.python.org/issue?@action=redirect&bpo=30241
https://bugs.python.org/issue?@action=redirect&bpo=29302
https://bugs.python.org/issue?@action=redirect&bpo=21862
https://bugs.python.org/issue?@action=redirect&bpo=31664
https://bugs.python.org/issue?@action=redirect&bpo=31702
https://bugs.python.org/issue?@action=redirect&bpo=15873
https://bugs.python.org/issue?@action=redirect&bpo=5288
https://bugs.python.org/issue?@action=redirect&bpo=32630
https://bugs.python.org/issue?@action=redirect&bpo=32630
https://bugs.python.org/issue?@action=redirect&bpo=11822

5.15 distutils

README . rst is now included in the list of distutils standard READMESs and therefore included in source distributions.
(Contributed by Ryan Gonzalez in bpo-11913.)

5.16 enum
The Enum learned the new _ignore_ class property, which allows listing the names of properties which should not
become enum members. (Contributed by Ethan Furman in bpo-31801.)

In Python 3.8, attempting to check for non-Enum objects in Enum classes will raise a TypeError(e.g.1 in Color);
similarly, attempting to check for non-Flag objects in a F1ag member will raise TypeError (e.g. 1 in Perm.RW);
currently, both operations return False instead and are deprecated. (Contributed by Ethan Furman in bpo-33217.)

5.17 functools

functools.singledispatch () now supports registering implementations using type annotations. (Contributed
by Lukasz Langa in bpo-32227.)

5.18 gc

The new gc . freeze () function allows freezing all objects tracked by the garbage collector and excluding them from
future collections. This can be used before a POSIX fork () call to make the GC copy-on-write friendly or to speed up
collection. The new gc.unfreeze () functions reverses this operation. Additionally, gc.get_freeze_count ()
can be used to obtain the number of frozen objects. (Contributed by Li Zekun in bpo-31558.)

5.19 hmac

The hmac module now has an optimized one-shot digest () function, which is up to three times faster than HMAC () .
(Contributed by Christian Heimes in bpo-32433.)

5.20 http.client

HTTPConnection and HTTPSConnection now support the new blocksize argument for improved upload
throughput. (Contributed by Nir Soffer in bpo-31945.)

5.21 http.server

SimpleHTTPRequestHandler now supports the HTTP If-Modified-Since header. The server returns the
304 response status if the target file was not modified after the time specified in the header. (Contributed by Pierre Quentel
in bpo-29654.)

SimpleHTTPRequestHandler accepts the new directory argument, in addition to the new ——directory com-
mand line argument. With this parameter, the server serves the specified directory, by default it uses the current working
directory. (Contributed by Stéphane Wirtel and Julien Palard in bpo-28707.)

The new ThreadingHTTPServer class uses threads to handle requests using ThreadingMixin. It is used when
http.server is run with —m. (Contributed by Julien Palard in bpo-31639.)

15

https://bugs.python.org/issue?@action=redirect&bpo=11913
https://bugs.python.org/issue?@action=redirect&bpo=31801
https://bugs.python.org/issue?@action=redirect&bpo=33217
https://bugs.python.org/issue?@action=redirect&bpo=32227
https://bugs.python.org/issue?@action=redirect&bpo=31558
https://bugs.python.org/issue?@action=redirect&bpo=32433
https://bugs.python.org/issue?@action=redirect&bpo=31945
https://bugs.python.org/issue?@action=redirect&bpo=29654
https://bugs.python.org/issue?@action=redirect&bpo=28707
https://bugs.python.org/issue?@action=redirect&bpo=31639

5.22 idlelib and IDLE

Multiple fixes for autocompletion. (Contributed by Louie Lu in bpo-15786.)

Module Browser (on the File menu, formerly called Class Browser), now displays nested functions and classes in addition
to top-level functions and classes. (Contributed by Guilherme Polo, Cheryl Sabella, and Terry Jan Reedy in bpo-1612262.)

The Settings dialog (Options, Configure IDLE) has been partly rewritten to improve both appearance and function.
(Contributed by Cheryl Sabella and Terry Jan Reedy in multiple issues.)

The font sample now includes a selection of non-Latin characters so that users can better see the effect of selecting a
particular font. (Contributed by Terry Jan Reedy in bpo-13802.) The sample can be edited to include other characters.
(Contributed by Serhiy Storchaka in bpo-31860.)

The IDLE features formerly implemented as extensions have been reimplemented as normal features. Their settings have
been moved from the Extensions tab to other dialog tabs. (Contributed by Charles Wohlganger and Terry Jan Reedy in
bpo-27099.)

Editor code context option revised. Box displays all context lines up to maxlines. Clicking on a context line jumps the
editor to that line. Context colors for custom themes is added to Highlights tab of Settings dialog. (Contributed by Cheryl
Sabella and Terry Jan Reedy in bpo-33642, bpo-33768, and bpo-33679.)

On Windows, a new API call tells Windows that tk scales for DPI. On Windows 8.1+ or 10, with DPI compatibility
properties of the Python binary unchanged, and a monitor resolution greater than 96 DPI, this should make text and lines
sharper. It should otherwise have no effect. (Contributed by Terry Jan Reedy in bpo-33656.)

New in 3.7.1:

Output over N lines (50 by default) is squeezed down to a button. N can be changed in the PyShell section of the General
page of the Settings dialog. Fewer, but possibly extra long, lines can be squeezed by right clicking on the output. Squeezed
output can be expanded in place by double-clicking the button or into the clipboard or a separate window by right-clicking
the button. (Contributed by Tal Einat in bpo-1529353.)

The changes above have been backported to 3.6 maintenance releases.
NEW in 3.7.4:

Add «Run Customized» to the Run menu to run a module with customized settings. Any command line arguments entered
are added to sys.argv. They re-appear in the box for the next customized run. One can also suppress the normal Shell main
module restart. (Contributed by Cheryl Sabella, Terry Jan Reedy, and others in bpo-5680 and bpo-37627.)

New in 3.7.5:

Add optional line numbers for IDLE editor windows. Windows open without line numbers unless set otherwise in the
General tab of the configuration dialog. Line numbers for an existing window are shown and hidden in the Options menu.
(Contributed by Tal Einat and Saimadhav Heblikar in bpo-17535.)

5.23 importlib

The importlib.abc.ResourceReader ABC was introduced to support the loading of resources from packages.
See also importlib.resources. (Contributed by Barry Warsaw, Brett Cannon in bpo-32248.)

importlib.reload () now raises ModuleNotFoundError if the module lacks a spec. (Contributed by Garvit
Khatri in bpo-29851.)

importlib.find_spec () nowraises ModuleNotFoundError instead of Att ributeError if the specified
parent module is not a package (i.e. lacks a __path___ attribute). (Contributed by Milan Oberkirch in bpo-30436.)

The new importlib.source_hash () can be used to compute the hash of the passed source. A hash-based .pyc
file embeds the value returned by this function.

16

https://bugs.python.org/issue?@action=redirect&bpo=15786
https://bugs.python.org/issue?@action=redirect&bpo=1612262
https://bugs.python.org/issue?@action=redirect&bpo=13802
https://bugs.python.org/issue?@action=redirect&bpo=31860
https://bugs.python.org/issue?@action=redirect&bpo=27099
https://bugs.python.org/issue?@action=redirect&bpo=33642
https://bugs.python.org/issue?@action=redirect&bpo=33768
https://bugs.python.org/issue?@action=redirect&bpo=33679
https://bugs.python.org/issue?@action=redirect&bpo=33656
https://bugs.python.org/issue?@action=redirect&bpo=1529353
https://bugs.python.org/issue?@action=redirect&bpo=5680
https://bugs.python.org/issue?@action=redirect&bpo=37627
https://bugs.python.org/issue?@action=redirect&bpo=17535
https://bugs.python.org/issue?@action=redirect&bpo=32248
https://bugs.python.org/issue?@action=redirect&bpo=29851
https://bugs.python.org/issue?@action=redirect&bpo=30436

5.24 io

The new TextIOWrapper.reconfigure () method can be used to reconfigure the text stream with the new
settings. (Contributed by Antoine Pitrou in bpo-30526 and INADA Naoki in bpo-15216.)

5.25 ipaddress
The new subnet_of () and supernet_of () methods of ipaddress.IPv6Network and ipaddress.

IPv4Network can be used for network containment tests. (Contributed by Michel Albert and Cheryl Sabella in
bpo-20825.)

5.26 itertools

itertools.islice () now accepts integer—-like objects as start, stop, and slice arguments. (Contributed
by Will Roberts in bpo-30537.)

5.27 locale

The new monetary argument to locale.format_string () can be used to make the conversion use monetary
thousands separators and grouping strings. (Contributed by Garvit in bpo-10379.)

The locale.getpreferredencoding () function now always returns 'UTF-8"' on Android or when in the
forced UTF-8 mode.

5.28 logging

Logger instances can now be pickled. (Contributed by Vinay Sajip in bpo-30520.)

The new StreamHandler.setStream () method can be used to replace the logger stream after handler creation.
(Contributed by Vinay Sajip in bpo-30522.)

It is now possible to specify keyword arguments to handler constructors in configuration passed to Logging.config.
fileConfig (). (Contributed by Preston Landers in bpo-31080.)

5.29 math

The new math.remainder () function implements the IEEE 754-style remainder operation. (Contributed by Mark
Dickinson in bpo-29962.)

5.30 mimetypes

The MIME type of .bmp has been changed from 'image/x-ms-bmp' to 'image/bmp'. (Contributed by Nitish
Chandra in bpo-22589.)

