What's New in Python

Rilis 3.8.20

A. M. Kuchling

September 08, 2024

Python Software Foundation
Email: docs@python.org

Daftar Isi

1 Summary -- Release highlights

2 New Features

2.1
2.2
23
24
25
2.6
2.7
2.8
29

ASSIZNMENt EXPIESSIONS + & v v v v v v e v e
Positional-only parameters o e e e e e e e e e e e e e e e
Parallel filesystem cache for compiled bytecode files,
Debug build uses the same ABl asrelease build
f-strings support = for self-documenting expressions and debugging
PEP 578: Python Runtime Audit Hooks
PEP 587: Python Initialization Configuration
Vectorcall: a fast calling protocol for CPython
Pickle protocol 5 with out-of-band databuffers o000

3 Other Language Changes

4 New Modules

5 Improved Modules

5.1
52
53
54
5.5
5.6
5.7
5.8
59
5.10
5.11
5.12
5.13
5.14
5.15
5.16

AS L L e
ASYNCIO .+ v v o o e et e e e e e e e e e e e e e e
builtins e e e e e e e e e e e
COlECtiONS o o o e e e e e e e e e e e e e
cProfile e e

CLYPES . o o o o e e e e e e e e e e e e e e e e e e

BC e e
GRIEXE e e e e e e e e e e e

GZID . o e
IDLEandidlelib. oo e e
INSPECE . .« o o o e e e e e e e e e
10 o e e e e e

()

[c=BEN e N Ne NNV, BLV, B SN OS L)

12

10

11

12

13

14

S5.07 ertools oo e e e e e e
5.8 JSON00l . .. L L e e e e e e e e e e e
5190 10g8ING . . . v o o e e e e e e e e e
520 math . . . L e e e e e e e e e
S21 MMapo e e e e e e e e
522 multiprocessing o e e e e e e e e e e
523 05 i e e
524 ospath . . . L L e e e e e e e e e
525 pathlib oL e
5.26 pickle e e e e e
527 plisthib . . . o o e e
S28 PPNt . o o o e
5.20 py_compile ... e e e e e e e e e e e e
530 shlex o e e
531 shutil. . . L o L e
5.32 S0CKEt e e e e e e
5.33 SSl . e
534 StatiStiCS o e e e e e e e e e e e e e e e e e e
5.3 Sy e e e e e e e e e e e e
5.36 tarfile oL e e e e e e e
537 tempfile e e e e
538 threading L e e
539 toKeNIzZe e e e e e e
540 tKINtEr oL e e e e e e e
SAL tIMe e e
SA2 YPINE .« ot e e e e e e e e e e e e e e e
543 unicodedata L L L e e e e e e e e e e e e e
SA4 UNItESt o e e e e e e e e e
SAS5 VeV . .. L e
546 weakref
547 xml .o e e e e e e e e e e
548 xmIIpe . . . L o e e e e e e e

Optimizations

Build and C API Changes
Deprecated

API and Feature Removals

Porting to Python 3.8

10.1 Changesin Pythonbehavior e
10.2 Changesinthe Python API
10.3 Changesinthe CAPIL L . e
10.4 CPython bytecode changes L e
10.5 Demosand Tools e

Notable changes in Python 3.8.1
Notable changes in Python 3.8.2
Notable changes in Python 3.8.3

Notable changes in Python 3.8.8

25

26

27

28
28
29
31
32
33

34

34

34

34

15 Notable changes in Python 3.8.9 34

16 Notable changes in Python 3.8.10 34
16.1 macOS 11.0 (Big Sur) and Apple Silicon Mac support e 34
17 Notable changes in Python 3.8.10 35
17.1 urllib.parse o o e e e e e e e e e 35
18 Notable changes in Python 3.8.12 35
18.1 Changesinthe Python API 35
19 Notable security feature in 3.8.14 35
20 Notable Changes in 3.8.17 35
20.1 tarfile e 35
21 Notable changes in 3.8.20 36
211 3paddress. . . . o o e e e e e e e e e e e e e e e e e e e 36
212 email . . . L. e 36
Indeks 37

Editor Raymond Hettinger
This article explains the new features in Python 3.8, compared to 3.7. For full details, see the changelog.

Python 3.8 was released on October 14th, 2019.

1 Summary -- Release highlights

2 New Features

2.1 Assignment expressions

There is new syntax : = that assigns values to variables as part of a larger expression. It is affectionately known as "the
walrus operator” due to its resemblance to the eyes and tusks of a walrus.

In this example, the assignment expression helps avoid calling 1en () twice:

if (n := len(a)) > 10:
print (f"List is too long ({n} elements, expected <= 10)")

A similar benefit arises during regular expression matching where match objects are needed twice, once to test whether
a match occurred and another to extract a subgroup:

discount = 0.0
if (mo := re.search(r' (\d+)$% discount', advertisement)):
discount = float (mo.group(l)) / 100.0

The operator is also useful with while-loops that compute a value to test loop termination and then need that same value
again in the body of the loop:

https://en.wikipedia.org/wiki/Walrus#/media/File:Pacific_Walrus_-_Bull_(8247646168).jpg

Loop over fixed length blocks
while (block := f.read(256)) != "':
process (block)

Another motivating use case arises in list comprehensions where a value computed in a filtering condition is also needed
in the expression body:

[clean_name.title () for name in names
if (clean_name := normalize ('NFC', name)) in allowed_names]

Try to limit use of the walrus operator to clean cases that reduce complexity and improve readability.
See PEP 572 for a full description.
(Contributed by Emily Morehouse in bpo-35224.)

2.2 Positional-only parameters

There is a new function parameter syntax / to indicate that some function parameters must be specified positionally and
cannot be used as keyword arguments. This is the same notation shown by he1p () for C functions annotated with Larry
Hastings’ Argument Clinic tool.

In the following example, parameters a and b are positional-only, while ¢ or d can be positional or keyword, and e or f
are required to be keywords:

def f(a, b, /, ¢, d, *, e, f):
print(a, b, ¢, d, e, f)

The following is a valid call:

£(10, 20, 30, d=40, e=50, £=60)

Howeyver, these are invalid calls:

£(10, b=20, c=30, d=40, e=50, £=60) # b cannot be a keyword argument
f(10, 20, 30, 40, 50, £=60) # e must be a keyword argument

One use case for this notation is that it allows pure Python functions to fully emulate behaviors of existing C coded
functions. For example, the built-in divmod () function does not accept keyword arguments:

def divmod(a, b, /):
"Emulate the built in divmod() function"
return (a // b, a % b)

Another use case is to preclude keyword arguments when the parameter name is not helpful. For example, the builtin
len () function has the signature 1en (obj, /). This precludes awkward calls such as:

len(obj="'hello"') # The "obj" keyword argument impairs readability

A further benefit of marking a parameter as positional-only is that it allows the parameter name to be changed in the
future without risk of breaking client code. For example, in the st at istics module, the parameter name dist may be
changed in the future. This was made possible with the following function specification:

def quantiles(dist, /, *, n=4, method='exclusive')

https://www.python.org/dev/peps/pep-0572
https://bugs.python.org/issue?@action=redirect&bpo=35224
https://docs.python.org/3/howto/clinic.html

Since the parameters to the left of / are not exposed as possible keywords, the parameters names remain available for
use in **kwargs:

>>> def f(a, b, /, **kwargs):
print (a, b, kwargs)

>>> f£(10, 20, a=1, b=2, c=3) # a and b are used in two ways
10 20 {'a': 1, '"b': 2, 'c': 3}

This greatly simplifies the implementation of functions and methods that need to accept arbitrary keyword arguments.
For example, here is an excerpt from code in the collections module:

class Counter (dict):

def _ init_ (self, iterable=None, /, **kwds):
Note "iterable" is a possible keyword argument

See PEP 570 for a full description.
(Contributed by Pablo Galindo in bpo-36540.)

2.3 Parallel filesystem cache for compiled bytecode files

The new PYTHONPYCACHEPREF IX setting (also available as —X pycache_prefix) configures the implicit byte-
code cache to use a separate parallel filesystem tree, rather than the default __pycache__ subdirectories within each
source directory.

The location of the cache is reported in sys.pycache_prefix (None indicates the default location in
__pycache___ subdirectories).

(Contributed by Carl Meyer in bpo-33499.)

2.4 Debug build uses the same ABI as release build

Python now uses the same ABI whether it’s built in release or debug mode. On Unix, when Python is built in debug mode,
it is now possible to load C extensions built in release mode and C extensions built using the stable ABI.

Release builds and debug builds are now ABI compatible: defining the Py_DEBUG macro no longer implies the
Py_TRACE_REFS macro, which introduces the only ABI incompatibility. The Py_ TRACE_REF S macro, which adds
the sys.getobjects () function and the PYTHONDUMPREF S environment variable, can be set using the new . /
configure —-with-trace-refs build option. (Contributed by Victor Stinner in bpo-36465.)

On Unix, C extensions are no longer linked to libpython except on Android and Cygwin. It is now possible for a statically
linked Python to load a C extension built using a shared library Python. (Contributed by Victor Stinner in bpo-21536.)

On Unix, when Python is built in debug mode, import now also looks for C extensions compiled in release mode and for
C extensions compiled with the stable ABI. (Contributed by Victor Stinner in bpo-36722.)

To embed Python into an application, a new ——embed option must be passed to python3-config --1libs
-—embed to get —lpython3.8 (link the application to libpython). To support both 3.8 and older, try
python3-config —--1libs —-embed first and fallback to python3-config —-1ibs (without ——embed)
if the previous command fails.

Add a pkg-config python-3. 8-embed module to embed Python into an application: pkg—config python-3.
8—embed --1ibs includes —1python3.8. To support both 3.8 and older, try pkg-config python-X.
Y-embed --1ibs firstand fallback to pkg-config python-X.Y —--1ibs (without ——embed) if the previous
command fails (replace X .Y with the Python version).

https://www.python.org/dev/peps/pep-0570
https://bugs.python.org/issue?@action=redirect&bpo=36540
https://bugs.python.org/issue?@action=redirect&bpo=33499
https://bugs.python.org/issue?@action=redirect&bpo=36465
https://bugs.python.org/issue?@action=redirect&bpo=21536
https://bugs.python.org/issue?@action=redirect&bpo=36722

On the other hand, pkg—config python3.8 —-1ibs no longer contains ~1python3. 8. C extensions must not
be linked to libpython (except on Android and Cygwin, whose cases are handled by the script); this change is backward
incompatible on purpose. (Contributed by Victor Stinner in bpo-36721.)

2.5 f-strings support = for self-documenting expressions and debugging

Added an = specifier to f-strings. An f-string such as £' {expr=}" will expand to the text of the expression, an equal
sign, then the representation of the evaluated expression. For example:

>>> user = 'eric_idle'
>>> member_since = date (1975, 7, 31)
>>> f'/{user member_since !

"user='eric_idle' member_since=datetime.date (1975, 7, 31)"

The usual f-string format specifiers allow more control over how the result of the expression is displayed:

>>> delta = date.today() - member_since
>>> f' {user delta.days=:,d}"'
'user=eric_idle delta.days=16,075"

The = specifier will display the whole expression so that calculations can be shown:

>>> print (f'{theta cos (radians (theta)) L3N
theta=30 cos(radians (theta))=0.866

(Contributed by Eric V. Smith and Larry Hastings in bpo-36817.)

2.6 PEP 578: Python Runtime Audit Hooks

The PEP adds an Audit Hook and Verified Open Hook. Both are available from Python and native code, allowing
applications and frameworks written in pure Python code to take advantage of extra notifications, while also allowing
embedders or system administrators to deploy builds of Python where auditing is always enabled.

See PEP 578 for full details.

2.7 PEP 587: Python Initialization Configuration
The PEP 587 adds a new C API to configure the Python Initialization providing finer control on the whole configuration
and better error reporting.
New structures:

e PyConfig

e PyPreConfig

e PyStatus

e PyWideStringList
New functions:

e PyConfig_Clear ()

e PyConfig_TInitIsolatedConfig()

e PyConfig_InitPythonConfig/()

https://bugs.python.org/issue?@action=redirect&bpo=36721
https://bugs.python.org/issue?@action=redirect&bpo=36817
https://www.python.org/dev/peps/pep-0578
https://www.python.org/dev/peps/pep-0587

PyConfig_Read()
PyConfig_SetArgv ()
PyConfig_SetBytesArgv ()
PyConfig_SetBytesString ()
PyConfig_SetString()
PyPreConfig_InitIsolatedConfig()
PyPreConfig_InitPythonConfig ()
PyStatus_Error ()
PyStatus_Exception ()
PyStatus_Exit ()
PyStatus_IsError()
PyStatus_IsExit ()
PyStatus_NoMemory ()
PyStatus_Ok ()
PyWideStringList_Append()
PyWideStringList_Insert ()
Py_BytesMain ()
Py_ExitStatusException ()
Py_InitializeFromConfig()
Py_PreInitialize()
Py_PreInitializeFromArgs ()
Py_PreInitializeFromBytesArgs ()

Py_RunMain ()

This PEP also adds _PyRuntimeState.preconfig (PyPreConfig type) and PyInterpreterState.
config (PyConfig type) fields to these internal structures. PyInterpreterState.config becomes the new
reference configuration, replacing global configuration variables and other private variables.

