Python Frequently Asked Questions
Rilis 2.7.18

Guido van Rossum
and the Python development team

Mei 20, 2020

Python Software Foundation
Email: docs@python.org

Daftar Isi

8

A
B
C
D

FAQ Umum Python
Pemrograman FAQ

Desain dan Sejarah FAQ

FAQ Pustaka dan Ekstensi
Extending/Embedding FAQ
Python on Windows FAQ
Antarmuka Pengguna Grafis FAQ
”Kenapa Python Terpasang di Komputer saya?” FAQ
Ikhtisar

Tentang dokumen-dokumen ini
Sejarah dan Lisensi

Hak Cipta

Indeks

41

55

69

77

83

87

89

99

101

117

119

BAB 1

FAQ Umum Python

1.1 Informasi Umum

1.1.1 Apa itu Python?

Python is an interpreted, interactive, object-oriented programming language. It incorporates modules, exceptions, dyna-
mic typing, very high level dynamic data types, and classes. Python combines remarkable power with very clear syntax.
It has interfaces to many system calls and libraries, as well as to various window systems, and is extensible in C or C++.
It is also usable as an extension language for applications that need a programmable interface. Finally, Python is portable:
it runs on many Unix variants, on the Mac, and on PCs under MS-DOS, Windows, Windows NT, and OS/2.

Untuk mengetahui lebih lanjut, mulai dengan tutorial-index. Panduan Pemula Python tautan ke tutorial pengantar dan
sumber lain untuk belajar Python.

1.1.2 Apa itu Python Software Foundation?

The Python Software Foundation adalah organisasi nirlaba independen yang memegang hak cipta pada Python versi 2.1
dan yang lebih baru. Misi PSF adalah untuk memajukan teknologi open source yang terkait dengan bahasa pemrograman
Python dan untuk mempublikasikan penggunaan Python. Halaman utama PSF ada di https://www.python.org/psf/.

Sumbangan untuk PSF bebas pajak di AS. Jika Anda menggunakan Python dan merasa terbantu, silakan berkontribusi
melalui halaman donasi PSF.

https://wiki.python.org/moin/BeginnersGuide
https://www.python.org/psf/
https://www.python.org/psf/donations/

Python Frequently Asked Questions, Rilis 2.7.18

1.1.3 Apakah ada batasan hak cipta atas penggunaan Python?

Anda dapat melakukan apa pun yang Anda inginkan dengan sumbernya, selama Anda meninggalkan hak cipta dan me-
nampilkan hak cipta itu dalam dokumentasi apa pun tentang Python yang Anda hasilkan. Jika Anda menghormati aturan
hak cipta, boleh saja menggunakan Python untuk penggunaan komersial, menjual salinan Python dalam bentuk sumber
atau biner (dimodifikasi atau tidak dimodifikasi), atau untuk menjual produk yang memasukkan Python dalam beberapa
bentuk. Kami masih ingin tahu tentang semua penggunaan komersial Python, tentu saja.

Lihat halaman lisensi PSF untuk tahu lebih lanjut penjelasan dan tautan ke teks lisensi seluruhnya.

Logo Python terdaftar merek dagang, dan dalam kasus tertentu diperlukan izin untuk menggunakannya. Lihat Kebijakan
Penggunaan Merek Dagang untuk info lebih lanjut.

1.1.4 Pada mulanya kenapa Python dibuat?

Berikut adalah ringkasan singkat dari sejak awal dimulai, ditulis oleh Guido van Rossum:

Saya memiliki pengalaman luas dalam mengimplementasikan bahasa yang ditafsirkan inferpreted dalam ke-
lompok ABC di CWI, dan dari bekerja dengan kelompok ini saya telah belajar banyak tentang desain bahasa.
Ini adalah asal dari banyak fitur Python, termasuk penggunaan indentasi untuk pengelompokan pernyataan
dan penyertaan tipe data tingkat-sangat-tinggi (walaupun detailnya semua berbeda dalam Python).

Saya memiliki sejumlah keluhan tentang bahasa ABC, tetapi juga menyukai banyak fitur-fiturnya. Tidak
mungkin untuk memperluas bahasa ABC (atau implementasinya) untuk memperbaiki keluhan saya -- pa-
da kenyataannya kurangnya ekstensibilitas adalah salah satu masalah terbesarnya. Saya punya pengalam-
an menggunakan Modula-2+ dan berbicara dengan desainer Modula-3 dan membaca laporan Modula-3.
Modula-3 adalah asal dari sintaks dan semantik yang digunakan untuk pengecualian, dan beberapa fitur
Python lainnya.

Saya bekerja di grup sistem operasi terdistribusi Amoeba di CWI. Kami membutuhkan cara yang lebih ba-
ik untuk melakukan administrasi sistem daripada dengan menulis baik program C atau skrip Bourne shell,
karena Amuba memiliki antarmuka sistem panggilan sendiri yang tidak mudah diakses dari Bourne she-
ll. Pengalaman saya dengan penanganan kesalahan di Amuba membuat saya sangat sadar akan pentingnya
pengecualian sebagai fitur bahasa pemrograman.

Terpikir oleh saya bahwa bahasa scripting dengan sintaksis seperti ABC tetapi dengan akses ke panggilan
sistem Amuba akan memenuhi kebutuhan. Saya menyadari bahwa bodoh untuk menulis bahasa khusus
Amuba, jadi saya memutuskan bahwa saya membutuhkan bahasa yang pada umumnya dapat diperluas.

Selama liburan Natal 1989, saya punya banyak waktu, jadi saya memutuskan untuk mencobanya. Selama
tahun berikutnya, sementara sebagian besar masih mengerjakannya di waktu saya sendiri, Python digunakan
dalam proyek Amoeba dengan keberhasilan yang semakin meningkat, dan umpan balik dari kolega membuat
saya menambahkan banyak perbaikan awal.

Pada Februari 1991, setelah setahun pengembangan, saya memutuskan untuk mengirim ke USENET. Sisa-
nya ada di berkas“Misc/HISTORY*.

2 Bab 1. FAQ Umum Python

https://www.python.org/psf/license/
https://www.python.org/psf/trademarks/
https://www.python.org/psf/trademarks/

Python Frequently Asked Questions, Rilis 2.7.18

1.1.5 Apa gunanya Python?

Python adalah bahasa pemrograman umum tingkat atas yang dapat diterapkan untuk berbagai jenis permasalahan.

Bahasa ini dilengkapi dengan pustaka standar berukuran besar yang mencakup bidang-bidang seperti pemrosesan string
(ekspresi reguler, Unicode, penghitungan perbedaan antara file), protokol Internet (HTTP, FTP, SMTP, XML-RPC,
POP, IMAP, pemrograman CGI), rekayasa perangkat lunak (pengujian unit, pencatatan, pembuatan profil, penguraian
kode Python), dan antarmuka sistem operasi (panggilan sistem, sistem berkas, soket TCP/IP). Lihatlah daftar isi untuk
library-index untuk mendapatkan gambaran tentang apa yang tersedia. Berbagai ekstensi pihak ketiga juga tersedia.
Periksa the Python Package Index untuk menemukan paket yang menarik bagi Anda.

1.1.6 Bagaimana cara kerja skema penomoran versi Python?

Versi python diberi nomor A.B.C atau A.B. A adalah nomor versi utama -- hanya bertambah untuk perubahan besar dalam
bahasa. B adalah nomor versi minor, ditambahkan untuk mengurangi perubahan yang menggoncang dunia. C adalah level
mikro -- ia bertambah untuk setiap rilis bugfix. Lihat PEP 6 untuk informasi lebih lanjut tentang rilis perbaikan bug.

Tidak semua rilis adalah rilis perbaikan bug. Menjelang rilis besar baru, serangkaian rilis pengembangan dibuat, di-
lambangkan sebagai alpha, beta, atau kandidat rilis. Alpha adalah rilis awal di mana antarmuka belum difinalisasi; itu
tidak terduga untuk melihat perubahan antarmuka antara dua rilis alpha. Beta lebih stabil, menjaga antarmuka yang ada
tetapi mungkin menambahkan modul baru, dan rilis kandidat yang dibekukan, tidak membuat perubahan kecuali jika
diperlukan untuk memperbaiki bug kritis.

Versi kandidat alfa, beta, dan rilis memiliki akhiran tambahan. Akhiran untuk versi alfa adalah "aN” untuk sejumlah N
kecil, akhiran untuk versi beta adalah ”bN” untuk sejumlah kecil N, dan akhiran untuk versi kandidat rilis adalah "cN”
untuk sejumlah kecil N. Dengan kata lain, semua versi berlabel 2.0aN mendahului versi berlabel 2.0bN, yang mendahului
versi berlabel 2.0cN, dan yang mendahului those 2.0.

Anda juga dapat menemukan nomor versi dengan akhiran ”+”, mis. 72.2+”. Ini adalah versi yang belum dirilis, diba-
ngun langsung dari repositori pengembangan CPython. Dalam praktiknya, setelah rilis minor final dibuat, versi tersebut
bertambah menjadi versi minor berikutnya, yang menjadi versi "a0”, mis. 72.4a0”.

Lihat juga dokumentasi untuk sys.version, sys.hexversion, dan sys.version_info.

1.1.7 Bagaimana saya mendapatkan salinan kode sumber Python?

Distribusi kode sumber Python terbaru selalu bisa didapatkan dari python.org, di https://www.python.org/downloads/.
Kode sumber pengembangan terbaru bisa didapatkan di https://github.com/python/cpython/.

Distribusi sumber adalah file tar gzip yang berisi sumber C lengkap, dokumentasi berformat Sphinx, modul pustaka
Python, program contoh, dan beberapa perangkat lunak berguna yang dapat didistribusikan secara bebas. Sumber akan
mengkompilasi dan langsung dapat digunakan pada sebagian besar platform UNIX.

Consult the Getting Started section of the Python Developer’s Guide for more information on getting the source code and
compiling it.

1.1. Informasi Umum 3

https://pypi.org
https://www.python.org/dev/peps/pep-0006
https://www.python.org/downloads/
https://github.com/python/cpython/
https://docs.python.org/devguide/setup.html

Python Frequently Asked Questions, Rilis 2.7.18

1.1.8 Bagaimana saya mendapatkan dokumentasi tentang Python?
Dokumentasi standar untuk Python versi stabil saat ini tersedia di https://docs.python.org/3/. PDF, teks biasa, dan versi
HTML yang dapat diunduh juga tersedia di https://docs.python.org/3/download.html.

Dokumentasi ditulis dalam reStructuredText dan diproses dengan Alat dokumentasi Sphinx. Sumber reStructuredText
untuk dokumentasi merupakan bagian dari distribusi kode sumber Python.

1.1.9 Saya belum pernah memrogram sebelumnya. Apakah ada tutorial tentang
Python?
Ada sejumlah tutorial dan buku yang tersedia. Dokumentasi standar menyertakan tutorial-index.

Lihat Panduan Memulai untuk menemukan informasi tentang menjadi pemrogram Python pemula, termasuk daftar tu-
torial.

1.1.10 Apakah ada newsgroup atau milis yang ditujukan untuk Python?

Ada newsgroup, comp. lang.python, dan milis, python-list. Newsgroup dan milis saling berhubungan satu sama
lain -- jika Anda dapat membaca berita, tidak perlu berlangganan ke milis. comp. I1ang. python memiliki lalu lintas
tinggi, menerima ratusan posting setiap hari, dan pembaca Usenet seringkali lebih mampu mengatasi volume ini.

Pengumuman tentang rilis perangkat lunak dan acara baru dapat ditemukan di comp.lang.python.announce, daftar yang
moderasi dengan lalu lintas rendah dimana menerima sekitar lima posting per hari. Ini tersedia sebagai the python-
announce mailing list.

Info lebih lanjut tentang milis dan newsgroup lainnya dapat ditemukan di https://www.python.org/community/lists/.

1.1.11 Bagaimana saya mendapatkan versi uji beta dari Python?

Rilis alfa dan beta tersedia dari https://www.python.org/downloads/. Semua rilis diumumkan melalui newsgroup
comp.lang.python dan comp.lang.python.announce dan di halaman utama Python di https://www.python.org/; tersedia
juga umpan RSS dari berita.

You can also access the development version of Python through Git. See The Python Developer’s Guide for details.

1.1.12 Bagaimana saya mengirimkan laporan bug dan patch untuk Python?

Untuk melaporkan bug atau mengirimkan patch, silakan gunakan instalasi Roundup di https://bugs.python.org/.

Anda harus memiliki akun Roundup untuk melaporkan bug; ini memungkinkan kami untuk menghubungi Anda jika
kami memiliki pertanyaan tindak lanjut. Ini juga akan memungkinkan Roundup untuk mengirimi Anda pembaruan saat
kami bertindak atas bug Anda. Jika sebelumnya Anda menggunakan SourceForge untuk melaporkan bug ke Python,
Anda dapat memperoleh kata sandi Roundup Anda melalui password reset procedure dari Roundup.

For more information on how Python is developed, consult the Python Developer’s Guide.

4 Bab 1. FAQ Umum Python

https://docs.python.org/3/
https://docs.python.org/3/download.html
http://sphinx-doc.org/
https://wiki.python.org/moin/BeginnersGuide
https://mail.python.org/mailman/listinfo/python-list
https://mail.python.org/mailman/listinfo/python-announce-list
https://mail.python.org/mailman/listinfo/python-announce-list
https://www.python.org/community/lists/
https://www.python.org/downloads/
https://www.python.org/
https://docs.python.org/devguide/
https://bugs.python.org/
https://bugs.python.org/user?@template=forgotten
https://docs.python.org/devguide/

Python Frequently Asked Questions, Rilis 2.7.18

1.1.13 Apakah ada publikasi artikel tentang Python yang bisa saya gunakan seba-
gai referensi?

Mungkin sebaiknya mengutip buku favorit Anda tentang Python.
Artikel pertama tentang Python ditulis tahun 1991 dan sekarang sudah cukup usang.

Guido van Rossum dan Jelke de Boer, "Interactively Testing Remote Servers Using the Python Programming
Language”, CWI Quarterly, Volume 4, Issue 4 (December 1991), Amsterdam, pp 283--303.

1.1.14 Apakah ada buku-buku tentang Python?

Ya, ada banyak, dan banyak juga yang sedang diterbitkan. Untuk daftarnya lihat wiki python.org di https://wiki.python.
org/moin/PythonBooks .

Anda juga dapat mencari "Python” di toko buku online dan menyaring referensi Monty Python; atau mungkin cari
”Python” dan “bahasa”.

1.1.15 Dimana di dunia lokasi www.python.org?

Infrastruktur proyek Python terletak di seluruh dunia dan dikelola oleh Tim Infrastruktur Python. Detail di sini.

1.1.16 Kenapa disebut Python?

Ketika mulai mengimplementasikan Python, Guido van Rossum juga membaca skrip yang diterbitkan dari “’Sirkus
Terbang Monty Python ”’<https://en.wikipedia.org/wiki/Monty_Python>‘__, sebuah serial komedi BBC dari tahun
1970-an. Van Rossum berpikir dia membutuhkan nama yang pendek, unik, dan sedikit misterius, jadi dia memutuskan
untuk memanggil bahasa Python.

1.1.17 Apakah saya harus menyukai "Monty Python’s Flying Circus”?

Tidak, tapi itu membantu. :)

1.2 Python di dunia nyata

1.2.1 Seberapa stabil Python?

Sangat stabil. Rilis baru dan stabil telah keluar sekitar setiap 6 sampai 18 bulan sejak 1991, dan ini sepertinya akan
berlanjut. Saat ini biasanya sekitar 18 bulan jarak antara rilis utama.

Pengembang mengeluarkan rilis ”bugfix” dari versi yang lebih lama, sehingga stabilitas rilis yang ada secara bertahap
membaik. Rilis perbaikan bug, ditunjukkan oleh komponen ketiga dari nomor versi (mis. 3.5.3, 3.6.2), dikelola untuk
stabilitas; hanya perbaikan untuk masalah yang diketahui yang termasuk dalam rilis perbaikan bug, dan dijamin antarmuka
akan tetap sama di sepanjang serangkaian rilis perbaikan bug.

Rilis stabil terbaru selalu dapat ditemukan di halaman pengunduhan Python. Ada dua versi Python yang siap-produksi: 2.x
dan 3.x. Versi yang direkomendasikan adalah 3.x, yang didukung oleh pustaka yang paling banyak digunakan. Meskipun
2.x masih banyak digunakan, itu tidak akan dipertahankan setelah 1 Januari 2020.

1.2. Python di dunia nyata 5

https://wiki.python.org/moin/PythonBooks
https://wiki.python.org/moin/PythonBooks
http://infra.psf.io
https://www.python.org/downloads/
https://www.python.org/dev/peps/pep-0373/

Python Frequently Asked Questions, Rilis 2.7.18

1.2.2 Berapa banyak orang menggunakan Python?

Mungkin ada puluhan ribu pengguna, meski sulit untuk menghitung secara tepat.

Python tersedia untuk diunduh gratis, jadi tidak ada angka penjualan, dan itu tersedia dari banyak situs yang berbeda dan
dikemas dengan banyak distribusi Linux, jadi statistik unduhan juga tidak menceritakan keseluruhan cerita.

newsgroup comp.lang.python sangat aktif, tetapi tidak semua pengguna Python mengirim ke grup atau bahkan memba-
canya.

1.2.3 Apakah ada proyek-proyek penting yang dibuat dengan Python?

Lihat https://www.python.org/about/success untuk daftar proyek yang menggunakan Python. Konsultasi proses untuk
konferensi Python masa lalu akan mengungkapkan kontribusi dari banyak perusahaan dan organisasi yang berbeda.

Profil terkenal proyek Python termasuk manajer milis Mailman dan server aplikasi Zope. Beberapa distribusi Linux,
terutama Red Hat, telah menulis sebagian atau semua installer dan perangkat lunak sistem administrasi mereka dengan
Python. Perusahaan yang menggunakan Python secara internal termasuk Google, Yahoo, dan Lucasfilm Ltd.

1.2.4 Apa pengembangan baru yang diharapkan dari Python di masa depan?

Lihat https://www.python.org/dev/peps/ untuk Python Enchancement Proposal (PEPs). PEP adalah dokumen desain
yang menggambarkan fitur baru yang disarankan untuk Python, memberikan spesifikasi teknis yang ringkas dan alasannya.
Cari PEP berjudul ”Jadwal Rilis Python X.Y”, di mana X.Y adalah versi yang belum dirilis secara publik.

Pengembangan baru didiskusikan di milis python-dev.

1.2.5 Apakah beralasan untuk mengusulkan perubahan yang tidak kompatibel ter-
hadap Python?

Secara umum, tidak. Sudah ada jutaan baris kode Python di seluruh dunia, sehingga setiap perubahan dalam bahasa yang
membatalkan lebih dari sebagian kecil dari program yang ada harus dihapuskan. Bahkan jika Anda dapat menyediakan
program konversi, masih ada masalah memperbarui semua dokumentasi; banyak buku telah ditulis tentang Python, dan
kami tidak ingin membatalkan semuanya dengan satu goresan.

Diperlukan jalur peningkatan bertahap jika fitur harus diubah. PEP 5 menjelaskan prosedur yang diikuti untuk mem-
perkenalkan perubahan yang tidak kompatibel ke belakang sambil meminimalkan gangguan bagi pengguna.

1.2.6 Apakah Python bahasa yang baik untuk pemrogram pemula?

Ya.

Masih umum untuk memulai siswa belajar dengan bahasa prosedural dan tipe statis seperti Pascal, C, atau subset dari
C++ atau Java. Siswa mungkin lebih baik dididik dengan mempelajari Python sebagai bahasa pertama mereka. Python
memiliki sintaksis yang sangat sederhana dan konsisten serta pustaka standar yang besar dan, yang paling penting, meng-
gunakan Python dalam kursus pemrograman awal memungkinkan siswa berkonsentrasi pada keterampilan penting pem-
rograman seperti dekomposisi masalah dan desain tipe data. Dengan Python, siswa dapat dengan cepat diperkenalkan
dengan konsep-konsep dasar seperti loop dan prosedur. Mereka bahkan dapat bekerja dengan objek yang ditentukan
pengguna dalam kursus pertama mereka.

Untuk siswa yang belum pernah memprogram sebelumnya, menggunakan bahasa yang memiliki tipe statis tampaknya
tidak wajar atau tidak biasa. Ini menyajikan kompleksitas tambahan bahwa siswa harus menguasai dan memperlambat
laju kursus. Para siswa berusaha belajar berpikir seperti komputer, menguraikan masalah, mendesain antarmuka yang

6 Bab 1. FAQ Umum Python

https://www.python.org/about/success
https://www.python.org/community/workshops/
http://www.list.org
http://www.zope.org
https://www.redhat.com
https://www.python.org/dev/peps/
https://mail.python.org/mailman/listinfo/python-dev/
https://www.python.org/dev/peps/pep-0005

Python Frequently Asked Questions, Rilis 2.7.18

konsisten, dan merangkum data. Sementara belajar untuk menggunakan bahasa yang memiliki tipe statis itu penting dalam
jangka panjang, itu tidak selalu merupakan topik terbaik untuk dibahas dalam kursus pemrograman pertama siswa.

Banyak aspek lain dari Python menjadikannya bahasa pertama yang baik. Seperti Java, Python memiliki pustaka standar
yang besar sehingga siswa dapat ditugaskan proyek pemrograman sangat awal dalam kursus yang do sesuatu. Tugas tidak
terbatas pada kalkulator empat fungsi standar dan periksa program keseimbangan. Dengan menggunakan perpustakaan
standar, siswa dapat memperoleh kepuasan bekerja pada aplikasi dunia nyata saat mereka mempelajari dasar-dasar pem-
rograman. Menggunakan perpustakaan standar juga mengajarkan siswa tentang penggunaan kembali reuse kode. Modul
pihak ketiga seperti PyGame juga membantu dalam memperluas jangkauan siswa.

interpreter interaktif Python memungkinkan siswa untuk menguji fitur bahasa saat mereka sedang melakukan pemro-
graman. Mereka dapat menjaga jendela dengan interpreter berjalan saat mereka memasukkan sumber program mereka
di jendela lain. Jika mereka tidak dapat mengingat metode untuk /isz, mereka dapat melakukan sesuatu seperti ini:

>>> L = []

>>> dir (L)

['_add__"', '__class__ ', '__contains__ ', '__delattr__ ', '__delitem__"',
' __delslice__ ', '__doc__"', '_eq_ ', '__format__', '__ge ',
'__getattribute__ ', '__ _getitem__', '_ _getslice__', '__gt_ ',

' _hash_', '__iadd__', '_imul__ ', '__dinit_ ', '__iter_ ', '__le_ "',
' len_ ', '__1t_ ', '_mul__"', '_ ne ', ' _new__', '_ _reduce__',

' __reduce_ex__ ', '_repr__', '__reversed__', '__rmul__"',

' _setattr_ ', '_ setitem__', '_ setslice_ ', '_ _sizeof_ ', '__str_ ',
'__subclasshook__"', 'append', 'count', 'extend', 'index', 'insert',

'pop', 'remove', 'reverse', 'sort']
>>> help (L.append)
Help on built-in function append:

append (...)
L.append(object) —-- append object to end

>>> L.append(1)
>>> L

[1]

With the interpreter, documentation is never far from the student as he’s programming.

Ada juga IDE yang bagus untuk Python. IDLE adalah IDE lintas-platform untuk Python yang ditulis dalam Python
menggunakan Tkinter. PythonWin adalah IDE khusus Windows. Pengguna Emacs akan senang mengetahui bahwa ada
mode Python yang sangat bagus untuk Emacs. Semua lingkungan pemrograman ini menyediakan penyorotan sintaksis,
indentasi otomatis, dan akses ke interpreter interaktif saat pengkodean. Konsultasikan wiki Python untuk daftar lengkap
lingkungan penyuntingan Python.

Jika ingin mendiskusikan penggunaan Python di bidang pendidikan, Anda mungkin tertarik untuk bergabung di milis
edu-sig.

1.3 Upgrading Python

1.3.1 What is this bsddb185 module my application keeps complaining about?

Starting with Python2.3, the distribution includes the PyBSDDB package <htip://pybsddb.sf.net/> as a replacement for
the old bsddb module. It includes functions which provide backward compatibility at the API level, but requires a newer
version of the underlying Berkeley DB library. Files created with the older bsddb module can’t be opened directly using
the new module.

1.3. Upgrading Python 7

https://wiki.python.org/moin/PythonEditors
https://www.python.org/community/sigs/current/edu-sig
https://www.python.org/community/sigs/current/edu-sig
http://www.sleepycat.com

Python Frequently Asked Questions, Rilis 2.7.18

Using your old version of Python and a pair of scripts which are part of Python 2.3 (db2pickle.py and pickle2db.py, in
the Tools/scripts directory) you can convert your old database files to the new format. Using your old Python version, run

the db2pickle.py script to convert it to a pickle, e.g.:

’python2.2 <pathto>/db2pickley.py database.db database.pck ‘

Rename your database file:

’mv database.db olddatabase.db ‘

Now convert the pickle file to a new format database:

’python <pathto>/pickle2db.py database.db database.pck ‘

The precise commands you use will vary depending on the particulars of your installation. For full details about operation
of these two scripts check the doc string at the start of each one.

8 Bab 1. FAQ Umum Python

BAB 2

Pemrograman FAQ

2.1 Pertanyaan Umum

2.1.1 Isthere a source code level debugger with breakpoints, single-stepping, etc.?

Ya.

The pdb module is a simple but adequate console-mode debugger for Python. It is part of the standard Python library,
and is documented in the Library Reference Manual. You can also write your own debugger by using
the code for pdb as an example.

The IDLE interactive development environment, which is part of the standard Python distribution (normally available as
Tools/scripts/idle), includes a graphical debugger.

PythonWin is a Python IDE that includes a GUI debugger based on pdb. The Pythonwin debugger colors breakpoints
and has quite a few cool features such as debugging non-Pythonwin programs. Pythonwin is available as part of the
Python for Windows Extensions project and as a part of the ActivePython distribution (see https://www.activestate.com/
activepython).

Boa Constructor is an IDE and GUI builder that uses wxWidgets. It offers visual frame creation and manipulation,
an object inspector, many views on the source like object browsers, inheritance hierarchies, doc string generated html
documentation, an advanced debugger, integrated help, and Zope support.

Eric is an IDE built on PyQt and the Scintilla editing component.

Pydb is a version of the standard Python debugger pdb, modified for use with DDD (Data Display Debugger), a popular
graphical debugger front end. Pydb can be found at http://bashdb.sourceforge.net/pydb/ and DDD can be found at
https://www.gnu.org/software/ddd.

There are a number of commercial Python IDEs that include graphical debuggers. They include:
e Wing IDE (https://wingware.com/)
¢ Komodo IDE (https://komodoide.com/)

e PyCharm (https://www.jetbrains.com/pycharm/)

https://sourceforge.net/projects/pywin32/
https://www.activestate.com/activepython
https://www.activestate.com/activepython
http://boa-constructor.sourceforge.net/
http://eric-ide.python-projects.org/
http://bashdb.sourceforge.net/pydb/
https://www.gnu.org/software/ddd
https://wingware.com/
https://komodoide.com/
https://www.jetbrains.com/pycharm/

Python Frequently Asked Questions, Rilis 2.7.18

2.1.2 Is there a tool to help find bugs or perform static analysis?

Ya.

PyChecker is a static analysis tool that finds bugs in Python source code and warns about code complexity and style. You
can get PyChecker from http://pychecker.sourceforge.net/.

Pylint is another tool that checks if a module satisfies a coding standard, and also makes it possible to write plug-ins to add
a custom feature. In addition to the bug checking that PyChecker performs, Pylint offers some additional features such
as checking line length, whether variable names are well-formed according to your coding standard, whether declared
interfaces are fully implemented, and more. https://docs.pylint.org/ provides a full list of Pylint’s features.

2.1.3 How can | create a stand-alone binary from a Python script?

You don’t need the ability to compile Python to C code if all you want is a stand-alone program that users can download
and run without having to install the Python distribution first. There are a number of tools that determine the set of
modules required by a program and bind these modules together with a Python binary to produce a single executable.

One is to use the freeze tool, which is included in the Python source tree as Tools/freeze. It converts Python byte
code to C arrays; a C compiler you can embed all your modules into a new program, which is then linked with the standard
Python modules.

It works by scanning your source recursively for import statements (in both forms) and looking for the modules in the
standard Python path as well as in the source directory (for built-in modules). It then turns the bytecode for modules
written in Python into C code (array initializers that can be turned into code objects using the marshal module) and
creates a custom-made config file that only contains those built-in modules which are actually used in the program. It then
compiles the generated C code and links it with the rest of the Python interpreter to form a self-contained binary which
acts exactly like your script.

Obviously, freeze requires a C compiler. There are several other utilities which don’t. One is Thomas Heller’s py2exe
(Windows only) at

http://www.py2exe.org/

Another tool is Anthony Tuininga’s cx_Freeze.

