The Python Language Reference
Rilis 3.11.10

Guido van Rossum and the Python development team

September 10, 2024

Python Software Foundation
Email: docs@python.org

Daftar Isi

2

3

1 Pengenalan 3
1.1 Implementasi Alternatif e e e e 3
1.2 NOaSI . . v v o e e e e e e e e e e e e e e e 4
Lexical analysis 5
2.1 LINeStructure o i e e e e e e e e e e e e e 5

2.1.1 Logical lines e e 5
2.1.2 Physicallines 5
2.1.3 0 CommentS . . . v vt v e e e e e e e e e e e e e e e e e 6
2.1.4 Encodingdeclarations e e e e e e e e e e e e e e 6
2.1.5 Explicitline joining o oL e e e e e e e e e e e e 6
2.1.6 Implicitline joining L e e 6
2177 Blanklines. oL e e e e e e e e e e 7
2.1.8 Indentation e e e e e 7
2.1.9 Whitespace between tokenso e e e e e e e 8
22 Othertokens i i i e e e e 8
2.3 Identifiersand keywords Lo 8
231 Keywords e e 9
232 SoftKeywords 9
2.3.3 Reservedclasses of identifiers L 10
24 Literals e e e 10
24.1 Stringand Bytes literals L e e e 10
2.4.2 String literal concatenationl oL 13
243 f-Stringsol e 13
244 Numericliterals e e 15
245 Integerliterals L e e e e e e e e e e 15
2.4.6 Floating pointliterals L e e e 16
247 Imaginaryliterals e 16
2.5 OPErators« v v v i e 17
2.6 Delimiters e e e e e e 17
Data model 19
3.1 Objects, valuesand types 19
3.2 Thestandard type hierarchy L 20
321 NONE. . o ot e e e 20
3.22 NotImplemented e e e e e e e e 20
323 EIIPSIS. . . o oo e e e e e e 21

324 numbers.NUMDET . . . v v v v vt e e e e e e e e e e e e e e 21

325 0 SeqUences e e e e e e e e e e e e 22
326 SELLYPES . & v v e e e e e e e e e e e e e e e 23
327 Mappings e e e e 23
328 Callable types o e e e e e e e e e 24
329 Modul-Modul 28
32,10 Custom Classeso e e e e e e e e e e e e e 29
32,01 ClassInStances v v v v v v vt e 29
3.2.12 T/O objects (also known as file objects) 30
3213 Internal types e e 30
3.3 Special method names e e 36
3.3.1 Basic cuStomizationt e e e e e e e e e e e e e e e e e e 36
3.3.2 Customizing attribute aCCeSS . . .« v v v v i e e e e e e e e e e e e e e e e e 40
3.3.3 Customizing class Creation e e e e 44
3.3.4 Customizing instance and subclass checks L oo 0oL 47
33,5 Emulating generiC types e i e e e e e e e e e e e 48
3.3.6 Emulating callable objects 50
3.3.7 Emulating container typPes v v v vt i e 50
3.3.8 Emulating numeric typest i i e e e e e e e e e e e e e e e e e e e 52
3.3.9 With Statement Context Managers e 54
3.3.10 Customizing positional arguments in class pattern matching 55
33.11 Specialmethodlookup e 55
34 Coroutines e e e e e e e e e 56
341 Awaitable Objects o o e e e e e e e e e e e e e 56
342 0Objek Coroutine v v v v i e e e e e e e e e e e e e 57
343 Asynchronous Iterators L Lo e e e e 57
344 Asynchronous Context Managers vt i it i 58
Execution model 59
4.1 Structure of aprogram 59
42 Namingand binding L 59
42.1 Bindingof names L e e e e e e e e e e e e 59
422 Resolutionof names e e 60
4.2.3 Builtins and restricted eXecution oL e e e e e e e 61
4.2.4 Interaction with dynamic features oo oL 61
4.3 Pengecualianl e e e 61
The import system 63
5.1 Amportlib . oo e e e e e e e e 64
52 Paket 64
5.2.1 Regularpackages e e e e e e e e e e 64
5.2.2 Namespace packages i it e e e e e e e e e 65
5.3 Searching o L e e e e e e e 65
5.3.1 Themodulecache e 65
53.2 Findersand loaders 66
5.33 Import hooks o o . i e e e e e e e e e e e e 66
534 Themetapath e e e e e e e e 66
54 Loading L e e e e e e e e e e 67
541 Loaders e e e 68
542 Submodules e e e e e e e e e e 69
543 Modulespec 69
5.4.4 TImport-related module attributes 70
545 module.__path__ . .. e e e e e 71
54.6 Modulereprs L e e e e e e e e e 71

547 Cached bytecode invalidation i e e e 71

5.5 ThePathBased Finder e 72
5.5.1 Pathentryfinders e e e e e e 72
5.5.2 Pathentry finder protocol e 73
5.6 Replacing the standard import system 74
5.7 Package Relative Imports e 74
5.8 Special considerations for __main__ L e e e e e 75
581 MAIN__._ SPEC__ .t i i e 75
59 References 75
Expressions 77
6.1 Arithmetic CONVErSions o it e e e e e e e 77
6.2 ALOMS . . . o o e e e e e e 78
6.2.1 Identifiers (NAMES) v v i i e e e e e e e e e e e e e e e e e 78
6.2.2 Literals e 78
6.2.3 Parenthesized forms e 79
6.2.4 Displays for lists, sets and dictionaries L e e e 79
6.2.5 Listdisplays e e e 80
6.2.6 Setdisplays e 80
6.2.7 Dictionary displays L. e e e e e e 80
6.2.8 Generator EXPreSSiONS . . v v v v v v v e 81
6.2.9 Yield eXpressions u e 81
6.3 Primaries L e e e e 86
6.3.1 Attribute references 86
6.3.2 SubsCriptions e e e e e e e 86
6.3.3 SLCINGS e e 87
6.3.4 Calls e 87
6.4 AWt @XPIeSSION . . . v v v v v i e 89
6.5 The power Operator e e e e e e e e e &9
6.6 Unary arithmetic and bitwise operations Lo 90
6.7 Binary arithmetic Operations L e e e e 90
6.8 Shifting operations e e e e e e e e e e e 91
6.9 Binary bitwise Operations ot e e e e e e e e e e e e e e e e e 92
6.10 Perbandingan L e e e e e 92
6.10.1 Value comparisons oL e 92
6.10.2 Membership teSt OPerationst o i e e e e e e 95
6.10.3 Identity COMPArISONS . . . v v v v v v e 95
6.11 Boolean operations o i i e 95
6.12 Ekspresi Pemberian Nilai L e 96
6.13 Conditional €Xpressions e e e e e e e e 96
6.14 Lambdas e e e e e e e 96
6.15 Expression liStS oo . e e e e e e e e e e e e e e e e 97
6.16 Evaluationorder e e e 97
6.17 Operator precedence vt i e e e e e e e e e e e e e e e e e e 97
Simple statements 99
7.1 EXpression statements v .t e 99
7.2 ASSIgNMENt StAtEMENLS o v v v e 100
7.2.1 Augmented assignment Statementso et e e e e e e e e e e e 102
7.2.2 Annotated assignment Statementso u e L e e e e e 102
7.3 The assert statement o ittt e e e e e e e 103
7.4 Pernyatadn DassS . . v v v v v e 103
7.5 Pernyataan del Lo e e e e e e e e e e e e e e e e e 104
7.6 The returnstatement e e e e e 104

10

7.7 The yieldstatement i i i it e e e e e e e e e e e e e e e e e 104
7.8 Theraisestatement i v i v v ittt e e e e e 105
7.9 Thebreak statement ottt e e e e e e e 106
7.10 The continue statementt v ittt e e e e e e e e e e e e e e e e e e 107
7.11 The import statement v i e e e e e e e e e e e e e e e e e e e 107
7011 Future Statements v i it e e e e e e e e e e e e e e e 108
7.12 The global statement v v i it e e e e e e e e e e e e e e e e e e 109
7.13 The nonlocal Statement o v v vt v vt ettt e e e e e e e e e 110
Pernyataan gabungan 111
8.1 Pernyataan if e e e e e e e e e e e e e 112
8.2 Pernyataan while e e e e e e e e e e e e e e 112
8.3 Pernyataan for L e e e e e e e 112
84 Pernyataan try e e 113
84.1 exceptclause e e e e 114
842 except*clause e e e e e e 115
843 elseclause. e e 116
844 finallyclause o i e e e e e e e 116
85 Pernyataan witho 116
8.6 Thematchstatement i i i it et e e e e e e e e e e e e e e e 118
8.6.1 OVEIVIEW o i e e e e 119
8.62 Guards. e e 120
8.6.3 TIrrefutable Case Blocks L e 120
8.6.4 Patterns e e e e e e e e e e e e 120
8.7 Definisi fungsi L. e e 127
8.8 Definisi Kelas L L e 129
8.9 Coroutines e e e e e e e e e e e 130
8.9.1 Definisi fungsi coroutines e e e e e e e e 130
8.9.2 Pernyataan async for e e e 130
8.9.3 Pernyataan async with oL oL e 131
Komponen tingkat atas 133
9.1 Program Pythonlengkap 133
9.2 Masukandari Berkas L. e e e e e e 134
9.3 Masukan interaktif e 134
0.4 Masukan €KSPresi v v vt e 134
Spesifikasi Lengkap Tata Bahasa 135
Ikhtisar 151
Tentang dokumen-dokumen ini 167
B.1 Kontributor untuk dokumentasi Python L L 167
Sejarah dan Lisensi 169
C.1 Sejarah perangkat lunak L e e e e 169
C.2 Syarat dan ketentuan untuk mengakses atau menggunakan Python, 170
C.2.1 LISENSI PERJANJIAN PSF UNTUK PYTHON 3.11.10 170
C.2.2 LISENSI PERJANJIAN BEOPEN.COM UNTUK PYTHON 20 171
C.2.3 LISENSI PERJANJIAN CNRIUNTUK PYTHON 1.6.1 172
C.2.4 LISENSI PERJANJIAN CWI UNTUK PYTHON 0.9.0 SAMPAI 1.2. 173
C.2.5 ZERO-CLAUSE BSD LICENSE FOR CODE IN THE PYTHON 3.11.10 DOCUMENTATION 174
C.3 Lisensi dan Ucapan Terima Kasih untuk Perangkat Lunak yang Tergabung 174
C.3.1 Mersenne TWIStEr o o it e e e e e e e e e e e e e e e 174
C32 Soket e 175

C33
C34
C35
C3.6
C.3.7
C3.38
C3.9
C.3.10
C3.11
C3.12
C3.13
C3.14
C3.15
C3.16
C3.17
C3.18
C3.19
C.3.20

D Hak Cipta

Indeks

Layanan soket asinkron e e e 176

Pengelolaan Cookie e e e e e e e e 176
Pelacakan eksekusi L e e e e e 177
UUencode and UUdecode functions 177
XML Remote Procedure Calls e 178
test_epoll e e 178
Pilihkqueue o e e e e 179
SipHash24 o e e e e 179
strtoddandtoa. L L L L e e e e 180
OpenSSL e 180
EXPAL .« o o e e e e e e e e e e e e e e e e 184
Lbfh . . e e e e e e 184
711 185
cfuhash e 185
libmpdec 186
Rangkaian pengujian W3C CI4N oo o 186
AUdioop e e e e e e e e e e e 187
ASYNCIO + v v v o e 187

189

191

Vi

The Python Language Reference, Rilis 3.11.10

Manual referensi ini menjelaskan sintaksis dan “core semantics” dari bahasa. Ini singkat, tetapi berusaha untuk menjadi
tepat dan lengkap. Semantik tipe objek bawaan yang tidak esensial dan fungsi dan modul bawaan dijelaskan dalam
library-index. Untuk pengantar informal ke bahasa, lihat tutorial-index. Untuk programmer C atau C++, ada dua manual
tambahan: extending-index menjelaskan gambar tingkat tinggi tentang cara menulis modul ekstensi Python, dan c-api-
index menjelaskan antarmuka yang tersedia untuk C / C++ programmer secara detail.

Daftar Isi 1

The Python Language Reference, Rilis 3.11.10

2 Daftar Isi

BAB 1

Pengenalan

This reference manual describes the Python programming language. It is not intended as a tutorial.

While I am trying to be as precise as possible, I chose to use English rather than formal specifications for everything
except syntax and lexical analysis. This should make the document more understandable to the average reader, but will
leave room for ambiguities. Consequently, if you were coming from Mars and tried to re-implement Python from this
document alone, you might have to guess things and in fact you would probably end up implementing quite a different
language. On the other hand, if you are using Python and wonder what the precise rules about a particular area of the
language are, you should definitely be able to find them here. If you would like to see a more formal definition of the
language, maybe you could volunteer your time --- or invent a cloning machine :-).

It is dangerous to add too many implementation details to a language reference document --- the implementation may
change, and other implementations of the same language may work differently. On the other hand, CPython is the one
Python implementation in widespread use (although alternate implementations continue to gain support), and its parti-
cular quirks are sometimes worth being mentioned, especially where the implementation imposes additional limitations.
Therefore, you’ll find short “implementation notes” sprinkled throughout the text.

Every Python implementation comes with a number of built-in and standard modules. These are documented in library-
index. A few built-in modules are mentioned when they interact in a significant way with the language definition.

1.1 Implementasi Alternatif

Though there is one Python implementation which is by far the most popular, there are some alternate implementations
which are of particular interest to different audiences.

Implementasi yang diketahui meliputi:

CPython
This is the original and most-maintained implementation of Python, written in C. New language features generally
appear here first.

Jython
Python implemented in Java. This implementation can be used as a scripting language for Java applications, or can

The Python Language Reference, Rilis 3.11.10

be used to create applications using the Java class libraries. It is also often used to create tests for Java libraries.
More information can be found at the Jython website.

Python untuk .NET
This implementation actually uses the CPython implementation, but is a managed .NET application and makes
.NET libraries available. It was created by Brian Lloyd. For more information, see the Python for .NET home
page.

IronPython
An alternate Python for .NET. Unlike Python.NET, this is a complete Python implementation that generates IL,
and compiles Python code directly to .NET assemblies. It was created by Jim Hugunin, the original creator of
Jython. For more information, see the IronPython website.

PyPy
An implementation of Python written completely in Python. It supports several advanced features not found in
other implementations like stackless support and a Just in Time compiler. One of the goals of the project is to
encourage experimentation with the language itself by making it easier to modify the interpreter (since it is written
in Python). Additional information is available on the PyPy project’s home page.

Each of these implementations varies in some way from the language as documented in this manual, or introduces specific
information beyond what’s covered in the standard Python documentation. Please refer to the implementation-specific
documentation to determine what else you need to know about the specific implementation you're using.

1.2 Notasi

The descriptions of lexical analysis and syntax use a modified Backus—Naur form (BNF) grammar notation. This uses
the following style of definition:

name RE lc _letter (lc_letter | "_")*
lc_letter = "a"..."z"

The first line says that a name isan 1c_ letter followed by a sequence of zero or more 1c_ letters and underscores.
An lc_letter inturnis any of the single characters 'a' through 'z '. (This rule is actually adhered to for the names
defined in lexical and grammar rules in this document.)

Each rule begins with a name (which is the name defined by the rule) and : :=. A vertical bar (|) is used to separate
alternatives; it is the least binding operator in this notation. A star (*) means zero or more repetitions of the preceding
item; likewise, a plus (+) means one or more repetitions, and a phrase enclosed in square brackets ([]) means zero
or one occurrences (in other words, the enclosed phrase is optional). The * and + operators bind as tightly as possible;
parentheses are used for grouping. Literal strings are enclosed in quotes. White space is only meaningful to separate
tokens. Rules are normally contained on a single line; rules with many alternatives may be formatted alternatively with
each line after the first beginning with a vertical bar.

In lexical definitions (as the example above), two more conventions are used: Two literal characters separated by three
dots mean a choice of any single character in the given (inclusive) range of ASCII characters. A phrase between angular
brackets (<. . .>) gives an informal description of the symbol defined; e.g., this could be used to describe the notion of
"control character’ if needed.

Even though the notation used is almost the same, there is a big difference between the meaning of lexical and syntactic
definitions: a lexical definition operates on the individual characters of the input source, while a syntax definition operates
on the stream of tokens generated by the lexical analysis. All uses of BNF in the next chapter ("Lexical Analysis”) are
lexical definitions; uses in subsequent chapters are syntactic definitions.

4 Bab 1. Pengenalan

https://www.jython.org/
https://pythonnet.github.io/
https://pythonnet.github.io/
https://ironpython.net/
https://www.pypy.org/
https://en.wikipedia.org/wiki/Backus%E2%80%93Naur_form

BAB 2

Lexical analysis

A Python program is read by a parser. Input to the parser is a stream of fokens, generated by the lexical analyzer. This
chapter describes how the lexical analyzer breaks a file into tokens.

Python reads program text as Unicode code points; the encoding of a source file can be given by an encoding declaration
and defaults to UTF-8, see PEP 3120 for details. If the source file cannot be decoded, a SyntaxError is raised.

2.1 Line structure

A Python program is divided into a number of logical lines.

2.1.1 Logical lines

The end of a logical line is represented by the token NEWLINE. Statements cannot cross logical line boundaries except
where NEWLINE is allowed by the syntax (e.g., between statements in compound statements). A logical line is constru-
cted from one or more physical lines by following the explicit or implicit line joining rules.

2.1.2 Physical lines

A physical line is a sequence of characters terminated by an end-of-line sequence. In source files and strings, any of the
standard platform line termination sequences can be used - the Unix form using ASCII LF (linefeed), the Windows form
using the ASCII sequence CR LF (return followed by linefeed), or the old Macintosh form using the ASCII CR (return)
character. All of these forms can be used equally, regardless of platform. The end of input also serves as an implicit
terminator for the final physical line.

When embedding Python, source code strings should be passed to Python APIs using the standard C conventions for
newline characters (the \n character, representing ASCII LF, is the line terminator).

https://peps.python.org/pep-3120/

The Python Language Reference, Rilis 3.11.10

2.1.3 Comments

A comment starts with a hash character (#) that is not part of a string literal, and ends at the end of the physical line. A
comment signifies the end of the logical line unless the implicit line joining rules are invoked. Comments are ignored by
the syntax.

2.1.4 Encoding declarations

If a comment in the first or second line of the Python script matches the regular expression coding [=:]\s* ([-\w.
1+), this comment is processed as an encoding declaration; the first group of this expression names the encoding of the
source code file. The encoding declaration must appear on a line of its own. If it is the second line, the first line must
also be a comment-only line. The recommended forms of an encoding expression are

[# —*— coding: <encoding-name> —*—

which is recognized also by GNU Emacs, and

[# vim:fileencoding=<encoding-name>

which is recognized by Bram Moolenaar’s VIM.

If no encoding declaration is found, the default encoding is UTF-8. If the implicit or explicit encoding of a file is UTF-8,
an initial UTF-8 byte-order mark (b’xefxbbxbf’) is ignored rather than being a syntax error.

If an encoding is declared, the encoding name must be recognized by Python (see standard-encodings). The encoding is
used for all lexical analysis, including string literals, comments and identifiers.

2.1.5 Explicit line joining

Two or more physical lines may be joined into logical lines using backslash characters (\), as follows: when a physical
line ends in a backslash that is not part of a string literal or comment, it is joined with the following forming a single
logical line, deleting the backslash and the following end-of-line character. For example:

if 1900 < year < 2100 and 1 <= month <= 12 \
and 1 <= day <= 31 and 0 <= hour < 24 \
and 0 <= minute < 60 and 0 <= second < 60: # Looks like a valid date
return 1

A line ending in a backslash cannot carry a comment. A backslash does not continue a comment. A backslash does not
continue a token except for string literals (i.e., tokens other than string literals cannot be split across physical lines using
a backslash). A backslash is illegal elsewhere on a line outside a string literal.

2.1.6 Impilicit line joining

Expressions in parentheses, square brackets or curly braces can be split over more than one physical line without using
backslashes. For example:

month_names = ['Januari', 'Februari', 'Maart', # These are the
'April"', 'Mei', 'Juni’', # Dutch names
'Juli', 'Augustus', 'September', # for the months
'Oktober', 'November', 'December'] # of the year

6 Bab 2. Lexical analysis

The Python Language Reference, Rilis 3.11.10

Implicitly continued lines can carry comments. The indentation of the continuation lines is not important. Blank conti-
nuation lines are allowed. There is no NEWLINE token between implicit continuation lines. Implicitly continued lines
can also occur within triple-quoted strings (see below); in that case they cannot carry comments.

2.1.7 Blank lines

A logical line that contains only spaces, tabs, formfeeds and possibly a comment, is ignored (i.e., no NEWLINE token is
generated). During interactive input of statements, handling of a blank line may differ depending on the implementation
of the read-eval-print loop. In the standard interactive interpreter, an entirely blank logical line (i.e. one containing not
even whitespace or a comment) terminates a multi-line statement.

2.1.8 Indentation

Leading whitespace (spaces and tabs) at the beginning of a logical line is used to compute the indentation level of the
line, which in turn is used to determine the grouping of statements.

Tabs are replaced (from left to right) by one to eight spaces such that the total number of characters up to and including
the replacement is a multiple of eight (this is intended to be the same rule as used by Unix). The total number of spaces
preceding the first non-blank character then determines the line’s indentation. Indentation cannot be split over multiple
physical lines using backslashes; the whitespace up to the first backslash determines the indentation.

Indentation is rejected as inconsistent if a source file mixes tabs and spaces in a way that makes the meaning dependent
on the worth of a tab in spaces; a TabError is raised in that case.

Cross-platform compatibility note: because of the nature of text editors on non-UNIX platforms, it is unwise to use a
mixture of spaces and tabs for the indentation in a single source file. It should also be noted that different platforms may
explicitly limit the maximum indentation level.

A formfeed character may be present at the start of the line; it will be ignored for the indentation calculations above.
Formfeed characters occurring elsewhere in the leading whitespace have an undefined effect (for instance, they may reset
the space count to zero).

The indentation levels of consecutive lines are used to generate INDENT and DEDENT tokens, using a stack, as follows.

Before the first line of the file is read, a single zero is pushed on the stack; this will never be popped off again. The
numbers pushed on the stack will always be strictly increasing from bottom to top. At the beginning of each logical line,
the line’s indentation level is compared to the top of the stack. If it is equal, nothing happens. If it is larger, it is pushed
on the stack, and one INDENT token is generated. If it is smaller, it must be one of the numbers occurring on the stack;
all numbers on the stack that are larger are popped off, and for each number popped off a DEDENT token is generated.
At the end of the file, a DEDENT token is generated for each number remaining on the stack that is larger than zero.

Here is an example of a correctly (though confusingly) indented piece of Python code:

def perm(l) :
Compute the list of all permutations of 1
if len(l) <= 1:
return [1]
r = []
for i in range(len(l)):
s = 1[:1i] + 1[i+1:]
p = perm(s)
for x in p:
r.append (1[i:1+1] + x)
return r

The following example shows various indentation errors:

2.1. Line structure 7

The Python Language Reference, Rilis 3.11.10

def perm(l): # error: first line indented
for i in range(len(l)): # error: not indented
s = 1[:4] + 1[i+1:]
p = perm(l[:i] + 1[i+1:]) # error: unexpected indent

for x in p:
r.append (1[i:1+1] + x)
return r # error: inconsistent dedent

(Actually, the first three errors are detected by the parser; only the last error is found by the lexical analyzer --- the
indentation of return r does not match a level popped off the stack.)

2.1.9 Whitespace between tokens

Except at the beginning of a logical line or in string literals, the whitespace characters space, tab and formfeed can be used
interchangeably to separate tokens. Whitespace is needed between two tokens only if their concatenation could otherwise
be interpreted as a different token (e.g., ab is one token, but a b is two tokens).

2.2 Other tokens

Besides NEWLINE, INDENT and DEDENT, the following categories of tokens exist: identifiers, keywords, literals,
operators, and delimiters. Whitespace characters (other than line terminators, discussed earlier) are not tokens, but serve
to delimit tokens. Where ambiguity exists, a token comprises the longest possible string that forms a legal token, when
read from left to right.

2.3 Identifiers and keywords

Identifiers (also referred to as names) are described by the following lexical definitions.

The syntax of identifiers in Python is based on the Unicode standard annex UAX-31, with elaboration and changes as
defined below; see also PEP 3131 for further details.

Within the ASCII range (U+0001..U+007F), the valid characters for identifiers are the same as in Python 2.x: the up-
percase and lowercase letters A through Z, the underscore _ and, except for the first character, the digits 0 through
9.

Python 3.0 introduces additional characters from outside the ASCII range (see PEP 3131). For these characters, the
classification uses the version of the Unicode Character Database as included in the unicodedata module.

Identifiers are unlimited in length. Case is significant.

identifier = xid_start xid_continue*

id_start = <all characters in general categories Lu, L1, Lt, Lm, Lo, N1, the unde:

id_continue
xid_start = <all characters in id_start whose NFKC normalization is in

xid_continue

The Unicode category codes mentioned above stand for:
o Lu - uppercase letters

o Ll - lowercase letters

8 Bab 2. Lexical analysis

<all characters in id_start, plus characters in the categories Mn, Mc,

"id_start xi

<all characters in id_continue whose NFKC normalization is in "id_cont]

https://peps.python.org/pep-3131/
https://peps.python.org/pep-3131/

The Python Language Reference, Rilis 3.11.10

o Lt - titlecase letters
o Lm - modifier letters
o Lo - other letters
o NI - letter numbers
e Mn - nonspacing marks
e Mc - spacing combining marks
e Nd - decimal numbers
« Pc - connector punctuations
o Other_ID_Start - explicit list of characters in PropList.txt to support backwards compatibility
o Other_ID_Continue - likewise
All identifiers are converted into the normal form NFKC while parsing; comparison of identifiers is based on NFKC.

A non-normative HTML file listing all valid identifier characters for Unicode 14.0.0 can be found at https://www.unicode.
org/Public/14.0.0/ucd/DerivedCoreProperties.txt

2.3.1 Keywords

The following identifiers are used as reserved words, or keywords of the language, and cannot be used as ordinary iden-
tifiers. They must be spelled exactly as written here:

False await else import pass
None break except in raise
True class finally is return
and continue for lambda try

as def from nonlocal while
assert del global not with
async elif if or yield

2.3.2 Soft Keywords

Baru pada versi 3.10.

Some identifiers are only reserved under specific contexts. These are known as soft keywords. The identifiers match,
case and _ can syntactically act as keywords in contexts related to the pattern matching statement, but this distinction
is done at the parser level, not when tokenizing.

As soft keywords, their use with pattern matching is possible while still preserving compatibility with existing code that
uses match, case and _ as identifier names.

2.3. Identifiers and keywords 9

https://www.unicode.org/Public/14.0.0/ucd/PropList.txt
https://www.unicode.org/Public/14.0.0/ucd/DerivedCoreProperties.txt
https://www.unicode.org/Public/14.0.0/ucd/DerivedCoreProperties.txt

The Python Language Reference, Rilis 3.11.10

2.3.3 Reserved classes of identifiers

Certain classes of identifiers (besides keywords) have special meanings. These classes are identified by the patterns of
leading and trailing underscore characters:

*
Not imported by from module import *.
In a case pattern within a ma t ch statement, _ is a soft keyword that denotes a wildcard.
Separately, the interactive interpreter makes the result of the last evaluation available in the variable _. (It is stored
in the built ins module, alongside built-in functions like print.)
Elsewhere, _ is a regular identifier. It is often used to name “special” items, but it is not special to Python itself.
Catatan: The name _ is often used in conjunction with internationalization; refer to the documentation for the
gettext module for more information on this convention.
It is also commonly used for unused variables.

*

System-defined names, informally known as "dunder” names. These names are defined by the interpreter and its
implementation (including the standard library). Current system names are discussed in the Special method names
section and elsewhere. More will likely be defined in future versions of Python. Any use of ___*__ names, in any
context, that does not follow explicitly documented use, is subject to breakage without warning.

Class-private names. Names in this category, when used within the context of a class definition, are re-written to
use a mangled form to help avoid name clashes between “private” attributes of base and derived classes. See section
Identifiers (Names).

2.4 Literals

Literals are notations for constant values of some built-in types.

2.4.1 String and Bytes literals

String literals are described by the following lexical definitions:

stringliteral = [stringprefix] (shortstring | longstring)
Strll’lgpreflx = "r" | "u" I "R" | "U" ‘ "f" | "F"

I "fr" | "Fr" | n fR" I "FR" | "rf" | "rF" I "Rf" | "RF"
shortstring = "'" shortstringitem* "'"™ | '"' shortstringitem* '"'
longstring = "rr'" o Jongstringitem* "'''"™ | '"""' Jongstringitem* '"""'
shortstringitem := shortstringchar | stringescapeseq
longstringitem = longstringchar | stringescapeseq
shortstringchar := <any source character except "\" or newline or the quote>
longstringchar = <any source character except "\">
stringescapeseq = "\" <any source character>

10 Bab 2. Lexical analysis

The Python Language Reference, Rilis 3.11.10

bytesliteral = bytesprefix(shortbytes | longbytes)

bytesprefix = "b" | "B" | "br" | "Br" | "bR" | "BR" | "rb" | "rB" | "Rb"
shortbytes = "'" shortbytesitem* "'" | '"' shortbytesitem* '"'
longbytes = "' longbytesitem* "'''" | '"""' Jongbytesitem* '"""'
shortbytesitem := shortbyteschar | bytesescapeseq

longbytesitem = longbyteschar | bytesescapeseq

shortbyteschar = <any ASCII character except "\" or newline or the quote>
longbyteschar = <any ASCII character except "\">

bytesescapeseqg = "\" <any ASCII character>

One syntactic restriction not indicated by these productions is that whitespace is not allowed between the
stringprefix or bytesprefix and the rest of the literal. The source character set is defined by the encoding
declaration; it is UTF-8 if no encoding declaration is given in the source file; see section Encoding declarations.

