
The Python/C API
Rilis 2.7.18

Guido van Rossum
and the Python development team

Mei 20, 2020

Python Software Foundation
Email: docs@python.org

Daftar Isi

1 Pengenalan 3
1.1 Menyertakan Berkas . 3
1.2 Objek, Tipe dan Jumlah Referensi . 4
1.3 Pengecualian . 7
1.4 Embedding Python . 9
1.5 Debugging Builds . 10

2 The Very High Level Layer 11

3 Reference Counting 15

4 Penanganan Pengecualian 17
4.1 Objek Pengecualian Unicode . 21
4.2 Kontrol Rekursi . 22
4.3 Pengecualian Standar . 23
4.4 Kategori Peringatan Standar . 24
4.5 String Exceptions . 24

5 Utilitas 25
5.1 Operating System Utilities . 25
5.2 System Functions . 26
5.3 Process Control . 26
5.4 Mengimpor Modul . 27
5.5 Data marshalling support . 30
5.6 Mengurai argumen dan membangun nilai . 31
5.7 String conversion and formatting . 37
5.8 Reflection . 39
5.9 Codec registry and support functions . 40

6 Lapisan Abstrak Objek 43
6.1 Object Protocol . 43
6.2 Number Protocol . 47
6.3 Sequence Protocol . 51
6.4 Mapping Protocol . 53
6.5 Iterator Protocol . 54
6.6 Old Buffer Protocol . 55

i

7 Lapisan Objek Konkrit 57
7.1 Objek Dasar . 57
7.2 Objek Numerik . 59
7.3 Objek Urutan . 65
7.4 Mapping Objects . 92
7.5 Objek lain . 95

8 Initialization, Finalization, and Threads 113
8.1 Initializing and finalizing the interpreter . 113
8.2 Process-wide parameters . 114
8.3 Thread State and the Global Interpreter Lock . 116
8.4 Sub-interpreter support . 122
8.5 Asynchronous Notifications . 123
8.6 Profiling and Tracing . 123
8.7 Advanced Debugger Support . 125

9 Memory Management 127
9.1 Overview . 127
9.2 Memory Interface . 128
9.3 Object allocators . 129
9.4 The pymalloc allocator . 130
9.5 Contoh-contoh . 130

10 Dukungan Implementasi Objek 133
10.1 Mengalokasikan objek kedalam struktur data (heap) . 133
10.2 Struktur Objek Umum . 134
10.3 Objek Tipe . 139
10.4 Number Object Structures . 153
10.5 Mapping Object Structures . 155
10.6 Sequence Object Structures . 155
10.7 Buffer Object Structures . 156
10.8 Supporting Cyclic Garbage Collection . 157

A Ikhtisar 159

B Tentang dokumen-dokumen ini 169
B.1 Kontributor untuk dokumentasi Python . 169

C Sejarah dan Lisensi 171
C.1 Sejarah perangkat lunak . 171
C.2 Syarat dan ketentuan untuk mengakses atau menggunakan Python . 172
C.3 Lisensi dan Ucapan Terima Kasih untuk Perangkat Lunak yang Tergabung 175

D Hak Cipta 187

Indeks 189

ii

The Python/C API, Rilis 2.7.18

Manual ini mendokumentasikan API yang digunakan oleh programmer C dan C++ yang ingin menulis modul ekstensi
atau menanamkan Python. Ini adalah pendamping untuk extending-index, yang menggambarkan prinsip-prinsip umum
penulisan ekstensi tetapi tidak mendokumentasikan fungsi-fungsi API secara rinci.

Daftar Isi 1

The Python/C API, Rilis 2.7.18

2 Daftar Isi

BAB1

Pengenalan

The Application Programmer’s Interface to Python gives C and C++ programmers access to the Python interpreter at a
variety of levels. The API is equally usable from C++, but for brevity it is generally referred to as the Python/C API.
There are two fundamentally different reasons for using the Python/C API. The first reason is to write extension modules
for specific purposes; these are C modules that extend the Python interpreter. This is probably the most common use. The
second reason is to use Python as a component in a larger application; this technique is generally referred to as embedding
Python in an application.
Writing an extension module is a relatively well-understood process, where a ”cookbook” approach works well. There are
several tools that automate the process to some extent. While people have embedded Python in other applications since
its early existence, the process of embedding Python is less straightforward than writing an extension.
Many API functions are useful independent of whether you’re embedding or extending Python; moreover, most applica-
tions that embed Python will need to provide a custom extension as well, so it’s probably a good idea to become familiar
with writing an extension before attempting to embed Python in a real application.

1.1 Menyertakan Berkas

All function, type and macro definitions needed to use the Python/C API are included in your code by the following line:

#include "Python.h"

This implies inclusion of the following standard headers: <stdio.h>, <string.h>, <errno.h>, <limits.h>,
<assert.h> and <stdlib.h> (if available).

Catatan: Since Python may define some pre-processor definitions which affect the standard headers on some systems,
you must include Python.h before any standard headers are included.

All user visible names defined by Python.h (except those defined by the included standard headers) have one of the prefixes
Py or _Py. Names beginning with _Py are for internal use by the Python implementation and should not be used by
extension writers. Structure member names do not have a reserved prefix.

3

The Python/C API, Rilis 2.7.18

Important: user code should never define names that begin with Py or _Py. This confuses the reader, and jeopardizes
the portability of the user code to future Python versions, which may define additional names beginning with one of these
prefixes.
The header files are typically installed with Python. On Unix, these are located in the directories prefix/include/
pythonversion/ and exec_prefix/include/pythonversion/, where prefix and exec_prefix are
defined by the corresponding parameters to Python’s configure script and version is sys.version[:3]. On
Windows, the headers are installed in prefix/include, where prefix is the installation directory specified to the
installer.
To include the headers, place both directories (if different) on your compiler’s search path for includes. Do not place
the parent directories on the search path and then use #include <pythonX.Y/Python.h>; this will break on
multi-platform builds since the platform independent headers under prefix include the platform specific headers from
exec_prefix.
C++ users should note that though the API is defined entirely using C, the header files do properly declare the entry points
to be extern "C", so there is no need to do anything special to use the API from C++.

1.2 Objek, Tipe dan Jumlah Referensi

Most Python/C API functions have one or more arguments as well as a return value of type PyObject*. This type is a
pointer to an opaque data type representing an arbitrary Python object. Since all Python object types are treated the same
way by the Python language in most situations (e.g., assignments, scope rules, and argument passing), it is only fitting that
they should be represented by a single C type. Almost all Python objects live on the heap: you never declare an automatic
or static variable of type PyObject, only pointer variables of type PyObject* can be declared. The sole exception
are the type objects; since these must never be deallocated, they are typically static PyTypeObject objects.
All Python objects (even Python integers) have a type and a reference count. An object’s type determines what kind of
object it is (e.g., an integer, a list, or a user-defined function; there are many more as explained in types). For each of the
well-known types there is a macro to check whether an object is of that type; for instance, PyList_Check(a) is true
if (and only if) the object pointed to by a is a Python list.

1.2.1 Reference Counts

The reference count is important because today’s computers have a finite (and often severely limited) memory size; it
counts how many different places there are that have a reference to an object. Such a place could be another object, or a
global (or static) C variable, or a local variable in some C function. When an object’s reference count becomes zero, the
object is deallocated. If it contains references to other objects, their reference count is decremented. Those other objects
may be deallocated in turn, if this decrement makes their reference count become zero, and so on. (There’s an obvious
problem with objects that reference each other here; for now, the solution is ”don’t do that.”)
Reference counts are always manipulated explicitly. The normal way is to use the macro Py_INCREF() to increment an
object’s reference count by one, and Py_DECREF() to decrement it by one. The Py_DECREF()macro is considerably
more complex than the incref one, since it must check whether the reference count becomes zero and then cause the
object’s deallocator to be called. The deallocator is a function pointer contained in the object’s type structure. The type-
specific deallocator takes care of decrementing the reference counts for other objects contained in the object if this is a
compound object type, such as a list, as well as performing any additional finalization that’s needed. There’s no chance that
the reference count can overflow; at least as many bits are used to hold the reference count as there are distinct memory
locations in virtual memory (assuming sizeof(Py_ssize_t) >= sizeof(void*)). Thus, the reference count
increment is a simple operation.
It is not necessary to increment an object’s reference count for every local variable that contains a pointer to an object. In
theory, the object’s reference count goes up by one when the variable is made to point to it and it goes down by one when
the variable goes out of scope. However, these two cancel each other out, so at the end the reference count hasn’t changed.

4 Bab 1. Pengenalan

The Python/C API, Rilis 2.7.18

The only real reason to use the reference count is to prevent the object from being deallocated as long as our variable is
pointing to it. If we know that there is at least one other reference to the object that lives at least as long as our variable,
there is no need to increment the reference count temporarily. An important situation where this arises is in objects that
are passed as arguments to C functions in an extension module that are called from Python; the call mechanism guarantees
to hold a reference to every argument for the duration of the call.
However, a common pitfall is to extract an object from a list and hold on to it for a while without incrementing its
reference count. Some other operation might conceivably remove the object from the list, decrementing its reference
count and possible deallocating it. The real danger is that innocent-looking operations may invoke arbitrary Python code
which could do this; there is a code path which allows control to flow back to the user from a Py_DECREF(), so almost
any operation is potentially dangerous.
A safe approach is to always use the generic operations (functions whose name begins with PyObject_, PyNumber_,
PySequence_ or PyMapping_). These operations always increment the reference count of the object they return.
This leaves the caller with the responsibility to call Py_DECREF()when they are done with the result; this soon becomes
second nature.

Reference Count Details

The reference count behavior of functions in the Python/C API is best explained in terms of ownership of references.
Ownership pertains to references, never to objects (objects are not owned: they are always shared). ”Owning a reference”
means being responsible for calling Py_DECREF on it when the reference is no longer needed. Ownership can also
be transferred, meaning that the code that receives ownership of the reference then becomes responsible for eventually
decref’ing it by callingPy_DECREF() orPy_XDECREF()when it’s no longer needed---or passing on this responsibility
(usually to its caller). When a function passes ownership of a reference on to its caller, the caller is said to receive a new
reference. When no ownership is transferred, the caller is said to borrow the reference. Nothing needs to be done for a
borrowed reference.
Conversely, when a calling function passes in a reference to an object, there are two possibilities: the function steals a
reference to the object, or it does not. Stealing a referencemeans that when you pass a reference to a function, that function
assumes that it now owns that reference, and you are not responsible for it any longer.
Few functions steal references; the two notable exceptions are PyList_SetItem() and PyTuple_SetItem(),
which steal a reference to the item (but not to the tuple or list into which the item is put!). These functions were designed
to steal a reference because of a common idiom for populating a tuple or list with newly created objects; for example,
the code to create the tuple (1, 2, "three") could look like this (forgetting about error handling for the moment;
a better way to code this is shown below):

PyObject *t;

t = PyTuple_New(3);
PyTuple_SetItem(t, 0, PyInt_FromLong(1L));
PyTuple_SetItem(t, 1, PyInt_FromLong(2L));
PyTuple_SetItem(t, 2, PyString_FromString("three"));

Here, PyInt_FromLong() returns a new reference which is immediately stolen by PyTuple_SetItem(). When
you want to keep using an object although the reference to it will be stolen, use Py_INCREF() to grab another reference
before calling the reference-stealing function.
Incidentally, PyTuple_SetItem() is the only way to set tuple items; PySequence_SetItem() and
PyObject_SetItem() refuse to do this since tuples are an immutable data type. You should only use
PyTuple_SetItem() for tuples that you are creating yourself.
Equivalent code for populating a list can be written using PyList_New() and PyList_SetItem().
However, in practice, you will rarely use these ways of creating and populating a tuple or list. There’s a generic function,
Py_BuildValue(), that can create most common objects from C values, directed by a format string. For example,

1.2. Objek, Tipe dan Jumlah Referensi 5

The Python/C API, Rilis 2.7.18

the above two blocks of code could be replaced by the following (which also takes care of the error checking):

PyObject *tuple, *list;

tuple = Py_BuildValue("(iis)", 1, 2, "three");
list = Py_BuildValue("[iis]", 1, 2, "three");

It is much more common to use PyObject_SetItem() and friends with items whose references you are only borro-
wing, like arguments that were passed in to the function you are writing. In that case, their behaviour regarding reference
counts is much saner, since you don’t have to increment a reference count so you can give a reference away (”have it be
stolen”). For example, this function sets all items of a list (actually, any mutable sequence) to a given item:

int
set_all(PyObject *target, PyObject *item)
{

int i, n;

n = PyObject_Length(target);
if (n < 0)

return -1;
for (i = 0; i < n; i++) {

PyObject *index = PyInt_FromLong(i);
if (!index)

return -1;
if (PyObject_SetItem(target, index, item) < 0) {

Py_DECREF(index);
return -1;

}
Py_DECREF(index);

}
return 0;

}

The situation is slightly different for function return values. While passing a reference to most functions does not change
your ownership responsibilities for that reference, many functions that return a reference to an object give you ownership of
the reference. The reason is simple: in many cases, the returned object is created on the fly, and the reference you get is the
only reference to the object. Therefore, the generic functions that return object references, likePyObject_GetItem()
and PySequence_GetItem(), always return a new reference (the caller becomes the owner of the reference).
It is important to realize that whether you own a reference returned by a function depends on which function you call only
--- the plumage (the type of the object passed as an argument to the function) doesn’t enter into it! Thus, if you extract
an item from a list using PyList_GetItem(), you don’t own the reference --- but if you obtain the same item from
the same list using PySequence_GetItem() (which happens to take exactly the same arguments), you do own a
reference to the returned object.
Here is an example of how you could write a function that computes the sum of the items in a list of integers; once using
PyList_GetItem(), and once using PySequence_GetItem().

long
sum_list(PyObject *list)
{

int i, n;
long total = 0;
PyObject *item;

n = PyList_Size(list);
if (n < 0)

return -1; /* Not a list */
(berlanjut ke halaman berikutnya)

6 Bab 1. Pengenalan

The Python/C API, Rilis 2.7.18

(lanjutan dari halaman sebelumnya)
for (i = 0; i < n; i++) {

item = PyList_GetItem(list, i); /* Can't fail */
if (!PyInt_Check(item)) continue; /* Skip non-integers */
total += PyInt_AsLong(item);

}
return total;

}

long
sum_sequence(PyObject *sequence)
{

int i, n;
long total = 0;
PyObject *item;
n = PySequence_Length(sequence);
if (n < 0)

return -1; /* Has no length */
for (i = 0; i < n; i++) {

item = PySequence_GetItem(sequence, i);
if (item == NULL)

return -1; /* Not a sequence, or other failure */
if (PyInt_Check(item))

total += PyInt_AsLong(item);
Py_DECREF(item); /* Discard reference ownership */

}
return total;

}

1.2.2 Tipe-tipe

There are few other data types that play a significant role in the Python/C API; most are simple C types such as int,
long, double and char*. A few structure types are used to describe static tables used to list the functions exported
by a module or the data attributes of a new object type, and another is used to describe the value of a complex number.
These will be discussed together with the functions that use them.

1.3 Pengecualian

The Python programmer only needs to deal with exceptions if specific error handling is required; unhandled exceptions
are automatically propagated to the caller, then to the caller’s caller, and so on, until they reach the top-level interpreter,
where they are reported to the user accompanied by a stack traceback.
For C programmers, however, error checking always has to be explicit. All functions in the Python/C API can raise
exceptions, unless an explicit claim is made otherwise in a function’s documentation. In general, when a function enco-
unters an error, it sets an exception, discards any object references that it owns, and returns an error indicator. If not
documented otherwise, this indicator is either NULL or -1, depending on the function’s return type. A few functions
return a Boolean true/false result, with false indicating an error. Very few functions return no explicit error indicator or
have an ambiguous return value, and require explicit testing for errors with PyErr_Occurred(). These exceptions
are always explicitly documented.
Exception state is maintained in per-thread storage (this is equivalent to using global storage in an unthreaded application).
A thread can be in one of two states: an exception has occurred, or not. The function PyErr_Occurred() can be used
to check for this: it returns a borrowed reference to the exception type object when an exception has occurred, and NULL

1.3. Pengecualian 7

The Python/C API, Rilis 2.7.18

otherwise. There are a number of functions to set the exception state: PyErr_SetString() is the most common
(though not the most general) function to set the exception state, and PyErr_Clear() clears the exception state.
The full exception state consists of three objects (all of which can be NULL): the exception type, the corresponding
exception value, and the traceback. These have the same meanings as the Python objects sys.exc_type, sys.
exc_value, and sys.exc_traceback; however, they are not the same: the Python objects represent the last
exception being handled by a Python try ... except statement, while the C level exception state only exists while an
exception is being passed on between C functions until it reaches the Python bytecode interpreter’s main loop, which takes
care of transferring it to sys.exc_type and friends.
Note that starting with Python 1.5, the preferred, thread-safe way to access the exception state from Python code is to call
the function sys.exc_info(), which returns the per-thread exception state for Python code. Also, the semantics of
both ways to access the exception state have changed so that a function which catches an exception will save and restore
its thread’s exception state so as to preserve the exception state of its caller. This prevents common bugs in exception
handling code caused by an innocent-looking function overwriting the exception being handled; it also reduces the often
unwanted lifetime extension for objects that are referenced by the stack frames in the traceback.
As a general principle, a function that calls another function to perform some task should check whether the called function
raised an exception, and if so, pass the exception state on to its caller. It should discard any object references that it owns,
and return an error indicator, but it should not set another exception --- that would overwrite the exception that was just
raised, and lose important information about the exact cause of the error.
A simple example of detecting exceptions and passing them on is shown in the sum_sequence() example above. It so
happens that this example doesn’t need to clean up any owned references when it detects an error. The following example
function shows some error cleanup. First, to remind you why you like Python, we show the equivalent Python code:

def incr_item(dict, key):
try:

item = dict[key]
except KeyError:

item = 0
dict[key] = item + 1

Here is the corresponding C code, in all its glory:

int
incr_item(PyObject *dict, PyObject *key)
{

/* Objects all initialized to NULL for Py_XDECREF */
PyObject *item = NULL, *const_one = NULL, *incremented_item = NULL;
int rv = -1; /* Return value initialized to -1 (failure) */

item = PyObject_GetItem(dict, key);
if (item == NULL) {

/* Handle KeyError only: */
if (!PyErr_ExceptionMatches(PyExc_KeyError))

goto error;

/* Clear the error and use zero: */
PyErr_Clear();
item = PyInt_FromLong(0L);
if (item == NULL)

goto error;
}
const_one = PyInt_FromLong(1L);
if (const_one == NULL)

goto error;

(berlanjut ke halaman berikutnya)

8 Bab 1. Pengenalan

The Python/C API, Rilis 2.7.18

(lanjutan dari halaman sebelumnya)
incremented_item = PyNumber_Add(item, const_one);
if (incremented_item == NULL)

goto error;

if (PyObject_SetItem(dict, key, incremented_item) < 0)
goto error;

rv = 0; /* Success */
/* Continue with cleanup code */

error:
/* Cleanup code, shared by success and failure path */

/* Use Py_XDECREF() to ignore NULL references */
Py_XDECREF(item);
Py_XDECREF(const_one);
Py_XDECREF(incremented_item);

return rv; /* -1 for error, 0 for success */
}

This example represents an endorsed use of the goto statement in C! It illustrates the use of
PyErr_ExceptionMatches() and PyErr_Clear() to handle specific exceptions, and the use of
Py_XDECREF() to dispose of owned references that may be NULL (note the 'X' in the name; Py_DECREF()
would crash when confronted with a NULL reference). It is important that the variables used to hold owned references
are initialized to NULL for this to work; likewise, the proposed return value is initialized to -1 (failure) and only set to
success after the final call made is successful.

1.4 Embedding Python

The one important task that only embedders (as opposed to extension writers) of the Python interpreter have to worry
about is the initialization, and possibly the finalization, of the Python interpreter. Most functionality of the interpreter
can only be used after the interpreter has been initialized.
The basic initialization function is Py_Initialize(). This initializes the table of loaded modules, and creates the
fundamental modules __builtin__, __main__, sys, and exceptions. It also initializes the module search path
(sys.path).
Py_Initialize() does not set the ”script argument list” (sys.argv). If this variable is needed by Python code that
will be executed later, it must be set explicitly with a call to PySys_SetArgvEx(argc, argv, updatepath)
after the call to Py_Initialize().
On most systems (in particular, on Unix and Windows, although the details are slightly different), Py_Initialize()
calculates the module search path based upon its best guess for the location of the standard Python interpreter executable,
assuming that the Python library is found in a fixed location relative to the Python interpreter executable. In particular, it
looks for a directory named lib/pythonX.Y relative to the parent directory where the executable named python is
found on the shell command search path (the environment variable PATH).
For instance, if the Python executable is found in /usr/local/bin/python, it will assume that the libraries are in /
usr/local/lib/pythonX.Y. (In fact, this particular path is also the ”fallback” location, used when no executable
file named python is found along PATH.) The user can override this behavior by setting the environment variable
PYTHONHOME, or insert additional directories in front of the standard path by setting PYTHONPATH.
The embedding application can steer the search by calling Py_SetProgramName(file) before calling
Py_Initialize(). Note that PYTHONHOME still overrides this and PYTHONPATH is still inserted in front of the
standard path. An application that requires total control has to provide its own implementation of Py_GetPath(),

1.4. Embedding Python 9

The Python/C API, Rilis 2.7.18

Py_GetPrefix(), Py_GetExecPrefix(), and Py_GetProgramFullPath() (all defined in Modules/
getpath.c).
Sometimes, it is desirable to ”uninitialize” Python. For instance, the application may want to start over (make another call
to Py_Initialize()) or the application is simply done with its use of Python and wants to free memory allocated by
Python. This can be accomplished by calling Py_Finalize(). The function Py_IsInitialized() returns true
if Python is currently in the initialized state. More information about these functions is given in a later chapter. Notice
that Py_Finalize() does not free all memory allocated by the Python interpreter, e.g. memory allocated by extension
modules currently cannot be released.

1.5 Debugging Builds

Python can be built with several macros to enable extra checks of the interpreter and extension modules. These checks
tend to add a large amount of overhead to the runtime so they are not enabled by default.
A full list of the various types of debugging builds is in the file Misc/SpecialBuilds.txt in the Python source
distribution. Builds are available that support tracing of reference counts, debugging the memory allocator, or low-level
profiling of the main interpreter loop. Only the most frequently-used builds will be described in the remainder of this
section.
Compiling the interpreter with the Py_DEBUG macro defined produces what is generally meant by ”a debug build” of
Python. Py_DEBUG is enabled in the Unix build by adding --with-pydebug to the ./configure command. It is
also implied by the presence of the not-Python-specific _DEBUGmacro. When Py_DEBUG is enabled in the Unix build,
compiler optimization is disabled.
In addition to the reference count debugging described below, the following extra checks are performed:

• Extra checks are added to the object allocator.
• Extra checks are added to the parser and compiler.
• Downcasts from wide types to narrow types are checked for loss of information.
• A number of assertions are added to the dictionary and set implementations. In addition, the set object acquires a
test_c_api() method.

• Sanity checks of the input arguments are added to frame creation.
• The storage for long ints is initialized with a known invalid pattern to catch reference to uninitialized digits.
• Low-level tracing and extra exception checking are added to the runtime virtual machine.
• Extra checks are added to the memory arena implementation.
• Extra debugging is added to the thread module.

There may be additional checks not mentioned here.
Defining Py_TRACE_REFS enables reference tracing. When defined, a circular doubly linked list of active objects
is maintained by adding two extra fields to every PyObject. Total allocations are tracked as well. Upon exit, all
existing references are printed. (In interactive mode this happens after every statement run by the interpreter.) Implied
by Py_DEBUG.
Please refer to Misc/SpecialBuilds.txt in the Python source distribution for more detailed information.

10 Bab 1. Pengenalan

BAB2

The Very High Level Layer

The functions in this chapter will let you execute Python source code given in a file or a buffer, but they will not let you
interact in a more detailed way with the interpreter.
Several of these functions accept a start symbol from the grammar as a parameter. The available start symbols are
Py_eval_input, Py_file_input, and Py_single_input. These are described following the functions which
accept them as parameters.
Note also that several of these functions take FILE* parameters. One particular issue which needs to be handled carefully
is that the FILE structure for different C libraries can be different and incompatible. Under Windows (at least), it
is possible for dynamically linked extensions to actually use different libraries, so care should be taken that FILE*
parameters are only passed to these functions if it is certain that they were created by the same library that the Python
runtime is using.
int Py_Main(int argc, char **argv)

The main program for the standard interpreter. This is made available for programs which embed Python. The argc
and argv parameters should be prepared exactly as those which are passed to a C program’s main() function. It is
important to note that the argument list may be modified (but the contents of the strings pointed to by the argument
list are not). The return value will be0 if the interpreter exits normally (ie, without an exception), 1 if the interpreter
exits due to an exception, or 2 if the parameter list does not represent a valid Python command line.
Note that if an otherwise unhandled SystemExit is raised, this function will not return 1, but exit the process,
as long as Py_InspectFlag is not set.

int PyRun_AnyFile(FILE *fp, const char *filename)
This is a simplified interface to PyRun_AnyFileExFlags() below, leaving closeit set to 0 and flags set to
NULL.

int PyRun_AnyFileFlags(FILE *fp, const char *filename, PyCompilerFlags *flags)
This is a simplified interface to PyRun_AnyFileExFlags() below, leaving the closeit argument set to 0.

int PyRun_AnyFileEx(FILE *fp, const char *filename, int closeit)
This is a simplified interface to PyRun_AnyFileExFlags() below, leaving the flags argument set to NULL.

int PyRun_AnyFileExFlags(FILE *fp, const char *filename, int closeit, PyCompilerFlags *flags)
If fp refers to a file associated with an interactive device (console or terminal input or Unix pseudo-terminal),

11

The Python/C API, Rilis 2.7.18

return the value of PyRun_InteractiveLoop(), otherwise return the result of PyRun_SimpleFile().
If filename is NULL, this function uses "???" as the filename.

int PyRun_SimpleString(const char *command)
This is a simplified interface to PyRun_SimpleStringFlags() below, leaving the PyCompilerFlags* argu-
ment set to NULL.

int PyRun_SimpleStringFlags(const char *command, PyCompilerFlags *flags)
Executes the Python source code from command in the __main__ module according to the flags argument. If
__main__ does not already exist, it is created. Returns 0 on success or -1 if an exception was raised. If there
was an error, there is no way to get the exception information. For the meaning of flags, see below.
Note that if an otherwise unhandled SystemExit is raised, this function will not return -1, but exit the process,
as long as Py_InspectFlag is not set.

int PyRun_SimpleFile(FILE *fp, const char *filename)
This is a simplified interface to PyRun_SimpleFileExFlags() below, leaving closeit set to 0 and flags set
to NULL.

int PyRun_SimpleFileFlags(FILE *fp, const char *filename, PyCompilerFlags *flags)
This is a simplified interface to PyRun_SimpleFileExFlags() below, leaving closeit set to 0.

int PyRun_SimpleFileEx(FILE *fp, const char *filename, int closeit)
This is a simplified interface to PyRun_SimpleFileExFlags() below, leaving flags set to NULL.

int PyRun_SimpleFileExFlags(FILE *fp, const char *filename, int closeit, PyCompilerFlags *flags)
Similar to PyRun_SimpleStringFlags(), but the Python source code is read from fp instead of an
in-memory string. filename should be the name of the file. If closeit is true, the file is closed before
PyRun_SimpleFileExFlags returns.

int PyRun_InteractiveOne(FILE *fp, const char *filename)
This is a simplified interface to PyRun_InteractiveOneFlags() below, leaving flags set to NULL.

int PyRun_InteractiveOneFlags(FILE *fp, const char *filename, PyCompilerFlags *flags)
Read and execute a single statement from a file associated with an interactive device according to the flags argument.
The user will be prompted using sys.ps1 and sys.ps2. Returns 0 when the input was executed successfully,
-1 if there was an exception, or an error code from the errcode.h include file distributed as part of Python if
there was a parse error. (Note that errcode.h is not included by Python.h, so must be included specifically
if needed.)

int PyRun_InteractiveLoop(FILE *fp, const char *filename)
This is a simplified interface to PyRun_InteractiveLoopFlags() below, leaving flags set to NULL.

int PyRun_InteractiveLoopFlags(FILE *fp, const char *filename, PyCompilerFlags *flags)
Read and execute statements from a file associated with an interactive device until EOF is reached. The user will
be prompted using sys.ps1 and sys.ps2. Returns 0 at EOF.

struct _node* PyParser_SimpleParseString(const char *str, int start)
This is a simplified interface to PyParser_SimpleParseStringFlagsFilename() below, leaving file-
name set to NULL and flags set to 0.

struct _node* PyParser_SimpleParseStringFlags(const char *str, int start, int flags)
This is a simplified interface to PyParser_SimpleParseStringFlagsFilename() below, leaving file-
name set to NULL.

struct _node* PyParser_SimpleParseStringFlagsFilename(const char *str, const char *filename,
int start, int flags)

Parse Python source code from str using the start token start according to the flags argument. The result can be
used to create a code object which can be evaluated efficiently. This is useful if a code fragment must be evaluated
many times.

12 Bab 2. The Very High Level Layer

The Python/C API, Rilis 2.7.18

struct _node* PyParser_SimpleParseFile(FILE *fp, const char *filename, int start)
This is a simplified interface to PyParser_SimpleParseFileFlags() below, leaving flags set to 0.

struct _node* PyParser_SimpleParseFileFlags(FILE *fp, const char *filename, int start, int flags)
Similar to PyParser_SimpleParseStringFlagsFilename(), but the Python source code is read from
fp instead of an in-memory string.

PyObject* PyRun_String(const char *str, int start, PyObject *globals, PyObject *locals)
Return value: New reference. This is a simplified interface to PyRun_StringFlags() below, leaving flags set
to NULL.

PyObject* PyRun_StringFlags(const char *str, int start, PyObject *globals, PyObject *locals, PyCompiler-
Flags *flags)

Return value: New reference. Execute Python source code from str in the context specified by the dictionaries
globals and locals with the compiler flags specified by flags. The parameter start specifies the start token that
should be used to parse the source code.
Returns the result of executing the code as a Python object, or NULL if an exception was raised.

PyObject* PyRun_File(FILE *fp, const char *filename, int start, PyObject *globals, PyObject *locals)
Return value: New reference. This is a simplified interface to PyRun_FileExFlags() below, leaving closeit
set to 0 and flags set to NULL.

PyObject* PyRun_FileEx(FILE *fp, const char *filename, int start, PyObject *globals, PyObject *locals,
int closeit)

Return value: New reference. This is a simplified interface to PyRun_FileExFlags() below, leaving flags set
to NULL.

PyObject* PyRun_FileFlags(FILE *fp, const char *filename, int start, PyObject *globals, PyObject *locals,
PyCompilerFlags *flags)

Return value: New reference. This is a simplified interface to PyRun_FileExFlags() below, leaving closeit
set to 0.

PyObject* PyRun_FileExFlags(FILE *fp, const char *filename, int start, PyObject *globals, PyObject *lo-
cals, int closeit, PyCompilerFlags *flags)

Return value: New reference. Similar to PyRun_StringFlags(), but the Python source code is read from fp
instead of an in-memory string. filename should be the name of the file. If closeit is true, the file is closed before
PyRun_FileExFlags() returns.

PyObject* Py_CompileString(const char *str, const char *filename, int start)
Return value: New reference. This is a simplified interface to Py_CompileStringFlags() below, leaving
flags set to NULL.

PyObject* Py_CompileStringFlags(const char *str, const char *filename, int start, PyCompilerFlags *fla-
gs)

Return value: New reference. Parse and compile the Python source code in str, returning the resulting code object.
The start token is given by start; this can be used to constrain the code which can be compiled and should be
Py_eval_input, Py_file_input, or Py_single_input. The filename specified by filename is used
to construct the code object and may appear in tracebacks or SyntaxError exception messages. This returns
NULL if the code cannot be parsed or compiled.

PyObject* PyEval_EvalCode(PyCodeObject *co, PyObject *globals, PyObject *locals)
Return value: New reference. This is a simplified interface to PyEval_EvalCodeEx(), with just the code
object, and the dictionaries of global and local variables. The other arguments are set to NULL.

PyObject* PyEval_EvalCodeEx(PyCodeObject *co, PyObject *globals, PyObject *locals, PyObject **args,
int argcount, PyObject **kws, int kwcount, PyObject **defs, int defcount,
PyObject *closure)

Evaluate a precompiled code object, given a particular environment for its evaluation. This environment consists of
dictionaries of global and local variables, arrays of arguments, keywords and defaults, and a closure tuple of cells.

13

The Python/C API, Rilis 2.7.18

PyObject* PyEval_EvalFrame(PyFrameObject *f)
Evaluate an execution frame. This is a simplified interface to PyEval_EvalFrameEx, for backward compatibility.

PyObject* PyEval_EvalFrameEx(PyFrameObject *f, int throwflag)
This is the main, unvarnished function of Python interpretation. It is literally 2000 lines long. The code object
associated with the execution frame f is executed, interpreting bytecode and executing calls as needed. The addi-
tional throwflag parameter can mostly be ignored - if true, then it causes an exception to immediately be thrown;
this is used for the throw() methods of generator objects.

int PyEval_MergeCompilerFlags(PyCompilerFlags *cf)
This function changes the flags of the current evaluation frame, and returns true on success, false on failure.

int Py_eval_input
The start symbol from the Python grammar for isolated expressions; for use with Py_CompileString().

int Py_file_input
The start symbol from the Python grammar for sequences of statements as read from a file or other source; for use
with Py_CompileString(). This is the symbol to use when compiling arbitrarily long Python source code.

int Py_single_input
The start symbol from the Python grammar for a single statement; for use with Py_CompileString(). This
is the symbol used for the interactive interpreter loop.

struct PyCompilerFlags
This is the structure used to hold compiler flags. In cases where code is only being compiled, it is passed as int
flags, and in cases where code is being executed, it is passed as PyCompilerFlags *flags. In this case,
from __future__ import can modify flags.
Whenever PyCompilerFlags *flags is NULL, cf_flags is treated as equal to 0, and any modification
due to from __future__ import is discarded.

struct PyCompilerFlags {
int cf_flags;

}

int CO_FUTURE_DIVISION
This bit can be set in flags to cause division operator / to be interpreted as ”true division” according to PEP 238.

14 Bab 2. The Very High Level Layer

https://www.python.org/dev/peps/pep-0238

BAB3

Reference Counting

The macros in this section are used for managing reference counts of Python objects.
void Py_INCREF(PyObject *o)

Increment the reference count for object o. The object must not be NULL; if you aren’t sure that it isn’t NULL, use
Py_XINCREF().

void Py_XINCREF(PyObject *o)
Increment the reference count for object o. The object may be NULL, in which case the macro has no effect.

void Py_DECREF(PyObject *o)
Decrement the reference count for object o. The object must not be NULL; if you aren’t sure that it isn’t NULL,
use Py_XDECREF(). If the reference count reaches zero, the object’s type’s deallocation function (which must
not be NULL) is invoked.

Peringatan: The deallocation function can cause arbitrary Python code to be invoked (e.g. when a class
instance with a __del__() method is deallocated). While exceptions in such code are not propagated, the
executed code has free access to all Python global variables. This means that any object that is reachable from
a global variable should be in a consistent state before Py_DECREF() is invoked. For example, code to delete
an object from a list should copy a reference to the deleted object in a temporary variable, update the list data
structure, and then call Py_DECREF() for the temporary variable.

void Py_XDECREF(PyObject *o)
Decrement the reference count for object o. The object may be NULL, in which case the macro has no effect;
otherwise the effect is the same as for Py_DECREF(), and the same warning applies.

void Py_CLEAR(PyObject *o)
Decrement the reference count for object o. The object may be NULL, in which case the macro has no effect;
otherwise the effect is the same as for Py_DECREF(), except that the argument is also set to NULL. The warning
for Py_DECREF() does not apply with respect to the object passed because the macro carefully uses a temporary
variable and sets the argument to NULL before decrementing its reference count.
It is a good idea to use this macro whenever decrementing the value of a variable that might be traversed during
garbage collection.

15

The Python/C API, Rilis 2.7.18

Baru pada versi 2.4.
The following functions are for runtime dynamic embedding of Python: Py_IncRef(PyObject *o),
Py_DecRef(PyObject *o). They are simply exported function versions of Py_XINCREF() and
Py_XDECREF(), respectively.
The following functions or macros are only for use within the interpreter core: _Py_Dealloc(),
_Py_ForgetReference(), _Py_NewReference(), as well as the global variable _Py_RefTotal.

16 Bab 3. Reference Counting

BAB4

Penanganan Pengecualian

The functions described in this chapter will let you handle and raise Python exceptions. It is important to understand
some of the basics of Python exception handling. It works somewhat like the Unix errno variable: there is a global
indicator (per thread) of the last error that occurred. Most functions don’t clear this on success, but will set it to indicate
the cause of the error on failure. Most functions also return an error indicator, usuallyNULL if they are supposed to return
a pointer, or -1 if they return an integer (exception: the PyArg_*() functions return 1 for success and 0 for failure).
When a function must fail because some function it called failed, it generally doesn’t set the error indicator; the function
it called already set it. It is responsible for either handling the error and clearing the exception or returning after cleaning
up any resources it holds (such as object references or memory allocations); it should not continue normally if it is not
prepared to handle the error. If returning due to an error, it is important to indicate to the caller that an error has been
set. If the error is not handled or carefully propagated, additional calls into the Python/C API may not behave as intended
and may fail in mysterious ways.
The error indicator consists of three Python objects corresponding to the Python variables sys.exc_type, sys.
exc_value and sys.exc_traceback. API functions exist to interact with the error indicator in various ways.
There is a separate error indicator for each thread.
void PyErr_PrintEx(int set_sys_last_vars)

Print a standard traceback to sys.stderr and clear the error indicator. Unless the error is a SystemExit. In
that case the no traceback is printed and Python process will exit with the error code specified by the SystemExit
instance.
Call this function only when the error indicator is set. Otherwise it will cause a fatal error!
If set_sys_last_vars is nonzero, the variables sys.last_type, sys.last_value and sys.
last_traceback will be set to the type, value and traceback of the printed exception, respectively.

void PyErr_Print()
Alias dari PyErr_PrintEx(1).

