The Python Language Reference
Release 3.11.13

Guido van Rossum and the Python development team

luglio 07, 2025

Python Software Foundation
Email: docs@python.org






Indice

2

3

1 Introduction 3
1.1 Alternate Implementations . . . . . . . . . . . . Lo e e e e e e e e e e 3
1.2 Notation . . . . . . o e e e e e e e e e e e e e e e e e e e e e e e 4
Lexical analysis 5
2.1 LINeStructure . . . . . . . . o e e e e e e e e e e e e e e 5

2.1.1  Logicallines . . . . . . . . . . .. e e 5
2.1.2  Physicallines . . . . . .. ... 5
2.1.3 0 CommentS . . . v v vt e e e e e e e e e e e e e e e e e 6
2.1.4  Encodingdeclarations . . . . . . . . . .. e e e e e e e e e e 6
2.1.5  Explicitline joining . . . . . . . . o o e e e e e e e e e e 6
2.1.6  Implicitline joining . . . . . . . . . . . L e 6
217  Blanklines. . . . . . . oL e e e e 7
2.1.8  Indentation . . . . . . . . ... L. e e e 7
2.1.9  Whitespace between tokens . . . . . . . . ... L. e e 8
22 Othertokens . . . . . . . . i i e e e e e e 8
2.3 Identifiersand keywords . . . . . . ... oL e 8
231 Keywords . . . . ... 9
232  SoftKeywords . . . . . . .. 9
2.3.3  Reserved classes of identifiers . . . . . . . ... ... oL 9
24  Literals . . . . . oL e e e e e 10
24.1 Stringand Bytes literals . . . . . . . . .. L e e 10
242  String literal concatenation . . . . . . . ... L. Lo L L 12
243 f-Srings . . . .. o e e e e e e e e 12
244  Numericliterals . . . . . . . . . L e e 14
245 Integerliterals . . . . . . . . L e e e e e e e e 14
2.4.6  Floating pointliterals . . . . . . . . . . . e e e 15
247 Imaginaryliterals . . . . . . . ... e 15
2.5 OPperators . . . . . ... i e e e e e e e 15
2.6 Delimiters . . . . . . . . e e e e e 16
Data model 17
3.1  Objects, values and types . . . . . . o o i e e e e e e e e e e e e e e e e 17
3.2 Thestandard type hierarchy . . . . . . . . . . L 18
32,1 NONE. . . o e e e 18
3.22  NotImplemented . . . . . . . . . . e e e e e 18
323 EIIPSIS. . ¢ o v vt e e e e e e e 19
324  numbers.NUMDET . . . . v v v v it it e e e e e e e e e e e e e e e e 19
325 SeqUENCES . . . . v v i e e e e e 20
326 SetLYPeS . v v v e e e e e e e e e e e e e e e e e 21
327 MapPINGS . . v v o e e e e e e e e e e e e e e e e e e e e e e 21




3.2.8 Callable types . . . . . . . i e e e e e e e e e e e 22

329 Modules . . . ... e e e 26
32,10 Customclasses . . . . . ... e e e e e e 26
3201 ClassinStances . . . . v v v v v v v e e e e e e e e e e e e e e e e e e e 27
3.2.12 T/O objects (also known as file objects) . . . . . . .. ... ... 27
32,13 Internal types . . . . . . oo e e e e e e e e e 28
3.3  Special methodnames . . . . . . . . . . L e e e e e e e e e 34
3.3.1  Basic customization . . . . . . . ... oo e e e e e e e e e e e e 34
3.3.2  Customizing attribute access . . . . . . . . . ... .o e e e 37
3.3.3 Customizing class creation . . . . . . . . .. .ol e e e e e e e 41
3.34  Customizing instance and subclasschecks . . . . . ... ... o oL 45
3.3.5 Emulating eneriC types . . « . v v v v e e e e e e e e e e e e e e e e e e e e 45
3.3.6  Emulating callable objects . . . . . . . . . ... e 47
3.3.77 Emulating container types . . . . . . . . . oot et e e e e e e e e e e e 47
3.3.8  Emulating numeric types . . . . . . . ..o L. e e 49
3.3.9  With Statement Context Managers . . . . . . . . . . v v i 51
3.3.10 Customizing positional arguments in class pattern matching . . . . . .. ... ... ... 52
3.3.11 Special method lookup . . . . . . . . .. e e 52
34 COroutiNes . . . . . v vt v i e e e e e e e e e e e 53
34.1 Awaitable Objects . . . . . . . ... e 53
342  Coroutine ObJects . . . . . . . v vt v i e e e e e 54
3.4.3 Asynchronous Iterators . . . . . . . . . ... L 54
3.4.4  Asynchronous Context Managers . . . . . . . v v v v v v v vt i e e e e e 55
Execution model 57
4.1  Structure of a program . . . . ... L. e e e e e e e 57
42 Namingand binding . . . . . . . . . L e e e e e e e e e e e 57
42.1 Bindingof names . . . . . . ... e e e e e 57
422 Resolutionof names . . . . . . . . ... L e e 58
4.2.3 Builtins and restricted execution . . . . . . . . ... L. L0 e e e e e e e e 59
4.2.4  Interaction with dynamic features . . . . . . . . ... ... Lo 59
43 EXCEPLONS . . . v v v v e e e e e e e e e e e e e e e e e e e e e 59
The import system 61
5.1 dmportlib . . . . e e e e 62
5.2 Packages . . ... e e e e e e e e 62
5.2.1 Regularpackages . . . . . . . .. e e e 62
5.2.2  Namespace packages . . . . . . . . . L e 63
53 Searching . . . . . . . .. e 63
53.1 Themodulecache . . . . . . . . ... e 63
53.2 Findersandloaders . . . . . . . . . . . e 64
5.33  Importhooks . . . . . o . . e e e e e 64
534 Themetapath . . . . . . . . . e e e 64
54 Loading . . . . . . . L e 65
541 Loaders . . . . . . . . e e e 66
542 Submodules . . . ... e e 67
543  ModuleSpec . . . . ..o e e e e e e e e e e e 67
5.4.4  Import-related module attributes . . . . . . .. L. Lo 67
545 module.__path . ... 69
54.6  Modulereprs . . ... 69
5.4.7  Cached bytecode invalidation . . . . . .. .. ... ... ... L L 69
5.5 ThePathBased Finder . . . . . . . . . . . . e 70
5.5.1 Pathentryfinders . . . . . . . . . . e e e e 70
5.5.2  Pathentry finder protocol . . . . . . . .. ... e 71
5.6 Replacing the standard import system . . . . . . . . ..o Lo e e 72
5.7 Package Relative Imports . . . . . . . . . .. 72
5.8 Special considerations for __main__ . . . . . ... oL e e e e e 73
5.8 1 MAIN__._ SPEC__ . . i i e e e e e e e e e e e e e e e e e e e e e e 73




59 References . . . . . . . . e e e
Expressions
6.1  Arithmetic CONVErSIONS . . . . . v v v o e e e e e e e e e e e e e e e e e e e e e
6.2 AMOMS . . . . o e e e e e e
6.2.1 Identifiers (NAmMES) . . . . . . . v v i e e e e e e e e e e e e
6.2.2  Literals . . . . .o e e e e e e e
6.2.3  Parenthesized forms . . . . . . . . . .. e
6.2.4  Displays for lists, sets and dictionaries . . . . . . . . . . .. ..o
6.2.5 Listdisplays . . . . . . e e e
6.2.6  Setdisplays . . . . .. e e e e e e e e e
6.2.7  Dictionary displays . . . . . ... e e e e e e
6.2.8  Generator eXpressions . . . . . . ... o i e e e e e e e e e
6.2.9  Yield expressions . . . . . . ... e e
6.3 Primari€s . . . . . . .. e e e e e e e e e e e e e e e e e e
6.3.1 Attribute references . . . . ... L. e
6.3.2  SubSCriptions . . . . . . .. e e e e e e e e e e e e e e
6.3.3  SHCINGS . . . . . e e e e e
6.3.4 Calls . . . . . . e
6.4  AWAIt EXPIESSION . . . v v v v e e e e e e e e e e e e e e e e e e e
6.5 The pOWer OPerator . . . . . v v v v v e o e e e e e e e e e e e e e e e e e e e e e e
6.6  Unary arithmetic and bitwise Operations . . . . . . . . . v v v v v v v it e e e e e e
6.7  Binary arithmetic operations . . . . . . . . . . ... e
6.8  Shifting operations . . . . . . . . . L L e e e e e e e
6.9  Binary bitwise Operations . . . . . . . . . .. e e e e e e e e
6.10 CompariSONS . . . . v v v v e e e e e e e e e e e e e e e e e e e e e e e e e e e
6.10.1 Value compariSOns . . . . v v v v v i i e e e e e e e e e e e e e e e e e
6.10.2 Membership test Operations . . . . . . . . . . . ot t ee  e e  e eeee
6.10.3 Identity compariSOnS . . . . . . . . . ..o L e e e
6.11 Boolean operations . . . . . . . . . ..t L e e e e e e e e e e e e e e e e e e
6.12  ASSIgNMENt EXPIESSIONS . . .+« ¢ v v v v v e e e e e e e e e e e e e e e e e e e e e e
6.13 Conditional Xpressions . . . v v v v v i e e e e e e e e e e e e e e e e e e e e e
6.14 Lambdas . . . . . . . . . e e e
6.15 ExpressionliStS . . . . . . . . L e e e e e
6.16 Evaluationorder . . . . . . . . . . . . . e e e e e e e
6.17 Operator precedence . . . . . . . . . vttt e e e e e e e e e
Simple statements
7.1 EXpression Statements . . . . . . .. . L. et e e e e e e e e e e e e e e e e e e e e
7.2 Assignment Statements . . . . ... oL ... oo e e e e e e e e e e e e e e
7.2.1  Augmented assignment Statements . . . . ... ..o e e e e e e
7.2.2  Annotated assignment Statements . . . . . .. ..o L e e
7.3 Theassertstatement . . . . . . . . . v i it vt it e e e e e e e e e
7.4  ThepasssStatement . . . . . . . . . v v it e e e e e e e e e e e e e e e e e e e e e
7.5 Thedelstatement . . . . . . . . . o v v v i e i e e e e e e e e e e e e e e e e e e e e e
7.6  The returnstatement . . . . . . . . . it e e e e
7.7 The yieldstatement . . . . . . . . . . . it i it e e e e e e e e e e e e e e e e e e
7.8 The raisestatement . . . . . . . v o v v it i et e e e e e e e e e e e e e e e e
7.9 Thebreak statement . . . . . . . . . o v i ittt e e e e e e e e e e e
7.10 The continuestatement . . . . . . . . . . v i v i vt e e e e e e e e e e e e e
7.11 The import statement . . . . . . . . . . . i e e e e e e e e e e e e e e e e e
7.11.1 Future statements . . . . . . . . vttt e e e e e e e e e e e e e
7.12 The global statement . . . . . . . . . . v i i e e e e e e e e e e e e e e e e e e e e
7.13 The nonlocal Statement . . . . . . . v v v vt vttt e e e e e e e e e e e e e e e
Compound statements
8.1 Theifstatement . . . . . . . . . v v v it e e e e e e e e e e e e e e e e e e
8.2 Thewhilestatement . . . . . . . . . . o i v i i v ittt e e e e e e e e e
8.3 The forstatement . . . . . . . . . . . . e e e e e e e e e e e e e e e e e

75
75
75
76
76
76
77
77
78
78
78
79
83
83
84
84
85
87
87
87
88
89
89
89
90
92
92
92
93
93
93
94
94
94

97

97

98
100
100
101
101
101
102
102
103
104
104
105
106
107
108

109
110
110
110




10

84 Thetrystatement . . . . . . . . . . . it e e e e e e e e e e e e e e e 111
84.1 exceptclause . . . . . . . . e e e e e e e 111
842 except*clause . . . . . . ... e e e e e e e e e e 112
843 elseclause. . . . . . . . L e e e e e e 113
844 finallyclause . . . . . . . . . . . e e e e e 113
8.5 Thewithstatement . . . . . . . o v v v i i e i e e e e e e e e e e e e e e e e e e e e 114
8.6 Thematchstatement . . . . . . . . . i v v i i it e et e e e e e e e e e e e e 115
8.60.1  OVEIVIEW . . . . o i e e e e e e e e e e 116
8.6.2  Guards. . . . ... e e e e e 117
8.6.3  Trrefutable Case Blocks . . . . . . . . . . . . . . e 117
8.6.4  Patterns . . . . . . . . e e e e e e e e e e e e e e e e 117
8.7 Function definitions . . . . . . . . . . . e e e e e e e e e e e e e e e 124
8.8 Classdefinitions . . . . . . . . . o o i e e e e e e e e e e e 126
8.9  Coroutines . . . . . . o i e e e e e e e e e e e e e e e e 127
8.9.1 Coroutine function definition . . . . . . . . . . . . .. .. 127
8.9.2 Theasync forstatement . . . . . . . . . . . . ittt e 127
8.93 Theasync withstatement . . . . . . . . . . . .t i v i vttt e e e e e 128
Top-level components 129
9.1 Complete Python programs . . . . . . . . . . . e e e e 129
0.2 Fileinput . . . . . . . e e e e e e e e e e e e 129
0.3 Interactive INPUL . . . . . v v v e ot e e e e e e e e e e e e e e e e e e e e e e e 130
9.4  EXpression input . . . . . . . .o e e e e e e e e e e e 130
Full Grammar specification 131
Glossary 147
Riguardo questa documentazione 163
B.1  Volontari che hanno contribuito alla documentazione di Python . . . . . . .. ... ... ... .. 163
Storia e licenza 165
C.1  Storiadel software . . . . . . . . . . L e e e e e e 165
C.2 Termini e condizioni di accesso o di utilizzodi Python . . . . ... ... . ..o 0L, 166
C.2.1 PSF ACCORDO DI LICENZA PER PYTHON3.11.13 . . . . . . .. ... ... .... 166
C.2.2 CONTRATTO DI LICENZA DI BEOPEN.COM PER PYTHON 20 ... .... ... 167
C.2.3 CNRICONTRATTO DI LICENZAPERPYTHON 1.6.1 . . . .. ... .. ... .... 168
C.24 CWICONTRATTO DI LICENZA PER PYTHON DA 09.OA 1.2 . . . . .. ... ... 169

C.2.5 ZERO-CLAUSE BSD LICENSE FOR CODE IN THE PYTHON 3.11.13 DOCUMEN-
TATION . . . . e e e e e e e e e e e 169
C.3 Licenze e riconoscimenti per il software incorporato . . . . . . . . . . . ..o 170
C3.1  Mersenne TWISIET . . . . . v v v v v i e e e e e e e e e e e e e e e e e e 170
C.3.2  Socket . . . o o e e e 171
C.3.3  Servizi disocket asinCrone . . . . . . . . . v i i i e e e e e e e e e 171
C.3.4 Gestionedeicookie . . . . . . . . . e e e e e e 172
C.3.5 Tracciabilita dell'esecuzione . . . . . . . . . . v i v v i i e e e e e e e 172
C.3.6  Funzioni UUencode e UUdecode . . . .. . ... ... ... ... 173
C.3.7 Chiamate di proceduraremota XML . . . . . . . ... ... ... .. ... 173
C.3.8 test_epoll . . . . . L e e e e 174
C39 Selectkqueue . . . . . . ... e 174
C3.10 SipHash24 . . . . . . . e e 175
C3.01 strtodedtoa . . . . . . v v v o e e e e e e e e e e e e e e e e 175
C3.12 74 0penSSL . . . o e e e e e e e e 176
C3U3 expat. . . . v vt e e e e e e e e e e e 179
C3.14 1ibfhi . . . e e e e e e e e 179
C3.15 zIib . . . e e e e e e e 180
C.3.16 cfuhash . . . . . . . . e e e e e 180
C3.17 Hbmpdec . . . . o . e e e e e e e e e e 181
C.3.18 W3C CIANLEStSUILE . & v v v v v e o e e e e e e e e e e e e e e e e e e e e e 181




C.3.19 Audioop
C.3.20 asyncio

D Copyright

Indice




Vi



The Python Language Reference, Release 3.11.13

This reference manual describes the syntax and «core semantics» of the language. It is terse, but attempts to be exact
and complete. The semantics of non-essential built-in object types and of the built-in functions and modules are de-
scribed in library-index. For an informal introduction to the language, see tutorial-index. For C or C++ programmers,
two additional manuals exist: extending-index describes the high-level picture of how to write a Python extension
module, and the c-api-index describes the interfaces available to C/C++ programmers in detail.

Indice 1



The Python Language Reference, Release 3.11.13

2 Indice



cAPITOLO 1

Introduction

This reference manual describes the Python programming language. It is not intended as a tutorial.

While I am trying to be as precise as possible, I chose to use English rather than formal specifications for everything
except syntax and lexical analysis. This should make the document more understandable to the average reader, but
will leave room for ambiguities. Consequently, if you were coming from Mars and tried to re-implement Python from
this document alone, you might have to guess things and in fact you would probably end up implementing quite a
different language. On the other hand, if you are using Python and wonder what the precise rules about a particular
area of the language are, you should definitely be able to find them here. If you would like to see a more formal
definition of the language, maybe you could volunteer your time — or invent a cloning machine :-).

It is dangerous to add too many implementation details to a language reference document — the implementation may
change, and other implementations of the same language may work differently. On the other hand, CPython is the
one Python implementation in widespread use (although alternate implementations continue to gain support), and
its particular quirks are sometimes worth being mentioned, especially where the implementation imposes additional
limitations. Therefore, you’ll find short «<implementation notes» sprinkled throughout the text.

Every Python implementation comes with a number of built-in and standard modules. These are documented in
library-index. A few built-in modules are mentioned when they interact in a significant way with the language
definition.

1.1 Alternate Implementations

Though there is one Python implementation which is by far the most popular, there are some alternate
implementations which are of particular interest to different audiences.

Known implementations include:

CPython
This is the original and most-maintained implementation of Python, written in C. New language features
generally appear here first.

Jython
Python implemented in Java. This implementation can be used as a scripting language for Java applications,
or can be used to create applications using the Java class libraries. It is also often used to create tests for Java
libraries. More information can be found at the Jython website.

Python for .NET
This implementation actually uses the CPython implementation, but is a managed .NET application and makes



https://www.jython.org/

The Python Language Reference, Release 3.11.13

.NET libraries available. It was created by Brian Lloyd. For more information, see the Python for .NET home
page.

IronPython
An alternate Python for .NET. Unlike Python.NET, this is a complete Python implementation that generates
IL, and compiles Python code directly to .NET assemblies. It was created by Jim Hugunin, the original creator
of Jython. For more information, see the IronPython website.

PyPy
An implementation of Python written completely in Python. It supports several advanced features not found
in other implementations like stackless support and a Just in Time compiler. One of the goals of the project is
to encourage experimentation with the language itself by making it easier to modify the interpreter (since it is
written in Python). Additional information is available on the PyPy project’s home page.

Each of these implementations varies in some way from the language as documented in this manual, or introduces
specific information beyond what’s covered in the standard Python documentation. Please refer to the implementation-
specific documentation to determine what else you need to know about the specific implementation you’re using.

1.2 Notation

The descriptions of lexical analysis and syntax use a modified Backus—Naur form (BNF) grammar notation. This
uses the following style of definition:

name = lc_letter (lc_letter | "_")~*
lc_letter = "av..."z"

The first line says that a name is an 1c_letter followed by a sequence of zero or more 1c_letters and
underscores. An 1c_letter in turn is any of the single characters 'a ' through 'z '. (This rule is actually adhered
to for the names defined in lexical and grammar rules in this document.)

Each rule begins with a name (which is the name defined by the rule) and : : =. A vertical bar (| ) is used to separate
alternatives; it is the least binding operator in this notation. A star (*) means zero or more repetitions of the preceding
item; likewise, a plus (+) means one or more repetitions, and a phrase enclosed in square brackets ([ ]) means zero
or one occurrences (in other words, the enclosed phrase is optional). The * and + operators bind as tightly as possible;
parentheses are used for grouping. Literal strings are enclosed in quotes. White space is only meaningful to separate
tokens. Rules are normally contained on a single line; rules with many alternatives may be formatted alternatively
with each line after the first beginning with a vertical bar.

In lexical definitions (as the example above), two more conventions are used: Two literal characters separated by
three dots mean a choice of any single character in the given (inclusive) range of ASCII characters. A phrase between
angular brackets (<. . . >) gives an informal description of the symbol defined; e.g., this could be used to describe
the notion of “control character” if needed.

Even though the notation used is almost the same, there is a big difference between the meaning of lexical and
syntactic definitions: a lexical definition operates on the individual characters of the input source, while a syntax
definition operates on the stream of tokens generated by the lexical analysis. All uses of BNF in the next chapter
(«Lexical Analysis») are lexical definitions; uses in subsequent chapters are syntactic definitions.

4 Capitolo 1. Introduction


https://pythonnet.github.io/
https://pythonnet.github.io/
https://ironpython.net/
https://www.pypy.org/
https://en.wikipedia.org/wiki/Backus%E2%80%93Naur_form

CAPITOLO 2

Lexical analysis

A Python program is read by a parser. Input to the parser is a stream of fokens, generated by the lexical analyzer.
This chapter describes how the lexical analyzer breaks a file into tokens.

Python reads program text as Unicode code points; the encoding of a source file can be given by an encoding decla-
ration and defaults to UTF-8, see PEP 3120 for details. If the source file cannot be decoded, a SyntaxError is
raised.

2.1 Line structure

A Python program is divided into a number of logical lines.

2.1.1 Logical lines

The end of a logical line is represented by the token NEWLINE. Statements cannot cross logical line boundaries
except where NEWLINE is allowed by the syntax (e.g., between statements in compound statements). A logical line
is constructed from one or more physical lines by following the explicit or implicit line joining rules.

2.1.2 Physical lines

A physical line is a sequence of characters terminated by an end-of-line sequence. In source files and strings, any
of the standard platform line termination sequences can be used - the Unix form using ASCII LF (linefeed), the
Windows form using the ASCII sequence CR LF (return followed by linefeed), or the old Macintosh form using the
ASCII CR (return) character. All of these forms can be used equally, regardless of platform. The end of input also
serves as an implicit terminator for the final physical line.

‘When embedding Python, source code strings should be passed to Python APIs using the standard C conventions for
newline characters (the \n character, representing ASCII LF, is the line terminator).



https://peps.python.org/pep-3120/

The Python Language Reference, Release 3.11.13

2.1.3 Comments

A comment starts with a hash character (#) that is not part of a string literal, and ends at the end of the physical
line. A comment signifies the end of the logical line unless the implicit line joining rules are invoked. Comments are
ignored by the syntax.

2.1.4 Encoding declarations

If a comment in the first or second line of the Python script matches the regular expression coding [=:]\s* ( [\
w. ] +), this comment is processed as an encoding declaration; the first group of this expression names the encoding
of the source code file. The encoding declaration must appear on a line of its own. If it is the second line, the first
line must also be a comment-only line. The recommended forms of an encoding expression are

[# —*— coding: <encoding-name> —*—

which is recognized also by GNU Emacs, and

[# vim:fileencoding=<encoding-name>

which is recognized by Bram Moolenaar’s VIM.

If no encoding declaration is found, the default encoding is UTF-8. If the implicit or explicit encoding of a file is
UTEF-8, an initial UTF-8 byte-order mark (b”xefxbbxbf”) is ignored rather than being a syntax error.

If an encoding is declared, the encoding name must be recognized by Python (see standard-encodings). The encoding
is used for all lexical analysis, including string literals, comments and identifiers.

2.1.5 Explicit line joining

Two or more physical lines may be joined into logical lines using backslash characters (\), as follows: when a physical
line ends in a backslash that is not part of a string literal or comment, it is joined with the following forming a single
logical line, deleting the backslash and the following end-of-line character. For example:

if 1900 < year < 2100 and 1 <= month <= 12 \
and 1 <= day <= 31 and 0 <= hour < 24 \
and 0 <= minute < 60 and 0 <= second < 60: # Looks like a valid date
return 1

A line ending in a backslash cannot carry a comment. A backslash does not continue a comment. A backslash does
not continue a token except for string literals (i.e., tokens other than string literals cannot be split across physical lines
using a backslash). A backslash is illegal elsewhere on a line outside a string literal.

2.1.6 Impilicit line joining

Expressions in parentheses, square brackets or curly braces can be split over more than one physical line without
using backslashes. For example:

month_names = ['Januari', 'Februari', 'Maart', # These are the
'April"', 'Mei', 'Juni’', # Dutch names
'Juli', 'Augustus', 'September', # for the months
'Oktober', 'November', 'December'] # of the year

Implicitly continued lines can carry comments. The indentation of the continuation lines is not important. Blank
continuation lines are allowed. There is no NEWLINE token between implicit continuation lines. Implicitly continued
lines can also occur within triple-quoted strings (see below); in that case they cannot carry comments.

6 Capitolo 2. Lexical analysis



The Python Language Reference, Release 3.11.13

2.1.7 Blank lines

A logical line that contains only spaces, tabs, formfeeds and possibly a comment, is ignored (i.e., no NEWLINE
token is generated). During interactive input of statements, handling of a blank line may differ depending on the
implementation of the read-eval-print loop. In the standard interactive interpreter, an entirely blank logical line (i.e.
one containing not even whitespace or a comment) terminates a multi-line statement.

2.1.8 Indentation

Leading whitespace (spaces and tabs) at the beginning of a logical line is used to compute the indentation level of
the line, which in turn is used to determine the grouping of statements.

Tabs are replaced (from left to right) by one to eight spaces such that the total number of characters up to and including
the replacement is a multiple of eight (this is intended to be the same rule as used by Unix). The total number of
spaces preceding the first non-blank character then determines the line’s indentation. Indentation cannot be split over
multiple physical lines using backslashes; the whitespace up to the first backslash determines the indentation.

Indentation is rejected as inconsistent if a source file mixes tabs and spaces in a way that makes the meaning dependent
on the worth of a tab in spaces; a TabError is raised in that case.

Cross-platform compatibility note: because of the nature of text editors on non-UNIX platforms, it is unwise to use
a mixture of spaces and tabs for the indentation in a single source file. It should also be noted that different platforms
may explicitly limit the maximum indentation level.

A formfeed character may be present at the start of the line; it will be ignored for the indentation calculations above.
Formfeed characters occurring elsewhere in the leading whitespace have an undefined effect (for instance, they may
reset the space count to zero).

The indentation levels of consecutive lines are used to generate INDENT and DEDENT tokens, using a stack, as
follows.

Before the first line of the file is read, a single zero is pushed on the stack; this will never be popped off again. The
numbers pushed on the stack will always be strictly increasing from bottom to top. At the beginning of each logical
line, the line’s indentation level is compared to the top of the stack. If it is equal, nothing happens. If it is larger, it is
pushed on the stack, and one INDENT token is generated. If it is smaller, it must be one of the numbers occurring
on the stack; all numbers on the stack that are larger are popped off, and for each number popped off a DEDENT
token is generated. At the end of the file, a DEDENT token is generated for each number remaining on the stack that
is larger than zero.

Here is an example of a correctly (though confusingly) indented piece of Python code:

def perm(l):
# Compute the list of all permutations of 1
if len(l) <= 1:
return [1]
r = []
for i in range(len(l)):
s = 1[:4i] + 1[i+1:]
p = perm(s)
for x in p:
r.append(l[i:i+1] + x)
return r

The following example shows various indentation errors:

def perm(l): # error: first line indented
for i in range(len(l)): # error: not indented
s = 1[:1i] + 1[i+1:]
p = perm(l[:1] + 1[i+1:]) # error: unexpected indent

for x in p:
r.append(l[i:i+1] + x)
return r # error: inconsistent dedent

2.1. Line structure 7




The Python Language Reference, Release 3.11.13

(Actually, the first three errors are detected by the parser; only the last error is found by the lexical analyzer — the
indentation of return r does not match a level popped off the stack.)

2.1.9 Whitespace between tokens

Except at the beginning of a logical line or in string literals, the whitespace characters space, tab and formfeed can be
used interchangeably to separate tokens. Whitespace is needed between two tokens only if their concatenation could
otherwise be interpreted as a different token (e.g., ab is one token, but a b is two tokens).

2.2 Other tokens

Besides NEWLINE, INDENT and DEDENT, the following categories of tokens exist: identifiers, keywords, literals,
operators, and delimiters. Whitespace characters (other than line terminators, discussed earlier) are not tokens, but
serve to delimit tokens. Where ambiguity exists, a token comprises the longest possible string that forms a legal token,
when read from left to right.

2.3 Identifiers and keywords

Identifiers (also referred to as names) are described by the following lexical definitions.

The syntax of identifiers in Python is based on the Unicode standard annex UAX-31, with elaboration and changes
as defined below; see also PEP 3131 for further details.

Within the ASCII range (U+0001..U+007F), the valid characters for identifiers are the same as in Python 2.x: the
uppercase and lowercase letters A through Z, the underscore _ and, except for the first character, the digits O through
9.

Python 3.0 introduces additional characters from outside the ASCII range (see PEP 3131). For these characters, the
classification uses the version of the Unicode Character Database as included in the unicodedata module.

Identifiers are unlimited in length. Case is significant.

identifier = xid _start xid_continue*

id_start = <all characters in general categories Lu, L1, Lt, Lm, Lo,
id_continue n= <all characters in id_start, plus characters in the categories Mn,
xid_start = <all characters in id_start whose NFKC normalization is in "id_start

xid_continue

The Unicode category codes mentioned above stand for:
o Lu - uppercase letters
» LI - lowercase letters
o Lz - titlecase letters
o Lm - modifier letters
o Lo - other letters
o NI - letter numbers
e Mn - nonspacing marks
e Mc - spacing combining marks
e Nd - decimal numbers

o Pc - connector punctuations

8 Capitolo 2. Lexical analysis

<all characters in id_continue whose NFKC normalization is in


https://peps.python.org/pep-3131/
https://peps.python.org/pep-3131/

The Python Language Reference, Release 3.11.13

o Other_ID_Start - explicit list of characters in PropList.txt to support backwards compatibility
o Other_ID_Continue - likewise
All identifiers are converted into the normal form NFKC while parsing; comparison of identifiers is based on NFKC.

A non-normative HTML file listing all valid identifier characters for Unicode 14.0.0 can be found at https://www.
unicode.org/Public/14.0.0/ucd/DerivedCoreProperties.txt

2.3.1 Keywords

The following identifiers are used as reserved words, or keywords of the language, and cannot be used as ordinary
identifiers. They must be spelled exactly as written here:

False await else import pass
None break except in raise
True class finally is return
and continue for lambda try

as def from nonlocal while
assert del global not with
async elif if or yield

2.3.2 Soft Keywords

Nuovo nella versione 3.10.

Some identifiers are only reserved under specific contexts. These are known as soft keywords. The identifiers mat ch,
case and _ can syntactically act as keywords in contexts related to the pattern matching statement, but this distinction
is done at the parser level, not when tokenizing.

As soft keywords, their use with pattern matching is possible while still preserving compatibility with existing code
that uses mat ch, case and _ as identifier names.

2.3.3 Reserved classes of identifiers

Certain classes of identifiers (besides keywords) have special meanings. These classes are identified by the patterns
of leading and trailing underscore characters:

*

Not imported by from module import *.

In a case pattern within a mat ch statement, _ is a soft keyword that denotes a wildcard.

Separately, the interactive interpreter makes the result of the last evaluation available in the variable _. (It is
stored in the builtins module, alongside built-in functions like print.)

Elsewhere, _ is a regular identifier. It is often used to name «special» items, but it is not special to Python
itself.

Nota: The name _ is often used in conjunction with internationalization; refer to the documentation for the
gettext module for more information on this convention.

It is also commonly used for unused variables.

System-defined names, informally known as «dunder» names. These names are defined by the interpreter and
its implementation (including the standard library). Current system names are discussed in the Special method
names section and elsewhere. More will likely be defined in future versions of Python. Any use of __*___
names, in any context, that does not follow explicitly documented use, is subject to breakage without warning.

2.3. Identifiers and keywords 9



https://www.unicode.org/Public/14.0.0/ucd/PropList.txt
https://www.unicode.org/Public/14.0.0/ucd/DerivedCoreProperties.txt
https://www.unicode.org/Public/14.0.0/ucd/DerivedCoreProperties.txt

The Python Language Reference, Release 3.11.13

Class-private names. Names in this category, when used within the context of a class definition, are re-written
to use a mangled form to help avoid name clashes between «private» attributes of base and derived classes.
See section Identifiers (Names).

2.4 Literals

Literals are notations for constant values of some built-in types.

2.4.1 String and Bytes literals

String literals are described by the following lexical definitions:

stringliteral = [stringprefix] (shortstring | longstring)
stringprefix = "r" | "y" | "R" | "U" | "£" | "F"

| "fr" | "Fr" | "fR" | "FR" | "rf" | "rgF" | "Rf" | "RE"
shortstring = "'" shortstringitem* "'"™ | '"' shortstringitem* '"'
longstring = "rr'" o Jongstringitem* "'''" | '"""' Jongstringitem* '"""'
shortstringitem := shortstringchar | stringescapeseq
longstringitem = longstringchar | stringescapeseq
shortstringchar := <any source character except "\" or newline or the quote>
longstringchar = <any source character except "\">
stringescapeseq = "\" <any source character>
bytesliteral = bytesprefix(shortbytes | longbytes)
bytesprefix = "b" | "B" | "br" | "Br" | "bR" | "BR" | "rb" | "rB" | "Rb"
shortbytes = "'" shortbytesitem* "'" | '"' shortbytesitem* '"'
longbytes = "'''" Jongbytesitem* "'''"™ | '"""' Jongbytesitem* '"""'
shortbytesitem := shortbyteschar | bytesescapeseq
longbytesitem = longbyteschar | bytesescapeseq
shortbyteschar = <any ASCII character except "\" or newline or the quote>
longbyteschar = <any ASCII character except "\">
bytesescapeseqg = "\" <any ASCII character>

One syntactic restriction not indicated by these productions is that whitespace is not allowed between the
stringprefixor bytesprefix and the rest of the literal. The source character set is defined by the encoding
declaration; it is UTF-8 if no encoding declaration is given in the source file; see section Encoding declarations.

In plain English: Both types of literals can be enclosed in matching single quotes (') or double quotes ("). They can
also be enclosed in matching groups of three single or double quotes (these are generally referred to as triple-quoted
strings). The backslash (\) character is used to escape characters that otherwise have a special meaning, such as
newline, backslash itself, or the quote character.

Bytes literals are always prefixed with "b' or 'B"'; they produce an instance of the bytes type instead of the str
type. They may only contain ASCII characters; bytes with a numeric value of 128 or greater must be expressed with
escapes.

Both string and bytes literals may optionally be prefixed with a letter ' r' or 'R"'; such strings are called raw strings
and treat backslashes as literal characters. As a result, in string literals, ' \U"' and ' \u' escapes in raw strings are not
treated specially. Given that Python 2.x’s raw unicode literals behave differently than Python 3.x’s the 'ur' syntax
is not supported.

Nuovo nella versione 3.3: The 'rb' prefix of raw bytes literals has been added as a synonym of 'br'.

10 Capitolo 2. Lexical analysis

n RB n



The Python Language Reference, Release 3.11.13

Support for the unicode legacy literal (u'value') was reintroduced to simplify the maintenance of dual Python
2.x and 3.x codebases. See PEP 414 for more information.

A string literal with ' £' or 'F' in its prefix is a formatted string literal; see f-strings. The ' £' may be combined
with 'r', butnot with 'b' or 'u"', therefore raw formatted strings are possible, but formatted bytes literals are not.

In triple-quoted literals, unescaped newlines and quotes are allowed (and are retained), except that three unescaped
quotes in a row terminate the literal. (A «quote» is the character used to open the literal, i.e. either ' or ".)

Escape sequences

Unless an 'r' or 'R' prefix is present, escape sequences in string and bytes literals are interpreted according to
rules similar to those used by Standard C. The recognized escape sequences are:

Escape Sequence

Meaning Notes

\<newline>
AR

\ ]

\ mw

\a
\b
\f
\n
\r
\t

\v
\ooo
\xhh

Backslash and newline ignored (1)
Backslash (\)

Single quote (')

Double quote (")

ASCII Bell (BEL)

ASCII Backspace (BS)

ASCII Formfeed (FF)

ASCII Linefeed (LF)

ASCII Carriage Return (CR)

ASCII Horizontal Tab (TAB)

ASCII Vertical Tab (VT)

Character with octal value ooo  (2,4)
Character with hex value hh (3.4

Escape sequences only recognized in string literals are:

Escape Sequence Meaning

Notes

\N{name}
\Uxxxx
\UXXXXXXXX

Character named name in the Unicode database
Character with 16-bit hex value xxxx
Character with 32-bit hex value xxxxxxxx

&)
(6)
)

Notes:

(1) A backslash can be added at the end of a line to ignore the newline:

>>> 'This string will not include \
. backslashes or newline characters.'

'This string will not include backslashes or newline characters.'

The same result can be achieved using triple-quoted strings, or parentheses and string literal concatenation.

(2) Asin Standard C, up to three octal digits are accepted.

Cambiato nella versione 3.11:

Octal escapes with value larger than

00377 produce a

DeprecationWarning. In a future Python version they will be a SyntaxWarning and eventually a

SyntaxError.

(3) Unlike in Standard C, exactly two hex digits are required.

(4) In a bytes literal, hexadecimal and octal escapes denote the byte with the given value. In a string literal, these
escapes denote a Unicode character with the given value.

(5) Cambiato nella versione 3.3: Support for name aliases' has been added.

U https://www.unicode.org/Public/11.0.0/ucd/NameAliases.txt

2.4. Literals

11


https://peps.python.org/pep-0414/
https://www.unicode.org/Public/11.0.0/ucd/NameAliases.txt

The Python Language Reference, Release 3.11.13

(6) Exactly four hex digits are required.
(7) Any Unicode character can be encoded this way. Exactly eight hex digits are required.

Unlike Standard C, all unrecognized escape sequences are left in the string unchanged, i.e., the backslash is left in
the result. (This behavior is useful when debugging: if an escape sequence is mistyped, the resulting output is more
easily recognized as broken.) It is also important to note that the escape sequences only recognized in string literals
fall into the category of unrecognized escapes for bytes literals.

Cambiato nella versione 3.6: Unrecognized escape sequences produce a DeprecationWarning. In a future
Python version they will be a SyntaxWarning and eventually a SyntaxError.

Even in a raw literal, quotes can be escaped with a backslash, but the backslash remains in the result; for example,
r"\"" is a valid string literal consisting of two characters: a backslash and a double quote; r" \ " is not a valid string
literal (even a raw string cannot end in an odd number of backslashes). Specifically, a raw literal cannot end in a
single backslash (since the backslash would escape the following quote character). Note also that a single backslash
followed by a newline is interpreted as those two characters as part of the literal, not as a line continuation.

2.4.2 String literal concatenation

Multiple adjacent string or bytes literals (delimited by whitespace), possibly using different quoting conventions,
are allowed, and their meaning is the same as their concatenation. Thus, "hello" 'world' is equivalent to
"helloworld". This feature can be used to reduce the number of backslashes needed, to split long strings
conveniently across long lines, or even to add comments to parts of strings, for example:

re.compile (" [A-Za-z_]" # letter or underscore
"[A-Za—-z0-9_]*" # letter, digit or underscore

)

Note that this feature is defined at the syntactical level, but implemented at compile time. The “+” operator must
be used to concatenate string expressions at run time. Also note that literal concatenation can use different quoting
styles for each component (even mixing raw strings and triple quoted strings), and formatted string literals may be
concatenated with plain string literals.

2.4.3 f-strings

Nuovo nella versione 3.6.

A formatted string literal or f-string is a string literal that is prefixed with ' £' or 'F'. These strings may contain
replacement fields, which are expressions delimited by curly braces { }. While other string literals always have a
constant value, formatted strings are really expressions evaluated at run time.

Escape sequences are decoded like in ordinary string literals (except when a literal is also marked as a raw string).
After decoding, the grammar for the contents of the string is:

f_string R (literal_char | "{{" | "}}" | replacement_field)™*
replacement_field = "{" f _expression ["="] ["!" conversion] [":" format_spec]
f_expression = (conditional_expression | "*" or_expr)

("," conditional_expression | "," "*" or expr)* [","]

| yield expression
conversion = "s" | "r"™ | "a"
format_spec = (literal_char | replacement_field)*
literal_char = <any code point except "{", "}" or NULL>

The parts of the string outside curly braces are treated literally, except that any doubled curly braces '{{"' or '} }'
are replaced with the corresponding single curly brace. A single opening curly bracket ' { ' marks a replacement field,
which starts with a Python expression. To display both the expression text and its value after evaluation, (useful in
debugging), an equal sign '=" may be added after the expression. A conversion field, introduced by an exclamation

12 Capitolo 2. Lexical analysis

"}"



The Python Language Reference, Release 3.11.13

point ' ! ' may follow. A format specifier may also be appended, introduced by a colon ' : '. A replacement field
ends with a closing curly bracket '} '.

Expressions in formatted string literals are treated like regular Python expressions surrounded by parentheses, with
a few exceptions. An empty expression is not allowed, and both 1ambda and assignment expressions : = must be
surrounded by explicit parentheses. Replacement expressions can contain line breaks (e.g. in triple-quoted strings),
but they cannot contain comments. Each expression is evaluated in the context where the formatted string literal
appears, in order from left to right.

Cambiato nella versione 3.7: Prior to Python 3.7, an awa it expression and comprehensions containing an async
for clause were illegal in the expressions in formatted string literals due to a problem with the implementation.

When the equal sign '=" is provided, the output will have the expression text, the '="' and the evaluated value.
Spaces after the opening brace '{ ', within the expression and after the '="' are all retained in the output. By
default, the '="' causes the repr () of the expression to be provided, unless there is a format specified. When a
format is specified it defaults to the st r () of the expression unless a conversion ' ! r' is declared.

Nuovo nella versione 3.8: The equal sign '=".

If a conversion is specified, the result of evaluating the expression is converted before formatting. Conversion ' ! s
calls str () ontheresult, ' ! r' calls repr(),and '!a"' callsascii ().

The result is then formatted using the format () protocol. The format specifier is passed to the __ format__ ()
method of the expression or conversion result. An empty string is passed when the format specifier is omitted. The
formatted result is then included in the final value of the whole string.

Top-level format specifiers may include nested replacement fields. These nested fields may include their own con-
version fields and format specifiers, but may not include more deeply nested replacement fields. The format specifier
mini-language is the same as that used by the str. format () method.

Formatted string literals may be concatenated, but replacement fields cannot be split across literals.

Some examples of formatted string literals:

>>> name = "Fred"

>>> f"He said his name is {name "

"He said his name is 'Fred'."

>>> f"He said his name is {repr (name) }." # repr() is equivalent to !r
"He said his name is 'Fred'."

>>> width = 10

>>> precision = 4

>>> value = decimal.Decimal ("12.34567")

>>> f"result: {value:{width}. {precision}}" # nested fields
'result: 12.35"

>>> today = datetime (year=2017, month=1, day=27)

>>> f"{today:%B %d, $Y}" # using date format specifier

'January 27, 2017'
>>> f"{today=:%B %d, %Y}" # using date format specifier and debugging
'today=January 27, 2017'

>>> number = 1024

>>> f"{number:#0x}" # using integer format specifier
'0x400'

>>> foo = "bar"

>>> f"{ foo " # preserves whitespace
" foo = 'bar'"

>>> line = "The mill's closed"

>>> f"{line "

'line = "The mill\'s closed"'

>>> f"{line 20 }"

"line = The mill's closed "

>>> f"{line 20"

'line = "The mill\'s closed" '

J

A consequence of sharing the same syntax as regular string literals is that characters in the replacement fields must
not conflict with the quoting used in the outer formatted string literal:

2.4. Literals 13



The Python Language Reference, Release 3.11.13

f"abc {a["x"]} def" # error: outer string literal ended prematurely
f'abe {fal'x'] def" # workaround: use different quoting

Backslashes are not allowed in format expressions and will raise an error:

[f"newline: ord('\n') }" # raises SyntaxError

To include a value in which a backslash escape is required, create a temporary variable.

>>> newline = ord('\n')
>>> f"newline: {newline}"
'newline: 10"

Formatted string literals cannot be used as docstrings, even if they do not include expressions.

>>> def fool():
f"Not a docstring"

>>> foo.__doc is None
True

See also PEP 498 for the proposal that added formatted string literals, and str. format (), which uses a related
format string mechanism.

2.4.4 Numeric literals

There are three types of numeric literals: integers, floating point numbers, and imaginary numbers. There are no
complex literals (complex numbers can be formed by adding a real number and an imaginary number).

Note that numeric literals do not include a sign; a phrase like -1 is actually an expression composed of the unary
operator “—” and the literal 1.

2.4.5 Integer literals

Integer literals are described by the following lexical definitions:

integer RES decinteger | bininteger | octinteger | hexinteger
decinteger = nonzerodigit (["_"]1 digit)* | "O"+ (["_"] "Qm")*
bininteger = "0O" ("b" | "B") (["_"] bindigit)+

octinteger = "0" ("o"™ | "O") (["_"] octdigit)+

hexinteger = "o ("xM™ | "X"™) (["_"] hexdigit)+

nonzerodigit = mmLLLmon

digit = "o"..."o"

bindigit = "om | omin

octdigit RES "or...mn

hexdigit RES digit | "a"..."f" | "A"_..."F"

There is no limit for the length of integer literals apart from what can be stored in available memory.

Underscores are ignored for determining the numeric value of the literal. They can be used to group digits for
enhanced readability. One underscore can occur between digits, and after base specifiers like 0x.

Note that leading zeros in a non-zero decimal number are not allowed. This is for disambiguation with C-style octal
literals, which Python used before version 3.0.

Some examples of integer literals:

14 Capitolo 2. Lexical analysis


https://peps.python.org/pep-0498/

The Python Language Reference, Release 3.11.13

7 2147483647 00177 0b100110111
3 79228162514264337593543950336 00377 Oxdeadbeef
100_000_000_000 Ob_1110_0101

Cambiato nella versione 3.6: Underscores are now allowed for grouping purposes in literals.

2.4.6 Floating point literals

Floating point literals are described by the following lexical definitions:

floatnumber u= pointfloat | exponentfloat
pointfloat = [digitpart] fraction | digitpart "."
exponentfloat = (digitpart | pointfloat) exponent
digitpart = digit (["_"] digit)™*

fraction = "." digitpart

exponent = ("e"™ | "E") ["+" | "-"] digitpart

Note that the integer and exponent parts are always interpreted using radix 10. For example, 077e010 is legal, and
denotes the same number as 77e10. The allowed range of floating point literals is implementation-dependent. As in
integer literals, underscores are supported for digit grouping.

Some examples of floating point literals:

[3.14 10. .001 1e100 3.14e-10 0e0 3.14_15_93

Cambiato nella versione 3.6: Underscores are now allowed for grouping purposes in literals.

2.4.7 Imaginary literals

Imaginary literals are described by the following lexical definitions:

imagnumber = (floatnumber | digitpart) ("j3" | "J")

An imaginary literal yields a complex number with a real part of 0.0. Complex numbers are represented as a pair
of floating point numbers and have the same restrictions on their range. To create a complex number with a nonzero
real part, add a floating point number to it, e.g., (3+4 7). Some examples of imaginary literals:

[3.143' 10.7 107 .0013  1e100§  3.14e-103  3.14_15_937

2.5 Operators

The following tokens are operators:

0 - * *x / // 3 @
<< >> & | 2 ~ .=
< > <= >= == =

2.5. Operators 15



The Python Language Reference, Release 3.11.13

2.6 Delimiters

The following tokens serve as delimiters in the grammar:

The period can also occur in floating-point and imaginary literals. A sequence of three periods has a special meaning
as an ellipsis literal. The second half of the list, the augmented assignment operators, serve lexically as delimiters,
but also perform an operation.

The following printing ASCII characters have special meaning as part of other tokens or are otherwise significant to
the lexical analyzer:

. |

The following printing ASCII characters are not used in Python. Their occurrence outside string literals and comments
is an unconditional error:

L= ]

16 Capitolo 2. Lexical analysis



CAPITOLO 3

Data model

3.1 Objects, values and types

Objects are Python’s abstraction for data. All data in a Python program is represented by objects or by relations
between objects. (In a sense, and in conformance to Von Neumann’s model of a «stored program computer», code is
also represented by objects.)

Every object has an identity, a type and a value. An object’s identity never changes once it has been created; you
may think of it as the object’s address in memory. The i s operator compares the identity of two objects; the 1d ()
function returns an integer representing its identity.

Dettaglio dell’implementazione di CPython: For CPython, id (x) is the memory address where x is stored.

An object’s type determines the operations that the object supports (e.g., «does it have a length?») and also defines
the possible values for objects of that type. The t ype () function returns an object’s type (which is an object itself).
Like its identity, an object’s fype is also unchangeable.'

The value of some objects can change. Objects whose value can change are said to be mutable; objects whose value is
unchangeable once they are created are called immutable. (The value of an immutable container object that contains
areference to a mutable object can change when the latter’s value is changed; however the container is still considered
immutable, because the collection of objects it contains cannot be changed. So, immutability is not strictly the same
as having an unchangeable value, it is more subtle.) An object’s mutability is determined by its type; for instance,
numbers, strings and tuples are immutable, while dictionaries and lists are mutable.

Objects are never explicitly destroyed; however, when they become unreachable they may be garbage-collected. An
implementation is allowed to postpone garbage collection or omit it altogether — it is a matter of implementation
quality how garbage collection is implemented, as long as no objects are collected that are still reachable.

Dettaglio dell’implementazione di CPython: CPython currently uses a reference-counting scheme with (optional)
delayed detection of cyclically linked garbage, which collects most objects as soon as they become unreachable, but
is not guaranteed to collect garbage containing circular references. See the documentation of the gc module for
information on controlling the collection of cyclic garbage. Other implementations act differently and CPython may
change. Do not depend on immediate finalization of objects when they become unreachable (so you should always
close files explicitly).

Note that the use of the implementation’s tracing or debugging facilities may keep objects alive that would normally
be collectable. Also note that catching an exception with a t ry...except statement may keep objects alive.

11t is possible in some cases to change an object’s type, under certain controlled conditions. It generally isn’t a good idea though, since it can
lead to some very strange behaviour if it is handled incorrectly.

17



The Python Language Reference, Release 3.11.13

Some objects contain references to «external» resources such as open files or windows. It is understood that these
resources are freed when the object is garbage-collected, but since garbage collection is not guaranteed to happen,
such objects also provide an explicit way to release the external resource, usually a close () method. Programs
are strongly recommended to explicitly close such objects. The t ry...finally statement and the w1 t h statement
provide convenient ways to do this.

Some objects contain references to other objects; these are called containers. Examples of containers are tuples,
lists and dictionaries. The references are part of a container’s value. In most cases, when we talk about the value of a
container, we imply the values, not the identities of the contained objects; however, when we talk about the mutability
of a container, only the identities of the immediately contained objects are implied. So, if an immutable container
(like a tuple) contains a reference to a mutable object, its value changes if that mutable object is changed.

Types affect almost all aspects of object behavior. Even the importance of object identity is affected in some sense:
for immutable types, operations that compute new values may actually return a reference to any existing object with
the same type and value, while for mutable objects this is not allowed. E.g., aftera = 1; b = 1, a and b may
or may not refer to the same object with the value one, depending on the implementation, but afterc = []; d =
[1, c and d are guaranteed to refer to two different, unique, newly created empty lists. (Note that ¢ = d = []
assigns the same object to both c and d.)

3.2 The standard type hierarchy

Below is a list of the types that are built into Python. Extension modules (written in C, Java, or other languages,
depending on the implementation) can define additional types. Future versions of Python may add types to the type
hierarchy (e.g., rational numbers, efficiently stored arrays of integers, etc.), although such additions will often be
provided via the standard library instead.

Some of the type descriptions below contain a paragraph listing “special attributes.” These are attributes that provide
access to the implementation and are not intended for general use. Their definition may change in the future.

3.2.1 None

This type has a single value. There is a single object with this value. This object is accessed through the built-in name
None. It is used to signify the absence of a value in many situations, e.g., it is returned from functions that don’t
explicitly return anything. Its truth value is false.

3.2.2 Notimplemented

This type has a single value. There is a single object with this value. This object is accessed through the built-in
name Not Implemented. Numeric methods and rich comparison methods should return this value if they do not
implement the operation for the operands provided. (The interpreter will then try the reflected operation, or some
other fallback, depending on the operator.) It should not be evaluated in a boolean context.

See implementing-the-arithmetic-operations for more details.

Cambiato nella versione 3.9: Evaluating Not Implemented in a boolean context is deprecated. While it currently
evaluates as true, it will emit a DeprecationWarning. It will raise a TypeError in a future version of Python.

18 Capitolo 3. Data model



The Python Language Reference, Release 3.11.13

3.2.3 Ellipsis

This type has a single value. There is a single object with this value. This object is accessed through the literal . . .
or the built-in name E11ipsis. Its truth value is true.

3.2.4 numbers.Number

These are created by numeric literals and returned as results by arithmetic operators and arithmetic built-in functions.
Numeric objects are immutable; once created their value never changes. Python numbers are of course strongly related
to mathematical numbers, but subject to the limitations of numerical representation in computers.

The string representations of the numeric classes, computedby ___repr__ () and __str__ (), have the following
properties:

o They are valid numeric literals which, when passed to their class constructor, produce an object having the
value of the original numeric.

» The representation is in base 10, when possible.

« Leading zeros, possibly excepting a single zero before a decimal point, are not shown.
« Trailing zeros, possibly excepting a single zero after a decimal point, are not shown.

