The Python/C API
Release 3.13.7

Guido van Rossum and the Python development team

settembre 01, 2025

Python Software Foundation
Email: docs@python.org

Indice

Introduction 3
.1 Codingstandards e e e e e e e e e 3
1.2 Include Files e 3
1.3 Useful macros o o e e e e e e e e 4
1.4 Objects, Types and Reference Counts it 7

1.4.1 Reference Counts i i e e e e e 7

LA2 TYPES . v o o e e e e e e e e e e e e e e e e 10
1.5 EXCeptions o i e e e e e e e e e e e 10
1.6 Embedding Python e 12
1.7 Debugging Builds 13
1.8 Recommended third party tools L. 13
C API Stability 15
2.1 Unstable CAPL e e e 15
2.2 Stable Application Binary Interface e 15

22.1 Limited CAPL e 16

222 Stable ABI. e 16

2.2.3 Limited API Scope and Performance 16

224 Limited APICaveats e 17
2.3 Platform Considerations it e e e e e e e 17
24 Contents of Limited API e 17
The Very High Level Layer 43
Reference Counting 49
Exception Handling 53
5.1 Printingandclearing e e 53
5.2 RaiSing eXCeptionst e e e e e e e e e 54
53 Issuing warningso e e e e e e e e e e e e e e 57
54 Querying the errorindicatoro e 57
5.5 SignalHandling e e e e e 61
5.6 Exception Classes v v v i i i e e e e e e e e e e e e e e 62
5.7 Exception Objects L e e 62
5.8 Unicode Exception Objects e 63
5.9 Recursion Control e e e e e 64
5.10 Exception and WarninZ tyPeS v v v v v i e 65

5.10.1 EXCepHion types . . . v v v v i it e 65

5.10.2 OSErroraliases e e e e e e 69

5103 Warning typeso e e e e e e e e e 70

6 Utilities

6.1 Operating System UtIlities 0 0 i e e e e e e e e e e
6.2 System Functions
6.3 Process Control e e
6.4 Importing Modules L
6.5 Datamarshalling support L e
6.6 Parsing arguments and building values L
6.6.1 Parsingarguments it e e e e e e e e e e e e e e e e e e e
6.6.2 Buildingvalues e
6.7 String conversion and formatting oL oL L
6.8 PyHash API e
6.9 Reflection e
6.10 Codec registry and support functions oL o e e e e e e
6.10.1 Codeclookup API. e
6.10.2 Registry API for Unicode encoding error handlers
6.11 PyTime CAPL e e
6.11.1 Types . . . o o o e e e e
6.11.2 Clock Functions i i i e e e e e e e e e e
6.11.3 Raw Clock Functions i it e e
6.11.4 Conversion functions i i i i e e e e e e e e e e e e
6.12 Supportfor Perf Maps L.
Abstract Objects Layer
7.1 ObjectProtocol e e e e
7.2 Call Protocol e e e e
7.2.1 The tp_call Protocol e e e e e e
7.2.2 The Vectorcall Protocol e
7.2.3 Object Calling APT e
7.2.4 Call Support API e
7.3 Number Protocol e e
7.4 Sequence Protocol
7.5 Mapping Protocol e e e e e e e e e e e e
7.6 Tterator Protocol e e e e e e e e e
7.7 Buffer Protocol e e e e e e e e e e
7.77.1 Bufferstructure e e e e e e e
7.7.2 Bufferrequest typeso e
773 ComPpIEX QITAYS . .+ v v v o v e
7.7.4 Buffer-related functions e e
Concrete Objects Layer
8.1 Fundamental Objects i i e e e e e e e e e e e e e e e
8.1.1 Type Objects o . o v e e e e e e e e e e e e e e
8.1.2 TheNone Object o o i i i e e e e e e e
8.2 Numeric ObJects o i e e e e e e e e e e e e e e
8.2.1 Integer ObJects o it e e e e e
8.2.2 Boolean ObJects i i e e e e e e e e e e e
8.2.3 Floating-Point Objects i e e e e e e
8.2.4 Complex Number Objects o i v it i e e e e e
8.3 Sequence ObJECtS L . i e e e e e e e e e e e e
8.3.1 BytesObjects e e e e e e e
832 Byte Array Objects e e e e e
8.3.3 Unicode Objectsand Codecs o v v i i v it e e e e e e
8.3.4 Tuple Objects o v i e e e e e e e e e e e
8.3.5 Struct Sequence Objects Lo e e e e e e e
8.3.6 ListObjects o e e e e e e e
8.4 Container Objects o i e e e e e
8.4.1 Dictionary ObJects o vt e e e e e e e e e e e e e e e
8.4.2 SetODbJects ot e e e e e e e e

71
71
74
76
76
80
81
81
87
89
91
92
93
94
94
95
95
95
96
96
96

99

99
106
106
107
108
111
111
114
116
117
118
119
121
122
124

8.5 Function ObJects ot i e e e e e e e e e e e e e e e e 176
8.5.1 Function Objects o i i e e e e e e e e e e e e e 176

8.5.2 Imstance Method Objects o o i i e e e e 178

853 Method Objects L 179

854 CellObjects v v v v e e e e 179

855 CodeObJects v v v i e e e e 180

85.6 CodeObjectFlags o o i i e e e e e 183

857 Extrainformation e 184

8.6 Other ObJects o i i e e e e e e e e e e e e 185
8.6.1 FileObjects e e 185

8.6.2 Module Objects o i e e e e 187

8.6.3 Tterator ObJECtS o i e e e e e e e e e e e e e 195

8.6.4 Descriptor ObJECtS v v v e e e e e e e e e e e e e e 195

8.6.5 Slice Objects o v e e e e e e 196

8.6.6 MemoryViewobjects L. 197

8.6.7 Weak Reference Objects e 198

8.6.8 Capsules e e e e e e e e 200

8.6.9 Frame ODbjects o v i i e e e e e e e e e e e e e 201
8.6.10 Generator Objects vt i e e e e e e e e e e e e 204

8.6.11 Coroutine Objectst i it e e 204
8.6.12 Context Variables Objects 205
8.6.13 DateTime ObJects« o v vt e e e e e e e 206
8.6.14 Objects for Type Hinting i e e e e 210

9 Initialization, Finalization, and Threads 211
9.1 Before Python Initialization 211
9.2 Global configuration variables e e e e e e e e e 212
9.3 Initializing and finalizing the interpretero e 215
9.4 Process-wide parameters ool e e e e e e e 218
9.5 Thread State and the Global Interpreter Lock 0oL, 221
9.5.1 Releasing the GIL from extensioncode 221

9.5.2 Non-Pythoncreatedthreads e 222

9.5.3 Cautionsaboutfork() e e e e 222

9.5.4 Cautions regarding runtime finalization 223

9.5.5 High-level APT e 223

9.5.6 Low-level APL e 225

0.6 Sub-interpreter SUPPOTt . . . v v v v v e 228
9.6.1 APer-Interpreter GIL e 231

9.6.2 Bugsandcaveats e e 231

9.7 Asynchronous Notifications L e 231
9.8 Profilingand Tracing e e e 232
9.9 Reference tracing e e e e e 234
9.10 Advanced Debugger SUPPOTt e e e e e e e e e 234
9.11 Thread Local Storage Support o o i e e e e e e e 235
9.11.1 Thread Specific Storage (TSS) APT, 235
9.11.2 Thread Local Storage (TLS) API, 236

9.12 Synchronization Primitives oL e 237
9.12.1 Python Critical Section APT e 237

10 Python Initialization Configuration 241
10.1 Example L e e 241
10.2 PyWideStringLlist o L e e e e 242
10.3 PyStatus o e e e e e e 242
10.4 PyPreConfig e 244
10.5 Preinitialize Python with PyPreConfig 245
10.6 PyConfig o e e e 246
10.7 Inmitialization with PyConfig 257
10.8 Isolated Configuration i i i e e e e e e e e 259

11

12

13

14

15

10.9 Python Configuration v v i it e e e e e e e e e e e e e e e e
10.10 Python Path Configuration 0 i e e e e e e
10.11 Py_GetArgcArgv() . . . v o e e e e e e e e e e e e e e e e e e e
10.12 Multi-Phase Initialization Private Provisional APT

Memory Management
I1.1 Overview o o e
11.2 Allocator Domains o o e e e e e e e e
11.3 Raw Memory Interface L
11.4 Memory Interface L e e e
11.5 Objectallocators v v v i i e
11.6 Default Memory Allocators o o o v i e e e e e e e e e
11.7 Customize Memory Allocators e
11.8 Debug hooks on the Python memory allocators
11.9 The pymalloc allocator o 0 e
11.9.1 Customize pymalloc Arena Allocator
11.10 The mimalloc allocator e
11.11 tracemalloc CAPL e
TTI2 Examples o o o e e e e e e e e e e e e e

Object Implementation Support

12.1 Allocating Objectsonthe Heap

12.2 Common Object Structures o o v i e e e e e e e e e e
12.2.1 Baseobject types and macrosol e e e e
12.2.2 Implementing functions and methods
12.2.3 Accessing attributes of exXtension types u e e e e e e

12.3 Type Object StrUCTUIES o v v bttt e e e e e e e e e e e e e e e e
12.3.1 Quick Reference e
12.3.2 PyTypeObject Definition e
12.3.3 PyObject SIots v o vt e e e e e e e e e e e e e e e
12.3.4 PyVarObject SIots o o v v e e e e e e e e e e
12.3.5 PyTypeObject Slots o o e e e
123.6 StaticTypes o e e
12377 Heap Types o o i e e e e e e e e e
12.3.8 Number Object Structures o v v ittt e e e e
12.3.9 Mapping Object Structures v v v i i e e e e e e e e e e e e
12.3.10 Sequence Object StrUCtUIes v v v v v i e e e e e e e e e e e
12.3.11 Buffer Object Structures e
12.3.12 Async Object Structures o v v it e e e e e e e e e e e e
12.3.13 Slot Type typedefs o e
12.3.14 Examples o e e e e e e e e e e e e e e e

12.4 Supporting Cyclic Garbage Collection it ittt e
12.4.1 Controlling the Garbage Collector State
12.4.2 Querying Garbage Collector State i e

API and ABI Versioning
Monitoring C API

Generating Execution Events
15.1 Managing the Monitoring State e e

Glossary

About this documentation
B.1 Contributors to the Python documentation

Storia e licenza
C.1 Storiadelsoftware e e e

273
273
274
274
276
279
282
283
287
288
289
289
308
309
309
311
311
312
313
314
316
318
320
321

323

325

327
328

331

349
349

351

C.2 Termini e condizioni di accesso o di utilizzodi Python

C3

C.2.1
C22
C23
C24
C.25

PYTHON SOFTWARE FOUNDATION LICENSE VERSION2
CONTRATTO DI LICENZA DI BEOPEN.COM PER PYTHON 20
CNRI CONTRATTO DI LICENZA PER PYTHON 1.6.1
CWI CONTRATTO DI LICENZA PER PYTHON DA 0O9OA 12
ZERO-CLAUSE BSD LICENSE FOR CODE IN THE PYTHON DOCUMENTATION .

Licenze e riconoscimenti per il software incorporato

C3.1
C32
C33
C34
C3.5
C3.6
C3.7
C3.38
C39
C.3.10
C.3.11
C3.12
C3.13
C3.14
C3.15
C3.16
C3.17
C3.18
C3.19
C.3.20
C3.21

D Copyright

Bibliografia

Indice

Mersenne TWIStEr o e e e e e e e e e e e e e e e e e
Socket e e e e
Servizi disocket asinCcrone e e e e e e e e e e
Gestionedeicookie e e
Tracciabilita dell’'esecuzione o i i e e e e e e e
Funzioni UUencode e UUdecode i
Chiamate di proceduraremota XMLo o oL
test_epoll e e
Selectkqueueo e e
SipHash24 o e
strtodedtoa L. e e e e e e e

libmpdec e e e e
WI3C CIANtest SUite o v o o e e e e e e e e e e e e e e e e e e e
mimalloc e e e e e e e e e e e e
ASYNCIO « . v v v v e e e e e e e e e e e e
Global Unbounded Sequences (GUS)

Vi

The Python/C API, Release 3.13.7

This manual documents the API used by C and C++ programmers who want to write extension modules or embed
Python. It is a companion to extending-index, which describes the general principles of extension writing but does
not document the API functions in detail.

Indice 1

The Python/C API, Release 3.13.7

2 Indice

cAPITOLO 1

Introduction

The Application Programmer’s Interface to Python gives C and C++ programmers access to the Python interpreter
at a variety of levels. The API is equally usable from C++, but for brevity it is generally referred to as the Python/C
API. There are two fundamentally different reasons for using the Python/C API. The first reason is to write extension
modules for specific purposes; these are C modules that extend the Python interpreter. This is probably the most
common use. The second reason is to use Python as a component in a larger application; this technique is generally
referred to as embedding Python in an application.

Writing an extension module is a relatively well-understood process, where a «cookbook» approach works well. There
are several tools that automate the process to some extent. While people have embedded Python in other applications
since its early existence, the process of embedding Python is less straightforward than writing an extension.

Many API functions are useful independent of whether youre embedding or extending Python; moreover, most
applications that embed Python will need to provide a custom extension as well, so it’s probably a good idea to
become familiar with writing an extension before attempting to embed Python in a real application.

1.1 Coding standards
If you're writing C code for inclusion in CPython, you must follow the guidelines and standards defined in PEP 7.

These guidelines apply regardless of the version of Python you are contributing to. Following these conventions is
not necessary for your own third party extension modules, unless you eventually expect to contribute them to Python.

1.2 Include Files

All function, type and macro definitions needed to use the Python/C API are included in your code by the following
line:

#define PY_ SSIZE_T CLEAN
#include <Python.h>

This implies inclusion of the following standard headers: <stdio.h>, <string.h>, <errno.h>, <limits.h>,
<assert.h>and <stdlib.h> (if available).

O Nota

https://peps.python.org/pep-0007/

The Python/C API, Release 3.13.7

Since Python may define some pre-processor definitions which affect the standard headers on some systems, you
must include Python . h before any standard headers are included.

It is recommended to always define PY_SSIZE_T_CLEAN before including Python.h. See Parsing arguments
and building values for a description of this macro.

All user visible names defined by Python.h (except those defined by the included standard headers) have one of the
prefixes Py or _Py. Names beginning with _Py are for internal use by the Python implementation and should not be
used by extension writers. Structure member names do not have a reserved prefix.

©® Nota

User code should never define names that begin with Py or _Py. This confuses the reader, and jeopardizes the
portability of the user code to future Python versions, which may define additional names beginning with one of
these prefixes.

The header files are typically installed with Python. On Unix, these are located in the directories prefix/include/
pythonversion/ and exec_prefix/include/pythonversion/, where prefix and exec_prefix are
defined by the corresponding parameters to Python’s configure script and version is '$d.%d' % sys.
version_info[:2]. On Windows, the headers are installed in prefix/include, where prefix is the
installation directory specified to the installer.

To include the headers, place both directories (if different) on your compiler’s search path for includes. Do not place
the parent directories on the search path and then use #include <pythonX.Y/Python.h>; this will break on
multi-platform builds since the platform independent headers under prefix include the platform specific headers
from exec_prefix.

C++ users should note that although the API is defined entirely using C, the header files properly declare the entry
points to be extern "C". As a result, there is no need to do anything special to use the API from C++.

1.3 Useful macros

Several useful macros are defined in the Python header files. Many are defined closer to where they are useful (e.g.
Py_RETURN_NONE). Others of a more general utility are defined here. This is not necessarily a complete listing.

PyMODINIT_FUNC

Declare an extension module PyInit initialization function. The function return type is PyoObject*. The
macro declares any special linkage declarations required by the platform, and for C++ declares the function as
extern "C".

The initialization function must be named PyInit_name, where name is the name of the module, and should
be the only non-static item defined in the module file. Example:

static struct PyModuleDef spam_module = {
.m_base = PyModuleDef HEAD_ INIT,
.m_name = "spam",

bi

PyMODINIT_FUNC
PyInit_spam(void)
{
return PyModuleDef_ Init (&spam_module);

Py_ABS (X)

Return the absolute value of x.

4 Capitolo 1. Introduction

The Python/C API, Release 3.13.7

Added in version 3.3.

Py_ALWAYS_INLINE
Ask the compiler to always inline a static inline function. The compiler can ignore it and decide to not inline
the function.

It can be used to inline performance critical static inline functions when building Python in debug mode with
function inlining disabled. For example, MSC disables function inlining when building in debug mode.

Marking blindly a static inline function with Py_ ALWAYS_INLINE can result in worse performances (due
to increased code size for example). The compiler is usually smarter than the developer for the cost/benefit
analysis.

If Python is built in debug mode (if the Py_DEBUG macro is defined), the Py _ALwAYS INLINE macro does
nothing.

It must be specified before the function return type. Usage:

[static inline Py_ALWAYS_INLINE int random(void) { return 4; }

Added in version 3.11.

Py CHARMASK (C)

Argument must be a character or an integer in the range [-128, 127] or [0, 255]. This macro returns c cast to
an unsigned char.

Py_DEPRECATED (version)
Use this for deprecated declarations. The macro must be placed before the symbol name.

Example:

[Py_DEPRECATED (3.8) PyAPI_FUNC (int) Py_OldFunction (void) ;

Cambiato nella versione 3.8: MSVC support was added.

Py_GETENV (S)
Like getenv(s), but returns NULL if -E was passed on the command line (see PyConfig.

use_environment).
Py_MAX(X,Yy)
Return the maximum value between x and y.
Added in version 3.3.
Py_MEMBER_SIZE (type, member)
Return the size of a structure (t ype) member in bytes.
Added in version 3.6.
Py_MIN (X, y)
Return the minimum value between x and y.
Added in version 3.3.

Py_NO_INLINE

Disable inlining on a function. For example, it reduces the C stack consumption: useful on LTO+PGO builds
which heavily inline code (see bpo-33720).

Usage:

Py_NO_INLINE static int random(void) { return 4; }

Added in version 3.11.

1.3. Useful macros 5

https://bugs.python.org/issue?@action=redirect&bpo=33720

The Python/C API, Release 3.13.7

Py_STRINGIFY (X)
Convert x to a C string. E.g. Py _STRINGIFY (123) returns "123".

Added in version 3.4.

Py UNREACHABLE ()

Use this when you have a code path that cannot be reached by design. For example, in the default: clause
in a switch statement for which all possible values are covered in case statements. Use this in places where
you might be tempted to put an assert (0) or abort () call.

In release mode, the macro helps the compiler to optimize the code, and avoids a warning about unreachable
code. For example, the macro is implemented with __ builtin_unreachable () on GCC in release mode.

A use for py_UNREACHABLE () is following a call a function that never returns but that is not declared
_Py_NO_RETURN.

If a code path is very unlikely code but can be reached under exceptional case, this macro must not be used.
For example, under low memory condition or if a system call returns a value out of the expected range. In this
case, it’s better to report the error to the caller. If the error cannot be reported to caller, Py_FatalError ()
can be used.

Added in version 3.7.

Py_UNUSED (arg)

Use this for unused arguments in a function definition to silence compiler warnings. Example: int func (int
a, int Py_UNUSED (b)) { return a; }.

Added in version 3.4.

PyDoc_STRVAR (name, Str)

Creates a variable with name name that can be used in docstrings. If Python is built without docstrings, the
value will be empty.

Use PyDoc_STRVAR for docstrings to support building Python without docstrings, as specified in PEP 7.

Example:

PyDoc_STRVAR (pop_doc, "Remove and return the rightmost element.");

static PyMethodDef deque_methods[] = {
/) ooo
{"pop", (PyCFunction)deque_pop, METH_NOARGS, pop_doc},
//

PyDoc_STR (Str)

Creates a docstring for the given input string or an empty string if docstrings are disabled.

Use PyDoc_STR in specifying docstrings to support building Python without docstrings, as specified in PEP
7.

Example:

static PyMethodDef pysglite_row_methods[] = {
{"keys", (PyCFunction)pysqglite_row_keys, METH_NOARGS,
PyDoc_STR ("Returns the keys of the row.")},
{NULL, NULL}
i

6 Capitolo 1. Introduction

https://peps.python.org/pep-0007/
https://peps.python.org/pep-0007/
https://peps.python.org/pep-0007/

The Python/C API, Release 3.13.7

1.4 Objects, Types and Reference Counts

Most Python/C API functions have one or more arguments as well as a return value of type Pyob ject*. This type is
a pointer to an opaque data type representing an arbitrary Python object. Since all Python object types are treated the
same way by the Python language in most situations (e.g., assignments, scope rules, and argument passing), it is only
fitting that they should be represented by a single C type. Almost all Python objects live on the heap: you never declare
an automatic or static variable of type PyOb ject, only pointer variables of type PyObject* can be declared. The
sole exception are the type objects; since these must never be deallocated, they are typically static Py TypeObject
objects.

All Python objects (even Python integers) have a rype and a reference count. An object’s type determines what kind of
object it is (e.g., an integer, a list, or a user-defined function; there are many more as explained in types). For each of
the well-known types there is a macro to check whether an object is of that type; for instance, PyList_Check (a)
is true if (and only if) the object pointed to by a is a Python list.

1.4.1 Reference Counts

The reference count is important because today’s computers have a finite (and often severely limited) memory size;
it counts how many different places there are that have a strong reference to an object. Such a place could be another
object, or a global (or static) C variable, or a local variable in some C function. When the last strong reference to an
object is released (i.e. its reference count becomes zero), the object is deallocated. If it contains references to other
objects, those references are released. Those other objects may be deallocated in turn, if there are no more references
to them, and so on. (There’s an obvious problem with objects that reference each other here; for now, the solution is
«don’t do that.»)

Reference counts are always manipulated explicitly. The normal way is to use the macro Py ITNCREF () to take a new
reference to an object (i.e. increment its reference count by one), and Py_DECREF () to release that reference (i.e.
decrement the reference count by one). The Py_DECREF () macro is considerably more complex than the incref one,
since it must check whether the reference count becomes zero and then cause the object’s deallocator to be called. The
deallocator is a function pointer contained in the object’s type structure. The type-specific deallocator takes care of
releasing references for other objects contained in the object if this is a compound object type, such as a list, as well as
performing any additional finalization that’s needed. There’s no chance that the reference count can overflow; at least
as many bits are used to hold the reference count as there are distinct memory locations in virtual memory (assuming
sizeof (Py_ssize_t) >= sizeof (void*)). Thus, the reference count increment is a simple operation.

It is not necessary to hold a strong reference (i.e. increment the reference count) for every local variable that contains
a pointer to an object. In theory, the object’s reference count goes up by one when the variable is made to point to
it and it goes down by one when the variable goes out of scope. However, these two cancel each other out, so at the
end the reference count hasn’t changed. The only real reason to use the reference count is to prevent the object from
being deallocated as long as our variable is pointing to it. If we know that there is at least one other reference to the
object that lives at least as long as our variable, there is no need to take a new strong reference (i.e. increment the
reference count) temporarily. An important situation where this arises is in objects that are passed as arguments to C
functions in an extension module that are called from Python; the call mechanism guarantees to hold a reference to
every argument for the duration of the call.

However, a common pitfall is to extract an object from a list and hold on to it for a while without taking a new
reference. Some other operation might conceivably remove the object from the list, releasing that reference, and
possibly deallocating it. The real danger is that innocent-looking operations may invoke arbitrary Python code which
could do this; there is a code path which allows control to flow back to the user from a Py_DECREF (), so almost any
operation is potentially dangerous.

A safe approach is to always use the generic operations (functions whose name begins with PyObject_, PyNumber._,
PySequence_ or PyMapping_). These operations always create a new strong reference (i.e. increment the reference
count) of the object they return. This leaves the caller with the responsibility to call Py_DECREF () when they are
done with the result; this soon becomes second nature.

1.4. Objects, Types and Reference Counts 7

The Python/C API, Release 3.13.7

Reference Count Details

The reference count behavior of functions in the Python/C API is best explained in terms of ownership of references.
Ownership pertains to references, never to objects (objects are not owned: they are always shared). «Owning a re-
ference» means being responsible for calling Py DECREEF on it when the reference is no longer needed. Ownership
can also be transferred, meaning that the code that receives ownership of the reference then becomes responsible for
eventually releasing it by calling Py DECREF () or Py_XDECREF () when it’s no longer needed—or passing on this
responsibility (usually to its caller). When a function passes ownership of a reference on to its caller, the caller is
said to receive a new reference. When no ownership is transferred, the caller is said to borrow the reference. Nothing
needs to be done for a borrowed reference.

Conversely, when a calling function passes in a reference to an object, there are two possibilities: the function steals
a reference to the object, or it does not. Stealing a reference means that when you pass a reference to a function, that
function assumes that it now owns that reference, and you are not responsible for it any longer.

Few functions steal references; the two notable exceptions are PyList_SetItem() and PyTuple SetItem(),
which steal a reference to the item (but not to the tuple or list into which the item is put!). These functions were
designed to steal a reference because of a common idiom for populating a tuple or list with newly created objects; for
example, the code to create the tuple (1, 2, "three") could look like this (forgetting about error handling for
the moment; a better way to code this is shown below):

PyObject *t;

t = PyTuple_New (3);
PyTuple_SetItem(t, 0, PyLong_FromLong(lL));
PyTuple_SetItem

3

t

t, 1, PyLong_FromLong(2L));
PyTuple_SetItem(t

(
(
(
(

, 2, PyUnicode_FromString("three"));

Here, PyLong FromLong () returns a new reference which is immediately stolen by PyTuple SetItem(). When
you want to keep using an object although the reference to it will be stolen, use pPy_INCREF () to grab another
reference before calling the reference-stealing function.

Incidentally, pPyTuple SetItem() is the only way to set tuple items; PySequence_SetItem() and
PyObject_SetItem() refuse to do this since tuples are an immutable data type. You should only use
pyTuple_SetItem() for tuples that you are creating yourself.

Equivalent code for populating a list can be written using PyList_New () and PyList_SetItem().

However, in practice, you will rarely use these ways of creating and populating a tuple or list. There’s a generic
function, Py_Buildvalue (), that can create most common objects from C values, directed by a format string.
For example, the above two blocks of code could be replaced by the following (which also takes care of the error
checking):

PyObject *tuple, *1list;

tuple = Py_BuildvValue (" (iis)", 1, 2, "three");
list = Py_BuildValue("[iis]", 1, 2, "three");

It is much more common to use PyObject_SetItem() and friends with items whose references you are only
borrowing, like arguments that were passed in to the function you are writing. In that case, their behaviour regarding
references is much saner, since you don’t have to take a new reference just so you can give that reference away («have
it be stolen»). For example, this function sets all items of a list (actually, any mutable sequence) to a given item:

int
set_all (PyObject *target, PyObject *item)
{

Py_ssize_t i, nj;

n = PyObject_Length (target) ;
if (n < 0)
return -1;

(continues on next page)

8 Capitolo 1. Introduction

The Python/C API, Release 3.13.7

(continua dalla pagina precedente)
for (i = 0; 1 < n; i++) {
PyObject *index = PyLong_FromSsize_t (i);
if (!index)
return -1;
if (PyObject_SetItem(target, index, item) < 0) {
Py_DECREF (index) ;
return -1;
}
Py_DECREF (index) ;
}

return O;

The situation is slightly different for function return values. While passing a reference to most functions does not
change your ownership responsibilities for that reference, many functions that return a reference to an object give
you ownership of the reference. The reason is simple: in many cases, the returned object is created on the fly, and the
reference you get is the only reference to the object. Therefore, the generic functions that return object references,
like PyObject_GetItem() and PySequence_GetItem (), always return a new reference (the caller becomes the
owner of the reference).

It is important to realize that whether you own a reference returned by a function depends on which function you call
only — the plumage (the type of the object passed as an argument to the function) doesn’t enter into it! Thus, if you
extract an item from a list using PyList_GetItem (), you don’t own the reference — but if you obtain the same
item from the same list using PySequence_GetItem () (which happens to take exactly the same arguments), you
do own a reference to the returned object.

Here is an example of how you could write a function that computes the sum of the items in a list of integers; once
using PyList_GetItem (), and once using PySequence_GetItem().

long

sum_list (PyObject *1list)

{
Py_ssize_t i, n;
long total = 0, value;
PyObject *item;

n = PyList_Size(list);
if (n < 0)
return -1; /* Not a list */
for (i = 0; i < n; i++) {
item = PyList_GetItem(list, 1); /* Can't fail */
if (!PyLong_Check (item)) continue; /* Skip non-integers */
value = PyLong_AsLong (item);
if (value == -1 && PyErr_Occurred())
/* Integer too big to fit in a C long, bail out */
return -1;
total += value;
}

return total;

long

sum_sequence (PyObject *sequence)

{
Py_ssize_t i, n;
long total = 0, value;
PyObject *item;

(continues on next page)

1.4. Objects, Types and Reference Counts 9

The Python/C API, Release 3.13.7

(continua dalla pagina precedente)
n = PySequence_Length (sequence) ;
if (n < 0)
return -1; /* Has no length */
for (i = 0; i < n; i++) {
item = PySequence_GetItem(sequence, 1i);
if (item == NULL)
return -1; /* Not a sequence, or other failure */
if (PyLong_Check (item)) {
value = PyLong_AsLong (item);
Py_DECREF (item) ;
if (value == -1 && PyErr_Occurred())
/* Integer too big to fit in a C long, bail out */
return -1;
total += value;
}
else {
Py_DECREF (item); /* Discard reference ownership */

}

return total;

1.4.2 Types

There are few other data types that play a significant role in the Python/C API; most are simple C types such as int,
long, double and char*. A few structure types are used to describe static tables used to list the functions exported
by a module or the data attributes of a new object type, and another is used to describe the value of a complex number.
These will be discussed together with the functions that use them.

type Py_ssize_t
Parte del ABI Stabile. A signed integral type such that sizeof (Py_ssize_t) == sizeof (size_t).
C99 doesn’t define such a thing directly (size_t is an unsigned integral type). See PEP 353 for details.
PY_SSIZE_T_MAX is the largest positive value of type Py _ssize t.

1.5 Exceptions

The Python programmer only needs to deal with exceptions if specific error handling is required; unhandled excep-
tions are automatically propagated to the caller, then to the caller’s caller, and so on, until they reach the top-level
interpreter, where they are reported to the user accompanied by a stack traceback.

For C programmers, however, error checking always has to be explicit. All functions in the Python/C API can raise
exceptions, unless an explicit claim is made otherwise in a function’s documentation. In general, when a function
encounters an error, it sets an exception, discards any object references that it owns, and returns an error indicator.
If not documented otherwise, this indicator is either NULL or -1, depending on the function’s return type. A few
functions return a Boolean true/false result, with false indicating an error. Very few functions return no explicit error
indicator or have an ambiguous return value, and require explicit testing for errors with PyErr Occurred (). These
exceptions are always explicitly documented.

Exception state is maintained in per-thread storage (this is equivalent to using global storage in an unthreaded appli-
cation). A thread can be in one of two states: an exception has occurred, or not. The function PyErr_Occurred ()
can be used to check for this: it returns a borrowed reference to the exception type object when an exception has
occurred, and NULL otherwise. There are a number of functions to set the exception state: PyErr SetString () is
the most common (though not the most general) function to set the exception state, and PyErr Clear () clears the
exception state.

The full exception state consists of three objects (all of which can be NULL): the exception type, the corresponding
exception value, and the traceback. These have the same meanings as the Python result of sys.exc_info () ; howe-
ver, they are not the same: the Python objects represent the last exception being handled by a Python try ... except

10 Capitolo 1. Introduction

https://peps.python.org/pep-0353/

The Python/C API, Release 3.13.7

statement, while the C level exception state only exists while an exception is being passed on between C functions
until it reaches the Python bytecode interpreter’s main loop, which takes care of transferring it to sys.exc_info ()
and friends.

Note that starting with Python 1.5, the preferred, thread-safe way to access the exception state from Python code
is to call the function sys.exc_info (), which returns the per-thread exception state for Python code. Also, the
semantics of both ways to access the exception state have changed so that a function which catches an exception will
save and restore its thread’s exception state so as to preserve the exception state of its caller. This prevents common
bugs in exception handling code caused by an innocent-looking function overwriting the exception being handled; it
also reduces the often unwanted lifetime extension for objects that are referenced by the stack frames in the traceback.

As a general principle, a function that calls another function to perform some task should check whether the called
function raised an exception, and if so, pass the exception state on to its caller. It should discard any object references
that it owns, and return an error indicator, but it should not set another exception — that would overwrite the exception
that was just raised, and lose important information about the exact cause of the error.

A simple example of detecting exceptions and passing them on is shown in the sum_sequence () example above. It
so happens that this example doesn’t need to clean up any owned references when it detects an error. The following
example function shows some error cleanup. First, to remind you why you like Python, we show the equivalent Python
code:

def incr_item(dict, key):
try:
item = dict [key]
except KeyError:
item = 0
dict[key] = item + 1

Here is the corresponding C code, in all its glory:

int

incr_item(PyObject *dict, PyObject *key)

{
/* Objects all initialized to NULL for Py XDECREF */
PyObject *item = NULL, *const_one = NULL, *incremented_item = NULL;
int rv = -1; /* Return value initialized to -1 (failure) */

item = PyObject_GetItem(dict, key);
if (item == NULL) {
/* Handle KeyError only: */
if (!PyErr_ExceptionMatches (PyExc_KeyError))

goto error;

/* Clear the error and use zero: */
PyErr_Clear();
item = PyLong_FromLong (0OL) ;
if (item == NULL)
goto error;
}
const_one = PyLong_FromLong (1L);
if (const_one == NULL)
goto error;

incremented_item = PyNumber_Add(item, const_one);
if (incremented_item == NULL)
goto error;

if (PyObject_SetItem(dict, key, incremented_item) < 0)
goto error;
(continues on next page)

1.5. Exceptions 11

The Python/C API, Release 3.13.7

(continua dalla pagina precedente)
rv = 0; /* Success */
/* Continue with cleanup code */

error:
/* Cleanup code, shared by success and failure path */

/* Use Py_XDECREF () to ignore NULL references */
Py_XDECREF (item) ;

Py_XDECREF (const_one) ;

Py_XDECREF (incremented_item) ;

return rv; /* -1 for error, 0 for success */

This example represents an endorsed use of the goto statement in C! It illustrates the use of
PyErr_ExceptionMatches () and PyErr_Clear () to handle specific exceptions, and the use of Py_XDECREF ()
to dispose of owned references that may be NULL (note the 'X' in the name; Py _DECREF () would crash when
confronted with a NULL reference). It is important that the variables used to hold owned references are initialized to
NULL for this to work; likewise, the proposed return value is initialized to —1 (failure) and only set to success after
the final call made is successful.

1.6 Embedding Python

The one important task that only embedders (as opposed to extension writers) of the Python interpreter have to worry
about is the initialization, and possibly the finalization, of the Python interpreter. Most functionality of the interpreter
can only be used after the interpreter has been initialized.

The basic initialization function is Py Tnitialize (). This initializes the table of loaded modules, and creates the
fundamental modules builtins, main__, and sys. It also initializes the module search path (sys.path).

Py _Initialize () does not set the «script argument list» (sys.argv). If this variable is needed by Python co-
de that will be executed later, setting PyConfig.argv and PyConfig.parse_argv must be set: see Python
Initialization Configuration.

On most systems (in particular, on Unix and Windows, although the details are slightly different),
Py _Initialize () calculates the module search path based upon its best guess for the location of the standard
Python interpreter executable, assuming that the Python library is found in a fixed location relative to the Python
interpreter executable. In particular, it looks for a directory named 1ib/pythonX. Y relative to the parent directory
where the executable named python is found on the shell command search path (the environment variable PATH).

For instance, if the Python executable is found in /usr/local/bin/python, it will assume that the libraries are in /
usr/local/lib/pythonX. Y. (Infact, this particular path is also the «fallback» location, used when no executable
file named python is found along PATH.) The user can override this behavior by setting the environment variable
PYTHONHOME, or insert additional directories in front of the standard path by setting PYTHONPATH.

The embedding application can steer the search by setting PyConfig.program name before calling
Py InitializeFromConfig (). Note that PYTHONHOME still overrides this and PYTHONPATH is still inserted
in front of the standard path. An application that requires total control has to provide its own implementation of
Py_GetPath (), Py_GetPrefix (), Py_GetExecPrefix (), and Py_GetProgramFullPath () (all defined in
Modules/getpath.c).

Sometimes, it is desirable to «uninitialize» Python. For instance, the application may want to start over (make another
callto Py_Initialize ()) or the application is simply done with its use of Python and wants to free memory allo-
cated by Python. This can be accomplished by calling Py_FinalizeEx (). The function Py IsInitialized()
returns true if Python is currently in the initialized state. More information about these functions is given in a later
chapter. Notice that Py_FinalizeEx () does not free all memory allocated by the Python interpreter, e.g. memory
allocated by extension modules currently cannot be released.

12 Capitolo 1. Introduction

The Python/C API, Release 3.13.7

1.7 Debugging Builds
Python can be built with several macros to enable extra checks of the interpreter and extension modules. These checks
tend to add a large amount of overhead to the runtime so they are not enabled by default.

A full list of the various types of debugging builds is in the file Misc/SpecialBuilds.txt in the Python source
distribution. Builds are available that support tracing of reference counts, debugging the memory allocator, or low-
level profiling of the main interpreter loop. Only the most frequently used builds will be described in the remainder
of this section.

Py_DEBUG

Compiling the interpreter with the Py_DEBUG macro defined produces what is generally meant by a debug build of
Python. Py_DEBUG is enabled in the Unix build by adding --with-pydebug to the ./configure command. It
is also implied by the presence of the not-Python-specific _DEBUG macro. When Py_DEBUG is enabled in the Unix
build, compiler optimization is disabled.

In addition to the reference count debugging described below, extra checks are performed, see Python Debug Build.

Defining Py_TRACE_REFS enables reference tracing (see the configure --with-trace-refs option). When
defined, a circular doubly linked list of active objects is maintained by adding two extra fields to every PyoObject.
Total allocations are tracked as well. Upon exit, all existing references are printed. (In interactive mode this happens
after every statement run by the interpreter.)

Please refer to Misc/SpecialBuilds.txt in the Python source distribution for more detailed information.

1.8 Recommended third party tools
The following third party tools offer both simpler and more sophisticated approaches to creating C, C++ and Rust
extensions for Python:

e Cython

o cffi

o HPy

o nanobind (C++)

e Numba

o pybindl1 (C++)

o PyO3 (Rust)

« SWIG

Using tools such as these can help avoid writing code that is tightly bound to a particular version of CPython, avoid
reference counting errors, and focus more on your own code than on using the CPython API. In general, new ver-
sions of Python can be supported by updating the tool, and your code will often use newer and more efficient APIs
automatically. Some tools also support compiling for other implementations of Python from a single set of sources.

These projects are not supported by the same people who maintain Python, and issues need to be raised with the
projects directly. Remember to check that the project is still maintained and supported, as the list above may become
outdated.

> Vedi anche

Python Packaging User Guide: Binary Extensions
The Python Packaging User Guide not only covers several available tools that simplify the creation of binary
extensions, but also discusses the various reasons why creating an extension module may be desirable in
the first place.

1.7. Debugging Builds 13

https://cython.org/
https://cffi.readthedocs.io
https://hpyproject.org/
https://github.com/wjakob/nanobind
https://numba.pydata.org/
https://pybind11.readthedocs.io/
https://pyo3.rs/
https://www.swig.org
https://packaging.python.org/guides/packaging-binary-extensions/

The Python/C API, Release 3.13.7

14 Capitolo 1. Introduction

CAPITOLO 2

C API Stability

Unless documented otherwise, Python’s C API is covered by the Backwards Compatibility Policy, PEP 387. Most
changes to it are source-compatible (typically by only adding new API). Changing existing API or removing API is
only done after a deprecation period or to fix serious issues.

CPython’s Application Binary Interface (ABI) is forward- and backwards-compatible across a minor release (if these
are compiled the same way; see Platform Considerations below). So, code compiled for Python 3.10.0 will work on
3.10.8 and vice versa, but will need to be compiled separately for 3.9.x and 3.11.x.

There are two tiers of C API with different stability expectations:

o Unstable API, may change in minor versions without a deprecation period. It is marked by the PyUnstable
prefix in names.

« Limited API, is compatible across several minor releases. When py_1.7MITED_APT is defined, only this subset
is exposed from Python.h.

These are discussed in more detail below.

Names prefixed by an underscore, such as _Py_InternalState, are private API that can change without notice
even in patch releases. If you need to use this API, consider reaching out to CPython developers to discuss adding
public API for your use case.

2.1 Unstable C API

Any API named with the PyUnstable prefix exposes CPython implementation details, and may change in every
minor release (e.g. from 3.9 to 3.10) without any deprecation warnings. However, it will not change in a bugfix release
(e.g. from 3.10.0 to 3.10.1).

It is generally intended for specialized, low-level tools like debuggers.

Projects that use this API are expected to follow CPython development and spend extra effort adjusting to changes.

2.2 Stable Application Binary Interface

For simplicity, this document talks about extensions, but the Limited API and Stable ABI work the same way for all
uses of the API - for example, embedding Python.

15

https://peps.python.org/pep-0387/
https://discuss.python.org/c/core-dev/c-api/30

The Python/C API, Release 3.13.7

2.2.1 Limited C API

Python 3.2 introduced the Limited API, a subset of Python’s C API. Extensions that only use the Limited API can be
compiled once and be loaded on multiple versions of Python. Contents of the Limited API are listed below.

Py_LIMITED_API

Define this macro before including Python . h to opt in to only use the Limited API, and to select the Limited
API version.

Define py_LIMITED_API to the value of Pv_VERSTON_HEX corresponding to the lowest Python version your
extension supports. The extension will be ABI-compatible with all Python 3 releases from the specified one
onward, and can use Limited API introduced up to that version.

Rather than using the PY VERSION_HEX macro directly, hardcode a minimum minor version (e.g.
0x030A0000 for Python 3.10) for stability when compiling with future Python versions.

You can also define py_LIMITED_APT to 3. This works the same as 0x03020000 (Python 3.2, the version
that introduced Limited API).

2.2.2 Stable ABI

To enable this, Python provides a Stable ABI: a set of symbols that will remain ABI-compatible across Python 3.x
versions.

O Nota

The Stable ABI prevents ABI issues, like linker errors due to missing symbols or data corruption due to changes in
structure layouts or function signatures. However, other changes in Python can change the behavior of extensions.
See Python’s Backwards Compatibility Policy (PEP 387) for details.

The Stable ABI contains symbols exposed in the Limited API, but also other ones — for example, functions necessary
to support older versions of the Limited APIL.

On Windows, extensions that use the Stable ABI should be linked against python3.d11 rather than a version-specific
library such as python39.d11.

On some platforms, Python will look for and load shared library files named with the abi 3 tag (e.g. mymodule.
abi3.so). It does not check if such extensions conform to a Stable ABI. The user (or their packaging tools) need to
ensure that, for example, extensions built with the 3.10+ Limited API are not installed for lower versions of Python.

All functions in the Stable ABI are present as functions in Python’s shared library, not solely as macros. This makes
them usable from languages that don’t use the C preprocessor.

2.2.3 Limited API Scope and Performance

The goal for the Limited API is to allow everything that is possible with the full C API, but possibly with a
performance penalty.

For example, while pyList_GetItem/() is available, its “unsafe” macro variant PyList_GET ITEM() is not. The
macro can be faster because it can rely on version-specific implementation details of the list object.

Without py_LIMITED_API defined, some C API functions are inlined or replaced by macros. Defining
Py LIMITED_API disables this inlining, allowing stability as Python’s data structures are improved, but possibly
reducing performance.

By leaving out the Py_LIMITED_APTI definition, it is possible to compile a Limited API extension with a version-
specific ABI. This can improve performance for that Python version, but will limit compatibility. Compiling with
py_LIMITED_API will then yield an extension that can be distributed where a version-specific one is not available
— for example, for prereleases of an upcoming Python version.

16 Capitolo 2. C API Stability

https://peps.python.org/pep-0387/

The Python/C API, Release 3.13.7

2.2.4 Limited API Caveats

Note that compiling with Py_ LIMITED_APT is not a complete guarantee that code conforms to the Limited API or
the Stable ABI. py_LIMITED_APT only covers definitions, but an API also includes other issues, such as expected
semantics.

One issue that Py_LIMITED_API does not guard against is calling a function with arguments that are invalid in a
lower Python version. For example, consider a function that starts accepting NULL for an argument. In Python 3.9,
NULL now selects a default behavior, but in Python 3.8, the argument will be used directly, causing a NULL dereference
and crash. A similar argument works for fields of structs.

Another issue is that some struct fields are currently not hidden when py_LIMITED_API is defined, even though
they’re part of the Limited API.

For these reasons, we recommend testing an extension with a/l minor Python versions it supports, and preferably to
build with the lowest such version.

We also recommend reviewing documentation of all used API to check if it is explicitly part of the Limited API. Even
withPy_LIMITED_API defined, a few private declarations are exposed for technical reasons (or even unintentionally,
as bugs).

Also note that the Limited API is not necessarily stable: compiling with Py_1IMITED_API with Python 3.8 means
that the extension will run with Python 3.12, but it will not necessarily compile with Python 3.12. In particular, parts
of the Limited API may be deprecated and removed, provided that the Stable ABI stays stable.

2.3 Platform Considerations

ABI stability depends not only on Python, but also on the compiler used, lower-level libraries and compiler options.
For the purposes of the Stable ABI, these details define a “platform”. They usually depend on the OS type and processor
architecture

It is the responsibility of each particular distributor of Python to ensure that all Python versions on a particular
platform are built in a way that does not break the Stable ABI. This is the case with Windows and macOS releases
from python.org and many third-party distributors.

2.4 Contents of Limited API

Currently, the Limited API includes the following items:

e PY VECTORCALL_ARGUMENTS_OFFSET

PyAIter_Check ()

PyArg_Parse()

PyArg_ParseTuple ()

PyArg ParseTupleAndKeywords ()

PyArg_UnpackTuple ()

PyArg_VaParse ()

PyArg_VaParseTupleAndKeywords ()

PyArg ValidateKeywordArguments ()

PyBaseObject_Type

PyBool_FromLong ()

PyBool_Type

PyBuffer_ FillContiguousStrides ()

2.3. Platform Considerations 17

The Python/C API, Release 3.13.7

PyBuffer FillInfo()
PyBuffer FromContiguous ()
PyBuffer_GetPointer ()
PyBuffer_IsContiguous ()
PyBuffer Release ()
PyBuffer SizeFromFormat ()
PyBuffer_ToContiguous ()
PyByteArraylIter_Type
PyByteArray_ AsString()
PyByteArray_Concat ()

PyByteArray_FromObject ()

PyByteArray_ FromStringAndSize ()

PyByteArray_Resize ()
PyByteArray_Size ()
PyByteArray_Type
PyBytesIter_ Type
PyBytes_AsString()
PyBytes_AsStringAndSize ()
PyBytes_Concat ()
PyBytes_ConcatAndDel ()
PyBytes_DecodeEscape ()
PyBytes_FromFormat ()
PyBytes_FromFormatV ()
PyBytes_FromObject ()
PyBytes_FromString ()
PyBytes_FromStringAndSize ()
PyBytes_Repr ()
PyBytes_Size ()
PyBytes_Type

PyCFunction
PyCFunctionFast
PyCFunctionFastWithKeywords
PyCFunctionWithKeywords
PyCFunction_GetFlags ()
PyCFunction_GetFunction ()
PyCFunction_GetSelf ()
PyCFunction_New ()
PyCFunction_NewEXx ()

PyCFunction_Type

18

Capitolo 2. C API Stability

The Python/C API, Release 3.13.7

e PyCMethod_New ()

e PyCalllIter_New/()

e PyCalllter_ Type

e PyCallable_Check ()

e PyCapsule_Destructor

e PyCapsule_GetContext ()

e PyCapsule_GetDestructor ()

e PyCapsule_GetName ()

e PyCapsule_GetPointer ()

e PyCapsule_Import ()

e PyCapsule_IsValid()

e PyCapsule_New ()

e PyCapsule_SetContext ()

e PyCapsule_SetDestructor ()

e PyCapsule_SetName ()

e PyCapsule_SetPointer ()

e PyCapsule_Type

e PyClassMethodDescr_Type

e PyCodec_BackslashReplaceErrors ()
e PyCodec_Decode ()

e PyCodec_Decoder ()

e PyCodec_Encode ()

e PyCodec_Encoder ()

e PyCodec_IgnoreErrors ()

e PyCodec_IncrementalDecoder ()
e PyCodec_IncrementalEncoder ()
e PyCodec_KnownEncoding ()

e PyCodec_LookupError ()

e PyCodec_NameReplaceErrors ()
e PyCodec_Register()

e PyCodec_RegisterError ()

e PyCodec_ReplaceErrors ()

e PyCodec_StreamReader ()

e PyCodec_StreamiWriter ()

e PyCodec_StrictErrors()

e PyCodec_Unregister()

e PyCodec_XMLCharRefReplaceErrors ()
e PyComplex_FromDoubles ()

e PyComplex_ImagAsDouble ()

2.4. Contents of Limited API 19

The Python/C API, Release 3.13.7

PyComplex_RealAsDouble ()
PyComplex_Type
PyDescr_NewClassMethod ()
PyDescr_NewGetSet ()
PyDescr_NewMember ()
PyDescr_NewMethod ()
PyDictItems_Type
PyDictIterItem_ Type
PyDictIterKey_Type
PyDictIterValue_Type
PyDictKeys_Type
PyDictProxy_New()
PyDictProxy_Type
PyDictRevIterItem_Type
PyDictRevIterKey_Type
PyDictRevIterValue_Type
PyDictValues_Type
PyDict_Clear ()
PyDict_Contains ()
PyDict_Copy ()
PyDict_DelItem()
PyDict_DelItemString/()
PyDict_GetItem()
PyDict_GetItemRef ()
PyDict_GetItemString ()
PyDict_GetItemStringRef ()
PyDict_GetItemWithError ()
PyDict_Items ()
PyDict_Keys ()
PyDict_Merge ()
PyDict_MergeFromSeqZ ()
PyDict_New ()
PyDict_Next ()
PyDict_SetItem()
PyDict_SetItemString/()
PyDict_Size()
PyDict_Type
PyDict_Update ()

PyDict_Values ()

20

Capitolo 2. C API Stability

The Python/C API, Release 3.13.7

e PyEllipsis_Type

e PyEnum_Type

e PyErr BadArgument ()

e PyErr BadInternalCall ()

e PyErr CheckSignals()

e PyErr Clear()

e PyErr Display ()

e PyErr DisplayException()

e PyErr ExceptionMatches ()

e PyErr Fetch()

e PyErr Format ()

e PyErr FormatV()

e PyErr GetExcInfo()

e PyErr GetHandledException ()

e PyErr GetRaisedException ()

e PyErr GivenExceptionMatches ()

e PyErr NewException ()

e PyErr NewExceptionWithDoc ()

e PyErr_ NoMemory ()

e PyErr NormalizeException ()

e PyErr Occurred()

e PyErr Print()

e PyErr PrintEx()

e PyErr ProgramText ()

e PyErr ResourceWarning()

e PyErr Restore()

e PyErr SetExcFromWindowsErr ()

e PyErr SetExcFromWindowsErrWithFilename ()
e PyErr SetExcFromWindowsErrWithFilenameObject ()
e PyErr SetExcFromWindowsErrWithFilenameObjects ()
e PyErr SetExcInfo()

e PyErr SetFromErrno ()

e PyErr SetFromErrnoWithFilename ()

e PyErr SetFromErrnoWithFilenameObject ()
e PyErr SetFromErrnoWithFilenameObjects ()
e PyErr SetFromWindowsErr ()

e PyErr SetFromWindowsErrWithFilename ()

e PyErr SetHandledException ()

e PyErr SetImportError ()

2.4. Contents of Limited API 21

The Python/C API, Release 3.13.7

PyErr_SetImportErrorSubclass ()

PyErr_SetInterrupt ()
PyErr_SetInterruptEx()
PyErr_SetNone ()
PyErr_SetObject ()
PyErr_SetRaisedException ()
PyErr_SetString()
PyErr_SyntaxLocation ()
PyErr_SyntaxLocationEx ()
PyErr_WarnkEx ()
PyErr_WarnExplicit ()
PyErr_WarnFormat ()

PyErr WriteUnraisable ()
PyEval_AcquireThread()
PyEval_EvalCode ()
PyEval_EvalCodeEx ()
PyEval_ EvalFrame ()
PyEval_EvalFrameEx ()
PyEval_GetBuiltins ()
PyEval_GetFrame ()
PyEval_GetFrameBuiltins ()
PyEval_GetFrameGlobals ()
PyEval_GetFrameLocals ()
PyEval_GetFuncDesc ()
PyEval_GetFuncName ()
PyEval_GetGlobals ()
PyEval_GetLocals ()
PyEval_InitThreads()
PyEval_ReleaseThread()
PyEval_RestoreThread()
PyEval_SaveThread()
PyExc_ArithmeticError
PyExc_AssertionError
PyExc_AttributeError
PyExc_BaseException
PyExc_BaseExceptionGroup
PyExc_BlockingIOError
PyExc_BrokenPipeError

PyExc_BufferError

22

Capitolo 2. C API Stability

The Python/C API, Release 3.13.7

e PyExc_BytesWarning

e PyExc_ChildProcessError

e PyExc_ConnectionAbortedError
e PyExc_ConnectionError

e PyExc_ConnectionRefusedError
e PyExc_ConnectionResetError
e PyExc_DeprecationWarning

e PyExc_EOFError

e PyExc_EncodingWarning

e PyExc_EnvironmentError

e PyExc_Exception

e PyExc_FileExistsError

e PyExc_FileNotFoundError

e PyExc_FloatingPointError

e PyExc_FutureWarning

e PyExc_GeneratorExit

e PyExc_IOError

e PyExc_ImportError

e PyExc_ImportWarning

e PyExc_IndentationError

e PyExc_IndexError

e PyExc_InterruptedError

e PyExc_IsADirectoryError

e PyExc_KeyError

e PyExc_KeyboardInterrupt

e PyExc_LookupError

e PyExc_MemoryError

e PyExc_ModuleNotFoundError
e PyExc_NameError

e PyExc_NotADirectoryError

e PyExc_NotImplementedError
e PyExc_OSError

e PyExc_OverflowError

e PyExc_PendingDeprecationWarning
e PyExc_PermissionError

e PyExc_ProcessLookupError

e PyExc_RecursionError

e PyExc_ReferenceError

e PyExc_ResourceWarning

2.4. Contents of Limited API 23

The Python/C API, Release 3.13.7

PyExc_RuntimeError
PyExc_RuntimeWarning
PyExc_StopAsyncIteration
PyExc_StopIteration
PyExc_SyntaxError
PyExc_SyntaxWarning
PyExc_SystemError
PyExc_SystemExit
PyExc_TabError
PyExc_TimeoutError
PyExc_TypeError
PyExc_UnboundLocalError
PyExc_UnicodeDecodeError
PyExc_UnicodeEncodeError

PyExc_UnicodeError

PyExc_UnicodeTranslateError

PyExc_UnicodeWarning
PyExc_UserWarning
PyExc_ValueError
PyExc_Warning
PyExc_WindowsError
PyExc_ZeroDivisionError
PyExceptionClass_Name ()
PyException_GetArgs ()
PyException_GetCause ()
PyException_GetContext ()
PyException_GetTraceback ()
PyException_SetArgs ()
PyException_SetCause ()
PyException_SetContext ()
PyException_SetTraceback ()
PyFile FromFd()

PyFile GetLine ()
PyFile_WriteObject ()
PyFile WriteString/()
PyFilter_Type
PyFloat_AsDouble ()
PyFloat_FromDouble ()

PyFloat_FromString()

24

Capitolo 2. C API Stability

The Python/C API, Release 3.13.7

e PyFloat_GetInfo/()

e PyFloat_GetMax ()

e PyFloat_GetMin ()

e PyFloat_Type

e PyFrameObject

e PyFrame_GetCode ()

e PyFrame_GetLineNumber ()

e PyFrozenSet_New ()

e PyFrozenSet_Type

e PyGC_Collect ()

e PyGC_Disable()

e PyGC_Enable ()

e PyGC_IsEnabled()

e PyGILState_Ensure ()

e PyGILState GetThisThreadState ()
e PyGILState_Release()

e PyGILState_ STATE

e PyGetSetDef

e PyGetSetDescr_Type

e PyImport_AddModule ()

e PyImport_AddModuleObject ()

e PyImport_AddModuleRef ()

e PyImport_AppendInittab ()

e PyImport_ExecCodeModule ()

e PyImport_ExecCodeModuleEx ()

e PyImport_ExecCodeModuleObject ()
e PyImport_ExecCodeModuleWithPathnames ()
e PyImport_GetImporter ()

e PyImport_GetMagicNumber ()

e PyImport_GetMagicTag()

e PyImport_GetModule ()

e PyImport_GetModuleDict ()

e PyImport_Import ()

e PyImport_ImportFrozenModule ()

e PyImport_ImportFrozenModuleObject ()
e PyImport_ImportModule ()

e PyImport_ImportModuleLevel ()

e PyImport_ImportModuleLevelObject ()

e PyImport_ImportModuleNoBlock ()

2.4. Contents of Limited API 25

The Python/C API, Release 3.13.7

PyImport_ReloadModule ()
PyIndex_Check ()
PyInterpreterState
PyInterpreterState_Clear ()
PyInterpreterState_Delete()

PyInterpreterState_Get ()

PyInterpreterState_GetDict ()

PyInterpreterState_GetID()
PyInterpreterState_New()
PyIter_Check()
PyIter_Next ()
PyIter_Send()
PyListIter_Type
PyListRevIter_Type
PyList_Append ()
PyList_AsTuple ()
PyList_GetItem()
PyList_GetItemRef ()
PyList_GetSlice()
PyList_Insert ()
PyList_New ()
PyList_Reverse ()
PyList_SetItem()
PyList_SetSlice()
PyList_Size()
PyList_Sort ()
PyList_Type
PyLongObject
PyLongRangelIter_Type
PyLong_AsDouble ()
PyLong_AsInt ()
PyLong_AsLong ()
PyLong_AsLongAndOverflow ()

PyLong_AsLongLong ()

PyLong_AsLongLongAndOverflow ()

PyLong_AsSize_t ()
PyLong_AsSsize_ t ()
PyLong_AsUnsignedLong ()

PyLong_AsUnsignedLongLong ()

26

Capitolo 2. C API Stability

The Python/C API, Release 3.13.7

e PyLong_ AsUnsignedLongLongMask ()
e PyLong_AsUnsignedLongMask ()

e PyLong AsVoidPtr()

e PyLong_ FromDouble ()

e PyLong FromLong ()

e PyLong_ FromLongLong ()

e PyLong_FromSize_t ()

e PyLong _FromSsize_t ()

e PyLong_FromString()

e PyLong_ FromUnsignedLong ()

e PyLong_FromUnsignedLongLong ()
e PyLong_ FromVoidPtr ()

e PyLong_GetInfo()

e PyLong Type

e PyMap_Type

e PyMapping_Check ()

e PyMapping_GetItemString()

e PyMapping_GetOptionalItem()

e PyMapping_GetOptionalltemString()
e PyMapping_HasKey ()

e PyMapping_HasKeyString/()

e PyMapping_ HasKeyStringWithError ()
e PyMapping_HasKeyWithError ()

e PyMapping_Items ()

e PyMapping_Keys ()

e PyMapping_Length ()

e PyMapping_SetItemString()

e PyMapping_Size ()

e PyMapping_Values ()

e PyMem Calloc ()

e PyMem Free()

e PyMem Malloc ()

e PyMem RawCalloc ()

e PyMem RawFree ()

e PyMem RawMalloc ()

e PyMem RawRealloc ()

e PyMem Realloc ()

e PyMemberDef

e PyMemberDescr_Type

2.4. Contents of Limited API 27

The Python/C API, Release 3.13.7

e PyMember_GetOne ()

e PyMember_SetOne ()

e PyMemoryView_FromBuffer ()
e PyMemoryView_FromMemory ()
e PyMemoryView_FromObject ()
e PyMemoryView_GetContiguous ()
e PyMemoryView_Type

e PyMethodDef

e PyMethodDescr_Type

e PyModuleDef

e PyModuleDef_ Base

e PyModuleDef_Init ()

e PyModuleDef_ Type

e PyModule_ Add()

e PyModule_AddFunctions ()

e PyModule_ AddIntConstant ()
e PyModule_ AddObject ()

e PyModule_AddObjectRef ()

e PyModule_ AddStringConstant ()
e PyModule_ AddType ()

e PyModule_ Createl()

e PyModule_ ExecDef ()

e PyModule_FromDefAndSpecZ2 ()
e PyModule_GetDef ()

e PyModule_GetDict ()

e PyModule_GetFilename ()

e PyModule_GetFilenameObject ()
e PyModule_GetName ()

e PyModule_GetNameObject ()

e PyModule GetState()

e PyModule_New ()

e PyModule_NewObject ()

e PyModule_SetDocString()

e PyModule_ Type

e PyNumber_ Absolute ()

e PyNumber_Add ()

e PyNumber_And()

e PyNumber_ AsSsize_t ()

e PyNumber_Check ()

28 Capitolo 2. C API Stability

The Python/C API, Release 3.13.7

e PyNumber_Divmod ()

e PyNumber_ Float ()

e PyNumber_FloorDivide ()

e PyNumber_InPlaceAdd()

e PyNumber_InPlaceAnd()

e PyNumber_InPlaceFloorDivide ()
e PyNumber_InPlaceLshift ()

e PyNumber_InPlaceMatrixMultiply ()
e PyNumber_InPlaceMultiply ()
e PyNumber_InPlaceOr ()

e PyNumber_InPlacePower ()

e PyNumber_InPlaceRemainder ()
e PyNumber_InPlaceRshift ()

e PyNumber_InPlaceSubtract ()
e PyNumber_InPlaceTrueDivide ()
e PyNumber_InPlaceXor ()

e PyNumber_Index ()

e PyNumber_Invert ()

e PyNumber_Long ()

e PyNumber_ Lshift ()

e PyNumber_MatrixMultiply ()

e PyNumber_ Multiply ()

e PyNumber_Negative ()

e PyNumber_ Or ()

e PyNumber_Positive ()

e PyNumber_Power ()

e PyNumber_Remainder ()

e PyNumber_ Rshift ()

e PyNumber_Subtract ()

e PyNumber_ToBase ()

e PyNumber_TrueDivide ()

e PyNumber_Xor ()

e PyOS_AfterFork ()

e PyOS_AfterFork_Child()

e PyOS_AfterFork_Parent ()

e PyOS_BeforeFork ()

e PyOS_CheckStack ()

e PyOS_FSPath ()

e PyOS_InputHook

2.4. Contents of Limited API 29

The Python/C API, Release 3.13.7

PyOS_InterruptOccurred ()
PyOS_double_to_string/()
PyOS_getsig()
PyOS_mystricmp ()
PyOS_mystrnicmp ()
PyOS_setsig()
PyOS_sighandler_t
PyOS_snprintf ()
PyOS_string_to_double ()
PyOS_strtol ()
PyOS_strtoul ()
PyOS_vsnprintf ()

PyObject
PyObject.ob_refcnt
PyObject.ob_type
PyObject_ASCII()
PyObject_AsFileDescriptor()
PyObject_Bytes ()
PyObject_Call ()
PyObject_CallFunction ()
PyObject_CallFunctionObjArgs ()
PyObject_CallMethod ()
PyObject_CallMethodObjArgs ()
PyObject_CallNoArgs ()
PyObject_CallObject ()
PyObject_Calloc ()
PyObject_CheckBuffer()
PyObject_ClearWeakRefs ()
PyObject_CopyData ()
PyObject_DelAttr ()
PyObject_DelAttrString ()
PyObject_DelItem()
PyObject_DelltemString ()
PyObject_Dir ()
PyObject_Format ()
PyObject_Free ()
PyObject_GC_Del ()
PyObject_GC_IsFinalized()

PyObject_GC_IsTracked()

30

Capitolo 2. C API Stability

The Python/C API, Release 3.13.7

e PyObject_GC_Track ()

e PyObject_GC_UnTrack ()

e PyObject_GenericGetAttr ()

e PyObject_GenericGetDict ()

e PyObject_GenericSetAttr ()

e PyObject_GenericSetDict ()

e PyObject_GetAIter ()

e PyObject_GetAttr()

e PyObject_GetAttrString/()

e PyObject_GetBuffer ()

e PyObject_GetItem()

e PyObject_GetIter()

e PyObject_GetOptionalAttr ()
e PyObject_GetOptionalAttrString ()
e PyObject_GetTypeData ()

e PyObject_HasAttr ()

e PyObject_HasAttrString/()

e PyObject_HasAttrStringWithError ()
e PyObject_HasAttrWithError ()
e PyObject_Hash ()

e PyObject_HashNotImplemented()
e PyObject_Init()

e PyObject_InitVar()

e PyObject_IsInstance()

e PyObject_IsSubclass ()

e PyObject_IsTrue ()

e PyObject_Length ()

e PyObject_Malloc ()

e PyObject_Not ()

e PyObject_Realloc()

e PyObject_Repr ()

e PyObject_RichCompare ()

e PyObject_RichCompareBool ()
e PyObject_SelfIter()

e PyObject_SetAttr()

e PyObject_SetAttrString()

e PyObject_SetItem()

e PyObject_Size()

e PyObject_Str()

2.4. Contents of Limited API 31

The Python/C API, Release 3.13.7

PyObject_Type ()

PyObject_Vectorcall ()

PyObject_VectorcallMethod/()

PyProperty_Type
PyRangelIter_Type
PyRange_Type
PyReversed_Type
PySeqIter_New ()
PySeqlter_Type
PySequence_Check ()
PySequence_Concat ()
PySequence_Contains ()
PySequence_Count ()
PySequence_DelItem()
PySequence_DelSlice ()
PySequence_Fast ()
PySequence_GetItem()
PySequence_GetSlice()

PySequence_In()

PySequence_InPlaceConcat ()

PySequence_InPlaceRepeat ()

PySequence_Index ()
PySequence_Length ()
PySequence_List ()
PySequence_Repeat ()
PySequence_SetItem()
PySequence_SetSlice ()
PySequence_Size ()
PySequence_Tuple ()
PySetIter_Type
PySet_Add ()
PySet_Clear ()
PySet_Contains ()
PySet_Discard/()
PySet_New ()
PySet_Pop ()
PySet_Size ()
PySet_Type

PySlice_AdjustIndices ()

32

Capitolo 2. C API Stability

The Python/C API, Release 3.13.7

e PySlice_GetIndices ()

e PySlice_GetIndicesEx ()

e PySlice New()

e PySlice_Type

e PySlice_Unpack ()

e PyState_AddModule ()

e PyState_FindModule ()

e PyState_RemoveModule ()

e PyStructSequence_Desc

e PyStructSequence_Field

e PyStructSequence_GetItem()
e PyStructSequence_New ()

e PyStructSequence_NewType ()
e PyStructSequence_SetItem()
e PyStructSequence_UnnamedField
e PySuper_Type

e PySys_Audit ()

e PySys_AuditTuple ()

e PySys_FormatStderr()

e PySys_FormatStdout ()

e PySys_GetObject ()

e PySys_GetXOptions ()

e PySys_ResetWarnOptions ()

e PySys_SetArgv ()

e PySys_SetArgvEx ()

e PySys_SetObject ()

e PySys_WriteStderr ()

e PySys_WriteStdout ()

e PyThreadState

e PyThreadState_Clear()

e PyThreadState_Delete ()

e PyThreadState_Get ()

e PyThreadState_GetDict ()

e PyThreadState_GetFrame ()

e PyThreadState_GetID()

e PyThreadState_GetInterpreter()
e PyThreadState_New ()

e PyThreadState_SetAsyncExc ()

e PyThreadState_Swap ()

2.4. Contents of Limited API 33

The Python/C API, Release 3.13.7

PyThread_GetInfo()
PyThread ReInitTLS ()
PyThread_acquire_lock ()
PyThread_acquire_lock_timed()
PyThread_allocate_lock ()
PyThread_create_key ()
PyThread_delete_key ()
PyThread _delete_key_value()
PyThread_exit_thread()
PyThread_free_lock ()
PyThread_get_key_value ()
PyThread_get_stacksize ()
PyThread_get_thread_ident ()
PyThread_get_thread_native_id()
PyThread_init_thread()
PyThread_release_lock ()
PyThread_set_key_value/()
PyThread_set_stacksize ()
PyThread_start_new_thread()
PyThread_tss_alloc()
PyThread_tss_create ()
PyThread_tss_delete ()
PyThread_tss_free()
PyThread_tss_get ()
PyThread_ tss_1is_created()
PyThread_tss_set ()
PyTraceBack_Here ()
PyTraceBack_Print ()
PyTraceBack_Type
PyTuplelter_Type
PyTuple_GetItem()
PyTuple_GetSlice ()
PyTuple_New ()
PyTuple_Pack ()
PyTuple_SetItem()
PyTuple_Size ()

PyTuple_Type

PyTypeObject

PyType_ClearCache ()

34

Capitolo 2. C API Stability

The Python/C API, Release 3.13.7

e PyType FromMetaclass ()

e PyType_FromModuleAndSpec ()

e PyType FromSpec ()

e PyType_FromSpecWithBases ()

e PyType GenericAlloc()

e PyType_ _GenericNew ()

e PyType GetFlags ()

e PyType_GetFullyQualifiedName ()

e PyType_GetModule ()

e PyType_ GetModuleByDef ()

e PyType_ GetModuleName ()

e PyType_GetModuleState ()

e PyType_GetName ()

e PyType GetQualName ()

e PyType GetSlot ()

e PyType_ GetTypeDataSize ()

e PyType_IsSubtype ()

e PyType_Modified/()

e PyType_Ready ()

e PyType_Slot

e PyType_Spec

e PyType Type

e PyUnicodeDecodeError_Create ()

e PyUnicodeDecodeError_GetEncoding()
e PyUnicodeDecodeError_GetEnd()

e PyUnicodeDecodeError_GetObject ()
e PyUnicodeDecodeError_GetReason ()
e PyUnicodeDecodeError_GetStart ()
e PyUnicodeDecodeError_SetEnd()

e PyUnicodeDecodeError_SetReason ()
e PyUnicodeDecodeError_SetStart ()
e PyUnicodeEncodeError_GetEncoding()
e PyUnicodeEncodeError_GetEnd()

e PyUnicodeEncodeError_GetObject ()
e PyUnicodeEncodeError_GetReason ()
e PyUnicodeEncodeError_GetStart ()
e PyUnicodeEncodeError_SetEnd/()

e PyUnicodeEncodeError_SetReason ()

e PyUnicodeEncodeError_SetStart ()

2.4. Contents of Limited API 35

The Python/C API, Release 3.13.7

PyUnicodelIter_Type
PyUnicodeTranslateError_GetEnd ()
PyUnicodeTranslateError_GetObject ()
PyUnicodeTranslateError_GetReason ()
PyUnicodeTranslateError_GetStart ()
PyUnicodeTranslateError_SetEnd()
PyUnicodeTranslateError_SetReason ()
PyUnicodeTranslateError_SetStart ()
PyUnicode_Append /()
PyUnicode_AppendAndDel ()
PyUnicode_AsASCIIString()
PyUnicode_AsCharmapString ()
PyUnicode_AsDecodedObject ()
PyUnicode_AsDecodedUnicode ()
PyUnicode_AsEncodedObject ()
PyUnicode_AsEncodedString ()
PyUnicode_AsEncodedUnicode ()
PyUnicode_AsLatinlString()
PyUnicode_AsMBCSString ()
PyUnicode_AsRawUnicodeEscapeString ()
PyUnicode_AsUCS4 ()
PyUnicode_AsUCS4Copy ()
PyUnicode_AsUTF16String()
PyUnicode_AsUTF32String()
PyUnicode_AsUTF8AndSize ()
PyUnicode_ AsUTF8String ()
PyUnicode_AsUnicodeEscapeString()
PyUnicode_AsWideChar ()
PyUnicode_AsWideCharString()
PyUnicode_BuildEncodingMap ()
PyUnicode_Compare ()
PyUnicode_CompareWithASCIIString ()
PyUnicode_Concat ()
PyUnicode_Contains ()
PyUnicode_Count ()
PyUnicode_Decode ()
PyUnicode_DecodeASCII ()
PyUnicode_DecodeCharmap ()

PyUnicode_DecodeCodePageStateful ()

36

Capitolo 2. C API Stability

The Python/C API, Release 3.13.7

e PyUnicode_DecodeFSDefault ()

e PyUnicode_DecodeFSDefaultAndSize ()
e PyUnicode_DecodeLatinl ()

e PyUnicode_DecodeLocale ()

e PyUnicode_DecodeLocaleAndSize ()
e PyUnicode_DecodeMBCS ()

e PyUnicode_DecodeMBCSStateful ()
e PyUnicode_DecodeRawUnicodeEscape ()
e PyUnicode_DecodeUTF16 ()

e PyUnicode_DecodeUTF16Stateful ()
e PyUnicode_DecodeUTF32 ()

e PyUnicode_DecodeUTF32Stateful ()
e PyUnicode_DecodeUTF7()

e PyUnicode_DecodeUTF7Stateful ()
e PyUnicode_DecodeUTFS8 ()

e PyUnicode_DecodeUTF8Stateful ()
e PyUnicode_DecodeUnicodeEscape ()
e PyUnicode_EncodeCodePage ()

e PyUnicode_EncodeFSDefault ()

e PyUnicode_EncodeLocale ()

e PyUnicode_EqualToUTF8 ()

e PyUnicode_EqualToUTF8AndSize ()
e PyUnicode_FSConverter ()

e PyUnicode_FSDecoder ()

e PyUnicode_Find/()

e PyUnicode_FindChar ()

e PyUnicode_Format ()

e PyUnicode_FromEncodedObject ()

e PyUnicode_FromFormat ()

e PyUnicode_FromFormatV ()

e PyUnicode_FromObject ()

e PyUnicode_FromOrdinal ()

e PyUnicode_FromString()

e PyUnicode_ FromStringAndSize ()

e PyUnicode_FromWideChar ()

e PyUnicode_GetDefaultEncoding ()
e PyUnicode_GetLength ()

e PyUnicode_InternFromString ()

e PyUnicode_InternInPlace()

2.4. Contents of Limited API 37

The Python/C API, Release 3.13.7

PyUnicode_IsIdentifier()
PyUnicode_Jdoin ()
PyUnicode_Partition ()
PyUnicode_RPartition/()
PyUnicode_RSplit ()
PyUnicode_ReadChar ()
PyUnicode_Replace ()
PyUnicode_Resize ()
PyUnicode_RichCompare ()
PyUnicode_Split ()
PyUnicode_Splitlines()
PyUnicode_Substring()
PyUnicode_Tailmatch ()
PyUnicode_Translate ()
PyUnicode_Type
PyUnicode_WriteChar ()
PyVarObject
PyVarObject.ob_base
PyVarObject.ob_size
PyVectorcall_ _Call ()
PyVectorcall NARGS ()
PyWeakReference
PyWeakref_GetObject ()
PyWeakref_GetRef ()
PyWeakref_ NewProxy ()
PyWeakref_ NewRef ()
PyWrapperDescr_Type
PyWrapper_New ()
PyZip_Type
Py_AddPendingCall ()

Py AtExit ()
Py_BEGIN_ALLOW_THREADS
Py _BLOCK_THREADS
Py_BuildValue ()
Py_BytesMain ()

Py _CompileString()
Py_DecRef ()
Py_DecodeLocale ()

Py END_ALLOW_THREADS

38

Capitolo 2. C API Stability

The Python/C API, Release 3.13.7

e Py FEncodeLocale ()

e Py _EndInterpreter()

e Py EnterRecursiveCall ()
e Py Exit ()

e Py FatalError()

e Py FileSystemDefaultEncodeErrors
e Py FileSystemDefaultEncoding
e Py Finalize()

e Py FinalizeEx/()

e Py GenericAlias ()

e Py GenericAliasType

e Py GetBuildInfo()

e Py GetCompiler ()

e Py GetConstant ()

e Py GetConstantBorrowed /()
e Py GetCopyright ()

e Py GetExecPrefix()

e Py GetPath ()

e Py GetPlatform()

e Py GetPrefix()

e Py GetProgramFullPath ()
e Py GetProgramName ()

e Py GetPythonHome ()

e Py GetRecursionLimit ()

e Py GetVersion()

e Py _HasFileSystemDefaultEncoding
e Py _IncRef ()

e Py Initialize()

e Py InitializeEx()

e Py _Is()

e Py IsFalse()

e Py IsFinalizing/()

e Py IsInitialized()

e Py IsNone ()

e Py IsTrue ()

e Py LeaveRecursiveCall()
e Py Main()

e Py MakePendingCalls ()

e Py NewInterpreter()

2.4. Contents of Limited API 39

The Python/C API, Release 3.13.7

Py_NewRef ()
Py_ReprEnter ()
Py_ReprLeave ()
Py_SetProgramName ()
Py_SetPythonHome ()
Py_SetRecursionLimit ()
Py UCS4

Py _UNBLOCK_THREADS
Py_UTF8Mode

Py _VaBuildValue ()
Py_Version
Py_XNewRef ()
Py_buffer
Py_intptr_t

Py _ssize_t
Py_uintptr_t
allocfunc
binaryfunc
descrgetfunc
descrsetfunc
destructor
getattrfunc
getattrofunc
getbufferproc
getiterfunc
getter

hashfunc

initproc

inquiry
iternextfunc
lenfunc

newfunc
objobjargproc
objobjproc
releasebufferproc
reprfunc
richcmpfunc
setattrfunc

setattrofunc

40

Capitolo 2. C API Stability

The Python/C API, Release 3.13.7

e setter

e ssizeargfunc

e ssizeobjargproc

e ssizessizeargfunc

e ssizessizeobjargproc
e symtable

e ternaryfunc

e traverseproc

e unaryfunc

e vectorcallfunc

e visitproc

2.4. Contents of Limited API 41

The Python/C API, Release 3.13.7

42 Capitolo 2. C API Stability

CAPITOLO 3

The Very High Level Layer

The functions in this chapter will let you execute Python source code given in a file or a buffer, but they will not let
you interact in a more detailed way with the interpreter.

Several of these functions accept a start symbol from the grammar as a parameter. The available start symbols are
Py_eval_input, Py_file_input, and Py_single_input. These are described following the functions which
accept them as parameters.

Note also that several of these functions take FILE* parameters. One particular issue which needs to be handled
carefully is that the FILE structure for different C libraries can be different and incompatible. Under Windows (at
least), it is possible for dynamically linked extensions to actually use different libraries, so care should be taken that
FILE* parameters are only passed to these functions if it is certain that they were created by the same library that
the Python runtime is using.
int PyRun_AnyFile (FILE *fp, const char *filename)
This is a simplified interface to PyRun_AnyFileExFlags () below, leaving closeit set to 0 and flags set to
NULL.
int PyRun_AnyFileFlags (FILE *fp, const char *filename, PyCompilerFlags *flags)

This is a simplified interface to PyRun_AnyFileExFlags () below, leaving the closeit argument set to 0.

int PyRun_AnyFileEx (FILE *fp, const char *filename, int closeit)
This is a simplified interface to PyRun_AnyFileExFlags () below, leaving the flags argument set to NULL.

int PyRun_AnyFileExFlags (FILE *fp, const char *filename, int closeit, PyCompilerFlags *flags)
If fp refers to a file associated with an interactive device (console or terminal input or Unix pseudo-terminal),
return the value of PyRun_InteractiveLoop (), otherwise return the result of PyRun_SimpleFile ().
filename is decoded from the filesystem encoding (sys.getfilesystemencoding()). If filename
1S NULL, this function uses "?2?2" as the filename. If closeit is true, the file is closed before
PyRun_SimpleFileExFlags () returns.

int PyRun_SimpleString (const char *command)
This is a simplified interface to PyRun_SimpleStringFlags () below, leaving the PyCompilerFlags*
argument set to NULL.

int PyRun_SimpleStringFlags (const char *command, PyCompilerFlags *flags)

Executes the Python source code from command in the __main__ module according to the flags argument. If
__main__ does not already exist, it is created. Returns 0 on success or -1 if an exception was raised. If there
was an error, there is no way to get the exception information. For the meaning of flags, see below.

43

The Python/C API, Release 3.13.7

Note that if an otherwise unhandled SystemExit is raised, this function will not return -1, but exit the
process, as long as PyConfig. inspect is zero.

int PyRun_SimpleFile (FILE *fp, const char *filename)
This is a simplified interface to PyRun_SimpleFileExFlags () below, leaving closeit set to 0 and flags set
to NULL.

int PyRun_SimpleFileEx (FILE *fp, const char *filename, int closeit)
This is a simplified interface to PyRun_SimpleFileExFlags () below, leaving flags set to NULL.

int PyRun_SimpleFileExFlags (FILE *fp, const char *filename, int closeit, PyCompilerFlags *flags)

Similar to PyRun_SimpleStringFlags (), but the Python source code is read from fp instead of an in-
memory string. filename should be the name of the file, it is decoded from filesystem encoding and error
handler. If closeit is true, the file is closed before PyRun_SimpleFileExFlags () returns.

© Nota

On Windows, fp should be opened as binary mode (e.g. fopen (filename, "rb")). Otherwise, Python
may not handle script file with LF line ending correctly.

int PyRun_InteractiveOne (FILE *fp, const char *filename)

This is a simplified interface to PyRun_InteractiveOneFlags () below, leaving flags set to NULL.

int PyRun_InteractiveOneFlags (FILE *fp, const char *filename, PyCompilerFlags *flags)

Read and execute a single statement from a file associated with an interactive device according to the flags
argument. The user will be prompted using sys.psl and sys.ps2. filename is decoded from the filesystem
encoding and error handler.

Returns 0 when the input was executed successfully, -1 if there was an exception, or an error code from the
errcode.h include file distributed as part of Python if there was a parse error. (Note that errcode . h is not
included by Python . h, so must be included specifically if needed.)

int PyRun_InteractiveLoop (FILE *fp, const char *filename)
This is a simplified interface to PyRun_InteractiveLoopFlags () below, leaving flags set to NULL.

int PyRun_InteractiveLoopFlags (FILE *fp, const char *filename, PyCompilerFlags *flags)

Read and execute statements from a file associated with an interactive device until EOF is reached. The user
will be prompted using sys.ps1 and sys.ps2. filename is decoded from the filesystem encoding and error
handler. Returns 0 at EOF or a negative number upon failure.

int (*PyOS_InputHook)(void)
Parte del ABI Stabile. Can be set to point to a function with the prototype int func (void) . The function will
be called when Python’s interpreter prompt is about to become idle and wait for user input from the terminal.
The return value is ignored. Overriding this hook can be used to integrate the interpreter’s prompt with other
event loops, as done in the Modules/_tkinter. c in the Python source code.

Cambiato nella versione 3.12: This function is only called from the main interpreter.

char *(*PyOS_ReadlineFunctionPointer)(FILE*, FILE*, const char*)

Can be set to point to a function with the prototype char *func (FILE *stdin, FILE *stdout, char
*prompt), overriding the default function used to read a single line of input at the interpreter’s prompt. The
function is expected to output the string prompt if it’s not NULL, and then read a line of input from the provided
standard input file, returning the resulting string. For example, The readl ine module sets this hook to provide
line-editing and tab-completion features.

The result must be a string allocated by PyMem RawMalloc () or PyMem RawRealloc (), or NULL if an
error occurred.

Cambiato nella versione 3.4: The result must be allocated by PyMem RawMalloc() or
PyMem_RawRealloc (), instead of being allocated by PyMem Malloc () or PyMem_Realloc ().

Cambiato nella versione 3.12: This function is only called from the main interpreter.

44 Capitolo 3. The Very High Level Layer

The Python/C API, Release 3.13.7

PyObject *PyRun_String (const char *str, int start, PyObject *globals, PyObject *1ocals)
Valore di ritorno: Nuovo riferimento. This is a simplified interface to PyRun_StringFlags () below, leaving
flags set to NULL.

PyObject *PyRun_StringFlags (const char *str, int start, PyObject *globals, PyObject *locals, PyCompilerFlags
*flags)
Valore di ritorno: Nuovo riferimento. Execute Python source code from str in the context specified by the objects
globals and locals with the compiler flags specified by flags. globals must be a dictionary; locals can be any
object that implements the mapping protocol. The parameter start specifies the start token that should be used
to parse the source code.

Returns the result of executing the code as a Python object, or NULL if an exception was raised.

PyObject *PyRun_File (FILE *fp, const char *filename, int start, PyObject *globals, PyObject *locals)

Valore di ritorno: Nuovo riferimento. This is a simplified interface to PyRun_FileExFlags () below, leaving
closeit set to 0 and flags set to NULL.

PyObject *pyRun_FileEx (FILE *fp, const char *filename, int start, PyObject *globals, PyObject *1ocals, int
closeit)

Valore di ritorno: Nuovo riferimento. This is a simplified interface to PyrRun_FileExFlags () below, leaving
flags set to NULL.

PyObject *PyRun_FileFlags (FILE *fp, const char *filename, int start, PyObject *globals, PyObject *locals,
PyCompilerFlags *flags)

Valore di ritorno: Nuovo riferimento. This is a simplified interface to PyRun_FileExFlags () below, leaving
closeit set to 0.

PyObject *PyRun_FileExFlags (FILE *fp, const char *filename, int start, PyObject *globals, PyObject *locals,
int closeit, PyCompilerFlags *flags)
Valore di ritorno: Nuovo riferimento. Similar to PyRun_StringFlags (), but the Python source code is read

from fp instead of an in-memory string. filename should be the name of the file, it is decoded from the filesystem
encoding and error handler. If closeit is true, the file is closed before PyRun_FileExFlags () returns.

PyObject *Py_CompileString (const char *str, const char *filename, int start)

Valore di ritorno: Nuovo riferimento. Parte del ABI Stabile. This is a simplified interface to
Py_CompileStringFlags () below, leaving flags set to NULL.

PyObject *Py_CompileStringFlags (const char *str, const char *filename, int start, PyCompilerFlags *flags)

Valore di ritorno: Nuovo riferimento. This is a simplified interface to Py_CompileStringExFlags () below,
with optimize set to —1.

PyObject *Py_CompileStringObject (const char *str, PyObject *filename, int start, PyCompilerFlags *flags, int
optimize)
Valore di ritorno: Nuovo riferimento. Parse and compile the Python source code in str, returning the resulting
code object. The start token is given by start; this can be used to constrain the code which can be compiled and
should be Py _eval input, Py file input,or Py _single_input. The filename specified by filename
is used to construct the code object and may appear in tracebacks or SyntaxError exception messages. This
returns NULL if the code cannot be parsed or compiled.

The integer optimize specifies the optimization level of the compiler; a value of -1 selects the optimization
level of the interpreter as given by —0 options. Explicit levels are 0 (no optimization; __debug___is true), 1
(asserts are removed, __debug___is false) or 2 (docstrings are removed too).

Added in version 3.4.

PyObject *Py_CompileStringExFlags (const char *str, const char *filename, int start, PyCompilerFlags *flags,
int optimize)

Valore di ritorno: Nuovo riferimento. Like py_CompileStringObject (), but filename is a byte string
decoded from the filesystem encoding and error handler.

Added in version 3.2.

45

The Python/C API, Release 3.13.7

PyObject *PyEval_EvalCode (PyObject *co, PyObject *globals, PyObject *locals)
Valore di ritorno: Nuovo riferimento. Parte del ABI Stabile. This is a simplified interface to

PyEval_ EvalCodeEx (), with just the code object, and global and local variables. The other arguments
are set to NULL.

PyObject *pyEval_EvalCodeEx (PyObject *co, PyObject *globals, PyObject *locals, PyObject *const *args, int
argcount, PyObject *const *kws, int kwcount, PyObject *const *defs, int
defcount, PyObject *kwdefs, PyObject *closure)

Valore di ritorno: Nuovo riferimento. Parte del ABI Stabile. Evaluate a precompiled code object, given a par-
ticular environment for its evaluation. This environment consists of a dictionary of global variables, a map-
ping object of local variables, arrays of arguments, keywords and defaults, a dictionary of default values for
keyword-only arguments and a closure tuple of cells.

PyObject *PyEval_EvalFrame (PyFrameObject *f)
Valore di ritorno: Nuovo riferimento. Parte del ABI Stabile. Evaluate an execution frame. This is a simplified
interface to PyEval_EvalFrameEx (), for backward compatibility.

PyObject *PyEval_EvalFrameEx (PyFrameObject *1, int throwflag)

Valore di ritorno: Nuovo riferimento. Parte del ABI Stabile. This is the main, unvarnished function of Python
interpretation. The code object associated with the execution frame f is executed, interpreting bytecode and
executing calls as needed. The additional throwflag parameter can mostly be ignored - if true, then it causes an
exception to immediately be thrown; this is used for the throw () methods of generator objects.

Cambiato nella versione 3.4: This function now includes a debug assertion to help ensure that it does not silently
discard an active exception.
int PyEval_MergeCompilerF1lags (PyCompilerFlags *cf)
This function changes the flags of the current evaluation frame, and returns true on success, false on failure.
int Py_eval_input
The start symbol from the Python grammar for isolated expressions; for use with pPy_CompileString ().
int Py_file_input
The start symbol from the Python grammar for sequences of statements as read from a file or other source; for
use with Py_CompileString (). This is the symbol to use when compiling arbitrarily long Python source
code.
int Py_single_input
The start symbol from the Python grammar for a single statement; for use with Py_CompileString (). This
is the symbol used for the interactive interpreter loop.
struct PyCompilerFlags

This is the structure used to hold compiler flags. In cases where code is only being compiled, it is passed as
int flags, and in cases where code is being executed, it is passed as PyCompilerFlags *flags. In this
case, from __ future__ import can modify flags.

Whenever PyCompilerFlags *flags is NULL, cf_flags is treated as equal to 0, and any modification
dueto from __ future__ import is discarded.

int cf£_flags
Compiler flags.

int cf_feature_version

¢f _feature_version is the minor Python version. It should be initialized to PY_MINOR_VERSION.
The field is ignored by default, it is used if and only if PyCF_ONLY_AST flagis setin cf_flags.
Cambiato nella versione 3.8: Added cf_feature_version field.
The available compiler flags are accessible as macros:

PyCF_ALLOW_TOP_LEVEL_AWAIT
PyCF_ONLY_ AST

46 Capitolo 3. The Very High Level Layer

The Python/C API, Release 3.13.7

PyCF_OPTIMIZED_AST
PyCF_TYPE_COMMENTS
See compiler flags in documentation of the ast Python module, which exports these constants under the

Same names.

The «pyCF» flags above can be combined with «CO_FUTURE» flags such as cO_FUTURE_ANNOTATIONS to
enable features normally selectable using future statements. See Code Object Flags for a complete list.

47

The Python/C API, Release 3.13.7

48 Capitolo 3. The Very High Level Layer

capiToLo 4

Reference Counting

The functions and macros in this section are used for managing reference counts of Python objects.
Py_ssize_t Py_REFCNT (PyObject *0)
Get the reference count of the Python object o.

Note that the returned value may not actually reflect how many references to the object are actually held. For
example, some objects are immortal and have a very high refcount that does not reflect the actual number of
references. Consequently, do not rely on the returned value to be accurate, other than a value of 0 or 1.

Use the py_seET REFCNT () function to set an object reference count.
Cambiato nella versione 3.10: Py_REFCNT () is changed to the inline static function.
Cambiato nella versione 3.11: The parameter type is no longer const PyObject*.

void Py_SET_REFCNT (PyObject *0, Py_ssize_t refcnt)
Set the object o reference counter to refcnt.

On Python build with Free Threading, if refcnt is larger than UINT32_MAX, the object is made immortal.
This function has no effect on immortal objects.

Added in version 3.9.

Cambiato nella versione 3.12: Immortal objects are not modified.

void Py_ INCREF (PyObject *0)

Indicate taking a new strong reference to object o, indicating it is in use and should not be destroyed.
This function has no effect on immortal objects.

This function is usually used to convert a borrowed reference to a strong reference in-place. The Py _NewRef ()
function can be used to create a new strong reference.

When done using the object, release is by calling Py_DECREF ().
The object must not be NULL; if you aren’t sure that it isn't NULL, use Py_XINCREF ().

Do not expect this function to actually modify o in any way. For at least some objects, this function has no
effect.

Cambiato nella versione 3.12: Immortal objects are not modified.

49

https://peps.python.org/pep-0683/

The Python/C API, Release 3.13.7

void Py_XINCREF (PyObject *0)
Similar to Py TNCREF (), but the object o can be NULL, in which case this has no effect.
See also Py_xNewRef ().

PyObject *Py_NewRef (PyObject *0)

Farte del ABI Stabile dalla versione 3.10. Create a new strong reference to an object: call Py_INCREF () on o
and return the object o.

When the strong reference is no longer needed, Py _DECREF () should be called on it to release the reference.
The object o must not be NULL; use Py_XNewRef () if o can be NULL.

For example:

Py_INCREF (obj) ;
self->attr = obj;

can be written as:

[self7>attr = Py_NewRef (obj) ;]

See also Py INCREF ().
Added in version 3.10.
PyObject *Py_XNewRef£ (PyObject *0)
Parte del ABI Stabile dalla versione 3.10. Similar to Py_NewRef (), but the object o can be NULL.
If the object o is NULL, the function just returns NULL.
Added in version 3.10.
void Py_DECREF (PyObject *0)
Release a strong reference to object o, indicating the reference is no longer used.

This function has no effect on immortal objects.

Once the last strong reference is released (i.e. the object’s reference count reaches 0), the object’s type’s
deallocation function (which must not be NULL) is invoked.

This function is usually used to delete a strong reference before exiting its scope.
The object must not be NULL; if you aren’t sure that it isn’t NULL, use Py_XDECREF ().

Do not expect this function to actually modify o in any way. For at least some objects, this function has no
effect.

A\ Avvertimento

The deallocation function can cause arbitrary Python code to be invoked (e.g. when a class instance with a
__del__ () method is deallocated). While exceptions in such code are not propagated, the executed code
has free access to all Python global variables. This means that any object that is reachable from a global
variable should be in a consistent state before Py DECREF () is invoked. For example, code to delete an
object from a list should copy a reference to the deleted object in a temporary variable, update the list data
structure, and then call Py_DECREF () for the temporary variable.

Cambiato nella versione 3.12: Immortal objects are not modified.
void Py_XDECREF (PyObject *0)

Similar to Py_DECREF (), but the object o can be NULL, in which case this has no effect. The same warning
from Py_DECREF () applies here as well.

50 Capitolo 4. Reference Counting

https://peps.python.org/pep-0683/

The Python/C API, Release 3.13.7

void Py_CLEAR (PyObject *0)

Release a strong reference for object o. The object may be NULL, in which case the macro has no effect; otherwise
the effect is the same as for Py _DECREF (), except that the argument is also set to NULL. The warning for
Py_DECREF () does not apply with respect to the object passed because the macro carefully uses a temporary
variable and sets the argument to NULL before releasing the reference.

It is a good idea to use this macro whenever releasing a reference to an object that might be traversed during
garbage collection.

Cambiato nella versione 3.12: The macro argument is now only evaluated once. If the argument has side effects,
these are no longer duplicated.

void Py_ IncRef (PyObject *0)

Parte del ABI Stabile. Indicate taking a new strong reference to object o. A function version of Py_XTNCREF ().
It can be used for runtime dynamic embedding of Python.

void Py_DecRef (PyObject *0)

Parte del ABI Stabile. Release a strong reference to object o. A function version of Py _xDECREF (). It can be
used for runtime dynamic embedding of Python.

Py_SETREF (dst, src)

Macro safely releasing a strong reference to object dst and setting dst to src.

As in case of Py CLEAR (), «the obvious» code can be deadly:

Py_DECREF (dst) ;
dst = src;

The safe way is:

[nySETREF(dst, src); }

That arranges to set dst to src before releasing the reference to the old value of dst, so that any code triggered
as a side-effect of dst getting torn down no longer believes dst points to a valid object.

Added in version 3.6.

Cambiato nella versione 3.12: The macro arguments are now only evaluated once. If an argument has side
effects, these are no longer duplicated.

Py_XSETREF (dst, src)
Variant of Py SETREF macro that uses Py_xDECREF () instead of Py DECREF ().

Added in version 3.6.

Cambiato nella versione 3.12: The macro arguments are now only evaluated once. If an argument has side
effects, these are no longer duplicated.

51

The Python/C API, Release 3.13.7

52 Capitolo 4. Reference Counting

CAPITOLO B

Exception Handling

The functions described in this chapter will let you handle and raise Python exceptions. It is important to understand
some of the basics of Python exception handling. It works somewhat like the POSIX errno variable: there is a global
indicator (per thread) of the last error that occurred. Most C API functions don’t clear this on success, but will set
it to indicate the cause of the error on failure. Most C API functions also return an error indicator, usually NULL if
they are supposed to return a pointer, or —1 if they return an integer (exception: the PyArg_* functions return 1 for
success and 0 for failure).

Concretely, the error indicator consists of three object pointers: the exception’s type, the exception’s value, and the
traceback object. Any of those pointers can be NULL if non-set (although some combinations are forbidden, for
example you can’t have a non-NULL traceback if the exception type is NULL).

When a function must fail because some function it called failed, it generally doesn’t set the error indicator; the
function it called already set it. It is responsible for either handling the error and clearing the exception or returning
after cleaning up any resources it holds (such as object references or memory allocations); it should rot continue
normally if it is not prepared to handle the error. If returning due to an error, it is important to indicate to the caller
that an error has been set. If the error is not handled or carefully propagated, additional calls into the Python/C API
may not behave as intended and may fail in mysterious ways.

O Nota

The error indicator is not the result of sys.exc_info (). The former corresponds to an exception that is not yet
caught (and is therefore still propagating), while the latter returns an exception after it is caught (and has therefore
stopped propagating).

5.1 Printing and clearing

void PyErr_Clear ()

Parte del ABI Stabile. Clear the error indicator. If the error indicator is not set, there is no effect.

void PyErr_PrintEx (int set_sys_last_vars)

Parte del ABI Stabile. Print a standard traceback to sys.stderr and clear the error indicator. Unless the
error is a SystemExit, in that case no traceback is printed and the Python process will exit with the error
code specified by the SystemExit instance.

Call this function only when the error indicator is set. Otherwise it will cause a fatal error!

53

The Python/C API, Release 3.13.7

If set_sys_last_vars is nonzero, the variable sys.last_exc is set to the printed exception. For backwards
compatibility, the deprecated variables sys.last_type, sys.last_value and sys.last_traceback
are also set to the type, value and traceback of this exception, respectively.

Cambiato nella versione 3.12: The setting of sys.last_exc was added.

void PyErr_Print ()
Parte del ABI Stabile. Alias for PyErr_PrintEx (1).
void PyErr_WriteUnraisable (PyObject *obj)
Parte del ABI Stabile. Call sys.unraisablehook () using the current exception and obj argument.
This utility function prints a warning message to sys.stderr when an exception has been set but it is im-

possible for the interpreter to actually raise the exception. It is used, for example, when an exception occurs in
an__del_ () method.

The function is called with a single argument obj that identifies the context in which the unraisable exception
occurred. If possible, the repr of obj will be printed in the warning message. If 0bj is NULL, only the traceback
is printed.

An exception must be set when calling this function.
Cambiato nella versione 3.4: Print a traceback. Print only traceback if obj is NULL.
Cambiato nella versione 3.8: Use sys.unraisablehook ().

void PyErr_FormatUnraisable (const char *format, ...)

Similar to PyErr WriteUnraisable(), but the format and subsequent parameters help format
the warning message; they have the same meaning and values as in PyUnicode FromFormat ().
PyErr_WriteUnraisable (obj) is roughly equivalent to PyErr FormatUnraisable ("Exception
ignored in: %R", obj).If formatis NULL, only the traceback is printed.

Added in version 3.13.

void PyErr_DisplayException (PyObject *exc)
Parte del ABI Stabile dalla versione 3.12. Print the standard traceback display of exc to sys.stderr,
including chained exceptions and notes.

Added in version 3.12.

5.2 Raising exceptions

These functions help you set the current thread’s error indicator. For convenience, some of these functions will always
return a NULL pointer for use in a return statement.

void PyErr_SetString (PyObject *type, const char *message)
Parte del ABI Stabile. This is the most common way to set the error indicator. The first argument specifies
the exception type; it is normally one of the standard exceptions, e.g. PyExc_RuntimeError. You need not
create a new strong reference to it (e.g. with py_7NCREF ()). The second argument is an error message; it is
decoded from 'utf-8'.

void PyErr_SetObject (PyObject *type, PyObject *value)
Farte del ABI Stabile. This function is similar to PyErr_SetString () butlets you specify an arbitrary Python
object for the «value» of the exception.

PyObject *pyErr_Format (PyObject *exception, const char *format, ...)

Valore di ritorno: Sempre NULL. Parte del ABI Stabile. This function sets the error indicator and returns NULL.
exception should be a Python exception class. The format and subsequent parameters help format the error
message; they have the same meaning and values as in PyUnicode_FromFormat (). format is an ASCII-
encoded string.

54 Capitolo 5. Exception Handling

The Python/C API, Release 3.13.7

PyObject *PyErr_FormatV (PyObject *exception, const char *format, va_list vargs)

Valore di ritorno: Sempre NULL. Parte del ABI Stabile dalla versione 3.5. Same as PyErr_Format (), but
taking a va_11ist argument rather than a variable number of arguments.

Added in version 3.5.

void PyErr_SetNone (PyObject *type)
Parte del ABI Stabile. This is a shorthand for PyErr_SetObject (type, Py_None).

int PyErr_BadArgument ()

Parte del ABI Stabile. This is a shorthand for PyErr_SetString (PyExc_TypeError, message), where
message indicates that a built-in operation was invoked with an illegal argument. It is mostly for internal use.

PyObject *PyErr_NoMemory ()
Valore di ritorno: Sempre NULL. Parte del ABI Stabile. This is a shorthand for
PyErr_SetNone (PyExc_MemoryError); it returns NULL so an object allocation function can write
return PyErr_NoMemory (); when it runs out of memory.

PyObject *PyErr_SetFromErrno (PyObject *type)

Valore di ritorno: Sempre NULL. Parte del ABI Stabile. This is a convenience function to raise an exception
when a C library function has returned an error and set the C variable errno. It constructs a tuple object
whose first item is the integer errno value and whose second item is the corresponding error message (gotten
from strerror ()), and then calls PyErr_SetObject (type, object).On Unix, when the errno value
is EINTR, indicating an interrupted system call, this calls PyErr CheckSignals (), and if that set the error
indicator, leaves it set to that. The function always returns NULL, so a wrapper function around a system call
can write return PyErr_SetFromErrno (type); when the system call returns an error.

PyObject *PyErr_SetFromErrnoWithFilenameObject (PyObject *type, PyObject *filenameObject)

Valore di ritorno: Sempre NULL. Parte del ABI Stabile. Similar to PyErr_SetFromErrno (), with the addi-
tional behavior that if filenameObject is not NULL, it is passed to the constructor of type as a third parameter.
In the case of OSError exception, this is used to define the £ilename attribute of the exception instance.

PyObject *PyErr_SetFromErrnoWithFilenameObjects (PyObject *type, PyObject *filenameObject,
PyObject *filenameObject2)

Valore di ritorno: Sempre NULL. Parte del ABI Stabile dalla versione 3.7. Similar to
PyErr SetFromErrnoWithFilenameObject (), but takes a second filename object, for raising
errors when a function that takes two filenames fails.

Added in version 3.4.

PyObject *PyErr_SetFromErrnoWithFilename (PyObject *type, const char *filename)

Valore di ritorno: Sempre NULL. Parte del ABI Stabile. Similar to
PyErr_SetFromErrnoWithFilenameObject (), but the filename is given as a C string. filename is
decoded from the filesystem encoding and error handler.

PyObject *PyErr_SetFromWindowsErr (int ierr)

Valore di ritorno: Sempre NULL. Parte del ABI Stabile on Windows dalla versione 3.7. This is a convenience
function to raise OSError. If called with ierr of 0, the error code returned by a call to GetLastError () is
used instead. It calls the Win32 function FormatMessage () to retrieve the Windows description of error code
given by ierr or Get LastError (), then it constructs a OSError object with the winerror attribute set to the
error code, the st rerror attribute set to the corresponding error message (gotten from FormatMessage ()),
and then calls PyErr_SetObject (PyExc_OSError, object). This function always returns NULL.

Availability: Windows.

PyObject *PyErr_SetExcFromWindowsErr (PyObject *type, int ierr)

Valore di ritorno: Sempre NULL. Parte del ABI Stabile on Windows dalla versione 3.7. Similar to
PyErr SetFromWindowsErr (), with an additional parameter specifying the exception type to be raised.

Availability: Windows.

5.2. Raising exceptions 55

The Python/C API, Release 3.13.7

PyObject *PyErr_SetFromWindowsErrWithFilename (int ierr, const char *filename)

Valore di ritorno: Sempre NULL. Parte del ABI Stabile on Windows dalla versione 3.7. Similar to
PyErr_SetFromWindowsErr (), with the additional behavior that if filename is not NULL, it is decoded from
the filesystem encoding (os . fsdecode ()) and passed to the constructor of OSError as a third parameter to
be used to define the filename attribute of the exception instance.

Availability: Windows.
PyObject *PyErr_SetExcFromWindowsErrWithFilenameObject (PyObject *type, int ierr, PyObject
*filename)

Valore di ritorno: Sempre NULL. Parte del ABI Stabile on Windows dalla versione 3.7. Similar to
PyErr SetExcFromWindowsErr (), with the additional behavior that if filename is not NULL, it is pas-
sed to the constructor of OSError as a third parameter to be used to define the £filename attribute of the
exception instance.

Auvailability: Windows.
PyObject *PyErr_SetExcFromWindowsErrWithFilenameObjects (PyObject *type, int ierr, PyObject
*filename, PyObject *filename?2)
Valore di ritorno: Sempre NULL. Parte del ABI Stabile on Windows dalla versione 3.7. Similar to
PyErr SetExcFromWindowsErriWithFilenameObject (), butaccepts a second filename object.
Availability: Windows.
Added in version 3.4.

PyObject *PyErr_SetExcFromWindowsErrWithFilename (PyObject *type, int ierr, const char *filename)

Valore di ritorno: Sempre NULL. Parte del ABI Stabile on Windows dalla versione 3.7. Similar to
PyErr SetFromWindowsErriithFilename (), with an additional parameter specifying the exception
type to be raised.

Availability: Windows.
PyObject *PyErr_SetImportError (PyObject ¥msg, PyObject *name, PyObject *path)
Valore di ritorno: Sempre NULL. Parte del ABI Stabile dalla versione 3.7. This is a convenience function to

raise ImportError. msg will be set as the exception’s message string. name and path, both of which can be
NULL, will be set as the TmportError’s respective name and path attributes.

Added in version 3.3.
PyObject *PyErr_SetImportErrorSubclass (PyObject *exception, PyObject ¥msg, PyObject *name, PyObject
*
path)

Valore di ritorno: Sempre NULL. Parte del ABI Stabile dalla versione 3.6. Much like
PyErr SetImportError () but this function allows for specifying a subclass of ImportError to
raise.

Added in version 3.6.

void PyErr_SyntaxLocationObject (PyObject *filename, int lineno, int col_offset)

Set file, line, and offset information for the current exception. If the current exception is not a SyntaxError,
then it sets additional attributes, which make the exception printing subsystem think the exception is a

SyntaxError.
Added in version 3.4.

void PyErr_SyntaxLocationEx (const char *filename, int lineno, int col_offset)

Farte del ABI Stabile dalla versione 3.7. Like PyErr SyntaxLocationObject (), but filename is a byte
string decoded from the filesystem encoding and error handler.

Added in version 3.2.

void PyErr_SyntaxLocation (const char *filename, int lineno)
Parte del ABI Stabile. Like PyErr SyntaxLocationEx (), but the col_offset parameter is omitted.

56 Capitolo 5. Exception Handling

The Python/C API, Release 3.13.7

void PyErr_BadInternalCall ()

Parte del ABI Stabile. This is a shorthand for PyErr_SetString (PyExc_SystemError, message), whe-
re message indicates that an internal operation (e.g. a Python/C API function) was invoked with an illegal
argument. It is mostly for internal use.

5.3 Issuing warnings

Use these functions to issue warnings from C code. They mirror similar functions exported by the Python warnings
module. They normally print a warning message to sys.stderr; however, it is also possible that the user has specified
that warnings are to be turned into errors, and in that case they will raise an exception. It is also possible that the
functions raise an exception because of a problem with the warning machinery. The return value is 0 if no exception
is raised, or -1 if an exception is raised. (It is not possible to determine whether a warning message is actually printed,
nor what the reason is for the exception; this is intentional.) If an exception is raised, the caller should do its normal
exception handling (for example, Py_DECREF () owned references and return an error value).

int PyErr_WarnEx (PyObject *category, const char *message, Py_ssize_t stack_level)

Parte del ABI Stabile. Issue a warning message. The category argument is a warning category (see below)
or NULL; the message argument is a UTF-8 encoded string. stack_level is a positive number giving a number
of stack frames; the warning will be issued from the currently executing line of code in that stack frame. A
stack_level of 1 is the function calling PyErr warnEx (), 2 is the function above that, and so forth.

Warning categories must be subclasses of PyExc Warning; PyExc_Warning 1is a subclass of
PyExc_Exception; the default warning category is PyExc_RuntimeWarning. The standard Python
warning categories are available as global variables whose names are enumerated at Warning types.

For information about warning control, see the documentation for the warnings module and the -w option in
the command line documentation. There is no C API for warning control.

int PyErr_WarnExplicitObject (PyObject *category, PyObject *message, PyObject *filename, int lineno,
PyObject *module, PyObject *registry)

Issue a warning message with explicit control over all warning attributes. This is a straightforward wrapper
around the Python function warnings.warn_explicit () ;see there for more information. The module and
registry arguments may be set to NULL to get the default effect described there.

Added in version 3.4.

int PyErr_WarnExplicit (PyObject *category, const char *message, const char *filename, int lineno, const char

*module, PyObject *registry)

Parte del ABI Stabile. Similar to PyErr_WarnExplicitObject () except that message and module are UTF-
8 encoded strings, and filename is decoded from the filesystem encoding and error handler.

int PyErr_WarnFormat (PyObject *category, Py_ssize_t stack_level, const char *format, ...)
Parte del ABI Stabile. Function similar to PyErr_ WarnEx (),butuse PyUnicode FromFormat () to format
the warning message. format is an ASCII-encoded string.

Added in version 3.2.

int PyErr_ResourceWarning (PyObject *source, Py_ssize_t stack_level, const char *format, ...)
Parte del ABI Stabile dalla versione 3.6. Function similar to PyErr warnFormat (), but category is
ResourceWarning and it passes source to warnings.WarningMessage.

Added in version 3.6.

5.4 Querying the error indicator

PyObject *PyErr_Occurred ()
Valore di ritorno: Riferimento preso in prestito. Parte del ABI Stabile. Test whether the error indicator is set.
If set, return the exception fype (the first argument to the last call to one of the PyErr_set* functions or to
pyErr Restore ()). If not set, return NULL. You do not own a reference to the return value, so you do not
need to Py DECREF () it.

5.3. Issuing warnings 57

The Python/C API, Release 3.13.7

The caller must hold the GIL.

© Nota

Do not compare the return value to a specific exception; use PyErr ExceptionMatches () instead,
shown below. (The comparison could easily fail since the exception may be an instance instead of a class,
in the case of a class exception, or it may be a subclass of the expected exception.)

int PyErr_ExceptionMatches (PyObject *exc)

Parte del ABI Stabile. Equivalent to PyErr_GivenExceptionMatches (PyErr_Occurred(), exc).
This should only be called when an exception is actually set; a memory access violation will occur if no
exception has been raised.

int PyErr_GivenExceptionMatches (PyObject *given, PyObject *exc)
Farte del ABI Stabile. Return true if the given exception matches the exception type in exc. If exc is a class
object, this also returns true when given is an instance of a subclass. If exc is a tuple, all exception types in the
tuple (and recursively in subtuples) are searched for a match.

PyObject *PyErr_GetRaisedException (void)
Valore di ritorno: Nuovo riferimento. Parte del ABI Stabile dalla versione 3.12. Return the exception currently
being raised, clearing the error indicator at the same time. Return NULL if the error indicator is not set.

This function is used by code that needs to catch exceptions, or code that needs to save and restore the error
indicator temporarily.

For example:

e B
{
PyObject *exc = PyErr_ GetRaisedException();

/* ... code that might produce other errors ... */

PyErr_SetRaisedException (exc);

@ Vedi anche

PyErr GetHandledException (), to save the exception currently being handled.

Added in version 3.12.

void PyErr_SetRaisedException (PyObject *exc)
Farte del ABI Stabile dalla versione 3.12. Set exc as the exception currently being raised, clearing the existing
exception if one is set.

A\ Avvertimento

This call steals a reference to exc, which must be a valid exception.

Added in version 3.12.
void PyErr_Fetch (PyObject **ptype, PyObject **pvalue, PyObject **ptraceback)
Farte del ABI Stabile. Deprecato dalla versione 3.12: Use PyErr GetRaisedException () instead.

Retrieve the error indicator into three variables whose addresses are passed. If the error indicator is not set,
set all three variables to NULL. If it is set, it will be cleared and you own a reference to each object retrieved.
The value and traceback object may be NULL even when the type object is not.

58 Capitolo 5. Exception Handling

The Python/C API, Release 3.13.7

© Nota

This function is normally only used by legacy code that needs to catch exceptions or save and restore the
error indicator temporarily.

For example:

{
PyObject *type, *value, *traceback;
PyErr_Fetch (&type, &value, &traceback);

/* ... code that might produce other errors ... */

PyErr_Restore (type, value, traceback);

void PyErr_Restore (PyObject *type, PyObject *value, PyObject *traceback)
Parte del ABI Stabile. Deprecato dalla versione 3.12: Use PyErr SetRaisedException () instead.

Set the error indicator from the three objects, type, value, and traceback, clearing the existing exception if one
is set. If the objects are NULL, the error indicator is cleared. Do not pass a NULL type and non-NULL value
or traceback. The exception type should be a class. Do not pass an invalid exception type or value. (Violating
these rules will cause subtle problems later.) This call takes away a reference to each object: you must own
a reference to each object before the call and after the call you no longer own these references. (If you don’t
understand this, don’t use this function. I warned you.)

© Nota

This function is normally only used by legacy code that needs to save and restore the error indicator
temporarily. Use PyErr Fetch () to save the current error indicator.

void PyErr_NormalizeException (PyObject **exc, PyObject **val, PyObject **tb)

Parte del ABI Stabile. Deprecato dalla versione 3.12: Use PyErr GetRaisedException () instead, to avoid
any possible de-normalization.

Under certain circumstances, the values returned by PyErr Fetch () below can be «unnormalized», meaning
that *exc is a class object but *val is not an instance of the same class. This function can be used to instantiate
the class in that case. If the values are already normalized, nothing happens. The delayed normalization is
implemented to improve performance.

© Nota

This function does not implicitly set the _ traceback__ attribute on the exception value. If setting the
traceback appropriately is desired, the following additional snippet is needed:

if (tb != NULL) {
PyException_SetTraceback (val, tb);

PyObject *PyErr_GetHandledException (void)

Parte del ABI Stabile dalla versione 3.11. Retrieve the active exception instance, as would be returned by sys.
exception (). This refers to an exception that was already caught, not to an exception that was freshly raised.
Returns a new reference to the exception or NULL. Does not modify the interpreter’s exception state.

5.4. Querying the error indicator 59

The Python/C API, Release 3.13.7

© Nota

This function is not normally used by code that wants to handle exceptions. Rather, it can be used when
code needs to save and restore the exception state temporarily. Use PyErr SetHandledException ()
to restore or clear the exception state.

Added in version 3.11.

void PyErr_SetHandledException (PyObject *exc)

Parte del ABI Stabile dalla versione 3.11. Set the active exception, as known from sys.exception (). This
refers to an exception that was already caught, not to an exception that was freshly raised. To clear the exception
state, pass NULL.

O Nota

This function is not normally used by code that wants to handle exceptions. Rather, it can be used when
code needs to save and restore the exception state temporarily. Use PyErr GetHandledException ()
to get the exception state.

Added in version 3.11.

void PyErr_GetExcInfo (PyObject **ptype, PyObject **pvalue, PyObject **ptraceback)

Parte del ABI Stabile dalla versione 3.7. Retrieve the old-style representation of the exception info, as
known from sys.exc_info (). This refers to an exception that was already caught, not to an excep-
tion that was freshly raised. Returns new references for the three objects, any of which may be NULL.
Does not modify the exception info state. This function is kept for backwards compatibility. Prefer using
PyErr_GetHandledException().

© Nota

This function is not normally used by code that wants to handle exceptions. Rather, it can be used when
code needs to save and restore the exception state temporarily. Use PyErr SetExcInfo () to restore or
clear the exception state.

Added in version 3.3.

void PyErr_SetExcInfo (PyObject *type, PyObject *value, PyObject *traceback)

Farte del ABI Stabile dalla versione 3.7. Set the exception info, as known from sys.exc_info (). This refers
to an exception that was already caught, not to an exception that was freshly raised. This function steals the
references of the arguments. To clear the exception state, pass NULL for all three arguments. This function is
kept for backwards compatibility. Prefer using PyErr SetHandledException ().

© Nota

This function is not normally used by code that wants to handle exceptions. Rather, it can be used when
code needs to save and restore the exception state temporarily. Use PyErr GetExcInfo () to read the
exception state.

Added in version 3.3.

Cambiato nella versione 3.11: The type and traceback arguments are no longer used and can be NULL.
The interpreter now derives them from the exception instance (the value argument). The function still steals
references of all three arguments.

60

Capitolo 5. Exception Handling

The Python/C API, Release 3.13.7

5.5 Signal Handling

int PyErr_CheckSignals ()
Parte del ABI Stabile. This function interacts with Python’s signal handling.

If the function is called from the main thread and under the main Python interpreter, it checks whether a signal
has been sent to the processes and if so, invokes the corresponding signal handler. If the signal module is
supported, this can invoke a signal handler written in Python.

The function attempts to handle all pending signals, and then returns 0. However, if a Python signal handler
raises an exception, the error indicator is set and the function returns -1 immediately (such that other pending
signals may not have been handled yet: they will be on the next PyErr CheckSignals () invocation).

If the function is called from a non-main thread, or under a non-main Python interpreter, it does nothing and
returns 0.

This function can be called by long-running C code that wants to be interruptible by user requests (such as by
pressing Ctrl-C).

O Nota

The default Python signal handler for SIGINT raises the KeyboardInterrupt exception.

void PyErr_SetInterrupt ()

Parte del ABI Stabile. Simulate the effect of a SIGINT signal arriving. This is equivalent to
PyErr_SetInterruptEx (SIGINT).

© Nota

This function is async-signal-safe. It can be called without the GIL and from a C signal handler.

int PyErr_SetInterruptEx (int signum)
Farte del ABI Stabile dalla versione 3.10. Simulate the effect of a signal arriving. The next time
PyErr CheckSignals () is called, the Python signal handler for the given signal number will be called.