PyObject* PyErr_Occurred()
Return value: Borrowed reference. Test whether the error indicator is set. If set, return the exception type (the first
argument to the last call to one of the PyErr_Set*() functions or to PyErr_Restore()). If not set, return
NULL. You do not own a reference to the return value, so you do not need to Py_DECREF() it.

17

The Python/C API, Rilis 2.7.18

Catatan: Do not compare the return value to a specific exception; use PyErr_ExceptionMatches()
instead, shown below. (The comparison could easily fail since the exception may be an instance instead of a class,
in the case of a class exception, or it may be a subclass of the expected exception.)

int PyErr_ExceptionMatches(PyObject *exc)
Equivalent to PyErr_GivenExceptionMatches(PyErr_Occurred(), exc). This should only be
called when an exception is actually set; a memory access violation will occur if no exception has been raised.

int PyErr_GivenExceptionMatches(PyObject *given, PyObject *exc)
Return true if the given exception matches the exception in exc. If exc is a class object, this also returns true when
given is an instance of a subclass. If exc is a tuple, all exceptions in the tuple (and recursively in subtuples) are
searched for a match.

void PyErr_NormalizeException(PyObject**exc, PyObject**val, PyObject**tb)
Under certain circumstances, the values returned by PyErr_Fetch() below can be ”unnormalized”, meaning
that *exc is a class object but *val is not an instance of the same class. This function can be used to instantiate the
class in that case. If the values are already normalized, nothing happens. The delayed normalization is implemented
to improve performance.

void PyErr_Clear()
Clear the error indicator. If the error indicator is not set, there is no effect.

void PyErr_Fetch(PyObject **ptype, PyObject **pvalue, PyObject **ptraceback)
Retrieve the error indicator into three variables whose addresses are passed. If the error indicator is not set, set all
three variables to NULL. If it is set, it will be cleared and you own a reference to each object retrieved. The value
and traceback object may be NULL even when the type object is not.

Catatan: This function is normally only used by code that needs to handle exceptions or by code that needs to
save and restore the error indicator temporarily.

void PyErr_Restore(PyObject *type, PyObject *value, PyObject *traceback)
Set the error indicator from the three objects. If the error indicator is already set, it is cleared first. If the objects are
NULL, the error indicator is cleared. Do not pass a NULL type and non-NULL value or traceback. The exception
type should be a class. Do not pass an invalid exception type or value. (Violating these rules will cause subtle
problems later.) This call takes away a reference to each object: you must own a reference to each object before
the call and after the call you no longer own these references. (If you don’t understand this, don’t use this function.
I warned you.)

Catatan: This function is normally only used by code that needs to save and restore the error indicator temporarily;
use PyErr_Fetch() to save the current exception state.

void PyErr_SetString(PyObject *type, const char *message)
This is the most common way to set the error indicator. The first argument specifies the exception type; it is
normally one of the standard exceptions, e.g. PyExc_RuntimeError. You need not increment its reference
count. The second argument is an error message; it is converted to a string object.

void PyErr_SetObject(PyObject *type, PyObject *value)
This function is similar to PyErr_SetString() but lets you specify an arbitrary Python object for the ”value”
of the exception.

PyObject* PyErr_Format(PyObject *exception, const char *format, ...)
Return value: Always NULL. This function sets the error indicator and returns NULL. exception should be a Python

18 Bab 4. Penanganan Pengecualian

The Python/C API, Rilis 2.7.18

exception class. The format and subsequent parameters help format the error message; they have the same meaning
and values as in PyString_FromFormat().

void PyErr_SetNone(PyObject *type)
This is a shorthand for PyErr_SetObject(type, Py_None).

int PyErr_BadArgument()
This is a shorthand for PyErr_SetString(PyExc_TypeError, message), where message indicates
that a built-in operation was invoked with an illegal argument. It is mostly for internal use.

PyObject* PyErr_NoMemory()
Return value: Always NULL. This is a shorthand for PyErr_SetNone(PyExc_MemoryError); it returns
NULL so an object allocation function can write return PyErr_NoMemory(); when it runs out of memory.

PyObject* PyErr_SetFromErrno(PyObject *type)
Return value: Always NULL. This is a convenience function to raise an exception when a C library function
has returned an error and set the C variable errno. It constructs a tuple object whose first item is the inte-
ger errno value and whose second item is the corresponding error message (gotten from strerror()), and
then calls PyErr_SetObject(type, object). On Unix, when the errno value is EINTR, indicating
an interrupted system call, this calls PyErr_CheckSignals(), and if that set the error indicator, leaves it
set to that. The function always returns NULL, so a wrapper function around a system call can write return
PyErr_SetFromErrno(type); when the system call returns an error.

PyObject* PyErr_SetFromErrnoWithFilenameObject(PyObject *type, PyObject *filenameObject)
Similar to PyErr_SetFromErrno(), with the additional behavior that if filenameObject is not NULL, it is
passed to the constructor of type as a third parameter. In the case of exceptions such as IOError and OSError,
this is used to define the filename attribute of the exception instance.

PyObject* PyErr_SetFromErrnoWithFilename(PyObject *type, const char *filename)
Return value: Always NULL. Similar to PyErr_SetFromErrnoWithFilenameObject(), but the filena-
me is given as a C string.

PyObject* PyErr_SetFromWindowsErr(int ierr)
Return value: Always NULL. This is a convenience function to raise WindowsError. If called wi-
th ierr of 0, the error code returned by a call to GetLastError() is used instead. It calls the
Win32 function FormatMessage() to retrieve the Windows description of error code given by ierr
or GetLastError(), then it constructs a tuple object whose first item is the ierr value and who-
se second item is the corresponding error message (gotten from FormatMessage()), and then calls
PyErr_SetObject(PyExc_WindowsError, object). This function always returns NULL. Availa-
bility: Windows.

PyObject* PyErr_SetExcFromWindowsErr(PyObject *type, int ierr)
Return value: Always NULL. Similar to PyErr_SetFromWindowsErr(), with an additional parameter spe-
cifying the exception type to be raised. Availability: Windows.
Baru pada versi 2.3.

PyObject* PyErr_SetFromWindowsErrWithFilenameObject(int ierr, PyObject *filenameObject)
Similar to PyErr_SetFromWindowsErr(), with the additional behavior that if filenameObject is not NULL,
it is passed to the constructor of WindowsError as a third parameter. Availability: Windows.

PyObject* PyErr_SetFromWindowsErrWithFilename(int ierr, const char *filename)
Return value: Always NULL. Similar to PyErr_SetFromWindowsErrWithFilenameObject(), but the
filename is given as a C string. Availability: Windows.

PyObject* PyErr_SetExcFromWindowsErrWithFilenameObject(PyObject *type, int ierr, PyObje-
ct *filename)

Similar to PyErr_SetFromWindowsErrWithFilenameObject(), with an additional parameter speci-
fying the exception type to be raised. Availability: Windows.
Baru pada versi 2.3.

19

The Python/C API, Rilis 2.7.18

PyObject* PyErr_SetExcFromWindowsErrWithFilename(PyObject *type, int ierr, const char *filena-
me)

Return value: Always NULL. Similar to PyErr_SetFromWindowsErrWithFilename(), with an additio-
nal parameter specifying the exception type to be raised. Availability: Windows.
Baru pada versi 2.3.

void PyErr_BadInternalCall()
This is a shorthand for PyErr_SetString(PyExc_SystemError, message), wheremessage indicates
that an internal operation (e.g. a Python/C API function) was invoked with an illegal argument. It is mostly for
internal use.

int PyErr_WarnEx(PyObject *category, char *message, int stacklevel)
Issue a warning message. The category argument is a warning category (see below) or NULL; the message ar-
gument is a message string. stacklevel is a positive number giving a number of stack frames; the warning will
be issued from the currently executing line of code in that stack frame. A stacklevel of 1 is the function calling
PyErr_WarnEx(), 2 is the function above that, and so forth.
This function normally prints a warning message to sys.stderr; however, it is also possible that the user has specified
that warnings are to be turned into errors, and in that case this will raise an exception. It is also possible that the
function raises an exception because of a problem with the warning machinery (the implementation imports the
warnings module to do the heavy lifting). The return value is 0 if no exception is raised, or -1 if an exception
is raised. (It is not possible to determine whether a warning message is actually printed, nor what the reason is for
the exception; this is intentional.) If an exception is raised, the caller should do its normal exception handling (for
example, Py_DECREF() owned references and return an error value).
Warning categories must be subclasses of PyExc_Warning; PyExc_Warning is a subclass of
PyExc_Exception; the default warning category is PyExc_RuntimeWarning. The standard Python war-
ning categories are available as global variables whose names are enumerated at Kategori Peringatan Standar.
For information about warning control, see the documentation for the warnings module and the -W option in
the command line documentation. There is no C API for warning control.

int PyErr_Warn(PyObject *category, char *message)
Issue a warning message. The category argument is a warning category (see below) orNULL; themessage argument
is a message string. The warning will appear to be issued from the function calling PyErr_Warn(), equivalent
to calling PyErr_WarnEx() with a stacklevel of 1.
Deprecated; use PyErr_WarnEx() instead.

int PyErr_WarnExplicit(PyObject *category, const char *message, const char *filename, int lineno, const
char *module, PyObject *registry)

Issue a warning message with explicit control over all warning attributes. This is a straightforward wrapper around
the Python function warnings.warn_explicit(), see there for more information. Themodule and registry
arguments may be set to NULL to get the default effect described there.

int PyErr_WarnPy3k(char *message, int stacklevel)
Issue a DeprecationWarning with the given message and stacklevel if the Py_Py3kWarningFlag flag is
enabled.
Baru pada versi 2.6.

int PyErr_CheckSignals()
This function interacts with Python’s signal handling. It checks whether a signal has been sent to the processes
and if so, invokes the corresponding signal handler. If the signal module is supported, this can invoke a signal
handler written in Python. In all cases, the default effect for SIGINT is to raise the KeyboardInterrupt
exception. If an exception is raised the error indicator is set and the function returns -1; otherwise the function
returns 0. The error indicator may or may not be cleared if it was previously set.

void PyErr_SetInterrupt()
This function simulates the effect of a SIGINT signal arriving --- the next time PyErr_CheckSignals() is

20 Bab 4. Penanganan Pengecualian

The Python/C API, Rilis 2.7.18

called, KeyboardInterrupt will be raised. It may be called without holding the interpreter lock.
int PySignal_SetWakeupFd(int fd)

This utility function specifies a file descriptor to which a '\0' byte will be written whenever a signal is received. It
returns the previous such file descriptor. The value -1 disables the feature; this is the initial state. This is equivalent
to signal.set_wakeup_fd() in Python, but without any error checking. fd should be a valid file descriptor.
The function should only be called from the main thread.
Baru pada versi 2.6.

PyObject* PyErr_NewException(char *name, PyObject *base, PyObject *dict)
Return value: New reference. This utility function creates and returns a new exception class. The name argu-
ment must be the name of the new exception, a C string of the form module.classname. The base and
dict arguments are normally NULL. This creates a class object derived from Exception (accessible in C as
PyExc_Exception).
The __module__ attribute of the new class is set to the first part (up to the last dot) of the name argument, and
the class name is set to the last part (after the last dot). The base argument can be used to specify alternate base
classes; it can either be only one class or a tuple of classes. The dict argument can be used to specify a dictionary
of class variables and methods.

PyObject* PyErr_NewExceptionWithDoc(char *name, char *doc, PyObject *base, PyObject *dict)
Return value: New reference. Same as PyErr_NewException(), except that the new exception class can easily
be given a docstring: If doc is non-NULL, it will be used as the docstring for the exception class.
Baru pada versi 2.7.

void PyErr_WriteUnraisable(PyObject *obj)
This utility function prints a warning message to sys.stderr when an exception has been set but it is impos-
sible for the interpreter to actually raise the exception. It is used, for example, when an exception occurs in an
__del__() method.
The function is called with a single argument obj that identifies the context in which the unraisable exception
occurred. If possible, the repr of obj will be printed in the warning message.

4.1 Objek Pengecualian Unicode

The following functions are used to create and modify Unicode exceptions from C.
PyObject* PyUnicodeDecodeError_Create(const char *encoding, const char *object, Py_ssize_t length,

Py_ssize_t start, Py_ssize_t end, const char *reason)
Create a UnicodeDecodeError object with the attributes encoding, object, length, start, end and reason.

PyObject* PyUnicodeEncodeError_Create(const char *encoding, const Py_UNICODE *object,
Py_ssize_t length, Py_ssize_t start, Py_ssize_t end, const
char *reason)

Create a UnicodeEncodeError object with the attributes encoding, object, length, start, end and reason.
PyObject* PyUnicodeTranslateError_Create(const Py_UNICODE *object, Py_ssize_t length,

Py_ssize_t start, Py_ssize_t end, const char *reason)
Create a UnicodeTranslateError object with the attributes object, length, start, end and reason.

PyObject* PyUnicodeDecodeError_GetEncoding(PyObject *exc)
PyObject* PyUnicodeEncodeError_GetEncoding(PyObject *exc)

Return the encoding attribute of the given exception object.
PyObject* PyUnicodeDecodeError_GetObject(PyObject *exc)
PyObject* PyUnicodeEncodeError_GetObject(PyObject *exc)

4.1. Objek Pengecualian Unicode 21

The Python/C API, Rilis 2.7.18

PyObject* PyUnicodeTranslateError_GetObject(PyObject *exc)
Return the object attribute of the given exception object.

int PyUnicodeDecodeError_GetStart(PyObject *exc, Py_ssize_t *start)
int PyUnicodeEncodeError_GetStart(PyObject *exc, Py_ssize_t *start)
int PyUnicodeTranslateError_GetStart(PyObject *exc, Py_ssize_t *start)

Get the start attribute of the given exception object and place it into *start. start must not be NULL. Return 0 on
success, -1 on failure.

int PyUnicodeDecodeError_SetStart(PyObject *exc, Py_ssize_t start)
int PyUnicodeEncodeError_SetStart(PyObject *exc, Py_ssize_t start)
int PyUnicodeTranslateError_SetStart(PyObject *exc, Py_ssize_t start)

Set the start attribute of the given exception object to start. Return 0 on success, -1 on failure.
int PyUnicodeDecodeError_GetEnd(PyObject *exc, Py_ssize_t *end)
int PyUnicodeEncodeError_GetEnd(PyObject *exc, Py_ssize_t *end)
int PyUnicodeTranslateError_GetEnd(PyObject *exc, Py_ssize_t *end)

Get the end attribute of the given exception object and place it into *end. end must not be NULL. Return 0 on
success, -1 on failure.

int PyUnicodeDecodeError_SetEnd(PyObject *exc, Py_ssize_t end)
int PyUnicodeEncodeError_SetEnd(PyObject *exc, Py_ssize_t end)
int PyUnicodeTranslateError_SetEnd(PyObject *exc, Py_ssize_t end)

Set the end attribute of the given exception object to end. Return 0 on success, -1 on failure.
PyObject* PyUnicodeDecodeError_GetReason(PyObject *exc)
PyObject* PyUnicodeEncodeError_GetReason(PyObject *exc)
PyObject* PyUnicodeTranslateError_GetReason(PyObject *exc)

Return the reason attribute of the given exception object.
int PyUnicodeDecodeError_SetReason(PyObject *exc, const char *reason)
int PyUnicodeEncodeError_SetReason(PyObject *exc, const char *reason)
int PyUnicodeTranslateError_SetReason(PyObject *exc, const char *reason)

Set the reason attribute of the given exception object to reason. Return 0 on success, -1 on failure.

4.2 Kontrol Rekursi

These two functions provide a way to perform safe recursive calls at the C level, both in the core and in extension mo-
dules. They are needed if the recursive code does not necessarily invoke Python code (which tracks its recursion depth
automatically).
int Py_EnterRecursiveCall(const char *where)

Marks a point where a recursive C-level call is about to be performed.
If USE_STACKCHECK is defined, this function checks if the OS stack overflowed using PyOS_CheckStack().
In this is the case, it sets a MemoryError and returns a nonzero value.
The function then checks if the recursion limit is reached. If this is the case, a RuntimeError is set and a
nonzero value is returned. Otherwise, zero is returned.
where should be a string such as " in instance check" to be concatenated to the RuntimeError mes-
sage caused by the recursion depth limit.

void Py_LeaveRecursiveCall()
Ends a Py_EnterRecursiveCall(). Must be called once for each successful invocation of
Py_EnterRecursiveCall().

22 Bab 4. Penanganan Pengecualian

The Python/C API, Rilis 2.7.18

4.3 Pengecualian Standar

All standard Python exceptions are available as global variables whose names are PyExc_ followed by the Python excep-
tion name. These have the type PyObject*; they are all class objects. For completeness, here are all the variables:

Nama C Nama Python Catatan
PyExc_BaseException BaseException (1), (4)
PyExc_Exception Exception (1)
PyExc_StandardError StandardError (1)
PyExc_ArithmeticError ArithmeticError (1)
PyExc_AssertionError AssertionError
PyExc_AttributeError AttributeError
PyExc_BufferError BufferError
PyExc_EnvironmentError EnvironmentError (1)
PyExc_EOFError EOFError
PyExc_FloatingPointError FloatingPointError
PyExc_GeneratorExit GeneratorExit
PyExc_ImportError ImportError
PyExc_IndentationError IndentationError
PyExc_IndexError IndexError
PyExc_IOError IOError
PyExc_KeyError KeyError
PyExc_KeyboardInterrupt KeyboardInterrupt
PyExc_LookupError LookupError (1)
PyExc_MemoryError MemoryError
PyExc_NameError NameError
PyExc_NotImplementedError NotImplementedError
PyExc_OSError OSError
PyExc_OverflowError OverflowError
PyExc_ReferenceError ReferenceError (2)
PyExc_RuntimeError RuntimeError
PyExc_StopIteration StopIteration
PyExc_SyntaxError SyntaxError
PyExc_SystemError SystemError
PyExc_SystemExit SystemExit
PyExc_TabError TabError
PyExc_TypeError TypeError
PyExc_UnboundLocalError UnboundLocalError
PyExc_UnicodeDecodeError UnicodeDecodeError
PyExc_UnicodeEncodeError UnicodeEncodeError
PyExc_UnicodeError UnicodeError
PyExc_UnicodeTranslateError UnicodeTranslateError
PyExc_VMSError VMSError (5)
PyExc_ValueError ValueError
PyExc_WindowsError WindowsError (3)
PyExc_ZeroDivisionError ZeroDivisionError

Catatan:
(1) This is a base class for other standard exceptions.
(2) This is the same as weakref.ReferenceError.

4.3. Pengecualian Standar 23

The Python/C API, Rilis 2.7.18

(3) Only defined on Windows; protect code that uses this by testing that the preprocessor macro MS_WINDOWS is
defined.

(4) Baru pada versi 2.5.
(5) Only defined on VMS; protect code that uses this by testing that the preprocessor macro __VMS is defined.

4.4 Kategori Peringatan Standar

All standard Python warning categories are available as global variables whose names are PyExc_ followed by the Python
exception name. These have the type PyObject*; they are all class objects. For completeness, here are all the variables:

Nama C Nama Python Catatan
PyExc_Warning Warning (1)
PyExc_BytesWarning BytesWarning
PyExc_DeprecationWarning DeprecationWarning
PyExc_FutureWarning FutureWarning
PyExc_ImportWarning ImportWarning
PyExc_PendingDeprecationWarning PendingDeprecationWarning
PyExc_RuntimeWarning RuntimeWarning
PyExc_SyntaxWarning SyntaxWarning
PyExc_UnicodeWarning UnicodeWarning
PyExc_UserWarning UserWarning

Catatan:
(1) This is a base class for other standard warning categories.

4.5 String Exceptions

Berubah pada versi 2.6: All exceptions to be raised or caught must be derived from BaseException. Trying to raise
a string exception now raises TypeError.

24 Bab 4. Penanganan Pengecualian

BAB5

Utilitas

Fungsi dalam bab ini melakukan berbagai tugas utilitas, mulai dari membantu kode C menjadi lebih portabel di seluruh
platform, menggunakan modul Python dari C, dan mem-parsing argumen fungsi dan membangun nilai-nilai Python dari
nilai-nilai C.

5.1 Operating System Utilities

int Py_FdIsInteractive(FILE *fp, const char *filename)
Return true (nonzero) if the standard I/O file fp with name filename is deemed interactive. This is the case for files
for which isatty(fileno(fp)) is true. If the global flag Py_InteractiveFlag is true, this function
also returns true if the filename pointer is NULL or if the name is equal to one of the strings '<stdin>' or
'???'.

void PyOS_AfterFork()
Function to update some internal state after a process fork; this should be called in the new process if the Python
interpreter will continue to be used. If a new executable is loaded into the new process, this function does not need
to be called.

int PyOS_CheckStack()
Return true when the interpreter runs out of stack space. This is a reliable check, but is only availa-
ble when USE_STACKCHECK is defined (currently on Windows using the Microsoft Visual C++ compiler).
USE_STACKCHECK will be defined automatically; you should never change the definition in your own code.

PyOS_sighandler_t PyOS_getsig(int i)
Return the current signal handler for signal i. This is a thin wrapper around either sigaction() or signal().
Do not call those functions directly! PyOS_sighandler_t is a typedef alias for void (*)(int).

PyOS_sighandler_t PyOS_setsig(int i, PyOS_sighandler_t h)
Set the signal handler for signal i to be h; return the old signal handler. This is a thin wrapper around either
sigaction() or signal(). Do not call those functions directly! PyOS_sighandler_t is a typedef alias
for void (*)(int).

25

The Python/C API, Rilis 2.7.18

5.2 System Functions

These are utility functions that make functionality from the sys module accessible to C code. They all work with the
current interpreter thread’s sys module’s dict, which is contained in the internal thread state structure.
PyObject *PySys_GetObject(char *name)

Return value: Borrowed reference. Return the object name from the sys module or NULL if it does not exist,
without setting an exception.

FILE *PySys_GetFile(char *name, FILE *def)
Return the FILE* associated with the object name in the sys module, or def if name is not in the module or is
not associated with a FILE*.

int PySys_SetObject(char *name, PyObject *v)
Set name in the sys module to v unless v is NULL, in which case name is deleted from the sys module. Returns 0
on success, -1 on error.

void PySys_ResetWarnOptions()
Reset sys.warnoptions to an empty list.

void PySys_AddWarnOption(char *s)
Append s to sys.warnoptions.

void PySys_SetPath(char *path)
Set sys.path to a list object of paths found in path which should be a list of paths separated with the platform’s
search path delimiter (: on Unix, ; on Windows).

void PySys_WriteStdout(const char *format, ...)
Write the output string described by format to sys.stdout. No exceptions are raised, even if truncation occurs
(see below).
format should limit the total size of the formatted output string to 1000 bytes or less -- after 1000 bytes, the output
string is truncated. In particular, this means that no unrestricted ”%s” formats should occur; these should be limited
using ”%.<N>s” where <N> is a decimal number calculated so that <N> plus the maximum size of other formatted
text does not exceed 1000 bytes. Also watch out for ”%f”, which can print hundreds of digits for very large numbers.
If a problem occurs, or sys.stdout is unset, the formatted message is written to the real (C level) stdout.

void PySys_WriteStderr(const char *format, ...)
As above, but write to sys.stderr or stderr instead.

5.3 Process Control

void Py_FatalError(const char *message)
Print a fatal error message and kill the process. No cleanup is performed. This function should only be invoked
when a condition is detected that would make it dangerous to continue using the Python interpreter; e.g., when the
object administration appears to be corrupted. On Unix, the standard C library function abort() is called which
will attempt to produce a core file.

void Py_Exit(int status)
Exit the current process. This calls Py_Finalize() and then calls the standard C library function
exit(status).

int Py_AtExit(void (*func)())
Register a cleanup function to be called by Py_Finalize(). The cleanup function will be called with no ar-
guments and should return no value. At most 32 cleanup functions can be registered. When the registration is
successful, Py_AtExit() returns 0; on failure, it returns -1. The cleanup function registered last is called first.

26 Bab 5. Utilitas

The Python/C API, Rilis 2.7.18

Each cleanup function will be called at most once. Since Python’s internal finalization will have completed before
the cleanup function, no Python APIs should be called by func.

5.4 Mengimpor Modul

PyObject* PyImport_ImportModule(const char *name)
Return value: New reference. This is a simplified interface to PyImport_ImportModuleEx() below, leaving
the globals and locals arguments set to NULL and level set to 0. When the name argument contains a dot (when
it specifies a submodule of a package), the fromlist argument is set to the list ['*'] so that the return value is
the named module rather than the top-level package containing it as would otherwise be the case. (Unfortunately,
this has an additional side effect when name in fact specifies a subpackage instead of a submodule: the submodules
specified in the package’s __all__ variable are loaded.) Return a new reference to the imported module, or
NULL with an exception set on failure. Before Python 2.4, the module may still be created in the failure case ---
examine sys.modules to find out. Starting with Python 2.4, a failing import of a module no longer leaves the
module in sys.modules.
Berubah pada versi 2.4: Failing imports remove incomplete module objects.
Berubah pada versi 2.6: Always uses absolute imports.

PyObject* PyImport_ImportModuleNoBlock(const char *name)
This version of PyImport_ImportModule() does not block. It’s intended to be used in C functions that im-
port other modules to execute a function. The import may block if another thread holds the import lock. The fun-
ction PyImport_ImportModuleNoBlock() never blocks. It first tries to fetch the module from sys.modules
and falls back to PyImport_ImportModule() unless the lock is held, in which case the function will raise
an ImportError.
Baru pada versi 2.6.

PyObject* PyImport_ImportModuleEx(char *name, PyObject *globals, PyObject *locals, PyObject *from-
list)

Return value: New reference. Import a module. This is best described by referring to the built-in Python function
__import__(), as the standard __import__() function calls this function directly.
The return value is a new reference to the imported module or top-level package, or NULL with an exception set
on failure (before Python 2.4, the module may still be created in this case). Like for __import__(), the return
value when a submodule of a package was requested is normally the top-level package, unless a non-empty fromlist
was given.
Berubah pada versi 2.4: Failing imports remove incomplete module objects.
Berubah pada versi 2.6: The function is an alias for PyImport_ImportModuleLevel() with -1 as level,
meaning relative import.

PyObject* PyImport_ImportModuleLevel(char *name, PyObject *globals, PyObject *locals, PyObje-
ct *fromlist, int level)

Return value: New reference. Import a module. This is best described by referring to the built-in Python function
__import__(), as the standard __import__() function calls this function directly.
The return value is a new reference to the imported module or top-level package, or NULL with an exception set
on failure. Like for __import__(), the return value when a submodule of a package was requested is normally
the top-level package, unless a non-empty fromlist was given.
Baru pada versi 2.5.

PyObject* PyImport_Import(PyObject *name)
Return value: New reference. This is a higher-level interface that calls the current ”import hook function”. It invokes
the __import__() function from the __builtins__ of the current globals. This means that the import is
done using whatever import hooks are installed in the current environment, e.g. by rexec or ihooks.

5.4. Mengimpor Modul 27

The Python/C API, Rilis 2.7.18

Berubah pada versi 2.6: Always uses absolute imports.
PyObject* PyImport_ReloadModule(PyObject *m)

Return value: New reference. Reload a module. This is best described by referring to the built-in Python fun-
ction reload(), as the standard reload() function calls this function directly. Return a new reference to the
reloaded module, or NULL with an exception set on failure (the module still exists in this case).

PyObject* PyImport_AddModule(const char *name)
Return value: Borrowed reference. Return the module object corresponding to a module name. The name argument
may be of the form package.module. First check the modules dictionary if there’s one there, and if not, create
a new one and insert it in the modules dictionary. Return NULL with an exception set on failure.

Catatan: This function does not load or import the module; if the module wasn’t already loaded, you will get an
empty module object. Use PyImport_ImportModule() or one of its variants to import a module. Package
structures implied by a dotted name for name are not created if not already present.

PyObject* PyImport_ExecCodeModule(char *name, PyObject *co)
Return value: New reference. Given a module name (possibly of the form package.module) and a code object
read from a Python bytecode file or obtained from the built-in function compile(), load the module. Return a
new reference to the module object, or NULL with an exception set if an error occurred. Before Python 2.4, the
module could still be created in error cases. Starting with Python 2.4, name is removed from sys.modules in
error cases, and even if name was already in sys.modules on entry to PyImport_ExecCodeModule().
Leaving incompletely initialized modules in sys.modules is dangerous, as imports of such modules have no
way to know that the module object is an unknown (and probably damaged with respect to the module author’s
intents) state.
The module’s __file__ attribute will be set to the code object’s co_filename.
This function will reload the module if it was already imported. See PyImport_ReloadModule() for the
intended way to reload a module.
If name points to a dotted name of the form package.module, any package structures not already created will
still not be created.
Berubah pada versi 2.4: name is removed from sys.modules in error cases.

PyObject* PyImport_ExecCodeModuleEx(char *name, PyObject *co, char *pathname)
Return value: New reference. Like PyImport_ExecCodeModule(), but the __file__ attribute of the
module object is set to pathname if it is non-NULL.

long PyImport_GetMagicNumber()
Return the magic number for Python bytecode files (a.k.a. .pyc and .pyo files). The magic number should be
present in the first four bytes of the bytecode file, in little-endian byte order.

PyObject* PyImport_GetModuleDict()
Return value: Borrowed reference. Return the dictionary used for the module administration (a.k.a. sys.
modules). Note that this is a per-interpreter variable.

PyObject* PyImport_GetImporter(PyObject *path)
Return an importer object for a sys.path/pkg.__path__ item path, possibly by fetching it from the sys.
path_importer_cache dict. If it wasn’t yet cached, traverse sys.path_hooks until a hook is found that
can handle the path item. Return None if no hook could; this tells our caller it should fall back to the built-in import
mechanism. Cache the result in sys.path_importer_cache. Return a new reference to the importer object.
Baru pada versi 2.6.

void _PyImport_Init()
Initialize the import mechanism. For internal use only.

28 Bab 5. Utilitas

The Python/C API, Rilis 2.7.18

void PyImport_Cleanup()
Empty the module table. For internal use only.

void _PyImport_Fini()
Finalize the import mechanism. For internal use only.

PyObject* _PyImport_FindExtension(char *, char *)
For internal use only.

PyObject* _PyImport_FixupExtension(char *, char *)
For internal use only.

int PyImport_ImportFrozenModule(char *name)
Load a frozen module named name. Return 1 for success, 0 if the module is not found, and -1 wi-
th an exception set if the initialization failed. To access the imported module on a successful load, use
PyImport_ImportModule(). (Note the misnomer --- this function would reload the module if it was already
imported.)

struct _frozen
This is the structure type definition for frozenmodule descriptors, as generated by the freeze utility (see Tools/
freeze/ in the Python source distribution). Its definition, found in Include/import.h, is:

struct _frozen {
char *name;
unsigned char *code;
int size;

};

struct _frozen* PyImport_FrozenModules
This pointer is initialized to point to an array of struct _frozen records, terminated by one whose members
are all NULL or zero. When a frozen module is imported, it is searched in this table. Third-party code could play
tricks with this to provide a dynamically created collection of frozen modules.

int PyImport_AppendInittab(const char *name, void (*initfunc)(void))
Add a single module to the existing table of built-in modules. This is a convenience wrapper around
PyImport_ExtendInittab(), returning -1 if the table could not be extended. The new module can be
imported by the name name, and uses the function initfunc as the initialization function called on the first attemp-
ted import. This should be called before Py_Initialize().

struct _inittab
Structure describing a single entry in the list of built-in modules. Each of these structures gives the name and
initialization function for a module built into the interpreter. Programs which embed Python may use an array of
these structures in conjunction with PyImport_ExtendInittab() to provide additional built-in modules.
The structure is defined in Include/import.h as:

struct _inittab {
char *name;
void (*initfunc)(void);

};

int PyImport_ExtendInittab(struct _inittab *newtab)
Add a collection of modules to the table of built-in modules. The newtab array must end with a sentinel entry which
contains NULL for the name field; failure to provide the sentinel value can result in a memory fault. Returns 0
on success or -1 if insufficient memory could be allocated to extend the internal table. In the event of failure, no
modules are added to the internal table. This should be called before Py_Initialize().

5.4. Mengimpor Modul 29

The Python/C API, Rilis 2.7.18

5.5 Data marshalling support

These routines allow C code to work with serialized objects using the same data format as the marshal module. There
are functions to write data into the serialization format, and additional functions that can be used to read the data back.
Files used to store marshalled data must be opened in binary mode.
Numeric values are stored with the least significant byte first.
The module supports two versions of the data format: version 0 is the historical version, version 1 (new in Python 2.4)
shares interned strings in the file, and upon unmarshalling. Version 2 (new in Python 2.5) uses a binary format for floating
point numbers. Py_MARSHAL_VERSION indicates the current file format (currently 2).
void PyMarshal_WriteLongToFile(long value, FILE *file, int version)

Marshal a long integer, value, to file. This will only write the least-significant 32 bits of value; regardless of the
size of the native long type.
Berubah pada versi 2.4: version indicates the file format.

void PyMarshal_WriteObjectToFile(PyObject *value, FILE *file, int version)
Marshal a Python object, value, to file.
Berubah pada versi 2.4: version indicates the file format.

PyObject* PyMarshal_WriteObjectToString(PyObject *value, int version)
Return value: New reference. Return a string object containing the marshalled representation of value.
Berubah pada versi 2.4: version indicates the file format.

The following functions allow marshalled values to be read back in.
XXX What about error detection? It appears that reading past the end of the file will always result in a negative numeric
value (where that’s relevant), but it’s not clear that negative values won’t be handled properly when there’s no error. What’s
the right way to tell? Should only non-negative values be written using these routines?
long PyMarshal_ReadLongFromFile(FILE *file)

Return a C long from the data stream in a FILE* opened for reading. Only a 32-bit value can be read in using
this function, regardless of the native size of long.

int PyMarshal_ReadShortFromFile(FILE *file)
Return a C short from the data stream in a FILE* opened for reading. Only a 16-bit value can be read in using
this function, regardless of the native size of short.

PyObject* PyMarshal_ReadObjectFromFile(FILE *file)
Return value: New reference. Return a Python object from the data stream in a FILE* opened for reading. On
error, sets the appropriate exception (EOFError or TypeError) and returns NULL.

PyObject* PyMarshal_ReadLastObjectFromFile(FILE *file)
Return value: New reference. Return a Python object from the data stream in a FILE* opened for reading. Unlike
PyMarshal_ReadObjectFromFile(), this function assumes that no further objects will be read from the
file, allowing it to aggressively load file data into memory so that the de-serialization can operate from data in
memory rather than reading a byte at a time from the file. Only use these variant if you are certain that you won’t
be reading anything else from the file. On error, sets the appropriate exception (EOFError or TypeError) and
returns NULL.

PyObject* PyMarshal_ReadObjectFromString(char *string, Py_ssize_t len)
Return value: New reference. Return a Python object from the data stream in a character buffer containing len bytes
pointed to by string. On error, sets the appropriate exception (EOFError or TypeError) and returns NULL.
Berubah pada versi 2.5: This function used an int type for len. This might require changes in your code for
properly supporting 64-bit systems.

30 Bab 5. Utilitas

The Python/C API, Rilis 2.7.18

5.6 Mengurai argumen dan membangun nilai

Fungsi - fungsi ini berguna ketikamembuat fungsi danmethod tambahan sendiri. Infomasi dan contoh selanjutnya tersedia
dalam extending-index.
Tiga fungsi pertama dijelaskan yaitu, PyArg_ParseTuple(), PyArg_ParseTupleAndKeywords(), dan
PyArg_Parse(), semuanya menggunakan format string yang digunakan untuk memberitahu fungsi tentang argumen
yang diharapkan. Format string menggunakan sintaks yang sama untuk setiap fungsi tersebut.
A format string consists of zero or more ”format units.” A format unit describes one Python object; it is usually a single
character or a parenthesized sequence of format units. With a few exceptions, a format unit that is not a parenthesized
sequence normally corresponds to a single address argument to these functions. In the following description, the quoted
form is the format unit; the entry in (round) parentheses is the Python object type that matches the format unit; and the
entry in [square] brackets is the type of the C variable(s) whose address should be passed.
These formats allow accessing an object as a contiguous chunk of memory. You don’t have to provide raw storage for the
returned unicode or bytes area. Also, you won’t have to release any memory yourself, except with the es, es#, et and
et# formats.
s (string or Unicode) [const char *] Convert a Python string or Unicode object to a C pointer to a character string.

You must not provide storage for the string itself; a pointer to an existing string is stored into the character pointer
variable whose address you pass. The C string is NUL-terminated. The Python string must not contain embedded
NUL bytes; if it does, a TypeError exception is raised. Unicode objects are converted to C strings using the
default encoding. If this conversion fails, a UnicodeError is raised.

s# (string, Unicode or any read buffer compatible object) [const char *, int (or Py_ssize_t, see below)] This
variant on s stores into two C variables, the first one a pointer to a character string, the second one its length. In
this case the Python string may contain embedded null bytes. Unicode objects pass back a pointer to the default
encoded string version of the object if such a conversion is possible. All other read-buffer compatible objects pass
back a reference to the raw internal data representation.
Starting with Python 2.5 the type of the length argument can be controlled by defining the macro
PY_SSIZE_T_CLEAN before including Python.h. If the macro is defined, length is a Py_ssize_t rather
than an int.

s* (string, Unicode, or any buffer compatible object) [Py_buffer] Similar to s#, this code fills a Py_buffer structu-
re provided by the caller. The buffer gets locked, so that the caller can subsequently use the buffer even inside
a Py_BEGIN_ALLOW_THREADS block; the caller is responsible for calling PyBuffer_Release with the
structure after it has processed the data.
Baru pada versi 2.6.

z (string, Unicode or None) [const char *] Like s, but the Python object may also be None, in which case the C
pointer is set to NULL.

z# (string, Unicode, None or any read buffer compatible object) [const char *, int] This is to s# as z is to s.
z* (string, Unicode, None or any buffer compatible object) [Py_buffer] This is to s* as z is to s.

