
Python Setup and Usage
Release 3.11.13

Guido van Rossum and the Python development team

luglio 07, 2025

Python Software Foundation
Email: docs@python.org

Indice

1 Command line and environment 3
1.1 Command line . 3

1.1.1 Interface options . 3
1.1.2 Generic options . 5
1.1.3 Miscellaneous options . 6
1.1.4 Options you shouldn’t use . 10

1.2 Environment variables . 10
1.2.1 Debug-mode variables . 15

2 Using Python on Unix platforms 17
2.1 Getting and installing the latest version of Python . 17

2.1.1 On Linux . 17
2.1.2 On FreeBSD and OpenBSD . 17
2.1.3 On OpenSolaris . 18

2.2 Building Python . 18
2.3 Python-related paths and files . 18
2.4 Miscellaneous . 19
2.5 Custom OpenSSL . 19

3 Configure Python 21
3.1 Configure Options . 21

3.1.1 General Options . 21
3.1.2 WebAssembly Options . 23
3.1.3 Install Options . 23
3.1.4 Performance options . 24
3.1.5 Python Debug Build . 25
3.1.6 Debug options . 25
3.1.7 Linker options . 26
3.1.8 Libraries options . 26
3.1.9 Security Options . 27
3.1.10 macOS Options . 28
3.1.11 Cross Compiling Options . 29

3.2 Python Build System . 29
3.2.1 Main files of the build system . 29
3.2.2 Main build steps . 29
3.2.3 Main Makefile targets . 30
3.2.4 C extensions . 30

3.3 Compiler and linker flags . 31
3.3.1 Preprocessor flags . 31
3.3.2 Compiler flags . 31
3.3.3 Linker flags . 33

i

4 Using Python on Windows 35
4.1 The full installer . 35

4.1.1 Installation steps . 35
4.1.2 Removing the MAX_PATH Limitation . 37
4.1.3 Installing Without UI . 37
4.1.4 Installing Without Downloading . 39
4.1.5 Modifying an install . 39

4.2 The Microsoft Store package . 40
4.2.1 Known issues . 40

4.3 The nuget.org packages . 41
4.4 The embeddable package . 42

4.4.1 Python Application . 42
4.4.2 Embedding Python . 42

4.5 Alternative bundles . 43
4.6 Configuring Python . 43

4.6.1 Excursus: Setting environment variables . 43
4.6.2 Finding the Python executable . 44

4.7 UTF-8 mode . 44
4.8 Python Launcher for Windows . 45

4.8.1 Getting started . 45
4.8.2 Shebang Lines . 47
4.8.3 Arguments in shebang lines . 48
4.8.4 Customization . 48
4.8.5 Diagnostics . 49
4.8.6 Dry Run . 49
4.8.7 Install on demand . 49
4.8.8 Return codes . 49

4.9 Finding modules . 50
4.10 Additional modules . 51

4.10.1 PyWin32 . 51
4.10.2 cx_Freeze . 52

4.11 Compiling Python on Windows . 52
4.12 Other Platforms . 52

5 Using Python on a Mac 53
5.1 Getting and Installing Python . 53

5.1.1 How to run a Python script . 54
5.1.2 Running scripts with a GUI . 54
5.1.3 Configuration . 54

5.2 The IDE . 54
5.3 Installing Additional Python Packages . 54
5.4 GUI Programming . 55
5.5 Distributing Python Applications . 55
5.6 Other Resources . 55

6 Editors and IDEs 57

A Glossary 59

B Riguardo questa documentazione 75
B.1 Volontari che hanno contribuito alla documentazione di Python 75

C Storia e licenza 77
C.1 Storia del software . 77
C.2 Termini e condizioni di accesso o di utilizzo di Python . 78

C.2.1 PSF ACCORDO DI LICENZA PER PYTHON 3.11.13 78
C.2.2 CONTRATTO DI LICENZA DI BEOPEN.COM PER PYTHON 2.0 79
C.2.3 CNRI CONTRATTO DI LICENZA PER PYTHON 1.6.1 80
C.2.4 CWI CONTRATTO DI LICENZA PER PYTHON DA 0.9.0 A 1.2 81

ii

C.2.5 ZERO-CLAUSE BSD LICENSE FOR CODE IN THE PYTHON 3.11.13 DOCUMEN-
TATION . 81

C.3 Licenze e riconoscimenti per il software incorporato . 82
C.3.1 Mersenne Twister . 82
C.3.2 Socket . 83
C.3.3 Servizi di socket asincrone . 83
C.3.4 Gestione dei cookie . 84
C.3.5 Tracciabilità dell’esecuzione . 84
C.3.6 Funzioni UUencode e UUdecode . 85
C.3.7 Chiamate di procedura remota XML . 85
C.3.8 test_epoll . 86
C.3.9 Select kqueue . 86
C.3.10 SipHash24 . 87
C.3.11 strtod e dtoa . 87
C.3.12 7.4 OpenSSL . 88
C.3.13 expat . 91
C.3.14 libffi . 91
C.3.15 zlib . 92
C.3.16 cfuhash . 92
C.3.17 libmpdec . 93
C.3.18 W3C C14N test suite . 93
C.3.19 Audioop . 94
C.3.20 asyncio . 94

D Copyright 97

Indice 99

iii

iv

Python Setup and Usage, Release 3.11.13

This part of the documentation is devoted to general information on the setup of the Python environment on different
platforms, the invocation of the interpreter and things that make working with Python easier.

Indice 1

Python Setup and Usage, Release 3.11.13

2 Indice

CAPITOLO1

Command line and environment

The CPython interpreter scans the command line and the environment for various settings.

Dettaglio dell’implementazione di CPython: Other implementations” command line schemes may differ. See
implementations for further resources.

1.1 Command line

When invoking Python, you may specify any of these options:

python [-bBdEhiIOqsSuvVWx?] [-c command | -m module-name | script | -] [args]

The most common use case is, of course, a simple invocation of a script:

python myscript.py

1.1.1 Interface options

The interpreter interface resembles that of the UNIX shell, but provides some additional methods of invocation:

• When called with standard input connected to a tty device, it prompts for commands and executes them until
an EOF (an end-of-file character, you can produce that with Ctrl-D on UNIX or Ctrl-Z, Enter on
Windows) is read.

• When called with a file name argument or with a file as standard input, it reads and executes a script from that
file.

• When called with a directory name argument, it reads and executes an appropriately named script from that
directory.

• When called with -c command, it executes the Python statement(s) given as command. Here command may
contain multiple statements separated by newlines. Leading whitespace is significant in Python statements!

• When called with -m module-name, the given module is located on the Python module path and executed
as a script.

3

Python Setup and Usage, Release 3.11.13

In non-interactive mode, the entire input is parsed before it is executed.

An interface option terminates the list of options consumed by the interpreter, all consecutive arguments will end
up in sys.argv – note that the first element, subscript zero (sys.argv[0]), is a string reflecting the program’s
source.

-c <command>

Execute the Python code in command. command can be one or more statements separated by newlines, with
significant leading whitespace as in normal module code.

If this option is given, the first element of sys.argv will be "-c" and the current directory will be added
to the start of sys.path (allowing modules in that directory to be imported as top level modules).

Raises an auditing event cpython.run_command with argument command.

-m <module-name>

Search sys.path for the named module and execute its contents as the __main__ module.

Since the argument is a module name, you must not give a file extension (.py). The module name should be
a valid absolute Python module name, but the implementation may not always enforce this (e.g. it may allow
you to use a name that includes a hyphen).

Package names (including namespace packages) are also permitted. When a package name is supplied instead
of a normal module, the interpreter will execute <pkg>.__main__ as the main module. This behaviour is
deliberately similar to the handling of directories and zipfiles that are passed to the interpreter as the script
argument.

Nota: This option cannot be used with built-in modules and extension modules written in C, since they do not
have Python module files. However, it can still be used for precompiled modules, even if the original source
file is not available.

If this option is given, the first element of sys.argv will be the full path to the module file (while the module
file is being located, the first element will be set to "-m"). As with the -c option, the current directory will
be added to the start of sys.path.

-I option can be used to run the script in isolated mode where sys.path contains neither the current
directory nor the user’s site-packages directory. All PYTHON* environment variables are ignored, too.

Many standard library modules contain code that is invoked on their execution as a script. An example is the
timeit module:

python -m timeit -s 'setup here' 'benchmarked code here'
python -m timeit -h # for details

Raises an auditing event cpython.run_module with argument module-name.

Vedi anche:

runpy.run_module()
Equivalent functionality directly available to Python code

PEP 338 – Executing modules as scripts

Cambiato nella versione 3.1: Supply the package name to run a __main__ submodule.

Cambiato nella versione 3.4: namespace packages are also supported

-

Read commands from standard input (sys.stdin). If standard input is a terminal, -i is implied.

If this option is given, the first element of sys.argv will be "-" and the current directory will be added to
the start of sys.path.

Raises an auditing event cpython.run_stdin with no arguments.

4 Capitolo 1. Command line and environment

https://peps.python.org/pep-0338/

Python Setup and Usage, Release 3.11.13

<script>

Execute the Python code contained in script, which must be a filesystem path (absolute or relative) referring
to either a Python file, a directory containing a __main__.py file, or a zipfile containing a __main__.py
file.

If this option is given, the first element of sys.argv will be the script name as given on the command line.

If the script name refers directly to a Python file, the directory containing that file is added to the start of
sys.path, and the file is executed as the __main__ module.

If the script name refers to a directory or zipfile, the script name is added to the start of sys.path and the
__main__.py file in that location is executed as the __main__ module.

-I option can be used to run the script in isolated mode where sys.path contains neither the script’s
directory nor the user’s site-packages directory. All PYTHON* environment variables are ignored, too.

Raises an auditing event cpython.run_file with argument filename.

Vedi anche:

runpy.run_path()
Equivalent functionality directly available to Python code

If no interface option is given, -i is implied, sys.argv[0] is an empty string ("") and the current directory will
be added to the start of sys.path. Also, tab-completion and history editing is automatically enabled, if available
on your platform (see rlcompleter-config).

Vedi anche:

tut-invoking

Cambiato nella versione 3.4: Automatic enabling of tab-completion and history editing.

1.1.2 Generic options

-?

-h

--help

Print a short description of all command line options and corresponding environment variables and exit.

--help-env

Print a short description of Python-specific environment variables and exit.

Nuovo nella versione 3.11.

--help-xoptions

Print a description of implementation-specific -X options and exit.

Nuovo nella versione 3.11.

--help-all

Print complete usage information and exit.

Nuovo nella versione 3.11.

-V

--version

Print the Python version number and exit. Example output could be:

Python 3.8.0b2+

When given twice, print more information about the build, like:

1.1. Command line 5

Python Setup and Usage, Release 3.11.13

Python 3.8.0b2+ (3.8:0c076caaa8, Apr 20 2019, 21:55:00)
[GCC 6.2.0 20161005]

Nuovo nella versione 3.6: The -VV option.

1.1.3 Miscellaneous options

-b

Issue a warning when converting bytes or bytearray to str without specifying encoding or comparing
bytes or bytearray with str or bytes with int. Issue an error when the option is given twice (-bb).

Cambiato nella versione 3.5: Affects also comparisons of bytes with int.

-B

If given, Python won’t try to write .pyc files on the import of source modules. See also
PYTHONDONTWRITEBYTECODE.

--check-hash-based-pycs default|always|never

Control the validation behavior of hash-based .pyc files. See pyc-invalidation. When set to default, chec-
ked and unchecked hash-based bytecode cache files are validated according to their default semantics. When
set to always, all hash-based .pyc files, whether checked or unchecked, are validated against their corre-
sponding source file. When set to never, hash-based .pyc files are not validated against their corresponding
source files.

The semantics of timestamp-based .pyc files are unaffected by this option.

-d

Turn on parser debugging output (for expert only, depending on compilation options). See also
PYTHONDEBUG.

-E

Ignore all PYTHON* environment variables, e.g. PYTHONPATH and PYTHONHOME, that might be set.

See also the -P and -I (isolated) options.

-i

When a script is passed as first argument or the -c option is used, enter interactive mode after executing the
script or the command, even when sys.stdin does not appear to be a terminal. The PYTHONSTARTUP
file is not read.

This can be useful to inspect global variables or a stack trace when a script raises an exception. See also
PYTHONINSPECT.

-I

Run Python in isolated mode. This also implies -E, -P and -s options.

In isolated mode sys.path contains neither the script’s directory nor the user’s site-packages directory. All
PYTHON* environment variables are ignored, too. Further restrictions may be imposed to prevent the user
from injecting malicious code.

Nuovo nella versione 3.4.

-O

Remove assert statements and any code conditional on the value of __debug__. Augment the filena-
me for compiled (bytecode) files by adding .opt-1 before the .pyc extension (see PEP 488). See also
PYTHONOPTIMIZE.

Cambiato nella versione 3.5: Modify .pyc filenames according to PEP 488.

6 Capitolo 1. Command line and environment

https://peps.python.org/pep-0488/
https://peps.python.org/pep-0488/

Python Setup and Usage, Release 3.11.13

-OO

Do -O and also discard docstrings. Augment the filename for compiled (bytecode) files by adding .opt-2
before the .pyc extension (see PEP 488).

Cambiato nella versione 3.5: Modify .pyc filenames according to PEP 488.

-P

Don’t prepend a potentially unsafe path to sys.path:

• python -m module command line: Don’t prepend the current working directory.

• python script.py command line: Don’t prepend the script’s directory. If it’s a symbolic link,
resolve symbolic links.

• python -c code andpython (REPL) command lines: Don’t prepend an empty string, whichmeans
the current working directory.

See also the PYTHONSAFEPATH environment variable, and -E and -I (isolated) options.

Nuovo nella versione 3.11.

-q

Don’t display the copyright and version messages even in interactive mode.

Nuovo nella versione 3.2.

-R

Turn on hash randomization. This option only has an effect if the PYTHONHASHSEED environment variable
is set to 0, since hash randomization is enabled by default.

On previous versions of Python, this option turns on hash randomization, so that the __hash__() values of
str and bytes objects are «salted» with an unpredictable random value. Although they remain constant within
an individual Python process, they are not predictable between repeated invocations of Python.

Hash randomization is intended to provide protection against a denial-of-service caused by carefully chosen
inputs that exploit the worst case performance of a dict construction, O(n2) complexity. See http://ocert.org/
advisories/ocert-2011-003.html for details.

PYTHONHASHSEED allows you to set a fixed value for the hash seed secret.

Nuovo nella versione 3.2.3.

Cambiato nella versione 3.7: The option is no longer ignored.

-s

Don’t add the user site-packages directory to sys.path.

See also PYTHONNOUSERSITE.

Vedi anche:

PEP 370 – Per user site-packages directory

-S

Disable the import of the module site and the site-dependent manipulations of sys.path that it entails.
Also disable these manipulations if site is explicitly imported later (call site.main() if you want them
to be triggered).

-u

Force the stdout and stderr streams to be unbuffered. This option has no effect on the stdin stream.

See also PYTHONUNBUFFERED.

Cambiato nella versione 3.7: The text layer of the stdout and stderr streams now is unbuffered.

1.1. Command line 7

https://peps.python.org/pep-0488/
https://peps.python.org/pep-0488/
http://ocert.org/advisories/ocert-2011-003.html
http://ocert.org/advisories/ocert-2011-003.html
https://peps.python.org/pep-0370/

Python Setup and Usage, Release 3.11.13

-v

Print a message each time a module is initialized, showing the place (filename or built-in module) from which
it is loaded. When given twice (-vv), print a message for each file that is checked for when searching for a
module. Also provides information on module cleanup at exit.

Cambiato nella versione 3.10: Thesitemodule reports the site-specific paths and.pth files being processed.

See also PYTHONVERBOSE.

-W arg

Warning control. Python’s warning machinery by default prints warning messages to sys.stderr.

The simplest settings apply a particular action unconditionally to all warnings emitted by a process (even those
that are otherwise ignored by default):

-Wdefault # Warn once per call location
-Werror # Convert to exceptions
-Walways # Warn every time
-Wmodule # Warn once per calling module
-Wonce # Warn once per Python process
-Wignore # Never warn

The action names can be abbreviated as desired and the interpreter will resolve them to the appropriate action
name. For example, -Wi is the same as -Wignore.

The full form of argument is:

action:message:category:module:lineno

Empty fields match all values; trailing empty fields may be omitted. For example -W
ignore::DeprecationWarning ignores all DeprecationWarning warnings.

The action field is as explained above but only applies to warnings that match the remaining fields.

The message field must match the whole warning message; this match is case-insensitive.

The category field matches the warning category (ex: DeprecationWarning). This must be a class name;
the match test whether the actual warning category of the message is a subclass of the specified warning
category.

The module field matches the (fully qualified) module name; this match is case-sensitive.

The lineno field matches the line number, where zero matches all line numbers and is thus equivalent to an
omitted line number.

Multiple -W options can be given; when a warning matches more than one option, the action for the last
matching option is performed. Invalid -W options are ignored (though, a warning message is printed about
invalid options when the first warning is issued).

Warnings can also be controlled using thePYTHONWARNINGS environment variable and fromwithin a Python
program using the warnings module. For example, the warnings.filterwarnings() function can
be used to use a regular expression on the warning message.

See warning-filter and describing-warning-filters for more details.

-x

Skip the first line of the source, allowing use of non-Unix forms of #!cmd. This is intended for a DOS specific
hack only.

-X

Reserved for various implementation-specific options. CPython currently defines the following possible values:

• -X faulthandler to enable faulthandler. See also PYTHONFAULTHANDLER.

• -X showrefcount to output the total reference count and number of used memory blocks when the
program finishes or after each statement in the interactive interpreter. This only works on debug builds.

8 Capitolo 1. Command line and environment

Python Setup and Usage, Release 3.11.13

• -X tracemalloc to start tracing Python memory allocations using the tracemalloc mo-
dule. By default, only the most recent frame is stored in a traceback of a trace. Use -X
tracemalloc=NFRAME to start tracing with a traceback limit of NFRAME frames. See
tracemalloc.start() and PYTHONTRACEMALLOC for more information.

• -X int_max_str_digits configures the integer string conversion length limitation. See also
PYTHONINTMAXSTRDIGITS.

• -X importtime to show how long each import takes. It shows module name, cumulative time (in-
cluding nested imports) and self time (excluding nested imports). Note that its output may be bro-
ken in multi-threaded application. Typical usage is python3 -X importtime -c 'import
asyncio'. See also PYTHONPROFILEIMPORTTIME.

• -X dev: enable Python Development Mode, introducing additional runtime checks that are too
expensive to be enabled by default. See also PYTHONDEVMODE.

• -X utf8 enables the PythonUTF-8Mode.-X utf8=0 explicitly disables PythonUTF-8Mode (even
when it would otherwise activate automatically). See also PYTHONUTF8.

• -X pycache_prefix=PATH enables writing .pyc files to a parallel tree rooted at the given
directory instead of to the code tree. See also PYTHONPYCACHEPREFIX.

• -X warn_default_encoding issues a EncodingWarning when the locale-specific default
encoding is used for opening files. See also PYTHONWARNDEFAULTENCODING.

• -X no_debug_ranges disables the inclusion of the tables mapping extra location information (end
line, start column offset and end column offset) to every instruction in code objects. This is useful when
smaller code objects and pyc files are desired as well as suppressing the extra visual location indicators
when the interpreter displays tracebacks. See also PYTHONNODEBUGRANGES.

• -X frozen_modules determines whether or not frozen modules are ignored by the import machi-
nery. A value of «on» means they get imported and «off» means they are ignored. The default is «on»
if this is an installed Python (the normal case). If it’s under development (running from the source tree)
then the default is «off». Note that the «importlib_bootstrap» and «importlib_bootstrap_external» frozen
modules are always used, even if this flag is set to «off».

It also allows passing arbitrary values and retrieving them through the sys._xoptions dictionary.

Nuovo nella versione 3.2.

Cambiato nella versione 3.3: Added the -X faulthandler option.

Cambiato nella versione 3.4: Added the -X showrefcount and -X tracemalloc options.

Cambiato nella versione 3.6: Added the -X showalloccount option.

Cambiato nella versione 3.7: Added the -X importtime, -X dev and -X utf8 options.

Cambiato nella versione 3.8: Added the -X pycache_prefix option. The -X dev option now logs
close() exceptions in io.IOBase destructor.

Cambiato nella versione 3.9: Using -X dev option, check encoding and errors arguments on string encoding
and decoding operations.

The -X showalloccount option has been removed.

Cambiato nella versione 3.10: Added the -X warn_default_encoding option. Removed the -X
oldparser option.

Cambiato nella versione 3.11: Added the -X no_debug_ranges, -X frozen_modules and -X
int_max_str_digits options.

1.1. Command line 9

Python Setup and Usage, Release 3.11.13

1.1.4 Options you shouldn’t use

-J

Reserved for use by Jython.

1.2 Environment variables

These environment variables influence Python’s behavior, they are processed before the command-line switches other
than -E or -I. It is customary that command-line switches override environmental variables where there is a conflict.

PYTHONHOME

Change the location of the standard Python libraries. By default, the libraries are searched in prefix/lib/
pythonversion and exec_prefix/lib/pythonversion, where prefix and exec_prefix
are installation-dependent directories, both defaulting to /usr/local.

When PYTHONHOME is set to a single directory, its value replaces both prefix and exec_prefix. To
specify different values for these, set PYTHONHOME to prefix:exec_prefix.

PYTHONPATH

Augment the default search path for module files. The format is the same as the shell’s PATH: one or more
directory pathnames separated by os.pathsep (e.g. colons on Unix or semicolons on Windows). Non-
existent directories are silently ignored.

In addition to normal directories, individual PYTHONPATH entries may refer to zipfiles containing pure Python
modules (in either source or compiled form). Extension modules cannot be imported from zipfiles.

The default search path is installation dependent, but generally begins with prefix/
lib/pythonversion (see PYTHONHOME above). It is always appended to
PYTHONPATH.

An additional directory will be inserted in the search path in front of PYTHONPATH as described above
under Interface options. The search path can be manipulated from within a Python program as the variable
sys.path.

PYTHONSAFEPATH

If this is set to a non-empty string, don’t prepend a potentially unsafe path to sys.path: see the -P option
for details.

Nuovo nella versione 3.11.

PYTHONPLATLIBDIR

If this is set to a non-empty string, it overrides the sys.platlibdir value.

Nuovo nella versione 3.9.

PYTHONSTARTUP

If this is the name of a readable file, the Python commands in that file are executed before the first prompt
is displayed in interactive mode. The file is executed in the same namespace where interactive commands are
executed so that objects defined or imported in it can be used without qualification in the interactive session.
You can also change the prompts sys.ps1 and sys.ps2 and the hook sys.__interactivehook__
in this file.

Raises an auditing eventcpython.run_startupwith the filename as the argument when called on startup.

PYTHONOPTIMIZE

If this is set to a non-empty string it is equivalent to specifying the -O option. If set to an integer, it is equivalent
to specifying -O multiple times.

10 Capitolo 1. Command line and environment

https://www.jython.org/

Python Setup and Usage, Release 3.11.13

PYTHONBREAKPOINT

If this is set, it names a callable using dotted-path notation. The module containing the callable will be
imported and then the callable will be run by the default implementation of sys.breakpointhook()
which itself is called by built-in breakpoint(). If not set, or set to the empty string, it is equi-
valent to the value «pdb.set_trace». Setting this to the string «0» causes the default implementation of
sys.breakpointhook() to do nothing but return immediately.

Nuovo nella versione 3.7.

PYTHONDEBUG

If this is set to a non-empty string it is equivalent to specifying the -d option. If set to an integer, it is equivalent
to specifying -d multiple times.

PYTHONINSPECT

If this is set to a non-empty string it is equivalent to specifying the -i option.

This variable can also be modified by Python code using os.environ to force inspect mode on program
termination.

Raises an auditing event cpython.run_stdin with no arguments.

Cambiato nella versione 3.11.10: (also 3.10.15, 3.9.20, and 3.8.20) Emits audit events.

PYTHONUNBUFFERED

If this is set to a non-empty string it is equivalent to specifying the -u option.

PYTHONVERBOSE

If this is set to a non-empty string it is equivalent to specifying the -v option. If set to an integer, it is equivalent
to specifying -v multiple times.

PYTHONCASEOK

If this is set, Python ignores case in import statements. This only works on Windows and macOS.

PYTHONDONTWRITEBYTECODE

If this is set to a non-empty string, Python won’t try to write .pyc files on the import of source modules. This
is equivalent to specifying the -B option.

PYTHONPYCACHEPREFIX

If this is set, Python will write .pyc files in a mirror directory tree at this path, instead of in __pycache__
directories within the source tree. This is equivalent to specifying the -X pycache_prefix=PATH option.

Nuovo nella versione 3.8.

PYTHONHASHSEED

If this variable is not set or set to random, a random value is used to seed the hashes of str and bytes objects.

If PYTHONHASHSEED is set to an integer value, it is used as a fixed seed for generating the hash() of the types
covered by the hash randomization.

Its purpose is to allow repeatable hashing, such as for selftests for the interpreter itself, or to allow a cluster of
python processes to share hash values.

The integer must be a decimal number in the range [0,4294967295]. Specifying the value 0 will disable hash
randomization.

Nuovo nella versione 3.2.3.

PYTHONINTMAXSTRDIGITS

If this variable is set to an integer, it is used to configure the interpreter’s global integer string conversion length
limitation.

Nuovo nella versione 3.11.

1.2. Environment variables 11

Python Setup and Usage, Release 3.11.13

PYTHONIOENCODING

If this is set before running the interpreter, it overrides the encoding used for stdin/stdout/stderr, in the syn-
tax encodingname:errorhandler. Both the encodingname and the :errorhandler parts are
optional and have the same meaning as in str.encode().