This function can be called by C code that sets up its own signal handling and wants Python signal handlers
to be invoked as expected when an interruption is requested (for example when the user presses Ctrl-C to
interrupt an operation).

If the given signal isn’t handled by Python (it was set to signal.SIG_DFL or signal.SIG_IGN), it will be
ignored.

If signum is outside of the allowed range of signal numbers, -1 is returned. Otherwise, 0 is returned. The error
indicator is never changed by this function.

O Nota

This function is async-signal-safe. It can be called without the GIL and from a C signal handler.

Added in version 3.10.

int PySignal_SetWakeupFd (int fd)

This utility function specifies a file descriptor to which the signal number is written as a single byte whenever
a signal is received. fd must be non-blocking. It returns the previous such file descriptor.

The value -1 disables the feature; this is the initial state. This is equivalent to signal.set_wakeup_£d () in
Python, but without any error checking. fd should be a valid file descriptor. The function should only be called
from the main thread.

5.5. Signal Handling 61

The Python/C API, Release 3.13.7

Cambiato nella versione 3.5: On Windows, the function now also supports socket handles.

5.6 Exception Classes

PyObject *PyErr_NewException (const char *name, PyObject *base, PyObject *dict)

Valore di ritorno: Nuovo riferimento. Parte del ABI Stabile. This utility function creates and returns a new
exception class. The name argument must be the name of the new exception, a C string of the form module.
classname. The base and dict arguments are normally NULL. This creates a class object derived from
Exception (accessible in C as PyExc Exception).

The __module__ attribute of the new class is set to the first part (up to the last dot) of the name argument,
and the class name is set to the last part (after the last dot). The base argument can be used to specify alternate
base classes; it can either be only one class or a tuple of classes. The dict argument can be used to specify a
dictionary of class variables and methods.

PyObject *PyErr_NewExceptionWithDoc (const char *name, const char *doc, PyObject *base, PyObject *dict)

Valore di ritorno: Nuovo riferimento. Parte del ABI Stabile. Same as PyErr NewException (), except that
the new exception class can easily be given a docstring: If doc is non-NULL, it will be used as the docstring for
the exception class.

Added in version 3.2.

int PyExceptionClass_Check (PyObject *ob)
Return non-zero if ob is an exception class, zero otherwise. This function always succeeds.

const char *PyExceptionClass_Name (PyObject *0b)

Parte del ABI Stabile dalla versione 3.8. Return tp_name of the exception class ob.

5.7 Exception Objects

PyObject *PyException_GetTraceback (PyObject *ex)
Valore di ritorno: Nuovo riferimento. Parte del ABI Stabile. Return the traceback associated with the exception
as a new reference, as accessible from Python through the traceback___ attribute. If there is no traceback
associated, this returns NULL.

int PyException_SetTraceback (PyObject *ex, PyObject *tb)
Farte del ABI Stabile. Set the traceback associated with the exception to 7b. Use Py_None to clear it.

PyObject *PyException_GetContext (PyObject *ex)
Valore di ritorno: Nuovo riferimento. Parte del ABI Stabile. Return the context (another exception instance
during whose handling ex was raised) associated with the exception as a new reference, as accessible from
Python through the __context__ attribute. If there is no context associated, this returns NULL.

void PyException_SetContext (PyObject *ex, PyObject *ctx)
Parte del ABI Stabile. Set the context associated with the exception to ctx. Use NULL to clear it. There is no
type check to make sure that ctx is an exception instance. This steals a reference to ctx.

PyObject *PyException_GetCause (PyObject *ex)
Valore di ritorno: Nuovo riferimento. Parte del ABI Stabile. Return the cause (either an exception instance, or
None, set by raise ... from ...) associated with the exception as a new reference, as accessible from
Python through the _cause__ attribute.

void PyException_SetCause (PyObject *ex, PyObject *cause)
Farte del ABI Stabile. Set the cause associated with the exception to cause. Use NULL to clear it. There is no
type check to make sure that cause is either an exception instance or None. This steals a reference to cause.

The _ suppress_context__ attribute is implicitly set to True by this function.

62 Capitolo 5. Exception Handling

The Python/C API, Release 3.13.7

PyObject *PyException_GetArgs (PyObject *ex)

Valore di ritorno: Nuovo riferimento. Parte del ABI Stabile dalla versione 3.12. Return args of exception ex.
void PyException_SetArgs (PyObject *ex, PyObject *args)

Parte del ABI Stabile dalla versione 3.12. Set args of exception ex to args.

PyObject *PyUnstable_Exc_PrepReraiseStar (PyObject *orig, PyObject *excs)

Questa pagina API Instabile. Potrebbe cambiare senza preavviso nelle release minori.

Implement part of the interpreter’s implementation of except *. orig is the original exception that was caught,
and excs is the list of the exceptions that need to be raised. This list contains the unhandled part of orig, if any,
as well as the exceptions that were raised from the except * clauses (so they have a different traceback from
orig) and those that were reraised (and have the same traceback as orig). Return the ExceptionGroup that
needs to be reraised in the end, or None if there is nothing to reraise.

Added in version 3.12.

5.8 Unicode Exception Objects

The following functions are used to create and modify Unicode exceptions from C.
PyObject *PyUnicodeDecodeError_Create (const char *encoding, const char *object, Py_ssize_t length,
Py_ssize_t start, Py_ssize_t end, const char *reason)

Valore di ritorno: Nuovo riferimento. Parte del ABI Stabile. Create a UnicodeDecodeError object with the
attributes encoding, object, length, start, end and reason. encoding and reason are UTF-8 encoded strings.

PyObject *PyUnicodeDecodeError_GetEncoding (PyObject *exc)

PyObject *PyUnicodeEncodeError_GetEncoding (PyObject *exc)
Valore di ritorno: Nuovo riferimento. Parte del ABI Stabile. Return the encoding attribute of the given exception
object.

PyObject *PyUnicodeDecodeError_GetObject (PyObject *exc)

PyObject *PyUnicodeEncodeError_GetObject (PyObject *exc)

PyObject *PyUnicodeTranslateError_GetObject (PyObject *exc)
Valore di ritorno: Nuovo riferimento. Parte del ABI Stabile. Return the object attribute of the given exception
object.

int PyUnicodeDecodeError_GetStart (PyObject *exc, Py_ssize_t *start)

int PyUnicodeEncodeError_GetStart (PyObject *exc, Py_ssize_t *start)

int PyUnicodeTranslateError_GetStart (PyObject *exc, Py_ssize_t *start)
Parte del ABI Stabile. Get the start attribute of the given exception object and place it into *start. start must
not be NULL. Return 0 on success, -1 on failure.

int PyUnicodeDecodeError_SetStart (PyObject *exc, Py_ssize_t start)

int PyUnicodeEncodeError_SetStart (PyObject *exc, Py_ssize_t start)

int PyUnicodeTranslateError_SetStart (PyObject *exc, Py_ssize_t start)
Farte del ABI Stabile. Set the start attribute of the given exception object to start. Return 0 on success, -1 on
failure.

int PyUnicodeDecodeError_GetEnd (PyObject *exc, Py_ssize_t *end)

int PyUnicodeEncodeError_GetEnd (PyObject *exc, Py_ssize_t *end)

5.8. Unicode Exception Objects 63

The Python/C API, Release 3.13.7

int PyUnicodeTranslateError_GetEnd (PyObject *exc, Py_ssize_t *end)
Farte del ABI Stabile. Get the end attribute of the given exception object and place it into *end. end must not
be NULL. Return 0 on success, —1 on failure.

int PyUnicodeDecodeError_SetEnd (PyObject *exc, Py_ssize_t end)

int PyUnicodeEncodeError_SetEnd (PyObject *exc, Py_ssize_t end)

int PyUnicodeTranslateError_SetEnd (PyObject *exc, Py_ssize_t end)
Parte del ABI Stabile. Set the end attribute of the given exception object to end. Return 0 on success, —1 on
failure.

PyObject *PyUnicodeDecodeError_GetReason (PyObject *exc)

PyObject *PyUnicodeEncodeError_GetReason (PyObject *exc)

PyObject *PyUnicodeTranslateError_ GetReason (PyObject ¥exc)
Valore di ritorno: Nuovo riferimento. Parte del ABI Stabile. Return the reason attribute of the given exception
object.

int PyUnicodeDecodeError_SetReason (PyObject *exc, const char *reason)

int PyUnicodeEncodeError_SetReason (PyObject *exc, const char *reason)

int PyUnicodeTranslateError_SetReason (PyObject *exc, const char *reason)

Parte del ABI Stabile. Set the reason attribute of the given exception object to reason. Return 0 on success, —1
on failure.

5.9 Recursion Control

These two functions provide a way to perform safe recursive calls at the C level, both in the core and in extension
modules. They are needed if the recursive code does not necessarily invoke Python code (which tracks its recursion
depth automatically). They are also not needed for #p_call implementations because the call protocol takes care of
recursion handling.
int Py_EnterRecursiveCall (const char *where)

Parte del ABI Stabile dalla versione 3.9. Marks a point where a recursive C-level call is about to be performed.

If USE_STACKCHECK is defined, this function checks if the OS stack overflowed using Py0S_CheckStack ().
If this is the case, it sets a MemoryError and returns a nonzero value.

The function then checks if the recursion limit is reached. If this is the case, a RecursionError is set and a
nonzero value is returned. Otherwise, zero is returned.

where should be a UTF-8 encoded string such as " in instance check" to be concatenated to the
RecursionError message caused by the recursion depth limit.

Cambiato nella versione 3.9: This function is now also available in the limited API.

void Py_LeaveRecursiveCall (void)
Parte del ABI Stabile dalla versione 3.9. Ends a Py_EnterRecursiveCall (). Must be called once for each
successful invocation of Py_EnterRecursiveCall ().

Cambiato nella versione 3.9: This function is now also available in the limited API.

Properly implementing t p_ repr for container types requires special recursion handling. In addition to protecting the
stack, tp_repr also needs to track objects to prevent cycles. The following two functions facilitate this functionality.
Effectively, these are the C equivalent to reprlib.recursive_repr ().

int Py_ReprEnter (PyObject *object)
Farte del ABI Stabile. Called at the beginning of the tp_repr implementation to detect cycles.
If the object has already been processed, the function returns a positive integer. In that case the tp_repr

implementation should return a string object indicating a cycle. As examples, dict objects return { . . . } and
list objectsreturn [...].

The function will return a negative integer if the recursion limit is reached. In that case the tp_repr
implementation should typically return NULL.

64 Capitolo 5. Exception Handling

The Python/C API, Release 3.13.7

Otherwise, the function returns zero and the tp_repr implementation can continue normally.

void Py_ReprLeave (PyObject *object)

Parte del ABI Stabile. Ends a Py ReprEnter (). Must be called once for each invocation of

Py_ReprEnter () that returns zero.

5.10 Exception and warning types

All standard Python exceptions and warning categories are available as global variables whose names are PyExc_
followed by the Python exception name. These have the type Pyobject*; they are all class objects.

For completeness, here are all the variables:

5.10.1 Exception types

C name

Python name

PyObject *PyExc_BaseException
Farte del ABI Stabile.

PyObject *PyExc_BaseExceptionGroup

Parte del ABI Stabile dalla versione 3.11.

PyObject *PyExc_Exception
Farte del ABI Stabile.

PyObject *PyExc_ArithmeticError
Farte del ABI Stabile.

PyObject *PyExc_AssertionError
Farte del ABI Stabile.

PyObject *PyExc_AttributeError
Parte del ABI Stabile.

PyObject *PyExc_BlockingIOError
Parte del ABI Stabile dalla versione 3.7.

PyObject *PyExc_BrokenPipeError
Parte del ABI Stabile dalla versione 3.7.

PyObject *PyExc_BufferError
Farte del ABI Stabile.

PyObject *PyExc_ChildProcessError
Parte del ABI Stabile dalla versione 3.7.

BaseException

BaseExceptionGroup

Exception

ArithmeticError

AssertionError

AttributeError

BlockingIQError

BrokenPipeError

BufferError

ChildProcessError

continues on next page

5.10. Exception and warning types

65

The Python/C API, Release 3.13.7

Tabella 1 - continua dalla pagina precedente
C name Python name

i ConnectionAbortedError
PyObject *PyExc_ConnectionAbortedError

Parte del ABI Stabile dalla versione 3.7.

) ConnectionError
PyObject *PyExc_ConnectionError

Parte del ABI Stabile dalla versione 3.7.

) ConnectionRefusedError
PyObject *PyExc_ConnectionRefusedError

Parte del ABI Stabile dalla versione 3.7.

. ConnectionResetError
PyObject *PyExc_ConnectionResetError

Parte del ABI Stabile dalla versione 3.7.

) EOFError
PyObject *PyExc_EOFError

Parte del ABI Stabile.

) FileExistsError
PyObject *PyExc_FileExistsError

Parte del ABI Stabile dalla versione 3.7.

i FileNotFoundError
PyObject *PyExc_FileNotFoundError

Parte del ABI Stabile dalla versione 3.7.

) FloatingPointError
PyObject *PyExc_FloatingPointError

Parte del ABI Stabile.

i GeneratorExit
PyObject *PyExc_GeneratorExit

Parte del ABI Stabile.

) ImportError
PyObject *PyExc_ImportError

Parte del ABI Stabile.

) IndentationError
PyObject *PyExc_IndentationError

Parte del ABI Stabile.

. IndexError
PyObject *PyExc_IndexError

Parte del ABI Stabile.

) InterruptedError
PyObject *PyExc_InterruptedError

Parte del ABI Stabile dalla versione 3.7.

continues on next page

66 Capitolo 5. Exception Handling

The Python/C API, Release 3.13.7

Tabella 1 - continua dalla pagina precedente

C name

Python name

PyObject *PyExc_IsADirectoryError
Parte del ABI Stabile dalla versione 3.7.

PyObject *PyExc_KeyError
Parte del ABI Stabile.

PyObject *PyExc_KeyboardInterrupt
Farte del ABI Stabile.

PyObject *PyExc_LookupError
Farte del ABI Stabile.

PyObject *PyExc_MemoryError
Farte del ABI Stabile.

PyObject *PyExc_ModuleNotFoundError
Parte del ABI Stabile dalla versione 3.6.

PyObject *PyExc_NameError
Parte del ABI Stabile.

PyObject *PyExc_NotADirectoryError
Farte del ABI Stabile dalla versione 3.7.

PyObject *PyExc_NotImplementedError
Farte del ABI Stabile.

PyObject *PyExc_OSError
Parte del ABI Stabile.

PyObject *PyExc_OverflowError
Parte del ABI Stabile.

PyObject *PyExc_PermissionError
Farte del ABI Stabile dalla versione 3.7.

PyObject *PyExc_ProcessLookupError
Parte del ABI Stabile dalla versione 3.7.

PyObject *PyExc_PythonFinalizationError

IsADirectoryError

KeyError

KeyboardInterrupt

LookupError

MemoryError

ModuleNotFoundError

NameError

NotADirectoryError

NotImplementedError

OSError

OverflowError

PermissionError

ProcessLookupError

PythonFinalizationError

continues on next page

5.10. Exception and warning types

67

The Python/C API, Release 3.13.7

Tabella 1 - continua dalla pagina precedente

C name

Python name

PyObject *PyExc_RecursionError
Parte del ABI Stabile dalla versione 3.7.

PyObject *PyExc_ReferenceError
Farte del ABI Stabile.

PyObject *PyExc_RuntimeError
Parte del ABI Stabile.

PyObject *PyExc_StopAsyncIteration
Farte del ABI Stabile dalla versione 3.7.

PyObject *PyExc_StopIteration
Farte del ABI Stabile.

PyObject *PyExc_SyntaxError
Farte del ABI Stabile.

PyObject *PyExc_SystemError
Parte del ABI Stabile.

PyObject *PyExc_SystemExit
Parte del ABI Stabile.

PyObject *PyExc_TabError
Farte del ABI Stabile.

PyObject *PyExc_TimeoutError
Parte del ABI Stabile dalla versione 3.7.

PyObject *PyExc_TypeError
Parte del ABI Stabile.

PyObject *PyExc_UnboundLocalError
Farte del ABI Stabile.

PyObject *PyExc_UnicodeDecodeError
Farte del ABI Stabile.

RecursionError

ReferenceError

RuntimeError

StopAsyncIteration

Stoplteration

SyntaxError

SystemError

SystemExit

TabError

TimeoutError

TypeError

UnboundLocalError

UnicodeDecodeError

continues on next page

68

Capitolo 5. Exception Handling

The Python/C API, Release 3.13.7

Tabella 1 - continua dalla pagina precedente
C name Python name

i UnicodeEncodeError
PyObject *PyExc_UnicodeEncodeError

Parte del ABI Stabile.

. UnicodeError
PyObject *PyExc_UnicodeError

Parte del ABI Stabile.

) UnicodeTranslateError
PyObject *PyExc_UnicodeTranslateError

Parte del ABI Stabile.

. ValueError
PyObject *PyExc_ValueError

Parte del ABI Stabile.

i ZeroDivisionError
PyObject *PyExc_ZeroDivisionError

Parte del ABI Stabile.

Added in version 3.3: PyExc_BlockingIOError, PyExc_BrokenPipeError, PyExc_ChildProcessError,

PyExc_ConnectionError, PyExc_ConnectionAbortedError, PyExc_ConnectionRefusedError,
PyExc_ConnectionResetError, PyExc_FileExistsError, PyExc_FileNotFoundError,
PyExc_InterruptedError, PyExc_IsADirectoryError, PyExc_NotADirectoryError,

PyExc_PermissionError, PyExc_ProcessLookupError and PyExc_ TimeoutError were introduced
following PEP 3151.

Added in version 3.5: PyExc StopAsyncIterationand PyExc RecursionError.
Added in version 3.6: PyExc_ModuleNotFoundError

Added in version 3.11: PyExc_BaseExceptionGroup.

5.10.2 OSError aliases

The following are a compatibility aliases to PyExc_OSError.

Cambiato nella versione 3.3: These aliases used to be separate exception types.

C name Python name Notes

OSE
PyObject Trer

*PyExc_EnvironmentError

Parte del ABI Stabile.

. OSError
PyObject *PyExc_IOError

Parte del ABI Stabile.

OSE in
PyObject Trer Lwin]

*PyExc_WindowsError

Parte del ABI Stabile on Win-
dows dalla versione 3.7.

5.10. Exception and warning types 69

https://peps.python.org/pep-3151/

The Python/C API, Release 3.13.7

Notes:

5.10.3 Warning types

C name Python name

. Warning
PyObject *PyExc_Warning

Parte del ABI Stabile.

i BytesWarning
PyObject *PyExc_BytesWarning

Parte del ABI Stabile.

) DeprecationWarning
PyObject *PyExc_DeprecationWarning

Parte del ABI Stabile.
EncodingWarning
PyObject *PyExc_EncodingWarning
Parte del ABI Stabile dalla versione 3.10.
FutureWarning
PyObject *PyExc_FutureWarning
Parte del ABI Stabile.
ImportWarning

PyObject *PyExc_ImportWarning
Parte del ABI Stabile.

i PendingDeprecationWarning
PyObject *PyExc_PendingDeprecationWarning

Parte del ABI Stabile.
. ResourceWarning
PyObject *PyExc_ResourceWarning
Parte del ABI Stabile dalla versione 3.7.
RuntimeWarning
PyObject *PyExc_RuntimeWarning
Parte del ABI Stabile.
SyntaxWarning
PyObject *PyExc_SyntaxWarning
Parte del ABI Stabile.
UnicodeWarning
PyObject *PyExc_UnicodeWarning
Parte del ABI Stabile.
UserWarning

PyObject *PyExc_UserWarning
Farte del ABI Stabile.

Added in version 3.2: PyExc_ResourceWarning.

Added in version 3.10: PyExc_EncodingWarning.

70 Capitolo 5. Exception Handling

CAPITOLO O

Utilities

The functions in this chapter perform various utility tasks, ranging from helping C code be more portable across
platforms, using Python modules from C, and parsing function arguments and constructing Python values from C
values.

6.1 Operating System Utilities

PyObject *Py0S_FSPath (PyObject *path)

Valore di ritorno: Nuovo riferimento. Parte del ABI Stabile dalla versione 3.6. Return the file system represen-
tation for path. If the object is a str or bytes object, then a new strong reference is returned. If the object
implements the os.PathLike interface, then _ fspath__ () is returned as long as it is a str or bytes
object. Otherwise TypeError is raised and NULL is returned.

Added in version 3.6.

int Py_FdIsInteractive (FILE *fp, const char *filename)

Return true (nonzero) if the standard 1/O file fp with name filename is deemed interactive. This is the case
for files for which isatty (fileno (fp)) istrue. If the PyConfig. interact ive is non-zero, this function

also returns true if the filename pointer is NULL or if the name is equal to one of the strings '<stdin>"' or
1o,

This function must not be called before Python is initialized.

void PyOS_BeforeFork ()

Farte del ABI Stabile on platforms with fork() dalla versione 3.7. Function to prepare some internal state
before a process fork. This should be called before calling fork () or any similar function that clones the
current process. Only available on systems where fork () is defined.

A\ Avvertimento

The C fork () call should only be made from the «main» thread (of the «main» interpreter). The same is
true for PyOS_BeforeFork ().

Added in version 3.7.

7

The Python/C API, Release 3.13.7

void PyOS_AfterFork_Parent ()

Farte del ABI Stabile on platforms with fork() dalla versione 3.7. Function to update some internal state after
a process fork. This should be called from the parent process after calling fork () or any similar function that
clones the current process, regardless of whether process cloning was successful. Only available on systems
where fork () is defined.

A\ Avvertimento

The C fork () call should only be made from the «main» thread (of the «main» interpreter). The same is
true for PyOS_AfterFork_Parent ().

Added in version 3.7.

void PyOS_AfterFork_Child ()

Parte del ABI Stabile on platforms with fork() dalla versione 3.7. Function to update internal interpreter state
after a process fork. This must be called from the child process after calling fork (), or any similar function
that clones the current process, if there is any chance the process will call back into the Python interpreter.
Only available on systems where fork () is defined.

A\ Avvertimento

The C fork () call should only be made from the «main» thread (of the «main» interpreter). The same is
true for PyOS_AfterFork_Child().

Added in version 3.7.

@ Vedi anche

os.register_at_fork() allows registering custom Python functions to be called by
PyOS_BeforeFork (), PyOS_AfterFork_ Parent () and PyOS_AfterFork_Child().

void PyOS_AfterFork ()

Parte del ABI Stabile on platforms with fork(). Function to update some internal state after a process fork; this
should be called in the new process if the Python interpreter will continue to be used. If a new executable is
loaded into the new process, this function does not need to be called.

Deprecato dalla versione 3.7: This function is superseded by Py0S AfterFork Child().

int PyOS_CheckStack ()
Farte del ABI Stabile on platforms with USE_STACKCHECK dalla versione 3.7. Return true when the interpreter
runs out of stack space. This is a reliable check, but is only available when USE_STACKCHECK is defined
(currently on certain versions of Windows using the Microsoft Visual C++ compiler). USE_STACKCHECK will
be defined automatically; you should never change the definition in your own code.

typedef void (¥*PyOS_sighandler_t)(int)
Parte del ABI Stabile.

PyOS_sighandler_t PyOS_getsig (int i)
Farte del ABI Stabile. Return the current signal handler for signal i. This is a thin wrapper around either
sigaction () or signal (). Do not call those functions directly!

PyOS_sighandler_t PyOS_setsig (int i, PyOS_sighandler t h)

Parte del ABI Stabile. Set the signal handler for signal i to be /; return the old signal handler. This is a thin
wrapper around either sigaction () or signal (). Do not call those functions directly!

72 Capitolo 6. Utilities

The Python/C API, Release 3.13.7

wchar_t *Py_DecodeLocale (const char *arg, size_t *size)
Parte del ABI Stabile dalla versione 3.7.

A\ Avvertimento

This function should not be called directly: wuse the Pyconfig API with the
PyConfig _SetBytesString () function which ensures that Python is preinitialized.

This function must not be called before Python is preinitialized and so that the LC_CTYPE locale is properly
configured: see the Py _Prelnitialize () function.

Decode a byte string from the filesystem encoding and error handler. If the error handler is surrogateescape er-
ror handler, undecodable bytes are decoded as characters in range U+DC80..U+DCFF; and if a byte sequence
can be decoded as a surrogate character, the bytes are escaped using the surrogateescape error handler instead
of decoding them.

Return a pointer to a newly allocated wide character string, use PyMem_RawFree () to free the memory. If
size is not NULL, write the number of wide characters excluding the null character into *size

Return NULL on decoding error or memory allocation error. If size is not NULL, *size is setto (size_t)-1
on memory error or set to (size_t) -2 on decoding error.

The filesystem encoding and error handler are selected by PyConfig Read ():see filesystem_encoding
and filesystem errors members of PyConfig.

Decoding errors should never happen, unless there is a bug in the C library.

Use the Py_EncodeLocale () function to encode the character string back to a byte string.

@ Vedi anche

The PyUnicode_DecodeFSDefaultAndSize () and PyUnicode_DecodeLocaleAndSize () func-
tions.

Added in version 3.5.
Cambiato nella versione 3.7: The function now uses the UTF-8 encoding in the Python UTF-8 Mode.

Cambiato nella versione 3.8: The function now uses the UTF-8 encoding on Windows if pPyPreconfig.
legacy_windows_fs_encoding is Zero,
char *Py_EncodeLocale (const wchar_t *text, size_t *error_pos)

Farte del ABI Stabile dalla versione 3.7. Encode a wide character string to the filesystem encoding and
error handler. If the error handler is surrogateescape error handler, surrogate characters in the range
U+DC80..U+DCFF are converted to bytes 0x80..0xFF.

Return a pointer to a newly allocated byte string, use PyMem Free () to free the memory. Return NULL on
encoding error or memory allocation error.

If error_pos is not NULL, *error_pos is set to (size_t)—1 on success, or set to the index of the invalid
character on encoding error.

The filesystem encoding and error handler are selected by PyConfig Read ():see filesystem_encoding
and filesystem errors members of PyConfig.

Use the Py_DecodeLocale () function to decode the bytes string back to a wide character string.

A\ Avvertimento

This function must not be called before Python is preinitialized and so that the LC_CTYPE locale is properly
configured: see the Py_Prelnitialize () function.

6.1. Operating System Utilities 73

The Python/C API, Release 3.13.7

@ Vedi anche

The PyUnicode_EncodeFSDefault () and PyUnicode_EncodeLocale () functions.

Added in version 3.5.
Cambiato nella versione 3.7: The function now uses the UTF-8 encoding in the Python UTF-8 Mode.

Cambiato nella versione 3.8: The function now uses the UTF-8 encoding on Windows if PyPreconfig.
legacy_windows_fs_encoding is zero.

6.2 System Functions

These are utility functions that make functionality from the sys module accessible to C code. They all work with the
current interpreter thread’s sys module’s dict, which is contained in the internal thread state structure.
PyObject *PySys_GetObject (const char *name)
Valore di ritorno: Riferimento preso in prestito. Parte del ABI Stabile. Return the object name from the sys
module or NULL if it does not exist, without setting an exception.
int PySys_SetObject (const char *name, PyObject *v)
Parte del ABI Stabile. Set name in the sys module to v unless v is NULL, in which case name is deleted from
the sys module. Returns 0 on success, —1 on error.
void PySys_ResetWarnOptions ()
Farte del ABI Stabile. Reset sys.warnoptions to an empty list. This function may be called prior to
Py Initialize().

Deprecated since version 3.13, will be removed in version 3.15: Clear sys.warnoptions and warnings.
filters instead.

void PySys_WriteStdout (const char *format, ...)
Farte del ABI Stabile. Write the output string described by format to sys. stdout. No exceptions are raised,
even if truncation occurs (see below).

Sformat should limit the total size of the formatted output string to 1000 bytes or less — after 1000 bytes, the
output string is truncated. In particular, this means that no unrestricted «%s» formats should occur; these should
be limited using «%.<N>s» where <N> is a decimal number calculated so that <N> plus the maximum size of
other formatted text does not exceed 1000 bytes. Also watch out for «%f>», which can print hundreds of digits
for very large numbers.

If a problem occurs, or sys.stdout is unset, the formatted message is written to the real (C level) stdout.
void PySys_WriteStderr (const char *format, ...)
Parte del ABI Stabile. As PySys_writeStdout (), but write to sys.stderr or stderr instead.

void PySys_FormatStdout (const char *format, ...)

Parte del ABI Stabile. Function similar to PySys_WriteStdout() but format the message using
PyUnicode_FromFormatV () and don’t truncate the message to an arbitrary length.

Added in version 3.2.

void PySys_FormatStderr (const char *format, ...)
Parte del ABI Stabile. As PySys_FormatStdout (), but write to sys . stderr or stderr instead.
Added in version 3.2.

PyObject *PySys_GetXOptions ()

Valore di ritorno: Riferimento preso in prestito. Parte del ABI Stabile dalla versione 3.7. Return the current
dictionary of -x options, similarly to sys._xoptions. On error, NULL is returned and an exception is set.

Added in version 3.2.

74 Capitolo 6. Utilities

The Python/C API, Release 3.13.7

int PySys_Audit (const char *event, const char *format, ...)
Parte del ABI Stabile dalla versione 3.13. Raise an auditing event with any active hooks. Return zero for success
and non-zero with an exception set on failure.
The event string argument must not be NULL.

If any hooks have been added, format and other arguments will be used to construct a tuple to pass. Apart from
N, the same format characters as used in Py_Buildvalue () are available. If the built value is not a tuple, it
will be added into a single-element tuple.

The N format option must not be used. It consumes a reference, but since there is no way to know whether
arguments to this function will be consumed, using it may cause reference leaks.

Note that # format characters should always be treated as Py_ssize t, regardless of whether
PY_SSIZE_T_CLEAN was defined.

sys.audit () performs the same function from Python code.
See also PySys_AuditTuple ().
Added in version 3.8.

Cambiato nella versione 3.8.2: Require Py ssize t for # format characters. Previously, an unavoidable
deprecation warning was raised.

int PySys_AuditTuple (const char *event, PyObject *args)
Parte del ABI Stabile dalla versione 3.13. Similar to PySys_Audit (), but pass arguments as a Python object.
args must be a tuple. To pass no arguments, args can be NULL.
Added in version 3.13.

int PySys_AddAuditHook (Py_AuditHookFunction hook, void *userData)

Append the callable Kook to the list of active auditing hooks. Return zero on success and non-zero on failure.
If the runtime has been initialized, also set an error on failure. Hooks added through this APT are called for all
interpreters created by the runtime.

The userData pointer is passed into the hook function. Since hook functions may be called from different
runtimes, this pointer should not refer directly to Python state.

This function is safe to call before Py Initialize (). When called after runtime initialization, existing audit
hooks are notified and may silently abort the operation by raising an error subclassed from Exception (other
errors will not be silenced).

The hook function is always called with the GIL held by the Python interpreter that raised the event.

See PEP 578 for a detailed description of auditing. Functions in the runtime and standard library that raise
events are listed in the audit events table. Details are in each function’s documentation.

If the interpreter is initialized, this function raises an auditing event sys . addaudithook with no arguments.
If any existing hooks raise an exception derived from Exception, the new hook will not be added and the
exception is cleared. As a result, callers cannot assume that their hook has been added unless they control all
existing hooks.

typedef int (*Py_AuditHookFunction)(const char *event, PyObject *args, void *userData)

The type of the hook function. event is the C string event argument passed to PySys_Audit () or
PySys_AuditTuple (). args is guaranteed to be a Py TupleObject. userData is the argument passed
to PySys_AddAuditHook().

Added in version 3.8.

6.2. System Functions 75

https://peps.python.org/pep-0578/

The Python/C API, Release 3.13.7

6.3 Process Control

void Py_FatalError (const char *message)

Farte del ABI Stabile. Print a fatal error message and kill the process. No cleanup is performed. This function
should only be invoked when a condition is detected that would make it dangerous to continue using the Python
interpreter; e.g., when the object administration appears to be corrupted. On Unix, the standard C library
function abort () is called which will attempt to produce a core file.

The py_FatalError () function is replaced with a macro which logs automatically the name of the current
function, unless the Py_LIMITED_API macro is defined.

Cambiato nella versione 3.9: Log the function name automatically.

void Py_Exit (int status)
Farte del ABI Stabile. Exit the current process. This calls Py_FinalizeEx () and then calls the standard C
library function exit (status).If Py_FinalizeEx () indicates an error, the exit status is set to 120.
Cambiato nella versione 3.6: Errors from finalization no longer ignored.

int Py_AtExit (void (*func)())

Farte del ABI Stabile. Register a cleanup function to be called by Py_rinalizeEx (). The cleanup function
will be called with no arguments and should return no value. At most 32 cleanup functions can be registered.
When the registration is successful, Py _AtExit () returns 0; on failure, it returns —1. The cleanup function re-
gistered last is called first. Each cleanup function will be called at most once. Since Python’s internal finalization
will have completed before the cleanup function, no Python APIs should be called by func.

@ Vedi anche

PyUnstable AtExit () for passinga void *data argument.

6.4 Importing Modules

PyObject *PyImport_ImportModule (const char *name)
Valore di ritorno: Nuovo riferimento. Parte del ABI Stabile. This is a wrapper around Py Import_Import ()
which takes a const char* as an argument instead of a PyObject*.

PyObject *PyImport_ImportModuleNoBlock (const char ¥*name)
Valore di ritorno: Nuovo riferimento. Parte del ABI Stabile. This function is a deprecated alias of
PyImport_ImportModule ().

Cambiato nella versione 3.3: This function used to fail immediately when the import lock was held by another
thread. In Python 3.3 though, the locking scheme switched to per-module locks for most purposes, so this
function’s special behaviour isn’t needed anymore.

Deprecated since version 3.13, will be removed in version 3.15: Use Py Import_ImportModule () instead.

PyObject *PyImport_ImportModuleEx (const char *name, PyObject *globals, PyObject *locals, PyObject
*fromlist)

Valore di ritorno: Nuovo riferimento. Import a module. This is best described by referring to the built-in Python
function __import__ ().

The return value is a new reference to the imported module or top-level package, or NULL with an exception
set on failure. Like for __import__ (), the return value when a submodule of a package was requested is
normally the top-level package, unless a non-empty fromlist was given.

Failing imports remove incomplete module objects, like with Py Import_ ImportModule ().

PyObject *PyImport_ImportModuleLevelObject (PyObject *name, PyObject *globals, PyObject *locals,
PyObject *fromlist, int level)

76 Capitolo 6. Utilities

The Python/C API, Release 3.13.7

Valore di ritorno: Nuovo riferimento. Parte del ABI Stabile dalla versione 3.7. Import a module. This is best de-
scribed by referring to the built-in Python function __import__ (), as the standard __import__ () function
calls this function directly.

The return value is a new reference to the imported module or top-level package, or NULL with an exception
set on failure. Like for __import__ (), the return value when a submodule of a package was requested is
normally the top-level package, unless a non-empty fromlist was given.

Added in version 3.3.
PyObject *PyImport_ImportModuleLevel (const char *name, PyObject *globals, PyObject *locals, PyObject
*fromlist, int level)

Valore di ritorno: Nuovo riferimento. Farte del ABI Stabile. Similar to
PyImport_ImportModuleLevelObject (), but the name is a UTF-8 encoded string instead of a
Unicode object.

Cambiato nella versione 3.3: Negative values for level are no longer accepted.

PyObject *PyImport_Import (PyObject *name)
Valore di ritorno: Nuovo riferimento. Parte del ABI Stabile. This is a higher-level interface that calls the current
«import hook function» (with an explicit level of 0, meaning absolute import). It invokes the __import__ ()
function from the _ builtins__ of the current globals. This means that the import is done using whatever
import hooks are installed in the current environment.

This function always uses absolute imports.

PyObject *PyImport_ReloadModule (PyObject *m)
Valore di ritorno: Nuovo riferimento. Parte del ABI Stabile. Reload a module. Return a new reference to the
reloaded module, or NULL with an exception set on failure (the module still exists in this case).

PyObject *PyImport_AddModuleRef (const char *name)
Valore di ritorno: Nuovo riferimento. Parte del ABI Stabile dalla versione 3.13. Return the module object

corresponding to a module name.

The name argument may be of the form package .module. First check the modules dictionary if there’s one
there, and if not, create a new one and insert it in the modules dictionary.

Return a strong reference to the module on success. Return NULL with an exception set on failure.
The module name name is decoded from UTF-8.

This function does not load or import the module; if the module wasn’t already loaded, you will get an emp-
ty module object. Use PyImport_ ImportModule () or one of its variants to import a module. Package
structures implied by a dotted name for name are not created if not already present.

Added in version 3.13.

PyObject *PyImport_AddModuleObject (PyObject ¥name)
Valore di ritorno: Riferimento preso in prestito. Parte del ABI Stabile dalla versione 3.7. Similar to
PyImport_AddModuleRef (), butreturn a borrowed reference and name is a Python st r object.

Added in version 3.3.

PyObject *PyImport_AddModule (const char *name)

Valore di ritorno: Riferimento preso in prestito. Parte del ABI Stabile. Similar to
PyImport_AddModuleRef (), but return a borrowed reference.

PyObject *PyImport_ExecCodeModule (const char *name, PyObject *co)

Valore di ritorno: Nuovo riferimento. Parte del ABI Stabile. Given a module name (possibly of the form
package.module) and a code object read from a Python bytecode file or obtained from the built-in func-
tion compile (), load the module. Return a new reference to the module object, or NULL with an exception
set if an error occurred. name is removed from sys.modules in error cases, even if name was already in
sys.modules on entry to PyImport_ExecCodeModule (). Leaving incompletely initialized modules in

6.4. Importing Modules 7

The Python/C API, Release 3.13.7

sys.modules is dangerous, as imports of such modules have no way to know that the module object is an
unknown (and probably damaged with respect to the module author’s intents) state.

The module’s __spec__ and __loader__ will be set, if not set already, with the appropriate values. The
spec’s loader will be set to the module’s _loader__ (if set) and to an instance of SourceFileLoader
otherwise.

The module’s __file_ attribute will be set to the code object’s co_filename. If applicable, __cached_

will also be set.

This function will reload the module if it was already imported. See Py Import_ReloadModule () for the
intended way to reload a module.

If name points to a dotted name of the form package .module, any package structures not already created
will still not be created.

See also PyImport_ExecCodeModuleEx () and PyImport_ExecCodeModulelWithPathnames ().

Cambiato nella versione 3.12: The settingof __cached__and __ loader__isdeprecated. See ModuleSpec
for alternatives.

PyObject *PyImport_ExecCodeModuleEx (const char *name, PyObject *co, const char *pathname)
Valore di ritorno: Nuovo riferimento. Parte del ABI Stabile. Like Py Import_ExecCodeModule (), but the
__file__ attribute of the module object is set to pathname if it is non-NULL.
See also PyImport_ExecCodeModuleWithPathnames ().

PyObject *PyImport_ExecCodeModuleObject (PyObject *name, PyObject *co, PyObject *pathname, PyObject

*cpathname)

Valore di ritorno: Nuovo riferimento. Parte del ABI Stabile dalla versione 3.7. Like
PyImport_ExecCodeModuleEx (), but the _ cached__ attribute of the module object is set to
cpathname if it is non-NULL. Of the three functions, this is the preferred one to use.

Added in version 3.3.
Cambiato nella versione 3.12: Setting __cached__is deprecated. See ModuleSpec for alternatives.

PyObject *PyImport_ExecCodeModuleWithPathnames (const char *name, PyObject *co, const char
*pathname, const char *cpathname)

Valore di ritorno: Nuovo riferimento. Parte del ABI Stabile. Like Py Import_ExecCodeModuleObject (),
but name, pathname and cpathname are UTF-8 encoded strings. Attempts are also made to figure out what the
value for pathname should be from cpathname if the former is set to NULL.

Added in version 3.2.

Cambiato nella versione 3.3: Uses imp.source_from_cache () in calculating the source path if only the
bytecode path is provided.

Cambiato nella versione 3.12: No longer uses the removed imp module.

long PyImport_GetMagicNumber ()
Farte del ABI Stabile. Return the magic number for Python bytecode files (a.k.a. . pyc file). The magic number
should be present in the first four bytes of the bytecode file, in little-endian byte order. Returns -1 on error.
Cambiato nella versione 3.3: Return value of —1 upon failure.

const char *PyImport_GetMagicTag ()

Farte del ABI Stabile. Return the magic tag string for PEP 3147 format Python bytecode file names. Keep
in mind that the value at sys.implementation.cache_tag is authoritative and should be used instead of
this function.

Added in version 3.2.

PyObject *PyImport_GetModuleDict ()

Valore di ritorno: Riferimento preso in prestito. Parte del ABI Stabile. Return the dictionary used for the module
administration (a.k.a. sys.modules). Note that this is a per-interpreter variable.

78 Capitolo 6. Utilities

https://peps.python.org/pep-3147/

The Python/C API, Release 3.13.7

PyObject *PyImport_GetModule (PyObject *name)
Valore di ritorno: Nuovo riferimento. Parte del ABI Stabile dalla versione 3.8. Return the already imported
module with the given name. If the module has not been imported yet then returns NULL but does not set an
error. Returns NULL and sets an error if the lookup failed.

Added in version 3.7.

PyObject *PyImport_GetImporter (PyObject *path)
Valore di ritorno: Nuovo riferimento. Parte del ABI Stabile. Return a finder object for a sys.path/pkg.
__path__ item path, possibly by fetching it from the sys.path_importer_cache dict. If it wasn't yet
cached, traverse sys.path_hooks until a hook is found that can handle the path item. Return None if no
hook could; this tells our caller that the path based finder could not find a finder for this path item. Cache the
result in sys.path_importer_cache. Return a new reference to the finder object.

int PyImport_ImportFrozenModuleObject (PyObject *name)

Parte del ABI Stabile dalla versione 3.7. Load a frozen module named name. Return 1 for success, 0 if the
module is not found, and -1 with an exception set if the initialization failed. To access the imported module
on a successful load, use Py Import_ImportModule (). (Note the misnomer — this function would reload
the module if it was already imported.)

Added in version 3.3.
Cambiato nella versione 3.4: The _ file_ attribute is no longer set on the module.

int PyImport_ImportFrozenModule (const char *name)

Parte del ABI Stabile. Similar to PyImport_ImportFrozenModuleObject (), but the name is a UTF-8
encoded string instead of a Unicode object.

struct _frozen

This is the structure type definition for frozen module descriptors, as generated by the freeze utility (see
Tools/freeze/ in the Python source distribution). Its definition, found in Include/import .h, is:

struct _frozen {
const char *name;
const unsigned char *code;
int size;
bool is_package;
bi

L J

Cambiato nella versione 3.11: The new is_package field indicates whether the module is a package or not.
This replaces setting the size field to a negative value.

const struct _frozen *PyImport_FrozenModules

This pointer is initialized to point to an array of _ frozen records, terminated by one whose members are all
NULL or zero. When a frozen module is imported, it is searched in this table. Third-party code could play tricks
with this to provide a dynamically created collection of frozen modules.

int PyImport_AppendInittab (const char *name, PyObject *(*initfunc)(void))

Parte del ABI Stabile. Add a single module to the existing table of built-in modules. This is a convenience
wrapper around Py Import_ExtendInittab (), returning -1 if the table could not be extended. The new
module can be imported by the name name, and uses the function initfunc as the initialization function called
on the first attempted import. This should be called before Py Tnitialize ().

struct _inittab

Structure describing a single entry in the list of built-in modules. Programs which embed Python may use an
array of these structures in conjunction with Py Import_ExtendInittab () to provide additional built-in
modules. The structure consists of two members:

const char *name
The module name, as an ASCII encoded string.

6.4. Importing Modules 79

The Python/C API, Release 3.13.7

PyObject *(*init func)(void)
Initialization function for a module built into the interpreter.

int PyImport_ExtendInittab (struct _initfab *newtab)

Add a collection of modules to the table of built-in modules. The newtab array must end with a sentinel entry
which contains NULL for the name field; failure to provide the sentinel value can result in a memory fault.
Returns 0 on success or -1 if insufficient memory could be allocated to extend the internal table. In the event
of failure, no modules are added to the internal table. This must be called before Py _Initialize ().

If Python is initialized multiple times, Py Import_AppendInittab () Of PyImport_ExtendInittab ()
must be called before each Python initialization.

6.5 Data marshalling support

These routines allow C code to work with serialized objects using the same data format as the marshal module.
There are functions to write data into the serialization format, and additional functions that can be used to read the
data back. Files used to store marshalled data must be opened in binary mode.

Numeric values are stored with the least significant byte first.

The module supports two versions of the data format: version O is the historical version, version 1 shares in-
terned strings in the file, and upon unmarshalling. Version 2 uses a binary format for floating-point numbers.
Py_MARSHAL_VERSTON indicates the current file format (currently 2).
void PyMarshal_WriteLongToFile (long value, FILE *file, int version)
Marshal a 1ong integer, value, to file. This will only write the least-significant 32 bits of value; regardless of
the size of the native 1ong type. version indicates the file format.

This function can fail, in which case it sets the error indicator. Use PyErr_Occurred () to check for that.

void PyMarshal_WriteObjectToFile (PyObject *value, FILE *file, int version)

Marshal a Python object, value, to file. version indicates the file format.
This function can fail, in which case it sets the error indicator. Use PyErr Occurred () to check for that.

PyObject *PyMarshal_WriteObjectToString (PyObject *value, int version)
Valore di ritorno: Nuovo riferimento. Return a bytes object containing the marshalled representation of value.
version indicates the file format.

The following functions allow marshalled values to be read back in.

long PyMarshal_ReadLongFromFile (FILE *file)
Return a C 1ong from the data stream in a FILE* opened for reading. Only a 32-bit value can be read in using
this function, regardless of the native size of long.

On error, sets the appropriate exception (EOFError) and returns —1.

int PyMarshal_ ReadShortFromFile (FILE *file)
Return a C short from the data stream in a FILE* opened for reading. Only a 16-bit value can be read in
using this function, regardless of the native size of short.

On error, sets the appropriate exception (EOFError) and returns —1.

PyObject *PyMarshal_ReadObjectFromFile (FILE *file)
Valore di ritorno: Nuovo riferimento. Return a Python object from the data stream in a FILE* opened for
reading.

On error, sets the appropriate exception (EOFError, ValueError or TypeError) and returns NULL.

PyObject *PyMarshal_ReadLastObjectFromFile (FILE *file)

Valore di ritorno: Nuovo riferimento. Return a Python object from the data stream in a FILE* opened for
reading. Unlike PyMarshal ReadObjectFromFile (), this function assumes that no further objects will be
read from the file, allowing it to aggressively load file data into memory so that the de-serialization can operate

80 Capitolo 6. Utilities

The Python/C API, Release 3.13.7

from data in memory rather than reading a byte at a time from the file. Only use these variant if you are certain
that you won’t be reading anything else from the file.

On error, sets the appropriate exception (EOFError, ValueError or TypeError) and returns NULL.

PyObject *PyMarshal_ReadObjectFromString (const char *data, Py_ssize_t len)

Valore di ritorno: Nuovo riferimento. Return a Python object from the data stream in a byte buffer containing
len bytes pointed to by data.

On error, sets the appropriate exception (EOFError, ValueError or TypeError) and returns NULL.

6.6 Parsing arguments and building values

These functions are useful when creating your own extension functions and methods. Additional information and
examples are available in extending-index.

The first three of these functions described, PyArg ParseTuple (), PyArg ParseTupleAndKeywords (), and
pyArg Parse (), all use format strings which are used to tell the function about the expected arguments. The format
strings use the same syntax for each of these functions.

6.6.1 Parsing arguments

A format string consists of zero or more «format units.» A format unit describes one Python object; it is usually a single
character or a parenthesized sequence of format units. With a few exceptions, a format unit that is not a parenthesized
sequence normally corresponds to a single address argument to these functions. In the following description, the
quoted form is the format unit; the entry in (round) parentheses is the Python object type that matches the format
unit; and the entry in [square] brackets is the type of the C variable(s) whose address should be passed.

Strings and buffers

O Nota

On Python 3.12 and older, the macro PY_SSIZE_T_CLEAN must be defined before including Python.h to use
all # variants of formats (s#, y#, etc.) explained below. This is not necessary on Python 3.13 and later.

These formats allow accessing an object as a contiguous chunk of memory. You don’t have to provide raw storage for
the returned unicode or bytes area.

Unless otherwise stated, buffers are not NUL-terminated.
There are three ways strings and buffers can be converted to C:

o Formats such as y* and s* fill a Py_bufrer structure. This locks the underlying buffer so that the caller
can subsequently use the buffer even inside a Py_BEGIN _ALLoW_THREADS block without the risk of mutable
data being resized or destroyed. As a result, you have to call PyBurfer Release () after you have finished
processing the data (or in any early abort case).

e The es, es#, et and et # formats allocate the result buffer. You have to call Pyvem Free () after you have
finished processing the data (or in any early abort case).

o Other formats take a st r or a read-only bytes-like object, such as bytes, and provide a const char * pointer
to its buffer. In this case the buffer is «borrowed»: it is managed by the corresponding Python object, and shares
the lifetime of this object. You won’t have to release any memory yourself.

To ensure that the underlying buffer may be safely borrowed, the object’s PyBufferProcs.
bf_releasebuffer field must be NULL. This disallows common mutable objects such as bytearray, but
also some read-only objects such as memoryview of bytes.

Besides this bf_releasebuf fer requirement, there is no check to verify whether the input object is immu-
table (e.g. whether it would honor a request for a writable buffer, or whether another thread can mutate the
data).

6.6. Parsing arguments and building values 81

The Python/C API, Release 3.13.7

s (str) [const char *]
Convert a Unicode object to a C pointer to a character string. A pointer to an existing string is stored in the
character pointer variable whose address you pass. The C string is NUL-terminated. The Python string must
not contain embedded null code points; if it does, a ValueError exception is raised. Unicode objects are
converted to C strings using 'ut £-8"' encoding. If this conversion fails, a UnicodeError is raised.

O Nota

This format does not accept bytes-like objects. If you want to accept filesystem paths and convert them to
C character strings, it is preferable to use the 0s format with PyUnicode FSConverter () as converter.

Cambiato nella versione 3.5: Previously, TypeError was raised when embedded null code points were
encountered in the Python string.

s* (str or byfes-like object) [Py_buffer]
This format accepts Unicode objects as well as bytes-like objects. It fills a Py_buffer structure provided by
the caller. In this case the resulting C string may contain embedded NUL bytes. Unicode objects are converted
to C strings using 'ut £-8' encoding.

s# (str, read-only bytes-like object) [const char *, Py _ssize_t]
Like s*, except that it provides a borrowed buffer. The result is stored into two C variables, the first one a
pointer to a C string, the second one its length. The string may contain embedded null bytes. Unicode objects
are converted to C strings using 'ut f-8' encoding.

z (str or None) [const char *]
Like s, but the Python object may also be None, in which case the C pointer is set to NULL.

z* (str, bytes-like object or None) [Py_buffer]
Like s*, but the Python object may also be None, in which case the buf member of the Py_buffer structure
is set to NULL.

z# (str, read-only bytes-like object or None) [const char *, Py ssize t]
Like s#, but the Python object may also be None, in which case the C pointer is set to NULL.

y (read-only byfes-like object) [const char *]
This format converts a bytes-like object to a C pointer to a borrowed character string; it does not accept Unicode
objects. The bytes buffer must not contain embedded null bytes; if it does, a ValueError exception is raised.

Cambiato nella versione 3.5: Previously, TypeError was raised when embedded null bytes were encountered
in the bytes buffer.

y* (bytes-like object) [Py_buffer]
This variant on s* doesn’t accept Unicode objects, only bytes-like objects. This is the recommended way to
accept binary data.

y# (read-only byfes-like object) [const char *, Py ssize_t]
This variant on s# doesn’t accept Unicode objects, only bytes-like objects.

S (bytes) [PyBytesObject *]
Requires that the Python object is a bytes object, without attempting any conversion. Raises TypeError if
the object is not a bytes object. The C variable may also be declared as PyOb ject*.

Y (bytearray) [PyByteArrayObject *]
Requires that the Python object is a byt earray object, without attempting any conversion. Raises TypeError
if the object is not a bytearray object. The C variable may also be declared as Pyobject*.

U (str) [PyObject *]
Requires that the Python object is a Unicode object, without attempting any conversion. Raises TypeError
if the object is not a Unicode object. The C variable may also be declared as PyObject*.

w* (read-write byfes-like object) [Py_buffer]
This format accepts any object which implements the read-write buffer interface. It fills a Py _burrer
structure provided by the caller. The buffer may contain embedded null bytes. The caller have to call
PyBuffer Release () when it is done with the buffer.

82 Capitolo 6. Utilities

The Python/C API, Release 3.13.7

es (str) [const char *encoding, char **buffer]
This variant on s is used for encoding Unicode into a character buffer. It only works for encoded data without
embedded NUL bytes.

This format requires two arguments. The first is only used as input, and must be a const char* which points
to the name of an encoding as a NUL-terminated string, or NULL, in which case 'ut £-8' encoding is used.
An exception is raised if the named encoding is not known to Python. The second argument must be a char**;
the value of the pointer it references will be set to a buffer with the contents of the argument text. The text will
be encoded in the encoding specified by the first argument.

pyArg ParseTuple () will allocate a buffer of the needed size, copy the encoded data into this buffer and
adjust *buffer to reference the newly allocated storage. The caller is responsible for calling PyMem Free () to
free the allocated buffer after use.

et (str, bytes or bytearray) [const char *encoding, char **buffer]
Same as es except that byte string objects are passed through without recoding them. Instead, the
implementation assumes that the byte string object uses the encoding passed in as parameter.

es# (str) [const char *encoding, char **buffer, Py_ssize_t *buffer_length]
This variant on s# is used for encoding Unicode into a character buffer. Unlike the es format, this variant
allows input data which contains NUL characters.

It requires three arguments. The first is only used as input, and must be a const char* which points to the
name of an encoding as a NUL-terminated string, or NULL, in which case 'ut£-8' encoding is used. An
exception is raised if the named encoding is not known to Python. The second argument must be a char**;
the value of the pointer it references will be set to a buffer with the contents of the argument text. The text will
be encoded in the encoding specified by the first argument. The third argument must be a pointer to an integer;
the referenced integer will be set to the number of bytes in the output buffer.

There are two modes of operation:

If *buffer points a NULL pointer, the function will allocate a buffer of the needed size, copy the encoded data
into this buffer and set *buffer to reference the newly allocated storage. The caller is responsible for calling
pyMem_Free () to free the allocated buffer after usage.

If *buffer points to a non-NULL pointer (an already allocated buffer), PyArg ParseTuple () will use this
location as the buffer and interpret the initial value of *buffer_length as the buffer size. It will then copy the
encoded data into the buffer and NUL-terminate it. If the buffer is not large enough, a ValueError will be
set.

In both cases, *buffer_length is set to the length of the encoded data without the trailing NUL byte.

et# (str, bytes or bytearray) [const char *encoding, char **buffer, Py_ssize_t *buffer_length]
Same as es# except that byte string objects are passed through without recoding them. Instead, the
implementation assumes that the byte string object uses the encoding passed in as parameter.

Cambiato nella versione 3.12: u, u#, 7, and z# are removed because they used a legacy Py_UNICODE* representation.

Numbers

These formats allow representing Python numbers or single characters as C numbers. Formats that require
int, float or complex can also use the corresponding special methods _ index_ (), _ float_ () or
__complex__ () to convert the Python object to the required type.

For signed integer formats, OverflowError is raised if the value is out of range for the C type. For unsigned integer
formats, no range checking is done — the most significant bits are silently truncated when the receiving field is too
small to receive the value.

b (int) [unsigned char]
Convert a nonnegative Python integer to an unsigned tiny integer, stored in a C unsigned char.

B (int) [unsigned char]
Convert a Python integer to a tiny integer without overflow checking, stored in a C unsigned char.

h (int) [short int]
Convert a Python integer to a C short int.

6.6. Parsing arguments and building values 83

The Python/C API, Release 3.13.7

H (int) [unsigned short int]
Convert a Python integer to a C unsigned short int, without overflow checking.

i (int) [int]
Convert a Python integer to a plain C int.

I (int) [unsigned int]
Convert a Python integer to a C unsigned int, without overflow checking.

1 (int) [long int]
Convert a Python integer to a C long int.

k (int) [unsigned long]
Convert a Python integer to a C unsigned long without overflow checking.

L (int) [long long]
Convert a Python integer to a C 1long long.

K (int) [unsigned long long]
Convert a Python integer to a C unsigned long long without overflow checking.

n (int) [Py _ssize t]
Convert a Python integer toa C py_ssize_t.

c (bytes or bytearray of length 1) [char]
Convert a Python byte, represented as a bytes or bytearray object of length 1, toa C char.

Cambiato nella versione 3.3: Allow bytearray objects.

C (str of length 1) [int]
Convert a Python character, represented as a st r object of length 1, toa C int.

£ (£float) [float]
Convert a Python floating-point number to a C float.

d (float) [double]
Convert a Python floating-point number to a C double.

D (complex) [Py_complex]
Convert a Python complex number to a C Py_complex structure.

Other objects

O (object) [PyObject *]
Store a Python object (without any conversion) in a C object pointer. The C program thus receives the ac-
tual object that was passed. A new strong reference to the object is not created (i.e. its reference count is not
increased). The pointer stored is not NULL.

0! (object) [typeobject, PyObject *]
Store a Python object in a C object pointer. This is similar to O, but takes two C arguments: the first is the
address of a Python type object, the second is the address of the C variable (of type PyObject*) into which
the object pointer is stored. If the Python object does not have the required type, TypeError is raised.

os& (object) [converter, address]
Convert a Python object to a C variable through a converter function. This takes two arguments: the first is
a function, the second is the address of a C variable (of arbitrary type), converted to void=*. The converter
function in turn is called as follows:

[status = converter (object, address);

where object is the Python object to be converted and address is the void* argument that was passed to the
PyArg_Parse* function. The returned status should be 1 for a successful conversion and 0 if the conversion
has failed. When the conversion fails, the converter function should raise an exception and leave the content
of address unmodified. If the converter returns Py_CLEANUP_SUPPORTED, it may get called a second time if
the argument parsing eventually fails, giving the converter a chance to release any memory that it had already

84 Capitolo 6. Utilities

The Python/C API, Release 3.13.7

allocated. In this second call, the object parameter will be NULL; address will have the same value as in the
original call.

Examples of converters: PyUnicode FSConverter () and PyUnicode_FSDecoder ().
Cambiato nella versione 3.1: Py_ CLEANUP_ SUPPORTED was added.

p (bool) [int]
Tests the value passed in for truth (a boolean predicate) and converts the result to its equivalent C true/false
integer value. Sets the int to 1 if the expression was true and 0 if it was false. This accepts any valid Python
value. See truth for more information about how Python tests values for truth.

Added in version 3.3.

(items) (tuple) [matching-items)
The object must be a Python sequence whose length is the number of format units in items. The C arguments
must correspond to the individual format units in ifems. Format units for sequences may be nested.

A few other characters have a meaning in a format string. These may not occur inside nested parentheses. They are:

I
Indicates that the remaining arguments in the Python argument list are optional. The C variables corresponding
to optional arguments should be initialized to their default value — when an optional argument is not specified,
pPyArg ParseTuple () does not touch the contents of the corresponding C variable(s).

PyArg_ParseTupleAndKeywords () only: Indicates that the remaining arguments in the Python argument
list are keyword-only. Currently, all keyword-only arguments must also be optional arguments, so | must always
be specified before s in the format string.

Added in version 3.3.

The list of format units ends here; the string after the colon is used as the function name in error messages (the
«associated value» of the exception that PyArg ParseTuple () raises).

The list of format units ends here; the string after the semicolon is used as the error message instead of the
default error message. : and ; mutually exclude each other.

Note that any Python object references which are provided to the caller are borrowed references; do not release them
(i.e. do not decrement their reference count)!

Additional arguments passed to these functions must be addresses of variables whose type is determined by the format
string; these are used to store values from the input tuple. There are a few cases, as described in the list of format units
above, where these parameters are used as input values; they should match what is specified for the corresponding
format unit in that case.

For the conversion to succeed, the arg object must match the format and the format must be exhausted. On success,
the PyArg_Parse* functions return true, otherwise they return false and raise an appropriate exception. When the
PyArg_Parse* functions fail due to conversion failure in one of the format units, the variables at the addresses
corresponding to that and the following format units are left untouched.

API Functions

int PyArg_ParseTuple (PyObject *args, const char *format, ...)
Farte del ABI Stabile. Parse the parameters of a function that takes only positional parameters into local
variables. Returns true on success; on failure, it returns false and raises the appropriate exception.

int PyArg_VaParse (PyObject *args, const char *format, va_list vargs)
Parte del ABI Stabile. Identicalto PyArg ParseTuple (), exceptthatitacceptsava_list rather than a variable
number of arguments.

int PyArg_ParseTupleAndKeywords (PyObject *args, PyObject *kw, const char *format, char *const
*keywords, ...)

6.6. Parsing arguments and building values 85

The Python/C API, Release 3.13.7

Parte del ABI Stabile. Parse the parameters of a function that takes both positional and keyword parameters into
local variables. The keywords argument is a NULL-terminated array of keyword parameter names specified as
null-terminated ASCII or UTF-8 encoded C strings. Empty names denote positional-only parameters. Returns
true on success; on failure, it returns false and raises the appropriate exception.

O Nota

The keywords parameter declaration is char *const* in C and const char *const* in C++. This
can be overridden with the PY_CxxX_CONST macro.

Cambiato nella versione 3.6: Added support for positional-only parameters.

Cambiato nella versione 3.13: The keywords parameter has now type char *const* in C and const char
const in C++, instead of char**. Added support for non-ASCII keyword parameter names.

int PyArg_VaParseTupleAndKeywords (PyObject *args, PyObject *kw, const char *format, char *const
*keywords, va_list vargs)

Parte del ABI Stabile. Identical to PyArg ParseTupleAndKeywords (), except that it accepts a va_list
rather than a variable number of arguments.

int PyArg_ValidateKeywordArguments (PyObject™*)
Parte del ABI Stabile. Ensure that the keys in the keywords argument dictionary are strings. This is only needed
if PyArg ParseTupleAndKeywords () is not used, since the latter already does this check.
Added in version 3.2.

int PyArg_Parse (PyObject *args, const char *format, ...)

Parte del ABI Stabile. Parse the parameter of a function that takes a single positional parameter into a local
variable. Returns true on success; on failure, it returns false and raises the appropriate exception.

Example:

s N

// Function using METH O calling convention
static PyObject*
my_function (PyObject *module, PyObject *argqg)
{
int value;
if (!PyArg_Parse(arg, "i:my_function", &value)) {
return NULL;

// ... use value

int PyArg_UnpackTuple (PyObject *args, const char *name, Py_ssize_t min, Py_ssize_t max, ...)

Farte del ABI Stabile. A simpler form of parameter retrieval which does not use a format string to specify the
types of the arguments. Functions which use this method to retrieve their parameters should be declared as
METH_VARARGS in function or method tables. The tuple containing the actual parameters should be passed as
args; it must actually be a tuple. The length of the tuple must be at least min and no more than max; min and
max may be equal. Additional arguments must be passed to the function, each of which should be a pointer to
a PyObject* variable; these will be filled in with the values from args; they will contain borrowed references.
The variables which correspond to optional parameters not given by args will not be filled in; these should be
initialized by the caller. This function returns true on success and false if args is not a tuple or contains the
wrong number of elements; an exception will be set if there was a failure.

This is an example of the use of this function, taken from the sources for the _weakref helper module for
weak references:

86 Capitolo 6. Utilities

The Python/C API, Release 3.13.7

-

static PyObject *
weakref ref (PyObject *self, PyObject *args)
{

PyObject *object;

PyObject *callback = NULL;

PyObject *result = NULL;

if (PyArg_UnpackTuple (args, "ref", 1, 2, &object, &callback)) {
result = PyWeakref_ NewRef (object, callback);

}

return result;

}

L

The call to PyArg UnpackTuple() in this example is entirely equivalent to this call to
PyArg ParseTuple():

[PyArg_ParseTuple(args, "O|O:ref", &object, &callback)

PY_CXX_CONST

The value to be inserted, if any, before char *const* in the keywords parameter declaration of
PyArg_ParseTupleAndKeywords () and PyArg_VaParseTupleAndKeywords (). Default empty for C
and const for C++ (const char *const*). To override, define it to the desired value before including
Python.h.

Added in version 3.13.

6.6.2 Building values

PyObject ¥Py_BuildValue (const char *format, ...)

Valore di ritorno: Nuovo riferimento. Parte del ABI Stabile. Create a new value based on a format string similar
to those accepted by the PyArg_Parse* family of functions and a sequence of values. Returns the value or
NULL in the case of an error; an exception will be raised if NULL is returned.

Py_BuildValue () does not always build a tuple. It builds a tuple only if its format string contains two or
more format units. If the format string is empty, it returns None; if it contains exactly one format unit, it returns
whatever object is described by that format unit. To force it to return a tuple of size 0 or one, parenthesize the
format string.

When memory buffers are passed as parameters to supply data to build objects, as for the s and s# formats,
the required data is copied. Buffers provided by the caller are never referenced by the objects created by
Py_BuildvValue (). In other words, if your code invokes malloc () and passes the allocated memory to
Py_BuildValue (), your code is responsible for calling free () for that memory once rPy_Buildvalue ()
returns.

In the following description, the quoted form is the format unit; the entry in (round) parentheses is the Python
object type that the format unit will return; and the entry in [square] brackets is the type of the C value(s) to
be passed.

The characters space, tab, colon and comma are ignored in format strings (but not within format units such as
s#). This can be used to make long format strings a tad more readable.

s (str or None) [const char *]
Convert a null-terminated C string to a Python str object using 'ut£-8"' encoding. If the C string
pointer is NULL, None is used.

s# (str or None) [const char *, Py ssize t]
Convert a C string and its length to a Python st r object using 'ut £-8' encoding. If the C string pointer
is NULL, the length is ignored and None is returned.

y (bytes) [const char *]
This converts a C string to a Python bytes object. If the C string pointer is NULL, None is returned.

6.6. Parsing arguments and building values 87

The Python/C API, Release 3.13.7

y# (bytes) [const char *, Py _ssize t]
This converts a C string and its lengths to a Python object. If the C string pointer is NULL, None is
returned.

z (str or None) [const char *]
Same as s.

z# (str or None) [const char *, Py ssize t]
Same as s#.

u (str) [const wchar_t *]
Convert a null-terminated wchar_t buffer of Unicode (UTF-16 or UCS-4) data to a Python Unicode
object. If the Unicode buffer pointer is NULL, None is returned.

u# (str) [const wchar_t *, Py ssize t]
Convert a Unicode (UTF-16 or UCS-4) data buffer and its length to a Python Unicode object. If the
Unicode buffer pointer is NULL, the length is ignored and None is returned.

U (str or None) [const char *]
Same as s.

U# (str or None) [const char *, Py _ssize t]
Same as s#.

i (int) [int]
Convert a plain C int to a Python integer object.

b (int) [char]
Convert a plain C char to a Python integer object.

h (int) [short int]
Convert a plain C short int to a Python integer object.

1 (int) [long int]
Convert a C long int to a Python integer object.

B (int) [unsigned char]
Convert a C unsigned char to a Python integer object.

H (int) [unsigned short int]
Convert a C unsigned short int toa Python integer object.

I (int) [unsigned int]
Convert a C unsigned int to a Python integer object.

k (int) [unsigned long]
Convert a C unsigned long to a Python integer object.

L (int) [long long]
Convert a C long long to a Python integer object.

K (int) [unsigned long long]
Convert a C unsigned long long to a Python integer object.

n (int) [Py_ssize t]
Converta C pPy_ssize_t toa Python integer.

c (bytes of length 1) [char]
Convert a C int representing a byte to a Python bytes object of length 1.

C (str of length 1) [int]
Convert a C int representing a character to Python st r object of length 1.

d (float) [double]
Convert a C double to a Python floating-point number.

f (float) [float]
Convert a C £1oat to a Python floating-point number.

88

Capitolo 6. Utilities

The Python/C API, Release 3.13.7

D (complex) [Py_complex *]
Convert a C Py_complex structure to a Python complex number.

O (object) [PyObject *]
Pass a Python object untouched but create a new strong reference to it (i.e. its reference count is incre-
mented by one). If the object passed in is a NULL pointer, it is assumed that this was caused because the

call producing the argument found an error and set an exception. Therefore, Py_Buildvalue () will
return NULL but won't raise an exception. If no exception has been raised yet, SystemError is set.

S (object) [PyObject *]
Same as 0.

N (object) [PyObject *]
Same as 0, except it doesn’t create a new strong reference. Useful when the object is created by a call to
an object constructor in the argument list.

os (object) [converter, anything]
Convert anything to a Python object through a converter function. The function is called with anything
(which should be compatible with void+) as its argument and should return a «<new» Python object, or
NULL if an error occurred.

(items) (tuple) [matching-items]
Convert a sequence of C values to a Python tuple with the same number of items.

[items] (1ist) [matching-items]
Convert a sequence of C values to a Python list with the same number of items.

{items} (dict) [matching-items]
Convert a sequence of C values to a Python dictionary. Each pair of consecutive C values adds one item
to the dictionary, serving as key and value, respectively.

If there is an error in the format string, the SystemError exception is set and NULL returned.

PyObject *Py_vVaBuildValue (const char *format, va_list vargs)

Valore di ritorno: Nuovo riferimento. Parte del ABI Stabile. Identical to Py_Buildvalue (), except that it
accepts a va_list rather than a variable number of arguments.

6.7 String conversion and formatting

Functions for number conversion and formatted string output.

int PyOS_snprint£ (char *str, size_t size, const char *format, ...)

Parte del ABI Stabile. Output not more than size bytes to str according to the format string format and the extra
arguments. See the Unix man page snprintf (3).

int PyOS_vsnprint £ (char *str, size_t size, const char *format, va_list va)

Farte del ABI Stabile. Output not more than size bytes to st according to the format string format and the
variable argument list va. Unix man page vsnprintf (3).

Py0S_snprintf () and PyOS vsnprintf () wrap the Standard C library functions snprintf () and
vsnprintf (). Their purpose is to guarantee consistent behavior in corner cases, which the Standard C functions
do not.

The wrappers ensure that st r [size—-1] isalways '\ 0 ' upon return. They never write more than size bytes (including
the trailing '\ 0 ") into str. Both functions require that str != NULL, size > 0, format != NULL and size <
INT_MAX. Note that this means there is no equivalent to the C99 n = snprintf (NULL, 0, ...) which would
determine the necessary buffer size.

The return value (rv) for these functions should be interpreted as follows:

« When0 <= rv < size, the output conversion was successful and rv characters were written to str (excluding
the trailing '\ 0" byte at str[rv]).

6.7. String conversion and formatting 89

https://manpages.debian.org/snprintf(3)
https://manpages.debian.org/vsnprintf(3)

The Python/C API, Release 3.13.7

e« When rv >= size, the output conversion was truncated and a buffer with rv + 1 bytes would have been

needed to succeed. str[size-1]is '\0" in this case.

e When rv < 0, «something bad happened.» str[size-1] is '\0' in this case too, but the rest of str is

undefined. The exact cause of the error depends on the underlying platform.

The following functions provide locale-independent string to number conversions.

unsigned long PyOS_strtoul (const char *str, char **ptr, int base)

Farte del ABI Stabile. Convert the initial part of the string in str to an unsigned long value according to
the given base, which must be between 2 and 36 inclusive, or be the special value 0.

Leading white space and case of characters are ignored. If base is zero it looks for a leading 0b, 0o or 0x to
tell which base. If these are absent it defaults to 10. Base must be 0 or between 2 and 36 (inclusive). If ptr is
non-NULL it will contain a pointer to the end of the scan.

If the converted value falls out of range of corresponding return type, range error occurs (errno is set to
ERANGE) and ULONG_MAX is returned. If no conversion can be performed, 0 is returned.

See also the Unix man page strtoul (3).

Added in version 3.2.

long PyOS_strtol (const char *str, char **ptr, int base)

Parte del ABI Stabile. Convert the initial part of the string in str to an long value according to the given
base, which must be between 2 and 36 inclusive, or be the special value 0.

Same as PyOS_strtoul (), but return a 1ong value instead and LONG_MAX on overflows.
See also the Unix man page strtol (3).

Added in version 3.2.

double PyOS_string to_double (const char *s, char **endptr, PyObject *overflow_exception)

Farte del ABI Stabile. Convert a string s to a doub1le, raising a Python exception on failure. The set of accepted
strings corresponds to the set of strings accepted by Python’s £1oat () constructor, except that s must not have
leading or trailing whitespace. The conversion is independent of the current locale.

If endptr is NULL, convert the whole string. Raise ValueError and return -1 . 0 if the string is not a valid
representation of a floating-point number.

If endptr is not NULL, convert as much of the string as possible and set *endpt r to point to the first unconverted
character. If no initial segment of the string is the valid representation of a floating-point number, set *endptr
to point to the beginning of the string, raise ValueError, and return -1 . 0.

If s represents a value that is too large to store in a float (for example, "1e500" is such a string on many
platforms) then if overflow_exception is NULL return Py_HUGE_VAL (with an appropriate sign) and don’t
set any exception. Otherwise, overflow_exception must point to a Python exception object; raise that
exception and return -1 . 0. In both cases, set *endpt r to point to the first character after the converted value.

If any other error occurs during the conversion (for example an out-of-memory error), set the appropriate
Python exception and return -1 . 0.

Added in version 3.1.

char *Py0OS_double_to_string (double val, char format_code, int precision, int flags, int *ptype)

Farte del ABI Stabile. Convert a double val to a string using supplied format_code, precision, and flags.

format_code must be one of 'e', 'E', '£', 'F', 'g', 'G' or 'r'. For 'r', the supplied precision must be
0 and is ignored. The ' r' format code specifies the standard repr () format.

flags can be zero or more of the values Py_DTSF_SIGN, Py_DTSF_ADD_DOT_O, or Py_DTSF_ALT, or-ed
together:

e Py_DTSF_SIGN means to always precede the returned string with a sign character, even if val is non-
negative.

e Py_DTSF_ADD_DOT_0 means to ensure that the returned string will not look like an integer.

90

Capitolo 6. Utilities

https://manpages.debian.org/strtoul(3)
https://manpages.debian.org/strtol(3)

The Python/C API, Release 3.13.7

e Py DTSF_ALT means to apply «alternate» formatting rules. See the documentation for the
PyOS_snprintf () '#' specifier for details.

If ptype is non-NULL, then the value it points to will be set to one of Py_DTST_FINITE, Py DTST_INFINITE,
or Py_DTST_NAN, signifying that val is a finite number, an infinite number, or not a number, respectively.

The return value is a pointer to buffer with the converted string or NULL if the conversion failed. The caller is
responsible for freeing the returned string by calling PyMem_Free ().

Added in version 3.1.

int PyOS_stricmp (const char *s1, const char *s2)

Case insensitive comparison of strings. The function works almost identically to strcmp () except that it
ignores the case.

int PyOS_strnicmp (const char *s1, const char *s2, Py_ssize_t size)

Case insensitive comparison of strings. The function works almost identically to strncmp () except that it
ignores the case.

6.8 PyHash API

See also the PyTypeObject. tp_hash member and numeric-hash.
type Py_hash_t
Hash value type: signed integer.
Added in version 3.2.
type Py_uhash_t
Hash value type: unsigned integer.
Added in version 3.2.
PyHASH_MODULUS
The Mersenne prime P = 2**n -1, used for numeric hash scheme.
Added in version 3.13.
PyHASH_BITS
The exponent n of P in PyHASH MODULUS.
Added in version 3.13.
PyHASH_MULTIPLIER
Prime multiplier used in string and various other hashes.
Added in version 3.13.
PyHASH_INF
The hash value returned for a positive infinity.
Added in version 3.13.
PyHASH_IMAG
The multiplier used for the imaginary part of a complex number.
Added in version 3.13.
type PyHash_FuncDef
Hash function definition used by PyHash_GetFuncDef ().
Py_hash_t (*const hash)(const void*, Py_ssize_t)
Hash function.

6.8. PyHash API 91

https://en.wikipedia.org/wiki/Mersenne_prime

The Python/C API, Release 3.13.7

const char *name

Hash function name (UTF-8 encoded string).

const int hash_bits
Internal size of the hash value in bits.
const int seed_bits

Size of seed input in bits.

Added in version 3.4.

PyHash_FuncDef *PyHash_GetFuncDef (void)

Get the hash function definition.

@ Vedi anche

PEP 456 «Secure and interchangeable hash algorithm».

Added in version 3.4.

Py_hash_t Py_HashPointer (const void *ptr)

Hash a pointer value: process the pointer value as an integer (cast it to uintptr_t internally). The pointer is
not dereferenced.

The function cannot fail: it cannot return -1.

Added in version 3.13.

Py_hash_t PyObject_GenericHash (PyObject *obj)

Generic hashing function that is meant to be put into a type object’s tp_hash slot. Its result only depends on
the object’s identity.

Dettaglio dell’'implementazione di CPython: In CPython, it is equivalent to Py_HashPointer ().

Added in version 3.13.

6.9 Reflection

PyObject *PyEval_GetBuiltins (void)

Valore di ritorno: Riferimento preso in prestito. Parte del ABI Stabile. Deprecato dalla versione 3.13: Use
PyEval_GetFrameBuiltins () instead.

Return a dictionary of the builtins in the current execution frame, or the interpreter of the thread state if no
frame is currently executing.

PyObject *PyEval_GetLocals (void)

Valore di ritorno: Riferimento preso in prestito. Parte del ABI Stabile. Deprecato dalla versione 3.13: Use either
PyEval_ GetFrameLocals () to obtain the same behaviour as calling 1ocals () in Python code, or else call
PyFrame_GetLocals () on the result of PyEval GetFrame () to access the £_locals attribute of the
currently executing frame.

Return a mapping providing access to the local variables in the current execution frame, or NULL if no frame
is currently executing.

Refer to 1ocals () for details of the mapping returned at different scopes.

As this function returns a borrowed reference, the dictionary returned for optimized scopes is cached on the
frame object and will remain alive as long as the frame object does. Unlike PyEval_GetFramelLocals ()
and locals (), subsequent calls to this function in the same frame will update the contents of the cached
dictionary to reflect changes in the state of the local variables rather than returning a new snapshot.

92

Capitolo 6. Utilities

https://peps.python.org/pep-0456/

The Python/C API, Release 3.13.7

Cambiato nella versione 3.13: As part of PEP 667, pyFrame GetLocals(),locals(),and FrameType.
f_locals no longer make use of the shared cache dictionary. Refer to the What’s New entry for additional
details.

PyObject *PyEval_GetGlobals (void)
Valore di ritorno: Riferimento preso in prestito. Parte del ABI Stabile. Deprecato dalla versione 3.13: Use
PyEval_GetFrameGlobals () instead.

Return a dictionary of the global variables in the current execution frame, or NULL if no frame is currently
executing.

PyFrameObject *PyEval_GetFrame (void)
Valore di ritorno: Riferimento preso in prestito. Parte del ABI Stabile. Return the current thread state’s frame,
which is NULL if no frame is currently executing.

See also PyThreadState_GetFrame ().

PyObject *PyEval_GetFrameBuiltins (void)
Valore di ritorno: Nuovo riferimento. Parte del ABI Stabile dalla versione 3.13. Return a dictionary of the
builtins in the current execution frame, or the interpreter of the thread state if no frame is currently executing.

Added in version 3.13.

PyObject *PyEval_GetFrameLocals (void)

Valore di ritorno: Nuovo riferimento. Parte del ABI Stabile dalla versione 3.13. Return a dictionary of the local
variables in the current execution frame, or NULL if no frame is currently executing. Equivalent to calling
locals () in Python code.

To access £_locals on the current frame without making an independent snapshot in optimized scopes, call
PyFrame_GetLocals () on the result of PyEval GetFrame ().

Added in version 3.13.

PyObject *PyEval_GetFrameGlobals (void)

Valore di ritorno: Nuovo riferimento. Parte del ABI Stabile dalla versione 3.13. Return a dictionary of the
global variables in the current execution frame, or NULL if no frame is currently executing. Equivalent to
calling globals () in Python code.

Added in version 3.13.

const char *PyEval_GetFuncName (PyObject *func)
Parte del ABI Stabile. Return the name of func if it is a function, class or instance object, else the name of
funcs type.

const char *PyEval_GetFuncDesc (PyObject *func)

Farte del ABI Stabile. Return a description string, depending on the type of func. Return values include
«()» for functions and methods, « constructor», « instance», and « object». Concatenated with the result of
PyEval_GetFuncName (), the result will be a description of func.

6.10 Codec registry and support functions

int PyCodec_Register (PyObject *search_function)
Parte del ABI Stabile. Register a new codec search function.
As side effect, this tries to load the encodings package, if not yet done, to make sure that it is always first in
the list of search functions.

int PyCodec_Unregister (PyObject *search_function)

Farte del ABI Stabile dalla versione 3.10. Unregister a codec search function and clear the registry’s cache.
If the search function is not registered, do nothing. Return O on success. Raise an exception and return -1 on
error.

Added in version 3.10.

6.10. Codec registry and support functions 93

https://peps.python.org/pep-0667/

The Python/C API, Release 3.13.7

int PyCodec_KnownEncoding (const char *encoding)
Farte del ABI Stabile. Return 1 or 0 depending on whether there is a registered codec for the given encoding.
This function always succeeds.

PyObject *PyCodec_Encode (PyObject *object, const char *encoding, const char *errors)
Valore di ritorno: Nuovo riferimento. Parte del ABI Stabile. Generic codec based encoding API.
object is passed through the encoder function found for the given encoding using the error handling method
defined by errors. errors may be NULL to use the default method defined for the codec. Raises a LookupError
if no encoder can be found.

PyObject *PyCodec_Decode (PyObject *object, const char *encoding, const char *errors)
Valore di ritorno: Nuovo riferimento. Parte del ABI Stabile. Generic codec based decoding API.
object is passed through the decoder function found for the given encoding using the error handling method

defined by errors. errors may be NULL to use the default method defined for the codec. Raises a LookupError
if no encoder can be found.

6.10.1 Codec lookup API

In the following functions, the encoding string is looked up converted to all lower-case characters, which makes
encodings looked up through this mechanism effectively case-insensitive. If no codec is found, a KeyError is set
and NULL returned.
PyObject *PyCodec_Encoder (const char *encoding)

Valore di ritorno: Nuovo riferimento. Parte del ABI Stabile. Get an encoder function for the given encoding.

PyObject *PyCodec_Decoder (const char *encoding)
Valore di ritorno: Nuovo riferimento. Parte del ABI Stabile. Get a decoder function for the given encoding.

PyObject *PyCodec_IncrementalEncoder (const char *encoding, const char *errors)
Valore di ritorno: Nuovo riferimento. Parte del ABI Stabile. Get an IncrementalEncoder object for the given
encoding.

PyObject *PyCodec_IncrementalDecoder (const char *encoding, const char *errors)
Valore di ritorno: Nuovo riferimento. Parte del ABI Stabile. Get an IncrementalDecoder object for the given
encoding.

PyObject *PyCodec_StreamReader (const char *encoding, PyObject *stream, const char *errors)
Valore di ritorno: Nuovo riferimento. Parte del ABI Stabile. Get a StreamReader factory function for the
given encoding.

PyObject *PyCodec_StreamWriter (const char *encoding, PyObject *stream, const char *errors)

Valore di ritorno: Nuovo riferimento. Parte del ABI Stabile. Get a StreamWriter factory function for the
given encoding.

6.10.2 Registry API for Unicode encoding error handlers

int PyCodec_RegisterError (const char *name, PyObject *error)

Farte del ABI Stabile. Register the error handling callback function error under the given name. This callback
function will be called by a codec when it encounters unencodable characters/undecodable bytes and name is
specified as the error parameter in the call to the encode/decode function.

The callback gets a single argument, an instance of UnicodeEncodeError, UnicodeDecodeError Or
UnicodeTranslateError that holds information about the problematic sequence of characters or bytes
and their offset in the original string (see Unicode Exception Objects for functions to extract this information).
The callback must either raise the given exception, or return a two-item tuple containing the replacement for
the problematic sequence, and an integer giving the offset in the original string at which encoding/decoding
should be resumed.

Return 0 on success, —1 on error.

94 Capitolo 6. Utilities

The Python/C API, Release 3.13.7

PyObject *PyCodec_LookupError (const char *name)

Valore di ritorno: Nuovo riferimento. Parte del ABI Stabile. Lookup the error handling callback function regi-
stered under name. As a special case NULL can be passed, in which case the error handling callback for «strict»
will be returned.

PyObject *PyCodec_StrictErrors (PyObject *exc)
Valore di ritorno: Sempre NULL. Parte del ABI Stabile. Raise exc as an exception.

PyObject *PyCodec_IgnoreErrors (PyObject *exc)
Valore di ritorno: Nuovo riferimento. Parte del ABI Stabile. Ignore the unicode error, skipping the faulty input.

PyObject *PyCodec_ReplaceErrors (PyObject *exc)
Valore di ritorno: Nuovo riferimento. Parte del ABI Stabile. Replace the unicode encode error with ? or U+FFFD.

PyObject *PyCodec_XMLCharRefReplaceErrors (PyObject *exc)

Valore di ritorno: Nuovo riferimento. Parte del ABI Stabile. Replace the unicode encode error with XML
character references.

PyObject *PyCodec_BackslashReplaceErrors (PyObject *exc)

Valore di ritorno: Nuovo riferimento. Parte del ABI Stabile. Replace the unicode encode error with backslash
escapes (\x, \u and \U).

PyObject *PyCodec_NameReplaceErrors (PyObject *exc)
Valore di ritorno: Nuovo riferimento. Parte del ABI Stabile dalla versione 3.7. Replace the unicode encode error
with \N{. ..} escapes.

Added in version 3.5.

6.11 PyTime C API

Added in version 3.13.
The clock C API provides access to system clocks. It is similar to the Python t ime module.

For C API related to the datet ime module, see DateTime Objects.

6.11.1 Types
type PyTime_t
A timestamp or duration in nanoseconds, represented as a signed 64-bit integer.

The reference point for timestamps depends on the clock used. For example, PyTime Time () returns
timestamps relative to the UNIX epoch.

The supported range is around [-292.3 years; +292.3 years]. Using the Unix epoch (January 1st, 1970) as
reference, the supported date range is around [1677-09-21; 2262-04-11]. The exact limits are exposed as
constants:

PyTime_t PyTime_MIN

Minimum value of PyTime t.

PyTime_t PyTime_MAX

Maximum value of PyTime_t.

6.11.2 Clock Functions

The following functions take a pointer to a Py Time_ t that they set to the value of a particular clock. Details of each
clock are given in the documentation of the corresponding Python function.

The functions return 0 on success, or —1 (with an exception set) on failure.

6.11. PyTime C API 95

The Python/C API, Release 3.13.7

On integer overflow, they set the PyExc_OverflowError exception and set *result to the value clamped to the
[PyTime_ MIN; PyTime_MAX] range. (On current systems, integer overflows are likely caused by misconfigured
system time.)

As any other C API (unless otherwise specified), the functions must be called with the GIL held.

int PyTime_Monotonic (PyTime_t *result)

Read the monotonic clock. See time.monotonic () for important details on this clock.

int PyTime_PerfCounter (PyTime_t *result)

Read the performance counter. See t ime .perf_counter () for important details on this clock.

int PyTime_Time (PyTime_t *result)

Read the “wall clock” time. See t ime . time () for details important on this clock.

6.11.3 Raw Clock Functions
Similar to clock functions, but don’t set an exception on error and don’t require the caller to hold the GIL.
On success, the functions return 0.

On failure, they set *result to 0 and return -1, without setting an exception. To get the cause of the error, acquire
the GIL and call the regular (non-rRaw) function. Note that the regular function may succeed after the Raw one failed.

int PyTime_MonotonicRaw (PyTime_t *result)

Similar to PyTime_Monotonic (), but don’t set an exception on error and don’t require holding the GIL.

int PyTime_PerfCounterRaw (PyTime_t *result)

Similar to PyTime PerfCounter (), but don’t set an exception on error and don’t require holding the GIL.

int PyTime_TimeRaw (PyTime_t *result)

Similar to PyTime_Time (), but don’'t set an exception on error and don’t require holding the GIL.

6.11.4 Conversion functions
double PyTime_AsSecondsDouble (PyTime_t t)
Convert a timestamp to a number of seconds as a C double.

The function cannot fail, but note that double has limited accuracy for large values.

6.12 Support for Perf Maps

On supported platforms (as of this writing, only Linux), the runtime can take advantage of perf map files to make
Python functions visible to an external profiling tool (such as perf). A running process may create a file in the /tmp
directory, which contains entries that can map a section of executable code to a name. This interface is described in
the documentation of the Linux Perf tool.

In Python, these helper APIs can be used by libraries and features that rely on generating machine code on the fly.
Note that holding the Global Interpreter Lock (GIL) is not required for these APIs.

int PyUnstable_PerfMapState_Init (void)

Questa pagina API Instabile. Potrebbe cambiare senza preavviso nelle release minori.

Openthe /tmp/perf-$pid.map file, unless it’s already opened, and create a lock to ensure thread-safe writes
to the file (provided the writes are done through PyUnstable WritePerfMapEntry ()). Normally, there’s

96 Capitolo 6. Utilities

https://perf.wiki.kernel.org/index.php/Main_Page
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/tools/perf/Documentation/jit-interface.txt

The Python/C API, Release 3.13.7

no need to call this explicitly; just use PyUnstable WritePerfMapEntry () and it will initialize the state
on first call.

Returns 0 on success, -1 on failure to create/open the perf map file, or -2 on failure to create a lock. Check
errno for more information about the cause of a failure.

int PyUnstable_WritePerfMapEntry (const void *code_addr, unsigned int code_size, const char
*entry_name)

Questa pagina API Instabile. Potrebbe cambiare senza preavviso nelle release minori.

Write one single entry to the /tmp/perf-$pid.map file. This function is thread safe. Here is what an example
entry looks like:

address size name
7£3529fcf759 b py::bar:/run/t.py

Will call PyUnstable PerfMapState Init () before writing the entry, if the perf map file is not already
opened. Returns 0 on success, or the same error codes as PyUnstable_PerfMapState_Init () on failure.

void PyUnstable_PerfMapState_Fini (void)

Questa pagina AP/ Instabile. Potrebbe cambiare senza preavviso nelle release minori.

Close the perf map file opened by PyUnstable PerfMapState_Init (). This is called by the runtime
itself during interpreter shut-down. In general, there shouldn’t be a reason to explicitly call this, except to
handle specific scenarios such as forking.

6.12. Support for Perf Maps 97

The Python/C API, Release 3.13.7

98 Capitolo 6. Utilities

CAPITOLO /

Abstract Objects Layer

The functions in this chapter interact with Python objects regardless of their type, or with wide classes of object types
(e.g. all numerical types, or all sequence types). When used on object types for which they do not apply, they will
raise a Python exception.

It is not possible to use these functions on objects that are not properly initialized, such as a list object that has been
created by PyList_New (), but whose items have not been set to some non-NULL value yet.

7.1 Object Protocol

PyObject *Py_GetConstant (unsigned int constant_id)

Parte del ABI Stabile dalla versione 3.13. Get a strong reference to a constant.
Set an exception and return NULL if constant_id is invalid.

constant_id must be one of these constant identifiers:

99

The Python/C API, Release 3.13.7

Constant Identifier Value Returned object

0 None
Py_CONSTANT_NONE

1 False
Py_CONSTANT_FALSE

2 True
Py_CONSTANT_TRUE

3 Ellipsis
Py_CONSTANT_ELLIPSIS

4 NotImplemented
Py_CONSTANT_NOT_ IMPLEMENTI

5 0
Py_CONSTANT_ZERO

6 1
Py_CONSTANT_ONE

7 L
Py CONSTANT_EMPTY_STR

8 bll
Py CONSTANT_EMPTY_ BYTES

9 0

Py_CONSTANT EMPTY TUPLE

Numeric values are only given for projects which cannot use the constant identifiers.
Added in version 3.13.
Dettaglio dell’implementazione di CPython: In CPython, all of these constants are immortal.

PyObject *Py_GetConstantBorrowed (unsigned int constant_id)
Parte del ABI Stabile dalla versione 3.13. Similar to Py_GetConstant (), but return a borrowed reference.

This function is primarily intended for backwards compatibility: using Py_GetConstant () is recommended
for new code.

The reference is borrowed from the interpreter, and is valid until the interpreter finalization.
Added in version 3.13.

PyObject *Py_NotImplemented
The NotImplemented singleton, used to signal that an operation is not implemented for the given type
combination.

Py RETURN_NOTIMPLEMENTED
Properly handle returning Py NotImplemented from within a C function (that is, create a new strong
reference to Not Implemented and return it).

Py_PRINT_RAW

Flag to be used with multiple functions that print the object (like PyObject_Print () and
pyFile_Writeobject ()). If passed, these function would use the str () of the object instead of the
repr ().

100 Capitolo 7. Abstract Objects Layer

The Python/C API, Release 3.13.7

int PyObject_Print (PyObject *o, FILE *fp, int flags)
Print an object o, on file fp. Returns -1 on error. The flags argument is used to enable certain printing options.
The only option currently supported is Py PRINT_RAW; if given, the str () of the object is written instead of
the repr ().

int PyObject_HasAttrWithError (PyObject *o, PyObject *attr_name)
Parte del ABI Stabile dalla versione 3.13. Returns 1 if o has the attribute attr_name, and 0 otherwise. This is
equivalent to the Python expression hasattr (o, attr_name). On failure, return -1.
Added in version 3.13.

int PyObject_HasAttrStringWithError (PyObject *o, const char *attr_name)
Parte del ABI Stabile dalla versione 3.13. This is the same as PyObject_HasAttrWithError (), but
attr_name is specified as a const char* UTF-8 encoded bytes string, rather than a PyObject*.
Added in version 3.13.

int PyObject_HasAttr (PyObject *o, PyObject *attr_name)
Parte del ABI Stabile. Returns 1 if o has the attribute attr_name, and 0 otherwise. This function always
succeeds.

© Nota

Exceptions that occur when this calls _ getattr_ () and _ getattribute_ () methods
aren’t propagated, but instead given to sys.unraisablehook (). For proper error handling, use
PyObject_HasAttrWithError (), PyObject_GetOptionalAttr () Or PyObject_GetAttr ()
instead.

int PyObject_HasAttrString (PyObject *o, const char *attr_name)

Parte del ABI Stabile. This is the same as PyObject_HasAttr (), but attr_name is specified as a const
char* UTF-8 encoded bytes string, rather than a PyObject*.

O Nota

Exceptions that occur when this calls _ getattr_ () and _ getattribute_ () methods
or while creating the temporary str object are silently ignored. For proper error handling,
use PyObject_HasAttrStringWithError (), PyObject_GetOptionalAttrString() Or
PyObject_GetAttrString () instead.

PyObject *PyObject_GetAttr (PyObject *o, PyObject *attr_name)

Valore di ritorno: Nuovo riferimento. Parte del ABI Stabile. Retrieve an attribute named attr_name from object
o. Returns the attribute value on success, or NULL on failure. This is the equivalent of the Python expression

o.attr_name.

If the missing attribute should not be treated as a failure, you can use PyObject_GetOptionalAttr ()
instead.

PyObject *PyObject_GetAttrString (PyObject *o, const char *attr_name)
Valore di ritorno: Nuovo riferimento. Parte del ABI Stabile. This is the same as PyObject_GetAttr (), but
attr_name is specified as a const char* UTF-8 encoded bytes string, rather than a Pyobject*.

If the missing attribute should not be treated as a failure, you can use
PyObject_GetOptionalAttrString () instead.

int PyObject_GetOptionalAttr (PyObject *obj, PyObject *attr_name, PyObject **result) ;
Parte del ABI Stabile dalla versione 3.13. Variant of PyoObject_GetAttr () which doesn’t raise
AttributeError if the attribute is not found.

7.1. Object Protocol 101

The Python/C API, Release 3.13.7

If the attribute is found, return 1 and set *result to a new strong reference to the attribute. If the attribu-
te is not found, return 0 and set *result to NULL; the AttributeError is silenced. If an error other than
AttributeError is raised, return —1 and set *result to NULL.

Added in version 3.13.

int PyObject_GetOptionalAttrString (PyObject *obj, const char *attr_name, PyObject **result) ;

Parte del ABI Stabile dalla versione 3.13. This is the same as PyObject_GetOptionalAttr (), but
attr_name is specified as a const char* UTF-8 encoded bytes string, rather than a Pyobject*.

Added in version 3.13.

PyObject *PyObject_GenericGetAttr (PyObject *o, PyObject *name)
Valore di ritorno: Nuovo riferimento. Parte del ABI Stabile. Generic attribute getter function that is meant to be
put into a type object’s tp_getattro slot. It looks for a descriptor in the dictionary of classes in the object’s
MRO as well as an attribute in the object’s __dict__ (if present). As outlined in descriptors, data descriptors
take preference over instance attributes, while non-data descriptors don’t. Otherwise, an AttributeError is
raised.

int PyObject_SetAttr (PyObject *o, PyObject *attr_name, PyObject *v)
Farte del ABI Stabile. Set the value of the attribute named atfr_name, for object o, to the value v. Raise

an exception and return -1 on failure; return 0 on success. This is the equivalent of the Python statement
o.attr_name = wv.

If vis NULL, the attribute is deleted. This behaviour is deprecated in favour of using PyObject_DelAttr (),
but there are currently no plans to remove it.

int PyObject_SetAttrString (PyObject *o, const char *attr_name, PyObject *v)

Parte del ABI Stabile. This is the same as PyObject_SetAttr (), but attr_name is specified as a const
char* UTF-8 encoded bytes string, rather than a Pyobject*.

If v is NULL, the attribute is deleted, but this feature is deprecated in favour of using
PyObject_DelAttrString().

The number of different attribute names passed to this function should be kept small, usually by
using a statically allocated string as attr_name. For attribute names that aren’t known at compile time,
prefer calling PyUnicode_FromString() and PyObject_SetAttr () directly. For more details, see
PyUnicode_InternFromString (), which may be used internally to create a key object.

int PyObject_GenericSetAttr (PyObject *o, PyObject *name, PyObject *value)
Parte del ABI Stabile. Generic attribute setter and deleter function that is meant to be put into a type object’s
tp_setattro slot. It looks for a data descriptor in the dictionary of classes in the object’s MRO, and if found
it takes preference over setting or deleting the attribute in the instance dictionary. Otherwise, the attribute is set
or deleted in the object’s __dict__ (if present). On success, 0 is returned, otherwise an AttributeError
is raised and -1 is returned.

int PyObject_DelAttr (PyObject *o, PyObject *attr_name)
Farte del ABI Stabile dalla versione 3.13. Delete attribute named attr_name, for object o. Returns -1 on failure.
This is the equivalent of the Python statement del o.attr_name.

int PyObject_DelAttrString (PyObject *o, const char *attr_name)
Parte del ABI Stabile dalla versione 3.13. This is the same as PyObject_DelAttr (), but attr_name is
specified as a const char* UTF-8 encoded bytes string, rather than a Pyobject*.

The number of different attribute names passed to this function should be kept small, usually by
using a statically allocated string as atfr_name. For attribute names that aren’t known at compile time,
prefer calling PyUnicode_FromString() and PyObject_DelAttr () directly. For more details, see
PyUnicode_InternFromString (), which may be used internally to create a key object for lookup.

PyObject *PyObject_GenericGetDict (PyObject *o, void *context)

Valore di ritorno: Nuovo riferimento. Parte del ABI Stabile dalla versione 3.10. A generic implementation for
the getter of a ___dict__ descriptor. It creates the dictionary if necessary.

102 Capitolo 7. Abstract Objects Layer

The Python/C API, Release 3.13.7

This function may also be called to get the _ dict__ of the object 0. Pass NULL for context when cal-
ling it. Since this function may need to allocate memory for the dictionary, it may be more efficient to call
PyObject_GetAttr () when accessing an attribute on the object.

On failure, returns NULL with an exception set.
Added in version 3.3.

int PyObject_GenericSetDict (PyObject *o, PyObject *value, void *context)

Farte del ABI Stabile dalla versione 3.7. A generic implementation for the setter of a __dict__ descriptor.
This implementation does not allow the dictionary to be deleted.

Added in version 3.3.

PyObject **_PyObject_GetDictPtr (PyObject *obj)
, return NULL without setting an

Return a pointer to __dict__ of the object obj. If there is no _ dict
exception.

This function may need to allocate memory for the dictionary, so it may be more efficient to call
PyObject_GetAttr () when accessing an attribute on the object.

PyObject *PyObject_RichCompare (PyObject *ol, PyObject *02, int opid)
Valore di ritorno: Nuovo riferimento. Parte del ABI Stabile. Compare the values of o/ and 02 using the operation
specified by opid, which must be one of Py 17, Py_LE, Py_EQ, Py _NE, Py_GT, Or Py_GE, corresponding to
<, <=, ==, !=, >, or >= respectively. This is the equivalent of the Python expression o1 op o2, where op is
the operator corresponding to opid. Returns the value of the comparison on success, or NULL on failure.

int PyObject_RichCompareBool (PyObject *0l, PyObject *02, int opid)
Parte del ABI Stabile. Compare the values of ol and 02 using the operation specified by opid, like
PyObject_RichCompare (), but returns —1 on error, 0 if the result is false, 1 otherwise.

© Nota

If ol and 02 are the same object, PyObject RichCompareBool () will always return 1 for Py_E0 and 0 for
Py_NE.

PyObject *PyObject_Format (PyObject *obj, PyObject *format_spec)
Parte del ABI Stabile. Format obj using format_spec. This is equivalent to the Python expression format (obj,
format_spec).

Sformat_spec may be NULL. In this case the call is equivalent to format (obj). Returns the formatted string
on success, NULL on failure.

PyObject *PyObject_Repr (PyObject *0)
Valore di ritorno: Nuovo riferimento. Parte del ABI Stabile. Compute a string representation of object o. Returns

the string representation on success, NULL on failure. This is the equivalent of the Python expression repr (o) .
Called by the repr () built-in function.

Cambiato nella versione 3.4: This function now includes a debug assertion to help ensure that it does not silently
discard an active exception.

PyObject *PyObject_ASCII (PyObject *0)
Valore di ritorno: Nuovo riferimento. Parte del ABI Stabile. As PyObject_Repr (), compute a string repre-
sentation of object o, but escape the non-ASCII characters in the string returned by PyObject_Repr () with
\x, \u or \U escapes. This generates a string similar to that returned by pPyObject_Repr () in Python 2.
Called by the ascii () built-in function.

PyObject *PyObject_Str (PyObject *0)
Valore di ritorno: Nuovo riferimento. Parte del ABI Stabile. Compute a string representation of object o. Returns

the string representation on success, NULL on failure. This is the equivalent of the Python expression str (o).
Called by the str () built-in function and, therefore, by the print () function.

7.1. Object Protocol 103

The Python/C API, Release 3.13.7

Cambiato nella versione 3.4: This function now includes a debug assertion to help ensure that it does not silently
discard an active exception.

PyObject *PyObject_Bytes (PyObject *0)
Valore di ritorno: Nuovo riferimento. Parte del ABI Stabile. Compute a bytes representation of object 0. NULL is
returned on failure and a bytes object on success. This is equivalent to the Python expression bytes (o), when
o is not an integer. Unlike bytes (o), a TypeError is raised when o is an integer instead of a zero-initialized
bytes object.

int PyObject_IsSubclass (PyObject *derived, PyObject *cls)
Parte del ABI Stabile. Return 1 if the class derived is identical to or derived from the class cls, otherwise return
0. In case of an error, return —1.

If cls is a tuple, the check will be done against every entry in cls. The result will be 1 when at least one of the
checks returns 1, otherwise it will be 0.

If cls has a __subclasscheck__ () method, it will be called to determine the subclass status as described
in PEP 3119. Otherwise, derived is a subclass of cls if it is a direct or indirect subclass, i.e. contained in
cls.__mro_

Normally only class objects, i.e. instances of type or a derived class, are considered classes. However, objects
can override this by havinga __bases___ attribute (which must be a tuple of base classes).

int PyObject_IsInstance (PyObject *inst, PyObject *cls)
Parte del ABI Stabile. Return 1 if inst is an instance of the class cls or a subclass of cls, or 0 if not. On error,
returns -1 and sets an exception.

If cls is a tuple, the check will be done against every entry in cls. The result will be 1 when at least one of the
checks returns 1, otherwise it will be 0.

If clshasa___instancecheck__ () method, it will be called to determine the subclass status as described in
PEP 3119. Otherwise, inst is an instance of cls if its class is a subclass of cls.

An instance inst can override what is considered its class by havinga __class__ attribute.

An object cls can override if it is considered a class, and what its base classes are, by havinga _ bases_
attribute (which must be a tuple of base classes).

Py_hash_t PyObject_Hash (PyObject *0)
Farte del ABI Stabile. Compute and return the hash value of an object o. On failure, return —1. This is the
equivalent of the Python expression hash (o).

Cambiato nella versione 3.2: The return type is now Py_hash_t. This is a signed integer the same size as
Py ssize_t.

Py_hash_t PyObject_HashNotImplemented (PyObject *0)

Parte del ABI Stabile. Set a TypeError indicating that type (o) is not hashable and return —1. This function
receives special treatment when stored in a t p_hash slot, allowing a type to explicitly indicate to the interpreter
that it is not hashable.

int PyObject_IsTrue (PyObject *0)
Farte del ABI Stabile. Returns 1 if the object o is considered to be true, and 0 otherwise. This is equivalent to
the Python expression not not o. On failure, return -1.

int PyObject_Not (PyObject *0)
Farte del ABI Stabile. Returns 0 if the object o is considered to be true, and 1 otherwise. This is equivalent to
the Python expression not o. On failure, return -1.

PyObject *PyObject_Type (PyObject *0)
Valore di ritorno: Nuovo riferimento. Parte del ABI Stabile. When o is non-NULL, returns a type object corre-
sponding to the object type of object o. On failure, raises SystemError and returns NULL. This is equivalent
to the Python expression type (o). This function creates a new strong reference to the return value. The-

re’s really no reason to use this function instead of the py_TvPE () function, which returns a pointer of type
PyTypeObject*, except when a new strong reference is needed.

104 Capitolo 7. Abstract Objects Layer

https://peps.python.org/pep-3119/
https://peps.python.org/pep-3119/

The Python/C API, Release 3.13.7

int PyObject_TypeCheck (PyObject *o, PyTypeObject *type)
Return non-zero if the object o is of type fype or a subtype of type, and 0 otherwise. Both parameters must be
non-NULL.

Py_ssize_t PyObject_Size (PyObject *0)

Py_ssize_t PyObject_Length (PyObject *0)
Farte del ABI Stabile. Return the length of object o. If the object o provides either the sequence and map-
ping protocols, the sequence length is returned. On error, -1 is returned. This is the equivalent to the Python
expression len (o).

Py_ssize_t PyObject_LengthHint (PyObject *o, Py_ssize_t defaultvalue)

Return an estimated length for the object o. First try to return its actual length, then an estimate using
__length_hint__ (), and finally return the default value. On error return 1. This is the equivalent to the
Python expression operator.length_hint (o, defaultvalue).

Added in version 3.4.

PyObject *PyObject_GetItem (PyObject *o, PyObject *key)
Valore di ritorno: Nuovo riferimento. Parte del ABI Stabile. Return element of o corresponding to the object
key or NULL on failure. This is the equivalent of the Python expression o [key].

int PyObject_SetItem (PyObject *o, PyObject *key, PyObject *v)

Farte del ABI Stabile. Map the object key to the value v. Raise an exception and return -1 on failure; return 0 on
success. This is the equivalent of the Python statement o [key] = v. This function does not steal a reference
to v.

int PyObject_DelItem (PyObject *o, PyObject *key)
Parte del ABI Stabile. Remove the mapping for the object key from the object 0. Return —1 on failure. This is
equivalent to the Python statement del o[key].

int PyObject_DelItemString (PyObject *o, const char *key)
Farte del ABI Stabile. This is the same as PyObject_DelItem(), but key is specified as a const char*
UTF-8 encoded bytes string, rather than a PyObject*.

PyObject *PyObject_Dir (PyObject *0)
Valore di ritorno: Nuovo riferimento. Parte del ABI Stabile. This is equivalent to the Python expression dir (o),
returning a (possibly empty) list of strings appropriate for the object argument, or NULL if there was an error.
If the argument is NULL, this is like the Python dir (), returning the names of the current locals; in this case,
if no execution frame is active then NULL is returned but PyErr_ Occurred () will return false.

PyObject *PyObject_GetIter (PyObject *0)

Valore di ritorno: Nuovo riferimento. Parte del ABI Stabile. This is equivalent to the Python expression
iter (o). It returns a new iterator for the object argument, or the object itself if the object is already an
iterator. Raises TypeError and returns NULL if the object cannot be iterated.

PyObject *PyObject_SelfIter (PyObject *obj)
Valore di ritorno: Nuovo riferimento. Parte del ABI Stabile. This is equivalent to the Python

iter (self): return self method. It is intended for iferator types, to be used in the
PyTypeObject.tp_iter slot.

PyObject *PyObject_GetAIter (PyObject *0)

Valore di ritorno: Nuovo riferimento. Parte del ABI Stabile dalla versione 3.10. This is the equivalent to the
Python expression aiter (o). Takes an AsyncIterable object and returns an AsyncIterator forit. This
is typically a new iterator but if the argument is an AsyncIterator, this returns itself. Raises TypeError
and returns NULL if the object cannot be iterated.

Added in version 3.10.

void *PyObject_GetTypeData (PyObject *o, PyTypeObject *cls)
Farte del ABI Stabile dalla versione 3.12. Get a pointer to subclass-specific data reserved for cls.

7.1. Object Protocol 105

The Python/C API, Release 3.13.7

The object o must be an instance of cls, and cls must have been created using negative PyType Spec.
basicsize. Python does not check this.

On error, set an exception and return NULL.
Added in version 3.12.
Py_ssize_t PyType_GetTypeDataSize (PyTypeObject *cls)

Parte del ABI Stabile dalla versione 3.12. Return the size of the instance memory space reserved for cIs, i.e.
the size of the memory PyObject_GetTypeData () returns.

This may be larger than requested using -PyType Spec.basicsize; it is safe to use this larger size (e.g.
with memset ()).

The type cls must have been created using negative Py Type Spec.basicsize. Python does not check this.
On error, set an exception and return a negative value.
Added in version 3.12.

void *PyObject_GetItemData (PyObject *0)

Get a pointer to per-item data for a class with Py_ TPFLAGS_TTEMS_AT_END.

On error, set an exception and return NULL. TypeError 1is raised if o does not have
Py_TPFLAGS_ITEMS_AT_END set.

Added in version 3.12.

int PyObject_VisitManagedDict (PyObject *obj, visitproc visit, void *arg)
Visit the managed dictionary of obj.

This function must only be called in a traverse function of the type which has the
Py_TPFLAGS_MANAGED_DICT flag set.

Added in version 3.13.

void PyObject_ClearManagedDict (PyObject *obj)
Clear the managed dictionary of obj.

This function must only be called in a traverse function of the type which has the
Py TPFLAGS_MANAGED_DICT flag set.

Added in version 3.13.

7.2 Call Protocol

CPython supports two different calling protocols: #p_call and vectorcall.

7.2.1 The tp_call Protocol

Instances of classes that set tp_ca11 are callable. The signature of the slot is:

[PyObject *tp_call (PyObject *callable, PyObject *args, PyObject *kwargs);

A call is made using a tuple for the positional arguments and a dict for the keyword arguments, similarly to
callable (*args, **kwargs) in Python code. args must be non-NULL (use an empty tuple if there are no
arguments) but kwargs may be NULL if there are no keyword arguments.

This convention is not only used by #p_call: tp_new and tp_init also pass arguments this way.

To call an object, use PyObject_Call () or another call API.

106 Capitolo 7. Abstract Objects Layer

The Python/C API, Release 3.13.7

7.2.2 The Vectorcall Protocol
Added in version 3.9.
The vectorcall protocol was introduced in PEP 590 as an additional protocol for making calls more efficient.

As rule of thumb, CPython will prefer the vectorcall for internal calls if the callable supports it. However, this is not
a hard rule. Additionally, some third-party extensions use #p_call directly (rather than using PyObject_Call()).
Therefore, a class supporting vectorcall must also implement tp_call. Moreover, the callable must behave the
same regardless of which protocol is used. The recommended way to achieve this is by setting tp_call to
PyVectorcall_cCall (). This bears repeating:

A\ Avvertimento

A class supporting vectorcall must also implement tp_cal1 with the same semantics.

Cambiato nella versione 3.12: The py_TPFLAGS_HAVE_VECTORCALL flag is now removed from a class when the
class’s __call__ () method is reassigned. (This internally sets tp_call only, and thus may make it behave diffe-
rently than the vectorcall function.) In earlier Python versions, vectorcall should only be used with immutable or
static types.

A class should not implement vectorcall if that would be slower than #p_call. For example, if the callee needs to
convert the arguments to an args tuple and kwargs dict anyway, then there is no point in implementing vectorcall.

Classes can implement the vectorcall protocol by enabling the Py TPFLAGS HAVE VECTORCALL flag and setting
tp_vectorcall offset to the offset inside the object structure where a vectorcallfunc appears. This is a pointer
to a function with the following signature:

typedef PyObject *(*vectorcallfunc)(PyObject *callable, PyObject *const *args, size_t nargsf, PyObject
*kwnames)
Parte del ABI Stabile dalla versione 3.12.

o callable is the object being called.

« args is a C array consisting of the positional arguments followed by the
values of the keyword arguments. This can be NULL if there are no arguments.

« nargsf is the number of positional arguments plus possibly the
PY_VECTORCALIL_ARGUMENTS_OFFSET flag. To get the actual number of positional arguments from
nargsf, use PyVectorcall NARGS ().

o kwnames is a tuple containing the names of the keyword arguments;
in other words, the keys of the kwargs dict. These names must be strings (instances of str or a subclass)
and they must be unique. If there are no keyword arguments, then kwnames can instead be NULL.

PY_ VECTORCALL_ARGUMENTS_OFFSET

Parte del ABI Stabile dalla versione 3.12. If this flag is set in a vectorcall nargsf argument, the callee is allowed
to temporarily change args [-1]. In other words, args points to argument 1 (not 0) in the allocated vector.
The callee must restore the value of args [-1] before returning.

For pyoObject_VectorcallMethod (), this flag means instead that args [0] may be changed.

Whenever they can do so cheaply (without additional allocation), callers are encouraged to use
PY_VECTORCALI_ARGUMENTS_OFFSET. Doing so will allow callables such as bound methods to make their
onward calls (which include a prepended self argument) very efficiently.

Added in version 3.8.

To call an object that implements vectorcall, use a call APl function as with any other callable.
PyObject_Vectorcall () will usually be most efficient.

7.2. Call Protocol 107

https://peps.python.org/pep-0590/

The Python/C API, Release 3.13.7

Recursion Control

When using tp_call, callees do not need to worry about recursion: CPython uses Py_EnterRecursiveCall () and
Py_LeaveRecursiveCall () for calls made using tp_call.

For efficiency, this is not the case for calls done using vectorcall: the callee should use Py_EnterRecursiveCall and
Py_LeaveRecursiveCall if needed.

Vectorcall Support API

Py_ssize_t PyVectorcall_NARGS (size_t nargsf)

Farte del ABI Stabile dalla versione 3.12. Given a vectorcall nargsf argument, return the actual number of
arguments. Currently equivalent to:

[(Py_ssize_t) (nargsf & ~PY_VECTORCALL_ARGUMENTS_OFFSET)

However, the function PyvVectorcall_NARGS should be used to allow for future extensions.

Added in version 3.8.

vectorcallfunc PyVectorcall_Function (PyObject *op)

If op does not support the vectorcall protocol (either because the type does not or because the specific instance
does not), return NULL. Otherwise, return the vectorcall function pointer stored in op. This function never
raises an exception.

This is mostly useful to check whether or not op supports vectorcall, which can be done by checking
PyVectorcall_ Function (op) != NULL.

Added in version 3.9.

PyObject *PyVectorcall_Call (PyObject *callable, PyObject *tuple, PyObject *dict)

Farte del ABI Stabile dalla versione 3.12. Call callable’s vectorcallfunc with positional and keyword
arguments given in a tuple and dict, respectively.

This is a specialized function, intended to be put in the tp_cal1 slot or be used in an implementation of
tp_call. Itdoes not check the Py TPFLAGS HAVE VECTORCALL flag and it does not fall back to tp_call.

Added in version 3.8.

7.2.3 Object Calling API

Various functions are available for calling a Python object. Each converts its arguments to a convention supported by
the called object - either fp_call or vectorcall. In order to do as little conversion as possible, pick one that best fits
the format of data you have available.

The following table summarizes the available functions; please see individual documentation for details.

Function callable args kwargs
PyObject_cCall () PyObject * tuple dict/NULL
PyObject_CallNoArgs () PyObject * — =
PyObject_CallOneArg () PyObject * 1 object —
PyObject_CallObject () PyObject * tuple/NULL —
PyObject_CallFunction () PyObject * format —
PyObject_CallMethod () obj + char* format —
PyObject_CallFunctionObjArgs () PyObject * variadic —
PyObject_CallMethodObjArgs () obj + name variadic —
PyObject_CallMethodNoArgs () Obj + name — —
PyObject_CallMethodOneArqg () Obj + name 1 ObjeCt —
PyObject_Vectorcall () PyObject * vectorcall vectorcall
PyObject_VectorcallDict () PyObject * vectorcall dict/NULL
PyObject_VectorcallMethod () arg + name vectorcall vectorcall

108

Capitolo 7. Abstract Objects Layer

The Python/C API, Release 3.13.7

PyObject *PyObject_Call (PyObject *callable, PyObject *args, PyObject ¥*kwargs)
Valore di ritorno: Nuovo riferimento. Parte del ABI Stabile. Call a callable Python object callable, with
arguments given by the tuple args, and named arguments given by the dictionary kwargs.

args must not be NULL; use an empty tuple if no arguments are needed. If no named arguments are needed,
kwargs can be NULL.

Return the result of the call on success, or raise an exception and return NULL on failure.
This is the equivalent of the Python expression: callable (*fargs, **kwargs).

PyObject *PyObject_CallNoArgs (PyObject *callable)
Valore di ritorno: Nuovo riferimento. Parte del ABI Stabile dalla versione 3.10. Call a callable Python object
callable without any arguments. It is the most efficient way to call a callable Python object without any argument.

Return the result of the call on success, or raise an exception and return NULL on failure.

Added in version 3.9.

PyObject *PyObject_CallOneaArg (PyObject *callable, PyObject *arg)
Valore di ritorno: Nuovo riferimento. Call a callable Python object callable with exactly 1 positional argument
arg and no keyword arguments.

Return the result of the call on success, or raise an exception and return NULL on failure.
Added in version 3.9.

PyObject *PyObject_CallObject (PyObject *callable, PyObject *args)
Valore di ritorno: Nuovo riferimento. Parte del ABI Stabile. Call a callable Python object callable, with
arguments given by the tuple args. If no arguments are needed, then args can be NULL.

