nntplib
— NNTP protocol client¶
Source code: Lib/nntplib.py
This module defines the class NNTP
which implements the client side of
the Network News Transfer Protocol. It can be used to implement a news reader
or poster, or automated news processors. It is compatible with RFC 3977
as well as the older RFC 977 and RFC 2980.
Availability: not Emscripten, not WASI.
This module does not work or is not available on WebAssembly platforms
wasm32-emscripten
and wasm32-wasi
. See
WebAssembly platforms for more information.
Here are two small examples of how it can be used. To list some statistics about a newsgroup and print the subjects of the last 10 articles:
>>> s = nntplib.NNTP('news.gmane.io')
>>> resp, count, first, last, name = s.group('gmane.comp.python.committers')
>>> print('Group', name, 'has', count, 'articles, range', first, 'to', last)
Group gmane.comp.python.committers has 1096 articles, range 1 to 1096
>>> resp, overviews = s.over((last - 9, last))
>>> for id, over in overviews:
... print(id, nntplib.decode_header(over['subject']))
...
1087 Re: Commit privileges for Łukasz Langa
1088 Re: 3.2 alpha 2 freeze
1089 Re: 3.2 alpha 2 freeze
1090 Re: Commit privileges for Łukasz Langa
1091 Re: Commit privileges for Łukasz Langa
1092 Updated ssh key
1093 Re: Updated ssh key
1094 Re: Updated ssh key
1095 Hello fellow committers!
1096 Re: Hello fellow committers!
>>> s.quit()
'205 Bye!'
To post an article from a binary file (this assumes that the article has valid headers, and that you have right to post on the particular newsgroup):
>>> s = nntplib.NNTP('news.gmane.io')
>>> f = open('article.txt', 'rb')
>>> s.post(f)
'240 Article posted successfully.'
>>> s.quit()
'205 Bye!'
The module itself defines the following classes:
- class nntplib.NNTP(host, port=119, user=None, password=None, readermode=None, usenetrc=False[, timeout])¶
Return a new
NNTP
object, representing a connection to the NNTP server running on host host, listening at port port. An optional timeout can be specified for the socket connection. If the optional user and password are provided, or if suitable credentials are present in/.netrc
and the optional flag usenetrc is true, theAUTHINFO USER
andAUTHINFO PASS
commands are used to identify and authenticate the user to the server. If the optional flag readermode is true, then amode reader
command is sent before authentication is performed. Reader mode is sometimes necessary if you are connecting to an NNTP server on the local machine and intend to call reader-specific commands, such asgroup
. If you get unexpectedNNTPPermanentError
s, you might need to set readermode. TheNNTP
class supports thewith
statement to unconditionally consumeOSError
exceptions and to close the NNTP connection when done, e.g.:>>> from nntplib import NNTP >>> with NNTP('news.gmane.io') as n: ... n.group('gmane.comp.python.committers') ... ('211 1755 1 1755 gmane.comp.python.committers', 1755, 1, 1755, 'gmane.comp.python.committers') >>>
Raises an auditing event
nntplib.connect
with argumentsself
,host
,port
.All commands will raise an auditing event
nntplib.putline
with argumentsself
andline
, whereline
is the bytes about to be sent to the remote host.Cambiato nella versione 3.2: usenetrc is now
False
by default.Cambiato nella versione 3.3: Support for the
with
statement was added.Cambiato nella versione 3.9: If the timeout parameter is set to be zero, it will raise a
ValueError
to prevent the creation of a non-blocking socket.
- class nntplib.NNTP_SSL(host, port=563, user=None, password=None, ssl_context=None, readermode=None, usenetrc=False[, timeout])¶
Return a new
NNTP_SSL
object, representing an encrypted connection to the NNTP server running on host host, listening at port port.NNTP_SSL
objects have the same methods asNNTP
objects. If port is omitted, port 563 (NNTPS) is used. ssl_context is also optional, and is aSSLContext
object. Please read Security considerations for best practices. All other parameters behave the same as forNNTP
.Note that SSL-on-563 is discouraged per RFC 4642, in favor of STARTTLS as described below. However, some servers only support the former.