Baru pada versi 2.6.
u (Unicode) [Py_UNICODE *] Convert a Python Unicode object to a C pointer to a NUL-terminated buffer of 16-bit

Unicode (UTF-16) data. As with s, there is no need to provide storage for the Unicode data buffer; a pointer to
the existing Unicode data is stored into the Py_UNICODE pointer variable whose address you pass.

u# (Unicode) [Py_UNICODE *, int] This variant on u stores into two C variables, the first one a pointer to a Unicode
data buffer, the second one its length. Non-Unicode objects are handled by interpreting their read-buffer pointer
as pointer to a Py_UNICODE array.

5.6. Mengurai argumen dan membangun nilai 31

The Python/C API, Rilis 2.7.18

es (string, Unicode or character buffer compatible object) [const char *encoding, char **buffer] This variant on
s is used for encoding Unicode and objects convertible to Unicode into a character buffer. It only works for encoded
data without embedded NUL bytes.
This format requires two arguments. The first is only used as input, and must be a const char* which points
to the name of an encoding as a NUL-terminated string, or NULL, in which case the default encoding is used. An
exception is raised if the named encoding is not known to Python. The second argument must be a char**; the
value of the pointer it references will be set to a buffer with the contents of the argument text. The text will be
encoded in the encoding specified by the first argument.
PyArg_ParseTuple() will allocate a buffer of the needed size, copy the encoded data into this buffer and
adjust *buffer to reference the newly allocated storage. The caller is responsible for calling PyMem_Free() to
free the allocated buffer after use.

et (string, Unicode or character buffer compatible object) [const char *encoding, char **buffer] Same as es
except that 8-bit string objects are passed through without recoding them. Instead, the implementation assumes
that the string object uses the encoding passed in as parameter.

es# (string, Unicode or character buffer compatible object) [const char *encoding, char **buffer, int *buffer_length]
This variant on s# is used for encoding Unicode and objects convertible to Unicode into a character buffer.
Unlike the es format, this variant allows input data which contains NUL characters.
It requires three arguments. The first is only used as input, and must be a const char*which points to the name
of an encoding as a NUL-terminated string, or NULL, in which case the default encoding is used. An exception is
raised if the named encoding is not known to Python. The second argument must be a char**; the value of the
pointer it references will be set to a buffer with the contents of the argument text. The text will be encoded in the
encoding specified by the first argument. The third argument must be a pointer to an integer; the referenced integer
will be set to the number of bytes in the output buffer.
Ada dua mode operasi:
If *buffer points a NULL pointer, the function will allocate a buffer of the needed size, copy the encoded da-
ta into this buffer and set *buffer to reference the newly allocated storage. The caller is responsible for calling
PyMem_Free() to free the allocated buffer after usage.
If *buffer points to a non-NULL pointer (an already allocated buffer), PyArg_ParseTuple() will use this
location as the buffer and interpret the initial value of *buffer_length as the buffer size. It will then copy the
encoded data into the buffer and NUL-terminate it. If the buffer is not large enough, a TypeError will be set.
Note: starting from Python 3.6 a ValueError will be set.
In both cases, *buffer_length is set to the length of the encoded data without the trailing NUL byte.

et# (string, Unicode or character buffer compatible object) [const char *encoding, char **buffer, int *buffer_length]
Same as es# except that string objects are passed through without recoding them. Instead, the implementation
assumes that the string object uses the encoding passed in as parameter.

b (integer) [unsigned char] Convert a nonnegative Python integer to an unsigned tiny int, stored in a C unsigned
char.

B (integer) [unsigned char] Convert a Python integer to a tiny int without overflow checking, stored in a C unsigned
char.
Baru pada versi 2.3.

h (integer) [short int] Convert a Python integer to a C short int.
H (integer) [unsigned short int] Convert a Python integer to a C unsigned short int, without overflow chec-

king.
Baru pada versi 2.3.

i (integer) [int] Convert a Python integer to a plain C int.

32 Bab 5. Utilitas

The Python/C API, Rilis 2.7.18

I (integer) [unsigned int] Convert a Python integer to a C unsigned int, without overflow checking.
Baru pada versi 2.3.

l (integer) [long int] Convert a Python integer to a C long int.
k (integer) [unsigned long] Convert a Python integer or long integer to a C unsigned long without overflow chec-

king.
Baru pada versi 2.3.

L (integer) [PY_LONG_LONG] Convert a Python integer to a C long long. This format is only available on
platforms that support long long (or _int64 on Windows).

K (integer) [unsigned PY_LONG_LONG] Convert a Python integer or long integer to a C unsigned long long
without overflow checking. This format is only available on platforms that support unsigned long long (or
unsigned _int64 on Windows).
Baru pada versi 2.3.

n (integer) [Py_ssize_t] Convert a Python integer or long integer to a C Py_ssize_t.
Baru pada versi 2.5.

c (string of length 1) [char] Convert a Python character, represented as a string of length 1, to a C char.
f (float) [float] Convert a Python floating point number to a C float.
d (float) [double] Convert a Python floating point number to a C double.
D (complex) [Py_complex] Convert a Python complex number to a C Py_complex structure.
O (object) [PyObject *] Store a Python object (without any conversion) in a C object pointer. The C program thus

receives the actual object that was passed. The object’s reference count is not increased. The pointer stored is not
NULL.

O! (object) [typeobject, PyObject *] Store a Python object in a C object pointer. This is similar to O, but takes two
C arguments: the first is the address of a Python type object, the second is the address of the C variable (of
type PyObject*) into which the object pointer is stored. If the Python object does not have the required type,
TypeError is raised.

O& (object) [converter, anything] Convert a Python object to a C variable through a converter function. This takes two
arguments: the first is a function, the second is the address of a C variable (of arbitrary type), converted to void
*. The converter function in turn is called as follows:

status = converter(object, address);

where object is the Python object to be converted and address is the void* argument that was passed to the
PyArg_Parse*() function. The returned status should be 1 for a successful conversion and 0 if the conversion
has failed. When the conversion fails, the converter function should raise an exception and leave the content of
address unmodified.

S (string) [PyStringObject *] Like O but requires that the Python object is a string object. Raises TypeError if the
object is not a string object. The C variable may also be declared as PyObject*.

U (Unicode string) [PyUnicodeObject *] Like O but requires that the Python object is a Unicode object. Raises
TypeError if the object is not a Unicode object. The C variable may also be declared as PyObject*.

t# (read-only character buffer) [char *, int] Like s#, but accepts any object which implements the read-only buffer
interface. The char* variable is set to point to the first byte of the buffer, and the int is set to the length of the
buffer. Only single-segment buffer objects are accepted; TypeError is raised for all others.

5.6. Mengurai argumen dan membangun nilai 33

The Python/C API, Rilis 2.7.18

w (read-write character buffer) [char *] Similar to s, but accepts any object which implements the read-write buffer
interface. The caller must determine the length of the buffer by othermeans, or usew# instead. Only single-segment
buffer objects are accepted; TypeError is raised for all others.

w# (read-write character buffer) [char *, Py_ssize_t] Like s#, but accepts any object which implements the read-
write buffer interface. The char * variable is set to point to the first byte of the buffer, and the Py_ssize_t
is set to the length of the buffer. Only single-segment buffer objects are accepted; TypeError is raised for all
others.

w* (read-write byte-oriented buffer) [Py_buffer] This is to w what s* is to s.
Baru pada versi 2.6.

(items) (tuple) [matching-items] The object must be a Python sequence whose length is the number of format units
in items. The C arguments must correspond to the individual format units in items. Format units for sequences may
be nested.

Catatan: Prior to Python version 1.5.2, this format specifier only accepted a tuple containing the individual
parameters, not an arbitrary sequence. Code which previously caused TypeError to be raised here may now
proceed without an exception. This is not expected to be a problem for existing code.

It is possible to pass Python long integers where integers are requested; however no proper range checking is done --- the
most significant bits are silently truncated when the receiving field is too small to receive the value (actually, the semantics
are inherited from downcasts in C --- your mileage may vary).
A few other characters have a meaning in a format string. These may not occur inside nested parentheses. They are:
| Indicates that the remaining arguments in the Python argument list are optional. The C variables corresponding to

optional arguments should be initialized to their default value --- when an optional argument is not specified,
PyArg_ParseTuple() does not touch the contents of the corresponding C variable(s).

: The list of format units ends here; the string after the colon is used as the function name in error messages (the
”associated value” of the exception that PyArg_ParseTuple() raises).

; The list of format units ends here; the string after the semicolon is used as the error message instead of the default
error message. : and ; mutually exclude each other.

Note that any Python object references which are provided to the caller are borrowed references; do not decrement their
reference count!
Additional arguments passed to these functions must be addresses of variables whose type is determined by the format
string; these are used to store values from the input tuple. There are a few cases, as described in the list of format units
above, where these parameters are used as input values; they should match what is specified for the corresponding format
unit in that case.
For the conversion to succeed, the arg object must match the format and the format must be exhausted. On success,
the PyArg_Parse*() functions return true, otherwise they return false and raise an appropriate exception. When the
PyArg_Parse*() functions fail due to conversion failure in one of the format units, the variables at the addresses
corresponding to that and the following format units are left untouched.
int PyArg_ParseTuple(PyObject *args, const char *format, ...)

Parse the parameters of a function that takes only positional parameters into local variables. Returns true on success;
on failure, it returns false and raises the appropriate exception.

int PyArg_VaParse(PyObject *args, const char *format, va_list vargs)
Identical to PyArg_ParseTuple(), except that it accepts a va_list rather than a variable number of arguments.

int PyArg_ParseTupleAndKeywords(PyObject *args, PyObject *kw, const char *format, char *keywo-
rds[], ...)

Parse the parameters of a function that takes both positional and keyword parameters into local variables. Returns

34 Bab 5. Utilitas

The Python/C API, Rilis 2.7.18

true on success; on failure, it returns false and raises the appropriate exception.
int PyArg_VaParseTupleAndKeywords(PyObject *args, PyObject *kw, const char *format, char *keywo-

rds[], va_list vargs)
Identical to PyArg_ParseTupleAndKeywords(), except that it accepts a va_list rather than a variable num-
ber of arguments.

int PyArg_Parse(PyObject *args, const char *format, ...)
Function used to deconstruct the argument lists of ”old-style” functions --- these are functions which use the
METH_OLDARGS parameter parsing method. This is not recommended for use in parameter parsing in new code,
and most code in the standard interpreter has been modified to no longer use this for that purpose. It does remain
a convenient way to decompose other tuples, however, and may continue to be used for that purpose.

int PyArg_UnpackTuple(PyObject *args, const char *name, Py_ssize_t min, Py_ssize_t max, ...)
A simpler form of parameter retrieval which does not use a format string to specify the types of the arguments.
Functions which use this method to retrieve their parameters should be declared as METH_VARARGS in function or
method tables. The tuple containing the actual parameters should be passed as args; it must actually be a tuple. The
length of the tuple must be at least min and no more than max; min and max may be equal. Additional arguments
must be passed to the function, each of which should be a pointer to a PyObject* variable; these will be filled
in with the values from args; they will contain borrowed references. The variables which correspond to optional
parameters not given by args will not be filled in; these should be initialized by the caller. This function returns
true on success and false if args is not a tuple or contains the wrong number of elements; an exception will be set
if there was a failure.
This is an example of the use of this function, taken from the sources for the _weakref helper module for weak
references:

static PyObject *
weakref_ref(PyObject *self, PyObject *args)
{

PyObject *object;
PyObject *callback = NULL;
PyObject *result = NULL;

if (PyArg_UnpackTuple(args, "ref", 1, 2, &object, &callback)) {
result = PyWeakref_NewRef(object, callback);

}
return result;

}

The call to PyArg_UnpackTuple() in this example is entirely equivalent to this call to
PyArg_ParseTuple():

PyArg_ParseTuple(args, "O|O:ref", &object, &callback)

Baru pada versi 2.2.
Berubah pada versi 2.5: This function used an int type formin andmax. This might require changes in your code
for properly supporting 64-bit systems.

PyObject* Py_BuildValue(const char *format, ...)
Return value: New reference. Create a new value based on a format string similar to those accepted by the
PyArg_Parse*() family of functions and a sequence of values. Returns the value or NULL in the case of
an error; an exception will be raised if NULL is returned.
Py_BuildValue() does not always build a tuple. It builds a tuple only if its format string contains two or more
format units. If the format string is empty, it returns None; if it contains exactly one format unit, it returns whatever
object is described by that format unit. To force it to return a tuple of size 0 or one, parenthesize the format string.

5.6. Mengurai argumen dan membangun nilai 35

The Python/C API, Rilis 2.7.18

When memory buffers are passed as parameters to supply data to build objects, as for the s and s# forma-
ts, the required data is copied. Buffers provided by the caller are never referenced by the objects created by
Py_BuildValue(). In other words, if your code invokes malloc() and passes the allocated memory to
Py_BuildValue(), your code is responsible for calling free() for that memory once Py_BuildValue()
returns.
In the following description, the quoted form is the format unit; the entry in (round) parentheses is the Python
object type that the format unit will return; and the entry in [square] brackets is the type of the C value(s) to be
passed.
The characters space, tab, colon and comma are ignored in format strings (but not within format units such as s#).
This can be used to make long format strings a tad more readable.
s (string) [char *] Convert a null-terminated C string to a Python object. If the C string pointer is NULL, None

is used.
s# (string) [char *, int] Convert a C string and its length to a Python object. If the C string pointer is NULL, the

length is ignored and None is returned.
z (string or None) [char *] Sama seperti s.
z# (string or None) [char *, int] Sama seperti s#.
u (Unicode string) [Py_UNICODE *] Convert a null-terminated buffer of Unicode (UCS-2 or UCS-4) data to

a Python Unicode object. If the Unicode buffer pointer is NULL, None is returned.
u# (Unicode string) [Py_UNICODE *, int] Convert a Unicode (UCS-2 or UCS-4) data buffer and its length to

a Python Unicode object. If the Unicode buffer pointer is NULL, the length is ignored and None is returned.
i (integer) [int] Convert a plain C int to a Python integer object.
b (integer) [char] Convert a plain C char to a Python integer object.
h (integer) [short int] Convert a plain C short int to a Python integer object.
l (integer) [long int] Convert a C long int to a Python integer object.
B (integer) [unsigned char] Convert a C unsigned char to a Python integer object.
H (integer) [unsigned short int] Convert a C unsigned short int to a Python integer object.
I (integer/long) [unsigned int] Convert a Cunsigned int to a Python integer object or a Python long integer

object, if it is larger than sys.maxint.
k (integer/long) [unsigned long] Convert a C unsigned long to a Python integer object or a Python long

integer object, if it is larger than sys.maxint.
L (long) [PY_LONG_LONG] Convert a C long long to a Python long integer object. Only available on

platforms that support long long.
K (long) [unsigned PY_LONG_LONG] Convert a C unsigned long long to a Python long integer ob-

ject. Only available on platforms that support unsigned long long.
n (int) [Py_ssize_t] Convert a C Py_ssize_t to a Python integer or long integer.

Baru pada versi 2.5.
c (string of length 1) [char] Convert a C int representing a character to a Python string of length 1.
d (float) [double] Convert a C double to a Python floating point number.
f (float) [float] Same as d.
D (complex) [Py_complex *] Convert a C Py_complex structure to a Python complex number.

36 Bab 5. Utilitas

The Python/C API, Rilis 2.7.18

O (object) [PyObject *] Pass a Python object untouched (except for its reference count, which is incremented by
one). If the object passed in is a NULL pointer, it is assumed that this was caused because the call producing
the argument found an error and set an exception. Therefore, Py_BuildValue() will return NULL but
won’t raise an exception. If no exception has been raised yet, SystemError is set.

S (object) [PyObject *] Sama seperti O.
N (object) [PyObject *] Same as O, except it doesn’t increment the reference count on the object. Useful when

the object is created by a call to an object constructor in the argument list.
O& (object) [converter, anything] Convert anything to a Python object through a converter function. The function

is called with anything (which should be compatible with void *) as its argument and should return a ”new”
Python object, or NULL if an error occurred.

(items) (tuple) [matching-items] Convert a sequence of C values to a Python tuple with the same number of
items.

[items] (list) [matching-items] Convert a sequence of C values to a Python list with the same number of items.
{items} (dictionary) [matching-items] Convert a sequence of C values to a Python dictionary. Each pair of

consecutive C values adds one item to the dictionary, serving as key and value, respectively.
If there is an error in the format string, the SystemError exception is set and NULL returned.

PyObject* Py_VaBuildValue(const char *format, va_list vargs)
Identical to Py_BuildValue(), except that it accepts a va_list rather than a variable number of arguments.

5.7 String conversion and formatting

Functions for number conversion and formatted string output.
int PyOS_snprintf(char *str, size_t size, const char *format, ...)

Output not more than size bytes to str according to the format string format and the extra arguments. See the Unix
man page snprintf(2).

int PyOS_vsnprintf(char *str, size_t size, const char *format, va_list va)
Output not more than size bytes to str according to the format string format and the variable argument list va. Unix
man page vsnprintf(2).

PyOS_snprintf() and PyOS_vsnprintf() wrap the Standard C library functions snprintf() and
vsnprintf(). Their purpose is to guarantee consistent behavior in corner cases, which the Standard C functions
do not.
The wrappers ensure that str*[*size-1] is always '\0' upon return. They never write more than size bytes (including the
trailing '\0' into str. Both functions require that str != NULL, size > 0 and format != NULL.
If the platform doesn’t have vsnprintf() and the buffer size needed to avoid truncation exceeds size by more than
512 bytes, Python aborts with a Py_FatalError.
The return value (rv) for these functions should be interpreted as follows:

• When 0 <= rv < size, the output conversion was successful and rv characters were written to str (excluding
the trailing '\0' byte at str*[*rv]).

• When rv >= size, the output conversion was truncated and a buffer with rv + 1 bytes would have been
needed to succeed. str*[*size-1] is '\0' in this case.

• When rv < 0, ”something bad happened.” str*[*size-1] is '\0' in this case too, but the rest of str is undefined.
The exact cause of the error depends on the underlying platform.

The following functions provide locale-independent string to number conversions.

5.7. String conversion and formatting 37

The Python/C API, Rilis 2.7.18

double PyOS_string_to_double(const char *s, char **endptr, PyObject *overflow_exception)
Convert a string s to a double, raising a Python exception on failure. The set of accepted strings corresponds
to the set of strings accepted by Python’s float() constructor, except that s must not have leading or trailing
whitespace. The conversion is independent of the current locale.
If endptr is NULL, convert the whole string. Raise ValueError and return -1.0 if the string is not a valid
representation of a floating-point number.
If endptr is not NULL, convert as much of the string as possible and set *endptr to point to the first unconverted
character. If no initial segment of the string is the valid representation of a floating-point number, set *endptr
to point to the beginning of the string, raise ValueError, and return -1.0.
If s represents a value that is too large to store in a float (for example, "1e500" is such a string on many platforms)
then if overflow_exception is NULL return Py_HUGE_VAL (with an appropriate sign) and don’t set any
exception. Otherwise, overflow_exception must point to a Python exception object; raise that exception
and return -1.0. In both cases, set *endptr to point to the first character after the converted value.
If any other error occurs during the conversion (for example an out-of-memory error), set the appropriate Python
exception and return -1.0.
Baru pada versi 2.7.

double PyOS_ascii_strtod(const char *nptr, char **endptr)
Convert a string to a double. This function behaves like the Standard C function strtod() does in the C locale.
It does this without changing the current locale, since that would not be thread-safe.
PyOS_ascii_strtod() should typically be used for reading configuration files or other non-user input that
should be locale independent.
See the Unix man page strtod(2) for details.
Baru pada versi 2.4.
Ditinggalkan sejak versi 2.7: Use PyOS_string_to_double() instead.

char* PyOS_ascii_formatd(char *buffer, size_t buf_len, const char *format, double d)
Convert a double to a string using the '.' as the decimal separator. format is a printf()-style format string
specifying the number format. Allowed conversion characters are 'e', 'E', 'f', 'F', 'g' and 'G'.
The return value is a pointer to buffer with the converted string or NULL if the conversion failed.
Baru pada versi 2.4.
Ditinggalkan sejak versi 2.7: This function is removed in Python 2.7 and 3.1. Use
PyOS_double_to_string() instead.

char* PyOS_double_to_string(double val, char format_code, int precision, int flags, int *ptype)
Convert a double val to a string using supplied format_code, precision, and flags.
format_codemust be one of 'e', 'E', 'f', 'F', 'g', 'G' or 'r'. For 'r', the supplied precisionmust be 0
and is ignored. The 'r' format code specifies the standard repr() format.
flags can be zero or more of the values Py_DTSF_SIGN, Py_DTSF_ADD_DOT_0, or Py_DTSF_ALT, or-ed toge-
ther:

• Py_DTSF_SIGN means to always precede the returned string with a sign character, even if val is non-negative.
• Py_DTSF_ADD_DOT_0 means to ensure that the returned string will not look like an integer.
• Py_DTSF_ALT means to apply ”alternate” formatting rules. See the documentation for the
PyOS_snprintf() '#' specifier for details.

If ptype is non-NULL, then the value it points to will be set to one of Py_DTST_FINITE, Py_DTST_INFINITE, or
Py_DTST_NAN, signifying that val is a finite number, an infinite number, or not a number, respectively.

38 Bab 5. Utilitas

The Python/C API, Rilis 2.7.18

The return value is a pointer to buffer with the converted string or NULL if the conversion failed. The caller is
responsible for freeing the returned string by calling PyMem_Free().
Baru pada versi 2.7.

double PyOS_ascii_atof(const char *nptr)
Convert a string to a double in a locale-independent way.
See the Unix man page atof(2) for details.
Baru pada versi 2.4.
Ditinggalkan sejak versi 3.1: Use PyOS_string_to_double() instead.

char* PyOS_stricmp(char *s1, char *s2)
Case insensitive comparison of strings. The function works almost identically to strcmp() except that it ignores
the case.
Baru pada versi 2.6.

char* PyOS_strnicmp(char *s1, char *s2, Py_ssize_t size)
Case insensitive comparison of strings. The function works almost identically to strncmp() except that it ignores
the case.
Baru pada versi 2.6.

5.8 Reflection

PyObject* PyEval_GetBuiltins()
Return value: Borrowed reference. Return a dictionary of the builtins in the current execution frame, or the interp-
reter of the thread state if no frame is currently executing.

PyObject* PyEval_GetLocals()
Return value: Borrowed reference. Return a dictionary of the local variables in the current execution frame, or
NULL if no frame is currently executing.

PyObject* PyEval_GetGlobals()
Return value: Borrowed reference. Return a dictionary of the global variables in the current execution frame, or
NULL if no frame is currently executing.

PyFrameObject* PyEval_GetFrame()
Return value: Borrowed reference. Return the current thread state’s frame, which is NULL if no frame is currently
executing.

int PyFrame_GetLineNumber(PyFrameObject *frame)
Return the line number that frame is currently executing.

int PyEval_GetRestricted()
If there is a current frame and it is executing in restricted mode, return true, otherwise false.

const char* PyEval_GetFuncName(PyObject *func)
Return the name of func if it is a function, class or instance object, else the name of funcs type.

const char* PyEval_GetFuncDesc(PyObject *func)
Return a description string, depending on the type of func. Return values include ”()” for functions and methods, ”
constructor”, ” instance”, and ” object”. Concatenated with the result of PyEval_GetFuncName(), the result
will be a description of func.

5.8. Reflection 39

The Python/C API, Rilis 2.7.18

5.9 Codec registry and support functions

int PyCodec_Register(PyObject *search_function)
Register a new codec search function.
As side effect, this tries to load the encodings package, if not yet done, to make sure that it is always first in the
list of search functions.

int PyCodec_KnownEncoding(const char *encoding)
Return 1 or 0 depending on whether there is a registered codec for the given encoding.

PyObject* PyCodec_Encode(PyObject *object, const char *encoding, const char *errors)
Generic codec based encoding API.
object is passed through the encoder function found for the given encoding using the error handling method defined
by errors. errors may be NULL to use the default method defined for the codec. Raises a LookupError if no
encoder can be found.

PyObject* PyCodec_Decode(PyObject *object, const char *encoding, const char *errors)
Generic codec based decoding API.
object is passed through the decoder function found for the given encoding using the error handling method defined
by errors. errors may be NULL to use the default method defined for the codec. Raises a LookupError if no
encoder can be found.

5.9.1 Codec lookup API

In the following functions, the encoding string is looked up converted to all lower-case characters, which makes encodings
looked up through this mechanism effectively case-insensitive. If no codec is found, a KeyError is set and NULL
returned.
PyObject* PyCodec_Encoder(const char *encoding)

Get an encoder function for the given encoding.
PyObject* PyCodec_Decoder(const char *encoding)

Get a decoder function for the given encoding.
PyObject* PyCodec_IncrementalEncoder(const char *encoding, const char *errors)

Get an IncrementalEncoder object for the given encoding.
PyObject* PyCodec_IncrementalDecoder(const char *encoding, const char *errors)

Get an IncrementalDecoder object for the given encoding.
PyObject* PyCodec_StreamReader(const char *encoding, PyObject *stream, const char *errors)

Get a StreamReader factory function for the given encoding.
PyObject* PyCodec_StreamWriter(const char *encoding, PyObject *stream, const char *errors)

Get a StreamWriter factory function for the given encoding.

40 Bab 5. Utilitas

The Python/C API, Rilis 2.7.18

5.9.2 Registry API for Unicode encoding error handlers

int PyCodec_RegisterError(const char *name, PyObject *error)
Register the error handling callback function error under the given name. This callback function will be called by a
codec when it encounters unencodable characters/undecodable bytes and name is specified as the error parameter
in the call to the encode/decode function.
The callback gets a single argument, an instance of UnicodeEncodeError, UnicodeDecodeError or
UnicodeTranslateError that holds information about the problematic sequence of characters or bytes and
their offset in the original string (see Objek Pengecualian Unicode for functions to extract this information). The
callback must either raise the given exception, or return a two-item tuple containing the replacement for the pro-
blematic sequence, and an integer giving the offset in the original string at which encoding/decoding should be
resumed.
Return 0 on success, -1 on error.

PyObject* PyCodec_LookupError(const char *name)
Lookup the error handling callback function registered under name. As a special case NULL can be passed, in
which case the error handling callback for ”strict” will be returned.

PyObject* PyCodec_StrictErrors(PyObject *exc)
Raise exc as an exception.

PyObject* PyCodec_IgnoreErrors(PyObject *exc)
Ignore the unicode error, skipping the faulty input.

PyObject* PyCodec_ReplaceErrors(PyObject *exc)
Replace the unicode encode error with ? or U+FFFD.

PyObject* PyCodec_XMLCharRefReplaceErrors(PyObject *exc)
Replace the unicode encode error with XML character references.

PyObject* PyCodec_BackslashReplaceErrors(PyObject *exc)
Replace the unicode encode error with backslash escapes (\x, \u and \U).

5.9. Codec registry and support functions 41

The Python/C API, Rilis 2.7.18

42 Bab 5. Utilitas

BAB6

Lapisan Abstrak Objek

Fungsi-fungsi dalam bab ini berinteraksi dengan objek-objek Python terlepas dari tipenya, atau dengan kelas-kelas jenis
objek yang luas (misalnya semua tipe numerik, atau semua tipe urutan). Ketika digunakan pada jenis objek yang tidak
mereka terapkan, mereka akan menghasilkan pengecualian Python.
Tidak mungkin untuk menggunakan fungsi-fungsi ini pada objek yang tidak diinisialisasi dengan benar, seperti objek
daftar yang telah dibuat oleh :c: func:PyList_New, tetapi item-itemnya belum disetel ke beberapa nilai non-“NULL“
sebelumnya.

6.1 Object Protocol

int PyObject_Print(PyObject *o, FILE *fp, int flags)
Print an object o, on file fp. Returns -1 on error. The flags argument is used to enable certain printing options.
The only option currently supported is Py_PRINT_RAW; if given, the str() of the object is written instead of
the repr().

int PyObject_HasAttr(PyObject *o, PyObject *attr_name)
Returns 1 if o has the attribute attr_name, and 0 otherwise. This is equivalent to the Python expression
hasattr(o, attr_name). This function always succeeds.

int PyObject_HasAttrString(PyObject *o, const char *attr_name)
Returns 1 if o has the attribute attr_name, and 0 otherwise. This is equivalent to the Python expression
hasattr(o, attr_name). This function always succeeds.

PyObject* PyObject_GetAttr(PyObject *o, PyObject *attr_name)
Return value: New reference. Retrieve an attribute named attr_name from object o. Returns the attribute value on
success, or NULL on failure. This is the equivalent of the Python expression o.attr_name.

PyObject* PyObject_GetAttrString(PyObject *o, const char *attr_name)
Return value: New reference. Retrieve an attribute named attr_name from object o. Returns the attribute value on
success, or NULL on failure. This is the equivalent of the Python expression o.attr_name.

PyObject* PyObject_GenericGetAttr(PyObject *o, PyObject *name)
Generic attribute getter function that is meant to be put into a type object’s tp_getattro slot. It looks for

43

The Python/C API, Rilis 2.7.18

a descriptor in the dictionary of classes in the object’s MRO as well as an attribute in the object’s __dict__
(if present). As outlined in descriptors, data descriptors take preference over instance attributes, while non-data
descriptors don’t. Otherwise, an AttributeError is raised.

int PyObject_SetAttr(PyObject *o, PyObject *attr_name, PyObject *v)
Set the value of the attribute named attr_name, for object o, to the value v. Raise an exception and return -1 on
failure; return 0 on success. This is the equivalent of the Python statement o.attr_name = v.
If v is NULL, the attribute is deleted, however this feature is deprecated in favour of using
PyObject_DelAttr().

int PyObject_SetAttrString(PyObject *o, const char *attr_name, PyObject *v)
Set the value of the attribute named attr_name, for object o, to the value v. Raise an exception and return -1 on
failure; return 0 on success. This is the equivalent of the Python statement o.attr_name = v.
If v is NULL, the attribute is deleted, however this feature is deprecated in favour of using
PyObject_DelAttrString().

int PyObject_GenericSetAttr(PyObject *o, PyObject *name, PyObject *value)
Generic attribute setter and deleter function that is meant to be put into a type object’s tp_setattro slot. It
looks for a data descriptor in the dictionary of classes in the object’s MRO, and if found it takes preference over
setting or deleting the attribute in the instance dictionary. Otherwise, the attribute is set or deleted in the object’s
__dict__ (if present). On success, 0 is returned, otherwise an AttributeError is raised and -1 is returned.

int PyObject_DelAttr(PyObject *o, PyObject *attr_name)
Delete attribute named attr_name, for object o. Returns-1 on failure. This is the equivalent of the Python statement
del o.attr_name.

int PyObject_DelAttrString(PyObject *o, const char *attr_name)
Delete attribute named attr_name, for object o. Returns-1 on failure. This is the equivalent of the Python statement
del o.attr_name.

PyObject* PyObject_RichCompare(PyObject *o1, PyObject *o2, int opid)
Return value: New reference. Compare the values of o1 and o2 using the operation specified by opid, which must
be one of Py_LT, Py_LE, Py_EQ, Py_NE, Py_GT, or Py_GE, corresponding to <, <=, ==, !=, >, or >=
respectively. This is the equivalent of the Python expression o1 op o2, where op is the operator corresponding
to opid. Returns the value of the comparison on success, or NULL on failure.

int PyObject_RichCompareBool(PyObject *o1, PyObject *o2, int opid)
Compare the values of o1 and o2 using the operation specified by opid, which must be one of Py_LT, Py_LE,
Py_EQ, Py_NE, Py_GT, or Py_GE, corresponding to <, <=, ==, !=, >, or >= respectively. Returns -1 on error,
0 if the result is false, 1 otherwise. This is the equivalent of the Python expression o1 op o2, where op is the
operator corresponding to opid.

Catatan: If o1 and o2 are the same object, PyObject_RichCompareBool() will always return 1 for Py_EQ and
0 for Py_NE.

int PyObject_Cmp(PyObject *o1, PyObject *o2, int *result)
Compare the values of o1 and o2 using a routine provided by o1, if one exists, otherwise with a routine provided by
o2. The result of the comparison is returned in result. Returns -1 on failure. This is the equivalent of the Python
statement result = cmp(o1, o2).

int PyObject_Compare(PyObject *o1, PyObject *o2)
Compare the values of o1 and o2 using a routine provided by o1, if one exists, otherwise with a routine pro-
vided by o2. Returns the result of the comparison on success. On error, the value returned is undefined; use
PyErr_Occurred() to detect an error. This is equivalent to the Python expression cmp(o1, o2).

44 Bab 6. Lapisan Abstrak Objek

The Python/C API, Rilis 2.7.18

PyObject* PyObject_Repr(PyObject *o)
Return value: New reference. Compute a string representation of object o. Returns the string representation on
success, NULL on failure. This is the equivalent of the Python expression repr(o). Called by the repr()
built-in function and by reverse quotes.

PyObject* PyObject_Str(PyObject *o)
Return value: New reference. Compute a string representation of object o. Returns the string representation on
success, NULL on failure. This is the equivalent of the Python expression str(o). Called by the str() built-in
function and by the print statement.

PyObject* PyObject_Bytes(PyObject *o)
Compute a bytes representation of object o. In 2.x, this is just an alias for PyObject_Str().

PyObject* PyObject_Unicode(PyObject *o)
Return value: New reference. Compute a Unicode string representation of object o. Returns the Unicode string
representation on success, NULL on failure. This is the equivalent of the Python expression unicode(o). Called
by the unicode() built-in function.

int PyObject_IsInstance(PyObject *inst, PyObject *cls)
Returns 1 if inst is an instance of the class cls or a subclass of cls, or 0 if not. On error, returns -1 and sets an
exception. If cls is a type object rather than a class object, PyObject_IsInstance() returns 1 if inst is of
type cls. If cls is a tuple, the check will be done against every entry in cls. The result will be 1 when at least one of
the checks returns 1, otherwise it will be 0. If inst is not a class instance and cls is neither a type object, nor a class
object, nor a tuple, inst must have a __class__ attribute --- the class relationship of the value of that attribute
with cls will be used to determine the result of this function.
Baru pada versi 2.1.
Berubah pada versi 2.2: Support for a tuple as the second argument added.

Subclass determination is done in a fairly straightforward way, but includes a wrinkle that implementors of extensions to
the class system may want to be aware of. If A and B are class objects, B is a subclass of A if it inherits from A either
directly or indirectly. If either is not a class object, a more general mechanism is used to determine the class relationship
of the two objects. When testing if B is a subclass of A, if A is B, PyObject_IsSubclass() returns true. If A
and B are different objects, B’s __bases__ attribute is searched in a depth-first fashion for A --- the presence of the
__bases__ attribute is considered sufficient for this determination.
int PyObject_IsSubclass(PyObject *derived, PyObject *cls)

Returns 1 if the class derived is identical to or derived from the class cls, otherwise returns 0. In case of an error,
returns -1. If cls is a tuple, the check will be done against every entry in cls. The result will be 1 when at least one
of the checks returns 1, otherwise it will be 0. If either derived or cls is not an actual class object (or tuple), this
function uses the generic algorithm described above.
Baru pada versi 2.1.
Berubah pada versi 2.3: Older versions of Python did not support a tuple as the second argument.

int PyCallable_Check(PyObject *o)
Determine if the object o is callable. Return 1 if the object is callable and 0 otherwise. This function always
succeeds.

PyObject* PyObject_Call(PyObject *callable_object, PyObject *args, PyObject *kw)
Return value: New reference. Call a callable Python object callable_object, with arguments given by the tuple args,
and named arguments given by the dictionary kw. If no named arguments are needed, kw may be NULL. args
must not be NULL, use an empty tuple if no arguments are needed. Returns the result of the call on success, or
NULL on failure. This is the equivalent of the Python expression apply(callable_object, args, kw)
or callable_object(*args, **kw).
Baru pada versi 2.2.

6.1. Object Protocol 45

The Python/C API, Rilis 2.7.18

PyObject* PyObject_CallObject(PyObject *callable_object, PyObject *args)
Return value: New reference. Call a callable Python object callable_object, with arguments given by the tu-
ple args. If no arguments are needed, then args may be NULL. Returns the result of the call on success, or
NULL on failure. This is the equivalent of the Python expression apply(callable_object, args) or
callable_object(*args).

PyObject* PyObject_CallFunction(PyObject *callable, char *format, ...)
Return value: New reference. Call a callable Python object callable, with a variable number of C arguments. The C
arguments are described using a Py_BuildValue() style format string. The format may be NULL, indicating
that no arguments are provided. Returns the result of the call on success, or NULL on failure. This is the equivalent
of the Python expression apply(callable, args) or callable(*args). Note that if you only pass
PyObject * args, PyObject_CallFunctionObjArgs() is a faster alternative.

PyObject* PyObject_CallMethod(PyObject *o, char *method, char *format, ...)
Return value: New reference. Call the method named method of object o with a variable number of C arguments.
The C arguments are described by a Py_BuildValue() format string that should produce a tuple. The format
may be NULL, indicating that no arguments are provided. Returns the result of the call on success, or NULL on fa-
ilure. This is the equivalent of the Python expression o.method(args). Note that if you only pass PyObject
* args, PyObject_CallMethodObjArgs() is a faster alternative.

PyObject* PyObject_CallFunctionObjArgs(PyObject *callable, ..., NULL)
Return value: New reference. Call a callable Python object callable, with a variable number of PyObject*
arguments. The arguments are provided as a variable number of parameters followed by NULL. Returns the result
of the call on success, or NULL on failure.
Baru pada versi 2.2.

PyObject* PyObject_CallMethodObjArgs(PyObject *o, PyObject *name, ..., NULL)
Return value: New reference. Calls a method of the object o, where the name of the method is given as a Python
string object in name. It is called with a variable number of PyObject* arguments. The arguments are provided
as a variable number of parameters followed byNULL. Returns the result of the call on success, orNULL on failure.
Baru pada versi 2.2.

long PyObject_Hash(PyObject *o)
Compute and return the hash value of an object o. On failure, return -1. This is the equivalent of the Python
expression hash(o).

long PyObject_HashNotImplemented(PyObject *o)
Set aTypeError indicating thattype(o) is not hashable and return-1. This function receives special treatment
when stored in a tp_hash slot, allowing a type to explicitly indicate to the interpreter that it is not hashable.
Baru pada versi 2.6.

int PyObject_IsTrue(PyObject *o)
Returns 1 if the object o is considered to be true, and 0 otherwise. This is equivalent to the Python expression not
not o. On failure, return -1.

int PyObject_Not(PyObject *o)
Returns 0 if the object o is considered to be true, and 1 otherwise. This is equivalent to the Python expression not
o. On failure, return -1.