For stderr, the :errorhandler part is ignored; the handler will always be 'backslashreplace'.

Cambiato nella versione 3.4: The encodingname part is now optional.

Cambiato nella versione 3.6: On Windows, the encoding specified by this variable is ignored for interactive
console buffers unless PYTHONLEGACYWINDOWSSTDIO is also specified. Files and pipes redirected through
the standard streams are not affected.

PYTHONNOUSERSITE

If this is set, Python won’t add the user site-packages directory to sys.path.

Vedi anche:

PEP 370 – Per user site-packages directory

PYTHONUSERBASE

Defines the user base directory, which is used to compute the path of the user site-packages
directory and installation paths for python -m pip install --user.

Vedi anche:

PEP 370 – Per user site-packages directory

PYTHONEXECUTABLE

If this environment variable is set, sys.argv[0] will be set to its value instead of the value got through the
C runtime. Only works on macOS.

PYTHONWARNINGS

This is equivalent to the -W option. If set to a comma separated string, it is equivalent to specifying -W multiple
times, with filters later in the list taking precedence over those earlier in the list.

The simplest settings apply a particular action unconditionally to all warnings emitted by a process (even those
that are otherwise ignored by default):

PYTHONWARNINGS=default # Warn once per call location
PYTHONWARNINGS=error # Convert to exceptions
PYTHONWARNINGS=always # Warn every time
PYTHONWARNINGS=module # Warn once per calling module
PYTHONWARNINGS=once # Warn once per Python process
PYTHONWARNINGS=ignore # Never warn

See warning-filter and describing-warning-filters for more details.

PYTHONFAULTHANDLER

If this environment variable is set to a non-empty string, faulthandler.enable() is called at startup:
install a handler for SIGSEGV, SIGFPE, SIGABRT, SIGBUS and SIGILL signals to dump the Python
traceback. This is equivalent to -X faulthandler option.

Nuovo nella versione 3.3.

PYTHONTRACEMALLOC

If this environment variable is set to a non-empty string, start tracing Python memory allocations using the
tracemallocmodule. The value of the variable is themaximum number of frames stored in a traceback of a
trace. For example, PYTHONTRACEMALLOC=1 stores only the most recent frame. See the tracemalloc.
start() function for more information. This is equivalent to setting the -X tracemalloc option.

Nuovo nella versione 3.4.

12 Capitolo 1. Command line and environment

https://peps.python.org/pep-0370/
https://peps.python.org/pep-0370/

Python Setup and Usage, Release 3.11.13

PYTHONPROFILEIMPORTTIME

If this environment variable is set to a non-empty string, Python will show how long each import takes. This
is equivalent to setting the -X importtime option.

Nuovo nella versione 3.7.

PYTHONASYNCIODEBUG

If this environment variable is set to a non-empty string, enable the debug mode of the asyncio module.

Nuovo nella versione 3.4.

PYTHONMALLOC

Set the Python memory allocators and/or install debug hooks.

Set the family of memory allocators used by Python:

• default: use the default memory allocators.

• malloc: use the malloc() function of the C library for all domains (PYMEM_DOMAIN_RAW,
PYMEM_DOMAIN_MEM, PYMEM_DOMAIN_OBJ).

• pymalloc: use the pymalloc allocator for PYMEM_DOMAIN_MEM and PYMEM_DOMAIN_OBJ
domains and use the malloc() function for the PYMEM_DOMAIN_RAW domain.

Install debug hooks:

• debug: install debug hooks on top of the default memory allocators.

• malloc_debug: same as malloc but also install debug hooks.

• pymalloc_debug: same as pymalloc but also install debug hooks.

Nuovo nella versione 3.6.

Cambiato nella versione 3.7: Added the "default" allocator.

PYTHONMALLOCSTATS

If set to a non-empty string, Python will print statistics of the pymalloc memory allocator every time a new
pymalloc object arena is created, and on shutdown.

This variable is ignored if thePYTHONMALLOC environment variable is used to force themalloc() allocator
of the C library, or if Python is configured without pymalloc support.

Cambiato nella versione 3.6: This variable can now also be used on Python compiled in release mode. It now
has no effect if set to an empty string.

PYTHONLEGACYWINDOWSFSENCODING

If set to a non-empty string, the default filesystem encoding and error handler mode will revert to their pre-3.6
values of “mbcs” and “replace”, respectively. Otherwise, the new defaults “utf-8” and “surrogatepass” are used.

This may also be enabled at runtime with sys._enablelegacywindowsfsencoding().

Availability: Windows.

Nuovo nella versione 3.6: See PEP 529 for more details.

PYTHONLEGACYWINDOWSSTDIO

If set to a non-empty string, does not use the new console reader and writer. This means that Unicode characters
will be encoded according to the active console code page, rather than using utf-8.

This variable is ignored if the standard streams are redirected (to files or pipes) rather than referring to console
buffers.

Availability: Windows.

Nuovo nella versione 3.6.

1.2. Environment variables 13

https://peps.python.org/pep-0529/

Python Setup and Usage, Release 3.11.13

PYTHONCOERCECLOCALE

If set to the value 0, causes the main Python command line application to skip coercing the legacy ASCII-based
C and POSIX locales to a more capable UTF-8 based alternative.

If this variable is not set (or is set to a value other than 0), the LC_ALL locale override environment variable is
also not set, and the current locale reported for the LC_CTYPE category is either the default C locale, or else
the explicitly ASCII-based POSIX locale, then the Python CLI will attempt to configure the following locales
for the LC_CTYPE category in the order listed before loading the interpreter runtime:

• C.UTF-8

• C.utf8

• UTF-8

If setting one of these locale categories succeeds, then the LC_CTYPE environment variable will also be set
accordingly in the current process environment before the Python runtime is initialized. This ensures that in
addition to being seen by both the interpreter itself and other locale-aware components running in the same
process (such as the GNU readline library), the updated setting is also seen in subprocesses (regardless
of whether or not those processes are running a Python interpreter), as well as in operations that query the
environment rather than the current C locale (such as Python’s own locale.getdefaultlocale()).

Configuring one of these locales (either explicitly or via the above implicit locale coercion) automatically ena-
bles the surrogateescape error handler for sys.stdin and sys.stdout (sys.stderr continues
to use backslashreplace as it does in any other locale). This stream handling behavior can be overridden
using PYTHONIOENCODING as usual.

For debugging purposes, setting PYTHONCOERCECLOCALE=warn will cause Python to emit warning mes-
sages on stderr if either the locale coercion activates, or else if a locale that would have triggered coercion
is still active when the Python runtime is initialized.

Also note that even when locale coercion is disabled, or when it fails to find a suitable target locale,
PYTHONUTF8 will still activate by default in legacy ASCII-based locales. Both features must be disabled
in order to force the interpreter to use ASCII instead of UTF-8 for system interfaces.

Availability: Unix.

Nuovo nella versione 3.7: See PEP 538 for more details.

PYTHONDEVMODE

If this environment variable is set to a non-empty string, enable Python Development Mode, introducing ad-
ditional runtime checks that are too expensive to be enabled by default. This is equivalent to setting the -X
dev option.

Nuovo nella versione 3.7.

PYTHONUTF8

If set to 1, enable the Python UTF-8 Mode.

If set to 0, disable the Python UTF-8 Mode.

Setting any other non-empty string causes an error during interpreter initialisation.

Nuovo nella versione 3.7.

PYTHONWARNDEFAULTENCODING

If this environment variable is set to a non-empty string, issue a EncodingWarningwhen the locale-specific
default encoding is used.

See io-encoding-warning for details.

Nuovo nella versione 3.10.

PYTHONNODEBUGRANGES

If this variable is set, it disables the inclusion of the tables mapping extra location information (end line, start
column offset and end column offset) to every instruction in code objects. This is useful when smaller code

14 Capitolo 1. Command line and environment

https://peps.python.org/pep-0538/

Python Setup and Usage, Release 3.11.13

objects and pyc files are desired as well as suppressing the extra visual location indicators when the interpreter
displays tracebacks.

Nuovo nella versione 3.11.

1.2.1 Debug-mode variables

PYTHONTHREADDEBUG

If set, Python will print threading debug info into stdout.

Need a debug build of Python.

Deprecato dalla versione 3.10, sarà rimosso nella versione 3.12..

PYTHONDUMPREFS

If set, Python will dump objects and reference counts still alive after shutting down the interpreter.

Need Python configured with the --with-trace-refs build option.

PYTHONDUMPREFSFILE=FILENAME

If set, Python will dump objects and reference counts still alive after shutting down the interpreter into a file
called FILENAME.

Need Python configured with the --with-trace-refs build option.

Nuovo nella versione 3.11.

1.2. Environment variables 15

Python Setup and Usage, Release 3.11.13

16 Capitolo 1. Command line and environment

CAPITOLO2

Using Python on Unix platforms

2.1 Getting and installing the latest version of Python

2.1.1 On Linux

Python comes preinstalled on most Linux distributions, and is available as a package on all others. However there
are certain features you might want to use that are not available on your distro’s package. You can easily compile the
latest version of Python from source.

In the event that Python doesn’t come preinstalled and isn’t in the repositories as well, you can easily make packages
for your own distro. Have a look at the following links:

Vedi anche:

https://www.debian.org/doc/manuals/maint-guide/first.en.html
for Debian users

https://en.opensuse.org/Portal:Packaging
for OpenSuse users

https://docs.fedoraproject.org/en-US/package-maintainers/Packaging_Tutorial_GNU_Hello/
for Fedora users

https://slackbook.org/html/package-management-making-packages.html
for Slackware users

2.1.2 On FreeBSD and OpenBSD

• FreeBSD users, to add the package use:

pkg install python3

• OpenBSD users, to add the package use:

pkg_add -r python

pkg_add ftp://ftp.openbsd.org/pub/OpenBSD/4.2/packages/<insert your␣
↪→architecture here>/python-<version>.tgz

17

https://www.debian.org/doc/manuals/maint-guide/first.en.html
https://en.opensuse.org/Portal:Packaging
https://docs.fedoraproject.org/en-US/package-maintainers/Packaging_Tutorial_GNU_Hello/
https://slackbook.org/html/package-management-making-packages.html

Python Setup and Usage, Release 3.11.13

For example i386 users get the 2.5.1 version of Python using:

pkg_add ftp://ftp.openbsd.org/pub/OpenBSD/4.2/packages/i386/python-2.5.1p2.tgz

2.1.3 On OpenSolaris

You can get Python fromOpenCSW.Various versions of Python are available and can be installed with e.g.pkgutil
-i python27.

2.2 Building Python

If you want to compile CPython yourself, first thing you should do is get the source. You can download either the
latest release’s source or just grab a fresh clone. (If you want to contribute patches, you will need a clone.)

The build process consists of the usual commands:

./configure
make
make install

Configuration options and caveats for specific Unix platforms are extensively documented in the README.rst file in
the root of the Python source tree.

Avvertimento: make install can overwrite or masquerade the python3 binary. make altinstall
is therefore recommended instead of make install since it only installs exec_prefix/bin/
pythonversion.

2.3 Python-related paths and files

These are subject to difference depending on local installation conventions; prefix and exec_prefix are
installation-dependent and should be interpreted as for GNU software; they may be the same.

For example, on most Linux systems, the default for both is /usr.

File/directory Meaning

exec_prefix/bin/python3 Recommended location of the interpreter.
prefix/lib/pythonversion,
exec_prefix/lib/
pythonversion

Recommended locations of the directories containing the standard
modules.

prefix/include/pythonversion,
exec_prefix/include/
pythonversion

Recommended locations of the directories containing the include
files needed for developing Python extensions and embedding the
interpreter.

18 Capitolo 2. Using Python on Unix platforms

https://www.opencsw.org/
https://www.python.org/downloads/source/
https://devguide.python.org/setup/#get-the-source-code
https://github.com/python/cpython/tree/3.11/README.rst

Python Setup and Usage, Release 3.11.13

2.4 Miscellaneous

To easily use Python scripts on Unix, you need to make them executable, e.g. with

$ chmod +x script

and put an appropriate Shebang line at the top of the script. A good choice is usually

#!/usr/bin/env python3

which searches for the Python interpreter in the wholePATH. However, someUnicesmay not have theenv command,
so you may need to hardcode /usr/bin/python3 as the interpreter path.

To use shell commands in your Python scripts, look at the subprocess module.

2.5 Custom OpenSSL

1. To use your vendor’s OpenSSL configuration and system trust store, locate the directory with openssl.
cnf file or symlink in /etc. On most distribution the file is either in /etc/ssl or /etc/pki/tls. The
directory should also contain a cert.pem file and/or a certs directory.

$ find /etc/ -name openssl.cnf -printf "%h\n"
/etc/ssl

2. Download, build, and install OpenSSL. Make sure you use install_sw and not install. The
install_sw target does not override openssl.cnf.

$ curl -O https://www.openssl.org/source/openssl-VERSION.tar.gz
$ tar xzf openssl-VERSION
$ pushd openssl-VERSION
$./config \

--prefix=/usr/local/custom-openssl \
--libdir=lib \
--openssldir=/etc/ssl

$ make -j1 depend
$ make -j8
$ make install_sw
$ popd

3. Build Python with custom OpenSSL (see the configure --with-openssl and
--with-openssl-rpath options)

$ pushd python-3.x.x
$./configure -C \

--with-openssl=/usr/local/custom-openssl \
--with-openssl-rpath=auto \
--prefix=/usr/local/python-3.x.x

$ make -j8
$ make altinstall

Nota: Patch releases of OpenSSL have a backwards compatible ABI. You don’t need to recompile Python to update
OpenSSL. It’s sufficient to replace the custom OpenSSL installation with a newer version.

2.4. Miscellaneous 19

Python Setup and Usage, Release 3.11.13

20 Capitolo 2. Using Python on Unix platforms

CAPITOLO3

Configure Python

3.1 Configure Options

List all ./configure script options using:

./configure --help

See also the Misc/SpecialBuilds.txt in the Python source distribution.

3.1.1 General Options

--enable-loadable-sqlite-extensions

Support loadable extensions in the _sqlite extension module (default is no) of the sqlite3 module.

See the sqlite3.Connection.enable_load_extension() method of the sqlite3 module.

Nuovo nella versione 3.6.

--disable-ipv6

Disable IPv6 support (enabled by default if supported), see the socket module.

--enable-big-digits=[15|30]

Define the size in bits of Python int digits: 15 or 30 bits.

By default, the digit size is 30.

Define the PYLONG_BITS_IN_DIGIT to 15 or 30.

See sys.int_info.bits_per_digit.

--with-cxx-main

--with-cxx-main=COMPILER

Compile the Python main() function and link Python executable with C++ compiler: $CXX, or COMPILER
if specified.

21

Python Setup and Usage, Release 3.11.13

--with-suffix=SUFFIX

Set the Python executable suffix to SUFFIX.

The default suffix is .exe on Windows and macOS (python.exe executable), .js on Emscripten no-
de, .html on Emscripten browser, .wasm on WASI, and an empty string on other platforms (python
executable).

Cambiato nella versione 3.11: The default suffix on WASM platform is one of .js, .html or .wasm.

--with-tzpath=<list of absolute paths separated by pathsep>

Select the default time zone search path for zoneinfo.TZPATH. See the Compile-time configuration of the
zoneinfo module.

Default: /usr/share/zoneinfo:/usr/lib/zoneinfo:/usr/share/lib/zoneinfo:/
etc/zoneinfo.

See os.pathsep path separator.

Nuovo nella versione 3.9.

--without-decimal-contextvar

Build the _decimal extension module using a thread-local context rather than a coroutine-local context
(default), see the decimal module.

See decimal.HAVE_CONTEXTVAR and the contextvars module.

Nuovo nella versione 3.9.

--with-dbmliborder=<list of backend names>

Override order to check db backends for the dbm module

A valid value is a colon (:) separated string with the backend names:

• ndbm;

• gdbm;

• bdb.

--without-c-locale-coercion

Disable C locale coercion to a UTF-8 based locale (enabled by default).

Don’t define the PY_COERCE_C_LOCALE macro.

See PYTHONCOERCECLOCALE and the PEP 538.

--with-platlibdir=DIRNAME

Python library directory name (default is lib).

Fedora and SuSE use lib64 on 64-bit platforms.

See sys.platlibdir.

Nuovo nella versione 3.9.

--with-wheel-pkg-dir=PATH

Directory of wheel packages used by the ensurepip module (none by default).

Some Linux distribution packaging policies recommend against bundling dependencies. For example, Fe-
dora installs wheel packages in the /usr/share/python-wheels/ directory and don’t install the
ensurepip._bundled package.

Nuovo nella versione 3.10.

--with-pkg-config=[check|yes|no]

Whether configure should use pkg-config to detect build dependencies.

• check (default): pkg-config is optional

• yes: pkg-config is mandatory

22 Capitolo 3. Configure Python

https://peps.python.org/pep-0538/

Python Setup and Usage, Release 3.11.13

• no: configure does not use pkg-config even when present

Nuovo nella versione 3.11.

--enable-pystats

Turn on internal statistics gathering.

The statistics will be dumped to a arbitrary (probably unique) file in /tmp/py_stats/, or C:\temp\
py_stats\ on Windows.

Use Tools/scripts/summarize_stats.py to read the stats.

Nuovo nella versione 3.11.

3.1.2 WebAssembly Options

--with-emscripten-target=[browser|node]

Set build flavor for wasm32-emscripten.

• browser (default): preload minimal stdlib, default MEMFS.

• node: NODERAWFS and pthread support.

Nuovo nella versione 3.11.

--enable-wasm-dynamic-linking

Turn on dynamic linking support for WASM.

Dynamic linking enables dlopen. File size of the executable increases due to limited dead code elimination
and additional features.

Nuovo nella versione 3.11.

--enable-wasm-pthreads

Turn on pthreads support for WASM.

Nuovo nella versione 3.11.

3.1.3 Install Options

--prefix=PREFIX

Install architecture-independent files in PREFIX. On Unix, it defaults to /usr/local.

This value can be retrieved at runtime using sys.prefix.

As an example, one can use --prefix="$HOME/.local/" to install a Python in its home directory.

--exec-prefix=EPREFIX

Install architecture-dependent files in EPREFIX, defaults to --prefix.

This value can be retrieved at runtime using sys.exec_prefix.

--disable-test-modules

Don’t build nor install test modules, like the test package or the _testcapi extension module (built and
installed by default).

Nuovo nella versione 3.10.

--with-ensurepip=[upgrade|install|no]

Select the ensurepip command run on Python installation:

• upgrade (default): run python -m ensurepip --altinstall --upgrade command.

• install: run python -m ensurepip --altinstall command;

• no: don’t run ensurepip;

3.1. Configure Options 23

Python Setup and Usage, Release 3.11.13

Nuovo nella versione 3.6.

3.1.4 Performance options

Configuring Python using --enable-optimizations --with-lto (PGO + LTO) is recommended for best
performance.

--enable-optimizations

Enable Profile Guided Optimization (PGO) using PROFILE_TASK (disabled by default).

The C compiler Clang requires llvm-profdata program for PGO. On macOS, GCC also requires it: GCC
is just an alias to Clang on macOS.

Disable also semantic interposition in libpython if --enable-shared and GCC is used: add
-fno-semantic-interposition to the compiler and linker flags.

Nuovo nella versione 3.6.

Cambiato nella versione 3.10: Use -fno-semantic-interposition on GCC.

PROFILE_TASK

Environment variable used in the Makefile: Python command line arguments for the PGO generation task.

Default: -m test --pgo --timeout=$(TESTTIMEOUT).

Nuovo nella versione 3.8.

--with-lto=[full|thin|no|yes]

Enable Link Time Optimization (LTO) in any build (disabled by default).

The C compiler Clang requiresllvm-ar for LTO (ar onmacOS), as well as an LTO-aware linker (ld.gold
or lld).

Nuovo nella versione 3.6.

Nuovo nella versione 3.11: To use ThinLTO feature, use --with-lto=thin on Clang.

--with-computed-gotos

Enable computed gotos in evaluation loop (enabled by default on supported compilers).

--without-pymalloc

Disable the specialized Python memory allocator pymalloc (enabled by default).

See also PYTHONMALLOC environment variable.

--without-doc-strings

Disable static documentation strings to reduce the memory footprint (enabled by default). Documentation
strings defined in Python are not affected.

Don’t define the WITH_DOC_STRINGS macro.

See the PyDoc_STRVAR() macro.

--enable-profiling

Enable C-level code profiling with gprof (disabled by default).

24 Capitolo 3. Configure Python

Python Setup and Usage, Release 3.11.13

3.1.5 Python Debug Build

A debug build is Python built with the --with-pydebug configure option.

Effects of a debug build:

• Display all warnings by default: the list of default warning filters is empty in the warnings module.

• Add d to sys.abiflags.

• Add sys.gettotalrefcount() function.

• Add -X showrefcount command line option.

• Add PYTHONTHREADDEBUG environment variable.

• Add support for the __lltrace__ variable: enable low-level tracing in the bytecode evaluation loop if the
variable is defined.

• Install debug hooks on memory allocators to detect buffer overflow and other memory errors.

• Define Py_DEBUG and Py_REF_DEBUG macros.

• Add runtime checks: code surrounded by #ifdef Py_DEBUG and #endif. Enable assert(.
..) and _PyObject_ASSERT(...) assertions: don’t set the NDEBUG macro (see also the
--with-assertions configure option). Main runtime checks:

– Add sanity checks on the function arguments.

– Unicode and int objects are created with their memory filled with a pattern to detect usage of uninitialized
objects.

– Ensure that functions which can clear or replace the current exception are not called with an exception
raised.

– Check that deallocator functions don’t change the current exception.

– The garbage collector (gc.collect() function) runs some basic checks on objects consistency.

– The Py_SAFE_DOWNCAST() macro checks for integer underflow and overflow when downcasting
from wide types to narrow types.

See also the Python Development Mode and the --with-trace-refs configure option.

Cambiato nella versione 3.8: Release builds and debug builds are now ABI compatible: defining the Py_DEBUG
macro no longer implies the Py_TRACE_REFSmacro (see the --with-trace-refs option), which introduces
the only ABI incompatibility.

3.1.6 Debug options

--with-pydebug

Build Python in debug mode: define the Py_DEBUG macro (disabled by default).

--with-trace-refs

Enable tracing references for debugging purpose (disabled by default).

Effects:

• Define the Py_TRACE_REFS macro.

• Add sys.getobjects() function.

• Add PYTHONDUMPREFS environment variable.

This build is not ABI compatible with release build (default build) or debug build (Py_DEBUG and
Py_REF_DEBUG macros).

Nuovo nella versione 3.8.

3.1. Configure Options 25

Python Setup and Usage, Release 3.11.13

--with-assertions

Build with C assertions enabled (default is no): assert(...); and _PyObject_ASSERT(...);.

If set, the NDEBUG macro is not defined in the OPT compiler variable.

See also the --with-pydebug option (debug build) which also enables assertions.

Nuovo nella versione 3.6.

--with-valgrind

Enable Valgrind support (default is no).

--with-dtrace

Enable DTrace support (default is no).

See Instrumenting CPython with DTrace and SystemTap.

Nuovo nella versione 3.6.

--with-address-sanitizer

Enable AddressSanitizer memory error detector, asan (default is no).

Nuovo nella versione 3.6.

--with-memory-sanitizer

Enable MemorySanitizer allocation error detector, msan (default is no).

Nuovo nella versione 3.6.

--with-undefined-behavior-sanitizer

Enable UndefinedBehaviorSanitizer undefined behaviour detector, ubsan (default is no).

Nuovo nella versione 3.6.

3.1.7 Linker options

--enable-shared

Enable building a shared Python library: libpython (default is no).

--without-static-libpython

Do not build libpythonMAJOR.MINOR.a and do not install python.o (built and enabled by default).

Nuovo nella versione 3.10.

3.1.8 Libraries options

--with-libs='lib1 ...'

Link against additional libraries (default is no).

--with-system-expat

Build the pyexpat module using an installed expat library (default is no).

--with-system-ffi

Build the _ctypes extension module using an installed ffi library, see the ctypes module (default is
system-dependent).

--with-system-libmpdec

Build the _decimal extension module using an installed mpdec library, see the decimal module (default
is no).

Nuovo nella versione 3.3.

26 Capitolo 3. Configure Python

Python Setup and Usage, Release 3.11.13

--with-readline=editline

Use editline library for backend of the readline module.

Define the WITH_EDITLINE macro.

Nuovo nella versione 3.10.

--without-readline

Don’t build the readline module (built by default).

Don’t define the HAVE_LIBREADLINE macro.

Nuovo nella versione 3.10.

--with-libm=STRING

Override libm math library to STRING (default is system-dependent).

--with-libc=STRING

Override libc C library to STRING (default is system-dependent).

--with-openssl=DIR

Root of the OpenSSL directory.

Nuovo nella versione 3.7.

--with-openssl-rpath=[no|auto|DIR]

Set runtime library directory (rpath) for OpenSSL libraries:

• no (default): don’t set rpath;

• auto: auto-detect rpath from --with-openssl and pkg-config;

• DIR: set an explicit rpath.

Nuovo nella versione 3.10.

3.1.9 Security Options

--with-hash-algorithm=[fnv|siphash13|siphash24]

Select hash algorithm for use in Python/pyhash.c:

• siphash13 (default);

• siphash24;

• fnv.

Nuovo nella versione 3.4.

Nuovo nella versione 3.11: siphash13 is added and it is the new default.

--with-builtin-hashlib-hashes=md5,sha1,sha256,sha512,sha3,blake2

Built-in hash modules:

• md5;

• sha1;

• sha256;

• sha512;

• sha3 (with shake);

• blake2.

