
Distributing Python Modules
Rilis 3.8.20

Guido van Rossum
and the Python development team

September 08, 2024

Python Software Foundation
Email: docs@python.org

Daftar Isi

1 Istilah utama 3

2 Lisensi dan kolaborasi sumber terbuka 5

3 Instalasi alat 7

4 Membaca Panduan Pengguna Python Packaging 9

5 Bagaimana saya...? 11
5.1 ... pilih nama untuk proyek saya? . 11
5.2 ... membuat dan mendistribusikan ekstensi biner? . 11

A Ikhtisar 13

B Tentang dokumen-dokumen ini 25
B.1 Kontributor untuk dokumentasi Python . 25

C Sejarah dan Lisensi 27
C.1 Sejarah perangkat lunak . 27
C.2 Syarat dan ketentuan untuk mengakses atau menggunakan Python 28
C.3 Lisensi dan Ucapan Terima Kasih untuk Perangkat Lunak yang Tergabung 32

D Hak Cipta 45

Indeks 47

i

ii

Distributing Python Modules, Rilis 3.8.20

Email distutils-sig@python.org

Sebagai proyek pengembangan open source yang populer, Pythonmemiliki komunitas pendukung aktif dan pengguna
yang juga membuat perangkat lunak mereka tersedia untuk pengembang Python lain untuk digunakan di bawah
persyaratan lisensi sumber terbuka.

Hal ini memungkinkan pengguna Python untuk berbagi dan berkolaborasi secara efektif, mendapatkan manfaat dari
solusi yang telah dibuat oleh orang lain untuk masalah umum (dan kadang-kadang bahkan langka!), Serta berpotensi
memberikan kontribusi solusi mereka sendiri ke kumpulan umum.

Panduan ini mencakup bagian distribusi dari proses. Untuk panduan untuk melakukan instalasi proyek Python lain-
nya, lihat: ref: panduan instalasi.

Catatan: Untuk pengguna korporat dan institusi lainnya, sadarilah bahwa banyak organisasi memiliki kebijakan
mereka sendiri tentang penggunaan dan kontribusi untuk perangkat lunak sumber terbuka. Harap pertimbangkan
kebijakan tersebut saat menggunakan alat distribusi dan instalasi yang disediakan dengan Python.

Daftar Isi 1

mailto:distutils-sig@python.org

Distributing Python Modules, Rilis 3.8.20

2 Daftar Isi

BAB1

Istilah utama

• Python Packaging Index adalah repositori publik dari paket berlisensi open source yang dibuat tersedia untuk
digunakan oleh pengguna Python lain

• Python Packaging Authority adalah kelompok pengembang dan penulis dokumentasi yang bertanggung ja-
wab atas pemeliharaan dan evolusi alat pengemasan standar serta standar metadata dan format berkas terkait.
Mereka memelihara berbagai alat, dokumentasi dan pelacak isu di GitHub dan Bitbucket.

• distutils is the original build and distribution system first added to the Python standard library in 1998.
While direct use of distutils is being phased out, it still laid the foundation for the current packaging and
distribution infrastructure, and it not only remains part of the standard library, but its name lives on in other
ways (such as the name of the mailing list used to coordinate Python packaging standards development).

• setuptools adalah pengganti (sebagian besar) langsung untuk :mod: distutils yang pertama kali diterbitkan pa-
da tahun 2004. Penambahannya yang paling penting di atas mod yang tidak dimodifikasi alat :mod: distutils
adalah kemampuan untuk mendeklarasikan dependensi pada paket-paket lain. Saat ini direkomendasikan se-
bagai alternatif yang lebih teratur diperbarui untuk :mod: distutils yang menawarkan dukungan konsisten untuk
standar kemasan yang lebih baru di berbagai versi Python.

• wheel (dalam konteks ini) adalah proyek yang menambahkan perintah bdist_wheel ke
distutils/setuptools. Ini menghasilkan format paket biner lintas platform (disebut ”wheels” atau
”wheels” dan didefinisikan dalam PEP 427) yang memungkinkan pustaka Python, bahkan yang termasuk
ekstensi biner, untuk dipasang pada sistem tanpa perlu dibangun secara lokal.

3

https://pypi.org
https://www.pypa.io/
https://github.com/pypa
https://bitbucket.org/pypa/
https://setuptools.readthedocs.io/en/latest/
https://wheel.readthedocs.io/
https://setuptools.readthedocs.io/en/latest/
https://www.python.org/dev/peps/pep-0427

Distributing Python Modules, Rilis 3.8.20

4 Bab 1. Istilah utama

BAB2

Lisensi dan kolaborasi sumber terbuka

Di sebagian besar dunia, perangkat lunak secara otomatis dilindungi oleh hak cipta. Ini berarti bahwa pengembang
lain memerlukan izin eksplisit untuk menyalin, menggunakan, memodifikasi, dan mendistribusikan ulang perangkat
lunak.

Lisensi sumber terbuka adalah cara untuk secara eksplisit memberikan izin seperti itu dengan cara yang relatif kon-
sisten, memungkinkan pengembang untuk berbagi dan berkolaborasi secara efisien dengan membuat solusi umum
untuk berbagai masalah yang tersedia secara bebas. Ini membuat banyak pengembang bebas menghabiskan lebih
banyak waktu berfokus pada masalah yang relatif unik untuk situasi khusus mereka.

Alat distribusi yang disediakan dengan Python dirancang untukmemudahkan pengembang untukmembuat kontribusi
mereka sendiri kembali ke kumpulan perangkat lunak umum jika mereka memilih untuk melakukannya.

Alat distribusi yang sama juga dapat digunakan untuk mendistribusikan perangkat lunak dalam suatu organisasi,
terlepas dari apakah perangkat lunak tersebut dipublikasikan sebagai perangkat lunak sumber terbuka atau tidak.

5

Distributing Python Modules, Rilis 3.8.20

6 Bab 2. Lisensi dan kolaborasi sumber terbuka

BAB3

Instalasi alat

Pustaka standar tidak termasuk alat bangun yang mendukung standar pemaketan Python modern, sebagaimana tim
pengembang inti telah menemukan bahwa penting untuk memiliki alat standar yang bekerja secara konsisten, bahkan
pada versi Python yang terdahulu.

Alat bangun dan distribusi yang direkomendasikan saat ini dapat diinstal dengan menjalankan modul pip pada baris
perintah

python -m pip install setuptools wheel twine

Catatan: Untuk pengguna POSIX (termasuk pengguna Mac OS X dan Linux), petunjuk ini mengasumsikan peng-
gunaan :term: lingkungan virtual.

Untuk penggunaWindows, petunjuk ini mengasumsikan bahwa opsi untuk menyesuaikan variabel lingkungan PATH
sistem dipilih ketika melakukan instalasi Python.

Panduan Pengguna Python Packagingmenyertakan lebih banyak rincian tentang alat yang direkomendasikan saat ini.

7

https://packaging.python.org/guides/tool-recommendations/#packaging-tool-recommendations

Distributing Python Modules, Rilis 3.8.20

8 Bab 3. Instalasi alat

BAB4

Membaca Panduan Pengguna Python Packaging

Panduan Pengguna Python Packaging mencakup berbagai langkah kunci dan elemen yang terlibat dalam membuat
dan menerbitkan sebuah proyek:

• Struktur proyek

• Membangun dan memaketkan proyek

• Mengunggah proyek ke Indeks Pemaketan Python

• File .pypirc

9

 https://packaging.python.org/tutorials/distributing-packages/
 https://packaging.python.org/tutorials/distributing-packages/#packaging-your-project
 https://packaging.python.org/tutorials/distributing-packages/#uploading-your-project-to-pypi

Distributing Python Modules, Rilis 3.8.20

10 Bab 4. Membaca Panduan Pengguna Python Packaging

BAB5

Bagaimana saya...?

Ini adalah jawaban cepat atau tautan untuk beberapa tugas umum.

5.1 ... pilih nama untuk proyek saya?

Ini bukan topik yang mudah, tetapi berikut beberapa kiatnya:

• periksa Indeks Pemaketan Python untuk melihat apakah nama tersebut sudah digunakan

• periksa situs hosting populer seperti GitHub, Bitbucket, dll untuk melihat apakah sudah ada proyek dengan
nama itu

• periksa apa yang muncul dalam pencarian web untuk nama yang Anda pertimbangkan

• hindari kata-kata yang sangat umum, terutama yang memiliki banyak makna, karena dapat menyulitkan peng-
guna untuk menemukan perangkat lunak Anda ketika menelusurinya

5.2 ... membuat dan mendistribusikan ekstensi biner?

Ini sebenarnya adalah topik yang cukup rumit, dengan berbagai alternatif yang tersedia tergantung pada apa yang
ingin Anda capai. Lihat Panduan Pengguna Python Packaging untuk informasi dan rekomendasi lebih lanjut.

Lihat juga:

Panduan Pengguna *Python Packaging*: Ekstensi Biner

11

https://packaging.python.org/guides/packaging-binary-extensions/

Distributing Python Modules, Rilis 3.8.20

12 Bab 5. Bagaimana saya...?

LAMPIRANA

Ikhtisar

>>> Prompt Python bawaan dari shell interaktif. Sering terlihat untuk contoh kode yang dapat dieksekusi secara
interaktif dalam interpreter.

... Dapat mengacu ke:

• Prompt Python bawaan dari shell interaktif saat memasukkan kode untuk blok kode indentasi, ketika ber-
ada dalam sepasang pembatas kiri dan kanan yang cocok (tanda kurung, kurung kotak, kurung kurawal
atau tanda kutip tiga), atau setelah menentukan decorator.

• Konstanta Ellipsis bawaan.

2ke3 A tool that tries to convert Python 2.x code to Python 3.x code by handling most of the incompatibilities which
can be detected by parsing the source and traversing the parse tree.

2to3 is available in the standard library as lib2to3; a standalone entry point is provided as Tools/
scripts/2to3. See 2to3-reference.

kelas basis abstrak Abstract base classes complement duck-typing by providing a way to define interfaces when
other techniques like hasattr() would be clumsy or subtly wrong (for example with magic methods).
ABCs introduce virtual subclasses, which are classes that don’t inherit from a class but are still recognized
by isinstance() and issubclass(); see the abc module documentation. Python comes with many
built-in ABCs for data structures (in the collections.abcmodule), numbers (in the numbersmodule),
streams (in the io module), import finders and loaders (in the importlib.abc module). You can create
your own ABCs with the abc module.

anotasi A label associated with a variable, a class attribute or a function parameter or return value, used by conven-
tion as a type hint.

