Isolating Extension Modules

Rilis 3.12.9
Guido van Rossum and the Python development team

April 07, 2025

Python Software Foundation
Email: docs@python.org

Daftar Isi

1 Who should read this 2

2 Background 2
2.1 Enter Per-Module State e e e e e e 2
2.2 Isolated Module Objects o L e e e e e e e e e 2
2.3 Surprising Edge Cases e e e e e e e e e e e e 3

3 Making Modules Safe with Multiple Interpreters 3
3.1 Managing Global State e e e e e e e e 3
3.2 Managing Per-Module State e e e e e e e e e e 3
3.3 Opt-Out: Limiting to One Module Object per Process 4
3.4 Module State Access from Functions 4

4 Heap Types 4
4.1 Changing Static Typesto Heap Types o o o i i i i et e e e e 5
4.2 Defining Heap Types o o o o i e e e e e e 5
4.3 Garbage-Collection Protocol e 5
4.4 Module State Access from Classes it e e e e e e e 7
4.5 Module State Access from Regular Methods, 7
4.6 Module State Access from Slot Methods, Gettersand Setters 8
4.7 Lifetime of the Module State e e e e e e e e e e e 9

5 Open Issues 9
5.1 Per-Class SCOPE v v o i e e e e e e e e e e e e e e e 9
5.2 Lossless Conversion to Heap Types o 0 i i it i e e e s e e 9

p

Abstract

Traditionally, state belonging to Python extension modules was kept in C stat ic variables, which have process-
wide scope. This document describes problems of such per-process state and shows a safer way: per-module
state.

The document also describes how to switch to per-module state where possible. This transition involves allocating
space for that state, potentially switching from static types to heap types, and—perhaps most importantly—
accessing per-module state from code.

J

1 Who should read this

This guide is written for maintainers of C-API extensions who would like to make that extension safer to use in
applications where Python itself is used as a library.

2 Background

An interpreter is the context in which Python code runs. It contains configuration (e.g. the import path) and runtime
state (e.g. the set of imported modules).

Python supports running multiple interpreters in one process. There are two cases to think about—users may run
interpreters:

« in sequence, with several Py_InitializeEx ()/Py_FinalizeEx () cycles, and
« in parallel, managing “sub-interpreters” using Py_NewInterpreter ()/Py_EndInterpreter ().

Both cases (and combinations of them) would be most useful when embedding Python within a library. Libraries
generally shouldn’t make assumptions about the application that uses them, which include assuming a process-wide
“main Python interpreter”.

Historically, Python extension modules don’t handle this use case well. Many extension modules (and even some stdlib
modules) use per-process global state, because C static variables are extremely easy to use. Thus, data that should
be specific to an interpreter ends up being shared between interpreters. Unless the extension developer is careful, it
is very easy to introduce edge cases that lead to crashes when a module is loaded in more than one interpreter in the
same process.

Unfortunately, per-interpreter state is not easy to achieve. Extension authors tend to not keep multiple interpreters in
mind when developing, and it is currently cumbersome to test the behavior.

2.1 Enter Per-Module State

Instead of focusing on per-interpreter state, Python’s C API is evolving to better support the more granular per-
module state. This means that C-level data should be attached to a module object. Each interpreter creates its own
module object, keeping the data separate. For testing the isolation, multiple module objects corresponding to a single
extension can even be loaded in a single interpreter.

Per-module state provides an easy way to think about lifetime and resource ownership: the extension module will
initialize when a module object is created, and clean up when it’s freed. In this regard, a module is just like any other
PyObject *; there are no “on interpreter shutdown” hooks to think—or forget—about.

Note that there are use cases for different kinds of “globals”: per-process, per-interpreter, per-thread or per-task state.
With per-module state as the default, these are still possible, but you should treat them as exceptional cases: if you
need them, you should give them additional care and testing. (Note that this guide does not cover them.)

2.2 Isolated Module Objects

The key point to keep in mind when developing an extension module is that several module objects can be created
from a single shared library. For example:

>>> import sys

>>> import binascii

>>> o0ld_binascii = binascii

>>> del sys.modules|['binascii']

>>> import binascii # create a new module object
>>> o0ld_binascii == binascii

False

As a rule of thumb, the two modules should be completely independent. All objects and state specific to the module
should be encapsulated within the module object, not shared with other module objects, and cleaned up when the
module object is deallocated. Since this just is a rule of thumb, exceptions are possible (see Managing Global State),
but they will need more thought and attention to edge cases.

While some modules could do with less stringent restrictions, isolated modules make it easier to set clear expectations
and guidelines that work across a variety of use cases.