« A sign is shown only when the number is negative.

Python distinguishes between integers, floating point numbers, and complex numbers:

numbers.Integral

These represent elements from the mathematical set of integers (positive and negative).

Nota: The rules for integer representation are intended to give the most meaningful interpretation of shift and mask
operations involving negative integers.

There are two types of integers:

Integers (int)
These represent numbers in an unlimited range, subject to available (virtual) memory only. For the purpose
of shift and mask operations, a binary representation is assumed, and negative numbers are represented in a
variant of 2’s complement which gives the illusion of an infinite string of sign bits extending to the left.

Booleans (bool)
These represent the truth values False and True. The two objects representing the values False and True
are the only Boolean objects. The Boolean type is a subtype of the integer type, and Boolean values behave
like the values 0 and 1, respectively, in almost all contexts, the exception being that when converted to a string,
the strings "False" or "True" are returned, respectively.

numbers.Real (float)

These represent machine-level double precision floating point numbers. You are at the mercy of the underlying ma-
chine architecture (and C or Java implementation) for the accepted range and handling of overflow. Python does
not support single-precision floating point numbers; the savings in processor and memory usage that are usually the
reason for using these are dwarfed by the overhead of using objects in Python, so there is no reason to complicate
the language with two kinds of floating point numbers.

3.2. The standard type hierarchy 19



The Python Language Reference, Release 3.11.13

numbers.Complex (complex)

These represent complex numbers as a pair of machine-level double precision floating point numbers. The same
caveats apply as for floating point numbers. The real and imaginary parts of a complex number z can be retrieved
through the read-only attributes z . real and z . imag.

3.2.5 Sequences

These represent finite ordered sets indexed by non-negative numbers. The built-in function 1en () returns the number
of items of a sequence. When the length of a sequence is n, the index set contains the numbers 0, 1, ..., n-1. Item
i of sequence a is selected by a [ 1 ]. Some sequences, including built-in sequences, interpret negative subscripts by
adding the sequence length. For example, a [-2] equals a [n—2], the second to last item of sequence a with length
n.

Sequences also support slicing: a [ 1 : j ] selects all items with index k such thati <=k < j. When used as an expression,
a slice is a sequence of the same type. The comment above about negative indexes also applies to negative slice
positions.

Some sequences also support «extended slicing» with a third «step» parameter: a [1:7j:k] selects all items of a
with index x where x = 1 + n*k,n>=0andi<=x<j.

Sequences are distinguished according to their mutability:

Immutable sequences

An object of an immutable sequence type cannot change once it is created. (If the object contains references to
other objects, these other objects may be mutable and may be changed; however, the collection of objects directly
referenced by an immutable object cannot change.)

The following types are immutable sequences:

Strings
A string is a sequence of values that represent Unicode code points. All the code points in the range U+0000
- U+10FFFF can be represented in a string. Python doesn’t have a char type; instead, every code point in
the string is represented as a string object with length 1. The built-in function ord () converts a code point
from its string form to an integer in the range 0 — 10FFFF; chr () converts an integer in the range 0
— 10FFFF to the corresponding length 1 string object. str.encode () can be used to convert a str to
bytes using the given text encoding, and bytes.decode () can be used to achieve the opposite.

Tuples
The items of a tuple are arbitrary Python objects. Tuples of two or more items are formed by comma-separated
lists of expressions. A tuple of one item (a “singleton”) can be formed by affixing a comma to an expression
(an expression by itself does not create a tuple, since parentheses must be usable for grouping of expressions).
An empty tuple can be formed by an empty pair of parentheses.

Bytes
A bytes object is an immutable array. The items are 8-bit bytes, represented by integers in the range 0 <=x <
256. Bytes literals (like b ' abc ') and the built-in bytes () constructor can be used to create bytes objects.
Also, bytes objects can be decoded to strings via the decode () method.

20 Capitolo 3. Data model



The Python Language Reference, Release 3.11.13

Mutable sequences

Mutable sequences can be changed after they are created. The subscription and slicing notations can be used as the
target of assignment and de I (delete) statements.

Nota: The collections and array module provide additional examples of mutable sequence types.

There are currently two intrinsic mutable sequence types:

Lists
The items of a list are arbitrary Python objects. Lists are formed by placing a comma-separated list of
expressions in square brackets. (Note that there are no special cases needed to form lists of length O or 1.)

Byte Arrays
A bytearray object is a mutable array. They are created by the built-in bytearray () constructor. Aside from
being mutable (and hence unhashable), byte arrays otherwise provide the same interface and functionality as
immutable bytes objects.

3.2.6 Settypes

These represent unordered, finite sets of unique, immutable objects. As such, they cannot be indexed by any sub-
script. However, they can be iterated over, and the built-in function 1en () returns the number of items in a set. Com-
mon uses for sets are fast membership testing, removing duplicates from a sequence, and computing mathematical
operations such as intersection, union, difference, and symmetric difference.

For set elements, the same immutability rules apply as for dictionary keys. Note that numeric types obey the normal
rules for numeric comparison: if two numbers compare equal (e.g., 1 and 1. 0), only one of them can be contained
in a set.

There are currently two intrinsic set types:

Sets
These represent a mutable set. They are created by the built-in set () constructor and can be modified
afterwards by several methods, such as add () .

Frozen sets
These represent an immutable set. They are created by the built-in frozenset () constructor. As a frozenset
is immutable and hashable, it can be used again as an element of another set, or as a dictionary key.

3.2.7 Mappings

These represent finite sets of objects indexed by arbitrary index sets. The subscript notation a [k ] selects the item
indexed by k from the mapping a; this can be used in expressions and as the target of assignments or de I statements.
The built-in function 1en () returns the number of items in a mapping.

There is currently a single intrinsic mapping type:

Dictionaries

These represent finite sets of objects indexed by nearly arbitrary values. The only types of values not acceptable
as keys are values containing lists or dictionaries or other mutable types that are compared by value rather than by
object identity, the reason being that the efficient implementation of dictionaries requires a key’s hash value to remain
constant. Numeric types used for keys obey the normal rules for numeric comparison: if two numbers compare equal
(e.g., 1 and 1. 0) then they can be used interchangeably to index the same dictionary entry.

Dictionaries preserve insertion order, meaning that keys will be produced in the same order they were added se-
quentially over the dictionary. Replacing an existing key does not change the order, however removing a key and
re-inserting it will add it to the end instead of keeping its old place.

3.2. The standard type hierarchy 21



The Python Language Reference, Release 3.11.13

Dictionaries are mutable; they can be created by the { . . . } notation (see section Dictionary displays).

The extension modules dbm.ndbm and dbm.gnu provide additional examples of mapping types, as does the
collections module.

Cambiato nella versione 3.7: Dictionaries did not preserve insertion order in versions of Python before 3.6. In CPython
3.6, insertion order was preserved, but it was considered an implementation detail at that time rather than a language
guarantee.

3.2.8 Callable types

These are the types to which the function call operation (see section Calls) can be applied:

User-defined functions

A user-defined function object is created by a function definition (see section Function definitions). It should be called
with an argument list containing the same number of items as the function’s formal parameter list.

Special read-only attributes

Attribute Meaning

A reference to the dictionary that holds the func-
tion’s global variables — the global namespace of the
module in which the function was defined.

None or a tuple of cells that contain bindings for the
function’s free variables.

A cell object has the attribute ce11_contents. This
can be used to get the value of the cell, as well as set the
value.

function.__globals_

function.___closure

22 Capitolo 3. Data model



The Python Language Reference, Release 3.11.13

Special writable attributes

Most of these attributes check the type of the assigned value:

Attribute

Meaning

function.__doc

function._ _name_

function._ _qualname_

function.__module_

function.__defaults___

function.___code___

function.__dict___

function._ annotations_

function.__kwdefaults_

The function’s documentation string, or None if una-
vailable. Not inherited by subclasses.

The function’s name. See also: _ name_
attributes.

The function’s qualified  name. See  also:
__gqualname___ attributes.

Nuovo nella versione 3.3.

The name of the module the function was defined in, or
None if unavailable.

A tuple containing default parameter values for those
parameters that have defaults, or None if no parameters
have a default value.

The code object representing the compiled function bo-
dy.

The namespace supporting arbitrary function attributes.
Seealso: _ _dict__ attributes.

A dictionary containing annotations of parame-
ters. The keys of the dictionary are the parameter na-
mes, and 'return' for the return annotation, if pro-
vided. See also: annotations-howto.

A dictionary containing defaults for keyword-only
param eters.

Function objects also support getting and setting arbitrary attributes, which can be used, for example, to attach
metadata to functions. Regular attribute dot-notation is used to get and set such attributes.

Dettaglio dell’implementazione di CPython: CPython’s current implementation only supports function attributes
on user-defined functions. Function attributes on built-in functions may be supported in the future.

Additional information about a function’s definition can be retrieved from its code object (accessible via the

___code___ attribute).

3.2. The standard type hierarchy

23



The Python Language Reference, Release 3.11.13

Instance methods

An instance method object combines a class, a class instance and any callable object (normally a user-defined
function).

Special read-only attributes:

Refers to the class instance object to which the method
method.__self N

Refers to the original function object
method.___func___

The method’s documentation (same as method.
__func__.__doc__). A string if the original
function had a docstring, else None.

The name of the method (same as method.
_ func__.__ _name_ )

method.__doc___

method._ _name_

The name of the module the method was defined in, or
method.__module_ None if unavailable.

Methods also support accessing (but not setting) the arbitrary function attributes on the underlying function object.

User-defined method objects may be created when getting an attribute of a class (perhaps via an instance of that
class), if that attribute is a user-defined function object or a classmethod object.

When an instance method object is created by retrieving a user-defined function object from a class via one of its
instances, its ___self __ attribute is the instance, and the method object is said to be bound. The new method’s
__func___ attribute is the original function object.

When an instance method object is created by retrieving a classmethod object from a class or instance, its
___self _ attribute is the class itself, and its __ func__ attribute is the function object underlying the class
method.

When an instance method object is called, the underlying function (__ func__ ) is called, inserting the class instance
(__self__)in front of the argument list. For instance, when C is a class which contains a definition for a function
f (), and x is an instance of C, calling x. £ (1) is equivalent to calling C. f (x, 1).

When an instance method object is derived from a c1assmethod object, the «class instance» storedin ___self
will actually be the class itself, so that calling either x . £ (1) or C. £ (1) is equivalent to calling £ (C, 1) where £
is the underlying function.

Note that the transformation from function object to instance method object happens each time the attribute is re-
trieved from the instance. In some cases, a fruitful optimization is to assign the attribute to a local variable and call
that local variable. Also notice that this transformation only happens for user-defined functions; other callable objec-
ts (and all non-callable objects) are retrieved without transformation. It is also important to note that user-defined
functions which are attributes of a class instance are not converted to bound methods; this only happens when the
function is an attribute of the class.

24 Capitolo 3. Data model



The Python Language Reference, Release 3.11.13

Generator functions

A function or method which uses the yield statement (see section The yield statement) is called a generator func-
tion. Such a function, when called, always returns an iferator object which can be used to execute the body of the
function: calling the iterator’s iterator.__next__ () method will cause the function to execute until it pro-
vides a value using the yield statement. When the function executes a return statement or falls off the end, a
StopIteration exception is raised and the iterator will have reached the end of the set of values to be returned.

Coroutine functions

A function or method which is defined using async def is called a coroutine function. Such a function, when
called, returns a coroutine object. It may contain awa it expressions, as well as async with and async for
statements. See also the Coroutine Objects section.

Asynchronous generator functions

A function or method which is defined using async def and which uses the yield statement is called a asyn-
chronous generator function. Such a function, when called, returns an asynchronous iterator object which can be used
inan async for statement to execute the body of the function.

Calling the asynchronous iterator’s aiterator.___anext__ method will return an awaitable which when awaited
will execute until it provides a value using the yield expression. When the function executes an empty return
statement or falls off the end, a StopAsyncIteration exception is raised and the asynchronous iterator will
have reached the end of the set of values to be yielded.

Built-in functions

A built-in function object is a wrapper around a C function. Examples of built-in functions are 1en () and math.
sin () (math is a standard built-in module). The number and type of the arguments are determined by the C
function. Special read-only attributes:

e __doc___is the function’s documentation string, or None if unavailable. See function.__doc___
e _ name___is the function’s name. See function.__ _name .
e __self__ issettoNone (but see the next item).

e _ module__isthe name of the module the function was defined in or None if unavailable. See function.
__module__.

Built-in methods

This is really a different disguise of a built-in function, this time containing an object passed to the C function as an
implicit extra argument. An example of a built-in method is alist . append (), assuming alist is a list object. In
this case, the special read-only attribute ___self__is set to the object denoted by alist. (The attribute has the same
semantics as it does with ot her instance methods.)

3.2. The standard type hierarchy 25



The Python Language Reference, Release 3.11.13

Classes

Classes are callable. These objects normally act as factories for new instances of themselves, but variations are possible
for class types that override __new__ (). The arguments of the call are passed to __new__ () and, in the typical
case,to  init__ () to initialize the new instance.

Class Instances

Instances of arbitrary classes can be made callable by defininga ___call__ () method in their class.

3.2.9 Modules

Modules are a basic organizational unit of Python code, and are created by the import system as invoked ei-
ther by the import statement, or by calling functions such as importlib.import_module () and built-in
__import__ (). A module object has a namespace implemented by a dictionary object (this is the dictiona-
ry referenced by the _globals__ attribute of functions defined in the module). Attribute references are translated
to lookups in this dictionary, e.g., m. x is equivalent tom.__dict__ ["x"]. A module object does not contain
the code object used to initialize the module (since it isn’t needed once the initialization is done).

Attribute assignment updates the module’s namespace dictionary, e.g., m.x = 1 is equivalent to m.
__dict_ ["x"] = 1.

Predefined (writable) attributes:

__name___
The module’s name.

doc

The module’s documentation string, or None if unavailable.

file
The pathname of the file from which the module was loaded, if it was loaded from a file. The
__file___ attribute may be missing for certain types of modules, such as C modules that are
statically linked into the interpreter. For extension modules loaded dynamically from a shared
library, it’s the pathname of the shared library file.

__annotations___
A dictionary containing variable annotations collected during module body execution. For best
practices on working with __annotations__, please see annotations-howto.

Special read-only attribute: __dict__ is the module’s namespace as a dictionary object.

Dettaglio dell’implementazione di CPython: Because of the way CPython clears module dictionaries, the module
dictionary will be cleared when the module falls out of scope even if the dictionary still has live references. To avoid
this, copy the dictionary or keep the module around while using its dictionary directly.

3.2.10 Custom classes

Custom class types are typically created by class definitions (see section Class definitions). A class has a namespace
implemented by a dictionary object. Class attribute references are translated to lookups in this dictionary, e.g., C.
x is translated to C.__dict__ ["x"] (although there are a number of hooks which allow for other means of
locating attributes). When the attribute name is not found there, the attribute search continues in the base classes.
This search of the base classes uses the C3 method resolution order which behaves correctly even in the presence
of “diamond” inheritance structures where there are multiple inheritance paths leading back to a common ancestor.
Additional details on the C3 MRO used by Python can be found in the documentation accompanying the 2.3 release
at https://www.python.org/download/releases/2.3/mro/.

When a class attribute reference (for class C, say) would yield a class method object, it is transformed into an instance
method object whose __self  attribute is C. When it would yield a stat icmethod object, it is transformed

26 Capitolo 3. Data model


https://www.python.org/download/releases/2.3/mro/

The Python Language Reference, Release 3.11.13

into the object wrapped by the static method object. See section Implementing Descriptors for another way in which
attributes retrieved from a class may differ from those actually contained inits __dict__.

Class attribute assignments update the class’s dictionary, never the dictionary of a base class.

A class object can be called (see above) to yield a class instance (see below).

Special attributes:

__name___
The class name.

__module___
The name of the module in which the class was defined.

__dict__
The dictionary containing the class’s namespace.

__bases___
A tuple containing the base classes, in the order of their occurrence in the base class list.

doc

The class’s documentation string, or None if undefined.

__annotations___
A dictionary containing variable annotations collected during class body execution. For best
practices on working with __annotations__, please see annotations-howto.

3.2.11 Class instances

A class instance is created by calling a class object (see above). A class instance has a namespace implemented as a
dictionary which is the first place in which attribute references are searched. When an attribute is not found there,
and the instance’s class has an attribute by that name, the search continues with the class attributes. If a class attribute
is found that is a user-defined function object, it is transformed into an instance method object whose ___self
attribute is the instance. Static method and class method objects are also transformed; see above under «Classes».
See section Implementing Descriptors for another way in which attributes of a class retrieved via its instances may
differ from the objects actually stored in the class’s __dict__ . If no class attribute is found, and the object’s class
hasa___getattr__ () method, that is called to satisfy the lookup.

Attribute assignments and deletions update the instance’s dictionary, never a class’s dictionary. If the class has a
__setattr__ ()or__delattr__ () method, this is called instead of updating the instance dictionary directly.

Class instances can pretend to be numbers, sequences, or mappings if they have methods with certain special names.
See section Special method names.

Special attributes: __dict___ is the attribute dictionary; __class___ is the instance’s class.

3.2.12 1/0 objects (also known as file objects)

A file object represents an open file. Various shortcuts are available to create file objects: the open () built-in function,
and also os .popen (), os.fdopen (), and the makefile () method of socket objects (and perhaps by other
functions or methods provided by extension modules).

The objects sys.stdin, sys.stdout and sys.stderr are initialized to file objects corresponding to the
interpreter’s standard input, output and error streams; they are all open in text mode and therefore follow the interface
defined by the 10.Text IOBase abstract class.

3.2. The standard type hierarchy 27



The Python Language Reference, Release 3.11.13

3.2.13 Internal types

A few types used internally by the interpreter are exposed to the user. Their definitions may change with future
versions of the interpreter, but they are mentioned here for completeness.

Code objects

Code objects represent byte-compiled executable Python code, or byfecode. The difference between a code object
and a function object is that the function object contains an explicit reference to the function’s globals (the module
in which it was defined), while a code object contains no context; also the default argument values are stored in the
function object, not in the code object (because they represent values calculated at run-time). Unlike function objects,
code objects are immutable and contain no references (directly or indirectly) to mutable objects.

28 Capitolo 3. Data model



The Python Language Reference, Release 3.11.13

Special read-only attributes

codeobject

codeobject.

codeobject

codeobject.

codeobject

codeobject.

codeobject.

codeobject.

codeobject.

codeobject.

codeobject.

codeobject.

codeobject

codeobject.

codeobject

codeobject.

codeobject.

.co_name

co_qualname

.co_argcount

co_posonlyargcount

.co_kwonlyargcount

co_nlocals

CO_varnames

co_cellvars

co_freevars

co_code

co_consts

CO_names

.co_filename

co_firstlineno

.co_lnotab

co_stacksize

co_flags

The function name

The fully qualified function name
Nuovo nella versione 3.11.

The total number of positional parameters (including
positional-only parameters and parameters with default
values) that the function has

The number of positional-only parameters (including
arguments with default values) that the function has

The number of keyword-only parameters (including ar-
guments with default values) that the function has

The number of local variables used by the function (in-
cluding parameters)

A tuple containing the names of the local variables
in the function (starting with the parameter names)

A tuple containing the names of local variables that
are referenced by nested functions inside the function

A tuple containing the names of free variables in the
function

A string representing the sequence of byfecode instruc-
tions in the function

A tuple containing the literals used by the byrecode
in the function

A tuple containing the names used by the byrecode in
the function

The name of the file from which the code was compiled

The line number of the first line of the function

A string encoding the mapping from byfecode oftsets
to line numbers. For details, see the source code of the
interpreter.

The required stack size of the code object

An integer encoding a number of flags for the inter-
preter.

The following flag bits are defined for co_ f1ags: bit 0x04 is set if the function uses the *argument s syntax to
accept an arbitrary number of positional arguments; bit 0x 08 is set if the function uses the * *keywords syntax to

3.2. The standard type hierarchy

29



The Python Language Reference, Release 3.11.13

accept arbitrary keyword arguments; bit 0x20 is set if the function is a generator. See inspect-module-co-flags for
details on the semantics of each flags that might be present.

Future feature declarations (from __ future_  import division)alsouse bitsin co_f1ags to indicate
whether a code object was compiled with a particular feature enabled: bit 0x2000 is set if the function was compiled
with future division enabled; bits 0x10 and 0x1000 were used in earlier versions of Python.

Other bits in co_ f1ags are reserved for internal use.

If a code object represents a function, the first item in co_const s is the documentation string of the function, or
None if undefined.

Methods on code objects

codeobject.co_positions ()

Returns an iterable over the source code positions of each bytecode instruction in the code object.

The iterator returns tuples containing the (start_line, end_line, start_column,
end_column). The i-th tuple corresponds to the position of the source code that compiled to the
i-th code unit. Column information is 0-indexed utf-8 byte offsets on the given source line.

This positional information can be missing. A non-exhaustive lists of cases where this may happen:
o Running the interpreter with -X no_debug_ranges.
o Loading a pyc file compiled while using -X no_debug_ranges.
« Position tuples corresponding to artificial instructions.
» Line and column numbers that can’t be represented due to implementation specific limitations.
When this occurs, some or all of the tuple elements can be None.

Nuovo nella versione 3.11.

Nota: This feature requires storing column positions in code objects which may result in a small increase of
disk usage of compiled Python files or interpreter memory usage. To avoid storing the extra information and/or
deactivate printing the extra traceback information, the —-X no_debug_ranges command line flag or the
PYTHONNODEBUGRANGES environment variable can be used.

codeobject.co_lines ()

Returns an iterator that yields information about successive ranges of byfecodes. Each item yielded is a
(start, end, lineno) tuple:

e start (an int) represents the offset (inclusive) of the start of the bytecode range
e end (an int) represents the offset (exclusive) of the end of the bytecode range

e linenoisan int representing the line number of the bytecode range, or None if the bytecodes in the
given range have no line number

The items yielded will have the following properties:
o The first range yielded will have a start of 0.

e The (start, end) ranges will be non-decreasing and consecutive. That is, for any pair of tuples,
the start of the second will be equal to the end of the first.

« No range will be backwards: end >= start for all triples.
o The last tuple yielded will have end equal to the size of the bytecode.

Zero-width ranges, where start == end, are allowed. Zero-width ranges are used for lines that are present
in the source code, but have been eliminated by the bytecode compiler.

Nuovo nella versione 3.10.

30

Capitolo 3. Data model



The Python Language Reference, Release 3.11.13

Vedi anche:

PEP 626 - Precise line numbers for debugging and other tools.
The PEP that introduced the co_lines () method.

codeobject .replace (**kwargs)

Return a copy of the code object with new values for the specified fields.

Nuovo nella versione 3.8.

Frame objects

Frame objects represent execution frames. They may occur in fraceback objects, and are also passed to registered

trace functions.

Special read-only attributes

frame.f_back

frame.f_code

frame.f_locals

frame.f_globals

frame.f_builtins

frame.f_lasti

Points to the previous stack frame (towards the caller),
or None if this is the bottom stack frame

The code object being executed in this frame.
Accessing this attribute raises an auditing event
object.__getattr__ with arguments obj and
"f_code".

The dictionary used by the frame to look up local va-
riables

The dictionary used by the frame to look up global va-
riables

The dictionary used by the frame to look up built-in (in-
trinsic) names

The «precise instruction» of the frame object (this is an
index into the byrecode string of the code object)

3.2. The standard type hierarchy

31


https://peps.python.org/pep-0626/

The Python Language Reference, Release 3.11.13

Special writable attributes

If not None, this is a function called for various events
during code execution (this is used by debuggers). Nor-
mally an event is triggered for each new source line (see
f_trace_lines).

Set this attribute to False to disable triggering a tra-
cing event for each source line.

frame.f_trace

frame.f_ trace_lines

Set this attribute to True to allow per-opcode events
to be requested. Note that this may lead to undefined
interpreter behaviour if exceptions raised by the trace
function escape to the function being traced.

The current line number of the frame — writing to this
from within a trace function jumps to the given line
(only for the bottom-most frame). A debugger can im-
plement a Jump command (aka Set Next Statement) by
writing to this attribute.

frame.f_ trace_opcodes

frame.f_lineno

Frame object methods

Frame objects support one method:

frame.clear ()

This method clears all references to local variables held by the frame. Also, if the frame belonged to a generator,
the generator is finalized. This helps break reference cycles involving frame objects (for example when catching
an exception and storing its fraceback for later use).

RuntimeError is raised if the frame is currently executing.

Nuovo nella versione 3.4.

Traceback objects

Traceback objects represent the stack trace of an exception. A traceback object is implicitly created when an exception
occurs, and may also be explicitly created by calling t ypes . TracebackType.

Cambiato nella versione 3.7: Traceback objects can now be explicitly instantiated from Python code.

For implicitly created tracebacks, when the search for an exception handler unwinds the execution stack, at each
unwound level a traceback object is inserted in front of the current traceback. When an exception handler is entered,
the stack trace is made available to the program. (See section The try statement.) It is accessible as the third item of
the tuple returned by sys.exc_info (), and asthe __traceback___ attribute of the caught exception.

When the program contains no suitable handler, the stack trace is written (nicely formatted) to the standard error
stream; if the interpreter is interactive, it is also made available to the user as sys.last_traceback.

For explicitly created tracebacks, it is up to the creator of the traceback to determine how the tb_next attributes
should be linked to form a full stack trace.

Special read-only attributes:

32 Capitolo 3. Data model



The Python Language Reference, Release 3.11.13

Points to the execution frame of the current level.
Accessing this attribute raises an auditing event
object._ getattr  with arguments obj and
"tb_frame".

Gives the line number where the exception occurred

traceback.tb_frame

traceback.tb_lineno

Indicates the «precise instruction».
traceback.tb_lasti

The line number and last instruction in the traceback may differ from the line number of its frame object if the
exception occurred in a t ry statement with no matching except clause or with a finally clause.

traceback.tb_next
The special writable attribute tlb_next is the next level in the stack trace (towards the frame where the

exception occurred), or None if there is no next level.

Cambiato nella versione 3.7: This attribute is now writable

Slice objects

Slice objects are used to represent slices for __getitem__ () methods. They are also created by the built-in
slice () function.

Special read-only attributes: start is the lower bound; stop is the upper bound; step is the step value; each is
None if omitted. These attributes can have any type.

Slice objects support one method:

slice.indices (self, length)

This method takes a single integer argument length and computes information about the slice that the slice
object would describe if applied to a sequence of length items. It returns a tuple of three integers; respectively
these are the start and stop indices and the step or stride length of the slice. Missing or out-of-bounds indices
are handled in a manner consistent with regular slices.

Static method objects

Static method objects provide a way of defeating the transformation of function objects to method objects described
above. A static method object is a wrapper around any other object, usually a user-defined method object. When a
static method object is retrieved from a class or a class instance, the object actually returned is the wrapped object,
which is not subject to any further transformation. Static method objects are also callable. Static method objects are
created by the built-in staticmethod () constructor.

Class method objects

A class method object, like a static method object, is a wrapper around another object that alters the way in which
that object is retrieved from classes and class instances. The behaviour of class method objects upon such retrieval
is described above, under «instance methods». Class method objects are created by the built-in classmethod ()
constructor.

3.2. The standard type hierarchy 33



The Python Language Reference, Release 3.11.13

3.3 Special method names

A class can implement certain operations that are invoked by special syntax (such as arithmetic operations or sub-
scripting and slicing) by defining methods with special names. This is Python’s approach to operator overloading,
allowing classes to define their own behavior with respect to language operators. For instance, if a class defines a
methodnamed ___getitem__ (),and x is an instance of this class, then x [ 1] is roughly equivalent to t ype (x) .
__getitem__ (x, 1i).Except where mentioned, attempts to execute an operation raise an exception when no
appropriate method is defined (typically AttributeError or TypeError).

Setting a special method to None indicates that the corresponding operation is not available. For example, if a class
sets__iter__ () to None, the class is not iterable, so calling iter () on its instances will raise a TypeError
(without falling back to __getitem _ ()).

When implementing a class that emulates any built-in type, it is important that the emulation only be implemented
to the degree that it makes sense for the object being modelled. For example, some sequences may work well with
retrieval of individual elements, but extracting a slice may not make sense. (One example of this is the NodeList
interface in the W3C’s Document Object Model.)

3.3.1 Basic customization

object.__new__ (cls[, ])

Called to create a new instance of class cls. __new__ () is a static method (special-cased so you need not
declare it as such) that takes the class of which an instance was requested as its first argument. The remaining
arguments are those passed to the object constructor expression (the call to the class). The return value of
__new___ () should be the new object instance (usually an instance of cs).

Typical implementations create a new instance of the class by invoking the superclass’s __new__ () me-
thod using super () .__new__ (cls[, ...]) withappropriate arguments and then modifying the newly
created instance as necessary before returning it.

If __new__ () isinvoked during object construction and it returns an instance of cls, then the new instance’s
__init__ () method will be invoked like __init__ (self[, ...]), where self is the new instance
and the remaining arguments are the same as were passed to the object constructor.

If  new () does not return an instance of cls, then the new instance’s  init () method will not be
invoked.

__new___ () is intended mainly to allow subclasses of immutable types (like int, str, or tuple) to customize
instance creation. It is also commonly overridden in custom metaclasses in order to customize class creation.

object.__init__ (self[,.. ]

Called after the instance has been created (by ___new___ () ), but before it is returned to the caller. The argu-
ments are those passed to the class constructor expression. If a base class hasan ___init__ () method, the
derived class’s ___init__ () method, if any, must explicitly call it to ensure proper initialization of the base
class part of the instance; for example: super () .__init__ ([args...]).

Because __new__ () and __init__ () work together in constructing objects (__new__ () to create it,
and ___init__ () to customize it), no non-None value may be returned by __init__ (); doing so will
cause a TypeError to be raised at runtime.

object._ _del_  (self)

Called when the instance is about to be destroyed. This is also called a finalizer or (improperly) a destructor. If
abaseclasshasa ___del_ () method, the derived class’s ___del__ () method, if any, must explicitly call
it to ensure proper deletion of the base class part of the instance.

It is possible (though not recommended!) forthe _del () method to postpone destruction of the instance
by creating a new reference to it. This is called object resurrection. It is implementation-dependent whether

2The __hash__ (), _iter (), __reversed _(),and __contains__ () methods have special handling for this; others will
still raise a TypeError, but may do so by relying on the behavior that None is not callable.

34 Capitolo 3. Data model



The Python Language Reference, Release 3.11.13

__del__ () iscalled a second time when a resurrected object is about to be destroyed; the current CPython
implementation only calls it once.

It is not guaranteed that ___del__ () methods are called for objects that still exist when the interpreter exits.

Nota: del x doesn’t directly call x._del__ () — the former decrements the reference count for x by
one, and the latter is only called when x’s reference count reaches zero.

Dettaglio dell’implementazione di CPython: It is possible for a reference cycle to prevent the reference count
of an object from going to zero. In this case, the cycle will be later detected and deleted by the cyclic garbage
collector. A common cause of reference cycles is when an exception has been caught in a local variable. The
frame’s locals then reference the exception, which references its own traceback, which references the locals of
all frames caught in the traceback.

Vedi anche:

Documentation for the gc module.

Avvertimento: Due to the precarious circumstances under which ___del__ () methods are invoked,
exceptions that occur during their execution are ignored, and a warning is printed to sy s . st derr instead.
In particular:

e _del__ () can be invoked when arbitrary code is being executed, including from any arbitrary
thread. If __del__ () needs to take a lock or invoke any other blocking resource, it may deadlock
as the resource may already be taken by the code that gets interrupted to execute ___del ().

e del__ () can be executed during interpreter shutdown. As a consequence, the global variables
it needs to access (including other modules) may already have been deleted or set to None. Python
guarantees that globals whose name begins with a single underscore are deleted from their module
before other globals are deleted; if no other references to such globals exist, this may help in assuring
that imported modules are still available at the time when the ___del__ () method is called.

object._ repr _ (self)

Called by the repr () built-in function to compute the «official» string representation of an object. If at
all possible, this should look like a valid Python expression that could be used to recreate an object with
the same value (given an appropriate environment). If this is not possible, a string of the form <. . . some
useful description...> should be returned. The return value must be a string object. If a class
defines _ repr () butnot __str__ (),then _ repr__ () is also used when an «informal» string
representation of instances of that class is required.

This is typically used for debugging, so it is important that the representation is information-rich and
unambiguous.

object._ _str__ (self)
Called by str (object) and the built-in functions format () and print () to compute the «informal»
or nicely printable string representation of an object. The return value must be a string object.

This method differs from object.___repr__ () in that there is no expectation that __str__ () returna
valid Python expression: a more convenient or concise representation can be used.

The default implementation defined by the built-in type object calls object.___repr__ ().

object._ bytes_  (self)
Called by bytes to compute a byte-string representation of an object. This should return a bytes object.

object._ format_ (self, format_spec)

Called by the format () built-in function, and by extension, evaluation of formatted string literals and the
str.format () method, to produce a «formatted» string representation of an object. The format_spec ar-
gument is a string that contains a description of the formatting options desired. The interpretation of the

3.3. Special method names 35



The Python Language Reference, Release 3.11.13

object.__1t__ (self, other
1

format_spec argument is up to the type implementing __ format__ (), however most classes will either
delegate formatting to one of the built-in types, or use a similar formatting option syntax.

See formatspec for a description of the standard formatting syntax.
The return value must be a string object.

Cambiato nella versione 3.4: The _ format__ method of object itself raises a TypeError if passed any
non-empty string.

Cambiato nella versione 3.7: object.__ _format__ (x, '') is now equivalent to str (x) rather than
format (str(x), ''").

e__ (self, other

)
object.__ ( )
object.__eq _ (self, other)
object._ _ne__ (self, other)
object.__gt__ (self, other)
object.__ge__ (self, other)
These are the so-called «rich comparison» methods. The correspondence between operator symbols
and method names is as follows: x<y calls x.__ 1t (y), x<=y calls x.__le__ (y), x==y calls

X.__eq (y),x!=ycallsx.__ne_ (y),x>ycallsx.__gt__ (y),andx>=ycallsx.__ge_ (y).

A rich comparison method may return the singleton Not Implemented if it does not implement the opera-
tion for a given pair of arguments. By convention, False and True are returned for a successful comparison.
However, these methods can return any value, so if the comparison operator is used in a Boolean context (e.g.,
in the condition of an i f statement), Python will call bool () on the value to determine if the result is true
or false.

By default, object implements __eg () by using is, returning Not Implemented in the case of a
false comparison: True if x is y else NotImplemented.For___ne__ (), by default it delega-
testo __eqg () and inverts the result unless it is Not Implemented. There are no other implied rela-
tionships among the comparison operators or default implementations; for example, the truth of (x<y or

==y) does not imply x<=y. To automatically generate ordering operations from a single root operation, see
functools.total_ordering ().

See the paragraph on ___hash__ () for some important notes on creating hashable objects which support
custom comparison operations and are usable as dictionary keys.

There are no swapped-argument versions of these methods (to be used when the left argument does not support
the operation but the right argument does); rather, 1t () and __ _gt__ () are each other’s reflection,
__le ()and _ ge__ () are each other’s reflection,and _ _eq () and __ _ne_ () are their own re-
flection. If the operands are of different types, and the right operand’s type is a direct or indirect subclass of the
left operand’s type, the reflected method of the right operand has priority, otherwise the left operand’s method
has priority. Virtual subclassing is not considered.

When no appropriate method returns any value other than Not Implemented, the == and ! = operators will
fall back to is and is not, respectively.

object._ _hash__ (self)

Called by built-in function hash () and for operations on members of hashed collections including set,
frozenset,and dict. The __hash__ () method should return an integer. The only required property is
that objects which compare equal have the same hash value; it is advised to mix together the hash values of
the components of the object that also play a part in comparison of objects by packing them into a tuple and
hashing the tuple. Example:

def _ hash__ (self):
return hash((self.name, self.nick, self.color))

Nota: hash () truncates the value returned from an object’s custom __ hash__ () method to the
size of a Py_ssize_t. This is typically 8 bytes on 64-bit builds and 4 bytes on 32-bit builds.

36

Capitolo 3. Data model



The Python Language Reference, Release 3.11.13

If an object's __ _hash__ () must interoperate on builds of different bit sizes, be sure to check
the width on all supported builds. An easy way to do this is with python —-c "import sys;
print (sys.hash_info.width)".

If a class does not define an __eqg__ () method it should not define a ___hash__ () operation either; if it
defines_ _eqg () butnot__ _hash__ (),itsinstances will not be usable as items in hashable collections. If a
class defines mutable objects and implementsan __eqg___ () method, it should not implement ___hash__ (),
since the implementation of hashable collections requires that a key’s hash value is immutable (if the object’s
hash value changes, it will be in the wrong hash bucket).

User-defined classes have ___eq () and ___hash___ () methods by default; with them, all objects compa-
re unequal (except with themselves) and x.__hash__ () returns an appropriate value such that x == y
implies both that x is yand hash (x) == hash (y).

A class that overrides __eqg () and does not define __hash__ () willhaveits ___hash__ () implicitly
set to None. When the __hash__ () method of a class is None, instances of the class will raise an appro-
priate TypeError when a program attempts to retrieve their hash value, and will also be correctly identified
as unhashable when checking isinstance (obj, collections.abc.Hashable).

If a class that overrides ___eqg___ () needs to retain the implementation of ___hash___ () from a parent class,
the interpreter must be told this explicitly by setting __hash_ = <ParentClass>.__hash_ .

If a class that does not override _ _eqg () wishes to suppress hash support, it should include
__hash__ = None in the class definition. A class which defines its own _ hash__ () that ex-
plicitly raises a TypeError would be incorrectly identified as hashable by an isinstance (obj,
collections.abc.Hashable) call

Nota: Bydefault,the _hash__ () values of str and bytes objects are «salted» with an unpredictable random
value. Although they remain constant within an individual Python process, they are not predictable between
repeated invocations of Python.

This is intended to provide protection against a denial-of-service caused by carefully chosen inputs that
exploit the worst case performance of a dict insertion, O(n?) complexity. See http://ocert.org/advisories/
ocert-2011-003.html for details.

Changing hash values affects the iteration order of sets. Python has never made guarantees about this ordering
(and it typically varies between 32-bit and 64-bit builds).

See also PYTHONHASHSEED.

Cambiato nella versione 3.3: Hash randomization is enabled by default.

object._ bool__ (self)

Called to implement truth value testing and the built-in operation bool () ; should return False or True.
When this method is not defined, __1en__ () is called, if it is defined, and the object is considered true if its
result is nonzero. If a class defines neither __1en__ () nor __bool__ (), all its instances are considered
true.

3.3.2 Customizing attribute access

The following methods can be defined to customize the meaning of attribute access (use of, assignment to, or deletion
of x.name) for class instances.

object.__getattr__ (self, name)

Called when the default attribute access fails with an Att ributeError (either  getattribute__ ()
raises an AttributeError because name is not an instance attribute or an attribute in the class tree for
self;or __get__ () of a name property raises AttributeError). This method should either return
the (computed) attribute value or raise an AttributeError exception.

3.3. Special method names 37


http://ocert.org/advisories/ocert-2011-003.html
http://ocert.org/advisories/ocert-2011-003.html

The Python Language Reference, Release 3.11.13

Note that if the attribute is found through the normal mechanism, ___getattr__ () isnot called. (This is an
intentional asymmetry between ___getattr_ () and ___setattr__ ().) This is done both for efficiency
reasons and because otherwise ___getattr__ () would have no way to access other attributes of the instance.
Note that at least for instance variables, you can fake total control by not inserting any values in the instance
attribute dictionary (but instead inserting them in another object). See the ___getattribute__ () method
below for a way to actually get total control over attribute access.

object.__getattribute_  (self, name)

Called unconditionally to implement attribute accesses for instances of the class. If the class also defines
__getattr__ (), the latter will not be called unless ___getattribute__ () either calls it explici-
tly or raises an AttributeError. This method should return the (computed) attribute value or raise
an AttributeError exception. In order to avoid infinite recursion in this method, its implementation
should always call the base class method with the same name to access any attributes it needs, for example,
object.__getattribute__ (self, name).

Nota: This method may still be bypassed when looking up special methods as the result of implicit invocation
via language syntax or built-in functions. See Special method lookup.

For certain sensitive attribute accesses, raises an auditing event object.__getattr__ with arguments
obj and name.

object.__setattr__ (self, name, value)

Called when an attribute assignment is attempted. This is called instead of the normal mechanism (i.e. store
the value in the instance dictionary). name is the attribute name, value is the value to be assigned to it.

If _ _setattr__ () wants to assign to an instance attribute, it should call the base class method with the
same name, for example, object.___setattr__ (self, name, value).

For certain sensitive attribute assignments, raises an auditing event object . ___setattr__ with arguments
ob7j, name, value.

object.__delattr__ (self, name)

Like _setattr__ () but for attribute deletion instead of assignment. This should only be implemented if
del obj.name is meaningful for the object.

For certain sensitive attribute deletions, raises an auditing event object.__delattr__ with arguments
obj and name.

object._ dir_ (self)
Called when dir () is called on the object. An iterable must be returned. dir () converts the returned iterable
to a list and sorts it.

Customizing module attribute access

Special names __getattr__ and _ dir__ can be also used to customize access to module attributes. The
__getattr__ function at the module level should accept one argument which is the name of an attribute and
return the computed value or raise an AttributeError. If an attribute is not found on a module object throu-
gh the normal lookup, i.e. object.__getattribute__ (), then __getattr__ is searched in the module
__dict__ before raising an AttributeError. If found, it is called with the attribute name and the result is
returned.

The _ dir__ function should accept no arguments, and return an iterable of strings that represents the names
accessible on module. If present, this function overrides the standard dir () search on a module.

For a more fine grained customization of the module behavior (setting attributes, properties, etc.), one can set the
__class__ attribute of a module object to a subclass of t ypes.ModuleType. For example:

38 Capitolo 3. Data model



The Python Language Reference, Release 3.11.13

import sys
from types import ModuleType

class VerboseModule (ModuleType) :
def _ repr__ (self):
return f'Verbose {self._ name_ }'

def _ setattr_ (self, attr, value):
print (f'Setting {attr}...')

super () ._ _setattr__ (attr, value)

sys.modules|[ name ]. class = VerboseModule

Nota: Defining module __getattr__ and setting module __class___ only affect lookups made using the at-
tribute access syntax — directly accessing the module globals (whether by code within the module, or via a reference
to the module’s globals dictionary) is unaffected.

Cambiato nella versione 3.5: _ class__ module attribute is now writable.
Nuovo nella versione 3.7: _ _getattr__and __ dir__ module attributes.
Vedi anche:

PEP 562 - Module __getattr__and __dir__
Describes the __getattr_ and _ dir__ functions on modules.

Implementing Descriptors

The following methods only apply when an instance of the class containing the method (a so-called descriptor class)
appears in an owner class (the descriptor must be in either the owner’s class dictionary or in the class dictionary for
one of its parents). In the examples below, «the attribute» refers to the attribute whose name is the key of the property
in the owner class” __dict__ .

object.__get__ (self, instance, owner=None)

Called to get the attribute of the owner class (class attribute access) or of an instance of that class (instance
attribute access). The optional owner argument is the owner class, while instance is the instance that the attribute
was accessed through, or None when the attribute is accessed through the owner.

This method should return the computed attribute value or raise an AttributeError exception.

PEP 252 specifies that ___get___ () is callable with one or two arguments. Python’s own built-in descriptors
support this specification; however, it is likely that some third-party tools have descriptors that require both
arguments. Python'sown ___getattribute__ () implementation always passes in both arguments whether
they are required or not.

object.__set__ (self, instance, value)
Called to set the attribute on an instance instance of the owner class to a new value, value.
Note, adding __set___ () or __delete__ () changes the kind of descriptor to a «data descriptor». See
Invoking Descriptors for more details.

object.__delete__ (self, instance)

Called to delete the attribute on an instance instance of the owner class.
Instances of descriptors may also have the __objclass__ attribute present:

object._ _objclass_

The attribute __objclass__ is interpreted by the inspect module as specifying the class where this
object was defined (setting this appropriately can assist in runtime introspection of dynamic class attributes).
For callables, it may indicate that an instance of the given type (or a subclass) is expected or required as the

3.3. Special method names 39



https://peps.python.org/pep-0562/
https://peps.python.org/pep-0252/

The Python Language Reference, Release 3.11.13

first positional argument (for example, CPython sets this attribute for unbound methods that are implemented
in C).

Invoking Descriptors

In general, a descriptor is an object attribute with «binding behavior», one whose attribute access has been overridden
by methods in the descriptor protocol: __get_ (), __set__ (),and_delete__ ().If any of those methods
are defined for an object, it is said to be a descriptor.

The default behavior for attribute access is to get, set, or delete the attribute from an object’s dictionary. For instance,
a . x has a lookup chain starting with a.__dict__ ['x'],thentype(a).__dict__ ['x'], and continuing
through the base classes of type (a) excluding metaclasses.

However, if the looked-up value is an object defining one of the descriptor methods, then Python may override the
default behavior and invoke the descriptor method instead. Where this occurs in the precedence chain depends on
which descriptor methods were defined and how they were called.

The starting point for descriptor invocation is a binding, a . x. How the arguments are assembled depends on a:

Direct Call
The simplest and least common call is when user code directly invokes a descriptor method: x.___get__ (a).

Instance Binding
If binding to an object instance, a.x is transformed into the call: type(a).__dict_ ['x'].
__get___(a, type(a)).

Class Binding
If binding to a class, A . x is transformed into the call: A.__dict__ ['x'].__get__ (None, A).
Super Binding
A dotted lookup such as super (A, a) .xsearchesa._class__ . mro__ forabase class B following
Aandthenreturns B.__dict_ ['x'].__get__ (a, A).If nota descriptor, x is returned unchanged.

For instance bindings, the precedence of descriptor invocation depends on which descriptor methods are defined. A
descriptor can define any combination of __get__ (), set__ () and __ delete _ ().If it does not define
__get__ (), then accessing the attribute will return the descriptor object itself unless there is a value in the object’s
instance dictionary. If the descriptor defines __set__ () and/or _ delete__ (), it is a data descriptor; if it
defines neither, it is a non-data descriptor. Normally, data descriptors define both __get__ () and __set__ (),
while non-data descriptors have justthe __get__ () method. Datadescriptorswith__get__ () and__set__ ()
(and/or __delete__ ()) defined always override a redefinition in an instance dictionary. In contrast, non-data
descriptors can be overridden by instances.

Python methods (including those decorated with @staticmethod and @classmethod) are implemented as
non-data descriptors. Accordingly, instances can redefine and override methods. This allows individual instances to
acquire behaviors that differ from other instances of the same class.

The property () function is implemented as a data descriptor. Accordingly, instances cannot override the behavior
of a property.

__slots__

__slots__ allow us to explicitly declare data members (like properties) and deny the creation of __dict__ and
__weakref__ (unless explicitly declared in __slots__ or available in a parent.)

The space saved over using ___dict__ can be significant. Attribute lookup speed can be significantly improved as
well.
object._ _slots__

This class variable can be assigned a string, iterable, or sequence of strings with variable names used by in-
stances. __slots__ reserves space for the declared variables and prevents the automatic creationof ___dict_
and __ weakref__ for each instance.

Notes on using __slots__:

40 Capitolo 3. Data model



The Python Language Reference, Release 3.11.13

o When inheriting from a class without __slots__,the ___dict__ and __weakref _ attribute of the instances
will always be accessible.

o Withouta___dict__ variable, instances cannot be assigned new variables not listed in the __slots__ definition.
Attempts to assign to an unlisted variable name raises AttributeError. If dynamic assignment of new
variables is desired, then add '__dict__ ' to the sequence of strings in the __slots__ declaration.

o Without a _ weakref__ variable for each instance, classes defining _ slots__ do not support weak
references to its instances. If weak reference support is needed, then add '___weakref_ ' to the
sequence of strings in the __slots__ declaration.

o __slots__ are implemented at the class level by creating descriptors for each variable name. As a result, class
attributes cannot be used to set default values for instance variables defined by __slots__; otherwise, the class
attribute would overwrite the descriptor assignment.

o Theaction of a__slots__declaration is not limited to the class where it is defined. __slots__ declared in parents
are available in child classes. However, child subclasses will geta __dict__ and __weakref__ unless they
also define __slots__ (which should only contain names of any additional slots).

« If a class defines a slot also defined in a base class, the instance variable defined by the base class slot is
inaccessible (except by retrieving its descriptor directly from the base class). This renders the meaning of the
program undefined. In the future, a check may be added to prevent this.

e TypeError will be raised if nonempty _ slots__ are defined for a class derived from a
"variable—-length" built-in typesuchas int,bytes,and tuple.

» Any non-string iferable may be assigned to __slots__.

o If a dictionary is used to assign __slots__, the dictionary keys will be used as the slot names.
The values of the dictionary can be used to provide per-attribute docstrings that will be recognised by
inspect .getdoc () and displayed in the output of help ().

e __class___ assignment works only if both classes have the same __slots__.

o Multiple inheritance with multiple slotted parent classes can be used, but only one parent is allowed to have
attributes created by slots (the other bases must have empty slot layouts) - violations raise TypeError.

o If an iterator is used for __slots__ then a descriptor is created for each of the iterator’s values. However, the
__slots__ attribute will be an empty iterator.

3.3.3 Customizing class creation

Whenever a class inherits from another class, __init_subclass__ () is called on the parent class. This way, it
is possible to write classes which change the behavior of subclasses. This is closely related to class decorators, but
where class decorators only affect the specific class theyre applied to, __init_subclass__ solely applies to
future subclasses of the class defining the method.

classmethod object.__init_subclass__ (cls)

This method is called whenever the containing class is subclassed. cls is then the new subclass. If defined as a
normal instance method, this method is implicitly converted to a class method.

Keyword arguments which are given to a new class are passed to the parent class’s __init_subclass__ .
For compatibility with other classes using __init_subclass__, one should take out the needed keyword
arguments and pass the others over to the base class, as in:

class Philosopher:
def _ init_subclass__ (cls, /, default_name, **kwargs):
super () .__init_subclass__ (**kwargs)
cls.default_name = default_name

class AustralianPhilosopher (Philosopher, default_name="Bruce"):
pass

3.3. Special method names 4



The Python Language Reference, Release 3.11.13

The default implementation object .__init_subclass__ does nothing, but raises an error if it is called
with any arguments.

Nota: The metaclass hint metaclass is consumed by the rest of the type machinery, and is never passed to
__init_subclass__ implementations. The actual metaclass (rather than the explicit hint) can be accessed
as type (cls).

Nuovo nella versione 3.6.

When a class is created, type.__new__ () scans the class variables and makes callbacks to those with a
___set_name___ () hook.

object.__set_name__ (self, owner, name)
Automatically called at the time the owning class owner is created. The object has been assigned to name in
that class:
class A:

x = C() # Automatically calls: x.__set_name__ (A, 'x'")

If the class variable is assigned after the class is created, __set_name__ () will not be called automatically.

If needed, __set_name__ () can be called directly:
class A:
pass
c =C()
A.x = C # The hook is not called
c._ set_name__ (A, 'x'") # Manually invoke the hook

See Creating the class object for more details.

Nuovo nella versione 3.6.

Metaclasses

By default, classes are constructed using t ype () . The class body is executed in a new namespace and the class name
is bound locally to the result of t ype (name, bases, namespace).

The class creation process can be customized by passing the metaclass keyword argument in the class definition
line, or by inheriting from an existing class that included such an argument. In the following example, both MyClass
and My Subclass are instances of Meta:

class Meta (type) :
pass

class MyClass (metaclass=Meta) :
pass

class MySubclass (MyClass) :
pass

Any other keyword arguments that are specified in the class definition are passed through to all metaclass operations
described below.

When a class definition is executed, the following steps occur:
« MRO entries are resolved;
« the appropriate metaclass is determined;
« the class namespace is prepared;

« the class body is executed;

42 Capitolo 3. Data model




The Python Language Reference, Release 3.11.13

« the class object is created.

Resolving MRO entries

object._ _mro_entries__ (self, bases)

If a base that appears in a class definition is not an instance of t ype,thenan___mro_entries__ () method
is searched on the base. If an __mro_entries__ () method is found, the base is substituted with the result
of acallto __ mro_entries__ () when creating the class. The method is called with the original bases
tuple passed to the bases parameter, and must return a tuple of classes that will be used instead of the base.
The returned tuple may be empty: in these cases, the original base is ignored.

Vedi anche:

types.resolve_bases ()
Dynamically resolve bases that are not instances of type.

PEP 560
Core support for typing module and generic types.

Determining the appropriate metaclass

The appropriate metaclass for a class definition is determined as follows:
« if no bases and no explicit metaclass are given, then type () is used;
« if an explicit metaclass is given and it is not an instance of type (), then it is used directly as the metaclass;

« if an instance of type () is given as the explicit metaclass, or bases are defined, then the most derived
metaclass is used.

The most derived metaclass is selected from the explicitly specified metaclass (if any) and the metaclasses (i.e.
type (cls)) of all specified base classes. The most derived metaclass is one which is a subtype of all of these
candidate metaclasses. If none of the candidate metaclasses meets that criterion, then the class definition will fail
with TypeError.

Preparing the class hamespace

Once the appropriate metaclass has been identified, then the class namespace is prepared. If the metaclass has
a __prepare___ attribute, it is called as namespace = metaclass.__prepare__ (name, bases,
**kwds) (where the additional keyword arguments, if any, come from the class definition). The __prepare_
method should be implemented as a classmethod. The namespace returned by __prepare_ is passed in to
__new___, but when the final class object is created the namespace is copied into a new dict.