Nuovo nella versione 3.9.

3.1. Configure Options 27

Python Setup and Usage, Release 3.11.13

--with-ssl-default-suites=[python|openssl|STRING]

Override the OpenSSL default cipher suites string:

• python (default): use Python’s preferred selection;

• openssl: leave OpenSSL’s defaults untouched;

• STRING: use a custom string

See the ssl module.

Nuovo nella versione 3.7.

Cambiato nella versione 3.10: The settings python and STRING also set TLS 1.2 as minimum protocol
version.

3.1.10 macOS Options

See Mac/README.rst.

--enable-universalsdk

--enable-universalsdk=SDKDIR

Create a universal binary build. SDKDIR specifies which macOS SDK should be used to perform the build
(default is no).

--enable-framework

--enable-framework=INSTALLDIR

Create a Python.framework rather than a traditional Unix install. Optional INSTALLDIR specifies the
installation path (default is no).

--with-universal-archs=ARCH

Specify the kind of universal binary that should be created. This option is only valid when
--enable-universalsdk is set.

Options:

• universal2;

• 32-bit;

• 64-bit;

• 3-way;

• intel;

• intel-32;

• intel-64;

• all.

--with-framework-name=FRAMEWORK

Specify the name for the python framework on macOS only valid when --enable-framework is set
(default: Python).

28 Capitolo 3. Configure Python

Python Setup and Usage, Release 3.11.13

3.1.11 Cross Compiling Options

Cross compiling, also known as cross building, can be used to build Python for another CPU architecture or platform.
Cross compiling requires a Python interpreter for the build platform. The version of the build Python must match the
version of the cross compiled host Python.

--build=BUILD

configure for building on BUILD, usually guessed by config.guess.

--host=HOST

cross-compile to build programs to run on HOST (target platform)

--with-build-python=path/to/python

path to build python binary for cross compiling

Nuovo nella versione 3.11.

CONFIG_SITE=file

An environment variable that points to a file with configure overrides.

Example config.site file:

config.site-aarch64
ac_cv_buggy_getaddrinfo=no
ac_cv_file__dev_ptmx=yes
ac_cv_file__dev_ptc=no

Cross compiling example:

CONFIG_SITE=config.site-aarch64 ../configure \
--build=x86_64-pc-linux-gnu \
--host=aarch64-unknown-linux-gnu \
--with-build-python=../x86_64/python

3.2 Python Build System

3.2.1 Main files of the build system

• configure.ac => configure;

• Makefile.pre.in => Makefile (created by configure);

• pyconfig.h (created by configure);

• Modules/Setup: C extensions built by the Makefile using Module/makesetup shell script;

• setup.py: C extensions built using the distutils module.

3.2.2 Main build steps

• C files (.c) are built as object files (.o).

• A static libpython library (.a) is created from objects files.

• python.o and the static libpython library are linked into the final python program.

• C extensions are built by the Makefile (see Modules/Setup) and python setup.py build.

3.2. Python Build System 29

Python Setup and Usage, Release 3.11.13

3.2.3 Main Makefile targets

• make: Build Python with the standard library.

• make platform:: build the python program, but don’t build the standard library extension modules.

• make profile-opt: build Python using Profile Guided Optimization (PGO). You can use the configure
--enable-optimizations option to make this the default target of the make command (make all
or just make).

• make buildbottest: Build Python and run the Python test suite, the same way than buildbots test Python.
Set TESTTIMEOUT variable (in seconds) to change the test timeout (1200 by default: 20 minutes).

• make install: Build and install Python.

• make regen-all: Regenerate (almost) all generated files; make regen-stdlib-module-names
and autoconf must be run separately for the remaining generated files.

• make clean: Remove built files.

• make distclean: Same than make clean, but remove also files created by the configure script.

3.2.4 C extensions

Some C extensions are built as built-in modules, like the sys module. They are built with the
Py_BUILD_CORE_BUILTIN macro defined. Built-in modules have no __file__ attribute:

>>> import sys
>>> sys
<module 'sys' (built-in)>
>>> sys.__file__
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
AttributeError: module 'sys' has no attribute '__file__'

Other C extensions are built as dynamic libraries, like the _asyncio module. They are built with the
Py_BUILD_CORE_MODULE macro defined. Example on Linux x86-64:

>>> import _asyncio
>>> _asyncio
<module '_asyncio' from '/usr/lib64/python3.9/lib-dynload/_asyncio.cpython-39-x86_
↪→64-linux-gnu.so'>
>>> _asyncio.__file__
'/usr/lib64/python3.9/lib-dynload/_asyncio.cpython-39-x86_64-linux-gnu.so'

Modules/Setup is used to generate Makefile targets to build C extensions. At the beginning of the files, C
extensions are built as built-in modules. Extensions defined after the *shared* marker are built as dynamic
libraries.

The setup.py script only builds C extensions as shared libraries using the distutils module.

The PyAPI_FUNC(), PyAPI_DATA() and PyMODINIT_FUNCmacros of Include/pyport.h are defined
differently depending if the Py_BUILD_CORE_MODULE macro is defined:

• Use Py_EXPORTED_SYMBOL if the Py_BUILD_CORE_MODULE is defined

• Use Py_IMPORTED_SYMBOL otherwise.

If the Py_BUILD_CORE_BUILTIN macro is used by mistake on a C extension built as a shared library, its
PyInit_xxx() function is not exported, causing an ImportError on import.

30 Capitolo 3. Configure Python

Python Setup and Usage, Release 3.11.13

3.3 Compiler and linker flags

Options set by the ./configure script and environment variables and used by Makefile.

3.3.1 Preprocessor flags

CONFIGURE_CPPFLAGS

Value of CPPFLAGS variable passed to the ./configure script.

Nuovo nella versione 3.6.

CPPFLAGS

(Objective) C/C++ preprocessor flags, e.g. -Iinclude_dir if you have headers in a nonstandard directory
include_dir.

Both CPPFLAGS and LDFLAGS need to contain the shell’s value for setup.py to be able to build extension
modules using the directories specified in the environment variables.

BASECPPFLAGS

Nuovo nella versione 3.4.

PY_CPPFLAGS

Extra preprocessor flags added for building the interpreter object files.

Default: $(BASECPPFLAGS) -I. -I$(srcdir)/Include $(CONFIGURE_CPPFLAGS)
$(CPPFLAGS).

Nuovo nella versione 3.2.

3.3.2 Compiler flags

CC

C compiler command.

Example: gcc -pthread.

MAINCC

C compiler command used to build the main() function of programs like python.

Variable set by the --with-cxx-main option of the configure script.

Default: $(CC).

CXX

C++ compiler command.

Used if the --with-cxx-main option is used.

Example: g++ -pthread.

CFLAGS

C compiler flags.

CFLAGS_NODIST

CFLAGS_NODIST is used for building the interpreter and stdlib C extensions. Use it when a compiler flag
should not be part of the distutils CFLAGS once Python is installed (bpo-21121).

In particular, CFLAGS should not contain:

• the compiler flag -I (for setting the search path for include files). The -I flags are processed from left
to right, and any flags in CFLAGS would take precedence over user- and package-supplied -I flags.

3.3. Compiler and linker flags 31

https://bugs.python.org/issue?@action=redirect&bpo=21121

Python Setup and Usage, Release 3.11.13

• hardening flags such as -Werror because distributions cannot control whether packages installed by
users conform to such heightened standards.

Nuovo nella versione 3.5.

EXTRA_CFLAGS

Extra C compiler flags.

CONFIGURE_CFLAGS

Value of CFLAGS variable passed to the ./configure script.

Nuovo nella versione 3.2.

CONFIGURE_CFLAGS_NODIST

Value of CFLAGS_NODIST variable passed to the ./configure script.

Nuovo nella versione 3.5.

BASECFLAGS

Base compiler flags.

OPT

Optimization flags.

CFLAGS_ALIASING

Strict or non-strict aliasing flags used to compile Python/dtoa.c.

Nuovo nella versione 3.7.

CCSHARED

Compiler flags used to build a shared library.

For example, -fPIC is used on Linux and on BSD.

CFLAGSFORSHARED

Extra C flags added for building the interpreter object files.

Default: $(CCSHARED) when --enable-shared is used, or an empty string otherwise.

PY_CFLAGS

Default: $(BASECFLAGS) $(OPT) $(CONFIGURE_CFLAGS) $(CFLAGS)
$(EXTRA_CFLAGS).

PY_CFLAGS_NODIST

Default: $(CONFIGURE_CFLAGS_NODIST) $(CFLAGS_NODIST) -I$(srcdir)/Include/
internal.

Nuovo nella versione 3.5.

PY_STDMODULE_CFLAGS

C flags used for building the interpreter object files.

Default: $(PY_CFLAGS) $(PY_CFLAGS_NODIST) $(PY_CPPFLAGS)
$(CFLAGSFORSHARED).

Nuovo nella versione 3.7.

PY_CORE_CFLAGS

Default: $(PY_STDMODULE_CFLAGS) -DPy_BUILD_CORE.

Nuovo nella versione 3.2.

PY_BUILTIN_MODULE_CFLAGS

Compiler flags to build a standard library extension module as a built-in module, like the posix module.

Default: $(PY_STDMODULE_CFLAGS) -DPy_BUILD_CORE_BUILTIN.

Nuovo nella versione 3.8.

32 Capitolo 3. Configure Python

Python Setup and Usage, Release 3.11.13

PURIFY

Purify command. Purify is a memory debugger program.

Default: empty string (not used).

3.3.3 Linker flags

LINKCC

Linker command used to build programs like python and _testembed.

Default: $(PURIFY) $(MAINCC).

CONFIGURE_LDFLAGS

Value of LDFLAGS variable passed to the ./configure script.

Avoid assigning CFLAGS, LDFLAGS, etc. so users can use them on the command line to append to these
values without stomping the pre-set values.

Nuovo nella versione 3.2.

LDFLAGS_NODIST

LDFLAGS_NODIST is used in the same manner as CFLAGS_NODIST. Use it when a linker flag should not
be part of the distutils LDFLAGS once Python is installed (bpo-35257).

In particular, LDFLAGS should not contain:

• the compiler flag -L (for setting the search path for libraries). The -L flags are processed from left to
right, and any flags in LDFLAGS would take precedence over user- and package-supplied -L flags.

CONFIGURE_LDFLAGS_NODIST

Value of LDFLAGS_NODIST variable passed to the ./configure script.

Nuovo nella versione 3.8.

LDFLAGS

Linker flags, e.g. -Llib_dir if you have libraries in a nonstandard directory lib_dir.

Both CPPFLAGS and LDFLAGS need to contain the shell’s value for setup.py to be able to build extension
modules using the directories specified in the environment variables.

LIBS

Linker flags to pass libraries to the linker when linking the Python executable.

Example: -lrt.

LDSHARED

Command to build a shared library.

Default: @LDSHARED@ $(PY_LDFLAGS).

BLDSHARED

Command to build libpython shared library.

Default: @BLDSHARED@ $(PY_CORE_LDFLAGS).

PY_LDFLAGS

Default: $(CONFIGURE_LDFLAGS) $(LDFLAGS).

PY_LDFLAGS_NODIST

Default: $(CONFIGURE_LDFLAGS_NODIST) $(LDFLAGS_NODIST).

Nuovo nella versione 3.8.

PY_CORE_LDFLAGS

Linker flags used for building the interpreter object files.

Nuovo nella versione 3.8.

3.3. Compiler and linker flags 33

https://bugs.python.org/issue?@action=redirect&bpo=35257

Python Setup and Usage, Release 3.11.13

34 Capitolo 3. Configure Python

CAPITOLO4

Using Python on Windows

This document aims to give an overview of Windows-specific behaviour you should know about when using Python
on Microsoft Windows.

Unlike most Unix systems and services, Windows does not include a system supported installation of Python. To
make Python available, the CPython team has compiled Windows installers with every release for many years. These
installers are primarily intended to add a per-user installation of Python, with the core interpreter and library being
used by a single user. The installer is also able to install for all users of a single machine, and a separate ZIP file is
available for application-local distributions.

As specified in PEP 11, a Python release only supports a Windows platform while Microsoft considers the platform
under extended support. This means that Python 3.11 supports Windows 8.1 and newer. If you require Windows 7
support, please install Python 3.8.

There are a number of different installers available for Windows, each with certain benefits and downsides.

The full installer contains all components and is the best option for developers using Python for any kind of project.

The Microsoft Store package is a simple installation of Python that is suitable for running scripts and packages, and
using IDLE or other development environments. It requiresWindows 10 and above, but can be safely installed without
corrupting other programs. It also provides many convenient commands for launching Python and its tools.

The nuget.org packages are lightweight installations intended for continuous integration systems. It can be used to
build Python packages or run scripts, but is not updateable and has no user interface tools.

The embeddable package is a minimal package of Python suitable for embedding into a larger application.

4.1 The full installer

4.1.1 Installation steps

Four Python 3.11 installers are available for download - two each for the 32-bit and 64-bit versions of the interpreter.
The web installer is a small initial download, and it will automatically download the required components as neces-
sary. The offline installer includes the components necessary for a default installation and only requires an internet
connection for optional features. See Installing Without Downloading for other ways to avoid downloading during
installation.

After starting the installer, one of two options may be selected:

35

https://www.python.org/downloads/
https://peps.python.org/pep-0011/

Python Setup and Usage, Release 3.11.13

If you select «Install Now»:

• You will not need to be an administrator (unless a system update for the C Runtime Library is required or you
install the Python Launcher for Windows for all users)

• Python will be installed into your user directory

• The Python Launcher for Windows will be installed according to the option at the bottom of the first page

• The standard library, test suite, launcher and pip will be installed

• If selected, the install directory will be added to your PATH

• Shortcuts will only be visible for the current user

Selecting «Customize installation» will allow you to select the features to install, the installation location and other
options or post-install actions. To install debugging symbols or binaries, you will need to use this option.

To perform an all-users installation, you should select «Customize installation». In this case:

• You may be required to provide administrative credentials or approval

• Python will be installed into the Program Files directory

• The Python Launcher for Windows will be installed into the Windows directory

• Optional features may be selected during installation

• The standard library can be pre-compiled to bytecode

• If selected, the install directory will be added to the system PATH

• Shortcuts are available for all users

36 Capitolo 4. Using Python on Windows

Python Setup and Usage, Release 3.11.13

4.1.2 Removing the MAX_PATH Limitation

Windows historically has limited path lengths to 260 characters. This meant that paths longer than this would not
resolve and errors would result.

In the latest versions of Windows, this limitation can be expanded to approximately 32,000 characters. Your admi-
nistrator will need to activate the «Enable Win32 long paths» group policy, or set LongPathsEnabled to 1 in
the registry key HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\FileSystem.

This allows the open() function, the osmodule and most other path functionality to accept and return paths longer
than 260 characters.

After changing the above option, no further configuration is required.

Cambiato nella versione 3.6: Support for long paths was enabled in Python.

4.1.3 Installing Without UI

All of the options available in the installer UI can also be specified from the command line, allowing scripted instal-
lers to replicate an installation on many machines without user interaction. These options may also be set without
suppressing the UI in order to change some of the defaults.

To completely hide the installer UI and install Python silently, pass the /quiet option. To skip past the user inte-
raction but still display progress and errors, pass the /passive option. The /uninstall option may be passed
to immediately begin removing Python - no confirmation prompt will be displayed.

All other options are passed as name=value, where the value is usually 0 to disable a feature, 1 to enable a feature,
or a path. The full list of available options is shown below.

4.1. The full installer 37

Python Setup and Usage, Release 3.11.13

Name Description Default

Instal-
lAllU-
sers

Perform a system-wide installa-
tion.

0

Target-
Dir

The installation directory Selected based on InstallAllUsers

Defaul-
tAllU-
sersTar-
getDir

The default installation directory
for all-user installs

%ProgramFiles%\Python X.Y or
%ProgramFiles(x86)%\Python X.Y

Default-
JustFor-
MeTar-
getDir

The default install directory for
just-for-me installs

%LocalAppData%\Programs\Python\PythonXY or
%LocalAppData%\Programs\Python\PythonXY-32
or %LocalAppData%\Programs\Python\
PythonXY-64

Default-
Custom-
Target-
Dir

The default custom install direc-
tory displayed in the UI

(empty)

Associa-
teFiles

Create file associations if the
launcher is also installed.

1

Compi-
leAll

Compile all .py files to .pyc. 0

Prepend-
Path

Prepend install and Scripts di-
rectories to PATH and add .PY
to PATHEXT

0

Append-
Path

Append install and Scripts direc-
tories to PATH and add .PY to
PATHEXT

0

Shortcu-
ts

Create shortcuts for the interpre-
ter, documentation and IDLE if
installed.

1

Inclu-
de_doc

Install Python manual 1

Inclu-
de_debug

Install debug binaries 0

Inclu-
de_dev

Install developer headers and li-
braries. Omitting this may lead
to an unusable installation.

1

Inclu-
de_exe

Install python.exe and rela-
ted files. Omitting this may lead
to an unusable installation.

1

Inclu-
de_launcher

Install Python Launcher forWin-
dows.

1

Install-
Laun-
cherAl-
lUsers

Installs the launcher for
all users. Also requires
Include_launcher to
be set to 1

1

Inclu-
de_lib

Install standard library and ex-
tension modules. Omitting this
may lead to an unusable instal-
lation.

1

Inclu-
de_pip

Install bundled pip and setup-
tools

1

Inclu-
de_symbols

Install debugging symbols (*.
pdb)

0

Inclu-
de_tcltk

Install Tcl/Tk support and IDLE 1

Inclu-
de_test

Install standard library test suite 1

Inclu-
de_tools

Install utility scripts 1

Laun-
cherOnly

Only installs the launcher. This
will override most other options.

0

Sim-
pleInstall

Disable most install UI 0

Sim-
pleIn-
stallDe-
scription

A custom message to display
when the simplified install UI is
used.

(empty)

38 Capitolo 4. Using Python on Windows

Python Setup and Usage, Release 3.11.13

For example, to silently install a default, system-wide Python installation, you could use the following command (from
an elevated command prompt):

python-3.9.0.exe /quiet InstallAllUsers=1 PrependPath=1 Include_test=0

To allow users to easily install a personal copy of Python without the test suite, you could provide a shortcut with the
following command. This will display a simplified initial page and disallow customization:

python-3.9.0.exe InstallAllUsers=0 Include_launcher=0 Include_test=0
SimpleInstall=1 SimpleInstallDescription="Just for me, no test suite."

(Note that omitting the launcher also omits file associations, and is only recommended for per-user installs when there
is also a system-wide installation that included the launcher.)

The options listed above can also be provided in a file named unattend.xml alongside the executable. This file
specifies a list of options and values. When a value is provided as an attribute, it will be converted to a number if
possible. Values provided as element text are always left as strings. This example file sets the same options as the
previous example:

<Options>
<Option Name="InstallAllUsers" Value="no" />
<Option Name="Include_launcher" Value="0" />
<Option Name="Include_test" Value="no" />
<Option Name="SimpleInstall" Value="yes" />
<Option Name="SimpleInstallDescription">Just for me, no test suite</Option>

</Options>

4.1.4 Installing Without Downloading

As some features of Python are not included in the initial installer download, selecting those features may require an
internet connection. To avoid this need, all possible components may be downloaded on-demand to create a complete
layout that will no longer require an internet connection regardless of the selected features. Note that this download
may be bigger than required, but where a large number of installations are going to be performed it is very useful to
have a locally cached copy.

Execute the following command from Command Prompt to download all possible required files. Remember to sub-
stitute python-3.9.0.exe for the actual name of your installer, and to create layouts in their own directories to
avoid collisions between files with the same name.

python-3.9.0.exe /layout [optional target directory]

You may also specify the /quiet option to hide the progress display.

4.1.5 Modifying an install

Once Python has been installed, you can add or remove features through the Programs and Features tool that is part
of Windows. Select the Python entry and choose «Uninstall/Change» to open the installer in maintenance mode.

«Modify» allows you to add or remove features by modifying the checkboxes - unchanged checkboxes will not install
or remove anything. Some options cannot be changed in this mode, such as the install directory; to modify these, you
will need to remove and then reinstall Python completely.

«Repair» will verify all the files that should be installed using the current settings and replace any that have been
removed or modified.

«Uninstall» will remove Python entirely, with the exception of the Python Launcher for Windows, which has its own
entry in Programs and Features.

4.1. The full installer 39

Python Setup and Usage, Release 3.11.13

4.2 The Microsoft Store package

Nuovo nella versione 3.7.2.

The Microsoft Store package is an easily installable Python interpreter that is intended mainly for interactive use, for
example, by students.

To install the package, ensure you have the latestWindows 10 updates and search theMicrosoft Store app for «Python
3.11». Ensure that the app you select is published by the Python Software Foundation, and install it.

Avvertimento: Python will always be available for free on the Microsoft Store. If you are asked to pay for it,
you have not selected the correct package.

After installation, Python may be launched by finding it in Start. Alternatively, it will be available from any Command
Prompt or PowerShell session by typing python. Further, pip and IDLEmay be used by typing pip or idle. IDLE
can also be found in Start.

All three commands are also available with version number suffixes, for example, aspython3.exe andpython3.
x.exe as well aspython.exe (where3.x is the specific version you want to launch, such as 3.11). Open «Manage
App Execution Aliases» through Start to select which version of Python is associated with each command. It is
recommended to make sure that pip and idle are consistent with whichever version of python is selected.

Virtual environments can be created with python -m venv and activated and used as normal.

If you have installed another version of Python and added it to your PATH variable, it will be available as python.
exe rather than the one from theMicrosoft Store. To access the new installation, use python3.exe or python3.
x.exe.

The py.exe launcher will detect this Python installation, but will prefer installations from the traditional installer.

To remove Python, open Settings and use Apps and Features, or else find Python in Start and right-click to select
Uninstall. Uninstalling will remove all packages you installed directly into this Python installation, but will not remove
any virtual environments

4.2.1 Known issues

Redirection of local data, registry, and temporary paths

Because of restrictions on Microsoft Store apps, Python scripts may not have full write access to shared locations
such as TEMP and the registry. Instead, it will write to a private copy. If your scripts must modify the shared locations,
you will need to install the full installer.

At runtime, Python will use a private copy of well-known Windows folders and the registry. For example,
if the environment variable %APPDATA% is c:\Users\<user>\AppData\, then when writing to C:\
Users\<user>\AppData\Local will write to C:\Users\<user>\AppData\Local\Packages\
PythonSoftwareFoundation.Python.3.8_qbz5n2kfra8p0\LocalCache\Local\.

When reading files, Windows will return the file from the private folder, or if that does not exist, the real Windows
directory. For example reading C:\Windows\System32 returns the contents of C:\Windows\System32
plus the contents of C:\Program Files\WindowsApps\package_name\VFS\SystemX86.

You can find the real path of any existing file using os.path.realpath():

>>> import os
>>> test_file = 'C:\\Users\\example\\AppData\\Local\\test.txt'
>>> os.path.realpath(test_file)
'C:\\Users\\example\\AppData\\Local\\Packages\\PythonSoftwareFoundation.Python.3.8_
↪→qbz5n2kfra8p0\\LocalCache\\Local\\test.txt'

When writing to the Windows Registry, the following behaviors exist:

40 Capitolo 4. Using Python on Windows

Python Setup and Usage, Release 3.11.13

• Reading from HKLM\\Software is allowed and results are merged with the registry.dat file in the
package.

• Writing to HKLM\\Software is not allowed if the corresponding key/value exists, i.e. modifying existing
keys.

• Writing to HKLM\\Software is allowed as long as a corresponding key/value does not exist in the package
and the user has the correct access permissions.

For more detail on the technical basis for these limitations, please consult Microsoft’s documentation on packaged
full-trust apps, currently available at docs.microsoft.com/en-us/windows/msix/desktop/desktop-to-uwp-behind-the-
scenes

4.3 The nuget.org packages

Nuovo nella versione 3.5.2.

The nuget.org package is a reduced size Python environment intended for use on continuous integration and build
systems that do not have a system-wide install of Python. While nuget is «the package manager for .NET», it also
works perfectly fine for packages containing build-time tools.

Visit nuget.org for the most up-to-date information on using nuget. What follows is a summary that is sufficient for
Python developers.

The nuget.exe command line tool may be downloaded directly from https://aka.ms/nugetclidl, for
example, using curl or PowerShell. With the tool, the latest version of Python for 64-bit or 32-bit machines is installed
using:

nuget.exe install python -ExcludeVersion -OutputDirectory .
nuget.exe install pythonx86 -ExcludeVersion -OutputDirectory .

To select a particular version, add a -Version 3.x.y. The output directory may be changed from ., and the
package will be installed into a subdirectory. By default, the subdirectory is named the same as the package, and
without the -ExcludeVersion option this name will include the specific version installed. Inside the subdirectory
is a tools directory that contains the Python installation:

Without -ExcludeVersion
> .\python.3.5.2\tools\python.exe -V
Python 3.5.2

With -ExcludeVersion
> .\python\tools\python.exe -V
Python 3.5.2

In general, nuget packages are not upgradeable, and newer versions should be installed side-by-side and referenced
using the full path. Alternatively, delete the package directory manually and install it again. Many CI systems will do
this automatically if they do not preserve files between builds.

Alongside the tools directory is a build\native directory. This contains a MSBuild properties file python.
props that can be used in a C++ project to reference the Python install. Including the settings will automatically
use the headers and import libraries in your build.

The package information pages on nuget.org are www.nuget.org/packages/python for the 64-bit version and
www.nuget.org/packages/pythonx86 for the 32-bit version.