2.3 Surprising Edge Cases

Note that isolated modules do create some surprising edge cases. Most notably, each module object will typica-
lly not share its classes and exceptions with other similar modules. Continuing from the example above, note that
old_binascii.Error and binascii.Error are separate objects. In the following code, the exception is not
caught:

>>> o0ld_binascii.Error == binascii.Error
False
>>> try:
0ld_binascii.unhexlify (b'gwertyuiop"')
except binascii.Error:
print ('boo')

Traceback (most recent call last):
File "<stdin>", line 2, in <module>
binascii.Error: Non-hexadecimal digit found

This is expected. Notice that pure-Python modules behave the same way: it is a part of how Python works.

The goal is to make extension modules safe at the C level, not to make hacks behave intuitively. Mutating sys.
modules “manually” counts as a hack.

3 Making Modules Safe with Multiple Interpreters
3.1 Managing Global State

Sometimes, the state associated with a Python module is not specific to that module, but to the entire process (or
something else “more global” than a module). For example:

o The readline module manages the terminal.
¢ A module running on a circuit board wants to control the on-board LED.

In these cases, the Python module should provide access to the global state, rather than own it. If possible, write the
module so that multiple copies of it can access the state independently (along with other libraries, whether for Python
or other languages). If that is not possible, consider explicit locking.

If it is necessary to use process-global state, the simplest way to avoid issues with multiple interpreters is to explicitly
prevent a module from being loaded more than once per process—see Opt-Out: Limiting to One Module Object per
Process.

3.2 Managing Per-Module State

To use per-module state, use multi-phase extension module initialization. This signals that your module supports
multiple interpreters correctly.

Set PyModuleDef .m_size to a positive number to request that many bytes of storage local to the module. Usually,
this will be set to the size of some module-specific struct, which can store all of the module’s C-level state. In
particular, it is where you should put pointers to classes (including exceptions, but excluding static types) and settings
(e.g. csv’s field_size_limit) which the C code needs to function.

© Catatan

Another option is to store state in the module’s __dict__, but you must avoid crashing when users modify
__dict__ from Python code. This usually means error- and type-checking at the C level, which is easy to get
wrong and hard to test sufficiently.

L However, if module state is not needed in C code, storing itin __dict__ only is a good idea. J

If the module state includes PyObject pointers, the module object must hold references to those objects and im-
plement the module-level hooks m_traverse, m_clear and m_free. These work like tp_traverse, tp_clear
and tp_free of aclass. Adding them will require some work and make the code longer; this is the price for modules
which can be unloaded cleanly.

An example of a module with per-module state is currently available as xxlimited; example module initialization
shown at the bottom of the file.

3.3 Opt-Out: Limiting to One Module Object per Process

A non-negative PyModuleDef .m_size signals that a module supports multiple interpreters correctly. If this is not
yet the case for your module, you can explicitly make your module loadable only once per process. For example:

static int loaded = 0;

static int
exec_module (PyObject* module)
{
if (loaded) {
PyErr_SetString (PyExc_ImportError,
"cannot load module more than once per process");
return -1;
}
loaded = 1;
// ... rest of initialization

3.4 Module State Access from Functions

Accessing the state from module-level functions is straightforward. Functions get the module object as their first
argument; for extracting the state, you can use PyModule_GetState:

static PyObject *
func (PyObject *module, PyObject *args)
{
my_struct *state = (my_struct*)PyModule_GetState (module) ;
if (state == NULL) {
return NULL;

// ... rest of logic

© Catatan

PyModule_GetState may return NULL without setting an exception if there is no module state, i.e.
PyModuleDef.m_size was zero. In your own module, you're in control of m_size, so this is easy to pre-
vent.

4 Heap Types

Traditionally, types defined in C code are static; that is, static PyTypeObject structures defined directly in code
and initialized using PyType_Ready () .

https://github.com/python/cpython/blob/master/Modules/xxlimited.c

Such types are necessarily shared across the process. Sharing them between module objects requires paying attention
to any state they own or access. To limit the possible issues, static types are immutable at the Python level: for
example, you can’t set str.myattribute = 123.

Detail implementasi CPython: Sharing truly immutable objects between interpreters is fine, as long as they don’t
provide access to mutable objects. However, in CPython, every Python object has a mutable implementation detail:
the reference count. Changes to the refcount are guarded by the GIL. Thus, code that shares any Python objects
across interpreters implicitly depends on CPython’s current, process-wide GIL.

Because they are immutable and process-global, static types cannot access “their” module state. If any method of
such a type requires access to module state, the type must be converted to a heap-allocated type, or heap type for
short. These correspond more closely to classes created by Python’s class statement.

For new modules, using heap types by default is a good rule of thumb.

4.1 Changing Static Types to Heap Types

Static types can be converted to heap types, but note that the heap type API was not designed for "lossless” conversion
from static types—that is, creating a type that works exactly like a given static type. So, when rewriting the class
definition in a new API, you are likely to unintentionally change a few details (e.g. pickleability or inherited slots).
Always test the details that are important to you.