Return the result of the call on success, or raise an exception and return NULL on failure.
This is the equivalent of the Python expression: callable (*args).

PyObject *PyObject_CallFunction (PyObject *callable, const char *format, ...)

Valore diritorno: Nuovo riferimento. Parte del ABI Stabile. Call a callable Python object callable, with a variable
number of C arguments. The C arguments are described using a Py_Buildvalue () style format string. The
format can be NULL, indicating that no arguments are provided.

Return the result of the call on success, or raise an exception and return NULL on failure.

This is the equivalent of the Python expression: callable (*args).

Note that if you only pass PyObject* args, PyObject_CallFunctionObjArgs () is a faster alternative.
Cambiato nella versione 3.4: The type of format was changed from char *.

PyObject *PyObject_CallMethod (PyObject *obj, const char *name, const char *format, ...)

Valore di ritorno: Nuovo riferimento. Parte del ABI Stabile. Call the method named name of object obj with a
variable number of C arguments. The C arguments are described by a Py_Buildvalue () format string that
should produce a tuple.

The format can be NULL, indicating that no arguments are provided.

Return the result of the call on success, or raise an exception and return NULL on failure.

This is the equivalent of the Python expression: obj.name (argl, arg2, ...).

Note that if you only pass Pyobject* args, PyObject_CallMethodObjArgs () is a faster alternative.
Cambiato nella versione 3.4: The types of name and format were changed from char *.

PyObject *PyObject_CallFunctionObjArgs (PyObject *callable, ...)
Valore di ritorno: Nuovo riferimento. Parte del ABI Stabile. Call a callable Python object callable, with a variable
number of PyObject* arguments. The arguments are provided as a variable number of parameters followed
by NULL.

Return the result of the call on success, or raise an exception and return NULL on failure.

7.2. Call Protocol 109

The Python/C API, Release 3.13.7

This is the equivalent of the Python expression: callable (argl, arg2, ...).

PyObject *PyObject_CallMethodObjArgs (PyObject *obj, PyObject *name, ...)

Valore di ritorno: Nuovo riferimento. Parte del ABI Stabile. Call a method of the Python object obj, where
the name of the method is given as a Python string object in name. It is called with a variable number of
pPyObject* arguments. The arguments are provided as a variable number of parameters followed by NULL.

Return the result of the call on success, or raise an exception and return NULL on failure.
PyObject *PyObject_CallMethodNoArgs (PyObject *obj, PyObject *name)

Call a method of the Python object obj without arguments, where the name of the method is given as a Python
string object in name.

Return the result of the call on success, or raise an exception and return NULL on failure.
Added in version 3.9.
PyObject *PyObject_CallMethodOneArg (PyObject *obj, PyObject *name, PyObject *arg)

Call a method of the Python object obj with a single positional argument arg, where the name of the method
is given as a Python string object in name.

Return the result of the call on success, or raise an exception and return NULL on failure.
Added in version 3.9.
PyObject *PyObject_Vectorcall (PyObject *callable, PyObject *const *args, size_t nargsf, PyObject
*kwnames)

Parte del ABI Stabile dalla versione 3.12. Call a callable Python object callable. The arguments are the same
as for vectorcallfunc. If callable supports vectorcall, this directly calls the vectorcall function stored in
callable.

Return the result of the call on success, or raise an exception and return NULL on failure.
Added in version 3.9.
PyObject *PyObject_VectorcallDict (PyObject *callable, PyObject *const *args, size_t nargsf, PyObject
*kwdict)

Call callable with positional arguments passed exactly as in the vectorcall protocol, but with keyword arguments
passed as a dictionary kwdict. The args array contains only the positional arguments.

Regardless of which protocol is used internally, a conversion of arguments needs to be done. Therefore, this
function should only be used if the caller already has a dictionary ready to use for the keyword arguments, but
not a tuple for the positional arguments.

Added in version 3.9.

PyObject *PyObject_VectorcallMethod (PyObject *name, PyObject *const *args, size_t nargsf, PyObject
*kwnames)

Parte del ABI Stabile dalla versione 3.12. Call a method using the vectorcall calling convention. The name of
the method is given as a Python string name. The object whose method is called is args/0], and the args array
starting at args/ 1] represents the arguments of the call. There must be at least one positional argument. narg-
sf is the number of positional arguments including args/0], plus PY_ VECTORCALL_ARGUMENTS_OFFSET
if the value of args[0] may temporarily be changed. Keyword arguments can be passed just like in
PyObject_Vectorcall ().

If the object has the Py TPFLAGS METHOD_DESCRIPTOR feature, this will call the unbound method object
with the full args vector as arguments.

Return the result of the call on success, or raise an exception and return NULL on failure.

Added in version 3.9.

110 Capitolo 7. Abstract Objects Layer

The Python/C API, Release 3.13.7

7.2.4 Call Support API

int PyCallable_Check (PyObject *0)

Parte del ABI Stabile. Determine if the object o is callable. Return 1 if the object is callable and 0 otherwise.
This function always succeeds.

7.3 Number Protocol

int PyNumber_Check (PyObject *0)
Parte del ABI Stabile. Returns 1 if the object o provides numeric protocols, and false otherwise. This function
always succeeds.

Cambiato nella versione 3.8: Returns 1 if o is an index integer.

PyObject *pyNumber_aAdd (PyObject *ol, PyObject *02)
Valore di ritorno: Nuovo riferimento. Parte del ABI Stabile. Returns the result of adding o/ and 02, or NULL on
failure. This is the equivalent of the Python expression o1 + o2.

PyObject *PyNumber_Subtract (PyObject *ol, PyObject *02)
Valore di ritorno: Nuovo riferimento. Parte del ABI Stabile. Returns the result of subtracting o2 from o/, or
NULL on failure. This is the equivalent of the Python expression o1 - o2.

PyObject *PyNumber_Multiply (PyObject *ol, PyObject *02)
Valore di ritorno: Nuovo riferimento. Parte del ABI Stabile. Returns the result of multiplying o/ and 02, or
NULL on failure. This is the equivalent of the Python expression o1 * o2.

PyObject *PyNumber_MatrixMultiply (PyObject *ol, PyObject *02)
Valore di ritorno: Nuovo riferimento. Parte del ABI Stabile dalla versione 3.7. Returns the result of matrix
multiplication on o/ and 02, or NULL on failure. This is the equivalent of the Python expression o1 @ o2.
Added in version 3.5.

PyObject *PyNumber_FloorDivide (PyObject *ol, PyObject ¥02)
Valore di ritorno: Nuovo riferimento. Parte del ABI Stabile. Return the floor of o/ divided by 02, or NULL on
failure. This is the equivalent of the Python expression o1 // o2.

PyObject *PyNumber_TrueDivide (PyObject *ol, PyObject ¥02)
Valore di ritorno: Nuovo riferimento. Parte del ABI Stabile. Return a reasonable approximation for the ma-
thematical value of o/ divided by 02, or NULL on failure. The return value is «approximate» because binary
floating-point numbers are approximate; it is not possible to represent all real numbers in base two. This func-
tion can return a floating-point value when passed two integers. This is the equivalent of the Python expression
ol / o2.

PyObject *PyNumber_Remainder (PyObject *ol, PyObject ¥02)
Valore di ritorno: Nuovo riferimento. Parte del ABI Stabile. Returns the remainder of dividing o/ by 02, or
NULL on failure. This is the equivalent of the Python expression o1 % o2.

PyObject *PyNumber_Divmod (PyObject *ol, PyObject ¥02)
Valore di ritorno: Nuovo riferimento. Parte del ABI Stabile. See the built-in function divmod () . Returns NULL
on failure. This is the equivalent of the Python expression divmod (o1, 02).

PyObject *PyNumber_Power (PyObject *ol, PyObject *02, PyObject ¥03)
Valore di ritorno: Nuovo riferimento. Parte del ABI Stabile. See the built-in function pow () . Returns NULL on
failure. This is the equivalent of the Python expression pow (01, 02, o3), where 03 is optional. If 03 is to
be ignored, pass Py_None in its place (passing NULL for 03 would cause an illegal memory access).

PyObject *PyNumber_Negative (PyObject *0)
Valore di ritorno: Nuovo riferimento. Parte del ABI Stabile. Returns the negation of o on success, or NULL on
failure. This is the equivalent of the Python expression —o.

7.3. Number Protocol 111

The Python/C API, Release 3.13.7

PyObject *PyNumber_Positive (PyObject *0)
Valore di ritorno: Nuovo riferimento. Parte del ABI Stabile. Returns o on success, or NULL on failure. This is
the equivalent of the Python expression +o.

PyObject *PyNumber_Absolute (PyObject *0)
Valore di ritorno: Nuovo riferimento. Parte del ABI Stabile. Returns the absolute value of o, or NULL on failure.
This is the equivalent of the Python expression abs (o).

PyObject *pyNumber_Invert (PyObject *0)
Valore di ritorno: Nuovo riferimento. Parte del ABI Stabile. Returns the bitwise negation of o on success, or
NULL on failure. This is the equivalent of the Python expression ~o.

PyObject ¥PyNumber_Lshift (PyObject *ol, PyObject ¥02)
Valore di ritorno: Nuovo riferimento. Parte del ABI Stabile. Returns the result of left shifting ol by 02 on
success, or NULL on failure. This is the equivalent of the Python expression o1 << o2.

PyObject *PyNumber_Rshift (PyObject *o0l, PyObject *02)
Valore di ritorno: Nuovo riferimento. Parte del ABI Stabile. Returns the result of right shifting o/ by 02 on
success, or NULL on failure. This is the equivalent of the Python expression o1 >> o2.

PyObject *PyNumber_And (PyObject *ol, PyObject *02)
Valore di ritorno: Nuovo riferimento. Parte del ABI Stabile. Returns the «bitwise and» of ol and 02 on success
and NULL on failure. This is the equivalent of the Python expression o1 & o02.

PyObject *PyNumber_Xor (PyObject *ol, PyObject *02)
Valore di ritorno: Nuovo riferimento. Parte del ABI Stabile. Returns the «bitwise exclusive or» of o/ by 02 on
success, or NULL on failure. This is the equivalent of the Python expression o1 ~ o02.

PyObject *pyNumber_Or (PyObject *ol, PyObject ¥02)
Valore di ritorno: Nuovo riferimento. Parte del ABI Stabile. Returns the «bitwise or» of ol and 02 on success,
or NULL on failure. This is the equivalent of the Python expression o1 | o2.

PyObject *PyNumber_InPlaceAdd (PyObject *ol, PyObject ¥02)
Valore di ritorno: Nuovo riferimento. Parte del ABI Stabile. Returns the result of adding o/ and 02, or NULL on
failure. The operation is done in-place when ol supports it. This is the equivalent of the Python statement o1
+= o02.

PyObject *PyNumber_InPlaceSubtract (PyObject *ol, PyObject ¥02)

Valore di ritorno: Nuovo riferimento. Parte del ABI Stabile. Returns the result of subtracting 02 from o/, or
NULL on failure. The operation is done in-place when ol supports it. This is the equivalent of the Python
statement o1 -= o2.

PyObject *PyNumber_InPlaceMultiply (PyObject *ol, PyObject *02)

Valore di ritorno: Nuovo riferimento. Parte del ABI Stabile. Returns the result of multiplying o/ and 02, or NULL
on failure. The operation is done in-place when ol supports it. This is the equivalent of the Python statement
ol *= o2.

PyObject *PyNumber_InPlaceMatrixMultiply (PyObject *ol, PyObject *02)

Valore di ritorno: Nuovo riferimento. Parte del ABI Stabile dalla versione 3.7. Returns the result of matrix
multiplication on o/ and 02, or NULL on failure. The operation is done in-place when ol supports it. This is the
equivalent of the Python statement o1 @= o02.

Added in version 3.5.

PyObject *PyNumber_InPlaceFloorDivide (PyObject *ol, PyObject *02)
Valore di ritorno: Nuovo riferimento. Parte del ABI Stabile. Returns the mathematical floor of dividing o/ by
02, or NULL on failure. The operation is done in-place when ol supports it. This is the equivalent of the Python
statement o1 //= o2.

112 Capitolo 7. Abstract Objects Layer

The Python/C API, Release 3.13.7

PyObject *PyNumber_InPlaceTrueDivide (PyObject *ol, PyObject ¥02)
Valore di ritorno: Nuovo riferimento. Parte del ABI Stabile. Return a reasonable approximation for the ma-
thematical value of o/ divided by 02, or NULL on failure. The return value is «approximate» because binary
floating-point numbers are approximate; it is not possible to represent all real numbers in base two. This func-
tion can return a floating-point value when passed two integers. The operation is done in-place when ol supports
it. This is the equivalent of the Python statement o1 /= o2.

PyObject *PyNumber_InPlaceRemainder (PyObject *ol, PyObject ¥02)
Valore di ritorno: Nuovo riferimento. Parte del ABI Stabile. Returns the remainder of dividing o] by 02, or NULL
on failure. The operation is done in-place when ol supports it. This is the equivalent of the Python statement
ol %= o2.

PyObject *PyNumber_InPlacePower (PyObject *ol, PyObject *02, PyObject ¥03)
Valore di ritorno: Nuovo riferimento. Parte del ABI Stabile. See the built-in function pow () . Returns NULL on
failure. The operation is done in-place when ol supports it. This is the equivalent of the Python statement o1
**= o2 when 03 iS Py_None, or an in-place variant of pow (o1, 02, o3) otherwise. If 03 is to be ignored,
pass Py_None in its place (passing NULL for 03 would cause an illegal memory access).

PyObject *PyNumber_InPlaceLshift (PyObject *ol, PyObject *02)
Valore di ritorno: Nuovo riferimento. Parte del ABI Stabile. Returns the result of left shifting o/ by 02 on
success, or NULL on failure. The operation is done in-place when ol supports it. This is the equivalent of the
Python statement o1 <<= o2.

PyObject *PyNumber_InPlaceRshift (PyObject *ol, PyObject *02)
Valore di ritorno: Nuovo riferimento. Parte del ABI Stabile. Returns the result of right shifting o/ by 02 on
success, or NULL on failure. The operation is done in-place when ol supports it. This is the equivalent of the
Python statement o1 >>= o2.

PyObject *PyNumber_InPlaceAnd (PyObject *ol, PyObject *02)
Valore di ritorno: Nuovo riferimento. Parte del ABI Stabile. Returns the «bitwise and» of ol and 02 on success
and NULL on failure. The operation is done in-place when ol supports it. This is the equivalent of the Python
statement ol &= o2.

PyObject *PyNumber_InPlaceXor (PyObject *ol, PyObject *02)
Valore di ritorno: Nuovo riferimento. Parte del ABI Stabile. Returns the «bitwise exclusive or» of 0/ by 02 on
success, or NULL on failure. The operation is done in-place when ol supports it. This is the equivalent of the
Python statement 01 ~= o2.

PyObject *PyNumber_InPlaceOr (PyObject *ol, PyObject *02)
Valore di ritorno: Nuovo riferimento. Parte del ABI Stabile. Returns the «bitwise or» of ol and 02 on success,
or NULL on failure. The operation is done in-place when ol supports it. This is the equivalent of the Python
statement ol |= o2.

PyObject *PyNumber_Long (PyObject *0)
Valore di ritorno: Nuovo riferimento. Parte del ABI Stabile. Returns the o converted to an integer object on
success, or NULL on failure. This is the equivalent of the Python expression int (o).

PyObject *PyNumber_Float (PyObject *0)
Valore di ritorno: Nuovo riferimento. Parte del ABI Stabile. Returns the o converted to a float object on success,
or NULL on failure. This is the equivalent of the Python expression float (o).

PyObject *PyNumber_Index (PyObject *¥0)
Valore di ritorno: Nuovo riferimento. Parte del ABI Stabile. Returns the o converted to a Python int on success

or NULL with a TypeError exception raised on failure.

Cambiato nella versione 3.10: The result always has exact type int. Previously, the result could have been an
instance of a subclass of int.

PyObject *PyNumber_ToBase (PyObject *n, int base)

Valore di ritorno: Nuovo riferimento. Parte del ABI Stabile. Returns the integer n converted to base base as

7.3. Number Protocol 113

The Python/C API, Release 3.13.7

a string. The base argument must be one of 2, 8, 10, or 16. For base 2, 8, or 16, the returned string is pre-
fixed with a base marker of '0b"', '0o', or '0x"', respectively. If # is not a Python int, it is converted with
PyNumber_TIndex () first.

Py_ssize_t PyNumber_AsSsize_t (PyObject *o, PyObject *exc)
Farte del ABI Stabile. Returns o converted toa Py _ssize t value if o can be interpreted as an integer. If the
call fails, an exception is raised and -1 is returned.

If o can be converted to a Python int but the attempt to convert to a Py_ssize_t value would raise an
OverflowError, then the exc argument is the type of exception that will be raised (usually IndexError or
OverflowError). If exc is NULL, then the exception is cleared and the value is clipped to PY_SSIZE_T_MIN
for a negative integer or PY_SSIZE_T_MAX for a positive integer.

int PyIndex_Check (PyObject *0)

Parte del ABI Stabile dalla versione 3.8. Returns 1 if o is an index integer (has the nb_index slot of the
tp_as_number structure filled in), and 0 otherwise. This function always succeeds.

7.4 Sequence Protocol

int PySequence_Check (PyObject *0)
Parte del ABI Stabile. Return 1 if the object provides the sequence protocol, and 0 otherwise. Note that it
returns 1 for Python classes witha __getitem () method, unless they are dict subclasses, since in general
it is impossible to determine what type of keys the class supports. This function always succeeds.

Py_ssize_t PySequence_Size (PyObject *0)

Py_ssize_t PySequence_Length (PyObject *0)
Parte del ABI Stabile. Returns the number of objects in sequence o on success, and —1 on failure. This is
equivalent to the Python expression len (o).

PyObject *PySequence_Concat (PyObject *ol, PyObject ¥02)
Valore di ritorno: Nuovo riferimento. Parte del ABI Stabile. Return the concatenation of o/ and 02 on success,
and NULL on failure. This is the equivalent of the Python expression o1 + o2.

PyObject *PySequence_Repeat (PyObject *o, Py_ssize_t count)
Valore di ritorno: Nuovo riferimento. Parte del ABI Stabile. Return the result of repeating sequence object o
count times, or NULL on failure. This is the equivalent of the Python expression o * count.

PyObject *PySequence_InPlaceConcat (PyObject *0l, PyObject ¥02)
Valore di ritorno: Nuovo riferimento. Parte del ABI Stabile. Return the concatenation of o/ and 02 on success,
and NULL on failure. The operation is done in-place when ol supports it. This is the equivalent of the Python
expression ol += o2.

PyObject *PySequence_InPlaceRepeat (PyObject *¥0, Py_ssize_t count)
Valore di ritorno: Nuovo riferimento. Parte del ABI Stabile. Return the result of repeating sequence object o
count times, or NULL on failure. The operation is done in-place when o supports it. This is the equivalent of
the Python expression o *= count.

PyObject *PySequence_GetItem (PyObject *o, Py_ssize_t 1)
Valore di ritorno: Nuovo riferimento. Parte del ABI Stabile. Return the ith element of o, or NULL on failure.
This is the equivalent of the Python expression o [i].

PyObject *PySequence_GetSlice (PyObject *o, Py_ssize_t i1, Py_ssize_t i2)
Valore di ritorno: Nuovo riferimento. Parte del ABI Stabile. Return the slice of sequence object o between i/
and i2, or NULL on failure. This is the equivalent of the Python expression o [11:12].

int PySequence_SetItem (PyObject *o, Py_ssize_t i, PyObject *Vv)
Farte del ABI Stabile. Assign object v to the ith element of o. Raise an exception and return -1 on failure;

return 0 on success. This is the equivalent of the Python statement o [i] = v. This function does not steal a
reference to v.

If vis NULL, the element is deleted, but this feature is deprecated in favour of using PySequence_Delltem().

114 Capitolo 7. Abstract Objects Layer

The Python/C API, Release 3.13.7

int PySequence_DelItem (PyObject *0, Py_ssize_t 1)
Farte del ABI Stabile. Delete the ith element of object o. Returns -1 on failure. This is the equivalent of the
Python statement del o[i].

int PySequence_SetSlice (PyObject *o, Py_ssize_t il, Py_ssize_t 12, PyObject *v)
Farte del ABI Stabile. Assign the sequence object v to the slice in sequence object o from i/ to i2. This is the
equivalent of the Python statement o[i1:12] = wv.

int PySequence_DelSlice (PyObject *o, Py_ssize_t il, Py_ssize_t i2)
Parte del ABI Stabile. Delete the slice in sequence object o from i/ to i2. Returns —1 on failure. This is the
equivalent of the Python statement del o[il:i2].

Py_ssize_t PySequence_Count (PyObject *0, PyObject *value)
Parte del ABI Stabile. Return the number of occurrences of value in o, that is, return the number of
keys for which o[key] == value. On failure, return -1. This is equivalent to the Python expression
o.count (value).

int PySequence_Contains (PyObject *o, PyObject *value)
Farte del ABI Stabile. Determine if o contains value. If an item in o is equal to value, return 1, otherwise return
0. On error, return —1. This is equivalent to the Python expression value in o.

Py_ssize_t PySequence_Index (PyObject *o, PyObject *value)
Parte del ABI Stabile. Return the first index i for which o[i] == value. On error, return —1. This is
equivalent to the Python expression o. index (value).

PyObject *PySequence_List (PyObject *0)
Valore di ritorno: Nuovo riferimento. Parte del ABI Stabile. Return a list object with the same contents as the
sequence or iterable o, or NULL on failure. The returned list is guaranteed to be new. This is equivalent to the
Python expression 1ist (o).

PyObject *PySequence_Tuple (PyObject *0)
Valore di ritorno: Nuovo riferimento. Parte del ABI Stabile. Return a tuple object with the same contents as the
sequence or iterable o, or NULL on failure. If o is a tuple, a new reference will be returned, otherwise a tuple
will be constructed with the appropriate contents. This is equivalent to the Python expression tuple (o).

PyObject *PySequence_Fast (PyObject *0, const char *m)

Valore di ritorno: Nuovo riferimento. Parte del ABI Stabile. Return the sequence or iterable o as an object
usable by the other PySequence_Fast* family of functions. If the object is not a sequence or iterable, raises
TypeError with m as the message text. Returns NULL on failure.

The pPySequence_Fast* functions are thus named because they assume o is a PyTupleObject or a
pyListObject and access the data fields of o directly.

As a CPython implementation detail, if o is already a sequence or list, it will be returned.

Py_ssize_t PySequence_Fast_GET_SIZE (PyObject *0)
Returns the length of o, assuming that o was returned by PySequence_Fast () and that o is not NULL. The
size can also be retrieved by calling PySequence_Size () on o, but PySequence_Fast_GET_SIZE () 18
faster because it can assume o is a list or tuple.

PyObject *PySequence_Fast_GET_ITEM (PyObject *o, Py_ssize_t1)
Valore di ritorno: Riferimento preso in prestito. Return the ith element of o, assuming that o was returned by
PySequence_Fast (), 01s not NULL, and that i is within bounds.

PyObject **PySequence_Fast_ITEMS (PyObject *0)
Return the underlying array of PyObject pointers. Assumes that o was returned by PySequence Fast () and
0 is not NULL.

Note, if a list gets resized, the reallocation may relocate the items array. So, only use the underlying array
pointer in contexts where the sequence cannot change.

7.4. Sequence Protocol 115

The Python/C API, Release 3.13.7

PyObject *PySequence_ITEM (PyObject *o, Py_ssize_t 1)
Valore di ritorno: Nuovo riferimento. Return the ith element of o or NULL on failure. Faster form of

PySequence_GetItem() but without checking that PySequence Check () on o is true and without
adjustment for negative indices.

7.5 Mapping Protocol

See also PyObject_GetItem(), PyObject_SetItem() and PyObject_DelItem().

int PyMapping_Check (PyObject *0)
Parte del ABI Stabile. Return 1 if the object provides the mapping protocol or supports slicing, and 0 otherwise.
Note that it returns 1 for Python classes witha __getitem__ () method, since in general it is impossible to
determine what type of keys the class supports. This function always succeeds.

Py_ssize_t PyMapping_Size (PyObject *0)

Py_ssize_t PyMapping_Length (PyObject *0)
Parte del ABI Stabile. Returns the number of keys in object o on success, and -1 on failure. This is equivalent
to the Python expression len (o).

PyObject *PyMapping_GetItemString (PyObject *o, const char *key)
Valore di ritorno: Nuovo riferimento. Parte del ABI Stabile. This is the same as PyObject_GetItem(), but
key is specified as a const char* UTF-8 encoded bytes string, rather than a Pyobject*.

int PyMapping_GetOptionalItem (PyObject *obj, PyObject *key, PyObject **result)
Parte del ABI Stabile dalla versione 3.13. Variant of Pyobject_Get Item () which doesn’t raise KeyError
if the key is not found.

If the key is found, return 1 and set *result to a new strong reference to the corresponding value. If the key
is not found, return 0 and set *result to NULL; the KeyError is silenced. If an error other than KeyError is
raised, return -1 and set *result to NULL.

Added in version 3.13.

int PyMapping_GetOptionalItemString (PyObject *obj, const char *key, PyObject **result)
Parte del ABI Stabile dalla versione 3.13. This is the same as PyMapping_GetOptionalIltem/(),but keyis
specified as a const char* UTF-8 encoded bytes string, rather than a Pyobject*.
Added in version 3.13.

int PyMapping_SetItemString (PyObject *o, const char *key, PyObject *v)
Farte del ABI Stabile. This is the same as PyObject_SetItem(), but key is specified as a const char*
UTF-8 encoded bytes string, rather than a PyObject*.

int PyMapping_DelItem (PyObject *o, PyObject *key)
This is an alias of PyObject_DelTtem().

int PyMapping_DelItemString (PyObject *o, const char *key)
This is the same as PyObject_DelItem(), but key is specified as a const char* UTF-8 encoded bytes
string, rather than a PyoObject*.

int PyMapping_HasKeyWithError (PyObject *¥o, PyObject *key)
Farte del ABI Stabile dalla versione 3.13. Return 1 if the mapping object has the key key and 0 otherwise. This
is equivalent to the Python expression key in o. On failure, return - 1.

Added in version 3.13.

int PyMapping_HasKeyStringWithError (PyObject *o, const char *key)

Parte del ABI Stabile dalla versione 3.13. This is the same as PyMapping HasKeylWithError (), but key is
specified as a const char* UTF-8 encoded bytes string, rather than a Pyobject*.

Added in version 3.13.

116 Capitolo 7. Abstract Objects Layer

The Python/C API, Release 3.13.7

int PyMapping_HasKey (PyObject *o, PyObject *key)
Farte del ABI Stabile. Return 1 if the mapping object has the key key and 0 otherwise. This is equivalent to
the Python expression key in o. This function always succeeds.

O Nota

Exceptions which occur when this calls _ getitem () method are silently ignored. For pro-
per error handling, us€ PyMapping_HasKeyWithError (), PyMapping GetOptionalItem() Or
PyObject_GetItem () instead.

int PyMapping_HasKeyString (PyObject *o, const char *key)

Parte del ABI Stabile. This is the same as PyMapping_HasKey (), but key is specified as a const char*
UTF-8 encoded bytes string, rather than a PyObject*.

© Nota

Exceptions that occur when this calls __getitem__ () method or while creating the temporary str
object are silently ignored. For proper error handling, use PyMapping HasKeyStringWithError (),
PyMapping_GetOptionalltemString () Or PyMapping GetItemString () instead.

PyObject *PyMapping_Keys (PyObject *0)
Valore di ritorno: Nuovo riferimento. Parte del ABI Stabile. On success, return a list of the keys in object 0. On
failure, return NULL.

Cambiato nella versione 3.7: Previously, the function returned a list or a tuple.

PyObject *PyMapping_Values (PyObject *0)
Valore di ritorno: Nuovo riferimento. Parte del ABI Stabile. On success, return a list of the values in object o.
On failure, return NULL.

Cambiato nella versione 3.7: Previously, the function returned a list or a tuple.

PyObject *PyMapping_Items (PyObject *0)
Valore di ritorno: Nuovo riferimento. Parte del ABI Stabile. On success, return a list of the items in object o,
where each item is a tuple containing a key-value pair. On failure, return NULL.

Cambiato nella versione 3.7: Previously, the function returned a list or a tuple.

7.6 lterator Protocol

There are two functions specifically for working with iterators.

int PyIter_Check (PyObject *0)
Parte del ABI Stabile dalla versione 3.8. Return non-zero if the object o can be safely passed to
PyIter Next (),and 0 otherwise. This function always succeeds.

int PyAIter_Check (PyObject *0)
Farte del ABI Stabile dalla versione 3.10. Return non-zero if the object o provides the AsyncIterator
protocol, and 0 otherwise. This function always succeeds.

Added in version 3.10.

PyObject *PyIter_Next (PyObject *0)
Valore di ritorno: Nuovo riferimento. Parte del ABI Stabile. Return the next value from the iterator o. The
object must be an iterator according to PyIter Check () (it is up to the caller to check this). If there are
no remaining values, returns NULL with no exception set. If an error occurs while retrieving the item, returns
NULL and passes along the exception.

To write a loop which iterates over an iterator, the C code should look something like this:

7.6. lterator Protocol 117

The Python/C API, Release 3.13.7

PyObject *iterator = PyObject_GetIter (obj);
PyObject *item;

if (iterator == NULL) {

/* propagate error */

while ((item = PyIter_Next (iterator))) {
/* do something with item */

/* release reference when done */
Py_DECREF (item) ;

Py_DECREF (iterator);

if (PyErr_Occurred()) {
/* propagate error */

}

else {

/* continue doing useful work */

type PySendResult

The enum value used to represent different results of PyIter Send().
Added in version 3.10.

PySendResult PyIter_Send (PyObject *iter, PyObject *arg, PyObject **presult)
Parte del ABI Stabile dalla versione 3.10. Sends the arg value into the iterator ifer. Returns:

e PYGEN_RETURN if iterator returns. Return value is returned via presult.
e PYGEN_NEXT if iterator yields. Yielded value is returned via presult.
e PYGEN_ERROR if iterator has raised and exception. presult is set to NULL.

Added in version 3.10.

7.7 Buffer Protocol

Certain objects available in Python wrap access to an underlying memory array or buffer. Such objects include the
built-in bytes and bytearray, and some extension types like array . array. Third-party libraries may define their
own types for special purposes, such as image processing or numeric analysis.

While each of these types have their own semantics, they share the common characteristic of being backed by a
possibly large memory buffer. It is then desirable, in some situations, to access that buffer directly and without
intermediate copying.

Python provides such a facility at the C and Python level in the form of the buffer protocol. This protocol has two
sides:

« on the producer side, a type can export a «buffer interface» which allows objects of that type to expose in-
formation about their underlying buffer. This interface is described in the section Buffer Object Structures; for
Python see python-buffer-protocol.

« on the consumer side, several means are available to obtain a pointer to the raw underlying data of an object
(for example a method parameter). For Python see memoryview.

Simple objects such as bytes and bytearray expose their underlying buffer in byte-oriented form. Other forms
are possible; for example, the elements exposed by an array.array can be multi-byte values.

118 Capitolo 7. Abstract Objects Layer

The Python/C API, Release 3.13.7

An example consumer of the buffer interface is the write () method of file objects: any object that can export a
series of bytes through the buffer interface can be written to a file. While write () only needs read-only access to the
internal contents of the object passed to it, other methods such as readinto () need write access to the contents of
their argument. The buffer interface allows objects to selectively allow or reject exporting of read-write and read-only
buffers.

There are two ways for a consumer of the buffer interface to acquire a buffer over a target object:
e call Pyobject_GetBuffer () with the right parameters;
e call PyArg ParseTuple () (or one of its siblings) with one of the y*, w* or s* format codes.

In both cases, PyBuffer Release () must be called when the buffer isn’t needed anymore. Failure to do so could
lead to various issues such as resource leaks.

Added in version 3.12: The buffer protocol is now accessible in Python, see python-buffer-protocol and memoryview.

7.7.1 Buffer structure

Buffer structures (or simply «buffers») are useful as a way to expose the binary data from another object to the
Python programmer. They can also be used as a zero-copy slicing mechanism. Using their ability to reference a block
of memory, it is possible to expose any data to the Python programmer quite easily. The memory could be a large,
constant array in a C extension, it could be a raw block of memory for manipulation before passing to an operating
system library, or it could be used to pass around structured data in its native, in-memory format.

Contrary to most data types exposed by the Python interpreter, buffers are not PyOb ject pointers but rather simple
C structures. This allows them to be created and copied very simply. When a generic wrapper around a buffer is
needed, a memoryview object can be created.

For short instructions how to write an exporting object, see Buffer Object Structures. For obtaining a buffer, see
PyObject_GetBuffer().
type Py_buffer

Parte del ABI Stabile (inclusi tutti i membri) dalla versione 3.11.

void *buf

A pointer to the start of the logical structure described by the buffer fields. This can be any location within
the underlying physical memory block of the exporter. For example, with negative st rides the value
may point to the end of the memory block.

For contiguous arrays, the value points to the beginning of the memory block.
PyObject *ob3j
A new reference to the exporting object. The reference is owned by the consumer and automatically

released (i.e. reference count decremented) and set to NULL by PyBuffer Release (). The field is the
equivalent of the return value of any standard C-API function.

As a special case, for temporary buffers that are wrapped by PyMemoryView FromBuffer () or
PyBuffer FillInfo () this field is NULL. In general, exporting objects MUST NOT use this scheme.
Py_ssize_t 1len

product (shape) * itemsize. For contiguous arrays, this is the length of the underlying memory
block. For non-contiguous arrays, it is the length that the logical structure would have if it were copied
to a contiguous representation.

Accessing ((char *)buf) [0] up to ((char *)buf) [len-1] isonly valid if the buffer has been
obtained by a request that guarantees contiguity. In most cases such a request will be pyBUF_SIMPLE or
PyBUF_WRITABLE.

int readonly

An indicator of whether the buffer is read-only. This field is controlled by the PyBUF_WRTTABLE flag.

7.7. Buffer Protocol 119

The Python/C API, Release 3.13.7

Constants:

Py _ssize_t itemsize

Item size in bytes of a single element. Same as the value of struct.calcsize () called on non-NULL
format values.

Important exception: If a consumer requests a buffer without the pyBUF_FORMAT flag, format will be
set to NULL, but i temsi ze still has the value for the original format.

If shapeis present, the equality product (shape) * itemsize == lenstill holds and the consumer
can use itemsize to navigate the buffer.

If shape is NULL as a result of a PyBUF_STMPLE or a PyBUF_WRITABLE request, the consumer must
disregard itemsize and assume itemsize ==

char *format

A NULL terminated string in st ruct module style syntax describing the contents of a single item. If
this is NULL, "B" (unsigned bytes) is assumed.

This field is controlled by the PyBUF _FORMAT flag.

int ndim

The number of dimensions the memory represents as an n-dimensional array. If it is 0, buf points to a
single item representing a scalar. In this case, shape, st rides and suboffsets MUST be NULL. The
maximum number of dimensions is given by PyBUF_MAX_NDIM.

Py_ssize_t *shape

Anarray of Py_ssize_t of length ndimindicating the shape of the memory as an n-dimensional array.
Note that shape [0] * ... * shape[ndim-1] * itemsize MUST be equal to Ien.

Shape values are restricted to shape [n] >= 0. The case shape[n] == 0 requires special attention.
See complex arrays for further information.

The shape array is read-only for the consumer.

Py_ssize_t *strides

An array of Py_ssize_t of length ndim giving the number of bytes to skip to get to a new element in
each dimension.

Stride values can be any integer. For regular arrays, strides are usually positive, but a consumer MUST
be able to handle the case strides[n] <= 0. See complex arrays for further information.

The strides array is read-only for the consumer.

Py_ssize_t *suboffsets

An array of Py_ssize_t of length ndim. If suboffsets[n] >= 0, the values stored along the nth
dimension are pointers and the suboffset value dictates how many bytes to add to each pointer after de-
referencing. A suboffset value that is negative indicates that no de-referencing should occur (striding in a
contiguous memory block).

If all suboffsets are negative (i.e. no de-referencing is needed), then this field must be NULL (the default
value).

This type of array representation is used by the Python Imaging Library (PIL). See complex arrays for
further information how to access elements of such an array.

The suboffsets array is read-only for the consumer.

void *internal

This is for use internally by the exporting object. For example, this might be re-cast as an integer by the
exporter and used to store flags about whether or not the shape, strides, and suboffsets arrays must be
freed when the buffer is released. The consumer MUST NOT alter this value.

120

Capitolo 7. Abstract Objects Layer

The Python/C API, Release 3.13.7

PyBUF_MAX_NDIM
The maximum number of dimensions the memory represents. Exporters MUST respect this limit, consumers
of multi-dimensional buffers SHOULD be able to handle up to PyBUF_MAX_NDIM dimensions. Currently set
to 64.

7.7.2 Buffer request types

Buffers are usually obtained by sending a buffer request to an exporting object via PyOb ject_GetBuffer (). Since
the complexity of the logical structure of the memory can vary drastically, the consumer uses the flags argument to
specify the exact buffer type it can handle.

All py_bufrer fields are unambiguously defined by the request type.

request-independent fields

The following fields are not influenced by flags and must always be filled in with the correct values: obj, buf, len,

itemsize, ndim.

readonly, format

PyBUF_WRITABLE

Controls the readonly field. If set, the exporter MUST provide a writable buffer or else report
failure. Otherwise, the exporter MAY provide either a read-only or writable buffer, but the choice
MUST be consistent for all consumers. For example, PyBUF_SIMPLE | PyBUF_WRITABLE can
be used to request a simple writable buffer.

PyBUF_FORMAT

Controls the format field. If set, this field MUST be filled in correctly. Otherwise, this field MUST
be NULL.

PyBUF_WRITABLE can be |°d to any of the flags in the next section. Since ryBUF _SiMPLE is defined as O,
PyBUF_WRITABLE can be used as a stand-alone flag to request a simple writable buffer.

PyBUF_FORMAT must be |"d to any of the flags except PyBUF_SIMPLE, because the latter already implies format B
(unsigned bytes). PyBUF_FORMAT cannot be used on its own.

shape, strides, suboffsets

The flags that control the logical structure of the memory are listed in decreasing order of complexity. Note that each
flag contains all bits of the flags below it.

Request | shape strides | suboffsets |

yes yes if needed
PyBUF_INDIRECT

yes yes NULL
PyBUF_STRIDES

yes NULL | NULL
PyBUF_ND

NULL NULL | NULL
PyBUF_SIMPLE

7.7. Buffer Protocol 121

The Python/C API, Release 3.13.7

contiguity requests

C or Fortran contiguity can be explicitly requested, with and without stride information. Without stride information,
the buffer must be C-contiguous.

Request | shape strides | suboffsets contig |
yes yes NULL C
PyBUF_C_CONTIGUOUS
yes yes NULL F
PyBUF_F_CONTIGUOUS
yes yes NULL CorF
PyBUF_ANY_CONTIGUOUS
PyBUF_ND yes NULL | NULL C

compound requests

All possible requests are fully defined by some combination of the flags in the previous section. For convenience, the
buffer protocol provides frequently used combinations as single flags.

In the following table U stands for undefined contiguity. The consumer would have to call
PyBuffer_ IsContiguous () to determine contiguity.

Request | shape = strides | suboffsets = contig | readonly | format |

yes yes if needed U 0 yes
PyBUF_FULL

yes yes if needed U lor0 yes
PyBUF_FULL_RO

yes yes NULL 0] 0 yes
PyBUF_RECORDS

yes yes NULL U lor0 yes
PyBUF_RECORDS_RO

yes yes NULL U 0 NULL
PyBUF_STRIDED

yes yes NULL U lLor0 NULL
PyBUF_STRIDED_RO

yes NULL | NULL C 0 NULL
PyBUF_CONTIG

yes NULL | NULL C lor0Q NULL
PyBUF_CONTIG_RO

7.7.3 Complex arrays
NumPy-style: shape and strides

The logical structure of NumPy-style arrays is defined by itemsize, ndim, shape and strides.

122 Capitolo 7. Abstract Objects Layer

The Python/C API, Release 3.13.7

If ndim == 0, the memory location pointed to by bur is interpreted as a scalar of size itemsize. In that case,
both shape and st rides are NULL.

If strides is NULL, the array is interpreted as a standard n-dimensional C-array. Otherwise, the consumer must
access an n-dimensional array as follows:

ptr = (char *)buf + indices[0] * strides[0] + ... + indices[n-1] * strides[n-1];
item = *((typeof (item) *)ptr);

As noted above, buf can point to any location within the actual memory block. An exporter can check the validity
of a buffer with this function:

def verify_ structure (memlen, itemsize, ndim, shape, strides, offset):
"""Verify that the parameters represent a valid array within
the bounds of the allocated memory:
char *mem: start of the physical memory block
memlen: length of the physical memory block
offset: (char *)buf - mem
if offset % itemsize:
return False
if offset < 0 or offset+itemsize > memlen:
return False
if any(v % itemsize for v in strides):
return False

if ndim <= 0:

return ndim == 0 and not shape and not strides
if 0 in shape:

return True

imin = sum(strides[j]* (shape[j]-1) for j in range (ndim)
if strides[j] <= 0)

imax = sum(strides[j]* (shape[j]l-1) for j in range (ndim)
if strides[j] > 0)

return 0 <= offset+imin and offset+imaxt+itemsize <= memlen

PIL-style: shape, strides and suboffsets

In addition to the regular items, PIL-style arrays can contain pointers that must be followed in order to get to the
next element in a dimension. For example, the regular three-dimensional C-array char v[2][2][3] can also be
viewed as an array of 2 pointers to 2 two-dimensional arrays: char (*v[21) [2] [3]. In suboffsets representation,
those two pointers can be embedded at the start of buf, pointing to two char x[2] [3] arrays that can be located
anywhere in memory.

Here is a function that returns a pointer to the element in an N-D array pointed to by an N-dimensional index when
there are both non-NULL strides and suboffsets:

void *get_item_pointer (int ndim, wvoid *buf, Py_ssize_t *strides,
Py_ssize_t *suboffsets, Py_ssize_t *indices) {

char *pointer = (char*)buf;
int i;
for (i = 0; i < ndim; i++) |

pointer += strides[i] * indices[i];
if (suboffsets[i] >=0) {
pointer = *((char**)pointer) + suboffsets[i];

(continues on next page)

7.7. Buffer Protocol 123

The Python/C API, Release 3.13.7

(continua dalla pagina precedente)

return (void*)pointer;

7.7.4 Buffer-related functions

int PyObject_CheckBuffer (PyObject *obj)
Parte del ABI Stabile dalla versione 3.11. Return 1 if obj supports the buffer interface otherwise 0. When 1 is
returned, it doesn’t guarantee that PyoObject_GetBuffer () will succeed. This function always succeeds.
int PyObject_GetBuffer (PyObject *exporter, Py_buffer *view, int flags)

Parte del ABI Stabile dalla versione 3.11. Send a request to exporter to fill in view as specified by flags. If the
exporter cannot provide a buffer of the exact type, it MUST raise BufferError, set view->obj to NULL
and return -1.

On success, fill in view, set view—>ob7j to a new reference to exporter and return 0. In the case of chained buffer
providers that redirect requests to a single object, view—>o0bj MAY refer to this object instead of exporter
(See Buffer Object Structures).

Successful calls to PyObject_GetBuffer () must be paired with calls to PyBuffer Release (), similar
tomalloc () and free (). Thus, after the consumer is done with the buffer, PyBuffer Release () must
be called exactly once.

void PyBuffer_Release (Py_buffer *view)

Farte del ABI Stabile dalla versione 3.11. Release the buffer view and release the strong reference (i.e. decrement
the reference count) to the view’s supporting object, view—>obj. This function MUST be called when the
buffer is no longer being used, otherwise reference leaks may occur.

It is an error to call this function on a buffer that was not obtained via PyObject_GetBuffer ().

Py_ssize_t PyBuffer_ SizeFromFormat (const char *format)

Parte del ABI Stabile dalla versione 3.11. Return the implied itemsize from format. On error, raise an
exception and return -1.

Added in version 3.9.

int PyBuffer_IsContiguous (const Py_buffer *view, char order)
Farte del ABI Stabile dalla versione 3.11. Return 1 if the memory defined by the view is C-style (order is
'C") or Fortran-style (order is 'F ') contiguous or either one (orderis 'A"). Return 0 otherwise. This function
always succeeds.

void *PyBuffer_GetPointer (const Py_buffer *view, const Py_ssize_t *indices)
Farte del ABI Stabile dalla versione 3.11. Get the memory area pointed to by the indices inside the given view.
indices must point to an array of view—->ndim indices.

int PyBuffer_FromContiguous (const Py_buffer *view, const void *buf, Py_ssize_t len, char fort)
Farte del ABI Stabile dalla versione 3.11. Copy contiguous len bytes from buf to view. fort canbe 'C' or 'F'
(for C-style or Fortran-style ordering). 0 is returned on success, —1 on error.

int PyBuffer_ToContiguous (void *buf, const Py_buffer *src, Py_ssize_t len, char order)

Farte del ABI Stabile dalla versione 3.11. Copy len bytes from src to its contiguous representation in buf. order
canbe 'Cc' or 'F' or 'A" (for C-style or Fortran-style ordering or either one). 0 is returned on success, -1 on
error.

This function fails if len != src->len.

int PyObject_CopyData (PyObject *dest, PyObject *src)

Farte del ABI Stabile dalla versione 3.11. Copy data from src to dest buffer. Can convert between C-style and
or Fortran-style buffers.

0 is returned on success, —1 on error.

124 Capitolo 7. Abstract Objects Layer

The Python/C API, Release 3.13.7

void PyBuffer_ FillContiguousStrides (int ndims, Py_ssize_t *shape, Py_ssize_t *strides, int itemsize, char
order)

Parte del ABI Stabile dalla versione 3.11. Fill the strides array with byte-strides of a contiguous (C-style if order
is 'C' or Fortran-style if order is 'F ') array of the given shape with the given number of bytes per element.

int PyBuffer_FillInfo (Py_buffer *view, PyObject *exporter, void *buf, Py_ssize_t len, int readonly, int flags)
Farte del ABI Stabile dalla versione 3.11. Handle buffer requests for an exporter that wants to expose buf of
size len with writability set according to readonly. buf is interpreted as a sequence of unsigned bytes.

The flags argument indicates the request type. This function always fills in view as specified by flags, unless buf
has been designated as read-only and PyBUF_WRITABLE is set in flags.

On success, set view—>o0bj to a new reference to exporter and return 0. Otherwise, raise Buf ferError, set
view->o0bj to NULL and return —1;

If this function is used as part of a getbufferproc, exporter MUST be set to the exporting object and flags must
be passed unmodified. Otherwise, exporter MUST be NULL.

7.7. Buffer Protocol 125

The Python/C API, Release 3.13.7

126 Capitolo 7. Abstract Objects Layer

CAPITOLO 8

Concrete Objects Layer

The functions in this chapter are specific to certain Python object types. Passing them an object of the wrong type is
not a good idea; if you receive an object from a Python program and you are not sure that it has the right type, you
must perform a type check first; for example, to check that an object is a dictionary, use PyDict_Check (). The
chapter is structured like the «family tree» of Python object types.

A\ Avvertimento

While the functions described in this chapter carefully check the type of the objects which are passed in, many
of them do not check for NULL being passed instead of a valid object. Allowing NULL to be passed in can cause
memory access violations and immediate termination of the interpreter.

8.1 Fundamental Objects

This section describes Python type objects and the singleton object None.

8.1.1 Type Objects

type PyTypeObject
Parte del API Limitata (come una struttura opaca). The C structure of the objects used to describe built-in
types.
PyTypeObject PyType_Type
Parte del ABI Stabile. This is the type object for type objects; it is the same object as t ype in the Python layer.
int PyType_Check (PyObject *0)
Return non-zero if the object o is a type object, including instances of types derived from the standard type
object. Return 0 in all other cases. This function always succeeds.
int PyType_CheckExact (PyObject *0)
Return non-zero if the object o is a type object, but not a subtype of the standard type object. Return 0 in all
other cases. This function always succeeds.
unsigned int PyType_ClearCache ()

Farte del ABI Stabile. Clear the internal lookup cache. Return the current version tag.

127

The Python/C API, Release 3.13.7

unsigned long PyType_GetF1lags (PyTypeObject *type)

Parte del ABI Stabile. Return the tp_f1ags member of type. This function is primarily meant for use with
Py LIMITED_API; the individual flag bits are guaranteed to be stable across Python releases, but access to
tp_flags itself is not part of the limited API.

Added in version 3.2.

Cambiato nella versione 3.4: The return type is now unsigned long rather than long.

PyObject *PyType_GetDict (PyTypeObject *type)

Return the type object’s internal namespace, which is otherwise only exposed via a read-only proxy (cls.
__dict_). This is a replacement for accessing tp_dict directly. The returned dictionary must be treated as
read-only.

This function is meant for specific embedding and language-binding cases, where direct access to the dict is
necessary and indirect access (e.g. via the proxy or PyObject_GetAttr ())isn't adequate.

Extension modules should continue to use tp_dict, directly or indirectly, when setting up their own types.

Added in version 3.12.

void PyType_Modified (PyTypeObject *type)

Parte del ABI Stabile. Invalidate the internal lookup cache for the type and all of its subtypes. This function
must be called after any manual modification of the attributes or base classes of the type.

int PyType_AddWatcher (PyType_WatchCallback callback)

Register callback as a type watcher. Return a non-negative integer ID which must be passed to future calls to
PyType_Watch (). In case of error (e.g. no more watcher IDs available), return —1 and set an exception.

In free-threaded builds, Py Type_Addwatcher () is not thread-safe, so it must be called at start up (before
spawning the first thread).

Added in version 3.12.

int PyType_ClearWatcher (int watcher_id)

Clear watcher identified by watcher_id (previously returned from PyType_ AddWatcher ()). Return 0 on
success, —1 on error (e.g. if watcher_id was never registered.)

An extension should never call PyType_ClearWatcher with a watcher_id that was not returned to it by a
previous call to Py Type_AddwWatcher ().

Added in version 3.12.

int PyType_Watch (int watcher_id, PyObject *type)

Mark rype as watched. The callback granted watcher_id by Py Type_Addiatcher () will be called whenever
PyType_Modified () reports a change to fype. (The callback may be called only once for a series of conse-
cutive modifications to fype, if _PyType_Lookup () is not called on fype between the modifications; this is
an implementation detail and subject to change.)

An extension should never call PyType_Watch with a watcher_id that was not returned to it by a previous call
to PyType_AddWatcher ().

Added in version 3.12.

typedef int (*PyType_WatchCallback)(PyObject *type)

Type of a type-watcher callback function.

The callback must not modify type or cause Py Type Modified () to be called on fype or any type in its MRO;
violating this rule could cause infinite recursion.

Added in version 3.12.

int PyType_HasFeature (PyTypeObject *0, int feature)

Return non-zero if the type object o sets the feature feature. Type features are denoted by single bit flags.

128

Capitolo 8. Concrete Objects Layer

The Python/C API, Release 3.13.7

int PyType_IS_GC (PyTypeObject *0)
Return true if the type object includes support for the cycle detector; this tests the type flag
Py_TPFLAGS_HAVE_GC.

int PyType_IsSubtype (PyTypeObject *a, PyTypeObject *b)
Farte del ABI Stabile. Return true if a is a subtype of b.
This function only checks for actual subtypes, which means that __subclasscheck__ () is not called on b.
Call pyobject_TIsSubclass () to do the same check that i ssubclass () would do.

PyObject *PyType_GenericAlloc (PyTypeObject *type, Py_ssize_t nitems)
Valore di ritorno: Nuovo riferimento. Parte del ABI Stabile. Generic handler for the tp_alloc slot of a type
object. Use Python’s default memory allocation mechanism to allocate a new instance and initialize all its
contents to NULL.

PyObject *PyType_GenericNew (PyTypeObject *type, PyObject *args, PyObject *kwds)
Valore di ritorno: Nuovo riferimento. Parte del ABI Stabile. Generic handler for the tp_new slot of a type
object. Create a new instance using the type’s tp_alloc slot.

int PyType_Ready (PyTypeObject *type)

Farte del ABI Stabile. Finalize a type object. This should be called on all type objects to finish their initialization.
This function is responsible for adding inherited slots from a type’s base class. Return 0 on success, or return
-1 and sets an exception on error.

© Nota

If some of the base classes implements the GC protocol and the provided type does not include the
Py_TPFLAGS_HAVE_GC in its flags, then the GC protocol will be automatically implemented from its
parents. On the contrary, if the type being created does include Py TPFLAGS HAVE_GC in its flags then
it must implement the GC protocol itself by at least implementing the tp_t raverse handle.

PyObject *PyType_GetName (PyTypeObject *type)
Valore di ritorno: Nuovo riferimento. Parte del ABI Stabile dalla versione 3.11. Return the type’s name.
Equivalent to getting the type’s __name___ attribute.

Added in version 3.11.

PyObject *PyType_GetQualName (PyTypeObject *type)
Valore di ritorno: Nuovo riferimento. Parte del ABI Stabile dalla versione 3.11. Return the type’s qualified name.
Equivalent to getting the type’s __qualname__ attribute.

Added in version 3.11.
PyObject *PyType_GetFullyQualifiedName (PyTypeObject *type)

Farte del ABI Stabile dalla versione 3.13. Return the type’s fully qualified name. Equivalent to £"{type.
__module__}.{type.
oris equal to "builtins".

Added in version 3.13.

qualname__ }",0r type.__qualname__ if type._ _module__ isnot a string

PyObject *PyType_GetModuleName (PyTypeObject *type)
Farte del ABI Stabile dalla versione 3.13. Return the type’s module name. Equivalent to getting the type.
__module___ attribute.
Added in version 3.13.

void *PyType_GetSlot (PyTypeObject *type, int slot)

Parte del ABI Stabile dalla versione 3.4. Return the function pointer stored in the given slot. If the result is
NULL, this indicates that either the slot is NULL, or that the function was called with invalid parameters. Callers
will typically cast the result pointer into the appropriate function type.

See PyType Slot.slot for possible values of the slor argument.

8.1. Fundamental Objects 129

The Python/C API, Release 3.13.7

Added in version 3.4.

Cambiato nella versione 3.10: Py Type_GetSlot () can now accept all types. Previously, it was limited to
heap types.

PyObject *PyType_GetModule (PyTypeObject *type)

Farte del ABI Stabile dalla versione 3.10. Return the module object associated with the given type when the
type was created using Py Type FromModuleAndSpec ().

If no module is associated with the given type, sets TypeError and returns NULL.

This function is usually used to get the module in which a method is defined. Note that in such a method,
PyType_GetModule (Py_TYPE (self)) may not return the intended result. Py TYPE (self) may be a
subclass of the intended class, and subclasses are not necessarily defined in the same module as their superclass.
See PyCMethod to get the class that defines the method. See Py Type GetModuleByDef () for cases when
PyCMethod cannot be used.

Added in version 3.9.

void *PyType_GetModuleState (PyTypeObject *type)

Parte del ABI Stabile dalla versione 3.10. Return the state of the module object associated with the given type.
This is a shortcut for calling PyModule GetState () on the result of PyType GetModule ().

If no module is associated with the given type, sets TypeError and returns NULL.
If the rype has an associated module but its state is NULL, returns NULL without setting an exception.
Added in version 3.9.

PyObject *PyType_GetModuleByDef (PyTypeObject *type, struct PyModuleDef *def)

Valore di ritorno: Riferimento preso in prestito. Parte del ABI Stabile dalla versione 3. 13. Find the first superclass
whose module was created from the given PyModuleDef def, and return that module.

If no module is found, raises a TypeError and returns NULL.

This function is intended to be used together with PyModule GetState () to get module state from slot
methods (such as tp_init or nb_add) and other places where a method’s defining class cannot be passed
using the PyCMethod calling convention.

The returned reference is borrowed from type, and will be valid as long as you hold a reference to type. Do not
release it with Py DECREF () or similar.

Added in version 3.11.

int PyUnstable_Type_AssignVersionTag (PyTypeObject *type)

Questa pagina AP/ Instabile. Potrebbe cambiare senza preavviso nelle release minori.

Attempt to assign a version tag to the given type.

Returns 1 if the type already had a valid version tag or a new one was assigned, or O if a new tag could not be
assigned.

Added in version 3.12.

Creating Heap-Allocated Types
The following functions and structs are used to create /eap types.

PyObject *PyType_FromMetaclass (PyTypeObject *metaclass, PyObject *module, PyType_Spec *spec, PyObject
*bases)

Parte del ABI Stabile dalla versione 3.12. Create and return a heap type from the spec (see
Py_TPFLAGS_HEAPTYPE).

130 Capitolo 8. Concrete Objects Layer

The Python/C API, Release 3.13.7

The metaclass metaclass is used to construct the resulting type object. When metaclass is NULL, the metaclass
is derived from bases (or Py_tp_base[s] slots if bases is NULL, see below).

Metaclasses that override t p_new are not supported, except if tp_new is NULL. (For backwards compatibility,
other PyType_From* functions allow such metaclasses. They ignore tp_new, which may result in incomplete
initialization. This is deprecated and in Python 3.14+ such metaclasses will not be supported.)

The bases argument can be used to specify base classes; it can either be only one class or a tuple of classes. If
bases is NULL, the Py_tp_bases slot is used instead. If that also is NULL, the Py_tp_base slot is used instead. If
that also is NULL, the new type derives from object.

The module argument can be used to record the module in which the new class is defined. It must be a module
object or NULL. If not NULL, the module is associated with the new type and can later be retrieved with
PyType_GetModule (). The associated module is not inherited by subclasses; it must be specified for each
class individually.

This function calls Py Type Ready () on the new type.

Note that this function does nor fully match the behavior of calling type () or using the class statement.
With user-provided base types or metaclasses, prefer calling type (or the metaclass) over PyType_From*
functions. Specifically:

e __new__ () is not called on the new class (and it must be set to type.__new_).
e __init__ () is not called on the new class.
e __init_subclass__ () is not called on any bases.
e _ set_name__ () is not called on new descriptors.
Added in version 3.12.
PyObject *PyType_FromModuleAndSpec (PyObject *module, PyType_Spec *spec, PyObject *bases)

Valore di ritorno: Nuovo riferimento. Parte del ABI Stabile dalla versione 3.10. Equivalent to
PyType_FromMetaclass (NULL, module, spec, bases).

Added in version 3.9.

Cambiato nella versione 3.10: The function now accepts a single class as the bases argument and NULL as the
tp_doc slot.

Cambiato nella versione 3.12: The function now finds and uses a metaclass corresponding to the provided base
classes. Previously, only type instances were returned.

The tp_new of the metaclass is ignored. which may result in incomplete initialization. Creating classes whose
metaclass overrides tp_new is deprecated and in Python 3.14+ it will be no longer allowed.

PyObject *PyType_FromSpecWithBases (PyType_Spec *spec, PyObject *bases)
Valore di ritorno: Nuovo riferimento. Parte del ABI Stabile dalla versione 3.3. Equivalent to
PyType_FromMetaclass (NULL, NULL, spec, bases).
Added in version 3.3.

Cambiato nella versione 3.12: The function now finds and uses a metaclass corresponding to the provided base
classes. Previously, only t ype instances were returned.

The tp_new of the metaclass is ignored. which may result in incomplete initialization. Creating classes whose
metaclass overrides tp_new is deprecated and in Python 3.14+ it will be no longer allowed.

PyObject *PyType_FromSpec (PyType_Spec *spec)
Valore di ritorno: Nuovo riferimento. Parte del ABI Stabile. Equivalent to PyType_FromMetaclass (NULL,
NULL, spec, NULL).

Cambiato nella versione 3.12: The function now finds and uses a metaclass corresponding to the base classes
provided in Py_tp_base[s] slots. Previously, only t ype instances were returned.

The tp_new of the metaclass is ignored. which may result in incomplete initialization. Creating classes whose
metaclass overrides tp_new is deprecated and in Python 3.14+ it will be no longer allowed.

8.1. Fundamental Objects 131

The Python/C API, Release 3.13.7

type PyType_Spec
Parte del ABI Stabile (inclusi tutti i membri). Structure defining a type’s behavior.

const char *name

Name of the type, used to set Py TypeObject . tp_name.

int basicsize

If positive, specifies the size of the instance in bytes. It is used to set Py TypeObject.tp_basicsize.
If zero, specifies that tp_basicsize should be inherited.

If negative, the absolute value specifies how much space instances of the class need in addition to the
superclass. Use PyObject_GetTypeData () to get a pointer to subclass-specific memory reserved
this way. For negative basicsize, Python will insert padding when needed to meet tp_basicsize’s
alignment requirements.

Cambiato nella versione 3.12: Previously, this field could not be negative.

int itemsize

Size of one element of a variable-size type, in bytes. Used to set Py TypeObject.tp_itemsize. See
tp_itemsize documentation for caveats.

If zero, tp_itemsize is inherited. Extending arbitrary variable-sized classes is dangerous, since some
types use a fixed offset for variable-sized memory, which can then overlap fixed-sized memory used by a
subclass. To help prevent mistakes, inheriting itemsize is only possible in the following situations:

o The base is not variable-sized (its tp_itemsize).

o The requested PyType Spec.basicsize is positive, suggesting that the memory layout of the
base class is known.

o The requested Py Type Spec.basicsize is zero, suggesting that the subclass does not access the
instance’s memory directly.

o With the py_TPFLAGS_1TEMS_AT END flag.

unsigned int £lags

Type flags, used to set Py TypeObject.tp_flags.

If the py_TPFLAGS_HEAPTYPE flag is not set, Py Type FromSpeclhiithBases () sets it automatically.
PyType_Slot *slots

Array of PyType_ Slot structures. Terminated by the special slot value {0, NULL}.

Each slot ID should be specified at most once.

type PyType_Slot

Farte del ABI Stabile (inclusi tutti i membri). Structure defining optional functionality of a type, containing a
slot ID and a value pointer.

int slot
A slot ID.

Slot IDs are named like the field names of the structures PyTypeObject, PyNumberMethods,
PySequenceMethods, PyMappingMethods and PyAsyncMethods with an added py_ prefix. For
example, use:

e Py _tp_dealloctoset PyTypeObject.tp _dealloc
e Py_nb_addtoset PyNumberMethods.nb_add
e Py_sqg lengthtoset PySequenceMethods.sqg_length
The following “offset” fields cannot be set using Py Type_Slot:
e tp_weaklistoffset (Use Py TPFLAGS_MANAGED_WEAKREF instead if possible)

e tp dictoffset (Use Py _TPFLAGS MANAGED_DICT instead if possible)

132 Capitolo 8. Concrete Objects Layer

The Python/C API, Release 3.13.7

e tp_vectorcall_ offset (use "__vectorcalloffset__" in PyMemberDef)

If it is not possible to switch to a MANAGED flag (for example, for vectorcall or to support Python older
than 3.12), specify the offset in Py_tp_members. See PyMemberDef documentation for details.

The following fields cannot be set at all when creating a heap type:
e tp_vectorcall (use tp_new and/or tp_init)
e Internal fields: tp_dict, tp_mro, tp_cache, tp_subclasses,and tp_weaklist.

Setting Py_tp_bases or Py_tp_base may be problematic on some platforms. To avoid issues, use the
bases argument of Py Type FromSpecWithBases () instead.

Cambiato nella versione 3.9: Slots in PyBufferProcs may be set in the unlimited AP

Cambiato nella versione 3.11: bf _getbuffer and bf_releasebuffer are now available under the
limited API.

void *pfunc

The desired value of the slot. In most cases, this is a pointer to a function.

Slots other than Py_tp_doc may not be NULL.

8.1.2 The None Object

Note that the PyTypeobject for None is not directly exposed in the Python/C API. Since None is a singleton,
testing for object identity (using == in C) is sufficient. There is no PyNone_Check () function for the same reason.

PyObject *Py_None
The Python None object, denoting lack of value. This object has no methods and is immortal.
Cambiato nella versione 3.12: Py_None is immortal.

Py_RETURN_NONE

Return Py None from a function.

8.2 Numeric Objects

8.2.1 Integer Objects
All integers are implemented as «long» integer objects of arbitrary size.

On error, most PyLong_As* APIs return (return type)-1 which cannot be distinguished from a number. Use

PyErr _Occurred () to disambiguate.

type PyLongObject
Farte del API Limitata (come una struttura opaca). This subtype of PyObject represents a Python integer
object.

PyTypeObject PyLong_Type
Farte del ABI Stabile. This instance of Py TypeOb ject represents the Python integer type. This is the same
object as int in the Python layer.

int PyLong_Check (PyObject *p)
Return true if its argument is a PyLongObject or a subtype of PyLongObject. This function always
succeeds.

int PyLong_CheckExact (PyObject *p)

Return true if its argument is a PyLongObject, but not a subtype of PyLongobject. This function always
succeeds.

8.2. Numeric Objects 133

The Python/C API, Release 3.13.7

PyObject *PyLong_FromLong (long v)
Valore di ritorno: Nuovo riferimento. Parte del ABI Stabile. Return a new PyLongObject object from v, or
NULL on failure.

The current implementation keeps an array of integer objects for all integers between -5 and 256. When you
create an int in that range you actually just get back a reference to the existing object.

PyObject *PyLong_FromUnsignedLong (unsigned long v)
Valore di ritorno: Nuovo riferimento. Parte del ABI Stabile. Return a new PyLongObject object from a C
unsigned long, or NULL on failure.

PyObject *PyLong_FromSsize_t (Py_ssize_t V)
Valore di ritorno: Nuovo riferimento. Parte del ABI Stabile. Return a new PyLongObject object from a C
Py_ssize_t,or NULL on failure.

PyObject *PyLong_FromSize_t (size_t V)
Valore di ritorno: Nuovo riferimento. Parte del ABI Stabile. Return a new PyLongObject object from a C
size_t, or NULL on failure.

PyObject *PyLong_FromLongLong (long long v)
Valore di ritorno: Nuovo riferimento. Parte del ABI Stabile. Return a new PyLongObject object from a C
long long, or NULL on failure.

PyObject *PyLong_FromUnsignedLongLong (unsigned long long v)
Valore di ritorno: Nuovo riferimento. Parte del ABI Stabile. Return a new PyLongObject object from a C
unsigned long long, or NULL on failure.

PyObject *PyLong_FromDouble (double v)
Valore di ritorno: Nuovo riferimento. Parte del ABI Stabile. Return a new PyLongObject object from the
integer part of v, or NULL on failure.

PyObject *PyLong_FromString (const char *str, char **pend, int base)

Valore di ritorno: Nuovo riferimento. Parte del ABI Stabile. Return a new PyLongOb ject based on the string
value in str, which is interpreted according to the radix in base, or NULL on failure. If pend is non-NULL, *pend
will point to the end of st on success or to the first character that could not be processed on error. If base
is 0, str is interpreted using the integers definition; in this case, leading zeros in a non-zero decimal number
raises a ValueError. If base is not 0, it must be between 2 and 36, inclusive. Leading and trailing whitespace
and single underscores after a base specifier and between digits are ignored. If there are no digits or st is not
NULL-terminated following the digits and trailing whitespace, ValueError will be raised.

@ Vedi anche

Python methods int.to_bytes () and int.from bytes () to convert a PyLongObject to/from an
array of bytes in base 256. You can call those from C using PyObject_CallMethod ().

PyObject *PyLong_FromUnicodeObject (PyObject *u, int base)
Valore di ritorno: Nuovo riferimento. Convert a sequence of Unicode digits in the string u to a Python integer
value.

Added in version 3.3.

PyObject *PyLong_FromVoidPtr (void *p)
Valore di ritorno: Nuovo riferimento. Parte del ABI Stabile. Create a Python integer from the pointer p. The
pointer value can be retrieved from the resulting value using PyLong AsVoidPtr ().

PyObject *PyLong_FromNativeBytes (const void *buffer, size_t n_bytes, int flags)

Create a Python integer from the value contained in the first n_byfes of buffer, interpreted as a
two's-complement signed number.

134 Capitolo 8. Concrete Objects Layer

The Python/C API, Release 3.13.7

flags are as for PyLong AsNativeBytes (). Passing -1 will select the native endian that
CPython was compiled with and assume that the most-significant bit is a sign bit. Pas-
sing Py ASNATIVEBYTES_UNSIGNED_BUFFER will produce the same result as calling
PyLong_FromUnsignedNativeBytes (). Other flags are ignored.

Added in version 3.13.

PyObject *PyLong_FromUnsignedNativeBytes (const void *buffer, size_t n_bytes, int flags)

Create a Python integer from the value contained in the first n_bytes of buffer, interpreted as an unsigned
number.

flags are as for PylLong_AsNativeBytes (). Passing —1 will select the native endian that CPython was
compiled with and assume that the most-significant bit is not a sign bit. Flags other than endian are ignored.

Added in version 3.13.
long PyLong_AsLong (PyObject *obj)

Parte del ABI Stabile. Return a C 1ong representation of obj. If obj is not an instance of PyLongObject, first
callits __index__ () method (if present) to convert it to a PyLongObject.

Raise overflowError if the value of obj is out of range for a 1ong.
Returns -1 on error. Use PyErr Occurred () to disambiguate.

Cambiato nella versione 3.8: Use __index__ () if available.

Cambiato nella versione 3.10: This function will no longer use __int__ ().
long PyLong_AS_LONG (PyObject *obj)

A soft deprecated alias. Exactly equivalent to the preferred PylLong_AsLong. In particular, it can fail
with OverflowError or another exception.

Deprecato dalla versione 3.14: The function is soft deprecated.
int PyLong_AsInt (PyObject *obj)

Parte del ABI Stabile dalla versione 3.13. Similar to PyLong_AsILong (), but store the resultina C int instead
of aC long.

Added in version 3.13.

long PyLong_AsLongAndOverflow (PyObject *obj, int *overflow)

Parte del ABI Stabile. Return a C 1ong representation of obj. If obj is not an instance of Pyr.ongObject, first
callits __index__ () method (if present) to convert it to a PyLongObject.

If the value of obj is greater than LONG_MAX or less than LONG_MIN, set *overflow to 1 or -1, respectively,
and return —-1; otherwise, set *overflow to 0. If any other exception occurs set *overflow to 0 and return -1 as
usual.

Returns -1 on error. Use PyErr_Occurred () to disambiguate.

Cambiato nella versione 3.8: Use __index__ () if available.

Cambiato nella versione 3.10: This function will no longer use __int__ ().
long long PyLong_AsLongLong (PyObject *obj)

Parte del ABI Stabile. Return a C long long representation of obj. If obj is not an instance of
PyLongObject, first call its __index__ () method (if present) to convert it to a PyLongObject.

Raise OverflowError if the value of obj is out of range for a 1ong long.
Returns -1 on error. Use PyErr Occurred () to disambiguate.
Cambiato nella versione 3.8: Use __index__ () if available.

Cambiato nella versione 3.10: This function will no longer use __int__ ().

8.2. Numeric Objects 135

The Python/C API, Release 3.13.7

long long PyLong_AsLongLongAndOverflow (PyObject *obj, int *overflow)

Parte del ABI Stabile. Return a C long long representation of obj. If obj is not an instance of
PyLongObject, first call its __index__ () method (if present) to convert it to a PyLongObject.

If the value of obj is greater than LLONG_MAX or less than LLONG_MIN, set *overflow to 1 or -1, respectively,
and return -1; otherwise, set *overflow to 0. If any other exception occurs set *overflow to 0 and return -1 as
usual.

Returns -1 on error. Use PyErr Occurred () to disambiguate.
Added in version 3.2.
Cambiato nella versione 3.8: Use __index__ () if available.

Cambiato nella versione 3.10: This function will no longer use __int__ ().

Py_ssize_t PyLong_AsSsize_t (PyObject *pylong)

Parte del ABI Stabile. Return a C Py_ssize t representation of pylong. pylong must be an instance of
PyLongObject.

Raise OverflowError if the value of pylong is out of range for a Py_ssize_t.

Returns -1 on error. Use PyErr_Occurred () to disambiguate.

unsigned long PyLong_AsUnsignedLong (PyObject *pylong)

Farte del ABI Stabile. Return a C unsigned long representation of pylong. pylong must be an instance of
PyLongObject.

Raise overflowError if the value of pylong is out of range for a unsigned long.

Returns (unsigned long)-1 on error. Use PyErr Occurred () to disambiguate.

size_t PyLong_AsSize_t (PyObject *pylong)

Parte del ABI Stabile. Return a C size_t representation of pylong. pylong must be an instance of
PyLongObject.

Raise overflowError if the value of pylong is out of range for a size_t.

Returns (size_t) -1 onerror. Use PyErr Occurred () to disambiguate.

unsigned long long PyLong_AsUnsignedLongLong (PyObject *pylong)

Farte del ABI Stabile. Returna Cunsigned long long representation of pylong. pylong must be an instance
of PyLongObject.

Raise overflowError if the value of pylong is out of range for an unsigned long long.
Returns (unsigned long long)-1 onerror. Use PyErr Occurred () to disambiguate.

Cambiato nella versione 3.1: A negative pylong now raises OverflowError, not TypeError.

unsigned long PyLong_AsUnsignedLongMask (PyObject *0bj)

Farte del ABI Stabile. Return a C unsigned long representation of obj. If obj is not an instance of
PyLongObject, first call its __index__ () method (if present) to convertitto a PyLongObject.

If the value of obj is out of range for an unsigned long, return the reduction of that value modulo
ULONG_MAX + 1.

Returns (unsigned long) -1 onerror. Use PyErr Occurred () to disambiguate.
Cambiato nella versione 3.8: Use __index__ () if available.

Cambiato nella versione 3.10: This function will no longer use __int__ ().

unsigned long long PyLong_AsUnsignedLongLongMask (PyObject *obj)

Farte del ABI Stabile. Return a C unsigned long long representation of obj. If obj is not an instance of
PyLongObject, first call its __index__ () method (if present) to convert it to a PyLongObject.

If the value of obj is out of range for an unsigned long long, return the reduction of that value modulo
ULLONG_MAX + 1.

136

Capitolo 8. Concrete Objects Layer

The Python/C API, Release 3.13.7

Returns (unsigned long long)-1 onerror. Use PyErr Occurred () to disambiguate.
Cambiato nella versione 3.8: Use __index__ () if available.

Cambiato nella versione 3.10: This function will no longer use __int__ ().

double PyLong_AsDouble (PyObject *pylong)

Farte del ABI Stabile. Return a C double representation of pylong. pylong must be an instance of
PyLongObject.

Raise overflowError if the value of pylong is out of range for a double.

Returns -1.0 on error. Use PyErr_Occurred () to disambiguate.

void *PyLong_AsVoidPtr (PyObject *pylong)

Parte del ABI Stabile. Convert a Python integer pylong to a C void pointer. If pylong cannot be converted, an
overflowError will be raised. This is only assured to produce a usable void pointer for values created with
PyLong_FromVoidPtr().

Returns NULL on error. Use PyErr Occurred () to disambiguate.

Py_ssize_t PyLong_AsNativeBytes (PyObject *pylong, void *buffer, Py_ssize_t n_bytes, int flags)

Copy the Python integer value pylong to a native buffer of size n_bytes. The flags can be set to -1 to behave
similarly to a C cast, or to values documented below to control the behavior.

Returns -1 with an exception raised on error. This may happen if pylong cannot be interpreted as an integer,
or if pylong was negative and the Py _ASNATIVEBYTES_REJECT_NEGATIVE flag was set.

Otherwise, returns the number of bytes required to store the value. If this is equal to or less than n_byfes, the
entire value was copied. All n_bytes of the buffer are written: large buffers are padded with zeroes.

If the returned value is greater than n_bytes, the value was truncated: as many of the lowest bits of the value as
could fit are written, and the higher bits are ignored. This matches the typical behavior of a C-style downcast.

© Nota

Overflow is not considered an error. If the returned value is larger than n_bytes, most significant bits were
discarded.

0 will never be returned.
Values are always copied as two's-complement.

Usage example:

p
int32_t value;

Py_ssize_t bytes = PyLong_AsNativeBytes (pylong, &value, sizeof (value), —-1);
if (bytes < 0) {
// Failed. A Python exception was set with the reason.
return NULL;
}
else if (bytes <= (Py_ssize_t)sizeof (value)) {
// Success!
}
else {
// Overflow occurred, but 'value' contains the truncated
// lowest bits of pylong.

J

Passing zero to n_bytes will return the size of a buffer that would be large enough to hold the value. This may
be larger than technically necessary, but not unreasonably so. If n_bytes=0, buffer may be NULL.

8.2. Numeric Objects 137

The Python/C API, Release 3.13.7

© Nota

Passing n_bytes=0 to this function is not an accurate way to determine the bit length of the value.

To get at the entire Python value of an unknown size, the function can be called twice: first to determine the

buffer size, then to fill it:

~

// Ask how much space we need.
Py_ssize_t expected = PyLong_AsNativeBytes (pylong, NULL, 0, -1);
if (expected < 0) {
// Failed. A Python exception was set with the reason.
return NULL;
I3
assert (expected != 0); // Impossible per the API definition.
uint8_t *bignum = malloc (expected) ;
if (!bignum) {
PyErr_SetString (PyExc_MemoryError, "bignum malloc failed.");
return NULL;
}
// Safely get the entire value.
Py_ssize_t bytes = PyLong_AsNativeBytes (pylong, bignum, expected,
if (bytes < 0) { // Exception has been set.
free (bignum) ;
return NULL;
}
else if (bytes > expected) { // This should not be possible.
PyErr_SetString (PyExc_RuntimeError,
"Unexpected bignum truncation after a size check.");
free (bignum) ;
return NULL;
}
// The expected success given the above pre-check.
// ... use bignum
free (bignum) ;

-1);

flags is either -1 (Py_ASNATIVEBYTES_DEFAULTS) to select defaults that behave most like a C cast, or a
combination of the other flags in the table below. Note that -1 cannot be combined with other flags.

Currently, -1 corresponds to Py_ASNATIVEBYTES_NATIVE_ENDIAN |

Py_ASNATIVEBYTES_UNSIGNED_BUFFER.

138

Capitolo 8. Concrete Objects Layer

The Python/C API, Release 3.13.7

Flag Value

Py ASNATIVEBYTES_DEFAULTS

0
Py ASNATIVEBYTES_BIG_ENDIAN

1
Py ASNATIVEBYTES_LITTLE_ENDIAN

3
Py ASNATIVEBYTES_NATIVE_ENDIAN

4
Py ASNATIVEBYTES_UNSIGNED_BUFFER

8
Py ASNATIVEBYTES_REJECT_NEGATIVE

16

Py_ASNATIVEBYTES_ALLOW_INDEX

Specifying Py_ASNATIVEBYTES_NATIVE_ENDIAN will override any other endian flags. Passing 2 is reserved.

By default, sufficient buffer will be requested to include a sign bit. For example, when converting 128 with
n_bytes=1, the function will return 2 (or more) in order to store a zero sign bit.

If Py ASNATIVEBYTES_UNSIGNED_BUFFER is specified, a zero sign bit will be omitted from size calcula-
tions. This allows, for example, 128 to fit in a single-byte buffer. If the destination buffer is later treated as
signed, a positive input value may become negative. Note that the flag does not affect handling of negative
values: for those, space for a sign bit is always requested.

Specifying Py_ASNATIVEBYTES_REJECT_NEGATIVE causes an exception to be set if pylong is negative. Wi-
thout this flag, negative values will be copied provided there is enough space for at least one sign bit, regardless
of whether Py_ASNATIVEBYTES_UNSIGNED_BUFFER was specified.

If Py ASNATIVEBYTES_ALLOW_INDEX is specified and a non-integer value is passed, its __index__ ()
method will be called first. This may result in Python code executing and other threads being allowed to run,
which could cause changes to other objects or values in use. When flags is -1, this option is not set, and
non-integer values will raise TypeError.

O Nota

With the default flags (-1, or UNSIGNED_BUFFER without REJECT _NEGATIVE), multiple Python inte-
gers can map to a single value without overflow. For example, both 255 and -1 fit a single-byte buffer and
set all its bits. This matches typical C cast behavior.

Added in version 3.13.

PyObject *PyLong_GetInfo (void)

Farte del ABI Stabile. On success, return a read only named tuple, that holds information about Python’s internal
representation of integers. See sys.int_info for description of individual fields.

On failure, return NULL with an exception set.

Added in version 3.1.

8.2. Numeric Objects 139

The Python/C API, Release 3.13.7

int PyUnstable_Long_IsCompact (const PyLongObject *op)

Questa pagina API Instabile. Potrebbe cambiare senza preavviso nelle release minori.

Return 1 if op is compact, 0 otherwise.

This function makes it possible for performance-critical code to implement a “fast path” for small integers. For
compact values use PyUnstable_Long_CompactValue (); for others fall back to a PyLong_As* function
or PyLong_AsNativeBytes ().

The speedup is expected to be negligible for most users.
Exactly what values are considered compact is an implementation detail and is subject to change.
Added in version 3.12.

Py_ssize_t PyUnstable_Long_CompactValue (const PyLongObject *op)

Questa pagina API Instabile. Potrebbe cambiare senza preavviso nelle release minori.

If op is compact, as determined by PyUnstable Long IsCompact (), return its value.
Otherwise, the return value is undefined.

Added in version 3.12.

8.2.2 Boolean Objects

Booleans in Python are implemented as a subclass of integers. There are only two booleans, Py_Falseand Py_True.
As such, the normal creation and deletion functions don’t apply to booleans. The following macros are available,
however.
PyTypeObject PyBool_Type
Parte del ABI Stabile. This instance of PyTypeObject represents the Python boolean type; it is the same
object as bool in the Python layer.

int PyBool_Check (PyObject *0)
Return true if o is of type PyBool Type. This function always succeeds.
PyObject *Py_False
The Python False object. This object has no methods and is immortal.
Cambiato nella versione 3.12: pPy_False is immortal.
PyObject *Py_True
The Python True object. This object has no methods and is immortal.
Cambiato nella versione 3.12: Py_ True is immortal.

Py_RETURN_FALSE

Return Py _False from a function.

Py_RETURN_TRUE
Return Py True from a function.
PyObject *PyBool_FromLong (long v)

Valore di ritorno: Nuovo riferimento. Parte del ABI Stabile. Return Py True or Py_False, depending on the
truth value of v.

140 Capitolo 8. Concrete Objects Layer

The Python/C API, Release 3.13.7

8.2.3 Floating-Point Objects

type PyFloatObject
This subtype of PyObject represents a Python floating-point object.

PyTypeObject PyFloat_Type
Farte del ABI Stabile. This instance of PyTypeObject represents the Python floating-point type. This is the
same object as f1loat in the Python layer.

int PyFloat_Check (PyObject *p)
Return true if its argument is a PyFloatObject or a subtype of PyFloatObject. This function always
succeeds.

int PyFloat_CheckExact (PyObject *p)
Return true if its argument is a PyF1loatObject, but not a subtype of PyFioatobject. This function always
succeeds.

PyObject *PyFloat_FromString (PyObject *str)
Valore di ritorno: Nuovo riferimento. Parte del ABI Stabile. Create a PyFloatObject object based on the
string value in str, or NULL on failure.

PyObject *PyFloat_FromDouble (double v)
Valore di ritorno: Nuovo riferimento. Parte del ABI Stabile. Create a PyFloatObject object from v, or NULL
on failure.

double PyFloat_AsDouble (PyObject *pyfloat)

Parte del ABI Stabile. Return a C double representation of the contents of pyfloat. If pyfloat is not a Python
floating-point object but has a ___float__ () method, this method will first be called to convert pyfloat into
afloat. If _ float__ () is not defined then it falls back to __index__ (). This method returns -1.0 upon
failure, so one should call PyErr oOccurred () to check for errors.

Cambiato nella versione 3.8: Use ___index__ () if available.

double PyFloat_AS_DOUBLE (PyObject *pyfloat)
Return a C double representation of the contents of pyfloat, but without error checking.

PyObject *PyFloat_GetInfo (void)

Valore di ritorno: Nuovo riferimento. Parte del ABI Stabile. Return a structseq instance which contains infor-
mation about the precision, minimum and maximum values of a float. It’s a thin wrapper around the header
file float.h.

double PyFloat_GetMax ()
Parte del ABI Stabile. Return the maximum representable finite float DBL_MAX as C double.

double PyFloat_GetMin ()
Parte del ABI Stabile. Return the minimum normalized positive float DBL_MIN as C double.

Pack and Unpack functions

The pack and unpack functions provide an efficient platform-independent way to store floating-point values as byte
strings. The Pack routines produce a bytes string from a C double, and the Unpack routines produce a C double
from such a bytes string. The suffix (2, 4 or 8) specifies the number of bytes in the bytes string.

On platforms that appear to use IEEE 754 formats these functions work by copying bits. On other platforms, the
2-byte format is identical to the IEEE 754 binary16 half-precision format, the 4-byte format (32-bit) is identical to
the IEEE 754 binary32 single precision format, and the 8-byte format to the IEEE 754 binary64 double precision
format, although the packing of INFs and NaNs (if such things exist on the platform) isn’t handled correctly, and
attempting to unpack a bytes string containing an IEEE INF or NaN will raise an exception.

On non-IEEE platforms with more precision, or larger dynamic range, than IEEE 754 supports, not all values can be
packed; on non-IEEE platforms with less precision, or smaller dynamic range, not all values can be unpacked. What
happens in such cases is partly accidental (alas).

Added in version 3.11.

8.2. Numeric Objects 141

The Python/C API, Release 3.13.7

Pack functions

The pack routines write 2, 4 or 8 bytes, starting at p. le is an int argument, non-zero if you want the bytes string in
little-endian format (exponent last, at p+1, p+3, or p+6 p+7), zero if you want big-endian format (exponent first, at
p). The PY_BIG_ENDIAN constant can be used to use the native endian: it is equal to 1 on big endian processor, or
0 on little endian processor.

Return value: 0 if all is OK, -1 if error (and an exception is set, most likely OverflowError).
There are two problems on non-IEEE platforms:

« What this does is undefined if x is a NaN or infinity.

e —0.0 and +0. 0 produce the same bytes string.

int PyFloat_Pack2 (double x, char *p, int le)
Pack a C double as the IEEE 754 binary16 half-precision format.

int PyFloat_Pack4 (double x, char *p, int le)
Pack a C double as the IEEE 754 binary32 single precision format.

int PyFloat_Pack8 (double x, char *p, int le)
Pack a C double as the IEEE 754 binary64 double precision format.

Unpack functions

The unpack routines read 2, 4 or 8 bytes, starting at p. le is an int argument, non-zero if the bytes string is in
little-endian format (exponent last, at p+1, p+3 or p+6 and p+7), zero if big-endian (exponent first, at p). The
PY_BIG_ENDIAN constant can be used to use the native endian: it is equal to 1 on big endian processor, or 0 on little
endian processor.

Return value: The unpacked double. On error, thisis -1 .0 and PyErr_Occurred () is true (and an exception is set,
most likely OverflowError).

Note that on a non-IEEE platform this will refuse to unpack a bytes string that represents a NaN or infinity.
double PyFloat_Unpack2 (const char *p, int le)
Unpack the IEEE 754 binary16 half-precision format as a C double.
double PyFloat_Unpack4 (const char *p, int le)
Unpack the IEEE 754 binary32 single precision format as a C double.
double PyFloat_Unpack8 (const char *p, int le)
Unpack the IEEE 754 binary64 double precision format as a C double.

8.2.4 Complex Number Objects

Python’s complex number objects are implemented as two distinct types when viewed from the C API: one is the
Python object exposed to Python programs, and the other is a C structure which represents the actual complex number
value. The API provides functions for working with both.

Complex Numbers as C Structures

Note that the functions which accept these structures as parameters and return them as results do so by value rather
than dereferencing them through pointers. This is consistent throughout the API.
type Py_complex

The C structure which corresponds to the value portion of a Python complex number object. Most of the
functions for dealing with complex number objects use structures of this type as input or output values, as
appropriate.

double real

142 Capitolo 8. Concrete Objects Layer

The Python/C API, Release 3.13.7

double imag

The structure is defined as:

typedef struct {
double real;
double imag;
} Py_complex;

Py_complex _Py_c_sum (Py_complex left, Py_complex right)

Return the sum of two complex numbers, using the C Py_complex representation.
Py_complex _Py_c_diff (Py_complex left, Py_complex right)

Return the difference between two complex numbers, using the C Py complex representation.
Py_complex _Py_c_neg (Py_complex num)

Return the negation of the complex number num, using the C Py_complex representation.
Py_complex _Py_c_prod (Py_complex left, Py_complex right)

Return the product of two complex numbers, using the C Py_complex representation.
Py_complex _Py_c_quot (Py_complex dividend, Py_complex divisor)

Return the quotient of two complex numbers, using the C Py_complex representation.

If divisor is null, this method returns zero and sets errno to EDOM.

Py_complex _Py_c_pow (Py_complex num, Py_complex exp)

Return the exponentiation of num by exp, using the C Py_ complex representation.

If num is null and exp is not a positive real number, this method returns zero and sets errno to EDOM.

Complex Numbers as Python Objects

type PyComplexObject
This subtype of PyObject represents a Python complex number object.

PyTypeObject PyComplex_Type
Farte del ABI Stabile. This instance of PyTypeObject represents the Python complex number type. It is the
same object as complex in the Python layer.

int PyComplex_Check (PyObject *p)
Return true if its argument is a PyComplexObject or a subtype of PyComplexObject. This function always
succeeds.

int PyComplex_CheckExact (PyObject *p)
Return true if its argument is a PyComplexObject, but not a subtype of PyComplexObject. This function
always succeeds.

PyObject *PyComplex_FromCComplex (Py_complex V)
Valore di ritorno: Nuovo riferimento. Create a new Python complex number object from a C Py_complex
value. Return NULL with an exception set on error.

PyObject *PyComplex_FromDoubles (double real, double imag)
Valore di ritorno: Nuovo riferimento. Parte del ABI Stabile. Return a new pPyComplexObject object from real
and imag. Return NULL with an exception set on error.

double PyComplex_RealAsDouble (PyObject *op)
Farte del ABI Stabile. Return the real part of op as a C double.
If op is not a Python complex number object but has a __complex__ () method, this method will first be

called to convert op to a Python complex number object. If __complex__ () is not defined then it falls back
tocall PyFloat_AsDouble () and returns its result.

8.2. Numeric Objects 143

The Python/C API, Release 3.13.7

Upon failure, this method returns -1.0 with an exception set, so one should call PyErr Occurred() to
check for errors.

Cambiato nella versione 3.13: Use __complex__ () if available.

double PyComplex_ImagAsDouble (PyObject *op)
Farte del ABI Stabile. Return the imaginary part of op as a C double.

If op is not a Python complex number object but has a __complex__ () method, this method will first be
called to convert op to a Python complex number object. If __complex__ () is not defined then it falls back
tocall PyFloat_AsDouble () and returns 0.0 on success.

Upon failure, this method returns -1 .0 with an exception set, so one should call PyErr Occurred() to
check for errors.

Cambiato nella versione 3.13: Use __complex__ () if available.

Py_complex PyComplex_AsCComplex (PyObject *op)
Return the Py_complex value of the complex number op.

If op is not a Python complex number object but has a __complex__ () method, this method will first be
called to convert op to a Python complex number object. If __complex__ () is not defined then it falls back
to_ float_ ().If _ float__ () is not defined then it falls back to __index_ ().

Upon failure, this method returns Py _complex with real setto -1 .0 and with an exception set, so one should
call PyErr_Occurred () to check for errors.

Cambiato nella versione 3.8: Use __index__ () if available.

8.3 Sequence Objects

Generic operations on sequence objects were discussed in the previous chapter; this section deals with the specific
kinds of sequence objects that are intrinsic to the Python language.

8.3.1 Bytes Objects

These functions raise TypeError when expecting a bytes parameter and called with a non-bytes parameter.
type PyBytesObject
This subtype of PyObject represents a Python bytes object.
PyTypeObject PyBytes_Type
Farte del ABI Stabile. This instance of Py TypeObject represents the Python bytes type; it is the same object
as bytes in the Python layer.
int PyBytes_Check (PyObject *0)
Return true if the object o is a bytes object or an instance of a subtype of the bytes type. This function always
succeeds.
int PyBytes_CheckExact (PyObject *0)
Return true if the object o is a bytes object, but not an instance of a subtype of the bytes type. This function
always succeeds.
PyObject *PyBytes_FromString (const char *v)
Valore di ritorno: Nuovo riferimento. Parte del ABI Stabile. Return a new bytes object with a copy of the string
v as value on success, and NULL on failure. The parameter v must not be NULL; it will not be checked.
PyObject *PyBytes_FromStringAndSize (const char *v, Py _ssize t len)

Valore di ritorno: Nuovo riferimento. Parte del ABI Stabile. Return a new bytes object with a copy of the string
v as value and length len on success, and NULL on failure. If v is NULL, the contents of the bytes object are
uninitialized.

144 Capitolo 8. Concrete Objects Layer

The Python/C API, Release 3.13.7

PyObject *PyBytes_FromFormat (const char *format, ...)

Valore di ritorno: Nuovo riferimento. Parte del ABI Stabile. Take a C printf () -style format string and a
variable number of arguments, calculate the size of the resulting Python bytes object and return a bytes object
with the values formatted into it. The variable arguments must be C types and must correspond exactly to the
format characters in the format string. The following format characters are allowed:

| Format Characters | Type | Comment

%% n/a The literal % character.

$c int A single byte, represented as a C int.

sd int Equivalent to print £ ("%d").!

$u unsigned int Equivalent to printf ("%u").!

%1d long Equivalent to print £ ("$1d").'

$1lu unsigned long | Equivalent to print £ ("%1u").!

$zd Py ssize_t | Equivalentto printf ("$zd"). !

$zu size_t Equivalent to printf ("$zu").!

31 int Equivalent to print £ ("%i") !

$x int Equivalent to print £ ("%x" Dol

$s const char* A null-terminated C character array.

%p const void* The hex representation of a C pointer. Mostly equivalent to
printf ("%p") except that it is guaranteed to start with the
literal 0x regardless of what the platform’s print £ yields.

An unrecognized format character causes all the rest of the format string to be copied as-is to the result object,
and any extra arguments discarded.

PyObject *PyBytes_FromFormatV (const char *format, va_list vargs)
Valore di ritorno: Nuovo riferimento. Parte del ABI Stabile. Identical to PyBytes FromFormat () except that
it takes exactly two arguments.

PyObject *PyBytes_FromObject (PyObject *0)
Valore di ritorno: Nuovo riferimento. Parte del ABI Stabile. Return the bytes representation of object o that
implements the buffer protocol.

Py_ssize_t PyBytes_Size (PyObject *0)
Parte del ABI Stabile. Return the length of the bytes in bytes object o.

Py_ssize_t PyBytes_GET_SIZE (PyObject *0)
Similar to PyBytes_Size (), but without error checking.

char *PyBytes_AsString (PyObject *0)

Farte del ABI Stabile. Return a pointer to the contents of o. The pointer refers to the internal buffer of o,
which consists of 1len (o) + 1 bytes. The last byte in the buffer is always null, regardless of whether there
are any other null bytes. The data must not be modified in any way, unless the object was just created using
PyBytes_FromStringAndSize (NULL, size).It mustnot be deallocated. If o is not a bytes object at all,
PyBytes_AsString () returns NULL and raises TypeError.

char *PyBytes_AS_STRING (PyObject *string)
Similar to PyBytes_AsString (), but without error checking.
int PyBytes_AsStringAndSize (PyObject *obj, char **buffer, Py_ssize_t *length)

Parte del ABI Stabile. Return the null-terminated contents of the object obj through the output variables buffer
and length. Returns 0 on success.

If length is NULL, the bytes object may not contain embedded null bytes; if it does, the function returns -1 and
avalueError is raised.

The buffer refers to an internal buffer of obj, which includes an additional null byte at the end (not
counted in length). The data must not be modified in any way, unless the object was just created using

! For integer specifiers (d, u, 1d, I, zd, zu, i, x): the O-conversion flag has effect even when a precision is given.

8.3. Sequence Objects 145

The Python/C API, Release 3.13.7

PyBytes_FromStringAndSize (NULL, size). It must not be deallocated. If obj is not a bytes object
atall, PyBytes_AsStringAndSize () returns —1 and raises TypeError.

Cambiato nella versione 3.5: Previously, TypeError was raised when embedded null bytes were encountered
in the bytes object.

void PyBytes_Concat (PyObject **bytes, PyObject *newpart)
Farte del ABI Stabile. Create a new bytes object in *byfes containing the contents of newpart appended to
bytes; the caller will own the new reference. The reference to the old value of bytes will be stolen. If the new
object cannot be created, the old reference to bytes will still be discarded and the value of *byfes will be set to
NULL; the appropriate exception will be set.

void PyBytes_ConcatAndDel (PyObject **bytes, PyObject *newpart)
Parte del ABI Stabile. Create a new bytes object in *bytes containing the contents of newpart appended to
bytes. This version releases the strong reference to newpart (i.e. decrements its reference count).

int _PyBytes_Resize (PyObject **bytes, Py_ssize_t newsize)

Resize a bytes object. newsize will be the new length of the bytes object. You can think of it as creating a new
bytes object and destroying the old one, only more efficiently. Pass the address of an existing bytes object as an
Ivalue (it may be written into), and the new size desired. On success, *byfes holds the resized bytes object and
0 is returned; the address in *byfes may differ from its input value. If the reallocation fails, the original bytes
object at *bytes is deallocated, *bytes is set to NULL, MemoryError is set, and -1 is returned.

8.3.2 Byte Array Objects

type PyByteArrayObject
This subtype of PyObject represents a Python bytearray object.
PyTypeObject PyByteArray_Type

Parte del ABI Stabile. This instance of Py TypeObject represents the Python bytearray type; it is the same
object as bytearray in the Python layer.

Type check macros

int PyByteArray_Check (PyObject *0)

Return true if the object o is a bytearray object or an instance of a subtype of the bytearray type. This function
always succeeds.

int PyByteArray_CheckExact (PyObject *0)

Return true if the object o is a bytearray object, but not an instance of a subtype of the bytearray type. This
function always succeeds.

Direct API functions

PyObject *PyByteArray FromObject (PyObject *0)

Valore di ritorno: Nuovo riferimento. Parte del ABI Stabile. Return a new bytearray object from any object, o,
that implements the buffer protocol.

On failure, return NULL with an exception set.

PyObject *PyByteArray_FromStringAndSize (const char *string, Py_ssize_t len)

Valore di ritorno: Nuovo riferimento. Parte del ABI Stabile. Create a new bytearray object from string and its
length, len.

On failure, return NULL with an exception set.
PyObject *PyByteArray_Concat (PyObject *a, PyObject *b)

Valore di ritorno: Nuovo riferimento. Parte del ABI Stabile. Concat bytearrays a and b and return a new bytearray
with the result.

On failure, return NULL with an exception set.

146 Capitolo 8. Concrete Objects Layer

The Python/C API, Release 3.13.7

Py_ssize_t PyByteArray_Size (PyObject *bytearray)
Farte del ABI Stabile. Return the size of bytearray after checking for a NULL pointer.

char *PyByteArray_ AsString (PyObject *bytearray)

Farte del ABI Stabile. Return the contents of byfearray as a char array after checking for a NULL pointer. The
returned array always has an extra null byte appended.

int PyByteArray_Resize (PyObject *bytearray, Py_ssize_t len)
Parte del ABI Stabile. Resize the internal buffer of bytearray to len.

Macros
These macros trade safety for speed and they don’t check pointers.

char *PyByteArray AS_STRING (PyObject *bytearray)
Similar to PyByteArray AsString (), but without error checking.

Py_ssize_t PyByteArray_GET_SIZE (PyObject *bytearray)

Similar to PyByteArray Size (), but without error checking.

8.3.3 Unicode Objects and Codecs

Unicode Objects

Since the implementation of PEP 393 in Python 3.3, Unicode objects internally use a variety of representations, in
order to allow handling the complete range of Unicode characters while staying memory efficient. There are special
cases for strings where all code points are below 128, 256, or 65536; otherwise, code points must be below 1114112
(which is the full Unicode range).

UTF-8 representation is created on demand and cached in the Unicode object.

O Nota

The py_UNTCODE representation has been removed since Python 3.12 with deprecated APIs. See PEP 623 for
more information.

Unicode Type

These are the basic Unicode object types used for the Unicode implementation in Python:
type Py_UCS4
type Py_UCS2

type Py_UCS1

Farte del ABI Stabile. These types are typedefs for unsigned integer types wide enough to contain characters
of 32 bits, 16 bits and 8 bits, respectively. When dealing with single Unicode characters, use Py UCS4.

Added in version 3.3.

type Py_UNICODE
This is a typedef of wchar_t, which is a 16-bit type or 32-bit type depending on the platform.

Cambiato nella versione 3.3: In previous versions, this was a 16-bit type or a 32-bit type depending on whether
you selected a «narrow» or «wide» Unicode version of Python at build time.

Deprecated since version 3.13, will be removed in version 3.15.

type PyASCIIObject
type PyCompactUnicodeObject

8.3. Sequence Objects 147

https://peps.python.org/pep-0393/
https://peps.python.org/pep-0623/

The Python/C API, Release 3.13.7

type PyUnicodeObject

These subtypes of PyObject represent a Python Unicode object. In almost all cases, they shouldn’t be used
directly, since all API functions that deal with Unicode objects take and return PyOb ject pointers.

Added in version 3.3.
PyTypeObject PyUnicode_Type

Parte del ABI Stabile. This instance of Py Typeob ject represents the Python Unicode type. It is exposed to
Python code as str.

PyTypeObject PyUnicodeIter_ Type

Parte del ABI Stabile. This instance of Py TypeObject represents the Python Unicode iterator type. It is used
to iterate over Unicode string objects.

The following APIs are C macros and static inlined functions for fast checks and access to internal read-only data of
Unicode objects:

int PyUnicode_Check (PyObject *obj)

Return true if the object obj is a Unicode object or an instance of a Unicode subtype. This function always
succeeds.

int PyUnicode_CheckExact (PyObject *obj)

Return true if the object 0bj is a Unicode object, but not an instance of a subtype. This function always succeeds.
int PyUnicode_READY (PyObject *unicode)

Returns 0. This APT is kept only for backward compatibility.

Added in version 3.3.
Deprecato dalla versione 3.10: This API does nothing since Python 3.12.

Py_ssize_t PyUnicode_GET_LENGTH (PyObject *unicode)

Return the length of the Unicode string, in code points. unicode has to be a Unicode object in the «canonical»
representation (not checked).

Added in version 3.3.
Py_UCSI *PyUnicode_1BYTE_DATA (PyObject *unicode)
Py_UCS?2 *PyUnicode_2BYTE_DATA (PyObject *unicode)
Py_UCS4 *PyUnicode_4BYTE_DATA (PyObject *unicode)

Return a pointer to the canonical representation cast to UCS1, UCS2 or UCS4 integer types for direct cha-
racter access. No checks are performed if the canonical representation has the correct character size; use
PyUnicode_KIND () to select the right function.

Added in version 3.3.

PyUnicode_1BYTE_KIND
PyUnicode_2BYTE_KIND
PyUnicode_4BYTE_KIND

Return values of the PyUnicode KIND () macro.
Added in version 3.3.
Cambiato nella versione 3.12: PyUnicode_WCHAR_KIND has been removed.

int PyUnicode_KIND (PyObject *unicode)

Return one of the PyUnicode kind constants (see above) that indicate how many bytes per character this

Unicode object uses to store its data. unicode has to be a Unicode object in the «canonical» representation (not
checked).

Added in version 3.3.

148 Capitolo 8. Concrete Objects Layer

The Python/C API, Release 3.13.7

void *PyUnicode_DATA (PyObject *unicode)
Return a void pointer to the raw Unicode buffer. unicode has to be a Unicode object in the «canonical»
representation (not checked).

Added in version 3.3.

void PyUnicode_WRITE (int kind, void *data, Py_ssize_t index, Py_UCS4 value)

Write into a canonical representation data (as obtained with PyUnicode_DATA ()). This function performs
no sanity checks, and is intended for usage in loops. The caller should cache the kind value and data pointer
as obtained from other calls. index is the index in the string (starts at 0) and value is the new code point value
which should be written to that location.

Added in version 3.3.

Py_UCS4 PyUnicode_READ (int kind, void *data, Py_ssize_t index)
Read a code point from a canonical representation data (as obtained with PyUnicode_DATA ()). No checks
or ready calls are performed.

Added in version 3.3.

Py_UCS4 PpyUnicode_READ_CHAR (PyObject *unicode, Py_ssize_t index)

Read a character from a Unicode object unicode, which must be in the «canonical» representation. This is less
efficient than PyUnicode READ () if you do multiple consecutive reads.

Added in version 3.3.

Py_UCS4 PpyUnicode_MAX_CHAR_VALUE (PyObject *unicode)

Return the maximum code point that is suitable for creating another string based on unicode, which must be
in the «canonical» representation. This is always an approximation but more efficient than iterating over the
string.

Added in version 3.3.

int PyUnicode_IsIdentifier (PyObject *unicode)

Farte del ABI Stabile. Return 1 if the string is a valid identifier according to the language definition, section
identifiers. Return 0 otherwise.

Cambiato nella versione 3.9: The function does not call Py_FatalError () anymore if the string is not ready.

Unicode Character Properties
Unicode provides many different character properties. The most often needed ones are available through these macros
which are mapped to C functions depending on the Python configuration.

int Py_UNICODE_ISSPACE (Py_UCS4 ch)
Return 1 or 0 depending on whether ch is a whitespace character.

int Py_UNICODE_ISLOWER (Py_UCS4 ch)

Return 1 or 0 depending on whether c# is a lowercase character.

int Py_UNICODE_ISUPPER (Py_UCS4 ch)
Return 1 or 0 depending on whether c# is an uppercase character.

int Py_UNICODE_ISTITLE (Py_UCS4 ch)

Return 1 or 0 depending on whether c# is a titlecase character.

int Py_UNICODE_ISLINEBREAK (Py_UCS4 ch)
Return 1 or 0 depending on whether ch is a linebreak character.

int Py_UNICODE_ISDECIMAL (Py_UCS4 ch)
Return 1 or 0 depending on whether ch is a decimal character.

int Py_UNICODE_ISDIGIT (Py_UCS4 ch)

Return 1 or 0 depending on whether ch is a digit character.

8.3. Sequence Objects 149

The Python/C API, Release 3.13.7

int Py_UNICODE_ISNUMERIC (Py_UCS4 ch)

Return 1 or 0 depending on whether ch is a numeric character.

int Py_UNICODE_ISALPHA (Py_UCS4 ch)
Return 1 or 0 depending on whether c# is an alphabetic character.

int Py_UNICODE_ISALNUM (Py_UCS4 ch)
Return 1 or 0 depending on whether c# is an alphanumeric character.

int Py_UNICODE_ISPRINTABLE (Py UCS4 ch)
Return 1 or 0 depending on whether c# is a printable character, in the sense of str.isprintable ().

These APIs can be used for fast direct character conversions:

Py_UCS4 Py_UNICODE_TOLOWER (Py_UCS4 ch)
Return the character ch converted to lower case.

Py_UCS4 Py_UNICODE_TOUPPER (Py_UCS4 ch)
Return the character ch converted to upper case.

Py_UCS4 py_UNICODE_TOTITLE (Py_ UCS4 ch)

Return the character ch converted to title case.

int Py_UNICODE_TODECIMAL (Py_UCS4 ch)
Return the character ch converted to a decimal positive integer. Return -1 if this is not possible. This function
does not raise exceptions.

int Py_UNICODE_TODIGIT (Py_UCS4 ch)
Return the character ch converted to a single digit integer. Return -1 if this is not possible. This function does
not raise exceptions.

double Py_UNICODE_TONUMERIC (Py_UCS4 ch)
Return the character ch converted to a double. Return -1 . 0 if this is not possible. This function does not raise
exceptions.

These APIs can be used to work with surrogates:

int Py UNICODE_IS_SURROGATE (Py_UCS4 ch)
Check if ch is a surrogate (0xD800 <= ch <= 0xDFFF).

int Py_UNICODE_IS_HIGH_SURROGATE (Py_UCS4 ch)
Check if ch is a high surrogate (0xD800 <= ch <= 0xDBFF).

int Py_UNICODE_IS_LOW_SURROGATE (Py_UCS4 ch)
Check if ch is a low surrogate (0xDC00 <= ch <= 0xDFFF).

Py_UCS4 Py_UNICODE_JOIN_SURROGATES (Py_UCS4 high, Py_UCS4 low)

Join two surrogate code points and return a single Py_UCSs4 value. high and low are respectively the leading
and trailing surrogates in a surrogate pair. high must be in the range [0xD800; OxDBFF] and low must be in
the range [0xDCO00; OxDFFF].

Creating and accessing Unicode strings

To create Unicode objects and access their basic sequence properties, use these APIs:

PyObject *PyUnicode_New (Py_ssize_t size, Py_UCS4 maxchar)
Valore di ritorno: Nuovo riferimento. Create a new Unicode object. maxchar should be the true maximum code

point to be placed in the string. As an approximation, it can be rounded up to the nearest value in the sequence
127,255, 65535, 1114111.

This is the recommended way to allocate a new Unicode object. Objects created using this function are not
resizable.

On error, set an exception and return NULL.

150 Capitolo 8. Concrete Objects Layer

The Python/C API, Release 3.13.7

Added in version 3.3.

PyObject *PyUnicode_FromKindAndData (int kind, const void *buffer, Py_ssize_t size)

Valore di ritorno: Nuovo riferimento. Create a new Unicode object with the given kind (possible values are
PyUnicode_1BYTE_KIND etc., as returned by PyUnicode_KIND ()). The buffer must point to an array of
size units of 1, 2 or 4 bytes per character, as given by the kind.

If necessary, the input buffer is copied and transformed into the canonical representation. For example, if the
buffer is a UCS4 string (PyUnicode_4BYTE_KIND) and it consists only of codepoints in the UCS1 range, it
will be transformed into UCS1 (PyUnicode_1BYTE_KIND).

Added in version 3.3.

PyObject *PyUnicode_FromStringAndSize (const char *str, Py_ssize_t size)

Valore di ritorno: Nuovo riferimento. Parte del ABI Stabile. Create a Unicode object from the char buffer str.
The bytes will be interpreted as being UTF-8 encoded. The buffer is copied into the new object. The return
value might be a shared object, i.e. modification of the data is not allowed.

This function raises SystemError when:
o size <0,
e stris NULL and size > 0
Cambiato nella versione 3.12: str == NULL with size > 0 is not allowed anymore.
PyObject *PyUnicode_FromString (const char *str)

Valore di ritorno: Nuovo riferimento. Parte del ABI Stabile. Create a Unicode object from a UTF-8 encoded
null-terminated char buffer str.

PyObject *PyUnicode_FromFormat (const char *format, ...)

Valore di ritorno: Nuovo riferimento. Parte del ABI Stabile. Take a C printf () -style format string and a
variable number of arguments, calculate the size of the resulting Python Unicode string and return a string
with the values formatted into it. The variable arguments must be C types and must correspond exactly to the
format characters in the format ASCII-encoded string.

A conversion specifier contains two or more characters and has the following components, which must occur
in this order:

1. The ' character, which marks the start of the specifier.
2. Conversion flags (optional), which affect the result of some conversion types.

3. Minimum field width (optional). If specified as an ' *' (asterisk), the actual width is given in the next
argument, which must be of type int, and the object to convert comes after the minimum field width
and optional precision.

4. Precision (optional), given as a ' . ' (dot) followed by the precision. If specified as ' *' (an asterisk), the
actual precision is given in the next argument, which must be of type int, and the value to convert comes
after the precision.

5. Length modifier (optional).
6. Conversion type.

The conversion flag characters are:

Flag Meaning

0 The conversion will be zero padded for numeric values.
- The converted value is left adjusted (overrides the 0 flag if both are given).

The length modifiers for following integer conversions (d, i, o, u, x, or X) specify the type of the argument
(int by default):

8.3. Sequence Objects 151

The Python/C API, Release 3.13.7

| Modifier ~Types
long or unsigned long
11 long long Or unsigned long long
Jj intmax_t Or uintmax_t
z size_t Or ssize_t
t ptrdiff t

The length modifier 1 for following conversions s or v specify that the type of the argument is const
wchar_t*.

The conversion specifiers are:

Con- Type Comment

version

Speci-

fier

% n/a The literal % character.

d, i Specified by the The decimal representation of a signed C integer.
length modifier

u Specified by the The decimal representation of an unsigned C integer.
length modifier

o Specified by the The octal representation of an unsigned C integer.
length modifier

x Specified by the The hexadecimal representation of an unsigned C integer (lowercase).
length modifier

X Specified by the The hexadecimal representation of an unsigned C integer (uppercase).
length modifier
int A single character.
const char* or A null-terminated C character array.
const wchar_t*

P const void* The hex representation of a C pointer. Mostly equivalent to
printf ("%p") except that it is guaranteed to start with the literal 0x
regardless of what the platform’s print £ yields.

A PyObject* The result of calling ascii ().

U PyObject* A Unicode object.

\Y PyObject*, A Unicode object (which may be NULL) and a null-terminated C cha-
const char* or racter array as a second parameter (which will be used, if the first pa-
const wchar_t* rameter is NULL).

S PyObject* The result of calling Pyobject_Str().

R PyObject* The result of calling PyoObject_Repr ().

T PyObject* Get the fully qualified name of an object type; call

PyType GetFullyQualifiedName ().

#T PyObject* Similar to T format, but use a colon (:) as separator between the module
name and the qualified name.

N PyTypeObjectx Get the fully qualified name of a type; «call
PyType_GetFullyQualifiedName ().

#N PyTypeObject* Similar to N format, but use a colon (:) as separator between the module
name and the qualified name.

O Nota

The width formatter unit is number of characters rather than bytes. The precision formatter unit is number
of bytes or wchar_t items (if the length modifier 1 is used) for "$s" and "sv" (if the PyObject*

152

Capitolo 8. Concrete Objects Layer

The Python/C API, Release 3.13.7

argument is NULL), and a number of characters for "$a", "su", "$s", "$R" and "%V" (if the PyObject *
argument is not NULL).

O Nota

Unlike to Cprint £ () the 0 flag has effect even when a precision is given for integer conversions (d, i, u,
o, X, Or X).

Cambiato nella versione 3.2: Support for "$11d" and "$11u" added.

Cambiato nella versione 3.3: Support for "$1i", "$11i" and "$zi" added.

Cambiato nella versione 3.4: Support width and precision formatter for "$s", "$A", "sU", "$V", "$S", "SR"
added.

Cambiato nella versione 3.12: Support for conversion specifiers o and X. Support for length modifiers j and t.
Length modifiers are now applied to all integer conversions. Length modifier 1 is now applied to conversion
specifiers s and v. Support for variable width and precision *. Support for flag .

An unrecognized format character now sets a SystemError. In previous versions it caused all the rest of the
format string to be copied as-is to the result string, and any extra arguments discarded.

Cambiato nella versione 3.13: Support for $T, $#T, $N and $#N formats added.

PyObject *PyUnicode_FromFormatV (const char *format, va_list vargs)
Valore di ritorno: Nuovo riferimento. Parte del ABI Stabile. Identical to PyUnicode_FromFormat () except
that it takes exactly two arguments.

PyObject *PyUnicode_FromObject (PyObject *obj)
Valore di ritorno: Nuovo riferimento. Parte del ABI Stabile. Copy an instance of a Unicode subtype to a new

true Unicode object if necessary. If obj is already a true Unicode object (not a subtype), return a new strong
reference to the object.

Objects other than Unicode or its subtypes will cause a TypeError.

PyObject *PyUnicode_FromOrdinal (int ordinal)
Valore di ritorno: Nuovo riferimento. Parte del ABI Stabile. Create a Unicode Object from the given Unicode
code point ordinal.

The ordinal must be in range (0x110000). A ValueError is raised in the case it is not.

PyObject *PyUnicode_FromEncodedObject (PyObject *obj, const char *encoding, const char *errors)
Valore di ritorno: Nuovo riferimento. Parte del ABI Stabile. Decode an encoded object obj to a Unicode object.
bytes, bytearray and other byfes-like objects are decoded according to the given encoding and using the

error handling defined by errors. Both can be NULL to have the interface use the default values (see Built-in
Codecs for details).

All other objects, including Unicode objects, cause a TypeError to be set.
The API returns NULL if there was an error. The caller is responsible for decref’ing the returned objects.

PyObject *PyUnicode_BuildEncodingMap (PyObject *string)
Valore di ritorno: Nuovo riferimento. Parte del ABI Stabile. Return a mapping suitable for decoding a custom
single-byte encoding. Given a Unicode string string of up to 256 characters representing an encoding table,
returns either a compact internal mapping object or a dictionary mapping character ordinals to byte values.
Raises a TypeError and return NULL on invalid input. .. versionadded:: 3.2

const char *PyUnicode_GetDefaultEncoding (void)
Parte del ABI Stabile. Return the name of the default string encoding, "utf-8". See sys.
getdefaultencoding ().

The returned string does not need to be freed, and is valid until interpreter shutdown.

8.3. Sequence Objects 153

The Python/C API, Release 3.13.7

Py_ssize_t PyUnicode_GetLength (PyObject *unicode)
Parte del ABI Stabile dalla versione 3.7. Return the length of the Unicode object, in code points.

On error, set an exception and return - 1.
Added in version 3.3.

Py_ssize_t PyUnicode_CopyCharacters (PyObject *to, Py_ssize_t to_start, PyObject *from, Py_ssize_t
from_start, Py_ssize_t how_many)

Copy characters from one Unicode object into another. This function performs character conversion when
necessary and falls back to memcpy () if possible. Returns -1 and sets an exception on error, otherwise returns
the number of copied characters.

Added in version 3.3.

Py_ssize_t PyUnicode_Fill (PyObject *unicode, Py_ssize_t start, Py_ssize_t length, Py_UCS4 fill_char)

Fill a string with a character: write fill_char into unicode [start:start+length].

Fail if fill_char is bigger than the string maximum character, or if the string has more than 1 reference.
Return the number of written character, or return -1 and raise an exception on error.

Added in version 3.3.

int PyUnicode_WriteChar (PyObject *unicode, Py_ssize_t index, Py_UCS4 character)

Farte del ABI Stabile dalla versione 3.7. Write a character to a string. The string must have been created through
PyUnicode_New (). Since Unicode strings are supposed to be immutable, the string must not be shared, or
have been hashed yet.

This function checks that unicode is a Unicode object, that the index is not out of bounds, and that the object
can be modified safely (i.e. that it its reference count is one).

Return 0 on success, —1 on error with an exception set.
Added in version 3.3.

Py_UCS4 PyUnicode_ReadChar (PyObject *unicode, Py_ssize_t index)

Parte del ABI Stabile dalla versione 3.7. Read a character from a string. This function checks that unicode is a
Unicode object and the index is not out of bounds, in contrast to PyUnicode_READ_CHAR (), which performs
no error checking.

Return character on success, -1 on error with an exception set.
Added in version 3.3.

PyObject *PyUnicode_Substring (PyObject *unicode, Py_ssize_t start, Py_ssize_t end)

Valore di ritorno: Nuovo riferimento. Parte del ABI Stabile dalla versione 3.7. Return a substring of unicode,
from character index start (included) to character index end (excluded). Negative indices are not supported.
On error, set an exception and return NULL.