In plain English: Both types of literals can be enclosed in matching single quotes (') or double quotes ("). They can also
be enclosed in matching groups of three single or double quotes (these are generally referred to as triple-quoted strings).
The backslash (\) character is used to escape characters that otherwise have a special meaning, such as newline, backslash
itself, or the quote character.

Bytes literals are always prefixed with 'b ' or 'B"'; they produce an instance of the bytes type instead of the st r type.
They may only contain ASCII characters; bytes with a numeric value of 128 or greater must be expressed with escapes.

Both string and bytes literals may optionally be prefixed with a letter 'r' or 'R"'; such strings are called raw strings
and treat backslashes as literal characters. As a result, in string literals, ' \U' and '\u' escapes in raw strings are not
treated specially. Given that Python 2.x’s raw unicode literals behave differently than Python 3.x’s the 'ur ' syntax is not
supported.

Baru pada versi 3.3: The 'rb"' prefix of raw bytes literals has been added as a synonym of 'br"'.

Support for the unicode legacy literal (u'value ') was reintroduced to simplify the maintenance of dual Python 2.x and
3.x codebases. See PEP 414 for more information.

A string literal with ' £' or 'F' in its prefix is a formatted string literal; see f-strings. The ' £' may be combined with
"r',butnot with 'b"' or 'u', therefore raw formatted strings are possible, but formatted bytes literals are not.

In triple-quoted literals, unescaped newlines and quotes are allowed (and are retained), except that three unescaped quotes
in a row terminate the literal. (A “quote” is the character used to open the literal, i.e. either ' or ".)

Escape sequences

Unless an 'r' or 'R' prefix is present, escape sequences in string and bytes literals are interpreted according to rules
similar to those used by Standard C. The recognized escape sequences are:

2.4. Literals 11

n RB n

https://peps.python.org/pep-0414/

The Python Language Reference, Rilis 3.11.10

Escape Sequence Artinya Catatan
\<newline> Backslash and newline ignored (1)
AR Backslash (\)

\! Single quote (")

\" Double quote (")

\a ASCII Bell (BEL)

\b ASCII Backspace (BS)

\f ASCII Formfeed (FF)

\n ASCII Linefeed (LF)

\r ASCII Carriage Return (CR)

\t ASCII Horizontal Tab (TAB)

\v ASCII Vertical Tab (VT)

\ooo Character with octal value ooo (2,4)
\xhh Character with hex value hh (3.,4)

Escape sequences only recognized in string literals are:

Escape Sequence Artinya Catatan
\N{name} Character named name in the Unicode database (5)
\UXXXX Character with 16-bit hex value xxxx (6)
\UXXXXXXXX Character with 32-bit hex value xxxoxxoxx @)

Catatan:

(1) A backslash can be added at the end of a line to ignore the newline:

>>> 'This string will not include \
. backslashes or newline characters.'
'This string will not include backslashes or newline characters.'

The same result can be achieved using triple-quoted strings, or parentheses and string literal concatenation.
(2) Asin Standard C, up to three octal digits are accepted.

Berubah pada versi 3.11: Octal escapes with value larger than 00377 produce a DeprecationWarning. Ina
future Python version they will be a SyntaxWarning and eventually a SyntaxError.

(3) Unlike in Standard C, exactly two hex digits are required.

(4) In a bytes literal, hexadecimal and octal escapes denote the byte with the given value. In a string literal, these
escapes denote a Unicode character with the given value.

(5) Berubah pada versi 3.3: Support for name aliases' has been added.
(6) Exactly four hex digits are required.
(7) Any Unicode character can be encoded this way. Exactly eight hex digits are required.

Unlike Standard C, all unrecognized escape sequences are left in the string unchanged, i.e., the backslash is left in the
result. (This behavior is useful when debugging: if an escape sequence is mistyped, the resulting output is more easily
recognized as broken.) It is also important to note that the escape sequences only recognized in string literals fall into the
category of unrecognized escapes for bytes literals.

Berubah pada versi 3.6: Unrecognized escape sequences produce a DeprecationWarning. In a future Python
version they will be a SyntaxWarning and eventually a SyntaxError.

! https://www.unicode.org/Public/11.0.0/ucd/NameAliases. txt

12 Bab 2. Lexical analysis

https://www.unicode.org/Public/11.0.0/ucd/NameAliases.txt

The Python Language Reference, Rilis 3.11.10

Even in a raw literal, quotes can be escaped with a backslash, but the backslash remains in the result; for example, r"\
" " is a valid string literal consisting of two characters: a backslash and a double quote; r" \ " is not a valid string literal
(even a raw string cannot end in an odd number of backslashes). Specifically, a raw literal cannot end in a single backslash
(since the backslash would escape the following quote character). Note also that a single backslash followed by a newline
is interpreted as those two characters as part of the literal, not as a line continuation.

2.4.2 String literal concatenation

Multiple adjacent string or bytes literals (delimited by whitespace), possibly using different quoting conventions,
are allowed, and their meaning is the same as their concatenation. Thus, "hello" 'world' is equivalent to
"helloworld". This feature can be used to reduce the number of backslashes needed, to split long strings con-
veniently across long lines, or even to add comments to parts of strings, for example:

re.compile (" [A-Za-z_]" # letter or underscore
"[A-Za—-z0-9_]*" # letter, digit or underscore

)

Note that this feature is defined at the syntactical level, but implemented at compile time. The ’+ operator must be used
to concatenate string expressions at run time. Also note that literal concatenation can use different quoting styles for each
component (even mixing raw strings and triple quoted strings), and formatted string literals may be concatenated with
plain string literals.

2.4.3 f-strings

Baru pada versi 3.6.

A formatted string literal or f-string is a string literal that is prefixed with ' £' or 'F '. These strings may contain replace-
ment fields, which are expressions delimited by curly braces { }. While other string literals always have a constant value,
formatted strings are really expressions evaluated at run time.

Escape sequences are decoded like in ordinary string literals (except when a literal is also marked as a raw string). After
decoding, the grammar for the contents of the string is:

f_string n= (Iiteral_char | "{{" | "}}" | replacement_field)*
replacement_field := "{" f expression ["="] ["!" conversion] [":" format_spec]
f_expression = (conditional_expression | "*" or_expr)

("," conditional_expression | "," "*" or expr)* [","]

| yield expression
conversion n= "s" | "r" | "a"
format_spec = (literal_char | replacement_field)*
literal_char = <any code point except "{", "}" or NULL>

The parts of the string outside curly braces are treated literally, except that any doubled curly braces '{{ "' or '} } ' are
replaced with the corresponding single curly brace. A single opening curly bracket ' { ' marks a replacement field, which
starts with a Python expression. To display both the expression text and its value after evaluation, (useful in debugging),
an equal sign '="' may be added after the expression. A conversion field, introduced by an exclamation point ' ! ' may
follow. A format specifier may also be appended, introduced by a colon ' : '. A replacement field ends with a closing
curly bracket ' }'.

Expressions in formatted string literals are treated like regular Python expressions surrounded by parentheses, with a few
exceptions. An empty expression is not allowed, and both I ambda and assighment expressions : = must be surrounded
by explicit parentheses. Replacement expressions can contain line breaks (e.g. in triple-quoted strings), but they cannot

2.4. Literals 13

"}"

The Python Language Reference, Rilis 3.11.10

contain comments. Each expression is evaluated in the context where the formatted string literal appears, in order from
left to right.

Berubah pada versi 3.7: Prior to Python 3.7, an await expression and comprehensions containing an async for
clause were illegal in the expressions in formatted string literals due to a problem with the implementation.

When the equal sign '=" is provided, the output will have the expression text, the '=" and the evaluated value. Spaces
after the opening brace ' { ', within the expression and after the '=" are all retained in the output. By default, the '="
causes the repr () of the expression to be provided, unless there is a format specified. When a format is specified it
defaults to the st r () of the expression unless a conversion ' ! r' is declared.

Baru pada versi 3.8: The equal sign '=".

If a conversion is specified, the result of evaluating the expression is converted before formatting. Conversion ' !'s ' calls
str () ontheresult, ' !r' calls repr (),and '!a"' callsascii ().

The result is then formatted using the format () protocol. The format specifier is passed to the _ format__ ()
method of the expression or conversion result. An empty string is passed when the format specifier is omitted. The
formatted result is then included in the final value of the whole string.

Top-level format specifiers may include nested replacement fields. These nested fields may include their own conversion
fields and format specifiers, but may not include more deeply nested replacement fields. The format specifier mini-
language is the same as that used by the st r. format () method.

Formatted string literals may be concatenated, but replacement fields cannot be split across literals.

Some examples of formatted string literals:

>>> name = "Fred"

>>> f"He said his name is {name L

"He said his name is 'Fred'."

>>> f"He said his name is {repr(name) }." # repr() is equivalent to !r
"He said his name is 'Fred'."

>>> width = 10

>>> precision = 4

>>> value = decimal.Decimal ("12.34567")

>>> f"result: {value:{width}. {precision}}" # nested fields
'result: 12.35"

>>> today = datetime (year=2017, month=1, day=27)

>>> f"{today:%B %d, $%Y}" # using date format specifier

'January 27, 2017'
>>> f"{today=:%B %d, %Y}" # using date format specifier and debugging
'today=January 27, 2017'

>>> number = 1024

>>> f"{number:#0x}" # using integer format specifier
'0x400'"'

>>> foo = "bar"

>>> f"{ foo " # preserves whitespace
" foo = 'bar'"

>>> line = "The mill's closed"

>>> f"{line "

'line = "The mill\'s closed"'

>>> f"{line 20"

"line = The mill's closed "

>>> f"{line 20"

'line = "The mill\'s closed" '

A consequence of sharing the same syntax as regular string literals is that characters in the replacement fields must not
conflict with the quoting used in the outer formatted string literal:

14 Bab 2. Lexical analysis

The Python Language Reference, Rilis 3.11.10

f"abc {al["

x"]} def" # error: outer string literal ended prematurely
f'abe {fal'x'] def" # workaround: use different quoting

Backslashes are not allowed in format expressions and will raise an error:

[f"newline: ord('\n'") }" # raises SyntaxError

To include a value in which a backslash escape is required, create a temporary variable.

>>> newline = ord('\n')
>>> f"newline: {newline}"
'newline: 10'

Formatted string literals cannot be used as docstrings, even if they do not include expressions.

>>> def fool():
f"Not a docstring"

>>> foo. doc_ is None
True

See also PEP 498 for the proposal that added formatted string literals, and st r . format (), which uses a related format
string mechanism.

2.4.4 Numeric literals

There are three types of numeric literals: integers, floating point numbers, and imaginary numbers. There are no complex
literals (complex numbers can be formed by adding a real number and an imaginary number).

Note that numeric literals do not include a sign; a phrase like -1 is actually an expression composed of the unary operator
"~ and the literal 1.

2.4.5 Integer literals

Integer literals are described by the following lexical definitions:

integer = decinteger | bininteger | octinteger | hexinteger
decinteger = nonzerodigit (["_"1 digit)* | "O0"+ (["_"] "Q")~*
bininteger = "o" ("b" | "B") (["_"] bindigit)+

octinteger = "o" ("o" | "O") (["_"] octdigit)+

hexinteger = "om ("x" | "X") (["_"] hexdigit)+

nonzerodigit = mrLLumon

digit = "o"..."9"

bindigit RES "om | omin

octdigit = "o"..."7"

hexdigit = digit | "a"..."f" | "A"..."F"

There is no limit for the length of integer literals apart from what can be stored in available memory.

Underscores are ignored for determining the numeric value of the literal. They can be used to group digits for enhanced
readability. One underscore can occur between digits, and after base specifiers like 0x.

Note that leading zeros in a non-zero decimal number are not allowed. This is for disambiguation with C-style octal
literals, which Python used before version 3.0.

2.4. Literals 15

https://peps.python.org/pep-0498/

The Python Language Reference, Rilis 3.11.10

Some examples of integer literals:

7 2147483647 00177 0b100110111
3 79228162514264337593543950336 00377 Oxdeadbeef
100_000_000_000 0b_1110_0101

Berubah pada versi 3.6: Underscores are now allowed for grouping purposes in literals.

2.4.6 Floating point literals

Floating point literals are described by the following lexical definitions:

floatnumber n= pointfloat | exponentfloat
pointfloat u= [digitpart] fraction | digitpart "."
exponentfloat = (digitpart | pointfloat) exponent
digitpart = digit (["_"] digit)™*

fraction = "." digitpart

exponent = ("e"™ | "E") ["+" | "-"] digitpart

Note that the integer and exponent parts are always interpreted using radix 10. For example, 0772010 is legal, and
denotes the same number as 77e10. The allowed range of floating point literals is implementation-dependent. As in
integer literals, underscores are supported for digit grouping.

Some examples of floating point literals:

[3.14 10, .001 1e100 3.14e-10 0e0 3.14_15_93

Berubah pada versi 3.6: Underscores are now allowed for grouping purposes in literals.

2.4.7 Imaginary literals

Imaginary literals are described by the following lexical definitions:

imagnumber = (floatnumber | digitpart) ("j" | "J")

An imaginary literal yields a complex number with a real part of 0.0. Complex numbers are represented as a pair of
floating point numbers and have the same restrictions on their range. To create a complex number with a nonzero real
part, add a floating point number to it, e.g., (3+4 7). Some examples of imaginary literals:

[3.14j 10.3 103 .00173 1e1007j 3.14e-107 3.14_15_933

16 Bab 2. Lexical analysis

The Python Language Reference, Rilis 3.11.10

2.5 Operators

The following tokens are operators:

+ - * ok / // $ d
<< >> & | " ~ =

< > <= >= == 1=

2.6 Delimiters

The following tokens serve as delimiters in the grammar:

() [] { }

, . 2 = ->

+= —= *= /= //= %= @=

& = = >>= << * k=

The period can also occur in floating-point and imaginary literals. A sequence of three periods has a special meaning as
an ellipsis literal. The second half of the list, the augmented assignment operators, serve lexically as delimiters, but also

perform an operation.

The following printing ASCII characters have special meaning as part of other tokens or are otherwise significant to the

lexical analyzer:

v

)

The following printing ASCII characters are not used in Python. Their occurrence outside string literals and comments

is an unconditional error:

[$?

2.5. Operators

17

The Python Language Reference, Rilis 3.11.10

18 Bab 2. Lexical analysis

BAB 3

Data model

3.1 Objects, values and types

Objects are Python’s abstraction for data. All data in a Python program is represented by objects or by relations betwe-
en objects. (In a sense, and in conformance to Von Neumann’s model of a “stored program computer”, code is also
represented by objects.)

Every object has an identity, a type and a value. An object’s identity never changes once it has been created; you may
think of it as the object’s address in memory. The i s operator compares the identity of two objects; the id () function
returns an integer representing its identity.

Detail implementasi CPython: For CPython, id (x) is the memory address where x is stored.

An object’s type determines the operations that the object supports (e.g., “does it have a length?”) and also defines the
possible values for objects of that type. The type () function returns an object’s type (which is an object itself). Like
its identity, an object’s fype is also unchangeable. !

The value of some objects can change. Objects whose value can change are said to be mutable; objects whose value
is unchangeable once they are created are called immutable. (The value of an immutable container object that contains
a reference to a mutable object can change when the latter’s value is changed; however the container is still considered
immutable, because the collection of objects it contains cannot be changed. So, immutability is not strictly the same as
having an unchangeable value, it is more subtle.) An object’s mutability is determined by its type; for instance, numbers,
strings and tuples are immutable, while dictionaries and lists are mutable.

Objects are never explicitly destroyed; however, when they become unreachable they may be garbage-collected. An
implementation is allowed to postpone garbage collection or omit it altogether --- it is a matter of implementation quality
how garbage collection is implemented, as long as no objects are collected that are still reachable.

Detail implementasi CPython: CPython currently uses a reference-counting scheme with (optional) delayed detection
of cyclically linked garbage, which collects most objects as soon as they become unreachable, but is not guaranteed to
collect garbage containing circular references. See the documentation of the gc module for information on controlling
the collection of cyclic garbage. Other implementations act differently and CPython may change. Do not depend on
immediate finalization of objects when they become unreachable (so you should always close files explicitly).

! 1t is possible in some cases to change an object’s type, under certain controlled conditions. It generally isn’t a good idea though, since it can lead
to some very strange behaviour if it is handled incorrectly.

19

The Python Language Reference, Rilis 3.11.10

Note that the use of the implementation’s tracing or debugging facilities may keep objects alive that would normally be
collectable. Also note that catching an exception with a t ry...except statement may keep objects alive.

Some objects contain references to “external” resources such as open files or windows. It is understood that these resources
are freed when the object is garbage-collected, but since garbage collection is not guaranteed to happen, such objects also
provide an explicit way to release the external resource, usuallya close () method. Programs are strongly recommended
to explicitly close such objects. The t ry...finally statement and the w1t h statement provide convenient ways to do
this.

Some objects contain references to other objects; these are called containers. Examples of containers are tuples, lists and
dictionaries. The references are part of a container’s value. In most cases, when we talk about the value of a container, we
imply the values, not the identities of the contained objects; however, when we talk about the mutability of a container,
only the identities of the immediately contained objects are implied. So, if an immutable container (like a tuple) contains
a reference to a mutable object, its value changes if that mutable object is changed.

Types affect almost all aspects of object behavior. Even the importance of object identity is affected in some sense: for
immutable types, operations that compute new values may actually return a reference to any existing object with the same
type and value, while for mutable objects this is not allowed. E.g., aftera = 1; b = 1, a and b may or may not refer
to the same object with the value one, depending on the implementation, but after c = []; d = [], c and d are
guaranteed to refer to two different, unique, newly created empty lists. (Notethatc = d = [] assigns the same object
to both ¢ and d.)

3.2 The standard type hierarchy

Below is a list of the types that are built into Python. Extension modules (written in C, Java, or other languages, depending
on the implementation) can define additional types. Future versions of Python may add types to the type hierarchy (e.g.,
rational numbers, efficiently stored arrays of integers, etc.), although such additions will often be provided via the standard
library instead.

Some of the type descriptions below contain a paragraph listing ’special attributes.” These are attributes that provide
access to the implementation and are not intended for general use. Their definition may change in the future.

3.2.1 None

This type has a single value. There is a single object with this value. This object is accessed through the built-in name
None. Itis used to signify the absence of a value in many situations, e.g., it is returned from functions that don’t explicitly
return anything. Its truth value is false.

3.2.2 Notimplemented

This type has a single value. There is a single object with this value. This object is accessed through the built-in name
Not Implemented. Numeric methods and rich comparison methods should return this value if they do not implement
the operation for the operands provided. (The interpreter will then try the reflected operation, or some other fallback,
depending on the operator.) It should not be evaluated in a boolean context.

See implementing-the-arithmetic-operations for more details.

Berubah pada versi 3.9: Evaluating Not Implemented in a boolean context is deprecated. While it currently evaluates
as true, it will emit a DeprecationWarning. It will raise a TypeError in a future version of Python.

20 Bab 3. Data model

The Python Language Reference, Rilis 3.11.10

3.2.3 Ellipsis

This type has a single value. There is a single object with this value. This object is accessed through the literal . . . or
the built-in name E11ipsis. Its truth value is true.

3.2.4 numbers.Number

These are created by numeric literals and returned as results by arithmetic operators and arithmetic built-in functions.
Numeric objects are immutable; once created their value never changes. Python numbers are of course strongly related
to mathematical numbers, but subject to the limitations of numerical representation in computers.

The string representations of the numeric classes, computed by __repr_ () and __str__ (), have the following
properties:

o They are valid numeric literals which, when passed to their class constructor, produce an object having the value
of the original numeric.

» The representation is in base 10, when possible.

« Leading zeros, possibly excepting a single zero before a decimal point, are not shown.
« Trailing zeros, possibly excepting a single zero after a decimal point, are not shown.

« A sign is shown only when the number is negative.

Python distinguishes between integers, floating point numbers, and complex numbers:

numbers.Integral

These represent elements from the mathematical set of integers (positive and negative).

Catatan: The rules for integer representation are intended to give the most meaningful interpretation of shift and mask
operations involving negative integers.

There are two types of integers:

Integers (int)
These represent numbers in an unlimited range, subject to available (virtual) memory only. For the purpose of shift
and mask operations, a binary representation is assumed, and negative numbers are represented in a variant of 2’s
complement which gives the illusion of an infinite string of sign bits extending to the left.

Booleans (bool)
These represent the truth values False and True. The two objects representing the values False and True are
the only Boolean objects. The Boolean type is a subtype of the integer type, and Boolean values behave like the
values 0 and 1, respectively, in almost all contexts, the exception being that when converted to a string, the strings
"False" or "True" are returned, respectively.

3.2. The standard type hierarchy 21

The Python Language Reference, Rilis 3.11.10

numbers.Real (float)

These represent machine-level double precision floating point numbers. You are at the mercy of the underlying machine
architecture (and C or Java implementation) for the accepted range and handling of overflow. Python does not support
single-precision floating point numbers; the savings in processor and memory usage that are usually the reason for using
these are dwarfed by the overhead of using objects in Python, so there is no reason to complicate the language with two
kinds of floating point numbers.

numbers .Complex (complex)

These represent complex numbers as a pair of machine-level double precision floating point numbers. The same caveats
apply as for floating point numbers. The real and imaginary parts of a complex number z can be retrieved through the
read-only attributes z . real and z . imag.

3.2.5 Sequences

These represent finite ordered sets indexed by non-negative numbers. The built-in function 1en () returns the number
of items of a sequence. When the length of a sequence is n, the index set contains the numbers 0, 1, ..., n-1. Item i of
sequence a is selected by a [1]. Some sequences, including built-in sequences, interpret negative subscripts by adding
the sequence length. For example, a [-2] equals a [n—21], the second to last item of sequence a with length n.

Sequences also support slicing: a [1: J] selects all items with index k such that i <= k < j. When used as an expression,
a slice is a sequence of the same type. The comment above about negative indexes also applies to negative slice positions.

Some sequences also support “extended slicing” with a third “step” parameter: a [i:Jj:k] selects all items of a with
index x where x = i + n*k,n>=0andi<=x<].

Sequences are distinguished according to their mutability:

Immutable sequences

An object of an immutable sequence type cannot change once it is created. (If the object contains references to other
objects, these other objects may be mutable and may be changed; however, the collection of objects directly referenced
by an immutable object cannot change.)

The following types are immutable sequences:

String
A string is a sequence of values that represent Unicode code points. All the code points in the range U+0000
- U+10FFFF can be represented in a string. Python doesn’t have a char type; instead, every code point in the
string is represented as a string object with length 1. The built-in function ord () converts a code point from its
string form to an integer in the range 0 — 10FFFF; chr () converts an integer in the range 0 — 10FFFF to
the corresponding length 1 string object. str.encode () can be used to convert a str to bytes using the
given text encoding, and bytes.decode () can be used to achieve the opposite.

Tuples
The items of a tuple are arbitrary Python objects. Tuples of two or more items are formed by comma-separated
lists of expressions. A tuple of one item (a ’singleton’) can be formed by affixing a comma to an expression (an
expression by itself does not create a tuple, since parentheses must be usable for grouping of expressions). An
empty tuple can be formed by an empty pair of parentheses.

Bytes
A bytes object is an immutable array. The items are 8-bit bytes, represented by integers in the range 0 <= x < 256.
Bytes literals (like b'abc ') and the built-in bytes () constructor can be used to create bytes objects. Also,
bytes objects can be decoded to strings via the decode () method.

22 Bab 3. Data model

The Python Language Reference, Rilis 3.11.10

Mutable sequences

Mutable sequences can be changed after they are created. The subscription and slicing notations can be used as the target
of assignment and de 1 (delete) statements.

Catatan: The collections and array module provide additional examples of mutable sequence types.

There are currently two intrinsic mutable sequence types:

List
The items of a list are arbitrary Python objects. Lists are formed by placing a comma-separated list of expressions
in square brackets. (Note that there are no special cases needed to form lists of length O or 1.)

Byte Arrays
A bytearray object is a mutable array. They are created by the built-in bytearray () constructor. Aside from
being mutable (and hence unhashable), byte arrays otherwise provide the same interface and functionality as im-
mutable bytes objects.

3.2.6 Settypes

These represent unordered, finite sets of unique, immutable objects. As such, they cannot be indexed by any subscript.
However, they can be iterated over, and the built-in function 1en () returns the number of items in a set. Common uses
for sets are fast membership testing, removing duplicates from a sequence, and computing mathematical operations such
as intersection, union, difference, and symmetric difference.

For set elements, the same immutability rules apply as for dictionary keys. Note that numeric types obey the normal rules
for numeric comparison: if two numbers compare equal (e.g., 1 and 1. 0), only one of them can be contained in a set.

There are currently two intrinsic set types:

Himpunan Set
These represent a mutable set. They are created by the built-in set () constructor and can be modified afterwards
by several methods, such as add () .

Frozen sets
These represent an immutable set. They are created by the built-in frozenset () constructor. As a frozenset is
immutable and hashable, it can be used again as an element of another set, or as a dictionary key.

3.2.7 Mappings

These represent finite sets of objects indexed by arbitrary index sets. The subscript notation a [k] selects the item indexed
by k from the mapping a; this can be used in expressions and as the target of assignments or de I statements. The built-in
function len () returns the number of items in a mapping.

There is currently a single intrinsic mapping type:

3.2. The standard type hierarchy 23

The Python Language Reference, Rilis 3.11.10

Kamus Dictionaries

These represent finite sets of objects indexed by nearly arbitrary values. The only types of values not acceptable as keys
are values containing lists or dictionaries or other mutable types that are compared by value rather than by object identity,
the reason being that the efficient implementation of dictionaries requires a key’s hash value to remain constant. Numeric
types used for keys obey the normal rules for numeric comparison: if two numbers compare equal (e.g., 1 and 1. 0) then
they can be used interchangeably to index the same dictionary entry.

Dictionaries preserve insertion order, meaning that keys will be produced in the same order they were added sequentially
over the dictionary. Replacing an existing key does not change the order, however removing a key and re-inserting it will
add it to the end instead of keeping its old place.

Dictionaries are mutable; they can be created by the { . . . } notation (see section Dictionary displays).

The extension modules dbm.ndbm and dbm.gnu provide additional examples of mapping types, as does the
collections module.

Berubah pada versi 3.7: Dictionaries did not preserve insertion order in versions of Python before 3.6. In CPython 3.6,
insertion order was preserved, but it was considered an implementation detail at that time rather than a language guarantee.

3.2.8 Callable types

These are the types to which the function call operation (see section Calls) can be applied:

User-defined functions

A user-defined function object is created by a function definition (see section Definisi fungsi). It should be called with an
argument list containing the same number of items as the function’s formal parameter list.

Special read-only attributes

Atribut Artinya

A reference to the di ct ionary that holds the function’s
global variables -- the global namespace of the module in
which the function was defined.

None or a tuple of cells that contain bindings for the
function’s free variables.

A cell object has the attribute ce11_contents. This
can be used to get the value of the cell, as well as set the
value.

function.__globals_

function.__closure___

24 Bab 3. Data model

The Python Language Reference, Rilis 3.11.10

Special writable attributes

Most of these attributes check the type of the assigned value:

Atribut Artinya
' The function’s documentation string, or None if unavai-
function.__doc__ lable. Not inherited by subclasses.
The function’s name. See also: _ name
function._ _name_ Bt e e EE.
' The function’s qualified name. See also:
function.__qualname _ _qualname__ attributes.
Baru pada versi 3.3.
. The name of the module the function was defined in, or
e None if unavailable.
. A tuple containing default parameter values for those
function._defaults parameters that have defaults, or None if no parameters
have a default value.
The code object representing the compiled function body.
function.___code___
.) The namespace supporting arbitrary function attributes.
function.__dict__ Seealso: dict attributes.
.] A dictionary containing annotations of parameters.
function.__annotations__ The keys of the dictionary are the parameter names, and
"return' for the return annotation, if provided. See
also: annotations-howto.
A dictionary containing defaults for keyword-only
function.__kwdefaults_

parameters.

Function objects also support getting and setting arbitrary attributes, which can be used, for example, to attach metadata
to functions. Regular attribute dot-notation is used to get and set such attributes.

Detail implementasi CPython: CPython’s current implementation only supports function attributes on user-defined
functions. Function attributes on built-in functions may be supported in the future.

Additional information about a function’s definition can be retrieved from its code object (accessible via the ___code

attribute).

3.2. The standard type hierarchy

25

The Python Language Reference, Rilis 3.11.10

Instance methods

An instance method object combines a class, a class instance and any callable object (normally a user-defined function).

Special read-only attributes:

Refers to the class instance object to which the method is
method.__self T

Refers to the original function object
method.___func___

The method’s documentation (same as method.
_ _func__.__doc__). A string if the original
function had a docstring, else None.

The name of the method (same as method.
_ _func__.__ _name_)

method.__doc___

method.__ _name_

The name of the module the method was defined in, or

method.__module_ None if unavailable.

Methods also support accessing (but not setting) the arbitrary function attributes on the underlying function object.

User-defined method objects may be created when getting an attribute of a class (perhaps via an instance of that class),
if that attribute is a user-defined function object or a classmethod object.