2.1.4 Are there coding standards or a style guide for Python programs?

Yes. The coding style required for standard library modules is documented as PEP 8.

2.1.5 My program is too slow. How do | speed it up?

That’s a tough one, in general. There are many tricks to speed up Python code; consider rewriting parts in C as a last
resort.

In some cases it’s possible to automatically translate Python to C or x86 assembly language, meaning that you don’t have
to modify your code to gain increased speed.

Pyrex can compile a slightly modified version of Python code into a C extension, and can be used on many different
platforms.

Psyco is a just-in-time compiler that translates Python code into x86 assembly language. If you can use it, Psyco can
provide dramatic speedups for critical functions.

The rest of this answer will discuss various tricks for squeezing a bit more speed out of Python code. Never apply any
optimization tricks unless you know you need them, after profiling has indicated that a particular function is the heavily
executed hot spot in the code. Optimizations almost always make the code less clear, and you shouldn’t pay the costs of

10 Bab 2. Pemrograman FAQ

http://pychecker.sourceforge.net/
https://www.pylint.org/
https://docs.pylint.org/
http://www.py2exe.org/
http://cx-freeze.sourceforge.net/
https://www.python.org/dev/peps/pep-0008
http://www.cosc.canterbury.ac.nz/~greg/python/Pyrex/
http://psyco.sourceforge.net

Python Frequently Asked Questions, Rilis 2.7.18

reduced clarity (increased development time, greater likelihood of bugs) unless the resulting performance benefit is worth
it.

There is a page on the wiki devoted to performance tips.
Guido van Rossum has written up an anecdote related to optimization at https://www.python.org/doc/essays/list2str.

One thing to notice is that function and (especially) method calls are rather expensive; if you have designed a purely OO
interface with lots of tiny functions that don’t do much more than get or set an instance variable or call another method,
you might consider using a more direct way such as directly accessing instance variables. Also see the standard module
profile which makes it possible to find out where your program is spending most of its time (if you have some patience
-- the profiling itself can slow your program down by an order of magnitude).

Remember that many standard optimization heuristics you may know from other programming experience may well apply
to Python. For example it may be faster to send output to output devices using larger writes rather than smaller ones in
order to reduce the overhead of kernel system calls. Thus CGI scripts that write all output in “one shot” may be faster
than those that write lots of small pieces of output.

Also, be sure to use Python’s core features where appropriate. For example, slicing allows programs to chop up lists and
other sequence objects in a single tick of the interpreter’s mainloop using highly optimized C implementations. Thus to
get the same effect as:

L2 = []
for i in range(3):
L2.append (L1[i])

it is much shorter and far faster to use

L2 = list(L1[:31) # "list" is redundant if L1 is a 1list.

Note that the functionally-oriented built-in functions such as map (), zip (), and friends can be a convenient accelerator
for loops that perform a single task. For example to pair the elements of two lists together:

>>> zip([1, 2, 31, [4, 5, 6])
((1, 4), (2, 5), (3, 6)]

or to compute a number of sines:

>>> map (math.sin, (1, 2, 3, 4))
[0.841470984808, 0.909297426826, 0.14112000806, —-0.756802495308]

The operation completes very quickly in such cases.

Other examples include the join () and split () methods of string objects. For example if sl..s7 are lar-
ge (10K+) strings then "".join([sl,s2,s3,s4,s5,s6,s7]) may be far faster than the more obvious
sl+s2+s3+s4+s5+s6+s7, since the "summation” will compute many subexpressions, whereas join () does all
the copying in one pass. For manipulating strings, use the replace () and the format () methods on string objects.
Use regular expressions only when you're not dealing with constant string patterns. You may still use the old % operations

[

string % tupleand string % dictionary.

Be sure to use the 1ist.sort () built-in method to do sorting, and see the sorting mini-HOWTO for examples of
moderately advanced usage. 1ist .sort () beats other techniques for sorting in all but the most extreme circumstances.

Another common trick is to push loops into functions or methods.” For example suppose you have a program that runs
slowly and you use the profiler to determine that a Python function £ £ () is being called lots of times. If you notice that
ff():

def ff(x):
do something with x computing result...
return result

2.1. Pertanyaan Umum 11

https://wiki.python.org/moin/PythonSpeed/PerformanceTips
https://www.python.org/doc/essays/list2str
https://wiki.python.org/moin/HowTo/Sorting

Python Frequently Asked Questions, Rilis 2.7.18

tends to be called in loops like:

list = map(ff, oldlist)

or:

for x in sequence:
value = ff (x)
do something with value...

then you can often eliminate function call overhead by rewriting £ £ () to:

def ffseqg(seq):
resultseq = []
for x in seq:
do something with x computing result...
resultseq.append(result)
return resultseq

and rewrite the two examples to 1ist = ffseqg(oldlist) and to:

for value in ffseqg(sequence):
do something with value...

Single calls to £ (x) translate to ffseq ([x]) [0] with little penalty. Of course this technique is not always approp-
riate and there are other variants which you can figure out.

You can gain some performance by explicitly storing the results of a function or method lookup into a local variable. A
loop like:

for key in token:
dict [key] = dict.get (key, 0) + 1

resolves dict . get every iteration. If the method isn’t going to change, a slightly faster implementation is:

4

dict_get = dict.get # look up the method once
for key in token:
dict [key] = dict_get (key, 0) + 1

Default arguments can be used to determine values once, at compile time instead of at run time. This can only be done
for functions or objects which will not be changed during program execution, such as replacing

def degree_sin(deqg) :
return math.sin(deg * math.pi / 180.0)

with

def degree_sin(deg, factor=math.pi/180.0, sin=math.sin):
return sin(deg * factor)

Because this trick uses default arguments for terms which should not be changed, it should only be used when you are not
concerned with presenting a possibly confusing API to your users.

12 Bab 2. Pemrograman FAQ

Python Frequently Asked Questions, Rilis 2.7.18

2.2 Inti Bahasa

2.2.1 Why am | getting an UnboundLocalError when the variable has a value?

It can be a surprise to get the UnboundLocalError in previously working code when it is modified by adding an assignment
statement somewhere in the body of a function.

Kode ini:

>>> x = 10

>>> def bar():
print x

>>> bar ()

10

dapat beroperasi, tapi kode ini:

>>> x = 10

>>> def fool():
print x
x += 1

memunculkan sebuah UnboundLocalError:

>>> foo ()
Traceback (most recent call last):

UnboundLocalError: local variable 'x' referenced before assignment

This is because when you make an assignment to a variable in a scope, that variable becomes local to that scope and
shadows any similarly named variable in the outer scope. Since the last statement in foo assigns a new value to x, the
compiler recognizes it as a local variable. Consequently when the earlier print x attempts to print the uninitialized
local variable and an error results.

In the example above you can access the outer scope variable by declaring it global:

>>> x = 10

>>> def foobar():
global x
print x

ce x += 1

>>> foobar ()

10

This explicit declaration is required in order to remind you that (unlike the superficially analogous situation with class and
instance variables) you are actually modifying the value of the variable in the outer scope:

>>> print x
11

2.2. Inti Bahasa 13

Python Frequently Asked Questions, Rilis 2.7.18

2.2.2 What are the rules for local and global variables in Python?

In Python, variables that are only referenced inside a function are implicitly global. If a variable is assigned a value
anywhere within the function’s body, it’s assumed to be a local unless explicitly declared as global.

Though a bit surprising at first, a moment’s consideration explains this. On one hand, requiring global for assigned
variables provides a bar against unintended side-effects. On the other hand, if global was required for all global
references, you'd be using global all the time. You'd have to declare as global every reference to a built-in function
or to a component of an imported module. This clutter would defeat the usefulness of the global declaration for
identifying side-effects.

2.2.3 Why do lambdas defined in a loop with different values all return the same
result?

Assume you use a for loop to define a few different lambdas (or even plain functions), e.g.:

>>> squares = []
>>> for x in range(5):
squares.append (lambda: x**2)

This gives you a list that contains 5 lambdas that calculate x* *2. You might expect that, when called, they would return,
respectively, 0, 1, 4, 9, and 1 6. However, when you actually try you will see that they all return 1 6:

>>> squares|[2] ()
16
>>> squares[4] ()
16

This happens because x is not local to the lambdas, but is defined in the outer scope, and it is accessed when the lambda
is called --- not when it is defined. At the end of the loop, the value of x is 4, so all the functions now return 4**2, i.e.
16. You can also verify this by changing the value of x and see how the results of the lambdas change:

>>> x = 8
>>> squares[2] ()
64

In order to avoid this, you need to save the values in variables local to the lambdas, so that they don’t rely on the value of
the global x:

>>> squares = []
>>> for x in range(5):
squares.append (lambda n=x: n**2)

Here, n=x creates a new variable n local to the lambda and computed when the lambda is defined so that it has the same
value that x had at that point in the loop. This means that the value of n will be 0 in the first lambda, 1 in the second, 2
in the third, and so on. Therefore each lambda will now return the correct result:

>>> squares|[2] ()
4

>>> squares[4] ()
16

Note that this behaviour is not peculiar to lambdas, but applies to regular functions too.

14 Bab 2. Pemrograman FAQ

Python Frequently Asked Questions, Rilis 2.7.18

2.2.4 How do | share global variables across modules?

The canonical way to share information across modules within a single program is to create a special module (often called
config or cfg). Just import the config module in all modules of your application; the module then becomes available as
a global name. Because there is only one instance of each module, any changes made to the module object get reflected
everywhere. For example:

config.py:

x =0 # Default value of the 'x' configuration setting
mod.py:

import config

config.x = 1

main.py:

import config
import mod
print config.x

Note that using a module is also the basis for implementing the Singleton design pattern, for the same reason.

2.2.5 What are the "best practices” for using import in a module?

In general, don’t use from modulename import *. Doing so clutters the importer’s namespace, and makes it
much harder for linters to detect undefined names.

Import modules at the top of a file. Doing so makes it clear what other modules your code requires and avoids questions
of whether the module name is in scope. Using one import per line makes it easy to add and delete module imports, but
using multiple imports per line uses less screen space.

It’s good practice if you import modules in the following order:
1. standard library modules -- e.g. sys, os, getopt, re

2. third-party library modules (anything installed in Python’s site-packages directory) -- e.g. mx.DateTime, ZODB,
PIL.Image, etc.

3. modul dikembangkan secara lokal

Only use explicit relative package imports. If you're writing code that’s in the package . sub.ml module and want
to import package . sub.m2, do not just write import m2, even though it’s legal. Write from package.sub
import m2or from . import m2 instead.

It is sometimes necessary to move imports to a function or class to avoid problems with circular imports. Gordon McMillan
says:

Circular imports are fine where both modules use the "import <module>” form of import. They fail when
the 2nd module wants to grab a name out of the first ("from module import name”) and the import is at the
top level. That’s because names in the 1st are not yet available, because the first module is busy importing
the 2nd.

In this case, if the second module is only used in one function, then the import can easily be moved into that function. By
the time the import is called, the first module will have finished initializing, and the second module can do its import.

It may also be necessary to move imports out of the top level of code if some of the modules are platform-specific. In
that case, it may not even be possible to import all of the modules at the top of the file. In this case, importing the correct
modules in the corresponding platform-specific code is a good option.

2.2. Inti Bahasa 15

Python Frequently Asked Questions, Rilis 2.7.18

Only move imports into a local scope, such as inside a function definition, if it’s necessary to solve a problem such as
avoiding a circular import or are trying to reduce the initialization time of a module. This technique is especially helpful
if many of the imports are unnecessary depending on how the program executes. You may also want to move imports into
a function if the modules are only ever used in that function. Note that loading a module the first time may be expensive
because of the one time initialization of the module, but loading a module multiple times is virtually free, costing only
a couple of dictionary lookups. Even if the module name has gone out of scope, the module is probably available in
sys.modules.

2.2.6 Why are default values shared between objects?

This type of bug commonly bites neophyte programmers. Consider this function:

def foo (mydict={}): # Danger: shared reference to one dict for all calls
compute something
mydict [key] = value

return mydict

The first time you call this function, mydict contains a single item. The second time, mydict contains two items
because when foo () begins executing, mydict starts out with an item already in it.

It is often expected that a function call creates new objects for default values. This is not what happens. Default values
are created exactly once, when the function is defined. If that object is changed, like the dictionary in this example,
subsequent calls to the function will refer to this changed object.

By definition, immutable objects such as numbers, strings, tuples, and None, are safe from change. Changes to mutable
objects such as dictionaries, lists, and class instances can lead to confusion.

Because of this feature, it is good programming practice to not use mutable objects as default values. Instead, use None
as the default value and inside the function, check if the parameter is None and create a new list/dictionary/whatever if
it is. For example, don’t write:

def foo(mydict={}):

tapi:

def foo (mydict=None) :
if mydict is None:
mydict = {} # create a new dict for local namespace

This feature can be useful. When you have a function that’s time-consuming to compute, a common technique is to
cache the parameters and the resulting value of each call to the function, and return the cached value if the same value is
requested again. This is called "memoizing”, and can be implemented like this:

Callers will never provide a third parameter for this function.
def expensive(argl, arg2, _cache={}):
if (argl, arg2) in _cache:
return _cache[(argl, arg2)]

Calculate the value

result = ... expensive computation

_cache[(argl, arg2)] = result # Store result in the cache
return result

You could use a global variable containing a dictionary instead of the default value; it’s a matter of taste.

16 Bab 2. Pemrograman FAQ

Python Frequently Asked Questions, Rilis 2.7.18

2.2.7 How can | pass optional or keyword parameters from one function to ano-
ther?

Collect the arguments using the * and * * specifiers in the function’s parameter list; this gives you the positional arguments
as a tuple and the keyword arguments as a dictionary. You can then pass these arguments when calling another function
by using * and * *:

def f(x, *args, **kwargs):
kwargs['width'] = "14.3c’

g(x, *args, **kwargs)

In the unlikely case that you care about Python versions older than 2.0, use apply () :

def f(x, *args, **kwargs):
kwargs['width'] = "14.3c"

apply (g, (x,)+args, kwargs)

2.2.8 What is the difference between arguments and parameters?

Parameters are defined by the names that appear in a function definition, whereas arguments are the values actually passed
to a function when calling it. Parameters define what types of arguments a function can accept. For example, given the
function definition:

def func(foo, bar=None, **kwargs):
pass

foo, bar and kwargs are parameters of func. However, when calling func, for example:

func (42, bar=314, extra=somevar)

the values 42, 314, and somevar are arguments.

2.2.9 Why did changing list 'y’ also change list 'x’?

Jika kamu menulis kode seperti:

= [
= X
.append (10)

N

v

v
KKK

[10]
>>> x

[10]

you might be wondering why appending an element to y changed x too.
There are two factors that produce this result:

1) Variables are simply names that refer to objects. Doing y = x doesn’t create a copy of the list -- it creates a new
variable y that refers to the same object x refers to. This means that there is only one object (the list), and both x
and y refer to it.

2.2. Inti Bahasa 17

Python Frequently Asked Questions, Rilis 2.7.18

2) Lists are mutable, which means that you can change their content.

After the call to append (), the content of the mutable object has changed from [] to [10]. Since both the variables
refer to the same object, using either name accesses the modified value [10].

If we instead assign an immutable object to x:

>>> =5 # ints are Iimmutable

>>> = X

>>> =x + 1 # 5 can't be mutated, we are creating a new object here

XXX

>>>
6
>>> y

we can see that in this case x and y are not equal anymore. This is because integers are immutable, and when we do x
= x + 1 we are not mutating the int 5 by incrementing its value; instead, we are creating a new object (the int 6) and
assigning it to x (that is, changing which object x refers to). After this assignment we have two objects (the ints 6 and 5)
and two variables that refer to them (x now refers to 6 but y still refers to 5).

Some operations (for example v . append (10) and y. sort ()) mutate the object, whereas superficially similar ope-
rations (for example y = y + [10] and sorted (y)) create a new object. In general in Python (and in all cases in
the standard library) a method that mutates an object will return None to help avoid getting the two types of operations
confused. So if you mistakenly write v . sort () thinking it will give you a sorted copy of y, you'll instead end up with
None, which will likely cause your program to generate an easily diagnosed error.

However, there is one class of operations where the same operation sometimes has different behaviors with different types:
the augmented assignment operators. For example, += mutates lists but not tuples or ints (a_list += [1, 2, 3]
isequivalenttoa_list.extend([1, 2, 3]) and mutates a_1list, whereas some_tuple += (1, 2, 3)
and some_int += 1 create new objects).

Dengan kata lain:

« If we have a mutable object (1ist, dict, set, etc.), we can use some specific operations to mutate it and all the
variables that refer to it will see the change.

* If we have an immutable object (str, int, tuple, etc.), all the variables that refer to it will always see the same
value, but operations that transform that value into a new value always return a new object.

If you want to know if two variables refer to the same object or not, you can use the is operator, or the built-in function
id().

2.2.10 How do | write a function with output parameters (call by reference)?

Remember that arguments are passed by assignment in Python. Since assignment just creates references to objects, there’s
no alias between an argument name in the caller and callee, and so no call-by-reference per se. You can achieve the desired
effect in a number of ways.

1) By returning a tuple of the results:

def func2(a, b):
a = 'new-value' # a and b are local names
b=Db+ 1 # assigned to new objects
return a, b # return new values

x, y = 'old-value', 99

x, y = func2(x, y)

print x, vy # output: new-value 100

18 Bab 2. Pemrograman FAQ

Python Frequently Asked Questions, Rilis 2.7.18

2)
3)

4)

5)

This is almost always the clearest solution.
By using global variables. This isn’t thread-safe, and is not recommended.

By passing a mutable (changeable in-place) object:

def funcl(a):

al0] = '"new-value' # 'a' references a mutable 1ist
al[l] = a[l] + 1 # changes a shared object

args = ['old-value', 99]

funcl (args)

print args[0], args[1] # output: new-value 100

By passing in a dictionary that gets mutated:

def func3(args):

args(['a'] = 'new-value' # args 1is a mutable dictionary
args['b'] = args['b'] + 1 # change it in-place
args = {'a': 'old-value', 'b': 99}

func3 (args)
print args(['a'], args['b']

Or bundle up values in a class instance:

class callByRef:
def _ _init__ (self, **args):
for (key, value) in args.items():
setattr (self, key, value)

def func4 (args):
args.a = 'new-value' # args is a mutable callByRef
args.b = args.b + 1 # change object in-place

args = callByRef (a='old-value', b=99)
func4 (args)
print args.a, args.b

There’s almost never a good reason to get this complicated.

Your best choice is to return a tuple containing the multiple results.

2.2.11 How do you make a higher order function in Python?

You have two choices: you can use nested scopes or you can use callable objects. For example, suppose you wanted to
define 1inear (a,b) which returns a function f (x) that computes the value a*x+b. Using nested scopes:

def linear (a, b):

def result (x):

return a * x + b

return result

Or using a callable object:

class linear:

(berlanjut ke halaman berikutnya)

2.2. Inti Bahasa

19

Python Frequently Asked Questions, Rilis 2.7.18

(lanjutan dari halaman sebelumnya)

def _ init_ (self, a, b):
self.a, self.b = a, b

def _ call_ (self, x):
return self.a * x + self.b

Dalam kedua kasus,

taxes = linear (0.3, 2)

gives a callable object where taxes (10e6) == 0.3 * 10e6 + 2.

The callable object approach has the disadvantage that it is a bit slower and results in slightly longer code. However, note
that a collection of callables can share their signature via inheritance:

class exponential (linear) :
_ _init__ inherited
def _ call_ (self, x):
return self.a * (x ** self.b)

Object can encapsulate state for several methods:

class counter:

value = 0

def set (self, x):
self.value = x

def up(self):
self.value = self.value + 1

def down (self):

self.value = self.value - 1
count = counter ()
inc, dec, reset = count.up, count.down, count.set

Here inc (), dec () and reset () act like functions which share the same counting variable.

2.2.12 How do | copy an object in Python?

In general, try copy . copy () or copy.deepcopy () for the general case. Not all objects can be copied, but most
can.

Some objects can be copied more easily. Dictionaries have a copy () method:

’newdict = olddict.copy ()

Sequences can be copied by slicing:

’new_l = 1[:]

20 Bab 2. Pemrograman FAQ

Python Frequently Asked Questions, Rilis 2.7.18

2.2.13 How can | find the methods or attributes of an object?

For an instance x of a user-defined class, dir (x) returns an alphabetized list of the names containing the instance
attributes and methods and attributes defined by its class.

2.2.14 How can my code discover the name of an object?

Generally speaking, it can’t, because objects don’t really have names. Essentially, assignment always binds a name to a
value; The same is true of def and class statements, but in that case the value is a callable. Consider the following
code:

>>> class A:

pass
>>> B = A
>>> a = B()
>>> b = a

>>> print b
<__main__.A instance at 0x16D07CC>
>>> print a
<__main__.A instance at 0x16D07CC>

Arguably the class has a name: even though it is bound to two names and invoked through the name B the created instance
is still reported as an instance of class A. However, it is impossible to say whether the instance’s name is a or b, since both
names are bound to the same value.

Generally speaking it should not be necessary for your code to "know the names” of particular values. Unless you are
deliberately writing introspective programs, this is usually an indication that a change of approach might be beneficial.

In comp.lang.python, Fredrik Lundh once gave an excellent analogy in answer to this question:

The same way as you get the name of that cat you found on your porch: the cat (object) itself cannot tell you
its name, and it doesn’t really care -- so the only way to find out what it’s called is to ask all your neighbours
(namespaces) if it’s their cat (object)...

....and don’t be surprised if you’ll find that it’s known by many names, or no name at all!

2.2.15 What’s up with the comma operator’s precedence?

Comma is not an operator in Python. Consider this session:

>>> "a" in "b"’ "a"
(False, 'a')

Since the comma is not an operator, but a separator between expressions the above is evaluated as if you had entered:

’(nan in llbll)’ ngw

tidak:

"a" in ("b", nan)

The same is true of the various assignment operators (=, += etc). They are not truly operators but syntactic delimiters in
assignment statements.

2.2. Inti Bahasa 21

Python Frequently Asked Questions, Rilis 2.7.18

2.2.16 Is there an equivalent of C’s ”?:” ternary operator?

Yes, this feature was added in Python 2.5. The syntax would be as follows:

[on_true] if [expression] else [on_false]
x, y = 50, 25

small = x if x < y else y

For versions previous to 2.5 the answer would be 'No’.

2.2.17 Is it possible to write obfuscated one-liners in Python?

Yes. Usually this is done by nesting 1ambda within 1ambda. See the following three examples, due to Ulf Bartelt:

Primes < 1000
print filter (None,map (lambda y:y*reduce (lambda x,y:x*y!=0,
map (lambda x,y=y:y%x,range (2, int (pow(y,0.5)+1))),1),range(2,1000)))

First 10 Fibonacci numbers
print map (lambda x,f=lambda x,f: (f(x-1,f)+f(x-2,£f)) if x>1 else 1: f(x,f),
range (10))

Mandelbrot set

print (lambda Ru,Ro, Iu,Io,IM, Sx,Sy:reduce (lambda x,y:x+y,map (lambda vy,
Iu=Iu, Io=Io,Ru=Ru,Ro=Ro, Sy=Sy,L=lambda yc, Iu=Iu, Io=Io,Ru=Ru,Ro=Ro,i=IM,
Sx=Sx, Sy=Sy:reduce (lambda x,y:x+ty,map (lambda x,xc=Ru,yc=yc,Ru=Ru, Ro=Ro,
i=i, Sx=Sx,F=lambda xc,yc,x,V,k, f=lambda xc,yc,x,y,k,f: (k<=0)or (x*x+y*y
>=4.0) or 1+f(xc,yc,x*x-y*y+xc,2.0*x*y+yc,k-1,f):f(xc,yc,x,y,k,f):chr(

64+F (Ru+x* (Ro-Ru) /Sx,yc,0,0,1)),range(Sx))) :L(Iut+y* (Io-Iu)/Sy), range (Sy
y))y) (-2.2, 0.7, -1.2, 1.2, 30, 80, 24)

_ _ / /| / |__ lines on screen

%4 \%4 / / columns on screen

/ / / maximum of "iterations'

/ / range on y axis

/ range on x axis

Jangan lakukan ini di rumah, anak-anak!

2.3 Angka dan string

2.3.1 How do | specify hexadecimal and octal integers?

To specify an octal digit, precede the octal value with a zero, and then a lower or uppercase “0”. For example, to set the
variable ”a” to the octal value ”10” (8 in decimal), type:

>>> a = 0010
>>> a
8

999

Hexadecimal is just as easy. Simply precede the hexadecimal number with a zero, and then a lower or uppercase "x”.
Hexadecimal digits can be specified in lower or uppercase. For example, in the Python interpreter:

22 Bab 2. Pemrograman FAQ

Python Frequently Asked Questions, Rilis 2.7.18

>>> a = 0Oxab
>>> a
165
>>> b
>>> b
178

0XB2

2.3.2 Why does -22 // 10 return -3?

It’s primarily driven by the desire that i % J have the same sign as j. If you want that, and also want:

i==(1// 3 *3+ ({1 %3)

then integer division has to return the floor. C also requires that identity to hold, and then compilers that truncate 1 //
j need to make 1 % J have the same sign as i.

There are few real use cases for i % j when J is negative. When j is positive, there are many, and in virtually all of
them it’s more useful for i % j to be >= 0. If the clock says 10 now, what did it say 200 hours ago? -190 % 12
== 2isuseful; -190 % 12 == -10 is a bug waiting to bite.

Catatan: On Python 2, a / D returns the same asa // bif _ future__ .division is not in effect. This is
also known as “classic” division.

2.3.3 Bagaimana cara mengonversi string menjadi angka?

For integers, use the built-in int () type constructor, e.g. int ('144') == 144. Similarly, fl1oat () converts to
floating-point, e.g. float ('144') == 144.0.

By default, these interpret the number as decimal, so that int ('0144') == 144 and int ('0x144"') rai-
ses ValueError. int (string, base) takes the base to convert from as a second optional argument, so
int ('0x144"', 16) == 324. If the base is specified as 0, the number is interpreted using Python’s rules: a le-
ading ’0’ indicates octal, and ’0x’ indicates a hex number.

Do not use the built-in function eval () if all you need is to convert strings to numbers. eval () will be significantly
slower and it presents a security risk: someone could pass you a Python expression that might have unwanted side effects.
For example, someone could pass __import__ ('os') .system("rm —-rf S$HOME") which would erase your
home directory.

eval () also has the effect of interpreting numbers as Python expressions, so that e.g. eval ('09"') gives a syntax
error because Python regards numbers starting with ’0’ as octal (base 8).

2.3.4 Bagaimana cara mengonversi angka menjadi string?

To convert, e.g., the number 144 to the string ’144’, use the built-in type constructor st r () . If you want a hexadecimal or
octal representation, use the built-in functions hex () or oct () . For fancy formatting, see the formatstrings section, e.g.
"{:04d}".format (144) yields '0144"and "{:.3f}".format (1.0/3.0) yields '0.333". In Python 2,
the division (/) operator returns the floor of the mathematical result of division if the arguments are ints or longs, but it
returns a reasonable approximation of the division result if the arguments are floats or complex:

2.3. Angka dan string 23

Python Frequently Asked Questions, Rilis 2.7.18

>>> print (' ' format (1/3))
0.000

>>> print (' ' format (1.0/3))
0.333

In Python 3, the default behaviour of the division operator (see PEP 238) has been changed but you can have the same
behaviour in Python 2 if you import division from __ future_ :

>>> from _ future__ import division
>>> print (' '.format (1/3))
0.333

You may also use the % operator on strings. See the library reference manual for details.

2.3.5 How do | modify a string in place?

You can’t, because strings are immutable. If you need an object with this ability, try converting the string to a list or use
the array module:

>>> import io

>>> g = "Hello, world"

>>> a = list (s)

>>> print a

['g', te', '1', '1', 'o', ',', ', 'w', 'o', 'r', '1', 'd']
>>> a[7:] = list ("there!")

>>> "' join(a)

'Hello, there!'!

>>> import array

>>> a = array.array('c', s)
>>> print a

array('c', 'Hello, world")
>>> a[0] = 'y'; print a
array('c', 'yello, world'")
>>> a.tostring()

'yvello, world'

2.3.6 How do | use strings to call functions/methods?

Ada berbagai teknik.

* The best is to use a dictionary that maps strings to functions. The primary advantage of this technique is that the
strings do not need to match the names of the functions. This is also the primary technique used to emulate a case
construct:

def al():
pass

def b():
pass

dispatch = {'go': a, 'stop': b} # Note lack of parens for funcs

dispatch[get_input ()] () # Note trailing parens to call function

24 Bab 2. Pemrograman FAQ

https://www.python.org/dev/peps/pep-0238

Python Frequently Asked Questions, Rilis 2.7.18

¢ Use the built-in function getattr ():

import foo
getattr (foo, 'bar') ()

Note that getattr () works on any object, including classes, class instances, modules, and so on.