If the metaclass has no __prepare___ attribute, then the class namespace is initialised as an empty ordered
mapping.
Vedi anche:

PEP 3115 - Metaclasses in Python 3000
Introduced the __prepare__ namespace hook

3.3. Special method names 43


https://peps.python.org/pep-0560/
https://peps.python.org/pep-3115/

The Python Language Reference, Release 3.11.13

Executing the class body

The class body is executed (approximately) as exec (body, globals (), namespace). The key difference
from a normal call to exec () is that lexical scoping allows the class body (including any methods) to reference
names from the current and outer scopes when the class definition occurs inside a function.

However, even when the class definition occurs inside the function, methods defined inside the class still cannot see
names defined at the class scope. Class variables must be accessed through the first parameter of instance or class
methods, or through the implicit lexically scoped ___class___ reference described in the next section.

Creating the class object

Once the class namespace has been populated by executing the class body, the class object is created by calling
metaclass (name, bases, namespace, **kwds) (the additional keywords passed here are the same as
those passed to __prepare_ ).

This class object is the one that will be referenced by the zero-argument form of super (). _ _class__ isan
implicit closure reference created by the compiler if any methods in a class body refer to either _ _class__ or
super. This allows the zero argument form of super () to correctly identify the class being defined based on
lexical scoping, while the class or instance that was used to make the current call is identified based on the first
argument passed to the method.

Dettaglio dell’implementazione di CPython: In CPython 3.6 and later, the _ class__ cell is passed to the
metaclassasa___classcell__ entry in the class namespace. If present, this must be propagated up to the t ype .
__new___call in order for the class to be initialised correctly. Failing to do so will result in a RuntimeError in
Python 3.8.

When using the default metaclass type, or any metaclass that ultimately calls type.___new__, the following
additional customization steps are invoked after creating the class object:

1) The type.__new__ method collects all of the attributes in the class namespace that define a
__set_name___ () method;

2) Those __set_name__ methods are called with the class being defined and the assigned name of that
particular attribute;

3) The _ init_subclass__ () hook is called on the immediate parent of the new class in its method
resolution order.

After the class object is created, it is passed to the class decorators included in the class definition (if any) and the
resulting object is bound in the local namespace as the defined class.

When a new class is created by type.___new__, the object provided as the namespace parameter is copied to a
new ordered mapping and the original object is discarded. The new copy is wrapped in a read-only proxy, which
becomes the ___dict___ attribute of the class object.

Vedi anche:

PEP 3135 - New super
Describes the implicit ___class___ closure reference

Uses for metaclasses

The potential uses for metaclasses are boundless. Some ideas that have been explored include enum, logging, in-
terface checking, automatic delegation, automatic property creation, proxies, frameworks, and automatic resource
locking/synchronization.

44 Capitolo 3. Data model


https://peps.python.org/pep-3135/

The Python Language Reference, Release 3.11.13

3.3.4 Customizing instance and subclass checks

The following methods are used to override the default behavior of the isinstance () and issubclass ()
built-in functions.

In particular, the metaclass abc . ABCMeta implements these methods in order to allow the addition of Abstract
Base Classes (ABCs) as «virtual base classes» to any class or type (including built-in types), including other ABCs.
class.__instancecheck__ (self, instance)
Return true if instance should be considered a (direct or indirect) instance of class. If defined, called to
implement isinstance (instance, class).
class.__subclasscheck__ (self, subclass)
Return true if subclass should be considered a (direct or indirect) subclass of class. If defined, called to

implement issubclass (subclass, class).

Note that these methods are looked up on the type (metaclass) of a class. They cannot be defined as class methods
in the actual class. This is consistent with the lookup of special methods that are called on instances, only in this case
the instance is itself a class.

Vedi anche:

PEP 3119 - Introducing Abstract Base Classes
Includes the specification for customizing isinstance () and issubclass () behavior through
__instancecheck__ () and __subclasscheck__ (), with motivation for this functionality in the
context of adding Abstract Base Classes (see the abc module) to the language.

3.3.5 Emulating generic types

When using type annotations, it is often useful to parameterize a generic type using Python’s square-brackets notation.
For example, the annotation 1ist [int] might be used to signify a 1ist in which all the elements are of type
int.

Vedi anche:

PEP 484 - Type Hints
Introducing Python’s framework for type annotations

Generic Alias Types
Documentation for objects representing parameterized generic classes

Generics, user-defined generics and typing.Generic
Documentation on how to implement generic classes that can be parameterized at runtime and understood by
static type-checkers.

A class can generally only be parameterized if it defines the special class method ___class_getitem__ ().

classmethod object._ class_getitem__ (cls, key)
Return an object representing the specialization of a generic class by type arguments found in key.

When defined on a class, __class_getitem__ () is automatically a class method. As such, there is no
need for it to be decorated with @classmethod when it is defined.

3.3. Special method names 45


https://peps.python.org/pep-3119/
https://peps.python.org/pep-0484/

The Python Language Reference, Release 3.11.13

The purpose of __class_getitem__

The purpose of ___class_getitem () isto allow runtime parameterization of standard-library generic classes
in order to more easily apply rype hints to these classes.

To implement custom generic classes that can be parameterized at runtime and understood by static type-checkers,
users should either inherit from a standard library class that already implements __class_getitem__ (), or
inherit from typing.Generic, which has its own implementation of __class_getitem__ ().

Custom implementations of ___class_getitem__ () on classes defined outside of the standard library may
not be understood by third-party type-checkers such as mypy. Using __class_getitem__ () on any class for
purposes other than type hinting is discouraged.

__class_getitem__ versus __getitem _

Usually, the subscription of an object using square brackets will call the _ getitem__ () instance me-
thod defined on the object’s class. However, if the object being subscribed is itself a class, the class method
__class_getitem _ () may be called instead. _ class_getitem__ () should return a GenericAlias
object if it is properly defined.

Presented with the expression obj [ x], the Python interpreter follows something like the following process to decide
whether __getitem () or__class_getitem__ () should be called:

from inspect import isclass

def subscribe (obj, x):
"""Return the result of the expression 'obj[x]'"""

class_of_obj = type (obj)

# If the class of obj defines __getitem _,
# call class_of _obj.__getitem _ (obj, x)

if hasattr(class_of_obj, ' _getitem_ '):
return class_of_obj._ _getitem__ (obj, x)
# Else, 1f obj is a class and defines __class_getitem_ _,
# call obj.__class_getitem _ (x)
elif isclass(obj) and hasattr(obj, ' class_getitem '):
return obj.__class_getitem__ (x)

# Else, raise an exception
else:
raise TypeError (
f"'{class_of_obj._ name_ }' object is not subscriptable"

In Python, all classes are themselves instances of other classes. The class of a class is known as that class’s meta-
class, and most classes have the type class as their metaclass. t ype does not define _ getitem__ (), mea-
ning that expressions such as 1ist [int], dict[str, float] and tuple[str, bytes] all result in
__class_getitem__ () being called:

>>> # list has class "type'" as its metaclass, like most classes:
>>> type(list)
<class 'type'>

>>> type(dict) == type(list) == type(tuple) == type(str) == type (bytes)
True

>>> # "list[int]" calls "list.__class_getitem _ (int)"

>>> list[int]

list[int]

>>> # list.__class_getitem _ returns a GenericAlias object:

>>> type(list[int])
<class 'types.GenericAlias'>

46 Capitolo 3. Data model



The Python Language Reference, Release 3.11.13

However, if a class has a custom metaclass that defines ___getitem__ (), subscribing the class may result in
different behaviour. An example of this can be found in the enum module:

>>> from enum import Enum

>>> class Menu (Enum) :
"""A breakfast menu'"""
SPAM = 'spam'
BACON = 'bacon'

>>> # Enum classes have a custom metaclass:

>>> type (Menu)

<class 'enum.EnumMeta'>

>>> # EnumMeta defines __getitem__,

>>> # so __class_getitem _ is not called,

>>> # and the result is not a GenericAlias object:
>>> Menu['SPAM']

<Menu.SPAM: 'spam'>

>>> type (Menu['SPAM'])

<enum 'Menu'>

Vedi anche:

PEP 560 - Core Support for typing module and generic types
Introducing __ class_getitem__ (), and outlining when a subscription results in
__class_getitem__ () beingcalled instead of __getitem__ ()

3.3.6 Emulating callable objects

object.__call___ (self[, args... ] )

Called when the instance is «called» as a function; if this method is defined, x (argl, arg2, ...) roughly
translates to type (x) .__call_ (x, argl, ...).

3.3.7 Emulating container types

The following methods can be defined to implement container objects. Containers usually are sequences (such as
lists or tuples) or mappings (like dict ionaries), but can represent other containers as well. The first set
of methods is used either to emulate a sequence or to emulate a mapping; the difference is that for a sequence,
the allowable keys should be the integers k for which 0 <= k < N where N is the length of the sequence, or
s1ice objects, which define a range of items. It is also recommended that mappings provide the methods keys (),
values (),items (),get (),clear (),setdefault (),pop(),popitem(),copy (),andupdate ()
behaving similar to those for Python’s standard dictionary objects. The collections.abc module provi-
des a MutableMapping abstract base class to help create those methods from a base set of ___getitem (),
__setitem _(),__delitem__ (), and keys (). Mutable sequences should provide methods append (),
count (), index (), extend (), insert (), pop (), remove (), reverse () and sort (), like Python
standard 1ist objects. Finally, sequence types should implement addition (meaning concatenation) and multipli-
cation (meaning repetition) by defining the methods ___add__ (), radd__ (), iadd__ (),__mul__ (),
__rmul__ ()and __imul__ () described below; they should not define other numerical operators. It is recom-
mended that both mappings and sequences implement the ___contains__ () method to allow efficient use of the
in operator; for mappings, in should search the mapping’s keys; for sequences, it should search through the values. It
is further recommended that both mappings and sequences implement the __iter () method to allow efficient
iteration through the container; for mappings, __iter__ () should iterate through the object’s keys; for sequences,
it should iterate through the values.

object._ len__ (self)

Called to implement the built-in function len (). Should return the length of the object, an integer >= 0.
Also, an object that doesn’t definea ___bool__ () method and whose __len__ () method returns zero is
considered to be false in a Boolean context.

3.3. Special method names 47



https://peps.python.org/pep-0560/

The Python Language Reference, Release 3.11.13

Dettaglio dell’implementazione di CPython: In CPython, the length is required to be at most sys.
maxsize. If the length is larger than sys.maxsize some features (such as len ()) may raise
OverflowError. To prevent raising OverflowError by truth value testing, an object must define a
__bool () method.

object._ length_hint__ (self)

Called to implement operator.length_hint (). Should return an estimated length for the object (which
may be greater or less than the actual length). The length must be an integer >= 0. The return value may also
be Not Implemented, which is treated the same as if the __length_hint__ method didn’t exist at all.
This method is purely an optimization and is never required for correctness.

Nuovo nella versione 3.4.

Nota: Slicing is done exclusively with the following three methods. A call like

[a[1:2] = b

is translated to

[a[slice(l, 2, None)] =D

and so forth. Missing slice items are always filled in with None.

object._ _getitem__ (self, key)

Called to implement evaluation of self [key]. For sequence types, the accepted keys should be integers.
Optionally, they may support s11ice objects as well. Negative index support is also optional. If key is of an
inappropriate type, TypeError may be raised; if key is a value outside the set of indexes for the sequence
(after any special interpretation of negative values), IndexError should be raised. For mapping types, if key
is missing (not in the container), KeyError should be raised.

Nota: for loops expect that an IndexError will be raised for illegal indexes to allow proper detection of
the end of the sequence.

Nota: When subscripting a class, the special class method ___class_getitem _ () may be called instead
of __getitem__ ().See _ class_getitem__ versus __ getitem__ for more details.

object.__setitem__ (self, key, value)

Called to implement assignment to self [key]. Same note as for __getitem _ (). This should only be
implemented for mappings if the objects support changes to the values for keys, or if new keys can be added,
or for sequences if elements can be replaced. The same exceptions should be raised for improper key values as
forthe _getitem__ () method.

object._ _delitem__ (self, key)

Called to implement deletion of self [key]. Same note as for __getitem__ (). This should only be
implemented for mappings if the objects support removal of keys, or for sequences if elements can be removed
from the sequence. The same exceptions should be raised for improper key values asforthe  _getitem_ ()
method.

object._ missing _ (self, key)
Called by dict._ _getitem__ () to implement self [key] for dict subclasses when key is not in the
dictionary.

object._ _iter_ _ (self)

This method is called when an iterator is required for a container. This method should return a new iterator
object that can iterate over all the objects in the container. For mappings, it should iterate over the keys of the
container.

48 Capitolo 3. Data model



The Python Language Reference, Release 3.11.13

object._ reversed_ (self)

Called (if present) by the reversed () built-in to implement reverse iteration. It should return a new iterator
object that iterates over all the objects in the container in reverse order.

If the _ reversed__ () method is not provided, the reversed () built-in will fall back to using the
sequence protocol (__I1en___ () and __getitem_ _ ()). Objects that support the sequence protocol should
only provide __reversed__ () if they can provide an implementation that is more efficient than the one
provided by reversed ().

The membership test operators (in and not 1in) are normally implemented as an iteration through a container.
However, container objects can supply the following special method with a more efficient implementation, which
also does not require the object be iterable.

object._ contains__ (self, item)
Called to implement membership test operators. Should return true if item is in self, false otherwise. For
mapping objects, this should consider the keys of the mapping rather than the values or the key-item pairs.

For objects that don't define __contains__ (), the membership test first tries iteration via___iter (),
then the old sequence iteration protocol via___getitem _ (), see this section in the language reference.

3.3.8 Emulating numeric types

The following methods can be defined to emulate numeric objects. Methods corresponding to operations that are not
supported by the particular kind of number implemented (e.g., bitwise operations for non-integral numbers) should
be left undefined.

object.__add__ (self, other)

object.__sub__ (self, other)

object._ _mul__ (self, other)

object._ _matmul__ (self, other)

object._ truediv__ (self, other)

object._ floordiv__ (self, other)

object._ _mod__ (self, other)

object.__divmod__ (self, other)

object.__pow___ (self, other[, modulo] )

object._ _lshift__ (self, other)

object._ _rshift__ (self, other)

object.__and__ (self, other)

object._ _xor__ (self, other)

object.__or__ (self, other)

These methods are called to implement the binary arithmetic operations (+, —, *, @, /, //, %, divmod (),
pow (), **, <<, >>, &, *, |). For instance, to evaluate the expression x + y, where x is an instance of
a class that has an ___add__ () method, type (x) .__add__ (x, vy) iscalled. The __divmod _ ()
method should be the equivalent to using _ floordiv._ () and __mod__ (); it should not be related to
__truediv__ (). Note that __pow__ () should be defined to accept an optional third argument if the
ternary version of the built-in pow () function is to be supported.

If one of those methods does not support the operation with the supplied arguments, it should return
NotImplemented.

object.__radd__ (self, other)

object.__rsub__ (self, other)

object.__rmul__ (self, other)

object.__rmatmul__ (self, other)

object.__rtruediv__ (self, other)

object.__rfloordiv___ (self, other)

3.3. Special method names 49



The Python Language Reference, Release 3.11.13

object.__rmod__ (self, other)

object.__rdivmod__ (self, other)

object.__rpow__ (self, Other[, modulo] )
object._ _rlshift__ (self, other)
object.__rrshift__ (self, other)
object.__rand__ (self, other)

object._ _rxor_ _ (self, other)
object.__ror__ (self, other)

These methods are called to implement the binary arithmetic operations (+, —, *, @, /, //, %, divmod (),
pow (), **, <<, >>, &, *, |) with reflected (swapped) operands. These functions are only called if the left
operand does not support the corresponding operation® and the operands are of different types.* For instan-
ce, to evaluate the expression x — vy, where y is an instance of a class that has an ___rsub__ () method,
type (y) .__rsub__ (y, x)iscalledif type (x).__sub__ (x, y) returns NotImplemented.

Note that ternary pow () will not try calling _ rpow__ () (the coercion rules would become too
complicated).

Nota: If the right operand’s type is a subclass of the left operand’s type and that subclass provides a different
implementation of the reflected method for the operation, this method will be called before the left operand’s
non-reflected method. This behavior allows subclasses to override their ancestors” operations.

object.__iadd__ (self, other)
object.__isub__ (self, other)
object.__imul__ (self, other)
object.__imatmul__ (self, other)
object.__itruediv__ (self, other)
object._ ifloordiv__ (self, other)
object.__imod__ (self, other)
object._ ipow__ (self, other[, modulo] )
object._ _ilshift__ (self, other)
object.__irshift__ (self, other)
object.__iand__ (self, other)
object.__ixor__ (self, other)

object._ _ior__ (self, other)

These methods are called to implement the augmented arithmetic assignments (+=, —=, *=, @=, /=, //=,
$=, **=, <<=, >>=, &=, =, | =). These methods should attempt to do the operation in-place (modifying

self) and return the result (which could be, but does not have to be, self). If a specific method is not defined,
or if that method returns Not Implemented, the augmented assignment falls back to the normal methods.
For instance, if x is an instance of a class withan ___iadd__ () method, x += yisequivalentto x = x.
_diadd_ (y).If__ _iadd () doesnotexist,orif x.__iadd__ (y) returns Not Implemented, x.
_add__(y)andy.__radd__ (x) are considered, as with the evaluation of x + y. In certain situations,
augmented assignment can result in unexpected errors (see fag-augmented-assignment-tuple-error), but this
behavior is in fact part of the data model.

object._ neg__ (self)
object._ _pos__ (self)
object._ _abs__ (self)

3 «Does not support» here means that the class has no such method, or the method returns Not Tmplemented. Do not set the method to
None if you want to force fallback to the right operand’s reflected method—that will instead have the opposite effect of explicitly blocking such
fallback.

4 For operands of the same type, it is assumed that if the non-reflected method — suchas __add__ () - fails then the overall operation is not
supported, which is why the reflected method is not called.

50 Capitolo 3. Data model



The Python Language Reference, Release 3.11.13

object.__invert_ (self)

Called to implement the unary arithmetic operations (-, +, abs () and ~).

object._ complex_ (self)

object.__int__ (self)

object._ float__ (self)
Called to implement the built-in functions complex (), int () and f1loat (). Should return a value of the
appropriate type.

object._ _index__ (self)

Called to implement operator.index (), and whenever Python needs to losslessly convert the numeric
object to an integer object (such as in slicing, or in the built-inbin () ,hex () and oct () functions). Presence
of this method indicates that the numeric object is an integer type. Must return an integer.

If __int_ (), float__ () and __complex__ () are not defined then corresponding built-in
functions int (), float () and complex () fallbackto _ index ().

object.__round__ (self[, ndigits] )
object.__trunc__ (self)

object._ floor__ (self)

object._ _ceil__ (self)

Called to implement the built-in function round () and math functions t runc (), floor () andceil ().
Unless ndigits is passed to ___round__ () all these methods should return the value of the object truncated
toan Integral (typically an int).

The built-in function int () falls back to _ trunc__ () if neither __int_ () nor __index__ () is
defined.

Cambiato nella versione 3.11: The delegation of int () to__ trunc__ () is deprecated.

3.3.9 With Statement Context Managers

A context manager is an object that defines the runtime context to be established when executing a wi t h statement.
The context manager handles the entry into, and the exit from, the desired runtime context for the execution of the
block of code. Context managers are normally invoked using the with statement (described in section The with
statement), but can also be used by directly invoking their methods.

Typical uses of context managers include saving and restoring various kinds of global state, locking and unlocking
resources, closing opened files, etc.

For more information on context managers, see typecontextmanager.

object.__enter__ (self)
Enter the runtime context related to this object. The with statement will bind this method’s return value to
the target(s) specified in the as clause of the statement, if any.

object.__exit__ (self, exc_type, exc_value, traceback)
Exit the runtime context related to this object. The parameters describe the exception that caused the context

to be exited. If the context was exited without an exception, all three arguments will be None.

If an exception is supplied, and the method wishes to suppress the exception (i.e., prevent it from being propa-
gated), it should return a true value. Otherwise, the exception will be processed normally upon exit from this
method.

Note that __exit__ () methods should not reraise the passed-in exception; this is the caller’s responsibility.
Vedi anche:

PEP 343 - The «with» statement
The specification, background, and examples for the Python wi ¢t h statement.

3.3. Special method names 51


https://peps.python.org/pep-0343/

The Python Language Reference, Release 3.11.13

3.3.10 Customizing positional arguments in class pattern matching

When using a class name in a pattern, positional arguments in the pattern are not allowed by default, i.e. case
MyClass (x, vy) is typically invalid without special support in MyClass. To be able to use that kind of pattern,
the class needs to define a __march_args__ attribute.

object._ match_args_
This class variable can be assigned a tuple of strings. When this class is used in a class pattern with positional

arguments, each positional argument will be converted into a keyword argument, using the corresponding value
in __match_args__ as the keyword. The absence of this attribute is equivalent to setting it to ().

For example, if MyClass.__match_args__is ("left", "center", "right") that meansthatcase
MyClass (x, y) isequivalent to case MyClass (left=x, center=y). Note that the number of argu-
ments in the pattern must be smaller than or equal to the number of elements in __match_args__; if it is larger, the
pattern match attempt will raise a TypeError.

Nuovo nella versione 3.10.
Vedi anche:

PEP 634 - Structural Pattern Matching
The specification for the Python mat ch statement.

3.3.11 Special method lookup

For custom classes, implicit invocations of special methods are only guaranteed to work correctly if defined on an
object’s type, not in the object’s instance dictionary. That behaviour is the reason why the following code raises an
exception:

>>> class C:

pass
>>> ¢ = C()
>>> ¢c.__len_ = lambda: 5

>>> len(c)
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
TypeError: object of type 'C' has no len()

The rationale behind this behaviour lies with a number of special methods suchas __hash__ () and__repr__ ()
that are implemented by all objects, including type objects. If the implicit lookup of these methods used the
conventional lookup process, they would fail when invoked on the type object itself:

>>> 1 ._ _hash__ () == hash(1)
True
>>> int._ hash_ () == hash(int)

Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: descriptor '__hash__' of 'int' object needs an argument

Incorrectly attempting to invoke an unbound method of a class in this way is sometimes referred to as “metaclass
confusion”, and is avoided by bypassing the instance when looking up special methods:

>>> type(l).__hash__ (1) == hash (1)

True

>>> type(int).__hash__ (int) == hash(int)
True

In addition to bypassing any instance attributes in the interest of correctness, implicit special method lookup generally
also bypasses the __getattribute () method even of the object’s metaclass:

52 Capitolo 3. Data model


https://peps.python.org/pep-0634/

The Python Language Reference, Release 3.11.13

>>> class Meta (type) :
def _ _getattribute__ (*args):
print ("Metaclass getattribute invoked")
return type._ _getattribute__ (*args)

>>> class C(object, metaclass=Meta):
def _ len_ (self):
return 10
def _ getattribute__ (*args):
print ("Class getattribute invoked")

return object._ _getattribute__ (*args)
>>> ¢ = C()
>>> c.__len_ () # Explicit lookup via instance
Class getattribute invoked
10
>>> type(c).__len__ (c) # Explicit lookup via type
Metaclass getattribute invoked
10
>>> len (c) # Implicit lookup
10

Bypassingthe getattribute__ () machinery in this fashion provides significant scope for speed optimisations
within the interpreter, at the cost of some flexibility in the handling of special methods (the special method must be

set on the class object itself in order to be consistently invoked by the interpreter).

3.4 Coroutines

3.4.1 Awaitable Objects

An awaitable object generally implementsan___await__ () method. Coroutine objects returned from async def

functions are awaitable.

Nota: The generator iterator objects returned from generators decorated with types.coroutine () are also

awaitable, but they do not implement __await__ ().

object.__await__ (self)

Must return an iterator. Should be used to implement awaitable objects. For instance, asyncio.Future

implements this method to be compatible with the awa i t expression.

Nota: The language doesn’t place any restriction on the type or value of the objects yielded by the iterator

returned by ___await
(e.g. asyncio) that will be managing the awaitable object.

, as this is specific to the implementation of the asynchronous execution framework

Nuovo nella versione 3.5.
Vedi anche:

PEP 492 for additional information about awaitable objects.

3.4. Coroutines

53



https://peps.python.org/pep-0492/

The Python Language Reference, Release 3.11.13

3.4.2 Coroutine Objects

Coroutine objects are awaitable objects. A coroutine’s execution can be controlled by calling __await__ () and
iterating over the result. When the coroutine has finished executing and returns, the iterator raises StopIteration,
and the exception’s value attribute holds the return value. If the coroutine raises an exception, it is propagated by
the iterator. Coroutines should not directly raise unhandled StopIteration exceptions.

Coroutines also have the methods listed below, which are analogous to those of generators (see Generator-iterator
methods). However, unlike generators, coroutines do not directly support iteration.

Cambiato nella versione 3.5.2: It is a Runt imeError to await on a coroutine more than once.

coroutine.send (value)

Starts or resumes execution of the coroutine. If value is None, this is equivalent to advancing the iterator
returned by ___await__ (). If value is not None, this method delegates to the send () method of the
iterator that caused the coroutine to suspend. The result (return value, St opIteration, or other exception)
is the same as when iterating over the __await__ () return value, described above.

coroutine.throw (value)

coroutine.throw (type[, value[, traceback] ])

Raises the specified exception in the coroutine. This method delegates to the t hrow () method of the iterator
that caused the coroutine to suspend, if it has such a method. Otherwise, the exception is raised at the suspension
point. The result (return value, StopIteration, or other exception) is the same as when iterating over the
__await__ () return value, described above. If the exception is not caught in the coroutine, it propagates
back to the caller.

coroutine.close ()

Causes the coroutine to clean itself up and exit. If the coroutine is suspended, this method first delegates to the
close () method of the iterator that caused the coroutine to suspend, if it has such a method. Then it raises
GeneratorExit at the suspension point, causing the coroutine to immediately clean itself up. Finally, the
coroutine is marked as having finished executing, even if it was never started.

Coroutine objects are automatically closed using the above process when they are about to be destroyed.

3.4.3 Asynchronous lterators

An asynchronous iterator can call asynchronous code inits ___anext___ method.
Asynchronous iterators can be used in an async for statement.
object.__aiter__ (self)

Must return an asynchronous iterator object.

object.__anext__ (self)

Must return an awaitable resulting in a next value of the iterator. Should raise a StopAsyncIteration
error when the iteration is over.

An example of an asynchronous iterable object:

class Reader:
async def readline(self):

def @ aiter_ (self):
return self

async def _ anext__ (self):
val = await self.readline ()
if val == b'':
raise StopAsyncIteration
return val

54 Capitolo 3. Data model




The Python Language Reference, Release 3.11.13

Nuovo nella versione 3.5.

Cambiato nella versione 3.7: Prior to Python 3.7, _ _aiter () could return an awaitable that would resolve to
an asynchmnous iter ator.

Starting with Python 3.7, __aiter__ () must return an asynchronous iterator object. Returning anything else will
result in a TypeError error.

3.4.4 Asynchronous Context Managers

An asynchronous context manager is a context manager that is able to suspend execution in its __aenter__ and
__aexit__ methods.

Asynchronous context managers can be used in an async with statement.

object.__aenter__ (self)

Semantically similar to __enter__ (), the only difference being that it must return an awaitable.

object.__aexit__ (self, exc_type, exc_value, traceback)

Semantically similar to __exit__ (), the only difference being that it must return an awaitable.

An example of an asynchronous context manager class:

class AsyncContextManager:
async def _ aenter_ (self):
await log('entering context')

async def _ aexit__ (self, exc_type, exc, tb):
await log('exiting context')

Nuovo nella versione 3.5.

3.4. Coroutines 55



The Python Language Reference, Release 3.11.13

56 Capitolo 3. Data model



capiToLo 4

Execution model

4.1 Structure of a program

A Python program is constructed from code blocks. A block is a piece of Python program text that is executed as a
unit. The following are blocks: a module, a function body, and a class definition. Each command typed interactively
is a block. A script file (a file given as standard input to the interpreter or specified as a command line argument to
the interpreter) is a code block. A script command (a command specified on the interpreter command line with the
—c option) is a code block. A module run as a top level script (as module __main__) from the command line using
a —m argument is also a code block. The string argument passed to the built-in functions eval () and exec () isa
code block.

A code block is executed in an execution frame. A frame contains some administrative information (used for
debugging) and determines where and how execution continues after the code block’s execution has completed.

4.2 Naming and binding

4.2.1 Binding of names

Names refer to objects. Names are introduced by name binding operations.
The following constructs bind names:

« formal parameters to functions,

e class definitions,

« function definitions,

e assignment expressions,

o targets that are identifiers if occurring in an assignment:

- for loop header,

- after as ina withstatement, except clause, except * clause, or in the as-pattern in structural pattern
matching,

- in a capture pattern in structural pattern matching

e import statements.

57



The Python Language Reference, Release 3.11.13

The import statement of the form from ... import * binds all names defined in the imported module,
except those beginning with an underscore. This form may only be used at the module level.

A target occurring in a de I statement is also considered bound for this purpose (though the actual semantics are to
unbind the name).

Each assignment or import statement occurs within a block defined by a class or function definition or at the module
level (the top-level code block).

If a name is bound in a block, it is a local variable of that block, unless declared as nonlocal or global. If
a name is bound at the module level, it is a global variable. (The variables of the module code block are local and
global.) If a variable is used in a code block but not defined there, it is a free variable.

Each occurrence of a name in the program text refers to the binding of that name established by the following name
resolution rules.

4.2.2 Resolution of names

A scope defines the visibility of a name within a block. If a local variable is defined in a block, its scope includes that
block. If the definition occurs in a function block, the scope extends to any blocks contained within the defining one,
unless a contained block introduces a different binding for the name.

When a name is used in a code block, it is resolved using the nearest enclosing scope. The set of all such scopes
visible to a code block is called the block’s environment.

When a name is not found at all, a NameError exception is raised. If the current scope is a function scope, and
the name refers to a local variable that has not yet been bound to a value at the point where the name is used, an
UnboundLocalError exception is raised. UnboundLocalError is a subclass of NameError.

If a name binding operation occurs anywhere within a code block, all uses of the name within the block are treated
as references to the current block. This can lead to errors when a name is used within a block before it is bound. This
rule is subtle. Python lacks declarations and allows name binding operations to occur anywhere within a code block.
The local variables of a code block can be determined by scanning the entire text of the block for name binding
operations. See the FAQ entry on UnboundLocalError for examples.

If the global statement occurs within a block, all uses of the names specified in the statement refer to the bindings
of those names in the top-level namespace. Names are resolved in the top-level namespace by searching the global
namespace, i.e. the namespace of the module containing the code block, and the builtins namespace, the namespace
of the module builtins. The global namespace is searched first. If the names are not found there, the builtins
namespace is searched. The global statement must precede all uses of the listed names.

The global statement has the same scope as a name binding operation in the same block. If the nearest enclosing
scope for a free variable contains a global statement, the free variable is treated as a global.

The nonlocal statement causes corresponding names to refer to previously bound variables in the nearest enclosing
function scope. SyntaxError is raised at compile time if the given name does not exist in any enclosing function
scope.

The namespace for a module is automatically created the first time a module is imported. The main module for a
script is always called __main__ .

Class definition blocks and arguments to exec () and eval () are special in the context of name resolution. A class
definition is an executable statement that may use and define names. These references follow the normal rules for name
resolution with an exception that unbound local variables are looked up in the global namespace. The namespace of
the class definition becomes the attribute dictionary of the class. The scope of names defined in a class block is limited
to the class block; it does not extend to the code blocks of methods - this includes comprehensions and generator
expressions since they are implemented using a function scope. This means that the following will fail:

class A:
a = 42
b = list(a + 1 for i in range(10))

58 Capitolo 4. Execution model



The Python Language Reference, Release 3.11.13

4.2.3 Builtins and restricted execution

Dettaglio dell’implementazione di CPython: Users should not touch __builtins__;itis strictly an implemen-
tation detail. Users wanting to override values in the builtins namespace should import the builtins module
and modify its attributes appropriately.

The builtins namespace associated with the execution of a code block is actually found by looking up the name
__builtins___inits global namespace; this should be a dictionary or a module (in the latter case the module’s dic-
tionary is used). By default, wheninthe __main__ module, _builtins__is the built-in module builtins;
when in any other module, __builtins__is an alias for the dictionary of the builtins module itself.

4.2.4 Interaction with dynamic features

Name resolution of free variables occurs at runtime, not at compile time. This means that the following code will
print 42:

i =10

def f():
print (i)

i =42

£0

The eval () and exec () functions do not have access to the full environment for resolving names. Names may
be resolved in the local and global namespaces of the caller. Free variables are not resolved in the nearest enclosing
namespace, but in the global namespace.l The exec () and eval () functions have optional arguments to override
the global and local namespace. If only one namespace is specified, it is used for both.

4.3 Exceptions

Exceptions are a means of breaking out of the normal flow of control of a code block in order to handle errors or
other exceptional conditions. An exception is raised at the point where the error is detected; it may be handled by
the surrounding code block or by any code block that directly or indirectly invoked the code block where the error
occurred.

The Python interpreter raises an exception when it detects a run-time error (such as division by zero). A Python
program can also explicitly raise an exception with the ra i se statement. Exception handlers are specified with the
try ... except statement. The finally clause of such a statement can be used to specify cleanup code which
does not handle the exception, but is executed whether an exception occurred or not in the preceding code.

Python uses the «termination» model of error handling: an exception handler can find out what happened and continue
execution at an outer level, but it cannot repair the cause of the error and retry the failing operation (except by
re-entering the offending piece of code from the top).

When an exception is not handled at all, the interpreter terminates execution of the program, or returns to its
interactive main loop. In either case, it prints a stack traceback, except when the exception is SystemExit.

Exceptions are identified by class instances. The except clause is selected depending on the class of the instance:
it must reference the class of the instance or a non-virtual base class thereof. The instance can be received by the
handler and can carry additional information about the exceptional condition.

Nota: Exception messages are not part of the Python API. Their contents may change from one version of Python to
the next without warning and should not be relied on by code which will run under multiple versions of the interpreter.

See also the description of the t ry statement in section 7he try statement and raise statement in section 7he raise
statement.

! This limitation occurs because the code that is executed by these operations is not available at the time the module is compiled.

4.3. Exceptions 59



The Python Language Reference, Release 3.11.13

60 Capitolo 4. Execution model



CAPITOLO B

The import system

Python code in one module gains access to the code in another module by the process of importing it. The import
statement is the most common way of invoking the import machinery, but it is not the only way. Functions such
as importlib.import_module () and built-in _ import__ () can also be used to invoke the import
machinery.

The import statement combines two operations; it searches for the named module, then it binds the results of
that search to a name in the local scope. The search operation of the import statement is defined as a call to
the _ _import__ () function, with the appropriate arguments. The return value of ___import__ () is used to
perform the name binding operation of the import statement. See the import statement for the exact details of
that name binding operation.

A direct call to __import__ () performs only the module search and, if found, the module creation operation.
While certain side-effects may occur, such as the importing of parent packages, and the updating of various caches
(including sy s .modules), only the import statement performs a name binding operation.

When an import statement is executed, the standard builtin _ _import__ () function is called. Other me-
chanisms for invoking the import system (such as importlib.import_module ()) may choose to bypass
__import__ () and use their own solutions to implement import semantics.

When a module is first imported, Python searches for the module and if found, it creates a module objectl , initiali-
zing it. If the named module cannot be found, a ModuleNotFoundError is raised. Python implements various
strategies to search for the named module when the import machinery is invoked. These strategies can be modified
and extended by using various hooks described in the sections below.

Cambiato nella versione 3.3: The import system has been updated to fully implement the second phase of PEP 302.
There is no longer any implicit import machinery - the full import system is exposed through sys.meta_path.
In addition, native namespace package support has been implemented (see PEP 420).

' See types.ModuleType.

61


https://peps.python.org/pep-0302/
https://peps.python.org/pep-0420/

The Python Language Reference, Release 3.11.13

5.1 importlib

The importlib module provides a rich API for interacting with the import system. For example importlib.
import_module () provides a recommended, simpler API than built-in __import__ () for invoking the
import machinery. Refer to the import1ib library documentation for additional detail.

5.2 Packages

Python has only one type of module object, and all modules are of this type, regardless of whether the module is
implemented in Python, C, or something else. To help organize modules and provide a naming hierarchy, Python has
a concept of packages.

You can think of packages as the directories on a file system and modules as files within directories, but don’t take
this analogy too literally since packages and modules need not originate from the file system. For the purposes of this
documentation, we’ll use this convenient analogy of directories and files. Like file system directories, packages are
organized hierarchically, and packages may themselves contain subpackages, as well as regular modules.

It’s important to keep in mind that all packages are modules, but not all modules are packages. Or put another way,
packages are just a special kind of module. Specifically, any module that containsa ___path___ attribute is considered
a package.

All modules have a name. Subpackage names are separated from their parent package name by a dot, akin to Python’s
standard attribute access syntax. Thus you might have a package called ema i 1, which in turn has a subpackage called
email.mime and a module within that subpackage called email .mime.text.

5.2.1 Regular packages

Python defines two types of packages, regular packages and namespace packages. Regular packages are traditional
packages as they existed in Python 3.2 and earlier. A regular package is typically implemented as a directory contai-
ningan __init__ .py file. When a regular package is imported, this __init__ .py file is implicitly executed,
and the objects it defines are bound to names in the package’s namespace. The __init__ .py file can contain the
same Python code that any other module can contain, and Python will add some additional attributes to the module
when it is imported.

For example, the following file system layout defines a top level parent package with three subpackages:

parent/

__init__ .py
one/

__init__ .py
two/

__init__ .py
three/

__init__ .py

Importing parent .one will implicitly execute parent/__init__ .py and parent/one/__init__ .
py. Subsequent imports of parent . two or parent .three will execute parent /two/__init__ .pyand
parent/three/___init__ .py respectively.

62 Capitolo 5. The import system



The Python Language Reference, Release 3.11.13

5.2.2 Namespace packages

A namespace package is a composite of various portions, where each portion contributes a subpackage to the parent
package. Portions may reside in different locations on the file system. Portions may also be found in zip files, on the
network, or anywhere else that Python searches during import. Namespace packages may or may not correspond
directly to objects on the file system; they may be virtual modules that have no concrete representation.

Namespace packages do not use an ordinary list for their __path___ attribute. They instead use a custom iterable
type which will automatically perform a new search for package portions on the next import attempt within that
package if the path of their parent package (or sys.path for a top level package) changes.

With namespace packages, there isno parent/__init__ .py file. In fact, there may be multiple parent direc-
tories found during import search, where each one is provided by a different portion. Thus parent /one may not
be physically located next to parent /two. In this case, Python will create a namespace package for the top-level
parent package whenever it or one of its subpackages is imported.

See also PEP 420 for the namespace package specification.

5.3 Searching

To begin the search, Python needs the fully qualified name of the module (or package, but for the purposes of this di-
scussion, the difference is immaterial) being imported. This name may come from various arguments to the import
statement, or from the parameters to the importlib.import_module () or __import__ () functions.

This name will be used in various phases of the import search, and it may be the dotted path to a submodule, e.g.
foo.bar.baz. In this case, Python first tries to import foo, then foo.bar, and finally foo.bar.baz. If any
of the intermediate imports fail, a ModuleNotFoundError is raised.

5.3.1 The module cache

The first place checked during import search is sys . modules. This mapping serves as a cache of all modules that
have been previously imported, including the intermediate paths. So if foo.bar .baz was previously imported,
sys.modules will contain entries for foo, foo.bar, and foo.bar.baz. Each key will have as its value the
corresponding module object.

During import, the module name is looked up in sys .modules and if present, the associated value is the module
satisfying the import, and the process completes. However, if the value is None, then a ModuleNotFoundError
is raised. If the module name is missing, Python will continue searching for the module.

sys.modules is writable. Deleting a key may not destroy the associated module (as other modules may hold
references to it), but it will invalidate the cache entry for the named module, causing Python to search anew for the
named module upon its next import. The key can also be assigned to None, forcing the next import of the module
to result in a ModuleNotFoundError.

Beware though, as if you keep a reference to the module object, invalidate its cache entry in sys .modules, and then
re-import the named module, the two module objects will not be the same. By contrast, importlib.reload ()
will reuse the same module object, and simply reinitialise the module contents by rerunning the module’s code.

5.3. Searching 63


https://peps.python.org/pep-0420/

The Python Language Reference, Release 3.11.13

5.3.2 Finders and loaders

If the named module is not found in sys .modules, then Python’s import protocol is invoked to find and load the
module. This protocol consists of two conceptual objects, finders and loaders. A finder’s job is to determine whether
it can find the named module using whatever strategy it knows about. Objects that implement both of these interfaces
are referred to as importers - they return themselves when they find that they can load the requested module.

Python includes a number of default finders and importers. The first one knows how to locate built-in modules, and
the second knows how to locate frozen modules. A third default finder searches an import path for modules. The
import path is a list of locations that may name file system paths or zip files. It can also be extended to search for any
locatable resource, such as those identified by URLs.

The import machinery is extensible, so new finders can be added to extend the range and scope of module searching.

Finders do not actually load modules. If they can find the named module, they return a module spec, an encapsulation
of the module’s import-related information, which the import machinery then uses when loading the module.

The following sections describe the protocol for finders and loaders in more detail, including how you can create and
register new ones to extend the import machinery.

Cambiato nella versione 3.4: In previous versions of Python, finders returned loaders directly, whereas now they
return module specs which contain loaders. Loaders are still used during import but have fewer responsibilities.

5.3.3 Import hooks

The import machinery is designed to be extensible; the primary mechanism for this are the import hooks. There are
two types of import hooks: meta hooks and import path hooks.

Meta hooks are called at the start of import processing, before any other import processing has occurred, other than
sys .modules cache look up. This allows meta hooks to override sy s . path processing, frozen modules, or even
built-in modules. Meta hooks are registered by adding new finder objects to sys .meta_path, as described below.

Import path hooks are called as part of sys.path (or package.__path__ ) processing, at the point where their
associated path item is encountered. Import path hooks are registered by adding new callables to sy s . path_hooks
as described below.

5.3.4 The meta path

When the named module is not found in sy s .modules, Python next searches sy s .meta_path, which contains
a list of meta path finder objects. These finders are queried in order to see if they know how to handle the named
module. Meta path finders must implement a method called find_spec () which takes three arguments: a name,
an import path, and (optionally) a target module. The meta path finder can use any strategy it wants to determine
whether it can handle the named module or not.

If the meta path finder knows how to handle the named module, it returns a spec object. If it cannot handle the named
module, it returns None. If sys.meta_path processing reaches the end of its list without returning a spec, then
aModuleNotFoundError is raised. Any other exceptions raised are simply propagated up, aborting the import
process.

The find_spec () method of meta path finders is called with two or three arguments. The first is the fully qualified
name of the module being imported, for example foo .bar .baz. The second argument is the path entries to use
for the module search. For top-level modules, the second argument is None, but for submodules or subpackages, the
second argument is the value of the parent package’s __path___ attribute. If the appropriate __path___ attribute
cannot be accessed, a ModuleNotFoundError is raised. The third argument is an existing module object that
will be the target of loading later. The import system passes in a target module only during reload.

The meta path may be traversed multiple times for a single import request. For example, assuming none of the modules
involved has already been cached, importing foo.bar .baz will first perform a top level import, calling mpf .
find_spec ("foo", None, None) on each meta path finder (mpf). After foo has been imported, foo.
bar will be imported by traversing the meta path a second time, callingmpf . find_spec ("foo.bar", foo.

64 Capitolo 5. The import system



The Python Language Reference, Release 3.11.13

__path__, None).Once foo.bar hasbeen imported, the final traversal will call mpf . find_spec ("foo.
bar.baz", foo.bar._ _path__, None).

Some meta path finders only support top level imports. These importers will always return None when anything other
than None is passed as the second argument.

Python’s default sys . meta_path has three meta path finders, one that knows how to import built-in modules, one
that knows how to import frozen modules, and one that knows how to import modules from an import path (i.e. the
path based finder).

Cambiato nella versione 3.4: The £ind_spec () method of meta path finders replaced £ind_module (), which
is now deprecated. While it will continue to work without change, the import machinery will try it only if the finder
does not implement find_spec ().

Cambiato nella versione 3.10: Use of find_module () by the import system now raises ImportWarning.

5.4 Loading

If and when a module spec is found, the import machinery will use it (and the loader it contains) when loading the
module. Here is an approximation of what happens during the loading portion of import:

module = None

if spec.loader is not None and hasattr (spec.loader, 'create module'):
# It is assumed 'exec_module' will also be defined on the loader.
module = spec.loader.create_module (spec)

if module is None:
module = ModuleType (spec.name)

# The import-related module attributes get set here:

_init_module_attrs (spec, module)

if spec.loader is None:
# unsupported
raise ImportError

if spec.origin is None and spec.submodule_search_locations is not None:
# namespace package

sys.modules[spec.name] = module
elif not hasattr (spec.loader, 'exec_module'):
module = spec.loader.load module (spec.name)
# Set __loader___ and __package__ 1f missing.
else:
sys.modules[spec.name] = module
try:

spec.loader.exec_module (module)
except BaseException:
try:
del sys.modules|[spec.name]
except KeyError:
pass
raise
return sys.modules[spec.name]

Note the following details:
« If there is an existing module object with the given name in sy s . modules, import will have already returned
it.
e The module will exist in sys .modules before the loader executes the module code. This is crucial because

the module code may (directly or indirectly) import itself; adding it to sys .modules beforehand prevents
unbounded recursion in the worst case and multiple loading in the best.

o If loading fails, the failing module - and only the failing module - gets removed from sys.modules.
Any module already in the sys.modules cache, and any module that was successfully loaded as a side-

5.4. Loading 65




The Python Language Reference, Release 3.11.13

effect, must remain in the cache. This contrasts with reloading where even the failing module is left in
sys.modules.

o After the module is created but before execution, the import machinery sets the import-related module
attributes («_init_module_attrs» in the pseudo-code example above), as summarized in a later section.

« Module execution is the key moment of loading in which the module’s namespace gets populated. Execution
is entirely delegated to the loader, which gets to decide what gets populated and how.

o The module created during loading and passed to exec_module() may not be the one returned at the end of
import”.

Cambiato nella versione 3.4: The import system has taken over the boilerplate responsibilities of loaders. These were
previously performed by the importlib.abc.Loader.load_module () method.

5.4.1 Loaders

Module loaders provide the critical function of loading: module execution. The import machinery calls the
importlib.abc.Loader.exec_module () method with a single argument, the module object to execute.
Any value returned from exec_module () is ignored.

Loaders must satisfy the following requirements:

o If the module is a Python module (as opposed to a built-in module or a dynamically loaded extension), the
loader should execute the module’s code in the module’s global name space (module.__dict_ ).

« If the loader cannot execute the module, it should raise an ImportError, although any other exception
raised during exec_module () will be propagated.

In many cases, the finder and loader can be the same object; in such cases the find_spec () method would just
return a spec with the loader set to self.

Module loaders may opt in to creating the module object during loading by implementing a create_module ()
method. It takes one argument, the module spec, and returns the new module object to use during loading.
create_module () does not need to set any attributes on the module object. If the method returns None, the
import machinery will create the new module itself.

Nuovo nella versione 3.4: The create_module () method of loaders.

Cambiato nella versione 3.4: The 1oad_module () method was replaced by exec_module () and the import
machinery assumed all the boilerplate responsibilities of loading.

For compatibility with existing loaders, the import machinery will use the 1oad_module () method of loaders if it
exists and the loader does not also implement exec_module (). However, load_module () hasbeen deprecated
and loaders should implement exec_module () instead.

The 1oad_module () method must implement all the boilerplate loading functionality described above in addition
to executing the module. All the same constraints apply, with some additional clarification:

« If there is an existing module object with the given name in sy s .modules, the loader must use that existing
module. (Otherwise, importlib.reload () will not work correctly.) If the named module does not exist
in sys.modules, the loader must create a new module object and add it to sys .modules.

o The module must exist in sys .modules before the loader executes the module code, to prevent unbounded
recursion or multiple loading.

« If loading fails, the loader must remove any modules it has inserted into sy s .modules, but it must remove
only the failing module(s), and only if the loader itself has loaded the module(s) explicitly.

Cambiato nella versione 3.5: A DeprecationWarning is raised when exec_module () is defined but
create_module () is not.

2 The importlib implementation avoids using the return value directly. Instead, it gets the module object by looking the module name up in
sys.modules. The indirect effect of this is that an imported module may replace itself in sys.modules. This is implementation-specific
behavior that is not guaranteed to work in other Python implementations.

66 Capitolo 5. The import system



The Python Language Reference, Release 3.11.13

Cambiato nella versione 3.6: An ImportError is raised when exec_module () is defined but
create_module () is not.

Cambiato nella versione 3.10: Use of 1oad_module () will raise ImportWarning.

5.4.2 Submodules

When a submodule is loaded using any mechanism (e.g. import1lib APIs, the import or import—from state-
ments, or built-in __import__ ()) abinding is placed in the parent module’s namespace to the submodule object.
For example, if package spam has a submodule foo, after importing spam. foo, spam will have an attribute foo
which is bound to the submodule. Let’s say you have the following directory structure:

spam/
__init__ .py
foo.py

and spam/__init__ .py has the following line in it:

[from .foo import Foo

then executing the following puts name bindings for foo and Foo in the spam module:

>>> import spam

>>> spam. foo

<module 'spam.foo' from '/tmp/imports/spam/foo.py'>
>>> spam.Foo

<class 'spam.foo.Foo'>

Given Python’s familiar name binding rules this might seem surprising, but it’s actually a fundamental feature of the
import system. The invariant holding is that if you have sys .modules [ 'spam'] and sys.modules|['spam.
foo'] (as you would after the above import), the latter must appear as the foo attribute of the former.

5.4.3 Module spec

The import machinery uses a variety of information about each module during import, especially before loading. Most
of the information is common to all modules. The purpose of a module’s spec is to encapsulate this import-related
information on a per-module basis.

Using a spec during import allows state to be transferred between import system components, e.g. between the finder
that creates the module spec and the loader that executes it. Most importantly, it allows the import machinery to
perform the boilerplate operations of loading, whereas without a module spec the loader had that responsibility.

The module’s spec is exposed as the __spec___ attribute on a module object. See ModuleSpec for details on the
contents of the module spec.

Nuovo nella versione 3.4.

5.4.4 Import-related module attributes

The import machinery fills in these attributes on each module object during loading, based on the module’s spec,
before the loader executes the module.
__name___

The __name___ attribute must be set to the fully qualified name of the module. This name is used to uniquely
identify the module in the import system.

5.4. Loading 67



The Python Language Reference, Release 3.11.13

__loader___

The __loader__ attribute must be set to the loader object that the import machinery used when loading
the module. This is mostly for introspection, but can be used for additional loader-specific functionality, for
example getting data associated with a loader.

package_

The module’s __package___ attribute must be set. Its value must be a string, but it can be the same value
asits __name__. When the module is a package, its __package___ value should be set to its __name__.
When the module is not a package, __package___ should be set to the empty string for top-level modules,
or for submodules, to the parent package’s name. See PEP 366 for further details.

This attribute is used instead of __name___ to calculate explicit relative imports for main modules, as defined
in PEP 366. It is expected to have the same value as __spec___.parent.

Cambiato nella versione 3.6: The value of __package__ is expected to be the same as __spec__.
parent.

—__Spec__

The __spec___ attribute must be set to the module spec that was used when importing the module. Setting
___spec___ appropriately applies equally to modules initialized during interpreter startup. The one exception
iS_ _main__ ,where __ spec__is set to None in some cases.

When __package___isnot defined, ___spec__.parent is used as a fallback.

Nuovo nella versione 3.4.

Cambiato nella versione 3.6: __spec__.parent is used as a fallback when __package___is not defined.

path__

If the module is a package (either regular or namespace), the module object’s __path___ attribute must be
set. The value must be iterable, but may be empty if __path__ has no further significance. If __path__ is
not empty, it must produce strings when iterated over. More details on the semantics of __path___ are given
below.

Non-package modules should not have a __path___ attribute.

__file_

__cached___

_ file_  is optional (if set, value must be a string). It indicates the pathname of the file from which the
module was loaded (if loaded from a file), or the pathname of the shared library file for extension modules
loaded dynamically from a shared library. It might be missing for certain types of modules, such as C modules
that are statically linked into the interpreter, and the import system may opt to leave it unset if it has no semantic
meaning (e.g. a module loaded from a database).

If _ file_  issetthenthe _ cached__ attribute might also be set, which is the path to any compiled
version of the code (e.g. byte-compiled file). The file does not need to exist to set this attribute; the path can
simply point to where the compiled file would exist (see PEP 3147).

Note that __cached__ may be setevenif _ file_  is not set. However, that scenario is quite atypical.
Ultimately, the loader is what makes use of the module spec provided by the finder (from which ___file_
and __cached__ are derived). So if a loader can load from a cached module but otherwise does not load
from a file, that atypical scenario may be appropriate.

68

Capitolo 5. The import system


https://peps.python.org/pep-0366/
https://peps.python.org/pep-0366/
https://peps.python.org/pep-3147/

The Python Language Reference, Release 3.11.13

5.4.5 module.__path__

By definition, if a module has a __path___ attribute, it is a package.

Apackage’s__path__ attribute is used during imports of its subpackages. Within the import machinery, it functions
much the same as sys.path, i.e. providing a list of locations to search for modules during import. However,
__path__ is typically much more constrained than sys.path.

__path__ must be an iterable of strings, but it may be empty. The same rules used for sys.path also apply
to a package’s __path__, and sys.path_hooks (described below) are consulted when traversing a package’s
__path__.