PyObject* PyObject_Type(PyObject *o)
Return value: New reference. When o is non-NULL, returns a type object corresponding to the object type of object
o. On failure, raises SystemError and returns NULL. This is equivalent to the Python expression type(o).
This function increments the reference count of the return value. There’s really no reason to use this function instead
of the common expression o->ob_type, which returns a pointer of type PyTypeObject*, except when the
incremented reference count is needed.

46 Bab 6. Lapisan Abstrak Objek

The Python/C API, Rilis 2.7.18

int PyObject_TypeCheck(PyObject *o, PyTypeObject *type)
Return true if the object o is of type type or a subtype of type. Both parameters must be non-NULL.
Baru pada versi 2.2.

Py_ssize_t PyObject_Length(PyObject *o)
Py_ssize_t PyObject_Size(PyObject *o)

Return the length of object o. If the object o provides either the sequence and mapping protocols, the sequence
length is returned. On error, -1 is returned. This is the equivalent to the Python expression len(o).
Berubah pada versi 2.5: These functions returned an int type. This might require changes in your code for
properly supporting 64-bit systems.

PyObject* PyObject_GetItem(PyObject *o, PyObject *key)
Return value: New reference. Return element of o corresponding to the object key or NULL on failure. This is the
equivalent of the Python expression o[key].

int PyObject_SetItem(PyObject *o, PyObject *key, PyObject *v)
Map the object key to the value v. Raise an exception and return -1 on failure; return 0 on success. This is the
equivalent of the Python statement o[key] = v.

int PyObject_DelItem(PyObject *o, PyObject *key)
Delete the mapping for key from o. Returns -1 on failure. This is the equivalent of the Python statement del
o[key].

int PyObject_AsFileDescriptor(PyObject *o)
Derives a file descriptor from a Python object. If the object is an integer or long integer, its value is returned. If
not, the object’s fileno() method is called if it exists; the method must return an integer or long integer, which
is returned as the file descriptor value. Returns -1 on failure.

PyObject* PyObject_Dir(PyObject *o)
Return value: New reference. This is equivalent to the Python expression dir(o), returning a (possibly empty)
list of strings appropriate for the object argument, or NULL if there was an error. If the argument is NULL, this is
like the Python dir(), returning the names of the current locals; in this case, if no execution frame is active then
NULL is returned but PyErr_Occurred() will return false.

PyObject* PyObject_GetIter(PyObject *o)
Return value: New reference. This is equivalent to the Python expression iter(o). It returns a new iterator for
the object argument, or the object itself if the object is already an iterator. Raises TypeError and returns NULL
if the object cannot be iterated.

6.2 Number Protocol

int PyNumber_Check(PyObject *o)
Returns 1 if the object o provides numeric protocols, and false otherwise. This function always succeeds.

PyObject* PyNumber_Add(PyObject *o1, PyObject *o2)
Return value: New reference. Returns the result of adding o1 and o2, or NULL on failure. This is the equivalent of
the Python expression o1 + o2.

PyObject* PyNumber_Subtract(PyObject *o1, PyObject *o2)
Return value: New reference. Returns the result of subtracting o2 from o1, orNULL on failure. This is the equivalent
of the Python expression o1 - o2.

PyObject* PyNumber_Multiply(PyObject *o1, PyObject *o2)
Return value: New reference. Returns the result of multiplying o1 and o2, orNULL on failure. This is the equivalent
of the Python expression o1 * o2.

6.2. Number Protocol 47

The Python/C API, Rilis 2.7.18

PyObject* PyNumber_Divide(PyObject *o1, PyObject *o2)
Return value: New reference. Returns the result of dividing o1 by o2, or NULL on failure. This is the equivalent of
the Python expression o1 / o2.

PyObject* PyNumber_FloorDivide(PyObject *o1, PyObject *o2)
Return value: New reference. Return the floor of o1 divided by o2, or NULL on failure. This is equivalent to the
”classic” division of integers.
Baru pada versi 2.2.

PyObject* PyNumber_TrueDivide(PyObject *o1, PyObject *o2)
Return value: New reference. Return a reasonable approximation for the mathematical value of o1 divided by o2,
or NULL on failure. The return value is ”approximate” because binary floating point numbers are approximate; it is
not possible to represent all real numbers in base two. This function can return a floating point value when passed
two integers.
Baru pada versi 2.2.

PyObject* PyNumber_Remainder(PyObject *o1, PyObject *o2)
Return value: New reference. Returns the remainder of dividing o1 by o2, orNULL on failure. This is the equivalent
of the Python expression o1 % o2.

PyObject* PyNumber_Divmod(PyObject *o1, PyObject *o2)
Return value: New reference. See the built-in function divmod(). ReturnsNULL on failure. This is the equivalent
of the Python expression divmod(o1, o2).

PyObject* PyNumber_Power(PyObject *o1, PyObject *o2, PyObject *o3)
Return value: New reference. See the built-in function pow(). Returns NULL on failure. This is the equivalent of
the Python expression pow(o1, o2, o3), where o3 is optional. If o3 is to be ignored, pass Py_None in its
place (passing NULL for o3 would cause an illegal memory access).

PyObject* PyNumber_Negative(PyObject *o)
Return value: New reference. Returns the negation of o on success, or NULL on failure. This is the equivalent of
the Python expression -o.

PyObject* PyNumber_Positive(PyObject *o)
Return value: New reference. Returns o on success, or NULL on failure. This is the equivalent of the Python
expression +o.

PyObject* PyNumber_Absolute(PyObject *o)
Return value: New reference. Returns the absolute value of o, or NULL on failure. This is the equivalent of the
Python expression abs(o).

PyObject* PyNumber_Invert(PyObject *o)
Return value: New reference. Returns the bitwise negation of o on success, orNULL on failure. This is the equivalent
of the Python expression ~o.

PyObject* PyNumber_Lshift(PyObject *o1, PyObject *o2)
Return value: New reference. Returns the result of left shifting o1 by o2 on success, or NULL on failure. This is the
equivalent of the Python expression o1 << o2.

PyObject* PyNumber_Rshift(PyObject *o1, PyObject *o2)
Return value: New reference. Returns the result of right shifting o1 by o2 on success, or NULL on failure. This is
the equivalent of the Python expression o1 >> o2.

PyObject* PyNumber_And(PyObject *o1, PyObject *o2)
Return value: New reference. Returns the ”bitwise and” of o1 and o2 on success and NULL on failure. This is the
equivalent of the Python expression o1 & o2.

PyObject* PyNumber_Xor(PyObject *o1, PyObject *o2)
Return value: New reference. Returns the ”bitwise exclusive or” of o1 by o2 on success, or NULL on failure. This

48 Bab 6. Lapisan Abstrak Objek

The Python/C API, Rilis 2.7.18

is the equivalent of the Python expression o1 ^ o2.
PyObject* PyNumber_Or(PyObject *o1, PyObject *o2)

Return value: New reference. Returns the ”bitwise or” of o1 and o2 on success, or NULL on failure. This is the
equivalent of the Python expression o1 | o2.

PyObject* PyNumber_InPlaceAdd(PyObject *o1, PyObject *o2)
Return value: New reference. Returns the result of adding o1 and o2, or NULL on failure. The operation is done
in-place when o1 supports it. This is the equivalent of the Python statement o1 += o2.

PyObject* PyNumber_InPlaceSubtract(PyObject *o1, PyObject *o2)
Return value: New reference. Returns the result of subtracting o2 from o1, or NULL on failure. The operation is
done in-place when o1 supports it. This is the equivalent of the Python statement o1 -= o2.

PyObject* PyNumber_InPlaceMultiply(PyObject *o1, PyObject *o2)
Return value: New reference. Returns the result of multiplying o1 and o2, or NULL on failure. The operation is
done in-place when o1 supports it. This is the equivalent of the Python statement o1 *= o2.

PyObject* PyNumber_InPlaceDivide(PyObject *o1, PyObject *o2)
Return value: New reference. Returns the result of dividing o1 by o2, or NULL on failure. The operation is done
in-place when o1 supports it. This is the equivalent of the Python statement o1 /= o2.

PyObject* PyNumber_InPlaceFloorDivide(PyObject *o1, PyObject *o2)
Return value: New reference. Returns the mathematical floor of dividing o1 by o2, or NULL on failure. The
operation is done in-place when o1 supports it. This is the equivalent of the Python statement o1 //= o2.
Baru pada versi 2.2.

PyObject* PyNumber_InPlaceTrueDivide(PyObject *o1, PyObject *o2)
Return value: New reference. Return a reasonable approximation for the mathematical value of o1 divided by o2,
or NULL on failure. The return value is ”approximate” because binary floating point numbers are approximate; it is
not possible to represent all real numbers in base two. This function can return a floating point value when passed
two integers. The operation is done in-place when o1 supports it.
Baru pada versi 2.2.

PyObject* PyNumber_InPlaceRemainder(PyObject *o1, PyObject *o2)
Return value: New reference. Returns the remainder of dividing o1 by o2, or NULL on failure. The operation is
done in-place when o1 supports it. This is the equivalent of the Python statement o1 %= o2.

PyObject* PyNumber_InPlacePower(PyObject *o1, PyObject *o2, PyObject *o3)
Return value: New reference. See the built-in function pow(). Returns NULL on failure. The operation is done
in-placewhen o1 supports it. This is the equivalent of the Python statement o1 **= o2when o3 is Py_None, or
an in-place variant of pow(o1, o2, o3) otherwise. If o3 is to be ignored, pass Py_None in its place (passing
NULL for o3 would cause an illegal memory access).

PyObject* PyNumber_InPlaceLshift(PyObject *o1, PyObject *o2)
Return value: New reference. Returns the result of left shifting o1 by o2 on success, or NULL on failure. The
operation is done in-place when o1 supports it. This is the equivalent of the Python statement o1 <<= o2.

PyObject* PyNumber_InPlaceRshift(PyObject *o1, PyObject *o2)
Return value: New reference. Returns the result of right shifting o1 by o2 on success, or NULL on failure. The
operation is done in-place when o1 supports it. This is the equivalent of the Python statement o1 >>= o2.

PyObject* PyNumber_InPlaceAnd(PyObject *o1, PyObject *o2)
Return value: New reference. Returns the ”bitwise and” of o1 and o2 on success andNULL on failure. The operation
is done in-place when o1 supports it. This is the equivalent of the Python statement o1 &= o2.

PyObject* PyNumber_InPlaceXor(PyObject *o1, PyObject *o2)
Return value: New reference. Returns the ”bitwise exclusive or” of o1 by o2 on success, or NULL on failure. The
operation is done in-place when o1 supports it. This is the equivalent of the Python statement o1 ^= o2.

6.2. Number Protocol 49

The Python/C API, Rilis 2.7.18

PyObject* PyNumber_InPlaceOr(PyObject *o1, PyObject *o2)
Return value: New reference. Returns the ”bitwise or” of o1 and o2 on success, or NULL on failure. The operation
is done in-place when o1 supports it. This is the equivalent of the Python statement o1 |= o2.

int PyNumber_Coerce(PyObject **p1, PyObject **p2)
This function takes the addresses of two variables of type PyObject*. If the objects pointed to by *p1 and
*p2 have the same type, increment their reference count and return 0 (success). If the objects can be converted
to a common numeric type, replace *p1 and *p2 by their converted value (with ’new’ reference counts), and
return 0. If no conversion is possible, or if some other error occurs, return -1 (failure) and don’t increment the
reference counts. The call PyNumber_Coerce(&o1, &o2) is equivalent to the Python statement o1, o2
= coerce(o1, o2).

int PyNumber_CoerceEx(PyObject **p1, PyObject **p2)
This function is similar to PyNumber_Coerce(), except that it returns 1 when the conversion is not possible
and when no error is raised. Reference counts are still not increased in this case.

PyObject* PyNumber_Int(PyObject *o)
Return value: New reference. Returns the o converted to an integer object on success, or NULL on failure. If the
argument is outside the integer range a long object will be returned instead. This is the equivalent of the Python
expression int(o).

PyObject* PyNumber_Long(PyObject *o)
Return value: New reference. Returns the o converted to a long integer object on success, or NULL on failure. This
is the equivalent of the Python expression long(o).

PyObject* PyNumber_Float(PyObject *o)
Return value: New reference. Returns the o converted to a float object on success, or NULL on failure. This is the
equivalent of the Python expression float(o).

PyObject* PyNumber_Index(PyObject *o)
Returns the o converted to a Python int or long on success orNULLwith a TypeError exception raised on failure.
Baru pada versi 2.5.

PyObject* PyNumber_ToBase(PyObject *n, int base)
Returns the integer n converted to base as a string with a base marker of '0b', '0o', or '0x' if applicable.
When base is not 2, 8, 10, or 16, the format is 'x#num'where x is the base. If n is not an int object, it is converted
with PyNumber_Index() first.
Baru pada versi 2.6.

Py_ssize_t PyNumber_AsSsize_t(PyObject *o, PyObject *exc)
Returns o converted to a Py_ssize_t value if o can be interpreted as an integer. If o can be converted to a Python int
or long but the attempt to convert to a Py_ssize_t value would raise an OverflowError, then the exc argument
is the type of exception that will be raised (usually IndexError or OverflowError). If exc is NULL, then
the exception is cleared and the value is clipped to PY_SSIZE_T_MIN for a negative integer or PY_SSIZE_T_MAX
for a positive integer.
Baru pada versi 2.5.

int PyIndex_Check(PyObject *o)
Returns 1 if o is an index integer (has the nb_index slot of the tp_as_number structure filled in), and 0 otherwise.
Baru pada versi 2.5.

50 Bab 6. Lapisan Abstrak Objek

The Python/C API, Rilis 2.7.18

6.3 Sequence Protocol

int PySequence_Check(PyObject *o)
Return 1 if the object provides sequence protocol, and 0 otherwise. This function always succeeds.

Py_ssize_t PySequence_Size(PyObject *o)
Py_ssize_t PySequence_Length(PyObject *o)

Returns the number of objects in sequence o on success, and -1 on failure. This is equivalent to the Python
expression len(o).
Berubah pada versi 2.5: These functions returned an int type. This might require changes in your code for
properly supporting 64-bit systems.

PyObject* PySequence_Concat(PyObject *o1, PyObject *o2)
Return value: New reference. Return the concatenation of o1 and o2 on success, and NULL on failure. This is the
equivalent of the Python expression o1 + o2.

PyObject* PySequence_Repeat(PyObject *o, Py_ssize_t count)
Return value: New reference. Return the result of repeating sequence object o count times, or NULL on failure.
This is the equivalent of the Python expression o * count.
Berubah pada versi 2.5: This function used an int type for count. This might require changes in your code for
properly supporting 64-bit systems.

PyObject* PySequence_InPlaceConcat(PyObject *o1, PyObject *o2)
Return value: New reference. Return the concatenation of o1 and o2 on success, andNULL on failure. The operation
is done in-place when o1 supports it. This is the equivalent of the Python expression o1 += o2.

PyObject* PySequence_InPlaceRepeat(PyObject *o, Py_ssize_t count)
Return value: New reference. Return the result of repeating sequence object o count times, or NULL on failure.
The operation is done in-place when o supports it. This is the equivalent of the Python expression o *= count.
Berubah pada versi 2.5: This function used an int type for count. This might require changes in your code for
properly supporting 64-bit systems.

PyObject* PySequence_GetItem(PyObject *o, Py_ssize_t i)
Return value: New reference. Return the ith element of o, or NULL on failure. This is the equivalent of the Python
expression o[i].
Berubah pada versi 2.5: This function used an int type for i. This might require changes in your code for properly
supporting 64-bit systems.

PyObject* PySequence_GetSlice(PyObject *o, Py_ssize_t i1, Py_ssize_t i2)
Return value: New reference. Return the slice of sequence object o between i1 and i2, or NULL on failure. This is
the equivalent of the Python expression o[i1:i2].
Berubah pada versi 2.5: This function used an int type for i1 and i2. This might require changes in your code for
properly supporting 64-bit systems.

int PySequence_SetItem(PyObject *o, Py_ssize_t i, PyObject *v)
Assign object v to the ith element of o. Raise an exception and return -1 on failure; return 0 on success. This is
the equivalent of the Python statement o[i] = v. This function does not steal a reference to v.
If v is NULL, the element is deleted, however this feature is deprecated in favour of using
PySequence_DelItem().
Berubah pada versi 2.5: This function used an int type for i. This might require changes in your code for properly
supporting 64-bit systems.

6.3. Sequence Protocol 51

The Python/C API, Rilis 2.7.18

int PySequence_DelItem(PyObject *o, Py_ssize_t i)
Delete the ith element of object o. Returns -1 on failure. This is the equivalent of the Python statement del
o[i].
Berubah pada versi 2.5: This function used an int type for i. This might require changes in your code for properly
supporting 64-bit systems.

int PySequence_SetSlice(PyObject *o, Py_ssize_t i1, Py_ssize_t i2, PyObject *v)
Assign the sequence object v to the slice in sequence object o from i1 to i2. Raise an exception and return -1 on
failure; return 0 on success. This is the equivalent of the Python statement o[i1:i2] = v.
If v is NULL, the slice is deleted, however this feature is deprecated in favour of using
PySequence_DelSlice().
Berubah pada versi 2.5: This function used an int type for i1 and i2. This might require changes in your code for
properly supporting 64-bit systems.

int PySequence_DelSlice(PyObject *o, Py_ssize_t i1, Py_ssize_t i2)
Delete the slice in sequence object o from i1 to i2. Returns -1 on failure. This is the equivalent of the Python
statement del o[i1:i2].
Berubah pada versi 2.5: This function used an int type for i1 and i2. This might require changes in your code for
properly supporting 64-bit systems.

Py_ssize_t PySequence_Count(PyObject *o, PyObject *value)
Return the number of occurrences of value in o, that is, return the number of keys for which o[key] == value.
On failure, return -1. This is equivalent to the Python expression o.count(value).
Berubah pada versi 2.5: This function returned an int type. This might require changes in your code for properly
supporting 64-bit systems.

int PySequence_Contains(PyObject *o, PyObject *value)
Determine if o contains value. If an item in o is equal to value, return 1, otherwise return 0. On error, return -1.
This is equivalent to the Python expression value in o.

Py_ssize_t PySequence_Index(PyObject *o, PyObject *value)
Return the first index i for which o[i] == value. On error, return -1. This is equivalent to the Python
expression o.index(value).
Berubah pada versi 2.5: This function returned an int type. This might require changes in your code for properly
supporting 64-bit systems.

PyObject* PySequence_List(PyObject *o)
Return value: New reference. Return a list object with the same contents as the arbitrary sequence o. The returned
list is guaranteed to be new.

PyObject* PySequence_Tuple(PyObject *o)
Return value: New reference. Return a tuple object with the same contents as the arbitrary sequence o or NULL on
failure. If o is a tuple, a new reference will be returned, otherwise a tuple will be constructed with the appropriate
contents. This is equivalent to the Python expression tuple(o).

PyObject* PySequence_Fast(PyObject *o, const char *m)
Return value: New reference. Return the sequence o as a list, unless it is already a tuple or list, in which case o
is returned. Use PySequence_Fast_GET_ITEM() to access the members of the result. Returns NULL on
failure. If the object is not a sequence, raises TypeError with m as the message text.

PyObject* PySequence_Fast_GET_ITEM(PyObject *o, Py_ssize_t i)
Return value: Borrowed reference. Return the ith element of o, assuming that o was returned by
PySequence_Fast(), o is not NULL, and that i is within bounds.
Berubah pada versi 2.5: This function used an int type for i. This might require changes in your code for properly
supporting 64-bit systems.

52 Bab 6. Lapisan Abstrak Objek

The Python/C API, Rilis 2.7.18

PyObject** PySequence_Fast_ITEMS(PyObject *o)
Return the underlying array of PyObject pointers. Assumes that o was returned by PySequence_Fast() and
o is not NULL.
Note, if a list gets resized, the reallocation may relocate the items array. So, only use the underlying array pointer
in contexts where the sequence cannot change.
Baru pada versi 2.4.

PyObject* PySequence_ITEM(PyObject *o, Py_ssize_t i)
Return value: New reference. Return the ith element of o or NULL on failure. Macro form of
PySequence_GetItem() but without checking that PySequence_Check() on o is true and without
adjustment for negative indices.
Baru pada versi 2.3.
Berubah pada versi 2.5: This function used an int type for i. This might require changes in your code for properly
supporting 64-bit systems.

Py_ssize_t PySequence_Fast_GET_SIZE(PyObject *o)
Returns the length of o, assuming that o was returned by PySequence_Fast() and that o is not NULL. The
size can also be gotten by calling PySequence_Size() on o, but PySequence_Fast_GET_SIZE() is
faster because it can assume o is a list or tuple.

6.4 Mapping Protocol

int PyMapping_Check(PyObject *o)
Return 1 if the object provides mapping protocol, and 0 otherwise. This function always succeeds.

Py_ssize_t PyMapping_Size(PyObject *o)
Py_ssize_t PyMapping_Length(PyObject *o)

Returns the number of keys in object o on success, and -1 on failure. For objects that do not provide mapping
protocol, this is equivalent to the Python expression len(o).
Berubah pada versi 2.5: These functions returned an int type. This might require changes in your code for
properly supporting 64-bit systems.

int PyMapping_DelItemString(PyObject *o, char *key)
Remove the mapping for object key from the object o. Return -1 on failure. This is equivalent to the Python
statement del o[key].

int PyMapping_DelItem(PyObject *o, PyObject *key)
Remove the mapping for object key from the object o. Return -1 on failure. This is equivalent to the Python
statement del o[key].

int PyMapping_HasKeyString(PyObject *o, char *key)
On success, return1 if themapping object has the key key and0 otherwise. This is equivalent too[key], returning
True on success and False on an exception. This function always succeeds.

int PyMapping_HasKey(PyObject *o, PyObject *key)
Return 1 if the mapping object has the key key and 0 otherwise. This is equivalent to o[key], returning True
on success and False on an exception. This function always succeeds.

PyObject* PyMapping_Keys(PyObject *o)
Return value: New reference. On success, return a list of the keys in object o. On failure, return NULL. This is
equivalent to the Python expression o.keys().

6.4. Mapping Protocol 53

The Python/C API, Rilis 2.7.18

PyObject* PyMapping_Values(PyObject *o)
Return value: New reference. On success, return a list of the values in object o. On failure, return NULL. This is
equivalent to the Python expression o.values().

PyObject* PyMapping_Items(PyObject *o)
Return value: New reference. On success, return a list of the items in object o, where each item is a tuple containing
a key-value pair. On failure, return NULL. This is equivalent to the Python expression o.items().

PyObject* PyMapping_GetItemString(PyObject *o, char *key)
Return value: New reference. Return element of o corresponding to the object key or NULL on failure. This is the
equivalent of the Python expression o[key].

int PyMapping_SetItemString(PyObject *o, char *key, PyObject *v)
Map the object key to the value v in object o. Returns -1 on failure. This is the equivalent of the Python statement
o[key] = v.

6.5 Iterator Protocol

Baru pada versi 2.2.
There are two functions specifically for working with iterators.
int PyIter_Check(PyObject *o)

Return true if the object o supports the iterator protocol.
This function can return a false positive in the case of old-style classes because those classes always define a
tp_iternext slot with logic that either invokes a next() method or raises a TypeError.

PyObject* PyIter_Next(PyObject *o)
Return value: New reference. Return the next value from the iteration o. The object must be an iterator (it is up to
the caller to check this). If there are no remaining values, returns NULL with no exception set. If an error occurs
while retrieving the item, returns NULL and passes along the exception.

To write a loop which iterates over an iterator, the C code should look something like this:

PyObject *iterator = PyObject_GetIter(obj);
PyObject *item;

if (iterator == NULL) {
/* propagate error */

}

while ((item = PyIter_Next(iterator))) {
/* do something with item */
...
/* release reference when done */
Py_DECREF(item);

}

Py_DECREF(iterator);

if (PyErr_Occurred()) {
/* propagate error */

}
else {

/* continue doing useful work */
}

54 Bab 6. Lapisan Abstrak Objek

The Python/C API, Rilis 2.7.18

6.6 Old Buffer Protocol

This section describes the legacy buffer protocol, which has been introduced in Python 1.6. It is still supported but
deprecated in the Python 2.x series. Python 3 introduces a new buffer protocol which fixes weaknesses and shortcomings
of the protocol, and has been backported to Python 2.6. See Buffers and Memoryview Objects for more information.
int PyObject_AsCharBuffer(PyObject *obj, const char **buffer, Py_ssize_t *buffer_len)

Returns a pointer to a read-only memory location usable as character-based input. The obj argument must sup-
port the single-segment character buffer interface. On success, returns 0, sets buffer to the memory location and
buffer_len to the buffer length. Returns -1 and sets a TypeError on error.
Baru pada versi 1.6.
Berubah pada versi 2.5: This function used an int * type for buffer_len. This might require changes in your code
for properly supporting 64-bit systems.

int PyObject_AsReadBuffer(PyObject *obj, const void **buffer, Py_ssize_t *buffer_len)
Returns a pointer to a read-only memory location containing arbitrary data. The obj argument must support the
single-segment readable buffer interface. On success, returns 0, sets buffer to the memory location and buffer_len
to the buffer length. Returns -1 and sets a TypeError on error.
Baru pada versi 1.6.
Berubah pada versi 2.5: This function used an int * type for buffer_len. This might require changes in your code
for properly supporting 64-bit systems.

int PyObject_CheckReadBuffer(PyObject *o)
Returns 1 if o supports the single-segment readable buffer interface. Otherwise returns 0.
Baru pada versi 2.2.

int PyObject_AsWriteBuffer(PyObject *obj, void **buffer, Py_ssize_t *buffer_len)
Returns a pointer to a writeable memory location. The obj argument must support the single-segment, character
buffer interface. On success, returns 0, sets buffer to the memory location and buffer_len to the buffer length.
Returns -1 and sets a TypeError on error.
Baru pada versi 1.6.
Berubah pada versi 2.5: This function used an int * type for buffer_len. This might require changes in your code
for properly supporting 64-bit systems.

6.6. Old Buffer Protocol 55

The Python/C API, Rilis 2.7.18

56 Bab 6. Lapisan Abstrak Objek

BAB7

Lapisan Objek Konkrit

Fungsi dalam bab ini khusus untuk tipe objek Python tertentu. Mengisi mereka dengan objek dari tipe yang salah bukanlah
ide yang baik; jika Anda menerima objek dari program Python dan Anda tidak yakin bahwa objek tersebut memiliki tipe
yang tepat, Anda harus melakukan pemeriksaan jenis terlebih dahulu; misalnya, untuk memeriksa bahwa suatu objek
adalah kamus (dictionary), gunakan PyDict_Check(). Bab ini disusun seperti ”pohon keluarga” dari jenis objek
Python.

Peringatan: While the functions described in this chapter carefully check the type of the objects which are passed
in, many of them do not check for NULL being passed instead of a valid object. Allowing NULL to be passed in can
cause memory access violations and immediate termination of the interpreter.

7.1 Objek Dasar

Bagian ini menjelaskan objek tipe Python dan objek singleton None.

7.1.1 Objek Tipe

PyTypeObject
The C structure of the objects used to describe built-in types.

PyObject* PyType_Type
This is the type object for type objects; it is the same object as type and types.TypeType in the Python layer.

int PyType_Check(PyObject *o)
Return true if the object o is a type object, including instances of types derived from the standard type object.
Return false in all other cases.

int PyType_CheckExact(PyObject *o)
Return true if the object o is a type object, but not a subtype of the standard type object. Return false in all other
cases.

57

The Python/C API, Rilis 2.7.18

Baru pada versi 2.2.
unsigned int PyType_ClearCache()

Clear the internal lookup cache. Return the current version tag.
Baru pada versi 2.6.

void PyType_Modified(PyTypeObject *type)
Invalidate the internal lookup cache for the type and all of its subtypes. This function must be called after any
manual modification of the attributes or base classes of the type.
Baru pada versi 2.6.

int PyType_HasFeature(PyObject *o, int feature)
Return true if the type object o sets the feature feature. Type features are denoted by single bit flags.

int PyType_IS_GC(PyObject *o)
Return true if the type object includes support for the cycle detector; this tests the type flag
Py_TPFLAGS_HAVE_GC.
Baru pada versi 2.0.

int PyType_IsSubtype(PyTypeObject *a, PyTypeObject *b)
Return true if a is a subtype of b.
Baru pada versi 2.2.
This function only checks for actual subtypes, which means that __subclasscheck__() is not called on b.
Call PyObject_IsSubclass() to do the same check that issubclass() would do.

PyObject* PyType_GenericAlloc(PyTypeObject *type, Py_ssize_t nitems)
Return value: New reference. Baru pada versi 2.2.
Berubah pada versi 2.5: This function used an int type for nitems. This might require changes in your code for
properly supporting 64-bit systems.

PyObject* PyType_GenericNew(PyTypeObject *type, PyObject *args, PyObject *kwds)
Return value: New reference. Baru pada versi 2.2.

int PyType_Ready(PyTypeObject *type)
Finalize a type object. This should be called on all type objects to finish their initialization. This function is
responsible for adding inherited slots from a type’s base class. Return 0 on success, or return -1 and sets an
exception on error.
Baru pada versi 2.2.

7.1.2 Objek None

Perhatikan bahwa PyTypeObject untuk None tidak secara langsung diekspos di Python/C API. Karena None
adalah singleton, pengujian untuk identitas objek (menggunakan == dalam C) sudah cukup. Tidak ada fungsi
PyNone_Check() untuk alasan yang sama.
PyObject* Py_None

Objek Python None, menunjukkan kurangnya nilai. Objek ini tidak memiliki metode. Ini perlu diperlakukan
sama seperti objek lain sehubungan dengan jumlah referensi.

Py_RETURN_NONE
Properly handle returning Py_None from within a C function.
Baru pada versi 2.4.

58 Bab 7. Lapisan Objek Konkrit

The Python/C API, Rilis 2.7.18

7.2 Objek Numerik

7.2.1 Plain Integer Objects

PyIntObject
This subtype of PyObject represents a Python integer object.

PyTypeObject PyInt_Type
This instance of PyTypeObject represents the Python plain integer type. This is the same object as int and
types.IntType.

int PyInt_Check(PyObject *o)
Return true if o is of type PyInt_Type or a subtype of PyInt_Type.
Berubah pada versi 2.2: Allowed subtypes to be accepted.

int PyInt_CheckExact(PyObject *o)
Return true if o is of type PyInt_Type, but not a subtype of PyInt_Type.
Baru pada versi 2.2.

PyObject* PyInt_FromString(char *str, char **pend, int base)
Return value: New reference. Return a new PyIntObject or PyLongObject based on the string value in str,
which is interpreted according to the radix in base. If pend is non-NULL, *pend will point to the first character in
str which follows the representation of the number. If base is 0, the radix will be determined based on the leading
characters of str: if str starts with '0x' or '0X', radix 16 will be used; if str starts with '0', radix 8 will be
used; otherwise radix 10 will be used. If base is not 0, it must be between 2 and 36, inclusive. Leading spaces
are ignored. If there are no digits, ValueError will be raised. If the string represents a number too large to be
contained within the machine’s long int type and overflow warnings are being suppressed, a PyLongObject
will be returned. If overflow warnings are not being suppressed, NULL will be returned in this case.

PyObject* PyInt_FromLong(long ival)
Return value: New reference. Create a new integer object with a value of ival.
The current implementation keeps an array of integer objects for all integers between -5 and 256, when you create
an int in that range you actually just get back a reference to the existing object. So it should be possible to change
the value of 1. I suspect the behaviour of Python in this case is undefined. :-)

PyObject* PyInt_FromSsize_t(Py_ssize_t ival)
Return value: New reference. Create a new integer object with a value of ival. If the value is larger than LONG_MAX
or smaller than LONG_MIN, a long integer object is returned.
Baru pada versi 2.5.

PyObject* PyInt_FromSize_t(size_t ival)
Create a new integer object with a value of ival. If the value exceeds LONG_MAX, a long integer object is returned.
Baru pada versi 2.5.

long PyInt_AsLong(PyObject *io)
Will first attempt to cast the object to a PyIntObject, if it is not already one, and then return its value. If there
is an error, -1 is returned, and the caller should check PyErr_Occurred() to find out whether there was an
error, or whether the value just happened to be -1.

long PyInt_AS_LONG(PyObject *io)
Return the value of the object io. No error checking is performed.

unsigned long PyInt_AsUnsignedLongMask(PyObject *io)
Will first attempt to cast the object to a PyIntObject or PyLongObject, if it is not already one, and then
return its value as unsigned long. This function does not check for overflow.

7.2. Objek Numerik 59

The Python/C API, Rilis 2.7.18

Baru pada versi 2.3.
unsigned PY_LONG_LONG PyInt_AsUnsignedLongLongMask(PyObject *io)

Will first attempt to cast the object to a PyIntObject or PyLongObject, if it is not already one, and then
return its value as unsigned long long, without checking for overflow.
Baru pada versi 2.3.

Py_ssize_t PyInt_AsSsize_t(PyObject *io)
Will first attempt to cast the object to a PyIntObject or PyLongObject, if it is not already one, and then
return its value as Py_ssize_t.
Baru pada versi 2.5.

long PyInt_GetMax()
Return the system’s idea of the largest integer it can handle (LONG_MAX, as defined in the system header files).

int PyInt_ClearFreeList()
Clear the integer free list. Return the number of items that could not be freed.
Baru pada versi 2.6.

7.2.2 Objek Boolean

Boolean dalam Python diimplementasikan sebagai subkelas integer. Hanya ada dua boolean, Py_False dan Py_True.
Dengan demikian, fungsi pembuatan dan penghapusan normal tidak berlaku untuk boolean. Namun, makro berikut
tersedia.
int PyBool_Check(PyObject *o)

Mengembalikan nilai true jika o bertipe PyBool_Type.
Baru pada versi 2.3.

PyObject* Py_False
Objek Python False. Objek ini tidak memiliki metode. Ini perlu diperlakukan sama seperti objek lain sehu-
bungan dengan jumlah referensi.

PyObject* Py_True
Objek Python True. Objek ini tidak memiliki metode. Ini perlu diperlakukan sama seperti objek lain sehubungan
dengan jumlah referensi.

Py_RETURN_FALSE
Mengembalikan Py_False dari suatu fungsi, dengan benar menambah jumlah referensi.
Baru pada versi 2.4.

Py_RETURN_TRUE
Mengembalikan Py_True dari suatu fungsi, dengan benar menambah jumlah referensi.
Baru pada versi 2.4.

PyObject* PyBool_FromLong(long v)
Return value: New reference. Mengembalikan referensi baru ke Py_True atau :const:‘ Py_False‘ tergantung pada
nilai kebenaran v.
Baru pada versi 2.3.

60 Bab 7. Lapisan Objek Konkrit

The Python/C API, Rilis 2.7.18

7.2.3 Long Integer Objects

PyLongObject
This subtype of PyObject represents a Python long integer object.

PyTypeObject PyLong_Type
This instance of PyTypeObject represents the Python long integer type. This is the same object as long and
types.LongType.

int PyLong_Check(PyObject *p)
Return true if its argument is a PyLongObject or a subtype of PyLongObject.
Berubah pada versi 2.2: Allowed subtypes to be accepted.

int PyLong_CheckExact(PyObject *p)
Return true if its argument is a PyLongObject, but not a subtype of PyLongObject.
Baru pada versi 2.2.

PyObject* PyLong_FromLong(long v)
Return value: New reference. Return a new PyLongObject object from v, or NULL on failure.

PyObject* PyLong_FromUnsignedLong(unsigned long v)
Return value: New reference. Return a new PyLongObject object from a C unsigned long, or NULL on
failure.

PyObject* PyLong_FromSsize_t(Py_ssize_t v)
Return value: New reference. Return a new PyLongObject object from a C Py_ssize_t, or NULL on failure.
Baru pada versi 2.6.

PyObject* PyLong_FromSize_t(size_t v)
Return value: New reference. Return a new PyLongObject object from a C size_t, or NULL on failure.
Baru pada versi 2.6.

PyObject* PyLong_FromLongLong(PY_LONG_LONG v)
Return value: New reference. Return a new PyLongObject object from a C long long, or NULL on failure.

PyObject* PyLong_FromUnsignedLongLong(unsigned PY_LONG_LONG v)
Return value: New reference. Return a new PyLongObject object from a C unsigned long long, or
NULL on failure.

PyObject* PyLong_FromDouble(double v)
Return value: New reference. Return a new PyLongObject object from the integer part of v, orNULL on failure.

PyObject* PyLong_FromString(char *str, char **pend, int base)
Return value: New reference. Return a new PyLongObject based on the string value in str, which is interpreted
according to the radix in base. If pend is non-NULL, *pend will point to the first character in str which follows the
representation of the number. If base is 0, the radix will be determined based on the leading characters of str: if
str starts with '0x' or '0X', radix 16 will be used; if str starts with '0', radix 8 will be used; otherwise radix
10 will be used. If base is not 0, it must be between 2 and 36, inclusive. Leading spaces are ignored. If there are
no digits, ValueError will be raised.

PyObject* PyLong_FromUnicode(Py_UNICODE *u, Py_ssize_t length, int base)
Return value: New reference. Convert a sequence of Unicode digits to a Python long integer value. The first
parameter, u, points to the first character of the Unicode string, length gives the number of characters, and base is
the radix for the conversion. The radix must be in the range [2, 36]; if it is out of range, ValueError will be
raised.
Baru pada versi 1.6.

7.2. Objek Numerik 61

The Python/C API, Rilis 2.7.18

Berubah pada versi 2.5: This function used an int for length. This might require changes in your code for properly
supporting 64-bit systems.