When an instance method object is created by retrieving a user-defined function object from a class via one of its instances,
its ___self _ attribute is the instance, and the method object is said to be bound. The new method’s __ func
attribute is the original function object.

‘When an instance method object is created by retrieving a c1assmethod object from a class or instance, its __self
attribute is the class itself, and its ___ func___ attribute is the function object underlying the class method.

When an instance method object is called, the underlying function (__ func__) is called, inserting the class instance
(__self__)infront of the argument list. For instance, when C is a class which contains a definition for a function £ (),
and x is an instance of C, calling x. £ (1) is equivalent to calling C.f (x, 1).

When an instance method object is derived from a classmethod object, the “class instance” stored in ___self
will actually be the class itself, so that calling either x. £ (1) or C.f (1) is equivalent to calling £ (C, 1) where £ is
the underlying function.

Note that the transformation from function object to instance method object happens each time the attribute is retrieved
from the instance. In some cases, a fruitful optimization is to assign the attribute to a local variable and call that local
variable. Also notice that this transformation only happens for user-defined functions; other callable objects (and all non-
callable objects) are retrieved without transformation. It is also important to note that user-defined functions which are
attributes of a class instance are not converted to bound methods; this only happens when the function is an attribute of
the class.

26 Bab 3. Data model

The Python Language Reference, Rilis 3.11.10

Generator functions

A function or method which uses the yield statement (see section The yield statement) is called a generator function.
Such a function, when called, always returns an iterator object which can be used to execute the body of the function:
calling the iterator’s iterator.__next__ () method will cause the function to execute until it provides a value
using the yield statement. When the function executes a ret urn statement or falls off the end, a StopIteration
exception is raised and the iterator will have reached the end of the set of values to be returned.

Coroutine functions

A function or method which is defined using async def is called a coroutine function. Such a function, when called,
returns a coroutine object. It may contain await expressions, as well as async withand async for statements.
See also the Objek Coroutine section.

Asynchronous generator functions

A function or method which is defined using async def and which uses the yie1d statement is called a asynchronous
generator function. Such a function, when called, returns an asynchronous iterator object which can be used inan async
for statement to execute the body of the function.

Calling the asynchronous iterator’s aiterator.__anext__ method will return an awaitable which when awaited will
execute until it provides a value using the yie1d expression. When the function executes an empty ret urn statement
or falls off the end, a StopAsyncIteration exception is raised and the asynchronous iterator will have reached the
end of the set of values to be yielded.

Built-in functions

A built-in function object is a wrapper around a C function. Examples of built-in functions are 1en () and math.
sin () (math is a standard built-in module). The number and type of the arguments are determined by the C function.
Special read-only attributes:

e __ doc___is the function’s documentation string, or None if unavailable. See function.__doc___
e _ name___is the function’s name. See function.___name_ .
e __self__ issettoNone (but see the next item).

e _ module__isthe name of the module the function was defined in or None if unavailable. See function.
__module__.

Built-in methods

This is really a different disguise of a built-in function, this time containing an object passed to the C function as an
implicit extra argument. An example of a built-in method is alist.append (), assuming alist is a list object. In
this case, the special read-only attribute ___self_ _ is set to the object denoted by alist. (The attribute has the same
semantics as it does with ot her instance methods.)

3.2. The standard type hierarchy 27

The Python Language Reference, Rilis 3.11.10

Kelas-kelas

Classes are callable. These objects normally act as factories for new instances of themselves, but variations are possible
for class types that override __new___ (). The arguments of the call are passed to __new___ () and, in the typical case,
to_ init__ () to initialize the new instance.

Class Instances

Instances of arbitrary classes can be made callable by defininga ___call__ () method in their class.

3.2.9 Modul-Modul

Modules are a basic organizational unit of Python code, and are created by the import system as invoked either by the
import statement, or by calling functions such as importlib.import_module () and built-in_import__ ().
A module object has a namespace implemented by a dictionary object (this is the dictionary referenced by the
__globals___ attribute of functions defined in the module). Attribute references are translated to lookups in this
dictionary, e.g., m. x is equivalent tom.__dict__ ["x"]. A module object does not contain the code object used to
initialize the module (since it isn’t needed once the initialization is done).

Attribute assignment updates the module’s namespace dictionary, e.g.,m.x = 1lisequivalenttom.__dict__ ["x"]
= 1.

Predefined (writable) attributes:

__name___
The module’s name.

doc

The module’s documentation string, or None if unavailable.

file
The pathname of the file from which the module was loaded, if it was loaded from a file. The
___file___ attribute may be missing for certain types of modules, such as C modules that are sta-
tically linked into the interpreter. For extension modules loaded dynamically from a shared library, it’s
the pathname of the shared library file.

__annotations___
A dictionary containing variable annotations collected during module body execution. For best practi-
ces on working with __annotations__, please see annotations-howto.

Special read-only attribute: ___dict__ is the module’s namespace as a dictionary object.

Detail implementasi CPython: Because of the way CPython clears module dictionaries, the module dictionary will be
cleared when the module falls out of scope even if the dictionary still has live references. To avoid this, copy the dictionary
or keep the module around while using its dictionary directly.

28 Bab 3. Data model

The Python Language Reference, Rilis 3.11.10

3.2.10 Custom classes

Custom class types are typically created by class definitions (see section Definisi Kelas). A class has a namespace im-
plemented by a dictionary object. Class attribute references are translated to lookups in this dictionary, e.g., C.x is
translated to C.__dict__ ["x"] (although there are a number of hooks which allow for other means of locating
attributes). When the attribute name is not found there, the attribute search continues in the base classes. This se-
arch of the base classes uses the C3 method resolution order which behaves correctly even in the presence of ’dia-
mond’ inheritance structures where there are multiple inheritance paths leading back to a common ancestor. Addi-
tional details on the C3 MRO used by Python can be found in the documentation accompanying the 2.3 release at
https://www.python.org/download/releases/2.3/mro/.

When a class attribute reference (for class C, say) would yield a class method object, it is transformed into an instance
method object whose __self attribute is C. When it would yield a staticmethod object, it is transformed into
the object wrapped by the static method object. See section Implementing Descriptors for another way in which attributes
retrieved from a class may differ from those actually contained inits __dict_ .

Class attribute assignments update the class’s dictionary, never the dictionary of a base class.

A class object can be called (see above) to yield a class instance (see below).

Special attributes:

__name___
The class name.

__module___
The name of the module in which the class was defined.

__dict___
The dictionary containing the class’s namespace.

__bases___
A tuple containing the base classes, in the order of their occurrence in the base class list.

doc_
The class’s documentation string, or None if undefined.

__annotations_
A dictionary containing variable annotations collected during class body execution. For best practices
on working with __annotations__, please see annotations-howto.

3.2.11 Class instances

A class instance is created by calling a class object (see above). A class instance has a namespace implemented as a
dictionary which is the first place in which attribute references are searched. When an attribute is not found there, and
the instance’s class has an attribute by that name, the search continues with the class attributes. If a class attribute is found
that is a user-defined function object, it is transformed into an instance method object whose ___self attribute is the
instance. Static method and class method objects are also transformed; see above under "Classes”. See section /mple-
menting Descriptors for another way in which attributes of a class retrieved via its instances may differ from the objects
actually stored in the class’s __dict__. If no class attribute is found, and the object’s class hasa ___getattr__ ()
method, that is called to satisfy the lookup.

Attribute assignments and deletions update the instance’s dictionary, never a class’s dictionary. If the class has a
__setattr__ () or__delattr__ () method, this is called instead of updating the instance dictionary directly.

Class instances can pretend to be numbers, sequences, or mappings if they have methods with certain special names. See
section Special method names.

3.2. The standard type hierarchy 29

https://www.python.org/download/releases/2.3/mro/

The Python Language Reference, Rilis 3.11.10

Special attributes: ___dict___is the attribute dictionary; __class__is the instance’s class.

3.2.12 1/0 objects (also known as file objects)

A file object represents an open file. Various shortcuts are available to create file objects: the open () built-in function,
and also os . popen (), os. fdopen (), and the makefile () method of socket objects (and perhaps by other fun-
ctions or methods provided by extension modules).

The objects sys.stdin, sys.stdout and sys.stderr are initialized to file objects corresponding to the interp-
reter’s standard input, output and error streams; they are all open in text mode and therefore follow the interface defined
by the io.Text IOBase abstract class.

3.2.13 Internal types

A few types used internally by the interpreter are exposed to the user. Their definitions may change with future versions
of the interpreter, but they are mentioned here for completeness.

Code objects

Code objects represent byte-compiled executable Python code, or byfecode. The difference between a code object and a
function object is that the function object contains an explicit reference to the function’s globals (the module in which it
was defined), while a code object contains no context; also the default argument values are stored in the function object,
not in the code object (because they represent values calculated at run-time). Unlike function objects, code objects are
immutable and contain no references (directly or indirectly) to mutable objects.

30 Bab 3. Data model

The Python Language Reference, Rilis 3.11.10

Special read-only attributes

codeobject

codeobject.

codeobject.

codeobject.

codeobject

codeobject.

codeobject.

codeobject.

codeobject.

codeobject.

codeobject.

codeobject.

codeobject

codeobject.

codeobject

codeobject.

codeobject.

.co_name

co_qualname

co_argcount

co_posonlyargcount

.co_kwonlyargcount

co_nlocals

CO_varnames

co_cellvars

co_freevars

co_code

co_consts

CO_names

.co_filename

co_firstlineno

.co_lnotab

co_stacksize

co_flags

The function name

The fully qualified function name
Baru pada versi 3.11.

The total number of positional parameters (including
positional-only parameters and parameters with default
values) that the function has

The number of positional-only parameters (including ar-
guments with default values) that the function has

The number of keyword-only parameters (including argu-
ments with default values) that the function has

The number of local variables used by the function (in-
cluding parameters)

A tuple containing the names of the local variables in
the function (starting with the parameter names)

A tuple containing the names of local variables that are
referenced by nested functions inside the function

A tuple containing the names of free variables in the
function

A string representing the sequence of byfecode instru-
ctions in the function

A tuple containing the literals used by the byrecode in
the function

A tuple containing the names used by the byrecode in
the function

The name of the file from which the code was compiled

The line number of the first line of the function

A string encoding the mapping from bytecode offsets to
line numbers. For details, see the source code of the in-
terpreter.

The required stack size of the code object

An integer encoding a number of flags for the interp-
reter.

3.2. The standard type hierarchy

31

The Python Language Reference, Rilis 3.11.10

The following flag bits are defined for co_f1ags: bit 0x04 is set if the function uses the *arguments syntax to
accept an arbitrary number of positional arguments; bit 0x08 is set if the function uses the **keywords syntax to
accept arbitrary keyword arguments; bit 0x20 is set if the function is a generator. See inspect-module-co-flags for
details on the semantics of each flags that might be present.

Future feature declarations (from __ future_ import division)alsousebitsin co_f1ags toindicate whe-
ther a code object was compiled with a particular feature enabled: bit 0x2000 is set if the function was compiled with
future division enabled; bits 0x10 and 0x1 000 were used in earlier versions of Python.

Other bits in co_ f1ags are reserved for internal use.

If a code object represents a function, the first item in co_ const s is the documentation string of the function, or None
if undefined.

Methods on code objects

codeobject.co_positions ()
Returns an iterable over the source code positions of each bytecode instruction in the code object.

The iterator returns tuples containing the (start_line, end_line, start_column,
end_column). The i-th tuple corresponds to the position of the source code that compiled to the i-th
code unit. Column information is 0-indexed utf-8 byte offsets on the given source line.

This positional information can be missing. A non-exhaustive lists of cases where this may happen:
o Running the interpreter with —X no_debug_ranges.
» Loading a pyc file compiled while using -X no_debug_ranges.
« Position tuples corresponding to artificial instructions.
o Line and column numbers that can’t be represented due to implementation specific limitations.
When this occurs, some or all of the tuple elements can be None.

Baru pada versi 3.11.

Catatan: This feature requires storing column positions in code objects which may result in a small increa-
se of disk usage of compiled Python files or interpreter memory usage. To avoid storing the extra information
and/or deactivate printing the extra traceback information, the —X no_debug_ranges command line flag or
the PYTHONNODEBUGRANGES environment variable can be used.

codeobject.co_lines ()

Returns an iterator that yields information about successive ranges of byftecodes. Each item yielded isa (start,
end, lineno) tuple:

e start (an int) represents the offset (inclusive) of the start of the bytecode range
e end (an int) represents the offset (exclusive) of the end of the byrecode range

o linenoisan int representing the line number of the bytecode range, or None if the bytecodes in the given
range have no line number

The items yielded will have the following properties:
o The first range yielded will have a start of 0.

o The (start, end) ranges will be non-decreasing and consecutive. That is, for any pair of tuples, the
start of the second will be equal to the end of the first.

32 Bab 3. Data model

The Python Language Reference, Rilis 3.11.10

» No range will be backwards: end >= start for all triples.

o The last tuple yielded will have end equal to the size of the bytecode.

Zero-width ranges, where start

end, are allowed. Zero-width ranges are used for lines that are present in

the source code, but have been eliminated by the byrecode compiler.

Baru pada versi 3.10.

Lihat juga:

PEP 626 - Precise line numbers for debugging and other tools.
The PEP that introduced the co_lines () method.

codeobject .replace (**kwargs)

Return a copy of the code object with new values for the specified fields.

Baru pada versi 3.8.

Frame objects

Frame objects represent execution frames. They may occur in fraceback objects, and are also passed to registered trace

functions.

Special read-only attributes

frame.f_back

frame.f_code

frame.f_locals

frame.f_globals

frame.f_builtins

frame.f_lasti

Points to the previous stack frame (towards the caller), or
None if this is the bottom stack frame

The code object being executed in this frame. Acces-
sing this attribute raises an auditing event object.
__getattr__ with arguments obj and "f_code".

The dictionary used by the frame to look up local varia-
bles

The dictionary used by the frame to look up global vari-
ables

The dictionary used by the frame to look up built-in (in-
trinsic) names

The “precise instruction” of the frame object (this is an
index into the byrecode string of the code object)

3.2. The standard type hierarchy

33

https://peps.python.org/pep-0626/

The Python Language Reference, Rilis 3.11.10

Special writable attributes

If not None, this is a function called for various events
during code execution (this is used by debuggers). Nor-
mally an event is triggered for each new source line (see
f_trace_lines).

Set this attribute to False to disable triggering a tracing
event for each source line.

frame.f_trace

frame.f_ trace_lines

Set this attribute to True to allow per-opcode events to
be requested. Note that this may lead to undefined interp-
reter behaviour if exceptions raised by the trace function
escape to the function being traced.

The current line number of the frame -- writing to this
from within a trace function jumps to the given line (only
for the bottom-most frame). A debugger can implement
a Jump command (aka Set Next Statement) by writing to
this attribute.

frame.f_ trace_opcodes

frame.f_lineno

Frame object methods

Frame objects support one method:

frame.clear ()

This method clears all references to local variables held by the frame. Also, if the frame belonged to a generator,
the generator is finalized. This helps break reference cycles involving frame objects (for example when catching an
exception and storing its fraceback for later use).

RuntimeError is raised if the frame is currently executing.

Baru pada versi 3.4.

Traceback objects

Traceback objects represent the stack trace of an exception. A traceback object is implicitly created when an exception
occurs, and may also be explicitly created by calling t ypes . TracebackType.

Berubah pada versi 3.7: Traceback objects can now be explicitly instantiated from Python code.

For implicitly created tracebacks, when the search for an exception handler unwinds the execution stack, at each unwound
level a traceback object is inserted in front of the current traceback. When an exception handler is entered, the stack trace
is made available to the program. (See section Pernyataan try.) It is accessible as the third item of the tuple returned by
sys.exc_info(),and asthe _ traceback___ attribute of the caught exception.

When the program contains no suitable handler, the stack trace is written (nicely formatted) to the standard error stream;
if the interpreter is interactive, it is also made available to the user as sys.last_traceback.

For explicitly created tracebacks, it is up to the creator of the traceback to determine how the t b_next attributes should
be linked to form a full stack trace.

Special read-only attributes:

34 Bab 3. Data model

The Python Language Reference, Rilis 3.11.10

Points to the execution frame of the current level.
Accessing this attribute raises an auditing event
object._ getattr_ with arguments obj and
"tb_frame".

Gives the line number where the exception occurred

traceback.tb_frame

traceback.tb_lineno

Indicates the precise instruction”.
traceback.tb_lasti

The line number and last instruction in the traceback may differ from the line number of its frame object if the exception
occurred in a t ry statement with no matching except clause or with a £inal 1y clause.
traceback.tb_next
The special writable attribute tb_next is the next level in the stack trace (towards the frame where the exception
occurred), or None if there is no next level.

Berubah pada versi 3.7: This attribute is now writable

Slice objects

Slice objects are used to represent slices for __getitem__ () methods. They are also created by the built-in s1ice ()
function.

Special read-only attributes: start is the lower bound; st op is the upper bound; step is the step value; each is None
if omitted. These attributes can have any type.

Slice objects support one method:

slice.indices (self, length)

This method takes a single integer argument length and computes information about the slice that the slice object
would describe if applied to a sequence of length items. It returns a tuple of three integers; respectively these are
the start and stop indices and the step or stride length of the slice. Missing or out-of-bounds indices are handled in
a manner consistent with regular slices.

Static method objects

Static method objects provide a way of defeating the transformation of function objects to method objects described
above. A static method object is a wrapper around any other object, usually a user-defined method object. When a static
method object is retrieved from a class or a class instance, the object actually returned is the wrapped object, which is
not subject to any further transformation. Static method objects are also callable. Static method objects are created by
the built-in staticmethod () constructor.

3.2. The standard type hierarchy 35

The Python Language Reference, Rilis 3.11.10

Class method objects

A class method object, like a static method object, is a wrapper around another object that alters the way in which that
object is retrieved from classes and class instances. The behaviour of class method objects upon such retrieval is described
above, under "instance methods”. Class method objects are created by the built-in classmethod () constructor.

3.3 Special method names

A class can implement certain operations that are invoked by special syntax (such as arithmetic operations or subscrip-
ting and slicing) by defining methods with special names. This is Python’s approach to operator overloading, allo-
wing classes to define their own behavior with respect to language operators. For instance, if a class defines a me-
thod named __getitem__ (), and x is an instance of this class, then x [1] is roughly equivalent to type (x) .
__getitem_ (x, 1). Exceptwhere mentioned, attempts to execute an operation raise an exception when no app-
ropriate method is defined (typically AttributeError or TypeError).

Setting a special method to None indicates that the corresponding operation is not available. For example, if a class sets
__iter__ () to None, the class is not iterable, so calling iter () on its instances will raise a TypeError (without
falling back to ___getitem ()).?

When implementing a class that emulates any built-in type, it is important that the emulation only be implemented to the
degree that it makes sense for the object being modelled. For example, some sequences may work well with retrieval of
individual elements, but extracting a slice may not make sense. (One example of this is the NodeList interface in the
W3C’s Document Object Model.)

3.3.1 Basic customization

object._ new_ (cls[,])

Called to create a new instance of class cls. __new__ () is a static method (special-cased so you need not declare
it as such) that takes the class of which an instance was requested as its first argument. The remaining arguments
are those passed to the object constructor expression (the call to the class). The return value of ___new__ ()
should be the new object instance (usually an instance of cIs).

Typical implementations create a new instance of the class by invoking the superclass’s __new__ () method
using super () .__new__ (cls[, ...]) withappropriate arguments and then modifying the newly created
instance as necessary before returning it.

If _ _new__ () is invoked during object construction and it returns an instance of cls, then the new instance’s
__init__ () method will be invoked like __init__ (self[, ...]), where self is the new instance and
the remaining arguments are the same as were passed to the object constructor.

If _ _new () does not return an instance of c¢ls, then the new instance’s _ init__ () method will not be
invoked.

__new___ () isintended mainly to allow subclasses of immutable types (like int, str, or tuple) to customize instance
creation. It is also commonly overridden in custom metaclasses in order to customize class creation.

object.__init___ (self[,])
Called after the instance has been created (by ___new___ ()), but before it is returned to the caller. The arguments
are those passed to the class constructor expression. If a base class has an ___init__ () method, the derived
class's ___init__ () method, if any, must explicitly call it to ensure proper initialization of the base class part of
the instance; for example: super () .__init__ ([args...]).

2The hash (), iter (), reversed (),and _contains__ () methods have special handling for this; others will still raise
a TypeError, but may do so by relying on the behavior that None is not callable.

36 Bab 3. Data model

The Python Language Reference, Rilis 3.11.10

Because __new__ () and __init__ () work together in constructing objects (__new__ () to create it, and
__init___ () to customize it), no non-None value may be returned by ___init__ (); doing so will cause a
TypeError to be raised at runtime.

object.__del__ (self)

Called when the instance is about to be destroyed. This is also called a finalizer or (improperly) a destructor. If a
base classhasa ___del_ () method, the derived class’s __del () method, if any, must explicitly call it to
ensure proper deletion of the base class part of the instance.

It is possible (though not recommended!) for the _ del () method to postpone destruction of the instan-
ce by creating a new reference to it. This is called object resurrection. It is implementation-dependent whether
__del__ () is called a second time when a resurrected object is about to be destroyed; the current CPython
implementation only calls it once.

It is not guaranteed that ___del__ () methods are called for objects that still exist when the interpreter exits.

Catatan: del x doesn't directly call x.__del () --- the former decrements the reference count for x by
one, and the latter is only called when x’s reference count reaches zero.

Detail implementasi CPython: It is possible for a reference cycle to prevent the reference count of an object from
going to zero. In this case, the cycle will be later detected and deleted by the cyclic garbage collector. A common
cause of reference cycles is when an exception has been caught in a local variable. The frame’s locals then reference
the exception, which references its own traceback, which references the locals of all frames caught in the traceback.
Lihat juga:

Documentation for the gc module.

Peringatan: Due to the precarious circumstances under which ___del__ () methods are invoked, exceptions
that occur during their execution are ignored, and a warning is printed to sy s . stderr instead. In particular:

e __del__ () canbeinvoked when arbitrary code is being executed, including from any arbitrary thread.
If __del () needs to take a lock or invoke any other blocking resource, it may deadlock as the
resource may already be taken by the code that gets interrupted to execute __del__ ().

e del__ () can be executed during interpreter shutdown. As a consequence, the global variables
it needs to access (including other modules) may already have been deleted or set to None. Python
guarantees that globals whose name begins with a single underscore are deleted from their module before
other globals are deleted; if no other references to such globals exist, this may help in assuring that
imported modules are still available at the time when the ___del___ () method is called.

object._ repr _ (self)

Called by the repr () built-in function to compute the “official” string representation of an object. If at all possible,
this should look like a valid Python expression that could be used to recreate an object with the same value (given an
appropriate environment). If this is not possible, a string of the form <. . .some useful description.
. .> should be returned. The return value must be a string object. If a class defines ___repr__ () but not
__str__(),then__repr__ () is also used when an "informal” string representation of instances of that class
is required.

This is typically used for debugging, so it is important that the representation is information-rich and unambiguous.

object.__str__ (self)

Called by str (object) and the built-in functions format () and print () to compute the “informal” or
nicely printable string representation of an object. The return value must be a string object.

3.3. Special method names 37

The Python Language Reference, Rilis 3.11.10

This method differs from object.___repr () inthat there is no expectation that ___str__ () return a valid
Python expression: a more convenient or concise representation can be used.

The default implementation defined by the built-in type object calls object._ repr ().

object._ bytes_ (self)

Called by bytes to compute a byte-string representation of an object. This should return a bytes object.

object.__format__ (self, format_spec)

Called by the format () built-in function, and by extension, evaluation of formatted string literals and the str.
format () method, to produce a "formatted” string representation of an object. The format_spec argument is a
string that contains a description of the formatting options desired. The interpretation of the format_spec argument
is up to the type implementing __ format___ (), however most classes will either delegate formatting to one of
the built-in types, or use a similar formatting option syntax.

See formatspec for a description of the standard formatting syntax.
The return value must be a string object.

Berubah pada versi 3.4: The __format__ method of object itself raises a TypeError if passed any non-empty
string.

Berubah pada versi 3.7: object.__format__ (x, '') is now equivalent to str (x) rather than
format (str(x), ''").

object.__1t__ (self, other)

object.__le__ (self, other)

object.__eq (self, other)

object.__ne__ (self, other)

object.__gt__ (self, other)

object.__ge__ (self, other)

These are the so-called “rich comparison” methods. The correspondence between operator symbols and method
names is as follows: x<ycallsx._ 1t (y),x<=ycallsx.__le_ (y),x==ycallsx.__eq (y),x!=y
callsx._ _ne_ (y),x>ycallsx.__gt_ (y),andx>=ycallsx._ _ge_ (y).

A rich comparison method may return the singleton Not Implemented if it does not implement the operation for
a given pair of arguments. By convention, False and True are returned for a successful comparison. However,
these methods can return any value, so if the comparison operator is used in a Boolean context (e.g., in the condition
of an 1if statement), Python will call bool () on the value to determine if the result is true or false.

By default, object implements __eqg () by using is, returning Not Implemented in the case of a fal-
se comparison: True if x is y else NotImplemented. For _ ne (), by default it delegates to
__eqg__ () and inverts the result unless it is Not Implemented. There are no other implied relationships
among the comparison operators or default implementations; for example, the truth of (x<y or x==y) does
not imply x<=y. To automatically generate ordering operations from a single root operation, see functools.
total_ordering ().

See the paragraphon ___hash__ () for some important notes on creating rashable objects which support custom
comparison operations and are usable as dictionary keys.

There are no swapped-argument versions of these methods (to be used when the left argument does not support the
operation but the right argument does); rather, __ 1t__ () and___gt__ () areeach other’sreflection, __1e__ ()
and _ _ge__ () are each other’s reflection, and __eq () and _ _ne__ () are their own reflection. If the
operands are of different types, and the right operand’s type is a direct or indirect subclass of the left operand’s
type, the reflected method of the right operand has priority, otherwise the left operand’s method has priority. Virtual
subclassing is not considered.

‘When no appropriate method returns any value other than Not Implemented, the == and ! = operators will fall
back to is and is not, respectively.

38

Bab 3. Data model

The Python Language Reference, Rilis 3.11.10

object._ _hash__ (self)

Called by built-in function hash () and for operations on members of hashed collections including set,
frozenset, and dict. The _ hash__ () method should return an integer. The only required property is
that objects which compare equal have the same hash value; it is advised to mix together the hash values of the
components of the object that also play a part in comparison of objects by packing them into a tuple and hashing
the tuple. Example:

def _ hash (self):
return hash((self.name, self.nick, self.color))

Catatan: hash () truncates the value returned from an object’s custom ___hash__ () method to the size of a
Py_ssize_t. Thisis typically 8 bytes on 64-bit builds and 4 bytes on 32-bit builds. If an object’s ___hash__ ()
must interoperate on builds of different bit sizes, be sure to check the width on all supported builds. An easy way
to do this is with python -c "import sys; print (sys.hash_info.width)".

If aclass does notdefinean __eqg_ () method it should not definea ___hash__ () operation either; if it defines
__eq__ () butnot ___hash__ (), its instances will not be usable as items in hashable collections. If a class
defines mutable objects and implements an __eqg () method, it should not implement ___hash__ (), since
the implementation of hashable collections requires that a key’s hash value is immutable (if the object’s hash value
changes, it will be in the wrong hash bucket).

User-defined classes have __eq__ () and __hash___ () methods by default; with them, all objects compare
unequal (except with themselves) and x.___hash__ () returns an appropriate value such that x == vy implies
boththat x is yand hash (x) == hash (y).

A class that overrides ___eqg___ () and does not define ___hash__ () will have its __hash__ () implicitly set
to None. When the __hash__ () method of a class is None, instances of the class will raise an appropri-
ate TypeError when a program attempts to retrieve their hash value, and will also be correctly identified as
unhashable when checking isinstance (obj, collections.abc.Hashable).

If a class that overrides ___eqg__ () needs to retain the implementation of ___hash__ () from a parent class, the
interpreter must be told this explicitly by setting __hash__ = <ParentClass>._ _hash_ .

If a class that does not override __eqg () wishes to suppress hash support, it should include _ _hash__ =
None in the class definition. A class which defines its own ___hash__ () that explicitly raises a TypeError
would be incorrectly identified as hashable by an isinstance (obj, collections.abc.Hashable)
call.

Catatan: By default, the __hash__ () values of str and bytes objects are “salted” with an unpredictable ran-
dom value. Although they remain constant within an individual Python process, they are not predictable between
repeated invocations of Python.

This is intended to provide protection against a denial-of-service caused by carefully chosen inputs that exploit the
worst case performance of a dict insertion, O(n*) complexity. See http://ocert.org/advisories/ocert-2011-003.html
for details.

Changing hash values affects the iteration order of sets. Python has never made guarantees about this ordering (and
it typically varies between 32-bit and 64-bit builds).

See also PYTHONHASHSEED.

Berubah pada versi 3.3: Hash randomization is enabled by default.

object._ bool__ (self)
Called to implement truth value testing and the built-in operation boo1l () ; should return False or True. When

3.3. Special method names 39

http://ocert.org/advisories/ocert-2011-003.html

The Python Language Reference, Rilis 3.11.10

this method is not defined, __I1en__ () is called, if it is defined, and the object is considered true if its result is
nonzero. If a class defines neither __1en_ () nor _ _bool__ (), all its instances are considered true.