A package’s __init__ .py file may set or alter the package’s _ _path__ attribute, and this was typically the way
namespace packages were implemented prior to PEP 420. With the adoption of PEP 420, namespace packages no
longer need to supply __init__ .py files containing only __path__ manipulation code; the import machinery
automatically sets __path___ correctly for the namespace package.

5.4.6 Module reprs

By default, all modules have a usable repr, however depending on the attributes set above, and in the module’s spec,
you can more explicitly control the repr of module objects.

If the module has a spec (__spec__), the import machinery will try to generate a repr from it. If that fails or there
is no spec, the import system will craft a default repr using whatever information is available on the module. It will
try to use the module._ _name_ ,module._ file ,andmodule.__ loader__ as input into the repr,
with defaults for whatever information is missing.

Here are the exact rules used:

o If themodule hasa ___spec__ attribute, the information in the spec is used to generate the repr. The «name»,
«loader», «origin», and «has_location» attributes are consulted.

o If the module hasa __ file_ attribute, this is used as part of the module’s repr.

o If the module hasno __file__ butdoes have a __ loader__ thatis not None, then the loader’s repr is
used as part of the module’s repr.

o Otherwise, just use the module’s __name___in the repr.

Cambiato nella versione 3.4: Use of loader.module_repr () has been deprecated and the module spec is now
used by the import machinery to generate a module repr.

For backward compatibility with Python 3.3, the module repr will be generated by calling the loader’s
module_repr () method, if defined, before trying either approach described above. However, the method is
deprecated.

Cambiato nella versione 3.10: Calling module_repr () now occurs after trying to use a module’s __spec
attribute but before falling back on __file . Use of module_repr () is slated to stop in Python 3.12.

5.4.7 Cached bytecode invalidation

Before Python loads cached bytecode from a . pyc file, it checks whether the cache is up-to-date with the source
. py file. By default, Python does this by storing the source’s last-modified timestamp and size in the cache file when
writing it. At runtime, the import system then validates the cache file by checking the stored metadata in the cache
file against the source’s metadata.

Python also supports «hash-based» cache files, which store a hash of the source file’s contents rather than its metadata.
There are two variants of hash-based . pyc files: checked and unchecked. For checked hash-based . pyc files, Python
validates the cache file by hashing the source file and comparing the resulting hash with the hash in the cache file. If
a checked hash-based cache file is found to be invalid, Python regenerates it and writes a new checked hash-based
cache file. For unchecked hash-based . pyc files, Python simply assumes the cache file is valid if it exists. Hash-based
. pyc files validation behavior may be overridden with the -——check-hash-based-pycs flag.

5.4. Loading 69


https://peps.python.org/pep-0420/
https://peps.python.org/pep-0420/

The Python Language Reference, Release 3.11.13

Cambiato nella versione 3.7: Added hash-based .pyc files. Previously, Python only supported timestamp-based
invalidation of bytecode caches.

5.5 The Path Based Finder

As mentioned previously, Python comes with several default meta path finders. One of these, called the path based
Jfinder (PathFinder), searches an import path, which contains a list of path entries. Each path entry names a
location to search for modules.

The path based finder itself doesn’t know how to import anything. Instead, it traverses the individual path entries,
associating each of them with a path entry finder that knows how to handle that particular kind of path.

The default set of path entry finders implement all the semantics for finding modules on the file system, handling
special file types such as Python source code (. py files), Python byte code (. pyc files) and shared libraries (e.g.
. so files). When supported by the zipimport module in the standard library, the default path entry finders also
handle loading all of these file types (other than shared libraries) from zipfiles.

Path entries need not be limited to file system locations. They can refer to URLs, database queries, or any other
location that can be specified as a string.

The path based finder provides additional hooks and protocols so that you can extend and customize the types of
searchable path entries. For example, if you wanted to support path entries as network URLs, you could write a hook
that implements HTTP semantics to find modules on the web. This hook (a callable) would return a path entry finder
supporting the protocol described below, which was then used to get a loader for the module from the web.

A word of warning: this section and the previous both use the term finder, distinguishing between them by using the
terms meta path finder and path entry finder. These two types of finders are very similar, support similar protocols,
and function in similar ways during the import process, but it’s important to keep in mind that they are subtly different.
In particular, meta path finders operate at the beginning of the import process, as keyed off the sys.meta_path
traversal.

By contrast, path entry finders are in a sense an implementation detail of the path based finder, and in fact, if the
path based finder were to be removed from sys.meta_path, none of the path entry finder semantics would be
invoked.

5.5.1 Path entry finders

The path based finder is responsible for finding and loading Python modules and packages whose location is specified
with a string path entry. Most path entries name locations in the file system, but they need not be limited to this.

As a meta path finder, the path based finder implements the £ind_spec () protocol previously described, however
it exposes additional hooks that can be used to customize how modules are found and loaded from the import path.

Three variables are used by the path based finder, sys.path, sys.path_hooks and sys.
path_importer_cache. The _ _path__ attributes on package objects are also used. These provide
additional ways that the import machinery can be customized.

sys.path contains a list of strings providing search locations for modules and packages. It is initialized from the
PYTHONPATH environment variable and various other installation- and implementation-specific defaults. Entries
in sys.path can name directories on the file system, zip files, and potentially other «locations» (see the site
module) that should be searched for modules, such as URLS, or database queries. Only strings should be present on
sys .path; all other data types are ignored.

The path based finder is a meta path finder, so the import machinery begins the import path search by calling the
path based finder’s find_spec () method as described previously. When the path argument to find_spec ()
is given, it will be a list of string paths to traverse - typically a package’s __path__ attribute for an import within
that package. If the path argument is None, this indicates a top level import and sys . path is used.

The path based finder iterates over every entry in the search path, and for each of these, looks for an appropriate
path entry finder (PathEntryFinder) for the path entry. Because this can be an expensive operation (e.g. there
may be stat () call overheads for this search), the path based finder maintains a cache mapping path entries to

70 Capitolo 5. The import system



The Python Language Reference, Release 3.11.13

path entry finders. This cache is maintained in sys.path_importer_cache (despite the name, this cache
actually stores finder objects rather than being limited to importer objects). In this way, the expensive search for a
particular path entry location’s path entry finder need only be done once. User code is free to remove cache entries
from sys.path_importer_cache forcing the path based finder to perform the path entry search again®.

If the path entry is not present in the cache, the path based finder iterates over every callable in sys.path_hooks.
Each of the path entry hooks in this list is called with a single argument, the path entry to be searched. This callable may
either return a path entry finder that can handle the path entry, or it may raise ImportError. An ImportError
is used by the path based finder to signal that the hook cannot find a path entry finder for that path entry. The exception
is ignored and import path iteration continues. The hook should expect either a string or bytes object; the encoding
of bytes objects is up to the hook (e.g. it may be a file system encoding, UTF-8, or something else), and if the hook
cannot decode the argument, it should raise ImportError.

If sys.path_hooks iteration ends with no path entry finder being returned, then the path based finder’s
find_spec () method will store None in sys.path_importer_cache (to indicate that there is no finder
for this path entry) and return None, indicating that this meta path finder could not find the module.

If a path entry finder is returned by one of the path entry hook callables on sys.path_hooks, then the following
protocol is used to ask the finder for a module spec, which is then used when loading the module.

The current working directory — denoted by an empty string - is handled slightly differently from other en-
tries on sys.path. First, if the current working directory is found to not exist, no value is stored in sys.
path_importer_cache. Second, the value for the current working directory is looked up fresh for each
module lookup. Third, the path used for sys.path_importer_cache and returned by importlib.
machinery.PathFinder.find_spec () will be the actual current working directory and not the empty
string.

5.5.2 Path entry finder protocol

In order to support imports of modules and initialized packages and also to contribute portions to namespace packages,
path entry finders must implement the find_spec () method.

find_spec () takes two arguments: the fully qualified name of the module being imported, and the (optional)
target module. £ind_spec () returns a fully populated spec for the module. This spec will always have «loader»
set (with one exception).

To indicate to the import machinery that the spec represents a namespace portion, the path entry finder sets
«submodule_search_locations» to a list containing the portion.

Cambiato nella versione 3.4: find_spec () replaced find_loader () and £ind_module (), both of which
are now deprecated, but will be used if £ind_spec () is not defined.

Older path entry finders may implement one of these two deprecated methods instead of find_spec (). The
methods are still respected for the sake of backward compatibility. However, if find_spec () is implemented on
the path entry finder, the legacy methods are ignored.

find_loader () takes one argument, the fully qualified name of the module being imported. find_loader ()
returns a 2-tuple where the first item is the loader and the second item is a namespace portion.

For backwards compatibility with other implementations of the import protocol, many path entry finders also sup-
port the same, traditional £ind_module () method that meta path finders support. However path entry finder
find_module () methods are never called with a path argument (they are expected to record the appropriate
path information from the initial call to the path hook).

The find_module () method on path entry finders is deprecated, as it does not allow the path entry finder to
contribute portions to namespace packages. If both find_loader () and f£ind_module () exist on a path
entry finder, the import system will always call find_loader () in preference to find_module ().

Cambiato nella versione 3.10: Calls to find_module () and £ind_loader () by the import system will raise
ImportWarning.

3 In legacy code, it is possible to find instances of imp.NullImporter inthe sys.path_importer_cache. It is recommended that
code be changed to use None instead. See portingpythoncode for more details.

5.5. The Path Based Finder 71



The Python Language Reference, Release 3.11.13

5.6 Replacing the standard import system

The most reliable mechanism for replacing the entire import system is to delete the default contents of
sys.meta_path, replacing them entirely with a custom meta path hook.

If it is acceptable to only alter the behaviour of import statements without affecting other APIs that access the import
system, then replacing the builtin ___import__ () function may be sufficient. This technique may also be employed
at the module level to only alter the behaviour of import statements within that module.

To selectively prevent the import of some modules from a hook early on the meta path (rather than disabling the
standard import system entirely), it is sufficient to raise ModuleNotFoundError directly from £ind_spec ()
instead of returning None. The latter indicates that the meta path search should continue, while raising an exception
terminates it immediately.

5.7 Package Relative Imports

Relative imports use leading dots. A single leading dot indicates a relative import, starting with the current package.
Two or more leading dots indicate a relative import to the parent(s) of the current package, one level per dot after
the first. For example, given the following package layout:

package/

__init__ .py

subpackagel/
__init__ .py
moduleX.py
moduleY.py

subpackage?2/
__init__ .py
moduleZ.py

moduleA.py

In either subpackagel/moduleX.py or subpackagel/__init__ .py, the following are valid relative
imports:

from .moduleY import spam

from .moduleY import spam as ham

from . import moduleY

from ..subpackagel import moduleY
from ..subpackage2.moduleZ import eggs
from ..moduleA import foo

Absolute imports may use either the import <> or from <> import <> syntax, but relative imports may
only use the second form; the reason for this is that:

[import XXX .YYY.ZZZ

should expose XXX .YYY.ZZZ as a usable expression, but .moduleY is not a valid expression.

72 Capitolo 5. The import system




The Python Language Reference, Release 3.11.13

5.8 Special considerations for __main__

The _ _main__ module is a special case relative to Python’s import system. As noted elsewhere, the __main___
module is directly initialized at interpreter startup, much like sys and builtins. However, unlike those two, it
doesn'’t strictly qualify as a built-in module. This is because the manner in which __main___is initialized depends
on the flags and other options with which the interpreter is invoked.

5.8.1 __main__.__spec__

Depending on how ___main__ isinitialized, __main_.__ spec__ gets set appropriately or to None.

When Python is started with the —m option, __spec___is set to the module spec of the corresponding module
or package. __spec___is also populated when the __main__ module is loaded as part of executing a directory,
zipfile or other sys.path entry.

In the remaining cases __main__.__ spec__ is set to None, as the code used to populate the __main__ does
not correspond directly with an importable module:

« interactive prompt

e —C option

« running from stdin

« running directly from a source or bytecode file

Note that __main__ .__ spec__ is always None in the last case, even if the file could technically be imported
directly as a module instead. Use the —m switch if valid module metadata is desired in __main__.

Note also that even when __main___ corresponds with an importable module and __main__.__ spec__ isset
accordingly, they’re still considered distinct modules. This is due to the fact that blocks guarded by if _ name_
== "__main__": checks only execute when the module is used to populate the __main__ namespace, and not

during normal import.

5.9 References

The import machinery has evolved considerably since Python’s early days. The original specification for packages is
still available to read, although some details have changed since the writing of that document.

The original specification for sys .meta_path was PEP 302, with subsequent extension in PEP 420.

PEP 420 introduced namespace packages for Python 3.3. PEP 420 also introduced the find_loader () protocol
as an alternative to find_module ().

PEP 366 describes the addition of the ___package___ attribute for explicit relative imports in main modules.

PEP 328 introduced absolute and explicit relative imports and initially proposed __name___ for semantics PEP
366 would eventually specify for __package__.

PEP 338 defines executing modules as scripts.

PEP 451 adds the encapsulation of per-module import state in spec objects. It also off-loads most of the boilerplate
responsibilities of loaders back onto the import machinery. These changes allow the deprecation of several APIs in
the import system and also addition of new methods to finders and loaders.

5.8. Special considerations for __main__ 73


https://www.python.org/doc/essays/packages/
https://peps.python.org/pep-0302/
https://peps.python.org/pep-0420/
https://peps.python.org/pep-0420/
https://peps.python.org/pep-0420/
https://peps.python.org/pep-0366/
https://peps.python.org/pep-0328/
https://peps.python.org/pep-0366/
https://peps.python.org/pep-0366/
https://peps.python.org/pep-0338/
https://peps.python.org/pep-0451/

The Python Language Reference, Release 3.11.13

74 Capitolo 5. The import system



CAPITOLO O

Expressions

This chapter explains the meaning of the elements of expressions in Python.

Syntax Notes: In this and the following chapters, extended BNF notation will be used to describe syntax, not lexical
analysis. When (one alternative of) a syntax rule has the form

name .= othername

and no semantics are given, the semantics of this form of name are the same as for othername.

6.1 Arithmetic conversions

When a description of an arithmetic operator below uses the phrase «the numeric arguments are converted to a
common type», this means that the operator implementation for built-in types works as follows:

« If either argument is a complex number, the other is converted to complex;
« otherwise, if either argument is a floating point number, the other is converted to floating point;
« otherwise, both must be integers and no conversion is necessary.

Some additional rules apply for certain operators (e.g., a string as a left argument to the “%” operator). Extensions
must define their own conversion behavior.

6.2 Atoms

Atoms are the most basic elements of expressions. The simplest atoms are identifiers or literals. Forms enclosed in
parentheses, brackets or braces are also categorized syntactically as atoms. The syntax for atoms is:

atom = identifier | literal | enclosure
enclosure = parenth_form | 1list_display | dict_display | set_display
| generator_expression | yield _atom

75



The Python Language Reference, Release 3.11.13

6.2.1 Identifiers (Names)

An identifier occurring as an atom is a name. See section Identifiers and keywords for lexical definition and section
Naming and binding for documentation of naming and binding.

When the name is bound to an object, evaluation of the atom yields that object. When a name is not bound, an attempt
to evaluate it raises a NameError exception.

Private name mangling: When an identifier that textually occurs in a class definition begins with two or more
underscore characters and does not end in two or more underscores, it is considered a private name of that class.
Private names are transformed to a longer form before code is generated for them. The transformation inserts the
class name, with leading underscores removed and a single underscore inserted, in front of the name. For example,
the identifier ___spam occurring in a class named Ham will be transformed to _Ham___spam. This transformation is
independent of the syntactical context in which the identifier is used. If the transformed name is extremely long (longer
than 255 characters), implementation defined truncation may happen. If the class name consists only of underscores,
no transformation is done.

6.2.2 Literals

Python supports string and bytes literals and various numeric literals:

literal = stringliteral | bytesliteral
| integer | floatnumber | imagnumber

Evaluation of a literal yields an object of the given type (string, bytes, integer, floating point number, complex number)
with the given value. The value may be approximated in the case of floating point and imaginary (complex) literals.
See section Liferals for details.

All literals correspond to immutable data types, and hence the object’s identity is less important than its value. Multiple
evaluations of literals with the same value (either the same occurrence in the program text or a different occurrence)
may obtain the same object or a different object with the same value.

6.2.3 Parenthesized forms

A parenthesized form is an optional expression list enclosed in parentheses:

parenth_form := "(" [starred_expression] ")"

A parenthesized expression list yields whatever that expression list yields: if the list contains at least one comma, it
yields a tuple; otherwise, it yields the single expression that makes up the expression list.

An empty pair of parentheses yields an empty tuple object. Since tuples are immutable, the same rules as for literals
apply (i.e., two occurrences of the empty tuple may or may not yield the same object).

Note that tuples are not formed by the parentheses, but rather by use of the comma. The exception is the empty tuple,
for which parentheses are required — allowing unparenthesized «nothing» in expressions would cause ambiguities
and allow common typos to pass uncaught.

76 Capitolo 6. Expressions



The Python Language Reference, Release 3.11.13

6.2.4 Displays for lists, sets and dictionaries
For constructing a list, a set or a dictionary Python provides special syntax called «displays», each of them in two
flavors:

« either the container contents are listed explicitly, or

« they are computed via a set of looping and filtering instructions, called a comprehension.

Common syntax elements for comprehensions are:

comprehension = assignment_expression comp_for
comp_for ["async"] "for" target_list "in
comp_iter comp_for | comp_if

comp_if RES "if" or_test [comp_iter]

or_test [comp_iter]

The comprehension consists of a single expression followed by at least one for clause and zero or more for or 1 f
clauses. In this case, the elements of the new container are those that would be produced by considering each of the
for or if clauses a block, nesting from left to right, and evaluating the expression to produce an element each time
the innermost block is reached.

However, aside from the iterable expression in the leftmost for clause, the comprehension is executed in a separate
implicitly nested scope. This ensures that names assigned to in the target list don’t «leak» into the enclosing scope.

The iterable expression in the leftmost for clause is evaluated directly in the enclosing scope and then passed as an
argument to the implicitly nested scope. Subsequent for clauses and any filter condition in the leftmost for clause
cannot be evaluated in the enclosing scope as they may depend on the values obtained from the leftmost iterable. For
example: [x*y for x in range (10) for y in range(x, x+10)].

To ensure the comprehension always results in a container of the appropriate type, yield and yield from
expressions are prohibited in the implicitly nested scope.

Since Python 3.6, in an async def function, an async for clause may be used to iterate over a asynchronous
iterator. A comprehension in an async def function may consist of eithera for orasync for clause following
the leading expression, may contain additional for or async for clauses, and may also use awa it expressions.
If a comprehension contains either async for clauses or await expressions or other asynchronous comprehen-
sions it is called an asynchronous comprehension. An asynchronous comprehension may suspend the execution of the
coroutine function in which it appears. See also PEP 530.

Nuovo nella versione 3.6: Asynchronous comprehensions were introduced.
Cambiato nella versione 3.8: yield and yield from prohibited in the implicitly nested scope.

Cambiato nella versione 3.11: Asynchronous comprehensions are now allowed inside comprehensions in
asynchronous functions. Outer comprehensions implicitly become asynchronous.

6.2.5 List displays

A list display is a possibly empty series of expressions enclosed in square brackets:

list_display = "[" [starred_list | comprehension] "]1"

A list display yields a new list object, the contents being specified by either a list of expressions or a comprehension.
When a comma-separated list of expressions is supplied, its elements are evaluated from left to right and placed into
the list object in that order. When a comprehension is supplied, the list is constructed from the elements resulting
from the comprehension.

6.2. Atoms 77


https://peps.python.org/pep-0530/

The Python Language Reference, Release 3.11.13

6.2.6 Set displays

A set display is denoted by curly braces and distinguishable from dictionary displays by the lack of colons separating
keys and values:

set_display := "{" (starred_list | comprehension) "}"

A set display yields a new mutable set object, the contents being specified by either a sequence of expressions or a
comprehension. When a comma-separated list of expressions is supplied, its elements are evaluated from left to right
and added to the set object. When a comprehension is supplied, the set is constructed from the elements resulting
from the comprehension.

An empty set cannot be constructed with { }; this literal constructs an empty dictionary.

6.2.7 Dictionary displays

A dictionary display is a possibly empty series of dict items (key/value pairs) enclosed in curly braces:

dict_display = "{" [dict_item_ list | dict_comprehension] "}"
dict_item_list n= dict_item ("," dict_item)* [","]

dict_item = expression ":" expression | "**" or_expr
dict_comprehension := expression ":" expression comp_for

A dictionary display yields a new dictionary object.

If a comma-separated sequence of dict items is given, they are evaluated from left to right to define the entries of the
dictionary: each key object is used as a key into the dictionary to store the corresponding value. This means that you
can specify the same key multiple times in the dict item list, and the final dictionary’s value for that key will be the
last one given.

A double asterisk ** denotes dictionary unpacking. Its operand must be a mapping. Each mapping item is added to
the new dictionary. Later values replace values already set by earlier dict items and earlier dictionary unpackings.

Nuovo nella versione 3.5: Unpacking into dictionary displays, originally proposed by PEP 448.

A dict comprehension, in contrast to list and set comprehensions, needs two expressions separated with a colon
followed by the usual «for» and «if» clauses. When the comprehension is run, the resulting key and value elements
are inserted in the new dictionary in the order they are produced.

Restrictions on the types of the key values are listed earlier in section 7he standard type hierarchy. (To summarize, the
key type should be hashable, which excludes all mutable objects.) Clashes between duplicate keys are not detected;
the last value (textually rightmost in the display) stored for a given key value prevails.

Cambiato nella versione 3.8: Prior to Python 3.8, in dict comprehensions, the evaluation order of key and value was
not well-defined. In CPython, the value was evaluated before the key. Starting with 3.8, the key is evaluated before
the value, as proposed by PEP 572.

6.2.8 Generator expressions

A generator expression is a compact generator notation in parentheses:

generator_expression = "(" expression comp_for ")"

A generator expression yields a new generator object. Its syntax is the same as for comprehensions, except that it is
enclosed in parentheses instead of brackets or curly braces.

78 Capitolo 6. Expressions


https://peps.python.org/pep-0448/
https://peps.python.org/pep-0572/

The Python Language Reference, Release 3.11.13

Variables used in the generator expression are evaluated lazily when the __next__ () method is called for the gene-
rator object (in the same fashion as normal generators). However, the iterable expression in the leftmost for clause
is immediately evaluated, so that an error produced by it will be emitted at the point where the generator expression
is defined, rather than at the point where the first value is retrieved. Subsequent for clauses and any filter condition
in the leftmost for clause cannot be evaluated in the enclosing scope as they may depend on the values obtained
from the leftmost iterable. For example: (x*y for x in range (10) for y in range(x, x+10)).

The parentheses can be omitted on calls with only one argument. See section Calls for details.

To avoid interfering with the expected operation of the generator expression itself, yield and yield from
expressions are prohibited in the implicitly defined generator.

If a generator expression contains either async for clauses or await expressions it is called an asynchronous
generator expression. An asynchronous generator expression returns a new asynchronous generator object, which is
an asynchronous iterator (see Asynchronous Iterators).

Nuovo nella versione 3.6: Asynchronous generator expressions were introduced.

Cambiato nella versione 3.7: Prior to Python 3.7, asynchronous generator expressions could only appear in async
de £ coroutines. Starting with 3.7, any function can use asynchronous generator expressions.

Cambiato nella versione 3.8: yield and yield from prohibited in the implicitly nested scope.

6.2.9 Yield expressions

yield_atom "(" yield expression ")"
yield_ from "yield" "from" expression
yield_expression = "yield" expression_list | yield from

The yield expression is used when defining a generator function or an asynchronous generator function and thus can
only be used in the body of a function definition. Using a yield expression in a function’s body causes that function
to be a generator function, and using it in an async def function’s body causes that coroutine function to be an
asynchronous generator function. For example:

def gen(): # defines a generator function
yield 123

async def agen(): # defines an asynchronous generator function
yield 123

Due to their side effects on the containing scope, yield expressions are not permitted as part of the implicitly
defined scopes used to implement comprehensions and generator expressions.

Cambiato nella versione 3.8: Yield expressions prohibited in the implicitly nested scopes used to implement
comprehensions and generator expressions.

Generator functions are described below, while asynchronous generator functions are described separately in section
Asynchronous generator functions.

When a generator function is called, it returns an iterator known as a generator. That generator then controls the execu-
tion of the generator function. The execution starts when one of the generator’s methods is called. At that time, the exe-
cution proceeds to the first yield expression, where it is suspended again, returning the value of expression_list
to the generator’s caller, or None if expression_1list is omitted. By suspended, we mean that all local state
is retained, including the current bindings of local variables, the instruction pointer, the internal evaluation stack,
and the state of any exception handling. When the execution is resumed by calling one of the generator’s methods,
the function can proceed exactly as if the yield expression were just another external call. The value of the yield
expression after resuming depends on the method which resumed the execution. If __next__ () is used (typically
via either a for or the next () builtin) then the result is None. Otherwise, if send () is used, then the result will
be the value passed in to that method.

6.2. Atoms 79



The Python Language Reference, Release 3.11.13

All of this makes generator functions quite similar to coroutines; they yield multiple times, they have more than one
entry point and their execution can be suspended. The only difference is that a generator function cannot control
where the execution should continue after it yields; the control is always transferred to the generator’s caller.

Yield expressions are allowed anywhere in a t ry construct. If the generator is not resumed before it is finalized (by
reaching a zero reference count or by being garbage collected), the generator-iterator’s close () method will be
called, allowing any pending finally clauses to execute.

Whenyield from <expr>isused,the supplied expression must be an iterable. The values produced by iterating
that iterable are passed directly to the caller of the current generator’s methods. Any values passed in with send ()
and any exceptions passed in with t hrow () are passed to the underlying iterator if it has the appropriate methods.
If this is not the case, then send () will raise AttributeError or TypeError, while t hrow () will just raise
the passed in exception immediately.

When the underlying iterator is complete, the value attribute of the raised StopIteration instance becomes
the value of the yield expression. It can be either set explicitly when raising StopIteration, or automatically
when the subiterator is a generator (by returning a value from the subgenerator).

Cambiato nella versione 3.3: Added yield from <expr> to delegate control flow to a subiterator.

The parentheses may be omitted when the yield expression is the sole expression on the right hand side of an
assignment statement.

Vedi anche:

PEP 255 - Simple Generators
The proposal for adding generators and the yie1d statement to Python.

PEP 342 - Coroutines via Enhanced Generators
The proposal to enhance the API and syntax of generators, making them usable as simple coroutines.

PEP 380 - Syntax for Delegating to a Subgenerator
The proposal to introduce the yield from syntax, making delegation to subgenerators easy.

PEP 525 - Asynchronous Generators
The proposal that expanded on PEP 492 by adding generator capabilities to coroutine functions.

Generator-iterator methods

This subsection describes the methods of a generator iterator. They can be used to control the execution of a generator
function.

Note that calling any of the generator methods below when the generator is already executing raises a ValueError
exception.

generator.__next__ ()

Starts the execution of a generator function or resumes it at the last executed yield expression. When a generator
function is resumed witha___next___ () method, the current yield expression always evaluates to None. The
execution then continues to the next yield expression, where the generator is suspended again, and the value
of the expression_list is returned to ___next__ ()”s caller. If the generator exits without yielding
another value, a StopIteration exception is raised.

This method is normally called implicitly, e.g. by a for loop, or by the built-in next () function.

generator.send (value)

Resumes the execution and «sends» a value into the generator function. The value argument becomes the result
of the current yield expression. The send () method returns the next value yielded by the generator, or raises
StopIteration if the generator exits without yielding another value. When send () is called to start the
generator, it must be called with None as the argument, because there is no yield expression that could receive
the value.

generator.throw (value)

80 Capitolo 6. Expressions


https://peps.python.org/pep-0255/
https://peps.python.org/pep-0342/
https://peps.python.org/pep-0380/
https://peps.python.org/pep-0525/
https://peps.python.org/pep-0492/

The Python Language Reference, Release 3.11.13

generator.throw (type[, value[, traceback] ] )

Raises an exception at the point where the generator was paused, and returns the next value yielded by the
generator function. If the generator exits without yielding another value, a StopIteration exception is
raised. If the generator function does not catch the passed-in exception, or raises a different exception, then
that exception propagates to the caller.

In typical use, this is called with a single exception instance similar to the way the ra i se keyword is used.

For backwards compatibility, however, the second signature is supported, following a convention from older
versions of Python. The fype argument should be an exception class, and value should be an exception instance.
If the value is not provided, the fype constructor is called to get an instance. If traceback is provided, it is set
on the exception, otherwise any existing __traceback___ attribute stored in value may be cleared.

generator.close ()

Raises a GeneratorExit at the point where the generator function was paused. If the generator function
then exits gracefully, is already closed, or raises GeneratorExit (by not catching the exception), close
returns to its caller. If the generator yields a value, a Runt imeError is raised. If the generator raises any
other exception, it is propagated to the caller. c1ose () does nothing if the generator has already exited due
to an exception or normal exit.

Examples

Here is a simple example that demonstrates the behavior of generators and generator functions:

>>> def echo(value=None) :
print ("Execution starts when 'next ()' is called for the first time.")
try:
while True:
try:
value = (yield value)
except Exception as e:
value = e
finally:
print ("Don't forget to clean up when 'close()' is called.")

>>> generator = echo (1)

>>> print (next (generator))

Execution starts when 'next()' is called for the first time.
1

>>> print (next (generator))

None

>>> print (generator.send(2))

2

>>> generator.throw (TypeError, "spam")

TypeError ('spam',)

>>> generator.close ()

Don't forget to clean up when 'close()' is called.

For examples using yield from, see pep-380 in «What’s New in Python.»

6.2. Atoms 81




The Python Language Reference, Release 3.11.13

Asynchronous generator functions

The presence of a yield expression in a function or method defined using async def further defines the function
as an asynchronous generator function.

When an asynchronous generator function is called, it returns an asynchronous iterator known as an asynchronous
generator object. That object then controls the execution of the generator function. An asynchronous generator object
is typically used in an async for statement in a coroutine function analogously to how a generator object would
be used in a for statement.

Calling one of the asynchronous generator’s methods returns an awaitable object, and the execution starts when this
object is awaited on. At that time, the execution proceeds to the first yield expression, where it is suspended again,
returning the value of expression_11ist tothe awaiting coroutine. As with a generator, suspension means that all
local state is retained, including the current bindings of local variables, the instruction pointer, the internal evaluation
stack, and the state of any exception handling. When the execution is resumed by awaiting on the next object returned
by the asynchronous generator’s methods, the function can proceed exactly as if the yield expression were just another
external call. The value of the yield expression after resuming depends on the method which resumed the execution.
If  anext () isused then the result is None. Otherwise, if asend () is used, then the result will be the value
passed in to that method.

If an asynchronous generator happens to exit early by break, the caller task being cancelled, or other exceptions,
the generator’s async cleanup code will run and possibly raise exceptions or access context variables in an unexpected
context—perhaps after the lifetime of tasks it depends, or during the event loop shutdown when the async-generator
garbage collection hook is called. To prevent this, the caller must explicitly close the async generator by calling
aclose () method to finalize the generator and ultimately detach it from the event loop.

In an asynchronous generator function, yield expressions are allowed anywhere in a ¢ ry construct. However, if an
asynchronous generator is not resumed before it is finalized (by reaching a zero reference count or by being garbage
collected), then a yield expression within a t ry construct could result in a failure to execute pending finally
clauses. In this case, it is the responsibility of the event loop or scheduler running the asynchronous generator to call
the asynchronous generator-iterator’s aclose () method and run the resulting coroutine object, thus allowing any
pending finally clauses to execute.

To take care of finalization upon event loop termination, an event loop should define a finalizer function which takes
an asynchronous generator-iterator and presumably calls acIose () and executes the coroutine. This finalizer may
be registered by calling sys.set_asyncgen_hooks (). When first iterated over, an asynchronous generator-
iterator will store the registered finalizer to be called upon finalization. For a reference example of a finalizer method
see the implementation of asyncio.Loop.shutdown_asyncgens in Lib/asyncio/base_events.py.

The expression yield from <expr> isa syntax error when used in an asynchronous generator function.

Asynchronous generator-iterator methods

This subsection describes the methods of an asynchronous generator iterator, which are used to control the execution
of a generator function.

coroutine agen.__anext__ ()

Returns an awaitable which when run starts to execute the asynchronous generator or resumes it at the la-
st executed yield expression. When an asynchronous generator function is resumed with an ___anext__ ()
method, the current yield expression always evaluates to None in the returned awaitable, which when run will
continue to the next yield expression. The value of the expression_1list of the yield expression is the
value of the StopIteration exception raised by the completing coroutine. If the asynchronous genera-
tor exits without yielding another value, the awaitable instead raises a StopAsyncIteration exception,
signalling that the asynchronous iteration has completed.

This method is normally called implicitly by a async for loop.

coroutine agen.asend (value)

Returns an awaitable which when run resumes the execution of the asynchronous generator. As with the
send () method for a generator, this «sends» a value into the asynchronous generator function, and the va-
lue argument becomes the result of the current yield expression. The awaitable returned by the asend ()

82 Capitolo 6. Expressions


https://github.com/python/cpython/tree/3.11/Lib/asyncio/base_events.py

The Python Language Reference, Release 3.11.13

method will return the next value yielded by the generator as the value of the raised StopIteration, or
raises StopAsyncIteration if the asynchronous generator exits without yielding another value. When
asend () is called to start the asynchronous generator, it must be called with None as the argument, because
there is no yield expression that could receive the value.

coroutine agen.athrow (value)

coroutine agen.athrow (type[, value[, traceback] ] )

Returns an awaitable that raises an exception of type type at the point where the asynchronous gene-
rator was paused, and returns the next value yielded by the generator function as the value of the rai-
sed StopIteration exception. If the asynchronous generator exits without yielding another value, a
StopAsyncIteration exception is raised by the awaitable. If the generator function does not catch the
passed-in exception, or raises a different exception, then when the awaitable is run that exception propagates
to the caller of the awaitable.

coroutine agen.aclose ()

Returns an awaitable that when run will throw a GeneratorExit into the asynchronous generator func-
tion at the point where it was paused. If the asynchronous generator function then exits gracefully, is already
closed, or raises GeneratorExit (by not catching the exception), then the returned awaitable will rai-
se a StopIteration exception. Any further awaitables returned by subsequent calls to the asynchronous
generator will raise a StopAsyncIteration exception. If the asynchronous generator yields a value, a
RuntimeError is raised by the awaitable. If the asynchronous generator raises any other exception, it is
propagated to the caller of the awaitable. If the asynchronous generator has already exited due to an exception
or normal exit, then further calls to aclose () will return an awaitable that does nothing.

6.3 Primaries

Primaries represent the most tightly bound operations of the language. Their syntax is:

primary = atom | attributeref | subscription | slicing | call

6.3.1 Attribute references

An attribute reference is a primary followed by a period and a name:

attributeref = primary "." identifier

The primary must evaluate to an object of a type that supports attribute references, which most objects do. This object
is then asked to produce the attribute whose name is the identifier. The type and value produced is determined by the
object. Multiple evaluations of the same attribute reference may yield different objects.

This production can be customized by overriding the __getattribute__ () methodorthe _getattr__ ()
method. The _ getattribute_ () method is called first and either returns a value or raises
AttributeError if the attribute is not available.

If an AttributeError is raised and the object has a __getattr__ () method, that method is called as a
fallback.

6.3. Primaries 83



The Python Language Reference, Release 3.11.13

6.3.2 Subscriptions

The subscription of an instance of a container class will generally select an element from the container. The
subscription of a generic class will generally return a GenericAlias object.

subscription = primary "[" expression_list "]"

When an object is subscripted, the interpreter will evaluate the primary and the expression list.

The primary must evaluate to an object that supports subscription. An object may support subscription throu-
gh defining one or both of __getitem () and __class_getitem__ (). When the primary is subscrip-
ted, the evaluated result of the expression list will be passed to one of these methods. For more details on when
__class_getitem__ iscalledinstead of __getitem__,see _ class_getitem__ versus __getitem__.

If the expression list contains at least one comma, it will evaluate to a tuple containing the items of the expression
list. Otherwise, the expression list will evaluate to the value of the list’s sole member.

For built-in objects, there are two types of objects that support subscription via __getitem _ ():

1. Mappings. If the primary is a mapping, the expression list must evaluate to an object whose value is one of the
keys of the mapping, and the subscription selects the value in the mapping that corresponds to that key. An
example of a builtin mapping class is the dict class.

2. Sequences. If the primary is a sequence, the expression list must evaluate to an int or a s1ice (as discussed
in the following section). Examples of builtin sequence classes include the str, 1ist and tuple classes.

The formal syntax makes no special provision for negative indices in sequences. However, built-in sequences all
provide a ___getitem_ _ () method that interprets negative indices by adding the length of the sequence to the
index so that, for example, x [-1] selects the last item of x. The resulting value must be a nonnegative integer less
than the number of items in the sequence, and the subscription selects the item whose index is that value (counting
from zero). Since the support for negative indices and slicing occurs in the object’s ___getitem__ () method,
subclasses overriding this method will need to explicitly add that support.

A string is a special kind of sequence whose items are characters. A character is not a separate data type but a
string of exactly one character.

6.3.3 Slicings

A slicing selects a range of items in a sequence object (e.g., a string, tuple or list). Slicings may be used as expressions
or as targets in assignment or de I statements. The syntax for a slicing:

slicing u= primary "[" slice_list "]"

slice_list = slice_item ("," slice_item)* [","]

slice_item = expression | proper_slice

proper_slice = [lower_bound] ":" [upper_bound] [ ":" [stride] ]
lower_bound = expression

upper_bound = expression

stride = expression

There is ambiguity in the formal syntax here: anything that looks like an expression list also looks like a slice list, so
any subscription can be interpreted as a slicing. Rather than further complicating the syntax, this is disambiguated
by defining that in this case the interpretation as a subscription takes priority over the interpretation as a slicing (this
is the case if the slice list contains no proper slice).

The semantics for a slicing are as follows. The primary is indexed (using the same ___getitem__ () method as
normal subscription) with a key that is constructed from the slice list, as follows. If the slice list contains at least one
comma, the key is a tuple containing the conversion of the slice items; otherwise, the conversion of the lone slice
item is the key. The conversion of a slice item that is an expression is that expression. The conversion of a proper
slice is a slice object (see section The standard type hierarchy) whose start, stop and step attributes are the

84 Capitolo 6. Expressions



The Python Language Reference, Release 3.11.13

values of the expressions given as lower bound, upper bound and stride, respectively, substituting None for missing
expressions.

6.3.4 Calls

A call calls a callable object (e.g., a function) with a possibly empty series of arguments:

call u= primary " (" [argument_list [","] | comprehension]
argument_list = positional_arguments ["," starred_and_keywords]
["," keywords_arguments]
| starred_and _keywords ["," keywords_arguments]
| keywords_arguments

positional_arguments = positional_item ("," positional_item)*
positional_item u= assignment_expression | "*" expression
starred_and_keywords = ("*" expression | keyword_item)

("," "*" expression | "," keyword_item)*
keywords_arguments u= (keyword _item | "**" expression)

("," keyword_ item | "," "**" expression)*
keyword_item = identifier "=" expression

An optional trailing comma may be present after the positional and keyword arguments but does not affect the
semantics.

The primary must evaluate to a callable object (user-defined functions, built-in functions, methods of built-in objects,
class objects, methods of class instances, and all objects havinga ___call__ () method are callable). All argument
expressions are evaluated before the call is attempted. Please refer to section Function definitions for the syntax of
formal parameter lists.

If keyword arguments are present, they are first converted to positional arguments, as follows. First, a list of unfilled
slots is created for the formal parameters. If there are N positional arguments, they are placed in the first N slots.
Next, for each keyword argument, the identifier is used to determine the corresponding slot (if the identifier is the
same as the first formal parameter name, the first slot is used, and so on). If the slot is already filled, a TypeError
exception is raised. Otherwise, the argument is placed in the slot, filling it (even if the expression is None, it fills the
slot). When all arguments have been processed, the slots that are still unfilled are filled with the corresponding default
value from the function definition. (Default values are calculated, once, when the function is defined; thus, a mutable
object such as a list or dictionary used as default value will be shared by all calls that don’t specify an argument value
for the corresponding slot; this should usually be avoided.) If there are any unfilled slots for which no default value
is specified, a TypeError exception is raised. Otherwise, the list of filled slots is used as the argument list for the
call.

Dettaglio dell’implementazione di CPython: An implementation may provide built-in functions whose posi-
tional parameters do not have names, even if they are “named” for the purpose of documentation, and which
therefore cannot be supplied by keyword. In CPython, this is the case for functions implemented in C that use
PyArg_ParseTuple () to parse their arguments.

If there are more positional arguments than there are formal parameter slots, a TypeError exception is raised,
unless a formal parameter using the syntax *identifier is present; in this case, that formal parameter receives a
tuple containing the excess positional arguments (or an empty tuple if there were no excess positional arguments).

If any keyword argument does not correspond to a formal parameter name, a TypeError exception is raised, unless
a formal parameter using the syntax * * ident i fier is present; in this case, that formal parameter receives a dictio-
nary containing the excess keyword arguments (using the keywords as keys and the argument values as corresponding
values), or a (new) empty dictionary if there were no excess keyword arguments.

If the syntax *expression appears in the function call, expression must evaluate to an iterable. Elements
from these iterables are treated as if they were additional positional arguments. For the call f (x1, x2, *y,
x3, x4),if yevaluates to a sequence yl, ..., yM, this is equivalent to a call with M+4 positional arguments x/, x2,
yvl, ..., yM, x3, x4.

6.3. Primaries 85

") n



The Python Language Reference, Release 3.11.13

A consequence of this is that although the *expression syntax may appear after explicit keyword arguments, it
is processed before the keyword arguments (and any * *expression arguments — see below). So:

>>> def f(a, b):
print (a, b)

>>> f(b=1, *(2,))
2 1
>>> f(a=1, *(2,))
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: f£() got multiple values for keyword argument 'a'
>>> £(1, *(2,))
12

It is unusual for both keyword arguments and the *expression syntax to be used in the same call, so in practice
this confusion does not often arise.

If the syntax * *expression appears in the function call, expression must evaluate to a mapping, the contents
of which are treated as additional keyword arguments. If a parameter matching a key has already been given a value
(by an explicit keyword argument, or from another unpacking), a TypeError exception is raised.

When **expression is used, each key in this mapping must be a string. Each value from the mapping is assigned
to the first formal parameter eligible for keyword assignment whose name is equal to the key. A key need not be a
Python identifier (e.g. "max—-temp °F" is acceptable, although it will not match any formal parameter that could
be declared). If there is no match to a formal parameter the key-value pair is collected by the * * parameter, if there
is one, or if there is not, a TypeError exception is raised.

Formal parameters using the syntax *identifier or **identifier cannot be used as positional argument
slots or as keyword argument names.

Cambiato nella versione 3.5: Function calls accept any number of * and * * unpackings, positional arguments may
follow iterable unpackings (*), and keyword arguments may follow dictionary unpackings (* *). Originally proposed
by PEP 448.

A call always returns some value, possibly None, unless it raises an exception. How this value is computed depends
on the type of the callable object.

If it is—
a user-defined function:
The code block for the function is executed, passing it the argument list. The first thing the code block will

do is bind the formal parameters to the arguments; this is described in section Function definitions. When the
code block executes a return statement, this specifies the return value of the function call.

a built-in function or method:
The result is up to the interpreter; see built-in-funcs for the descriptions of built-in functions and methods.

a class object:
A new instance of that class is returned.

a class instance method:
The corresponding user-defined function is called, with an argument list that is one longer than the argument
list of the call: the instance becomes the first argument.

a class instance:
The class must definea _call () method; the effect is then the same as if that method was called.

86 Capitolo 6. Expressions


https://peps.python.org/pep-0448/

The Python Language Reference, Release 3.11.13

6.4 Await expression

Suspend the execution of coroutine on an awaitable object. Can only be used inside a coroutine function.

await_expr = "await" primary

Nuovo nella versione 3.5.

6.5 The power operator

The power operator binds more tightly than unary operators on its left; it binds less tightly than unary operators on
its right. The syntax is:

power = (await_expr | primary) ["**" u_expr]
Thus, in an unparenthesized sequence of power and unary operators, the operators are evaluated from right to left
(this does not constrain the evaluation order for the operands): —1**2 results in —1.

The power operator has the same semantics as the built-in pow () function, when called with two arguments: it yields
its left argument raised to the power of its right argument. The numeric arguments are first converted to a common
type, and the result is of that type.

For int operands, the result has the same type as the operands unless the second argument is negative; in that case,
all arguments are converted to float and a float result is delivered. For example, 10**2 returns 100, but 10**-2
returns 0.01.

Raising 0. 0 to a negative power results in a ZeroDivisionError. Raising a negative number to a fractional
power results in a complex number. (In earlier versions it raised a ValueError.)

This operation can be customized using the special __pow__ () method.

6.6 Unary arithmetic and bitwise operations

All unary arithmetic and bitwise operations have the same priority:

u_expr = power | "-" u_expr | "+" u_expr | "~" u_expr
The unary — (minus) operator yields the negation of its numeric argument; the operation can be overridden with the
__neg___ () special method.

The unary + (plus) operator yields its numeric argument unchanged; the operation can be overridden with the
__pos___ () special method.

The unary ~ (invert) operator yields the bitwise inversion of its integer argument. The bitwise inversion of x is
defined as — (x+1) . It only applies to integral numbers or to custom objects that override the ___invert__ ()
special method.

In all three cases, if the argument does not have the proper type, a TypeError exception is raised.

6.4. Await expression 87



The Python Language Reference, Release 3.11.13

6.7 Binary arithmetic operations

The binary arithmetic operations have the conventional priority levels. Note that some of these operations also apply to
certain non-numeric types. Apart from the power operator, there are only two levels, one for multiplicative operators
and one for additive operators:

m_expr I= u_expr | m_expr "*" u_expr | m_expr "Q@" m_expr |
m _expr "//" u_expr | m_expr "/" u_expr |
m_expr "%" u_expr

a_expr = m_expr | a_expr "+" m_expr | a_expr "-" m _expr

The * (multiplication) operator yields the product of its arguments. The arguments must either both be numbers, or
one argument must be an integer and the other must be a sequence. In the former case, the numbers are converted to a
common type and then multiplied together. In the latter case, sequence repetition is performed; a negative repetition
factor yields an empty sequence.

This operation can be customized using the special __mul___ () and __rmul___ () methods.
The @ (at) operator is intended to be used for matrix multiplication. No builtin Python types implement this operator.
Nuovo nella versione 3.5.

The / (division) and // (floor division) operators yield the quotient of their arguments. The numeric arguments are
first converted to a common type. Division of integers yields a float, while floor division of integers results in an
integer; the result is that of mathematical division with the “floor” function applied to the result. Division by zero
raises the ZeroDivisionError exception.

This operation can be customized using the special ___truediv.___ () and ___floordiv__ () methods.

The % (modulo) operator yields the remainder from the division of the first argument by the second. The numeric
arguments are first converted to a common type. A zero right argument raises the ZeroDivisionError exception.
The arguments may be floating point numbers, e.g., 3.14%0.7 equals 0.34 (since 3.14 equals 4*0.7 + O.
34.) The modulo operator always yields a result with the same sign as its second operand (or zero); the absolute value
of the result is strictly smaller than the absolute value of the second operand’.

The floor division and modulo operators are connected by the following identity: x == (x//y) *y + (x%y).
Floor division and modulo are also connected with the built-in function divmod () : divmod (x, y) == (x//
Y, X%Y) 2.

In addition to performing the modulo operation on numbers, the % operator is also overloaded by string objects to
perform old-style string formatting (also known as interpolation). The syntax for string formatting is described in the
Python Library Reference, section old-string-formatting.

The modulo operation can be customized using the special __mod___ () method.

The floor division operator, the modulo operator, and the divmod () function are not defined for complex numbers.
Instead, convert to a floating point number using the abs () function if appropriate.

The + (addition) operator yields the sum of its arguments. The arguments must either both be numbers or both be
sequences of the same type. In the former case, the numbers are converted to a common type and then added together.
In the latter case, the sequences are concatenated.

This operation can be customized using the special __add__ () and ___radd__ () methods.

The — (subtraction) operator yields the difference of its arguments. The numeric arguments are first converted to a
common type.

I While abs (x3y) < abs (y) is true mathematically, for floats it may not be true numerically due to roundoff. For example, and assuming
a platform on which a Python float is an IEEE 754 double-precision number, in order that ~1e-100 % 1e100 have the same signas 1100,
the computed resultis ~-1e-100 + 1e100, which is numerically exactly equal to 1e100. The functionmath . fmod () returns a result whose
sign matches the sign of the first argument instead, and so returns —1e~-100 in this case. Which approach is more appropriate depends on the
application.

2 If x is very close to an exact integer multiple of y, it’s possible for x//y to be one larger than (x-x%y) //y due to rounding. In such cases,
Python returns the latter result, in order to preserve that divmod (x,y) [0] * y + x % y be very close to x.

88 Capitolo 6. Expressions



The Python Language Reference, Release 3.11.13

This operation can be customized using the special ___sub___ () method.

6.8 Shifting operations

The shifting operations have lower priority than the arithmetic operations:

shift_expr = a_expr | shift_expr ("<<" | ">>") a_expr

These operators accept integers as arguments. They shift the first argument to the left or right by the number of bits
given by the second argument.

This operation can be customized using the special __ I1shift__ () and ___rshift__ () methods.

A right shift by n bits is defined as floor division by pow (2, n) . A left shift by » bits is defined as multiplication
with pow (2, n).

6.9 Binary bitwise operations

Each of the three bitwise operations has a different priority level:

and_expr = shift_expr | and _expr "&" shift_expr
XOr_expr = and_expr | xor_expr """ and_expr
Oor_expr = xor_expr | or_expr "|" xor_expr

The & operator yields the bitwise AND of its arguments, which must be integers or one of them must be a custom
object overriding __and__ () or __rand__ () special methods.

The ~ operator yields the bitwise XOR (exclusive OR) of its arguments, which must be integers or one of them must
be a custom object overriding ___xor___ () or __rxor___ () special methods.

The | operator yields the bitwise (inclusive) OR of its arguments, which must be integers or one of them must be a
custom object overriding __or___ () or __ror__ () special methods.

6.10 Comparisons

Unlike C, all comparison operations in Python have the same priority, which is lower than that of any arithmetic,
shifting or bitwise operation. Also unlike C, expressionslikea < b < c have the interpretation that is conventional
in mathematics:

comparison = or_expr (comp_operator or_expr)?*
comp operator ce— nen ‘ nsn | n__mn | ns—n ‘ ne=mn | nmyp_n
| "iS" ["not"] ‘ ["not"] "in"

Comparisons yield boolean values: True or False. Custom rich comparison methods may return non-boolean
values. In this case Python will call bool () on such value in boolean contexts.

Comparisons can be chained arbitrarily, e.g., x < y <= zisequivalenttox < y and y <= z,exceptthaty
is evaluated only once (but in both cases z is not evaluated at all when x < v is found to be false).

Formally, if a, b, c, ..., y, z are expressions and op!, op2, ..., opN are comparison operators, thena opl b op2 c
y opN zisequivalenttoa opl b and b op2 c and ... y opN z,except that each expression
is evaluated at most once.

6.8. Shifting operations 89



The Python Language Reference, Release 3.11.13

Note that a opl b op2 c doesn’t imply any kind of comparison between a and ¢, so that, e.g., x < y > zis
perfectly legal (though perhaps not pretty).

6.10.1 Value comparisons

The operators <, >, ==, >=, <=, and ! = compare the values of two objects. The objects do not need to have the same
type.

Chapter Objects, values and types states that objects have a value (in addition to type and identity). The value of an
object is a rather abstract notion in Python: For example, there is no canonical access method for an object’s value.
Also, there is no requirement that the value of an object should be constructed in a particular way, e.g. comprised of
all its data attributes. Comparison operators implement a particular notion of what the value of an object is. One can
think of them as defining the value of an object indirectly, by means of their comparison implementation.

Because all types are (direct or indirect) subtypes of object, they inherit the default comparison behavior
from object. Types can customize their comparison behavior by implementing rich comparison methods like
1t (), described in Basic customization.

The default behavior for equality comparison (== and !=) is based on the identity of the objects. Hence, equality
comparison of instances with the same identity results in equality, and equality comparison of instances with different
identities results in inequality. A motivation for this default behavior is the desire that all objects should be reflexive
(i.e. x is yimpliesx == y).

A default order comparison (<, >, <=, and >=) is not provided; an attempt raises TypeError. A motivation for
this default behavior is the lack of a similar invariant as for equality.

The behavior of the default equality comparison, that instances with different identities are always unequal, may be
in contrast to what types will need that have a sensible definition of object value and value-based equality. Such types
will need to customize their comparison behavior, and in fact, a number of built-in types have done that.

The following list describes the comparison behavior of the most important built-in types.

e Numbers of built-in numeric types (typesnumeric) and of the standard library types fractions.
Fraction and decimal.Decimal can be compared within and across their types, with the restriction
that complex numbers do not support order comparison. Within the limits of the types involved, they compare
mathematically (algorithmically) correct without loss of precision.

The not-a-number values float ('NaN') and decimal.Decimal ('NaN') are special. Any ordered
comparison of a number to a not-a-number value is false. A counter-intuitive implication is that not-a-number
values are not equal to themselves. For example, if x = float ('NaN'),3 < x,x < 3and x == x
are all false, while x != x is true. This behavior is compliant with IEEE 754.

e None and Not Implemented are singletons. PEP 8 advises that comparisons for singletons should always
be done with is or is not, never the equality operators.