4.3. The nuget.org packages 41

https://docs.microsoft.com/en-us/windows/msix/desktop/desktop-to-uwp-behind-the-scenes
https://docs.microsoft.com/en-us/windows/msix/desktop/desktop-to-uwp-behind-the-scenes
https://www.nuget.org/
https://www.nuget.org/packages/python
https://www.nuget.org/packages/pythonx86

Python Setup and Usage, Release 3.11.13

4.4 The embeddable package

Nuovo nella versione 3.5.

The embedded distribution is a ZIP file containing a minimal Python environment. It is intended for acting as part
of another application, rather than being directly accessed by end-users.

When extracted, the embedded distribution is (almost) fully isolated from the user’s system, including environment
variables, system registry settings, and installed packages. The standard library is included as pre-compiled and op-
timized .pyc files in a ZIP, and python3.dll, python37.dll, python.exe and pythonw.exe are all
provided. Tcl/tk (including all dependents, such as Idle), pip and the Python documentation are not included.

Nota: The embedded distribution does not include the Microsoft C Runtime and it is the responsibility of the
application installer to provide this. The runtime may have already been installed on a user’s system previously or
automatically via Windows Update, and can be detected by finding ucrtbase.dll in the system directory.

Third-party packages should be installed by the application installer alongside the embedded distribution. Using pip
to manage dependencies as for a regular Python installation is not supported with this distribution, though with some
care it may be possible to include and use pip for automatic updates. In general, third-party packages should be treated
as part of the application («vendoring») so that the developer can ensure compatibility with newer versions before
providing updates to users.

The two recommended use cases for this distribution are described below.

4.4.1 Python Application

An application written in Python does not necessarily require users to be aware of that fact. The embedded distribution
may be used in this case to include a private version of Python in an install package. Depending on how transparent
it should be (or conversely, how professional it should appear), there are two options.

Using a specialized executable as a launcher requires some coding, but provides the most transparent experience for
users. With a customized launcher, there are no obvious indications that the program is running on Python: icons
can be customized, company and version information can be specified, and file associations behave properly. In most
cases, a custom launcher should simply be able to call Py_Main with a hard-coded command line.

The simpler approach is to provide a batch file or generated shortcut that directly calls the python.exe or
pythonw.exe with the required command-line arguments. In this case, the application will appear to be Python
and not its actual name, and users may have trouble distinguishing it from other running Python processes or file
associations.

With the latter approach, packages should be installed as directories alongside the Python executable to ensure they
are available on the path. With the specialized launcher, packages can be located in other locations as there is an
opportunity to specify the search path before launching the application.

4.4.2 Embedding Python

Applications written in native code often require some form of scripting language, and the embedded Python distri-
bution can be used for this purpose. In general, the majority of the application is in native code, and some part will
either invoke python.exe or directly use python3.dll. For either case, extracting the embedded distribution
to a subdirectory of the application installation is sufficient to provide a loadable Python interpreter.

As with the application use, packages can be installed to any location as there is an opportunity to specify search
paths before initializing the interpreter. Otherwise, there is no fundamental differences between using the embedded
distribution and a regular installation.

42 Capitolo 4. Using Python on Windows

https://docs.microsoft.com/en-US/cpp/windows/latest-supported-vc-redist#visual-studio-2015-2017-2019-and-2022

Python Setup and Usage, Release 3.11.13

4.5 Alternative bundles

Besides the standard CPython distribution, there are modified packages including additional functionality. The
following is a list of popular versions and their key features:

ActivePython
Installer with multi-platform compatibility, documentation, PyWin32

Anaconda
Popular scientific modules (such as numpy, scipy and pandas) and the conda package manager.

Enthought Deployment Manager
«The Next Generation Python Environment and Package Manager».

Previously Enthought provided Canopy, but it reached end of life in 2016.

WinPython
Windows-specific distribution with prebuilt scientific packages and tools for building packages.

Note that these packages may not include the latest versions of Python or other libraries, and are not maintained or
supported by the core Python team.

4.6 Configuring Python

To run Python conveniently from a command prompt, you might consider changing some default environment va-
riables in Windows. While the installer provides an option to configure the PATH and PATHEXT variables for you,
this is only reliable for a single, system-wide installation. If you regularly use multiple versions of Python, consider
using the Python Launcher for Windows.

4.6.1 Excursus: Setting environment variables

Windows allows environment variables to be configured permanently at both the User level and the System level, or
temporarily in a command prompt.

To temporarily set environment variables, open Command Prompt and use the set command:

C:\>set PATH=C:\Program Files\Python 3.9;%PATH%
C:\>set PYTHONPATH=%PYTHONPATH%;C:\My_python_lib
C:\>python

These changes will apply to any further commands executed in that console, and will be inherited by any applications
started from the console.

Including the variable name within percent signs will expand to the existing value, allowing you to add your new
value at either the start or the end. Modifying PATH by adding the directory containing python.exe to the start
is a common way to ensure the correct version of Python is launched.

To permanently modify the default environment variables, click Start and search for “edit environment variables”,
or open System properties, Advanced system settings and click the Environment Variables button. In this dialog, you
can add or modify User and System variables. To change System variables, you need non-restricted access to your
machine (i.e. Administrator rights).

Nota: Windows will concatenate User variables after System variables, which may cause unexpected results when
modifying PATH.

The PYTHONPATH variable is used by all versions of Python, so you should not permanently configure it unless the
listed paths only include code that is compatible with all of your installed Python versions.

Vedi anche:

4.5. Alternative bundles 43

https://www.activestate.com/products/python/
https://www.anaconda.com/download/
https://www.enthought.com/edm/
https://support.enthought.com/hc/en-us/articles/360038600051-Canopy-GUI-end-of-life-transition-to-the-Enthought-Deployment-Manager-EDM-and-Visual-Studio-Code
https://winpython.github.io/

Python Setup and Usage, Release 3.11.13

https://docs.microsoft.com/en-us/windows/win32/procthread/environment-variables
Overview of environment variables on Windows

https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/set_1
The set command, for temporarily modifying environment variables

https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/setx
The setx command, for permanently modifying environment variables

4.6.2 Finding the Python executable

Cambiato nella versione 3.5.

Besides using the automatically created start menu entry for the Python interpreter, you might want to start Python
in the command prompt. The installer has an option to set that up for you.

On the first page of the installer, an option labelled «Add Python to PATH» may be selected to have the installer
add the install location into the PATH. The location of the Scripts\ folder is also added. This allows you to type
python to run the interpreter, and pip for the package installer. Thus, you can also execute your scripts with
command line options, see Command line documentation.

If you don’t enable this option at install time, you can always re-run the installer, select Modify, and enable it. Alterna-
tively, you can manually modify the PATH using the directions in Excursus: Setting environment variables. You need
to set your PATH environment variable to include the directory of your Python installation, delimited by a semicolon
from other entries. An example variable could look like this (assuming the first two entries already existed):

C:\WINDOWS\system32;C:\WINDOWS;C:\Program Files\Python 3.9

4.7 UTF-8 mode

Nuovo nella versione 3.7.

Windows still uses legacy encodings for the system encoding (the ANSI Code Page). Python uses it for the default
encoding of text files (e.g. locale.getencoding()).

This may cause issues because UTF-8 is widely used on the internet andmost Unix systems, includingWSL (Windows
Subsystem for Linux).

You can use the Python UTF-8Mode to change the default text encoding to UTF-8. You can enable the Python UTF-
8 Mode via the -X utf8 command line option, or the PYTHONUTF8=1 environment variable. See PYTHONUTF8
for enabling UTF-8 mode, and Excursus: Setting environment variables for how to modify environment variables.

When the Python UTF-8 Mode is enabled, you can still use the system encoding (the ANSI Code Page) via the
«mbcs» codec.

Note that adding PYTHONUTF8=1 to the default environment variables will affect all Python 3.7+ applications on
your system. If you have any Python 3.7+ applications which rely on the legacy system encoding, it is recommended
to set the environment variable temporarily or use the -X utf8 command line option.

Nota: Even when UTF-8 mode is disabled, Python uses UTF-8 by default on Windows for:

• Console I/O including standard I/O (see PEP 528 for details).

• The filesystem encoding (see PEP 529 for details).

44 Capitolo 4. Using Python on Windows

https://docs.microsoft.com/en-us/windows/win32/procthread/environment-variables
https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/set_1
https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/setx
https://peps.python.org/pep-0528/
https://peps.python.org/pep-0529/

Python Setup and Usage, Release 3.11.13

4.8 Python Launcher for Windows

Nuovo nella versione 3.3.

The Python launcher for Windows is a utility which aids in locating and executing of different Python versions. It
allows scripts (or the command-line) to indicate a preference for a specific Python version, and will locate and execute
that version.

Unlike the PATH variable, the launcher will correctly select the most appropriate version of Python. It will prefer per-
user installations over system-wide ones, and orders by language version rather than using the most recently installed
version.

The launcher was originally specified in PEP 397.

4.8.1 Getting started

From the command-line

Cambiato nella versione 3.6.

System-wide installations of Python 3.3 and later will put the launcher on your PATH. The launcher is compatible
with all available versions of Python, so it does not matter which version is installed. To check that the launcher is
available, execute the following command in Command Prompt:

py

You should find that the latest version of Python you have installed is started - it can be exited as normal, and any
additional command-line arguments specified will be sent directly to Python.

If you have multiple versions of Python installed (e.g., 3.7 and 3.11) you will have noticed that Python 3.11 was
started - to launch Python 3.7, try the command:

py -3.7

If you want the latest version of Python 2 you have installed, try the command:

py -2

If you see the following error, you do not have the launcher installed:

'py' is not recognized as an internal or external command,
operable program or batch file.

The command:

py --list

displays the currently installed version(s) of Python.

The -x.y argument is the short form of the -V:Company/Tag argument, which allows selecting a specific Python
runtime, including those that may have come from somewhere other than python.org. Any runtime registered by
following PEP 514 will be discoverable. The --list command lists all available runtimes using the -V: format.

When using the -V: argument, specifying the Company will limit selection to runtimes from that provider, while
specifying only the Tag will select from all providers. Note that omitting the slash implies a tag:

Select any '3.*' tagged runtime
py -V:3

Select any 'PythonCore' released runtime
py -V:PythonCore/

(continues on next page)

4.8. Python Launcher for Windows 45

https://peps.python.org/pep-0397/
https://peps.python.org/pep-0514/

Python Setup and Usage, Release 3.11.13

(continua dalla pagina precedente)

Select PythonCore's latest Python 3 runtime
py -V:PythonCore/3

The short form of the argument (-3) only ever selects from core Python releases, and not other distributions. However,
the longer form (-V:3) will select from any.

The Company is matched on the full string, case-insenitive. The Tag is matched oneither the full string, or a prefix,
provided the next character is a dot or a hyphen. This allows -V:3.1 to match 3.1-32, but not 3.10. Tags are
sorted using numerical ordering (3.10 is newer than 3.1), but are compared using text (-V:3.01 does not match
3.1).

Virtual environments

Nuovo nella versione 3.5.

If the launcher is run with no explicit Python version specification, and a virtual environment (created with the
standard library venv module or the external virtualenv tool) active, the launcher will run the virtual environ-
ment’s interpreter rather than the global one. To run the global interpreter, either deactivate the virtual environment,
or explicitly specify the global Python version.

From a script

Let’s create a test Python script - create a file called hello.py with the following contents

#! python
import sys
sys.stdout.write("hello from Python %s\n" % (sys.version,))

From the directory in which hello.py lives, execute the command:

py hello.py

You should notice the version number of your latest Python 2.x installation is printed. Now try changing the first line
to be:

#! python3

Re-executing the command should now print the latest Python 3.x information. As with the above command-line
examples, you can specify a more explicit version qualifier. Assuming you have Python 3.7 installed, try changing
the first line to #! python3.7 and you should find the 3.7 version information printed.

Note that unlike interactive use, a bare «python» will use the latest version of Python 2.x that you have installed.
This is for backward compatibility and for compatibility with Unix, where the command python typically refers to
Python 2.

From file associations

The launcher should have been associated with Python files (i.e. .py, .pyw, .pyc files) when it was installed.
This means that when you double-click on one of these files from Windows explorer the launcher will be used, and
therefore you can use the same facilities described above to have the script specify the version which should be used.

The key benefit of this is that a single launcher can support multiple Python versions at the same time depending on
the contents of the first line.

46 Capitolo 4. Using Python on Windows

Python Setup and Usage, Release 3.11.13

4.8.2 Shebang Lines

If the first line of a script file starts with #!, it is known as a «shebang» line. Linux and other Unix like operating
systems have native support for such lines and they are commonly used on such systems to indicate how a script should
be executed. This launcher allows the same facilities to be used with Python scripts on Windows and the examples
above demonstrate their use.

To allow shebang lines in Python scripts to be portable between Unix and Windows, this launcher supports a number
of “virtual” commands to specify which interpreter to use. The supported virtual commands are:

• /usr/bin/env

• /usr/bin/python

• /usr/local/bin/python

• python

For example, if the first line of your script starts with

#! /usr/bin/python

The default Python will be located and used. As many Python scripts written to work on Unix will already have this
line, you should find these scripts can be used by the launcher without modification. If you are writing a new script
on Windows which you hope will be useful on Unix, you should use one of the shebang lines starting with /usr.

Any of the above virtual commands can be suffixed with an explicit version (either just the major version, or the
major and minor version). Furthermore the 32-bit version can be requested by adding «-32» after the minor version.
I.e. /usr/bin/python3.7-32 will request usage of the 32-bit python 3.7.

Nuovo nella versione 3.7: Beginning with python launcher 3.7 it is possible to request 64-bit version
by the «-64» suffix. Furthermore it is possible to specify a major and architecture without minor (i.e.
/usr/bin/python3-64).

Cambiato nella versione 3.11: The «-64» suffix is deprecated, and now implies «any architecture that is not provably
i386/32-bit». To request a specific environment, use the new -V:TAG argument with the complete tag.

The /usr/bin/env form of shebang line has one further special property. Before looking for installed Py-
thon interpreters, this form will search the executable PATH for a Python executable matching the name provi-
ded as the first argument. This corresponds to the behaviour of the Unix env program, which performs a PATH
search. If an executable matching the first argument after the env command cannot be found, but the argument
starts with python, it will be handled as described for the other virtual commands. The environment variable
PYLAUNCHER_NO_SEARCH_PATH may be set (to any value) to skip this search of PATH.

Shebang lines that do not match any of these patterns are looked up in the [commands] section of the launcher’s
.INI file. This may be used to handle certain commands in a way that makes sense for your system. The name of the
command must be a single argument (no spaces in the shebang executable), and the value substituted is the full path
to the executable (additional arguments specified in the .INI will be quoted as part of the filename).

[commands]
/bin/xpython=C:\Program Files\XPython\python.exe

Any commands not found in the .INI file are treated asWindows executable paths that are absolute or relative to the
directory containing the script file. This is a convenience for Windows-only scripts, such as those generated by an
installer, since the behavior is not compatible with Unix-style shells. These paths may be quoted, and may include
multiple arguments, after which the path to the script and any additional arguments will be appended.

4.8. Python Launcher for Windows 47

Python Setup and Usage, Release 3.11.13

4.8.3 Arguments in shebang lines

The shebang lines can also specify additional options to be passed to the Python interpreter. For example, if you have
a shebang line:

#! /usr/bin/python -v

Then Python will be started with the -v option

4.8.4 Customization

Customization via INI files

Two .ini files will be searched by the launcher - py.ini in the current user’s application data directory
(%LOCALAPPDATA% or $env:LocalAppData) and py.ini in the same directory as the launcher. The sa-
me .ini files are used for both the “console” version of the launcher (i.e. py.exe) and for the “windows” version (i.e.
pyw.exe).

Customization specified in the «application directory» will have precedence over the one next to the executable, so
a user, who may not have write access to the .ini file next to the launcher, can override commands in that global .ini
file.

Customizing default Python versions

In some cases, a version qualifier can be included in a command to dictate which version of Python will be used by
the command. A version qualifier starts with a major version number and can optionally be followed by a period (“.”)
and a minor version specifier. Furthermore it is possible to specify if a 32 or 64 bit implementation shall be requested
by adding «-32» or «-64».

For example, a shebang line of #!python has no version qualifier, while #!python3 has a version qualifier which
specifies only a major version.

If no version qualifiers are found in a command, the environment variable PY_PYTHON can be set to specify the
default version qualifier. If it is not set, the default is «3». The variable can specify any value that may be passed on
the command line, such as «3», «3.7», «3.7-32» or «3.7-64». (Note that the «-64» option is only available with the
launcher included with Python 3.7 or newer.)

If no minor version qualifiers are found, the environment variable PY_PYTHON{major} (where {major} is the
current major version qualifier as determined above) can be set to specify the full version. If no such option is found,
the launcher will enumerate the installed Python versions and use the latest minor release found for the major version,
which is likely, although not guaranteed, to be the most recently installed version in that family.

On 64-bit Windows with both 32-bit and 64-bit implementations of the same (major.minor) Python version installed,
the 64-bit version will always be preferred. This will be true for both 32-bit and 64-bit implementations of the launcher
- a 32-bit launcher will prefer to execute a 64-bit Python installation of the specified version if available. This is so the
behavior of the launcher can be predicted knowing only what versions are installed on the PC andwithout regard to the
order in which they were installed (i.e., without knowing whether a 32 or 64-bit version of Python and corresponding
launcher was installed last). As noted above, an optional «-32» or «-64» suffix can be used on a version specifier to
change this behaviour.

Examples:

• If no relevant options are set, the commands python and python2 will use the latest Python 2.x version
installed and the command python3 will use the latest Python 3.x installed.

• The command python3.7 will not consult any options at all as the versions are fully specified.

• If PY_PYTHON=3, the commands python and python3 will both use the latest installed Python 3 version.

• If PY_PYTHON=3.7-32, the command python will use the 32-bit implementation of 3.7 whereas the
command python3 will use the latest installed Python (PY_PYTHON was not considered at all as a major
version was specified.)

48 Capitolo 4. Using Python on Windows

Python Setup and Usage, Release 3.11.13

• If PY_PYTHON=3 and PY_PYTHON3=3.7, the commands python and python3 will both use
specifically 3.7

In addition to environment variables, the same settings can be configured in the .INI file used by the launcher. The
section in the INI file is called [defaults] and the key name will be the same as the environment variables
without the leading PY_ prefix (and note that the key names in the INI file are case insensitive.) The contents of an
environment variable will override things specified in the INI file.

For example:

• Setting PY_PYTHON=3.7 is equivalent to the INI file containing:

[defaults]
python=3.7

• Setting PY_PYTHON=3 and PY_PYTHON3=3.7 is equivalent to the INI file containing:

[defaults]
python=3
python3=3.7

4.8.5 Diagnostics

If an environment variablePYLAUNCHER_DEBUG is set (to any value), the launcher will print diagnostic information
to stderr (i.e. to the console). While this information manages to be simultaneously verbose and terse, it should allow
you to see what versions of Python were located, why a particular version was chosen and the exact command-line
used to execute the target Python. It is primarily intended for testing and debugging.

4.8.6 Dry Run

If an environment variable PYLAUNCHER_DRYRUN is set (to any value), the launcher will output the command it
would have run, but will not actually launch Python. This may be useful for tools that want to use the launcher to
detect and then launch Python directly. Note that the command written to standard output is always encoded using
UTF-8, and may not render correctly in the console.

4.8.7 Install on demand

If an environment variablePYLAUNCHER_ALLOW_INSTALL is set (to any value), and the requested Python version
is not installed but is available on the Microsoft Store, the launcher will attempt to install it. This may require user
interaction to complete, and you may need to run the command again.

An additional PYLAUNCHER_ALWAYS_INSTALL variable causes the launcher to always try to install Python, even
if it is detected. This is mainly intended for testing (and should be used with PYLAUNCHER_DRYRUN).

4.8.8 Return codes

The following exit codes may be returned by the Python launcher. Unfortunately, there is no way to distinguish these
from the exit code of Python itself.

The names of codes are as used in the sources, and are only for reference. There is no way to access or resolve them
apart from reading this page. Entries are listed in alphabetical order of names.

4.8. Python Launcher for Windows 49

Python Setup and Usage, Release 3.11.13

Name Va-
lue

Description

RC_BAD_VENV_CFG 107 A pyvenv.cfg was found but is corrupt.
RC_CREATE_PROCESS 101 Failed to launch Python.
RC_INSTALLING 111 An install was started, but the command will need to be re-run after it com-

pletes.
RC_INTERNAL_ERROR 109 Unexpected error. Please report a bug.
RC_NO_COMMANDLINE 108 Unable to obtain command line from the operating system.
RC_NO_PYTHON 103 Unable to locate the requested version.
RC_NO_VENV_CFG 106 A pyvenv.cfg was required but not found.

4.9 Finding modules

These notes supplement the description at sys-path-init with detailed Windows notes.

When no ._pth file is found, this is how sys.path is populated on Windows:

• An empty entry is added at the start, which corresponds to the current directory.

• If the environment variable PYTHONPATH exists, as described in Environment variables, its entries are added
next. Note that on Windows, paths in this variable must be separated by semicolons, to distinguish them from
the colon used in drive identifiers (C:\ etc.).

• Additional «application paths» can be added in the registry as subkeys of \SOFTWARE\
Python\PythonCore{version}\PythonPath under both the HKEY_CURRENT_USER and
HKEY_LOCAL_MACHINE hives. Subkeys which have semicolon-delimited path strings as their default value
will cause each path to be added to sys.path. (Note that all known installers only use HKLM, so HKCU
is typically empty.)

• If the environment variable PYTHONHOME is set, it is assumed as «Python Home». Otherwise, the path of
the main Python executable is used to locate a «landmark file» (either Lib\os.py or pythonXY.zip)
to deduce the «Python Home». If a Python home is found, the relevant sub-directories added to sys.path
(Lib, plat-win, etc) are based on that folder. Otherwise, the core Python path is constructed from the
PythonPath stored in the registry.

• If the Python Home cannot be located, no PYTHONPATH is specified in the environment, and no registry
entries can be found, a default path with relative entries is used (e.g. .\Lib;.\plat-win, etc).

If a pyvenv.cfg file is found alongside the main executable or in the directory one level above the executable, the
following variations apply:

• If home is an absolute path and PYTHONHOME is not set, this path is used instead of the path to the main
executable when deducing the home location.

The end result of all this is:

• When running python.exe, or any other .exe in the main Python directory (either an installed version, or
directly from the PCbuild directory), the core path is deduced, and the core paths in the registry are ignored.
Other «application paths» in the registry are always read.

• When Python is hosted in another .exe (different directory, embedded via COM, etc), the «Python Home» will
not be deduced, so the core path from the registry is used. Other «application paths» in the registry are always
read.

• If Python can’t find its home and there are no registry value (frozen .exe, some very strange installation setup)
you get a path with some default, but relative, paths.

For those who want to bundle Python into their application or distribution, the following advice will prevent conflicts
with other installations:

50 Capitolo 4. Using Python on Windows

Python Setup and Usage, Release 3.11.13

• Include a ._pth file alongside your executable containing the directories to include. This will ignore paths
listed in the registry and environment variables, and also ignore site unless import site is listed.

• If you are loading python3.dll or python37.dll in your own executable, explicitly call
Py_SetPath() or (at least) Py_SetProgramName() before Py_Initialize().

• Clear and/or overwrite PYTHONPATH and set PYTHONHOME before launching python.exe from your
application.

• If you cannot use the previous suggestions (for example, you are a distribution that allows people to run
python.exe directly), ensure that the landmark file (Lib\os.py) exists in your install directory. (Note
that it will not be detected inside a ZIP file, but a correctly named ZIP file will be detected instead.)

These will ensure that the files in a system-wide installation will not take precedence over the copy of the standard
library bundled with your application. Otherwise, your users may experience problems using your application. Note
that the first suggestion is the best, as the others may still be susceptible to non-standard paths in the registry and user
site-packages.

Cambiato nella versione 3.6: Add ._pth file support and removes applocal option from pyvenv.cfg.

Cambiato nella versione 3.6: Add pythonXX.zip as a potential landmark when directly adjacent to the executable.

Deprecato dalla versione 3.6: Modules specified in the registry under Modules (not PythonPath) may be impor-
ted by importlib.machinery.WindowsRegistryFinder. This finder is enabled on Windows in 3.6.0
and earlier, but may need to be explicitly added to sys.meta_path in the future.

4.10 Additional modules

Even though Python aims to be portable among all platforms, there are features that are unique toWindows. A couple
of modules, both in the standard library and external, and snippets exist to use these features.

The Windows-specific standard modules are documented in mswin-specific-services.

4.10.1 PyWin32

The PyWin32 module by Mark Hammond is a collection of modules for advanced Windows-specific support. This
includes utilities for:

• Component Object Model (COM)

• Win32 API calls

• Registry

• Event log

• Microsoft Foundation Classes (MFC) user interfaces

PythonWin is a sample MFC application shipped with PyWin32. It is an embeddable IDE with a built-in debugger.

Vedi anche:

Win32 How Do I…?
by Tim Golden

Python and COM
by David and Paul Boddie

4.10. Additional modules 51

https://pypi.org/project/pywin32
https://docs.microsoft.com/en-us/windows/win32/com/component-object-model--com--portal
https://docs.microsoft.com/en-us/cpp/mfc/mfc-desktop-applications
https://web.archive.org/web/20060524042422/https://www.python.org/windows/pythonwin/
http://timgolden.me.uk/python/win32_how_do_i.html
https://www.boddie.org.uk/python/COM.html

Python Setup and Usage, Release 3.11.13

4.10.2 cx_Freeze

cx_Freeze wraps Python scripts into executable Windows programs (*.exe files). When you have done this, you
can distribute your application without requiring your users to install Python.