See Python Initialization Configuration for the documentation.

See PEP 587 for a full description.

(Contributed by Victor Stinner in bpo-36763.)

2.8 Vectorcall: a fast calling protocol for CPython

The "vectorcall” protocol is added to the Python/C API. It is meant to formalize existing optimizations which were already
done for various classes. Any extension type implementing a callable can use this protocol.

This is currently provisional. The aim is to make it fully public in Python 3.9.

See PEP 590 for a full description.

(Contributed by Jeroen Demeyer and Mark Shannon in bpo-36974.)

https://www.python.org/dev/peps/pep-0587
https://bugs.python.org/issue?@action=redirect&bpo=36763
https://www.python.org/dev/peps/pep-0590
https://bugs.python.org/issue?@action=redirect&bpo=36974

2.9 Pickle protocol 5 with out-of-band data buffers

When pickle is used to transfer large data between Python processes in order to take advantage of multi-core or multi-
machine processing, it is important to optimize the transfer by reducing memory copies, and possibly by applying custom
techniques such as data-dependent compression.

The pickle protocol 5 introduces support for out-of-band buffers where PEP 3118-compatible data can be transmitted
separately from the main pickle stream, at the discretion of the communication layer.

See PEP 574 for a full description.

(Contributed by Antoine Pitrou in bpo-36785.)

3

Other Language Changes

A continue statement was illegal in the finally clause due to a problem with the implementation. In Python
3.8 this restriction was lifted. (Contributed by Serhiy Storchaka in bpo-32489.)

The bool, int, and fractions.Fraction types now have an as_integer_ratio () method like that
found in float and decimal.Decimal. This minor API extension makes it possible to write numerator,
denominator = x.as_integer_ratio () and have it work across multiple numeric types. (Contributed
by Lisa Roach in bpo-33073 and Raymond Hettinger in bpo-37819.)

Constructors of int, float and complex will now use the __index__ () special method, if available and
the corresponding method __int_ (), __ float_ () or __complex__ () is not available. (Contributed
by Serhiy Storchaka in bpo-20092.)

Added support of \N{name} escapes in regular expressions:

>>> notice = 'Copyright © 2019'

>>> copyright_year_pattern = re.compile (r'\N{copyright sign}\s* (\d) ")
>>> int (copyright_year_pattern.search (notice) .group(l))

2019

(Contributed by Jonathan Eunice and Serhiy Storchaka in bpo-30688.)

Dict and dictviews are now iterable in reversed insertion order using reversed (). (Contributed by Rémi La-
peyre in bpo-33462.)

The syntax allowed for keyword names in function calls was further restricted. In particular,
f ((keyword)=arg) is no longer allowed. It was never intended to permit more than a bare name on
the left-hand side of a keyword argument assignment term. (Contributed by Benjamin Peterson in bpo-34641.)

Generalized iterable unpacking in yield and return statements no longer requires enclosing parentheses. This
brings the yield and return syntax into better agreement with normal assignment syntax:

>>> def parse(family) :
lastname, *members = family.split ()
return lastname.upper (), *members

>>> parse('simpsons homer marge bart lisa sally')
("SIMPSONS', 'homer', 'marge', 'bart', 'lisa', 'sally')

(Contributed by David Cuthbert and Jordan Chapman in bpo-32117.)

When a comma is missed in code suchas [(10, 20) (30, 40)],thecompilerdisplaysa SyntaxWarning
with a helpful suggestion. This improves on just having a TypeError indicating that the first tuple was not
callable. (Contributed by Serhiy Storchaka in bpo-15248.)

https://www.python.org/dev/peps/pep-3118
https://www.python.org/dev/peps/pep-0574
https://bugs.python.org/issue?@action=redirect&bpo=36785
https://bugs.python.org/issue?@action=redirect&bpo=32489
https://bugs.python.org/issue?@action=redirect&bpo=33073
https://bugs.python.org/issue?@action=redirect&bpo=37819
https://bugs.python.org/issue?@action=redirect&bpo=20092
https://bugs.python.org/issue?@action=redirect&bpo=30688
https://bugs.python.org/issue?@action=redirect&bpo=33462
https://bugs.python.org/issue?@action=redirect&bpo=34641
https://bugs.python.org/issue?@action=redirect&bpo=32117
https://bugs.python.org/issue?@action=redirect&bpo=15248

« Arithmetic operations between subclasses of datetime.date or datetime.datetime and datetime.
timedelta objects now return an instance of the subclass, rather than the base class. This also affects the return
type of operations whose implementation (directly or indirectly) uses datet ime .t imedelta arithmetic, such
as astimezone (). (Contributed by Paul Ganssle in bpo-32417.)

o When the Python interpreter is interrupted by Ctrl-C (SIGINT) and the resulting KeyboardInterrupt excep-
tion is not caught, the Python process now exits via a SIGINT signal or with the correct exit code such that the
calling process can detect that it died due to a Ctrl-C. Shells on POSIX and Windows use this to properly terminate
scripts in interactive sessions. (Contributed by Google via Gregory P. Smith in bpo-1054041.)

» Some advanced styles of programming require updating the t ypes.CodeType object for an existing function.
Since code objects are immutable, a new code object needs to be created, one that is modeled on the existing code
object. With 19 parameters, this was somewhat tedious. Now, the new replace () method makes it possible to
create a clone with a few altered parameters.

Here’s an example that alters the statistics.mean () function to prevent the data parameter from being used
as a keyword argument:

>>> from statistics import mean

>>> mean (data=[10, 20, 901)

40

>>> mean. code = mean. code .replace(co_posonlyargcount=1)
>>> mean (data=[10, 20, 901)

Traceback (most recent call last):

TypeError: mean() got some positional-only arguments passed as keyword arguments:
—'data'

(Contributed by Victor Stinner in bpo-37032.)

« For integers, the three-argument form of the pow () function now permits the exponent to be negative in the
case where the base is relatively prime to the modulus. It then computes a modular inverse to the base when the
exponent is —1, and a suitable power of that inverse for other negative exponents. For example, to compute the
modular multiplicative inverse of 38 modulo 137, write:

>>> pow (38, -1, 137)
119

>>> 119 * 38 % 137

1

X

Modular inverses arise in the solution of linear Diophantine equations. For example, to find integer solutions for
4258x + 147y = 369, firstrewrite as 4258x = 369 (mod 147) then solve:

>>> x = 369 * pow (4258, -1, 147) % 147

>>> y = (4258 * x — 369) // —-147
>>> 4258 * x + 147 * vy
369

(Contributed by Mark Dickinson in bpo-36027.)

« Dict comprehensions have been synced-up with dict literals so that the key is computed first and the value second:

>>> # Dict comprehension

>>> cast = {input('role? '): input('actor? ') for i in range(2)}
role? King Arthur

actor? Chapman

role? Black Knight

actor? Cleese

(berlanjut ke halaman berikutnya)

https://bugs.python.org/issue?@action=redirect&bpo=32417
https://bugs.python.org/issue?@action=redirect&bpo=1054041
https://bugs.python.org/issue?@action=redirect&bpo=37032
https://en.wikipedia.org/wiki/Modular_multiplicative_inverse
https://en.wikipedia.org/wiki/Diophantine_equation
https://bugs.python.org/issue?@action=redirect&bpo=36027

(lanjutan dari halaman sebelumnya)

>>> # Dict literal

>>> cast = {input ('role? '): input('actor? ')}
role? Sir Robin

actor? Eric Idle

The guaranteed execution order is helpful with assignment expressions because variables assigned in the key exp-
ression will be available in the value expression:

>>> names = ['Martin von Lowis', 'Zukasz Langa', 'Walter Dorwald']
>>> {(n := normalize ('NFC', name)) .casefold() : n for name in names}
{'martin von 1ldwis': 'Martin von Lowis',

'tukasz langa': 'kukasz Langa',

'walter dorwald': 'Walter Dorwald'}

(Contributed by Jorn Heissler in bpo-35224.)

e The object.__reduce__ () method can now return a tuple from two to six elements long. Formerly, five was
the limit. The new, optional sixth element is a callable with a (obj, state) signature. This allows the direct
control over the state-updating behavior of a specific object. If not None, this callable will have priority over the
object’s __setstate__ () method. (Contributed by Pierre Glaser and Olivier Grisel in bpo-35900.)

4 New Modules

e The new importlib.metadata module provides (provisional) support for reading metadata from third-party
packages. For example, it can extract an installed package’s version number, list of entry points, and more:

>>> # Note following example requires that the popular "requests"
>>> # package has been installed.

>>>

>>> from importlib.metadata import version, requires, files

>>> version('requests')

'2.22.0"

>>> list (requires ('requests'))

['chardet (<3.1.0,>=3.0.2)"]

>>> list (files('requests')) [:5]

[PackagePath ('requests—2.22.0.dist-info/INSTALLER'),
PackagePath ('requests-2.22.0.dist-info/LICENSE'"),
PackagePath ('requests-2.22.0.dist-info/METADATA"'),

.dist-info/RECORD"'"),
.dist-info/WHEEL")]

O O O O o

(

(
PackagePath ('requests—-2.22.
PackagePath ('requests-2.22.

(Contributed by Barry Warsaw and Jason R. Coombs in bpo-34632.)

10

https://bugs.python.org/issue?@action=redirect&bpo=35224
https://bugs.python.org/issue?@action=redirect&bpo=35900
https://bugs.python.org/issue?@action=redirect&bpo=34632

5 Improved Modules

5.1 ast

AST nodes now have end_lineno and end_col_offset attributes, which give the precise location of the end of
the node. (This only applies to nodes that have 1ineno and col_offset attributes.)

New function ast .get_source_segment () returns the source code for a specific AST node.
(Contributed by Ivan Levkivskyi in bpo-33416.)
The ast .parse () function has some new flags:

e type_comments=True causes it to return the text of PEP 484 and PEP 526 type comments associated with
certain AST nodes;

e mode="func_type"' canbe used to parse PEP 484 “signature type comments” (returned for function definition
AST nodes);

o feature_version=(3, N) allows specifying an earlier Python 3 version. For example,
feature_version=(3, 4) willtreat async and await as non-reserved words.

(Contributed by Guido van Rossum in bpo-35766.)
5.2 asyncio

asyncio.run () has graduated from the provisional to stable API. This function can be used to execute a coroutine
and return the result while automatically managing the event loop. For example:

import asyncio
async def main() :
await asyncio.sleep (0)

return 42

asyncio.run (main())

This is roughly equivalent to:

import asyncio

async def main() :
await asyncio.sleep (0)
return 42

loop = asyncio.new_event_loop ()

asyncio.set_event_loop (loop)

try:
loop.run_until_complete (main())

finally:
asyncio.set_event_loop (None)
loop.close ()

The actual implementation is significantly more complex. Thus, asyncio.run () should be the preferred way of
running asyncio programs.

(Contributed by Yury Selivanov in bpo-32314.)

11

https://bugs.python.org/issue?@action=redirect&bpo=33416
https://www.python.org/dev/peps/pep-0484
https://www.python.org/dev/peps/pep-0526
https://www.python.org/dev/peps/pep-0484
https://bugs.python.org/issue?@action=redirect&bpo=35766
https://bugs.python.org/issue?@action=redirect&bpo=32314

Running python -m asyncio launches a natively async REPL. This allows rapid experimentation with code that
has a top-level await. There is no longer a need to directly call asyncio.run () which would spawn a new event
loop on every invocation:

$ python -m asyncio

asyncio REPL 3.8.0

Use "await" directly instead of "asyncio.run()".

Type "help", "copyright", "credits" or "license" for more information.
>>> import asyncio

>>> await asyncio.sleep (10, result='hello')

hello

(Contributed by Yury Selivanov in bpo-37028.)

The exception asyncio.CancelledError now inherits from BaseException rather than Exception and no
longer inherits from concurrent . futures.CancelledError. (Contributed by Yury Selivanov in bpo-32528.)

On Windows, the default event loop is now ProactorEventLoop. (Contributed by Victor Stinner in bpo-34687.)
ProactorEventLoop now also supports UDP. (Contributed by Adam Meily and Andrew Svetlov in bpo-29883.)

ProactorEventLoop can now be interrupted by KeyboardInterrupt ("CTRL+C”). (Contributed by Vladimir
Matveev in bpo-23057.)