« Binary sequences (instances of bytes or bytearray) can be compared within and across their types. They
compare lexicographically using the numeric values of their elements.

« Strings (instances of str) compare lexicographically using the numerical Unicode code points (the result of
the built-in function ord () ) of their characters.?

Strings and binary sequences cannot be directly compared.

» Sequences (instances of tuple, 1ist, or range) can be compared only within each of their types, with
the restriction that ranges do not support order comparison. Equality comparison across these types results in
inequality, and ordering comparison across these types raises TypeError.

3 The Unicode standard distinguishes between code points (e.g. U+0041) and abstract characters (e.g. <LATIN CAPITAL LETTER A»). While
most abstract characters in Unicode are only represented using one code point, there is a number of abstract characters that can in addition be
represented using a sequence of more than one code point. For example, the abstract character <KLATIN CAPITAL LETTER C WITH CEDILLA»
can be represented as a single precomposed character at code position U+00C7, or as a sequence of a base character at code position U+0043
(LATIN CAPITAL LETTER C), followed by a combining character at code position U+0327 (COMBINING CEDILLA).

The comparison operators on strings compare at the level of Unicode code points. This may be counter-intuitive to humans. For example,
"\u00C7" == "\u0043\u0327" is False, even though both strings represent the same abstract character <LATIN CAPITAL LETTER
C WITH CEDILLA».

To compare strings at the level of abstract characters (that is, in a way intuitive to humans), use unicodedata.normalize ().

90 Capitolo 6. Expressions


https://peps.python.org/pep-0008/

The Python Language Reference, Release 3.11.13

Sequences compare lexicographically using comparison of corresponding elements. The built-in containers
typically assume identical objects are equal to themselves. That lets them bypass equality tests for identical
objects to improve performance and to maintain their internal invariants.

Lexicographical comparison between built-in collections works as follows:

- For two collections to compare equal, they must be of the same type, have the same length, and each pair
of corresponding elements must compare equal (for example, [1,2] == (1,2) is false because the
type is not the same).

- Collections that support order comparison are ordered the same as their first unequal elements (for exam-
ple, [1,2,x] <= [1,2,y] has the same value as x <= y). If a corresponding element does not
exist, the shorter collection is ordered first (for example, [1,2] < [1,2, 3] is true).

o Mappings (instances of dict) compare equal if and only if they have equal (key, wvalue) pairs. Equality
comparison of the keys and values enforces reflexivity.

Order comparisons (<, >, <=, and >=) raise TypeError.
« Sets (instances of set or frozenset) can be compared within and across their types.

They define order comparison operators to mean subset and superset tests. Those relations do not define total
orderings (for example, the twosets {1, 2} and { 2, 3} are not equal, nor subsets of one another, nor supersets
of one another). Accordingly, sets are not appropriate arguments for functions which depend on total ordering
(for example, min (), max (), and sorted () produce undefined results given a list of sets as inputs).

Comparison of sets enforces reflexivity of its elements.

» Most other built-in types have no comparison methods implemented, so they inherit the default comparison
behavior.

User-defined classes that customize their comparison behavior should follow some consistency rules, if possible:
» Equality comparison should be reflexive. In other words, identical objects should compare equal:
x is yimplies x == y
o Comparison should be symmetric. In other words, the following expressions should have the same result:
x == yandy == x
x != yandy != x
x < yandy > x
x <= yandy >= x
o Comparison should be transitive. The following (non-exhaustive) examples illustrate that:
x >y and y > zimpliesx > z
x <y and y <= zimpliesx < z

« Inverse comparison should result in the boolean negation. In other words, the following expressions should
have the same result:

x == yandnot x !=y
x < yand not x >= y (for total ordering)
x > yand not x <= y (for total ordering)

The last two expressions apply to totally ordered collections (e.g. to sequences, but not to sets or mappings).
See also the total_ordering () decorator.

e The hash () result should be consistent with equality. Objects that are equal should either have the same hash
value, or be marked as unhashable.

Python does not enforce these consistency rules. In fact, the not-a-number values are an example for not following
these rules.

6.10. Comparisons 91



The Python Language Reference, Release 3.11.13

6.10.2 Membership test operations

The operators in and not 1in testfor membership. x in s evaluates to True if x is a member of s, and False
otherwise. x not in s returns the negation of x in s. All built-in sequences and set types support this as well
as dictionary, for which in tests whether the dictionary has a given key. For container types such as list, tuple, set,
frozenset, dict, or collections.deque, the expression x in vy is equivalent to any (x is e or x == e for
e in vy).

For the string and bytes types, x in yis True if and only if x is a substring of y. An equivalent testis y . f£ind (x)
!= -1. Empty strings are always considered to be a substring of any other string, so "" in "abc" will return
True.

For user-defined classes which define the _ contains__ () method, x in y returns True if y.
___contains__ (x) returns a true value, and False otherwise.

For user-defined classes which do not define __contains__ () butdodefine ___iter (),x in yis True
if some value z, for which the expression x is z or x == 2z is true, is produced while iterating over y. If an
exception is raised during the iteration, it is as if in raised that exception.

Lastly, the old-style iteration protocol is tried: if a class defines __getitem  (),x in yis True if and only if
there is a non-negative integer index i such that x is y[i] or x == y[i],and no lower integer index raises
the IndexError exception. (If any other exception is raised, it is as if in raised that exception).

The operator not 1in is defined to have the inverse truth value of in.

6.10.3 Identity comparisons

The operators i sand is not test for an object’s identity: x is vy is true if and only if x and y are the same object.
An Object’s identity is determined using the id () function. x is not vy yields the inverse truth value.*

6.11 Boolean operations

or_test L= and_test | or_test "or" and test
and_test = not_test | and_test "and" not_test
not_test = comparison | "not" not_test

In the context of Boolean operations, and also when expressions are used by control flow statements, the following
values are interpreted as false: False, None, numeric zero of all types, and empty strings and containers (including
strings, tuples, lists, dictionaries, sets and frozensets). All other values are interpreted as true. User-defined objects
can customize their truth value by providinga ___bool__ () method.

The operator not yields True if its argument is false, False otherwise.

The expression x and vy first evaluates x; if x is false, its value is returned; otherwise, y is evaluated and the resulting
value is returned.

The expression x or vy first evaluates x; if x is true, its value is returned; otherwise, y is evaluated and the resulting
value is returned.

Note that neither and nor or restrict the value and type they return to False and True, but rather return the last
evaluated argument. This is sometimes useful, e.g., if s is a string that should be replaced by a default value if it is
empty, the expression s or 'foo' yields the desired value. Because not has to create a new value, it returns a
boolean value regardless of the type of its argument (for example, not 'foo' produces False rather than ''.)

4 Due to automatic garbage-collection, free lists, and the dynamic nature of descriptors, you may notice seemingly unusual behaviour in certain
uses of the i s operator, like those involving comparisons between instance methods, or constants. Check their documentation for more info.

92 Capitolo 6. Expressions



The Python Language Reference, Release 3.11.13

6.12 Assignment expressions

assignment_expression = [identifier ":="] expression

An assignment expression (sometimes also called a «named expression» or «walrus») assigns an expression to
an identifier, while also returning the value of the expression.

One common use case is when handling matched regular expressions:

if matching := pattern.search (data):
do_something (matching)

Or, when processing a file stream in chunks:

while chunk := file.read(9000):
process (chunk)

Assignment expressions must be surrounded by parentheses when used as expression statements and when used as sub-
expressions in slicing, conditional, lambda, keyword-argument, and comprehension-if expressions and in assert,
with, and assignment statements. In all other places where they can be used, parentheses are not required,
including in i f and whi le statements.

Nuovo nella versione 3.8: See PEP 572 for more details about assignment expressions.

6.13 Conditional expressions

conditional_expression = or_test ["if" or_test "else" expression]
expression conditional_expression | lambda_expr

Conditional expressions (sometimes called a «ternary operator») have the lowest priority of all Python operations.

The expression x if C else vy first evaluates the condition, C rather than x. If C is true, x is evaluated and its
value is returned; otherwise, y is evaluated and its value is returned.

See PEP 308 for more details about conditional expressions.

6.14 Lambdas

lambda_expr = "lambda" [parameter_list] ":" expression

Lambda expressions (sometimes called lambda forms) are used to create anonymous functions. The expression
lambda parameters: expression yields a function object. The unnamed object behaves like a function
object defined with:

def <lambda> (parameters) :
return expression

See section Function definitions for the syntax of parameter lists. Note that functions created with lambda expressions
cannot contain statements or annotations.

6.12. Assignment expressions 93



https://peps.python.org/pep-0572/
https://peps.python.org/pep-0308/

The Python Language Reference, Release 3.11.13

6.15 Expression lists

expression_list = expression ("," expression)* [","]
starred_list = starred_item ("," starred item)* [","]
starred_expression = expression | (starred_item ",")* [starred_item]
starred_item = assignment_expression | "*" or_expr

Except when part of a list or set display, an expression list containing at least one comma yields a tuple. The length
of the tuple is the number of expressions in the list. The expressions are evaluated from left to right.

An asterisk * denotes iterable unpacking. Its operand must be an iferable. The iterable is expanded into a sequence
of items, which are included in the new tuple, list, or set, at the site of the unpacking.

Nuovo nella versione 3.5: Iterable unpacking in expression lists, originally proposed by PEP 448.

A trailing comma is required only to create a one-item tuple, such as 1, ; it is optional in all other cases. A single
expression without a trailing comma doesn’t create a tuple, but rather yields the value of that expression. (To create
an empty tuple, use an empty pair of parentheses: () .)

6.16 Evaluation order

Python evaluates expressions from left to right. Notice that while evaluating an assignment, the right-hand side is
evaluated before the left-hand side.

In the following lines, expressions will be evaluated in the arithmetic order of their suffixes:

exprl, expr2, expr3, expr4
(exprl, expr2, expr3, expré)
{exprl: expr2, expr3: expréd}

exprl + expr2 * (expr3 - exprd)
exprl (expr2, expr3, *expr4, **exprb)
expr3, exprd4 = exprl, expr2

6.17 Operator precedence

The following table summarizes the operator precedence in Python, from highest precedence (most binding) to lowest
precedence (least binding). Operators in the same box have the same precedence. Unless the syntax is explicitly
given, operators are binary. Operators in the same box group left to right (except for exponentiation and conditional
expressions, which group from right to left).

Note that comparisons, membership tests, and identity tests, all have the same precedence and have a left-to-right
chaining feature as described in the Comparisons section.

94 Capitolo 6. Expressions


https://peps.python.org/pep-0448/

The Python Language Reference, Release 3.11.13

Operator Description

(expressions...), Binding or parenthesized expression, list display,
[expressions...], {key: value...}, dictionary display, set display
{expressions...}

x[index], x[index:index], x (arguments...

x.attribute

await x
* *

+X, =X, ~X

*Q,/,//,%
+, -

<<, >>

&

in, not in, is,is not, <, <=,>,>=

not x
and

or
if-else
lambda

Subscription, slicing, call, attribute reference

Await expression

Exponentiation’

Positive, negative, bitwise NOT

Multiplication, matrix multiplication, division,
floor division, remainder®

Addition and subtraction

Shifts

Bitwise AND

Bitwise XOR

Bitwise OR

Comparisons, including membership tests and
identity tests

Boolean NOT

Boolean AND

Boolean OR

Conditional expression

Lambda expression

Assignment expression

5 The power operator * * binds less tightly than an arithmetic or bitwise unary operator on its right, that is, 2**-1is 0. 5.
6 The % operator is also used for string formatting; the same precedence applies.

6.17. Operator precedence

95



The Python Language Reference, Release 3.11.13

96 Capitolo 6. Expressions



CAPITOLO /

Simple statements

A simple statement is comprised within a single logical line. Several simple statements may occur on a single line
separated by semicolons. The syntax for simple statements is:

simple_stmt = expression_stmt
| assert_stmt

| assignment_stmt

| augmented_assignment_stmt
| annotated_assignment_stmt
| pass_stmt

| del_stmt

| return_stmt

| yield stmt

| raise_stmt

| break_stmt

| continue_stmt

| import_stmt

| future_stmt

| global_stmt

| nonlocal_stmt

7.1 Expression statements

Expression statements are used (mostly interactively) to compute and write a value, or (usually) to call a procedure (a
function that returns no meaningful result; in Python, procedures return the value None). Other uses of expression
statements are allowed and occasionally useful. The syntax for an expression statement is:

expression_stmt = starred_expression

An expression statement evaluates the expression list (which may be a single expression).

In interactive mode, if the value is not None, it is converted to a string using the built-in repr () function and the
resulting string is written to standard output on a line by itself (except if the result is None, so that procedure calls
do not cause any output.)

97



The Python Language Reference, Release 3.11.13

7.2 Assighment statements

Assignment statements are used to (re)bind names to values and to modify attributes or items of mutable objects:

assignment_stmt = (target_1list "=")+ (starred_expression | yield_expression)
target_list n= target ("," target)* [","]
target = identifier

| "(" [target_list] "™)"
"[" [target_list] "1"
attributeref

|
|
| subscription
| slicing

| "*" target

(See section Primaries for the syntax definitions for attributeref, subscription, and slicing.)

An assignment statement evaluates the expression list (remember that this can be a single expression or a comma-
separated list, the latter yielding a tuple) and assigns the single resulting object to each of the target lists, from left to
right.

Assignment is defined recursively depending on the form of the target (list). When a target is part of a mutable object
(an attribute reference, subscription or slicing), the mutable object must ultimately perform the assignment and decide
about its validity, and may raise an exception if the assignment is unacceptable. The rules observed by various types
and the exceptions raised are given with the definition of the object types (see section The standard type hierarchy).

Assignment of an object to a target list, optionally enclosed in parentheses or square brackets, is recursively defined
as follows.

o If the target list is a single target with no trailing comma, optionally in parentheses, the object is assigned to
that target.

o Else:

— If the target list contains one target prefixed with an asterisk, called a «starred» target: The object must
be an iterable with at least as many items as there are targets in the target list, minus one. The first items
of the iterable are assigned, from left to right, to the targets before the starred target. The final items of
the iterable are assigned to the targets after the starred target. A list of the remaining items in the iterable
is then assigned to the starred target (the list can be empty).

- Else: The object must be an iterable with the same number of items as there are targets in the target list,
and the items are assigned, from left to right, to the corresponding targets.

Assignment of an object to a single target is recursively defined as follows.
« If the target is an identifier (name):

- If the name does not occur in a global or nonlocal statement in the current code block: the name
is bound to the object in the current local namespace.

— Otherwise: the name is bound to the object in the global namespace or the outer namespace determined
by nonlocal, respectively.

The name is rebound if it was already bound. This may cause the reference count for the object previously
bound to the name to reach zero, causing the object to be deallocated and its destructor (if it has one) to be
called.

« If the target is an attribute reference: The primary expression in the reference is evaluated. It should yield an
object with assignable attributes; if this is not the case, TypeError is raised. That object is then asked to
assign the assigned object to the given attribute; if it cannot perform the assignment, it raises an exception
(usually but not necessarily AttributeError).

Note: If the object is a class instance and the attribute reference occurs on both sides of the assignment operator,
the right-hand side expression, a . x can access either an instance attribute or (if no instance attribute exists) a

98 Capitolo 7. Simple statements



The Python Language Reference, Release 3.11.13

class attribute. The left-hand side target a . x is always set as an instance attribute, creating it if necessary. Thus,
the two occurrences of a.x do not necessarily refer to the same attribute: if the right-hand side expression
refers to a class attribute, the left-hand side creates a new instance attribute as the target of the assignment:

class Cls:

x = 3 # class variable
inst = Cls()
inst.x = inst.x + 1 # writes inst.x as 4 leaving Cls.x as 3

This description does not necessarily apply to descriptor attributes, such as properties created with
property ().

If the target is a subscription: The primary expression in the reference is evaluated. It should yield either
a mutable sequence object (such as a list) or a mapping object (such as a dictionary). Next, the subscript
expression is evaluated.

If the primary is a mutable sequence object (such as a list), the subscript must yield an integer. If it is negative,
the sequence’s length is added to it. The resulting value must be a nonnegative integer less than the sequence’s
length, and the sequence is asked to assign the assigned object to its item with that index. If the index is out of
range, IndexError is raised (assignment to a subscripted sequence cannot add new items to a list).

If the primary is a mapping object (such as a dictionary), the subscript must have a type compatible with the
mapping’s key type, and the mapping is then asked to create a key/value pair which maps the subscript to the
assigned object. This can either replace an existing key/value pair with the same key value, or insert a new
key/value pair (if no key with the same value existed).

For user-defined objects, the __setitem__ () method is called with appropriate arguments.

If the target is a slicing: The primary expression in the reference is evaluated. It should yield a mutable sequence
object (such as a list). The assigned object should be a sequence object of the same type. Next, the lower and
upper bound expressions are evaluated, insofar they are present; defaults are zero and the sequence’s length.
The bounds should evaluate to integers. If either bound is negative, the sequence’s length is added to it. The
resulting bounds are clipped to lie between zero and the sequence’s length, inclusive. Finally, the sequence
object is asked to replace the slice with the items of the assigned sequence. The length of the slice may be
different from the length of the assigned sequence, thus changing the length of the target sequence, if the
target sequence allows it.

Dettaglio dell’implementazione di CPython: In the current implementation, the syntax for targets is taken to be
the same as for expressions, and invalid syntax is rejected during the code generation phase, causing less detailed

€rror

messages.

Although the definition of assignment implies that overlaps between the left-hand side and the right-hand side are
“simultaneous” (for example a, b = b, a swaps two variables), overlaps within the collection of assigned-to
variables occur left-to-right, sometimes resulting in confusion. For instance, the following program prints [0, 2]:

x = [0, 1]
i=20
i, x[i] =1, 2 # 1 is updated, then x[i] 1is updated
print (x)
Vedi anche:
PEP 3132 - Extended Iterable Unpacking
The specification for the *target feature.
7.2. Assignment statements 99


https://peps.python.org/pep-3132/

The Python Language Reference, Release 3.11.13

7.2.1 Augmented assignment statements

Augmented assignment is the combination, in a single statement, of a binary operation and an assignment statement:

augmented_assignment_stmt = augtarget augop (expression_list | yield expression)

augtarget = identifier | attributeref | subscription | slicing

augop = ny—mn | n__m ‘ Wx_—n | n@:" | n/:u I "//:n | no—mn | LIS |
| nss=n | Neg=m | ne="m ‘ nA_mN | "|="

(See section Primaries for the syntax definitions of the last three symbols.)

An augmented assignment evaluates the target (which, unlike normal assignment statements, cannot be an unpacking)
and the expression list, performs the binary operation specific to the type of assignment on the two operands, and
assigns the result to the original target. The target is only evaluated once.

An augmented assignment expression like x += 1 can be rewritten as x = x + 1 to achieve a similar, but not
exactly equal effect. In the augmented version, x is only evaluated once. Also, when possible, the actual operation is
performed in-place, meaning that rather than creating a new object and assigning that to the target, the old object is
modified instead.

Unlike normal assignments, augmented assignments evaluate the left-hand side before evaluating the right-hand side.
For example, a[i] += £ (x) first looks-up a [1i], then it evaluates £ (x) and performs the addition, and lastly,
it writes the result back toa[1i].

With the exception of assigning to tuples and multiple targets in a single statement, the assignment done by augmented
assignment statements is handled the same way as normal assignments. Similarly, with the exception of the possible in-
place behavior, the binary operation performed by augmented assignment is the same as the normal binary operations.

For targets which are attribute references, the same caveat about class and instance attributes applies as for regular
assignments.

7.2.2 Annotated assignment statements

Annotation assignment is the combination, in a single statement, of a variable or attribute annotation and an optional
assignment statement:

annotated_assignment_stmt = augtarget ":" expression

["=" (starred_expression | yield expression) ]

The difference from normal Assignment statements is that only a single target is allowed.

For simple names as assignment targets, if in class or module scope, the annotations are evaluated and stored in a
special class or module attribute __annotations__ thatis a dictionary mapping from variable names (mangled if
private) to evaluated annotations. This attribute is writable and is automatically created at the start of class or module
body execution, if annotations are found statically.

For expressions as assignment targets, the annotations are evaluated if in class or module scope, but not stored.

If a name is annotated in a function scope, then this name is local for that scope. Annotations are never evaluated and
stored in function scopes.

If the right hand side is present, an annotated assignment performs the actual assignment before evaluating annotations
(where applicable). If the right hand side is not present for an expression target, then the interpreter evaluates the
target except for the last __setitem () or __setattr__ () call

Vedi anche:

PEP 526 - Syntax for Variable Annotations
The proposal that added syntax for annotating the types of variables (including class variables and instance
variables), instead of expressing them through comments.

100 Capitolo 7. Simple statements


https://peps.python.org/pep-0526/

The Python Language Reference, Release 3.11.13

PEP 484 - Type hints
The proposal that added the t yping module to provide a standard syntax for type annotations that can be
used in static analysis tools and IDEs.

Cambiato nella versione 3.8: Now annotated assignments allow the same expressions in the right hand side as regular
assignments. Previously, some expressions (like un-parenthesized tuple expressions) caused a syntax error.

7.3 The assert statement

Assert statements are a convenient way to insert debugging assertions into a program:

assert_stmt = "assert" expression ["," expression]

The simple form, assert expression, is equivalent to

if debug___:
if not expression: raise AssertionError

The extended form, assert expressionl, expression2,isequivalent to

if _ debug_ :
if not expressionl: raise AssertionError (expression2)

These equivalences assume that __debug___ and AssertionError refer to the built-in variables with those na-
mes. In the current implementation, the built-in variable _debug___is True under normal circumstances, False
when optimization is requested (command line option —0O). The current code generator emits no code for an assert
statement when optimization is requested at compile time. Note that it is unnecessary to include the source code for
the expression that failed in the error message; it will be displayed as part of the stack trace.

Assignments to ___debug___ are illegal. The value for the built-in variable is determined when the interpreter starts.

7.4 The pass statement

pass_stmt = "pass"

pass is a null operation — when it is executed, nothing happens. It is useful as a placeholder when a statement is
required syntactically, but no code needs to be executed, for example:

def f (arg): pass # a function that does nothing (yet)

class C: pass # a class with no methods (yet)

7.5 The del statement

del_stmt = "del" target_list

Deletion is recursively defined very similar to the way assignment is defined. Rather than spelling it out in full details,
here are some hints.

Deletion of a target list recursively deletes each target, from left to right.

7.3. The assert statement 101


https://peps.python.org/pep-0484/

The Python Language Reference, Release 3.11.13

Deletion of a name removes the binding of that name from the local or global namespace, depending on whether the
name occurs in a globa 1 statement in the same code block. If the name is unbound, a NameError exception will
be raised.

Deletion of attribute references, subscriptions and slicings is passed to the primary object involved; deletion of a
slicing is in general equivalent to assignment of an empty slice of the right type (but even this is determined by the
sliced object).

Cambiato nella versione 3.2: Previously it was illegal to delete a name from the local namespace if it occurs as a free
variable in a nested block.

7.6 The return statement

return_stmt = "return" [expression_list]

return may only occur syntactically nested in a function definition, not within a nested class definition.
If an expression list is present, it is evaluated, else None is substituted.
return leaves the current function call with the expression list (or None) as return value.

When return passes control out of a t ry statement with a finally clause, that finally clause is executed
before really leaving the function.

In a generator function, the ret urn statement indicates that the generator is done and will cause StopIteration
to be raised. The returned value (if any) is used as an argument to construct StopIteration and becomes the
StopIteration.value attribute.

In an asynchronous generator function, an empty return statement indicates that the asynchronous generator is
done and will cause StopAsyncIteration to be raised. A non-empty return statement is a syntax error in
an asynchronous generator function.

7.7 The yield statement

yield_stmt = yield expression

A yield statement is semantically equivalent to a yield expression. The yield statement can be used to omit the
parentheses that would otherwise be required in the equivalent yield expression statement. For example, the yield
statements

yield <expr>
yield from <expr>

are equivalent to the yield expression statements

(yield <expr>)
(yield from <expr>)

Yield expressions and statements are only used when defining a generator function, and are only used in the body of
the generator function. Using yield in a function definition is sufficient to cause that definition to create a generator
function instead of a normal function.

For full details of yie1d semantics, refer to the Yield expressions section.

102 Capitolo 7. Simple statements




The Python Language Reference, Release 3.11.13

7.8 The raise statement

raise_stmt = "raise" [expression ["from" expression]]

If no expressions are present, raise re-raises the exception that is currently being handled, which is also known
as the active exception. If there isn’t currently an active exception, a Runt imeError exception is raised indicating
that this is an error.

Otherwise, raise evaluates the first expression as the exception object. It must be either a subclass or an instance
of BaseException. If itis a class, the exception instance will be obtained when needed by instantiating the class
with no arguments.

The type of the exception is the exception instance’s class, the value is the instance itself.

A traceback object is normally created automatically when an exception is raised and attached to it as the
__traceback__ attribute. You can create an exception and set your own traceback in one step using the
with_traceback () exception method (which returns the same exception instance, with its traceback set to
its argument), like so:

[raise Exception ("foo occurred") .with_traceback (tracebackobij)

The from clause is used for exception chaining: if given, the second expression must be another exception class
or instance. If the second expression is an exception instance, it will be attached to the raised exception as the
___cause___ attribute (which is writable). If the expression is an exception class, the class will be instantiated and
the resulting exception instance will be attached to the raised exception as the ___cause___ attribute. If the raised
exception is not handled, both exceptions will be printed:

>>> try:
print (1 / 0)
except Exception as exc:
raise RuntimeError ("Something bad happened") from exc

Traceback (most recent call last):
File "<stdin>", line 2, in <module>
print (1 / 0)

ZeroDivisionError: division by zero
The above exception was the direct cause of the following exception:

Traceback (most recent call last):
File "<stdin>", line 4, in <module>
raise RuntimeError ("Something bad happened") from exc
RuntimeError: Something bad happened

A similar mechanism works implicitly if a new exception is raised when an exception is already being handled.
An exception may be handled when an except or finally clause, or a with statement, is used. The previous
exception is then attached as the new exception’s __context___ attribute:

>>> try:
print (1 / 0)
except:
raise RuntimeError ("Something bad happened")

Traceback (most recent call last):
File "<stdin>", line 2, in <module>
print (1 / 0)

ZeroDivisionError: division by zero

(continues on next page)

7.8. The raise statement 103




The Python Language Reference, Release 3.11.13

(continua dalla pagina precedente)

During handling of the above exception, another exception occurred:

Traceback (most recent call last):
File "<stdin>", line 4, in <module>
raise RuntimeError ("Something bad happened")
RuntimeError: Something bad happened

Exception chaining can be explicitly suppressed by specifying None in the £rom clause:

>>> try:
print (1 / 0)
except:
raise RuntimeError ("Something bad happened") from None

Traceback (most recent call last):
File "<stdin>", line 4, in <module>
RuntimeError: Something bad happened

Additional information on exceptions can be found in section Exceptions, and information about handling exceptions
is in section The try statement.

Cambiato nella versione 3.3: None is now permitted as Y in raise X from Y.
Added the ___suppress_context___ attribute to suppress automatic display of the exception context.

Cambiato nella versione 3.11: If the traceback of the active exception is modified in an except clause, a subsequent
raise statement re-raises the exception with the modified traceback. Previously, the exception was re-raised with
the traceback it had when it was caught.

7.9 The break statement

break_stmt = "break"

break may only occur syntactically nested in a for or whi e loop, but not nested in a function or class definition
within that loop.

It terminates the nearest enclosing loop, skipping the optional e1se clause if the loop has one.
If a for loop is terminated by break, the loop control target keeps its current value.

When break passes control out of a t ry statement with a finally clause, that finally clause is executed
before really leaving the loop.

7.10 The continue statement

continue_stmt = "continue"

continue may only occur syntactically nested in a for or while loop, but not nested in a function or class
definition within that loop. It continues with the next cycle of the nearest enclosing loop.

When cont inue passes control out of a t ry statement witha £inally clause, that finally clause is executed
before really starting the next loop cycle.

104 Capitolo 7. Simple statements




The Python Language Reference, Release 3.11.13

7.11 The import statement

import_stmt =

module n=
relative_module

"import" module ["as" identifier] ("," module ["as" identifier])?*
| "from" relative_module "import" identifier ["as" identifier]
("," identifier ["as" identifier])™*

| "from" relative_module "import" " (" identifier ["as" identifie:
("," identifier ["as" identifier])* [","] ™)"

| "from" relative_module "import" "*"

(identifier ".")* identifier

"."* module | "."+

The basic import statement (no £rom clause) is executed in two steps:

1. find a module, loading and initializing it if necessary

2. define a name or names in the local namespace for the scope where the import statement occurs.

When the statement contains multiple clauses (separated by commas) the two steps are carried out separately for
each clause, just as though the clauses had been separated out into individual import statements.

The details of the first step, finding and loading modules, are described in greater detail in the section on the import
system, which also describes the various types of packages and modules that can be imported, as well as all the hooks
that can be used to customize the import system. Note that failures in this step may indicate either that the module
could not be located, or that an error occurred while initializing the module, which includes execution of the module’s

code.

If the requested module is retrieved successfully, it will be made available in the local namespace in one of three

ways:

o If the module name is followed by as, then the name following as is bound directly to the imported module.

« If no other name is specified, and the module being imported is a top level module, the module’s name is bound
in the local namespace as a reference to the imported module

« If the module being imported is not a top level module, then the name of the top level package that contains
the module is bound in the local namespace as a reference to the top level package. The imported module must
be accessed using its full qualified name rather than directly

The from form uses a slightly more complex process:

1. find the module specified in the 7 rom clause, loading and initializing it if necessary;

2. for each of the identifiers specified in the import clauses:

1. check if the imported module has an attribute by that name

2. if not, attempt to import a submodule with that name and then check the imported module again for that

attribute

3. if the attribute is not found, ImportError is raised.

4. otherwise, a reference to that value is stored in the local namespace, using the name in the as clause if
it is present, otherwise using the attribute name

Examples:

import foo

import foo.bar.baz
—~locally

import foo.bar.baz as fbb
—bound as fbb

from foo.bar import baz
—bound as baz

from foo import attr

# foo imported and bound locally
# foo, foo.bar, and foo.bar.baz imported, foo bound.

# foo, foo.bar, and foo.bar.baz imported, foo.bar.baz.
# foo, foo.bar, and foo.bar.baz imported, foo.bar.baz.

# foo imported and foo.attr bound as attr

7.11. The import statement

105



The Python Language Reference, Release 3.11.13

If the list of identifiers is replaced by a star (' * '), all public names defined in the module are bound in the local
namespace for the scope where the import statement occurs.

The public names defined by a module are determined by checking the module’s namespace for a variable named
__all__;if defined, it must be a sequence of strings which are names defined or imported by that module. The
names givenin __all__ are all considered public and are required to exist. If __all__ is not defined, the set of
public names includes all names found in the module’s namespace which do not begin with an underscore character
('"_").__all__ should contain the entire public API. It is intended to avoid accidentally exporting items that are
not part of the API (such as library modules which were imported and used within the module).

The wild card form of import — from module import * — is only allowed at the module level. Attempting
to use it in class or function definitions will raise a SyntaxError.

When specifying what module to import you do not have to specify the absolute name of the module. When a module
or package is contained within another package it is possible to make a relative import within the same top package
without having to mention the package name. By using leading dots in the specified module or package after from
you can specify how high to traverse up the current package hierarchy without specifying exact names. One leading
dot means the current package where the module making the import exists. Two dots means up one package level.
Three dots is up two levels, etc. So if you execute from . import mod from a module in the pkg package
then you will end up importing pkg.mod. If you execute from . .subpkg2 import mod from within pkg.
subpkgl you will import pkg . subpkg?2 .mod. The specification for relative imports is contained in the Package
Relative Imports section.

importlib.import_module () is provided to support applications that determine dynamically the modules to
be loaded.

Raises an auditing event import with arguments module, filename, sys.path, sys.meta_path, sys.
path_hooks.

7.11.1 Future statements

A future statement is a directive to the compiler that a particular module should be compiled using syntax or semantics
that will be available in a specified future release of Python where the feature becomes standard.

The future statement is intended to ease migration to future versions of Python that introduce incompatible changes to
the language. It allows use of the new features on a per-module basis before the release in which the feature becomes
standard.

future_stmt = "from" "__ future_ " "import" feature ["as" identifier]
("," feature ["as" identifier])*
| "from" "__ future_ " "import" " (" feature ["as" identifier]
("," feature ["as" identifier])* [","] ™))"

feature = identifier

A future statement must appear near the top of the module. The only lines that can appear before a future statement
are:

« the module docstring (if any),
e comments,
« blank lines, and
« other future statements.
The only feature that requires using the future statement is annotations (see PEP 563).

All historical features enabled by the future statement are still recognized by Python 3. The list in-
cludes absolute_import, division, generators, generator_stop, unicode_literals,
print_function,nested_scopesandwith_statement. They are all redundant because they are always
enabled, and only kept for backwards compatibility.

106 Capitolo 7. Simple statements


https://peps.python.org/pep-0563/

The Python Language Reference, Release 3.11.13

A future statement is recognized and treated specially at compile time: Changes to the semantics of core constructs
are often implemented by generating different code. It may even be the case that a new feature introduces new incom-
patible syntax (such as a new reserved word), in which case the compiler may need to parse the module differently.
Such decisions cannot be pushed off until runtime.

For any given release, the compiler knows which feature names have been defined, and raises a compile-time error
if a future statement contains a feature not known to it.

The direct runtime semantics are the same as for any import statement: there is a standard module ___future__,
described later, and it will be imported in the usual way at the time the future statement is executed.

The interesting runtime semantics depend on the specific feature enabled by the future statement.

Note that there is nothing special about the statement:

[import _ future__ [as name]

That is not a future statement; it’s an ordinary import statement with no special semantics or syntax restrictions.

Code compiled by calls to the built-in functions exec () and compile () that occur in a module M containing a
future statement will, by default, use the new syntax or semantics associated with the future statement. This can be
controlled by optional arguments to compile () — see the documentation of that function for details.

A future statement typed at an interactive interpreter prompt will take effect for the rest of the interpreter session.
If an interpreter is started with the —1 option, is passed a script name to execute, and the script includes a future
statement, it will be in effect in the interactive session started after the script is executed.

Vedi anche:

PEP 236 - Back to the __ future__
The original proposal for the __ future__ mechanism.

7.12 The global statement

global_stmt = "global" identifier ("," identifier)™*

The global statement is a declaration which holds for the entire current code block. It means that the listed identi-
fiers are to be interpreted as globals. It would be impossible to assign to a global variable without gl obal, although
free variables may refer to globals without being declared global.

Names listed in a global statement must not be used in the same code block textually preceding that global
statement.

Names listed in a global statement must not be defined as formal parameters, or as targets in with statements
or except clauses, or in a for target list, c1ass definition, function definition, i mport statement, or variable
annotation.

Dettaglio dell’implementazione di CPython: The current implementation does not enforce some of these restric-
tions, but programs should not abuse this freedom, as future implementations may enforce them or silently change
the meaning of the program.

Programmer’s note: global is a directive to the parser. It applies only to code parsed at the same time as the
global statement. In particular, a global statement contained in a string or code object supplied to the built-in
exec () function does not affect the code block containing the function call, and code contained in such a string is
unaffected by global statements in the code containing the function call. The same applies to the eval () and
compile () functions.

7.12. The global statement 107


https://peps.python.org/pep-0236/

The Python Language Reference, Release 3.11.13

7.13 The nonlocal statement

nonlocal_stmt = "nonlocal" identifier ("," identifier)*

The nonlocal statement causes the listed identifiers to refer to previously bound variables in the nearest enclosing
scope excluding globals. This is important because the default behavior for binding is to search the local namespace
first. The statement allows encapsulated code to rebind variables outside of the local scope besides the global (module)
scope.

Names listed in a nonlocal statement, unlike those listed in a global statement, must refer to pre-existing
bindings in an enclosing scope (the scope in which a new binding should be created cannot be determined
unambiguously).

Names listed in a nonlocal statement must not collide with pre-existing bindings in the local scope.
Vedi anche:

PEP 3104 - Access to Names in Outer Scopes
The specification for the nonlocal statement.

108 Capitolo 7. Simple statements


https://peps.python.org/pep-3104/

CAPITOLO 8

Compound statements

Compound statements contain (groups of) other statements; they affect or control the execution of those other sta-
tements in some way. In general, compound statements span multiple lines, although in simple incarnations a whole
compound statement may be contained in one line.

The i £, whileand for statements implement traditional control flow constructs. t ry specifies exception handlers
and/or cleanup code for a group of statements, while the with statement allows the execution of initialization and
finalization code around a block of code. Function and class definitions are also syntactically compound statements.

A compound statement consists of one or more “clauses.” A clause consists of a header and a “suite.” The clause
headers of a particular compound statement are all at the same indentation level. Each clause header begins with a
uniquely identifying keyword and ends with a colon. A suite is a group of statements controlled by a clause. A suite can
be one or more semicolon-separated simple statements on the same line as the header, following the header’s colon,
or it can be one or more indented statements on subsequent lines. Only the latter form of a suite can contain nested
compound statements; the following is illegal, mostly because it wouldn’t be clear to which i 7 clause a following
else clause would belong:

[if testl: if test2: print (x) }

Also note that the semicolon binds tighter than the colon in this context, so that in the following example, either all
or none of the print () calls are executed:

{if X <y < z: print(x); print(y); print(z) ]

Summarizing:

compound_stmt = 1f stmt

| while_stmt

| for_stmt

| try_stmt

| with_stmt

| match_stmt

| funcdef

| classdef
| async_with_stmt
| async_for_stmt
| async_funcdef
s

suite = tmt_list NEWLINE | NEWLINE INDENT statement+ DEDENT

109



The Python Language Reference, Release 3.11.13

statement
stmt_list

stmt_1list NEWLINE | compound_stmt
simple_stmt (";" simple_stmt)* [";"]

Note that statements always end in a NEWLINE possibly followed by a DEDENT. Also note that optional continuation
clauses always begin with a keyword that cannot start a statement, thus there are no ambiguities (the “dangling e 1 se”
problem is solved in Python by requiring nested i f statements to be indented).

The formatting of the grammar rules in the following sections places each clause on a separate line for clarity.

8.1 The if statement

The i r statement is used for conditional execution:

if_stmt = "if" assignment_expression ":" suite
("elif" assignment_expression ":" suite)*
["else" ":" suite]

It selects exactly one of the suites by evaluating the expressions one by one until one is found to be true (see section
Boolean operations for the definition of true and false); then that suite is executed (and no other part of the if
statement is executed or evaluated). If all expressions are false, the suite of the eI se clause, if present, is executed.

8.2 The while statement

The whi le statement is used for repeated execution as long as an expression is true:

while_stmt = "while" assignment_expression ":" suite
["else" ":" suite]

This repeatedly tests the expression and, if it is true, executes the first suite; if the expression is false (which may be
the first time it is tested) the suite of the e1se clause, if present, is executed and the loop terminates.

A break statement executed in the first suite terminates the loop without executing the else clause’s suite. A
cont inue statement executed in the first suite skips the rest of the suite and goes back to testing the expression.

8.3 The for statement

The for statement is used to iterate over the elements of a sequence (such as a string, tuple or list) or other iterable
object:

ln"

m.nmn

for_stmt = "for" target_list starred_1list suite

["else" ":" suite]

The starred_1list expression is evaluated once; it should yield an iterable object. An iterator is created for that
iterable. The first item provided by the iterator is then assigned to the target list using the standard rules for assignments
(see Assignment statements), and the suite is executed. This repeats for each item provided by the iterator. When the
iterator is exhausted, the suite in the e 1 se clause, if present, is executed, and the loop terminates.

A break statement executed in the first suite terminates the loop without executing the else clause’s suite. A
continue statement executed in the first suite skips the rest of the suite and continues with the next item, or with
the el se clause if there is no next item.

110 Capitolo 8. Compound statements



The Python Language Reference, Release 3.11.13

The for-loop makes assignments to the variables in the target list. This overwrites all previous assignments to those
variables including those made in the suite of the for-loop:

for i in range (10):
print (i)
i=25 # this will not affect the for-loop
# because 1 will be overwritten with the next
# index in the range

Names in the target list are not deleted when the loop is finished, but if the sequence is empty, they will not have
been assigned to at all by the loop. Hint: the built-in type range () represents immutable arithmetic sequences of
integers. For instance, iterating range (3) successively yields 0, 1, and then 2.

Cambiato nella versione 3.11: Starred elements are now allowed in the expression list.

8.4 The try statement

The t ry statement specifies exception handlers and/or cleanup code for a group of statements:

try_stmt = tryl _stmt | tryZ_stmt | try3 stmt
tryl_stmt = "try" ":" suite
("except" [expression ["as" identifier]] ":" suite)+
["else" ":" suite]
["finally" ":" suite]
try2_stmt = "try" ":" suite
("except" "*" expression ["as" identifier] ":" suite)+
["else" ":" suite]
["finally" ":" suite]
try3_stmt = "try" ":" suite
"finally" ":" suite

Additional information on exceptions can be found in section Exceptions, and information on using the raise
statement to generate exceptions may be found in section The raise statement.

8.4.1 except clause

The except clause(s) specify one or more exception handlers. When no exception occurs in the t ry clause, no
exception handler is executed. When an exception occurs in the try suite, a search for an exception handler is
started. This search inspects the except clauses in turn until one is found that matches the exception. An expression-
less except clause, if present, must be last; it matches any exception. For an except clause with an expression,
that expression is evaluated, and the clause matches the exception if the resulting object is «compatible» with the
exception. An object is compatible with an exception if the object is the class or a non-virtual base class of the
exception object, or a tuple containing an item that is the class or a non-virtual base class of the exception object.

If no except clause matches the exception, the search for an exception handler continues in the surrounding code
and on the invocation stack.'

If the evaluation of an expression in the header of an except clause raises an exception, the original search for a
handler is canceled and a search starts for the new exception in the surrounding code and on the call stack (it is treated
as if the entire t ry statement raised the exception).

When a matching except clause is found, the exception is assigned to the target specified after the as keyword
in that except clause, if present, and the except clause’s suite is executed. All except clauses must have an
executable block. When the end of this block is reached, execution continues normally after the entire t ry statement.

! The exception is propagated to the invocation stack unless there is a £inal 1y clause which happens to raise another exception. That new
exception causes the old one to be lost.

8.4. The try statement 111



The Python Language Reference, Release 3.11.13

(This means that if two nested handlers exist for the same exception, and the exception occurs in the t ry clause of
the inner handler, the outer handler will not handle the exception.)

When an exception has been assigned using as target, it is cleared at the end of the except clause. This is as
if

except E as N:
foo

was translated to

except E as N:
try:
foo
finally:
del N

This means the exception must be assigned to a different name to be able to refer to it after the except clause.
Exceptions are cleared because with the traceback attached to them, they form a reference cycle with the stack
frame, keeping all locals in that frame alive until the next garbage collection occurs.

Before an except clause’s suite is executed, the exception is stored in the sys module, where it can be accessed
from within the body of the except clause by calling sys.exception (). When leaving an exception handler,
the exception stored in the sy s module is reset to its previous value:

>>> print (sys.exception())

None

>>> try:
raise TypeError

except:
print (repr (sys.exception()))
try:
raise ValueError
except:
print (repr (sys.exception()))

print (repr (sys.exception()))

TypeError ()

ValueError ()

TypeError ()

>>> print (sys.exception())
None

8.4.2 except* clause

The except * clause(s) are used for handling Except ionGroups. The exception type for matching is interpreted
as in the case of except, but in the case of exception groups we can have partial matches when the type matches
some of the exceptions in the group. This means that multiple except * clauses can execute, each handling part of
the exception group. Each clause executes at most once and handles an exception group of all matching exceptions.
Each exception in the group is handled by at most one except * clause, the first that matches it.

>>> try:
raise ExceptionGroup ("eg",
[ValueError (1), TypeError(2), OSError(3), OSError(4)])
except* TypeError as e:
print (f'caught {type(e)} with nested {e.exceptions}')
except* OSError as e:
print (f'caught {type(e)} with nested {e.exceptions}')

caught <class 'ExceptionGroup'> with nested (TypeError(2),)
caught <class 'ExceptionGroup'> with nested (OSError (3), OSError (4))

(continues on next page)

112 Capitolo 8. Compound statements




The Python Language Reference, Release 3.11.13

(continua dalla pagina precedente)
+ Exception Group Traceback (most recent call last):
| File "<stdin>", line 2, in <module>
| ExceptionGroup: eg
-t ] ———————————
| ValueError: 1

Any remaining exceptions that were not handled by any except * clause are re-raised at the end, combined into an
exception group along with all exceptions that were raised from within except * clauses.

From version 3.11.4, when the entire ExceptionGroup is handled and only one exception is raised from an
except * clause, this exception is no longer wrapped to form a new ExceptionGroup.

If the raised exception is not an exception group and its type matches one of the except * clauses, it is caught and
wrapped by an exception group with an empty message string.

>>> try:
raise BlockingIOError
except* BlockingIOError as e:
print (repr (e))

ExceptionGroup ('', (BlockingIOError()))

An except * clause must have a matching type, and this type cannot be a subclass of BaseExceptionGroup. It
is not possible to mix except and except * in the same try. break, continue and return cannot appear
in an except * clause.

8.4.3 else clause

The optional else clause is executed if the control flow leaves the try suite, no exception was raised, and no
return, continue, or break statement was executed. Exceptions in the else clause are not handled by the
preceding except clauses.

8.4.4 finally clause

If finally is present, it specifies a “cleanup” handler. The t ry clause is executed, including any except and
else clauses. If an exception occurs in any of the clauses and is not handled, the exception is temporarily saved.
The £inally clause is executed. If there is a saved exception it is re-raised at the end of the finally clause. If
the finally clause raises another exception, the saved exception is set as the context of the new exception. If the
finally clause executes a return, break or cont inue statement, the saved exception is discarded:

>>> def f():
try:
1/0
finally:
return 42
>>> f()
42

The exception information is not available to the program during execution of the finally clause.

When a return, break or continue statement is executed in the t ry suite of a try...finally statement,
the finally clause is also executed “on the way out.”

The return value of a function is determined by the last return statement executed. Since the finally clause
always executes, a return statement executed in the finally clause will always be the last one executed:

8.4. The try statement 113



The Python Language Reference, Release 3.11.13

>>> def fool():
try:
return 'try'
finally:
return 'finally'
>>> foo()
'finally'

Cambiato nella versione 3.8: Prior to Python 3.8, a cont i nue statement was illegal in the finally clause due to
a problem with the implementation.

8.5 The with statement

The with statement is used to wrap the execution of a block with methods defined by a context manager (see
section With Statement Context Managers). This allows common try...except...finally usage patterns to be
encapsulated for convenient reuse.

with_stmt
with_stmt_contents
with_item

"with" ( " (" with_stmt_contents ","? ")" | with_stmt_contents
with _item ("," with_item)*
expression ["as" target]

The execution of the wi t h statement with one «item» proceeds as follows:

1. The context expression (the expression given in the with_item) is evaluated to obtain a context manager.
The context manager’s _enter () is loaded for later use.
The context manager’s ___exit__ () is loaded for later use.

The context manager’s ___enter__ () method is invoked.

A

If a target was included in the wi ¢ h statement, the return value from __enter___ () is assigned to it.

Nota: The with statement guarantees that if the _ _enter__ () method returns without an error, then
__exit__ () will always be called. Thus, if an error occurs during the assignment to the target list, it will be
treated the same as an error occurring within the suite would be. See step 7 below.

6. The suite is executed.

7. The context manager’s __exit__ () method is invoked. If an exception caused the suite to be exited, its
type, value, and traceback are passed as arguments to __exit__ (). Otherwise, three None arguments are
supplied.

If the suite was exited due to an exception, and the return value fromthe __exit__ () method was false, the
exception is reraised. If the return value was true, the exception is suppressed, and execution continues with
the statement following the wi t h statement.

If the suite was exited for any reason other than an exception, the return value from __exit__ () isignored,
and execution proceeds at the normal location for the kind of exit that was taken.

The following code:

with EXPRESSION as TARGET:
SUITE

is semantically equivalent to:

114 Capitolo 8. Compound statements



The Python Language Reference, Release 3.11.13

manager = (EXPRESSION)

enter = type (manager) .__enter_
exit = type (manager) .__exit_
value = enter (manager)

hit_except = False

try:
TARGET = value
SUITE

except:
hit_except = True

if not exit (manager, *sys.exc_info()):
raise
finally:
if not hit_except:
exit (manager, None, None, None)

With more than one item, the context managers are processed as if multiple wi t h statements were nested:

with A() as a, B() as b:
SUITE

is semantically equivalent to:

with A() as a:
with B() as b:
SUITE

You can also write multi-item context managers in multiple lines if the items are surrounded by parentheses. For
example:

with (
A() as a,
B() as b,
) 8
SUITE

Cambiato nella versione 3.1: Support for multiple context expressions.
Cambiato nella versione 3.10: Support for using grouping parentheses to break the statement in multiple lines.
Vedi anche:

PEP 343 - The «with» statement
The specification, background, and examples for the Python wi t h statement.

8.6 The match statement

Nuovo nella versione 3.10.

The match statement is used for pattern matching. Syntax:

match_stmt u= 'match' subject_expr ":" NEWLINE INDENT case_block+ DEDENT
subject_expr = star_named_expression "," star_named_expressions?
| named_expression

case_block 'case' patterns [guard] ":" block

Nota: This section uses single quotes to denote soft keywords.

8.6. The match statement 115


https://peps.python.org/pep-0343/

The Python Language Reference, Release 3.11.13

Pattern matching takes a pattern as input (following case) and a subject value (following match). The pattern
(which may contain subpatterns) is matched against the subject value. The outcomes are:

» A match success or failure (also termed a pattern success or failure).

« Possible binding of matched values to a name. The prerequisites for this are further discussed below.
The match and case keywords are soft keywords.
Vedi anche:

o PEP 634 - Structural Pattern Matching: Specification

o PEP 636 - Structural Pattern Matching: Tutorial

8.6.1 Overview

Here’s an overview of the logical flow of a match statement:

1. The subject expression subject_expr is evaluated and a resulting subject value obtained. If the subject
expression contains a comma, a tuple is constructed using the standard rules.

2. Each pattern in a case_block is attempted to match with the subject value. The specific rules for success
or failure are described below. The match attempt can also bind some or all of the standalone names within
the pattern. The precise pattern binding rules vary per pattern type and are specified below. Name bindings
made during a successful pattern match outlive the executed block and can be used after the match
statement.

Nota: During failed pattern matches, some subpatterns may succeed. Do not rely on bindings being made
for a failed match. Conversely, do not rely on variables remaining unchanged after a failed match. The exact
behavior is dependent on implementation and may vary. This is an intentional decision made to allow different
implementations to add optimizations.

3. If the pattern succeeds, the corresponding guard (if present) is evaluated. In this case all name bindings are
guaranteed to have happened.

« If the guard evaluates as true or is missing, the block inside case_block is executed.
o Otherwise, the next case_block is attempted as described above.

« If there are no further case blocks, the match statement is completed.

Nota: Users should generally never rely on a pattern being evaluated. Depending on implementation, the interpreter
may cache values or use other optimizations which skip repeated evaluations.

A sample match statement:

>>> flag = False
>>> match (100, 200):
case (100, 300): # Mismatch: 200 != 300
print ('Case 1'")
case (100, 200) if flag: # Successful match, but guard fails
print ('Case 2'")
case (100, y): # Matches and binds y to 200
print (f'Case 3, y: {y}')
case _: # Pattern not attempted
print ('Case 4, I match anything!"')

Case 3, y: 200

In this case, 1f flag is a guard. Read more about that in the next section.

116 Capitolo 8. Compound statements



https://peps.python.org/pep-0634/
https://peps.python.org/pep-0636/

The Python Language Reference, Release 3.11.13

8.6.2 Guards

guard = "if" named_expression

A guard (which is part of the case) must succeed for code inside the case block to execute. It takes the form:
1 f followed by an expression.

The logical flow of a case block with a guard follows:

1. Check that the pattern in the case block succeeded. If the pattern failed, the guard is not evaluated and the
next case block is checked.

2. If the pattern succeeded, evaluate the guard.
o If the guard condition evaluates as true, the case block is selected.
« If the guard condition evaluates as false, the case block is not selected.
« If the guard raises an exception during evaluation, the exception bubbles up.

Guards are allowed to have side effects as they are expressions. Guard evaluation must proceed from the first to the
last case block, one at a time, skipping case blocks whose pattern(s) don’t all succeed. (I.e., guard evaluation must
happen in order.) Guard evaluation must stop once a case block is selected.

8.6.3 Irrefutable Case Blocks
An irrefutable case block is a match-all case block. A match statement may have at most one irrefutable case block,
and it must be last.

A case block is considered irrefutable if it has no guard and its pattern is irrefutable. A pattern is considered irrefutable
if we can prove from its syntax alone that it will always succeed. Only the following patterns are irrefutable:

o AS Patterns whose left-hand side is irrefutable

o OR Patterns containing at least one irrefutable pattern
o Capture Patterns

o Wildcard Patterns

« parenthesized irrefutable patterns

8.6.4 Patterns

Nota: This section uses grammar notations beyond standard EBNF:
« the notation SEP . RULE+ is shorthand for RULE (SEP RULE) *

« the notation ! RULE is shorthand for a negative lookahead assertion

The top-level syntax for patterns is:

patterns = open_sequence_pattern | pattern
pattern as_pattern | or_pattern
closed_pattern = | literal_pattern

| capture_pattern

| wildcard_pattern
|
|

value_pattern
group_pattern

8.6. The match statement 117



The Python Language Reference, Release 3.11.13

| sequence_pattern
| mapping_pattern
| class_pattern

The descriptions below will include a description «in simple terms» of what a pattern does for illustration purposes
(credits to Raymond Hettinger for a document that inspired most of the descriptions). Note that these descriptions
are purely for illustration purposes and may not reflect the underlying implementation. Furthermore, they do not
cover all valid forms.