17

https://bugs.python.org/issue?@action=redirect&bpo=30526
https://bugs.python.org/issue?@action=redirect&bpo=15216
https://bugs.python.org/issue?@action=redirect&bpo=20825
https://bugs.python.org/issue?@action=redirect&bpo=30537
https://bugs.python.org/issue?@action=redirect&bpo=10379
https://bugs.python.org/issue?@action=redirect&bpo=30520
https://bugs.python.org/issue?@action=redirect&bpo=30522
https://bugs.python.org/issue?@action=redirect&bpo=31080
https://bugs.python.org/issue?@action=redirect&bpo=29962
https://bugs.python.org/issue?@action=redirect&bpo=22589

5.31 msilib

The new Database.Close () method can be used to close the MSI (last-in, first-out) database. (Contributed by
Berker Peksag in bpo-20486.)

5.32 multiprocessing
The new Process.close () method explicitly closes the process object and releases all resources associated with it.
ValueError is raised if the underlying process is still running. (Contributed by Antoine Pitrou in bpo-30596.)

The new Process.kill () method can be used to terminate the process using the SIGKILL signal on Unix.
(Contributed by Vitor Pereira in bpo-30794.)

Non-daemonic threads created by Process are now joined on process exit. (Contributed by Antoine Pitrou in bpo-
18966.)

5.33 os

os.fwalk () now accepts the path argument as bytes. (Contributed by Serhiy Storchaka in bpo-28682.)
os.scandir () gained support for file descriptors. (Contributed by Serhiy Storchaka in bpo-25996.)

The new register_at_fork () function allows registering Python callbacks to be executed at process fork.
(Contributed by Antoine Pitrou in bpo-16500.)

Added os.preadv () (combine the functionality of os.readv () and os.pread()) and os.pwritev ()
functions (combine the functionality of os.writev () and os.pwrite ()). (Contributed by Pablo Galindo in
bpo-31368.)

The mode argument of os.makedirs () no longer affects the file permission bits of newly-created intermediate-level
directories. (Contributed by Serhiy Storchaka in bpo-19930.)

os.dup?2 () now returns the new file descriptor. Previously, None was always returned. (Contributed by Benjamin
Peterson in bpo-32441.)

The structure returned by os.stat () now contains the st_fstype attribute on Solaris and its derivatives.
(Contributed by Jestis Cea Avion in bpo-32659.)

5.34 pathlib

The new Path.is_mount () method is now available on POSIX systems and can be used to determine whether a path
is a mount point. (Contributed by Cooper Ry Lees in bpo-30897.)

5.35 pdb

pdb.set_trace () now takes an optional header keyword-only argument. If given, it is printed to the console just
before debugging begins. (Contributed by Barry Warsaw in bpo-31389.)

pdb command line now accepts -m module_name as an alternative to script file. (Contributed by Mario Corchero in
bpo-32206.)

18

https://bugs.python.org/issue?@action=redirect&bpo=20486
https://bugs.python.org/issue?@action=redirect&bpo=30596
https://bugs.python.org/issue?@action=redirect&bpo=30794
https://bugs.python.org/issue?@action=redirect&bpo=18966
https://bugs.python.org/issue?@action=redirect&bpo=18966
https://bugs.python.org/issue?@action=redirect&bpo=28682
https://bugs.python.org/issue?@action=redirect&bpo=25996
https://bugs.python.org/issue?@action=redirect&bpo=16500
https://bugs.python.org/issue?@action=redirect&bpo=31368
https://bugs.python.org/issue?@action=redirect&bpo=19930
https://bugs.python.org/issue?@action=redirect&bpo=32441
https://bugs.python.org/issue?@action=redirect&bpo=32659
https://bugs.python.org/issue?@action=redirect&bpo=30897
https://bugs.python.org/issue?@action=redirect&bpo=31389
https://bugs.python.org/issue?@action=redirect&bpo=32206

5.36 py_compile

py_compile.compile () —and by extension, compileall —now respects the SOURCE_DATE_EPOCH environ-
ment variable by unconditionally creating . pyc files for hash-based validation. This allows for guaranteeing reproducible
builds of . pyc files when they are created eagerly. (Contributed by Bernhard M. Wiedemann in bpo-29708.)

5.37 pydoc

The pydoc server can now bind to an arbitrary hostname specified by the new —n command-line argument. (Contributed
by Feanil Patel in bpo-31128.)

5.38 queue

The new SimpleQueue class is an unbounded FIFO (last-in, first-out) queue. (Contributed by Antoine Pitrou in bpo-
14976.)

5.39 re
The flags re .ASCII, re.LOCALE and re .UNICODE can be set within the scope of a group. (Contributed by Serhiy
Storchaka in bpo-31690.)

re.split () now supports splitting on a pattern like r'\b"', '~$' or (?=-) that matches an empty string.
(Contributed by Serhiy Storchaka in bpo-25054.)

Regular expressions compiled with the re . LOCALE flag no longer depend on the locale at compile time. Locale settings
are applied only when the compiled regular expression is used. (Contributed by Serhiy Storchaka in bpo-30215.)

FutureWarning is now emitted if a regular expression contains character set constructs that will change semantically
in the future, such as nested sets and set operations. (Contributed by Serhiy Storchaka in bpo-30349.)

Compiled regular expression and match objects can now be copied using copy . copy () and copy.deepcopy ().
(Contributed by Serhiy Storchaka in bpo-10076.)

5.40 signal

The new warn_on_full_buffer argument to the signal.set_wakeup_£fd () function makes it possible to specify
whether Python prints a warning on stderr when the wakeup buffer overflows. (Contributed by Nathaniel J. Smith in
bpo-30050.)

5.41 socket

The new socket .getblocking () method returns True if the socket is in blocking mode and False otherwise.
(Contributed by Yury Selivanov in bpo-32373.)

The new socket .close () function closes the passed socket file descriptor. This function should be used instead of
os.close () for better compatibility across platforms. (Contributed by Christian Heimes in bpo-32454.)

The socket module now exposes the socket.TCP_CONGESTION (Linux 2.6.13), socket.
TCP_USER_TIMEOUT (Linux 2.6.37), and socket . TCP_NOTSENT_LOWAT (Linux 3.12) constants. (Contributed
by Omar Sandoval in bpo-26273 and Nathaniel J. Smith in bpo-29728.)

Support for socket . AF_VSOCK sockets has been added to allow communication between virtual machines and their
hosts. (Contributed by Cathy Avery in bpo-27584.)

19

https://reproducible-builds.org/
https://reproducible-builds.org/
https://bugs.python.org/issue?@action=redirect&bpo=29708
https://bugs.python.org/issue?@action=redirect&bpo=31128
https://bugs.python.org/issue?@action=redirect&bpo=14976
https://bugs.python.org/issue?@action=redirect&bpo=14976
https://bugs.python.org/issue?@action=redirect&bpo=31690
https://bugs.python.org/issue?@action=redirect&bpo=25054
https://bugs.python.org/issue?@action=redirect&bpo=30215
https://bugs.python.org/issue?@action=redirect&bpo=30349
https://bugs.python.org/issue?@action=redirect&bpo=10076
https://bugs.python.org/issue?@action=redirect&bpo=30050
https://bugs.python.org/issue?@action=redirect&bpo=32373
https://bugs.python.org/issue?@action=redirect&bpo=32454
https://bugs.python.org/issue?@action=redirect&bpo=26273
https://bugs.python.org/issue?@action=redirect&bpo=29728
https://bugs.python.org/issue?@action=redirect&bpo=27584

Sockets now auto-detect family, type and protocol from file descriptor by default. (Contributed by Christian Heimes in
bpo-28134.)

5.42 socketserver

socketserver.ThreadingMixIn.server_close () now waits until all non-daemon threads complete.
socketserver.ForkingMixIn.server_close () now waits until all child processes complete.

Add a new socketserver.ForkingMixIn.block_on_close class attribute to socketserver.
ForkingMixIn and socketserver.ThreadingMixIn classes. Set the class attribute to False to get the
pre-3.7 behaviour.

5.43 sqlite3

sglite3.Connection now exposes the backup () method when the underlying SQLite library is at version 3.6.11
or higher. (Contributed by Lele Gaifax in bpo-27645.)

The database argument of sglite3.connect () now accepts any path-like object, instead of just a string.
(Contributed by Anders Lorentsen in bpo-31843.)

5.44 ssli

The ss1 module now uses OpenSSL’s builtin API instead of match_hostname () to check a host name or
an IP address. Values are validated during TLS handshake. Any certificate validation error including failing the
host name check now raises SSLCertVerificationError and aborts the handshake with a proper TLS
Alert message. The new exception contains additional information. Host name validation can be customized with
SSLContext .hostname_checks_common_name. (Contributed by Christian Heimes in bpo-31399.)

Nota: The improved host name check requires a libss! implementation compatible with OpenSSL 1.0.2 or 1.1. Con-
sequently, OpenSSL 0.9.8 and 1.0.1 are no longer supported (see Platform Support Removals for more details). The ssl
module is mostly compatible with LibreSSL 2.7.2 and newer.

The ss1 module no longer sends IP addresses in SNI TLS extension. (Contributed by Christian Heimes in bpo-32185.)

match_hostname () no longer supports partial wildcards like www* . example.org. (Contributed by Mandeep
Singh in bpo-23033 and Christian Heimes in bpo-31399.)

The default cipher suite selection of the ss1 module now uses a blacklist approach rather than a hard-coded whitelist.
Python no longer re-enables ciphers that have been blocked by OpenSSL security updates. Default cipher suite selection
can be configured at compile time. (Contributed by Christian Heimes in bpo-31429.)

Validation of server certificates containing internationalized domain names (IDNs) is now supported. As part of
this change, the SSLSocket.server_hostname attribute now stores the expected hostname in A-label form
("xn—-—-pythn-mua.org"), rather than the U-label form ("python.org"). (Contributed by Nathaniel J. Smith
and Christian Heimes in bpo-28414.)