Added asyncio.Task.get_coro () for getting the wrapped coroutine within an asyncio. Task. (Contributed
by Alex Gronholm in bpo-36999.)

Asyncio tasks can now be named, either by passing the name keyword argument to asyncio.create_task ()
or the create_task () event loop method, or by calling the set_name () method on the task object. The task
name is visible in the repr () output of asyncio.Task and can also be retrieved using the get_name () method.
(Contributed by Alex Gronholm in bpo-34270.)

Added support for Happy Eyeballs to asyncio.loop.create_connection (). To specify the behavior, two
new parameters have been added: happy_eyeballs_delay and interleave. The Happy Eyeballs algorithm improves respon-
siveness in applications that support IPv4 and IPv6 by attempting to simultaneously connect using both. (Contributed by
twisteroid ambassador in bpo-33530.)

5.3 builtins

The compile () built-in has been improved to accept the ast . PyCF_ALLOW_TOP_LEVEL_AWAIT flag. With this
new flag passed, compile () will allow top-level await, async for and async with constructs that are usually
considered invalid syntax. Asynchronous code object marked with the CO_COROUTINE flag may then be returned.
(Contributed by Matthias Bussonnier in bpo-34616)

5.4 collections

The _asdict () method for collections.namedtuple () now returns a dict instead of a collections.
OrderedDict. This works because regular dicts have guaranteed ordering since Python 3.7. If the extra features of
OrderedDict are required, the suggested remediation is to cast the result to the desired type: OrderedDict (nt.
_asdict ()). (Contributed by Raymond Hettinger in bpo-35864.)

12

https://bugs.python.org/issue?@action=redirect&bpo=37028
https://bugs.python.org/issue?@action=redirect&bpo=32528
https://bugs.python.org/issue?@action=redirect&bpo=34687
https://bugs.python.org/issue?@action=redirect&bpo=29883
https://bugs.python.org/issue?@action=redirect&bpo=23057
https://bugs.python.org/issue?@action=redirect&bpo=36999
https://bugs.python.org/issue?@action=redirect&bpo=34270
https://en.wikipedia.org/wiki/Happy_Eyeballs
https://bugs.python.org/issue?@action=redirect&bpo=33530
https://bugs.python.org/issue?@action=redirect&bpo=34616
https://bugs.python.org/issue?@action=redirect&bpo=35864

5.5 cProfile

The cProfile.Profile class can now be used as a context manager. Profile a block of code by running:

import cProfile

with cProfile.Profile() as profiler:
code to be profiled

(Contributed by Scott Sanderson in bpo-29235.)

5.6 csv

The csv.DictReader now returns instances of dict instead of a collections.OrderedDict. The tool is
now faster and uses less memory while still preserving the field order. (Contributed by Michael Selik in bpo-34003.)

5.7 curses

Added a new variable holding structured version information for the underlying ncurses library: ncurses_version.
(Contributed by Serhiy Storchaka in bpo-31680.)

5.8 ctypes

On Windows, CDLL and subclasses now accept a winmode parameter to specify flags for the underlying
LoadLibraryEx call. The default flags are set to only load DLL dependencies from trusted locations, including
the path where the DLL is stored (if a full or partial path is used to load the initial DLL) and paths added by
add_dl1l_directory (). (Contributed by Steve Dower in bpo-36085.)

5.9 datetime
Added new alternate constructors datetime.date.fromisocalendar () and datetime.datetime.

fromisocalendar (), which construct date and datet ime objects respectively from ISO year, week number,
and weekday; these are the inverse of each class’s 1 socalendar method. (Contributed by Paul Ganssle in bpo-36004.)

5.10 functools

functools.lru_cache () can now be used as a straight decorator rather than as a function returning a decorator.
So both of these are now supported:

@lru_cache
def f (x):

@lru_cache (maxsize=256)
def f(x):

13

https://bugs.python.org/issue?@action=redirect&bpo=29235
https://bugs.python.org/issue?@action=redirect&bpo=34003
https://bugs.python.org/issue?@action=redirect&bpo=31680
https://bugs.python.org/issue?@action=redirect&bpo=36085
https://bugs.python.org/issue?@action=redirect&bpo=36004

(Contributed by Raymond Hettinger in bpo-36772.)

Added a new functools.cached_property () decorator, for computed properties cached for the life of the
instance.

import functools
import statistics

class Dataset:
def _ init__ (self, sequence_of_ numbers):
self.data = sequence_of_numbers

@functools.cached_property
def variance (self):
return statistics.variance (self.data)

(Contributed by Carl Meyer in bpo-21145)

Added a new functools.singledispatchmethod () decorator that converts methods into generic functions
using single dispatch:

from functools import singledispatchmethod
from contextlib import suppress

class TaskManager:

def _ init_ (self, tasks):
self.tasks = list (tasks)

@singledispatchmethod
def discard(self, wvalue):
with suppress (ValueError) :
self.tasks.remove (value)

@discard.register (list)
def _(self, tasks):
targets = set (tasks)
self.tasks = [x for x in self.tasks if x not in targets]

(Contributed by Ethan Smith in bpo-32380)

5.11 gc

get_objects () can now receive an optional generation parameter indicating a generation to get objects from. (Con-
tributed by Pablo Galindo in bpo-36016.)

5.12 gettext

Added pgettext () and its variants. (Contributed by Franz Glasner, Eric Araujo, and Cheryl Sabella in bpo-2504.)

14

https://bugs.python.org/issue?@action=redirect&bpo=36772
https://bugs.python.org/issue?@action=redirect&bpo=21145
https://bugs.python.org/issue?@action=redirect&bpo=32380
https://bugs.python.org/issue?@action=redirect&bpo=36016
https://bugs.python.org/issue?@action=redirect&bpo=2504

5.13 gzip

Added the mtime parameter to gzip.compress () for reproducible output. (Contributed by Guo Ci Teo in bpo-
34898.)

A BadGzipFile exception is now raised instead of OSError for certain types of invalid or corrupt gzip files. (Con-
tributed by Filip Gruszczyniski, Michele Orru, and Zackery Spytz in bpo-6584.)

5.14 IDLE and idlelib

Output over N lines (50 by default) is squeezed down to a button. N can be changed in the PyShell section of the General
page of the Settings dialog. Fewer, but possibly extra long, lines can be squeezed by right clicking on the output. Squeezed
output can be expanded in place by double-clicking the button or into the clipboard or a separate window by right-clicking
the button. (Contributed by Tal Einat in bpo-1529353.)

Add "Run Customized” to the Run menu to run a module with customized settings. Any command line arguments entered
are added to sys.argv. They also re-appear in the box for the next customized run. One can also suppress the normal Shell
main module restart. (Contributed by Cheryl Sabella, Terry Jan Reedy, and others in bpo-5680 and bpo-37627.)

Added optional line numbers for IDLE editor windows. Windows open without line numbers unless set otherwise in the
General tab of the configuration dialog. Line numbers for an existing window are shown and hidden in the Options menu.
(Contributed by Tal Einat and Saimadhav Heblikar in bpo-17535.)

OS native encoding is now used for converting between Python strings and Tcl objects. This allows IDLE to work with
emoji and other non-BMP characters. These characters can be displayed or copied and pasted to or from the clipboard.
Converting strings from Tcl to Python and back now never fails. (Many people worked on this for eight years but the
problem was finally solved by Serhiy Storchaka in bpo-13153.)

New in 3.8.1:

Add option to toggle cursor blink off. (Contributed by Zackery Spytz in bpo-4603.)

Escape key now closes IDLE completion windows. (Contributed by Johnny Najera in bpo-38944.)
The changes above have been backported to 3.7 maintenance releases.

Add keywords to module name completion list. (Contributed by Terry J. Reedy in bpo-37765.)

5.15 inspect

The inspect.getdoc () function can now find docstrings for _ _slots__ if that attribute is a dict where
the values are docstrings. This provides documentation options similar to what we already have for property (),
classmethod (), and staticmethod ():

class AudioClip:

__slots__ = {'bit_rate': 'expressed in kilohertz to one decimal place',
'duration': 'in seconds, rounded up to an integer'}
def _ init_ (self, bit_rate, duration):
self.bit_rate = round(bit_rate / 1000.0, 1)
self.duration = ceil (duration)

(Contributed by Raymond Hettinger in bpo-36326.)

15

https://bugs.python.org/issue?@action=redirect&bpo=34898
https://bugs.python.org/issue?@action=redirect&bpo=34898
https://bugs.python.org/issue?@action=redirect&bpo=6584
https://bugs.python.org/issue?@action=redirect&bpo=1529353
https://bugs.python.org/issue?@action=redirect&bpo=5680
https://bugs.python.org/issue?@action=redirect&bpo=37627
https://bugs.python.org/issue?@action=redirect&bpo=17535
https://bugs.python.org/issue?@action=redirect&bpo=13153
https://bugs.python.org/issue?@action=redirect&bpo=4603
https://bugs.python.org/issue?@action=redirect&bpo=38944
https://bugs.python.org/issue?@action=redirect&bpo=37765
https://bugs.python.org/issue?@action=redirect&bpo=36326

5.16 io

In development mode (-X env) and in debug build, the io.IOBase finalizer now logs the exception if the close ()
method fails. The exception is ignored silently by default in release build. (Contributed by Victor Stinner in bpo-18748.)

5.17 itertools

The itertools.accumulate () function added an option initial keyword argument to specify an initial value:

>>> from itertools import accumulate
>>> list (accumulate ([10, 5, 30, 15], initial=1000))
[1000, 1010, 1015, 1045, 1060]

(Contributed by Lisa Roach in bpo-34659.)

5.18 json.tool

Add option ——json-1ines to parse every input line as a separate JSON object. (Contributed by Weipeng Hong in
bpo-31553.)

5.19 logging
Added a force keyword argument to logging.basicConfig () When set to true, any existing handlers attached to
the root logger are removed and closed before carrying out the configuration specified by the other arguments.

This solves a long-standing problem. Once a logger or basicConfig() had been called, subsequent calls to basicConfig()
were silently ignored. This made it difficult to update, experiment with, or teach the various logging configuration options
using the interactive prompt or a Jupyter notebook.

(Suggested by Raymond Hettinger, implemented by Dong-hee Na, and reviewed by Vinay Sajip in bpo-33897.)

5.20 math
Added new function math.dist () for computing Euclidean distance between two points. (Contributed by Raymond
Hettinger in bpo-33089.)

Expanded the math.hypot () function to handle multiple dimensions. Formerly, it only supported the 2-D case.
(Contributed by Raymond Hettinger in bpo-33089.)

Added new function, math.prod (), as analogous function to sum () that returns the product of a ’start’ value (default:
1) times an iterable of numbers:

>>> prior = 0.8

>>> likelihoods = [0.625, 0.84, 0.30]
>>> math.prod(likelihoods, start=prior)
0.126

(Contributed by Pablo Galindo in bpo-35606.)

Added two new combinatoric functions math .perm () and math.comb ():

16

https://bugs.python.org/issue?@action=redirect&bpo=18748
https://bugs.python.org/issue?@action=redirect&bpo=34659
https://bugs.python.org/issue?@action=redirect&bpo=31553
https://bugs.python.org/issue?@action=redirect&bpo=33897
https://bugs.python.org/issue?@action=redirect&bpo=33089
https://bugs.python.org/issue?@action=redirect&bpo=33089
https://bugs.python.org/issue?@action=redirect&bpo=35606

>>> math.perm (10, 3) # Permutations of 10 things taken 3 at a time
720
>>> math.comb (10, 3) # Combinations of 10 things taken 3 at a time
120

(Contributed by Yash Aggarwal, Keller Fuchs, Serhiy Storchaka, and Raymond Hettinger in bpo-37128, bpo-37178, and
bpo-35431.)

Added a new function math.isqrt () for computing accurate integer square roots without conversion to floating
point. The new function supports arbitrarily large integers. It is faster than f1oor (sgrt (n)) butslower than math.
sgrt ():

>>> r = 650320427

>>> 5 = 1 ** 2

>>> isqgrt(s - 1) # correct
650320426

>>> floor(sqgrt(s - 1)) # Iincorrect
650320427

(Contributed by Mark Dickinson in bpo-36887.)

The function math.factorial () no longer accepts arguments that are not int-like. (Contributed by Pablo Galindo
in bpo-33083.)

5.21 mmap

The mmap .mmap class now has an madvise () method to access the madvise () system call. (Contributed by
Zackery Spytz in bpo-32941.)

5.22 multiprocessing

Added new multiprocessing.shared_memory module. (Contributed by Davin Potts in bpo-35813.)

On macOS, the spawn start method is now used by default. (Contributed by Victor Stinner in bpo-33725.)