This is used in several places in the standard library, like this:

class Foo:
def do_foo(self):

def do_bar (self):

f = getattr(foo_instance, 'do_' + opname)
£()

e Use locals () oreval () to resolve the function name:

def myFunc () :
print "hello"

fname = "myFunc"

f = locals () [fname]
£()

f = eval (fname)

£()

Note: Using eval () is slow and dangerous. If you don’t have absolute control over the contents of the string,
someone could pass a string that resulted in an arbitrary function being executed.

2.3.7 Is there an equivalent to Perl’s chomp() for removing trailing newlines from
strings?

Starting with Python 2.2, youcanuse S.rstrip ("\r\n") to remove all occurrences of any line terminator from the
end of the string S without removing other trailing whitespace. If the string S represents more than one line, with several
empty lines at the end, the line terminators for all the blank lines will be removed:

>>> lines = ("line 1 \r\n"
"\r\n"

- "\r\n")

>>> lines.rstrip("\n\z")

'line 1 '

Since this is typically only desired when reading text one line at a time, using S.rstrip () this way works well.
For older versions of Python, there are two partial substitutes:

 If you want to remove all trailing whitespace, use the rstrip () method of string objects. This removes all
trailing whitespace, not just a single newline.

¢ Otherwise, if there is only one line in the string S, use S.splitlines () [0].

2.3. Angka dan string 25

Python Frequently Asked Questions, Rilis 2.7.18

2.3.8 Is there a scanf() or sscanf() equivalent?

Tidak seperti itu.

For simple input parsing, the easiest approach is usually to split the line into whitespace-delimited words using the
split () method of string objects and then convert decimal strings to numeric values using int () or float ().
split () supports an optional "sep” parameter which is useful if the line uses something other than whitespace as a
separator.

For more complicated input parsing, regular expressions are more powerful than C’s sscanf () and better suited for the
task.

2.3.9 What does ’UnicodeError: ASCII [decoding,encoding] error: ordinal not in
range(128)’ mean?

This error indicates that your Python installation can handle only 7-bit ASCII strings. There are a couple ways to fix or
work around the problem.

If your programs must handle data in arbitrary character set encodings, the environment the application runs in will
generally identify the encoding of the data it is handing you. You need to convert the input to Unicode data using that
encoding. For example, a program that handles email or web input will typically find character set encoding information
in Content-Type headers. This can then be used to properly convert input data to Unicode. Assuming the string referred
to by value is encoded as UTF-8:

value = unicode (value, "utf-8")

will return a Unicode object. If the data is not correctly encoded as UTF-8, the above call will raise a UnicodeError
exception.

If you only want strings converted to Unicode which have non-ASCII data, you can try converting them first assuming an
ASCII encoding, and then generate Unicode objects if that fails:

try:

X = unicode (value, "asciim)
except UnicodeError:

value = unicode (value, "utf-8")
else:

value was valid ASCII data

pass

It’s possible to set a default encoding in a file called sitecustomize.py that’s part of the Python library. However,
this isn’t recommended because changing the Python-wide default encoding may cause third-party extension modules to
fail.

Note that on Windows, there is an encoding known as "mbcs”, which uses an encoding specific to your current locale. In
many cases, and particularly when working with COM, this may be an appropriate default encoding to use.

26 Bab 2. Pemrograman FAQ

Python Frequently Asked Questions, Rilis 2.7.18

2.4 Urutan (Tuple/List)

2.4.1 How do | convert between tuples and lists?

The type constructor tuple (seq) converts any sequence (actually, any iterable) into a tuple with the same items in the
same order.

For example, tuple ([1, 2, 3]) yields (1, 2, 3) and tuple('abc') yields ('a', 'b', 'c'). If the
argument is a tuple, it does not make a copy but returns the same object, so it is cheap to call tuple () when you aren’t
sure that an object is already a tuple.

The type constructor 1ist (seq) converts any sequence or iterable into a list with the same items in the same order.
For example, 1ist ((1, 2, 3)) yields [1, 2, 3] and list('abc') yields ['a', 'b', 'c']. If the
argument is a list, it makes a copy just like seq[:] would.

2.4.2 Apa itu indeks negatif?

Python sequences are indexed with positive numbers and negative numbers. For positive numbers 0 is the first index 1 is
the second index and so forth. For negative indices -1 is the last index and -2 is the penultimate (next to last) index and
so forth. Think of seq[—n] as the same as seg[len (seq) —-n].

Using negative indices can be very convenient. For example S[:-11] is all of the string except for its last character,
which is useful for removing the trailing newline from a string.

2.4.3 How do | iterate over a sequence in reverse order?

Use the reversed () built-in function, which is new in Python 2.4:

for x in reversed(sequence) :
do something with x ...

This won’t touch your original sequence, but build a new copy with reversed order to iterate over.

With Python 2.3, you can use an extended slice syntax:

for x in sequence[::-1]:
do something with x ...

2.4.4 How do you remove duplicates from a list?

See the Python Cookbook for a long discussion of many ways to do this:
https://code.activestate.com/recipes/52560/

If you don’t mind reordering the list, sort it and then scan from the end of the list, deleting duplicates as you go:

if mylist:
mylist.sort ()
last = mylist[-1]
for i in range(len(mylist)-2, -1, -1):
if last == mylist[i]:
del mylist[i]
else:
last = mylist[i]

2.4. Urutan (Tuple/List) 27

https://code.activestate.com/recipes/52560/

Python Frequently Asked Questions, Rilis 2.7.18

If all elements of the list may be used as dictionary keys (i.e. they are all hashable) this is often faster

d = {}
for x in mylist:
dix] = 1

mylist = list (d.keys())

In Python 2.5 and later, the following is possible instead:

mylist = list(set (mylist))

This converts the list into a set, thereby removing duplicates, and then back into a list.

2.4.5 How do you make an array in Python?

Gunakan sebuah [ist:

["this", 1, "iS", nanu, narrayn]

Lists are equivalent to C or Pascal arrays in their time complexity; the primary difference is that a Python list can contain
objects of many different types.

The array module also provides methods for creating arrays of fixed types with compact representations, but they are
slower to index than lists. Also note that the Numeric extensions and others define array-like structures with various
characteristics as well.

To get Lisp-style linked lists, you can emulate cons cells using tuples:

lisp_list = ("like", ("this", ("example", None)))

If mutability is desired, you could use lists instead of tuples. Here the analogue of lisp caris 1isp_list [0] and the
analogue of cdris 1isp_list [1]. Only do this if you're sure you really need to, because it’s usually a lot slower than
using Python lists.

2.4.6 How do | create a multidimensional list?

You probably tried to make a multidimensional array like this:

>>> A = [[None] * 2] * 3

This looks correct if you print it:

>>> A
[[None, None], [None, None], [None, Nonel]]

But when you assign a value, it shows up in multiple places:

>>> A[0][0] = 5
>>> A
[[5, None], [5, None], [5, None]]

The reason is that replicating a list with * doesn’t create copies, it only creates references to the existing objects. The * 3
creates a list containing 3 references to the same list of length two. Changes to one row will show in all rows, which is
almost certainly not what you want.

The suggested approach is to create a list of the desired length first and then fill in each element with a newly created list:

28 Bab 2. Pemrograman FAQ

Python Frequently Asked Questions, Rilis 2.7.18

A = [None] * 3
for i in range(3):
A[i] = [None] * 2

This generates a list containing 3 different lists of length two. You can also use a list comprehension:

w, h =2, 3
A = [[None] * w for i in range (h)]

Or, you can use an extension that provides a matrix datatype; NumPy is the best known.

2.4.7 How do | apply a method to a sequence of objects?

Use a list comprehension:

result = [obj.method() for obj in mylist]

More generically, you can try the following function:

def method_map (objects, method, arguments):
"""method_map ([a,b], "meth", (1,2)) gives [a.meth(l1,2), b.meth(1,2)]"""
nobjects = len (objects)
methods = map (getattr, objects, [method]*nobjects)
return map (apply, methods, [arguments]*nobjects)

2.4.8 Why does a_tuple]i] += ['item’] raise an exception when the addition works?
This is because of a combination of the fact that augmented assignment operators are assignment operators, and the
difference between mutable and immutable objects in Python.

This discussion applies in general when augmented assignment operators are applied to elements of a tuple that point to
mutable objects, but we’ll use a 1i st and += as our exemplar.

Jika kamu menulis:

>>> a_tuple = (1, 2)
>>> a_tuple[0] += 1
Traceback (most recent call last):

TypeError: 'tuple' object does not support item assignment

The reason for the exception should be immediately clear: 1 is added to the object a_tuple [0] points to (1), producing
the result object, 2, but when we attempt to assign the result of the computation, 2, to element 0 of the tuple, we get an
error because we can’t change what an element of a tuple points to.

Under the covers, what this augmented assignment statement is doing is approximately this:

>>> result = a_tuple[0] + 1
>>> a_tuple[0] = result
Traceback (most recent call last):

TypeError: 'tuple' object does not support item assignment

It is the assignment part of the operation that produces the error, since a tuple is immutable.

Ketika kamu menulis sesuatu seperti:

2.4. Urutan (Tuple/List) 29

http://www.numpy.org/

Python Frequently Asked Questions, Rilis 2.7.18

>>> a_tuple = (['foo']l, 'bar'")
>>> a_tuple[0] += ['item']
Traceback (most recent call last):

TypeError: 'tuple' object does not support item assignment

The exception is a bit more surprising, and even more surprising is the fact that even though there was an error, the append
worked:

>>> a_tuple[0]
["foo', 'item']

To see why this happens, you need to know that (a) if an object implements an __iadd___ magic method, it gets called
when the += augmented assignment is executed, and its return value is what gets used in the assignment statement; and
(b) for lists, ___iadd___is equivalent to calling extend on the list and returning the list. That’s why we say that for
lists, += is a "shorthand” for 1ist .extend:

>>> a_list = []
>>> a_list += [1]
>>> a_list

[1]

Ini setara dengan:

>>> result = a_list.__diadd__([1])
>>> a_list = result

The object pointed to by a_list has been mutated, and the pointer to the mutated object is assigned back to a_1ist. The
end result of the assignment is a no-op, since it is a pointer to the same object that a_ 11 st was previously pointing to,
but the assignment still happens.

Thus, in our tuple example what is happening is equivalent to:

>>> result = a_tuple[0].__iadd__(['item'])
>>> a_tuple[0] = result
Traceback (most recent call last):

TypeError: 'tuple' object does not support item assignment

The __iadd___ succeeds, and thus the list is extended, but even though result points to the same object that
a_tuple [0] already points to, that final assignment still results in an error, because tuples are immutable.

2.5 Dictionaries

2.5.1 How can | get a dictionary to display its keys in a consistent order?

You can’t. Dictionaries store their keys in an unpredictable order, so the display order of a dictionary’s elements will be
similarly unpredictable.

This can be frustrating if you want to save a printable version to a file, make some changes and then compare it with some
other printed dictionary. In this case, use the pprint module to pretty-print the dictionary; the items will be presented
in order sorted by the key.

A more complicated solution is to subclass dict to create a SortedDict class that prints itself in a predictable order.
Here’s one simpleminded implementation of such a class:

30 Bab 2. Pemrograman FAQ

Python Frequently Asked Questions, Rilis 2.7.18

class SortedDict (dict) :
def _ _repr__ (self):
keys = sorted(self.keys())

result = (" : ".format (k, self[k]) for k in keys)
return " {{ Fr".format (", ".join(result))
__str__ = __repr___

This will work for many common situations you might encounter, though it’s far from a perfect solution. The largest flaw
is that if some values in the dictionary are also dictionaries, their values won’t be presented in any particular order.

2.5.2 | want to do a complicated sort: can you do a Schwartzian Transform in
Python?

The technique, attributed to Randal Schwartz of the Perl community, sorts the elements of a list by a metric which maps
each element to its “sort value”. In Python, use the key argument for the sort () function:

Isorted = LJ[:]
Isorted.sort (key=lambda s: int(s[10:15]))

2.5.3 How can | sort one list by values from another list?

Merge them into a single list of tuples, sort the resulting list, and then pick out the element you want.

>>> listl = ["what", "I'm", "sorting", "by"]

>>> list2 = ["something", "else", "to", "sort"]

>>> pairs = zip(listl, list2)

>>> pairs

[("what', 'something'), ("I'm", 'else'), ('sorting', 'to'), ('by', 'sort')]
>>> pairs.sort ()

>>> result = [x[1] for x in pairs]

>>> result
['else', 'sort', 'to', 'something']

An alternative for the last step is:

>>> result = []
>>> for p in pairs: result.append(p[l])

If you find this more legible, you might prefer to use this instead of the final list comprehension. However, it is almost
twice as slow for long lists. Why? First, the append () operation has to reallocate memory, and while it uses some
tricks to avoid doing that each time, it still has to do it occasionally, and that costs quite a bit. Second, the expression
“result.append” requires an extra attribute lookup, and third, there’s a speed reduction from having to make all those
function calls.

2.5. Dictionaries 31

Python Frequently Asked Questions, Rilis 2.7.18

2.6 Objek

2.6.1 Apa itu kelas?

A class is the particular object type created by executing a class statement. Class objects are used as templates to create
instance objects, which embody both the data (attributes) and code (methods) specific to a datatype.

A class can be based on one or more other classes, called its base class(es). It then inherits the attributes and methods of its
base classes. This allows an object model to be successively refined by inheritance. You might have a generic Mailbox
class that provides basic accessor methods for a mailbox, and subclasses such as MboxMailbox, MaildirMailbox,
OutlookMailbox that handle various specific mailbox formats.

2.6.2 Apa itu metode?

A method is a function on some object x that you normally call as x . name (arguments. . .). Methods are defined
as functions inside the class definition:

class C:
def meth(self, arg):
return arg * 2 + self.attribute

2.6.3 Apa itu self?

Self is merely a conventional name for the first argument of a method. A method defined as meth (self, a, b,
c) should be called as x .meth (a, b, c) for some instance x of the class in which the definition occurs; the called
method will think it is called as meth (x, a, b, c).

Lihat juga Why must self’ be used explicitly in method definitions and calls?.

2.6.4 How do | check if an object is an instance of a given class or of a subclass of
it?

Use the built-in function isinstance (obj, cls). You can check if an object is an instance of any of a num-
ber of classes by providing a tuple instead of a single class, e.g. isinstance (obj, (classl, class?2,
..)), and can also check whether an object is one of Python’s built-in types, e.g. isinstance (obj, str) or
isinstance (obj, (int, long, float, complex)).

Note that most programs donotuse i sinstance () on user-defined classes very often. If you are developing the classes
yourself, a more proper object-oriented style is to define methods on the classes that encapsulate a particular behaviour,
instead of checking the object’s class and doing a different thing based on what class it is. For example, if you have a
function that does something:

def search (obj):
if isinstance(obj, Mailbox) :
code to search a mailbox
elif isinstance (obj, Document) :
. # code to search a document
elif ...

A better approach is to define a search () method on all the classes and just call it:

32 Bab 2. Pemrograman FAQ

Python Frequently Asked Questions, Rilis 2.7.18

class Mailbox:
def search(self):
code to search a mailbox

class Document:
def search(self):

code to search a document

obj.search()

2.6.5 Apa itu delegasi?

Delegation is an object oriented technique (also called a design pattern). Let’s say you have an object x and want to change
the behaviour of just one of its methods. You can create a new class that provides a new implementation of the method
you're interested in changing and delegates all other methods to the corresponding method of x.

Python programmers can easily implement delegation. For example, the following class implements a class that behaves
like a file but converts all written data to uppercase:

class UpperOut:

def _ init_ (self, outfile):
self._outfile = outfile

def write(self, s):
self._outfile.write(s.upper())

def _ _getattr__ (self, name):
return getattr(self._outfile, name)

Here the UpperOut class redefines the write () method to convert the argument string to uppercase before calling
the underlying self.__outfile.write () method. All other methods are delegated to the underlying self.
__outfile object. The delegation is accomplished via the __getattr__ method; consult the language reference
for more information about controlling attribute access.

Note that for more general cases delegation can get trickier. When attributes must be set as well as retrieved, the class must
define a __setattr__ () method too, and it must do so carefully. The basic implementation of __setattr__ ()
is roughly equivalent to the following:

class X:

def _ setattr_ (self, name, value):
self. dict [name] = value

Most __setattr__ () implementations must modify self.__dict__ to store local state for self without causing
an infinite recursion.

2.6. Objek 33

Python Frequently Asked Questions, Rilis 2.7.18

2.6.6 How do | call a method defined in a base class from a derived class that
overrides it?

If you're using new-style classes, use the built-in super () function:

class Derived (Base) :
def meth (self):
super (Derived, self) .meth()

If you're using classic classes: For a class definition such as class Derived (Base): ... you can call method
meth () definedin Base (or one of Base’s base classes) as Base.meth (self, arguments...). Here, Base.
meth is an unbound method, so you need to provide the sel f argument.

2.6.7 How can | organize my code to make it easier to change the base class?

You could define an alias for the base class, assign the real base class to it before your class definition, and use the alias
throughout your class. Then all you have to change is the value assigned to the alias. Incidentally, this trick is also handy
if you want to decide dynamically (e.g. depending on availability of resources) which base class to use. Example:

BaseAlias = <real base class>

class Derived (BaseAlias):
def meth (self):
BaseAlias.meth (self)

2.6.8 How do | create static class data and static class methods?

Both static data and static methods (in the sense of C++ or Java) are supported in Python.

For static data, simply define a class attribute. To assign a new value to the attribute, you have to explicitly use the class
name in the assignment:

class C:
count = 0 # number of times C.__init__ called

def _ init_ (self):
C.count = C.count + 1

def getcount (self):
return C.count # or return self.count

c.count also refers to C. count for any c such that isinstance (c, C) holds, unless overridden by c itself or
by some class on the base-class search path from c.___class__ back to C.

Caution: within a method of C, an assignment like self.count = 42 creates a new and unrelated instance named
“count” in self’s own dict. Rebinding of a class-static data name must always specify the class whether inside a method
or not:

C.count = 314

Static methods are possible since Python 2.2:

34 Bab 2. Pemrograman FAQ

Python Frequently Asked Questions, Rilis 2.7.18

class C:
def static(argl, arg2, arg3):
No 'self' parameter!

static = staticmethod(static)

With Python 2.4’s decorators, this can also be written as

class C:
@staticmethod
def static(argl, arg2, arg3):
No 'self' parameter!

However, a far more straightforward way to get the effect of a static method is via a simple module-level function:

def getcount () :
return C.count

If your code is structured so as to define one class (or tightly related class hierarchy) per module, this supplies the desired
encapsulation.

2.6.9 How can | overload constructors (or methods) in Python?

This answer actually applies to all methods, but the question usually comes up first in the context of constructors.

Di C++ kamu akan menulis

class C |
C() { cout << "No arguments\n"; }
C(int i) { cout << "Argument is " << i << "\n"; }

In Python you have to write a single constructor that catches all cases using default arguments. For example:

class C:
def _ init_ (self, i=None):
if i is None:
print "No arguments"
else:
print "Argument is", i

This is not entirely equivalent, but close enough in practice.

You could also try a variable-length argument list, e.g.

def _ init_ (self, *args):

The same approach works for all method definitions.

2.6. Objek 35

Python Frequently Asked Questions, Rilis 2.7.18

2.6.10 I try to use __spam and | get an error about _SomeClassName__spam.

Variable names with double leading underscores are “mangled” to provide a simple but effective way to define class private
variables. Any identifier of the form ___spam (at least two leading underscores, at most one trailing underscore) is textu-
ally replaced with _classname__spam, where classname is the current class name with any leading underscores
stripped.

This doesn’t guarantee privacy: an outside user can still deliberately access the ”_classname__spam” attribute, and private
values are visible in the object’s __dict__. Many Python programmers never bother to use private variable names at
all.

2.6.11 My class defines __del__ but it is not called when | delete the object.

There are several possible reasons for this.

The del statement does not necessarily call __del__ () -- it simply decrements the object’s reference count, and if this
reaches zero __del__ () is called.

If your data structures contain circular links (e.g. a tree where each child has a parent reference and each parent has
a list of children) the reference counts will never go back to zero. Once in a while Python runs an algorithm to detect
such cycles, but the garbage collector might run some time after the last reference to your data structure vanishes, so
your __del__ () method may be called at an inconvenient and random time. This is inconvenient if you’re trying to
reproduce a problem. Worse, the order in which object’s __del__ () methods are executed is arbitrary. You can run
gc.collect () to force a collection, but there are pathological cases where objects will never be collected.

Despite the cycle collector, it’s still a good idea to define an explicit close () method on objects to be called whenever
you’re done with them. The close () method can then remove attributes that refer to subobjecs. Don’tcall__del__ ()
directly -- __del__ () should call close () and close () should make sure that it can be called more than once for
the same object.

Another way to avoid cyclical references is to use the weakref module, which allows you to point to objects without
incrementing their reference count. Tree data structures, for instance, should use weak references for their parent and
sibling references (if they need them!).

If the object has ever been a local variable in a function that caught an expression in an except clause, chances are that
a reference to the object still exists in that function’s stack frame as contained in the stack trace. Normally, calling
sys.exc_clear () will take care of this by clearing the last recorded exception.

Finally, if your __del___ () method raises an exception, a warning message is printed to sys.stderr.
2.6.12 How do | get a list of all instances of a given class?

Python does not keep track of all instances of a class (or of a built-in type). You can program the class’s constructor to
keep track of all instances by keeping a list of weak references to each instance.

36 Bab 2. Pemrograman FAQ

Python Frequently Asked Questions, Rilis 2.7.18

2.6.13 Why does the result of id () appear to be not unique?

The id () builtin returns an integer that is guaranteed to be unique during the lifetime of the object. Since in CPython,
this is the object’s memory address, it happens frequently that after an object is deleted from memory, the next freshly
created object is allocated at the same position in memory. This is illustrated by this example:

>>> 1id(1000)
13901272
>>> 1d(2000)
13901272

The two ids belong to different integer objects that are created before, and deleted immediately after execution of the
id () call. To be sure that objects whose id you want to examine are still alive, create another reference to the object:

>>> a = 1000; b = 2000
>>> id(a)
13901272
>>> id(b)
13891296

2.7 Modul-Modul

2.7.1 Bagaimana saya membuat berkas .pyc?

‘When a module is imported for the first time (or when the source is more recent than the current compiled file) a . pyc
file containing the compiled code should be created in the same directory as the . py file.

One reason thata . pyc file may not be created is permissions problems with the directory. This can happen, for example,
if you develop as one user but run as another, such as if you are testing with a web server. Creation of a .pyc file is automatic
if you’re importing a module and Python has the ability (permissions, free space, etc...) to write the compiled module
back to the directory.

Running Python on a top level script is not considered an import and no . pyc will be created. For example, if you have
a top-level module foo . py that imports another module xy z . py, when you run foo, xyz . pyc will be created since
xyz is imported, but no foo . pyc file will be created since foo . py isn’t being imported.

If you need to create foo.pyc -- that is, to create a . pyc file for a module that is not imported -- you can, using the
py_compile and compileall modules.

The py_compile module can manually compile any module. One way is to use the compile () function in that
module interactively:

>>> import py_compile
>>> py_compile.compile('foo.py"')

This will write the . pyc to the same location as foo . py (or you can override that with the optional parameter cfile).

You can also automatically compile all files in a directory or directories using the compileall module. You can do
it from the shell prompt by running compileall.py and providing the path of a directory containing Python files to
compile:

python -m compileall .

2.7. Modul-Modul 37

Python Frequently Asked Questions, Rilis 2.7.18

2.7.2 How do I find the current module name?

A module can find out its own module name by looking at the predefined global variable __name___. If this has the value
'__main__ ', the program is running as a script. Many modules that are usually used by importing them also provide
a command-line interface or a self-test, and only execute this code after checking __name__:

def main () :
print 'Running test...'

if _ name_ == " main '

main ()

2.7.3 How can | have modules that mutually import each other?

Suppose you have the following modules:

foo.py:

from bar import bar_var
foo_var = 1

bar.py:

from foo import foo_var
bar_var = 2

The problem is that the interpreter will perform the following steps:
¢ main imports foo
* Empty globals for foo are created
* foo is compiled and starts executing
* foo imports bar
* Empty globals for bar are created
* bar is compiled and starts executing
* bar imports foo (which is a no-op since there already is a module named foo)
¢ bar.foo_var = foo.foo_var

The last step fails, because Python isn’t done with interpreting foo yet and the global symbol dictionary for foo is still
empty.

The same thing happens when you use import foo, and then try to access foo. foo_var in global code.
There are (at least) three possible workarounds for this problem.

Guido van Rossum recommends avoiding all uses of from <module> import ..., and placing all code inside
functions. Initializations of global variables and class variables should use constants or built-in functions only. This means
everything from an imported module is referenced as <module>.<name>.

Jim Roskind suggests performing steps in the following order in each module:
* exports (globals, functions, and classes that don’t need imported base classes)

e pernyataan import

38 Bab 2. Pemrograman FAQ

Python Frequently Asked Questions, Rilis 2.7.18

* active code (including globals that are initialized from imported values).
van Rossum doesn’t like this approach much because the imports appear in a strange place, but it does work.
Matthias Urlichs recommends restructuring your code so that the recursive import is not necessary in the first place.

These solutions are not mutually exclusive.

2.7.4 __import__(’x.y.Z’) returns <module ’x’>; how do | get z?

Consider using the convenience function import_module () from importlib instead:

z = importlib.import_module('x.y.z"')

2.7.5 When | edit an imported module and reimport it, the changes don’t show up.
Why does this happen?

For reasons of efficiency as well as consistency, Python only reads the module file on the first time a module is imported.
If it didn’t, in a program consisting of many modules where each one imports the same basic module, the basic module
would be parsed and re-parsed many times. To force rereading of a changed module, do this:

import modname
reload (modname)

Warning: this technique is not 100% fool-proof. In particular, modules containing statements like

from modname import some_objects

will continue to work with the old version of the imported objects. If the module contains class definitions, existing class
instances will not be updated to use the new class definition. This can result in the following paradoxical behaviour:

>>> import cls

>>> ¢ = cls.C() # Create an instance of C
>>> reload(cls)

<module 'cls' from 'cls.pyc'>

>>> isinstance(c, cls.C) # isinstance 1is false?!?
False

The nature of the problem is made clear if you print out the class objects:

>>> c.__class___

<class cls.C at 0x7352a0>
>>> cls.C

<class cls.C at 0x4198d0>

2.7. Modul-Modul 39

Python Frequently Asked Questions, Rilis 2.7.18

40

Bab 2. Pemrograman FAQ

BAB 3

Desain dan Sejarah FAQ

3.1 Mengapa Python menggunakan indentasi untuk pengelompokan
pernyataan?

Guido van Rossum percaya bahwa menggunakan indentasi untuk pengelompokan sangat elegan dan berkontribusi banyak
pada kejelasan rata-rata program Python. Kebanyakan orang belajar menyukai fitur ini setelah beberapa saat.

Since there are no begin/end brackets there cannot be a disagreement between grouping perceived by the parser and the
human reader. Occasionally C programmers will encounter a fragment of code like this:

if (x <= vy)
X++;
Y——i
Z++;

Only the x++ statement is executed if the condition is true, but the indentation leads you to believe otherwise. Even
experienced C programmers will sometimes stare at it a long time wondering why vy is being decremented even for x >

y.

Because there are no begin/end brackets, Python is much less prone to coding-style conflicts. In C there are many different
ways to place the braces. If you’re used to reading and writing code that uses one style, you will feel at least slightly uneasy
when reading (or being required to write) another style.

Many coding styles place begin/end brackets on a line by themselves. This makes programs considerably longer and
wastes valuable screen space, making it harder to get a good overview of a program. Ideally, a function should fit on
one screen (say, 20--30 lines). 20 lines of Python can do a lot more work than 20 lines of C. This is not solely due to
the lack of begin/end brackets -- the lack of declarations and the high-level data types are also responsible -- but the
indentation-based syntax certainly helps.

41

Python Frequently Asked Questions, Rilis 2.7.18

3.2 Why am | getting strange results with simple arithmetic opera-
tions?

See the next question.

3.3 Why are floating point calculations so inaccurate?

People are often very surprised by results like this:

>> 1.2 - 1.0
0.1999999999999999¢6

and think it is a bug in Python. It’s not. This has nothing to do with Python, but with how the underlying C platform
handles floating point numbers, and ultimately with the inaccuracies introduced when writing down numbers as a string
of a fixed number of digits.

The internal representation of floating point numbers uses a fixed number of binary digits to represent a decimal number.
Some decimal numbers can’t be represented exactly in binary, resulting in small roundoff errors.

In decimal math, there are many numbers that can’t be represented with a fixed number of decimal digits, e.g. 1/3 =
0.3333333333.......

In base 2, 1/2 = 0.1, 1/4 = 0.01, 1/8 = 0.001, etc. .2 equals 2/10 equals 1/5, resulting in the binary fractional number
0.001100110011001...

Floating point numbers only have 32 or 64 bits of precision, so the digits are cut off at some point, and the resulting
number is 0.199999999999999996 in decimal, not 0.2.