3.3.2 Customizing attribute access

The following methods can be defined to customize the meaning of attribute access (use of, assignment to, or deletion of
x .name) for class instances.

object._ _getattr__ (self, name)

Called when the default attribute access fails with an AttributeError (either _ getattribute_ ()
raises an Att ributeError because name is not an instance attribute or an attribute in the class tree for self;
or __get__ () of aname property raises At t ributeError). This method should either return the (computed)
attribute value or raise an AttributeError exception.

Note that if the attribute is found through the normal mechanism, getattr__ () is not called. (This is an
intentional asymmetry between ___getattr__ () and __setattr__ ().) This is done both for efficiency
reasons and because otherwise ___getattr__ () would have no way to access other attributes of the instance.
Note that at least for instance variables, you can fake total control by not inserting any values in the instance attribute
dictionary (but instead inserting them in another object). See the __getattribute__ () method below for a
way to actually get total control over attribute access.

object.__getattribute_ (self, name)

Called unconditionally to implement attribute accesses for instances of the class. If the class also defi-
nes __getattr__ (), the latter will not be called unless __getattribute__ () either calls it explicit-
ly or raises an AttributeError. This method should return the (computed) attribute value or raise an
AttributeError exception. In order to avoid infinite recursion in this method, its implementation should
always call the base class method with the same name to access any attributes it needs, for example, object.
__getattribute_ (self, name).

Catatan: This method may still be bypassed when looking up special methods as the result of implicit invocation
via language syntax or built-in functions. See Special method lookup.

For certain sensitive attribute accesses, raises an auditing event object.___getattr__ with arguments obj
and name.
object.__setattr__ (self, name, value)

Called when an attribute assignment is attempted. This is called instead of the normal mechanism (i.e. store the
value in the instance dictionary). name is the attribute name, value is the value to be assigned to it.

If _ _setattr__ () wants to assign to an instance attribute, it should call the base class method with the same
name, for example, object.___setattr_ (self, name, value).

For certain sensitive attribute assignments, raises an auditing event object.__ setattr__ with arguments
ob7j, name, value.
object._ _delattr_ _ (self, name)

Like __setattr__ () butfor attribute deletion instead of assignment. This should only be implemented if de 1
obj.name is meaningful for the object.

For certain sensitive attribute deletions, raises an auditing event object ._ delattr__ with arguments obj
and name.

40 Bab 3. Data model

The Python Language Reference, Rilis 3.11.10

object._ dir__ (self)

Called when dir () is called on the object. An iterable must be returned. dir () converts the returned iterable
to a list and sorts it.

Customizing module attribute access

Special names __getattr__ and _ dir__ can be also used to customize access to module attributes. The
__getattr__ function at the module level should accept one argument which is the name of an attribute and re-
turn the computed value or raise an AttributeError. If an attribute is not found on a module object through the
normal lookup, i.e. object.___getattribute__ (),then__getattr__ issearched inthe module _ dict_
before raising an AttributeError. If found, it is called with the attribute name and the result is returned.

The _ dir__ function should accept no arguments, and return an iterable of strings that represents the names accessible
on module. If present, this function overrides the standard dir () search on a module.

For a more fine grained customization of the module behavior (setting attributes, properties, etc.), one can set the
__class___ attribute of a module object to a subclass of t ypes .ModuleType. For example:

import sys
from types import ModuleType

class VerboseModule (ModuleType) :
def _ repr_ (self):
return f'Verbose {self._ _name

def _ setattr_ (self, attr, wvalue):
print (f'Setting {attr}..."')

super () ._ _setattr__ (attr, wvalue)

sys.modules [name]. class = VerboseModule

Catatan: Defining module __getattr__ and setting module __class__ only affect lookups made using the
attribute access syntax -- directly accessing the module globals (whether by code within the module, or via a reference to
the module’s globals dictionary) is unaffected.

Berubah pada versi 3.5: ___class__ module attribute is now writable.
Baru pada versi 3.7: __getattr__and __dir__ module attributes.
Lihat juga:

PEP 562 - Module __getattr__and __dir__
Describes the __getattr___and __dir__ functions on modules.

Implementing Descriptors

The following methods only apply when an instance of the class containing the method (a so-called descriptor class)
appears in an owner class (the descriptor must be in either the owner’s class dictionary or in the class dictionary for one
of its parents). In the examples below, “the attribute” refers to the attribute whose name is the key of the property in the
owner class __dict_ .

object.__get_ (self, instance, owner=None)

Called to get the attribute of the owner class (class attribute access) or of an instance of that class (instance attribute
access). The optional owner argument is the owner class, while instance is the instance that the attribute was
accessed through, or None when the attribute is accessed through the owner.

3.3. Special method names 4

https://peps.python.org/pep-0562/

The Python Language Reference, Rilis 3.11.10

This method should return the computed attribute value or raise an AttributeError exception.

PEP 252 specifies that ___get___ () is callable with one or two arguments. Python’s own built-in descriptors
support this specification; however, it is likely that some third-party tools have descriptors that require both argu-
ments. Python’s own ___getattribute__ () implementation always passes in both arguments whether they
are required or not.

object.__set__ (self, instance, value)
Called to set the attribute on an instance instance of the owner class to a new value, value.
Note, adding__set__ () or__delete__ () changes the kind of descriptor to a “data descriptor”. See Invoking
Descriptors for more details.

object.__delete__ (self, instance)
Called to delete the attribute on an instance instance of the owner class.

Instances of descriptors may also have the __objclass___ attribute present:

object._ _objclass_
The attribute __objclass__ is interpreted by the inspect module as specifying the class where this object
was defined (setting this appropriately can assist in runtime introspection of dynamic class attributes). For callables,
it may indicate that an instance of the given type (or a subclass) is expected or required as the first positional
argument (for example, CPython sets this attribute for unbound methods that are implemented in C).

Invoking Descriptors

In general, a descriptor is an object attribute with “binding behavior”, one whose attribute access has been overridden by
methods in the descriptor protocol: __get__ (), __set__(),and __delete__ (). If any of those methods are
defined for an object, it is said to be a descriptor.

The default behavior for attribute access is to get, set, or delete the attribute from an object’s dictionary. For instance, a . x
has a lookup chain starting with a.__ dict__ ['x"'], then type(a) .__dict__ ['x'], and continuing through
the base classes of type (a) excluding metaclasses.

However, if the looked-up value is an object defining one of the descriptor methods, then Python may override the
default behavior and invoke the descriptor method instead. Where this occurs in the precedence chain depends on which
descriptor methods were defined and how they were called.

The starting point for descriptor invocation is a binding, a . x. How the arguments are assembled depends on a:

Direct Call
The simplest and least common call is when user code directly invokes a descriptor method: x.___get__ (a).

Instance Binding

If binding to an object instance, a . x is transformed into the call: type (a) .__dict__ ['x'].__get_ (a,
type(a)).

Class Binding
If binding to a class, A . x is transformed into the call: A.__dict_ ['x'].__get__ (None, A).

Super Binding
A dotted lookup such as super (A, a) .xsearchesa.__class__.__mro__ for a base class B following A
and thenreturns B. __dict__ ['x'].__get__ (a, A).If nota descriptor, x is returned unchanged.

For instance bindings, the precedence of descriptor invocation depends on which descriptor methods are defined. A
descriptor can define any combination of __get__ (), __set__ () and __delete__ (). If it does not define
__get__ (), then accessing the attribute will return the descriptor object itself unless there is a value in the object’s
instance dictionary. If the descriptor defines __set__ () and/or __delete__ (), itis a data descriptor; if it defines
neither, it is a non-data descriptor. Normally, data descriptors define both __get__ () and __set__ (), while non-
data descriptors have just the __get__ () method. Data descriptors with __get__ () and __set__ () (and/or

42 Bab 3. Data model

https://peps.python.org/pep-0252/

The Python Language Reference, Rilis 3.11.10

__delete__ ()) defined always override a redefinition in an instance dictionary. In contrast, non-data descriptors can
be overridden by instances.

Python methods (including those decorated with @staticmethod and @classmethod) are implemented as non-
data descriptors. Accordingly, instances can redefine and override methods. This allows individual instances to acquire
behaviors that differ from other instances of the same class.

The property () function is implemented as a data descriptor. Accordingly, instances cannot override the behavior of
a property.

__slots__

_ slots__ allow us to explicitly declare data members (like properties) and deny the creation of __dict___ and _ we-
akref _ (unless explicitly declared in __slots__ or available in a parent.)

The space saved over using ___dict__ can be significant. Attribute lookup speed can be significantly improved as well.

object.__slots___

This class variable can be assigned a string, iterable, or sequence of strings with variable names used by instan-
ces. __slots__ reserves space for the declared variables and prevents the automatic creation of ___dict__ and
__weakref__ for each instance.

Notes on using __slots__:

o When inheriting from a class without __slots__, the __dict__ and __weakref__ attribute of the instances will
always be accessible.

o Withouta __dict__ variable, instances cannot be assigned new variables not listed in the __slots__ definition.
Attempts to assign to an unlisted variable name raises Att ributeError. If dynamic assignment of new varia-
bles is desired, thenadd ' ___dict__ ' to the sequence of strings in the __slots__ declaration.

o Withouta __weakref _ variable for each instance, classes defining __slots__ do not support weak references
to its instances. If weak reference support is needed, thenadd ' __weakref ' to the sequence of strings in the
__slots__ declaration.

o _ slots__ are implemented at the class level by creating descriptors for each variable name. As a result, class
attributes cannot be used to set default values for instance variables defined by __slots__; otherwise, the class
attribute would overwrite the descriptor assignment.

o The action of a __slots__ declaration is not limited to the class where it is defined. __ slots _ declared in parents
are available in child classes. However, child subclasses will geta __dict__ and _ weakref _ unless they also
define __slots__ (which should only contain names of any additional slots).

« If a class defines a slot also defined in a base class, the instance variable defined by the base class slot is inaccessible
(except by retrieving its descriptor directly from the base class). This renders the meaning of the program undefined.
In the future, a check may be added to prevent this.

o TypeError will be raised if nonempty __slots__ are defined for a class derived froma "variable-length"
built-in typesuchas int,bytes, and tuple.

« Any non-string iferable may be assigned to __slots__.

o If adictionary is used to assign __slots__, the dictionary keys will be used as the slot names. The values of
the dictionary can be used to provide per-attribute docstrings that will be recognised by inspect .getdoc ()
and displayed in the output of help ().

e _ class___ assignment works only if both classes have the same __slots__.

o Multiple inheritance with multiple slotted parent classes can be used, but only one parent is allowed to have attri-
butes created by slots (the other bases must have empty slot layouts) - violations raise TypeError.

3.3. Special method names 43

The Python Language Reference, Rilis 3.11.10

o If aniterator isused for __slots__then a descriptor is created for each of the iterator’s values. However, the __slots__

attribute will be an empty iterator.

3.3.3 Customizing class creation

Whenever a class inherits from another class,

init_subclass__ () is called on the parent class. This way, it

is possible to write classes which change the behavior of subclasses. This is closely related to class decorators, but

where class decorators only affect the specific class they’re applied to,

init_subclass___ solely applies to future

subclasses of the class defining the method.

classmethod object.__init_subclass__ (cls)

This method is called whenever the containing class is subclassed. cls is then the new subclass. If defined as a
normal instance method, this method is implicitly converted to a class method.

Keyword arguments which are given to a new class are passed to the parent class’s __init_subclass__.
For compatibility with other classes using __init_subclass__, one should take out the needed keyword
arguments and pass the others over to the base class, as in:

-
class Philosopher:

def _ init_subclass__ (cls, /, default_name, **kwargs):
super () .__init_subclass__ (**kwargs)
cls.default_name = default_ _name

class AustralianPhilosopher (Philosopher, default_name="Bruce"):

pass

The default implementation object.__init_subclass__ does nothing, but raises an error if it is called
with any arguments.

Catatan: The metaclass hint metaclass is consumed by the rest of the type machinery, and is never passed to
__init_subclass__ implementations. The actual metaclass (rather than the explicit hint) can be accessed as
type (cls).

Baru pada versi 3.6.

When a class is created, type._ _new__ () scans the class variables and makes callbacks to those with a
___set_name___ () hook.

object._ set_name__ (self, owner, name)

Automatically called at the time the owning class owner is created. The object has been assigned to name in that
class:

class A:
x = C() # Automatically calls: x.__set_name__ (A, 'x'")

If the class variable is assigned after the class is created, ___set_name__ () will not be called automatically. If
needed, set_name__ () can be called directly:

class A:
pass
c =C()
A.Xx = C # The hook is not called
c._ _set_name__ (A, 'x'") # Manually invoke the hook

44

Bab 3. Data model

The Python Language Reference, Rilis 3.11.10

See Creating the class object for more details.

Baru pada versi 3.6.

Metaclasses

By default, classes are constructed using t ype (). The class body is executed in a new namespace and the class name is
bound locally to the result of type (name, bases, namespace).

The class creation process can be customized by passing the metaclass keyword argument in the class definition line,
or by inheriting from an existing class that included such an argument. In the following example, both MyClass and
MySubclass are instances of Meta:

class Meta (type) :
pass

class MyClass (metaclass=Meta) :
pass

class MySubclass (MyClass) :
pass

Any other keyword arguments that are specified in the class definition are passed through to all metaclass operations
described below.

When a class definition is executed, the following steps occur:
« MRO entries are resolved;
« the appropriate metaclass is determined;
« the class namespace is prepared;
« the class body is executed;

« the class object is created.

Resolving MRO entries

object._ _mro_entries__ (self, bases)
If a base that appears in a class definition is not an instance of type, thenan ___mro_entries__ () method is
searched on the base. If an __mro_entries__ () method is found, the base is substituted with the result of a
callto___mro_entries__ () when creating the class. The method is called with the original bases tuple passed
to the bases parameter, and must return a tuple of classes that will be used instead of the base. The returned tuple
may be empty: in these cases, the original base is ignored.

Lihat juga:

types.resolve_bases ()
Dynamically resolve bases that are not instances of type.

PEP 560
Core support for typing module and generic types.

3.3. Special method names 45

https://peps.python.org/pep-0560/

The Python Language Reference, Rilis 3.11.10

Determining the appropriate metaclass

The appropriate metaclass for a class definition is determined as follows:
« if no bases and no explicit metaclass are given, then type () is used;
« if an explicit metaclass is given and it is not an instance of type (), then it is used directly as the metaclass;

« if an instance of type () is given as the explicit metaclass, or bases are defined, then the most derived metaclass
is used.

The most derived metaclass is selected from the explicitly specified metaclass (if any) and the metaclasses (i.e.
type (cls)) of all specified base classes. The most derived metaclass is one which is a subtype of all of these can-
didate metaclasses. If none of the candidate metaclasses meets that criterion, then the class definition will fail with
TypeError.

Preparing the class nhamespace

Once the appropriate metaclass has been identified, then the class namespace is prepared. If the metaclass
has a _ prepare__ attribute, it is called as namespace = metaclass.__prepare__ (name, bases,
**kwds) (where the additional keyword arguments, if any, come from the class definition). The __ prepare_
method should be implemented as a classmethod. The namespace returned by _ prepare_ is passed in to
__new___, but when the final class object is created the namespace is copied into a new dict.

If the metaclass hasno ___prepare___ attribute, then the class namespace is initialised as an empty ordered mapping.
Lihat juga:

PEP 3115 - Metaclasses in Python 3000
Introduced the __prepare__ namespace hook

Executing the class body

The class body is executed (approximately) as exec (body, globals (), namespace). The key difference from
anormal call to exec () is that lexical scoping allows the class body (including any methods) to reference names from
the current and outer scopes when the class definition occurs inside a function.

However, even when the class definition occurs inside the function, methods defined inside the class still cannot see names
defined at the class scope. Class variables must be accessed through the first parameter of instance or class methods, or
through the implicit lexically scoped ___class__ reference described in the next section.

Creating the class object

Once the class namespace has been populated by executing the class body, the class object is created by calling
metaclass (name, bases, namespace, **kwds) (the additional keywords passed here are the same as tho-
se passed to __prepare_).

This class object is the one that will be referenced by the zero-argument form of super (). _ class__ is animplicit
closure reference created by the compiler if any methods in a class body refer to either __class__ or super. This
allows the zero argument form of super () to correctly identify the class being defined based on lexical scoping, while
the class or instance that was used to make the current call is identified based on the first argument passed to the method.

Detail implementasi CPython: In CPython 3.6 and later, the _ class__ cell is passed to the metaclass as a
__classcell__ entry in the class namespace. If present, this must be propagated up to the type.__new__ callin
order for the class to be initialised correctly. Failing to do so will result in a Runt imeError in Python 3.8.

46 Bab 3. Data model

https://peps.python.org/pep-3115/

The Python Language Reference, Rilis 3.11.10

When using the default metaclass t ype, or any metaclass that ultimately calls t ype . __new__, the following additional
customization steps are invoked after creating the class object:

1) The type._ _new__ method collects all of the attributes in the class namespace that define a
__set_name___ () method;

2) Those ___set_name__ methods are called with the class being defined and the assigned name of that particular
attribute;

3) The _init_subclass__ () hook is called on the immediate parent of the new class in its method resolution
order.

After the class object is created, it is passed to the class decorators included in the class definition (if any) and the resulting
object is bound in the local namespace as the defined class.

When a new class is created by type.___new__, the object provided as the namespace parameter is copied to a new
ordered mapping and the original object is discarded. The new copy is wrapped in a read-only proxy, which becomes the
__dict__ attribute of the class object.

Lihat juga:

PEP 3135 - New super
Describes the implicit __class___ closure reference

Uses for metaclasses

The potential uses for metaclasses are boundless. Some ideas that have been explored include enum, logging, inter-
face checking, automatic delegation, automatic property creation, proxies, frameworks, and automatic resource loc-
king/synchronization.

3.3.4 Customizing instance and subclass checks

The following methods are used to override the default behavior of the isinstance () and issubclass () built-in
functions.

In particular, the metaclass abc . ABCMeta implements these methods in order to allow the addition of Abstract Base
Classes (ABCs) as “virtual base classes” to any class or type (including built-in types), including other ABCs.
class.__instancecheck__ (self, instance)
Return true if instance should be considered a (direct or indirect) instance of class. If defined, called to implement
isinstance (instance, class).
class.__subclasscheck__ (self, subclass)
Return true if subclass should be considered a (direct or indirect) subclass of class. If defined, called to implement

issubclass (subclass, class).

Note that these methods are looked up on the type (metaclass) of a class. They cannot be defined as class methods in
the actual class. This is consistent with the lookup of special methods that are called on instances, only in this case the
instance is itself a class.

Lihat juga:

PEP 3119 - Introducing Abstract Base Classes
Includes the specification for customizing isinstance () and issubclass () behavior through
__instancecheck__ () and __subclasscheck__ (), with motivation for this functionality in the con-
text of adding Abstract Base Classes (see the abc module) to the language.

3.3. Special method names 47

https://peps.python.org/pep-3135/
https://peps.python.org/pep-3119/

The Python Language Reference, Rilis 3.11.10

3.3.5 Emulating generic types

When using type annotations, it is often useful to parameterize a generic type using Python’s square-brackets notation. For
example, the annotation 1ist [int] might be used to signify a 1ist in which all the elements are of type int.
Lihat juga:

PEP 484 - Type Hints
Introducing Python’s framework for type annotations

Generic Alias Types
Documentation for objects representing parameterized generic classes

Generics, user-defined generics and typing.Generic
Documentation on how to implement generic classes that can be parameterized at runtime and understood by static
type-checkers.

A class can generally only be parameterized if it defines the special class method __class_getitem__ ().

classmethod object._ class_getitem__ (cls, key)

Return an object representing the specialization of a generic class by type arguments found in key.

When defined on aclass, _ _class_getitem__ () is automatically a class method. As such, there is no need
for it to be decorated with @classmethod when it is defined.

The purpose of __class_getitem _

The purpose of __class_getitem _ () isto allow runtime parameterization of standard-library generic classes in
order to more easily apply 7ype hints to these classes.

To implement custom generic classes that can be parameterized at runtime and understood by static type-checkers, users
should either inherit from a standard library class that already implements ___class_getitem__ (), or inherit from
typing.Generic, which has its own implementation of __class_getitem__ ().

Custom implementations of __class_getitem__ () on classes defined outside of the standard library may not be
understood by third-party type-checkers such as mypy. Using ___class_getitem__ () on any class for purposes
other than type hinting is discouraged.

__class_getitem__ versus __getitem__

Usually, the subscription of an object using square brackets will call the __getitem__ () instance method defined on
the object’s class. However, if the object being subscribed is itself a class, the class method __class_getitem _ ()
may be called instead. __class_getitem__ () should return a GenericAlias object if it is properly defined.

Presented with the expression obj [x], the Python interpreter follows something like the following process to decide
whether _ getitem () or__ _class_getitem__ () should be called:

from inspect import isclass

def subscribe (obj, x):
"""Return the result of the expression 'obj[x]'"""

class_of_obj = type (obj)

If the class of obj defines __getitem _,
call class_of obj.__getitem _ (obj, x)
if hasattr(class_of_obj, '_ _getitem '):
(berlanjut ke halaman berikutnya)

48 Bab 3. Data model

https://peps.python.org/pep-0484/

The Python Language Reference, Rilis 3.11.10

(lanjutan dari halaman sebelumnya)

return class_of_obj._ _getitem__ (obj, x)

Else, if obj is a class and defines __class_getitem _,

call obj._ _class_getitem _ (x)

elif isclass(obj) and hasattr(obj, '_ class_getitem '):
return obj._ class_getitem__ (x)

Else, raise an exception
else:
raise TypeError (
f"'{class_of_obj.__name_}' object is not subscriptable"

In Python, all classes are themselves instances of other classes. The class of a class is known as that class’s metaclass, and
most classes have the t ype class as their metaclass. type does notdefine___getitem _ (), meaning that expressions
suchas 1ist [int],dict[str, float] and tuple[str, bytes] allresultin__ class_getitem _ ()
being called:

>>> # list has class "type'" as its metaclass, like most classes:
>>> type (list)
<class 'type'>

>>> type(dict) == type(list) == type(tuple) == type(str) == type (bytes)
True

>>> # "list[int]" calls "list.__class_getitem _ (int)"

>>> list[int]

list[int]

>>> # list.__class_getitem _ returns a GenericAlias object:

>>> type (list[int])
<class 'types.GenericAlias'>

However, if a class has a custom metaclass that defines __getitem__ (), subscribing the class may result in different
behaviour. An example of this can be found in the enum module:

>>> from enum import Enum

>>> class Menu (Enum) :
""n"pA breakfast menu'"""
SPAM = 'spam'
BACON = 'bacon'

>>> # Enum classes have a custom metaclass:

>>> type (Menu)

<class 'enum.EnumMeta'>

>>> # EnumMeta defines __getitem_ _,

>>> # so __class_getitem__ 1is not called,

>>> # and the result is not a GenericAlias object:
>>> Menu['SPAM']

<Menu.SPAM: 'spam'>

>>> type (Menul['SPAM'])

<enum 'Menu'>

Lihat juga:

PEP 560 - Core Support for typing module and generic types
Introducing __class_getitem _ (),and outlining when a subscriptionresultsin__class_getitem__ ()
being called instead of __getitem ()

3.3. Special method names 49

https://peps.python.org/pep-0560/

The Python Language Reference, Rilis 3.11.10

3.3.6 Emulating callable objects

object.__ecall (self[, args...])

Called when the instance is “called” as a function; if this method is defined, x (argl, arg2, ...) roughly
translates to type (x) .__call__ (x, argl, ...).

3.3.7 Emulating container types

The following methods can be defined to implement container objects. Containers usually are sequences (such as 1ists
or tuples) or mappings (like dictionaries), but can represent other containers as well. The first set of methods
is used either to emulate a sequence or to emulate a mapping; the difference is that for a sequence, the allowable keys
should be the integers k for which 0 <= k < N where N is the length of the sequence, or s11ice objects, which define
arange of items. It is also recommended that mappings provide the methods keys (), values (), items (), get (),
clear (),setdefault (),pop(),popitem(), copy (),and update () behaving similar to those for Python’s
standard dictionary objects. The collections.abc module provides a MutableMapping abstract base
class to help create those methods from a base setof ___getitem (), ___setitem__ (),__delitem__ (),and
keys (). Mutable sequences should provide methods append (), count (), index (), extend (), insert (),
pop (), remove (), reverse () and sort (), like Python standard 1ist objects. Finally, sequence types sho-
uld implement addition (meaning concatenation) and multiplication (meaning repetition) by defining the methods
_add__(), radd__ (), iadd (), mul__ (), rmul__ () and __ _imul__ () described below;
they should not define other numerical operators. It is recommended that both mappings and sequences implement
the contains__ () method to allow efficient use of the in operator; for mappings, in should search the mapping’s
keys; for sequences, it should search through the values. It is further recommended that both mappings and sequences
implement the __iter__ () method to allow efficient iteration through the container; for mappings, __iter__ ()
should iterate through the object’s keys; for sequences, it should iterate through the values.

object.__len__ (self)
Called to implement the built-in function 1en (). Should return the length of the object, an integer >= 0. Also,
an object that doesn’t definea ___bool__ () method and whose __len__ () method returns zero is considered
to be false in a Boolean context.

Detail implementasi CPython: In CPython, the length is required to be at most sys .maxsize. If the length
is larger than sys .maxsize some features (such as 1en ()) may raise OverflowError. To prevent raising
OverflowError by truth value testing, an object must definea ___bool__ () method.

object.__length_hint__ (self)

Called to implement operator.length_hint (). Should return an estimated length for the object (which
may be greater or less than the actual length). The length must be an integer >= 0. The return value may also be
Not Implemented, which is treated the same as if the ___length_hint__ method didn’t exist at all. This
method is purely an optimization and is never required for correctness.

Baru pada versi 3.4.

Catatan: Slicing is done exclusively with the following three methods. A call like

[a[l:Z] = 9

is translated to

[a[slice(l, 2, None)] = Db

and so forth. Missing slice items are always filled in with None.

50 Bab 3. Data model

The Python Language Reference, Rilis 3.11.10

object._ _getitem__ (self, key)

Called to implement evaluation of self [key]. For sequence types, the accepted keys should be integers. Optio-
nally, they may support s1ice objects as well. Negative index support is also optional. If key is of an inappropriate
type, TypeError may be raised; if key is a value outside the set of indexes for the sequence (after any special
interpretation of negative values), IndexError should be raised. For mapping types, if key is missing (not in
the container), KeyError should be raised.

Catatan: for loops expect that an IndexError will be raised for illegal indexes to allow proper detection of
the end of the sequence.

Catatan: When subscripting a class, the special class method __class_getitem _ () may be called instead
of __getitem__ (). See _ class_getitem__ versus __ getitem__ for more details.

object.__setitem__ (self, key, value)

Called to implement assignment to self [key]. Same note as for __getitem _ (). This should only be
implemented for mappings if the objects support changes to the values for keys, or if new keys can be added, or
for sequences if elements can be replaced. The same exceptions should be raised for improper key values as for the
_ _getitem__ () method.

object._ _delitem__ (self, key)

Called to implement deletion of self [key]. Same note as for __getitem__ (). This should only be imple-
mented for mappings if the objects support removal of keys, or for sequences if elements can be removed from the
sequence. The same exceptions should be raised for improper key values as for the ___getitem _ () method.

object._ _missing _ (self, key)
Called by dict.__getitem__ () toimplement self [key] for dict subclasses when key is not in the dictio-
nary.
object._ _iter_ _ (self)
This method is called when an iterator is required for a container. This method should return a new iterator object
that can iterate over all the objects in the container. For mappings, it should iterate over the keys of the container.
object._ reversed_ (self)
Called (if present) by the reversed () built-in to implement reverse iteration. It should return a new iterator

object that iterates over all the objects in the container in reverse order.

If the _ reversed__ () method is not provided, the reversed () built-in will fall back to using the sequ-
ence protocol (__Ien__ () and __getitem__ ()). Objects that support the sequence protocol should only
provide __reversed__ () if they can provide an implementation that is more efficient than the one provided
by reversed ().

The membership test operators (in and not in) are normally implemented as an iteration through a container. Ho-
wever, container objects can supply the following special method with a more efficient implementation, which also does
not require the object be iterable.

object._ contains__ (self, item)
Called to implement membership test operators. Should return true if item is in self, false otherwise. For mapping
objects, this should consider the keys of the mapping rather than the values or the key-item pairs.

For objects that don’t define ___contains__ (), the membership test first tries iterationvia__iter__ (), then
the old sequence iteration protocol via___getitem__ (), see this section in the language reference.

3.3. Special method names 51

The Python Language Reference, Rilis 3.11.10

3.3.8 Emulating numeric types

The following methods can be defined to emulate numeric objects. Methods corresponding to operations that are not
supported by the particular kind of number implemented (e.g., bitwise operations for non-integral numbers) should be
left undefined.

object.__add__ (self, other)

object.__sub__ (self, other)

object._ _mul__ (self, other)

object._ _matmul__ (self, other)

object.__truediv__ (self, other)

object._ floordiv__ (self, other)

object._ _mod__ (self, other)

object.__divmod__ (self, other)

object._ pow__ (self, other[, modulo])

object.__1shift__ (self, other)

object.__rshift__ (self, other)

object.__and__ (self, other)

object.__ xor__ (self, other)

object.__oxr__ (self, other)

These methods are called to implement the binary arithmetic operations (+, —, *, @, /, //, %, divmod (), pow (),
**x <<, >> &, ~, |). For instance, to evaluate the expression x + vy, where x is an instance of a class that has
an___add__ () method, type (x) .__add__ (x, y) iscalled. The _ divmod__ () method should be the
equivalent tousing __ floordiv___ () and__mod__ (); it should not be related to ___truediv__ (). Note
that __pow__ () should be defined to accept an optional third argument if the ternary version of the built-in
pow () function is to be supported.