5.23 os

Added new function add_d11_directory () on Windows for providing additional search paths for native dependen-
cies when importing extension modules or loading DLLs using ct ypes. (Contributed by Steve Dower in bpo-36085.)

Anew os.memfd_create () function was added to wrap the memfd_create () syscall. (Contributed by Zackery
Spytz and Christian Heimes in bpo-26836.)

On Windows, much of the manual logic for handling reparse points (including symlinks and directory junctions) has
been delegated to the operating system. Specifically, os . stat () will now traverse anything supported by the operating
system, while os . 1stat () will only open reparse points that identify as “name surrogates” while others are opened as
foros.stat (). Inallcases, stat_result.st_mode will only have S_IFLNK set for symbolic links and not other
kinds of reparse points. To identify other kinds of reparse point, check the new stat_result.st_reparse_tag
attribute.

On Windows, os.readlink () is now able to read directory junctions. Note that 1s1ink () will return False for
directory junctions, and so code that checks is1ink first will continue to treat junctions as directories, while code that
handles errors from os . readlink () may now treat junctions as links.

(Contributed by Steve Dower in bpo-37834.)

17

https://bugs.python.org/issue?@action=redirect&bpo=37128
https://bugs.python.org/issue?@action=redirect&bpo=37178
https://bugs.python.org/issue?@action=redirect&bpo=35431
https://bugs.python.org/issue?@action=redirect&bpo=36887
https://bugs.python.org/issue?@action=redirect&bpo=33083
https://bugs.python.org/issue?@action=redirect&bpo=32941
https://bugs.python.org/issue?@action=redirect&bpo=35813
https://bugs.python.org/issue?@action=redirect&bpo=33725
https://bugs.python.org/issue?@action=redirect&bpo=36085
https://bugs.python.org/issue?@action=redirect&bpo=26836
https://bugs.python.org/issue?@action=redirect&bpo=37834

Asof 3.8.20, os.mkdir () and os.makedirs () on Windows now support passing a mode value of 00700 to apply
access control to the new directory. This implicitly affects tempfile.mkdtemp () and is a mitigation for CVE-2024-
4030. Other values for mode continue to be ignored. (Contributed by Steve Dower in gh-118486.)

5.24 os.path

os.path functions that return a boolean result like exists (), lexists (), isdir (), isfile (), islink (),
and ismount () now return False instead of raising ValueError or its subclasses UnicodeEncodeError and
UnicodeDecodeError for paths that contain characters or bytes unrepresentable at the OS level. (Contributed by
Serhiy Storchaka in bpo-33721.)

expanduser () on Windows now prefers the USERPROF ILE environment variable and does not use HOME, which is
not normally set for regular user accounts. (Contributed by Anthony Sottile in bpo-36264.)

isdir () on Windows no longer returns True for a link to a non-existent directory.
realpath () on Windows now resolves reparse points, including symlinks and directory junctions.

(Contributed by Steve Dower in bpo-37834.)

5.25 pathlib

pathlib.Path methods that return a boolean result like exists (), is_dir (), is_file (), is_mount (),
is_symlink (), is_block_device (), is_char_device (), is_fifo (), is_socket () now return
False instead of raising ValueError or its subclass UnicodeEncodeError for paths that contain characters
unrepresentable at the OS level. (Contributed by Serhiy Storchaka in bpo-33721.)

Added pathlib.Path.link_to () which creates a hard link pointing to a path. (Contributed by Joannah Nanjekye
in bpo-26978)

5.26 pickle

pickle extensions subclassing the C-optimized P ickler can now override the pickling logic of functions and classes
by defining the special reducer_override () method. (Contributed by Pierre Glaser and Olivier Grisel in bpo-
35900.)

5.27 plistlib

Added new plistlib.UID and enabled support for reading and writing NSKeyedArchiver-encoded binary plists.
(Contributed by Jon Janzen in bpo-26707.)

5.28 pprint

The pprint module added a sort_dicts parameter to several functions. By default, those functions continue to sort
dictionaries before rendering or printing. However, if sort_dicts is set to false, the dictionaries retain the order that keys
were inserted. This can be useful for comparison to JSON inputs during debugging.

In addition, there is a convenience new function, pprint .pp () thatis like pprint .pprint () but with sort_dicts
defaulting to False:

18

https://github.com/python/cpython/issues/118486
https://bugs.python.org/issue?@action=redirect&bpo=33721
https://bugs.python.org/issue?@action=redirect&bpo=36264
https://bugs.python.org/issue?@action=redirect&bpo=37834
https://bugs.python.org/issue?@action=redirect&bpo=33721
https://bugs.python.org/issue?@action=redirect&bpo=26978
https://bugs.python.org/issue?@action=redirect&bpo=35900
https://bugs.python.org/issue?@action=redirect&bpo=35900
https://bugs.python.org/issue?@action=redirect&bpo=26707

>>> from pprint import pprint, pp
>>> d = dict (source="input.txt', operation='filter', destination='output.txt"')
>>> pp(d, width=40) # Original order
{'source': 'input.txt',

'operation': 'filter',

'destination': 'output.txt'}
>>> pprint (d, width=40) # Keys sorted alphabetically
{'destination': 'output.txt',

'operation': 'filter',

'source': 'input.txt'}

(Contributed by Rémi Lapeyre in bpo-30670.)

5.29 py_compile

py_compile.compile () now supports silent mode. (Contributed by Joannah Nanjekye in bpo-22640.)

5.30 shlex

Thenew shlex. join () function acts as the inverse of shlex.split (). (Contributed by Bo Bayles in bpo-32102.)

5.31 shutil
shutil.copytree () now accepts anew dirs_exist_ok keyword argument. (Contributed by Josh Bronson in
bpo-20849.)

shutil.make_archive () now defaults to the modern pax (POSIX.1-2001) format for new archives to improve
portability and standards conformance, inherited from the corresponding change to the tar £ile module. (Contributed
by C.A.M. Gerlach in bpo-30661.)

shutil.rmtree () on Windows now removes directory junctions without recursively removing their contents first.
(Contributed by Steve Dower in bpo-37834.)

5.32 socket

Added create_server () and has_dualstack_ipv6 () convenience functions to automate the necessary tasks
usually involved when creating a server socket, including accepting both IPv4 and IPv6 connections on the same socket.
(Contributed by Giampaolo Rodola in bpo-17561.)

The socket.if nameindex (), socket.if nametoindex (), and socket.if_ indextoname () fun-
ctions have been implemented on Windows. (Contributed by Zackery Spytz in bpo-37007.)

19

https://bugs.python.org/issue?@action=redirect&bpo=30670
https://bugs.python.org/issue?@action=redirect&bpo=22640
https://bugs.python.org/issue?@action=redirect&bpo=32102
https://bugs.python.org/issue?@action=redirect&bpo=20849
https://bugs.python.org/issue?@action=redirect&bpo=30661
https://bugs.python.org/issue?@action=redirect&bpo=37834
https://bugs.python.org/issue?@action=redirect&bpo=17561
https://bugs.python.org/issue?@action=redirect&bpo=37007

5.33 ssl

Added post_handshake_authtoenableand verify_client_post_handshake () toinitiate TLS 1.3 post-
handshake authentication. (Contributed by Christian Heimes in bpo-34670.)

5.34 statistics

Added statistics.fmean () as a faster, floating point variant of statistics.mean (). (Contributed by Ra-
ymond Hettinger and Steven D’Aprano in bpo-35904.)

Added statistics.geometric_mean () (Contributed by Raymond Hettinger in bpo-27181.)

Added statistics.multimode () that returns a list of the most common values. (Contributed by Raymond Het-
tinger in bpo-35892.)

Added statistics.quantiles () that divides data or a distribution in to equiprobable intervals (e.g. quartiles,
deciles, or percentiles). (Contributed by Raymond Hettinger in bpo-36546.)

Added statistics.NormalDist, a tool for creating and manipulating normal distributions of a random variable.
(Contributed by Raymond Hettinger in bpo-36018.)

>>> temperature_feb = NormalDist.from_ samples([4, 12, -3, 2, 7, 147])
>>> temperature_feb.mean

6.0

>>> temperature_feb.stdev

6.356099432828281

>>> temperature_feb.cdf (3) # Chance of being under 3 degrees
0.3184678262814532

>>> # Relative chance of being 7 degrees versus 10 degrees

>>> temperature_feb.pdf (7) / temperature_feb.pdf (10)

1.2039930378537762

>>> el _nifio = NormalDist (4, 2.5)

>>> temperature_feb += el_nifio # Add in a climate effect
>>> temperature_feb

NormalDist (mu=10.0, sigma=6.830080526611674)

>>> temperature_feb * (9/5) + 32 # Convert to Fahrenheit
NormalDist (mu=50.0, sigma=12.294144947901014)
>>> temperature_feb.samples (3) # Generate random samples

[7.672102882379219, 12.000027119750287, 4.647488369766392]

5.35 sys

Add new sys.unraisablehook () function which can be overridden to control how “unraisable exceptions” are
handled. It is called when an exception has occurred but there is no way for Python to handle it. For example, when
a destructor raises an exception or during garbage collection (gc.collect ()). (Contributed by Victor Stinner in
bpo-36829.)

20

https://bugs.python.org/issue?@action=redirect&bpo=34670
https://bugs.python.org/issue?@action=redirect&bpo=35904
https://bugs.python.org/issue?@action=redirect&bpo=27181
https://bugs.python.org/issue?@action=redirect&bpo=35892
https://bugs.python.org/issue?@action=redirect&bpo=36546
https://bugs.python.org/issue?@action=redirect&bpo=36018
https://bugs.python.org/issue?@action=redirect&bpo=36829

5.36 tarfile

The tarfile module now defaults to the modern pax (POSIX.1-2001) format for new archives, instead of the previous
GNU-specific one. This improves cross-platform portability with a consistent encoding (UTF-8) in a standardized and
extensible format, and offers several other benefits. (Contributed by C.A.M. Gerlach in bpo-36268.)

5.37 tempfile

As of 3.8.20 on Windows, the default mode 00700 used by tempfile.mkdtemp () now limits access to the new
directory due to changes to os .mkdir (). This is a mitigation for CVE-2024-4030. (Contributed by Steve Dower in
gh-118486.)

5.38 threading

Add anew threading.excepthook () function which handles uncaught threading.Thread. run () excep-
tion. It can be overridden to control how uncaught threading.Thread. run () exceptions are handled. (Contribu-
ted by Victor Stinner in bpo-1230540.)

Add anew threading.get_native_id () function and a native_1id attribute to the threading.Thread
class. These return the native integral Thread ID of the current thread assigned by the kernel. This feature is only available
on certain platforms, see get_native_id for more information. (Contributed by Jake Tesler in bpo-36084.)

5.39 tokenize

The t okenize module now implicitly emits a NEWLINE token when provided with input that does not have a trailing
new line. This behavior now matches what the C tokenizer does internally. (Contributed by Ammar Askar in bpo-33899.)

5.40 tkinter

Added methods selection_from(), selection_present (), selection_range () and
selection_to () inthe tkinter.Spinbox class. (Contributed by Juliette Monsel in bpo-34829.)

Added method moveto () inthe tkinter.Canvas class. (Contributed by Juliette Monsel in bpo-23831.)

The tkinter.PhotoImage class now has transparency_get () and transparency_set () methods.
(Contributed by Zackery Spytz in bpo-25451.)

5.41 time

Added new clock CLOCK_UPTIME_RAW for macOS 10.12. (Contributed by Joannah Nanjekye in bpo-35702.)

21

https://bugs.python.org/issue?@action=redirect&bpo=36268
https://github.com/python/cpython/issues/118486
https://bugs.python.org/issue?@action=redirect&bpo=1230540
https://bugs.python.org/issue?@action=redirect&bpo=36084
https://bugs.python.org/issue?@action=redirect&bpo=33899
https://bugs.python.org/issue?@action=redirect&bpo=34829
https://bugs.python.org/issue?@action=redirect&bpo=23831
https://bugs.python.org/issue?@action=redirect&bpo=25451
https://bugs.python.org/issue?@action=redirect&bpo=35702

5.42 typing

The typing module incorporates several new features:

« A dictionary type with per-key types. See PEP 589 and t yping. TypedDict. TypedDict uses only string keys.
By default, every key is required to be present. Specify "total=False” to allow keys to be optional:

class Location (TypedDict, total=False):
lat_long: tuple
grid_square: str
xy_coordinate: tuple

« Literal types. See PEP 586 and typing.Literal. Literal types indicate that a parameter or return value is
constrained to one or more specific literal values:

def get_status(port: int) -> Literal['connected', 'disconnected']:

« “Final” variables, functions, methods and classes. See PEP 591, typing.Final and typing.final (). The
final qualifier instructs a static type checker to restrict subclassing, overriding, or reassignment:

pi: Final[float] = 3.1415926536

» Protocol definitions. See PEP 544, typing.Protocol and typing.runtime_checkable (). Simple
ABCs like typing. SupportsInt are now Protocol subclasses.