A floating point number’s repr () function prints as many digits are necessary to make eval (repr (£f)) == f true
for any floatf. The st r () function prints fewer digits and this often results in the more sensible number that was probably
intended:

>>> 1.1 - 0.9
0.20000000000000007
>>> print 1.1 - 0.9
0.2

One of the consequences of this is that it is error-prone to compare the result of some computation to a float with ==.
Tiny inaccuracies may mean that == fails. Instead, you have to check that the difference between the two numbers is less
than a certain threshold:

epsilon = 0.0000000000001 # Tiny allowed error
expected_result = 0.4

if expected_result-epsilon <= computation() <= expected_result+epsilon:

Please see the chapter on floating point arithmetic in the Python tutorial for more information.

42 Bab 3. Desain dan Sejarah FAQ

Python Frequently Asked Questions, Rilis 2.7.18

3.4 Why are Python strings immutable?

There are several advantages.

One is performance: knowing that a string is immutable means we can allocate space for it at creation time, and the
storage requirements are fixed and unchanging. This is also one of the reasons for the distinction between tuples and lists.

Another advantage is that strings in Python are considered as “elemental” as numbers. No amount of activity will change
the value 8 to anything else, and in Python, no amount of activity will change the string “eight” to anything else.

3.5 Why must ’'self’ be used explicitly in method definitions and calls?

The idea was borrowed from Modula-3. It turns out to be very useful, for a variety of reasons.

First, it’s more obvious that you are using a method or instance attribute instead of a local variable. Reading self.x
or self.meth () makes it absolutely clear that an instance variable or method is used even if you don’t know the class
definition by heart. In C++, you can sort of tell by the lack of a local variable declaration (assuming globals are rare or
easily recognizable) -- but in Python, there are no local variable declarations, so you’d have to look up the class definition
to be sure. Some C++ and Java coding standards call for instance attributes to have an m__ prefix, so this explicitness is
still useful in those languages, too.

Second, it means that no special syntax is necessary if you want to explicitly reference or call the method from a particular
class. In C++, if you want to use a method from a base class which is overridden in a derived class, you have to use
the : : operator -- in Python you can write baseclass.methodname (self, <argument list>). Thisis
particularly useful for __init__ () methods, and in general in cases where a derived class method wants to extend the
base class method of the same name and thus has to call the base class method somehow.

Finally, for instance variables it solves a syntactic problem with assignment: since local variables in Python are (by defi-
nition!) those variables to which a value is assigned in a function body (and that aren’t explicitly declared global), there
has to be some way to tell the interpreter that an assighment was meant to assign to an instance variable instead of to
a local variable, and it should preferably be syntactic (for efficiency reasons). C++ does this through declarations, but
Python doesn’t have declarations and it would be a pity having to introduce them just for this purpose. Using the explicit
self.var solves this nicely. Similarly, for using instance variables, having to write self . var means that references
to unqualified names inside a method don’t have to search the instance’s directories. To put it another way, local variables
and instance variables live in two different namespaces, and you need to tell Python which namespace to use.

3.6 Why can’t | use an assignment in an expression?

Many people used to C or Perl complain that they want to use this C idiom:

while (line = readline(f)) {
// do something with line

}

where in Python you’re forced to write this:

while True:
line = f.readline()
if not line:
break
do something with line

3.4. Why are Python strings immutable? 43

Python Frequently Asked Questions, Rilis 2.7.18

The reason for not allowing assignment in Python expressions is a common, hard-to-find bug in those other languages,
caused by this construct:

if (x = 0) {
// error handling
}
else {
// code that only works for nonzero x

}

The error is a simple typo: x = 0, which assigns O to the variable x, was written while the comparison x == 0 is
certainly what was intended.

Many alternatives have been proposed. Most are hacks that save some typing but use arbitrary or cryptic syntax or
keywords, and fail the simple criterion for language change proposals: it should intuitively suggest the proper meaning to
a human reader who has not yet been introduced to the construct.

An interesting phenomenon is that most experienced Python programmers recognize the while True idiom and don’t
seem to be missing the assignment in expression construct much; it’s only newcomers who express a strong desire to add
this to the language.

There’s an alternative way of spelling this that seems attractive but is generally less robust than the "while True” solution:

line = f.readline()
while line:
do something with line...
line = f.readline()

The problem with this is that if you change your mind about exactly how you get the next line (e.g. you want to change it
into sys.stdin.readline ())youhave to remember to change two places in your program -- the second occurrence
is hidden at the bottom of the loop.

The best approach is to use iterators, making it possible to loop through objects using the for statement. For example,
in the current version of Python file objects support the iterator protocol, so you can now write simply:

for line in f:
do something with line...

3.7 Why does Python use methods for some functionality (e.g.
list.index()) but functions for other (e.g. len(list))?

Seperti yang Guido katakan:

(a) For some operations, prefix notation just reads better than postfix -- prefix (and infix!) operations have a
long tradition in mathematics which likes notations where the visuals help the mathematician thinking about
a problem. Compare the easy with which we rewrite a formula like x*(a+b) into x*a + x*b to the clumsiness
of doing the same thing using a raw OO notation.

(b) When I read code that says len(x) I know that it is asking for the length of something. This tells me
two things: the result is an integer, and the argument is some kind of container. To the contrary, when I
read x.len(), I have to already know that x is some kind of container implementing an interface or inheriting
from a class that has a standard len(). Witness the confusion we occasionally have when a class that is not
implementing a mapping has a get() or keys() method, or something that isn’t a file has a write() method.

—https://mail.python.org/pipermail/python-3000/2006-November/004643.html

44 Bab 3. Desain dan Sejarah FAQ

https://mail.python.org/pipermail/python-3000/2006-November/004643.html

Python Frequently Asked Questions, Rilis 2.7.18

3.8 Why is join() a string method instead of a list or tuple method?

Strings became much more like other standard types starting in Python 1.6, when methods were added which give the
same functionality that has always been available using the functions of the string module. Most of these new methods
have been widely accepted, but the one which appears to make some programmers feel uncomfortable is:

’H, ".join(['l', |2v, 141, '8', '16'])

which gives the result:

’"1, 2, 4, 8, 16"

There are two common arguments against this usage.

The first runs along the lines of: "It looks really ugly using a method of a string literal (string constant)”, to which the
answer is that it might, but a string literal is just a fixed value. If the methods are to be allowed on names bound to strings
there is no logical reason to make them unavailable on literals.

The second objection is typically cast as: ”I am really telling a sequence to join its members together with a string constant”.
Sadly, you aren’t. For some reason there seems to be much less difficulty with having split () as a string method, since
in that case it is easy to see that

"1, 2, 4, 8, 16".split (", ")

is an instruction to a string literal to return the substrings delimited by the given separator (or, by default, arbitrary runs
of white space). In this case a Unicode string returns a list of Unicode strings, an ASCII string returns a list of ASCII
strings, and everyone is happy.

join () is astring method because in using it you are telling the separator string to iterate over a sequence of strings and
insert itself between adjacent elements. This method can be used with any argument which obeys the rules for sequence
objects, including any new classes you might define yourself.

Because this is a string method it can work for Unicode strings as well as plain ASCII strings. If join () were a method
of the sequence types then the sequence types would have to decide which type of string to return depending on the type
of the separator.

If none of these arguments persuade you, then for the moment you can continue to use the join () function from the
string module, which allows you to write

string.join((['2', '2', "4', '8', '16'], ", ™M)

3.9 How fast are exceptions?

A try/except block is extremely efficient if no exceptions are raised. Actually catching an exception is expensive. In
versions of Python prior to 2.0 it was common to use this idiom:

try:
value = mydict [key]

except KeyError:
mydict [key] = getvalue (key)
value = mydict [key]

This only made sense when you expected the dict to have the key almost all the time. If that wasn’t the case, you coded
it like this:

3.8. Why is join() a string method instead of a list or tuple method? 45

Python Frequently Asked Questions, Rilis 2.7.18

if key in mydict:
value = mydict [key]
else:
value = mydict[key] = getvalue (key)

Catatan: In Python 2.0 and higher, you can code this as value = mydict.setdefault (key,
getvalue (key)).

3.10 Why isn’t there a switch or case statement in Python?

Anda dapat melakukan ini dengan cukup mudah dengan urutan 1f... elif... elif... else. Adabeberapa
proposal untuk sintaks pernyataan switch, tetapi belum ada (sampai saat ini) konsensus tentang apakah dan bagaimana
melakukan pengujian rentang. Lihat PEP 275 untuk perincian lengkap dan status saat ini.

For cases where you need to choose from a very large number of possibilities, you can create a dictionary mapping case
values to functions to call. For example:

def function_1(...):

functions = {'a': function_1,

'b': function_2,

'c': self.method_1, ...}
func = functions|[value]
func ()

For calling methods on objects, you can simplify yet further by using the getattr () built-in to retrieve methods with
a particular name:

def visit_a(self, ...):

def dispatch(self, wvalue):

method_name = 'visit ' + str(value)
method = getattr(self, method_name)
method ()

It’s suggested that you use a prefix for the method names, such as visit_ in this example. Without such a prefix, if
values are coming from an untrusted source, an attacker would be able to call any method on your object.

46 Bab 3. Desain dan Sejarah FAQ

https://www.python.org/dev/peps/pep-0275

Python Frequently Asked Questions, Rilis 2.7.18

3.11 Can’t you emulate threads in the interpreter instead of relying
on an OS-specific thread implementation?

Answer 1: Unfortunately, the interpreter pushes at least one C stack frame for each Python stack frame. Also, extensions
can call back into Python at almost random moments. Therefore, a complete threads implementation requires thread
support for C.

Answer 2: Fortunately, there is Stackless Python, which has a completely redesigned interpreter loop that avoids the C
stack.

3.12 Why can’t lambda expressions contain statements?

Python lambda expressions cannot contain statements because Python’s syntactic framework can’t handle statements nes-
ted inside expressions. However, in Python, this is not a serious problem. Unlike lambda forms in other languages, where
they add functionality, Python lambdas are only a shorthand notation if you're too lazy to define a function.

Functions are already first class objects in Python, and can be declared in a local scope. Therefore the only advantage of
using a lambda instead of a locally-defined function is that you don’t need to invent a name for the function -- but that’s
just a local variable to which the function object (which is exactly the same type of object that a lambda expression yields)
is assigned!

3.13 Can Python be compiled to machine code, C or some other la-
nguage?

Cython compiles a modified version of Python with optional annotations into C extensions. Nuitka is an up-and-coming
compiler of Python into C++ code, aiming to support the full Python language. For compiling to Java you can consider
VOC.

3.14 How does Python manage memory?

The details of Python memory management depend on the implementation. The standard C implementation of Python
uses reference counting to detect inaccessible objects, and another mechanism to collect reference cycles, periodically
executing a cycle detection algorithm which looks for inaccessible cycles and deletes the objects involved. The gc module
provides functions to perform a garbage collection, obtain debugging statistics, and tune the collector’s parameters.

Jython relies on the Java runtime so the JVM’s garbage collector is used. This difference can cause some subtle porting
problems if your Python code depends on the behavior of the reference counting implementation.

Sometimes objects get stuck in tracebacks temporarily and hence are not deallocated when you might expect. Clear the
tracebacks with:

import sys
sys.exc_clear ()
sys.exc_traceback = sys.last_traceback = None

Tracebacks are used for reporting errors, implementing debuggers and related things. They contain a portion of the
program state extracted during the handling of an exception (usually the most recent exception).

In the absence of circularities and tracebacks, Python programs do not need to manage memory explicitly.

3.11. Can’t you emulate threads in the interpreter instead of relying on an OS-specific thread 47
implementation?

http://www.stackless.com
http://cython.org/
http://www.nuitka.net/
https://voc.readthedocs.io

Python Frequently Asked Questions, Rilis 2.7.18

Why doesn’t Python use a more traditional garbage collection scheme? For one thing, this is not a C standard feature
and hence it’s not portable. (Yes, we know about the Boehm GC library. It has bits of assembler code for most common
platforms, not for all of them, and although it is mostly transparent, it isn’t completely transparent; patches are required
to get Python to work with it.)

Traditional GC also becomes a problem when Python is embedded into other applications. While in a standalone Python
it’s fine to replace the standard malloc() and free() with versions provided by the GC library, an application embedding
Python may want to have its own substitute for malloc() and free(), and may not want Python’s. Right now, Python works
with anything that implements malloc() and free() properly.

In Jython, the following code (which is fine in CPython) will probably run out of file descriptors long before it runs out
of memory:

for file in very_long_list_of_ files:
f = open(file)
c = f.read (1)

Using the current reference counting and destructor scheme, each new assignment to f closes the previous file. Using GC,
this is not guaranteed. If you want to write code that will work with any Python implementation, you should explicitly
close the file or use the with statement; this will work regardless of GC:

for file in very_long_list_of_files:
with open(file) as f:
c = f.read(1l)

3.15 Why isn’t all memory freed when Python exits?

Objects referenced from the global namespaces of Python modules are not always deallocated when Python exits. This
may happen if there are circular references. There are also certain bits of memory that are allocated by the C library that
are impossible to free (e.g. a tool like Purify will complain about these). Python is, however, aggressive about cleaning
up memory on exit and does try to destroy every single object.

If you want to force Python to delete certain things on deallocation use the atexit module to run a function that will
force those deletions.

3.16 Why are there separate tuple and list data types?

Lists and tuples, while similar in many respects, are generally used in fundamentally different ways. Tuples can be thought
of as being similar to Pascal records or C structs; they’re small collections of related data which may be of different types
which are operated on as a group. For example, a Cartesian coordinate is appropriately represented as a tuple of two or
three numbers.

Lists, on the other hand, are more like arrays in other languages. They tend to hold a varying number of objects all of
which have the same type and which are operated on one-by-one. For example, os.listdir ('."') returns a list of
strings representing the files in the current directory. Functions which operate on this output would generally not break if
you added another file or two to the directory.

Tuples are immutable, meaning that once a tuple has been created, you can’t replace any of its elements with a new
value. Lists are mutable, meaning that you can always change a list’s elements. Only immutable elements can be used as
dictionary keys, and hence only tuples and not lists can be used as keys.

48 Bab 3. Desain dan Sejarah FAQ

Python Frequently Asked Questions, Rilis 2.7.18

3.17 How are lists implemented in CPython?

CPython’s lists are really variable-length arrays, not Lisp-style linked lists. The implementation uses a contiguous array
of references to other objects, and keeps a pointer to this array and the array’s length in a list head structure.

This makes indexing a list a [1] an operation whose cost is independent of the size of the list or the value of the index.

When items are appended or inserted, the array of references is resized. Some cleverness is applied to improve the
performance of appending items repeatedly; when the array must be grown, some extra space is allocated so the next few
times don’t require an actual resize.

3.18 How are dictionaries implemented in CPython?

CPython’s dictionaries are implemented as resizable hash tables. Compared to B-trees, this gives better performance for
lookup (the most common operation by far) under most circumstances, and the implementation is simpler.

Dictionaries work by computing a hash code for each key stored in the dictionary using the hash () built-in function.
The hash code varies widely depending on the key; for example, "Python” hashes to -539294296 while “python”, a string
that differs by a single bit, hashes to 1142331976. The hash code is then used to calculate a location in an internal array
where the value will be stored. Assuming that you're storing keys that all have different hash values, this means that
dictionaries take constant time -- O(1), in computer science notation -- to retrieve a key. It also means that no sorted
order of the keys is maintained, and traversing the array as the . keys () and . items () do will output the dictionary’s
content in some arbitrary jumbled order.

3.19 Why must dictionary keys be immutable?

The hash table implementation of dictionaries uses a hash value calculated from the key value to find the key. If the key
were a mutable object, its value could change, and thus its hash could also change. But since whoever changes the key
object can’t tell that it was being used as a dictionary key, it can’t move the entry around in the dictionary. Then, when
you try to look up the same object in the dictionary it won’t be found because its hash value is different. If you tried to
look up the old value it wouldn’t be found either, because the value of the object found in that hash bin would be different.

If you want a dictionary indexed with a list, simply convert the list to a tuple first; the function tuple (L) creates a tuple
with the same entries as the list L. Tuples are immutable and can therefore be used as dictionary keys.

Some unacceptable solutions that have been proposed:

 Hash lists by their address (object ID). This doesn’t work because if you construct a new list with the same value it
won’t be found; e.g.:

mydict = {[1, 2]: '"12"}
print mydict[[1, 2]]

would raise a KeyError exception because the id of the [1, 2] used in the second line differs from that in the
first line. In other words, dictionary keys should be compared using ==, not using is.

* Make a copy when using a list as a key. This doesn’t work because the list, being a mutable object, could contain a
reference to itself, and then the copying code would run into an infinite loop.

¢ Allow lists as keys but tell the user not to modify them. This would allow a class of hard-to-track bugs in programs
when you forgot or modified a list by accident. It also invalidates an important invariant of dictionaries: every value
ind.keys () is usable as a key of the dictionary.

3.17. How are lists implemented in CPython? 49

Python Frequently Asked Questions, Rilis 2.7.18

» Mark lists as read-only once they are used as a dictionary key. The problem is that it’s not just the top-level object
that could change its value; you could use a tuple containing a list as a key. Entering anything as a key into a
dictionary would require marking all objects reachable from there as read-only -- and again, self-referential objects
could cause an infinite loop.

There is a trick to get around this if you need to, but use it at your own risk: You can wrap a mutable structure inside a
class instance which hasbotha__eq_ () anda__hash__ () method. You must then make sure that the hash value
for all such wrapper objects that reside in a dictionary (or other hash based structure), remain fixed while the object is in
the dictionary (or other structure).

class ListWrapper:
def _ init_ (self, the_list):
self.the_list = the_list

def __eqg (self, other):
return self.the_list == other.the_1list

def _ hash__ (self):
1l = self.the_list
result = 98767 - len(l)*555
for i, el in enumerate(l):
try:
result = result + (hash(el) % 9999999) * 1001 + i
except Exception:
result = (result % 7777777) + i * 333
return result

Note that the hash computation is complicated by the possibility that some members of the list may be unhashable and
also by the possibility of arithmetic overflow.

Furthermore it must always be the case that if o1 == 02 (ieol.__eq__(02) is True) then hash (ol) ==
hash (02) (ie,0l.__hash__ () == o02.__hash__ ()), regardless of whether the object is in a dictionary or not.
If you fail to meet these restrictions dictionaries and other hash based structures will misbehave.

In the case of ListWrapper, whenever the wrapper object is in a dictionary the wrapped list must not change to avoid
anomalies. Don’t do this unless you are prepared to think hard about the requirements and the consequences of not
meeting them correctly. Consider yourself warned.

3.20 Why doesn’t list.sort() return the sorted list?

In situations where performance matters, making a copy of the list just to sort it would be wasteful. Therefore, 1ist.
sort () sorts the list in place. In order to remind you of that fact, it does not return the sorted list. This way, you won’t
be fooled into accidentally overwriting a list when you need a sorted copy but also need to keep the unsorted version
around.

In Python 2.4 a new built-in function -- sorted () -- has been added. This function creates a new list from a provided
iterable, sorts it and returns it. For example, here’s how to iterate over the keys of a dictionary in sorted order:

for key in sorted(mydict):
do whatever with mydict [key]...

50 Bab 3. Desain dan Sejarah FAQ

Python Frequently Asked Questions, Rilis 2.7.18

3.21 How do you specify and enforce an interface spec in Python?

An interface specification for a module as provided by languages such as C++ and Java describes the prototypes for the
methods and functions of the module. Many feel that compile-time enforcement of interface specifications helps in the
construction of large programs.

Python 2.6 adds an abc module that lets you define Abstract Base Classes (ABCs). You can then use isinstance ()
and i ssubclass () tocheck whether an instance or a class implements a particular ABC. The collections module
defines a set of useful ABCs such as Tterable, Container, and MutableMapping.

For Python, many of the advantages of interface specifications can be obtained by an appropriate test discipline for
components. There is also a tool, PyChecker, which can be used to find problems due to subclassing.

A good test suite for a module can both provide a regression test and serve as a module interface specification and a set of
examples. Many Python modules can be run as a script to provide a simple "self test.” Even modules which use complex
external interfaces can often be tested in isolation using trivial ”stub” emulations of the external interface. The doctest
and unittest modules or third-party test frameworks can be used to construct exhaustive test suites that exercise every
line of code in a module.

An appropriate testing discipline can help build large complex applications in Python as well as having interface specifi-
cations would. In fact, it can be better because an interface specification cannot test certain properties of a program. For
example, the append () method is expected to add new elements to the end of some internal list; an interface specifica-
tion cannot test that your append () implementation will actually do this correctly, but it’s trivial to check this property
In a test suite.

Writing test suites is very helpful, and you might want to design your code with an eye to making it easily tested. One
increasingly popular technique, test-directed development, calls for writing parts of the test suite first, before you write
any of the actual code. Of course Python allows you to be sloppy and not write test cases at all.

3.22 Why is there no goto?

You can use exceptions to provide a “structured goto” that even works across function calls. Many feel that exceptions
can conveniently emulate all reasonable uses of the "go” or ”goto” constructs of C, Fortran, and other languages. For
example:

class label: pass # declare a label

try:

if condition: raise label () # goto label
except label: # where to goto

pass

This doesn’t allow you to jump into the middle of a loop, but that’s usually considered an abuse of goto anyway. Use
sparingly.

3.21. How do you specify and enforce an interface spec in Python? 51

Python Frequently Asked Questions, Rilis 2.7.18

3.23 Why can’t raw strings (r-strings) end with a backslash?

More precisely, they can’t end with an odd number of backslashes: the unpaired backslash at the end escapes the closing
quote character, leaving an unterminated string.

Raw strings were designed to ease creating input for processors (chiefly regular expression engines) that want to do their
own backslash escape processing. Such processors consider an unmatched trailing backslash to be an error anyway, so
raw strings disallow that. In return, they allow you to pass on the string quote character by escaping it with a backslash.
These rules work well when r-strings are used for their intended purpose.

If you’re trying to build Windows pathnames, note that all Windows system calls accept forward slashes too:

f = open("/mydir/file.txt") # works fine!

If you’re trying to build a pathname for a DOS command, try e.g. one of

dir = r"\this\is\my\dos\dir"™ "\\"
dir = r"\this\is\my\dos\dir\ "[:-1]
dir = "\\this\\is\\my\\dos\\dir\\"

3.24 Why doesn’t Python have a "with” statement for attribute assig-
nments?

Python has a "with’ statement that wraps the execution of a block, calling code on the entrance and exit from the block.
Some language have a construct that looks like this:

with obj:
a =1 # equivalent to obj.a = 1
total = total + 1 # obj.total = obj.total + 1

In Python, such a construct would be ambiguous.

Other languages, such as Object Pascal, Delphi, and C++, use static types, so it’s possible to know, in an unambiguous
way, what member is being assigned to. This is the main point of static typing -- the compiler always knows the scope of
every variable at compile time.

Python uses dynamic types. It is impossible to know in advance which attribute will be referenced at runtime. Member
attributes may be added or removed from objects on the fly. This makes it impossible to know, from a simple reading,
what attribute is being referenced: a local one, a global one, or a member attribute?

For instance, take the following incomplete snippet:

def foo(a):
with a:
print x

The snippet assumes that “a” must have a member attribute called "x”. However, there is nothing in Python that tells the
interpreter this. What should happen if ”a” is, let us say, an integer? If there is a global variable named ”x”, will it be
used inside the with block? As you see, the dynamic nature of Python makes such choices much harder.

The primary benefit of “with” and similar language features (reduction of code volume) can, however, easily be achieved
in Python by assignment. Instead of:

52 Bab 3. Desain dan Sejarah FAQ

Python Frequently Asked Questions, Rilis 2.7.18

function (args) .mydict[index] [index].a = 21
function (args) .mydict [index] [index] .b = 42
function (args) .mydict [index] [index].c = 63
write this:

ref = function(args) .mydict[index] [index]
ref.a = 21

ref.b = 42

ref.c = 63

This also has the side-effect of increasing execution speed because name bindings are resolved at run-time in Python, and
the second version only needs to perform the resolution once.

3.25 Why are colons required for the if/while/def/class statements?

The colon is required primarily to enhance readability (one of the results of the experimental ABC language). Consider
this:

if a ==
print a

versus

if a ==
print a

Notice how the second one is slightly easier to read. Notice further how a colon sets off the example in this FAQ answer;
it’s a standard usage in English.

Another minor reason is that the colon makes it easier for editors with syntax highlighting; they can look for colons to
decide when indentation needs to be increased instead of having to do a more elaborate parsing of the program text.

3.26 Why does Python allow commas at the end of lists and tuples?

Python lets you add a trailing comma at the end of lists, tuples, and dictionaries:

"B": [6, 7], # last trailing comma is optional but good style

There are several reasons to allow this.

When you have a literal value for a list, tuple, or dictionary spread across multiple lines, it’s easier to add more elements
because you don’t have to remember to add a comma to the previous line. The lines can also be reordered without creating
a syntax error.

Accidentally omitting the comma can lead to errors that are hard to diagnose. For example:

3.25. Why are colons required for the if/while/def/class statements? 53

Python Frequently Asked Questions, Rilis 2.7.18

x = [
"fee",
"fie"
"foo",
"fum"

]

This list looks like it has four elements, but it actually contains three: “fee”, "fiefoo” and “fum”. Always adding the comma
avoids this source of error.

Allowing the trailing comma may also make programmatic code generation easier.

54 Bab 3. Desain dan Sejarah FAQ

BAB 4

FAQ Pustaka dan Ekstensi

4.1 Pertanyaan Umum Pustaka

4.1.1 Bagaimana saya mencari sebuah modul atau aplikasi untuk melakukan pe-
kerjaan X?

Check the Library Reference to see if there’s a relevant standard library module. (Eventually you’ll learn what’s in the
standard library and will be able to skip this step.)

For third-party packages, search the Python Package Index or try Google or another Web search engine. Searching for
”Python” plus a keyword or two for your topic of interest will usually find something helpful.

4.1.2 Dimana berkas sumber math.py (socket.py, regex.py, dil.)?

If you can’t find a source file for a module it may be a built-in or dynamically loaded module implemented in C, C++ or
other compiled language. In this case you may not have the source file or it may be something like mathmodule.c,
somewhere in a C source directory (not on the Python Path).

There are (at least) three kinds of modules in Python:
1) modul ditulis dengan Python (.py);
2) modul ditulis dengan C dan dimuat secara dinamis (.dll, .pyd, .so, .sl, dll);

3) modules written in C and linked with the interpreter; to get a list of these, type:

import sys
print sys.builtin_module_names

55

https://pypi.org
https://www.google.com

Python Frequently Asked Questions, Rilis 2.7.18

4.1.3 Bagaimana saya membuat sebuah skrip Python dapat dieksekusi di Unix?

You need to do two things: the script file’s mode must be executable and the first line must begin with # ! followed by the
path of the Python interpreter.
The first is done by executing chmod +x scriptfile or perhaps chmod 755 scriptfile.

The second can be done in a number of ways. The most straightforward way is to write

#!/usr/local/bin/python

as the very first line of your file, using the pathname for where the Python interpreter is installed on your platform.

If you would like the script to be independent of where the Python interpreter lives, you can use the env program. Almost
all Unix variants support the following, assuming the Python interpreter is in a directory on the user’s PATH:

#!/usr/bin/env python

Don't do this for CGI scripts. The PATH variable for CGI scripts is often very minimal, so you need to use the actual
absolute pathname of the interpreter.

Occasionally, a user’s environment is so full that the /usr/bin/env program fails; or there’s no env program at all. In
that case, you can try the following hack (due to Alex Rezinsky):

#! /bin/sh

mrn .

exec python $0 ${1+"$@"}

mn

The minor disadvantage is that this defines the script’s __doc___ string. However, you can fix that by adding

doc = "r"r ., .Whatever..."""

4.1.4 Is there a curses/termcap package for Python?

For Unix variants the standard Python source distribution comes with a curses module in the Modules subdirectory, though

it’s not compiled by default. (Note that this is not available in the Windows distribution -- there is no curses module for
Windows.)

The curses module supports basic curses features as well as many additional functions from ncurses and SYSV curses
such as colour, alternative character set support, pads, and mouse support. This means the module isn’t compatible with

operating systems that only have BSD curses, but there don’t seem to be any currently maintained OSes that fall into this
category.

For Windows: use the consolelib module.

4.1.5 Is there an equivalent to C’s onexit() in Python?

The atexit module provides a register function that is similar to C’s onexit ().

56 Bab 4. FAQ Pustaka dan Ekstensi

https://github.com/python/cpython/tree/2.7/Modules
http://effbot.org/zone/console-index.htm

Python Frequently Asked Questions, Rilis 2.7.18

4.1.6 Why don’t my signal handlers work?

The most common problem is that the signal handler is declared with the wrong argument list. It is called as

handler (signum, frame)

so it should be declared with two arguments:

def handler (signum, frame):

4.2 Tugas umum

4.2.1 Bagaimana saya menguji sebuah program Python atau komponen?

Python comes with two testing frameworks. The doctest module finds examples in the docstrings for a module and
runs them, comparing the output with the expected output given in the docstring.

