
HOWTO Pemrograman Soket
Rilis 3.8.20

Guido van Rossum
and the Python development team

September 08, 2024

Python Software Foundation
Email: docs@python.org

Daftar Isi

1 Soket 2
1.1 Sejarah . 2

2 Membuat sebuah Soket 2
2.1 IPC . 3

3 Menggunakan sebuah Soket 3
3.1 Data Biner . 5

4 Pemutusan 5
4.1 Saat Soket Mati . 5

5 Soket Tidak-memblokir 6

Penulis Gordon McMillan

Abstrak

Soket digunakan hampir di mana-mana, tetapi merupakan salah satu teknologi yang paling disalahpahami. Ini adalah
gambaran soket dari 10.000 kaki. Ini sebenarnya bukan tutorial - Andamasihmemiliki pekerjaan yang harus dilakukan
agar segala sesuatunya beroperasi. Itu tidak mencakup poin-poin penting (dan ada banyak di antaranya), tetapi saya
berharap ini akan memberi Anda latar belakang yang cukup untuk mulai menggunakannya dengan baik.

1

1 Soket

I’m only going to talk about INET (i.e. IPv4) sockets, but they account for at least 99% of the sockets in use. And I’ll
only talk about STREAM (i.e. TCP) sockets - unless you really know what you’re doing (in which case this HOWTO
isn’t for you!), you’ll get better behavior and performance from a STREAM socket than anything else. I will try to clear
up the mystery of what a socket is, as well as some hints on how to work with blocking and non-blocking sockets. But I’ll
start by talking about blocking sockets. You’ll need to know how they work before dealing with non-blocking sockets.

Part of the trouble with understanding these things is that ”socket” canmean a number of subtly different things, depending
on context. So first, let’s make a distinction between a ”client” socket - an endpoint of a conversation, and a ”server”
socket, which is more like a switchboard operator. The client application (your browser, for example) uses ”client”
sockets exclusively; the web server it’s talking to uses both ”server” sockets and ”client” sockets.

1.1 Sejarah

Of the various forms of IPC (Inter Process Communication), sockets are by far the most popular. On any given platform,
there are likely to be other forms of IPC that are faster, but for cross-platform communication, sockets are about the only
game in town.

They were invented in Berkeley as part of the BSD flavor of Unix. They spread like wildfire with the Internet. With good
reason --- the combination of sockets with INET makes talking to arbitrary machines around the world unbelievably easy
(at least compared to other schemes).

2 Membuat sebuah Soket

Secara kasar, ketika Anda mengklik tautan yang membawa Anda ke halaman ini, browser Anda melakukan sesuatu
seperti berikut:

create an INET, STREAMing socket
s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
now connect to the web server on port 80 - the normal http port
s.connect(("www.python.org", 80))

When the connect completes, the socket s can be used to send in a request for the text of the page. The same socket
will read the reply, and then be destroyed. That’s right, destroyed. Client sockets are normally only used for one exchange
(or a small set of sequential exchanges).

Apa yang terjadi di server web sedikit lebih kompleks. Pertama, server web membuat ”soket server”:

create an INET, STREAMing socket
serversocket = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
bind the socket to a public host, and a well-known port
serversocket.bind((socket.gethostname(), 80))
become a server socket
serversocket.listen(5)

A couple things to notice: we used socket.gethostname() so that the socket would be visible to the outside
world. If we had used s.bind(('localhost', 80)) or s.bind(('127.0.0.1', 80)) we would still
have a ”server” socket, but one that was only visible within the same machine. s.bind(('', 80)) specifies that the
socket is reachable by any address the machine happens to have.

A second thing to note: low number ports are usually reserved for ”well known” services (HTTP, SNMP etc). If you’re
playing around, use a nice high number (4 digits).

2

Finally, the argument to listen tells the socket library that we want it to queue up as many as 5 connect requests (the
normal max) before refusing outside connections. If the rest of the code is written properly, that should be plenty.

