
Distributing Python Modules
Rilis 2.7.18

Guido van Rossum
and the Python development team

Mei 20, 2020

Python Software Foundation
Email: docs@python.org

Daftar Isi

1 Istilah utama 3

2 Lisensi dan kolaborasi sumber terbuka 5

3 Instalasi alat 7

4 Reading the guide 9

5 Bagaimana saya...? 11
5.1 ... pilih nama untuk proyek saya? . 11
5.2 ... membuat dan mendistribusikan ekstensi biner? . 11

A Ikhtisar 13

B Tentang dokumen-dokumen ini 23
B.1 Kontributor untuk dokumentasi Python . 23

C Sejarah dan Lisensi 25
C.1 Sejarah perangkat lunak . 25
C.2 Syarat dan ketentuan untuk mengakses atau menggunakan Python . 26
C.3 Lisensi dan Ucapan Terima Kasih untuk Perangkat Lunak yang Tergabung 29

D Hak Cipta 41

Indeks 43

i

ii

Distributing Python Modules, Rilis 2.7.18

Email distutils-sig@python.org
Sebagai proyek pengembangan open source yang populer, Python memiliki komunitas pendukung aktif dan pengguna
yang juga membuat perangkat lunak mereka tersedia untuk pengembang Python lain untuk digunakan di bawah persya-
ratan lisensi sumber terbuka.
Hal ini memungkinkan pengguna Python untuk berbagi dan berkolaborasi secara efektif, mendapatkan manfaat dari
solusi yang telah dibuat oleh orang lain untuk masalah umum (dan kadang-kadang bahkan langka!), Serta berpotensi
memberikan kontribusi solusi mereka sendiri ke kumpulan umum.
Panduan ini mencakup bagian distribusi dari proses. Untuk panduan untuk melakukan instalasi proyek Python lainnya,
lihat: ref: panduan instalasi.

Catatan: Untuk pengguna korporat dan institusi lainnya, sadarilah bahwa banyak organisasi memiliki kebijakan mere-
ka sendiri tentang penggunaan dan kontribusi untuk perangkat lunak sumber terbuka. Harap pertimbangkan kebijakan
tersebut saat menggunakan alat distribusi dan instalasi yang disediakan dengan Python.

Daftar Isi 1

mailto:distutils-sig@python.org

Distributing Python Modules, Rilis 2.7.18

2 Daftar Isi

BAB1

Istilah utama

• Python Packaging Index adalah repositori publik dari paket berlisensi open source yang dibuat tersedia untuk
digunakan oleh pengguna Python lain

• the Python Packaging Authority are the group of developers and documentation authors responsible for the main-
tenance and evolution of the standard packaging tools and the associated metadata and file format standards. They
maintain a variety of tools, documentation and issue trackers on both GitHub and BitBucket.

• distutils is the original build and distribution system first added to the Python standard library in 1998. While
direct use of distutils is being phased out, it still laid the foundation for the current packaging and distribution
infrastructure, and it not only remains part of the standard library, but its name lives on in other ways (such as the
name of the mailing list used to coordinate Python packaging standards development).

• setuptools adalah pengganti (sebagian besar) langsung untuk :mod: distutils yang pertama kali diterbitkan pada
tahun 2004. Penambahannya yang paling penting di atas mod yang tidak dimodifikasi alat :mod: distutils adalah
kemampuan untukmendeklarasikan dependensi pada paket-paket lain. Saat ini direkomendasikan sebagai alternatif
yang lebih teratur diperbarui untuk :mod: distutils yang menawarkan dukungan konsisten untuk standar kemasan
yang lebih baru di berbagai versi Python.

• wheel (dalam konteks ini) adalah proyek yang menambahkan perintah bdist_wheel ke
distutils/setuptools. Ini menghasilkan format paket biner lintas platform (disebut ”wheels” atau ”whe-
els” dan didefinisikan dalam PEP 427) yang memungkinkan pustaka Python, bahkan yang termasuk ekstensi
biner, untuk dipasang pada sistem tanpa perlu dibangun secara lokal.

3

https://pypi.org
https://www.pypa.io/
https://github.com/pypa
https://bitbucket.org/pypa/
https://setuptools.readthedocs.io/en/latest/
https://wheel.readthedocs.org
https://setuptools.readthedocs.io/en/latest/
https://www.python.org/dev/peps/pep-0427

Distributing Python Modules, Rilis 2.7.18

4 Bab 1. Istilah utama

BAB2

Lisensi dan kolaborasi sumber terbuka

Di sebagian besar dunia, perangkat lunak secara otomatis dilindungi oleh hak cipta. Ini berarti bahwa pengembang lain
memerlukan izin eksplisit untuk menyalin, menggunakan, memodifikasi, dan mendistribusikan ulang perangkat lunak.
Lisensi sumber terbuka adalah cara untuk secara eksplisit memberikan izin seperti itu dengan cara yang relatif konsisten,
memungkinkan pengembang untuk berbagi dan berkolaborasi secara efisien denganmembuat solusi umum untuk berbagai
masalah yang tersedia secara bebas. Ini membuat banyak pengembang bebas menghabiskan lebih banyak waktu berfokus
pada masalah yang relatif unik untuk situasi khusus mereka.
Alat distribusi yang disediakan dengan Python dirancang untuk memudahkan pengembang untuk membuat kontribusi
mereka sendiri kembali ke kumpulan perangkat lunak umum jika mereka memilih untuk melakukannya.
Alat distribusi yang sama juga dapat digunakan untuk mendistribusikan perangkat lunak dalam suatu organisasi, terlepas
dari apakah perangkat lunak tersebut dipublikasikan sebagai perangkat lunak sumber terbuka atau tidak.

5

Distributing Python Modules, Rilis 2.7.18

6 Bab 2. Lisensi dan kolaborasi sumber terbuka

BAB3

Instalasi alat

Pustaka standar tidak termasuk alat bangun yang mendukung standar pemaketan Python modern, sebagaimana tim pe-
ngembang inti telah menemukan bahwa penting untuk memiliki alat standar yang bekerja secara konsisten, bahkan pada
versi Python yang terdahulu.
Alat bangun dan distribusi yang direkomendasikan saat ini dapat diinstal dengan menjalankan modul pip pada baris
perintah

python -m pip install setuptools wheel twine

Catatan: Untuk pengguna POSIX (termasuk penggunaMacOSX dan Linux), petunjuk ini mengasumsikan penggunaan
:term: lingkungan virtual.
Untuk pengguna Windows, petunjuk ini mengasumsikan bahwa opsi untuk menyesuaikan variabel lingkungan PATH
sistem dipilih ketika melakukan instalasi Python.

Panduan Pengguna Python Packaging menyertakan lebih banyak rincian tentang alat yang direkomendasikan saat ini.

7

https://packaging.python.org/en/latest/current/#packaging-tool-recommendations

Distributing Python Modules, Rilis 2.7.18

8 Bab 3. Instalasi alat

BAB4

Reading the guide

The Python Packaging User Guide covers the various key steps and elements involved in creating a project:
• Struktur proyek
• Membangun dan memaketkan proyek
• Mengunggah proyek ke Indeks Pemaketan Python

9

 https://packaging.python.org/en/latest/distributing/
 https://packaging.python.org/en/latest/distributing/#packaging-your-project
 https://packaging.python.org/en/latest/distributing/#uploading-your-project-to-pypi

Distributing Python Modules, Rilis 2.7.18

10 Bab 4. Reading the guide

BAB5

Bagaimana saya...?

Ini adalah jawaban cepat atau tautan untuk beberapa tugas umum.

5.1 ... pilih nama untuk proyek saya?

Ini bukan topik yang mudah, tetapi berikut beberapa kiatnya:
• periksa Indeks Pemaketan Python untuk melihat apakah nama tersebut sudah digunakan
• check popular hosting sites like GitHub, BitBucket, etc to see if there is already a project with that name
• periksa apa yang muncul dalam pencarian web untuk nama yang Anda pertimbangkan
• hindari kata-kata yang sangat umum, terutama yang memiliki banyak makna, karena dapat menyulitkan pengguna
untuk menemukan perangkat lunak Anda ketika menelusurinya

5.2 ... membuat dan mendistribusikan ekstensi biner?