PyObject* PyLong_FromVoidPtr(void *p)
Return value: New reference. Create a Python integer or long integer from the pointer p. The pointer value can be
retrieved from the resulting value using PyLong_AsVoidPtr().
Baru pada versi 1.5.2.
Berubah pada versi 2.5: If the integer is larger than LONG_MAX, a positive long integer is returned.

long PyLong_AsLong(PyObject *pylong)
Return a C long representation of the contents of pylong. If pylong is greater than LONG_MAX, an
OverflowError is raised and -1 will be returned.

long PyLong_AsLongAndOverflow(PyObject *pylong, int *overflow)
Return a C long representation of the contents of pylong. If pylong is greater than LONG_MAX or less than
LONG_MIN, set *overflow to 1 or -1, respectively, and return -1; otherwise, set *overflow to 0. If any other
exception occurs (for example a TypeError or MemoryError), then -1 will be returned and *overflow will be 0.
Baru pada versi 2.7.

PY_LONG_LONG PyLong_AsLongLongAndOverflow(PyObject *pylong, int *overflow)
Return a C long long representation of the contents of pylong. If pylong is greater than PY_LLONG_MAX or
less than PY_LLONG_MIN, set *overflow to 1 or -1, respectively, and return -1; otherwise, set *overflow to 0.
If any other exception occurs (for example a TypeError or MemoryError), then -1 will be returned and *overflow
will be 0.
Baru pada versi 2.7.

Py_ssize_t PyLong_AsSsize_t(PyObject *pylong)
Return a C Py_ssize_t representation of the contents of pylong. If pylong is greater than PY_SSIZE_T_MAX,
an OverflowError is raised and -1 will be returned.
Baru pada versi 2.6.

unsigned long PyLong_AsUnsignedLong(PyObject *pylong)
Return a C unsigned long representation of the contents of pylong. If pylong is greater than ULONG_MAX,
an OverflowError is raised.

PY_LONG_LONG PyLong_AsLongLong(PyObject *pylong)
Return a C long long from a Python long integer. If pylong cannot be represented as a long long, an
OverflowError is raised and -1 is returned.
Baru pada versi 2.2.

unsigned PY_LONG_LONG PyLong_AsUnsignedLongLong(PyObject *pylong)
Return a C unsigned long long from a Python long integer. If pylong cannot be represented as an
unsigned long long, an OverflowError is raised and (unsigned long long)-1 is returned.
Baru pada versi 2.2.
Berubah pada versi 2.7: A negative pylong now raises OverflowError, not TypeError.

unsigned long PyLong_AsUnsignedLongMask(PyObject *io)
Return a C unsigned long from a Python long integer, without checking for overflow.
Returns (unsigned long)-1 on error. Use PyErr_Occurred() to disambiguate.
Baru pada versi 2.3.

unsigned PY_LONG_LONG PyLong_AsUnsignedLongLongMask(PyObject *io)
Return a C unsigned long long from a Python long integer, without checking for overflow.

62 Bab 7. Lapisan Objek Konkrit

The Python/C API, Rilis 2.7.18

Returns (unsigned PY_LONG_LONG)-1 on error. Use PyErr_Occurred() to disambiguate.
Baru pada versi 2.3.

double PyLong_AsDouble(PyObject *pylong)
Return a C double representation of the contents of pylong. If pylong cannot be approximately represented as a
double, an OverflowError exception is raised and -1.0 will be returned.

void* PyLong_AsVoidPtr(PyObject *pylong)
Convert a Python integer or long integer pylong to a C void pointer. If pylong cannot be converted, an
OverflowError will be raised. This is only assured to produce a usable void pointer for values created
with PyLong_FromVoidPtr().
Baru pada versi 1.5.2.
Berubah pada versi 2.5: For values outside 0..LONG_MAX, both signed and unsigned integers are accepted.

7.2.4 Floating Point Objects

PyFloatObject
This subtype of PyObject represents a Python floating point object.

PyTypeObject PyFloat_Type
This instance of PyTypeObject represents the Python floating point type. This is the same object as float
and types.FloatType.

int PyFloat_Check(PyObject *p)
Return true if its argument is a PyFloatObject or a subtype of PyFloatObject.
Berubah pada versi 2.2: Allowed subtypes to be accepted.

int PyFloat_CheckExact(PyObject *p)
Return true if its argument is a PyFloatObject, but not a subtype of PyFloatObject.
Baru pada versi 2.2.

PyObject* PyFloat_FromString(PyObject *str, char **pend)
Return value: New reference. Create a PyFloatObject object based on the string value in str, or NULL on
failure. The pend argument is ignored. It remains only for backward compatibility.

PyObject* PyFloat_FromDouble(double v)
Return value: New reference. Create a PyFloatObject object from v, or NULL on failure.

double PyFloat_AsDouble(PyObject *pyfloat)
Return a C double representation of the contents of pyfloat. If pyfloat is not a Python floating point object but
has a __float__() method, this method will first be called to convert pyfloat into a float. This method returns
-1.0 upon failure, so one should call PyErr_Occurred() to check for errors.

double PyFloat_AS_DOUBLE(PyObject *pyfloat)
Return a C double representation of the contents of pyfloat, but without error checking.

PyObject* PyFloat_GetInfo(void)
Return a structseq instance which contains information about the precision, minimum and maximum values of a
float. It’s a thin wrapper around the header file float.h.
Baru pada versi 2.6.

double PyFloat_GetMax()
Return the maximum representable finite float DBL_MAX as C double.
Baru pada versi 2.6.

7.2. Objek Numerik 63

The Python/C API, Rilis 2.7.18

double PyFloat_GetMin()
Return the minimum normalized positive float DBL_MIN as C double.
Baru pada versi 2.6.

int PyFloat_ClearFreeList()
Clear the float free list. Return the number of items that could not be freed.
Baru pada versi 2.6.

void PyFloat_AsString(char *buf, PyFloatObject *v)
Convert the argument v to a string, using the same rules as str(). The length of buf should be at least 100.
This function is unsafe to call because it writes to a buffer whose length it does not know.
Ditinggalkan sejak versi 2.7: Use PyObject_Str() or PyOS_double_to_string() instead.

void PyFloat_AsReprString(char *buf, PyFloatObject *v)
Same as PyFloat_AsString, except uses the same rules as repr(). The length of buf should be at least 100.
This function is unsafe to call because it writes to a buffer whose length it does not know.
Ditinggalkan sejak versi 2.7: Use PyObject_Repr() or PyOS_double_to_string() instead.

7.2.5 Objek Bilangan Kompleks

Objek BilanganKompleks Pythonmemiliki dua tipe implementasi berbeda jika dilihat dari API Bahasa C: pertama adalah
objek Python yang terekspos ke program-program Python, dan yang kedua adalah struktur C yangmerepresentasikan nilai
bilangan kompleks sebenarnya. API tersebut memberikan fungsi-fungsi untuk bekerja dengan kedua tipe implementasi.

Bilangan Kompleks sebagai Struktur C

Note that the functions which accept these structures as parameters and return them as results do so by value rather than
dereferencing them through pointers. This is consistent throughout the API.
Py_complex

Struktur C yang berhubungan dengan bagian nilai objek bilangan kompleks Python. Sebagian besar dari fungsi-
fungsi yangmengurus objek bilangan kompleks menggunakan struktur tipe ini sebagai nilai input atau output, sesuai
penggunaannya. Ini didefinisikan sebagai:

typedef struct {
double real;
double imag;

} Py_complex;

Py_complex _Py_c_sum(Py_complex left, Py_complex right)
Return the sum of two complex numbers, using the C Py_complex representation.

Py_complex _Py_c_diff(Py_complex left, Py_complex right)
Return the difference between two complex numbers, using the C Py_complex representation.

Py_complex _Py_c_neg(Py_complex complex)
Return the negation of the complex number complex, using the C Py_complex representation.

Py_complex _Py_c_prod(Py_complex left, Py_complex right)
Return the product of two complex numbers, using the C Py_complex representation.

Py_complex _Py_c_quot(Py_complex dividend, Py_complex divisor)
Return the quotient of two complex numbers, using the C Py_complex representation.

64 Bab 7. Lapisan Objek Konkrit

The Python/C API, Rilis 2.7.18

If divisor is null, this method returns zero and sets errno to EDOM.
Py_complex _Py_c_pow(Py_complex num, Py_complex exp)

Return the exponentiation of num by exp, using the C Py_complex representation.
If num is null and exp is not a positive real number, this method returns zero and sets errno to EDOM.

Complex Numbers as Python Objects

PyComplexObject
This subtype of PyObject represents a Python complex number object.

PyTypeObject PyComplex_Type
This instance of PyTypeObject represents the Python complex number type. It is the same object as complex
and types.ComplexType.

int PyComplex_Check(PyObject *p)
Return true if its argument is a PyComplexObject or a subtype of PyComplexObject.
Berubah pada versi 2.2: Allowed subtypes to be accepted.

int PyComplex_CheckExact(PyObject *p)
Return true if its argument is a PyComplexObject, but not a subtype of PyComplexObject.
Baru pada versi 2.2.

PyObject* PyComplex_FromCComplex(Py_complex v)
Return value: New reference. Create a new Python complex number object from a C Py_complex value.

PyObject* PyComplex_FromDoubles(double real, double imag)
Return value: New reference. Return a new PyComplexObject object from real and imag.

double PyComplex_RealAsDouble(PyObject *op)
Return the real part of op as a C double.

double PyComplex_ImagAsDouble(PyObject *op)
Return the imaginary part of op as a C double.

Py_complex PyComplex_AsCComplex(PyObject *op)
Return the Py_complex value of the complex number op. Upon failure, this method returns -1.0 as a real
value.
Berubah pada versi 2.6: If op is not a Python complex number object but has a __complex__() method, this
method will first be called to convert op to a Python complex number object.

7.3 Objek Urutan

Operasi umum pada objek urutan dibahas dalam bab sebelumnya; bagian ini berkaitan dengan jenis objek urutan tertentu
yang mendasar pada bahasa Python.

7.3. Objek Urutan 65

The Python/C API, Rilis 2.7.18

7.3.1 Byte Array Objects

Baru pada versi 2.6.
PyByteArrayObject

This subtype of PyObject represents a Python bytearray object.
PyTypeObject PyByteArray_Type

This instance of PyTypeObject represents the Python bytearray type; it is the same object as bytearray in
the Python layer.

Type check macros

int PyByteArray_Check(PyObject *o)
Return true if the object o is a bytearray object or an instance of a subtype of the bytearray type.

int PyByteArray_CheckExact(PyObject *o)
Return true if the object o is a bytearray object, but not an instance of a subtype of the bytearray type.

Direct API functions

PyObject* PyByteArray_FromObject(PyObject *o)
Return a new bytearray object from any object, o, that implements the buffer protocol.

PyObject* PyByteArray_FromStringAndSize(const char *string, Py_ssize_t len)
Create a new bytearray object from string and its length, len. On failure, NULL is returned.

PyObject* PyByteArray_Concat(PyObject *a, PyObject *b)
Concat bytearrays a and b and return a new bytearray with the result.

Py_ssize_t PyByteArray_Size(PyObject *bytearray)
Return the size of bytearray after checking for a NULL pointer.

char* PyByteArray_AsString(PyObject *bytearray)
Return the contents of bytearray as a char array after checking for a NULL pointer.

int PyByteArray_Resize(PyObject *bytearray, Py_ssize_t len)
Resize the internal buffer of bytearray to len.

Macros

These macros trade safety for speed and they don’t check pointers.
char* PyByteArray_AS_STRING(PyObject *bytearray)

Macro version of PyByteArray_AsString().
Py_ssize_t PyByteArray_GET_SIZE(PyObject *bytearray)

Macro version of PyByteArray_Size().

66 Bab 7. Lapisan Objek Konkrit

The Python/C API, Rilis 2.7.18

7.3.2 String/Bytes Objects

These functions raise TypeError when expecting a string parameter and are called with a non-string parameter.

Catatan: These functions have been renamed to PyBytes_* in Python 3.x. Unless otherwise noted, the PyBytes functions
available in 3.x are aliased to their PyString_* equivalents to help porting.

PyStringObject
This subtype of PyObject represents a Python string object.

PyTypeObject PyString_Type
This instance of PyTypeObject represents the Python string type; it is the same object as str and types.
StringType in the Python layer. .

int PyString_Check(PyObject *o)
Return true if the object o is a string object or an instance of a subtype of the string type.
Berubah pada versi 2.2: Allowed subtypes to be accepted.

int PyString_CheckExact(PyObject *o)
Return true if the object o is a string object, but not an instance of a subtype of the string type.
Baru pada versi 2.2.

PyObject* PyString_FromString(const char *v)
Return value: New reference. Return a new string object with a copy of the string v as value on success, and NULL
on failure. The parameter v must not be NULL; it will not be checked.

PyObject* PyString_FromStringAndSize(const char *v, Py_ssize_t len)
Return value: New reference. Return a new string object with a copy of the string v as value and length len on
success, and NULL on failure. If v is NULL, the contents of the string are uninitialized.
Berubah pada versi 2.5: This function used an int type for len. This might require changes in your code for
properly supporting 64-bit systems.

PyObject* PyString_FromFormat(const char *format, ...)
Return value: New reference. Take a C printf()-style format string and a variable number of arguments,
calculate the size of the resulting Python string and return a string with the values formatted into it. The variable
arguments must be C types and must correspond exactly to the format characters in the format string. The following
format characters are allowed:

7.3. Objek Urutan 67

The Python/C API, Rilis 2.7.18

Format
Chara-
cters

Type Comment

%% n/a The literal % character.
%c int A single character, represented as a C int.
%d int Exactly equivalent to printf("%d").
%u unsig-

ned
int

Exactly equivalent to printf("%u").

%ld long Exactly equivalent to printf("%ld").
%lu unsig-

ned
long

Exactly equivalent to printf("%lu").

%lld long
long

Exactly equivalent to printf("%lld").

%llu unsig-
ned long
long

Exactly equivalent to printf("%llu").

%zd Py_ssize_t Exactly equivalent to printf("%zd").
%zu size_t Exactly equivalent to printf("%zu").
%i int Exactly equivalent to printf("%i").
%x int Exactly equivalent to printf("%x").
%s char* A null-terminated C character array.
%p void* The hex representation of a C pointer. Mostly equivalent to printf("%p") except

that it is guaranteed to start with the literal 0x regardless of what the platform’s
printf yields.

An unrecognized format character causes all the rest of the format string to be copied as-is to the result string, and
any extra arguments discarded.

Catatan: The ”%lld” and ”%llu” format specifiers are only available when HAVE_LONG_LONG is defined.

Berubah pada versi 2.7: Support for ”%lld” and ”%llu” added.
PyObject* PyString_FromFormatV(const char *format, va_list vargs)

Return value: New reference. Identical to PyString_FromFormat() except that it takes exactly two argu-
ments.

Py_ssize_t PyString_Size(PyObject *string)
Return the length of the string in string object string.
Berubah pada versi 2.5: This function returned an int type. This might require changes in your code for properly
supporting 64-bit systems.

Py_ssize_t PyString_GET_SIZE(PyObject *string)
Macro form of PyString_Size() but without error checking.
Berubah pada versi 2.5: This macro returned an int type. This might require changes in your code for properly
supporting 64-bit systems.

char* PyString_AsString(PyObject *string)
Return a NUL-terminated representation of the contents of string. The pointer refers to the internal buffer
of string, not a copy. The data must not be modified in any way, unless the string was just created using
PyString_FromStringAndSize(NULL, size). It must not be deallocated. If string is a Unicode obje-

68 Bab 7. Lapisan Objek Konkrit

The Python/C API, Rilis 2.7.18

ct, this function computes the default encoding of string and operates on that. If string is not a string object at all,
PyString_AsString() returns NULL and raises TypeError.

char* PyString_AS_STRING(PyObject *string)
Macro form of PyString_AsString() but without error checking. Only string objects are supported; no
Unicode objects should be passed.

int PyString_AsStringAndSize(PyObject *obj, char **buffer, Py_ssize_t *length)
Return a NUL-terminated representation of the contents of the object obj through the output variables buffer and
length.
The function accepts both string and Unicode objects as input. For Unicode objects it returns the default encoded
version of the object. If length isNULL, the resulting buffer may not contain NUL characters; if it does, the function
returns -1 and a TypeError is raised.
The buffer refers to an internal string buffer of obj, not a copy. The data must not be modified in any way, unless the
string was just created using PyString_FromStringAndSize(NULL, size). It must not be deallocated.
If string is a Unicode object, this function computes the default encoding of string and operates on that. If string is
not a string object at all, PyString_AsStringAndSize() returns -1 and raises TypeError.
Berubah pada versi 2.5: This function used an int * type for length. This might require changes in your code for
properly supporting 64-bit systems.

void PyString_Concat(PyObject **string, PyObject *newpart)
Create a new string object in *string containing the contents of newpart appended to string; the caller will own the
new reference. The reference to the old value of string will be stolen. If the new string cannot be created, the old
reference to string will still be discarded and the value of *string will be set to NULL; the appropriate exception will
be set.

void PyString_ConcatAndDel(PyObject **string, PyObject *newpart)
Create a new string object in *string containing the contents of newpart appended to string. This version decrements
the reference count of newpart.

int _PyString_Resize(PyObject **string, Py_ssize_t newsize)
A way to resize a string object even though it is ”immutable”. Only use this to build up a brand new string object;
don’t use this if the string may already be known in other parts of the code. It is an error to call this function if
the refcount on the input string object is not one. Pass the address of an existing string object as an lvalue (it may
be written into), and the new size desired. On success, *string holds the resized string object and 0 is returned;
the address in *string may differ from its input value. If the reallocation fails, the original string object at *string is
deallocated, *string is set to NULL, a memory exception is set, and -1 is returned.
Berubah pada versi 2.5: This function used an int type for newsize. This might require changes in your code for
properly supporting 64-bit systems.

PyObject* PyString_Format(PyObject *format, PyObject *args)
Return value: New reference. Return a new string object from format and args. Analogous to format % args.
The args argument must be a tuple or dict.

void PyString_InternInPlace(PyObject **string)
Intern the argument *string in place. The argument must be the address of a pointer variable pointing to a Python
string object. If there is an existing interned string that is the same as *string, it sets *string to it (decrementing
the reference count of the old string object and incrementing the reference count of the interned string object),
otherwise it leaves *string alone and interns it (incrementing its reference count). (Clarification: even though there
is a lot of talk about reference counts, think of this function as reference-count-neutral; you own the object after
the call if and only if you owned it before the call.)

Catatan: This function is not available in 3.x and does not have a PyBytes alias.

7.3. Objek Urutan 69

The Python/C API, Rilis 2.7.18

PyObject* PyString_InternFromString(const char *v)
Return value: New reference. A combination of PyString_FromString() and
PyString_InternInPlace(), returning either a new string object that has been interned, or a new
(”owned”) reference to an earlier interned string object with the same value.

Catatan: This function is not available in 3.x and does not have a PyBytes alias.

PyObject* PyString_Decode(const char *s, Py_ssize_t size, const char *encoding, const char *errors)
Return value: New reference. Create an object by decoding size bytes of the encoded buffer s using the codec
registered for encoding. encoding and errors have the same meaning as the parameters of the same name in the
unicode() built-in function. The codec to be used is looked up using the Python codec registry. Return NULL
if an exception was raised by the codec.

Catatan: This function is not available in 3.x and does not have a PyBytes alias.

Berubah pada versi 2.5: This function used an int type for size. This might require changes in your code for
properly supporting 64-bit systems.

PyObject* PyString_AsDecodedObject(PyObject *str, const char *encoding, const char *errors)
Return value: New reference. Decode a string object by passing it to the codec registered for encoding and return
the result as Python object. encoding and errors have the same meaning as the parameters of the same name in the
string encode() method. The codec to be used is looked up using the Python codec registry. Return NULL if
an exception was raised by the codec.

Catatan: This function is not available in 3.x and does not have a PyBytes alias.

PyObject* PyString_Encode(const char *s, Py_ssize_t size, const char *encoding, const char *errors)
Return value: New reference. Encode the char buffer of the given size by passing it to the codec registered for
encoding and return a Python object. encoding and errors have the same meaning as the parameters of the same
name in the string encode()method. The codec to be used is looked up using the Python codec registry. Return
NULL if an exception was raised by the codec.

Catatan: This function is not available in 3.x and does not have a PyBytes alias.

Berubah pada versi 2.5: This function used an int type for size. This might require changes in your code for
properly supporting 64-bit systems.

PyObject* PyString_AsEncodedObject(PyObject *str, const char *encoding, const char *errors)
Return value: New reference. Encode a string object using the codec registered for encoding and return the result
as Python object. encoding and errors have the same meaning as the parameters of the same name in the string
encode() method. The codec to be used is looked up using the Python codec registry. Return NULL if an
exception was raised by the codec.

Catatan: This function is not available in 3.x and does not have a PyBytes alias.

70 Bab 7. Lapisan Objek Konkrit

The Python/C API, Rilis 2.7.18

7.3.3 Unicode Objects and Codecs

Objek Unicode

Tipe Unicode

These are the basic Unicode object types used for the Unicode implementation in Python:
Py_UNICODE

This type represents the storage type which is used by Python internally as basis for holding Unicode ordinals.
Python’s default builds use a 16-bit type for Py_UNICODE and store Unicode values internally as UCS2. It is also
possible to build a UCS4 version of Python (most recent Linux distributions come with UCS4 builds of Python).
These builds then use a 32-bit type for Py_UNICODE and store Unicode data internally as UCS4. On platforms
where wchar_t is available and compatible with the chosen Python Unicode build variant, Py_UNICODE is a
typedef alias for wchar_t to enhance native platform compatibility. On all other platforms, Py_UNICODE is a
typedef alias for either unsigned short (UCS2) or unsigned long (UCS4).

Note that UCS2 and UCS4 Python builds are not binary compatible. Please keep this in mind when writing extensions
or interfaces.
PyUnicodeObject

This subtype of PyObject represents a Python Unicode object.
PyTypeObject PyUnicode_Type

This instance of PyTypeObject represents the Python Unicode type. It is exposed to Python code as unicode
and types.UnicodeType.

The following APIs are really C macros and can be used to do fast checks and to access internal read-only data of Unicode
objects:
int PyUnicode_Check(PyObject *o)

Return true if the object o is a Unicode object or an instance of a Unicode subtype.
Berubah pada versi 2.2: Allowed subtypes to be accepted.

int PyUnicode_CheckExact(PyObject *o)
Return true if the object o is a Unicode object, but not an instance of a subtype.
Baru pada versi 2.2.

Py_ssize_t PyUnicode_GET_SIZE(PyObject *o)
Return the size of the object. o has to be a PyUnicodeObject (not checked).
Berubah pada versi 2.5: This function returned an int type. This might require changes in your code for properly
supporting 64-bit systems.

Py_ssize_t PyUnicode_GET_DATA_SIZE(PyObject *o)
Return the size of the object’s internal buffer in bytes. o has to be a PyUnicodeObject (not checked).
Berubah pada versi 2.5: This function returned an int type. This might require changes in your code for properly
supporting 64-bit systems.

Py_UNICODE* PyUnicode_AS_UNICODE(PyObject *o)
Return a pointer to the internal Py_UNICODE buffer of the object. o has to be a PyUnicodeObject (not
checked).

const char* PyUnicode_AS_DATA(PyObject *o)
Return a pointer to the internal buffer of the object. o has to be a PyUnicodeObject (not checked).

int PyUnicode_ClearFreeList()
Clear the free list. Return the total number of freed items.

7.3. Objek Urutan 71

The Python/C API, Rilis 2.7.18

Baru pada versi 2.6.

Unicode Character Properties

Unicode provides many different character properties. The most often needed ones are available through these macros
which are mapped to C functions depending on the Python configuration.
int Py_UNICODE_ISSPACE(Py_UNICODE ch)

Return 1 or 0 depending on whether ch is a whitespace character.
int Py_UNICODE_ISLOWER(Py_UNICODE ch)

Return 1 or 0 depending on whether ch is a lowercase character.
int Py_UNICODE_ISUPPER(Py_UNICODE ch)

Return 1 or 0 depending on whether ch is an uppercase character.
int Py_UNICODE_ISTITLE(Py_UNICODE ch)

Return 1 or 0 depending on whether ch is a titlecase character.
int Py_UNICODE_ISLINEBREAK(Py_UNICODE ch)

Return 1 or 0 depending on whether ch is a linebreak character.
int Py_UNICODE_ISDECIMAL(Py_UNICODE ch)

Return 1 or 0 depending on whether ch is a decimal character.
int Py_UNICODE_ISDIGIT(Py_UNICODE ch)

Return 1 or 0 depending on whether ch is a digit character.
int Py_UNICODE_ISNUMERIC(Py_UNICODE ch)

Return 1 or 0 depending on whether ch is a numeric character.
int Py_UNICODE_ISALPHA(Py_UNICODE ch)

Return 1 or 0 depending on whether ch is an alphabetic character.
int Py_UNICODE_ISALNUM(Py_UNICODE ch)

Return 1 or 0 depending on whether ch is an alphanumeric character.
These APIs can be used for fast direct character conversions:
Py_UNICODE Py_UNICODE_TOLOWER(Py_UNICODE ch)

Return the character ch converted to lower case.
Py_UNICODE Py_UNICODE_TOUPPER(Py_UNICODE ch)

Return the character ch converted to upper case.
Py_UNICODE Py_UNICODE_TOTITLE(Py_UNICODE ch)

Return the character ch converted to title case.
int Py_UNICODE_TODECIMAL(Py_UNICODE ch)

Return the character ch converted to a decimal positive integer. Return -1 if this is not possible. This macro does
not raise exceptions.

int Py_UNICODE_TODIGIT(Py_UNICODE ch)
Return the character ch converted to a single digit integer. Return -1 if this is not possible. This macro does not
raise exceptions.

double Py_UNICODE_TONUMERIC(Py_UNICODE ch)
Return the character ch converted to a double. Return -1.0 if this is not possible. This macro does not raise
exceptions.

72 Bab 7. Lapisan Objek Konkrit

The Python/C API, Rilis 2.7.18

Plain Py_UNICODE

To create Unicode objects and access their basic sequence properties, use these APIs:
PyObject* PyUnicode_FromUnicode(const Py_UNICODE *u, Py_ssize_t size)

Return value: New reference. Create a Unicode object from the Py_UNICODE buffer u of the given size. u may
be NULL which causes the contents to be undefined. It is the user’s responsibility to fill in the needed data. The
buffer is copied into the new object. If the buffer is not NULL, the return value might be a shared object. Therefore,
modification of the resulting Unicode object is only allowed when u is NULL.
Berubah pada versi 2.5: This function used an int type for size. This might require changes in your code for
properly supporting 64-bit systems.

PyObject* PyUnicode_FromStringAndSize(const char *u, Py_ssize_t size)
Return value: New reference. Create a Unicode object from the char buffer u. The bytes will be interpreted as being
UTF-8 encoded. u may also be NULL which causes the contents to be undefined. It is the user’s responsibility to
fill in the needed data. The buffer is copied into the new object. If the buffer is not NULL, the return value might
be a shared object. Therefore, modification of the resulting Unicode object is only allowed when u is NULL.
Baru pada versi 2.6.

PyObject *PyUnicode_FromString(const char *u)
Return value: New reference. Create a Unicode object from a UTF-8 encoded null-terminated char buffer u.
Baru pada versi 2.6.

PyObject* PyUnicode_FromFormat(const char *format, ...)
Return value: New reference. Take a C printf()-style format string and a variable number of arguments,
calculate the size of the resulting Python unicode string and return a string with the values formatted into it. The
variable arguments must be C types and must correspond exactly to the format characters in the format string. The
following format characters are allowed:

Format Characters Type Comment
%% t/a The literal % character.
%c int A single character, represented as a C int.
%d int Exactly equivalent to printf("%d").
%u unsigned int Exactly equivalent to printf("%u").
%ld long Exactly equivalent to printf("%ld").
%lu unsigned long Exactly equivalent to printf("%lu").
%zd Py_ssize_t Exactly equivalent to printf("%zd").
%zu size_t Exactly equivalent to printf("%zu").
%i int Exactly equivalent to printf("%i").
%x int Exactly equivalent to printf("%x").
%s char* A null-terminated C character array.
%p void* The hex representation of a C pointer. Mostly equivalent to

printf("%p") except that it is guaranteed to start with the
literal 0x regardless of what the platform’s printf yields.

%U PyObject* A unicode object.
%V PyObject*, char * A unicode object (which may be NULL) and a null-terminated C

character array as a second parameter (which will be used, if the
first parameter is NULL).

%S PyObject* The result of calling PyObject_Unicode().
%R PyObject* The result of calling PyObject_Repr().

An unrecognized format character causes all the rest of the format string to be copied as-is to the result string, and
any extra arguments discarded.

7.3. Objek Urutan 73

The Python/C API, Rilis 2.7.18

Baru pada versi 2.6.
PyObject* PyUnicode_FromFormatV(const char *format, va_list vargs)

Return value: New reference. Identical to PyUnicode_FromFormat() except that it takes exactly two argu-
ments.
Baru pada versi 2.6.

Py_UNICODE* PyUnicode_AsUnicode(PyObject *unicode)
Return a read-only pointer to the Unicode object’s internal Py_UNICODE buffer, NULL if unicode is not a Unicode
object. Note that the resulting Py_UNICODE* string may contain embedded null characters, which would cause
the string to be truncated when used in most C functions.

Py_ssize_t PyUnicode_GetSize(PyObject *unicode)
Return the length of the Unicode object.
Berubah pada versi 2.5: This function returned an int type. This might require changes in your code for properly
supporting 64-bit systems.

PyObject* PyUnicode_FromEncodedObject(PyObject *obj, const char *encoding, const char *errors)
Return value: New reference. Coerce an encoded object obj to a Unicode object and return a reference with
incremented refcount.
String and other char buffer compatible objects are decoded according to the given encoding and using the error
handling defined by errors. Both can be NULL to have the interface use the default values (see the next section for
details).
All other objects, including Unicode objects, cause a TypeError to be set.
The API returns NULL if there was an error. The caller is responsible for decref’ing the returned objects.

PyObject* PyUnicode_FromObject(PyObject *obj)
Return value: New reference. Shortcut for PyUnicode_FromEncodedObject(obj, NULL,
"strict") which is used throughout the interpreter whenever coercion to Unicode is needed.

If the platform supports wchar_t and provides a header file wchar.h, Python can interface directly to this type using the
following functions. Support is optimized if Python’s own Py_UNICODE type is identical to the system’s wchar_t.

wchar_t Support

wchar_t support for platforms which support it:
PyObject* PyUnicode_FromWideChar(const wchar_t *w, Py_ssize_t size)

Return value: New reference. Create a Unicode object from the wchar_t buffer w of the given size. Return NULL
on failure.
Berubah pada versi 2.5: This function used an int type for size. This might require changes in your code for
properly supporting 64-bit systems.

Py_ssize_t PyUnicode_AsWideChar(PyUnicodeObject *unicode, wchar_t *w, Py_ssize_t size)
Copy the Unicode object contents into the wchar_t buffer w. At most size wchar_t characters are copied
(excluding a possibly trailing 0-termination character). Return the number of wchar_t characters copied or -1
in case of an error. Note that the resulting wchar_t string may or may not be 0-terminated. It is the responsibility
of the caller to make sure that the wchar_t string is 0-terminated in case this is required by the application. Also,
note that the wchar_t* string might contain null characters, which would cause the string to be truncated when
used with most C functions.
Berubah pada versi 2.5: This function returned an int type and used an int type for size. This might require
changes in your code for properly supporting 64-bit systems.

74 Bab 7. Lapisan Objek Konkrit

The Python/C API, Rilis 2.7.18

Built-in Codecs

Python provides a set of built-in codecs which are written in C for speed. All of these codecs are directly usable via the
following functions.
Many of the following APIs take two arguments encoding and errors, and they have the same semantics as the ones of
the built-in unicode() Unicode object constructor.
Setting encoding to NULL causes the default encoding to be used which is ASCII. The file system calls should use
Py_FileSystemDefaultEncoding as the encoding for file names. This variable should be treated as read-only:
on some systems, it will be a pointer to a static string, on others, it will change at run-time (such as when the application
invokes setlocale).
Error handling is set by errors which may also be set to NULL meaning to use the default handling defined for the codec.
Default error handling for all built-in codecs is ”strict” (ValueError is raised).
The codecs all use a similar interface. Only deviation from the following generic ones are documented for simplicity.

Generic Codecs

These are the generic codec APIs:
PyObject* PyUnicode_Decode(const char *s, Py_ssize_t size, const char *encoding, const char *errors)

Return value: New reference. Create a Unicode object by decoding size bytes of the encoded string s. encoding
and errors have the same meaning as the parameters of the same name in the unicode() built-in function. The
codec to be used is looked up using the Python codec registry. Return NULL if an exception was raised by the
codec.
Berubah pada versi 2.5: This function used an int type for size. This might require changes in your code for
properly supporting 64-bit systems.

PyObject* PyUnicode_Encode(const Py_UNICODE *s, Py_ssize_t size, const char *encoding, const char *er-
rors)

Return value: New reference. Encode the Py_UNICODE buffer s of the given size and return a Python string object.
encoding and errors have the samemeaning as the parameters of the same name in theUnicodeencode()method.
The codec to be used is looked up using the Python codec registry. Return NULL if an exception was raised by the
codec.
Berubah pada versi 2.5: This function used an int type for size. This might require changes in your code for
properly supporting 64-bit systems.

PyObject* PyUnicode_AsEncodedString(PyObject *unicode, const char *encoding, const char *errors)
Return value: New reference. Encode a Unicode object and return the result as Python string object. encoding and
errors have the same meaning as the parameters of the same name in the Unicode encode()method. The codec
to be used is looked up using the Python codec registry. Return NULL if an exception was raised by the codec.

UTF-8 Codecs

These are the UTF-8 codec APIs:
PyObject* PyUnicode_DecodeUTF8(const char *s, Py_ssize_t size, const char *errors)

Return value: New reference. Create a Unicode object by decoding size bytes of the UTF-8 encoded string s. Return
NULL if an exception was raised by the codec.
Berubah pada versi 2.5: This function used an int type for size. This might require changes in your code for
properly supporting 64-bit systems.

7.3. Objek Urutan 75

The Python/C API, Rilis 2.7.18

PyObject* PyUnicode_DecodeUTF8Stateful(const char *s, Py_ssize_t size, const char *errors,
Py_ssize_t *consumed)

Return value: New reference. If consumed is NULL, behave like PyUnicode_DecodeUTF8(). If consumed
is not NULL, trailing incomplete UTF-8 byte sequences will not be treated as an error. Those bytes will not be
decoded and the number of bytes that have been decoded will be stored in consumed.
Baru pada versi 2.4.
Berubah pada versi 2.5: This function used an int type for size. This might require changes in your code for
properly supporting 64-bit systems.

PyObject* PyUnicode_EncodeUTF8(const Py_UNICODE *s, Py_ssize_t size, const char *errors)
Return value: New reference. Encode the Py_UNICODE buffer s of the given size using UTF-8 and return a Python
string object. Return NULL if an exception was raised by the codec.
Berubah pada versi 2.5: This function used an int type for size. This might require changes in your code for
properly supporting 64-bit systems.

PyObject* PyUnicode_AsUTF8String(PyObject *unicode)
Return value: New reference. Encode a Unicode object using UTF-8 and return the result as Python string object.
Error handling is ”strict”. Return NULL if an exception was raised by the codec.

UTF-32 Codecs

These are the UTF-32 codec APIs:
PyObject* PyUnicode_DecodeUTF32(const char *s, Py_ssize_t size, const char *errors, int *byteorder)

Decode size bytes from a UTF-32 encoded buffer string and return the corresponding Unicode object. errors (if
non-NULL) defines the error handling. It defaults to ”strict”.
If byteorder is non-NULL, the decoder starts decoding using the given byte order:

*byteorder == -1: little endian
*byteorder == 0: native order
*byteorder == 1: big endian

If *byteorder is zero, and the first four bytes of the input data are a byte order mark (BOM), the decoder
switches to this byte order and the BOM is not copied into the resulting Unicode string. If *byteorder is -1 or
1, any byte order mark is copied to the output.
After completion, *byteorder is set to the current byte order at the end of input data.
In a narrow build code points outside the BMP will be decoded as surrogate pairs.
If byteorder is NULL, the codec starts in native order mode.
Return NULL if an exception was raised by the codec.
Baru pada versi 2.6.

PyObject* PyUnicode_DecodeUTF32Stateful(const char *s, Py_ssize_t size, const char *errors,
int *byteorder, Py_ssize_t *consumed)

If consumed is NULL, behave like PyUnicode_DecodeUTF32(). If consumed is not NULL,
PyUnicode_DecodeUTF32Stateful() will not treat trailing incomplete UTF-32 byte sequences (such
as a number of bytes not divisible by four) as an error. Those bytes will not be decoded and the number of bytes
that have been decoded will be stored in consumed.
Baru pada versi 2.6.

76 Bab 7. Lapisan Objek Konkrit

The Python/C API, Rilis 2.7.18

PyObject* PyUnicode_EncodeUTF32(const Py_UNICODE *s, Py_ssize_t size, const char *errors, int byteo-
rder)

Return a Python bytes object holding the UTF-32 encoded value of the Unicode data in s. Output is written
according to the following byte order:

byteorder == -1: little endian
byteorder == 0: native byte order (writes a BOM mark)
byteorder == 1: big endian

If byteorder is 0, the output string will always start with the Unicode BOM mark (U+FEFF). In the other two
modes, no BOM mark is prepended.
If Py_UNICODE_WIDE is not defined, surrogate pairs will be output as a single code point.
Return NULL if an exception was raised by the codec.
Baru pada versi 2.6.

PyObject* PyUnicode_AsUTF32String(PyObject *unicode)
Return a Python string using the UTF-32 encoding in native byte order. The string always starts with a BOMmark.
Error handling is ”strict”. Return NULL if an exception was raised by the codec.
Baru pada versi 2.6.

UTF-16 Codecs

These are the UTF-16 codec APIs:
PyObject* PyUnicode_DecodeUTF16(const char *s, Py_ssize_t size, const char *errors, int *byteorder)

Return value: New reference. Decode size bytes from a UTF-16 encoded buffer string and return the corresponding
Unicode object. errors (if non-NULL) defines the error handling. It defaults to ”strict”.
If byteorder is non-NULL, the decoder starts decoding using the given byte order:

*byteorder == -1: little endian
*byteorder == 0: native order
*byteorder == 1: big endian

If *byteorder is zero, and the first two bytes of the input data are a byte order mark (BOM), the decoder
switches to this byte order and the BOM is not copied into the resulting Unicode string. If *byteorder is -1 or
1, any byte order mark is copied to the output (where it will result in either a \ufeff or a \ufffe character).
After completion, *byteorder is set to the current byte order at the end of input data.
If byteorder is NULL, the codec starts in native order mode.
Return NULL if an exception was raised by the codec.
Berubah pada versi 2.5: This function used an int type for size. This might require changes in your code for
properly supporting 64-bit systems.