Annotations of local variables cannot be accessed at runtime, but annotations of global variables, class attribu-
tes, and functions are stored in the __annotations__ special attribute of modules, classes, and functions,
respectively.

See variable annotation, function annotation, PEP 484 and PEP 526, which describe this functionality.

argumen A value passed to a function (or method) when calling the function. There are two kinds of argument:

• keyword argument: an argument preceded by an identifier (e.g. name=) in a function call or passed as a
value in a dictionary preceded by **. For example, 3 and 5 are both keyword arguments in the following
calls to complex():

complex(real=3, imag=5)
complex(**{'real': 3, 'imag': 5})

13

https://www.python.org/dev/peps/pep-0484
https://www.python.org/dev/peps/pep-0526

Distributing Python Modules, Rilis 3.8.20

• positional argument: an argument that is not a keyword argument. Positional arguments can appear at the
beginning of an argument list and/or be passed as elements of an iterable preceded by *. For example,
3 and 5 are both positional arguments in the following calls:

complex(3, 5)
complex(*(3, 5))

Arguments are assigned to the named local variables in a function body. See the calls section for the rules
governing this assignment. Syntactically, any expression can be used to represent an argument; the evaluated
value is assigned to the local variable.

See also the parameter glossary entry, the FAQ question on the difference between arguments and parameters,
and PEP 362.

manajer konteks asinkron An object which controls the environment seen in an async with statement by de-
fining __aenter__() and __aexit__() methods. Introduced by PEP 492.

pembangkit asinkron A function which returns an asynchronous generator iterator. It looks like a coroutine fun-
ction defined with async def except that it contains yield expressions for producing a series of values
usable in an async for loop.

Usually refers to an asynchronous generator function, but may refer to an asynchronous generator iterator in
some contexts. In cases where the intended meaning isn’t clear, using the full terms avoids ambiguity.

An asynchronous generator function may contain await expressions as well as async for, and async
with statements.

iterator generator asinkron Sebuah objek dibuat oleh fungsi asynchronous generator.

This is an asynchronous iterator which when called using the __anext__() method returns an awaitable
object which will execute the body of the asynchronous generator function until the next yield expression.

Each yield temporarily suspends processing, remembering the location execution state (including local vari-
ables and pending try-statements). When the asynchronous generator iterator effectively resumes with another
awaitable returned by __anext__(), it picks up where it left off. See PEP 492 and PEP 525.

asynchronous iterable An object, that can be used in an async for statement. Must return an asynchronous
iterator from its __aiter__() method. Introduced by PEP 492.

iterator asinkron An object that implements the __aiter__() and __anext__() methods. __anext__
must return an awaitable object. async for resolves the awaitables returned by an asynchronous iterator’s
__anext__() method until it raises a StopAsyncIteration exception. Introduced by PEP 492.

atribut A value associated with an object which is referenced by name using dotted expressions. For example, if an
object o has an attribute a it would be referenced as o.a.

menunggu An object that can be used in an await expression. Can be a coroutine or an object with an
__await__() method. See also PEP 492.

BDFL Benevolent Dictator For Life, a.k.a. Guido van Rossum, Python’s creator.

berkas biner A file object able to read and write bytes-like objects. Examples of binary files are files opened in
binary mode ('rb', 'wb' or 'rb+'), sys.stdin.buffer, sys.stdout.buffer, and instances of
io.BytesIO and gzip.GzipFile.

See also text file for a file object able to read and write str objects.

bytes-like object An object that supports the bufferobjects and can export a C-contiguous buffer. This includes all
bytes, bytearray, and array.array objects, as well as many common memoryview objects. Bytes-
like objects can be used for various operations that work with binary data; these include compression, saving
to a binary file, and sending over a socket.

Some operations need the binary data to be mutable. The documentation often refers to these as ”read-
write bytes-like objects”. Example mutable buffer objects include bytearray and a memoryview of
a bytearray. Other operations require the binary data to be stored in immutable objects (”read-only bytes-
like objects”); examples of these include bytes and a memoryview of a bytes object.

14 Lampiran A. Ikhtisar

https://www.python.org/dev/peps/pep-0362
https://www.python.org/dev/peps/pep-0492
https://www.python.org/dev/peps/pep-0492
https://www.python.org/dev/peps/pep-0525
https://www.python.org/dev/peps/pep-0492
https://www.python.org/dev/peps/pep-0492
https://www.python.org/dev/peps/pep-0492
https://gvanrossum.github.io/

Distributing Python Modules, Rilis 3.8.20

bytecode Python source code is compiled into bytecode, the internal representation of a Python program in the
CPython interpreter. The bytecode is also cached in .pyc files so that executing the same file is faster the
second time (recompilation from source to bytecode can be avoided). This ”intermediate language” is said
to run on a virtual machine that executes the machine code corresponding to each bytecode. Do note that
bytecodes are not expected to work between different Python virtual machines, nor to be stable between Python
releases.

Daftar instruksi-instruksi bytecode dapat ditemukan di dokumentasi pada the dis module.

callback A subroutine function which is passed as an argument to be executed at some point in the future.

kelas A template for creating user-defined objects. Class definitions normally contain method definitions which
operate on instances of the class.

class variable A variable defined in a class and intended to be modified only at class level (i.e., not in an instance of
the class).

paksaan The implicit conversion of an instance of one type to another during an operation which involves two
arguments of the same type. For example, int(3.15) converts the floating point number to the integer 3,
but in 3+4.5, each argument is of a different type (one int, one float), and both must be converted to the
same type before they can be added or it will raise a TypeError. Without coercion, all arguments of even
compatible types would have to be normalized to the same value by the programmer, e.g., float(3)+4.5
rather than just 3+4.5.

bilangan kompleks An extension of the familiar real number system in which all numbers are expressed as a sum of
a real part and an imaginary part. Imaginary numbers are real multiples of the imaginary unit (the square root
of -1), often written i in mathematics or j in engineering. Python has built-in support for complex numbers,
which are written with this latter notation; the imaginary part is written with a j suffix, e.g., 3+1j. To get
access to complex equivalents of the mathmodule, use cmath. Use of complex numbers is a fairly advanced
mathematical feature. If you’re not aware of a need for them, it’s almost certain you can safely ignore them.

manajer konteks An object which controls the environment seen in a with statement by defining __enter__()
and __exit__() methods. See PEP 343.

context variable A variable which can have different values depending on its context. This is similar to Thread-
Local Storage in which each execution thread may have a different value for a variable. However, with context
variables, there may be several contexts in one execution thread and the main usage for context variables is to
keep track of variables in concurrent asynchronous tasks. See contextvars.

contiguous A buffer is considered contiguous exactly if it is either C-contiguous or Fortran contiguous. Zero-
dimensional buffers are C and Fortran contiguous. In one-dimensional arrays, the items must be laid out
in memory next to each other, in order of increasing indexes starting from zero. In multidimensional C-
contiguous arrays, the last index varies the fastest when visiting items in order of memory address. However,
in Fortran contiguous arrays, the first index varies the fastest.

coroutine Coroutines are a more generalized form of subroutines. Subroutines are entered at one point and exited
at another point. Coroutines can be entered, exited, and resumed at many different points. They can be
implemented with the async def statement. See also PEP 492.

coroutine function A function which returns a coroutine object. A coroutine function may be defined with the
async def statement, and may contain await, async for, and async with keywords. These were
introduced by PEP 492.

CPython The canonical implementation of the Python programming language, as distributed on python.org. The
term ”CPython” is used when necessary to distinguish this implementation from others such as Jython or
IronPython.

penghias A function returning another function, usually applied as a function transformation using the @wrapper
syntax. Common examples for decorators are classmethod() and staticmethod().

The decorator syntax is merely syntactic sugar, the following two function definitions are semantically equi-
valent:

def f(...):
...

(berlanjut ke halaman berikutnya)

15

https://www.python.org/dev/peps/pep-0343
https://www.python.org/dev/peps/pep-0492
https://www.python.org/dev/peps/pep-0492
https://www.python.org

Distributing Python Modules, Rilis 3.8.20

(lanjutan dari halaman sebelumnya)

f = staticmethod(f)

@staticmethod
def f(...):

...

The same concept exists for classes, but is less commonly used there. See the documentation for function
definitions and class definitions for more about decorators.

descriptor Any object which defines the methods __get__(), __set__(), or __delete__(). When a class
attribute is a descriptor, its special binding behavior is triggered upon attribute lookup. Normally, using a.b to
get, set or delete an attribute looks up the object named b in the class dictionary for a, but if b is a descriptor,
the respective descriptor method gets called. Understanding descriptors is a key to a deep understanding of
Python because they are the basis for many features including functions, methods, properties, class methods,
static methods, and reference to super classes.

For more information about descriptors’ methods, see descriptors.

kamus An associative array, where arbitrary keys are mapped to values. The keys can be any object with
__hash__() and __eq__() methods. Called a hash in Perl.

dictionary comprehension A compact way to process all or part of the elements in an iterable and return a di-
ctionary with the results. results = {n: n ** 2 for n in range(10)} generates a dictionary
containing key n mapped to value n ** 2. See comprehensions.

dictionary view The objects returned from dict.keys(), dict.values(), and dict.items() are ca-
lled dictionary views. They provide a dynamic view on the dictionary’s entries, which means that when the
dictionary changes, the view reflects these changes. To force the dictionary view to become a full list use
list(dictview). See dict-views.

docstring A string literal which appears as the first expression in a class, function or module. While ignored when
the suite is executed, it is recognized by the compiler and put into the __doc__ attribute of the enclosing
class, function or module. Since it is available via introspection, it is the canonical place for documentation of
the object.

duck-typing A programming style which does not look at an object’s type to determine if it has the right interface;
instead, the method or attribute is simply called or used (”If it looks like a duck and quacks like a duck, it must
be a duck.”) By emphasizing interfaces rather than specific types, well-designed code improves its flexibility
by allowing polymorphic substitution. Duck-typing avoids tests using type() or isinstance(). (Note,
however, that duck-typing can be complemented with abstract base classes.) Instead, it typically employs
hasattr() tests or EAFP programming.