The ss1 module has preliminary and experimental support for TLS 1.3 and OpenSSL 1.1.1. At the time of Python
3.7.0 release, OpenSSL 1.1.1 is still under development and TLS 1.3 hasn’t been finalized yet. The TLS 1.3 handshake
and protocol behaves slightly differently than TLS 1.2 and earlier, see ssl-tlsvl_3. (Contributed by Christian Heimes in
bpo-32947, bpo-20995, bpo-29136, bpo-30622 and bpo-33618)

SSLSocket and SSLObject no longer have a public constructor. Direct instantiation was never a documented and
supported feature. Instances must be created with SSLContext methods wrap_socket () and wrap_bio ().
(Contributed by Christian Heimes in bpo-32951)

20

https://bugs.python.org/issue?@action=redirect&bpo=28134
https://bugs.python.org/issue?@action=redirect&bpo=27645
https://bugs.python.org/issue?@action=redirect&bpo=31843
https://bugs.python.org/issue?@action=redirect&bpo=31399
https://bugs.python.org/issue?@action=redirect&bpo=32185
https://bugs.python.org/issue?@action=redirect&bpo=23033
https://bugs.python.org/issue?@action=redirect&bpo=31399
https://bugs.python.org/issue?@action=redirect&bpo=31429
https://bugs.python.org/issue?@action=redirect&bpo=28414
https://bugs.python.org/issue?@action=redirect&bpo=32947
https://bugs.python.org/issue?@action=redirect&bpo=20995
https://bugs.python.org/issue?@action=redirect&bpo=29136
https://bugs.python.org/issue?@action=redirect&bpo=30622
https://bugs.python.org/issue?@action=redirect&bpo=33618
https://bugs.python.org/issue?@action=redirect&bpo=32951

OpenSSL 1.1 APIs for setting the minimum and maximum TLS protocol version are available as SSLContext.
minimum_version and SSLContext .maximum_version. Supported protocols are indicated by several new
flags, such as HAS_TLSv1_1. (Contributed by Christian Heimes in bpo-32609.)

Added SSLContext .post_handshake_auth to enable and ssl.SSLSocket.
verify_client_post_handshake () to initiate TLS 1.3 post-handshake authentication. (Contributed by
Christian Heimes in bpo-34670.)

5.45 string

string.Template now lets you to optionally modify the regular expression pattern for braced placeholders and
non-braced placeholders separately. (Contributed by Barry Warsaw in bpo-1198569.)

5.46 subprocess

The subprocess.run () function accepts the new capture_output keyword argument. When true, stdout and stderr
will be captured. This is equivalent to passing subprocess.PIPE as stdout and stderr arguments. (Contributed by Bo
Bayles in bpo-32102.)

The subprocess. run function and the subprocess.Popen constructor now accept the fext keyword argument
as an alias to universal_newlines. (Contributed by Andrew Clegg in bpo-31756.)

On Windows the default for close_fds was changed from False to True when redirecting the standard handles. It’s
now possible to set close_fds to true when redirecting the standard handles. See subprocess.Popen. This means that
close_fds now defaults to True on all supported platforms. (Contributed by Segev Finer in bpo-19764.)

The subprocess module is now more graceful when handling KeyboardInterrupt during subprocess.call (),
subprocess.run (),orinaPopen context manager. It now waits a short amount of time for the child to exit, before
continuing the handling of the KeyboardInterrupt exception. (Contributed by Gregory P. Smith in bpo-25942.)

5.47 sys
The new sys.breakpointhook () hook function is called by the built-in breakpoint (). (Contributed by Barry
Warsaw in bpo-31353.)

On Android, the new sys.getandroidapilevel () returns the build-time Android API version. (Contributed by
Victor Stinner in bpo-28740.)

The new sys.get_coroutine_origin_tracking_depth () function returns the current coroutine origin
tracking depth, as set by the new sys.set_coroutine_origin_tracking_depth (). asyncio has been
converted to use this new API instead of the deprecated sys.set_coroutine_wrapper (). (Contributed by
Nathaniel J. Smith in bpo-32591.)

5.48 time

PEP 564 adds six new functions with nanosecond resolution to the t i me module:
e time.clock_gettime_ns ()
e time.clock_settime_ns()
e time.monotonic_ns ()
* time.perf_counter_ns()

e time.process_time_ns()

21

https://bugs.python.org/issue?@action=redirect&bpo=32609
https://bugs.python.org/issue?@action=redirect&bpo=34670
https://bugs.python.org/issue?@action=redirect&bpo=1198569
https://bugs.python.org/issue?@action=redirect&bpo=32102
https://bugs.python.org/issue?@action=redirect&bpo=31756
https://bugs.python.org/issue?@action=redirect&bpo=19764
https://bugs.python.org/issue?@action=redirect&bpo=25942
https://bugs.python.org/issue?@action=redirect&bpo=31353
https://bugs.python.org/issue?@action=redirect&bpo=28740
https://bugs.python.org/issue?@action=redirect&bpo=32591
https://www.python.org/dev/peps/pep-0564

e time.time_ns ()
New clock identifiers have been added:

* time.CLOCK_BOOTTIME (Linux): Identical to t ime . CLOCK_MONOTONIC, except it also includes any time
that the system is suspended.

* time.CLOCK_PROF (FreeBSD, NetBSD and OpenBSD): High-resolution per-process CPU timer.

e time.CLOCK_UPTIME (FreeBSD, OpenBSD): Time whose absolute value is the time the system has been
running and not suspended, providing accurate uptime measurement.

The new time.thread_time () and time.thread_time_ns () functions can be used to get per-thread CPU
time measurements. (Contributed by Antoine Pitrou in bpo-32025.)

The new time.pthread_getcpuclockid () function returns the clock ID of the thread-specific CPU-time clock.

5.49 tkinter

The new tkinter.ttk.Spinbox class is now available. (Contributed by Alan Moore in bpo-32585.)

5.50 tracemalloc

tracemalloc.Traceback behaves more like regular tracebacks, sorting the frames from oldest to most recent.
Traceback.format () now accepts negative limit, truncating the result to the abs (1imit) oldest frames. To get
the old behaviour, use the new most_recent_first argument to Traceback . format (). (Contributed by Jesse Bakker
in bpo-32121.)

5.51 types

The new WrapperDescriptorType, MethodWrapperType, MethodDescriptorType, and
ClassMethodDescriptorType classes are now available. (Contributed by Manuel Krebber and Guido van
Rossum in bpo-29377, and Serhiy Storchaka in bpo-32265.)

The new types.resolve_bases () function resolves MRO entries dynamically as specified by PEP 560.
(Contributed by Ivan Levkivskyi in bpo-32717.)

5.52 unicodedata

The internal unicodedata database has been upgraded to use Unicode 11. (Contributed by Benjamin Peterson.)

5.53 unittest

The new -k command-line option allows filtering tests by a name substring or a Unix shell-like pattern. For
example,python -m unittest -k foorunsfoo_tests.SomeTest.test_something,bar_tests.
SomeTest.test_foo, but not bar_tests.FooTest.test_something. (Contributed by Jonas Haag in
bpo-32071.)

22

https://bugs.python.org/issue?@action=redirect&bpo=32025
https://bugs.python.org/issue?@action=redirect&bpo=32585
https://bugs.python.org/issue?@action=redirect&bpo=32121
https://bugs.python.org/issue?@action=redirect&bpo=29377
https://bugs.python.org/issue?@action=redirect&bpo=32265
https://www.python.org/dev/peps/pep-0560
https://bugs.python.org/issue?@action=redirect&bpo=32717
http://www.unicode.org/versions/Unicode11.0.0/
https://bugs.python.org/issue?@action=redirect&bpo=32071

5.54 unittest.mock
The sentinel attributes now preserve their identity when they are copied or pickled. (Contributed by Serhiy
Storchaka in bpo-20804.)

The new seal () function allows sealing Mock instances, which will disallow further creation of attribute mocks. The
seal is applied recursively to all attributes that are themselves mocks. (Contributed by Mario Corchero in bpo-30541.)

5.55 urllib.parse

urllib.parse.quote () has been updated from RFC 2396 to RFC 3986, adding ~ to the set of characters that
are never quoted by default. (Contributed by Christian Theune and Ratnadeep Debnath in bpo-16285.)

5.56 uu

The uu.encode () function now accepts an optional backtick keyword argument. When it’s true, zeros are represented
by ' ' instead of spaces. (Contributed by Xiang Zhang in bpo-30103.)

5.57 uuid

The new UUID. is_safe attribute relays information from the platform about whether generated UUIDs are generated
with a multiprocessing-safe method. (Contributed by Barry Warsaw in bpo-22807.)

uuid.getnode () now prefers universally administered MAC addresses over locally administered MAC addres-
ses. This makes a better guarantee for global uniqueness of UUIDs returned from uuid.uuidl (). If only local-
ly administered MAC addresses are available, the first such one found is returned. (Contributed by Barry Warsaw in
bpo-32107.)

5.58 warnings

The initialization of the default warnings filters has changed as follows:

 warnings enabled via command line options (including those for —b and the new CPython-specific —X dev option)
are always passed to the warnings machinery via the sys.warnoptions attribute.

» warnings filters enabled via the command line or the environment now have the following order of precedence:

the BytesWarning filter for —b (or —bb)

any filters specified with the —W option

any filters specified with the PYTHONWARNINGS environment variable

any other CPython specific filters (e.g. the default filter added for the new -X dev mode)
— any implicit filters defined directly by the warnings machinery
¢ in CPython debug builds, all warnings are now displayed by default (the implicit filter list is empty)
(Contributed by Nick Coghlan and Victor Stinner in bpo-20361, bpo-32043, and bpo-32230.)

Deprecation warnings are once again shown by default in single-file scripts and at the interactive prompt. See PEP 565:
Show Deprecation Warning in __main__ for details. (Contributed by Nick Coghlan in bpo-31975.)