« New protocol class typing. SupportsIndex.

e New functions typing.get_origin () and typing.get_args ().

5.43 unicodedata

The unicodedata module has been upgraded to use the Unicode 12.1.0 release.

New function is_normalized () can be used to verify a string is in a specific normal form, often much faster than
by actually normalizing the string. (Contributed by Max Belanger, David Euresti, and Greg Price in bpo-32285 and
bpo-37966).

5.44 unittest
Added AsyncMock to support an asynchronous version of Mock. Appropriate new assert functions for testing have
been added as well. (Contributed by Lisa Roach in bpo-26467).

Added addModuleCleanup () and addClassCleanup () to unittest to support cleanups for set UpModule ()
and setUpClass (). (Contributed by Lisa Roach in bpo-24412.)

Several mock assert functions now also print a list of actual calls upon failure. (Contributed by Petter Strandmark in
bpo-35047.)

unittest module gained support for coroutines to be used as test cases with unittest.
IsolatedAsyncioTestCase. (Contributed by Andrew Svetlov in bpo-32972.)

Example:

22

https://www.python.org/dev/peps/pep-0589
https://www.python.org/dev/peps/pep-0586
https://www.python.org/dev/peps/pep-0591
https://www.python.org/dev/peps/pep-0544
http://blog.unicode.org/2019/05/unicode-12-1-en.html
https://bugs.python.org/issue?@action=redirect&bpo=32285
https://bugs.python.org/issue?@action=redirect&bpo=37966
https://bugs.python.org/issue?@action=redirect&bpo=26467
https://bugs.python.org/issue?@action=redirect&bpo=24412
https://bugs.python.org/issue?@action=redirect&bpo=35047
https://bugs.python.org/issue?@action=redirect&bpo=32972

import unittest

class TestRequest (unittest.IsolatedAsyncioTestCase) :

async def asyncSetUp (self):
self.connection = await AsyncConnection ()

async def test_get (self):
response = await self.connection.get ("https://example.com")
self.assertEqual (response.status_code, 200)

async def asyncTearDown (self):
await self.connection.close ()

if name == "__main__ ":

unittest.main ()

5.45 venv

venv now includes an Activate.ps1 script on all platforms for activating virtual environments under PowerShell
Core 6.1. (Contributed by Brett Cannon in bpo-32718.)

5.46 weakref

The proxy objects returned by weakref . proxy () now support the matrix multiplication operators @ and @= in addi-
tion to the other numeric operators. (Contributed by Mark Dickinson in bpo-36669.)

5.47 xml

As mitigation against DTD and external entity retrieval, the xm1.dom.minidom and xml . sax modules no longer
process external entities by default. (Contributed by Christian Heimes in bpo-17239.)

The . find* () methods in the xml .etree.Element Tree module support wildcard searches like { * } t ag which
ignores the namespace and {namespace}* which returns all tags in the given namespace. (Contributed by Stefan
Behnel in bpo-28238.)

The =xml.etree.ElementTree module provides a new function -xml.etree.ElementTree.
canonicalize () that implements C14N 2.0. (Contributed by Stefan Behnel in bpo-13611.)

The target object of xml.etree.ElementTree.XMLParser can receive namespace declaration events thro-
ugh the new callback methods start_ns () and end_ns (). Additionally, the xml.etree.ElementTree.
TreeBuilder target can be configured to process events about comments and processing instructions to include them
in the generated tree. (Contributed by Stefan Behnel in bpo-36676 and bpo-36673.)

23

https://bugs.python.org/issue?@action=redirect&bpo=32718
https://bugs.python.org/issue?@action=redirect&bpo=36669
https://bugs.python.org/issue?@action=redirect&bpo=17239
https://bugs.python.org/issue?@action=redirect&bpo=28238
https://bugs.python.org/issue?@action=redirect&bpo=13611
https://bugs.python.org/issue?@action=redirect&bpo=36676
https://bugs.python.org/issue?@action=redirect&bpo=36673

5.48 xmilrpc

xmlrpc.client.ServerProxy now supports an optional headers keyword argument for a sequence of HTTP hea-
ders to be sent with each request. Among other things, this makes it possible to upgrade from default basic authentication
to faster session authentication. (Contributed by Cédric Krier in bpo-35153.)

6 Optimizations

e The subprocess module can now use the os.posix_spawn () function in some cases for better perfor-
mance. Currently, it is only used on macOS and Linux (using glibc 2.24 or newer) if all these conditions are
met:

- close_fds is false;
— preexec_fn, pass_fds, cwd and start_new_session parameters are not set;
— the executable path contains a directory.

(Contributed by Joannah Nanjekye and Victor Stinner in bpo-35537.)

e shutil.copyfile (), shutil.copy (), shutil.copy2 (), shutil.copytree () and shutil.
move () use platform-specific "fast-copy” syscalls on Linux and macOS in order to copy the file more efficiently.
“fast-copy” means that the copying operation occurs within the kernel, avoiding the use of userspace buffers in
Python asin "out fd.write (infd.read())”. On Windows shutil.copyfile () uses a bigger default
buffer size (1 MiB instead of 16 KiB) and a memoryview () -based variant of shutil.copyfileobj () is
used. The speedup for copying a 512 MiB file within the same partition is about +26% on Linux, +50% on macOS
and +40% on Windows. Also, much less CPU cycles are consumed. See shutil-platform-dependent-efficient-copy-
operations section. (Contributed by Giampaolo Rodola in bpo-33671.)

e shutil.copytree () uses os.scandir () function and all copy functions depending from it use cached
os.stat () values. The speedup for copying a directory with 8000 files is around +9% on Linux, +20% on
Windows and +30% on a Windows SMB share. Also the number of os.stat () syscalls is reduced by 38%
making shutil.copytree () especially faster on network filesystems. (Contributed by Giampaolo Rodola in
bpo-33695.)

o The default protocol in the pickle module is now Protocol 4, first introduced in Python 3.4. It offers better
performance and smaller size compared to Protocol 3 available since Python 3.0.

« Removed one Py_ssize_t member from PyGC_Head. All GC tracked objects (e.g. tuple, list, dict) size is
reduced 4 or 8 bytes. (Contributed by Inada Naoki in bpo-33597.)

e uuid.UUID now uses __slots__ to reduce its memory footprint. (Contributed by Wouter Bolsterlee and Tal
Einat in bpo-30977)

 Improved performance of operator.itemgetter () by 33%. Optimized argument handling and added a
fast path for the common case of a single non-negative integer index into a tuple (which is the typical use case in
the standard library). (Contributed by Raymond Hettinger in bpo-35664.)

o Sped-up field lookups in collections.namedtuple (). They are now more than two times faster, making
them the fastest form of instance variable lookup in Python. (Contributed by Raymond Hettinger, Pablo Galindo,
and Joe Jevnik, Serhiy Storchaka in bpo-32492.)

o The 1ist constructor does not overallocate the internal item buffer if the input iterable has a known length (the
input implements __len__). This makes the created list 12% smaller on average. (Contributed by Raymond
Hettinger and Pablo Galindo in bpo-33234.)

» Doubled the speed of class variable writes. When a non-dunder attribute was updated, there was an unnecessary call
to update slots. (Contributed by Stefan Behnel, Pablo Galindo Salgado, Raymond Hettinger, Neil Schemenauer,
and Serhiy Storchaka in bpo-36012.)

24

https://bugs.python.org/issue?@action=redirect&bpo=35153
https://bugs.python.org/issue?@action=redirect&bpo=35537
https://bugs.python.org/issue?@action=redirect&bpo=33671
https://bugs.python.org/issue?@action=redirect&bpo=33695
https://bugs.python.org/issue?@action=redirect&bpo=33597
https://bugs.python.org/issue?@action=redirect&bpo=30977
https://bugs.python.org/issue?@action=redirect&bpo=35664
https://bugs.python.org/issue?@action=redirect&bpo=32492
https://bugs.python.org/issue?@action=redirect&bpo=33234
https://bugs.python.org/issue?@action=redirect&bpo=36012

« Reduced an overhead of converting arguments passed to many builtin functions and methods. This sped up calling
some simple builtin functions and methods up to 20--50%. (Contributed by Serhiy Storchaka in bpo-23867, bpo-
35582 and bpo-36127.)

e LOAD_GLOBAL instruction now uses new “per opcode cache” mechanism. It is about 40% faster now. (Contri-
buted by Yury Selivanov and Inada Naoki in bpo-26219.)

7 Build and C API Changes

o Default sys.abiflags became an empty string: the m flag for pymalloc became useless (builds with and without
pymalloc are ABI compatible) and so has been removed. (Contributed by Victor Stinner in bpo-36707.)

Example of changes:
— Only python3. 8 program is installed, python3. 8m program is gone.
— Only python3.8-config script is installed, python3 . 8m-config script is gone.

— The m flag has been removed from the suffix of dynamic library filenames: extension modules in the standard
library as well as those produced and installed by third-party packages, like those downloaded from PyPI.
On Linux, for example, the Python 3.7 suffix .cpython-37m-x86_64-1inux—gnu.so became .
cpython-38-x86_64-1inux—gnu. so in Python 3.8.

« The header files have been reorganized to better separate the different kinds of APIs:
- Include/*.h should be the portable public stable C API.

- Include/cpython/* . hshould be the unstable C API specific to CPython; public API, with some private
API prefixed by _Py or _PY.

- Include/internal/*.h is the private internal C API very specific to CPython. This API comes with
no backward compatibility warranty and should not be used outside CPython. It is only exposed for very
specific needs like debuggers and profiles which has to access to CPython internals without calling functions.
This API is now installed by make install.

(Contributed by Victor Stinner in bpo-35134 and bpo-35081, work initiated by Eric Snow in Python 3.7.)

» Some macros have been converted to static inline functions: parameter types and return type are well defined, they
don’t have issues specific to macros, variables have a local scopes. Examples:

Py_INCREF (), Py_DECREF ()

Py_XINCREF (), Py XDECREF ()

PyObject_INIT(),PyObject_INIT_VAR()

J—

- Private functions: _PyObject_GC_TRACK (), _PyObject_GC_UNTRACK (),_ Py _Dealloc()

(Contributed by Victor Stinner in bpo-35059.)

e The PyByteArray_Init () and PyByteArray_Fini () functions have been removed. They did nothing
since Python 2.7.4 and Python 3.2.0, were excluded from the limited API (stable ABI), and were not documented.
(Contributed by Victor Stinner in bpo-35713.)

o The result of PyExceptionClass_Name () is now of type const char * rather of char *. (Contribu-
ted by Serhiy Storchaka in bpo-33818.)

o The duality of Modules/Setup.dist and Modules/Setup has been removed. Previously, when upda-
ting the CPython source tree, one had to manually copy Modules/Setup.dist (inside the source tree) to
Modules/Setup (inside the build tree) in order to reflect any changes upstream. This was of a small benefit to
packagers at the expense of a frequent annoyance to developers following CPython development, as forgetting to
copy the file could produce build failures.

25

https://bugs.python.org/issue?@action=redirect&bpo=23867
https://bugs.python.org/issue?@action=redirect&bpo=35582
https://bugs.python.org/issue?@action=redirect&bpo=35582
https://bugs.python.org/issue?@action=redirect&bpo=36127
https://bugs.python.org/issue?@action=redirect&bpo=26219
https://bugs.python.org/issue?@action=redirect&bpo=36707
https://bugs.python.org/issue?@action=redirect&bpo=35134
https://bugs.python.org/issue?@action=redirect&bpo=35081
https://bugs.python.org/issue?@action=redirect&bpo=35059
https://bugs.python.org/issue?@action=redirect&bpo=35713
https://bugs.python.org/issue?@action=redirect&bpo=33818

Now the build system always reads from Modules/Setup inside the source tree. People who want to customize
that file are encouraged to maintain their changes in a git fork of CPython or as patch files, as they would do for
any other change to the source tree.

(Contributed by Antoine Pitrou in bpo-32430.)

« Functions that convert Python number to C integer like PyLong_AsLong () and argument parsing functions li-
ke PyArg_ParseTuple () with integer converting format units like 'i' will now use the __index__ ()

special method instead of __int__ (), if available. The deprecation warning will be emitted for objects
with the __int__ () method but without the _ index_ () method (like Decimal and Fraction).
PyNumber_Check () will now return 1 for objects implementing __index__ (). PyNumber_Long (),
PyNumber_Float () and PyFloat_AsDouble () also now use the __ _index__ () method if available.

(Contributed by Serhiy Storchaka in bpo-36048 and bpo-20092.)