If one of those methods does not support the operation with the supplied arguments, it should return
NotImplemented.

object.__radd__ (self, other)
object.__rsub__ (self, other)

object.__rmul__ (self, other)
object.__rmatmul__ (self, other)
object.__rtruediv__ (self, other)

object._ _rfloordiv__ (self, other)
object.__rmod__ (self, other)
object.__rdivmod__ (self, other)
object._ rpow__ (self, other[, modulo])
object.__rlshift__ (self, other)
object._ _rrshift__ (self, other)
object.__rand__ (self, other)

object.__rxor__ (self, other)

object.__ror__ (self, other)
These methods are called to implement the binary arithmetic operations (+, —, *, @, /, //, %, divmod (),
pow (), **, <<, >>, &, ~, |) with reflected (swapped) operands. These functions are only called if the left

52 Bab 3. Data model

The Python Language Reference, Rilis 3.11.10

operand does not support the corresponding operation® and the operands are of different types.* For instance, to
evaluate the expression x — y, where y is an instance of a class thathasan ___rsub___ () method, type (y) .
__rsub__(y, x)iscalledif type (x).__sub__ (x, y) returns NotImplemented.

Note that ternary pow () will not try calling __rpow__ () (the coercion rules would become too complicated).

Catatan: If the right operand’s type is a subclass of the left operand’s type and that subclass provides a different
implementation of the reflected method for the operation, this method will be called before the left operand’s
non-reflected method. This behavior allows subclasses to override their ancestors’ operations.

object.__iadd__ (self, other)
object.__isub__ (self, other)
object._ _imul__ (self, other)
object.__imatmul__ (self, other)
object.__itruediv__ (self, other)
object._ ifloordiv__ (self, other)
object.__imod__ (self, other)
object._ _ipow__ (self, other[, modulo])
object._ _ilshift__ (self, other)
object.__irshift__ (self, other)
object.__iand__ (self, other)

object.__ixor__ (self, other)

object.__ior__ (self, other)
These methods are called to implement the augmented arithmetic assignments (+=, —=, *=, @=, /=, //=, %=,
*Fk= <<=, >>=, &=, *=, |=). These methods should attempt to do the operation in-place (modifying self) and

return the result (which could be, but does not have to be, self). If a specific method is not defined, or if that
method returns Not Implemented, the augmented assignment falls back to the normal methods. For instance,
if x is an instance of a class withan ___iadd__ () method, x += yisequivalenttox = x.__ _iadd__ (y)
.If_ iadd () doesnotexist,orif x.___iadd__ (y) returns Not Implemented, x.__add__ (y) and
y.__radd__ (x) are considered, as with the evaluation of x + y. In certain situations, augmented assignment
can result in unexpected errors (see fag-augmented-assignment-tuple-error), but this behavior is in fact part of the
data model.

object._ neg__ (self

)
object._ pos__ (self)
object._ _abs__ (self)

object.__invert__ (self)

Called to implement the unary arithmetic operations (-, +, abs () and ~).

object.__ _complex__ (self)
object.__int__ (self)
object._ float__ (self)

Called to implement the built-in functions complex (), int () and float (). Should return a value of the
appropriate type.

3 ”Does not support” here means that the class has no such method, or the method returns Not Tmplemented. Do not set the method to None
if you want to force fallback to the right operand’s reflected method—that will instead have the opposite effect of explicitly blocking such fallback.

4 For operands of the same type, it is assumed that if the non-reflected method -- such as __add__ () -- fails then the overall operation is not
supported, which is why the reflected method is not called.

3.3. Special method names 53

The Python Language Reference, Rilis 3.11.10

object.__index__ (self)

Called to implement operator.index (), and whenever Python needs to losslessly convert the numeric object
to an integer object (such as in slicing, or in the built-in bin (), hex () and oct () functions). Presence of this
method indicates that the numeric object is an integer type. Must return an integer.

If int_ (), ___float__ () and __complex__ () are not defined then corresponding built-in functions
int (), float () and complex () fallbackto ___index__ ().

object.__round__ (self[, ndigits])
object._ _trunc__ (self)

object._ floor__ (self)

object._ ceil__ (self)

Called to implement the built-in function round () and math functions trunc (), floor () and ceil ().
Unless ndigits is passed to __round___ () all these methods should return the value of the object truncated to an
Integral (typically an int).

The built-in function int () fallsbackto_ trunc__ () ifneither __int__ () nor___index__ () isdefined.

Berubah pada versi 3.11: The delegation of int () to___trunc__ () is deprecated.

3.3.9 With Statement Context Managers

A context manager is an object that defines the runtime context to be established when executing a wi t h statement. The
context manager handles the entry into, and the exit from, the desired runtime context for the execution of the block of
code. Context managers are normally invoked using the with statement (described in section Pernyataan with), but can
also be used by directly invoking their methods.

Typical uses of context managers include saving and restoring various kinds of global state, locking and unlocking reso-
urces, closing opened files, etc.

For more information on context managers, see typecontextmanager.

object.__enter__ (self)
Enter the runtime context related to this object. The with statement will bind this method’s return value to the
target(s) specified in the as clause of the statement, if any.

object.__exit__ (self, exc_type, exc_value, traceback)

Exit the runtime context related to this object. The parameters describe the exception that caused the context to
be exited. If the context was exited without an exception, all three arguments will be None.

If an exception is supplied, and the method wishes to suppress the exception (i.e., prevent it from being propagated),
it should return a true value. Otherwise, the exception will be processed normally upon exit from this method.

Note that __exit__ () methods should not reraise the passed-in exception; this is the caller’s responsibility.
Lihat juga:

PEP 343 - The ’with” statement
The specification, background, and examples for the Python wi t h statement.

54 Bab 3. Data model

https://peps.python.org/pep-0343/

The Python Language Reference, Rilis 3.11.10

3.3.10 Customizing positional arguments in class pattern matching

When using a class name in a pattern, positional arguments in the pattern are not allowed by default, i.e. case
MyClass (x, y) is typically invalid without special support in MyClass. To be able to use that kind of pattern,
the class needs to define a __march_args__ attribute.

object._ match_args_
This class variable can be assigned a tuple of strings. When this class is used in a class pattern with positional

arguments, each positional argument will be converted into a keyword argument, using the corresponding value in
__match_args__ as the keyword. The absence of this attribute is equivalent to setting it to ().

For example, if MyClass.__match_args__is ("left", "center", "right") that means that case
MyClass (x, y) isequivalent to case MyClass (left=x, center=y). Note that the number of arguments
in the pattern must be smaller than or equal to the number of elements in __match_args__; if it is larger, the pattern
match attempt will raise a TypeError.

Baru pada versi 3.10.
Lihat juga:

PEP 634 - Structural Pattern Matching
The specification for the Python mat ch statement.

3.3.11 Special method lookup

For custom classes, implicit invocations of special methods are only guaranteed to work correctly if defined on an object’s
type, not in the object’s instance dictionary. That behaviour is the reason why the following code raises an exception:

>>> class C:

pass
>>> ¢ = C()
>>> c.__len_ = lambda: 5

>>> len (c)
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
TypeError: object of type 'C' has no len()

The rationale behind this behaviour lies with a number of special methods such as __hash__ () and __repr__ ()
that are implemented by all objects, including type objects. If the implicit lookup of these methods used the conventional
lookup process, they would fail when invoked on the type object itself:

>>> 1 ._ _hash__ () == hash(1l)
True
>>> int._ hash () == hash(int)

Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: descriptor '__hash__' of 'int' object needs an argument

Incorrectly attempting to invoke an unbound method of a class in this way is sometimes referred to as 'metaclass confusion’,
and is avoided by bypassing the instance when looking up special methods:

>>> type(l).__hash__ (1) == hash(1)

True

>>> type(int) .__hash__ (int) == hash (int)
True

3.3. Special method names 55

https://peps.python.org/pep-0634/

The Python Language Reference, Rilis 3.11.10

In addition to bypassing any instance attributes in the interest of correctness, implicit special method lookup generally
also bypasses the __getattribute () method even of the object’s metaclass:

>>> class Meta (type):
def _ _getattribute__ (*args):
print ("Metaclass getattribute invoked")
return type._ _getattribute__ (*args)

>>> class C(object, metaclass=Meta):
def _ len_ (self):
return 10
def _ getattribute__ (*args):
print ("Class getattribute invoked")

return object.__getattribute__ (*args)
>>> ¢ = C()
>>> c.__len_ () # Explicit lookup via instance
Class getattribute invoked
10
>>> type(c).__len__ (c) # Explicit lookup via type
Metaclass getattribute invoked
10
>>> len (c) # Implicit lookup
10

Bypassing the __getattribute__ () machinery in this fashion provides significant scope for speed optimisations
within the interpreter, at the cost of some flexibility in the handling of special methods (the special method must be set
on the class object itself in order to be consistently invoked by the interpreter).

3.4 Coroutines

3.4.1 Awaitable Objects

An awaitable object generally implements an ___await__ () method. Coroutine objects returned from async def
functions are awaitable.

Catatan: The generator iterator objects returned from generators decorated with types.coroutine () are also
awaitable, but they do not implement __await__ ().

object.__await__ (self)

Must return an iterator. Should be used to implement awaitable objects. For instance, asyncio.Future im-
plements this method to be compatible with the awa it expression.

Catatan: The language doesn’t place any restriction on the type or value of the objects yielded by the iterator
returned by ___await__, as this is specific to the implementation of the asynchronous execution framework (e.g.
asyncio) that will be managing the awaitable object.

Baru pada versi 3.5.
Lihat juga:

PEP 492 for additional information about awaitable objects.

56 Bab 3. Data model

https://peps.python.org/pep-0492/

The Python Language Reference, Rilis 3.11.10

3.4.2 Objek Coroutine

Coroutine objects are awaitable objects. A coroutine’s execution can be controlled by calling __await__ () and iterating
over the result. When the coroutine has finished executing and returns, the iterator raises StopIteration, and the
exception’s value attribute holds the return value. If the coroutine raises an exception, it is propagated by the iterator.
Coroutines should not directly raise unhandled StopIteration exceptions.

Coroutines also have the methods listed below, which are analogous to those of generators (see Generator-iterator me-
thods). However, unlike generators, coroutines do not directly support iteration.

Berubah pada versi 3.5.2: It is a Runt imeError to await on a coroutine more than once.

coroutine.send (value)

Starts or resumes execution of the coroutine. If value is None, this is equivalent to advancing the iterator returned
by___await__ (). If valueis not None, this method delegates to the send () method of the iterator that caused
the coroutine to suspend. The result (return value, StopIteration, or other exception) is the same as when
iterating over the __await__ () return value, described above.

coroutine.throw (value)

coroutine.throw (type[, value[, traceback]])

Raises the specified exception in the coroutine. This method delegates to the t hrow () method of the iterator
that caused the coroutine to suspend, if it has such a method. Otherwise, the exception is raised at the suspension
point. The result (return value, StopIteration, or other exception) is the same as when iterating over the
__await__ () return value, described above. If the exception is not caught in the coroutine, it propagates back
to the caller.

coroutine.close ()

Causes the coroutine to clean itself up and exit. If the coroutine is suspended, this method first delegates to the
close () method of the iterator that caused the coroutine to suspend, if it has such a method. Then it raises
GeneratorExit at the suspension point, causing the coroutine to immediately clean itself up. Finally, the
coroutine is marked as having finished executing, even if it was never started.

Coroutine objects are automatically closed using the above process when they are about to be destroyed.

3.4.3 Asynchronous lterators

An asynchronous iterator can call asynchronous code inits ___anext___ method.
Asynchronous iterators can be used in an async for statement.
object.__aiter__ (self)

Must return an asynchronous iterator object.

object.__anext__ (self)

Must return an awaitable resulting in a next value of the iterator. Should raise a StopAsyncIteration error
when the iteration is over.

An example of an asynchronous iterable object:

class Reader:
async def readline(self):

def @ aiter_ (self):
return self

(berlanjut ke halaman berikutnya)

3.4. Coroutines 57

The Python Language Reference, Rilis 3.11.10

(lanjutan dari halaman sebelumnya)

async def _ anext_ (self):
val = await self.readline ()
if val == b'':
raise StopAsyncIteration
return val

Baru pada versi 3.5.

Berubah pada versi 3.7: Prior to Python 3.7,
chronous iterator.

aiter__ () could return an awaitable that would resolve to an asyn-

Starting with Python 3.7, _ _aiter () must return an asynchronous iterator object. Returning anything else will
result ina TypeError error.

3.4.4 Asynchronous Context Managers

An asynchronous context manager is a context manager that is able to suspend execution in its __aenter__ and
___aexit__ methods.

Asynchronous context managers can be used in an async with statement.

object._ aenter__ (self)

Semantically similar to __enter___ (), the only difference being that it must return an awaitable.

object.__aexit__ (self, exc_type, exc_value, traceback)

Semantically similar to __exit__ (), the only difference being that it must return an awaitable.

An example of an asynchronous context manager class:

class AsyncContextManager:
async def _ aenter_ (self):
await log('entering context')

async def _ aexit__ (self, exc_type, exc, tb):
await log('exiting context')

Baru pada versi 3.5.

58 Bab 3. Data model

BaB 4

Execution model

4.1 Structure of a program

A Python program is constructed from code blocks. A block is a piece of Python program text that is executed as a unit.
The following are blocks: a module, a function body, and a class definition. Each command typed interactively is a block.
A script file (a file given as standard input to the interpreter or specified as a command line argument to the interpreter)
is a code block. A script command (a command specified on the interpreter command line with the —c option) is a code
block. A module run as a top level script (as module __main__) from the command line using a —m argument is also a
code block. The string argument passed to the built-in functions eval () and exec () is a code block.

A code block is executed in an execution frame. A frame contains some administrative information (used for debugging)
and determines where and how execution continues after the code block’s execution has completed.

4.2 Naming and binding

4.2.1 Binding of names

Names refer to objects. Names are introduced by name binding operations.
The following constructs bind names:

« formal parameters to functions,

o class definitions,

« function definitions,

e assignment expressions,

« targets that are identifiers if occurring in an assignment:

- for loop header,

- after as in a with statement, except clause, except * clause, or in the as-pattern in structural pattern
matching,

59

The Python Language Reference, Rilis 3.11.10

- in a capture pattern in structural pattern matching
e import statements.

The import statement of the form from ... import * binds all names defined in the imported module, except
those beginning with an underscore. This form may only be used at the module level.

A target occurring in a de I statement is also considered bound for this purpose (though the actual semantics are to unbind
the name).

Each assignment or import statement occurs within a block defined by a class or function definition or at the module level
(the top-level code block).

If a name is bound in a block, it is a local variable of that block, unless declared as nonlocal or global. If a name
is bound at the module level, it is a global variable. (The variables of the module code block are local and global.) If a
variable is used in a code block but not defined there, it is a free variable.

Each occurrence of a name in the program text refers to the binding of that name established by the following name
resolution rules.

4.2.2 Resolution of names

A scope defines the visibility of a name within a block. If a local variable is defined in a block, its scope includes that
block. If the definition occurs in a function block, the scope extends to any blocks contained within the defining one,
unless a contained block introduces a different binding for the name.

When a name is used in a code block, it is resolved using the nearest enclosing scope. The set of all such scopes visible
to a code block is called the block’s environment.

When a name is not found at all, a NameError exception is raised. If the current scope is a function scope, and
the name refers to a local variable that has not yet been bound to a value at the point where the name is used, an
UnboundLocalError exception is raised. UnboundLocalError is a subclass of NameError.

If a name binding operation occurs anywhere within a code block, all uses of the name within the block are treated as
references to the current block. This can lead to errors when a name is used within a block before it is bound. This rule is
subtle. Python lacks declarations and allows name binding operations to occur anywhere within a code block. The local
variables of a code block can be determined by scanning the entire text of the block for name binding operations. See
the FAQ entry on UnboundLocalError for examples.

If the global statement occurs within a block, all uses of the names specified in the statement refer to the bindings
of those names in the top-level namespace. Names are resolved in the top-level namespace by searching the global
namespace, i.e. the namespace of the module containing the code block, and the builtins namespace, the namespace of
the module builtins. The global namespace is searched first. If the names are not found there, the builtins namespace
is searched. The global statement must precede all uses of the listed names.

The global statement has the same scope as a name binding operation in the same block. If the nearest enclosing scope
for a free variable contains a global statement, the free variable is treated as a global.

The nonlocal statement causes corresponding names to refer to previously bound variables in the nearest enclosing
function scope. SyntaxError is raised at compile time if the given name does not exist in any enclosing function
scope.

The namespace for a module is automatically created the first time a module is imported. The main module for a script
is always called __main__ .

Class definition blocks and arguments to exec () and eval () are special in the context of name resolution. A class
definition is an executable statement that may use and define names. These references follow the normal rules for name
resolution with an exception that unbound local variables are looked up in the global namespace. The namespace of the
class definition becomes the attribute dictionary of the class. The scope of names defined in a class block is limited to the

60 Bab 4. Execution model

The Python Language Reference, Rilis 3.11.10

class block; it does not extend to the code blocks of methods -- this includes comprehensions and generator expressions
since they are implemented using a function scope. This means that the following will fail:

class A:
a = 42
b = list(a + 1 for i in range(10))

4.2.3 Builtins and restricted execution

Detail implementasi CPython: Users should not touch __builtins__;itis strictly an implementation detail. Users
wanting to override values in the builtins namespace should import the builtins module and modify its attributes
appropriately.

The builtins namespace associated with the execution of a code block is actually found by looking up the name
__builtins__ inits global namespace; this should be a dictionary or a module (in the latter case the module’s dictio-
nary is used). By default, when in the __main__ module, __builtins___is the built-in module builtins; when
in any other module, __builtins__ is an alias for the dictionary of the builtins module itself.

4.2.4 Interaction with dynamic features

Name resolution of free variables occurs at runtime, not at compile time. This means that the following code will print
42:

i =10

def f():
print (i)

i = 42

The eval () and exec () functions do not have access to the full environment for resolving names. Names may
be resolved in the local and global namespaces of the caller. Free variables are not resolved in the nearest enclosing
namespace, but in the global namespace.I The exec () and eval () functions have optional arguments to override the
global and local namespace. If only one namespace is specified, it is used for both.

4.3 Pengecualian

Exceptions are a means of breaking out of the normal flow of control of a code block in order to handle errors or
other exceptional conditions. An exception is raised at the point where the error is detected; it may be handled by the
surrounding code block or by any code block that directly or indirectly invoked the code block where the error occurred.

The Python interpreter raises an exception when it detects a run-time error (such as division by zero). A Python program
can also explicitly raise an exception with the raise statement. Exception handlers are specified with the try ...
except statement. The finally clause of such a statement can be used to specify cleanup code which does not
handle the exception, but is executed whether an exception occurred or not in the preceding code.

Python uses the “termination” model of error handling: an exception handler can find out what happened and continue
execution at an outer level, but it cannot repair the cause of the error and retry the failing operation (except by re-entering
the offending piece of code from the top).

When an exception is not handled at all, the interpreter terminates execution of the program, or returns to its interactive
main loop. In either case, it prints a stack traceback, except when the exception is SystemExit.

! This limitation occurs because the code that is executed by these operations is not available at the time the module is compiled.

4.3. Pengecualian 61

The Python Language Reference, Rilis 3.11.10

Exceptions are identified by class instances. The except clause is selected depending on the class of the instance: it
must reference the class of the instance or a non-virtual base class thereof. The instance can be received by the handler
and can carry additional information about the exceptional condition.

Catatan: Exception messages are not part of the Python API. Their contents may change from one version of Python
to the next without warning and should not be relied on by code which will run under multiple versions of the interpreter.

See also the description of the try statement in section Pernyataan try and raise statement in section The raise
Statement.

62 Bab 4. Execution model

BAB D

The import system

Python code in one module gains access to the code in another module by the process of importing it. The import
statement is the most common way of invoking the import machinery, but it is not the only way. Functions such as
importlib.import_module () and built-in __import__ () can also be used to invoke the import machinery.

The import statement combines two operations; it searches for the named module, then it binds the results of that search
to a name in the local scope. The search operation of the import statement is defined as a call to the ___import__ ()
function, with the appropriate arguments. The return value of __import__ () is used to perform the name binding
operation of the import statement. See the import statement for the exact details of that name binding operation.

Adirectcallto ___import__ () performs only the module search and, if found, the module creation operation. While
certain side-effects may occur, such as the importing of parent packages, and the updating of various caches (including
sys.modules), only the import statement performs a name binding operation.

When an import statement is executed, the standard builtin ___import__ () function is called. Other mechanisms
for invoking the import system (such as importlib.import_module ()) may choose to bypass __ import__ ()
and use their own solutions to implement import semantics.

When a module is first imported, Python searches for the module and if found, it creates a module object', initializing it.
If the named module cannot be found, a ModuleNotFoundError is raised. Python implements various strategies to
search for the named module when the import machinery is invoked. These strategies can be modified and extended by
using various hooks described in the sections below.

Berubah pada versi 3.3: The import system has been updated to fully implement the second phase of PEP 302. There
is no longer any implicit import machinery - the full import system is exposed through sys .meta_path. In addition,
native namespace package support has been implemented (see PEP 420).

! See types.ModuleType.

63

https://peps.python.org/pep-0302/
https://peps.python.org/pep-0420/

The Python Language Reference, Rilis 3.11.10

5.1 importlib

The importlib module provides a rich API for interacting with the import system. For example importlib.
import_module () provides a recommended, simpler API than built-in ___import__ () for invoking the import
machinery. Refer to the import1ib library documentation for additional detail.

5.2 Paket

Python has only one type of module object, and all modules are of this type, regardless of whether the module is im-
plemented in Python, C, or something else. To help organize modules and provide a naming hierarchy, Python has a
concept of packages.

You can think of packages as the directories on a file system and modules as files within directories, but don’t take this
analogy too literally since packages and modules need not originate from the file system. For the purposes of this docu-
mentation, we’ll use this convenient analogy of directories and files. Like file system directories, packages are organized
hierarchically, and packages may themselves contain subpackages, as well as regular modules.

It’s important to keep in mind that all packages are modules, but not all modules are packages. Or put another way,
packages are just a special kind of module. Specifically, any module that contains a __path___ attribute is considered
a package.

All modules have a name. Subpackage names are separated from their parent package name by a dot, akin to Python’s
standard attribute access syntax. Thus you might have a package called email, which in turn has a subpackage called
email.mime and a module within that subpackage called email .mime.text.

5.2.1 Regular packages

Python defines two types of packages, regular packages and namespace packages. Regular packages are traditional pac-
kages as they existed in Python 3.2 and earlier. A regular package is typically implemented as a directory containing
an __init__ .py file. When a regular package is imported, this __init__ .py file is implicitly executed, and the
objects it defines are bound to names in the package’s namespace. The __init__ .py file can contain the same Python
code that any other module can contain, and Python will add some additional attributes to the module when it is imported.

For example, the following file system layout defines a top level parent package with three subpackages:

parent/

__init__ .py
one/

__init__ .py
two/

__init__ .py
three/

__init__ .py

Importing parent .one will implicitly execute parent/__init__ .py and parent/one/__init__ .py.
Subsequent imports of parent.two or parent.three will execute parent/two/__init__ .py and
parent/three/__init__ .py respectively.

64 Bab 5. The import system

The Python Language Reference, Rilis 3.11.10

5.2.2 Namespace packages

A namespace package is a composite of various portions, where each portion contributes a subpackage to the parent
package. Portions may reside in different locations on the file system. Portions may also be found in zip files, on the
network, or anywhere else that Python searches during import. Namespace packages may or may not correspond directly
to objects on the file system; they may be virtual modules that have no concrete representation.

Namespace packages do not use an ordinary list for their __path___ attribute. They instead use a custom iterable type
which will automatically perform a new search for package portions on the next import attempt within that package if the
path of their parent package (or sys.path for a top level package) changes.

With namespace packages, thereisnoparent/__init__ .py file. Infact, there may be multiple parent directories
found during import search, where each one is provided by a different portion. Thus parent /one may not be physically
located next to parent /two. In this case, Python will create a namespace package for the top-level parent package
whenever it or one of its subpackages is imported.

See also PEP 420 for the namespace package specification.

5.3 Searching

To begin the search, Python needs the fully qualified name of the module (or package, but for the purposes of this
discussion, the difference is immaterial) being imported. This name may come from various arguments to the import
statement, or from the parameters to the importlib.import_module () or __import__ () functions.

This name will be used in various phases of the import search, and it may be the dotted path to a submodule, e.g. foo.
bar.baz. In this case, Python first tries to import foo, then foo.bar, and finally foo.bar.baz. If any of the
intermediate imports fail, a ModuleNotFoundError is raised.

5.3.1 The module cache

The first place checked during import search is sys.modules. This mapping serves as a cache of all modules that
have been previously imported, including the intermediate paths. So if foo.bar .baz was previously imported, sys .
modules will contain entries for foo, foo.bar, and foo.bar.baz. Each key will have as its value the correspon-
ding module object.

During import, the module name is looked up in sys.modules and if present, the associated value is the module
satisfying the import, and the process completes. However, if the value is None, then a ModuleNotFoundError is
raised. If the module name is missing, Python will continue searching for the module.

sys.modules is writable. Deleting a key may not destroy the associated module (as other modules may hold references
to it), but it will invalidate the cache entry for the named module, causing Python to search anew for the named module
upon its next import. The key can also be assigned to None, forcing the next import of the module to result in a
ModuleNotFoundError.

Beware though, as if you keep a reference to the module object, invalidate its cache entry in sys .modules, and then
re-import the named module, the two module objects will nor be the same. By contrast, importlib.reload () will
reuse the same module object, and simply reinitialise the module contents by rerunning the module’s code.

5.3. Searching 65

https://peps.python.org/pep-0420/

The Python Language Reference, Rilis 3.11.10

5.3.2 Finders and loaders

If the named module is not found in sys.modules, then Python’s import protocol is invoked to find and load the
module. This protocol consists of two conceptual objects, finders and loaders. A finder’s job is to determine whether it
can find the named module using whatever strategy it knows about. Objects that implement both of these interfaces are
referred to as importers - they return themselves when they find that they can load the requested module.

Python includes a number of default finders and importers. The first one knows how to locate built-in modules, and the
second knows how to locate frozen modules. A third default finder searches an import path for modules. The import
path is a list of locations that may name file system paths or zip files. It can also be extended to search for any locatable
resource, such as those identified by URLs.

The import machinery is extensible, so new finders can be added to extend the range and scope of module searching.

Finders do not actually load modules. If they can find the named module, they return a module spec, an encapsulation of
the module’s import-related information, which the import machinery then uses when loading the module.

The following sections describe the protocol for finders and loaders in more detail, including how you can create and
register new ones to extend the import machinery.

Berubah pada versi 3.4: In previous versions of Python, finders returned loaders directly, whereas now they return module
specs which contain loaders. Loaders are still used during import but have fewer responsibilities.

5.3.3 Import hooks

The import machinery is designed to be extensible; the primary mechanism for this are the import hooks. There are two
types of import hooks: meta hooks and import path hooks.

Meta hooks are called at the start of import processing, before any other import processing has occurred, other than
sys.modules cache look up. This allows meta hooks to override sys.path processing, frozen modules, or even
built-in modules. Meta hooks are registered by adding new finder objects to sys.meta_path, as described below.

Import path hooks are called as part of sys.path (or package.___path__) processing, at the point where their
associated path item is encountered. Import path hooks are registered by adding new callables to sys.path_hooks
as described below.

5.3.4 The meta path

When the named module is not found in sys.modules, Python next searches sys .meta_path, which contains a
list of meta path finder objects. These finders are queried in order to see if they know how to handle the named module.
Meta path finders must implement a method called find_spec () which takes three arguments: a name, an import
path, and (optionally) a target module. The meta path finder can use any strategy it wants to determine whether it can
handle the named module or not.

If the meta path finder knows how to handle the named module, it returns a spec object. If it cannot handle the named
module, it returns None. If sys.meta_path processing reaches the end of its list without returning a spec, then
a ModuleNotFoundError is raised. Any other exceptions raised are simply propagated up, aborting the import
process.

The find_spec () method of meta path finders is called with two or three arguments. The first is the fully qualified
name of the module being imported, for example foo.bar .baz. The second argument is the path entries to use for
the module search. For top-level modules, the second argument is None, but for submodules or subpackages, the second
argument is the value of the parent package’s __path___ attribute. If the appropriate __path___ attribute cannot be
accessed, a ModuleNotFoundError israised. The third argument is an existing module object that will be the target
of loading later. The import system passes in a target module only during reload.

66 Bab 5. The import system

The Python Language Reference, Rilis 3.11.10

The meta path may be traversed multiple times for a single import request. For example, assuming none of the modu-
les involved has already been cached, importing foo.bar .baz will first perform a top level import, calling mpf .
find_spec ("foo", None, None) on each meta path finder (mpf). After foo has been imported, foo.
bar will be imported by traversing the meta path a second time, calling mpf.find_spec ("foo.bar", foo.
__path__, None). Once foo.bar has been imported, the final traversal will call mpf.find_spec ("foo.
bar.baz", foo.bar._ _path_ , None).

Some meta path finders only support top level imports. These importers will always return None when anything other
than None is passed as the second argument.

Python’s default sys.meta_path has three meta path finders, one that knows how to import built-in modules, one
that knows how to import frozen modules, and one that knows how to import modules from an import path (i.e. the path
based finder).