Raises an auditing event
nntplib.connect
with argumentsself
,host
,port
.All commands will raise an auditing event
nntplib.putline
with argumentsself
andline
, whereline
is the bytes about to be sent to the remote host.Added in version 3.2.
Cambiato nella versione 3.4: The class now supports hostname check with
ssl.SSLContext.check_hostname
and Server Name Indication (seessl.HAS_SNI
).Cambiato nella versione 3.9: If the timeout parameter is set to be zero, it will raise a
ValueError
to prevent the creation of a non-blocking socket.
- exception nntplib.NNTPError¶
Derived from the standard exception
Exception
, this is the base class for all exceptions raised by thenntplib
module. Instances of this class have the following attribute:
- exception nntplib.NNTPReplyError¶
Exception raised when an unexpected reply is received from the server.
- exception nntplib.NNTPTemporaryError¶
Exception raised when a response code in the range 400–499 is received.
- exception nntplib.NNTPPermanentError¶
Exception raised when a response code in the range 500–599 is received.
- exception nntplib.NNTPProtocolError¶
Exception raised when a reply is received from the server that does not begin with a digit in the range 1–5.
- exception nntplib.NNTPDataError¶
Exception raised when there is some error in the response data.
NNTP Objects¶
When connected, NNTP
and NNTP_SSL
objects support the
following methods and attributes.
Attributes¶
Methods¶
The response that is returned as the first item in the return tuple of almost all methods is the server’s response: a string beginning with a three-digit code. If the server’s response indicates an error, the method raises one of the above exceptions.
Many of the following methods take an optional keyword-only argument file. When the file argument is supplied, it must be either a file object opened for binary writing, or the name of an on-disk file to be written to. The method will then write any data returned by the server (except for the response line and the terminating dot) to the file; any list of lines, tuples or objects that the method normally returns will be empty.
Cambiato nella versione 3.2: Many of the following methods have been reworked and fixed, which makes them incompatible with their 3.1 counterparts.
- NNTP.quit()¶
Send a
QUIT
command and close the connection. Once this method has been called, no other methods of the NNTP object should be called.
- NNTP.getwelcome()¶
Return the welcome message sent by the server in reply to the initial connection. (This message sometimes contains disclaimers or help information that may be relevant to the user.)
- NNTP.getcapabilities()¶
Return the RFC 3977 capabilities advertised by the server, as a
dict
instance mapping capability names to (possibly empty) lists of values. On legacy servers which don’t understand theCAPABILITIES
command, an empty dictionary is returned instead.>>> s = NNTP('news.gmane.io') >>> 'POST' in s.getcapabilities() True
Added in version 3.2.
- NNTP.login(user=None, password=None, usenetrc=True)¶
Send
AUTHINFO
commands with the user name and password. If user and password areNone
and usenetrc is true, credentials from~/.netrc
will be used if possible.Unless intentionally delayed, login is normally performed during the
NNTP
object initialization and separately calling this function is unnecessary. To force authentication to be delayed, you must not set user or password when creating the object, and must set usenetrc to False.Added in version 3.2.
- NNTP.starttls(context=None)¶
Send a
STARTTLS
command. This will enable encryption on the NNTP connection. The context argument is optional and should be assl.SSLContext
object. Please read Security considerations for best practices.Note that this may not be done after authentication information has been transmitted, and authentication occurs by default if possible during a
NNTP
object initialization. SeeNNTP.login()
for information on suppressing this behavior.Added in version 3.2.
Cambiato nella versione 3.4: The method now supports hostname check with
ssl.SSLContext.check_hostname
and Server Name Indication (seessl.HAS_SNI
).
- NNTP.newgroups(date, *, file=None)¶
Send a
NEWGROUPS
command. The date argument should be adatetime.date
ordatetime.datetime
object. Return a pair(response, groups)
where groups is a list representing the groups that are new since the given date. If file is supplied, though, then groups will be empty.>>> from datetime import date, timedelta >>> resp, groups = s.newgroups(date.today() - timedelta(days=3)) >>> len(groups) 85 >>> groups[0] GroupInfo(group='gmane.network.tor.devel', last='4', first='1', flag='m')
- NNTP.newnews(group, date, *, file=None)¶
Send a
NEWNEWS
command. Here, group is a group name or'*'
, and date has the same meaning as fornewgroups()
. Return a pair(response, articles)
where articles is a list of message ids.This command is frequently disabled by NNTP server administrators.