PyObject* PyUnicode_DecodeUTF16Stateful(const char *s, Py_ssize_t size, const char *errors,
int *byteorder, Py_ssize_t *consumed)

Return value: New reference. If consumed is NULL, behave like PyUnicode_DecodeUTF16(). If consumed
is not NULL, PyUnicode_DecodeUTF16Stateful() will not treat trailing incomplete UTF-16 byte sequ-
ences (such as an odd number of bytes or a split surrogate pair) as an error. Those bytes will not be decoded and
the number of bytes that have been decoded will be stored in consumed.
Baru pada versi 2.4.

7.3. Objek Urutan 77

The Python/C API, Rilis 2.7.18

Berubah pada versi 2.5: This function used an int type for size and an int * type for consumed. This might
require changes in your code for properly supporting 64-bit systems.

PyObject* PyUnicode_EncodeUTF16(const Py_UNICODE *s, Py_ssize_t size, const char *errors, int byteo-
rder)

Return value: New reference. Return a Python string object holding the UTF-16 encoded value of the Unicode data
in s. Output is written according to the following byte order:

byteorder == -1: little endian
byteorder == 0: native byte order (writes a BOM mark)
byteorder == 1: big endian

If byteorder is 0, the output string will always start with the Unicode BOM mark (U+FEFF). In the other two
modes, no BOM mark is prepended.
If Py_UNICODE_WIDE is defined, a single Py_UNICODE value may get represented as a surrogate pair. If it is
not defined, each Py_UNICODE values is interpreted as a UCS-2 character.
Return NULL if an exception was raised by the codec.
Berubah pada versi 2.5: This function used an int type for size. This might require changes in your code for
properly supporting 64-bit systems.

PyObject* PyUnicode_AsUTF16String(PyObject *unicode)
Return value: New reference. Return a Python string using the UTF-16 encoding in native byte order. The string
always starts with a BOM mark. Error handling is ”strict”. Return NULL if an exception was raised by the codec.

UTF-7 Codecs

These are the UTF-7 codec APIs:
PyObject* PyUnicode_DecodeUTF7(const char *s, Py_ssize_t size, const char *errors)

Create a Unicode object by decoding size bytes of the UTF-7 encoded string s. Return NULL if an exception was
raised by the codec.

PyObject* PyUnicode_DecodeUTF7Stateful(const char *s, Py_ssize_t size, const char *errors,
Py_ssize_t *consumed)

If consumed isNULL, behave like PyUnicode_DecodeUTF7(). If consumed is notNULL, trailing incomplete
UTF-7 base-64 sections will not be treated as an error. Those bytes will not be decoded and the number of bytes
that have been decoded will be stored in consumed.

PyObject* PyUnicode_EncodeUTF7(const Py_UNICODE *s, Py_ssize_t size, int base64SetO, int ba-
se64WhiteSpace, const char *errors)

Encode the Py_UNICODE buffer of the given size using UTF-7 and return a Python bytes object. Return NULL
if an exception was raised by the codec.
If base64SetO is nonzero, ”Set O” (punctuation that has no otherwise special meaning) will be encoded in base-64.
If base64WhiteSpace is nonzero, whitespace will be encoded in base-64. Both are set to zero for the Python ”utf-7”
codec.

78 Bab 7. Lapisan Objek Konkrit

The Python/C API, Rilis 2.7.18

Unicode-Escape Codecs

These are the ”Unicode Escape” codec APIs:
PyObject* PyUnicode_DecodeUnicodeEscape(const char *s, Py_ssize_t size, const char *errors)

Return value: New reference. Create a Unicode object by decoding size bytes of the Unicode-Escape encoded string
s. Return NULL if an exception was raised by the codec.
Berubah pada versi 2.5: This function used an int type for size. This might require changes in your code for
properly supporting 64-bit systems.

PyObject* PyUnicode_EncodeUnicodeEscape(const Py_UNICODE *s, Py_ssize_t size)
Return value: New reference. Encode the Py_UNICODE buffer of the given size using Unicode-Escape and return
a Python string object. Return NULL if an exception was raised by the codec.
Berubah pada versi 2.5: This function used an int type for size. This might require changes in your code for
properly supporting 64-bit systems.

PyObject* PyUnicode_AsUnicodeEscapeString(PyObject *unicode)
Return value: New reference. Encode a Unicode object using Unicode-Escape and return the result as Python string
object. Error handling is ”strict”. Return NULL if an exception was raised by the codec.

Raw-Unicode-Escape Codecs

These are the ”Raw Unicode Escape” codec APIs:
PyObject* PyUnicode_DecodeRawUnicodeEscape(const char *s, Py_ssize_t size, const char *errors)

Return value: New reference. Create a Unicode object by decoding size bytes of the Raw-Unicode-Escape encoded
string s. Return NULL if an exception was raised by the codec.
Berubah pada versi 2.5: This function used an int type for size. This might require changes in your code for
properly supporting 64-bit systems.

PyObject* PyUnicode_EncodeRawUnicodeEscape(const Py_UNICODE *s, Py_ssize_t size, const
char *errors)

Return value: New reference. Encode the Py_UNICODE buffer of the given size using Raw-Unicode-Escape and
return a Python string object. Return NULL if an exception was raised by the codec.
Berubah pada versi 2.5: This function used an int type for size. This might require changes in your code for
properly supporting 64-bit systems.

PyObject* PyUnicode_AsRawUnicodeEscapeString(PyObject *unicode)
Return value: New reference. Encode a Unicode object using Raw-Unicode-Escape and return the result as Python
string object. Error handling is ”strict”. Return NULL if an exception was raised by the codec.

Latin-1 Codecs

These are the Latin-1 codec APIs: Latin-1 corresponds to the first 256 Unicode ordinals and only these are accepted by
the codecs during encoding.
PyObject* PyUnicode_DecodeLatin1(const char *s, Py_ssize_t size, const char *errors)

Return value: New reference. Create a Unicode object by decoding size bytes of the Latin-1 encoded string s. Return
NULL if an exception was raised by the codec.
Berubah pada versi 2.5: This function used an int type for size. This might require changes in your code for
properly supporting 64-bit systems.

7.3. Objek Urutan 79

The Python/C API, Rilis 2.7.18

PyObject* PyUnicode_EncodeLatin1(const Py_UNICODE *s, Py_ssize_t size, const char *errors)
Return value: New reference. Encode the Py_UNICODE buffer of the given size using Latin-1 and return a Python
string object. Return NULL if an exception was raised by the codec.
Berubah pada versi 2.5: This function used an int type for size. This might require changes in your code for
properly supporting 64-bit systems.

PyObject* PyUnicode_AsLatin1String(PyObject *unicode)
Return value: New reference. Encode a Unicode object using Latin-1 and return the result as Python string object.
Error handling is ”strict”. Return NULL if an exception was raised by the codec.

ASCII Codecs

These are the ASCII codec APIs. Only 7-bit ASCII data is accepted. All other codes generate errors.
PyObject* PyUnicode_DecodeASCII(const char *s, Py_ssize_t size, const char *errors)

Return value: New reference. Create a Unicode object by decoding size bytes of the ASCII encoded string s. Return
NULL if an exception was raised by the codec.
Berubah pada versi 2.5: This function used an int type for size. This might require changes in your code for
properly supporting 64-bit systems.

PyObject* PyUnicode_EncodeASCII(const Py_UNICODE *s, Py_ssize_t size, const char *errors)
Return value: New reference. Encode the Py_UNICODE buffer of the given size using ASCII and return a Python
string object. Return NULL if an exception was raised by the codec.
Berubah pada versi 2.5: This function used an int type for size. This might require changes in your code for
properly supporting 64-bit systems.

PyObject* PyUnicode_AsASCIIString(PyObject *unicode)
Return value: New reference. Encode a Unicode object using ASCII and return the result as Python string object.
Error handling is ”strict”. Return NULL if an exception was raised by the codec.

Character Map Codecs

This codec is special in that it can be used to implement many different codecs (and this is in fact what was done to obtain
most of the standard codecs included in the encodings package). The codec uses mapping to encode and decode
characters.
Decoding mappings must map single string characters to single Unicode characters, integers (which are then interpreted
as Unicode ordinals) or None (meaning ”undefined mapping” and causing an error).
Encoding mappings must map single Unicode characters to single string characters, integers (which are then interpreted
as Latin-1 ordinals) or None (meaning ”undefined mapping” and causing an error).
The mapping objects provided must only support the __getitem__ mapping interface.
If a character lookup fails with a LookupError, the character is copied as-is meaning that its ordinal value will be interp-
reted as Unicode or Latin-1 ordinal resp. Because of this, mappings only need to contain those mappings which map
characters to different code points.
These are the mapping codec APIs:
PyObject* PyUnicode_DecodeCharmap(const char *s, Py_ssize_t size, PyObject *mapping, const char *er-

rors)
Return value: New reference. Create a Unicode object by decoding size bytes of the encoded string s using the given
mapping object. Return NULL if an exception was raised by the codec. If mapping is NULL latin-1 decoding will
be done. Else it can be a dictionary mapping byte or a unicode string, which is treated as a lookup table. Byte
values greater that the length of the string and U+FFFE ”characters” are treated as ”undefined mapping”.

80 Bab 7. Lapisan Objek Konkrit

The Python/C API, Rilis 2.7.18

Berubah pada versi 2.4: Allowed unicode string as mapping argument.
Berubah pada versi 2.5: This function used an int type for size. This might require changes in your code for
properly supporting 64-bit systems.

PyObject* PyUnicode_EncodeCharmap(const Py_UNICODE *s, Py_ssize_t size, PyObject *mapping, const
char *errors)

Return value: New reference. Encode the Py_UNICODE buffer of the given size using the given mapping object
and return a Python string object. Return NULL if an exception was raised by the codec.
Berubah pada versi 2.5: This function used an int type for size. This might require changes in your code for
properly supporting 64-bit systems.

PyObject* PyUnicode_AsCharmapString(PyObject *unicode, PyObject *mapping)
Return value: New reference. Encode a Unicode object using the given mapping object and return the result as
Python string object. Error handling is ”strict”. Return NULL if an exception was raised by the codec.

The following codec API is special in that maps Unicode to Unicode.
PyObject* PyUnicode_TranslateCharmap(const Py_UNICODE *s, Py_ssize_t size, PyObject *table, const

char *errors)
Return value: New reference. Translate a Py_UNICODE buffer of the given size by applying a character mapping
table to it and return the resulting Unicode object. Return NULL when an exception was raised by the codec.
The mapping table must map Unicode ordinal integers to Unicode ordinal integers or None (causing deletion of
the character).
Mapping tables need only provide the __getitem__() interface; dictionaries and sequences work well. Unmap-
ped character ordinals (ones which cause a LookupError) are left untouched and are copied as-is.
Berubah pada versi 2.5: This function used an int type for size. This might require changes in your code for
properly supporting 64-bit systems.

MBCS codecs for Windows

These are the MBCS codec APIs. They are currently only available on Windows and use the Win32 MBCS converters
to implement the conversions. Note that MBCS (or DBCS) is a class of encodings, not just one. The target encoding is
defined by the user settings on the machine running the codec.
PyObject* PyUnicode_DecodeMBCS(const char *s, Py_ssize_t size, const char *errors)

Return value: New reference. Create a Unicode object by decoding size bytes of theMBCS encoded string s. Return
NULL if an exception was raised by the codec.
Berubah pada versi 2.5: This function used an int type for size. This might require changes in your code for
properly supporting 64-bit systems.

PyObject* PyUnicode_DecodeMBCSStateful(const char *s, int size, const char *errors, int *consumed)
If consumed is NULL, behave like PyUnicode_DecodeMBCS(). If consumed is not NULL,
PyUnicode_DecodeMBCSStateful() will not decode trailing lead byte and the number of bytes that have
been decoded will be stored in consumed.
Baru pada versi 2.5.

PyObject* PyUnicode_EncodeMBCS(const Py_UNICODE *s, Py_ssize_t size, const char *errors)
Return value: New reference. Encode the Py_UNICODE buffer of the given size using MBCS and return a Python
string object. Return NULL if an exception was raised by the codec.
Berubah pada versi 2.5: This function used an int type for size. This might require changes in your code for
properly supporting 64-bit systems.

7.3. Objek Urutan 81

The Python/C API, Rilis 2.7.18

PyObject* PyUnicode_AsMBCSString(PyObject *unicode)
Return value: New reference. Encode a Unicode object using MBCS and return the result as Python string object.
Error handling is ”strict”. Return NULL if an exception was raised by the codec.

Methods & Slots

Methods and Slot Functions

The following APIs are capable of handling Unicode objects and strings on input (we refer to them as strings in the
descriptions) and return Unicode objects or integers as appropriate.
They all return NULL or -1 if an exception occurs.
PyObject* PyUnicode_Concat(PyObject *left, PyObject *right)

Return value: New reference. Concat two strings giving a new Unicode string.
PyObject* PyUnicode_Split(PyObject *s, PyObject *sep, Py_ssize_t maxsplit)

Return value: New reference. Split a string giving a list of Unicode strings. If sep is NULL, splitting will be done
at all whitespace substrings. Otherwise, splits occur at the given separator. At most maxsplit splits will be done. If
negative, no limit is set. Separators are not included in the resulting list.
Berubah pada versi 2.5: This function used an int type for maxsplit. This might require changes in your code for
properly supporting 64-bit systems.

PyObject* PyUnicode_Splitlines(PyObject *s, int keepend)
Return value: New reference. Split a Unicode string at line breaks, returning a list of Unicode strings. CRLF is
considered to be one line break. If keepend is 0, the Line break characters are not included in the resulting strings.

PyObject* PyUnicode_Translate(PyObject *str, PyObject *table, const char *errors)
Return value: New reference. Translate a string by applying a character mapping table to it and return the resulting
Unicode object.
The mapping table must map Unicode ordinal integers to Unicode ordinal integers or None (causing deletion of
the character).
Mapping tables need only provide the __getitem__() interface; dictionaries and sequences work well. Unmap-
ped character ordinals (ones which cause a LookupError) are left untouched and are copied as-is.
errors has the usual meaning for codecs. It may be NULL which indicates to use the default error handling.

PyObject* PyUnicode_Join(PyObject *separator, PyObject *seq)
Return value: New reference. Join a sequence of strings using the given separator and return the resulting Unicode
string.

Py_ssize_t PyUnicode_Tailmatch(PyObject *str, PyObject *substr, Py_ssize_t start, Py_ssize_t end, int di-
rection)

Return 1 if substr matches str[start:end] at the given tail end (direction == -1means to do a prefix match,
direction == 1 a suffix match), 0 otherwise. Return -1 if an error occurred.
Berubah pada versi 2.5: This function used an int type for start and end. This might require changes in your code
for properly supporting 64-bit systems.

Py_ssize_t PyUnicode_Find(PyObject *str, PyObject *substr, Py_ssize_t start, Py_ssize_t end, int direction)
Return the first position of substr in str[start:end] using the given direction (direction == 1 means to do a
forward search, direction == -1 a backward search). The return value is the index of the first match; a value of -1
indicates that no match was found, and -2 indicates that an error occurred and an exception has been set.
Berubah pada versi 2.5: This function used an int type for start and end. This might require changes in your code
for properly supporting 64-bit systems.

82 Bab 7. Lapisan Objek Konkrit

The Python/C API, Rilis 2.7.18

Py_ssize_t PyUnicode_Count(PyObject *str, PyObject *substr, Py_ssize_t start, Py_ssize_t end)
Return the number of non-overlapping occurrences of substr in str[start:end]. Return -1 if an error occur-
red.
Berubah pada versi 2.5: This function returned an int type and used an int type for start and end. This might
require changes in your code for properly supporting 64-bit systems.

PyObject* PyUnicode_Replace(PyObject *str, PyObject *substr, PyObject *replstr, Py_ssize_t maxcount)
Return value: New reference. Replace at most maxcount occurrences of substr in str with replstr and return the
resulting Unicode object. maxcount == -1 means replace all occurrences.
Berubah pada versi 2.5: This function used an int type for maxcount. This might require changes in your code
for properly supporting 64-bit systems.

int PyUnicode_Compare(PyObject *left, PyObject *right)
Compare two strings and return -1, 0, 1 for less than, equal, and greater than, respectively.

int PyUnicode_RichCompare(PyObject *left, PyObject *right, int op)
Rich compare two unicode strings and return one of the following:

• NULL in case an exception was raised
• Py_True or Py_False for successful comparisons
• Py_NotImplemented in case the type combination is unknown

Note that Py_EQ and Py_NE comparisons can cause a UnicodeWarning in case the conversion of the argu-
ments to Unicode fails with a UnicodeDecodeError.
Possible values for op are Py_GT, Py_GE, Py_EQ, Py_NE, Py_LT, and Py_LE.

PyObject* PyUnicode_Format(PyObject *format, PyObject *args)
Return value: New reference. Return a new string object from format and args; this is analogous to format %
args.

int PyUnicode_Contains(PyObject *container, PyObject *element)
Check whether element is contained in container and return true or false accordingly.
element has to coerce to a one element Unicode string. -1 is returned if there was an error.

7.3.4 Buffers and Memoryview Objects

Python objects implemented in C can export a group of functions called the ”buffer interface.” These functions can be
used by an object to expose its data in a raw, byte-oriented format. Clients of the object can use the buffer interface to
access the object data directly, without needing to copy it first.
Two examples of objects that support the buffer interface are strings and arrays. The string object exposes the character
contents in the buffer interface’s byte-oriented form. An array can only expose its contents via the old-style buffer interface.
This limitation does not apply to Python 3, where memoryview objects can be constructed from arrays, too. Array
elements may be multi-byte values.
An example user of the buffer interface is the file object’s write()method. Any object that can export a series of bytes
through the buffer interface can be written to a file. There are a number of format codes to PyArg_ParseTuple()
that operate against an object’s buffer interface, returning data from the target object.
Starting from version 1.6, Python has been providing Python-level buffer objects and a C-level buffer API so that any
built-in or used-defined type can expose its characteristics. Both, however, have been deprecated because of various
shortcomings, and have been officially removed in Python 3 in favour of a new C-level buffer API and a new Python-level
object named memoryview.

7.3. Objek Urutan 83

The Python/C API, Rilis 2.7.18

The new buffer API has been backported to Python 2.6, and the memoryview object has been backported to Python
2.7. It is strongly advised to use them rather than the old APIs, unless you are blocked from doing so for compatibility
reasons.

The new-style Py_buffer struct

Py_buffer

void *buf
A pointer to the start of the memory for the object.

Py_ssize_t len
The total length of the memory in bytes.

int readonly
An indicator of whether the buffer is read only.

const char *format
A NULL terminated string in struct module style syntax giving the contents of the elements available
through the buffer. If this is NULL, "B" (unsigned bytes) is assumed.

int ndim
The number of dimensions the memory represents as a multi-dimensional array. If it is 0, strides and
suboffsets must be NULL.

Py_ssize_t *shape
An array of Py_ssize_ts the length of ndim giving the shape of the memory as a multi-dimensional array.
Note that ((*shape)[0] * ... * (*shape)[ndims-1])*itemsize should be equal to len.

Py_ssize_t *strides
An array of Py_ssize_ts the length of ndim giving the number of bytes to skip to get to a new element
in each dimension.

Py_ssize_t *suboffsets
An array of Py_ssize_ts the length of ndim. If these suboffset numbers are greater than or equal to 0,
then the value stored along the indicated dimension is a pointer and the suboffset value dictates howmany bytes
to add to the pointer after de-referencing. A suboffset value that it negative indicates that no de-referencing
should occur (striding in a contiguous memory block).
If all suboffsets are negative (i.e. no de-referencing is needed), then this field must be NULL (the default
value).
Here is a function that returns a pointer to the element in an N-D array pointed to by an N-dimensional index
when there are both non-NULL strides and suboffsets:

void *get_item_pointer(int ndim, void *buf, Py_ssize_t *strides,
Py_ssize_t *suboffsets, Py_ssize_t *indices) {
char *pointer = (char*)buf;
int i;
for (i = 0; i < ndim; i++) {

pointer += strides[i] * indices[i];
if (suboffsets[i] >=0) {

pointer = *((char**)pointer) + suboffsets[i];
}

}
return (void*)pointer;

}

84 Bab 7. Lapisan Objek Konkrit

The Python/C API, Rilis 2.7.18

Py_ssize_t itemsize
This is a storage for the itemsize (in bytes) of each element of the shared memory. It is technically un-
necessary as it can be obtained using PyBuffer_SizeFromFormat(), however an exporter may know
this information without parsing the format string and it is necessary to know the itemsize for proper interp-
retation of striding. Therefore, storing it is more convenient and faster.

void *internal
This is for use internally by the exporting object. For example, this might be re-cast as an integer by the
exporter and used to store flags about whether or not the shape, strides, and suboffsets arrays must be freed
when the buffer is released. The consumer should never alter this value.

Buffer related functions

int PyObject_CheckBuffer(PyObject *obj)
Return 1 if obj supports the buffer interface otherwise 0.

int PyObject_GetBuffer(PyObject *obj, Py_buffer *view, int flags)
Export obj into a Py_buffer, view. These arguments must never be NULL. The flags argument is a bit field
indicating what kind of buffer the caller is prepared to deal with and therefore what kind of buffer the exporter is
allowed to return. The buffer interface allows for complicated memory sharing possibilities, but some caller may
not be able to handle all the complexity but may want to see if the exporter will let them take a simpler view to its
memory.
Some exporters may not be able to share memory in every possible way and may need to raise errors to signal
to some consumers that something is just not possible. These errors should be a BufferError unless there is
another error that is actually causing the problem. The exporter can use flags information to simplify how much
of the Py_buffer structure is filled in with non-default values and/or raise an error if the object can’t support a
simpler view of its memory.
0 is returned on success and -1 on error.
The following table gives possible values to the flags arguments.

7.3. Objek Urutan 85

The Python/C API, Rilis 2.7.18

Flag Description
PyBUF_SIMPLE This is the default flag state. The returned buffer may or may not have writable memory.

The format of the data will be assumed to be unsigned bytes. This is a ”stand-alone”
flag constant. It never needs to be ’|’d to the others. The exporter will raise an error if it
cannot provide such a contiguous buffer of bytes.

PyBUF_WRITABLE The returned buffer must be writable. If it is not writable, then raise an error.
PyBUF_STRIDES This implies PyBUF_ND. The returned buffer must provide strides information (i.e. the

strides cannot be NULL). This would be used when the consumer can handle strided,
discontiguous arrays. Handling strides automatically assumes you can handle shape.
The exporter can raise an error if a strided representation of the data is not possible (i.e.
without the suboffsets).

PyBUF_ND The returned buffer must provide shape information. The memory will be assumed C-
style contiguous (last dimension varies the fastest). The exporter may raise an error if
it cannot provide this kind of contiguous buffer. If this is not given then shape will be
NULL.

PyBUF_C_CONTIGUOUS
PyBUF_F_CONTIGUOUS
PyBUF_ANY_CONTIGUOUS

These flags indicate that the contiguity returned buffer must be respectively, C-
contiguous (last dimension varies the fastest), Fortran contiguous (first dimension varies
the fastest) or either one. All of these flags imply PyBUF_STRIDES and guarantee
that the strides buffer info structure will be filled in correctly.

PyBUF_INDIRECT This flag indicates the returned buffer must have suboffsets information (which can be
NULL if no suboffsets are needed). This can be used when the consumer can handle
indirect array referencing implied by these suboffsets. This implies PyBUF_STRIDES.

PyBUF_FORMAT The returned buffermust have true format information if this flag is provided. This would
be used when the consumer is going to be checking for what ’kind’ of data is actually
stored. An exporter should always be able to provide this information if requested. If
format is not explicitly requested then the format must be returned as NULL (which
means 'B', or unsigned bytes)

PyBUF_STRIDED This is equivalent to (PyBUF_STRIDES | PyBUF_WRITABLE).
PyBUF_STRIDED_ROThis is equivalent to (PyBUF_STRIDES).
PyBUF_RECORDS This is equivalent to (PyBUF_STRIDES | PyBUF_FORMAT |

PyBUF_WRITABLE).
PyBUF_RECORDS_ROThis is equivalent to (PyBUF_STRIDES | PyBUF_FORMAT).
PyBUF_FULL This is equivalent to (PyBUF_INDIRECT | PyBUF_FORMAT |

PyBUF_WRITABLE).
PyBUF_FULL_RO This is equivalent to (PyBUF_INDIRECT | PyBUF_FORMAT).
PyBUF_CONTIG This is equivalent to (PyBUF_ND | PyBUF_WRITABLE).
PyBUF_CONTIG_ROThis is equivalent to (PyBUF_ND).

void PyBuffer_Release(Py_buffer *view)
Release the buffer view. This should be called when the buffer is no longer being used as it may free memory from
it.

Py_ssize_t PyBuffer_SizeFromFormat(const char *)
Return the implied itemsize from the struct-stype format.

int PyBuffer_IsContiguous(Py_buffer *view, char fortran)
Return 1 if the memory defined by the view is C-style (fortran is 'C') or Fortran-style (fortran is 'F') contiguous
or either one (fortran is 'A'). Return 0 otherwise.

void PyBuffer_FillContiguousStrides(int ndims, Py_ssize_t *shape, Py_ssize_t *strides, int itemsize,
char fortran)

Fill the strides array with byte-strides of a contiguous (C-style if fortran is 'C' or Fortran-style if fortran is 'F')
array of the given shape with the given number of bytes per element.

86 Bab 7. Lapisan Objek Konkrit

The Python/C API, Rilis 2.7.18

int PyBuffer_FillInfo(Py_buffer *view, PyObject *obj, void *buf, Py_ssize_t len, int readonly, int infofla-
gs)

Fill in a buffer-info structure, view, correctly for an exporter that can only share a contiguous chunk of memory of
”unsigned bytes” of the given length. Return 0 on success and -1 (with raising an error) on error.

MemoryView objects

Baru pada versi 2.7.
A memoryview object exposes the new C level buffer interface as a Python object which can then be passed around
like any other object.
PyObject *PyMemoryView_FromObject(PyObject *obj)

Create a memoryview object from an object that defines the new buffer interface.
PyObject *PyMemoryView_FromBuffer(Py_buffer *view)

Create a memoryview object wrapping the given buffer-info structure view. The memoryview object then owns the
buffer, which means you shouldn’t try to release it yourself: it will be released on deallocation of the memoryview
object.

PyObject *PyMemoryView_GetContiguous(PyObject *obj, int buffertype, char order)
Create a memoryview object to a contiguous chunk of memory (in either ’C’ or ’F’ortran order) from an object
that defines the buffer interface. If memory is contiguous, the memoryview object points to the original memory.
Otherwise copy is made and the memoryview points to a new bytes object.

int PyMemoryView_Check(PyObject *obj)
Return true if the object obj is a memoryview object. It is not currently allowed to create subclasses of
memoryview.

Py_buffer *PyMemoryView_GET_BUFFER(PyObject *obj)
Return a pointer to the buffer-info structure wrapped by the given object. The object must be a memoryview
instance; this macro doesn’t check its type, you must do it yourself or you will risk crashes.

Old-style buffer objects

More information on the old buffer interface is provided in the section Buffer Object Structures, under the description for
PyBufferProcs.
A ”buffer object” is defined in the bufferobject.h header (included by Python.h). These objects look very similar
to string objects at the Python programming level: they support slicing, indexing, concatenation, and some other standard
string operations. However, their data can come from one of two sources: from a block of memory, or from another
object which exports the buffer interface.
Buffer objects are useful as a way to expose the data from another object’s buffer interface to the Python programmer.
They can also be used as a zero-copy slicing mechanism. Using their ability to reference a block of memory, it is possible
to expose any data to the Python programmer quite easily. The memory could be a large, constant array in a C extension,
it could be a raw block of memory for manipulation before passing to an operating system library, or it could be used to
pass around structured data in its native, in-memory format.
PyBufferObject

This subtype of PyObject represents a buffer object.
PyTypeObject PyBuffer_Type

The instance of PyTypeObject which represents the Python buffer type; it is the same object as buffer and
types.BufferType in the Python layer. .

int Py_END_OF_BUFFER
This constant may be passed as the size parameter to PyBuffer_FromObject() or

7.3. Objek Urutan 87

The Python/C API, Rilis 2.7.18

PyBuffer_FromReadWriteObject(). It indicates that the new PyBufferObject should refer
to base object from the specified offset to the end of its exported buffer. Using this enables the caller to avoid
querying the base object for its length.

int PyBuffer_Check(PyObject *p)
Return true if the argument has type PyBuffer_Type.

PyObject* PyBuffer_FromObject(PyObject *base, Py_ssize_t offset, Py_ssize_t size)
Return value: New reference. Return a new read-only buffer object. This raises TypeError if base doesn’t support
the read-only buffer protocol or doesn’t provide exactly one buffer segment, or it raises ValueError if offset is
less than zero. The buffer will hold a reference to the base object, and the buffer’s contents will refer to the base
object’s buffer interface, starting as position offset and extending for size bytes. If size is Py_END_OF_BUFFER,
then the new buffer’s contents extend to the length of the base object’s exported buffer data.
Berubah pada versi 2.5: This function used an int type for offset and size. This might require changes in your
code for properly supporting 64-bit systems.

PyObject* PyBuffer_FromReadWriteObject(PyObject *base, Py_ssize_t offset, Py_ssize_t size)
Return value: New reference. Return a new writable buffer object. Parameters and exceptions are similar to
those for PyBuffer_FromObject(). If the base object does not export the writeable buffer protocol, then
TypeError is raised.
Berubah pada versi 2.5: This function used an int type for offset and size. This might require changes in your
code for properly supporting 64-bit systems.

PyObject* PyBuffer_FromMemory(void *ptr, Py_ssize_t size)
Return value: New reference. Return a new read-only buffer object that reads from a specified location in me-
mory, with a specified size. The caller is responsible for ensuring that the memory buffer, passed in as ptr, is
not deallocated while the returned buffer object exists. Raises ValueError if size is less than zero. Note that
Py_END_OF_BUFFER may not be passed for the size parameter; ValueError will be raised in that case.
Berubah pada versi 2.5: This function used an int type for size. This might require changes in your code for
properly supporting 64-bit systems.

PyObject* PyBuffer_FromReadWriteMemory(void *ptr, Py_ssize_t size)
Return value: New reference. Similar to PyBuffer_FromMemory(), but the returned buffer is writable.
Berubah pada versi 2.5: This function used an int type for size. This might require changes in your code for
properly supporting 64-bit systems.

PyObject* PyBuffer_New(Py_ssize_t size)
Return value: New reference. Return a new writable buffer object that maintains its own memory buffer of size
bytes. ValueError is returned if size is not zero or positive. Note that the memory buffer (as returned by
PyObject_AsWriteBuffer()) is not specifically aligned.
Berubah pada versi 2.5: This function used an int type for size. This might require changes in your code for
properly supporting 64-bit systems.

7.3.5 Tuple Objects

PyTupleObject
This subtype of PyObject represents a Python tuple object.

PyTypeObject PyTuple_Type
This instance of PyTypeObject represents the Python tuple type; it is the same object as tuple and types.
TupleType in the Python layer..

int PyTuple_Check(PyObject *p)
Return true if p is a tuple object or an instance of a subtype of the tuple type.

88 Bab 7. Lapisan Objek Konkrit

The Python/C API, Rilis 2.7.18

Berubah pada versi 2.2: Allowed subtypes to be accepted.
int PyTuple_CheckExact(PyObject *p)

Return true if p is a tuple object, but not an instance of a subtype of the tuple type.
Baru pada versi 2.2.

PyObject* PyTuple_New(Py_ssize_t len)
Return value: New reference. Return a new tuple object of size len, or NULL on failure.
Berubah pada versi 2.5: This function used an int type for len. This might require changes in your code for
properly supporting 64-bit systems.

PyObject* PyTuple_Pack(Py_ssize_t n, ...)
Return value: New reference. Return a new tuple object of size n, orNULL on failure. The tuple values are initialized
to the subsequent n C arguments pointing to Python objects. PyTuple_Pack(2, a, b) is equivalent to
Py_BuildValue("(OO)", a, b).
Baru pada versi 2.4.
Berubah pada versi 2.5: This function used an int type for n. This might require changes in your code for properly
supporting 64-bit systems.

Py_ssize_t PyTuple_Size(PyObject *p)
Take a pointer to a tuple object, and return the size of that tuple.
Berubah pada versi 2.5: This function returned an int type. This might require changes in your code for properly
supporting 64-bit systems.

Py_ssize_t PyTuple_GET_SIZE(PyObject *p)
Return the size of the tuple p, which must be non-NULL and point to a tuple; no error checking is performed.
Berubah pada versi 2.5: This function returned an int type. This might require changes in your code for properly
supporting 64-bit systems.

PyObject* PyTuple_GetItem(PyObject *p, Py_ssize_t pos)
Return value: Borrowed reference. Return the object at position pos in the tuple pointed to by p. If pos is out of
bounds, return NULL and set an IndexError exception.
Berubah pada versi 2.5: This function used an int type for pos. This might require changes in your code for
properly supporting 64-bit systems.

PyObject* PyTuple_GET_ITEM(PyObject *p, Py_ssize_t pos)
Return value: Borrowed reference. Like PyTuple_GetItem(), but does no checking of its arguments.
Berubah pada versi 2.5: This function used an int type for pos. This might require changes in your code for
properly supporting 64-bit systems.

PyObject* PyTuple_GetSlice(PyObject *p, Py_ssize_t low, Py_ssize_t high)
Return value: New reference. Return the slice of the tuple pointed to by p between low and high, or NULL on
failure. This is the equivalent of the Python expression p[low:high]. Indexing from the end of the list is not
supported.
Berubah pada versi 2.5: This function used an int type for low and high. This might require changes in your code
for properly supporting 64-bit systems.

int PyTuple_SetItem(PyObject *p, Py_ssize_t pos, PyObject *o)
Insert a reference to object o at position pos of the tuple pointed to by p. Return 0 on success. If pos is out of
bounds, return -1 and set an IndexError exception.

7.3. Objek Urutan 89

The Python/C API, Rilis 2.7.18

Catatan: This function ”steals” a reference to o and discards a reference to an item already in the tuple at the
affected position.

Berubah pada versi 2.5: This function used an int type for pos. This might require changes in your code for
properly supporting 64-bit systems.

void PyTuple_SET_ITEM(PyObject *p, Py_ssize_t pos, PyObject *o)
Like PyTuple_SetItem(), but does no error checking, and should only be used to fill in brand new tuples.

Catatan: This macro ”steals” a reference to o, and, unlike PyTuple_SetItem(), does not discard a reference
to any item that is being replaced; any reference in the tuple at position pos will be leaked.

Berubah pada versi 2.5: This function used an int type for pos. This might require changes in your code for
properly supporting 64-bit systems.

int _PyTuple_Resize(PyObject **p, Py_ssize_t newsize)
Can be used to resize a tuple. newsize will be the new length of the tuple. Because tuples are supposed to be
immutable, this should only be used if there is only one reference to the object. Do not use this if the tuple may
already be known to some other part of the code. The tuple will always grow or shrink at the end. Think of
this as destroying the old tuple and creating a new one, only more efficiently. Returns 0 on success. Client code
should never assume that the resulting value of *p will be the same as before calling this function. If the object
referenced by *p is replaced, the original *p is destroyed. On failure, returns -1 and sets *p to NULL, and raises
MemoryError or SystemError.
Berubah pada versi 2.2: Removed unused third parameter, last_is_sticky.
Berubah pada versi 2.5: This function used an int type for newsize. This might require changes in your code for
properly supporting 64-bit systems.

int PyTuple_ClearFreeList()
Clear the free list. Return the total number of freed items.
Baru pada versi 2.6.

7.3.6 List Objects

PyListObject
This subtype of PyObject represents a Python list object.

PyTypeObject PyList_Type
This instance of PyTypeObject represents the Python list type. This is the same object as list in the Python
layer.

int PyList_Check(PyObject *p)
Return true if p is a list object or an instance of a subtype of the list type.
Berubah pada versi 2.2: Allowed subtypes to be accepted.

int PyList_CheckExact(PyObject *p)
Return true if p is a list object, but not an instance of a subtype of the list type.
Baru pada versi 2.2.

PyObject* PyList_New(Py_ssize_t len)
Return value: New reference. Return a new list of length len on success, or NULL on failure.

90 Bab 7. Lapisan Objek Konkrit

The Python/C API, Rilis 2.7.18

Catatan: If len is greater than zero, the returned list object’s items are set to NULL. Thus you cannot use abstract
API functions such as PySequence_SetItem() or expose the object to Python code before setting all items
to a real object with PyList_SetItem().

Berubah pada versi 2.5: This function used an int for size. This might require changes in your code for properly
supporting 64-bit systems.

Py_ssize_t PyList_Size(PyObject *list)
Return the length of the list object in list; this is equivalent to len(list) on a list object.
Berubah pada versi 2.5: This function returned an int. This might require changes in your code for properly
supporting 64-bit systems.

Py_ssize_t PyList_GET_SIZE(PyObject *list)
Macro form of PyList_Size() without error checking.
Berubah pada versi 2.5: This macro returned an int. This might require changes in your code for properly
supporting 64-bit systems.

PyObject* PyList_GetItem(PyObject *list, Py_ssize_t index)
Return value: Borrowed reference. Return the object at position index in the list pointed to by list. The position must
be non-negative; indexing from the end of the list is not supported. If index is out of bounds (<0 or >=len(list)),
return NULL and set an IndexError exception.
Berubah pada versi 2.5: This function used an int for index. This might require changes in your code for properly
supporting 64-bit systems.

PyObject* PyList_GET_ITEM(PyObject *list, Py_ssize_t i)
Return value: Borrowed reference. Macro form of PyList_GetItem() without error checking.
Berubah pada versi 2.5: This macro used an int for i. This might require changes in your code for properly
supporting 64-bit systems.

int PyList_SetItem(PyObject *list, Py_ssize_t index, PyObject *item)
Set the item at index index in list to item. Return 0 on success. If index is out of bounds, return -1 and set an
IndexError exception.