Added in version 3.3.

Py_UCS4 *pyUnicode_AsUCS4 (PyObject *unicode, Py_UCS4 *buffer, Py_ssize_t buflen, int copy_null)

Farte del ABI Stabile dalla versione 3.7. Copy the string unicode into a UCS4 buffer, including a null character,
if copy_null is set. Returns NULL and sets an exception on error (in particular, a SystemError if buflen is
smaller than the length of unicode). buffer is returned on success.

Added in version 3.3.

Py_UCS4 *PyUnicode_AsUCS4Copy (PyObject *unicode)

Farte del ABI Stabile dalla versione 3.7. Copy the string unicode into a new UCS4 buffer that is allocated using
pPyMem Malloc (). If this fails, NULL is returned with a MemoryError set. The returned buffer always has
an extra null code point appended.

Added in version 3.3.

154 Capitolo 8. Concrete Objects Layer

The Python/C API, Release 3.13.7

Locale Encoding

The current locale encoding can be used to decode text from the operating system.

PyObject *PyUnicode_DecodeLocaleAndSize (const char *str, Py_ssize_t length, const char *errors)

Valore di ritorno: Nuovo riferimento. Parte del ABI Stabile dalla versione 3.7. Decode a string from UTF-8 on
Android and VxWorks, or from the current locale encoding on other platforms. The supported error handlers
are "strict" and "surrogateescape" (PEP 383). The decoder uses "strict" error handler if errors is
NULL. str must end with a null character but cannot contain embedded null characters.

Use PyUnicode_DecodeFSDefaultAndSize () to decode a string from the filesystem encoding and error
handler.

This function ignores the Python UTF-8 Mode.

@ Vedi anche

The Py DecodeLocale () function.

Added in version 3.3.

Cambiato nella versione 3.7: The function now also uses the current locale encoding for the
surrogateescape error handler, except on Android. Previously, Py_DecodeLocale () was used for the
surrogateescape, and the current locale encoding was used for strict.

PyObject *PyUnicode_DecodeLocale (const char *str, const char *errors)
Valore di ritorno: Nuovo riferimento. Parte del ABI Stabile dalla versione 3.7. Similar to
PyUnicode_DecodeLocaleAndSize (), but compute the string length using strlen().
Added in version 3.3.

PyObject *PyUnicode_EncodeLocale (PyObject *unicode, const char *errors)

Valore di ritorno: Nuovo riferimento. Parte del ABI Stabile dalla versione 3.7. Encode a Unicode object to
UTF-8 on Android and VxWorks, or to the current locale encoding on other platforms. The supported error
handlers are "strict" and "surrogateescape" (PEP 383). The encoder uses "strict" error handler
if errors is NULL. Return a bytes object. unicode cannot contain embedded null characters.

Use PyUnicode_EncodeFSDerfault () to encode a string to the filesystem encoding and error handler.

This function ignores the Python UTF-8 Mode.

@ Vedi anche

The Py_EncodeLocale () function.

Added in version 3.3.

Cambiato nella versione 3.7: The function now also uses the current locale encoding for the
surrogateescape error handler, except on Android. Previously, Py_EncodelLocale () was used for the
surrogateescape, and the current locale encoding was used for strict.

File System Encoding

Functions encoding to and decoding from the filesystem encoding and error handler (PEP 383 and PEP 529).

To encode file names to bytes during argument parsing, the "Os" converter should be used, passing
PyUnicode_FSConverter () as the conversion function:
int PyUnicode_FSConverter (PyObject *obj, void *result)

Farte del ABI Stabile. PyArg_Parse* converter: encode str objects — obtained directly or through the os.
PathLike interface - to bytes using PyUnicode_EncodeFSDefault ();bytes objects are output as-is.

8.3. Sequence Objects 155

https://peps.python.org/pep-0383/
https://peps.python.org/pep-0383/
https://peps.python.org/pep-0383/
https://peps.python.org/pep-0529/

The Python/C API, Release 3.13.7

result must be an address of a C variable of type PyObject* (or PyBytesObject*). On success, set the
variable to a new strong reference to a bytes object which must be released when it is no longer used and return
a non-zero value (Py_crLeEANUP_SsUrPPORTED). Embedded null bytes are not allowed in the result. On failure,
return 0 with an exception set.

If obj is NULL, the function releases a strong reference stored in the variable referred by result and returns 1.
Added in version 3.1.

Cambiato nella versione 3.6: Accepts a path-like object.

To decode file names to str during argument parsing, the "Os&" converter should be used, passing
PyUnicode_FSDecoder () as the conversion function:

int PyUnicode_FSDecoder (PyObject *obj, void *result)

Farte del ABI Stabile. PyArg_Parse* converter: decode bytes objects — obtained either directly or indirectly
through the os.PathLike interface - to str using PyUnicode DecodeFSDefaultAndSize (); str ob-
jects are output as-is. result must be an address of a C variable of type PyObject* (or PyUnicodeObject*).
On success, set the variable to a new strong reference to a Unicode object which must be released when it is
no longer used and return a non-zero value (Py_CLEANUP_SUPPORTED). Embedded null characters are not
allowed in the result. On failure, return 0 with an exception set.

If obj is NULL, release the strong reference to the object referred to by result and return 1.
Added in version 3.2.

Cambiato nella versione 3.6: Accepts a path-like object.

PyObject *PyUnicode_DecodeFSDefaultAndSize (const char *str, Py_ssize_t size)

Valore di ritorno: Nuovo riferimento. Parte del ABI Stabile. Decode a string from the filesystem encoding and
error handler.

If you need to decode a string from the current locale encoding, use PyUnicode_DecodelLocaleAndSize ().

@ Vedi anche

The Py_DecodeLocale () function.

Cambiato nella versione 3.6: The filesystem error handler is now used.

PyObject *PyUnicode_DecodeFSDefault (const char *str)

Valore di ritorno: Nuovo riferimento. Parte del ABI Stabile. Decode a null-terminated string from the filesystem
encoding and error handler.

If the string length is known, use PyUnicode DecodeFSDefaultAndSize ().

Cambiato nella versione 3.6: The filesystem error handler is now used.

PyObject *PyUnicode_EncodeFSDefault (PyObject *unicode)

Valore di ritorno: Nuovo riferimento. Parte del ABI Stabile. Encode a Unicode object to the filesystem encoding
and error handler, and return bytes. Note that the resulting bytes object can contain null bytes.

If you need to encode a string to the current locale encoding, use PyUnicode EncodeLocale ().

@ Vedi anche

The Py_EncodeLocale () function.

Added in version 3.2.

Cambiato nella versione 3.6: The filesystem error handler is now used.

156

Capitolo 8. Concrete Objects Layer

The Python/C API, Release 3.13.7

wchar_t Support

wchar_t support for platforms which support it:

PyObject *PyUnicode_FromWideChar (const wchar_t *wstr, Py_ssize_t size)
Valore di ritorno: Nuovo riferimento. Parte del ABI Stabile. Create a Unicode object from the wchar_t buffer

wstr of the given size. Passing —1 as the size indicates that the function must itself compute the length, using
weslen (). Return NULL on failure.

Py_ssize_t PyUnicode_AsWideChar (PyObject *unicode, wchar_t *wstr, Py_ssize_t size)
Parte del ABI Stabile. Copy the Unicode object contents into the wchar_t buffer wstr. At most size wchar_t
characters are copied (excluding a possibly trailing null termination character). Return the number of wchar_t
characters copied or -1 in case of an error.

When wstr is NULL, instead return the size that would be required to store all of unicode including a terminating
null.

Note that the resulting wchar_t * string may or may not be null-terminated. It is the responsibility of the caller
to make sure that the wchar_t * string is null-terminated in case this is required by the application. Also, note
that the wchar_t* string might contain null characters, which would cause the string to be truncated when
used with most C functions.

wchar_t *PyUnicode_AsWideCharString (PyObject *unicode, Py_ssize_t *size)

Parte del ABI Stabile dalla versione 3.7. Convert the Unicode object to a wide character string. The output
string always ends with a null character. If size is not NULL, write the number of wide characters (excluding
the trailing null termination character) into *size. Note that the resulting wchar_t string might contain null
characters, which would cause the string to be truncated when used with most C functions. If size is NULL and
the wchar_t* string contains null characters a ValueError is raised.

Returns a buffer allocated by pPyMem New (use PyMem Free () to free it) on success. On error, returns NULL
and *size is undefined. Raises a MemoryError if memory allocation is failed.

Added in version 3.2.

Cambiato nella versione 3.7: Raises a ValueError if size is NULL and the wchar_t* string contains null
characters.

Built-in Codecs

Python provides a set of built-in codecs which are written in C for speed. All of these codecs are directly usable via
the following functions.

Many of the following APIs take two arguments encoding and errors, and they have the same semantics as the ones
of the built-in st r () string object constructor.

Setting encoding to NULL causes the default encoding to be used which is UTF-8. The file system calls should
use PyUnicode_FSConverter () for encoding file names. This uses the filesystem encoding and error handler
internally.

Error handling is set by errors which may also be set to NULL meaning to use the default handling defined for the
codec. Default error handling for all built-in codecs is «strict» (ValueError is raised).

The codecs all use a similar interface. Only deviations from the following generic ones are documented for simplicity.

Generic Codecs

These are the generic codec APIs:

PyObject *PyUnicode_Decode (const char *str, Py_ssize_t size, const char *encoding, const char *errors)

Valore di ritorno: Nuovo riferimento. Parte del ABI Stabile. Create a Unicode object by decoding size bytes of
the encoded string str. encoding and errors have the same meaning as the parameters of the same name in the
str () built-in function. The codec to be used is looked up using the Python codec registry. Return NULL if
an exception was raised by the codec.

8.3. Sequence Objects 157

The Python/C API, Release 3.13.7

PyObject *PyUnicode_AsEncodedString (PyObject *unicode, const char *encoding, const char *errors)

Valore di ritorno: Nuovo riferimento. Parte del ABI Stabile. Encode a Unicode object and return the result as
Python bytes object. encoding and errors have the same meaning as the parameters of the same name in the
Unicode encode () method. The codec to be used is looked up using the Python codec registry. Return NULL
if an exception was raised by the codec.

UTF-8 Codecs

These are the UTF-8 codec APIs:

PyObject *PyUnicode_DecodeUTF8 (const char *str, Py_ssize_t size, const char *errors)
Valore di ritorno: Nuovo riferimento. Parte del ABI Stabile. Create a Unicode object by decoding size bytes of
the UTF-8 encoded string str. Return NULL if an exception was raised by the codec.
PyObject *PyUnicode_DecodeUTF8Stateful (const char *str, Py_ssize_t size, const char *errors, Py_ssize_t
*consumed)

Valore di ritorno: Nuovo riferimento. Parte del ABI Stabile. If consumed is NULL, behave like
PyUnicode_DecodeUTFS (). If consumed is not NULL, trailing incomplete UTF-8 byte sequences will not
be treated as an error. Those bytes will not be decoded and the number of bytes that have been decoded will
be stored in consumed.

PyObject *PyUnicode_AsUTF8String (PyObject *unicode)

Valore di ritorno: Nuovo riferimento. Parte del ABI Stabile. Encode a Unicode object using UTF-8 and return
the result as Python bytes object. Error handling is «strict». Return NULL if an exception was raised by the
codec.

The function fails if the string contains surrogate code points (U+D800 - U+DFFF).

const char *PyUnicode_AsUTF8AndSize (PyObject *unicode, Py_ssize_t *size)

Farte del ABI Stabile dalla versione 3.10. Return a pointer to the UTF-8 encoding of the Unicode object, and
store the size of the encoded representation (in bytes) in size. The size argument can be NULL; in this case no
size will be stored. The returned buffer always has an extra null byte appended (not included in size), regardless
of whether there are any other null code points.

On error, set an exception, set size to —1 (if it’s not NULL) and return NULL.
The function fails if the string contains surrogate code points (U+D800 - U+DFFF).

This caches the UTF-8 representation of the string in the Unicode object, and subsequent calls will return a
pointer to the same buffer. The caller is not responsible for deallocating the buffer. The buffer is deallocated
and pointers to it become invalid when the Unicode object is garbage collected.

Added in version 3.3.
Cambiato nella versione 3.7: The return type is now const char * rather of char *.
Cambiato nella versione 3.10: This function is a part of the limited API.

const char *PyUnicode_AsUTFS8 (PyObject *unicode)
As PyUnicode AsUTF8AndSize (), but does not store the size.

A\ Avvertimento

This function does not have any special behavior for null characters embedded within unicode. As a re-
sult, strings containing null characters will remain in the returned string, which some C functions might
interpret as the end of the string, leading to truncation. If truncation is an issue, it is recommended to use
PyUnicode_AsUTF8AndSize () instead.

Added in version 3.3.

Cambiato nella versione 3.7: The return type is now const char * rather of char *.

158 Capitolo 8. Concrete Objects Layer

https://en.wikipedia.org/wiki/Null_character

The Python/C API, Release 3.13.7

UTF-32 Codecs

These are the UTF-32 codec APISs:

PyObject *PyUnicode_DecodeUTF32 (const char *str, Py_ssize_t size, const char *errors, int *byteorder)

Valore di ritorno: Nuovo riferimento. Parte del ABI Stabile. Decode size bytes from a UTF-32 encoded buffer
string and return the corresponding Unicode object. errors (if non-NULL) defines the error handling. It defaults
to «strict».

If byteorder is non-NULL, the decoder starts decoding using the given byte order:

*byteorder == -1: little endian
*byteorder == 0: native order
*byteorder == 1: big endian

If *byteorder is zero, and the first four bytes of the input data are a byte order mark (BOM), the decoder
switches to this byte order and the BOM is not copied into the resulting Unicode string. If *byteorder is -1
or 1, any byte order mark is copied to the output.

After completion, *byteorder is set to the current byte order at the end of input data.
If byteorder is NULL, the codec starts in native order mode.
Return NULL if an exception was raised by the codec.

PyObject *PyUnicode_DecodeUTF32Stateful (const char *str, Py_ssize_t size, const char *errors, int
*byteorder, Py_ssize_t *consumed)

Valore di ritorno: Nuovo riferimento. Parte del ABI Stabile. If consumed is NULL, behave like
PyUnicode_DecodeUTF32 ().If consumed is not NULL, PyUnicode_DecodeUTF32Stateful () will not
treat trailing incomplete UTF-32 byte sequences (such as a number of bytes not divisible by four) as an error.
Those bytes will not be decoded and the number of bytes that have been decoded will be stored in consumed.

PyObject *PyUnicode_AsUTF32String (PyObject *unicode)

Valore di ritorno: Nuovo riferimento. Parte del ABI Stabile. Return a Python byte string using the UTF-32
encoding in native byte order. The string always starts with a BOM mark. Error handling is «strict». Return

NULL if an exception was raised by the codec.

UTF-16 Codecs

These are the UTF-16 codec APIs:

PyObject *PyUnicode_DecodeUTF16 (const char *str, Py_ssize_t size, const char *errors, int *byteorder)

Valore di ritorno: Nuovo riferimento. Parte del ABI Stabile. Decode size bytes from a UTF-16 encoded buffer
string and return the corresponding Unicode object. errors (if non-NULL) defines the error handling. It defaults
to «strict».

If byteorder is non-NULL, the decoder starts decoding using the given byte order:

*byteorder == -1: little endian
*byteorder == 0: native order
*byteorder == 1: big endian

If *byteorder is zero, and the first two bytes of the input data are a byte order mark (BOM), the decoder
switches to this byte order and the BOM is not copied into the resulting Unicode string. If *byteorder is
-1 or 1, any byte order mark is copied to the output (where it will result in either a \ufeff or a \ufffe

character).

After completion, *byteorder is set to the current byte order at the end of input data.
If byteorder is NULL, the codec starts in native order mode.

Return NULL if an exception was raised by the codec.

8.3. Sequence Objects 159

The Python/C API, Release 3.13.7

PyObject *PyUnicode_DecodeUTF16Stateful (const char *str, Py_ssize_t size, const char *errors, int
*byteorder, Py_ssize_t *consumed)

Valore di ritorno: Nuovo riferimento. Parte del ABI Stabile. If consumed is NULL, behave like
PyUnicode_DecodeUTF16 (). If consumed is not NULL, PyUnicode_DecodeUTF16Stateful () will not
treat trailing incomplete UTF-16 byte sequences (such as an odd number of bytes or a split surrogate pair) as
an error. Those bytes will not be decoded and the number of bytes that have been decoded will be stored in
consumed.
PyObject *PyUnicode_AsUTF16String (PyObject *unicode)

Valore di ritorno: Nuovo riferimento. Parte del ABI Stabile. Return a Python byte string using the UTF-16
encoding in native byte order. The string always starts with a BOM mark. Error handling is «strict». Return
NULL if an exception was raised by the codec.

UTF-7 Codecs

These are the UTF-7 codec APIs:

PyObject *PyUnicode_DecodeUTF7 (const char *str, Py_ssize_t size, const char *errors)
Valore di ritorno: Nuovo riferimento. Parte del ABI Stabile. Create a Unicode object by decoding size bytes of
the UTF-7 encoded string str. Return NULL if an exception was raised by the codec.
PyObject *PyUnicode_DecodeUTF7Stateful (const char *str, Py_ssize_t size, const char *errors, Py_ssize_t
*consumed)

Valore di ritorno: Nuovo riferimento. Parte del ABI Stabile. If consumed is NULL, behave like
PyUnicode_DecodeUTF7 (). If consumed is not NULL, trailing incomplete UTF-7 base-64 sections will not
be treated as an error. Those bytes will not be decoded and the number of bytes that have been decoded will
be stored in consumed.

Unicode-Escape Codecs

These are the «Unicode Escape» codec APIs:

PyObject *PyUnicode_DecodeUnicodeEscape (const char *str, Py_ssize_t size, const char *errors)
Valore di ritorno: Nuovo riferimento. Parte del ABI Stabile. Create a Unicode object by decoding size bytes of
the Unicode-Escape encoded string str. Return NULL if an exception was raised by the codec.

PyObject *PyUnicode_AsUnicodeEscapeString (PyObject *unicode)

Valore di ritorno: Nuovo riferimento. Parte del ABI Stabile. Encode a Unicode object using Unicode-Escape
and return the result as a bytes object. Error handling is «strict». Return NULL if an exception was raised by
the codec.

Raw-Unicode-Escape Codecs

These are the «Raw Unicode Escape» codec APIs:

PyObject *PyUnicode_DecodeRawUnicodeEscape (const char *str, Py_ssize_f size, const char *errors)
Valore di ritorno: Nuovo riferimento. Parte del ABI Stabile. Create a Unicode object by decoding size bytes of
the Raw-Unicode-Escape encoded string str. Return NULL if an exception was raised by the codec.

PyObject ¥*PyUnicode_AsRawUnicodeEscapeString (PyObject *unicode)

Valore di ritorno: Nuovo riferimento. Parte del ABI Stabile. Encode a Unicode object using Raw-Unicode-
Escape and return the result as a bytes object. Error handling is «strict». Return NULL if an exception was
raised by the codec.

Latin-1 Codecs

These are the Latin-1 codec APIs: Latin-1 corresponds to the first 256 Unicode ordinals and only these are accepted
by the codecs during encoding.

160 Capitolo 8. Concrete Objects Layer

The Python/C API, Release 3.13.7

PyObject *PyUnicode_DecodeLatinl (const char *str, Py_ssize_t size, const char *errors)
Valore di ritorno: Nuovo riferimento. Parte del ABI Stabile. Create a Unicode object by decoding size bytes of
the Latin-1 encoded string str. Return NULL if an exception was raised by the codec.

PyObject *PyUnicode_AsLatinlString (PyObject *unicode)
Valore di ritorno: Nuovo riferimento. Parte del ABI Stabile. Encode a Unicode object using Latin-1 and return

the result as Python bytes object. Error handling is «strict». Return NULL if an exception was raised by the
codec.

ASCII Codecs

These are the ASCII codec APIs. Only 7-bit ASCII data is accepted. All other codes generate errors.

PyObject *PyUnicode_DecodeASCII (const char *str, Py_ssize_t size, const char *errors)
Valore di ritorno: Nuovo riferimento. Parte del ABI Stabile. Create a Unicode object by decoding size bytes of
the ASCII encoded string str. Return NULL if an exception was raised by the codec.

PyObject *PyUnicode_AsASCIIString (PyObject *unicode)

Valore di ritorno: Nuovo riferimento. Parte del ABI Stabile. Encode a Unicode object using ASCII and return
the result as Python bytes object. Error handling is «strict». Return NULL if an exception was raised by the
codec.

Character Map Codecs

This codec is special in that it can be used to implement many different codecs (and this is in fact what was done to
obtain most of the standard codecs included in the encodings package). The codec uses mappings to encode and
decode characters. The mapping objects provided must support the __getitem__ () mapping interface; dictionaries
and sequences work well.

These are the mapping codec APIs:
PyObject *PyUnicode_DecodeCharmap (const char *str, Py_ssize_t length, PyObject *mapping, const char
*errors)
Valore di ritorno: Nuovo riferimento. Parte del ABI Stabile. Create a Unicode object by decoding size bytes of

the encoded string str using the given mapping object. Return NULL if an exception was raised by the codec.

If mapping is NULL, Latin-1 decoding will be applied. Else mapping must map bytes ordinals (integers in the
range from 0 to 255) to Unicode strings, integers (which are then interpreted as Unicode ordinals) or None.
Unmapped data bytes — ones which cause a LookupError, as well as ones which get mapped to None, 0xFFFE
or '\ufffe', are treated as undefined mappings and cause an error.

PyObject *PyUnicode_AsCharmapString (PyObject *unicode, PyObject *mapping)

Valore di ritorno: Nuovo riferimento. Parte del ABI Stabile. Encode a Unicode object using the given mapping
object and return the result as a bytes object. Error handling is «strict». Return NULL if an exception was raised
by the codec.

The mapping object must map Unicode ordinal integers to bytes objects, integers in the range from 0 to 255
or None. Unmapped character ordinals (ones which cause a LookupError) as well as mapped to None are
treated as «undefined mapping» and cause an error.

The following codec API is special in that maps Unicode to Unicode.

PyObject *PyUnicode_Translate (PyObject *unicode, PyObject *table, const char *errors)

Valore di ritorno: Nuovo riferimento. Parte del ABI Stabile. Translate a string by applying a character mapping
table to it and return the resulting Unicode object. Return NULL if an exception was raised by the codec.

The mapping table must map Unicode ordinal integers to Unicode ordinal integers or None (causing deletion
of the character).

Mapping tables need only provide the _ getitem_ _ () interface; dictionaries and sequences work well.
Unmapped character ordinals (ones which cause a LookupError) are left untouched and are copied as-is.

errors has the usual meaning for codecs. It may be NULL which indicates to use the default error handling.

8.3. Sequence Objects 161

The Python/C API, Release 3.13.7

MBCS codecs for Windows

These are the MBCS codec APIs. They are currently only available on Windows and use the Win32 MBCS converters
to implement the conversions. Note that MBCS (or DBCS) is a class of encodings, not just one. The target encoding
is defined by the user settings on the machine running the codec.

PyObject *PyUnicode_DecodeMBCS (const char *str, Py_ssize_t size, const char *errors)

Valore di ritorno: Nuovo riferimento. Parte del ABI Stabile on Windows dalla versione 3.7. Create a Unicode
object by decoding size bytes of the MBCS encoded string str. Return NULL if an exception was raised by the
codec.

PyObject *PyUnicode_DecodeMBCSStateful (const char *str, Py_ssize_t size, const char *errors, Py_ssize_t
*consumed)

Valore di ritorno: Nuovo riferimento. Parte del ABI Stabile on Windows dalla versione 3.7. If consumed is NULL,
behave like PyUnicode_DecodeMBCS (). If consumed is not NULL, PyUnicode_DecodeMBCSStateful ()
will not decode trailing lead byte and the number of bytes that have been decoded will be stored in consumed.

PyObject *PyUnicode_DecodeCodePageStateful (int code_page, const char *str, Py_ssize_t size, const char
*errors, Py_ssize_t *consumed)
Valore di ritorno: Nuovo riferimento. Parte del ABI Stabile on Windows dalla versione 3.7. Similar to
PyUnicode_DecodeMBCSStateful (), except uses the code page specified by code_page.
PyObject *PyUnicode_AsMBCSString (PyObject *unicode)

Valore di ritorno: Nuovo riferimento. Parte del ABI Stabile on Windows dalla versione 3.7. Encode a Unicode
object using MBCS and return the result as Python bytes object. Error handling is «strict». Return NULL if an
exception was raised by the codec.

PyObject *PyUnicode_EncodeCodePage (int code_page, PyObject *unicode, const char *errors)

Valore di ritorno: Nuovo riferimento. Parte del ABI Stabile on Windows dalla versione 3.7. Encode the Unicode
object using the specified code page and return a Python bytes object. Return NULL if an exception was raised
by the codec. Use cp_ACP code page to get the MBCS encoder.

Added in version 3.3.

Methods and Slot Functions

The following APIs are capable of handling Unicode objects and strings on input (we refer to them as strings in the
descriptions) and return Unicode objects or integers as appropriate.

They all return NULL or -1 if an exception occurs.

PyObject *PyUnicode_Concat (PyObject *left, PyObject *right)

Valore di ritorno: Nuovo riferimento. Parte del ABI Stabile. Concat two strings giving a new Unicode string.
PyObject *PyUnicode_Split (PyObject *unicode, PyObject *sep, Py_ssize_t maxsplit)

Valore di ritorno: Nuovo riferimento. Parte del ABI Stabile. Split a string giving a list of Unicode strings. If sep

is NULL, splitting will be done at all whitespace substrings. Otherwise, splits occur at the given separator. At
most maxsplit splits will be done. If negative, no limit is set. Separators are not included in the resulting list.

On error, return NULL with an exception set.
Equivalent to str.split ().

PyObject *PyUnicode_RSplit (PyObject *unicode, PyObject *sep, Py_ssize_t maxsplit)

Valore di ritorno: Nuovo riferimento. Parte del ABI Stabile. Similar to PyUnicode_Split (), but splitting
will be done beginning at the end of the string.

On error, return NULL with an exception set.

Equivalent to str.rsplit ().

162 Capitolo 8. Concrete Objects Layer

The Python/C API, Release 3.13.7

PyObject *PyUnicode_Splitlines (PyObject *unicode, int keepends)
Valore di ritorno: Nuovo riferimento. Parte del ABI Stabile. Split a Unicode string at line breaks, returning a
list of Unicode strings. CRLF is considered to be one line break. If keepends is 0, the Line break characters
are not included in the resulting strings.

PyObject *PyUnicode_Partition (PyObject *unicode, PyObject *sep)
Valore di ritorno: Nuovo riferimento. Parte del ABI Stabile. Split a Unicode string at the first occurrence of
sep, and return a 3-tuple containing the part before the separator, the separator itself, and the part after the
separator. If the separator is not found, return a 3-tuple containing the string itself, followed by two empty
strings.

sep must not be empty.
On error, return NULL with an exception set.
Equivalent to str.partition().
PyObject *PyUnicode_RPartition (PyObject *unicode, PyObject *sep)
Valore di ritorno: Nuovo riferimento. Parte del ABI Stabile. Similar to PyUnicode_Partition (), but split

a Unicode string at the last occurrence of sep. If the separator is not found, return a 3-tuple containing two
empty strings, followed by the string itself.

sep must not be empty.
On error, return NULL with an exception set.
Equivalent to str.rpartition().

PyObject *PyUnicode_Join (PyObject *separator, PyObject *seq)
Valore di ritorno: Nuovo riferimento. Parte del ABI Stabile. Join a sequence of strings using the given separator
and return the resulting Unicode string.

Py_ssize_t PyUnicode_Tailmatch (PyObject *unicode, PyObject *substr, Py_ssize_t start, Py_ssize_t end, int

direction)

Farte del ABI Stabile. Return 1 if substr matches unicode [start:end] at the given tail end (direction ==
-1 means to do a prefix match, direction == 1 a suffix match), 0 otherwise. Return -1 if an error occurred.

Py_ssize_t PyUnicode_Find (PyObject *unicode, PyObject *substr, Py_ssize_t start, Py_ssize_t end, int direction)
Parte del ABI Stabile. Return the first position of substr in unicode [start:end] using the given direction
(direction == 1 means to do a forward search, direction == —1 a backward search). The return value is the index
of the first match; a value of —1 indicates that no match was found, and -2 indicates that an error occurred and
an exception has been set.

Py_ssize_t PyUnicode_FindChar (PyObject *unicode, Py_UCS4 ch, Py_ssize_t start, Py_ssize_t end, int

direction)

Parte del ABI Stabile dalla versione 3.7. Return the first position of the character chinunicode [start:end]
using the given direction (direction == 1 means to do a forward search, direction == -1 a backward search). The
return value is the index of the first match; a value of -1 indicates that no match was found, and -2 indicates
that an error occurred and an exception has been set.

Added in version 3.3.
Cambiato nella versione 3.7: start and end are now adjusted to behave like unicode [start:end].
Py_ssize_t PyUnicode_Count (PyObject *unicode, PyObject *substr, Py_ssize_t start, Py_ssize_t end)

Farte del ABI Stabile. Return the number of non-overlapping occurrences of substr inunicode [start:end].
Return -1 if an error occurred.

PyObject *PyUnicode_Replace (PyObject *unicode, PyObject *substr, PyObject *replstr, Py_ssize_t maxcount)
Valore di ritorno: Nuovo riferimento. Parte del ABI Stabile. Replace at most maxcount occurrences of substr in
unicode with replstr and return the resulting Unicode object. maxcount == —1 means replace all occurrences.

8.3. Sequence Objects 163

The Python/C API, Release 3.13.7

int PyUnicode_Compare (PyObject *left, PyObject *right)
Parte del ABI Stabile. Compare two strings and return -1, 0, 1 for less than, equal, and greater than,
respectively.

This function returns —1 upon failure, so one should call PyErr_Occurred () to check for errors.

int PyUnicode_EqualToUTF8AndSize (PyObject *unicode, const char *string, Py_ssize_t size)

Parte del ABI Stabile dalla versione 3.13. Compare a Unicode object with a char buffer which is interpreted
as being UTF-8 or ASCII encoded and return true (1) if they are equal, or false (0) otherwise. If the Unicode
object contains surrogate code points (U+D800 - U+DFFF) or the C string is not valid UTF-8, false (0) is
returned.

This function does not raise exceptions.
Added in version 3.13.

int PyUnicode_EqualToUTF8 (PyObject *unicode, const char *string)

Parte del ABI Stabile dalla versione 3.13. Similar to PyUnicode_EqualToUTF8AndSize (), but compute
string length using strlen (). If the Unicode object contains null characters, false (0) is returned.

Added in version 3.13.

int PyUnicode_CompareWithASCIIString (PyObject *unicode, const char *string)

Farte del ABI Stabile. Compare a Unicode object, unicode, with string and return -1, 0, 1 for less than, equal,
and greater than, respectively. It is best to pass only ASCII-encoded strings, but the function interprets the
input string as ISO-8859-1 if it contains non-ASCII characters.

This function does not raise exceptions.
PyObject *PyUnicode_RichCompare (PyObject *left, PyObject *right, int op)

Valore di ritorno: Nuovo riferimento. Parte del ABI Stabile. Rich compare two Unicode strings and return one
of the following:

e NULL in case an exception was raised
e Py TrueOr Py_False for successful comparisons
e Py NotImplemented in case the type combination is unknown
Possible values for op are Py_G7, Py_GE, Py_EQ, Py_NE, Py_LT,and Py_LE.
PyObject *PyUnicode_Format (PyObject *format, PyObject *args)
Valore di ritorno: Nuovo riferimento. Parte del ABI Stabile. Return a new string object from format and args;
this is analogous to format % args.
int PyUnicode_Contains (PyObject *unicode, PyObject *substr)
Farte del ABI Stabile. Check whether substr is contained in unicode and return true or false accordingly.

substr has to coerce to a one element Unicode string. —1 is returned if there was an error.

void PyUnicode_InternInPlace (PyObject **p_unicode)

Parte del ABI Stabile. Intern the argument *p_unicode in place. The argument must be the address of a
pointer variable pointing to a Python Unicode string object. If there is an existing interned string that is the
same as *p_unicode, it sets *p_unicode to it (releasing the reference to the old string object and creating
a new strong reference to the interned string object), otherwise it leaves *p_unicode alone and interns it.

(Clarification: even though there is a lot of talk about references, think of this function as reference-neutral.
You must own the object you pass in; after the call you no longer own the passed-in reference, but you newly
own the result.)

This function never raises an exception. On error, it leaves its argument unchanged without interning it.

Instances of subclasses of st r may not be interned, that is, PyUnicode CheckExact (*p_unicode) must
be true. If it is not, then — as with any other error — the argument is left unchanged.

Note that interned strings are not “immortal”. You must keep a reference to the result to benefit from interning.

164 Capitolo 8. Concrete Objects Layer

The Python/C API, Release 3.13.7

PyObject *PyUnicode_InternFromString (const char *str)
Valore di ritorno: Nuovo riferimento. Parte del ABI Stabile. A combination of PyUnicode_FromString ()
and PyUnicode_InterninPlace (), meant for statically allocated strings.

Return a new («owned») reference to either a new Unicode string object that has been interned, or an earlier
interned string object with the same value.

Python may keep a reference to the result, or make it immortal, preventing it from being garbage-collected
promptly. For interning an unbounded number of different strings, such as ones coming from user input, prefer
calling PyUnicode_FromString () and PyUnicode_InternInPlace () directly.

8.3.4 Tuple Objects

type PyTupleObject
This subtype of PyObject represents a Python tuple object.

PyTypeObject PyTuple_Type
Farte del ABI Stabile. This instance of PyTypeObject represents the Python tuple type; it is the same object
as tuple in the Python layer.

int PyTuple_Check (PyObject *p)

Return true if p is a tuple object or an instance of a subtype of the tuple type. This function always succeeds.

int PyTuple_CheckExact (PyObject *p)
Return true if p is a tuple object, but not an instance of a subtype of the tuple type. This function always
succeeds.

PyObject *PyTuple_New (Py_ssize_t len)
Valore di ritorno: Nuovo riferimento. Parte del ABI Stabile. Return a new tuple object of size len, or NULL with
an exception set on failure.

PyObject *PyTuple_Pack (Py_ssize_t 1, ...)
Valore di ritorno: Nuovo riferimento. Parte del ABI Stabile. Return a new tuple object of size n, or NULL with
an exception set on failure. The tuple values are initialized to the subsequent n C arguments pointing to Python
objects. PyTuple_Pack (2, a, b) isequivalenttoPy_Buildvalue (" (00)", a, b).

Py_ssize_t PyTuple_Size (PyObject *p)
Farte del ABI Stabile. Take a pointer to a tuple object, and return the size of that tuple. On error, return -1
and with an exception set.

Py_ssize_t PyTuple_GET_SIZE (PyObject *p)
Like PyTuple_Size (), but without error checking.

PyObject *PyTuple_GetItem (PyObject *p, Py_ssize_t pos)
Valore di ritorno: Riferimento preso in prestito. Parte del ABI Stabile. Return the object at position pos in the
tuple pointed to by p. If pos is negative or out of bounds, return NULL and set an IndexError exception.

The returned reference is borrowed from the tuple p (that is: it is only valid as long as you hold a reference to
p). To get a strong reference, use Py_NewRef (PyTuple_GetItem(...)) Of PySequence_GetItem().
PyObject *PyTuple_GET_ITEM (PyObject *p, Py_ssize_t pos)
Valore di ritorno: Riferimento preso in prestito. Like PyTuple_GetItem(), but does no checking of its
arguments.
PyObject *PyTuple_GetSlice (PyObject *p, Py_ssize_t low, Py_ssize_t high)
Valore di ritorno: Nuovo riferimento. Parte del ABI Stabile. Return the slice of the tuple pointed to by p between

low and high, or NULL with an exception set on failure.

This is the equivalent of the Python expression p[low:high]. Indexing from the end of the tuple is not
supported.

8.3. Sequence Objects 165

The Python/C API, Release 3.13.7

int PyTuple_SetItem (PyObject *p, Py_ssize_t pos, PyObject *0)
Parte del ABI Stabile. Insert a reference to object o at position pos of the tuple pointed to by p. Return 0 on
success. If pos is out of bounds, return -1 and set an IndexError exception.

© Nota

This function «steals» a reference to o and discards a reference to an item already in the tuple at the affected
position.

void PyTuple_SET_ITEM (PyObject *p, Py_ssize_t pos, PyObject *0)
Like pPyTuple_SetItem(), but does no error checking, and should only be used to fill in brand new tuples.

Bounds checking is performed as an assertion if Python is built in debug mode or with assertions.

O Nota

This function «steals» a reference to o, and, unlike Py Tuple SetItem (), does not discard a reference to
any item that is being replaced; any reference in the tuple at position pos will be leaked.

int _PyTuple_Resize (PyObject **p, Py_ssize_t newsize)

Can be used to resize a tuple. newsize will be the new length of the tuple. Because tuples are supposed to be
immutable, this should only be used if there is only one reference to the object. Do not use this if the tuple
may already be known to some other part of the code. The tuple will always grow or shrink at the end. Think
of this as destroying the old tuple and creating a new one, only more efficiently. Returns 0 on success. Client
code should never assume that the resulting value of *p will be the same as before calling this function. If the
object referenced by *p is replaced, the original *p is destroyed. On failure, returns -1 and sets *p to NULL,
and raises MemoryError Or SystemError.

8.3.5 Struct Sequence Objects

Struct sequence objects are the C equivalent of namedtuple () objects, i.e. a sequence whose items can also be
accessed through attributes. To create a struct sequence, you first have to create a specific struct sequence type.
PyTypeObject *PyStructSequence_NewType (PyStructSequence_Desc *desc)
Valore di ritorno: Nuovo riferimento. Parte del ABI Stabile. Create a new struct sequence type from the data in
desc, described below. Instances of the resulting type can be created with Py St ructSequence_New ().

Return NULL with an exception set on failure.

void PyStructSequence_InitType (PyTypeObject *type, PyStructSequence_Desc *desc)
Initializes a struct sequence type fype from desc in place.

int PyStructSequence_InitType2 (PyTypeObject *type, PyStructSequence_Desc *desc)

Like PyStructSequence _InitType (), but returns 0 on success and —1 with an exception set on failure.
Added in version 3.4.

type PyStructSequence_Desc
Parte del ABI Stabile (inclusi tutti i membri). Contains the meta information of a struct sequence type to create.

const char *name
Fully qualified name of the type; null-terminated UTF-8 encoded. The name must contain the module
name.

const char *doe

Pointer to docstring for the type or NULL to omit.

166 Capitolo 8. Concrete Objects Layer

The Python/C API, Release 3.13.7

PyStructSequence_Field *£ields

Pointer to NULL-terminated array with field names of the new type.
int n_in_sequence

Number of fields visible to the Python side (if used as tuple).

type PyStructSequence_Field

Parte del ABI Stabile (inclusi tutti i membri). Describes a field of a struct sequence. As a struct sequen-
ce is modeled as a tuple, all fields are typed as PyObject*. The index in the fields array of the
pPyStructSequence_Desc determines which field of the struct sequence is described.

const char *name

Name for the field or NULL to end the list of named fields, set to Py St ruct Sequence_UnnamedField
to leave unnamed.

const char *doc

Field docstring or NULL to omit.

const char *const PyStructSequence_UnnamedField

Parte del ABI Stabile dalla versione 3.11. Special value for a field name to leave it unnamed.
Cambiato nella versione 3.9: The type was changed from char *.
PyObject *PyStructSequence_New (PyTypeObject *type)

Valore di ritorno: Nuovo riferimento. Parte del ABI Stabile. Creates an instance of type, which must have been
created with PySt ruct Sequence NewType ().

Return NULL with an exception set on failure.

PyObject *PyStructSequence_GetItem (PyObject *p, Py_ssize_t pos)

Valore di ritorno: Riferimento preso in prestito. Parte del ABI Stabile. Return the object at position pos in the
struct sequence pointed to by p.

Bounds checking is performed as an assertion if Python is built in debug mode or with assertions.

PyObject *PyStructSequence_GET_ITEM (PyObject *p, Py_ssize_t pos)

Valore di ritorno: Riferimento preso in prestito. Alias to Py St ruct Sequence_GetItem/().
Cambiato nella versione 3.13: Now implemented as an alias to Py St ructSequence_GetItem().

void PyStructSequence_SetItem (PyObject *p, Py_ssize_t pos, PyObject *0)

Parte del ABI Stabile. Sets the field at index pos of the struct sequence p to value o. Like
PyTuple_SET_ITEM (), this should only be used to fill in brand new instances.

Bounds checking is performed as an assertion if Python is built in debug mode or with assertions.

© Nota
This function «steals» a reference to o.

void PyStructSequence_SET_ITEM (PyObject *p, Py_ssize_t *pos, PyObject *0)
Alias to PyStructSequence_SetItem().

Cambiato nella versione 3.13: Now implemented as an alias to Py St ruct Sequence_SetItem().

8.3.6 List Objects

type PyListObject
This subtype of PyObject represents a Python list object.

8.3. Sequence Objects 167

The Python/C API, Release 3.13.7

PyTypeObject PyList_Type
Parte del ABI Stabile. This instance of Py TypeOb ject represents the Python list type. This is the same object
as 1ist in the Python layer.
int PyList_Check (PyObject *p)
Return true if p is a list object or an instance of a subtype of the list type. This function always succeeds.
int PyList_CheckExact (PyObject *p)
Return true if p is a list object, but not an instance of a subtype of the list type. This function always succeeds.
PyObject *PyList_New (Py_ssize_t len)

Valore di ritorno: Nuovo riferimento. Parte del ABI Stabile. Return a new list of length len on success, or NULL
on failure.

© Nota

If len is greater than zero, the returned list object’s items are set to NULL. Thus you cannot use abstract API
functions such as PySequence_SetTtem () or expose the object to Python code before setting all items
to a real object with PyList_SetItem() or PyList_SET I1TEM(). The following APIs are safe APIs
before the list is fully initialized: PyList_SetItem() and PyList SET ITEM().

Py_ssize_t PyList_Size (PyObject *list)
Farte del ABI Stabile. Return the length of the list object in list; this is equivalent to len (1ist) on a list
object.
Py_ssize_t PyList_GET_SIZE (PyObject *list)
Similar to PyList_Size (), but without error checking.
PyObject *PyList_GetItemRef (PyObject *list, Py_ssize_t index)
Valore di ritorno: Nuovo riferimento. Parte del ABI Stabile dalla versione 3.13. Return the object at position

index in the list pointed to by list. The position must be non-negative; indexing from the end of the list is not
supported. If index is out of bounds (<0 or >=len(list)), return NULL and set an IndexError exception.

Added in version 3.13.
PyObject *PyList_GetItem (PyObject *list, Py_ssize_t index)

Valore di ritorno: Riferimento preso in prestito. Parte del ABI Stabile. Like PyList_GetItemRef (), but
returns a borrowed reference instead of a strong reference.

PyObject *PyList_GET_ITEM (PyObject *list, Py_ssize_t 1)
Valore di ritorno: Riferimento preso in prestito. Similar to PyList_GetItem (), but without error checking.
int PyList_SetItem (PyObject *list, Py_ssize_t index, PyObject *item)

Parte del ABI Stabile. Set the item at index index in list to ifem. Return 0 on success. If index is out of bounds,
return -1 and set an IndexError exception.

© Nota

This function «steals» a reference to ifem and discards a reference to an item already in the list at the
affected position.

void PyList_SET_ITEM (PyObject *list, Py_ssize_t i, PyObject *0)

Macro form of PyList_SetItem () without error checking. This is normally only used to fill in new lists
where there is no previous content.

Bounds checking is performed as an assertion if Python is built in debug mode or with assertions.

168 Capitolo 8. Concrete Objects Layer

The Python/C API, Release 3.13.7

© Nota

This macro «steals» a reference to ifem, and, unlike PyList_SetItem (), does not discard a reference to
any item that is being replaced; any reference in /ist at position i will be leaked.

int PyList_Insert (PyObject *list, Py_ssize_t index, PyObject *item)

Parte del ABI Stabile. Insert the item item into list list in front of index index. Return 0 if successful; return —1
and set an exception if unsuccessful. Analogous to 1ist.insert (index, item).

int PyList_Append (PyObject *list, PyObject *item)

Farte del ABI Stabile. Append the object ifem at the end of list /ist. Return 0 if successful; return -1 and set
an exception if unsuccessful. Analogous to 1ist .append (item).

PyObject *PyList_GetSlice (PyObject *list, Py_ssize_t low, Py_ssize_t high)

Valore di ritorno: Nuovo riferimento. Parte del ABI Stabile. Return a list of the objects in list contai-
ning the objects between low and high. Return NULL and set an exception if unsuccessful. Analogous to
list [low:high]. Indexing from the end of the list is not supported.

int PyList_SetSlice (PyObject *list, Py_ssize_t low, Py_ssize_t high, PyObject *itemlist)
Parte del ABI Stabile. Set the slice of list between low and high to the contents of ifemlist. Analogous to

list[low:high] = itemlist. The itemlist may be NULL, indicating the assignment of an empty list (slice
deletion). Return 0 on success, -1 on failure. Indexing from the end of the list is not supported.

int PyList_Extend (PyObject *list, PyObject *iterable)

Extend list with the contents of iferable. This is the same as PyList_SetSlice (list, PY_SSIZE_T_MAX,
PY_SSIZE_T_MAX, iterable) and analogousto list.extend(iterable) or list += iterable.

Raise an exception and return -1 if list is not a 1ist object. Return 0 on success.
Added in version 3.13.
int PyList_Clear (PyObject *list)

Remove all items from Zist. This is the same as PyList_SetSlice (list, 0, PY_SSIZE_T_MAX, NULL)
and analogous to 1ist.clear () ordel list[:].

Raise an exception and return -1 if /ist is not a 1ist object. Return O on success.
Added in version 3.13.

int PyList_Sort (PyObject *list)

Farte del ABI Stabile. Sort the items of list in place. Return 0 on success, -1 on failure. This is equivalent to
list.sort ().

int PyList_Reverse (PyObject *list)

Parte del ABI Stabile. Reverse the items of /ist in place. Return 0 on success, -1 on failure. This is the equivalent
of list.reverse ().

PyObject *PyList_AsTuple (PyObject *list)

Valore di ritorno: Nuovo riferimento. Parte del ABI Stabile. Return a new tuple object containing the contents
of list; equivalent to tuple (1list).

8.4 Container Objects

8.4.1 Dictionary Objects

type PyDictObject
This subtype of PyObject represents a Python dictionary object.

8.4. Container Objects 169

The Python/C API, Release 3.13.7

PyTypeObject PyDict_Type
Farte del ABI Stabile. This instance of Py TypeObject represents the Python dictionary type. This is the same
object as dict in the Python layer.
int PyDict_Check (PyObject *p)
Return true if p is a dict object or an instance of a subtype of the dict type. This function always succeeds.
int PyDict_CheckExact (PyObject *p)
Return true if p is a dict object, but not an instance of a subtype of the dict type. This function always succeeds.
PyObject *PyDict_New ()
Valore di ritorno: Nuovo riferimento. Parte del ABI Stabile. Return a new empty dictionary, or NULL on failure.
PyObject *PyDictProxy_New (PyObject *mapping)
Valore di ritorno: Nuovo riferimento. Parte del ABI Stabile. Return a types.MappingProxyType object for
a mapping which enforces read-only behavior. This is normally used to create a view to prevent modification
of the dictionary for non-dynamic class types.
void PyDict_Clear (PyObject *p)
Farte del ABI Stabile. Empty an existing dictionary of all key-value pairs.
int PyDict_Contains (PyObject *p, PyObject *key)
Parte del ABI Stabile. Determine if dictionary p contains key. If an item in p is matches key, return 1, otherwise
return 0. On error, return -1. This is equivalent to the Python expression key in p.
int PyDict_ContainsString (PyObject *p, const char *key)
This is the same as PyDict_Contains (), but key is specified as a const char* UTF-8 encoded bytes
string, rather than a PyObject*.

Added in version 3.13.

PyObject *PyDict_Copy (PyObject *p)
Valore di ritorno: Nuovo riferimento. Parte del ABI Stabile. Return a new dictionary that contains the same
key-value pairs as p.

int PyDict_SetItem (PyObject *p, PyObject *key, PyObject *val)
Parte del ABI Stabile. Insert val into the dictionary p with a key of key. key must be hashable; if it isn't,
TypeError will be raised. Return 0 on success or —1 on failure. This function does not steal a reference to
val.

int PyDict_SetItemString (PyObject *p, const char *key, PyObject *val)
Parte del ABI Stabile. This is the same as PyDict_SetItem(),butkeyisspecifiedasa const char* UTF-8
encoded bytes string, rather than a PyObject*.

int PyDict_DelItem (PyObject *p, PyObject *key)
Farte del ABI Stabile. Remove the entry in dictionary p with key key. key must be hashable; if it isn’t,
TypeError is raised. If key is not in the dictionary, KeyError is raised. Return 0 on success or —1 on
failure.

int PyDict_DelItemString (PyObject *p, const char *key)
Parte del ABI Stabile. This is the same as PyDict_DelTtem(),butkeyis specifiedasa const char* UTF-8
encoded bytes string, rather than a PyObject*.

int PyDict_GetItemRef (PyObject *p, PyObject *key, PyObject **result)
Farte del ABI Stabile dalla versione 3.13. Return a new strong reference to the object from dictionary p which
has a key key:

« If the key is present, set *result to a new strong reference to the value and return 1.
« If the key is missing, set *result to NULL and return 0.

o On error, raise an exception and return —1.

170 Capitolo 8. Concrete Objects Layer

The Python/C API, Release 3.13.7

Added in version 3.13.
See also the PyObject_GetItem () function.
PyObject *PyDict_GetItem (PyObject *p, PyObject *key)

Valore di ritorno: Riferimento preso in prestito. Parte del ABI Stabile. Return a borrowed reference to the object
from dictionary p which has a key key. Return NULL if the key key is missing without setting an exception.

© Nota

Exceptions that occur while this calls __hash () and __eq__ () methods are silently ignored. Prefer
the PyDict_GetItemwithError () function instead.

Cambiato nella versione 3.10: Calling this API without GI/L held had been allowed for historical reason. It is
no longer allowed.
PyObject *PyDict_GetItemWithError (PyObject *p, PyObject *key)

Valore di ritorno: Riferimento preso in prestito. Parte del ABI Stabile. Variantof PyDict_Get Item () that does
not suppress exceptions. Return NULL with an exception set if an exception occurred. Return NULL without
an exception set if the key wasn’t present.

PyObject *PyDict_GetItemString (PyObject *p, const char *key)

Valore di ritorno: Riferimento preso in prestito. Parte del ABI Stabile. This is the same as PyDict_GetItem(),
but key is specified as a const char* UTF-8 encoded bytes string, rather than a Pyobject*.

O Nota

Exceptions that occur while this calls __hash_ () and __eq__ () methods or while creating the tem-
porary str object are silently ignored. Prefer using the PyDict GetItemwithError () function with
your own PyUnicode FromString () key instead.

int PyDict_GetItemStringRef (PyObject *p, const char *key, PyObject **result)

Farte del ABI Stabile dalla versione 3.13. Similar to PyDict_Get ItemRef (), but key is specified as a const
char* UTF-8 encoded bytes string, rather than a PyObject*.

Added in version 3.13.

PyObject *PyDict_SetDefault (PyObject *p, PyObject *key, PyObject *defaultobj)
Valore di ritorno: Riferimento preso in prestito. This is the same as the Python-level dict.setdefault ().
If present, it returns the value corresponding to key from the dictionary p. If the key is not in the dict, it is
inserted with value defaultobj and defaultobj is returned. This function evaluates the hash function of key only
once, instead of evaluating it independently for the lookup and the insertion.

Added in version 3.4.

int PyDict_SetDefaultRef (PyObject *p, PyObject *key, PyObject *default_value, PyObject **result)
Inserts default_value into the dictionary p with a key of key if the key is not already present in the dictionary. If
result is not NULL, then *result is set to a strong reference to either default_value, if the key was not present, or the
existing value, if key was already present in the dictionary. Returns 1 if the key was present and default_value
was not inserted, or 0 if the key was not present and default_value was inserted. On failure, returns -1, sets an
exception, and sets *result to NULL.

For clarity: if you have a strong reference to default_value before calling this function, then after it returns,
you hold a strong reference to both default_value and *result (if it’s not NULL). These may refer to the same
object: in that case you hold two separate references to it.

Added in version 3.13.

8.4. Container Objects 171

The Python/C API, Release 3.13.7

int PyDict_Pop (PyObject *p, PyObject *key, PyObject **result)

Remove key from dictionary p and optionally return the removed value. Do not raise KeyError if the key
missing.

« If the key is present, set *result to a new reference to the removed value if result is not NULL, and return
1.

« If the key is missing, set *result to NULL if result is not NULL, and return 0.
o On error, raise an exception and return —1.
Similar to dict . pop (), but without the default value and not raising KeyError if the key missing.

Added in version 3.13.

int PyDict_PopString (PyObject *p, const char *key, PyObject **result)

Similar to PyDict_Pop (), but key is specified as a const char* UTF-8 encoded bytes string, rather than
a PyObject*.

Added in version 3.13.

PyObject *pyDict_Items (PyObject *p)

Valore di ritorno: Nuovo riferimento. Parte del ABI Stabile. Return a PyListObject containing all the items
from the dictionary.

PyObject *PyDict_Keys (PyObject *p)

Valore di ritorno: Nuovo riferimento. Parte del ABI Stabile. Return a PyIistObject containing all the keys
from the dictionary.

PyObject *PyDict_Values (PyObject *p)

Valore di ritorno: Nuovo riferimento. Parte del ABI Stabile. Return a PyListObject containing all the values
from the dictionary p.

Py_ssize_t PyDict_Size (PyObject *p)

Farte del ABI Stabile. Return the number of items in the dictionary. This is equivalent to len (p) on a
dictionary.

int PyDict_Next (PyObject *p, Py_ssize_t *ppos, PyObject **pkey, PyObject **pvalue)

Parte del ABI Stabile. Iterate over all key-value pairs in the dictionary p. The Py _ssize t referred to by ppos
must be initialized to 0 prior to the first call to this function to start the iteration; the function returns true
for each pair in the dictionary, and false once all pairs have been reported. The parameters pkey and pvalue
should either point to PyOb ject* variables that will be filled in with each key and value, respectively, or may
be NULL. Any references returned through them are borrowed. ppos should not be altered during iteration. Its
value represents offsets within the internal dictionary structure, and since the structure is sparse, the offsets are
not consecutive.

For example:

-

PyObject *key, *value;

Py_ssize_t pos = 0;

while (PyDict_Next (self->dict, &pos, &key, &value)) |
/* do something interesting with the values... */

J

The dictionary p should not be mutated during iteration. It is safe to modify the values of the keys as you iterate
over the dictionary, but only so long as the set of keys does not change. For example:

PyObject *key,

Py_ssize_t pos =

while

*value;
0;

(PyDict_Next (self->dict,

&pos,

&key,

&value))

{

(continues on next page)

172

Capitolo 8. Concrete Objects Layer

The Python/C API, Release 3.13.7

(continua dalla pagina precedente)

long i = PyLong_AsLong(value);

if (i == -1 && PyErr_Occurred()) {
return -1;

}

PyObject *o = PyLong_FromLong (i + 1);

if (o == NULL)
return -1;

if (PyDict_SetItem(self->dict, key, o) < 0) {
Py_DECREF (o) ;
return -1;

}

Py_DECREF (o) ;

The function is not thread-safe in the free-threaded build without external synchronization. You can use
Py_BEGIN_CRITICAI_SECTION to lock the dictionary while iterating over it:

Py_BEGIN_CRITICAL_SECTION (self->dict);
while (PyDict_Next (self->dict, &pos, &key, &value)) {

}
Py_END_CRITICAL_SECTION() ;

int PyDict_Merge (PyObject *a, PyObject *b, int override)
Farte del ABI Stabile. Iterate over mapping object b adding key-value pairs to dictionary a. b may be a dictio-
nary, or any object supporting PyMapping Keys () and PyObject_GetItem().If override is true, existing
pairs in a will be replaced if a matching key is found in b, otherwise pairs will only be added if there is not a
matching key in a. Return 0 on success or -1 if an exception was raised.

int PyDict_Update (PyObject *a, PyObject *b)
Parte del ABI Stabile. This is the same as PyDict_Merge (a, b, 1) in C, and is similar to a.update (b)
in Python except that PyDict_Update () doesn’t fall back to the iterating over a sequence of key value pairs
if the second argument has no «keys» attribute. Return 0 on success or -1 if an exception was raised.

int PyDict_MergeFromSeq2 (PyObject *a, PyObject *seq2, int override)
Farte del ABI Stabile. Update or merge into dictionary a, from the key-value pairs in seq2. seq2 must be an
iterable object producing iterable objects of length 2, viewed as key-value pairs. In case of duplicate keys, the
last wins if override is true, else the first wins. Return 0 on success or -1 if an exception was raised. Equivalent
Python (except for the return value):

def PyDict_MergeFromSeqg2 (a, seqg2, override):
for key, value in seqg2:
if override or key not in a:
alkey] = value

int PyDict_AddWatcher (PyDict_WatchCallback callback)

Register callback as a dictionary watcher. Return a non-negative integer id which must be passed to future calls
to PyDict_Watch (). In case of error (e.g. no more watcher IDs available), return -1 and set an exception.

Added in version 3.12.

int PyDict_ClearWatcher (int watcher_id)

Clear watcher identified by watcher_id previously returned from pPyDict_Addwatcher (). Return 0 on
success, —1 on error (e.g. if the given watcher_id was never registered.)

Added in version 3.12.

int PyDict_Watch (int watcher_id, PyObject *dict)

8.4. Container Objects 173

The Python/C API, Release 3.13.7

Mark dictionary dict as watched. The callback granted watcher_id by PyDict_Addiwatcher () will be called
when dict is modified or deallocated. Return 0 on success or —1 on error.

Added in version 3.12.

int PyDict_Unwatch (int watcher_id, PyObject *dict)

Mark dictionary dict as no longer watched. The callback granted watcher_id by pPyDict_Addwatcher () will
no longer be called when dict is modified or deallocated. The dict must previously have been watched by this
watcher. Return 0 on success or —1 on error.

Added in version 3.12.

type PyDict_WatchEvent

Enumeration of possible dictionary watcher events: PyDict_ EVENT_ADDED, PyDict_ EVENT_MODIFIED,
PyDict_EVENT_DELETED, PyDict_EVENT_CLONED, PyDict_EVENT_CLEARED, or
PyDict_EVENT_DEALLOCATED.

Added in version 3.12.

typedef int (*PyDict_WatchCallback)(PyDict_WatchEvent event, PyObject *dict, PyObject *key, PyObject
*new_value)

Type of a dict watcher callback function.

If event is PyDict_EVENT_CLEARED Or PyDict_ EVENT_DEALLOCATED, both key and new_value will be
NULL. If event is PyDict_EVENT_ADDED or PyDict_EVENT_MODIFIED, new_value will be the new value
for key. If event is PyDict EVENT_DELETED, key is being deleted from the dictionary and new_value will be
NULL.

PyDict_EVENT_CLONED occurs when dict was previously empty and another dict is merged into it. To main-
tain efficiency of this operation, per-key PyDict_EVENT_ADDED events are not issued in this case; instead a
single PyDict_EVENT_CLONED iS issued, and key will be the source dictionary.

The callback may inspect but must not modify dict; doing so could have unpredictable effects, including infinite
recursion. Do not trigger Python code execution in the callback, as it could modify the dict as a side effect.

If eventis PyDict_EVENT_DEALLOCATED, taking a new reference in the callback to the about-to-be-destroyed
dictionary will resurrect it and prevent it from being freed at this time. When the resurrected object is destroyed
later, any watcher callbacks active at that time will be called again.

Callbacks occur before the notified modification to dict takes place, so the prior state of dict can be inspected.

If the callback sets an exception, it must return —1; this exception will be printed as an unraisable exception
using PyErr WriteUnraisable (). Otherwise it should return 0.

There may already be a pending exception set on entry to the callback. In this case, the callback should return 0
with the same exception still set. This means the callback may not call any other API that can set an exception
unless it saves and clears the exception state first, and restores it before returning.

Added in version 3.12.

8.4.2 Set Objects

This section details the public API for set and frozenset objects. Any functionality not listed be-
low is best accessed using either the abstract object protocol (including PyObject CallMethod(),
PyObject_RichCompareBool (), PyObject_Hash(), PyObject_Repr(), PyObject_IsTrue(),
PyObject_Print (),and PyObject_GetIter ())or the abstract number protocol (including PyNumber_And (),
PyNumber_Subtract (), PyNumber_Or (), PyNumber_Xor (), PyNumber_InPlaceAnd(),
PyNumber_InPlaceSubtract (), PyNumber_InPlaceOr (), and PyNumber_InPlaceXor ())

type PySetObject

This subtype of PyObject is used to hold the internal data for both set and frozenset objects. It is like a
PyDictObject in that it is a fixed size for small sets (much like tuple storage) and will point to a separate,
variable sized block of memory for medium and large sized sets (much like list storage). None of the fields of

174 Capitolo 8. Concrete Objects Layer

The Python/C API, Release 3.13.7

this structure should be considered public and all are subject to change. All access should be done through the
documented API rather than by manipulating the values in the structure.
PyTypeObject PySet_Type
Parte del ABI Stabile. This is an instance of Py TypeObject representing the Python set type.
PyTypeObject PyFrozenSet_Type
Parte del ABI Stabile. This is an instance of Py TypeObject representing the Python frozenset type.
The following type check macros work on pointers to any Python object. Likewise, the constructor functions work
with any iterable Python object.
int PySet_Check (PyObject *p)
Return true if p is a set object or an instance of a subtype. This function always succeeds.
int PyFrozenSet_Check (PyObject *p)
Return true if p is a frozenset object or an instance of a subtype. This function always succeeds.
int PyAnySet_Check (PyObject *p)
Returntrueif pis a set object, a frozenset object, or an instance of a subtype. This function always succeeds.
int PySet_CheckExact (PyObject *p)

Return true if p is a set object but not an instance of a subtype. This function always succeeds.
Added in version 3.10.

int PyAnySet_CheckExact (PyObject *p)
Return true if p is a set object or a frozenset object but not an instance of a subtype. This function always
succeeds.

int PyFrozenSet_CheckExact (PyObject *p)
Return true if p is a frozenset object but not an instance of a subtype. This function always succeeds.

PyObject *PySet_New (PyObject *iterable)
Valore di ritorno: Nuovo riferimento. Parte del ABI Stabile. Return a new set containing objects returned by
the iterable. The iterable may be NULL to create a new empty set. Return the new set on success or NULL on
failure. Raise TypeError if iterable is not actually iterable. The constructor is also useful for copying a set
(c=set (s)).

PyObject *PyFrozenSet_New (PyObject *iterable)
Valore di ritorno: Nuovo riferimento. Parte del ABI Stabile. Return a new frozenset containing objects re-

turned by the iterable. The iterable may be NULL to create a new empty frozenset. Return the new set on success
or NULL on failure. Raise TypeError if iterable is not actually iterable.

The following functions and macros are available for instances of set or frozenset or instances of their subtypes.
Py_ssize_t PySet_Size (PyObject *anyset)
Farte del ABI Stabile. Return the length of a set or frozenset object. Equivalent to 1len (anyset) . Raises
a SystemError if anyset is not a set, frozenset, or an instance of a subtype.
Py_ssize_t PySet_GET_SIZE (PyObject *anyset)
Macro form of PySet_Size () without error checking.
int PySet_Contains (PyObject *anyset, PyObject *key)
Parte del ABI Stabile. Return 1 if found, 0 if not found, and -1 if an error is encountered. Unlike the Python
__contains__ () method, this function does not automatically convert unhashable sets into temporary fro-
zensets. Raise a TypeError if the key is unhashable. Raise SystemError if anyset isnota set, frozenset,
or an instance of a subtype.
int PySet_Add (PyObject *set, PyObject *key)
FParte del ABI Stabile. Add key to a set instance. Also works with frozenset instances (like

PyTuple_SetItem() it can be used to fill in the values of brand new frozensets before they are exposed
to other code). Return 0 on success or -1 on failure. Raise a TypeError if the key is unhashable. Raise

8.4. Container Objects 175

The Python/C API, Release 3.13.7

a MemoryError if there is no room to grow. Raise a SystemError if sef is not an instance of set or its
subtype.

The following functions are available for instances of set or its subtypes but not for instances of frozenset or its

subtypes.

int PySet_Discard (PyObject *set, PyObject *key)
Parte del ABI Stabile. Return 1 if found and removed, 0 if not found (no action taken), and —1 if an error is
encountered. Does not raise KeyError for missing keys. Raise a TypeError if the key is unhashable. Unlike
the Python discard () method, this function does not automatically convert unhashable sets into temporary
frozensets. Raise SystemError if sef is not an instance of set or its subtype.

PyObject *PySet_Pop (PyObject *set)
Valore di ritorno: Nuovo riferimento. Parte del ABI Stabile. Return a new reference to an arbitrary object in the
set, and removes the object from the ser. Return NULL on failure. Raise KeyError if the set is empty. Raise a
SystemError if sef is not an instance of set or its subtype.

int PySet_Clear (PyObject *set)
Parte del ABI Stabile. Empty an existing set of all elements. Return 0 on success. Return -1 and raise
SystemError if sef is not an instance of set or its subtype.

8.5 Function Objects

8.5.1 Function Objects

There are a few functions specific to Python functions.

type PyFunctionObject

The C structure used for functions.

PyTypeObject PyFunction_Type
This is an instance of PyTypeObject and represents the Python function type. It is exposed to Python
programmers as types.FunctionType.

int PyFunction_Check (PyObject *0)
Return true if o is a function object (has type PyFunction_Type). The parameter must not be NULL. This
function always succeeds.

PyObject *PyFunction_New (PyObject *code, PyObject *globals)
Valore di ritorno: Nuovo riferimento. Return a new function object associated with the code object code. globals
must be a dictionary with the global variables accessible to the function.

The function’s docstring and name are retrieved from the code object. __module__is retrieved from globals.
The argument defaults, annotations and closure are set to NULL. __qualname__is set to the same value as
the code object’s co_qualname field.

PyObject *PyFunction_NewWithQualName (PyObject *code, PyObject *globals, PyObject *qualname)
Valore di ritorno: Nuovo riferimento. As PyFunction_New (), but also allows setting the function objec-

t's __qualname__ attribute. gualname should be a unicode object or NULL; if NULL, the _ _qualname_
attribute is set to the same value as the code object’s co_qualname field.

Added in version 3.3.
PyObject *PyFunction_GetCode (PyObject *op)
Valore di ritorno: Riferimento preso in prestito. Return the code object associated with the function object op.
PyObject *PyFunction_GetGlobals (PyObject *op)
Valore di ritorno: Riferimento preso in prestito. Return the globals dictionary associated with the function object
op.

176 Capitolo 8. Concrete Objects Layer

The Python/C API, Release 3.13.7

PyObject *PyFunction_GetModule (PyObject *op)
Valore di ritorno: Riferimento preso in prestito. Return a borrowed reference to the __module___ attribute of
the function object op. It can be NULL.
This is normally a st ring containing the module name, but can be set to any other object by Python code.

PyObject *PyFunction_GetDefaults (PyObject *op)
Valore di ritorno: Riferimento preso in prestito. Return the argument default values of the function object op.
This can be a tuple of arguments or NULL.

int PyFunction_SetDefaults (PyObject *op, PyObject *defaults)

Set the argument default values for the function object op. defaults must be Py_None or a tuple.
Raises SystemError and returns —1 on failure.

void PyFunction_SetVectorcall (PyFunctionObject *func, vectorcallfunc vectorcall)

Set the vectorcall field of a given function object func.
Warning: extensions using this API must preserve the behavior of the unaltered (default) vectorcall function!
Added in version 3.12.

PyObject *PyFunction_GetKwDefaults (PyObject *op)
Valore di ritorno: Riferimento preso in prestito. Return the keyword-only argument default values of the function
object op. This can be a dictionary of arguments or NULL.

PyObject *PyFunction_GetClosure (PyObject *op)
Valore di ritorno: Riferimento preso in prestito. Return the closure associated with the function object op. This
can be NULL or a tuple of cell objects.

int PyFunction_SetClosure (PyObject *op, PyObject *closure)
Set the closure associated with the function object op. closure must be Py_None or a tuple of cell objects.
Raises SystemError and returns -1 on failure.

PyObject *PyFunction_GetAnnotations (PyObject *op)
Valore di ritorno: Riferimento preso in prestito. Return the annotations of the function object op. This can be a
mutable dictionary or NULL.

int PyFunction_SetAnnotations (PyObject *op, PyObject *annotations)
Set the annotations for the function object op. annotations must be a dictionary or Py_None.
Raises SystemError and returns —1 on failure.

PyObject *PyFunction_GET_CODE (PyObject *op)

PyObject *PyFunction_GET_GLOBALS (PyObject *op)

PyObject *PyFunction_GET_MODULE (PyObject *op)

PyObject *PyFunction_GET_DEFAULTS (PyObject *op)

PyObject *PyFunction_GET_KW_DEFAULTS (PyObject *op)

PyObject *PyFunction_GET_CLOSURE (PyObject *op)

PyObject *PyFunction_GET_ANNOTATIONS (PyObject *op)

Valore di ritorno: Riferimento preso in prestito. These functions are similar to their PyFunction_Get * counter-
parts, but do not do type checking. Passing anything other than an instance of PyFunction_Type is undefined
behavior.

int PyFunction_AddWatcher (PyFunction_WatchCallback callback)

Register callback as a function watcher for the current interpreter. Return an ID which may be passed to
PyFunction_ClearWatcher ().In case of error (e.g. no more watcher IDs available), return -1 and set an
exception.

Added in version 3.12.

8.5. Function Objects 177

The Python/C API, Release 3.13.7

int PyFunction_ClearWatcher (int watcher_id)

Clear watcher identified by watcher_id previously returned from pyFunction_Addwatcher () for the cur-
rent interpreter. Return 0 on success, or -1 and set an exception on error (e.g. if the given watcher_id was
never registered.)

Added in version 3.12.

type PyFunction_WatchEvent

Enumeration of possible function watcher events:
e PyFunction_EVENT_CREATE
e PyFunction_EVENT_DESTROY
e PyFunction EVENT_MODIFY_CODE
e PyFunction EVENT_MODIFY_ DEFAULTS
e PyFunction EVENT_MODIFY_KWDEFAULTS
Added in version 3.12.

typedef int (*PyFunction_WatchCallback)(PyFunction_WatchEvent event, PyFunctionObject *func, PyObject
*new_value)

Type of a function watcher callback function.

If event is PyFunction_EVENT_CREATE or PyFunction_EVENT_DESTROY then new_value will be NULL.
Otherwise, new_value will hold a borrowed reference to the new value that is about to be stored in furnc for the
attribute that is being modified.

The callback may inspect but must not modify func; doing so could have unpredictable effects, including infinite
recursion.

If event is PyFunction_EVENT_CREATE, then the callback is invoked after func has been fully initialized.
Otherwise, the callback is invoked before the modification to func takes place, so the prior state of furnc can be
inspected. The runtime is permitted to optimize away the creation of function objects when possible. In such
cases no event will be emitted. Although this creates the possibility of an observable difference of runtime
behavior depending on optimization decisions, it does not change the semantics of the Python code being
executed.

If event is PyFunction EVENT_DESTROY, Taking a reference in the callback to the about-to-be-destroyed
function will resurrect it, preventing it from being freed at this time. When the resurrected object is destroyed
later, any watcher callbacks active at that time will be called again.

If the callback sets an exception, it must return —1; this exception will be printed as an unraisable exception
using PyErr WriteUnraisable (). Otherwise it should return 0.

There may already be a pending exception set on entry to the callback. In this case, the callback should return 0
with the same exception still set. This means the callback may not call any other API that can set an exception
unless it saves and clears the exception state first, and restores it before returning.

Added in version 3.12.

8.5.2 Instance Method Objects

An instance method is a wrapper for a PyCFunct ion and the new way to bind a PyCFunction to a class object. It
replaces the former call PyMethod_New (func, NULL, class).
PyTypeObject PyInstanceMethod_Type
This instance of PyTypeObject represents the Python instance method type. It is not exposed to Python
programs.
int PyInstanceMethod_Check (PyObject *0)

Return true if o is an instance method object (has type Py TnstanceMet hod_Type). The parameter must not
be NULL. This function always succeeds.

178 Capitolo 8. Concrete Objects Layer

The Python/C API, Release 3.13.7

PyObject *PyInstanceMethod_New (PyObject *func)
Valore di ritorno: Nuovo riferimento. Return a new instance method object, with func being any callable object.
func is the function that will be called when the instance method is called.

PyObject *PyInstanceMethod_Function (PyObject *im)
Valore di ritorno: Riferimento preso in prestito. Return the function object associated with the instance method
im.

PyObject *PyInstanceMethod_GET_FUNCTION (PyObject *im)

Valore di ritorno: Riferimento preso in prestito. Macro version of PynstanceMethod_Function () which
avoids error checking.

8.5.3 Method Objects

Methods are bound function objects. Methods are always bound to an instance of a user-defined class. Unbound
methods (methods bound to a class object) are no longer available.
PyTypeObject PyMethod_Type
This instance of PyTypeObject represents the Python method type. This is exposed to Python programs as
types.MethodType.
int PyMethod_Check (PyObject *0)
Return true if o is a method object (has type PyMethod Type). The parameter must not be NULL. This
function always succeeds.
PyObject *PyMethod_New (PyObject *func, PyObject *self)
Valore di ritorno: Nuovo riferimento. Return a new method object, with func being any callable object and self
the instance the method should be bound. func is the function that will be called when the method is called.
self must not be NULL.
PyObject *PyMethod_Function (PyObject *meth)
Valore di ritorno: Riferimento preso in prestito. Return the function object associated with the method meth.
PyObject *PyMethod_GET_FUNCTION (PyObject *meth)
Valore di ritorno: Riferimento preso in prestito. Macro version of PyMethod Function () which avoids error
checking.
PyObject *PyMethod_Self£ (PyObject *meth)
Valore di ritorno: Riferimento preso in prestito. Return the instance associated with the method meth.
PyObject *PyMethod_GET_SELF (PyObject *meth)
Valore di ritorno: Riferimento preso in prestito. Macro version of PyMethod Self () which avoids error
checking.

8.5.4 Cell Objects

«Cell» objects are used to implement variables referenced by multiple scopes. For each such variable, a cell object is
created to store the value; the local variables of each stack frame that references the value contains a reference to the
cells from outer scopes which also use that variable. When the value is accessed, the value contained in the cell is used
instead of the cell object itself. This de-referencing of the cell object requires support from the generated byte-code;
these are not automatically de-referenced when accessed. Cell objects are not likely to be useful elsewhere.
type PyCellObject

The C structure used for cell objects.
PyTypeObject PyCell_Type

The type object corresponding to cell objects.
int PyCell_Check (PyObject *ob)

Return true if ob is a cell object; ob must not be NULL. This function always succeeds.

8.5. Function Objects 179

The Python/C API, Release 3.13.7

PyObject *PyCell_New (PyObject *ob)
Valore di ritorno: Nuovo riferimento. Create and return a new cell object containing the value ob. The parameter
may be NULL.

PyObject *PyCell_Get (PyObject *cell)
Valore di ritorno: Nuovo riferimento. Return the contents of the cell cell, which can be NULL. If cell is not a
cell object, returns NULL with an exception set.

PyObject ¥*PyCell_GET (PyObject *cell)

Valore di ritorno: Riferimento preso in prestito. Return the contents of the cell cell, but without checking that
cell is non-NULL and a cell object.

int PyCell_sSet (PyObject *cell, PyObject *value)
Set the contents of the cell object cell to value. This releases the reference to any current content of the cell.
value may be NULL. cell must be non-NULL.

On success, return 0. If cell is not a cell object, set an exception and return —1.

void PyCell_SET (PyObject *cell, PyObject *value)

Sets the value of the cell object cell to value. No reference counts are adjusted, and no checks are made for
safety; cell must be non-NULL and must be a cell object.

8.5.5 Code Objects

Code objects are a low-level detail of the CPython implementation. Each one represents a chunk of executable code
that hasn’t yet been bound into a function.

type PyCodeObject

The C structure of the objects used to describe code objects. The fields of this type are subject to change at
any time.

PyTypeObject PyCode_Type
This is an instance of Py TypeObject representing the Python code object.

int PyCode_Check (PyObject *co)
Return true if co is a code object. This function always succeeds.

Py_ssize_t PyCode_GetNumFree (PyCodeObject *co)

Return the number of free (closure) variables in a code object.

int PyUnstable_Code_GetFirstFree (PyCodeObject *co)

Questa pagina AP/ Instabile. Potrebbe cambiare senza preavviso nelle release minori.

Return the position of the first free (closure) variable in a code object.

Cambiato nella versione 3.13: Renamed from PyCode_GetFirstFree as part of Unstable C API. The old
name is deprecated, but will remain available until the signature changes again.

PyCodeObject *PyUnstable_Code_New (int argcount, int kwonlyargcount, int nlocals, int stacksize, int flags,
PyObject *code, PyObject *consts, PyObject *names, PyObject
*varnames, PyObject *freevars, PyObject *cellvars, PyObject *filename,
PyObject *name, PyObject *qualname, int firstlineno, PyObject
*linetable, PyObject *exceptiontable)

Questa pagina API Instabile. Potrebbe cambiare senza preavviso nelle release minori.

180 Capitolo 8. Concrete Objects Layer

The Python/C API, Release 3.13.7

Return a new code object. If you need a dummy code object to create a frame, use PyCode_NewEmpty ()
instead.

Since the definition of the bytecode changes often, calling PyUnstable Code_New () directly can bind you
to a precise Python version.

The many arguments of this function are inter-dependent in complex ways, meaning that subtle changes to
values are likely to result in incorrect execution or VM crashes. Use this function only with extreme care.

Cambiato nella versione 3.11: Added qualname and exceptiontable parameters.

Cambiato nella versione 3.12: Renamed from PyCode_New as part of Unstable C API. The old name is
deprecated, but will remain available until the signature changes again.

PyCodeObject *PyUnstable_Code_NewWithPosOnlyArgs (int argcount, int posonlyargcount, int
kwonlyargcount, int nlocals, int stacksize, int flags,
PyObject *code, PyObject *consts, PyObject
*names, PyObject *varnames, PyObject *freevars,
PyObject *cellvars, PyObject *filename, PyObject
*name, PyObject *qualname, int firstlineno,
PyObject *linetable, PyObject *exceptiontable)

e

Questa pagina API Instabile. Potrebbe cambiare senza preavviso nelle release minori.

Similar to PyUnstable_ Code_ New (), but with an extra «posonlyargcount» for positional-only arguments.
The same caveats that apply to PyUnstable_Code_New also apply to this function.

Added in version 3.8: as PyCode_NewWithPosOnlyArgs
Cambiato nella versione 3.11: Added qualname and exceptiontable parameters.

Cambiato nella versione 3.12: Renamed to PyUnstable_Code_NewWithPosOnlyArgs. The old name is
deprecated, but will remain available until the signature changes again.

PyCodeObject *PyCode_NewEmpty (const char *filename, const char *funcname, int firstlineno)

Valore di ritorno: Nuovo riferimento. Return a new empty code object with the specified filename, function
name, and first line number. The resulting code object will raise an Exception if executed.

int PyCode_Addr2Line (PyCodeObject *co, int byte_offset)

Return the line number of the instruction that occurs on or before byte_of fset and ends after it. If you just
need the line number of a frame, use PyFrame_GetLineNumber () instead.

For efficiently iterating over the line numbers in a code object, use the API described in PEP 626.

int PyCode_Addr2Location (PyObject *co, int byte_offset, int *start_line, int *start_column, int *end_line, int
*end_column)

Sets the passed int pointers to the source code line and column numbers for the instruction at byte_offset.
Sets the value to 0 when information is not available for any particular element.

Returns 1 if the function succeeds and O otherwise.
Added in version 3.11.
PyObject *PyCode_GetCode (PyCodeObject *co)

Equivalent to the Python code getattr (co, 'co_code').Returnsastrongreferencetoa PyBytesObject
representing the bytecode in a code object. On error, NULL is returned and an exception is raised.

This PyBytesObject may be created on-demand by the interpreter and does not necessarily represent the
bytecode actually executed by CPython. The primary use case for this function is debuggers and profilers.

Added in version 3.11.

8.5. Function Objects 181

https://peps.python.org/pep-0626/#out-of-process-debuggers-and-profilers

The Python/C API, Release 3.13.7

PyObject *PyCode_GetVarnames (PyCodeObject *co)

Equivalent to the Python code getattr(co, 'co_varnames'). Returns a new reference to a
PyTupleObject containing the names of the local variables. On error, NULL is returned and an exception is
raised.

Added in version 3.11.

PyObject *PyCode_GetCellvars (PyCodeObject *co)

Equivalent to the Python code getattr(co, 'co_cellvars'). Returns a new reference to a
PyTupleObject containing the names of the local variables that are referenced by nested functions. On
error, NULL is returned and an exception is raised.

Added in version 3.11.

PyObject *PyCode_GetFreevars (PyCodeObject *co)

Equivalent to the Python code getattr(co, 'co_freevars'). Returns a new reference to a
PyTupleObject containing the names of the free (closure) variables. On error, NULL is returned and an
exception is raised.

Added in version 3.11.

int PyCode_AddWatcher (PyCode_WatchCallback callback)

Register callback as a code object watcher for the current interpreter. Return an ID which may be passed
to PyCode_ClearWatcher (). In case of error (e.g. no more watcher IDs available), return -1 and set an
exception.

Added in version 3.12.

int PyCode_ClearWatcher (int watcher_id)

Clear watcher identified by watcher_id previously returned from PyCode Addwatcher () for the current
interpreter. Return 0 on success, or —1 and set an exception on error (e.g. if the given watcher_id was never
registered.)

Added in version 3.12.

type PyCodeEvent

Enumeration of possible code object watcher events: - PY_CODE_EVENT_CREATE -
PY_CODE_EVENT_DESTROY

Added in version 3.12.

typedef int (*PyCode_WatchCallback)(PyCodeEvent event, PyCodeObject *co)

Type of a code object watcher callback function.

If event is PY_CODE_EVENT_CREATE, then the callback is invoked after co has been fully initialized. Other-
wise, the callback is invoked before the destruction of co takes place, so the prior state of co can be
inspected.

If event is PY_CODE_EVENT_DESTROY, taking a reference in the callback to the about-to-be-destroyed code
object will resurrect it and prevent it from being freed at this time. When the resurrected object is destroyed
later, any watcher callbacks active at that time will be called again.

Users of this API should not rely on internal runtime implementation details. Such details may include, but
are not limited to, the exact order and timing of creation and destruction of code objects. While changes in
these details may result in differences observable by watchers (including whether a callback is invoked or not),
it does not change the semantics of the Python code being executed.

If the callback sets an exception, it must return —1; this exception will be printed as an unraisable exception
using PyErr_liriteUnraisable (). Otherwise it should return 0.

There may already be a pending exception set on entry to the callback. In this case, the callback should return 0
with the same exception still set. This means the callback may not call any other API that can set an exception
unless it saves and clears the exception state first, and restores it before returning.

Added in version 3.12.

182 Capitolo 8. Concrete Objects Layer

The Python/C API, Release 3.13.7

8.5.6 Code Object Flags

Code objects contain a bit-field of flags, which can be retrieved as the co_flags Python attribute (for example
using PyObject_GetAttrString()), and set using a flags argument to PyUnstable_Code_New () and similar
functions.

Flags whose names start with CO_FUTURE_ correspond to features normally selectable by future statements. These
flags can be used in PyCompilerFlags.cf_flags. Note that many CoO_FUTURE_ flags are mandatory in current
versions of Python, and setting them has no effect.

The following flags are available. For their meaning, see the linked documentation of their Python equivalents.

8.5. Function Objects 183

The Python/C API, Release 3.13.7

Flag Meaning

inspect.CO_OPTIMIZED
CO_OPTIMIZED

inspect.CO_NEWLOCALS
CO_NEWLOCALS

inspect .CO_VARARGS
CO_VARARGS

inspect.CO_VARKEYWORDS
CO_VARKEYWORDS

inspect .CO_NESTED
CO_NESTED

inspect.CO_GENERATOR
CO_GENERATOR

inspect.CO_COROUTINE
CO_COROUTINE

inspect.CO_ITERABLE_COROUTINE
CO_ITERABLE_COROUTINE

inspect.CO_ASYNC_GENERATOR
CO_ASYNC_GENERATOR

no effect (__future_ .division)
CO_FUTURE_DIVISION

no effect (__future_ .absolute_import)
CO_FUTURE_ABSOLUTE_IMPORT

no effect (__future_ .with_statement)
CO_FUTURE_WITH_STATEMENT

no effect (__future_ .print_function)
CO_FUTURE_PRINT FUNCTION

no effect (__future_ .unicode_literals)
CO_FUTURE_UNICODE_LITERALS

no effect (__future_ .generator_stop)
CO_FUTURE_GENERATOR_STOP

_ future__ .annotations
CO_FUTURE_ANNOTATIONS

8.5.7 Extra information

To support low-level extensions to frame evaluation, such as external just-in-time compilers, it is possible to attach
arbitrary extra data to code objects.

These functions are part of the unstable C API tier: this functionality is a CPython implementation detail, and the
API may change without deprecation warnings.

184 Capitolo 8. Concrete Objects Layer

The Python/C API, Release 3.13.7

Py_ssize_t PyUnstable_Eval_RequestCodeExtraIndex (freefunc free)

Questa pagina API Instabile. Potrebbe cambiare senza preavviso nelle release minori.

Return a new an opaque index value used to adding data to code objects.

You generally call this function once (per interpreter) and use the result with PyCode_GetExtra and
PyCode_SetExtra to manipulate data on individual code objects.

If free is not NULL: when a code object is deallocated, free will be called on non-NULL data stored under the
new index. Use Py_DecRef () when storing PyObject.

Added in version 3.6: as _PyEval_RequestCodeExtralIndex

Cambiato nella versione 3.12: Renamed to PyUnstable_Eval_ RequestCodeExtralndex. The old private
name is deprecated, but will be available until the API changes.

int PyUnstable_Code_GetExtra (PyObject *code, Py_ssize_t index, void **extra)

Questa pagina API Instabile. Potrebbe cambiare senza preavviso nelle release minori.

Set extra to the extra data stored under the given index. Return O on success. Set an exception and return -1 on
failure.

If no data was set under the index, set extra to NULL and return O without setting an exception.
Added in version 3.6: as _PyCode_GetExtra

Cambiato nella versione 3.12: Renamed to PyUnstable Code_GetExtra. The old private name is
deprecated, but will be available until the API changes.

int PyUnstable_Code_SetExtra (PyObject *code, Py_ssize_t index, void *extra)

Questa pagina API Instabile. Potrebbe cambiare senza preavviso nelle release minori.

Set the extra data stored under the given index to extra. Return O on success. Set an exception and return -1 on
failure.

Added in version 3.6: as _PyCode_SetExtra

Cambiato nella versione 3.12: Renamed to PyUnstable Code_SetExtra. The old private name is
deprecated, but will be available until the API changes.

8.6 Other Objects
8.6.1 File Objects

These APIs are a minimal emulation of the Python 2 C API for built-in file objects, which used to rely on the
buffered I/O (FILE*) support from the C standard library. In Python 3, files and streams use the new io module,
which defines several layers over the low-level unbuffered I/O of the operating system. The functions described below
are convenience C wrappers over these new APIs, and meant mostly for internal error reporting in the interpreter;
third-party code is advised to access the io APIs instead.

8.6. Other Objects 185

The Python/C API, Release 3.13.7

PyObject *PyFile_FromFd (int fd, const char *name, const char *mode, int buffering, const char *encoding, const

char *errors, const char *newline, int closefd)

Valore di ritorno: Nuovo riferimento. Parte del ABI Stabile. Create a Python file object from the file descriptor of
an already opened file fd. The arguments name, encoding, errors and newline can be NULL to use the defaults;
buffering can be -1 to use the default. name is ignored and kept for backward compatibility. Return NULL
on failure. For a more comprehensive description of the arguments, please refer to the io.open () function
documentation.

A\ Avvertimento

Since Python streams have their own buffering layer, mixing them with OS-level file descriptors can
produce various issues (such as unexpected ordering of data).

Cambiato nella versione 3.2: Ignore name attribute.

int PyObject_AsFileDescriptor (PyObject *p)

Farte del ABI Stabile. Return the file descriptor associated with p as an int. If the object is an integer, its value
is returned. If not, the object’s £ileno () method is called if it exists; the method must return an integer, which
is returned as the file descriptor value. Sets an exception and returns -1 on failure.

PyObject *PyFile_GetLine (PyObject *p, int n)

Valore di ritorno: Nuovo riferimento. Parte del ABI Stabile. Equivalent to p.readline ([n]), this function
reads one line from the object p. p may be a file object or any object with a readline () method. If n is 0,
exactly one line is read, regardless of the length of the line. If # is greater than 0, no more than n bytes will
be read from the file; a partial line can be returned. In both cases, an empty string is returned if the end of the
file is reached immediately. If n is less than 0, however, one line is read regardless of length, but EOFError is
raised if the end of the file is reached immediately.

int PyFile_SetOpenCodeHook (Py_OpenCodeHookFunction handler)

Overrides the normal behavior of io.open_code () to pass its parameter through the provided handler.
The handler is a function of type:
typedef PyObject *(*Py_OpenCodeHookFunction)(PyObject*, void*)

Equivalent of PyObject *(*) (PyObject *path, void *userData), where path is guaranteed
to be PyUnicodeObject.

The userData pointer is passed into the hook function. Since hook functions may be called from different
runtimes, this pointer should not refer directly to Python state.

As this hook is intentionally used during import, avoid importing new modules during its execution unless they
are known to be frozen or available in sys.modules.

Once a hook has been set, it cannot be removed or replaced, and later calls to PyFile SetOpenCodeHook ()
will fail. On failure, the function returns -1 and sets an exception if the interpreter has been initialized.

This function is safe to call before Py_Initialize().
Raises an auditing event set opencodehook with no arguments.

Added in version 3.8.

int PyFile_WriteObject (PyObject *obj, PyObject *p, int flags)

Farte del ABI Stabile. Write object obj to file object p. The only supported flag for flags is Py_PRINT RAI;
if given, the str () of the object is written instead of the repr (). Return 0 on success or —1 on failure; the
appropriate exception will be set.

int PyFile_WriteString (const char *s, PyObject *p)

Farte del ABI Stabile. Write string s to file object p. Return 0 on success or —1 on failure; the appropriate
exception will be set.

186

Capitolo 8. Concrete Objects Layer

The Python/C API, Release 3.13.7

8.6.2 Module Objects

PyTypeObject PyModule_Type
Parte del ABI Stabile. This instance of PyTypeObject represents the Python module type. This is exposed
to Python programs as types.ModuleType.
int PyModule_Check (PyObject *p)
Return true if p is a module object, or a subtype of a module object. This function always succeeds.
int PyModule_CheckExact (PyObject *p)
Return true if p is a module object, but not a subtype of PyModule_Type. This function always succeeds.
PyObject *PyModule_NewObject (PyObject *name)

Valore di ritorno: Nuovo riferimento. Parte del ABI Stabile dalla versione 3.7. Return a new module object

withmodule._ name__ settoname. The module’s _ name_ , doc_ , package_ _and__ loader_
attributes are filled in (all but __name__ are set to None). The caller is responsible for settinga _ file
attribute.

Return NULL with an exception set on error.
Added in version 3.3.
Cambiato nella versione 3.4: _ _package___and __loader__ are now set to None.

PyObject *PyModule_New (const char *name)
Valore di ritorno: Nuovo riferimento. Parte del ABI Stabile. Similar to PyModule NewObject (), but the
name is a UTF-8 encoded string instead of a Unicode object.

PyObject *PyModule_GetDict (PyObject *module)

Valore di ritorno: Riferimento preso in prestito. Parte del ABI Stabile. Return the dictionary object that imple-
ments module’s namespace; this object is the same as the __dict__ attribute of the module object. If module
is not a module object (or a subtype of a module object), SystemError is raised and NULL is returned.

It is recommended extensions use other PyModule_* and PyObject_* functions rather than directly
manipulate a module’s __dict_ .

PyObject *PyModule_GetNameObject (PyObject *module)
Valore di ritorno: Nuovo riferimento. Parte del ABI Stabile dalla versione 3.7. Return module’s __name___
value. If the module does not provide one, or if it is not a string, SystemError is raised and NULL is returned.
Added in version 3.3.

const char *PyModule_GetName (PyObject *module)
Parte del ABI Stabile. Similar to PyModule_GetNameObject () but return the name encoded to 'ut£-8"'.

void *PyModule_GetState (PyObject *module)
Parte del ABI Stabile. Return the «state» of the module, that is, a pointer to the block of memory allocated at
module creation time, or NULL. See PyModuleDef.m_size.

PyModuleDef *PyModule_GetDef (PyObject *module)
Parte del ABI Stabile. Return a pointer to the PyModuleDef struct from which the module was created, or
NULL if the module wasn’t created from a definition.

PyObject *PyModule_GetFilenameObject (PyObject *module)
Valore di ritorno: Nuovo riferimento. Parte del ABI Stabile. Return the name of the file from which module was

loaded using module’s __file_ attribute. If this is not defined, or if it is not a string, raise SystemError
and return NULL; otherwise return a reference to a Unicode object.

Added in version 3.2.

const char *PyModule_GetFilename (PyObject *module)

Parte del ABI Stabile. Similar to PyModule_GetFilenameObject () but return the filename encoded to
“utf-8”.

8.6. Other Objects 187

The Python/C API, Release 3.13.7

Deprecato dalla versione 3.2: PyModule GetFilename () raises UnicodeEncodeError on unencodable
filenames, use PyModule_ GetFilenameObject () instead.

Initializing C modules

Modules objects are usually created from extension modules (shared libraries which export an initialization func-
tion), or compiled-in modules (where the initialization function is added using Py Import_AppendInittab ()).
See building or extending-with-embedding for details.

The initialization function can either pass a module definition instance to PyModule Create (), and return the
resulting module object, or request «multi-phase initialization» by returning the definition struct itself.

type PyModuleDef

Parte del ABI Stabile (inclusi tutti i membri). The module definition struct, which holds all information needed
to create a module object. There is usually only one statically initialized variable of this type for each module.

PyModuleDef Base m_base

Always initialize this member to PyModuleDef HEAD_INIT.

const char *m_name

Name for the new module.

const char *m_doc

Docstring for the module; usually a docstring variable created with PyDoc_STRVAR is used.

Py_ssize_t m_size

Module state may be kept in a per-module memory area that can be retrieved with
PyModule_GetState (), rather than in static globals. This makes modules safe for use in multiple
sub-interpreters.

This memory area is allocated based on m_size on module creation, and freed when the module object is
deallocated, after the m _free function has been called, if present.

Setting m_size to —1 means that the module does not support sub-interpreters, because it has global
state.

Setting it to a non-negative value means that the module can be re-initialized and specifies the additional
amount of memory it requires for its state. Non-negative m_s i ze is required for multi-phase initialization.

See PEP 3121 for more details.

PyMethodDef *m_methods

A pointer to a table of module-level functions, described by PyMethodDe r values. Can be NULL if no
functions are present.

PyModuleDef _Slot *m_slots

An array of slot definitions for multi-phase initialization, terminated by a {0, NULL} entry. When using
single-phase initialization, m_slots must be NULL.

Cambiato nella versione 3.5: Prior to version 3.5, this member was always set to NULL, and was defined
as:

inquiry m_reload

traverseproc m_traverse

A traversal function to call during GC traversal of the module object, or NULL if not needed.

This function is not called if the module state was requested but is not allocated yet. This is the case
immediately after the module is created and before the module is executed (Py_mod_exec function).
More precisely, this function is not called if m_size is greater than O and the module state (as returned
by PyModule GetState ())is NULL.

Cambiato nella versione 3.9: No longer called before the module state is allocated.

188

Capitolo 8. Concrete Objects Layer

https://peps.python.org/pep-3121/

The Python/C API, Release 3.13.7

inquiry m_clear
A clear function to call during GC clearing of the module object, or NULL if not needed.
This function is not called if the module state was requested but is not allocated yet. This is the case
immediately after the module is created and before the module is executed (Py_mod_exec function).

More precisely, this function is not called if m_size is greater than O and the module state (as returned
by PyModule GetState ())is NULL.

Like PyTypeObject . tp_clear, this function is not always called before a module is deallocated. For
example, when reference counting is enough to determine that an object is no longer used, the cyclic
garbage collector is not involved and m_ free is called directly.

Cambiato nella versione 3.9: No longer called before the module state is allocated.

freefunc m_£free
A function to call during deallocation of the module object, or NULL if not needed.
This function is not called if the module state was requested but is not allocated yet. This is the case
immediately after the module is created and before the module is executed (Py_mod_exec function).

More precisely, this function is not called if m_size is greater than 0 and the module state (as returned
by PyModule_GetState ())is NULL.

Cambiato nella versione 3.9: No longer called before the module state is allocated.

Single-phase initialization

The module initialization function may create and return the module object directly. This is referred to as «single-
phase initialization», and uses one of the following two module creation functions:

PyObject *PyModule_Create (PyModuleDef *def)
Valore di ritorno: Nuovo riferimento. Create a new module object, given the definition in def. This behaves like
PyModule_Create?2 () with module_api_version set to PYTHON_API_VERSTON.

PyObject *PyModule_Create2 (PyModuleDef *def, int module_api_version)

Valore di ritorno: Nuovo riferimento. Parte del ABI Stabile. Create a new module object, given the definition in
def, assuming the API version module_api_version. If that version does not match the version of the running
interpreter, a Runt imeWarning is emitted.

Return NULL with an exception set on error.

O Nota

Most uses of this function should be using PyModule Create () instead; only use this if you are sure you
need it.

Before it is returned from in the initialization function, the resulting module object is typically populated using
functions like PyModule AddObjectRef ().

Multi-phase initialization

An alternate way to specify extensions is to request «multi-phase initialization». Extension modules created this way
behave more like Python modules: the initialization is split between the creation phase, when the module object is
created, and the execution phase, when it is populated. The distinction is similar tothe __new__ () and __init__ ()
methods of classes.

Unlike modules created using single-phase initialization, these modules are not singletons. For example, if the sys.
modules entry is removed and the module is re-imported, a new module object is created, and typically populated
with fresh method and type objects. The old module is subject to normal garbage collection. This mirrors the behavior
of pure-Python modules.

8.6. Other Objects 189

The Python/C API, Release 3.13.7

Additional module instances may be created in sub-interpreters or after after Python runtime reinitialization
(Py_Finalize () and Py_Tnitialize ()).Inthese cases, sharing Python objects between module instances would
likely cause crashes or undefined behavior.

To avoid such issues, each instance of an extension module should be isolated: changes to one instance should not
implicitly affect the others, and all state, including references to Python objects, should be specific to a particular
module instance. See isolating-extensions-howto for more details and a practical guide.

A simpler way to avoid these issues is raising an error on repeated initialization.

All modules created using multi-phase initialization are expected to support sub-interpreters, or otherwise explicitly
signal a lack of support. This is usually achieved by isolation or blocking repeated initialization, as above. A module
may also be limited to the main interpreter using the Py_mod multiple interpreters slot.

To request multi-phase initialization, the initialization function (PyInit_modulename) returns a PyModuleDef in-
stance with non-empty m_sIots. Before it is returned, the PyModuleDef instance must be initialized with the
following function:

PyObject *PyModuleDef_Init (PyModuleDef *def)
Valore di ritorno: Riferimento preso in prestito. Parte del ABI Stabile dalla versione 3.5. Ensures a module
definition is a properly initialized Python object that correctly reports its type and reference count.

Returns def cast to PyObject*, or NULL if an error occurred.
Added in version 3.5.
The m_slots member of the module definition must point to an array of PyModuleDef_Slot structures:
type PyModuleDef_Slot
int slot
A slot ID, chosen from the available values explained below.

void *value

Value of the slot, whose meaning depends on the slot ID.
Added in version 3.5.
The m_slots array must be terminated by a slot with id 0.
The available slot types are:

Py_mod_create

Specifies a function that is called to create the module object itself. The value pointer of this slot must point
to a function of the signature:

PyObject *create_module (PyObject *spec, PyModuleDef *def)

The function receives a ModuleSpec instance, as defined in PEP 451, and the module definition. It should
return a new module object, or set an error and return NULL.

This function should be kept minimal. In particular, it should not call arbitrary Python code, as trying to import
the same module again may result in an infinite loop.

Multiple Py_mod_create slots may not be specified in one module definition.

If Py_mod_create is not specified, the import machinery will create a normal module object using
pPyModule_New (). The name is taken from spec, not the definition, to allow extension modules to dynami-
cally adjust to their place in the module hierarchy and be imported under different names through symlinks,
all while sharing a single module definition.

There is no requirement for the returned object to be an instance of PyModule Type. Any type can be used,
as long as it supports setting and getting import-related attributes. However, only PyModule_Type instances
may be returned if the PyModuleDef has non-NULL m_traverse,m_clear,m_free;non-zerom_size;or
slots other than Py_mod_create.

190 Capitolo 8. Concrete Objects Layer

https://peps.python.org/pep-0451/

The Python/C API, Release 3.13.7

Py_mod_exec

Specifies a function that is called to execute the module. This is equivalent to executing the code of a Python
module: typically, this function adds classes and constants to the module. The signature of the function is:

int exec_module (PyObject *module)

If multiple Py_mod_exec slots are specified, they are processed in the order they appear in the m_slots array.
Py_mod_multiple_interpreters
Specifies one of the following values:
Py_MOD_MULTIPLE_INTERPRETERS_NOT_SUPPORTED
The module does not support being imported in subinterpreters.

Py MOD_MULTIPLE_INTERPRETERS_SUPPORTED

The module supports being imported in subinterpreters, but only when they share the main interpreter’s
GIL. (See isolating-extensions-howto.)

Py_MOD_PER_INTERPRETER GII_SUPPORTED

The module supports being imported in subinterpreters, even when they have their own GIL. (See
isolating-extensions-howto.)

This slot determines whether or not importing this module in a subinterpreter will fail.
Multiple Py_mod_multiple_interpreters slots may not be specified in one module definition.

If Py mod multiple_interpreters is not specified, the import machinery defaults to
Py_MOD_MULTIPLE_INTERPRETERS_SUPPORTED.

Added in version 3.12.
Py_mod_gil
Specifies one of the following values:

Py_MOD_GIL_USED

The module depends on the presence of the global interpreter lock (GIL), and may access global state
without synchronization.

Py_MOD_GIL_NOT_USED
The module is safe to run without an active GIL.

This slot is ignored by Python builds not configured with --disable-gil. Otherwise, it determines whether
or not importing this module will cause the GIL to be automatically enabled. See whatsnew313-free-threaded-
cpython for more detail.

Multiple Py_mod_gil slots may not be specified in one module definition.
If Py_mod_gil is not specified, the import machinery defaults to Py_MOD_GIL_USED.
Added in version 3.13.

See PEP 489 for more details on multi-phase initialization.

Low-level module creation functions

The following functions are called under the hood when using multi-phase initialization. They can be used direc-
tly, for example when creating module objects dynamically. Note that both PyModule_FromDefAndSpec and
PyModule_ExecDef must be called to fully initialize a module.

PyObject *PyModule_FromDefAndSpec (PyModuleDef *def, PyObject *spec)

Valore di ritorno: Nuovo riferimento. Create a new module object, given the definition in def and the
ModuleSpec spec. This behaves like PyrModule FromDefAndSpec2 () with module_api_version set to
PYTHON_API_VERSION.

Added in version 3.5.

8.6. Other Objects 191

https://peps.python.org/pep-0489/

The Python/C API, Release 3.13.7

PyObject *PyModule_FromDefAndSpec2 (PyModuleDef *def, PyObject *spec, int module_api_version)

Valore di ritorno: Nuovo riferimento. Parte del ABI Stabile dalla versione 3.7. Create a new module object,
given the definition in def and the ModuleSpec spec, assuming the API version module_api_version. If that
version does not match the version of the running interpreter, a Runt imeWarning is emitted.

Return NULL with an exception set on error.

© Nota

Most uses of this function should be using PyModule FromDefAndSpec () instead; only use this if you
are sure you need it.

Added in version 3.5.

int PyModule_ExecDef (PyObject *module, PyModuleDef *def)
Farte del ABI Stabile dalla versione 3.7. Process any execution slots (Py_mod_exec) given in def.

Added in version 3.5.

int PyModule_SetDocString (PyObject *module, const char *docstring)

Parte del ABI Stabile dalla versione 3.7. Set the docstring for module to docstring. This function is
called automatically when creating a module from PyModuleDef, using either PyModule_Create oOr
PyModule_FromDefAndSpec

Added in version 3.5.

int PyModule_AddFunctions (PyObject *module, PyMethodDef *functions)

Farte del ABI Stabile dalla versione 3.7. Add the functions from the NULL terminated functions array to mo-
dule. Refer to the PyMethodDe f documentation for details on individual entries (due to the lack of a shared
module namespace, module level «functions» implemented in C typically receive the module as their first para-
meter, making them similar to instance methods on Python classes). This function is called automatically when
creating a module from PyModuleDef£, using either PyModule_ Create or PyModule_ FromDefAndSpec.

Added in version 3.5.

Support functions
The module initialization function (if using single phase initialization) or a function called from a module execution
slot (if using multi-phase initialization), can use the following functions to help initialize the module state:

int PyModule_AddObjectRef (PyObject *module, const char *name, PyObject *value)

Parte del ABI Stabile dalla versione 3.10. Add an object to module as name. This is a convenience function
which can be used from the module’s initialization function.

On success, return 0. On error, raise an exception and return —1.

Example usage:

static int
add_spam (PyObject *module, int value)
{
PyObject *obj = PyLong_FromLong (value);
if (obj == NULL) {
return -1;
}
int res = PyModule_AddObjectRef (module, "spam", obj);
Py_DECREF (obj) ;
return res;

192 Capitolo 8. Concrete Objects Layer

The Python/C API, Release 3.13.7

To be convenient, the function accepts NULL value with an exception set. In this case, return -1 and just leave
the raised exception unchanged.

The example can also be written without checking explicitly if obj is NULL:

P
static int

add_spam (PyObject *module, int value)
{
PyObject *obj = PyLong_FromLong(value);
int res = PyModule_AddObjectRef (module, "spam", obj);
Py_XDECREF (obj) ;
return res;

Note that Py_xDECREF () should be used instead of Py_DECREF () in this case, since obj can be NULL.

The number of different name strings passed to this function should be kept small, usually by on-
ly using statically allocated strings as name. For names that aren’t known at compile time, pre-
fer calling PyUnicode FromString() and PyObject_SetAttr () directly. For more details, see
PyUnicode_InternFromString (), which may be used internally to create a key object.

Added in version 3.10.
int PyModule_Add (PyObject *module, const char *name, PyObject *value)
Parte del ABI Stabile dalla versione 3.13. Similar to PyModule AddObjectRef (), but «steals» a reference

to value. It can be called with a result of function that returns a new reference without bothering to check its
result or even saving it to a variable.

Example usage:

if (PyModule_Add (module, "spam", PyBytes_FromString(value)) < 0) {
goto error;

Added in version 3.13.

int PyModule_AddObject (PyObject *module, const char *name, PyObject *value)
Parte del ABI Stabile. Similar to PyModule AddObjectRef (), but steals a reference to value on success (if
it returns 0).

The new PyModule_Add () or PyModule_AddObjectRef () functions are recommended, since it is easy
to introduce reference leaks by misusing the PyModule Addobject () function.

p
© Nota

Unlike other functions that steal references, PyModule_AddObject () only releases the reference to value
on success.

This means that its return value must be checked, and calling code must Py _XDECREF () value manually
on error.

Example usage:

PyObject *obj = PyBytes_FromString(value);
if (PyModule_AddObject (module, "spam", obj) < 0) {
// If 'obj' is not NULL and PyModule_AddObject () failed,
// 'obj' strong reference must be deleted with Py_XDECREF ().
// If 'obj' is NULL, Py_XDECREF () does nothing.
Py_XDECREF (obj) ;
goto error;

(continues on next page)

8.6. Other Objects 193

The Python/C API, Release 3.13.7

(continua dalla pagina precedente)

// PyModule_AddObject () stole a reference to obj:
// Py_XDECREF (obj) is not needed here.

Deprecato dalla versione 3.13: PyModule AddObject () is soft deprecated.

int PyModule_AddIntConstant (PyObject *module, const char *name, long value)
Farte del ABI Stabile. Add an integer constant to module as name. This convenience function can be used from
the module’s initialization function. Return —1 with an exception set on error, 0 on success.

This is a convenience function that calls PyLong FromLong () and PyModule AddObjectRef ();see their
documentation for details.
int PyModule_AddStringConstant (PyObject *module, const char *name, const char *value)

Farte del ABI Stabile. Add a string constant to module as name. This convenience function can be used from
the module’s initialization function. The string value must be NULL-terminated. Return —1 with an exception
set on error, 0 on Success.

This is a convenience function that <calls PyUnicode_InternFromString/() and
PyModule_AddObjectRef ();see their documentation for details.
PyModule_AddIntMacro (module, macro)

Add an int constant to module. The name and the value are taken from macro. For example
PyModule_AddIntMacro (module, AF_INET) adds the int constant AF_INET with the value of AF_INET
to module. Return —1 with an exception set on error, 0 on success.

PyModule_AddStringMacro (module, macro)
Add a string constant to module.
int PyModule_AddType (PyObject *module, PyTypeObject *type)

Farte del ABI Stabile dalla versione 3.10. Add a type object to module. The type object is finalized by calling
internally Py Type_Ready (). The name of the type object is taken from the last component of tp_name after
dot. Return —1 with an exception set on error, 0 on success.

Added in version 3.9.

int PyUnstable_Module_SetGIL (PyObject *module, void *gil)

Questa pagina API Instabile. Potrebbe cambiare senza preavviso nelle release minori.

Indicate that module does or does not support running without the global interpreter lock (GIL), using one
of the values from Py _mod gi1. It must be called during module’s initialization function. If this function is
not called during module initialization, the import machinery assumes the module does not support running
without the GIL. This function is only available in Python builds configured with -—disable—gil. Return
-1 with an exception set on error, 0 on success.

Added in version 3.13.

Module lookup

Single-phase initialization creates singleton modules that can be looked up in the context of the current interpreter.
This allows the module object to be retrieved later with only a reference to the module definition.

These functions will not work on modules created using multi-phase initialization, since multiple such modules can
be created from a single definition.
PyObject *PyState_FindModule (PyModuleDef *def)

Valore di ritorno: Riferimento preso in prestito. Parte del ABI Stabile. Returns the module object that was
created from def for the current interpreter. This method requires that the module object has been attached

194 Capitolo 8. Concrete Objects Layer

The Python/C API, Release 3.13.7

to the interpreter state with PyState AddModule () beforehand. In case the corresponding module object is
not found or has not been attached to the interpreter state yet, it returns NULL.

int PyState_AddModule (PyObject *module, PyModuleDef *def)
Farte del ABI Stabile dalla versione 3.3. Attaches the module object passed to the function to the interpreter
state. This allows the module object to be accessible via PyState FindModule ().

Only effective on modules created using single-phase initialization.

Python calls PyState_AddModule automatically after importing a module, so it is unnecessary (but harm-
less) to call it from module initialization code. An explicit call is needed only if the module’s own init code
subsequently calls PyState_FindModule. The function is mainly intended for implementing alternative im-
port mechanisms (either by calling it directly, or by referring to its implementation for details of the required
state updates).

The caller must hold the GIL.
Return -1 with an exception set on error, 0 on success.
Added in version 3.3.

int PyState_RemoveModule (PyModuleDef *def)

Parte del ABI Stabile dalla versione 3.3. Removes the module object created from def from the interpreter
state. Return -1 with an exception set on error, 0 on success.

The caller must hold the GIL.
Added in version 3.3.

8.6.3 Iterator Objects

Python provides two general-purpose iterator objects. The first, a sequence iterator, works with an arbitrary sequence
supporting the __getitem__ () method. The second works with a callable object and a sentinel value, calling the
callable for each item in the sequence, and ending the iteration when the sentinel value is returned.
PyTypeObject PySeqIter_Type
Parte del ABI Stabile. Type object for iterator objects returned by PySegiter New () and the one-argument
form of the iter () built-in function for built-in sequence types.
int PySeqIter_Check (PyObject *op)
Return true if the type of op is PySeqIter Type. This function always succeeds.
PyObject *PySeqIter_New (PyObject *seq)
Valore di ritorno: Nuovo riferimento. Parte del ABI Stabile. Return an iterator that works with a general
sequence object, seq. The iteration ends when the sequence raises TndexError for the subscripting operation.
PyTypeObject PyCallIlter_ Type
Parte del ABI Stabile. Type object for iterator objects returned by PyCallTter New () and the two-argument
form of the iter () built-in function.
int PyCallIter_Check (PyObject *op)
Return true if the type of op is PyCcalllter Type. This function always succeeds.
PyObject *PyCallIter_New (PyObject *callable, PyObject *sentinel)

Valore di ritorno: Nuovo riferimento. Parte del ABI Stabile. Return a new iterator. The first parameter, callable,
can be any Python callable object that can be called with no parameters; each call to it should return the next
item in the iteration. When callable returns a value equal to sentinel, the iteration will be terminated.

8.6.4 Descriptor Objects

«Descriptors» are objects that describe some attribute of an object. They are found in the dictionary of type objects.

PyTypeObject PyProperty_ Type
Farte del ABI Stabile. The type object for the built-in descriptor types.

8.6. Other Objects 195

The Python/C API, Release 3.13.7

PyObject *PyDescr_NewGetSet (PyTypeObject *type, struct PyGetSetDef *getset)
Valore di ritorno: Nuovo riferimento. Parte del ABI Stabile.

PyObject *PyDescr_NewMember (PyTypeObject *type, struct PyMemberDef *meth)
Valore di ritorno: Nuovo riferimento. Parte del ABI Stabile.

PyObject *PyDescr_NewMethod (PyTypeObject *type, struct PyMethodDef *meth)
Valore di ritorno: Nuovo riferimento. Parte del ABI Stabile.

PyObject *PyDescr_NewWrapper (PyTypeObject *type, struct wrapperbase *wrapper, void *wrapped)
Valore di ritorno: Nuovo riferimento.

PyObject *PyDescr_NewClassMethod (PyTypeObject *type, PyMethodDef *method)
Valore di ritorno: Nuovo riferimento. Parte del ABI Stabile.

int PyDescr_IsData (PyObject *descr)

Return non-zero if the descriptor objects descr describes a data attribute, or 0 if it describes a method. descr
must be a descriptor object; there is no error checking.

PyObject *pyWrapper_New (PyObject*, PyObject*)

Valore di ritorno: Nuovo riferimento. Parte del ABI Stabile.

8.6.5 Slice Objects

PyTypeObject PySlice_Type
Parte del ABI Stabile. The type object for slice objects. This is the same as s1ice in the Python layer.
int PySlice_Check (PyObject *ob)
Return true if ob is a slice object; ob must not be NULL. This function always succeeds.
PyObject *PySlice_New (PyObject *start, PyObject *stop, PyObject *step)
Valore di ritorno: Nuovo riferimento. Parte del ABI Stabile. Return a new slice object with the given values.

The start, stop, and step parameters are used as the values of the slice object attributes of the same names. Any
of the values may be NULL, in which case the None will be used for the corresponding attribute.

Return NULL with an exception set if the new object could not be allocated.

int PySlice_GetIndices (PyObject *slice, Py_ssize_t length, Py _ssize_t *start, Py_ssize_t *stop, Py_ssize_t
*step)

Parte del ABI Stabile. Retrieve the start, stop and step indices from the slice object slice, assuming a sequence
of length length. Treats indices greater than length as errors.

Returns 0 on success and -1 on error with no exception set (unless one of the indices was not None and failed
to be converted to an integer, in which case -1 is returned with an exception set).

You probably do not want to use this function.
Cambiato nella versione 3.2: The parameter type for the slice parameter was PyS1iceObject* before.

int PySlice_GetIndicesEx (PyObject *slice, Py_ssize_t length, Py_ssize_t *start, Py_ssize_t *stop, Py_ssize_t
*step, Py_ssize_t *slicelength)

Parte del ABI Stabile. Usable replacement for PySlice GetIndices (). Retrieve the start, stop, and step
indices from the slice object slice assuming a sequence of length length, and store the length of the slice in
slicelength. Out of bounds indices are clipped in a manner consistent with the handling of normal slices.

Return 0 on success and -1 on error with an exception set.

© Nota

This function is considered not safe for resizable sequences. Its invocation should be replaced by a
combination of PySlice Unpack () and PySlice_AdjustIndices () where

196 Capitolo 8. Concrete Objects Layer

The Python/C API, Release 3.13.7

if (PySlice_GetIndicesEx(slice, length, &start, &stop, &step, &slicelength)
< 0) A
// return error

}

is replaced by

if (PySlice_Unpack(slice, &start, &stop, é&step) < 0) |
// return error

}
slicelength = PySlice_AdjustIndices (length, &start, &stop, step);

Cambiato nella versione 3.2: The parameter type for the slice parameter was PyS1liceObject* before.

Cambiato nella versione 3.6.1: If Py_LIMITED_APT is not set or set to the value between 0x03050400 and
0x03060000 (not including) or 0x03060100 or higher PySlice_GetIndicesEx () is implemented as a
macro using PySlice_Unpack () and PySlice_AdjustIndices (). Arguments start, stop and step are
evaluated more than once.

Deprecato dalla versione 3.6.1: If Py_LIMITED_APT is set to the value less than 0x03050400 or between
0x03060000 and 0x03060100 (not including) PySlice_GetIndicesEx () is a deprecated function.

int PySlice_Unpack (PyObject *slice, Py_ssize_t *start, Py_ssize_t *stop, Py_ssize_t *step)

Farte del ABI Stabile dalla versione 3.7. Extract the start, stop and step data members from a slice object as C
integers. Silently reduce values larger than PY_SSIZE_T_MAX to PY_SSIZE_T_MAX, silently boost the start
and stop values less than PY_SSIZE_T MINtoPY_SSIZE_T_MIN, and silently boost the step values less than
-PY_SSIZE_T_MAXto-PY_SSIZE_T_MAX.

Return -1 with an exception set on error, 0 on success.
Added in version 3.6.1.

Py_ssize_t PySlice_AdjustIndices (Py_ssize_t length, Py_ssize_t *start, Py_ssize_t *stop, Py_ssize_t step)

Farte del ABI Stabile dalla versione 3.7. Adjust start/end slice indices assuming a sequence of the specified
length. Out of bounds indices are clipped in a manner consistent with the handling of normal slices.

Return the length of the slice. Always successful. Doesn’t call Python code.
Added in version 3.6.1.

Ellipsis Object

PyTypeObject PyEllipsis_Type

Parte del ABI Stabile. The type of Python E11ipsis object. Same as types.E11lipsisType in the Python
layer.