EAFP Easier to ask for forgiveness than permission. This common Python coding style assumes the existence of
valid keys or attributes and catches exceptions if the assumption proves false. This clean and fast style is
characterized by the presence of many try and except statements. The technique contrasts with the LBYL
style common to many other languages such as C.

ekspresi A piece of syntax which can be evaluated to some value. In other words, an expression is an accumulation
of expression elements like literals, names, attribute access, operators or function calls which all return a value.
In contrast to many other languages, not all language constructs are expressions. There are also statements
which cannot be used as expressions, such as while. Assignments are also statements, not expressions.

modul tambahan Amodule written in C or C++, using Python’s C API to interact with the core and with user code.

f-string String literals prefixed with 'f' or 'F' are commonly called ”f-strings” which is short for formatted string
literals. See also PEP 498.

objek berkas An object exposing a file-oriented API (withmethods such asread() orwrite()) to an underlying
resource. Depending on the way it was created, a file object can mediate access to a real on-disk file or
to another type of storage or communication device (for example standard input/output, in-memory buffers,
sockets, pipes, etc.). File objects are also called file-like objects or streams.

There are actually three categories of file objects: raw binary files, buffered binary files and text files. Their
interfaces are defined in the io module. The canonical way to create a file object is by using the open()

16 Lampiran A. Ikhtisar

https://www.python.org/dev/peps/pep-0498

Distributing Python Modules, Rilis 3.8.20

function.

file-like object A synonym for file object.

finder An object that tries to find the loader for a module that is being imported.

Since Python 3.3, there are two types of finder: meta path finders for use with sys.meta_path, and path
entry finders for use with sys.path_hooks.

See PEP 302, PEP 420 and PEP 451 for much more detail.

floor division Mathematical division that rounds down to nearest integer. The floor division operator is //. For
example, the expression 11 // 4 evaluates to 2 in contrast to the 2.75 returned by float true division. Note
that (-11) // 4 is -3 because that is -2.75 rounded downward. See PEP 238.

fungsi A series of statements which returns some value to a caller. It can also be passed zero or more arguments
which may be used in the execution of the body. See also parameter, method, and the function section.

anotasi fungsi An annotation of a function parameter or return value.

Function annotations are usually used for type hints: for example, this function is expected to take two int
arguments and is also expected to have an int return value:

def sum_two_numbers(a: int, b: int) -> int:
return a + b

Function annotation syntax is explained in section function.

See variable annotation and PEP 484, which describe this functionality.

__future__ Apseudo-module which programmers can use to enable new language features which are not compatible
with the current interpreter.

By importing the __future__module and evaluating its variables, you can see when a new feature was first
added to the language and when it becomes the default:

>>> import __future__
>>> __future__.division
_Feature((2, 2, 0, 'alpha', 2), (3, 0, 0, 'alpha', 0), 8192)

pengumpulan sampah The process of freeing memory when it is not used anymore. Python performs garbage
collection via reference counting and a cyclic garbage collector that is able to detect and break reference cycles.
The garbage collector can be controlled using the gc module.

pembangkit A function which returns a generator iterator. It looks like a normal function except that it contains
yield expressions for producing a series of values usable in a for-loop or that can be retrieved one at a time
with the next() function.

Usually refers to a generator function, but may refer to a generator iterator in some contexts. In cases where
the intended meaning isn’t clear, using the full terms avoids ambiguity.

generator iterator An object created by a generator function.

Each yield temporarily suspends processing, remembering the location execution state (including local vari-
ables and pending try-statements). When the generator iterator resumes, it picks up where it left off (in contrast
to functions which start fresh on every invocation).

generator expression An expression that returns an iterator. It looks like a normal expression followed by a for
clause defining a loop variable, range, and an optional if clause. The combined expression generates values
for an enclosing function:

>>> sum(i*i for i in range(10)) # sum of squares 0, 1, 4, ... 81
285

fungsi generik A function composed of multiple functions implementing the same operation for different types.
Which implementation should be used during a call is determined by the dispatch algorithm.

17

https://www.python.org/dev/peps/pep-0302
https://www.python.org/dev/peps/pep-0420
https://www.python.org/dev/peps/pep-0451
https://www.python.org/dev/peps/pep-0238
https://www.python.org/dev/peps/pep-0484

Distributing Python Modules, Rilis 3.8.20

See also the single dispatch glossary entry, the functools.singledispatch() decorator, and PEP
443.

GIL Lihat global interpreter lock.

kunci interpreter global The mechanism used by the CPython interpreter to assure that only one thread executes
Python bytecode at a time. This simplifies the CPython implementation by making the object model (including
critical built-in types such as dict) implicitly safe against concurrent access. Locking the entire interpreter
makes it easier for the interpreter to be multi-threaded, at the expense of much of the parallelism afforded by
multi-processor machines.

However, some extension modules, either standard or third-party, are designed so as to release the GIL when
doing computationally-intensive tasks such as compression or hashing. Also, the GIL is always released when
doing I/O.

Past efforts to create a ”free-threaded” interpreter (one which locks shared data at a much finer granularity)
have not been successful because performance suffered in the common single-processor case. It is believed
that overcoming this performance issue would make the implementation much more complicated and therefore
costlier to maintain.

hash-based pyc A bytecode cache file that uses the hash rather than the last-modified time of the corresponding
source file to determine its validity. See pyc-invalidation.

hashable An object is hashable if it has a hash value which never changes during its lifetime (it needs a
__hash__() method), and can be compared to other objects (it needs an __eq__() method). Hasha-
ble objects which compare equal must have the same hash value.

Hashability makes an object usable as a dictionary key and a set member, because these data structures use the
hash value internally.

Most of Python’s immutable built-in objects are hashable; mutable containers (such as lists or dictionaries)
are not; immutable containers (such as tuples and frozensets) are only hashable if their elements are hashable.
Objects which are instances of user-defined classes are hashable by default. They all compare unequal (except
with themselves), and their hash value is derived from their id().

IDLE Sebuah Lingkungan Pengembangan Terpadu untuk Python. IDLE adalah editor dasar dan lingkungan interp-
reter yang digabungkan dengan distribusi standar dari Python.

immutable An object with a fixed value. Immutable objects include numbers, strings and tuples. Such an object
cannot be altered. A new object has to be created if a different value has to be stored. They play an important
role in places where a constant hash value is needed, for example as a key in a dictionary.

import path A list of locations (or path entries) that are searched by the path based finder for modules to import.
During import, this list of locations usually comes from sys.path, but for subpackages it may also come
from the parent package’s __path__ attribute.

importing The process by which Python code in one module is made available to Python code in another module.

importer An object that both finds and loads a module; both a finder and loader object.

interaktif Python has an interactive interpreter which means you can enter statements and expressions at the in-
terpreter prompt, immediately execute them and see their results. Just launch python with no arguments
(possibly by selecting it from your computer’s main menu). It is a very powerful way to test out new ideas or
inspect modules and packages (remember help(x)).

diinterpretasi Python is an interpreted language, as opposed to a compiled one, though the distinction can be
blurry because of the presence of the bytecode compiler. This means that source files can be run directly
without explicitly creating an executable which is then run. Interpreted languages typically have a shorter de-
velopment/debug cycle than compiled ones, though their programs generally also run more slowly. See also
interactive.

interpreter shutdown When asked to shut down, the Python interpreter enters a special phase where it gradually
releases all allocated resources, such as modules and various critical internal structures. It also makes several
calls to the garbage collector. This can trigger the execution of code in user-defined destructors or weakref
callbacks. Code executed during the shutdown phase can encounter various exceptions as the resources it relies
on may not function anymore (common examples are library modules or the warnings machinery).

18 Lampiran A. Ikhtisar

https://www.python.org/dev/peps/pep-0443
https://www.python.org/dev/peps/pep-0443

Distributing Python Modules, Rilis 3.8.20

The main reason for interpreter shutdown is that the __main__ module or the script being run has finished
executing.

iterable An object capable of returning its members one at a time. Examples of iterables include all sequence
types (such as list, str, and tuple) and some non-sequence types like dict, file objects, and objects of
any classes you define with an __iter__() method or with a __getitem__() method that implements
Sequence semantics.

Iterables can be used in a for loop and in many other places where a sequence is needed (zip(), map(),
...). When an iterable object is passed as an argument to the built-in function iter(), it returns an iterator
for the object. This iterator is good for one pass over the set of values. When using iterables, it is usually not
necessary to call iter() or deal with iterator objects yourself. The for statement does that automatically for
you, creating a temporary unnamed variable to hold the iterator for the duration of the loop. See also iterator,
sequence, and generator.

iterator An object representing a stream of data. Repeated calls to the iterator’s __next__()method (or passing
it to the built-in function next()) return successive items in the stream. When no more data are available
a StopIteration exception is raised instead. At this point, the iterator object is exhausted and any fur-
ther calls to its __next__() method just raise StopIteration again. Iterators are required to have an
__iter__() method that returns the iterator object itself so every iterator is also iterable and may be used
in most places where other iterables are accepted. One notable exception is code which attempts multiple ite-
ration passes. A container object (such as a list) produces a fresh new iterator each time you pass it to the
iter() function or use it in a for loop. Attempting this with an iterator will just return the same exhausted
iterator object used in the previous iteration pass, making it appear like an empty container.

Informasi lebih lanjut dapat ditemukan di typeiter.

fungsi kunci A key function or collation function is a callable that returns a value used for sorting or ordering. For
example, locale.strxfrm() is used to produce a sort key that is aware of locale specific sort conventions.

A number of tools in Python accept key functions to control how elements are ordered or grouped. They include
min(), max(), sorted(), list.sort(), heapq.merge(), heapq.nsmallest(), heapq.
nlargest(), and itertools.groupby().

There are several ways to create a key function. For example. the str.lower() method can serve as a key
function for case insensitive sorts. Alternatively, a key function can be built from a lambda expression such
as lambda r: (r[0], r[2]). Also, the operator module provides three key function constructors:
attrgetter(), itemgetter(), and methodcaller(). See the Sorting HOW TO for examples of
how to create and use key functions.

argumen kata kunci Lihat argument.

lambda An anonymous inline function consisting of a single expression which is evaluated when the function is
called. The syntax to create a lambda function is lambda [parameters]: expression

LBYL Look before you leap. This coding style explicitly tests for pre-conditions before making calls or lookups.
This style contrasts with the EAFP approach and is characterized by the presence of many if statements.