Catatan: This function ”steals” a reference to item and discards a reference to an item already in the list at the
affected position.

Berubah pada versi 2.5: This function used an int for index. This might require changes in your code for properly
supporting 64-bit systems.

void PyList_SET_ITEM(PyObject *list, Py_ssize_t i, PyObject *o)
Macro form of PyList_SetItem()without error checking. This is normally only used to fill in new lists where
there is no previous content.

Catatan: Thismacro ”steals” a reference to item, and, unlikePyList_SetItem(), does not discard a reference
to any item that it being replaced; any reference in list at position i will be leaked.

Berubah pada versi 2.5: This macro used an int for i. This might require changes in your code for properly
supporting 64-bit systems.

int PyList_Insert(PyObject *list, Py_ssize_t index, PyObject *item)
Insert the item item into list list in front of index index. Return 0 if successful; return -1 and set an exception if
unsuccessful. Analogous to list.insert(index, item).

7.3. Objek Urutan 91

The Python/C API, Rilis 2.7.18

Berubah pada versi 2.5: This function used an int for index. This might require changes in your code for properly
supporting 64-bit systems.

int PyList_Append(PyObject *list, PyObject *item)
Append the object item at the end of list list. Return 0 if successful; return -1 and set an exception if unsuccessful.
Analogous to list.append(item).

PyObject* PyList_GetSlice(PyObject *list, Py_ssize_t low, Py_ssize_t high)
Return value: New reference. Return a list of the objects in list containing the objects between low and high. Return
NULL and set an exception if unsuccessful. Analogous to list[low:high]. Indexing from the end of the list
is not supported.
Berubah pada versi 2.5: This function used an int for low and high. This might require changes in your code for
properly supporting 64-bit systems.

int PyList_SetSlice(PyObject *list, Py_ssize_t low, Py_ssize_t high, PyObject *itemlist)
Set the slice of list between low and high to the contents of itemlist. Analogous to list[low:high] =
itemlist. The itemlist may be NULL, indicating the assignment of an empty list (slice deletion). Return 0
on success, -1 on failure. Indexing from the end of the list is not supported.
Berubah pada versi 2.5: This function used an int for low and high. This might require changes in your code for
properly supporting 64-bit systems.

int PyList_Sort(PyObject *list)
Sort the items of list in place. Return 0 on success, -1 on failure. This is equivalent to list.sort().

int PyList_Reverse(PyObject *list)
Reverse the items of list in place. Return0 on success, -1 on failure. This is the equivalent oflist.reverse().

PyObject* PyList_AsTuple(PyObject *list)
Return value: New reference. Return a new tuple object containing the contents of list; equivalent to
tuple(list).

7.4 Mapping Objects

7.4.1 Objek Dictionary

PyDictObject
This subtype of PyObject represents a Python dictionary object.

PyTypeObject PyDict_Type
This instance of PyTypeObject represents the Python dictionary type. This is exposed to Python programs as
dict and types.DictType.

int PyDict_Check(PyObject *p)
Return true if p is a dict object or an instance of a subtype of the dict type.
Berubah pada versi 2.2: Allowed subtypes to be accepted.

int PyDict_CheckExact(PyObject *p)
Return true if p is a dict object, but not an instance of a subtype of the dict type.
Baru pada versi 2.4.

PyObject* PyDict_New()
Return value: New reference. Return a new empty dictionary, or NULL on failure.

92 Bab 7. Lapisan Objek Konkrit

The Python/C API, Rilis 2.7.18

PyObject* PyDictProxy_New(PyObject *dict)
Return value: New reference. Return a proxy object for a mapping which enforces read-only behavior. This is
normally used to create a proxy to prevent modification of the dictionary for non-dynamic class types.
Baru pada versi 2.2.

void PyDict_Clear(PyObject *p)
Empty an existing dictionary of all key-value pairs.

int PyDict_Contains(PyObject *p, PyObject *key)
Determine if dictionary p contains key. If an item in p is matches key, return 1, otherwise return 0. On error,
return -1. This is equivalent to the Python expression key in p.
Baru pada versi 2.4.

PyObject* PyDict_Copy(PyObject *p)
Return value: New reference. Return a new dictionary that contains the same key-value pairs as p.
Baru pada versi 1.6.

int PyDict_SetItem(PyObject *p, PyObject *key, PyObject *val)
Insert value into the dictionary p with a key of key. key must be hashable; if it isn’t, TypeError will be raised.
Return 0 on success or -1 on failure.

int PyDict_SetItemString(PyObject *p, const char *key, PyObject *val)
Insert value into the dictionary p using key as a key. key should be a char*. The key object is created using
PyString_FromString(key). Return 0 on success or -1 on failure.

int PyDict_DelItem(PyObject *p, PyObject *key)
Remove the entry in dictionary p with key key. key must be hashable; if it isn’t, TypeError is raised. Return 0
on success or -1 on failure.

int PyDict_DelItemString(PyObject *p, char *key)
Remove the entry in dictionary p which has a key specified by the string key. Return 0 on success or -1 on failure.

PyObject* PyDict_GetItem(PyObject *p, PyObject *key)
Return value: Borrowed reference. Return the object from dictionary p which has a key key. Return NULL if the
key key is not present, but without setting an exception.

PyObject* PyDict_GetItemString(PyObject *p, const char *key)
Return value: Borrowed reference. This is the same as PyDict_GetItem(), but key is specified as a char*,
rather than a PyObject*.

PyObject* PyDict_Items(PyObject *p)
Return value: New reference. Return a PyListObject containing all the items from the dictionary, as in the
dictionary method dict.items().

PyObject* PyDict_Keys(PyObject *p)
Return value: New reference. Return a PyListObject containing all the keys from the dictionary, as in the
dictionary method dict.keys().

PyObject* PyDict_Values(PyObject *p)
Return value: New reference. Return a PyListObject containing all the values from the dictionary p, as in the
dictionary method dict.values().

Py_ssize_t PyDict_Size(PyObject *p)
Return the number of items in the dictionary. This is equivalent to len(p) on a dictionary.
Berubah pada versi 2.5: This function returned an int type. This might require changes in your code for properly
supporting 64-bit systems.

int PyDict_Next(PyObject *p, Py_ssize_t *ppos, PyObject **pkey, PyObject **pvalue)
Iterate over all key-value pairs in the dictionary p. The Py_ssize_t referred to by ppos must be initialized to 0

7.4. Mapping Objects 93

The Python/C API, Rilis 2.7.18

prior to the first call to this function to start the iteration; the function returns true for each pair in the dictionary,
and false once all pairs have been reported. The parameters pkey and pvalue should either point to PyObject*
variables that will be filled in with each key and value, respectively, or may be NULL. Any references returned
through them are borrowed. ppos should not be altered during iteration. Its value represents offsets within the
internal dictionary structure, and since the structure is sparse, the offsets are not consecutive.
Sebagai contoh:

PyObject *key, *value;
Py_ssize_t pos = 0;

while (PyDict_Next(self->dict, &pos, &key, &value)) {
/* do something interesting with the values... */
...

}

The dictionary p should not be mutated during iteration. It is safe (since Python 2.1) to modify the values of the
keys as you iterate over the dictionary, but only so long as the set of keys does not change. For example:

PyObject *key, *value;
Py_ssize_t pos = 0;

while (PyDict_Next(self->dict, &pos, &key, &value)) {
int i = PyInt_AS_LONG(value) + 1;
PyObject *o = PyInt_FromLong(i);
if (o == NULL)

return -1;
if (PyDict_SetItem(self->dict, key, o) < 0) {

Py_DECREF(o);
return -1;

}
Py_DECREF(o);

}

Berubah pada versi 2.5: This function used an int * type for ppos. This might require changes in your code for
properly supporting 64-bit systems.

int PyDict_Merge(PyObject *a, PyObject *b, int override)
Iterate over mapping object b adding key-value pairs to dictionary a. bmay be a dictionary, or any object supporting
PyMapping_Keys() and PyObject_GetItem(). If override is true, existing pairs in a will be replaced if
a matching key is found in b, otherwise pairs will only be added if there is not a matching key in a. Return 0 on
success or -1 if an exception was raised.
Baru pada versi 2.2.

int PyDict_Update(PyObject *a, PyObject *b)
This is the same as PyDict_Merge(a, b, 1) in C, and is similar to a.update(b) in Python except that
PyDict_Update() doesn’t fall back to the iterating over a sequence of key value pairs if the second argument
has no ”keys” attribute. Return 0 on success or -1 if an exception was raised.
Baru pada versi 2.2.

int PyDict_MergeFromSeq2(PyObject *a, PyObject *seq2, int override)
Update or merge into dictionary a, from the key-value pairs in seq2. seq2 must be an iterable object producing
iterable objects of length 2, viewed as key-value pairs. In case of duplicate keys, the last wins if override is true,
else the first wins. Return 0 on success or -1 if an exception was raised. Equivalent Python (except for the return
value):

94 Bab 7. Lapisan Objek Konkrit

The Python/C API, Rilis 2.7.18

def PyDict_MergeFromSeq2(a, seq2, override):
for key, value in seq2:

if override or key not in a:
a[key] = value

Baru pada versi 2.2.

7.5 Objek lain

7.5.1 Class and Instance Objects

Note that the class objects described here represent old-style classes, which will go away in Python 3. When creating new
types for extension modules, you will want to work with type objects (section Objek Tipe).
PyClassObject

The C structure of the objects used to describe built-in classes.
PyObject* PyClass_Type

This is the type object for class objects; it is the same object as types.ClassType in the Python layer.
int PyClass_Check(PyObject *o)

Return true if the object o is a class object, including instances of types derived from the standard class object.
Return false in all other cases.

int PyClass_IsSubclass(PyObject *klass, PyObject *base)
Return true if klass is a subclass of base. Return false in all other cases.

There are very few functions specific to instance objects.
PyTypeObject PyInstance_Type

Type object for class instances.
int PyInstance_Check(PyObject *obj)

Return true if obj is an instance.
PyObject* PyInstance_New(PyObject *class, PyObject *arg, PyObject *kw)

Return value: New reference. Create a new instance of a specific class. The parameters arg and kw are used as the
positional and keyword parameters to the object’s constructor.

PyObject* PyInstance_NewRaw(PyObject *class, PyObject *dict)
Return value: New reference. Create a new instance of a specific class without calling its constructor. class is the
class of new object. The dict parameter will be used as the object’s __dict__; if NULL, a new dictionary will be
created for the instance.

7.5.2 Obyek Fungsi

Terdapat beberapa fungsi spesifik untuk fungsi Python.
PyFunctionObject

The C structure used for functions.
PyTypeObject PyFunction_Type

This is an instance of PyTypeObject and represents the Python function type. It is exposed to Python program-
mers as types.FunctionType.

int PyFunction_Check(PyObject *o)
Return true if o is a function object (has type PyFunction_Type). The parameter must not be NULL.

7.5. Objek lain 95

The Python/C API, Rilis 2.7.18

PyObject* PyFunction_New(PyObject *code, PyObject *globals)
Return value: New reference. Return a new function object associated with the code object code. globals must be
a dictionary with the global variables accessible to the function.
The function’s docstring, name and __module__ are retrieved from the code object, the argument defaults and
closure are set to NULL.

PyObject* PyFunction_GetCode(PyObject *op)
Return value: Borrowed reference. Return the code object associated with the function object op.

PyObject* PyFunction_GetGlobals(PyObject *op)
Return value: Borrowed reference. Return the globals dictionary associated with the function object op.

PyObject* PyFunction_GetModule(PyObject *op)
Return value: Borrowed reference. Return the __module__ attribute of the function object op. This is normally a
string containing the module name, but can be set to any other object by Python code.

PyObject* PyFunction_GetDefaults(PyObject *op)
Return value: Borrowed reference. Return the argument default values of the function object op. This can be a
tuple of arguments or NULL.

int PyFunction_SetDefaults(PyObject *op, PyObject *defaults)
Set the argument default values for the function object op. defaults must be Py_None or a tuple.
Raises SystemError and returns -1 on failure.

PyObject* PyFunction_GetClosure(PyObject *op)
Return value: Borrowed reference. Return the closure associated with the function object op. This can be NULL or
a tuple of cell objects.

int PyFunction_SetClosure(PyObject *op, PyObject *closure)
Set the closure associated with the function object op. closure must be Py_None or a tuple of cell objects.
Raises SystemError and returns -1 on failure.

7.5.3 Metode Objek

There are some useful functions that are useful for working with method objects.
PyTypeObject PyMethod_Type

This instance of PyTypeObject represents the Python method type. This is exposed to Python programs as
types.MethodType.

int PyMethod_Check(PyObject *o)
Return true if o is a method object (has type PyMethod_Type). The parameter must not be NULL.

PyObject* PyMethod_New(PyObject *func, PyObject *self, PyObject *class)
Return value: New reference. Return a new method object, with func being any callable object; this is the function
that will be called when the method is called. If this method should be bound to an instance, self should be the
instance and class should be the class of self, otherwise self should be NULL and class should be the class which
provides the unbound method..

PyObject* PyMethod_Class(PyObject *meth)
Return value: Borrowed reference. Return the class object from which the method meth was created; if this was
created from an instance, it will be the class of the instance.

PyObject* PyMethod_GET_CLASS(PyObject *meth)
Return value: Borrowed reference. Macro version of PyMethod_Class() which avoids error checking.

PyObject* PyMethod_Function(PyObject *meth)
Return value: Borrowed reference. Return the function object associated with the method meth.

96 Bab 7. Lapisan Objek Konkrit

The Python/C API, Rilis 2.7.18

PyObject* PyMethod_GET_FUNCTION(PyObject *meth)
Return value: Borrowed reference. Macro version of PyMethod_Function() which avoids error checking.

PyObject* PyMethod_Self(PyObject *meth)
Return value: Borrowed reference. Return the instance associated with the method meth if it is bound, otherwise
return NULL.

PyObject* PyMethod_GET_SELF(PyObject *meth)
Return value: Borrowed reference. Macro version of PyMethod_Self() which avoids error checking.

int PyMethod_ClearFreeList()
Clear the free list. Return the total number of freed items.
Baru pada versi 2.6.

7.5.4 File Objects

Python’s built-in file objects are implemented entirely on the FILE* support from the C standard library. This is an
implementation detail and may change in future releases of Python.
PyFileObject

This subtype of PyObject represents a Python file object.
PyTypeObject PyFile_Type

This instance of PyTypeObject represents the Python file type. This is exposed to Python programs as file
and types.FileType.

int PyFile_Check(PyObject *p)
Return true if its argument is a PyFileObject or a subtype of PyFileObject.
Berubah pada versi 2.2: Allowed subtypes to be accepted.

int PyFile_CheckExact(PyObject *p)
Return true if its argument is a PyFileObject, but not a subtype of PyFileObject.
Baru pada versi 2.2.

PyObject* PyFile_FromString(char *filename, char *mode)
Return value: New reference. On success, return a new file object that is opened on the file given by filename, with
a file mode given by mode, where mode has the same semantics as the standard C routine fopen(). On failure,
return NULL.

PyObject* PyFile_FromFile(FILE *fp, char *name, char *mode, int (*close)(FILE*))
Return value: New reference. Create a new PyFileObject from the already-open standard C file pointer, fp.
The function close will be called when the file should be closed. Return NULL and close the file using close on
failure. close is optional and can be set to NULL.

FILE* PyFile_AsFile(PyObject *p)
Return the file object associated with p as a FILE*.
If the caller will ever use the returned FILE* object while the GIL is released it must also call the
PyFile_IncUseCount() and PyFile_DecUseCount() functions described below as appropriate.

void PyFile_IncUseCount(PyFileObject *p)
Increments the PyFileObject’s internal use count to indicate that the underlying FILE* is being used. This prevents
Python from calling f_close() on it from another thread. Callers of this must call PyFile_DecUseCount()
when they are finished with the FILE*. Otherwise the file object will never be closed by Python.
The GIL must be held while calling this function.
The suggested use is to call this after PyFile_AsFile() and before you release the GIL:

7.5. Objek lain 97

The Python/C API, Rilis 2.7.18

FILE *fp = PyFile_AsFile(p);
PyFile_IncUseCount(p);
/* ... */
Py_BEGIN_ALLOW_THREADS
do_something(fp);
Py_END_ALLOW_THREADS
/* ... */
PyFile_DecUseCount(p);

Baru pada versi 2.6.
void PyFile_DecUseCount(PyFileObject *p)

Decrements the PyFileObject’s internal unlocked_count member to indicate that the caller is done with its own use
of the FILE*. This may only be called to undo a prior call to PyFile_IncUseCount().
The GIL must be held while calling this function (see the example above).
Baru pada versi 2.6.

PyObject* PyFile_GetLine(PyObject *p, int n)
Return value: New reference. Equivalent to p.readline([n]), this function reads one line from the object p.
p may be a file object or any object with a readline() method. If n is 0, exactly one line is read, regardless
of the length of the line. If n is greater than 0, no more than n bytes will be read from the file; a partial line can
be returned. In both cases, an empty string is returned if the end of the file is reached immediately. If n is less
than 0, however, one line is read regardless of length, but EOFError is raised if the end of the file is reached
immediately.

PyObject* PyFile_Name(PyObject *p)
Return value: Borrowed reference. Return the name of the file specified by p as a string object.

void PyFile_SetBufSize(PyFileObject *p, int n)
Available on systems with setvbuf() only. This should only be called immediately after file object creation.

int PyFile_SetEncoding(PyFileObject *p, const char *enc)
Set the file’s encoding for Unicode output to enc. Return 1 on success and 0 on failure.
Baru pada versi 2.3.

int PyFile_SetEncodingAndErrors(PyFileObject *p, const char *enc, *errors)
Set the file’s encoding for Unicode output to enc, and its error mode to err. Return 1 on success and 0 on failure.
Baru pada versi 2.6.

int PyFile_SoftSpace(PyObject *p, int newflag)
This function exists for internal use by the interpreter. Set the softspace attribute of p to newflag and return
the previous value. p does not have to be a file object for this function to work properly; any object is supported
(thought its only interesting if the softspace attribute can be set). This function clears any errors, and will
return 0 as the previous value if the attribute either does not exist or if there were errors in retrieving it. There is
no way to detect errors from this function, but doing so should not be needed.

int PyFile_WriteObject(PyObject *obj, PyObject *p, int flags)
Write object obj to file object p. The only supported flag for flags is Py_PRINT_RAW; if given, the str() of the
object is written instead of the repr(). Return 0 on success or -1 on failure; the appropriate exception will be
set.

int PyFile_WriteString(const char *s, PyObject *p)
Write string s to file object p. Return 0 on success or -1 on failure; the appropriate exception will be set.

98 Bab 7. Lapisan Objek Konkrit

The Python/C API, Rilis 2.7.18

7.5.5 Module Objects

There are only a few functions special to module objects.
PyTypeObject PyModule_Type

This instance of PyTypeObject represents the Python module type. This is exposed to Python programs as
types.ModuleType.

int PyModule_Check(PyObject *p)
Return true if p is a module object, or a subtype of a module object.
Berubah pada versi 2.2: Allowed subtypes to be accepted.

int PyModule_CheckExact(PyObject *p)
Return true if p is a module object, but not a subtype of PyModule_Type.
Baru pada versi 2.2.

PyObject* PyModule_New(const char *name)
Return value: New reference. Return a new module object with the __name__ attribute set to name. Only the
module’s __doc__ and __name__ attributes are filled in; the caller is responsible for providing a __file__
attribute.

PyObject* PyModule_GetDict(PyObject *module)
Return value: Borrowed reference. Return the dictionary object that implements module’s namespace; this ob-
ject is the same as the __dict__ attribute of the module object. This function never fails. It is recommended
extensions use other PyModule_*() and PyObject_*() functions rather than directly manipulate a module’s
__dict__.

char* PyModule_GetName(PyObject *module)
Return module’s __name__ value. If the module does not provide one, or if it is not a string, SystemError is
raised and NULL is returned.

char* PyModule_GetFilename(PyObject *module)
Return the name of the file from which module was loaded using module’s __file__ attribute. If this is not
defined, or if it is not a string, raise SystemError and return NULL.

int PyModule_AddObject(PyObject *module, const char *name, PyObject *value)
Add an object tomodule as name. This is a convenience function which can be used from the module’s initialization
function. This steals a reference to value. Return -1 on error, 0 on success.
Baru pada versi 2.0.

int PyModule_AddIntConstant(PyObject *module, const char *name, long value)
Add an integer constant to module as name. This convenience function can be used from the module’s initialization
function. Return -1 on error, 0 on success.
Baru pada versi 2.0.

int PyModule_AddStringConstant(PyObject *module, const char *name, const char *value)
Add a string constant to module as name. This convenience function can be used from the module’s initialization
function. The string value must be null-terminated. Return -1 on error, 0 on success.
Baru pada versi 2.0.

int PyModule_AddIntMacro(PyObject *module, macro)
Add an int constant to module. The name and the value are taken from macro. For example
PyModule_AddIntMacro(module, AF_INET) adds the int constant AF_INET with the value of
AF_INET to module. Return -1 on error, 0 on success.
Baru pada versi 2.6.

int PyModule_AddStringMacro(PyObject *module, macro)

7.5. Objek lain 99

The Python/C API, Rilis 2.7.18

Add a string constant to module.
Baru pada versi 2.6.

7.5.6 Objek Iterator

Python menyediakan dua objek iterator untuk tujuan umum. Yang pertama, iterator urutan, bekerja dengan objek yang
mendukung metode __getitem__(). Yang kedua bekerja dengan objek yang bisa dipanggil dan nilai penjaga (sen-
tinel), memanggil callable untuk setiap item dalam urutan, dan mengakhiri iterasi ketika nilai penjaga dikembalikan.

PyTypeObject PySeqIter_Type
Tipe objek untuk objek iterator yang dikembalikan oleh PySeqIter_New() dan bentuk satu argumen dari
fungsi bawaan iter() untuk tipe urutan bawaan.
Baru pada versi 2.2.

int PySeqIter_Check(op)
Mengembalikan nilai true jika tipe op adalah PySeqIter_Type.
Baru pada versi 2.2.

PyObject* PySeqIter_New(PyObject *seq)
Return value: New reference. Mengembalikan iterator yang bekerja dengan objek urutan umum, seq. Iterasi bera-
khir ketika urutan memunculkan IndexError untuk operasi berlangganan (subscripting).
Baru pada versi 2.2.

PyTypeObject PyCallIter_Type
Tipe objek untuk objek iterator yang dikembalikan oleh PyCallIter_New() dan bentuk dua argumen dari
fungsi bawaan iter() .
Baru pada versi 2.2.

int PyCallIter_Check(op)
Mengembalikan nilai true jika tipe op adalah PyCallIter_Type.
Baru pada versi 2.2.

PyObject* PyCallIter_New(PyObject *callable, PyObject *sentinel)
Return value: New reference. Mengembalikan iterator baru. Parameter pertama, callable, dapat berupa objek
Python callable apa saja yang bisa dipanggil tanpa parameter; setiap pemanggilan harusmengembalikan butir (item)
berikutnya pada iterator. Ketika callable mengembalikan nilai sama dengan sentinel, perulangan akan dihentikan.
Baru pada versi 2.2.

7.5.7 Obyek Deskriptor

”Deskriptor” adalah obyek yang menggambarkan beberapa atribut dari suatu obyek. Hal tersebut ditemukan dalam kamus
jenis obyek.
PyTypeObject PyProperty_Type

Jenis obyek untuk jenis deskriptor bawaan.
Baru pada versi 2.2.

PyObject* PyDescr_NewGetSet(PyTypeObject *type, struct PyGetSetDef *getset)
Return value: New reference. Baru pada versi 2.2.

PyObject* PyDescr_NewMember(PyTypeObject *type, struct PyMemberDef *meth)
Return value: New reference. Baru pada versi 2.2.

100 Bab 7. Lapisan Objek Konkrit

The Python/C API, Rilis 2.7.18

PyObject* PyDescr_NewMethod(PyTypeObject *type, struct PyMethodDef *meth)
Return value: New reference. Baru pada versi 2.2.

PyObject* PyDescr_NewWrapper(PyTypeObject *type, struct wrapperbase *wrapper, void *wrapped)
Return value: New reference. Baru pada versi 2.2.

PyObject* PyDescr_NewClassMethod(PyTypeObject *type, PyMethodDef *method)
Return value: New reference. Baru pada versi 2.3.

int PyDescr_IsData(PyObject *descr)
Mengembalikan nilai true jika obyek deskriptor descr menggambarkan atribut sebuah data, atau mengembalikan
nilai false jika hal tersebut menggambarkan sebuah metode. descr harus berupa sebuah obyek deskriptor; tidak ada
pemeriksaan kesalahan.
Baru pada versi 2.2.

PyObject* PyWrapper_New(PyObject *, PyObject *)
Return value: New reference. Baru pada versi 2.2.

7.5.8 Slice Objects

PyTypeObject PySlice_Type
The type object for slice objects. This is the same as slice and types.SliceType.

int PySlice_Check(PyObject *ob)
Return true if ob is a slice object; ob must not be NULL.

PyObject* PySlice_New(PyObject *start, PyObject *stop, PyObject *step)
Return value: New reference. Return a new slice object with the given values. The start, stop, and step parameters
are used as the values of the slice object attributes of the same names. Any of the values may be NULL, in which
case the None will be used for the corresponding attribute. Return NULL if the new object could not be allocated.

int PySlice_GetIndices(PySliceObject *slice, Py_ssize_t length, Py_ssize_t *start, Py_ssize_t *stop,
Py_ssize_t *step)

Retrieve the start, stop and step indices from the slice object slice, assuming a sequence of length length. Treats
indices greater than length as errors.
Returns 0 on success and -1 on error with no exception set (unless one of the indices was not None and failed to
be converted to an integer, in which case -1 is returned with an exception set).
You probably do not want to use this function. If you want to use slice objects in versions of Python prior to 2.3,
you would probably do well to incorporate the source of PySlice_GetIndicesEx(), suitably renamed, in
the source of your extension.
Berubah pada versi 2.5: This function used an int type for length and an int * type for start, stop, and step.
This might require changes in your code for properly supporting 64-bit systems.

int PySlice_GetIndicesEx(PySliceObject *slice, Py_ssize_t length, Py_ssize_t *start, Py_ssize_t *stop,
Py_ssize_t *step, Py_ssize_t *slicelength)

Usable replacement for PySlice_GetIndices(). Retrieve the start, stop, and step indices from the slice
object slice assuming a sequence of length length, and store the length of the slice in slicelength. Out of bounds
indices are clipped in a manner consistent with the handling of normal slices.
Returns 0 on success and -1 on error with exception set.
Baru pada versi 2.3.
Berubah pada versi 2.5: This function used an int type for length and an int * type for start, stop, step, and
slicelength. This might require changes in your code for properly supporting 64-bit systems.

7.5. Objek lain 101

The Python/C API, Rilis 2.7.18

7.5.9 Ellipsis Object

PyObject *Py_Ellipsis
The Python Ellipsis object. This object has no methods. It needs to be treated just like any other object with
respect to reference counts. Like Py_None it is a singleton object.

7.5.10 Weak Reference Objects

Python supports weak references as first-class objects. There are two specific object types which directly implement weak
references. The first is a simple reference object, and the second acts as a proxy for the original object as much as it can.
int PyWeakref_Check(ob)

Return true if ob is either a reference or proxy object.
Baru pada versi 2.2.

int PyWeakref_CheckRef(ob)
Return true if ob is a reference object.
Baru pada versi 2.2.

int PyWeakref_CheckProxy(ob)
Return true if ob is a proxy object.
Baru pada versi 2.2.

PyObject* PyWeakref_NewRef(PyObject *ob, PyObject *callback)
Return value: New reference. Return a weak reference object for the object ob. This will always return a new
reference, but is not guaranteed to create a new object; an existing reference object may be returned. The second
parameter, callback, can be a callable object that receives notification when ob is garbage collected; it should accept
a single parameter, which will be the weak reference object itself. callback may also be None or NULL. If ob is
not a weakly-referencable object, or if callback is not callable, None, or NULL, this will return NULL and raise
TypeError.
Baru pada versi 2.2.

PyObject* PyWeakref_NewProxy(PyObject *ob, PyObject *callback)
Return value: New reference. Return a weak reference proxy object for the object ob. This will always return a
new reference, but is not guaranteed to create a new object; an existing proxy object may be returned. The second
parameter, callback, can be a callable object that receives notification when ob is garbage collected; it should accept
a single parameter, which will be the weak reference object itself. callback may also be None or NULL. If ob is
not a weakly-referencable object, or if callback is not callable, None, or NULL, this will return NULL and raise
TypeError.
Baru pada versi 2.2.

PyObject* PyWeakref_GetObject(PyObject *ref)
Return value: Borrowed reference. Return the referenced object from a weak reference, ref. If the referent is no
longer live, returns Py_None.
Baru pada versi 2.2.

Peringatan: This function returns a borrowed reference to the referenced object. This means that you should
always call Py_INCREF() on the object except if you know that it cannot be destroyed while you are still using
it.

102 Bab 7. Lapisan Objek Konkrit

The Python/C API, Rilis 2.7.18

PyObject* PyWeakref_GET_OBJECT(PyObject *ref)
Return value: Borrowed reference. Similar to PyWeakref_GetObject(), but implemented as a macro that
does no error checking.
Baru pada versi 2.2.

7.5.11 Kapsul

Refer to using-capsules for more information on using these objects.
Baru pada versi 2.7.
PyCapsule

This subtype of PyObject represents an opaque value, useful for C extension modules who need to pass an
opaque value (as a void* pointer) through Python code to other C code. It is often used to make a C function
pointer defined in one module available to other modules, so the regular import mechanism can be used to access
C APIs defined in dynamically loaded modules.

PyCapsule_Destructor
The type of a destructor callback for a capsule. Defined as:

typedef void (*PyCapsule_Destructor)(PyObject *);

See PyCapsule_New() for the semantics of PyCapsule_Destructor callbacks.
int PyCapsule_CheckExact(PyObject *p)

Return true if its argument is a PyCapsule.
PyObject* PyCapsule_New(void *pointer, const char *name, PyCapsule_Destructor destructor)

Return value: New reference. Create a PyCapsule encapsulating the pointer. The pointer argument may not be
NULL.
On failure, set an exception and return NULL.
The name string may either be NULL or a pointer to a valid C string. If non-NULL, this string must outlive the
capsule. (Though it is permitted to free it inside the destructor.)
If the destructor argument is not NULL, it will be called with the capsule as its argument when it is destroyed.
If this capsule will be stored as an attribute of a module, the name should be specified as modulename.
attributename. This will enable other modules to import the capsule using PyCapsule_Import().

void* PyCapsule_GetPointer(PyObject *capsule, const char *name)
Retrieve the pointer stored in the capsule. On failure, set an exception and return NULL.
The name parameter must compare exactly to the name stored in the capsule. If the name stored in the capsule is
NULL, the name passed in must also be NULL. Python uses the C function strcmp() to compare capsule names.

PyCapsule_Destructor PyCapsule_GetDestructor(PyObject *capsule)
Return the current destructor stored in the capsule. On failure, set an exception and return NULL.
It is legal for a capsule to have a NULL destructor. This makes a NULL return code somewhat ambiguous; use
PyCapsule_IsValid() or PyErr_Occurred() to disambiguate.

void* PyCapsule_GetContext(PyObject *capsule)
Return the current context stored in the capsule. On failure, set an exception and return NULL.
It is legal for a capsule to have a NULL context. This makes a NULL return code somewhat ambiguous; use
PyCapsule_IsValid() or PyErr_Occurred() to disambiguate.

7.5. Objek lain 103

The Python/C API, Rilis 2.7.18

const char* PyCapsule_GetName(PyObject *capsule)
Return the current name stored in the capsule. On failure, set an exception and return NULL.
It is legal for a capsule to have a NULL name. This makes a NULL return code somewhat ambiguous; use
PyCapsule_IsValid() or PyErr_Occurred() to disambiguate.

void* PyCapsule_Import(const char *name, int no_block)
Import a pointer to a C object from a capsule attribute in a module. The name parameter should specify the full
name to the attribute, as in module.attribute. The name stored in the capsule must match this string exactly.
If no_block is true, import the module without blocking (using PyImport_ImportModuleNoBlock()). If
no_block is false, import the module conventionally (using PyImport_ImportModule()).
Return the capsule’s internal pointer on success. On failure, set an exception and return NULL.

int PyCapsule_IsValid(PyObject *capsule, const char *name)
Determines whether or not capsule is a valid capsule. A valid capsule is non-NULL, passes
PyCapsule_CheckExact(), has a non-NULL pointer stored in it, and its internal name matches the
name parameter. (See PyCapsule_GetPointer() for information on how capsule names are compared.)
In other words, if PyCapsule_IsValid() returns a true value, calls to any of the accessors (any function
starting with PyCapsule_Get()) are guaranteed to succeed.
Return a nonzero value if the object is valid and matches the name passed in. Return 0 otherwise. This function
will not fail.

int PyCapsule_SetContext(PyObject *capsule, void *context)
Set the context pointer inside capsule to context.
Return 0 on success. Return nonzero and set an exception on failure.

int PyCapsule_SetDestructor(PyObject *capsule, PyCapsule_Destructor destructor)
Set the destructor inside capsule to destructor.
Return 0 on success. Return nonzero and set an exception on failure.

int PyCapsule_SetName(PyObject *capsule, const char *name)
Set the name inside capsule to name. If non-NULL, the name must outlive the capsule. If the previous name stored
in the capsule was not NULL, no attempt is made to free it.
Return 0 on success. Return nonzero and set an exception on failure.

int PyCapsule_SetPointer(PyObject *capsule, void *pointer)
Set the void pointer inside capsule to pointer. The pointer may not be NULL.
Return 0 on success. Return nonzero and set an exception on failure.

7.5.12 CObjects

Peringatan: The CObject API is deprecated as of Python 2.7. Please switch to the new Kapsul API.

PyCObject
This subtype of PyObject represents an opaque value, useful for C extension modules who need to pass an
opaque value (as a void* pointer) through Python code to other C code. It is often used to make a C function
pointer defined in one module available to other modules, so the regular import mechanism can be used to access
C APIs defined in dynamically loaded modules.

int PyCObject_Check(PyObject *p)
Return true if its argument is a PyCObject.

104 Bab 7. Lapisan Objek Konkrit

The Python/C API, Rilis 2.7.18

PyObject* PyCObject_FromVoidPtr(void* cobj, void (*destr)(void *))
Return value: New reference. Create a PyCObject from the void * cobj. The destr function will be called
when the object is reclaimed, unless it is NULL.

PyObject* PyCObject_FromVoidPtrAndDesc(void* cobj, void* desc, void (*destr)(void *, void *))
Return value: New reference. Create a PyCObject from the void * cobj. The destr function will be called when
the object is reclaimed. The desc argument can be used to pass extra callback data for the destructor function.

void* PyCObject_AsVoidPtr(PyObject* self)
Return the object void * that the PyCObject self was created with.

void* PyCObject_GetDesc(PyObject* self)
Return the description void * that the PyCObject self was created with.

int PyCObject_SetVoidPtr(PyObject* self, void* cobj)
Set the void pointer inside self to cobj. The PyCObject must not have an associated destructor. Return true on
success, false on failure.

7.5.13 Objek Sel, Cell

”Cell” objects are used to implement variables referenced by multiple scopes. For each such variable, a cell object is
created to store the value; the local variables of each stack frame that references the value contains a reference to the cells
from outer scopes which also use that variable. When the value is accessed, the value contained in the cell is used instead
of the cell object itself. This de-referencing of the cell object requires support from the generated byte-code; these are
not automatically de-referenced when accessed. Cell objects are not likely to be useful elsewhere.
PyCellObject

Struktur C digunakan untuk objek sel.
PyTypeObject PyCell_Type

The type object corresponding to cell objects.
int PyCell_Check(ob)

Return true if ob is a cell object; ob must not be NULL.
PyObject* PyCell_New(PyObject *ob)

Return value: New reference. Create and return a new cell object containing the value ob. The parameter may be
NULL.

PyObject* PyCell_Get(PyObject *cell)
Return value: New reference. Kembalikan isi sel cell.

PyObject* PyCell_GET(PyObject *cell)
Return value: Borrowed reference. Return the contents of the cell cell, but without checking that cell is non-NULL
and a cell object.

int PyCell_Set(PyObject *cell, PyObject *value)
Set the contents of the cell object cell to value. This releases the reference to any current content of the cell. value
may be NULL. cellmust be non-NULL; if it is not a cell object, -1 will be returned. On success, 0 will be returned.

void PyCell_SET(PyObject *cell, PyObject *value)
Sets the value of the cell object cell to value. No reference counts are adjusted, and no checks are made for safety;
cell must be non-NULL and must be a cell object.

7.5. Objek lain 105

The Python/C API, Rilis 2.7.18

7.5.14 Generator Objects

Generator objects are what Python uses to implement generator iterators. They are normally created by iterating over a
function that yields values, rather than explicitly calling PyGen_New().
PyGenObject

The C structure used for generator objects.
PyTypeObject PyGen_Type

The type object corresponding to generator objects.
int PyGen_Check(ob)

Return true if ob is a generator object; ob must not be NULL.
int PyGen_CheckExact(ob)

Return true if ob’s type is PyGen_Type is a generator object; ob must not be NULL.
PyObject* PyGen_New(PyFrameObject *frame)

Return value: New reference. Create and return a new generator object based on the frame object. A reference to
frame is stolen by this function. The parameter must not be NULL.

7.5.15 Objek DateTime

Various date and time objects are supplied by the datetime module. Before using any of these functions, the hea-
der file datetime.h must be included in your source (note that this is not included by Python.h), and the macro
PyDateTime_IMPORTmust be invoked, usually as part of the module initialisation function. The macro puts a pointer
to a C structure into a static variable, PyDateTimeAPI, that is used by the following macros.
Type-check macros:
int PyDate_Check(PyObject *ob)

Return true if ob is of type PyDateTime_DateType or a subtype of PyDateTime_DateType. ob must
not be NULL.
Baru pada versi 2.4.

int PyDate_CheckExact(PyObject *ob)
Return true if ob is of type PyDateTime_DateType. ob must not be NULL.
Baru pada versi 2.4.

int PyDateTime_Check(PyObject *ob)
Return true if ob is of type PyDateTime_DateTimeType or a subtype of PyDateTime_DateTimeType.
ob must not be NULL.
Baru pada versi 2.4.

int PyDateTime_CheckExact(PyObject *ob)
Return true if ob is of type PyDateTime_DateTimeType. ob must not be NULL.
Baru pada versi 2.4.

int PyTime_Check(PyObject *ob)
Return true if ob is of type PyDateTime_TimeType or a subtype of PyDateTime_TimeType. ob must
not be NULL.
Baru pada versi 2.4.

int PyTime_CheckExact(PyObject *ob)
Return true if ob is of type PyDateTime_TimeType. ob must not be NULL.
Baru pada versi 2.4.