4.11 Compiling Python on Windows

If you want to compile CPython yourself, first thing you should do is get the source. You can download either the
latest release’s source or just grab a fresh checkout.

The source tree contains a build solution and project files for Microsoft Visual Studio, which is the compiler used to
build the official Python releases. These files are in the PCbuild directory.

Check PCbuild/readme.txt for general information on the build process.

For extension modules, consult building-on-windows.

4.12 Other Platforms

With ongoing development of Python, some platforms that used to be supported earlier are no longer supported (due
to the lack of users or developers). Check PEP 11 for details on all unsupported platforms.

• Windows CE is no longer supported since Python 3 (if it ever was).

• The Cygwin installer offers to install the Python interpreter as well

See Python for Windows for detailed information about platforms with pre-compiled installers.

52 Capitolo 4. Using Python on Windows

https://cx-freeze.readthedocs.io/en/latest/
https://www.python.org/downloads/source/
https://devguide.python.org/setup/#get-the-source-code
https://peps.python.org/pep-0011/
https://pythonce.sourceforge.net/
https://github.com/python/cpython/issues/71542
https://cygwin.com/
https://cygwin.com/packages/summary/python3.html
https://www.python.org/downloads/windows/

CAPITOLO5

Using Python on a Mac

Author
Bob Savage <bobsavage@mac.com>

Python on a Mac running macOS is in principle very similar to Python on any other Unix platform, but there are a
number of additional features such as the integrated development environment (IDE) and the Package Manager that
are worth pointing out.

5.1 Getting and Installing Python

macOS used to come with Python 2.7 pre-installed between versions 10.8 and 12.3. You are invited to install the
most recent version of Python 3 from the Python website. A current «universal2 binary» build of Python, which runs
natively on the Mac’s new Apple Silicon and legacy Intel processors, is available there.

What you get after installing is a number of things:

• A Python 3.11 folder in your Applications folder. In here you find IDLE, the development envi-
ronment that is a standard part of official Python distributions; and Python Launcher, which handles
double-clicking Python scripts from the Finder.

• A framework /Library/Frameworks/Python.framework, which includes the Python executable
and libraries. The installer adds this location to your shell path. To uninstall Python, you can remove these
three things. A symlink to the Python executable is placed in /usr/local/bin/.

Nota: On macOS 10.8-12.3, the Apple-provided build of Python is installed in /System/Library/
Frameworks/Python.framework and /usr/bin/python, respectively. You should never modify or de-
lete these, as they are Apple-controlled and are used by Apple- or third-party software. Remember that if you choose
to install a newer Python version from python.org, you will have two different but functional Python installations on
your computer, so it will be important that your paths and usages are consistent with what you want to do.

IDLE includes a Help menu that allows you to access Python documentation. If you are completely new to Python
you should start reading the tutorial introduction in that document.

If you are familiar with Python on other Unix platforms you should read the section on running Python scripts from
the Unix shell.

53

mailto:bobsavage@mac.com
https://developer.apple.com/documentation/macos-release-notes/macos-12_3-release-notes#Python
https://www.python.org/downloads/macos/

Python Setup and Usage, Release 3.11.13

5.1.1 How to run a Python script

Your best way to get started with Python on macOS is through the IDLE integrated development environment; see
section The IDE and use the Help menu when the IDE is running.

If you want to run Python scripts from the Terminal window command line or from the Finder you first need an
editor to create your script. macOS comes with a number of standard Unix command line editors, vim nano among
them. If you want a more Mac-like editor, BBEdit from Bare Bones Software (see https://www.barebones.com/
products/bbedit/index.html) are good choices, as is TextMate (see https://macromates.com). Other editors include
MacVim (https://macvim.org) and Aquamacs (https://aquamacs.org).

To run your script from the Terminal window you must make sure that /usr/local/bin is in your shell search
path.

To run your script from the Finder you have two options:

• Drag it to Python Launcher.

• Select Python Launcher as the default application to open your script (or any .py script) through the
finder Info window and double-click it. Python Launcher has various preferences to control how your
script is launched. Option-dragging allows you to change these for one invocation, or use its Preferences menu
to change things globally.

5.1.2 Running scripts with a GUI

With older versions of Python, there is one macOS quirk that you need to be aware of: programs that talk to the Aqua
window manager (in other words, anything that has a GUI) need to be run in a special way. Use pythonw instead
of python to start such scripts.

With Python 3.9, you can use either python or pythonw.

5.1.3 Configuration

Python on macOS honors all standard Unix environment variables such as PYTHONPATH, but setting these variables
for programs started from the Finder is non-standard as the Finder does not read your .profile or .cshrc at
startup. You need to create a file ~/.MacOSX/environment.plist. See Apple’s Technical Q&AQA1067 for
details.

For more information on installation Python packages, see section Installing Additional Python Packages.

5.2 The IDE

Python ships with the standard IDLE development environment. A good introduction to using IDLE can be found at
https://www.hashcollision.org/hkn/python/idle_intro/index.html.

5.3 Installing Additional Python Packages

This section has moved to the Python Packaging User Guide.

54 Capitolo 5. Using Python on a Mac

https://www.barebones.com/products/bbedit/index.html
https://www.barebones.com/products/bbedit/index.html
https://macromates.com
https://macvim.org
https://aquamacs.org
https://developer.apple.com/library/archive/qa/qa1067/_index.html
https://www.hashcollision.org/hkn/python/idle_intro/index.html
https://packaging.python.org/en/latest/tutorials/installing-packages/

Python Setup and Usage, Release 3.11.13

5.4 GUI Programming

There are several options for building GUI applications on the Mac with Python.

PyObjC is a Python binding to Apple’s Objective-C/Cocoa framework, which is the foundation of most modern Mac
development. Information on PyObjC is available from https://pypi.org/project/pyobjc/.

The standard Python GUI toolkit istkinter, based on the cross-platform Tk toolkit (https://www.tcl.tk). AnAqua-
native version of Tk is bundled with OS X by Apple, and the latest version can be downloaded and installed from
https://www.activestate.com; it can also be built from source.

A number of alternative macOS GUI toolkits are available:

• PySide: Official Python bindings to the Qt GUI toolkit.

• PyQt: Alternative Python bindings to Qt.

• Kivy: A cross-platform GUI toolkit that supports desktop and mobile platforms.

• Toga: Part of the BeeWare Project; supports desktop, mobile, web and console apps.

• wxPython: A cross-platform toolkit that supports desktop operating systems.

5.5 Distributing Python Applications

A range of tools exist for converting your Python code into a standalone distributable application:

• py2app: Supports creating macOS .app bundles from a Python project.

• Briefcase: Part of the BeeWare Project; a cross-platform packaging tool that supports creation of.app bundles
on macOS, as well as managing signing and notarization.

• PyInstaller: A cross-platform packaging tool that creates a single file or folder as a distributable artifact.

5.6 Other Resources

The Pythonmac-SIG mailing list is an excellent support resource for Python users and developers on the Mac:

https://www.python.org/community/sigs/current/pythonmac-sig/

Another useful resource is the MacPython wiki:

https://wiki.python.org/moin/MacPython

5.4. GUI Programming 55

https://pypi.org/project/pyobjc/
https://www.tcl.tk
https://www.activestate.com
https://www.qt.io/qt-for-python
https://qt.io
https://riverbankcomputing.com/software/pyqt/intro
https://kivy.org
https://toga.readthedocs.io
https://beeware.org
https://www.wxpython.org
https://pypi.org/project/py2app/
https://briefcase.readthedocs.io
https://beeware.org
https://pyinstaller.org/
https://www.python.org/community/sigs/current/pythonmac-sig/
https://wiki.python.org/moin/MacPython

Python Setup and Usage, Release 3.11.13

56 Capitolo 5. Using Python on a Mac

CAPITOLO6

Editors and IDEs

There are a number of IDEs that support Python programming language. Many editors and IDEs provide syntax
highlighting, debugging tools, and PEP 8 checks.

Please go to Python Editors and Integrated Development Environments for a comprehensive list.

57

https://peps.python.org/pep-0008/
https://wiki.python.org/moin/PythonEditors
https://wiki.python.org/moin/IntegratedDevelopmentEnvironments

Python Setup and Usage, Release 3.11.13

58 Capitolo 6. Editors and IDEs

APPENDICEA

Glossary

>>>
The default Python prompt of the interactive shell. Often seen for code examples which can be executed
interactively in the interpreter.

...
Can refer to:

• The default Python prompt of the interactive shell when entering the code for an indented code block,
when within a pair of matching left and right delimiters (parentheses, square brackets, curly braces or
triple quotes), or after specifying a decorator.

• The Ellipsis built-in constant.

2to3
A tool that tries to convert Python 2.x code to Python 3.x code by handling most of the incompatibilities which
can be detected by parsing the source and traversing the parse tree.

2to3 is available in the standard library as lib2to3; a standalone entry point is provided as
Tools/scripts/2to3. See 2to3-reference.

abstract base class
Abstract base classes complement duck-typing by providing a way to define interfaces when other techniques
like hasattr()would be clumsy or subtly wrong (for example with magic methods). ABCs introduce virtual
subclasses, which are classes that don’t inherit from a class but are still recognized by isinstance() and
issubclass(); see the abc module documentation. Python comes with many built-in ABCs for data
structures (in the collections.abc module), numbers (in the numbers module), streams (in the io
module), import finders and loaders (in the importlib.abcmodule). You can create your own ABCs with
the abc module.

annotation
A label associated with a variable, a class attribute or a function parameter or return value, used by convention
as a type hint.

Annotations of local variables cannot be accessed at runtime, but annotations of global variables, class attribu-
tes, and functions are stored in the __annotations__ special attribute of modules, classes, and functions,
respectively.

See variable annotation, function annotation, PEP 484 and PEP 526, which describe this functionality. Also
see annotations-howto for best practices on working with annotations.

59

https://peps.python.org/pep-0484/
https://peps.python.org/pep-0526/

Python Setup and Usage, Release 3.11.13

argument
A value passed to a function (or method) when calling the function. There are two kinds of argument:

• keyword argument: an argument preceded by an identifier (e.g. name=) in a function call or passed as a
value in a dictionary preceded by **. For example, 3 and 5 are both keyword arguments in the following
calls to complex():

complex(real=3, imag=5)
complex(**{'real': 3, 'imag': 5})

• positional argument: an argument that is not a keyword argument. Positional arguments can appear at the
beginning of an argument list and/or be passed as elements of an iterable preceded by *. For example, 3
and 5 are both positional arguments in the following calls:

complex(3, 5)
complex(*(3, 5))

Arguments are assigned to the named local variables in a function body. See the calls section for the rules
governing this assignment. Syntactically, any expression can be used to represent an argument; the evaluated
value is assigned to the local variable.

See also the parameter glossary entry, the FAQ question on the difference between arguments and parameters,
and PEP 362.

asynchronous context manager
An object which controls the environment seen in an async with statement by defining __aenter__()
and __aexit__() methods. Introduced by PEP 492.

asynchronous generator
A function which returns an asynchronous generator iterator. It looks like a coroutine function defined with
async def except that it contains yield expressions for producing a series of values usable in an async
for loop.

Usually refers to an asynchronous generator function, but may refer to an asynchronous generator iterator in
some contexts. In cases where the intended meaning isn’t clear, using the full terms avoids ambiguity.

An asynchronous generator function may contain await expressions as well as async for, and async
with statements.

asynchronous generator iterator
An object created by a asynchronous generator function.

This is an asynchronous iterator which when called using the __anext__() method returns an awaitable
object which will execute the body of the asynchronous generator function until the next yield expression.

Each yield temporarily suspends processing, remembering the location execution state (including local va-
riables and pending try-statements). When the asynchronous generator iterator effectively resumes with another
awaitable returned by __anext__(), it picks up where it left off. See PEP 492 and PEP 525.

asynchronous iterable
An object, that can be used in an async for statement. Must return an asynchronous iterator from its
__aiter__() method. Introduced by PEP 492.

asynchronous iterator
An object that implements the __aiter__() and __anext__() methods. __anext__() must re-
turn an awaitable object. async for resolves the awaitables returned by an asynchronous iterator’s
__anext__() method until it raises a StopAsyncIteration exception. Introduced by PEP 492.

attribute
A value associated with an object which is usually referenced by name using dotted expressions. For example,
if an object o has an attribute a it would be referenced as o.a.

It is possible to give an object an attribute whose name is not an identifier as defined by identifiers, for example
using setattr(), if the object allows it. Such an attribute will not be accessible using a dotted expression,
and would instead need to be retrieved with getattr().

60 Appendice A. Glossary

https://peps.python.org/pep-0362/
https://peps.python.org/pep-0492/
https://peps.python.org/pep-0492/
https://peps.python.org/pep-0525/
https://peps.python.org/pep-0492/
https://peps.python.org/pep-0492/

Python Setup and Usage, Release 3.11.13

awaitable
An object that can be used in an await expression. Can be a coroutine or an object with an __await__()
method. See also PEP 492.

BDFL
Benevolent Dictator For Life, a.k.a. Guido van Rossum, Python’s creator.

binary file
A file object able to read and write bytes-like objects. Examples of binary files are files opened in bina-
ry mode ('rb', 'wb' or 'rb+'), sys.stdin.buffer, sys.stdout.buffer, and instances of
io.BytesIO and gzip.GzipFile.

See also text file for a file object able to read and write str objects.

borrowed reference
In Python’s C API, a borrowed reference is a reference to an object, where the code using the object does not
own the reference. It becomes a dangling pointer if the object is destroyed. For example, a garbage collection
can remove the last strong reference to the object and so destroy it.

Calling Py_INCREF() on the borrowed reference is recommended to convert it to a strong reference in-
place, except when the object cannot be destroyed before the last usage of the borrowed reference. The
Py_NewRef() function can be used to create a new strong reference.

bytes-like object
An object that supports the bufferobjects and can export a C-contiguous buffer. This includes all bytes,
bytearray, and array.array objects, as well as many common memoryview objects. Bytes-like ob-
jects can be used for various operations that work with binary data; these include compression, saving to a
binary file, and sending over a socket.

Some operations need the binary data to be mutable. The documentation often refers to these as «read-
write bytes-like objects». Example mutable buffer objects include bytearray and a memoryview of
a bytearray. Other operations require the binary data to be stored in immutable objects («read-only
bytes-like objects»); examples of these include bytes and a memoryview of a bytes object.

bytecode
Python source code is compiled into bytecode, the internal representation of a Python program in the CPython
interpreter. The bytecode is also cached in .pyc files so that executing the same file is faster the second time
(recompilation from source to bytecode can be avoided). This «intermediate language» is said to run on a
virtual machine that executes the machine code corresponding to each bytecode. Do note that bytecodes are
not expected to work between different Python virtual machines, nor to be stable between Python releases.

A list of bytecode instructions can be found in the documentation for the dis module.

callable
A callable is an object that can be called, possibly with a set of arguments (see argument), with the following
syntax:

callable(argument1, argument2, argumentN)

A function, and by extension amethod, is a callable. An instance of a class that implements the __call__()
method is also a callable.

callback
A subroutine function which is passed as an argument to be executed at some point in the future.

class
A template for creating user-defined objects. Class definitions normally contain method definitions which
operate on instances of the class.

class variable
A variable defined in a class and intended to be modified only at class level (i.e., not in an instance of the class).

complex number
An extension of the familiar real number system in which all numbers are expressed as a sum of a real part

61

https://peps.python.org/pep-0492/
https://gvanrossum.github.io/

Python Setup and Usage, Release 3.11.13

and an imaginary part. Imaginary numbers are real multiples of the imaginary unit (the square root of -1), of-
ten written i in mathematics or j in engineering. Python has built-in support for complex numbers, which are
written with this latter notation; the imaginary part is written with a j suffix, e.g., 3+1j. To get access to com-
plex equivalents of the mathmodule, use cmath. Use of complex numbers is a fairly advanced mathematical
feature. If you’re not aware of a need for them, it’s almost certain you can safely ignore them.

context manager
An object which controls the environment seen in a with statement by defining __enter__() and
__exit__() methods. See PEP 343.

context variable
A variable which can have different values depending on its context. This is similar to Thread-Local Storage in
which each execution thread may have a different value for a variable. However, with context variables, there
may be several contexts in one execution thread and the main usage for context variables is to keep track of
variables in concurrent asynchronous tasks. See contextvars.

contiguous
A buffer is considered contiguous exactly if it is either C-contiguous or Fortran contiguous. Zero-dimensional
buffers are C and Fortran contiguous. In one-dimensional arrays, the items must be laid out in memory next
to each other, in order of increasing indexes starting from zero. In multidimensional C-contiguous arrays, the
last index varies the fastest when visiting items in order of memory address. However, in Fortran contiguous
arrays, the first index varies the fastest.

coroutine
Coroutines are a more generalized form of subroutines. Subroutines are entered at one point and exited at ano-
ther point. Coroutines can be entered, exited, and resumed at many different points. They can be implemented
with the async def statement. See also PEP 492.

coroutine function
A function which returns a coroutine object. A coroutine function may be defined with the async def
statement, and may contain await, async for, and async with keywords. These were introduced by
PEP 492.

CPython
The canonical implementation of the Python programming language, as distributed on python.org. The
term «CPython» is used when necessary to distinguish this implementation from others such as Jython or
IronPython.

decorator
A function returning another function, usually applied as a function transformation using the @wrapper
syntax. Common examples for decorators are classmethod() and staticmethod().

The decorator syntax is merely syntactic sugar, the following two function definitions are semantically
equivalent:

def f(arg):
...

f = staticmethod(f)

@staticmethod
def f(arg):

...

The same concept exists for classes, but is less commonly used there. See the documentation for function
definitions and class definitions for more about decorators.

descriptor
Any object which defines the methods __get__(), __set__(), or __delete__(). When a class at-
tribute is a descriptor, its special binding behavior is triggered upon attribute lookup. Normally, using a.b to
get, set or delete an attribute looks up the object named b in the class dictionary for a, but if b is a descriptor,
the respective descriptor method gets called. Understanding descriptors is a key to a deep understanding of
Python because they are the basis for many features including functions, methods, properties, class methods,
static methods, and reference to super classes.

62 Appendice A. Glossary

https://peps.python.org/pep-0343/
https://peps.python.org/pep-0492/
https://peps.python.org/pep-0492/
https://www.python.org

Python Setup and Usage, Release 3.11.13

For more information about descriptors” methods, see descriptors or the Descriptor How To Guide.

dictionary
An associative array, where arbitrary keys are mapped to values. The keys can be any object with
__hash__() and __eq__() methods. Called a hash in Perl.

dictionary comprehension
A compact way to process all or part of the elements in an iterable and return a dictionary with the results.
results = {n: n ** 2 for n in range(10)} generates a dictionary containing key nmapped
to value n ** 2. See comprehensions.

dictionary view
The objects returned from dict.keys(), dict.values(), and dict.items() are called dictionary
views. They provide a dynamic view on the dictionary’s entries, which means that when the dictionary changes,
the view reflects these changes. To force the dictionary view to become a full list use list(dictview).
See dict-views.

docstring
A string literal which appears as the first expression in a class, function or module. While ignored when the
suite is executed, it is recognized by the compiler and put into the __doc__ attribute of the enclosing class,
function or module. Since it is available via introspection, it is the canonical place for documentation of the
object.

duck-typing
A programming style which does not look at an object’s type to determine if it has the right interface; in-
stead, the method or attribute is simply called or used («If it looks like a duck and quacks like a duck, it must
be a duck.») By emphasizing interfaces rather than specific types, well-designed code improves its flexibility
by allowing polymorphic substitution. Duck-typing avoids tests using type() or isinstance(). (No-
te, however, that duck-typing can be complemented with abstract base classes.) Instead, it typically employs
hasattr() tests or EAFP programming.

EAFP
Easier to ask for forgiveness than permission. This common Python coding style assumes the existence of valid
keys or attributes and catches exceptions if the assumption proves false. This clean and fast style is characterized
by the presence of many try and except statements. The technique contrasts with the LBYL style common
to many other languages such as C.

expression
A piece of syntax which can be evaluated to some value. In other words, an expression is an accumulation of
expression elements like literals, names, attribute access, operators or function calls which all return a value. In
contrast to many other languages, not all language constructs are expressions. There are also statements which
cannot be used as expressions, such as while. Assignments are also statements, not expressions.

extension module
A module written in C or C++, using Python’s C API to interact with the core and with user code.

f-string
String literals prefixed with 'f' or 'F' are commonly called «f-strings» which is short for formatted string
literals. See also PEP 498.

file object
An object exposing a file-oriented API (with methods such as read() or write()) to an underlying resour-
ce. Depending on the way it was created, a file object can mediate access to a real on-disk file or to another type
of storage or communication device (for example standard input/output, in-memory buffers, sockets, pipes,
etc.). File objects are also called file-like objects or streams.

There are actually three categories of file objects: raw binary files, buffered binary files and text files. Their
interfaces are defined in the io module. The canonical way to create a file object is by using the open()
function.

file-like object
A synonym for file object.

63

https://peps.python.org/pep-0498/

Python Setup and Usage, Release 3.11.13

filesystem encoding and error handler
Encoding and error handler used by Python to decode bytes from the operating system and encode Unicode to
the operating system.

The filesystem encoding must guarantee to successfully decode all bytes below 128. If the file system encoding
fails to provide this guarantee, API functions can raise UnicodeError.

The sys.getfilesystemencoding() and sys.getfilesystemencodeerrors() functions
can be used to get the filesystem encoding and error handler.

The filesystem encoding and error handler are configured at Python startup by the PyConfig_Read()
function: see filesystem_encoding and filesystem_errors members of PyConfig.

See also the locale encoding.

finder
An object that tries to find the loader for a module that is being imported.

Since Python 3.3, there are two types of finder: meta path finders for use with sys.meta_path, and path
entry finders for use with sys.path_hooks.

See PEP 302, PEP 420 and PEP 451 for much more detail.

floor division
Mathematical division that rounds down to nearest integer. The floor division operator is //. For example, the
expression 11 // 4 evaluates to 2 in contrast to the 2.75 returned by float true division. Note that (-11)
// 4 is -3 because that is -2.75 rounded downward. See PEP 238.

function
A series of statements which returns some value to a caller. It can also be passed zero or more arguments which
may be used in the execution of the body. See also parameter, method, and the function section.

function annotation
An annotation of a function parameter or return value.

Function annotations are usually used for type hints: for example, this function is expected to take two int
arguments and is also expected to have an int return value:

def sum_two_numbers(a: int, b: int) -> int:
return a + b

Function annotation syntax is explained in section function.

See variable annotation and PEP 484, which describe this functionality. Also see annotations-howto for best
practices on working with annotations.

__future__
A future statement, from __future__ import <feature>, directs the compiler to compile the
current module using syntax or semantics that will become standard in a future release of Python. The
__future__ module documents the possible values of feature. By importing this module and evaluating
its variables, you can see when a new feature was first added to the language and when it will (or did) become
the default:

>>> import __future__
>>> __future__.division
_Feature((2, 2, 0, 'alpha', 2), (3, 0, 0, 'alpha', 0), 8192)

garbage collection
The process of freeing memory when it is not used anymore. Python performs garbage collection via reference
counting and a cyclic garbage collector that is able to detect and break reference cycles. The garbage collector
can be controlled using the gc module.

generator
A function which returns a generator iterator. It looks like a normal function except that it contains yield
expressions for producing a series of values usable in a for-loop or that can be retrieved one at a time with the
next() function.

64 Appendice A. Glossary

https://peps.python.org/pep-0302/
https://peps.python.org/pep-0420/
https://peps.python.org/pep-0451/
https://peps.python.org/pep-0238/
https://peps.python.org/pep-0484/

Python Setup and Usage, Release 3.11.13

Usually refers to a generator function, but may refer to a generator iterator in some contexts. In cases where
the intended meaning isn’t clear, using the full terms avoids ambiguity.

generator iterator
An object created by a generator function.

Eachyield temporarily suspends processing, remembering the location execution state (including local varia-
bles and pending try-statements). When the generator iterator resumes, it picks up where it left off (in contrast
to functions which start fresh on every invocation).

generator expression
An expression that returns an iterator. It looks like a normal expression followed by a for clause defining a
loop variable, range, and an optional if clause. The combined expression generates values for an enclosing
function:

>>> sum(i*i for i in range(10)) # sum of squares 0, 1, 4, ... 81
285

generic function
A function composed of multiple functions implementing the same operation for different types. Which
implementation should be used during a call is determined by the dispatch algorithm.

See also the single dispatch glossary entry, the functools.singledispatch() decorator, and PEP
443.

generic type
A type that can be parameterized; typically a container class such as list or dict. Used for type hints and
annotations.

For more details, see generic alias types, PEP 483, PEP 484, PEP 585, and the typing module.

GIL
See global interpreter lock.

global interpreter lock
The mechanism used by the CPython interpreter to assure that only one thread executes Python bytecode at
a time. This simplifies the CPython implementation by making the object model (including critical built-in
types such as dict) implicitly safe against concurrent access. Locking the entire interpreter makes it easier
for the interpreter to be multi-threaded, at the expense of much of the parallelism afforded by multi-processor
machines.

However, some extension modules, either standard or third-party, are designed so as to release the GIL when
doing computationally intensive tasks such as compression or hashing. Also, the GIL is always released when
doing I/O.