Ini sebenarnya adalah topik yang cukup rumit, dengan berbagai alternatif yang tersedia tergantung pada apa yang ingin
Anda capai. Lihat Panduan Pengguna Python Packaging untuk informasi dan rekomendasi lebih lanjut.
Lihat juga:
Python Packaging User Guide: Binary Extensions

11

https://packaging.python.org/en/latest/extensions

Distributing Python Modules, Rilis 2.7.18

12 Bab 5. Bagaimana saya...?

LAMPIRANA

Ikhtisar

>>> Prompt Python bawaan dari shell interaktif. Sering terlihat untuk contoh kode yang dapat dieksekusi secara inte-
raktif dalam interpreter.

... The default Python prompt of the interactive shell when entering code for an indented code block, when within
a pair of matching left and right delimiters (parentheses, square brackets, curly braces or triple quotes), or after
specifying a decorator.

2ke3 A tool that tries to convert Python 2.x code to Python 3.x code by handling most of the incompatibilities which can
be detected by parsing the source and traversing the parse tree.
2to3 is available in the standard library as lib2to3; a standalone entry point is provided as Tools/scripts/
2to3. See 2to3-reference.

kelas basis abstrak Abstract base classes complement duck-typing by providing a way to define interfaces when other
techniques like hasattr()would be clumsy or subtly wrong (for example with magic methods). ABCs introduce
virtual subclasses, which are classes that don’t inherit from a class but are still recognized by isinstance() and
issubclass(); see the abcmodule documentation. Python comes with many built-in ABCs for data structures
(in the collections module), numbers (in the numbers module), and streams (in the io module). You can
create your own ABCs with the abc module.

argumen A value passed to a function (or method) when calling the function. There are two types of arguments:
• keyword argument: an argument preceded by an identifier (e.g. name=) in a function call or passed as a value
in a dictionary preceded by **. For example, 3 and 5 are both keyword arguments in the following calls to
complex():

complex(real=3, imag=5)
complex(**{'real': 3, 'imag': 5})

• positional argument: an argument that is not a keyword argument. Positional arguments can appear at the
beginning of an argument list and/or be passed as elements of an iterable preceded by *. For example, 3 and
5 are both positional arguments in the following calls:

complex(3, 5)
complex(*(3, 5))

13

Distributing Python Modules, Rilis 2.7.18

Arguments are assigned to the named local variables in a function body. See the calls section for the rules governing
this assignment. Syntactically, any expression can be used to represent an argument; the evaluated value is assigned
to the local variable.
See also the parameter glossary entry and the FAQ question on the difference between arguments and parameters.

atribut A value associated with an object which is referenced by name using dotted expressions. For example, if an
object o has an attribute a it would be referenced as o.a.

BDFL Benevolent Dictator For Life, a.k.a. Guido van Rossum, Python’s creator.
bytes-like object An object that supports the buffer protocol, like str, bytearray or memoryview. Bytes-like

objects can be used for various operations that expect binary data, such as compression, saving to a binary file or
sending over a socket. Some operations need the binary data to be mutable, in which case not all bytes-like objects
can apply.

bytecode Python source code is compiled into bytecode, the internal representation of a Python program in the CPython
interpreter. The bytecode is also cached in .pyc and .pyo files so that executing the same file is faster the second
time (recompilation from source to bytecode can be avoided). This ”intermediate language” is said to run on a
virtual machine that executes the machine code corresponding to each bytecode. Do note that bytecodes are not
expected to work between different Python virtual machines, nor to be stable between Python releases.
Daftar instruksi-instruksi bytecode dapat ditemukan di dokumentasi pada the dis module.

kelas A template for creating user-defined objects. Class definitions normally contain method definitions which operate
on instances of the class.

classic class Any class which does not inherit from object. See new-style class. Classic classes have been removed in
Python 3.

paksaan The implicit conversion of an instance of one type to another during an operation which involves two arguments
of the same type. For example, int(3.15) converts the floating point number to the integer 3, but in 3+4.5,
each argument is of a different type (one int, one float), and both must be converted to the same type before they
can be added or it will raise a TypeError. Coercion between two operands can be performed with the coerce
built-in function; thus, 3+4.5 is equivalent to calling operator.add(*coerce(3, 4.5)) and results in
operator.add(3.0, 4.5). Without coercion, all arguments of even compatible types would have to be
normalized to the same value by the programmer, e.g., float(3)+4.5 rather than just 3+4.5.

bilangan kompleks An extension of the familiar real number system in which all numbers are expressed as a sum of a
real part and an imaginary part. Imaginary numbers are real multiples of the imaginary unit (the square root of -1),
often written i in mathematics or j in engineering. Python has built-in support for complex numbers, which are
written with this latter notation; the imaginary part is written with a j suffix, e.g., 3+1j. To get access to complex
equivalents of the math module, use cmath. Use of complex numbers is a fairly advanced mathematical feature.
If you’re not aware of a need for them, it’s almost certain you can safely ignore them.

manajer konteks An object which controls the environment seen in a with statement by defining __enter__() and
__exit__() methods. See PEP 343.

CPython The canonical implementation of the Python programming language, as distributed on python.org. The term
”CPython” is used when necessary to distinguish this implementation from others such as Jython or IronPython.

penghias A function returning another function, usually applied as a function transformation using the @wrapper
syntax. Common examples for decorators are classmethod() and staticmethod().
The decorator syntax is merely syntactic sugar, the following two function definitions are semantically equivalent:

def f(...):
...

f = staticmethod(f)

@staticmethod

(berlanjut ke halaman berikutnya)

14 Lampiran A. Ikhtisar

https://www.python.org/~guido/
https://www.python.org/dev/peps/pep-0343
https://www.python.org

Distributing Python Modules, Rilis 2.7.18

(lanjutan dari halaman sebelumnya)
def f(...):

...

The same concept exists for classes, but is less commonly used there. See the documentation for function definitions
and class definitions for more about decorators.

descriptor Any new-style object which defines the methods __get__(), __set__(), or __delete__(). When
a class attribute is a descriptor, its special binding behavior is triggered upon attribute lookup. Normally, using a.b
to get, set or delete an attribute looks up the object named b in the class dictionary for a, but if b is a descriptor,
the respective descriptor method gets called. Understanding descriptors is a key to a deep understanding of Python
because they are the basis for many features including functions, methods, properties, class methods, static methods,
and reference to super classes.
For more information about descriptors’ methods, see descriptors.

kamus An associative array, where arbitrary keys are mapped to values. The keys can be any object with __hash__()
and __eq__() methods. Called a hash in Perl.

dictionary view The objects returned from dict.viewkeys(), dict.viewvalues(), and dict.
viewitems() are called dictionary views. They provide a dynamic view on the dictionary’s entries,
which means that when the dictionary changes, the view reflects these changes. To force the dictionary view to
become a full list use list(dictview). See dict-views.

docstring A string literal which appears as the first expression in a class, function or module. While ignored when
the suite is executed, it is recognized by the compiler and put into the __doc__ attribute of the enclosing class,
function or module. Since it is available via introspection, it is the canonical place for documentation of the object.

duck-typing A programming style which does not look at an object’s type to determine if it has the right interface;
instead, the method or attribute is simply called or used (”If it looks like a duck and quacks like a duck, it must be a
duck.”) By emphasizing interfaces rather than specific types, well-designed code improves its flexibility by allowing
polymorphic substitution. Duck-typing avoids tests using type() or isinstance(). (Note, however, that
duck-typing can be complemented with abstract base classes.) Instead, it typically employs hasattr() tests or
EAFP programming.

EAFP Easier to ask for forgiveness than permission. This common Python coding style assumes the existence of valid
keys or attributes and catches exceptions if the assumption proves false. This clean and fast style is characterized
by the presence of many try and except statements. The technique contrasts with the LBYL style common to
many other languages such as C.

ekspresi A piece of syntax which can be evaluated to some value. In other words, an expression is an accumulation
of expression elements like literals, names, attribute access, operators or function calls which all return a value.
In contrast to many other languages, not all language constructs are expressions. There are also statements which
cannot be used as expressions, such as print or if. Assignments are also statements, not expressions.

modul tambahan A module written in C or C++, using Python’s C API to interact with the core and with user code.
objek berkas An object exposing a file-oriented API (with methods such as read() or write()) to an underlying

resource. Depending on the way it was created, a file object can mediate access to a real on-disk file or to another
type of storage or communication device (for example standard input/output, in-memory buffers, sockets, pipes,
etc.). File objects are also called file-like objects or streams.
There are actually three categories of file objects: raw binary files, buffered binary files and text files. Their interfaces
are defined in the io module. The canonical way to create a file object is by using the open() function.

file-like object A synonym for file object.
finder An object that tries to find the loader for a module. It must implement a method named find_module(). See

PEP 302 for details.