Berubah pada versi 3.4: The £ind_spec () method of meta path finders replaced £ ind_module (), which is now
deprecated. While it will continue to work without change, the import machinery will try it only if the finder does not
implement find_spec ().

Berubah pada versi 3.10: Use of £ind_module () by the import system now raises ImportWarning.

5.4 Loading

If and when a module spec is found, the import machinery will use it (and the loader it contains) when loading the module.
Here is an approximation of what happens during the loading portion of import:

module = None

if spec.loader is not None and hasattr (spec.loader, 'create_module'):
It is assumed 'exec_module' will also be defined on the loader.
module = spec.loader.create_module (spec)

if module is None:
module = ModuleType (spec.name)

The import-related module attributes get set here:

_init_module_attrs (spec, module)

if spec.loader is None:
unsupported
raise ImportError

if spec.origin is None and spec.submodule_search_locations is not None:
namespace package

sys.modules[spec.name] = module
elif not hasattr (spec.loader, 'exec_module'):
module = spec.loader.load_module (spec.name)
Set __loader_ and __package__ 1if missing.
else:
sys.modules[spec.name] = module
try:

spec.loader.exec_module (module)
except BaseException:
try:
del sys.modules|[spec.name]
except KeyError:
pass
raise
return sys.modules[spec.name]

Note the following details:

5.4. Loading 67

The Python Language Reference, Rilis 3.11.10

« If there is an existing module object with the given name in sy s .modules, import will have already returned it.

o The module will exist in sys .modules before the loader executes the module code. This is crucial because the
module code may (directly or indirectly) import itself; adding it to sys . modules beforehand prevents unbounded
recursion in the worst case and multiple loading in the best.

« If loading fails, the failing module -- and only the failing module -- gets removed from sys.modules. Any
module already in the sys.modules cache, and any module that was successfully loaded as a side-effect, must
remain in the cache. This contrasts with reloading where even the failing module is left in sys.modules.

 After the module is created but before execution, the import machinery sets the import-related module attributes
(”_init_module_attrs” in the pseudo-code example above), as summarized in a lafer section.

« Module execution is the key moment of loading in which the module’s namespace gets populated. Execution is
entirely delegated to the loader, which gets to decide what gets populated and how.

« The module created during loading and passed to exec_module() may not be the one returned at the end of import.

Berubah pada versi 3.4: The import system has taken over the boilerplate responsibilities of loaders. These were previ-
ously performed by the importlib.abc.Loader.load_module () method.

5.4.1 Loaders

Module loaders provide the critical function of loading: module execution. The import machinery calls the
importlib.abc.Loader.exec_module () method with a single argument, the module object to execute. Any
value returned from exec_module () is ignored.

Loaders must satisfy the following requirements:

« If the module is a Python module (as opposed to a built-in module or a dynamically loaded extension), the loader
should execute the module’s code in the module’s global name space (module.__dict_).

« If the loader cannot execute the module, it should raise an ImportError, although any other exception raised
during exec_module () will be propagated.

In many cases, the finder and loader can be the same object; in such cases the find_spec () method would just return
a spec with the loader set to self.

Module loaders may opt in to creating the module object during loading by implementing a create_module ()
method. It takes one argument, the module spec, and returns the new module object to use during loading.
create_module () does not need to set any attributes on the module object. If the method returns None, the import
machinery will create the new module itself.

Baru pada versi 3.4: The create_module () method of loaders.

Berubah pada versi 3.4: The 1oad_module () method was replaced by exec_module () and the import machinery
assumed all the boilerplate responsibilities of loading.

For compatibility with existing loaders, the import machinery will use the 1oad_module () method of loaders if it
exists and the loader does not also implement exec_module (). However, load_module () has been deprecated
and loaders should implement exec_module () instead.

The 1oad_module () method must implement all the boilerplate loading functionality described above in addition to
executing the module. All the same constraints apply, with some additional clarification:

« If there is an existing module object with the given name in sys.modules, the loader must use that existing
module. (Otherwise, importlib.reload () will not work correctly.) If the named module does not exist in
sys .modules, the loader must create a new module object and add it to sys .modules.

2 The importlib implementation avoids using the return value directly. Instead, it gets the module object by looking the module name up in sys .
modules. The indirect effect of this is that an imported module may replace itself in sys.modules. This is implementation-specific behavior that
is not guaranteed to work in other Python implementations.

68 Bab 5. The import system

The Python Language Reference, Rilis 3.11.10

o The module must exist in sys.modules before the loader executes the module code, to prevent unbounded
recursion or multiple loading.

« If loading fails, the loader must remove any modules it has inserted into sy s . modules, but it must remove only
the failing module(s), and only if the loader itself has loaded the module(s) explicitly.

Berubah pada versi 3.5: A DeprecationWarning is raised when exec_module () is defined but
create_module () is not.

Berubah pada versi 3.6: An ImportError is raised when exec_module () is defined but create_module () is
not.

Berubah pada versi 3.10: Use of 1load_module () will raise ImportWarning.

5.4.2 Submodules

When a submodule is loaded using any mechanism (e.g. importlib APIs, the import or import—fromstatements,
orbuilt-in__import__ ())abindingis placed in the parent module’s namespace to the submodule object. For example,
if package spam has a submodule foo, after importing spam. foo, spam will have an attribute £oo which is bound
to the submodule. Let’s say you have the following directory structure:

spam/
__init__ .py
foo.py

and spam/__init__ .py has the following line in it:

[from .foo import Foo

then executing the following puts name bindings for foo and Foo in the spam module:

>>> import spam

>>> spam.foo

<module 'spam.foo' from '/tmp/imports/spam/foo.py'>
>>> spam.Foo

<class 'spam.foo.Foo'>

Given Python’s familiar name binding rules this might seem surprising, but it’s actually a fundamental feature of the import
system. The invariant holding is that if you have sys.modules['spam'] and sys.modules|['spam.foo"]
(as you would after the above import), the latter must appear as the foo attribute of the former.

5.4.3 Module spec

The import machinery uses a variety of information about each module during import, especially before loading. Most
of the information is common to all modules. The purpose of a module’s spec is to encapsulate this import-related
information on a per-module basis.

Using a spec during import allows state to be transferred between import system components, e.g. between the finder
that creates the module spec and the loader that executes it. Most importantly, it allows the import machinery to perform
the boilerplate operations of loading, whereas without a module spec the loader had that responsibility.

The module’s spec is exposed as the ___spec___ attribute on a module object. See ModuleSpec for details on the
contents of the module spec.

Baru pada versi 3.4.

5.4. Loading 69

The Python Language Reference, Rilis 3.11.10

5.4.4 Import-related module attributes

The import machinery fills in these attributes on each module object during loading, based on the module’s spec, before
the loader executes the module.

name

The __name___ attribute must be set to the fully qualified name of the module. This name is used to uniquely
identify the module in the import system.

__loader___

The ___loader__ attribute must be set to the loader object that the import machinery used when loading the
module. This is mostly for introspection, but can be used for additional loader-specific functionality, for example
getting data associated with a loader.

package_

The module’s __package___ attribute must be set. Its value must be a string, but it can be the same value
as its __name__. When the module is a package, its __package___ value should be set to its __name__.
When the module is not a package, _package___ should be set to the empty string for top-level modules, or for
submodules, to the parent package’s name. See PEP 366 for further details.

This attribute is used instead of ___name___ to calculate explicit relative imports for main modules, as defined in
PEP 366. It is expected to have the same value as ___spec___.parent.

Berubah pada versi 3.6: The value of __package___is expected to be the same as __spec__.parent.

—_Spec__

The __spec___ attribute must be set to the module spec that was used when importing the module. Setting
___spec___ appropriately applies equally to modules initialized during interpreter startup. The one exception is
__main__,where ___spec___is set to None in some cases.

When ___package___isnot defined, __spec__.parent is used as a fallback.
Baru pada versi 3.4.

Berubah pada versi 3.6: __spec___.parent is used as a fallback when __package___is not defined.

path__

If the module is a package (either regular or namespace), the module object’s __path__ attribute must be set.
The value must be iterable, but may be empty if __path___ has no further significance. If __path__ is not
empty, it must produce strings when iterated over. More details on the semantics of __path___ are given below.

Non-package modules should not have a __path___ attribute.

__file_

__cached___

__file_ 1is optional (if set, value must be a string). It indicates the pathname of the file from which the
module was loaded (if loaded from a file), or the pathname of the shared library file for extension modules loaded
dynamically from a shared library. It might be missing for certain types of modules, such as C modules that are
statically linked into the interpreter, and the import system may opt to leave it unset if it has no semantic meaning
(e.g. a module loaded from a database).

If __file_ issetthenthe __ cached__ attribute might also be set, which is the path to any compiled version
of the code (e.g. byte-compiled file). The file does not need to exist to set this attribute; the path can simply point
to where the compiled file would exist (see PEP 3147).

Note that _ _cached__ may be set even if __file__ is not set. However, that scenario is quite atypical.
Ultimately, the loader is what makes use of the module spec provided by the finder (from which __file__ and
__cached___ are derived). So if a loader can load from a cached module but otherwise does not load from a file,
that atypical scenario may be appropriate.

70

Bab 5. The import system

https://peps.python.org/pep-0366/
https://peps.python.org/pep-0366/
https://peps.python.org/pep-3147/

The Python Language Reference, Rilis 3.11.10

5.4.5 module.__path__

By definition, if a module has a __path___ attribute, it is a package.

A package’s _ _path__ attribute is used during imports of its subpackages. Within the import machinery, it fun-
ctions much the same as sys.path, i.e. providing a list of locations to search for modules during import. However,
__path__ is typically much more constrained than sys.path.

__path__ must be an iterable of strings, but it may be empty. The same rules used for sy s . path also apply to a pac-
kage’s __path__,and sys.path_hooks (described below) are consulted when traversing a package’s __path__ .

A package’s __init__ .py file may set or alter the package’s _ path__ attribute, and this was typically the way
namespace packages were implemented prior to PEP 420. With the adoption of PEP 420, namespace packages no longer
needtosupply __init__ .py filescontainingonly _path__ manipulation code; the import machinery automatically
sets __path___ correctly for the namespace package.

5.4.6 Module reprs

By default, all modules have a usable repr, however depending on the attributes set above, and in the module’s spec, you
can more explicitly control the repr of module objects.

If the module has a spec (__spec__), the import machinery will try to generate a repr from it. If that fails or there is no
spec, the import system will craft a default repr using whatever information is available on the module. It will try to use
the module._ _name_ ,module._ file_,and module.__ loader__ as input into the repr, with defaults
for whatever information is missing.

Here are the exact rules used:

« If the module has a __spec___ attribute, the information in the spec is used to generate the repr. The "name”,
”loader”, “origin”, and "has_location” attributes are consulted.

o If the module hasa __ file_ attribute, this is used as part of the module’s repr.

o If the module hasno __file__ butdoes havea ___loader___ thatis not None, then the loader’s repr is used
as part of the module’s repr.

o Otherwise, just use the module’s ___name___in the repr.

Berubah pada versi 3.4: Use of Lloader.module_repr () has been deprecated and the module spec is now used by
the import machinery to generate a module repr.

For backward compatibility with Python 3.3, the module repr will be generated by calling the loader’s module_repr ()
method, if defined, before trying either approach described above. However, the method is deprecated.

Berubah pada versi 3.10: Calling module_repr () now occurs after trying to use a module’s ___spec___ attribute but
before falling back on __file_ . Use of module_repr () is slated to stop in Python 3.12.

5.4.7 Cached bytecode invalidation

Before Python loads cached bytecode from a . pyc file, it checks whether the cache is up-to-date with the source . py
file. By default, Python does this by storing the source’s last-modified timestamp and size in the cache file when writing
it. At runtime, the import system then validates the cache file by checking the stored metadata in the cache file against
the source’s metadata.

Python also supports “hash-based” cache files, which store a hash of the source file’s contents rather than its metadata.
There are two variants of hash-based . pyc files: checked and unchecked. For checked hash-based . pyc files, Python
validates the cache file by hashing the source file and comparing the resulting hash with the hash in the cache file. If a
checked hash-based cache file is found to be invalid, Python regenerates it and writes a new checked hash-based cache

5.4. Loading 71

https://peps.python.org/pep-0420/
https://peps.python.org/pep-0420/

The Python Language Reference, Rilis 3.11.10

file. For unchecked hash-based . pyc files, Python simply assumes the cache file is valid if it exists. Hash-based .pyc
files validation behavior may be overridden with the ——check-hash-based-pycs flag.

Berubah pada versi 3.7: Added hash-based . pyc files. Previously, Python only supported timestamp-based invalidation
of bytecode caches.

5.5 The Path Based Finder

As mentioned previously, Python comes with several default meta path finders. One of these, called the path based finder
(PathFinder), searches an import path, which contains a list of path entries. Each path entry names a location to search
for modules.

The path based finder itself doesn’t know how to import anything. Instead, it traverses the individual path entries, asso-
ciating each of them with a path entry finder that knows how to handle that particular kind of path.

The default set of path entry finders implement all the semantics for finding modules on the file system, handling special
file types such as Python source code (. py files), Python byte code (. pyc files) and shared libraries (e.g. . so files).
When supported by the zipimport module in the standard library, the default path entry finders also handle loading
all of these file types (other than shared libraries) from zipfiles.

Path entries need not be limited to file system locations. They can refer to URLs, database queries, or any other location
that can be specified as a string.

The path based finder provides additional hooks and protocols so that you can extend and customize the types of searchable
path entries. For example, if you wanted to support path entries as network URLs, you could write a hook that implements
HTTP semantics to find modules on the web. This hook (a callable) would return a path entry finder supporting the
protocol described below, which was then used to get a loader for the module from the web.

A word of warning: this section and the previous both use the term finder, distinguishing between them by using the terms
meta path finder and path entry finder. These two types of finders are very similar, support similar protocols, and function
in similar ways during the import process, but it’s important to keep in mind that they are subtly different. In particular,
meta path finders operate at the beginning of the import process, as keyed off the sys.meta_path traversal.

By contrast, path entry finders are in a sense an implementation detail of the path based finder, and in fact, if the path
based finder were to be removed from sys.meta_path, none of the path entry finder semantics would be invoked.

5.5.1 Path entry finders

The path based finder is responsible for finding and loading Python modules and packages whose location is specified
with a string path entry. Most path entries name locations in the file system, but they need not be limited to this.

As a meta path finder, the path based finder implements the find_spec () protocol previously described, however it
exposes additional hooks that can be used to customize how modules are found and loaded from the import path.

Three variables are used by the path based finder, sys.path, sys.path_hooks and sys.
path_importer_cache. The _ path__ attributes on package objects are also used. These provide additional
ways that the import machinery can be customized.

sys.path contains a list of strings providing search locations for modules and packages. It is initialized from the
PYTHONPATH environment variable and various other installation- and implementation-specific defaults. Entries in
sys.path can name directories on the file system, zip files, and potentially other "locations” (see the site module)
that should be searched for modules, such as URLS, or database queries. Only strings should be present on sys .path;
all other data types are ignored.

The path based finder is a meta path finder, so the import machinery begins the import path search by calling the path
based finder’s find_spec () method as described previously. When the path argument to £ind_spec () is given,

72 Bab 5. The import system

The Python Language Reference, Rilis 3.11.10

it will be a list of string paths to traverse - typically a package’s __path__ attribute for an import within that package.
If the path argument is None, this indicates a top level import and sys.path is used.

The path based finder iterates over every entry in the search path, and for each of these, looks for an appropriate path
entry finder (PathEntryFinder) for the path entry. Because this can be an expensive operation (e.g. there may be
stat () call overheads for this search), the path based finder maintains a cache mapping path entries to path entry finders.
This cache is maintained in sys .path_importer_cache (despite the name, this cache actually stores finder objects
rather than being limited to importer objects). In this way, the expensive search for a particular path entry location’s path
entry finder need only be done once. User code is free to remove cache entries from sys.path_importer_cache
forcing the path based finder to perform the path entry search again’.

If the path entry is not present in the cache, the path based finder iterates over every callable in sys.path_hooks.
Each of the path entry hooks in this list is called with a single argument, the path entry to be searched. This callable may
either return a path entry finder that can handle the path entry, or it may raise ImportError. An ImportError is
used by the path based finder to signal that the hook cannot find a path entry finder for that path entry. The exception
is ignored and import path iteration continues. The hook should expect either a string or bytes object; the encoding of
bytes objects is up to the hook (e.g. it may be a file system encoding, UTF-8, or something else), and if the hook cannot
decode the argument, it should raise ImportError.

If sys.path_hooks iteration ends with no path entry finder being returned, then the path based finder’s
find_spec () method will store None in sys.path_importer_cache (to indicate that there is no finder for
this path entry) and return None, indicating that this meta path finder could not find the module.

If a path entry finder is returned by one of the path entry hook callables on sys.path_hooks, then the following
protocol is used to ask the finder for a module spec, which is then used when loading the module.

The current working directory -- denoted by an empty string -- is handled slightly differently from other entri-
es on sys.path. First, if the current working directory is found to not exist, no value is stored in sys.
path_importer_cache. Second, the value for the current working directory is looked up fresh for each modu-
le lookup. Third, the path used for sys.path_importer_cache and returned by importlib.machinery.
PathFinder.find_spec () will be the actual current working directory and not the empty string.

5.5.2 Path entry finder protocol

In order to support imports of modules and initialized packages and also to contribute portions to namespace packages,
path entry finders must implement the find_spec () method.

find_spec () takes two arguments: the fully qualified name of the module being imported, and the (optional) target
module. find_spec () returns a fully populated spec for the module. This spec will always have “loader” set (with
one exception).

To indicate to the import machinery that the spec represents a namespace portion, the path entry finder sets “submodu-
le_search_locations” to a list containing the portion.

Berubah pada versi 3.4: find_spec () replaced find_loader () and find_module (), both of which are now
deprecated, but will be used if £ind_spec () is not defined.

Older path entry finders may implement one of these two deprecated methods instead of £ind_spec (). The methods
are still respected for the sake of backward compatibility. However, if find_spec () is implemented on the path entry
finder, the legacy methods are ignored.

find_loader () takes one argument, the fully qualified name of the module being imported. £ind_loader ()
returns a 2-tuple where the first item is the loader and the second item is a namespace portion.

For backwards compatibility with other implementations of the import protocol, many path entry finders also sup-
port the same, traditional find_module () method that meta path finders support. However path entry finder

3 In legacy code, it is possible to find instances of imp.NullImporter inthe sys.path_importer_cache. It is recommended that code
be changed to use None instead. See portingpythoncode for more details.

5.5. The Path Based Finder 73

The Python Language Reference, Rilis 3.11.10

find_module () methods are never called with a path argument (they are expected to record the appropriate path
information from the initial call to the path hook).

The find_module () method on path entry finders is deprecated, as it does not allow the path entry finder to contribute
portions to namespace packages. If both find_loader () and find_module () exist on a path entry finder, the
import system will always call find_loader () in preference to find_module ().

Berubah pada versi 3.10: Calls to find_module () and find_loader () by the import system will raise
ImportWarning.

5.6 Replacing the standard import system

The most reliable mechanism for replacing the entire import system is to delete the default contents of sys .meta_path,
replacing them entirely with a custom meta path hook.

If it is acceptable to only alter the behaviour of import statements without affecting other APIs that access the import
system, then replacing the builtin ___import__ () function may be sufficient. This technique may also be employed at
the module level to only alter the behaviour of import statements within that module.

To selectively prevent the import of some modules from a hook early on the meta path (rather than disabling the standard
import system entirely), it is sufficient to raise ModuleNotFoundError directly from find_spec () instead of
returning None. The latter indicates that the meta path search should continue, while raising an exception terminates it
immediately.

5.7 Package Relative Imports

Relative imports use leading dots. A single leading dot indicates a relative import, starting with the current package. Two
or more leading dots indicate a relative import to the parent(s) of the current package, one level per dot after the first.
For example, given the following package layout:

package/

__init__ .py

subpackagel/
__init__ .py
moduleX.py
moduleY.py

subpackage?2/
__init__ .py
moduleZ.py

moduleA.py

In either subpackagel/moduleX.py or subpackagel/__init__ .py, the following are valid relative impor-
ts:

from .moduleY import spam

from .moduleY import spam as ham

from . import moduleY

from ..subpackagel import moduleY
from ..subpackage2.moduleZ import eggs
from . .moduleA import foo

Absolute imports may use either the import <> or from <> import <> syntax, but relative imports may only
use the second form; the reason for this is that:

74 Bab 5. The import system

The Python Language Reference, Rilis 3.11.10

[import XXX.YYY.ZZZ

should expose XXX .YYY.ZZZ as a usable expression, but .moduleY is not a valid expression.

5.8 Special considerations for __main__

The __main__ module is a special case relative to Python’s import system. As noted elsewhere, the __main___ module
is directly initialized at interpreter startup, much like sy s and builtins. However, unlike those two, it doesn’t strictly
qualify as a built-in module. This is because the manner in which __main___is initialized depends on the flags and other
options with which the interpreter is invoked.

5.8.1 __main__.__spec__

Depending on how __main__ isinitialized, __main__._ spec__ gets set appropriately or to None.

When Python is started with the —m option, ___spec___is set to the module spec of the corresponding module or package.
___spec__ is also populated when the __main__ module is loaded as part of executing a directory, zipfile or other
sys.path entry.

In the remaining cases __main__.__ spec__ 1issetto None, as the code used to populate the _ _main__ does not
correspond directly with an importable module:

« interactive prompt

e —C option

o running from stdin

« running directly from a source or bytecode file

Note that __main___.__spec___isalways None in the last case, even if the file could technically be imported directly
as a module instead. Use the —m switch if valid module metadata is desired in __main__ .

Note also that even when __main__ corresponds with an importable module and __main__ ._ spec__ issetacco-
rdingly, they’re still considered distinct modules. This is due to the fact that blocks guarded by 1f _ name_ ==
"__main__": checks only execute when the module is used to populate the __main__ namespace, and not during

normal import.

5.9 References

The import machinery has evolved considerably since Python’s early days. The original specification for packages is still
available to read, although some details have changed since the writing of that document.

The original specification for sys .meta_path was PEP 302, with subsequent extension in PEP 420.

PEP 420 introduced namespace packages for Python 3.3. PEP 420 also introduced the find_loader () protocol as
an alternative to find_module ().

PEP 366 describes the addition of the __package___ attribute for explicit relative imports in main modules.

PEP 328 introduced absolute and explicit relative imports and initially proposed __name___ for semantics PEP 366
would eventually specify for __package__.

PEP 338 defines executing modules as scripts.

5.8. Special considerations for __main__ 75

https://www.python.org/doc/essays/packages/
https://peps.python.org/pep-0302/
https://peps.python.org/pep-0420/
https://peps.python.org/pep-0420/
https://peps.python.org/pep-0420/
https://peps.python.org/pep-0366/
https://peps.python.org/pep-0328/
https://peps.python.org/pep-0366/
https://peps.python.org/pep-0338/

The Python Language Reference, Rilis 3.11.10

PEP 451 adds the encapsulation of per-module import state in spec objects. It also off-loads most of the boilerplate
responsibilities of loaders back onto the import machinery. These changes allow the deprecation of several APIs in the
import system and also addition of new methods to finders and loaders.

76 Bab 5. The import system

https://peps.python.org/pep-0451/

BAB O

Expressions

This chapter explains the meaning of the elements of expressions in Python.

Syntax Notes: In this and the following chapters, extended BNF notation will be used to describe syntax, not lexical
analysis. When (one alternative of) a syntax rule has the form

name .= othername

and no semantics are given, the semantics of this form of name are the same as for othername.

6.1 Arithmetic conversions

When a description of an arithmetic operator below uses the phrase “the numeric arguments are converted to a common
type”, this means that the operator implementation for built-in types works as follows:

« If either argument is a complex number, the other is converted to complex;
« otherwise, if either argument is a floating point number, the other is converted to floating point;
« otherwise, both must be integers and no conversion is necessary.

Some additional rules apply for certain operators (e.g., a string as a left argument to the *%’ operator). Extensions must
define their own conversion behavior.

77

The Python Language Reference, Rilis 3.11.10

6.2 Atoms

Atoms are the most basic elements of expressions. The simplest atoms are identifiers or literals. Forms enclosed in
parentheses, brackets or braces are also categorized syntactically as atoms. The syntax for atoms is:

atom identifier | literal | enclosure
enclosure = parenth_form | 1list_display | dict_display | set_display
| generator_expression | yield_atom

6.2.1 Identifiers (Names)

An identifier occurring as an atom is a name. See section Identifiers and keywords for lexical definition and section Naming
and binding for documentation of naming and binding.

When the name is bound to an object, evaluation of the atom yields that object. When a name is not bound, an attempt
to evaluate it raises a NameError exception.

Private name mangling: When an identifier that textually occurs in a class definition begins with two or more under-
score characters and does not end in two or more underscores, it is considered a private name of that class. Private
names are transformed to a longer form before code is generated for them. The transformation inserts the class name,
with leading underscores removed and a single underscore inserted, in front of the name. For example, the identifier
___spam occurring in a class named Ham will be transformed to _Ham___spam. This transformation is independent of
the syntactical context in which the identifier is used. If the transformed name is extremely long (longer than 255 chara-
cters), implementation defined truncation may happen. If the class name consists only of underscores, no transformation
is done.

6.2.2 Literals

Python supports string and bytes literals and various numeric literals:

literal = stringliteral | bytesliteral
| integer | floatnumber | imagnumber

Evaluation of a literal yields an object of the given type (string, bytes, integer, floating point number, complex number)
with the given value. The value may be approximated in the case of floating point and imaginary (complex) literals. See
section Literals for details.

All literals correspond to immutable data types, and hence the object’s identity is less important than its value. Multiple
evaluations of literals with the same value (either the same occurrence in the program text or a different occurrence) may
obtain the same object or a different object with the same value.

78 Bab 6. Expressions

The Python Language Reference, Rilis 3.11.10

6.2.3 Parenthesized forms

A parenthesized form is an optional expression list enclosed in parentheses:

parenth_form := "(" [starred expression] ")"

A parenthesized expression list yields whatever that expression list yields: if the list contains at least one comma, it yields
a tuple; otherwise, it yields the single expression that makes up the expression list.

An empty pair of parentheses yields an empty tuple object. Since tuples are immutable, the same rules as for literals
apply (i.e., two occurrences of the empty tuple may or may not yield the same object).

Note that tuples are not formed by the parentheses, but rather by use of the comma. The exception is the empty tuple, for
which parentheses are required --- allowing unparenthesized “nothing” in expressions would cause ambiguities and allow
common typos to pass uncaught.

6.2.4 Displays for lists, sets and dictionaries

For constructing a list, a set or a dictionary Python provides special syntax called "displays”, each of them in two flavors:
« either the container contents are listed explicitly, or
« they are computed via a set of looping and filtering instructions, called a comprehension.

Common syntax elements for comprehensions are:

comprehension = assignment_expression comp_for

comp_for = ["async"] "for" target_Ilist "in" or_test [comp_iter]
comp_iter = comp_for | comp_1if

comp_if = "if" or_test [comp_iter]

The comprehension consists of a single expression followed by at least one for clause and zero or more for or if
clauses. In this case, the elements of the new container are those that would be produced by considering each of the
for or if clauses a block, nesting from left to right, and evaluating the expression to produce an element each time the
innermost block is reached.

However, aside from the iterable expression in the leftmost for clause, the comprehension is executed in a separate
implicitly nested scope. This ensures that names assigned to in the target list don’t "leak” into the enclosing scope.

The iterable expression in the leftmost for clause is evaluated directly in the enclosing scope and then passed as an
argument to the implicitly nested scope. Subsequent for clauses and any filter condition in the leftmost for clause
cannot be evaluated in the enclosing scope as they may depend on the values obtained from the leftmost iterable. For
example: [x*y for x in range(10) for y in range(x, x+10)].

To ensure the comprehension always results in a container of the appropriate type, yieldand yield fromexpressions
are prohibited in the implicitly nested scope.

Since Python 3.6, in an async def function, an async for clause may be used to iterate over a asynchronous
iterator. A comprehension in an async def function may consist of either a for or async for clause following
the leading expression, may contain additional for or async for clauses, and may also use await expressions. If
a comprehension contains either async for clauses or await expressions or other asynchronous comprehensions it
is called an asynchronous comprehension. An asynchronous comprehension may suspend the execution of the coroutine
function in which it appears. See also PEP 530.

Baru pada versi 3.6: Asynchronous comprehensions were introduced.

6.2. Atoms 79

https://peps.python.org/pep-0530/

The Python Language Reference, Rilis 3.11.10

Berubah pada versi 3.8: yield and yield from prohibited in the implicitly nested scope.

Berubah pada versi 3.11: Asynchronous comprehensions are now allowed inside comprehensions in asynchronous fun-
ctions. Outer comprehensions implicitly become asynchronous.

6.2.5 List displays

A list display is a possibly empty series of expressions enclosed in square brackets:

list_display = "[" [starred_list | comprehension] "]1"

A list display yields a new list object, the contents being specified by either a list of expressions or a comprehension.
‘When a comma-separated list of expressions is supplied, its elements are evaluated from left to right and placed into the
list object in that order. When a comprehension is supplied, the list is constructed from the elements resulting from the
comprehension.

6.2.6 Set displays

A set display is denoted by curly braces and distinguishable from dictionary displays by the lack of colons separating keys
and values:

set_display := "{" (starred _list | comprehension) "}"

A set display yields a new mutable set object, the contents being specified by either a sequence of expressions or a
comprehension. When a comma-separated list of expressions is supplied, its elements are evaluated from left to right and
added to the set object. When a comprehension is supplied, the set is constructed from the elements resulting from the
comprehension.