Past efforts to create a «free-threaded» interpreter (one which locks shared data at a much finer granularity)
have not been successful because performance suffered in the common single-processor case. It is believed that
overcoming this performance issue would make the implementation much more complicated and therefore
costlier to maintain.

hash-based pyc
A bytecode cache file that uses the hash rather than the last-modified time of the corresponding source file to
determine its validity. See pyc-invalidation.

hashable
An object is hashable if it has a hash value which never changes during its lifetime (it needs a __hash__()
method), and can be compared to other objects (it needs an __eq__() method). Hashable objects which
compare equal must have the same hash value.

Hashability makes an object usable as a dictionary key and a set member, because these data structures use the
hash value internally.

Most of Python’s immutable built-in objects are hashable; mutable containers (such as lists or dictionaries)
are not; immutable containers (such as tuples and frozensets) are only hashable if their elements are hashable.

65

https://peps.python.org/pep-0443/
https://peps.python.org/pep-0443/
https://peps.python.org/pep-0483/
https://peps.python.org/pep-0484/
https://peps.python.org/pep-0585/

Python Setup and Usage, Release 3.11.13

Objects which are instances of user-defined classes are hashable by default. They all compare unequal (except
with themselves), and their hash value is derived from their id().

IDLE
An Integrated Development and Learning Environment for Python. idle is a basic editor and interpreter
environment which ships with the standard distribution of Python.

immutable
An object with a fixed value. Immutable objects include numbers, strings and tuples. Such an object cannot
be altered. A new object has to be created if a different value has to be stored. They play an important role in
places where a constant hash value is needed, for example as a key in a dictionary.

import path
A list of locations (or path entries) that are searched by the path based finder for modules to import. During
import, this list of locations usually comes from sys.path, but for subpackages it may also come from the
parent package’s __path__ attribute.

importing
The process by which Python code in one module is made available to Python code in another module.

importer
An object that both finds and loads a module; both a finder and loader object.

interactive
Python has an interactive interpreter which means you can enter statements and expressions at the interpreter
prompt, immediately execute them and see their results. Just launch python with no arguments (possibly by
selecting it from your computer’s main menu). It is a very powerful way to test out new ideas or inspect modules
and packages (remember help(x)).

interpreted
Python is an interpreted language, as opposed to a compiled one, though the distinction can be blurry because
of the presence of the bytecode compiler. This means that source files can be run directly without explicitly
creating an executable which is then run. Interpreted languages typically have a shorter development/debug
cycle than compiled ones, though their programs generally also run more slowly. See also interactive.

interpreter shutdown
When asked to shut down, the Python interpreter enters a special phase where it gradually releases all allocated
resources, such as modules and various critical internal structures. It also makes several calls to the garbage
collector. This can trigger the execution of code in user-defined destructors or weakref callbacks. Code executed
during the shutdown phase can encounter various exceptions as the resources it relies on may not function
anymore (common examples are library modules or the warnings machinery).

The main reason for interpreter shutdown is that the __main__ module or the script being run has finished
executing.

iterable
An object capable of returning its members one at a time. Examples of iterables include all sequence types (such
as list, str, and tuple) and some non-sequence types like dict, file objects, and objects of any classes
you define with an __iter__() method or with a __getitem__() method that implements sequence
semantics.

Iterables can be used in a for loop and in many other places where a sequence is needed (zip(), map(),
…). When an iterable object is passed as an argument to the built-in function iter(), it returns an iterator
for the object. This iterator is good for one pass over the set of values. When using iterables, it is usually not
necessary to call iter() or deal with iterator objects yourself. The for statement does that automatically for
you, creating a temporary unnamed variable to hold the iterator for the duration of the loop. See also iterator,
sequence, and generator.

iterator
An object representing a stream of data. Repeated calls to the iterator’s __next__() method (or passing
it to the built-in function next()) return successive items in the stream. When no more data are available
a StopIteration exception is raised instead. At this point, the iterator object is exhausted and any fur-
ther calls to its __next__() method just raise StopIteration again. Iterators are required to have an
__iter__() method that returns the iterator object itself so every iterator is also iterable and may be used

66 Appendice A. Glossary

Python Setup and Usage, Release 3.11.13

in most places where other iterables are accepted. One notable exception is code which attempts multiple ite-
ration passes. A container object (such as a list) produces a fresh new iterator each time you pass it to the
iter() function or use it in a for loop. Attempting this with an iterator will just return the same exhausted
iterator object used in the previous iteration pass, making it appear like an empty container.

More information can be found in typeiter.

Dettaglio dell’implementazione di CPython: CPython does not consistently apply the requirement that an
iterator define __iter__().

key function
A key function or collation function is a callable that returns a value used for sorting or ordering. For example,
locale.strxfrm() is used to produce a sort key that is aware of locale specific sort conventions.

A number of tools in Python accept key functions to control how elements are ordered or grouped. They
include min(), max(), sorted(), list.sort(), heapq.merge(), heapq.nsmallest(),
heapq.nlargest(), and itertools.groupby().

There are several ways to create a key function. For example. the str.lower() method can serve as a key
function for case insensitive sorts. Alternatively, a key function can be built from a lambda expression such
as lambda r: (r[0], r[2]). Also, operator.attrgetter(), operator.itemgetter(),
and operator.methodcaller() are three key function constructors. See the Sorting HOW TO for
examples of how to create and use key functions.

keyword argument
See argument.

lambda
An anonymous inline function consisting of a single expression which is evaluated when the function is called.
The syntax to create a lambda function is lambda [parameters]: expression

LBYL
Look before you leap. This coding style explicitly tests for pre-conditions before making calls or lookups. This
style contrasts with the EAFP approach and is characterized by the presence of many if statements.

In a multi-threaded environment, the LBYL approach can risk introducing a race condition between «the
looking» and «the leaping». For example, the code, if key in mapping: return mapping[key]
can fail if another thread removes key from mapping after the test, but before the lookup. This issue can be
solved with locks or by using the EAFP approach.

list
A built-in Python sequence. Despite its name it is more akin to an array in other languages than to a linked list
since access to elements is O(1).

list comprehension
A compact way to process all or part of the elements in a sequence and return a list with the results. result =
['{:#04x}'.format(x) for x in range(256) if x % 2 == 0] generates a list of strings
containing even hex numbers (0x..) in the range from 0 to 255. The if clause is optional. If omitted, all
elements in range(256) are processed.

loader
An object that loads a module. It must define a method named load_module(). A loader is typically
returned by a finder. See PEP 302 for details and importlib.abc.Loader for an abstract base class.

locale encoding
On Unix, it is the encoding of the LC_CTYPE locale. It can be set with locale.setlocale(locale.
LC_CTYPE, new_locale).

On Windows, it is the ANSI code page (ex: "cp1252").

On Android and VxWorks, Python uses "utf-8" as the locale encoding.

locale.getencoding() can be used to get the locale encoding.

See also the filesystem encoding and error handler.

67

https://peps.python.org/pep-0302/

Python Setup and Usage, Release 3.11.13

magic method
An informal synonym for special method.

mapping
A container object that supports arbitrary key lookups and implements the methods specified in
the collections.abc.Mapping or collections.abc.MutableMapping abstract base clas-
ses. Examples include dict, collections.defaultdict, collections.OrderedDict and
collections.Counter.

meta path finder
A finder returned by a search of sys.meta_path. Meta path finders are related to, but different from path
entry finders.

See importlib.abc.MetaPathFinder for the methods that meta path finders implement.

metaclass
The class of a class. Class definitions create a class name, a class dictionary, and a list of base classes. The
metaclass is responsible for taking those three arguments and creating the class. Most object oriented pro-
gramming languages provide a default implementation. What makes Python special is that it is possible to
create custom metaclasses. Most users never need this tool, but when the need arises, metaclasses can provide
powerful, elegant solutions. They have been used for logging attribute access, adding thread-safety, tracking
object creation, implementing singletons, and many other tasks.

More information can be found in metaclasses.

method
A function which is defined inside a class body. If called as an attribute of an instance of that class, the method
will get the instance object as its first argument (which is usually called self). See function and nested scope.

method resolution order
Method Resolution Order is the order in which base classes are searched for a member during lookup. See The
Python 2.3 Method Resolution Order for details of the algorithm used by the Python interpreter since the 2.3
release.

module
An object that serves as an organizational unit of Python code. Modules have a namespace containing arbitrary
Python objects. Modules are loaded into Python by the process of importing.

See also package.

module spec
A namespace containing the import-related information used to load a module. An instance of importlib.
machinery.ModuleSpec.

MRO
See method resolution order.

mutable
Mutable objects can change their value but keep their id(). See also immutable.

named tuple
The term «named tuple» applies to any type or class that inherits from tuple and whose indexable elements are
also accessible using named attributes. The type or class may have other features as well.

Several built-in types are named tuples, including the values returned by time.localtime() and os.
stat(). Another example is sys.float_info:

>>> sys.float_info[1] # indexed access
1024
>>> sys.float_info.max_exp # named field access
1024
>>> isinstance(sys.float_info, tuple) # kind of tuple
True

Some named tuples are built-in types (such as the above examples). Alternatively, a named tuple can be created
from a regular class definition that inherits from tuple and that defines named fields. Such a class can be

68 Appendice A. Glossary

https://www.python.org/download/releases/2.3/mro/
https://www.python.org/download/releases/2.3/mro/

Python Setup and Usage, Release 3.11.13

written by hand, or it can be created by inheriting typing.NamedTuple, or with the factory function
collections.namedtuple(). The latter techniques also add some extra methods that may not be found
in hand-written or built-in named tuples.

namespace
The place where a variable is stored. Namespaces are implemented as dictionaries. There are the local, global
and built-in namespaces as well as nested namespaces in objects (in methods). Namespaces support modularity
by preventing naming conflicts. For instance, the functions builtins.open and os.open() are distin-
guished by their namespaces. Namespaces also aid readability and maintainability by making it clear which
module implements a function. For instance, writing random.seed() or itertools.islice()makes
it clear that those functions are implemented by the random and itertools modules, respectively.

namespace package
A PEP 420 package which serves only as a container for subpackages. Namespace packages may have no
physical representation, and specifically are not like a regular package because they have no __init__.py
file.

See also module.

nested scope
The ability to refer to a variable in an enclosing definition. For instance, a function defined inside another
function can refer to variables in the outer function. Note that nested scopes by default work only for reference
and not for assignment. Local variables both read and write in the innermost scope. Likewise, global variables
read and write to the global namespace. The nonlocal allows writing to outer scopes.

new-style class
Old name for the flavor of classes now used for all class objects. In earlier Python versions, only
new-style classes could use Python’s newer, versatile features like __slots__, descriptors, properties,
__getattribute__(), class methods, and static methods.

object
Any data with state (attributes or value) and defined behavior (methods). Also the ultimate base class of any
new-style class.

package
APythonmodulewhich can contain submodules or recursively, subpackages. Technically, a package is a Python
module with a __path__ attribute.

See also regular package and namespace package.

parameter
A named entity in a function (or method) definition that specifies an argument (or in some cases, arguments)
that the function can accept. There are five kinds of parameter:

• positional-or-keyword: specifies an argument that can be passed either positionally or as a keyword
argument. This is the default kind of parameter, for example foo and bar in the following:

def func(foo, bar=None): ...

• positional-only: specifies an argument that can be supplied only by position. Positional-only parameters
can be defined by including a / character in the parameter list of the function definition after them, for
example posonly1 and posonly2 in the following:

def func(posonly1, posonly2, /, positional_or_keyword): ...

• keyword-only: specifies an argument that can be supplied only by keyword. Keyword-only parameters can
be defined by including a single var-positional parameter or bare * in the parameter list of the function
definition before them, for example kw_only1 and kw_only2 in the following:

def func(arg, *, kw_only1, kw_only2): ...

• var-positional: specifies that an arbitrary sequence of positional arguments can be provided (in addition
to any positional arguments already accepted by other parameters). Such a parameter can be defined by
prepending the parameter name with *, for example args in the following:

69

https://peps.python.org/pep-0420/

Python Setup and Usage, Release 3.11.13

def func(*args, **kwargs): ...

• var-keyword: specifies that arbitrarily many keyword arguments can be provided (in addition to any key-
word arguments already accepted by other parameters). Such a parameter can be defined by prepending
the parameter name with **, for example kwargs in the example above.

Parameters can specify both optional and required arguments, as well as default values for some optional
arguments.

See also the argument glossary entry, the FAQ question on the difference between arguments and parameters,
the inspect.Parameter class, the function section, and PEP 362.

path entry
A single location on the import path which the path based finder consults to find modules for importing.

path entry finder
A finder returned by a callable on sys.path_hooks (i.e. a path entry hook) which knows how to locate
modules given a path entry.

See importlib.abc.PathEntryFinder for the methods that path entry finders implement.

path entry hook
A callable on the sys.path_hooks list which returns a path entry finder if it knows how to find modules
on a specific path entry.

path based finder
One of the default meta path finders which searches an import path for modules.

path-like object
An object representing a file system path. A path-like object is either a str or bytes object representing a
path, or an object implementing the os.PathLike protocol. An object that supports the os.PathLike
protocol can be converted to a str or bytes file system path by calling the os.fspath() function; os.
fsdecode() and os.fsencode() can be used to guarantee a str or bytes result instead, respectively.
Introduced by PEP 519.

PEP
Python Enhancement Proposal. A PEP is a design document providing information to the Python community,
or describing a new feature for Python or its processes or environment. PEPs should provide a concise technical
specification and a rationale for proposed features.

PEPs are intended to be the primary mechanisms for proposing major new features, for collecting community
input on an issue, and for documenting the design decisions that have gone into Python. The PEP author is
responsible for building consensus within the community and documenting dissenting opinions.

See PEP 1.

portion
A set of files in a single directory (possibly stored in a zip file) that contribute to a namespace package, as
defined in PEP 420.

positional argument
See argument.

provisional API
A provisional API is one which has been deliberately excluded from the standard library’s backwards com-
patibility guarantees. While major changes to such interfaces are not expected, as long as they are marked
provisional, backwards incompatible changes (up to and including removal of the interface) may occur if dee-
med necessary by core developers. Such changes will not be made gratuitously – they will occur only if serious
fundamental flaws are uncovered that were missed prior to the inclusion of the API.

Even for provisional APIs, backwards incompatible changes are seen as a «solution of last resort» - every
attempt will still be made to find a backwards compatible resolution to any identified problems.

This process allows the standard library to continue to evolve over time, without locking in problematic design
errors for extended periods of time. See PEP 411 for more details.

70 Appendice A. Glossary

https://peps.python.org/pep-0362/
https://peps.python.org/pep-0519/
https://peps.python.org/pep-0001/
https://peps.python.org/pep-0420/
https://peps.python.org/pep-0411/

Python Setup and Usage, Release 3.11.13

provisional package
See provisional API.

Python 3000
Nickname for the Python 3.x release line (coined long ago when the release of version 3 was something in the
distant future.) This is also abbreviated «Py3k».

Pythonic
An idea or piece of code which closely follows the most common idioms of the Python language, rather than
implementing code using concepts common to other languages. For example, a common idiom in Python is
to loop over all elements of an iterable using a for statement. Many other languages don’t have this type of
construct, so people unfamiliar with Python sometimes use a numerical counter instead:

for i in range(len(food)):
print(food[i])

As opposed to the cleaner, Pythonic method:

for piece in food:
print(piece)

qualified name
A dotted name showing the «path» from a module’s global scope to a class, function or method defined in that
module, as defined in PEP 3155. For top-level functions and classes, the qualified name is the same as the
object’s name:

>>> class C:
... class D:
... def meth(self):
... pass
...
>>> C.__qualname__
'C'
>>> C.D.__qualname__
'C.D'
>>> C.D.meth.__qualname__
'C.D.meth'

When used to refer to modules, the fully qualified name means the entire dotted path to the module, including
any parent packages, e.g. email.mime.text:

>>> import email.mime.text
>>> email.mime.text.__name__
'email.mime.text'

reference count
The number of references to an object. When the reference count of an object drops to zero, it is deallocated.
Reference counting is generally not visible to Python code, but it is a key element of the CPython implementa-
tion. Programmers can call the sys.getrefcount() function to return the reference count for a particular
object.

regular package
A traditional package, such as a directory containing an __init__.py file.

See also namespace package.

__slots__
A declaration inside a class that saves memory by pre-declaring space for instance attributes and eliminating
instance dictionaries. Though popular, the technique is somewhat tricky to get right and is best reserved for
rare cases where there are large numbers of instances in a memory-critical application.

sequence
An iterable which supports efficient element access using integer indices via the __getitem__() spe-

71

https://peps.python.org/pep-3155/

Python Setup and Usage, Release 3.11.13

cial method and defines a __len__() method that returns the length of the sequence. Some built-in se-
quence types are list, str, tuple, and bytes. Note that dict also supports __getitem__() and
__len__(), but is considered a mapping rather than a sequence because the lookups use arbitrary immutable
keys rather than integers.

The collections.abc.Sequence abstract base class defines a much richer interface that goes
beyond just __getitem__() and __len__(), adding count(), index(), __contains__(),
and __reversed__(). Types that implement this expanded interface can be registered explicitly using
register(). For more documentation on sequence methods generally, see Common Sequence Operations.

set comprehension
A compact way to process all or part of the elements in an iterable and return a set with the results.
results = {c for c in 'abracadabra' if c not in 'abc'} generates the set of strings
{'r', 'd'}. See comprehensions.

single dispatch
A form of generic function dispatch where the implementation is chosen based on the type of a single argument.

slice
An object usually containing a portion of a sequence. A slice is created using the subscript notation, []
with colons between numbers when several are given, such as in variable_name[1:3:5]. The bracket
(subscript) notation uses slice objects internally.

special method
A method that is called implicitly by Python to execute a certain operation on a type, such as addition.
Such methods have names starting and ending with double underscores. Special methods are documented
in specialnames.

statement
A statement is part of a suite (a «block» of code). A statement is either an expression or one of several constructs
with a keyword, such as if, while or for.

static type checker
An external tool that reads Python code and analyzes it, looking for issues such as incorrect types. See also
type hints and the typing module.

strong reference
In Python’s C API, a strong reference is a reference to an object which is owned by the code holding the
reference. The strong reference is taken by calling Py_INCREF() when the reference is created and released
with Py_DECREF() when the reference is deleted.

The Py_NewRef() function can be used to create a strong reference to an object. Usually, the
Py_DECREF() function must be called on the strong reference before exiting the scope of the strong
reference, to avoid leaking one reference.

See also borrowed reference.

text encoding
A string in Python is a sequence of Unicode code points (in range U+0000–U+10FFFF). To store or transfer
a string, it needs to be serialized as a sequence of bytes.

Serializing a string into a sequence of bytes is known as «encoding», and recreating the string from the sequence
of bytes is known as «decoding».

There are a variety of different text serialization codecs, which are collectively referred to as «text encodings».

text file
A file object able to read and write str objects. Often, a text file actually accesses a byte-oriented datastream
and handles the text encoding automatically. Examples of text files are files opened in text mode ('r' or 'w'),
sys.stdin, sys.stdout, and instances of io.StringIO.

See also binary file for a file object able to read and write bytes-like objects.

triple-quoted string
A string which is bound by three instances of either a quotation mark (») or an apostrophe (“). While they don’t
provide any functionality not available with single-quoted strings, they are useful for a number of reasons. They

72 Appendice A. Glossary

Python Setup and Usage, Release 3.11.13

allow you to include unescaped single and double quotes within a string and they can spanmultiple lines without
the use of the continuation character, making them especially useful when writing docstrings.

type
The type of a Python object determines what kind of object it is; every object has a type. An object’s type is
accessible as its __class__ attribute or can be retrieved with type(obj).

type alias
A synonym for a type, created by assigning the type to an identifier.

Type aliases are useful for simplifying type hints. For example:

def remove_gray_shades(
colors: list[tuple[int, int, int]]) -> list[tuple[int, int, int]]:

pass

could be made more readable like this:

Color = tuple[int, int, int]

def remove_gray_shades(colors: list[Color]) -> list[Color]:
pass

See typing and PEP 484, which describe this functionality.

type hint
An annotation that specifies the expected type for a variable, a class attribute, or a function parameter or return
value.

Type hints are optional and are not enforced by Python but they are useful to static type checkers. They can
also aid IDEs with code completion and refactoring.

Type hints of global variables, class attributes, and functions, but not local variables, can be accessed using
typing.get_type_hints().

See typing and PEP 484, which describe this functionality.

universal newlines
A manner of interpreting text streams in which all of the following are recognized as ending a line: the Unix
end-of-line convention '\n', the Windows convention '\r\n', and the old Macintosh convention '\r'.
See PEP 278 and PEP 3116, as well as bytes.splitlines() for an additional use.

variable annotation
An annotation of a variable or a class attribute.

When annotating a variable or a class attribute, assignment is optional:

class C:
field: 'annotation'

Variable annotations are usually used for type hints: for example this variable is expected to take int values:

count: int = 0

Variable annotation syntax is explained in section annassign.

See function annotation, PEP 484 andPEP 526, which describe this functionality. Also see annotations-howto
for best practices on working with annotations.

virtual environment
A cooperatively isolated runtime environment that allows Python users and applications to install and upgrade
Python distribution packages without interfering with the behaviour of other Python applications running on
the same system.

See also venv.

73

https://peps.python.org/pep-0484/
https://peps.python.org/pep-0484/
https://peps.python.org/pep-0278/
https://peps.python.org/pep-3116/
https://peps.python.org/pep-0484/
https://peps.python.org/pep-0526/

Python Setup and Usage, Release 3.11.13

virtual machine
A computer defined entirely in software. Python’s virtual machine executes the bytecode emitted by the
bytecode compiler.

Zen of Python
Listing of Python design principles and philosophies that are helpful in understanding and using the language.
The listing can be found by typing «import this» at the interactive prompt.

74 Appendice A. Glossary

APPENDICEB

Riguardo questa documentazione

Questi documenti sono stati generati da Sphinx a partire da sorgenti reStructuredText, un elaboratore di documenti
appositamente scritto per la documentazione di Python.

Lo sviluppo della documentazione e della sua toolchain è uno lavoro svolto esclusivamente da volontari, proprio come
lo stesso Python. Se si desidera contribuire, si prega di dare un’occhiata alla pagina reporting-bugs per avere maggiori
informazioni su come farlo. Nuovi volontari sono sempre i benvenuti!

Molte grazie a:

• Fred L. Drake, Jr., il creatore del software per generare documentazione Python e scrittore di gran parte del
contenuto;

• the Docutils project for creating reStructuredText and the Docutils suite;

• Fredrik Lundh for his Alternative Python Reference project from which Sphinx got many good ideas.

B.1 Volontari che hanno contribuito alla documentazione di Python

Molte persone hanno contribuito a scrivere il linguaggio Python, la libreria standard di Python e la documentazione
di Python. Per conoscere un elenco parziale dei volontari è possibile visitare la pagina Misc/ACKS, presente nel
codice sorgente della distribuzione Python.

È solo con il contributo dei membri della comunità di Python che Python ha una documentazione così meravigliosa
— Grazie!

75

https://www.sphinx-doc.org/
https://docutils.sourceforge.io/rst.html
https://docutils.sourceforge.io/
https://github.com/python/cpython/tree/3.11/Misc/ACKS

Python Setup and Usage, Release 3.11.13

76 Appendice B. Riguardo questa documentazione

APPENDICEC

Storia e licenza

C.1 Storia del software

Python è stato creato all’inizio degli anni “90 da Guido van Rossum allo Stichting Mathematisch Centrum (CWI,
https://www.cwi.nl/) nei Paesi Bassi a partire dal linguaggio ABC. Guido rimane l’autore principale di Python, anche
se questo include molti contributi da parte di altre persone.

Nel 1995 Guido ha continuato il suo lavoro su Python presso la Corporation for National Research Initiatives (CNRI,
vedi https://www.cnri.reston.va.us/) a Reston, Virginia, dove ha rilasciato diverse versioni del software.

In May 2000, Guido and the Python core development team moved to BeOpen.com to form the BeOpen Python-
Labs team. In October of the same year, the PythonLabs team moved to Digital Creations (now Zope Corporation;
see https://www.zope.org/). In 2001, the Python Software Foundation (PSF, see https://www.python.org/psf/) was
formed, a non-profit organization created specifically to own Python-related Intellectual Property. Zope Corporation
is a sponsoring member of the PSF.

Tutte le versioni di Python sono Open Source (vedi https://opensource.org/ per la definizione di Open Source).
Storicamente la maggior parte, ma non tutte, le versioni di Python sono state compatibili con la GPL; la tabella
seguente riassume le varie versioni.

Rilascio Derivato da Anno Proprietario Compatibile con la GPL?

Da 0.9.0 a 1.2 n/d 1991-1995 CWI sì
Da 1.3 a 1.5.2 1.2 1995-1999 CNRI sì
1.6 1.5.2 2000 CNRI no
2.0 1.6 2000 BeOpen.com no
1.6.1 1.6 2001 CNRI no
2.1 2.0+1.6.1 2001 PSF no
2.0.1 2.0+1.6.1 2001 PSF sì
2.1.1 2.1+2.0.1 2001 PSF sì
2.1.2 2.1.1 2002 PSF sì
2.1.3 2.1.2 2002 PSF sì
2.2 e superiori 2.1.1 2001-adesso PSF sì

Nota: GPL-compatibile non significa che stiamo distribuendo Python sotto la GPL. Tutte le licenze Python, a
differenza della GPL, consentono di distribuire una versione modificata senza rendere le modifiche open source. Le

77

https://www.cwi.nl/
https://www.cnri.reston.va.us/
https://www.zope.org/
https://www.python.org/psf/
https://opensource.org/

Python Setup and Usage, Release 3.11.13

licenze compatibili con la GPL permettono di combinare Python con altri software rilasciati sotto la GPL; le altre
no.

Grazie ai tanti volontari esterni che hanno lavorato sotto la direzione di Guido per rendere possibili queste release.