15

https://www.python.org/dev/peps/pep-0302

Distributing Python Modules, Rilis 2.7.18

floor division Mathematical division that rounds down to nearest integer. The floor division operator is //. For example,
the expression 11 // 4 evaluates to 2 in contrast to the 2.75 returned by float true division. Note that (-11)
// 4 is -3 because that is -2.75 rounded downward. See PEP 238.

fungsi A series of statements which returns some value to a caller. It can also be passed zero or more arguments which
may be used in the execution of the body. See also parameter, method, and the function section.

__future__ A pseudo-module which programmers can use to enable new language features which are not compatible
with the current interpreter. For example, the expression 11/4 currently evaluates to 2. If the module in which it
is executed had enabled true division by executing:

from __future__ import division

the expression11/4would evaluate to2.75. By importing the__future__module and evaluating its variables,
you can see when a new feature was first added to the language and when it will become the default:

>>> import __future__
>>> __future__.division
_Feature((2, 2, 0, 'alpha', 2), (3, 0, 0, 'alpha', 0), 8192)

pengumpulan sampah The process of freeingmemory when it is not used anymore. Python performs garbage collection
via reference counting and a cyclic garbage collector that is able to detect and break reference cycles.

pembangkit A function which returns an iterator. It looks like a normal function except that it contains yield state-
ments for producing a series of values usable in a for-loop or that can be retrieved one at a time with the next()
function. Each yield temporarily suspends processing, remembering the location execution state (including lo-
cal variables and pending try-statements). When the generator resumes, it picks up where it left off (in contrast to
functions which start fresh on every invocation).

generator expression An expression that returns an iterator. It looks like a normal expression followed by a for exp-
ression defining a loop variable, range, and an optional if expression. The combined expression generates values
for an enclosing function:

>>> sum(i*i for i in range(10)) # sum of squares 0, 1, 4, ... 81
285

GIL Lihat global interpreter lock.
kunci interpreter global Themechanism used by the CPython interpreter to assure that only one thread executes Python

bytecode at a time. This simplifies the CPython implementation bymaking the object model (including critical built-
in types such as dict) implicitly safe against concurrent access. Locking the entire interpreter makes it easier
for the interpreter to be multi-threaded, at the expense of much of the parallelism afforded by multi-processor
machines.
However, some extension modules, either standard or third-party, are designed so as to release the GIL when doing
computationally-intensive tasks such as compression or hashing. Also, the GIL is always released when doing I/O.
Past efforts to create a ”free-threaded” interpreter (one which locks shared data at a much finer granularity) have not
been successful because performance suffered in the common single-processor case. It is believed that overcoming
this performance issue would make the implementation much more complicated and therefore costlier to maintain.

hashable An object is hashable if it has a hash value which never changes during its lifetime (it needs a __hash__()
method), and can be compared to other objects (it needs an __eq__() or __cmp__() method). Hashable
objects which compare equal must have the same hash value.
Hashability makes an object usable as a dictionary key and a set member, because these data structures use the hash
value internally.
All of Python’s immutable built-in objects are hashable, while no mutable containers (such as lists or dictionaries)
are. Objects which are instances of user-defined classes are hashable by default; they all compare unequal (except

16 Lampiran A. Ikhtisar

https://www.python.org/dev/peps/pep-0238

Distributing Python Modules, Rilis 2.7.18

with themselves), and their hash value is derived from their id().
IDLE Sebuah Lingkungan Pengembangan Terpadu untuk Python. IDLE adalah editor dasar dan lingkungan interpreter

yang digabungkan dengan distribusi standar dari Python.
immutable An object with a fixed value. Immutable objects include numbers, strings and tuples. Such an object cannot

be altered. A new object has to be created if a different value has to be stored. They play an important role in
places where a constant hash value is needed, for example as a key in a dictionary.

integer division Mathematical division discarding any remainder. For example, the expression 11/4 currently evaluates
to 2 in contrast to the 2.75 returned by float division. Also called floor division. When dividing two integers the
outcome will always be another integer (having the floor function applied to it). However, if one of the operands is
another numeric type (such as a float), the result will be coerced (see coercion) to a common type. For example,
an integer divided by a float will result in a float value, possibly with a decimal fraction. Integer division can be
forced by using the // operator instead of the / operator. See also __future__.

importing The process by which Python code in one module is made available to Python code in another module.
importer An object that both finds and loads a module; both a finder and loader object.
interaktif Python has an interactive interpreter which means you can enter statements and expressions at the interpreter

prompt, immediately execute them and see their results. Just launch python with no arguments (possibly by
selecting it from your computer’s main menu). It is a very powerful way to test out new ideas or inspect modules
and packages (remember help(x)).

diinterpretasi Python is an interpreted language, as opposed to a compiled one, though the distinction can be blurry
because of the presence of the bytecode compiler. This means that source files can be run directly without explicitly
creating an executable which is then run. Interpreted languages typically have a shorter development/debug cycle
than compiled ones, though their programs generally also run more slowly. See also interactive.

iterable An object capable of returning its members one at a time. Examples of iterables include all sequence types (such
as list, str, and tuple) and some non-sequence types like dict and file and objects of any classes you
define with an __iter__() or __getitem__() method. Iterables can be used in a for loop and in many
other places where a sequence is needed (zip(), map(), ...). When an iterable object is passed as an argument
to the built-in function iter(), it returns an iterator for the object. This iterator is good for one pass over the set
of values. When using iterables, it is usually not necessary to call iter() or deal with iterator objects yourself.
The for statement does that automatically for you, creating a temporary unnamed variable to hold the iterator for
the duration of the loop. See also iterator, sequence, and generator.

iterator An object representing a stream of data. Repeated calls to the iterator’s next()method return successive items
in the stream. When no more data are available a StopIteration exception is raised instead. At this point,
the iterator object is exhausted and any further calls to its next() method just raise StopIteration again.
Iterators are required to have an __iter__() method that returns the iterator object itself so every iterator is
also iterable and may be used in most places where other iterables are accepted. One notable exception is code
which attempts multiple iteration passes. A container object (such as a list) produces a fresh new iterator each
time you pass it to the iter() function or use it in a for loop. Attempting this with an iterator will just return
the same exhausted iterator object used in the previous iteration pass, making it appear like an empty container.
Informasi lebih lanjut dapat ditemukan di typeiter.

fungsi kunci A key function or collation function is a callable that returns a value used for sorting or ordering. For
example, locale.strxfrm() is used to produce a sort key that is aware of locale specific sort conventions.
A number of tools in Python accept key functions to control how elements are ordered or grouped. They in-
clude min(), max(), sorted(), list.sort(), heapq.nsmallest(), heapq.nlargest(), and
itertools.groupby().
There are several ways to create a key function. For example. the str.lower() method can serve as a key
function for case insensitive sorts. Alternatively, an ad-hoc key function can be built from a lambda expression
such as lambda r: (r[0], r[2]). Also, the operatormodule provides three key function constructors:

17

Distributing Python Modules, Rilis 2.7.18

attrgetter(), itemgetter(), and methodcaller(). See the Sorting HOW TO for examples of how
to create and use key functions.

argumen kata kunci Lihat argument.
lambda An anonymous inline function consisting of a single expression which is evaluated when the function is called.

The syntax to create a lambda function is lambda [parameters]: expression

LBYL Look before you leap. This coding style explicitly tests for pre-conditions before making calls or lookups. This
style contrasts with the EAFP approach and is characterized by the presence of many if statements.
In a multi-threaded environment, the LBYL approach can risk introducing a race condition between ”the looking”
and ”the leaping”. For example, the code, if key in mapping: return mapping[key] can fail if
another thread removes key from mapping after the test, but before the lookup. This issue can be solved with locks
or by using the EAFP approach.

daftar A built-in Python sequence. Despite its name it is more akin to an array in other languages than to a linked list
since access to elements is O(1).

list comprehension A compact way to process all or part of the elements in a sequence and return a list with the results.
result = ["0x%02x" % x for x in range(256) if x % 2 == 0] generates a list of strings
containing even hex numbers (0x..) in the range from 0 to 255. The if clause is optional. If omitted, all elements
in range(256) are processed.

loader An object that loads a module. It must define a method named load_module(). A loader is typically returned
by a finder. See PEP 302 for details.

magic method An informal synonym for special method.
pemetaan A container object that supports arbitrary key lookups and implements the methods specified in the Mapping

or MutableMapping abstract base classes. Examples include dict, collections.defaultdict,
collections.OrderedDict and collections.Counter.

metaclass The class of a class. Class definitions create a class name, a class dictionary, and a list of base classes. The me-
taclass is responsible for taking those three arguments and creating the class. Most object oriented programming
languages provide a default implementation. What makes Python special is that it is possible to create custom
metaclasses. Most users never need this tool, but when the need arises, metaclasses can provide powerful, ele-
gant solutions. They have been used for logging attribute access, adding thread-safety, tracking object creation,
implementing singletons, and many other tasks.
Informasi lebih lanjut dapat ditemukan di metaclasses.

method A function which is defined inside a class body. If called as an attribute of an instance of that class, the method
will get the instance object as its first argument (which is usually called self). See function and nested scope.

method resolution order Method Resolution Order is the order in which base classes are searched for a member during
lookup. See The Python 2.3 Method Resolution Order for details of the algorithm used by the Python interpreter
since the 2.3 release.

modul An object that serves as an organizational unit of Python code. Modules have a namespace containing arbitrary
Python objects. Modules are loaded into Python by the process of importing.
Lihat juga package.