« Heap-allocated type objects will now increase their reference count in PyObject_Init () (and its parallel
macro PyObJject_INIT) instead of in PyType_GenericAlloc (). Types that modify instance allocation
or deallocation may need to be adjusted. (Contributed by Eddie Elizondo in bpo-35810.)

o The new function PyCode_NewWithPosOnlyArgs () allows to create code objects like PyCode_New (),
but with an extra posonlyargcount parameter for indicating the number of positional-only arguments. (Contributed
by Pablo Galindo in bpo-37221.)

e« Py_SetPath () now sets sys.executable to the program full path (Py_GetProgramFullPath ())
rather than to the program name (Py_GetProgramName ()). (Contributed by Victor Stinner in bpo-38234.)

Deprecated

o The distutils bdist_wininst command is now deprecated, use bdist_wheel (wheel packages) instead.
(Contributed by Victor Stinner in bpo-37481.)

o Deprecated methods getchildren () and getiterator () in the ElementTree module now emit a
DeprecationWarning instead of PendingDeprecationWarning. They will be removed in Python
3.9. (Contributed by Serhiy Storchaka in bpo-29209.)

« Passing an object that is not an instance of concurrent.futures.ThreadPoolExecutor to loop.
set_default_executor () is deprecated and will be prohibited in Python 3.9. (Contributed by Elvis Prans-
kevichus in bpo-34075.)

e« The _ getitem_ () methods of xml.dom.pulldom.DOMEventStream, wsgiref.util.
FileWrapper and fileinput.FileInput have been deprecated.

Implementations of these methods have been ignoring their index parameter, and returning the next item instead.
(Contributed by Berker Peksag in bpo-9372.)

e The typing.NamedTuple class has deprecated the _field_ types attribute in favor of the
__annotations__ attribute which has the same information. (Contributed by Raymond Hettinger in bpo-
36320.)

e ast classes Num, Str, Bytes, NameConstant and E11ipsis are considered deprecated and will be re-
moved in future Python versions. Constant should be used instead. (Contributed by Serhiy Storchaka in bpo-
32892.)

e ast.NodeVisitor methods visit_ Num(), visit_Str (), visit_Bytes (),
visit_NameConstant () and visit_Ellipsis () are deprecated now and will not be called in
future Python versions. Add the visit_Constant () method to handle all constant nodes. (Contributed by
Serhiy Storchaka in bpo-36917.)

e The asyncio.coroutine () decorator is deprecated and will be removed in version 3.10. Instead of
@asyncio.coroutine, use async def instead. (Contributed by Andrew Svetlov in bpo-36921.)

26

https://bugs.python.org/issue?@action=redirect&bpo=32430
https://bugs.python.org/issue?@action=redirect&bpo=36048
https://bugs.python.org/issue?@action=redirect&bpo=20092
https://bugs.python.org/issue?@action=redirect&bpo=35810
https://bugs.python.org/issue?@action=redirect&bpo=37221
https://bugs.python.org/issue?@action=redirect&bpo=38234
https://bugs.python.org/issue?@action=redirect&bpo=37481
https://bugs.python.org/issue?@action=redirect&bpo=29209
https://bugs.python.org/issue?@action=redirect&bpo=34075
https://bugs.python.org/issue?@action=redirect&bpo=9372
https://bugs.python.org/issue?@action=redirect&bpo=36320
https://bugs.python.org/issue?@action=redirect&bpo=36320
https://bugs.python.org/issue?@action=redirect&bpo=32892
https://bugs.python.org/issue?@action=redirect&bpo=32892
https://bugs.python.org/issue?@action=redirect&bpo=36917
https://bugs.python.org/issue?@action=redirect&bpo=36921

e In asyncio, the explicit passing of a loop argument has been deprecated and will be removed in ver-
sion 3.10 for the following: asyncio.sleep(), asyncio.gather (), asyncio.shield(),
asyncio.wait_for (), asyncio.wait (), asyncio.as_completed(), asyncio.Task,
asyncio.Lock, asyncio.Event, asyncio.Condition, asyncio.Semaphore, asyncio.
BoundedSemaphore, asyncio.Queue, asyncio.create_subprocess_exec (), and asyncio.
create_subprocess_shell ().

o The explicit passing of coroutine objects to asyncio.wait () has been deprecated and will be removed in
version 3.11. (Contributed by Yury Selivanov in bpo-34790.)

« The following functions and methods are deprecated in the get text module: 1gettext (), ldgettext (),
lngettext () and ldngettext (). They return encoded bytes, and it’s possible that you will get unexpected
Unicode-related exceptions if there are encoding problems with the translated strings. It’s much better to use
alternatives which return Unicode strings in Python 3. These functions have been broken for a long time.

Function bind_textdomain_codeset (), methods output_charset () and
set_output_charset (), and the codeset parameter of functions translation () and install () are
also deprecated, since they are only used for the 1 *gettext () functions. (Contributed by Serhiy Storchaka in
bpo-33710.)

e The isAlive () method of threading.Thread has been deprecated. (Contributed by Dong-hee Na in
bpo-35283.)

e Many builtin and extension functions that take integer arguments will now emit a deprecation warning for
Decimals, Fractions and any other objects that can be converted to integers only with a loss (e.g. that have
the __int__ () method but do not have the __index__ () method). In future version they will be errors.
(Contributed by Serhiy Storchaka in bpo-36048.)

o Deprecated passing the following arguments as keyword arguments:

— func in functools.partialmethod(), weakref.finalize(), profile.Profile.
runcall (), cProfile.Profile.runcall(), bdb.Bdb.runcall(), trace.Trace.
runfunc () and curses.wrapper ().

- functioninunittest.TestCase.addCleanup ().

- fn in the submit () method of concurrent.futures.ThreadPoolExecutor and
concurrent.futures.ProcessPoolExecutor.

- callback in contextlib.ExitStack.callback(), contextlib.AsyncExitStack.
callback () and contextlib.AsyncExitStack.push_async_callback ().

- ¢ and fypeid in the create() method of multiprocessing.managers.Server and
multiprocessing.managers.SharedMemoryServer.

- objin weakref.finalize ().

In future releases of Python, they will be positional-only. (Contributed by Serhiy Storchaka in bpo-36492.)

9 API and Feature Removals

The following features and APIs have been removed from Python 3.8:

« Starting with Python 3.3, importing ABCs from collections was deprecated, and importing should be done
from collections.abc. Being able to import from collections was marked for removal in 3.8, but has been
delayed to 3.9. (See bpo-36952.)

o The macpath module, deprecated in Python 3.7, has been removed. (Contributed by Victor Stinner in bpo-
35471.)

27

https://bugs.python.org/issue?@action=redirect&bpo=34790
https://bugs.python.org/issue?@action=redirect&bpo=33710
https://bugs.python.org/issue?@action=redirect&bpo=35283
https://bugs.python.org/issue?@action=redirect&bpo=36048
https://bugs.python.org/issue?@action=redirect&bpo=36492
https://bugs.python.org/issue?@action=redirect&bpo=36952
https://bugs.python.org/issue?@action=redirect&bpo=35471
https://bugs.python.org/issue?@action=redirect&bpo=35471

o The function plat form.popen () has been removed, after having been deprecated since Python 3.3: use os .
popen () instead. (Contributed by Victor Stinner in bpo-35345.)

o The function time.clock () has been removed, after having been deprecated since Python 3.3: use time.
perf_counter () or time.process_time () instead, depending on your requirements, to have well-
defined behavior. (Contributed by Matthias Bussonnier in bpo-36895.)

o The pyvenv script has been removed in favor of python3.8 —m venv to help eliminate confusion as to what
Python interpreter the pyvenwv script is tied to. (Contributed by Brett Cannon in bpo-25427.)

e parse_dgs, parse_dgsl, and escape are removed from the cgi module. They are deprecated in Python 3.2
or older. They should be imported from the urllib.parse and html modules instead.

o filemode function is removed from the tarfile module. It is not documented and deprecated since Python
3.3.

o The XMLParser constructor no longer accepts the hzml argument. It never had an effect and was deprecated in
Python 3.4. All other parameters are now keyword-only. (Contributed by Serhiy Storchaka in bpo-29209.)

« Removed the doctype () method of XMLParser. (Contributed by Serhiy Storchaka in bpo-29209.)
 “unicode_internal” codec is removed. (Contributed by Inada Naoki in bpo-36297.)

o The Cache and St atement objects of the sqlite3 module are not exposed to the user. (Contributed by Aviv
Palivoda in bpo-30262.)

e The bufsize keyword argument of fileinput.input () and fileinput.FileInput () which was
ignored and deprecated since Python 3.6 has been removed. bpo-36952 (Contributed by Matthias Bussonnier.)

o The functions sys.set_coroutine_wrapper () and sys.get_coroutine_wrapper () deprecated
in Python 3.7 have been removed; bpo-36933 (Contributed by Matthias Bussonnier.)

10 Porting to Python 3.8

This section lists previously described changes and other bugfixes that may require changes to your code.

10.1 Changes in Python behavior

« Yield expressions (both yield and yield from clauses) are now disallowed in comprehensions and generator
expressions (aside from the iterable expression in the leftmost for clause). (Contributed by Serhiy Storchaka in
bpo-10544.)

o The compiler now produces a SyntaxWarning when identity checks (is and is not) are used with certain
types of literals (e.g. strings, numbers). These can often work by accident in CPython, but are not guaranteed by
the language spec. The warning advises users to use equality tests (== and ! =) instead. (Contributed by Serhiy
Storchaka in bpo-34850.)

o The CPython interpreter can swallow exceptions in some circumstances. In Python 3.8 this happens in fewer
cases. In particular, exceptions raised when getting the attribute from the type dictionary are no longer ignored.
(Contributed by Serhiy Storchaka in bpo-35459.)

o Removed ___str__ implementations from builtin types bool, int, float, complex and few classes from the
standard library. They now inherit __str__ () from object. Asresult, definingthe __repr__ () method in
the subclass of these classes will affect their string representation. (Contributed by Serhiy Storchaka in bpo-36793.)

e On AIX, sys.platform doesn’t contain the major version anymore. It is always 'aix', instead of 'aix3"'
. 'aix7". Since older Python versions include the version number, so it is recommended to always use sys.
platform.startswith('aix"'). (Contributed by M. Felt in bpo-36588.)

28

https://bugs.python.org/issue?@action=redirect&bpo=35345
https://bugs.python.org/issue?@action=redirect&bpo=36895
https://bugs.python.org/issue?@action=redirect&bpo=25427
https://bugs.python.org/issue?@action=redirect&bpo=29209
https://bugs.python.org/issue?@action=redirect&bpo=29209
https://bugs.python.org/issue?@action=redirect&bpo=36297
https://bugs.python.org/issue?@action=redirect&bpo=30262
https://bugs.python.org/issue?@action=redirect&bpo=36952
https://bugs.python.org/issue?@action=redirect&bpo=36933
https://bugs.python.org/issue?@action=redirect&bpo=10544
https://bugs.python.org/issue?@action=redirect&bpo=34850
https://bugs.python.org/issue?@action=redirect&bpo=35459
https://bugs.python.org/issue?@action=redirect&bpo=36793
https://bugs.python.org/issue?@action=redirect&bpo=36588

e PyEval_Acquirelock () and PyEval_AcquireThread() now terminate the current thread if
called while the interpreter is finalizing, making them consistent with PyEval RestoreThread(),
Py_END_ALLOW_THREADS (), and PyGILState_Ensure (). If this behavior is not desired, guard the
call by checking _Py_IsFinalizing() orsys.is_finalizing(). (Contributed by Joannah Nanjekye
in bpo-36475.)

