
Python Frequently Asked Questions
Rilis 3.11.10

Guido van Rossum and the Python development team

September 10, 2024

Python Software Foundation
Email: docs@python.org

Daftar Isi

1 FAQ Umum Python 1
1.1 Informasi Umum . 1

1.1.1 Apa itu Python? . 1
1.1.2 Apa itu Python Software Foundation? . 1
1.1.3 Apakah ada batasan hak cipta atas penggunaan Python? . 2
1.1.4 Pada mulanya kenapa Python dibuat? . 2
1.1.5 Apa gunanya Python? . 3
1.1.6 Bagaimana cara kerja skema penomoran versi Python? . 3
1.1.7 Bagaimana saya mendapatkan salinan kode sumber Python? 3
1.1.8 Bagaimana saya mendapatkan dokumentasi tentang Python? 4
1.1.9 Saya belum pernah memrogram sebelumnya. Apakah ada tutorial tentang Python? 4
1.1.10 Apakah ada newsgroup atau milis yang ditujukan untuk Python? 4
1.1.11 Bagaimana saya mendapatkan versi uji beta dari Python? . 4
1.1.12 Bagaimana saya mengirimkan laporan bug dan patch untuk Python? 4
1.1.13 Apakah ada publikasi artikel tentang Python yang bisa saya gunakan sebagai referensi? 4
1.1.14 Apakah ada buku-buku tentang Python? . 5
1.1.15 Dimana di dunia lokasi www.python.org? . 5
1.1.16 Kenapa disebut Python? . 5
1.1.17 Apakah saya harus menyukai ”Monty Python’s Flying Circus”? 5

1.2 Python di dunia nyata . 5
1.2.1 Seberapa stabil Python? . 5
1.2.2 Berapa banyak orang menggunakan Python? . 5
1.2.3 Apakah ada proyek-proyek penting yang dibuat dengan Python? 6
1.2.4 Apa pengembangan baru yang diharapkan dari Python di masa depan? 6
1.2.5 Apakah beralasan untuk mengusulkan perubahan yang tidak kompatibel terhadap Python? . . 6
1.2.6 Apakah Python bahasa yang baik untuk pemrogram pemula? 6

2 Pemrograman FAQ 9
2.1 Pertanyaan Umum . 9

2.1.1 Is there a source code level debugger with breakpoints, single-stepping, etc.? 9
2.1.2 Apakah terdapat alat untuk membantu menemukan bug atau melakukan analisis yang bersifat

statis? . 10
2.1.3 How can I create a stand-alone binary from a Python script? 10
2.1.4 Are there coding standards or a style guide for Python programs? 10

2.2 Inti Bahasa . 10
2.2.1 Why am I getting an UnboundLocalError when the variable has a value? 10

i

2.2.2 Apa saja aturan-aturan untuk variabel lokal dan global di Python? 12
2.2.3 Mengapa lambda yang didefinisikan dalam sebuah perulangan dengan nilai yang berbeda se-

muanya mengembalikan hasil yang sama? . 12
2.2.4 Bagaimana Saya dapat berbagi variabel global di seluruh modul? 13
2.2.5 What are the ”best practices” for using import in a module? 13
2.2.6 Why are default values shared between objects? . 14
2.2.7 How can I pass optional or keyword parameters from one function to another? 15
2.2.8 What is the difference between arguments and parameters? 15
2.2.9 Why did changing list ’y’ also change list ’x’? . 15
2.2.10 How do I write a function with output parameters (call by reference)? 16
2.2.11 How do you make a higher order function in Python? . 17
2.2.12 How do I copy an object in Python? . 18
2.2.13 How can I find the methods or attributes of an object? . 19
2.2.14 How can my code discover the name of an object? . 19
2.2.15 What’s up with the comma operator’s precedence? . 19
2.2.16 Is there an equivalent of C’s ”?:” ternary operator? . 20
2.2.17 Is it possible to write obfuscated one-liners in Python? . 20
2.2.18 What does the slash(/) in the parameter list of a function mean? 21

2.3 Angka dan string . 21
2.3.1 How do I specify hexadecimal and octal integers? . 21
2.3.2 Why does -22 // 10 return -3? . 21
2.3.3 How do I get int literal attribute instead of SyntaxError? . 22
2.3.4 Bagaimana cara mengonversi string menjadi angka? . 22
2.3.5 Bagaimana cara mengonversi angka menjadi string? . 22
2.3.6 How do I modify a string in place? . 23
2.3.7 How do I use strings to call functions/methods? . 23
2.3.8 Is there an equivalent to Perl’s chomp() for removing trailing newlines from strings? 24
2.3.9 Is there a scanf() or sscanf() equivalent? . 24
2.3.10 What does ’UnicodeDecodeError’ or ’UnicodeEncodeError’ error mean? 25
2.3.11 Can I end a raw string with an odd number of backslashes? 25

2.4 Performa . 25
2.4.1 Kode program saya berjalan lamban. Bagaimana cara saya mempercepatnya? 25
2.4.2 Apakah cara yang paling efisien untuk menggabungkan banyak string secara bersamaan? . . . 26

2.5 Urutan (Tuple/List) . 27
2.5.1 Bagaimana cara saya mengonversi tuples dan lists? . 27
2.5.2 Apa itu indeks negatif? . 27
2.5.3 How do I iterate over a sequence in reverse order? . 27
2.5.4 Bagaimana Anda menghapus duplikasi dari list? . 27
2.5.5 How do you remove multiple items from a list . 28
2.5.6 Bagaimana anda membuat sebuah array di Python? . 28
2.5.7 Bagaimana cara Saya membuat list multidimensi? . 28
2.5.8 How do I apply a method or function to a sequence of objects? 29
2.5.9 Why does a_tuple[i] += [’item’] raise an exception when the addition works? 29
2.5.10 I want to do a complicated sort: can you do a Schwartzian Transform in Python? 30
2.5.11 How can I sort one list by values from another list? . 31

2.6 Objek . 31
2.6.1 Apa itu kelas? . 31
2.6.2 Apa itu metode? . 31
2.6.3 Apa itu self? . 31
2.6.4 How do I check if an object is an instance of a given class or of a subclass of it? 32
2.6.5 Apa itu delegasi? . 33
2.6.6 How do I call a method defined in a base class from a derived class that extends it? 33
2.6.7 How can I organize my code to make it easier to change the base class? 34
2.6.8 How do I create static class data and static class methods? 34

ii

2.6.9 How can I overload constructors (or methods) in Python? 35
2.6.10 I try to use __spam and I get an error about _SomeClassName__spam. 35
2.6.11 My class defines __del__ but it is not called when I delete the object. 35
2.6.12 How do I get a list of all instances of a given class? . 36
2.6.13 Why does the result of id() appear to be not unique? . 36
2.6.14 When can I rely on identity tests with the is operator? . 36
2.6.15 How can a subclass control what data is stored in an immutable instance? 38
2.6.16 How do I cache method calls? . 38

2.7 Modul-Modul . 40
2.7.1 Bagaimana saya membuat berkas .pyc? . 40
2.7.2 How do I find the current module name? . 40
2.7.3 How can I have modules that mutually import each other? 41
2.7.4 __import__(’x.y.z’) returns <module ’x’>; how do I get z? 42
2.7.5 When I edit an imported module and reimport it, the changes don’t show up. Why does this

happen? . 42

3 Desain dan Sejarah FAQ 43
3.1 Mengapa Python menggunakan indentasi untuk pengelompokan pernyataan? 43
3.2 Why am I getting strange results with simple arithmetic operations? 44
3.3 Why are floating-point calculations so inaccurate? . 44
3.4 Why are Python strings immutable? . 44
3.5 Why must ’self’ be used explicitly in method definitions and calls? . 45
3.6 Why can’t I use an assignment in an expression? . 45
3.7 Why does Python use methods for some functionality (e.g. list.index()) but functions for other (e.g.

len(list))? . 45
3.8 Why is join() a string method instead of a list or tuple method? . 46
3.9 How fast are exceptions? . 46
3.10 Why isn’t there a switch or case statement in Python? . 47
3.11 Can’t you emulate threads in the interpreter instead of relying on an OS-specific thread implementation? 47
3.12 Why can’t lambda expressions contain statements? . 47
3.13 Can Python be compiled to machine code, C or some other language? 48
3.14 How does Python manage memory? . 48
3.15 Why doesn’t CPython use a more traditional garbage collection scheme? 48
3.16 Why isn’t all memory freed when CPython exits? . 49
3.17 Why are there separate tuple and list data types? . 49
3.18 How are lists implemented in CPython? . 49
3.19 How are dictionaries implemented in CPython? . 49
3.20 Why must dictionary keys be immutable? . 50
3.21 Why doesn’t list.sort() return the sorted list? . 51
3.22 How do you specify and enforce an interface spec in Python? . 51
3.23 Why is there no goto? . 52
3.24 Why can’t raw strings (r-strings) end with a backslash? . 52
3.25 Why doesn’t Python have a ”with” statement for attribute assignments? 53
3.26 Why don’t generators support the with statement? . 54
3.27 Why are colons required for the if/while/def/class statements? . 54
3.28 Why does Python allow commas at the end of lists and tuples? . 54

4 FAQ Pustaka dan Ekstensi 57
4.1 Pertanyaan Umum Pustaka . 57

4.1.1 Bagaimana saya mencari sebuah modul atau aplikasi untuk melakukan pekerjaan X? 57
4.1.2 Dimana berkas sumber math.py (socket.py, regex.py, dll.)? 57
4.1.3 Bagaimana saya membuat sebuah skrip Python dapat dieksekusi di Unix? 58
4.1.4 Is there a curses/termcap package for Python? . 58
4.1.5 Is there an equivalent to C’s onexit() in Python? . 58

iii

4.1.6 Why don’t my signal handlers work? . 59
4.2 Tugas umum . 59

4.2.1 Bagaimana saya menguji sebuah program Python atau komponen? 59
4.2.2 Bagaimana saya membuat dokumentasi dari doc strings? . 60
4.2.3 How do I get a single keypress at a time? . 60

4.3 Threads . 60
4.3.1 How do I program using threads? . 60
4.3.2 None of my threads seem to run: why? . 60
4.3.3 How do I parcel out work among a bunch of worker threads? 61
4.3.4 What kinds of global value mutation are thread-safe? . 62
4.3.5 Can’t we get rid of the Global Interpreter Lock? . 63

4.4 Masukan dan Keluaran . 63
4.4.1 Bagaimana saya menghapus sebuah berkas? (pertanyaan, dan berkas lainnya...) 63
4.4.2 Bagaimana saya mengopi sebuah berkas? . 64
4.4.3 Bagaimana saya membaca (atau menulis) data biner? . 64
4.4.4 I can’t seem to use os.read() on a pipe created with os.popen(); why? 64
4.4.5 How do I access the serial (RS232) port? . 64
4.4.6 Why doesn’t closing sys.stdout (stdin, stderr) really close it? 65

4.5 Pemrograman Jaringan/Internet . 65
4.5.1 What WWW tools are there for Python? . 65
4.5.2 How can I mimic CGI form submission (METHOD=POST)? 65
4.5.3 Modul apa yang sebaiknya saya gunakan untuk membantu menghasilkan HTML? 66
4.5.4 Bagaimana saya mengirim email melalui skrip Python? . 66
4.5.5 Bagaimana saya menghindari pemblokiran di metode connect() dari sebuah socket? 67

4.6 Basisdata . 67
4.6.1 Apakah ada paket antarmuka ke basisdata di Python? . 67
4.6.2 How do you implement persistent objects in Python? . 67

4.7 Matematika dan Bilangan . 67
4.7.1 How do I generate random numbers in Python? . 67

5 Extending/Embedding FAQ 69
5.1 Can I create my own functions in C? . 69
5.2 Can I create my own functions in C++? . 69
5.3 Writing C is hard; are there any alternatives? . 69
5.4 How can I execute arbitrary Python statements from C? . 70
5.5 How can I evaluate an arbitrary Python expression from C? . 70
5.6 How do I extract C values from a Python object? . 70
5.7 How do I use Py_BuildValue() to create a tuple of arbitrary length? 70
5.8 How do I call an object’s method from C? . 70
5.9 How do I catch the output from PyErr_Print() (or anything that prints to stdout/stderr)? 71
5.10 How do I access a module written in Python from C? . 72
5.11 How do I interface to C++ objects from Python? . 72
5.12 I added a module using the Setup file and the make fails; why? . 72
5.13 How do I debug an extension? . 72
5.14 I want to compile a Python module on my Linux system, but some files are missing. Why? 73
5.15 How do I tell ”incomplete input” from ”invalid input”? . 73
5.16 How do I find undefined g++ symbols __builtin_new or __pure_virtual? 73
5.17 Can I create an object class with some methods implemented in C and others in Python (e.g. through

inheritance)? . 73

6 FAQ Python di Windows 75
6.1 Bagaimana cara mengoperasikan program Python di Windows? . 75
6.2 Bagaimana cara saya membuat skrip Python dapat dieksekusi? . 76
6.3 Mengapa Python terkadang membutuhkan waktu lama untuk memulai? 76

iv

6.4 Bagaimana cara membuat sebuah executable dari skrip Python? . 77
6.5 Apakah file *.pyd sama dengan DLL? . 77
6.6 Bagaimana cara memasukkan Python ke dalam aplikasi Windows? 77
6.7 Bagaimana cara mencegah editor memasukkan tab ke dalam sumber Python saya? 78
6.8 Bagaimana cara memeriksa tombol yang ditekan tanpa memblokir? 79
6.9 How do I solve the missing api-ms-win-crt-runtime-l1-1-0.dll error? 79

7 Antarmuka Pengguna Grafis FAQ 81
7.1 Pertanyaan Umum GUI . 81
7.2 What GUI toolkits exist for Python? . 81
7.3 Pertanyaan-pertanyaan Tkinter . 81

7.3.1 Bagaimana cara membekukan aplikasi Tkinter? . 81
7.3.2 Can I have Tk events handled while waiting for I/O? . 82
7.3.3 Saya tidak bisa mendapatkan pengikatan kunci untuk bekerja di Tkinter: mengapa? 82

8 ”Kenapa Python Terpasang di Komputer saya?” FAQ 83
8.1 Apa itu Python? . 83
8.2 Kenapa Python Terpasang di Komputer saya? . 83
8.3 Dapatkah Saya hapus Python? . 84

A Ikhtisar 85

B Tentang dokumen-dokumen ini 101
B.1 Kontributor untuk dokumentasi Python . 101

C Sejarah dan Lisensi 103
C.1 Sejarah perangkat lunak . 103
C.2 Syarat dan ketentuan untuk mengakses atau menggunakan Python . 104

C.2.1 LISENSI PERJANJIAN PSF UNTUK PYTHON 3.11.10 104
C.2.2 LISENSI PERJANJIAN BEOPEN.COM UNTUK PYTHON 2.0 105
C.2.3 LISENSI PERJANJIAN CNRI UNTUK PYTHON 1.6.1 106
C.2.4 LISENSI PERJANJIAN CWI UNTUK PYTHON 0.9.0 SAMPAI 1.2 107
C.2.5 ZERO-CLAUSE BSD LICENSE FORCODE IN THE PYTHON 3.11.10 DOCUMENTATION108

C.3 Lisensi dan Ucapan Terima Kasih untuk Perangkat Lunak yang Tergabung 108
C.3.1 Mersenne Twister . 108
C.3.2 Soket . 109
C.3.3 Layanan soket asinkron . 110
C.3.4 Pengelolaan Cookie . 110
C.3.5 Pelacakan eksekusi . 111
C.3.6 UUencode and UUdecode functions . 111
C.3.7 XML Remote Procedure Calls . 112
C.3.8 test_epoll . 112
C.3.9 Pilih kqueue . 113
C.3.10 SipHash24 . 113
C.3.11 strtod dan dtoa . 114
C.3.12 OpenSSL . 114
C.3.13 expat . 118
C.3.14 libffi . 118
C.3.15 zlib . 119
C.3.16 cfuhash . 119
C.3.17 libmpdec . 120
C.3.18 Rangkaian pengujian W3C C14N . 120
C.3.19 Audioop . 121
C.3.20 asyncio . 121

v

D Hak Cipta 123

Indeks 125

vi

BAB1

FAQ Umum Python

1.1 Informasi Umum

1.1.1 Apa itu Python?

Python adalah bahasa pemrograman yang diinterpretasi, interaktif, dan berorientasi objek. Itu menggabungkan modul-
modul, exception, pengetikan yang dinamis, tipe data dinamis yang bersifat tingkat tinggi, dan kelas-kelas. Python
menggabungkan kekuatan yang luar biasa dengan sintaks yang sangat jelas. Memiliki antar muka ke banyak pemanggil-
an sistem dan pustaka, serta sejumlah sistem di windows, serta dapat diperluas ke dalam bahasa C atau C++. Juga dapat
digunakan sebagai bahasa tambahan untuk aplikasi yang membutuhkan antar muka yang dapat diprogram. Terakhir,
Python bersifat portabel: berjalan di banyak varian Unix, di Mac, dan pada Windows 2000 dan yang lebih baru

Untuk mengetahui lebih lanjut, mulai dengan tutorial-index. Panduan Pemula Python tautan ke tutorial pengantar dan
sumber lain untuk belajar Python.

1.1.2 Apa itu Python Software Foundation?

The Python Software Foundation adalah organisasi nirlaba independen yang memegang hak cipta pada Python versi 2.1
dan yang lebih baru. Misi PSF adalah untuk memajukan teknologi open source yang terkait dengan bahasa pemrograman
Python dan untuk mempublikasikan penggunaan Python. Halaman utama PSF ada di https://www.python.org/psf/.

Sumbangan untuk PSF bebas pajak di AS. Jika Anda menggunakan Python dan merasa terbantu, silakan berkontribusi
melalui halaman donasi PSF.

1

https://wiki.python.org/moin/BeginnersGuide
https://www.python.org/psf/
https://www.python.org/psf/donations/

Python Frequently Asked Questions, Rilis 3.11.10

1.1.3 Apakah ada batasan hak cipta atas penggunaan Python?

Anda dapat melakukan apa pun yang Anda inginkan dengan sumbernya, selama Anda meninggalkan hak cipta dan me-
nampilkan hak cipta itu dalam dokumentasi apa pun tentang Python yang Anda hasilkan. Jika Anda menghormati aturan
hak cipta, boleh saja menggunakan Python untuk penggunaan komersial, menjual salinan Python dalam bentuk sumber
atau biner (dimodifikasi atau tidak dimodifikasi), atau untuk menjual produk yang memasukkan Python dalam beberapa
bentuk. Kami masih ingin tahu tentang semua penggunaan komersial Python, tentu saja.

See the license page to find further explanations and the full text of the PSF License.

Logo Python terdaftar merek dagang, dan dalam kasus tertentu diperlukan izin untuk menggunakannya. Lihat Kebijakan
Penggunaan Merek Dagang untuk info lebih lanjut.

1.1.4 Pada mulanya kenapa Python dibuat?

Berikut adalah ringkasan singkat dari sejak awal dimulai, ditulis oleh Guido van Rossum:

Saya memiliki pengalaman luas dalam mengimplementasikan bahasa yang ditafsirkan interpreted dalam ke-
lompok ABC di CWI, dan dari bekerja dengan kelompok ini saya telah belajar banyak tentang desain bahasa.
Ini adalah asal dari banyak fitur Python, termasuk penggunaan indentasi untuk pengelompokan pernyataan
dan penyertaan tipe data tingkat-sangat-tinggi (walaupun detailnya semua berbeda dalam Python).

Saya memiliki sejumlah keluhan tentang bahasa ABC, tetapi juga menyukai banyak fitur-fiturnya. Tidak
mungkin untuk memperluas bahasa ABC (atau implementasinya) untuk memperbaiki keluhan saya -- pa-
da kenyataannya kurangnya ekstensibilitas adalah salah satu masalah terbesarnya. Saya punya pengalam-
an menggunakan Modula-2+ dan berbicara dengan desainer Modula-3 dan membaca laporan Modula-3.
Modula-3 adalah asal dari sintaks dan semantik yang digunakan untuk pengecualian, dan beberapa fitur
Python lainnya.

Saya bekerja di grup sistem operasi terdistribusi Amoeba di CWI. Kami membutuhkan cara yang lebih ba-
ik untuk melakukan administrasi sistem daripada dengan menulis baik program C atau skrip Bourne shell,
karena Amuba memiliki antarmuka sistem panggilan sendiri yang tidak mudah diakses dari Bourne she-
ll. Pengalaman saya dengan penanganan kesalahan di Amuba membuat saya sangat sadar akan pentingnya
pengecualian sebagai fitur bahasa pemrograman.

Terpikir oleh saya bahwa bahasa scripting dengan sintaksis seperti ABC tetapi dengan akses ke panggilan
sistem Amuba akan memenuhi kebutuhan. Saya menyadari bahwa bodoh untuk menulis bahasa khusus
Amuba, jadi saya memutuskan bahwa saya membutuhkan bahasa yang pada umumnya dapat diperluas.

Selama liburan Natal 1989, saya punya banyak waktu, jadi saya memutuskan untuk mencobanya. Selama
tahun berikutnya, sementara sebagian besar masih mengerjakannya di waktu saya sendiri, Python digunakan
dalam proyek Amoeba dengan keberhasilan yang semakin meningkat, dan umpan balik dari kolega membuat
saya menambahkan banyak perbaikan awal.

Pada Februari 1991, setelah setahun pengembangan, saya memutuskan untuk mengirim ke USENET. Sisa-
nya ada di berkas“Misc/HISTORY“.

2 Bab 1. FAQ Umum Python

https://docs.python.org/3/license.html
https://www.python.org/psf/trademarks/
https://www.python.org/psf/trademarks/

Python Frequently Asked Questions, Rilis 3.11.10

1.1.5 Apa gunanya Python?

Python adalah bahasa pemrograman umum tingkat atas yang dapat diterapkan untuk berbagai jenis permasalahan.

The language comes with a large standard library that covers areas such as string processing (regular expressions, Uni-
code, calculating differences between files), internet protocols (HTTP, FTP, SMTP, XML-RPC, POP, IMAP), software
engineering (unit testing, logging, profiling, parsing Python code), and operating system interfaces (system calls, filesys-
tems, TCP/IP sockets). Look at the table of contents for library-index to get an idea of what’s available. A wide variety
of third-party extensions are also available. Consult the Python Package Index to find packages of interest to you.

1.1.6 Bagaimana cara kerja skema penomoran versi Python?

Python versions are numbered ”A.B.C” or ”A.B”:

• A is the major version number -- it is only incremented for really major changes in the language.

• B is the minor version number -- it is incremented for less earth-shattering changes.

• C is the micro version number -- it is incremented for each bugfix release.

Not all releases are bugfix releases. In the run-up to a new feature release, a series of development releases are made,
denoted as alpha, beta, or release candidate. Alphas are early releases in which interfaces aren’t yet finalized; it’s not
unexpected to see an interface change between two alpha releases. Betas are more stable, preserving existing interfaces
but possibly adding new modules, and release candidates are frozen, making no changes except as needed to fix critical
bugs.

Alpha, beta and release candidate versions have an additional suffix:

• The suffix for an alpha version is ”aN” for some small number N.

• The suffix for a beta version is ”bN” for some small number N.

• The suffix for a release candidate version is ”rcN” for some small number N.

In other words, all versions labeled 2.0aN precede the versions labeled 2.0bN, which precede versions labeled 2.0rcN,
and those precede 2.0.

Anda juga dapat menemukan nomor versi dengan akhiran ”+”, mis. ”2.2+”. Ini adalah versi yang belum dirilis, diba-
ngun langsung dari repositori pengembangan CPython. Dalam praktiknya, setelah rilis minor final dibuat, versi tersebut
bertambah menjadi versi minor berikutnya, yang menjadi versi ”a0”, mis. ”2.4a0”.

See the Developer’s Guide for more information about the development cycle, and PEP 387 to learn more about Python’s
backward compatibility policy. See also the documentation for sys.version, sys.hexversion, and sys.
version_info.

1.1.7 Bagaimana saya mendapatkan salinan kode sumber Python?

Distribusi kode sumber Python terbaru selalu bisa didapatkan dari python.org, di https://www.python.org/downloads/.
Kode sumber pengembangan terbaru bisa didapatkan di https://github.com/python/cpython/.

Distribusi sumber adalah file tar gzip yang berisi sumber C lengkap, dokumentasi berformat Sphinx, modul pustaka
Python, program contoh, dan beberapa perangkat lunak berguna yang dapat didistribusikan secara bebas. Sumber akan
mengkompilasi dan langsung dapat digunakan pada sebagian besar platform UNIX.

Lihat Bagian Memulai dari Panduan Pengembang Python untuk informasi lebih lanjut tentang mendapatkan kode sumber
dan melakukan kompilasi.

1.1. Informasi Umum 3

https://pypi.org
https://devguide.python.org/developer-workflow/development-cycle/
https://peps.python.org/pep-0387/
https://www.python.org/downloads/
https://github.com/python/cpython/
https://devguide.python.org/setup/

Python Frequently Asked Questions, Rilis 3.11.10

1.1.8 Bagaimana saya mendapatkan dokumentasi tentang Python?

Dokumentasi standar untuk Python versi stabil saat ini tersedia di https://docs.python.org/3/. PDF, teks biasa, dan versi
HTML yang dapat diunduh juga tersedia di https://docs.python.org/3/download.html.

The documentation is written in reStructuredText and processed by the Sphinx documentation tool. The reStructuredText
source for the documentation is part of the Python source distribution.

1.1.9 Saya belum pernah memrogram sebelumnya. Apakah ada tutorial tentang
Python?

Ada sejumlah tutorial dan buku yang tersedia. Dokumentasi standar menyertakan tutorial-index.

Lihat Panduan Memulai untuk menemukan informasi tentang menjadi pemrogram Python pemula, termasuk daftar tu-
torial.

1.1.10 Apakah ada newsgroup atau milis yang ditujukan untuk Python?

Ada newsgroup, comp.lang.python, dan milis, python-list. Newsgroup dan milis saling berhubungan satu sama
lain -- jika Anda dapat membaca berita, tidak perlu berlangganan ke milis. comp.lang.python memiliki lalu lintas
tinggi, menerima ratusan posting setiap hari, dan pembaca Usenet seringkali lebih mampu mengatasi volume ini.

Announcements of new software releases and events can be found in comp.lang.python.announce, a low-trafficmoderated
list that receives about five postings per day. It’s available as the python-announce mailing list.

Info lebih lanjut tentang milis dan newsgroup lainnya dapat ditemukan di https://www.python.org/community/lists/.

1.1.11 Bagaimana saya mendapatkan versi uji beta dari Python?

Rilis alfa dan beta tersedia dari https://www.python.org/downloads/. Semua rilis diumumkan melalui newsgroup
comp.lang.python dan comp.lang.python.announce dan di halaman utama Python di https://www.python.org/; tersedia
juga umpan RSS dari berita.

Anda juga dapat mengakses versi pengembangan dari Python melalui Git. Lihat Panduan Pengembang Python untuk
lebih jelasnya.

1.1.12 Bagaimana saya mengirimkan laporan bug dan patch untuk Python?

To report a bug or submit a patch, use the issue tracker at https://github.com/python/cpython/issues.

Untuk informasi lebih lanjut mengenai bagaimana Python dikembangkan, lihat Panduan Pengembang Python.

1.1.13 Apakah ada publikasi artikel tentang Python yang bisa saya gunakan sebagai
referensi?

Mungkin sebaiknya mengutip buku favorit Anda tentang Python.

The very first article about Python was written in 1991 and is now quite outdated.

Guido van Rossum dan Jelke de Boer, ”Interactively Testing Remote Servers Using the Python Programming
Language”, CWI Quarterly, Volume 4, Issue 4 (December 1991), Amsterdam, pp 283--303.

4 Bab 1. FAQ Umum Python

https://docs.python.org/3/
https://docs.python.org/3/download.html
https://www.sphinx-doc.org/
https://wiki.python.org/moin/BeginnersGuide
https://mail.python.org/mailman/listinfo/python-list
https://mail.python.org/mailman3/lists/python-announce-list.python.org/
https://www.python.org/community/lists/
https://www.python.org/downloads/
https://www.python.org/
https://devguide.python.org/
https://github.com/python/cpython/issues
https://devguide.python.org/
https://ir.cwi.nl/pub/18204

Python Frequently Asked Questions, Rilis 3.11.10

1.1.14 Apakah ada buku-buku tentang Python?

Ya, ada banyak, dan banyak juga yang sedang diterbitkan. Untuk daftarnya lihat wiki python.org di https://wiki.python.
org/moin/PythonBooks .

Anda juga dapat mencari ”Python” di toko buku online dan menyaring referensi Monty Python; atau mungkin cari
”Python” dan ”bahasa”.

1.1.15 Dimana di dunia lokasi www.python.org?

The Python project’s infrastructure is located all over the world and is managed by the Python Infrastructure Team.
Details here.

1.1.16 Kenapa disebut Python?

Ketika mulai mengimplementasikan Python, Guido van Rossum juga membaca skrip yang diterbitkan dari ‘”Sirkus
TerbangMonty Python ”<https://en.wikipedia.org/wiki/Monty_Python>‘__, sebuah serial komedi BBC dari tahun
1970-an. Van Rossum berpikir dia membutuhkan nama yang pendek, unik, dan sedikit misterius, jadi dia memutuskan
untuk memanggil bahasa Python.

1.1.17 Apakah saya harus menyukai ”Monty Python’s Flying Circus”?

Tidak, tapi itu membantu. :)

1.2 Python di dunia nyata

1.2.1 Seberapa stabil Python?

Very stable. New, stable releases have been coming out roughly every 6 to 18 months since 1991, and this seems likely
to continue. As of version 3.9, Python will have a new feature release every 12 months (PEP 602).

The developers issue bugfix releases of older versions, so the stability of existing releases gradually improves. Bugfix
releases, indicated by a third component of the version number (e.g. 3.5.3, 3.6.2), are managed for stability; only fixes
for known problems are included in a bugfix release, and it’s guaranteed that interfaces will remain the same throughout
a series of bugfix releases.

The latest stable releases can always be found on the Python download page. There are two production-ready versions of
Python: 2.x and 3.x. The recommended version is 3.x, which is supported by most widely used libraries. Although 2.x is
still widely used, it is not maintained anymore.

1.2.2 Berapa banyak orang menggunakan Python?

Mungkin ada jutaan pengguna, meskipun sulit untuk mendapatkan jumlah pastinya.

Python tersedia untuk diunduh gratis, jadi tidak ada angka penjualan, dan itu tersedia dari banyak situs yang berbeda dan
dikemas dengan banyak distribusi Linux, jadi statistik unduhan juga tidak menceritakan keseluruhan cerita.

newsgroup comp.lang.python sangat aktif, tetapi tidak semua pengguna Python mengirim ke grup atau bahkan memba-
canya.

1.2. Python di dunia nyata 5

https://wiki.python.org/moin/PythonBooks
https://wiki.python.org/moin/PythonBooks
https://infra.psf.io
https://peps.python.org/pep-0602/
https://www.python.org/downloads/
https://peps.python.org/pep-0373/

Python Frequently Asked Questions, Rilis 3.11.10

1.2.3 Apakah ada proyek-proyek penting yang dibuat dengan Python?

Lihat https://www.python.org/about/success untuk daftar proyek yang menggunakan Python. Konsultasi proses untuk
konferensi Python masa lalu akan mengungkapkan kontribusi dari banyak perusahaan dan organisasi yang berbeda.

High-profile Python projects include the Mailman mailing list manager and the Zope application server. Several Linux
distributions, most notably RedHat, have written part or all of their installer and system administration software in Python.
Companies that use Python internally include Google, Yahoo, and Lucasfilm Ltd.

1.2.4 Apa pengembangan baru yang diharapkan dari Python di masa depan?

See https://peps.python.org/ for the Python Enhancement Proposals (PEPs). PEPs are design documents describing a
suggested new feature for Python, providing a concise technical specification and a rationale. Look for a PEP titled
”Python X.Y Release Schedule”, where X.Y is a version that hasn’t been publicly released yet.

New development is discussed on the python-dev mailing list.

1.2.5 Apakah beralasan untuk mengusulkan perubahan yang tidak kompatibel ter-
hadap Python?

Secara umum, tidak. Sudah ada jutaan baris kode Python di seluruh dunia, sehingga setiap perubahan dalam bahasa yang
membatalkan lebih dari sebagian kecil dari program yang ada harus dihapuskan. Bahkan jika Anda dapat menyediakan
program konversi, masih ada masalah memperbarui semua dokumentasi; banyak buku telah ditulis tentang Python, dan
kami tidak ingin membatalkan semuanya dengan satu goresan.

Diperlukan jalur peningkatan bertahap jika fitur harus diubah. PEP 5 menjelaskan prosedur yang diikuti untuk mem-
perkenalkan perubahan yang tidak kompatibel ke belakang sambil meminimalkan gangguan bagi pengguna.

1.2.6 Apakah Python bahasa yang baik untuk pemrogram pemula?

Ya.

Masih umum untuk memulai siswa belajar dengan bahasa prosedural dan tipe statis seperti Pascal, C, atau subset dari
C++ atau Java. Siswa mungkin lebih baik dididik dengan mempelajari Python sebagai bahasa pertama mereka. Python
memiliki sintaksis yang sangat sederhana dan konsisten serta pustaka standar yang besar dan, yang paling penting, meng-
gunakan Python dalam kursus pemrograman awal memungkinkan siswa berkonsentrasi pada keterampilan penting pem-
rograman seperti dekomposisi masalah dan desain tipe data. Dengan Python, siswa dapat dengan cepat diperkenalkan
dengan konsep-konsep dasar seperti loop dan prosedur. Mereka bahkan dapat bekerja dengan objek yang ditentukan
pengguna dalam kursus pertama mereka.