- NNTP.list(group_pattern=None, *, file=None)¶
Send a
LIST
orLIST ACTIVE
command. Return a pair(response, list)
where list is a list of tuples representing all the groups available from this NNTP server, optionally matching the pattern string group_pattern. Each tuple has the form(group, last, first, flag)
, where group is a group name, last and first are the last and first article numbers, and flag usually takes one of these values:y
: Local postings and articles from peers are allowed.m
: The group is moderated and all postings must be approved.n
: No local postings are allowed, only articles from peers.j
: Articles from peers are filed in the junk group instead.x
: No local postings, and articles from peers are ignored.=foo.bar
: Articles are filed in thefoo.bar
group instead.
If flag has another value, then the status of the newsgroup should be considered unknown.
This command can return very large results, especially if group_pattern is not specified. It is best to cache the results offline unless you really need to refresh them.
Cambiato nella versione 3.2: group_pattern was added.
- NNTP.descriptions(grouppattern)¶
Send a
LIST NEWSGROUPS
command, where grouppattern is a wildmat string as specified in RFC 3977 (it’s essentially the same as DOS or UNIX shell wildcard strings). Return a pair(response, descriptions)
, where descriptions is a dictionary mapping group names to textual descriptions.>>> resp, descs = s.descriptions('gmane.comp.python.*') >>> len(descs) 295 >>> descs.popitem() ('gmane.comp.python.bio.general', 'BioPython discussion list (Moderated)')
- NNTP.description(group)¶
Get a description for a single group group. If more than one group matches (if “group” is a real wildmat string), return the first match. If no group matches, return an empty string.
This elides the response code from the server. If the response code is needed, use
descriptions()
.
- NNTP.group(name)¶
Send a
GROUP
command, where name is the group name. The group is selected as the current group, if it exists. Return a tuple(response, count, first, last, name)
where count is the (estimated) number of articles in the group, first is the first article number in the group, last is the last article number in the group, and name is the group name.
- NNTP.over(message_spec, *, file=None)¶
Send an
OVER
command, or anXOVER
command on legacy servers. message_spec can be either a string representing a message id, or a(first, last)
tuple of numbers indicating a range of articles in the current group, or a(first, None)
tuple indicating a range of articles starting from first to the last article in the current group, orNone
to select the current article in the current group.Return a pair
(response, overviews)
. overviews is a list of(article_number, overview)
tuples, one for each article selected by message_spec. Each overview is a dictionary with the same number of items, but this number depends on the server. These items are either message headers (the key is then the lower-cased header name) or metadata items (the key is then the metadata name prepended with":"
). The following items are guaranteed to be present by the NNTP specification:the
subject
,from
,date
,message-id
andreferences
headersthe
:bytes
metadata: the number of bytes in the entire raw article (including headers and body)the
:lines
metadata: the number of lines in the article body
The value of each item is either a string, or
None
if not present.It is advisable to use the
decode_header()
function on header values when they may contain non-ASCII characters:>>> _, _, first, last, _ = s.group('gmane.comp.python.devel') >>> resp, overviews = s.over((last, last)) >>> art_num, over = overviews[0] >>> art_num 117216 >>> list(over.keys()) ['xref', 'from', ':lines', ':bytes', 'references', 'date', 'message-id', 'subject'] >>> over['from'] '=?UTF-8?B?Ik1hcnRpbiB2LiBMw7Z3aXMi?= <martin@v.loewis.de>' >>> nntplib.decode_header(over['from']) '"Martin v. Löwis" <martin@v.loewis.de>'
Added in version 3.2.
- NNTP.help(*, file=None)¶
Send a
HELP
command. Return a pair(response, list)
where list is a list of help strings.