OR Patterns

An OR pattern is two or more patterns separated by vertical bars | . Syntax:

or_pattern = "|".closed _pattern+

Only the final subpattern may be irrefutable, and each subpattern must bind the same set of names to avoid ambiguity.

An OR pattern matches each of its subpatterns in turn to the subject value, until one succeeds. The OR pattern is
then considered successful. Otherwise, if none of the subpatterns succeed, the OR pattern fails.

In simple terms, P1 | P2 | ... will try to match P1, if it fails it will try to match P 2, succeeding immediately
if any succeeds, failing otherwise.

AS Patterns

An AS pattern matches an OR pattern on the left of the a s keyword against a subject. Syntax:

as_pattern = or_pattern "as" capture_pattern

If the OR pattern fails, the AS pattern fails. Otherwise, the AS pattern binds the subject to the name on the right of
the as keyword and succeeds. capture_pattern cannotbe a _.

In simple terms P as NAME will match with P, and on success it will set NAME = <subject>.

Literal Patterns

A literal pattern corresponds to most /iterals in Python. Syntax:

literal pattern = signed_number
| signed_number "+" NUMBER

| signed_number "-" NUMBER

| strings

| "None"

| "True"

| "False"

| signed_number: NUMBER | "-" NUMBER

The rule st rings and the token NUMBER are defined in the standard Python grammar. Triple-quoted strings are
supported. Raw strings and byte strings are supported. f-strings are not supported.

The forms signed_number '+' NUMBERand signed_number '—' NUMBER are for expressing complex
numbers; they require a real number on the left and an imaginary number on the right. E.g. 3 + 47.

In simple terms, LITERAL will succeed only if <subject> == LITERAL. For the singletons None, True and
False, the is operator is used.

118 Capitolo 8. Compound statements



The Python Language Reference, Release 3.11.13

Capture Patterns

A capture pattern binds the subject value to a name. Syntax:

capture_pattern = ' ' NAME
A single underscore _ is not a capture pattern (this is what !'_"' expresses). It is instead treated as a
wildcard _pattern.
In a given pattern, a given name can only be bound once. E.g. case x, x: ... isinvalid while case [x] |

x: ... isallowed.

Capture patterns always succeed. The binding follows scoping rules established by the assignment expression operator
in PEP 572; the name becomes a local variable in the closest containing function scope unless there’s an applicable
global or nonlocal statement.

In simple terms NAME will always succeed and it will set NAME = <subject>.
Wildcard Patterns

A wildcard pattern always succeeds (matches anything) and binds no name. Syntax:

wildcard_pattern =

_ is a soft keyword within any pattern, but only within patterns. It is an identifier, as usual, even within mat ch subject
expressions, guards, and case blocks.

In simple terms, _ will always succeed.

Value Patterns

A value pattern represents a named value in Python. Syntax:

value_pattern = attr
attr = name_or_attr "." NAME
name_or_attr = attr | NAME

The dotted name in the pattern is looked up using standard Python name resolution rules. The pattern succeeds if the
value found compares equal to the subject value (using the == equality operator).

In simple terms NAME1 . NAME2 will succeed only if <subject> == NAME1.NAME2

Nota: If the same value occurs multiple times in the same match statement, the interpreter may cache the first value
found and reuse it rather than repeat the same lookup. This cache is strictly tied to a given execution of a given match
statement.

8.6. The match statement 119


https://peps.python.org/pep-0572/

The Python Language Reference, Release 3.11.13

Group Patterns
A group pattern allows users to add parentheses around patterns to emphasize the intended grouping. Otherwise, it

has no additional syntax. Syntax:

group_pattern = "(" pattern ")"

In simple terms (P) has the same effect as P.

Sequence Patterns

A sequence pattern contains several subpatterns to be matched against sequence elements. The syntax is similar to
the unpacking of a list or tuple.

sequence_pattern = "[" [maybe_sequence_pattern] "]1"
| "(" [open_sequence_pattern] ")"
open_sequence_pattern u= maybe_star_pattern "," [maybe_sequence_pattern]
maybe_sequence_pattern = ", ".maybe_star_patternt ","?
maybe_star_pattern = star_pattern | pattern
star_pattern = "*" (capture_pattern | wildcard_pattern)
There is no difference if parentheses or square brackets are used for sequence patterns (i.e. (...) vs [...]).
Nota: A single pattern enclosed in parentheses without a trailing comma (e.g. (3 | 4)) is a group pattern. While

a single pattern enclosed in square brackets (e.g. [3 | 4]) is still a sequence pattern.

At most one star subpattern may be in a sequence pattern. The star subpattern may occur in any position. If no
star subpattern is present, the sequence pattern is a fixed-length sequence pattern; otherwise it is a variable-length
sequence pattern.

The following is the logical flow for matching a sequence pattern against a subject value:
1. If the subject value is not a sequence?, the sequence pattern fails.
2. If the subject value is an instance of str, bytes or bytearray the sequence pattern fails.
3. The subsequent steps depend on whether the sequence pattern is fixed or variable-length.
If the sequence pattern is fixed-length:

1. If the length of the subject sequence is not equal to the number of subpatterns, the sequence pattern fails

2 In pattern matching, a sequence is defined as one of the following:

« a class that inherits from collections.abc.Sequence
« a Python class that has been registered as collections.abc.Sequence
« a builtin class that has its (CPython) Py_TPFLAGS_SEQUENCE bit set
« aclass that inherits from any of the above

The following standard library classes are sequences:
e array.array
e collections.deque
e list
e memoryview
e range
e tuple

Nota: Subject values of type str, bytes, and bytearray do not match sequence patterns.

120 Capitolo 8. Compound statements



The Python Language Reference, Release 3.11.13

2. Subpatterns in the sequence pattern are matched to their corresponding items in the subject sequence
from left to right. Matching stops as soon as a subpattern fails. If all subpatterns succeed in matching
their corresponding item, the sequence pattern succeeds.

Otherwise, if the sequence pattern is variable-length:

1. If the length of the subject sequence is less than the number of non-star subpatterns, the sequence pattern
fails.

2. The leading non-star subpatterns are matched to their corresponding items as for fixed-length sequences.

3. If the previous step succeeds, the star subpattern matches a list formed of the remaining subject items,
excluding the remaining items corresponding to non-star subpatterns following the star subpattern.

4. Remaining non-star subpatterns are matched to their corresponding subject items, as for a fixed-length
sequence.

Nota: The length of the subject sequence is obtained via 1en () (i.e. viathe _ len__ () protocol). This
length may be cached by the interpreter in a similar manner as value patterns.

In simple terms [P1, P2, P3, ..., P<N>] matches only if all the following happens:
« check <subject> is a sequence
e len(subject) == <N>
e P1 matches <subject>[0] (note that this match can also bind names)
e P2 matches <subject>[1] (note that this match can also bind names)

« ... and so on for the corresponding pattern/element.

Mapping Patterns

A mapping pattern contains one or more key-value patterns. The syntax is similar to the construction of a dictionary.
Syntax:

mapping_pattern x=  "{" [items_pattern] "}"
items_pattern = ",".key_value_patternt ","?
key_value_pattern = (literal_pattern | value_pattern) ":" pattern

| double_star_ pattern
"x*&W" capture_pattern

double_star_pattern

At most one double star pattern may be in a mapping pattern. The double star pattern must be the last subpattern in
the mapping pattern.

Duplicate keys in mapping patterns are disallowed. Duplicate literal keys will raise a SyntaxError. Two keys that
otherwise have the same value will raise a ValueError at runtime.

The following is the logical flow for matching a mapping pattern against a subject value:
1. If the subject value is not a mapping’,the mapping pattern fails.

2. If every key given in the mapping pattern is present in the subject mapping, and the pattern for each key matches
the corresponding item of the subject mapping, the mapping pattern succeeds.

3 In pattern matching, a mapping is defined as one of the following:
o a class that inherits from collections.abc.Mapping
« a Python class that has been registered as collections.abc.Mapping
« a builtin class that has its (CPython) Py_TPFLAGS_MAPP ING bit set
« aclass that inherits from any of the above
The standard library classes dict and types.MappingProxyType are mappings.

8.6. The match statement 121



The Python Language Reference, Release 3.11.13

3. If duplicate keys are detected in the mapping pattern, the pattern is considered invalid. A SyntaxError is
raised for duplicate literal values; or a ValueError for named keys of the same value.

Nota: Key-value pairs are matched using the two-argument form of the mapping subject’s get () method. Mat-
ched key-value pairs must already be present in the mapping, and not created on-the-fly via __missing__ () or
__getitem__ ().

In simple terms {KEY1: P1, KEY2: P2, ... } matches only if all the following happens:
 check <subject> is a mapping
¢« KEY1 in <subject>
e P1 matches <subject>[KEY1]

« ... and so on for the corresponding KEY/pattern pair.

Class Patterns

A class pattern represents a class and its positional and keyword arguments (if any). Syntax:

class_pattern = name_or_attr " (" [pattern_arguments ","?] ")"
pattern_arguments = positional_patterns ["," keyword_patterns]
| keyword patterns
positional_patterns = ", ".pattern+
keyword_patterns = ", ".keyword pattern+
keyword_pattern u= NAME "=" pattern

The same keyword should not be repeated in class patterns.
The following is the logical flow for matching a class pattern against a subject value:
1. If name_or_attr is not an instance of the builtin t ype , raise TypeError.

2. If the subject value is not an instance of name_or_attr (tested via isinstance ()), the class pattern
fails.

3. If no pattern arguments are present, the pattern succeeds. Otherwise, the subsequent steps depend on whether
keyword or positional argument patterns are present.

For a number of built-in types (specified below), a single positional subpattern is accepted which will match
the entire subject; for these types keyword patterns also work as for other types.

If only keyword patterns are present, they are processed as follows, one by one:

I. The keyword is looked up as an attribute on the subject.
« If this raises an exception other than AttributeError, the exception bubbles up.
o If this raises At t ributeError, the class pattern has failed.

« Else, the subpattern associated with the keyword pattern is matched against the subject’s attribute value.
If this fails, the class pattern fails; if this succeeds, the match proceeds to the next keyword.

IL. If all keyword patterns succeed, the class pattern succeeds.

If any positional patterns are present, they are converted to keyword patterns using the __match_args_
attribute on the class name_or_attr before matching:

I. The equivalent of getattr (cls, "__match_args_ ", ()) iscalled.
« If this raises an exception, the exception bubbles up.

« If the returned value is not a tuple, the conversion fails and TypeError is raised.

122 Capitolo 8. Compound statements



The Python Language Reference, Release 3.11.13

« If there are more positional patterns than len (cls.__match_args
is raised.

), TypeError

o Otherwise, positional pattern i is converted to a keyword pattern using
_ match_args__ [i] as the keyword. _ match_args__ [i] must be a string;
if not TypeError is raised.

« If there are duplicate keywords, TypeError is raised.
Vedi anche:
Customizing positional arguments in class pattern matching

I1. Once all positional patterns have been converted to keyword patterns,
the match proceeds as if there were only keyword patterns.

For the following built-in types the handling of positional subpatterns is different:

e bool

e bytearray
e bytes

e dict

e float

e frozenset
e int

e list

e set

e Str

e tuple

These classes accept a single positional argument, and the pattern there is matched against the whole object
rather than an attribute. For example int (0 | 1) matches the value 0, but not the value 0. 0.

In simple terms CLS (P1, attr=P2) matches only if the following happens:
e isinstance (<subject>, CLS)
« convert P1 to a keyword pattern using CLS.___match_args___
« For each keyword argument attr=P2:
- hasattr (<subject>, "attr")
- P2 matches <subject>.attr
« ... and so on for the corresponding keyword argument/pattern pair.
Vedi anche:
o PEP 634 - Structural Pattern Matching: Specification
o PEP 636 - Structural Pattern Matching: Tutorial

8.6. The match statement 123


https://peps.python.org/pep-0634/
https://peps.python.org/pep-0636/

The Python Language Reference, Release 3.11.13

8.7 Function definitions

A function definition defines a user-defined function object (see section The standard type hierarchy):

funcdef = [decorators] "def" funcname " (" [parameter_list]
["->" expression] ":" suite

decorators = decorator+

decorator = "@" assignment_expression NEWLINE

parameter_list = defparameter ("," defparameter)* "," "/" [", "

| parameter_list_no_posonly

parameter_list_no_posonly
| parameter_list_starargs

ll) n

[paramete

defparameter ("," defparameter)* ["," [parameter_list_:

parameter_list_starargs = "*" [parameter] ("," defparameter)* ["," ["**" paramete
| "**" parameter [","]

parameter = identifier [":" expression]

defparameter = parameter ["=" expression]

funcname = identifier

A function definition is an executable statement. Its execution binds the function name in the current local namespace
to a function object (a wrapper around the executable code for the function). This function object contains a reference
to the current global namespace as the global namespace to be used when the function is called.

The function definition does not execute the function body; this gets executed only when the function is called.*

A function definition may be wrapped by one or more decorator expressions. Decorator expressions are evaluated
when the function is defined, in the scope that contains the function definition. The result must be a callable, which
is invoked with the function object as the only argument. The returned value is bound to the function name instead
of the function object. Multiple decorators are applied in nested fashion. For example, the following code

Qfl (arg)
Qf2
def func(): pass

is roughly equivalent to

def func(): pass
func = £l (arg) (£2 (func))

except that the original function is not temporarily bound to the name func.

Cambiato nella versione 3.9: Functions may be decorated with any valid assignment_expression. Previously,
the grammar was much more restrictive; see PEP 614 for details.

When one or more parameters have the form parameter = expression, the function is said to have «default parameter
values.» For a parameter with a default value, the corresponding argument may be omitted from a call, in which case
the parameter’s default value is substituted. If a parameter has a default value, all following parameters up until the
«*» must also have a default value — this is a syntactic restriction that is not expressed by the grammar.

Default parameter values are evaluated from left to right when the function definition is executed. This means
that the expression is evaluated once, when the function is defined, and that the same «pre-computed» value is used
for each call. This is especially important to understand when a default parameter value is a mutable object, such as
a list or a dictionary: if the function modifies the object (e.g. by appending an item to a list), the default parameter
value is in effect modified. This is generally not what was intended. A way around this is to use None as the default,
and explicitly test for it in the body of the function, e.g.:

def whats_on_the_telly (penguin=None) :
if penguin is None:
(continues on next page)

4 A string literal appearing as the first statement in the function body is transformed into the function’s __doc___ attribute and therefore the
function’s docstring.

124 Capitolo 8. Compound statements


https://peps.python.org/pep-0614/

The Python Language Reference, Release 3.11.13

(continua dalla pagina precedente)
penguin = []
penguin.append ("property of the zoo")
return penguin

Function call semantics are described in more detail in section Calls. A function call always assigns values to all para-
meters mentioned in the parameter list, either from positional arguments, from keyword arguments, or from default
values. If the form «*ident i fier» is present, it is initialized to a tuple receiving any excess positional parameters,
defaulting to the empty tuple. If the form «**identifier» is present, it is initialized to a new ordered mapping
receiving any excess keyword arguments, defaulting to a new empty mapping of the same type. Parameters after
«*»or «*1dentifier» are keyword-only parameters and may only be passed by keyword arguments. Parameters
before «/» are positional-only parameters and may only be passed by positional arguments.

Cambiato nella versione 3.8: The / function parameter syntax may be used to indicate positional-only parameters.
See PEP 570 for details.

Parameters may have an annotation of the form «: expression» following the parameter name. Any parameter
may have an annotation, even those of the form *identifier or **identifier. Functions may have «return»
annotation of the form «—> expression» after the parameter list. These annotations can be any valid Python
expression. The presence of annotations does not change the semantics of a function. The annotation values are
available as values of a dictionary keyed by the parameters” names in the __annotations___ attribute of the
function object. If the annotations import from __future__ is used, annotations are preserved as strings at
runtime which enables postponed evaluation. Otherwise, they are evaluated when the function definition is executed.
In this case annotations may be evaluated in a different order than they appear in the source code.

It is also possible to create anonymous functions (functions not bound to a name), for immediate use in expressions.
This uses lambda expressions, described in section Lambdas. Note that the lambda expression is merely a shorthand
for a simplified function definition; a function defined in a «de» statement can be passed around or assigned to
another name just like a function defined by a lambda expression. The «de £» form is actually more powerful since
it allows the execution of multiple statements and annotations.

Programmer’s note: Functions are first-class objects. A «def» statement executed inside a function definition
defines a local function that can be returned or passed around. Free variables used in the nested function can access
the local variables of the function containing the def. See section Naming and binding for details.

Vedi anche:

PEP 3107 - Function Annotations
The original specification for function annotations.

PEP 484 - Type Hints
Definition of a standard meaning for annotations: type hints.

PEP 526 - Syntax for Variable Annotations
Ability to type hint variable declarations, including class variables and instance variables.

PEP 563 - Postponed Evaluation of Annotations
Support for forward references within annotations by preserving annotations in a string form at runtime instead
of eager evaluation.

PEP 318 - Decorators for Functions and Methods
Function and method decorators were introduced. Class decorators were introduced in PEP 3129.

8.7. Function definitions 125


https://peps.python.org/pep-0570/
https://peps.python.org/pep-3107/
https://peps.python.org/pep-0484/
https://peps.python.org/pep-0526/
https://peps.python.org/pep-0563/
https://peps.python.org/pep-0318/
https://peps.python.org/pep-3129/

The Python Language Reference, Release 3.11.13

8.8 Class definitions

A class definition defines a class object (see section The standard type hierarchy):

classdef = [decorators] "class" classname [inheritance] ":" suite
inheritance = "(" [argument_1list] ")"
classname = identifier

A class definition is an executable statement. The inheritance list usually gives a list of base classes (see Metaclasses
for more advanced uses), so each item in the list should evaluate to a class object which allows subclassing. Classes
without an inheritance list inherit, by default, from the base class object; hence,

class Foo:
pass

is equivalent to

class Foo (object) :
pass

The class’s suite is then executed in a new execution frame (see Naming and binding), using a newly created local
namespace and the original global namespace. (Usually, the suite contains mostly function definitions.) When the
class’s suite finishes execution, its execution frame is discarded but its local namespace is saved.> A class object is
then created using the inheritance list for the base classes and the saved local namespace for the attribute dictionary.
The class name is bound to this class object in the original local namespace.

The order in which attributes are defined in the class body is preserved in the new class’s __dict__ . Note that this
is reliable only right after the class is created and only for classes that were defined using the definition syntax.

Class creation can be customized heavily using metaclasses.

Classes can also be decorated: just like when decorating functions,

Qfl (arg)
Qf2
class Foo: pass

is roughly equivalent to

class Foo: pass
Foo = f1(arg) (f2 (Foo))

The evaluation rules for the decorator expressions are the same as for function decorators. The result is then bound
to the class name.

Cambiato nella versione 3.9: Classes may be decorated with any valid assignment_expression. Previously,
the grammar was much more restrictive; see PEP 614 for details.

Programmer’s note: Variables defined in the class definition are class attributes; they are shared by instances. Instan-
ce attributes can be set in a method with self.name = value. Both class and instance attributes are accessible
through the notation «self.name», and an instance attribute hides a class attribute with the same name when
accessed in this way. Class attributes can be used as defaults for instance attributes, but using mutable values there
can lead to unexpected results. Descriptors can be used to create instance variables with different implementation
details.

Vedi anche:

5 A string literal appearing as the first statement in the class body is transformed into the namespace’s___doc___item and therefore the class’s
docstring.

126 Capitolo 8. Compound statements


https://peps.python.org/pep-0614/

The Python Language Reference, Release 3.11.13

PEP 3115 - Metaclasses in Python 3000
The proposal that changed the declaration of metaclasses to the current syntax, and the semantics for how
classes with metaclasses are constructed.

PEP 3129 - Class Decorators
The proposal that added class decorators. Function and method decorators were introduced in PEP 318.

8.9 Coroutines

Nuovo nella versione 3.5.

8.9.1 Coroutine function definition

async_funcdef = [decorators] "async" "def" funcname " (" [parameter_list] ")"
["->" expression] ":" suite

Execution of Python coroutines can be suspended and resumed at many points (see coroutine). awa it expressions,
async forand async with can only be used in the body of a coroutine function.

Functions defined with async def syntax are always coroutine functions, even if they do not contain await or
async keywords.

Itisa SyntaxErrortouseayield from expression inside the body of a coroutine function.

An example of a coroutine function:

async def func(paraml, param2):
do_stuff ()
await some_coroutine ()

Cambiato nella versione 3.7: await and async are now keywords; previously they were only treated as such inside
the body of a coroutine function.

8.9.2 The async for statement

async_for_stmt = "async" for_stmt

An asynchronous iterable provides an __aiter__ method that directly returns an asynchronous iterator, which can
call asynchronous code inits __anext___ method.

The async for statement allows convenient iteration over asynchronous iterables.

The following code:

async for TARGET in ITER:
SUITE

else:
SUITEZ2

Is semantically equivalent to:

iter = (ITER)
iter = type(iter).__aiter__ (iter)
running = True

(continues on next page)

8.9. Coroutines 127


https://peps.python.org/pep-3115/
https://peps.python.org/pep-3129/
https://peps.python.org/pep-0318/

The Python Language Reference, Release 3.11.13

(continua dalla pagina precedente)

while running:

try:
TARGET = await type(iter).__anext__ (iter)
except StopAsyncIteration:
running = False
else:
SUITE
else:
SUITEZ2

Seealso__aiter () and___anext__ () for details.

Itisa SyntaxError touse an async for statement outside the body of a coroutine function.

8.9.3 The async with statement

async_with_ stmt = "async" with_stmt

An asynchronous context manager is a context manager that is able to suspend execution in its enter and exit methods.

The following code:

async with EXPRESSION as TARGET:
SUITE

is semantically equivalent to:

manager = (EXPRESSION)

aenter = type (manager) .__aenter_
aexit = type (manager).__aexit_
value = await aenter (manager)

hit_except = False

try:
TARGET = value
SUITE
except :
hit_except = True
if not await aexit (manager, *sys.exc_info()):
raise
finally:

if not hit_except:
await aexit (manager, None, None, None)

Seealso  aenter () and aexit () for details.
Itisa SyntaxError touse an async with statement outside the body of a coroutine function.
Vedi anche:

PEP 492 - Coroutines with async and await syntax
The proposal that made coroutines a proper standalone concept in Python, and added supporting syntax.

128 Capitolo 8. Compound statements



https://peps.python.org/pep-0492/

cAPITOLO 9

Top-level components

The Python interpreter can get its input from a number of sources: from a script passed to it as standard input or as
program argument, typed in interactively, from a module source file, etc. This chapter gives the syntax used in these
cases.

9.1 Complete Python programs

While a language specification need not prescribe how the language interpreter is invoked, it is useful to have a notion
of a complete Python program. A complete Python program is executed in a minimally initialized environment: all
built-in and standard modules are available, but none have been initialized, except for sys (various system services),
builtins (built-in functions, exceptions and None) and __main__. The latter is used to provide the local and
global namespace for execution of the complete program.

The syntax for a complete Python program is that for file input, described in the next section.

The interpreter may also be invoked in interactive mode; in this case, it does not read and execute a complete program
but reads and executes one statement (possibly compound) at a time. The initial environment is identical to that of a
complete program; each statement is executed in the namespace of __main__.

A complete program can be passed to the interpreter in three forms: with the —c sfring command line option, as a
file passed as the first command line argument, or as standard input. If the file or standard input is a tty device, the
interpreter enters interactive mode; otherwise, it executes the file as a complete program.

9.2 File input

All input read from non-interactive files has the same form:

file_input = (NEWLINE | statement)*

This syntax is used in the following situations:
« when parsing a complete Python program (from a file or from a string);
o when parsing a module;

« when parsing a string passed to the exec () function;

129



The Python Language Reference, Release 3.11.13

9.3 Interactive input

Input in interactive mode is parsed using the following grammar:

interactive_input = [stmt_1list] NEWLINE | compound_stmt NEWLINE

Note that a (top-level) compound statement must be followed by a blank line in interactive mode; this is needed to
help the parser detect the end of the input.

9.4 Expression input

eval () is used for expression input. It ignores leading whitespace. The string argument to eval () must have the
following form:

eval_input = expression_list NEWLINE*

130 Capitolo 9. Top-level components



capitoLo 10

Full Grammar specification

This is the full Python grammar, derived directly from the grammar used to generate the CPython parser (see
Grammar/python.gram). The version here omits details related to code generation and error recovery.

The notation is a mixture of EBNF and PEG. In particular, & followed by a symbol, token or parenthesized group
indicates a positive lookahead (i.e., is required to match but not consumed), while ! indicates a negative lookahead
(i.e., is required not to match). We use the | separator to mean PEG’s «ordered choice» (written as / in traditional
PEG grammars). See PEP 617 for more details on the grammar’s syntax.

#

HH=

S o H S R H S R S R R S R R e R R S R Rk R R

PEG grammar for Python

== == == = START OF THE GRAMMAR === == == ==

General grammatical elements and rules:

* Strings with double quotes (") denote SOFT KEYWORDS

* Strings with single quotes (') denote KEYWORDS

* Upper case names (NAME) denote tokens in the Grammar/Tokens file

* Rule names starting with "invalid " are used for specialized syntax errors
— These rules are NOT used in the first pass of the parser.

- Only if the first pass fails to parse, a second pass including the invalid

rules will be executed.

If the parser fails in the second phase with a generic syntax error, the

location of the generic failure of the first pass will be used (this avoids

reporting incorrect locations due to the invalid rules).

The order of the alternatives involving invalid rules matter

(like any rule in PEG).

Grammar Syntax (see PEP 617 for more information):

rule _name: expression
Optionally, a type can be included right after the rule name, which
specifies the return type of the C or Python function corresponding to the
rule:

rule_name [return_type]: expression
If the return type is omitted, then a void * is returned in C and an Any in
Python.

el e2

(continues on next page)

131



https://github.com/python/cpython/tree/3.11/Grammar/python.gram
https://en.wikipedia.org/wiki/Extended_Backus%E2%80%93Naur_form
https://en.wikipedia.org/wiki/Parsing_expression_grammar
https://peps.python.org/pep-0617/

The Python Language Reference, Release 3.11.13

(continua dalla pagina precedente)

Match el, then match eZ2.
el | e2
Match el or eZ2.
The first alternative can also appear on the line after the rule name for
formatting purposes. In that case, a | must be used before the first
alternative, like so:
rule_name[return_type]:
| first_alt
| second_alt
(e)
Match e (allows also to use other operators in the group like '(e)*'")
[ e ] or e?
Optionally match e.

e*

Match zero or more occurrences of e.
e+

Match one or more occurrences of e.
s.e+

Match one or more occurrences of e, separated by s. The generated parse tree
does not include the separator. This is otherwise identical to (e (s e)*).
&e
Succeed if e can be parsed, without consuming any input.
le
Fail if e can be parsed, without consuming any input.

Commit to the current alternative, even 1f it fails to parse.

S T e Y T e Y T S Y T R R R R R T R R R R R R R R

# STARTING RULES

file: [statements] ENDMARKER

interactive: statement_newline

eval: expressions NEWLINE* ENDMARKER

func_type: ' (' [type_expressions] ')' '->' expression NEWLINE* ENDMARKER
fstring: star_expressions

# GENERAL STATEMENTS

statements: statement+
statement: compound stmt | simple_stmts

statement_newline:
| compound_stmt NEWLINE
| simple_stmts
| NEWLINE
| ENDMARKER

simple_stmts:
| simple_stmt !';' NEWLINE # Not needed, there for speedup
[ ';'.simple_stmt+ [';'] NEWLINE

# NOTE: assignment MUST precede expression, else parsing a simple assignment
# will throw a SyntaxError.
simple_stmt:

| assignment

| star_expressions

| return_stmt

| import_stmt

(continues on next page)

132 Capitolo 10. Full Grammar specification




The Python Language Reference, Release 3.11.13

(continua dalla pagina precedente)

raise_stmt
'pass’'
del_stmt
yield stmt
assert_stmt
'break'’
'continue'
global_stmt
nonlocal_stmt

compound_stmt :

| function_def
| if_stmt
| class_def
| with_stmt
| for_stmt
| try_stmt
| while_stmt
| match_stmt

# SIMPLE STATEMENTS

# NOTE: annotated_rhs may start with 'yield'; yield expr must start with 'yield'

assignment:
| NAME ':' expression ['=' annotated_rhs ]
[ ("('" single_target '")'
| single_subscript_attribute_target) ':' expression ['=' annotated_rhs ]
| (star_targets '=' )+ (yield_expr | star_expressions) !'=' [TYPE_COMMENT]
| single_target augassign ~ (yield_expr | star_expressions)
annotated_rhs: yield _expr | star_expressions
augassign:
[ "+="
[ —
| V=t
[ re="'
o=
[ "%="
[ '&="
‘ V|=l
‘ TA_
| T<g=t
[ Ts>=1
| TxHk=
| '//="

return_stmt:
| 'return' [star_expressions]

raise_stmt:
| 'raise' expression ['from' expression ]

| 'raise'

global_stmt: 'global' ', '.NAME+

nonlocal_stmt: 'nonlocal' ','.NAME+
del_stmt:
| 'del' del_targets &(';' | NEWLINE)

(continues on next page)

133




The Python Language Reference, Release 3.11.13

(continua dalla pagina precedente)

yield_stmt: yield_expr

assert_stmt: 'assert' expression [',' expression ]

import_stmt: import_name | import_from

# Import statements

# _________________
import_name: 'import' dotted_as_names
# note below: the ('.' | '...') is necessary because '...' is tokenized as ELLIPSIS
import_from:
| '"from' ('.' | '...')* dotted_name 'import' import_from_targets
[ "from' ('.' | '...")+ 'import' import_from_ targets

import_from_targets:

[ '('" import_from_as_names [','] '")'

| import_from_as_names !','

[ '
import_from_as_names:

| ', '".import_from_as_name+
import_from_as_name:

| NAME ['as' NAME ]
dotted_as_names:

| ', '".dotted_as_name+
dotted_as_name:

| dotted_name ['as' NAME ]
dotted_name:

| dotted_name '.' NAME

| NAME

# COMPOUND STATEMENTS

# ,,,,,,,,,,,,,,,
block:
| NEWLINE INDENT statements DEDENT
| simple_stmts
decorators: ('@' named_expression NEWLINE )+

# Class definitions

class_def:
| decorators class_def_raw
| class_def_raw

class_def_ raw:
| 'elass' NAME [' (' [arguments] ')' ] ':' block

# Function definitions
function_def:
| decorators function_def raw

| function_def_ raw

function_def raw:

(continues on next page)

134 Capitolo 10. Full Grammar specification




The Python Language Reference, Release 3.11.13

(continua dalla pagina precedente)

| 'def' NAME ' (' [params] ")' ['->' expression ] ':' [func_type_comment] block
| ASYNC 'def' NAME ' (' [params] ')' ['->' expression ] ':' [func_type_comment].
—block

# Function parameters

# ___________________
params:
| parameters
parameters:
| slash_no_default param_no_default* param_with_default* [star_etc]
| slash_with_default param_with_default* [star_etc]
| param_no_default+ param with_default* [star_etc]
| param_with_default+ [star_etc]
| star_etc
# Some duplication here because we can't write (',' | &')'"),

# which is because we don't support empty alternatives (yet).

slash_no_default:
| param_no_default+ '/' ',
| param_no_default+ '/' &'")'
slash_with_default:
| param_no_default* param_with_default+ '/' ',
| param_no_default* param_with_default+ '/' &')'

star_etc:
| '"*' param_no_default param_maybe_default* [kwds]
| '"*' param_no_default_star_annotation param_maybe_default* [kwds]
|
|

'*' ', ' param maybe_default+ [kwds]
kwds
kwds:
| "**' param_no_default
# One parameter. This *includes* a following comma and type comment.
#

# There are three styles:

# — No default

# — With default

# — Maybe with default

#

# There are two alternative forms of each, to deal with type comments:
# — Ends in a comma followed by an optional type comment

# — No comma, optional type comment, must be followed by close paren
# The latter form is for a final parameter without trailing comma.

#

param_no_default:

| param ',' TYPE_COMMENT?

| param TYPE_COMMENT? &')'
param_no_default_star_annotation:

| param_star_annotation ',' TYPE_COMMENT?

| param_star_annotation TYPE_COMMENT? &')'
param_with_default:

| param default ',' TYPE_COMMENT?

| param default TYPE_COMMENT? &')'
param_maybe_default:

| param default? ',' TYPE_COMMENT?

| param default? TYPE_COMMENT? &')'

(continues on next page)

135



The Python Language Reference, Release 3.11.13

(continua dalla pagina precedente)

param: NAME annotation?
param_star_annotation: NAME star_annotation

annotation: ':' expression
star_annotation: ':' star_ expression
default: '=' expression | invalid_default

# If statement

# ,,,,,,,,,,,,
if stmt:

| '"if' named_expression ':' block elif_ stmt

| "if' named_expression ':' block [else_block]
elif stmt:

| 'elif' named_expression ':' block elif_ stmt

| 'elif' named_expression ':' block [else_block]
else_block:

| 'else' ':' block

# While statement

while_stmt:
| 'while' named_expression ':' block [else_block]

# For statement

# ,,,,,,,,,,,,,
for_stmt:

| 'for' star_targets 'in' ~ star_expressions ':' [TYPE_COMMENT] block [else_
—block]

| ASYNC 'for' star_targets 'in' ~ star_expressions ':' [TYPE_COMMENT] block.

— [else_block]

# With statement

# ,,,,,,,,,,,,,,
with_stmt:
| 'with' ' (' ','.with_item+ ','? ")' ':' block
| 'with' ','.with_item+ ':' [TYPE_COMMENT] block
| ASYNC 'with' '(' ','.with_item+ ','? ')' ':' block
| ASYNC 'with' ','.with_item+ ':' [TYPE_COMMENT] block

with_item:
| expression 'as' star_target &(',' | ")'" | ':")
| expression

# Try statement

# ,,,,,,,,,,,,,
try_stmt:
| 'try' ':' block finally block
| 'try' ':' block except_block+ [else_block] [finally_block]
| 'try' ':' block except_star_block+ [else_block] [finally_block]

# Except statement

except_block:
| 'except' expression ['as' NAME ] ':' block
| 'except' ':' block

(continues on next page)

136 Capitolo 10. Full Grammar specification




The Python Language Reference, Release 3.11.13

(continua dalla pagina precedente)

except_star_block:

| 'except' '*' expression ['as' NAME ] ':' block
finally_block:
| 'finally' ':' block

# Match statement

match_stmt:

| "match" subject_expr ':' NEWLINE INDENT case_block+ DEDENT
subject_expr:
| star_named_expression ','

| named_expression

star_named_expressions?

case_block:
block

guard:

"case" patterns guard? ':'

'if' named_expression

patterns:

open_sequence_pattern
pattern

pattern:

as_pattern
or_pattern

as_pattern:

or_pattern 'as' pattern_capture_target

or_pattern:

'|'".closed_patternt

closed_pattern:

literal_ pattern
capture_pattern
wildcard_pattern
value_pattern
group_pattern
sequence_pattern
mapping _pattern
class_pattern

# Literal patterns are used for equality and identity constraints
literal pattern:

signed_number ! ('+' | '-'")
complex_number

strings

'"None'

'True’

'False'

# Literal expressions are used to restrict permitted mapping pattern keys

literal_expr:

signed_number ! ('+' |
complex_number
strings

'"None'

'True’

'False'

|_l)

(continues on next page)

137




The Python Language Reference, Release 3.11.13

complex_number:
signed_real_number '+' imaginary_number
Y
| signed_real_number '-' imaginary_number

signed_number:
| NUMBER
| '"-'" NUMBER

signed_real_number:
| real_number
| '"-'" real_number

real number:
| NUMBER

imaginary_number:
| NUMBER

capture_pattern:
| pattern_capture_target

pattern_capture_target:
‘ !H_H NAME !(V.l ‘ l(l ‘ V:l)

wildcard_pattern:

‘ non

value_pattern:
| attr L(T.t (] =)

attr:
| name_or_attr '.' NAME

name_or_attr:
| attr
| NAME

group_pattern:
[ "(' pattern ')'

sequence_pattern:
| '"[' maybe_sequence_pattern? ']’
[ "(' open_sequence_pattern? ')'

open_sequence_pattern:
| maybe_star_pattern ',' maybe_sequence_pattern?

maybe_sequence_pattern:
| ','.maybe_star_pattern+ ','?

maybe_star_pattern:
| star_pattern
| pattern

star_pattern:
| '*' pattern_capture_target
| '*' wildcard_pattern

mapping pattern:
‘ l{l l}l

(continua dalla pagina precedente)

(continues on next page)

138 Capitolo 10. Full Grammar specification




The Python Language Reference, Release 3.11.13

(continua dalla pagina precedente)

| '"{' double_star_pattern ','? '}'
| '{' items_pattern ',' double_star_pattern ','? '}'
[ '"{'" items_pattern ','? '}’
items_pattern:

| ', "'".key_value_pattern+

key_value_pattern:
| (literal_expr | attr) ':' pattern

double_star_pattern:
| '"**' pattern_capture_target

class_pattern:
name_or_attr "(' ")'
| name_or_attr '(' positional_patterns ','? ')'
| name_or_attr '(' keyword_patterns ','? ')'
| name_or_attr '(' positional_patterns ',' keyword_patterns ','? ')'

positional_patterns:
| ', "'.patternt

keyword_patterns:
| ', '".keyword_patternt

keyword_pattern:
NAME '=' pattern

# EXPRESSIONS

expressions:
| expression (',' expression )+ [',']
| expression ',
| expression

expression:
| disjunction 'if' disjunction 'else' expression
| disjunction
| lambdef

yield_expr:
| 'yield' 'from' expression
| 'yield' [star_expressions]

star_expressions:
| star_expression (',' star_expression )+ [',']
| star_expression ','

\

star_expression

star_expression:
| '"*'" bitwise_or
| expression

star_named_expressions: ','.star_named_expression+ [',']
star_named_expression:
| "' bitwise_or

| named_expression

assignment_expression:

(continues on next page)

139




The Python Language Reference, Release 3.11.13

| NAME ':=' ~ expression

named_expression:
| assignment_expression
| expression !':='

disjunction:
| conjunction ('or' conjunction )+
| conjunction

conjunction:
| inversion ('and' inversion )+
| inversion

inversion:
| '"mot' inversion
| comparison

# Comparison operators

comparison:
| bitwise_or compare_op_bitwise_or_pair+
| bitwise_or

compare_op_bitwise_or_pair:
| eq bitwise_or

| noteg bitwise_or
| lte_bitwise_or

| 1lt_bitwise_or

| gte_bitwise_or

| gt_bitwise_or

| notin_bitwise_or
| in_bitwise_or

| isnot_bitwise_or
| is_bitwise_or

eg bitwise_or: '==' bitwise_or
noteq_bitwise_or:

[ ("!='" ) bitwise_or
lte_bitwise_or: '<=' bitwise_or
lt_bitwise_or: '<' bitwise_or
gte_bitwise_or: '>=' bitwise_or
gt_bitwise_or: '>' bitwise_or
notin_bitwise_or: 'mot' 'in' bitwise_or
in_bitwise_or: 'in' bitwise_or
isnot_bitwise_or: 'is' 'not' bitwise_or
is_bitwise_or: 'is' bitwise_or

# Bitwise operators

bitwise_or:
| bitwise_or '|' bitwise_xor
| bitwise_xor

bitwise_xor:
| bitwise_xor '"' bitwise_and

| bitwise_and

bitwise_and:

(continua dalla pagina precedente)

(continues on next page)

140 Capitolo 10. Full Grammar specification




The Python Language Reference, Release 3.11.13

(continua dalla pagina precedente)

| bitwise_and '&' shift_expr
| shift_expr
shift_expr:
| shift_expr '<<' sum
| shift_expr '>>' sum
[ sum

# Arithmetic operators

# ,,,,,,,,,,,,,,,,,,,,
sum:
| sum '+' term
| sum '-' term
| term
term:
| term '*' factor
| term '/' factor
| term '//' factor
| term '%' factor
| term '@' factor
| factor
factor:
| '+' factor
| '=-' factor
| '"~' factor
| power
power:

| await_primary '**' factor
await_primary

# Primary elements
# Primary elements are things like "obj.something.something'", "obj[something]",
—"obj (something)'", "obj"

await_primary:
| AWAIT primary

| primary
primary:

| primary '.' NAME

| primary genexp

| primary ' (' [arguments] ')'

| primary '[' slices ']'

| atom
slices:

| slice !','

', '".(slice starred_expression)+ [', ']

slice:

| [expression] ':' [expression] [':' [expression] ]

| named_expression

atom:
| NAME

(continues on next page)

141




The Python Language Reference, Release 3.11.13

(continua dalla pagina precedente)

'True’

'False'

'"None'

strings

NUMBER

(tuple | group | genexp)
(list | listcomp)

(dict | set | dictcomp | setcomp)
A} A}

group:
[ "('" (yield_expr | named_expression) ')'

# Lambda functions

lambdef:
| '"lambda' [lambda_params] ':' expression

lambda_params:
| lambda_parameters

# lambda_parameters etc. duplicates parameters but without annotations
# or type comments, and if there's no comma after a parameter, we expect
# a colon, not a close parenthesis. (For more, see parameters above.)
#
lambda_parameters:
| lambda_slash_no_default lambda_param_no_default* lambda_param_with_default*.
— [lambda_star_etc]
| lambda_slash_with_default lambda_param_with_default* [lambda_star_etc]
| lambda_param no_default+ lambda_param with default* [lambda_star_etc]
| lambda_param with_default+ [lambda_star_etc]
| lambda_star_etc

lambda_slash_no_default:
| lambda_param_no_default+ '/' ',
| lambda_param_no_default+ '/' &':"'

lambda_slash_with_default:
| lambda_param_no_default* lambda_param_with_default+ '/' ',
| lambda_param_no_default* lambda_param with_default+ '/' &':'

lambda_star_etc:
[ '"*' lambda_param _no_default lambda_param _maybe_default* [lambda_kwds]
[ "*' ', ' lambda_param_maybe_default+ [lambda_kwds]
| lambda_kwds

lambda_kwds:
| "**' lambda_param_no_default

lambda_param_no_default:

| lambda_param ','

| lambda_param &':'
lambda_param_with_default:

| lambda_param default ','

| lambda_param default &':'
lambda_param_maybe_default:

| lambda_param default? ','

| lambda_param default? &':'
lambda_param: NAME

(continues on next page)

142 Capitolo 10. Full Grammar specification




The Python Language Reference, Release 3.11.13

(continua dalla pagina precedente)

# LITERALS

strings: STRING+

list:
| "['" [star_named_expressions] ']'
tuple:
[ "(' [star_named_expression ',' [star_named_expressions] 1T ")
set: '{' star_named_expressions '}'
# Dicts
# _____
dict
| '"{'" [double_starred_kvpairs] '}'
double_starred_kvpairs: ','.double_starred_kvpair+ [',']

double_starred_kvpair:

| "**' bitwise_or

| kvpair
kvpair: expression ':' expression
# Comprehensions & Generators
for_if clauses:

| for_if clause+

for_if clause:

| ASYNC 'for' star_targets 'in' ~ disjunction ('if' disjunction )*
| '"for' star_targets 'in' ~ disjunction ('if' disjunction )*
listcomp:

| '"[' named_expression for_if clauses ']'

setcomp:
| '"{' named_expression for_if clauses '}'

genexp:
[ "('" ( assignment_expression | expression !':=') for_if clauses ')'

dictcomp:
[ "{'" kvpair for_if clauses '}'

# FUNCTION CALL ARGUMENTS

e
arguments:

| args [','] &")'
args:

| ','.(starred_expression | ( assignment_expression | expression !':=') !'=")+_,
—['," kwargs ]

| kwargs
kwargs:

(continues on next page)

143




The Python Language Reference, Release 3.11.13

(continua dalla pagina precedente)

| ','.kwarg_or_starred+ ',' ','.kwarg_or_double_starred+
| '",'.kwarg_or_starred+
| ', '".kwarg_or_double_starred+

starred_expression:

| '"*' expression
‘ Tk T

kwarg_or_starred:
| NAME '=' expression
| starred_expression

kwarg_or_double_starred:
| NAME '=' expression

| "**' expression

# ASSIGNMENT TARGETS

# NOTE: star_targets may contain *bitwise_or, targets may not.
star_targets:

| star_target !','
| star_target (',' star_target )* [',']
star_targets_list_seq: ','.star_target+ [',']

star_targets_tuple_seq:
| star_target (',' star_target )+ [',']
| star_target ','

star_target:
| 'x' (!'*' star_target)
| target_with_star_atom

target_with_star_atom:
| t_primary '.' NAME !t_lookahead
| t_primary '[' slices ']' !t_lookahead
| star_atom

star_atom:
| NAME
| (" target_with_star_atom '")'
[ "('" [star_targets_tuple_seq] ')'
| '['" [star_targets_list_seq] ']'

single_target:
| single_subscript_attribute_target
| NAME
| '(' single_target ')'

single_subscript_attribute_target:
| t_primary '.' NAME !t_lookahead
| t_primary '[' slices ']' !t_lookahead

t_primary:
| t_primary '.' NAME &t_lookahead
| t_primary '[' slices ']' &t_lookahead
| t_primary genexp &t_lookahead

(continues on next page)

144 Capitolo 10. Full Grammar specification




The Python Language Reference, Release 3.11.13

(continua dalla pagina precedente)
| t_primary ' (' [arguments] ')' &t_lookahead
| atom &t_lookahead

t_lookahead: "(' | '[' | '.'

# Targets for del statements

# ,,,,,,,,,,,,,,,,,,,,,,,,,,
del_targets: ','.del_target+ [',']
del_target:

| t_primary '.' NAME !t_lookahead

| t_primary '[' slices ']' !t_lookahead

| del_t_atom

del_t_atom:

| NAME
| '('" del_target '")'
| ]
|

'(' [del_targets] ')
'['" [del_targets] ']'

# TYPING ELEMENTS

# type_expressions allow */** but ignore them
type_expressions:

| ','.expression+ ',' '*' expression ',' '"**' expression
| ','.expressiont+ ',' '*' expression

| ','.expression+ ',' '**' expression

| '*' expression ',' '**' expression

| '*' expression

| '"**' expression

| ','.expression+

func_type_comment:

| NEWLINE TYPE_COMMENT & (NEWLINE INDENT) # Must be followed by indented block
| TYPE_COMMENT

# ommmmmmmmmmmmm—mm e = END OF THE GRAMMAR =====================—————"

145



The Python Language Reference, Release 3.11.13

146 Capitolo 10. Full Grammar specification



APPENDICE A

Glossary

>>>

2to3

The default Python prompt of the interactive shell. Often seen for code examples which can be executed
interactively in the interpreter.

Can refer to:

o The default Python prompt of the interactive shell when entering the code for an indented code block,
when within a pair of matching left and right delimiters (parentheses, square brackets, curly braces or
triple quotes), or after specifying a decorator.

e The E11ipsis built-in constant.

A tool that tries to convert Python 2.x code to Python 3.x code by handling most of the incompatibilities which
can be detected by parsing the source and traversing the parse tree.

2to3 is available in the standard library as 1ib2to3; a standalone entry point is provided as
Tools/scripts/2to3. See 2to3-reference.

abstract base class

Abstract base classes complement duck-typing by providing a way to define interfaces when other techniques
like hasattr () would be clumsy or subtly wrong (for example with magic methods). ABCs introduce virtual
subclasses, which are classes that don’t inherit from a class but are still recognized by isinstance () and
issubclass (); see the abc module documentation. Python comes with many built-in ABCs for data
structures (in the collections.abc module), numbers (in the numbers module), streams (in the io
module), import finders and loaders (in the import1ib.abc module). You can create your own ABCs with
the abc module.

annotation

A label associated with a variable, a class attribute or a function parameter or return value, used by convention
as a type hint.

Annotations of local variables cannot be accessed at runtime, but annotations of global variables, class attribu-
tes, and functions are stored in the __annotations___ special attribute of modules, classes, and functions,
respectively.

See variable annotation, function annotation, PEP 484 and PEP 526, which describe this functionality. Also
see annotations-howto for best practices on working with annotations.

147


https://peps.python.org/pep-0484/
https://peps.python.org/pep-0526/

The Python Language Reference, Release 3.11.13

argument
A value passed to a function (or method) when calling the function. There are two kinds of argument:

o keyword argument: an argument preceded by an identifier (e.g. name=) in a function call or passed as a
value in a dictionary preceded by * *. For example, 3 and 5 are both keyword arguments in the following
calls to complex ():

complex (real=3, imag=5)
complex (**{'real': 3, 'imag': 5})

e positional argument: an argument that is not a keyword argument. Positional arguments can appear at the
beginning of an argument list and/or be passed as elements of an iterable preceded by *. For example, 3
and 5 are both positional arguments in the following calls:

complex (3, 5)
complex (* (3, 5))

Arguments are assigned to the named local variables in a function body. See the Calls section for the rules
governing this assignment. Syntactically, any expression can be used to represent an argument; the evaluated
value is assigned to the local variable.

See also the parameter glossary entry, the FAQ question on the difference between arguments and parameters,
and PEP 362.

asynchronous context manager
An object which controls the environment seen in an async with statement by defining __aenter_ ()
and ___aexit__ () methods. Introduced by PEP 492.

asynchronous generator
A function which returns an asynchronous generator iterator. It looks like a coroutine function defined with
async def except that it contains yield expressions for producing a series of values usable in an async
for loop.

Usually refers to an asynchronous generator function, but may refer to an asynchronous generator iterator in
some contexts. In cases where the intended meaning isn’t clear, using the full terms avoids ambiguity.

An asynchronous generator function may contain awa it expressions as well as async for, and async
w1t h statements.

asynchronous generator iterator
An object created by a asynchronous generator function.

This is an asynchronous iterator which when called using the __anext___ () method returns an awaitable
object which will execute the body of the asynchronous generator function until the next yie 1d expression.

Each yield temporarily suspends processing, remembering the location execution state (including local va-
riables and pending try-statements). When the asynchronous generator iterator effectively resumes with another
awaitable returned by ___anext__ (), it picks up where it left off. See PEP 492 and PEP 525.

asynchronous iterable
An object, that can be used in an async for statement. Must return an asynchronous iterator from its
__aiter__ () method. Introduced by PEP 492.

asynchronous iterator
An object that implements the __aiter () and ___anext__ () methods. __anext__ () must re-
turn an awaitable object. async for resolves the awaitables returned by an asynchronous iterator’s
___anext___ () method until it raises a StopAsyncIteration exception. Introduced by PEP 492.

attribute
A value associated with an object which is usually referenced by name using dotted expressions. For example,
if an object o has an attribute a it would be referenced as o.a.

It is possible to give an object an attribute whose name is not an identifier as defined by Identifiers and keywords,
for example using setattr (), if the object allows it. Such an attribute will not be accessible using a dotted
expression, and would instead need to be retrieved with getattzr ().

148 Appendice A. Glossary


https://peps.python.org/pep-0362/
https://peps.python.org/pep-0492/
https://peps.python.org/pep-0492/
https://peps.python.org/pep-0525/
https://peps.python.org/pep-0492/
https://peps.python.org/pep-0492/

The Python Language Reference, Release 3.11.13

awaitable
An object that can be used in an awa i t expression. Can be a coroutine or an object withan __await__ ()
method. See also PEP 492.

BDFL
Benevolent Dictator For Life, a.k.a. Guido van Rossum, Python’s creator.

binary file
A file object able to read and write byfes-like objects. Examples of binary files are files opened in bina-
ry mode ('rb', 'wb' or 'rb+'), sys.stdin.buffer, sys.stdout.buffer, and instances of
io.BytesIOand gzip.GzipFile.

See also zext file for a file object able to read and write st r objects.

borrowed reference
In Python’s C API, a borrowed reference is a reference to an object, where the code using the object does not
own the reference. It becomes a dangling pointer if the object is destroyed. For example, a garbage collection
can remove the last strong reference to the object and so destroy it.

Calling Py_INCREF () on the borrowed reference is recommended to convert it to a strong reference in-
place, except when the object cannot be destroyed before the last usage of the borrowed reference. The
Py_NewRef () function can be used to create a new strong reference.

bytes-like object
An object that supports the bufferobjects and can export a C-contiguous buffer. This includes all bytes,
bytearray, and array.array objects, as well as many common memoryview objects. Bytes-like ob-
jects can be used for various operations that work with binary data; these include compression, saving to a
binary file, and sending over a socket.

Some operations need the binary data to be mutable. The documentation often refers to these as «read-
write bytes-like objects». Example mutable buffer objects include bytearray and a memoryview of
a bytearray. Other operations require the binary data to be stored in immutable objects («read-only
bytes-like objects»); examples of these include bytes and a memoryview of a bytes object.

bytecode
Python source code is compiled into bytecode, the internal representation of a Python program in the CPython
interpreter. The bytecode is also cached in . pyc files so that executing the same file is faster the second time
(recompilation from source to bytecode can be avoided). This «intermediate language» is said to run on a
virtual machine that executes the machine code corresponding to each bytecode. Do note that bytecodes are
not expected to work between different Python virtual machines, nor to be stable between Python releases.