In a multi-threaded environment, the LBYL approach can risk introducing a race condition between ”the
looking” and ”the leaping”. For example, the code, if key in mapping: return mapping[key]
can fail if another thread removes key from mapping after the test, but before the lookup. This issue can be
solved with locks or by using the EAFP approach.

daftar A built-in Python sequence. Despite its name it is more akin to an array in other languages than to a linked
list since access to elements is O(1).

list comprehension A compact way to process all or part of the elements in a sequence and return a list wi-
th the results. result = ['{:#04x}'.format(x) for x in range(256) if x % 2 ==
0] generates a list of strings containing even hex numbers (0x..) in the range from 0 to 255. The if clause is
optional. If omitted, all elements in range(256) are processed.

loader An object that loads a module. It must define a method named load_module(). A loader is typically
returned by a finder. See PEP 302 for details and importlib.abc.Loader for an abstract base class.

magic method An informal synonym for special method.

19

https://www.python.org/dev/peps/pep-0302

Distributing Python Modules, Rilis 3.8.20

pemetaan A container object that supports arbitrary key lookups and implements the methods specified in
the Mapping or MutableMapping abstract base classes. Examples include dict, collections.
defaultdict, collections.OrderedDict and collections.Counter.

meta path finder A finder returned by a search ofsys.meta_path. Meta path finders are related to, but different
from path entry finders.

See importlib.abc.MetaPathFinder for the methods that meta path finders implement.

metaclass The class of a class. Class definitions create a class name, a class dictionary, and a list of base classes.
The metaclass is responsible for taking those three arguments and creating the class. Most object oriented
programming languages provide a default implementation. What makes Python special is that it is possible to
create custom metaclasses. Most users never need this tool, but when the need arises, metaclasses can provide
powerful, elegant solutions. They have been used for logging attribute access, adding thread-safety, tracking
object creation, implementing singletons, and many other tasks.

Informasi lebih lanjut dapat ditemukan di metaclasses.

method A function which is defined inside a class body. If called as an attribute of an instance of that class, the
method will get the instance object as its first argument (which is usually called self). See function and nested
scope.

method resolution order Method Resolution Order is the order in which base classes are searched for a member
during lookup. See The Python 2.3 Method Resolution Order for details of the algorithm used by the Python
interpreter since the 2.3 release.

modul An object that serves as an organizational unit of Python code. Modules have a namespace containing arbi-
trary Python objects. Modules are loaded into Python by the process of importing.

Lihat juga package.

module spec A namespace containing the import-related information used to load a module. An instance of
importlib.machinery.ModuleSpec.

MRO Lihat method resolution order.

mutable Mutable objects can change their value but keep their id(). See also immutable.

named tuple The term ”named tuple” applies to any type or class that inherits from tuple and whose indexable
elements are also accessible using named attributes. The type or class may have other features as well.

Several built-in types are named tuples, including the values returned by time.localtime() and os.
stat(). Another example is sys.float_info:

>>> sys.float_info[1] # indexed access
1024
>>> sys.float_info.max_exp # named field access
1024
>>> isinstance(sys.float_info, tuple) # kind of tuple
True

Some named tuples are built-in types (such as the above examples). Alternatively, a named tuple can be created
from a regular class definition that inherits from tuple and that defines named fields. Such a class can be
written by hand or it can be created with the factory function collections.namedtuple(). The latter
technique also adds some extra methods that may not be found in hand-written or built-in named tuples.

namespace The place where a variable is stored. Namespaces are implemented as dictionaries. There are the local,
global and built-in namespaces as well as nested namespaces in objects (in methods). Namespaces support
modularity by preventing naming conflicts. For instance, the functions builtins.open and os.open()
are distinguished by their namespaces. Namespaces also aid readability and maintainability by making it clear
whichmodule implements a function. For instance, writing random.seed() or itertools.islice()
makes it clear that those functions are implemented by the random and itertools modules, respectively.

namespace package A PEP 420 package which serves only as a container for subpackages. Namespace packages
may have no physical representation, and specifically are not like a regular package because they have no
__init__.py file.

20 Lampiran A. Ikhtisar

https://www.python.org/download/releases/2.3/mro/
https://www.python.org/dev/peps/pep-0420

Distributing Python Modules, Rilis 3.8.20

Lihat juga module.

nested scope The ability to refer to a variable in an enclosing definition. For instance, a function defined inside
another function can refer to variables in the outer function. Note that nested scopes by default work only for
reference and not for assignment. Local variables both read and write in the innermost scope. Likewise, global
variables read and write to the global namespace. The nonlocal allows writing to outer scopes.

new-style class Old name for the flavor of classes now used for all class objects. In earlier Python versions,
only new-style classes could use Python’s newer, versatile features like __slots__, descriptors, properties,
__getattribute__(), class methods, and static methods.

objek Any data with state (attributes or value) and defined behavior (methods). Also the ultimate base class of any
new-style class.

paket A Python module which can contain submodules or recursively, subpackages. Technically, a package is a
Python module with an __path__ attribute.

See also regular package and namespace package.

parameter A named entity in a function (or method) definition that specifies an argument (or in some cases, argu-
ments) that the function can accept. There are five kinds of parameter:

• positional-or-keyword: specifies an argument that can be passed either positionally or as a keyword argu-
ment. This is the default kind of parameter, for example foo and bar in the following:

def func(foo, bar=None): ...

• positional-only: specifies an argument that can be supplied only by position. Positional-only parameters
can be defined by including a / character in the parameter list of the function definition after them, for
example posonly1 and posonly2 in the following:

def func(posonly1, posonly2, /, positional_or_keyword): ...

• keyword-only: specifies an argument that can be supplied only by keyword. Keyword-only parameters can
be defined by including a single var-positional parameter or bare * in the parameter list of the function
definition before them, for example kw_only1 and kw_only2 in the following:

def func(arg, *, kw_only1, kw_only2): ...

• var-positional: specifies that an arbitrary sequence of positional arguments can be provided (in addition
to any positional arguments already accepted by other parameters). Such a parameter can be defined by
prepending the parameter name with *, for example args in the following:

def func(*args, **kwargs): ...

• var-keyword: specifies that arbitrarily many keyword arguments can be provided (in addition to any ke-
yword arguments already accepted by other parameters). Such a parameter can be defined by prepending
the parameter name with **, for example kwargs in the example above.

Parameters can specify both optional and required arguments, as well as default values for some optional
arguments.

See also the argument glossary entry, the FAQ question on the difference between arguments and parameters,
the inspect.Parameter class, the function section, and PEP 362.

path entry A single location on the import path which the path based finder consults to find modules for importing.

path entry finder A finder returned by a callable on sys.path_hooks (i.e. a path entry hook) which knows
how to locate modules given a path entry.

See importlib.abc.PathEntryFinder for the methods that path entry finders implement.

path entry hook A callable on the sys.path_hook list which returns a path entry finder if it knows how to find
modules on a specific path entry.

path based finder One of the default meta path finders which searches an import path for modules.

21

https://www.python.org/dev/peps/pep-0362

Distributing Python Modules, Rilis 3.8.20

path-like object An object representing a file system path. A path-like object is either a str or bytes object
representing a path, or an object implementing the os.PathLike protocol. An object that supports the os.
PathLike protocol can be converted to a str or bytes file system path by calling the os.fspath()
function; os.fsdecode() andos.fsencode() can be used to guarantee astr orbytes result instead,
respectively. Introduced by PEP 519.

PEP Python Enhancement Proposal. A PEP is a design document providing information to the Python community,
or describing a new feature for Python or its processes or environment. PEPs should provide a concise technical
specification and a rationale for proposed features.

PEPs are intended to be the primary mechanisms for proposing major new features, for collecting community
input on an issue, and for documenting the design decisions that have gone into Python. The PEP author is
responsible for building consensus within the community and documenting dissenting opinions.

Lihat PEP 1.

porsi A set of files in a single directory (possibly stored in a zip file) that contribute to a namespace package, as
defined in PEP 420.

positional argument Lihat argument.

provisional API A provisional API is one which has been deliberately excluded from the standard library’s bac-
kwards compatibility guarantees. While major changes to such interfaces are not expected, as long as they
are marked provisional, backwards incompatible changes (up to and including removal of the interface) may
occur if deemed necessary by core developers. Such changes will not be made gratuitously -- they will occur
only if serious fundamental flaws are uncovered that were missed prior to the inclusion of the API.

Even for provisional APIs, backwards incompatible changes are seen as a ”solution of last resort” - every
attempt will still be made to find a backwards compatible resolution to any identified problems.

This process allows the standard library to continue to evolve over time, without locking in problematic design
errors for extended periods of time. See PEP 411 for more details.

provisional package Lihat provisional API.

Python 3000 Nickname for the Python 3.x release line (coined long ago when the release of version 3 was something
in the distant future.) This is also abbreviated ”Py3k”.

Pythonic An idea or piece of code which closely follows the most common idioms of the Python language, rather
than implementing code using concepts common to other languages. For example, a common idiom in Python
is to loop over all elements of an iterable using a for statement. Many other languages don’t have this type of
construct, so people unfamiliar with Python sometimes use a numerical counter instead:

for i in range(len(food)):
print(food[i])

As opposed to the cleaner, Pythonic method:

for piece in food:
print(piece)

nama yang memenuhi syarat A dotted name showing the ”path” from a module’s global scope to a class, function
or method defined in that module, as defined in PEP 3155. For top-level functions and classes, the qualified
name is the same as the object’s name:

>>> class C:
... class D:
... def meth(self):
... pass
...
>>> C.__qualname__
'C'
>>> C.D.__qualname__
'C.D'

(berlanjut ke halaman berikutnya)

22 Lampiran A. Ikhtisar

https://www.python.org/dev/peps/pep-0519
https://www.python.org/dev/peps/pep-0001
https://www.python.org/dev/peps/pep-0420
https://www.python.org/dev/peps/pep-0411
https://www.python.org/dev/peps/pep-3155

Distributing Python Modules, Rilis 3.8.20

(lanjutan dari halaman sebelumnya)

>>> C.D.meth.__qualname__
'C.D.meth'

When used to refer to modules, the fully qualified name means the entire dotted path to the module, including
any parent packages, e.g. email.mime.text:

>>> import email.mime.text
>>> email.mime.text.__name__
'email.mime.text'

jumlah referensi The number of references to an object. When the reference count of an object drops to zero, it is
deallocated. Reference counting is generally not visible to Python code, but it is a key element of the CPython
implementation. The sys module defines a getrefcount() function that programmers can call to return
the reference count for a particular object.

paket biasa A traditional package, such as a directory containing an __init__.py file.