Sekarang kita memiliki soket ”server”, mendengarkan pada port 80, kita dapat masuk ke mainloop server web:

while True:
accept connections from outside
(clientsocket, address) = serversocket.accept()
now do something with the clientsocket
in this case, we'll pretend this is a threaded server
ct = client_thread(clientsocket)
ct.run()

There’s actually 3 general ways in which this loop could work - dispatching a thread to handle clientsocket, create
a new process to handle clientsocket, or restructure this app to use non-blocking sockets, and multiplex between
our ”server” socket and any active clientsockets using select. More about that later. The important thing
to understand now is this: this is all a ”server” socket does. It doesn’t send any data. It doesn’t receive any data. It
just produces ”client” sockets. Each clientsocket is created in response to some other ”client” socket doing a
connect() to the host and port we’re bound to. As soon as we’ve created that clientsocket, we go back to
listening for more connections. The two ”clients” are free to chat it up - they are using some dynamically allocated port
which will be recycled when the conversation ends.

2.1 IPC

If you need fast IPC between two processes on one machine, you should look into pipes or shared memory. If you do
decide to use AF_INET sockets, bind the ”server” socket to 'localhost'. On most platforms, this will take a shortcut
around a couple of layers of network code and be quite a bit faster.

Lihat juga:

The multiprocessing mengintegrasikan IPC lintas platform ke dalam API tingkat yang lebih tinggi.

3 Menggunakan sebuah Soket

The first thing to note, is that the web browser’s ”client” socket and the web server’s ”client” socket are identical beasts.
That is, this is a ”peer to peer” conversation. Or to put it another way, as the designer, you will have to decide what the rules
of etiquette are for a conversation. Normally, the connecting socket starts the conversation, by sending in a request, or
perhaps a signon. But that’s a design decision - it’s not a rule of sockets.

Now there are two sets of verbs to use for communication. You can use send and recv, or you can transform your
client socket into a file-like beast and use read and write. The latter is the way Java presents its sockets. I’m not
going to talk about it here, except to warn you that you need to use flush on sockets. These are buffered ”files”, and a
common mistake is to write something, and then read for a reply. Without a flush in there, you may wait forever
for the reply, because the request may still be in your output buffer.

Now we come to the major stumbling block of sockets - send and recv operate on the network buffers. They do not
necessarily handle all the bytes you hand them (or expect from them), because their major focus is handling the network
buffers. In general, they return when the associated network buffers have been filled (send) or emptied (recv). They
then tell you how many bytes they handled. It is your responsibility to call them again until your message has been
completely dealt with.

When a recv returns 0 bytes, it means the other side has closed (or is in the process of closing) the connection. You
will not receive any more data on this connection. Ever. You may be able to send data successfully; I’ll talk more about
this later.

3

Protokol seperti HTTPmenggunakan soket hanya untuk satu transfer. Klienmengirim permintaan, lalumembaca balasan.
Hanya itu. Soket ditinggalkan. Artinya, klien dapat mendeteksi akhir balasan dengan menerima 0 byte.

But if you plan to reuse your socket for further transfers, you need to realize that there is no EOT (End of Transfer) on
a socket. I repeat: if a socket send or recv returns after handling 0 bytes, the connection has been broken. If the
connection has not been broken, you may wait on a recv forever, because the socket will not tell you that there’s nothing
more to read (for now). Now if you think about that a bit, you’ll come to realize a fundamental truth of sockets: messages
must either be fixed length (yuck), or be delimited (shrug), or indicate how long they are (much better), or end by shutting
down the connection. The choice is entirely yours, (but some ways are righter than others).