Watch out for the following two points in particular (but note that this is not a comprehensive list):

« Unlike static types, heap type objects are mutable by default. Use the Py_TPFLAGS_IMMUTABLETYPE flag to
prevent mutability.

« Heap types inherit tp_new by default, so it may become possible to instantiate them from Python code. You
can prevent this with the Py_ TPFLAGS_DISALLOW_INSTANTIATION flag.

4.2 Defining Heap Types

Heap types can be created by filling a PyType_Spec structure, a description or "blueprint” of a class, and calling
PyType_FromModuleAndSpec () to construct a new class object.

© Catatan

Other functions, like PyType_FromSpec (), can also create heap types, but PyType_FromModuleAndSpec ()
associates the module with the class, allowing access to the module state from methods.

The class should generally be stored in both the module state (for safe access from C) and the module’s _ dict_
(for access from Python code).

4.3 Garbage-Collection Protocol

Instances of heap types hold a reference to their type. This ensures that the type isn’t destroyed before all its instances
are, but may result in reference cycles that need to be broken by the garbage collector.

To avoid memory leaks, instances of heap types must implement the garbage collection protocol. That is, heap types
should:

o Have the Py _TPFLAGS_HAVE_GC flag.

e Define a traverse function using Py tp_traverse, which visits the type (e.g. using
Py_VISIT (Py_TYPE (self))).

Please refer to the documentation of Py_TPFLAGS_HAVE_GC and tp_traverse for additional considerations.

The API for defining heap types grew organically, leaving it somewhat awkward to use in its current state. The
following sections will guide you through common issues.

tp_traverse in Python 3.8 and lower

The requirement to visit the type from tp_traverse was added in Python 3.9. If you support Python 3.8 and lower,
the traverse function must not visit the type, so it must be more complicated:

static int my_traverse (PyObject *self, visitproc visit, woid *arg)
{
if (Py_Version >= 0x03090000) {
Py _VISIT(Py_TYPE (self));
}

return 0O;

Unfortunately, Py_Version was only added in Python 3.11. As a replacement, use:
e PY_VERSION_HEY, if not using the stable ABI, or

e sys.version_info (via PySys_GetObject () and PyArg_ParseTuple ()).

Delegating tp_traverse

If your traverse function delegates to the tp_traverse of its base class (or another type), ensure that
Py_TYPE (self) is visited only once. Note that only heap type are expected to visit the type in tp_traverse.

For example, if your traverse function includes:

[base7>tp7traverse(self, visit, arg) }

...and base may be a static type, then it should also include:

if (base->tp_flags & Py TPFLAGS_HEAPTYPE) {
// a heap type's tp_traverse already visited Py TYPE (self)
} else {
if (Py_Version >= 0x03090000) {
Py _VISIT (Py_TYPE (self));

It is not necessary to handle the type’s reference count in tp_new and tp_clear.

Defining tp_dealloc

If your type has a custom tp_dealloc function, it needs to:
e call PyObject_GC_UnTrack () before any fields are invalidated, and
o decrement the reference count of the type.

To keep the type valid while tp_free is called, the type’s refcount needs to be decremented affer the instance is
deallocated. For example:

static void my_dealloc (PyObject *self)
{
PyObject_GC_UnTrack (self);

PyTypeObject *type = Py_TYPE (self);
type->tp_free(self);
Py_DECREF (type) ;

The default tp_dealloc function does this, so if your type does not override tp_dealloc you don’t need to add
it.

Not overriding tp_free

The tp_free slot of a heap type must be set to PyObject_GC_Del (). This is the default; do not override it.

Avoiding PyObject_New
GC-tracked objects need to be allocated using GC-aware functions.
If you use use PyObject_New () or PyObject_NewVar ():

e Get and call type’s tp_alloc slot, if possible. That is, replace TYPE *o = PyObject_New (TYPE,
typeobi) with:

[TYPE *o = typeobj->tp_alloc (typeobj, 0);

Replace o = PyObject_NewVar (TYPE, typeobj, size) with the same, but use size instead of the 0.

o If the above is not possible (e.g. inside a custom tp_alloc), call PyObject_GC_New() oOr
PyObject_GC_NewVar ():

TYPE *o = PyObject_GC_New (TYPE, typeobi);

TYPE *o = PyObject_GC_NewVar (TYPE, typeobj, size);

4.4 Module State Access from Classes

If you have a type object defined with PyType_ FromModuleAndSpec (), you can call PyType_GetModule () to
get the associated module, and then PyModule_GetState () to get the module’s state.

To save a some tedious error-handling boilerplate code, you can combine these two steps with
PyType_GetModuleState (), resulting in:

my_struct *state = (my_struct*)PyType_GetModuleState (type);
if (state == NULL) {
return NULL;

4.5 Module State Access from Regular Methods

Accessing the module-level state from methods of a class is somewhat more complicated, but is possible thanks to
API introduced in Python 3.9. To get the state, you need to first get the defining class, and then get the module state
from it.