Lihat juga namespace package.

__slots__ A declaration inside a class that saves memory by pre-declaring space for instance attributes and elimina-
ting instance dictionaries. Though popular, the technique is somewhat tricky to get right and is best reserved
for rare cases where there are large numbers of instances in a memory-critical application.

urutan An iterable which supports efficient element access using integer indices via the __getitem__() spe-
cial method and defines a __len__() method that returns the length of the sequence. Some built-in se-
quence types are list, str, tuple, and bytes. Note that dict also supports __getitem__() and
__len__(), but is considered a mapping rather than a sequence because the lookups use arbitrary immutable
keys rather than integers.

The collections.abc.Sequence abstract base class defines a much richer interface that goes be-
yond just __getitem__() and __len__(), adding count(), index(), __contains__(), and
__reversed__(). Types that implement this expanded interface can be registered explicitly using
register().

set comprehension A compact way to process all or part of the elements in an iterable and return a set with the
results. results = {c for c in 'abracadabra' if c not in 'abc'} generates the set
of strings {'r', 'd'}. See comprehensions.

single dispatch A form of generic function dispatch where the implementation is chosen based on the type of a
single argument.

slice An object usually containing a portion of a sequence. A slice is created using the subscript notation, [] wi-
th colons between numbers when several are given, such as in variable_name[1:3:5]. The bracket
(subscript) notation uses slice objects internally.

special method A method that is called implicitly by Python to execute a certain operation on a type, such as addi-
tion. Such methods have names starting and ending with double underscores. Special methods are documented
in specialnames.

pernyataan A statement is part of a suite (a ”block” of code). A statement is either an expression or one of several
constructs with a keyword, such as if, while or for.

text encoding A codec which encodes Unicode strings to bytes.

berkas teks A file object able to read and write str objects. Often, a text file actually accesses a byte-oriented
datastream and handles the text encoding automatically. Examples of text files are files opened in text mode
('r' or 'w'), sys.stdin, sys.stdout, and instances of io.StringIO.

See also binary file for a file object able to read and write bytes-like objects.

teks tiga-kutip A string which is bound by three instances of either a quotation mark (”) or an apostrophe (’). While
they don’t provide any functionality not available with single-quoted strings, they are useful for a number of re-
asons. They allow you to include unescaped single and double quotes within a string and they can span multiple
lines without the use of the continuation character, making them especially useful when writing docstrings.

23

Distributing Python Modules, Rilis 3.8.20

tipe The type of a Python object determines what kind of object it is; every object has a type. An object’s type is
accessible as its __class__ attribute or can be retrieved with type(obj).

type alias A synonym for a type, created by assigning the type to an identifier.

Type aliases are useful for simplifying type hints. For example:

from typing import List, Tuple

def remove_gray_shades(
colors: List[Tuple[int, int, int]]) -> List[Tuple[int, int, int]]:

pass

could be made more readable like this:

from typing import List, Tuple

Color = Tuple[int, int, int]

def remove_gray_shades(colors: List[Color]) -> List[Color]:
pass

See typing and PEP 484, which describe this functionality.

type hint An annotation that specifies the expected type for a variable, a class attribute, or a function parameter or
return value.

Type hints are optional and are not enforced by Python but they are useful to static type analysis tools, and aid
IDEs with code completion and refactoring.

Type hints of global variables, class attributes, and functions, but not local variables, can be accessed using
typing.get_type_hints().

See typing and PEP 484, which describe this functionality.

universal newlines A manner of interpreting text streams in which all of the following are recognized as ending
a line: the Unix end-of-line convention '\n', the Windows convention '\r\n', and the old Macintosh
convention '\r'. See PEP 278 and PEP 3116, as well as bytes.splitlines() for an additional use.

anotasi variabel An annotation of a variable or a class attribute.

When annotating a variable or a class attribute, assignment is optional:

class C:
field: 'annotation'

Variable annotations are usually used for type hints: for example this variable is expected to take int values:

count: int = 0

Variable annotation syntax is explained in section annassign.

See function annotation, PEP 484 and PEP 526, which describe this functionality.

lingkungan virtual Lingkungan runtime kooperatif yang memungkinkan pengguna dan aplikasi Python untuk
menginstal dan memperbarui paket distribusi Python tanpa mengganggu perilaku aplikasi Python lain yang
berjalan pada sistem yang sama.

Lihat juga venv.

mesin virtual A computer defined entirely in software. Python’s virtual machine executes the bytecode emitted by
the bytecode compiler.

Zen of Python Listing of Python design principles and philosophies that are helpful in understanding and using the
language. The listing can be found by typing ”import this” at the interactive prompt.

24 Lampiran A. Ikhtisar

https://www.python.org/dev/peps/pep-0484
https://www.python.org/dev/peps/pep-0484
https://www.python.org/dev/peps/pep-0278
https://www.python.org/dev/peps/pep-3116
https://www.python.org/dev/peps/pep-0484
https://www.python.org/dev/peps/pep-0526

LAMPIRANB

Tentang dokumen-dokumen ini

Dokumen-dokumen ini dihasilkan dari reStructuredText dengan Sphinx, sebuah pemroses dokumen yang khusus
ditulis untuk dokumentasi Python.

Pengembangan dokumentasi dan perangkat pengembangannya sepenuhnya upaya sukarela, seperti halnya Python.
Jika anda ingin berkontribusi, silakan lihat halaman reporting-bugs untuk informasi cara melakukannya. Relawan
baru selalu diterima!

Terima kasih banyak untuk:

• Fred L. Drake, Jr., pembuat awal kumpulan alat dokumentasi Python dan penulis banyak konten;

• Docutils proyek untuk membuat reStructuredText dan Docutils suite;

• Fredrik Lundh untuk Alternative Python Reference proyek dimana Sphinx mendapatkan banyak ide bagus.

B.1 Kontributor untuk dokumentasi Python

Banyak orang telah berkontribusi ke bahasa Python, pustaka standar Python, dan dokumentasi Python. Lihat Mi-
sc/ACKS di distribusi kode sumber Python untuk sebagian daftar kontributor-kontributor.

Hanya dengan masukan dan kontribusi dari komunitas Python sehingga Python memiliki dokumentasi yang sangat
baik. Terima kasih!

25

http://docutils.sourceforge.net/rst.html
http://sphinx-doc.org/
http://docutils.sourceforge.net/
http://effbot.org/zone/pyref.htm
https://github.com/python/cpython/tree/3.8/Misc/ACKS
https://github.com/python/cpython/tree/3.8/Misc/ACKS

Distributing Python Modules, Rilis 3.8.20

26 Lampiran B. Tentang dokumen-dokumen ini

LAMPIRANC

Sejarah dan Lisensi

C.1 Sejarah perangkat lunak

Python diciptakan pada awal 1990-an oleh Guido van Rossum di Stichting Mathematisch Centrum (CWI, lihat https:
//www.cwi.nl/) di Belanda sebagai penerus bahasa yang disebut ABC. Guido tetap menjadi penulis utama Python,
meskipun ia memasukkan banyak kontribusi dari orang lain.

Pada tahun 1995, Guido melanjutkan karyanya tentang Python di Corporation for National Research Initiatives
(CNRI, lihat https://www.cnri.reston.va.us/) di Reston, Virginia di mana ia merilis beberapa versi perangkat lunak.

In May 2000, Guido and the Python core development team moved to BeOpen.com to form the BeOpen PythonLabs
team. In October of the same year, the PythonLabs team moved to Digital Creations (now Zope Corporation; see
https://www.zope.org/). In 2001, the Python Software Foundation (PSF, see https://www.python.org/psf/) was for-
med, a non-profit organization created specifically to own Python-related Intellectual Property. Zope Corporation is
a sponsoring member of the PSF.

Semua rilis Python adalah Sumber Terbuka (lihat https://opensource.org/ untuk Definisi Sumber Terbuka). Secara
historis, sebagian besar, tetapi tidak semua, rilis Python juga kompatibel dengan GPL; tabel di bawah ini merangkum
berbagai rilis.

Rilis Berasal dari Tahun Pemilik GPL compatible?
0.9.0 hingga 1.2 t/a 1991-1995 CWI ya
1.3 hingga 1.5.2 1.2 1995-1999 CNRI ya
1.6 1.5.2 2000 CNRI tidak
2.0 1.6 2000 BeOpen.com tidak
1.6.1 1.6 2001 CNRI tidak
2.1 2.0+1.6.1 2001 PSF tidak
2.0.1 2.0+1.6.1 2001 PSF ya
2.1.1 2.1+2.0.1 2001 PSF ya
2.1.2 2.1.1 2002 PSF ya
2.1.3 2.1.2 2002 PSF ya
2.2 dan ke atas 2.1.1 2001-sekarang PSF ya

Catatan: GPL-compatible doesn’t mean that we’re distributing Python under the GPL. All Python licenses, unlike
the GPL, let you distribute a modified version without making your changes open source. The GPL-compatible

27

https://www.cwi.nl/
https://www.cwi.nl/
https://www.cnri.reston.va.us/
https://www.zope.org/
https://www.python.org/psf/
https://opensource.org/

Distributing Python Modules, Rilis 3.8.20

licenses make it possible to combine Python with other software that is released under the GPL; the others don’t.

Terima kasih kepada banyak sukarelawan eksternal yang telah bekerja di bawah arahan Guido untuk mewujudkan
rilis-rilis ini.

C.2 Syarat dan ketentuan untuk mengakses atau menggunakan
Python

Python software and documentation are licensed under the PSF License Agreement.

Starting with Python 3.8.6, examples, recipes, and other code in the documentation are dual licensed under the PSF
License Agreement and the Zero-Clause BSD license.