PyObject *Py_Ellipsis
The Python E11ipsis object. This object has no methods. Like Py_None, it is an immortal singleton object.

Cambiato nella versione 3.12: Py_E11ipsis is immortal.

8.6.6 MemoryView objects

A memoryview object exposes the C level buffer interface as a Python object which can then be passed around like
any other object.

PyObject *PyMemoryView_FromObject (PyObject *obj)

Valore di ritorno: Nuovo riferimento. Parte del ABI Stabile. Create a memoryview object from an object that
provides the buffer interface. If obj supports writable buffer exports, the memoryview object will be read/write,
otherwise it may be either read-only or read/write at the discretion of the exporter.

8.6. Other Objects 197

The Python/C API, Release 3.13.7

PyBUF_READ
Flag to request a readonly buffer.

PyBUF_WRITE
Flag to request a writable buffer.

PyObject *PyMemoryView_FromMemory (char *mem, Py_ssize_t size, int flags)
Valore di ritorno: Nuovo riferimento. Parte del ABI Stabile dalla versione 3.7. Create a memoryview object
using mem as the underlying buffer. flags can be one of PyBUF_READ or PyBUF_WRITE.
Added in version 3.3.

PyObject *PyMemoryView_FromBuffer (const Py_buffer *view)
Valore di ritorno: Nuovo riferimento. Parte del ABI Stabile dalla versione 3.11. Create a memoryview object
wrapping the given buffer structure view. For simple byte buffers, pyMemoryView FromMemory () is the
preferred function.

PyObject *PyMemoryView_GetContiguous (PyObject *obj, int buffertype, char order)
Valore di ritorno: Nuovo riferimento. Parte del ABI Stabile. Create a memoryview object to a contiguous chunk
of memory (in either “C” or “Fortran order) from an object that defines the buffer interface. If memory is con-
tiguous, the memoryview object points to the original memory. Otherwise, a copy is made and the memoryview
points to a new bytes object.

buffertype can be one of PyBUF_READ Or PyBUF_WRITE.

int PyMemoryView_Check (PyObject *obj)
Return true if the object obj is a memoryview object. It is not currently allowed to create subclasses of
memoryview. This function always succeeds.

Py_buffer *PyMemoryView_GET_BUFFER (PyObject *mview)
Return a pointer to the memoryview’s private copy of the exporter’s buffer. mview must be a memoryview
instance; this macro doesn’t check its type, you must do it yourself or you will risk crashes.

PyObject *PyMemoryView_GET_BASE (PyObject *mview)
Return either a pointer to the exporting object that the memoryview is based on or NULL if the memoryview has

been created by one of the functions PyMemoryView FromMemory () Of PyMemoryView FromBuffer ().
mview must be a memoryview instance.

8.6.7 Weak Reference Objects

Python supports weak references as first-class objects. There are two specific object types which directly implement
weak references. The first is a simple reference object, and the second acts as a proxy for the original object as much
as it can.
int PyWeakref_Check (PyObject *ob)

Return non-zero if ob is either a reference or proxy object. This function always succeeds.

int PyWeakref_CheckRef (PyObject *ob)
Return non-zero if ob is a reference object. This function always succeeds.

int PyWeakref_CheckProxy (PyObject *ob)
Return non-zero if ob is a proxy object. This function always succeeds.

PyObject *PyWeakref_NewRef (PyObject *ob, PyObject *callback)
Valore di ritorno: Nuovo riferimento. Parte del ABI Stabile. Return a weak reference object for the object 0b.
This will always return a new reference, but is not guaranteed to create a new object; an existing reference object
may be returned. The second parameter, callback, can be a callable object that receives notification when ob is
garbage collected; it should accept a single parameter, which will be the weak reference object itself. callback
may also be None or NULL. If 0b is not a weakly referenceable object, or if callback is not callable, None, or
NULL, this will return NULL and raise TypeError.

198 Capitolo 8. Concrete Objects Layer

The Python/C API, Release 3.13.7

PyObject *PyWeakref_NewProxy (PyObject *ob, PyObject *callback)
Valore di ritorno: Nuovo riferimento. Parte del ABI Stabile. Return a weak reference proxy object for the object
ob. This will always return a new reference, but is not guaranteed to create a new object; an existing proxy object
may be returned. The second parameter, callback, can be a callable object that receives notification when ob is
garbage collected; it should accept a single parameter, which will be the weak reference object itself. callback
may also be None or NULL. If 0b is not a weakly referenceable object, or if callback is not callable, None, or
NULL, this will return NULL and raise TypeError.

int PyWeakref_GetRef (PyObject *ref, PyObject **pobj)
Farte del ABI Stabile dalla versione 3.13. Get a strong reference to the referenced object from a weak reference,
ref, into *pobj.

o On success, set *pobj to a new strong reference to the referenced object and return 1.
« If the reference is dead, set *pobj to NULL and return 0.
« On error, raise an exception and return -1.

Added in version 3.13.

PyObject *PyWeakref_GetObject (PyObject *ref)
Valore di ritorno: Riferimento preso in prestito. Parte del ABI Stabile. Return a borrowed reference to the
referenced object from a weak reference, ref. If the referent is no longer live, returns Py_None.

© Nota

This function returns a borrowed reference to the referenced object. This means that you should always call
Py_INCREF () on the object except when it cannot be destroyed before the last usage of the borrowed
reference.

Deprecated since version 3.13, will be removed in version 3.15: Use Pylieakref GetRef () instead.

PyObject *PyWeakref_ GET_OBJECT (PyObject *ref)
Valore di ritorno: Riferimento preso in prestito. Similar to Pyweakref GetObject (), but does no error
checking.

Deprecated since version 3.13, will be removed in version 3.15: Use Pylicakref GetRef () instead.

void PyObject_ClearWeakRefs (PyObject *object)
Farte del ABI Stabile. This function is called by the tp_dealloc handler to clear weak references.

This iterates through the weak references for object and calls callbacks for those references which have one. It
returns when all callbacks have been attempted.

void PyUnstable_Object_ClearWeakRefsNoCallbacks (PyObject *object)

Questa pagina API Instabile. Potrebbe cambiare senza preavviso nelle release minori.

Clears the weakrefs for object without calling the callbacks.

This function is called by the tp_dealloc handler for types with finalizers (i.e., __del_ ()). The handler
for those objects first calls PyObject _ClearweakRefs () to clear weakrefs and call their callbacks, then the
finalizer, and finally this function to clear any weakrefs that may have been created by the finalizer.

In most circumstances, it’s more appropriate to use PyObject_ClearlieakRefs () to clear weakrefs instead
of this function.

Added in version 3.13.

8.6. Other Objects 199

The Python/C API, Release 3.13.7

8.6.8 Capsules
Refer to using-capsules for more information on using these objects.
Added in version 3.1.

type PyCapsule

This subtype of PyObject represents an opaque value, useful for C extension modules who need to pass an
opaque value (as a void* pointer) through Python code to other C code. It is often used to make a C function
pointer defined in one module available to other modules, so the regular import mechanism can be used to
access C APIs defined in dynamically loaded modules.

type PyCapsule_Destructor
Farte del ABI Stabile. The type of a destructor callback for a capsule. Defined as:

[typedef void (*PyCapsule_Destructor) (PyObject *); }

See PyCapsule_New () for the semantics of PyCapsule_Destructor callbacks.

int PyCapsule_CheckExact (PyObject *p)
Return true if its argument is a PyCapsule. This function always succeeds.

PyObject *PyCapsule_New (void *pointer, const char *name, PyCapsule_Destructor destructor)
Valore di ritorno: Nuovo riferimento. Parte del ABI Stabile. Create a PyCapsule encapsulating the pointer.
The pointer argument may not be NULL.

On failure, set an exception and return NULL.

The name string may either be NULL or a pointer to a valid C string. If non-NULL, this string must outlive the
capsule. (Though it is permitted to free it inside the destructor.)

If the destructor argument is not NULL, it will be called with the capsule as its argument when it is destroyed.

If this capsule will be stored as an attribute of a module, the name should be specified as modulename.
attributename. This will enable other modules to import the capsule using PyCapsule Import ().

void *PyCapsule_GetPointer (PyObject *capsule, const char *name)
Parte del ABI Stabile. Retrieve the pointer stored in the capsule. On failure, set an exception and return NULL.
The name parameter must compare exactly to the name stored in the capsule. If the name stored in the capsule
is NULL, the name passed in must also be NULL. Python uses the C function strcmp () to compare capsule
names.

PyCapsule_Destructor PyCapsule_GetDestructor (PyObject *capsule)
Parte del ABI Stabile. Return the current destructor stored in the capsule. On failure, set an exception and
return NULL.

It is legal for a capsule to have a NULL destructor. This makes a NULL return code somewhat ambiguous; use
PyCapsule_IsValid() or PyErr_Occurred () to disambiguate.

void *PyCapsule_GetContext (PyObject *capsule)
Farte del ABI Stabile. Return the current context stored in the capsule. On failure, set an exception and return
NULL.

It is legal for a capsule to have a NULL context. This makes a NULL return code somewhat ambiguous; use
PyCapsule_IsValid() or PyErr Occurred () to disambiguate.

const char *PyCapsule_GetName (PyObject *capsule)
Parte del ABI Stabile. Return the current name stored in the capsule. On failure, set an exception and return

NULL.

It is legal for a capsule to have a NULL name. This makes a NULL return code somewhat ambiguous; use
PyCapsule_IsValid() or PyErr _Occurred () to disambiguate.

200 Capitolo 8. Concrete Objects Layer

The Python/C API, Release 3.13.7

void *PyCapsule_Import (const char *name, int no_block)

Farte del ABI Stabile. Import a pointer to a C object from a capsule attribute in a module. The name parameter
should specify the full name to the attribute, as in module.attribute. The name stored in the capsule must
match this string exactly.

This function splits name on the . character, and imports the first element. It then processes further elements
using attribute lookups.

Return the capsule’s internal pointer on success. On failure, set an exception and return NULL.

O Nota

If name points to an attribute of some submodule or subpackage, this submodule or subpackage must be
previously imported using other means (for example, by using Py Import_ImportModule ()) for the
attribute lookups to succeed.

Cambiato nella versione 3.3: no_block has no effect anymore.

int PyCapsule_IsValid (PyObject *capsule, const char *name)

Parte del ABI Stabile. Determines whether or not capsule is a valid capsule. A valid capsule is non-NULL, passes
PyCapsule_CheckExact (), has a non-NULL pointer stored in it, and its internal name matches the name
parameter. (See PyCapsule GetPointer () for information on how capsule names are compared.)

In other words, if PyCapsule Isvalid () returns a true value, calls to any of the accessors (any function
starting with PyCapsule_Get) are guaranteed to succeed.

Return a nonzero value if the object is valid and matches the name passed in. Return 0 otherwise. This function
will not fail.

int PyCapsule_SetContext (PyObject *capsule, void *context)
Farte del ABI Stabile. Set the context pointer inside capsule to context.

Return 0 on success. Return nonzero and set an exception on failure.

int PyCapsule_SetDestructor (PyObject *capsule, PyCapsule_Destructor destructor)
Parte del ABI Stabile. Set the destructor inside capsule to destructor.

Return 0 on success. Return nonzero and set an exception on failure.

int PyCapsule_SetName (PyObject *capsule, const char *name)

Farte del ABI Stabile. Set the name inside capsule to name. If non-NULL, the name must outlive the capsule.
If the previous name stored in the capsule was not NULL, no attempt is made to free it.

Return 0 on success. Return nonzero and set an exception on failure.

int PyCapsule_SetPointer (PyObject *capsule, void *pointer)
Parte del ABI Stabile. Set the void pointer inside capsule to pointer. The pointer may not be NULL.

Return 0 on success. Return nonzero and set an exception on failure.

8.6.9 Frame Objects

type PyFrameObject

Farte del AP1 Limitata (come una struttura opaca). The C structure of the objects used to describe frame
objects.

There are no public members in this structure.

Cambiato nella versione 3.11: The members of this structure were removed from the public C API. Refer to
the What’s New entry for details.

The pPyEval_GetFrame () and PyThreadState_GetFrame () functions can be used to get a frame object.

See also Reflection.

8.6. Other Objects 201

The Python/C API, Release 3.13.7

PyTypeObject PyFrame_Type

The type of frame objects. It is the same object as t ypes .FrameType in the Python layer.

Cambiato nella versione 3.11: Previously, this type was only available after including <frameobject .h>.
int PyFrame_Check (PyObject *obj)

Return non-zero if obj is a frame object.

Cambiato nella versione 3.11: Previously, this function was only available after including <frameobject . h>.

PyFrameObject *PyFrame_GetBack (PyFrameObject *frame)

Valore di ritorno: Nuovo riferimento. Get the frame next outer frame.
Return a strong reference, or NULL if frame has no outer frame.
Added in version 3.9.

PyObject *PyFrame_GetBuiltins (PyFrameObject *frame)

Valore di ritorno: Nuovo riferimento. Get the frame’s £_builtins attribute.
Return a strong reference. The result cannot be NULL.
Added in version 3.11.

PyCodeObject *PyFrame_GetCode (PyFrameObject *frame)
Valore di ritorno: Nuovo riferimento. Parte del ABI Stabile dalla versione 3.10. Get the frame code.

Return a strong reference.
The result (frame code) cannot be NULL.
Added in version 3.9.

PyObject *PyFrame_GetGenerator (PyFrameObject *frame)

Valore di ritorno: Nuovo riferimento. Get the generator, coroutine, or async generator that owns this frame, or
NULL if this frame is not owned by a generator. Does not raise an exception, even if the return value is NULL.

Return a strong reference, or NULL.
Added in version 3.11.

PyObject *PyFrame_GetGlobals (PyFrameObject *frame)
Valore di ritorno: Nuovo riferimento. Get the frame’s £_globals attribute.

Return a strong reference. The result cannot be NULL.
Added in version 3.11.

int PyFrame_GetLasti (PyFrameObject *frame)
Get the frame’s £_lasti attribute.

Returns -1 if frame.f lasti iS None.
Added in version 3.11.

PyObject *PyFrame_GetVar (PyFrameObject *frame, PyObject *name)

Valore di ritorno: Nuovo riferimento. Get the variable name of frame.
o Return a strong reference to the variable value on success.
o Raise NameError and return NULL if the variable does not exist.
« Raise an exception and return NULL on error.

name type must be a str.

Added in version 3.12.

202 Capitolo 8. Concrete Objects Layer

The Python/C API, Release 3.13.7

PyObject *PyFrame_GetVarString (PyFrameObject *frame, const char *name)

Valore di ritorno: Nuovo riferimento. Similar to PyFrame_GetVar (), but the variable name is a C string
encoded in UTF-8.

Added in version 3.12.

PyObject *PyFrame_GetLocals (PyFrameObject *frame)

Valore di ritorno: Nuovo riferimento. Get the frame’s £_1ocals attribute. If the frame refers to an optimized
scope, this returns a write-through proxy object that allows modifying the locals. In all other cases (classes,
modules, exec (), eval ()) it returns the mapping representing the frame locals directly (as described for
locals ()).

Return a strong reference.
Added in version 3.11.
Cambiato nella versione 3.13: As part of PEP 667, return an instance of PyFrameLocalsProxy_Type.

int PyFrame_GetLineNumber (PyFrameObject *frame)

Farte del ABI Stabile dalla versione 3.10. Return the line number that frame is currently executing.

Frame Locals Proxies

Added in version 3.13.

The £_locals attribute on a frame object is an instance of a «frame-locals proxy». The proxy object exposes a write-
through view of the underlying locals dictionary for the frame. This ensures that the variables exposed by £_locals
are always up to date with the live local variables in the frame itself.

See PEP 667 for more information.

PyTypeObject PyFrameLocalsProxy_ Type
The type of frame 1ocals () proxy objects.

int PyFrameLocalsProxy_Check (PyObject *obj)

Return non-zero if obj is a frame 1ocals () proxy.

Internal Frames
Unless using PEP 523, you will not need this.

struct _PyInterpreterFrame
The interpreter’s internal frame representation.

Added in version 3.11.

PyObject *PyUnstable_InterpreterFrame_GetCode (struct _PylnterpreterFrame *frame) ;

Questa pagina API Instabile. Potrebbe cambiare senza preavviso nelle release minori.

Return a strong reference to the code object for the frame.

Added in version 3.12.

int PyUnstable_InterpreterFrame_GetLasti (struct _PylnterpreterFrame *frame) ;

Questa pagina API Instabile. Potrebbe cambiare senza preavviso nelle release minori.

8.6. Other Objects 203

https://peps.python.org/pep-0667/
https://peps.python.org/pep-0667/
https://peps.python.org/pep-0523/

The Python/C API, Release 3.13.7

Return the byte offset into the last executed instruction.
Added in version 3.12.

int PyUnstable_InterpreterFrame_GetLine (struct _PylnterpreterFrame *frame)

Questa pagina AP/ Instabile. Potrebbe cambiare senza preavviso nelle release minori.

Return the currently executing line number, or -1 if there is no line number.

Added in version 3.12.

8.6.10 Generator Objects

Generator objects are what Python uses to implement generator iterators. They are normally created by iterating over
a function that yields values, rather than explicitly calling PyGen_New () or PyGen_NewWithQualName ().
type PyGenObject
The C structure used for generator objects.
PyTypeObject PyGen_Type
The type object corresponding to generator objects.
int PyGen_Check (PyObject *ob)
Return true if ob is a generator object; ob must not be NULL. This function always succeeds.
int PyGen_CheckExact (PyObject *ob)
Return true if ob’s type is PyGen_ Type; ob must not be NULL. This function always succeeds.
PyObject *PyGen_New (PyFrameObject *frame)
Valore di ritorno: Nuovo riferimento. Create and return a new generator object based on the frame object. A
reference to frame is stolen by this function. The argument must not be NULL.
PyObject *PyGen_NewWithQualName (PyFrameObject *frame, PyObject ¥name, PyObject *qualname)
Valore di ritorno: Nuovo riferimento. Create and return a new generator object based on the frame object, with

__name__ and _ qualname__ set to name and qualname. A reference to frame is stolen by this function.
The frame argument must not be NULL.

8.6.11 Coroutine Objects
Added in version 3.5.
Coroutine objects are what functions declared with an async keyword return.

type PyCoroObject
The C structure used for coroutine objects.
PyTypeObject PyCoro_Type
The type object corresponding to coroutine objects.
int PyCoro_CheckExact (PyObject *ob)
Return true if ob’s type is PyCoro_Type; ob must not be NULL. This function always succeeds.
PyObject ¥*PyCoro_New (PyFrameObject *frame, PyObject *name, PyObject *qualname)
Valore di ritorno: Nuovo riferimento. Create and return a new coroutine object based on the frame object, with

__name__and _ qualname__ set to name and qualname. A reference to frame is stolen by this function.
The frame argument must not be NULL.

204 Capitolo 8. Concrete Objects Layer

The Python/C API, Release 3.13.7

8.6.12 Context Variables Objects
Added in version 3.7.

Cambiato nella versione 3.7.1:

©® Nota

In Python 3.7.1 the signatures of all context variables C APIs were changed to use PyObject pointers instead
of PyContext, PyContextVar, and PyContextToken, c.g.:

// in 3.7.0:
PyContext *PyContext_New (void) ;

// in 3.7.1+:
PyObject *PyContext_New (void) ;

See bpo-34762 for more details.

This section details the public C API for the contextvars module.

type PyContext

The C structure used to represent a contextvars.Context object.

type PyContextVar

The C structure used to represent a contextvars.ContextVar object.

type PyContextToken
The C structure used to represent a contextvars. Token object.
PyTypeObject PyContext_Type
The type object representing the context type.
PyTypeObject PyContextVar_Type
The type object representing the context variable type.
PyTypeObject PyContextToken_Type
The type object representing the context variable token type.
Type-check macros:
int PyContext_CheckExact (PyObject *0)
Return true if o is of type PyContext_Type. o must not be NULL. This function always succeeds.
int PyContextVar_CheckExact (PyObject *0)
Return true if o is of type PyContextVar_Type. o must not be NULL. This function always succeeds.
int PyContextToken_CheckExact (PyObject *0)
Return true if o is of type PyContext Token_Type. o must not be NULL. This function always succeeds.
Context object management functions:
PyObject *PyContext_New (void)
Valore di ritorno: Nuovo riferimento. Create a new empty context object. Returns NULL if an error has occurred.
PyObject *PyContext_Copy (PyObject *ctx)
Valore di ritorno: Nuovo riferimento. Create a shallow copy of the passed ctx context object. Returns NULL if
an error has occurred.
PyObject *PyContext_CopyCurrent (void)

Valore di ritorno: Nuovo riferimento. Create a shallow copy of the current thread context. Returns NULL if an
error has occurred.

8.6. Other Objects 205

https://bugs.python.org/issue?@action=redirect&bpo=34762

The Python/C API, Release 3.13.7

int PyContext_Enter (PyObject *ctx)
Set ctx as the current context for the current thread. Returns 0 on success, and -1 on error.

int PyContext_Exit (PyObject *ctx)
Deactivate the ctx context and restore the previous context as the current context for the current thread. Returns
0 on success, and —1 on error.

Context variable functions:

PyObject *PyContextVar_New (const char *name, PyObject *def)
Valore di ritorno: Nuovo riferimento. Create a new ContextVar object. The name parameter is used for in-
trospection and debug purposes. The def parameter specifies a default value for the context variable, or NULL
for no default. If an error has occurred, this function returns NULL.

int PyContextVar_Get (PyObject *var, PyObject *default_value, PyObject **value)
Get the value of a context variable. Returns -1 if an error has occurred during lookup, and 0 if no error
occurred, whether or not a value was found.

If the context variable was found, value will be a pointer to it. If the context variable was not found, value will
point to:

o default_value, if not NULL;
o the default value of var, if not NULL;
e NULL
Except for NULL, the function returns a new reference.

PyObject *PyContextVar_Set (PyObject *var, PyObject *value)
Valore di ritorno: Nuovo riferimento. Set the value of var to value in the current context. Returns a new token
object for this change, or NULL if an error has occurred.

int PyContextVar_Reset (PyObject *var, PyObject *token)

Reset the state of the var context variable to that it was in before PyContextvar Set () that returned the
token was called. This function returns 0 on success and -1 on error.

8.6.13 DateTime Objects

Various date and time objects are supplied by the dat et ime module. Before using any of these functions, the header
file datetime.h must be included in your source (note that this is not included by Python.h), and the macro
PyDateTime_IMPORT must be invoked, usually as part of the module initialisation function. The macro puts a
pointer to a C structure into a static variable, PyDateTimeAPT, that is used by the following macros.

type PyDateTime_Date

This subtype of PyObject represents a Python date object.

type PyDateTime_DateTime
This subtype of PyObject represents a Python datetime object.

type PyDateTime_Time
This subtype of PyObject represents a Python time object.

type PyDateTime_Delta
This subtype of PyObject represents the difference between two datetime values.

PyTypeObject PyDateTime_DateType
This instance of PyTypeObject represents the Python date type; it is the same object as datetime.date
in the Python layer.

PyTypeObject PyDateTime_DateTimeType

This instance of Py TypeObject represents the Python datetime type; it is the same object as datetime.
datetime in the Python layer.

206 Capitolo 8. Concrete Objects Layer

The Python/C API, Release 3.13.7

PyTypeObject PyDateTime_TimeType
This instance of PyTypeObject represents the Python time type; it is the same object as datetime.time
in the Python layer.

PyTypeObject PyDateTime_DeltaType
This instance of Py TypeObject represents Python type for the difference between two datetime values; it is
the same object as datetime.timedelta in the Python layer.

PyTypeObject PyDateTime_TZInfoType
This instance of Py TypeObject represents the Python time zone info type; it is the same object as datet ime.
tzinfo in the Python layer.

Macro for access to the UTC singleton:

PyObject *PyDateTime_TimeZone_UTC

Returns the time zone singleton representing UTC, the same object as datetime.timezone.utc.
Added in version 3.7.
Type-check macros:

int PyDate_Check (PyObject *ob)
Return true if ob is of type PyDateTime DateType or a subtype of PyDateTime_DateType. 0b must not
be NULL. This function always succeeds.
int PyDate_CheckExact (PyObject *ob)
Return true if ob is of type PyDateTime_DateType. ob must not be NULL. This function always succeeds.
int PyDateTime_Check (PyObject *ob)
Return true if 0b is of type PyDateTime _DateTimeType or a subtype of PyDateTime_ DateTimeType.
ob must not be NULL. This function always succeeds.
int PyDateTime_CheckExact (PyObject *0b)
Return true if ob is of type PyDateTime DateTimeType. ob must not be NULL. This function always
succeeds.
int PyTime_Check (PyObject *0b)
Return true if ob is of type PyDateTime TimeType or a subtype of PyDateTime TimeType. ob must not
be NULL. This function always succeeds.
int PyTime_CheckExact (PyObject *ob)
Return true if ob is of type PyDateTime TimeType. ob must not be NULL. This function always succeeds.
int PyDelta_Check (PyObject *ob)
Return true if 0b is of type PyDateTime DeltaType or a subtype of PyDateTime_DeltaType. ob must
not be NULL. This function always succeeds.
int PyDelta_CheckExact (PyObject *ob)
Return true if ob is of type PyDateTime_DeltaType. ob must not be NULL. This function always succeeds.
int PyTZInfo_Check (PyObject *ob)
Return true if ob is of type PyDateTime_TZInfoType or asubtype of PyDateTime_TZInfoType. ob must
not be NULL. This function always succeeds.
int PyTZInfo_CheckExact (PyObject *ob)
Return true if ob is of type PyDateTime TZInfoType.obmust not be NULL. This function always succeeds.

Macros to create objects:

PyObject *PyDate_FromDate (int year, int month, int day)

Valore di ritorno: Nuovo riferimento. Return a datet ime . date object with the specified year, month and day.

8.6. Other Objects 207

The Python/C API, Release 3.13.7

PyObject *PyDateTime_FromDateAndTime (int year, int month, int day, int hour, int minute, int second, int
usecond)

Valore di ritorno: Nuovo riferimento. Return a datetime.datetime object with the specified year, month,
day, hour, minute, second and microsecond.

PyObject *PyDateTime_FromDateAndTimeAndFold (int year, int month, int day, int hour, int minute, int
second, int usecond, int fold)

Valore di ritorno: Nuovo riferimento. Return a datetime.datetime object with the specified year, month,
day, hour, minute, second, microsecond and fold.

Added in version 3.6.

PyObject *PyTime_FromTime (int hour, int minute, int second, int usecond)
Valore di ritorno: Nuovo riferimento. Return a datetime . t ime object with the specified hour, minute, second
and microsecond.

PyObject *PyTime_FromTimeAndFold (int hour, int minute, int second, int usecond, int fold)

Valore di ritorno: Nuovo riferimento. Return a datet ime . t ime object with the specified hour, minute, second,
microsecond and fold.

Added in version 3.6.

PyObject *PyDelta_FromDSU (int days, int seconds, int useconds)

Valore di ritorno: Nuovo riferimento. Return a datetime.timedelta object representing the given number
of days, seconds and microseconds. Normalization is performed so that the resulting number of microseconds
and seconds lie in the ranges documented for datetime.timedelta objects.

PyObject *PyTimeZone_FromOffset (PyObject *offset)
Valore di ritorno: Nuovo riferimento. Return a datetime.timezone object with an unnamed fixed offset
represented by the offset argument.

Added in version 3.7.

PyObject *PyTimeZone_FromOf fsetAndName (PyObject *offset, PyObject *name)

Valore di ritorno: Nuovo riferimento. Return a datetime.timezone object with a fixed offset represented by
the offset argument and with tzname name.

Added in version 3.7.

Macros to extract fields from date objects. The argument must be an instance of PyDateTime_Date, including
subclasses (such as PyDateTime DateTime). The argument must not be NULL, and the type is not checked:

int PyDateTime_GET_YEAR (PyDateTime_Date *0)
Return the year, as a positive int.

int PyDateTime_GET_ MONTH (PyDateTime_Date *0)
Return the month, as an int from 1 through 12.

int PyDateTime_GET_ DAY (PyDateTime_Date *0)
Return the day, as an int from 1 through 31.

Macros to extract fields from datetime objects. The argument must be an instance of PyDateTime_DateTime,
including subclasses. The argument must not be NULL, and the type is not checked:

int PyDateTime_DATE_GET_HOUR (PyDateTime_DateTime *0)
Return the hour, as an int from 0 through 23.

int PyDateTime_DATE_GET_MINUTE (PyDateTime_DateTime *0)

Return the minute, as an int from O through 59.

int PyDateTime_DATE_GET_SECOND (PyDateTime_DateTime *0)

Return the second, as an int from O through 59.

208 Capitolo 8. Concrete Objects Layer

The Python/C API, Release 3.13.7

int PyDateTime_DATE_GET_ MICROSECOND (PyDateTime_DateTime *0)
Return the microsecond, as an int from 0 through 999999.

int PyDateTime_DATE_GET_ FOLD (PyDateTime_DateTime *0)
Return the fold, as an int from O through 1.
Added in version 3.6.

PyObject *PyDateTime_DATE_GET_TZINFO (PyDateTime_DateTime *0)
Return the tzinfo (which may be None).

Added in version 3.10.

Macros to extract fields from time objects. The argument must be an instance of PyDateTime_ Time, including
subclasses. The argument must not be NULL, and the type is not checked:

int PyDateTime_TIME_GET_ HOUR (PyDateTime_Time *0)
Return the hour, as an int from 0 through 23.

int PyDateTime_TIME_GET MINUTE (PyDateTime_Time *0)
Return the minute, as an int from O through 59.

int PyDateTime_TIME_GET_ SECOND (PyDateTime_Time *0)
Return the second, as an int from 0 through 59.

int PyDateTime_TIME_GET MICROSECOND (PyDateTime_Time *0)
Return the microsecond, as an int from 0 through 999999.

int PyDateTime_TIME_GET_ FOLD (PyDateTime_Time *0)
Return the fold, as an int from O through 1.
Added in version 3.6.

PyObject *PyDateTime_TIME_GET_TZINFO (PyDateTime_Time *0)
Return the tzinfo (which may be None).

Added in version 3.10.

Macros to extract fields from time delta objects. The argument must be an instance of PyDateTime_Delta, including
subclasses. The argument must not be NULL, and the type is not checked:

int PyDateTime_DELTA_ GET DAYS (PyDateTime_Delta *0)
Return the number of days, as an int from -999999999 to 999999999.
Added in version 3.3.
int PyDateTime_DELTA_GET_SECONDS (PyDateTime_Delta *0)
Return the number of seconds, as an int from O through 86399.
Added in version 3.3.
int PyDateTime_DELTA_GET_ MICROSECONDS (PyDateTime_Delta *0)
Return the number of microseconds, as an int from 0 through 999999.
Added in version 3.3.
Macros for the convenience of modules implementing the DB API:
PyObject *PyDateTime_FromTimestamp (PyObject *args)
Valore di ritorno: Nuovo riferimento. Create and return a new datet ime.datet ime object given an argument
tuple suitable for passing to datetime.datetime. fromtimestamp ().
PyObject *PyDate_FromTimestamp (PyObject *args)
Valore di ritorno: Nuovo riferimento. Create and return a new datetime . date object given an argument tuple
suitable for passing to datetime.date.fromtimestamp ().

8.6. Other Objects 209

The Python/C API, Release 3.13.7

8.6.14 Objects for Type Hinting

Various built-in types for type hinting are provided. Currently, two types exist — GenericAlias and Union. Only
GenericAlias is exposed to C.

PyObject *Py_GenericAlias (PyObject *origin, PyObject *args)
Parte del ABI Stabile dalla versione 3.9. Create a GenericAlias object. Equivalent to calling the Python
class types.GenericAlias. The origin and args arguments set the GenericAlias“s _ origin__ and
__args___ attributes respectively. origin should be a Py TypeObject*, and args can be a PyTupleObject*
or any PyObject *. If args passed is not a tuple, a 1-tuple is automatically constructed and __args__ is set
to (args,). Minimal checking is done for the arguments, so the function will succeed even if origin is not

atype. The GenericAlias“s _ parameters__ attribute is constructed lazily from __args_ . On failure,
an exception is raised and NULL is returned.

Here’s an example of how to make an extension type generic:

static PyMethodDef my_obj_methods[] = {
// Other methods.

{"__class_getitem__", Py_GenericAlias, METH_O|METH_CLASS, "See PEP 585"}

@ Vedi anche

The data model method __class_getitem__ ().

Added in version 3.9.
PyTypeObject Py_GenericAliasType

Parte del ABI Stabile dalla versione 3.9. The C type of the object returned by Py _GenericAlias ().
Equivalent to types.GenericAlias in Python.

Added in version 3.9.

210 Capitolo 8. Concrete Objects Layer

cAPITOLO 9

Initialization, Finalization, and Threads

See Python Initialization Configuration for details on how to configure the interpreter prior to initialization.

9.1 Before Python Initialization
In an application embedding Python, the Py _Tnitialize () function must be called before using any other
Python/C API functions; with the exception of a few functions and the global configuration variables.
The following functions can be safely called before Python is initialized:
 Functions that initialize the interpreter:
- Py Initialize()
- Py InitializeEx()
- Py InitializeFromConfig ()
- Py BytesMain()

— Py_Main /()

the runtime pre-initialization functions covered in Python Initialization Configuration
 Configuration functions:

— PyImport_AppendInittab ()

— PyImport_ExtendInittab ()

— PyInitFrozenExtensions ()

— PyMem_SetAllocator ()

— PyMem_SetupDebugHooks ()

— PyObject_SetArenaAllocator ()

— Py_SetProgramName ()

— Py_SetPythonHome ()

- PySys_ResetWarnOptions ()

- the configuration functions covered in Python Initialization Configuration

« Informative functions:

211

The Python/C API, Release 3.13.7

- Py_IsInitialized()
— PyMem_GetAllocator ()
— PyObject_GetArenaAllocator ()
- Py_GetBuildInfo()
— Py_GetCompiler ()
— Py_GetCopyright ()
— Py_GetPlatform()
— Py_GetVersion()
— Py_IsInitialized()
« Utilities:
— Py_DecodeLocale ()
— the status reporting and utility functions covered in Python Initialization Configuration
» Memory allocators:
— PyMem_RawMalloc ()
— PyMem_RawRealloc ()
— PyMem_RawCalloc ()
- PyMem_RawFree ()
« Synchronization:
— PyMutex_Lock ()

— PyMutex_Unlock ()

©® Nota

Despite their apparent similarity to some of the functions listed above, the following functions should not be
called before the interpreter has been initialized: Py EncodeLocale (), Py_GetPath (), Py_GetPrefix(),
Py _GetExecPrefix (), Py_GetProgramFullPath (), Py_GetPythonHome (), Py_GetProgramName (),
PyEval_InitThreads(), and Py _RunMain().

9.2 Global configuration variables
Python has variables for the global configuration to control different features and options. By default, these flags are
controlled by command line options.

When a flag is set by an option, the value of the flag is the number of times that the option was set. For example, -b
sets Py_BytesWarningFlag to 1 and -bb sets Py_BytesWarningFlag to 2.

int Py_BytesWarningFlag

This API is kept for backward compatibility: setting PyConfig.bytes_warning should be used instead,
see Python Initialization Configuration.

Issue a warning when comparing bytes or bytearray with str or bytes with int. Issue an error if greater
or equal to 2.

Set by the —b option.

Deprecated since version 3.12, will be removed in version 3.14.

212 Capitolo 9. Initialization, Finalization, and Threads

The Python/C API, Release 3.13.7

int Py_DebugFlag

This API is kept for backward compatibility: setting PyConfig. parser_debug should be used instead, see
Python Initialization Configuration.

Turn on parser debugging output (for expert only, depending on compilation options).
Set by the —d option and the PYTHONDEBUG environment variable.
Deprecated since version 3.12, will be removed in version 3.14.

int Py_DontWriteBytecodeFlag

This API is kept for backward compatibility: setting PyConfig.write bytecode should be used instead,
see Python Initialization Configuration.

If set to non-zero, Python won’t try to write . pyc files on the import of source modules.
Set by the —B option and the PYTHONDONTWRITEBYTECODE environment variable.
Deprecated since version 3.12, will be removed in version 3.14.

int Py_FrozenFlag

This API is kept for backward compatibility: setting PyConfig.pathconfig warnings should be used
instead, see Python Initialization Configuration.

Suppress error messages when calculating the module search path in Py_GetPath ().
Private flag used by _freeze_module and frozenmain programs.
Deprecated since version 3.12, will be removed in version 3.14.

int Py_HashRandomizationFlag

This API is kept for backward compatibility: setting PyConfig.hash_seed and
PyConfig.use_hash_seed should be used instead, see Python Initialization Configuration.

Set to 1 if the PYTHONHASHSEED environment variable is set to a non-empty string.
If the flag is non-zero, read the PYTHONHASHSEED environment variable to initialize the secret hash seed.
Deprecated since version 3.12, will be removed in version 3.14.

int Py_IgnoreEnvironmentFlag

This API is kept for backward compatibility: setting PyConfig.use_environment should be used instead,
see Python Initialization Configuration.

Ignore all PYTHON* environment variables, e.g. PYTHONPATH and PYTHONHOME, that might be set.
Set by the —-E and I options.
Deprecated since version 3.12, will be removed in version 3.14.

int Py_InspectFlag

This API is kept for backward compatibility: setting PyConfig. inspect should be used instead, see Python
Initialization Configuration.

When a script is passed as first argument or the —c option is used, enter interactive mode after executing the
script or the command, even when sys . stdin does not appear to be a terminal.

Set by the —1i option and the PYTHONINSPECT environment variable.
Deprecated since version 3.12, will be removed in version 3.14.

int Py_InteractiveFlag

This API is kept for backward compatibility: setting PyConfig. interactive should be used instead, see
Python Initialization Configuration.

Set by the -1 option.

Deprecated since version 3.12, will be removed in version 3.15.

9.2. Global configuration variables 213

The Python/C API, Release 3.13.7

int Py_IsolatedFlag

This API is kept for backward compatibility: setting PyConfig. i solated should be used instead, see Python
Initialization Configuration.

Run Python in isolated mode. In isolated mode sys .path contains neither the script’s directory nor the user’s
site-packages directory.

Set by the —I option.
Added in version 3.4.
Deprecated since version 3.12, will be removed in version 3.14.

int Py_LegacyWindowsFSEncodingFlag

This API is kept for backward compatibility: setting PyPreConfig.legacy_windows_fs_encoding
should be used instead, see Python Initialization Configuration.

If the flag is non-zero, use the mbcs encoding with replace error handler, instead of the UTF-8 encoding
with surrogatepass error handler, for the filesystem encoding and error handler.

Set to 1 if the PYTHONLEGACYWINDOWSFSENCODING environment variable is set to a non-empty string.
See PEP 529 for more details.

Availability: Windows.

Deprecated since version 3.12, will be removed in version 3.14.

int Py_LegacyWindowsStdioFlag

This API is kept for backward compatibility: setting PyConfig. legacy windows_stdio should be used
instead, see Python Initialization Configuration.

If the flag is non-zero, use io.FileIO instead of io._WindowsConsoleIO for sys standard streams.
Set to 1 if the PYTHONLEGACYWINDOWSSTDIO environment variable is set to a non-empty string.

See PEP 528 for more details.

Auvailability: Windows.

Deprecated since version 3.12, will be removed in version 3.14.

int Py_NoSiteFlag

This API is kept for backward compatibility: setting PyConfig.site_import should be used instead, see
Python Initialization Configuration.

Disable the import of the module site and the site-dependent manipulations of sys.path that it entails.
Also disable these manipulations if site is explicitly imported later (call site.main () if you want them to
be triggered).

Set by the —s option.
Deprecated since version 3.12, will be removed in version 3.14.

int Py_NoUserSiteDirectory

This API is kept for backward compatibility: setting PyConfig.user_site_directory should be used
instead, see Python Initialization Configuration.

Don’t add the user site-packages directoryto sys.path.
Set by the —s and -I options, and the PYTHONNOUSERSITE environment variable.
Deprecated since version 3.12, will be removed in version 3.14.

int Py_OptimizeFlag

This API is kept for backward compatibility: setting PyConfig.optimization_level should be used
instead, see Python Initialization Configuration.

Set by the —0 option and the PYTHONOPTIMIZE environment variable.

214 Capitolo 9. Initialization, Finalization, and Threads

https://peps.python.org/pep-0529/
https://peps.python.org/pep-0528/

The Python/C API, Release 3.13.7

Deprecated since version 3.12, will be removed in version 3.14.

int Py_QuietFlag

This API is kept for backward compatibility: setting PyConfig. quiet should be used instead, see Python
Initialization Configuration.

Don’t display the copyright and version messages even in interactive mode.
Set by the —q option.

Added in version 3.2.

Deprecated since version 3.12, will be removed in version 3.14.

int Py_UnbufferedStdioFlag

This API is kept for backward compatibility: setting PyConfig.buffered_stdio should be used instead,
see Python Initialization Configuration.

Force the stdout and stderr streams to be unbuffered.
Set by the —u option and the PYTHONUNBUFFERED environment variable.
Deprecated since version 3.12, will be removed in version 3.14.

int Py_VerboseFlag

This API is kept for backward compatibility: setting PyConfig. verbose should be used instead, see Python
Initialization Configuration.

Print a message each time a module is initialized, showing the place (filename or built-in module) from which
it is loaded. If greater or equal to 2, print a message for each file that is checked for when searching for a
module. Also provides information on module cleanup at exit.

Set by the —v option and the PYTHONVERBOSE environment variable.

Deprecated since version 3.12, will be removed in version 3.14.

9.3 Initializing and finalizing the interpreter

void Py_Initialize ()
Farte del ABI Stabile. Initialize the Python interpreter. In an application embedding Python, this should be
called before using any other Python/C API functions; see Before Python Initialization for the few exceptions.

This initializes the table of loaded modules (sys .modules), and creates the fundamental modules builtins,
__main__ and sys. It also initializes the module search path (sys.path). It does not set sys . argv; use the
Python Initialization Configuration API for that. This is a no-op when called for a second time (without calling
Py_FinalizeEx () first). There is no return value; it is a fatal error if the initialization fails.

Use Py _InitializeFromConfig () to customize the Python Initialization Configuration.

© Nota

On Windows, changes the console mode from O_TEXT to 0_BINARY, which will also affect non-Python
uses of the console using the C Runtime.

void Py_InitializeEx (int initsigs)

Farte del ABI Stabile. This function works like Py Initialize () if initsigs is 1. If initsigs is 0, it skips
initialization registration of signal handlers, which may be useful when CPython is embedded as part of a
larger application.

Use Py _InitializeFromConfig () to customize the Python Initialization Configuration.

9.3. Initializing and finalizing the interpreter 215

The Python/C API, Release 3.13.7

PyStatus Py_InitializeFromConfig (const PyConfig *config)

Initialize Python from config configuration, as described in Initialization with PyConfig.

See the Python Initialization Configuration section for details on pre-initializing the interpreter, populating the
runtime configuration structure, and querying the returned status structure.

int Py_IsInitialized()

Parte del ABI Stabile. Return true (nonzero) when the Python interpreter has been initialized, false (zero) if
not. After Py _FinalizeEx () is called, this returns false until Py_Tnitialize () is called again.

int Py IsFinalizing()

Farte del ABI Stabile dalla versione 3.13. Return true (non-zero) if the main Python interpreter is shutting
down. Return false (zero) otherwise.

Added in version 3.13.

int Py _FinalizeEx ()

Farte del ABI Stabile dalla versione 3.6. Undo all initializations made by Py _Initialize () and subse-
quent use of Python/C API functions, and destroy all sub-interpreters (see Py_NewInterpreter () below)
that were created and not yet destroyed since the last call to Py_Tnitialize (). Ideally, this frees all me-
mory allocated by the Python interpreter. This is a no-op when called for a second time (without calling
Py _Initialize () again first).

Since this is the reverse of Py_Initialize (), itshould be called in the same thread with the same interpreter
active. That means the main thread and the main interpreter. This should never be called while Py_RunMain ()
is running.

Normally the return value is 0. If there were errors during finalization (flushing buffered data), -1 is returned.

This function is provided for a number of reasons. An embedding application might want to restart Python
without having to restart the application itself. An application that has loaded the Python interpreter from a
dynamically loadable library (or DLL) might want to free all memory allocated by Python before unloading the
DLL. During a hunt for memory leaks in an application a developer might want to free all memory allocated
by Python before exiting from the application.

Bugs and caveats: The destruction of modules and objects in modules is done in random order; this may
cause destructors (__del__ () methods) to fail when they depend on other objects (even functions) or modules.
Dynamically loaded extension modules loaded by Python are not unloaded. Small amounts of memory allocated
by the Python interpreter may not be freed (if you find a leak, please report it). Memory tied up in circular
references between objects is not freed. Some memory allocated by extension modules may not be freed. Some
extensions may not work properly if their initialization routine is called more than once; this can happen if an
application calls Py_Tnitialize () and Py FinalizeEx () morethanonce. Py _FinalizeEx () mustnot
be called recursively from within itself. Therefore, it must not be called by any code that may be run as part
of the interpreter shutdown process, such as atexit handlers, object finalizers, or any code that may be run
while flushing the stdout and stderr files.

Raises an auditing event cpython._PySys_ClearAuditHooks with no arguments.
Added in version 3.6.

void Py_Finalize ()
Farte del ABI Stabile. This is a backwards-compatible version of Py_FinalizeEx () thatdisregards the return
value.

int Py_BytesMain (int argc, char **argv)
Farte del ABI Stabile dalla versione 3.8. Similar to Py_Main () but argy is an array of bytes strings, allowing
the calling application to delegate the text decoding step to the CPython runtime.
Added in version 3.8.

int Py_Main (int argc, wchar_t **argv)

Parte del ABI Stabile. The main program for the standard interpreter, encapsulating a full initializa-
tion/finalization cycle, as well as additional behaviour to implement reading configurations settings from the
environment and command line, and then executing _ main___ in accordance with using-on-cmdline.

216 Capitolo 9. Initialization, Finalization, and Threads

The Python/C API, Release 3.13.7

This is made available for programs which wish to support the full CPython command line interface, rather
than just embedding a Python runtime in a larger application.

The argc and argv parameters are similar to those which are passed to a C program’s main () function, except
that the argv entries are first converted to wchar_t using Py _DecodeLocale (). It is also important to note
that the argument list entries may be modified to point to strings other than those passed in (however, the
contents of the strings pointed to by the argument list are not modified).

The return value is 2 if the argument list does not represent a valid Python command line, and otherwise the
same as Py_RunMain ().

In terms of the CPython runtime configuration APIs documented in the runtime configuration section (and
without accounting for error handling), Py_Main is approximately equivalent to:

PyConfig config;
PyConfig_InitPythonConfig(&config);
PyConfig_SetArgv (&config, argc, argv);
Py_InitializeFromConfig(&config);
PyConfig_Clear (&configqg);

Py_RunMain () ;

In normal usage, an embedding application will call this function instead of calling Py Tnitialize(),
Py_TInitializeEx () OrPy_InitializeFromConfig () directly,and all settings will be applied as descri-
bed elsewhere in this documentation. If this function is instead called after a preceding runtime initialization
API call, then exactly which environmental and command line configuration settings will be updated is version
dependent (as it depends on which settings correctly support being modified after they have already been set
once when the runtime was first initialized).

int Py_RunMain (void)
Executes the main module in a fully configured CPython runtime.

Executes the command (PyConfig. run_command), the script (PyConfig.run_filename) or the module
(PyConfig.run_module) specified on the command line or in the configuration. If none of these values are
set, runs the interactive Python prompt (REPL) using the __main__ module’s global namespace.

If Pyconfig.inspect is not set (the default), the return value will be 0 if the interpreter exits normally (that
is, without raising an exception), the exit status of an unhandled SystemExit, or 1 for any other unhandled
exception.

If Pyconfig. inspect is set (such as when the —i option is used), rather than returning when the interpreter
exits, execution will instead resume in an interactive Python prompt (REPL) using the _ main__ module’s
global namespace. If the interpreter exited with an exception, it is immediately raised in the REPL session.
The function return value is then determined by the way the REPL session terminates: 0, 1, or the status of a
SystemExit, as specified above.

This function always finalizes the Python interpreter before it returns.

See Python Configuration for an example of a customized Python that always runs in isolated mode using
Py_RunMain ().

int PyUnstable_AtExit (PylnterpreterState *interp, void (*func)(void*), void *data)

Questa pagina AP/ Instabile. Potrebbe cambiare senza preavviso nelle release minori.

Register an atexit callback for the target interpreter inferp. This is similar to Py_AtExit (), but takes an
explicit interpreter and data pointer for the callback.

The GIL must be held for interp.
Added in version 3.13.

9.3. Initializing and finalizing the interpreter 217

The Python/C API, Release 3.13.7

9.4 Process-wide parameters

void Py_SetProgramName (const wchar_t *name)

Farte del ABI Stabile. This API is kept for backward compatibility: setting PyConrig. program_name should
be used instead, see Python Initialization Configuration.

This function should be called before Py_Initialize () is called for the first time, if it is called at all. It
tells the interpreter the value of the argv [0] argument to the main () function of the program (converted to
wide characters). This is used by Py Getpath () and some other functions below to find the Python run-time
libraries relative to the interpreter executable. The default value is 'python'. The argument should point to a
zero-terminated wide character string in static storage whose contents will not change for the duration of the
program’s execution. No code in the Python interpreter will change the contents of this storage.

Use Py_DecodeLocale () to decode a bytes string to get a wchar_t * string.

Deprecato dalla versione 3.11.

wchar_t *Py_GetProgramName ()

Parte del ABI Stabile. Return the program name set with PyConfig.program_name, or the default. The
returned string points into static storage; the caller should not modify its value.

This function should not be called before Py_Tnitialize (), otherwise it returns NULL.
Cambiato nella versione 3.10: It now returns NULL if called before Py_Initialize().

Deprecated since version 3.13, will be removed in version 3.15: Get sys.executable instead.

wchar_t *Py_GetPrefix ()

Farte del ABI Stabile. Return the prefix for installed platform-independent files. This is derived through a num-
ber of complicated rules from the program name set with PyConfig. program_name and some environment
variables; for example, if the program name is ' /usr/local/bin/python’, the prefix is ' /usr/local’.
The returned string points into static storage; the caller should not modify its value. This corresponds to the
prefix variable in the top-level Makefile and the ——prefix argument to the configure script at build
time. The value is available to Python code as sys.base_prefix. It is only useful on Unix. See also the next
function.

This function should not be called before Py_Tnitialize (), otherwise it returns NULL.
Cambiato nella versione 3.10: It now returns NULL if called before Py_Initialize().

Deprecated since version 3.13, will be removed in version 3.15: Get sys.base_prefix instead, or sys.
prefix if virtual environments need to be handled.

wchar_t *Py_GetExecPrefix ()

Parte del ABI Stabile. Return the exec-prefix for installed platform-dependent files. This is derived through
a number of complicated rules from the program name set with PyConfig.program name and some en-
vironment variables; for example, if the program name is ' /usr/local/bin/python’, the exec-prefix is
'/usr/local'. The returned string points into static storage; the caller should not modify its value. This
corresponds to the exec_prefix variable in the top-level Makefile and the -—exec-prefix argument to
the configure script at build time. The value is available to Python code as sys.base_exec_prefix. It
is only useful on Unix.

Background: The exec-prefix differs from the prefix when platform dependent files (such as executables and
shared libraries) are installed in a different directory tree. In a typical installation, platform dependent files may
be installed in the /usr/local/plat subtree while platform independent may be installed in /usr/local.

Generally speaking, a platform is a combination of hardware and software families, e.g. Sparc machines run-
ning the Solaris 2.x operating system are considered the same platform, but Intel machines running Solaris 2.x
are another platform, and Intel machines running Linux are yet another platform. Different major revisions of
the same operating system generally also form different platforms. Non-Unix operating systems are a different
story; the installation strategies on those systems are so different that the prefix and exec-prefix are meanin-
gless, and set to the empty string. Note that compiled Python bytecode files are platform independent (but not
independent from the Python version by which they were compiled!).

218

Capitolo 9. Initialization, Finalization, and Threads

The Python/C API, Release 3.13.7

System administrators will know how to configure the mount or automount programs to share /usr/local
between platforms while having /usr/local/plat be a different filesystem for each platform.

This function should not be called before Py Initialize (), otherwise it returns NULL.
Cambiato nella versione 3.10: It now returns NULL if called before Py Tnitialize ().

Deprecated since version 3.13, will be removed in version 3.15: Get sys.base_exec_prefix instead, or
sys.exec_prefix if virtual environments need to be handled.
wchar_t *Py_GetProgramFullPath ()

Farte del ABI Stabile. Return the full program name of the Python executable; this is computed as a side-effect
of deriving the default module search path from the program name (set by PyConfig.program name). The
returned string points into static storage; the caller should not modify its value. The value is available to Python
code as sys.executable.

This function should not be called before Py_Tnitialize (), otherwise it returns NULL.
Cambiato nella versione 3.10: It now returns NULL if called before Py_Initialize().
Deprecated since version 3.13, will be removed in version 3.15: Get sys.executable instead.

wchar_t *Py_GetPath ()

Parte del ABI Stabile. Return the default module search path; this is computed from the program name (set
by PyConfig.program name) and some environment variables. The returned string consists of a series of
directory names separated by a platform dependent delimiter character. The delimiter character is ' : ' on Unix
and macOS, '; ' on Windows. The returned string points into static storage; the caller should not modify its
value. The list sys.path is initialized with this value on interpreter startup; it can be (and usually is) modified
later to change the search path for loading modules.

This function should not be called before Py_Tnitialize (), otherwise it returns NULL.
Cambiato nella versione 3.10: It now returns NULL if called before Py_Initialize().
Deprecated since version 3.13, will be removed in version 3.15: Get sys . path instead.

const char *Py_GetVersion ()

Farte del ABI Stabile. Return the version of this Python interpreter. This is a string that looks something like

["3.0a5+ (py3k:63103M, May 12 2008, 00:53:55) \n[GCC 4.2.3]1" }

The first word (up to the first space character) is the current Python version; the first characters are the major
and minor version separated by a period. The returned string points into static storage; the caller should not
modify its value. The value is available to Python code as sys.version.

See also the Py_Version constant.

const char *Py_GetPlatform ()

Farte del ABI Stabile. Return the platform identifier for the current platform. On Unix, this is formed from
the «official» name of the operating system, converted to lower case, followed by the major revision number;
e.g., for Solaris 2.x, which is also known as SunOS 5.x, the value is 'sunos5'. On macOS, itis 'darwin’.
On Windows, itis 'win'. The returned string points into static storage; the caller should not modify its value.
The value is available to Python code as sys.platform.

const char *Py_GetCopyright ()

Parte del ABI Stabile. Return the official copyright string for the current Python version, for example
'Copyright 1991-1995 Stichting Mathematisch Centrum, Amsterdam'

The returned string points into static storage; the caller should not modify its value. The value is available to
Python code as sys.copyright.
const char *Py_GetCompiler ()

Farte del ABI Stabile. Return an indication of the compiler used to build the current Python version, in square
brackets, for example:

9.4. Process-wide parameters 219

The Python/C API, Release 3.13.7

["[GCC 2:T02o2] " }

The returned string points into static storage; the caller should not modify its value. The value is available to
Python code as part of the variable sys.version.
const char *Py_GetBuildInfo ()

Farte del ABI Stabile. Return information about the sequence number and build date and time of the current
Python interpreter instance, for example

["#67, Aug 1 1997, 22:34:28" }

The returned string points into static storage; the caller should not modify its value. The value is available to
Python code as part of the variable sys.version.

void PySys_SetArgvEx (int argc, wchar_t **argv, int updatepath)

Farte del ABI Stabile. This API is kept for backward compatibility: setting PyConfig.argv, PyConfig.
parse_argvand PyConfig. safe_path should be used instead, see Python Initialization Configuration.

Set sys.argv based on argc and argv. These parameters are similar to those passed to the program’s main ()
function with the difference that the first entry should refer to the script file to be executed rather than the execu-
table hosting the Python interpreter. If there isn’t a script that will be run, the first entry in argv can be an empty
string. If this function fails to initialize sys . argv, a fatal condition is signalled using Py_FatalError().

If updatepath is zero, this is all the function does. If updatepath is non-zero, the function also modifies sys .
path according to the following algorithm:

« If the name of an existing script is passed in argv [0], the absolute path of the directory where the script
is located is prepended to sys.path.

o Otherwise (that is, if argc is 0 or argv [0] doesn’t point to an existing file name), an empty string is
prepended to sys.path, which is the same as prepending the current working directory (".").

Use Py_DecodeLocale () to decode a bytes string to get a wchar_t* string.

See also PyConfig.orig_argvand PyConfig.argv members of the Python Initialization Configuration.

O Nota

It is recommended that applications embedding the Python interpreter for purposes other than executing a
single script pass 0 as updatepath, and update sys . path themselves if desired. See CVE 2008-5983.

On versions before 3.1.3, you can achieve the same effect by manually popping the first sys . path element
after having called PySys_SetArgv (), for example using:

[PyRun_SimpleStrinq("import sys; sys.path.pop(0)\n"); }

Added in version 3.1.3.
Deprecato dalla versione 3.11.

void PySys_SetArgv (int argc, wchar_t **argv)

Parte del ABI Stabile. This API is kept for backward compatibility: setting PyConfig.argvand PyConfig.
parse_argv should be used instead, see Python Initialization Configuration.

This function works like PySys_SetArgvEx () with updatepath set to 1 unless the python interpreter was
started with the - 1.

Use Py_DecodeLocale () to decode a bytes string to get a wchar_t* string.
See also PyConfig.orig_argvand PyConfig.argv members of the Python Initialization Configuration.
Cambiato nella versione 3.4: The updatepath value depends on —1I.

Deprecato dalla versione 3.11.

220 Capitolo 9. Initialization, Finalization, and Threads

https://www.cve.org/CVERecord?id=CVE-2008-5983

The Python/C API, Release 3.13.7

void Py_SetPythonHome (const wchar_t *home)
Parte del ABI Stabile. This API is kept for backward compatibility: setting PyConfig. home should be used
instead, see Python Initialization Configuration.

Set the default «<home» directory, that is, the location of the standard Python libraries. See PYTHONHOME for
the meaning of the argument string.

The argument should point to a zero-terminated character string in static storage whose contents will not change
for the duration of the program’s execution. No code in the Python interpreter will change the contents of this
storage.

Use Py_DecodeLocale () to decode a bytes string to get a wchar_t* string.
Deprecato dalla versione 3.11.

wchar_t *Py_GetPythonHome ()

Farte del ABI Stabile. Return the default <home», that is, the value set by PyConfig. home, or the value of
the PYTHONHOME environment variable if it is set.

This function should not be called before Py_Tnitialize (), otherwise it returns NULL.
Cambiato nella versione 3.10: It now returns NULL if called before Py_Initialize().

Deprecated since version 3.13, will be removed in version 3.15: Get PyConfig.home or PYTHONHOME
environment variable instead.

9.5 Thread State and the Global Interpreter Lock

The Python interpreter is not fully thread-safe. In order to support multi-threaded Python programs, there’s a global
lock, called the global interpreter lock or GIL, that must be held by the current thread before it can safely access
Python objects. Without the lock, even the simplest operations could cause problems in a multi-threaded program:
for example, when two threads simultaneously increment the reference count of the same object, the reference count
could end up being incremented only once instead of twice.

Therefore, the rule exists that only the thread that has acquired the GIL may operate on Python objects or call Python/C
API functions. In order to emulate concurrency of execution, the interpreter regularly tries to switch threads (see
sys.setswitchinterval ()). The lock is also released around potentially blocking I/O operations like reading or
writing a file, so that other Python threads can run in the meantime.

The Python interpreter keeps some thread-specific bookkeeping information inside a data structure called
pPyThreadState. There’s also one global variable pointing to the current PyThreadState: it can be retrieved
using PyThreadState_Get ().

9.5.1 Releasing the GIL from extension code

Most extension code manipulating the GIL has the following simple structure:

Save the thread state in a local variable.
Release the global interpreter lock.
Do some blocking I/O operation
Reacquire the global interpreter lock.
Restore the thread state from the local variable.

This is so common that a pair of macros exists to simplify it:

Py BEGIN_ALLOW_THREADS
Do some blocking I/O operation
Py_END_ALLOW_THREADS

J

The Py BEGIN_ALLOW_THREADS macro opens a new block and declares a hidden local variable; the
Py_END_ALLOW_THREADS macro closes the block.

The block above expands to the following code:

9.5. Thread State and the Global Interpreter Lock 221

The Python/C API, Release 3.13.7

PyThreadState *_save;

_save = PyEval_SaveThread();
. Do some blocking I/O operation
PyEval_RestoreThread(_save);

Here is how these functions work: the global interpreter lock is used to protect the pointer to the current thread state.
When releasing the lock and saving the thread state, the current thread state pointer must be retrieved before the
lock is released (since another thread could immediately acquire the lock and store its own thread state in the global
variable). Conversely, when acquiring the lock and restoring the thread state, the lock must be acquired before storing
the thread state pointer.

©® Nota

Calling system I/O functions is the most common use case for releasing the GIL, but it can also be useful before
calling long-running computations which don’t need access to Python objects, such as compression or cryptogra-
phic functions operating over memory buffers. For example, the standard z1ib and hashlib modules release
the GIL when compressing or hashing data.

9.5.2 Non-Python created threads

When threads are created using the dedicated Python APIs (such as the threading module), a thread state is
automatically associated to them and the code showed above is therefore correct. However, when threads are created
from C (for example by a third-party library with its own thread management), they don’t hold the GIL, nor is there
a thread state structure for them.

If you need to call Python code from these threads (often this will be part of a callback API provided by the afo-
rementioned third-party library), you must first register these threads with the interpreter by creating a thread state
data structure, then acquiring the GIL, and finally storing their thread state pointer, before you can start using the
Python/C API. When you are done, you should reset the thread state pointer, release the GIL, and finally free the
thread state data structure.

The PyGILState_Ensure () and PyGILState_Release () functions do all of the above automatically. The
typical idiom for calling into Python from a C thread is:

PyGILState STATE gstate;
gstate = PyGILState_Ensure();

/* Perform Python actions here. */
result = CallSomeFunction () ;
/* evaluate result or handle exception */

/* Release the thread. No Python API allowed beyond this point. */
PyGILState_Release (gstate);

Note that the PyGILState_* functions assume there is only one global interpreter (created automatically by
Py_Initialize ()).Python supports the creation of additional interpreters (using Py_NewInterpreter ()), but
mixing multiple interpreters and the PyGILState_* API is unsupported.

9.5.3 Cautions about fork()

Another important thing to note about threads is their behaviour in the face of the C fork () call. On most systems
with fork (), after a process forks only the thread that issued the fork will exist. This has a concrete impact both on
how locks must be handled and on all stored state in CPython’s runtime.

The fact that only the «current» thread remains means any locks held by other threads will never be released. Python
solves this for os. fork () by acquiring the locks it uses internally before the fork, and releasing them afterwards.
In addition, it resets any lock-objects in the child. When extending or embedding Python, there is no way to inform

222 Capitolo 9. Initialization, Finalization, and Threads

The Python/C API, Release 3.13.7

Python of additional (non-Python) locks that need to be acquired before or reset after a fork. OS facilities such
as pthread_atfork () would need to be used to accomplish the same thing. Additionally, when extending or
embedding Python, calling fork () directly rather than through os. fork () (and returning to or calling into Python)
may result in a deadlock by one of Python’s internal locks being held by a thread that is defunct after the fork.
Py0OS_AfterFork_Child () tries to reset the necessary locks, but is not always able to.

The fact that all other threads go away also means that CPython’s runtime state there must be cleaned up properly,
which os. fork () does. This means finalizing all other Py ThreadState objects belonging to the current interpreter
and all other PyTnterpreterState objects. Due to this and the special nature of the «mnain» interpreter, fork ()
should only be called in that interpreter’s «main» thread, where the CPython global runtime was originally initialized.
The only exception is if exec () will be called immediately after.

9.5.4 Cautions regarding runtime finalization

In the late stage of interpreter shutdown, after attempting to wait for non-daemon threads to exit (though this can
be interrupted by KeyboardInterrupt) and running the atexit functions, the runtime is marked as finalizing:
Py IsFinalizing() and sys.is_finalizing() return true. At this point, only the finalization thread that
initiated finalization (typically the main thread) is allowed to acquire the GIL.

If any thread, other than the finalization thread, attempts to acquire the GIL during finalization, ei-
ther explicitly via PyGILState_Ensure(), Py_END_ALLOW_THREADS, PyEval_AcquireThread(), Or
PyEval_ AcquireLock (), or implicitly when the interpreter attempts to reacquire it after having yielded it, the
thread enters a permanently blocked state where it remains until the program exits. In most cases this is harmless,
but this can result in deadlock if a later stage of finalization attempts to acquire a lock owned by the blocked thread,
or otherwise waits on the blocked thread.

Gross? Yes. This prevents random crashes and/or unexpectedly skipped C++ finalizations further up the call stack
when such threads were forcibly exited here in CPython 3.13.7 and earlier. The CPython runtime GIL acquiring C
APIs have never had any error reporting or handling expectations at GIL acquisition time that would’ve allowed for
graceful exit from this situation. Changing that would require new stable C APIs and rewriting the majority of C
code in the CPython ecosystem to use those with error handling.

9.5.5 High-level API

These are the most commonly used types and functions when writing C extension code, or when embedding the
Python interpreter:
type PyInterpreterState

Farte del API Limitata (come una struttura opaca). This data structure represents the state shared by a number
of cooperating threads. Threads belonging to the same interpreter share their module administration and a few
other internal items. There are no public members in this structure.

Threads belonging to different interpreters initially share nothing, except process state like available memory,
open file descriptors and such. The global interpreter lock is also shared by all threads, regardless of to which
interpreter they belong.

type PyThreadState

Farte del API Limitata (come una struttura opaca). This data structure represents the state of a single thread.
The only public data member is:

PylnterpreterState *interp
This thread’s interpreter state.

void PyEval_InitThreads ()
Parte del ABI Stabile. Deprecated function which does nothing.

In Python 3.6 and older, this function created the GIL if it didn’t exist.
Cambiato nella versione 3.9: The function now does nothing.

Cambiato nella versione 3.7: This function is now called by Py _Initialize (), so you don’t have to call it
yourself anymore.

9.5. Thread State and the Global Interpreter Lock 223

The Python/C API, Release 3.13.7

Cambiato nella versione 3.2: This function cannot be called before Py Tnitialize () anymore.
Deprecato dalla versione 3.9.

PyThreadState *PyEval_SaveThread ()

Parte del ABI Stabile. Release the global interpreter lock (if it has been created) and reset the thread state to
NULL, returning the previous thread state (which is not NULL). If the lock has been created, the current thread
must have acquired it.

void PyEval_RestoreThread (PyThreadState *tstate)

Farte del ABI Stabile. Acquire the global interpreter lock (if it has been created) and set the thread state to
tstate, which must not be NULL. If the lock has been created, the current thread must not have acquired it,
otherwise deadlock ensues.

© Nota

Calling this function from a thread when the runtime is finalizing will hang the thread until the program
exits, even if the thread was not created by Python. Refer to Cautions regarding runtime finalization for
more details.

Cambiato nella versione 3.13.7 (unreleased): Hangs the current thread, rather than terminating it, if called
while the interpreter is finalizing.

PyThreadState *PyThreadState_Get ()
Farte del ABI Stabile. Return the current thread state. The global interpreter lock must be held. When the
current thread state is NULL, this issues a fatal error (so that the caller needn’t check for NULL).

See also PyThreadState_GetUnchecked ().

PyThreadState *PyThreadState_GetUnchecked ()

Similar to PyThreadState_Get (), but don't kill the process with a fatal error if it is NULL. The caller is
responsible to check if the result is NULL.

Added in version 3.13: In Python 3.5 to 3.12, the function was private and known as
_PyThreadState_UncheckedGet ().

PyThreadState *PyThreadState_Swap (PyThreadState *tstate)

Parte del ABI Stabile. Swap the current thread state with the thread state given by the argument #state, which
may be NULL.

The GIL does not need to be held, but will be held upon returning if zstate is non-NULL.
The following functions use thread-local storage, and are not compatible with sub-interpreters:

PyGILState_ STATE PyGILState_Ensure ()

Parte del ABI Stabile. Ensure that the current thread is ready to call the Python C API regardless of the
current state of Python, or of the global interpreter lock. This may be called as many times as desired by
a thread as long as each call is matched with a call to PyGILState Release (). In general, other thread-
related APIs may be used between PyGILState Ensure () and PyGILState Release () calls as long
as the thread state is restored to its previous state before the Release(). For example, normal usage of the
Py_BEGIN_ALLOW_THREADS and Py_END_ALLOW_THREADS macros is acceptable.

The return value is an opaque «handle» to the thread state when PyGILState_ Ensure () was called, and
must be passed to PyGILState Release () to ensure Python is left in the same state. Even though recursive
calls are allowed, these handles cannot be shared - each unique call to PyGILState Ensure () must save the
handle for its call to PyGILState Release ().

When the function returns, the current thread will hold the GIL and be able to call arbitrary Python code.
Failure is a fatal error.

224 Capitolo 9. Initialization, Finalization, and Threads

The Python/C API, Release 3.13.7

O Nota

Calling this function from a thread when the runtime is finalizing will hang the thread until the program
exits, even if the thread was not created by Python. Refer to Cautions regarding runtime finalization for
more details.

Cambiato nella versione 3.13.7 (unreleased): Hangs the current thread, rather than terminating it, if called
while the interpreter is finalizing.
void PyGILState_Release (PyGILState STATE)

Parte del ABI Stabile. Release any resources previously acquired. After this call, Python’s state will be the same
as it was prior to the corresponding PyGILState Ensure () call (but generally this state will be unknown to
the caller, hence the use of the GILState API).

Every callto PyGILState Ensure () must be matched by acall to PyGILState Release () on the same
thread.

PyThreadState *PyGILState_GetThisThreadState ()
Farte del ABI Stabile. Get the current thread state for this thread. May return NULL if no GILState API has been
used on the current thread. Note that the main thread always has such a thread-state, even if no auto-thread-state
call has been made on the main thread. This is mainly a helper/diagnostic function.

int PyGILState_Check ()

Return 1 if the current thread is holding the GIL and 0 otherwise. This function can be called from any thread
at any time. Only if it has had its Python thread state initialized and currently is holding the GIL will it return
1. This is mainly a helper/diagnostic function. It can be useful for example in callback contexts or memory
allocation functions when knowing that the GIL is locked can allow the caller to perform sensitive actions or
otherwise behave differently.

Added in version 3.4.

The following macros are normally used without a trailing semicolon; look for example usage in the Python source
distribution.
Py BEGIN_ALLOW_THREADS
Parte del ABI Stabilee. This macro expands to { PyThreadState *_save; _save =
PyEval_SaveThread () ;. Note that it contains an opening brace; it must be matched with a following
Py_END_ALLOW_THREADS macro. See above for further discussion of this macro.
Py_END_ALLOW_THREADS
Parte del ABI Stabile. This macro expands to PyEval_RestoreThread (_save); }. Note that it contains
a closing brace; it must be matched with an earlier Py BEGIN ALLOW_THREADS macro. See above for further
discussion of this macro.
Py_BLOCK_THREADS

Parte del ABI Stabile. This macro expands to PyEval RestoreThread (_save);: it is equivalent to
Py_END_ALLOW_THREADS without the closing brace.

Py_UNBLOCK_THREADS

Farte del ABI Stabile. This macro expands to _save = PyEval_ SaveThread();: it is equivalent to
Py_BEGIN_ALLOW_THREADS without the opening brace and variable declaration.

9.5.6 Low-level API

All of the following functions must be called after py_Initialize ().
Cambiato nella versione 3.7: Py _Tnitialize () now initializes the GIL.

PylInterpreterState *PyInterpreterState_New ()

Farte del ABI Stabile. Create a new interpreter state object. The global interpreter lock need not be held, but
may be held if it is necessary to serialize calls to this function.

9.5. Thread State and the Global Interpreter Lock 225

The Python/C API, Release 3.13.7

Raises an auditing event cpython.PyInterpreterState_New with no arguments.

void PyInterpreterState_Clear (PylnterpreterState *interp)

Farte del ABI Stabile. Reset all information in an interpreter state object. The global interpreter lock must be
held.

Raises an auditing event cpython.PyInterpreterState_Clear with no arguments.

void PyInterpreterState_Delete (PylnterpreterState *interp)

Farte del ABI Stabile. Destroy an interpreter state object. The global interpreter lock need not be held. The
interpreter state must have been reset with a previous call to PyInterpreterState _Clear ().

PyThreadState *PyThreadState_New (PylnterpreterState *interp)

Parte del ABI Stabile. Create a new thread state object belonging to the given interpreter object. The global
interpreter lock need not be held, but may be held if it is necessary to serialize calls to this function.

void PyThreadState_Clear (PyThreadState *tstate)
Farte del ABI Stabile. Reset all information in a thread state object. The global interpreter lock must be held.

Cambiato nella versione 3.9: This function now calls the PyThreadState.on_delete callback. Previously,
that happened in Py ThreadState_Delete ().

Cambiato nella versione 3.13: The PyThreadState.on_delete callback was removed.

void PyThreadState_Delete (PyThreadState *tstate)

Parte del ABI Stabile. Destroy a thread state object. The global interpreter lock need not be held. The thread
state must have been reset with a previous call to PyThreadState Clear ().

void PyThreadState_DeleteCurrent (void)

Destroy the current thread state and release the global interpreter lock. Like PyThreadState_Delete (),
the global interpreter lock must be held. The thread state must have been reset with a previous call to
PyThreadState_Clear().

PyFrameObject *PyThreadState_GetFrame (PyThreadState *tstate)
Parte del ABI Stabile dalla versione 3.10. Get the current frame of the Python thread state zstate.

Return a strong reference. Return NULL if no frame is currently executing.
See also PyEval_GetFrame ().

tstate must not be NULL.

Added in version 3.9.

uint64_t PyThreadState_Get ID (PyThreadState *tstate)
Parte del ABI Stabile dalla versione 3.10. Get the unique thread state identifier of the Python thread state tstate.

tstate must not be NULL.
Added in version 3.9.

PylnterpreterState *PyThreadState_Get Interpreter (PyThreadState *tstate)
Farte del ABI Stabile dalla versione 3.10. Get the interpreter of the Python thread state zstate.

tstate must not be NULL.
Added in version 3.9.

void PyThreadState_EnterTracing (PyThreadState *tstate)
Suspend tracing and profiling in the Python thread state tstate.

Resume them using the PyThreadState LeaveTracing () function.

Added in version 3.11.

226 Capitolo 9. Initialization, Finalization, and Threads

The Python/C API, Release 3.13.7

void PyThreadState_LeaveTracing (PyThreadState *tstate)

Resume tracing and profiling in the Python thread state tstafe suspended by the
PyThreadState EnterTracing () function.

See also PyEval_SetTrace () and PyEval_SetProfile () functions.
Added in version 3.11.

PylnterpreterState *PyInterpreterState_Get (void)
Farte del ABI Stabile dalla versione 3.9. Get the current interpreter.

Issue a fatal error if there no current Python thread state or no current interpreter. It cannot return NULL.
The caller must hold the GIL.
Added in version 3.9.

int64_t PyInterpreterState_GetID (PylnterpreterState *interp)

Parte del ABI Stabile dalla versione 3.7. Return the interpreter’s unique ID. If there was any error in doing so
then -1 is returned and an error is set.

The caller must hold the GIL.
Added in version 3.7.

PyObject *PyInterpreterState_GetDict (PylnterpreterState *interp)

Parte del ABI Stabile dalla versione 3.8. Return a dictionary in which interpreter-specific data may be stored.
If this function returns NULL then no exception has been raised and the caller should assume no interpreter-
specific dict is available.

This is not a replacement for PyModule GetState (), which extensions should use to store interpreter-
specific state information.

Added in version 3.8.

PyObject *PyUnstable_InterpreterState_GetMainModule (PylnterpreterState *interp)

Questa pagina AP/ Instabile. Potrebbe cambiare senza preavviso nelle release minori.

Return a strong reference to the __main__ module object for the given interpreter.
The caller must hold the GIL.
Added in version 3.13.

typedef PyObject *(*_PyFrameEvalFunction)(PyThreadState *tstate, _PylnterpreterFrame *frame, int
throwflag)

Type of a frame evaluation function.

The throwflag parameter is used by the throw () method of generators: if non-zero, handle the current
exception.

Cambiato nella versione 3.9: The function now takes a tstate parameter.

Cambiato nella versione 3.11: The frame parameter changed from PyFrameObject* to
_PyInterpreterFrame*.

_PyFrameEvalFunction _PyInterpreterState_GetEvalFrameFunc (PylnterpreterState *interp)
Get the frame evaluation function.

See the PEP 523 «Adding a frame evaluation API to CPython».
Added in version 3.9.

9.5. Thread State and the Global Interpreter Lock 227

https://peps.python.org/pep-0523/

The Python/C API, Release 3.13.7

void _PyInterpreterState_SetEvalFrameFunc (PylnterpreterState *interp, _PyFrameEvalFunction
eval_frame)

Set the frame evaluation function.
See the PEP 523 «Adding a frame evaluation API to CPython».
Added in version 3.9.

PyObject *PyThreadState_GetDict ()

Valore di ritorno: Riferimento preso in prestito. Parte del ABI Stabile. Return a dictionary in which extensions
can store thread-specific state information. Each extension should use a unique key to use to store state in the
dictionary. It is okay to call this function when no current thread state is available. If this function returns NULL,
no exception has been raised and the caller should assume no current thread state is available.

int PyThreadState_SetAsyncExc (unsigned long id, PyObject *exc)

Farte del ABI Stabile. Asynchronously raise an exception in a thread. The id argument is the thread id of the
target thread; exc is the exception object to be raised. This function does not steal any references to exc. To
prevent naive misuse, you must write your own C extension to call this. Must be called with the GIL held.
Returns the number of thread states modified; this is normally one, but will be zero if the thread id isn’t found.
If exc is NULL, the pending exception (if any) for the thread is cleared. This raises no exceptions.

Cambiato nella versione 3.7: The type of the id parameter changed from long to unsigned long.

void PyEval_AcquireThread (PyThreadState *tstate)

Farte del ABI Stabile. Acquire the global interpreter lock and set the current thread state to fstate, which must
not be NULL. The lock must have been created earlier. If this thread already has the lock, deadlock ensues.

© Nota

Calling this function from a thread when the runtime is finalizing will hang the thread until the program
exits, even if the thread was not created by Python. Refer to Cautions regarding runtime finalization for
more details.

Cambiato nella versione 3.8: Updated to be consistent with PyEval RestoreThread(),
Py_END_ALLOW_THREADS (), and PyGILState_FEnsure (), and terminate the current thread if called
while the interpreter is finalizing.

Cambiato nella versione 3.13.7 (unreleased): Hangs the current thread, rather than terminating it, if called
while the interpreter is finalizing.

PyEval_RestoreThread () is a higher-level function which is always available (even when threads have not
been initialized).

void PyEval_ReleaseThread (PyThreadState *tstate)

Farte del ABI Stabile. Reset the current thread state to NULL and release the global interpreter lock. The lock
must have been created earlier and must be held by the current thread. The #state argument, which must not be
NULL, is only used to check that it represents the current thread state — if it isn’t, a fatal error is reported.

PyEval_SaveThread () is a higher-level function which is always available (even when threads have not
been initialized).

9.6 Sub-interpreter support

While in most uses, you will only embed a single Python interpreter, there are cases where you need to create several
independent interpreters in the same process and perhaps even in the same thread. Sub-interpreters allow you to do
that.

The «main» interpreter is the first one created when the runtime initializes. It is usually the only Python interpreter in
a process. Unlike sub-interpreters, the main interpreter has unique process-global responsibilities like signal handling.
It is also responsible for execution during runtime initialization and is usually the active interpreter during runtime
finalization. The PyInterpreterState_Main () function returns a pointer to its state.

228 Capitolo 9. Initialization, Finalization, and Threads

https://peps.python.org/pep-0523/

The Python/C API, Release 3.13.7

You can switch between sub-interpreters using the Py Threadstate_Swap () function. You can create and destroy
them using the following functions:
type PyInterpreterConfig
Structure containing most parameters to configure a sub-interpreter. Its values are used only in
Py_NewInterpreterFromConfig () and never modified by the runtime.
Added in version 3.12.

Structure fields:

int use_main_obmalloc
If this is 0 then the sub-interpreter will use its own «object» allocator state. Otherwise it will use (share)
the main interpreter’s.

If this is 0 then check_multi_interp_extensions mustbe 1 (non-zero). If this is 1 then gi 1 must
notbe PyInterpreterConfig OWN_GIL.

int allow_fork
If this is 0 then the runtime will not support forking the process in any thread where the sub-interpreter
is currently active. Otherwise fork is unrestricted.

Note that the subprocess module still works when fork is disallowed.

int allow_exec
If this is 0 then the runtime will not support replacing the current process via exec (e.g. os.execv ())
in any thread where the sub-interpreter is currently active. Otherwise exec is unrestricted.

Note that the subprocess module still works when exec is disallowed.

int allow_threads
If this is 0 then the sub-interpreter’s threading module won’t create threads. Otherwise threads are
allowed.

int allow_daemon_threads
If this is 0 then the sub-interpreter’s t hreading module won’t create daemon threads. Otherwise daemon
threads are allowed (as long as a11ow_threads is non-zero).

int check_multi_interp_extensions

If this is 0 then all extension modules may be imported, including legacy (single-phase init) modules,
in any thread where the sub-interpreter is currently active. Otherwise only multi-phase init extension
modules (see PEP 489) may be imported. (Also see Py_mod _multiple_interpreters.)

This must be 1 (non-zero) if use_main_obmallocis 0.
int gil
This determines the operation of the GIL for the sub-interpreter. It may be one of the following:

PyInterpreterConfig_ DEFAULT_GIL
Use the default selection (PyInterpreterConfig SHARED_GIL).

PyInterpreterConfig_SHARED_GIL

Use (share) the main interpreter’s GIL.

PyInterpreterConfig_ OWN_GIL
Use the sub-interpreter’s own GIL.
If this is PyInterpreterConfig OWN_GIL then PyInterpreterConfig.use_main_obmalloc
must be 0.
PyStatus Py_NewInterpreterFromConfig (PyThreadState **tstate_p, const PylnterpreterConfig *config)

Create a new sub-interpreter. This is an (almost) totally separate environment for the execution of Python
code. In particular, the new interpreter has separate, independent versions of all imported modules, including
the fundamental modules builtins, __main__ and sys. The table of loaded modules (sys.modules) and
the module search path (sys.path) are also separate. The new environment has no sys . argv variable. It has

9.6. Sub-interpreter support 229

https://peps.python.org/pep-0489/

The Python/C API, Release 3.13.7

new standard I/O stream file objects sys.stdin, sys.stdout and sys . stderr (however these refer to the
same underlying file descriptors).

The given config controls the options with which the interpreter is initialized.

Upon success, tstate_p will be set to the first thread state created in the new sub-interpreter. This thread state
is made in the current thread state. Note that no actual thread is created; see the discussion of thread states
below. If creation of the new interpreter is unsuccessful, tstate_p is set to NULL; no exception is set since the
exception state is stored in the current thread state and there may not be a current thread state.

Like all other Python/C API functions, the global interpreter lock must be held before calling this function
and is still held when it returns. Likewise a current thread state must be set on entry. On success, the returned
thread state will be set as current. If the sub-interpreter is created with its own GIL then the GIL of the calling
interpreter will be released. When the function returns, the new interpreter’s GIL will be held by the current
thread and the previously interpreter’s GIL will remain released here.

Added in version 3.12.

Sub-interpreters are most effective when isolated from each other, with certain functionality restricted:

L

PyInterpreterConfig config = {
.use_main_obmalloc = O,
.allow_fork = 0,
.allow_exec = 0,
.allow_threads = 1,

.allow_daemon_threads = 0,
.check_multi_interp_extensions = 1,
.gil = PyInterpreterConfig_ OWN_GIL,

i

PyThreadState *tstate = NULL;

PyStatus status = Py_NewlInterpreterFromConfig(&tstate, &configqg);

if (PyStatus_Exception(status)) {
Py_ExitStatusException (status);

}

J

Note that the config is used only briefly and does not get modified. During initialization the config’s values are
converted into various Py InterpreterState values. A read-only copy of the config may be stored internally
onthe PyInterpreterState.

Extension modules are shared between (sub-)interpreters as follows:

o For modules using multi-phase initialization, e.g. PyModule_ FromDefAndSpec (), a separate module
object is created and initialized for each interpreter. Only C-level static and global variables are shared
between these module objects.

» For modules using single-phase initialization, e.g. PyModule Create (), the first time a particular ex-
tension is imported, it is initialized normally, and a (shallow) copy of its module’s dictionary is squirreled
away. When the same extension is imported by another (sub-)interpreter, a new module is initialized and
filled with the contents of this copy; the extension’s init function is not called. Objects in the module’s
dictionary thus end up shared across (sub-)interpreters, which might cause unwanted behavior (see Bugs
and caveats below).

Note that this is different from what happens when an extension is imported after the interpreter has
been completely re-initialized by calling Py_FinalizeEx () and Py_Tnitialize ();in that case, the
extension’s initmodule function is called again. As with multi-phase initialization, this means that only
C-level static and global variables are shared between these modules.

PyThreadState *Py_NewInterpreter (void)

Parte del ABI Stabile. Create a new sub-interpreter. This is essentially just a wrapper around
Py _NewInterpreterFromConfig () with a config that preserves the existing behavior. The result is an
unisolated sub-interpreter that shares the main interpreter’s GIL, allows fork/exec, allows daemon threads, and
allows single-phase init modules.

230

Capitolo 9. Initialization, Finalization, and Threads

The Python/C API, Release 3.13.7

void Py_EndInterpreter (PyThreadState *tstate)

Parte del ABI Stabile. Destroy the (sub-)interpreter represented by the given thread state. The given thread state
must be the current thread state. See the discussion of thread states below. When the call returns, the current
thread state is NULL. All thread states associated with this interpreter are destroyed. The global interpreter lock
used by the target interpreter must be held before calling this function. No GIL is held when it returns.

py_FinalizeEx () will destroy all sub-interpreters that haven’'t been explicitly destroyed at that point.

9.6.1 A Per-Interpreter GIL

Using Py _NewInterpreterFromConfig () youcan create a sub-interpreter that is completely isolated from other
interpreters, including having its own GIL. The most important benefit of this isolation is that such an interpreter
can execute Python code without being blocked by other interpreters or blocking any others. Thus a single Python
process can truly take advantage of multiple CPU cores when running Python code. The isolation also encourages a
different approach to concurrency than that of just using threads. (See PEP 554.)

Using an isolated interpreter requires vigilance in preserving that isolation. That especially means not sharing any
objects or mutable state without guarantees about thread-safety. Even objects that are otherwise immutable (e.g.
None, (1, 5))can’t normally be shared because of the refcount. One simple but less-efficient approach around this
is to use a global lock around all use of some state (or object). Alternately, effectively immutable objects (like integers
or strings) can be made safe in spite of their refcounts by making them immortal. In fact, this has been done for the
builtin singletons, small integers, and a number of other builtin objects.

If you preserve isolation then you will have access to proper multi-core computing without the complications that
come with free-threading. Failure to preserve isolation will expose you to the full consequences of free-threading,
including races and hard-to-debug crashes.

Aside from that, one of the main challenges of using multiple isolated interpreters is how to communicate between
them safely (not break isolation) and efficiently. The runtime and stdlib do not provide any standard approach to
this yet. A future stdlib module would help mitigate the effort of preserving isolation and expose effective tools for
communicating (and sharing) data between interpreters.

Added in version 3.12.

9.6.2 Bugs and caveats

Because sub-interpreters (and the main interpreter) are part of the same process, the insulation between them isn’t
perfect — for example, using low-level file operations like os.close () they can (accidentally or maliciously) affect
each other’s open files. Because of the way extensions are shared between (sub-)interpreters, some extensions may not
work properly; this is especially likely when using single-phase initialization or (static) global variables. It is possible
to insert objects created in one sub-interpreter into a namespace of another (sub-)interpreter; this should be avoided
if possible.

Special care should be taken to avoid sharing user-defined functions, methods, instances or classes between sub-
interpreters, since import operations executed by such objects may affect the wrong (sub-)interpreter’s dictionary of
loaded modules. It is equally important to avoid sharing objects from which the above are reachable.

Also note that combining this functionality with PyGILState_* APIs is delicate, because these APIs assume a bi-
jection between Python thread states and OS-level threads, an assumption broken by the presence of sub-interpreters.
It is highly recommended that you don’t switch sub-interpreters between a pair of matching PyGTILState_Ensure ()
and PyGILState_Release () calls. Furthermore, extensions (such as ctypes) using these APIs to allow calling
of Python code from non-Python created threads will probably be broken when using sub-interpreters.

9.7 Asynchronous Notifications

A mechanism is provided to make asynchronous notifications to the main interpreter thread. These notifications take
the form of a function pointer and a void pointer argument.

int Py_AddPendingCall (int (*func)(void*), void *arg)

Farte del ABI Stabile. Schedule a function to be called from the main interpreter thread. On success, 0 is

9.7. Asynchronous Notifications 231

https://peps.python.org/pep-0554/

The Python/C API, Release 3.13.7

returned and func is queued for being called in the main thread. On failure, -1 is returned without setting any
exception.

When successfully queued, func will be eventually called from the main interpreter thread with the argu-
ment arg. It will be called asynchronously with respect to normally running Python code, but with both these
conditions met:

e on a bytecode boundary;
« with the main thread holding the global interpreter lock (func can therefore use the full C API).

func must return 0 on success, or —1 on failure with an exception set. func won’t be interrupted to perform
another asynchronous notification recursively, but it can still be interrupted to switch threads if the global
interpreter lock is released.

This function doesn’t need a current thread state to run, and it doesn’t need the global interpreter lock.

To call this function in a subinterpreter, the caller must hold the GIL. Otherwise, the function func can be
scheduled to be called from the wrong interpreter.

A\ Avvertimento

This is a low-level function, only useful for very special cases. There is no guarantee that func will be
called as quick as possible. If the main thread is busy executing a system call, func won’t be called before
the system call returns. This function is generally not suitable for calling Python code from arbitrary C
threads. Instead, use the PyGILState API.

Added in version 3.1.

Cambiato nella versione 3.9: If this function is called in a subinterpreter, the function func is now scheduled to
be called from the subinterpreter, rather than being called from the main interpreter. Each subinterpreter now
has its own list of scheduled calls.

9.8 Profiling and Tracing

The Python interpreter provides some low-level support for attaching profiling and execution tracing facilities. These
are used for profiling, debugging, and coverage analysis tools.

This C interface allows the profiling or tracing code to avoid the overhead of calling through Python-level callable
objects, making a direct C function call instead. The essential attributes of the facility have not changed; the interface
allows trace functions to be installed per-thread, and the basic events reported to the trace function are the same as
had been reported to the Python-level trace functions in previous versions.

typedef int (*Py_tracefunc)(PyObject *obj, PyFrameObject *frame, int what, PyObject *arg)

The type of the trace function registered using PyEval SetProfile() and PyEval_ SetTrace().
The first parameter is the object passed to the registration function as obj, frame is the frame ob-
ject to which the event pertains, what is one of the constants PyTrace CALL, PyTrace EXCEPTION,
PyTrace_ LINE, PyTrace_RETURN, PyTrace_C_CALL,PyTrace_C_EXCEPTION, PyTrace_C_RETURN,
or PyTrace_OPCODE, and arg depends on the value of what:

Value of what Meaning of arg

PyTrace_CALL Always Py _None.

PyTrace EXCEPTION Exception information as returned by sys.exc_info ().
PyTrace_LINE Always Py_None.

PyTrace_RETURN Value being returned to the caller, or NULL if caused by an exception.
PyTrace_C_CALL Function object being called.

PyTrace_C_EXCEPTION Function object being called.

PyTrace_C_RETURN Function object being called.

PyTrace_OPCODE Always Py_None.

232

Capitolo 9. Initialization, Finalization, and Threads

The Python/C API, Release 3.13.7

int PyTrace_CALL
The value of the what parameter to a Pyt racefunc function when a new call to a function or method is
being reported, or a new entry into a generator. Note that the creation of the iterator for a generator function
is not reported as there is no control transfer to the Python bytecode in the corresponding frame.

int PyTrace_EXCEPTION

The value of the what parameter toa Py_ t race func function when an exception has been raised. The callback
function is called with this value for what when after any bytecode is processed after which the exception
becomes set within the frame being executed. The effect of this is that as exception propagation causes the
Python stack to unwind, the callback is called upon return to each frame as the exception propagates. Only
trace functions receives these events; they are not needed by the profiler.

int PyTrace_LINE

The value passed as the what parameter to a Py_tracefunc function (but not a profiling function) when a
line-number event is being reported. It may be disabled for a frame by setting £_trace_lines to 0 on that
frame.

int PyTrace_RETURN
The value for the what parameter to Py_t race func functions when a call is about to return.

int PyTrace_C_CALL
The value for the what parameter to Py_t race func functions when a C function is about to be called.

int PyTrace_C_EXCEPTION
The value for the what parameter to Py_tracerfunc functions when a C function has raised an exception.

int PyTrace_C_RETURN
The value for the what parameter to Py_tracerfunc functions when a C function has returned.

int PyTrace_OPCODE
The value for the what parameter to Py_t racefunc functions (but not profiling functions) when a new op-
code is about to be executed. This event is not emitted by default: it must be explicitly requested by setting
f_trace_opcodes to I on the frame.

void PyEval_SetProfile (Py_tracefunc func, PyObject *obj)
Set the profiler function to func. The obj parameter is passed to the function as its first parameter, and may
be any Python object, or NULL. If the profile function needs to maintain state, using a different value for obj

for each thread provides a convenient and thread-safe place to store it. The profile function is called for all
monitored events except PyTrace LINE PyTrace_OPCODE and PyTrace_EXCEPTION.

See also the sys.setprofile () function.
The caller must hold the GIL.

void PyEval_SetProfileAllThreads (Py_tracefunc func, PyObject *obj)

Like PyEval SetpProfile () but sets the profile function in all running threads belonging to the current
interpreter instead of the setting it only on the current thread.

The caller must hold the GIL.

As PyEval_SetProfile (), this function ignores any exceptions raised while setting the profile functions in
all threads.

Added in version 3.12.

void PyEval_SetTrace (Py_tracefunc func, PyObject *obj)

Set the tracing function to func. This is similar to PyEval_SetProfile (), except the tracing function does
receive line-number events and per-opcode events, but does not receive any event related to C function objects
being called. Any trace function registered using PyEval_ SetTrace () will not receive PyTrace C_CALL,
PyTrace_C_EXCEPTION or PyTrace C_RETURN as a value for the what parameter.

See also the sys.settrace () function.

The caller must hold the GIL.

9.8. Profiling and Tracing 233

The Python/C API, Release 3.13.7

void PyEval_SetTraceAllThreads (Py_tracefunc func, PyObject *obj)

Like pyEval SetTrace () but sets the tracing function in all running threads belonging to the current
interpreter instead of the setting it only on the current thread.

The caller must hold the GIL.

As PyEval_ SetTrace (), this function ignores any exceptions raised while setting the trace functions in all
threads.

Added in version 3.12.

9.9 Reference tracing

Added in version 3.13.

typedef int (*PyRefTracer)(PyObject*, int event, void *data)

The type of the trace function registered using PyRe fTracer SetTracer (). The first parameter is a Python
object that has been just created (when event is set to PyRe fTracer_CREATE) or about to be destroyed (when
event is set to PyRefTracer DESTROY). The data argument is the opaque pointer that was provided when
PyRefTracer SetTracer () was called.

Added in version 3.13.

int PyRefTracer CREATE

The value for the event parameter to PyRe £ Tracer functions when a Python object has been created.
int PyRefTracer_DESTROY
The value for the event parameter to PyRe fTracer functions when a Python object has been destroyed.

int PyRefTracer_SetTracer (PyRefTracer tracer, void *data)

Register a reference tracer function. The function will be called when a new Python has been created or when
an object is going to be destroyed. If data is provided it must be an opaque pointer that will be provided when
the tracer function is called. Return 0 on success. Set an exception and return —1 on error.

Not that tracer functions must not create Python objects inside or otherwise the call will be re-entrant. The
tracer also must not clear any existing exception or set an exception. The GIL will be held every time the
tracer function is called.

The GIL must be held when calling this function.
Added in version 3.13.

PyRefTracer PyRefTracer_GetTracer (void **data)

Get the registered reference tracer function and the value of the opaque data pointer that was registered when
PyRefTracer SetTracer () was called. If no tracer was registered this function will return NULL and will
set the data pointer to NULL.

The GIL must be held when calling this function.
Added in version 3.13.

9.10 Advanced Debugger Support

These functions are only intended to be used by advanced debugging tools.

PylnterpreterState *PyInterpreterState_Head ()

Return the interpreter state object at the head of the list of all such objects.
PylnterpreterState *PyInterpreterState_Main ()

Return the main interpreter state object.

PylnterpreterState *PyInterpreterState_Next (PylnterpreterState *interp)

Return the next interpreter state object after interp from the list of all such objects.

234 Capitolo 9. Initialization, Finalization, and Threads

The Python/C API, Release 3.13.7

PyThreadState *PyInterpreterState_ThreadHead (PylnterpreterState *interp)
Return the pointer to the first PyThreadState object in the list of threads associated with the interpreter
interp.

PyThreadState *PyThreadState_Next (PyThreadState *tstate)

Return the next thread state object after tstate from the list of all such objects belonging to the same
PyInterpreterState object.

9.11 Thread Local Storage Support

The Python interpreter provides low-level support for thread-local storage (TLS) which wraps the underlying native
TLS implementation to support the Python-level thread local storage API (threading.local). The CPython C
level APIs are similar to those offered by pthreads and Windows: use a thread key and functions to associate a void*
value per thread.

The GIL does not need to be held when calling these functions; they supply their own locking.

Note that Python.h does not include the declaration of the TLS APIs, you need to include pythread.h to use
thread-local storage.

© Nota

None of these API functions handle memory management on behalf of the void* values. You need to allocate
and deallocate them yourself. If the void* values happen to be Pyobject*, these functions don’t do refcount
operations on them either.

9.11.1 Thread Specific Storage (TSS) API

TSS API is introduced to supersede the use of the existing TLS API within the CPython interpreter. This API uses
anew type Py_tss_t instead of int to represent thread keys.

Added in version 3.7.

> Vedi anche
«A New C-API for Thread-Local Storage in CPython» (PEP 539)

type Py_tss_t
This data structure represents the state of a thread key, the definition of which may depend on the underlying
TLS implementation, and it has an internal field representing the key’s initialization state. There are no public
members in this structure.

When Py_LIMITED_API is not defined, static allocation of this type by Py _tss_NEEDS_INIT is allowed.

Py_tss_NEEDS_INIT

This macro expands to the initializer for Py_tss_t variables. Note that this macro won’t be defined with
Py_LIMITED_API.

Dynamic Allocation

Dynamic allocation of the Py tss_t, required in extension modules built with Py_LIMITED_API, where static
allocation of this type is not possible due to its implementation being opaque at build time.
Py_tss_t *PyThread_tss_alloc ()

Parte del ABI Stabile dalla versione 3.7. Return a value which is the same state as a value initialized with
Py_tss_NEEDS_INIT, or NULL in the case of dynamic allocation failure.

9.11. Thread Local Storage Support 235

https://peps.python.org/pep-0539/

The Python/C API, Release 3.13.7

void PyThread_tss_free (Py_fss_t *key)

Farte del ABI Stabile dalla versione 3.7. Free the given key allocated by Py Thread tss_alloc (), after first
calling PyThread tss_delete () to ensure any associated thread locals have been unassigned. This is a
no-op if the key argument is NULL.

© Nota

A freed key becomes a dangling pointer. You should reset the key to NULL.

Methods

The parameter key of these functions must not be NULL. Moreover, the behaviors of PyThread tss_set ()

and PyThread tss_get () are undefined if the given Py tss t has not been initialized by

PyThread_tss_create().

int PyThread_tss_is_created (Py_fss_t *key)
Parte del ABI Stabile dalla versione 3.7. Return a non-zero value if the given Py_tss_t has been initialized
by PyThread_tss_create ().

int PyThread_tss_create (Py_fss_t *key)
Parte del ABI Stabile dalla versione 3.7. Return a zero value on successful initialization of a TSS key. The
behavior is undefined if the value pointed to by the key argument is not initialized by Py_tss_NEEDS_ INIT.
This function can be called repeatedly on the same key - calling it on an already initialized key is a no-op and
immediately returns success.

void PyThread_tss_delete (Py_fss_t *key)
Farte del ABI Stabile dalla versione 3.7. Destroy a TSS key to forget the values associated with the key across
all threads, and change the key’s initialization state to uninitialized. A destroyed key is able to be initialized
again by PyThread_tss_create (). This function can be called repeatedly on the same key — calling it on
an already destroyed key is a no-op.

int PyThread_tss_set (Py_fss_t *key, void *value)
Parte del ABI Stabile dalla versione 3.7. Return a zero value to indicate successfully associating a void* value
with a TSS key in the current thread. Each thread has a distinct mapping of the key to a void* value.

void *PyThread_tss_get (Py_tss_t *key)

Farte del ABI Stabile dalla versione 3.7. Return the void* value associated with a TSS key in the current
thread. This returns NULL if no value is associated with the key in the current thread.

9.11.2 Thread Local Storage (TLS) API
Deprecato dalla versione 3.7: This API is superseded by Thread Specific Storage (TSS) API.

O Nota

This version of the API does not support platforms where the native TLS key is defined in a way that cannot be
safely cast to int. On such platforms, PyThread create_key () will return immediately with a failure status,
and the other TLS functions will all be no-ops on such platforms.

Due to the compatibility problem noted above, this version of the API should not be used in new code.

int PyThread_create_key ()
Parte del ABI Stabile.

void PyThread_delete_key (int key)
Parte del ABI Stabile.

236 Capitolo 9. Initialization, Finalization, and Threads

The Python/C API, Release 3.13.7

int PyThread_set_key_value (int key, void *value)
Parte del ABI Stabile.

void *PyThread_get_key_value (int key)
Parte del ABI Stabile.

void PyThread_delete_key_value (int key)
Parte del ABI Stabile.

void PyThread_ReInitTLS ()
Parte del ABI Stabile.

9.12 Synchronization Primitives

The C-API provides a basic mutual exclusion lock.

type PyMutex

A mutual exclusion lock. The PyMutex should be initialized to zero to represent the unlocked state. For
example:

[PyMutex mutex = {0}; }

Instances of PyMutex should not be copied or moved. Both the contents and address of a PyMutex are
meaningful, and it must remain at a fixed, writable location in memory.

© Nota

A PyMutex currently occupies one byte, but the size should be considered unstable. The size may change
in future Python releases without a deprecation period.

Added in version 3.13.

void PyMutex_Lock (PyMutex *m)
Lock mutex m. If another thread has already locked it, the calling thread will block until the mutex is unlocked.
While blocked, the thread will temporarily release the GIL if it is held.
Added in version 3.13.

void PyMutex_Unlock (PyMutex *m)
Unlock mutex m. The mutex must be locked — otherwise, the function will issue a fatal error.

Added in version 3.13.

9.12.1 Python Critical Section API

The critical section API provides a deadlock avoidance layer on top of per-object locks for free-threaded CPython.
They are intended to replace reliance on the global interpreter lock, and are no-ops in versions of Python with the
global interpreter lock.

Critical sections are intended to be used for custom types implemented in C-API extensions. They should generally
not be used with built-in types like 1ist and dict because their public C-APIs already use critical sections internally,
with the notable exception of PyDict_Next (), which requires critical section to be acquired externally.

Critical sections avoid deadlocks by implicitly suspending active critical sections, hence, they do not provide exclusive
access such as provided by traditional locks like PyMutex. When a critical section is started, the per-object lock for
the object is acquired. If the code executed inside the critical section calls C-API functions then it can suspend the
critical section thereby releasing the per-object lock, so other threads can acquire the per-object lock for the same
object.

9.12. Synchronization Primitives 237

The Python/C API, Release 3.13.7

The functions and structs used by the macros are exposed for cases where C macros are not available. They should
only be used as in the given macro expansions. Note that the sizes and contents of the structures may change in future
Python versions.

O Nota

Operations that need to lock two objects at once must use Py_BEGIN_CRITICAI_SECTIONZ. You cannot use
nested critical sections to lock more than one object at once, because the inner critical section may suspend the
outer critical sections. This API does not provide a way to lock more than two objects at once.

Example usage:

static PyObject *
set_field (MyObject *self, PyObject *value)
{
Py_BEGIN_CRITICAL_SECTION (self);
Py_SETREF (self->field, Py_XNewRef (value));
Py_END_CRITICAL_SECTION() ;
Py_RETURN_NONE;

J

In the above example, Py_SETREF calls Py_DECREF, which can call arbitrary code through an object’s deallo-
cation function. The critical section API avoids potential deadlocks due to reentrancy and lock ordering by allo-
wing the runtime to temporarily suspend the critical section if the code triggered by the finalizer blocks and calls
PyEval_SaveThread().

Py_BEGIN_CRITICAL_SECTION (0p)

Acquires the per-object lock for the object op and begins a critical section.

In the free-threaded build, this macro expands to:

{
PyCriticalSection _py_cs;
PyCriticalSection_Begin (&_py_cs, (PyObject*) (op))

In the default build, this macro expands to {.
Added in version 3.13.

Py_END_CRITICAL_SECTION ()

Ends the critical section and releases the per-object lock.

In the free-threaded build, this macro expands to:

PyCriticalSection_End(&_py_cs);

In the default build, this macro expands to }.
Added in version 3.13.

Py_BEGIN_CRITICAL_SECTION2 (3, b)

Acquires the per-objects locks for the objects a and b and begins a critical section. The locks are acquired in
a consistent order (lowest address first) to avoid lock ordering deadlocks.

In the free-threaded build, this macro expands to:

{
PyCriticalSection2 _py_cs2;
PyCriticalSection2_Begin (&_py_cs2, (PyObject*) (a), (PyObject*) (b))

238 Capitolo 9. Initialization, Finalization, and Threads

The Python/C API, Release 3.13.7

In the default build, this macro expands to {.
Added in version 3.13.

Py_END_CRITICAL_SECTION2 ()

Ends the critical section and releases the per-object locks.

In the free-threaded build, this macro expands to:

PyCriticalSection2_End(&_py_cs2);
}

In the default build, this macro expands to }.

Added in version 3.13.

9.12. Synchronization Primitives

239

The Python/C API, Release 3.13.7

240 Capitolo 9. Initialization, Finalization, and Threads

capitoLo 10

Python Initialization Configuration

Added in version 3.8.

Python can be initialized with Py_TnitializeFromConfig () andthe PyConfig structure. It can be preinitialized
with Py_Prelnitialize () and the PyPreConfig structure.

There are two kinds of configuration:

o The Python Configuration can be used to build a customized Python which behaves as the regular Python. For
example, environment variables and command line arguments are used to configure Python.

« The Isolated Configuration can be used to embed Python into an application. It isolates Python from the system.
For example, environment variables are ignored, the LC_CTYPE locale is left unchanged and no signal handler
is registered.

The Py_RunMain () function can be used to write a customized Python program.

See also Initialization, Finalization, and Threads.

> Vedi anche

PEP 587 «Python Initialization Configuration».

10.1 Example

Example of customized Python always running in isolated mode:

int main(int argc, char **argv)
{
PyStatus status;

PyConfig config;
PyConfig_InitPythonConfig(&confiqg);
config.isolated = 1;

/* Decode command line arguments.
Implicitly preinitialize Python (in isolated mode). */
status = PyConfig_SetBytesArgv (&config, argc, argv);

(continues on next page)

241

https://peps.python.org/pep-0587/

The Python/C API, Release 3.13.7

(continua dalla pagina precedente)

if (PyStatus_Exception (status)) {
goto exception;

status = Py_InitializeFromConfig(&config);
if (PyStatus_Exception (status)) {
goto exception;
}
PyConfig_Clear (&configqg);

return Py_RunMain () ;

exception:

PyConfig_Clear (&configqg) ;

if (PyStatus_IsExit (status)) {
return status.exitcode;

}

/* Display the error message and exit the process with
non-zero exit code */

Py_ExitStatusException (status);

10.2 PyWideStringList

type PyWideStringList

List of wchar_t* strings.
If length is non-zero, items must be non-NULL and all strings must be non-NULL.
Methods:

PyStatus PyWideStringList_Append (PyWideStringList *1ist, const wchar_t *item)
Append item to list.

Python must be preinitialized to call this function.

PyStatus PyWideStringList_Insert (PyWideStringList *list, Py_ssize_t index, const wchar_t *item)
Insert item into list at index.
If index is greater than or equal to list length, append item to list.
index must be greater than or equal to 0.
Python must be preinitialized to call this function.
Structure fields:
Py_ssize_t length
List length.

wchar_t **items

List items.

10.3 PyStatus

type PyStatus

Structure to store an initialization function status: success, error or exit.

For an error, it can store the C function name which created the error.

242

Capitolo 10. Python Initialization Configuration

The Python/C API, Release 3.13.7

Structure fields:

int exitcode

Exit code. Argument passed to exit ().

const char *err_msg

Error message.

const char *func

Name of the function which created an error, can be NULL.

Functions to create a status:

PyStatus PyStatus_0k (void)
Success.

PyStatus PyStatus_Error (const char *err_msg)

Initialization error with a message.
err_msg must not be NULL.

PyStatus PyStatus_NoMemory (void)

Memory allocation failure (out of memory).

PyStatus PyStatus_Exit (int exitcode)
Exit Python with the specified exit code.

Functions to handle a status:

int PyStatus_Exception (PyStatus status)

Is the status an error or an exit? If true, the exception must be handled; by -calling

Py_ExitStatusException () for example.

int PyStatus_IsError (PyStatus status)
Is the result an error?

int PyStatus_IsExit (PyStatus status)
Is the result an exit?

void Py_ExitStatusException (PyStatus status)

Call exit (exitcode) if status is an exit. Print the error message and exit with a non-zero exit code if
status is an error. Must only be called if PyStatus_Exception (status) is non-zero.

O Nota

Internally, Python uses macros which set PyStatus. func, whereas functions to create a status set func to

NULL.

Example:

PyStatus alloc(void **ptr, size_t size)
{
*ptr = PyMem RawMalloc (size);
if (*ptr == NULL) {
return PyStatus_NoMemory () ;

}
return PyStatus_Ok () ;

int main (int argc, char **argv)

{

(continues on next page)

10.3. PyStatus

243

The Python/C API, Release 3.13.7

(continua dalla pagina precedente)

void *ptr;
PyStatus status = alloc (&ptr, 16);
if (PyStatus_Exception (status)) {

Py_ExitStatusException (status);
}
PyMem_Free (ptr);
return 0O;

10.4 PyPreConfig

type PyPreConfig
Structure used to preinitialize Python.

Function to initialize a preconfiguration:

void PyPreConfig_InitPythonConfig (PyPreConfig *preconfig)

Initialize the preconfiguration with Python Configuration.

void PyPreConfig_InitIsolatedConfig (PyPreConfig *preconfig)

Initialize the preconfiguration with Isolated Configuration.
Structure fields:

int allocator

Name of the Python memory allocators:
e PYMEM ALLOCATOR_NOT_SET (0): don’t change memory allocators (use defaults).
e PYMEM_ALLOCATOR_DEFAULT (1): default memory allocators.
e PYMEM_ALLOCATOR_DEBUG (2): default memory allocators with debug hooks.
e PYMEM_ALLOCATOR_MALLOC (3): use malloc () of the C library.
e PYMEM_ ALLOCATOR_MALLOC_DEBUG (4): force usage of malloc () with debug hooks.
e PYMEM_ALLOCATOR_PYMALLOC (5): Python pymalloc memory allocator.
e PYMEM_ALLOCATOR_PYMALLOC_DEBUG (6): Python pymalloc memory allocator with debug hooks.
e PYMEM ALLOCATOR_MIMALLOC (6): use mimalloc, a fast malloc replacement.

e PYMEM_ ALLOCATOR_MIMALLOC_DEBUG (7):use mimalloc, a fast malloc replacement with debug
hooks.

PYMEM_ALLOCATOR_PYMALLOC and PYMEM_ALLOCATOR_PYMALLOC_DEBUG are not supported if
Python is configured using —-without-pymalloc.

PYMEM_ALLOCATOR_MIMALLOC and PYMEM ALLOCATOR_MIMALLOC_DEBUG are not supported if
Python is configured using —--without-mimalloc or if the underlying atomic support isn’t
available.

See Memory Management.
Default: PYMEM_ALLOCATOR_NOT_SET.

int configure_locale

Set the LC_CTYPE locale to the user preferred locale.
If equals to 0, set coerce_c_localeand coerce_c_locale_warn members to 0.
See the locale encoding.

Default: 1 in Python config, 0 in isolated config.

244 Capitolo 10. Python Initialization Configuration

The Python/C API, Release 3.13.7

int coerce_c_locale

If equals to 2, coerce the C locale.

If equals to 1, read the LC_CTYPE locale to decide if it should be coerced.
See the locale encoding.

Default: -1 in Python config, 0 in isolated config.

int coerce_c_locale_warn

If non-zero, emit a warning if the C locale is coerced.
Default: -1 in Python config, 0 in isolated config.

int dev_mode

Python Development Mode: see PyConfig.dev_mode.
Default: -1 in Python mode, 0 in isolated mode.

int isolated

Isolated mode: see PyConfig.isolated.
Default: 0 in Python mode, 1 in isolated mode.

int legacy_windows_fs_encoding

If non-zero:
e Set PyPreConfig.utf8_modeto 0,
e Set PyConfig.filesystem_encoding to "mbcs",
e Set PyConfig.filesystem errorsto "replace".

Initialized from the PYTHONLEGACYWINDOWSFSENCODING environment variable value.

Only available on Windows. #ifdef MS_WINDOWS macro can be used for Windows specific code.

Default: 0.

int parse_argv

If non-zero, Py_PrelnitializeFromArgs () and Py_PrelnitializeFromBytesArgs () parse
their argv argument the same way the regular Python parses command line arguments: see Command

Line Arguments.
Default: 1 in Python config, 0 in isolated config.

int use_environment

Use environment variables? See PyConfig.use_environment.
Default: 1 in Python config and 0 in isolated config.

int ut £8_mode
If non-zero, enable the Python UTF-8 Mode.

Set to 0 or 1 by the -x ut£8 command line option and the PYTHONUTF 8 environment variable.

Also set to 1 if the LC_CTYPE locale is C or POSIX.

Default: -1 in Python config and 0 in isolated config.

10.5 Preinitialize Python with PyPreConfig

The preinitialization of Python:
« Set the Python memory allocators (PyPreConfig.allocator)
o Configure the LC_CTYPE locale (locale encoding)

« Set the Python UTF-8 Mode (PyPreConfig.ut£8_mode)

10.5. Preinitialize Python with PyPreConfig

245

The Python/C API, Release 3.13.7

The current preconfiguration (PyPreConfig type) is stored in _PyRuntime.preconfig.
Functions to preinitialize Python:

PyStatus Py_PreInitialize (const PyPreConfig *preconfig)
Preinitialize Python from preconfig preconfiguration.

preconfig must not be NULL.

PyStatus Py_PreInitializeFromBytesArgs (const PyPreConfig *preconfig, int arge, char *const *argv)

Preinitialize Python from preconfig preconfiguration.
Parse argv command line arguments (bytes strings) if parse_argv of preconfig is non-zero.
preconfig must not be NULL.

PyStatus Py_PreInitializeFromArgs (const PyPreConfig *preconfig, int argc, wchar_t *const *argv)
Preinitialize Python from preconfig preconfiguration.

Parse argv command line arguments (wide strings) if parse_argv of preconfig is non-zero.
preconfig must not be NULL.

The caller is responsible to handle exceptions (error or exit) using PyStatus Exception() and
Py _ExitStatusException().

For Python Configuration (PyPreConfig_InitPythonConfig ()),if Python is initialized with command line ar-
guments, the command line arguments must also be passed to preinitialize Python, since they have an effect on the
pre-configuration like encodings. For example, the -X ut £8 command line option enables the Python UTF-8 Mode.

PyMem_SetAllocator () can be called after Py _PrelInitialize() and before
Py_InitializeFromConfig() to install a custom memory allocator. It can be called before
Py Prelnitialize () if PyPreConfig.allocator issetto PYMEM_ALLOCATOR_NOT_SET.

Python memory allocation functions like PyMem RawMalloc () mustnot be used before the Python preinitialization,
whereas calling directly malloc () and free () is always safe. Py_DecodeLocale () must not be called before the
Python preinitialization.

Example using the preinitialization to enable the Python UTF-8 Mode:

PyStatus status;
PyPreConfig preconfig;
PyPreConfig InitPythonConfig (&preconfigqg);

preconfig.utf8_mode = 1;

status = Py_PrelInitialize (&preconfig);

if (PyStatus_Exception(status)) {
Py_ExitStatusException(status);

/* at this point, Python speaks UTF-8 */

Py_Initialize();

/* ... use Python API here ... */
Py_Finalize();

10.6 PyConfig

type PyConfig
Structure containing most parameters to configure Python.

When done, the PyConfig Clear () function must be used to release the configuration memory.

246 Capitolo 10. Python Initialization Configuration

The Python/C API, Release 3.13.7

Structure methods:

void PyConfig_InitPythonConfig (PyConfig *config)

Initialize configuration with the Python Configuration.

void PyConfig_InitIsolatedConfig (PyConfig *config)

Initialize configuration with the Isolated Configuration.

PyStatus PyConfig_SetString (PyConfig *config, wchar_t *const *config_str, const wchar_t *str)

Copy the wide character string st into *config_str.
Preinitialize Python if needed.

PyStatus PyConfig_SetBytesString (PyConfig *config, wchar_t *const *config_str, const char *str)
Decode str using Py_DecodelLocale () and set the result into *config_str.

Preinitialize Python if needed.
PyStatus PyConfig_SetArgv (PyConfig *config, int argc, wchar_t *const *argv)
Set command line arguments (argv member of config) from the argv list of wide character strings.

Preinitialize Python if needed.

PyStatus PyConfig_SetBytesArgv (PyConfig *config, int argc, char *const *argv)

Set command line arguments (argv member of config) from the argv list of bytes strings. Decode bytes
using Py_DecodeLocale ().

Preinitialize Python if needed.

PyStatus PyConfig_SetWideStringList (PyConfig *config, PyWideStringList *list, Py_ssize_t length,
wchar_t **items)

Set the list of wide strings list to length and items.
Preinitialize Python if needed.
PyStatus PyConfig_Read (PyConfig *config)
Read all Python configuration.
Fields which are already initialized are left unchanged.

Fields for path configuration are no longer calculated or modified when calling this function, as of Python
3.11.

The PyConfig Read() function only parses PyConfig.argv arguments once: PyConfig.
parse_argv is set to 2 after arguments are parsed. Since Python arguments are stripped from
PyConfig.argv, parsing arguments twice would parse the application options as Python options.