MRO Lihat method resolution order.
mutable Mutable objects can change their value but keep their id(). See also immutable.
named tuple Any tuple-like class whose indexable elements are also accessible using named attributes (for example,

time.localtime() returns a tuple-like object where the year is accessible either with an index such as t[0]
or with a named attribute like t.tm_year).

18 Lampiran A. Ikhtisar

https://www.python.org/dev/peps/pep-0302
https://www.python.org/download/releases/2.3/mro/

Distributing Python Modules, Rilis 2.7.18

A named tuple can be a built-in type such as time.struct_time, or it can be created with a regular
class definition. A full featured named tuple can also be created with the factory function collections.
namedtuple(). The latter approach automatically provides extra features such as a self-documenting represen-
tation like Employee(name='jones', title='programmer').

namespace The place where a variable is stored. Namespaces are implemented as dictionaries. There are the local,
global and built-in namespaces as well as nested namespaces in objects (in methods). Namespaces support mo-
dularity by preventing naming conflicts. For instance, the functions __builtin__.open() and os.open()
are distinguished by their namespaces. Namespaces also aid readability and maintainability by making it clear whi-
ch module implements a function. For instance, writing random.seed() or itertools.izip() makes it
clear that those functions are implemented by the random and itertools modules, respectively.

nested scope The ability to refer to a variable in an enclosing definition. For instance, a function defined inside another
function can refer to variables in the outer function. Note that nested scopes work only for reference and not for
assignment which will always write to the innermost scope. In contrast, local variables both read and write in the
innermost scope. Likewise, global variables read and write to the global namespace.

new-style class Any class which inherits from object. This includes all built-in types like list and dict.
Only new-style classes can use Python’s newer, versatile features like __slots__, descriptors, properties, and
__getattribute__().
More information can be found in newstyle.

objek Any data with state (attributes or value) and defined behavior (methods). Also the ultimate base class of any
new-style class.

paket A Python module which can contain submodules or recursively, subpackages. Technically, a package is a Python
module with an __path__ attribute.

parameter A named entity in a function (or method) definition that specifies an argument (or in some cases, arguments)
that the function can accept. There are four types of parameters:

• positional-or-keyword: specifies an argument that can be passed either positionally or as a keyword argument.
This is the default kind of parameter, for example foo and bar in the following:

def func(foo, bar=None): ...

• positional-only: specifies an argument that can be supplied only by position. Python has no syntax for defining
positional-only parameters. However, some built-in functions have positional-only parameters (e.g. abs()).

• var-positional: specifies that an arbitrary sequence of positional arguments can be provided (in addition to any
positional arguments already accepted by other parameters). Such a parameter can be defined by prepending
the parameter name with *, for example args in the following:

def func(*args, **kwargs): ...

• var-keyword: specifies that arbitrarily many keyword arguments can be provided (in addition to any keywo-
rd arguments already accepted by other parameters). Such a parameter can be defined by prepending the
parameter name with **, for example kwargs in the example above.

Parameters can specify both optional and required arguments, as well as default values for some optional arguments.
See also the argument glossary entry, the FAQ question on the difference between arguments and parameters, and
the function section.

PEP Python Enhancement Proposal. A PEP is a design document providing information to the Python community,
or describing a new feature for Python or its processes or environment. PEPs should provide a concise technical
specification and a rationale for proposed features.
PEPs are intended to be the primary mechanisms for proposing major new features, for collecting community input
on an issue, and for documenting the design decisions that have gone into Python. The PEP author is responsible

19

Distributing Python Modules, Rilis 2.7.18

for building consensus within the community and documenting dissenting opinions.
Lihat PEP 1.

positional argument Lihat argument.
Python 3000 Nickname for the Python 3.x release line (coined long ago when the release of version 3 was something in

the distant future.) This is also abbreviated ”Py3k”.
Pythonic An idea or piece of code which closely follows the most common idioms of the Python language, rather than

implementing code using concepts common to other languages. For example, a common idiom in Python is to loop
over all elements of an iterable using a for statement. Many other languages don’t have this type of construct, so
people unfamiliar with Python sometimes use a numerical counter instead:

for i in range(len(food)):
print food[i]

As opposed to the cleaner, Pythonic method:

for piece in food:
print piece

jumlah referensi The number of references to an object. When the reference count of an object drops to zero, it is
deallocated. Reference counting is generally not visible to Python code, but it is a key element of the CPython
implementation. The sys module defines a getrefcount() function that programmers can call to return the
reference count for a particular object.

__slots__ A declaration inside a new-style class that saves memory by pre-declaring space for instance attributes and
eliminating instance dictionaries. Though popular, the technique is somewhat tricky to get right and is best reserved
for rare cases where there are large numbers of instances in a memory-critical application.

urutan An iterable which supports efficient element access using integer indices via the __getitem__() special
method and defines a len() method that returns the length of the sequence. Some built-in sequence types are
list, str, tuple, and unicode. Note that dict also supports __getitem__() and __len__(), but is
considered a mapping rather than a sequence because the lookups use arbitrary immutable keys rather than integers.

slice An object usually containing a portion of a sequence. A slice is created using the subscript notation, [] with
colons between numbers when several are given, such as in variable_name[1:3:5]. The bracket (subscript)
notation uses slice objects internally (or in older versions, __getslice__() and __setslice__()).

special method A method that is called implicitly by Python to execute a certain operation on a type, such as addi-
tion. Such methods have names starting and ending with double underscores. Special methods are documented in
specialnames.

pernyataan A statement is part of a suite (a ”block” of code). A statement is either an expression or one of several
constructs with a keyword, such as if, while or for.

struct sequence A tuple with named elements. Struct sequences expose an interface similiar to named tuple in that
elements can be accessed either by index or as an attribute. However, they do not have any of the named tuple
methods like _make() or _asdict(). Examples of struct sequences include sys.float_info and the
return value of os.stat().

teks tiga-kutip A string which is bound by three instances of either a quotation mark (”) or an apostrophe (’). While they
don’t provide any functionality not available with single-quoted strings, they are useful for a number of reasons.
They allow you to include unescaped single and double quotes within a string and they can span multiple lines
without the use of the continuation character, making them especially useful when writing docstrings.

tipe The type of a Python object determines what kind of object it is; every object has a type. An object’s type is
accessible as its __class__ attribute or can be retrieved with type(obj).

20 Lampiran A. Ikhtisar

https://www.python.org/dev/peps/pep-0001

Distributing Python Modules, Rilis 2.7.18

universal newlines A manner of interpreting text streams in which all of the following are recognized as ending a line:
the Unix end-of-line convention '\n', the Windows convention '\r\n', and the old Macintosh convention '\
r'. See PEP 278 and PEP 3116, as well as str.splitlines() for an additional use.

lingkungan virtual Lingkungan runtime kooperatif yang memungkinkan pengguna dan aplikasi Python untuk mengin-
stal dan memperbarui paket distribusi Python tanpa mengganggu perilaku aplikasi Python lain yang berjalan pada
sistem yang sama.

mesin virtual A computer defined entirely in software. Python’s virtual machine executes the bytecode emitted by the
bytecode compiler.

Zen of Python Listing of Python design principles and philosophies that are helpful in understanding and using the
language. The listing can be found by typing ”import this” at the interactive prompt.

