A Conceptual Overview of asyncio

Release 3.14.0rc2
Guido van Rossum and the Python development team

settembre 01, 2025

Python Software Foundation
Email: docs@python.org

Indice
A conceptual overview part 1: the high-level 1
I.1 EventLoop e e e e e 2
1.2 Asynchronous functions and coroutines ool 2
1.3 Tasks . . . o o e e 3
LA await . . . oo e 4
A conceptual overview part 2: the nuts and bolts 5
2.1 The inner workings of coroutines oL e e e 6
22 FUtures o i e 7
2.3 Ahomemadeasynciosleep L 7

This HOWTO article seeks to help you build a sturdy mental model of how asyncio fundamentally works, helping
you understand the how and why behind the recommended patterns.

You might be curious about some key asyncio concepts. You'll be comfortably able to answer these questions by

the end of this article:

« What’s happening behind the scenes when an object is awaited?

« How does asyncio differentiate between a task which doesn’t need CPU-time (such as a network request or
file read) as opposed to a task that does (such as computing n-factorial)?

« How to write an asynchronous variant of an operation, such as an async sleep or database request.

> Vedi anche

 The guide that inspired this HOWTO article, by Alexander Nordin.
o This in-depth YouTube tutorial series on asyncio created by Python core team member, Lukasz Langa.

» 500 Lines or Less: A Web Crawler With asyncio Coroutines by A. Jesse Jiryu Davis and Guido van Rossum.

1 A conceptual overview part 1: the high-level

In part 1, we'll cover the main, high-level building blocks of asyncio: the event loop, coroutine functions, coroutine
objects, tasks and await.

https://github.com/anordin95/a-conceptual-overview-of-asyncio/tree/main
https://www.youtube.com/watch?v=Xbl7XjFYsN4&list=PLhNSoGM2ik6SIkVGXWBwerucXjgP1rHmB
https://aosabook.org/en/500L/a-web-crawler-with-asyncio-coroutines.html

1.1 Event Loop

Everything in asyncio happens relative to the event loop. It’s the star of the show. It’s like an orchestra conductor.
It’s behind the scenes managing resources. Some power is explicitly granted to it, but a lot of its ability to get things
done comes from the respect and cooperation of its worker bees.

In more technical terms, the event loop contains a collection of jobs to be run. Some jobs are added directly by you,
and some indirectly by asyncio. The event loop takes a job from its backlog of work and invokes it (or «gives it
control»), similar to calling a function, and then that job runs. Once it pauses or completes, it returns control to the
event loop. The event loop will then select another job from its pool and invoke it. You can roughly think of the
collection of jobs as a queue: jobs are added and then processed one at a time, generally (but not always) in order.
This process repeats indefinitely with the event loop cycling endlessly onwards. If there are no more jobs pending
execution, the event loop is smart enough to rest and avoid needlessly wasting CPU cycles, and will come back when
there’s more work to be done.

Effective execution relies on jobs sharing well and cooperating; a greedy job could hog control and leave the other
jobs to starve, rendering the overall event loop approach rather useless.

import asyncio

This creates an event loop and indefinitely cycles through
its collection of jobs.

event_loop = asyncio.new_event_loop ()
event_loop.run_forever ()

1.2 Asynchronous functions and coroutines

This is a basic, boring Python function:

def hello_printer():
print (
"Hi, I am a lowly, simple printer, though I have all I "
"need in life —-- \nfresh paper and my dearly beloved octopus "

"partner in crime."

Calling a regular function invokes its logic or body:

>>> hello_printer ()
Hi, I am a lowly, simple printer, though I have all I need in life —-
fresh paper and my dearly beloved octopus partner in crime.

The async def, as opposed to just a plain de £, makes this an asynchronous function (or «coroutine function»). Calling
it creates and returns a coroutine object.

async def loudmouth_penguin (magic_number: int):
print (
"I am a super special talking penguin. Far cooler than that printer. "
f"By the way, my lucky number is: {magic_number}/}."

)

Calling the async function, 1oudmouth_penguin, does not execute the print statement; instead, it creates a coroutine
object:

>>> loudmouth_penguin (magic_number=3)
<coroutine object loudmouth_penguin at 0x104ed2740>

The terms «coroutine function» and «coroutine object» are often conflated as coroutine. That can be confusing! In this
article, coroutine specifically refers to a coroutine object, or more precisely, an instance of types.CoroutineType

(native coroutine). Note that coroutines can also exist as instances of collections.abc.Coroutine - adistinction
that matters for type checking.

A coroutine represents the function’s body or logic. A coroutine has to be explicitly started; again, merely creating the
coroutine does not start it. Notably, the coroutine can be paused and resumed at various points within the function’s
body. That pausing and resuming ability is what allows for asynchronous behavior!