An empty set cannot be constructed with { }; this literal constructs an empty dictionary.

6.2.7 Dictionary displays

A dictionary display is a possibly empty series of dict items (key/value pairs) enclosed in curly braces:

dict_display = "{" [dict_item_list | dict_comprehension] "}"
dict_item_list = dict_item ("," dict_item)* [","]

dict_item = expression ":" expression | "**" or_expr
dict_comprehension = expression ":" expression comp_for

A dictionary display yields a new dictionary object.

If a comma-separated sequence of dict items is given, they are evaluated from left to right to define the entries of the
dictionary: each key object is used as a key into the dictionary to store the corresponding value. This means that you can
specify the same key multiple times in the dict item list, and the final dictionary’s value for that key will be the last one
given.

A double asterisk ** denotes dictionary unpacking. Its operand must be a mapping. Each mapping item is added to the
new dictionary. Later values replace values already set by earlier dict items and earlier dictionary unpackings.

Baru pada versi 3.5: Unpacking into dictionary displays, originally proposed by PEP 448.

80 Bab 6. Expressions

https://peps.python.org/pep-0448/

The Python Language Reference, Rilis 3.11.10

A dict comprehension, in contrast to list and set comprehensions, needs two expressions separated with a colon followed
by the usual “for” and ”if” clauses. When the comprehension is run, the resulting key and value elements are inserted in
the new dictionary in the order they are produced.

Restrictions on the types of the key values are listed earlier in section The standard type hierarchy. (To summarize, the
key type should be hashable, which excludes all mutable objects.) Clashes between duplicate keys are not detected; the
last value (textually rightmost in the display) stored for a given key value prevails.

Berubah pada versi 3.8: Prior to Python 3.8, in dict comprehensions, the evaluation order of key and value was not well-
defined. In CPython, the value was evaluated before the key. Starting with 3.8, the key is evaluated before the value, as
proposed by PEP 572.

6.2.8 Generator expressions

A generator expression is a compact generator notation in parentheses:

generator_expression = "(" expression comp_for ")"

A generator expression yields a new generator object. Its syntax is the same as for comprehensions, except that it is
enclosed in parentheses instead of brackets or curly braces.

Variables used in the generator expression are evaluated lazily when the _ _next__ () method is called for the gene-
rator object (in the same fashion as normal generators). However, the iterable expression in the leftmost for clause
is immediately evaluated, so that an error produced by it will be emitted at the point where the generator expression is
defined, rather than at the point where the first value is retrieved. Subsequent for clauses and any filter condition in
the leftmost for clause cannot be evaluated in the enclosing scope as they may depend on the values obtained from the
leftmost iterable. For example: (x*y for x in range (10) for y in range(x, x+10)).

The parentheses can be omitted on calls with only one argument. See section Calls for details.

To avoid interfering with the expected operation of the generator expressionitself, yieldandyield fromexpressions
are prohibited in the implicitly defined generator.

If a generator expression contains either async for clauses or awa i t expressions it is called an asynchronous generator
expression. An asynchronous generator expression returns a new asynchronous generator object, which is an asynchronous
iterator (see Asynchronous Iterators).

Baru pada versi 3.6: Asynchronous generator expressions were introduced.

Berubah pada versi 3.7: Prior to Python 3.7, asynchronous generator expressions could only appear in async def
coroutines. Starting with 3.7, any function can use asynchronous generator expressions.

Berubah pada versi 3.8: yield and yield from prohibited in the implicitly nested scope.

6.2.9 Yield expressions

yield_atom "(" yield expression ")"
yield_from "yield" "from" expression
yield_expression = "yield" expression_list | yield from

The yield expression is used when defining a generator function or an asynchronous generator function and thus can only
be used in the body of a function definition. Using a yield expression in a function’s body causes that function to be a
generator function, and using it in an async def function’s body causes that coroutine function to be an asynchronous
generator function. For example:

6.2. Atoms 81

https://peps.python.org/pep-0572/

The Python Language Reference, Rilis 3.11.10

def gen(): # defines a generator function
yield 123

async def agen(): # defines an asynchronous generator function
yield 123

Due to their side effects on the containing scope, yield expressions are not permitted as part of the implicitly defined
scopes used to implement comprehensions and generator expressions.

Berubah pada versi 3.8: Yield expressions prohibited in the implicitly nested scopes used to implement comprehensions
and generator expressions.

Generator functions are described below, while asynchronous generator functions are described separately in section
Asynchronous generator functions.

When a generator function is called, it returns an iterator known as a generator. That generator then controls the execution
of the generator function. The execution starts when one of the generator’s methods is called. At that time, the execution
proceeds to the first yield expression, where it is suspended again, returning the value of expression_1list to the
generator’s caller, or None if expression_list is omitted. By suspended, we mean that all local state is retained,
including the current bindings of local variables, the instruction pointer, the internal evaluation stack, and the state of any
exception handling. When the execution is resumed by calling one of the generator’s methods, the function can proceed
exactly as if the yield expression were just another external call. The value of the yield expression after resuming depends
on the method which resumed the execution. If ___next___ () isused (typically via either a for or the next () builtin)
then the result is None. Otherwise, if send () is used, then the result will be the value passed in to that method.

All of this makes generator functions quite similar to coroutines; they yield multiple times, they have more than one entry
point and their execution can be suspended. The only difference is that a generator function cannot control where the
execution should continue after it yields; the control is always transferred to the generator’s caller.

Yield expressions are allowed anywhere in a t ry construct. If the generator is not resumed before it is finalized (by
reaching a zero reference count or by being garbage collected), the generator-iterator’s c1ose () method will be called,
allowing any pending finally clauses to execute.

When yield from <expr> is used, the supplied expression must be an iterable. The values produced by iterating
that iterable are passed directly to the caller of the current generator’s methods. Any values passed in with send () and
any exceptions passed in with throw () are passed to the underlying iterator if it has the appropriate methods. If this is
not the case, then send () will raise AttributeError or TypeError, while throw () will just raise the passed
in exception immediately.

When the underlying iterator is complete, the value attribute of the raised StopIteration instance becomes the
value of the yield expression. It can be either set explicitly when raising StopIteration, or automatically when the
subiterator is a generator (by returning a value from the subgenerator).

Berubah pada versi 3.3: Added yield from <expr> to delegate control flow to a subiterator.

The parentheses may be omitted when the yield expression is the sole expression on the right hand side of an assignment
statement.

Lihat juga:

PEP 255 - Simple Generators
The proposal for adding generators and the yie1d statement to Python.

PEP 342 - Coroutines via Enhanced Generators
The proposal to enhance the API and syntax of generators, making them usable as simple coroutines.

PEP 380 - Syntax for Delegating to a Subgenerator
The proposal to introduce the yield_ from syntax, making delegation to subgenerators easy.

PEP 525 - Asynchronous Generators
The proposal that expanded on PEP 492 by adding generator capabilities to coroutine functions.

82 Bab 6. Expressions

https://peps.python.org/pep-0255/
https://peps.python.org/pep-0342/
https://peps.python.org/pep-0380/
https://peps.python.org/pep-0525/
https://peps.python.org/pep-0492/

The Python Language Reference, Rilis 3.11.10

Generator-iterator methods

This subsection describes the methods of a generator iterator. They can be used to control the execution of a generator
function.

Note that calling any of the generator methods below when the generator is already executing raises a ValueError
exception.

generator.__next__ ()

Starts the execution of a generator function or resumes it at the last executed yield expression. When a generator
function is resumed with a ___next__ () method, the current yield expression always evaluates to None. The
execution then continues to the next yield expression, where the generator is suspended again, and the value of the
expression_listisreturnedto __ next__ ()’scaller. If the generator exits without yielding another value,
a StopIteration exception is raised.

This method is normally called implicitly, e.g. by a for loop, or by the built-in next () function.

generator.send (value)

Resumes the execution and “sends” a value into the generator function. The value argument becomes the result
of the current yield expression. The send () method returns the next value yielded by the generator, or raises
StopIteration if the generator exits without yielding another value. When send () is called to start the
generator, it must be called with None as the argument, because there is no yield expression that could receive the
value.

generator.throw (value)

generator.throw (type[, value[, traceback]])

Raises an exception at the point where the generator was paused, and returns the next value yielded by the gene-
rator function. If the generator exits without yielding another value, a StopIteration exception is raised. If
the generator function does not catch the passed-in exception, or raises a different exception, then that exception
propagates to the caller.

In typical use, this is called with a single exception instance similar to the way the raise keyword is used.

For backwards compatibility, however, the second signature is supported, following a convention from older ver-
sions of Python. The fype argument should be an exception class, and value should be an exception instance. If
the value is not provided, the fype constructor is called to get an instance. If fraceback is provided, it is set on the
exception, otherwise any existing __traceback___ attribute stored in value may be cleared.

generator.close ()

Raises a GeneratorExit at the point where the generator function was paused. If the generator function then
exits gracefully, is already closed, or raises GeneratorExit (by not catching the exception), close returns to its
caller. If the generator yields a value, a RuntimeError is raised. If the generator raises any other exception,
it is propagated to the caller. close () does nothing if the generator has already exited due to an exception or
normal exit.

Contoh-contoh

Here is a simple example that demonstrates the behavior of generators and generator functions:

>>> def echo (value=None) :

print ("Execution starts when 'next()' is called for the first time.")
try:
while True:
try:
value = (yield value)

except Exception as e:
(berlanjut ke halaman berikutnya)

6.2. Atoms 83

The Python Language Reference, Rilis 3.11.10

(lanjutan dari halaman sebelumnya)

value = e
finally:
print ("Don't forget to clean up when 'close()' is called.")

>>> generator = echo (1)

>>> print (next (generator))

Execution starts when 'next()' is called for the first time.
1

>>> print (next (generator))

None

>>> print (generator.send(2))

2

>>> generator.throw (TypeError, "spam")

TypeError ('spam',)

>>> generator.close ()

Don't forget to clean up when 'close()' is called.

For examples using yield from, see pep-380 in "What’s New in Python.”

Asynchronous generator functions

The presence of a yield expression in a function or method defined using async def further defines the function as an
asynchronous generator function.

When an asynchronous generator function is called, it returns an asynchronous iterator known as an asynchronous ge-
nerator object. That object then controls the execution of the generator function. An asynchronous generator object is
typically used in an async for statement in a coroutine function analogously to how a generator object would be used
in a for statement.

Calling one of the asynchronous generator’s methods returns an awaitable object, and the execution starts when this
object is awaited on. At that time, the execution proceeds to the first yield expression, where it is suspended again,
returning the value of expression_1list to the awaiting coroutine. As with a generator, suspension means that all
local state is retained, including the current bindings of local variables, the instruction pointer, the internal evaluation
stack, and the state of any exception handling. When the execution is resumed by awaiting on the next object returned
by the asynchronous generator’s methods, the function can proceed exactly as if the yield expression were just another
external call. The value of the yield expression after resuming depends on the method which resumed the execution. If
___anext___ () is used then the result is None. Otherwise, if asend () is used, then the result will be the value passed
in to that method.

If an asynchronous generator happens to exit early by break, the caller task being cancelled, or other exceptions, the
generator’s async cleanup code will run and possibly raise exceptions or access context variables in an unexpected context-
-perhaps after the lifetime of tasks it depends, or during the event loop shutdown when the async-generator garbage
collection hook is called. To prevent this, the caller must explicitly close the async generator by calling aclose ()
method to finalize the generator and ultimately detach it from the event loop.

In an asynchronous generator function, yield expressions are allowed anywhere in a try construct. However, if an
asynchronous generator is not resumed before it is finalized (by reaching a zero reference count or by being garbage
collected), then a yield expression within a t ry construct could result in a failure to execute pending 7 ina 11y clauses. In
this case, it is the responsibility of the event loop or scheduler running the asynchronous generator to call the asynchronous
generator-iterator's aclose () method and run the resulting coroutine object, thus allowing any pending finally
clauses to execute.

To take care of finalization upon event loop termination, an event loop should define a finalizer function which takes
an asynchronous generator-iterator and presumably calls aclose () and executes the coroutine. This finalizer may be
registered by calling sys.set_asyncgen_hooks (). When first iterated over, an asynchronous generator-iterator

84 Bab 6. Expressions

The Python Language Reference, Rilis 3.11.10

will store the registered finalizer to be called upon finalization. For a reference example of a finalizer method see the
implementation of asyncio.Loop.shutdown_asyncgens in Lib/asyncio/base_events.py.

The expression yield from <expr> isa syntax error when used in an asynchronous generator function.

Asynchronous generator-iterator methods

This subsection describes the methods of an asynchronous generator iterator, which are used to control the execution of
a generator function.

coroutine agen._ _anext_ ()

Returns an awaitable which when run starts to execute the asynchronous generator or resumes it at the last executed
yield expression. When an asynchronous generator function is resumed with an __anext__ () method, the
current yield expression always evaluates to None in the returned awaitable, which when run will continue to
the next yield expression. The value of the expression_1list of the yield expression is the value of the
StopIteration exception raised by the completing coroutine. If the asynchronous generator exits without
yielding another value, the awaitable instead raises a StopAsyncIteration exception, signalling that the
asynchronous iteration has completed.

This method is normally called implicitly by a async for loop.

coroutine agen.asend (value)

Returns an awaitable which when run resumes the execution of the asynchronous generator. As with the send ()
method for a generator, this “sends” a value into the asynchronous generator function, and the value argument beco-
mes the result of the current yield expression. The awaitable returned by the asend () method will return the next
value yielded by the generator as the value of the raised StopIteration, orraises StopAsyncIteration
if the asynchronous generator exits without yielding another value. When asend () is called to start the asyn-
chronous generator, it must be called with None as the argument, because there is no yield expression that could
receive the value.

coroutine agen.athrow (value)

coroutine agen.athrow (type[, value[, rraceback]])

Returns an awaitable that raises an exception of type type at the point where the asynchronous generator was
paused, and returns the next value yielded by the generator function as the value of the raised StopIteration
exception. If the asynchronous generator exits without yielding another value, a St opAsyncIteration excep-
tion is raised by the awaitable. If the generator function does not catch the passed-in exception, or raises a different
exception, then when the awaitable is run that exception propagates to the caller of the awaitable.

coroutine agen.aclose ()

Returns an awaitable that when run will throw a GeneratorExit into the asynchronous generator function at the
point where it was paused. If the asynchronous generator function then exits gracefully, is already closed, or raises
GeneratorExit (by not catching the exception), then the returned awaitable will raise a StopIteration
exception. Any further awaitables returned by subsequent calls to the asynchronous generator will raise a
StopAsyncIteration exception. If the asynchronous generator yields a value, a RuntimeError is ra-
ised by the awaitable. If the asynchronous generator raises any other exception, it is propagated to the caller of the
awaitable. If the asynchronous generator has already exited due to an exception or normal exit, then further calls
to aclose () will return an awaitable that does nothing.

6.2. Atoms 85

https://github.com/python/cpython/tree/3.11/Lib/asyncio/base_events.py

The Python Language Reference, Rilis 3.11.10

6.3 Primaries

Primaries represent the most tightly bound operations of the language. Their syntax is:

primary = atom | attributeref | subscription | slicing | call

6.3.1 Attribute references

An attribute reference is a primary followed by a period and a name:

attributeref = primary "." identifier

The primary must evaluate to an object of a type that supports attribute references, which most objects do. This object
is then asked to produce the attribute whose name is the identifier. The type and value produced is determined by the
object. Multiple evaluations of the same attribute reference may yield different objects.

This production can be customized by overriding the __getattribute__ () method or the ___getattr__ ()
method. The __getattribute__ () method is called first and either returns a value or raises AttributeError
if the attribute is not available.

If an AttributeError israised and the objecthasa ___getattr__ () method, that method is called as a fallback.

6.3.2 Subscriptions

The subscription of an instance of a container class will generally select an element from the container. The subscription
of a generic class will generally return a GenericAlias object.

subscription = primary "[" expression_list "]"

When an object is subscripted, the interpreter will evaluate the primary and the expression list.

The primary must evaluate to an object that supports subscription. An object may support subscription through defining
one or bothof __getitem () and __class_getitem _ (). When the primary is subscripted, the evaluated
result of the expression list will be passed to one of these methods. For more details on when __class_getitem
is called instead of ___getitem__,see _ class_getitem__ versus __getitem__.

If the expression list contains at least one comma, it will evaluate to a t uple containing the items of the expression list.
Otherwise, the expression list will evaluate to the value of the list’s sole member.

For built-in objects, there are two types of objects that support subscription via ___getitem _ ():

1. Mappings. If the primary is a mapping, the expression list must evaluate to an object whose value is one of the keys
of the mapping, and the subscription selects the value in the mapping that corresponds to that key. An example of
a builtin mapping class is the dict class.

2. Sequences. If the primary is a sequence, the expression list must evaluate to an int or a slice (as discussed in
the following section). Examples of builtin sequence classes include the str, 1ist and tuple classes.

The formal syntax makes no special provision for negative indices in sequences. However, built-in sequences all provide
a__getitem__ () method that interprets negative indices by adding the length of the sequence to the index so that,
for example, x [-1] selects the last item of x. The resulting value must be a nonnegative integer less than the number
of items in the sequence, and the subscription selects the item whose index is that value (counting from zero). Since

86 Bab 6. Expressions

The Python Language Reference, Rilis 3.11.10

the support for negative indices and slicing occurs in the object’s ___getitem__ () method, subclasses overriding this
method will need to explicitly add that support.

A stringis a special kind of sequence whose items are characters. A character is not a separate data type but a string
of exactly one character.

6.3.3 Slicings

A slicing selects a range of items in a sequence object (e.g., a string, tuple or list). Slicings may be used as expressions or
as targets in assignment or de I statements. The syntax for a slicing:

slicing = primary "[" slice_list "]"

slice_1list = slice_item ("," slice_item)* [","]

slice_item = expression | proper_slice

proper_slice = [lower_bound] ":" [upper_bound] [":" [stride]]
lower_bound = expression

upper_bound = expression

stride = expression

There is ambiguity in the formal syntax here: anything that looks like an expression list also looks like a slice list, so any
subscription can be interpreted as a slicing. Rather than further complicating the syntax, this is disambiguated by defining
that in this case the interpretation as a subscription takes priority over the interpretation as a slicing (this is the case if the
slice list contains no proper slice).

The semantics for a slicing are as follows. The primary is indexed (using the same __ getitem__ () method as normal
subscription) with a key that is constructed from the slice list, as follows. If the slice list contains at least one comma, the
key is a tuple containing the conversion of the slice items; otherwise, the conversion of the lone slice item is the key. The
conversion of a slice item that is an expression is that expression. The conversion of a proper slice is a slice object (see
section The standard type hierarchy) whose start, stop and step attributes are the values of the expressions given
as lower bound, upper bound and stride, respectively, substituting None for missing expressions.

6.3.4 Calls

A call calls a callable object (e.g., a function) with a possibly empty series of arguments:

call n= primary " (" [argument_list [","] | comprehension] ")"
argument_list = positional_arguments ["," starred_and_keywords]

["," keywords_arguments]

| starred_and_keywords ["," keywords_arguments]

| keywords_arguments

positional_arguments = positional_item ("," positional_item) *
positional_item = assignment_expression | "*" expression
starred_and_keywords = ("*" expression | keyword_ item)

("," "*" expression | "," keyword_item)*
keywords_arguments = (keyword_item | "**" expression)

("," keyword_ item | "," "**" expression)*
keyword_item = identifier "=" expression

An optional trailing comma may be present after the positional and keyword arguments but does not affect the semantics.

The primary must evaluate to a callable object (user-defined functions, built-in functions, methods of built-in objects,
class objects, methods of class instances, and all objects havinga __call__ () method are callable). All argument

6.3. Primaries 87

The Python Language Reference, Rilis 3.11.10

expressions are evaluated before the call is attempted. Please refer to section Definisi fungsi for the syntax of formal
parameter lists.

If keyword arguments are present, they are first converted to positional arguments, as follows. First, a list of unfilled
slots is created for the formal parameters. If there are N positional arguments, they are placed in the first N slots. Next,
for each keyword argument, the identifier is used to determine the corresponding slot (if the identifier is the same as the
first formal parameter name, the first slot is used, and so on). If the slot is already filled, a TypeError exception is
raised. Otherwise, the argument is placed in the slot, filling it (even if the expression is None, it fills the slot). When
all arguments have been processed, the slots that are still unfilled are filled with the corresponding default value from the
function definition. (Default values are calculated, once, when the function is defined; thus, a mutable object such as a list
or dictionary used as default value will be shared by all calls that don’t specify an argument value for the corresponding
slot; this should usually be avoided.) If there are any unfilled slots for which no default value is specified, a TypeError
exception is raised. Otherwise, the list of filled slots is used as the argument list for the call.

Detail implementasi CPython: An implementation may provide built-in functions whose positional parameters do not
have names, even if they are ‘'named’ for the purpose of documentation, and which therefore cannot be supplied by
keyword. In CPython, this is the case for functions implemented in C that use PyArg_ParseTuple () to parse their
arguments.

If there are more positional arguments than there are formal parameter slots, a TypeError exception is raised, unless
a formal parameter using the syntax *identifier is present; in this case, that formal parameter receives a tuple
containing the excess positional arguments (or an empty tuple if there were no excess positional arguments).

If any keyword argument does not correspond to a formal parameter name, a TypeError exception is raised, unless a
formal parameter using the syntax **identifier is present; in this case, that formal parameter receives a dictionary
containing the excess keyword arguments (using the keywords as keys and the argument values as corresponding values),
or a (new) empty dictionary if there were no excess keyword arguments.

If the syntax *expression appears in the function call, expression must evaluate to an iferable. Elements from
these iterables are treated as if they were additional positional arguments. For the call £ (x1, x2, *y, x3, x4),
if y evaluates to a sequence y/, ..., yM, this is equivalent to a call with M+4 positional arguments x/, x2, y1, ..., yYM, x3,
x4.

A consequence of this is that although the *expression syntax may appear after explicit keyword arguments, it is
processed before the keyword arguments (and any * *expression arguments -- see below). So:

>>> def f(a, b):
print (a, b)

>>> f(b=1, *(2,))
21
>>> f(a=1, *(2,))
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: f£() got multiple values for keyword argument 'a'
>>> f£(1, *(2,))
12

It is unusual for both keyword arguments and the *expression syntax to be used in the same call, so in practice this
confusion does not often arise.

If the syntax **expression appears in the function call, expression must evaluate to a mapping, the contents of
which are treated as additional keyword arguments. If a parameter matching a key has already been given a value (by an
explicit keyword argument, or from another unpacking), a TypeError exception is raised.

When **expression is used, each key in this mapping must be a string. Each value from the mapping is assigned to
the first formal parameter eligible for keyword assignment whose name is equal to the key. A key need not be a Python
identifier (e.g. "max-temp °F" isacceptable, although it will not match any formal parameter that could be declared).

88 Bab 6. Expressions

The Python Language Reference, Rilis 3.11.10

If there is no match to a formal parameter the key-value pair is collected by the ** parameter, if there is one, or if there
isnot, a TypeError exception is raised.

Formal parameters using the syntax *identifier or **identifier cannot be used as positional argument slots
or as keyword argument names.

Berubah pada versi 3.5: Function calls accept any number of * and ** unpackings, positional arguments may follow
iterable unpackings (*), and keyword arguments may follow dictionary unpackings (* *). Originally proposed by PEP
448.

A call always returns some value, possibly None, unless it raises an exception. How this value is computed depends on
the type of the callable object.

If it is---

a user-defined function:
The code block for the function is executed, passing it the argument list. The first thing the code block will do
is bind the formal parameters to the arguments; this is described in section Definisi fungsi. When the code block
executes a return statement, this specifies the return value of the function call.

a built-in function or method:
The result is up to the interpreter; see built-in-funcs for the descriptions of built-in functions and methods.

a class object:
A new instance of that class is returned.

a class instance method:
The corresponding user-defined function is called, with an argument list that is one longer than the argument list
of the call: the instance becomes the first argument.

a class instance:
The class must definea _call () method; the effect is then the same as if that method was called.

6.4 Await expression

Suspend the execution of coroutine on an awaitable object. Can only be used inside a coroutine function.

await_expr = "await" primary

Baru pada versi 3.5.

6.5 The power operator

The power operator binds more tightly than unary operators on its left; it binds less tightly than unary operators on its
right. The syntax is:

power = (await_expr | primary) ["**" u_expr]

Thus, in an unparenthesized sequence of power and unary operators, the operators are evaluated from right to left (this
does not constrain the evaluation order for the operands): —1* *2 results in —1.

6.4. Await expression 89

https://peps.python.org/pep-0448/
https://peps.python.org/pep-0448/

The Python Language Reference, Rilis 3.11.10

The power operator has the same semantics as the built-in pow () function, when called with two arguments: it yields
its left argument raised to the power of its right argument. The numeric arguments are first converted to a common type,
and the result is of that type.

For int operands, the result has the same type as the operands unless the second argument is negative; in that case, all
arguments are converted to float and a float result is delivered. For example, 10* *2 returns 100, but 10** -2 returns
0.01.

Raising 0. O to a negative power results in a ZeroDivisionError. Raising a negative number to a fractional power
results in a complex number. (In earlier versions it raised a ValueError.)

This operation can be customized using the special __pow___ () method.

6.6 Unary arithmetic and bitwise operations

All unary arithmetic and bitwise operations have the same priority:

n "

u_expr = power | "-" u_expr | "+" u_expr | u_expr

The unary — (minus) operator yields the negation of its numeric argument; the operation can be overridden with the
__neg___ () special method.

The unary + (plus) operator yields its numeric argument unchanged; the operation can be overridden with the
__pos___ () special method.

The unary ~ (invert) operator yields the bitwise inversion of its integer argument. The bitwise inversion of x is defined
as — (x+1). It only applies to integral numbers or to custom objects that override the _ invert__ () special method.

In all three cases, if the argument does not have the proper type, a TypeError exception is raised.

6.7 Binary arithmetic operations

The binary arithmetic operations have the conventional priority levels. Note that some of these operations also apply to
certain non-numeric types. Apart from the power operator, there are only two levels, one for multiplicative operators and
one for additive operators:

m_expr I= u_expr | m_expr "*" u_expr | m_expr "Q@" m_expr |
m_expr "//" u_expr | m_expr "/" u_expr |
m_expr "$" u_expr

a_expr = m_expr | a_expr "+" m _expr | a_expr

n_mn

m_expr

The * (multiplication) operator yields the product of its arguments. The arguments must either both be numbers, or
one argument must be an integer and the other must be a sequence. In the former case, the numbers are converted to
a common type and then multiplied together. In the latter case, sequence repetition is performed; a negative repetition
factor yields an empty sequence.

This operation can be customized using the special __mul___ () and __rmul__ () methods.
The @ (at) operator is intended to be used for matrix multiplication. No builtin Python types implement this operator.

Baru pada versi 3.5.

920 Bab 6. Expressions

The Python Language Reference, Rilis 3.11.10

The / (division) and // (floor division) operators yield the quotient of their arguments. The numeric arguments are first
converted to a common type. Division of integers yields a float, while floor division of integers results in an integer;
the result is that of mathematical division with the 'floor’ function applied to the result. Division by zero raises the
ZeroDivisionError exception.

This operation can be customized using the special ___truediv.___ () and ___floordiv__ () methods.

The % (modulo) operator yields the remainder from the division of the first argument by the second. The numeric
arguments are first converted to a common type. A zero right argument raises the ZeroDivisionError exception.
The arguments may be floating point numbers, e.g., 3.14%0.7 equals 0.34 (since 3.14 equals 4*0.7 + 0.34.)
The modulo operator always yields a result with the same sign as its second operand (or zero); the absolute value of the
result is strictly smaller than the absolute value of the second operand’.

The floor division and modulo operators are connected by the following identity: x == (x//y)*y + (x%y). Flo-

or division and modulo are also connected with the built-in function divmod (): divmod (x, y) == (x//y,
o 2

X3y) .~

In addition to performing the modulo operation on numbers, the % operator is also overloaded by string objects to perform
old-style string formatting (also known as interpolation). The syntax for string formatting is described in the Python
Library Reference, section old-string-formatting.

The modulo operation can be customized using the special __mod___ () method.

The floor division operator, the modulo operator, and the divmod () function are not defined for complex numbers.
Instead, convert to a floating point number using the abs () function if appropriate.

The + (addition) operator yields the sum of its arguments. The arguments must either both be numbers or both be
sequences of the same type. In the former case, the numbers are converted to a common type and then added together.
In the latter case, the sequences are concatenated.

This operation can be customized using the special __add__ () and ___radd__ () methods.

The — (subtraction) operator yields the difference of its arguments. The numeric arguments are first converted to a
common type.

This operation can be customized using the special ___sub__ () method.

6.8 Shifting operations

The shifting operations have lower priority than the arithmetic operations:

shift_expr = a_expr | shift_expr ("<<" | ">>") a_expr

These operators accept integers as arguments. They shift the first argument to the left or right by the number of bits given
by the second argument.

This operation can be customized using the special ___1shift__ () and __rshift__ () methods.

A right shift by n bits is defined as floor division by pow (2, n) . A left shift by » bits is defined as multiplication with
pow (2,n).