The unittest module is a fancier testing framework modelled on Java and Smalltalk testing frameworks.

To make testing easier, you should use good modular design in your program. Your program should have almost all
functionality encapsulated in either functions or class methods -- and this sometimes has the surprising and delightful
effect of making the program run faster (because local variable accesses are faster than global accesses). Furthermore the
program should avoid depending on mutating global variables, since this makes testing much more difficult to do.

The “global main logic” of your program may be as simple as

if _ name_ == "_ _main_ ":

main_logic ()

di bagian bawah dari modul utama program anda.

Once your program is organized as a tractable collection of functions and class behaviours you should write test functions
that exercise the behaviours. A test suite that automates a sequence of tests can be associated with each module. This
sounds like a lot of work, but since Python is so terse and flexible it’s surprisingly easy. You can make coding much more
pleasant and fun by writing your test functions in parallel with the “production code”, since this makes it easy to find bugs
and even design flaws earlier.

”Support modules” that are not intended to be the main module of a program may include a self-test of the module.

if name == "_main__ ":

self_test ()

Even programs that interact with complex external interfaces may be tested when the external interfaces are unavailable
by using “fake” interfaces implemented in Python.

4.2. Tugas umum 57

Python Frequently Asked Questions, Rilis 2.7.18

4.2.2 Bagaimana saya membuat dokumentasi dari doc strings?

The pydoc module can create HTML from the doc strings in your Python source code. An alternative for creating API
documentation purely from docstrings is epydoc. Sphinx can also include docstring content.

4.2.3 How do | get a single keypress at a time?

For Unix variants there are several solutions. It’s straightforward to do this using curses, but curses is a fairly large module
to learn. Here’s a solution without curses:

import termios, fcntl, sys, os
fd = sys.stdin.fileno ()

oldterm = termios.tcgetattr (£d)

newattr = termios.tcgetattr (fd)

newattr[3] = newattr[3] & ~termios.ICANON & ~termios.ECHO
termios.tcsetattr (fd, termios.TCSANOW, newattr)

oldflags = fcntl.fcentl (fd, fcntl.F_GETFL)
fentl.fentl (£d, fcentl.F_SETFL, oldflags | os.O_NONBLOCK)

try:
while 1:
try:
c = sys.stdin.read (1)
print "Got character", repr(c)
except IOError: pass
finally:
termios.tcsetattr (fd, termios.TCSAFLUSH, oldterm)
fentl.fentl (fd, fcentl.F_SETFL, oldflags)

You need the termios and the fcnt 1 module for any of this to work, and I've only tried it on Linux, though it should
work elsewhere. In this code, characters are read and printed one at a time.

termios.tcsetattr () turns off stdin’s echoing and disables canonical mode. fcntl.fnctl () isused to obtain
stdin’s file descriptor flags and modify them for non-blocking mode. Since reading stdin when it is empty results in an
IOError, this error is caught and ignored.

4.3 Threads

4.3.1 How do | program using threads?

Be sure to use the threading module and not the thread module. The threading module builds convenient
abstractions on top of the low-level primitives provided by the thread module.

Aahz has a set of slides from his threading tutorial that are helpful; see http://www.pythoncraft.com/OSCON2001/.

58 Bab 4. FAQ Pustaka dan Ekstensi

http://epydoc.sourceforge.net/
http://sphinx-doc.org
http://www.pythoncraft.com/OSCON2001/

Python Frequently Asked Questions, Rilis 2.7.18

4.3.2 None of my threads seem to run: why?

As soon as the main thread exits, all threads are killed. Your main thread is running too quickly, giving the threads no
time to do any work.

A simple fix is to add a sleep to the end of the program that’s long enough for all the threads to finish:

import threading, time

def thread_task (name, n):
for i in range(n): print name, 1

for i in range(10):
T = threading.Thread(target=thread_task, args=(str(i), 1i))
T.start ()

time.sleep (10) # < !

But now (on many platforms) the threads don’t run in parallel, but appear to run sequentially, one at a time! The reason
is that the OS thread scheduler doesn’t start a new thread until the previous thread is blocked.

A simple fix is to add a tiny sleep to the start of the run function:

def thread_task (name, n):
time.sleep(0.001) # <-————————————————————— !
for i in range(n): print name, 1

for i in range(10):
T = threading.Thread(target=thread_task, args=(str(i), 1))
T.start ()

time.sleep(10)

Instead of trying to guess a good delay value for t ime . sleep (), it’s better to use some kind of semaphore mechanism.
One idea is to use the Queue module to create a queue object, let each thread append a token to the queue when it finishes,
and let the main thread read as many tokens from the queue as there are threads.

4.3.3 How do | parcel out work among a bunch of worker threads?

Use the Queue module to create a queue containing a list of jobs. The Queue class maintains a list of objects and has
a .put (ob7j) method that adds items to the queue and a . get () method to return them. The class will take care of
the locking necessary to ensure that each job is handed out exactly once.

Here’s a trivial example:

import threading, Queue, time

The worker thread gets jobs off the queue. When the queue is empty, it
assumes there will be no more work and exits.
(Realistically workers will run until terminated.)
def worker () :
print 'Running worker'
time.sleep(0.1)
while True:
try:
arg = g.get (block=False)
except Queue.Empty:

(berlanjut ke halaman berikutnya)

4.3. Threads 59

Python Frequently Asked Questions, Rilis 2.7.18

(lanjutan dari halaman sebelumnya)

print 'Worker', threading.currentThread(),
print 'queue empty'
break

else:
print 'Worker', threading.currentThread(),
print 'running with argument', arg
time.sleep(0.5)

Create queue
d = Queue.Queue ()

Start a pool of 5 workers

for i in range (5):
t = threading.Thread(target=worker, name='worker Y% (1i+1))
t.start ()

Begin adding work to the queue
for i in range(50):
g.put (1)

Give threads time to run
print 'Main thread sleeping’
time.sleep (5)

When run, this will produce the following output:

Running worker
Running worker
Running worker
Running worker
Running worker
Main thread sleeping

Worker <Thread(worker 1, started)> running with argument O
Worker <Thread(worker 2, started)> running with argument 1
Worker <Thread(worker 3, started)> running with argument 2
Worker <Thread(worker 4, started)> running with argument 3
Worker <Thread(worker 5, started)> running with argument 4
Worker <Thread(worker 1, started)> running with argument 5

Consult the module’s documentation for more details; the Queue class provides a featureful interface.

4.3.4 What kinds of global value mutation are thread-safe?

A global interpreter lock (GIL) is used internally to ensure that only one thread runs in the Python VM at a time. In
general, Python offers to switch among threads only between bytecode instructions; how frequently it switches can be set
via sys.setcheckinterval (). Each bytecode instruction and therefore all the C implementation code reached
from each instruction is therefore atomic from the point of view of a Python program.

In theory, this means an exact accounting requires an exact understanding of the PVM bytecode implementation. In
practice, it means that operations on shared variables of built-in data types (ints, lists, dicts, etc) that "look atomic” really
are.

For example, the following operations are all atomic (L, L1, L2 are lists, D, D1, D2 are dicts, x, y are objects, i, j are
ints):

60 Bab 4. FAQ Pustaka dan Ekstensi

Python Frequently Asked Questions, Rilis 2.7.18

L.append (x)
Ll.extend (L2)

x = L[1]

x = L.pop ()
L1[i:j] = L2
L.sort ()

X =Yy
x.field =y
D[x] = vy
D1.update (D2)
D.keys ()

These aren’t:

i = i+1
L.append(L[-1])
L[i] = LI[3]
D[x] = D[x] + 1

Operations that replace other objects may invoke those other objects’ ___del__ () method when their reference count
reaches zero, and that can affect things. This is especially true for the mass updates to dictionaries and lists. When in
doubt, use a mutex!

4.3.5 Can’t we get rid of the Global Interpreter Lock?

The global interpreter lock (GIL) is often seen as a hindrance to Python’s deployment on high-end multiprocessor server
machines, because a multi-threaded Python program effectively only uses one CPU, due to the insistence that (almost) all
Python code can only run while the GIL is held.

Back in the days of Python 1.5, Greg Stein actually implemented a comprehensive patch set (the “free threading” patches)
that removed the GIL and replaced it with fine-grained locking. Unfortunately, even on Windows (where locks are very
efficient) this ran ordinary Python code about twice as slow as the interpreter using the GIL. On Linux the performance
loss was even worse because pthread locks aren’t as efficient.

Since then, the idea of getting rid of the GIL has occasionally come up but nobody has found a way to deal with the
expected slowdown, and users who don’t use threads would not be happy if their code ran at half the speed. Greg’s free
threading patch set has not been kept up-to-date for later Python versions.

This doesn’t mean that you can’t make good use of Python on multi-CPU machines! You just have to be creative with
dividing the work up between multiple processes rather than multiple threads. Judicious use of C extensions will also
help; if you use a C extension to perform a time-consuming task, the extension can release the GIL while the thread of
execution is in the C code and allow other threads to get some work done.

It has been suggested that the GIL should be a per-interpreter-state lock rather than truly global; interpreters then wouldn’t
be able to share objects. Unfortunately, this isn’t likely to happen either. It would be a tremendous amount of work, because
many object implementations currently have global state. For example, small integers and short strings are cached; these
caches would have to be moved to the interpreter state. Other object types have their own free list; these free lists would
have to be moved to the interpreter state. And so on.

And I doubt that it can even be done in finite time, because the same problem exists for 3rd party extensions. It is likely
that 3rd party extensions are being written at a faster rate than you can convert them to store all their global state in the
interpreter state.

And finally, once you have multiple interpreters not sharing any state, what have you gained over running each interpreter
in a separate process?

4.3. Threads 61

Python Frequently Asked Questions, Rilis 2.7.18

4.4 Masukan dan Keluaran

4.4.1 Bagaimana saya menghapus sebuah berkas? (pertanyaan, dan berkas lain-
nya...)

Use os.remove (filename) or os.unlink (filename) ; for documentation, see the os module. The two fun-

ctions are identical; unlink () is simply the name of the Unix system call for this function.

To remove a directory, use os.rmdir ();use os.mkdir () to create one. os .makedirs (path) will create any
intermediate directories in path that don’t exist. os.removedirs (path) will remove intermediate directories as
long as they’re empty; if you want to delete an entire directory tree and its contents, use shutil.rmtree ().

To rename a file, use os.rename (01ld_path, new_path).

To truncate a file, open it using £ = open (filename, "r+"),anduse f.truncate (offset);offset defaults
to the current seek position. There’s also os . ftruncate (fd, offset) for files opened with os . open (), where
fd is the file descriptor (a small integer).

The shut i1 module also contains a number of functions to work on files including copyfile (), copytree (), and
rmtree ().

4.4.2 Bagaimana saya mengopi sebuah berkas?

The shutil module contains a copyfile () function. Note that on MacOS 9 it doesn’t copy the resource fork and
Finder info.

4.4.3 Bagaimana saya membaca (atau menulis) data biner?

To read or write complex binary data formats, it’s best to use the st ruct module. It allows you to take a string containing
binary data (usually numbers) and convert it to Python objects; and vice versa.

For example, the following code reads two 2-byte integers and one 4-byte integer in big-endian format from a file:

import struct

f = open(filename, "rb") # Open in binary mode for portability
s = f.read(8)
X, Yy, z = struct.unpack(">hhl", s)

The ’>’ in the format string forces big-endian data; the letter 'h’ reads one “short integer” (2 bytes), and ’I’ reads one “long
integer” (4 bytes) from the string.

For data that is more regular (e.g. a homogeneous list of ints or floats), you can also use the array module.

62 Bab 4. FAQ Pustaka dan Ekstensi

Python Frequently Asked Questions, Rilis 2.7.18

4.4.4 | can’t seem to use os.read() on a pipe created with os.popen(); why?

os.read () is a low-level function which takes a file descriptor, a small integer representing the opened file. os.
popen () creates a high-level file object, the same type returned by the built-in open () function. Thus, to read » bytes
from a pipe p created with os . popen (), you need to use p. read (n) .

4.4.5 How do | run a subprocess with pipes connected to both input and output?

Use the popen2 module. For example:

import popen2

fromchild, tochild = popen2.popen2 ("command")
tochild.write ("input\n")

tochild.flush ()

output = fromchild.readline ()

Warning: in general it is unwise to do this because you can easily cause a deadlock where your process is blocked waiting
for output from the child while the child is blocked waiting for input from you. This can be caused by the parent expecting
the child to output more text than it does or by data being stuck in stdio buffers due to lack of flushing. The Python parent
can of course explicitly flush the data it sends to the child before it reads any output, but if the child is a naive C program
it may have been written to never explicitly flush its output, even if it is interactive, since flushing is normally automatic.

Note that a deadlock is also possible if you use popen3 () to read stdout and stderr. If one of the two is too large for
the internal buffer (increasing the buffer size does not help) and you read () the other one first, there is a deadlock, too.

Note on a bug in popen2: unless your program callswait () orwaitpid (), finished child processes are never removed,
and eventually calls to popen2 will fail because of a limit on the number of child processes. Calling os.waitpid ()
with the os . WNOHANG option can prevent this; a good place to insert such a call would be before calling popen?2 again.

In many cases, all you really need is to run some data through a command and get the result back. Unless the amount of
data is very large, the easiest way to do this is to write it to a temporary file and run the command with that temporary
file as input. The standard module tempfile exports amktemp () function to generate unique temporary file names.

import tempfile
import os

class Popen3:
mrmrn
This is a deadlock-safe version of popen that returns
an object with errorlevel, out (a string) and err (a string).
(capturestderr may not work under windows.)

Example: print Popen3 ('grep spam', '\n\nhere spam\n\n').out
mrn

def _ init_ (self, command, input=None, capturestderr=None) :
outfile=tempfile.mktemp ()
command=" ()y > " % (command,outfile)
if input:
infile=tempfile.mktemp ()
open (infile, "w") .write (input)

command=command+" <"+infile
if capturestderr:
errfile=tempfile.mktemp ()
command=command+" 2>"+errfile
self.errorlevel=o0s.system(command) >> 8
self.out=open (outfile, "r") .read()
os.remove (outfile)

(berlanjut ke halaman berikutnya)

4.4. Masukan dan Keluaran 63

Python Frequently Asked Questions, Rilis 2.7.18

(lanjutan dari halaman sebelumnya)

if input:
os.remove (infile)

if capturestderr:
self.err=open(errfile, "r") .read()
os.remove (errfile)

Note that many interactive programs (e.g. vi) don’t work well with pipes substituted for standard input and output. You
will have to use pseudo ttys ("ptys”) instead of pipes. Or you can use a Python interface to Don Libes’ “expect” library.
A Python extension that interfaces to expect is called “expy” and available from http://expectpy.sourceforge.net. A pure
Python solution that works like expect is pexpect.

4.4.6 How do | access the serial (RS232) port?

For Win32, POSIX (Linux, BSD, etc.), Jython:
http://pyserial.sourceforge.net
For Unix, see a Usenet post by Mitch Chapman:

https://groups.google.com/groups?selm=34A04430.CF9 @ohioee.com

4.4.7 Why doesn’t closing sys.stdout (stdin, stderr) really close it?

Python file objects are a high-level layer of abstraction on top of C streams, which in turn are a medium-level layer of
abstraction on top of (among other things) low-level C file descriptors.

For most file objects you create in Python via the built-in £ile constructor, £.close () marks the Python file object
as being closed from Python’s point of view, and also arranges to close the underlying C stream. This also happens
automatically in £’s destructor, when £ becomes garbage.

But stdin, stdout and stderr are treated specially by Python, because of the special status also given to them by C. Running
sys.stdout.close () marks the Python-level file object as being closed, but does not close the associated C stream.

To close the underlying C stream for one of these three, you should first be sure that’s what you really want to do (e.g.,
you may confuse extension modules trying to do I/O). If it is, use os.close:

os.close (0) # close C's stdin stream
os.close (1) # close C's stdout stream
os.close(2) # close C's stderr stream

4.5 Pemrograman Jaringan/Internet

4.5.1 What WWW tools are there for Python?

See the chapters titled internet and netdata in the Library Reference Manual. Python has many modules that will help
you build server-side and client-side web systems.

A summary of available frameworks is maintained by Paul Boddie at https://wiki.python.org/moin/WebProgramming.

Cameron Laird maintains a useful set of pages about Python web technologies at http://phaseit.net/claird/comp.lang.
python/web_python.

64 Bab 4. FAQ Pustaka dan Ekstensi

http://expectpy.sourceforge.net
https://pypi.org/project/pexpect/
http://pyserial.sourceforge.net
https://groups.google.com/groups?selm=34A04430.CF9@ohioee.com
https://wiki.python.org/moin/WebProgramming
http://phaseit.net/claird/comp.lang.python/web_python
http://phaseit.net/claird/comp.lang.python/web_python

Python Frequently Asked Questions, Rilis 2.7.18

4.5.2 How can | mimic CGl form submission (METHOD=POST)?

I would like to retrieve web pages that are the result of POSTing a form. Is there existing code that would let me do this
easily?

Yes. Here’s a simple example that uses httplib:

#!/usr/local/bin/python
import httplib, sys, time

build the query string
gs = "First=Josephine&MI=Q&Last=Public"

connect and send the server a path
httpobj = httplib.HTTP ('www.some-server.out-there', 80)
httpobj.putrequest ('POST', '/cgi-bin/some-cgi-script')
now generate the rest of the HTTP headers...
httpobj.putheader ('Accept!', '*/*')
httpobj.putheader ('Connection', 'Keep-Alive')
httpobj.putheader ('Content-type', 'application/x-www-form-urlencoded")
httpobj.putheader ('Content—-length', '2d' % len(gs))
httpobj.endheaders ()
httpobj.send(gs)
find out what the server said in response...
reply, msg, hdrs = httpobj.getreply ()
if reply != 200:

sys.stdout.write (httpobj.getfile () .read())

Note that in general for percent-encoded POST operations, query strings must be quoted using urllib.
urlencode (). For example, to send name=Guy Steele, Jr.:

>>> import urllib
>>> urllib.urlencode ({'name': 'Guy Steele, Jr.'})
'name=Guy+Steele%2C+Jr."

4.5.3 Modul apa yang sebaiknya saya gunakan untuk membantu menghasilkan
HTML?

You can find a collection of useful links on the Web Programming wiki page.

4.5.4 Bagaimana saya mengirim email melalui skrip Python?

Gunakan pustaka standar modul smtplib.

Here’s a very simple interactive mail sender that uses it. This method will work on any host that supports an SMTP
listener.

import sys, smtplib

fromaddr = raw_input ("From: ")

toaddrs = raw_input ("To: ").split(',")
print "Enter message, end with ~D:"
msg = "'

while True:

(berlanjut ke halaman berikutnya)

4.5. Pemrograman Jaringan/Internet 65

https://wiki.python.org/moin/WebProgramming

Python Frequently Asked Questions, Rilis 2.7.18

(lanjutan dari halaman sebelumnya)

line = sys.stdin.readline()
if not line:

break
msg += line

The actual mail send

server = smtplib.SMTP ('localhost')
server.sendmail (fromaddr, toaddrs, msqg)
server.quit ()

A Unix-only alternative uses sendmail. The location of the sendmail program varies between systems; sometimes it is
/usr/lib/sendmail, sometimes /usr/sbin/sendmail. The sendmail manual page will help you out. Here’s
some sample code:

import os

SENDMAIL = "/usr/sbin/sendmail" # sendmail location

p = os.popen (" -t —-i" % SENDMAIL, "w")

p.write("To: receiver@example.com\n")

p.write("Subject: test\n")

p.write("\n") # blank line separating headers from body
p.write ("Some text\n")

p.write ("some more text\n")

sts = p.close()
if sts != 0:
print "Sendmail exit status", sts

4.5.5 Bagaimana saya menghindari pemblokiran di metode connect() dari sebuah
socket?

The select module is commonly used to help with asynchronous I/O on sockets.

To prevent the TCP connect from blocking, you can set the socket to non-blocking mode. Then when you do the
connect (), you will either connect immediately (unlikely) or get an exception that contains the error number as .
errno. errno.EINPROGRESS indicates that the connection is in progress, but hasn’t finished yet. Different OSes
will return different values, so you’re going to have to check what’s returned on your system.

You can use the connect_ex () method to avoid creating an exception. It will just return the errno value. To poll, you
can call connect_ex () again later -- 0 or errno.EISCONN indicate that you're connected -- or you can pass this
socket to select to check if it’s writable.

4.6 Basisdata

4.6.1 Apakah ada paket antarmuka ke basisdata di Python?

Ya.

Python 2.3 includes the bsddb package which provides an interface to the BerkeleyDB library. Interfaces to disk-based
hashes such as DBM and GDBM are also included with standard Python.

Support for most relational databases is available. See the DatabaseProgramming wiki page for details.

66 Bab 4. FAQ Pustaka dan Ekstensi

https://wiki.python.org/moin/DatabaseProgramming

Python Frequently Asked Questions, Rilis 2.7.18

4.6.2 How do you implement persistent objects in Python?

The pickle library module solves this in a very general way (though you still can’t store things like open files, sockets
or windows), and the shelve library module uses pickle and (g)dbm to create persistent mappings containing arbitrary
Python objects. For better performance, you can use the cPickle module.

A more awkward way of doing things is to use pickle’s little sister, marshal. The marshal module provides very fast
ways to store noncircular basic Python types to files and strings, and back again. Although marshal does not do fancy
things like store instances or handle shared references properly, it does run extremely fast. For example, loading a half
megabyte of data may take less than a third of a second. This often beats doing something more complex and general
such as using gdbm with pickle/shelve.

4.6.3 Why is cPickle so slow?

By default pickle uses a relatively old and slow format for backward compatibility. You can however specify other
protocol versions that are faster:

largeString = 'z' * (100 * 1024)
myPickle = cPickle.dumps (largeString, protocol=1)

4.6.4 If my program crashes with a bsddb (or anydbm) database open, it gets cor-
rupted. How come?

Databases opened for write access with the bsddb module (and often by the anydbm module, since it will preferentially use
bsddb) must explicitly be closed using the . close () method of the database. The underlying library caches database
contents which need to be converted to on-disk form and written.

If you have initialized a new bsddb database but not written anything to it before the program crashes, you will often wind
up with a zero-length file and encounter an exception the next time the file is opened.

4.6.5 | tried to open Berkeley DB file, but bsddb produces bsddb.error: (22, ’Invalid
argument’). Help! How can | restore my data?

Don’t panic! Your data is probably intact. The most frequent cause for the error is that you tried to open an earlier
Berkeley DB file with a later version of the Berkeley DB library.

Many Linux systems now have all three versions of Berkeley DB available. If you are migrating from version 1 to a newer
version use db_dump185 to dump a plain text version of the database. If you are migrating from version 2 to version 3
use db2_dump to create a plain text version of the database. In either case, use db_load to create a new native database
for the latest version installed on your computer. If you have version 3 of Berkeley DB installed, you should be able to
use db2_load to create a native version 2 database.

You should move away from Berkeley DB version 1 files because the hash file code contains known bugs that can corrupt
your data.

4.6. Basisdata 67

Python Frequently Asked Questions, Rilis 2.7.18

4.7 Matematika dan Bilangan

4.7.1 How do | generate random numbers in Python?

The standard module random implements a random number generator. Usage is simple:

import random
random. random ()

This returns a random floating point number in the range [0, 1).
There are also many other specialized generators in this module, such as:

* randrange (a, b) chooses an integer in the range [a, b).

e uniform(a, b) chooses afloating point number in the range [a, b).

e normalvariate (mean, sdev) samples the normal (Gaussian) distribution.
Some higher-level functions operate on sequences directly, such as:

e choice (S) chooses random element from a given sequence

e shuffle (L) shuffles a list in-place, i.e. permutes it randomly

There’s also a Random class you can instantiate to create independent multiple random number generators.

68 Bab 4. FAQ Pustaka dan Ekstensi

BAB D

Extending/Embedding FAQ

5.1 Can | create my own functions in C?

Yes, you can create built-in modules containing functions, variables, exceptions and even new types in C. This is explained
in the document extending-index.

Most intermediate or advanced Python books will also cover this topic.

5.2 Can | create my own functions in C++?

Yes, using the C compatibility features found in C++. Place extern "C" { ... } around the Python include files
and put extern "C" before each function that is going to be called by the Python interpreter. Global or static C++
objects with constructors are probably not a good idea.

5.3 Writing C is hard; are there any alternatives?

There are a number of alternatives to writing your own C extensions, depending on what you're trying to do.

If you need more speed, Psyco generates x86 assembly code from Python bytecode. You can use Psyco to compile the
most time-critical functions in your code, and gain a significant improvement with very little effort, as long as you're
running on a machine with an x86-compatible processor.

Cython and its relative Pyrex are compilers that accept a slightly modified form of Python and generate the corresponding
C code. Pyrex makes it possible to write an extension without having to learn Python’s C APIL.

If you need to interface to some C or C++ library for which no Python extension currently exists, you can try wrapping the
library’s data types and functions with a tool such as SWIG. SIP, CXX Boost, or Weave are also alternatives for wrapping
C++ libraries.

69

http://psyco.sourceforge.net/
http://cython.org
https://www.cosc.canterbury.ac.nz/greg.ewing/python/Pyrex/
http://www.swig.org
https://riverbankcomputing.com/software/sip/intro
http://cxx.sourceforge.net/
http://www.boost.org/libs/python/doc/index.html
https://github.com/scipy/weave

Python Frequently Asked Questions, Rilis 2.7.18

5.4 How can | execute arbitrary Python statements from C?

The highest-level function to do this is PyRun_SimpleString () which takes a single string argument to be exe-
cuted in the context of the module __main__ and returns O for success and -1 when an exception occurred (including
SyntaxError). If you want more control, use PyRun_String () ; see the source for PyRun_SimpleString ()
in Python/pythonrun.c.

5.5 How can | evaluate an arbitrary Python expression from C?

Call the function PyRun_String () from the previous question with the start symbol Py_eval_input; it parses an
expression, evaluates it and returns its value.

5.6 How do | extract C values from a Python object?

That depends on the object’s type. If it’s a tuple, PyTuple_Size () returns its length and PyTuple_GetItem()
returns the item at a specified index. Lists have similar functions, PyListSize () and PyList_GetItem().

For strings, PyString_Size () returns its length and PyString_AsString () a pointer to its value. Note that
Python strings may contain null bytes so C’'s strlen () should not be used.

To test the type of an object, first make sure it isn’t NULL, and then use PyString_Check (), PyTuple_Check (),
PyList_Check (), etc.

There is also a high-level API to Python objects which is provided by the so-called ’abstract’ interface -- read
Include/abstract.h for further details. It allows interfacing with any kind of Python sequence using calls like
PySequence_Length (), PySequence_GetItem (), etc.) as well as many other useful protocols.

5.7 How do | use Py_BuildValue() to create a tuple of arbitrary length?

You can’t. Use t = PyTuple_New (n) instead, and fill it with objects using PyTuple_SetItem(t, i, o)
-- note that this “eats” a reference count of o, so you have to Py_INCREF () it. Lists have similar functions
PyList_New(n) and PyList_SetItem(l, i, o). Note that you must set all the tuple items to some value
before you pass the tuple to Python code -- PyTuple_New (n) initializes them to NULL, which isn’t a valid Python
value.

5.8 How do | call an object’s method from C?

The PyObject_CallMethod () function can be used to call an arbitrary method of an object. The parameters are
the object, the name of the method to call, a format string like that used with Py_Buildvalue (), and the argument
values:

PyObject *
PyObject_CallMethod (PyObject *object, char *method_name,
char *arg_format, ...);

This works for any object that has methods -- whether built-in or user-defined. You are responsible for eventually
Py_DECREF () ’ing the return value.

3 %,

To call, e.g., a file object’s "seek” method with arguments 10, O (assuming the file object pointer is ”f”):

70 Bab 5. Extending/Embedding FAQ

Python Frequently Asked Questions, Rilis 2.7.18

res = PyObject_CallMethod(f, "seek", "(ii)", 10, 0);
if (res == NULL) {
. an exception occurred ...
}
else {
Py_DECREF (res) ;
3

Note that since PyObject_CallObject () always wants a tuple for the argument list, to call a function without
arguments, pass “()” for the format, and to call a function with one argument, surround the argument in parentheses, e.g.

7(1)”.

5.9 How do | catch the output from PyErr_Print() (or anything that
prints to stdout/stderr)?

In Python code, define an object that supports the write () method. Assign this object to sys.stdout and sys.
stderr. Call print_error, or just allow the standard traceback mechanism to work. Then, the output will go wherever
your write () method sends it.

The easiest way to do this is to use the StringlO class in the standard library.

Sample code and use for catching stdout:

>>> class StdoutCatcher:
def _ init_ (self):
self.data = ''
def write(self, stuff):
self.data = self.data + stuff

>>> import sys

>>> sys.stdout = StdoutCatcher ()

>>> print 'foo'

>>> print 'hello world!'