Untuk siswa yang belum pernah memprogram sebelumnya, menggunakan bahasa yang memiliki tipe statis tampaknya
tidak wajar atau tidak biasa. Ini menyajikan kompleksitas tambahan bahwa siswa harus menguasai dan memperlambat
laju kursus. Para siswa berusaha belajar berpikir seperti komputer, menguraikan masalah, mendesain antarmuka yang
konsisten, dan merangkum data. Sementara belajar untuk menggunakan bahasa yang memiliki tipe statis itu penting
dalam jangka panjang, itu tidak selalu merupakan topik terbaik untuk dibahas dalam kursus pemrograman pertama
siswa.

Banyak aspek lain dari Python menjadikannya bahasa pertama yang baik. Seperti Java, Python memiliki pustaka standar
yang besar sehingga siswa dapat ditugaskan proyek pemrograman sangat awal dalam kursus yang do sesuatu. Tugas tidak
terbatas pada kalkulator empat fungsi standar dan periksa program keseimbangan. Dengan menggunakan perpustakaan
standar, siswa dapat memperoleh kepuasan bekerja pada aplikasi dunia nyata saat mereka mempelajari dasar-dasar pem-
rograman. Menggunakan perpustakaan standar juga mengajarkan siswa tentang penggunaan kembali reuse kode. Modul
pihak ketiga seperti PyGame juga membantu dalam memperluas jangkauan siswa.

6 Bab 1. FAQ Umum Python

https://www.python.org/about/success
https://www.python.org/community/workshops/
https://www.list.org
https://www.zope.dev
https://www.redhat.com
https://peps.python.org/
https://mail.python.org/mailman3/lists/python-dev.python.org/
https://peps.python.org/pep-0005/

Python Frequently Asked Questions, Rilis 3.11.10

interpreter interaktif Python memungkinkan siswa untuk menguji fitur bahasa saat mereka sedang melakukan pemro-
graman. Mereka dapat menjaga jendela dengan interpreter berjalan saat mereka memasukkan sumber program mereka
di jendela lain. Jika mereka tidak dapat mengingat metode untuk list, mereka dapat melakukan sesuatu seperti ini:

>>> L = []
>>> dir(L)
['__add__', '__class__', '__contains__', '__delattr__', '__delitem__',
'__dir__', '__doc__', '__eq__', '__format__', '__ge__',
'__getattribute__', '__getitem__', '__gt__', '__hash__', '__iadd__',
'__imul__', '__init__', '__iter__', '__le__', '__len__', '__lt__',
'__mul__', '__ne__', '__new__', '__reduce__', '__reduce_ex__',
'__repr__', '__reversed__', '__rmul__', '__setattr__', '__setitem__',
'__sizeof__', '__str__', '__subclasshook__', 'append', 'clear',
'copy', 'count', 'extend', 'index', 'insert', 'pop', 'remove',
'reverse', 'sort']
>>> [d for d in dir(L) if '__' not in d]
['append', 'clear', 'copy', 'count', 'extend', 'index', 'insert', 'pop', 'remove',
↪→'reverse', 'sort']

>>> help(L.append)
Help on built-in function append:

append(...)
L.append(object) -> None -- append object to end

>>> L.append(1)
>>> L
[1]

Dengan interpreter, dokumentasi tidak pernah jauh dari pelajar saat mereka melakukan pemrograman.

There are also good IDEs for Python. IDLE is a cross-platform IDE for Python that is written in Python using Tkinter.
Emacs users will be happy to know that there is a very good Python mode for Emacs. All of these programming envi-
ronments provide syntax highlighting, auto-indenting, and access to the interactive interpreter while coding. Consult the
Python wiki for a full list of Python editing environments.

Jika ingin mendiskusikan penggunaan Python di bidang pendidikan, Anda mungkin tertarik untuk bergabung di milis
edu-sig.

1.2. Python di dunia nyata 7

https://wiki.python.org/moin/PythonEditors
https://wiki.python.org/moin/PythonEditors
https://www.python.org/community/sigs/current/edu-sig
https://www.python.org/community/sigs/current/edu-sig

Python Frequently Asked Questions, Rilis 3.11.10

8 Bab 1. FAQ Umum Python

BAB2

Pemrograman FAQ

2.1 Pertanyaan Umum

2.1.1 Is there a source code level debugger with breakpoints, single-stepping, etc.?

Ya.

Several debuggers for Python are described below, and the built-in function breakpoint() allows you to drop into
any of them.

The pdb module is a simple but adequate console-mode debugger for Python. It is part of the standard Python library,
and is documented in the Library Reference Manual. You can also write your own debugger by using
the code for pdb as an example.

The IDLE interactive development environment, which is part of the standard Python distribution (normally available as
Tools/scripts/idle3), includes a graphical debugger.

PythonWin is a Python IDE that includes a GUI debugger based on pdb. The PythonWin debugger colors breakpoints
and has quite a few cool features such as debugging non-PythonWin programs. PythonWin is available as part of pywin32
project and as a part of the ActivePython distribution.

Eric is an IDE built on PyQt and the Scintilla editing component.

trepan3k is a gdb-like debugger.

Visual Studio Code is an IDE with debugging tools that integrates with version-control software.

Ada sejumlah IDE Python komersial yang menyertakan debugger berbentuk grafis. Mereka adalah:

• Wing IDE

• Komodo IDE

• PyCharm

9

https://github.com/python/cpython/blob/main/Tools/scripts/idle3
https://github.com/mhammond/pywin32
https://www.activestate.com/products/python/
https://eric-ide.python-projects.org/
https://github.com/rocky/python3-trepan/
https://code.visualstudio.com/
https://wingware.com/
https://www.activestate.com/products/komodo-ide/
https://www.jetbrains.com/pycharm/

Python Frequently Asked Questions, Rilis 3.11.10

2.1.2 Apakah terdapat alat untuk membantu menemukan bug atau melakukan ana-
lisis yang bersifat statis?

Ya.

Pylint and Pyflakes do basic checking that will help you catch bugs sooner.

Static type checkers such as Mypy, Pyre, and Pytype can check type hints in Python source code.

2.1.3 How can I create a stand-alone binary from a Python script?

You don’t need the ability to compile Python to C code if all you want is a stand-alone program that users can download
and run without having to install the Python distribution first. There are a number of tools that determine the set of
modules required by a program and bind these modules together with a Python binary to produce a single executable.

One is to use the freeze tool, which is included in the Python source tree as Tools/freeze. It converts Python byte code to
C arrays; with a C compiler you can embed all your modules into a new program, which is then linked with the standard
Python modules.

It works by scanning your source recursively for import statements (in both forms) and looking for the modules in the
standard Python path as well as in the source directory (for built-in modules). It then turns the bytecode for modules
written in Python into C code (array initializers that can be turned into code objects using the marshal module) and
creates a custom-made config file that only contains those built-in modules which are actually used in the program. It
then compiles the generated C code and links it with the rest of the Python interpreter to form a self-contained binary
which acts exactly like your script.

The following packages can help with the creation of console and GUI executables:

• Nuitka (Cross-platform)

• PyInstaller (Cross-platform)

• PyOxidizer (Cross-platform)

• cx_Freeze (Cross-platform)

• py2app (macOS only)

• py2exe (Windows only)

2.1.4 Are there coding standards or a style guide for Python programs?

Yes. The coding style required for standard library modules is documented as PEP 8.

2.2 Inti Bahasa

2.2.1 Why am I getting an UnboundLocalError when the variable has a value?

It can be a surprise to get the UnboundLocalError in previously working code when it is modified by adding an
assignment statement somewhere in the body of a function.

Kode ini:

10 Bab 2. Pemrograman FAQ

https://pylint.pycqa.org/en/latest/index.html
https://github.com/PyCQA/pyflakes
https://mypy-lang.org/
https://pyre-check.org/
https://github.com/google/pytype
https://github.com/python/cpython/tree/main/Tools/freeze
https://nuitka.net/
https://pyinstaller.org/
https://pyoxidizer.readthedocs.io/en/stable/
https://marcelotduarte.github.io/cx_Freeze/
https://github.com/ronaldoussoren/py2app
https://www.py2exe.org/
https://peps.python.org/pep-0008/

Python Frequently Asked Questions, Rilis 3.11.10

>>> x = 10
>>> def bar():
... print(x)
...
>>> bar()
10

dapat beroperasi, tapi kode ini:

>>> x = 10
>>> def foo():
... print(x)
... x += 1

results in an UnboundLocalError:

>>> foo()
Traceback (most recent call last):

...
UnboundLocalError: local variable 'x' referenced before assignment

This is because when you make an assignment to a variable in a scope, that variable becomes local to that scope and
shadows any similarly named variable in the outer scope. Since the last statement in foo assigns a new value to x, the
compiler recognizes it as a local variable. Consequently when the earlier print(x) attempts to print the uninitialized
local variable and an error results.

In the example above you can access the outer scope variable by declaring it global:

>>> x = 10
>>> def foobar():
... global x
... print(x)
... x += 1
...
>>> foobar()
10

This explicit declaration is required in order to remind you that (unlike the superficially analogous situation with class
and instance variables) you are actually modifying the value of the variable in the outer scope:

>>> print(x)
11

You can do a similar thing in a nested scope using the nonlocal keyword:

>>> def foo():
... x = 10
... def bar():
... nonlocal x
... print(x)
... x += 1
... bar()
... print(x)
...
>>> foo()
10
11

2.2. Inti Bahasa 11

Python Frequently Asked Questions, Rilis 3.11.10

2.2.2 Apa saja aturan-aturan untuk variabel lokal dan global di Python?

In Python, variables that are only referenced inside a function are implicitly global. If a variable is assigned a value
anywhere within the function’s body, it’s assumed to be a local unless explicitly declared as global.

Though a bit surprising at first, a moment’s consideration explains this. On one hand, requiring global for assigned
variables provides a bar against unintended side-effects. On the other hand, if global was required for all global
references, you’d be using global all the time. You’d have to declare as global every reference to a built-in function
or to a component of an imported module. This clutter would defeat the usefulness of the global declaration for
identifying side-effects.

2.2.3 Mengapa lambda yang didefinisikan dalam sebuah perulangan dengan nilai
yang berbeda semuanya mengembalikan hasil yang sama?

Assume you use a for loop to define a few different lambdas (or even plain functions), e.g.:

>>> squares = []
>>> for x in range(5):
... squares.append(lambda: x**2)

This gives you a list that contains 5 lambdas that calculate x**2. You might expect that, when called, they would return,
respectively, 0, 1, 4, 9, and 16. However, when you actually try you will see that they all return 16:

>>> squares[2]()
16
>>> squares[4]()
16

This happens because x is not local to the lambdas, but is defined in the outer scope, and it is accessed when the lambda
is called --- not when it is defined. At the end of the loop, the value of x is 4, so all the functions now return 4**2, i.e.
16. You can also verify this by changing the value of x and see how the results of the lambdas change:

>>> x = 8
>>> squares[2]()
64

In order to avoid this, you need to save the values in variables local to the lambdas, so that they don’t rely on the value of
the global x:

>>> squares = []
>>> for x in range(5):
... squares.append(lambda n=x: n**2)

Here, n=x creates a new variable n local to the lambda and computed when the lambda is defined so that it has the same
value that x had at that point in the loop. This means that the value of n will be 0 in the first lambda, 1 in the second, 2
in the third, and so on. Therefore each lambda will now return the correct result:

>>> squares[2]()
4
>>> squares[4]()
16

Note that this behaviour is not peculiar to lambdas, but applies to regular functions too.

12 Bab 2. Pemrograman FAQ

Python Frequently Asked Questions, Rilis 3.11.10

2.2.4 Bagaimana Saya dapat berbagi variabel global di seluruh modul?

The canonical way to share information across modules within a single program is to create a special module (often called
config or cfg). Just import the config module in all modules of your application; the module then becomes available as
a global name. Because there is only one instance of each module, any changes made to the module object get reflected
everywhere. For example:

config.py:

x = 0 # Default value of the 'x' configuration setting

mod.py:

import config
config.x = 1

main.py:

import config
import mod
print(config.x)

Note that using a module is also the basis for implementing the singleton design pattern, for the same reason.

2.2.5 What are the ”best practices” for using import in a module?

In general, don’t use from modulename import *. Doing so clutters the importer’s namespace, and makes it
much harder for linters to detect undefined names.

Import modules at the top of a file. Doing so makes it clear what other modules your code requires and avoids questions
of whether the module name is in scope. Using one import per line makes it easy to add and delete module imports, but
using multiple imports per line uses less screen space.

It’s good practice if you import modules in the following order:

1. standard library modules -- e.g. sys, os, argparse, re

2. third-party library modules (anything installed in Python’s site-packages directory) -- e.g. dateutil,
requests, PIL.Image

3. locally developed modules

It is sometimes necessary to move imports to a function or class to avoid problems with circular imports. Gordon McMi-
llan says:

Circular imports are fine where both modules use the ”import <module>” form of import. They fail when
the 2nd module wants to grab a name out of the first (”from module import name”) and the import is at the
top level. That’s because names in the 1st are not yet available, because the first module is busy importing
the 2nd.

In this case, if the second module is only used in one function, then the import can easily be moved into that function. By
the time the import is called, the first module will have finished initializing, and the second module can do its import.

It may also be necessary to move imports out of the top level of code if some of the modules are platform-specific. In
that case, it may not even be possible to import all of the modules at the top of the file. In this case, importing the correct
modules in the corresponding platform-specific code is a good option.

Only move imports into a local scope, such as inside a function definition, if it’s necessary to solve a problem such as
avoiding a circular import or are trying to reduce the initialization time of a module. This technique is especially helpful
if many of the imports are unnecessary depending on how the program executes. You may also want to move imports into

2.2. Inti Bahasa 13

Python Frequently Asked Questions, Rilis 3.11.10

a function if the modules are only ever used in that function. Note that loading a module the first time may be expensive
because of the one time initialization of the module, but loading a module multiple times is virtually free, costing only
a couple of dictionary lookups. Even if the module name has gone out of scope, the module is probably available in
sys.modules.

2.2.6 Why are default values shared between objects?

This type of bug commonly bites neophyte programmers. Consider this function:

def foo(mydict={}): # Danger: shared reference to one dict for all calls
... compute something ...
mydict[key] = value
return mydict

The first time you call this function, mydict contains a single item. The second time, mydict contains two items
because when foo() begins executing, mydict starts out with an item already in it.

It is often expected that a function call creates new objects for default values. This is not what happens. Default values
are created exactly once, when the function is defined. If that object is changed, like the dictionary in this example,
subsequent calls to the function will refer to this changed object.

By definition, immutable objects such as numbers, strings, tuples, and None, are safe from change. Changes to mutable
objects such as dictionaries, lists, and class instances can lead to confusion.

Because of this feature, it is good programming practice to not use mutable objects as default values. Instead, use None
as the default value and inside the function, check if the parameter is None and create a new list/dictionary/whatever if
it is. For example, don’t write:

def foo(mydict={}):
...

tapi:

def foo(mydict=None):
if mydict is None:

mydict = {} # create a new dict for local namespace

This feature can be useful. When you have a function that’s time-consuming to compute, a common technique is to
cache the parameters and the resulting value of each call to the function, and return the cached value if the same value is
requested again. This is called ”memoizing”, and can be implemented like this:

Callers can only provide two parameters and optionally pass _cache by keyword
def expensive(arg1, arg2, *, _cache={}):

if (arg1, arg2) in _cache:
return _cache[(arg1, arg2)]

Calculate the value
result = ... expensive computation ...
_cache[(arg1, arg2)] = result # Store result in the cache
return result

You could use a global variable containing a dictionary instead of the default value; it’s a matter of taste.

14 Bab 2. Pemrograman FAQ

Python Frequently Asked Questions, Rilis 3.11.10

2.2.7 How can I pass optional or keyword parameters from one function to another?

Collect the arguments using the * and ** specifiers in the function’s parameter list; this gives you the positional arguments
as a tuple and the keyword arguments as a dictionary. You can then pass these arguments when calling another function
by using * and **:

def f(x, *args, **kwargs):
...
kwargs['width'] = '14.3c'
...
g(x, *args, **kwargs)

2.2.8 What is the difference between arguments and parameters?

Parameters are defined by the names that appear in a function definition, whereas arguments are the values actually passed
to a function when calling it. Parameters define what kind of arguments a function can accept. For example, given the
function definition:

def func(foo, bar=None, **kwargs):
pass

foo, bar and kwargs are parameters of func. However, when calling func, for example:

func(42, bar=314, extra=somevar)

the values 42, 314, and somevar are arguments.

2.2.9 Why did changing list ’y’ also change list ’x’?

Jika kamu menulis kode seperti:

>>> x = []
>>> y = x
>>> y.append(10)
>>> y
[10]
>>> x
[10]

you might be wondering why appending an element to y changed x too.

Terdapat dua faktor yang menghasilkan hasil ini:

1) Variables are simply names that refer to objects. Doing y = x doesn’t create a copy of the list -- it creates a new
variable y that refers to the same object x refers to. This means that there is only one object (the list), and both x
and y refer to it.

2) Lists are mutable, which means that you can change their content.

After the call to append(), the content of the mutable object has changed from [] to [10]. Since both the variables
refer to the same object, using either name accesses the modified value [10].

If we instead assign an immutable object to x:

2.2. Inti Bahasa 15

Python Frequently Asked Questions, Rilis 3.11.10

>>> x = 5 # ints are immutable
>>> y = x
>>> x = x + 1 # 5 can't be mutated, we are creating a new object here
>>> x
6
>>> y
5

we can see that in this case x and y are not equal anymore. This is because integers are immutable, and when we do x
= x + 1 we are not mutating the int 5 by incrementing its value; instead, we are creating a new object (the int 6) and
assigning it to x (that is, changing which object x refers to). After this assignment we have two objects (the ints 6 and 5)
and two variables that refer to them (x now refers to 6 but y still refers to 5).

Some operations (for example y.append(10) and y.sort()) mutate the object, whereas superficially similar ope-
rations (for example y = y + [10] and sorted(y)) create a new object. In general in Python (and in all cases in
the standard library) a method that mutates an object will return None to help avoid getting the two types of operations
confused. So if you mistakenly write y.sort() thinking it will give you a sorted copy of y, you’ll instead end up with
None, which will likely cause your program to generate an easily diagnosed error.

However, there is one class of operations where the same operation sometimes has different behaviors with different types:
the augmented assignment operators. For example, += mutates lists but not tuples or ints (a_list += [1, 2, 3]
is equivalent to a_list.extend([1, 2, 3]) and mutates a_list, whereas some_tuple += (1, 2, 3)
and some_int += 1 create new objects).

Dengan kata lain:

• If we have a mutable object (list, dict, set, etc.), we can use some specific operations to mutate it and all the
variables that refer to it will see the change.

• If we have an immutable object (str, int, tuple, etc.), all the variables that refer to it will always see the same
value, but operations that transform that value into a new value always return a new object.

If you want to know if two variables refer to the same object or not, you can use the is operator, or the built-in function
id().

2.2.10 How do I write a function with output parameters (call by reference)?

Remember that arguments are passed by assignment in Python. Since assignment just creates references to objects, there’s
no alias between an argument name in the caller and callee, and so no call-by-reference per se. You can achieve the desired
effect in a number of ways.

1) By returning a tuple of the results:

>>> def func1(a, b):
... a = 'new-value' # a and b are local names
... b = b + 1 # assigned to new objects
... return a, b # return new values
...
>>> x, y = 'old-value', 99
>>> func1(x, y)
('new-value', 100)

Ini merupakan solusi yang jelas.

2) By using global variables. This isn’t thread-safe, and is not recommended.

3) By passing a mutable (changeable in-place) object:

16 Bab 2. Pemrograman FAQ

Python Frequently Asked Questions, Rilis 3.11.10

>>> def func2(a):
... a[0] = 'new-value' # 'a' references a mutable list
... a[1] = a[1] + 1 # changes a shared object
...
>>> args = ['old-value', 99]
>>> func2(args)
>>> args
['new-value', 100]

4) By passing in a dictionary that gets mutated:

>>> def func3(args):
... args['a'] = 'new-value' # args is a mutable dictionary
... args['b'] = args['b'] + 1 # change it in-place
...
>>> args = {'a': 'old-value', 'b': 99}
>>> func3(args)
>>> args
{'a': 'new-value', 'b': 100}

5) Or bundle up values in a class instance:

>>> class Namespace:
... def __init__(self, /, **args):
... for key, value in args.items():
... setattr(self, key, value)
...
>>> def func4(args):
... args.a = 'new-value' # args is a mutable Namespace
... args.b = args.b + 1 # change object in-place
...
>>> args = Namespace(a='old-value', b=99)
>>> func4(args)
>>> vars(args)
{'a': 'new-value', 'b': 100}

There’s almost never a good reason to get this complicated.

Your best choice is to return a tuple containing the multiple results.

2.2.11 How do you make a higher order function in Python?

You have two choices: you can use nested scopes or you can use callable objects. For example, suppose you wanted to
define linear(a,b) which returns a function f(x) that computes the value a*x+b. Using nested scopes:

def linear(a, b):
def result(x):

return a * x + b
return result

Or using a callable object:

class linear:

def __init__(self, a, b):
self.a, self.b = a, b

(berlanjut ke halaman berikutnya)

2.2. Inti Bahasa 17

Python Frequently Asked Questions, Rilis 3.11.10

(lanjutan dari halaman sebelumnya)

def __call__(self, x):
return self.a * x + self.b

Dalam kedua kasus,

taxes = linear(0.3, 2)

gives a callable object where taxes(10e6) == 0.3 * 10e6 + 2.

The callable object approach has the disadvantage that it is a bit slower and results in slightly longer code. However, note
that a collection of callables can share their signature via inheritance:

class exponential(linear):
__init__ inherited
def __call__(self, x):

return self.a * (x ** self.b)

Object can encapsulate state for several methods:

class counter:

value = 0

def set(self, x):
self.value = x

def up(self):
self.value = self.value + 1

def down(self):
self.value = self.value - 1

count = counter()
inc, dec, reset = count.up, count.down, count.set

Here inc(), dec() and reset() act like functions which share the same counting variable.

2.2.12 How do I copy an object in Python?

In general, try copy.copy() or copy.deepcopy() for the general case. Not all objects can be copied, but most
can.

Some objects can be copied more easily. Dictionaries have a copy() method:

newdict = olddict.copy()

Sequences can be copied by slicing:

new_l = l[:]

18 Bab 2. Pemrograman FAQ

Python Frequently Asked Questions, Rilis 3.11.10

2.2.13 How can I find the methods or attributes of an object?

For an instance x of a user-defined class, dir(x) returns an alphabetized list of the names containing the instance
attributes and methods and attributes defined by its class.

2.2.14 How can my code discover the name of an object?

Generally speaking, it can’t, because objects don’t really have names. Essentially, assignment always binds a name to a
value; the same is true of def and class statements, but in that case the value is a callable. Consider the following
code:

>>> class A:
... pass
...
>>> B = A
>>> a = B()
>>> b = a
>>> print(b)
<__main__.A object at 0x16D07CC>
>>> print(a)
<__main__.A object at 0x16D07CC>

Arguably the class has a name: even though it is bound to two names and invoked through the name B the created instance
is still reported as an instance of class A. However, it is impossible to say whether the instance’s name is a or b, since
both names are bound to the same value.

Generally speaking it should not be necessary for your code to ”know the names” of particular values. Unless you are
deliberately writing introspective programs, this is usually an indication that a change of approach might be beneficial.

In comp.lang.python, Fredrik Lundh once gave an excellent analogy in answer to this question:

The same way as you get the name of that cat you found on your porch: the cat (object) itself cannot tell you
its name, and it doesn’t really care -- so the only way to find out what it’s called is to ask all your neighbours
(namespaces) if it’s their cat (object)...

....and don’t be surprised if you’ll find that it’s known by many names, or no name at all!

2.2.15 What’s up with the comma operator’s precedence?

Comma is not an operator in Python. Consider this session:

>>> "a" in "b", "a"
(False, 'a')

Since the comma is not an operator, but a separator between expressions the above is evaluated as if you had entered:

("a" in "b"), "a"

tidak:

"a" in ("b", "a")

The same is true of the various assignment operators (=, += etc). They are not truly operators but syntactic delimiters in
assignment statements.

2.2. Inti Bahasa 19

Python Frequently Asked Questions, Rilis 3.11.10

2.2.16 Is there an equivalent of C’s ”?:” ternary operator?

Yes, there is. The syntax is as follows:

[on_true] if [expression] else [on_false]

x, y = 50, 25
small = x if x < y else y

Before this syntax was introduced in Python 2.5, a common idiom was to use logical operators:

[expression] and [on_true] or [on_false]

However, this idiom is unsafe, as it can give wrong results when on_true has a false boolean value. Therefore, it is always
better to use the ... if ... else ... form.

2.2.17 Is it possible to write obfuscated one-liners in Python?

Yes. Usually this is done by nesting lambda within lambda. See the following three examples, slightly adapted from
Ulf Bartelt:

from functools import reduce

Primes < 1000
print(list(filter(None,map(lambda y:y*reduce(lambda x,y:x*y!=0,
map(lambda x,y=y:y%x,range(2,int(pow(y,0.5)+1))),1),range(2,1000)))))

First 10 Fibonacci numbers
print(list(map(lambda x,f=lambda x,f:(f(x-1,f)+f(x-2,f)) if x>1 else 1:
f(x,f), range(10))))

Mandelbrot set
print((lambda Ru,Ro,Iu,Io,IM,Sx,Sy:reduce(lambda x,y:x+'\n'+y,map(lambda y,
Iu=Iu,Io=Io,Ru=Ru,Ro=Ro,Sy=Sy,L=lambda yc,Iu=Iu,Io=Io,Ru=Ru,Ro=Ro,i=IM,
Sx=Sx,Sy=Sy:reduce(lambda x,y:x+y,map(lambda x,xc=Ru,yc=yc,Ru=Ru,Ro=Ro,
i=i,Sx=Sx,F=lambda xc,yc,x,y,k,f=lambda xc,yc,x,y,k,f:(k<=0)or (x*x+y*y
>=4.0) or 1+f(xc,yc,x*x-y*y+xc,2.0*x*y+yc,k-1,f):f(xc,yc,x,y,k,f):chr(
64+F(Ru+x*(Ro-Ru)/Sx,yc,0,0,i)),range(Sx))):L(Iu+y*(Io-Iu)/Sy),range(Sy
))))(-2.1, 0.7, -1.2, 1.2, 30, 80, 24))
___ ___/ ___ ___/ | | |__ lines on screen
V V | |______ columns on screen
| | |__________ maximum of "iterations"
| |_________________ range on y axis
|____________________________ range on x axis

Jangan lakukan ini di rumah, anak-anak!

20 Bab 2. Pemrograman FAQ

Python Frequently Asked Questions, Rilis 3.11.10

2.2.18 What does the slash(/) in the parameter list of a function mean?

A slash in the argument list of a function denotes that the parameters prior to it are positional-only. Positional-only para-
meters are the ones without an externally usable name. Upon calling a function that accepts positional-only parameters,
arguments are mapped to parameters based solely on their position. For example, divmod() is a function that accepts
positional-only parameters. Its documentation looks like this:

>>> help(divmod)
Help on built-in function divmod in module builtins:

divmod(x, y, /)
Return the tuple (x//y, x%y). Invariant: div*y + mod == x.

The slash at the end of the parameter list means that both parameters are positional-only. Thus, calling divmod() with
keyword arguments would lead to an error:

>>> divmod(x=3, y=4)
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
TypeError: divmod() takes no keyword arguments

2.3 Angka dan string

2.3.1 How do I specify hexadecimal and octal integers?

To specify an octal digit, precede the octal value with a zero, and then a lower or uppercase ”o”. For example, to set the
variable ”a” to the octal value ”10” (8 in decimal), type:

>>> a = 0o10
>>> a
8

Hexadecimal is just as easy. Simply precede the hexadecimal number with a zero, and then a lower or uppercase ”x”.
Hexadecimal digits can be specified in lower or uppercase. For example, in the Python interpreter:

>>> a = 0xa5
>>> a
165
>>> b = 0XB2
>>> b
178

2.3.2 Why does -22 // 10 return -3?

It’s primarily driven by the desire that i % j have the same sign as j. If you want that, and also want:

i == (i // j) * j + (i % j)

then integer division has to return the floor. C also requires that identity to hold, and then compilers that truncate i //
j need to make i % j have the same sign as i.

2.3. Angka dan string 21

Python Frequently Asked Questions, Rilis 3.11.10

There are few real use cases for i % j when j is negative. When j is positive, there are many, and in virtually all of
them it’s more useful for i % j to be >= 0. If the clock says 10 now, what did it say 200 hours ago? -190 % 12
== 2 is useful; -190 % 12 == -10 is a bug waiting to bite.

2.3.3 How do I get int literal attribute instead of SyntaxError?

Trying to lookup an int literal attribute in the normal manner gives a SyntaxError because the period is seen as a
decimal point:

>>> 1.__class__
File "<stdin>", line 1
1.__class__
^

SyntaxError: invalid decimal literal

The solution is to separate the literal from the period with either a space or parentheses.

>>> 1 .__class__
<class 'int'>
>>> (1).__class__
<class 'int'>

2.3.4 Bagaimana cara mengonversi string menjadi angka?

For integers, use the built-in int() type constructor, e.g. int('144') == 144. Similarly, float() converts to
floating-point, e.g. float('144') == 144.0.

By default, these interpret the number as decimal, so that int('0144') == 144 holds true, and int('0x144')
raises ValueError. int(string, base) takes the base to convert from as a second optional argument, so int(
'0x144', 16) == 324. If the base is specified as 0, the number is interpreted using Python’s rules: a leading ’0o’
indicates octal, and ’0x’ indicates a hex number.

Do not use the built-in function eval() if all you need is to convert strings to numbers. eval() will be significantly
slower and it presents a security risk: someone could pass you a Python expression that might have unwanted side effects.
For example, someone could pass __import__('os').system("rm -rf $HOME") which would erase your
home directory.

eval() also has the effect of interpreting numbers as Python expressions, so that e.g. eval('09') gives a syntax
error because Python does not allow leading ’0’ in a decimal number (except ’0’).

2.3.5 Bagaimana cara mengonversi angka menjadi string?

To convert, e.g., the number 144 to the string '144', use the built-in type constructor str(). If you want a hexa-
decimal or octal representation, use the built-in functions hex() or oct(). For fancy formatting, see the f-strings
and formatstrings sections, e.g. "{:04d}".format(144) yields '0144' and "{:.3f}".format(1.0/3.0)
yields '0.333'.

22 Bab 2. Pemrograman FAQ

Python Frequently Asked Questions, Rilis 3.11.10

2.3.6 How do I modify a string in place?

You can’t, because strings are immutable. In most situations, you should simply construct a new string from the various
parts you want to assemble it from. However, if you need an object with the ability to modify in-place unicode data, try
using an io.StringIO object or the array module:

>>> import io
>>> s = "Hello, world"
>>> sio = io.StringIO(s)
>>> sio.getvalue()
'Hello, world'
>>> sio.seek(7)
7
>>> sio.write("there!")
6
>>> sio.getvalue()
'Hello, there!'

>>> import array
>>> a = array.array('u', s)
>>> print(a)
array('u', 'Hello, world')
>>> a[0] = 'y'
>>> print(a)
array('u', 'yello, world')
>>> a.tounicode()
'yello, world'

2.3.7 How do I use strings to call functions/methods?

Ada berbagai teknik.

• The best is to use a dictionary that maps strings to functions. The primary advantage of this technique is that the
strings do not need to match the names of the functions. This is also the primary technique used to emulate a case
construct:

def a():
pass

def b():
pass

dispatch = {'go': a, 'stop': b} # Note lack of parens for funcs

dispatch[get_input()]() # Note trailing parens to call function

• Use the built-in function getattr():

import foo
getattr(foo, 'bar')()

Note that getattr() works on any object, including classes, class instances, modules, and so on.

This is used in several places in the standard library, like this:

2.3. Angka dan string 23

Python Frequently Asked Questions, Rilis 3.11.10

class Foo:
def do_foo(self):

...

def do_bar(self):
...

f = getattr(foo_instance, 'do_' + opname)
f()

• Use locals() to resolve the function name:

def myFunc():
print("hello")

fname = "myFunc"

f = locals()[fname]
f()

2.3.8 Is there an equivalent to Perl’s chomp() for removing trailing newlines from
strings?

You can use S.rstrip("\r\n") to remove all occurrences of any line terminator from the end of the string Swithout
removing other trailing whitespace. If the string S represents more than one line, with several empty lines at the end, the
line terminators for all the blank lines will be removed:

>>> lines = ("line 1 \r\n"
... "\r\n"
... "\r\n")
>>> lines.rstrip("\n\r")
'line 1 '

Since this is typically only desired when reading text one line at a time, using S.rstrip() this way works well.

2.3.9 Is there a scanf() or sscanf() equivalent?

Tidak seperti itu.

For simple input parsing, the easiest approach is usually to split the line into whitespace-delimited words using the
split() method of string objects and then convert decimal strings to numeric values using int() or float().
split() supports an optional ”sep” parameter which is useful if the line uses something other than whitespace as a
separator.