Coroutines and coroutine functions were built by leveraging the functionality of generators and generator functions.
Recall, a generator function is a function that yields, like this one:

def get_random_number () :
This would be a bad random number generator!
print ("Hi")
yield 1
print ("Hello")
yield 7
print ("Howdy")
yield 4

Similar to a coroutine function, calling a generator function does not run it. Instead, it creates a generator object:

>>> get_random_number ()
<generator object get_random_ number at 0x1048671c0>

You can proceed to the next yield of a generator by using the built-in function next () . In other words, the generator
runs, then pauses. For example:

>>> generator = get_random_number ()
>>> next (generator)

Hi

1

>>> next (generator)

Hello

7

1.3 Tasks

Roughly speaking, tasks are coroutines (not coroutine functions) tied to an event loop. A task also maintains a list
of callback functions whose importance will become clear in a moment when we discuss await. The recommended
way to create tasks is via asyncio.create_task ().

Creating a task automatically schedules it for execution (by adding a callback to run it in the event loop’s to-do list,
that is, collection of jobs).

Since there’s only one event loop (in each thread), asyncio takes care of associating the task with the event loop for
you. As such, there’s no need to specify the event loop.

coroutine = loudmouth_penguin (magic_number=5)
This creates a Task object and schedules its execution via the event loop.
task = asyncio.create_task (coroutine)

Earlier, we manually created the event loop and set it to run forever. In practice, it’s recommended to use (and common
to see) asyncio.run (), which takes care of managing the event loop and ensuring the provided coroutine finishes
before advancing. For example, many async programs follow this setup:

import asyncio

async def main() :
Perform all sorts of wacky, wild asynchronous things...

(continues on next page)

(continua dalla pagina precedente)

if name_ == "_ main_ ":
asyncio.run (main())
The program will not reach the following print statement until the
coroutine main () finishes.

print ("coroutine main() is done!")

It’s important to be aware that the task itself is not added to the event loop, only a callback to the task is. This matters
if the task object you created is garbage collected before it’s called by the event loop. For example, consider this
program:

async def hello():
print ("hello!")

async def main() :
asyncio.create_task (hello())
Other asynchronous instructions which run for a while
and cede control to the event loop...

asyncio.run (main())

Because there’s no reference to the task object created on line 5, it might be garbage collected before the event loop
invokes it. Later instructions in the coroutine main () hand control back to the event loop so it can invoke other jobs.
When the event loop eventually tries to run the task, it might fail and discover the task object does not exist! This can
also happen even if a coroutine keeps a reference to a task but completes before that task finishes. When the coroutine
exits, local variables go out of scope and may be subject to garbage collection. In practice, asyncio and Python’s
garbage collector work pretty hard to ensure this sort of thing doesn’t happen. But that’s no reason to be reckless!

1.4 await

await is a Python keyword that’s commonly used in one of two different ways:

await task
await coroutine

In a crucial way, the behavior of await depends on the type of object being awaited.

Awaiting a task will cede control from the current task or coroutine to the event loop. In the process of relinquishing
control, a few important things happen. We'll use the following code example to illustrate:

async def plant_a_tree():
dig_the_hole_task = asyncio.create_task(dig_the_hole())
await dig_the_hole_task

Other instructions associated with planting a tree.

J

In this example, imagine the event loop has passed control to the start of the coroutine plant_a_tree (). As seen
above, the coroutine creates a task and then awaits it. The await dig_the_hole_task instruction adds a callback
(which will resume plant_a_tree()) to the dig_the_hole_task object’s list of callbacks. And then, the in-
struction cedes control to the event loop. Some time later, the event loop will pass control to dig_the_hole_task
and the task will finish whatever it needs to do. Once the task finishes, it will add its various callbacks to the event
loop, in this case, a call to resume plant_a_tree ().

Generally speaking, when the awaited task finishes (dig_the_hole_task), the original task or coroutine
(plant_a_tree ())is added back to the event loops to-do list to be resumed.

This is a basic, yet reliable mental model. In practice, the control handoffs are slightly more complex, but not by
much. In part 2, we’ll walk through the details that make this possible.