A list of bytecode instructions can be found in the documentation for the dis module.

callable
A callable is an object that can be called, possibly with a set of arguments (see argument), with the following
syntax:

[callable(argumentl, argument2, argumentN)

A function, and by extension a method, is a callable. An instance of a class that implementsthe __call__ ()
method is also a callable.

callback
A subroutine function which is passed as an argument to be executed at some point in the future.

class
A template for creating user-defined objects. Class definitions normally contain method definitions which
operate on instances of the class.

class variable
A variable defined in a class and intended to be modified only at class level (i.e., not in an instance of the class).

complex number
An extension of the familiar real number system in which all numbers are expressed as a sum of a real part

149


https://peps.python.org/pep-0492/
https://gvanrossum.github.io/

The Python Language Reference, Release 3.11.13

and an imaginary part. Imaginary numbers are real multiples of the imaginary unit (the square root of —1), of-
ten written i in mathematics or j in engineering. Python has built-in support for complex numbers, which are
written with this latter notation; the imaginary part is written with a 7 suffix, e.g., 3+1 . To get access to com-
plex equivalents of the math module, use cmath. Use of complex numbers is a fairly advanced mathematical
feature. If you’re not aware of a need for them, it’s almost certain you can safely ignore them.

context manager
An object which controls the environment seen in a with statement by defining __enter__ () and
__exit__ () methods. See PEP 343.

context variable
A variable which can have different values depending on its context. This is similar to Thread-Local Storage in
which each execution thread may have a different value for a variable. However, with context variables, there
may be several contexts in one execution thread and the main usage for context variables is to keep track of
variables in concurrent asynchronous tasks. See contextvars.

contiguous
A buffer is considered contiguous exactly if it is either C-contiguous or Fortran contiguous. Zero-dimensional
buffers are C and Fortran contiguous. In one-dimensional arrays, the items must be laid out in memory next
to each other, in order of increasing indexes starting from zero. In multidimensional C-contiguous arrays, the
last index varies the fastest when visiting items in order of memory address. However, in Fortran contiguous
arrays, the first index varies the fastest.

coroutine
Coroutines are a more generalized form of subroutines. Subroutines are entered at one point and exited at ano-
ther point. Coroutines can be entered, exited, and resumed at many different points. They can be implemented
with the async def statement. See also PEP 492.

coroutine function
A function which returns a coroutine object. A coroutine function may be defined with the async def
statement, and may contain await, async for,and async with keywords. These were introduced by
PEP 492.

CPython
The canonical implementation of the Python programming language, as distributed on python.org. The
term «CPython» is used when necessary to distinguish this implementation from others such as Jython or
IronPython.

decorator
A function returning another function, usually applied as a function transformation using the Qwrapper
syntax. Common examples for decorators are classmethod () and staticmethod ().

The decorator syntax is merely syntactic sugar, the following two function definitions are semantically
equivalent:

g
def f (arg):
f = staticmethod(f)

@staticmethod
def f (arqg):

L J

The same concept exists for classes, but is less commonly used there. See the documentation for function
definitions and class definitions for more about decorators.

descriptor
Any object which defines the methods ___get__ (), set__ (),or ___delete__ (). When a class at-
tribute is a descriptor, its special binding behavior is triggered upon attribute lookup. Normally, using a.b to
get, set or delete an attribute looks up the object named b in the class dictionary for a, but if b is a descriptor,
the respective descriptor method gets called. Understanding descriptors is a key to a deep understanding of
Python because they are the basis for many features including functions, methods, properties, class methods,
static methods, and reference to super classes.

150 Appendice A. Glossary


https://peps.python.org/pep-0343/
https://peps.python.org/pep-0492/
https://peps.python.org/pep-0492/
https://www.python.org

The Python Language Reference, Release 3.11.13

For more information about descriptors” methods, see [mplementing Descriptors or the Descriptor How To
Guide.

dictionary
An associative array, where arbitrary keys are mapped to values. The keys can be any object with
_ _hash__ () and__eqg () methods. Called a hash in Perl.

dictionary comprehension
A compact way to process all or part of the elements in an iterable and return a dictionary with the results.
results = {n: n ** 2 for n in range (10) } generates a dictionary containing key n mapped
tovaluen ** 2. See Displays for lists, sets and dictionaries.

dictionary view
The objects returned from dict .keys (),dict.values (),and dict.items () are called dictionary
views. They provide a dynamic view on the dictionary’s entries, which means that when the dictionary changes,
the view reflects these changes. To force the dictionary view to become a full list use 1ist (dictview).
See dict-views.

docstring
A string literal which appears as the first expression in a class, function or module. While ignored when the
suite is executed, it is recognized by the compiler and put into the ___doc___ attribute of the enclosing class,
function or module. Since it is available via introspection, it is the canonical place for documentation of the
object.

duck-typing
A programming style which does not look at an object’s type to determine if it has the right interface; in-
stead, the method or attribute is simply called or used («If it looks like a duck and quacks like a duck, it must
be a duck.») By emphasizing interfaces rather than specific types, well-designed code improves its flexibility
by allowing polymorphic substitution. Duck-typing avoids tests using type () or isinstance (). (No-
te, however, that duck-typing can be complemented with abstract base classes.) Instead, it typically employs
hasattr () tests or EAFP programming.

EAFP
Easier to ask for forgiveness than permission. This common Python coding style assumes the existence of valid
keys or attributes and catches exceptions if the assumption proves false. This clean and fast style is characterized
by the presence of many t ry and except statements. The technique contrasts with the LBYL style common
to many other languages such as C.

expression
A piece of syntax which can be evaluated to some value. In other words, an expression is an accumulation of
expression elements like literals, names, attribute access, operators or function calls which all return a value. In
contrast to many other languages, not all language constructs are expressions. There are also statements which
cannot be used as expressions, such as whi Ie. Assignments are also statements, not expressions.

extension module
A module written in C or C++, using Python’s C API to interact with the core and with user code.

f-string
String literals prefixed with '£' or 'F' are commonly called «f-strings» which is short for formatted string
literals. See also PEP 498.

file object
An object exposing a file-oriented API (with methods such as read () orwrite () ) to an underlying resour-
ce. Depending on the way it was created, a file object can mediate access to a real on-disk file or to another type
of storage or communication device (for example standard input/output, in-memory buffers, sockets, pipes,
etc.). File objects are also called file-like objects or streams.

There are actually three categories of file objects: raw binary files, buffered binary files and text files. Their
interfaces are defined in the i o module. The canonical way to create a file object is by using the open ()
function.

file-like object
A synonym for file object.

151


https://peps.python.org/pep-0498/

The Python Language Reference, Release 3.11.13

filesystem encoding and error handler
Encoding and error handler used by Python to decode bytes from the operating system and encode Unicode to
the operating system.

The filesystem encoding must guarantee to successfully decode all bytes below 128. If the file system encoding
fails to provide this guarantee, API functions can raise UnicodeError.

The sys.getfilesystemencoding () and sys.getfilesystemencodeerrors () functions
can be used to get the filesystem encoding and error handler.

The filesystem encoding and error handler are configured at Python startup by the PyConfig Read ()
function: see filesystem_encodingand filesystem_errors members of PyConfig.

See also the locale encoding.

finder
An object that tries to find the loader for a module that is being imported.

Since Python 3.3, there are two types of finder: meta path finders for use with sys.meta_path, and path
entry finders for use with sys.path_hooks.

See PEP 302, PEP 420 and PEP 451 for much more detail.

floor division
Mathematical division that rounds down to nearest integer. The floor division operator is / /. For example, the
expression 11 // 4 evaluates to 2 in contrast to the 2 . 75 returned by float true division. Note that (-11)
// 4 1is =3 because that is -2 . 75 rounded downward. See PEP 238.

function
A series of statements which returns some value to a caller. It can also be passed zero or more arguments which
may be used in the execution of the body. See also parameter, method, and the Function definitions section.

function annotation
An annotation of a function parameter or return value.

Function annotations are usually used for fype hints: for example, this function is expected to take two int
arguments and is also expected to have an int return value:

def sum_two_numbers(a: int, b: int) -> int:
return a + b

Function annotation syntax is explained in section Function definitions.

See variable annotation and PEP 484, which describe this functionality. Also see annotations-howto for best
practices on working with annotations.

future
A future statement, from ___future__ import <feature>, directs the compiler to compile the
current module using syntax or semantics that will become standard in a future release of Python. The
__future__ module documents the possible values of feature. By importing this module and evaluating
its variables, you can see when a new feature was first added to the language and when it will (or did) become

the default:
>>> import __ future_
>>> _ future_ .division

_Feature((2, 2, 0, 'alpha', 2), (3, 0, 0, 'alpha', 0), 8192)

garbage collection
The process of freeing memory when it is not used anymore. Python performs garbage collection via reference
counting and a cyclic garbage collector that is able to detect and break reference cycles. The garbage collector
can be controlled using the gc module.

generator
A function which returns a generator iterator. It looks like a normal function except that it contains yield
expressions for producing a series of values usable in a for-loop or that can be retrieved one at a time with the
next () function.

152 Appendice A. Glossary


https://peps.python.org/pep-0302/
https://peps.python.org/pep-0420/
https://peps.python.org/pep-0451/
https://peps.python.org/pep-0238/
https://peps.python.org/pep-0484/

The Python Language Reference, Release 3.11.13

Usually refers to a generator function, but may refer to a generator iterator in some contexts. In cases where
the intended meaning isn’t clear, using the full terms avoids ambiguity.

generator iterator
An object created by a generator function.

Each yie1d temporarily suspends processing, remembering the location execution state (including local varia-
bles and pending try-statements). When the generator iterator resumes, it picks up where it left off (in contrast
to functions which start fresh on every invocation).

generator expression
An expression that returns an iterator. It looks like a normal expression followed by a for clause defining a
loop variable, range, and an optional if clause. The combined expression generates values for an enclosing
function:

>>> sum(i*i for i in range (10)) # sum of squares 0, 1, 4, ... 81
285

generic function
A function composed of multiple functions implementing the same operation for different types. Which
implementation should be used during a call is determined by the dispatch algorithm.

See also the single dispatch glossary entry, the functools.singledispatch () decorator, and PEP
443.

generic type
A type that can be parameterized; typically a container class such as 1ist or dict. Used for type hints and
annotations.

For more details, see generic alias types, PEP 483, PEP 484, PEP 585, and the t yping module.

GIL
See global interpreter lock.

global interpreter lock
The mechanism used by the CPython interpreter to assure that only one thread executes Python byrecode at
a time. This simplifies the CPython implementation by making the object model (including critical built-in
types such as dict) implicitly safe against concurrent access. Locking the entire interpreter makes it easier
for the interpreter to be multi-threaded, at the expense of much of the parallelism afforded by multi-processor
machines.

However, some extension modules, either standard or third-party, are designed so as to release the GIL when
doing computationally intensive tasks such as compression or hashing. Also, the GIL is always released when
doing I/0.

Past efforts to create a «free-threaded» interpreter (one which locks shared data at a much finer granularity)
have not been successful because performance suffered in the common single-processor case. It is believed that
overcoming this performance issue would make the implementation much more complicated and therefore
costlier to maintain.

hash-based pyc
A bytecode cache file that uses the hash rather than the last-modified time of the corresponding source file to
determine its validity. See Cached bytecode invalidation.

hashable
An object is hashable if it has a hash value which never changes during its lifetime (itneedsa ___hash__ ()
method), and can be compared to other objects (it needs an __eqg__ () method). Hashable objects which
compare equal must have the same hash value.

Hashability makes an object usable as a dictionary key and a set member, because these data structures use the
hash value internally.

Most of Python’s immutable built-in objects are hashable; mutable containers (such as lists or dictionaries)
are not; immutable containers (such as tuples and frozensets) are only hashable if their elements are hashable.

153


https://peps.python.org/pep-0443/
https://peps.python.org/pep-0443/
https://peps.python.org/pep-0483/
https://peps.python.org/pep-0484/
https://peps.python.org/pep-0585/

The Python Language Reference, Release 3.11.13

Objects which are instances of user-defined classes are hashable by default. They all compare unequal (except
with themselves), and their hash value is derived from their 1d ().

IDLE
An Integrated Development and Learning Environment for Python. idle is a basic editor and interpreter
environment which ships with the standard distribution of Python.

immutable
An object with a fixed value. Immutable objects include numbers, strings and tuples. Such an object cannot
be altered. A new object has to be created if a different value has to be stored. They play an important role in
places where a constant hash value is needed, for example as a key in a dictionary.

import path
A list of locations (or path entries) that are searched by the path based finder for modules to import. During
import, this list of locations usually comes from sys . path, but for subpackages it may also come from the
parent package’s __path__ attribute.

importing
The process by which Python code in one module is made available to Python code in another module.

importer
An object that both finds and loads a module; both a finder and loader object.

interactive
Python has an interactive interpreter which means you can enter statements and expressions at the interpreter
prompt, immediately execute them and see their results. Just launch python with no arguments (possibly by
selecting it from your computer’s main menu). It is a very powerful way to test out new ideas or inspect modules
and packages (remember help (x)).

interpreted
Python is an interpreted language, as opposed to a compiled one, though the distinction can be blurry because
of the presence of the bytecode compiler. This means that source files can be run directly without explicitly
creating an executable which is then run. Interpreted languages typically have a shorter development/debug
cycle than compiled ones, though their programs generally also run more slowly. See also interactive.

interpreter shutdown
When asked to shut down, the Python interpreter enters a special phase where it gradually releases all allocated
resources, such as modules and various critical internal structures. It also makes several calls to the garbage
collector. This can trigger the execution of code in user-defined destructors or weakref callbacks. Code executed
during the shutdown phase can encounter various exceptions as the resources it relies on may not function
anymore (common examples are library modules or the warnings machinery).

The main reason for interpreter shutdown is that the __main__ module or the script being run has finished
executing.

iterable
An object capable of returning its members one at a time. Examples of iterables include all sequence types (such
as list, str, and tuple) and some non-sequence types like dict, file objects, and objects of any classes
you define with an __iter_ () method or witha __ getitem () method that implements sequence
semantics.

Iterables can be used in a for loop and in many other places where a sequence is needed (zip (), map (),
...). When an iterable object is passed as an argument to the built-in function iter (), it returns an iterator
for the object. This iterator is good for one pass over the set of values. When using iterables, it is usually not
necessary tocall iter () or deal with iterator objects yourself. The o r statement does that automatically for
you, creating a temporary unnamed variable to hold the iterator for the duration of the loop. See also iterator,
sequence, and generator.

iterator
An object representing a stream of data. Repeated calls to the iterator’s _ _next__ () method (or passing
it to the built-in function next () ) return successive items in the stream. When no more data are available
a StopIteration exception is raised instead. At this point, the iterator object is exhausted and any fur-
ther calls to its __next__ () method just raise StopIteration again. Iterators are required to have an
__iter__ () method that returns the iterator object itself so every iterator is also iterable and may be used

154 Appendice A. Glossary



The Python Language Reference, Release 3.11.13

in most places where other iterables are accepted. One notable exception is code which attempts multiple ite-
ration passes. A container object (such as a 1ist) produces a fresh new iterator each time you pass it to the
iter () function or use itin a for loop. Attempting this with an iterator will just return the same exhausted
iterator object used in the previous iteration pass, making it appear like an empty container.

More information can be found in typeiter.

Dettaglio dell’implementazione di CPython: CPython does not consistently apply the requirement that an
iterator define __iter__ ().

key function
A key function or collation function is a callable that returns a value used for sorting or ordering. For example,
locale.strxfrm() isused to produce a sort key that is aware of locale specific sort conventions.

A number of tools in Python accept key functions to control how elements are ordered or grouped. They
include min (), max (), sorted(), list.sort (), heapg.merge (), heapg.nsmallest (),
heapg.nlargest (),and itertools.groupby ().

There are several ways to create a key function. For example. the str. lower () method can serve as a key
function for case insensitive sorts. Alternatively, a key function can be built from a Iambda expression such
as lambda r: (r[0], r[2]).Also,operator.attrgetter (),operator.itemgetter (),
and operator.methodcaller () are three key function constructors. See the Sorting HOW TO for
examples of how to create and use key functions.

keyword argument
See argument.

lambda
An anonymous inline function consisting of a single expression which is evaluated when the function is called.
The syntax to create a lambda function is 1lambda [parameters]: expression

LBYL
Look before you leap. This coding style explicitly tests for pre-conditions before making calls or lookups. This
style contrasts with the EAFP approach and is characterized by the presence of many 1 £ statements.

In a multi-threaded environment, the LBYL approach can risk introducing a race condition between «the
looking» and «the leaping». For example, the code, 1f key in mapping: return mapping[key]
can fail if another thread removes key from mapping after the test, but before the lookup. This issue can be
solved with locks or by using the EAFP approach.

list
A built-in Python sequence. Despite its name it is more akin to an array in other languages than to a linked list
since access to elements is O(1).

list comprehension
A compact way to process all or part of the elements in a sequence and return a list with the results. result =
['"{:#04x}"'.format (x) for x in range(256) 1if x % 2 == 0] generates a list of strings
containing even hex numbers (0x..) in the range from O to 255. The if clause is optional. If omitted, all

elements in range (256) are processed.

loader
An object that loads a module. It must define a method named load_module (). A loader is typically
returned by a finder. See PEP 302 for details and importlib.abc.Loader for an abstract base class.

locale encoding
On Unix, it is the encoding of the LC_CTYPE locale. It can be set with Locale.setlocale (locale.
LC_CTYPE, new_locale).

On Windows, it is the ANSI code page (ex: "cpl1252").
On Android and VxWorks, Python uses "ut £-8" as the locale encoding.
locale.getencoding () can be used to get the locale encoding.

See also the filesystem encoding and error handler.

155


https://peps.python.org/pep-0302/

The Python Language Reference, Release 3.11.13

magic method
An informal synonym for special method.

mapping
A container object that supports arbitrary key lookups and implements the methods specified in
the collections.abc.Mapping or collections.abc.MutableMapping abstract base clas-
ses. Examples include dict, collections.defaultdict, collections.OrderedDict and
collections.Counter.

meta path finder
A finder returned by a search of sys.meta_path. Meta path finders are related to, but different from parh
entry finders.

See importlib.abc.MetaPathFinder for the methods that meta path finders implement.

metaclass
The class of a class. Class definitions create a class name, a class dictionary, and a list of base classes. The
metaclass is responsible for taking those three arguments and creating the class. Most object oriented pro-
gramming languages provide a default implementation. What makes Python special is that it is possible to
create custom metaclasses. Most users never need this tool, but when the need arises, metaclasses can provide
powerful, elegant solutions. They have been used for logging attribute access, adding thread-safety, tracking
object creation, implementing singletons, and many other tasks.

More information can be found in Meraclasses.

method
A function which is defined inside a class body. If called as an attribute of an instance of that class, the method
will get the instance object as its first argument (which is usually called self). See function and nested scope.

method resolution order
Method Resolution Order is the order in which base classes are searched for a member during lookup. See The
Python 2.3 Method Resolution Order for details of the algorithm used by the Python interpreter since the 2.3
release.

module
An object that serves as an organizational unit of Python code. Modules have a namespace containing arbitrary
Python objects. Modules are loaded into Python by the process of importing.

See also package.

module spec
A namespace containing the import-related information used to load a module. An instance of importlib.
machinery.ModuleSpec.

MRO

See method resolution order.

mutable
Mutable objects can change their value but keep their id () . See also immutable.

named tuple
The term «named tuple» applies to any type or class that inherits from tuple and whose indexable elements are
also accessible using named attributes. The type or class may have other features as well.

Several built-in types are named tuples, including the values returned by time.localtime () and os.
stat (). Another example is sys.float_info:

>>> sys.float_info[1l] # indexed access
1024

>>> sys.float_info.max_exp # named field access
1024

>>> isinstance(sys.float_info, tuple) # kind of tuple

True

Some named tuples are built-in types (such as the above examples). Alternatively, a named tuple can be created
from a regular class definition that inherits from tuple and that defines named fields. Such a class can be

156 Appendice A. Glossary


https://www.python.org/download/releases/2.3/mro/
https://www.python.org/download/releases/2.3/mro/

The Python Language Reference, Release 3.11.13

written by hand, or it can be created by inheriting t yping.NamedTuple, or with the factory function
collections.namedtuple (). The latter techniques also add some extra methods that may not be found
in hand-written or built-in named tuples.

namespace
The place where a variable is stored. Namespaces are implemented as dictionaries. There are the local, global
and built-in namespaces as well as nested namespaces in objects (in methods). Namespaces support modularity
by preventing naming conflicts. For instance, the functions builtins.open and os.open () are distin-
guished by their namespaces. Namespaces also aid readability and maintainability by making it clear which
module implements a function. For instance, writing random. seed () oritertools.islice () makes
it clear that those functions are implemented by the random and itertools modules, respectively.

namespace package
A PEP 420 package which serves only as a container for subpackages. Namespace packages may have no
physical representation, and specifically are not like a regular package because they haveno ___init__ .py
file.

See also module.

nested scope
The ability to refer to a variable in an enclosing definition. For instance, a function defined inside another
function can refer to variables in the outer function. Note that nested scopes by default work only for reference
and not for assignment. Local variables both read and write in the innermost scope. Likewise, global variables
read and write to the global namespace. The nonlocal allows writing to outer scopes.

new-style class
Old name for the flavor of classes now used for all class objects. In earlier Python versions, only
new-style classes could use Python’s newer, versatile features like _ slots_ , descriptors, properties,
_ _getattribute__ (), class methods, and static methods.

object
Any data with state (attributes or value) and defined behavior (methods). Also the ultimate base class of any
new-style class.

package
A Python module which can contain submodules or recursively, subpackages. Technically, a package is a Python
module witha __path__ attribute.

See also regular package and namespace package.

parameter
A named entity in a function (or method) definition that specifies an argument (or in some cases, arguments)
that the function can accept. There are five kinds of parameter:

« positional-or-keyword: specifies an argument that can be passed either positionally or as a keyword
argument. This is the default kind of parameter, for example foo and bar in the following:

[def func (foo, bar=None): ... ]

« positional-only: specifies an argument that can be supplied only by position. Positional-only parameters
can be defined by including a / character in the parameter list of the function definition after them, for
example posonlyl and posonly2 in the following:

[def func (posonlyl, posonly2, /, positional_or_keyword): ... }

o keyword-only: specifies an argument that can be supplied only by keyword. Keyword-only parameters can
be defined by including a single var-positional parameter or bare * in the parameter list of the function
definition before them, for example kw_onlyl and kw_only2 in the following:

[def func(arg, *, kw_onlyl, kw_only2): ... }

 var-positional: specifies that an arbitrary sequence of positional arguments can be provided (in addition
to any positional arguments already accepted by other parameters). Such a parameter can be defined by
prepending the parameter name with *, for example args in the following:

157


https://peps.python.org/pep-0420/

The Python Language Reference, Release 3.11.13

[def func (*args, **kwargs):

« var-keyword: specifies that arbitrarily many keyword arguments can be provided (in addition to any key-
word arguments already accepted by other parameters). Such a parameter can be defined by prepending
the parameter name with * *, for example kwargs in the example above.

Parameters can specify both optional and required arguments, as well as default values for some optional
arguments.

See also the argument glossary entry, the FAQ question on the difference between arguments and parameters,
the inspect .Parameter class, the Function definitions section, and PEP 362.

path entry

A single location on the import path which the path based finder consults to find modules for importing.

path entry finder

A finder returned by a callable on sys.path_hooks (i.e. a path entry hook) which knows how to locate
modules given a path entry.

See importlib.abc.PathEntryFinder for the methods that path entry finders implement.

path entry hook

A callable on the sys.path_hooks list which returns a path entry finder if it knows how to find modules
on a specific path entry.

path based finder

One of the default meta path finders which searches an import path for modules.

path-like object

PEP

An object representing a file system path. A path-like object is either a st r or bytes object representing a
path, or an object implementing the os .PathLike protocol. An object that supports the os.PathLike
protocol can be converted to a st r or bytes file system path by calling the os . fspath () function; os.
fsdecode () and os. fsencode () can be used to guarantee a st r or bytes result instead, respectively.
Introduced by PEP 519.

Python Enhancement Proposal. A PEP is a design document providing information to the Python community,
or describing a new feature for Python or its processes or environment. PEPs should provide a concise technical
specification and a rationale for proposed features.

PEPs are intended to be the primary mechanisms for proposing major new features, for collecting community
input on an issue, and for documenting the design decisions that have gone into Python. The PEP author is
responsible for building consensus within the community and documenting dissenting opinions.

See PEP 1.

portion

A set of files in a single directory (possibly stored in a zip file) that contribute to a namespace package, as
defined in PEP 420.

positional argument

See argument.

provisional API

A provisional API is one which has been deliberately excluded from the standard library’s backwards com-
patibility guarantees. While major changes to such interfaces are not expected, as long as they are marked
provisional, backwards incompatible changes (up to and including removal of the interface) may occur if dee-
med necessary by core developers. Such changes will not be made gratuitously - they will occur only if serious
fundamental flaws are uncovered that were missed prior to the inclusion of the APIL.

Even for provisional APIs, backwards incompatible changes are seen as a «solution of last resort» - every
attempt will still be made to find a backwards compatible resolution to any identified problems.

This process allows the standard library to continue to evolve over time, without locking in problematic design
errors for extended periods of time. See PEP 411 for more details.

158

Appendice A. Glossary


https://peps.python.org/pep-0362/
https://peps.python.org/pep-0519/
https://peps.python.org/pep-0001/
https://peps.python.org/pep-0420/
https://peps.python.org/pep-0411/

The Python Language Reference, Release 3.11.13

provisional package
See provisional API.

Python 3000
Nickname for the Python 3.x release line (coined long ago when the release of version 3 was something in the
distant future.) This is also abbreviated «Py3k».

Pythonic
An idea or piece of code which closely follows the most common idioms of the Python language, rather than
implementing code using concepts common to other languages. For example, a common idiom in Python is

to loop over all elements of an iterable using a for statement. Many other languages don’t have this type of
construct, so people unfamiliar with Python sometimes use a numerical counter instead:

for i in range(len(food)):
print (food[i])

As opposed to the cleaner, Pythonic method:

for piece in food:
print (piece)

qualified name

A dotted name showing the «path» from a module’s global scope to a class, function or method defined in that

module, as defined in PEP 3155. For top-level functions and classes, the qualified name is the same as the
object’s name:

-

>>> class C: |
class D:
def meth (self):
pass
>>> C._ _qualname_
ICI
>>> C.D.__gualname
"C.D"
>>> C.D.meth.___qualname_
'C.D.meth'

When used to refer to modules, the fully qualified name means the entire dotted path to the module, including
any parent packages, e.g. email.mime.text:

>>> import email.mime.text
>>> email.mime.text. name
'email.mime.text'

reference count

The number of references to an object. When the reference count of an object drops to zero, it is deallocated.
Reference counting is generally not visible to Python code, but it is a key element of the CPython implementa-
tion. Programmers can call the sys . getrefcount () function to return the reference count for a particular

object.
regular package
A traditional package, such as a directory containingan __init__ .py file.

See also namespace package.

__slots__
A declaration inside a class that saves memory by pre-declaring space for instance attributes and eliminating
instance dictionaries. Though popular, the technique is somewhat tricky to get right and is best reserved for
rare cases where there are large numbers of instances in a memory-critical application.

sequence
An iterable which supports efficient element access using integer indices via the ___getitem _ () spe-

159


https://peps.python.org/pep-3155/

The Python Language Reference, Release 3.11.13

cial method and defines a __Ien__ () method that returns the length of the sequence. Some built-in se-
quence types are 1ist, str, tuple, and bytes. Note that dict also supports __getitem () and
__len__ (),butis considered a mapping rather than a sequence because the lookups use arbitrary immutable
keys rather than integers.

The collections.abc.Sequence abstract base class defines a much richer interface that goes
beyond just _ getitem () and __ Ilen__ (), adding count (), index (), contains__ (),
and __ _reversed__ (). Types that implement this expanded interface can be registered explicitly using
register (). For more documentation on sequence methods generally, see Common Sequence Operations.

set comprehension
A compact way to process all or part of the elements in an iterable and return a set with the results.
results = {c for c in 'abracadabra' if c not in 'abc'} generates the setof strings
{'r"', 'd'}.See Displays for lists, sets and dictionaries.

single dispatch
A form of generic function dispatch where the implementation is chosen based on the type of a single argument.

slice
An object usually containing a portion of a sequence. A slice is created using the subscript notation, [ ]
with colons between numbers when several are given, such as in variable_name [1:3:5]. The bracket
(subscript) notation uses s1ice objects internally.

special method
A method that is called implicitly by Python to execute a certain operation on a type, such as addition. Such
methods have names starting and ending with double underscores. Special methods are documented in Special
method names.

statement
A statement is part of a suite (a «block» of code). A statement is either an expression or one of several constructs
with a keyword, such as i, whileor for.

static type checker
An external tool that reads Python code and analyzes it, looking for issues such as incorrect types. See also
type hints and the t yping module.

strong reference
In Python’s C API, a strong reference is a reference to an object which is owned by the code holding the
reference. The strong reference is taken by calling Py_ INCREF () when the reference is created and released
with Py_DECREF () when the reference is deleted.

The Py_NewRef () function can be used to create a strong reference to an object. Usually, the
Py_DECREF () function must be called on the strong reference before exiting the scope of the strong
reference, to avoid leaking one reference.

See also borrowed reference.

text encoding
A string in Python is a sequence of Unicode code points (in range U+0000-U+10FFFF). To store or transfer
a string, it needs to be serialized as a sequence of bytes.

Serializing a string into a sequence of bytes is known as «encoding», and recreating the string from the sequence
of bytes is known as «decoding».

There are a variety of different text serialization codecs, which are collectively referred to as «text encodings».

text file
A file object able to read and write st r objects. Often, a text file actually accesses a byte-oriented datastream
and handles the fext encoding automatically. Examples of text files are files opened in text mode (' ' or 'w'),
sys.stdin, sys.stdout, and instances of 10.StringIO.

See also binary file for a file object able to read and write bytes-like objects.

triple-quoted string
A string which is bound by three instances of either a quotation mark (») or an apostrophe (“). While they don’t
provide any functionality not available with single-quoted strings, they are useful for a number of reasons. They

160 Appendice A. Glossary



The Python Language Reference, Release 3.11.13

allow you to include unescaped single and double quotes within a string and they can span multiple lines without
the use of the continuation character, making them especially useful when writing docstrings.

type
The type of a Python object determines what kind of object it is; every object has a type. An object’s type is
accessible asits ___class___ attribute or can be retrieved with t ype (ob7j).
type alias
A synonym for a type, created by assigning the type to an identifier.
Type aliases are useful for simplifying rype hints. For example:
def remove_gray_shades (
colors: list[tuple[int, int, int]]) -> list[tuplelint, int, int]]:
pass
could be made more readable like this:
Color = tuple[int, int, int]
def remove_gray_shades (colors: list[Color]) —-> list[Color]:
pass
See typing and PEP 484, which describe this functionality.
type hint
An annotation that specifies the expected type for a variable, a class attribute, or a function parameter or return
value.

Type hints are optional and are not enforced by Python but they are useful to static type checkers. They can
also aid IDEs with code completion and refactoring.

Type hints of global variables, class attributes, and functions, but not local variables, can be accessed using
typing.get_type_hints ().

See typing and PEP 484, which describe this functionality.

universal newlines
A manner of interpreting text streams in which all of the following are recognized as ending a line: the Unix
end-of-line convention ' \n"', the Windows convention '\r\n"', and the old Macintosh convention '\r'.
See PEP 278 and PEP 3116, as well as bytes.splitlines () for an additional use.

variable annotation
An annotation of a variable or a class attribute.

When annotating a variable or a class attribute, assignment is optional:

class C:
field: 'annotation'

Variable annotations are usually used for type hints: for example this variable is expected to take int values:

[count: int = 0 }

Variable annotation syntax is explained in section Annotated assignment statements.

See function annotation, PEP 484 and PEP 526, which describe this functionality. Also see annotations-howto
for best practices on working with annotations.

virtual environment
A cooperatively isolated runtime environment that allows Python users and applications to install and upgrade
Python distribution packages without interfering with the behaviour of other Python applications running on
the same system.

See also venv.

161


https://peps.python.org/pep-0484/
https://peps.python.org/pep-0484/
https://peps.python.org/pep-0278/
https://peps.python.org/pep-3116/
https://peps.python.org/pep-0484/
https://peps.python.org/pep-0526/

The Python Language Reference, Release 3.11.13

virtual machine
A computer defined entirely in software. Python’s virtual machine executes the byfecode emitted by the
bytecode compiler.

Zen of Python
Listing of Python design principles and philosophies that are helpful in understanding and using the language.
The listing can be found by typing «import this» at the interactive prompt.

162 Appendice A. Glossary



APPENDICE B

Riguardo questa documentazione

Questi documenti sono stati generati da Sphinx a partire da sorgenti reStructuredText, un elaboratore di documenti
appositamente scritto per la documentazione di Python.

Lo sviluppo della documentazione e della sua toolchain ¢ uno lavoro svolto esclusivamente da volontari, proprio come
lo stesso Python. Se si desidera contribuire, si prega di dare un'occhiata alla pagina reporting-bugs per avere maggiori
informazioni su come farlo. Nuovi volontari sono sempre i benvenuti!

Molte grazie a:

o Fred L. Drake, Jr., il creatore del software per generare documentazione Python e scrittore di gran parte del
contenuto;

« the Docutils project for creating reStructuredText and the Docutils suite;

« Fredrik Lundh for his Alternative Python Reference project from which Sphinx got many good ideas.

B.1 Volontari che hanno contribuito alla documentazione di Python

Molte persone hanno contribuito a scrivere il linguaggio Python, la libreria standard di Python e la documentazione
di Python. Per conoscere un elenco parziale dei volontari ¢ possibile visitare la pagina Misc/ACKS, presente nel
codice sorgente della distribuzione Python.

E solo con il contributo dei membri della comunita di Python che Python ha una documentazione cosi meravigliosa
— Grazie!

163


https://www.sphinx-doc.org/
https://docutils.sourceforge.io/rst.html
https://docutils.sourceforge.io/
https://github.com/python/cpython/tree/3.11/Misc/ACKS

The Python Language Reference, Release 3.11.13

164 Appendice B. Riguardo questa documentazione



appenpice C

Storia e licenza

C.1 Storia del software

Python ¢ stato creato all'inizio degli anni “90 da Guido van Rossum allo Stichting Mathematisch Centrum (CWI,
https://www.cwi.nl/) nei Paesi Bassi a partire dal linguaggio ABC. Guido rimane l'autore principale di Python, anche
se questo include molti contributi da parte di altre persone.

Nel 1995 Guido ha continuato il suo lavoro su Python presso la Corporation for National Research Initiatives (CNRI,
vedi https://www.cnri.reston.va.us/) a Reston, Virginia, dove ha rilasciato diverse versioni del software.

In May 2000, Guido and the Python core development team moved to BeOpen.com to form the BeOpen Python-
Labs team. In October of the same year, the PythonLabs team moved to Digital Creations (now Zope Corporation;
see https://www.zope.org/). In 2001, the Python Software Foundation (PSF, see https://www.python.org/psf/) was
formed, a non-profit organization created specifically to own Python-related Intellectual Property. Zope Corporation
is a sponsoring member of the PSF.

Tutte le versioni di Python sono Open Source (vedi https://opensource.org/ per la definizione di Open Source).
Storicamente la maggior parte, ma non tutte, le versioni di Python sono state compatibili con la GPL; la tabella
seguente riassume le varie versioni.

Rilascio Derivatoda Anno Proprietario  Compatibile con la GPL?
Da09.0al1.2 n/d 1991-1995 CWI s
Dal3als52 1.2 1995-1999  CNRI si
1.6 1.5.2 2000 CNRI no
2.0 1.6 2000 BeOpen.com no
1.6.1 1.6 2001 CNRI no
2.1 2.0+1.6.1 2001 PSF no
2.0.1 2.0+1.6.1 2001 PSF si
2.1.1 2.1+2.0.1 2001 PSF si
2.12 2.1.1 2002 PSF st
2.1.3 2.1.2 2002 PSF st
2.2 e superiori  2.1.1 2001-adesso  PSF st

Nota: GPL-compatibile non significa che stiamo distribuendo Python sotto la GPL. Tutte le licenze Python, a
differenza della GPL, consentono di distribuire una versione modificata senza rendere le modifiche open source. Le

165


https://www.cwi.nl/
https://www.cnri.reston.va.us/
https://www.zope.org/
https://www.python.org/psf/
https://opensource.org/

The Python Language Reference, Release 3.11.13

licenze compatibili con la GPL permettono di combinare Python con altri software rilasciati sotto la GPL; le altre
no.

Grazie ai tanti volontari esterni che hanno lavorato sotto la direzione di Guido per rendere possibili queste release.

C.2 Termini e condizioni di accesso o di utilizzo di Python

Python software and documentation are licensed under the PSF License Agreement.

Starting with Python 3.8.6, examples, recipes, and other code in the documentation are dual licensed under the PSF
License Agreement and the Zero-Clause BSD license.

Some software incorporated into Python is under different licenses. The licenses are listed with code falling under
that license. See Licenze e riconoscimenti per il software incorporato for an incomplete list of these licenses.

C.2.1 PSF ACCORDO DI LICENZA PER PYTHON 3.11.13

1. This LICENSE AGREEMENT is between the Python Software Foundation.
— ("PSF"), and

the Individual or Organization ("Licensee") accessing and otherwise.
—using Python

3.11.13 software in source or binary form and its associated.
—documentation.

2. Subject to the terms and conditions of this License Agreement, PSF._
—hereby

grants Licensee a nonexclusive, royalty-free, world-wide license to.
—reproduce,

analyze, test, perform and/or display publicly, prepare derivative.
—works,

distribute, and otherwise use Python 3.11.13 alone or in any derivative

version, provided, however, that PSF's License Agreement and PSF's.
—notice of

copyright, i.e., "Copyright © 2001-2023 Python Software Foundation; All_
—Rights

Reserved" are retained in Python 3.11.13 alone or in any derivative.
—version

prepared by Licensee.

3. In the event Licensee prepares a derivative work that is based on or
incorporates Python 3.11.13 or any part thereof, and wants to make the
derivative work available to others as provided herein, then Licensee.

—hereby
agrees to include in any such work a brief summary of the changes made.

—~to Python
3.11.13.

4. PSF is making Python 3.11.13 available to Licensee on an "AS IS" basis.

PSF MAKES NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY..
—OF

EXAMPLE, BUT NOT LIMITATION, PSEF MAKES NO AND DISCLAIMS ANY..
—REPRESENTATION OR

WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR.
—THAT THE

USE OF PYTHON 3.11.13 WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

166 Appendice C. Storia e licenza



The Python Language Reference, Release 3.11.13

5. PSF SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF PYTHON 3.11.13

FOR ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A._
—RESULT OF

MODIFYING, DISTRIBUTING, OR OTHERWISE USING PYTHON 3.11.13, OR ANY.
—~DERIVATIVE

THEREOF, EVEN IF ADVISED OF THE POSSIBILITY THEREOEF.

6. This License Agreement will automatically terminate upon a material.
—breach of
its terms and conditions.

7. Nothing in this License Agreement shall be deemed to create any.
—relationship

of agency, partnership, or joint venture between PSF and Licensee. .
—This License

Agreement does not grant permission to use PSF trademarks or trade name.
—~in a

trademark sense to endorse or promote products or services of Licensee, .
—O0r any

third party.

8. By copying, installing or otherwise using Python 3.11.13, Licensee.

—agrees
to be bound by the terms and conditions of this License Agreement.

C.2.2 CONTRATTO DI LICENZA DI BEOPEN.COM PER PYTHON 2.0

BEOPEN PYTHON OPEN SOURCE LICENSE AGREEMENT VERSION 1

1. This LICENSE AGREEMENT is between BeOpen.com ("BeOpen"), having an office at
160 Saratoga Avenue, Santa Clara, CA 95051, and the Individual or Organization
("Licensee") accessing and otherwise using this software in source or binary
form and its associated documentation ("the Software").

2. Subject to the terms and conditions of this BeOpen Python License Agreement,
BeOpen hereby grants Licensee a non-exclusive, royalty-free, world-wide license
to reproduce, analyze, test, perform and/or display publicly, prepare derivative
works, distribute, and otherwise use the Software alone or in any derivative
version, provided, however, that the BeOpen Python License is retained in the
Software, alone or in any derivative version prepared by Licensee.

3. BeOpen is making the Software available to Licensee on an "AS IS" basis.
BEOPEN MAKES NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF
EXAMPLE, BUT NOT LIMITATION, BEOPEN MAKES NO AND DISCLAIMS ANY REPRESENTATION OR
WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE
USE OF THE SOFTWARE WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

4. BEOPEN SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF THE SOFTWARE FOR
ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT OF USING,
MODIFYING OR DISTRIBUTING THE SOFTWARE, OR ANY DERIVATIVE THEREOF, EVEN IF
ADVISED OF THE POSSIBILITY THEREOF.

5. This License Agreement will automatically terminate upon a material breach of
its terms and conditions.

6. This License Agreement shall be governed by and interpreted in all respects
by the law of the State of California, excluding conflict of law provisions.
Nothing in this License Agreement shall be deemed to create any relationship of
agency, partnership, or joint venture between BeOpen and Licensee. This License
(continues on next page)

C.2. Termini e condizioni di accesso o di utilizzo di Python 167




The Python Language Reference, Release 3.11.13

(continua dalla pagina precedente)

Agreement does not grant permission to use BeOpen trademarks or trade names in a
trademark sense to endorse or promote products or services of Licensee, or any
third party. As an exception, the "BeOpen Python" logos available at
http://www.pythonlabs.com/logos.html may be used according to the permissions
granted on that web page.

7. By copying, installing or otherwise using the software, Licensee agrees to be
bound by the terms and conditions of this License Agreement.

C.2.3 CNRI CONTRATTO DI LICENZA PER PYTHON 1.6.1

1. This LICENSE AGREEMENT is between the Corporation for National Research
Initiatives, having an office at 1895 Preston White Drive, Reston, VA 20191
("CNRI"), and the Individual or Organization ("Licensee") accessing and
otherwise using Python 1.6.1 software in source or binary form and its
associated documentation.

2. Subject to the terms and conditions of this License Agreement, CNRI hereby
grants Licensee a nonexclusive, royalty-free, world-wide license to reproduce,
analyze, test, perform and/or display publicly, prepare derivative works,
distribute, and otherwise use Python 1.6.1 alone or in any derivative version,
provided, however, that CNRI's License Agreement and CNRI's notice of copyright,
i.e., "Copyright © 1995-2001 Corporation for National Research Initiatives; All
Rights Reserved" are retained in Python 1.6.1 alone or in any derivative version
prepared by Licensee. Alternately, in lieu of CNRI's License Agreement,
Licensee may substitute the following text (omitting the quotes): "Python 1.6.1
is made available subject to the terms and conditions in CNRI's License
Agreement. This Agreement together with Python 1.6.1 may be located on the
internet using the following unique, persistent identifier (known as a handle):
1895.22/1013. This Agreement may also be obtained from a proxy server on the
internet using the following URL: http://hdl.handle.net/1895.22/1013."

3. In the event Licensee prepares a derivative work that is based on or
incorporates Python 1.6.1 or any part thereof, and wants to make the derivative
work available to others as provided herein, then Licensee hereby agrees to
include in any such work a brief summary of the changes made to Python 1.6.1.

4. CNRI is making Python 1.6.1 available to Licensee on an "AS IS" basis. CNRI
MAKES NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF EXAMPLE,
BUT NOT LIMITATION, CNRI MAKES NO AND DISCLAIMS ANY REPRESENTATION OR WARRANTY
OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE USE OF
PYTHON 1.6.1 WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

5. CNRI SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF PYTHON 1.6.1 FOR
ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT OF
MODIFYING, DISTRIBUTING, OR OTHERWISE USING PYTHON 1.6.1, OR ANY DERIVATIVE
THEREOF, EVEN IF ADVISED OF THE POSSIBILITY THEREOF.

6. This License Agreement will automatically terminate upon a material breach of
its terms and conditions.

7. This License Agreement shall be governed by the federal intellectual property
law of the United States, including without limitation the federal copyright
law, and, to the extent such U.S. federal law does not apply, by the law of the
Commonwealth of Virginia, excluding Virginia's conflict of law provisions.
Notwithstanding the foregoing, with regard to derivative works based on Python
1.6.1 that incorporate non-separable material that was previously distributed
under the GNU General Public License (GPL), the law of the Commonwealth of
Virginia shall govern this License Agreement only as to issues arising under or

(continues on next page)

168 Appendice C. Storia e licenza




The Python Language Reference, Release 3.11.13

(continua dalla pagina precedente)
with respect to Paragraphs 4, 5, and 7 of this License Agreement. Nothing in
this License Agreement shall be deemed to create any relationship of agency,
partnership, or joint venture between CNRI and Licensee. This License Agreement
does not grant permission to use CNRI trademarks or trade name in a trademark
sense to endorse or promote products or services of Licensee, or any third
party.

8. By clicking on the "ACCEPT" button where indicated, or by copying, installing
or otherwise using Python 1.6.1, Licensee agrees to be bound by the terms and
conditions of this License Agreement.

C.2.4 CWI CONTRATTO DI LICENZA PER PYTHON DA 0.9.0 A 1.2

Copyright © 1991 - 1995, Stichting Mathematisch Centrum Amsterdam, The
Netherlands. All rights reserved.

Permission to use, copy, modify, and distribute this software and its
documentation for any purpose and without fee is hereby granted, provided that
the above copyright notice appear in all copies and that both that copyright
notice and this permission notice appear in supporting documentation, and that
the name of Stichting Mathematisch Centrum or CWI not be used in advertising or
publicity pertaining to distribution of the software without specific, written
prior permission.

STICHTING MATHEMATISCH CENTRUM DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS
SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN NO
EVENT SHALL STICHTING MATHEMATISCH CENTRUM BE LIABLE FOR ANY SPECIAL, INDIRECT
OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE,
DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS
SOFTWARE .

C.2.5 ZERO-CLAUSE BSD LICENSE FOR CODE IN THE PYTHON 3.11.13
DOCUMENTATION

Permission to use, copy, modify, and/or distribute this software for any
purpose with or without fee is hereby granted.

THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH
REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT,
INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM
LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR
OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
PERFORMANCE OF THIS SOFTWARE.

C.2. Termini e condizioni di accesso o di utilizzo di Python 169




The Python Language Reference, Release 3.11.13

C.3 Licenze e riconoscimenti per il software incorporato

Questa sezione ¢ una lista incompleta, ma in crescita, di licenze e riconoscimenti per software di terze parti
incorporate nella distribuzione Python.

C.3.1 Mersenne Twister

Il modulo _random include il codice basato su un download da http://www.math.sci.hiroshima-u.ac.jp/~m-mat/
MT/MT/MT2002/emt19937ar.html. I seguenti sono i commenti testuali del codice originale:

A C-program for MT19937, with initialization improved 2002/1/26.
Coded by Takuji Nishimura and Makoto Matsumoto.

Before using, initialize the state by using init_genrand (seed)
or init_by_array (init_key, key_length).

Copyright (C) 1997 - 2002, Makoto Matsumoto and Takuji Nishimura,
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

3. The names of its contributors may not be used to endorse or promote
products derived from this software without specific prior written
permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Any feedback is very welcome.
http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html
email: m-mat @ math.sci.hiroshima-u.ac.jp (remove space)

170 Appendice C. Storia e licenza



http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/MT/MT2002/emt19937ar.html
http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/MT/MT2002/emt19937ar.html

The Python Language Reference, Release 3.11.13

C.3.2 Socket

The socket module uses the functions, getaddrinfo (), and getnameinfo (), which are coded in separate
source files from the WIDE Project, https://www.wide.ad.jp/.

Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
All rights reserved.

Redistribution and use in source and binary forms, with or without

modification, are permitted provided that the following conditions

are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

3. Neither the name of the project nor the names of its contributors
may be used to endorse or promote products derived from this software
without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ' "AS IS'' AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS

OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

C.3.3 Servizi di socket asincrone

I'moduli asynchat e asyncore contengono il seguente avviso:

Copyright 1996 by Sam Rushing
All Rights Reserved

Permission to use, copy, modify, and distribute this software and
its documentation for any purpose and without fee is hereby
granted, provided that the above copyright notice appear in all
copies and that both that copyright notice and this permission
notice appear in supporting documentation, and that the name of Sam
Rushing not be used in advertising or publicity pertaining to
distribution of the software without specific, written prior
permission.

SAM RUSHING DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE,
INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN
NO EVENT SHALL SAM RUSHING BE LIABLE FOR ANY SPECIAL, INDIRECT OR
CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS
OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT,
NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

C.3. Licenze e riconoscimenti per il software incorporato 171



https://www.wide.ad.jp/

The Python Language Reference, Release 3.11.13

C.3.4 Gestione dei cookie

Il modulo http.cookies contiene il seguente avviso:

Copyright 2000 by Timothy O'Malley <timo@alum.mit.edu>
All Rights Reserved

Permission to use, copy, modify, and distribute this software

and its documentation for any purpose and without fee is hereby
granted, provided that the above copyright notice appear in all
copies and that both that copyright notice and this permission
notice appear in supporting documentation, and that the name of
Timothy O'Malley not be used in advertising or publicity

pertaining to distribution of the software without specific, written
prior permission.

Timothy O'Malley DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS
SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS, IN NO EVENT SHALL Timothy O'Malley BE LIABLE FOR
ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
PERFORMANCE OF THIS SOFTWARE.

C.3.5 Tracciabilita dell’esecuzione

Il modulo t race contiene il seguente avviso:

portions copyright 2001, Autonomous Zones Industries, Inc., all rights...
err... reserved and offered to the public under the terms of the

Python 2.2 license.

Author: Zooko O'Whielacronx

http://zooko.com/

mailto:zooko@zooko.com

Copyright 2000, Mojam Media, Inc., all rights reserved.
Author: Skip Montanaro

Copyright 1999, Bioreason, Inc., all rights reserved.
Author: Andrew Dalke

Copyright 1995-1997, Automatrix, Inc., all rights reserved.
Author: Skip Montanaro

Copyright 1991-1995, Stichting Mathematisch Centrum, all rights reserved.

Permission to use, copy, modify, and distribute this Python software and
its associated documentation for any purpose without fee is hereby
granted, provided that the above copyright notice appears in all copies,
and that both that copyright notice and this permission notice appear in
supporting documentation, and that the name of neither Automatrix,
Bioreason or Mojam Media be used in advertising or publicity pertaining to
distribution of the software without specific, written prior permission.

172 Appendice C. Storia e licenza




The Python Language Reference, Release 3.11.13

C.3.6 Funzioni UUencode e UUdecode

Il modulo uu contiene il seguente avviso:

Copyright 1994 by Lance Ellinghouse
Cathedral City, California Republic, United States of America.

All Rights Reserved
Permission to use, copy, modify, and distribute this software and its
documentation for any purpose and without fee is hereby granted,
provided that the above copyright notice appear in all copies and that
both that copyright notice and this permission notice appear in
supporting documentation, and that the name of Lance Ellinghouse
not be used in advertising or publicity pertaining to distribution
of the software without specific, written prior permission.
LANCE ELLINGHOUSE DISCLAIMS ALL WARRANTIES WITH REGARD TO
THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS, IN NO EVENT SHALL LANCE ELLINGHOUSE CENTRUM BE LIABLE
FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT
OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

Modified by Jack Jansen, CWI, July 1995:

— Use binascii module to do the actual line-by-line conversion
between ascii and binary. This results in a 1000-fold speedup. The C
version is still 5 times faster, though.

— Arguments more compliant with Python standard

C.3.7 Chiamate di procedura remota XML

Il modulo xmlrpc.client contiene il seguente avviso:

The XML-RPC client interface is

Copyright (c) 1999-2002 by Secret Labs AB
Copyright (c) 1999-2002 by Fredrik Lundh

By obtaining, using, and/or copying this software and/or its
associated documentation, you agree that you have read, understood,
and will comply with the following terms and conditions:

Permission to use, copy, modify, and distribute this software and
its associated documentation for any purpose and without fee is
hereby granted, provided that the above copyright notice appears in
all copies, and that both that copyright notice and this permission
notice appear in supporting documentation, and that the name of
Secret Labs AB or the author not be used in advertising or publicity
pertaining to distribution of the software without specific, written
prior permission.

SECRET LABS AB AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH REGARD
TO THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANT-
ABILITY AND FITNESS. 1IN NO EVENT SHALL SECRET LABS AB OR THE AUTHOR
BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY
DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
OF THIS SOFTWARE.

C.3. Licenze e riconoscimenti per il software incorporato 173




The Python Language Reference, Release 3.11.13

C.3.8 test_epoll

The test.test_epoll module contains the following notice:

Copyright (c) 2001-2006 Twisted Matrix Laboratories.

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND

NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

C.3.9 Select kqueue

Il modulo select contiene il seguente avviso per I'interfaccia kqueue:

Copyright (c) 2000 Doug White, 2006 James Knight, 2007 Christian Heimes
All rights reserved.