For more complicated input parsing, regular expressions are more powerful than C’s sscanf and better suited for the
task.

24 Bab 2. Pemrograman FAQ

Python Frequently Asked Questions, Rilis 3.11.10

2.3.10 What does ’UnicodeDecodeError’ or ’UnicodeEncodeError’ error mean?

See the unicode-howto.

2.3.11 Can I end a raw string with an odd number of backslashes?

A raw string ending with an odd number of backslashes will escape the string’s quote:

>>> r'C:\this\will\not\work\'
File "<stdin>", line 1
r'C:\this\will\not\work\'

^
SyntaxError: unterminated string literal (detected at line 1)

There are several workarounds for this. One is to use regular strings and double the backslashes:

>>> 'C:\\this\\will\\work\\'
'C:\\this\\will\\work\\'

Another is to concatenate a regular string containing an escaped backslash to the raw string:

>>> r'C:\this\will\work' '\\'
'C:\\this\\will\\work\\'

It is also possible to use os.path.join() to append a backslash on Windows:

>>> os.path.join(r'C:\this\will\work', '')
'C:\\this\\will\\work\\'

Note that while a backslash will ”escape” a quote for the purposes of determining where the raw string ends, no escaping
occurs when interpreting the value of the raw string. That is, the backslash remains present in the value of the raw string:

>>> r'backslash\'preserved'
"backslash\\'preserved"

Also see the specification in the language reference.

2.4 Performa

2.4.1 Kode program saya berjalan lamban. Bagaimana cara saya mempercepatnya?

That’s a tough one, in general. First, here are a list of things to remember before diving further:

• Performance characteristics vary across Python implementations. This FAQ focuses on CPython.

• Behaviour can vary across operating systems, especially when talking about I/O or multi-threading.

• You should always find the hot spots in your program before attempting to optimize any code (see the profile
module).

• Writing benchmark scripts will allow you to iterate quickly when searching for improvements (see the timeit
module).

• It is highly recommended to have good code coverage (through unit testing or any other technique) before potentially
introducing regressions hidden in sophisticated optimizations.

2.4. Performa 25

Python Frequently Asked Questions, Rilis 3.11.10

That being said, there are many tricks to speed up Python code. Here are some general principles which go a long way
towards reaching acceptable performance levels:

• Making your algorithms faster (or changing to faster ones) can yield much larger benefits than trying to sprinkle
micro-optimization tricks all over your code.

• Use the right data structures. Study documentation for the bltin-types and the collections module.

• When the standard library provides a primitive for doing something, it is likely (although not guaranteed) to be
faster than any alternative you may come up with. This is doubly true for primitives written in C, such as builtins
and some extension types. For example, be sure to use either the list.sort() built-in method or the related
sorted() function to do sorting (and see the sortinghowto for examples of moderately advanced usage).

• Abstractions tend to create indirections and force the interpreter to work more. If the levels of indirection outweigh
the amount of useful work done, your program will be slower. You should avoid excessive abstraction, especially
under the form of tiny functions or methods (which are also often detrimental to readability).

If you have reached the limit of what pure Python can allow, there are tools to take you further away. For example,
Cython can compile a slightly modified version of Python code into a C extension, and can be used on many different
platforms. Cython can take advantage of compilation (and optional type annotations) to make your code significantly
faster than when interpreted. If you are confident in your C programming skills, you can also write a C extension module
yourself.

Lihat juga:

The wiki page devoted to performance tips.

2.4.2 Apakah cara yang paling efisien untuk menggabungkan banyak string secara
bersamaan?

str and bytes objects are immutable, therefore concatenating many strings together is inefficient as each concatenation
creates a new object. In the general case, the total runtime cost is quadratic in the total string length.

To accumulate many str objects, the recommended idiom is to place them into a list and call str.join() at the end:

chunks = []
for s in my_strings:

chunks.append(s)
result = ''.join(chunks)

(idiom lain yang cukup efisien adalah dengan menggunakan io.StringIO)

To accumulate many bytes objects, the recommended idiom is to extend a bytearray object using in-place conca-
tenation (the += operator):

result = bytearray()
for b in my_bytes_objects:

result += b

26 Bab 2. Pemrograman FAQ

https://cython.org
https://wiki.python.org/moin/PythonSpeed/PerformanceTips

Python Frequently Asked Questions, Rilis 3.11.10

2.5 Urutan (Tuple/List)

2.5.1 Bagaimana cara saya mengonversi tuples dan lists?

The type constructor tuple(seq) converts any sequence (actually, any iterable) into a tuple with the same items in
the same order.

For example, tuple([1, 2, 3]) yields (1, 2, 3) and tuple('abc') yields ('a', 'b', 'c'). If the
argument is a tuple, it does not make a copy but returns the same object, so it is cheap to call tuple() when you aren’t
sure that an object is already a tuple.

The type constructor list(seq) converts any sequence or iterable into a list with the same items in the same order.
For example, list((1, 2, 3)) yields [1, 2, 3] and list('abc') yields ['a', 'b', 'c']. If the
argument is a list, it makes a copy just like seq[:] would.

2.5.2 Apa itu indeks negatif?

Python sequences are indexed with positive numbers and negative numbers. For positive numbers 0 is the first index 1 is
the second index and so forth. For negative indices -1 is the last index and -2 is the penultimate (next to last) index and
so forth. Think of seq[-n] as the same as seq[len(seq)-n].

Using negative indices can be very convenient. For example S[:-1] is all of the string except for its last character,
which is useful for removing the trailing newline from a string.

2.5.3 How do I iterate over a sequence in reverse order?

Use the reversed() built-in function:

for x in reversed(sequence):
... # do something with x ...

This won’t touch your original sequence, but build a new copy with reversed order to iterate over.

2.5.4 Bagaimana Anda menghapus duplikasi dari list?

See the Python Cookbook for a long discussion of many ways to do this:

https://code.activestate.com/recipes/52560/

If you don’t mind reordering the list, sort it and then scan from the end of the list, deleting duplicates as you go:

if mylist:
mylist.sort()
last = mylist[-1]
for i in range(len(mylist)-2, -1, -1):

if last == mylist[i]:
del mylist[i]

else:
last = mylist[i]

If all elements of the list may be used as set keys (i.e. they are all hashable) this is often faster

mylist = list(set(mylist))

2.5. Urutan (Tuple/List) 27

https://code.activestate.com/recipes/52560/

Python Frequently Asked Questions, Rilis 3.11.10

This converts the list into a set, thereby removing duplicates, and then back into a list.

2.5.5 How do you remove multiple items from a list

As with removing duplicates, explicitly iterating in reverse with a delete condition is one possibility. However, it is easier
and faster to use slice replacement with an implicit or explicit forward iteration. Here are three variations.:

mylist[:] = filter(keep_function, mylist)
mylist[:] = (x for x in mylist if keep_condition)
mylist[:] = [x for x in mylist if keep_condition]

The list comprehension may be fastest.

2.5.6 Bagaimana anda membuat sebuah array di Python?

Gunakan sebuah list:

["this", 1, "is", "an", "array"]

Lists are equivalent to C or Pascal arrays in their time complexity; the primary difference is that a Python list can contain
objects of many different types.

The array module also provides methods for creating arrays of fixed types with compact representations, but they are
slower to index than lists. Also note that NumPy and other third party packages define array-like structures with various
characteristics as well.

To get Lisp-style linked lists, you can emulate cons cells using tuples:

lisp_list = ("like", ("this", ("example", None)))

If mutability is desired, you could use lists instead of tuples. Here the analogue of a Lisp car is lisp_list[0] and
the analogue of cdr is lisp_list[1]. Only do this if you’re sure you really need to, because it’s usually a lot slower
than using Python lists.

2.5.7 Bagaimana cara Saya membuat list multidimensi?

You probably tried to make a multidimensional array like this:

>>> A = [[None] * 2] * 3

This looks correct if you print it:

>>> A
[[None, None], [None, None], [None, None]]

But when you assign a value, it shows up in multiple places:

>>> A[0][0] = 5
>>> A
[[5, None], [5, None], [5, None]]

The reason is that replicating a list with * doesn’t create copies, it only creates references to the existing objects. The *3
creates a list containing 3 references to the same list of length two. Changes to one row will show in all rows, which is
almost certainly not what you want.

28 Bab 2. Pemrograman FAQ

https://numpy.org/

Python Frequently Asked Questions, Rilis 3.11.10

The suggested approach is to create a list of the desired length first and then fill in each element with a newly created list:

A = [None] * 3
for i in range(3):

A[i] = [None] * 2

This generates a list containing 3 different lists of length two. You can also use a list comprehension:

w, h = 2, 3
A = [[None] * w for i in range(h)]

Or, you can use an extension that provides a matrix datatype; NumPy is the best known.

2.5.8 How do I apply a method or function to a sequence of objects?

To call a method or function and accumulate the return values is a list, a list comprehension is an elegant solution:

result = [obj.method() for obj in mylist]

result = [function(obj) for obj in mylist]

To just run the method or function without saving the return values, a plain for loop will suffice:

for obj in mylist:
obj.method()

for obj in mylist:
function(obj)

2.5.9 Why does a_tuple[i] += [’item’] raise an exception when the addition works?

This is because of a combination of the fact that augmented assignment operators are assignment operators, and the
difference between mutable and immutable objects in Python.

This discussion applies in general when augmented assignment operators are applied to elements of a tuple that point to
mutable objects, but we’ll use a list and += as our exemplar.

Jika kamu menulis:

>>> a_tuple = (1, 2)
>>> a_tuple[0] += 1
Traceback (most recent call last):

...
TypeError: 'tuple' object does not support item assignment

The reason for the exception should be immediately clear: 1 is added to the object a_tuple[0] points to (1), producing
the result object, 2, but when we attempt to assign the result of the computation, 2, to element 0 of the tuple, we get an
error because we can’t change what an element of a tuple points to.

Under the covers, what this augmented assignment statement is doing is approximately this:

>>> result = a_tuple[0] + 1
>>> a_tuple[0] = result
Traceback (most recent call last):

...
TypeError: 'tuple' object does not support item assignment

2.5. Urutan (Tuple/List) 29

https://numpy.org/

Python Frequently Asked Questions, Rilis 3.11.10

It is the assignment part of the operation that produces the error, since a tuple is immutable.

Ketika kamu menulis sesuatu seperti:

>>> a_tuple = (['foo'], 'bar')
>>> a_tuple[0] += ['item']
Traceback (most recent call last):

...
TypeError: 'tuple' object does not support item assignment

The exception is a bit more surprising, and even more surprising is the fact that even though there was an error, the append
worked:

>>> a_tuple[0]
['foo', 'item']

To see why this happens, you need to know that (a) if an object implements an __iadd__() magic method, it gets
called when the += augmented assignment is executed, and its return value is what gets used in the assignment statement;
and (b) for lists, __iadd__() is equivalent to calling extend() on the list and returning the list. That’s why we say
that for lists, += is a ”shorthand” for list.extend():

>>> a_list = []
>>> a_list += [1]
>>> a_list
[1]

Ini setara dengan:

>>> result = a_list.__iadd__([1])
>>> a_list = result

The object pointed to by a_list has been mutated, and the pointer to the mutated object is assigned back to a_list. The
end result of the assignment is a no-op, since it is a pointer to the same object that a_list was previously pointing to,
but the assignment still happens.

Thus, in our tuple example what is happening is equivalent to:

>>> result = a_tuple[0].__iadd__(['item'])
>>> a_tuple[0] = result
Traceback (most recent call last):

...
TypeError: 'tuple' object does not support item assignment

The __iadd__() succeeds, and thus the list is extended, but even though result points to the same object that
a_tuple[0] already points to, that final assignment still results in an error, because tuples are immutable.

2.5.10 I want to do a complicated sort: can you do a Schwartzian Transform in
Python?

The technique, attributed to Randal Schwartz of the Perl community, sorts the elements of a list by a metric which maps
each element to its ”sort value”. In Python, use the key argument for the list.sort() method:

Isorted = L[:]
Isorted.sort(key=lambda s: int(s[10:15]))

30 Bab 2. Pemrograman FAQ

Python Frequently Asked Questions, Rilis 3.11.10

2.5.11 How can I sort one list by values from another list?

Merge them into an iterator of tuples, sort the resulting list, and then pick out the element you want.

>>> list1 = ["what", "I'm", "sorting", "by"]
>>> list2 = ["something", "else", "to", "sort"]
>>> pairs = zip(list1, list2)
>>> pairs = sorted(pairs)
>>> pairs
[("I'm", 'else'), ('by', 'sort'), ('sorting', 'to'), ('what', 'something')]
>>> result = [x[1] for x in pairs]
>>> result
['else', 'sort', 'to', 'something']

2.6 Objek

2.6.1 Apa itu kelas?

A class is the particular object type created by executing a class statement. Class objects are used as templates to create
instance objects, which embody both the data (attributes) and code (methods) specific to a datatype.

A class can be based on one or more other classes, called its base class(es). It then inherits the attributes andmethods of its
base classes. This allows an object model to be successively refined by inheritance. You might have a generic Mailbox
class that provides basic accessor methods for a mailbox, and subclasses such as MboxMailbox, MaildirMailbox,
OutlookMailbox that handle various specific mailbox formats.

2.6.2 Apa itu metode?

A method is a function on some object x that you normally call as x.name(arguments...). Methods are defined
as functions inside the class definition:

class C:
def meth(self, arg):

return arg * 2 + self.attribute

2.6.3 Apa itu self?

Self is merely a conventional name for the first argument of a method. A method defined as meth(self, a, b,
c) should be called as x.meth(a, b, c) for some instance x of the class in which the definition occurs; the called
method will think it is called as meth(x, a, b, c).

Lihat jugaWhy must ’self’ be used explicitly in method definitions and calls?.

2.6. Objek 31

Python Frequently Asked Questions, Rilis 3.11.10

2.6.4 How do I check if an object is an instance of a given class or of a subclass of
it?

Use the built-in function isinstance(obj, cls). You can check if an object is an instance of any of a num-
ber of classes by providing a tuple instead of a single class, e.g. isinstance(obj, (class1, class2, .
..)), and can also check whether an object is one of Python’s built-in types, e.g. isinstance(obj, str) or
isinstance(obj, (int, float, complex)).

Note that isinstance() also checks for virtual inheritance from an abstract base class. So, the test will return True
for a registered class even if hasn’t directly or indirectly inherited from it. To test for ”true inheritance”, scan theMRO of
the class:

from collections.abc import Mapping

class P:
pass

class C(P):
pass

Mapping.register(P)

>>> c = C()
>>> isinstance(c, C) # direct
True
>>> isinstance(c, P) # indirect
True
>>> isinstance(c, Mapping) # virtual
True

Actual inheritance chain
>>> type(c).__mro__
(<class 'C'>, <class 'P'>, <class 'object'>)

Test for "true inheritance"
>>> Mapping in type(c).__mro__
False

Note that most programs do not use isinstance() on user-defined classes very often. If you are developing the
classes yourself, a more proper object-oriented style is to define methods on the classes that encapsulate a particular
behaviour, instead of checking the object’s class and doing a different thing based on what class it is. For example, if you
have a function that does something:

def search(obj):
if isinstance(obj, Mailbox):

... # code to search a mailbox
elif isinstance(obj, Document):

... # code to search a document
elif ...

A better approach is to define a search() method on all the classes and just call it:

class Mailbox:
def search(self):

... # code to search a mailbox

class Document:

(berlanjut ke halaman berikutnya)

32 Bab 2. Pemrograman FAQ

Python Frequently Asked Questions, Rilis 3.11.10

(lanjutan dari halaman sebelumnya)

def search(self):
... # code to search a document

obj.search()

2.6.5 Apa itu delegasi?

Delegation is an object oriented technique (also called a design pattern). Let’s say you have an object x and want to
change the behaviour of just one of its methods. You can create a new class that provides a new implementation of the
method you’re interested in changing and delegates all other methods to the corresponding method of x.

Python programmers can easily implement delegation. For example, the following class implements a class that behaves
like a file but converts all written data to uppercase:

class UpperOut:

def __init__(self, outfile):
self._outfile = outfile

def write(self, s):
self._outfile.write(s.upper())

def __getattr__(self, name):
return getattr(self._outfile, name)

Here the UpperOut class redefines the write() method to convert the argument string to uppercase before ca-
lling the underlying self._outfile.write() method. All other methods are delegated to the underlying self.
_outfile object. The delegation is accomplished via the __getattr__() method; consult the language reference
for more information about controlling attribute access.

Note that for more general cases delegation can get trickier. When attributes must be set as well as retrieved, the class must
define a __setattr__() method too, and it must do so carefully. The basic implementation of __setattr__()
is roughly equivalent to the following:

class X:
...
def __setattr__(self, name, value):

self.__dict__[name] = value
...

Most __setattr__() implementations must modify self.__dict__ to store local state for self without causing
an infinite recursion.

2.6.6 Howdo I call amethod defined in a base class froma derived class that extends
it?

Use the built-in super() function:

class Derived(Base):
def meth(self):

super().meth() # calls Base.meth

2.6. Objek 33

Python Frequently Asked Questions, Rilis 3.11.10

In the example, super() will automatically determine the instance from which it was called (the self value), look up
the method resolution order (MRO) with type(self).__mro__, and return the next in line after Derived in the
MRO: Base.

2.6.7 How can I organize my code to make it easier to change the base class?

You could assign the base class to an alias and derive from the alias. Then all you have to change is the value assigned
to the alias. Incidentally, this trick is also handy if you want to decide dynamically (e.g. depending on availability of
resources) which base class to use. Example:

class Base:
...

BaseAlias = Base

class Derived(BaseAlias):
...

2.6.8 How do I create static class data and static class methods?

Both static data and static methods (in the sense of C++ or Java) are supported in Python.

For static data, simply define a class attribute. To assign a new value to the attribute, you have to explicitly use the class
name in the assignment:

class C:
count = 0 # number of times C.__init__ called

def __init__(self):
C.count = C.count + 1

def getcount(self):
return C.count # or return self.count

c.count also refers to C.count for any c such that isinstance(c, C) holds, unless overridden by c itself or
by some class on the base-class search path from c.__class__ back to C.

Caution: within a method of C, an assignment like self.count = 42 creates a new and unrelated instance named
”count” in self’s own dict. Rebinding of a class-static data name must always specify the class whether inside a method
or not:

C.count = 314

Static methods are possible:

class C:
@staticmethod
def static(arg1, arg2, arg3):

No 'self' parameter!
...

However, a far more straightforward way to get the effect of a static method is via a simple module-level function:

def getcount():
return C.count

34 Bab 2. Pemrograman FAQ

Python Frequently Asked Questions, Rilis 3.11.10

If your code is structured so as to define one class (or tightly related class hierarchy) per module, this supplies the desired
encapsulation.

2.6.9 How can I overload constructors (or methods) in Python?

This answer actually applies to all methods, but the question usually comes up first in the context of constructors.

Di C++ kamu akan menulis

class C {
C() { cout << "No arguments\n"; }
C(int i) { cout << "Argument is " << i << "\n"; }

}

In Python you have to write a single constructor that catches all cases using default arguments. For example:

class C:
def __init__(self, i=None):

if i is None:
print("No arguments")

else:
print("Argument is", i)

This is not entirely equivalent, but close enough in practice.

You could also try a variable-length argument list, e.g.

def __init__(self, *args):
...

The same approach works for all method definitions.

2.6.10 I try to use __spam and I get an error about _SomeClassName__spam.

Variable names with double leading underscores are ”mangled” to provide a simple but effective way to define class
private variables. Any identifier of the form __spam (at least two leading underscores, at most one trailing undersco-
re) is textually replaced with _classname__spam, where classname is the current class name with any leading
underscores stripped.

This doesn’t guarantee privacy: an outside user can still deliberately access the ”_classname__spam” attribute, and private
values are visible in the object’s __dict__. Many Python programmers never bother to use private variable names at
all.

2.6.11 My class defines __del__ but it is not called when I delete the object.

There are several possible reasons for this.

The del statement does not necessarily call __del__() -- it simply decrements the object’s reference count, and if
this reaches zero __del__() is called.

If your data structures contain circular links (e.g. a tree where each child has a parent reference and each parent has
a list of children) the reference counts will never go back to zero. Once in a while Python runs an algorithm to detect
such cycles, but the garbage collector might run some time after the last reference to your data structure vanishes, so
your __del__() method may be called at an inconvenient and random time. This is inconvenient if you’re trying to

2.6. Objek 35

Python Frequently Asked Questions, Rilis 3.11.10

reproduce a problem. Worse, the order in which object’s __del__() methods are executed is arbitrary. You can run
gc.collect() to force a collection, but there are pathological cases where objects will never be collected.

Despite the cycle collector, it’s still a good idea to define an explicit close() method on objects to be called whe-
never you’re done with them. The close() method can then remove attributes that refer to subobjects. Don’t call
__del__() directly -- __del__() should call close() and close() should make sure that it can be called more
than once for the same object.

Another way to avoid cyclical references is to use the weakref module, which allows you to point to objects without
incrementing their reference count. Tree data structures, for instance, should use weak references for their parent and
sibling references (if they need them!).

Finally, if your __del__() method raises an exception, a warning message is printed to sys.stderr.

2.6.12 How do I get a list of all instances of a given class?

Python does not keep track of all instances of a class (or of a built-in type). You can program the class’s constructor to
keep track of all instances by keeping a list of weak references to each instance.

2.6.13 Why does the result of id() appear to be not unique?

The id() builtin returns an integer that is guaranteed to be unique during the lifetime of the object. Since in CPython,
this is the object’s memory address, it happens frequently that after an object is deleted from memory, the next freshly
created object is allocated at the same position in memory. This is illustrated by this example:

>>> id(1000)
13901272
>>> id(2000)
13901272

The two ids belong to different integer objects that are created before, and deleted immediately after execution of the
id() call. To be sure that objects whose id you want to examine are still alive, create another reference to the object:

>>> a = 1000; b = 2000
>>> id(a)
13901272
>>> id(b)
13891296

2.6.14 When can I rely on identity tests with the is operator?

The is operator tests for object identity. The test a is b is equivalent to id(a) == id(b).

The most important property of an identity test is that an object is always identical to itself, a is a always returns
True. Identity tests are usually faster than equality tests. And unlike equality tests, identity tests are guaranteed to return
a boolean True or False.

However, identity tests can only be substituted for equality tests when object identity is assured. Generally, there are three
circumstances where identity is guaranteed:

1) Assignments create new names but do not change object identity. After the assignment new = old, it is guaranteed
that new is old.

2) Putting an object in a container that stores object references does not change object identity. After the list assignment
s[0] = x, it is guaranteed that s[0] is x.

36 Bab 2. Pemrograman FAQ

Python Frequently Asked Questions, Rilis 3.11.10

3) If an object is a singleton, it means that only one instance of that object can exist. After the assignments a = None
and b = None, it is guaranteed that a is b because None is a singleton.

In most other circumstances, identity tests are inadvisable and equality tests are preferred. In particular, identity tests
should not be used to check constants such as int and str which aren’t guaranteed to be singletons:

>>> a = 1000
>>> b = 500
>>> c = b + 500
>>> a is c
False

>>> a = 'Python'
>>> b = 'Py'
>>> c = b + 'thon'
>>> a is c
False

Likewise, new instances of mutable containers are never identical:

>>> a = []
>>> b = []
>>> a is b
False

In the standard library code, you will see several common patterns for correctly using identity tests:

1) As recommended by PEP 8, an identity test is the preferred way to check for None. This reads like plain English in
code and avoids confusion with other objects that may have boolean values that evaluate to false.

2) Detecting optional arguments can be tricky when None is a valid input value. In those situations, you can create a
singleton sentinel object guaranteed to be distinct from other objects. For example, here is how to implement a method
that behaves like dict.pop():

_sentinel = object()

def pop(self, key, default=_sentinel):
if key in self:

value = self[key]
del self[key]
return value

if default is _sentinel:
raise KeyError(key)

return default

3) Container implementations sometimes need to augment equality tests with identity tests. This prevents the code from
being confused by objects such as float('NaN') that are not equal to themselves.

For example, here is the implementation of collections.abc.Sequence.__contains__():

def __contains__(self, value):
for v in self:

if v is value or v == value:
return True

return False

2.6. Objek 37

https://peps.python.org/pep-0008/

Python Frequently Asked Questions, Rilis 3.11.10

2.6.15 How can a subclass control what data is stored in an immutable instance?

When subclassing an immutable type, override the __new__() method instead of the __init__() method. The
latter only runs after an instance is created, which is too late to alter data in an immutable instance.

All of these immutable classes have a different signature than their parent class:

from datetime import date

class FirstOfMonthDate(date):
"Always choose the first day of the month"
def __new__(cls, year, month, day):

return super().__new__(cls, year, month, 1)

class NamedInt(int):
"Allow text names for some numbers"
xlat = {'zero': 0, 'one': 1, 'ten': 10}
def __new__(cls, value):

value = cls.xlat.get(value, value)
return super().__new__(cls, value)

class TitleStr(str):
"Convert str to name suitable for a URL path"
def __new__(cls, s):

s = s.lower().replace(' ', '-')
s = ''.join([c for c in s if c.isalnum() or c == '-'])
return super().__new__(cls, s)

The classes can be used like this:

>>> FirstOfMonthDate(2012, 2, 14)
FirstOfMonthDate(2012, 2, 1)
>>> NamedInt('ten')
10
>>> NamedInt(20)
20
>>> TitleStr('Blog: Why Python Rocks')
'blog-why-python-rocks'

2.6.16 How do I cache method calls?

The two principal tools for caching methods are functools.cached_property() and functools.
lru_cache(). The former stores results at the instance level and the latter at the class level.

The cached_property approach only works with methods that do not take any arguments. It does not create a reference to
the instance. The cached method result will be kept only as long as the instance is alive.

The advantage is that when an instance is no longer used, the cached method result will be released right away. The
disadvantage is that if instances accumulate, so too will the accumulated method results. They can grow without bound.

The lru_cache approach works with methods that have hashable arguments. It creates a reference to the instance unless
special efforts are made to pass in weak references.

The advantage of the least recently used algorithm is that the cache is bounded by the specifiedmaxsize. The disadvantage
is that instances are kept alive until they age out of the cache or until the cache is cleared.

This example shows the various techniques:

38 Bab 2. Pemrograman FAQ

Python Frequently Asked Questions, Rilis 3.11.10

class Weather:
"Lookup weather information on a government website"

def __init__(self, station_id):
self._station_id = station_id
The _station_id is private and immutable

def current_temperature(self):
"Latest hourly observation"
Do not cache this because old results
can be out of date.

@cached_property
def location(self):

"Return the longitude/latitude coordinates of the station"
Result only depends on the station_id

@lru_cache(maxsize=20)
def historic_rainfall(self, date, units='mm'):

"Rainfall on a given date"
Depends on the station_id, date, and units.

The above example assumes that the station_id never changes. If the relevant instance attributes are mutable, the ca-
ched_property approach can’t be made to work because it cannot detect changes to the attributes.

To make the lru_cache approach work when the station_id is mutable, the class needs to define the __eq__() and
__hash__() methods so that the cache can detect relevant attribute updates:

class Weather:
"Example with a mutable station identifier"

def __init__(self, station_id):
self.station_id = station_id

def change_station(self, station_id):
self.station_id = station_id

def __eq__(self, other):
return self.station_id == other.station_id

def __hash__(self):
return hash(self.station_id)

@lru_cache(maxsize=20)
def historic_rainfall(self, date, units='cm'):

'Rainfall on a given date'
Depends on the station_id, date, and units.

2.6. Objek 39

Python Frequently Asked Questions, Rilis 3.11.10

2.7 Modul-Modul

2.7.1 Bagaimana saya membuat berkas .pyc?

When a module is imported for the first time (or when the source file has changed since the current compiled file was
created) a .pyc file containing the compiled code should be created in a __pycache__ subdirectory of the directory
containing the .py file. The .pyc file will have a filename that starts with the same name as the .py file, and ends
with .pyc, with a middle component that depends on the particular python binary that created it. (See PEP 3147 for
details.)

One reason that a .pyc file may not be created is a permissions problem with the directory containing the source file,
meaning that the __pycache__ subdirectory cannot be created. This can happen, for example, if you develop as one
user but run as another, such as if you are testing with a web server.

Unless the PYTHONDONTWRITEBYTECODE environment variable is set, creation of a .pyc file is automatic if you’re
importing a module and Python has the ability (permissions, free space, etc...) to create a __pycache__ subdirectory
and write the compiled module to that subdirectory.

Running Python on a top level script is not considered an import and no .pyc will be created. For example, if you have
a top-level module foo.py that imports another module xyz.py, when you run foo (by typing python foo.py
as a shell command), a .pyc will be created for xyz because xyz is imported, but no .pyc file will be created for foo
since foo.py isn’t being imported.

If you need to create a .pyc file for foo -- that is, to create a .pyc file for a module that is not imported -- you can,
using the py_compile and compileall modules.

The py_compile module can manually compile any module. One way is to use the compile() function in that
module interactively:

>>> import py_compile
>>> py_compile.compile('foo.py')

This will write the .pyc to a __pycache__ subdirectory in the same location as foo.py (or you can override that
with the optional parameter cfile).

You can also automatically compile all files in a directory or directories using the compileall module. You can do
it from the shell prompt by running compileall.py and providing the path of a directory containing Python files to
compile:

python -m compileall .

2.7.2 How do I find the current module name?

A module can find out its own module name by looking at the predefined global variable __name__. If this has the
value '__main__', the program is running as a script. Many modules that are usually used by importing them also
provide a command-line interface or a self-test, and only execute this code after checking __name__:

def main():
print('Running test...')
...

if __name__ == '__main__':
main()

40 Bab 2. Pemrograman FAQ

https://peps.python.org/pep-3147/

Python Frequently Asked Questions, Rilis 3.11.10

2.7.3 How can I have modules that mutually import each other?

Suppose you have the following modules:

foo.py:

from bar import bar_var
foo_var = 1

bar.py:

from foo import foo_var
bar_var = 2

The problem is that the interpreter will perform the following steps:

• main imports foo

• Empty globals for foo are created

• foo is compiled and starts executing

• foo imports bar

• Empty globals for bar are created

• bar is compiled and starts executing

• bar imports foo (which is a no-op since there already is a module named foo)

• The import mechanism tries to read foo_var from foo globals, to set bar.foo_var = foo.foo_var

The last step fails, because Python isn’t done with interpreting foo yet and the global symbol dictionary for foo is still
empty.

The same thing happens when you use import foo, and then try to access foo.foo_var in global code.

There are (at least) three possible workarounds for this problem.

Guido van Rossum recommends avoiding all uses of from <module> import ..., and placing all code inside
functions. Initializations of global variables and class variables should use constants or built-in functions only. This
means everything from an imported module is referenced as <module>.<name>.

Jim Roskind suggests performing steps in the following order in each module:

• exports (globals, functions, and classes that don’t need imported base classes)

• pernyataan import

• active code (including globals that are initialized from imported values).

Van Rossum doesn’t like this approach much because the imports appear in a strange place, but it does work.

Matthias Urlichs recommends restructuring your code so that the recursive import is not necessary in the first place.

These solutions are not mutually exclusive.

2.7. Modul-Modul 41

Python Frequently Asked Questions, Rilis 3.11.10

2.7.4 __import__(’x.y.z’) returns <module ’x’>; how do I get z?

Consider using the convenience function import_module() from importlib instead:

z = importlib.import_module('x.y.z')

2.7.5 When I edit an imported module and reimport it, the changes don’t show up.
Why does this happen?

For reasons of efficiency as well as consistency, Python only reads the module file on the first time a module is imported.
If it didn’t, in a program consisting of many modules where each one imports the same basic module, the basic module
would be parsed and re-parsed many times. To force re-reading of a changed module, do this:

import importlib
import modname
importlib.reload(modname)

Warning: this technique is not 100% fool-proof. In particular, modules containing statements like

from modname import some_objects

will continue to work with the old version of the imported objects. If the module contains class definitions, existing class
instances will not be updated to use the new class definition. This can result in the following paradoxical behaviour:

>>> import importlib
>>> import cls
>>> c = cls.C() # Create an instance of C
>>> importlib.reload(cls)
<module 'cls' from 'cls.py'>
>>> isinstance(c, cls.C) # isinstance is false?!?
False

Sifat masalah dibuat jelas jika Anda mencetak ”identitas” objek kelas:

>>> hex(id(c.__class__))
'0x7352a0'
>>> hex(id(cls.C))
'0x4198d0'

42 Bab 2. Pemrograman FAQ

BAB3

Desain dan Sejarah FAQ

3.1 Mengapa Python menggunakan indentasi untuk pengelompokan
pernyataan?

Guido van Rossum percaya bahwa menggunakan indentasi untuk pengelompokan sangat elegan dan berkontribusi banyak
pada kejelasan rata-rata program Python. Kebanyakan orang belajar menyukai fitur ini setelah beberapa saat.

Since there are no begin/end brackets there cannot be a disagreement between grouping perceived by the parser and the
human reader. Occasionally C programmers will encounter a fragment of code like this:

if (x <= y)
x++;
y--;

z++;

Only the x++ statement is executed if the condition is true, but the indentation leads many to believe otherwise. Even
experienced C programmers will sometimes stare at it a long time wondering as to why y is being decremented even for
x > y.

Because there are no begin/end brackets, Python is much less prone to coding-style conflicts. In C there are many different
ways to place the braces. After becoming used to reading and writing code using a particular style, it is normal to feel
somewhat uneasy when reading (or being required to write) in a different one.