Unlike tasks, awaiting a coroutine does not hand control back to the event loop! Wrapping a coroutine in a task
first, then awaiting that would cede control. The behavior of await coroutine is effectively the same as invoking
a regular, synchronous Python function. Consider this program:

import asyncio

async def coro_a():
print ("I am coro_a(). Hi!")

async def coro_b():
print ("I am coro_b (). I sure hope no one hogs the event loop...")

async def main() :
task_b = asyncio.create_task (coro_Db())
num_repeats = 3
for _ in range (num_repeats) :
await coro_a/()
await task_b

asyncio.run (main())

The first statement in the coroutine main () creates task_b and schedules it for execution via the event loop. Then,
coro_a () is repeatedly awaited. Control never cedes to the event loop which is why we see the output of all three
coro_a () invocations before coro_b () ”’s output:

am coro_a(). Hi!
am coro_a (). Hi!
am coro_a (). Hi!

H oH H H

am coro_b (). I sure hope no one hogs the event loop...

If we change await coro_a() to await asyncio.create_task (coro_a()), the behavior changes. The co-
routine main () cedes control to the event loop with that statement. The event loop then proceeds through its backlog
of work, calling task_b and then the task which wraps coro_a () before resuming the coroutine main ().

am coro_b (). I sure hope no one hogs the event loop...
am coro_a(). Hi!
am coro_a (). Hi!

HoH -

am coro_a (). Hi!

This behavior of await coroutine can trip a lot of people up! That example highlights how using only await
coroutine could unintentionally hog control from other tasks and effectively stall the event loop. asyncio. run ()
can help you detect such occurences via the debug=True flag which accordingly enables debug mode. Among other
things, it will log any coroutines that monopolize execution for 100ms or longer.

The design intentionally trades off some conceptual clarity around usage of await for improved performance. Each
time a task is awaited, control needs to be passed all the way up the call stack to the event loop. That might sound
minor, but in a large program with many await’s and a deep callstack that overhead can add up to a meaningful
performance drag.

2 A conceptual overview part 2: the nuts and bolts

Part 2 goes into detail on the mechanisms asyncio uses to manage control flow. This is where the magic hap-
pens. You'll come away from this section knowing what await does behind the scenes and how to make your own
asynchronous operators.

2.1 The inner workings of coroutines
asyncio leverages four components to pass around control.

coroutine.send (arg) is the method used to start or resume a coroutine. If the coroutine was paused and is now
being resumed, the argument arg will be sent in as the return value of the yield statement which originally paused
it. If the coroutine is being used for the first time (as opposed to being resumed) arg must be None.

class Rock:
def @ await__ (self):
value_sent_in = yield 7
print (f"Rock.__await__ resuming with value: {value_sent_in}.")

return value_sent_in

async def main () :
print ("Beginning coroutine main() .")
rock = Rock ()
print ("Awaiting rock...")
value_from_rock = await rock
print (f"Coroutine received value: {value_from_rock} from rock.")

return 23

coroutine = main ()
intermediate_result = coroutine.send (None)
print (f"Coroutine paused and returned intermediate value: {intermediate_result}.")

print (f"Resuming coroutine and sending in value: 42.")
try:

coroutine.send (42)
except Stoplteration as e:

returned_value = e.value

print (f"Coroutine main() finished and provided value: returned_value/.")

yield, like usual, pauses execution and returns control to the caller. In the example above, the yield, on line 3, is

called by ... = await rock on line 11. More broadly speaking, await calls the __await__ () method of the
given object. await also does one more very special thing: it propagates (or «passes along») any yields it receives
up the call-chain. In this case, that’'s back to ... = coroutine.send (None) on line 16.

The coroutine is resumed via the coroutine.send (42) call on line 21. The coroutine picks back up from where it
yielded (or paused) on line 3 and executes the remaining statements in its body. When a coroutine finishes, it raises
a StopIteration exception with the return value attached in the value attribute.

That snippet produces this output:

Beginning coroutine main() .

Awaiting rock...

Coroutine paused and returned intermediate value: 7.
Resuming coroutine and sending in value: 42.
Rock.__await__ resuming with value: 42.

Coroutine received value: 42 from rock.

Coroutine main() finished and provided value: 23.

J

It’s worth pausing for a moment here and making sure you followed the various ways that control flow and values
were passed. A lot of important ideas were covered and it’s worth ensuring your understanding is firm.

The only way to yield (or effectively cede control) from a coroutine is to await an object that yields in its
__await__ method. That might sound odd to you. You might be thinking:

1. What about a yield directly within the coroutine function? The coroutine function becomes an async
generator function, a different beast entirely.

2. What about a yield from within the coroutine function to a (plain) generator? That causes the error:
SyntaxError: yield from not allowed in a coroutine. This was intentionally designed
for the sake of simplicity - mandating only one way of using coroutines. Initially yield was barred as
well, but was re-accepted to allow for async generators. Despite that, yield fromand await effectively
do the same thing.

2.2 Futures

A future is an object meant to represent a computation’s status and result. The term is a nod to the idea of something
still to come or not yet happened, and the object is a way to keep an eye on that something.