Dengan asumsi Anda tidak ingin mengakhiri koneksi, solusi paling sederhana adalah pesan dengan panjang tetap:

class MySocket:
"""demonstration class only

- coded for clarity, not efficiency
"""

def __init__(self, sock=None):
if sock is None:

self.sock = socket.socket(
socket.AF_INET, socket.SOCK_STREAM)

else:
self.sock = sock

def connect(self, host, port):
self.sock.connect((host, port))

def mysend(self, msg):
totalsent = 0
while totalsent < MSGLEN:

sent = self.sock.send(msg[totalsent:])
if sent == 0:

raise RuntimeError("socket connection broken")
totalsent = totalsent + sent

def myreceive(self):
chunks = []
bytes_recd = 0
while bytes_recd < MSGLEN:

chunk = self.sock.recv(min(MSGLEN - bytes_recd, 2048))
if chunk == b'':

raise RuntimeError("socket connection broken")
chunks.append(chunk)
bytes_recd = bytes_recd + len(chunk)

return b''.join(chunks)

The sending code here is usable for almost any messaging scheme - in Python you send strings, and you can use len()
to determine its length (even if it has embedded \0 characters). It’s mostly the receiving code that gets more complex.
(And in C, it’s not much worse, except you can’t use strlen if the message has embedded \0s.)

The easiest enhancement is to make the first character of the message an indicator of message type, and have the type
determine the length. Now you have two recvs - the first to get (at least) that first character so you can look up the length,
and the second in a loop to get the rest. If you decide to go the delimited route, you’ll be receiving in some arbitrary
chunk size, (4096 or 8192 is frequently a good match for network buffer sizes), and scanning what you’ve received for a
delimiter.

One complication to be aware of: if your conversational protocol allows multiple messages to be sent back to back
(without some kind of reply), and you pass recv an arbitrary chunk size, you may end up reading the start of a following
message. You’ll need to put that aside and hold onto it, until it’s needed.

4

Prefixing the message with its length (say, as 5 numeric characters) gets more complex, because (believe it or not), you
may not get all 5 characters in one recv. In playing around, you’ll get away with it; but in high network loads, your code
will very quickly break unless you use two recv loops - the first to determine the length, the second to get the data part
of the message. Nasty. This is also when you’ll discover that send does not always manage to get rid of everything in
one pass. And despite having read this, you will eventually get bit by it!

Untuk kepentingan ruang, membangun karakter Anda, (dan mempertahankan posisi kompetitif saya), peningkatan ini
dibiarkan sebagai latihan bagi pembaca. Mari kita lanjutkan ke pembersihan.

3.1 Data Biner

It is perfectly possible to send binary data over a socket. The major problem is that not all machines use the same formats
for binary data. For example, a Motorola chip will represent a 16 bit integer with the value 1 as the two hex bytes 00 01.
Intel and DEC, however, are byte-reversed - that same 1 is 01 00. Socket libraries have calls for converting 16 and 32
bit integers - ntohl, htonl, ntohs, htons where ”n” means network and ”h” means host, ”s” means short and
”l” means long. Where network order is host order, these do nothing, but where the machine is byte-reversed, these swap
the bytes around appropriately.

In these days of 32 bit machines, the ascii representation of binary data is frequently smaller than the binary representation.
That’s because a surprising amount of the time, all those longs have the value 0, or maybe 1. The string ”0” would be two
bytes, while binary is four. Of course, this doesn’t fit well with fixed-length messages. Decisions, decisions.

4 Pemutusan

Strictly speaking, you’re supposed to use shutdown on a socket before you close it. The shutdown is an advisory
to the socket at the other end. Depending on the argument you pass it, it can mean ”I’m not going to send anymore, but I’ll
still listen”, or ”I’m not listening, good riddance!”. Most socket libraries, however, are so used to programmers neglecting
to use this piece of etiquette that normally a close is the same as shutdown(); close(). So in most situations,
an explicit shutdown is not needed.

One way to use shutdown effectively is in an HTTP-like exchange. The client sends a request and then does a
shutdown(1). This tells the server ”This client is done sending, but can still receive.” The server can detect ”EOF”
by a receive of 0 bytes. It can assume it has the complete request. The server sends a reply. If the send completes
successfully then, indeed, the client was still receiving.

Python takes the automatic shutdown a step further, and says that when a socket is garbage collected, it will automatically
do a close if it’s needed. But relying on this is a very bad habit. If your socket just disappears without doing a close,
the socket at the other end may hang indefinitely, thinking you’re just being slow. Please close your sockets when you’re
done.