Many coding styles place begin/end brackets on a line by themselves. This makes programs considerably longer and
wastes valuable screen space, making it harder to get a good overview of a program. Ideally, a function should fit on
one screen (say, 20--30 lines). 20 lines of Python can do a lot more work than 20 lines of C. This is not solely due to
the lack of begin/end brackets -- the lack of declarations and the high-level data types are also responsible -- but the
indentation-based syntax certainly helps.

43

Python Frequently Asked Questions, Rilis 3.11.10

3.2 Why am I getting strange results with simple arithmetic opera-
tions?

See the next question.

3.3 Why are floating-point calculations so inaccurate?

Users are often surprised by results like this:

>>> 1.2 - 1.0
0.19999999999999996

and think it is a bug in Python. It’s not. This has little to do with Python, and much more to do with how the underlying
platform handles floating-point numbers.

The float type in CPython uses a C double for storage. A float object’s value is stored in binary floating-point
with a fixed precision (typically 53 bits) and Python uses C operations, which in turn rely on the hardware implementation
in the processor, to perform floating-point operations. This means that as far as floating-point operations are concerned,
Python behaves like many popular languages including C and Java.

Many numbers that can be written easily in decimal notation cannot be expressed exactly in binary floating-point. For
example, after:

>>> x = 1.2

nilai yang disimpan untuk x adalah perkiraan (sangat baik) ke nilai desimal 1.2, tetapi tidak persis sama dengan itu.
Pada mesin biasa, nilai sebenarnya yang disimpan adalah:

1.0011001100110011001100110011001100110011001100110011 (binary)

which is exactly:

1.1999999999999999555910790149937383830547332763671875 (decimal)

The typical precision of 53 bits provides Python floats with 15--16 decimal digits of accuracy.

For a fuller explanation, please see the floating point arithmetic chapter in the Python tutorial.

3.4 Why are Python strings immutable?

There are several advantages.

One is performance: knowing that a string is immutable means we can allocate space for it at creation time, and the
storage requirements are fixed and unchanging. This is also one of the reasons for the distinction between tuples and lists.

Another advantage is that strings in Python are considered as ”elemental” as numbers. No amount of activity will change
the value 8 to anything else, and in Python, no amount of activity will change the string ”eight” to anything else.

44 Bab 3. Desain dan Sejarah FAQ

Python Frequently Asked Questions, Rilis 3.11.10

3.5 Why must ’self’ be used explicitly in method definitions and calls?

The idea was borrowed from Modula-3. It turns out to be very useful, for a variety of reasons.

First, it’s more obvious that you are using a method or instance attribute instead of a local variable. Reading self.x
or self.meth() makes it absolutely clear that an instance variable or method is used even if you don’t know the class
definition by heart. In C++, you can sort of tell by the lack of a local variable declaration (assuming globals are rare or
easily recognizable) -- but in Python, there are no local variable declarations, so you’d have to look up the class definition
to be sure. Some C++ and Java coding standards call for instance attributes to have an m_ prefix, so this explicitness is
still useful in those languages, too.

Second, it means that no special syntax is necessary if you want to explicitly reference or call the method from a particular
class. In C++, if you want to use a method from a base class which is overridden in a derived class, you have to use
the :: operator -- in Python you can write baseclass.methodname(self, <argument list>). This is
particularly useful for __init__() methods, and in general in cases where a derived class method wants to extend the
base class method of the same name and thus has to call the base class method somehow.

Finally, for instance variables it solves a syntactic problem with assignment: since local variables in Python are (by
definition!) those variables to which a value is assigned in a function body (and that aren’t explicitly declared global),
there has to be some way to tell the interpreter that an assignment was meant to assign to an instance variable instead of
to a local variable, and it should preferably be syntactic (for efficiency reasons). C++ does this through declarations, but
Python doesn’t have declarations and it would be a pity having to introduce them just for this purpose. Using the explicit
self.var solves this nicely. Similarly, for using instance variables, having to write self.var means that references
to unqualified names inside a method don’t have to search the instance’s directories. To put it another way, local variables
and instance variables live in two different namespaces, and you need to tell Python which namespace to use.

3.6 Why can’t I use an assignment in an expression?

Starting in Python 3.8, you can!

Assignment expressions using the walrus operator := assign a variable in an expression:

while chunk := fp.read(200):
print(chunk)

Lihat PEP 572 untuk informasi lebih lanjut.

3.7 Why does Python use methods for some functionality (e.g.
list.index()) but functions for other (e.g. len(list))?

Seperti yang Guido katakan:

(a) For some operations, prefix notation just reads better than postfix -- prefix (and infix!) operations have a
long tradition in mathematics which likes notations where the visuals help the mathematician thinking about
a problem. Compare the easy with which we rewrite a formula like x*(a+b) into x*a + x*b to the clumsiness
of doing the same thing using a raw OO notation.

(b) When I read code that says len(x) I know that it is asking for the length of something. This tells me
two things: the result is an integer, and the argument is some kind of container. To the contrary, when I
read x.len(), I have to already know that x is some kind of container implementing an interface or inheriting
from a class that has a standard len(). Witness the confusion we occasionally have when a class that is not
implementing a mapping has a get() or keys() method, or something that isn’t a file has a write() method.

3.5. Why must ’self’ be used explicitly in method definitions and calls? 45

https://peps.python.org/pep-0572/

Python Frequently Asked Questions, Rilis 3.11.10

—https://mail.python.org/pipermail/python-3000/2006-November/004643.html

3.8 Why is join() a string method instead of a list or tuple method?

Strings became much more like other standard types starting in Python 1.6, when methods were added which give the
same functionality that has always been available using the functions of the string module. Most of these new methods
have been widely accepted, but the one which appears to make some programmers feel uncomfortable is:

", ".join(['1', '2', '4', '8', '16'])

which gives the result:

"1, 2, 4, 8, 16"

There are two common arguments against this usage.

The first runs along the lines of: ”It looks really ugly using a method of a string literal (string constant)”, to which the
answer is that it might, but a string literal is just a fixed value. If the methods are to be allowed on names bound to strings
there is no logical reason to make them unavailable on literals.

The second objection is typically cast as: ”I am really telling a sequence to join its members together with a string
constant”. Sadly, you aren’t. For some reason there seems to be much less difficulty with having split() as a string
method, since in that case it is easy to see that

"1, 2, 4, 8, 16".split(", ")

is an instruction to a string literal to return the substrings delimited by the given separator (or, by default, arbitrary runs
of white space).

join() is a string method because in using it you are telling the separator string to iterate over a sequence of strings and
insert itself between adjacent elements. This method can be used with any argument which obeys the rules for sequence
objects, including any new classes you might define yourself. Similar methods exist for bytes and bytearray objects.

3.9 How fast are exceptions?

A try/except block is extremely efficient if no exceptions are raised. Actually catching an exception is expensive. In
versions of Python prior to 2.0 it was common to use this idiom:

try:
value = mydict[key]

except KeyError:
mydict[key] = getvalue(key)
value = mydict[key]

This only made sense when you expected the dict to have the key almost all the time. If that wasn’t the case, you coded
it like this:

if key in mydict:
value = mydict[key]

else:
value = mydict[key] = getvalue(key)

For this specific case, you could also use value = dict.setdefault(key, getvalue(key)), but only if
the getvalue() call is cheap enough because it is evaluated in all cases.

46 Bab 3. Desain dan Sejarah FAQ

https://mail.python.org/pipermail/python-3000/2006-November/004643.html

Python Frequently Asked Questions, Rilis 3.11.10

3.10 Why isn’t there a switch or case statement in Python?

In general, structured switch statements execute one block of code when an expression has a particular value or set of
values. Since Python 3.10 one can easily match literal values, or constants within a namespace, with a match ...
case statement. An older alternative is a sequence of if... elif... elif... else.

For cases where you need to choose from a very large number of possibilities, you can create a dictionary mapping case
values to functions to call. For example:

functions = {'a': function_1,
'b': function_2,
'c': self.method_1}

func = functions[value]
func()

For calling methods on objects, you can simplify yet further by using the getattr() built-in to retrieve methods with
a particular name:

class MyVisitor:
def visit_a(self):

...

def dispatch(self, value):
method_name = 'visit_' + str(value)
method = getattr(self, method_name)
method()

It’s suggested that you use a prefix for the method names, such as visit_ in this example. Without such a prefix, if
values are coming from an untrusted source, an attacker would be able to call any method on your object.

Imitating switch with fallthrough, as with C’s switch-case-default, is possible, much harder, and less needed.

3.11 Can’t you emulate threads in the interpreter instead of relying on
an OS-specific thread implementation?

Answer 1: Unfortunately, the interpreter pushes at least one C stack frame for each Python stack frame. Also, extensions
can call back into Python at almost random moments. Therefore, a complete threads implementation requires thread
support for C.

Answer 2: Fortunately, there is Stackless Python, which has a completely redesigned interpreter loop that avoids the C
stack.

3.12 Why can’t lambda expressions contain statements?

Python lambda expressions cannot contain statements because Python’s syntactic framework can’t handle statements nes-
ted inside expressions. However, in Python, this is not a serious problem. Unlike lambda forms in other languages, where
they add functionality, Python lambdas are only a shorthand notation if you’re too lazy to define a function.

Functions are already first class objects in Python, and can be declared in a local scope. Therefore the only advantage of
using a lambda instead of a locally defined function is that you don’t need to invent a name for the function -- but that’s
just a local variable to which the function object (which is exactly the same type of object that a lambda expression yields)
is assigned!

3.10. Why isn’t there a switch or case statement in Python? 47

https://github.com/stackless-dev/stackless/wiki

Python Frequently Asked Questions, Rilis 3.11.10

3.13 Can Python be compiled to machine code, C or some other la-
nguage?

Cython compiles a modified version of Python with optional annotations into C extensions. Nuitka is an up-and-coming
compiler of Python into C++ code, aiming to support the full Python language.

3.14 How does Python manage memory?

The details of Python memory management depend on the implementation. The standard implementation of Python,
CPython, uses reference counting to detect inaccessible objects, and another mechanism to collect reference cycles, per-
iodically executing a cycle detection algorithm which looks for inaccessible cycles and deletes the objects involved. The
gc module provides functions to perform a garbage collection, obtain debugging statistics, and tune the collector’s para-
meters.

Other implementations (such as Jython or PyPy), however, can rely on a different mechanism such as a full-blown garbage
collector. This difference can cause some subtle porting problems if your Python code depends on the behavior of the
reference counting implementation.

In some Python implementations, the following code (which is fine in CPython) will probably run out of file descriptors:

for file in very_long_list_of_files:
f = open(file)
c = f.read(1)

Indeed, using CPython’s reference counting and destructor scheme, each new assignment to f closes the previous file. With
a traditional GC, however, those file objects will only get collected (and closed) at varying and possibly long intervals.

If you want to write code that will work with any Python implementation, you should explicitly close the file or use the
with statement; this will work regardless of memory management scheme:

for file in very_long_list_of_files:
with open(file) as f:

c = f.read(1)

3.15 Why doesn’t CPython use a more traditional garbage collection
scheme?

For one thing, this is not a C standard feature and hence it’s not portable. (Yes, we know about the Boehm GC library. It
has bits of assembler code for most common platforms, not for all of them, and although it is mostly transparent, it isn’t
completely transparent; patches are required to get Python to work with it.)

Traditional GC also becomes a problem when Python is embedded into other applications. While in a standalone Python
it’s fine to replace the standard malloc() and free() with versions provided by the GC library, an application embedding
Python may want to have its own substitute for malloc() and free(), and may not want Python’s. Right now, CPython
works with anything that implements malloc() and free() properly.

48 Bab 3. Desain dan Sejarah FAQ

https://cython.org/
https://www.nuitka.net/
https://www.jython.org
https://www.pypy.org

Python Frequently Asked Questions, Rilis 3.11.10

3.16 Why isn’t all memory freed when CPython exits?

Objects referenced from the global namespaces of Python modules are not always deallocated when Python exits. This
may happen if there are circular references. There are also certain bits of memory that are allocated by the C library that
are impossible to free (e.g. a tool like Purify will complain about these). Python is, however, aggressive about cleaning
up memory on exit and does try to destroy every single object.

If you want to force Python to delete certain things on deallocation use the atexit module to run a function that will
force those deletions.

3.17 Why are there separate tuple and list data types?

Lists and tuples, while similar in many respects, are generally used in fundamentally different ways. Tuples can be thought
of as being similar to Pascal records or C structs; they’re small collections of related data which may be of different types
which are operated on as a group. For example, a Cartesian coordinate is appropriately represented as a tuple of two or
three numbers.

Lists, on the other hand, are more like arrays in other languages. They tend to hold a varying number of objects all of
which have the same type and which are operated on one-by-one. For example, os.listdir('.') returns a list of
strings representing the files in the current directory. Functions which operate on this output would generally not break
if you added another file or two to the directory.

Tuples are immutable, meaning that once a tuple has been created, you can’t replace any of its elements with a new
value. Lists are mutable, meaning that you can always change a list’s elements. Only immutable elements can be used as
dictionary keys, and hence only tuples and not lists can be used as keys.

3.18 How are lists implemented in CPython?

CPython’s lists are really variable-length arrays, not Lisp-style linked lists. The implementation uses a contiguous array
of references to other objects, and keeps a pointer to this array and the array’s length in a list head structure.

This makes indexing a list a[i] an operation whose cost is independent of the size of the list or the value of the index.

When items are appended or inserted, the array of references is resized. Some cleverness is applied to improve the
performance of appending items repeatedly; when the array must be grown, some extra space is allocated so the next few
times don’t require an actual resize.

3.19 How are dictionaries implemented in CPython?

CPython’s dictionaries are implemented as resizable hash tables. Compared to B-trees, this gives better performance for
lookup (the most common operation by far) under most circumstances, and the implementation is simpler.

Dictionaries work by computing a hash code for each key stored in the dictionary using the hash() built-in function. The
hash code varies widely depending on the key and a per-process seed; for example, ”Python” could hash to -539294296
while ”python”, a string that differs by a single bit, could hash to 1142331976. The hash code is then used to calculate a
location in an internal array where the value will be stored. Assuming that you’re storing keys that all have different hash
values, this means that dictionaries take constant time -- O(1), in Big-O notation -- to retrieve a key.

3.16. Why isn’t all memory freed when CPython exits? 49

Python Frequently Asked Questions, Rilis 3.11.10

3.20 Why must dictionary keys be immutable?

The hash table implementation of dictionaries uses a hash value calculated from the key value to find the key. If the key
were a mutable object, its value could change, and thus its hash could also change. But since whoever changes the key
object can’t tell that it was being used as a dictionary key, it can’t move the entry around in the dictionary. Then, when
you try to look up the same object in the dictionary it won’t be found because its hash value is different. If you tried to
look up the old value it wouldn’t be found either, because the value of the object found in that hash bin would be different.

If you want a dictionary indexed with a list, simply convert the list to a tuple first; the function tuple(L) creates a tuple
with the same entries as the list L. Tuples are immutable and can therefore be used as dictionary keys.

Some unacceptable solutions that have been proposed:

• Hash lists by their address (object ID). This doesn’t work because if you construct a new list with the same value it
won’t be found; e.g.:

mydict = {[1, 2]: '12'}
print(mydict[[1, 2]])

would raise a KeyError exception because the id of the [1, 2] used in the second line differs from that in the
first line. In other words, dictionary keys should be compared using ==, not using is.

• Make a copy when using a list as a key. This doesn’t work because the list, being a mutable object, could contain a
reference to itself, and then the copying code would run into an infinite loop.

• Allow lists as keys but tell the user not to modify them. This would allow a class of hard-to-track bugs in programs
when you forgot or modified a list by accident. It also invalidates an important invariant of dictionaries: every value
in d.keys() is usable as a key of the dictionary.

• Mark lists as read-only once they are used as a dictionary key. The problem is that it’s not just the top-level object
that could change its value; you could use a tuple containing a list as a key. Entering anything as a key into a
dictionary would require marking all objects reachable from there as read-only -- and again, self-referential objects
could cause an infinite loop.

There is a trick to get around this if you need to, but use it at your own risk: You can wrap a mutable structure inside a
class instance which has both a __eq__() and a __hash__() method. You must then make sure that the hash value
for all such wrapper objects that reside in a dictionary (or other hash based structure), remain fixed while the object is in
the dictionary (or other structure).

class ListWrapper:
def __init__(self, the_list):

self.the_list = the_list

def __eq__(self, other):
return self.the_list == other.the_list

def __hash__(self):
l = self.the_list
result = 98767 - len(l)*555
for i, el in enumerate(l):

try:
result = result + (hash(el) % 9999999) * 1001 + i

except Exception:
result = (result % 7777777) + i * 333

return result

Note that the hash computation is complicated by the possibility that some members of the list may be unhashable and
also by the possibility of arithmetic overflow.

50 Bab 3. Desain dan Sejarah FAQ

Python Frequently Asked Questions, Rilis 3.11.10

Furthermore it must always be the case that if o1 == o2 (ie o1.__eq__(o2) is True) then hash(o1) ==
hash(o2) (ie, o1.__hash__() == o2.__hash__()), regardless of whether the object is in a dictionary or not.
If you fail to meet these restrictions dictionaries and other hash based structures will misbehave.

In the case of ListWrapper, whenever the wrapper object is in a dictionary the wrapped list must not change to avoid
anomalies. Don’t do this unless you are prepared to think hard about the requirements and the consequences of not
meeting them correctly. Consider yourself warned.

3.21 Why doesn’t list.sort() return the sorted list?

In situations where performance matters, making a copy of the list just to sort it would be wasteful. Therefore, list.
sort() sorts the list in place. In order to remind you of that fact, it does not return the sorted list. This way, you won’t
be fooled into accidentally overwriting a list when you need a sorted copy but also need to keep the unsorted version
around.

If you want to return a new list, use the built-in sorted() function instead. This function creates a new list from a
provided iterable, sorts it and returns it. For example, here’s how to iterate over the keys of a dictionary in sorted order:

for key in sorted(mydict):
... # do whatever with mydict[key]...

3.22 How do you specify and enforce an interface spec in Python?

An interface specification for a module as provided by languages such as C++ and Java describes the prototypes for the
methods and functions of the module. Many feel that compile-time enforcement of interface specifications helps in the
construction of large programs.

Python 2.6 adds an abcmodule that lets you define Abstract Base Classes (ABCs). You can then use isinstance()
and issubclass() to check whether an instance or a class implements a particular ABC. The collections.abc
module defines a set of useful ABCs such as Iterable, Container, and MutableMapping.

For Python, many of the advantages of interface specifications can be obtained by an appropriate test discipline for
components.

A good test suite for a module can both provide a regression test and serve as a module interface specification and a set of
examples. Many Python modules can be run as a script to provide a simple ”self test.” Even modules which use complex
external interfaces can often be tested in isolation using trivial ”stub” emulations of the external interface. The doctest
and unittestmodules or third-party test frameworks can be used to construct exhaustive test suites that exercise every
line of code in a module.

An appropriate testing discipline can help build large complex applications in Python as well as having interface specifi-
cations would. In fact, it can be better because an interface specification cannot test certain properties of a program. For
example, the list.append() method is expected to add new elements to the end of some internal list; an interface
specification cannot test that your list.append() implementation will actually do this correctly, but it’s trivial to
check this property in a test suite.

Writing test suites is very helpful, and you might want to design your code to make it easily tested. One increasingly
popular technique, test-driven development, calls for writing parts of the test suite first, before you write any of the actual
code. Of course Python allows you to be sloppy and not write test cases at all.

3.21. Why doesn’t list.sort() return the sorted list? 51

Python Frequently Asked Questions, Rilis 3.11.10

3.23 Why is there no goto?

In the 1970s people realized that unrestricted goto could lead to messy ”spaghetti” code that was hard to understand and
revise. In a high-level language, it is also unneeded as long as there are ways to branch (in Python, with if statements
and or, and, and if-else expressions) and loop (with while and for statements, possibly containing continue
and break).

One can also use exceptions to provide a ”structured goto” that works even across function calls. Many feel that exceptions
can conveniently emulate all reasonable uses of the ”go” or ”goto” constructs of C, Fortran, and other languages. For
example:

class label(Exception): pass # declare a label

try:
...
if condition: raise label() # goto label
...

except label: # where to goto
pass

...

This doesn’t allow you to jump into the middle of a loop, but that’s usually considered an abuse of goto anyway. Use
sparingly.

3.24 Why can’t raw strings (r-strings) end with a backslash?

More precisely, they can’t end with an odd number of backslashes: the unpaired backslash at the end escapes the closing
quote character, leaving an unterminated string.

Raw strings were designed to ease creating input for processors (chiefly regular expression engines) that want to do their
own backslash escape processing. Such processors consider an unmatched trailing backslash to be an error anyway, so
raw strings disallow that. In return, they allow you to pass on the string quote character by escaping it with a backslash.
These rules work well when r-strings are used for their intended purpose.

If you’re trying to build Windows pathnames, note that all Windows system calls accept forward slashes too:

f = open("/mydir/file.txt") # works fine!

If you’re trying to build a pathname for a DOS command, try e.g. one of

dir = r"\this\is\my\dos\dir" "\\"
dir = r"\this\is\my\dos\dir\ "[:-1]
dir = "\\this\\is\\my\\dos\\dir\\"

52 Bab 3. Desain dan Sejarah FAQ

Python Frequently Asked Questions, Rilis 3.11.10

3.25 Why doesn’t Python have a ”with” statement for attribute assig-
nments?

Python has a ’with’ statement that wraps the execution of a block, calling code on the entrance and exit from the block.
Some languages have a construct that looks like this:

with obj:
a = 1 # equivalent to obj.a = 1
total = total + 1 # obj.total = obj.total + 1

In Python, such a construct would be ambiguous.

Other languages, such as Object Pascal, Delphi, and C++, use static types, so it’s possible to know, in an unambiguous
way, what member is being assigned to. This is the main point of static typing -- the compiler always knows the scope of
every variable at compile time.

Python uses dynamic types. It is impossible to know in advance which attribute will be referenced at runtime. Member
attributes may be added or removed from objects on the fly. This makes it impossible to know, from a simple reading,
what attribute is being referenced: a local one, a global one, or a member attribute?

For instance, take the following incomplete snippet:

def foo(a):
with a:

print(x)

The snippet assumes that ”a” must have a member attribute called ”x”. However, there is nothing in Python that tells the
interpreter this. What should happen if ”a” is, let us say, an integer? If there is a global variable named ”x”, will it be used
inside the with block? As you see, the dynamic nature of Python makes such choices much harder.

The primary benefit of ”with” and similar language features (reduction of code volume) can, however, easily be achieved
in Python by assignment. Instead of:

function(args).mydict[index][index].a = 21
function(args).mydict[index][index].b = 42
function(args).mydict[index][index].c = 63

write this:

ref = function(args).mydict[index][index]
ref.a = 21
ref.b = 42
ref.c = 63

This also has the side-effect of increasing execution speed because name bindings are resolved at run-time in Python, and
the second version only needs to perform the resolution once.

3.25. Why doesn’t Python have a ”with” statement for attribute assignments? 53

Python Frequently Asked Questions, Rilis 3.11.10

3.26 Why don’t generators support the with statement?

For technical reasons, a generator used directly as a context manager would not work correctly. When, as is most
common, a generator is used as an iterator run to completion, no closing is needed. When it is, wrap it as ”context-
lib.closing(generator)” in the ’with’ statement.

3.27 Why are colons required for the if/while/def/class statements?

The colon is required primarily to enhance readability (one of the results of the experimental ABC language). Consider
this:

if a == b
print(a)

versus

if a == b:
print(a)

Notice how the second one is slightly easier to read. Notice further how a colon sets off the example in this FAQ answer;
it’s a standard usage in English.

Another minor reason is that the colon makes it easier for editors with syntax highlighting; they can look for colons to
decide when indentation needs to be increased instead of having to do a more elaborate parsing of the program text.

3.28 Why does Python allow commas at the end of lists and tuples?

Python lets you add a trailing comma at the end of lists, tuples, and dictionaries:

[1, 2, 3,]
('a', 'b', 'c',)
d = {

"A": [1, 5],
"B": [6, 7], # last trailing comma is optional but good style

}

There are several reasons to allow this.

When you have a literal value for a list, tuple, or dictionary spread across multiple lines, it’s easier to add more elements
because you don’t have to remember to add a comma to the previous line. The lines can also be reordered without creating
a syntax error.

Accidentally omitting the comma can lead to errors that are hard to diagnose. For example:

x = [
"fee",
"fie"
"foo",
"fum"

]

This list looks like it has four elements, but it actually contains three: ”fee”, ”fiefoo” and ”fum”. Always adding the comma
avoids this source of error.

54 Bab 3. Desain dan Sejarah FAQ

Python Frequently Asked Questions, Rilis 3.11.10

Allowing the trailing comma may also make programmatic code generation easier.

3.28. Why does Python allow commas at the end of lists and tuples? 55

Python Frequently Asked Questions, Rilis 3.11.10

56 Bab 3. Desain dan Sejarah FAQ

BAB4

FAQ Pustaka dan Ekstensi

4.1 Pertanyaan Umum Pustaka

4.1.1 Bagaimana saya mencari sebuah modul atau aplikasi untuk melakukan peker-
jaan X?

Check the Library Reference to see if there’s a relevant standard library module. (Eventually you’ll learn what’s in the
standard library and will be able to skip this step.)

For third-party packages, search the Python Package Index or try Google or another web search engine. Searching for
”Python” plus a keyword or two for your topic of interest will usually find something helpful.

4.1.2 Dimana berkas sumber math.py (socket.py, regex.py, dll.)?

If you can’t find a source file for a module it may be a built-in or dynamically loaded module implemented in C, C++ or
other compiled language. In this case you may not have the source file or it may be something like mathmodule.c,
somewhere in a C source directory (not on the Python Path).

There are (at least) three kinds of modules in Python:

1) modul ditulis dengan Python (.py);

2) modul ditulis dengan C dan dimuat secara dinamis (.dll, .pyd, .so, .sl, dll);

3) modules written in C and linked with the interpreter; to get a list of these, type:

import sys
print(sys.builtin_module_names)

57

https://pypi.org
https://www.google.com

Python Frequently Asked Questions, Rilis 3.11.10

4.1.3 Bagaimana saya membuat sebuah skrip Python dapat dieksekusi di Unix?

You need to do two things: the script file’s mode must be executable and the first line must begin with #! followed by the
path of the Python interpreter.

The first is done by executing chmod +x scriptfile or perhaps chmod 755 scriptfile.

The second can be done in a number of ways. The most straightforward way is to write

#!/usr/local/bin/python

as the very first line of your file, using the pathname for where the Python interpreter is installed on your platform.

If you would like the script to be independent of where the Python interpreter lives, you can use the env program. Almost
all Unix variants support the following, assuming the Python interpreter is in a directory on the user’s PATH:

#!/usr/bin/env python

Don’t do this for CGI scripts. The PATH variable for CGI scripts is often very minimal, so you need to use the actual
absolute pathname of the interpreter.

Occasionally, a user’s environment is so full that the /usr/bin/env program fails; or there’s no env program at all. In
that case, you can try the following hack (due to Alex Rezinsky):

#! /bin/sh
""":"
exec python $0 ${1+"$@"}
"""

The minor disadvantage is that this defines the script’s __doc__ string. However, you can fix that by adding

__doc__ = """...Whatever..."""

4.1.4 Is there a curses/termcap package for Python?

For Unix variants: The standard Python source distribution comes with a curses module in the Modules subdirectory,
though it’s not compiled by default. (Note that this is not available in the Windows distribution -- there is no curses
module for Windows.)

The curses module supports basic curses features as well as many additional functions from ncurses and SYSV curses
such as colour, alternative character set support, pads, and mouse support. This means the module isn’t compatible with
operating systems that only have BSD curses, but there don’t seem to be any currently maintained OSes that fall into this
category.

4.1.5 Is there an equivalent to C’s onexit() in Python?

The atexit module provides a register function that is similar to C’s onexit().

58 Bab 4. FAQ Pustaka dan Ekstensi

https://github.com/python/cpython/tree/3.11/Modules

Python Frequently Asked Questions, Rilis 3.11.10

4.1.6 Why don’t my signal handlers work?

The most common problem is that the signal handler is declared with the wrong argument list. It is called as

handler(signum, frame)

so it should be declared with two parameters:

def handler(signum, frame):
...

4.2 Tugas umum

4.2.1 Bagaimana saya menguji sebuah program Python atau komponen?

Python comes with two testing frameworks. The doctest module finds examples in the docstrings for a module and
runs them, comparing the output with the expected output given in the docstring.

The unittest module is a fancier testing framework modelled on Java and Smalltalk testing frameworks.

To make testing easier, you should use good modular design in your program. Your program should have almost all
functionality encapsulated in either functions or class methods -- and this sometimes has the surprising and delightful
effect of making the program run faster (because local variable accesses are faster than global accesses). Furthermore
the program should avoid depending on mutating global variables, since this makes testing much more difficult to do.

The ”global main logic” of your program may be as simple as

if __name__ == "__main__":
main_logic()

di bagian bawah dari modul utama program anda.

Once your program is organized as a tractable collection of function and class behaviours, you should write test functions
that exercise the behaviours. A test suite that automates a sequence of tests can be associated with each module. This
sounds like a lot of work, but since Python is so terse and flexible it’s surprisingly easy. You can make coding much more
pleasant and fun by writing your test functions in parallel with the ”production code”, since this makes it easy to find bugs
and even design flaws earlier.

”Support modules” that are not intended to be the main module of a program may include a self-test of the module.

if __name__ == "__main__":
self_test()

Even programs that interact with complex external interfaces may be tested when the external interfaces are unavailable
by using ”fake” interfaces implemented in Python.

4.2. Tugas umum 59

Python Frequently Asked Questions, Rilis 3.11.10

4.2.2 Bagaimana saya membuat dokumentasi dari doc strings?

The pydoc module can create HTML from the doc strings in your Python source code. An alternative for creating API
documentation purely from docstrings is epydoc. Sphinx can also include docstring content.

4.2.3 How do I get a single keypress at a time?

For Unix variants there are several solutions. It’s straightforward to do this using curses, but curses is a fairly large module
to learn.

4.3 Threads

4.3.1 How do I program using threads?

Be sure to use the threading module and not the _thread module. The threading module builds convenient
abstractions on top of the low-level primitives provided by the _thread module.

4.3.2 None of my threads seem to run: why?

As soon as the main thread exits, all threads are killed. Your main thread is running too quickly, giving the threads no
time to do any work.

A simple fix is to add a sleep to the end of the program that’s long enough for all the threads to finish:

import threading, time

def thread_task(name, n):
for i in range(n):

print(name, i)

for i in range(10):
T = threading.Thread(target=thread_task, args=(str(i), i))
T.start()

time.sleep(10) # <---------------------------!

But now (on many platforms) the threads don’t run in parallel, but appear to run sequentially, one at a time! The reason
is that the OS thread scheduler doesn’t start a new thread until the previous thread is blocked.

A simple fix is to add a tiny sleep to the start of the run function:

def thread_task(name, n):
time.sleep(0.001) # <--------------------!
for i in range(n):

print(name, i)

for i in range(10):
T = threading.Thread(target=thread_task, args=(str(i), i))
T.start()

time.sleep(10)

60 Bab 4. FAQ Pustaka dan Ekstensi

https://epydoc.sourceforge.net/
https://www.sphinx-doc.org

Python Frequently Asked Questions, Rilis 3.11.10

Instead of trying to guess a good delay value for time.sleep(), it’s better to use some kind of semaphore mechanism.
One idea is to use the queuemodule to create a queue object, let each thread append a token to the queue when it finishes,
and let the main thread read as many tokens from the queue as there are threads.

4.3.3 How do I parcel out work among a bunch of worker threads?

The easiest way is to use the concurrent.futures module, especially the ThreadPoolExecutor class.

Or, if you want fine control over the dispatching algorithm, you can write your own logic manually. Use the queue
module to create a queue containing a list of jobs. The Queue class maintains a list of objects and has a .put(obj)
method that adds items to the queue and a .get() method to return them. The class will take care of the locking
necessary to ensure that each job is handed out exactly once.

Berikut beberapa contoh:

import threading, queue, time

The worker thread gets jobs off the queue. When the queue is empty, it
assumes there will be no more work and exits.
(Realistically workers will run until terminated.)
def worker():

print('Running worker')
time.sleep(0.1)
while True:

try:
arg = q.get(block=False)

except queue.Empty:
print('Worker', threading.current_thread(), end=' ')
print('queue empty')
break

else:
print('Worker', threading.current_thread(), end=' ')
print('running with argument', arg)
time.sleep(0.5)

Create queue
q = queue.Queue()

Start a pool of 5 workers
for i in range(5):

t = threading.Thread(target=worker, name='worker %i' % (i+1))
t.start()

Begin adding work to the queue
for i in range(50):

q.put(i)

Give threads time to run
print('Main thread sleeping')
time.sleep(5)

Ketika berjalan, Ini menghasilkan keluaran berikut:

Running worker
Running worker
Running worker
Running worker

(berlanjut ke halaman berikutnya)

4.3. Threads 61

Python Frequently Asked Questions, Rilis 3.11.10

(lanjutan dari halaman sebelumnya)

Running worker
Main thread sleeping
Worker <Thread(worker 1, started 130283832797456)> running with argument 0
Worker <Thread(worker 2, started 130283824404752)> running with argument 1
Worker <Thread(worker 3, started 130283816012048)> running with argument 2
Worker <Thread(worker 4, started 130283807619344)> running with argument 3
Worker <Thread(worker 5, started 130283799226640)> running with argument 4
Worker <Thread(worker 1, started 130283832797456)> running with argument 5
...