- NNTP.stat(message_spec=None)¶
Send a
STAT
command, where message_spec is either a message id (enclosed in'<'
and'>'
) or an article number in the current group. If message_spec is omitted orNone
, the current article in the current group is considered. Return a triple(response, number, id)
where number is the article number and id is the message id.>>> _, _, first, last, _ = s.group('gmane.comp.python.devel') >>> resp, number, message_id = s.stat(first) >>> number, message_id (9099, '<20030112190404.GE29873@epoch.metaslash.com>')
- NNTP.article(message_spec=None, *, file=None)¶
Send an
ARTICLE
command, where message_spec has the same meaning as forstat()
. Return a tuple(response, info)
where info is anamedtuple
with three attributes number, message_id and lines (in that order). number is the article number in the group (or 0 if the information is not available), message_id the message id as a string, and lines a list of lines (without terminating newlines) comprising the raw message including headers and body.>>> resp, info = s.article('<20030112190404.GE29873@epoch.metaslash.com>') >>> info.number 0 >>> info.message_id '<20030112190404.GE29873@epoch.metaslash.com>' >>> len(info.lines) 65 >>> info.lines[0] b'Path: main.gmane.org!not-for-mail' >>> info.lines[1] b'From: Neal Norwitz <neal@metaslash.com>' >>> info.lines[-3:] [b'There is a patch for 2.3 as well as 2.2.', b'', b'Neal']
- NNTP.head(message_spec=None, *, file=None)¶
Same as
article()
, but sends aHEAD
command. The lines returned (or written to file) will only contain the message headers, not the body.
- NNTP.body(message_spec=None, *, file=None)¶
Same as
article()
, but sends aBODY
command. The lines returned (or written to file) will only contain the message body, not the headers.
- NNTP.post(data)¶
Post an article using the
POST
command. The data argument is either a file object opened for binary reading, or any iterable of bytes objects (representing raw lines of the article to be posted). It should represent a well-formed news article, including the required headers. Thepost()
method automatically escapes lines beginning with.
and appends the termination line.If the method succeeds, the server’s response is returned. If the server refuses posting, a
NNTPReplyError
is raised.
- NNTP.ihave(message_id, data)¶
Send an
IHAVE
command. message_id is the id of the message to send to the server (enclosed in'<'
and'>'
). The data parameter and the return value are the same as forpost()
.
- NNTP.date()¶
Return a pair
(response, date)
. date is adatetime
object containing the current date and time of the server.
- NNTP.slave()¶
Send a
SLAVE
command. Return the server’s response.
- NNTP.set_debuglevel(level)¶
Set the instance’s debugging level. This controls the amount of debugging output printed. The default,
0
, produces no debugging output. A value of1
produces a moderate amount of debugging output, generally a single line per request or response. A value of2
or higher produces the maximum amount of debugging output, logging each line sent and received on the connection (including message text).
The following are optional NNTP extensions defined in RFC 2980. Some of them have been superseded by newer commands in RFC 3977.
- NNTP.xhdr(hdr, str, *, file=None)¶
Send an
XHDR
command. The hdr argument is a header keyword, e.g.'subject'
. The str argument should have the form'first-last'
where first and last are the first and last article numbers to search. Return a pair(response, list)
, where list is a list of pairs(id, text)
, where id is an article number (as a string) and text is the text of the requested header for that article. If the file parameter is supplied, then the output of theXHDR
command is stored in a file. If file is a string, then the method will open a file with that name, write to it then close it. If file is a file object, then it will start callingwrite()
on it to store the lines of the command output. If file is supplied, then the returned list is an empty list.
Utility functions¶
The module also defines the following utility function:
- nntplib.decode_header(header_str)¶
Decode a header value, un-escaping any escaped non-ASCII characters. header_str must be a
str
object. The unescaped value is returned. Using this function is recommended to display some headers in a human readable form:>>> decode_header("Some subject") 'Some subject' >>> decode_header("=?ISO-8859-15?Q?D=E9buter_en_Python?=") 'Débuter en Python' >>> decode_header("Re: =?UTF-8?B?cHJvYmzDqG1lIGRlIG1hdHJpY2U=?=") 'Re: problème de matrice'