Some software incorporated into Python is under different licenses. The licenses are listed with code falling under
that license. See Lisensi dan Ucapan Terima Kasih untuk Perangkat Lunak yang Tergabung for an incomplete list of
these licenses.

C.2.1 LISENSI PERJANJIAN PSF UNTUK PYTHON 3.8.20

1. This LICENSE AGREEMENT is between the Python Software Foundation␣
↪→("PSF"), and

the Individual or Organization ("Licensee") accessing and otherwise␣
↪→using Python

3.8.20 software in source or binary form and its associated␣
↪→documentation.

2. Subject to the terms and conditions of this License Agreement, PSF␣
↪→hereby

grants Licensee a nonexclusive, royalty-free, world-wide license to␣
↪→reproduce,

analyze, test, perform and/or display publicly, prepare derivative␣
↪→works,

distribute, and otherwise use Python 3.8.20 alone or in any derivative
version, provided, however, that PSF's License Agreement and PSF's␣

↪→notice of
copyright, i.e., "Copyright © 2001-2023 Python Software Foundation; All␣

↪→Rights
Reserved" are retained in Python 3.8.20 alone or in any derivative␣

↪→version
prepared by Licensee.

3. In the event Licensee prepares a derivative work that is based on or
incorporates Python 3.8.20 or any part thereof, and wants to make the
derivative work available to others as provided herein, then Licensee␣

↪→hereby
agrees to include in any such work a brief summary of the changes made␣

↪→to Python
3.8.20.

4. PSF is making Python 3.8.20 available to Licensee on an "AS IS" basis.
PSF MAKES NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY␣

↪→OF
EXAMPLE, BUT NOT LIMITATION, PSF MAKES NO AND DISCLAIMS ANY␣

↪→REPRESENTATION OR

28 Lampiran C. Sejarah dan Lisensi

Distributing Python Modules, Rilis 3.8.20

WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR␣
↪→THAT THE

USE OF PYTHON 3.8.20 WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

5. PSF SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF PYTHON 3.8.20
FOR ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A␣

↪→RESULT OF
MODIFYING, DISTRIBUTING, OR OTHERWISE USING PYTHON 3.8.20, OR ANY␣

↪→DERIVATIVE
THEREOF, EVEN IF ADVISED OF THE POSSIBILITY THEREOF.

6. This License Agreement will automatically terminate upon a material␣
↪→breach of

its terms and conditions.

7. Nothing in this License Agreement shall be deemed to create any␣
↪→relationship

of agency, partnership, or joint venture between PSF and Licensee. ␣
↪→This License

Agreement does not grant permission to use PSF trademarks or trade name␣
↪→in a

trademark sense to endorse or promote products or services of Licensee,␣
↪→or any

third party.

8. By copying, installing or otherwise using Python 3.8.20, Licensee agrees
to be bound by the terms and conditions of this License Agreement.

C.2.2 LISENSI PERJANJIAN BEOPEN.COM UNTUK PYTHON 2.0

LISENSI PERJANJIAN BEOPEN SUMBER TERBUKA PYTHON VERSI 1

1. This LICENSE AGREEMENT is between BeOpen.com ("BeOpen"), having an office at
160 Saratoga Avenue, Santa Clara, CA 95051, and the Individual or Organization
("Licensee") accessing and otherwise using this software in source or binary
form and its associated documentation ("the Software").

2. Subject to the terms and conditions of this BeOpen Python License Agreement,
BeOpen hereby grants Licensee a non-exclusive, royalty-free, world-wide license
to reproduce, analyze, test, perform and/or display publicly, prepare derivative
works, distribute, and otherwise use the Software alone or in any derivative
version, provided, however, that the BeOpen Python License is retained in the
Software, alone or in any derivative version prepared by Licensee.

3. BeOpen is making the Software available to Licensee on an "AS IS" basis.
BEOPEN MAKES NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF
EXAMPLE, BUT NOT LIMITATION, BEOPEN MAKES NO AND DISCLAIMS ANY REPRESENTATION OR
WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE
USE OF THE SOFTWARE WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

4. BEOPEN SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF THE SOFTWARE FOR
ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT OF USING,
MODIFYING OR DISTRIBUTING THE SOFTWARE, OR ANY DERIVATIVE THEREOF, EVEN IF
ADVISED OF THE POSSIBILITY THEREOF.

5. This License Agreement will automatically terminate upon a material breach of
its terms and conditions.

6. This License Agreement shall be governed by and interpreted in all respects

(berlanjut ke halaman berikutnya)

C.2. Syarat dan ketentuan untuk mengakses atau menggunakan Python 29

Distributing Python Modules, Rilis 3.8.20

(lanjutan dari halaman sebelumnya)

by the law of the State of California, excluding conflict of law provisions.
Nothing in this License Agreement shall be deemed to create any relationship of
agency, partnership, or joint venture between BeOpen and Licensee. This License
Agreement does not grant permission to use BeOpen trademarks or trade names in a
trademark sense to endorse or promote products or services of Licensee, or any
third party. As an exception, the "BeOpen Python" logos available at
http://www.pythonlabs.com/logos.html may be used according to the permissions
granted on that web page.

7. By copying, installing or otherwise using the software, Licensee agrees to be
bound by the terms and conditions of this License Agreement.

C.2.3 LISENSI PERJANJIAN CNRI UNTUK PYTHON 1.6.1

1. This LICENSE AGREEMENT is between the Corporation for National Research
Initiatives, having an office at 1895 Preston White Drive, Reston, VA 20191
("CNRI"), and the Individual or Organization ("Licensee") accessing and
otherwise using Python 1.6.1 software in source or binary form and its
associated documentation.

2. Subject to the terms and conditions of this License Agreement, CNRI hereby
grants Licensee a nonexclusive, royalty-free, world-wide license to reproduce,
analyze, test, perform and/or display publicly, prepare derivative works,
distribute, and otherwise use Python 1.6.1 alone or in any derivative version,
provided, however, that CNRI's License Agreement and CNRI's notice of copyright,
i.e., "Copyright © 1995-2001 Corporation for National Research Initiatives; All
Rights Reserved" are retained in Python 1.6.1 alone or in any derivative version
prepared by Licensee. Alternately, in lieu of CNRI's License Agreement,
Licensee may substitute the following text (omitting the quotes): "Python 1.6.1
is made available subject to the terms and conditions in CNRI's License
Agreement. This Agreement together with Python 1.6.1 may be located on the
Internet using the following unique, persistent identifier (known as a handle):
1895.22/1013. This Agreement may also be obtained from a proxy server on the
Internet using the following URL: http://hdl.handle.net/1895.22/1013."

3. In the event Licensee prepares a derivative work that is based on or
incorporates Python 1.6.1 or any part thereof, and wants to make the derivative
work available to others as provided herein, then Licensee hereby agrees to
include in any such work a brief summary of the changes made to Python 1.6.1.

4. CNRI is making Python 1.6.1 available to Licensee on an "AS IS" basis. CNRI
MAKES NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF EXAMPLE,
BUT NOT LIMITATION, CNRI MAKES NO AND DISCLAIMS ANY REPRESENTATION OR WARRANTY
OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE USE OF
PYTHON 1.6.1 WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

5. CNRI SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF PYTHON 1.6.1 FOR
ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT OF
MODIFYING, DISTRIBUTING, OR OTHERWISE USING PYTHON 1.6.1, OR ANY DERIVATIVE
THEREOF, EVEN IF ADVISED OF THE POSSIBILITY THEREOF.

6. This License Agreement will automatically terminate upon a material breach of
its terms and conditions.

7. This License Agreement shall be governed by the federal intellectual property
law of the United States, including without limitation the federal copyright
law, and, to the extent such U.S. federal law does not apply, by the law of the
Commonwealth of Virginia, excluding Virginia's conflict of law provisions.
Notwithstanding the foregoing, with regard to derivative works based on Python

(berlanjut ke halaman berikutnya)

30 Lampiran C. Sejarah dan Lisensi

Distributing Python Modules, Rilis 3.8.20

(lanjutan dari halaman sebelumnya)

1.6.1 that incorporate non-separable material that was previously distributed
under the GNU General Public License (GPL), the law of the Commonwealth of
Virginia shall govern this License Agreement only as to issues arising under or
with respect to Paragraphs 4, 5, and 7 of this License Agreement. Nothing in
this License Agreement shall be deemed to create any relationship of agency,
partnership, or joint venture between CNRI and Licensee. This License Agreement
does not grant permission to use CNRI trademarks or trade name in a trademark
sense to endorse or promote products or services of Licensee, or any third
party.

8. By clicking on the "ACCEPT" button where indicated, or by copying, installing
or otherwise using Python 1.6.1, Licensee agrees to be bound by the terms and
conditions of this License Agreement.

C.2.4 LISENSI PERJANJIAN CWI UNTUK PYTHON 0.9.0 SAMPAI 1.2

Copyright © 1991 - 1995, Stichting Mathematisch Centrum Amsterdam, The
Netherlands. All rights reserved.

Permission to use, copy, modify, and distribute this software and its
documentation for any purpose and without fee is hereby granted, provided that
the above copyright notice appear in all copies and that both that copyright
notice and this permission notice appear in supporting documentation, and that
the name of Stichting Mathematisch Centrum or CWI not be used in advertising or
publicity pertaining to distribution of the software without specific, written
prior permission.

STICHTING MATHEMATISCH CENTRUM DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS
SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN NO
EVENT SHALL STICHTING MATHEMATISCH CENTRUM BE LIABLE FOR ANY SPECIAL, INDIRECT
OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE,
DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS
SOFTWARE.

C.2.5 ZERO-CLAUSE BSD LICENSE FOR CODE IN THE PYTHON 3.8.20 DOCU-
MENTATION

Permission to use, copy, modify, and/or distribute this software for any
purpose with or without fee is hereby granted.

THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH
REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT,
INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM
LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR
OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
PERFORMANCE OF THIS SOFTWARE.

C.2. Syarat dan ketentuan untuk mengakses atau menggunakan Python 31

Distributing Python Modules, Rilis 3.8.20

C.3 Lisensi dan Ucapan Terima Kasih untuk Perangkat Lunak yang
Tergabung

Bagian ini tidak lengkap, tetapi daftar lisensi dan ucapan terima kasih yang terus bertambah untuk perangkat lunak
pihak ketiga yang tergabung dalam distribusi Python.