Preinitialize Python if needed.

Cambiato nella versione 3.10: The PycConfig.argv arguments are now only parsed once,
PyConfig.parse_argv is set to 2 after arguments are parsed, and arguments are only parsed if
PyConfig.parse_argv equals 1.

Cambiato nella versione 3.11: PyConfig Read () no longer calculates all paths, and so fields listed
under Python Path Configuration may no longer be updated until Py_TnitializeFromConfig () is
called.

void PyConfig_Clear (PyConfig *config)

Release configuration memory.

Most pyConfig methods preinitialize Python if needed. In that case, the Python preinitialization configuration
(pyPreConfig)inbased onthe PyCconfig. If configuration fields which are in common with PyPreConfig
are tuned, they must be set before calling a PyConfig method:

e PyConfig.dev_mode

e PyConfig.isolated

10.6. PyConfig 247

The Python/C API, Release 3.13.7

e PyConfig.parse_argv
e PyConfig.use_environment

Moreover, if PyConfig SetArgv () or PyConfig SetBytesArgv () is used, this method must be cal-
led before other methods, since the preinitialization configuration depends on command line arguments (if
parse_argv 1S NON-ZEro).

The caller of these methods is responsible to handle exceptions (error or exit) using PyStatus_Exception ()
and Py_ExitStatusException().

Structure fields:

PyWideStringList argv
Set sys.argv command line arguments based on argv. These parameters are similar to those passed
to the program’s main () function with the difference that the first entry should refer to the script file to

be executed rather than the executable hosting the Python interpreter. If there isn’t a script that will be
run, the first entry in argv can be an empty string.

Set parse_argv to 1 to parse argv the same way the regular Python parses Python command line
arguments and then to strip Python arguments from argv.

If argv is empty, an empty string is added to ensure that sys . argv always exists and is never empty.
Default: NULL.
See also the orig_argv member.

int safe_path

If equals to zero, Py_RunMain () prepends a potentially unsafe path to sys.path at startup:
e If argv/0jisequal to L"-m" (python —m module), prepend the current working directory.

o If running a script (python script.py), prepend the script’s directory. If it’s a symbolic link,
resolve symbolic links.

» Otherwise (python -c code and python), prepend an empty string, which means the current
working directory.

Set to 1 by the -P command line option and the PYTHONSAFEPATH environment variable.
Default: 0 in Python config, 1 in isolated config.

Added in version 3.11.

wchar_t *base_exec_prefix

sys.base_exec_prefix.

Default: NULL.

Part of the Python Path Configuration output.
See also PyConfig.exec_prefix.

wchar_t *base_executable

Python base executable: sys._base_executable.

Set by the _ PYVENV_LAUNCHER___ environment variable.
Set from PyConfig.executable if NULL.

Default: NULL.

Part of the Python Path Configuration output.

See also PyConfig.executable.

248 Capitolo 10. Python Initialization Configuration

The Python/C API, Release 3.13.7

wchar_t *base_prefix

sys.base_prefix.

Default: NULL.

Part of the Python Path Configuration output.
See also PyConfig.prefix.

int buffered_stdio

If equals to 0 and configure_c_stdio is non-zero, disable buffering on the C streams stdout and
stderr.

Set to 0 by the —u command line option and the PYTHONUNBUFFERED environment variable.
stdin is always opened in buffered mode.
Default: 1.

int bytes_warning

If equals to 1, issue a warning when comparing bytes or bytearray with str, or comparing bytes
with int.

If equal or greater to 2, raise a BytesWarning exception in these cases.
Incremented by the —-b command line option.
Default: 0.

int warn_default_encoding

If non-zero, emit a EncodingWarning warning when io.Text IOWrapper uses its default encoding.
See i0-encoding-warning for details.

Default: 0.
Added in version 3.10.

int code_debug_ranges

If equals to 0, disables the inclusion of the end line and column mappings in code objects. Also disables
traceback printing carets to specific error locations.

Set to 0 by the PYTHONNODEBUGRANGES environment variable and by the -X no_debug_ranges
command line option.

Default: 1.
Added in version 3.11.

wchar_t *check_hash_pycs_mode

Control the validation behavior of hash-based .pyc files: value of the ——check-hash-based-pycs
command line option.

Valid values:
e L"always": Hash the source file for invalidation regardless of value of the “check_source” flag.
e L"never": Assume that hash-based pycs always are valid.
e L"default": The “check_source” flag in hash-based pycs determines invalidation.

Default: L"default".

See also PEP 552 «Deterministic pycs».

int configure_c_stdio

If non-zero, configure C standard streams:
« On Windows, set the binary mode (0_BINARY) on stdin, stdout and stderr.

o If buffered_stdio equals zero, disable buffering of stdin, stdout and stderr streams.

10.6. PyConfig 249

https://peps.python.org/pep-0552/

The Python/C API, Release 3.13.7

o If interactiveisnon-zero, enable stream buffering on stdin and stdout (only stdout on Windows).
Default: 1 in Python config, 0 in isolated config.

int dev_mode

If non-zero, enable the Python Development Mode.
Set to 1 by the -x dev option and the PYTHONDEVMODE environment variable.
Default: -1 in Python mode, 0 in isolated mode.

int dump_refs

Dump Python references?
If non-zero, dump all objects which are still alive at exit.
Set to 1 by the PYTHONDUMPREF'S environment variable.

Needs a special build of Python with the Py TRACE_REFS macro defined: see the configure
—--with-trace-refs option.

Default: 0.

wchar_t *exec_prefix
The site-specific directory prefix where the platform-dependent Python files are installed: sys.

exec_prefix.

Default: NULL.

Part of the Python Path Configuration output.
See also PyConfig.base_exec_prefix.

wchar_t *executable

The absolute path of the executable binary for the Python interpreter: sys.executable.
Default: NULL.

Part of the Python Path Configuration output.

See also PyConfig.base_executable.

int faulthandler
Enable faulthandler?

If non-zero, call faulthandler.enable () at startup.
Setto 1 by -x faulthandler and the PYTHONFAULTHANDLER environment variable.
Default: -1 in Python mode, 0 in isolated mode.

wchar_t *filesystem_encoding

Filesystem encoding: sys.getfilesystemencoding ().
On macOS, Android and VxWorks: use "ut f-8" by default.

On Windows: use "utf-8" by default, or "mbcs" if legacy windows_ fs_encoding of
PyPreConfig is non-zero.

Default encoding on other platforms:
e "utf-8"if PyPreConfig.utf£8 mode is non-zero.

e "ascii" if Python detects that n1_langinfo (CODESET) announces the ASCII encoding,
whereas the mbstowcs () function decodes from a different encoding (usually Latin1).

e "utf-8"if nl_langinfo (CODESET) returns an empty string.

o Otherwise, use the locale encoding: n1_langinfo (CODESET) result.

250

Capitolo 10. Python Initialization Configuration

The Python/C API, Release 3.13.7

At Python startup, the encoding name is normalized to the Python codec name. For example, "ANST_X3.
4-1968" is replaced with "ascii".

See also the filesystem errors member.

wchar_t *filesystem_errors

Filesystem error handler: sys .getfilesystemencodeerrors ().

On Windows: use "surrogatepass" by default, or "replace" if legacy windows_fs_encoding
of PyPreConfig is non-zero.

On other platforms: use "surrogateescape" by default.
Supported error handlers:
e "strict"
e "surrogateescape"
e "surrogatepass" (only supported with the UTF-8 encoding)
See also the filesystem _encoding member.
unsigned long hash_seed
int use_hash_seed
Randomized hash function seed.
If use _hash_seed s zero, a seed is chosen randomly at Python startup, and hash_seed is ignored.
Set by the PYTHONHASHSEED environment variable.
Default use_hash_seed value: —1 in Python mode, 0 in isolated mode.

wchar_t *home

Set the default Python «home» directory, that is, the location of the standard Python libraries (see
PYTHONHOME).

Set by the PYTHONHOME environment variable.
Default: NULL.
Part of the Python Path Configuration input.
int import_time
If non-zero, profile import time.
Set the 1 by the -X importtime option and the PYTHONPROFILEIMPORTTIME environment variable.
Default: 0.
int inspect
Enter interactive mode after executing a script or a command.

If greater than 0, enable inspect: when a script is passed as first argument or the -c option is used, enter
interactive mode after executing the script or the command, even when sys.stdin does not appear to
be a terminal.

Incremented by the —i command line option. Set to 1 if the PYTHONINSPECT environment variable is
non-empty.

Default: 0.

int install_signal_handlers

Install Python signal handlers?

Default: 1 in Python mode, 0 in isolated mode.

10.6. PyConfig 251

The Python/C API, Release 3.13.7

int interactive

If greater than 0, enable the interactive mode (REPL).
Incremented by the —i command line option.
Default: 0.

int int_max_str_digits
Configures the integer string conversion length limitation. An initial value of -1 means the value
will be taken from the command line or environment or otherwise default to 4300 (sys.int_info.
default_max_str_digits). A value of 0 disables the limitation. Values greater than zero but less
than 640 (sys.int_info.str_digits_check_threshold) are unsupported and will produce an
error.

Configured by the -x int_max_str_digits command line flag or the PYTHONINTMAXSTRDIGITS
environment variable.

Default: -1 in Python mode. 4300 (sys.int_info.default_max_str_digits) in isolated mode.

Added in version 3.12.

int cpu_count

If the value of cpu_count is not —1 then it will override the return values of os.cpu_count (), os.
process_cpu_count (), and multiprocessing.cpu_count ().

Configured by the -X cpu_count=n/default command line flag or the PYTHON_CPU_COUNT
environment variable.

Default: -1.
Added in version 3.13.

int isolated

If greater than 0, enable isolated mode:

» Set safe_path to 1: don’t prepend a potentially unsafe path to sys.path at Python startup, such
as the current directory, the script’s directory or an empty string.

e Set use_environment to 0: ignore PYTHON environment variables.
e Set user_site_directory to 0: don’t add the user site directory to sys.path.

« Python REPL doesn’t import readline nor enable default readline configuration on interactive
prompts.

Set to 1 by the - command line option.
Default: 0 in Python mode, 1 in isolated mode.
See also the Isolated Configuration and PyPreConfig. isolated.

int legacy_windows_stdio

If non-zero, use io.FileIO instead of io. _WindowsConsoleIO for sys.stdin, sys.stdout and

sys.stderr.

Set to 1 if the PYTHONLEGACYWINDOWSSTDIO environment variable is set to a non-empty string.
Only available on Windows. #ifdef MS_WINDOWS macro can be used for Windows specific code.
Default: 0.

See also the PEP 528 (Change Windows console encoding to UTF-8).

intmalloc_stats

If non-zero, dump statistics on Python pymalloc memory allocator at exit.
Set to 1 by the PYTHONMALLOCSTATS environment variable.

The option is ignored if Python is configured using the --without-pymalloc option.

252 Capitolo 10. Python Initialization Configuration

https://peps.python.org/pep-0528/

The Python/C API, Release 3.13.7

Default: 0.

wchar_t *platlibdir

Platform library directory name: sys.platlibdir.
Set by the PYTHONPLATLIBDIR environment variable.

Default: value of the PLATLIBDIR macro which is set by the configure --with-platlibdir
option (default: "1ib", or "DLLs" on Windows).

Part of the Python Path Configuration input.
Added in version 3.9.

Cambiato nella versione 3.11: This macro is now used on Windows to locate the standard library extension
modules, typically under DLLs. However, for compatibility, note that this value is ignored for any non-
standard layouts, including in-tree builds and virtual environments.

wchar_t *pythonpath_env
Module search paths (sys.path) as a string separated by DELIM (os.pathsep).

Set by the PYTHONPATH environment variable.
Default: NULL.
Part of the Python Path Configuration input.
PyWideStringList module_search_paths
int module_search_paths_set
Module search paths: sys.path.

If module search paths_set is equal to 0, Py InitializeFromConfig() will replace
module_search_paths and sets module_search_paths_set to 1.

Default: empty list (module_search_paths) and 0 (module_search_paths_set).
Part of the Python Path Configuration output.

int optimization_level

Compilation optimization level:

« 0: Peephole optimizer, set ___debug__ to True.

e 1:Level 0, remove assertions, set __debug__ to False.

o 2: Level 1, strip docstrings.
Incremented by the -0 command line option. Set to the PYTHONOPTIMIZE environment variable value.
Default: 0.

PyWideStringList orig_argv

The list of the original command line arguments passed to the Python executable: sys.orig_argv.

If orig_argv listis empty and argv is not a list only containing an empty string, PyConfig_Read ()
copies argv into orig_argv before modifying argv (if parse_argv is non-zero).

See also the argv member and the Py_GetArgcArgv () function.
Default: empty list.
Added in version 3.10.

int parse_argv

Parse command line arguments?

If equals to 1, parse argv the same way the regular Python parses command line arguments, and strip
Python arguments from argv.

10.6. PyConfig 253

The Python/C API, Release 3.13.7

The PyConfig Read() function only parses PyConfig.argv arguments once: PyConfig.
parse_argv is set to 2 after arguments are parsed. Since Python arguments are stripped from
PyConfig.argv, parsing arguments twice would parse the application options as Python options.

Default: 1 in Python mode, 0 in isolated mode.

Cambiato nella versione 3.10: The PyConfig.argv arguments are now only parsed if PyConfig.
parse_argv equals to 1.

int parser_debug

Parser debug mode. If greater than 0, turn on parser debugging output (for expert only, depending on
compilation options).

Incremented by the —d command line option. Set to the PYTHONDEBUG environment variable value.
Needs a debug build of Python (the Py_DEBUG macro must be defined).
Default: 0.

int pathconfig_warnings

If non-zero, calculation of path configuration is allowed to log warnings into stderr. If equals to 0,
suppress these warnings.

Default: 1 in Python mode, 0 in isolated mode.
Part of the Python Path Configuration input.
Cambiato nella versione 3.11: Now also applies on Windows.

wchar_t *prefix

The site-specific directory prefix where the platform independent Python files are installed: sys .prefix.
Default: NULL.

Part of the Python Path Configuration output.

See also PyConfig.base_prefix.

wchar_t *program_name

Program name used to initialize executable and in early error messages during Python initialization.
¢ On macOS, use PYTHONEXECUTABLE environment variable if set.

o If the WITH_NEXT_FRAMEWORK macro is defined, use _ PYVENV_LAUNCHER___ environment
variable if set.

e Use argv[0] of argv if available and non-empty.

o Otherwise, use L"python" on Windows, or L"python3" on other platforms.
Default: NULL.
Part of the Python Path Configuration input.

wchar_t *pycache_prefix
Directory where cached . pyc files are written: sys.pycache_prefix.

Set by the -xX pycache_prefix=PATH command line option and the PYTHONPYCACHEPREFIX
environment variable. The command-line option takes precedence.

If NULL, sys.pycache_prefix is set to None.
Default: NULL.
int quiet

Quiet mode. If greater than 0, don’t display the copyright and version at Python startup in interactive
mode.

Incremented by the —g command line option.

Default: 0.

254 Capitolo 10. Python Initialization Configuration

The Python/C API, Release 3.13.7

wchar_t *run_command

Value of the —c command line option.
Used by Py_RunMain ().
Default: NULL.

wchar_t *run_filename

Filename passed on the command line: trailing command line argument without —c or -m. It is used by
the Py_RunMain () function.

For example, it is set to script.py by the python3 script.py argcommand line.
See also the PyConfig. skip_source_first_line option.
Default: NULL.

wchar_t *run_module

Value of the -m command line option.
Used by Py_RunMain ().
Default: NULL.

wchar_t *run_presite

package .module path to module that should be imported before site.py is run.

Set by the -X presite=package.module command-line option and the PYTHON_PRESITE
environment variable. The command-line option takes precedence.

Needs a debug build of Python (the Py_DEBUG macro must be defined).
Default: NULL.

int show_ref_count

Show total reference count at exit (excluding immortal objects)?
Setto 1 by -x showrefcount command line option.
Needs a debug build of Python (the Py_REF_DEBUG macro must be defined).
Default: 0.
int site_import
Import the site module at startup?

If equal to zero, disable the import of the module site and the site-dependent manipulations of sys.path
that it entails.

Also disable these manipulations if the site module is explicitly imported later (call site.main () if
you want them to be triggered).

Set to 0 by the -s command line option.
sys.flags.no_site is set to the inverted value of site_ import.
Default: 1.

int skip_source_first_line

If non-zero, skip the first line of the PyConfig. run_filename source.

It allows the usage of non-Unix forms of # ! cmd. This is intended for a DOS specific hack only.
Set to 1 by the -x command line option.

Default: 0.

wchar_t *stdio_encoding

10.6. PyConfig 255

The Python/C API, Release 3.13.7

wchar_t *stdio_errors

Encoding and encoding errors of sys.stdin, sys.stdout and sys.stderr (but sys.stderr
always uses "backslashreplace" error handler).

Use the PYTHONIOENCODING environment variable if it is non-empty.
Default encoding:

e "UTF-8" if PyPreConfig.ut £8_ mode is non-zero.

o Otherwise, use the locale encoding.
Default error handler:

¢ On Windows: use "surrogateescape".

e "surrogateescape" if PyPreConfig.utf8 mode is non-zero, or if the LC_CTYPE locale is
«C» or «POSIX».

e "strict" otherwise.

See also PyConfig. legacy_windows_stdio.

int tracemalloc

Enable tracemalloc?
If non-zero, call tracemalloc.start () atstartup.

Set by -X tracemalloc=N command line option and by the PYTHONTRACEMALLOC environment
variable.

Default: -1 in Python mode, 0 in isolated mode.

int perf_profiling

Enable compatibility mode with the perf profiler?
If non-zero, initialize the perf trampoline. See perf_profiling for more information.

Set by -x perf command-line option and by the PYTHON_PERF_JIT_SUPPORT environment va-
riable for perf support with stack pointers and -X perf_jit command-line option and by the
PYTHON_PERF_JIT_SUPPORT environment variable for perf support with DWARF JIT information.

Default: -1.
Added in version 3.12.

int use_environment

Use environment variables?
If equals to zero, ignore the environment variables.
Set to 0 by the —E environment variable.

Default: 1 in Python config and 0 in isolated config.

int user_site_directory

If non-zero, add the user site directory to sys.path.
Set to 0 by the -s and -I command line options.
Set to 0 by the PYTHONNOUSERSITE environment variable.

Default: 1 in Python mode, 0 in isolated mode.

int verbose

Verbose mode. If greater than 0, print a message each time a module is imported, showing the place
(filename or built-in module) from which it is loaded.

If greater than or equal to 2, print a message for each file that is checked for when searching for a module.
Also provides information on module cleanup at exit.

256

Capitolo 10. Python Initialization Configuration

The Python/C API, Release 3.13.7

Incremented by the —v command line option.
Set by the PYTHONVERBOSE environment variable value.
Default: 0.

PyWideStringList warnoptions
Options of the warnings module to build warnings filters, lowest to highest priority: sys.

warnoptions.

The warnings module adds sys.warnoptions in the reverse order: the last PyConfig.
warnoptions item becomes the first item of warnings.filters which is checked first (highest
priority).

The -w command line options adds its value to warnopt ions, it can be used multiple times.

The PYTHONWARNINGS environment variable can also be used to add warning options. Multiple options
can be specified, separated by commas (,).

Default: empty list.

int write_bytecode

If equal to 0, Python won't try to write . pyc files on the import of source modules.
Set to 0 by the -B command line option and the PYTHONDONTWRITEBY TECODE environment variable.
sys.dont_write_bytecode is initialized to the inverted value of write_bytecode.
Default: 1.
PyWideStringList xoptions
Values of the -x command line options: sys._xoptions.
Default: empty list.

If parse_argv is non-zero, argv arguments are parsed the same way the regular Python parses command line
arguments, and Python arguments are stripped from argv.

The xoptions options are parsed to set other options: see the —x command line option.

Cambiato nella versione 3.9: The show_alloc_count field has been removed.

10.7 Initialization with PyConfig

Initializing the interpreter from a populated configuration struct is handled by calling
Py_InitializeFromConfig().

The caller is responsible to handle exceptions (error or exit) using PyStatus Exception() and
Py ExitStatusException().

If PyImport_FrozenModules (), PyImport_AppendInittab () or PyImport_ExtendInittab () areused,
they must be set or called after Python preinitialization and before the Python initialization. If Python is initiali-
zed multiple times, Py Import_AppendInittab () or PyImport ExtendInittab () must be called before each
Python initialization.

The current configuration (PyConfig type) is stored in PyInterpreterState.config.

Example setting the program name:

void init_python (void)

{
PyStatus status;

PyConfig config;
PyConfig_ InitPythonConfig(&confiqg);

(continues on next page)

10.7. Initialization with PyConfig 257

The Python/C API, Release 3.13.7

(continua dalla pagina precedente)
/* Set the program name. Implicitly preinitialize Python. */
status = PyConfig_ SetString(&config, &config.program_ name,
L"/path/to/my_program") ;
if (PyStatus_Exception(status)) {
goto exception;

status = Py_InitializeFromConfig(&config);
if (PyStatus_Exception (status)) {
goto exception;
}
PyConfig_ Clear (&configqg);
return;

exception:

PyConfig_Clear (&configqg);
Py_ExitStatusException(status);

More complete example modifying the default configuration, read the configuration, and then override some para-
meters. Note that since 3.11, many parameters are not calculated until initialization, and so values cannot be read
from the configuration structure. Any values set before initialize is called will be left unchanged by initialization:

PyStatus init_python (const char *program_name)

{

PyStatus status;

PyConfig config;
PyConfig_InitPythonConfig(&config);

/* Set the program name before reading the configuration
(decode byte string from the locale encoding).

Implicitly preinitialize Python. */
status = PyConfig_ SetBytesString(&config, &config.program_name,
program_name) ;
if (PyStatus_Exception(status)) {
goto done;

/* Read all configuration at once */

status = PyConfig_Read (&confiqg);

if (PyStatus_Exception (status)) {
goto done;

/* Specify sys.path explicitly */

/* If you want to modify the default set of paths, finish
initialization first and then use PySys_GetObject ("path") */

config.module_search_paths_set = 1;

status = PyWideStringList_Append (&config.module_search_paths,

L"/path/to/stdlib") ;

if (PyStatus_Exception(status)) {
goto done;

}

status = PyWideStringList_Append (&config.module_search_paths,

(continues on next page)

258

Capitolo 10. Python Initialization Configuration

The Python/C API, Release 3.13.7

(continua dalla pagina precedente)
L"/path/to/more/modules") ;
if (PyStatus_Exception (status)) {
goto done;

/* Override executable computed by PyConfig_Read() */
status = PyConfig_SetString(&config, &config.executable,
L"/path/to/my_executable") ;
if (PyStatus_Exception (status)) {
goto done;

status = Py_InitializeFromConfig(&config);

done:

PyConfig_Clear (&configqg);
return status;

10.8 Isolated Configuration
PyPreConfigﬁInitIsolatedConfig()andPyConfigfInitIsolatedConfig()ﬂnmﬁonscrmneaconﬁgu—
ration to isolate Python from the system. For example, to embed Python into an application.

This configuration ignores global configuration variables, environment variables, command line arguments
(PyConfig.argv is not parsed) and user site directory. The C standard streams (ex: stdout) and the LC_CTYPE
locale are left unchanged. Signal handlers are not installed.

Configuration files are still used with this configuration to determine paths that are unspecified. Ensure PyConfig.
home is specified to avoid computing the default path configuration.

10.9 Python Configuration
PyPreConfig InitPythonConfig () and PyConfig TInitPythonConfig () functions create a configuration
to build a customized Python which behaves as the regular Python.

Environments variables and command line arguments are used to configure Python, whereas global configuration
variables are ignored.

This function enables C locale coercion (PEP 538) and Python UTF-8 Mode (PEP 540) depending on the
LC_CTYPE locale, PYTHONUTF8 and PYTHONCOERCECLOCALE environment variables.

10.10 Python Path Configuration

PyConfig contains multiple fields for the path configuration:
« Path configuration inputs:
— PyConfig.home
— PyConfig.platlibdir
- PyConfig.pathconfig _warnings
— PyConfig.program_name
— PyConfig.pythonpath_env

- current working directory: to get absolute paths

10.8. Isolated Configuration 259

https://peps.python.org/pep-0538/
https://peps.python.org/pep-0540/

The Python/C API, Release 3.13.7

- PATH environment variable to get the program full path (from PyConfig.program name)
— __ PYVENV_LAUNCHER___ environment variable

- (Windows only) Application paths in the registry under «SoftwarePythonPythonCoreX.YPythonPath»
of HKEY_CURRENT_USER and HKEY_LOCAL_MACHINE (where X.Y is the Python version).

« Path configuration output fields:
— PyConfig.base_exec_prefix
— PyConfig.base_executable
— PyConfig.base_prefix
— PyConfig.exec_prefix
- PyConfig.executable
— PyConfig.module_search_paths_set, PyConfig.module_search_paths
- PyConfig.prefix

If at least one «output field» is not set, Python calculates the path configuration to fill unset
fields. If module_search paths_set 1is equal to 0, module_search_paths 1is overridden and
module_search_paths_set issetto 1.

It is possible to completely ignore the function calculating the default path configuration by setting explicitly all path
configuration output fields listed above. A string is considered as set even if it is non-empty. module_search_paths
is considered as set if module_search_paths_set is set to 1. In this case, module_search_paths will be used
without modification.

Set pathconfig warnings to 0 to suppress warnings when calculating the path configuration (Unix only, Windows
does not log any warning).

If base_prefixorbase_exec_prefixfields are not set, they inherit their value from prefixand exec_prefix
respectively.

Py_RunMain () and Py_Main () modify sys.path:

e If run_filename is set and is a directory which contains a __main__.py script, prepend run_filename
to sys.path.

o If isolatedis zero:

- If run_module is set, prepend the current directory to sys.path. Do nothing if the current directory
cannot be read.

- If run_filename is set, prepend the directory of the filename to sys.path.
- Otherwise, prepend an empty string to sys.path.

If site_import is non-zero, sys.path can be modified by the site module. If user site directory is
non-zero and the user’s site-package directory exists, the site module appends the user’s site-package directory to
sys.path.

The following configuration files are used by the path configuration:
e pyvenv.cfg
e ._pthfile (ex: python._pth)
e pybuilddir.txt (Unix only)
If a . _pth file is present:
e Set isolatedto 1.
e Set use _environment to 0.
e Set site_import to 0.

o Set safe_pathto 1.

260 Capitolo 10. Python Initialization Configuration

The Python/C API, Release 3.13.7

The _ PYVENV_LAUNCHER_ _ environment variable is used to set PyConfig.base_executable.

10.11 Py_GetArgcArgv()

void Py_GetArgcArgv (int *argc, wchar_t ***argv)

Get the original command line arguments, before Python modified them.

See also PyConfig.orig_argv member.

10.12 Multi-Phase Initialization Private Provisional API

This section is a private provisional API introducing multi-phase initialization, the core feature of PEP 432:

o «Core» initialization phase, «bare minimum Python»:

Builtin types;

Builtin exceptions;

Builtin and frozen modules;
- The sys module is only partially initialized (ex: sys.path doesn’t exist yet).
« «Main» initialization phase, Python is fully initialized:
— Install and configure importlib;
- Apply the Path Configuration;
— Install signal handlers;
- Finish sys module initialization (ex: create sys.stdout and sys.path);
- Enable optional features like faulthandler and tracemalloc;
- Import the site module;
- etc.
Private provisional API:

e PyConfig._ init _main:if setto 0, Py InitializeFromConfig () stops at the «Core» initialization
phase.
PyStatus _Py_InitializeMain (void)
Move to the «Main» initialization phase, finish the Python initialization.
No module is imported during the «Core» phase and the import 1ib module is not configured: the Path Configuration

is only applied during the «Main» phase. It may allow to customize Python in Python to override or tune the Path
Configuration, maybe install a custom sys.meta_path importer or an import hook, etc.

It may become possible to calculate the Path Configuration in Python, after the Core phase and before the Main phase,
which is one of the PEP 432 motivation.

The «Core» phase is not properly defined: what should be and what should not be available at this phase is not
specified yet. The API is marked as private and provisional: the API can be modified or even be removed anytime
until a proper public API is designed.

Example running Python code between «Core» and «Main» initialization phases:

void init_python (void)
{
PyStatus status;

PyConfig config;
PyConfig_InitPythonConfig(&config);

(continues on next page)

10.11. Py_GetArgcArgv() 261

https://peps.python.org/pep-0432/
https://peps.python.org/pep-0432/

The Python/C API, Release 3.13.7

config._init_main = 0;
/* ... customize 'config' configuration ... */
status = Py_InitializeFromConfig(&config);

PyConfig_Clear (&configqg);
if (PyStatus_Exception(status)) {
Py_ExitStatusException (status);

/* Use sys.stderr because sys.stdout is only created
by _Py_InitializeMain() */
int res = PyRun_SimpleString(
"import sys; "

n

"print ('Run Python code before _Py InitializeMain',

"file=sys.stderr)");
if (res < 0) {
exit (1) ;
I3
/* ... put more configuration code here ... */
status = _Py_InitializeMain();

if (PyStatus_Exception (status)) {
Py_ExitStatusException (status);

(continua dalla pagina precedente)

262

Capitolo 10. Python Initialization Configuration

capitoro 11

Memory Management

11.1 Overview

Memory management in Python involves a private heap containing all Python objects and data structures. The ma-
nagement of this private heap is ensured internally by the Python memory manager. The Python memory manager
has different components which deal with various dynamic storage management aspects, like sharing, segmentation,
preallocation or caching.

At the lowest level, a raw memory allocator ensures that there is enough room in the private heap for storing all
Python-related data by interacting with the memory manager of the operating system. On top of the raw memory
allocator, several object-specific allocators operate on the same heap and implement distinct memory management
policies adapted to the peculiarities of every object type. For example, integer objects are managed differently within
the heap than strings, tuples or dictionaries because integers imply different storage requirements and speed/space
tradeoffs. The Python memory manager thus delegates some of the work to the object-specific allocators, but ensures
that the latter operate within the bounds of the private heap.

It is important to understand that the management of the Python heap is performed by the interpreter itself and that
the user has no control over it, even if they regularly manipulate object pointers to memory blocks inside that heap.
The allocation of heap space for Python objects and other internal buffers is performed on demand by the Python
memory manager through the Python/C API functions listed in this document.

To avoid memory corruption, extension writers should never try to operate on Python objects with the functions
exported by the C library: malloc (), calloc (), realloc () and free (). This will result in mixed calls between
the C allocator and the Python memory manager with fatal consequences, because they implement different algori-
thms and operate on different heaps. However, one may safely allocate and release memory blocks with the C library
allocator for individual purposes, as shown in the following example:

PyObject *res;
char *buf = (char *) malloc (BUFSIZ); /* for I/0 */

if (buf == NULL)
return PyErr_NoMemory () ;
...Do some I/O operation involving buf...
res = PyBytes_FromString (buf) ;
free(buf); /* malloc'ed */
return res;

In this example, the memory request for the I/O buffer is handled by the C library allocator. The Python memory
manager is involved only in the allocation of the bytes object returned as a result.

263

The Python/C API, Release 3.13.7

In most situations, however, it is recommended to allocate memory from the Python heap specifically because the
latter is under control of the Python memory manager. For example, this is required when the interpreter is ex-
tended with new object types written in C. Another reason for using the Python heap is the desire to inform the
Python memory manager about the memory needs of the extension module. Even when the requested memory is
used exclusively for internal, highly specific purposes, delegating all memory requests to the Python memory mana-
ger causes the interpreter to have a more accurate image of its memory footprint as a whole. Consequently, under
certain circumstances, the Python memory manager may or may not trigger appropriate actions, like garbage collec-
tion, memory compaction or other preventive procedures. Note that by using the C library allocator as shown in the
previous example, the allocated memory for the I/O buffer escapes completely the Python memory manager.

#” Vedi anche

The PYTHONMALLOC environment variable can be used to configure the memory allocators used by Python.

The PYTHONMALLOCSTATS environment variable can be used to print statistics of the pymalloc memory allocator
every time a new pymalloc object arena is created, and on shutdown.

11.2 Allocator Domains

All allocating functions belong to one of three different «domains» (see also PyMemAllocatorDomain). These
domains represent different allocation strategies and are optimized for different purposes. The specific details on how
every domain allocates memory or what internal functions each domain calls is considered an implementation detail,
but for debugging purposes a simplified table can be found at /ere. The APIs used to allocate and free a block of
memory must be from the same domain. For example, PyMem Free () must be used to free memory allocated using
PyMem Malloc().

The three allocation domains are:

o Raw domain: intended for allocating memory for general-purpose memory buffers where the allocation must
go to the system allocator or where the allocator can operate without the G/L. The memory is requested directly
from the system. See Raw Memory Interface.

« «Mem» domain: intended for allocating memory for Python buffers and general-purpose memory buffers where
the allocation must be performed with the G/L held. The memory is taken from the Python private heap. See
Memory Interface.

» Object domain: intended for allocating memory for Python objects. The memory is taken from the Python
private heap. See Object allocators.

© Nota

The free-threaded build requires that only Python objects are allocated using the «object» domain and that all
Python objects are allocated using that domain. This differs from the prior Python versions, where this was only
a best practice and not a hard requirement.

For example, buffers (non-Python objects) should be allocated using PyMem Malloc (), PyMem RawMalloc (),
ormalloc (), butnot PyObject_Malloc ().

See Memory Allocation APIs.

11.3 Raw Memory Interface
The following function sets are wrappers to the system allocator. These functions are thread-safe, the GIL does not
need to be held.

The default raw memory allocator uses the following functions: malloc (), calloc (), realloc() and free();
callmalloc (1) (or calloc (1, 1)) when requesting zero bytes.

Added in version 3.4.

264 Capitolo 11. Memory Management

The Python/C API, Release 3.13.7

void *PyMem_RawMalloc (size_t n)
Parte del ABI Stabile dalla versione 3.13. Allocates n bytes and returns a pointer of type void* to the allocated
memory, or NULL if the request fails.

Requesting zero bytes returns a distinct non-NULL pointer if possible, as if PyMem_RawMalloc (1) had been
called instead. The memory will not have been initialized in any way.
void *PyMem_RawCalloc (Size_t nelem, size_t elsize)

Parte del ABI Stabile dalla versione 3.13. Allocates nelem elements each whose size in bytes is elsize and returns
a pointer of type void* to the allocated memory, or NULL if the request fails. The memory is initialized to
ZEeros.

Requesting zero elements or elements of size zero bytes returns a distinct non-NULL pointer if possible, as if
PyMem_RawCalloc (1, 1) had been called instead.

Added in version 3.5.

void *PyMem_RawRealloc (void *p, size_t n)

Farte del ABI Stabile dalla versione 3.13. Resizes the memory block pointed to by p to n bytes. The contents
will be unchanged to the minimum of the old and the new sizes.

If p is NULL, the call is equivalent to PyMem_RawMalloc (n); else if n is equal to zero, the memory block is
resized but is not freed, and the returned pointer is non-NULL.

Unless p is NULL, it must have been returned by a previous call to PyMem RawMalloc (),
PyMem RawRealloc () Or PyMem RawCalloc().

If the request fails, PyMem RawRealloc () returns NULL and p remains a valid pointer to the previous memory
area.

void PyMem_RawFree (void *p)

Parte del ABI Stabile dalla versione 3.13. Frees the memory block pointed to by p, which must have been
returned by a previous call to PyMem RawMalloc (), PyMem RawRealloc () Or PyMem RawCalloc ().
Otherwise, or if PyMem_RawFree (p) has been called before, undefined behavior occurs.

If p is NULL, no operation is performed.

11.4 Memory Interface

The following function sets, modeled after the ANSI C standard, but specifying behavior when requesting zero bytes,
are available for allocating and releasing memory from the Python heap.

The default memory allocator uses the pymalloc memory allocator.

A\ Avvertimento

The GIL must be held when using these functions.

Cambiato nella versione 3.6: The default allocator is now pymalloc instead of system malloc ().

void *PyMem_Malloc (size_t n)
Parte del ABI Stabile. Allocates n bytes and returns a pointer of type void* to the allocated memory, or NULL
if the request fails.

Requesting zero bytes returns a distinct non-NULL pointer if possible, as if PyMem_Malloc (1) had been called
instead. The memory will not have been initialized in any way.

void *PyMem_Calloc (size_t nelem, size_t elsize)

Farte del ABI Stabile dalla versione 3.7. Allocates nelem elements each whose size in bytes is elsize and returns
a pointer of type void* to the allocated memory, or NULL if the request fails. The memory is initialized to
ZEer0s.

11.4. Memory Interface 265

The Python/C API, Release 3.13.7

Requesting zero elements or elements of size zero bytes returns a distinct non-NULL pointer if possible, as if
PyMem_Calloc (1, 1) had been called instead.

Added in version 3.5.

void *PyMem_Realloc (void *p, size_t n)

Farte del ABI Stabile. Resizes the memory block pointed to by p to n bytes. The contents will be unchanged
to the minimum of the old and the new sizes.

If pis NULL, the call is equivalent to PyMem_Malloc (n);else if n is equal to zero, the memory block is resized
but is not freed, and the returned pointer is non-NULL.

Unless p is NULL, it must have been returned by a previous call to PyMem Malloc (), PyMem Realloc () Or
PyMem _Calloc().

If the request fails, PyMem Realloc () returns NULL and p remains a valid pointer to the previous memory
area.

void PyMem_Free (void *p)

Parte del ABI Stabile. Frees the memory block pointed to by p, which must have been returned by a previous
callto PyMem Malloc (), PyMem Realloc () or PyMem Calloc ().Otherwise, orif PyMem_Free (p) has
been called before, undefined behavior occurs.

If p is NULL, no operation is performed.
The following type-oriented macros are provided for convenience. Note that TYPE refers to any C type.

PyMem_New (TYPE, n)

Same as PyMem Malloc (), but allocates (n * sizeof (TYPE)) bytes of memory. Returns a pointer cast
to TYPE*. The memory will not have been initialized in any way.

PyMem_Resize (p, TYPE, n)

Same as PyMem_Realloc (), but the memory block is resized to (n * sizeof (TYPE)) bytes. Returns a
pointer cast to TYPE*. On return, p will be a pointer to the new memory area, or NULL in the event of failure.

This is a C preprocessor macro; p is always reassigned. Save the original value of p to avoid losing memory
when handling errors.

void PyMem_Del (void *p)
Same as PyMem_Free ().

In addition, the following macro sets are provided for calling the Python memory allocator directly, without involving
the C API functions listed above. However, note that their use does not preserve binary compatibility across Python
versions and is therefore deprecated in extension modules.

e PyMem MALLOC (size)

e PyMem NEW (type, size)

e PyMem_ REALLOC (ptr, size)

e PyMem_ RESIZE (ptr, type, size)
e PyMem_ FREE (ptr)

e PyMem_DEL (ptr)

11.5 Object allocators

The following function sets, modeled after the ANSI C standard, but specifying behavior when requesting zero bytes,
are available for allocating and releasing memory from the Python heap.

266 Capitolo 11. Memory Management

The Python/C API, Release 3.13.7

© Nota

There is no guarantee that the memory returned by these allocators can be successfully cast to a Python object
when intercepting the allocating functions in this domain by the methods described in the Customize Memory
Allocators section.

The default object allocator uses the pymalloc memory allocator.

A\ Avvertimento

The GIL must be held when using these functions.

void *PyObject_Malloc (Size_t n)
Farte del ABI Stabile. Allocates n bytes and returns a pointer of type void* to the allocated memory, or NULL
if the request fails.

Requesting zero bytes returns a distinct non-NULL pointer if possible, as if PyObject_Malloc (1) had been
called instead. The memory will not have been initialized in any way.
void *PyObject_Calloc (size_t nelem, size_t elsize)

Parte del ABI Stabile dalla versione 3.7. Allocates nelem elements each whose size in bytes is elsize and returns
a pointer of type void* to the allocated memory, or NULL if the request fails. The memory is initialized to
Zeros.

Requesting zero elements or elements of size zero bytes returns a distinct non-NULL pointer if possible, as if
PyObject_Calloc (1, 1) had been called instead.

Added in version 3.5.

void *PyObject_Realloc (void *p, size_t n)

Parte del ABI Stabile. Resizes the memory block pointed to by p to n bytes. The contents will be unchanged
to the minimum of the old and the new sizes.

If p is NULL, the call is equivalent to PyObject_Malloc (n); else if n is equal to zero, the memory block is
resized but is not freed, and the returned pointer is non-NULL.

Unless p is NULL, it must have been returned by a previous call to Pyobject_Malloc(),
PyObject_Realloc () Or PyObject_Calloc().

If the request fails, PyObject_Realloc () returns NULL and p remains a valid pointer to the previous memory
area.

void PyObject_Free (void *p)

Farte del ABI Stabile. Frees the memory block pointed to by p, which must have been returned by a pre-
vious call to PyObject_Malloc (), PyObject_Realloc () or PyObject_Calloc (). Otherwise, or if
PyObject_Free (p) has been called before, undefined behavior occurs.

If p is NULL, no operation is performed.

11.6 Default Memory Allocators

Default memory allocators:

11.6. Default Memory Allocators 267

The Python/C API, Release 3.13.7

Configuration Name Py- PyMem_Malloc PyOb-
Mem_RawMalloc ject_Malloc
Release build "pymalloc" malloc pymalloc pymalloc
Debug build "pymalloc_debug malloc + debug pymalloc + de- pymalloc + de-
bug bug
Release build, without py- "malloc" malloc malloc malloc

malloc
Debug build, without py-
malloc

"malloc_debug"

malloc + debug

malloc + debug

malloc + debug

Legend:

o Name: value for PYTHONMALLOC environment variable.

e malloc: system allocators from the standard C library, C functions: malloc (), calloc (), realloc () and

free ().

e pymalloc: pymalloc memory allocator.

e mimalloc: mimalloc memory allocator. The pymalloc allocator will be used if mimalloc support isn’t available.

o «+ debug»: with debug hooks on the Python memory allocators.

« «Debug build»: Python build in debug mode.

11.7 Customize Memory Allocators

Added in version 3.4.

type PyMemAllocatorEx

Structure used to describe a memory block allocator. The structure has the following fields:

Field

Meaning

void *ctx

void* malloc (void *ctx,
void* calloc (void *ctx,

elsize)

void* realloc(void *ctx,

new_size)

void free(void *ctx,

void *ptr)

size_t nelem,

void *ptr,

size_t size)

size_t

size_t

user context passed as first argument
allocate a memory block
allocate a memory block initialized with

ZE€ros

allocate or resize a memory block

free a memory block

Cambiato nella versione 3.5: The PyMemAllocator structure was renamed to PyMemAllocatorEx and a
new calloc field was added.

type PyMemAllocatorDomain

Enum used to identify an allocator domain. Domains:

PYMEM DOMAIN_RAW

Functions:

e PyMem RawMalloc ()

e PyMem RawRealloc ()

e PyMem RawCalloc ()

e PyMem RawFree ()

268

Capitolo 11. Memory Management

The Python/C API, Release 3.13.7

PYMEM DOMAIN_MEM

Functions:
e PyMem Malloc(),
e PyMem Realloc ()
e PyMem Calloc ()
e PyMem Free()

PYMEM DOMAIN_OBJ

Functions:
e PyObject_Malloc ()
e PyObject_Realloc ()
e PyObject_Calloc()
e PyObject_Free()

void PyMem_GetAllocator (PyMemAllocatorDomain domain, PyMemAllocatorEx *allocator)
Get the memory block allocator of the specified domain.

void PyMem_SetAllocator (PyMemAllocatorDomain domain, PyMemAllocatorEx *allocator)
Set the memory block allocator of the specified domain.

The new allocator must return a distinct non-NULL pointer when requesting zero bytes.

For the pyMEM _DoMATIN _RAW domain, the allocator must be thread-safe: the GI/L is not held when the allocator
is called.

For the remaining domains, the allocator must also be thread-safe: the allocator may be called in different
interpreters that do not share a GIL.

If the new allocator is not a hook (does not call the previous allocator), the PyMem_SetupDebugHooks ()
function must be called to reinstall the debug hooks on top on the new allocator.

See also PyPreConfig.allocator and Preinitialize Python with PyPreConfig.

A\ Avvertimento

PyMem_SetAllocator () does have the following contract:

« [t can be called after Py PreInitialize() and before Py _InitializeFromConfig/() to in-
stall a custom memory allocator. There are no restrictions over the installed allocator other than the
ones imposed by the domain (for instance, the Raw Domain allows the allocator to be called without
the GIL held). See the section on allocator domains for more information.

o If called after Python has finish initializing (after Py TnitializeFromConfig () hasbeen called)
the allocator must wrap the existing allocator. Substituting the current allocator for some other
arbitrary one is not supported.

Cambiato nella versione 3.12: All allocators must be thread-safe.

void PyMem_SetupDebugHooks (void)

Setup debug hooks in the Python memory allocators to detect memory errors.

11.8 Debug hooks on the Python memory allocators

When Python is built in debug mode, the PyMem SetupDebugHooks () function is called at the Python
preinitialization to setup debug hooks on Python memory allocators to detect memory errors.

11.8. Debug hooks on the Python memory allocators 269

The Python/C API, Release 3.13.7

The PYTHONMALLOC environment variable can be used to install debug hooks on a Python compiled in release mode
(ex: PYTHONMALLOC=debug).

The PyMem SetupDebugHooks () function can be wused to set debug hooks after calling
PyMem_ SetAllocator().

These debug hooks fill dynamically allocated memory blocks with special, recognizable bit patterns. New-
ly allocated memory is filled with the byte 0xCD (PYMEM_CLEANBYTE), freed memory is filled with the by-
te 0xDD (PYMEM_DEADBYTE). Memory blocks are surrounded by «forbidden bytes» filled with the byte 0xFD
(PYMEM_FORBIDDENBYTE). Strings of these bytes are unlikely to be valid addresses, floats, or ASCII strings.

Runtime checks:

« Detect API violations. For example, detect if Pyobject_Free () is called on a memory block allocated by
PyMem Malloc().

o Detect write before the start of the buffer (buffer underflow).
o Detect write after the end of the buffer (buffer overflow).

¢ Check that the GIL is held when allocator functions of PYMEM DOMATN_OBJ (eX: PyObject_Malloc ())and
PYMEM_DOMAIN_MEM (ex: PyMem Malloc ()) domains are called.

On error, the debug hooks use the t racemalloc module to get the traceback where a memory block was allocated.
The traceback is only displayed if t racemalloc is tracing Python memory allocations and the memory block was
traced.

LetS=sizeof (size_t).2*S bytes are added at each end of each block of N bytes requested. The memory layout
is like so, where p represents the address returned by a malloc-like or realloc-like function (p[1 : j1 means the slice
of bytes from * (p+1i) inclusive up to * (p+7j) exclusive; note that the treatment of negative indices differs from a
Python slice):

pl[-2*S:-S]
Number of bytes originally asked for. This is a size_t, big-endian (easier to read in a memory dump).

p[-s]
API identifier (ASCII character):

e 'r' for PYMEM DOMAIN_ RAW.
e 'm' for PYMEM DOMAIN_MEM.
e 'o' for PYMEM DOMAIN OBJ.

p[-S+1:0]
Copies of PYMEM_FORBIDDENBYTE. Used to catch under- writes and reads.

pl0:N]
The requested memory, filled with copies of PYMEM_CLEANBYTE, used to catch reference to uninitialized
memory. When a realloc-like function is called requesting a larger memory block, the new excess bytes are
also filled with PYMEM_CLEANBYTE. When a free-like function is called, these are overwritten with PY-
MEM_DEADBYTE, to catch reference to freed memory. When a realloc- like function is called requesting a
smaller memory block, the excess old bytes are also filled with PYMEM_DEADBYTE.

PIN:N+S]
Copies of PYMEM_FORBIDDENBYTE. Used to catch over- writes and reads.

PI[N+S:N+2*S]
Only used if the PYMEM_DEBUG_SERIALNO macro is defined (not defined by default).

A serial number, incremented by 1 on each call to a malloc-like or realloc-like function. Big-endian size_t.
If «bad memory» is detected later, the serial number gives an excellent way to set a breakpoint on the next run,
to capture the instant at which this block was passed out. The static function bumpserialno() in obmalloc.c is
the only place the serial number is incremented, and exists so you can set such a breakpoint easily.

A realloc-like or free-like function first checks that the PYMEM_FORBIDDENBYTE bytes at each end are intact.
If they’ve been altered, diagnostic output is written to stderr, and the program is aborted via Py_FatalError(). The
other main failure mode is provoking a memory error when a program reads up one of the special bit patterns and

270 Capitolo 11. Memory Management

The Python/C API, Release 3.13.7

tries to use it as an address. If you get in a debugger then and look at the object, you're likely to see that it’s entirely
filled with PYMEM_DEADBYTE (meaning freed memory is getting used) or PYMEM_CLEANBYTE (meaning
uninitialized memory is getting used).

Cambiato nella versione 3.6: The PyMem SetupDebugHooks () function now also works on Python compiled
in release mode. On error, the debug hooks now use tracemalloc to get the traceback where a memory block
was allocated. The debug hooks now also check if the GIL is held when functions of pymMEM DOMATN 0OBJ and
PYMEM_DOMAIN_MEM domains are called.

Cambiato nella versione 3.8: Byte patterns 0xCB (PYMEM CLEANBYTE), 0xDB (PYMEM DEADBYTE) and 0xFB
(PYMEM_FORBIDDENBYTE) have been replaced with 0xCD, 0xDD and 0xFD to use the same values than Windows
CRT debug malloc () and free ().

11.9 The pymalloc allocator

Python has a pymalloc allocator optimized for small objects (smaller or equal to 512 bytes) with a short lifetime. It
uses memory mappings called «arenas» with a fixed size of either 256 KiB on 32-bit platforms or 1 MiB on 64-bit
platforms. It falls back to PyMem RawMalloc () and PyMem RawRealloc () for allocations larger than 512 bytes.

pymalloc is the default allocator of the PYMEM DOMATN_MEM (eX: PyMem Malloc ()) and PYMEM _DOMAIN_OBJ
(ex: PyObject_Malloc ()) domains.

The arena allocator uses the following functions:
e VirtualAlloc() and VirtualFree () on Windows,
e mmap () and munmap () if available,
e malloc () and free () otherwise.

This allocator is disabled if Python is configured with the -—without-pymalloc option. It can also be disabled at
runtime using the PYTHONMALLOC environment variable (ex: PYTHONMALLOC=malloc).

Typically, it makes sense to disable the pymalloc allocator when building Python with AddressSanitizer
(-—with-address-sanitizer) which helps uncover low level bugs within the C code.

11.9.1 Customize pymalloc Arena Allocator
Added in version 3.4.

type PyObjectArenaAllocator
Structure used to describe an arena allocator. The structure has three fields:

Field Meaning
void *ctx user context passed as first argument
void* alloc (void *ctx, size_t size) allocate an arena of size bytes

void free(void *ctx, void *ptr, size_t size) free an arena

void PyObject_GetArenaAllocator (PyObjectArenaAllocator *allocator)

Get the arena allocator.

void PyObject_SetArenaAllocator (PyObjectArenaAllocator *allocator)
Set the arena allocator.

11.10 The mimalloc allocator

Added in version 3.13.

Python supports the mimalloc allocator when the underlying platform support is available. mimalloc «is a general
purpose allocator with excellent performance characteristics. Initially developed by Daan Leijen for the runtime
systems of the Koka and Lean languages.»

11.9. The pymalloc allocator 271

The Python/C API, Release 3.13.7

11.11 tracemalloc C API

Added in version 3.7.

int PyTraceMalloc_Track (unsigned int domain, uintptr_t ptr, size_t size)

Track an allocated memory block in the t racemalloc module.

Return 0 on success, return -1 on error (failed to allocate memory to store the trace). Return -2 if tracemalloc
is disabled.

If memory block is already tracked, update the existing trace.

int PyTraceMalloc_Untrack (unsigned int domain, uintptr_t ptr)
Untrack an allocated memory block in the t racemalloc module. Do nothing if the block was not tracked.

Return -2 if tracemalloc is disabled, otherwise return 0.

11.12 Examples

Here is the example from section Overview, rewritten so that the I/O buffer is allocated from the Python heap by
using the first function set:

PyObject *res;
char *buf = (char *) PyMem Malloc (BUFSIZ); /* for I/0 */

if (buf == NULL)
return PyErr_NoMemory () ;
/* ...Do some I/O operation involving buf... */
res = PyBytes_FromString (buf) ;
PyMem_Free (buf); /* allocated with PyMem Malloc */

return res;

The same code using the type-oriented function set:

PyObject *res;
char *buf = PyMem_New (char, BUFSIZ); /* for I/0 */

if (buf == NULL)

return PyErr_ NoMemory () ;
/* ...Do some I/O operation involving buf... */
res = PyBytes_FromString (buf) ;
PyMem_Del (buf); /* allocated with PyMem New */
return res;

J

Note that in the two examples above, the buffer is always manipulated via functions belonging to the same set. Indeed,
it is required to use the same memory API family for a given memory block, so that the risk of mixing different
allocators is reduced to a minimum. The following code sequence contains two errors, one of which is labeled as
fatal because it mixes two different allocators operating on different heaps.

char *bufl PyMem_New (char, BUFSIZ);
char *buf2 = (char *) malloc (BUFSIZ);
char *buf3 = (char *) PyMem Malloc (BUFSIZ);

PyMem_Del (buf3); /* Wrong —-— should be PyMem Free() */

free (buf2); /* Right -—- allocated via malloc() */
free (bufl); /* Fatal —- should be PyMem_Del () */

J

In addition to the functions aimed at handling raw memory blocks from the Python heap, objects in Python are
allocated and released with PyObject_New, PyObject_NewVar and PyObject_Del ().

These will be explained in the next chapter on defining and implementing new object types in C.

272 Capitolo 11. Memory Management

cAaPiToLo 12

Object Implementation Support

This chapter describes the functions, types, and macros used when defining new object types.

12.1 Allocating Objects on the Heap

PyObject *_PyObject_New (PyTypeObject *type)

Valore di ritorno: Nuovo riferimento.

PyVarObject *_PyObject_NewVar (PyTypeObject *type, Py_ssize_t size)

Valore di ritorno: Nuovo riferimento.

PyObject *PyObiject_Init (PyObject *op, PyTypeObject *type)

Valore di ritorno: Riferimento preso in prestito. Parte del ABI Stabile. Initialize a newly allocated object op with
its type and initial reference. Returns the initialized object. Other fields of the object are not affected.

PyVarObject *PyObject_InitVar (PyVarObject *op, PyTypeObject *type, Py_ssize_t size)

Valore di ritorno: Riferimento preso in prestito. Parte del ABI Stabile. This does everything PyObject_Init ()
does, and also initializes the length information for a variable-size object.

PyObject_New (TYPE, typeobj)

Allocate a new Python object using the C structure type TYPE and the Python type object typeobj
(PyTypeObject*). Fields not defined by the Python object header are not initialized. The caller will own
the only reference to the object (i.e. its reference count will be one). The size of the memory allocation is
determined from the tp_basicsize field of the type object.

Note that this function is unsuitable if rypeobj has Py TPrLAGS HAVE_GC set. For such objects, use
PyObject_GC_New () instead.

PyObject_NewVar (TYPE, typeobj, size)

Allocate a new Python object using the C structure type TYPE and the Python type object typeobj
(PyTypeObject*). Fields not defined by the Python object header are not initialized. The allocated me-
mory allows for the TYPE structure plus size (Py_ssize_t) fields of the size given by the tp_itemsize
field of typeobj. This is useful for implementing objects like tuples, which are able to determine their size at
construction time. Embedding the array of fields into the same allocation decreases the number of allocations,
improving the memory management efficiency.

Note that this function is unsuitable if fypeobj has Py TPrLAGS HAVE GC set. For such objects, use
PyObject_GC_NewVar () instead.

273

The Python/C API, Release 3.13.7

void PyObject_Del (void *op)

Releases memory allocated to an object using PyOb ject_New or PyObject_NewVar. This is normally called
from the tp_dealloc handler specified in the object’s type. The fields of the object should not be accessed
after this call as the memory is no longer a valid Python object.

PyObject _Py_NoneStruct

Object which is visible in Python as None. This should only be accessed using the Py_None macro, which
evaluates to a pointer to this object.

> Vedi anche

Module Objects
To allocate and create extension modules.

12.2 Common Object Structures

There are a large number of structures which are used in the definition of object types for Python. This section
describes these structures and how they are used.

12.2.1 Base object types and macros

All Python objects ultimately share a small number of fields at the beginning of the object’s representation in memory.
These are represented by the PyObject and Pyvarobject types, which are defined, in turn, by the expansions of
some macros also used, whether directly or indirectly, in the definition of all other Python objects. Additional macros
can be found under reference counting.

type PyObject
Parte del API Limitata. (Solo alcuni membri fanno parte dell’ABI stabile.) All object types are extensions of this
type. This is a type which contains the information Python needs to treat a pointer to an object as an object. In
a normal «release» build, it contains only the object’s reference count and a pointer to the corresponding type
object. Nothing is actually declared to be a PyObject, but every pointer to a Python object can be cast to a
PyObject*. Access to the members must be done by using the macros Py_REFCNT and Py_ TYPE.

type PyVarObject

Parte del API Limitata. (Solo alcuni membri fanno parte dellABI stabile.) This is an extension of PyObject
that adds the ob_si ze field. This is only used for objects that have some notion of length. This type does not
often appear in the Python/C API. Access to the members must be done by using the macros Py_REFCNT,
Py _TYPE,and Py_SIZE.

PyObject_HEAD

This is a macro used when declaring new types which represent objects without a varying length. The
PyObject_ HEAD macro expands to:

[PyObject ob_base;

See documentation of PyObject above.
PyObject_VAR_HEAD

This is a macro used when declaring new types which represent objects with a length that varies from instance
to instance. The PyObject_VAR_HEAD macro expands to:

[PyVarObject ob_base;

See documentation of Pyvarobject above.

PyTypeObject PyBaseObject_Type
Farte del ABI Stabile. The base class of all other objects, the same as object in Python.

274 Capitolo 12. Object Implementation Support

The Python/C API, Release 3.13.7

int Py_Is (PyObject *x, PyObject *y)
Parte del ABI Stabile dalla versione 3.10. Test if the x object is the y object, the same as x is y in Python.
Added in version 3.10.

int Py_IsNone (PyObject *X)

Farte del ABI Stabile dalla versione 3.10. Test if an object is the None singleton, the same as x is None in
Python.

Added in version 3.10.
int Py_IsTrue (PyObject *X)

Farte del ABI Stabile dalla versione 3.10. Test if an object is the True singleton, the same as x is True in
Python.

Added in version 3.10.

int Py_IsFalse (PyObject *X)
Farte del ABI Stabile dalla versione 3.10. Test if an object is the False singleton, the same as x is False
in Python.

Added in version 3.10.
PyTypeObject ¥*Py_TYPE (PyObject ¥0)
Valore di ritorno: Riferimento preso in prestito. Get the type of the Python object o.
Return a borrowed reference.
Use the Py _sET TyPE () function to set an object type.

Cambiato nella versione 3.11: Py_TvPE () is changed to an inline static function. The parameter type is no
longer const PyObject*.

int Py_IS_TYPE (PyObject *o, PyTypeObject *type)
Return non-zero if the object o type is type. Return zero otherwise. Equivalent to: Py_TYPE (o) == type.
Added in version 3.9.
void Py_SET_TYPE (PyObject *o, PyTypeObject *type)
Set the object o type to frype.
Added in version 3.9.
Py_ssize_t Py_SIZE (PyVarObject *0)
Get the size of the Python object o.
Use the py_SET s1zE () function to set an object size.

Cambiato nella versione 3.11: Py 51z () is changed to an inline static function. The parameter type is no
longer const PyVarObject*.

void Py_SET_SIZE (PyVarObject *o, Py_ssize_t size)
Set the object o size to size.
Added in version 3.9.

PyObject_HEAD_INIT (type)
This is a macro which expands to initialization values for a new Pyobject type. This macro expands to:

_PyObject_EXTRA_INIT
1/ typel

PyVarObject_ HEAD_INIT (type, size)

This is a macro which expands to initialization values for a new Pyvarobject type, including the ob_size
field. This macro expands to:

12.2. Common Object Structures 275

The Python/C API, Release 3.13.7

_PyObject_EXTRA_INIT
1, type, size,

12.2.2 Implementing functions and methods

type PyCFunction

Farte del ABI Stabile. Type of the functions used to implement most Python callables in C. Functions of this
type take two PyObject* parameters and return one such value. If the return value is NULL, an exception
shall have been set. If not NULL, the return value is interpreted as the return value of the function as exposed
in Python. The function must return a new reference.

The function signature is:

PyObject *PyCFunction (PyObject *self,
PyObject *args);

type PyCFunctionWithKeywords

Parte del ABI Stabile. Type of the functions used to implement Python callables in C with signature
METH_VARARGS | METH_KEYWORDS. The function signature is:

PyObject *PyCFunctionWithKeywords (PyObject *self,
PyObject *args,
PyObject *kwargs);

type PyCFunctionFast

Parte del ABI Stabile dalla versione 3.13. Type of the functions used to implement Python callables in C with
signature METH_FASTCALL. The function signature is:

PyObject *PyCFunctionFast (PyObject *self,
PyObject *const *args,
Py_ssize_t nargs);

type PyCFunctionFastWithKeywords

Farte del ABI Stabile dalla versione 3.13. Type of the functions used to implement Python callables in C with
signature METH_FASTCALL | METH_KEYWORDS. The function signature is:

PyObject *PyCFunctionFastWithKeywords (PyObject *self,
PyObject *const *args,
Py_ssize_t nargs,
PyObject *kwnames) ;

type PyCMethod

Type of the functions used to implement Python callables in C with signature METH_METHOD |
METH_FASTCALL | METH_KEYWORDS. The function signature is:

PyObject *PyCMethod (PyObject *self,
PyTypeObject *defining_ class,
PyObject *const *args,
Py_ssize_t nargs,
PyObject *kwnames)

Added in version 3.9.

type PyMethodDef

Parte del ABI Stabile (inclusi tutti i membri). Structure used to describe a method of an extension type. This
structure has four fields:

276 Capitolo 12. Object Implementation Support

The Python/C API, Release 3.13.7

const char *m1_name
Name of the method.

PyCFunction m1_meth

Pointer to the C implementation.

intml_flags
Flags bits indicating how the call should be constructed.

const char *ml_doc

Points to the contents of the docstring.

The m1_meth is a C function pointer. The functions may be of different types, but they always return PyoOb ject*.
If the function is not of the PyCFunction, the compiler will require a cast in the method table. Even though
pyCFunction defines the first parameter as PyObject*, it is common that the method implementation uses the
specific C type of the self object.

The m1_flags field is a bitfield which can include the following flags. The individual flags indicate either a calling
convention or a binding convention.

There are these calling conventions:

METH_VARARGS

This is the typical calling convention, where the methods have the type PyCFunct ion. The function expects
two Pyobject* values. The first one is the self object for methods; for module functions, it is the module
object. The second parameter (often called args) is a tuple object representing all arguments. This parameter
is typically processed using PyArg ParseTuple () Of PyArg UnpackTuple ().

METH_KEYWORDS

Can only be used in certain combinations with other flags: METH_VARARGS | METH_KEYWORDS,
METH_FASTCALL | METH_KEYWORDS and METH_METHOD | METH_FASTCALL | METH_KEYWORDS.

METH VARARGS | METH_KEYWORDS
Methods with these flags must be of type PyCFunctionwithKeywords. The function expects three parame-
ters: self, args, kwargs where kwargs is a dictionary of all the keyword arguments or possibly NULL if there are
no keyword arguments. The parameters are typically processed using PyArg ParseTupleAndKeywords ().

METH_FASTCALL
Fast calling convention supporting only positional arguments. The methods have the type PyCFunctionFast.
The first parameter is self, the second parameter is a C array of PyObject* values indicating the arguments
and the third parameter is the number of arguments (the length of the array).

Added in version 3.7.
Cambiato nella versione 3.10: METH_FASTCALL is now part of the stable ABI.

METH FASTCALL | METH_KEYWORDS
Extension of WMETH FASTCALL supporting also keyword arguments, with methods of type
PyCFunctionFastWithKeywords. Keyword arguments are passed the same way as in the vectorcall
protocol: there is an additional fourth PyObject* parameter which is a tuple representing the names of the
keyword arguments (which are guaranteed to be strings) or possibly NULL if there are no keywords. The
values of the keyword arguments are stored in the args array, after the positional arguments.

Added in version 3.7.

METH_METHOD

Can only be used in the combination with other flags: METH METHOD | METH FASTCALL |
METH_KEYWORDS.

METH METHOD | METH FASTCALL | METH KEYWORDS
Extension of METH_FASTCALL | METH_KEYWORDS supporting the defining class, that is, the class that
contains the method in question. The defining class might be a superclass of Py_TYPE (self).

The method needs to be of type PyCMethod, the same as for METH_FASTCALL | METH_KEYWORDS with
defining_class argument added after self.

12.2. Common Object Structures 277

The Python/C API, Release 3.13.7

Added in version 3.9.

METH_NOARGS

Methods without parameters don’t need to check whether arguments are given if they are listed with the
METH_NOARGS flag. They need to be of type PyCFunct ion. The first parameter is typically named self and
will hold a reference to the module or object instance. In all cases the second parameter will be NULL.

The function must have 2 parameters. Since the second parameter is unused, Py UNUSED can be used to
prevent a compiler warning.
METH_O

Methods with a single object argument can be listed with the me7H O flag, instead of invoking
PyArg ParseTuple () with a "o" argument. They have the type PyCFunction, with the self parameter,
and a PyObject* parameter representing the single argument.

These two constants are not used to indicate the calling convention but the binding when use with methods of classes.
These may not be used for functions defined for modules. At most one of these flags may be set for any given method.

METH_CLASS
The method will be passed the type object as the first parameter rather than an instance of the type. This is
used to create class methods, similar to what is created when using the classmethod () built-in function.
METH_STATIC
The method will be passed NULL as the first parameter rather than an instance of the type. This is used to
create static methods, similar to what is created when using the staticmethod () built-in function.

One other constant controls whether a method is loaded in place of another definition with the same method name.

METH_COEXIST

The method will be loaded in place of existing definitions. Without METH_COEXIST, the default is to skip
repeated definitions. Since slot wrappers are loaded before the method table, the existence of a sq_contains
slot, for example, would generate a wrapped method named __contains__ () and preclude the loading of
a corresponding PyCFunction with the same name. With the flag defined, the PyCFunction will be loaded in
place of the wrapper object and will co-exist with the slot. This is helpful because calls to PyCFunctions are
optimized more than wrapper object calls.
PyObject *PyCMethod_New (PyMethodDef *ml, PyObject *self, PyObject *module, PyTypeObject *cls)

Valore di ritorno: Nuovo riferimento. Parte del ABI Stabile dalla versione 3.9. Turn ml into a Python callable
object. The caller must ensure that m/ outlives the callable. Typically, ml is defined as a static variable.

The self parameter will be passed as the self argument to the C function in m1->ml_meth when invoked. self
can be NULL.

The callable object’s __module_ attribute can be set from the given module argument. module should be a
Python string, which will be used as name of the module the function is defined in. If unavailable, it can be set
to None or NULL.

@ Vedi anche

function._ module_

The cls parameter will be passed as the defining_class argument to the C function. Must be set if ¥ETH METHOD
issetonml->ml_flags.

Added in version 3.9.

PyObject *PyCFunction_NewEx (PyMethodDef *ml, PyObject *self, PyObject *module)

Valore di ritorno: Nuovo riferimento. Parte del ABI Stabile. Equivalent to PyCMethod_New (ml, self,
module, NULL).

278 Capitolo 12. Object Implementation Support

The Python/C API, Release 3.13.7

PyObject *PyCFunction_New (PyMethodDef *ml, PyObject *self)

Valore di ritorno: Nuovo riferimento. Parte del ABI Stabile dalla versione 3.4. Equivalent to
PyCMethod_New (ml, self, NULL, NULL).

12.2.3 Accessing attributes of extension types

type PyMemberDef

Parte del ABI Stabile (inclusi tutti i membri). Structure which describes an attribute of a type which corre-
sponds to a C struct member. When defining a class, put a NULL-terminated array of these structures in the
tp_members slot.

Its fields are, in order:

const char *name

Name of the member. A NULL value marks the end of a PyMemberDef [] array.
The string should be static, no copy is made of it.
int type
The type of the member in the C struct. See Member types for the possible values.
Py_ssize_ t offset
The offset in bytes that the member is located on the type’s object struct.
int £lags

Zero or more of the Member flags, combined using bitwise OR.

const char *doc

The docstring, or NULL. The string should be static, no copy is made of it. Typically, it is defined using
PyDoc_STR.

By default (when £1ags is 0), members allow both read and write access. Use the Py READONLY flag for read-
only access. Certain types, like Py_T STRING, imply Py_READONLY. Only Py_T OBJECT EX (and legacy
T_OBJECT) members can be deleted.

For heap-allocated types (created using Py Type_ FromSpec () or similar), PyMemberDe f may contain a de-
finition for the special member "__vectorcalloffset ", corresponding to tp_vectorcall offset
in type objects. These must be defined with Py_T_PYSSIZET and Py_READONLY, for example:

static PyMemberDef spam_type_members[] = {
{"__vectorcalloffset_ ", Py_T PYSSIZET,
offsetof (Spam_object, vectorcall), Py_READONLY},
{NULL} /* Sentinel */

bi

(You may need to #include <stddef.h> for offsetof ().)

The legacy offsets tp dictoffset and tp weaklistoffset can be defined similarly using
" dictoffset_ " and "__weaklistoffset__ " members, but extensions are strongly encouraged to
use Py_TPFLAGS_MANAGED_DICT and Py_TPFLAGS_MANAGED_ WEAKREF instead.

Cambiato nella versione 3.12: PyMemberDef is always available. Previously, it required including
"structmember.h".

PyObject *PyMember_GetOne (const char *obj_addr, struct PyMemberDef *m)
Farte del ABI Stabile. Get an attribute belonging to the object at address obj_addr. The attribute is described
by PyMemberDef m. Returns NULL on error.

Cambiato nella versione 3.12: PyMember_GetOne is always available. Previously, it required including
"structmember.h".

12.2. Common Object Structures 279

The Python/C API, Release 3.13.7

int PyMember_SetOne (char *obj_addr, struct PyMemberDef *m, PyObject *0)

Farte del ABI Stabile. Set an attribute belonging to the object at address obj_addr to object o. The attribute to
set is described by PyMemberDe £ m. Returns 0 if successful and a negative value on failure.

Cambiato nella versione 3.12: PyMember_SetOne is always available. Previously, it required including
"structmember.h".

Member flags
The following flags can be used with pPyMemberDef. flags:

Py_READONLY
Not writable.

Py_AUDIT_READ

Emit an object.__getattr__ audit event before reading.

Py RELATIVE_OFFSET

Indicates that the o rFset of this PyMemberDef entry indicates an offset from the subclass-specific data, rather
than from PyObject.

Can only be used as part of Py_tp_members slot when creating a class using negative basicsize. It is
mandatory in that case.

This flag is only used in Py Type S1ot. When setting t p_members during class creation, Python clears it and
sets PyMemberDef.offset to the offset from the PyObject struct.

Cambiato nella versione 3.10: The RESTRICTED, READ_RESTRICTED and WRITE_RESTRICTED macros availa-
ble with #include "structmember.h" are deprecated. READ_RESTRICTED and RESTRICTED are equivalent to
Py _AUDIT_READ; WRITE_RESTRICTED does nothing.

Cambiato nella versione 3.12: The READONLY macro was renamed to Py READONLY. The PY_AUDIT_READ macro
was renamed with the py_ prefix. The new names are now always available. Previously, these required #include
"structmember.h". The header is still available and it provides the old names.

Member types

PyMemberDef . type can be one of the following macros corresponding to various C types. When the member is
accessed in Python, it will be converted to the equivalent Python type. When it is set from Python, it will be converted
back to the C type. If that is not possible, an exception such as TypeError or ValueError is raised.

Unless marked (D), attributes defined this way cannot be deleted using e.g. del or delattr ().

280 Capitolo 12. Object Implementation Support

The Python/C API, Release 3.13.7

Macro name C type Python type
char int
Py T BYTE
short int
Py T_SHORT
int int
Py T_INT
long int
Py _T_LONG
long long int

Py_T_LONGLONG

unsigned char int
Py T_UBYTE

unsigned int int
Py _T_UINT

unsigned short int
Py_T_USHORT

unsigned long int
Py _T_ULONG

unsigned long long int
Py_T_ULONGLONG

Py _ssize_ t int
Py T _PYSSIZET

float float
Py T_FLOAT

double float
Py _T_DOUBLE

char (written as O or 1) bool
Py _T_BOOL

const char* (*) str (RO)
Py T_STRING

const char[] (*) str (RO)
Py T_STRING_INPLACE

char (0-127) str (*%)
Py T CHAR

PyObject* object (D)

Py T_OBJECT_EX

(*): Zero-terminated, UTF8-encoded C string. With py_T_STRING the C representation is a pointer;
with Py_T_STRING_INPLACE the string is stored directly in the structure.

12.2. Common Object Structures 281

The Python/C API, Release 3.13.7

(**): String of length 1. Only ASCII is accepted.
(RO): Implies Py_READONLY.

(D): Can be deleted, in which case the pointer is set to NULL. Reading a NULL pointer raises
AttributeError.

Added in version 3.12: In previous versions, the macros were only available with #include "structmember.h"
and were named without the py_ prefix (e.g. as T_INT). The header is still available and contains the old names,
along with the following deprecated types:
T_OBJECT
Like Ppy_T_OBJECT_EX, but NULL is converted to None. This results in surprising behavior in Python: deleting
the attribute effectively sets it to None.
T_NONE
Always None. Must be used with Py READONLY.

Defining Getters and Setters

type PyGetSetDef
Parte del ABI Stabile (inclusi tutti i membri). Structure to define property-like access for a type. See also
description of the Py TypeObject.tp_getset slot.
const char *name
attribute name
gelter get
C function to get the attribute.
selter set
Optional C function to set or delete the attribute. If NULL, the attribute is read-only.
const char *doc

optional docstring

void *closure
Optional user data pointer, providing additional data for getter and setter.
typedef PyObject *(*getter)(PyObject*, void*)
Farte del ABI Stabile. The get function takes one PyOb ject* parameter (the instance) and a user data pointer
(the associated closure):
It should return a new reference on success or NULL with a set exception on failure.
typedef int (*setter)(PyObject*, PyObject*, void*)
Parte del ABI Stabile. set functions take two PyObject* parameters (the instance and the value to be set)

and a user data pointer (the associated closure):

In case the attribute should be deleted the second parameter is NULL. Should return 0 on success or —1 with a
set exception on failure.

12.3 Type Object Structures

Perhaps one of the most important structures of the Python object system is the structure that defines a new type:
the Py TypeObject structure. Type objects can be handled using any of the PyObject_* or PyType_ * functions,
but do not offer much that’s interesting to most Python applications. These objects are fundamental to how objects
behave, so they are very important to the interpreter itself and to any extension module that implements new types.

Type objects are fairly large compared to most of the standard types. The reason for the size is that each type object
stores a large number of values, mostly C function pointers, each of which implements a small part of the type’s
functionality. The fields of the type object are examined in detail in this section. The fields will be described in the
order in which they occur in the structure.

282 Capitolo 12. Object Implementation Support

The Python/C API, Release 3.13.7

In addition to the following quick reference, the Examples section provides at-a-glance insight into the meaning and

use of PyTypeObject.

12.3.1 Quick Reference

«tp slots»

PyTypeObject Slot" 28+ 1 Type special methods/attrs In-
fOPag. 284,2
CTDI
<R> tp_name const char * __name X X
tp_basicsize Py _ssize_t X X X
tp_itemsize Py ssize_t X X
tp_dealloc destructor X X X
tp_vectorcall_offset Py ssize_t X X
(tp_getattr) getattrfunc __getattribute__, __getattr__ G
(tp_setattr) setattrfunc __setattr__, _ delattr__ G
tp_as_async PyAsyncMethods * sub-slots %
tp_repr reprfunc __repr__ X X X
tp_as_number PyNumberMethods * sub-slots %
tp_as_sequence PySequenceMethods * sub-slots %
tp_as_mapping PyMappingMethods * sub-slots %
tp_hash hashfunc __hash__ X G
tp_call ternaryfunc _call__ X X
tp_str reprfunc _ str X X
tp_getattro getattrofunc __getattribute__, __getattr__ X X G
tp_setattro setattrofunc __setattr__, _ delattr__ X X G
tp_as_buffer PyBufferProcs * sub-slots %
tp_flags unsigned long X X ?
tp_doc const char * __doc X X
tp_traverse traverseproc X G
tp_clear inquiry X G
tp_richcompare richcmpfunc _lt ,_le , _eq ,_ne , X G
gt,_ ge
(tp_weaklistoffset) Py _ssize_t X ?
tp_iter getiterfunc _ iter_ X
tp_iternext iternextfunc _ next__ X
tp_methods PyMethodDef [] X X
tp_members PyMemberDef [] X
tp_getset PyGetSetDef [] X X
tp_base PyTypeObject * _ base_ X
tp_dict PyObject * _ dict__ ?
tp_descr_get descrget func __get X
tp_descr_set descrsetfunc __set_, delete X
(tp_dictoffset) Py_ssize_ t X ?
tp_init initproc __init__ X X X
tp_alloc allocfunc X ? 7
tp_new newfunc __hew___ X X ?7?
tp_free freefunc X X777
tp_is_gc inquiry X X
<tp_bases> PyObject * __bases__ ~
<tp_mro> PyObject * _ mro___ ~
[tp_cache] PyObject *
[tp_subclasses] void * __subclasses___
[tp_weaklist] PyObject *
(tp_del) destructor

continues on next page

12.3. Type Object Structures

283

The Python/C API, Release 3.13.7

Tabella 1 - continua dalla pagina precedente

PyTypeObiject Slot!

[tp_version_tag]
tp_finalize
tp_vectorcall
[tp_watched]

Type special methods/attrs In-
fo’
CTDI
unsigned int
destructor _del X
vectorcallfunc

unsigned char

sub-slots
Slot Type special methods
am_await unaryfunc __await__
am_aiter unaryfunc __aiter__
am_anext unaryfunc __anext___
am_send sendfunc
nb_add binaryfunc _add___ radd__
nb_inplace_add binaryfunc __dadd__
nb_subtract binaryfunc _sub___ rsub__
nb_inplace_subtract binaryfunc __isub__
nb_multiply binaryfunc ~mul rmul
nb_inplace_multiply binaryfunc __imul__
nb_remainder binaryfunc ~mod____rmod__
nb_inplace_remainder binaryfunc __imod__
nb_divmod binaryfunc _ divmod__ __ rdiv-

mod__

nb_power ternaryfunc __pOW__ _ TpOwW__
nb_inplace_power ternaryfunc 7ipOW7
nb_negative unaryfunc __neg__
nb_positive unaryfunc __pos__
nb_absolute unaryfunc __abs__
nb_bool inquiry __bool__
nb_invert unaryfunc __invert__
nb_1lshift binaryfunc __Ishift_ _ rlshift_
nb_inplace_lshift binaryfunc __ilshift

continues on next page

1 (): A slot name in parentheses indicates it is (effectively) deprecated.
<>: Names in angle brackets should be initially set to NULL and treated as read-only.
[]: Names in square brackets are for internal use only.
<R> (as a prefix) means the field is required (must be non-NULL).

2 Columns:

«O»: set on PyBaseObject_Type

«T»:seton PyType Type

«D»: default (if slot is set to NULL)

X - PyType_Ready sets this value if it is NULL
~ — PyType_Ready always sets this value (it should be NULL)
? - PyType_Ready may set this value depending on other slots

Also see the inheritance column

«I»: inheritance

>

o

V@

("Tv) .

- type slot is inherited via *PyType_Ready* if defined with a *NULL* value

— the slots of the sub-struct are inherited individually

— inherited, but only in combination with other slots; see the slot's description
— it's complicated; see the slot's description

Note that some slots are effectively inherited through the normal attribute lookup chain.

284

Capitolo 12. Object Implementation Support

The Python/C API, Release 3.13.7

Tabella 2 - continua dalla pagina precedente

Slot Type special methods
nb_rshift binaryfunc __rshift__

__rrshift__
nb_inplace_rshift binaryfunc __irshift
nb_and binaryfunc _and___ rand__
nb_inplace_and binaryfunc __jand__
nb_xor binaryfunc __XOr__ _ rXor__
nb_inplace_xor binaryfunc __ixor__
nb_or binaryfunc _or__ _ ror__
nb_inplace_or binaryfunc __dor__
nb_int unaryfunc _int__
nb_reserved void *
nb_float unaryfunc _ float_
nb_floor_divide binaryfunc _ floordiv__
nb_inplace_floor_divide binaryfunc __ifloordiv__
nb_true_divide binaryfunc _ truediv__
nb_inplace_true_divide binaryfunc __ﬂnwdhg_
nb_index unaryfunc __index
nb_matrix _multiply binaryfunc _ matmul__ __ rmat-

mul__
nb_inplace_matrix_multiply binaryfunc __imatmul
mp_length lenfunc _len__
mp_subscript binaryfunc __getitem__
mp_ass_subscript objobjargproc _ setitem__, _ deli-

tem__
sq_length lenfunc _len__
sq_concat binaryfunc _add__
sqg_repeat ssizeargfunc _ mul__
sq_item ssizeargfunc __getitem__
sqg_ass_item ssizeobjargproc __setitem___

_ delitem___
sq_contains objobjproc __contains__
sq_inplace_concat binaryfunc _ dadd__
sq_inplace_repeat ssizeargfunc _ imul__
bf_getbuffer getbufferproc () __buffer__

bf_releasebuffer

releasebufferproc ()

__release_buffer

12.3. Type Object Structures

285

The Python/C API, Release 3.13.7

slot typedefs

typedef Parameter Types Return Type
allocfunc PyObject *
PyTypeObject *
Py _ssize t
destructor PyObject * void
freefunc void * void
traverseproc int
PyObject *
visitproc
void *
newfunc PyObject *
PyTypeObject *
PyObject *
PyObject *
initproc int
PyObject *
PyObject *
PyObject *
reprfunc PyObject * PyObject *
getattrfunc PyObject *
PyObject *
const char *
setattrfunc int
PyObject *
const char *
PyObject *
getattrofunc PyObject *
PyObject *
PyObject *
setattrofunc int
PyObject *
PyObject *
PyObject *
descrget func PyObject *
PyObject *
PyObject *
PyObject *
descrset func int
PyObject *
PyOhject *
286 PyOb-ect * Capitolo 12. Object Implementation Support
yOoLJ
hashfunc PyObject * Py_hash_t
richcmpfunc PyObject *

The Python/C API, Release 3.13.7

See Slot Type typedefs below for more detail.

12.3.2 PyTypeObject Definition

The structure definition for Py TypeObject can be found in Include/cpython/object .h. For convenience of
reference, this repeats the definition found there:

typedef struct _typeobject {
PyObject_VAR_HEAD
const char *tp_name; /* For printing, in format "<module>.<name>" */
Py_ssize_t tp_basicsize, tp_itemsize; /* For allocation */

/* Methods to implement standard operations */

destructor tp_dealloc;

Py_ssize_t tp_vectorcall offset;

getattrfunc tp_getattr;

setattrfunc tp_setattr;

PyAsyncMethods *tp_as_async; /* formerly known as tp_compare (Python 2)
or tp_reserved (Python 3) */

reprfunc tp_repr;

/* Method suites for standard classes */

PyNumberMethods *tp_as_number;
PySequenceMethods *tp_as_sequence;
PyMappingMethods *tp_as_mapping;

/* More standard operations (here for binary compatibility) */

hashfunc tp_hash;
ternaryfunc tp_call;
reprfunc tp_str;
getattrofunc tp_getattro;
setattrofunc tp_setattro;

/* Functions to access object as input/output buffer */
PyBufferProcs *tp_as_buffer;

/* Flags to define presence of optional/expanded features */
unsigned long tp_flags;

const char *tp_doc; /* Documentation string */
/* Assigned meaning in release 2.0 */

/* call function for all accessible objects */
traverseproc tp_traverse;

/* delete references to contained objects */
inquiry tp_clear;

/* Assigned meaning in release 2.1 */
/* rich comparisons */

richcmpfunc tp_richcompare;

/* weak reference enabler */
Py_ssize_t tp_weaklistoffset;

(continues on next page)

12.3. Type Object Structures 287

The Python/C API, Release 3.13.7

(continua dalla pagina precedente)

/* Iterators */
getiterfunc tp_iter;
iternextfunc tp_iternext;

/* Attribute descriptor and subclassing stuff */
struct PyMethodDef *tp_methods;

struct PyMemberDef *tp_members;

struct PyGetSetDef *tp_getset;

// Strong reference on a heap type, borrowed reference on a static type
struct _typeobject *tp_base;

PyObject *tp_dict;

descrgetfunc tp_descr_get;

descrsetfunc tp_descr_set;

Py_ssize_t tp_dictoffset;

initproc tp_init;

allocfunc tp_alloc;

newfunc tp_new;

freefunc tp_free; /* Low-level free-memory routine */
inquiry tp_is_gc; /* For PyObject_IS_GC */
PyObject *tp_bases;

PyObject *tp_mro; /* method resolution order */
PyObject *tp_cache;

PyObject *tp_subclasses;

PyObject *tp_weaklist;

destructor tp_del;

/* Type attribute cache version tag. Added in version 2.6 */
unsigned int tp_version_tag;

destructor tp_finalize;
vectorcallfunc tp_vectorcall;

/* bitset of which type-watchers care about this type */
unsigned char tp_watched;

} PyTypeObject;

12.3.3 PyObject Slots

The type object structure extends the Pyvarobject structure. The ob_si ze field is used for dynamic types (crea-
ted by type_new (), usually called from a class statement). Note that PyType_ Type (the metatype) initializes
tp_itemsize, which means that its instances (i.e. type objects) must have the ob_size field.

Py_ssize_t PyObject .ob_refent

Farte del ABI Stabile. This is the type object’s reference count, initialized to 1 by the PyObject HEAD_INIT
macro. Note that for statically allocated type objects, the type’s instances (objects whose ob_ t ype points back
to the type) do not count as references. But for dynamically allocated type objects, the instances do count as
references.

Inheritance:

This field is not inherited by subtypes.

PyTypeObject *PyObject .ob_type

Parte del ABI Stabile. This is the type’s type, in other words its metatype. It is initialized by the argument to the
PyObject_ HEAD_INIT macro, and its value should normally be sPyType_Type. However, for dynamically
loadable extension modules that must be usable on Windows (at least), the compiler complains that this is
not a valid initializer. Therefore, the convention is to pass NULL to the PyObject HEAD_INIT macro and to

288

Capitolo 12. Object Implementation Support

The Python/C API, Release 3.13.7

initialize this field explicitly at the start of the module’s initialization function, before doing anything else. This
is typically done like this:

[Foo_Type.ob_type = &PyType_Type;

J

This should be done before any instances of the type are created. PyType Ready () checks if ob_type is
NULL, and if so, initializes it to the ob_type field of the base class. PyType_Ready () will not change this
field if it is non-zero.

Inheritance:

This field is inherited by subtypes.

12.3.4 PyVarObject Slots

Py _ssize_t PyVarObject .ob_size
Parte del ABI Stabile. For statically allocated type objects, this should be initialized to zero. For dynamically
allocated type objects, this field has a special internal meaning.
This field should be accessed using the Py_S77E () and Py_SET_SIZE () macros.

Inheritance:

This field is not inherited by subtypes.

12.3.5 PyTypeObject Slots

Each slot has a section describing inheritance. If Py Type_ Ready () may set a value when the field is set to NULL
then there will also be a «Default» section. (Note that many fields set on PyBaseObject_Type and PyType_Type
effectively act as defaults.)

const char *PyTypeObject .tp_name

Pointer to a NUL-terminated string containing the name of the type. For types that are accessible as module
globals, the string should be the full module name, followed by a dot, followed by the type name; for built-in
types, it should be just the type name. If the module is a submodule of a package, the full package name is
part of the full module name. For example, a type named T defined in module M in subpackage ¢ in package P
should have the tp_name initializer "pP.Q .M. T".

For dynamically allocated type objects, this should just be the type name, and the module name explicitly stored
in the type dict as the value for key ' __module_ '.

For statically allocated type objects, the tp_name field should contain a dot. Everything before the last dot
is made accessible as the __module__ attribute, and everything after the last dot is made accessible as the
__name___ attribute.

If no dot is present, the entire tp name field is made accessible as the _ name__ attribute, and the
__module__ attribute is undefined (unless explicitly set in the dictionary, as explained above). This means
your type will be impossible to pickle. Additionally, it will not be listed in module documentations created
with pydoc.

This field must not be NULL. It is the only required field in PyTypeObject () (other than potentially
tp_itemsize).

Inheritance:
This field is not inherited by subtypes.
Py _ssize_t PyTypeObject.tp_basicsize
Py _ssize_t PyTypeObject.tp_itemsize
These fields allow calculating the size in bytes of instances of the type.

There are two kinds of types: types with fixed-length instances have a zero tp_itemsize field, types
with variable-length instances have a non-zero tp_itemsize field. For a type with fixed-length instan-
ces, all instances have the same size, given in tp_basicsize. (Exceptions to this rule can be made using
PyUnstable_Object_GC_NewWithExtraData ())

12.3. Type Object Structures 289

The Python/C API, Release 3.13.7

For a type with variable-length instances, the instances must have an ob_si ze field, and the instance size is
tp_basicsize plus N times tp_itemsize, where N is the «length» of the object.

Functions like Pyobject_Newvar () will take the value of N as an argument, and store in the instance’s
ob_size field. Note that the ob_si ze field may later be used for other purposes. For example, int instances
use the bits of ob_size in an implementation-defined way; the underlying storage and its size should be
accessed using PyLong_Export ().

O Nota

The ob_size field should be accessed using the Py _S72E () and Py_SET SIZE () macros.

Also, the presence of an ob_ s i ze field in the instance layout doesn’t mean that the instance structure is variable-
length. For example, the 1ist type has fixed-length instances, yet those instances have a ob_size field. (As
with int, avoid reading lists” ob_size directly. Call PyList_Size () instead.)

The tp_basicsize includes size needed for data of the type’s tp_base, plus any extra data needed by each
instance.

The correct way to set tp_basicsize isto use the sizeof operator on the struct used to declare the instance
layout. This struct must include the struct used to declare the base type. In other words, tp_basicsize must
be greater than or equal to the base’s tp_basicsize.

Since every type is a subtype of object, this struct must include Pyobject or Pyvarobject (depen-
ding on whether ob_size should be included). These are usually defined by the macro PyObject_HEAD
or PyObject_VAR_HEAD, respectively.

The basic size does not include the GC header size, as that header is not part of PyObject_HEAD.

For cases where struct used to declare the base type is unknown, see PyType Spec.basicsize and
PyType_FromMetaclass ().

Notes about alignment:

e tp_basicsize must be a multiple of _Alignof (PyObject). Whenusing sizeof ona struct that
includes PyObject_HEAD, as recommended, the compiler ensures this. When not using a C st ruct, or
when using compiler extensions like __attribute__ ((packed)), itis up to you.

« If the variable items require a particular alignment, tp_basicsize and tp_itemsize must each be a
multiple of that alignment. For example, if a type’s variable part stores a double, it is your responsibility
that both fields are a multiple of _Alignof (double).

Inheritance:

These fields are inherited separately by subtypes. (That is, if the field is set to zero, Py Type_Ready () will
copy the value from the base type, indicating that the instances do not need additional storage.)

If the base type has a non-zero tp_itemsize, it is generally not safe to set tp_itemsize to a different
non-zero value in a subtype (though this depends on the implementation of the base type).

destructor PyTypeObject .tp_dealloc

A pointer to the instance destructor function. This function must be defined unless the type guarantees that
its instances will never be deallocated (as is the case for the singletons None and E11ipsis). The function
signature is:

[void tp_dealloc (PyObject *self);

The destructor function is called by the Py_DECREF () and Py_XDECREF () macros when the new reference
count is zero. At this point, the instance is still in existence, but there are no references to it. The destructor
function should free all references which the instance owns, free all memory buffers owned by the instance
(using the freeing function corresponding to the allocation function used to allocate the buffer), and call the
type’s t p_ free function. If the type is not subtypable (doesn’t have the Py_ TPFL.AGS_BASETYPE flag bit set),
it is permissible to call the object deallocator directly instead of via tp_rree. The object deallocator should
be the one used to allocate the instance; this is normally PyObject_Del () if the instance was allocated

290

Capitolo 12. Object Implementation Support

The Python/C API, Release 3.13.7

using PyObject_New or PyObject_NewVar, or PyObject_GC_Del () if the instance was allocated using
PyObject_GC_New Or PyObject_GC_NewVar.

If the type supports garbage collection (has the Py TPFLAGS HAVE_GC flag bit set), the destructor should call
PyObject_GC_UnTrack () before clearing any member fields.

static void foo_dealloc (foo_object *self) {
PyObject_GC_UnTrack (self);
Py_CLEAR(self->ref);
Py_TYPE (self)->tp_free ((PyObject *)self);

Finally, if the type is heap allocated (Py_TPFLAGS_HEAPTYPE), the deallocator should release the owned
reference to its type object (via Py_DECREF ()) after calling the type deallocator. In order to avoid dangling
pointers, the recommended way to achieve this is:

static void foo_dealloc (foo_object *self) {
PyTypeObject *tp = Py_TYPE (self);
// free references and buffers here
tp—>tp_free (self);
Py_DECREF (tp) ;

A\ Avvertimento

In a garbage collected Python, tp_dealloc may be called from any Python thread, not just the thread
which created the object (if the object becomes part of a refcount cycle, that cycle might be collected by
a garbage collection on any thread). This is not a problem for Python API calls, since the thread on which
tp_dealloc is called will own the Global Interpreter Lock (GIL). However, if the object being destroyed
in turn destroys objects from some other C or C++ library, care should be taken to ensure that destroying
those objects on the thread which called tp_dealloc will not violate any assumptions of the library.

Inheritance:

This field is inherited by subtypes.

Py_ssize_t PyTypeObject .tp_vectorcall_ offset

An optional offset to a per-instance function that implements calling the object using the vectorcall protocol, a
more efficient alternative of the simpler tp_call.

This field is only used if the flag Py TPFLAGS HAVE VECTORCALL is set. If so, this must be a positive integer
containing the offset in the instance of a vectorcallfunc pointer.

The vectorcallfunc pointer may be NULL, in which case the instance behaves as if
Py_TPFLAGS_HAVE_VECTORCALL was not set: calling the instance falls back to tp_cal1l.

Any class that sets Py_TPFLAGS_HAVE_VECTORCALL must also set tp_call and make sure its behaviour is
consistent with the vectorcallfunc function. This can be done by setting tp_call to PyVectorcall call ().

Cambiato nella versione 3.8: Before version 3.8, this slot was named tp_print. In Python 2.x, it was used
for printing to a file. In Python 3.0 to 3.7, it was unused.

Cambiato nella versione 3.12: Before version 3.12, it was not recommended for mutable heap types to imple-
ment the vectorcall protocol. Whenausersets__call__ inPython code, only p_call is updated, likely making
it inconsistent with the vectorcall function. Since 3.12, setting __call__ will disable vectorcall optimization
by clearing the Py_TPFLAGS_HAVE_VECTORCALL flag.

Inheritance:

This field is always inherited. However, the Py 7PFLAGS HAVE_VECTORCALL flag is not always inherited. If
it’s not set, then the subclass won’t use vectorcall, except when PyVectorcall call () is explicitly called.

12.3. Type Object Structures 291

The Python/C API, Release 3.13.7

getattrfunc PyTypeObject .tp_getattr

An optional pointer to the get-attribute-string function.

This field is deprecated. When it is defined, it should point to a function that acts the same as the tp_getattro
function, but taking a C string instead of a Python string object to give the attribute name.

Inheritance:
Group: tp_getattr, tp_getattro

This field is inherited by subtypes together with tp_getattro: a subtype inherits both tp_getattr and
tp_getattro from its base type when the subtype’s tp_getattrand tp_getattro are both NULL.

setattrfunc PyTypeObject .tp_setattr

An optional pointer to the function for setting and deleting attributes.

This field is deprecated. When it is defined, it should point to a function that acts the same as the tp_setattro
function, but taking a C string instead of a Python string object to give the attribute name.

Inheritance:
Group: tp_setattr, tp_setattro

This field is inherited by subtypes together with tp_setattro: a subtype inherits both tp_setattr and
tp_setattro from its base type when the subtype’s tp_setattrand tp_setattro are both NULL.

PyAsyncMethods *pPy TypeObject .tp_as_async

Pointer to an additional structure that contains fields relevant only to objects which implement awaitable and
asynchronous iterator protocols at the C-level. See Async Object Structures for details.

Added in version 3.5: Formerly known as tp_compare and tp_reserved.
Inheritance:
The tp_as_async field is not inherited, but the contained fields are inherited individually.

reprfunc PyTypeObject .tp_repr

An optional pointer to a function that implements the built-in function repr ().

The signature is the same as for PyOb ject_Repr ():

[Pyobject *tp_repr (PyObject *self); }

The function must return a string or a Unicode object. Ideally, this function should return a string that, when
passed to eval (), given a suitable environment, returns an object with the same value. If this is not feasible,
it should return a string starting with '<' and ending with '>"' from which both the type and the value of the
object can be deduced.

Inheritance:
This field is inherited by subtypes.
Default:

When this field is not set, a string of the form <%s object at %p> is returned, where %s is replaced by the
type name, and $p by the object’s memory address.

PyNumberMethods ¥*PyTypeObject .tp_as_number

Pointer to an additional structure that contains fields relevant only to objects which implement the number
protocol. These fields are documented in Number Object Structures.

Inheritance:

The tp_as_number field is not inherited, but the contained fields are inherited individually.

292 Capitolo 12. Object Implementation Support

The Python/C API, Release 3.13.7

PySequenceMethods *PyTypeObject .tp_as_sequence

Pointer to an additional structure that contains fields relevant only to objects which implement the sequence
protocol. These fields are documented in Sequence Object Structures.

Inheritance:
The tp_as_seguence field is not inherited, but the contained fields are inherited individually.

PyMappingMethods *PyTypeObject .tp_as_mapping

Pointer to an additional structure that contains fields relevant only to objects which implement the mapping
protocol. These fields are documented in Mapping Object Structures.

Inheritance:
The tp_as_mapping field is not inherited, but the contained fields are inherited individually.

hashfunc PyTypeObject .tp_hash

An optional pointer to a function that implements the built-in function hash ().

The signature is the same as for PyObject_Hash ():

[Py_hash_t tp_hash (PyObject *); J

The value -1 should not be returned as a normal return value; when an error occurs during the computation
of the hash value, the function should set an exception and return -1.

When this field is not set (and tp_richcompare is not set), an attempt to take the hash of the object raises
TypeError. This is the same as setting it to PyObject_HashNotImplemented ().

This field can be set explicitly to PyObject_HashNotImplemented () to block inheritance of the hash
method from a parent type. This is interpreted as the equivalent of __hash__ = None at the Python level,
causing isinstance (o, collections.Hashable) to correctly return False. Note that the converse is
also true - setting __hash__ = None on a class at the Python level will result in the tp_hash slot being set
to PyObject_HashNotImplemented ().

Inheritance:
Group: tp_hash, tp_richcompare

This field is inherited by subtypes together with tp richcompare: a subtype inherits both of
tp_richcompare and tp_hash, when the subtype’s tp_richcompare and tp_hash are both NULL.

Default:
PyBaseObject_Type Uses PyObject_GenericHash ().

ternaryfunc PyTypeObject .tp_call

An optional pointer to a function that implements calling the object. This should be NULL if the object is not
callable. The signature is the same as for PyObject_call ():

[PyObject *tp_call (PyObject *self, PyObject *args, PyObject *kwargs);

Inheritance:
This field is inherited by subtypes.

reprfunc PyTypeObject .tp_str

An optional pointer to a function that implements the built-in operation str (). (Note that st r is a type now,
and str () calls the constructor for that type. This constructor calls Pyobject_Str () to do the actual work,
and Pyobject_Str () will call this handler.)

The signature is the same as for PyObject_Str():

[PyObject *tp_str (PyObject *self); }

12.3. Type Object Structures 293

The Python/C API, Release 3.13.7

The function must return a string or a Unicode object. It should be a «friendly» string representation of the
object, as this is the representation that will be used, among other things, by the print () function.

Inheritance:
This field is inherited by subtypes.
Default:

When this field is not set, PyObject_Repr () is called to return a string representation.

getattrofunc PyTypeObject .tp_getattro

An optional pointer to the get-attribute function.

The signature is the same as for PyObject_GetAttr():

[PyObject *tp_getattro (PyObject *self, PyObject *attr);

It is usually convenient to set this field to PyObject_GenericGetAttr (), which implements the normal
way of looking for object attributes.

Inheritance:
Group: tp_getattr, tp_getattro

This field is inherited by subtypes together with tp_getattr: a subtype inherits both tp _getattr and
tp_getattro from its base type when the subtype’s tp_getattrand tp_getattro are both NULL.

Default:

PyBaseObject_Type USes PyObject_GenericGetAttr ().

setattrofunc PyTypeObject .tp_setattro

An optional pointer to the function for setting and deleting attributes.

The signature is the same as for PyObject_SetAttr():

[int tp_setattro (PyObject *self, PyObject *attr, PyObject *value);

In addition, setting value to NULL to delete an attribute must be supported. It is usually convenient to set this
field to PyObject_GenericSetAttr (), which implements the normal way of setting object attributes.

Inheritance:
Group: tp_setattr, tp_setattro

This field is inherited by subtypes together with tp_setattr: a subtype inherits both tp_setattr and
tp_setattro from its base type when the subtype’s tp_setattrand tp_setattro are both NULL.

Default:

PyBaseObject_Type USes PyObject_GenericSetAttr ().

PyBufferProcs *PyTypeObject .tp_as_buffer

Pointer to an additional structure that contains fields relevant only to objects which implement the buffer
interface. These fields are documented in Buffer Object Structures.

Inheritance:

The tp_as_burrfer field is not inherited, but the contained fields are inherited individually.

unsigned long Py TypeObject.tp_£flags

This field is a bit mask of various flags. Some flags indicate variant semantics for certain situations; others
are used to indicate that certain fields in the type object (or in the extension structures referenced via
tp_as_number, tp_as_sequence, tp_as_mapping, and tp_as_buffer) that were historically not al-
ways present are valid; if such a flag bit is clear, the type fields it guards must not be accessed and must be
considered to have a zero or NULL value instead.

Inheritance:

294

Capitolo 12. Object Implementation Support

The Python/C API, Release 3.13.7

Inheritance of this field is complicated. Most flag bits are inherited individually, i.e. if the base type has a flag
bit set, the subtype inherits this flag bit. The flag bits that pertain to extension structures are strictly inherited if
the extension structure is inherited, i.e. the base type’s value of the flag bit is copied into the subtype together
with a pointer to the extension structure. The py TPFrAGS _HAVE_GC flag bit is inherited together with the
tp_traverse and tp_clear fields, i.e. if the Py TPFLAGS HAVE_GC flag bit is clear in the subtype and
the tp_traverseand tp_clear fields in the subtype exist and have NULL values. .. XXX are most flag bits
really inherited individually?

Default:
PyBaseObject_Type uses Py_TPFLAGS_DEFAULT | Py TPFLAGS_BASETYPE.
Bit Masks:

The following bit masks are currently defined; these can be ORed together using the | operator to form the
value of the tp_flags field. The macro Py Type HasFeature () takes a type and a flags value, #p and f, and
checks whether tp->tp_flags & f iSnon-zero.

Py_TPFLAGS_HEAPTYPE

This bit is set when the type object itself is allocated on the heap, for example, types created dynamically
using PyType_FromSpec (). In this case, the ob_type field of its instances is considered a reference
to the type, and the type object is INCREFed when a new instance is created, and DECREFed when
an instance is destroyed (this does not apply to instances of subtypes; only the type referenced by the
instance’s ob_type gets INCREFed or DECREFed). Heap types should also support garbage collection
as they can form a reference cycle with their own module object.

Inheritance:
77?
Py_TPFLAGS_BASETYPE

This bit is set when the type can be used as the base type of another type. If this bit is clear, the type
cannot be subtyped (similar to a «final» class in Java).

Inheritance:
7
Py_TPFLAGS_READY
This bit is set when the type object has been fully initialized by Py Type Ready ().
Inheritance:
777
Py_TPFLAGS_READYING
This bit is set while Py Type Ready () is in the process of initializing the type object.
Inheritance:
7
Py_TPFLAGS_HAVE_GC

This bit is set when the object supports garbage collection. If this bit is set, instances must be crea-
ted using Pyob ject_GC_New and destroyed using PyObject_GC_Del (). More information in section
Supporting Cyclic Garbage Collection. This bit also implies that the GC-related fields tp_traverse and
tp_clear are present in the type object.

Inheritance:
Group: Py_TPFLAGS_HAVE_GC, tp_traverse, tp_clear

The py_TPFLAGS_HAVE_GC flag bit is inherited together with the tp_traverseand tp_clear fields,
i.e. if the Py TPFLAGS HAVE_GC flag bit is clear in the subtype and the tp_traverseand tp_clear
fields in the subtype exist and have NULL values.

12.3. Type Object Structures 295

The Python/C API, Release 3.13.7

Py_TPFLAGS_DEFAULT

This is a bitmask of all the bits that pertain to the existence of certain fields in the type object and its exten-
sion structures. Currently, it includes the following bits: Py TPFLAGS_HAVE_STACKLESS_EXTENSION.

Inheritance:
77
Py _TPFLAGS_METHOD_DESCRIPTOR
This bit indicates that objects behave like unbound methods.
If this flag is set for type (meth), then:

e meth.__get_ (obj, cls) (*args, **kwds) (with obj not None) must be equivalent to
meth (obj, *args, **kwds).

e meth.__get_ (None, cls) (*args, **kwds) must be equivalent to meth (*args,
**kwds).

This flag enables an optimization for typical method calls like obj.meth (): it avoids creating a
temporary «bound method» object for obj .meth.

Added in version 3.8.
Inheritance:

This flag is never inherited by types without the Py TPFLAGS 1MMUTABLETYPE flag set. For extension
types, it is inherited whenever tp_descr_get is inherited.

Py TPFLAGS_MANAGED_DICT

This bit indicates that instances of the class have a _ dict__ attribute, and that the space for the
dictionary is managed by the VM.

If this flag is set, Py TPFLAGS_HAVE_GC should also be set.

The type traverse function must call PyObject VisitManagedDict () and its clear function must call
PyObject_ClearManagedDict ().

Added in version 3.12.
Inheritance:
This flag is inherited unless the tp_dictofrset field is set in a superclass.

Py TPFLAGS_MANAGED_WEAKREF

This bit indicates that instances of the class should be weakly referenceable.
Added in version 3.12.

Inheritance:

This flag is inherited unless the tp_weaklistofrset field is set in a superclass.

Py _TPFLAGS_ITEMS_AT END

Only usable with variable-size types, i.e. ones with non-zero tp_itemsize.

Indicates that the variable-sized portion of an instance of this type is at the end of the instance’s memory
area, at an offset of Py_TYPE (obj) ->tp_basicsize (which may be different in each subclass).

When setting this flag, be sure that all superclasses either use this memory layout, or are not variable-sized.
Python does not check this.

Added in version 3.12.
Inheritance:
This flag is inherited.

Py_TPFLAGS_LONG_SUBCLASS

296 Capitolo 12. Object Implementation Support

The Python/C API, Release 3.13.7

Py_TPFLAGS_LIST SUBCLASS
Py_TPFLAGS_TUPLE_SUBCLASS
Py_TPFLAGS_BYTES_SUBCLASS
Py_TPFLAGS_UNICODE_SUBCLASS
Py_TPFLAGS_DICT SUBCLASS
Py_TPFLAGS_BASE_EXC_SUBCLASS

Py_TPFLAGS_TYPE_SUBCLASS

These flags are used by functions such as PyLong_Check () to quickly determine if a type is a subclass
of a built-in type; such specific checks are faster than a generic check, like PyObject_IsInstance ().
Custom types that inherit from built-ins should have their tp_f1ags set appropriately, or the code that
interacts with such types will behave differently depending on what kind of check is used.

Py_TPFLAGS_HAVE_FINALIZE
This bit is set when the tp_finalize slotis present in the type structure.

Added in version 3.4.

Deprecato dalla versione 3.8: This flag isn’t necessary anymore, as the interpreter assumes the
tp_finalize slotis always present in the type structure.

Py TPFLAGS_HAVE_VECTORCALL

This bit is set when the class implements the vectorcall protocol. See tp_vectorcall offset for
details.

Inheritance:
This bit is inherited if tp_call is also inherited.
Added in version 3.9.

Cambiato nella versione 3.12: This flag is now removed from a class when the class’s __ call ()
method is reassigned.

This flag can now be inherited by mutable classes.

Py TPFLAGS_IMMUTABLETYPE

This bit is set for type objects that are immutable: type attributes cannot be set nor deleted.
PyType_Ready () automatically applies this flag to static types.

Inheritance:

This flag is not inherited.

Added in version 3.10.

Py TPFLAGS_DISALLOW_INSTANTIATION

Disallow creating instances of the type: set tp_new to NULL and don’t create the __new__ key in the
type dictionary.

The flag must be set before creating the type, not after. For example, it must be set before
PyType_Ready () is called on the type.

The flag is set automatically on static types if tp_baseis NULL or sPyBaseObject_Typeand tp_new
is NULL.

Inheritance:

This flag is not inherited. However, subclasses will not be instantiable unless they provide a non-NULL
tp_new (which is only possible via the C API).

12.3. Type Object Structures 297

The Python/C API, Release 3.13.7

©® Nota

To disallow instantiating a class directly but allow instantiating its subclasses (e.g. for an abstract base
class), do not use this flag. Instead, make tp_new only succeed for subclasses.

Added in version 3.10.

Py TPFLAGS_MAPPING

This bit indicates that instances of the class may match mapping patterns when used as the subject of a
match block. It is automatically set when registering or subclassing collections.abc.Mapping, and
unset when registering collections.abc.Sequence.

©® Nota

Py TPFLAGS_MAPPINGand Py TPFLAGS_SEQUENCE are mutually exclusive;itis an error to enable
both flags simultaneously.

Inheritance:

This flag is inherited by types that do not already set Py TPFLAGS SEQUENCE.

> Vedi anche

PEP 634 - Structural Pattern Matching: Specification

Added in version 3.10.

Py_TPFLAGS_SEQUENCE

This bit indicates that instances of the class may match sequence patterns when used as the subject of
amatch block. It is automatically set when registering or subclassing collections.abc.Sequence,
and unset when registering collections.abc.Mapping.

©® Nota

Py TPFLAGS_MAPPINGand Py TPFLAGS_SEQUENCE are mutually exclusive;itis an error to enable
both flags simultaneously.

Inheritance:

This flag is inherited by types that do not already set Py TPFLAGS MAPPING.

#» Vedi anche

PEP 634 - Structural Pattern Matching: Specification

Added in version 3.10.

Py_TPFLAGS_VALID_VERSION_TAG
Internal. Do not set or unset this flag. To indicate that a class has changed call Py Type_Modified ()

A\ Avvertimento

This flag is present in header files, but is not be used. It will be removed in a future version of CPython

298 Capitolo 12. Object Implementation Support

https://peps.python.org/pep-0634/
https://peps.python.org/pep-0634/

The Python/C API, Release 3.13.7

const char *PyTypeObject.tp_doc

An optional pointer to a NUL-terminated C string giving the docstring for this type object. This is exposed as
the _ doc__ attribute on the type and instances of the type.

Inheritance:
This field is not inherited by subtypes.

traverseproc PyTypeObject .tp_traverse

An optional pointer to a traversal function for the garbage collector. This is only used if the
pPy_TPFLAGS_HAVE_GC flag bit is set. The signature is:

Lint tp_traverse (PyObject *self, visitproc visit, wvoid *argqg); }

More information about Python’s garbage collection scheme can be found in section Supporting Cyclic Garbage
Collection.

The tp_traverse pointer is used by the garbage collector to detect reference cycles. A typical implementation
of a tp_traverse function simply calls Py_vIsT7T () on each of the instance’s members that are Python
objects that the instance owns. For example, this is function 1ocal_traverse () fromthe _thread extension
module:

static int
local_traverse (localobject *self, visitproc visit, wvoid *argq)
{

Py _VISIT (self->args);

Py_VISIT (self-—>kw);

Py_VISIT (self->dict);

return 0;

Note that py_vIs1T () is called only on those members that can participate in reference cycles. Although
there is also a self->key member, it can only be NULL or a Python string and therefore cannot be part of a
reference cycle.

On the other hand, even if you know a member can never be part of a cycle, as a debugging aid you may want
to visit it anyway just so the gc module’s get_referents () function will include it.

Heap types (Py_TPFLAGS_HEAPTYPE) must visit their type with:

Py _VISIT (Py_TYPE (self));

It is only needed since Python 3.9. To support Python 3.8 and older, this line must be conditional:

#1f PY VERSION_HEX >= 0x03090000
Py _VISIT(Py_TYPE (self));
#endif

If the Py _TPFLAGS MANAGED _DICT bit is set in the tp_flags field, the traverse function must call
PyObject_VisitManagedDict () like this:

[PyObject_VisitManagedDict((PyObject*)self, visit, arg); }

A\ Avvertimento

When implementing tp_t raverse, only the members that the instance owns (by having strong references
to them) must be visited. For instance, if an object supports weak references via the tp_weaklist slot,
the pointer supporting the linked list (what #p_weaklist points to) must not be visited as the instance does
not directly own the weak references to itself (the weakreference list is there to support the weak reference

12.3. Type Object Structures 299

The Python/C API, Release 3.13.7

machinery, but the instance has no strong reference to the elements inside it, as they are allowed to be
removed even if the instance is still alive).

Note that py_vIS1T () requires the visit and arg parameters to local_traverse () to have these specific
names; don’t name them just anything.

Instances of heap-allocated types hold a reference to their type. Their traversal function must therefore either
visit Py_ TYPE (self), or delegate this responsibility by calling tp_t raverse of another heap-allocated type
(such as a heap-allocated superclass). If they do not, the type object may not be garbage-collected.

Cambiato nella versione 3.9: Heap-allocated types are expected to visit Py_TYPE (self) in tp_traverse.
In earlier versions of Python, due to bug 40217, doing this may lead to crashes in subclasses.

Inheritance:
(houp:nyTPFLAGS?HAVE?GC,tpﬁtraverse,tchlear

This field is inherited by subtypes together with tp_clear and the Py TPFLAGS HAVE_GC flag bit: the flag
bit, tp_traverse, and tp_clear are all inherited from the base type if they are all zero in the subtype.
inquiry PyTypeObject .tp_clear

An optional pointer to a clear function for the garbage collector. This is only used if the
Py_TPFLAGS_HAVE_GC flag bit is set. The signature is:

[int tp_clear (PyObject *); }

The tp_clear member function is used to break reference cycles in cyclic garbage detected by the garbage
collector. Taken together, all tp_clear functions in the system must combine to break all reference cycles.
This is subtle, and if in any doubt supply a tp_ c1ear function. For example, the tuple type does not implement
a tp_clear function, because it’s possible to prove that no reference cycle can be composed entirely of tuples.
Therefore the tp_ c1ear functions of other types must be sufficient to break any cycle containing a tuple. This
isn’t immediately obvious, and there’s rarely a good reason to avoid implementing tp_clear.

Implementations of tp_clear should drop the instance’s references to those of its members that may be
Python objects, and set its pointers to those members to NULL, as in the following example:

static int

local_clear (localobject *self)

{
Py_CLEAR
Py_CLEAR
Py_CLEAR
Py_CLEAR
return O;

self->key);
self->args);
self->kw);
self->dict);

The Py_CLEAR () macro should be used, because clearing references is delicate: the reference to the contained
object must not be released (via Py_DECREF ()) until after the pointer to the contained object is set to NULL.
This is because releasing the reference may cause the contained object to become trash, triggering a chain of
reclamation activity that may include invoking arbitrary Python code (due to finalizers, or weakref callbacks,
associated with the contained object). If it’s possible for such code to reference self again, it’s important that
the pointer to the contained object be NULL at that time, so that self knows the contained object can no longer
be used. The Py_CLEAR () macro performs the operations in a safe order.

If the Py TPFLAGS MANAGED DICT bit is set in the tp_ flags field, the traverse function must call
PyObject_ClearManagedDict () like this:

[PyObject_ClearManagedDict((PyObject*)self); J

300 Capitolo 12. Object Implementation Support

https://bugs.python.org/issue40217

The Python/C API, Release 3.13.7

Note that tp_clear is not always called before an instance is deallocated. For example, when reference
counting is enough to determine that an object is no longer used, the cyclic garbage collector is not involved
and tp_dealloc is called directly.

Because the goal of tp_clear functions is to break reference cycles, it’s not necessary to clear contained
objects like Python strings or Python integers, which can’t participate in reference cycles. On the other hand, it
may be convenient to clear all contained Python objects, and write the type’s tp_dealloc function to invoke
tp_clear.

More information about Python’s garbage collection scheme can be found in section Supporting Cyclic Garbage
Collection.

Inheritance:
Group: Py_TPFLAGS_HAVE_GC, tp_traverse, tp_clear

This field is inherited by subtypes together with tp_traverse and the Py TPFLAGS_HAVE_GC flag bit: the
flag bit, tp_traverse, and tp_clear are all inherited from the base type if they are all zero in the subtype.

richcmpfunc PyTypeObject .tp_richcompare

An optional pointer to the rich comparison function, whose signature is:

[PyObject *tp_richcompare (PyObject *self, PyObject *other, int op);

The first parameter is guaranteed to be an instance of the type that is defined by Py TypeObject.

The function should return the result of the comparison (usually Py_True or Py_False). If the comparison
is undefined, it must return Py_Not Implemented, if another error occurred it must return NULL and set an
exception condition.

The following constants are defined to be used as the third argument for tp richcompare and for
PyObject_RichCompare ():

Constant Comparison

<
Py LT

Py_LE

Py_EQ

Py_NE

Py_GT

Py_GE

The following macro is defined to ease writing rich comparison functions:

Py_RETURN_RICHCOMPARE (VAL_A, VAL_B, op)

Return Py_True or Py_False from the function, depending on the result of a comparison. VAL_A and
VAL_B must be orderable by C comparison operators (for example, they may be C ints or floats). The
third argument specifies the requested operation, as for PyObject_RichCompare ().

The returned value is a new strong reference.

12.3. Type Object Structures 301

The Python/C API, Release 3.13.7

On error, sets an exception and returns NULL from the function.
Added in version 3.7.

Inheritance:

Group: tp_hash, tp_richcompare

This field is inherited by subtypes together with tp_hash: a subtype inherits t p_ richcompareand tp_hash
when the subtype’s tp_richcompare and tp_hash are both NULL.

Default:

PyBaseObject_Type provides a tp_richcompare implementation, which may be inherited. However, if
only tp_hash is defined, not even the inherited function is used and instances of the type will not be able to
participate in any comparisons.