C.2 Termini e condizioni di accesso o di utilizzo di Python

Python software and documentation are licensed under the PSF License Agreement.

Starting with Python 3.8.6, examples, recipes, and other code in the documentation are dual licensed under the PSF
License Agreement and the Zero-Clause BSD license.

Some software incorporated into Python is under different licenses. The licenses are listed with code falling under
that license. See Licenze e riconoscimenti per il software incorporato for an incomplete list of these licenses.

C.2.1 PSF ACCORDO DI LICENZA PER PYTHON 3.11.13

1. This LICENSE AGREEMENT is between the Python Software Foundation␣
↪→("PSF"), and

the Individual or Organization ("Licensee") accessing and otherwise␣
↪→using Python

3.11.13 software in source or binary form and its associated␣
↪→documentation.

2. Subject to the terms and conditions of this License Agreement, PSF␣
↪→hereby

grants Licensee a nonexclusive, royalty-free, world-wide license to␣
↪→reproduce,

analyze, test, perform and/or display publicly, prepare derivative␣
↪→works,

distribute, and otherwise use Python 3.11.13 alone or in any derivative
version, provided, however, that PSF's License Agreement and PSF's␣

↪→notice of
copyright, i.e., "Copyright © 2001-2023 Python Software Foundation; All␣

↪→Rights
Reserved" are retained in Python 3.11.13 alone or in any derivative␣

↪→version
prepared by Licensee.

3. In the event Licensee prepares a derivative work that is based on or
incorporates Python 3.11.13 or any part thereof, and wants to make the
derivative work available to others as provided herein, then Licensee␣

↪→hereby
agrees to include in any such work a brief summary of the changes made␣

↪→to Python
3.11.13.

4. PSF is making Python 3.11.13 available to Licensee on an "AS IS" basis.
PSF MAKES NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY␣

↪→OF
EXAMPLE, BUT NOT LIMITATION, PSF MAKES NO AND DISCLAIMS ANY␣

↪→REPRESENTATION OR
WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR␣

↪→THAT THE
USE OF PYTHON 3.11.13 WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

78 Appendice C. Storia e licenza

Python Setup and Usage, Release 3.11.13

5. PSF SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF PYTHON 3.11.13
FOR ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A␣

↪→RESULT OF
MODIFYING, DISTRIBUTING, OR OTHERWISE USING PYTHON 3.11.13, OR ANY␣

↪→DERIVATIVE
THEREOF, EVEN IF ADVISED OF THE POSSIBILITY THEREOF.

6. This License Agreement will automatically terminate upon a material␣
↪→breach of

its terms and conditions.

7. Nothing in this License Agreement shall be deemed to create any␣
↪→relationship

of agency, partnership, or joint venture between PSF and Licensee. ␣
↪→This License

Agreement does not grant permission to use PSF trademarks or trade name␣
↪→in a

trademark sense to endorse or promote products or services of Licensee,␣
↪→or any

third party.

8. By copying, installing or otherwise using Python 3.11.13, Licensee␣
↪→agrees

to be bound by the terms and conditions of this License Agreement.

C.2.2 CONTRATTO DI LICENZA DI BEOPEN.COM PER PYTHON 2.0

BEOPEN PYTHON OPEN SOURCE LICENSE AGREEMENT VERSION 1

1. This LICENSE AGREEMENT is between BeOpen.com ("BeOpen"), having an office at
160 Saratoga Avenue, Santa Clara, CA 95051, and the Individual or Organization
("Licensee") accessing and otherwise using this software in source or binary
form and its associated documentation ("the Software").

2. Subject to the terms and conditions of this BeOpen Python License Agreement,
BeOpen hereby grants Licensee a non-exclusive, royalty-free, world-wide license
to reproduce, analyze, test, perform and/or display publicly, prepare derivative
works, distribute, and otherwise use the Software alone or in any derivative
version, provided, however, that the BeOpen Python License is retained in the
Software, alone or in any derivative version prepared by Licensee.

3. BeOpen is making the Software available to Licensee on an "AS IS" basis.
BEOPEN MAKES NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF
EXAMPLE, BUT NOT LIMITATION, BEOPEN MAKES NO AND DISCLAIMS ANY REPRESENTATION OR
WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE
USE OF THE SOFTWARE WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

4. BEOPEN SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF THE SOFTWARE FOR
ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT OF USING,
MODIFYING OR DISTRIBUTING THE SOFTWARE, OR ANY DERIVATIVE THEREOF, EVEN IF
ADVISED OF THE POSSIBILITY THEREOF.

5. This License Agreement will automatically terminate upon a material breach of
its terms and conditions.

6. This License Agreement shall be governed by and interpreted in all respects
by the law of the State of California, excluding conflict of law provisions.
Nothing in this License Agreement shall be deemed to create any relationship of
agency, partnership, or joint venture between BeOpen and Licensee. This License

(continues on next page)

C.2. Termini e condizioni di accesso o di utilizzo di Python 79

Python Setup and Usage, Release 3.11.13

(continua dalla pagina precedente)

Agreement does not grant permission to use BeOpen trademarks or trade names in a
trademark sense to endorse or promote products or services of Licensee, or any
third party. As an exception, the "BeOpen Python" logos available at
http://www.pythonlabs.com/logos.html may be used according to the permissions
granted on that web page.

7. By copying, installing or otherwise using the software, Licensee agrees to be
bound by the terms and conditions of this License Agreement.

C.2.3 CNRI CONTRATTO DI LICENZA PER PYTHON 1.6.1

1. This LICENSE AGREEMENT is between the Corporation for National Research
Initiatives, having an office at 1895 Preston White Drive, Reston, VA 20191
("CNRI"), and the Individual or Organization ("Licensee") accessing and
otherwise using Python 1.6.1 software in source or binary form and its
associated documentation.

2. Subject to the terms and conditions of this License Agreement, CNRI hereby
grants Licensee a nonexclusive, royalty-free, world-wide license to reproduce,
analyze, test, perform and/or display publicly, prepare derivative works,
distribute, and otherwise use Python 1.6.1 alone or in any derivative version,
provided, however, that CNRI's License Agreement and CNRI's notice of copyright,
i.e., "Copyright © 1995-2001 Corporation for National Research Initiatives; All
Rights Reserved" are retained in Python 1.6.1 alone or in any derivative version
prepared by Licensee. Alternately, in lieu of CNRI's License Agreement,
Licensee may substitute the following text (omitting the quotes): "Python 1.6.1
is made available subject to the terms and conditions in CNRI's License
Agreement. This Agreement together with Python 1.6.1 may be located on the
internet using the following unique, persistent identifier (known as a handle):
1895.22/1013. This Agreement may also be obtained from a proxy server on the
internet using the following URL: http://hdl.handle.net/1895.22/1013."

3. In the event Licensee prepares a derivative work that is based on or
incorporates Python 1.6.1 or any part thereof, and wants to make the derivative
work available to others as provided herein, then Licensee hereby agrees to
include in any such work a brief summary of the changes made to Python 1.6.1.

4. CNRI is making Python 1.6.1 available to Licensee on an "AS IS" basis. CNRI
MAKES NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF EXAMPLE,
BUT NOT LIMITATION, CNRI MAKES NO AND DISCLAIMS ANY REPRESENTATION OR WARRANTY
OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE USE OF
PYTHON 1.6.1 WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

5. CNRI SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF PYTHON 1.6.1 FOR
ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT OF
MODIFYING, DISTRIBUTING, OR OTHERWISE USING PYTHON 1.6.1, OR ANY DERIVATIVE
THEREOF, EVEN IF ADVISED OF THE POSSIBILITY THEREOF.

6. This License Agreement will automatically terminate upon a material breach of
its terms and conditions.

7. This License Agreement shall be governed by the federal intellectual property
law of the United States, including without limitation the federal copyright
law, and, to the extent such U.S. federal law does not apply, by the law of the
Commonwealth of Virginia, excluding Virginia's conflict of law provisions.
Notwithstanding the foregoing, with regard to derivative works based on Python
1.6.1 that incorporate non-separable material that was previously distributed
under the GNU General Public License (GPL), the law of the Commonwealth of
Virginia shall govern this License Agreement only as to issues arising under or

(continues on next page)

80 Appendice C. Storia e licenza

Python Setup and Usage, Release 3.11.13

(continua dalla pagina precedente)

with respect to Paragraphs 4, 5, and 7 of this License Agreement. Nothing in
this License Agreement shall be deemed to create any relationship of agency,
partnership, or joint venture between CNRI and Licensee. This License Agreement
does not grant permission to use CNRI trademarks or trade name in a trademark
sense to endorse or promote products or services of Licensee, or any third
party.

8. By clicking on the "ACCEPT" button where indicated, or by copying, installing
or otherwise using Python 1.6.1, Licensee agrees to be bound by the terms and
conditions of this License Agreement.

C.2.4 CWI CONTRATTO DI LICENZA PER PYTHON DA 0.9.0 A 1.2

Copyright © 1991 - 1995, Stichting Mathematisch Centrum Amsterdam, The
Netherlands. All rights reserved.

Permission to use, copy, modify, and distribute this software and its
documentation for any purpose and without fee is hereby granted, provided that
the above copyright notice appear in all copies and that both that copyright
notice and this permission notice appear in supporting documentation, and that
the name of Stichting Mathematisch Centrum or CWI not be used in advertising or
publicity pertaining to distribution of the software without specific, written
prior permission.

STICHTING MATHEMATISCH CENTRUM DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS
SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN NO
EVENT SHALL STICHTING MATHEMATISCH CENTRUM BE LIABLE FOR ANY SPECIAL, INDIRECT
OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE,
DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS
SOFTWARE.

C.2.5 ZERO-CLAUSE BSD LICENSE FOR CODE IN THE PYTHON 3.11.13
DOCUMENTATION

Permission to use, copy, modify, and/or distribute this software for any
purpose with or without fee is hereby granted.

THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH
REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT,
INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM
LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR
OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
PERFORMANCE OF THIS SOFTWARE.

C.2. Termini e condizioni di accesso o di utilizzo di Python 81

Python Setup and Usage, Release 3.11.13

C.3 Licenze e riconoscimenti per il software incorporato

Questa sezione è una lista incompleta, ma in crescita, di licenze e riconoscimenti per software di terze parti
incorporate nella distribuzione Python.

C.3.1 Mersenne Twister

Il modulo _random include il codice basato su un download da http://www.math.sci.hiroshima-u.ac.jp/~m-mat/
MT/MT/MT2002/emt19937ar.html. I seguenti sono i commenti testuali del codice originale:

A C-program for MT19937, with initialization improved 2002/1/26.
Coded by Takuji Nishimura and Makoto Matsumoto.

Before using, initialize the state by using init_genrand(seed)
or init_by_array(init_key, key_length).

Copyright (C) 1997 - 2002, Makoto Matsumoto and Takuji Nishimura,
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

3. The names of its contributors may not be used to endorse or promote
products derived from this software without specific prior written
permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Any feedback is very welcome.
http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html
email: m-mat @ math.sci.hiroshima-u.ac.jp (remove space)

82 Appendice C. Storia e licenza

http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/MT/MT2002/emt19937ar.html
http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/MT/MT2002/emt19937ar.html

Python Setup and Usage, Release 3.11.13

C.3.2 Socket

The socket module uses the functions, getaddrinfo(), and getnameinfo(), which are coded in separate
source files from the WIDE Project, https://www.wide.ad.jp/.

Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
1. Redistributions of source code must retain the above copyright

notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright

notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

3. Neither the name of the project nor the names of its contributors
may be used to endorse or promote products derived from this software
without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

C.3.3 Servizi di socket asincrone

I moduli asynchat e asyncore contengono il seguente avviso:

Copyright 1996 by Sam Rushing

All Rights Reserved

Permission to use, copy, modify, and distribute this software and
its documentation for any purpose and without fee is hereby
granted, provided that the above copyright notice appear in all
copies and that both that copyright notice and this permission
notice appear in supporting documentation, and that the name of Sam
Rushing not be used in advertising or publicity pertaining to
distribution of the software without specific, written prior
permission.

SAM RUSHING DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE,
INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN
NO EVENT SHALL SAM RUSHING BE LIABLE FOR ANY SPECIAL, INDIRECT OR
CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS
OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT,
NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

C.3. Licenze e riconoscimenti per il software incorporato 83

https://www.wide.ad.jp/

Python Setup and Usage, Release 3.11.13

C.3.4 Gestione dei cookie

Il modulo http.cookies contiene il seguente avviso:

Copyright 2000 by Timothy O'Malley <timo@alum.mit.edu>

All Rights Reserved

Permission to use, copy, modify, and distribute this software
and its documentation for any purpose and without fee is hereby
granted, provided that the above copyright notice appear in all
copies and that both that copyright notice and this permission
notice appear in supporting documentation, and that the name of
Timothy O'Malley not be used in advertising or publicity
pertaining to distribution of the software without specific, written
prior permission.

Timothy O'Malley DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS
SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS, IN NO EVENT SHALL Timothy O'Malley BE LIABLE FOR
ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
PERFORMANCE OF THIS SOFTWARE.

C.3.5 Tracciabilità dell’esecuzione

Il modulo trace contiene il seguente avviso:

portions copyright 2001, Autonomous Zones Industries, Inc., all rights...
err... reserved and offered to the public under the terms of the
Python 2.2 license.
Author: Zooko O'Whielacronx
http://zooko.com/
mailto:zooko@zooko.com

Copyright 2000, Mojam Media, Inc., all rights reserved.
Author: Skip Montanaro

Copyright 1999, Bioreason, Inc., all rights reserved.
Author: Andrew Dalke

Copyright 1995-1997, Automatrix, Inc., all rights reserved.
Author: Skip Montanaro

Copyright 1991-1995, Stichting Mathematisch Centrum, all rights reserved.

Permission to use, copy, modify, and distribute this Python software and
its associated documentation for any purpose without fee is hereby
granted, provided that the above copyright notice appears in all copies,
and that both that copyright notice and this permission notice appear in
supporting documentation, and that the name of neither Automatrix,
Bioreason or Mojam Media be used in advertising or publicity pertaining to
distribution of the software without specific, written prior permission.

84 Appendice C. Storia e licenza

Python Setup and Usage, Release 3.11.13

C.3.6 Funzioni UUencode e UUdecode

Il modulo uu contiene il seguente avviso:

Copyright 1994 by Lance Ellinghouse
Cathedral City, California Republic, United States of America.

All Rights Reserved
Permission to use, copy, modify, and distribute this software and its
documentation for any purpose and without fee is hereby granted,
provided that the above copyright notice appear in all copies and that
both that copyright notice and this permission notice appear in
supporting documentation, and that the name of Lance Ellinghouse
not be used in advertising or publicity pertaining to distribution
of the software without specific, written prior permission.
LANCE ELLINGHOUSE DISCLAIMS ALL WARRANTIES WITH REGARD TO
THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS, IN NO EVENT SHALL LANCE ELLINGHOUSE CENTRUM BE LIABLE
FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT
OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

Modified by Jack Jansen, CWI, July 1995:
- Use binascii module to do the actual line-by-line conversion

between ascii and binary. This results in a 1000-fold speedup. The C
version is still 5 times faster, though.

- Arguments more compliant with Python standard

C.3.7 Chiamate di procedura remota XML

Il modulo xmlrpc.client contiene il seguente avviso:

The XML-RPC client interface is

Copyright (c) 1999-2002 by Secret Labs AB
Copyright (c) 1999-2002 by Fredrik Lundh

By obtaining, using, and/or copying this software and/or its
associated documentation, you agree that you have read, understood,
and will comply with the following terms and conditions:

Permission to use, copy, modify, and distribute this software and
its associated documentation for any purpose and without fee is
hereby granted, provided that the above copyright notice appears in
all copies, and that both that copyright notice and this permission
notice appear in supporting documentation, and that the name of
Secret Labs AB or the author not be used in advertising or publicity
pertaining to distribution of the software without specific, written
prior permission.

SECRET LABS AB AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH REGARD
TO THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANT-
ABILITY AND FITNESS. IN NO EVENT SHALL SECRET LABS AB OR THE AUTHOR
BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY
DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
OF THIS SOFTWARE.

C.3. Licenze e riconoscimenti per il software incorporato 85

Python Setup and Usage, Release 3.11.13

C.3.8 test_epoll

The test.test_epoll module contains the following notice:

Copyright (c) 2001-2006 Twisted Matrix Laboratories.

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

C.3.9 Select kqueue

Il modulo select contiene il seguente avviso per l’interfaccia kqueue:

Copyright (c) 2000 Doug White, 2006 James Knight, 2007 Christian Heimes
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
1. Redistributions of source code must retain the above copyright

notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright

notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

86 Appendice C. Storia e licenza

Python Setup and Usage, Release 3.11.13

C.3.10 SipHash24

The file Python/pyhash.c contains Marek Majkowski” implementation of Dan Bernstein’s SipHash24
algorithm. It contains the following note:

<MIT License>
Copyright (c) 2013 Marek Majkowski <marek@popcount.org>

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
</MIT License>

Original location:
https://github.com/majek/csiphash/

Solution inspired by code from:
Samuel Neves (supercop/crypto_auth/siphash24/little)
djb (supercop/crypto_auth/siphash24/little2)
Jean-Philippe Aumasson (https://131002.net/siphash/siphash24.c)

C.3.11 strtod e dtoa

The file Python/dtoa.c, which supplies C functions dtoa and strtod for conversion of C doubles to and from
strings, is derived from the file of the same name by David M. Gay, currently available from https://web.archive.org/
web/20220517033456/http://www.netlib.org/fp/dtoa.c. The original file, as retrieved on March 16, 2009, contains
the following copyright and licensing notice:

/**
*
* The author of this software is David M. Gay.
*
* Copyright (c) 1991, 2000, 2001 by Lucent Technologies.
*
* Permission to use, copy, modify, and distribute this software for any
* purpose without fee is hereby granted, provided that this entire notice
* is included in all copies of any software which is or includes a copy
* or modification of this software and in all copies of the supporting
* documentation for such software.
*
* THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR IMPLIED
* WARRANTY. IN PARTICULAR, NEITHER THE AUTHOR NOR LUCENT MAKES ANY
* REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE MERCHANTABILITY
* OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR PURPOSE.
*
***/

C.3. Licenze e riconoscimenti per il software incorporato 87

https://web.archive.org/web/20220517033456/http://www.netlib.org/fp/dtoa.c
https://web.archive.org/web/20220517033456/http://www.netlib.org/fp/dtoa.c

Python Setup and Usage, Release 3.11.13

C.3.12 7.4 OpenSSL

The modules hashlib, posix, ssl, crypt use the OpenSSL library for added performance if made available by
the operating system. Additionally, theWindows andmacOS installers for Pythonmay include a copy of the OpenSSL
libraries, so we include a copy of the OpenSSL license here. For the OpenSSL 3.0 release, and later releases derived
from that, the Apache License v2 applies:

Apache License
Version 2.0, January 2004

https://www.apache.org/licenses/

TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION

1. Definitions.

"License" shall mean the terms and conditions for use, reproduction,
and distribution as defined by Sections 1 through 9 of this document.

"Licensor" shall mean the copyright owner or entity authorized by
the copyright owner that is granting the License.

"Legal Entity" shall mean the union of the acting entity and all
other entities that control, are controlled by, or are under common
control with that entity. For the purposes of this definition,
"control" means (i) the power, direct or indirect, to cause the
direction or management of such entity, whether by contract or
otherwise, or (ii) ownership of fifty percent (50%) or more of the
outstanding shares, or (iii) beneficial ownership of such entity.

"You" (or "Your") shall mean an individual or Legal Entity
exercising permissions granted by this License.

"Source" form shall mean the preferred form for making modifications,
including but not limited to software source code, documentation
source, and configuration files.

"Object" form shall mean any form resulting from mechanical
transformation or translation of a Source form, including but
not limited to compiled object code, generated documentation,
and conversions to other media types.

"Work" shall mean the work of authorship, whether in Source or
Object form, made available under the License, as indicated by a
copyright notice that is included in or attached to the work
(an example is provided in the Appendix below).

"Derivative Works" shall mean any work, whether in Source or Object
form, that is based on (or derived from) the Work and for which the
editorial revisions, annotations, elaborations, or other modifications
represent, as a whole, an original work of authorship. For the purposes
of this License, Derivative Works shall not include works that remain
separable from, or merely link (or bind by name) to the interfaces of,
the Work and Derivative Works thereof.

"Contribution" shall mean any work of authorship, including
the original version of the Work and any modifications or additions
to that Work or Derivative Works thereof, that is intentionally
submitted to Licensor for inclusion in the Work by the copyright owner
or by an individual or Legal Entity authorized to submit on behalf of
the copyright owner. For the purposes of this definition, "submitted"
means any form of electronic, verbal, or written communication sent
to the Licensor or its representatives, including but not limited to

(continues on next page)

88 Appendice C. Storia e licenza

Python Setup and Usage, Release 3.11.13

(continua dalla pagina precedente)

communication on electronic mailing lists, source code control systems,
and issue tracking systems that are managed by, or on behalf of, the
Licensor for the purpose of discussing and improving the Work, but
excluding communication that is conspicuously marked or otherwise
designated in writing by the copyright owner as "Not a Contribution."

"Contributor" shall mean Licensor and any individual or Legal Entity
on behalf of whom a Contribution has been received by Licensor and
subsequently incorporated within the Work.

2. Grant of Copyright License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
copyright license to reproduce, prepare Derivative Works of,
publicly display, publicly perform, sublicense, and distribute the
Work and such Derivative Works in Source or Object form.

3. Grant of Patent License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
(except as stated in this section) patent license to make, have made,
use, offer to sell, sell, import, and otherwise transfer the Work,
where such license applies only to those patent claims licensable
by such Contributor that are necessarily infringed by their
Contribution(s) alone or by combination of their Contribution(s)
with the Work to which such Contribution(s) was submitted. If You
institute patent litigation against any entity (including a
cross-claim or counterclaim in a lawsuit) alleging that the Work
or a Contribution incorporated within the Work constitutes direct
or contributory patent infringement, then any patent licenses
granted to You under this License for that Work shall terminate
as of the date such litigation is filed.

4. Redistribution. You may reproduce and distribute copies of the
Work or Derivative Works thereof in any medium, with or without
modifications, and in Source or Object form, provided that You
meet the following conditions:

(a) You must give any other recipients of the Work or
Derivative Works a copy of this License; and

(b) You must cause any modified files to carry prominent notices
stating that You changed the files; and

(c) You must retain, in the Source form of any Derivative Works
that You distribute, all copyright, patent, trademark, and
attribution notices from the Source form of the Work,
excluding those notices that do not pertain to any part of
the Derivative Works; and

(d) If the Work includes a "NOTICE" text file as part of its
distribution, then any Derivative Works that You distribute must
include a readable copy of the attribution notices contained
within such NOTICE file, excluding those notices that do not
pertain to any part of the Derivative Works, in at least one
of the following places: within a NOTICE text file distributed
as part of the Derivative Works; within the Source form or
documentation, if provided along with the Derivative Works; or,
within a display generated by the Derivative Works, if and
wherever such third-party notices normally appear. The contents
of the NOTICE file are for informational purposes only and

(continues on next page)

C.3. Licenze e riconoscimenti per il software incorporato 89

Python Setup and Usage, Release 3.11.13

(continua dalla pagina precedente)

do not modify the License. You may add Your own attribution
notices within Derivative Works that You distribute, alongside
or as an addendum to the NOTICE text from the Work, provided
that such additional attribution notices cannot be construed
as modifying the License.

You may add Your own copyright statement to Your modifications and
may provide additional or different license terms and conditions
for use, reproduction, or distribution of Your modifications, or
for any such Derivative Works as a whole, provided Your use,
reproduction, and distribution of the Work otherwise complies with
the conditions stated in this License.

5. Submission of Contributions. Unless You explicitly state otherwise,
any Contribution intentionally submitted for inclusion in the Work
by You to the Licensor shall be under the terms and conditions of
this License, without any additional terms or conditions.
Notwithstanding the above, nothing herein shall supersede or modify
the terms of any separate license agreement you may have executed
with Licensor regarding such Contributions.

6. Trademarks. This License does not grant permission to use the trade
names, trademarks, service marks, or product names of the Licensor,
except as required for reasonable and customary use in describing the
origin of the Work and reproducing the content of the NOTICE file.

7. Disclaimer of Warranty. Unless required by applicable law or
agreed to in writing, Licensor provides the Work (and each
Contributor provides its Contributions) on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied, including, without limitation, any warranties or conditions
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
PARTICULAR PURPOSE. You are solely responsible for determining the
appropriateness of using or redistributing the Work and assume any
risks associated with Your exercise of permissions under this License.

8. Limitation of Liability. In no event and under no legal theory,
whether in tort (including negligence), contract, or otherwise,
unless required by applicable law (such as deliberate and grossly
negligent acts) or agreed to in writing, shall any Contributor be
liable to You for damages, including any direct, indirect, special,
incidental, or consequential damages of any character arising as a
result of this License or out of the use or inability to use the
Work (including but not limited to damages for loss of goodwill,
work stoppage, computer failure or malfunction, or any and all
other commercial damages or losses), even if such Contributor
has been advised of the possibility of such damages.

9. Accepting Warranty or Additional Liability. While redistributing
the Work or Derivative Works thereof, You may choose to offer,
and charge a fee for, acceptance of support, warranty, indemnity,
or other liability obligations and/or rights consistent with this
License. However, in accepting such obligations, You may act only
on Your own behalf and on Your sole responsibility, not on behalf
of any other Contributor, and only if You agree to indemnify,
defend, and hold each Contributor harmless for any liability
incurred by, or claims asserted against, such Contributor by reason
of your accepting any such warranty or additional liability.