Redistribution and use in source and binary forms, with or without

modification, are permitted provided that the following conditions

are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS " 'AS IS'' AND

ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. 1IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS

OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

174 Appendice C. Storia e licenza




The Python Language Reference, Release 3.11.13

C.3.10 SipHash24

The file Python/pyhash.c contains Marek Majkowski” implementation of Dan Bernstein’s SipHash24
algorithm. It contains the following note:

<MIT License>
Copyright (c) 2013 Marek Majkowski <marek@popcount.org>

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
</MIT License>

Original location:
https://github.com/majek/csiphash/

Solution inspired by code from:
Samuel Neves (supercop/crypto_auth/siphash24/1ittle)
djb (supercop/crypto_auth/siphash24/little2)
Jean-Philippe Aumasson (https://131002.net/siphash/siphash24.c)

C.3.11 strtod e dtoa

The file Python/dtoa. ¢, which supplies C functions dtoa and strtod for conversion of C doubles to and from
strings, is derived from the file of the same name by David M. Gay, currently available from https://web.archive.org/
web/20220517033456/http://www.netlib.org/fp/dtoa.c. The original file, as retrieved on March 16, 2009, contains
the following copyright and licensing notice:

/****************************************************************
*
* The author of this software is David M. Gay.
*
* Copyright (c) 1991, 2000, 2001 by Lucent Technologies.

Permission to use, copy, modify, and distribute this software for any
purpose without fee is hereby granted, provided that this entire notice
is included in all copies of any software which is or includes a copy
or modification of this software and in all copies of the supporting
documentation for such software.

E

E O

*
* THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR IMPLIED
* WARRANTY. 1IN PARTICULAR, NEITHER THE AUTHOR NOR LUCENT MAKES ANY

* REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE MERCHANTABILITY

* OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR PURPOSE.

*

*

**************************************************************/

C.3. Licenze e riconoscimenti per il software incorporato 175



https://web.archive.org/web/20220517033456/http://www.netlib.org/fp/dtoa.c
https://web.archive.org/web/20220517033456/http://www.netlib.org/fp/dtoa.c

The Python Language Reference, Release 3.11.13

C.3.12 7.4 OpenSSL

The modules hashlib, posix, ssl, crypt use the OpenSSL library for added performance if made available by
the operating system. Additionally, the Windows and macOS installers for Python may include a copy of the OpenSSL
libraries, so we include a copy of the OpenSSL license here. For the OpenSSL 3.0 release, and later releases derived
from that, the Apache License v2 applies:

Apache License
Version 2.0, January 2004
https://www.apache.org/licenses/

TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION

1.

Definitions.

"License" shall mean the terms and conditions for use, reproduction,
and distribution as defined by Sections 1 through 9 of this document.

"Licensor" shall mean the copyright owner or entity authorized by
the copyright owner that is granting the License.

"Legal Entity" shall mean the union of the acting entity and all
other entities that control, are controlled by, or are under common
control with that entity. For the purposes of this definition,
"control" means (i) the power, direct or indirect, to cause the
direction or management of such entity, whether by contract or
otherwise, or (ii) ownership of fifty percent (50%) or more of the
outstanding shares, or (iii) beneficial ownership of such entity.

"You" (or "Your") shall mean an individual or Legal Entity
exercising permissions granted by this License.

"Source" form shall mean the preferred form for making modifications,
including but not limited to software source code, documentation
source, and configuration files.

"Object" form shall mean any form resulting from mechanical
transformation or translation of a Source form, including but
not limited to compiled object code, generated documentation,
and conversions to other media types.

"Work" shall mean the work of authorship, whether in Source or
Object form, made available under the License, as indicated by a
copyright notice that is included in or attached to the work

(an example is provided in the Appendix below) .

"Derivative Works" shall mean any work, whether in Source or Object
form, that is based on (or derived from) the Work and for which the
editorial revisions, annotations, elaborations, or other modifications
represent, as a whole, an original work of authorship. For the purposes
of this License, Derivative Works shall not include works that remain
separable from, or merely link (or bind by name) to the interfaces of,
the Work and Derivative Works thereof.

"Contribution" shall mean any work of authorship, including

the original version of the Work and any modifications or additions

to that Work or Derivative Works thereof, that is intentionally

submitted to Licensor for inclusion in the Work by the copyright owner

or by an individual or Legal Entity authorized to submit on behalf of

the copyright owner. For the purposes of this definition, "submitted"

means any form of electronic, verbal, or written communication sent

to the Licensor or its representatives, including but not limited to
(continues on next page)

176 Appendice C. Storia e licenza




The Python Language Reference, Release 3.11.13

(continua dalla pagina precedente)

communication on electronic mailing lists, source code control systems,
and issue tracking systems that are managed by, or on behalf of, the
Licensor for the purpose of discussing and improving the Work, but
excluding communication that is conspicuously marked or otherwise
designated in writing by the copyright owner as "Not a Contribution."

"Contributor" shall mean Licensor and any individual or Legal Entity
on behalf of whom a Contribution has been received by Licensor and
subsequently incorporated within the Work.

2. Grant of Copyright License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
copyright license to reproduce, prepare Derivative Works of,
publicly display, publicly perform, sublicense, and distribute the
Work and such Derivative Works in Source or Object form.

3. Grant of Patent License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
(except as stated in this section) patent license to make, have made,
use, offer to sell, sell, import, and otherwise transfer the Work,
where such license applies only to those patent claims licensable
by such Contributor that are necessarily infringed by their
Contribution(s) alone or by combination of their Contribution(s)
with the Work to which such Contribution(s) was submitted. If You
institute patent litigation against any entity (including a
cross—claim or counterclaim in a lawsuit) alleging that the Work
or a Contribution incorporated within the Work constitutes direct
or contributory patent infringement, then any patent licenses
granted to You under this License for that Work shall terminate
as of the date such litigation is filed.

4. Redistribution. You may reproduce and distribute copies of the
Work or Derivative Works thereof in any medium, with or without
modifications, and in Source or Object form, provided that You
meet the following conditions:

(a) You must give any other recipients of the Work or
Derivative Works a copy of this License; and

(b) You must cause any modified files to carry prominent notices
stating that You changed the files; and

(c) You must retain, in the Source form of any Derivative Works
that You distribute, all copyright, patent, trademark, and
attribution notices from the Source form of the Work,
excluding those notices that do not pertain to any part of
the Derivative Works; and

(d) If the Work includes a "NOTICE" text file as part of its
distribution, then any Derivative Works that You distribute must
include a readable copy of the attribution notices contained
within such NOTICE file, excluding those notices that do not
pertain to any part of the Derivative Works, in at least one
of the following places: within a NOTICE text file distributed
as part of the Derivative Works; within the Source form or
documentation, if provided along with the Derivative Works; or,
within a display generated by the Derivative Works, if and
wherever such third-party notices normally appear. The contents
of the NOTICE file are for informational purposes only and

(continues on next page)

C.3. Licenze e riconoscimenti per il software incorporato 177




The Python Language Reference, Release 3.11.13

(continua dalla pagina precedente)

do not modify the License. You may add Your own attribution
notices within Derivative Works that You distribute, alongside
or as an addendum to the NOTICE text from the Work, provided
that such additional attribution notices cannot be construed
as modifying the License.

You may add Your own copyright statement to Your modifications and
may provide additional or different license terms and conditions
for use, reproduction, or distribution of Your modifications, or
for any such Derivative Works as a whole, provided Your use,
reproduction, and distribution of the Work otherwise complies with
the conditions stated in this License.

5. Submission of Contributions. Unless You explicitly state otherwise,
any Contribution intentionally submitted for inclusion in the Work
by You to the Licensor shall be under the terms and conditions of
this License, without any additional terms or conditions.
Notwithstanding the above, nothing herein shall supersede or modify
the terms of any separate license agreement you may have executed
with Licensor regarding such Contributions.

6. Trademarks. This License does not grant permission to use the trade
names, trademarks, service marks, or product names of the Licensor,
except as required for reasonable and customary use in describing the
origin of the Work and reproducing the content of the NOTICE file.

7. Disclaimer of Warranty. Unless required by applicable law or
agreed to in writing, Licensor provides the Work (and each
Contributor provides its Contributions) on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied, including, without limitation, any warranties or conditions
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
PARTICULAR PURPOSE. You are solely responsible for determining the
appropriateness of using or redistributing the Work and assume any
risks associated with Your exercise of permissions under this License.

8. Limitation of Liability. In no event and under no legal theory,
whether in tort (including negligence), contract, or otherwise,
unless required by applicable law (such as deliberate and grossly
negligent acts) or agreed to in writing, shall any Contributor be
liable to You for damages, including any direct, indirect, special,
incidental, or consequential damages of any character arising as a
result of this License or out of the use or inability to use the
Work (including but not limited to damages for loss of goodwill,
work stoppage, computer failure or malfunction, or any and all
other commercial damages or losses), even if such Contributor
has been advised of the possibility of such damages.

9. Accepting Warranty or Additional Liability. While redistributing
the Work or Derivative Works thereof, You may choose to offer,
and charge a fee for, acceptance of support, warranty, indemnity,
or other liability obligations and/or rights consistent with this
License. However, in accepting such obligations, You may act only
on Your own behalf and on Your sole responsibility, not on behalf
of any other Contributor, and only if You agree to indemnify,
defend, and hold each Contributor harmless for any liability
incurred by, or claims asserted against, such Contributor by reason
of your accepting any such warranty or additional liability.

END OF TERMS AND CONDITIONS

178 Appendice C. Storia e licenza




The Python Language Reference, Release 3.11.13

C.3.13 expat

The pyexpat extension is built using an included copy of the expat sources unless the build is configured
—-with-system-expat:

Copyright (c) 1998, 1999, 2000 Thai Open Source Software Center Ltd
and Clark Cooper

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

C.3.14 libffi

Lestensione _ctypes ¢ costruita usando una copia dei sorgenti libfli a meno che la build non sia configurata con
—-with-system-1ibffi :

Copyright (c) 1996-2008 Red Hat, Inc and others.

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
‘*Software''), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED ' "AS IS'', WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.

C.3. Licenze e riconoscimenti per il software incorporato 179




The Python Language Reference, Release 3.11.13

C.3.15 zlib

Lestensione z1 ib € costruita usando una copia dei sorgenti zlib se la versione zlib trovata sul sistema ¢ troppo vecchia
per essere usata per la build:

Copyright (C) 1995-2011 Jean-loup Gailly and Mark Adler

This software is provided 'as-is', without any express or implied
warranty. In no event will the authors be held liable for any damages
arising from the use of this software.

Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it
freely, subject to the following restrictions:

1. The origin of this software must not be misrepresented; you must not
claim that you wrote the original software. If you use this software
in a product, an acknowledgment in the product documentation would be
appreciated but is not required.

2. Altered source versions must be plainly marked as such, and must not be
misrepresented as being the original software.

3. This notice may not be removed or altered from any source distribution.

Jean-loup Gailly Mark Adler
jloup@gzip.org madler@alumni.caltech.edu

C.3.16 cfuhash

L'implementazione della tabella hash utilizzata da t racemalloc si basa sul progetto cfuhash:

Copyright (c) 2005 Don Owens
All rights reserved.

This code is released under the BSD license:

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following
disclaimer in the documentation and/or other materials provided
with the distribution.

* Neither the name of the author nor the names of its
contributors may be used to endorse or promote products derived
from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR

(continues on next page)

180 Appendice C. Storia e licenza




The Python Language Reference, Release 3.11.13

(continua dalla pagina precedente)
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
OF THE POSSIBILITY OF SUCH DAMAGE.

C.3.17 libmpdec

Il modulo _decimal e costruito usando una copia della libreria libmpdec a meno che la build non sia configurata
con ——with-system-libmpdec :

Copyright (c) 2008-2020 Stefan Krah. All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS "AS IS" AND

ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. 1IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS

OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

C.3.18 W3C C14N test suite

The C14N 2.0 test suite in the test package (Lib/test/xmltestdata/cl14n-20/) was retrieved from the
W3C website at https://www.w3.org/TR/xml-c14n2-testcases/ and is distributed under the 3-clause BSD license:

Copyright (c) 2013 W3C(R) (MIT, ERCIM, Keio, Beihang),
All Rights Reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

* Redistributions of works must retain the original copyright notice,
this list of conditions and the following disclaimer.

* Redistributions in binary form must reproduce the original copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

* Neither the name of the W3C nor the names of its contributors may be
used to endorse or promote products derived from this work without
specific prior written permission.

(continues on next page)

C.3. Licenze e riconoscimenti per il software incorporato 181



https://www.w3.org/TR/xml-c14n2-testcases/

The Python Language Reference, Release 3.11.13

(continua dalla pagina precedente)

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

C.3.19 Audioop

The audioop module uses the code base in g771.c file of the SoX project. https://sourceforge.net/projects/sox/files/
sox/12.17.7/sox-12.17.7 .tar.gz

This source code is a product of Sun Microsystems, Inc. and is provided for unrestricted use. Users may
copy or modify this source code without charge.

SUN SOURCE CODE IS PROVIDED AS IS WITH NO WARRANTIES OF ANY KIND INCLU-
DING THE WARRANTIES OF DESIGN, MERCHANTIBILITY AND FITNESS FOR A PAR-
TICULAR PURPOSE, OR ARISING FROM A COURSE OF DEALING, USAGE OR TRADE
PRACTICE.

Sun source code is provided with no support and without any obligation on the part of Sun Microsystems,
Inc. to assist in its use, correction, modification or enhancement.

SUN MICROSYSTEMS, INC. SHALL HAVE NO LIABILITY WITH RESPECT TO THE INFRIN-
GEMENT OF COPYRIGHTS, TRADE SECRETS OR ANY PATENTS BY THIS SOFTWARE OR
ANY PART THEREOF.

In no event will Sun Microsystems, Inc. be liable for any lost revenue or profits or other special, indirect
and consequential damages, even if Sun has been advised of the possibility of such damages.

Sun Microsystems, Inc. 2550 Garcia Avenue Mountain View, California 94043

C.3.20 asyncio

Parts of the asyncio module are incorporated from uvloop 0.16, which is distributed under the MIT license:

Copyright (c) 2015-2021 MagicStack Inc. http://magic.io

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,

EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF

MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND

NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE

LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
(continues on next page)

182 Appendice C. Storia e licenza



https://sourceforge.net/projects/sox/files/sox/12.17.7/sox-12.17.7.tar.gz
https://sourceforge.net/projects/sox/files/sox/12.17.7/sox-12.17.7.tar.gz
https://github.com/MagicStack/uvloop/tree/v0.16.0

The Python Language Reference, Release 3.11.13

(continua dalla pagina precedente)

OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

C.3. Licenze e riconoscimenti per il software incorporato 183



The Python Language Reference, Release 3.11.13

184 Appendice C. Storia e licenza



APPENDICE D

Copyright

Python e questa documentazione sono protetti da:

Copyright © 2001-2023 Python Software Foundation. All rights reserved.

Copyright © 2000 BeOpen.com. Tutti i diritti riservati.

Copyright © 1995-2000 Corporation for National Research Initiatives. Tutti i diritti riservati.
Copyright © 1991-1995 Stichting Mathematisch Centrum. Tutti i diritti riservati.

Fare riferimento a Storia e licenza per informazioni complete su licenza e permessi.

185



The Python Language Reference, Release 3.11.13

186 Appendice D. Copyright



Indice

Non-alphabetical in function calls,85
., 147 operator, 88
ellipsis literal, 19
R function definition, 125
string literal, 10 in dictionary displays, 78
. (dot) in function calls, 86

attribute reference, 83 operator, 87

in numeric literal, 15 r=
! (exclamation) augmented assignment, 100
in formatted string literal, 12 =
— (minus) augmented assignment, 100
binary operator, 88 + (plus)
unary operator, 87 binary operator, 83
' (single quote) unary operator, 87
+=

string literal, 10
! patterns, 117
" (double quote) , (comma), 76

string literal, 10 argument list,85
wun expression list,77,78,94, 101, 126

string literal, 10 identifier list, 107, 108
# (hash) import statement, 105
in dictionary displays, 78
in target list,98

augmented assignment, 100

comment, 6
source encoding declaration,6

% (percent) parameter list, 124
operator, 88 slicing, 84

%= with statement, 114
augmented assignment, 100 / (slash)

function definition, 125

& (ampersand) . o8
operator,

operator, 89

&= //
augmented assignment, 100 operator, 88
() (parentheses) //=
call, 85 augmented assignment, 100
class definition, 126 /=
function definition, 124 augmented assignment, 100
generator expression, 78 Ob
in assignment target list,98 integer literal, 14
tuple display, 76 0o
* (asterisk) integer literal, 14
function definition, 125 0x
import statement, 106 integer literal, 14
in assignment target 1list,98 2to3, 147
in expression lists, 94 : (colon)

annotated variable, 100

187



The Python Language Reference, Release 3.11.13

compound statement, 110, 111, 114, 115,

124, 126
function annotations, 125
in dictionary expressions, 78

in formatted string literal, 12

lambda expression, 93
slicing, 84
: = (colon equals), 92
; (semicolon), 109
< (less)
operator, 89
<<
operator, 89
<<=
augmented assignment, 100
<=
operator, 89

operator, 89

augmented assignment, 100
= (equals)

assignment statement, 98
class definition,42

for help in debugging using

string literals, 12

function definition, 124

in function calls, 85

operator, 89

function annotations, 125
> (greater)
operator, 89
>=
operator, 89
>>
operator, 89
>>=
augmented assignment, 100
>>> 147
@ (at)
class definition, 126
function definition, 124
operator, 88
[ 1 (square brackets)
in assignment target list,98
list expression, 77
subscription, 84
\ (backslash)
escape sequence, 11

escape sequence, 11
\N

escape sequence, 11
\n

escape sequence, 11
\r

escape sequence, 11
\t

escape sequence, 11
\U

escape sequence, 11
\u

escape sequence, 11
\v

escape sequence, 11
\x

escape sequence, 11
~ (caret)

operator, 89

augmented assignment, 100
_ (underscore)

in numeric literal, 14,15
_, ldentifiers,9
_ , identifiers,9

__abs__ () (object metodo), 50
__add__ () (object metodo), 49
__aenter__ () (object metodo), 55
__aexit__ () (object metodo), 55
__aiter__ () (object metodo), 54
__all__ (optional module attribute), 106
__and__ () (object metodo), 49
__anext__ () (agen metodo), 82
__anext__ () (object metodo), 54

__annotations__ (class attribute), 27
__annotations__ (function attribute), 23
__annotations___ (function attributo), 23
__annotations__ (module attribute), 26

__await__ () (object metodo), 53

_ bases__ (class attribute), 27
__bool__ () (object method), 47
__bool__ () (object metodo), 37
__bytes__ () (object metodo), 35

_ _cached__, 68

__call__ () (object method), 86
__call__ () (object metodo), 47
___cause___(exception attribute), 103
__ceil_ () (object metodo), 51

__class__ (instance attribute), 27
__class__ (method cell), 44
_ class__ (module attribute), 38

AN\ __class_getitem__ () (object metodo della clas-
escape sequence, 11 se), 45

\a __classcell__ (class namespace entry), 44
escape sequence, 11 __closure__ (function attribute), 22

\b __closure__ (function attributo), 22
escape sequence, 11 ___code__ (function attribute), 23

\f ___code___ (function attributo), 23

188 Indice



The Python Language Reference, Release 3.11.13

__complex__ () (object metodo), 51
__contains__ () (object metodo), 49
__context___ (exception attribute), 103
__debug__, 101

__defaults__ (function attribute), 23
__defaults___ (function attributo), 23

__del__ () (object metodo), 34
__delattr__ () (object metodo), 38
__delete__ () (object metodo), 39
__delitem__ () (object metodo), 48

_dict__ (class attribute), 277
___dict__ (function attribute), 23
__dict__ (function attributo), 23
__dict__ (instance attribute), 27
__dict__ (module attribute), 26
_ dir__ (module attribute), 38
__dir__ () (object metodo), 38
__divmod__ () (object metodo), 49
doc___ (class attribute), 27
__doc__ (function attribute), 23
__doc___ (function attributo), 23
__doc__ (method attribute), 24
__doc__ (method attributo), 24
__doc___ (module attribute), 26

__enter__ () (object metodo), 51
__eq__ () (object metodo), 36
__exit__ () (object metodo), 51

_ file_ ,68

_ file_  (module attribute), 26
__float__ () (object metodo), 51

_ floor__ () (object metodo), 51

_ floordiv__ () (object metodo), 49
_ format__ () (object metodo), 35

___func__ (method attribute), 24
_ func__ (method attributo), 24

_ future_ , 152

future statement, 106
__ge__ () (object metodo), 36
__get__ () (object metodo), 39
__getattr__ (module attribute), 38
__getattr__ () (object metodo), 37
__getattribute__ () (object metodo), 38
__getitem__ () (mapping object method), 34
__getitem__ () (object metodo), 48

__globals__ (function attribute), 22
__globals__ (function attributo), 22

__gt__ () (object metodo), 36
__hash__ () (object metodo), 36
__iadd__ () (object metodo), 50
__iand__ () (object metodo), 50
__ifloordiv__ () (object metodo), 50
__ilshift__ () (object metodo), 50
__imatmul__ () (object metodo), 50
__imod__ () (object metodo), 50
__imul__ () (object metodo), 50
__index__ () (object metodo), 51
__init__ () (object metodo), 34

__invert__ () (object metodo), 50
__ior__ () (object metodo), 50
__ipow__ () (object metodo), 50
__irshift__ () (object metodo), 50
__isub__ () (object metodo), 50
__iter_ () (object metodo), 48
__itruediv__ () (object metodo), 50
__ixor__ () (object metodo), 50
__kwdefaults__ (function attribute), 23
__kwdefaults__ (function attributo), 23
__le__ () (object metodo), 36

_ len__ () (mapping object method), 37
_ _length_hint__ () (object metodo), 48
_ loader_ ,67

__1shift__ () (object metodo), 49
__1t__ () (object metodo), 36

__main___

__init_subclass__ () (object metodo della clas-

se), 41

__instancecheck__ () (class metodo), 45

int__ () (object metodo), 51

len__ () (object metodo), 47

module, 58, 129

__matmul__ () (object metodo), 49
_ _missing__ () (object metodo), 48
__mod__ () (object metodo), 49
__module__ (class attribute), 27
__module___ (function attribute), 23
__module__ (function attributo), 23
_ _module__ (method attribute), 24
_ _module__ (method attributo), 24
__mro_entries__ () (object metodo), 43
__mul__ () (object metodo), 49
__name__, 67

_ name___ (class attribute), 27
__name___ (function attribute), 23
__name___ (function attributo), 23
__name___ (method attribute), 24
__name___ (method attributo), 24

_ name___ (module attribute), 26

__ne__ () (object metodo), 36
neg__ () (object metodo), 50
new___ () (object metodo), 34

__next__ () (generator metodo), 80

__objclass__ (object attributo), 39

__or__ () (object metodo), 49

__package_ ,68

__path__,68

__pos___() (object metodo), 50

__pow___() (object metodo), 49

__prepare__ (metaclass method), 43
__qualname__ (function attributo), 23
__radd__ () (object metodo), 49
__rand___() (object metodo), 49
__rdivmod__ () (object metodo), 49
__repr__ () (object metodo), 35
__reversed__ () (object metodo), 48
__rfloordiv__ () (object metodo), 49

Indice

189



The Python Language Reference, Release 3.11.13

__rlshift__ () (object metodo), 49
__rmatmul__ () (object metodo), 49
__rmod___() (object metodo), 49
__rmul__ () (object metodo), 49
__ror__ () (object metodo), 49
__round__ () (object metodo), 51
__rpow___() (object metodo), 49
__rrshift__ () (object metodo), 49
__rshift__ () (object metodo), 49
__rsub__ () (object metodo), 49
__rtruediv__ () (object metodo), 49
__rxor___() (object metodo), 49

_ self__ (method attribute), 24
_ self__ (method attributo), 24
__set__ () (object metodo), 39
__set_name__ () (object metodo), 42
__setattr__ () (object metodo), 38
__setitem__ () (object metodo), 48
_ slots_ ,159
__spec__,08
__str__ () (object metodo), 35
__sub__ () (object metodo), 49
__subclasscheck__ () (class metodo), 45
__traceback___ (exception attribute), 103
__truediv__ () (object metodo), 49
__trunc__ () (object metodo), 51
_ xor__ () (object metodo), 49
{} (curly brackets)
dictionary expression, 78
in formatted string literal, 12
set expression, 78
| (vertical bar)
operator, 89

| =
augmented assignment, 100
~ (tilde)
operator, 87

A

abs

built-in function, 5l
abstract base class, 147
aclose () (agen metodo), 83
addition, 88

and
bitwise, 89
operator, 92
annotated

assignment, 100
annotation, 147
annotations

function, 125
anonymous

function, 93
argument, 148

call semantics, 85

function, 22

function definition, 124

arithmetic
conversion, 75
operation, binary, 88
operation, unary, 87

array
module, 21

as
except clause, 111
import statement, 105
keyword, 105, 111, 114, 115
match statement, 115
with statement, 114

AS pattern, OR pattern, capture
pattern, wildcard pattern,

117
ASCITI, 4, 10
asend () (agen metodo), 82
assert
statement, 101
AssertionError
exception, 101
assertions
debugging, 101
assignment
annotated, 100
attribute, 98
augmented, 100
class attribute, 27

class instance attribute, 27

slicing, 99
statement, 21, 98
subscription, 99
target 1list, 98
assignment expression, 92
async
keyword, 127
async def
statement, 127
async for
in comprehensions, 77
statement, 127
async with
statement, 128

asynchronous context manager, 148

asynchronous generator, 148

asynchronous iterator, 25

function, 25

asynchronous generator iterator, 148

asynchronous iterable, 148

asynchronous iterator, 148

asynchronous—generator
object, 82

athrow () (agen metodo), 83

atom, 75

attribute, 18, 148
assignment, 98
assignment, class, 27

assignment, class instance, 27

190

Indice



The Python Language Reference, Release 3.11.13

class, 26
class instance, 27
deletion, 102
generic special, 18
reference, 83
special, 18
AttributeError
exception, 83
augmented
assignment, 100
await
in comprehensions, 77
keyword, 86, 127
awaitable, 149

B
b'

bytes literal, 10
b"

bytes literal, 10
backslash character, 6
BDFL, 149
binary

arithmetic operation, 88

bitwise operation, 89
binary file, 149
binary literal, 14
binding
global name, 107
name, 57, 98, 105, 124, 126
bitwise
and, 89
operation,binary, 89
operation, unary, 87
or, 89
xor, 89
blank line,7
block, 57
code, 57
BNF, 4, 75
Boolean
object, 19
operation, 92
borrowed reference, 149
break
statement, 104, 110, 113
built-in
method, 25
built-in function
abs, 51
bytes, 35
call, 86
chr, 20

float, 51
hash, 36
id, 17
int, 51
len, 20, 21, 47
object, 25, 86
open, 27
ord, 20
pow, 49, 50
print, 35
range, 111
repr, 97
round, 51
slice, 33
type, 17, 42
built-in method
call, 86
object, 25, 86
builtins
module, 129
byte, 20
bytearray, 21
bytecode, 28, 149
bytes, 20
built-in function, 35
bytes literal, 10
bytes—-like object, 149

C

c, 11
language, 18, 19, 25, 89
call, 85
built-in function, 86
built-in method, 86
class instance, 86
class object, 26,27, 86
function, 22, 86
instance, 47, 86
method, 86
procedure, 97

user—-defined function, 86

callable, 149
object, 22, 85
callback, 149
case
keyword, 115
match, 115
case block, 117
C-contiguous, 150
chaining
comparisons, 89
exception, 103
character, 20, 84

compile, 107 chr
complex, 51 built-in function, 20
divmod, 49, 50 class, 149
eval, 107, 130 attribute, 26
exec, 107 attribute assignment, 27
Indice 191



The Python Language Reference, Release 3.11.13

body, 44

constructor, 34

definition, 102, 126

instance, 27

name, 126

object, 26, 86, 126

statement, 126
class instance

attribute, 27

attribute assignment, 27

call, 86

object, 26, 27, 86
class object

call, 26,27, 86
class variable, 149
clause, 109
clear () (frame metodo), 32
close () (coroutine metodo), 54
close () (generator metodo), 81
co_argcount (code object attribute), 28
co_argcount (codeobject attributo), 29
co_cellvars (code object attribute), 28
co_cellvars (codeobject attributo), 29
co_code (code object attribute), 28
co_code (codeobject attributo), 29
co_consts (code object attribute), 28
co_consts (codeobject attributo), 29
co_filename (code object attribute), 28
co_filename (codeobject attributo), 29
co_firstlineno (code object attribute), 28
co_firstlineno (codeobject attributo), 29
co_flags (code object attribute), 28
co_flags (codeobject attributo), 29
co_freevars (code object attribute), 28
co_freevars (codeobject attributo), 29
co_kwonlyargcount (code object attribute), 28
co_kwonlyargcount (codeobject attributo), 29
co_lines () (codeobject metodo), 30
co_lnotab (code object attribute), 28
co_lnotab (codeobject attributo), 29
co_name (code object attribute), 28
co_name (codeobject attributo), 29
co_names (code object attribute), 28
co_names (codeobject attributo), 29
co_nlocals (code object attribute), 28
co_nlocals (codeobject attributo), 29
co_positions () (codeobject metodo), 30
co_posonlyargcount (code object attribute), 28
co_posonlyargcount (codeobject attributo), 29
co_qualname (code object attribute), 28
co_qualname (codeobject attributo), 29
co_stacksize (code object attribute), 28
co_stacksize (codeobject attributo), 29
co_varnames (code object attribute), 28
co_varnames (codeobject attributo), 29
code

block, 57
code object, 28

collections

module, 21
comma, 76

trailing, 94
command line, 129
comment, 6
comparison, 89
comparisons, 36

chaining, 89
compile

built-in function, 107
complex

built-in function, 5l

number, 20

object, 20
complex literal, 14
complex number, 149
compound

statement, 109
comprehensions, 77

dictionary, 78

list, 77

set, 78
Conditional

expression, 92
conditional

expression, 93
constant, 10
constructor

class, 34
container, 18, 26
context manager, 51, 150
context variable, 150
contiguous, 150
continue

statement, 104, 110, 113
conversion

arithmetic, 75

string, 35,97
coroutine, 53,79, 150

function, 25
coroutine function, 150
CPython, 150

D

dangling

else, 110
data, 17

type, 18

type, immutable, 76
dbm.gnu

module, 22
dbm.ndbm

module, 22
debugging

assertions, 101
decimal literal, 14
decorator, 150

192

Indice



The Python Language Reference, Release 3.11.13

DEDENT token, 7,110 exc_info (in module sys), 32
def except
statement, 124 keyword, 111
default except_star
parameter value, 124 keyword, 112
definition exception, 59, 103
class, 102, 126 AssertionError, 101
function, 102, 124 AttributeError, 83
del chaining, 103
statement, 34, 101 GeneratorExit, 81, 83
deletion handler, 32
attribute, 102 ImportError, 105
target, 101 NameError, 76
target list, 101 raising, 103
delimiters, 16 StopAsynclteration, 82
descriptor, 150 Stoplteration, 80, 102
destructor, 34, 98 TypeError, 87
dictionary, 151 ValueError, 89
comprehensions, 78 ZeroDivisionError, 88
display, 78 exception handler, 59
object, 21, 26, 36, 78, 84, 99 exclusive
dictionary comprehension, 151 or, 89
dictionary view, 151 exec
display built—-in function, 107
dictionary, 78 execution
list, 77 frame, 57, 126
set, 78 restricted, 59
division, 88 stack, 32
divmod execution model, 57
built-in function, 49, 50 expression, 75, 151
docstring, 126, 151 Conditional, 92
documentation string, 30 conditional, 93
duck-typing, 151 generator, 78
lambda, 93, 125
E list, 94,97
e statement, 97
in numeric literal, 15 yield, 79
EAFP, 151 extension
elif module, 18
keyword, 110 extension module, 151
Ellipsis F
object, 19
else £
conditional expression,93 formatted string literal,ll
dangling, 110 £"
keyword, 104, 110, 111, 113 formatted string literal, 1l
empty f-string, 151
list, 77 f_back (frame attribute), 31
tuple, 20, 76 f_back (frame attributo), 31
encoding declarations (source file), 6 f_builtins (frame attribute), 31
environment, 58 f_builtins (frame attributo), 31
error handling, 59 f__code (frame attribute), 31
errors, 59 f_code (frame attributo), 31
escape sequence, 11 f_globals (frame attribute), 31
eval f_globals (frame attributo), 31
built-in function, 107, 130 f_lasti (frame attribute), 31
evaluation f_lasti (frame attributo), 31
order, 94 f_lineno (frame attribute), 31

Indice 193



The Python Language Reference, Release 3.11.13

f__lineno (frame attributo), 32
f_locals (frame attribute), 31
f_locals (frame attributo), 31
f_trace (frame attribute), 31
f_trace (frame attributo), 32
f_trace_1lines (frame attribute), 31
f_trace_1lines (frame attributo), 32
f_trace_opcodes (frame attribute), 31
f_trace_opcodes (frame attributo), 32
False, 19
file object, 151
file-like object, 151
filesystem encoding and error
handler, 152

finalizer, 34
finally

keyword, 102, 104, 111, 113
find_spec

finder, 64
finder, 64, 152

find_spec, 64
float

built—-in function, 5l
floating point

number, 19

object, 19
floating point literal, 14
floor division, 152
for

in comprehensions, 77

statement, 104, 110

form
lambda, 93
format () (built-in function)

__str__ () (object method), 35
formatted string literal, 12
Fortran contiguous, 150
frame

execution, 57, 126

object, 31
free

variable, 58
from

import statement, 57, 105

keyword, 79, 105

yield from expression, 80
frozenset

object, 21
fstring, 12
f-string, 12
function, 152

annotations, 125

anonymous, 93

argument, 22

call, 22, 86

call,user—-defined, 86

definition, 102, 124

generator, 79, 102

name, 124

object, 22, 25, 86, 124

user—-defined, 22
function annotation, 152
future

statement, 106

G

garbage collection, 17,152
generator, 152
expression, 78
function, 25,79, 102
iterator, 25,102
object, 29, 78, 80
generator expression, 153
generator iterator, 153
GeneratorExit
exception, 81, 83
generic
special attribute, 18
generic function, 153
generic type, 153
GIL, 153
global
name binding, 107
namespace, 22
statement, 101, 107
global interpreter lock, 153
grammar, 4
grouping, 7
guard, 117

Fl

handle an exception,59
handler

exception, 32
hash

built-in function, 36
hash character,6
hash-based pyc, 153
hashable, 78, 153
hexadecimal literal, 14
hierarchy

type, 18
hooks

import, 64

meta, 64

path, 64

|
id
built-in function, 17
identifier, 8,76
identity
test, 92
identity of an object, 17
IDLE, 154
if

194

Indice



The Python Language Reference, Release 3.11.13

conditional expression, 93
in comprehensions, 77
keyword, 115
statement, 110
imaginary literal, 14
immutable, 154
data type, 76
object, 20, 76, 78
immutable object, 17
immutable sequence
object, 20
immutable types
subclassing, 34
import
hooks, 64
statement, 26, 105
import hooks, 64
import machinery, 61
import path, 154
importer, 154
ImportError
exception, 105
importing, 154
in
keyword, 110
operator, 92
inclusive
or, 89
INDENT token,7
indentation, 7
index operation, 20
indices () (slice metodo), 33
inheritance, 126
input, 130
instance
call, 47, 86
class, 27
object, 26, 27, 86
int
built—-in function, 5l
integer, 20
object, 19
representation, 19
integer literal, 14
interactive, 154
interactive mode, 129
internal type,28
interpolated string literal, 12
interpreted, 154
interpreter, 129
interpreter shutdown, 154
inversion, 87
invocation, 22
io
module, 27
irrefutable case block, 117
is
operator, 92

is not
operator, 92
item
sequence, 84
string, 84
item selection, 20
iterable, 154
unpacking, 94
iterator, 154

J

in numeric literal, 15
Java

language, 19

K

key, 78
key function, 155
key/value pair, 78
keyword, 9
as, 105,111, 114, 115
async, 127
await, 86, 127
case, 115
elif, 110
else, 104,110,111, 113
except, 111
except_star, 112
finally, 102, 104, 111,113
from, 79, 105
if, 115
in, 110
yield, 79
keyword argument, 155

L

lambda, 155
expression, 93, 125
form, 93

language
c, 18, 19, 25, 89
Java, 19

last_traceback (in module sys), 32

LBYL, 155
leading whitespace, 7
len

built-in function, 20, 21, 47

lexical analysis,5S
lexical definitions,4
line continuation,6
line Jjoining,5,6
line structure,5
list, 155
assignment, target, 98
comprehensions, 77
deletion target, 101
display, 77

Indice

195



The Python Language Reference, Release 3.11.13

empty, 77
expression, 94, 97
object, 21,77, 83, 84,99
target, 98, 110
list comprehension, 155
literal, 10,76
loader, 64, 155
locale encoding, 155
logical line,5
loop
statement, 104, 110
loop control
target, 104

M
magic
method, 156
magic method, 156
makefile () (socket method), 27
mangling
name, 76
mapping, 156
object, 21, 27, 84,99
match
case, 115
statement, 115
matrix multiplication, 88
membership
test, 92
meta
hooks, 64
meta hooks, 64
meta path finder, 156
metaclass, 42, 156
metaclass hint,43
method, 156
built-in, 25
call, 86
magic, 156
object, 24, 25, 86
special, 160
user—-defined, 24

method resolution order, 156

minus, 87

module, 156
_ _main
array, 21
builtins, 129
collections, 21
dbm.gnu, 22
dbm.ndbm, 22
extension, 18
importing, 105
io, 27
namespace, 26
object, 26, 83
sys, 112,129

module spec, 64,156

, 58,129

modulo, 88

MRO, 156

multiplication, 88

mutable, 156
object, 21, 98, 99

mutable object, 17

mutable sequence
object, 21

N

name, 8, 57,76

binding, 57, 98, 105, 124, 126

binding, global, 107

class, 126

function, 124

mangling, 76

rebinding, 98

unbinding, 101
named expression, 92
named tuple, 156
NameError

exception, 76
NameError (built-in exception), 58
names

private, 76
namespace, 57, 157

global, 22

module, 26

package, 63
namespace package, 157
negation, 87
nested scope, 157
new-style class, 157
NEWLINE token,5, 110
None

object, 18,97
nonlocal

statement, 108
not

operator, 92
not in

operator, 92
notation,4
NotImplemented

object, 18
null

operation, 101
number, 14

complex, 20

floating point, 19
numeric

object, 19,27
numeric literal, 14

O

object, 17,157

asynchronous—generator, 82

Boolean, 19

196

Indice



The Python Language Reference, Release 3.11.13

built-in function, 25, 86

built-in method, 25, 86

callable, 22,85

class, 26, 86, 126

class instance, 26, 27, 86

code, 28

complex, 20

dictionary, 21, 26, 36, 78, 84, 99

Ellipsis, 19

floating point, 19

frame, 31

frozenset, 21

function, 22, 25, 86, 124

generator, 29, 78, 80

immutable, 20, 76, 78

immutable sequence, 20

instance, 26, 27, 86

integer, 19

list, 21,77, 83,84,99

mapping, 21, 27, 84, 99

method, 24, 25, 86

module, 26, 83

mutable, 21, 98, 99

mutable sequence, 21

None, 18, 97

NotImplemented, I8

numeric, 19,27

sequence, 20, 27, 84, 92,99, 110

set, 21,78

set type,?21

slice, 48

string, 84

traceback, 32,103, 112

tuple, 20, 84, 94

user—-defined function, 22,86, 124

user—defined method, 24
object.__match_args__ (variabile built-in), 52
object._ slots__ (variabile built-in), 40
octal literal, 14
open

built-in function, 27
operation

binary arithmetic, 88

binary bitwise, 89

Boolean, 92

null, 101

power, 87

shifting, 89

unary arithmetic, 87

unary bitwise, 87
operator

— (minus), 87, 88

% (percent), 88

& (ampersand), 89

* (asterisk), 88

** 87

+ (plus), 87, 88

/ (slash), 88

//,88

< (less), 89

<<, 89

<=, 89

1=, 89

==, 89

> (greater), 89

>=, 89

>>, 89

@ (at), 88

~ (caret), 89

| (vertical bar), 89

~ (tilde), 87

and, 92

in, 92

is,92

is not, 92

not, 92

not in, 92

or, 92

overloading, 34

precedence, %4

ternary, 93
operators, 15
or

bitwise, 89

exclusive, 89

inclusive, 89

operator, 92
ord

built-in function, 20
order

evaluation, 94
output, 97

standard, 97
overloading

operator, 34

P

package, 62, 157
namespace, 63
portion, 63
regular, 62

parameter, 157
call semantics, 85
function definition, 123
value, default, 124

parenthesized form, 76

parser, 5

pass
statement, 101

path
hooks, 64

path based finder, 70, 158

path entry, 158

path entry finder, 158

path entry hook, 158

path hooks, 64

Indice

197



The Python Language Reference, Release 3.11.13

path-like object, 158
pattern matching, 115
PEP, 158
physical line,5,6,11
plus, 87
popen () (in module os), 27
portion, 158

package, 63
positional argument, 158
pow

built-in function, 49, 50
power

operation, 87
precedence

operator, 94
primary, 83
print

built-in function, 35
print () (built-in function)

__str__ () (object method), 35
private

names, 76
procedure

call, 97
program, 129
provisional APIT, 158
provisional package, 159
Python 3000, 159
Python Enhancement Proposals

PEP 1,158

PEP 8,90

PEP 236, 107

PEP 238,152

PEP 252,39

PEP 255,80

PEP 278, 161

PEP 302,61, 73,152,155

PEP 308,93

PEP 318,125,127

PEP 328,73

PEP 338,73

PEP 342,80

PEP 343,51, 115,150

PEP 362,148, 158

PEP 366, 68,73

PEP 380,80

PEP 411,158

PEP 414,11

PEP 420,61, 63,69, 73, 152,157,158

PEP 443,153

PEP 448,78, 86,94

PEP 451,73, 152

PEP 483,153

PEP 484,45, 101, 125, 147, 152, 153, 161

PEP 492,53, 80, 128, 148150

PEP 4098, 14, 151

PEP 519, 158

PEP 525, 80, 148

PEP 526, 100, 125, 147, 161

PEP 530,77

PEP 560,43,47

PEP 562,39

PEP 563,106, 125

PEP 570, 125

PEP 572,78,93,119

PEP 585,153

PEP 614,124,126

PEP 617,131

PEP 626,31

PEP 634,52,116,123

PEP 636,116,123

PEP 3104, 108

PEP 3107, 125

PEP 3115,43,127

PEP 3116, 161

PEP 3119,45

PEP 3120,5

PEP 3129, 125,127

PEP 3131,8

PEP 3132,99

PEP 3135,44

PEP 3147,68

PEP 3155, 159
PYTHONHASHSEED, 37
Pythonic, 159
PYTHONNODEBUGRANGES, 30
PYTHONPATH, 70

Q

qualified name, 159

R

r'

raw string literal, 10
r"

raw string literal, 10
raise

statement, 103
raise an exception, 59
raising

exception, 103
range

built-in function, 111
raw string, 10
rebinding

name, 98
reference

attribute, 83
reference count, 159
reference counting, 17
regular

package, 62
regular package, 159
relative

import, 106
replace () (codeobject metodo), 31

198

Indice



The Python Language Reference, Release 3.11.13

repr
built-in function, 97
repr () (built-in function)
__repr__ () (object method), 35
representation
integer, 19
reserved word, 9
restricted
execution, 59
return
statement, 102, 113
round
built—-in function, 5l

S

scope, 57, 58
send () (coroutine metodo), 54
send () (generator metodo), 80
sequence, 159
item, 84
object, 20, 27, 84, 92,99, 110
set
comprehensions, 78
display, 78
object, 21,78
set comprehension, 160
set type
object, 21
shifting
operation, 89
simple
statement, 97
single dispatch, 160
singleton
tuple, 20
slice, 84,160
built-in function, 33
object, 48
slicing, 20,21, 84
assignment, 99
soft keyword,9
source character set,6
space, 7
special
attribute, 18
attribute, generic, 18
method, 160
special method, 160
stack
execution, 32
trace, 32
standard
output, 97
Standard C, 11
standard input, 129
start (slice object attribute), 33, 84
statement, 160
assert, 101

assignment, 21, 98

assignment, annotated, 100
assignment, augmented, 100

async def, 127

async for, 127

async with, 128

break, 104, 110, 113

class, 126

compound, 109

continue, 104, 110, 113

def, 124

del, 34, 101

expression, 97

for, 104, 110

future, 106

global, 101, 107

if, 110

import, 26, 105

loop, 104, 110

match, 115

nonlocal, 108

pass, 101

raise, 103

return, 102, 113

simple, 97

try, 32, 111

while, 104, 110

with, 51, 114

yield, 102
statement grouping,7
static type checker, 160
stderr (in module sys), 27
stdin (in module sys), 27
stdio, 27
stdout (in module sys), 27
step (slice object attribute), 33, 84
stop (slice object attribute), 33, 84
StopAsynclIteration

exception, 82
StopIteration

exception, 80, 102
string

_ format__ () (object method), 35

__str__ () (object method), 35
conversion, 35, 97
formatted literal, 12
immutable sequences, 20
interpolated literal, 12
item, 84
object, 84
string literal, 10
strong reference, 160
subclassing
immutable types, 34
subscription, 20, 21, 84
assignment, 99
subtraction, 88
suite, 109

Indice

199



The Python Language Reference, Release 3.11.13

syntax, 4
sys

module, 112, 129
sys.exc_info, 32
sys.exception, 32
sys.last_traceback, 32
sys.meta_path, 64
sys.modules, 63
sys.path, 70
sys.path_hooks, 70
sys.path_importer_cache, 70
sys.stderr, 27
sys.stdin, 27
sys.stdout, 27
SystemExit (built-in exception), 59

T

tab, 7
target, 98

deletion, 101

list, 98,110

list assignment, 98

list,deletion, 101

loop control, 104
tb_ frame (traceback attribute), 32
tb_ frame (traceback attributo), 33
tb_lasti (traceback attribute), 32
tb_lasti (traceback attributo), 33
tb_lineno (traceback attribute), 32
tb_lineno (traceback attributo), 33
tb_next (traceback attribute), 33
tb_next (traceback attributo), 33
termination model, 59
ternary

operator, 93
test

identity, 92

membership, 92
text encoding, 160
text file, 160
throw () (coroutine metodo), 54
throw () (generator metodo), 80
token, 5

trace

stack, 32
traceback

object, 32,103, 112
trailing

comma, 94

triple-quoted string, 160
triple—-quoted string, 10
True, 19
try
statement, 32, 111
tuple
empty, 20, 76
object, 20, 84, 94
singleton, 20

type, 18, 161

built—-in function, 17,42
data, 18
hierarchy, 18
immutable data, 76
type alias, 161
type hint, 161
type of an object, 17
TypeError
exception, 87
types, internal, 28

U

u'

string literal, 10
u"

string literal, 10
unary

arithmetic operation, 87

bitwise operation, 87
unbinding

name, 101
UnboundLocalError, 58
Unicode, 20
Unicode Consortium, 10
universal newlines, 161
UNIX, 129
unpacking

dictionary, 78

in function calls, 85

iterable, 94
unreachable object, 17
unrecognized escape sequence, 12
user—-defined

function, 22

function call, 86

method, 24
user—-defined function

object, 22, 86, 124
user—-defined method

object, 24

Vv

value, 78

default parameter, 124
value of an object, 17
ValueError

exception, 89
values

writing, 97

variabile d'ambiente, PYTHONHASHSEED,

37
variabile d'ambiente,
PYTHONNODEBUGRANGES, 30

variabile d'ambiente, PYTHONPATH, 70

variable
free, 58
variable annotation, 161

200

Indice



The Python Language Reference, Release 3.11.13

virtual environment, 161
virtual machine, 162

W

walrus operator, 92
while
statement, 104, 110
Windows, 129
with
statement, 51, 114
writing
values, 97

X

Xor
bitwise, 89

Y

yield
examples, 81
expression, 79
keyword, 79
statement, 102

Z

Zen of Python, 162
ZeroDivisionError
exception, 88

Indice

201



	Introduction
	Alternate Implementations
	Notation

	Lexical analysis
	Line structure
	Logical lines
	Physical lines
	Comments
	Encoding declarations
	Explicit line joining
	Implicit line joining
	Blank lines
	Indentation
	Whitespace between tokens

	Other tokens
	Identifiers and keywords
	Keywords
	Soft Keywords
	Reserved classes of identifiers

	Literals
	String and Bytes literals
	Escape sequences

	String literal concatenation
	f-strings
	Numeric literals
	Integer literals
	Floating point literals
	Imaginary literals

	Operators
	Delimiters

	Data model
	Objects, values and types
	The standard type hierarchy
	None
	NotImplemented
	Ellipsis
	numbers.Number
	numbers.Integral
	numbers.Real (float)
	numbers.Complex (complex)

	Sequences
	Immutable sequences
	Mutable sequences

	Set types
	Mappings
	Dictionaries

	Callable types
	User-defined functions
	Special read-only attributes
	Special writable attributes

	Instance methods
	Generator functions
	Coroutine functions
	Asynchronous generator functions
	Built-in functions
	Built-in methods
	Classes
	Class Instances

	Modules
	Custom classes
	Class instances
	I/O objects (also known as file objects)
	Internal types
	Code objects
	Special read-only attributes
	Methods on code objects

	Frame objects
	Special read-only attributes
	Special writable attributes
	Frame object methods

	Traceback objects
	Slice objects
	Static method objects
	Class method objects


	Special method names
	Basic customization
	Customizing attribute access
	Customizing module attribute access
	Implementing Descriptors
	Invoking Descriptors
	__slots__

	Customizing class creation
	Metaclasses
	Resolving MRO entries
	Determining the appropriate metaclass
	Preparing the class namespace
	Executing the class body
	Creating the class object
	Uses for metaclasses

	Customizing instance and subclass checks
	Emulating generic types
	The purpose of __class_getitem__
	__class_getitem__ versus __getitem__

	Emulating callable objects
	Emulating container types
	Emulating numeric types
	With Statement Context Managers
	Customizing positional arguments in class pattern matching
	Special method lookup

	Coroutines
	Awaitable Objects
	Coroutine Objects
	Asynchronous Iterators
	Asynchronous Context Managers


	Execution model
	Structure of a program
	Naming and binding
	Binding of names
	Resolution of names
	Builtins and restricted execution
	Interaction with dynamic features

	Exceptions

	The import system
	importlib
	Packages
	Regular packages
	Namespace packages

	Searching
	The module cache
	Finders and loaders
	Import hooks
	The meta path

	Loading
	Loaders
	Submodules
	Module spec
	Import-related module attributes
	module.__path__
	Module reprs
	Cached bytecode invalidation

	The Path Based Finder
	Path entry finders
	Path entry finder protocol

	Replacing the standard import system
	Package Relative Imports
	Special considerations for __main__
	__main__.__spec__

	References

	Expressions
	Arithmetic conversions
	Atoms
	Identifiers (Names)
	Literals
	Parenthesized forms
	Displays for lists, sets and dictionaries
	List displays
	Set displays
	Dictionary displays
	Generator expressions
	Yield expressions
	Generator-iterator methods
	Examples
	Asynchronous generator functions
	Asynchronous generator-iterator methods


	Primaries
	Attribute references
	Subscriptions
	Slicings
	Calls

	Await expression
	The power operator
	Unary arithmetic and bitwise operations
	Binary arithmetic operations
	Shifting operations
	Binary bitwise operations
	Comparisons
	Value comparisons
	Membership test operations
	Identity comparisons

	Boolean operations
	Assignment expressions
	Conditional expressions
	Lambdas
	Expression lists
	Evaluation order
	Operator precedence

	Simple statements
	Expression statements
	Assignment statements
	Augmented assignment statements
	Annotated assignment statements

	The assert statement
	The pass statement
	The del statement
	The return statement
	The yield statement
	The raise statement
	The break statement
	The continue statement
	The import statement
	Future statements

	The global statement
	The nonlocal statement

	Compound statements
	The if statement
	The while statement
	The for statement
	The try statement
	except clause
	except* clause
	else clause
	finally clause

	The with statement
	The match statement
	Overview
	Guards
	Irrefutable Case Blocks
	Patterns
	OR Patterns
	AS Patterns
	Literal Patterns
	Capture Patterns
	Wildcard Patterns
	Value Patterns
	Group Patterns
	Sequence Patterns
	Mapping Patterns
	Class Patterns


	Function definitions
	Class definitions
	Coroutines
	Coroutine function definition
	The async for statement
	The async with statement


	Top-level components
	Complete Python programs
	File input
	Interactive input
	Expression input

	Full Grammar specification
	Glossary
	Riguardo questa documentazione
	Volontari che hanno contribuito alla documentazione di Python

	Storia e licenza
	Storia del software
	Termini e condizioni di accesso o di utilizzo di Python
	PSF ACCORDO DI LICENZA PER PYTHON 3.11.13
	CONTRATTO DI LICENZA DI BEOPEN.COM PER PYTHON 2.0
	CNRI CONTRATTO DI LICENZA PER PYTHON 1.6.1
	CWI CONTRATTO DI LICENZA PER PYTHON DA 0.9.0 A 1.2
	ZERO-CLAUSE BSD LICENSE FOR CODE IN THE PYTHON 3.11.13 DOCUMENTATION

	Licenze e riconoscimenti per il software incorporato
	Mersenne Twister
	Socket
	Servizi di socket asincrone
	Gestione dei cookie
	Tracciabilità dell’esecuzione
	Funzioni UUencode e UUdecode
	Chiamate di procedura remota XML
	test_epoll
	Select kqueue
	SipHash24
	strtod e dtoa
	7.4 OpenSSL
	expat
	libffi
	zlib
	cfuhash
	libmpdec
	W3C C14N test suite
	Audioop
	asyncio


	Copyright
	Indice