Py_ssize_ t PyTypeObject .tp_weaklistoffset
While this field is still supported, Py TPFLAGS MANAGED_WEAKREF should be used instead, if at all possible.
If the instances of this type are weakly referenceable, this field is greater than zero and contains the offset in
the instance structure of the weak reference list head (ignoring the GC header, if present); this offset is used

by PyObject_ClearWeakRefs () and the PyWeakref_* functions. The instance structure needs to include
a field of type PyObject* which is initialized to NULL.

Do not confuse this field with tp_weak1ist;that is the list head for weak references to the type object itself.
It is an error to set both the Py TPFLAGS MANAGED _WEAKREF bitand tp_weaklistoffset.
Inheritance:

This field is inherited by subtypes, but see the rules listed below. A subtype may override this offset; this means
that the subtype uses a different weak reference list head than the base type. Since the list head is always found
via tp_weaklistoffset, this should not be a problem.

Default:

If the Py_TPFLAGS_MANAGED_WEAKREF bit is set in the tp_flags field, then tp_weaklistoffset will
be set to a negative value, to indicate that it is unsafe to use this field.

getiterfunc PyTypeObject .tp_iter

An optional pointer to a function that returns an iterator for the object. Its presence normally signals that the
instances of this type are iferable (although sequences may be iterable without this function).

This function has the same signature as PyObject_GetIter ():

[PyObject *tp_iter (PyObject *self); J

Inheritance:
This field is inherited by subtypes.

iternextfunc PyTypeObject .tp_iternext
An optional pointer to a function that returns the next item in an iterator. The signature is:

[Pyobject *tp_iternext (PyObject *self);]

When the iterator is exhausted, it must return NULL; a StopIteration exception may or may not be set.
When another error occurs, it must return NULL too. Its presence signals that the instances of this type are
iterators.

Iterator types should also define the tp_iter function, and that function should return the iterator instance
itself (not a new iterator instance).

This function has the same signature as PyTter Next ().
Inheritance:

This field is inherited by subtypes.

302 Capitolo 12. Object Implementation Support

The Python/C API, Release 3.13.7

struct PyMethodDef *pPyTypeObject .tp_methods

An optional pointer to a static NULL-terminated array of PyMethodDef structures, declaring regular methods
of this type.

For each entry in the array, an entry is added to the type’s dictionary (see tp_dict below) containing a method
descriptor.

Inheritance:
This field is not inherited by subtypes (methods are inherited through a different mechanism).

struct PyMemberDef *PyTypeObject .tp_members

An optional pointer to a static NULL-terminated array of PyMemberDef structures, declaring regular data
members (fields or slots) of instances of this type.

For each entry in the array, an entry is added to the type’s dictionary (see tp_dict below) containing a member
descriptor.

Inheritance:
This field is not inherited by subtypes (members are inherited through a different mechanism).

struct PyGetSetDef *PyTypeObject .tp_getset

An optional pointer to a static NULL-terminated array of PyGetSetDef structures, declaring computed
attributes of instances of this type.

For each entry in the array, an entry is added to the type’s dictionary (see tp_dict below) containing a getset
descriptor.

Inheritance:
This field is not inherited by subtypes (computed attributes are inherited through a different mechanism).
PyTypeObject ¥PyTypeObject .tp_base

An optional pointer to a base type from which type properties are inherited. At this level, only single inheritance
is supported; multiple inheritance require dynamically creating a type object by calling the metatype.

© Nota

Slot initialization is subject to the rules of initializing globals. C99 requires the initializers to be «address
constants». Function designators like Py Type GenericNew (), with implicit conversion to a pointer, are
valid C99 address constants.

However, the unary “&” operator applied to a non-static variable like PyBaseOb ject_ Type is not required
to produce an address constant. Compilers may support this (gcc does), MSVC does not. Both compilers
are strictly standard conforming in this particular behavior.

Consequently, tp_base should be set in the extension module’s init function.

Inheritance:

This field is not inherited by subtypes (obviously).

Default:

This field defaults to sPyBaseObject_Type (which to Python programmers is known as the type object).

PyObject ¥*pPyTypeObject .tp_dict
The type’s dictionary is stored here by Py Type Ready ().

This field should normally be initialized to NULL before PyType_Ready is called; it may also be initialized to
a dictionary containing initial attributes for the type. Once Py Type Ready () has initialized the type, extra
attributes for the type may be added to this dictionary only if they don’t correspond to overloaded operations
(like __add__()). Once initialization for the type has finished, this field should be treated as read-only.

12.3. Type Object Structures 303

The Python/C API, Release 3.13.7

Some types may not store their dictionary in this slot. Use Py Type GetDict () to retrieve the dictionary for
an arbitrary type.

Cambiato nella versione 3.12: Internals detail: For static builtin types, this is always NULL. Instead, the dict
for such types is stored on PyInterpretersState. Use PyType GetDict () to get the dict for an arbitrary

type.

Inheritance:

This field is not inherited by subtypes (though the attributes defined in here are inherited through a different
mechanism).

Default:

If this field is NULL, Py Type_Ready () will assign a new dictionary to it.

A\ Avvertimento

It is not safe to use PyDict_SetItem() on or otherwise modify tp_dict with the dictionary C-APIL

descrgetfunc PyTypeObject .tp_descr_get

An optional pointer to a «descriptor get» function.

The function signature is:

[PyObject * tp_descr_get (PyObject *self, PyObject *obj, PyObject *type);

Inheritance:
This field is inherited by subtypes.

descrsetfunc PyTypeObject .tp_descr_set
An optional pointer to a function for setting and deleting a descriptor’s value.

The function signature is:

[int tp_descr_set (PyObject *self, PyObject *obj, PyObject *value);

The value argument is set to NULL to delete the value.
Inheritance:
This field is inherited by subtypes.

Py _ssize_t PyTypeObject .tp_dictoffset
While this field is still supported, Py TPFLAGS MANAGED_DICT should be used instead, if at all possible.

If the instances of this type have a dictionary containing instance variables, this field is non-zero and
contains the offset in the instances of the type of the instance variable dictionary; this offset is used by
PyObject_GenericGetAttr ().

Do not confuse this field with tp_dict; that is the dictionary for attributes of the type object itself.
The value specifies the offset of the dictionary from the start of the instance structure.

The tp dictoffset should be regarded as write-only. To get the pointer to the dictionary call
PyObject_GenericGetDict (). Calling PyObject GenericGetDict () may need to allocate memory
for the dictionary, so it is may be more efficient to call PyObject GetAttr () when accessing an attribute
on the object.

It is an error to set both the Py TPFLAGS_MANAGED_DICT bitand tp_dictoffset.

Inheritance:

304 Capitolo 12. Object Implementation Support

The Python/C API, Release 3.13.7

This field is inherited by subtypes. A subtype should not override this offset; doing so could be unsa-
fe, if C code tries to access the dictionary at the previous offset. To properly support inheritance, use
Py TPFLAGS_MANAGED_DICT.

Default:
This slot has no default. For static types, if the field is NULL then no __dict__ gets created for instances.

If the Py TPFLAGS_MANAGED_DICT bit is set in the tp_flags field, then tp_dictoffset will be set to
-1, to indicate that it is unsafe to use this field.

initproc Py TypeObject .tp_init

An optional pointer to an instance initialization function.

This function correspondstothe __init__ () method of classes. Like _init__ (), itis possible to create an
instance without calling __init__ (), and it is possible to reinitialize an instance by calling its __init__ ()
method again.

The function signature is:

[int tp_init (PyObject *self, PyObject *args, PyObject *kwds); }

The self argument is the instance to be initialized; the args and kwds arguments represent positional and
keyword arguments of the callto __init__ ().

The tp_init function, if not NULL, is called when an instance is created normally by calling its type, after
the type’s tp_new function has returned an instance of the type. If the tp_new function returns an instance of
some other type that is not a subtype of the original type, no tp_init function is called; if tp_new returns
an instance of a subtype of the original type, the subtype’s tp_init is called.

Returns 0 on success, -1 and sets an exception on error.
Inheritance:

This field is inherited by subtypes.

Default:

For static types this field does not have a default.

allocfunc PyTypeObject .tp_alloc

An optional pointer to an instance allocation function.

The function signature is:

[PyObject *tp_alloc (PyTypeObject *self, Py_ssize_t nitems); }

Inheritance:
This field is inherited by static subtypes, but not by dynamic subtypes (subtypes created by a class statement).
Default:

For dynamic subtypes, this field is always set to PyType GenericAlloc (), to force a standard heap
allocation strategy.

For static subtypes, PyBaseObject_Typeuses PyType_GenericAlloc (). Thatis the recommended value
for all statically defined types.

newfunc PyTypeObject .tp_new

An optional pointer to an instance creation function.

The function signature is:

EPyObject *tp_new (PyTypeObject *subtype, PyObject *args, PyObject *kwds); }

12.3. Type Object Structures 305

The Python/C API, Release 3.13.7

The subtype argument is the type of the object being created; the args and kwds arguments represent positional
and keyword arguments of the call to the type. Note that subtype doesn’t have to equal the type whose tp_new
function is called; it may be a subtype of that type (but not an unrelated type).

The tp_new function should call subtype->tp_alloc (subtype, nitems) to allocate space for the ob-
ject, and then do only as much further initialization as is absolutely necessary. Initialization that can safely be
ignored or repeated should be placed in the tp_init handler. A good rule of thumb is that for immutable
types, all initialization should take place in tp_new, while for mutable types, most initialization should be
deferred to tp_init.

Setthe Py TPFLAGS DISALLOW_INSTANTIATION flag to disallow creating instances of the type in Python.
Inheritance:

This field is inherited by subtypes, except it is not inherited by static types whose tp_base is NULL or
&PyBaseObject_Type.

Default:

For static types this field has no default. This means if the slot is defined as NULL, the type cannot be called to
create new instances; presumably there is some other way to create instances, like a factory function.

[freefunc PyTypeObject.tp_£free

An optional pointer to an instance deallocation function. Its signature is:

[void tp_free (void *self);

An initializer that is compatible with this signature is PyObject_Free ().

Inheritance:

This field is inherited by static subtypes, but not by dynamic subtypes (subtypes created by a class statement)
Default:

In dynamic subtypes, this field is set to a deallocator suitable to match Py Type_GenericAlloc () and the
value of the Py_TPFLAGS HAVE_GC flag bit.

For static subtypes, PyBaseObject_Type uses PyObject_Del ().

inquiry PyTypeObject .tp_is_ge

An optional pointer to a function called by the garbage collector.

The garbage collector needs to know whether a particular object is collectible or not. Normally, it is sufficient
to look at the object’s type’s tp_flags field, and check the py_TPFLAGS HAVE_GC flag bit. But some types
have a mixture of statically and dynamically allocated instances, and the statically allocated instances are not
collectible. Such types should define this function; it should return 1 for a collectible instance, and 0 for a
non-collectible instance. The signature is:

{int tp_is_gc (PyObject *self);

)

(The only example of this are types themselves. The metatype, PyType Type, defines this function to
distinguish between statically and dynamically allocated types.)

Inheritance:
This field is inherited by subtypes.
Default:

This slot has no default. If this field is NULL, Py TPFLAGS HAVE_GC is used as the functional equivalent.

PyObject ¥*PyTypeObject .tp_bases

Tuple of base types.

This field should be set to NULL and treated as read-only. Python will fill it in when the type is initialized.

306

Capitolo 12. Object Implementation Support

The Python/C API, Release 3.13.7

For dynamically created classes, the Py_tp_bases slot can be used instead of the bases argument of
PyType_FromSpecWithBases (). The argument form is preferred.

A\ Avvertimento

Multiple inheritance does not work well for statically defined types. If you set t p_bases to a tuple, Python
will not raise an error, but some slots will only be inherited from the first base.

Inheritance:
This field is not inherited.

PyObject *pyTypeObject .tp_mro
Tuple containing the expanded set of base types, starting with the type itself and ending with ocbject, in
Method Resolution Order.

This field should be set to NULL and treated as read-only. Python will fill it in when the type is initialized.
Inheritance:
This field is not inherited; it is calculated fresh by Py Type Ready ().

PyObject *pyTypeObject .tp_cache

Unused. Internal use only.
Inheritance:
This field is not inherited.

void *PyTypeObject .tp_subclasses
A collection of subclasses. Internal use only. May be an invalid pointer.

To get a list of subclasses, call the Python method __subclasses__ ().

Cambiato nella versione 3.12: For some types, this field does not hold a valid Pyobject*. The type was
changed to void* to indicate this.

Inheritance:
This field is not inherited.

PyObject *pyTypeObject .tp_weaklist
Weak reference list head, for weak references to this type object. Not inherited. Internal use only.

Cambiato nella versione 3.12: Internals detail: For the static builtin types this is always NULL, even if weakrefs
are added. Instead, the weakrefs for each are stored on PyInterpreterState. Use the public C-API or the
internal _PyObject_GET_WEAKREFS_LISTPTR () macro to avoid the distinction.

Inheritance:
This field is not inherited.

destructor PyTypeObject .tp_del
This field is deprecated. Use tp_finalize instead.

unsigned int Py TypeObject.tp_version_tag

Used to index into the method cache. Internal use only.
Inheritance:
This field is not inherited.

destructor PyTypeObject .tp_£finalize

An optional pointer to an instance finalization function. Its signature is:

12.3. Type Object Structures 307

The Python/C API, Release 3.13.7

[void tp_finalize (PyObject *self); }

If tp_rinalize is set, the interpreter calls it once when finalizing an instance. It is called either from the
garbage collector (if the instance is part of an isolated reference cycle) or just before the object is deallocated.
Either way, it is guaranteed to be called before attempting to break reference cycles, ensuring that it finds the
object in a sane state.

tp_rfinalize should not mutate the current exception status; therefore, a recommended way to write a non-
trivial finalizer is:

'a N\
static void
local_finalize (PyObject *self)

{

/* Save the current exception, if any. */
PyObject *exc = PyErr_GetRaisedException();

/& aoa S/

/* Restore the saved exception. */
PyErr_SetRaisedException (exc);

Inheritance:
This field is inherited by subtypes.
Added in version 3.4.

Cambiato nella versione 3.8: Before version 3.8 it was necessary to set the Py TPFLAGS HAVE_FINALIZE
flags bit in order for this field to be used. This is no longer required.

> Vedi anche
«Safe object finalization» (PEP 442)

vectorcallfunc PyTypeObject.tp_vectorcall
Vectorcall function to use for calls of this type object. In other words, it is used to implement vectorcall

for type.__call . If tp_vectorcall is NULL, the default call implementation using _ new__ () and
__init__ () isused.
Inheritance:

This field is never inherited.
Added in version 3.9: (the field exists since 3.8 but it’s only used since 3.9)

unsigned char Py TypeObject . tp_watched

Internal. Do not use.

Added in version 3.12.

12.3.6 Static Types

Traditionally, types defined in C code are static, that is, a static Py TypeObject structure is defined directly in code
and initialized using Py Type Ready ().

This results in types that are limited relative to types defined in Python:
« Static types are limited to one base, i.e. they cannot use multiple inheritance.

« Static type objects (but not necessarily their instances) are immutable. It is not possible to add or modify the
type object’s attributes from Python.

308 Capitolo 12. Object Implementation Support

https://peps.python.org/pep-0442/

The Python/C API, Release 3.13.7

« Static type objects are shared across sub-interpreters, so they should not include any subinterpreter-specific
state.

Also, since PyTypeOb ject is only part of the Limited API as an opaque struct, any extension modules using static
types must be compiled for a specific Python minor version.

12.3.7 Heap Types

An alternative to static types is heap-allocated types, or heap types for short, which correspond closely to classes
created by Python’s c1ass statement. Heap types have the Py TPrLAGS HEAPTYPE flag set.

This is done by filling a PyType Spec structure and calling PyType FromSpec(),
PyType_FromSpecWithBases (), PyType_FromModuleAndSpec (), Or PyType_FromMetaclass ().

12.3.8 Number Object Structures

type PyNumberMethods

This structure holds pointers to the functions which an object uses to implement the number protocol. Each
function is used by the function of similar name documented in the Number Protocol section.

Here is the structure definition:

typedef struct {

binaryfunc
binaryfunc
binaryfunc
binaryfunc
binaryfunc

binaryfunc
binaryfunc
binaryfunc
binaryfunc
binaryfunc

binaryfunc
binaryfunc
binaryfunc
binaryfunc

binaryfunc
binaryfunc
binaryfunc
binaryfunc
binaryfunc

binaryfunc
binaryfunc
binaryfunc
binaryfunc

inquiry nb_.

nb_add;
nb_subtract;
nb_multiply;
nb_remainder;
nb_divmod;

ternaryfunc nb_power;

unaryfunc nb_negative;
unaryfunc nb_positive;
unaryfunc nb_absolute;

bool;

unaryfunc nb_invert;

nb_1lshift;
nb_rshift;
nb_and;
nb_xor;
nb_or;

unaryfunc nb_int;
void *nb_reserved;
unaryfunc nb_float;

nb_inplace_add;
nb_inplace_subtract;
nb_inplace_multiply;
nb_inplace_remainder;

ternaryfunc nb_inplace_power;

nb_inplace_lshift;
nb_inplace_rshift;
nb_inplace_and;
nb_inplace_xor;
nb_inplace_or;

nb_floor_divide;
nb_true_divide;

nb_inplace_floor_divide;
nb_inplace_true_divide;

(continues on next page)

12.3. Type Object Structures

309

The Python/C API, Release 3.13.7

unaryfunc nb_index;

binaryfunc nb_matrix_multiply;
binaryfunc nb_inplace_matrix _multiply;
} PyNumberMethods;

(continua dalla pagina precedente)

© Nota

occurred they must return NULL and set an exception.

Binary and ternary functions must check the type of all their operands, and implement the necessary con-
versions (at least one of the operands is an instance of the defined type). If the operation is not defined
for the given operands, binary and ternary functions must return Py_Not Implemented, if another error

O Nota

The nb_reserved field should always be NULL. It was previously
Python 3.0.1.

called nb_1ong, and was renamed in

binaryfunc PyNumberMethods.nb_add
binaryfunc PyNumberMethods.nb_subtract
binaryfunc PyNumberMethods.nb_multiply
binaryfunc PyNumberMet hods .nb_remainder
binaryfunc PyNumberMethods.nb_divmod
ternaryfunc PyNumberMethods .nb_power
unaryfunc PyNumberMethods .nb_negative
unaryfunc PyNumberMethods .nb_positive
unaryfunc PyNumberMet hods.nb_absolute
inquiry PyNumberMethods .nb_bool
unaryfunc PyNumberMethods.nb_invert
binaryfunc PyNumberMethods.nb_1lshift
binaryfunc PyNumberMethods.nb_rshift
binaryfunc PyNumberMethods.nb_and
binaryfunc PyNumberMethods .nb_xoxr
binaryfunc PyNumberMet hods .nb_or
unaryfunc PyNumberMethods.nb_int

void *PyNumberMethods.nb_reserved
unaryfunc PyNumberMethods .nb_f£float

binaryfunc PyNumberMethods.nb_inplace_add

310 Capitolo 12

. Object Implementation Support

The Python/C API, Release 3.13.7

binaryfunc PyNumberMethods.
binaryfunc PyNumberMethods.
binaryfunc PyNumberMethods.
ternaryfunc PyNumberMethods
binaryfunc PyNumberMethods.
binaryfunc PyNumberMethods
binaryfunc PyNumberMethods
binaryfunc PyNumberMethods.
binaryfunc PyNumberMethods.
binaryfunc PyNumberMethods.
binaryfunc PyNumberMethods

binaryfunc PyNumberMethods

nb_inplace_subtract
nb_inplace_multiply

nb_inplace_remainder

.nb_inplace_power

nb_inplace_lshift

.nb_inplace_rshift

.nb_inplace_and

nb_inplace_xor
nb_inplace_or

nb_floor_divide

.nb_true_divide

.nb_inplace_floor_divide

binaryfunc PyNumberMethods.nb_inplace_true_divide

unaryfunc PyNumberMet hods.nb_index

binaryfunc PyNumberMet hods .nb_matrix_multiply

binaryfunc PyNumberMethods.nb_inplace_matrix_multiply

12.3.9 Mapping Object Structures

type PyMappingMethods
This structure holds pointers to the functions which an object uses to implement the mapping protocol. It has
three members:

lenfunc PyMappingMethods.mp_length
This function is used by PyMapping Size () and PyObject_Size (), and has the same signature. This slot
may be set to NULL if the object has no defined length.

binaryfunc PyMappingMethods .mp_subscript
This function is used by Pyobject_GetItem() and PySequence_GetSlice (),and has the same signature
as PyObject_GetItem (). This slot must be filled for the PyMapping Check () function to return 1, it can
be NULL otherwise.

objobjargproc PyMappingMethods.mp_ass_subscript

This function is used by PyObject_SetItem(), PyObject_Delltem(), PySequence_SetSlice () and
PySequence_DelSlice (). It has the same signature as PyObject_SetItem (), but v can also be set to
NULL to delete an item. If this slot is NULL, the object does not support item assignment and deletion.

12.3.10 Sequence Object Structures

type PySequenceMethods
This structure holds pointers to the functions which an object uses to implement the sequence protocol.

lenfunc PySequenceMethods.sq_length

This function is used by PySequence Size () and PyObject_Size (), and has the same signature. It is
also used for handling negative indices via the sg_itemand the sq_ass_itemslots.

12.3. Type Object Structures 311

The Python/C API, Release 3.13.7

binaryfunc PySequenceMethods.sq_concat
This function is used by PySequence_Concat () and has the same signature. It is also used by the + operator,
after trying the numeric addition via the nb_add slot.

ssizeargfunc PySequenceMethods.sq_repeat
This function is used by PySequence_Repeat () and has the same signature. It is also used by the * operator,
after trying numeric multiplication via the nb_multiply slot.

ssizeargfunc PySequenceMethods.sq_item

This function is used by PySequence_GetItem() and has the same signature. It is also used by
PyObject_GetItem(), after trying the subscription via the mp_subscript slot. This slot must be filled
for the Py Sequence_Check () function to return 1, it can be NULL otherwise.

Negative indexes are handled as follows: if the sqg_Iength slot is filled, it is called and the sequence length is
used to compute a positive index which is passed to sg_item. If sq_length is NULL, the index is passed as
is to the function.

ssizeobjargproc PySequenceMethods.sq_ass_item
This function is used by PySequence_SetItem() and has the same signature. It is also used by
PyObject_SetItem() and PyObject_DelItem (), after trying the item assignment and deletion via the
mp_ass_subscript slot. This slot may be left to NULL if the object does not support item assignment and
deletion.

objobjproc PySequenceMethods.sq_contains
This function may be used by PySequence_Contains () and has the same signature. This slot may be left
to NULL, in this case PySequence_Contains () simply traverses the sequence until it finds a match.

binaryfunc PySequenceMethods.sq_inplace_concat

This function is used by PySequence_InPlaceConcat () and has the same signature. It should modify its
first operand, and return it. This slot may be left to NULL, in this case PySequence_InPlaceConcat () will
fall back to PySequence_cConcat (). It is also used by the augmented assignment +=, after trying numeric
in-place addition via the nb_inplace_add slot.

ssizeargfunc PySequenceMethods.sq _inplace_repeat

This function is used by PySequence_InPlaceRepeat () and has the same signature. It should modify its
first operand, and return it. This slot may be left to NULL, in this case PySequence_InPlaceRepeat () will
fall back to PySequence_Repeat (). It is also used by the augmented assignment *=, after trying numeric
in-place multiplication via the nb_inplace_multiply slot.

12.3.11 Buffer Object Structures

type PyBufferProcs
This structure holds pointers to the functions required by the Buffer protocol. The protocol defines how an
exporter object can expose its internal data to consumer objects.

getbufferproc PyBufferProcs.bf_getbuffer

The signature of this function is:

{int (PyObject *exporter, Py_buffer *view, int flags); }

Handle a request to exporter to fill in view as specified by flags. Except for point (3), an implementation of this
function MUST take these steps:

(1) Check if the request can be met. If not, raise BufferError, set view—>obj to NULL and return - 1.
(2) Fill in the requested fields.

(3) Increment an internal counter for the number of exports.

(4) Set view->ob7 to exporter and increment view->obj.

(5) Return 0.

312 Capitolo 12. Object Implementation Support

The Python/C API, Release 3.13.7

If exporter is part of a chain or tree of buffer providers, two main schemes can be used:

o Re-export: Each member of the tree acts as the exporting object and sets view—>obj to a new reference
to itself.

» Redirect: The buffer request is redirected to the root object of the tree. Here, view—>o0bj will be a new
reference to the root object.

The individual fields of view are described in section Buffer structure, the rules how an exporter must react to
specific requests are in section Buffer request types.

All memory pointed to in the Py_bu £ fe r structure belongs to the exporter and must remain valid until there are
no consumers left. format, shape, strides, suboffsets and internal are read-only for the consumer.

PyBuffer_ FillInfo () provides an easy way of exposing a simple bytes buffer while dealing correctly with
all request types.

PyObject_GetBuffer () is the interface for the consumer that wraps this function.

releasebufferproc PyBufferProcs.bf_releasebuffer

The signature of this function is:

[void (PyObject *exporter, Py _buffer *view); }

Handle a request to release the resources of the buffer. If no resources need to be released, PyBufferProcs.
bf releasebuffer may be NULL. Otherwise, a standard implementation of this function will take these
optional steps:

(1) Decrement an internal counter for the number of exports.
(2) If the counter is 0, free all memory associated with view.

The exporter MUST use the i nternal field to keep track of buffer-specific resources. This field is guaranteed
to remain constant, while a consumer MAY pass a copy of the original buffer as the view argument.

This function MUST NOT decrement view—>ob7, since that is done automatically in PyBuffer Release ()
(this scheme is useful for breaking reference cycles).

PyBuffer Release () is the interface for the consumer that wraps this function.

12.3.12 Async Object Structures
Added in version 3.5.

type PyAsyncMethods

This structure holds pointers to the functions required to implement awaitable and asynchronous iterator
objects.

Here is the structure definition:

-

typedef struct {
unaryfunc am_await;
unaryfunc am_aiter;
unaryfunc am_anext;
sendfunc am_send;

} PyAsyncMethods;

A

unaryfunc PyAsyncMethods.am_await

The signature of this function is:

[Pyobject *am_await (PyObject *self);

The returned object must be an iterator, i.e. PyIter Check () must return 1 for it.

This slot may be set to NULL if an object is not an awaitable.

12.3. Type Object Structures 313

The Python/C API, Release 3.13.7

unaryfunc PyAsyncMethods.am_aiter

The signature of this function is:

[Pyobject *am_aiter (PyObject *self);

Must return an asynchronous iterator object. See __anext__ () for details.
This slot may be set to NULL if an object does not implement asynchronous iteration protocol.

unaryfunc PyAsyncMethods.am_anext

The signature of this function is:

[PyObject *am_anext (PyObject *self);

Must return an awaitable object. See __anext__ () for details. This slot may be set to NULL.

sendfunc PyAsyncMethods.am_send

The signature of this function is:

[PySendResult am_send (PyObject *self, PyObject *arg, PyObject **result);

See pyIter Send () for details. This slot may be set to NULL.

Added in version 3.10.

12.3.13 Slot Type typedefs

typedef PyObject *(*allocfunc)(PyTypeObject *cls, Py_ssize_t nitems)
Farte del ABI Stabile. The purpose of this function is to separate memory allocation from memory initiali-
zation. It should return a pointer to a block of memory of adequate length for the instance, suitably aligned,
and initialized to zeros, but with ob_refcnt set to 1 and ob_type set to the type argument. If the type’s
tp_itemsize is non-zero, the object’s ob_size field should be initialized to nitems and the length of the
allocated memory block should be tp_basicsize + nitems*tp_itemsize, rounded up to a multiple of
sizeof (void*); otherwise, nitems is not used and the length of the block should be tp_basicsize.

This function should not do any other instance initialization, not even to allocate additional memory; that should
be done by tp_new.
typedef void (*destructor)(PyObject*)
Farte del ABI Stabile.
typedef void (*£freefunc)(void*)
See tp_free.
typedef PyObject *(*newfunc)(PyTypeObject*, PyObject*, PyObject*)
Parte del ABI Stabile. See tp_new.
typedef int (*initproc)(PyObject*, PyObject*, PyObject*)
Parte del ABI Stabile. See tp_init.
typedef PyObject *(*reprfunc)(PyObject*)
Parte del ABI Stabile. See tp_repr.
typedef PyObject *(*getattrfunc)(PyObject *self, char *attr)
Farte del ABI Stabile. Return the value of the named attribute for the object.
typedef int (*setattrfunc)(PyObject *self, char *attr, PyObject *value)

Farte del ABI Stabile. Set the value of the named attribute for the object. The value argument is set to NULL
to delete the attribute.

314 Capitolo 12. Object Implementation Support

The Python/C API, Release 3.13.7

typedef PyObject *(*getattrofunc)(PyObject *self, PyObject *attr)
Parte del ABI Stabile. Return the value of the named attribute for the object.
See tp_getattro.

typedef int (*setattrofunc)(PyObject *self, PyObject *attr, PyObject *value)

Farte del ABI Stabile. Set the value of the named attribute for the object. The value argument is set to NULL
to delete the attribute.

See tp_setattro.

typedef PyObject *(*descrget func)(PyObject*, PyObject*, PyObject*)
Parte del ABI Stabile. See tp_descr_get.

typedef int (*descrset func)(PyObject*, PyObject*, PyObject*)
Parte del ABI Stabile. See tp_descr set.

typedef Py_hash_t (*hashfunc)(PyObject*)
Parte del ABI Stabile. See tp_hash.

typedef PyObject *(*richempfunc)(PyObject*, PyObject*, int)
Parte del ABI Stabile. See tp_richcompare.

typedef PyObject *(*getiterfunc)(PyObject*)
Parte del ABI Stabile. See tp_iter.

typedef PyObject *(*iternext func)(PyObject*)
Parte del ABI Stabile. See tp_iternext.

typedef Py_ssize_t (*1lenfunc)(PyObject*)
Parte del ABI Stabile.

typedef int (*getbufferproc)(PyObject*, Py_buffer*, int)
Farte del ABI Stabile dalla versione 3.12.

typedef void (*releasebufferproc)(PyObject*, Py_buffer*)
Farte del ABI Stabile dalla versione 3.12.

typedef PyObject *(*unaryfunc)(PyObject*)
Farte del ABI Stabile.

typedef PyObject *(*binaryfunc)(PyObject*, PyObject™*)
Farte del ABI Stabile.

typedef PySendResult (*sendfunc)(PyObject*, PyObject*, PyObject**)
See am_send.

typedef PyObject *(*ternaryfunc)(PyObject*, PyObject*, PyObject*)
Parte del ABI Stabile.

typedef PyObject *(*ssizeargfunc)(PyObject*, Py_ssize_t)
Farte del ABI Stabile.

typedef int (¥*ssizeobjargproc)(PyObject*, Py_ssize_t, PyObject*)
Parte del ABI Stabile.

typedef int (¥*objobjproc)(PyObject*, PyObject™*)
Farte del ABI Stabile.

typedef int (¥*objobjargproc)(PyObject*, PyObject*, PyObject™*)
Parte del ABI Stabile.

12.3. Type Object Structures 315

The Python/C API, Release 3.13.7

12.3.14 Examples

The following are simple examples of Python type definitions. They include common usage you may encounter.
Some demonstrate tricky corner cases. For more examples, practical info, and a tutorial, see defining-new-types and
new-types-topics.

A basic static type:

typedef struct {
PyObject_HEAD
const char *data;
} MyObject;

static PyTypeObject MyObject_Type = {
PyVarObject_HEAD_INIT (NULL, 0)
.tp_name = "mymod.MyObject",
.tp_basicsize = sizeof (MyObject),
.tp_doc = PyDoc_STR("My objects"),
.tp_new = myobj_new,
.tp_dealloc = (destructor)myobj_dealloc,
.tp_repr = (reprfunc)myobj_repr,

bi

You may also find older code (especially in the CPython code base) with a more verbose initializer:

static PyTypeObject MyObject_Type = {
PyVarObject_ HEAD_INIT (NULL, O0)
"mymod.MyObject", /* tp_name */
sizeof (MyObject), /* tp_basicsize */
/* tp _itemsize */

~

destructor)myobj_dealloc, /* tp_dealloc */
/* tp_vectorcall_ offset */
/* tp_getattr */
/* tp_setattr */
/* tp_as_async */

~ 0~

~

R~

eprfunc)myobj_repr, /* tp_repr */
/* tp_as_number */

~

~

/* tp_as_sequence */
/* tp_as_mapping */
/* tp_hash */

/* tp_call */

/* tp_str */

/* tp_getattro */

/* tp_setattro */

/* tp_as_buffer */
/* tp_flags */
PyDoc_STR ("My objects"), /* tp_doc */

/* tp_traverse */

/* tp_clear */

/* tp_richcompare */
/* tp weaklistoffset */
/* tp _iter */

/* tp_iternext */

/* tp_methods */

/* tp_members */

/* tp_getset */

/* tp_base */

/* tp_dict */

/* tp_descr_get */

~ SN SN N~ 0~ N

O O O O O O O O O O ~ 0O O O O ~ O
~

~

NS SN SN SN S SN NS SN N S~ 0~

O O O O O O O O o o o o

~

(continues on next page)

316 Capitolo 12. Object Implementation Support

The Python/C API, Release 3.13.7

(continua dalla pagina precedente)

0, /* tp_descr_set */
0, /* tp_dictoffset */
0, /A Epiiinkite A

0, /* tp_alloc */
myobj_new, /* tp_new */

bi

A type that supports weakrefs, instance dicts, and hashing:

typedef struct {
PyObject_HEAD
const char *data;
} MyObject;

static PyTypeObject MyObject_Type = {

PyVarObject_HEAD_INIT (NULL, O0)

.tp_name = "mymod.MyObject",

.tp_basicsize = sizeof (MyObject),

.tp_doc = PyDoc_STR("My objects"),

.tp_flags = Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE |
Py_TPFLAGS_HAVE_GC | Py_TPFLAGS_MANAGED_DICT |
Py_TPFLAGS_MANAGED_WEAKREF,

.tp_new = myobj_new,

.tp_traverse = (traverseproc)myobj_traverse,
.tp_clear = (inquiry)myobj_clear,

.tp_alloc = PyType_GenericNew,

.tp_dealloc = (destructor)myobj_dealloc,
.tp_repr = (reprfunc)myobj_repr,

.tp_hash = (hashfunc)myobj_hash,

.tp_richcompare = PyBaseObject_Type.tp_richcompare,
bi

A str subclass that cannot be subclassed and cannot be called to create instances (e.g. uses a separate factory func)
using Py TPFLAGS_DISALLOW_INSTANTIATION flag:

typedef struct {
PyUnicodeObject raw;
char *extra;

} MyStr;

static PyTypeObject MyStr_Type = {
PyVarObject_ HEAD_INIT (NULL, O0)
.tp_name = "mymod.MyStr",
.tp_basicsize = sizeof (MyStr),
.tp_base = NULL, // set to &PyUnicode_Type in module init
.tp_doc = PyDoc_STR("my custom str"),
.tp_flags = Py_TPFLAGS_DEFAULT | Py_TPFLAGS_DISALLOW_INSTANTIATION,
.tp_repr = (reprfunc)myobj_repr,
bi

The simplest static type with fixed-length instances:

typedef struct {
PyObject_HEAD
} MyObject;

static PyTypeObject MyObject_Type = {
(continues on next page)

12.3. Type Object Structures 317

The Python/C API, Release 3.13.7

(continua dalla pagina precedente)
PyVarObject_HEAD_INIT (NULL, O)
.tp_name = "mymod.MyObject",
bi

The simplest static type with variable-length instances:

typedef struct {
PyObject_VAR_HEAD
const char *datall];
} MyObject;

static PyTypeObject MyObject_Type = {
PyVarObject_ HEAD_INIT (NULL, O0)

.tp_name = "mymod.MyObject",
.tp_basicsize = sizeof (MyObject) - sizeof (char *),
.tp_itemsize = sizeof (char *),

bi

12.4 Supporting Cyclic Garbage Collection

Python’s support for detecting and collecting garbage which involves circular references requires support from object
types which are «containers» for other objects which may also be containers. Types which do not store references to
other objects, or which only store references to atomic types (such as numbers or strings), do not need to provide any
explicit support for garbage collection.

To create a container type, the tp_flags field of the type object must include the Py TPFLAGS HAVE GC and
provide an implementation of the tp traverse handler. If instances of the type are mutable, a tp clear
implementation must also be provided.

Py_TPFLAGS_HAVE_GC
Objects with a type with this flag set must conform with the rules documented here. For convenience these
objects will be referred to as container objects.

Constructors for container types must conform to two rules:
1. The memory for the object must be allocated using PyObject_GC_New or PyObject_ GC_NewVar.

2. Once all the fields which may contain references to other containers are initialized, it must call
PyObject_GC_Track ().

Similarly, the deallocator for the object must conform to a similar pair of rules:
1. Before fields which refer to other containers are invalidated, PyObject_GC_UnTrack () must be called.

2. The object’s memory must be deallocated using PyObject_GC_Del ().

A\ Avvertimento

If a type adds the Py_TPFLAGS_HAVE_GC, then it must implement at least a tp_t raverse handler or
explicitly use one from its subclass or subclasses.

When calling PyType Ready() or some of the APIs that indirectly call it like
PyType_FromSpecWithBases () Or PyType FromSpec () the interpreter will automatically populate
the tp_flags, tp_traverse and tp_clear fields if the type inherits from a class that implements the
garbage collector protocol and the child class does not include the Py TPFLAGS HAVE GC flag.

PyObject_GC_New (TYPE, typeobj)
Analogous to PyObject_New but for container objects with the py_TPFLAGS HAVE_ GC flag set.

318 Capitolo 12. Object Implementation Support

The Python/C API, Release 3.13.7

PyObject_GC_NewVar (TYPE, typeobyj, size)
Analogous to PyObject_NewVar but for container objects with the Py TPFLAGS HAVE_GC flag set.

PyObject *PyUnstable_Object_GC_NewWithExtraData (PyTypeObject *type, size_t extra_size)

Questa pagina API Instabile. Potrebbe cambiare senza preavviso nelle release minori.

Analogous to PyObject GC _New but allocates extra_size bytes at the end of the object (at offset
tp_basicsize). The allocated memory is initialized to zeros, except for the Python object header.

The extra data will be deallocated with the object, but otherwise it is not managed by Python.

A\ Avvertimento

The function is marked as unstable because the final mechanism for reserving extra data after an instance is
not yet decided. For allocating a variable number of fields, prefer using Pyvarobject and tp_itemsize
instead.

Added in version 3.12.

PyObject_GC_Resize (TYPE, op, newsize)

Resize an object allocated by PyObject_NewVar. Returns the resized object of type TYPE* (refers to any C
type) or NULL on failure.

op must be of type Pyvarobject* and must not be tracked by the collector yet. newsize must be of type
Py_ssize_t.

void PyObject_GC_Track (PyObject *op)
Farte del ABI Stabile. Adds the object op to the set of container objects tracked by the collector. The collector

can run at unexpected times so objects must be valid while being tracked. This should be called once all the
fields followed by the tp_traverse handler become valid, usually near the end of the constructor.

int PyObject_IS_GC (PyObject *obj)
Returns non-zero if the object implements the garbage collector protocol, otherwise returns 0.
The object cannot be tracked by the garbage collector if this function returns 0.

int PyObject_GC_IsTracked (PyObject *op)

Farte del ABI Stabile dalla versione 3.9. Returns 1 if the object type of op implements the GC protocol and
op is being currently tracked by the garbage collector and 0 otherwise.

This is analogous to the Python function gc.is_tracked().
Added in version 3.9.

int PyObject_GC_IsFinalized (PyObject *op)

Parte del ABI Stabile dalla versione 3.9. Returns 1 if the object type of op implements the GC protocol and
op has been already finalized by the garbage collector and 0 otherwise.

This is analogous to the Python function gc.is_finalized ().
Added in version 3.9.

void PyObject_GC_Del (void *op)

FParte del ABI Stabile. Releases memory allocated to an object using PyObject_GC New or
PyObject_GC_NewVar.

12.4. Supporting Cyclic Garbage Collection 319

The Python/C API, Release 3.13.7

void PyObject_GC_UnTrack (void *op)

Parte del ABI Stabile. Remove the object op from the set of container objects tracked by the collector. Note
that PyObject_GC_Track () can be called again on this object to add it back to the set of tracked objects.
The deallocator (tp_dealloc handler) should call this for the object before any of the fields used by the
tp_traverse handler become invalid.

Cambiato nella versione 3.8: The _PyObject_GC_TRACK () and _PyObject_GC_UNTRACK () macros have been
removed from the public C APL

The tp_traverse handler accepts a function parameter of this type:

typedef int (*visitproc)(PyObject *object, void *arg)

Farte del ABI Stabile. Type of the visitor function passed to the tp_traverse handler. The function should
be called with an object to traverse as object and the third parameter to the tp_t raverse handler as arg. The
Python core uses several visitor functions to implement cyclic garbage detection; it’s not expected that users
will need to write their own visitor functions.

The tp_traverse handler must have the following type:

typedef int (*traverseproc)(PyObject *self, visitproc visit, void *arg)

Farte del ABI Stabile. Traversal function for a container object. Implementations must call the visit function
for each object directly contained by self, with the parameters to visit being the contained object and the arg
value passed to the handler. The visit function must not be called with a NULL object argument. If visit returns
a non-zero value that value should be returned immediately.

To simplify writing tp traverse handlers, a Py _vIS17() macro is provided. In order to use this macro, the
tp_traverse implementation must name its arguments exactly visit and arg:

Py_VISIT (0)

If the PyObject* ois not NULL, call the visit callback, with arguments o and arg. If visit returns a non-zero
value, then return it. Using this macro, tp_t raverse handlers look like:

'a N\
static int

my_traverse (Noddy *self, visitproc visit, wvoid *arg)
{

Py_VISIT (self->foo0);

Py _VISIT (self->bar);

return O;

}

L J

The tp_clear handler must be of the i nguiry type, or NULL if the object is immutable.
typedef int (*inquiry)(PyObject *self)

Parte del ABI Stabile. Drop references that may have created reference cycles. Immutable objects do not have
to define this method since they can never directly create reference cycles. Note that the object must still be
valid after calling this method (don’t just call Py_DECREF () on a reference). The collector will call this method
if it detects that this object is involved in a reference cycle.

12.4.1 Controlling the Garbage Collector State
The C-API provides the following functions for controlling garbage collection runs.

Py_ssize_t PyGC_Collect (void)

Farte del ABI Stabile. Perform a full garbage collection, if the garbage collector is enabled. (Note that gc.
collect () runs it unconditionally.)

Returns the number of collected + unreachable objects which cannot be collected. If the garbage collector
is disabled or already collecting, returns 0 immediately. Errors during garbage collection are passed to sys.
unraisablehook. This function does not raise exceptions.

320 Capitolo 12. Object Implementation Support

The Python/C API, Release 3.13.7

int PyGC_Enable (void)

Farte del ABI Stabile dalla versione 3.10. Enable the garbage collector: similar to gc . enable () . Returns the
previous state, O for disabled and 1 for enabled.

Added in version 3.10.

int PyGC_Disable (void)

Parte del ABI Stabile dalla versione 3.10. Disable the garbage collector: similar to gc.disable (). Returns
the previous state, O for disabled and 1 for enabled.

Added in version 3.10.

int PyGC_IsEnabled (void)

Parte del ABI Stabile dalla versione 3.10. Query the state of the garbage collector: similar to
gc.isenabled (). Returns the current state, O for disabled and 1 for enabled.

Added in version 3.10.

12.4.2 Querying Garbage Collector State
The C-API provides the following interface for querying information about the garbage collector.

void PyUnstable_GC_VisitObjects (gevisitobjects_t callback, void *arg)

Questa pagina API Instabile. Potrebbe cambiare senza preavviso nelle release minori.

Run supplied callback on all live GC-capable objects. arg is passed through to all invocations of callback.

A\ Avvertimento

If new objects are (de)allocated by the callback it is undefined if they will be visited.

Garbage collection is disabled during operation. Explicitly running a collection in the callback may lead to
undefined behaviour e.g. visiting the same objects multiple times or not at all.

Added in version 3.12.

typedef int (*gevisitobjects_t)(PyObject *object, void *arg)

Type of the visitor function to be passed to PyUnstable GC _VisitObjects (). argis the same as the arg
passed to PyUnstable_GC_VisitObjects. Return 1 to continue iteration, return 0 to stop iteration. Other
return values are reserved for now so behavior on returning anything else is undefined.

Added in version 3.12.

12.4. Supporting Cyclic Garbage Collection 321

The Python/C API, Release 3.13.7

322 Capitolo 12. Object Implementation Support

capiToLo 13

APl and ABI Versioning

CPython exposes its version number in the following macros. Note that these correspond to the version code is built
with, not necessarily the version used at run time.

See C API Stability for a discussion of API and ABI stability across versions.

PY_MAJOR_VERSION
The 3in3.4.1a2.

PY_MINOR_VERSION
The 4in3.4.1a2.

PY_MICRO_VERSION
The 1in3.4.1a2.

PY RELEASE_LEVEL

The a in 3.4.1a2. This can be 0xA for alpha, 0xB for beta, 0xC for release candidate or 0xF for final.

PY _RELEASE_SERIAL
The 2 in 3.4 .1a2. Zero for final releases.

PY_VERSION_HEX
The Python version number encoded in a single integer.

The underlying version information can be found by treating it as a 32 bit number in the following manner:

Bytes Bits (big endian order) Meaning Value for 3.4.1a2
1 1-8 PY_MAJOR_VERSION 0x03
2 9-16 PY_MINOR_VERSION 0x04
3 17-24 PY_MICRO_VERSION 0x01
4 25-28 PY_RELEASE_LEVEL OxA
29-32 PY_RELEASE_SERIAL 0x2

Thus 3.4 .1a2 is hexversion 0x030401a2 and 3.10.0 is hexversion 0x030a00£0.
Use this for numeric comparisons, e.g. #1f PY_VERSION_HEX >=

This version is also available via the symbol Py _Version.

323

The Python/C API, Release 3.13.7

const unsigned long Py_Version

Parte del ABI Stabile dalla versione 3.11. The Python runtime version number encoded in a single constant
integer, with the same format as the Pvy_vERSTON_HEX macro. This contains the Python version used at run
time.

Added in version 3.11.

All the given macros are defined in Include/patchlevel.h.

324 Capitolo 13. API and ABI Versioning

https://github.com/python/cpython/tree/3.13/Include/patchlevel.h

capiToLo 14

Monitoring C API

Added in version 3.13.

An extension may need to interact with the event monitoring system. Subscribing to events and registering callbacks
can be done via the Python API exposed in sys.monitoring.

325

The Python/C API, Release 3.13.7

326 Capitolo 14. Monitoring C API

capitoLo 15

Generating Execution Events

The functions below make it possible for an extension to fire monitoring events as it emulates the execution of Python
code. Each of these functions accepts a PyMonitoringState struct which contains concise information about the
activation state of events, as well as the event arguments, which include a PyObject * representing the code object,
the instruction offset and sometimes additional, event-specific arguments (see sys.monitoring for details about
the signatures of the different event callbacks). The codelike argument should be an instance of t ypes.CodeType
or of a type that emulates it.

The VM disables tracing when firing an event, so there is no need for user code to do that.

Monitoring functions should not be called with an exception set, except those listed below as working with the current
exception.

type PyMonitoringState

Representation of the state of an event type. It is allocated by the user while its contents are maintained by the
monitoring API functions described below.

All of the functions below return 0 on success and -1 (with an exception set) on error.

See sys.monitoring for descriptions of the events.

int PyMonitoring_FirePyStartEvent (PyMonitoringState *state, PyObject *codelike, int32_t offset)
Fire a PY_START event.

int PyMonitoring_FirePyResumeEvent (PyMonitoringState *state, PyObject *codelike, int32_t offset)
Fire a PY_RESUME event.
int PyMonitoring_FirePyReturnEvent (PyMonitoringState *state, PyObject *codelike, int32_t offset,
PyObject *retval)
Fire a PY_RETURN event.
int PyMonitoring_FirePyYieldEvent (PyMonitoringState *state, PyObject *codelike, int32_t offset, PyObject
*retval)
Fire a PY_YIELD event.
int PyMonitoring_FireCallEvent (PyMonitoringState *state, PyObject *codelike, int32_t offset, PyObject
*callable, PyObject *arg0)
Fire a CALL event.
int PyMonitoring_FireLineEvent (PyMonitoringState *state, PyObject *codelike, int32_t offset, int lineno)
Fire a LINE event.

327

The Python/C API, Release 3.13.7

int PyMonitoring_FireJumpEvent (PyMonitoringState *state, PyObject *codelike, int32_t offset, PyObject
*target_offset)

Fire a JuMP event.
int PyMonitoring_FireBranchEvent (PyMonitoringState *state, PyObject *codelike, int32_t offset, PyObject
*target_offset)
Fire a BRANCH event.
int PyMonitoring_FireCReturnEvent (PyMonitoringState *state, PyObject *codelike, int32_t offset, PyObject
*retval)

Fire a C_RETURN event.

int PyMonitoring_FirePyThrowEvent (PyMonitoringState *state, PyObject *codelike, int32_t offset)

Fire a PY_THROW event with the current exception (as returned by PyErr GetRaisedException()).

int PyMonitoring_FireRaiseEvent (PyMonitoringState *state, PyObject *codelike, int32_t offset)

Fire a RAISE event with the current exception (as returned by PyErr GetRaisedException()).

int PyMonitoring_FireCRaiseEvent (PyMonitoringState *state, PyObject *codelike, int32_t offset)

Fire a c_RAISE event with the current exception (as returned by PyErr GetRaisedException ()).

int PyMonitoring_FireReraiseEvent (PyMonitoringState *state, PyObject *codelike, int32_t offset)

Fire a RERAISE event with the current exception (as returned by PyErr GetRaisedException ()).

int PyMonitoring_FireExceptionHandledEvent (PyMonitoringState *state, PyObject *codelike, int32_t
offset)

Fire an EXCEPTION_HANDLED event with the current exception (as returned by
PyErr_GetRaisedException()).

int PyMonitoring_FirePyUnwindEvent (PyMonitoringState *state, PyObject *codelike, int32_t offset)
Fire a pY_UNWIND event with the current exception (as returned by PyErr GetRaisedException ()).

int PyMonitoring_FireStopIterationEvent (PyMonitoringState *state, PyObject *codelike, int32_t offset,
PyObject *value)

Fire a STOP_ITERATION event. If value is an instance of StopIteration, it is used. Otherwise, a new
StopIteration instance is created with value as its argument.

15.1 Managing the Monitoring State

Monitoring states can be managed with the help of monitoring scopes. A scope would typically correspond to a python
function.

int PyMonitoring_EnterScope (PyMonitoringState *state_array, uint64_t *version, const uint8_t *event_types,
Py_ssize_t length)

Enter a monitored scope. event_types is an array of the event IDs for events that may be fired from the
scope. For example, the ID of a PY_START event is the value PY_MONITORING_EVENT_PY_ START, which is
numerically equal to the base-2 logarithm of sys.monitoring.events.PY_START. state_array is an
array with a monitoring state entry for each event in event_types, it is allocated by the user but populated
by PyMonitoring EnterScope () with information about the activation state of the event. The size of
event_types (and hence also of state_array) is given in length.

The version argument is a pointer to a value which should be allocated by the user together with
state_array and initialized to O, and then set only by PyMonitoring_EnterScope () itself. It allows
this function to determine whether event states have changed since the previous call, and to return quickly if
they have not.

The scopes referred to here are lexical scopes: a function, class or method. PyMonitoring EnterScope ()
should be called whenever the lexical scope is entered. Scopes can be reentered, reusing the same state_array
and version, in situations like when emulating a recursive Python function. When a code-like’s execution is
paused, such as when emulating a generator, the scope needs to be exited and re-entered.

328 Capitolo 15. Generating Execution Events

The Python/C API, Release 3.13.7

The macros for event_types are:

Macro Event

BRANCH
PY MONITORING_EVENT_ BRANCH

CALL
PY_MONITORING_EVENT_CALL

C_RAISE
PY_MONITORING_EVENT C_RAISE

C_RETURN

PY_MONITORING_EVENT C_RETURN

EXCEPTION_HANDLED
PY_ MONITORING_EVENT_EXCEPTION_HANDLED

INSTRUCTION
PY_MONITORING_EVENT INSTRUCTION

JUMP
PY_MONITORING_EVENT JUMP

LINE
PY_MONITORING_EVENT LINE

PY_RESUME
PY_MONITORING_EVENT PY RESUME

PY_RETURN
PY_MONITORING_EVENT PY_ RETURN

PY_ START
PY_MONITORING_EVENT PY_ START

PY_THROW
PY_MONITORING_EVENT PY_THROW

PY_UNWIND
PY_MONITORING_EVENT PY UNWIND

PY_YIELD
PY_MONITORING_EVENT PY_ YIELD

RAISE
PY_MONITORING_EVENT RAISE

RERAISE

PY MONITORING_EVENT_ RERAISE

STOP_ITERATION
PY MONITORING_EVENT STOP_ITERATION

int PyMonitoring_ ExitScope (void)

Exit the last scope that was entered with PyMonitoring EnterScope ().

15.1. Managing the Monitoring State

329

The Python/C API, Release 3.13.7

int PY_MONITORING_IS_INSTRUMENTED_ EVENT (uint8_t ev)

Return true if the event corresponding to the event ID ev is a local event.
Added in version 3.13.

Deprecato dalla versione 3.13.3: This function is soft deprecated.

330 Capitolo 15. Generating Execution Events

APPENDICE A

Glossary

>>>
The default Python prompt of the interactive shell. Often seen for code examples which can be executed
interactively in the interpreter.

Can refer to:

o The default Python prompt of the interactive shell when entering the code for an indented code block,
when within a pair of matching left and right delimiters (parentheses, square brackets, curly braces or
triple quotes), or after specifying a decorator.

e The E11ipsis built-in constant.

abstract base class

Abstract base classes complement duck-typing by providing a way to define interfaces when other techniques
like hasattr () would be clumsy or subtly wrong (for example with magic methods). ABCs introduce virtual
subclasses, which are classes that don’t inherit from a class but are still recognized by isinstance () and
issubclass () ; see the abc module documentation. Python comes with many built-in ABCs for data struc-
tures (in the collections.abc module), numbers (in the numbers module), streams (in the io module),
import finders and loaders (in the import1lib.abc module). You can create your own ABCs with the abc
module.

annotation
A label associated with a variable, a class attribute or a function parameter or return value, used by convention
as a type hint.

Annotations of local variables cannot be accessed at runtime, but annotations of global variables, class attri-
butes, and functions are stored in the __annotations__ special attribute of modules, classes, and functions,
respectively.

See variable annotation, function annotation, PEP 484 and PEP 526, which describe this functionality. Also
see annotations-howto for best practices on working with annotations.

argument
A value passed to a function (or method) when calling the function. There are two kinds of argument:

o keyword argument: an argument preceded by an identifier (e.g. name=) in a function call or passed as a
value in a dictionary preceded by **. For example, 3 and 5 are both keyword arguments in the following
calls to complex():

331

https://peps.python.org/pep-0484/
https://peps.python.org/pep-0526/

The Python/C API, Release 3.13.7

complex (real=3, imag=5)

complex (**{'real': 3, 'imag': 5})

e positional argument: an argument that is not a keyword argument. Positional arguments can appear at the
beginning of an argument list and/or be passed as elements of an iterable preceded by *. For example, 3
and 5 are both positional arguments in the following calls:

complex (3, 5)

complex (* (3, 5))

Arguments are assigned to the named local variables in a function body. See the calls section for the rules
governing this assignment. Syntactically, any expression can be used to represent an argument; the evaluated
value is assigned to the local variable.

See also the parameter glossary entry, the FAQ question on the difference between arguments and parameters,
and PEP 362.

asynchronous context manager
An object which controls the environment seen in an async with statement by defining __aenter_ () and
__aexit__ () methods. Introduced by PEP 492.

asynchronous generator
A function which returns an asynchronous generator iterator. It looks like a coroutine function defined with
async def except that it contains yield expressions for producing a series of values usable in an async
for loop.

Usually refers to an asynchronous generator function, but may refer to an asynchronous generator iterator in
some contexts. In cases where the intended meaning isn’t clear, using the full terms avoids ambiguity.

An asynchronous generator function may contain await expressions as well as async for,and async with
statements.

asynchronous generator iterator
An object created by an asynchronous generator function.

This is an asynchronous iterator which when called using the __anext__ () method returns an awaitable object
which will execute the body of the asynchronous generator function until the next yield expression.

Each yield temporarily suspends processing, remembering the execution state (including local variables and
pending try-statements). When the asynchronous generator iterator effectively resumes with another awaitable
returned by __anext__ (), it picks up where it left off. See PEP 492 and PEP 525.

asynchronous iterable
An object, that can be used in an async for statement. Must return an asynchronous iterator from its
__aiter__ () method. Introduced by PEP 492.

asynchronous iterator
An object that implements the __aiter () and __anext__ () methods. __anext__ () must return an
awaitable object. async for resolves the awaitables returned by an asynchronous iterator's __anext__ ()
method until it raises a StopAsyncIteration exception. Introduced by PEP 492.

attribute
A value associated with an object which is usually referenced by name using dotted expressions. For example,
if an object o has an attribute a it would be referenced as o.a.

It is possible to give an object an attribute whose name is not an identifier as defined by identifiers, for example
using setattr (), if the object allows it. Such an attribute will not be accessible using a dotted expression,
and would instead need to be retrieved with getattr ().

awaitable
An object that can be used in an await expression. Can be a coroutine or an object with an __await__ ()
method. See also PEP 492.

BDFL
Benevolent Dictator For Life, a.k.a. Guido van Rossum, Python’s creator.

332 Appendice A. Glossary

https://peps.python.org/pep-0362/
https://peps.python.org/pep-0492/
https://peps.python.org/pep-0492/
https://peps.python.org/pep-0525/
https://peps.python.org/pep-0492/
https://peps.python.org/pep-0492/
https://peps.python.org/pep-0492/
https://gvanrossum.github.io/

The Python/C API, Release 3.13.7

binary file
A file object able to read and write bytes-like objects. Examples of binary files are files opened in binary mode
("rb', 'wb' or 'rb+'), sys.stdin.buffer, sys.stdout.buffer, and instances of io.BytesIO and
gzip.GzipFile.

See also zext file for a file object able to read and write st r objects.

borrowed reference
In Python’s C API, a borrowed reference is a reference to an object, where the code using the object does not
own the reference. It becomes a dangling pointer if the object is destroyed. For example, a garbage collection
can remove the last strong reference to the object and so destroy it.

Calling Py INCREF () on the borrowed reference is recommended to convert it to a strong reference in-place,
except when the object cannot be destroyed before the last usage of the borrowed reference. The Py_NewRef ()
function can be used to create a new strong reference.

bytes-like object
An object that supports the Buffer Protocol and can export a C-contiguous buffer. This includes all bytes,
bytearray, and array.array objects, as well as many common memoryview objects. Bytes-like objects
can be used for various operations that work with binary data; these include compression, saving to a binary
file, and sending over a socket.

Some operations need the binary data to be mutable. The documentation often refers to these as «read-write
bytes-like objects». Example mutable buffer objects include bytearray and amemoryviewof abytearray.
Other operations require the binary data to be stored in immutable objects («read-only bytes-like objects»);
examples of these include bytes and a memoryview of a bytes object.

bytecode
Python source code is compiled into bytecode, the internal representation of a Python program in the CPython
interpreter. The bytecode is also cached in . pyc files so that executing the same file is faster the second time
(recompilation from source to bytecode can be avoided). This «intermediate language» is said to run on a
virtual machine that executes the machine code corresponding to each bytecode. Do note that bytecodes are
not expected to work between different Python virtual machines, nor to be stable between Python releases.

A list of bytecode instructions can be found in the documentation for the dis module.

callable
A callable is an object that can be called, possibly with a set of arguments (see argument), with the following
syntax:

[callable(argumentl, argument2, argumentN)

A function, and by extension a method, is a callable. An instance of a class that implements the __call_ ()
method is also a callable.

callback
A subroutine function which is passed as an argument to be executed at some point in the future.

class
A template for creating user-defined objects. Class definitions normally contain method definitions which
operate on instances of the class.

class variable
A variable defined in a class and intended to be modified only at class level (i.e., not in an instance of the class).

closure variable
A free variable referenced from a nested scope that is defined in an outer scope rather than being resolved at
runtime from the globals or builtin namespaces. May be explicitly defined with the nonlocal keyword to
allow write access, or implicitly defined if the variable is only being read.

For example, in the inner function in the following code, both x and print are free variables, but only x is
a closure variable:

333

The Python/C API, Release 3.13.7

s N

def outer():
x =0
def inner():
nonlocal x
X += 1

print (x)

return inner

L J

Due to the codeobiject . co_freevars attribute (which, despite its name, only includes the names of closure
variables rather than listing all referenced free variables), the more general free variable term is sometimes used
even when the intended meaning is to refer specifically to closure variables.

complex number
An extension of the familiar real number system in which all numbers are expressed as a sum of a real part and
an imaginary part. Imaginary numbers are real multiples of the imaginary unit (the square root of -1), often
written i in mathematics or j in engineering. Python has built-in support for complex numbers, which are
written with this latter notation; the imaginary part is written with a j suffix, e.g., 3+1 5. To get access to com-
plex equivalents of the math module, use cmath. Use of complex numbers is a fairly advanced mathematical
feature. If you’re not aware of a need for them, it’s almost certain you can safely ignore them.

context
This term has different meanings depending on where and how it is used. Some common meanings:

o The temporary state or environment established by a context manager via a with statement.

o The collection of keyvalue bindings associated with a particular contextvars.Context object and
accessed via ContextVar objects. Also see context variable.

e A contextvars.Context object. Also see current context.

context management protocol
The __enter_ () and __exit__ () methods called by the with statement. See PEP 343.

context manager
An object which implements the context management protocol and controls the environment seen in a with
statement. See PEP 343.

context variable
A variable whose value depends on which context is the current context. Values are accessed via
contextvars.ContextVar objects. Context variables are primarily used to isolate state between concurrent
asynchronous tasks.

contiguous
A buffer is considered contiguous exactly if it is either C-contiguous or Fortran contiguous. Zero-dimensional
buffers are C and Fortran contiguous. In one-dimensional arrays, the items must be laid out in memory next
to each other, in order of increasing indexes starting from zero. In multidimensional C-contiguous arrays, the
last index varies the fastest when visiting items in order of memory address. However, in Fortran contiguous
arrays, the first index varies the fastest.

coroutine
Coroutines are a more generalized form of subroutines. Subroutines are entered at one point and exited at ano-
ther point. Coroutines can be entered, exited, and resumed at many different points. They can be implemented
with the async def statement. See also PEP 492.

coroutine function
A function which returns a coroutine object. A coroutine function may be defined with the async def sta-
tement, and may contain await, async for, and async with keywords. These were introduced by PEP
492.

CPython
The canonical implementation of the Python programming language, as distributed on python.org. The
term «CPython» is used when necessary to distinguish this implementation from others such as Jython or
IronPython.

334 Appendice A. Glossary

https://peps.python.org/pep-0343/
https://peps.python.org/pep-0343/
https://peps.python.org/pep-0492/
https://peps.python.org/pep-0492/
https://peps.python.org/pep-0492/
https://www.python.org

The Python/C API, Release 3.13.7

current context
The context (contextvars.Context object) that is currently used by ContextVar objects to access (get
or set) the values of context variables. Each thread has its own current context. Frameworks for executing
asynchronous tasks (see asyncio) associate each task with a context which becomes the current context
whenever the task starts or resumes execution.

decorator
A function returning another function, usually applied as a function transformation using the @wrapper syntax.
Common examples for decorators are classmethod () and staticmethod ().

The decorator syntax is merely syntactic sugar, the following two function definitions are semantically
equivalent:

def f (arqg):
f = staticmethod (f)

@staticmethod
def f (arqg):

The same concept exists for classes, but is less commonly used there. See the documentation for function
definitions and class definitions for more about decorators.

descriptor
Any object which defines the methods __get_ (), __set_ (),or __delete__ (). When a class attribute
is a descriptor, its special binding behavior is triggered upon attribute lookup. Normally, using a.b to get, set or
delete an attribute looks up the object named & in the class dictionary for a, but if b is a descriptor, the respective
descriptor method gets called. Understanding descriptors is a key to a deep understanding of Python because
they are the basis for many features including functions, methods, properties, class methods, static methods,
and reference to super classes.

For more information about descriptors” methods, see descriptors or the Descriptor How To Guide.

dictionary
An associative array, where arbitrary keys are mapped to values. The keys can be any object with__hash__ ()
and _ _eq () methods. Called a hash in Perl.

dictionary comprehension
A compact way to process all or part of the elements in an iterable and return a dictionary with the resul-
ts. results = {n: n ** 2 for n in range (10) } generates a dictionary containing key n mapped to
value n ** 2. See comprehensions.

dictionary view
The objects returned from dict . keys (),dict .values (),anddict.items () are called dictionary views.
They provide a dynamic view on the dictionary’s entries, which means that when the dictionary changes, the
view reflects these changes. To force the dictionary view to become a full list use 1ist (dictview). See
dict-views.

docstring
A string literal which appears as the first expression in a class, function or module. While ignored when the
suite is executed, it is recognized by the compiler and put into the __doc___ attribute of the enclosing class,
function or module. Since it is available via introspection, it is the canonical place for documentation of the
object.

duck-typing
A programming style which does not look at an object’s type to determine if it has the right interface; instead,
the method or attribute is simply called or used («If it looks like a duck and quacks like a duck, it must be a
duck.») By emphasizing interfaces rather than specific types, well-designed code improves its flexibility by al-
lowing polymorphic substitution. Duck-typing avoids tests using type () or isinstance (). (Note, however,
that duck-typing can be complemented with abstract base classes.) Instead, it typically employs hasattr ()
tests or EAFP programming.

335

The Python/C API, Release 3.13.7

dunder
An informal short-hand for «double underscore», used when talking about a special method. For example,
__init__ is often pronounced «dunder init».

EAFP
Easier to ask for forgiveness than permission. This common Python coding style assumes the existence of valid
keys or attributes and catches exceptions if the assumption proves false. This clean and fast style is characterized
by the presence of many try and except statements. The technique contrasts with the LBYL style common
to many other languages such as C.

expression
A piece of syntax which can be evaluated to some value. In other words, an expression is an accumulation of
expression elements like literals, names, attribute access, operators or function calls which all return a value. In
contrast to many other languages, not all language constructs are expressions. There are also statements which
cannot be used as expressions, such as while. Assignments are also statements, not expressions.

extension module
A module written in C or C++, using Python’s C API to interact with the core and with user code.

f-string
String literals prefixed with '£' or 'F' are commonly called «f-strings» which is short for formatted string
literals. See also PEP 498.

file object
An object exposing a file-oriented API (with methods such as read () orwrite ()) to an underlying resource.
Depending on the way it was created, a file object can mediate access to a real on-disk file or to another type of
storage or communication device (for example standard input/output, in-memory buffers, sockets, pipes, etc.).
File objects are also called file-like objects or streams.

There are actually three categories of file objects: raw binary files, buffered binary files and text files. Their
interfaces are defined in the io module. The canonical way to create a file object is by using the open ()
function.

file-like object
A synonym for file object.

filesystem encoding and error handler
Encoding and error handler used by Python to decode bytes from the operating system and encode Unicode to
the operating system.

The filesystem encoding must guarantee to successfully decode all bytes below 128. If the file system encoding
fails to provide this guarantee, API functions can raise UnicodeError.

The sys.getfilesystemencoding() and sys.getfilesystemencodeerrors () functions can be
used to get the filesystem encoding and error handler.

The filesystem encoding and error handler are configured at Python startup by the PyConfig Read()
function: see filesystem encodingand filesystem errors members of PyConfig.

See also the locale encoding.

finder
An object that tries to find the loader for a module that is being imported.

There are two types of finder: meta path finders for use with sys.meta_path, and path entry finders for use
with sys.path_hooks.

See finders-and-loaders and import1ib for much more detail.

floor division
Mathematical division that rounds down to nearest integer. The floor division operator is / /. For example, the
expression 11 // 4 evaluates to 2 in contrast to the 2. 75 returned by float true division. Note that (-11)
// 41is -3 because that is -2 . 75 rounded downward. See PEP 238.

free threading
A threading model where multiple threads can run Python bytecode simultaneously within the same interpreter.

336 Appendice A. Glossary

https://peps.python.org/pep-0498/
https://peps.python.org/pep-0238/

The Python/C API, Release 3.13.7

This is in contrast to the global interpreter lock which allows only one thread to execute Python bytecode at a
time. See PEP 703.

free variable
Formally, as defined in the language execution model, a free variable is any variable used in a namespace which
is not a local variable in that namespace. See closure variable for an example. Pragmatically, due to the name of
the codeobject .co_freevars attribute, the term is also sometimes used as a synonym for closure variable.

function
A series of statements which returns some value to a caller. It can also be passed zero or more arguments which
may be used in the execution of the body. See also parameter, method, and the function section.

function annotation
An annotation of a function parameter or return value.

Function annotations are usually used for rype hints: for example, this function is expected to take two int
arguments and is also expected to have an int return value:

def sum_two_numbers(a: int, b: int) -> int:
return a + b

Function annotation syntax is explained in section function.

See variable annotation and PEP 484, which describe this functionality. Also see annotations-howto for best
practices on working with annotations.

future
A future statement, from _ future__ import <feature>, directs the compiler to compile the current
module using syntax or semantics that will become standard in a future release of Python. The _ future
module documents the possible values of feature. By importing this module and evaluating its variables, you
can see when a new feature was first added to the language and when it will (or did) become the default:

>>> import _ future
>>> _ future__ .division
_Feature((2, 2, 0, 'alpha', 2), (3, 0, 0, 'alpha', 0), 8192)

garbage collection
The process of freeing memory when it is not used anymore. Python performs garbage collection via reference
counting and a cyclic garbage collector that is able to detect and break reference cycles. The garbage collector
can be controlled using the gc module.

generator
A function which returns a generator iterator. It looks like a normal function except that it contains yield
expressions for producing a series of values usable in a for-loop or that can be retrieved one at a time with the
next () function.

Usually refers to a generator function, but may refer to a generator iterator in some contexts. In cases where
the intended meaning isn’t clear, using the full terms avoids ambiguity.

generator iterator
An object created by a generator function.

Each yield temporarily suspends processing, remembering the execution state (including local variables
and pending try-statements). When the generator iterator resumes, it picks up where it left off (in contrast
to functions which start fresh on every invocation).

generator expression
An expression that returns an iferator. It looks like a normal expression followed by a for clause defining a
loop variable, range, and an optional if clause. The combined expression generates values for an enclosing
function:

>>> sum(i*i for i in range (10)) # sum of squares 0, 1, 4, ... 81
285

337

https://peps.python.org/pep-0703/
https://peps.python.org/pep-0484/

The Python/C API, Release 3.13.7

generic function
A function composed of multiple functions implementing the same operation for different types. Which
implementation should be used during a call is determined by the dispatch algorithm.

See also the single dispatch glossary entry, the functools.singledispatch () decorator, and PEP 443.

generic type
A type that can be parameterized; typically a container class such as 1ist or dict. Used for rype hints and
annotations.

For more details, see generic alias types, PEP 483, PEP 484, PEP 585, and the t yping module.

GIL
See global interpreter lock.

global interpreter lock
The mechanism used by the CPython interpreter to assure that only one thread executes Python bytecode at
a time. This simplifies the CPython implementation by making the object model (including critical built-in
types such as dict) implicitly safe against concurrent access. Locking the entire interpreter makes it easier
for the interpreter to be multi-threaded, at the expense of much of the parallelism afforded by multi-processor
machines.

However, some extension modules, either standard or third-party, are designed so as to release the GIL when
doing computationally intensive tasks such as compression or hashing. Also, the GIL is always released when
doing I/0O.

As of Python 3.13, the GIL can be disabled using the --disable-gil build configuration. After building
Python with this option, code must be run with -x gil=0 or after setting the PYTHON_GIL=0 environment
variable. This feature enables improved performance for multi-threaded applications and makes it easier to use
multi-core CPUs efficiently. For more details, see PEP 703.

hash-based pyc
A bytecode cache file that uses the hash rather than the last-modified time of the corresponding source file to
determine its validity. See pyc-invalidation.

hashable
An object is hashable if it has a hash value which never changes during its lifetime (it needs a __hash__ ()
method), and can be compared to other objects (it needs an __eq () method). Hashable objects which

compare equal must have the same hash value.

Hashability makes an object usable as a dictionary key and a set member, because these data structures use the
hash value internally.

Most of Python’s immutable built-in objects are hashable; mutable containers (such as lists or dictionaries)
are not; immutable containers (such as tuples and frozensets) are only hashable if their elements are hashable.
Objects which are instances of user-defined classes are hashable by default. They all compare unequal (except
with themselves), and their hash value is derived from their id ().

IDLE
An Integrated Development and Learning Environment for Python. idle is a basic editor and interpreter
environment which ships with the standard distribution of Python.

immortal
Immortal objects are a CPython implementation detail introduced in PEP 683.

If an object is immortal, its reference count is never modified, and therefore it is never deallocated while the
interpreter is running. For example, True and None are immortal in CPython.

immutable
An object with a fixed value. Immutable objects include numbers, strings and tuples. Such an object cannot
be altered. A new object has to be created if a different value has to be stored. They play an important role in
places where a constant hash value is needed, for example as a key in a dictionary.

import path
A list of locations (or path entries) that are searched by the path based finder for modules to import. During

338 Appendice A. Glossary

https://peps.python.org/pep-0443/
https://peps.python.org/pep-0483/
https://peps.python.org/pep-0484/
https://peps.python.org/pep-0585/
https://peps.python.org/pep-0703/
https://peps.python.org/pep-0683/

The Python/C API, Release 3.13.7

import, this list of locations usually comes from sys.path, but for subpackages it may also come from the
parent package’s __path__ attribute.

importing
The process by which Python code in one module is made available to Python code in another module.

importer
An object that both finds and loads a module; both a finder and loader object.

interactive
Python has an interactive interpreter which means you can enter statements and expressions at the interpreter
prompt, immediately execute them and see their results. Just launch python with no arguments (possibly by
selecting it from your computer’s main menu). It is a very powerful way to test out new ideas or inspect modules
and packages (remember help (x)). For more on interactive mode, see tut-interac.

interpreted
Python is an interpreted language, as opposed to a compiled one, though the distinction can be blurry because
of the presence of the bytecode compiler. This means that source files can be run directly without explicitly
creating an executable which is then run. Interpreted languages typically have a shorter development/debug
cycle than compiled ones, though their programs generally also run more slowly. See also interactive.

interpreter shutdown
When asked to shut down, the Python interpreter enters a special phase where it gradually releases all allocated
resources, such as modules and various critical internal structures. It also makes several calls to the garbage
collector. This can trigger the execution of code in user-defined destructors or weakref callbacks. Code executed
during the shutdown phase can encounter various exceptions as the resources it relies on may not function
anymore (common examples are library modules or the warnings machinery).

The main reason for interpreter shutdown is that the _ main__ module or the script being run has finished
executing.

iterable
An object capable of returning its members one at a time. Examples of iterables include all sequence types (such
as list, str, and tuple) and some non-sequence types like dict, file objects, and objects of any classes you
define withan __iter () method or witha getitem__ () method that implements sequence semantics.

Iterables can be used in a for loop and in many other places where a sequence is needed (zip (), map (),
...). When an iterable object is passed as an argument to the built-in function iter (), it returns an iterator
for the object. This iterator is good for one pass over the set of values. When using iterables, it is usually not
necessary to call iter () or deal with iterator objects yourself. The for statement does that automatically for
you, creating a temporary unnamed variable to hold the iterator for the duration of the loop. See also iterator,
sequence, and generator.

iterator

An object representing a stream of data. Repeated calls to the iterator’s _ next__ () method (or passing
it to the built-in function next ()) return successive items in the stream. When no more data are available a
StopIteration exception is raised instead. At this point, the iterator object is exhausted and any further calls
toits _ next__ () method just raise StopIteration again. Iterators are required to have an __iter_ ()
method that returns the iterator object itself so every iterator is also iterable and may be used in most places
where other iterables are accepted. One notable exception is code which attempts multiple iteration passes. A
container object (such as a 1ist) produces a fresh new iterator each time you pass it to the iter () function
or use it in a for loop. Attempting this with an iterator will just return the same exhausted iterator object used
in the previous iteration pass, making it appear like an empty container.

More information can be found in typeiter.

Dettaglio dell’implementazione di CPython: CPython does not consistently apply the requirement that an
iterator define __iter_ (). And also please note that the free-threading CPython does not guarantee the
thread-safety of iterator operations.

key function
A key function or collation function is a callable that returns a value used for sorting or ordering. For example,
locale.strxfrm() is used to produce a sort key that is aware of locale specific sort conventions.

339

The Python/C API, Release 3.13.7

A number of tools in Python accept key functions to control how elements are ordered or grou-
ped. They include min (), max (), sorted(), list.sort (), heapg.merge (), heapg.nsmallest (),
heapq.nlargest (), and itertools.groupby ().

There are several ways to create a key function. For example. the str.lower () method can serve as a
key function for case insensitive sorts. Alternatively, a key function can be built from a 1ambda expression
such as lambda r: (r[0], r[2]).Also, operator.attrgetter (), operator.itemgetter (), and
operator.methodcaller () are three key function constructors. See the Sorting HOW TO for examples
of how to create and use key functions.

keyword argument

See argument.

lambda

An anonymous inline function consisting of a single expression which is evaluated when the function is called.
The syntax to create a lambda function is lambda [parameters]: expression

LBYL

Look before you leap. This coding style explicitly tests for pre-conditions before making calls or lookups. This
style contrasts with the EAFP approach and is characterized by the presence of many if statements.

In a multi-threaded environment, the LBYL approach can risk introducing a race condition between «the
looking» and «the leaping». For example, the code, if key in mapping: return mappinglkey] can
fail if another thread removes key from mapping after the test, but before the lookup. This issue can be solved
with locks or by using the EAFP approach.

lexical analyzer

list

Formal name for the tokenizer; see token.

A built-in Python sequence. Despite its name it is more akin to an array in other languages than to a linked list
since access to elements is O(1).

list comprehension

A compact way to process all or part of the elements in a sequence and return a list with the results. result
= ['{:#04x}'.format (x) for x in range(256) if x % 2 == 0] generates a list of strings con-
taining even hex numbers (0x..) in the range from O to 255. The i f clause is optional. If omitted, all elements
in range (256) are processed.

loader

An object that loads a module. It must define the exec_module () and create_module () methods to
implement the Loader interface. A loader is typically returned by a finder. See also:

« finders-and-loaders

e importlib.abc.Loader

« PEP 302

locale encoding

On Unix, it is the encoding of the LC_CTYPE locale. It can be set with 1locale.setlocale (locale.
LC_CTYPE, new_locale).

On Windows, it is the ANSI code page (ex: "cpl1252").
On Android and VxWorks, Python uses "ut £-8" as the locale encoding.
locale.getencoding () can be used to get the locale encoding.

See also the filesystem encoding and error handler.

magic method

An informal synonym for special method.

mapping

A container object that supports arbitrary key lookups and implements the methods specified in the

340

Appendice A. Glossary

https://peps.python.org/pep-0302/

The Python/C API, Release 3.13.7

collections.abc.Mapping or collections.abc.MutableMapping abstract base classes. Exam-
ples include dict, collections.defaultdict, collections.OrderedDict and collections.
Counter.

meta path finder
A finder returned by a search of sys.meta_path. Meta path finders are related to, but different from path
entry finders.

See importlib.abc.MetaPathFinder for the methods that meta path finders implement.

metaclass
The class of a class. Class definitions create a class name, a class dictionary, and a list of base classes. The
metaclass is responsible for taking those three arguments and creating the class. Most object oriented pro-
gramming languages provide a default implementation. What makes Python special is that it is possible to
create custom metaclasses. Most users never need this tool, but when the need arises, metaclasses can provide
powerful, elegant solutions. They have been used for logging attribute access, adding thread-safety, tracking
object creation, implementing singletons, and many other tasks.

More information can be found in metaclasses.

method
A function which is defined inside a class body. If called as an attribute of an instance of that class, the method
will get the instance object as its first argument (which is usually called se1£). See function and nested scope.

method resolution order
Method Resolution Order is the order in which base classes are searched for a member during lookup. See
python_2.3_mro for details of the algorithm used by the Python interpreter since the 2.3 release.

module
An object that serves as an organizational unit of Python code. Modules have a namespace containing arbitrary
Python objects. Modules are loaded into Python by the process of importing.

See also package.

module spec
A namespace containing the import-related information used to load a module. An instance of importlib.
machinery.ModuleSpec.

See also module-specs.

MRO

See method resolution order.

mutable
Mutable objects can change their value but keep their id () . See also immutable.

named tuple
The term «named tuple» applies to any type or class that inherits from tuple and whose indexable elements are
also accessible using named attributes. The type or class may have other features as well.

Several built-in types are named tuples, including the values returned by time.localtime () and
os.stat (). Another example is sys.float_info:

-

>>> sys.float_info[1l] # indexed access
1024

>>> sys.float_info.max_exp # named field access
1024

>>> isinstance(sys.float_info, tuple) # kind of tuple

True

Some named tuples are built-in types (such as the above examples). Alternatively, a named tuple can be created
from a regular class definition that inherits from t uple and that defines named fields. Such a class can be written
by hand, or it can be created by inheriting t yping.NamedTuple, or with the factory function collections.
namedtuple (). The latter techniques also add some extra methods that may not be found in hand-written or
built-in named tuples.

341

The Python/C API, Release 3.13.7

namespace
The place where a variable is stored. Namespaces are implemented as dictionaries. There are the local, global
and built-in namespaces as well as nested namespaces in objects (in methods). Namespaces support modularity
by preventing naming conflicts. For instance, the functions builtins. openand os.open () are distinguished
by their namespaces. Namespaces also aid readability and maintainability by making it clear which module
implements a function. For instance, writing random. seed () or itertools.islice () makes it clear that
those functions are implemented by the random and itertools modules, respectively.

namespace package
A package which serves only as a container for subpackages. Namespace packages may have no physical
representation, and specifically are not like a regular package because they have no __init__ .py file.

Namespace packages allow several individually installable packages to have a common parent package.
Otherwise, it is recommended to use a regular package.

For more information, see PEP 420 and reference-namespace-package.
See also module.

nested scope
The ability to refer to a variable in an enclosing definition. For instance, a function defined inside another
function can refer to variables in the outer function. Note that nested scopes by default work only for reference
and not for assignment. Local variables both read and write in the innermost scope. Likewise, global variables
read and write to the global namespace. The nonlocal allows writing to outer scopes.

new-style class
Old name for the flavor of classes now used for all class objects. In earlier Python versions, only new-style classes
could use Python’s newer, versatile features like __slots__, descriptors, properties, getattribute_ (),
class methods, and static methods.

object
Any data with state (attributes or value) and defined behavior (methods). Also the ultimate base class of any
new-style class.

optimized scope
A scope where target local variable names are reliably known to the compiler when the code is compiled,
allowing optimization of read and write access to these names. The local namespaces for functions, generators,
coroutines, comprehensions, and generator expressions are optimized in this fashion. Note: most interpreter
optimizations are applied to all scopes, only those relying on a known set of local and nonlocal variable names
are restricted to optimized scopes.

package
A Python module which can contain submodules or recursively, subpackages. Technically, a package is a Python
module witha __path__ attribute.

See also regular package and namespace package.

parameter
A named entity in a function (or method) definition that specifies an argument (or in some cases, arguments)
that the function can accept. There are five kinds of parameter:

o positional-or-keyword: specifies an argument that can be passed either positionally or as a keyword
argument. This is the default kind of parameter, for example foo and bar in the following:

[def func (foo, bar=None): ... }

« positional-only: specifies an argument that can be supplied only by position. Positional-only parameters
can be defined by including a / character in the parameter list of the function definition after them, for
example posonlyl and posonly2 in the following:

[def func (posonlyl, posonly2, /, positional_or_keyword): ... }

o keyword-only: specifies an argument that can be supplied only by keyword. Keyword-only parameters can
be defined by including a single var-positional parameter or bare * in the parameter list of the function
definition before them, for example kw_onlyl and kw_only2 in the following:

342 Appendice A. Glossary

https://peps.python.org/pep-0420/

The Python/C API, Release 3.13.7

[def func(arg, *, kw_onlyl, kw_only2):

)

 var-positional: specifies that an arbitrary sequence of positional arguments can be provided (in addition
to any positional arguments already accepted by other parameters). Such a parameter can be defined by
prepending the parameter name with *, for example args in the following:

[def func (*args, **kwargs):

« var-keyword: specifies that arbitrarily many keyword arguments can be provided (in addition to any key-
word arguments already accepted by other parameters). Such a parameter can be defined by prepending
the parameter name with **, for example kwargs in the example above.

Parameters can specify both optional and required arguments, as well as default values for some optional
arguments.

See also the argument glossary entry, the FAQ question on the difference between arguments and parameters,
the inspect .Parameter class, the function section, and PEP 362.

path entry

A single location on the import path which the path based finder consults to find modules for importing.

path entry finder

A finder returned by a callable on sys.path_hooks (i.e. a path entry hook) which knows how to locate
modules given a path entry.

See importlib.abc.PathEntryFinder for the methods that path entry finders implement.

path entry hook

A callable on the sys.path_hooks list which returns a path entry finder if it knows how to find modules on
a specific path entry.

path based finder

One of the default meta path finders which searches an import path for modules.

path-like object

PEP

An object representing a file system path. A path-like object is either a st r or bytes object representing a path,
or an object implementing the os.PathLike protocol. An object that supports the os.PathLike protocol
can be converted to a st r or bytes file system path by calling the os . £spath () function; os . fsdecode ()
and os. fsencode () can be used to guarantee a str or bytes result instead, respectively. Introduced by
PEP 519.

Python Enhancement Proposal. A PEP is a design document providing information to the Python community,
or describing a new feature for Python or its processes or environment. PEPs should provide a concise technical
specification and a rationale for proposed features.

PEPs are intended to be the primary mechanisms for proposing major new features, for collecting community
input on an issue, and for documenting the design decisions that have gone into Python. The PEP author is
responsible for building consensus within the community and documenting dissenting opinions.

See PEP 1.

portion

A set of files in a single directory (possibly stored in a zip file) that contribute to a namespace package, as
defined in PEP 420.

positional argument

See argument.

provisional API

A provisional API is one which has been deliberately excluded from the standard library’s backwards com-
patibility guarantees. While major changes to such interfaces are not expected, as long as they are marked
provisional, backwards incompatible changes (up to and including removal of the interface) may occur if dee-
med necessary by core developers. Such changes will not be made gratuitously - they will occur only if serious
fundamental flaws are uncovered that were missed prior to the inclusion of the APIL.

343

https://peps.python.org/pep-0362/
https://peps.python.org/pep-0519/
https://peps.python.org/pep-0001/
https://peps.python.org/pep-0420/

The Python/C API, Release 3.13.7

Even for provisional APIs, backwards incompatible changes are seen as a «solution of last resort» - every
attempt will still be made to find a backwards compatible resolution to any identified problems.

This process allows the standard library to continue to evolve over time, without locking in problematic design
errors for extended periods of time. See PEP 411 for more details.

provisional package

See provisional API.

Python 3000

Nickname for the Python 3.x release line (coined long ago when the release of version 3 was something in the
distant future.) This is also abbreviated «Py3k».

Pythonic

An idea or piece of code which closely follows the most common idioms of the Python language, rather than
implementing code using concepts common to other languages. For example, a common idiom in Python is
to loop over all elements of an iterable using a for statement. Many other languages don’t have this type of
construct, so people unfamiliar with Python sometimes use a numerical counter instead:

for i in range(len(food)):
print (food[i])

As opposed to the cleaner, Pythonic method:

for piece in food:

print (piece)

qualified name

-

L

A dotted name showing the «path» from a module’s global scope to a class, function or method defined in that
module, as defined in PEP 3155. For top-level functions and classes, the qualified name is the same as the
object’s name:

>>> class C:

class D:
def meth (self):
pass

>>> C.__qualname
L} C L}
>>> C.D.__qgqualname_
'C.D'
>>> C.D.meth.___qualname_
'C.D.meth'

J

When used to refer to modules, the fully qualified name means the entire dotted path to the module, including
any parent packages, e.g2. email.mime.text:

>>> import email.mime.text
>>> email.mime.text._ name

'email .mime.text'

reference count

The number of references to an object. When the reference count of an object drops to zero, it is deallocated.
Some objects are immortal and have reference counts that are never modified, and therefore the objects are
never deallocated. Reference counting is generally not visible to Python code, but it is a key element of the
CPython implementation. Programmers can call the sys.getrefcount () function to return the reference
count for a particular object.

In CPython, reference counts are not considered to be stable or well-defined values; the number of references
to an object, and how that number is affected by Python code, may be different between versions.

344

Appendice A. Glossary

https://peps.python.org/pep-0411/
https://peps.python.org/pep-3155/

The Python/C API, Release 3.13.7

regular package
A traditional package, such as a directory containing an __init__.py file.

See also namespace package.

REPL
An acronym for the «read-eval-print loop», another name for the interactive interpreter shell.

__slots__
A declaration inside a class that saves memory by pre-declaring space for instance attributes and eliminating
instance dictionaries. Though popular, the technique is somewhat tricky to get right and is best reserved for
rare cases where there are large numbers of instances in a memory-critical application.

sequence
An iterable which supports efficient element access using integer indices via the _ getitem__ () special
method and defines a __len_ () method that returns the length of the sequence. Some built-in sequence
types are list, str, tuple, and bytes. Note that dict also supports __getitem_ () and _ len_ (),

but is considered a mapping rather than a sequence because the lookups use arbitrary hashable keys rather
than integers.

The collections.abc.Sequence abstract base class defines a much richer interface that goes beyond just
__getitem_ ()and__len_ (),adding count (), index (),
Types that implement this expanded interface can be registered explicitly using register (). For more
documentation on sequence methods generally, see Common Sequence Operations.

contains__ (),and __ reversed_ ().

set comprehension
A compact way to process all or part of the elements in an iterable and return a set with the results. results
= {c for c in 'abracadabra' if c not in 'abc'} generates the set of strings {'r', 'd'}.See
comprehensions.

single dispatch
A form of generic function dispatch where the implementation is chosen based on the type of a single argument.

slice
An object usually containing a portion of a sequence. A slice is created using the subscript notation, [] with
colons between numbers when several are given, suchasinvariable_name[1:3:5]. The bracket (subscript)
notation uses s1ice objects internally.

soft deprecated
A soft deprecated API should not be used in new code, but it is safe for already existing code to use it. The
API remains documented and tested, but will not be enhanced further.

Soft deprecation, unlike normal deprecation, does not plan on removing the API and will not emit warnings.
See PEP 387: Soft Deprecation.

special method
A method that is called implicitly by Python to execute a certain operation on a type, such as addition.
Such methods have names starting and ending with double underscores. Special methods are documented
in specialnames.

standard library
The collection of packages, modules and extension modules distributed as a part of the official Python interpreter
package. The exact membership of the collection may vary based on platform, available system libraries, or
other criteria. Documentation can be found at library-index.

See also sys.stdlib_module_names for a list of all possible standard library module names.

statement
A statement is part of a suite (a «block» of code). A statement is either an expression or one of several constructs
with a keyword, such as i f, while or for.

static type checker
An external tool that reads Python code and analyzes it, looking for issues such as incorrect types. See also
type hints and the typing module.

345

https://peps.python.org/pep-0387/#soft-deprecation

The Python/C API, Release 3.13.7

stdlib
An abbreviation of standard library.

strong reference
In Python’s C API, a strong reference is a reference to an object which is owned by the code holding the
reference. The strong reference is taken by calling Py 7NCREF () when the reference is created and released
with Py_DECREF () when the reference is deleted.

The Py_NewRef () function can be used to create a strong reference to an object. Usually, the Py_DECREF ()
function must be called on the strong reference before exiting the scope of the strong reference, to avoid leaking
one reference.

See also borrowed reference.

text encoding
A string in Python is a sequence of Unicode code points (in range U+0000-U+10FFFF). To store or transfer
a string, it needs to be serialized as a sequence of bytes.

Serializing a string into a sequence of bytes is known as «encoding», and recreating the string from the sequence
of bytes is known as «decoding».

There are a variety of different text serialization codecs, which are collectively referred to as «text encodings».

text file
A file object able to read and write st r objects. Often, a text file actually accesses a byte-oriented datastream
and handles the fext encoding automatically. Examples of text files are files opened in text mode ('r' or 'w'),
sys.stdin, sys.stdout, and instances of io.StringIO.

See also binary file for a file object able to read and write bytes-like objects.

token
A small unit of source code, generated by the lexical analyzer (also called the tokenizer). Names, numbers,
strings, operators, newlines and similar are represented by tokens.

The tokenize module exposes Python’s lexical analyzer. The token module contains information on the
various types of tokens.

triple-quoted string
A string which is bound by three instances of either a quotation mark (») or an apostrophe (“). While they don’t
provide any functionality not available with single-quoted strings, they are useful for a number of reasons. They
allow you to include unescaped single and double quotes within a string and they can span multiple lines without
the use of the continuation character, making them especially useful when writing docstrings.

type
The type of a Python object determines what kind of object it is; every object has a type. An object’s type is
accessible as its __class___ attribute or can be retrieved with type (ob7).

type alias

A synonym for a type, created by assigning the type to an identifier.

Type aliases are useful for simplifying rype hints. For example:

def remove_gray_shades (
colors: list[tuple[int, int, int]]) —-> list[tuple[int, int, int]]:
pass

could be made more readable like this:

Color = tuple[int, int, int]

def remove_gray_shades (colors: list[Color]) -> list[Color]:
pass

See typing and PEP 484, which describe this functionality.

346 Appendice A. Glossary

https://peps.python.org/pep-0484/

The Python/C API, Release 3.13.7

type hint
An annotation that specifies the expected type for a variable, a class attribute, or a function parameter or return
value.

Type hints are optional and are not enforced by Python but they are useful to static type checkers. They can
also aid IDEs with code completion and refactoring.

Type hints of global variables, class attributes, and functions, but not local variables, can be accessed using
typing.get_type_hints ().

See typing and PEP 484, which describe this functionality.

universal newlines
A manner of interpreting text streams in which all of the following are recognized as ending a line: the Unix
end-of-line convention '\n"', the Windows convention '\r\n', and the old Macintosh convention '\r'. See
PEP 278 and PEP 3116, as well as bytes.splitlines () for an additional use.

variable annotation
An annotation of a variable or a class attribute.

When annotating a variable or a class attribute, assignment is optional:

class C:
field: 'annotation'

Variable annotations are usually used for type hints: for example this variable is expected to take int values:

[count: int = 0

Variable annotation syntax is explained in section annassign.

See function annotation, PEP 484 and PEP 526, which describe this functionality. Also see annotations-howto
for best practices on working with annotations.

virtual environment
A cooperatively isolated runtime environment that allows Python users and applications to install and upgrade
Python distribution packages without interfering with the behaviour of other Python applications running on
the same system.

See also venv.

virtual machine
A computer defined entirely in software. Python’s virtual machine executes the byfecode emitted by the
bytecode compiler.

walrus operator
A light-hearted way to refer to the assignment expression operator : = because it looks a bit like a walrus if you
turn your head.

Zen of Python
Listing of Python design principles and philosophies that are helpful in understanding and using the language.
The listing can be found by typing «import this» at the interactive prompt.

347

https://peps.python.org/pep-0484/
https://peps.python.org/pep-0278/
https://peps.python.org/pep-3116/
https://peps.python.org/pep-0484/
https://peps.python.org/pep-0526/

The Python/C API, Release 3.13.7

348 Appendice A. Glossary

APPENDICE B

About this documentation

Python’s documentation is generated from reStructuredText sources using Sphinx, a documentation generator
originally created for Python and now maintained as an independent project.

Lo sviluppo della documentazione e della sua toolchain ¢ uno lavoro svolto esclusivamente da volontari, proprio come
lo stesso Python. Se si desidera contribuire, si prega di dare un'occhiata alla pagina reporting-bugs per avere maggiori
informazioni su come farlo. Nuovi volontari sono sempre i benvenuti!

Molte grazie a:
o Fred L. Drake, Jr., the creator of the original Python documentation toolset and author of much of the content;
« the Docutils project for creating reStructuredText and the Docutils suite;

 Fredrik Lundh for his Alternative Python Reference project from which Sphinx got many good ideas.

B.1 Contributors to the Python documentation
Many people have contributed to the Python language, the Python standard library, and the Python documentation.
See Misc/ACKS in the Python source distribution for a partial list of contributors.

E solo con il contributo dei membri della comunita di Python che Python ha una documentazione cosi meravigliosa
— Grazie!

349

https://docutils.sourceforge.io/rst.html
https://www.sphinx-doc.org/
https://docutils.sourceforge.io/
https://github.com/python/cpython/tree/3.13/Misc/ACKS

The Python/C API, Release 3.13.7

350 Appendice B. About this documentation

appenpice C

Storia e licenza

C.1 Storia del software

Python was created in the early 1990s by Guido van Rossum at Stichting Mathematisch Centrum (CWI, see https:
/Iwww.cwi.nl) in the Netherlands as a successor of a language called ABC. Guido remains Python’s principal author,
although it includes many contributions from others.

In 1995, Guido continued his work on Python at the Corporation for National Research Initiatives (CNRI, see https:
/lwww.cnri.reston.va.us) in Reston, Virginia where he released several versions of the software.

In May 2000, Guido and the Python core development team moved to BeOpen.com to form the BeOpen PythonLabs
team. In October of the same year, the PythonLabs team moved to Digital Creations, which became Zope Corpo-
ration. In 2001, the Python Software Foundation (PSF, see https://www.python.org/psf/) was formed, a non-profit
organization created specifically to own Python-related Intellectual Property. Zope Corporation was a sponsoring

member of the PSF.

All Python releases are Open Source (see https://opensource.org for the Open Source Definition). Historically, most,
but not all, Python releases have also been GPL-compatible; the table below summarizes the various releases.

Rilascio Derivatoda Anno Proprietario GPL-compatible? (1)
Da09.0al2 n/d 1991-1995 CWI si
Dal3al52 1.2 1995-1999 CNRI si

1.6 1.5.2 2000 CNRI no

2.0 1.6 2000 BeOpen.com no
1.6.1 1.6 2001 CNRI yes (2)
2.1 2.0+1.6.1 2001 PSF no
2.0.1 2.0+1.6.1 2001 PSF si
2.1.1 2.1+2.0.1 2001 PSF si
2.1.2 2.1.1 2002 PSF si
2.1.3 2.1.2 2002 PSF si

2.2 e superiori 2.1.1 2001-adesso PSF si

O Nota

(1) GPL-compatible doesn’t mean that we’re distributing Python under the GPL. All Python licenses, unlike the
GPL, let you distribute a modified version without making your changes open source. The GPL-compatible

351

https://www.cwi.nl
https://www.cwi.nl
https://www.cnri.reston.va.us
https://www.cnri.reston.va.us
https://www.python.org/psf/
https://opensource.org

The Python/C API, Release 3.13.7

licenses make it possible to combine Python with other software that is released under the GPL; the others
don’t.

(2) According to Richard Stallman, 1.6.1 is not GPL-compatible, because its license has a choice of law clause.
According to CNRI, however, Stallman’s lawyer has told CNRI’s lawyer that 1.6.1 is «not incompatible»
with the GPL.

Grazie ai tanti volontari esterni che hanno lavorato sotto la direzione di Guido per rendere possibili queste release.

C.2 Termini e condizioni di accesso o di utilizzo di Python

Python software and documentation are licensed under the Python Software Foundation License Version 2.

Starting with Python 3.8.6, examples, recipes, and other code in the documentation are dual licensed under the PSF
License Version 2 and the Zero-Clause BSD license.

Some software incorporated into Python is under different licenses. The licenses are listed with code falling under
that license. See Licenze e riconoscimenti per il software incorporato for an incomplete list of these licenses.

C.2.1 PYTHON SOFTWARE FOUNDATION LICENSE VERSION 2

1. This LICENSE AGREEMENT is between the Python Software Foundation ("PSF"), and
the Individual or Organization ("Licensee") accessing and otherwise using this
software ("Python") in source or binary form and its associated documentation.

2. Subject to the terms and conditions of this License Agreement, PSF hereby
grants Licensee a nonexclusive, royalty-free, world-wide license to reproduce,
analyze, test, perform and/or display publicly, prepare derivative works,
distribute, and otherwise use Python alone or in any derivative
version, provided, however, that PSF's License Agreement and PSF's notice of
copyright, i.e., "Copyright © 2001-2024 Python Software Foundation; All Rights
Reserved" are retained in Python alone or in any derivative version
prepared by Licensee.

3. In the event Licensee prepares a derivative work that is based on or
incorporates Python or any part thereof, and wants to make the
derivative work available to others as provided herein, then Licensee hereby
agrees to include in any such work a brief summary of the changes made to._
—Python.

4. PSF is making Python available to Licensee on an "AS IS" basis.
PSEF MAKES NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF
EXAMPLE, BUT NOT LIMITATION, PSF MAKES NO AND DISCLAIMS ANY REPRESENTATION OR
WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE
USE OF PYTHON WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

5. PSF SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF PYTHON
FOR ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT OF
MODIFYING, DISTRIBUTING, OR OTHERWISE USING PYTHON, OR ANY DERIVATIVE
THEREOF, EVEN IF ADVISED OF THE POSSIBILITY THEREOF.

6. This License Agreement will automatically terminate upon a material breach of
its terms and conditions.

7. Nothing in this License Agreement shall be deemed to create any relationship
of agency, partnership, or joint venture between PSF and Licensee. This License
Agreement does not grant permission to use PSF trademarks or trade name in a

(continues on next page)

352 Appendice C. Storia e licenza

The Python/C API, Release 3.13.7

(continua dalla pagina precedente)

trademark sense to endorse or promote products or services of Licensee, or any
third party.

8. By copying, installing or otherwise using Python, Licensee agrees
to be bound by the terms and conditions of this License Agreement.

C.2.2 CONTRATTO DI LICENZA DI BEOPEN.COM PER PYTHON 2.0
BEOPEN PYTHON OPEN SOURCE LICENSE AGREEMENT VERSION 1

1. This LICENSE AGREEMENT is between BeOpen.com ("BeOpen"), having an office at
160 Saratoga Avenue, Santa Clara, CA 95051, and the Individual or Organization
("Licensee") accessing and otherwise using this software in source or binary
form and its associated documentation ("the Software").

2. Subject to the terms and conditions of this BeOpen Python License Agreement,
BeOpen hereby grants Licensee a non-exclusive, royalty-free, world-wide license
to reproduce, analyze, test, perform and/or display publicly, prepare derivative
works, distribute, and otherwise use the Software alone or in any derivative
version, provided, however, that the BeOpen Python License is retained in the
Software, alone or in any derivative version prepared by Licensee.

3. BeOpen is making the Software available to Licensee on an "AS IS" basis.
BEOPEN MAKES NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF
EXAMPLE, BUT NOT LIMITATION, BEOPEN MAKES NO AND DISCLAIMS ANY REPRESENTATION OR
WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE
USE OF THE SOFTWARE WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

4. BEOPEN SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF THE SOFTWARE FOR
ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT OF USING,
MODIFYING OR DISTRIBUTING THE SOFTWARE, OR ANY DERIVATIVE THEREOF, EVEN IF
ADVISED OF THE POSSIBILITY THEREOEF.

5. This License Agreement will automatically terminate upon a material breach of
its terms and conditions.

6. This License Agreement shall be governed by and interpreted in all respects
by the law of the State of California, excluding conflict of law provisions.
Nothing in this License Agreement shall be deemed to create any relationship of
agency, partnership, or joint venture between BeOpen and Licensee. This License
Agreement does not grant permission to use BeOpen trademarks or trade names in a
trademark sense to endorse or promote products or services of Licensee, or any
third party. As an exception, the "BeOpen Python" logos available at
http://www.pythonlabs.com/logos.html may be used according to the permissions
granted on that web page.

7. By copying, installing or otherwise using the software, Licensee agrees to be
bound by the terms and conditions of this License Agreement.

C.2.3 CNRI CONTRATTO DI LICENZA PER PYTHON 1.6.1

1. This LICENSE AGREEMENT is between the Corporation for National Research
Initiatives, having an office at 1895 Preston White Drive, Reston, VA 20191
("CNRI"), and the Individual or Organization ("Licensee") accessing and
otherwise using Python 1.6.1 software in source or binary form and its

(continues on next page)

C.2. Termini e condizioni di accesso o di utilizzo di Python 353

The Python/C API, Release 3.13.7

(continua dalla pagina precedente)

associated documentation.

2. Subject to the terms and conditions of this License Agreement, CNRI hereby
grants Licensee a nonexclusive, royalty-free, world-wide license to reproduce,
analyze, test, perform and/or display publicly, prepare derivative works,
distribute, and otherwise use Python 1.6.1 alone or in any derivative version,
provided, however, that CNRI's License Agreement and CNRI's notice of copyright,
i.e., "Copyright © 1995-2001 Corporation for National Research Initiatives; All
Rights Reserved" are retained in Python 1.6.1 alone or in any derivative version
prepared by Licensee. Alternately, in lieu of CNRI's License Agreement,
Licensee may substitute the following text (omitting the quotes): "Python 1.6.1
is made available subject to the terms and conditions in CNRI's License
Agreement. This Agreement together with Python 1.6.1 may be located on the
internet using the following unique, persistent identifier (known as a handle):
1895.22/1013. This Agreement may also be obtained from a proxy server on the
internet using the following URL: http://hdl.handle.net/1895.22/1013".

3. In the event Licensee prepares a derivative work that is based on or
incorporates Python 1.6.1 or any part thereof, and wants to make the derivative
work available to others as provided herein, then Licensee hereby agrees to
include in any such work a brief summary of the changes made to Python 1.6.1.

4. CNRI is making Python 1.6.1 available to Licensee on an "AS IS" basis. CNRI
MAKES NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF EXAMPLE,
BUT NOT LIMITATION, CNRI MAKES NO AND DISCLAIMS ANY REPRESENTATION OR WARRANTY
OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE USE OF
PYTHON 1.6.1 WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

5. CNRI SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF PYTHON 1.6.1 FOR
ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT OF
MODIFYING, DISTRIBUTING, OR OTHERWISE USING PYTHON 1.6.1, OR ANY DERIVATIVE
THEREOF, EVEN IF ADVISED OF THE POSSIBILITY THEREOEF.

6. This License Agreement will automatically terminate upon a material breach of
its terms and conditions.

7. This License Agreement shall be governed by the federal intellectual property
law of the United States, including without limitation the federal copyright
law, and, to the extent such U.S. federal law does not apply, by the law of the
Commonwealth of Virginia, excluding Virginia's conflict of law provisions.
Notwithstanding the foregoing, with regard to derivative works based on Python
1.6.1 that incorporate non-separable material that was previously distributed
under the GNU General Public License (GPL), the law of the Commonwealth of
Virginia shall govern this License Agreement only as to issues arising under or
with respect to Paragraphs 4, 5, and 7 of this License Agreement. Nothing in
this License Agreement shall be deemed to create any relationship of agency,
partnership, or joint venture between CNRI and Licensee. This License Agreement
does not grant permission to use CNRI trademarks or trade name in a trademark
sense to endorse or promote products or services of Licensee, or any third
party.

8. By clicking on the "ACCEPT" button where indicated, or by copying, installing
or otherwise using Python 1.6.1, Licensee agrees to be bound by the terms and
conditions of this License Agreement.

354 Appendice C. Storia e licenza

The Python/C API, Release 3.13.7

C.2.4 CWI CONTRATTO DI LICENZA PER PYTHON DA 0.9.0 A 1.2

Copyright © 1991 - 1995, Stichting Mathematisch Centrum Amsterdam, The
Netherlands. All rights reserved.

Permission to use, copy, modify, and distribute this software and its
documentation for any purpose and without fee is hereby granted, provided that
the above copyright notice appear in all copies and that both that copyright
notice and this permission notice appear in supporting documentation, and that
the name of Stichting Mathematisch Centrum or CWI not be used in advertising or
publicity pertaining to distribution of the software without specific, written
prior permission.

STICHTING MATHEMATISCH CENTRUM DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS
SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN NO
EVENT SHALL STICHTING MATHEMATISCH CENTRUM BE LIABLE FOR ANY SPECIAL, INDIRECT
OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE,
DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS
SOFTWARE.

C.2.5 ZERO-CLAUSE BSD LICENSE FOR CODE IN THE PYTHON DOCUMENTA-
TION

Permission to use, copy, modify, and/or distribute this software for any
purpose with or without fee is hereby granted.

THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH
REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT,
INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM
LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR
OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
PERFORMANCE OF THIS SOFTWARE.

C.3 Licenze e riconoscimenti per il software incorporato

Questa sezione ¢ una lista incompleta, ma in crescita, di licenze e riconoscimenti per software di terze parti
incorporate nella distribuzione Python.

C.3.1 Mersenne Twister

The _random C extension underlying the random module includes code based on a download from http://www.math.
sci.hiroshima-u.ac.jp/~m-mat/MT/MT2002/emt19937ar.html. The following are the verbatim comments from the
original code:

A C-program for MT19937, with initialization improved 2002/1/26.
Coded by Takuji Nishimura and Makoto Matsumoto.

Before using, initialize the state by using init_genrand (seed)
or init_by_array(init_key, key_length).

Copyright (C) 1997 - 2002, Makoto Matsumoto and Takuji Nishimura,
All rights reserved.

Redistribution and use in source and binary forms, with or without

(continues on next page)

C.3. Licenze e riconoscimenti per il software incorporato 355

http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/MT2002/emt19937ar.html
http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/MT2002/emt19937ar.html

The Python/C API, Release 3.13.7

(continua dalla pagina precedente)

modification, are permitted provided that the following conditions
are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

3. The names of its contributors may not be used to endorse or promote
products derived from this software without specific prior written
permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. 1IN NO EVENT SHALL THE COPYRIGHT OWNER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Any feedback is very welcome.
http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html
email: m-mat @ math.sci.hiroshima-u.ac.jp (remove space)

C.3.2 Socket

The socket module uses the functions, getaddrinfo (), and getnameinfo (), which are coded in separate source
files from the WIDE Project, https://www.wide.ad.]p/.

Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
All rights reserved.

Redistribution and use in source and binary forms, with or without

modification, are permitted provided that the following conditions

are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

3. Neither the name of the project nor the names of its contributors
may be used to endorse or promote products derived from this software
without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS "AS IS" AND

ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE

IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE

ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE

FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
(continues on next page)

356 Appendice C. Storia e licenza

https://www.wide.ad.jp/

The Python/C API, Release 3.13.7

(continua dalla pagina precedente)
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

C.3.3 Servizi di socket asincrone

The test.support.asynchat and test.support .asyncore modules contain the following notice:

Copyright 1996 by Sam Rushing

All Rights Reserved

Permission to use, copy, modify, and distribute this software and
its documentation for any purpose and without fee is hereby
granted, provided that the above copyright notice appear in all
copies and that both that copyright notice and this permission
notice appear in supporting documentation, and that the name of Sam
Rushing not be used in advertising or publicity pertaining to
distribution of the software without specific, written prior
permission.

SAM RUSHING DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE,
INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN
NO EVENT SHALL SAM RUSHING BE LIABLE FOR ANY SPECIAL, INDIRECT OR
CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS
OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT,
NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

C.3.4 Gestione dei cookie

Il modulo http.cookies contiene il seguente avviso:

Copyright 2000 by Timothy O'Malley <timo@alum.mit.edu>

All Rights Reserved

Permission to use, copy, modify, and distribute this software

and its documentation for any purpose and without fee is hereby
granted, provided that the above copyright notice appear in all
copies and that both that copyright notice and this permission
notice appear in supporting documentation, and that the name of
Timothy O'Malley not be used in advertising or publicity

pertaining to distribution of the software without specific, written
prior permission.

Timothy O'Malley DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS
SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS, IN NO EVENT SHALL Timothy O'Malley BE LIABLE FOR
ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
(continues on next page)

C.3. Licenze e riconoscimenti per il software incorporato 357

The Python/C API, Release 3.13.7

(continua dalla pagina precedente)

ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
PERFORMANCE OF THIS SOFTWARE.

C.3.5 Tracciabilita dell’esecuzione

Il modulo trace contiene il seguente avviso:

portions copyright 2001, Autonomous Zones Industries, Inc., all rights...
err... reserved and offered to the public under the terms of the

Python 2.2 license.

Author: Zooko O'Whielacronx

http://zooko.com/

mailto:zooko@zooko.com

Copyright 2000, Mojam Media, Inc., all rights reserved.
Author: Skip Montanaro

Copyright 1999, Bioreason, Inc., all rights reserved.
Author: Andrew Dalke

Copyright 1995-1997, Automatrix, Inc., all rights reserved.
Author: Skip Montanaro

Copyright 1991-1995, Stichting Mathematisch Centrum, all rights reserved.

Permission to use, copy, modify, and distribute this Python software and
its associated documentation for any purpose without fee is hereby
granted, provided that the above copyright notice appears in all copies,
and that both that copyright notice and this permission notice appear in
supporting documentation, and that the name of neither Automatrix,
Bioreason or Mojam Media be used in advertising or publicity pertaining to
distribution of the software without specific, written prior permission.

C.3.6 Funzioni UUencode e UUdecode

The uu codec contains the following notice:

Copyright 1994 by Lance Ellinghouse
Cathedral City, California Republic, United States of America.

All Rights Reserved
Permission to use, copy, modify, and distribute this software and its
documentation for any purpose and without fee is hereby granted,
provided that the above copyright notice appear in all copies and that
both that copyright notice and this permission notice appear in
supporting documentation, and that the name of Lance Ellinghouse
not be used in advertising or publicity pertaining to distribution
of the software without specific, written prior permission.
LANCE ELLINGHOUSE DISCLAIMS ALL WARRANTIES WITH REGARD TO
THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS, IN NO EVENT SHALL LANCE ELLINGHOUSE CENTRUM BE LIABLE
FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT
OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

(continues on next page)

358 Appendice C. Storia e licenza

The Python/C API, Release 3.13.7

(continua dalla pagina precedente)
Modified by Jack Jansen, CWI, July 1995:
— Use binascii module to do the actual line-by-line conversion
between ascii and binary. This results in a 1000-fold speedup. The C
version is still 5 times faster, though.
- Arguments more compliant with Python standard

C.3.7 Chiamate di procedura remota XML

Il modulo xmlrpc.client contiene il seguente avviso:

The XML-RPC client interface is

Copyright (c) 1999-2002 by Secret Labs AB
Copyright (c) 1999-2002 by Fredrik Lundh

By obtaining, using, and/or copying this software and/or its
associated documentation, you agree that you have read, understood,
and will comply with the following terms and conditions:

Permission to use, copy, modify, and distribute this software and
its associated documentation for any purpose and without fee is
hereby granted, provided that the above copyright notice appears in
all copies, and that both that copyright notice and this permission
notice appear in supporting documentation, and that the name of
Secret Labs AB or the author not be used in advertising or publicity
pertaining to distribution of the software without specific, written
prior permission.

SECRET LABS AB AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH REGARD
TO THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANT-
ABILITY AND FITNESS. 1IN NO EVENT SHALL SECRET LABS AB OR THE AUTHOR
BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY
DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
OF THIS SOFTWARE.

C.3.8 test_epoll

The test.test_epoll module contains the following notice:

Copyright (c) 2001-2006 Twisted Matrix Laboratories.

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
(continues on next page)

C.3. Licenze e riconoscimenti per il software incorporato 359

The Python/C API, Release 3.13.7

(continua dalla pagina precedente)
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

C.3.9 Select kqueue

Il modulo select contiene il seguente avviso per I'interfaccia kqueue:

Copyright (c) 2000 Doug White, 2006 James Knight, 2007 Christian Heimes
All rights reserved.

Redistribution and use in source and binary forms, with or without

modification, are permitted provided that the following conditions

are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS "AS IS" AND

ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS

OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

C.3.10 SipHash24

The file Python/pyhash. c contains Marek Majkowski” implementation of Dan Bernstein’s SipHash24 algorithm.
It contains the following note:

<MIT License>
Copyright (c) 2013 Marek Majkowski <marek@popcount.org>

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.

</MIT License>

Original location:
https://github.com/majek/csiphash/

(continues on next page)

360 Appendice C. Storia e licenza

The Python/C API, Release 3.13.7

(continua dalla pagina precedente)
Solution inspired by code from:
Samuel Neves (supercop/crypto_auth/siphash24/1little)
djb (supercop/crypto_auth/siphash24/1ittle2)
Jean-Philippe Aumasson (https://131002.net/siphash/siphash24.c)

C.3.11 strtod e dtoa

The file Pyt hon/dtoa. c, which supplies C functions dtoa and strtod for conversion of C doubles to and from strings,
is derived from the file of the same name by David M. Gay, currently available from https://web.archive.org/web/
20220517033456/http://www.netlib.org/fp/dtoa.c. The original file, as retrieved on March 16, 2009, contains the
following copyright and licensing notice:

/**
*

* The author of this software is David M. Gay.
*

* Copyright (c) 1991, 2000, 2001 by Lucent Technologies.

* Permission to use, copy, modify, and distribute this software for any

* purpose without fee is hereby granted, provided that this entire notice
* is included in all copies of any software which is or includes a copy

* or modification of this software and in all copies of the supporting

* documentation for such software.

* THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR IMPLIED
* WARRANTY. IN PARTICULAR, NEITHER THE AUTHOR NOR LUCENT MAKES ANY

* REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE MERCHANTABILITY

* OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR PURPOSE.

*

k*/

C.3.12 7.4 OpenSSL

The modules hashlib, posix and ss1 use the OpenSSL library for added performance if made available by the
operating system. Additionally, the Windows and macOS installers for Python may include a copy of the OpenSSL
libraries, so we include a copy of the OpenSSL license here. For the OpenSSL 3.0 release, and later releases derived
from that, the Apache License v2 applies:

Apache License
Version 2.0, January 2004
https://www.apache.org/licenses/

TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
1. Definitions.

"License" shall mean the terms and conditions for use, reproduction,
and distribution as defined by Sections 1 through 9 of this document.

"Licensor" shall mean the copyright owner or entity authorized by
the copyright owner that is granting the License.

"Legal Entity" shall mean the union of the acting entity and all
other entities that control, are controlled by, or are under common
control with that entity. For the purposes of this definition,
"control" means (i) the power, direct or indirect, to cause the
(continues on next page)

C.3. Licenze e riconoscimenti per il software incorporato 361

https://web.archive.org/web/20220517033456/http://www.netlib.org/fp/dtoa.c
https://web.archive.org/web/20220517033456/http://www.netlib.org/fp/dtoa.c

The Python/C API, Release 3.13.7

(continua dalla pagina precedente)
direction or management of such entity, whether by contract or
otherwise, or (ii) ownership of fifty percent (50%) or more of the
outstanding shares, or (iii) beneficial ownership of such entity.