A future has a few important attributes. One is its state which can be either «pending», «cancelled» or «done».
Another is its result, which is set when the state transitions to done. Unlike a coroutine, a future does not represent
the actual computation to be done; instead, it represents the status and result of that computation, kind of like a status
light (red, yellow or green) or indicator.

asyncio.Task subclasses asyncio.Future in order to gain these various capabilities. The prior section said tasks
store a list of callbacks, which wasn’t entirely accurate. It’s actually the Fut ure class that implements this logic, which
Task inherits.

Futures may also be used directly (not via tasks). Tasks mark themselves as done when their coroutine is complete.
Futures are much more versatile and will be marked as done when you say so. In this way, they’re the flexible interface
for you to make your own conditions for waiting and resuming.

2.3 A homemade asyncio.sleep

We'll go through an example of how you could leverage a future to create your own variant of asynchronous sleep
(async_sleep) which mimics asyncio.sleep ().

This snippet registers a few tasks with the event loop and then awaits a coroutine wrapped in a task:
async_sleep (3). We want that task to finish only after three seconds have elapsed, but without preventing other
tasks from running.

async def other_work():
print ("I like work. Work work.")

async def main() :
Add a few other tasks to the event loop, so there's something
to do while asynchronously sleeping.

work_tasks = [
asyncio.create_task (other_work()),
asyncio.create_task (other_work()),

asyncio.create_task (other_work())
]
print (
"Beginning asynchronous sleep at time: "
f'"/datetime.datetime.now () .strftime ("$H:$M:%5") }."
)
await asyncio.create_task (async_sleep(3))
print (
"Done asynchronous sleep at time: "
f"/datetime.datetime.now () .strftime ("SH:SM:%5") }."
)
asyncio.gather effectively awaits each task in the collection.
await asyncio.gather (*work_tasks)

Below, we use a future to enable custom control over when that task will be marked as done. If future.
set_result () (the method responsible for marking that future as done) is never called, then this task will never
finish. We've also enlisted the help of another task, which we'll see in a moment, that will monitor how much time
has elapsed and, accordingly, call future.set_result ().

async def async_sleep(seconds: float):
future = asyncio.Future ()
time_to_wake = time.time () + seconds
Add the watcher-task to the event loop.
watcher_task = asyncio.create_task(_sleep_watcher (future, time_to_wake))
Block until the future 1is marked as done.
await future

Below, we'll use a rather bare object, YieldToEventLoop (), to yield from __await__ in order to cede control
to the event loop. This is effectively the same as calling asyncio.sleep (0), but this approach offers more clarity,
not to mention it’s somewhat cheating to use asyncio.sleep when showcasing how to implement it!

As usual, the event loop cycles through its tasks, giving them control and receiving control back when they pause or
finish. The watcher_task, which runs the coroutine _sleep_watcher (.. .), will be invoked once per full cycle
of the event loop. On each resumption, it'll check the time and if not enough has elapsed, then it’ll pause once again
and hand control back to the event loop. Eventually, enough time will have elapsed, and _sleep_watcher(...)
will mark the future as done, and then itself finish too by breaking out of the infinite while loop. Given this helper
task is only invoked once per cycle of the event loop, you'd be correct to note that this asynchronous sleep will sleep
at least three seconds, rather than exactly three seconds. Note this is also of true of asyncio.sleep.

class YieldToEventLoop:
def _ await_ (self):
yield

async def _sleep_watcher (future, time_to_wake) :
while True:

if time.time () >= time_to_wake:
This marks the future as done.
future.set_result (None)
break

else:
await YieldToEventLoop ()

Here is the full program’s output:

$ python custom-async-sleep.py

Beginning asynchronous sleep at time: 14:52:22.
I like work. Work work.

I like work. Work work.

I like work. Work work.

Done asynchronous sleep at time: 14:52:25.

You might feel this implementation of asynchronous sleep was unnecessarily convoluted. And, well, it was. The
example was meant to showcase the versatility of futures with a simple example that could be mimicked for more
complex needs. For reference, you could implement it without futures, like so:

async def simpler_async_sleep (seconds) :
time_to_wake = time.time () + seconds
while True:
if time.time () >= time_to_wake:
return
else:

await YieldToEventLoop ()

J

But, that’s all for now. Hopefully you're ready to more confidently dive into some async programming or check out
advanced topics in the rest of the documentation.

	A conceptual overview part 1: the high-level
	Event Loop
	Asynchronous functions and coroutines
	Tasks
	await

	A conceptual overview part 2: the nuts and bolts
	The inner workings of coroutines
	Futures
	A homemade asyncio.sleep