21

https://www.python.org/dev/peps/pep-0278
https://www.python.org/dev/peps/pep-3116

Distributing Python Modules, Rilis 2.7.18

22 Lampiran A. Ikhtisar

LAMPIRANB

Tentang dokumen-dokumen ini

Dokumen-dokumen ini dihasilkan dari reStructuredText dengan Sphinx, sebuah pemroses dokumen yang khusus ditulis
untuk dokumentasi Python.
Pengembangan dokumentasi dan perangkat pengembangannya sepenuhnya upaya sukarela, seperti halnya Python. Jika
anda ingin berkontribusi, silakan lihat halaman reporting-bugs untuk informasi cara melakukannya. Relawan baru selalu
diterima!
Terima kasih banyak untuk:

• Fred L. Drake, Jr., pembuat awal kumpulan alat dokumentasi Python dan penulis banyak konten;
• Docutils proyek untuk membuat reStructuredText dan Docutils suite;
• Fredrik Lundh untuk Alternative Python Reference proyek dimana Sphinx mendapatkan banyak ide bagus.

B.1 Kontributor untuk dokumentasi Python

Banyak orang telah berkontribusi ke bahasa Python, pustaka standar Python, dan dokumentasi Python. Lihat Misc/ACKS
di distribusi kode sumber Python untuk sebagian daftar kontributor-kontributor.
Hanya dengan masukan dan kontribusi dari komunitas Python sehingga Python memiliki dokumentasi yang sangat baik.
Terima kasih!

23

http://docutils.sourceforge.net/rst.html
http://sphinx-doc.org/
http://docutils.sourceforge.net/
http://effbot.org/zone/pyref.htm
https://github.com/python/cpython/tree/2.7/Misc/ACKS

Distributing Python Modules, Rilis 2.7.18

24 Lampiran B. Tentang dokumen-dokumen ini

LAMPIRANC

Sejarah dan Lisensi

C.1 Sejarah perangkat lunak

Python diciptakan pada awal 1990-an oleh Guido van Rossum di Stichting Mathematisch Centrum (CWI, lihat https://
www.cwi.nl/) di Belanda sebagai penerus bahasa yang disebut ABC.Guido tetapmenjadi penulis utama Python, meskipun
ia memasukkan banyak kontribusi dari orang lain.
Pada tahun 1995, Guido melanjutkan karyanya tentang Python di Corporation for National Research Initiatives (CNRI,
lihat https://www.cnri.reston.va.us/) di Reston, Virginia di mana ia merilis beberapa versi perangkat lunak.
In May 2000, Guido and the Python core development team moved to BeOpen.com to form the BeOpen PythonLabs
team. In October of the same year, the PythonLabs team moved to Digital Creations (now Zope Corporation; see https:
//www.zope.org/). In 2001, the Python Software Foundation (PSF, see https://www.python.org/psf/) was formed, a non-
profit organization created specifically to own Python-related Intellectual Property. Zope Corporation is a sponsoring
member of the PSF.
Semua rilis Python adalah Sumber Terbuka (lihat https://opensource.org/ untuk Definisi Sumber Terbuka). Secara histo-
ris, sebagian besar, tetapi tidak semua, rilis Python juga kompatibel dengan GPL; tabel di bawah ini merangkum berbagai
rilis.

Rilis Berasal dari Tahun Pemilik GPL compatible?
0.9.0 hingga 1.2 t/a 1991-1995 CWI ya
1.3 hingga 1.5.2 1.2 1995-1999 CNRI ya
1.6 1.5.2 2000 CNRI tidak
2.0 1.6 2000 BeOpen.com tidak
1.6.1 1.6 2001 CNRI tidak
2.1 2.0+1.6.1 2001 PSF tidak
2.0.1 2.0+1.6.1 2001 PSF ya
2.1.1 2.1+2.0.1 2001 PSF ya
2.1.2 2.1.1 2002 PSF ya
2.1.3 2.1.2 2002 PSF ya
2.2 dan ke atas 2.1.1 2001-sekarang PSF ya

25

https://www.cwi.nl/
https://www.cwi.nl/
https://www.cnri.reston.va.us/
https://www.zope.org/
https://www.zope.org/
https://www.python.org/psf/
https://opensource.org/

Distributing Python Modules, Rilis 2.7.18

Catatan: GPL-compatible doesn’t mean that we’re distributing Python under the GPL. All Python licenses, unlike the
GPL, let you distribute a modified version without making your changes open source. The GPL-compatible licenses make
it possible to combine Python with other software that is released under the GPL; the others don’t.

Terima kasih kepada banyak sukarelawan eksternal yang telah bekerja di bawah arahanGuido untukmewujudkan rilis-rilis
ini.

C.2 Syarat dan ketentuan untuk mengakses atau menggunakan
Python

C.2.1 LISENSI PERJANJIAN PSF UNTUK PYTHON 2.7.18

1. This LICENSE AGREEMENT is between the Python Software Foundation ("PSF"),␣
↪→and

the Individual or Organization ("Licensee") accessing and otherwise using␣
↪→Python

2.7.18 software in source or binary form and its associated documentation.

2. Subject to the terms and conditions of this License Agreement, PSF hereby
grants Licensee a nonexclusive, royalty-free, world-wide license to␣

↪→reproduce,
analyze, test, perform and/or display publicly, prepare derivative works,
distribute, and otherwise use Python 2.7.18 alone or in any derivative
version, provided, however, that PSF's License Agreement and PSF's notice␣

↪→of
copyright, i.e., "Copyright © 2001-2020 Python Software Foundation; All␣

↪→Rights
Reserved" are retained in Python 2.7.18 alone or in any derivative version
prepared by Licensee.

3. In the event Licensee prepares a derivative work that is based on or
incorporates Python 2.7.18 or any part thereof, and wants to make the
derivative work available to others as provided herein, then Licensee␣

↪→hereby
agrees to include in any such work a brief summary of the changes made to␣

↪→Python
2.7.18.

4. PSF is making Python 2.7.18 available to Licensee on an "AS IS" basis.
PSF MAKES NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF
EXAMPLE, BUT NOT LIMITATION, PSF MAKES NO AND DISCLAIMS ANY REPRESENTATION␣

↪→OR
WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT␣

↪→THE
USE OF PYTHON 2.7.18 WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

5. PSF SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF PYTHON 2.7.18
FOR ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT␣

↪→OF

26 Lampiran C. Sejarah dan Lisensi

Distributing Python Modules, Rilis 2.7.18

MODIFYING, DISTRIBUTING, OR OTHERWISE USING PYTHON 2.7.18, OR ANY␣
↪→DERIVATIVE

THEREOF, EVEN IF ADVISED OF THE POSSIBILITY THEREOF.

6. This License Agreement will automatically terminate upon a material breach␣
↪→of

its terms and conditions.

7. Nothing in this License Agreement shall be deemed to create any␣
↪→relationship

of agency, partnership, or joint venture between PSF and Licensee. This␣
↪→License

Agreement does not grant permission to use PSF trademarks or trade name in␣
↪→a

trademark sense to endorse or promote products or services of Licensee, or␣
↪→any

third party.

8. By copying, installing or otherwise using Python 2.7.18, Licensee agrees
to be bound by the terms and conditions of this License Agreement.

C.2.2 LISENSI PERJANJIAN BEOPEN.COM UNTUK PYTHON 2.0

LISENSI PERJANJIAN BEOPEN SUMBER TERBUKA PYTHON VERSI 1

1. This LICENSE AGREEMENT is between BeOpen.com ("BeOpen"), having an office at
160 Saratoga Avenue, Santa Clara, CA 95051, and the Individual or Organization
("Licensee") accessing and otherwise using this software in source or binary
form and its associated documentation ("the Software").

2. Subject to the terms and conditions of this BeOpen Python License Agreement,
BeOpen hereby grants Licensee a non-exclusive, royalty-free, world-wide license
to reproduce, analyze, test, perform and/or display publicly, prepare derivative
works, distribute, and otherwise use the Software alone or in any derivative
version, provided, however, that the BeOpen Python License is retained in the
Software, alone or in any derivative version prepared by Licensee.

3. BeOpen is making the Software available to Licensee on an "AS IS" basis.
BEOPEN MAKES NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF
EXAMPLE, BUT NOT LIMITATION, BEOPEN MAKES NO AND DISCLAIMS ANY REPRESENTATION OR
WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE
USE OF THE SOFTWARE WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

4. BEOPEN SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF THE SOFTWARE FOR
ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT OF USING,
MODIFYING OR DISTRIBUTING THE SOFTWARE, OR ANY DERIVATIVE THEREOF, EVEN IF
ADVISED OF THE POSSIBILITY THEREOF.