C.3.1 Mersenne Twister

The _random module includes code based on a download from http://www.math.sci.hiroshima-u.ac.jp/~m-mat/
MT/MT2002/emt19937ar.html. The following are the verbatim comments from the original code:

A C-program for MT19937, with initialization improved 2002/1/26.
Coded by Takuji Nishimura and Makoto Matsumoto.

Before using, initialize the state by using init_genrand(seed)
or init_by_array(init_key, key_length).

Copyright (C) 1997 - 2002, Makoto Matsumoto and Takuji Nishimura,
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

3. The names of its contributors may not be used to endorse or promote
products derived from this software without specific prior written
permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Any feedback is very welcome.
http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html
email: m-mat @ math.sci.hiroshima-u.ac.jp (remove space)

32 Lampiran C. Sejarah dan Lisensi

http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/MT2002/emt19937ar.html
http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/MT2002/emt19937ar.html

Distributing Python Modules, Rilis 3.8.20

C.3.2 Soket

The socket module uses the functions, getaddrinfo(), and getnameinfo(), which are coded in separate
source files from the WIDE Project, http://www.wide.ad.jp/.

Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
1. Redistributions of source code must retain the above copyright

notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright

notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

3. Neither the name of the project nor the names of its contributors
may be used to endorse or promote products derived from this software
without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

C.3.3 Layanan soket asinkron

Modul asynchat dan asyncore berisi pemberitahuan berikut:

Copyright 1996 by Sam Rushing

All Rights Reserved

Permission to use, copy, modify, and distribute this software and
its documentation for any purpose and without fee is hereby
granted, provided that the above copyright notice appear in all
copies and that both that copyright notice and this permission
notice appear in supporting documentation, and that the name of Sam
Rushing not be used in advertising or publicity pertaining to
distribution of the software without specific, written prior
permission.

SAM RUSHING DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE,
INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN
NO EVENT SHALL SAM RUSHING BE LIABLE FOR ANY SPECIAL, INDIRECT OR
CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS
OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT,
NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

C.3. Lisensi dan Ucapan Terima Kasih untuk Perangkat Lunak yang Tergabung 33

http://www.wide.ad.jp/

Distributing Python Modules, Rilis 3.8.20

C.3.4 Pengelolaan Cookie

Modul http.cookies berisi pemberitahuan berikut:

Copyright 2000 by Timothy O'Malley <timo@alum.mit.edu>

All Rights Reserved

Permission to use, copy, modify, and distribute this software
and its documentation for any purpose and without fee is hereby
granted, provided that the above copyright notice appear in all
copies and that both that copyright notice and this permission
notice appear in supporting documentation, and that the name of
Timothy O'Malley not be used in advertising or publicity
pertaining to distribution of the software without specific, written
prior permission.

Timothy O'Malley DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS
SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS, IN NO EVENT SHALL Timothy O'Malley BE LIABLE FOR
ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
PERFORMANCE OF THIS SOFTWARE.

C.3.5 Pelacakan eksekusi

Modul trace berisi pemberitahuan berikut:

portions copyright 2001, Autonomous Zones Industries, Inc., all rights...
err... reserved and offered to the public under the terms of the
Python 2.2 license.
Author: Zooko O'Whielacronx
http://zooko.com/
mailto:zooko@zooko.com

Copyright 2000, Mojam Media, Inc., all rights reserved.
Author: Skip Montanaro

Copyright 1999, Bioreason, Inc., all rights reserved.
Author: Andrew Dalke

Copyright 1995-1997, Automatrix, Inc., all rights reserved.
Author: Skip Montanaro

Copyright 1991-1995, Stichting Mathematisch Centrum, all rights reserved.

Permission to use, copy, modify, and distribute this Python software and
its associated documentation for any purpose without fee is hereby
granted, provided that the above copyright notice appears in all copies,
and that both that copyright notice and this permission notice appear in
supporting documentation, and that the name of neither Automatrix,
Bioreason or Mojam Media be used in advertising or publicity pertaining to
distribution of the software without specific, written prior permission.

34 Lampiran C. Sejarah dan Lisensi

Distributing Python Modules, Rilis 3.8.20

C.3.6 UUencode and UUdecode functions

Modul uu berisi pemberitahuan berikut:

Copyright 1994 by Lance Ellinghouse
Cathedral City, California Republic, United States of America.

All Rights Reserved
Permission to use, copy, modify, and distribute this software and its
documentation for any purpose and without fee is hereby granted,
provided that the above copyright notice appear in all copies and that
both that copyright notice and this permission notice appear in
supporting documentation, and that the name of Lance Ellinghouse
not be used in advertising or publicity pertaining to distribution
of the software without specific, written prior permission.
LANCE ELLINGHOUSE DISCLAIMS ALL WARRANTIES WITH REGARD TO
THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS, IN NO EVENT SHALL LANCE ELLINGHOUSE CENTRUM BE LIABLE
FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT
OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

Modified by Jack Jansen, CWI, July 1995:
- Use binascii module to do the actual line-by-line conversion

between ascii and binary. This results in a 1000-fold speedup. The C
version is still 5 times faster, though.

- Arguments more compliant with Python standard

C.3.7 XML Remote Procedure Calls

Modul xmlrpc.client berisi pemberitahuan berikut:

The XML-RPC client interface is

Copyright (c) 1999-2002 by Secret Labs AB
Copyright (c) 1999-2002 by Fredrik Lundh

By obtaining, using, and/or copying this software and/or its
associated documentation, you agree that you have read, understood,
and will comply with the following terms and conditions:

Permission to use, copy, modify, and distribute this software and
its associated documentation for any purpose and without fee is
hereby granted, provided that the above copyright notice appears in
all copies, and that both that copyright notice and this permission
notice appear in supporting documentation, and that the name of
Secret Labs AB or the author not be used in advertising or publicity
pertaining to distribution of the software without specific, written
prior permission.

SECRET LABS AB AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH REGARD
TO THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANT-
ABILITY AND FITNESS. IN NO EVENT SHALL SECRET LABS AB OR THE AUTHOR
BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY
DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
OF THIS SOFTWARE.

C.3. Lisensi dan Ucapan Terima Kasih untuk Perangkat Lunak yang Tergabung 35

Distributing Python Modules, Rilis 3.8.20

C.3.8 test_epoll

Modul test_epoll berisi pemberitahuan berikut:

Copyright (c) 2001-2006 Twisted Matrix Laboratories.

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

C.3.9 Pilih kqueue

Modul select berisi pemberitahuan berikut untuk antarmuka kqueue:

Copyright (c) 2000 Doug White, 2006 James Knight, 2007 Christian Heimes
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
1. Redistributions of source code must retain the above copyright

notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright

notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

36 Lampiran C. Sejarah dan Lisensi

Distributing Python Modules, Rilis 3.8.20

C.3.10 SipHash24

The filePython/pyhash.c containsMarekMajkowski’ implementation of Dan Bernstein’s SipHash24 algorithm.
It contains the following note:

<MIT License>
Copyright (c) 2013 Marek Majkowski <marek@popcount.org>

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
</MIT License>

Original location:
https://github.com/majek/csiphash/

Solution inspired by code from:
Samuel Neves (supercop/crypto_auth/siphash24/little)
djb (supercop/crypto_auth/siphash24/little2)
Jean-Philippe Aumasson (https://131002.net/siphash/siphash24.c)

C.3.11 strtod dan dtoa

The file Python/dtoa.c, which supplies C functions dtoa and strtod for conversion of C doubles to and from
strings, is derived from the file of the same name byDavidM.Gay, currently available from http://www.netlib.org/fp/.
The original file, as retrieved on March 16, 2009, contains the following copyright and licensing notice:

/**
*
* The author of this software is David M. Gay.
*
* Copyright (c) 1991, 2000, 2001 by Lucent Technologies.
*
* Permission to use, copy, modify, and distribute this software for any
* purpose without fee is hereby granted, provided that this entire notice
* is included in all copies of any software which is or includes a copy
* or modification of this software and in all copies of the supporting
* documentation for such software.
*
* THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR IMPLIED
* WARRANTY. IN PARTICULAR, NEITHER THE AUTHOR NOR LUCENT MAKES ANY
* REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE MERCHANTABILITY
* OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR PURPOSE.
*
***/

C.3. Lisensi dan Ucapan Terima Kasih untuk Perangkat Lunak yang Tergabung 37

http://www.netlib.org/fp/

Distributing Python Modules, Rilis 3.8.20

C.3.12 OpenSSL

The modules hashlib, posix, ssl, crypt use the OpenSSL library for added performance if made available
by the operating system. Additionally, the Windows and Mac OS X installers for Python may include a copy of the
OpenSSL libraries, so we include a copy of the OpenSSL license here:

LICENSE ISSUES
==============

The OpenSSL toolkit stays under a dual license, i.e. both the conditions of
the OpenSSL License and the original SSLeay license apply to the toolkit.
See below for the actual license texts. Actually both licenses are BSD-style
Open Source licenses. In case of any license issues related to OpenSSL
please contact openssl-core@openssl.org.