23

https://bugs.python.org/issue?@action=redirect&bpo=20804
https://bugs.python.org/issue?@action=redirect&bpo=30541
https://tools.ietf.org/html/rfc2396.html
https://tools.ietf.org/html/rfc3986.html
https://bugs.python.org/issue?@action=redirect&bpo=16285
https://bugs.python.org/issue?@action=redirect&bpo=30103
https://bugs.python.org/issue?@action=redirect&bpo=22807
https://bugs.python.org/issue?@action=redirect&bpo=32107
https://bugs.python.org/issue?@action=redirect&bpo=20361
https://bugs.python.org/issue?@action=redirect&bpo=32043
https://bugs.python.org/issue?@action=redirect&bpo=32230
https://bugs.python.org/issue?@action=redirect&bpo=31975

5.59 xml

As mitigation against DTD and external entity retrieval, the xm1 .dom.minidom and xml . sax modules no longer
process external entities by default. (Contributed by Christian Heimes in bpo-17239.)

5.60 xml.etree

ElementPath predicates in the £ind () methods can now compare text of the current node with [. = "text"],
not only text in children. Predicates also allow adding spaces for better readability. (Contributed by Stefan Behnel in
bpo-31648.)

5.61 xmlrpc.server

SimpleXMLRPCDispatcher.register_function can now be used as a decorator. (Contributed by Xiang
Zhang in bpo-7769.)

5.62 zipapp
Function create_archive () now accepts an optional filter argument to allow the user to select which files should
be included in the archive. (Contributed by Irmen de Jong in bpo-31072.)

Function create_archive () now accepts an optional compressed argument to generate a compressed archive. A
command line option ——compress has also been added to support compression. (Contributed by Zhiming Wang in
bpo-31638.)

5.63 zipfile
Z1ipFile now accepts the new compresslevel parameter to control the compression level. (Contributed by Bo Bayles in
bpo-21417.)

Subdirectories in archives created by ZipFile are now stored in alphabetical order. (Contributed by Bernhard M.
Wiedemann in bpo-30693.)

6 C API Changes

A new API for thread-local storage has been implemented. See PEP 539: New C API for Thread-Local Storage for an
overview and thread-specific-storage-api for a complete reference. (Contributed by Masayuki Yamamoto in bpo-25658.)

The new context variables functionality exposes a number of new C APIs.

The new PyImport_GetModule () function returns the previously imported module with the given name.
(Contributed by Eric Snow in bpo-28411.)

The new Py_RETURN_RICHCOMPARE macro eases writing rich comparison functions. (Contributed by Petr Victorin
in bpo-23699.)

The new Py_UNREACHABLE macro can be used to mark unreachable code paths. (Contributed by Barry Warsaw in
bpo-31338.)

The tracemalloc now exposes a C APl through the new PyTraceMalloc_Track() and
PyTraceMalloc_Untrack () functions. (Contributed by Victor Stinner in bpo-30054.)

24

https://bugs.python.org/issue?@action=redirect&bpo=17239
https://bugs.python.org/issue?@action=redirect&bpo=31648
https://bugs.python.org/issue?@action=redirect&bpo=7769
https://bugs.python.org/issue?@action=redirect&bpo=31072
https://bugs.python.org/issue?@action=redirect&bpo=31638
https://bugs.python.org/issue?@action=redirect&bpo=21417
https://bugs.python.org/issue?@action=redirect&bpo=30693
https://bugs.python.org/issue?@action=redirect&bpo=25658
https://bugs.python.org/issue?@action=redirect&bpo=28411
https://bugs.python.org/issue?@action=redirect&bpo=23699
https://bugs.python.org/issue?@action=redirect&bpo=31338
https://bugs.python.org/issue?@action=redirect&bpo=30054

The new import__ find_ load_ start () and import_ find__ load__done () static markers can be
used to trace module imports. (Contributed by Christian Heimes in bpo-31574.)

The fields name and doc of structures PyMemberDef, PyGetSetDef, PyStructSequence_Field,
PyStructSequence_Desc, and wrapperbase are now of type const char * rather of char *.
(Contributed by Serhiy Storchaka in bpo-28761.)

The result of PyUnicode_AsUTF8AndSize () and PyUnicode_AsUTF8 () is now of type const char *
rather of char *. (Contributed by Serhiy Storchaka in bpo-28769.)

The result of PyMapping_Keys (), PyMapping_Values () and PyMapping_Items () is now always a list,
rather than a list or a tuple. (Contributed by Oren Milman in bpo-28280.)

Added functions PySlice_Unpack () and PySlice_AdjustIndices (). (Contributed by Serhiy Storchaka in
bpo-27867.)

PyOS_AfterFork () is deprecated in favour of the new functions PyOS_BeforeFork(),
PyOS_AfterFork_Parent () and PyOS_AfterFork_Child(). (Contributed by Antoine Pitrou in
bpo-16500.)

The PyExc_RecursionErrorInst singleton that was part of the public API has been removed as its members being
never cleared may cause a segfault during finalization of the interpreter. Contributed by Xavier de Gaye in bpo-22898
and bpo-30697.

Added C API support for timezones with timezone constructors PyTimeZone_FromOffset () and
PyTimeZone_FromOffsetAndName (), and access to the UTC singleton with PyDateTime_TimeZone_UTC.
Contributed by Paul Ganssle in bpo-10381.

The type of results of PyThread_start_new_thread () and PyThread_get_thread_ident (), and the
id parameter of PyThreadState_SetAsyncExc () changed from long to unsigned long. (Contributed by
Serhiy Storchaka in bpo-6532.)

PyUnicode_AsWideCharString () now raises a ValueError if the second argument is NULL and the
wchar_t* string contains null characters. (Contributed by Serhiy Storchaka in bpo-30708.)

Changes to the startup sequence and the management of dynamic memory allocators mean that the long documented
requirement to call Py_Initialize () before calling most C API functions is now relied on more heavily, and failing
to abide by it may lead to segfaults in embedding applications. See the Porting to Python 3.7 section in this document and
the pre-init-safe section in the C API documentation for more details.

Thenew PyInterpreterState_GetID () returns the unique ID for a given interpreter. (Contributed by Eric Snow
in bpo-29102.)

Py_DecodeLocale (), Py_EncodeLocale () now use the UTF-8 encoding when the UTF-8 mode is enabled.
(Contributed by Victor Stinner in bpo-29240.)

PyUnicode_DecodeLocaleAndSize () and PyUnicode_EncodeLocale () now use the current locale
encoding for surrogateescape error handler. (Contributed by Victor Stinner in bpo-29240.)

The start and end parameters of PyUnicode_FindChar () are now adjusted to behave like string slices. (Contributed
by Xiang Zhang in bpo-28822.)

25

https://bugs.python.org/issue?@action=redirect&bpo=31574
https://bugs.python.org/issue?@action=redirect&bpo=28761
https://bugs.python.org/issue?@action=redirect&bpo=28769
https://bugs.python.org/issue?@action=redirect&bpo=28280
https://bugs.python.org/issue?@action=redirect&bpo=27867
https://bugs.python.org/issue?@action=redirect&bpo=16500
https://bugs.python.org/issue?@action=redirect&bpo=22898
https://bugs.python.org/issue?@action=redirect&bpo=30697
https://bugs.python.org/issue?@action=redirect&bpo=10381
https://bugs.python.org/issue?@action=redirect&bpo=6532
https://bugs.python.org/issue?@action=redirect&bpo=30708
https://bugs.python.org/issue?@action=redirect&bpo=29102
https://bugs.python.org/issue?@action=redirect&bpo=29240
https://bugs.python.org/issue?@action=redirect&bpo=29240
https://bugs.python.org/issue?@action=redirect&bpo=28822

7 Build Changes

Support for building ——without-threads has been removed. The threading module is now always available.
(Contributed by Antoine Pitrou in bpo-31370.).

A full copy of libffi is no longer bundled for use when building the _ctypes module on non-OSX UNIX platforms.
An installed copy of libffi is now required when building _ ct ypes on such platforms. (Contributed by Zachary Ware in
bpo-27979.)

The Windows build process no longer depends on Subversion to pull in external sources, a Python script is used to
download zipfiles from GitHub instead. If Python 3.6 is not found on the system (via py -3.6), NuGet is used to
download a copy of 32-bit Python for this purpose. (Contributed by Zachary Ware in bpo-30450.)

The ss1 module requires OpenSSL 1.0.2 or 1.1 compatible libssl. OpenSSL 1.0.1 has reached end of lifetime on 2016-
12-31 and is no longer supported. LibreSSL is temporarily not supported as well. LibreSSL releases up to version 2.6.4
are missing required OpenSSL 1.0.2 APIs.

8 Optimizations

The overhead of calling many methods of various standard library classes implemented in C has been significantly reduced
by porting more code to use the METH_FASTCALL convention. (Contributed by Victor Stinner in bpo-29300, bpo-29507,
bpo-29452, and bpo-29286.)

Various optimizations have reduced Python startup time by 10% on Linux and up to 30% on macOS. (Contributed by
Victor Stinner, INADA Naoki in bpo-29585, and Ivan Levkivskyi in bpo-31333.)

Method calls are now up to 20% faster due to the bytecode changes which avoid creating bound method instances.
(Contributed by Yury Selivanov and INADA Naoki in bpo-26110.)

The asyncio module received a number of notable optimizations for commonly used functions:

e The asyncio.get_event_loop () function has been reimplemented in C to make it up to 15 times faster.
(Contributed by Yury Selivanov in bpo-32296.)

e asyncio.Future callback management has been optimized. (Contributed by Yury Selivanov in bpo-32348.)
* asyncio.gather () is now up to 15% faster. (Contributed by Yury Selivanov in bpo-32355.)

* asyncio.sleep () is now up to 2 times faster when the delay argument is zero or negative. (Contributed by
Andrew Svetlov in bpo-32351.)

* The performance overhead of asyncio debug mode has been reduced. (Contributed by Antoine Pitrou in bpo-
31970.)