5. This License Agreement will automatically terminate upon a material breach of
its terms and conditions.

6. This License Agreement shall be governed by and interpreted in all respects
by the law of the State of California, excluding conflict of law provisions.
Nothing in this License Agreement shall be deemed to create any relationship of
agency, partnership, or joint venture between BeOpen and Licensee. This License

(berlanjut ke halaman berikutnya)

C.2. Syarat dan ketentuan untuk mengakses atau menggunakan Python 27

Distributing Python Modules, Rilis 2.7.18

(lanjutan dari halaman sebelumnya)
Agreement does not grant permission to use BeOpen trademarks or trade names in a
trademark sense to endorse or promote products or services of Licensee, or any
third party. As an exception, the "BeOpen Python" logos available at
http://www.pythonlabs.com/logos.html may be used according to the permissions
granted on that web page.

7. By copying, installing or otherwise using the software, Licensee agrees to be
bound by the terms and conditions of this License Agreement.

C.2.3 LISENSI PERJANJIAN CNRI UNTUK PYTHON 1.6.1

1. This LICENSE AGREEMENT is between the Corporation for National Research
Initiatives, having an office at 1895 Preston White Drive, Reston, VA 20191
("CNRI"), and the Individual or Organization ("Licensee") accessing and
otherwise using Python 1.6.1 software in source or binary form and its
associated documentation.

2. Subject to the terms and conditions of this License Agreement, CNRI hereby
grants Licensee a nonexclusive, royalty-free, world-wide license to reproduce,
analyze, test, perform and/or display publicly, prepare derivative works,
distribute, and otherwise use Python 1.6.1 alone or in any derivative version,
provided, however, that CNRI's License Agreement and CNRI's notice of copyright,
i.e., "Copyright © 1995-2001 Corporation for National Research Initiatives; All
Rights Reserved" are retained in Python 1.6.1 alone or in any derivative version
prepared by Licensee. Alternately, in lieu of CNRI's License Agreement,
Licensee may substitute the following text (omitting the quotes): "Python 1.6.1
is made available subject to the terms and conditions in CNRI's License
Agreement. This Agreement together with Python 1.6.1 may be located on the
Internet using the following unique, persistent identifier (known as a handle):
1895.22/1013. This Agreement may also be obtained from a proxy server on the
Internet using the following URL: http://hdl.handle.net/1895.22/1013."

3. In the event Licensee prepares a derivative work that is based on or
incorporates Python 1.6.1 or any part thereof, and wants to make the derivative
work available to others as provided herein, then Licensee hereby agrees to
include in any such work a brief summary of the changes made to Python 1.6.1.

4. CNRI is making Python 1.6.1 available to Licensee on an "AS IS" basis. CNRI
MAKES NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF EXAMPLE,
BUT NOT LIMITATION, CNRI MAKES NO AND DISCLAIMS ANY REPRESENTATION OR WARRANTY
OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE USE OF
PYTHON 1.6.1 WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

5. CNRI SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF PYTHON 1.6.1 FOR
ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT OF
MODIFYING, DISTRIBUTING, OR OTHERWISE USING PYTHON 1.6.1, OR ANY DERIVATIVE
THEREOF, EVEN IF ADVISED OF THE POSSIBILITY THEREOF.

6. This License Agreement will automatically terminate upon a material breach of
its terms and conditions.

7. This License Agreement shall be governed by the federal intellectual property
law of the United States, including without limitation the federal copyright
law, and, to the extent such U.S. federal law does not apply, by the law of the

(berlanjut ke halaman berikutnya)

28 Lampiran C. Sejarah dan Lisensi

Distributing Python Modules, Rilis 2.7.18

(lanjutan dari halaman sebelumnya)
Commonwealth of Virginia, excluding Virginia's conflict of law provisions.
Notwithstanding the foregoing, with regard to derivative works based on Python
1.6.1 that incorporate non-separable material that was previously distributed
under the GNU General Public License (GPL), the law of the Commonwealth of
Virginia shall govern this License Agreement only as to issues arising under or
with respect to Paragraphs 4, 5, and 7 of this License Agreement. Nothing in
this License Agreement shall be deemed to create any relationship of agency,
partnership, or joint venture between CNRI and Licensee. This License Agreement
does not grant permission to use CNRI trademarks or trade name in a trademark
sense to endorse or promote products or services of Licensee, or any third
party.

8. By clicking on the "ACCEPT" button where indicated, or by copying, installing
or otherwise using Python 1.6.1, Licensee agrees to be bound by the terms and
conditions of this License Agreement.

C.2.4 LISENSI PERJANJIAN CWI UNTUK PYTHON 0.9.0 SAMPAI 1.2

Copyright © 1991 - 1995, Stichting Mathematisch Centrum Amsterdam, The
Netherlands. All rights reserved.

Permission to use, copy, modify, and distribute this software and its
documentation for any purpose and without fee is hereby granted, provided that
the above copyright notice appear in all copies and that both that copyright
notice and this permission notice appear in supporting documentation, and that
the name of Stichting Mathematisch Centrum or CWI not be used in advertising or
publicity pertaining to distribution of the software without specific, written
prior permission.

STICHTING MATHEMATISCH CENTRUM DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS
SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN NO
EVENT SHALL STICHTING MATHEMATISCH CENTRUM BE LIABLE FOR ANY SPECIAL, INDIRECT
OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE,
DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS
SOFTWARE.

C.3 Lisensi dan Ucapan Terima Kasih untuk Perangkat Lunak yang
Tergabung

Bagian ini tidak lengkap, tetapi daftar lisensi dan ucapan terima kasih yang terus bertambah untuk perangkat lunak pihak
ketiga yang tergabung dalam distribusi Python.

C.3. Lisensi dan Ucapan Terima Kasih untuk Perangkat Lunak yang Tergabung 29

Distributing Python Modules, Rilis 2.7.18

C.3.1 Mersenne Twister

The _random module includes code based on a download from http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/
MT2002/emt19937ar.html. The following are the verbatim comments from the original code:

A C-program for MT19937, with initialization improved 2002/1/26.
Coded by Takuji Nishimura and Makoto Matsumoto.

Before using, initialize the state by using init_genrand(seed)
or init_by_array(init_key, key_length).

Copyright (C) 1997 - 2002, Makoto Matsumoto and Takuji Nishimura,
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

3. The names of its contributors may not be used to endorse or promote
products derived from this software without specific prior written
permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Any feedback is very welcome.
http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html
email: m-mat @ math.sci.hiroshima-u.ac.jp (remove space)

C.3.2 Soket

The socket module uses the functions, getaddrinfo(), and getnameinfo(), which are coded in separate
source files from the WIDE Project, http://www.wide.ad.jp/.

Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions

(berlanjut ke halaman berikutnya)

30 Lampiran C. Sejarah dan Lisensi

http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/MT2002/emt19937ar.html
http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/MT2002/emt19937ar.html
http://www.wide.ad.jp/

Distributing Python Modules, Rilis 2.7.18

(lanjutan dari halaman sebelumnya)
are met:
1. Redistributions of source code must retain the above copyright

notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright

notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

3. Neither the name of the project nor the names of its contributors
may be used to endorse or promote products derived from this software
without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

C.3.3 Floating point exception control

The source for the fpectl module includes the following notice:

/ Copyright (c) 1996. \

| The Regents of the University of California. |
| All rights reserved. |
| |
| Permission to use, copy, modify, and distribute this software for |
| any purpose without fee is hereby granted, provided that this en- |
| tire notice is included in all copies of any software which is or |
| includes a copy or modification of this software and in all |
| copies of the supporting documentation for such software. |
| |
| This work was produced at the University of California, Lawrence |
| Livermore National Laboratory under contract no. W-7405-ENG-48 |
| between the U.S. Department of Energy and The Regents of the |
| University of California for the operation of UC LLNL. |
| |
| DISCLAIMER |
| |
| This software was prepared as an account of work sponsored by an |
| agency of the United States Government. Neither the United States |
| Government nor the University of California nor any of their em- |
| ployees, makes any warranty, express or implied, or assumes any |
| liability or responsibility for the accuracy, completeness, or |
| usefulness of any information, apparatus, product, or process |
| disclosed, or represents that its use would not infringe |
| privately-owned rights. Reference herein to any specific commer- |
| cial products, process, or service by trade name, trademark, |
| manufacturer, or otherwise, does not necessarily constitute or |
| imply its endorsement, recommendation, or favoring by the United |

(berlanjut ke halaman berikutnya)

C.3. Lisensi dan Ucapan Terima Kasih untuk Perangkat Lunak yang Tergabung 31

Distributing Python Modules, Rilis 2.7.18

(lanjutan dari halaman sebelumnya)
| States Government or the University of California. The views and |
| opinions of authors expressed herein do not necessarily state or |
| reflect those of the United States Government or the University |
| of California, and shall not be used for advertising or product |
\ endorsement purposes. /

C.3.4 MD5 message digest algorithm

The source code for the md5 module contains the following notice:

Copyright (C) 1999, 2002 Aladdin Enterprises. All rights reserved.