>>> gys.stderr.write(sys.stdout.data)
foo

hello world!

5.10 How do | access a module written in Python from C?

You can get a pointer to the module object as follows:

’module = PyImport_ImportModule ("<modulename>");

If the module hasn’t been imported yet (i.e. it is not yet present in sy s . modules), this initializes the module; otherwise
it simply returns the value of sys.modules ["<modulename>"]. Note that it doesn’t enter the module into any
namespace -- it only ensures it has been initialized and is stored in sys .modules.

You can then access the module’s attributes (i.e. any name defined in the module) as follows:

attr = PyObject_GetAttrString(module, "<attrname>");

Calling PyObject_SetAttrString () to assign to variables in the module also works.

5.9. How do | catch the output from PyErr_Print() (or anything that prints to stdout/stderr)? 71

Python Frequently Asked Questions, Rilis 2.7.18

5.11 How do | interface to C++ objects from Python?

Depending on your requirements, there are many approaches. To do this manually, begin by reading the "Extending and
Embedding” document. Realize that for the Python run-time system, there isn’t a whole lot of difference between C and
C++ -- so the strategy of building a new Python type around a C structure (pointer) type will also work for C++ objects.

For C++ libraries, see Writing C is hard; are there any alternatives?.

5.12 | added a module using the Setup file and the make fails; why?

Setup must end in a newline, if there is no newline there, the build process fails. (Fixing this requires some ugly shell
script hackery, and this bug is so minor that it doesn’t seem worth the effort.)

5.13 How do | debug an extension?

When using GDB with dynamically loaded extensions, you can’t set a breakpoint in your extension until your extension
is loaded.

In your . gdbinit file (or interactively), add the command:

br _PyImport_LoadDynamicModule

Then, when you run GDB:

$ gdb /local/bin/python

gdb) run myscript.py

) continue # repeat until your extension is loaded
gdb) finish # so that your extension is loaded

) br myfunction.c:50

) continue

5.14 | want to compile a Python module on my Linux system, but
some files are missing. Why?

Most packaged versions of Python don’t include the /usr/1lib/python2.x/config/ directory, which contains
various files required for compiling Python extensions.

For Red Hat, install the python-devel RPM to get the necessary files.

For Debian, run apt—-get install python-dev.

72 Bab 5. Extending/Embedding FAQ

Python Frequently Asked Questions, Rilis 2.7.18

5.15 What does "SystemError: _Pylmport_FixupExtension: module
yourmodule not loaded” mean?

This means that you have created an extension module named “yourmodule”, but your module init function does not
initialize with that name.

Every module init function will have a line similar to:

module = Py_InitModule ("yourmodule", yourmodule_functions);

If the string passed to this function is not the same name as your extension module, the SystemError exception will
be raised.

5.16 How do I tell ’incomplete input” from "invalid input”?

Sometimes you want to emulate the Python interactive interpreter’s behavior, where it gives you a continuation prompt
when the input is incomplete (e.g. you typed the start of an ”if” statement or you didn’t close your parentheses or triple
string quotes), but it gives you a syntax error message immediately when the input is invalid.

In Python you can use the codeop module, which approximates the parser’s behavior sufficiently. IDLE uses this, for
example.

The easiest way todoitin Cistocall PyRun_InteractiveLoop () (perhaps in a separate thread) and let the Python
interpreter handle the input for you. You can also set the PyOS_ReadlineFunctionPointer () to point at your
custom input function. See Modules/readline.c and Parser/myreadline.c for more hints.

However sometimes you have to run the embedded Python interpreter in the same thread as your rest application and you
can’t allow the PyRun_InteractiveLoop () to stop while waiting for user input. The one solution then is to call
PyParser_ParseString () and test for e.error equal to E_EOF, which means the input is incomplete. Here’s
a sample code fragment, untested, inspired by code from Alex Farber:

#include <Python.h>
#include <node.h>
#include <errcode.h>
#include <grammar.h>
#include <parsetok.h>
#include <compile.h>

int testcomplete (char *code)
/* code should end in \n */
/* return -1 for error, 0 for incomplete, 1 for complete */

node *nj;
perrdetail e;

n = PyParser_ParseString(code, &_PyParser_Grammar,
Py_file_input, &e);
if (n == NULL) {
if (e.error == E_EOF)
return O;
return -1;

PyNode_Free (n);

(berlanjut ke halaman berikutnya)

5.15. What does "SystemError: _Pylmport_FixupExtension: module yourmodule not loaded” 73
mean?

Python Frequently Asked Questions, Rilis 2.7.18

(lanjutan dari halaman sebelumnya)

return 1;

Another solution is trying to compile the received string with Py_CompileString (). If it compiles without errors,
try to execute the returned code object by calling PyEval_EvalCode (). Otherwise save the input for later. If the
compilation fails, find out if it’s an error or just more input is required - by extracting the message string from the exception
tuple and comparing it to the string "unexpected EOF while parsing”. Here is a complete example using the GNU readline
library (you may want to ignore SIGINT while calling readline()):

#include <stdio.h>
#include <readline.h>

#include <Python.h>
#include <object.h>
#include <compile.h>
#include <eval.h>

int main (int argc, char* argv([])

{
int i, j, done = 0; /* lengths of line, code */
char psi[] = ">>> ";
char ps2[] ..
char *prompt = psl;
char *msg, *line, *code = NULL;
PyObject *src, *glb, *loc;
PyObject *exc, *val, *trb, *obj, *dum;

Py_Initialize ();

loc = PyDict_New ();

glb = PyDict_New ();

PyDict_SetItemString (glb, "__builtins__ ", PyEval_GetBuiltins ());

while (!done)
{

line = readline (prompt);

if (NULL == line) /* Ctrl-D pressed */
{
done = 1;
3
else
{

i = strlen (line);

if (1 > 0)

add_history (line); /* save non—-empty lines */
if (NULL == code) /* nothing in code yet */
j=20;
else
J = strlen (code);
code = realloc (code, i + j + 2);
if (NULL == code) /* out of memory */

exit (1);

(berlanjut ke halaman berikutnya)

74 Bab 5. Extending/Embedding FAQ

Python Frequently Asked Questions, Rilis 2.7.18

(lanjutan dari halaman sebelumnya)

if (0 == 4) /* code was empty, so */
code[0] = "\O'; /* keep strncat happy */
strncat (code, line, 1); /* append line to code */
code[i + j] = "\n'; /* append '\n' to code */
code[i + j + 1] = "\0"';
src = Py_CompileString (code, "<stdin>", Py_single_input);
if (NULL != src) /* compiled just fine — */
{
if (psl == prompt || J* ">S>> " oor */
'\n' == code[i + J - 11) /* ", .. " and double '\n' */
{ /* so execute it */
dum = PyEval_EvalCode ((PyCodeObject *)src, glb, loc);
Py_XDECREF (dum) ;
Py_XDECREF (src);
free (code);
code = NULL;

if (PyErr_Occurred ())
PyErr_Print ();
prompt = psl;

}

else if
{
PyErr_Fetch (&exc, &val,
if (PyArg_ParseTuple
!'strcmp (msg,

(val,

Py_XDECREF (exc);
Py_XDECREF (val);
Py_XDECREF (trb);
prompt = ps2

ex

’

}

else

{
PyErr_Restore (exc,
PyErr_Print ();
free (code);
code = NULL;
prompt = psl;

val,

}

else

{
PyErr_Print ();
free (code);
code = NULL;
prompt = psl;

free (line);

(PyErr_ExceptionMatches

s&trb);

"SOII,

trb);

smsg,

/* syntax error or E_EOF? */

(PyExc_SyntaxError))

/* clears exception! */

&obj) &&
"unexpected EOF while parsing"))

/* E_EOF */

/* some other syntax error */

/* some non-syntax error */

(berlanjut ke halaman berikutnya)

5.16. How do I tell incomplete input” from "invalid input”? 75

Python Frequently Asked Questions, Rilis 2.7.18

(lanjutan dari halaman sebelumnya)

Py_XDECREF (glb) ;
Py_XDECREF (loc);
Py_Finalize();
exit (0);

5.17 How do | find undefined g++ symbols __ builtin_new or __ pu-
re_virtual?

To dynamically load g++ extension modules, you must recompile Python, relink it using g++ (change LINKCC in the
Python Modules Makefile), and link your extension module using g++ (e.g., g++ —shared -o mymodule.so
mymodule. o).

5.18 Can | create an object class with some methods implemented
in C and others in Python (e.g. through inheritance)?

Yes, you can inherit from built-in classes such as int, 1ist, dict, etc.

The Boost Python Library (BPL, http://www.boost.org/libs/python/doc/index.html) provides a way of doing this from
C++ (i.e. you can inherit from an extension class written in C++ using the BPL).

5.19 When importing module X, why do | get "undefined symbol:
PyUnicodeUCS2*”?

You are using a version of Python that uses a 4-byte representation for Unicode characters, but some C extension module
you are importing was compiled using a Python that uses a 2-byte representation for Unicode characters (the default).

If instead the name of the undefined symbol starts with PyUnicodeUCS4, the problem is the reverse: Python was built
using 2-byte Unicode characters, and the extension module was compiled using a Python with 4-byte Unicode characters.

This can easily occur when using pre-built extension packages. RedHat Linux 7.x, in particular, provided a “python2”
binary that is compiled with 4-byte Unicode. This only causes the link failure if the extension uses any of the
PyUnicode_* () functions. It is also a problem if an extension uses any of the Unicode-related format specifiers
for Py_BuildValue () (or similar) or parameter specifications for PyArg_ParseTuple ().

You can check the size of the Unicode character a Python interpreter is using by checking the value of sys.maxunicode:

>>> import sys
>>> if sys.maxunicode > 65535:
print 'UCS4 build'
. else:
print 'UCS2 build'

The only way to solve this problem is to use extension modules compiled with a Python binary built using the same size
for Unicode characters.

76 Bab 5. Extending/Embedding FAQ

http://www.boost.org/libs/python/doc/index.html

BAB O

Python on Windows FAQ

6.1 How do | run a Python program under Windows?

This is not necessarily a straightforward question. If you are already familiar with running programs from the Windows
command line then everything will seem obvious; otherwise, you might need a little more guidance.

Unless you use some sort of integrated development environment, you will end up #yping Windows commands into what
is variously referred to as a "’DOS window” or "Command prompt window”. Usually you can create such a window from
your Start menu; under Windows 7 the menu selection is Start » Programs » Accessories » Command Prompt. You should
be able to recognize when you have started such a window because you will see a Windows “command prompt”, which
usually looks like this:

’C:\>

The letter may be different, and there might be other things after it, so you might just as easily see something like:

’D:\YourName\Projects\Python>

depending on how your computer has been set up and what else you have recently done with it. Once you have started
such a window, you are well on the way to running Python programs.

You need to realize that your Python scripts have to be processed by another program called the Python inferpreter. The
interpreter reads your script, compiles it into bytecodes, and then executes the bytecodes to run your program. So, how
do you arrange for the interpreter to handle your Python?

First, you need to make sure that your command window recognises the word “python” as an instruction to start the
interpreter. If you have opened a command window, you should try entering the command python and hitting return.:

C:\Users\YourName> python

You should then see something like:

Python 2.7.3 (default, Apr 10 2012, 22.71:26) [MSC v.1500 32 bit (Intel)] on win32
Type "help", "copyright", "credits" or "license" for more information.
>>>

77

Python Frequently Asked Questions, Rilis 2.7.18

You have started the interpreter in “interactive mode”. That means you can enter Python statements or expressions
interactively and have them executed or evaluated while you wait. This is one of Python’s strongest features. Check it by
entering a few expressions of your choice and seeing the results:

>>> print "Hello"

Hello
>>> "Hello" * 3
'HelloHelloHello'

Many people use the interactive mode as a convenient yet highly programmable calculator. When you want to end your
interactive Python session, hold the Ct r1 key down while you enter a Z, then hit the "Enter” key to get back to your
Windows command prompt.

You may also find that you have a Start-menu entry such as Start » Programs » Python 2.7 » Python (command line) that
results in you seeing the >>> prompt in a new window. If so, the window will disappear after you enter the Ctr1-7
character; Windows is running a single “python” command in the window, and closes it when you terminate the interpreter.

If the python command, instead of displaying the interpreter prompt >>>, gives you a message like:

'python' is not recognized as an internal or external command, operable program or.
—batch file.

or:

Bad command or filename

then you need to make sure that your computer knows where to find the Python interpreter. To do this you will have to
modify a setting called PATH, which is a list of directories where Windows will look for programs.

You should arrange for Python’s installation directory to be added to the PATH of every command window as it starts. If
you installed Python fairly recently then the command

dir C:\py*

will probably tell you where it is installed; the usual location is something like C: \Python27. Otherwise you will be
reduced to a search of your whole disk ... use Tools » Find or hit the Search button and look for ”python.exe”. Supposing
you discover that Python is installed in the C : \Python?27 directory (the default at the time of writing), you should make
sure that entering the command

c:\Python27\python

starts up the interpreter as above (and don’t forget you'll need a "Ctr1-2” and an "Enter” to get out of it). Once you
have verified the directory, you can add it to the system path to make it easier to start Python by just running the python
command. This is currently an option in the installer as of CPython 2.7.

More information about environment variables can be found on the Using Python on Windows page.

6.2 How do | make Python scripts executable?

On Windows, the standard Python installer already associates the .py extension with a file type (Python.File) and gives that
file type an open command that runs the interpreter (D: \Program Files\Python\python.exe "$1" &¥*).
This is enough to make scripts executable from the command prompt as ’foo.py’. If you’d rather be able to execute the
script by simple typing *foo’ with no extension you need to add .py to the PATHEXT environment variable.

78 Bab 6. Python on Windows FAQ

Python Frequently Asked Questions, Rilis 2.7.18

6.3 Why does Python sometimes take so long to start?

Usually Python starts very quickly on Windows, but occasionally there are bug reports that Python suddenly begins to
take a long time to start up. This is made even more puzzling because Python will work fine on other Windows systems
which appear to be configured identically.

The problem may be caused by a misconfiguration of virus checking software on the problem machine. Some virus
scanners have been known to introduce startup overhead of two orders of magnitude when the scanner is configured to
monitor all reads from the filesystem. Try checking the configuration of virus scanning software on your systems to ensure
that they are indeed configured identically. McAfee, when configured to scan all file system read activity, is a particular
offender.

6.4 How do | make an executable from a Python script?

See http://www.py2exe.org/ for a distutils extension that allows you to create console and GUI executables from Python
code.

6.5 Is a *.pyd file the same as a DLL?

Yes, .pyd files are dII’s, but there are a few differences. If you have a DLL named foo . pyd, then it must have a function
initfoo (). You can then write Python "import foo”, and Python will search for foo.pyd (as well as foo.py, foo.pyc)
and if it finds it, will attempt to call initfoo () to initialize it. You do not link your .exe with foo.lib, as that would
cause Windows to require the DLL to be present.

Note that the search path for foo.pyd is PYTHONPATH, not the same as the path that Windows uses to search for foo.dll.
Also, foo.pyd need not be present to run your program, whereas if you linked your program with a dll, the dll is required.
Of course, foo.pyd is required if you want to say import foo. Ina DLL, linkage is declared in the source code with
__declspec(dllexport). Ina.pyd, linkage is defined in a list of available functions.

6.6 How can | embed Python into a Windows application?

Embedding the Python interpreter in a Windows app can be summarized as follows:

1. Do _not_ build Python into your .exe file directly. On Windows, Python must be a DLL to handle importing
modules that are themselves DLL’s. (This is the first key undocumented fact.) Instead, link to pythonNN.d11;
it is typically installed in C: \Windows\System. NN is the Python version, a number such as ”27” for Python
2.7.

You can link to Python in two different ways. Load-time linking means linking against pythonNN. 1ib, whi-
le run-time linking means linking against pythonNN.d11. (General note: pythonNN.1lib is the so-called
“import lib” corresponding to pythonNN.d11. It merely defines symbols for the linker.)

Run-time linking greatly simplifies link options; everything happens at run time. Your code mustload pythonNN.
dl1 using the Windows LoadLibraryEx () routine. The code must also use access routines and data in
pythonNN.d11 (that is, Python’s C APT’s) using pointers obtained by the Windows GetProcAddress ()
routine. Macros can make using these pointers transparent to any C code that calls routines in Python’s C APIL

Borland note: convert pythonNN. 1ib to OMF format using Coff20mf.exe first.

2. If you use SWIG, it is easy to create a Python “extension module” that will make the app’s data and methods
available to Python. SWIG will handle just about all the grungy details for you. The result is C code that you link
into your .exe file (!) You do _not_ have to create a DLL file, and this also simplifies linking.

6.3. Why does Python sometimes take so long to start? 79

http://www.py2exe.org/

Python Frequently Asked Questions, Rilis 2.7.18

3. SWIG will create an init function (a C function) whose name depends on the name of the extension module. For
example, if the name of the module is leo, the init function will be called initleo(). If you use SWIG shadow classes,
as you should, the init function will be called initleoc(). This initializes a mostly hidden helper class used by the
shadow class.

The reason you can link the C code in step 2 into your .exe file is that calling the initialization function is equivalent
to importing the module into Python! (This is the second key undocumented fact.)

4. In short, you can use the following code to initialize the Python interpreter with your extension module.

#include "python.h"

Py_Initialize(); // Initialize Python.
initmyAppc(); // Initialize (import) the helper class.
PyRun_SimpleString ("import myApp"); // Import the shadow class.

5. There are two problems with Python’s C API which will become apparent if you use a compiler other than MSVC,
the compiler used to build pythonNN.dIL

Problem 1: The so-called ”"Very High Level” functions that take FILE * arguments will not work in a multi-compiler
environment because each compiler’s notion of a struct FILE will be different. From an implementation standpoint
these are very _low_ level functions.

Problem 2: SWIG generates the following code when generating wrappers to void functions:

Py_INCREF (Py_None) ;
_resultobj = Py_None;
return _resultobij;

Alas, Py_None is a macro that expands to a reference to a complex data structure called _Py_NoneStruct inside
pythonNN.dIl. Again, this code will fail in a mult-compiler environment. Replace such code by:

return Py_Buildvalue("");

It may be possible to use SWIG’s $t ypemap command to make the change automatically, though I have not been
able to get this to work (I'm a complete SWIG newbie).

6. Using a Python shell script to put up a Python interpreter window from inside your Windows app is not a good idea;
the resulting window will be independent of your app’s windowing system. Rather, you (or the wxPythonWindow
class) should create a "native” interpreter window. It is easy to connect that window to the Python interpreter. You
can redirect Python’s i/o to _any_ object that supports read and write, so all you need is a Python object (defined
in your extension module) that contains read() and write() methods.

6.7 How do | keep editors from inserting tabs into my Python source?

The FAQ does not recommend using tabs, and the Python style guide, PEP 8, recommends 4 spaces for distributed
Python code; this is also the Emacs python-mode default.

Under any editor, mixing tabs and spaces is a bad idea. MSVC is no different in this respect, and is easily configured to
use spaces: Take Tools » Options » Tabs, and for file type "Default” set “Tab size” and “Indent size” to 4, and select the
“Insert spaces” radio button.

If you suspect mixed tabs and spaces are causing problems in leading whitespace, run Python with the —t switch or run
the tabnanny module to check a directory tree in batch mode.

80 Bab 6. Python on Windows FAQ

https://www.python.org/dev/peps/pep-0008

Python Frequently Asked Questions, Rilis 2.7.18

6.8 How do | check for a keypress without blocking?

Use the msvert module. This is a standard Windows-specific extension module. It defines a function kbhit () which
checks whether a keyboard hit is present, and get ch () which gets one character without echoing it.

6.9 How do | emulate os.kill() in Windows?

Prior to Python 2.7 and 3.2, to terminate a process, you can use ctypes:

import ctypes

def kill (pid):
""rkgill function for Win32"'""
kernel32 = ctypes.windll.kernel32
handle = kernel32.0OpenProcess(l, 0, pid)
return (0 != kernel32.TerminateProcess (handle, 0))

In 2.7 and 3.2, 0s.kil1 () is implemented similar to the above function, with the additional feature of being able to
send Ctr1+Cand Ctrl+Break to console subprocesses which are designed to handle those signals. See os.kill ()
for further details.

6.10 How do | extract the downloaded documentation on Windows?

Sometimes, when you download the documentation package to a Windows machine using a web browser, the file extension
of the saved file ends up being .EXE. This is a mistake; the extension should be .TGZ.

Simply rename the downloaded file to have the .TGZ extension, and WinZip will be able to handle it. (If your copy of
WinZip doesn’t, get a newer one from https://www.winzip.com.)

6.8. How do | check for a keypress without blocking? 81

https://www.winzip.com

Python Frequently Asked Questions, Rilis 2.7.18

82

Bab 6. Python on Windows FAQ

BAB /

Antarmuka Pengguna Grafis FAQ

7.1 What platform-independent GUI toolkits exist for Python?

Depending on what platform(s) you are aiming at, there are several.

7.1.1 Tkinter

Standard builds of Python include an object-oriented interface to the Tcl/Tk widget set, called Tkinter. This is probably
the easiest to install and use. For more info about Tk, including pointers to the source, see the Tcl/Tk home page at
https://www.tcl.tk. Tcl/Tk is fully portable to the Mac OS X, Windows, and Unix platforms.

7.1.2 wxWidgets

wxWidgets (https://www.wxwidgets.org) is a free, portable GUI class library written in C++ that provides a native look
and feel on a number of platforms, with Windows, Mac OS X, GTK, X11, all listed as current stable targets. Language
bindings are available for a number of languages including Python, Perl, Ruby, etc.

wxPython (http://www.wxpython.org) is the Python binding for wxwidgets. While it often lags slightly behind the official
wxWidgets releases, it also offers a number of features via pure Python extensions that are not available in other language
bindings. There is an active wxPython user and developer community.

Both wxWidgets and wxPython are free, open source, software with permissive licences that allow their use in commercial
products as well as in freeware or shareware.

83

https://www.tcl.tk
https://www.wxwidgets.org
http://www.wxpython.org

Python Frequently Asked Questions, Rilis 2.7.18

7.1.3 Qt

There are bindings available for the Qt toolkit (using either PyQt or PySide) and for KDE (PyKDE4). PyQt is currently
more mature than PySide, but you must buy a PyQt license from Riverbank Computing if you want to write proprietary
applications. PySide is free for all applications.

Qt 4.5 upwards is licensed under the LGPL license; also, commercial licenses are available from The Qt Company.

7.1.4 Gtk+

PyGtk bindings for the Gtk+ toolkit have been implemented by James Henstridge; see <http://www.pygtk.org>.

7.1.5 FLTK

Python bindings for the FLTK toolkit, a simple yet powerful and mature cross-platform windowing system, are available
from the PyFLTK project.

7.1.6 OpenGL

For OpenGL bindings, see PyOpenGL.

7.2 What platform-specific GUI toolkits exist for Python?

By installing the PyObjc Objective-C bridge, Python programs can use Mac OS X’s Cocoa libraries.

Pythonwin by Mark Hammond includes an interface to the Microsoft Foundation Classes and a Python programming
environment that’s written mostly in Python using the MFC classes.

7.3 Pertanyaan-pertanyaan Tkinter

7.3.1 How do | freeze Tkinter applications?
Freeze is a tool to create stand-alone applications. When freezing Tkinter applications, the applications will not be truly
stand-alone, as the application will still need the Tcl and Tk libraries.

One solution is to ship the application with the Tcl and Tk libraries, and point to them at run-time using the
TCL_LIBRARY and TK_LIBRARY environment variables.

To get truly stand-alone applications, the Tcl scripts that form the library have to be integrated into the application as well.
One tool supporting that is SAM (stand-alone modules), which is part of the Tix distribution (http://tix.sourceforge.net/).

Build Tix with SAM enabled, perform the appropriate call to Tclsam_init (), etc. inside Python’s Modules/
tkappinit.c, and link with libtclsam and libtksam (you might include the Tix libraries as well).

84 Bab 7. Antarmuka Pengguna Grafis FAQ

https://riverbankcomputing.com/software/pyqt/intro
https://wiki.qt.io/PySide
https://techbase.kde.org/Languages/Python/Using_PyKDE_4
https://www.riverbankcomputing.com/commercial/license-faq
https://www.qt.io/licensing/
http://www.gtk.org
http://www.pygtk.org
http://www.fltk.org
http://pyfltk.sourceforge.net
http://pyopengl.sourceforge.net
https://pythonhosted.org/pyobjc/
http://tix.sourceforge.net/

Python Frequently Asked Questions, Rilis 2.7.18

7.3.2 Can | have Tk events handled while waiting for 1/0?

On platforms other than Windows, yes, and you don’t even need threads! But you’ll have to restructure your I/O code a
bit. Tk has the equivalent of Xt's Xt AddInput () call, which allows you to register a callback function which will be
called from the Tk mainloop when I/O is possible on a file descriptor. See tkinter-file-handlers.

7.3.3 | can’t get key bindings to work in Tkinter: why?

An often-heard complaint is that event handlers bound to events with the bind () method don’t get handled even when
the appropriate key is pressed.

The most common cause is that the widget to which the binding applies doesn’t have “keyboard focus”. Check out the Tk
documentation for the focus command. Usually a widget is given the keyboard focus by clicking in it (but not for labels;
see the takefocus option).

7.3. Pertanyaan-pertanyaan Tkinter 85

Python Frequently Asked Questions, Rilis 2.7.18

86

Bab 7. Antarmuka Pengguna Grafis FAQ

BAB 8

"Kenapa Python Terpasang di Komputer saya?” FAQ

8.1 Apa itu Python?

Python adalah bahasa pemrograman. Digunakan untuk berbagai aplikasi. Digunakan di sejumlah sekolah menengah dan
perguruan tinggi sebagai pengenalan bahasa pemrograman karena Python mudah dipelajari, namun juga digunakan oleh
pengembang perangkat lunak profesional di berbagai tempat misalnya Google, NASA, dan Lucasfilm Ltd.

Jika anda ingin pelajari Python lebih lanjut, mulai dengan Panduan Pemula untuk Python.

8.2 Kenapa Python Terpasang di Komputer saya?

Jika Anda menemukan Python terpasang pada sistem Anda tetapi tidak ingat pemasangannya, ada beberapa kemungkinan
penyebab bisa ada di situ.

* Mungkin pengguna komputer lain ingin belajar pemrograman dan memasangnya; Anda harus mencari tahu siapa
yang menggunakan mesin dan mungkin memasangnya.

¢ A third-party application installed on the machine might have been written in Python and included a Python in-
stallation. For a home computer, the most common such application is PySol, a solitaire game that includes over
1000 different games and variations.

* Beberapa mesin Windows telah terpasang Python. Pada saat penulisan ini sudah diketahui komputer-komputer
dari Hewlett-Packard dan Compaq menyertakan Python. Rupanya beberapa alat administrasi HP/Compaq ditulis
dengan Python.

 All Apple computers running Mac OS X have Python installed; it’s included in the base installation.

87

https://wiki.python.org/moin/BeginnersGuide
http://pysolfc.sourceforge.net/

Python Frequently Asked Questions, Rilis 2.7.18

8.3 Dapatkah Saya hapus Python?

Hal itu tergantung dari mana Python berasal.

Jika seseorang memasangnya dengan sengaja, Anda dapat menghapusnya tanpa merusak apapun. Di Windows, gunakan
ikon Add/Remove Programs di Control Panel.

Jika Python dipasang oleh aplikasi pihak ketiga, Anda juga dapat menghapusnya, tetapi aplikasi tersebut tidak akan
berfungsi lagi. Anda perlu menggunakan penghapus pemasangan aplikasi dibanding menghapus Python secara langsung.

Jika Python terpasang dari sistem operasi Anda, tidak direkomendasikan untuk menghapusnya. Jika Anda menghapusnya,
alat apapun yang ditulis dengan Python akan tidak berfungsi lagi, dan sejumlah diantaranya mungkin penting untuk Anda.
Memasang ulang keseluruhan sistem akan dibutuhkan untuk memperbaikinya lagi.

88 Bab 8. "Kenapa Python Terpasang di Komputer saya?” FAQ

LAMPIRAN A

Ikhtisar

>>> Prompt Python bawaan dari shell interaktif. Sering terlihat untuk contoh kode yang dapat dieksekusi secara inte-
raktif dalam interpreter.

. The default Python prompt of the interactive shell when entering code for an indented code block, when within
a pair of matching left and right delimiters (parentheses, square brackets, curly braces or triple quotes), or after
specifying a decorator.

2ke3 A tool that tries to convert Python 2.x code to Python 3.x code by handling most of the incompatibilities which can
be detected by parsing the source and traversing the parse tree.