As aresult of PEP 560 work, the import time of t yping has been reduced by a factor of 7, and many typing operations
are now faster. (Contributed by Ivan Levkivskyi in bpo-32226.)

sorted () and 1ist.sort () have been optimized for common cases to be up to 40-75% faster. (Contributed by
Elliot Gorokhovsky in bpo-28685.)

dict.copy () is now up to 5.5 times faster. (Contributed by Yury Selivanov in bpo-31179.)

hasattr () andgetattr () are now about 4 times faster when name is not found and obj does not override object .
__getattr__ () orobject.__getattribute__ (). (Contributed by INADA Naoki in bpo-32544.)

Searching for certain Unicode characters (like Ukrainian capital «€») in a string was up to 25 times slower than searching
for other characters. It is now only 3 times slower in the worst case. (Contributed by Serhiy Storchaka in bpo-24821.)

26

https://bugs.python.org/issue?@action=redirect&bpo=31370
https://bugs.python.org/issue?@action=redirect&bpo=27979
https://bugs.python.org/issue?@action=redirect&bpo=30450
https://bugs.python.org/issue?@action=redirect&bpo=29300
https://bugs.python.org/issue?@action=redirect&bpo=29507
https://bugs.python.org/issue?@action=redirect&bpo=29452
https://bugs.python.org/issue?@action=redirect&bpo=29286
https://bugs.python.org/issue?@action=redirect&bpo=29585
https://bugs.python.org/issue?@action=redirect&bpo=31333
https://bugs.python.org/issue?@action=redirect&bpo=26110
https://bugs.python.org/issue?@action=redirect&bpo=32296
https://bugs.python.org/issue?@action=redirect&bpo=32348
https://bugs.python.org/issue?@action=redirect&bpo=32355
https://bugs.python.org/issue?@action=redirect&bpo=32351
https://bugs.python.org/issue?@action=redirect&bpo=31970
https://bugs.python.org/issue?@action=redirect&bpo=31970
https://bugs.python.org/issue?@action=redirect&bpo=32226
https://bugs.python.org/issue?@action=redirect&bpo=28685
https://bugs.python.org/issue?@action=redirect&bpo=31179
https://bugs.python.org/issue?@action=redirect&bpo=32544
https://bugs.python.org/issue?@action=redirect&bpo=24821

The collections.namedtuple () factory has been reimplemented to make the creation of named tuples 4 to 6
times faster. (Contributed by Jelle Zijlstra with further improvements by INADA Naoki, Serhiy Storchaka, and Raymond
Hettinger in bpo-28638.)

date.fromordinal () and date.fromtimestamp () are now up to 30% faster in the common case.
(Contributed by Paul Ganssle in bpo-32403.)

The os . fwalk () function is now up to 2 times faster thanks to the use of os.scandir (). (Contributed by Serhiy
Storchaka in bpo-25996.)

The speed of the shutil.rmtree () function has been improved by 20-40% thanks to the use of the
os.scandir () function. (Contributed by Serhiy Storchaka in bpo-28564.)

Optimized case-insensitive matching and searching of regular expressions. Searching some patterns can now
be up to 20 times faster. (Contributed by Serhiy Storchaka in bpo-30285.)

re.compile () now converts £ lags parameter to int object if it is RegexF lag. It is now as fast as Python 3.5, and
faster than Python 3.6 by about 10% depending on the pattern. (Contributed by INADA Naoki in bpo-31671.)

The modify () methods of classes selectors.EpollSelector, selectors.PollSelector and
selectors.DevpollSelector may be around 10% faster under heavy loads. (Contributed by Giampaolo Rodola”
in bpo-30014)

Constant folding has been moved from the peephole optimizer to the new AST optimizer, which is able perform
optimizations more consistently. (Contributed by Eugene Toder and INADA Naoki in bpo-29469 and bpo-11549.)

Most functions and methods in abc have been rewritten in C. This makes creation of abstract base classes, and calling
isinstance () and issubclass () on them 1.5x faster. This also reduces Python start-up time by up to 10%.
(Contributed by Ivan Levkivskyi and INADA Naoki in bpo-31333)

Significant speed improvements to alternate constructors for datetime.date and datetime.datet ime by using
fast-path constructors when not constructing subclasses. (Contributed by Paul Ganssle in bpo-32403)

The speed of comparison of array.array instances has been improved considerably in certain cases. It is now from
10x to 70x faster when comparing arrays holding values of the same integer type. (Contributed by Adrian Wielgosik in
bpo-24700.)

The math.erf () and math.erfc () functions now use the (faster) C library implementation on most platforms.
(Contributed by Serhiy Storchaka in bpo-26121.)

9 Other CPython Implementation Changes

 Trace hooks may now opt out of receiving the 1 ine and opt into receiving the opcode events from the interpreter
by setting the corresponding new f_trace_lines and f_trace_opcodes attributes on the frame being
traced. (Contributed by Nick Coghlan in bpo-31344.)

* Fixed some consistency problems with namespace package module attributes. Namespace module objects now have
an __file__ thatis set to None (previously unset), and their __spec___.origin is also set to None (pre-
viously the string "namespace™). See bpo-32305. Also, the namespace module object’s __spec___.loader
is set to the same value as ___loader___ (previously, the former was set to None). See bpo-32303.

e The locals () dictionary now displays in the lexical order that variables were defined. Previously, the order was
undefined. (Contributed by Raymond Hettinger in bpo-32690.)

e The distutils upload command no longer tries to change CR end-of-line characters to CRLF. This fixes a
corruption issue with sdists that ended with a byte equivalent to CR. (Contributed by Bo Bayles in bpo-32304.)

27

https://bugs.python.org/issue?@action=redirect&bpo=28638
https://bugs.python.org/issue?@action=redirect&bpo=32403
https://bugs.python.org/issue?@action=redirect&bpo=25996
https://bugs.python.org/issue?@action=redirect&bpo=28564
https://bugs.python.org/issue?@action=redirect&bpo=30285
https://bugs.python.org/issue?@action=redirect&bpo=31671
https://bugs.python.org/issue?@action=redirect&bpo=30014
https://bugs.python.org/issue?@action=redirect&bpo=29469
https://bugs.python.org/issue?@action=redirect&bpo=11549
https://bugs.python.org/issue?@action=redirect&bpo=31333
https://bugs.python.org/issue?@action=redirect&bpo=32403
https://bugs.python.org/issue?@action=redirect&bpo=24700
https://bugs.python.org/issue?@action=redirect&bpo=26121
https://bugs.python.org/issue?@action=redirect&bpo=31344
https://bugs.python.org/issue?@action=redirect&bpo=32305
https://bugs.python.org/issue?@action=redirect&bpo=32303
https://bugs.python.org/issue?@action=redirect&bpo=32690
https://bugs.python.org/issue?@action=redirect&bpo=32304

10 Deprecated Python Behavior

Yield expressions (both yieldand yield from clauses)are now deprecated in comprehensions and generator expres-
sions (aside from the iterable expression in the leftmost £ or clause). This ensures that comprehensions always immediately
return a container of the appropriate type (rather than potentially returning a generator iterator object), while generator
expressions won't attempt to interleave their implicit output with the output from any explicit yield expressions. In Python
3.7, such expressions emit DeprecationWarning when compiled, in Python 3.8 this will be a SyntaxError.
(Contributed by Serhiy Storchaka in bpo-10544.)

Returning a subclass of complex from object._ _complex__ () is deprecated and will be an error in future Py-
thon versions. This makes _ complex_ () consistent with object.__int_ () and object._ float_ ().
(Contributed by Serhiy Storchaka in bpo-28894.)

11 Deprecated Python modules, functions and methods

11.1 aifc

aifc.openfp () has been deprecated and will be removed in Python 3.9. Use aifc.open () instead. (Contributed
by Brian Curtin in bpo-31985.)

11.2 asyncio

Support for directly await-ing instances of asyncio.Lock and other asyncio synchronization primitives has been
deprecated. An asynchronous context manager must be used in order to acquire and release the synchronization resource.
(Contributed by Andrew Svetlov in bpo-32253.)

The asyncio.Task.current_task () and asyncio.Task.all_tasks () methods have been deprecated.
(Contributed by Andrew Svetlov in bpo-32250.)

11.3 collections

In Python 3.8, the abstract base classes in collections . abc will no longer be exposed in the regular collections
module. This will help create a clearer distinction between the concrete classes and the abstract base classes. (Contributed
by Serhiy Storchaka in bpo-25988.)

11.4 dbm

dbm . dumb now supports reading read-only files and no longer writes the index file when it is not changed. A deprecation
warning is now emitted if the index file is missing and recreated in the ' r' and 'w' modes (this will be an error in future
Python releases). (Contributed by Serhiy Storchaka in bpo-28847.)

28

https://bugs.python.org/issue?@action=redirect&bpo=10544
https://bugs.python.org/issue?@action=redirect&bpo=28894
https://bugs.python.org/issue?@action=redirect&bpo=31985
https://bugs.python.org/issue?@action=redirect&bpo=32253
https://bugs.python.org/issue?@action=redirect&bpo=32250
https://bugs.python.org/issue?@action=redirect&bpo=25988
https://bugs.python.org/issue?@action=redirect&bpo=28847

11.5 enum
In Python 3.8, attempting to check for non-Enum objects in Enum classes will raise a TypeError (e.g. 1 in Color);

similarly, attempting to check for non-Flag objects in a F 1ag member will raise TypeError (e.g. 1 in Perm.RW);
currently, both operations return False instead. (Contributed by Ethan Furman in bpo-33217.)

11.6 gettext

Using non-integer value for selecting a plural form in gettext is now deprecated. It never correctly worked.
(Contributed by Serhiy Storchaka in bpo-28692.)

11.7 importlib
Methods MetaPathFinder.find_module () (replaced by MetaPathFinder.find_spec()) and

PathEntryFinder.find_loader () (replaced by PathEntryFinder.find_spec ()) both deprecated in
Python 3.4 now emit DeprecationWarning. (Contributed by Matthias Bussonnier in bpo-29576)

The importlib.abc.ResourceLoader ABC has been deprecated in favour of importlib.abc.
ResourceReader.