END OF TERMS AND CONDITIONS

90 Appendice C. Storia e licenza

Python Setup and Usage, Release 3.11.13

C.3.13 expat

The pyexpat extension is built using an included copy of the expat sources unless the build is configured
--with-system-expat:

Copyright (c) 1998, 1999, 2000 Thai Open Source Software Center Ltd
and Clark Cooper

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

C.3.14 libffi

L’estensione _ctypes è costruita usando una copia dei sorgenti libffi a meno che la build non sia configurata con
--with-system-libffi`:

Copyright (c) 1996-2008 Red Hat, Inc and others.

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
``Software''), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED ``AS IS'', WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.

C.3. Licenze e riconoscimenti per il software incorporato 91

Python Setup and Usage, Release 3.11.13

C.3.15 zlib

L’estensione zlib è costruita usando una copia dei sorgenti zlib se la versione zlib trovata sul sistema è troppo vecchia
per essere usata per la build:

Copyright (C) 1995-2011 Jean-loup Gailly and Mark Adler

This software is provided 'as-is', without any express or implied
warranty. In no event will the authors be held liable for any damages
arising from the use of this software.

Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it
freely, subject to the following restrictions:

1. The origin of this software must not be misrepresented; you must not
claim that you wrote the original software. If you use this software
in a product, an acknowledgment in the product documentation would be
appreciated but is not required.

2. Altered source versions must be plainly marked as such, and must not be
misrepresented as being the original software.

3. This notice may not be removed or altered from any source distribution.

Jean-loup Gailly Mark Adler
jloup@gzip.org madler@alumni.caltech.edu

C.3.16 cfuhash

L’implementazione della tabella hash utilizzata da tracemalloc si basa sul progetto cfuhash:

Copyright (c) 2005 Don Owens
All rights reserved.

This code is released under the BSD license:

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following
disclaimer in the documentation and/or other materials provided
with the distribution.

* Neither the name of the author nor the names of its
contributors may be used to endorse or promote products derived
from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR

(continues on next page)

92 Appendice C. Storia e licenza

Python Setup and Usage, Release 3.11.13

(continua dalla pagina precedente)

SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
OF THE POSSIBILITY OF SUCH DAMAGE.

C.3.17 libmpdec

Il modulo _decimal è costruito usando una copia della libreria libmpdec a meno che la build non sia configurata
con --with-system-libmpdec`:

Copyright (c) 2008-2020 Stefan Krah. All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

C.3.18 W3C C14N test suite

The C14N 2.0 test suite in the test package (Lib/test/xmltestdata/c14n-20/) was retrieved from the
W3C website at https://www.w3.org/TR/xml-c14n2-testcases/ and is distributed under the 3-clause BSD license:

Copyright (c) 2013 W3C(R) (MIT, ERCIM, Keio, Beihang),
All Rights Reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

* Redistributions of works must retain the original copyright notice,
this list of conditions and the following disclaimer.

* Redistributions in binary form must reproduce the original copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

* Neither the name of the W3C nor the names of its contributors may be
used to endorse or promote products derived from this work without
specific prior written permission.

(continues on next page)

C.3. Licenze e riconoscimenti per il software incorporato 93

https://www.w3.org/TR/xml-c14n2-testcases/

Python Setup and Usage, Release 3.11.13

(continua dalla pagina precedente)

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

C.3.19 Audioop

The audioop module uses the code base in g771.c file of the SoX project. https://sourceforge.net/projects/sox/files/
sox/12.17.7/sox-12.17.7.tar.gz

This source code is a product of Sun Microsystems, Inc. and is provided for unrestricted use. Users may
copy or modify this source code without charge.

SUN SOURCE CODE IS PROVIDED AS IS WITH NO WARRANTIES OF ANY KIND INCLU-
DING THE WARRANTIES OF DESIGN, MERCHANTIBILITY AND FITNESS FOR A PAR-
TICULAR PURPOSE, OR ARISING FROM A COURSE OF DEALING, USAGE OR TRADE
PRACTICE.

Sun source code is provided with no support and without any obligation on the part of SunMicrosystems,
Inc. to assist in its use, correction, modification or enhancement.

SUN MICROSYSTEMS, INC. SHALL HAVE NO LIABILITY WITH RESPECT TO THE INFRIN-
GEMENT OF COPYRIGHTS, TRADE SECRETS OR ANY PATENTS BY THIS SOFTWARE OR
ANY PART THEREOF.

In no event will Sun Microsystems, Inc. be liable for any lost revenue or profits or other special, indirect
and consequential damages, even if Sun has been advised of the possibility of such damages.

Sun Microsystems, Inc. 2550 Garcia Avenue Mountain View, California 94043

C.3.20 asyncio

Parts of the asyncio module are incorporated from uvloop 0.16, which is distributed under the MIT license:

Copyright (c) 2015-2021 MagicStack Inc. http://magic.io

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION

(continues on next page)

94 Appendice C. Storia e licenza

https://sourceforge.net/projects/sox/files/sox/12.17.7/sox-12.17.7.tar.gz
https://sourceforge.net/projects/sox/files/sox/12.17.7/sox-12.17.7.tar.gz
https://github.com/MagicStack/uvloop/tree/v0.16.0

Python Setup and Usage, Release 3.11.13

(continua dalla pagina precedente)

OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

C.3. Licenze e riconoscimenti per il software incorporato 95

Python Setup and Usage, Release 3.11.13

96 Appendice C. Storia e licenza

APPENDICED

Copyright

Python e questa documentazione sono protetti da:

Copyright © 2001-2023 Python Software Foundation. All rights reserved.

Copyright © 2000 BeOpen.com. Tutti i diritti riservati.

Copyright © 1995-2000 Corporation for National Research Initiatives. Tutti i diritti riservati.

Copyright © 1991-1995 Stichting Mathematisch Centrum. Tutti i diritti riservati.

Fare riferimento a Storia e licenza per informazioni complete su licenza e permessi.

97

Python Setup and Usage, Release 3.11.13

98 Appendice D. Copyright

Indice

Non-alphabetical
..., 59
-?

command line option, 5
%APPDATA%, 40
2to3, 59
>>>, 59
__future__, 64
__slots__, 71

A
abstract base class, 59
annotation, 59
argument, 60
asynchronous context manager, 60
asynchronous generator, 60
asynchronous generator iterator, 60
asynchronous iterable, 60
asynchronous iterator, 60
attribute, 60
awaitable, 61

B
-B

command line option, 6
-b

command line option, 6
BDFL, 61
binary file, 61
borrowed reference, 61
--build

command line option, 29
bytecode, 61
bytes-like object, 61

C
-c

command line option, 4
callable, 61
callback, 61
C-contiguous, 62
CFLAGS, 3133
CFLAGS_NODIST, 3133

--check-hash-based-pycs
command line option, 6

class, 61
class variable, 61
command line option

-?, 5
-B, 6
-b, 6
--build, 29
-c, 4
--check-hash-based-pycs, 6
CONFIG_SITE, 29
-d, 6
--disable-ipv6, 21
--disable-test-modules, 23
-E, 6
--enable-big-digits, 21
--enable-framework, 28
--enable-loadable-sqlite-extensions,

21
--enable-optimizations, 24
--enable-profiling, 24
--enable-pystats, 23
--enable-shared, 26
--enable-universalsdk, 28
--enable-wasm-dynamic-linking, 23
--enable-wasm-pthreads, 23
--exec-prefix, 23
-h, 5
--help, 5
--help-all, 5
--help-env, 5
--help-xoptions, 5
--host, 29
-I, 6
-i, 6
-J, 10
-m, 4
-O, 6
-OO, 6
-P, 7
--prefix, 23
-q, 7
-R, 7

99

Python Setup and Usage, Release 3.11.13

-S, 7
-s, 7
-u, 7
-V, 5
-v, 7
--version, 5
-W, 8
--with-address-sanitizer, 26
--with-assertions, 25
--with-build-python, 29
--with-builtin-hashlib-hashes, 27
--with-computed-gotos, 24
--with-cxx-main, 21
--with-dbmliborder, 22
--with-dtrace, 26
--with-emscripten-target, 23
--with-ensurepip, 23
--with-framework-name, 28
--with-hash-algorithm, 27
--with-libc, 27
--with-libm, 27
--with-libs, 26
--with-lto, 24
--with-memory-sanitizer, 26
--with-openssl, 27
--with-openssl-rpath, 27
--without-c-locale-coercion, 22
--without-decimal-contextvar, 22
--without-doc-strings, 24
--without-pymalloc, 24
--without-readline, 27
--without-static-libpython, 26
--with-pkg-config, 22
--with-platlibdir, 22
--with-pydebug, 25
--with-readline, 26
--with-ssl-default-suites, 27
--with-suffix, 21
--with-system-expat, 26
--with-system-ffi, 26
--with-system-libmpdec, 26
--with-trace-refs, 25
--with-tzpath, 22
--with-undefined-behavior-sanitizer,

26
--with-universal-archs, 28
--with-valgrind, 26
--with-wheel-pkg-dir, 22
-X, 8
-x, 8

complex number, 61
CONFIG_SITE

command line option, 29
context manager, 62
context variable, 62
contiguous, 62
coroutine, 62
coroutine function, 62

CPPFLAGS, 31, 33
CPython, 62

D
-d

command line option, 6
decorator, 62
descriptor, 62
dictionary, 63
dictionary comprehension, 63
dictionary view, 63
--disable-ipv6

command line option, 21
--disable-test-modules

command line option, 23
docstring, 63
duck-typing, 63

E
-E

command line option, 6
EAFP, 63
--enable-big-digits

command line option, 21
--enable-framework

command line option, 28
--enable-loadable-sqlite-extensions

command line option, 21
--enable-optimizations

command line option, 24
--enable-profiling

command line option, 24
--enable-pystats

command line option, 23
--enable-shared

command line option, 26
--enable-universalsdk

command line option, 28
--enable-wasm-dynamic-linking

command line option, 23
--enable-wasm-pthreads

command line option, 23
--exec-prefix

command line option, 23
expression, 63
extension module, 63

F
f-string, 63
file object, 63
file-like object, 63
filesystem encoding and error

handler, 64
finder, 64
floor division, 64
Fortran contiguous, 62
function, 64
function annotation, 64

100 Indice

Python Setup and Usage, Release 3.11.13

G
garbage collection, 64
generator, 64
generator expression, 65
generator iterator, 65
generic function, 65
generic type, 65
GIL, 65
global interpreter lock, 65

H
-h

command line option, 5
hash-based pyc, 65
hashable, 65
--help

command line option, 5
--help-all

command line option, 5
--help-env

command line option, 5
--help-xoptions

command line option, 5
--host

command line option, 29

I
-I

command line option, 6
-i

command line option, 6
IDLE, 66
immutable, 66
import path, 66
importer, 66
importing, 66
interactive, 66
interpreted, 66
interpreter shutdown, 66
iterable, 66
iterator, 66

J
-J

command line option, 10

K
key function, 67
keyword argument, 67

L
lambda, 67
LBYL, 67
LDFLAGS, 31, 33
LDFLAGS_NODIST, 33
list, 67
list comprehension, 67

loader, 67
locale encoding, 67

M
-m

command line option, 4
magic

method, 68
magic method, 68
mapping, 68
meta path finder, 68
metaclass, 68
method, 68

magic, 68
special, 72

method resolution order, 68
module, 68
module spec, 68
MRO, 68
mutable, 68

N
named tuple, 68
namespace, 69
namespace package, 69
nested scope, 69
new-style class, 69

O
-O

command line option, 6
object, 69
-OO

command line option, 6
OPT, 26

P
-P

command line option, 7
package, 69
parameter, 69
PATH, 10, 19, 36, 38, 4345, 47
path based finder, 70
path entry, 70
path entry finder, 70
path entry hook, 70
path-like object, 70
PATHEXT, 38
PEP, 70
portion, 70
positional argument, 70
--prefix

command line option, 23
PROFILE_TASK, 24
provisional API, 70
provisional package, 71
PY_PYTHON, 48
PYLAUNCHER_ALLOW_INSTALL, 49

Indice 101

Python Setup and Usage, Release 3.11.13

PYLAUNCHER_ALWAYS_INSTALL, 49
PYLAUNCHER_DEBUG, 49
PYLAUNCHER_DRYRUN, 49
PYLAUNCHER_NO_SEARCH_PATH, 47
Python 3000, 71
Python Enhancement Proposals

PEP 1, 70
PEP 8, 57
PEP 11, 35, 52
PEP 238, 64
PEP 278, 73
PEP 302, 64, 67
PEP 338, 4
PEP 343, 62
PEP 362, 60, 70
PEP 370, 7, 12
PEP 397, 45
PEP 411, 70
PEP 420, 64, 69, 70
PEP 443, 65
PEP 451, 64
PEP 483, 65
PEP 484, 59, 64, 65, 73
PEP 488, 6, 7
PEP 492, 6062
PEP 498, 63
PEP 514, 45
PEP 519, 70
PEP 525, 60
PEP 526, 59, 73
PEP 528, 44
PEP 529, 13, 44
PEP 538, 14, 22
PEP 585, 65
PEP 3116, 73
PEP 3155, 71

PYTHONCOERCECLOCALE, 22
PYTHONDEBUG, 6
PYTHONDEVMODE, 9
PYTHONDONTWRITEBYTECODE, 6
PYTHONDUMPREFS, 25
PYTHONFAULTHANDLER, 8
PYTHONHASHSEED, 7, 11
PYTHONHOME, 6, 10, 50, 51
Pythonic, 71
PYTHONINSPECT, 6
PYTHONINTMAXSTRDIGITS, 9
PYTHONIOENCODING, 14
PYTHONLEGACYWINDOWSSTDIO, 12
PYTHONMALLOC, 13, 24
PYTHONNODEBUGRANGES, 9
PYTHONNOUSERSITE, 7
PYTHONOPTIMIZE, 6
PYTHONPATH, 6, 10, 43, 50, 51, 54
PYTHONPROFILEIMPORTTIME, 9
PYTHONPYCACHEPREFIX, 9
PYTHONSAFEPATH, 7
PYTHONSTARTUP, 6

PYTHONTHREADDEBUG, 25
PYTHONTRACEMALLOC, 9
PYTHONUNBUFFERED, 7
PYTHONUTF8, 9, 14, 44
PYTHONVERBOSE, 8
PYTHONWARNDEFAULTENCODING, 9
PYTHONWARNINGS, 8

Q
-q

command line option, 7
qualified name, 71

R
-R

command line option, 7
reference count, 71
regular package, 71

S
-S

command line option, 7
-s

command line option, 7
sequence, 71
set comprehension, 72
single dispatch, 72
slice, 72
special

method, 72
special method, 72
statement, 72
static type checker, 72
strong reference, 72

T
TEMP, 40
text encoding, 72
text file, 72
triple-quoted string, 72
type, 73
type alias, 73
type hint, 73

U
-u

command line option, 7
universal newlines, 73

V
-V

command line option, 5
-v

command line option, 7
variabile d'ambiente, %APPDATA%, 40
variabile d'ambiente, BASECFLAGS, 32
variabile d'ambiente, BASECPPFLAGS, 31

102 Indice

Python Setup and Usage, Release 3.11.13

variabile d'ambiente, BLDSHARED, 33
variabile d'ambiente, CC, 31
variabile d'ambiente, CCSHARED, 32
variabile d'ambiente, CFLAGS, 3133
variabile d'ambiente,

CFLAGS_ALIASING, 32
variabile d'ambiente, CFLAGS_NODIST,

3133
variabile d'ambiente,

CFLAGSFORSHARED, 32
variabile d'ambiente,

CONFIGURE_CFLAGS, 32
variabile d'ambiente,

CONFIGURE_CFLAGS_NODIST, 32
variabile d'ambiente,

CONFIGURE_CPPFLAGS, 31
variabile d'ambiente,

CONFIGURE_LDFLAGS, 33
variabile d'ambiente,

CONFIGURE_LDFLAGS_NODIST, 33
variabile d'ambiente, CPPFLAGS, 31, 33
variabile d'ambiente, CXX, 31
variabile d'ambiente, EXTRA_CFLAGS, 32
variabile d'ambiente, LDFLAGS, 31, 33
variabile d'ambiente, LDFLAGS_NODIST,

33
variabile d'ambiente, LDSHARED, 33
variabile d'ambiente, LIBS, 33
variabile d'ambiente, LINKCC, 33
variabile d'ambiente, MAINCC, 31
variabile d'ambiente, OPT, 26, 32
variabile d'ambiente, PATH, 10, 19, 36, 38,

4345, 47
variabile d'ambiente, PATHEXT, 38
variabile d'ambiente, PROFILE_TASK, 24
variabile d'ambiente, PURIFY, 32
variabile d'ambiente,

PY_BUILTIN_MODULE_CFLAGS, 32
variabile d'ambiente, PY_CFLAGS, 32
variabile d'ambiente,

PY_CFLAGS_NODIST, 32
variabile d'ambiente, PY_CORE_CFLAGS,

32
variabile d'ambiente,

PY_CORE_LDFLAGS, 33
variabile d'ambiente, PY_CPPFLAGS, 31
variabile d'ambiente, PY_LDFLAGS, 33
variabile d'ambiente,

PY_LDFLAGS_NODIST, 33
variabile d'ambiente, PY_PYTHON, 48
variabile d'ambiente,

PY_STDMODULE_CFLAGS, 32
variabile d'ambiente,

PYLAUNCHER_ALLOW_INSTALL, 49
variabile d'ambiente,

PYLAUNCHER_ALWAYS_INSTALL,
49

variabile d'ambiente,
PYLAUNCHER_DEBUG, 49

variabile d'ambiente,
PYLAUNCHER_DRYRUN, 49

variabile d'ambiente,
PYLAUNCHER_NO_SEARCH_PATH,
47

variabile d'ambiente,
PYTHONASYNCIODEBUG, 13

variabile d'ambiente,
PYTHONBREAKPOINT, 10

variabile d'ambiente, PYTHONCASEOK, 11
variabile d'ambiente,

PYTHONCOERCECLOCALE, 13, 22
variabile d'ambiente, PYTHONDEBUG, 6, 11
variabile d'ambiente, PYTHONDEVMODE,

9, 14
variabile d'ambiente,

PYTHONDONTWRITEBYTECODE, 6, 11
variabile d'ambiente, PYTHONDUMPREFS,

15, 25
variabile d'ambiente,

PYTHONDUMPREFSFILE=FILENAME,
15

variabile d'ambiente,
PYTHONEXECUTABLE, 12

variabile d'ambiente,
PYTHONFAULTHANDLER, 8, 12

variabile d'ambiente, PYTHONHASHSEED,
7, 11

variabile d'ambiente, PYTHONHOME, 6, 10,
50, 51

variabile d'ambiente, PYTHONINSPECT,
6, 11

variabile d'ambiente,
PYTHONINTMAXSTRDIGITS, 9, 11

variabile d'ambiente,
PYTHONIOENCODING, 11, 14

variabile d'ambiente,
PYTHONLEGACYWINDOWSFSENCODING,
13

variabile d'ambiente,
PYTHONLEGACYWINDOWSSTDIO, 12,
13

variabile d'ambiente, PYTHONMALLOC, 13,
24

variabile d'ambiente,
PYTHONMALLOCSTATS, 13

variabile d'ambiente,
PYTHONNODEBUGRANGES, 9, 14

variabile d'ambiente,
PYTHONNOUSERSITE, 7, 12

variabile d'ambiente, PYTHONOPTIMIZE,
6, 10

variabile d'ambiente, PYTHONPATH, 6, 10,
43, 50, 51, 54

variabile d'ambiente,
PYTHONPLATLIBDIR, 10

Indice 103

Python Setup and Usage, Release 3.11.13

variabile d'ambiente,
PYTHONPROFILEIMPORTTIME, 9, 12

variabile d'ambiente,
PYTHONPYCACHEPREFIX, 9, 11

variabile d'ambiente, PYTHONSAFEPATH,
7, 10

variabile d'ambiente, PYTHONSTARTUP,
6, 10

variabile d'ambiente,
PYTHONTHREADDEBUG, 15, 25

variabile d'ambiente,
PYTHONTRACEMALLOC, 9, 12

variabile d'ambiente,
PYTHONUNBUFFERED, 7, 11

variabile d'ambiente, PYTHONUSERBASE,
12

variabile d'ambiente, PYTHONUTF8, 9, 14,
44

variabile d'ambiente, PYTHONVERBOSE,
8, 11

variabile d'ambiente,
PYTHONWARNDEFAULTENCODING, 9,
14

variabile d'ambiente, PYTHONWARNINGS,
8, 12

variabile d'ambiente, TEMP, 40
variable annotation, 73
--version

command line option, 5
virtual environment, 73
virtual machine, 74

W
-W

command line option, 8
--with-address-sanitizer

command line option, 26
--with-assertions

command line option, 25
--with-build-python

command line option, 29
--with-builtin-hashlib-hashes

command line option, 27
--with-computed-gotos

command line option, 24
--with-cxx-main

command line option, 21
--with-dbmliborder

command line option, 22
--with-dtrace

command line option, 26
--with-emscripten-target

command line option, 23
--with-ensurepip

command line option, 23
--with-framework-name

command line option, 28
--with-hash-algorithm

command line option, 27
--with-libc

command line option, 27
--with-libm

command line option, 27
--with-libs

command line option, 26
--with-lto

command line option, 24
--with-memory-sanitizer

command line option, 26
--with-openssl

command line option, 27
--with-openssl-rpath

command line option, 27
--without-c-locale-coercion

command line option, 22
--without-decimal-contextvar

command line option, 22
--without-doc-strings

command line option, 24
--without-pymalloc

command line option, 24
--without-readline

command line option, 27
--without-static-libpython

command line option, 26
--with-pkg-config

command line option, 22
--with-platlibdir

command line option, 22
--with-pydebug

command line option, 25
--with-readline

command line option, 26
--with-ssl-default-suites

command line option, 27
--with-suffix

command line option, 21
--with-system-expat

command line option, 26
--with-system-ffi

command line option, 26
--with-system-libmpdec

command line option, 26
--with-trace-refs

command line option, 25
--with-tzpath

command line option, 22
--with-undefined-behavior-sanitizer

command line option, 26
--with-universal-archs

command line option, 28
--with-valgrind

command line option, 26
--with-wheel-pkg-dir

command line option, 22

104 Indice

Python Setup and Usage, Release 3.11.13

X
-X

command line option, 8
-x

command line option, 8

Z
Zen of Python, 74

Indice 105

	Command line and environment
	Command line
	Interface options
	Generic options
	Miscellaneous options
	Options you shouldn’t use

	Environment variables
	Debug-mode variables

	Using Python on Unix platforms
	Getting and installing the latest version of Python
	On Linux
	On FreeBSD and OpenBSD
	On OpenSolaris

	Building Python
	Python-related paths and files
	Miscellaneous
	Custom OpenSSL

	Configure Python
	Configure Options
	General Options
	WebAssembly Options
	Install Options
	Performance options
	Python Debug Build
	Debug options
	Linker options
	Libraries options
	Security Options
	macOS Options
	Cross Compiling Options

	Python Build System
	Main files of the build system
	Main build steps
	Main Makefile targets
	C extensions

	Compiler and linker flags
	Preprocessor flags
	Compiler flags
	Linker flags

	Using Python on Windows
	The full installer
	Installation steps
	Removing the MAX_PATH Limitation
	Installing Without UI
	Installing Without Downloading
	Modifying an install

	The Microsoft Store package
	Known issues
	Redirection of local data, registry, and temporary paths

	The nuget.org packages
	The embeddable package
	Python Application
	Embedding Python

	Alternative bundles
	Configuring Python
	Excursus: Setting environment variables
	Finding the Python executable

	UTF-8 mode
	Python Launcher for Windows
	Getting started
	From the command-line
	Virtual environments
	From a script
	From file associations

	Shebang Lines
	Arguments in shebang lines
	Customization
	Customization via INI files
	Customizing default Python versions

	Diagnostics
	Dry Run
	Install on demand
	Return codes

	Finding modules
	Additional modules
	PyWin32
	cx_Freeze

	Compiling Python on Windows
	Other Platforms

	Using Python on a Mac
	Getting and Installing Python
	How to run a Python script
	Running scripts with a GUI
	Configuration

	The IDE
	Installing Additional Python Packages
	GUI Programming
	Distributing Python Applications
	Other Resources

	Editors and IDEs
	Glossary
	Riguardo questa documentazione
	Volontari che hanno contribuito alla documentazione di Python

	Storia e licenza
	Storia del software
	Termini e condizioni di accesso o di utilizzo di Python
	PSF ACCORDO DI LICENZA PER PYTHON 3.11.13
	CONTRATTO DI LICENZA DI BEOPEN.COM PER PYTHON 2.0
	CNRI CONTRATTO DI LICENZA PER PYTHON 1.6.1
	CWI CONTRATTO DI LICENZA PER PYTHON DA 0.9.0 A 1.2
	ZERO-CLAUSE BSD LICENSE FOR CODE IN THE PYTHON 3.11.13 DOCUMENTATION

	Licenze e riconoscimenti per il software incorporato
	Mersenne Twister
	Socket
	Servizi di socket asincrone
	Gestione dei cookie
	Tracciabilità dell’esecuzione
	Funzioni UUencode e UUdecode
	Chiamate di procedura remota XML
	test_epoll
	Select kqueue
	SipHash24
	strtod e dtoa
	7.4 OpenSSL
	expat
	libffi
	zlib
	cfuhash
	libmpdec
	W3C C14N test suite
	Audioop
	asyncio

	Copyright
	Indice