This software is provided 'as-is', without any express or implied
warranty. In no event will the authors be held liable for any damages
arising from the use of this software.

Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it
freely, subject to the following restrictions:

1. The origin of this software must not be misrepresented; you must not
claim that you wrote the original software. If you use this software
in a product, an acknowledgment in the product documentation would be
appreciated but is not required.

2. Altered source versions must be plainly marked as such, and must not be
misrepresented as being the original software.

3. This notice may not be removed or altered from any source distribution.

L. Peter Deutsch
ghost@aladdin.com

Independent implementation of MD5 (RFC 1321).

This code implements the MD5 Algorithm defined in RFC 1321, whose
text is available at

http://www.ietf.org/rfc/rfc1321.txt
The code is derived from the text of the RFC, including the test suite
(section A.5) but excluding the rest of Appendix A. It does not include
any code or documentation that is identified in the RFC as being
copyrighted.

The original and principal author of md5.h is L. Peter Deutsch
<ghost@aladdin.com>. Other authors are noted in the change history
that follows (in reverse chronological order):

2002-04-13 lpd Removed support for non-ANSI compilers; removed
references to Ghostscript; clarified derivation from RFC 1321;
now handles byte order either statically or dynamically.

1999-11-04 lpd Edited comments slightly for automatic TOC extraction.
1999-10-18 lpd Fixed typo in header comment (ansi2knr rather than md5);

added conditionalization for C++ compilation from Martin
Purschke <purschke@bnl.gov>.

1999-05-03 lpd Original version.

32 Lampiran C. Sejarah dan Lisensi

Distributing Python Modules, Rilis 2.7.18

C.3.5 Layanan soket asinkron

Modul asynchat dan asyncore berisi pemberitahuan berikut:

Copyright 1996 by Sam Rushing

All Rights Reserved

Permission to use, copy, modify, and distribute this software and
its documentation for any purpose and without fee is hereby
granted, provided that the above copyright notice appear in all
copies and that both that copyright notice and this permission
notice appear in supporting documentation, and that the name of Sam
Rushing not be used in advertising or publicity pertaining to
distribution of the software without specific, written prior
permission.

SAM RUSHING DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE,
INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN
NO EVENT SHALL SAM RUSHING BE LIABLE FOR ANY SPECIAL, INDIRECT OR
CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS
OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT,
NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

C.3.6 Pengelolaan Cookie

The Cookie module contains the following notice:

Copyright 2000 by Timothy O'Malley <timo@alum.mit.edu>

All Rights Reserved

Permission to use, copy, modify, and distribute this software
and its documentation for any purpose and without fee is hereby
granted, provided that the above copyright notice appear in all
copies and that both that copyright notice and this permission
notice appear in supporting documentation, and that the name of
Timothy O'Malley not be used in advertising or publicity
pertaining to distribution of the software without specific, written
prior permission.

Timothy O'Malley DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS
SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS, IN NO EVENT SHALL Timothy O'Malley BE LIABLE FOR
ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
PERFORMANCE OF THIS SOFTWARE.

C.3. Lisensi dan Ucapan Terima Kasih untuk Perangkat Lunak yang Tergabung 33

Distributing Python Modules, Rilis 2.7.18

C.3.7 Pelacakan eksekusi

Modul trace berisi pemberitahuan berikut:

portions copyright 2001, Autonomous Zones Industries, Inc., all rights...
err... reserved and offered to the public under the terms of the
Python 2.2 license.
Author: Zooko O'Whielacronx
http://zooko.com/
mailto:zooko@zooko.com

Copyright 2000, Mojam Media, Inc., all rights reserved.
Author: Skip Montanaro

Copyright 1999, Bioreason, Inc., all rights reserved.
Author: Andrew Dalke

Copyright 1995-1997, Automatrix, Inc., all rights reserved.
Author: Skip Montanaro

Copyright 1991-1995, Stichting Mathematisch Centrum, all rights reserved.

Permission to use, copy, modify, and distribute this Python software and
its associated documentation for any purpose without fee is hereby
granted, provided that the above copyright notice appears in all copies,
and that both that copyright notice and this permission notice appear in
supporting documentation, and that the name of neither Automatrix,
Bioreason or Mojam Media be used in advertising or publicity pertaining to
distribution of the software without specific, written prior permission.

C.3.8 UUencode and UUdecode functions

Modul uu berisi pemberitahuan berikut:

Copyright 1994 by Lance Ellinghouse
Cathedral City, California Republic, United States of America.

All Rights Reserved
Permission to use, copy, modify, and distribute this software and its
documentation for any purpose and without fee is hereby granted,
provided that the above copyright notice appear in all copies and that
both that copyright notice and this permission notice appear in
supporting documentation, and that the name of Lance Ellinghouse
not be used in advertising or publicity pertaining to distribution
of the software without specific, written prior permission.
LANCE ELLINGHOUSE DISCLAIMS ALL WARRANTIES WITH REGARD TO
THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS, IN NO EVENT SHALL LANCE ELLINGHOUSE CENTRUM BE LIABLE
FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT
OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

Modified by Jack Jansen, CWI, July 1995:
- Use binascii module to do the actual line-by-line conversion

between ascii and binary. This results in a 1000-fold speedup. The C

(berlanjut ke halaman berikutnya)

34 Lampiran C. Sejarah dan Lisensi

Distributing Python Modules, Rilis 2.7.18

(lanjutan dari halaman sebelumnya)
version is still 5 times faster, though.

- Arguments more compliant with Python standard

C.3.9 XML Remote Procedure Calls

The xmlrpclib module contains the following notice:

The XML-RPC client interface is

Copyright (c) 1999-2002 by Secret Labs AB
Copyright (c) 1999-2002 by Fredrik Lundh

By obtaining, using, and/or copying this software and/or its
associated documentation, you agree that you have read, understood,
and will comply with the following terms and conditions:

Permission to use, copy, modify, and distribute this software and
its associated documentation for any purpose and without fee is
hereby granted, provided that the above copyright notice appears in
all copies, and that both that copyright notice and this permission
notice appear in supporting documentation, and that the name of
Secret Labs AB or the author not be used in advertising or publicity
pertaining to distribution of the software without specific, written
prior permission.

SECRET LABS AB AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH REGARD
TO THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANT-
ABILITY AND FITNESS. IN NO EVENT SHALL SECRET LABS AB OR THE AUTHOR
BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY
DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
OF THIS SOFTWARE.

C.3.10 test_epoll

The test_epoll contains the following notice:

Copyright (c) 2001-2006 Twisted Matrix Laboratories.

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF

(berlanjut ke halaman berikutnya)

C.3. Lisensi dan Ucapan Terima Kasih untuk Perangkat Lunak yang Tergabung 35

Distributing Python Modules, Rilis 2.7.18

(lanjutan dari halaman sebelumnya)
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

C.3.11 Pilih kqueue

The select and contains the following notice for the kqueue interface:

Copyright (c) 2000 Doug White, 2006 James Knight, 2007 Christian Heimes
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
1. Redistributions of source code must retain the above copyright

notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright

notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

C.3.12 strtod dan dtoa

The file Python/dtoa.c, which supplies C functions dtoa and strtod for conversion of C doubles to and from strings,
is derived from the file of the same name by David M. Gay, currently available from http://www.netlib.org/fp/. The
original file, as retrieved on March 16, 2009, contains the following copyright and licensing notice:

/**
*
* The author of this software is David M. Gay.
*
* Copyright (c) 1991, 2000, 2001 by Lucent Technologies.
*
* Permission to use, copy, modify, and distribute this software for any
* purpose without fee is hereby granted, provided that this entire notice
* is included in all copies of any software which is or includes a copy
* or modification of this software and in all copies of the supporting
* documentation for such software.
*
* THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR IMPLIED

(berlanjut ke halaman berikutnya)

36 Lampiran C. Sejarah dan Lisensi

http://www.netlib.org/fp/

Distributing Python Modules, Rilis 2.7.18

(lanjutan dari halaman sebelumnya)
* WARRANTY. IN PARTICULAR, NEITHER THE AUTHOR NOR LUCENT MAKES ANY
* REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE MERCHANTABILITY
* OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR PURPOSE.
*
***/

C.3.13 OpenSSL

The modules hashlib, posix, ssl, crypt use the OpenSSL library for added performance if made available by the
operating system. Additionally, the Windows and Mac OS X installers for Python may include a copy of the OpenSSL
libraries, so we include a copy of the OpenSSL license here:

LICENSE ISSUES
==============

The OpenSSL toolkit stays under a dual license, i.e. both the conditions of
the OpenSSL License and the original SSLeay license apply to the toolkit.
See below for the actual license texts. Actually both licenses are BSD-style
Open Source licenses. In case of any license issues related to OpenSSL
please contact openssl-core@openssl.org.