"You" (or "Your") shall mean an individual or Legal Entity
exercising permissions granted by this License.

"Source" form shall mean the preferred form for making modifications,
including but not limited to software source code, documentation
source, and configuration files.

"Object" form shall mean any form resulting from mechanical
transformation or translation of a Source form, including but
not limited to compiled object code, generated documentation,
and conversions to other media types.

"Work" shall mean the work of authorship, whether in Source or
Object form, made available under the License, as indicated by a
copyright notice that is included in or attached to the work

(an example is provided in the Appendix below) .

"Derivative Works" shall mean any work, whether in Source or Object
form, that is based on (or derived from) the Work and for which the
editorial revisions, annotations, elaborations, or other modifications
represent, as a whole, an original work of authorship. For the purposes
of this License, Derivative Works shall not include works that remain
separable from, or merely link (or bind by name) to the interfaces of,
the Work and Derivative Works thereof.

"Contribution" shall mean any work of authorship, including

the original version of the Work and any modifications or additions

to that Work or Derivative Works thereof, that is intentionally
submitted to Licensor for inclusion in the Work by the copyright owner
or by an individual or Legal Entity authorized to submit on behalf of
the copyright owner. For the purposes of this definition, "submitted"
means any form of electronic, verbal, or written communication sent

to the Licensor or its representatives, including but not limited to
communication on electronic mailing lists, source code control systems,
and issue tracking systems that are managed by, or on behalf of, the
Licensor for the purpose of discussing and improving the Work, but
excluding communication that is conspicuously marked or otherwise
designated in writing by the copyright owner as "Not a Contribution."

"Contributor" shall mean Licensor and any individual or Legal Entity
on behalf of whom a Contribution has been received by Licensor and
subsequently incorporated within the Work.

2. Grant of Copyright License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
copyright license to reproduce, prepare Derivative Works of,
publicly display, publicly perform, sublicense, and distribute the
Work and such Derivative Works in Source or Object form.

3. Grant of Patent License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,

(continues on next page)

362 Appendice C. Storia e licenza

The Python/C API, Release 3.13.7

(continua dalla pagina precedente)
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
(except as stated in this section) patent license to make, have made,
use, offer to sell, sell, import, and otherwise transfer the Work,
where such license applies only to those patent claims licensable
by such Contributor that are necessarily infringed by their
Contribution(s) alone or by combination of their Contribution(s)
with the Work to which such Contribution(s) was submitted. If You
institute patent litigation against any entity (including a
cross—claim or counterclaim in a lawsuit) alleging that the Work
or a Contribution incorporated within the Work constitutes direct
or contributory patent infringement, then any patent licenses
granted to You under this License for that Work shall terminate
as of the date such litigation is filed.

4. Redistribution. You may reproduce and distribute copies of the
Work or Derivative Works thereof in any medium, with or without
modifications, and in Source or Object form, provided that You
meet the following conditions:

(a) You must give any other recipients of the Work or
Derivative Works a copy of this License; and

(b) You must cause any modified files to carry prominent notices
stating that You changed the files; and

(c) You must retain, in the Source form of any Derivative Works
that You distribute, all copyright, patent, trademark, and
attribution notices from the Source form of the Work,
excluding those notices that do not pertain to any part of
the Derivative Works; and

(d) If the Work includes a "NOTICE" text file as part of its
distribution, then any Derivative Works that You distribute must
include a readable copy of the attribution notices contained
within such NOTICE file, excluding those notices that do not
pertain to any part of the Derivative Works, in at least one
of the following places: within a NOTICE text file distributed
as part of the Derivative Works; within the Source form or
documentation, if provided along with the Derivative Works; or,
within a display generated by the Derivative Works, if and
wherever such third-party notices normally appear. The contents
of the NOTICE file are for informational purposes only and
do not modify the License. You may add Your own attribution
notices within Derivative Works that You distribute, alongside
or as an addendum to the NOTICE text from the Work, provided
that such additional attribution notices cannot be construed
as modifying the License.

You may add Your own copyright statement to Your modifications and
may provide additional or different license terms and conditions
for use, reproduction, or distribution of Your modifications, or
for any such Derivative Works as a whole, provided Your use,
reproduction, and distribution of the Work otherwise complies with
the conditions stated in this License.

5. Submission of Contributions. Unless You explicitly state otherwise,

(continues on next page)

C.3. Licenze e riconoscimenti per il software incorporato 363

The Python/C API, Release 3.13.7

(continua dalla pagina precedente)
any Contribution intentionally submitted for inclusion in the Work
by You to the Licensor shall be under the terms and conditions of
this License, without any additional terms or conditions.
Notwithstanding the above, nothing herein shall supersede or modify
the terms of any separate license agreement you may have executed
with Licensor regarding such Contributions.

6. Trademarks. This License does not grant permission to use the trade
names, trademarks, service marks, or product names of the Licensor,
except as required for reasonable and customary use in describing the
origin of the Work and reproducing the content of the NOTICE file.

7. Disclaimer of Warranty. Unless required by applicable law or
agreed to in writing, Licensor provides the Work (and each
Contributor provides its Contributions) on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied, including, without limitation, any warranties or conditions
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
PARTICULAR PURPOSE. You are solely responsible for determining the
appropriateness of using or redistributing the Work and assume any
risks associated with Your exercise of permissions under this License.

8. Limitation of Liability. In no event and under no legal theory,
whether in tort (including negligence), contract, or otherwise,
unless required by applicable law (such as deliberate and grossly
negligent acts) or agreed to in writing, shall any Contributor be
liable to You for damages, including any direct, indirect, special,
incidental, or consequential damages of any character arising as a
result of this License or out of the use or inability to use the
Work (including but not limited to damages for loss of goodwill,
work stoppage, computer failure or malfunction, or any and all
other commercial damages or losses), even if such Contributor
has been advised of the possibility of such damages.

9. Accepting Warranty or Additional Liability. While redistributing
the Work or Derivative Works thereof, You may choose to offer,
and charge a fee for, acceptance of support, warranty, indemnity,
or other liability obligations and/or rights consistent with this
License. However, in accepting such obligations, You may act only
on Your own behalf and on Your sole responsibility, not on behalf
of any other Contributor, and only if You agree to indemnify,
defend, and hold each Contributor harmless for any liability
incurred by, or claims asserted against, such Contributor by reason
of your accepting any such warranty or additional liability.

END OF TERMS AND CONDITIONS

C.3.13 expat

The pyexpat extension is built using an included copy of the expat sources unless the build is configured
—-—-with-system-expat:

Copyright (c) 1998, 1999, 2000 Thai Open Source Software Center Ltd
and Clark Cooper

Permission is hereby granted, free of charge, to any person obtaining
(continues on next page)

364 Appendice C. Storia e licenza

The Python/C API, Release 3.13.7

(continua dalla pagina precedente)
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

C.3.14 libffi

The _ctypes C extension underlying the ct ypes module is built using an included copy of the libffi sources unless
the build is configured --with-system-1ibffi:

Copyright (c) 1996-2008 Red Hat, Inc and others.

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.

C.3.15 zlib

Lestensione z11ib ¢ costruita usando una copia dei sorgenti zlib se la versione zlib trovata sul sistema ¢ troppo vecchia
per essere usata per la build:

Copyright (C) 1995-2011 Jean-loup Gailly and Mark Adler
This software is provided 'as-is', without any express or implied
warranty. In no event will the authors be held liable for any damages

arising from the use of this software.

(continues on next page)

C.3. Licenze e riconoscimenti per il software incorporato 365

The Python/C API, Release 3.13.7

(continua dalla pagina precedente)
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it
freely, subject to the following restrictions:

1. The origin of this software must not be misrepresented; you must not
claim that you wrote the original software. If you use this software
in a product, an acknowledgment in the product documentation would be
appreciated but is not required.

2. Altered source versions must be plainly marked as such, and must not be
misrepresented as being the original software.

3. This notice may not be removed or altered from any source distribution.

Jean—-loup Gailly Mark Adler
jloup@gzip.org madler@alumni.caltech.edu

C.3.16 cfuhash

L'implementazione della tabella hash utilizzata da t racemalloc si basa sul progetto cfuhash:

Copyright (c) 2005 Don Owens
All rights reserved.

This code is released under the BSD license:

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following
disclaimer in the documentation and/or other materials provided
with the distribution.

* Neither the name of the author nor the names of its
contributors may be used to endorse or promote products derived
from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
OF THE POSSIBILITY OF SUCH DAMAGE.

366 Appendice C. Storia e licenza

The Python/C API, Release 3.13.7

C.3.17 libmpdec

The _decimal C extension underlying the decimal module is built using an included copy of the libmpdec library
unless the build is configured ——with-system-1ibmpdec:

Copyright (c) 2008-2020 Stefan Krah. All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS "AS IS" AND

ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. 1IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS

OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

C.3.18 W3C C14N test suite

The C14N 2.0 test suite in the test package (Lib/test/xmltestdata/c14n-20/) was retrieved from the W3C
website at https://www.w3.org/TR/xml-c14n2-testcases/ and is distributed under the 3-clause BSD license:

Copyright (c) 2013 W3C(R) (MIT, ERCIM, Keio, Beihang),
All Rights Reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

* Redistributions of works must retain the original copyright notice,
this list of conditions and the following disclaimer.

* Redistributions in binary form must reproduce the original copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

* Neither the name of the W3C nor the names of its contributors may be
used to endorse or promote products derived from this work without
specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,

(continues on next page)

C.3. Licenze e riconoscimenti per il software incorporato 367

https://www.w3.org/TR/xml-c14n2-testcases/

The Python/C API, Release 3.13.7

(continua dalla pagina precedente)
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

C.3.19 mimalloc
MIT License:

Copyright (c) 2018-2021 Microsoft Corporation, Daan Leijen

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE .

C.3.20 asyncio

Parts of the asyncio module are incorporated from uvloop 0.16, which is distributed under the MIT license:

Copyright (c) 2015-2021 MagicStack Inc. http://magic.io

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND

NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

368 Appendice C. Storia e licenza

https://github.com/MagicStack/uvloop/tree/v0.16.0

The Python/C API, Release 3.13.7

C.3.21 Global Unbounded Sequences (GUS)

The file Python/gsbr. c is adapted from FreeBSD’s «Global Unbounded Sequences» safe memory reclamation
scheme in subr_smr.c. The file is distributed under the 2-Clause BSD License:

Copyright (c) 2019,2020 Jeffrey Roberson <jeff@FreeBSD.org>

Redistribution and use in source and binary forms, with or without

modification, are permitted provided that the following conditions

are met:

1. Redistributions of source code must retain the above copyright
notice unmodified, this list of conditions, and the following
disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR "AS IS" AND ANY EXPRESS OR
IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

C.3. Licenze e riconoscimenti per il software incorporato 369

https://github.com/freebsd/freebsd-src/blob/main/sys/kern/subr_smr.c

The Python/C API, Release 3.13.7

370 Appendice C. Storia e licenza

APPENDICE D

Copyright

Python e questa documentazione sono protetti da:

Copyright © 2001-2024 Python Software Foundation. All rights reserved.

Copyright © 2000 BeOpen.com. Tutti i diritti riservati.

Copyright © 1995-2000 Corporation for National Research Initiatives. Tutti i diritti riservati.
Copyright © 1991-1995 Stichting Mathematisch Centrum. Tutti i diritti riservati.

Fare riferimento a Storia e licenza per informazioni complete su licenza e permessi.

371

The Python/C API, Release 3.13.7

372 Appendice D. Copyright

Bibliografia

[win] PyExc_WindowsError is only defined on Windows; protect code that uses this by testing that the
preprocessor macro MS_WINDOWS is defined.

373

The Python/C API, Release 3.13.7

374 Bibliografia

Indice

Non-alphabetical _PyTuple Resize (C function), 166
...,331 _thread
>>>, 331 module, 224
__all__ (package variable), 76 A
__dict__ (module attribute), 187
__doc__ (module attribute), 187 abort (C function), 76
__file_ (module attribute), 187 abs
_ future_ , 337 built-in function, 112
_ import__ abstract base class, 331
built-in function, 76 allocfunc (Ctype), 314
__loader__ (module attribute), 187 annotation, 331
_ main__ argument, 331
module, 12, 215, 229, 230 argv (in module sys), 220, 248

__name__ (module attribute), 187 ascii
__package__ (module attribute), 187 built-in function, 103
__ PYVENV_LAUNCHER__, 248,254 asynchronous context manager, 332
__slots_ ,345 asynchronous generator, 332
_frozen (C struct), 79 asynchronous generator iterator, 332
_inittab (Cstruct), 79 asynchronous iterable, 332
_inittab.initfunc (C member), 79 asynchronous iterator, 332
_inittab.name (C member), 79 attribute, 332
_Py_c_diff (C function), 143 awaitable, 332
_Py_c_neg (C function), 143 B
_Py_c_pow (C function), 143
_Py_c_prod (C function), 143 BDFL, 332
_Py_c_quot (C function), 143 binary file, 333
_Py_c_sum (C function), 143 binaryfunc (Ctype), 315
_Py_InitializeMain (C function), 261 borrowed reference, 333
_Py_NoneStruct (Cvar), 274 buffer interface
_PyBytes_Resize (C function), 146 (see buffer protocol), 18
_PyCode_GetExtra (C function), 185 buffer object
_PyCode_setExtra (C function), 185 (see pbuffer protocol), 113
_PyEval_RequestCodeExtraIndex (C function), buffer protocol, 118

185 built-in function
_PyFrameEvalFunction (C type), 227 __import__,76
_PyInterpreterFrame (C struct), 203 abs, 112
_PyInterpreterState_GetEvalFrameFunc c ascii, 103

function), 227 bytes, 104
_PyInterpreterState_SetEvalFrameFunc (e classmethod, 278

function), 227 compile, 77
_PyObject_GetDictPtr (C function), 103 divmod, 111
_PyObject_New (C function), 273 float, 113
_PyObject_NewVar (C function), 273 hash, 104, 293

int, 113

375

The Python/C API, Release 3.13.7

len, 105, 114, 116, 168, 172, 175
pow, 111,113
repr, 103, 292
staticmethod, 278
tuple, 115,169
type, 104
builtins
module, 12, 215, 229, 230
bytearray
object, 146
bytecode, 333
bytes
built-in function, 104
object, 144
bytes-like object, 333

C

callable, 333
callback, 333
calloc (C function), 263
Capsule
object, 200
C-contiguous, 121, 334
class, 333
class variable, 333
classmethod
built-in function, 278
cleanup functions, 76
close (in module os), 230
closure variable, 333
CO_ASYNC_GENERATOR (C macro), 184
CO_COROUTINE (C macro), 184
CO_FUTURE_ABSOLUTE_IMPORT (C macro), 184
CO_FUTURE_ANNOTATIONS (C macro), 184
CO_FUTURE_DIVISION (C macro), 184
CO_FUTURE_GENERATOR_STOP (C macro), 184
CO_FUTURE_PRINT_FUNCTION (C macro), 184
CO_FUTURE_UNICODE_LITERALS (C macro), 184
CO_FUTURE_WITH_STATEMENT (C macro), 184
CO_GENERATOR (C macro), 184
CO_ITERABLE_COROUTINE (C macro), 184
CO_NESTED (C macro), 184
CO_NEWLOCALS (C macro), 184
CO_OPTIMIZED (C macro), 184
CO_VARARGS (C macro), 184
CO_VARKEYWORDS (C macro), 184
code object, 180
Common Vulnerabilities and Exposures
CVE 2008-5983, 220
compile
built-in function, 77
complex number, 334
object, 142
context,334
context management protocol, 334
context manager, 334
context variable, 334
contiguous, 121, 334

copyright (in module sys), 219
coroutine, 334

coroutine function, 334
Cpython, 334

current context, 335

D

decorator, 335
descrgetfunc (Ctype), 315
descriptor, 335
descrsetfunc (Ctype), 315
destructor (C type), 314
dictionary, 335

object, 169
dictionary comprehension, 335
dictionary view, 335
divmod

built-in function, 111
docstring, 335
duck-typing, 335
dunder, 336

E

EAFP, 336

EOFError (built-in exception), 186
exc_info (in module sys), 11
executable (in module sys), 219
exit (C function), 76
expression, 336

extension module, 336

F?

f-string, 336
file
object, 185
file object, 336
file-like object, 336

filesystem encoding and error handler, 336

finder, 336
float

built-in function, 113
floating-point

object, 141
floor division, 336
Fortran contiguous, 121, 334
free (C function), 263
free threading, 336
free variable, 337
freefunc (C type), 314
freeze utility, 79
frozenset

object, 174
function, 337

object, 176
function annotation, 337

G

garbage collection, 337

376

Indice

The Python/C API, Release 3.13.7

gcvisitobjects_t (Ctype), 321
generator, 337

generator expression, 337
generator iterator, 337
generic function, 338
generic type, 338
getattrfunc (Ctype), 314
getattrofunc (C type), 314
getbufferproc (C type), 315
getiterfunc (Ctype), 315
getter (C type), 282

GIL, 338

global interpreter lock, 221,338

F*

hash

built-in function, 104,293
hash-based pyc, 338
hashable, 338
hashfunc (C type), 315

IDLE, 338
immortal, 338
immutable, 338
import path, 338
importer, 339
importing, 339
incr_item(), 11,12
initproc (C type), 314
inquiry (C type), 320
instancemethod

object, 178
int

built-in function, 113
integer

object, 133
interactive, 339
interpreted, 339
interpreter lock, 221
interpreter shutdown, 339
iterable, 339
iterator, 339
iternextfunc (C type), 315

K

key function, 339

KeyboardInterrupt (built-in exception), 61

keyword argument, 340

L

lambda, 340
LBYL, 340

len

built-in function, 105, 114, 116, 168, 172,

175
lenfunc (Ctype), 315
lexical analyzer, 340

list, 340

object, 167
list comprehension, 340
loader, 340
locale encoding, 340
lock, interpreter, 221
long integer

object, 133
LONG_MAX (C macro), 135

M
magic
method, 340
magic method, 340
main (), 218, 220, 248
malloc (C function), 263
mapping, 340
object, 169
memoryview
object, 197
meta path finder, 341
metaclass, 341
METH_CLASS (C macro), 278
METH_COEXIST (C macro), 278
METH_FASTCALL (C macro), 277
METH_KEYWORDS (C macro), 277
METH_METHOD (C macro), 277
METH_NOARGS (C macro), 278
METH_O (C macro), 278
METH_STATIC (C macro), 278
METH_VARARGS (C macro), 277
method, 341
magic, 340
object, 179
special, 345
method resolution order, 341
MethodType (in module types), 176, 179
module, 341
__main__, 12,215,229, 230
_thread, 224
builtins, 12,215, 229, 230
object, 187
search path, 12, 215, 219
signal, 61
sys, 12,215,229, 230
module spec, 341
modules (in module sys), 76, 215
ModuleType (in module types), 187
MRO, 341
mutable, 341

N

named tuple, 341
namespace, 342

namespace package, 342
nested scope, 342
new-style class, 342
newfunc (C type), 314

Indice

The Python/C API, Release 3.13.7

None Py_ABS (C macro), 4
object, 133 Py_AddPendingCall (C function), 231
numeric Py_ALWAYS_INLINE (C macro), 5
object, 133 Py_ASNATIVEBYTES_ALLOW_INDEX (C macro), 139
Py_ASNATIVEBYTES_BIG_ENDIAN (C macro), 139
O Py_ASNATIVEBYTES_DEFAULTS (C macro), 139
object, 342 Py_ASNATIVEBYTES_LITTLE_ENDIAN (C macro),
bytearray, 146 139
bytes, 144 Py_ASNATIVEBYTES_NATIVE_ENDIAN (C macro),
Capsule, 200 139
code, 180 Py_ASNATIVEBYTES_REJECT_NEGATIVE (C macro),
complex number, 142 139
dictionary, 169 Py_ASNATIVEBYTES_UNSIGNED_BUFFER (C macro),
file, 185 139
floating-point, 141 Py AtExit (C function), 76
frozenset, 174 Py_AUDIT_READ (C macro), 280
function, 176 Py_AuditHookFunction (C type), 75
instancemethod, 178 Py_BEGIN_ALLOW_THREADS (C macro), 221, 225
integer, 133 Py_BEGIN_CRITICAL_SECTION (C macro), 238
list, 167 Py_BEGIN_CRITICAL_SECTION2 (C macro), 238
long integer, 133 Py_BLOCK_THREADS (C macro), 225
mapping, 169 Py_buffer (Ctype), 119
memoryview, 197 Py_buffer.buf (C member), 119
method, 179 Py_buffer.format (C member), 120
module, 187 Py_buffer.internal (C member), 120
None, 133 Py_buffer.itemsize (C member), 119
numeric, 133 Py_buffer.len (C member), 119
sequence, 144 Py_buffer.ndim (C member), 120
set, 174 Py_buffer.obj (C member), 119
tuple, 165 Py_buffer.readonly (C member), 119
type, 7, 127 Py_buffer.shape (C member), 120
objobjargproc (C type), 315 Py_buffer.strides (C member), 120
objobiproc (C type), 315 Py_buffer.suboffsets (C member), 120
optimized scope, 342 Py_Buildvalue (C function), 87
OverflowError (built-in exception), 135, 136 Py BytesMain (C function), 216
Py_BytesWarningFlag (C var), 212
P Py_CHARMASK (C macro), 5

Py_CLEANUP_SUPPORTED (C macro), 84
Py_CLEAR (C function), 50
Py_CompileString (C function), 45, 46

package, 342
package variable

all ,76 .
parameter, 342 Py CompileStringExFlags (C function), 45
PATH. 12 ’ Py_CompileStringFlags (C function), 45

Py_CompileStringObject (C function), 45
Py_complex (C type), 142
Py_complex.imag (C member), 142
Py_complex.real (C member), 142
Py_CONSTANT_ELLIPSIS (C macro), 100
Py_CONSTANT_EMPTY_BYTES (C macro), 100
path entry hook, 343 Py_CONSTANT_EMPTY_STR (C macro), 100
path-like object, 343 Py_CONSTANT_EMPTY_TUPLE (C macro), 100
pEP, 343 Py_CONSTANT_FALSE (C macro), 100
Py_CONSTANT_NONE (C macro), 100
Py_CONSTANT_NOT_IMPLEMENTED (C macro), 100
Py_CONSTANT_ONE (C macro), 100
Py_CONSTANT_TRUE (C macro), 100
Py_CONSTANT_ZERO (C macro), 100
PY_CXX_CONST (C macro), 87

Py_DEBUG (C macro), 13

path

module search, 12, 215,219
path (in module sys), 12,215, 219
path based finder, 343
path entry, 343
path entry finder, 343

platform (in module sys), 219
portion, 343
positional argument, 343
pow

built-in function, 111,113
provisional API, 343
provisional package, 344

378 Indice

The Python/C API, Release 3.13.7

Py_DebugFlag (C var), 212
Py_DecodeLocale (C function), 72
Py_DECREF (C function), 7, 50

Py _DecRef (C function), 51

Py_DEPRECATED (C macro), 5
Py_DontWriteBytecodeFlag (Cvar), 213
Py_Ellipsis (Cvar), 197
Py_EncodeLocale (C function), 73
Py_END_ALLOW_THREADS (C macro), 221, 225
Py_END_CRITICAL_SECTION (C macro), 238
Py_END_CRITICAL_SECTION2 (C macro), 239
Py_EndInterpreter (C function), 230
Py_EnterRecursiveCall (C function), 64
Py_EQ (C macro), 301

Py_eval_input (Cvar), 46

py_Exit (C function), 76
Py_ExitStatusException (C function), 243
Py_False (Cvar), 140

Py FatalError (C function), 76
Py_FatalError (), 220
Py_FdIsInteractive (C function), 71
Py_file_input (C var), 46

Py_Finalize (C function), 216

Py _FinalizeEx (C function), 76,215, 216, 230, 231
Py_FrozenFlag (Cvar),213

Py_GE (C macro), 301

Py_GenericAlias (C function), 210
Py_GenericAliasType (Cvar), 210
Py_GetArgcArgv (C function), 261

Py GetBuildInfo (C function), 220

Py GetCompiler (C function), 219
Py_GetConstant (C function), 99
Py_GetConstantBorrowed (C function), 100
Py_GetCopyright (C function), 219
Py_GETENV (C macro), 5

Py GetExecPrefix (C function), 12,218
Py_GetPath (C function), 12,219
Py_GetPath (), 218

Py_GetPlatform (C function), 219

Py _GetPrefix (C function), 12,218

Py _GetProgramFullPath (C function), 12,219
Py_GetProgramName (C function), 218
Py_GetPythonHome (C function), 221
Py_GetVersion (C function), 219

Py_GT (C macro), 301

Py_hash_t (Ctype), 91

Py HashPointer (C function), 92
Py_HashRandomizationFlag (C var), 213
Py_IgnoreEnvironmentFlag (C var), 213
Py_INCREF (C function), 7, 49

Py_IncRef (C function), 51

Py _Initialize (C function), 12,215, 230
Py_Initialize(),218

Py_InitializeEx (C function), 215
Py_TInitializeFromConfig (C function), 215
Py_InspectFlag (Cvar), 213
Py_InteractiveFlag (Cvar), 213

py_1Is (C function), 274

Py_1S_TYPE (C function), 275

Py_IsFalse (C function), 275

Py IsFinalizing (C function), 216

Py IsInitialized (C function), 12,216
Py_IsNone (C function), 275

Py_IsolatedFlag (Cvar), 213

pPy_IsTrue (C function), 275

py_LE (C macro), 301

Py LeaveRecursiveCall (C function), 64
Py_LegacyWindowsFSEncodingFlag (C var), 214
Py_LegacyWindowsStdioFlag (C var), 214
Py_LIMITED_API (C macro), 16

pPy_LT (C macro), 301

Py _Main (C function), 216

PY_MAJOR_VERSION (C macro), 323

py_MAX (C macro), 5

Py_MEMBER_SIZE (C macro), 5
PY_MICRO_VERSION (C macro), 323

Py_MIN (C macro), 5

PY_MINOR_VERSTION (C macro), 323
Py_mod_create (C macro), 190

Py_mod_exec (C macro), 190

Py_mod_gil (C macro), 191
Py_MOD_GIL_NOT_USED (C macro), 191
Py_MOD_GIL_USED (C macro), 191
Py_mod_multiple_interpreters (C macro), 191
Py_MOD_MULTIPLE_INTERPRETERS_NOT_SUPPORTED

(C macro), 191
Py_MOD_MULTIPLE_INTERPRETERS_SUPPORTED (C
macro), 191
Py_MOD_PER_INTERPRETER_GIL_SUPPORTED (e
macro), 191

PY_MONITORING_EVENT_BRANCH (C macro), 329
PY_MONITORING_EVENT_C_RAISE (C macro), 329
PY_MONITORING_EVENT_C_RETURN (C macro), 329
PY_MONITORING_EVENT_CALL (C macro), 329
PY_MONITORING_EVENT_EXCEPTION_HANDLED (C
macro), 329
PY_MONITORING_EVENT_INSTRUCTION (C macro),
329
PY_MONITORING_EVENT_JUMP (C macro), 329
PY_MONITORING_EVENT_LINE (C macro), 329
PY_MONITORING_EVENT_PY_RESUME (C macro), 329
PY_MONITORING_EVENT_PY_RETURN (C macro), 329
PY_MONITORING_EVENT_PY_START (C macro), 329
PY_MONITORING_EVENT_PY_THROW (C macro), 329
PY_MONITORING_EVENT_PY_UNWIND (C macro), 329
PY_MONITORING_EVENT_PY_YIELD (C macro), 329
PY_MONITORING_EVENT_RAISE (C macro), 329
PY_MONITORING_EVENT_RERAISE (C macro), 329
PY_MONITORING_EVENT_STOP_ITERATION (C ma-
cro), 329
PY_MONITORING_IS_INSTRUMENTED_EVENT (C
function), 329
Py_NE (C macro), 301
Py_NewInterpreter (C function), 230
Py NewlInterpreterFromConfig (C function), 229
Py_NewRef (C function), 50

Indice

379

The Python/C API, Release 3.13.7

Py_NO_INLINE (C macro), 5

Py_None (Cvar), 133

Py_NoSiteFlag (Cvar), 214

Py_NotImplemented (C var), 100

Py_NoUserSiteDirectory (C var), 214

Py_OpenCodeHookFunction (C type), 186

Py_OptimizeFlag (Cvar), 214

Py _PrelInitialize (C function), 246

Py PrelnitializeFromArgs (C function), 246

Py_PrelnitializeFromBytesArgs (C function),
246

Py_PRINT_RAW (C macro), 100, 186

Py_QuietFlag (Cvar), 215

Py_READONLY (C macro), 280

Py REFCNT (C function), 49

Py_RELATIVE_OFFSET (C macro), 280

PY_RELEASE_LEVEL (C macro), 323

PY_RELEASE_SERIAL (C macro), 323

Py_ReprEnter (C function), 64

Py _ReprLeave (C function), 65

Py_RETURN_FALSE (C macro), 140

Py_RETURN_NONE (C macro), 133

Py_RETURN_NOTIMPLEMENTED (C macro), 100

Py_RETURN_RICHCOMPARE (C macro), 301

Py_RETURN_TRUE (C macro), 140

Py_RunMain (C function), 217

Py_SET_REFCNT (C function), 49

Py_SET_SIZE (C function), 275

Py_SET_TYPE (C function), 275

Py_SetProgramName (C function), 218

Py_SetPythonHome (C function), 220

Py_SETREF (C macro), 51

Py_single_input (Cvar), 46

py_S17ZE (C function), 275

Py _ssize_t (Ctype), 10

PY_SSI1ZE_T_MAX (C macro), 136

Py_STRINGIFY (C macro), 5

Py_T_BOOL (C macro), 281

Py_T_BYTE (C macro), 281

Py_T_CHAR (C macro), 281

Py_T_DOUBLE (C macro), 281

Py_T_FLOAT (C macro), 281

Py_T_1INT (C macro), 281

Py_T_LONG (C macro), 281

Py_T_LONGLONG (C macro), 281

Py_T_OBJECT_EX (C macro), 281

Py_T_PYSSIZET (C macro), 281

Py_T_SHORT (C macro), 281

Py_T_STRING (C macro), 281

Py_T_STRING_INPLACE (C macro), 281

Py_T_UBYTE (C macro), 281

Py_T_UINT (C macro), 281

Py_T_ULONG (C macro), 281

Py_T_ULONGLONG (C macro), 281

Py_T_USHORT (C macro), 281

Py_TPFLAGS_BASE_EXC_SUBCLASS (C macro), 297

Py_TPFLAGS_BASETYPE (C macro), 295

Py_TPFLAGS_BYTES_SUBCLASS (C macro), 297

Py_TPFLAGS_DEFAULT (C macro), 295
Py_TPFLAGS_DICT_SUBCLASS (C macro), 297
Py_TPFLAGS_DISALLOW_INSTANTIATION (Cmacro),
297
Py_TPFLAGS_HAVE_FINALIZE (C macro), 297
Py_TPFLAGS_HAVE_GC (C macro), 295
Py_TPFLAGS_HAVE_VECTORCALL (C macro), 297
Py_TPFLAGS_HEAPTYPE (C macro), 295
Py_TPFLAGS_IMMUTABLETYPE (C macro), 297
Py_TPFLAGS_ITEMS_AT_END (C macro), 296
Py_TPFLAGS_LIST_SUBCLASS (C macro), 296
Py_TPFLAGS_LONG_SUBCLASS (C macro), 296
Py_TPFLAGS_MANAGED_DICT (C macro), 296
Py_TPFLAGS_MANAGED_WEAKREF (C macro), 296
Py_TPFLAGS_MAPPING (C macro), 298
Py_TPFLAGS_METHOD_DESCRIPTOR (C macro), 296
Py_TPFLAGS_READY (C macro), 295
Py_TPFLAGS_READYING (C macro), 295
Py_TPFLAGS_SEQUENCE (C macro), 298
Py_TPFLAGS_TUPLE_SUBCLASS (C macro), 297
Py_TPFLAGS_TYPE_SUBCLASS (C macro), 297
Py_TPFLAGS_UNICODE_SUBCLASS (C macro), 297
Py_TPFLAGS_VALID_VERSION_TAG (C macro), 298
Py_tracefunc (C type), 232
Py_True (C var), 140
Py_tss_NEEDS_INIT (C macro), 235
Py_tss_t (Ctype), 235
py_TYPE (C function), 275
pPy_ucs1 (C type), 147
py_ucs2 (Ctype), 147
py_ucs4 (Ctype), 147
Py_uhash_t (Ctype), 91
Py_UNBLOCK_THREADS (C macro), 225
Py_UnbufferedStdioFlag (Cvar), 215
Py_UNICODE (C type), 147
Py UNICODE_IS_HIGH_SURROGATE (C function), 150
Py_UNICODE_IS_LOW_SURROGATE (C function), 150
Py_UNICODE_IS_SURROGATE (C function), 150
Py_UNICODE_ISALNUM (C function), 150
Py_UNICODE_ISALPHA (C function), 150
Py UNICODE_ISDECIMAL (C function), 149
Py_UNICODE_ISDIGIT (C function), 149
Py_UNICODE_ISLINEBREAK (C function), 149
Py_UNICODE_ISLOWER (C function), 149
Py_UNICODE_ISNUMERIC (C function), 149
Py _UNICODE_ISPRINTABLE (C function), 150
Py UNICODE_ISSPACE (C function), 149
Py_UNICODE_ISTITLE (C function), 149
Py_UNICODE_ISUPPER (C function), 149
Py_UNICODE_JOIN_SURROGATES (C function), 150
Py_UNICODE_TODECIMAL (C function), 150
Py _UNICODE_TODIGIT (C function), 150
Py_UNICODE_TOLOWER (C function), 150
Py_UNICODE_TONUMERIC (C function), 150
Py_UNICODE_TOTITLE (C function), 150
Py_UNICODE_TOUPPER (C function), 150
Py_UNREACHABLE (C macro), 6
Py_UNUSED (C macro), 6

380

Indice

The Python/C API, Release 3.13.7

Py_vVaBuildvalue (C function), 89

PY_VECTORCALL_ARGUMENTS_OFFSET (C macro),
107

Py_VerboseFlag (Cvar), 215

Py_Version (C var), 323

PY_VERSION_HEX (C macro), 323

Py_VISIT (C macro), 320

Py_XDECREF (C function), 12, 50

Py XINCREF (C function), 49

Py_XNewRef (C function), 50

Py_XSETREF (C macro), 51

PyATter_Check (C function), 117

PyAnySet_Check (C function), 175

PyAnySet_CheckExact (C function), 175

pPyArg_Parse (C function), 86

PyArg_ParseTuple (C function), 85

PyArg_ParseTupleAndKeywords (C function), 85

PyArg_UnpackTuple (C function), 86

PyArg_ValidateKeywordArguments (C function),
86

PyArg_VaParse (C function), 85

PyArg_VaParseTupleAndKeywords (C function), 86

PyASCIIObject (Ctype), 147

PyAsyncMethods (C type), 313

PyAsyncMethods.am_aiter (C member), 313

PyAsyncMethods.am_anext (C member), 314

PyAsyncMethods.am_await (C member), 313

PyAsyncMethods.am_send (C member), 314

PyBaseObject_Type (Cvar), 274

PyBool_ Check (C function), 140

PyBool FromLong (C function), 140

PyBool_Type (Cvar), 140

PyBUF_ANY_CONTIGUOUS (C macro), 122

PyBUF_C_CONTIGUOUS (C macro), 122

PyBUF_CONTIG (C macro), 122

PyBUF_CONTIG_RO (C macro), 122

PyBUF_F_CONTIGUOUS (C macro), 122

PyBUF_FORMAT (C macro), 121

PyBUF_FULL (C macro), 122

PyBUF_FULL_RO (C macro), 122

PyBUF_INDIRECT (C macro), 121

PyBUF_MAX_NDIM (C macro), 120

PyBUF_ND (C macro), 121

PyBUF_READ (C macro), 197

PyBUF_RECORDS (C macro), 122

PyBUF_RECORDS_RO (C macro), 122

PyBUF_SIMPLE (C macro), 121

PyBUF_STRIDED (C macro), 122

PyBUF_STRIDED_RO (C macro), 122

PyBUF_STRIDES (C macro), 121

PyBUF_WRITABLE (C macro), 121

PyBUF_WRITE (C macro), 198

PyBuffer_FillContiguousStrides (C function),
124

PyBuffer_FillInfo (C function), 125

PyBuffer_FromContiguous (C function), 124

PyBuffer GetPointer (C function), 124

PyBuffer_IsContiguous (C function), 124

PyBuffer_Release (C function), 124
PyBuffer_SizeFromFormat (C function), 124
PyBuffer_ToContiguous (C function), 124
PyBufferProcs (Ctype), 118,312
PyBufferProcs.bf_getbuffer (C member), 312
PyBufferProcs.bf_releasebuffer (C member),
313
PyByteArray AS_STRING (C function), 147
PyByteArray AsString (C function), 147
PyByteArray_Check (C function), 146
PyByteArray_CheckExact (C function), 146
PyByteArray_Concat (C function), 146
PyByteArray_FromObject (C function), 146
PyByteArray FromStringAndSize (C function),
146
PyByteArray_GET_SIZE (C function), 147
PyByteArray_Resize (C function), 147
PyByteArray_Size (C function), 146
PyByteArray_Type (C var), 146
PyByteArrayObject (C type), 146
PyBytes_AS_STRING (C function), 145
PyBytes_AsString (C function), 145
PyBytes_AsStringAndSize (C function), 145
PyBytes_Check (C function), 144
PyBytes_CheckExact (C function), 144
PyBytes_Concat (C function), 146
PyBytes_ConcatAndDel (C function), 146
PyBytes_FromFormat (C function), 144
PyBytes_FromFormatV (C function), 145
PyBytes_FromObject (C function), 145
PyBytes_FromString (C function), 144
PyBytes_FromStringAndSize (C function), 144
PyBytes_GET_SIZE (C function), 145
PyBytes_sSize (C function), 145
PyBytes_Type (Cvar), 144
PyBytesObject (Ctype), 144
PyCallable_Check (C function), 111
PyCallIter_Check (C function), 195
PyCallIter_New (C function), 195
PyCallIter_Type (Cvar), 195
pPyCapsule (C type), 200
PyCapsule_CheckExact (C function), 200
PyCapsule_Destructor (C type), 200
PyCapsule_GetContext (C function), 200
PyCapsule_GetDestructor (C function), 200
PyCapsule_GetName (C function), 200
PyCapsule_GetPointer (C function), 200
PyCapsule_Import (C function), 200
PyCapsule_IsValid (C function), 201
PyCapsule_New (C function), 200
PyCapsule_SetContext (C function), 201
PyCapsule_SetDestructor (C function), 201
PyCapsule_SetName (C function), 201
PyCapsule_SetPointer (C function), 201
PyCell_Check (C function), 179
PyCell_GET (C function), 180
pPyCell Get (C function), 180
PyCell_New (C function), 179

Indice

381

The Python/C API, Release 3.13.7

PyCell_SET (C function), 180
PyCell_Set (C function), 180
PyCell_Type (Cvar), 179
PyCellObject (Ctype), 179
PyCF_ALLOW_TOP_LEVEL_AWAIT (C macro), 46
PyCF_ONLY_AST (C macro), 46
PyCF_OPTIMIZED_AST (C macro), 46
PyCF_TYPE_COMMENTS (C macro), 46
PyCFunction (C type), 276
PyCFunction_New (C function), 278
PyCFunction_NewEx (C function), 278
PyCFunctionFast (C type), 276
PyCFunctionFastWithKeywords (C type), 276
PyCFunctionWithKeywords (C type), 276
PyCMethod (C type), 276
PyCMethod_New (C function), 278
PyCode_Addr2Line (C function), 181
PyCode_Addr2Location (C function), 181
PyCode_AddWatcher (C function), 182
PyCode_Check (C function), 180
PyCode_ClearWatcher (C function), 182
PyCode_GetCellvars (C function), 182
PyCode_GetCode (C function), 181
PyCode_GetFreevars (C function), 182
PyCode_GetNumFree (C function), 180
PyCode_GetVarnames (C function), 181
PyCode_New (C function), 181
PyCode_NewEmpty (C function), 181
PyCode_NewWithPosOnlyArgs (C function), 181
PyCode_Type (C var), 180
PyCode_WatchCallback (C type), 182
PyCodec_BackslashReplaceErrors (C function),
95
PyCodec_Decode (C function), 94
PyCodec_Decoder (C function), 94
PyCodec_Encode (C function), 94
PyCodec_Encoder (C function), 94
PyCodec_IgnoreErrors (C function), 95
PyCodec_IncrementalDecoder (C function), 94
PyCodec_IncrementalEncoder (C function), 94
PyCodec_KnownEncoding (C function), 93
PyCodec_LookupError (C function), 94
PyCodec_NameReplaceErrors (C function), 95
PyCodec_Register (C function), 93
PyCodec_RegisterError (C function), 94
PyCodec_ReplaceErrors (C function), 95
PyCodec_StreamReader (C function), 94
PyCodec_StreamWriter (C function), 94
PyCodec_StrictErrors (C function), 95
PyCodec_Unregister (C function), 93
PyCodec_XMLCharRefReplaceErrors (C function),
95
PyCodeEvent (C type), 182
PyCodeObject (C type), 180
PyCompactUnicodeObject (C type), 147
PyCompilerFlags (C struct), 46
PyCompilerFlags.cf_feature_version (C mem-

ber), 46

PyCompilerFlags.cf_flags (C member), 46
PyComplex_AsCComplex (C function), 144
PyComplex_Check (C function), 143
PyComplex_CheckExact (C function), 143
PyComplex_FromCComplex (C function), 143
PyComplex_FromDoubles (C function), 143
PyComplex_ImagAsDouble (C function), 144
PyComplex_RealAsDouble (C function), 143
PyComplex_Type (C var), 143
PyComplexObject (C type), 143
PyConfig (C type), 246
PyConfig_Clear (C function), 247
PyConfig_InitIsolatedConfig (C function), 247
PyConfig_ InitPythonConfig (C function), 247
PyConfig_Read (C function), 247
PyConfig_SetArgv (C function), 247
PyConfig_SetBytesArgv (C function), 247
PyConfig_SetBytesString (C function), 247
PyConfig_SetString (C function), 247
PyConfig_SetWideStringList (C function), 247
PyConfig.argv (C member), 248
PyConfig.base_exec_prefix (C member), 248
PyConfig.base_executable (C member), 248
PyConfig.base_prefix (C member), 248
PyConfig.buffered_stdio (C member), 249
PyConfig.bytes_warning (C member), 249
PyConfig.check_hash_pycs_mode (C member),
249
PyConfig.code_debug_ranges (C member), 249
PyConfig.configure_c_stdio (C member), 249
PyConfig.cpu_count (C member), 252
PyConfig.dev_mode (C member), 250
PyConfig.dump_refs (C member), 250
PyConfig.exec_prefix (C member), 250
PyConfig.executable (C member), 250
PyConfig.faulthandler (C member), 250
PyConfig.filesystem_encoding (C member), 250
PyConfig.filesystem_errors (C member), 251
PyConfig.hash_seed (C member), 251
PyConfig.home (C member), 251
PyConfig.import_time (C member), 251
PyConfig.inspect (C member), 251
PyConfig.install_signal_handlers (o
member), 251
PyConfig.int_max_str_digits (C member), 252
PyConfig.interactive (C member), 251
PyConfig.isolated (C member), 252
PyConfig.legacy_windows_stdio
252
PyConfig.malloc_stats (C member), 252
PyConfig.module_search_paths (C member), 253
PyConfig.module_search_paths_set (e
member), 253
PyConfig.optimization_level (C member), 253
PyConfig.orig_argv (C member), 253
PyConfig.parse_argv (C member), 253
PyConfig.parser_debug (C member), 254
PyConfig.pathconfig_warnings (C member), 254

(C member),

382

Indice

The Python/C API, Release 3.13.7

.perf_profiling (C member), 256
platlibdir (C member), 253
prefix (C member), 254
program_name (C member), 254
pycache_prefix (C member), 254
pythonpath_env (C member), 253
quiet (C member), 254
run_command (C member), 254
run_filename (C member), 255
run_module (C member), 255
run_presite (C member), 255
safe_path (C member), 248
show_ref_count (C member), 255
site_import (C member), 255
PyConfig.skip_source_first_line (C member),
255
stdio_encoding (C member), 255
stdio_errors (C member), 255
tracemalloc (C member), 256
use_environment (C member), 256
PyConfig.use_hash_seed (C member), 251
.user_site_directory (C member), 256
verbose (C member), 256
PyConfig.warn_default_encoding (C member),
249
PyConfig.warnoptions (C member), 257
PyConfig.write_bytecode (C member), 257
PyConfig.xoptions (C member), 257
pPyContext (C type), 205
PyContext_CheckExact (C function), 205
PyContext_Copy (C function), 205
PyContext_CopyCurrent (C function), 205
PyContext_Enter (C function), 205
PyContext_Exit (C function), 206
PyContext_New (C function), 205
PyContext_Type (C var), 205
PyContextToken (C type), 205
PyContextToken_CheckExact (C function), 205
PyContextToken_Type (C var), 205
PyContextVar (C type), 205
PyContextVar_CheckExact (C function), 205
PyContextVar_Get (C function), 206
PyContextVar_New (C function), 206
PyContextVar_Reset (C function), 206
PyContextVar_Set (C function), 206
PyContextVar_Type (C var), 205
PyCoro_CheckExact (C function), 204
PyCoro_New (C function), 204
PyCoro_Type (C var), 204
PyCoroObject (C type), 204
PyDate_Check (C function), 207
PyDate_CheckExact (C function), 207
PyDate_FromDate (C function), 207
PyDate_FromTimestamp (C function), 209
PyDateTime_Check (C function), 207
PyDateTime_CheckExact (C function), 207
PyDateTime_Date (C type), 206
PyDateTime_DATE_GET_FOLD (C function), 209

PyConfig
PyConfig.
PyConfig.
PyConfig.
PyConfig.
PyConfig.
PyConfig.
PyConfig.
PyConfig.
PyConfig.
PyConfig.
PyConfig.
PyConfig.
PyConfig.

PyConfig.
PyConfig.
PyConfig.
PyConfig.

PyConfig
PyConfig.

PyDateTime_DATE_GET_HOUR (C function), 208
PyDateTime_DATE_GET_MICROSECOND (C function),
208
PyDateTime DATE_GET_MINUTE (C function), 208
PyDateTime_DATE_GET_SECOND (C function), 208
PyDateTime_DATE_GET_TZINFO (C function), 209
PyDateTime_DateTime (C type), 206
PyDateTime_DateTimeType (C var), 206
PyDateTime_DateType (C var), 206
PyDateTime_Delta (C type), 206
PyDateTime_DELTA_GET_DAYS (C function), 209
PyDateTime_DELTA_GET_MICROSECONDS (C func-
tion), 209
PyDateTime DELTA_GET_SECONDS (C function), 209
PyDateTime_DeltaType (C var), 207
PyDateTime_FromDateAndTime (C function), 207
PyDateTime_FromDateAndTimeAndFold (C func-
tion), 208
PyDateTime_FromTimestamp (C function), 209
PyDateTime_ GET_DAY (C function), 208
PyDateTime_GET_MONTH (C function), 208
PyDateTime_GET_YEAR (C function), 208
PyDateTime_Time (C type), 206
PyDateTime_TIME_GET_FOLD (C function), 209
PyDateTime TIME_GET_HOUR (C function), 209
PyDateTime_TIME_GET_MICROSECOND (C function),
209
PyDateTime_TIME_GET_MINUTE (C function), 209
PyDateTime_TIME_GET_SECOND (C function), 209
PyDateTime TIME_GET_TZINFO (C function), 209
PyDateTime_TimeType (C var), 206
PyDateTime_TimeZone_UTC (C var), 207
PyDateTime_TZInfoType (C var), 207
PyDelta_Check (C function), 207
PyDelta_CheckExact (C function), 207
PyDelta FromDSU (C function), 208
PyDescr_IsData (C function), 196
PyDescr_NewClassMethod (C function), 196
PyDescr_NewGetSet (C function), 195
PyDescr_NewMember (C function), 196
PyDescr_NewMethod (C function), 196
PyDescr_NewWrapper (C function), 196
PyDict_AddwWatcher (C function), 173
PyDict_Check (C function), 170
PyDict_CheckExact (C function), 170
PyDict_Clear (C function), 170
PyDict_ClearWatcher (C function), 173
PyDict_Contains (C function), 170
PyDict_ContainsString (C function), 170
PyDict_Copy (C function), 170
PyDict_DelItem (C function), 170
PyDict_DelItemString (C function), 170
PyDict_GetItem (C function), 171
PyDict_GetItemRef (C function), 170
PyDict_GetItemString (C function), 171
PyDict_GetItemStringRef (C function), 171
PyDict_GetItemWithError (C function), 171
PyDict_TItems (C function), 172

Indice

383

The Python/C API, Release 3.13.7

PyDict_Keys (C function), 172
PyDict_Merge (C function), 173
PyDict_MergeFromSeq2 (C function), 173
pPyDict_New (C function), 170
PyDict_Next (C function), 172
PyDict_Pop (C function), 171
PyDict_PopString (C function), 172
PyDict_SetDefault (C function), 171
PyDict_SetDefaultRef (C function), 171
PyDict_SetItem (C function), 170
PyDict_SetItemString (C function), 170
PyDict_Size (C function), 172
PyDict_Type (Cvar), 169
PyDict_Unwatch (C function), 174
PyDict_Update (C function), 173
PyDict_values (C function), 172
PyDict_Watch (C function), 173
PyDict_WatchCallback (C type), 174
PyDict_WatchEvent (C type), 174
PyDictObject (C type), 169
PyDictProxy_New (C function), 170
PyDoc_STR (C macro), 6
PyDoc_STRVAR (C macro), 6
PyEllipsis_Type (C var), 197
PyErr_BadArgument (C function), 55
PyErr_BadInternalCall (C function), 56
PyErr_CheckSignals (C function), 61
PyErr_Clear (C function), 10, 12, 53
PyErr_DisplayException (C function), 54
PyErr_ExceptionMatches (C function), 12, 58
pyErr_Fetch (C function), 58
PyErr_Format (C function), 54
PyErr_FormatUnraisable (C function), 54
PyErr_FormatV (C function), 54
PyErr_GetExcInfo (C function), 60
PyErr_GetHandledException (C function), 59
PyErr_GetRaisedException (C function), 58
PyErr_GivenExceptionMatches (C function), 58
PyErr_NewException (C function), 62
PyErr_NewExceptionWithDoc (C function), 62
PyErr_NoMemory (C function), 55
PyErr_NormalizeException (C function), 59
PyErr_Occurred (C function), 10, 57
PyErr_Print (C function), 54
PyErr_PrintEx (C function), 53
PyErr_ResourceWarning (C function), 57
PyErr_Restore (C function), 59
PyErr_SetExcFromWindowsErr (C function), 55
PyErr_SetExcFromWindowsErrWithFilename (C
function), 56

PyErr_SetFromErrnoWithFilenameObject c
function), 55

PyErr_SetFromErrnoWithFilenameObjects (C
function), 55

PyErr_SetFromWindowsErr (C function), 55

PyErr_SetFromWindowsErrWithFilename c

function), 55
PyErr_SetHandledException (C function), 60
PyErr_SetImportError (C function), 56
PyErr_SetImportErrorSubclass (C function), 56
PyErr_SetInterrupt (C function), 61
PyErr_SetInterruptEx (C function), 61
PyErr_SetNone (C function), 55
PyErr_SetObject (C function), 54
PyErr_SetRaisedException (C function), 58
PyErr_SetString (C function), 10, 54
PyErr_SyntaxLocation (C function), 56
PyErr_SyntaxLocationEx (C function), 56
PyErr_SyntaxLocationObject (C function), 56
PyErr_WarnEx (C function), 57
PyErr_WarnExplicit (C function), 57
PyErr_WarnExplicitObject (C function), 57
PyErr_WarnFormat (C function), 57
PyErr_WriteUnraisable (C function), 54
PyEval AcquireThread (C function), 228
PyEval_AcquireThread (), 223
PyEval_EvalCode (C function), 45
PyEval_EvalCodeEx (C function), 46
PyEval_EvalFrame (C function), 46
PyEval EvalFrameEx (C function), 46
PyEval GetBuiltins (C function), 92
PyEval_GetFrame (C function), 93
PyEval_GetFrameBuiltins (C function), 93
PyEval_GetFrameGlobals (C function), 93
PyEval_GetFrameLocals (C function), 93
PyEval GetFuncbDesc (C function), 93
PyEval_GetFuncName (C function), 93
PyEval_GetGlobals (C function), 93
PyEval_GetLocals (C function), 92
PyEval_InitThreads (C function), 223
PyEval_InitThreads (), 215
PyEval_MergeCompilerFlags (C function), 46
PyEval_ReleaseThread (C function), 228
PyEval_ReleaseThread(), 223
PyEval_RestoreThread (C function), 222, 224
PyEval_RestoreThread(), 223
PyEval_ SaveThread (C function), 222,224
PyEval_SaveThread (), 223
PyEval_SetProfile (C function), 233
PyEval_SetProfileAllThreads (C function), 233

PyErr_SetExcFromWindowsErrWithFilenameObjeckyEval_SetTrace (C function), 233

(C function), 56

PyEval_SetTraceAllThreads (C function), 233

PyErr_SetExcFromWindowsErrWithFilenameObjeckgExc_ArithmeticError (Cvar), 65

(C function), 56
PyErr_SetExcInfo (C function), 60
PyErr_SetFromErrno (C function), 55

PyErr_SetFromErrnoWithFilename (C function),
55

PyExc_AssertionError (C var), 65
PyExc_AttributeError (C var), 65
PyExc_BaseException (C var), 65
PyExc_BaseExceptionGroup (C var), 65
PyExc_BlockingIOError (C var), 65

384

Indice

The Python/C API, Release 3.13.7

PyExc_BrokenPipeError (C var), 65
PyExc_BufferError (C var), 65
PyExc_BytesWarning (C var), 70
PyExc_ChildProcessError (C var), 65
PyExc_ConnectionAbortedError (C var), 66
PyExc_ConnectionError (C var), 66
PyExc_ConnectionRefusedError (C var), 66
PyExc_ConnectionResetError (C var), 66
PyExc_DeprecationWarning (C var), 70
PyExc_EncodingWarning (C var), 70
PyExc_EnvironmentError (C var), 69
PyExc_EOFError (C var), 66
PyExc_Exception (C var), 65
PyExc_FileExistsError (C var), 66
PyExc_FileNotFoundError (C var), 66
PyExc_FloatingPointError (C var), 66
PyExc_FutureWarning (C var), 70
PyExc_GeneratorExit (C var), 66
PyExc_ImportError (C var), 66
PyExc_ImportWarning (C var), 70
PyExc_IndentationError (C var), 66
PyExc_IndexError (C var), 66
PyExc_InterruptedError (C var), 66
PyExc_IOError (C var), 69
PyExc_IsADirectoryError (C var), 67
PyExc_KeyboardInterrupt (C var), 67
PyExc_KeyError (Cvar), 67
PyExc_LookupError (C var), 67
PyExc_MemoryError (C var), 67
PyExc_ModuleNotFoundError (C var), 67
PyExc_NameError (C var), 67
PyExc_NotADirectoryError (C var), 67
PyExc_NotImplementedError (C var), 67
PyExc_OSError (Cvar), 67
PyExc_OverflowError (C var), 67
PyExc_PendingDeprecationWarning (C var), 70
PyExc_PermissionError (Cvar), 67
PyExc_ProcessLookupError (C var), 67
PyExc_PythonFinalizationError (C var), 67
PyExc_RecursionError (C var), 68
PyExc_ReferenceError (C var), 68
PyExc_ResourceWarning (C var), 70
PyExc_RuntimeError (C var), 68
PyExc_RuntimeWarning (C var), 70
PyExc_StopAsyncIteration (C var), 68
PyExc_StopIteration (C var), 68
PyExc_SyntaxError (C var), 68
PyExc_SyntaxWarning (C var), 70
PyExc_SystemError (C var), 68
PyExc_SystemExit (C var), 68
PyExc_TabError (C var), 68
PyExc_TimeoutError (C var), 68
PyExc_TypeError (C var), 68
PyExc_UnboundLocalError (C var), 68
PyExc_UnicodeDecodeError (C var), 68
PyExc_UnicodeEncodeError (C var), 69
PyExc_UnicodeError (C var), 69
PyExc_UnicodeTranslateError (C var), 69

PyExc_UnicodeWarning (C var), 70
PyExc_UserWarning (C var), 70
PyExc_ValueError (C var), 69
PyExc_Warning (C var), 70
PyExc_WindowsError (C var), 69
PyExc_ZeroDivisionError (C var), 69
PyException_GetArgs (C function), 62
PyException_GetCause (C function), 62
PyException_GetContext (C function), 62
PyException_GetTraceback (C function), 62
PyException_SetArgs (C function), 63
PyException_SetCause (C function), 62
PyException_SetContext (C function), 62
PyException_SetTraceback (C function), 62
PyExceptionClass_Check (C function), 62
PyExceptionClass_Name (C function), 62
PyFile_FromFd (C function), 185
PyFile_GetLine (C function), 186
PyFile_ SetOpenCodeHook (C function), 186
PyFile WriteObject (C function), 186
PyFile_WriteString (C function), 186
PyFloat_AS_DOUBLE (C function), 141
PyFloat_AsDouble (C function), 141
PyFloat_Check (C function), 141
PyFloat_CheckExact (C function), 141
PyFloat_FrombDouble (C function), 141
PyFloat_FromString (C function), 141
PyFloat_GetInfo (C function), 141
PyFloat_GetMax (C function), 141
PyFloat_GetMin (C function), 141
PyFloat_Pack2 (C function), 142
PyFloat_Pack4 (C function), 142
PyFloat_Pack8 (C function), 142
PyFloat_Type (Cvar), 141
PyFloat_Unpack2 (C function), 142
PyFloat_Unpack4 (C function), 142
PyFloat_Unpack8 (C function), 142
PyFloatObject (Ctype), 141
PyFrame_Check (C function), 202
PyFrame_GetBack (C function), 202
PyFrame_GetBuiltins (C function), 202
PyFrame_GetCode (C function), 202
PyFrame_GetGenerator (C function), 202
PyFrame_GetGlobals (C function), 202
PyFrame_GetLasti (C function), 202
PyFrame_GetLineNumber (C function), 203
PyFrame_GetLocals (C function), 203
PyFrame_GetVar (C function), 202
PyFrame_GetVarString (C function), 202
PyFrame_Type (C var), 201
PyFrameLocalsProxy_Check (C function), 203
PyFrameLocalsProxy_Type (C var), 203
PyFrameObject (C type), 201
PyFrozenSet_Check (C function), 175
PyFrozenSet_CheckExact (C function), 175
PyFrozenSet_New (C function), 175
PyFrozenSet_Type (Cvar), 175
PyFunction_AddWatcher (C function), 177

Indice

385

The Python/C API, Release 3.13.7

PyFunction_Check (C function), 176
PyFunction_ClearWatcher (C function), 177
PyFunction_GET_ANNOTATIONS (C function), 177
PyFunction_ GET_CLOSURE (C function), 177
PyFunction_GET_CODE (C function), 177
PyFunction_GET_DEFAULTS (C function), 177
PyFunction_GET_GLOBALS (C function), 177
PyFunction_GET_KW_DEFAULTS (C function), 177
PyFunction_GET_MODULE (C function), 177
PyFunction_GetAnnotations (C function), 177
PyFunction_GetClosure (C function), 177
PyFunction_GetCode (C function), 176
PyFunction_GetDefaults (C function), 177
PyFunction_GetGlobals (C function), 176
PyFunction_GetKwDefaults (C function), 177
PyFunction_GetModule (C function), 176
PyFunction_New (C function), 176
PyFunction_NewWithQualName (C function), 176
PyFunction_SetAnnotations (C function), 177
PyFunction_SetClosure (C function), 177
PyFunction_SetDefaults (C function), 177
PyFunction_SetVectorcall (C function), 177
PyFunction_Type (Cvar), 176
PyFunction_WatchCallback (C type), 178
PyFunction_WatchEvent (C type), 178
PyFunctionObject (C type), 176
PyGC_Collect (C function), 320
PyGC_Disable (C function), 321
PyGC_Enable (C function), 320
PyGC_IsEnabled (C function), 321
PyGen_Check (C function), 204
PyGen_CheckExact (C function), 204
PyGen_New (C function), 204
PyGen_NewWithQualName (C function), 204
PyGen_Type (C var), 204
PyGenObject (C type), 204
PyGetSetDef (Ctype), 282
PyGetSetDef.closure (C member), 282
PyGetSetDef.doc (C member), 282
PyGetSetDef.get (C member), 282
PyGetSetDef.name (C member), 282
PyGetSetDef.set (C member), 282
PyGILState_Check (C function), 225
PyGILState_Ensure (C function), 224
PyGILState_GetThisThreadState (C function),
225
PyGILState_ Release (C function), 225
PyHASH_BITS (C macro), 91
PyHash_FuncDef (C type), 91
PyHash_FuncDef.hash (C member), 91
PyHash_FuncDef.hash_bits (C member), 92
PyHash_FuncDef.name (C member), 91
PyHash_FuncDef.seed_bits (C member), 92
PyHash_GetFuncbDef (C function), 92
PyHASH_IMAG (C macro), 91
PyHASH_INF (C macro), 91
PyHASH_MODULUS (C macro), 91
PyHASH_MULTIPLIER (C macro), 91

PyImport_AddModule (C function), 77
PyImport_AddModuleObiject (C function), 77
PyImport_AddModuleRef (C function), 77
PyImport_AppendInittab (C function), 79
PyImport_ExecCodeModule (C function), 77
PyImport_ExecCodeModuleEx (C function), 78
PyImport_ExecCodeModuleObject (C function), 78
PyImport_ExecCodeModuleWithPathnames c
function), 78
PyImport_ExtendInittab (C function), 80
PyImport_FrozenModules (Cvar), 79
PyImport_GetImporter (C function), 79
PyImport_GetMagicNumber (C function), 78
PyImport_GetMagicTag (C function), 78
PyImport_GetModule (C function), 78
PyImport_GetModuleDict (C function), 78
PyImport_Import (C function), 77
PyImport_ImportFrozenModule (C function), 79
PyImport_ImportFrozenModuleObject (C func-
tion), 79
PyImport_ImportModule (C function), 76
PyImport_ImportModuleEx (C function), 76
PyImport_ImportModuleLevel (C function), 77
PyImport_ImportModuleLevelObject c
function), 76
PyImport_ImportModuleNoBlock (C function), 76
PyImport_ReloadModule (C function), 77
PyIndex_Check (C function), 114
PyInstanceMethod_Check (C function), 178
PyInstanceMethod_ Function (C function), 179
PyInstanceMethod GET_FUNCTION (C function),
179
PyInstanceMethod_New (C function), 178
PyInstanceMethod_Type (Cvar), 178
PyInterpreterConfig (C type), 229
PyInterpreterConfig DEFAULT_GIL (C macro),
229
PyInterpreterConfig_OWN_GIL (C macro), 229
PyInterpreterConfig_SHARED_GIL (C macro),
229
PyInterpreterConfig.allow_daemon_threads
(C member), 229
PyInterpreterConfig.allow_exec (C member),
229
PyInterpreterConfig.allow_fork (C member),
229
PyInterpreterConfig.allow_threads (C mem-
ber), 229

PyInterpreterConfig.check_multi_interp_extensions

(C member), 229
PyInterpreterConfig.gil (C member), 229
PyInterpreterConfig.use_main_obmalloc (C

member), 229
PyInterpreterState (Ctype), 223
PyInterpreterState_Clear (C function), 226
PyInterpreterState_Delete (C function), 226
PyInterpreterState_Get (C function), 227
PyInterpreterState_GetDict (C function), 227

386

Indice

The Python/C API, Release 3.13.7

PyInterpreterState_GetID (C function), 227
PyInterpreterState_Head (C function), 234
PyInterpreterState_Main (C function), 234
PyInterpreterState_New (C function), 225
PyInterpreterState_Next (C function), 234
PyInterpreterState_ThreadHead (C function),
234
PyIter_Check (C function), 117
pPyIter Next (C function), 117
PyIter_Send (C function), 118
PyList_Append (C function), 169
PyList_AsTuple (C function), 169
PyList_Check (C function), 168
PyList_CheckExact (C function), 168
PyList_Clear (C function), 169
PyList_Extend (C function), 169
PyList_GET_ITEM (C function), 168
PyList_GET_SIZE (C function), 168
PyList_GetItem (C function), 9, 168
PyList_GetItemRef (C function), 168
PyList_GetSlice (C function), 169
PyList_Insert (C function), 169
PyList_New (C function), 168
PyList_Reverse (C function), 169
PyList_SET_ITEM (C function), 168
PyList_SetItem (C function), 8, 168
PyList_SetSlice (C function), 169
PyList_Size (C function), 168
PyList_Sort (C function), 169
PyList_Type (Cvar), 167
PyListObject (Ctype), 167
PyLong_AS_LONG (C function), 135
PyLong_AsDouble (C function), 137
PyLong_AsInt (C function), 135
PyLong_AsLong (C function), 135
PyLong_AsLongAndOverflow (C function), 135
PyLong_AsLongLong (C function), 135
PyLong_AsLongLongAndOverflow (C function), 135
PyLong_AsNativeBytes (C function), 137
PyLong_AsSize_t (C function), 136
PyLong_AsSsize_t (C function), 136
PyLong_AsUnsignedLong (C function), 136
PyLong_AsUnsignedLongLong (C function), 136
PyLong_AsUnsignedLongLongMask (C function),
136
PyLong_AsUnsignedLongMask (C function), 136
PyLong_AsVoidPtr (C function), 137
PyLong_Check (C function), 133
PyLong_CheckExact (C function), 133
PyLong_FromDouble (C function), 134
PyLong_FromLong (C function), 133
PyLong_FromLongLong (C function), 134
PyLong_FromNativeBytes (C function), 134
PyLong_FromSize_t (C function), 134
PyLong_FromSsize_t (C function), 134
PyLong_FromString (C function), 134
PyLong_FromUnicodeObject (C function), 134
PyLong_FromUnsignedLong (C function), 134

PyLong_FromUnsignedLongLong (C function), 134

PyLong_FromUnsignedNativeBytes (C function),
135

PyLong_FromVoidPtr (C function), 134

PyLong_GetInfo (C function), 139

PyLong_Type (Cvar), 133

PyLongObject (C type), 133

PyMapping_Check (C function), 116

PyMapping DelItem (C function), 116

PyMapping_DelItemString (C function), 116

PyMapping_GetItemString (C function), 116

PyMapping_GetOptionalItem (C function), 116

PyMapping_GetOptionalltemString (C function),
116

PyMapping_HasKey (C function), 116

PyMapping_HasKeyString (C function), 117

PyMapping_HasKeyStringWithError (C function),
116

PyMapping_HasKeyWithError (C function), 116

PyMapping_Items (C function), 117

PyMapping_Keys (C function), 117

PyMapping_Length (C function), 116

PyMapping_SetItemString (C function), 116

PyMapping_Size (C function), 116

PyMapping Values (C function), 117

PyMappingMethods (C type), 311

PyMappingMethods.mp_ass_subscript (C mem-
ber), 311

PyMappingMethods.mp_length (C member), 311

PyMappingMethods.mp_subscript (C member),
311

PyMarshal ReadLastObjectFromFile c
function), 80

PyMarshal_ReadLongFromFile (C function), 80

PyMarshal ReadObjectFromFile (C function), 80

PyMarshal ReadObjectFromString (C function),
81

PyMarshal_ReadShortFromFile (C function), 80

PyMarshal_WriteLongToFile (C function), 80

PyMarshal WriteObjectToFile (C function), 80

PyMarshal WriteObjectToString (C function), 80

PyMem_Calloc (C function), 265

pyMem_Del (C function), 266

PYMEM_DOMAIN_MEM (C macro), 268

PYMEM_DOMAIN_OBJ (C macro), 269

PYMEM_DOMAIN_RAW (C macro), 268

pyMem_Free (C function), 266

PyMem_GetAllocator (C function), 269

PyMem_Malloc (C function), 265

PyMem_New (C macro), 266

PyMem_RawCalloc (C function), 265

PyMem_RawFree (C function), 265

PyMem_RawMalloc (C function), 264

PyMem_RawRealloc (C function), 265

PyMem_Realloc (C function), 266

PyMem_Resize (C macro), 266

PyMem_SetAllocator (C function), 269

PyMem_SetupDebugHooks (C function), 269

Indice

387

The Python/C API, Release 3.13.7

PyMemAllocatorDomain (C type), 268
PyMemAllocatorEx (C type), 268
PyMember_GetOne (C function), 279
PyMember_SetOne (C function), 279
PyMemberDef (C type), 279

PyMemberDef .doc (C member), 279
PyMemberDef . flags (C member), 279
PyMemberDef .name (C member), 279
PyMemberDef.offset (C member), 279
PyMemberDef . type (C member), 279
PyMemoryView_Check (C function), 198
PyMemoryView_FromBuffer (C function), 198
PyMemoryView_FromMemory (C function), 198
PyMemoryView FromObject (C function), 197
PyMemoryView_ GET_BASE (C function), 198
PyMemoryView_GET_BUFFER (C function), 198
PyMemoryView_GetContiguous (C function), 198
PyMethod_Check (C function), 179
PyMethod_Function (C function), 179
PyMethod_ GET_FUNCTION (C function), 179
PyMethod_GET_SELF (C function), 179
PyMethod_New (C function), 179
PyMethod_Self (C function), 179
PyMethod_Type (C var), 179

PyMethodDef (C type), 276

PyMethodDef .ml_doc (C member), 277
PyMethodDef.ml_flags (C member), 277
PyMethodDef .ml_meth (C member), 277
PyMethodDef .ml_name (C member), 276
PyMODINIT_FUNC (C macro), 4
PyModule_ Add (C function), 193
PyModule_AddFunctions (C function), 192
PyModule_AddIntConstant (C function), 194
PyModule_AddIntMacro (C macro), 194
PyModule_AddoObject (C function), 193
PyModule_ AddObjectRef (C function), 192
PyModule_AddStringConstant (C function), 194
PyModule_AddStringMacro (C macro), 194
PyModule_AddType (C function), 194
PyModule_Check (C function), 187
PyModule_ CheckExact (C function), 187
PyModule_Create (C function), 189
PyModule_Create2 (C function), 189
PyModule_ExecDef (C function), 192
PyModule_FromDefAndSpec (C function), 191
PyModule_ FromDefAndSpec?2 (C function), 191
PyModule_GetDef (C function), 187
PyModule_GetDict (C function), 187
PyModule_GetFilename (C function), 187
PyModule_GetFilenameObject (C function), 187
PyModule_GetName (C function), 187
PyModule_GetNameObject (C function), 187
PyModule_GetState (C function), 187
PyModule_New (C function), 187
PyModule_NewObject (C function), 187
PyModule_SetDocString (C function), 192
PyModule_Type (C var), 187

PyModuleDef (C type), 188

PyModuleDef_Init (C function), 190
PyModuleDef_slot (C type), 190
PyModuleDef_Slot.slot (C member), 190
PyModuleDef_Slot.value (C member), 190
PyModuleDef.m_base (C member), 188
PyModuleDef.m_clear (C member), 188
PyModuleDef .m_doc (C member), 188
PyModuleDef .m_free (C member), 189
PyModuleDef.m_methods (C member), 188
PyModuleDef.m_name (C member), 188
PyModuleDef.m_size (C member), 188
PyModuleDef.m_slots (C member), 188
PyModuleDef.m_slots.m_reload (C member), 188
PyModuleDef.m_traverse (C member), 188
PyMonitoring EnterScope (C function), 328
PyMonitoring_ExitScope (C function), 329
PyMonitoring_FireBranchEvent (C function), 328
PyMonitoring_FireCallEvent (C function), 327
PyMonitoring FireCRaiseEvent (C function), 328
PyMonitoring FireCReturnEvent (C function),
328
PyMonitoring_FireExceptionHandledEvent (C
function), 328
PyMonitoring_ FireJumpEvent (C function), 327
PyMonitoring FireLineEvent (C function), 327
PyMonitoring_FirePyResumeEvent (C function),

327

PyMonitoring_FirePyReturnEvent (C function),
327

PyMonitoring FirePyStartEvent (C function),
327

PyMonitoring_FirePyThrowEvent (C function),
328

PyMonitoring_FirePyUnwindEvent (C function),
328

PyMonitoring FirePyYieldEvent (C function),
327

PyMonitoring_FireRaiseEvent (C function), 328

PyMonitoring_FireReraiseEvent (C function),
328

PyMonitoring_FireStopIterationEvent (e
function), 328

PyMonitoringState (C type), 327

pyMutex (C type), 237

PyMutex_Lock (C function), 237

PyMutex_Unlock (C function), 237

PyNumber_Absolute (C function), 112

PyNumber_add (C function), 111

PyNumber_And (C function), 112

PyNumber_AsSsize_t (C function), 114

PyNumber_Check (C function), 111

PyNumber_Divmod (C function), 111

PyNumber_Float (C function), 113

PyNumber_FloorDivide (C function), 111

PyNumber_TIndex (C function), 113

PyNumber_InPlaceAdd (C function), 112

PyNumber_ InPlaceand (C function), 113

PyNumber_InPlaceFloorDivide (C function), 112

388

Indice

The Python/C API, Release 3.13.7

PyNumber_InPlaceLshift (C function), 113
PyNumber_InPlaceMatrixMultiply (C function),
112
PyNumber_ InPlaceMultiply (C function), 112
PyNumber_InPlaceOr (C function), 113
PyNumber_InPlacePower (C function), 113
PyNumber_InPlaceRemainder (C function), 113
PyNumber_InPlaceRshift (C function), 113
PyNumber_InPlaceSubtract (C function), 112
PyNumber_InPlaceTrueDivide (C function), 112
PyNumber_InPlaceXor (C function), 113
PyNumber_Invert (C function), 112
PyNumber_Long (C function), 113
PyNumber_ Lshift (C function), 112
PyNumber MatrixMultiply (C function), 111
PyNumber_Multiply (C function), 111
PyNumber_Negative (C function), 111
PyNumber_Or (C function), 112
PyNumber_Positive (C function), 111
PyNumber_Power (C function), 111
PyNumber_Remainder (C function), 111

PyNumberMethods.

nb_inplace_true_divide (C

member), 311

PyNumberMethods.

311

PyNumberMethods.
PyNumberMethods.
PyNumberMethods.

PyNumberMethods
ber), 311

PyNumberMethods.
PyNumberMethods.
PyNumberMethods.
PyNumberMethods.
PyNumberMethods.
.nb_remainder (C member), 310
PyNumberMethods.
PyNumberMethods.
PyNumberMethods.
PyNumberMethods.

PyNumberMethods

311

PyNumberMethods.

nb_inplace_xor (C member),

nb_int (C member), 310
nb_invert (C member), 310
nb_1shift (C member), 310

.nb_matrix_multiply (C mem-

nb_multiply (C member), 310
nb_negative (C member), 310
nb_or (C member), 310
nb_positive (C member), 310
nb_power (C member), 310

nb_reserved (C member), 310
nb_rshift (C member), 310
nb_subtract (C member), 310
nb_true_divide (C member),

nb_xor (C member), 310

PyNumber_ Rshift

(C function), 112

PyNumber_Subtract (C function), 111

PyNumber_ToBase

(C function), 113

PyNumber_ TrueDivide (C function), 111
PyNumber_Xor (C function), 112

PyNumberMethods

PyNumberMethods.
.nb_add (C member), 310
PyNumberMethods.
PyNumberMethods.
PyNumberMethods.
.nb_float (C member), 310
PyNumberMethods.

PyNumberMethods

PyNumberMethods

311
PyNumberMethods

310

PyNumberMethods.

311
PyNumberMethods

(Ctype), 309
nb_absolute (C member), 310

nb_and (C member), 310
nb_bool (C member), 310
nb_divmod (C member), 310

nb_floor_divide (C member),

.nb_index (C member), 311
PyNumberMethods.

nb_inplace_add (C member),

nb_inplace_and (C member),

.nb_inplace_floor_divide

(C member), 311

PyNumberMethods
ber), 311

PyNumberMethods.nb_inplace_matrix_multiply

.nb_inplace_lshift (C mem-

(C member), 311

PyNumberMethods.nb_inplace_multiply c
member), 311
PyNumberMethods.nb_inplace_or (C member),
311
PyNumberMethods.nb_inplace_power (e
member), 311
PyNumberMethods.nb_inplace_remainder c

member), 311

PyNumberMethods.nb_inplace_rshift (C mem-
ber), 311
PyNumberMethods.nb_inplace_subtract (o

member), 310

PyObject (C type), 274

PyObject_ASCIT (C function), 103
PyObject_AsFileDescriptor (C function), 186
PyObject_Bytes (C function), 104
PyObject_cCall (C function), 108
PyObject_CallFunction (C function), 109
PyObject_CallFunctionObjArgs (C function), 109
PyObject_CallMethod (C function), 109
PyObject_CallMethodNoArgs (C function), 110
PyObject_CallMethodObjargs (C function), 110
PyObject_CallMethodOneArg (C function), 110
PyObject_CallNoArgs (C function), 109
PyObject_CallObject (C function), 109
PyObject_Calloc (C function), 267
PyObject_CallOnearg (C function), 109
PyObject_CheckBuffer (C function), 124
PyObject_ClearManagedDict (C function), 106
PyObject_ClearWeakRefs (C function), 199
PyObject_CopyData (C function), 124
pPyObject_Del (C function), 273
PyObject_DelAttr (C function), 102
PyObject_DelAttrString (C function), 102
PyObject_DelItem (C function), 105
PyObject_DelItemString (C function), 105
PyObject_Dir (C function), 105
PyObject_Format (C function), 103
PyObject_Free (C function), 267
PyObject_GC_Del (C function), 319
PyObject_GC_IsFinalized (C function), 319
PyObject_GC_IsTracked (C function), 319
PyObject_GC_New (C macro), 318
PyObject_GC_NewVar (C macro), 318
PyObject_GC_Resize (C macro), 319
PyObject_GC_Track (C function), 319
PyObject_GC_UnTrack (C function), 319
PyObject_GenericGetAttr (C function), 102
PyObject_GenericGetDict (C function), 102

Indice

389

The Python/C API, Release 3.13.7

PyObject_GenericHash (C function), 92
PyObject_GenericSetAttr (C function), 102
PyObject_GenericSetDict (C function), 103
PyObject_GetAlter (C function), 105
PyObject_GetArenaAllocator (C function), 271
PyObject_GetAttr (C function), 101
PyObject_GetAttrString (C function), 101
PyObject_GetBuffer (C function), 124
PyObject_GetItem (C function), 105
PyObject_GetItemData (C function), 106
PyObject_GetIter (C function), 105
PyObject_GetOptionalattr (C function), 101
PyObject_GetOptionalAttrString (C function),
102
PyObject_GetTypeData (C function), 105
PyObject_HasAttr (C function), 101
PyObject_HasAttrString (C function), 101
PyObject_HasAttrStringWithError (C function),
101
PyObject_HasAttrWithError (C function), 101
PyObject_Hash (C function), 104
PyObject_HashNotImplemented (C function), 104
PyObject_HEAD (C macro), 274
PyObject_HEAD_INIT (C macro), 275
PyObject_Init (C function), 273
PyObject_InitVar (C function), 273
PyObiject_IS_GC (C function), 319
PyObject_IsInstance (C function), 104
PyObject_IsSubclass (C function), 104
PyObject_IsTrue (C function), 104
PyObject_Length (C function), 105
PyObject_LengthHint (C function), 105
PyObject_Malloc (C function), 267
PyObject_New (C macro), 273
PyObiject_NewVar (C macro), 273
PyObject_Not (C function), 104
PyObject_Print (C function), 100
PyObject_Realloc (C function), 267
PyObject_Repr (C function), 103
PyObject_RichCompare (C function), 103
PyObject_RichCompareBool (C function), 103
PyObject_SelfIter (C function), 105
PyObject_SetArenaAllocator (C function), 271
PyObject_SetAttr (C function), 102
PyObject_SetAttrString (C function), 102
PyObject_SetItem (C function), 105
PyObject_Size (C function), 105
PyObject_sStr (C function), 103
PyObject_Type (C function), 104
PyObject_TypeCheck (C function), 104
PyObject_VAR_HEAD (C macro), 274
PyObject_Vectorcall (C function), 110
PyObject_VectorcallDict (C function), 110
PyObject_VectorcallMethod (C function), 110
PyObject_VisitManagedDict (C function), 106
PyObjectArenaAllocator (Ctype), 271
PyObject.ob_refcnt (C member), 288
PyObject .ob_type (C member), 288

PyOS_AfterFork (C function), 72
PyOS_AfterFork_Child (C function), 72
PyOS_AfterFork_Parent (C function), 71
PyOS_BeforeFork (C function), 71
PyOS_CheckStack (C function), 72
PyOS_double_to_string (C function), 90
PyOS_Fspath (C function), 71
PyOS_getsig (C function), 72
PyOS_InputHook (C var), 44
PyOS_ReadlineFunctionPointer (C var), 44
PyOS_setsig (C function), 72
PyOS_sighandler_t (C type), 72
PyOS_snprintf (C function), 89
PyOS_stricmp (C function), 91
PyOS_string_to_double (C function), 90
PyO0S_strnicmp (C function), 91
PyOS_strtol (C function), 90
PyOS_strtoul (C function), 90
PyOS_vsnprintf (C function), 89
PyPreConfig (C type), 244
PyPreConfig_InitIsolatedConfig (C function),
244
PyPreConfig_InitPythonConfig (C function), 244
PyPreConfig.allocator (C member), 244
PyPreConfig.coerce_c_locale (C member), 244
PyPreConfig.coerce_c_locale_warn c
member), 245
PyPreConfig.configure_locale (C member), 244
PyPreConfig.dev_mode (C member), 245
PyPreConfig.isolated (C member), 245
PyPreConfig.legacy_windows_fs_encoding (C
member), 245
PyPreConfig.parse_argv (C member), 245
PyPreConfig.use_environment (C member), 245
PyPreConfig.ut£8_mode (C member), 245
PyProperty_Type (C var), 195
PyRefTracer (C type), 234
PyRefTracer_CREATE (C var), 234
PyRefTracer_DESTROY (C var), 234
PyRefTracer_GetTracer (C function), 234
PyRefTracer_SetTracer (C function), 234
PyRun_AnyFile (C function), 43
PyRun_AnyFileEx (C function), 43
PyRun_AnyFileExFlags (C function), 43
PyRun_AnyFileFlags (C function), 43
PyRun_File (C function), 45
PyRun_FileEx (C function), 45
PyRun_FileExFlags (C function), 45
PyRun_FileFlags (C function), 45
PyRun_InteractiveLoop (C function), 44
PyRun_InteractiveLoopFlags (C function), 44
PyRun_InteractiveOne (C function), 44
PyRun_InteractiveOneFlags (C function), 44
PyRun_SimpleFile (C function), 44
PyRun_SimpleFileEx (C function), 44
PyRun_SimpleFileExFlags (C function), 44
PyRun_SimpleString (C function), 43
PyRun_SimpleStringFlags (C function), 43

390

Indice

The Python/C API, Release 3.13.7

PyRun_String (C function), 45
PyRun_StringFlags (C function), 45
PySendResult (Ctype), 118
PySeqlIter_Check (C function), 195
PySeglter_New (C function), 195
PySeqlter_Type (Cvar), 195
PySequence_Check (C function), 114
PySequence_Concat (C function), 114
PySequence_Contains (C function), 115
PySequence_Count (C function), 115
PySequence_DelItem (C function), 115
PySequence_DelSlice (C function), 115
PySequence_Fast (C function), 115
PySequence_Fast_GET_ITEM (C function), 115
PySequence_Fast_GET_SIZE (C function), 115
PySequence_Fast_ITEMS (C function), 115
PySequence_GetItem (C function), 9, 114
PySequence_GetSlice (C function), 114
PySequence_Index (C function), 115
PySequence_InPlaceConcat (C function), 114
PySequence_InPlaceRepeat (C function), 114
PySequence_ITEM (C function), 115
PySequence_Length (C function), 114
PySequence_List (C function), 115
PySequence_Repeat (C function), 114
PySequence_SetItem (C function), 114
PySequence_SetSlice (C function), 115
PySequence_Size (C function), 114
PySequence_Tuple (C function), 115
PySequenceMethods (C type), 311
PySequenceMethods.sq_ass_item (C member),
312
PySequenceMethods.sq_concat (C member), 311

PySequenceMethods.sq_contains (C member),

312
PySequenceMethods.sg _inplace_concat
member), 312
PySequenceMethods.sg _inplace_repeat
member), 312
PySequenceMethods.sq_item (C member), 312
PySequenceMethods.sq_length (C member), 311
PySequenceMethods.sq_repeat (C member), 312
pPySet_Add (C function), 175
PySet_Check (C function), 175
PySet_CheckExact (C function), 175
pPySet_Clear (C function), 176
PySet_Contains (C function), 175
PySet_Discard (C function), 176
PySet_GET_SIZE (C function), 175
pySet_New (C function), 175
pySet_Pop (C function), 176
pPySet_Size (C function), 175
PySet_Type (Cvar), 175
PySetObject (Ctype), 174
PySignal_SetWakeupFd (C function), 61
PySlice_AdjustIndices (C function), 197
PySlice_Check (C function), 196
PySlice_GetIndices (C function), 196

(e

(«©

PySlice_GetIndicesEx (C function), 196
PySlice_New (C function), 196
PySlice_Type (Cvar), 196
PySlice_ Unpack (C function), 197
PyState_AddModule (C function), 195
PyState_FindModule (C function), 194
PyState_RemoveModule (C function), 195
pyStatus (C type), 242
PyStatus_Error (C function), 243
PyStatus_Exception (C function), 243
PyStatus_Exit (C function), 243
PyStatus_IsError (C function), 243
PyStatus_IsExit (C function), 243
PyStatus_NoMemory (C function), 243
PyStatus_0k (C function), 243
PyStatus.err_msg (C member), 243
PyStatus.exitcode (C member), 243
PyStatus. func (C member), 243
PyStructSequence_Desc (C type), 166
PyStructSequence_Desc.doc (C member), 166
PyStructSequence_Desc.fields (C member), 166
PyStructSequence_Desc.n_in_sequence c
member), 167

PyStructSequence_Desc.name (C member), 166
PyStructSequence_Field (C type), 167
PyStructSequence_Field.doc (C member), 167
PyStructSequence_Field.name (C member), 167
PyStructSequence_GET_ITEM (C function), 167
PyStructSequence_GetItem (C function), 167
PyStructSequence_InitType (C function), 166
PyStructSequence_InitType2 (C function), 166
PyStructSequence_New (C function), 167
PyStructSequence_NewType (C function), 166
PyStructSequence_SET_ITEM (C function), 167
PyStructSequence_SetItem (C function), 167
PyStructSequence_UnnamedField (C var), 167
PySys_AddAuditHook (C function), 75
PySys_Audit (C function), 74
PySys_AuditTuple (C function), 75
PySys_FormatStderr (C function), 74
PySys_FormatStdout (C function), 74
PySys_GetObject (C function), 74
PySys_GetXOptions (C function), 74
PySys_ResetWarnOptions (C function), 74
PySys_SetArgv (C function), 220
PySys_SetArgvEx (C function), 220
PySys_SetObject (C function), 74
PySys_WriteStderr (C function), 74
PySys_WriteStdout (C function), 74
Python 3000, 344
Python Enhancement Proposals

PEP 1, 343

PEP 7,3,6

PEP 238, 336

PEP 278, 347

PEP 302, 340

PEP 343,334

PEP 353, 10

Indice

391

The Python/C API, Release 3.13.7

PEP 362,332, 343
PEP 383, 155

PEP 387, 15,16
PEP 393, 147
PEP 411,344
PEP 420, 342, 343
PEP 432,261

PEP 442,308
PEP 443,338
PEP 451, 190
PEP 456,92

PEP 483,338
PEP 484, 331, 337, 338, 346, 347
PEP 489, 191,229
PEP 492,332,334
PEP 498, 336
PEP 5109, 343

PEP 523, 203,227,228
PEP 525, 332
PEP 526, 331, 347
PEP 528,214,252
PEP 529, 155,214
PEP 538, 259
PEP 539, 235

PEP 540, 259
PEP 552,249
PEP 554, 231

PEP 578,75

PEP 585, 338
PEP 587,241

PEP 590, 107
PEP 623, 147

PYTHONINSPECT, 213, 251
PYTHONINTMAXSTRDIGITS, 252
PYTHONIOENCODING, 256
PYTHONLEGACYWINDOWSFSENCODING, 214, 245
PYTHONLEGACYWINDOWSSTDIO, 214, 252
PYTHONMALLOC, 264, 268, 270, 271
PYTHONMALLOCSTATS, 252, 264
PYTHONNODEBUGRANGES, 249
PYTHONNOUSERSITE, 214, 256
PYTHONOPTIMIZE, 214, 253
PYTHONPATH, 12, 213, 253
PYTHONPLATLIBDIR, 253
PYTHONPROFILEIMPORTTIME, 251
PYTHONPYCACHEPREFIX, 254
PYTHONSAFEPATH, 248
PYTHONTRACEMALLOC, 256
PYTHONUNBUFFERED, 215, 249
PYTHONUTEFS8, 245, 259
PYTHONVERBOSE, 215, 257
PYTHONWARNINGS, 257
PyThread_create_key (C function), 236
PyThread_delete_key (C function), 236
PyThread_delete_key_value (C function), 237
PyThread_get_key_value (C function), 237
PyThread ReInitTLS (C function), 237
PyThread_set_key_value (C function), 236
PyThread_tss_alloc (C function), 235
PyThread_tss_create (C function), 236
PyThread_tss_delete (C function), 236
PyThread_tss_free (C function), 235
PyThread_tss_get (C function), 236
PyThread_tss_is_created (C function), 236

PEP 0626#out-of-process—-debuggers—and-pPyfhtrens, tss_set (C function), 236

181

PEP 634, 298

PEP 667,93, 203

PEP 0683, 49, 50, 338

PEP 703, 337,338

PEP 3116, 347

PEP 3119, 104

PEP 3121, 188

PEP 3147,78

PEP 3151, 69

PEP 3155, 344
PYTHON_CPU_COUNT, 252
PYTHON_GIL, 338
PYTHON_PERF_JIT_SUPPORT, 256
PYTHON_PRESITE, 255
PYTHONCOERCECLOCALE, 259
PYTHONDEBUG, 213, 254
PYTHONDEVMODE, 250
PYTHONDONTWRITEBYTECODE, 213, 257
PYTHONDUMPREFS, 250
PYTHONEXECUTABLE, 254
PYTHONFAULTHANDLER, 250
PYTHONHASHSEED, 213, 251
PYTHONHOME, 12, 213, 221, 251
Pythonic, 344

PyThreadstate (C type), 221, 223
PyThreadState_Clear (C function), 226
PyThreadState_Delete (C function), 226
PyThreadState_DeleteCurrent (C function), 226
PyThreadState_EnterTracing (C function), 226
PyThreadstate_Get (C function), 224
PyThreadState_GetDict (C function), 228
PyThreadState_GetFrame (C function), 226
PyThreadState_GetID (C function), 226
PyThreadState_GetInterpreter (C function), 226
PyThreadState_GetUnchecked (C function), 224
PyThreadState_LeaveTracing (C function), 226
PyThreadState_New (C function), 226
PyThreadState_Next (C function), 235
PyThreadState_SetAsyncExc (C function), 228
PyThreadState_Swap (C function), 224
PyThreadState.interp (C member), 223
PyTime_AsSecondsDouble (C function), 96
PyTime_Check (C function), 207
PyTime_CheckExact (C function), 207
PyTime_FromTime (C function), 208
PyTime_FromTimeAndFold (C function), 208
PyTime_MAX (C var), 95

PyTime_MIN (C var), 95

PyTime_Monotonic (C function), 96

392

Indice

The Python/C API, Release 3.13.7

PyTime_MonotonicRaw (C function), 96
PyTime_PerfCounter (C function), 96
PyTime_PerfCounterRaw (C function), 96
PyTime_t (C type), 95

PyTime_Time (C function), 96
PyTime_TimeRaw (C function), 96
PyTimeZone_FromOffset (C function), 208

PyTimeZone_FromOffsetAndName (C function), 208

PyTrace_C_CALL (C var), 233
PyTrace_C_EXCEPTION (C var), 233
PyTrace_C_RETURN (C var), 233
PyTrace_CALL (C var), 232
PyTrace_EXCEPTION (C var), 233
PyTrace_LINE (C var), 233
PyTrace_OPCODE (C var), 233
PyTrace_RETURN (C var), 233
PyTraceMalloc_Track (C function), 272
PyTraceMalloc_Untrack (C function), 272
PyTuple_Check (C function), 165
PyTuple_CheckExact (C function), 165
PyTuple_GET_ITEM (C function), 165
PyTuple_GET_SIZE (C function), 165
PyTuple_GetItem (C function), 165
PyTuple_GetSlice (C function), 165
PyTuple New (C function), 165
PyTuple_Pack (C function), 165
PyTuple_SET_ITEM (C function), 166
PyTuple_SetItem (C function), 8, 165
PyTuple_Size (C function), 165
PyTuple_Type (C var), 165
PyTupleObiject (C type), 165
PyType_AddWatcher (C function), 128
PyType_Check (C function), 127
PyType_CheckExact (C function), 127
PyType_ClearCache (C function), 127
PyType_ClearWatcher (C function), 128
PyType_FromMetaclass (C function), 130
PyType_FromModuleAndSpec (C function), 131
PyType_FromSpec (C function), 131
PyType_FromSpecWithBases (C function), 131
PyType_GenericAlloc (C function), 129
PyType_GenericNew (C function), 129
PyType_GetDict (C function), 128
PyType_GetFlags (C function), 127

PyType_GetFullyQualifiedName (C function), 129

PyType_GetModule (C function), 130
PyType_GetModuleByDef (C function), 130
PyType_GetModuleName (C function), 129
PyType_GetModuleState (C function), 130
PyType_GetName (C function), 129
PyType_GetQualName (C function), 129
PyType_GetSlot (C function), 129
PyType_GetTypeDataSize (C function), 106
PyType_HasFeature (C function), 128
PyType_IS_GC (C function), 128
PyType_IsSubtype (C function), 129
PyType_ Modified (C function), 128
PyType_Ready (C function), 129

PyType_Slot (Ctype), 132

PyType_Slot.
PyType_Slot.

pfunc (C member), 133
slot (C member), 132

PyType_Spec (Ctype), 131

PyType_Spec
PyType_Spec.
PyType_Spec.
PyType_Spec
PyType_Spec.

.basicsize (C member), 132

flags (C member), 132
itemsize (C member), 132

.name (C member), 132

slots (C member), 132

PyType_Type (C var), 127
PyType_Watch (C function), 128
PyType_WatchCallback (C type), 128

PyTypeObject

PyTypeObject.

PyTypeObject

PyTypeObject.
PyTypeObject.
PyTypeObject.
PyTypeObject.
PyTypeObject.
PyTypeObject.

PyTypeObject

PyTypeObject.
PyTypeObject.
PyTypeObject.
PyTypeObject.
PyTypeObject.
PyTypeObject.

PyTypeObject

PyTypeObject.
PyTypeObject.
PyTypeObject.
PyTypeObject.
PyTypeObject.
PyTypeObject.

PyTypeObject

PyTypeObject.
PyTypeObject.
PyTypeObject.

PyTypeObject

PyTypeObject.
PyTypeObject.

PyTypeObject

PyTypeObject.
PyTypeObject.
PyTypeObject.

PyTypeObject

PyTypeObject.
PyTypeObject.
PyTypeObject.
PyTypeObject.
PyTypeObject.
PyTypeObject.

PyTypeObject

PyTypeObject.
PyTypeObject.
PyTypeObject.

(Ctype), 127

tp_alloc (C member), 305
.tp_as_async (C member), 292
tp_as_buffer (C member), 294
tp_as_mapping (C member), 293
tp_as_number (C member), 292
tp_as_sequence (C member), 292
tp_base (C member), 303
tp_bases (C member), 306
.tp_basicsize (C member), 289
tp_cache (C member), 307
tp_call (C member), 293
tp_clear (C member), 300
tp_dealloc (C member), 290
tp_del (C member), 307
tp_descr_get (C member), 304
.tp_descr_set (C member), 304
tp_dict (C member), 303
tp_dictoffset (C member), 304
tp_doc (C member), 298
tp_finalize (C member), 307
tp_flags (C member), 294
tp_free (C member), 306
.tp_getattr (C member), 291
tp_getattro (C member), 294
tp_getset (C member), 303
tp_hash (C member), 293
.tp_init (C member), 305
tp_is_gc (C member), 306
tp_itemsize (C member), 289
.tp_iter (C member), 302
tp_iternext (C member), 302
tp_members (C member), 303
tp_methods (C member), 302
.tp_mro (C member), 307
tp_name (C member), 289
tp_new (C member), 305
tp_repr (C member), 292
tp_richcompare (C member), 301
tp_setattr (C member), 292
tp_setattro (C member), 294
.tp_str (C member), 293
tp_subclasses (C member), 307
tp_traverse (C member), 299
tp_vectorcall (C member), 308

Indice

393

The Python/C API, Release 3.13.7

PyTypeObject.tp_vectorcall_offset (C mem-
ber), 291

tp_version_tag (C member), 307

tp_watched (C member), 308

tp_weaklist (C member), 307

tp_weaklistoffset (C member),

PyTypeObject.
PyTypeObject.
PyTypeObject.
PyTypeObject.
302
PyTZInfo_Check (C function), 207
PyTZInfo_CheckExact (C function), 207
PyUnicode_1BYTE_DATA (C function), 148
PyUnicode_1BYTE_KIND (C macro), 148
PyUnicode_2BYTE_DATA (C function), 148
PyUnicode_2BYTE_KIND (C macro), 148
PyUnicode_4BYTE_DATA (C function), 148
PyUnicode_4BYTE_KIND (C macro), 148
PyUnicode_AsASCIIString (C function), 161
PyUnicode_AsCharmapString (C function), 161
PyUnicode_AsEncodedString (C function), 157
PyUnicode_AsLatinlString (C function), 161
PyUnicode_AsMBCSString (C function), 162
PyUnicode_AsRawUnicodeEscapeString (C func-
tion), 160
PyUnicode_AsUCS4 (C function), 154
PyUnicode_AsUCS4Copy (C function), 154
PyUnicode_AsUnicodeEscapeString (C function),
160
PyUnicode_AsUTF8 (C function), 158
PyUnicode_AsUTF8AndSize (C function), 158
PyUnicode_AsUTF8String (C function), 158
PyUnicode_ AsUTF16String (C function), 160
PyUnicode_ AsUTF32String (C function), 159
PyUnicode_AsWideChar (C function), 157
PyUnicode_AsWideCharString (C function), 157
PyUnicode_BuildEncodingMap (C function), 153
PyUnicode_Check (C function), 148
PyUnicode_CheckExact (C function), 148
PyUnicode_Compare (C function), 163
PyUnicode_CompareWithASCIIString
function), 164
PyUnicode_Concat (C function), 162
PyUnicode_Contains (C function), 164
PyUnicode_CopyCharacters (C function), 154
PyUnicode_Count (C function), 163
PyUnicode_DATA (C function), 148
PyUnicode_Decode (C function), 157
PyUnicode_DecodeASCII (C function), 161
PyUnicode_DecodeCharmap (C function), 161
PyUnicode_DecodeCodePageStateful
function), 162
PyUnicode_DecodeFSDefault (C function), 156
PyUnicode_DecodeFSDefaultAndSize
function), 156
PyUnicode_DecodeLatinl (C function), 160
PyUnicode_DecodeLocale (C function), 155
PyUnicode_DecodeLocaleAndSize (C function),
155
PyUnicode_DecodeMBCS (C function), 162
PyUnicode_DecodeMBCSStateful (C function), 162

(«©

(c

(e

PyUnicode_DecodeRawUnicodeEscape c
function), 160
PyUnicode_DecodeUnicodeEscape (C function),
160
PyUnicode_DecodeUTF7 (C function), 160
PyUnicode_DecodeUTF7Stateful (C function), 160
PyUnicode_DecodeUTF8 (C function), 158
PyUnicode_DecodeUTF8Stateful (C function), 158
PyUnicode_DecodeUTF16 (C function), 159
PyUnicode_DecodeUTF16Stateful (C function),
159
PyUnicode_DecodeUTF32 (C function), 159
PyUnicode_DecodeUTF32Stateful (C function),
159
PyUnicode_EncodeCodePage (C function), 162
PyUnicode_EncodeFSDefault (C function), 156
PyUnicode_EncodeLocale (C function), 155
PyUnicode_EqualToUTF8 (C function), 164
PyUnicode_EqualToUTF8AndSize (C function), 164
PyUnicode_Fill (C function), 154
PyUnicode_Find (C function), 163
PyUnicode_FindChar (C function), 163
PyUnicode_Format (C function), 164
PyUnicode_FromEncodedObject (C function), 153
PyUnicode_FromFormat (C function), 151
PyUnicode_FromFormatV (C function), 153
PyUnicode_FromKindAndData (C function), 151
PyUnicode_FromObject (C function), 153
PyUnicode_FromOrdinal (C function), 153
PyUnicode_FromString (C function), 151
PyUnicode_FromStringAndSize (C function), 151
PyUnicode_FromWideChar (C function), 157
PyUnicode_FSConverter (C function), 155
PyUnicode_FSDecoder (C function), 156
PyUnicode_GET_LENGTH (C function), 148
PyUnicode_GetDefaultEncoding (C function), 153
PyUnicode_GetLength (C function), 154
PyUnicode_InternFromString (C function), 164
PyUnicode_InternInPlace (C function), 164
PyUnicode_IsIdentifier (C function), 149
PyUnicode_Join (C function), 163
PyUnicode_KIND (C function), 148
PyUnicode_MAX_CHAR_VALUE (C function), 149
PyUnicode_New (C function), 150
PyUnicode_Partition (C function), 163
PyUnicode_READ (C function), 149
PyUnicode_ READ_CHAR (C function), 149
PyUnicode_ReadChar (C function), 154
PyUnicode_READY (C function), 148
PyUnicode_Replace (C function), 163
PyUnicode_RichCompare (C function), 164
PyUnicode_RPartition (C function), 163
PyUnicode_RSplit (C function), 162
PyUnicode_Split (C function), 162
PyUnicode_Splitlines (C function), 162
PyUnicode_Substring (C function), 154
PyUnicode_Tailmatch (C function), 163
PyUnicode_Translate (C function), 161

394

Indice

The Python/C API, Release 3.13.7

PyUnicode_Type (C var), 148

PyUnicode_WRITE (C function), 149

PyUnicode_WriteChar (C function), 154

PyUnicodeDecodeError_Create (C function), 63

PyUnicodeDecodeError_GetEncoding
function), 63

PyUnicodeDecodeError_GetEnd (C function), 63

PyUnicodeDecodeError_GetObject (C function),
63

PyUnicodeDecodeError_GetReason (C function),
64

PyUnicodeDecodeError_GetStart (C function), 63

PyUnicodeDecodeError_SetEnd (C function), 64

PyUnicodeDecodeError_SetReason (C function),
64

PyUnicodeDecodeError_SetStart (C function), 63

(C

(c

PyUnicodeEncodeError_GetEncoding
function), 63
PyUnicodeEncodeError_GetEnd (C function), 63
PyUnicodeEncodeError_GetObject (C function),
63
PyUnicodeEncodeError_GetReason (C function),
64
PyUnicodeEncodeError_GetStart (C function), 63
PyUnicodeEncodeError_SetEnd (C function), 64
PyUnicodeEncodeError_SetReason (C function),
64
PyUnicodeEncodeError_SetStart (C function), 63
PyUnicodeIter_Type (C var), 148
PyUnicodeObject (C type), 147
PyUnicodeTranslateError_GetEnd (C function),
63
PyUnicodeTranslateError_GetObject (C func-
tion), 63
PyUnicodeTranslateError_GetReason (C func-
tion), 64
PyUnicodeTranslateError_GetStart
function), 63
PyUnicodeTranslateError_SetEnd (C function),
64
PyUnicodeTranslateError_SetReason (C func-
tion), 64
PyUnicodeTranslateError_SetStart
function), 63
PyUnstable, 15
PyUnstable AtExit (C function), 217
PyUnstable_ Code_GetExtra (C function), 185
PyUnstable_Code_GetFirstFree (C function), 180
PyUnstable_Code_New (C function), 180
PyUnstable_Code_NewWithPosOnlyArgs (C func-
tion), 181
PyUnstable_Code_SetExtra (C function), 185
PyUnstable_Eval_RequestCodeExtralndex
function), 184
PyUnstable_Exc_PrepReraiseStar (C function),
63
PyUnstable GC_VisitObjects (C function), 321

(e

(«©

(e

PyUnstable_InterpreterFrame_GetCode c
function), 203

PyUnstable_InterpreterFrame_GetLasti (o
function), 203

PyUnstable_InterpreterFrame_GetLine (e

function), 204
PyUnstable_InterpreterState_GetMainModule
(C function), 227
PyUnstable_ Long_CompactValue (C function), 140
PyUnstable_Long_IsCompact (C function), 139
PyUnstable_Module_SetGIL (C function), 194
PyUnstable_Object_ClearWeakRefsNoCallbacks
(C function), 199
PyUnstable_Object_GC_NewWithExtraData
Sfunction), 319
PyUnstable_PerfMapState_Fini (C function), 97
PyUnstable_PerfMapState_Init (C function), 96
c

(C

PyUnstable_Type_AssignVersionTag
function), 130
PyUnstable WritePerfMapEntry (C function), 97
PyVarObject (C type), 274
PyVarObject_HEAD_INIT (C macro), 275
PyVarObject.ob_size (C member), 289
PyVectorcall_ Call (C function), 108
PyVectorcall Function (C function), 108
PyVectorcall_NARGS (C function), 108
PyWeakref_Check (C function), 198
PyWeakref_CheckProxy (C function), 198
PyWeakref_CheckRef (C function), 198
PyWeakref GET_OBJECT (C function), 199
PyWeakref GetObject (C function), 199
PyWeakref_GetRef (C function), 199
PyWeakref_NewProxy (C function), 198
PyWeakref_NewRef (C function), 198
PyWideStringList (Ctype), 242
PyWideStringList_Append (C function), 242
PyWideStringList_Insert (C function), 242
PyWideStringList.items (C member), 242
PyWideStringList.length (C member), 242
PyWrapper_New (C function), 196

Q

qualified name, 344

R

READ_RESTRICTED (C macro), 280
READONLY (C macro), 280
realloc (C function), 263
reference count, 344
regular package, 345
releasebufferproc (C type), 315
REPL, 345
repr

built-in function, 103, 292
reprfunc (C type), 314
RESTRICTED (C macro), 280
richecmpfunc (C type), 315

Indice

395

The Python/C API, Release 3.13.7

S

search

path, module, 12, 215, 219
sendfunc (C type), 315
sequence, 345

object, 144
set

object, 174
set comprehension, 345
set_all(),9
setattrfunc (Ctype), 314
setattrofunc (C type), 315

setswitchinterval (in module sys), 221

setter (Ctype), 282
SIGINT (C macro), 61
signal

module, 61
single dispatch, 345
S1zE_MAX (C macro), 136
slice, 345
soft deprecated, 345
special

method, 345
special method, 345
ssizeargfunc (C type), 315
ssizeobjargproc (Ctype), 315
standard library, 345
statement, 345
static type checker, 345
staticmethod

built-in function, 278
stderr (in module sys), 229, 230
stdin (in module sys), 229, 230
stdlib, 346
stdout (in module sys), 229, 230
strerror (C function), 55
string

pPyObject_sStr (C function), 103
strong reference, 346
structmember.h, 282
sum_list (), 9
sum_sequence (), 10, 11
sys

module, 12, 215, 229, 230
SystemError (built-in exception), 187

T

T_BOOL (C macro), 282
T_BYTE (C macro), 282
T_CHAR (C macro), 282
T_DOUBLE (C macro), 282
T_FLOAT (C macro), 282
T_INT (C macro), 282
T_LONG (C macro), 282
T_LONGLONG (C macro), 282
T_NONE (C macro), 282
T_OBJECT (C macro), 282
T_OBJECT_EX (C macro), 282

T_PYSSIZET (C macro), 282
T_SHORT (C macro), 282
T_STRING (C macro), 282
T_STRING_INPLACE (C macro), 282
T_UBYTE (C macro), 282
T_UINT (C macro), 282
T_ULONG (C macro), 282
T_ULONGULONG (C macro), 282
T_USHORT (C macro), 282
ternaryfunc (Ctype), 315
text encoding, 346

text file, 346

token, 346

traverseproc (C type), 320
triple—-quoted string, 346

tuple
built—-in function, 115, 169
object, 165

type, 346

built-in function, 104
object, 7,127

type alias, 346

type hint, 347

U

ULONG_MAX (C macro), 136
unaryfunc (C type), 315
universal newlines, 347
USE_STACKCHECK (C macro), 72

Vv

variabile d'ambiente,
__PYVENV_LAUNCHER__, 248, 254
variabile d'ambiente, PATH, 12
variabile d'ambiente, PYTHON_CPU_COUNT,
252
variabile d'ambiente, PYTHON_GIL, 338
variabile d'ambiente,
PYTHON_PERF_JIT_SUPPORT, 256
variabile d'ambiente, PYTHON_PRESITE, 255
variabile d'ambiente,
PYTHONCOERCECLOCALE, 259
variabile d'ambiente, PYTHONDEBUG, 213, 254
variabile d'ambiente, PYTHONDEVMODE, 250
variabile d'ambiente,
PYTHONDONTWRITEBYTECODE, 213, 257
variabile d'ambiente, PYTHONDUMPREFS, 250
variabile d'ambiente, PYTHONEXECUTABLE,

254

variabile d'ambiente, PYTHONFAULTHANDLER,
250

variabile d'ambiente, PYTHONHASHSEED, 213,
251

variabile d'ambiente, PYTHONHOME, 12, 213,
221, 251

variabile d'ambiente, PYTHONINSPECT, 213,
251

396

Indice

The Python/C API, Release 3.13.7

variabile d'ambiente,
PYTHONINTMAXSTRDIGITS, 252

variabile d'ambiente, PYTHONIOENCODING,
256

variabile d'ambiente,
PYTHONLEGACYWINDOWSFSENCODING,
214, 245

variabile d'ambiente,
PYTHONLEGACYWINDOWSSTDIO, 214,
252

variabile d'ambiente, PYTHONMALLOC, 264,
268, 270, 271

variabile d'ambiente, PYTHONMALLOCSTATS,
252,264

variabile d'ambiente,
PYTHONNODEBUGRANGES, 249

variabile d'ambiente, PYTHONNOUSERSITE,

214, 256

variabile d'ambiente, PYTHONOPTIMIZE, 214,
253

variabile d'ambiente, PYTHONPATH, 12, 213,
253

variabile d'ambiente, PYTHONPLATLIBDIR,
253

variabile d'ambiente,
PYTHONPROFILEIMPORTTIME, 251
variabile d'ambiente,
PYTHONPYCACHEPREFIX, 254
variabile d'ambiente, PYTHONSAFEPATH, 248
variabile d'ambiente, PYTHONTRACEMALLOC,

256
variabile d'ambiente, PYTHONUNBUFFERED,
215, 249

variabile d'ambiente, PYTHONUTFS, 245,259

variabile d'ambiente, PYTHONVERBOSE, 215,
257

variabile d'ambiente, PYTHONWARNINGS, 257

variable annotation, 347

vectorcallfunc (C type), 107

version (in module sys), 219, 220

virtual environment, 347

virtual machine, 347

visitproc (Ctype), 320

W

walrus operator, 347
WRITE_RESTRICTED (C macro), 280

Z

Zen of Python, 347

Indice

397

	Introduction
	Coding standards
	Include Files
	Useful macros
	Objects, Types and Reference Counts
	Reference Counts
	Reference Count Details

	Types

	Exceptions
	Embedding Python
	Debugging Builds
	Recommended third party tools

	C API Stability
	Unstable C API
	Stable Application Binary Interface
	Limited C API
	Stable ABI
	Limited API Scope and Performance
	Limited API Caveats

	Platform Considerations
	Contents of Limited API

	The Very High Level Layer
	Reference Counting
	Exception Handling
	Printing and clearing
	Raising exceptions
	Issuing warnings
	Querying the error indicator
	Signal Handling
	Exception Classes
	Exception Objects
	Unicode Exception Objects
	Recursion Control
	Exception and warning types
	Exception types
	OSError aliases
	Warning types

	Utilities
	Operating System Utilities
	System Functions
	Process Control
	Importing Modules
	Data marshalling support
	Parsing arguments and building values
	Parsing arguments
	Strings and buffers
	Numbers
	Other objects
	API Functions

	Building values

	String conversion and formatting
	PyHash API
	Reflection
	Codec registry and support functions
	Codec lookup API
	Registry API for Unicode encoding error handlers

	PyTime C API
	Types
	Clock Functions
	Raw Clock Functions
	Conversion functions

	Support for Perf Maps

	Abstract Objects Layer
	Object Protocol
	Call Protocol
	The tp_call Protocol
	The Vectorcall Protocol
	Recursion Control
	Vectorcall Support API

	Object Calling API
	Call Support API

	Number Protocol
	Sequence Protocol
	Mapping Protocol
	Iterator Protocol
	Buffer Protocol
	Buffer structure
	Buffer request types
	request-independent fields
	readonly, format
	shape, strides, suboffsets
	contiguity requests
	compound requests

	Complex arrays
	NumPy-style: shape and strides
	PIL-style: shape, strides and suboffsets

	Buffer-related functions

	Concrete Objects Layer
	Fundamental Objects
	Type Objects
	Creating Heap-Allocated Types

	The None Object

	Numeric Objects
	Integer Objects
	Boolean Objects
	Floating-Point Objects
	Pack and Unpack functions
	Pack functions
	Unpack functions

	Complex Number Objects
	Complex Numbers as C Structures
	Complex Numbers as Python Objects

	Sequence Objects
	Bytes Objects
	Byte Array Objects
	Type check macros
	Direct API functions
	Macros

	Unicode Objects and Codecs
	Unicode Objects
	Unicode Type
	Unicode Character Properties
	Creating and accessing Unicode strings
	Locale Encoding
	File System Encoding
	wchar_t Support

	Built-in Codecs
	Generic Codecs
	UTF-8 Codecs
	UTF-32 Codecs
	UTF-16 Codecs
	UTF-7 Codecs
	Unicode-Escape Codecs
	Raw-Unicode-Escape Codecs
	Latin-1 Codecs
	ASCII Codecs
	Character Map Codecs
	MBCS codecs for Windows

	Methods and Slot Functions

	Tuple Objects
	Struct Sequence Objects
	List Objects

	Container Objects
	Dictionary Objects
	Set Objects

	Function Objects
	Function Objects
	Instance Method Objects
	Method Objects
	Cell Objects
	Code Objects
	Code Object Flags
	Extra information

	Other Objects
	File Objects
	Module Objects
	Initializing C modules
	Single-phase initialization
	Multi-phase initialization
	Low-level module creation functions
	Support functions

	Module lookup

	Iterator Objects
	Descriptor Objects
	Slice Objects
	Ellipsis Object

	MemoryView objects
	Weak Reference Objects
	Capsules
	Frame Objects
	Frame Locals Proxies
	Internal Frames

	Generator Objects
	Coroutine Objects
	Context Variables Objects
	DateTime Objects
	Objects for Type Hinting

	Initialization, Finalization, and Threads
	Before Python Initialization
	Global configuration variables
	Initializing and finalizing the interpreter
	Process-wide parameters
	Thread State and the Global Interpreter Lock
	Releasing the GIL from extension code
	Non-Python created threads
	Cautions about fork()
	Cautions regarding runtime finalization
	High-level API
	Low-level API

	Sub-interpreter support
	A Per-Interpreter GIL
	Bugs and caveats

	Asynchronous Notifications
	Profiling and Tracing
	Reference tracing
	Advanced Debugger Support
	Thread Local Storage Support
	Thread Specific Storage (TSS) API
	Dynamic Allocation
	Methods

	Thread Local Storage (TLS) API

	Synchronization Primitives
	Python Critical Section API

	Python Initialization Configuration
	Example
	PyWideStringList
	PyStatus
	PyPreConfig
	Preinitialize Python with PyPreConfig
	PyConfig
	Initialization with PyConfig
	Isolated Configuration
	Python Configuration
	Python Path Configuration
	Py_GetArgcArgv()
	Multi-Phase Initialization Private Provisional API

	Memory Management
	Overview
	Allocator Domains
	Raw Memory Interface
	Memory Interface
	Object allocators
	Default Memory Allocators
	Customize Memory Allocators
	Debug hooks on the Python memory allocators
	The pymalloc allocator
	Customize pymalloc Arena Allocator

	The mimalloc allocator
	tracemalloc C API
	Examples

	Object Implementation Support
	Allocating Objects on the Heap
	Common Object Structures
	Base object types and macros
	Implementing functions and methods
	Accessing attributes of extension types
	Member flags
	Member types
	Defining Getters and Setters

	Type Object Structures
	Quick Reference
	«tp slots»
	sub-slots
	slot typedefs

	PyTypeObject Definition
	PyObject Slots
	PyVarObject Slots
	PyTypeObject Slots
	Static Types
	Heap Types
	Number Object Structures
	Mapping Object Structures
	Sequence Object Structures
	Buffer Object Structures
	Async Object Structures
	Slot Type typedefs
	Examples

	Supporting Cyclic Garbage Collection
	Controlling the Garbage Collector State
	Querying Garbage Collector State

	API and ABI Versioning
	Monitoring C API
	Generating Execution Events
	Managing the Monitoring State

	Glossary
	About this documentation
	Contributors to the Python documentation

	Storia e licenza
	Storia del software
	Termini e condizioni di accesso o di utilizzo di Python
	PYTHON SOFTWARE FOUNDATION LICENSE VERSION 2
	CONTRATTO DI LICENZA DI BEOPEN.COM PER PYTHON 2.0
	CNRI CONTRATTO DI LICENZA PER PYTHON 1.6.1
	CWI CONTRATTO DI LICENZA PER PYTHON DA 0.9.0 A 1.2
	ZERO-CLAUSE BSD LICENSE FOR CODE IN THE PYTHON DOCUMENTATION

	Licenze e riconoscimenti per il software incorporato
	Mersenne Twister
	Socket
	Servizi di socket asincrone
	Gestione dei cookie
	Tracciabilità dell’esecuzione
	Funzioni UUencode e UUdecode
	Chiamate di procedura remota XML
	test_epoll
	Select kqueue
	SipHash24
	strtod e dtoa
	7.4 OpenSSL
	expat
	libffi
	zlib
	cfuhash
	libmpdec
	W3C C14N test suite
	mimalloc
	asyncio
	Global Unbounded Sequences (GUS)

	Copyright
	Bibliografia
	Indice

