
Python support for free threading
Release 3.14.0rc2

Guido van Rossum and the Python development team

settembre 01, 2025

Python Software Foundation
Email: docs@python.org

Indice

1 Installation 2

2 Identifying free-threaded Python 2

3 The global interpreter lock in free-threaded Python 2

4 Thread safety 2

5 Known limitations 2
5.1 Immortalization . 3
5.2 Frame objects . 3
5.3 Iterators . 3
5.4 Single-threaded performance . 3

6 Behavioral changes 3
6.1 Context variables . 3
6.2 Warning filters . 3

Indice 4

Starting with the 3.13 release, CPython has support for a build of Python called free threading where the global
interpreter lock (GIL) is disabled. Free-threaded execution allows for full utilization of the available processing power
by running threads in parallel on available CPU cores. While not all software will benefit from this automatically,
programs designed with threading in mind will run faster on multi-core hardware.

The free-threaded mode is working and continues to be improved, but there is some additional overhead in single-
threaded workloads compared to the regular build. Additionally, third-party packages, in particular ones with an
extension module, may not be ready for use in a free-threaded build, and will re-enable the GIL.

This document describes the implications of free threading for Python code. See freethreading-extensions-howto for
information on how to write C extensions that support the free-threaded build.

Vedi anche

PEP 703 – Making the Global Interpreter Lock Optional in CPython for an overall description of free-threaded
Python.

1

https://peps.python.org/pep-0703/

1 Installation

Starting with Python 3.13, the official macOS and Windows installers optionally support installing free-threaded
Python binaries. The installers are available at https://www.python.org/downloads/.

For information on other platforms, see the Installing a Free-Threaded Python, a community-maintained installation
guide for installing free-threaded Python.

When building CPython from source, the --disable-gil configure option should be used to build a free-threaded
Python interpreter.

2 Identifying free-threaded Python

To check if the current interpreter supports free-threading, python -VV and sys.version contain «free-threading
build». The new sys._is_gil_enabled() function can be used to check whether the GIL is actually disabled in
the running process.

The sysconfig.get_config_var("Py_GIL_DISABLED") configuration variable can be used to determine
whether the build supports free threading. If the variable is set to 1, then the build supports free threading. This
is the recommended mechanism for decisions related to the build configuration.

3 The global interpreter lock in free-threaded Python

Free-threaded builds of CPython support optionally running with the GIL enabled at runtime using the environment
variable PYTHON_GIL or the command-line option -X gil.

The GIL may also automatically be enabled when importing a C-API extension module that is not explicitly marked
as supporting free threading. A warning will be printed in this case.

In addition to individual package documentation, the following websites track the status of popular packages support
for free threading:

• https://py-free-threading.github.io/tracking/

• https://hugovk.github.io/free-threaded-wheels/

4 Thread safety

The free-threaded build of CPython aims to provide similar thread-safety behavior at the Python level to the de-
fault GIL-enabled build. Built-in types like dict, list, and set use internal locks to protect against concurrent
modifications in ways that behave similarly to the GIL. However, Python has not historically guaranteed specific
behavior for concurrent modifications to these built-in types, so this should be treated as a description of the current
implementation, not a guarantee of current or future behavior.

Nota

It’s recommended to use the threading.Lock or other synchronization primitives instead of relying on the
internal locks of built-in types, when possible.

5 Known limitations

This section describes known limitations of the free-threaded CPython build.

2

https://www.python.org/downloads/
https://py-free-threading.github.io/installing-cpython/
https://py-free-threading.github.io/tracking/
https://hugovk.github.io/free-threaded-wheels/

5.1 Immortalization

The free-threaded build of the 3.13 release makes some objects immortal. Immortal objects are not deallocated and
have reference counts that are never modified. This is done to avoid reference count contention that would prevent
efficient multi-threaded scaling.

An object will be made immortal when a new thread is started for the first time after the main thread is running. The
following objects are immortalized:

• function objects declared at the module level

• method descriptors

• code objects

• module objects and their dictionaries

• classes (type objects)

Because immortal objects are never deallocated, applications that create many objects of these types may see
increased memory usage. This is expected to be addressed in the 3.14 release.

Additionally, numeric and string literals in the code as well as strings returned by sys.intern() are also
immortalized. This behavior is expected to remain in the 3.14 free-threaded build.

5.2 Frame objects

It is not safe to access frame objects from other threads and doing so may cause your program to crash . This means
that sys._current_frames() is generally not safe to use in a free-threaded build. Functions like inspect.
currentframe() and sys._getframe() are generally safe as long as the resulting frame object is not passed to
another thread.

5.3 Iterators

Sharing the same iterator object between multiple threads is generally not safe and threads may see duplicate or
missing elements when iterating or crash the interpreter.

5.4 Single-threaded performance

The free-threaded build has additional overhead when executing Python code compared to the default GIL-enabled
build. In 3.13, this overhead is about 40% on the pyperformance suite. Programs that spend most of their time in C
extensions or I/O will see less of an impact. The largest impact is because the specializing adaptive interpreter (PEP
659) is disabled in the free-threaded build. We expect to re-enable it in a thread-safe way in the 3.14 release. This
overhead is expected to be reduced in upcoming Python release. We are aiming for an overhead of 10% or less on
the pyperformance suite compared to the default GIL-enabled build.

6 Behavioral changes

This section describes CPython behavioural changes with the free-threaded build.

6.1 Context variables

In the free-threaded build, the flag thread_inherit_context is set to true by default which causes threads created
with threading.Thread to start with a copy of the Context() of the caller of start(). In the default GIL-
enabled build, the flag defaults to false so threads start with an empty Context().

6.2 Warning filters

In the free-threaded build, the flag context_aware_warnings is set to true by default. In the default GIL-enabled
build, the flag defaults to false. If the flag is true then the warnings.catch_warnings context manager uses a
context variable for warning filters. If the flag is false then catch_warnings modifies the global filters list, which
is not thread-safe. See the warnings module for more details.

3

https://pyperformance.readthedocs.io/
https://peps.python.org/pep-0659/
https://peps.python.org/pep-0659/

Indice

P
Python Enhancement Proposals

PEP 659, 3
PEP 703, 1

PYTHON_GIL, 2

V
variabile d'ambiente, PYTHON_GIL, 2

4

	Installation
	Identifying free-threaded Python
	The global interpreter lock in free-threaded Python
	Thread safety
	Known limitations
	Immortalization
	Frame objects
	Iterators
	Single-threaded performance

	Behavioral changes
	Context variables
	Warning filters

	Indice