2to3 is available in the standard library as 1 1b2t 03; a standalone entry point is provided as Tools/scripts/
2t o03. See 2to3-reference.

kelas basis abstrak Abstract base classes complement duck-typing by providing a way to define interfaces when other
techniques like hasattr () would be clumsy or subtly wrong (for example with magic methods). ABCs introduce
virtual subclasses, which are classes that don’t inherit from a class but are still recognized by isinstance () and
issubclass () ;seethe abc module documentation. Python comes with many built-in ABCs for data structures
(in the collections module), numbers (in the numbers module), and streams (in the i o module). You can
create your own ABCs with the abc module.

argumen A value passed to a function (or method) when calling the function. There are two types of arguments:

e keyword argument: an argument preceded by an identifier (e.g. name=) in a function call or passed as a value
in a dictionary preceded by * *. For example, 3 and 5 are both keyword arguments in the following calls to
complex():

complex (real=3, imag=5)
complex (**{'real': 3, 'imag': 5})

* positional argument: an argument that is not a keyword argument. Positional arguments can appear at the
beginning of an argument list and/or be passed as elements of an iterable preceded by *. For example, 3 and
5 are both positional arguments in the following calls:

complex (3, D5)
complex (* (3, 5))

89

Python Frequently Asked Questions, Rilis 2.7.18

Arguments are assigned to the named local variables in a function body. See the calls section for the rules governing
this assignment. Syntactically, any expression can be used to represent an argument; the evaluated value is assigned
to the local variable.

See also the parameter glossary entry and the FAQ question on the difference between arguments and parameters.

atribut A value associated with an object which is referenced by name using dotted expressions. For example, if an
object o has an attribute a it would be referenced as o.a.

BDFL Benevolent Dictator For Life, a.k.a. Guido van Rossum, Python’s creator.

bytes-like object An object that supports the buffer protocol, like str, bytearray or memoryview. Bytes-like
objects can be used for various operations that expect binary data, such as compression, saving to a binary file or
sending over a socket. Some operations need the binary data to be mutable, in which case not all bytes-like objects
can apply.

bytecode Python source code is compiled into bytecode, the internal representation of a Python program in the CPython
interpreter. The bytecode is also cached in . pyc and . pyo files so that executing the same file is faster the second
time (recompilation from source to bytecode can be avoided). This “intermediate language” is said to run on a
virtual machine that executes the machine code corresponding to each bytecode. Do note that bytecodes are not
expected to work between different Python virtual machines, nor to be stable between Python releases.

Daftar instruksi-instruksi bytecode dapat ditemukan di dokumentasi pada the dis module.

kelas A template for creating user-defined objects. Class definitions normally contain method definitions which operate
on instances of the class.

classic class Any class which does not inherit from object. See new-style class. Classic classes have been removed in
Python 3.

paksaan The implicit conversion of an instance of one type to another during an operation which involves two arguments
of the same type. For example, int (3.15) converts the floating point number to the integer 3, but in 3+4 .5,
each argument is of a different type (one int, one float), and both must be converted to the same type before they
can be added or it will raise a TypeError. Coercion between two operands can be performed with the coerce
built-in function; thus, 3+4 . 5 is equivalent to calling operator.add (*coerce (3, 4.5)) and results in
operator.add (3.0, 4.5). Without coercion, all arguments of even compatible types would have to be
normalized to the same value by the programmer, e.g., f1oat (3) +4. 5 rather than just 3+4. 5.

bilangan kompleks An extension of the familiar real number system in which all numbers are expressed as a sum of a
real part and an imaginary part. Imaginary numbers are real multiples of the imaginary unit (the square root of —1),
often written i in mathematics or j in engineering. Python has built-in support for complex numbers, which are
written with this latter notation; the imaginary part is written with a 7 suffix, e.g., 3+17. To get access to complex
equivalents of the math module, use cmath. Use of complex numbers is a fairly advanced mathematical feature.
If you're not aware of a need for them, it’s almost certain you can safely ignore them.

manajer konteks An object which controls the environment seen in a with statement by defining __enter__ () and
__exit__ () methods. See PEP 343.

CPython The canonical implementation of the Python programming language, as distributed on python.org. The term
”CPython” is used when necessary to distinguish this implementation from others such as Jython or IronPython.

penghias A function returning another function, usually applied as a function transformation using the @wrapper
syntax. Common examples for decorators are classmethod () and staticmethod ().

The decorator syntax is merely syntactic sugar, the following two function definitions are semantically equivalent:

def f(...):
f = staticmethod (f)

@staticmethod

(berlanjut ke halaman berikutnya)

90 Lampiran A. Ikhtisar

https://www.python.org/~guido/
https://www.python.org/dev/peps/pep-0343
https://www.python.org

Python Frequently Asked Questions, Rilis 2.7.18

(lanjutan dari halaman sebelumnya)

def f£(...):

The same concept exists for classes, but is less commonly used there. See the documentation for function definitions
and class definitions for more about decorators.

descriptor Any new-style object which defines the methods __get__ (), __set__ (),or __delete__ (). When
a class attribute is a descriptor, its special binding behavior is triggered upon attribute lookup. Normally, using a.b
to get, set or delete an attribute looks up the object named b in the class dictionary for a, but if b is a descriptor,
the respective descriptor method gets called. Understanding descriptors is a key to a deep understanding of Python
because they are the basis for many features including functions, methods, properties, class methods, static methods,
and reference to super classes.

For more information about descriptors’ methods, see descriptors.

kamus An associative array, where arbitrary keys are mapped to values. The keys can be any object with__hash__ ()
and __eq__ () methods. Called a hash in Perl.

dictionary view The objects returned from dict.viewkeys(), dict.viewvalues(), and dict.
viewitems () are called dictionary views. They provide a dynamic view on the dictionary’s entries,
which means that when the dictionary changes, the view reflects these changes. To force the dictionary view to
become a full list use 1ist (dictview). See dict-views.

docstring A string literal which appears as the first expression in a class, function or module. While ignored when
the suite is executed, it is recognized by the compiler and put into the ___doc___ attribute of the enclosing class,
function or module. Since it is available via introspection, it is the canonical place for documentation of the object.

duck-typing A programming style which does not look at an object’s type to determine if it has the right interface;
instead, the method or attribute is simply called or used (”If it looks like a duck and quacks like a duck, it must be a
duck.”) By emphasizing interfaces rather than specific types, well-designed code improves its flexibility by allowing
polymorphic substitution. Duck-typing avoids tests using type () or isinstance (). (Note, however, that
duck-typing can be complemented with abstract base classes.) Instead, it typically employs hasattr () tests or
EAFP programming.

EAFP Easier to ask for forgiveness than permission. This common Python coding style assumes the existence of valid
keys or attributes and catches exceptions if the assumption proves false. This clean and fast style is characterized
by the presence of many try and except statements. The technique contrasts with the LBYL style common to
many other languages such as C.

ekspresi A piece of syntax which can be evaluated to some value. In other words, an expression is an accumulation
of expression elements like literals, names, attribute access, operators or function calls which all return a value.
In contrast to many other languages, not all language constructs are expressions. There are also statements which
cannot be used as expressions, such as print or if. Assignments are also statements, not expressions.

modul tambahan A module written in C or C++, using Python’s C API to interact with the core and with user code.

objek berkas An object exposing a file-oriented API (with methods such as read () or write ()) to an underlying
resource. Depending on the way it was created, a file object can mediate access to a real on-disk file or to another
type of storage or communication device (for example standard input/output, in-memory buffers, sockets, pipes,
etc.). File objects are also called file-like objects or streams.

There are actually three categories of file objects: raw binary files, buffered binary files and text files. Their interfaces
are defined in the 1o module. The canonical way to create a file object is by using the open () function.

file-like object A synonym for file object.

finder An object that tries to find the loader for a module. It must implement a method named find_module (). See
PEP 302 for details.

91

https://www.python.org/dev/peps/pep-0302

Python Frequently Asked Questions, Rilis 2.7.18

floor division Mathematical division that rounds down to nearest integer. The floor division operator is / /. For example,

the expression 11 // 4 evaluates to 2 in contrast to the 2 . 75 returned by float true division. Note that (-11)
// 4 1is —3 because that is —2 . 75 rounded downward. See PEP 238.

fungsi A series of statements which returns some value to a caller. It can also be passed zero or more arguments which

may be used in the execution of the body. See also parameter, method, and the function section.

__future__ A pseudo-module which programmers can use to enable new language features which are not compatible

with the current interpreter. For example, the expression 11 /4 currently evaluates to 2. If the module in which it
is executed had enabled true division by executing:

from _ future__ import division

the expression 11 /4 would evaluate to 2 . 75. By importingthe future__ module and evaluating its variables,
you can see when a new feature was first added to the language and when it will become the default:

>>> import __ future_
>>> _ future__.division
_Feature((2, 2, 0, 'alpha', 2), (3, 0, 0, 'alpha', 0), 8192)

pengumpulan sampah The process of freeing memory when it is not used anymore. Python performs garbage collection

via reference counting and a cyclic garbage collector that is able to detect and break reference cycles.

pembangkit A function which returns an iterator. It looks like a normal function except that it contains yield state-

ments for producing a series of values usable in a for-loop or that can be retrieved one at a time with the next ()
function. Each yield temporarily suspends processing, remembering the location execution state (including lo-
cal variables and pending try-statements). When the generator resumes, it picks up where it left off (in contrast to
functions which start fresh on every invocation).

generator expression An expression that returns an iterator. It looks like a normal expression followed by a for exp-

ression defining a loop variable, range, and an optional i f expression. The combined expression generates values
for an enclosing function:

>>> sum(i*i for i in range (10)) # sum of squares 0, 1, 4, ... 81
285

GIL Lihat global interpreter lock.

kunci interpreter global The mechanism used by the CPyrhon interpreter to assure that only one thread executes Python

bytecode at a time. This simplifies the CPython implementation by making the object model (including critical built-
in types such as dict) implicitly safe against concurrent access. Locking the entire interpreter makes it easier
for the interpreter to be multi-threaded, at the expense of much of the parallelism afforded by multi-processor
machines.

However, some extension modules, either standard or third-party, are designed so as to release the GIL when doing
computationally-intensive tasks such as compression or hashing. Also, the GIL is always released when doing I/O.

Past efforts to create a “free-threaded” interpreter (one which locks shared data at a much finer granularity) have not
been successful because performance suffered in the common single-processor case. It is believed that overcoming
this performance issue would make the implementation much more complicated and therefore costlier to maintain.

hashable An object is hashable if it has a hash value which never changes during its lifetime (it needsa __hash__ ()

method), and can be compared to other objects (it needs an __eq___ () or __cmp___ () method). Hashable
objects which compare equal must have the same hash value.

Hashability makes an object usable as a dictionary key and a set member, because these data structures use the hash
value internally.

All of Python’s immutable built-in objects are hashable, while no mutable containers (such as lists or dictionaries)
are. Objects which are instances of user-defined classes are hashable by default; they all compare unequal (except

92

Lampiran A. Ikhtisar

https://www.python.org/dev/peps/pep-0238

Python Frequently Asked Questions, Rilis 2.7.18

with themselves), and their hash value is derived from their id ().

IDLE Sebuah Lingkungan Pengembangan Terpadu untuk Python. IDLE adalah editor dasar dan lingkungan interpreter
yang digabungkan dengan distribusi standar dari Python.

immutable An object with a fixed value. Immutable objects include numbers, strings and tuples. Such an object cannot
be altered. A new object has to be created if a different value has to be stored. They play an important role in
places where a constant hash value is needed, for example as a key in a dictionary.

integer division Mathematical division discarding any remainder. For example, the expression 11 /4 currently evaluates
to 2 in contrast to the 2. 75 returned by float division. Also called floor division. When dividing two integers the
outcome will always be another integer (having the floor function applied to it). However, if one of the operands is
another numeric type (such as a f1oat), the result will be coerced (see coercion) to a common type. For example,
an integer divided by a float will result in a float value, possibly with a decimal fraction. Integer division can be
forced by using the // operator instead of the / operator. See also __future__.

importing The process by which Python code in one module is made available to Python code in another module.
importer An object that both finds and loads a module; both a finder and loader object.

interaktif Python has an interactive interpreter which means you can enter statements and expressions at the interpreter
prompt, immediately execute them and see their results. Just launch python with no arguments (possibly by
selecting it from your computer’s main menu). It is a very powerful way to test out new ideas or inspect modules
and packages (remember help (x)).

diinterpretasi Python is an interpreted language, as opposed to a compiled one, though the distinction can be blurry
because of the presence of the bytecode compiler. This means that source files can be run directly without explicitly
creating an executable which is then run. Interpreted languages typically have a shorter development/debug cycle
than compiled ones, though their programs generally also run more slowly. See also interactive.

iterable An object capable of returning its members one at a time. Examples of iterables include all sequence types (such
as list, str, and tuple) and some non-sequence types like dict and £ile and objects of any classes you
define withan __iter__ () or __getitem__ () method. Iterables can be used in a for loop and in many
other places where a sequence is needed (zip (), map (), ...). When an iterable object is passed as an argument
to the built-in function iter (), it returns an iterator for the object. This iterator is good for one pass over the set
of values. When using iterables, it is usually not necessary to call iter () or deal with iterator objects yourself.
The for statement does that automatically for you, creating a temporary unnamed variable to hold the iterator for
the duration of the loop. See also iterator, sequence, and generator.

iterator An object representing a stream of data. Repeated calls to the iterator’s next () method return successive items
in the stream. When no more data are available a StopIteration exception is raised instead. At this point,
the iterator object is exhausted and any further calls to its next () method just raise StopIteration again.
Iterators are required to have an __iter__ () method that returns the iterator object itself so every iterator is
also iterable and may be used in most places where other iterables are accepted. One notable exception is code
which attempts multiple iteration passes. A container object (such as a 1ist) produces a fresh new iterator each
time you pass it to the iter () function or use it in a for loop. Attempting this with an iterator will just return
the same exhausted iterator object used in the previous iteration pass, making it appear like an empty container.

Informasi lebih lanjut dapat ditemukan di typeiter.

fungsi kunci A key function or collation function is a callable that returns a value used for sorting or ordering. For
example, locale.strxfrm() is used to produce a sort key that is aware of locale specific sort conventions.

A number of tools in Python accept key functions to control how elements are ordered or grouped. They in-
clude min (), max (), sorted (), list.sort (), heapg.nsmallest (), heapg.nlargest (), and
itertools.groupby ().

There are several ways to create a key function. For example. the str.lower () method can serve as a key
function for case insensitive sorts. Alternatively, an ad-hoc key function can be built from a 1ambda expression
suchas lambda r: (r[0], r[2]). Also,the operator module provides three key function constructors:

93

Python Frequently Asked Questions, Rilis 2.7.18

attrgetter (), itemgetter (), and methodcaller (). See the Sorting HOW TO for examples of how
to create and use key functions.

argumen Kkata kunci Lihat argument.

lambda An anonymous inline function consisting of a single expression which is evaluated when the function is called.
The syntax to create a lambda function is lambda [parameters]: expression

LBYL Look before you leap. This coding style explicitly tests for pre-conditions before making calls or lookups. This
style contrasts with the EAFP approach and is characterized by the presence of many i f statements.

In a multi-threaded environment, the LBYL approach can risk introducing a race condition between “the looking”
and “the leaping”. For example, the code, 1f key in mapping: return mappingl[key] can fail if
another thread removes key from mapping after the test, but before the lookup. This issue can be solved with locks
or by using the EAFP approach.

daftar A built-in Python sequence. Despite its name it is more akin to an array in other languages than to a linked list
since access to elements is O(1).

list comprehension A compact way to process all or part of the elements in a sequence and return a list with the results.
result = ["0x%02x" % x for x in range (256) if x % 2 == 0] generates a list of strings
containing even hex numbers (0x..) in the range from 0 to 255. The i f clause is optional. If omitted, all elements
in range (256) are processed.

loader An object that loads a module. It must define a method named 1oad_module (). A loader is typically returned
by a finder. See PEP 302 for details.

magic method An informal synonym for special method.

pemetaan A container object that supports arbitrary key lookups and implements the methods specified in the Mapping
or MutableMapping abstract base classes. Examples include dict, collections.defaultdict,
collections.OrderedDict and collections.Counter.

metaclass The class of a class. Class definitions create a class name, a class dictionary, and a list of base classes. The me-
taclass is responsible for taking those three arguments and creating the class. Most object oriented programming
languages provide a default implementation. What makes Python special is that it is possible to create custom
metaclasses. Most users never need this tool, but when the need arises, metaclasses can provide powerful, ele-
gant solutions. They have been used for logging attribute access, adding thread-safety, tracking object creation,
implementing singletons, and many other tasks.

Informasi lebih lanjut dapat ditemukan di metaclasses.

method A function which is defined inside a class body. If called as an attribute of an instance of that class, the method
will get the instance object as its first argument (which is usually called se1f). See function and nested scope.

method resolution order Method Resolution Order is the order in which base classes are searched for a member during
lookup. See The Python 2.3 Method Resolution Order for details of the algorithm used by the Python interpreter
since the 2.3 release.

modul An object that serves as an organizational unit of Python code. Modules have a namespace containing arbitrary
Python objects. Modules are loaded into Python by the process of importing.

Lihat juga package.
MRO Lihat method resolution order.
mutable Mutable objects can change their value but keep their id () . See also immutable.

named tuple Any tuple-like class whose indexable elements are also accessible using named attributes (for example,
time.localtime () returns a tuple-like object where the year is accessible either with an index such as t [0]
or with a named attribute like t . tm_year).

94 Lampiran A. Ikhtisar

https://www.python.org/dev/peps/pep-0302
https://www.python.org/download/releases/2.3/mro/

Python Frequently Asked Questions, Rilis 2.7.18

A named tuple can be a built-in type such as time.struct_time, or it can be created with a regular
class definition. A full featured named tuple can also be created with the factory function collections.
namedtuple (). The latter approach automatically provides extra features such as a self-documenting represen-
tation like Employee (name="'jones', title='programmer').

namespace The place where a variable is stored. Namespaces are implemented as dictionaries. There are the local,
global and built-in namespaces as well as nested namespaces in objects (in methods). Namespaces support mo-
dularity by preventing naming conflicts. For instance, the functions __builtin__.open () and os.open ()
are distinguished by their namespaces. Namespaces also aid readability and maintainability by making it clear whi-
ch module implements a function. For instance, writing random.seed () or itertools.izip () makes it
clear that those functions are implemented by the random and itertools modules, respectively.

nested scope The ability to refer to a variable in an enclosing definition. For instance, a function defined inside another
function can refer to variables in the outer function. Note that nested scopes work only for reference and not for
assignment which will always write to the innermost scope. In contrast, local variables both read and write in the
innermost scope. Likewise, global variables read and write to the global namespace.

new-style class Any class which inherits from object. This includes all built-in types like 1ist and dict.
Only new-style classes can use Python’s newer, versatile features like ___slots__, descriptors, properties, and
__getattribute__ ().

More information can be found in newstyle.

objek Any data with state (attributes or value) and defined behavior (methods). Also the ultimate base class of any
new-style class.

paket A Python module which can contain submodules or recursively, subpackages. Technically, a package is a Python
module with an __path___ attribute.

parameter A named entity in a function (or method) definition that specifies an argument (or in some cases, arguments)
that the function can accept. There are four types of parameters:

e positional-or-keyword: specifies an argument that can be passed either positionally or as a keyword argument.
This is the default kind of parameter, for example foo and bar in the following:

def func(foo, bar=None):

* positional-only: specifies an argument that can be supplied only by position. Python has no syntax for defining
positional-only parameters. However, some built-in functions have positional-only parameters (e.g. abs ()).

* var-positional: specifies that an arbitrary sequence of positional arguments can be provided (in addition to any
positional arguments already accepted by other parameters). Such a parameter can be defined by prepending
the parameter name with *, for example args in the following:

def func(*args, **kwargs):

* var-keyword: specifies that arbitrarily many keyword arguments can be provided (in addition to any keywo-
rd arguments already accepted by other parameters). Such a parameter can be defined by prepending the
parameter name with * *, for example kwargs in the example above.

Parameters can specify both optional and required arguments, as well as default values for some optional arguments.

See also the argument glossary entry, the FAQ question on the difference between arguments and parameters, and
the function section.

PEP Python Enhancement Proposal. A PEP is a design document providing information to the Python community,
or describing a new feature for Python or its processes or environment. PEPs should provide a concise technical
specification and a rationale for proposed features.

PEPs are intended to be the primary mechanisms for proposing major new features, for collecting community input
on an issue, and for documenting the design decisions that have gone into Python. The PEP author is responsible

95

Python Frequently Asked Questions, Rilis 2.7.18

for building consensus within the community and documenting dissenting opinions.
Lihat PEP 1.
positional argument Lihat argument.

Python 3000 Nickname for the Python 3.x release line (coined long ago when the release of version 3 was something in
the distant future.) This is also abbreviated "Py3k”.

Pythonic An idea or piece of code which closely follows the most common idioms of the Python language, rather than
implementing code using concepts common to other languages. For example, a common idiom in Python is to loop
over all elements of an iterable using a for statement. Many other languages don’t have this type of construct, so
people unfamiliar with Python sometimes use a numerical counter instead:

for i in range(len(food)):
print food[i]

As opposed to the cleaner, Pythonic method:

for piece in food:
print piece

jumlah referensi The number of references to an object. When the reference count of an object drops to zero, it is
deallocated. Reference counting is generally not visible to Python code, but it is a key element of the CPython
implementation. The sy s module defines a get refcount () function that programmers can call to return the
reference count for a particular object.

__slots__ A declaration inside a new-style class that saves memory by pre-declaring space for instance attributes and
eliminating instance dictionaries. Though popular, the technique is somewhat tricky to get right and is best reserved
for rare cases where there are large numbers of instances in a memory-critical application.

urutan An iterable which supports efficient element access using integer indices via the __getitem__ () special
method and defines a 1en () method that returns the length of the sequence. Some built-in sequence types are
list, str, tuple,and unicode. Note that dict also supports __getitem__ () and___len__ (), butis
considered a mapping rather than a sequence because the lookups use arbitrary immutable keys rather than integers.

slice An object usually containing a portion of a sequence. A slice is created using the subscript notation, [] with
colons between numbers when several are given, such asin variable_name [1:3:5]. The bracket (subscript)
notation uses s11ice objects internally (or in older versions, __getslice_ () and __setslice__ ()).

special method A method that is called implicitly by Python to execute a certain operation on a type, such as addi-
tion. Such methods have names starting and ending with double underscores. Special methods are documented in
specialnames.

pernyataan A statement is part of a suite (a "block” of code). A statement is either an expression or one of several
constructs with a keyword, such as i f, while or for.

struct sequence A tuple with named elements. Struct sequences expose an interface similiar to named tuple in that
elements can be accessed either by index or as an attribute. However, they do not have any of the named tuple
methods like _make () or _asdict (). Examples of struct sequences include sys.float_info and the
return value of os.stat ().

teks tiga-kutip A string which is bound by three instances of either a quotation mark () or an apostrophe (*). While they
don’t provide any functionality not available with single-quoted strings, they are useful for a number of reasons.
They allow you to include unescaped single and double quotes within a string and they can span multiple lines
without the use of the continuation character, making them especially useful when writing docstrings.

tipe The type of a Python object determines what kind of object it is; every object has a type. An object’s type is
accessible asits ___class___ attribute or can be retrieved with type (ob7).

96 Lampiran A. Ikhtisar

https://www.python.org/dev/peps/pep-0001

Python Frequently Asked Questions, Rilis 2.7.18

universal newlines A manner of interpreting text streams in which all of the following are recognized as ending a line:
the Unix end-of-line convention ' \n', the Windows convention '\r\n"', and the old Macintosh convention '\
r'. See PEP 278 and PEP 3116, as well as str.splitlines () for an additional use.

lingkungan virtual Lingkungan runtime kooperatif yang memungkinkan pengguna dan aplikasi Python untuk mengin-

stal dan memperbarui paket distribusi Python tanpa mengganggu perilaku aplikasi Python lain yang berjalan pada
sistem yang sama.

mesin virtual A computer defined entirely in software. Python’s virtual machine executes the bytecode emitted by the
bytecode compiler.

Zen of Python Listing of Python design principles and philosophies that are helpful in understanding and using the
language. The listing can be found by typing "import this” at the interactive prompt.

97

https://www.python.org/dev/peps/pep-0278
https://www.python.org/dev/peps/pep-3116

Python Frequently Asked Questions, Rilis 2.7.18

98

Lampiran A. Ikhtisar

LAMPIRAN B

Tentang dokumen-dokumen ini

Dokumen-dokumen ini dihasilkan dari reStructuredText dengan Sphinx, sebuah pemroses dokumen yang khusus ditulis
untuk dokumentasi Python.

Pengembangan dokumentasi dan perangkat pengembangannya sepenuhnya upaya sukarela, seperti halnya Python. Jika
anda ingin berkontribusi, silakan lihat halaman reporting-bugs untuk informasi cara melakukannya. Relawan baru selalu
diterima!

Terima kasih banyak untuk:
* Fred L. Drake, Jr., pembuat awal kumpulan alat dokumentasi Python dan penulis banyak konten;
* Docutils proyek untuk membuat reStructuredText dan Docutils suite;

 Fredrik Lundh untuk Alternative Python Reference proyek dimana Sphinx mendapatkan banyak ide bagus.

B.1 Kontributor untuk dokumentasi Python

Banyak orang telah berkontribusi ke bahasa Python, pustaka standar Python, dan dokumentasi Python. Lihat Misc/ACKS
di distribusi kode sumber Python untuk sebagian daftar kontributor-kontributor.

Hanya dengan masukan dan kontribusi dari komunitas Python sehingga Python memiliki dokumentasi yang sangat baik.
Terima kasih!

99

http://docutils.sourceforge.net/rst.html
http://sphinx-doc.org/
http://docutils.sourceforge.net/
http://effbot.org/zone/pyref.htm
https://github.com/python/cpython/tree/2.7/Misc/ACKS

Python Frequently Asked Questions, Rilis 2.7.18

100 Lampiran B. Tentang dokumen-dokumen ini

Lampiran C

Sejarah dan Lisensi

C.1 Sejarah perangkat lunak

Python diciptakan pada awal 1990-an oleh Guido van Rossum di Stichting Mathematisch Centrum (CWI, lihat https://
www.cwi.nl/) di Belanda sebagai penerus bahasa yang disebut ABC. Guido tetap menjadi penulis utama Python, meskipun
ia memasukkan banyak kontribusi dari orang lain.

Pada tahun 1995, Guido melanjutkan karyanya tentang Python di Corporation for National Research Initiatives (CNRI,
lihat https://www.cnri.reston.va.us/) di Reston, Virginia di mana ia merilis beberapa versi perangkat lunak.

In May 2000, Guido and the Python core development team moved to BeOpen.com to form the BeOpen PythonLabs
team. In October of the same year, the PythonLabs team moved to Digital Creations (now Zope Corporation; see https:
/Iwww.zope.org/). In 2001, the Python Software Foundation (PSF, see https://www.python.org/psf/) was formed, a non-
profit organization created specifically to own Python-related Intellectual Property. Zope Corporation is a sponsoring
member of the PSF.

Semua rilis Python adalah Sumber Terbuka (lihat https://opensource.org/ untuk Definisi Sumber Terbuka). Secara histo-
ris, sebagian besar, tetapi tidak semua, rilis Python juga kompatibel dengan GPL; tabel di bawah ini merangkum berbagai
rilis.

Rilis Berasal dari | Tahun Pemilik GPL compatible?
0.9.0 hingga 1.2 | t/a 1991-1995 CWI ya
1.3 hingga 1.5.2 | 1.2 1995-1999 CNRI ya
1.6 1.5.2 2000 CNRI tidak
2.0 1.6 2000 BeOpen.com | tidak
1.6.1 1.6 2001 CNRI tidak
2.1 2.0+1.6.1 2001 PSF tidak
2.0.1 2.0+1.6.1 2001 PSF ya
2.1.1 2.1+2.0.1 2001 PSF ya
2.1.2 2.1.1 2002 PSF ya
2.1.3 2.1.2 2002 PSF ya
2.2 dan ke atas 2.1.1 2001-sekarang | PSF ya

101

https://www.cwi.nl/
https://www.cwi.nl/
https://www.cnri.reston.va.us/
https://www.zope.org/
https://www.zope.org/
https://www.python.org/psf/
https://opensource.org/

Python Frequently Asked Questions, Rilis 2.7.18

Catatan: GPL-compatible doesn’t mean that we'’re distributing Python under the GPL. All Python licenses, unlike the
GPL, let you distribute a modified version without making your changes open source. The GPL-compatible licenses make
it possible to combine Python with other software that is released under the GPL; the others don’t.

Terima kasih kepada banyak sukarelawan eksternal yang telah bekerja di bawah arahan Guido untuk mewujudkan rilis-rilis
ini.

C.2 Syarat dan ketentuan untuk mengakses atau menggunakan
Python

C.2.1 LISENSI PERJANJIAN PSF UNTUK PYTHON 2.7.18

1. This LICENSE AGREEMENT is between the Python Software Foundation ("PSE"),_
—and

the Individual or Organization ("Licensee") accessing and otherwise using.
—Python

2.7.18 software in source or binary form and its associated documentation.