4.1 Saat Soket Mati

Probably the worst thing about using blocking sockets is what happens when the other side comes down hard (without
doing a close). Your socket is likely to hang. TCP is a reliable protocol, and it will wait a long, long time before giving
up on a connection. If you’re using threads, the entire thread is essentially dead. There’s not much you can do about
it. As long as you aren’t doing something dumb, like holding a lock while doing a blocking read, the thread isn’t really
consuming much in the way of resources. Do not try to kill the thread - part of the reason that threads are more efficient
than processes is that they avoid the overhead associated with the automatic recycling of resources. In other words, if you
do manage to kill the thread, your whole process is likely to be screwed up.

5

5 Soket Tidak-memblokir

If you’ve understood the preceding, you already know most of what you need to know about the mechanics of using
sockets. You’ll still use the same calls, in much the same ways. It’s just that, if you do it right, your app will be almost
inside-out.

In Python, you use socket.setblocking(0) to make it non-blocking. In C, it’s more complex, (for one thing,
you’ll need to choose between the BSD flavor O_NONBLOCK and the almost indistinguishable POSIX flavor O_NDELAY,
which is completely different from TCP_NODELAY), but it’s the exact same idea. You do this after creating the socket,
but before using it. (Actually, if you’re nuts, you can switch back and forth.)

The major mechanical difference is that send, recv, connect and accept can return without having done anything.
You have (of course) a number of choices. You can check return code and error codes and generally drive yourself crazy.
If you don’t believe me, try it sometime. Your app will grow large, buggy and suck CPU. So let’s skip the brain-dead
solutions and do it right.

Menggunakan select.

Di C, pengkodean select cukup kompleks. Dengan Python, ini sangat mudah, tetapi cukup dekat dengan versi C
sehingga jika Anda memahami select dengan Python, Anda akan mengalami sedikit masalah dengan itu di C:

ready_to_read, ready_to_write, in_error = \
select.select(

potential_readers,
potential_writers,
potential_errs,
timeout)

You pass select three lists: the first contains all sockets that you might want to try reading; the second all the sockets
you might want to try writing to, and the last (normally left empty) those that you want to check for errors. You should
note that a socket can go into more than one list. The select call is blocking, but you can give it a timeout. This is
generally a sensible thing to do - give it a nice long timeout (say a minute) unless you have good reason to do otherwise.

Sebagai gantinya, Anda akan mendapatkan tiga daftar. Mereka berisi soket yang sebenarnya dapat dibaca, ditulis dan
dalam kesalahan. Setiap daftar ini adalah subset (mungkin kosong) dari daftar terkait yang Anda berikan.

If a socket is in the output readable list, you can be as-close-to-certain-as-we-ever-get-in-this-business that a recv on
that socket will return something. Same idea for the writable list. You’ll be able to send something. Maybe not all you
want to, but something is better than nothing. (Actually, any reasonably healthy socket will return as writable - it just
means outbound network buffer space is available.)

If you have a ”server” socket, put it in the potential_readers list. If it comes out in the readable list, your accept will
(almost certainly) work. If you have created a new socket to connect to someone else, put it in the potential_writers
list. If it shows up in the writable list, you have a decent chance that it has connected.

Actually, select can be handy even with blocking sockets. It’s one way of determining whether you will block - the
socket returns as readable when there’s something in the buffers. However, this still doesn’t help with the problem of
determining whether the other end is done, or just busy with something else.

Portability alert: On Unix, select works both with the sockets and files. Don’t try this on Windows. On Windows,
select works with sockets only. Also note that in C, many of the more advanced socket options are done differently
on Windows. In fact, on Windows I usually use threads (which work very, very well) with my sockets.

6

	Soket
	Sejarah

	Membuat sebuah Soket
	IPC

	Menggunakan sebuah Soket
	Data Biner

	Pemutusan
	Saat Soket Mati

	Soket Tidak-memblokir