! While abs (x%y) < abs (y) is true mathematically, for floats it may not be true numerically due to roundoff. For example, and assuming
a platform on which a Python float is an IEEE 754 double-precision number, in order that -1e-100 % 1e100 have the same sign as 1e100, the
computed result is ~-1e-100 + 1e100, which is numerically exactly equal to 1e100. The function math. fmod () returns a result whose sign
matches the sign of the first argument instead, and so returns —1e—100 in this case. Which approach is more appropriate depends on the application.

2 If x is very close to an exact integer multiple of y, it’s possible for x//y to be one larger than (x-x%y) //y due to rounding. In such cases,
Python returns the latter result, in order to preserve that divmod (x,y) [0] * y + x % y be very close to x.

6.8. Shifting operations 91

The Python Language Reference, Rilis 3.11.10

6.9 Binary bitwise operations

Each of the three bitwise operations has a different priority level:

and_expr
XOY_expr

shift_expr | and _expr "&" shift_expr
and_expr | xor_expr """ and_expr

or_expr xor_expr | or_expr "|" xor_expr

The & operator yields the bitwise AND of its arguments, which must be integers or one of them must be a custom object
overriding __and___ () or__rand__ () special methods.

The ~ operator yields the bitwise XOR (exclusive OR) of its arguments, which must be integers or one of them must be
a custom object overriding __xor__ () or __rxor__ () special methods.

The | operator yields the bitwise (inclusive) OR of its arguments, which must be integers or one of them must be a
custom object overriding __or___ () or __ror__ () special methods.

6.10 Perbandingan

Unlike C, all comparison operations in Python have the same priority, which is lower than that of any arithmetic, shif-
ting or bitwise operation. Also unlike C, expressions like a < b < c have the interpretation that is conventional in
mathematics:

comparison = or_expr (comp_operator or_expr)¥*
comp operator e nen ‘ nsn | wn__m | ns_—n ‘ "o | nmyp_mn
| "isl' ["not"] ‘ ["not"] "in"

Comparisons yield boolean values: True or False. Custom rich comparison methods may return non-boolean values.
In this case Python will call bool () on such value in boolean contexts.

Comparisons can be chained arbitrarily, e.g., x < y <= zisequivalentto x < y and y <= z, except that y is
evaluated only once (but in both cases z is not evaluated at all when x < v is found to be false).

Formally, if a, b, c, ..., y, z are expressions and opl, op2, ..., opN are comparison operators, then a opl b op2 c
y opN z is equivalent to a opl b and b op2 ¢ and ... y opN z, except that each expression is
evaluated at most once.

Note that a opl b op2 c doesn’t imply any kind of comparison between a and c, so that, e.g., x < y > zis
perfectly legal (though perhaps not pretty).

6.10.1 Value comparisons

The operators <, >, ==, >=, <=, and ! = compare the values of two objects. The objects do not need to have the same
type.

Chapter Objects, values and types states that objects have a value (in addition to type and identity). The value of an object
is a rather abstract notion in Python: For example, there is no canonical access method for an object’s value. Also, there
is no requirement that the value of an object should be constructed in a particular way, e.g. comprised of all its data
attributes. Comparison operators implement a particular notion of what the value of an object is. One can think of them
as defining the value of an object indirectly, by means of their comparison implementation.

92 Bab 6. Expressions

The Python Language Reference, Rilis 3.11.10

Because all types are (direct or indirect) subtypes of object, they inherit the default comparison behavior from
object. Types can customize their comparison behavior by implementing rich comparison methods like __1t__ (),
described in Basic customization.

The default behavior for equality comparison (== and !=) is based on the identity of the objects. Hence, equality
comparison of instances with the same identity results in equality, and equality comparison of instances with different
identities results in inequality. A motivation for this default behavior is the desire that all objects should be reflexive (i.e.
x is yimplies x == y).

A default order comparison (<, >, <=, and >=) is not provided; an attempt raises TypeError. A motivation for this
default behavior is the lack of a similar invariant as for equality.

The behavior of the default equality comparison, that instances with different identities are always unequal, may be in
contrast to what types will need that have a sensible definition of object value and value-based equality. Such types will
need to customize their comparison behavior, and in fact, a number of built-in types have done that.

The following list describes the comparison behavior of the most important built-in types.

o Numbers of built-in numeric types (typesnumeric) and of the standard library types fractions.Fraction
and decimal.Decimal can be compared within and across their types, with the restriction that complex num-
bers do not support order comparison. Within the limits of the types involved, they compare mathematically
(algorithmically) correct without loss of precision.

The not-a-number values f1oat ('NaN') and decimal.Decimal ('NaN') are special. Any ordered com-
parison of a number to a not-a-number value is false. A counter-intuitive implication is that not-a-number values
are not equal to themselves. For example, if x = float ('NaN'),3 < x,x < 3and x == x are all false,
while x != x is true. This behavior is compliant with IEEE 754.

e None and Not Implemented are singletons. PEP 8 advises that comparisons for singletons should always be
done with is or is not, never the equality operators.

« Binary sequences (instances of bytes or bytearray) can be compared within and across their types. They
compare lexicographically using the numeric values of their elements.

« Strings (instances of str) compare lexicographically using the numerical Unicode code points (the result of the
built-in function ord ()) of their characters.’

Strings and binary sequences cannot be directly compared.

» Sequences (instances of tuple, 1ist, or range) can be compared only within each of their types, with the
restriction that ranges do not support order comparison. Equality comparison across these types results in inequality,
and ordering comparison across these types raises TypeError.

Sequences compare lexicographically using comparison of corresponding elements. The built-in containers typi-
cally assume identical objects are equal to themselves. That lets them bypass equality tests for identical objects to
improve performance and to maintain their internal invariants.

Lexicographical comparison between built-in collections works as follows:

- For two collections to compare equal, they must be of the same type, have the same length, and each pair of
corresponding elements must compare equal (for example, [1,2] == (1, 2) is false because the type is
not the same).

3 The Unicode standard distinguishes between code points (e.g. U+0041) and abstract characters (e.g. "LATIN CAPITAL LETTER A”). While most
abstract characters in Unicode are only represented using one code point, there is a number of abstract characters that can in addition be represented using
a sequence of more than one code point. For example, the abstract character "LATIN CAPITAL LETTER C WITH CEDILLA” can be represented as
a single precomposed character at code position U+00C7, or as a sequence of a base character at code position U+0043 (LATIN CAPITAL LETTER
C), followed by a combining character at code position U+0327 (COMBINING CEDILLA).

The comparison operators on strings compare at the level of Unicode code points. This may be counter-intuitive to humans. For example, "\
u00C7"™ == "\u0043\u0327" is False, even though both strings represent the same abstract character "TLATIN CAPITAL LETTER C WITH
CEDILLA”.

To compare strings at the level of abstract characters (that is, in a way intuitive to humans), use unicodedata.normalize ().

6.10. Perbandingan 93

https://peps.python.org/pep-0008/

The Python Language Reference, Rilis 3.11.10

- Collections that support order comparison are ordered the same as their first unequal elements (for example,
[1,2,x] <= [1,2,y] hasthe same value as x <= y). If a corresponding element does not exist, the
shorter collection is ordered first (for example, [1,2] < [1,2, 3] istrue).

» Mappings (instances of dict) compare equal if and only if they have equal (key, value) pairs. Equality

comparison of the keys and values enforces reflexivity.
Order comparisons (<, >, <=, and >=) raise TypeError.
Sets (instances of set or frozenset) can be compared within and across their types.

They define order comparison operators to mean subset and superset tests. Those relations do not define total
orderings (for example, the two sets {1, 2} and {2, 3} are not equal, nor subsets of one another, nor supersets
of one another). Accordingly, sets are not appropriate arguments for functions which depend on total ordering (for
example, min (), max (), and sorted () produce undefined results given a list of sets as inputs).

Comparison of sets enforces reflexivity of its elements.

Most other built-in types have no comparison methods implemented, so they inherit the default comparison beha-
vior.

User-defined classes that customize their comparison behavior should follow some consistency rules, if possible:

» Equality comparison should be reflexive. In other words, identical objects should compare equal:

x 1s y implies x ==

o Comparison should be symmetric. In other words, the following expressions should have the same result:

x == yandy == x
x != yandy != x
x < yandy > x

x <= yandy >= x

» Comparison should be transitive. The following (non-exhaustive) examples illustrate that:

x >y and y > zimpliesx > z

x <y and y <= zimpliesx < z

« Inverse comparison should result in the boolean negation. In other words, the following expressions should have

the same result:
x == yandnot x != vy
x < yandnot x >= y (for total ordering)
x > yand not x <= vy (for total ordering)

The last two expressions apply to totally ordered collections (e.g. to sequences, but not to sets or mappings). See
also the total_ordering () decorator.

o The hash () result should be consistent with equality. Objects that are equal should either have the same hash

value, or be marked as unhashable.

Python does not enforce these consistency rules. In fact, the not-a-number values are an example for not following these

rules.

94

Bab 6. Expressions

The Python Language Reference, Rilis 3.11.10

6.10.2 Membership test operations

The operators in and not in test for membership. x in s evaluates to True if x is a member of s, and False
otherwise. x not in s returns the negation of x in s. All built-in sequences and set types support this as well as
dictionary, for which in tests whether the dictionary has a given key. For container types such as list, tuple, set, frozenset,
dict, or collections.deque, the expression x in vy isequivalentto any (x is e or x == e for e in y).

For the string and bytes types, x in vy is True if and only if x is a substring of y. An equivalent testis y . find (x)
!= —1. Empty strings are always considered to be a substring of any other string, so "" in "abc" will return True.

For user-defined classes which define the _ contains__ () method, x in y returns True if vy.
___contains__ (x) returns a true value, and False otherwise.

For user-defined classes which do not define _ contains_ () butdodefine iter (),x in yis True if
some value z, for which the expressionx is z or x == zistrue, isproduced while iterating over y. If an exception
is raised during the iteration, it is as if in raised that exception.

Lastly, the old-style iteration protocol is tried: if a class defines __getitem (), x in vy is True if and only if
there is a non-negative integer index i such that x is y[i] or x == y[i], and no lower integer index raises the
IndexError exception. (If any other exception is raised, it is as if in raised that exception).

The operator not 1in is defined to have the inverse truth value of in.

6.10.3 ldentity comparisons

The operators is and is not test for an object’s identity: x is vy is true if and only if x and y are the same object.
An Object’s identity is determined using the 1d () function. x is not vy yields the inverse truth value.*

6.11 Boolean operations

or_test = and_test | or_test "or" and_test
and_test = not_test | and_test "and" not_test
not_test = comparison | "not" not_test

In the context of Boolean operations, and also when expressions are used by control flow statements, the following values
are interpreted as false: False, None, numeric zero of all types, and empty strings and containers (including strings,
tuples, lists, dictionaries, sets and frozensets). All other values are interpreted as true. User-defined objects can customize
their truth value by providinga ___bool__ () method.

The operator not yields True if its argument is false, False otherwise.

The expression x and vy first evaluates x; if x is false, its value is returned; otherwise, y is evaluated and the resulting
value is returned.

The expression x or vy first evaluates x; if x is true, its value is returned; otherwise, y is evaluated and the resulting
value is returned.

Note that neither and nor or restrict the value and type they return to False and True, but rather return the last
evaluated argument. This is sometimes useful, e.g., if s is a string that should be replaced by a default value if it is empty,
the expression s or 'foo' yields the desired value. Because not has to create a new value, it returns a boolean value
regardless of the type of its argument (for example, not 'foo' produces False rather than ' '.)

4 Due to automatic garbage-collection, free lists, and the dynamic nature of descriptors, you may notice seemingly unusual behaviour in certain uses
of the is operator, like those involving comparisons between instance methods, or constants. Check their documentation for more info.

6.11. Boolean operations 95

The Python Language Reference, Rilis 3.11.10

6.12 Ekspresi Pemberian Nilai

assignment_expression = [identifier ":="] expression

An assignment expression (sometimes also called a "named expression” or “walrus”) assigns an expression to an
identifier, while also returning the value of the expression.

One common use case is when handling matched regular expressions:

if matching := pattern.search(data):
do_something (matching)

Or, when processing a file stream in chunks:

while chunk := file.read(9000):
process (chunk)

Assignment expressions must be surrounded by parentheses when used as expression statements and when used as
sub-expressions in slicing, conditional, lambda, keyword-argument, and comprehension-if expressions and in assert,
with, and assignment statements. In all other places where they can be used, parentheses are not required, including
in 1f and while statements.

Baru pada versi 3.8: See PEP 572 for more details about assignment expressions.

6.13 Conditional expressions

or_test ["if" or_test "else" expression]
conditional_expression | lambda_expr

conditional_expression
expression

Conditional expressions (sometimes called a “ternary operator”) have the lowest priority of all Python operations.

The expression x 1f C else vy first evaluates the condition, C rather than x. If C is true, x is evaluated and its value
is returned; otherwise, y is evaluated and its value is returned.

See PEP 308 for more details about conditional expressions.

6.14 Lambdas

lambda_expr = "lambda" [parameter_list] ":" expression

Lambda expressions (sometimes called lambda forms) are used to create anonymous functions. The expression 1ambda
parameters: expression yields a function object. The unnamed object behaves like a function object defined
with:

def <lambda> (parameters) :
return expression

See section Definisi fungsi for the syntax of parameter lists. Note that functions created with lambda expressions cannot
contain statements or annotations.

96 Bab 6. Expressions

https://peps.python.org/pep-0572/
https://peps.python.org/pep-0308/

The Python Language Reference, Rilis 3.11.10

6.15 Expression lists

expression_list = expression ("," expression)* [","]
starred_list = starred_item ("," starred item)* [","]
starred_expression = expression | (starred_item ",")* [starred_item]
starred_item = assignment_expression | "*" or_expr

Except when part of a list or set display, an expression list containing at least one comma yields a tuple. The length of
the tuple is the number of expressions in the list. The expressions are evaluated from left to right.

An asterisk * denotes iterable unpacking. Its operand must be an iferable. The iterable is expanded into a sequence of
items, which are included in the new tuple, list, or set, at the site of the unpacking.

Baru pada versi 3.5: Iterable unpacking in expression lists, originally proposed by PEP 448.

A trailing comma is required only to create a one-item tuple, such as 1, ; it is optional in all other cases. A single
expression without a trailing comma doesn’t create a tuple, but rather yields the value of that expression. (To create an
empty tuple, use an empty pair of parentheses: () .)

6.16 Evaluation order

Python evaluates expressions from left to right. Notice that while evaluating an assignment, the right-hand side is evaluated
before the left-hand side.

In the following lines, expressions will be evaluated in the arithmetic order of their suffixes:

exprl, expr2, expr3, expr4
(exprl, expr2, expr3, exprié)
{exprl: expr2, expr3: expréd}

exprl + expr2 * (expr3 - exprd)
exprl (expr2, expr3, *expr4, **exprb)
expr3, exprd4d = exprl, expr2

6.17 Operator precedence

The following table summarizes the operator precedence in Python, from highest precedence (most binding) to lowest
precedence (least binding). Operators in the same box have the same precedence. Unless the syntax is explicitly given,
operators are binary. Operators in the same box group left to right (except for exponentiation and conditional expressions,
which group from right to left).

Note that comparisons, membership tests, and identity tests, all have the same precedence and have a left-to-right chaining
feature as described in the Perbandingan section.

6.15. Expression lists 97

https://peps.python.org/pep-0448/

The Python Language Reference, Rilis 3.11.10

Operator Deskripsi

(expressions...), Binding or parenthesized expression, list display,
[expressions...], {key: value...}, dictionary display, set display
{expressions...}

x [index], x[index:index], x (arguments...), x. Subscription, slicing, call, attribute reference
attribute

await x Await expression

% Exponentiation’

+x, —X, ~X Positive, negative, bitwise NOT

*Q,/,//,% Multiplication, matrix multiplication, division, flo-
or division, remainder®

o = Addition and subtraction

<<, >> Shifts

5 Bitwise AND

A Bitwise XOR

| Bitwise OR

in, not in,is,is not,<,<=,>,>=, l= == Comparisons, including membership tests and

identity tests

not x Boolean NOT
and Boolean AND
or Boolean OR

if --else Conditional expression
lambda Lambda expression
1= Assignment expression

3 The power operator ** binds less tightly than an arithmetic or bitwise unary operator on its right, that is, 2**-11is 0. 5.
6 The % operator is also used for string formatting; the same precedence applies.

98 Bab 6. Expressions

BAB /

Simple statements

A simple statement is comprised within a single logical line. Several simple statements may occur on a single line separated
by semicolons. The syntax for simple statements is:

simple_stmt = expression_stmt

assert_stmt
assignment_stmt
augmented_assignment_stmt
annotated_assignment_stmt
pass_stmt

del_stmt

return_stmt

yield stmt

raise_stmt

break_stmt

continue_stmt

import_stmt

future_stmt

global_stmt

nonlocal_stmt

7.1 Expression statements

Expression statements are used (mostly interactively) to compute and write a value, or (usually) to call a procedure (a
function that returns no meaningful result; in Python, procedures return the value None). Other uses of expression
statements are allowed and occasionally useful. The syntax for an expression statement is:

expression_stmt =

starred_expression

99

The Python Language Reference, Rilis 3.11.10

An expression statement evaluates the expression list (which may be a single expression).

In interactive mode, if the value is not None, it is converted to a string using the built-in repr () function and the
resulting string is written to standard output on a line by itself (except if the result is None, so that procedure calls do
not cause any output.)

7.2 Assignment statements

Assignment statements are used to (re)bind names to values and to modify attributes or items of mutable objects:

assignment_stmt = (target_1list "=")+ (starred_expression | yield_expression)
target_list = target ("," target)* [","]
target = identifier

| "(" [target_list] ")"
| "[" [target_list] "]1"
| attributeref

| subscription

| slicing

| "*" target

(See section Primaries for the syntax definitions for attributeref, subscription, and slicing.)

An assignment statement evaluates the expression list (remember that this can be a single expression or a comma-separated
list, the latter yielding a tuple) and assigns the single resulting object to each of the target lists, from left to right.

Assignment is defined recursively depending on the form of the target (list). When a target is part of a mutable object (an
attribute reference, subscription or slicing), the mutable object must ultimately perform the assignment and decide about
its validity, and may raise an exception if the assignment is unacceptable. The rules observed by various types and the
exceptions raised are given with the definition of the object types (see section The standard type hierarchy).

Assignment of an object to a target list, optionally enclosed in parentheses or square brackets, is recursively defined as
follows.

« If the target list is a single target with no trailing comma, optionally in parentheses, the object is assigned to that
target.

o Else:

— If the target list contains one target prefixed with an asterisk, called a “starred” target: The object must be
an iterable with at least as many items as there are targets in the target list, minus one. The first items of the
iterable are assigned, from left to right, to the targets before the starred target. The final items of the iterable
are assigned to the targets after the starred target. A list of the remaining items in the iterable is then assigned
to the starred target (the list can be empty).

- Else: The object must be an iterable with the same number of items as there are targets in the target list, and
the items are assigned, from left to right, to the corresponding targets.

Assignment of an object to a single target is recursively defined as follows.
« If the target is an identifier (name):

— If the name does not occur in a global or nonlocal statement in the current code block: the name is
bound to the object in the current local namespace.

- Otherwise: the name is bound to the object in the global namespace or the outer namespace determined by
nonlocal, respectively.

100 Bab 7. Simple statements

The Python Language Reference, Rilis 3.11.10

The name is rebound if it was already bound. This may cause the reference count for the object previously bound
to the name to reach zero, causing the object to be deallocated and its destructor (if it has one) to be called.

If the target is an attribute reference: The primary expression in the reference is evaluated. It should yield an object
with assignable attributes; if this is not the case, TypeError is raised. That object is then asked to assign the
assigned object to the given attribute; if it cannot perform the assignment, it raises an exception (usually but not
necessarily AttributeError).

Note: If the object is a class instance and the attribute reference occurs on both sides of the assignment operator,
the right-hand side expression, a . x can access either an instance attribute or (if no instance attribute exists) a class
attribute. The left-hand side target a . x is always set as an instance attribute, creating it if necessary. Thus, the
two occurrences of a . x do not necessarily refer to the same attribute: if the right-hand side expression refers to a
class attribute, the left-hand side creates a new instance attribute as the target of the assignment:

class Cls:
x = 3 # class variable
inst = Cls{()
inst.x = inst.x + 1 # writes inst.x as 4 leaving Cls.x as 3

This description does not necessarily apply to descriptor attributes, such as properties created with property ().

If the target is a subscription: The primary expression in the reference is evaluated. It should yield either a mutable
sequence object (such as a list) or a mapping object (such as a dictionary). Next, the subscript expression is
evaluated.

If the primary is a mutable sequence object (such as a list), the subscript must yield an integer. If it is negative, the
sequence’s length is added to it. The resulting value must be a nonnegative integer less than the sequence’s length,
and the sequence is asked to assign the assigned object to its item with that index. If the index is out of range,
IndexError is raised (assignment to a subscripted sequence cannot add new items to a list).

If the primary is a mapping object (such as a dictionary), the subscript must have a type compatible with the
mapping’s key type, and the mapping is then asked to create a key/value pair which maps the subscript to the
assigned object. This can either replace an existing key/value pair with the same key value, or insert a new key/value
pair (if no key with the same value existed).

For user-defined objects, the __setitem__ () method is called with appropriate arguments.

If the target is a slicing: The primary expression in the reference is evaluated. It should yield a mutable sequence
object (such as a list). The assigned object should be a sequence object of the same type. Next, the lower and upper
bound expressions are evaluated, insofar they are present; defaults are zero and the sequence’s length. The bounds
should evaluate to integers. If either bound is negative, the sequence’s length is added to it. The resulting bounds
are clipped to lie between zero and the sequence’s length, inclusive. Finally, the sequence object is asked to replace
the slice with the items of the assigned sequence. The length of the slice may be different from the length of the
assigned sequence, thus changing the length of the target sequence, if the target sequence allows it.

Detail implementasi CPython: In the current implementation, the syntax for targets is taken to be the same as for
expressions, and invalid syntax is rejected during the code generation phase, causing less detailed error messages.

Although the definition of assignment implies that overlaps between the left-hand side and the right-hand side are ’si-
multaneous’ (for example a, b = b, a swaps two variables), overlaps within the collection of assigned-to variables
occur left-to-right, sometimes resulting in confusion. For instance, the following program prints [0, 2]:

x = [0, 1]

i=20

i, x[1i] = 1, 2 # 1 i1s updated, then x[i] 1is updated
print (x)

Lihat juga:

7.2. Assignment statements 101

The Python Language Reference, Rilis 3.11.10

PEP 3132 - Extended Iterable Unpacking
The specification for the *target feature.

7.2.1 Augmented assignment statements

Augmented assignment is the combination, in a single statement, of a binary operation and an assignment statement:

augmented_assignment_stmt = augtarget augop (expression_list | yield expression)

augtarget = identifier | attributeref | subscription | slicing

augop = ny=mn | n__m ‘ Wx_n | "@=" | n/:" I n//:n | no—n | Wk x—=0
I nss=n | Noo=n | ne="m ‘ nA_mn I "|="

(See section Primaries for the syntax definitions of the last three symbols.)

An augmented assignment evaluates the target (which, unlike normal assignment statements, cannot be an unpacking)
and the expression list, performs the binary operation specific to the type of assignment on the two operands, and assigns
the result to the original target. The target is only evaluated once.

An augmented assignment expression like x += 1 canberewrittenas x = x + 1 toachieve a similar, but not exactly
equal effect. In the augmented version, x is only evaluated once. Also, when possible, the actual operation is performed
in-place, meaning that rather than creating a new object and assigning that to the target, the old object is modified instead.

Unlike normal assignments, augmented assignments evaluate the left-hand side before evaluating the right-hand side. For
example, a[i] += £ (x) first looks-up a [1i], then it evaluates f (x) and performs the addition, and lastly, it writes
the result back to a [1].

With the exception of assigning to tuples and multiple targets in a single statement, the assignment done by augmented
assignment statements is handled the same way as normal assignments. Similarly, with the exception of the possible
in-place behavior, the binary operation performed by augmented assignment is the same as the normal binary operations.

For targets which are attribute references, the same caveat about class and instance attributes applies as for regular assig-
nments.

7.2.2 Annotated assignment statements

Annotation assignment is the combination, in a single statement, of a variable or attribute annotation and an optional
assignment statement:

annotated_assignment_stmt = augtarget ":" expression
["=" (starred_expression | yield expression)]

The difference from normal Assignment statements is that only a single target is allowed.

For simple names as assignment targets, if in class or module scope, the annotations are evaluated and stored in a special
class or module attribute __annotations__ thatis a dictionary mapping from variable names (mangled if private) to
evaluated annotations. This attribute is writable and is automatically created at the start of class or module body execution,
if annotations are found statically.

For expressions as assignment targets, the annotations are evaluated if in class or module scope, but not stored.

If a name is annotated in a function scope, then this name is local for that scope. Annotations are never evaluated and
stored in function scopes.

102 Bab 7. Simple statements

https://peps.python.org/pep-3132/

The Python Language Reference, Rilis 3.11.10

If the right hand side is present, an annotated assignment performs the actual assignment before evaluating annotations
(where applicable). If the right hand side is not present for an expression target, then the interpreter evaluates the target
except for the last ___setitem () or __setattr__ () call

Lihat juga:

PEP 526 - Syntax for Variable Annotations
The proposal that added syntax for annotating the types of variables (including class variables and instance varia-
bles), instead of expressing them through comments.

PEP 484 - Type hints
The proposal that added the t yping module to provide a standard syntax for type annotations that can be used in
static analysis tools and IDEs.

Berubah pada versi 3.8: Now annotated assignments allow the same expressions in the right hand side as regular assig-
nments. Previously, some expressions (like un-parenthesized tuple expressions) caused a syntax error.

7.3 The assert statement

Assert statements are a convenient way to insert debugging assertions into a program:

assert_stmt = "assert" expression ["," expression]

The simple form, assert expression, is equivalent to

if _ debug__ :
if not expression: raise AssertionError

The extended form, assert expressionl, expression?2, isequivalent to

if _ debug__:
if not expressionl: raise AssertionError (expression?2)

These equivalences assume that __debug___ and AssertionError refer to the built-in variables with those names.
In the current implementation, the built-in variable ___debug__ is True under normal circumstances, False when
optimization is requested (command line option —0). The current code generator emits no code for an assert statement
when optimization is requested at compile time. Note that it is unnecessary to include the source code for the expression
that failed in the error message; it will be displayed as part of the stack trace.

Assignments to ___debug___ are illegal. The value for the built-in variable is determined when the interpreter starts.

7.4 Pernyataan pass

pass_stmt = "pass"

pas s adalah operasi null --- ketika dieksekusi, tidak ada yang terjadi. Ini berguna sebagai penampung ketika pernyataan
diperlukan secara sintaksis, tetapi tidak ada kode yang perlu dieksekusi, misalnya:

def f (arg): pass # a function that does nothing (yet)

class C: pass # a class with no methods (yet)

7.3. The assert statement 103

https://peps.python.org/pep-0526/
https://peps.python.org/pep-0484/

The Python Language Reference, Rilis 3.11.10

7.5 Pernyataan del

del_stmt = "del" target_1list

Deletion is recursively defined very similar to the way assignment is defined. Rather than spelling it out in full details,
here are some hints.

Deletion of a target list recursively deletes each target, from left to right.

Deletion of a name removes the binding of that name from the local or global namespace, depending on whether the
name occurs in a globa 1 statement in the same code block. If the name is unbound, a NameError exception will be
raised.

Penghapusan referensi atribut, _subscriptions_ dan pemotongan diteruskan ke objek utama yang terlibat; penghapusan
suatu irisan secara umum setara dengan penetapan irisan kosong dari jenis yang benar (tetapi ini pun ditentukan oleh
objek yang diiris).

Berubah pada versi 3.2: Previously it was illegal to delete a name from the local namespace if it occurs as a free variable
in a nested block.

7.6 The return statement

return_stmt = "return" [expression_list]
return may only occur syntactically nested in a function definition, not within a nested class definition.
If an expression list is present, it is evaluated, else None is substituted.
return leaves the current function call with the expression list (or None) as return value.

Ketika ret urn melewati kontrol dari pernyataan ¢ ry dengan klausa finally, klausa finally itu dieksekusi se-
belum benar-benar meninggalkan fungsi.

In a generator function, the return statement indicates that the generator is done and will cause StopIteration
to be raised. The returned value (if any) is used as an argument to construct StopIteration and becomes the
StopIteration.value attribute.

In an asynchronous generator function, an empty ret urn statement indicates that the asynchronous generator is done and
will cause StopAsyncIteration toberaised. A non-empty return statement is a syntax error in an asynchronous
generator function.

7.7 The yield statement

yield_stmt = yield expression

A yield statement is semantically equivalent to a yield expression. The yield statement can be used to omit the paren-
theses that would otherwise be required in the equivalent yield expression statement. For example, the yield statements

yield <expr>
yield from <expr>

are equivalent to the yield expression statements

104 Bab 7. Simple statements

The Python Language Reference, Rilis 3.11.10

(yield <expr>)
(yield from <expr>)

Yield expressions and statements are only used when defining a generator function, and are only used in the body of the
generator function. Using yield in a function definition is sufficient to cause that definition to create a generator function
instead of a normal function.

For full details of yield semantics, refer to the Yield expressions section.

7.8 The raise statement

raise_stmt = "raise" [expression ["from" expression]]

If no expressions are present, raise re-raises the exception that is currently being handled, which is also known as the
active exception. If there isn’t currently an active exception, a Runt imeError exception is raised indicating that this is
an error.

Otherwise, raise evaluates the first expression as the exception object. It must be either a subclass o