Consult the module’s documentation for more details; the Queue class provides a featureful interface.

4.3.4 What kinds of global value mutation are thread-safe?

A global interpreter lock (GIL) is used internally to ensure that only one thread runs in the Python VM at a time. In
general, Python offers to switch among threads only between bytecode instructions; how frequently it switches can be set
via sys.setswitchinterval(). Each bytecode instruction and therefore all the C implementation code reached
from each instruction is therefore atomic from the point of view of a Python program.

In theory, this means an exact accounting requires an exact understanding of the PVM bytecode implementation. In
practice, it means that operations on shared variables of built-in data types (ints, lists, dicts, etc) that ”look atomic” really
are.

For example, the following operations are all atomic (L, L1, L2 are lists, D, D1, D2 are dicts, x, y are objects, i, j are
ints):

L.append(x)
L1.extend(L2)
x = L[i]
x = L.pop()
L1[i:j] = L2
L.sort()
x = y
x.field = y
D[x] = y
D1.update(D2)
D.keys()

Ini tidak:

i = i+1
L.append(L[-1])
L[i] = L[j]
D[x] = D[x] + 1

Operations that replace other objects may invoke those other objects’ __del__() method when their reference count
reaches zero, and that can affect things. This is especially true for the mass updates to dictionaries and lists. When in
doubt, use a mutex!

62 Bab 4. FAQ Pustaka dan Ekstensi

Python Frequently Asked Questions, Rilis 3.11.10

4.3.5 Can’t we get rid of the Global Interpreter Lock?

The global interpreter lock (GIL) is often seen as a hindrance to Python’s deployment on high-end multiprocessor server
machines, because a multi-threaded Python program effectively only uses one CPU, due to the insistence that (almost)
all Python code can only run while the GIL is held.

Back in the days of Python 1.5, Greg Stein actually implemented a comprehensive patch set (the ”free threading” patches)
that removed the GIL and replaced it with fine-grained locking. Adam Olsen recently did a similar experiment in his
python-safethread project. Unfortunately, both experiments exhibited a sharp drop in single-thread performance (at least
30% slower), due to the amount of fine-grained locking necessary to compensate for the removal of the GIL.

This doesn’t mean that you can’t make good use of Python on multi-CPU machines! You just have to be creative with
dividing the work up between multiple processes rather than multiple threads. The ProcessPoolExecutor class
in the new concurrent.futures module provides an easy way of doing so; the multiprocessing module
provides a lower-level API in case you want more control over dispatching of tasks.

Judicious use of C extensions will also help; if you use a C extension to perform a time-consuming task, the extension
can release the GIL while the thread of execution is in the C code and allow other threads to get some work done. Some
standard library modules such as zlib and hashlib already do this.

It has been suggested that the GIL should be a per-interpreter-state lock rather than truly global; interpreters then wouldn’t
be able to share objects. Unfortunately, this isn’t likely to happen either. It would be a tremendous amount of work, because
many object implementations currently have global state. For example, small integers and short strings are cached; these
caches would have to be moved to the interpreter state. Other object types have their own free list; these free lists would
have to be moved to the interpreter state. And so on.

And I doubt that it can even be done in finite time, because the same problem exists for 3rd party extensions. It is likely
that 3rd party extensions are being written at a faster rate than you can convert them to store all their global state in the
interpreter state.

And finally, once you have multiple interpreters not sharing any state, what have you gained over running each interpreter
in a separate process?

4.4 Masukan dan Keluaran

4.4.1 Bagaimana saya menghapus sebuah berkas? (pertanyaan, dan berkas lain-
nya...)

Use os.remove(filename) or os.unlink(filename); for documentation, see the os module. The two fun-
ctions are identical; unlink() is simply the name of the Unix system call for this function.

To remove a directory, use os.rmdir(); use os.mkdir() to create one. os.makedirs(path) will create any
intermediate directories in path that don’t exist. os.removedirs(path) will remove intermediate directories as
long as they’re empty; if you want to delete an entire directory tree and its contents, use shutil.rmtree().

To rename a file, use os.rename(old_path, new_path).

To truncate a file, open it usingf = open(filename, "rb+"), and usef.truncate(offset); offset defaults
to the current seek position. There’s also os.ftruncate(fd, offset) for files opened with os.open(), where
fd is the file descriptor (a small integer).

The shutilmodule also contains a number of functions to work on files including copyfile(), copytree(), and
rmtree().

4.4. Masukan dan Keluaran 63

https://code.google.com/archive/p/python-safethread

Python Frequently Asked Questions, Rilis 3.11.10

4.4.2 Bagaimana saya mengopi sebuah berkas?

The shutil module contains a copyfile() function. Note that on Windows NTFS volumes, it does not copy
alternate data streams nor resource forks on macOS HFS+ volumes, though both are now rarely used. It also doesn’t copy
file permissions and metadata, though using shutil.copy2() instead will preserve most (though not all) of it.

4.4.3 Bagaimana saya membaca (atau menulis) data biner?

To read or write complex binary data formats, it’s best to use the structmodule. It allows you to take a string containing
binary data (usually numbers) and convert it to Python objects; and vice versa.

For example, the following code reads two 2-byte integers and one 4-byte integer in big-endian format from a file:

import struct

with open(filename, "rb") as f:
s = f.read(8)
x, y, z = struct.unpack(">hhl", s)

The ’>’ in the format string forces big-endian data; the letter ’h’ reads one ”short integer” (2 bytes), and ’l’ reads one ”long
integer” (4 bytes) from the string.

For data that is more regular (e.g. a homogeneous list of ints or floats), you can also use the array module.

Catatan: To read andwrite binary data, it is mandatory to open the file in binarymode (here, passing"rb" toopen()).
If you use "r" instead (the default), the file will be open in text mode and f.read() will return str objects rather
than bytes objects.

4.4.4 I can’t seem to use os.read() on a pipe created with os.popen(); why?

os.read() is a low-level function which takes a file descriptor, a small integer representing the opened file. os.
popen() creates a high-level file object, the same type returned by the built-in open() function. Thus, to read n bytes
from a pipe p created with os.popen(), you need to use p.read(n).

4.4.5 How do I access the serial (RS232) port?

For Win32, OSX, Linux, BSD, Jython, IronPython:

https://pypi.org/project/pyserial/

For Unix, see a Usenet post by Mitch Chapman:

https://groups.google.com/groups?selm=34A04430.CF9@ohioee.com

64 Bab 4. FAQ Pustaka dan Ekstensi

https://en.wikipedia.org/wiki/NTFS#Alternate_data_stream_(ADS)
https://en.wikipedia.org/wiki/Resource_fork
https://pypi.org/project/pyserial/
https://groups.google.com/groups?selm=34A04430.CF9@ohioee.com

Python Frequently Asked Questions, Rilis 3.11.10

4.4.6 Why doesn’t closing sys.stdout (stdin, stderr) really close it?

Python file objects are a high-level layer of abstraction on low-level C file descriptors.

For most file objects you create in Python via the built-in open() function, f.close() marks the Python file object
as being closed from Python’s point of view, and also arranges to close the underlying C file descriptor. This also happens
automatically in f’s destructor, when f becomes garbage.

But stdin, stdout and stderr are treated specially by Python, because of the special status also given to them by C. Running
sys.stdout.close() marks the Python-level file object as being closed, but does not close the associated C file
descriptor.

To close the underlying C file descriptor for one of these three, you should first be sure that’s what you really want to do
(e.g., you may confuse extension modules trying to do I/O). If it is, use os.close():

os.close(stdin.fileno())
os.close(stdout.fileno())
os.close(stderr.fileno())

Or you can use the numeric constants 0, 1 and 2, respectively.

4.5 Pemrograman Jaringan/Internet

4.5.1 What WWW tools are there for Python?

See the chapters titled internet and netdata in the Library Reference Manual. Python has many modules that will help
you build server-side and client-side web systems.

A summary of available frameworks is maintained by Paul Boddie at https://wiki.python.org/moin/WebProgramming.

Cameron Laird maintains a useful set of pages about Python web technologies at https://web.archive.org/web/
20210224183619/http://phaseit.net/claird/comp.lang.python/web_python.

4.5.2 How can I mimic CGI form submission (METHOD=POST)?

I would like to retrieve web pages that are the result of POSTing a form. Is there existing code that would let me do this
easily?

Yes. Here’s a simple example that uses urllib.request:

#!/usr/local/bin/python

import urllib.request

build the query string
qs = "First=Josephine&MI=Q&Last=Public"

connect and send the server a path
req = urllib.request.urlopen('http://www.some-server.out-there'

'/cgi-bin/some-cgi-script', data=qs)
with req:

msg, hdrs = req.read(), req.info()

Note that in general for percent-encoded POST operations, query strings must be quoted using urllib.parse.
urlencode(). For example, to send name=Guy Steele, Jr.:

4.5. Pemrograman Jaringan/Internet 65

https://wiki.python.org/moin/WebProgramming
https://web.archive.org/web/20210224183619/http://phaseit.net/claird/comp.lang.python/web_python
https://web.archive.org/web/20210224183619/http://phaseit.net/claird/comp.lang.python/web_python

Python Frequently Asked Questions, Rilis 3.11.10

>>> import urllib.parse
>>> urllib.parse.urlencode({'name': 'Guy Steele, Jr.'})
'name=Guy+Steele%2C+Jr.'

Lihat juga:

urllib-howto for extensive examples.

4.5.3 Modul apa yang sebaiknya saya gunakan untuk membantu menghasilkan
HTML?

You can find a collection of useful links on the Web Programming wiki page.

4.5.4 Bagaimana saya mengirim email melalui skrip Python?

Gunakan pustaka standar modul smtplib.

Here’s a very simple interactive mail sender that uses it. This method will work on any host that supports an SMTP
listener.

import sys, smtplib

fromaddr = input("From: ")
toaddrs = input("To: ").split(',')
print("Enter message, end with ^D:")
msg = ''
while True:

line = sys.stdin.readline()
if not line:

break
msg += line

The actual mail send
server = smtplib.SMTP('localhost')
server.sendmail(fromaddr, toaddrs, msg)
server.quit()

A Unix-only alternative uses sendmail. The location of the sendmail program varies between systems; sometimes it is
/usr/lib/sendmail, sometimes /usr/sbin/sendmail. The sendmail manual page will help you out. Here’s
some sample code:

import os

SENDMAIL = "/usr/sbin/sendmail" # sendmail location
p = os.popen("%s -t -i" % SENDMAIL, "w")
p.write("To: receiver@example.com\n")
p.write("Subject: test\n")
p.write("\n") # blank line separating headers from body
p.write("Some text\n")
p.write("some more text\n")
sts = p.close()
if sts != 0:

print("Sendmail exit status", sts)

66 Bab 4. FAQ Pustaka dan Ekstensi

https://wiki.python.org/moin/WebProgramming

Python Frequently Asked Questions, Rilis 3.11.10

4.5.5 Bagaimana saya menghindari pemblokiran di metode connect() dari sebuah
socket?

The select module is commonly used to help with asynchronous I/O on sockets.

To prevent the TCP connect from blocking, you can set the socket to non-blocking mode. Then when you do the
connect(), you will either connect immediately (unlikely) or get an exception that contains the error number as .
errno. errno.EINPROGRESS indicates that the connection is in progress, but hasn’t finished yet. Different OSes
will return different values, so you’re going to have to check what’s returned on your system.

You can use the connect_ex() method to avoid creating an exception. It will just return the errno value. To poll,
you can call connect_ex() again later -- 0 or errno.EISCONN indicate that you’re connected -- or you can pass
this socket to select.select() to check if it’s writable.

Catatan: The asyncio module provides a general purpose single-threaded and concurrent asynchronous library,
which can be used for writing non-blocking network code. The third-party Twisted library is a popular and feature-rich
alternative.

4.6 Basisdata

4.6.1 Apakah ada paket antarmuka ke basisdata di Python?

Ya.

Interfaces to disk-based hashes such as DBM and GDBM are also included with standard Python. There is also the
sqlite3 module, which provides a lightweight disk-based relational database.

Support for most relational databases is available. See the DatabaseProgramming wiki page for details.

4.6.2 How do you implement persistent objects in Python?

The pickle library module solves this in a very general way (though you still can’t store things like open files, sockets
or windows), and the shelve library module uses pickle and (g)dbm to create persistent mappings containing arbitrary
Python objects.

4.7 Matematika dan Bilangan

4.7.1 How do I generate random numbers in Python?

The standard module random implements a random number generator. Usage is simple:

import random
random.random()

This returns a random floating point number in the range [0, 1).

There are also many other specialized generators in this module, such as:

• randrange(a, b) chooses an integer in the range [a, b).

• uniform(a, b) chooses a floating point number in the range [a, b).

4.6. Basisdata 67

https://twisted.org/
https://wiki.python.org/moin/DatabaseProgramming

Python Frequently Asked Questions, Rilis 3.11.10

• normalvariate(mean, sdev) samples the normal (Gaussian) distribution.

Some higher-level functions operate on sequences directly, such as:

• choice(S) chooses a random element from a given sequence.

• shuffle(L) shuffles a list in-place, i.e. permutes it randomly.

There’s also a Random class you can instantiate to create independent multiple random number generators.

68 Bab 4. FAQ Pustaka dan Ekstensi

BAB5

Extending/Embedding FAQ

5.1 Can I create my own functions in C?

Yes, you can create built-in modules containing functions, variables, exceptions and even new types in C. This is explained
in the document extending-index.

Most intermediate or advanced Python books will also cover this topic.

5.2 Can I create my own functions in C++?

Yes, using the C compatibility features found in C++. Place extern "C" { ... } around the Python include files
and put extern "C" before each function that is going to be called by the Python interpreter. Global or static C++
objects with constructors are probably not a good idea.

5.3 Writing C is hard; are there any alternatives?

There are a number of alternatives to writing your own C extensions, depending on what you’re trying to do.

Cython and its relative Pyrex are compilers that accept a slightly modified form of Python and generate the corresponding
C code. Cython and Pyrex make it possible to write an extension without having to learn Python’s C API.

If you need to interface to some C or C++ library for which no Python extension currently exists, you can try wrapping the
library’s data types and functions with a tool such as SWIG. SIP, CXX Boost, or Weave are also alternatives for wrapping
C++ libraries.

69

https://cython.org
https://www.csse.canterbury.ac.nz/greg.ewing/python/Pyrex/
https://www.swig.org
https://github.com/Python-SIP/sip
https://cxx.sourceforge.net/
https://www.boost.org/libs/python/doc/index.html
https://github.com/scipy/weave

Python Frequently Asked Questions, Rilis 3.11.10

5.4 How can I execute arbitrary Python statements from C?

The highest-level function to do this is PyRun_SimpleString() which takes a single string argument to be executed
in the context of the module __main__ and returns 0 for success and -1 when an exception occurred (including
SyntaxError). If you want more control, use PyRun_String(); see the source for PyRun_SimpleString()
in Python/pythonrun.c.

5.5 How can I evaluate an arbitrary Python expression from C?

Call the function PyRun_String() from the previous question with the start symbol Py_eval_input; it parses an
expression, evaluates it and returns its value.

5.6 How do I extract C values from a Python object?

That depends on the object’s type. If it’s a tuple, PyTuple_Size() returns its length and PyTuple_GetItem()
returns the item at a specified index. Lists have similar functions, PyList_Size() and PyList_GetItem().

For bytes, PyBytes_Size() returns its length and PyBytes_AsStringAndSize() provides a pointer to its
value and its length. Note that Python bytes objects may contain null bytes so C’s strlen() should not be used.

To test the type of an object, first make sure it isn’t NULL, and then use PyBytes_Check(), PyTuple_Check(),
PyList_Check(), etc.

There is also a high-level API to Python objects which is provided by the so-called ’abstract’ interface -- read
Include/abstract.h for further details. It allows interfacing with any kind of Python sequence using calls li-
ke PySequence_Length(), PySequence_GetItem(), etc. as well as many other useful protocols such as
numbers (PyNumber_Index() et al.) and mappings in the PyMapping APIs.

5.7 How do I use Py_BuildValue() to create a tuple of arbitrary length?

You can’t. Use PyTuple_Pack() instead.

5.8 How do I call an object’s method from C?

The PyObject_CallMethod() function can be used to call an arbitrary method of an object. The parameters are
the object, the name of the method to call, a format string like that used with Py_BuildValue(), and the argument
values:

PyObject *
PyObject_CallMethod(PyObject *object, const char *method_name,

const char *arg_format, ...);

This works for any object that has methods -- whether built-in or user-defined. You are responsible for eventually
Py_DECREF()’ing the return value.

To call, e.g., a file object’s ”seek” method with arguments 10, 0 (assuming the file object pointer is ”f”):

70 Bab 5. Extending/Embedding FAQ

Python Frequently Asked Questions, Rilis 3.11.10

res = PyObject_CallMethod(f, "seek", "(ii)", 10, 0);
if (res == NULL) {

... an exception occurred ...
}
else {

Py_DECREF(res);
}

Note that since PyObject_CallObject() always wants a tuple for the argument list, to call a function without
arguments, pass ”()” for the format, and to call a function with one argument, surround the argument in parentheses, e.g.
”(i)”.

5.9 How do I catch the output from PyErr_Print() (or anything that prin-
ts to stdout/stderr)?

In Python code, define an object that supports the write() method. Assign this object to sys.stdout and sys.
stderr. Call print_error, or just allow the standard traceback mechanism to work. Then, the output will go wherever
your write() method sends it.

The easiest way to do this is to use the io.StringIO class:

>>> import io, sys
>>> sys.stdout = io.StringIO()
>>> print('foo')
>>> print('hello world!')
>>> sys.stderr.write(sys.stdout.getvalue())
foo
hello world!

A custom object to do the same would look like this:

>>> import io, sys
>>> class StdoutCatcher(io.TextIOBase):
... def __init__(self):
... self.data = []
... def write(self, stuff):
... self.data.append(stuff)
...
>>> import sys
>>> sys.stdout = StdoutCatcher()
>>> print('foo')
>>> print('hello world!')
>>> sys.stderr.write(''.join(sys.stdout.data))
foo
hello world!

5.9. How do I catch the output from PyErr_Print() (or anything that prints to stdout/stderr)? 71

Python Frequently Asked Questions, Rilis 3.11.10

5.10 How do I access a module written in Python from C?

You can get a pointer to the module object as follows:

module = PyImport_ImportModule("<modulename>");

If the module hasn’t been imported yet (i.e. it is not yet present in sys.modules), this initializes the module; otherwise
it simply returns the value of sys.modules["<modulename>"]. Note that it doesn’t enter the module into any
namespace -- it only ensures it has been initialized and is stored in sys.modules.

You can then access the module’s attributes (i.e. any name defined in the module) as follows:

attr = PyObject_GetAttrString(module, "<attrname>");

Calling PyObject_SetAttrString() to assign to variables in the module also works.

5.11 How do I interface to C++ objects from Python?

Depending on your requirements, there are many approaches. To do this manually, begin by reading the ”Extending and
Embedding” document. Realize that for the Python run-time system, there isn’t a whole lot of difference between C and
C++ -- so the strategy of building a new Python type around a C structure (pointer) type will also work for C++ objects.

For C++ libraries, seeWriting C is hard; are there any alternatives?.

5.12 I added a module using the Setup file and the make fails; why?

Setup must end in a newline, if there is no newline there, the build process fails. (Fixing this requires some ugly shell
script hackery, and this bug is so minor that it doesn’t seem worth the effort.)

5.13 How do I debug an extension?

When using GDB with dynamically loaded extensions, you can’t set a breakpoint in your extension until your extension
is loaded.

In your .gdbinit file (or interactively), add the command:

br _PyImport_LoadDynamicModule

Then, when you run GDB:

$ gdb /local/bin/python
gdb) run myscript.py
gdb) continue # repeat until your extension is loaded
gdb) finish # so that your extension is loaded
gdb) br myfunction.c:50
gdb) continue

72 Bab 5. Extending/Embedding FAQ

Python Frequently Asked Questions, Rilis 3.11.10

5.14 I want to compile a Pythonmodule onmy Linux system, but some
files are missing. Why?

Most packaged versions of Python don’t include the /usr/lib/python2.x/config/ directory, which contains
various files required for compiling Python extensions.

For Red Hat, install the python-devel RPM to get the necessary files.

For Debian, run apt-get install python-dev.

5.15 How do I tell ”incomplete input” from ”invalid input”?

Sometimes you want to emulate the Python interactive interpreter’s behavior, where it gives you a continuation prompt
when the input is incomplete (e.g. you typed the start of an ”if” statement or you didn’t close your parentheses or triple
string quotes), but it gives you a syntax error message immediately when the input is invalid.

In Python you can use the codeop module, which approximates the parser’s behavior sufficiently. IDLE uses this, for
example.

The easiest way to do it in C is to call PyRun_InteractiveLoop() (perhaps in a separate thread) and let the Python
interpreter handle the input for you. You can also set the PyOS_ReadlineFunctionPointer() to point at your
custom input function. See Modules/readline.c and Parser/myreadline.c for more hints.

5.16 How do I find undefined g++ symbols __builtin_new or __pu-
re_virtual?

To dynamically load g++ extension modules, you must recompile Python, relink it using g++ (change LINKCC in the
Python Modules Makefile), and link your extension module using g++ (e.g., g++ -shared -o mymodule.so
mymodule.o).

5.17 Can I create an object class with some methods implemented in
C and others in Python (e.g. through inheritance)?

Yes, you can inherit from built-in classes such as int, list, dict, etc.

The Boost Python Library (BPL, https://www.boost.org/libs/python/doc/index.html) provides a way of doing this from
C++ (i.e. you can inherit from an extension class written in C++ using the BPL).

5.14. I want to compile a Python module on my Linux system, but some files are missing. Why? 73

https://www.boost.org/libs/python/doc/index.html

Python Frequently Asked Questions, Rilis 3.11.10

74 Bab 5. Extending/Embedding FAQ

BAB6

FAQ Python di Windows

6.1 Bagaimana cara mengoperasikan program Python di Windows?

Ini belum tentu pertanyaan langsung. Jika Anda sudahFamiliar dengan program yang berjalan dari Windows command
line maka semuanyaAkan tampak jelas; jika tidak, Anda mungkin membutuhkan lebih banyak panduan.

Unless you use some sort of integrated development environment, you will end up typingWindows commands into what is
referred to as a ”Command prompt window”. Usually you can create such a window from your search bar by searching for
cmd. You should be able to recognize when you have started such a window because you will see a Windows ”command
prompt”, which usually looks like this:

C:\>

Suratnyamungkin berbeda, danmungkin ada hal lain setelahnya, jadi kamumungkin dapat denganmudahmelihat sesuatu
seperti ini:

D:\YourName\Projects\Python>

tergantung pada bagaimana komputer Anda telah diatur dan apa lagi yang Anda baru saja selesai dengan itu. Setelah
Anda memulai sebuah window seperti itu, Anda sudah siap menjalankan program Python.

Anda perlu menyadari bahwa skrip Python Anda harus diproses oleh orang program yang disebut dengan Python interp-
reter. Interpreter itu membaca skrip anda, mengkompilasinya menjadi bytecode, dan kemudian mengeksekusi bytecode
untuk menjalankan program Anda. Jadi, bagaimana Anda mengatur interpreter untuk menangani PythonAnda?

Pertama, Anda perlu memastikan bahwa command window Anda mengenali kata ”py” sebagai instruksi untuk memulai
penerjemah. Jika Anda telah membuka command window, Anda dapat mengketik command py dan menekan kembali:

C:\Users\YourName> py

Anda dapat melihat sesuatu tampak seperti ini:

Python 3.6.4 (v3.6.4:d48eceb, Dec 19 2017, 06:04:45) [MSC v.1900 32 bit (Intel)] on␣
↪→win32

(berlanjut ke halaman berikutnya)

75

Python Frequently Asked Questions, Rilis 3.11.10

(lanjutan dari halaman sebelumnya)

Type "help", "copyright", "credits" or "license" for more information.
>>>

Anda telah memulai penerjemah dalam ”mode interaktif”. Artinya kamu bisa masuk ke dalam pernyataan atau ekspresi
Python secara interaktif dan mengeksekusi atau mengevaluasi selang Anda menunggu. Ini adalah salah satu fitur terkuat
Python. Periksa dengan memasukkan beberapa ekspresi pilihan Anda dan melihat hasilnya:

>>> print("Hello")
Hello
>>> "Hello" * 3
'HelloHelloHello'

Banyak orang menggunakan mode interaktif sebagai cara yang nyaman namun sangat dapat diprogram kalulator. Saat
Anda ingin mengakhiri sesi Python interaktif Anda, panggil fungsi exit() atau tahan tombol Ctrl saat anda menekan
tombol Z, lalu tekan ”Enter” untuk kembali ke Windows command prompt Anda.

Anda mungkin juga menemukan bahwa Anda memiliki entri Start-menu seperti Start ‣ Programs ‣ Python 3.x ‣ Python
(command line) yang mengakibatkan Anda melihat prompt >>> di jendela baru. Jika demikian, jendela tersebut ak-
an menghilang setelah anda memanggil fungsi exit() atau menekan Ctrl-Z karakter; Windows menjalankan satu
perintah ”python” di jendela tersebut, dan tutup itu ketika anda akan mengakhiri interpreter.

Sekarang kita tahu bahwa perintah py dikenali, Anda dapat memberikan hal tersebut ke dalam Python script. Anda harus
memberikan jalur absolut atau relatif ke Python skrip tersebut. Katakanlah skrip Python Anda ada di desktop Anda dan
itu bernama hello.py. dan command prompt Anda terbuka di direktori home jadi anda dapat tampak melihat sesuatu
familiar seperti:

C:\Users\YourName>

Jadi sekarang Anda akan meminta perintah py untuk memberikan skrip Anda ke Python dengan mengetik py yang
dilanjuti dengan jalur skrip Anda:

C:\Users\YourName> py Desktop\hello.py
hello

6.2 Bagaimana cara saya membuat skrip Python dapat dieksekusi?

Di Windows, standar penginstal Python sudah diasosiasikan dengan .py ekstensi dengan tipe file (Python.File) dan mem-
berikan tipe file tersebut untuk membuka command yang menjalankan interpreter (D:\Program Files\Python\
python.exe "%1" %*). Ini cukup untuk membuat skrip dapat dieksekusi dari perintah simpel dengan mengketik
’foo’ tanpa ekstensi yang perlu Anda tambahkan .py di PATHEXT environment variable.

6.3 Mengapa Python terkadang membutuhkan waktu lama untuk me-
mulai?

Biasanya, Python terbuka sangat cepat di Windows, tetapi terkadang ada laporan bug bahwa Python tiba-tiba mulai
membutuhkan waktu lama untuk memulai. Ini menjadi lebih membingungkan karena Python akan berfungsi dengan
baik pada Windows sistem yang lain yang mana secara identikal terkonfigurasi.

Masalahnya mungkin disebabkan oleh kesalahan konfigurasi perangkat lunak pemeriksaan virus di mesin masalah. Bebe-
rapa pemindai virus telah diketahui memperkenalkan overhead startup dua kali lipat saat pemindai dikonfigurasi untuk
memantau semua pembacaan dari sistem file. Coba periksa konfigurasi dari perangkat lunak pemindaian virus pada

76 Bab 6. FAQ Python di Windows

Python Frequently Asked Questions, Rilis 3.11.10

sistem Anda untuk memastikan bahwa perangkat memang benar terkonfigurasi secara identik. McAfee, ketika dikonfi-
gurasi untuk memindai semua aktivitas baca dari sistem file aktivitas, adalah pelaku tertentu.

6.4 Bagaimana cara membuat sebuah executable dari skrip Python?

Lihat How can I create a stand-alone binary from a Python script? untuk daftar perkakas yang dapat digunakan membuat
aplikasi yang dapat dieksekusi.

6.5 Apakah file *.pyd sama dengan DLL?

Ya, .pyd file merupakan bagian dari dll, tapi dengan sedikit perbedaan. Jika kamu mempunyai DLL bernama foo.
pyd, kana itu pasti sebuah fungsi dari PyInit_foo(). Anda dapat menulis Python ”import foo”, dan Python akan
mencari untuk foo.pyd(dan juga foo.py, foo.pyc) dan jika itu ditemukan, maka akan memanggil PyInit_foo() untuk
segera diinisalisasikan. Anda tidak menautkan .exe Anda dengan foo.lib, karena hal itu akan menyebabkan Windows
memerlukan DLL.

Perhatikan bahwa jalur pencarian untuk foo.pyd adalah PYTHONPATH, tidak sama dengan jalur yang digunakan Win-
dows untuk mencari foo.dll. Selain itu, foo.pyd tidak perlu hadir untuk menjalankan program Anda, sedangkan jika Anda
menautkan program Anda dengan dll, dll diperlukan. Tentu saja, foo.pyd diperlukan jika Anda ingin mengatakannya
import foo. Di file DLL, keterkaitan dideklarasikan dalam kode sumber dengan __declspec(dllexport).
Di file .pyd, keterkaitan didefinisikan sebagai sebuah list dari fungsi yang tersedia.

6.6 Bagaimana cara memasukkan Python ke dalam aplikasi Windo-
ws?

Menyematkan interpreter Python di aplikasi Windows dapat diringkas menjadi sebagai:

1. Do not build Python into your .exe file directly. OnWindows, Python must be a DLL to handle importing modules
that are themselves DLL’s. (This is the first key undocumented fact.) Instead, link to pythonNN.dll; it is
typically installed in C:\Windows\System. NN is the Python version, a number such as ”33” for Python 3.3.

Anda dapat menautkan ke Python dengan dua cara berbeda. Alat penautan waktu muat menautkan ke
pythonNN.lib, sedangkan penautan run-time berarti menautkan kedalam pythonNN.dll. (Catatan umum:
pythonNN.lib adalah file yang disebut dengan ”import lib” sesuai dengan pythonNN.dll. itu hanya men-
definisikan simbol untuk linker.)

Tautan run-time sangat menyederhanakan opsi tautan; semuanya terjadi saat runtime. Kode anda harus dibuka
pythonNN.dll dengan menggunakan Windows LoadLibraryEx(). Kode juga harus menggunakan ru-
tinitas akses dan data di pythonNN.dll (yaitu, C API Python) menggunakan pointer yang didapatkan dari
Windows GetProcAddress(). Makro dapat dibuat dengan menggunakan pointer tersebut ke kode C apapun
yang memanggil rutinitas di C Python API.

2. If you use SWIG, it is easy to create a Python ”extension module” that will make the app’s data and methods
available to Python. SWIG will handle just about all the grungy details for you. The result is C code that you link
into your .exe file (!) You do not have to create a DLL file, and this also simplifies linking.

3. SWIG akan membuat fungsi init (fungsi C) yang namanya bergantung pada nama modul ekstensi. Misalnya, jika
nama modulnya adalah leo, fungsi init akan dipanggil initleo(). Jika Anda menggunakan bayangan SWIG kelas,
sebagaimana seharusnya, fungsi init akan dipanggil initleoc(). Ini menginisialisasi kelas pembantu yang sebagian
besar tersembunyi yang digunakan oleh kelas bayangan.

6.4. Bagaimana cara membuat sebuah executable dari skrip Python? 77

Python Frequently Asked Questions, Rilis 3.11.10

Alasan Anda dapat menautkan kode C pada langkah 2 ke file .exe Anda adalah itu memanggil fungsi inisialisasi
sama dengan mengimpor modul ke dalam Python! (Ini adalah fakta kunci tak terdokumentasi kedua.)

4. Singkatnya, Anda dapat menggunakan kode berikut untuk menginisialisasi Python interpreter dengan ekstensi
modul Anda.

#include <Python.h>
...
Py_Initialize(); // Initialize Python.
initmyAppc(); // Initialize (import) the helper class.
PyRun_SimpleString("import myApp"); // Import the shadow class.

5. Ada dua masalah dengan C API Python yang akan terlihat jika Andamenggunakan kompilator selain MSVC,
kompilator yang digunakan untuk membangun pythonNN.dll.

Problem 1: The so-called ”Very High Level” functions that take FILE * arguments will not work in a multi-
compiler environment because each compiler’s notion of a struct FILE will be different. From an implemen-
tation standpoint these are very low level functions.

Masalah 2: SWIG menghasilkan kode berikut saat membuat wrappers ke dalam fungsi void:

Py_INCREF(Py_None);
_resultobj = Py_None;
return _resultobj;

Sayangnya, Py_None adalah makro yang meluas ke referensi ke data kompleks struktur yang disebut
_Py_NoneStruct di dalam pythonNN.dll. Sekali lagi, kode ini akan gagal di lingkungan mult-compiler. Ganti
kode tersebut dengan:

return Py_BuildValue("");

Dimungkinkan untuk menggunakan perintah %typemap SWIG untuk membuat perubahan secara otomatis, mes-
kipun saya belum bisa membuat ini berfungsi (saya adalah pemula SWIG).

6. Menggunakan skrip shell Python untuk memasang jendela interpreter Python di dalam aplikasi Windows Anda
bukanlah ide yang bagus; jendela yang dihasilkan akan menjadi terlepas dari sistem windowing aplikasi Anda. Se-
baliknya, Anda (atau wxPythonWindow) harus membuat jendela penerjemah ”native”. ini mudah untuk menghu-
bungkan jendela itu ke interpreter Python. Anda dapat mengalihkan Objek i/o ke _any_ Python yang mendukung
baca dan tulis, jadi semua yang Anda butuhkan adalah objek Python (didefinisikan dalam modul ekstensi Anda)
yang berisi metode read() dan write().