OpenSSL License

/* ==
* Copyright (c) 1998-2008 The OpenSSL Project. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
*
* 3. All advertising materials mentioning features or use of this
* software must display the following acknowledgment:
* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
*
* 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
* endorse or promote products derived from this software without
* prior written permission. For written permission, please contact
* openssl-core@openssl.org.
*
* 5. Products derived from this software may not be called "OpenSSL"
* nor may "OpenSSL" appear in their names without prior written
* permission of the OpenSSL Project.
*
* 6. Redistributions of any form whatsoever must retain the following
* acknowledgment:
* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit (http://www.openssl.org/)"
*
* THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
* EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
* ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)

(berlanjut ke halaman berikutnya)

38 Lampiran C. Sejarah dan Lisensi

Distributing Python Modules, Rilis 3.8.20

(lanjutan dari halaman sebelumnya)

* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
* OF THE POSSIBILITY OF SUCH DAMAGE.
* ==
*
* This product includes cryptographic software written by Eric Young
* (eay@cryptsoft.com). This product includes software written by Tim
* Hudson (tjh@cryptsoft.com).
*
*/

Original SSLeay License

/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
* All rights reserved.
*
* This package is an SSL implementation written
* by Eric Young (eay@cryptsoft.com).
* The implementation was written so as to conform with Netscapes SSL.
*
* This library is free for commercial and non-commercial use as long as
* the following conditions are aheared to. The following conditions
* apply to all code found in this distribution, be it the RC4, RSA,
* lhash, DES, etc., code; not just the SSL code. The SSL documentation
* included with this distribution is covered by the same copyright terms
* except that the holder is Tim Hudson (tjh@cryptsoft.com).
*
* Copyright remains Eric Young's, and as such any Copyright notices in
* the code are not to be removed.
* If this package is used in a product, Eric Young should be given attribution
* as the author of the parts of the library used.
* This can be in the form of a textual message at program startup or
* in documentation (online or textual) provided with the package.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* "This product includes cryptographic software written by
* Eric Young (eay@cryptsoft.com)"
* The word 'cryptographic' can be left out if the rouines from the library
* being used are not cryptographic related :-).
* 4. If you include any Windows specific code (or a derivative thereof) from
* the apps directory (application code) you must include an acknowledgement:
* "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
*
* THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY

(berlanjut ke halaman berikutnya)

C.3. Lisensi dan Ucapan Terima Kasih untuk Perangkat Lunak yang Tergabung 39

Distributing Python Modules, Rilis 3.8.20

(lanjutan dari halaman sebelumnya)

* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* The licence and distribution terms for any publically available version or
* derivative of this code cannot be changed. i.e. this code cannot simply be
* copied and put under another distribution licence
* [including the GNU Public Licence.]
*/

C.3.13 expat

The pyexpat extension is built using an included copy of the expat sources unless the build is configured
--with-system-expat:

Copyright (c) 1998, 1999, 2000 Thai Open Source Software Center Ltd
and Clark Cooper

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

C.3.14 libffi

The _ctypes extension is built using an included copy of the libffi sources unless the build is configured
--with-system-libffi:

Copyright (c) 1996-2008 Red Hat, Inc and others.

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
``Software''), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED ``AS IS'', WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND

(berlanjut ke halaman berikutnya)

40 Lampiran C. Sejarah dan Lisensi

Distributing Python Modules, Rilis 3.8.20

(lanjutan dari halaman sebelumnya)

NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.

C.3.15 zlib

The zlib extension is built using an included copy of the zlib sources if the zlib version found on the system is too
old to be used for the build:

Copyright (C) 1995-2011 Jean-loup Gailly and Mark Adler

This software is provided 'as-is', without any express or implied
warranty. In no event will the authors be held liable for any damages
arising from the use of this software.

Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it
freely, subject to the following restrictions:

1. The origin of this software must not be misrepresented; you must not
claim that you wrote the original software. If you use this software
in a product, an acknowledgment in the product documentation would be
appreciated but is not required.

2. Altered source versions must be plainly marked as such, and must not be
misrepresented as being the original software.

3. This notice may not be removed or altered from any source distribution.

Jean-loup Gailly Mark Adler
jloup@gzip.org madler@alumni.caltech.edu

C.3.16 cfuhash

The implementation of the hash table used by the tracemalloc is based on the cfuhash project:

Copyright (c) 2005 Don Owens
All rights reserved.

This code is released under the BSD license:

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following
disclaimer in the documentation and/or other materials provided
with the distribution.

* Neither the name of the author nor the names of its
contributors may be used to endorse or promote products derived

(berlanjut ke halaman berikutnya)

C.3. Lisensi dan Ucapan Terima Kasih untuk Perangkat Lunak yang Tergabung 41

Distributing Python Modules, Rilis 3.8.20

(lanjutan dari halaman sebelumnya)

from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
OF THE POSSIBILITY OF SUCH DAMAGE.

C.3.17 libmpdec

The _decimal module is built using an included copy of the libmpdec library unless the build is configured
--with-system-libmpdec:

Copyright (c) 2008-2016 Stefan Krah. All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

C.3.18 Rangkaian pengujian W3C C14N

The C14N 2.0 test suite in the test package (Lib/test/xmltestdata/c14n-20/) was retrieved from the
W3C website at https://www.w3.org/TR/xml-c14n2-testcases/ and is distributed under the 3-clause BSD license:

Hak Cipta (c) 2013 W3C(R) (MIT, ERCIM, Keio, Beihang), Semua Hak Dilindungi Undang-Undang.

Redistribution and use in source and binary forms, with or without modification, are permitted provided
that the following conditions are met:

• Redistributions of works must retain the original copyright notice, this list of conditions and the
following disclaimer.

42 Lampiran C. Sejarah dan Lisensi

https://www.w3.org/TR/xml-c14n2-testcases/

Distributing Python Modules, Rilis 3.8.20

• Redistributions in binary form must reproduce the original copyright notice, this list of condi-
tions and the following disclaimer in the documentation and/or other materials provided with the
distribution.

• Neither the name of theW3C nor the names of its contributors may be used to endorse or promote
products derived from this work without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ”AS
IS” AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSEAREDISCLAIMED. INNOEVENTSHALLTHECOPYRIGHTOWNERORCONTRI-
BUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY,
OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWI-
SE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
THE POSSIBILITY OF SUCH DAMAGE.

C.3. Lisensi dan Ucapan Terima Kasih untuk Perangkat Lunak yang Tergabung 43

Distributing Python Modules, Rilis 3.8.20

44 Lampiran C. Sejarah dan Lisensi

LAMPIRAND

Hak Cipta

Python dan dokumentasi ini adalah:

Copyright © 2001-2023 Python Software Foundation. All rights reserved.

Hak Cipta © 2000 BeOpen.com. Seluruh hak cipta.

Hak Cipta © 1995-2000 Corporation for National Research Initiatives. Seluruh hak cipta.

Hak Cipta © 1991-1995 Stichting Mathematisch Centrum. Seluruh hak cipta.

Lihat Sejarah dan Lisensi untuk lisensi lengkap dan informasi perizinan.

45

Distributing Python Modules, Rilis 3.8.20

46 Lampiran D. Hak Cipta

Indeks

Non-abjad
..., 13
2ke3, 13
>>>, 13
__future__, 17
__slots__, 23

A
anotasi, 13
anotasi fungsi, 17
anotasi variabel, 24
argumen, 13
argumen kata kunci, 19
asynchronous iterable, 14
atribut, 14

B
BDFL, 14
berkas biner, 14
berkas teks, 23
bilangan kompleks, 15
bytecode, 15
bytes-like object, 14

C
callback, 15
C-contiguous, 15
class variable, 15
context variable, 15
contiguous, 15
coroutine, 15
coroutine function, 15
CPython, 15

D
daftar, 19
descriptor, 16
dictionary comprehension, 16
dictionary view, 16
diinterpretasi, 18
docstring, 16
duck-typing, 16

E
EAFP, 16
ekspresi, 16

F
f-string, 16
file-like object, 17
finder, 17
floor division, 17
Fortran contiguous, 15
fungsi, 17
fungsi generik, 17
fungsi kunci, 19

G
generator, 17
generator expression, 17
generator iterator, 17
GIL, 18

H
hash-based pyc, 18
hashable, 18

I
IDLE, 18
immutable, 18
import path, 18
importer, 18
importing, 18
interaktif, 18
interpreter shutdown, 18
iterable, 19
iterator, 19
iterator asinkron, 14
iterator generator asinkron, 14

J
jumlah referensi, 23

K
kamus, 16
kelas, 15

47

Distributing Python Modules, Rilis 3.8.20

kelas basis abstrak, 13
kunci interpreter global, 18

L
lambda, 19
LBYL, 19
lingkungan virtual, 24
list comprehension, 19
loader, 19

M
magic

method, 19
magic method, 19
manajer konteks, 15
manajer konteks asinkron, 14
menunggu, 14
mesin virtual, 24
meta path finder, 20
metaclass, 20
method, 20

magic, 19
special, 23

method resolution order, 20
modul, 20
modul tambahan, 16
module spec, 20
MRO, 20
mutable, 20

N
nama yang memenuhi syarat, 22
named tuple, 20
namespace, 20
namespace package, 20
nested scope, 21
new-style class, 21

O
objek, 21
objek berkas, 16

P
paket, 21
paket biasa, 23
paksaan, 15
parameter, 21
path based finder, 21
path entry, 21
path entry finder, 21
path entry hook, 21
path-like object, 22
pembangkit, 17
pembangkit asinkron, 14
pemetaan, 20
penghias, 15
pengumpulan sampah, 17
PEP, 22

pernyataan, 23
porsi, 22
positional argument, 22
provisional API, 22
provisional package, 22
PyPI

(see Python Package Index (PyPI)),
7

Python 3000, 22
Python Enhancement Proposals

PEP 1, 22
PEP 238, 17
PEP 278, 24
PEP 302, 17, 19
PEP 343, 15
PEP 362, 14, 21
PEP 411, 22
PEP 420, 17, 20, 22
PEP 427, 3
PEP 443, 18
PEP 451, 17
PEP 484, 13, 17, 24
PEP 492, 14, 15
PEP 498, 16
PEP 519, 22
PEP 525, 14
PEP 526, 13, 24
PEP 3116, 24
PEP 3155, 22

Python Package Index (PyPI), 7
Pythonic, 22

S
set comprehension, 23
single dispatch, 23
slice, 23
special

method, 23
special method, 23

T
teks tiga-kutip, 23
text encoding, 23
tipe, 24
type alias, 24
type hint, 24

U
universal newlines, 24
urutan, 23

Z
Zen of Python, 24

48 Indeks

	Istilah utama
	Lisensi dan kolaborasi sumber terbuka
	Instalasi alat
	Membaca Panduan Pengguna Python Packaging
	Bagaimana saya...?
	... pilih nama untuk proyek saya?
	... membuat dan mendistribusikan ekstensi biner?

	Ikhtisar
	Tentang dokumen-dokumen ini
	Kontributor untuk dokumentasi Python

	Sejarah dan Lisensi
	Sejarah perangkat lunak
	Syarat dan ketentuan untuk mengakses atau menggunakan Python
	Lisensi dan Ucapan Terima Kasih untuk Perangkat Lunak yang Tergabung

	Hak Cipta
	Indeks