OpenSSL License

/* ==
* Copyright (c) 1998-2008 The OpenSSL Project. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
*
* 3. All advertising materials mentioning features or use of this
* software must display the following acknowledgment:
* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
*
* 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
* endorse or promote products derived from this software without
* prior written permission. For written permission, please contact
* openssl-core@openssl.org.
*
* 5. Products derived from this software may not be called "OpenSSL"
* nor may "OpenSSL" appear in their names without prior written
* permission of the OpenSSL Project.
*
* 6. Redistributions of any form whatsoever must retain the following
* acknowledgment:

(berlanjut ke halaman berikutnya)

C.3. Lisensi dan Ucapan Terima Kasih untuk Perangkat Lunak yang Tergabung 37

Distributing Python Modules, Rilis 2.7.18

(lanjutan dari halaman sebelumnya)
* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit (http://www.openssl.org/)"
*
* THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
* EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
* ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
* OF THE POSSIBILITY OF SUCH DAMAGE.
* ==
*
* This product includes cryptographic software written by Eric Young
* (eay@cryptsoft.com). This product includes software written by Tim
* Hudson (tjh@cryptsoft.com).
*
*/

Original SSLeay License

/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
* All rights reserved.
*
* This package is an SSL implementation written
* by Eric Young (eay@cryptsoft.com).
* The implementation was written so as to conform with Netscapes SSL.
*
* This library is free for commercial and non-commercial use as long as
* the following conditions are aheared to. The following conditions
* apply to all code found in this distribution, be it the RC4, RSA,
* lhash, DES, etc., code; not just the SSL code. The SSL documentation
* included with this distribution is covered by the same copyright terms
* except that the holder is Tim Hudson (tjh@cryptsoft.com).
*
* Copyright remains Eric Young's, and as such any Copyright notices in
* the code are not to be removed.
* If this package is used in a product, Eric Young should be given attribution
* as the author of the parts of the library used.
* This can be in the form of a textual message at program startup or
* in documentation (online or textual) provided with the package.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:

(berlanjut ke halaman berikutnya)

38 Lampiran C. Sejarah dan Lisensi

Distributing Python Modules, Rilis 2.7.18

(lanjutan dari halaman sebelumnya)
* "This product includes cryptographic software written by
* Eric Young (eay@cryptsoft.com)"
* The word 'cryptographic' can be left out if the rouines from the library
* being used are not cryptographic related :-).
* 4. If you include any Windows specific code (or a derivative thereof) from
* the apps directory (application code) you must include an acknowledgement:
* "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
*
* THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* The licence and distribution terms for any publically available version or
* derivative of this code cannot be changed. i.e. this code cannot simply be
* copied and put under another distribution licence
* [including the GNU Public Licence.]
*/

C.3.14 expat

The pyexpat extension is built using an included copy of the expat sources unless the build is configured
--with-system-expat:

Copyright (c) 1998, 1999, 2000 Thai Open Source Software Center Ltd
and Clark Cooper

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

C.3. Lisensi dan Ucapan Terima Kasih untuk Perangkat Lunak yang Tergabung 39

Distributing Python Modules, Rilis 2.7.18

C.3.15 libffi

The _ctypes extension is built using an included copy of the libffi sources unless the build is configured
--with-system-libffi:

Copyright (c) 1996-2008 Red Hat, Inc and others.

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
``Software''), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED ``AS IS'', WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.

C.3.16 zlib

The zlib extension is built using an included copy of the zlib sources if the zlib version found on the system is too old
to be used for the build:

Copyright (C) 1995-2010 Jean-loup Gailly and Mark Adler

This software is provided 'as-is', without any express or implied
warranty. In no event will the authors be held liable for any damages
arising from the use of this software.

Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it
freely, subject to the following restrictions:

1. The origin of this software must not be misrepresented; you must not
claim that you wrote the original software. If you use this software
in a product, an acknowledgment in the product documentation would be
appreciated but is not required.

2. Altered source versions must be plainly marked as such, and must not be
misrepresented as being the original software.

3. This notice may not be removed or altered from any source distribution.

Jean-loup Gailly Mark Adler
jloup@gzip.org madler@alumni.caltech.edu

40 Lampiran C. Sejarah dan Lisensi

LAMPIRAND

Hak Cipta

Python dan dokumentasi ini adalah:
Copyright © 2001-2020 Python Software Foundation. All rights reserved.
Hak Cipta © 2000 BeOpen.com. Seluruh hak cipta.
Hak Cipta © 1995-2000 Corporation for National Research Initiatives. Seluruh hak cipta.
Hak Cipta © 1991-1995 Stichting Mathematisch Centrum. Seluruh hak cipta.

Lihat Sejarah dan Lisensi untuk lisensi lengkap dan informasi perizinan.

41

Distributing Python Modules, Rilis 2.7.18

42 Lampiran D. Hak Cipta

Indeks

Non-abjad
..., 13
2ke3, 13
>>>, 13
__future__, 16
__slots__, 20

A
argumen, 13
argumen kata kunci, 18
atribut, 14

B
BDFL, 14
bilangan kompleks, 14
bytecode, 14
bytes-like object, 14

C
classic class, 14
CPython, 14

D
daftar, 18
descriptor, 15
dictionary view, 15
diinterpretasi, 17
docstring, 15
duck-typing, 15

E
EAFP, 15
ekspresi, 15

F
file-like object, 15
finder, 15
floor division, 16
fungsi, 16

fungsi kunci, 17

G
generator, 16
generator expression, 16
GIL, 16

H
hashable, 16

I
IDLE, 17
immutable, 17
importer, 17
importing, 17
integer division, 17
interaktif, 17
iterable, 17
iterator, 17

J
jumlah referensi, 20

K
kamus, 15
kelas, 14
kelas basis abstrak, 13
kunci interpreter global, 16

L
lambda, 18
LBYL, 18
lingkungan virtual, 21
list comprehension, 18
loader, 18

M
magic

method, 18

43

Distributing Python Modules, Rilis 2.7.18

magic method, 18
manajer konteks, 14
mesin virtual, 21
metaclass, 18
method, 18

magic, 18
special, 20

method resolution order, 18
modul, 18
modul tambahan, 15
MRO, 18
mutable, 18

N
named tuple, 18
namespace, 19
nested scope, 19
new-style class, 19

O
objek, 19
objek berkas, 15

P
paket, 19
paksaan, 14
parameter, 19
pembangkit, 16
pemetaan, 18
penghias, 14
pengumpulan sampah, 16
PEP, 19
pernyataan, 20
positional argument, 20
Python 3000, 20
Python Enhancement Proposals

PEP 1, 20
PEP 238, 16
PEP 278, 21
PEP 302, 15, 18
PEP 343, 14
PEP 427, 3
PEP 3116, 21

Pythonic, 20

S
slice, 20
special

method, 20
special method, 20
struct sequence, 20

T
teks tiga-kutip, 20

tipe, 20

U
universal newlines, 21
urutan, 20

Z
Zen of Python, 21

44 Indeks

	Istilah utama
	Lisensi dan kolaborasi sumber terbuka
	Instalasi alat
	Reading the guide
	Bagaimana saya...?
	... pilih nama untuk proyek saya?
	... membuat dan mendistribusikan ekstensi biner?

	Ikhtisar
	Tentang dokumen-dokumen ini
	Kontributor untuk dokumentasi Python

	Sejarah dan Lisensi
	Sejarah perangkat lunak
	Syarat dan ketentuan untuk mengakses atau menggunakan Python
	Lisensi dan Ucapan Terima Kasih untuk Perangkat Lunak yang Tergabung

	Hak Cipta
	Indeks