11.8 locale

locale.format () has been deprecated, use locale.format_string () instead. (Contributed by Garvit in
bpo-10379.)

11.9 macpath

The macpath is now deprecated and will be removed in Python 3.8. (Contributed by Chi Hsuan Yen in bpo-9850.)

11.10 threading

dummy_threading and _dummy_thread have been deprecated. It is no longer possible to build Python with
threading disabled. Use threading instead. (Contributed by Antoine Pitrou in bpo-31370.)

11.11 socket

The silent argument value truncation in socket .htons () and socket .ntohs () has been deprecated. In future
versions of Python, if the passed argument is larger than 16 bits, an exception will be raised. (Contributed by Oren Milman
in bpo-28332.)

29

https://bugs.python.org/issue?@action=redirect&bpo=33217
https://bugs.python.org/issue?@action=redirect&bpo=28692
https://bugs.python.org/issue?@action=redirect&bpo=29576
https://bugs.python.org/issue?@action=redirect&bpo=10379
https://bugs.python.org/issue?@action=redirect&bpo=9850
https://bugs.python.org/issue?@action=redirect&bpo=31370
https://bugs.python.org/issue?@action=redirect&bpo=28332

11.12 ssl

ssl.wrap_socket () is deprecated. Use ssl.SSLContext.wrap_socket () instead. (Contributed by
Christian Heimes in bpo-28124.)

11.13 sunau

sunau.openfp () has been deprecated and will be removed in Python 3.9. Use sunau.open () instead.
(Contributed by Brian Curtin in bpo-31985.)

11.14 sys

Deprecated sys.set_coroutine_wrapper () and sys.get_coroutine_wrapper ().

The undocumented sys.callstats () function has been deprecated and will be removed in a future Python version.
(Contributed by Victor Stinner in bpo-28799.)

11.15 wave

wave .openfp () has been deprecated and will be removed in Python 3.9. Use wave . open () instead. (Contributed
by Brian Curtin in bpo-31985.)

12 Deprecated functions and types of the C API

Function PySlice_GetIndicesEx () is deprecated and replaced with a macro if Py_LIMITED_APT is not set
or set to a value in the range between 0x03050400 and 0x03060000 (not inclusive), or is 0x030602100 or higher.
(Contributed by Serhiy Storchaka in bpo-27867.)

PyOS_AfterFork () has been deprecated. Use PyOS_BeforeFork (), PyOS_AfterFork_Parent () or
PyOS_AfterFork_Child () instead. (Contributed by Antoine Pitrou in bpo-16500.)

13 Platform Support Removals

¢ FreeBSD 9 and older are no longer officially supported.

¢ For full Unicode support, including within extension modules, *nix platforms are now expected to provide at least
one of C.UTF-8 (full locale), C.ut £8 (full locale) or UTF -8 (LC_CTYPE-only locale) as an alternative to the
legacy ASCII-based C locale.

* OpenSSL 0.9.8 and 1.0.1 are no longer supported, which means building CPython 3.7 with SSL/TLS support
on older platforms still using these versions requires custom build options that link to a more recent version of
OpenSSL.

Notably, this issue affects the Debian 8 (aka «jessie») and Ubuntu 14.04 (aka «Trusty») LTS Linux distributions,
as they still use OpenSSL 1.0.1 by default.

Debian 9 («stretch») and Ubuntu 16.04 («xenial»), as well as recent releases of other LTS Linux releases (e.g.
RHEL/CentOS 7.5, SLES 12-SP3), use OpenSSL 1.0.2 or later, and remain supported in the default build
configuration.

30

https://bugs.python.org/issue?@action=redirect&bpo=28124
https://bugs.python.org/issue?@action=redirect&bpo=31985
https://bugs.python.org/issue?@action=redirect&bpo=28799
https://bugs.python.org/issue?@action=redirect&bpo=31985
https://bugs.python.org/issue?@action=redirect&bpo=27867
https://bugs.python.org/issue?@action=redirect&bpo=16500

CPython’s own CI configuration file provides an example of using the SSL compatibility testing infrastructure in
CPython’s test suite to build and link against OpenSSL 1.1.0 rather than an outdated system provided OpenSSL.

14 API and Feature Removals

The following features and APIs have been removed from Python 3.7:

The os.stat_float_times () function has been removed. It was introduced in Python 2.3 for backward
compatibility with Python 2.2, and was deprecated since Python 3.1.

Unknown escapes consisting of ' \ ' and an ASCII letter in replacement templates for re . sub () were deprecated
in Python 3.5, and will now cause an error.

Removed support of the exclude argumentin tarfile.TarFile.add (). It was deprecated in Python 2.7 and
3.2. Use the filter argument instead.

The splitunc () function in the ntpath module was deprecated in Python 3.1, and has now been removed.
Use the splitdrive () function instead.

collections.namedtuple () no longer supports the verbose parameter or _source attribute which sho-
wed the generated source code for the named tuple class. This was part of an optimization designed to speed-up
class creation. (Contributed by Jelle Zijlstra with further improvements by INADA Naoki, Serhiy Storchaka, and
Raymond Hettinger in bpo-28638.)

Functions bool (), float (), 1list () and tuple () no longer take keyword arguments. The first argument
of int () can now be passed only as positional argument.

Removed previously deprecated in Python 2.4 classes P1ist, Dict and _InternalDict inthe plistlib
module. Dict values in the result of functions readPlist () and readPlistFromBytes () are now normal
dicts. You no longer can use attribute access to access items of these dictionaries.

The asyncio.windows_utils.socketpair () function has been removed. Use the socket.
socketpair () function instead, it is available on all platforms since Python 3.5. asyncio.
windows_utils.socketpair was just an alias to socket.socketpair on Python 3.5 and
newer.

asyncio no longer exports the selectors and _overlapped modules as asyncio.selectors and
asyncio._overlapped.Replace from asyncio import selectorswithimport selectors.

Direct instantiation of ssl.SSLSocket and ssl.SSLObject objects is now prohibited. The con-
structors were never documented, tested, or designed as public constructors. Users were supposed to use
ssl.wrap_socket () or ssl.SSLContext. (Contributed by Christian Heimes in bpo-32951.)

The unused distutils install_misc command has been removed. (Contributed by Eric N. Vander Weele
in bpo-29218.)

15 Module Removals

The fpectl module has been removed. It was never enabled by default, never worked correctly on x86-64, and it
changed the Python ABI in ways that caused unexpected breakage of C extensions. (Contributed by Nathaniel J. Smith
in bpo-29137.)

31

https://github.com/python/cpython/tree/3.7/.travis.yml
https://github.com/python/cpython/tree/3.7/Tools/ssl/multissltests.py
https://bugs.python.org/issue?@action=redirect&bpo=28638
https://bugs.python.org/issue?@action=redirect&bpo=32951
https://bugs.python.org/issue?@action=redirect&bpo=29218
https://bugs.python.org/issue?@action=redirect&bpo=29137

16 Windows-only Changes

The python launcher, (py.exe), can accept 32 & 64 bit specifiers without having to specify a minor version as well. So py
—3-32 and py —3-64 become valid as well as py -3.7-32, also the -m-64 and -m.n-64 forms are now accepted
to force 64 bit python even if 32 bit would have otherwise been used. If the specified version is not available py.exe will
error exit. (Contributed by Steve Barnes in bpo-30291.)

The launcher can be runas py -0 to produce a list of the installed pythons, with default marked with an asterisk. Running
py —0p will include the paths. If py is run with a version specifier that cannot be matched it will also print the short form
list of available specifiers. (Contributed by Steve Barnes in bpo-30362.)

17 Porting to Python 3.7

This section lists previously described changes and other bugfixes that may require changes to your code.

17.1 Changes in Python Behavior
e async and await names are now reserved keywords. Code using these names as identifiers will now raise a
SyntaxError. (Contributed by Jelle Zijlstra in bpo-30406.)

* PEP 479 is enabled for all code in Python 3.7, meaning that StopIteration exceptions raised directly or
indirectly in coroutines and generators are transformed into Runt imeError exceptions. (Contributed by Yury
Selivanov in bpo-32670.)

e object.__aiter__ () methods can no longer be declared as asynchronous. (Contributed by Yury Selivanov
in bpo-31709.)

¢ Due to an oversight, earlier Python versions erroneously accepted the following syntax:

f(1 for x in [1],)

class C(1 for x in [1]):
pass

Python 3.7 now correctly raises a SyntaxError, as a generator expression always needs to be directly inside a
set of parentheses and cannot have a comma on either side, and the duplication of the parentheses can be omitted
only on calls. (Contributed by Serhiy Storchaka in bpo-32012 and bpo-32023.)

* When using the —m switch, the initial working directory is now added to sys . path, rather than an empty string
(which dynamically denoted the current working directory at the time of each import). Any programs that are
checking for the empty string, or otherwise relying on the previous behaviour, will need to be updated accordingly
(e.g. by also checking for os.getcwd () or os.path.dirname(__main__.__ file_), depending on
why the code was checking for the empty string in the first place).

32

https://bugs.python.org/issue?@action=redirect&bpo=30291
https://bugs.python.org/issue?@action=redirect&bpo=30362
https://bugs.python.org/issue?@action=redirect&bpo=30406
https://www.python.org/dev/peps/pep-0479
https://bugs.python.org/issue?@action=redirect&bpo=32670
https://bugs.python.org/issue?@action=redirect&bpo=31709
https://bugs.python.org/issue?@action=redirect&bpo=32012
https://bugs.python.org/issue?@action=redirect&bpo=32023

17.2 Changes in the Python API

e socketserver.ThreadingMixIn.server_close () now waits until all non-daemon threads complete.
Set the new socketserver.ThreadingMixIn.block_on_close class attribute to False to get the
pre-3.7 behaviour. (Contributed by Victor Stinner in bpo-31233 and bpo-33540.)