2. Subject to the terms and conditions of this License Agreement, PSF hereby
grants Licensee a nonexclusive, royalty-free, world-wide license to.
—reproduce,
analyze, test, perform and/or display publicly, prepare derivative works,
distribute, and otherwise use Python 2.7.18 alone or in any derivative
version, provided, however, that PSF's License Agreement and PSF's notice.
—of
copyright, i.e., "Copyright © 2001-2020 Python Software Foundation; All._
—Rights
Reserved" are retained in Python 2.7.18 alone or in any derivative version
prepared by Licensee.

3. In the event Licensee prepares a derivative work that is based on or
incorporates Python 2.7.18 or any part thereof, and wants to make the
derivative work available to others as provided herein, then Licensee.

—hereby
agrees to include in any such work a brief summary of the changes made to.

—~Python
2.7.18.

4. PSF is making Python 2.7.18 available to Licensee on an "AS IS" basis.

PSEF MAKES NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF

EXAMPLE, BUT NOT LIMITATION, PSF MAKES NO AND DISCLAIMS ANY REPRESENTATION.
—OR

WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT.
—THE

USE OF PYTHON 2.7.18 WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

5. PSF SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF PYTHON 2.7.18
FOR ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT.
—r OF

102 Lampiran C. Sejarah dan Lisensi

Python Frequently Asked Questions, Rilis 2.7.18

MODIFYING, DISTRIBUTING, OR OTHERWISE USING PYTHON 2.7.18, OR ANY.
—~DERIVATIVE
THEREOF, EVEN IF ADVISED OF THE POSSIBILITY THEREOF.

6. This License Agreement will automatically terminate upon a material breach.
—of
its terms and conditions.

7. Nothing in this License Agreement shall be deemed to create any.
—relationship

of agency, partnership, or joint venture between PSF and Licensee. This.
—License

Agreement does not grant permission to use PSF trademarks or trade name in.
—a

trademark sense to endorse or promote products or services of Licensee, or.
—any

third party.

8. By copying, installing or otherwise using Python 2.7.18, Licensee agrees
to be bound by the terms and conditions of this License Agreement.

C.2.2 LISENSI PERJANJIAN BEOPEN.COM UNTUK PYTHON 2.0

LISENSI PERJANJIAN BEOPEN SUMBER TERBUKA PYTHON VERSI 1

1. This LICENSE AGREEMENT is between BeOpen.com ("BeOpen"), having an office at
160 Saratoga Avenue, Santa Clara, CA 95051, and the Individual or Organization
("Licensee") accessing and otherwise using this software in source or binary
form and its associated documentation ("the Software").

2. Subject to the terms and conditions of this BeOpen Python License Agreement,
BeOpen hereby grants Licensee a non-exclusive, royalty-free, world-wide license
to reproduce, analyze, test, perform and/or display publicly, prepare derivative
works, distribute, and otherwise use the Software alone or in any derivative
version, provided, however, that the BeOpen Python License is retained in the
Software, alone or in any derivative version prepared by Licensee.

3. BeOpen is making the Software available to Licensee on an "AS IS" basis.
BEOPEN MAKES NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF
EXAMPLE, BUT NOT LIMITATION, BEOPEN MAKES NO AND DISCLAIMS ANY REPRESENTATION OR
WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE
USE OF THE SOFTWARE WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

4. BEOPEN SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF THE SOFTWARE FOR
ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT OF USING,
MODIFYING OR DISTRIBUTING THE SOFTWARE, OR ANY DERIVATIVE THEREOF, EVEN IF
ADVISED OF THE POSSIBILITY THEREOF.

5. This License Agreement will automatically terminate upon a material breach of
its terms and conditions.

6. This License Agreement shall be governed by and interpreted in all respects
by the law of the State of California, excluding conflict of law provisions.
Nothing in this License Agreement shall be deemed to create any relationship of
agency, partnership, or joint venture between BeOpen and Licensee. This License

(berlanjut ke halaman berikutnya)

C.2. Syarat dan ketentuan untuk mengakses atau menggunakan Python 103

Python Frequently Asked Questions, Rilis 2.7.18

(lanjutan dari halaman sebelumnya)

Agreement does not grant permission to use BeOpen trademarks or trade names in a
trademark sense to endorse or promote products or services of Licensee, or any
third party. As an exception, the "BeOpen Python" logos available at
http://www.pythonlabs.com/logos.html may be used according to the permissions
granted on that web page.

7. By copying, installing or otherwise using the software, Licensee agrees to be
bound by the terms and conditions of this License Agreement.

C.2.3 LISENSI PERJANJIAN CNRI UNTUK PYTHON 1.6.1

1. This LICENSE AGREEMENT is between the Corporation for National Research
Initiatives, having an office at 1895 Preston White Drive, Reston, VA 20191
("CNRI"), and the Individual or Organization ("Licensee") accessing and
otherwise using Python 1.6.1 software in source or binary form and its
associated documentation.

2. Subject to the terms and conditions of this License Agreement, CNRI hereby
grants Licensee a nonexclusive, royalty-free, world-wide license to reproduce,
analyze, test, perform and/or display publicly, prepare derivative works,
distribute, and otherwise use Python 1.6.1 alone or in any derivative version,
provided, however, that CNRI's License Agreement and CNRI's notice of copyright,
i.e., "Copyright © 1995-2001 Corporation for National Research Initiatives; All
Rights Reserved" are retained in Python 1.6.1 alone or in any derivative version
prepared by Licensee. Alternately, in lieu of CNRI's License Agreement,
Licensee may substitute the following text (omitting the quotes): "Python 1.6.1
is made available subject to the terms and conditions in CNRI's License
Agreement. This Agreement together with Python 1.6.1 may be located on the
Internet using the following unique, persistent identifier (known as a handle):
1895.22/1013. This Agreement may also be obtained from a proxy server on the
Internet using the following URL: http://hdl.handle.net/1895.22/1013."

3. In the event Licensee prepares a derivative work that is based on or
incorporates Python 1.6.1 or any part thereof, and wants to make the derivative
work available to others as provided herein, then Licensee hereby agrees to
include in any such work a brief summary of the changes made to Python 1.6.1.

4. CNRI is making Python 1.6.1 available to Licensee on an "AS IS" basis. CNRI
MAKES NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF EXAMPLE,
BUT NOT LIMITATION, CNRI MAKES NO AND DISCLAIMS ANY REPRESENTATION OR WARRANTY
OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE USE OF
PYTHON 1.6.1 WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

5. CNRI SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF PYTHON 1.6.1 FOR
ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT OF
MODIFYING, DISTRIBUTING, OR OTHERWISE USING PYTHON 1.6.1, OR ANY DERIVATIVE
THEREOF, EVEN IF ADVISED OF THE POSSIBILITY THEREOEF.

6. This License Agreement will automatically terminate upon a material breach of
its terms and conditions.

7. This License Agreement shall be governed by the federal intellectual property
law of the United States, including without limitation the federal copyright
law, and, to the extent such U.S. federal law does not apply, by the law of the

(berlanjut ke halaman berikutnya)

104 Lampiran C. Sejarah dan Lisensi

Python Frequently Asked Questions, Rilis 2.7.18

(lanjutan dari halaman sebelumnya)

Commonwealth of Virginia, excluding Virginia's conflict of law provisions.
Notwithstanding the foregoing, with regard to derivative works based on Python
1.6.1 that incorporate non-separable material that was previously distributed
under the GNU General Public License (GPL), the law of the Commonwealth of
Virginia shall govern this License Agreement only as to issues arising under or
with respect to Paragraphs 4, 5, and 7 of this License Agreement. Nothing in
this License Agreement shall be deemed to create any relationship of agency,
partnership, or joint venture between CNRI and Licensee. This License Agreement
does not grant permission to use CNRI trademarks or trade name in a trademark
sense to endorse or promote products or services of Licensee, or any third
party.

8. By clicking on the "ACCEPT" button where indicated, or by copying, installing
or otherwise using Python 1.6.1, Licensee agrees to be bound by the terms and
conditions of this License Agreement.

C.2.4 LISENSI PERJANJIAN CWI UNTUK PYTHON 0.9.0 SAMPAI 1.2

Copyright © 1991 - 1995, Stichting Mathematisch Centrum Amsterdam, The
Netherlands. All rights reserved.

Permission to use, copy, modify, and distribute this software and its
documentation for any purpose and without fee is hereby granted, provided that
the above copyright notice appear in all copies and that both that copyright
notice and this permission notice appear in supporting documentation, and that
the name of Stichting Mathematisch Centrum or CWI not be used in advertising or
publicity pertaining to distribution of the software without specific, written
prior permission.

STICHTING MATHEMATISCH CENTRUM DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS
SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN NO
EVENT SHALL STICHTING MATHEMATISCH CENTRUM BE LIABLE FOR ANY SPECIAL, INDIRECT
OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE,
DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS
SOFTWARE .

C.3 Lisensi dan Ucapan Terima Kasih untuk Perangkat Lunak yang
Tergabung

Bagian ini tidak lengkap, tetapi daftar lisensi dan ucapan terima kasih yang terus bertambah untuk perangkat lunak pihak
ketiga yang tergabung dalam distribusi Python.

C.3. Lisensi dan Ucapan Terima Kasih untuk Perangkat Lunak yang Tergabung 105

Python Frequently Asked Questions, Rilis 2.7.18

C.3.1 Mersenne Twister

The _random module includes code based on a download from http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/
MT2002/emt19937ar.html. The following are the verbatim comments from the original code:

A C-program for MT19937, with initialization improved 2002/1/26.
Coded by Takuji Nishimura and Makoto Matsumoto.

Before using, initialize the state by using init_genrand(seed)
or init_by_array(init_key, key_length).

Copyright (C) 1997 - 2002, Makoto Matsumoto and Takuji Nishimura,
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

3. The names of its contributors may not be used to endorse or promote
products derived from this software without specific prior written
permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Any feedback is very welcome.
http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html
email: m-mat @ math.sci.hiroshima-u.ac.jp (remove space)

C.3.2 Soket

The socket module uses the functions, getaddrinfo (), and getnameinfo (), which are coded in separate
source files from the WIDE Project, http://www.wide.ad.jp/.

Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions

(berlanjut ke halaman berikutnya)

106 Lampiran C. Sejarah dan Lisensi

http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/MT2002/emt19937ar.html
http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/MT2002/emt19937ar.html
http://www.wide.ad.jp/

Python Frequently Asked Questions, Rilis 2.7.18

(lanjutan dari halaman sebelumnya)

are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

3. Neither the name of the project nor the names of its contributors
may be used to endorse or promote products derived from this software
without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ""AS IS'' AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS

OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

C.3.3 Floating point exception control

The source for the fpect 1 module includes the following notice:

/ Copyright (c) 1996. \
The Regents of the University of California.
All rights reserved.

Permission to use, copy, modify, and distribute this software for
any purpose without fee is hereby granted, provided that this en-
tire notice is included in all copies of any software which is or
includes a copy or modification of this software and in all
copies of the supporting documentation for such software.

This work was produced at the University of California, Lawrence
Livermore National Laboratory under contract no. W-7405-ENG-48
between the U.S. Department of Energy and The Regents of the
University of California for the operation of UC LLNL.

DISCLAIMER

This software was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States
Government nor the University of California nor any of their em-
ployees, makes any warranty, express or implied, or assumes any
liability or responsibility for the accuracy, completeness, or
usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe
privately-owned rights. Reference herein to any specific commer-—
cial products, process, or service Dby trade name, trademark,
manufacturer, or otherwise, does not necessarily constitute or

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
imply its endorsement, recommendation, or favoring by the United |

(berlanjut ke halaman berikutnya)

C.3. Lisensi dan Ucapan Terima Kasih untuk Perangkat Lunak yang Tergabung 107

Python Frequently Asked Questions, Rilis 2.7.18

(lanjutan dari halaman sebelumnya)

States Government or the University of California. The views and
opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or the University
of California, and shall not be used for advertising or product

\ endorsement purposes. /

C.3.4 MD5 message digest algorithm

The source code for the md5 module contains the following notice:

Copyright (C) 1999, 2002 Aladdin Enterprises. All rights reserved.

This software is provided 'as-is', without any express or implied
warranty. In no event will the authors be held liable for any damages
arising from the use of this software.

Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it
freely, subject to the following restrictions:

1. The origin of this software must not be misrepresented; you must not
claim that you wrote the original software. If you use this software
in a product, an acknowledgment in the product documentation would be
appreciated but is not required.

2. Altered source versions must be plainly marked as such, and must not be
misrepresented as being the original software.

3. This notice may not be removed or altered from any source distribution.

L. Peter Deutsch
ghost@aladdin.com

Independent implementation of MD5 (RFC 1321).

This code implements the MD5 Algorithm defined in RFC 1321, whose
text is available at

http://www.ietf.org/rfc/rfcl321.txt
The code is derived from the text of the RFC, including the test suite
(section A.5) but excluding the rest of Appendix A. It does not include
any code or documentation that is identified in the RFC as being
copyrighted.

The original and principal author of md5.h is L. Peter Deutsch
<ghost@aladdin.com>. Other authors are noted in the change history
that follows (in reverse chronological order):

2002-04-13 lpd Removed support for non-ANSI compilers; removed
references to Ghostscript; clarified derivation from RFC 1321;
now handles byte order either statically or dynamically.

1999-11-04 1lpd Edited comments slightly for automatic TOC extraction.

1999-10-18 1lpd Fixed typo in header comment (ansi2knr rather than md5);
added conditionalization for C++ compilation from Martin
Purschke <purschke@bnl.gov>.

1999-05-03 1lpd Original version.

108 Lampiran C. Sejarah dan Lisensi

Python Frequently Asked Questions, Rilis 2.7.18

C.3.5 Layanan soket asinkron

Modul asynchat dan asyncore berisi pemberitahuan berikut:

Copyright 1996 by Sam Rushing
All Rights Reserved

Permission to use, copy, modify, and distribute this software and
its documentation for any purpose and without fee is hereby
granted, provided that the above copyright notice appear in all
copies and that both that copyright notice and this permission
notice appear in supporting documentation, and that the name of Sam
Rushing not be used in advertising or publicity pertaining to
distribution of the software without specific, written prior
permission.

SAM RUSHING DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE,
INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN
NO EVENT SHALL SAM RUSHING BE LIABLE FOR ANY SPECIAL, INDIRECT OR
CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS
OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT,
NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

C.3.6 Pengelolaan Cookie

The Cookie module contains the following notice:

Copyright 2000 by Timothy O'Malley <timo@alum.mit.edu>
All Rights Reserved

Permission to use, copy, modify, and distribute this software

and its documentation for any purpose and without fee is hereby
granted, provided that the above copyright notice appear in all
copies and that both that copyright notice and this permission
notice appear in supporting documentation, and that the name of
Timothy O'Malley not be used in advertising or publicity

pertaining to distribution of the software without specific, written
prior permission.

Timothy O'Malley DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS
SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS, IN NO EVENT SHALL Timothy O'Malley BE LIABLE FOR
ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
PERFORMANCE OF THIS SOFTWARE.

C.3. Lisensi dan Ucapan Terima Kasih untuk Perangkat Lunak yang Tergabung 109

Python Frequently Asked Questions, Rilis 2.7.18

C.3.7 Pelacakan eksekusi

Modul t race berisi pemberitahuan berikut:

portions copyright 2001, Autonomous Zones Industries, Inc., all rights...
err... reserved and offered to the public under the terms of the

Python 2.2 license.

Author: Zooko O'Whielacronx

http://zooko.com/

mailto:zooko@zooko.com

Copyright 2000, Mojam Media, Inc., all rights reserved.
Author: Skip Montanaro

Copyright 1999, Bioreason, Inc., all rights reserved.
Author: Andrew Dalke

Copyright 1995-1997, Automatrix, Inc., all rights reserved.
Author: Skip Montanaro

Copyright 1991-1995, Stichting Mathematisch Centrum, all rights reserved.

Permission to use, copy, modify, and distribute this Python software and
its associated documentation for any purpose without fee is hereby
granted, provided that the above copyright notice appears in all copies,
and that both that copyright notice and this permission notice appear in
supporting documentation, and that the name of neither Automatrix,
Bioreason or Mojam Media be used in advertising or publicity pertaining to
distribution of the software without specific, written prior permission.

C.3.8 UUencode and UUdecode functions

Modul uu berisi pemberitahuan berikut:

Copyright 1994 by Lance Ellinghouse
Cathedral City, California Republic, United States of America.

All Rights Reserved
Permission to use, copy, modify, and distribute this software and its
documentation for any purpose and without fee is hereby granted,
provided that the above copyright notice appear in all copies and that
both that copyright notice and this permission notice appear in
supporting documentation, and that the name of Lance Ellinghouse
not be used in advertising or publicity pertaining to distribution
of the software without specific, written prior permission.
LANCE ELLINGHOUSE DISCLAIMS ALL WARRANTIES WITH REGARD TO
THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS, IN NO EVENT SHALL LANCE ELLINGHOUSE CENTRUM BE LIABLE
FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT
OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

Modified by Jack Jansen, CWI, July 1995:
— Use binascii module to do the actual line-by-line conversion
between ascii and binary. This results in a 1000-fold speedup. The C

(berlanjut ke halaman berikutnya)

110 Lampiran C. Sejarah dan Lisensi

Python Frequently Asked Questions, Rilis 2.7.18

(lanjutan dari halaman sebelumnya)

version is still 5 times faster, though.
- Arguments more compliant with Python standard

C.3.9 XML Remote Procedure Calls

The xmlrpclib module contains the following notice:

The XML-RPC client interface is

Copyright (c) 1999-2002 by Secret Labs AB
Copyright (c) 1999-2002 by Fredrik Lundh

By obtaining, using, and/or copying this software and/or its
associated documentation, you agree that you have read, understood,
and will comply with the following terms and conditions:

Permission to use, copy, modify, and distribute this software and
its associated documentation for any purpose and without fee is
hereby granted, provided that the above copyright notice appears in
all copies, and that both that copyright notice and this permission
notice appear in supporting documentation, and that the name of
Secret Labs AB or the author not be used in advertising or publicity
pertaining to distribution of the software without specific, written
prior permission.

SECRET LABS AB AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH REGARD
TO THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANT-
ABILITY AND FITNESS. 1IN NO EVENT SHALL SECRET LABS AB OR THE AUTHOR
BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY
DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
OF THIS SOFTWARE.

C.3.10 test_epoll

The test_epoll contains the following notice:

Copyright (c) 2001-2006 Twisted Matrix Laboratories.

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF

(berlanjut ke halaman berikutnya)

C.3. Lisensi dan Ucapan Terima Kasih untuk Perangkat Lunak yang Tergabung 111

Python Frequently Asked Questions, Rilis 2.7.18

(lanjutan dari halaman sebelumnya)

MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND

NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION

WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

C.3.11 Pilih kqueue

The select and contains the following notice for the kqueue interface:

Copyright (c) 2000 Doug White, 2006 James Knight, 2007 Christian Heimes
All rights reserved.

Redistribution and use in source and binary forms, with or without

modification, are permitted provided that the following conditions

are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS "~ "AS IS'' AND

ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS

OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

C.3.12 strtod dan dtoa

The file Python/dtoa. c, which supplies C functions dtoa and strtod for conversion of C doubles to and from strings,
is derived from the file of the same name by David M. Gay, currently available from http://www.netlib.org/fp/. The
original file, as retrieved on March 16, 2009, contains the following copyright and licensing notice:

/*********************~k****k*******~k******************************

*

* The author of this software is David M. Gay.

Copyright (c) 1991, 2000, 2001 by Lucent Technologies.

* % o

Permission to use, copy, modify, and distribute this software for any
purpose without fee is hereby granted, provided that this entire notice
is included in all copies of any software which is or includes a copy
or modification of this software and in all copies of the supporting
documentation for such software.

* % ok X ok X

*

THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR IMPLIED

(berlanjut ke halaman berikutnya)

112 Lampiran C. Sejarah dan Lisensi

http://www.netlib.org/fp/

Python Frequently Asked Questions, Rilis 2.7.18

(lanjutan dari halaman sebelumnya)

* WARRANTY. 1IN PARTICULAR, NEITHER THE AUTHOR NOR LUCENT MAKES ANY
* REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE MERCHANTABILITY
* OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR PURPOSE.

*

k*/

C.3.13 OpenSSL

The modules hashlib, posix, ssl, crypt use the OpenSSL library for added performance if made available by the
operating system. Additionally, the Windows and Mac OS X installers for Python may include a copy of the OpenSSL
libraries, so we include a copy of the OpenSSL license here:

LICENSE ISSUES

The OpenSSL toolkit stays under a dual license, i.e. both the conditions of
the OpenSSL License and the original SSLeay license apply to the toolkit.
See below for the actual license texts. Actually both licenses are BSD-style
Open Source licenses. In case of any license issues related to OpenSSL
please contact openssl-corelopenssl.org.

OpenSSL License

* Copyright (c) 1998-2008 The OpenSSL Project. All rights reserved.
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions

* are met:

* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.

* 2. Redistributions in binary form must reproduce the above copyright

* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.

* 3. All advertising materials mentioning features or use of this

* software must display the following acknowledgment:
* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit. (http://www.openssl.org/)"

* 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to

* endorse or promote products derived from this software without
* prior written permission. For written permission, please contact
* openssl-core@openssl.org.

* 5. Products derived from this software may not be called "OpenSSL"
* nor may "OpenSSL" appear in their names without prior written
* permission of the OpenSSL Project.

* 6. Redistributions of any form whatsoever must retain the following
* acknowledgment:

(berlanjut ke halaman berikutnya)

C.3. Lisensi dan Ucapan Terima Kasih untuk Perangkat Lunak yang Tergabung 113

Python Frequently Asked Questions, Rilis 2.7.18

(lanjutan dari halaman sebelumnya)

P S T R S . S S S S T

*

*

"This product includes software developed by the OpenSSL Project
for use in the OpenSSL Toolkit (http://www.openssl.org/)"

THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT " "AS IS'' AND ANY
EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT

NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;

LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)

HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
OF THE POSSIBILITY OF SUCH DAMAGE.

This product includes cryptographic software written by Eric Young
(eay@cryptsoft.com). This product includes software written by Tim
Hudson (tjh@cryptsoft.com).

Original SSLeay License

Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
All rights reserved.

This package is an SSL implementation written
by Eric Young (eay@cryptsoft.com).
The implementation was written so as to conform with Netscapes SSL.

This library is free for commercial and non-commercial use as long as
the following conditions are aheared to. The following conditions
apply to all code found in this distribution, be it the RC4, RSA,
lhash, DES, etc., code; not just the SSL code. The SSL documentation
included with this distribution is covered by the same copyright terms
except that the holder is Tim Hudson (tjh@cryptsoft.com).

Copyright remains Eric Young's, and as such any Copyright notices in

the code are not to be removed.

If this package is used in a product, Eric Young should be given attribution
as the author of the parts of the library used.

This can be in the form of a textual message at program startup or

in documentation (online or textual) provided with the package.

Redistribution and use in source and binary forms, with or without

modification, are permitted provided that the following conditions

are met:

1. Redistributions of source code must retain the copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

3. All advertising materials mentioning features or use of this software
must display the following acknowledgement:

(berlanjut ke halaman berikutnya)

114

Lampiran C. Sejarah dan Lisensi

Python Frequently Asked Questions, Rilis 2.7.18

(lanjutan dari halaman sebelumnya)

*

"This product includes cryptographic software written by

* Eric Young (eay@cryptsoft.com)"

* The word 'cryptographic' can be left out if the rouines from the library

* being used are not cryptographic related :-).

* 4. If you include any Windows specific code (or a derivative thereof) from

* the apps directory (application code) you must include an acknowledgement:
*

* % %

"This product includes software written by Tim Hudson (tjh@cryptsoft.com)"

THIS SOFTWARE IS PROVIDED BY ERIC YOUNG " "AS IS'' AND

ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. 1IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE

X X X X

*

* SUCH DAMAGE.

* The licence and distribution terms for any publically available version or
* derivative of this code cannot be changed. i.e. this code cannot simply be

* copied and put under another distribution licence
* [including the GNU Public Licence.]

FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS

OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)

* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF

C.3.14 expat

The pyexpat extension is built using an included copy of the expat sources unless the build is configured

——-with-system-expat:

Copyright (c) 1998, 1999, 2000 Thai Open Source Software Center Ltd
and Clark Cooper

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

C.3. Lisensi dan Ucapan Terima Kasih untuk Perangkat Lunak yang Tergabung

115

Python Frequently Asked Questions, Rilis 2.7.18

C.3.15 libffi

The _ctypes extension is built using an included copy of the libfli sources unless the build is configured
——with-system-1ibffi:

Copyright (c) 1996-2008 Red Hat, Inc and others.

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
‘*Software''), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED " "AS IS'', WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.

C.3.16 zlib

The z11ib extension is built using an included copy of the zlib sources if the zlib version found on the system is too old
to be used for the build:

Copyright (C) 1995-2010 Jean-loup Gailly and Mark Adler

This software is provided 'as-is', without any express or implied
warranty. In no event will the authors be held liable for any damages
arising from the use of this software.

Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it
freely, subject to the following restrictions:

1. The origin of this software must not be misrepresented; you must not
claim that you wrote the original software. If you use this software
in a product, an acknowledgment in the product documentation would be
appreciated but is not required.

2. Altered source versions must be plainly marked as such, and must not be
misrepresented as being the original software.

3. This notice may not be removed or altered from any source distribution.

Jean-loup Gailly Mark Adler
jloup@gzip.org madler@alumni.caltech.edu

116 Lampiran C. Sejarah dan Lisensi

LAMPIRAN D

Hak Cipta

Python dan dokumentasi ini adalah:

Copyright © 2001-2020 Python Software Foundation. All rights reserved.

Hak Cipta © 2000 BeOpen.com. Seluruh hak cipta.

Hak Cipta © 1995-2000 Corporation for National Research Initiatives. Seluruh hak cipta.
Hak Cipta © 1991-1995 Stichting Mathematisch Centrum. Seluruh hak cipta.

Lihat Sejarah dan Lisensi untuk lisensi lengkap dan informasi perizinan.

117

Python Frequently Asked Questions, Rilis 2.7.18

118 Lampiran D. Hak Cipta

Indeks

Non-abjad

..., 8
2ke3, 89
>>> 89
__ future_ ,92
__slots__,96

A

argumen, 89
argumen kata kunci, 94
argument
difference from parameter, 17
atribut, 90

B

BDFL, 90

bilangan kompleks, 90
bytecode, 90
bytes-like object, 90

C

classic class, 90
CPython, 90

D

daftar, 94
descriptor, 91
dictionary view, 91
diinterpretasi, 93
docstring, 91
duck-typing, 91

E

EAFP, 91
ekspresi, 91

F

file-like object, 91
finder, 91

floor division, 92
fungsi, 92
fungsi kunci, 93

G

generator, 92
generator expression, 92
GIL, 92

Fl

hashable, 92

IDLE, 93
immutable, 93
importer, 93
importing, 93
integer division, 93
interaktif, 93
iterable, 93
iterator, 93

J

jumlah referensi, 96

K

kamus, 91

kelas, 90

kelas basis abstrak, 89
kunci interpreter global, 92

L

lambda, 94

LBYL, 94

lingkungan virtual, 97
list comprehension, 94
loader, 94

M

magic

119

Python Frequently Asked Questions, Rilis 2.7.18

method, 94
magic method, 94
manajer konteks, 90
mesin virtual, 97
metaclass, 94
method, 94

magic, 94

special, 96

method resolution order, 94

modul, 94

modul tambahan, 91
MRO, 94

mutable, 94

N

named tuple, 94
namespace, 95
nested scope, 95
new-style class,95

O

objek, 95
objek berkas, 91

P

paket, 95
paksaan, 90
parameter, 95

difference from argument, 17

PATH, 56

pembangkit, 92
pemetaan, 94
penghias, 90
pengumpulan sampah, 92
PEP, 95

pernyataan, 96
positional argument, 96
Python 3000, 96

Python Enhancement Proposals

PEP 1,96

PEP 5,6

PEP 6,3

PEP 8, 10, 80

PEP 238,24,92

PEP 275,46

PEP 278,97

PEP 302,91,9%4

PEP 343,90

PEP 3116,97
Pythonic, 96

S

slice, 96
special

method, 96
special method, 96
struct sequence, 96

T

TCL_LIBRARY, 84
teks tiga-kutip, 96
tipe, 96
TK_LIBRARY, 84

u

universal newlines, 97
urutan, 96

Vv

variabel environment
PATH, 56
TCL_LIBRARY, 84
TK_LIBRARY, 84

Z

Zen of Python, 97

120

Indeks

	FAQ Umum Python
	Pemrograman FAQ
	Desain dan Sejarah FAQ
	FAQ Pustaka dan Ekstensi
	Extending/Embedding FAQ
	Python on Windows FAQ
	Antarmuka Pengguna Grafis FAQ
	"Kenapa Python Terpasang di Komputer saya?" FAQ
	Ikhtisar
	Tentang dokumen-dokumen ini
	Sejarah dan Lisensi
	Hak Cipta
	Indeks