6.7 Bagaimana cara mencegah editor memasukkan tab ke dalam
sumber Python saya?

FAQ tidak merekomendasikan penggunaan tab, dan panduan gaya Python, PEP 8, merekomendasikan dengan 4 spasi
untuk distribusi kode Python; ini juga Emacs python-mode secara default.

Di bawah editor apa pun, mencampur tab dan spasi adalah ide yang buruk. MSVC adalah berbeda dalam hal ini, dan
mudah dikonfigurasi untuk menggunakan spasi: Ambil Tools ‣ Options ‣ Tabs, dan untuk file tipe ”Default” set ”Tab size”
dan ”Indent size” menjadi 4, dan pilih ”Insert spaces” tombol radio.

Python akan memunculkan IndentationError atau TabError jika terdapat gabugan antaratabs dan spasi yang
menyebabkan masalah dalam spasi. Anda juga dapat menjalankan tabnanny modul untuk mengecek sebuah direktori
di mode batch.

78 Bab 6. FAQ Python di Windows

https://peps.python.org/pep-0008/

Python Frequently Asked Questions, Rilis 3.11.10

6.8 Bagaimana cara memeriksa tombol yang ditekan tanpa memblo-
kir?

Gunakan modul msvcrt. Ini adalah ekstensi khusus Windows standar modul. Ini mendefinisikan fungsi kbhit() yang
memeriksa apakah keyboard menekan, dan getch() yang mendapat satu karakter tanpa mengulanginya.

6.9 Howdo I solve themissing api-ms-win-crt-runtime-l1-1-0.dll error?

This can occur on Python 3.5 and later when using Windows 8.1 or earlier without all updates having been installed. First
ensure your operating system is supported and is up to date, and if that does not resolve the issue, visit the Microsoft
support page for guidance on manually installing the C Runtime update.

6.8. Bagaimana cara memeriksa tombol yang ditekan tanpa memblokir? 79

https://support.microsoft.com/en-us/help/3118401/
https://support.microsoft.com/en-us/help/3118401/

Python Frequently Asked Questions, Rilis 3.11.10

80 Bab 6. FAQ Python di Windows

BAB7

Antarmuka Pengguna Grafis FAQ

7.1 Pertanyaan Umum GUI

7.2 What GUI toolkits exist for Python?

Standard builds of Python include an object-oriented interface to the Tcl/Tk widget set, called tkinter. This is probably
the easiest to install (since it comes included with most binary distributions of Python) and use. For more info about Tk,
including pointers to the source, see the Tcl/Tk home page. Tcl/Tk is fully portable to the macOS, Windows, and Unix
platforms.

Depending on what platform(s) you are aiming at, there are also several alternatives. A list of cross-platform and platform-
specific GUI frameworks can be found on the python wiki.

7.3 Pertanyaan-pertanyaan Tkinter

7.3.1 Bagaimana cara membekukan aplikasi Tkinter?

Freeze is a tool to create stand-alone applications. When freezing Tkinter applications, the applications will not be truly
stand-alone, as the application will still need the Tcl and Tk libraries.

One solution is to ship the application with the Tcl and Tk libraries, and point to them at run-time using the
TCL_LIBRARY and TK_LIBRARY environment variables.

To get truly stand-alone applications, the Tcl scripts that form the library have to be integrated into the application as well.
One tool supporting that is SAM (stand-alonemodules), which is part of the Tix distribution (https://tix.sourceforge.net/).

Bangun Tix dengan SAM diaktifkan, lakukan panggilan yang sesuai ke Tclsam_init(), dll. Di dalam Python : file:‘
Modules tkappinit.c‘, dan tautkan dengan libtclsam dan libtksam (Anda mungkin menyertakan pustaka Tix juga).

81

https://www.python.org/downloads/
https://www.tcl.tk
https://wiki.python.org/moin/GuiProgramming#Cross-Platform_Frameworks
https://wiki.python.org/moin/GuiProgramming#Platform-specific_Frameworks
https://wiki.python.org/moin/GuiProgramming#Platform-specific_Frameworks
https://tix.sourceforge.net/

Python Frequently Asked Questions, Rilis 3.11.10

7.3.2 Can I have Tk events handled while waiting for I/O?

On platforms other than Windows, yes, and you don’t even need threads! But you’ll have to restructure your I/O code a
bit. Tk has the equivalent of Xt’s XtAddInput() call, which allows you to register a callback function which will be
called from the Tk mainloop when I/O is possible on a file descriptor. See tkinter-file-handlers.

7.3.3 Saya tidak bisa mendapatkan pengikatan kunci untuk bekerja di Tkinter:
mengapa?

An often-heard complaint is that event handlers bound to events with the bind() method don’t get handled even when
the appropriate key is pressed.

The most common cause is that the widget to which the binding applies doesn’t have ”keyboard focus”. Check out the Tk
documentation for the focus command. Usually a widget is given the keyboard focus by clicking in it (but not for labels;
see the takefocus option).

82 Bab 7. Antarmuka Pengguna Grafis FAQ

BAB8

”Kenapa Python Terpasang di Komputer saya?” FAQ

8.1 Apa itu Python?

Python adalah bahasa pemrograman. Digunakan untuk berbagai aplikasi. Digunakan di sejumlah sekolah menengah dan
perguruan tinggi sebagai pengenalan bahasa pemrograman karena Python mudah dipelajari, namun juga digunakan oleh
pengembang perangkat lunak profesional di berbagai tempat misalnya Google, NASA, dan Lucasfilm Ltd.

Jika anda ingin pelajari Python lebih lanjut, mulai dengan Panduan Pemula untuk Python.

8.2 Kenapa Python Terpasang di Komputer saya?

Jika Andamenemukan Python terpasang pada sistemAnda tetapi tidak ingat pemasangannya, ada beberapa kemungkinan
penyebab bisa ada di situ.

• Mungkin pengguna komputer lain ingin belajar pemrograman dan memasangnya; Anda harus mencari tahu siapa
yang menggunakan mesin dan mungkin memasangnya.

• Aplikasi pihak ketiga yang terpasang di mesin mungkin ditulis dengan Python dan menyertakan instalasi Python.
Ada banyak aplikasi, dari program GUI hingga skrip jaringan server dan administrasi.

• Beberapa mesin Windows telah terpasang Python. Pada saat penulisan ini sudah diketahui komputer-komputer
dari Hewlett-Packard dan Compaq menyertakan Python. Rupanya beberapa alat administrasi HP/Compaq ditulis
dengan Python.

• Many Unix-compatible operating systems, such as macOS and some Linux distributions, have Python installed by
default; it’s included in the base installation.

83

https://wiki.python.org/moin/BeginnersGuide

Python Frequently Asked Questions, Rilis 3.11.10

8.3 Dapatkah Saya hapus Python?

Hal itu tergantung dari mana Python berasal.

Jika seseorang memasangnya dengan sengaja, Anda dapat menghapusnya tanpa merusak apapun. Di Windows, gunakan
ikon Add/Remove Programs di Control Panel.

Jika Python dipasang oleh aplikasi pihak ketiga, Anda juga dapat menghapusnya, tetapi aplikasi tersebut tidak akan
berfungsi lagi. Anda perlu menggunakan penghapus pemasangan aplikasi dibanding menghapus Python secara langsung.

Jika Python terpasang dari sistem operasi Anda, tidak direkomendasikan untukmenghapusnya. JikaAndamenghapusnya,
alat apapun yang ditulis dengan Python akan tidak berfungsi lagi, dan sejumlah diantaranya mungkin penting untuk Anda.
Memasang ulang keseluruhan sistem akan dibutuhkan untuk memperbaikinya lagi.

84 Bab 8. ”Kenapa Python Terpasang di Komputer saya?” FAQ

LAMPIRANA

Ikhtisar

>>>
Prompt Python bawaan dari shell interaktif. Sering terlihat untuk contoh kode yang dapat dieksekusi secara inte-
raktif dalam interpreter.

...
Dapat mengacu ke:

• Prompt Python bawaan dari shell interaktif saat memasukkan kode untuk blok kode indentasi, ketika berada
dalam sepasang pembatas kiri dan kanan yang cocok (tanda kurung, kurung kotak, kurung kurawal atau tanda
kutip tiga), atau setelah menentukan decorator.

• Konstanta Ellipsis bawaan.

2ke3
A tool that tries to convert Python 2.x code to Python 3.x code by handling most of the incompatibilities which
can be detected by parsing the source and traversing the parse tree.

2to3 is available in the standard library as lib2to3; a standalone entry point is provided as Tools/scripts/
2to3. See 2to3-reference.

kelas basis abstrak
Abstract base classes complement duck-typing by providing a way to define interfaces when other techniques li-
ke hasattr() would be clumsy or subtly wrong (for example with magic methods). ABCs introduce virtual
subclasses, which are classes that don’t inherit from a class but are still recognized by isinstance() and
issubclass(); see the abc module documentation. Python comes with many built-in ABCs for data stru-
ctures (in the collections.abc module), numbers (in the numbers module), streams (in the io module),
import finders and loaders (in the importlib.abc module). You can create your own ABCs with the abc
module.

anotasi
A label associated with a variable, a class attribute or a function parameter or return value, used by convention as
a type hint.

Annotations of local variables cannot be accessed at runtime, but annotations of global variables, class attribu-
tes, and functions are stored in the __annotations__ special attribute of modules, classes, and functions,
respectively.

85

Python Frequently Asked Questions, Rilis 3.11.10

See variable annotation, function annotation, PEP 484 and PEP 526, which describe this functionality. Also see
annotations-howto for best practices on working with annotations.

argumen
A value passed to a function (or method) when calling the function. There are two kinds of argument:

• keyword argument: an argument preceded by an identifier (e.g. name=) in a function call or passed as a value
in a dictionary preceded by **. For example, 3 and 5 are both keyword arguments in the following calls to
complex():

complex(real=3, imag=5)
complex(**{'real': 3, 'imag': 5})

• positional argument: an argument that is not a keyword argument. Positional arguments can appear at the
beginning of an argument list and/or be passed as elements of an iterable preceded by *. For example, 3 and
5 are both positional arguments in the following calls:

complex(3, 5)
complex(*(3, 5))

Arguments are assigned to the named local variables in a function body. See the calls section for the rules governing
this assignment. Syntactically, any expression can be used to represent an argument; the evaluated value is assigned
to the local variable.

See also the parameter glossary entry, the FAQ question on the difference between arguments and parameters, and
PEP 362.

manajer konteks asinkron
An object which controls the environment seen in an async with statement by defining __aenter__() and
__aexit__() methods. Introduced by PEP 492.

pembangkit asinkron
A function which returns an asynchronous generator iterator. It looks like a coroutine function defined with async
def except that it contains yield expressions for producing a series of values usable in an async for loop.

Usually refers to an asynchronous generator function, but may refer to an asynchronous generator iterator in some
contexts. In cases where the intended meaning isn’t clear, using the full terms avoids ambiguity.

An asynchronous generator function may contain await expressions as well as async for, and async with
statements.

iterator generator asinkron
Sebuah objek dibuat oleh fungsi asynchronous generator.

This is an asynchronous iterator which when called using the __anext__() method returns an awaitable object
which will execute the body of the asynchronous generator function until the next yield expression.

Each yield temporarily suspends processing, remembering the location execution state (including local variables
and pending try-statements). When the asynchronous generator iterator effectively resumes with another awaitable
returned by __anext__(), it picks up where it left off. See PEP 492 and PEP 525.

asynchronous iterable
An object, that can be used in an async for statement. Must return an asynchronous iterator from its
__aiter__() method. Introduced by PEP 492.

iterator asinkron
An object that implements the __aiter__() and __anext__() methods. __anext__() must return an
awaitable object. async for resolves the awaitables returned by an asynchronous iterator’s __anext__()
method until it raises a StopAsyncIteration exception. Introduced by PEP 492.

86 Lampiran A. Ikhtisar

https://peps.python.org/pep-0484/
https://peps.python.org/pep-0526/
https://peps.python.org/pep-0362/
https://peps.python.org/pep-0492/
https://peps.python.org/pep-0492/
https://peps.python.org/pep-0525/
https://peps.python.org/pep-0492/
https://peps.python.org/pep-0492/

Python Frequently Asked Questions, Rilis 3.11.10

atribut
A value associated with an object which is usually referenced by name using dotted expressions. For example, if
an object o has an attribute a it would be referenced as o.a.

It is possible to give an object an attribute whose name is not an identifier as defined by identifiers, for example
using setattr(), if the object allows it. Such an attribute will not be accessible using a dotted expression, and
would instead need to be retrieved with getattr().

menunggu
An object that can be used in an await expression. Can be a coroutine or an object with an __await__()
method. See also PEP 492.

BDFL
Benevolent Dictator For Life, a.k.a. Guido van Rossum, Python’s creator.

berkas biner
A file object able to read and write bytes-like objects. Examples of binary files are files opened in binary mode
('rb', 'wb' or 'rb+'), sys.stdin.buffer, sys.stdout.buffer, and instances of io.BytesIO
and gzip.GzipFile.

See also text file for a file object able to read and write str objects.

borrowed reference
In Python’s C API, a borrowed reference is a reference to an object, where the code using the object does not
own the reference. It becomes a dangling pointer if the object is destroyed. For example, a garbage collection can
remove the last strong reference to the object and so destroy it.

Calling Py_INCREF() on the borrowed reference is recommended to convert it to a strong reference in-place,
except when the object cannot be destroyed before the last usage of the borrowed reference. The Py_NewRef()
function can be used to create a new strong reference.

bytes-like object
An object that supports the bufferobjects and can export a C-contiguous buffer. This includes all bytes,
bytearray, and array.array objects, as well as many common memoryview objects. Bytes-like ob-
jects can be used for various operations that work with binary data; these include compression, saving to a binary
file, and sending over a socket.

Some operations need the binary data to be mutable. The documentation often refers to these as ”read-write bytes-
like objects”. Example mutable buffer objects include bytearray and a memoryview of a bytearray.
Other operations require the binary data to be stored in immutable objects (”read-only bytes-like objects”); exam-
ples of these include bytes and a memoryview of a bytes object.

bytecode
Python source code is compiled into bytecode, the internal representation of a Python program in the CPython
interpreter. The bytecode is also cached in .pyc files so that executing the same file is faster the second time
(recompilation from source to bytecode can be avoided). This ”intermediate language” is said to run on a virtual
machine that executes the machine code corresponding to each bytecode. Do note that bytecodes are not expected
to work between different Python virtual machines, nor to be stable between Python releases.

Daftar instruksi-instruksi bytecode dapat ditemukan di dokumentasi pada the dis module.

callable
A callable is an object that can be called, possibly with a set of arguments (see argument), with the following syntax:

callable(argument1, argument2, argumentN)

A function, and by extension a method, is a callable. An instance of a class that implements the __call__()
method is also a callable.

callback
A subroutine function which is passed as an argument to be executed at some point in the future.

87

https://peps.python.org/pep-0492/
https://gvanrossum.github.io/

Python Frequently Asked Questions, Rilis 3.11.10

kelas
A template for creating user-defined objects. Class definitions normally contain method definitions which operate
on instances of the class.

class variable
A variable defined in a class and intended to be modified only at class level (i.e., not in an instance of the class).

bilangan kompleks
An extension of the familiar real number system in which all numbers are expressed as a sum of a real part and an
imaginary part. Imaginary numbers are real multiples of the imaginary unit (the square root of -1), often written
i in mathematics or j in engineering. Python has built-in support for complex numbers, which are written with
this latter notation; the imaginary part is written with a j suffix, e.g., 3+1j. To get access to complex equivalents
of the math module, use cmath. Use of complex numbers is a fairly advanced mathematical feature. If you’re
not aware of a need for them, it’s almost certain you can safely ignore them.

manajer konteks
An object which controls the environment seen in a with statement by defining __enter__() and
__exit__() methods. See PEP 343.

context variable
A variable which can have different values depending on its context. This is similar to Thread-Local Storage in
which each execution thread may have a different value for a variable. However, with context variables, there may
be several contexts in one execution thread and the main usage for context variables is to keep track of variables
in concurrent asynchronous tasks. See contextvars.

contiguous
Abuffer is considered contiguous exactly if it is eitherC-contiguous orFortran contiguous. Zero-dimensional buffers
are C and Fortran contiguous. In one-dimensional arrays, the items must be laid out in memory next to each other,
in order of increasing indexes starting from zero. In multidimensional C-contiguous arrays, the last index varies
the fastest when visiting items in order of memory address. However, in Fortran contiguous arrays, the first index
varies the fastest.

coroutine
Coroutines are a more generalized form of subroutines. Subroutines are entered at one point and exited at another
point. Coroutines can be entered, exited, and resumed at many different points. They can be implemented with
the async def statement. See also PEP 492.

coroutine function
A function which returns a coroutine object. A coroutine function may be defined with the async def statement,
and may contain await, async for, and async with keywords. These were introduced by PEP 492.

CPython
The canonical implementation of the Python programming language, as distributed on python.org. The term
”CPython” is used when necessary to distinguish this implementation from others such as Jython or IronPython.

penghias
A function returning another function, usually applied as a function transformation using the @wrapper syntax.
Common examples for decorators are classmethod() and staticmethod().

The decorator syntax is merely syntactic sugar, the following two function definitions are semantically equivalent:

def f(arg):
...

f = staticmethod(f)

@staticmethod
def f(arg):

...

88 Lampiran A. Ikhtisar

https://peps.python.org/pep-0343/
https://peps.python.org/pep-0492/
https://peps.python.org/pep-0492/
https://www.python.org

Python Frequently Asked Questions, Rilis 3.11.10

The same concept exists for classes, but is less commonly used there. See the documentation for function definitions
and class definitions for more about decorators.

descriptor
Any object which defines the methods __get__(), __set__(), or __delete__(). When a class attribute
is a descriptor, its special binding behavior is triggered upon attribute lookup. Normally, using a.b to get, set or
delete an attribute looks up the object named b in the class dictionary for a, but if b is a descriptor, the respective
descriptor method gets called. Understanding descriptors is a key to a deep understanding of Python because
they are the basis for many features including functions, methods, properties, class methods, static methods, and
reference to super classes.

For more information about descriptors’ methods, see descriptors or the Descriptor How To Guide.

kamus
An associative array, where arbitrary keys are mapped to values. The keys can be any object with __hash__()
and __eq__() methods. Called a hash in Perl.

dictionary comprehension
A compact way to process all or part of the elements in an iterable and return a dictionary with the results.
results = {n: n ** 2 for n in range(10)} generates a dictionary containing key n mapped to
value n ** 2. See comprehensions.

dictionary view
The objects returned from dict.keys(), dict.values(), and dict.items() are called dictionary vi-
ews. They provide a dynamic view on the dictionary’s entries, which means that when the dictionary changes,
the view reflects these changes. To force the dictionary view to become a full list use list(dictview). See
dict-views.

docstring
A string literal which appears as the first expression in a class, function or module. While ignored when the suite
is executed, it is recognized by the compiler and put into the __doc__ attribute of the enclosing class, function
or module. Since it is available via introspection, it is the canonical place for documentation of the object.

duck-typing
A programming style which does not look at an object’s type to determine if it has the right interface; instead,
the method or attribute is simply called or used (”If it looks like a duck and quacks like a duck, it must be a
duck.”) By emphasizing interfaces rather than specific types, well-designed code improves its flexibility by allowing
polymorphic substitution. Duck-typing avoids tests using type() or isinstance(). (Note, however, that
duck-typing can be complemented with abstract base classes.) Instead, it typically employs hasattr() tests or
EAFP programming.

EAFP
Easier to ask for forgiveness than permission. This common Python coding style assumes the existence of valid
keys or attributes and catches exceptions if the assumption proves false. This clean and fast style is characterized
by the presence of many try and except statements. The technique contrasts with the LBYL style common to
many other languages such as C.

ekspresi
A piece of syntax which can be evaluated to some value. In other words, an expression is an accumulation of
expression elements like literals, names, attribute access, operators or function calls which all return a value. In
contrast to many other languages, not all language constructs are expressions. There are also statements which
cannot be used as expressions, such as while. Assignments are also statements, not expressions.

modul tambahan
A module written in C or C++, using Python’s C API to interact with the core and with user code.

f-string
String literals prefixed with 'f' or 'F' are commonly called ”f-strings” which is short for formatted string literals.
See also PEP 498.

89

https://peps.python.org/pep-0498/

Python Frequently Asked Questions, Rilis 3.11.10

objek berkas
An object exposing a file-oriented API (with methods such as read() or write()) to an underlying resource.
Depending on the way it was created, a file object can mediate access to a real on-disk file or to another type of
storage or communication device (for example standard input/output, in-memory buffers, sockets, pipes, etc.). File
objects are also called file-like objects or streams.

There are actually three categories of file objects: raw binary files, buffered binary files and text files. Their inter-
faces are defined in the io module. The canonical way to create a file object is by using the open() function.

file-like object
A synonym for file object.

filesystem encoding and error handler
Encoding and error handler used by Python to decode bytes from the operating system and encode Unicode to the
operating system.

The filesystem encoding must guarantee to successfully decode all bytes below 128. If the file system encoding
fails to provide this guarantee, API functions can raise UnicodeError.

The sys.getfilesystemencoding() and sys.getfilesystemencodeerrors() functions can
be used to get the filesystem encoding and error handler.

The filesystem encoding and error handler are configured at Python startup by the PyConfig_Read() function:
see filesystem_encoding and filesystem_errors members of PyConfig.

See also the locale encoding.

finder
An object that tries to find the loader for a module that is being imported.

Since Python 3.3, there are two types of finder: meta path finders for use with sys.meta_path, and path entry
finders for use with sys.path_hooks.

See PEP 302, PEP 420 and PEP 451 for much more detail.

floor division
Mathematical division that rounds down to nearest integer. The floor division operator is //. For example, the
expression 11 // 4 evaluates to 2 in contrast to the 2.75 returned by float true division. Note that (-11) //
4 is -3 because that is -2.75 rounded downward. See PEP 238.

fungsi
A series of statements which returns some value to a caller. It can also be passed zero or more arguments which
may be used in the execution of the body. See also parameter, method, and the function section.

anotasi fungsi
An annotation of a function parameter or return value.

Function annotations are usually used for type hints: for example, this function is expected to take two int argu-
ments and is also expected to have an int return value:

def sum_two_numbers(a: int, b: int) -> int:
return a + b

Function annotation syntax is explained in section function.

See variable annotation and PEP 484, which describe this functionality. Also see annotations-howto for best
practices on working with annotations.

__future__
A future statement, from __future__ import <feature>, directs the compiler to compile the current
module using syntax or semantics that will become standard in a future release of Python. The __future__

90 Lampiran A. Ikhtisar

https://peps.python.org/pep-0302/
https://peps.python.org/pep-0420/
https://peps.python.org/pep-0451/
https://peps.python.org/pep-0238/
https://peps.python.org/pep-0484/

Python Frequently Asked Questions, Rilis 3.11.10

module documents the possible values of feature. By importing this module and evaluating its variables, you can
see when a new feature was first added to the language and when it will (or did) become the default:

>>> import __future__
>>> __future__.division
_Feature((2, 2, 0, 'alpha', 2), (3, 0, 0, 'alpha', 0), 8192)

pengumpulan sampah
The process of freeing memory when it is not used anymore. Python performs garbage collection via reference
counting and a cyclic garbage collector that is able to detect and break reference cycles. The garbage collector can
be controlled using the gc module.

pembangkit
A function which returns a generator iterator. It looks like a normal function except that it contains yield expres-
sions for producing a series of values usable in a for-loop or that can be retrieved one at a time with the next()
function.

Usually refers to a generator function, but may refer to a generator iterator in some contexts. In cases where the
intended meaning isn’t clear, using the full terms avoids ambiguity.

generator iterator
An object created by a generator function.

Each yield temporarily suspends processing, remembering the location execution state (including local variables
and pending try-statements). When the generator iterator resumes, it picks up where it left off (in contrast to
functions which start fresh on every invocation).

generator expression
An expression that returns an iterator. It looks like a normal expression followed by a for clause defining a loop
variable, range, and an optional if clause. The combined expression generates values for an enclosing function:

>>> sum(i*i for i in range(10)) # sum of squares 0, 1, 4, ... 81
285

fungsi generik
A function composed of multiple functions implementing the same operation for different types. Which imple-
mentation should be used during a call is determined by the dispatch algorithm.

See also the single dispatch glossary entry, the functools.singledispatch() decorator, and PEP 443.

generic type
A type that can be parameterized; typically a container class such as list or dict. Used for type hints and
annotations.

For more details, see generic alias types, PEP 483, PEP 484, PEP 585, and the typing module.

GIL
Lihat global interpreter lock.

kunci interpreter global
The mechanism used by the CPython interpreter to assure that only one thread executes Python bytecode at a time.
This simplifies the CPython implementation by making the object model (including critical built-in types such as
dict) implicitly safe against concurrent access. Locking the entire interpreter makes it easier for the interpreter
to be multi-threaded, at the expense of much of the parallelism afforded by multi-processor machines.

However, some extension modules, either standard or third-party, are designed so as to release the GIL when doing
computationally intensive tasks such as compression or hashing. Also, the GIL is always released when doing I/O.

Past efforts to create a ”free-threaded” interpreter (one which locks shared data at a much finer granularity) have not
been successful because performance suffered in the common single-processor case. It is believed that overcoming
this performance issue would make the implementation much more complicated and therefore costlier to maintain.

91

https://peps.python.org/pep-0443/
https://peps.python.org/pep-0483/
https://peps.python.org/pep-0484/
https://peps.python.org/pep-0585/

Python Frequently Asked Questions, Rilis 3.11.10

hash-based pyc
A bytecode cache file that uses the hash rather than the last-modified time of the corresponding source file to
determine its validity. See pyc-invalidation.

hashable
An object is hashable if it has a hash value which never changes during its lifetime (it needs a __hash__()
method), and can be compared to other objects (it needs an __eq__()method). Hashable objects which compare
equal must have the same hash value.

Hashability makes an object usable as a dictionary key and a set member, because these data structures use the
hash value internally.

Most of Python’s immutable built-in objects are hashable; mutable containers (such as lists or dictionaries) are not;
immutable containers (such as tuples and frozensets) are only hashable if their elements are hashable. Objects which
are instances of user-defined classes are hashable by default. They all compare unequal (except with themselves),
and their hash value is derived from their id().

IDLE
An Integrated Development and Learning Environment for Python. idle is a basic editor and interpreter enviro-
nment which ships with the standard distribution of Python.

immutable
An object with a fixed value. Immutable objects include numbers, strings and tuples. Such an object cannot be
altered. A new object has to be created if a different value has to be stored. They play an important role in places
where a constant hash value is needed, for example as a key in a dictionary.

import path
A list of locations (or path entries) that are searched by the path based finder for modules to import. During
import, this list of locations usually comes from sys.path, but for subpackages it may also come from the
parent package’s __path__ attribute.

importing
The process by which Python code in one module is made available to Python code in another module.

importer
An object that both finds and loads a module; both a finder and loader object.

interaktif
Python has an interactive interpreter which means you can enter statements and expressions at the interpreter
prompt, immediately execute them and see their results. Just launch python with no arguments (possibly by
selecting it from your computer’s main menu). It is a very powerful way to test out new ideas or inspect modules
and packages (remember help(x)).

diinterpretasi
Python is an interpreted language, as opposed to a compiled one, though the distinction can be blurry because of
the presence of the bytecode compiler. This means that source files can be run directly without explicitly creating
an executable which is then run. Interpreted languages typically have a shorter development/debug cycle than
compiled ones, though their programs generally also run more slowly. See also interactive.

interpreter shutdown
When asked to shut down, the Python interpreter enters a special phase where it gradually releases all allocated
resources, such asmodules and various critical internal structures. It alsomakes several calls to the garbage collector.
This can trigger the execution of code in user-defined destructors or weakref callbacks. Code executed during the
shutdown phase can encounter various exceptions as the resources it relies on may not function anymore (common
examples are library modules or the warnings machinery).

The main reason for interpreter shutdown is that the __main__ module or the script being run has finished
executing.

92 Lampiran A. Ikhtisar

Python Frequently Asked Questions, Rilis 3.11.10

iterable
An object capable of returning its members one at a time. Examples of iterables include all sequence types (such
as list, str, and tuple) and some non-sequence types like dict, file objects, and objects of any classes you
define with an __iter__() method or with a __getitem__() method that implements sequence semantics.

Iterables can be used in a for loop and in many other places where a sequence is needed (zip(), map(), ...).
When an iterable object is passed as an argument to the built-in function iter(), it returns an iterator for the
object. This iterator is good for one pass over the set of values. When using iterables, it is usually not necessary to
call iter() or deal with iterator objects yourself. The for statement does that automatically for you, creating
a temporary unnamed variable to hold the iterator for the duration of the loop. See also iterator, sequence, and
generator.

iterator
An object representing a stream of data. Repeated calls to the iterator’s __next__() method (or passing it
to the built-in function next()) return successive items in the stream. When no more data are available a
StopIteration exception is raised instead. At this point, the iterator object is exhausted and any further calls
to its __next__()method just raise StopIteration again. Iterators are required to have an __iter__()
method that returns the iterator object itself so every iterator is also iterable and may be used in most places where
other iterables are accepted. One notable exception is code which attempts multiple iteration passes. A container
object (such as a list) produces a fresh new iterator each time you pass it to the iter() function or use it in a
for loop. Attempting this with an iterator will just return the same exhausted iterator object used in the previous
iteration pass, making it appear like an empty container.

Informasi lebih lanjut dapat ditemukan di typeiter.

Detail implementasi CPython: CPython does not consistently apply the requirement that an iterator define
__iter__().

fungsi kunci
A key function or collation function is a callable that returns a value used for sorting or ordering. For example,
locale.strxfrm() is used to produce a sort key that is aware of locale specific sort conventions.

A number of tools in Python accept key functions to control how elements are ordered or grouped. They in-
clude min(), max(), sorted(), list.sort(), heapq.merge(), heapq.nsmallest(), heapq.
nlargest(), and itertools.groupby().

There are several ways to create a key function. For example. the str.lower() method can serve as a key
function for case insensitive sorts. Alternatively, a key function can be built from a lambda expression such as
lambda r: (r[0], r[2]). Also, operator.attrgetter(), operator.itemgetter(), and
operator.methodcaller() are three key function constructors. See the Sorting HOW TO for examples of
how to create and use key functions.

argumen kata kunci
Lihat argument.

lambda
An anonymous inline function consisting of a single expression which is evaluated when the function is called. The
syntax to create a lambda function is lambda [parameters]: expression

LBYL
Look before you leap. This coding style explicitly tests for pre-conditions before making calls or lookups. This
style contrasts with the EAFP approach and is characterized by the presence of many if statements.

In a multi-threaded environment, the LBYL approach can risk introducing a race condition between ”the looking”
and ”the leaping”. For example, the code, if key in mapping: return mapping[key] can fail if
another thread removes key from mapping after the test, but before the lookup. This issue can be solved with locks
or by using the EAFP approach.

daftar
A built-in Python sequence. Despite its name it is more akin to an array in other languages than to a linked list

93

Python Frequently Asked Questions, Rilis 3.11.10

since access to elements is O(1).

list comprehension
A compact way to process all or part of the elements in a sequence and return a list with the results. result
= ['{:#04x}'.format(x) for x in range(256) if x % 2 == 0] generates a list of strings
containing even hex numbers (0x..) in the range from 0 to 255. The if clause is optional. If omitted, all elements
in range(256) are processed.

loader
An object that loads a module. It must define a method named load_module(). A loader is typically returned
by a finder. See PEP 302 for details and importlib.abc.Loader for an abstract base class.

locale encoding
On Unix, it is the encoding of the LC_CTYPE locale. It can be set with locale.setlocale(locale.
LC_CTYPE, new_locale).

On Windows, it is the ANSI code page (ex: "cp1252").

On Android and VxWorks, Python uses "utf-8" as the locale encoding.

locale.getencoding() can be used to get the locale encoding.

See also the filesystem encoding and error handler.

magic method
An informal synonym for special method.

pemetaan
A container object that supports arbitrary key lookups and implements the methods specified in
the collections.abc.Mapping or collections.abc.MutableMapping abstract base clas-
ses. Examples include dict, collections.defaultdict, collections.OrderedDict and
collections.Counter.

meta path finder
A finder returned by a search of sys.meta_path. Meta path finders are related to, but different from path entry
finders.

See importlib.abc.MetaPathFinder for the methods that meta path finders implement.

metaclass
The class of a class. Class definitions create a class name, a class dictionary, and a list of base classes. The metaclass
is responsible for taking those three arguments and creating the class. Most object oriented programming languages
provide a default implementation. What makes Python special is that it is possible to create custom metaclasses.
Most users never need this tool, but when the need arises, metaclasses can provide powerful, elegant solutions.
They have been used for logging attribute access, adding thread-safety, tracking object creation, implementing
singletons, and many other tasks.

Informasi lebih lanjut dapat ditemukan di metaclasses.

method
A function which is defined inside a class body. If called as an attribute of an instance of that class, the method
will get the instance object as its first argument (which is usually called self). See function and nested scope.

method resolution order
Method Resolution Order is the order in which base classes are searched for a member during lookup. See The
Python 2.3 Method Resolution Order for details of the algorithm used by the Python interpreter since the 2.3
release.

modul
An object that serves as an organizational unit of Python code. Modules have a namespace containing arbitrary
Python objects. Modules are loaded into Python by the process of importing.