* socketserver.ForkingMixIn.server_close () now waits until all child processes complete. Set
the new socketserver.ForkingMixIn.block_on_close class attribute to False to get the pre-3.7
behaviour. (Contributed by Victor Stinner in bpo-31151 and bpo-33540.)

e The locale.localeconv () function now temporarily sets the LC_CTYPE locale to the value of
LC_NUMERIC in some cases. (Contributed by Victor Stinner in bpo-31900.)

e pkgutil.walk_packages () now raises a ValueError if path is a string. Previously an empty list was
returned. (Contributed by Sanyam Khurana in bpo-24744.)

* A format string argument for string.Formatter. format () is now positional-only. Passing it as a keyword
argument was deprecated in Python 3.5. (Contributed by Serhiy Storchaka in bpo-29193.)

* Attributes key, value and coded_value of class http.cookies.Morsel are now read-only. Assigning
to them was deprecated in Python 3.5. Use the set () method for setting them. (Contributed by Serhiy Storchaka
in bpo-29192.)

* The mode argument of os .makedirs () no longer affects the file permission bits of newly-created intermediate-
level directories. To set their file permission bits you can set the umask before invoking makedirs ().
(Contributed by Serhiy Storchaka in bpo-19930.)

e The struct.Struct.format type is now str instead of bytes. (Contributed by Victor Stinner in bpo-
21071.)

* parse_multipart () now accepts the encoding and errors arguments and returns the same results as
FieldStorage: for non-file fields, the value associated to a key is a list of strings, not bytes. (Contributed
by Pierre Quentel in bpo-29979.)

* Due to internal changes in socket, calling socket . fromshare () on asocket created by socket .share
in older Python versions is not supported.

e repr for BaseException has changed to not include the trailing comma. Most exceptions are affected by this
change. (Contributed by Serhiy Storchaka in bpo-30399.)

* repr for datetime.timedelta has changed to include the keyword arguments in the output. (Contributed
by Utkarsh Upadhyay in bpo-30302.)

e Because shutil.rmtree () is now implemented using the os . scandir () function, the user specified hand-
ler onerror is now called with the first argument os . scandi r instead of os . 11 stdi r when listing the directory
is failed.

* Support for nested sets and set operations in regular expressions as in Unicode Technical Standard #18 might be
added in the future. This would change the syntax. To facilitate this future change a FutureWarning will be
raised in ambiguous cases for the time being. That include sets starting with a literal ' [' or containing literal cha-
racter sequences '——"', '&&"', '~~"',and ' | | '. To avoid a warning, escape them with a backslash. (Contributed
by Serhiy Storchaka in bpo-30349.)

* The result of splitting a stringona regular expression that could match an empty string has been changed.
For example splitting on r ' \s* ' will now split not only on whitespaces as it did previously, but also on empty
strings before all non-whitespace characters and just before the end of the string. The previous behavior can be
restored by changing the pattern to r ' \s+'. A FutureWarning was emitted for such patterns since Python
3.5.

For patterns that match both empty and non-empty strings, the result of searching for all matches may also be
changed in other cases. For example in the string 'a\n\n"', the pattern r' (?m) ~\s*?$ "' will not only match

33

https://bugs.python.org/issue?@action=redirect&bpo=31233
https://bugs.python.org/issue?@action=redirect&bpo=33540
https://bugs.python.org/issue?@action=redirect&bpo=31151
https://bugs.python.org/issue?@action=redirect&bpo=33540
https://bugs.python.org/issue?@action=redirect&bpo=31900
https://bugs.python.org/issue?@action=redirect&bpo=24744
https://bugs.python.org/issue?@action=redirect&bpo=29193
https://bugs.python.org/issue?@action=redirect&bpo=29192
https://bugs.python.org/issue?@action=redirect&bpo=19930
https://bugs.python.org/issue?@action=redirect&bpo=21071
https://bugs.python.org/issue?@action=redirect&bpo=21071
https://bugs.python.org/issue?@action=redirect&bpo=29979
https://bugs.python.org/issue?@action=redirect&bpo=30399
https://bugs.python.org/issue?@action=redirect&bpo=30302
https://unicode.org/reports/tr18/
https://bugs.python.org/issue?@action=redirect&bpo=30349

empty strings at positions 2 and 3, but also the string ' \n' at positions 2-3. To match only blank lines, the pattern
should be rewrittenas r' (?m) ~* [*\S\n]*S$"'.

re.sub () now replaces empty matches adjacent to a previous non-empty match. For example re . sub ('x*"',
'—', 'abxd') returns now '—-a-b——-d-"' instead of '-a-b-d-"' (the first minus between “b” and “d”
replaces “x”, and the second minus replaces an empty string between “x” and “d”).

(Contributed by Serhiy Storchaka in bpo-25054 and bpo-32308.)

Change re .escape () to only escape regex special characters instead of escaping all characters other than ASCII
letters, numbers, and '__'. (Contributed by Serhiy Storchaka in bpo-29995.)

tracemalloc.Traceback frames are now sorted from oldest to most recent to be more consistent with
traceback. (Contributed by Jesse Bakker in bpo-32121.)

On OSes that support socket . SOCK_NONBLOCK or socket . SOCK_CLOEXEC bit flags, the socket . type
no longer has them applied. Therefore, checks like 1f sock.type == socket.SOCK_STREAM work as
expected on all platforms. (Contributed by Yury Selivanov in bpo-32331.)

On Windows the default for the close_fds argument of subprocess.Popen was changed from False to
True when redirecting the standard handles. If you previously depended on handles being inherited when using
subprocess.Popen with standard io redirection, you will have to pass close_fds=False to preserve the
previous behaviour, or use STARTUPINFO. lpAttributelList.

importlib.machinery.PathFinder.invalidate_caches () - which implicitly affects
importlib.invalidate_caches () — now deletes entries in sys.path_importer_cache
which are set to None. (Contributed by Brett Cannon in bpo-33169.)

In asyncio, loop.sock_recv (), loop.sock_sendall(), loop.sock_accept (), loop.
getaddrinfo (), loop.getnameinfo () have been changed to be proper coroutine methods to match
their documentation. Previously, these methods returned asyncio.Future instances. (Contributed by Yury
Selivanov in bpo-32327.)

asyncio.Server.sockets now returns a copy of the internal list of server sockets, instead of returning it
directly. (Contributed by Yury Selivanov in bpo-32662.)

Struct.format is now a str instance instead of a bytes instance. (Contributed by Victor Stinner in bpo-
21071.)

argparse subparsers can now be made mandatory by passing required=True to ArgumentParser.
add_subparsers (). (Contributed by Anthony Sottile in bpo-26510.)

ast.literal_eval () is now stricter. Addition and subtraction of arbitrary numbers are no longer allowed.
(Contributed by Serhiy Storchaka in bpo-31778.)

Calendar.itermonthdates will now consistently raise an exception when a date falls outside of the
0001-01-01 through 9999-12-31 range. To support applications that cannot tolerate such exceptions, the
new Calendar.itermonthdays3 and Calendar.itermonthdays4 can be used. The new methods
return tuples and are not restricted by the range supported by datetime.date. (Contributed by Alexander
Belopolsky in bpo-28292.)

collections.ChainMap now preserves the order of the underlying mappings. (Contributed by Raymond
Hettinger in bpo-32792.)

The submit () method of concurrent.futures.ThreadPoolExecutor and concurrent.
futures.ProcessPoolExecutor now raises a RuntimeError if called during interpreter shutdown.
(Contributed by Mark Nemec in bpo-33097.)

The configparser.ConfigParser constructor now uses read_dict () to process the default values,
making its behavior consistent with the rest of the parser. Non-string keys and values in the defaults dictionary are
now being implicitly converted to strings. (Contributed by James Tocknell in bpo-23835.)

34

https://bugs.python.org/issue?@action=redirect&bpo=25054
https://bugs.python.org/issue?@action=redirect&bpo=32308
https://bugs.python.org/issue?@action=redirect&bpo=29995
https://bugs.python.org/issue?@action=redirect&bpo=32121
https://bugs.python.org/issue?@action=redirect&bpo=32331
https://bugs.python.org/issue?@action=redirect&bpo=33169
https://bugs.python.org/issue?@action=redirect&bpo=32327
https://bugs.python.org/issue?@action=redirect&bpo=32662
https://bugs.python.org/issue?@action=redirect&bpo=21071
https://bugs.python.org/issue?@action=redirect&bpo=21071
https://bugs.python.org/issue?@action=redirect&bpo=26510
https://bugs.python.org/issue?@action=redirect&bpo=31778
https://bugs.python.org/issue?@action=redirect&bpo=28292
https://bugs.python.org/issue?@action=redirect&bpo=32792
https://bugs.python.org/issue?@action=redirect&bpo=33097
https://bugs.python.org/issue?@action=redirect&bpo=23835

* Several undocumented internal imports were removed. One example is that os.errno is no longer available;
use import errno directly instead. Note that such undocumented internal imports may be removed any time
without notice, even in micro version releases.

17.3 Changes in the C API

The function PySlice_GetIndicesEx () is considered unsafe for resizable sequences. If the slice indices are not
instances of int, but objects that implement the __index__ () method, the sequence can be resized after passing its
lengthto PySlice_GetIndicesEx (). This can lead to returning indices out of the length of the sequence. For avoi-
ding possible problems use new functions PySlice_Unpack () and PySlice_AdjustIndices (). (Contributed
by Serhiy Storchaka in bpo-27867.)

17.4 CPython bytecode changes

There are two new opcodes: LOAD_METHOD and CALL_METHOD. (Contributed by Yury Selivanov and INADA Naoki
in bpo-26110.)

The STORE_ANNOTATION opcode has been removed. (Contributed by Mark Shannon in bpo-32550.)

17.5 Windows-only Changes

The file used to override sys.path is now called <python-executable>._pth instead of 'sys.path'. See
finding_modules for more information. (Contributed by Steve Dower in bpo-28137.)