The largest roadblock is getting the class a method was defined in, or that method’s “defining class” for short. The
defining class can have a reference to the module it is part of.

Do not confuse the defining class with py_TYPE (self). If the method is called on a subclass of your type,
Py_TYPE (self) will refer to that subclass, which may be defined in different module than yours.

© Catatan

The following Python code can illustrate the concept. Base.get_defining_class returns Base even if
type (self) == Sub:

class Base:
def get_type_of_self (self):
return type (self)

def get_defining_class(self):
return @ class_

class Sub (Base) :
pass

L J

For a method to get its “defining class”, it must use the METH_METHOD | METH_FASTCALL | ME-
TH_KEYWORDS calling convention and the corresponding PyCMethod signature:

PyObject *PyCMethod (
PyObject *self, // object the method was called on
PyTypeObject *defining_class, // defining class

PyObject *const *args, // C array of arguments
Py_ssize_t nargs, // length of "args"
PyObject *kwnames) // NULL, or dict of keyword arguments

Once you have the defining class, call PyType_GetModuleState () to get the state of its associated module.

For example:

static PyObject *

example_method (PyObject *self,
PyTypeObject *defining_ class,
PyObject *const *args,
Py_ssize_t nargs,
PyObject *kwnames)

my_struct *state = (my_struct*)PyType_GetModuleState (defining_class);
if (state == NULL) {
return NULL;

// rest of logic

PyDoc_STRVAR (example_method_doc, "...");

static PyMethodDef my_methods[] = {
{"example_method",
(PyCFunction) (void (*) (void)) example_method,
METH_METHOD |[METH_FASTCALL |[METH_KEYWORDS,
example_method_doc}
{NULL},

4.6 Module State Access from Slot Methods, Getters and Setters

© Catatan

This is new in Python 3.11.

Slot methods—the fast C equivalents for special methods, such as nb_add for _ _add__ or tp_new for
initialization—have a very simple API that doesn’t allow passing in the defining class, unlike with PyCMethod.
The same goes for getters and setters defined with PyGet SetDef.

To access the module state in these cases, use the PyType_GetModuleByDef () function, and pass in the module
definition. Once you have the module, call PyModule_GetState () to get the state:

PyObject *module = PyType_GetModuleByDef (Py_TYPE (self), &module_def);
my_struct *state = (my_struct*)PyModule_GetState (module);
if (state == NULL) {

(berlanjut ke halaman berikutnya)

(lanjutan dari halaman sebelumnya)

return NULL;

PyType_GetModuleByDef () works by searching the method resolution order (i.e. all superclasses) for the first
superclass that has a corresponding module.

© Catatan

In very exotic cases (inheritance chains spanning multiple modules created from the same definition),
PyType_GetModuleByDef () might not return the module of the true defining class. However, it will always
return a module with the same definition, ensuring a compatible C memory layout.

4.7 Lifetime of the Module State

When a module object is garbage-collected, its module state is freed. For each pointer to (a part of) the module state,
you must hold a reference to the module object.

Usually this is not an issue, because types created with PyType_FromModuleAndSpec (), and their instances, hold
a reference to the module. However, you must be careful in reference counting when you reference module state from
other places, such as callbacks for external libraries.

5 Open Issues

Several issues around per-module state and heap types are still open.

Discussions about improving the situation are best held on the capi-sig mailing list.

5.1 Per-Class Scope

It is currently (as of Python 3.11) not possible to attach state to individual #ypes without relying on CPython im-
plementation details (which may change in the future—perhaps, ironically, to allow a proper solution for per-class
scope).

5.2 Lossless Conversion to Heap Types

The heap type API was not designed for “lossless” conversion from static types; that is, creating a type that works
exactly like a given static type.

https://mail.python.org/mailman3/lists/capi-sig.python.org/

	Who should read this
	Background
	Enter Per-Module State
	Isolated Module Objects
	Surprising Edge Cases

	Making Modules Safe with Multiple Interpreters
	Managing Global State
	Managing Per-Module State
	Opt-Out: Limiting to One Module Object per Process
	Module State Access from Functions

	Heap Types
	Changing Static Types to Heap Types
	Defining Heap Types
	Garbage-Collection Protocol
	tp_traverse in Python 3.8 and lower
	Delegating tp_traverse
	Defining tp_dealloc
	Not overriding tp_free
	Avoiding PyObject_New

	Module State Access from Classes
	Module State Access from Regular Methods
	Module State Access from Slot Methods, Getters and Setters
	Lifetime of the Module State

	Open Issues
	Per-Class Scope
	Lossless Conversion to Heap Types