94 Lampiran A. Ikhtisar

https://peps.python.org/pep-0302/
https://www.python.org/download/releases/2.3/mro/
https://www.python.org/download/releases/2.3/mro/

Python Frequently Asked Questions, Rilis 3.11.10

Lihat juga package.

module spec
A namespace containing the import-related information used to load a module. An instance of importlib.
machinery.ModuleSpec.

MRO
Lihat method resolution order.

mutable
Mutable objects can change their value but keep their id(). See also immutable.

named tuple
The term ”named tuple” applies to any type or class that inherits from tuple and whose indexable elements are also
accessible using named attributes. The type or class may have other features as well.

Several built-in types are named tuples, including the values returned by time.localtime() and os.
stat(). Another example is sys.float_info:

>>> sys.float_info[1] # indexed access
1024
>>> sys.float_info.max_exp # named field access
1024
>>> isinstance(sys.float_info, tuple) # kind of tuple
True

Some named tuples are built-in types (such as the above examples). Alternatively, a named tuple can be created
from a regular class definition that inherits fromtuple and that defines named fields. Such a class can be written by
hand, or it can be created by inheriting typing.NamedTuple, or with the factory function collections.
namedtuple(). The latter techniques also add some extra methods that may not be found in hand-written or
built-in named tuples.

namespace
The place where a variable is stored. Namespaces are implemented as dictionaries. There are the local, global
and built-in namespaces as well as nested namespaces in objects (in methods). Namespaces support modularity by
preventing naming conflicts. For instance, the functions builtins.open and os.open() are distinguished
by their namespaces. Namespaces also aid readability and maintainability by making it clear which module im-
plements a function. For instance, writing random.seed() or itertools.islice() makes it clear that
those functions are implemented by the random and itertools modules, respectively.

namespace package
A PEP 420 package which serves only as a container for subpackages. Namespace packages may have no physical
representation, and specifically are not like a regular package because they have no __init__.py file.

Lihat juga module.

nested scope
The ability to refer to a variable in an enclosing definition. For instance, a function defined inside another function
can refer to variables in the outer function. Note that nested scopes by default work only for reference and not for
assignment. Local variables both read and write in the innermost scope. Likewise, global variables read and write
to the global namespace. The nonlocal allows writing to outer scopes.

new-style class
Old name for the flavor of classes now used for all class objects. In earlier Python versions, only new-style classes
could use Python’s newer, versatile features like __slots__, descriptors, properties, __getattribute__(),
class methods, and static methods.

objek
Any data with state (attributes or value) and defined behavior (methods). Also the ultimate base class of any
new-style class.

95

https://peps.python.org/pep-0420/

Python Frequently Asked Questions, Rilis 3.11.10

paket
A Python module which can contain submodules or recursively, subpackages. Technically, a package is a Python
module with a __path__ attribute.

See also regular package and namespace package.

parameter
A named entity in a function (or method) definition that specifies an argument (or in some cases, arguments) that
the function can accept. There are five kinds of parameter:

• positional-or-keyword: specifies an argument that can be passed either positionally or as a keyword argument.
This is the default kind of parameter, for example foo and bar in the following:

def func(foo, bar=None): ...

• positional-only: specifies an argument that can be supplied only by position. Positional-only parameters can
be defined by including a / character in the parameter list of the function definition after them, for example
posonly1 and posonly2 in the following:

def func(posonly1, posonly2, /, positional_or_keyword): ...

• keyword-only: specifies an argument that can be supplied only by keyword. Keyword-only parameters can be
defined by including a single var-positional parameter or bare * in the parameter list of the function definition
before them, for example kw_only1 and kw_only2 in the following:

def func(arg, *, kw_only1, kw_only2): ...

• var-positional: specifies that an arbitrary sequence of positional arguments can be provided (in addition to any
positional arguments already accepted by other parameters). Such a parameter can be defined by prepending
the parameter name with *, for example args in the following:

def func(*args, **kwargs): ...

• var-keyword: specifies that arbitrarily many keyword arguments can be provided (in addition to any keywo-
rd arguments already accepted by other parameters). Such a parameter can be defined by prepending the
parameter name with **, for example kwargs in the example above.

Parameters can specify both optional and required arguments, as well as default values for some optional arguments.

See also the argument glossary entry, the FAQ question on the difference between arguments and parameters, the
inspect.Parameter class, the function section, and PEP 362.

path entry
A single location on the import path which the path based finder consults to find modules for importing.

path entry finder
A finder returned by a callable on sys.path_hooks (i.e. a path entry hook) which knows how to locate modules
given a path entry.

See importlib.abc.PathEntryFinder for the methods that path entry finders implement.

path entry hook
A callable on the sys.path_hooks list which returns a path entry finder if it knows how to find modules on a
specific path entry.

path based finder
One of the default meta path finders which searches an import path for modules.

path-like object
An object representing a file system path. A path-like object is either a str or bytes object representing a path,
or an object implementing the os.PathLike protocol. An object that supports the os.PathLike protocol

96 Lampiran A. Ikhtisar

https://peps.python.org/pep-0362/

Python Frequently Asked Questions, Rilis 3.11.10

can be converted to a str or bytes file system path by calling the os.fspath() function; os.fsdecode()
and os.fsencode() can be used to guarantee a str or bytes result instead, respectively. Introduced by PEP
519.

PEP
Python Enhancement Proposal. A PEP is a design document providing information to the Python community,
or describing a new feature for Python or its processes or environment. PEPs should provide a concise technical
specification and a rationale for proposed features.

PEPs are intended to be the primary mechanisms for proposing major new features, for collecting community input
on an issue, and for documenting the design decisions that have gone into Python. The PEP author is responsible
for building consensus within the community and documenting dissenting opinions.

Lihat PEP 1.

porsi
A set of files in a single directory (possibly stored in a zip file) that contribute to a namespace package, as defined
in PEP 420.

positional argument
Lihat argument.

provisional API
A provisional API is one which has been deliberately excluded from the standard library’s backwards compatibility
guarantees. While major changes to such interfaces are not expected, as long as they are marked provisional,
backwards incompatible changes (up to and including removal of the interface) may occur if deemed necessary by
core developers. Such changes will not be made gratuitously -- they will occur only if serious fundamental flaws
are uncovered that were missed prior to the inclusion of the API.

Even for provisional APIs, backwards incompatible changes are seen as a ”solution of last resort” - every attempt
will still be made to find a backwards compatible resolution to any identified problems.

This process allows the standard library to continue to evolve over time, without locking in problematic design
errors for extended periods of time. See PEP 411 for more details.

provisional package
Lihat provisional API.

Python 3000
Nickname for the Python 3.x release line (coined long ago when the release of version 3 was something in the
distant future.) This is also abbreviated ”Py3k”.

Pythonic
An idea or piece of code which closely follows the most common idioms of the Python language, rather than
implementing code using concepts common to other languages. For example, a common idiom in Python is to loop
over all elements of an iterable using a for statement. Many other languages don’t have this type of construct, so
people unfamiliar with Python sometimes use a numerical counter instead:

for i in range(len(food)):
print(food[i])

As opposed to the cleaner, Pythonic method:

for piece in food:
print(piece)

nama yang memenuhi syarat
A dotted name showing the ”path” from a module’s global scope to a class, function or method defined in that
module, as defined in PEP 3155. For top-level functions and classes, the qualified name is the same as the object’s
name:

97

https://peps.python.org/pep-0519/
https://peps.python.org/pep-0519/
https://peps.python.org/pep-0001/
https://peps.python.org/pep-0420/
https://peps.python.org/pep-0411/
https://peps.python.org/pep-3155/

Python Frequently Asked Questions, Rilis 3.11.10

>>> class C:
... class D:
... def meth(self):
... pass
...
>>> C.__qualname__
'C'
>>> C.D.__qualname__
'C.D'
>>> C.D.meth.__qualname__
'C.D.meth'

When used to refer to modules, the fully qualified name means the entire dotted path to the module, including any
parent packages, e.g. email.mime.text:

>>> import email.mime.text
>>> email.mime.text.__name__
'email.mime.text'

jumlah referensi
The number of references to an object. When the reference count of an object drops to zero, it is deallocated.
Reference counting is generally not visible to Python code, but it is a key element of the CPython implementation.
Programmers can call the sys.getrefcount() function to return the reference count for a particular object.

paket biasa
A traditional package, such as a directory containing an __init__.py file.

Lihat juga namespace package.

__slots__
A declaration inside a class that saves memory by pre-declaring space for instance attributes and eliminating in-
stance dictionaries. Though popular, the technique is somewhat tricky to get right and is best reserved for rare
cases where there are large numbers of instances in a memory-critical application.

urutan
An iterablewhich supports efficient element access using integer indices via the __getitem__() special method
and defines a__len__()method that returns the length of the sequence. Some built-in sequence types arelist,
str, tuple, and bytes. Note that dict also supports __getitem__() and __len__(), but is considered
a mapping rather than a sequence because the lookups use arbitrary immutable keys rather than integers.

The collections.abc.Sequence abstract base class defines a much richer interface that goes be-
yond just __getitem__() and __len__(), adding count(), index(), __contains__(), and
__reversed__(). Types that implement this expanded interface can be registered explicitly using
register(). For more documentation on sequence methods generally, see Common Sequence Operations.

set comprehension
A compact way to process all or part of the elements in an iterable and return a set with the results. results
= {c for c in 'abracadabra' if c not in 'abc'} generates the set of strings {'r', 'd'}.
See comprehensions.

single dispatch
A form of generic function dispatch where the implementation is chosen based on the type of a single argument.

slice
An object usually containing a portion of a sequence. A slice is created using the subscript notation, [] with
colons between numbers when several are given, such as in variable_name[1:3:5]. The bracket (subscript)
notation uses slice objects internally.

98 Lampiran A. Ikhtisar

Python Frequently Asked Questions, Rilis 3.11.10

special method
Amethod that is called implicitly by Python to execute a certain operation on a type, such as addition. Suchmethods
have names starting and ending with double underscores. Special methods are documented in specialnames.

pernyataan
A statement is part of a suite (a ”block” of code). A statement is either an expression or one of several constructs
with a keyword, such as if, while or for.

static type checker
An external tool that reads Python code and analyzes it, looking for issues such as incorrect types. See also type
hints and the typing module.

strong reference
In Python’s C API, a strong reference is a reference to an object which is owned by the code holding the refe-
rence. The strong reference is taken by calling Py_INCREF() when the reference is created and released with
Py_DECREF() when the reference is deleted.

The Py_NewRef() function can be used to create a strong reference to an object. Usually, the Py_DECREF()
function must be called on the strong reference before exiting the scope of the strong reference, to avoid leaking
one reference.

See also borrowed reference.

text encoding
A string in Python is a sequence of Unicode code points (in range U+0000--U+10FFFF). To store or transfer a
string, it needs to be serialized as a sequence of bytes.

Serializing a string into a sequence of bytes is known as ”encoding”, and recreating the string from the sequence
of bytes is known as ”decoding”.

There are a variety of different text serialization codecs, which are collectively referred to as ”text encodings”.

berkas teks
A file object able to read and write str objects. Often, a text file actually accesses a byte-oriented datastream
and handles the text encoding automatically. Examples of text files are files opened in text mode ('r' or 'w'),
sys.stdin, sys.stdout, and instances of io.StringIO.

See also binary file for a file object able to read and write bytes-like objects.

teks tiga-kutip
A string which is bound by three instances of either a quotation mark (”) or an apostrophe (’). While they don’t
provide any functionality not available with single-quoted strings, they are useful for a number of reasons. They
allow you to include unescaped single and double quotes within a string and they can span multiple lines without
the use of the continuation character, making them especially useful when writing docstrings.

tipe
The type of a Python object determines what kind of object it is; every object has a type. An object’s type is
accessible as its __class__ attribute or can be retrieved with type(obj).

type alias
A synonym for a type, created by assigning the type to an identifier.

Type aliases are useful for simplifying type hints. For example:

def remove_gray_shades(
colors: list[tuple[int, int, int]]) -> list[tuple[int, int, int]]:

pass

could be made more readable like this:

99

Python Frequently Asked Questions, Rilis 3.11.10

Color = tuple[int, int, int]

def remove_gray_shades(colors: list[Color]) -> list[Color]:
pass

See typing and PEP 484, which describe this functionality.

type hint
An annotation that specifies the expected type for a variable, a class attribute, or a function parameter or return
value.

Type hints are optional and are not enforced by Python but they are useful to static type checkers. They can also
aid IDEs with code completion and refactoring.

Type hints of global variables, class attributes, and functions, but not local variables, can be accessed using
typing.get_type_hints().

See typing and PEP 484, which describe this functionality.

universal newlines
A manner of interpreting text streams in which all of the following are recognized as ending a line: the Unix end-
of-line convention '\n', the Windows convention '\r\n', and the old Macintosh convention '\r'. See PEP
278 and PEP 3116, as well as bytes.splitlines() for an additional use.

anotasi variabel
An annotation of a variable or a class attribute.

When annotating a variable or a class attribute, assignment is optional:

class C:
field: 'annotation'

Variable annotations are usually used for type hints: for example this variable is expected to take int values:

count: int = 0

Variable annotation syntax is explained in section annassign.

See function annotation, PEP 484 and PEP 526, which describe this functionality. Also see annotations-howto
for best practices on working with annotations.

lingkungan virtual
Lingkungan runtime kooperatif yang memungkinkan pengguna dan aplikasi Python untuk menginstal dan mem-
perbarui paket distribusi Python tanpa mengganggu perilaku aplikasi Python lain yang berjalan pada sistem yang
sama.

Lihat juga venv.

mesin virtual
A computer defined entirely in software. Python’s virtual machine executes the bytecode emitted by the bytecode
compiler.

Zen of Python
Listing of Python design principles and philosophies that are helpful in understanding and using the language. The
listing can be found by typing ”import this” at the interactive prompt.

100 Lampiran A. Ikhtisar

https://peps.python.org/pep-0484/
https://peps.python.org/pep-0484/
https://peps.python.org/pep-0278/
https://peps.python.org/pep-0278/
https://peps.python.org/pep-3116/
https://peps.python.org/pep-0484/
https://peps.python.org/pep-0526/

LAMPIRANB

Tentang dokumen-dokumen ini

Dokumen-dokumen ini dihasilkan dari reStructuredText dengan Sphinx, sebuah pemroses dokumen yang khusus ditulis
untuk dokumentasi Python.

Pengembangan dokumentasi dan perangkat pengembangannya sepenuhnya upaya sukarela, seperti halnya Python. Jika
anda ingin berkontribusi, silakan lihat halaman reporting-bugs untuk informasi cara melakukannya. Relawan baru selalu
diterima!

Terima kasih banyak untuk:

• Fred L. Drake, Jr., pembuat awal kumpulan alat dokumentasi Python dan penulis banyak konten;

• the Docutils project for creating reStructuredText and the Docutils suite;

• Fredrik Lundh for his Alternative Python Reference project from which Sphinx got many good ideas.

B.1 Kontributor untuk dokumentasi Python

Banyak orang telah berkontribusi ke bahasa Python, pustaka standar Python, dan dokumentasi Python. LihatMisc/ACKS
di distribusi kode sumber Python untuk sebagian daftar kontributor-kontributor.

Hanya dengan masukan dan kontribusi dari komunitas Python sehingga Python memiliki dokumentasi yang sangat baik.
Terima kasih!

101

https://docutils.sourceforge.io/rst.html
https://www.sphinx-doc.org/
https://docutils.sourceforge.io/
https://github.com/python/cpython/tree/3.11/Misc/ACKS

Python Frequently Asked Questions, Rilis 3.11.10

102 Lampiran B. Tentang dokumen-dokumen ini

LAMPIRANC

Sejarah dan Lisensi

C.1 Sejarah perangkat lunak

Python diciptakan pada awal 1990-an oleh Guido van Rossum di Stichting Mathematisch Centrum (CWI, lihat https://
www.cwi.nl/) di Belanda sebagai penerus bahasa yang disebut ABC.Guido tetapmenjadi penulis utama Python, meskipun
ia memasukkan banyak kontribusi dari orang lain.

Pada tahun 1995, Guido melanjutkan karyanya tentang Python di Corporation for National Research Initiatives (CNRI,
lihat https://www.cnri.reston.va.us/) di Reston, Virginia di mana ia merilis beberapa versi perangkat lunak.

In May 2000, Guido and the Python core development team moved to BeOpen.com to form the BeOpen PythonLabs
team. In October of the same year, the PythonLabs team moved to Digital Creations (now Zope Corporation; see https:
//www.zope.org/). In 2001, the Python Software Foundation (PSF, see https://www.python.org/psf/) was formed, a non-
profit organization created specifically to own Python-related Intellectual Property. Zope Corporation is a sponsoring
member of the PSF.

Semua rilis Python adalah Sumber Terbuka (lihat https://opensource.org/ untuk Definisi Sumber Terbuka). Secara histo-
ris, sebagian besar, tetapi tidak semua, rilis Python juga kompatibel dengan GPL; tabel di bawah ini merangkum berbagai
rilis.

Rilis Berasal dari Tahun Pemilik GPL compatible?

0.9.0 hingga 1.2 t/a 1991-1995 CWI ya
1.3 hingga 1.5.2 1.2 1995-1999 CNRI ya
1.6 1.5.2 2000 CNRI tidak
2.0 1.6 2000 BeOpen.com tidak
1.6.1 1.6 2001 CNRI tidak
2.1 2.0+1.6.1 2001 PSF tidak
2.0.1 2.0+1.6.1 2001 PSF ya
2.1.1 2.1+2.0.1 2001 PSF ya
2.1.2 2.1.1 2002 PSF ya
2.1.3 2.1.2 2002 PSF ya
2.2 dan ke atas 2.1.1 2001-sekarang PSF ya

103

https://www.cwi.nl/
https://www.cwi.nl/
https://www.cnri.reston.va.us/
https://www.zope.org/
https://www.zope.org/
https://www.python.org/psf/
https://opensource.org/

Python Frequently Asked Questions, Rilis 3.11.10

Catatan: GPL-compatible doesn’t mean that we’re distributing Python under the GPL. All Python licenses, unlike the
GPL, let you distribute a modified version without making your changes open source. The GPL-compatible licenses
make it possible to combine Python with other software that is released under the GPL; the others don’t.

Terima kasih kepada banyak sukarelawan eksternal yang telah bekerja di bawah arahan Guido untuk mewujudkan rilis-
rilis ini.

C.2 Syarat dan ketentuan untuk mengakses atau menggunakan
Python

Python software and documentation are licensed under the PSF License Agreement.

Starting with Python 3.8.6, examples, recipes, and other code in the documentation are dual licensed under the PSF
License Agreement and the Zero-Clause BSD license.

Some software incorporated into Python is under different licenses. The licenses are listed with code falling under that
license. See Lisensi dan Ucapan Terima Kasih untuk Perangkat Lunak yang Tergabung for an incomplete list of these
licenses.

C.2.1 LISENSI PERJANJIAN PSF UNTUK PYTHON 3.11.10

1. This LICENSE AGREEMENT is between the Python Software Foundation ("PSF"),␣
↪→and

the Individual or Organization ("Licensee") accessing and otherwise using␣
↪→Python

3.11.10 software in source or binary form and its associated documentation.

2. Subject to the terms and conditions of this License Agreement, PSF hereby
grants Licensee a nonexclusive, royalty-free, world-wide license to␣

↪→reproduce,
analyze, test, perform and/or display publicly, prepare derivative works,
distribute, and otherwise use Python 3.11.10 alone or in any derivative
version, provided, however, that PSF's License Agreement and PSF's notice␣

↪→of
copyright, i.e., "Copyright © 2001-2023 Python Software Foundation; All␣

↪→Rights
Reserved" are retained in Python 3.11.10 alone or in any derivative version
prepared by Licensee.

3. In the event Licensee prepares a derivative work that is based on or
incorporates Python 3.11.10 or any part thereof, and wants to make the
derivative work available to others as provided herein, then Licensee␣

↪→hereby
agrees to include in any such work a brief summary of the changes made to␣

↪→Python
3.11.10.

4. PSF is making Python 3.11.10 available to Licensee on an "AS IS" basis.
PSF MAKES NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF

104 Lampiran C. Sejarah dan Lisensi

Python Frequently Asked Questions, Rilis 3.11.10

EXAMPLE, BUT NOT LIMITATION, PSF MAKES NO AND DISCLAIMS ANY REPRESENTATION␣
↪→OR

WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT␣
↪→THE

USE OF PYTHON 3.11.10 WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

5. PSF SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF PYTHON 3.11.10
FOR ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT␣

↪→OF
MODIFYING, DISTRIBUTING, OR OTHERWISE USING PYTHON 3.11.10, OR ANY␣

↪→DERIVATIVE
THEREOF, EVEN IF ADVISED OF THE POSSIBILITY THEREOF.

6. This License Agreement will automatically terminate upon a material breach␣
↪→of

its terms and conditions.

7. Nothing in this License Agreement shall be deemed to create any␣
↪→relationship

of agency, partnership, or joint venture between PSF and Licensee. This␣
↪→License

Agreement does not grant permission to use PSF trademarks or trade name in␣
↪→a

trademark sense to endorse or promote products or services of Licensee, or␣
↪→any

third party.

8. By copying, installing or otherwise using Python 3.11.10, Licensee agrees
to be bound by the terms and conditions of this License Agreement.

C.2.2 LISENSI PERJANJIAN BEOPEN.COM UNTUK PYTHON 2.0

LISENSI PERJANJIAN BEOPEN SUMBER TERBUKA PYTHON VERSI 1

1. This LICENSE AGREEMENT is between BeOpen.com ("BeOpen"), having an office at
160 Saratoga Avenue, Santa Clara, CA 95051, and the Individual or Organization
("Licensee") accessing and otherwise using this software in source or binary
form and its associated documentation ("the Software").

2. Subject to the terms and conditions of this BeOpen Python License Agreement,
BeOpen hereby grants Licensee a non-exclusive, royalty-free, world-wide license
to reproduce, analyze, test, perform and/or display publicly, prepare derivative
works, distribute, and otherwise use the Software alone or in any derivative
version, provided, however, that the BeOpen Python License is retained in the
Software, alone or in any derivative version prepared by Licensee.

3. BeOpen is making the Software available to Licensee on an "AS IS" basis.
BEOPEN MAKES NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF
EXAMPLE, BUT NOT LIMITATION, BEOPEN MAKES NO AND DISCLAIMS ANY REPRESENTATION OR
WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE
USE OF THE SOFTWARE WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

4. BEOPEN SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF THE SOFTWARE FOR
ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT OF USING,

(berlanjut ke halaman berikutnya)

C.2. Syarat dan ketentuan untuk mengakses atau menggunakan Python 105

Python Frequently Asked Questions, Rilis 3.11.10

(lanjutan dari halaman sebelumnya)

MODIFYING OR DISTRIBUTING THE SOFTWARE, OR ANY DERIVATIVE THEREOF, EVEN IF
ADVISED OF THE POSSIBILITY THEREOF.

5. This License Agreement will automatically terminate upon a material breach of
its terms and conditions.

6. This License Agreement shall be governed by and interpreted in all respects
by the law of the State of California, excluding conflict of law provisions.
Nothing in this License Agreement shall be deemed to create any relationship of
agency, partnership, or joint venture between BeOpen and Licensee. This License
Agreement does not grant permission to use BeOpen trademarks or trade names in a
trademark sense to endorse or promote products or services of Licensee, or any
third party. As an exception, the "BeOpen Python" logos available at
http://www.pythonlabs.com/logos.html may be used according to the permissions
granted on that web page.

7. By copying, installing or otherwise using the software, Licensee agrees to be
bound by the terms and conditions of this License Agreement.

C.2.3 LISENSI PERJANJIAN CNRI UNTUK PYTHON 1.6.1

1. This LICENSE AGREEMENT is between the Corporation for National Research
Initiatives, having an office at 1895 Preston White Drive, Reston, VA 20191
("CNRI"), and the Individual or Organization ("Licensee") accessing and
otherwise using Python 1.6.1 software in source or binary form and its
associated documentation.

2. Subject to the terms and conditions of this License Agreement, CNRI hereby
grants Licensee a nonexclusive, royalty-free, world-wide license to reproduce,
analyze, test, perform and/or display publicly, prepare derivative works,
distribute, and otherwise use Python 1.6.1 alone or in any derivative version,
provided, however, that CNRI's License Agreement and CNRI's notice of copyright,
i.e., "Copyright © 1995-2001 Corporation for National Research Initiatives; All
Rights Reserved" are retained in Python 1.6.1 alone or in any derivative version
prepared by Licensee. Alternately, in lieu of CNRI's License Agreement,
Licensee may substitute the following text (omitting the quotes): "Python 1.6.1
is made available subject to the terms and conditions in CNRI's License
Agreement. This Agreement together with Python 1.6.1 may be located on the
internet using the following unique, persistent identifier (known as a handle):
1895.22/1013. This Agreement may also be obtained from a proxy server on the
internet using the following URL: http://hdl.handle.net/1895.22/1013."

3. In the event Licensee prepares a derivative work that is based on or
incorporates Python 1.6.1 or any part thereof, and wants to make the derivative
work available to others as provided herein, then Licensee hereby agrees to
include in any such work a brief summary of the changes made to Python 1.6.1.

4. CNRI is making Python 1.6.1 available to Licensee on an "AS IS" basis. CNRI
MAKES NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF EXAMPLE,
BUT NOT LIMITATION, CNRI MAKES NO AND DISCLAIMS ANY REPRESENTATION OR WARRANTY
OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE USE OF
PYTHON 1.6.1 WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

5. CNRI SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF PYTHON 1.6.1 FOR
ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT OF

(berlanjut ke halaman berikutnya)

106 Lampiran C. Sejarah dan Lisensi

Python Frequently Asked Questions, Rilis 3.11.10

(lanjutan dari halaman sebelumnya)

MODIFYING, DISTRIBUTING, OR OTHERWISE USING PYTHON 1.6.1, OR ANY DERIVATIVE
THEREOF, EVEN IF ADVISED OF THE POSSIBILITY THEREOF.

6. This License Agreement will automatically terminate upon a material breach of
its terms and conditions.

7. This License Agreement shall be governed by the federal intellectual property
law of the United States, including without limitation the federal copyright
law, and, to the extent such U.S. federal law does not apply, by the law of the
Commonwealth of Virginia, excluding Virginia's conflict of law provisions.
Notwithstanding the foregoing, with regard to derivative works based on Python
1.6.1 that incorporate non-separable material that was previously distributed
under the GNU General Public License (GPL), the law of the Commonwealth of
Virginia shall govern this License Agreement only as to issues arising under or
with respect to Paragraphs 4, 5, and 7 of this License Agreement. Nothing in
this License Agreement shall be deemed to create any relationship of agency,
partnership, or joint venture between CNRI and Licensee. This License Agreement
does not grant permission to use CNRI trademarks or trade name in a trademark
sense to endorse or promote products or services of Licensee, or any third
party.

8. By clicking on the "ACCEPT" button where indicated, or by copying, installing
or otherwise using Python 1.6.1, Licensee agrees to be bound by the terms and
conditions of this License Agreement.

C.2.4 LISENSI PERJANJIAN CWI UNTUK PYTHON 0.9.0 SAMPAI 1.2

Copyright © 1991 - 1995, Stichting Mathematisch Centrum Amsterdam, The
Netherlands. All rights reserved.

Permission to use, copy, modify, and distribute this software and its
documentation for any purpose and without fee is hereby granted, provided that
the above copyright notice appear in all copies and that both that copyright
notice and this permission notice appear in supporting documentation, and that
the name of Stichting Mathematisch Centrum or CWI not be used in advertising or
publicity pertaining to distribution of the software without specific, written
prior permission.

STICHTING MATHEMATISCH CENTRUM DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS
SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN NO
EVENT SHALL STICHTING MATHEMATISCH CENTRUM BE LIABLE FOR ANY SPECIAL, INDIRECT
OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE,
DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS
SOFTWARE.

C.2. Syarat dan ketentuan untuk mengakses atau menggunakan Python 107

Python Frequently Asked Questions, Rilis 3.11.10

C.2.5 ZERO-CLAUSE BSD LICENSE FOR CODE IN THE PYTHON 3.11.10 DOCUMEN-
TATION

Permission to use, copy, modify, and/or distribute this software for any
purpose with or without fee is hereby granted.

THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH
REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT,
INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM
LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR
OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
PERFORMANCE OF THIS SOFTWARE.

C.3 Lisensi dan Ucapan Terima Kasih untuk Perangkat Lunak yang
Tergabung

Bagian ini tidak lengkap, tetapi daftar lisensi dan ucapan terima kasih yang terus bertambah untuk perangkat lunak pihak
ketiga yang tergabung dalam distribusi Python.

C.3.1 Mersenne Twister

The _random module includes code based on a download from http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/
MT2002/emt19937ar.html. The following are the verbatim comments from the original code:

A C-program for MT19937, with initialization improved 2002/1/26.
Coded by Takuji Nishimura and Makoto Matsumoto.

Before using, initialize the state by using init_genrand(seed)
or init_by_array(init_key, key_length).

Copyright (C) 1997 - 2002, Makoto Matsumoto and Takuji Nishimura,
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

3. The names of its contributors may not be used to endorse or promote
products derived from this software without specific prior written
permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR

(berlanjut ke halaman berikutnya)

108 Lampiran C. Sejarah dan Lisensi

http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/MT2002/emt19937ar.html
http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/MT2002/emt19937ar.html

Python Frequently Asked Questions, Rilis 3.11.10

(lanjutan dari halaman sebelumnya)

A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Any feedback is very welcome.
http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html
email: m-mat @ math.sci.hiroshima-u.ac.jp (remove space)

C.3.2 Soket

The socket module uses the functions, getaddrinfo(), and getnameinfo(), which are coded in separate
source files from the WIDE Project, https://www.wide.ad.jp/.

Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
1. Redistributions of source code must retain the above copyright

notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright

notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

3. Neither the name of the project nor the names of its contributors
may be used to endorse or promote products derived from this software
without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

C.3. Lisensi dan Ucapan Terima Kasih untuk Perangkat Lunak yang Tergabung 109

https://www.wide.ad.jp/

Python Frequently Asked Questions, Rilis 3.11.10

C.3.3 Layanan soket asinkron

Modul asynchat dan asyncore berisi pemberitahuan berikut:

Copyright 1996 by Sam Rushing

All Rights Reserved

Permission to use, copy, modify, and distribute this software and
its documentation for any purpose and without fee is hereby
granted, provided that the above copyright notice appear in all
copies and that both that copyright notice and this permission
notice appear in supporting documentation, and that the name of Sam
Rushing not be used in advertising or publicity pertaining to
distribution of the software without specific, written prior
permission.

SAM RUSHING DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE,
INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN
NO EVENT SHALL SAM RUSHING BE LIABLE FOR ANY SPECIAL, INDIRECT OR
CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS
OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT,
NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

C.3.4 Pengelolaan Cookie

Modul http.cookies berisi pemberitahuan berikut:

Copyright 2000 by Timothy O'Malley <timo@alum.mit.edu>

All Rights Reserved

Permission to use, copy, modify, and distribute this software
and its documentation for any purpose and without fee is hereby
granted, provided that the above copyright notice appear in all
copies and that both that copyright notice and this permission
notice appear in supporting documentation, and that the name of
Timothy O'Malley not be used in advertising or publicity
pertaining to distribution of the software without specific, written
prior permission.

Timothy O'Malley DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS
SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS, IN NO EVENT SHALL Timothy O'Malley BE LIABLE FOR
ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
PERFORMANCE OF THIS SOFTWARE.

110 Lampiran C. Sejarah dan Lisensi

Python Frequently Asked Questions, Rilis 3.11.10

C.3.5 Pelacakan eksekusi

Modul trace berisi pemberitahuan berikut:

portions copyright 2001, Autonomous Zones Industries, Inc., all rights...
err... reserved and offered to the public under the terms of the
Python 2.2 license.
Author: Zooko O'Whielacronx
http://zooko.com/
mailto:zooko@zooko.com

Copyright 2000, Mojam Media, Inc., all rights reserved.
Author: Skip Montanaro

Copyright 1999, Bioreason, Inc., all rights reserved.
Author: Andrew Dalke

Copyright 1995-1997, Automatrix, Inc., all rights reserved.
Author: Skip Montanaro

Copyright 1991-1995, Stichting Mathematisch Centrum, all rights reserved.

Permission to use, copy, modify, and distribute this Python software and
its associated documentation for any purpose without fee is hereby
granted, provided that the above copyright notice appears in all copies,
and that both that copyright notice and this permission notice appear in
supporting documentation, and that the name of neither Automatrix,
Bioreason or Mojam Media be used in advertising or publicity pertaining to
distribution of the software without specific, written prior permission.

C.3.6 UUencode and UUdecode functions

Modul uu berisi pemberitahuan berikut:

Copyright 1994 by Lance Ellinghouse
Cathedral City, California Republic, United States of America.