10.2 Changes in the Python API

e The os.getcwdb () function now uses the UTF-8 encoding on Windows, rather than the ANSI code page: see
PEP 529 for the rationale. The function is no longer deprecated on Windows. (Contributed by Victor Stinner in
bpo-37412.)

e subprocess.Popencannow use os.posix_spawn () insome cases for better performance. On Windows
Subsystem for Linux and QEMU User Emulation, the Popen constructor using os . posix_spawn () no longer
raises an exception on errors like “missing program”. Instead the child process fails with a non-zero ret urncode.
(Contributed by Joannah Nanjekye and Victor Stinner in bpo-35537.)

o The preexec_fn argument of * subprocess .Popen is no longer compatible with subinterpreters. The use of the
parameter in a subinterpreter now raises Runt imeError. (Contributed by Eric Snow in bpo-34651, modified
by Christian Heimes in bpo-37951.)

e The imap.IMAP4.logout () method no longer silently ignores arbitrary exceptions. (Contributed by Victor
Stinner in bpo-36348.)

o The function plat form.popen () has been removed, after having been deprecated since Python 3.3: use os .
popen () instead. (Contributed by Victor Stinner in bpo-35345.)

o The statistics.mode () function no longer raises an exception when given multimodal data. Instead, it
returns the first mode encountered in the input data. (Contributed by Raymond Hettinger in bpo-35892.)

e The selection () method of the tkinter.ttk.Treeview class no longer takes arguments. Using
it with arguments for changing the selection was deprecated in Python 3.6. Use specialized methods like
selection_set () for changing the selection. (Contributed by Serhiy Storchaka in bpo-31508.)

e The writexml (), toxml () and toprettyxml () methods of xml.dom.minidom, and the write ()
method of xml .etree, now preserve the attribute order specified by the user. (Contributed by Diego Rojas and
Raymond Hettinger in bpo-34160.)

e A dbm.dumb database opened with flags ' r' is now read-only. dbm.dumb.open () withflags 'r' and 'w'
no longer creates a database if it does not exist. (Contributed by Serhiy Storchaka in bpo-32749.)

o The doctype () method defined in a subclass of XMLParser will no longer be called and will emit a
RuntimeWarning instead of a DeprecationWarning. Define the doctype () method on a target for
handling an XML doctype declaration. (Contributed by Serhiy Storchaka in bpo-29209.)

e ARuntimeError is now raised when the custom metaclass doesn’t provide the __classcell__ entry in the
namespace passed to type.__new__. A DeprecationWarning was emitted in Python 3.6--3.7. (Contri-
buted by Serhiy Storchaka in bpo-23722.)

e The cProfile.Profile class can now be used as a context manager. (Contributed by Scott Sanderson in
bpo-29235.)

e shutil.copyfile (), shutil.copy (), shutil.copy2 (), shutil.copytree () and shutil.
move () use platform-specific "fast-copy” syscalls (see shutil-platform-dependent-efficient-copy-operations se-
ction).

e shutil.copyfile () default buffer size on Windows was changed from 16 KiB to 1 MiB.

o The PyGC_Head struct has changed completely. All code that touched the struct member should be rewritten.
(See bpo-33597.)

29

https://bugs.python.org/issue?@action=redirect&bpo=36475
https://www.python.org/dev/peps/pep-0529
https://bugs.python.org/issue?@action=redirect&bpo=37412
https://bugs.python.org/issue?@action=redirect&bpo=35537
https://bugs.python.org/issue?@action=redirect&bpo=34651
https://bugs.python.org/issue?@action=redirect&bpo=37951
https://bugs.python.org/issue?@action=redirect&bpo=36348
https://bugs.python.org/issue?@action=redirect&bpo=35345
https://bugs.python.org/issue?@action=redirect&bpo=35892
https://bugs.python.org/issue?@action=redirect&bpo=31508
https://bugs.python.org/issue?@action=redirect&bpo=34160
https://bugs.python.org/issue?@action=redirect&bpo=32749
https://bugs.python.org/issue?@action=redirect&bpo=29209
https://bugs.python.org/issue?@action=redirect&bpo=23722
https://bugs.python.org/issue?@action=redirect&bpo=29235
https://bugs.python.org/issue?@action=redirect&bpo=33597

The PyInterpreterState struct has been moved into the “internal” header files (specifically Inclu-
de/internal/pycore_pystate.h). An opaque PyInterpreterState is still available as part of the public API
(and stable ABI). The docs indicate that none of the struct’s fields are public, so we hope no one has been using
them. However, if you do rely on one or more of those private fields and have no alternative then please open
a BPO issue. We'll work on helping you adjust (possibly including adding accessor functions to the public API).
(See bpo-35886.)

The mmap . f1ush () method now returns None on success and raises an exception on error under all platforms.
Previously, its behavior was platform-dependent: a nonzero value was returned on success; zero was returned
on error under Windows. A zero value was returned on success; an exception was raised on error under Unix.
(Contributed by Berker Peksag in bpo-2122.)

xml.dom.minidom and xml . sax modules no longer process external entities by default. (Contributed by
Christian Heimes in bpo-17239.)

Deleting a key from a read-only dbm database (dbm.dumb, dbm.gnu or dbm.ndbm) raises error (dbm.
dumb.error, dom.gnu.error or dbm.ndbm.error) instead of KeyError. (Contributed by Xiang
Zhang in bpo-33106.)

Simplified AST for literals. All constants will be represented as ast . Constant instances. Instantiating old clas-
ses Num, Str, Bytes, NameConstant and E11ipsis will return an instance of Constant. (Contributed
by Serhiy Storchaka in bpo-32892.)

expanduser () on Windows now prefers the USERPROFILE environment variable and does not use HOME,
which is not normally set for regular user accounts. (Contributed by Anthony Sottile in bpo-36264.)

The exception asyncio.CancelledError now inherits from BaseExcept ion rather than Exception
and no longer inherits from concurrent . futures.CancelledError. (Contributed by Yury Selivanov
in bpo-32528.)

The function asyncio.wait_for () now correctly waits for cancellation when using an instance of
asyncio.Task. Previously, upon reaching timeout, it was cancelled and immediately returned. (Contributed
by Elvis Pranskevichus in bpo-32751.)

The function asyncio.BaseTransport.get_extra_info () now returns a safe to use socket object
when ’socket’ is passed to the name parameter. (Contributed by Yury Selivanov in bpo-37027.)

asyncio.BufferedProtocol has graduated to the stable APIL.

DLL dependencies for extension modules and DLLs loaded with ctypes on Windows are now resolved mo-
re securely. Only the system paths, the directory containing the DLL or PYD file, and directories added with
add_dl1l_directory () are searched for load-time dependencies. Specifically, PATH and the current wor-
king directory are no longer used, and modifications to these will no longer have any effect on normal DLL reso-
lution. If your application relies on these mechanisms, you should check for add_d11_directory () and if
it exists, use it to add your DLLs directory while loading your library. Note that Windows 7 users will need to
ensure that Windows Update KB2533623 has been installed (this is also verified by the installer). (Contributed by
Steve Dower in bpo-36085.)

The header files and functions related to pgen have been removed after its replacement by a pure Python imple-
mentation. (Contributed by Pablo Galindo in bpo-36623.)

types.CodeType has a new parameter in the second position of the constructor (posonlyargcount) to sup-
port positional-only arguments defined in PEP 570. The first argument (argcount) now represents the total num-
ber of positional arguments (including positional-only arguments). The new replace () method of types.
CodeType can be used to make the code future-proof.

The parameter digestmod for hmac.new () no longer uses the MD5 digest by default.

30

https://bugs.python.org/issue?@action=redirect&bpo=35886
https://bugs.python.org/issue?@action=redirect&bpo=2122
https://bugs.python.org/issue?@action=redirect&bpo=17239
https://bugs.python.org/issue?@action=redirect&bpo=33106
https://bugs.python.org/issue?@action=redirect&bpo=32892
https://bugs.python.org/issue?@action=redirect&bpo=36264
https://bugs.python.org/issue?@action=redirect&bpo=32528
https://bugs.python.org/issue?@action=redirect&bpo=32751
https://bugs.python.org/issue?@action=redirect&bpo=37027
https://bugs.python.org/issue?@action=redirect&bpo=36085
https://bugs.python.org/issue?@action=redirect&bpo=36623
https://www.python.org/dev/peps/pep-0570

10.3 Changes in the C API

The PyCompilerFlags structure got a new cf_feature_version field. It should be initialized to
PY MINOR_VERSION. The field is ignored by default, and is used if and only if PyCF_ONLY_AST flag is
setin ¢f_flags. (Contributed by Guido van Rossum in bpo-35766.)

The PyEval ReInitThreads () function has been removed from the C API. It should not be called explicitly:
use PyOS_AfterFork_Child () instead. (Contributed by Victor Stinner in bpo-36728.)

On Unix, C extensions are no longer linked to libpython except on Android and Cygwin. When Python is em-
bedded, 1ibpython must not be loaded with RTLD_LOCAL, but RTLD_GLOBAL instead. Previously, using
RTLD_LOCAL, it was already not possible to load C extensions which were not linked to Libpython, like C
extensions of the standard library built by the * shared* section of Modules/Setup. (Contributed by Victor
Stinner in bpo-21536.)

Use of # variants of formats in parsing or building value (e.g. PyArg_ParseTuple (),
Py_BuildvValue (), PyObject_CallFunction(), etc.) without PY_SSIZE_T_CLEAN defined
raises DeprecationWarning now. It will be removed in 3.10 or 4.0. Read arg-parsing for detail.
(Contributed by Inada Naoki in bpo-36381.)

Instances of heap-allocated types (such as those created with PyType_FromSpec ()) hold a refe-
rence to their type object. Increasing the reference count of these type objects has been mo-
ved from PyType_GenericAlloc () to the more low-level functions, PyObject_Init () and
PyObject_INIT (). This makes types created through PyType_ FromSpec () behave like other classes
in managed code.

Statically allocated types are not affected.

For the vast majority of cases, there should be no side effect. However, types that manually increase the reference
count after allocating an instance (perhaps to work around the bug) may now become immortal. To avoid this,
these classes need to call Py_ DECREF on the type object during instance deallocation.

To correctly port these types into 3.8, please apply the following changes:

- Remove Py_INCREF on the type object after allocating an instance - if any. This may hap-
pen after calling PyObject_New(), PyObject_NewVar(), PyObject_GC_New(),
PyObject_GC_NewVar (), or any other custom allocator that uses PyObject_Init () or
PyObject _INIT().

Example:

static foo_struct *
foo_new (PyObject *type) {
foo_struct *foo = PyObject_GC_New (foo_struct, (PyTypeObject *) type);
if (foo == NULL)
return NULL;
#if PY VERSION_HEX < 0x03080000
// Workaround for Python issue 35810; no longer necessary in Python 3.8
PY_INCREF (type)
#endif
return foo;

- Ensure that all custom tp_dealloc functions of heap-allocated types decrease the type’s reference count.

Example:

static void
foo_dealloc (foo_struct *instance) {
PyObject *type = Py_TYPE (instance);

(berlanjut ke halaman berikutnya)

31

https://bugs.python.org/issue?@action=redirect&bpo=35766
https://bugs.python.org/issue?@action=redirect&bpo=36728
https://bugs.python.org/issue?@action=redirect&bpo=21536
https://bugs.python.org/issue?@action=redirect&bpo=36381

(lanjutan dari halaman sebelumnya)

PyObject_GC_Del (instance) ;

#1f PY VERSION_HEX >= 0x03080000
// This was not needed before Python 3.8 (Python issue 35810)
Py_DECREF (type) ;

#endif

}

(Contributed by Eddie Elizondo in bpo-35810.)

o The Py_DEPRECATED () macro has been implemented for MSVC. The macro now must be placed before the
symbol name.

Example:

Py_DEPRECATED (3.8) PyAPI_FUNC (int) Py_OldFunction (void);

(Contributed by Zackery Spytz in bpo-33407.)

« The interpreter does not pretend to support binary compatibility of extension types across feature releases, anymore.
A PyTypeObject exported by a third-party extension module is supposed to have all the slots expected in the
current Python version, including tp_finalize (Py_TPFLAGS_HAVE_FINALIZE is not checked anymore
before reading tp_finalize).

(Contributed by Antoine Pitrou in bpo-32388.)

o The functions PyNode_AddChild () and PyParser_AddToken () now accept two additional int argu-
ments end_lineno and end_col_offset.

e The 1ibpython38. a file to allow MinGW tools to link directly against python38.d11 is no longer included
in the regular Windows distribution. If you require this file, it may be generated with the gendef and d11tool
tools, which are part of the MinGW binutils package:

gendef - python38.dll > tmp.def
dlltool --dllname python38.dll --def tmp.def —--output-lib libpython38.a

The location of an installed pythonXY .d11 will depend on the installation options and the version and language
of Windows. See using-on-windows for more information. The resulting library should be placed in the same
directory as pythonXY . 1ib, which is generally the 1 ibs directory under your Python installation.

(Contributed by Steve Dower in bpo-37351.)

10.4 CPython bytecode changes

« The interpreter loop has been simplified by moving the logic of unrolling the stack of blocks into the compiler.
The compiler emits now explicit instructions for adjusting the stack of values and calling the cleaning-up code for
break, continue and return.

Removed opcodes BREAK_LOOP, CONTINUE_LOOP, SETUP_LOOP and SETUP_EXCEPT. Added new
opcodes ROT_FOUR, BEGIN_FINALLY, CALL_FINALLY and POP_FINALLY. Changed the behavior of
END_FINALLY and WITH CLEANUP_START.