17.6 Other CPython implementation changes

In preparation for potential future changes to the public CPython runtime initialization API (see PEP 432 for an initial,
but somewhat outdated, draft), CPython’s internal startup and configuration management logic has been significantly re-
factored. While these updates are intended to be entirely transparent to both embedding applications and users of the
regular CPython CLI, they’re being mentioned here as the refactoring changes the internal order of various operations
during interpreter startup, and hence may uncover previously latent defects, either in embedding applications, or in CPy-
thon itself. (Initially contributed by Nick Coghlan and Eric Snow as part of bpo-22257, and further updated by Nick,
Eric, and Victor Stinner in a number of other issues). Some known details affected:

e PySys_AddWarnOptionUnicode () is not currently usable by embedding applications due to the re-
quirement to create a Unicode object prior to calling Py Initialize. Use PySys_AddWarnOption ()
instead.

e warnings filters added by an embedding application with PySys_AddWarnOption () should now more
consistently take precedence over the default filters set by the interpreter

Due to changes in the way the default warnings filters are configured, setting Py_BytesWarningFlag to a va-
lue greater than one is no longer sufficient to both emit BytesWarning messages and have them converted to
exceptions. Instead, the flag must be set (to cause the warnings to be emitted in the first place), and an explicit
error: :BytesWarning warnings filter added to convert them to exceptions.

Due to a change in the way docstrings are handled by the compiler, the implicit return None in a function body
consisting solely of a docstring is now marked as occurring on the same line as the docstring, not on the function’s header
line.

The current exception state has been moved from the frame object to the co-routine. This simplified the interpreter and
fixed a couple of obscure bugs caused by having swap exception state when entering or exiting a generator. (Contributed
by Mark Shannon in bpo-25612.)

35

https://bugs.python.org/issue?@action=redirect&bpo=27867
https://bugs.python.org/issue?@action=redirect&bpo=26110
https://bugs.python.org/issue?@action=redirect&bpo=32550
https://bugs.python.org/issue?@action=redirect&bpo=28137
https://www.python.org/dev/peps/pep-0432
https://bugs.python.org/issue?@action=redirect&bpo=22257
https://bugs.python.org/issue?@action=redirect&bpo=25612

18 Notable changes in Python 3.7.1

Starting in 3.7.1, Py_Initialize () now consistently reads and respects all of the same environment settings as
Py_Main () (inearlier Python versions, it respected an ill-defined subset of those environment variables, while in Python
3.7.0 it didn’t read any of them due to bpo-34247). If this behavior is unwanted, set Py_IgnoreEnvironmentFlag
to 1 before calling Py_TInitialize ().

In 3.7.1 the C API for Context Variables was updated to use PyObject pointers. See also bpo-34762.
xml.dom.minidom and xml . sax modules no longer process external entities by default. See also bpo-17239.

In 3.7.1 the tokenize module now implicitly emits a NEWLINE token when provided with input that does not have
a trailing new line. This behavior now matches what the C tokenizer does internally. (Contributed by Ammar Askar in
bpo-33899.)

19 Notable changes in Python 3.7.2

In 3.7.2, venv on Windows no longer copies the original binaries, but creates redirector scripts named python.exe
and pythonw . exe instead. This resolves a long standing issue where all virtual environments would have to be upgraded
or recreated with each Python update. However, note that this release will still require recreation of virtual environments
in order to get the new scripts.

20 Notable changes in Python 3.7.6

Due to significant security concerns, the reuse_address ~ parameter of asyncio.loop.
create_datagram_endpoint () is no longer supported. This is because of the behavior of the socket option
SO_REUSEADDR in UDP. For more details, see the documentation for 1oop.create_datagram_endpoint ().
(Contributed by Kyle Stanley, Antoine Pitrou, and Yury Selivanov in bpo-37228.)

21 Notable changes in Python 3.7.10

Earlier Python versions allowed using both ; and & as query parameter separators in urllib.parse.parse_gs ()

andurllib.parse.parse_gsl (). Due to security concerns, and to conform with newer W3C recommendations,
this has been changed to allow only a single separator key, with & as the default. This change also affects cgi.parse ()

and cgi.parse_multipart () as they use the affected functions internally. For more details, please see their
respective documentation. (Contributed by Adam Goldschmidt, Senthil Kumaran and Ken Jin in bpo-42967.)

22 Notable changes in Python 3.7.11

A security fix alters the ftplib.FTP behavior to not trust the IPv4 address sent from the remote server when setting
up a passive data channel. We reuse the ftp server IP address instead. For unusual code requiring the old behavior, set a
trust_server_pasv_ipv4_address attribute on your FTP instance to True. (See bpo-43285)

The presence of newline or tab characters in parts of a URL allows for some forms of attacks. Following the WHATWG
specification that updates RFC 3986, ASCII newline \n, \r and tab \t characters are stripped from the URL by the
parserurllib.parse () preventing such attacks. The removal characters are controlled by a new module level variable
urllib.parse._UNSAFE_URL_BYTES_TO_REMOVE. (See bpo-43882)

36

https://bugs.python.org/issue?@action=redirect&bpo=34247
https://bugs.python.org/issue?@action=redirect&bpo=34762
https://bugs.python.org/issue?@action=redirect&bpo=17239
https://bugs.python.org/issue?@action=redirect&bpo=33899
https://bugs.python.org/issue?@action=redirect&bpo=37228
https://bugs.python.org/issue?@action=redirect&bpo=42967
https://bugs.python.org/issue?@action=redirect&bpo=43285
https://bugs.python.org/issue?@action=redirect&bpo=43882

23 Notable security feature in 3.7.14

Converting between int and str in bases other than 2 (binary), 4, 8 (octal), 16 (hexadecimal), or 32 such as base 10
(decimal) now raises a ValueError if the number of digits in string form is above a limit to avoid potential denial of
service attacks due to the algorithmic complexity. This is a mitigation for CVE-2020-10735. This limit can be configured
or disabled by environment variable, command line flag, or sy s APIs. See the integer string conversion length limitation
documentation. The default limit is 4300 digits in string form.

37

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-10735

Indice

P

Python
PEP
PEP
PEP
PEP
PEP
PEP
PEP
PEP
PEP
PEP
PEP
PEP
PEP
PEP
PEP
PEP
PEP
PEP
PEP

Enhancement Proposals
11,6
432,35
479,32
484, 8
526,5
538,06
539,7
540,6
545,9
552,9
553,7
557,11
560, 8, 22
562,7
563,5
564,7,8,21
565, 8
567,10, 11
3107,5

PYTHONBREAKPOINT, 7
PYTHONCOERCECLOCALE, 6
PYTHONDEVMODE, 9
PYTHONPROFILEIMPORTTIME, 10
PYTHONUTFS, 6
PYTHONWARNINGS, 23

R

RFC

RFC 2396, 23
RFC 3986, 23

S

SOURCE_DATE_EPOCH, 19

\Y

variabile d'ambiente,

PYTHONBREAKPOINT, 7

variabile d'ambiente,

PYTHONCOERCECLOCALE, 6

variabile d'ambiente, PYTHONDEVMODE, 9
variabile d'ambiente,

PYTHONPROFILEIMPORTTIME, 10

variabile d'ambiente, PYTHONUTFS, 6
variabile d'ambiente, PYTHONWARNINGS,

23

variabile d'ambiente,

SOURCE_DATE_EPOCH, 19

38

	Summary – Release Highlights
	New Features
	PEP 563: Postponed Evaluation of Annotations
	PEP 538: Legacy C Locale Coercion
	PEP 540: Forced UTF-8 Runtime Mode
	PEP 553: Built-in breakpoint()
	PEP 539: New C API for Thread-Local Storage
	PEP 562: Customization of Access to Module Attributes
	PEP 564: New Time Functions With Nanosecond Resolution
	PEP 565: Show DeprecationWarning in __main__
	PEP 560: Core Support for typing module and Generic Types
	PEP 552: Hash-based .pyc Files
	PEP 545: Python Documentation Translations
	Development Runtime Mode: -X dev

	Other Language Changes
	New Modules
	contextvars
	dataclasses
	importlib.resources

	Improved Modules
	argparse
	asyncio
	binascii
	calendar
	collections
	compileall
	concurrent.futures
	contextlib
	cProfile
	crypt
	datetime
	dbm
	decimal
	dis
	distutils
	enum
	functools
	gc
	hmac
	http.client
	http.server
	idlelib and IDLE
	importlib
	io
	ipaddress
	itertools
	locale
	logging
	math
	mimetypes
	msilib
	multiprocessing
	os
	pathlib
	pdb
	py_compile
	pydoc
	queue
	re
	signal
	socket
	socketserver
	sqlite3
	ssl
	string
	subprocess
	sys
	time
	tkinter
	tracemalloc
	types
	unicodedata
	unittest
	unittest.mock
	urllib.parse
	uu
	uuid
	warnings
	xml
	xml.etree
	xmlrpc.server
	zipapp
	zipfile

	C API Changes
	Build Changes
	Optimizations
	Other CPython Implementation Changes
	Deprecated Python Behavior
	Deprecated Python modules, functions and methods
	aifc
	asyncio
	collections
	dbm
	enum
	gettext
	importlib
	locale
	macpath
	threading
	socket
	ssl
	sunau
	sys
	wave

	Deprecated functions and types of the C API
	Platform Support Removals
	API and Feature Removals
	Module Removals
	Windows-only Changes
	Porting to Python 3.7
	Changes in Python Behavior
	Changes in the Python API
	Changes in the C API
	CPython bytecode changes
	Windows-only Changes
	Other CPython implementation changes

	Notable changes in Python 3.7.1
	Notable changes in Python 3.7.2
	Notable changes in Python 3.7.6
	Notable changes in Python 3.7.10
	Notable changes in Python 3.7.11
	Notable security feature in 3.7.14
	Indice