All Rights Reserved
Permission to use, copy, modify, and distribute this software and its
documentation for any purpose and without fee is hereby granted,
provided that the above copyright notice appear in all copies and that
both that copyright notice and this permission notice appear in
supporting documentation, and that the name of Lance Ellinghouse
not be used in advertising or publicity pertaining to distribution
of the software without specific, written prior permission.
LANCE ELLINGHOUSE DISCLAIMS ALL WARRANTIES WITH REGARD TO
THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS, IN NO EVENT SHALL LANCE ELLINGHOUSE CENTRUM BE LIABLE
FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT
OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

Modified by Jack Jansen, CWI, July 1995:
- Use binascii module to do the actual line-by-line conversion

between ascii and binary. This results in a 1000-fold speedup. The C

(berlanjut ke halaman berikutnya)

C.3. Lisensi dan Ucapan Terima Kasih untuk Perangkat Lunak yang Tergabung 111

Python Frequently Asked Questions, Rilis 3.11.10

(lanjutan dari halaman sebelumnya)

version is still 5 times faster, though.
- Arguments more compliant with Python standard

C.3.7 XML Remote Procedure Calls

Modul xmlrpc.client berisi pemberitahuan berikut:

The XML-RPC client interface is

Copyright (c) 1999-2002 by Secret Labs AB
Copyright (c) 1999-2002 by Fredrik Lundh

By obtaining, using, and/or copying this software and/or its
associated documentation, you agree that you have read, understood,
and will comply with the following terms and conditions:

Permission to use, copy, modify, and distribute this software and
its associated documentation for any purpose and without fee is
hereby granted, provided that the above copyright notice appears in
all copies, and that both that copyright notice and this permission
notice appear in supporting documentation, and that the name of
Secret Labs AB or the author not be used in advertising or publicity
pertaining to distribution of the software without specific, written
prior permission.

SECRET LABS AB AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH REGARD
TO THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANT-
ABILITY AND FITNESS. IN NO EVENT SHALL SECRET LABS AB OR THE AUTHOR
BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY
DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
OF THIS SOFTWARE.

C.3.8 test_epoll

The test.test_epoll module contains the following notice:

Copyright (c) 2001-2006 Twisted Matrix Laboratories.

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF

(berlanjut ke halaman berikutnya)

112 Lampiran C. Sejarah dan Lisensi

Python Frequently Asked Questions, Rilis 3.11.10

(lanjutan dari halaman sebelumnya)

MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

C.3.9 Pilih kqueue

Modul select berisi pemberitahuan berikut untuk antarmuka kqueue:

Copyright (c) 2000 Doug White, 2006 James Knight, 2007 Christian Heimes
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
1. Redistributions of source code must retain the above copyright

notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright

notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

C.3.10 SipHash24

The file Python/pyhash.c contains Marek Majkowski’ implementation of Dan Bernstein’s SipHash24 algorithm. It
contains the following note:

<MIT License>
Copyright (c) 2013 Marek Majkowski <marek@popcount.org>

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
</MIT License>

(berlanjut ke halaman berikutnya)

C.3. Lisensi dan Ucapan Terima Kasih untuk Perangkat Lunak yang Tergabung 113

Python Frequently Asked Questions, Rilis 3.11.10

(lanjutan dari halaman sebelumnya)

Original location:
https://github.com/majek/csiphash/

Solution inspired by code from:
Samuel Neves (supercop/crypto_auth/siphash24/little)
djb (supercop/crypto_auth/siphash24/little2)
Jean-Philippe Aumasson (https://131002.net/siphash/siphash24.c)

C.3.11 strtod dan dtoa

The file Python/dtoa.c, which supplies C functions dtoa and strtod for conversion of C doubles to and from strings,
is derived from the file of the same name by David M. Gay, currently available from https://web.archive.org/web/
20220517033456/http://www.netlib.org/fp/dtoa.c. The original file, as retrieved on March 16, 2009, contains the fo-
llowing copyright and licensing notice:

/**
*
* The author of this software is David M. Gay.
*
* Copyright (c) 1991, 2000, 2001 by Lucent Technologies.
*
* Permission to use, copy, modify, and distribute this software for any
* purpose without fee is hereby granted, provided that this entire notice
* is included in all copies of any software which is or includes a copy
* or modification of this software and in all copies of the supporting
* documentation for such software.
*
* THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR IMPLIED
* WARRANTY. IN PARTICULAR, NEITHER THE AUTHOR NOR LUCENT MAKES ANY
* REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE MERCHANTABILITY
* OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR PURPOSE.
*
***/

C.3.12 OpenSSL

The modules hashlib, posix, ssl, crypt use the OpenSSL library for added performance if made available by
the operating system. Additionally, the Windows and macOS installers for Python may include a copy of the OpenSSL
libraries, so we include a copy of the OpenSSL license here. For the OpenSSL 3.0 release, and later releases derived
from that, the Apache License v2 applies:

Apache License
Version 2.0, January 2004

https://www.apache.org/licenses/

TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION

1. Definitions.

"License" shall mean the terms and conditions for use, reproduction,
and distribution as defined by Sections 1 through 9 of this document.

"Licensor" shall mean the copyright owner or entity authorized by
(berlanjut ke halaman berikutnya)

114 Lampiran C. Sejarah dan Lisensi

https://web.archive.org/web/20220517033456/http://www.netlib.org/fp/dtoa.c
https://web.archive.org/web/20220517033456/http://www.netlib.org/fp/dtoa.c

Python Frequently Asked Questions, Rilis 3.11.10

(lanjutan dari halaman sebelumnya)

the copyright owner that is granting the License.

"Legal Entity" shall mean the union of the acting entity and all
other entities that control, are controlled by, or are under common
control with that entity. For the purposes of this definition,
"control" means (i) the power, direct or indirect, to cause the
direction or management of such entity, whether by contract or
otherwise, or (ii) ownership of fifty percent (50%) or more of the
outstanding shares, or (iii) beneficial ownership of such entity.

"You" (or "Your") shall mean an individual or Legal Entity
exercising permissions granted by this License.

"Source" form shall mean the preferred form for making modifications,
including but not limited to software source code, documentation
source, and configuration files.

"Object" form shall mean any form resulting from mechanical
transformation or translation of a Source form, including but
not limited to compiled object code, generated documentation,
and conversions to other media types.

"Work" shall mean the work of authorship, whether in Source or
Object form, made available under the License, as indicated by a
copyright notice that is included in or attached to the work
(an example is provided in the Appendix below).

"Derivative Works" shall mean any work, whether in Source or Object
form, that is based on (or derived from) the Work and for which the
editorial revisions, annotations, elaborations, or other modifications
represent, as a whole, an original work of authorship. For the purposes
of this License, Derivative Works shall not include works that remain
separable from, or merely link (or bind by name) to the interfaces of,
the Work and Derivative Works thereof.

"Contribution" shall mean any work of authorship, including
the original version of the Work and any modifications or additions
to that Work or Derivative Works thereof, that is intentionally
submitted to Licensor for inclusion in the Work by the copyright owner
or by an individual or Legal Entity authorized to submit on behalf of
the copyright owner. For the purposes of this definition, "submitted"
means any form of electronic, verbal, or written communication sent
to the Licensor or its representatives, including but not limited to
communication on electronic mailing lists, source code control systems,
and issue tracking systems that are managed by, or on behalf of, the
Licensor for the purpose of discussing and improving the Work, but
excluding communication that is conspicuously marked or otherwise
designated in writing by the copyright owner as "Not a Contribution."

"Contributor" shall mean Licensor and any individual or Legal Entity
on behalf of whom a Contribution has been received by Licensor and
subsequently incorporated within the Work.

2. Grant of Copyright License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
copyright license to reproduce, prepare Derivative Works of,

(berlanjut ke halaman berikutnya)

C.3. Lisensi dan Ucapan Terima Kasih untuk Perangkat Lunak yang Tergabung 115

Python Frequently Asked Questions, Rilis 3.11.10

(lanjutan dari halaman sebelumnya)

publicly display, publicly perform, sublicense, and distribute the
Work and such Derivative Works in Source or Object form.

3. Grant of Patent License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
(except as stated in this section) patent license to make, have made,
use, offer to sell, sell, import, and otherwise transfer the Work,
where such license applies only to those patent claims licensable
by such Contributor that are necessarily infringed by their
Contribution(s) alone or by combination of their Contribution(s)
with the Work to which such Contribution(s) was submitted. If You
institute patent litigation against any entity (including a
cross-claim or counterclaim in a lawsuit) alleging that the Work
or a Contribution incorporated within the Work constitutes direct
or contributory patent infringement, then any patent licenses
granted to You under this License for that Work shall terminate
as of the date such litigation is filed.

4. Redistribution. You may reproduce and distribute copies of the
Work or Derivative Works thereof in any medium, with or without
modifications, and in Source or Object form, provided that You
meet the following conditions:

(a) You must give any other recipients of the Work or
Derivative Works a copy of this License; and

(b) You must cause any modified files to carry prominent notices
stating that You changed the files; and

(c) You must retain, in the Source form of any Derivative Works
that You distribute, all copyright, patent, trademark, and
attribution notices from the Source form of the Work,
excluding those notices that do not pertain to any part of
the Derivative Works; and

(d) If the Work includes a "NOTICE" text file as part of its
distribution, then any Derivative Works that You distribute must
include a readable copy of the attribution notices contained
within such NOTICE file, excluding those notices that do not
pertain to any part of the Derivative Works, in at least one
of the following places: within a NOTICE text file distributed
as part of the Derivative Works; within the Source form or
documentation, if provided along with the Derivative Works; or,
within a display generated by the Derivative Works, if and
wherever such third-party notices normally appear. The contents
of the NOTICE file are for informational purposes only and
do not modify the License. You may add Your own attribution
notices within Derivative Works that You distribute, alongside
or as an addendum to the NOTICE text from the Work, provided
that such additional attribution notices cannot be construed
as modifying the License.

You may add Your own copyright statement to Your modifications and
may provide additional or different license terms and conditions
for use, reproduction, or distribution of Your modifications, or
for any such Derivative Works as a whole, provided Your use,

(berlanjut ke halaman berikutnya)

116 Lampiran C. Sejarah dan Lisensi

Python Frequently Asked Questions, Rilis 3.11.10

(lanjutan dari halaman sebelumnya)

reproduction, and distribution of the Work otherwise complies with
the conditions stated in this License.

5. Submission of Contributions. Unless You explicitly state otherwise,
any Contribution intentionally submitted for inclusion in the Work
by You to the Licensor shall be under the terms and conditions of
this License, without any additional terms or conditions.
Notwithstanding the above, nothing herein shall supersede or modify
the terms of any separate license agreement you may have executed
with Licensor regarding such Contributions.

6. Trademarks. This License does not grant permission to use the trade
names, trademarks, service marks, or product names of the Licensor,
except as required for reasonable and customary use in describing the
origin of the Work and reproducing the content of the NOTICE file.

7. Disclaimer of Warranty. Unless required by applicable law or
agreed to in writing, Licensor provides the Work (and each
Contributor provides its Contributions) on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied, including, without limitation, any warranties or conditions
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
PARTICULAR PURPOSE. You are solely responsible for determining the
appropriateness of using or redistributing the Work and assume any
risks associated with Your exercise of permissions under this License.

8. Limitation of Liability. In no event and under no legal theory,
whether in tort (including negligence), contract, or otherwise,
unless required by applicable law (such as deliberate and grossly
negligent acts) or agreed to in writing, shall any Contributor be
liable to You for damages, including any direct, indirect, special,
incidental, or consequential damages of any character arising as a
result of this License or out of the use or inability to use the
Work (including but not limited to damages for loss of goodwill,
work stoppage, computer failure or malfunction, or any and all
other commercial damages or losses), even if such Contributor
has been advised of the possibility of such damages.

9. Accepting Warranty or Additional Liability. While redistributing
the Work or Derivative Works thereof, You may choose to offer,
and charge a fee for, acceptance of support, warranty, indemnity,
or other liability obligations and/or rights consistent with this
License. However, in accepting such obligations, You may act only
on Your own behalf and on Your sole responsibility, not on behalf
of any other Contributor, and only if You agree to indemnify,
defend, and hold each Contributor harmless for any liability
incurred by, or claims asserted against, such Contributor by reason
of your accepting any such warranty or additional liability.

END OF TERMS AND CONDITIONS

C.3. Lisensi dan Ucapan Terima Kasih untuk Perangkat Lunak yang Tergabung 117

Python Frequently Asked Questions, Rilis 3.11.10

C.3.13 expat

The pyexpat extension is built using an included copy of the expat sources unless the build is configured
--with-system-expat:

Copyright (c) 1998, 1999, 2000 Thai Open Source Software Center Ltd
and Clark Cooper

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

C.3.14 libffi

The _ctypes extension is built using an included copy of the libffi sources unless the build is configured
--with-system-libffi:

Copyright (c) 1996-2008 Red Hat, Inc and others.

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
``Software''), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED ``AS IS'', WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.

118 Lampiran C. Sejarah dan Lisensi

Python Frequently Asked Questions, Rilis 3.11.10

C.3.15 zlib

The zlib extension is built using an included copy of the zlib sources if the zlib version found on the system is too old
to be used for the build:

Copyright (C) 1995-2011 Jean-loup Gailly and Mark Adler

This software is provided 'as-is', without any express or implied
warranty. In no event will the authors be held liable for any damages
arising from the use of this software.

Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it
freely, subject to the following restrictions:

1. The origin of this software must not be misrepresented; you must not
claim that you wrote the original software. If you use this software
in a product, an acknowledgment in the product documentation would be
appreciated but is not required.

2. Altered source versions must be plainly marked as such, and must not be
misrepresented as being the original software.

3. This notice may not be removed or altered from any source distribution.

Jean-loup Gailly Mark Adler
jloup@gzip.org madler@alumni.caltech.edu

C.3.16 cfuhash

The implementation of the hash table used by the tracemalloc is based on the cfuhash project:

Copyright (c) 2005 Don Owens
All rights reserved.

This code is released under the BSD license:

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following
disclaimer in the documentation and/or other materials provided
with the distribution.

* Neither the name of the author nor the names of its
contributors may be used to endorse or promote products derived
from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS

(berlanjut ke halaman berikutnya)

C.3. Lisensi dan Ucapan Terima Kasih untuk Perangkat Lunak yang Tergabung 119

Python Frequently Asked Questions, Rilis 3.11.10

(lanjutan dari halaman sebelumnya)

FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
OF THE POSSIBILITY OF SUCH DAMAGE.

C.3.17 libmpdec

The _decimal module is built using an included copy of the libmpdec library unless the build is configured
--with-system-libmpdec:

Copyright (c) 2008-2020 Stefan Krah. All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

C.3.18 Rangkaian pengujian W3C C14N

The C14N 2.0 test suite in the test package (Lib/test/xmltestdata/c14n-20/) was retrieved from theW3C
website at https://www.w3.org/TR/xml-c14n2-testcases/ and is distributed under the 3-clause BSD license:

Copyright (c) 2013 W3C(R) (MIT, ERCIM, Keio, Beihang),
All Rights Reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

* Redistributions of works must retain the original copyright notice,

(berlanjut ke halaman berikutnya)

120 Lampiran C. Sejarah dan Lisensi

https://www.w3.org/TR/xml-c14n2-testcases/

Python Frequently Asked Questions, Rilis 3.11.10

(lanjutan dari halaman sebelumnya)

this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the original copyright

notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

* Neither the name of the W3C nor the names of its contributors may be
used to endorse or promote products derived from this work without
specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

C.3.19 Audioop

The audioop module uses the code base in g771.c file of the SoX project. https://sourceforge.net/projects/sox/files/sox/
12.17.7/sox-12.17.7.tar.gz

This source code is a product of Sun Microsystems, Inc. and is provided for unrestricted use. Users may
copy or modify this source code without charge.

SUN SOURCE CODE IS PROVIDED AS IS WITH NO WARRANTIES OF ANY KIND INCLUDING
THEWARRANTIES OF DESIGN, MERCHANTIBILITY AND FITNESS FOR A PARTICULAR PUR-
POSE, OR ARISING FROM A COURSE OF DEALING, USAGE OR TRADE PRACTICE.

Sun source code is provided with no support and without any obligation on the part of Sun Microsystems,
Inc. to assist in its use, correction, modification or enhancement.

SUN MICROSYSTEMS, INC. SHALL HAVE NO LIABILITY WITH RESPECT TO THE INFRINGE-
MENT OF COPYRIGHTS, TRADE SECRETS OR ANY PATENTS BY THIS SOFTWARE OR ANY
PART THEREOF.

In no event will Sun Microsystems, Inc. be liable for any lost revenue or profits or other special, indirect and
consequential damages, even if Sun has been advised of the possibility of such damages.

Sun Microsystems, Inc. 2550 Garcia Avenue Mountain View, California 94043

C.3.20 asyncio

Parts of the asyncio module are incorporated from uvloop 0.16, which is distributed under the MIT license:

Copyright (c) 2015-2021 MagicStack Inc. http://magic.io

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to

(berlanjut ke halaman berikutnya)

C.3. Lisensi dan Ucapan Terima Kasih untuk Perangkat Lunak yang Tergabung 121

https://sourceforge.net/projects/sox/files/sox/12.17.7/sox-12.17.7.tar.gz
https://sourceforge.net/projects/sox/files/sox/12.17.7/sox-12.17.7.tar.gz
https://github.com/MagicStack/uvloop/tree/v0.16.0

Python Frequently Asked Questions, Rilis 3.11.10

(lanjutan dari halaman sebelumnya)

permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

122 Lampiran C. Sejarah dan Lisensi

LAMPIRAND

Hak Cipta

Python dan dokumentasi ini adalah:

Copyright © 2001-2023 Python Software Foundation. All rights reserved.

Hak Cipta © 2000 BeOpen.com. Seluruh hak cipta.

Hak Cipta © 1995-2000 Corporation for National Research Initiatives. Seluruh hak cipta.

Hak Cipta © 1991-1995 Stichting Mathematisch Centrum. Seluruh hak cipta.

Lihat Sejarah dan Lisensi untuk lisensi lengkap dan informasi perizinan.

123

Python Frequently Asked Questions, Rilis 3.11.10

124 Lampiran D. Hak Cipta

Indeks

Non-abjad
..., 85
2ke3, 85
>>>, 85
__future__, 90
__slots__, 98

A
anotasi, 85
anotasi fungsi, 90
anotasi variabel, 100
argumen, 86
argumen kata kunci, 93
argument

difference from parameter, 15
asynchronous iterable, 86
atribut, 87

B
BDFL, 87
berkas biner, 87
berkas teks, 99
bilangan kompleks, 88
borrowed reference, 87
bytecode, 87
bytes-like object, 87

C
callable, 87
callback, 87
C-contiguous, 88
class variable, 88
context variable, 88
contiguous, 88
coroutine, 88
coroutine function, 88
CPython, 88

D
daftar, 93

descriptor, 89
dictionary comprehension, 89
dictionary view, 89
diinterpretasi, 92
docstring, 89
duck-typing, 89

E
EAFP, 89
ekspresi, 89

F
f-string, 89
file-like object, 90
filesystem encoding and error handler,

90
finder, 90
floor division, 90
Fortran contiguous, 88
fungsi, 90
fungsi generik, 91
fungsi kunci, 93

G
generator expression, 91
generator iterator, 91
generic type, 91
GIL, 91

H
hash-based pyc, 92
hashable, 92

I
IDLE, 92
immutable, 92
import path, 92
importer, 92
importing, 92

125

Python Frequently Asked Questions, Rilis 3.11.10

interaktif, 92
interpreter shutdown, 92
iterable, 93
iterator, 93
iterator asinkron, 86
iterator generator asinkron, 86

J
jumlah referensi, 98

K
kamus, 89
kelas, 88
kelas basis abstrak, 85
kunci interpreter global, 91

L
lambda, 93
LBYL, 93
lingkungan virtual, 100
list comprehension, 94
loader, 94
locale encoding, 94

M
magic

method, 94
magic method, 94
manajer konteks, 88
manajer konteks asinkron, 86
menunggu, 87
mesin virtual, 100
meta path finder, 94
metaclass, 94
method, 94

magic, 94
special, 99

method resolution order, 94
modul, 94
modul tambahan, 89
module spec, 95
MRO, 95
mutable, 95

N
nama yang memenuhi syarat, 97
named tuple, 95
namespace, 95
namespace package, 95
nested scope, 95
new-style class, 95

O
objek, 95

objek berkas, 90

P
paket, 96
paket biasa, 98
parameter, 96

difference from argument, 15
PATH, 58
path based finder, 96
path entry, 96
path entry finder, 96
path entry hook, 96
path-like object, 96
pembangkit, 91
pembangkit asinkron, 86
pemetaan, 94
penghias, 88
pengumpulan sampah, 91
PEP, 97
pernyataan, 99
porsi, 97
positional argument, 97
provisional API, 97
provisional package, 97
Python 3000, 97
Python Enhancement Proposals

PEP 1, 97
PEP 5, 6
PEP 8, 10, 37, 78
PEP 238, 90
PEP 278, 100
PEP 302, 90, 94
PEP 343, 88
PEP 362, 86, 96
PEP 387, 3
PEP 411, 97
PEP 420, 90, 95, 97
PEP 443, 91
PEP 451, 90
PEP 483, 91
PEP 484, 86, 90, 91, 100
PEP 492, 8688
PEP 498, 89
PEP 519, 97
PEP 525, 86
PEP 526, 86, 100
PEP 572, 45
PEP 585, 91
PEP 602, 5
PEP 3116, 100
PEP 3147, 40
PEP 3155, 97

PYTHONDONTWRITEBYTECODE, 40
Pythonic, 97

126 Indeks

Python Frequently Asked Questions, Rilis 3.11.10

S
set comprehension, 98
single dispatch, 98
slice, 98
special

method, 99
special method, 99
static type checker, 99
strong reference, 99

T
teks tiga-kutip, 99
text encoding, 99
tipe, 99
type alias, 99
type hint, 100

U
universal newlines, 100
urutan, 98

V
variabel environment

PATH, 58
PYTHONDONTWRITEBYTECODE, 40

Z
Zen of Python, 100

Indeks 127

	FAQ Umum Python
	Informasi Umum
	Apa itu Python?
	Apa itu Python Software Foundation?
	Apakah ada batasan hak cipta atas penggunaan Python?
	Pada mulanya kenapa Python dibuat?
	Apa gunanya Python?
	Bagaimana cara kerja skema penomoran versi Python?
	Bagaimana saya mendapatkan salinan kode sumber Python?
	Bagaimana saya mendapatkan dokumentasi tentang Python?
	Saya belum pernah memrogram sebelumnya. Apakah ada tutorial tentang Python?
	Apakah ada newsgroup atau milis yang ditujukan untuk Python?
	Bagaimana saya mendapatkan versi uji beta dari Python?
	Bagaimana saya mengirimkan laporan bug dan patch untuk Python?
	Apakah ada publikasi artikel tentang Python yang bisa saya gunakan sebagai referensi?
	Apakah ada buku-buku tentang Python?
	Dimana di dunia lokasi www.python.org?
	Kenapa disebut Python?
	Apakah saya harus menyukai "Monty Python's Flying Circus"?

	Python di dunia nyata
	Seberapa stabil Python?
	Berapa banyak orang menggunakan Python?
	Apakah ada proyek-proyek penting yang dibuat dengan Python?
	Apa pengembangan baru yang diharapkan dari Python di masa depan?
	Apakah beralasan untuk mengusulkan perubahan yang tidak kompatibel terhadap Python?
	Apakah Python bahasa yang baik untuk pemrogram pemula?

	Pemrograman FAQ
	Pertanyaan Umum
	Is there a source code level debugger with breakpoints, single-stepping, etc.?
	Apakah terdapat alat untuk membantu menemukan bug atau melakukan analisis yang bersifat statis?
	How can I create a stand-alone binary from a Python script?
	Are there coding standards or a style guide for Python programs?

	Inti Bahasa
	Why am I getting an UnboundLocalError when the variable has a value?
	Apa saja aturan-aturan untuk variabel lokal dan global di Python?
	Mengapa lambda yang didefinisikan dalam sebuah perulangan dengan nilai yang berbeda semuanya mengembalikan hasil yang sama?
	Bagaimana Saya dapat berbagi variabel global di seluruh modul?
	What are the "best practices" for using import in a module?
	Why are default values shared between objects?
	How can I pass optional or keyword parameters from one function to another?
	What is the difference between arguments and parameters?
	Why did changing list 'y' also change list 'x'?
	How do I write a function with output parameters (call by reference)?
	How do you make a higher order function in Python?
	How do I copy an object in Python?
	How can I find the methods or attributes of an object?
	How can my code discover the name of an object?
	What's up with the comma operator's precedence?
	Is there an equivalent of C's "?:" ternary operator?
	Is it possible to write obfuscated one-liners in Python?
	What does the slash(/) in the parameter list of a function mean?

	Angka dan string
	How do I specify hexadecimal and octal integers?
	Why does -22 // 10 return -3?
	How do I get int literal attribute instead of SyntaxError?
	Bagaimana cara mengonversi string menjadi angka?
	Bagaimana cara mengonversi angka menjadi string?
	How do I modify a string in place?
	How do I use strings to call functions/methods?
	Is there an equivalent to Perl's chomp() for removing trailing newlines from strings?
	Is there a scanf() or sscanf() equivalent?
	What does 'UnicodeDecodeError' or 'UnicodeEncodeError' error mean?
	Can I end a raw string with an odd number of backslashes?

	Performa
	Kode program saya berjalan lamban. Bagaimana cara saya mempercepatnya?
	Apakah cara yang paling efisien untuk menggabungkan banyak string secara bersamaan?

	Urutan (Tuple/List)
	Bagaimana cara saya mengonversi tuples dan lists?
	Apa itu indeks negatif?
	How do I iterate over a sequence in reverse order?
	Bagaimana Anda menghapus duplikasi dari list?
	How do you remove multiple items from a list
	Bagaimana anda membuat sebuah array di Python?
	Bagaimana cara Saya membuat list multidimensi?
	How do I apply a method or function to a sequence of objects?
	Why does a_tuple[i] += ['item'] raise an exception when the addition works?
	I want to do a complicated sort: can you do a Schwartzian Transform in Python?
	How can I sort one list by values from another list?

	Objek
	Apa itu kelas?
	Apa itu metode?
	Apa itu self?
	How do I check if an object is an instance of a given class or of a subclass of it?
	Apa itu delegasi?
	How do I call a method defined in a base class from a derived class that extends it?
	How can I organize my code to make it easier to change the base class?
	How do I create static class data and static class methods?
	How can I overload constructors (or methods) in Python?
	I try to use __spam and I get an error about _SomeClassName__spam.
	My class defines __del__ but it is not called when I delete the object.
	How do I get a list of all instances of a given class?
	Why does the result of id() appear to be not unique?
	When can I rely on identity tests with the is operator?
	How can a subclass control what data is stored in an immutable instance?
	How do I cache method calls?

	Modul-Modul
	Bagaimana saya membuat berkas .pyc?
	How do I find the current module name?
	How can I have modules that mutually import each other?
	__import__('x.y.z') returns <module 'x'>; how do I get z?
	When I edit an imported module and reimport it, the changes don't show up. Why does this happen?

	Desain dan Sejarah FAQ
	Mengapa Python menggunakan indentasi untuk pengelompokan pernyataan?
	Why am I getting strange results with simple arithmetic operations?
	Why are floating-point calculations so inaccurate?
	Why are Python strings immutable?
	Why must 'self' be used explicitly in method definitions and calls?
	Why can't I use an assignment in an expression?
	Why does Python use methods for some functionality (e.g. list.index()) but functions for other (e.g. len(list))?
	Why is join() a string method instead of a list or tuple method?
	How fast are exceptions?
	Why isn't there a switch or case statement in Python?
	Can't you emulate threads in the interpreter instead of relying on an OS-specific thread implementation?
	Why can't lambda expressions contain statements?
	Can Python be compiled to machine code, C or some other language?
	How does Python manage memory?
	Why doesn't CPython use a more traditional garbage collection scheme?
	Why isn't all memory freed when CPython exits?
	Why are there separate tuple and list data types?
	How are lists implemented in CPython?
	How are dictionaries implemented in CPython?
	Why must dictionary keys be immutable?
	Why doesn't list.sort() return the sorted list?
	How do you specify and enforce an interface spec in Python?
	Why is there no goto?
	Why can't raw strings (r-strings) end with a backslash?
	Why doesn't Python have a "with" statement for attribute assignments?
	Why don't generators support the with statement?
	Why are colons required for the if/while/def/class statements?
	Why does Python allow commas at the end of lists and tuples?

	FAQ Pustaka dan Ekstensi
	Pertanyaan Umum Pustaka
	Bagaimana saya mencari sebuah modul atau aplikasi untuk melakukan pekerjaan X?
	Dimana berkas sumber math.py (socket.py, regex.py, dll.)?
	Bagaimana saya membuat sebuah skrip Python dapat dieksekusi di Unix?
	Is there a curses/termcap package for Python?
	Is there an equivalent to C's onexit() in Python?
	Why don't my signal handlers work?

	Tugas umum
	Bagaimana saya menguji sebuah program Python atau komponen?
	Bagaimana saya membuat dokumentasi dari doc strings?
	How do I get a single keypress at a time?

	Threads
	How do I program using threads?
	None of my threads seem to run: why?
	How do I parcel out work among a bunch of worker threads?
	What kinds of global value mutation are thread-safe?
	Can't we get rid of the Global Interpreter Lock?

	Masukan dan Keluaran
	Bagaimana saya menghapus sebuah berkas? (pertanyaan, dan berkas lainnya...)
	Bagaimana saya mengopi sebuah berkas?
	Bagaimana saya membaca (atau menulis) data biner?
	I can't seem to use os.read() on a pipe created with os.popen(); why?
	How do I access the serial (RS232) port?
	Why doesn't closing sys.stdout (stdin, stderr) really close it?

	Pemrograman Jaringan/Internet
	What WWW tools are there for Python?
	How can I mimic CGI form submission (METHOD=POST)?
	Modul apa yang sebaiknya saya gunakan untuk membantu menghasilkan HTML?
	Bagaimana saya mengirim email melalui skrip Python?
	Bagaimana saya menghindari pemblokiran di metode connect() dari sebuah socket?

	Basisdata
	Apakah ada paket antarmuka ke basisdata di Python?
	How do you implement persistent objects in Python?

	Matematika dan Bilangan
	How do I generate random numbers in Python?

	Extending/Embedding FAQ
	Can I create my own functions in C?
	Can I create my own functions in C++?
	Writing C is hard; are there any alternatives?
	How can I execute arbitrary Python statements from C?
	How can I evaluate an arbitrary Python expression from C?
	How do I extract C values from a Python object?
	How do I use Py_BuildValue() to create a tuple of arbitrary length?
	How do I call an object's method from C?
	How do I catch the output from PyErr_Print() (or anything that prints to stdout/stderr)?
	How do I access a module written in Python from C?
	How do I interface to C++ objects from Python?
	I added a module using the Setup file and the make fails; why?
	How do I debug an extension?
	I want to compile a Python module on my Linux system, but some files are missing. Why?
	How do I tell "incomplete input" from "invalid input"?
	How do I find undefined g++ symbols __builtin_new or __pure_virtual?
	Can I create an object class with some methods implemented in C and others in Python (e.g. through inheritance)?

	FAQ Python di Windows
	Bagaimana cara mengoperasikan program Python di Windows?
	Bagaimana cara saya membuat skrip Python dapat dieksekusi?
	Mengapa Python terkadang membutuhkan waktu lama untuk memulai?
	Bagaimana cara membuat sebuah executable dari skrip Python?
	Apakah file *.pyd sama dengan DLL?
	Bagaimana cara memasukkan Python ke dalam aplikasi Windows?
	Bagaimana cara mencegah editor memasukkan tab ke dalam sumber Python saya?
	Bagaimana cara memeriksa tombol yang ditekan tanpa memblokir?
	How do I solve the missing api-ms-win-crt-runtime-l1-1-0.dll error?

	Antarmuka Pengguna Grafis FAQ
	Pertanyaan Umum GUI
	What GUI toolkits exist for Python?
	Pertanyaan-pertanyaan Tkinter
	Bagaimana cara membekukan aplikasi Tkinter?
	Can I have Tk events handled while waiting for I/O?
	Saya tidak bisa mendapatkan pengikatan kunci untuk bekerja di Tkinter: mengapa?

	"Kenapa Python Terpasang di Komputer saya?" FAQ
	Apa itu Python?
	Kenapa Python Terpasang di Komputer saya?
	Dapatkah Saya hapus Python?

	Ikhtisar
	Tentang dokumen-dokumen ini
	Kontributor untuk dokumentasi Python

	Sejarah dan Lisensi
	Sejarah perangkat lunak
	Syarat dan ketentuan untuk mengakses atau menggunakan Python
	LISENSI PERJANJIAN PSF UNTUK PYTHON 3.11.10
	LISENSI PERJANJIAN BEOPEN.COM UNTUK PYTHON 2.0
	LISENSI PERJANJIAN CNRI UNTUK PYTHON 1.6.1
	LISENSI PERJANJIAN CWI UNTUK PYTHON 0.9.0 SAMPAI 1.2
	ZERO-CLAUSE BSD LICENSE FOR CODE IN THE PYTHON 3.11.10 DOCUMENTATION

	Lisensi dan Ucapan Terima Kasih untuk Perangkat Lunak yang Tergabung
	Mersenne Twister
	Soket
	Layanan soket asinkron
	Pengelolaan Cookie
	Pelacakan eksekusi
	UUencode and UUdecode functions
	XML Remote Procedure Calls
	test_epoll
	Pilih kqueue
	SipHash24
	strtod dan dtoa
	OpenSSL
	expat
	libffi
	zlib
	cfuhash
	libmpdec
	Rangkaian pengujian W3C C14N
	Audioop
	asyncio

	Hak Cipta
	Indeks