(Contributed by Mark Shannon, Antoine Pitrou and Serhiy Storchaka in bpo-17611.)

o Added new opcode END_ASYNC_FOR for handling exceptions raised when awaiting a next item in an async
for loop. (Contributed by Serhiy Storchaka in bpo-33041.)

o The MAP_ADD now expects the value as the first element in the stack and the key as the second element. This
change was made so the key is always evaluated before the value in dictionary comprehensions, as proposed by
PEP 572. (Contributed by Jorn Heissler in bpo-35224.)

32

https://bugs.python.org/issue?@action=redirect&bpo=35810
https://bugs.python.org/issue?@action=redirect&bpo=33407
https://bugs.python.org/issue?@action=redirect&bpo=32388
https://bugs.python.org/issue?@action=redirect&bpo=37351
https://bugs.python.org/issue?@action=redirect&bpo=17611
https://bugs.python.org/issue?@action=redirect&bpo=33041
https://www.python.org/dev/peps/pep-0572
https://bugs.python.org/issue?@action=redirect&bpo=35224

10.5 Demos and Tools

Added a benchmark script for timing various ways to access variables: Tools/scripts/
var_access_benchmark.py. (Contributed by Raymond Hettinger in bpo-35884.)

Here’s a summary of performance improvements since Python 3.3:

Python version 3.3 3.4 3.5 3.6 3.7 3.8
Variable and attribute read access:
read_local 4.0 7.1 7.1 5.4 5.1 3.9
read_nonlocal 5.3 7.1 8.1 5.8 5.4 4.4
read_global 13.3 15.5 19.0 14.3 13.6 7.6
read_builtin 20.0 21.1 21.6 18.5 19.0 7.5
read_classvar_from class 20.5 25.6 26.5 20.7 19.5 18.4
read_classvar_from_instance 18.5 22.8 23.5 18.8 17.1 16.4
read_instancevar 26.8 32.4 33.1 28.0 26.3 25.4
read_instancevar_slots 23.7 27.8 31.3 20.8 20.8 20.2
read_namedtuple 68.5 73.8 57.5 45.0 46.8 18.4
read_boundmethod 29.8 37.6 37.9 29.6 26.9 27.7
Variable and attribute write access:
write_local 4.6 8.7 9.3 5.5 5.3 4.3
write_nonlocal 7.3 10.5 11.1 5.6 5.5 4.7
write_global 15.9 19.7 21.2 18.0 18.0 15.8
write_classvar 81.9 92.9 96.0 104.6 102.1 39.2
write_instancevar 36.4 44 .6 45.8 40.0 38.9 35.5
write_instancevar_slots 28.7 35.6 36.1 27.3 26.6 25.7
Data structure read access:
read_list 19.2 24.2 24.5 20.8 20.8 19.0
read_deque 19.9 24.7 25.5 20.2 20.6 19.8
read_dict 19.7 24.3 25.7 22.3 23.0 21.0
read_strdict 17.9 22.6 24.3 19.5 21.2 18.9
Data structure write access:
write_list 21.2 27.1 28.5 22.5 21.6 20.0
write_deque 23.8 28.7 30.1 22.7 21.8 23.5
write_dict 25.9 31.4 33.3 29.3 29.2 24.7
write_strdict 22.9 28.4 29.9 27.5 25.2 23.1
Stack (or queue) operations:
list_append_pop 144.2 93.4 112.7 75.4 74.2 50.8
deque_append_pop 30.4 43.5 57.0 49.4 49.2 42.5
deque_append_popleft 30.8 43.7 57.3 49.7 49.7 42.8
Timing loop:
loop_overhead 0.3 0.5 0.6 0.4 0.3 0.3

The benchmarks were measured on an Intel® Core™ i7-4960HQ processor running the macOS 64-bit builds found at
python.org. The benchmark script displays timings in nanoseconds.

33

https://bugs.python.org/issue?@action=redirect&bpo=35884
https://ark.intel.com/content/www/us/en/ark/products/76088/intel-core-i7-4960hq-processor-6m-cache-up-to-3-80-ghz.html
https://www.python.org/downloads/mac-osx/

11 Notable changes in Python 3.8.1

Due to significant security concerns, the reuse_address parameter of asyncio.loop.
create_datagram_endpoint () is no longer supported. This is because of the behavior of the socket option
SO_REUSEADDR in UDP. For more details, see the documentation for 1oop.create_datagram_endpoint ().
(Contributed by Kyle Stanley, Antoine Pitrou, and Yury Selivanov in bpo-37228.)

12 Notable changes in Python 3.8.2

Fixed a regression with the i gnore callback of shutil.copytree (). The argument types are now str and List[str]
again. (Contributed by Manuel Barkhau and Giampaolo Rodola in bpo-39390.)

13 Notable changes in Python 3.8.3

The constant values of future flags in the __ future__ module are updated in order to prevent collision with compiler
flags. Previously PyCF_ALLOW_TOP_LEVEL_AWAIT was clashing with CO_FUTURE_DIVISION. (Contributed by
Batuhan Taskaya in bpo-39562)

14 Notable changes in Python 3.8.8

Earlier Python versions allowed using both ; and & as query parameter separators in urllib.parse.parse_dgs ()
andurllib.parse.parse_gsl (). Due to security concerns, and to conform with newer W3C recommendations,
this has been changed to allow only a single separator key, with & as the default. This change also affects cgi.parse ()
and cgi.parse_multipart () as they use the affected functions internally. For more details, please see their res-
pective documentation. (Contributed by Adam Goldschmidt, Senthil Kumaran and Ken Jin in bpo-42967.)

15 Notable changes in Python 3.8.9

A security fix alters the ftplib.FTP behavior to not trust the IPv4 address sent from the remote server when setting
up a passive data channel. We reuse the ftp server IP address instead. For unusual code requiring the old behavior, set a
trust_server_pasv_ipv4_address attribute on your FTP instance to True. (See bpo-43285)

16 Notable changes in Python 3.8.10

16.1 macOS 11.0 (Big Sur) and Apple Silicon Mac support

As of 3.8.10, Python now supports building and running on macOS 11 (Big Sur) and on Apple Silicon Macs (based
on the ARM64 architecture). A new universal build variant, universal?2, is now available to natively support both
ARM64 and Intel 64 in one set of executables. Note that support for "weaklinking”, building binaries targeted for
newer versions of macOS that will also run correctly on older versions by testing at runtime for missing features, is not
included in this backport from Python 3.9; to support a range of macOS versions, continue to target for and build on the
oldest version in the range.

(Originally contributed by Ronald Oussoren and Lawrence D’Anna in bpo-41100, with fixes by FX Coudert and Eli
Rykoft, and backported to 3.8 by Maxime Bélanger and Ned Deily)

34

https://bugs.python.org/issue?@action=redirect&bpo=37228
https://bugs.python.org/issue?@action=redirect&bpo=39390
https://bugs.python.org/issue?@action=redirect&bpo=39562
https://bugs.python.org/issue?@action=redirect&bpo=42967
https://bugs.python.org/issue?@action=redirect&bpo=43285
https://bugs.python.org/issue?@action=redirect&bpo=41100

17 Notable changes in Python 3.8.10

17.1 urllib.parse

The presence of newline or tab characters in parts of a URL allows for some forms of attacks. Following the WHATWG
specification that updates RFC 3986, ASCII newline \n, \r and tab \t characters are stripped from the URL by the
parserinurllib.parse preventing such attacks. The removal characters are controlled by a new module level variable
urllib.parse._UNSAFE_URL_BYTES_TO_REMOVE. (See bpo-43882)

18 Notable changes in Python 3.8.12

18.1 Changes in the Python API

Starting with Python 3.8.12 the i paddress module no longer accepts any leading zeros in IPv4 address strings. Leading
zeros are ambiguous and interpreted as octal notation by some libraries. For example the legacy function socket.
inet_aton () treats leading zeros as octal notation. glibc implementation of modern inet_pton () does not accept
any leading zeros.

(Originally contributed by Christian Heimes in bpo-36384, and backported to 3.8 by Achraf Merzouki)

19 Notable security feature in 3.8.14

Converting between int and str in bases other than 2 (binary), 4, 8 (octal), 16 (hexadecimal), or 32 such as base 10
(decimal) now raises a ValueError if the number of digits in string form is above a limit to avoid potential denial of
service attacks due to the algorithmic complexity. This is a mitigation for CVE-2020-10735. This limit can be configured
or disabled by environment variable, command line flag, or sy s APIs. See the integer string conversion length limitation
documentation. The default limit is 4300 digits in string form.

20 Notable Changes in 3.8.17

20.1 tarfile

o The extraction methods in tarfile, and shutil.unpack_archive (), have a new a filter argument that
allows limiting tar features than may be surprising or dangerous, such as creating files outside the destination
directory. See tarfile-extraction-filter for details. In Python 3.12, use without the filter argument will show a
DeprecationWarning. In Python 3.14, the default will switch to 'data"'. (Contributed by Petr Viktorin in
PEP 706.)

35

https://tools.ietf.org/html/rfc3986.html
https://bugs.python.org/issue?@action=redirect&bpo=43882
https://bugs.python.org/issue?@action=redirect&bpo=36384
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-10735
https://www.python.org/dev/peps/pep-0706

21 Notable changes in 3.8.20

21.1 ipaddress

e Fixed is_global and is_private behavior in IPv4Address, IPv6Address, IPv4Network and
IPvoNetwork.

21.2 email

» Headers with embedded newlines are now quoted on output.

The generator will now refuse to serialize (write) headers that are improperly folded or delimited, such that
they would be parsed as multiple headers or joined with adjacent data. If you need to turn this safety feature off,
set verify_generated_headers. (Contributed by Bas Bloemsaat and Petr Viktorin in gh-121650.)

e email.utils.getaddresses () and email.utils.parseaddr () nowreturn ('', '') 2-tuples
in more situations where invalid email addresses are encountered, instead of potentially inaccurate values. An
optional strict parameter was added to these two functions: use st rict=False to get the old behavior, accepting
malformed inputs. getattr (email.utils, 'supports_strict_parsing', False) canbeused
to check if the strict paramater is available. (Contributed by Thomas Dwyer and Victor Stinner for gh-102988 to
improve the CVE-2023-27043 fix.)

36

https://github.com/python/cpython/issues/121650
https://github.com/python/cpython/issues/102988

Indeks
H

HOME, 18, 30

P

PATH, 30
Python Enhancement Proposals

PEP 484,11

PEP 526,11

PEP 529,29

PEP 544,22

PEP 570,5, 30

PEP 572,4,32

PEP 574,8

PEP 578,6

PEP 586,22

PEP 587,6,7

PEP 589,22

PEP 590,7

PEP 591,22

PEP 706,35

PEP 3118,8
PYTHONDUMPREF'S, 5
PYTHONPYCACHEPREFIX, 5

R

REC
RFC 3986, 35

U

USERPROFILE, 18, 30

\Y

variabel environment
HOME, 18, 30
PATH, 30
PYTHONDUMPREFS, 5
PYTHONPYCACHEPREFIX, 5
USERPROFILE, 18, 30

37

	Summary -- Release highlights
	New Features
	Assignment expressions
	Positional-only parameters
	Parallel filesystem cache for compiled bytecode files
	Debug build uses the same ABI as release build
	f-strings support = for self-documenting expressions and debugging
	PEP 578: Python Runtime Audit Hooks
	PEP 587: Python Initialization Configuration
	Vectorcall: a fast calling protocol for CPython
	Pickle protocol 5 with out-of-band data buffers

	Other Language Changes
	New Modules
	Improved Modules
	ast
	asyncio
	builtins
	collections
	cProfile
	csv
	curses
	ctypes
	datetime
	functools
	gc
	gettext
	gzip
	IDLE and idlelib
	inspect
	io
	itertools
	json.tool
	logging
	math
	mmap
	multiprocessing
	os
	os.path
	pathlib
	pickle
	plistlib
	pprint
	py_compile
	shlex
	shutil
	socket
	ssl
	statistics
	sys
	tarfile
	tempfile
	threading
	tokenize
	tkinter
	time
	typing
	unicodedata
	unittest
	venv
	weakref
	xml
	xmlrpc

	Optimizations
	Build and C API Changes
	Deprecated
	API and Feature Removals
	Porting to Python 3.8
	Changes in Python behavior
	Changes in the Python API
	Changes in the C API
	CPython bytecode changes
	Demos and Tools

	Notable changes in Python 3.8.1
	Notable changes in Python 3.8.2
	Notable changes in Python 3.8.3
	Notable changes in Python 3.8.8
	Notable changes in Python 3.8.9
	Notable changes in Python 3.8.10
	macOS 11.0 (Big Sur) and Apple Silicon Mac support

	Notable changes in Python 3.8.10
	urllib.parse

	Notable changes in Python 3.8.12
	Changes in the Python API

	Notable security feature in 3.8.14
	Notable Changes in 3.8.17
	tarfile

	Notable changes in 3.8.20
	ipaddress
	email

	Indeks