106 Bab 7. Lapisan Objek Konkrit

The Python/C API, Rilis 2.7.18

int PyDelta_Check(PyObject *ob)
Return true if ob is of type PyDateTime_DeltaType or a subtype of PyDateTime_DeltaType. obmust
not be NULL.
Baru pada versi 2.4.

int PyDelta_CheckExact(PyObject *ob)
Return true if ob is of type PyDateTime_DeltaType. ob must not be NULL.
Baru pada versi 2.4.

int PyTZInfo_Check(PyObject *ob)
Return true if ob is of type PyDateTime_TZInfoType or a subtype of PyDateTime_TZInfoType. ob
must not be NULL.
Baru pada versi 2.4.

int PyTZInfo_CheckExact(PyObject *ob)
Return true if ob is of type PyDateTime_TZInfoType. ob must not be NULL.
Baru pada versi 2.4.

Macros to create objects:
PyObject* PyDate_FromDate(int year, int month, int day)

Return value: New reference. Return a datetime.date object with the specified year, month and day.
Baru pada versi 2.4.

PyObject* PyDateTime_FromDateAndTime(int year, int month, int day, int hour, int minute, int second,
int usecond)

Return value: New reference. Return a datetime.datetime object with the specified year, month, day, hour,
minute, second and microsecond.
Baru pada versi 2.4.

PyObject* PyTime_FromTime(int hour, int minute, int second, int usecond)
Return value: New reference. Return a datetime.time object with the specified hour, minute, second and
microsecond.
Baru pada versi 2.4.

PyObject* PyDelta_FromDSU(int days, int seconds, int useconds)
Return value: New reference. Return a datetime.timedelta object representing the given number of days,
seconds and microseconds. Normalization is performed so that the resulting number of microseconds and seconds
lie in the ranges documented for datetime.timedelta objects.
Baru pada versi 2.4.

Macros to extract fields from date objects. The argument must be an instance of PyDateTime_Date, including su-
bclasses (such as PyDateTime_DateTime). The argument must not be NULL, and the type is not checked:
int PyDateTime_GET_YEAR(PyDateTime_Date *o)

Return the year, as a positive int.
Baru pada versi 2.4.

int PyDateTime_GET_MONTH(PyDateTime_Date *o)
Return the month, as an int from 1 through 12.
Baru pada versi 2.4.

int PyDateTime_GET_DAY(PyDateTime_Date *o)
Return the day, as an int from 1 through 31.
Baru pada versi 2.4.

7.5. Objek lain 107

The Python/C API, Rilis 2.7.18

Macros to extract fields from datetime objects. The argument must be an instance of PyDateTime_DateTime,
including subclasses. The argument must not be NULL, and the type is not checked:
int PyDateTime_DATE_GET_HOUR(PyDateTime_DateTime *o)

Return the hour, as an int from 0 through 23.
Baru pada versi 2.4.

int PyDateTime_DATE_GET_MINUTE(PyDateTime_DateTime *o)
Return the minute, as an int from 0 through 59.
Baru pada versi 2.4.

int PyDateTime_DATE_GET_SECOND(PyDateTime_DateTime *o)
Return the second, as an int from 0 through 59.
Baru pada versi 2.4.

int PyDateTime_DATE_GET_MICROSECOND(PyDateTime_DateTime *o)
Return the microsecond, as an int from 0 through 999999.
Baru pada versi 2.4.

Macros to extract fields from time objects. The argument must be an instance of PyDateTime_Time, including
subclasses. The argument must not be NULL, and the type is not checked:
int PyDateTime_TIME_GET_HOUR(PyDateTime_Time *o)

Return the hour, as an int from 0 through 23.
Baru pada versi 2.4.

int PyDateTime_TIME_GET_MINUTE(PyDateTime_Time *o)
Return the minute, as an int from 0 through 59.
Baru pada versi 2.4.

int PyDateTime_TIME_GET_SECOND(PyDateTime_Time *o)
Return the second, as an int from 0 through 59.
Baru pada versi 2.4.

int PyDateTime_TIME_GET_MICROSECOND(PyDateTime_Time *o)
Return the microsecond, as an int from 0 through 999999.
Baru pada versi 2.4.

Macros for the convenience of modules implementing the DB API:
PyObject* PyDateTime_FromTimestamp(PyObject *args)

Return value: New reference. Create and return a new datetime.datetime object given an argument tuple
suitable for passing to datetime.datetime.fromtimestamp().
Baru pada versi 2.4.

PyObject* PyDate_FromTimestamp(PyObject *args)
Return value: New reference. Create and return a new datetime.date object given an argument tuple suitable
for passing to datetime.date.fromtimestamp().
Baru pada versi 2.4.

108 Bab 7. Lapisan Objek Konkrit

The Python/C API, Rilis 2.7.18

7.5.16 Set Objects

Baru pada versi 2.5.
This section details the public API for set and frozenset objects. Any functionality not listed be-
low is best accessed using the either the abstract object protocol (including PyObject_CallMethod(),
PyObject_RichCompareBool(), PyObject_Hash(), PyObject_Repr(), PyObject_IsTrue(),
PyObject_Print(), and PyObject_GetIter()) or the abstract number protocol (inclu-
ding PyNumber_And(), PyNumber_Subtract(), PyNumber_Or(), PyNumber_Xor(),
PyNumber_InPlaceAnd(), PyNumber_InPlaceSubtract(), PyNumber_InPlaceOr(), and
PyNumber_InPlaceXor()).
PySetObject

This subtype of PyObject is used to hold the internal data for both set and frozenset objects. It is like
a PyDictObject in that it is a fixed size for small sets (much like tuple storage) and will point to a separate,
variable sized block of memory for medium and large sized sets (much like list storage). None of the fields of this
structure should be considered public and are subject to change. All access should be done through the documented
API rather than by manipulating the values in the structure.

PyTypeObject PySet_Type
This is an instance of PyTypeObject representing the Python set type.

PyTypeObject PyFrozenSet_Type
This is an instance of PyTypeObject representing the Python frozenset type.

The following type check macros work on pointers to any Python object. Likewise, the constructor functions work with
any iterable Python object.
int PySet_Check(PyObject *p)

Return true if p is a set object or an instance of a subtype.
Baru pada versi 2.6.

int PyFrozenSet_Check(PyObject *p)
Return true if p is a frozenset object or an instance of a subtype.
Baru pada versi 2.6.

int PyAnySet_Check(PyObject *p)
Return true if p is a set object, a frozenset object, or an instance of a subtype.

int PyAnySet_CheckExact(PyObject *p)
Return true if p is a set object or a frozenset object but not an instance of a subtype.

int PyFrozenSet_CheckExact(PyObject *p)
Return true if p is a frozenset object but not an instance of a subtype.

PyObject* PySet_New(PyObject *iterable)
Return value: New reference. Return a new set containing objects returned by the iterable. The iterable may be
NULL to create a new empty set. Return the new set on success or NULL on failure. Raise TypeError if iterable
is not actually iterable. The constructor is also useful for copying a set (c=set(s)).

PyObject* PyFrozenSet_New(PyObject *iterable)
Return value: New reference. Return a new frozenset containing objects returned by the iterable. The ite-
rable may be NULL to create a new empty frozenset. Return the new set on success or NULL on failure. Raise
TypeError if iterable is not actually iterable.
Berubah pada versi 2.6: Now guaranteed to return a brand-new frozenset. Formerly, frozensets of zero-length
were a singleton. This got in the way of building-up new frozensets with PySet_Add().

The following functions and macros are available for instances of set or frozenset or instances of their subtypes.

7.5. Objek lain 109

The Python/C API, Rilis 2.7.18

Py_ssize_t PySet_Size(PyObject *anyset)
Return the length of a set or frozenset object. Equivalent to len(anyset). Raises a
PyExc_SystemError if anyset is not a set, frozenset, or an instance of a subtype.
Berubah pada versi 2.5: This function returned an int. This might require changes in your code for properly
supporting 64-bit systems.

Py_ssize_t PySet_GET_SIZE(PyObject *anyset)
Macro form of PySet_Size() without error checking.

int PySet_Contains(PyObject *anyset, PyObject *key)
Return 1 if found, 0 if not found, and -1 if an error is encountered. Unlike the Python __contains__() me-
thod, this function does not automatically convert unhashable sets into temporary frozensets. Raise a TypeError
if the key is unhashable. Raise PyExc_SystemError if anyset is not a set, frozenset, or an instance of a
subtype.

int PySet_Add(PyObject *set, PyObject *key)
Add key to a set instance. Does not apply to frozenset instances. Return 0 on success or -1 on failure.
Raise a TypeError if the key is unhashable. Raise a MemoryError if there is no room to grow. Raise a
SystemError if set is not an instance of set or its subtype.
Berubah pada versi 2.6: Nowworks with instances of frozenset or its subtypes. Like PyTuple_SetItem()
in that it can be used to fill-in the values of brand new frozensets before they are exposed to other code.

The following functions are available for instances of set or its subtypes but not for instances of frozenset or its
subtypes.
int PySet_Discard(PyObject *set, PyObject *key)

Return 1 if found and removed, 0 if not found (no action taken), and -1 if an error is encountered. Do-
es not raise KeyError for missing keys. Raise a TypeError if the key is unhashable. Unlike the Python
discard() method, this function does not automatically convert unhashable sets into temporary frozensets.
Raise PyExc_SystemError if set is not an instance of set or its subtype.

PyObject* PySet_Pop(PyObject *set)
Return value: New reference. Return a new reference to an arbitrary object in the set, and removes the object from
the set. Return NULL on failure. Raise KeyError if the set is empty. Raise a SystemError if set is not an
instance of set or its subtype.

int PySet_Clear(PyObject *set)
Empty an existing set of all elements.

7.5.17 Objek Kode

Objek kode merupakan detail tingkat rendah dari implementasi CPython. Masing-masing mewakili sekumpulan kode
yang dapat dieksekusi dimana belum terikat ke fungsi.
PyCodeObject

Struktur C dari objek yang digunakan untukmenggambarkan objek kode. Jenis dari tipe ini dapat berubah sewaktu-
waktu.

PyTypeObject PyCode_Type
Ini adalah contoh dari PyTypeObject mewakili tipe Python code.

int PyCode_Check(PyObject *co)
Mengembalikan nilai true jika co adalah objek code.

int PyCode_GetNumFree(PyObject *co)
Mengembalikan jumlah variabel bebas dalam co.

110 Bab 7. Lapisan Objek Konkrit

The Python/C API, Rilis 2.7.18

PyCodeObject *PyCode_New(int argcount, int nlocals, int stacksize, int flags, PyObject *code, PyObject *consts,
PyObject *names, PyObject *varnames, PyObject *freevars, PyObject *cellvars,
PyObject *filename, PyObject *name, int firstlineno, PyObject *lnotab)

Mengembalikan objek kode baru. Jika Anda memerlukan objek kode dummy untuk membuat bingkai, gunakan :c:
func:PyCode_NewEmpty sebagai gantinya. Memanggil PyCode_New() secara langsung dapat mengikat Anda
ke versi Python yang tepat karena seringnya perubahan definisi bytecode.

int PyCode_NewEmpty(const char *filename, const char *funcname, int firstlineno)
Return a new empty code object with the specified filename, function name, and first line number. It is illegal to
exec or eval() the resulting code object.

7.5. Objek lain 111

The Python/C API, Rilis 2.7.18

112 Bab 7. Lapisan Objek Konkrit

BAB8

Initialization, Finalization, and Threads

8.1 Initializing and finalizing the interpreter

void Py_Initialize()
Initialize the Python interpreter. In an application embedding Python, this should be called before using any
other Python/C API functions; with the exception of Py_SetProgramName(), Py_SetPythonHome(),
PyEval_InitThreads(), PyEval_ReleaseLock(), and PyEval_AcquireLock(). This initia-
lizes the table of loaded modules (sys.modules), and creates the fundamental modules __builtin__,
__main__ and sys. It also initializes the module search path (sys.path). It does not set sys.
argv; use PySys_SetArgvEx() for that. This is a no-op when called for a second time (without calling
Py_Finalize() first). There is no return value; it is a fatal error if the initialization fails.

void Py_InitializeEx(int initsigs)
This function works like Py_Initialize() if initsigs is 1. If initsigs is 0, it skips initialization registration of
signal handlers, which might be useful when Python is embedded.
Baru pada versi 2.4.

int Py_IsInitialized()
Return true (nonzero) when the Python interpreter has been initialized, false (zero) if not. AfterPy_Finalize()
is called, this returns false until Py_Initialize() is called again.

void Py_Finalize()
Undo all initializations made by Py_Initialize() and subsequent use of Python/C API functions, and destroy
all sub-interpreters (see Py_NewInterpreter() below) that were created and not yet destroyed since the last
call to Py_Initialize(). Ideally, this frees all memory allocated by the Python interpreter. This is a no-op
when called for a second time (without calling Py_Initialize() again first). There is no return value; errors
during finalization are ignored.
This function is provided for a number of reasons. An embedding application might want to restart Python without
having to restart the application itself. An application that has loaded the Python interpreter from a dynamically
loadable library (or DLL) might want to free all memory allocated by Python before unloading the DLL. During
a hunt for memory leaks in an application a developer might want to free all memory allocated by Python before
exiting from the application.

113

The Python/C API, Rilis 2.7.18

Bugs and caveats: The destruction of modules and objects in modules is done in random order; this may cause
destructors (__del__()methods) to fail when they depend on other objects (even functions) or modules. Dyna-
mically loaded extension modules loaded by Python are not unloaded. Small amounts of memory allocated by the
Python interpreter may not be freed (if you find a leak, please report it). Memory tied up in circular references
between objects is not freed. Some memory allocated by extension modules may not be freed. Some extensions
may not work properly if their initialization routine is called more than once; this can happen if an application calls
Py_Initialize() and Py_Finalize() more than once.

8.2 Process-wide parameters

void Py_SetProgramName(char *name)
This function should be called before Py_Initialize() is called for the first time, if it is called at all. It tells
the interpreter the value of the argv[0] argument to the main() function of the program. This is used by
Py_GetPath() and some other functions below to find the Python run-time libraries relative to the interpreter
executable. The default value is 'python'. The argument should point to a zero-terminated character string in
static storage whose contents will not change for the duration of the program’s execution. No code in the Python
interpreter will change the contents of this storage.

char* Py_GetProgramName()
Return the program name set with Py_SetProgramName(), or the default. The returned string points into
static storage; the caller should not modify its value.

char* Py_GetPrefix()
Return the prefix for installed platform-independent files. This is derived through a number of complicated rules
from the program name set with Py_SetProgramName() and some environment variables; for example, if the
program name is '/usr/local/bin/python', the prefix is '/usr/local'. The returned string points
into static storage; the caller should not modify its value. This corresponds to the prefix variable in the top-
level Makefile and the --prefix argument to the configure script at build time. The value is available to
Python code as sys.prefix. It is only useful on Unix. See also the next function.

char* Py_GetExecPrefix()
Return the exec-prefix for installed platform-dependent files. This is derived through a number of complicated rules
from the program name set with Py_SetProgramName() and some environment variables; for example, if
the program name is '/usr/local/bin/python', the exec-prefix is '/usr/local'. The returned string
points into static storage; the caller should not modify its value. This corresponds to the exec_prefix variable
in the top-level Makefile and the --exec-prefix argument to the configure script at build time. The
value is available to Python code as sys.exec_prefix. It is only useful on Unix.
Background: The exec-prefix differs from the prefix when platform dependent files (such as executables and shared
libraries) are installed in a different directory tree. In a typical installation, platform dependent files may be installed
in the /usr/local/plat subtree while platform independent may be installed in /usr/local.
Generally speaking, a platform is a combination of hardware and software families, e.g. Sparc machines running
the Solaris 2.x operating system are considered the same platform, but Intel machines running Solaris 2.x are
another platform, and Intel machines running Linux are yet another platform. Different major revisions of the
same operating system generally also form different platforms. Non-Unix operating systems are a different story;
the installation strategies on those systems are so different that the prefix and exec-prefix are meaningless, and set
to the empty string. Note that compiled Python bytecode files are platform independent (but not independent from
the Python version by which they were compiled!).
System administrators will know how to configure the mount or automount programs to share /usr/local
between platforms while having /usr/local/plat be a different filesystem for each platform.

char* Py_GetProgramFullPath()
Return the full program name of the Python executable; this is computed as a side-effect of deriving the default
module search path from the program name (set by Py_SetProgramName() above). The returned string

114 Bab 8. Initialization, Finalization, and Threads

The Python/C API, Rilis 2.7.18

points into static storage; the caller should not modify its value. The value is available to Python code as sys.
executable.

char* Py_GetPath()
Return the default module search path; this is computed from the program name (set by
Py_SetProgramName() above) and some environment variables. The returned string consists of a se-
ries of directory names separated by a platform dependent delimiter character. The delimiter character is ':'
on Unix and Mac OS X, ';' on Windows. The returned string points into static storage; the caller should not
modify its value. The list sys.path is initialized with this value on interpreter startup; it can be (and usually is)
modified later to change the search path for loading modules.

const char* Py_GetVersion()
Return the version of this Python interpreter. This is a string that looks something like

"1.5 (#67, Dec 31 1997, 22:34:28) [GCC 2.7.2.2]"

The first word (up to the first space character) is the current Python version; the first three characters are the major
and minor version separated by a period. The returned string points into static storage; the caller should not modify
its value. The value is available to Python code as sys.version.

const char* Py_GetPlatform()
Return the platform identifier for the current platform. On Unix, this is formed from the ”official” name of the
operating system, converted to lower case, followed by the major revision number; e.g., for Solaris 2.x, which is
also known as SunOS 5.x, the value is 'sunos5'. On Mac OS X, it is 'darwin'. On Windows, it is 'win'.
The returned string points into static storage; the caller should not modify its value. The value is available to Python
code as sys.platform.

const char* Py_GetCopyright()
Return the official copyright string for the current Python version, for example
'Copyright 1991-1995 Stichting Mathematisch Centrum, Amsterdam'

The returned string points into static storage; the caller should not modify its value. The value is available to Python
code as sys.copyright.

const char* Py_GetCompiler()
Return an indication of the compiler used to build the current Python version, in square brackets, for example:

"[GCC 2.7.2.2]"

The returned string points into static storage; the caller should not modify its value. The value is available to Python
code as part of the variable sys.version.

const char* Py_GetBuildInfo()
Return information about the sequence number and build date and time of the current Python interpreter instance,
for example

"#67, Aug 1 1997, 22:34:28"

The returned string points into static storage; the caller should not modify its value. The value is available to Python
code as part of the variable sys.version.

void PySys_SetArgvEx(int argc, char **argv, int updatepath)
Set sys.argv based on argc and argv. These parameters are similar to those passed to the program’s main()
function with the difference that the first entry should refer to the script file to be executed rather than the executable
hosting the Python interpreter. If there isn’t a script that will be run, the first entry in argv can be an empty string.
If this function fails to initialize sys.argv, a fatal condition is signalled using Py_FatalError().
If updatepath is zero, this is all the function does. If updatepath is non-zero, the function also modifies sys.path
according to the following algorithm:

8.2. Process-wide parameters 115

The Python/C API, Rilis 2.7.18

• If the name of an existing script is passed in argv[0], the absolute path of the directory where the script
is located is prepended to sys.path.

• Otherwise (that is, if argc is 0 or argv[0] doesn’t point to an existing file name), an empty string is pre-
pended to sys.path, which is the same as prepending the current working directory (".").

Catatan: It is recommended that applications embedding the Python interpreter for purposes other than executing
a single script pass 0 as updatepath, and update sys.path themselves if desired. See CVE-2008-5983.
On versions before 2.6.6, you can achieve the same effect by manually popping the first sys.path element after
having called PySys_SetArgv(), for example using:

PyRun_SimpleString("import sys; sys.path.pop(0)\n");

Baru pada versi 2.6.6.
void PySys_SetArgv(int argc, char **argv)

This function works like PySys_SetArgvEx() with updatepath set to 1.
void Py_SetPythonHome(char *home)

Set the default ”home” directory, that is, the location of the standard Python libraries. See PYTHONHOME for the
meaning of the argument string.
The argument should point to a zero-terminated character string in static storage whose contents will not change for
the duration of the program’s execution. No code in the Python interpreter will change the contents of this storage.

char* Py_GetPythonHome()
Return the default ”home”, that is, the value set by a previous call to Py_SetPythonHome(), or the value of
the PYTHONHOME environment variable if it is set.

8.3 Thread State and the Global Interpreter Lock

The Python interpreter is not fully thread-safe. In order to support multi-threaded Python programs, there’s a global lock,
called the global interpreter lock or GIL, that must be held by the current thread before it can safely access Python objects.
Without the lock, even the simplest operations could cause problems in a multi-threaded program: for example, when
two threads simultaneously increment the reference count of the same object, the reference count could end up being
incremented only once instead of twice.
Therefore, the rule exists that only the thread that has acquired the GIL may operate on Python objects or call Python/C
API functions. In order to emulate concurrency of execution, the interpreter regularly tries to switch threads (see sys.
setcheckinterval()). The lock is also released around potentially blocking I/O operations like reading or writing
a file, so that other Python threads can run in the meantime.
The Python interpreter keeps some thread-specific bookkeeping information inside a data structure called
PyThreadState. There’s also one global variable pointing to the current PyThreadState: it can be retrieved
using PyThreadState_Get().

116 Bab 8. Initialization, Finalization, and Threads

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-5983

The Python/C API, Rilis 2.7.18

8.3.1 Releasing the GIL from extension code

Most extension code manipulating the GIL has the following simple structure:

Save the thread state in a local variable.
Release the global interpreter lock.
... Do some blocking I/O operation ...
Reacquire the global interpreter lock.
Restore the thread state from the local variable.

This is so common that a pair of macros exists to simplify it:

Py_BEGIN_ALLOW_THREADS
... Do some blocking I/O operation ...
Py_END_ALLOW_THREADS

The Py_BEGIN_ALLOW_THREADS macro opens a new block and declares a hidden local variable; the
Py_END_ALLOW_THREADS macro closes the block. These two macros are still available when Python is compiled
without thread support (they simply have an empty expansion).
When thread support is enabled, the block above expands to the following code:

PyThreadState *_save;

_save = PyEval_SaveThread();
...Do some blocking I/O operation...
PyEval_RestoreThread(_save);

Here is how these functions work: the global interpreter lock is used to protect the pointer to the current thread state.
When releasing the lock and saving the thread state, the current thread state pointer must be retrieved before the lock is
released (since another thread could immediately acquire the lock and store its own thread state in the global variable).
Conversely, when acquiring the lock and restoring the thread state, the lock must be acquired before storing the thread
state pointer.

Catatan: Calling system I/O functions is the most common use case for releasing the GIL, but it can also be useful
before calling long-running computations which don’t need access to Python objects, such as compression or cryptographic
functions operating over memory buffers. For example, the standard zlib and hashlibmodules release the GIL when
compressing or hashing data.

8.3.2 Non-Python created threads

When threads are created using the dedicated Python APIs (such as the threading module), a thread state is auto-
matically associated to them and the code showed above is therefore correct. However, when threads are created from
C (for example by a third-party library with its own thread management), they don’t hold the GIL, nor is there a thread
state structure for them.
If you need to call Python code from these threads (often this will be part of a callbackAPI provided by the aforementioned
third-party library), you must first register these threads with the interpreter by creating a thread state data structure, then
acquiring the GIL, and finally storing their thread state pointer, before you can start using the Python/C API. When you
are done, you should reset the thread state pointer, release the GIL, and finally free the thread state data structure.
The PyGILState_Ensure() and PyGILState_Release() functions do all of the above automatically. The
typical idiom for calling into Python from a C thread is:

8.3. Thread State and the Global Interpreter Lock 117

The Python/C API, Rilis 2.7.18

PyGILState_STATE gstate;
gstate = PyGILState_Ensure();

/* Perform Python actions here. */
result = CallSomeFunction();
/* evaluate result or handle exception */

/* Release the thread. No Python API allowed beyond this point. */
PyGILState_Release(gstate);

Note that the PyGILState_*() functions assume there is only one global interpreter (created automatically by
Py_Initialize()). Python supports the creation of additional interpreters (using Py_NewInterpreter()),
but mixing multiple interpreters and the PyGILState_*() API is unsupported.
Another important thing to note about threads is their behaviour in the face of the C fork() call. On most systems with
fork(), after a process forks only the thread that issued the fork will exist. That also means any locks held by other
threads will never be released. Python solves this for os.fork() by acquiring the locks it uses internally before the
fork, and releasing them afterwards. In addition, it resets any lock-objects in the child. When extending or embedding
Python, there is no way to inform Python of additional (non-Python) locks that need to be acquired before or reset after
a fork. OS facilities such as pthread_atfork() would need to be used to accomplish the same thing. Additionally,
when extending or embedding Python, calling fork() directly rather than through os.fork() (and returning to or
calling into Python) may result in a deadlock by one of Python’s internal locks being held by a thread that is defunct after
the fork. PyOS_AfterFork() tries to reset the necessary locks, but is not always able to.

8.3.3 High-level API

These are the most commonly used types and functions when writing C extension code, or when embedding the Python
interpreter:
PyInterpreterState

This data structure represents the state shared by a number of cooperating threads. Threads belonging to the same
interpreter share their module administration and a few other internal items. There are no public members in this
structure.
Threads belonging to different interpreters initially share nothing, except process state like available memory, open
file descriptors and such. The global interpreter lock is also shared by all threads, regardless of to which interpreter
they belong.

PyThreadState
This data structure represents the state of a single thread. The only public data member is
PyInterpreterState *interp, which points to this thread’s interpreter state.

void PyEval_InitThreads()
Initialize and acquire the global interpreter lock. It should be called in the main thread before crea-
ting a second thread or engaging in any other thread operations such as PyEval_ReleaseLock() or
PyEval_ReleaseThread(tstate). It is not needed before calling PyEval_SaveThread() or
PyEval_RestoreThread().
This is a no-op when called for a second time. It is safe to call this function before calling Py_Initialize().

Catatan: When only the main thread exists, no GIL operations are needed. This is a common situation (most
Python programs do not use threads), and the lock operations slow the interpreter down a bit. Therefore, the lock
is not created initially. This situation is equivalent to having acquired the lock: when there is only a single thread,
all object accesses are safe. Therefore, when this function initializes the global interpreter lock, it also acquires it.
Before the Python _thread module creates a new thread, knowing that either it has the lock or the lock hasn’t

118 Bab 8. Initialization, Finalization, and Threads

The Python/C API, Rilis 2.7.18

been created yet, it calls PyEval_InitThreads(). When this call returns, it is guaranteed that the lock has
been created and that the calling thread has acquired it.
It is not safe to call this function when it is unknown which thread (if any) currently has the global interpreter lock.
This function is not available when thread support is disabled at compile time.

int PyEval_ThreadsInitialized()
Returns a non-zero value if PyEval_InitThreads() has been called. This function can be called without
holding the GIL, and therefore can be used to avoid calls to the locking API when running single-threaded. This
function is not available when thread support is disabled at compile time.
Baru pada versi 2.4.

PyThreadState* PyEval_SaveThread()
Release the global interpreter lock (if it has been created and thread support is enabled) and reset the thread state
to NULL, returning the previous thread state (which is not NULL). If the lock has been created, the current thread
must have acquired it. (This function is available even when thread support is disabled at compile time.)

void PyEval_RestoreThread(PyThreadState *tstate)
Acquire the global interpreter lock (if it has been created and thread support is enabled) and set the thread state to
tstate, which must not beNULL. If the lock has been created, the current thread must not have acquired it, otherwise
deadlock ensues. (This function is available even when thread support is disabled at compile time.)

PyThreadState* PyThreadState_Get()
Return the current thread state. The global interpreter lock must be held. When the current thread state is NULL,
this issues a fatal error (so that the caller needn’t check for NULL).

PyThreadState* PyThreadState_Swap(PyThreadState *tstate)
Swap the current thread state with the thread state given by the argument tstate, which may be NULL. The global
interpreter lock must be held and is not released.

void PyEval_ReInitThreads()
This function is called from PyOS_AfterFork() to ensure that newly created child processes don’t hold locks
referring to threads which are not running in the child process.

The following functions use thread-local storage, and are not compatible with sub-interpreters:
PyGILState_STATE PyGILState_Ensure()

Ensure that the current thread is ready to call the Python C API regardless of the current state of Python, or
of the global interpreter lock. This may be called as many times as desired by a thread as long as each call is
matched with a call to PyGILState_Release(). In general, other thread-related APIs may be used betwe-
en PyGILState_Ensure() and PyGILState_Release() calls as long as the thread state is restored to
its previous state before the Release(). For example, normal usage of the Py_BEGIN_ALLOW_THREADS and
Py_END_ALLOW_THREADS macros is acceptable.
The return value is an opaque ”handle” to the thread state when PyGILState_Ensure() was called, and must
be passed to PyGILState_Release() to ensure Python is left in the same state. Even though recursive calls
are allowed, these handles cannot be shared - each unique call to PyGILState_Ensure()must save the handle
for its call to PyGILState_Release().
When the function returns, the current thread will hold the GIL and be able to call arbitrary Python code. Failure
is a fatal error.
Baru pada versi 2.3.

void PyGILState_Release(PyGILState_STATE)
Release any resources previously acquired. After this call, Python’s state will be the same as it was prior to the
corresponding PyGILState_Ensure() call (but generally this state will be unknown to the caller, hence the
use of the GILState API).

8.3. Thread State and the Global Interpreter Lock 119

The Python/C API, Rilis 2.7.18

Every call to PyGILState_Ensure()must be matched by a call to PyGILState_Release() on the same
thread.
Baru pada versi 2.3.

PyThreadState* PyGILState_GetThisThreadState()
Get the current thread state for this thread. May return NULL if no GILState API has been used on the current
thread. Note that the main thread always has such a thread-state, even if no auto-thread-state call has been made
on the main thread. This is mainly a helper/diagnostic function.
Baru pada versi 2.3.

The following macros are normally used without a trailing semicolon; look for example usage in the Python source
distribution.
Py_BEGIN_ALLOW_THREADS

This macro expands to { PyThreadState *_save; _save = PyEval_SaveThread();. Note that
it contains an opening brace; it must be matched with a following Py_END_ALLOW_THREADSmacro. See above
for further discussion of this macro. It is a no-op when thread support is disabled at compile time.

Py_END_ALLOW_THREADS
This macro expands to PyEval_RestoreThread(_save); }. Note that it contains a closing brace; it must
bematched with an earlierPy_BEGIN_ALLOW_THREADSmacro. See above for further discussion of this macro.
It is a no-op when thread support is disabled at compile time.

Py_BLOCK_THREADS
This macro expands to PyEval_RestoreThread(_save);: it is equivalent to
Py_END_ALLOW_THREADS without the closing brace. It is a no-op when thread support is disabled at
compile time.

Py_UNBLOCK_THREADS
This macro expands to _save = PyEval_SaveThread();: it is equivalent to
Py_BEGIN_ALLOW_THREADS without the opening brace and variable declaration. It is a no-op when
thread support is disabled at compile time.

8.3.4 Low-level API

All of the following functions are only available when thread support is enabled at compile time, and must be called only
when the global interpreter lock has been created.
PyInterpreterState* PyInterpreterState_New()

Create a new interpreter state object. The global interpreter lock need not be held, but may be held if it is necessary
to serialize calls to this function.

void PyInterpreterState_Clear(PyInterpreterState *interp)
Reset all information in an interpreter state object. The global interpreter lock must be held.

void PyInterpreterState_Delete(PyInterpreterState *interp)
Destroy an interpreter state object. The global interpreter lock need not be held. The interpreter state must have
been reset with a previous call to PyInterpreterState_Clear().

PyThreadState* PyThreadState_New(PyInterpreterState *interp)
Create a new thread state object belonging to the given interpreter object. The global interpreter lock need not be
held, but may be held if it is necessary to serialize calls to this function.

void PyThreadState_Clear(PyThreadState *tstate)
Reset all information in a thread state object. The global interpreter lock must be held.

120 Bab 8. Initialization, Finalization, and Threads

The Python/C API, Rilis 2.7.18

void PyThreadState_Delete(PyThreadState *tstate)
Destroy a thread state object. The global interpreter lock need not be held. The thread state must have been reset
with a previous call to PyThreadState_Clear().

PyObject* PyThreadState_GetDict()
Return value: Borrowed reference. Return a dictionary in which extensions can store thread-specific state informa-
tion. Each extension should use a unique key to use to store state in the dictionary. It is okay to call this function
when no current thread state is available. If this function returns NULL, no exception has been raised and the caller
should assume no current thread state is available.
Berubah pada versi 2.3: Previously this could only be called when a current thread is active, and NULL meant that
an exception was raised.

int PyThreadState_SetAsyncExc(long id, PyObject *exc)
Asynchronously raise an exception in a thread. The id argument is the thread id of the target thread; exc is the
exception object to be raised. This function does not steal any references to exc. To prevent naive misuse, you must
write your own C extension to call this. Must be called with the GIL held. Returns the number of thread states
modified; this is normally one, but will be zero if the thread id isn’t found. If exc is NULL, the pending exception
(if any) for the thread is cleared. This raises no exceptions.
Baru pada versi 2.3.

void PyEval_AcquireThread(PyThreadState *tstate)
Acquire the global interpreter lock and set the current thread state to tstate, which should not be NULL. The lock
must have been created earlier. If this thread already has the lock, deadlock ensues.
PyEval_RestoreThread() is a higher-level function which is always available (even when thread support
isn’t enabled or when threads have not been initialized).

void PyEval_ReleaseThread(PyThreadState *tstate)
Reset the current thread state to NULL and release the global interpreter lock. The lock must have been created
earlier and must be held by the current thread. The tstate argument, which must not be NULL, is only used to check
that it represents the current thread state --- if it isn’t, a fatal error is reported.
PyEval_SaveThread() is a higher-level function which is always available (even when thread support isn’t
enabled or when threads have not been initialized).

void PyEval_AcquireLock()
Acquire the global interpreter lock. The lock must have been created earlier. If this thread already has the lock, a
deadlock ensues.

Peringatan: This function does not change the current thread state. Please use
PyEval_RestoreThread() or PyEval_AcquireThread() instead.

void PyEval_ReleaseLock()
Release the global interpreter lock. The lock must have been created earlier.

Peringatan: This function does not change the current thread state. Please use PyEval_SaveThread()
or PyEval_ReleaseThread() instead.

8.3. Thread State and the Global Interpreter Lock 121

The Python/C API, Rilis 2.7.18

8.4 Sub-interpreter support

While in most uses, you will only embed a single Python interpreter, there are cases where you need to create several
independent interpreters in the same process and perhaps even in the same thread. Sub-interpreters allow you to do that.
You can switch between sub-interpreters using the PyThreadState_Swap() function. You can create and destroy
them using the following functions:
PyThreadState* Py_NewInterpreter()

Create a new sub-interpreter. This is an (almost) totally separate environment for the execution of Python code.
In particular, the new interpreter has separate, independent versions of all imported modules, including the fun-
damental modules builtins, __main__ and sys. The table of loaded modules (sys.modules) and the
module search path (sys.path) are also separate. The new environment has no sys.argv variable. It has
new standard I/O stream file objects sys.stdin, sys.stdout and sys.stderr (however these refer to the
same underlying file descriptors).
The return value points to the first thread state created in the new sub-interpreter. This thread state is made in the
current thread state. Note that no actual thread is created; see the discussion of thread states below. If creation
of the new interpreter is unsuccessful, NULL is returned; no exception is set since the exception state is stored in
the current thread state and there may not be a current thread state. (Like all other Python/C API functions, the
global interpreter lock must be held before calling this function and is still held when it returns; however, unlike
most other Python/C API functions, there needn’t be a current thread state on entry.)
Extensionmodules are shared between (sub-)interpreters as follows: the first time a particular extension is imported,
it is initialized normally, and a (shallow) copy of its module’s dictionary is squirreled away. When the same extension
is imported by another (sub-)interpreter, a new module is initialized and filled with the contents of this copy; the
extension’s init function is not called. Note that this is different fromwhat happens when an extension is imported
after the interpreter has been completely re-initialized by calling Py_Finalize() and Py_Initialize();
in that case, the extension’s initmodule function is called again.

void Py_EndInterpreter(PyThreadState *tstate)
Destroy the (sub-)interpreter represented by the given thread state. The given thread state must be the current
thread state. See the discussion of thread states below. When the call returns, the current thread state is NULL. All
thread states associated with this interpreter are destroyed. (The global interpreter lock must be held before calling
this function and is still held when it returns.) Py_Finalize() will destroy all sub-interpreters that haven’t been
explicitly destroyed at that point.

8.4.1 Bugs and caveats

Because sub-interpreters (and the main interpreter) are part of the same process, the insulation between them isn’t perfect
--- for example, using low-level file operations likeos.close() they can (accidentally or maliciously) affect each other’s
open files. Because of the way extensions are shared between (sub-)interpreters, some extensions may not work properly;
this is especially likely when the extension makes use of (static) global variables, or when the extension manipulates its
module’s dictionary after its initialization. It is possible to insert objects created in one sub-interpreter into a namespace of
another sub-interpreter; this should be done with great care to avoid sharing user-defined functions, methods, instances or
classes between sub-interpreters, since import operations executed by such objects may affect the wrong (sub-)interpreter’s
dictionary of loaded modules.
Also note that combining this functionality with PyGILState_*() APIs is delicate, because these APIs assume a
bijection between Python thread states and OS-level threads, an assumption broken by the presence of sub-interpreters.
It is highly recommended that you don’t switch sub-interpreters between a pair of matching PyGILState_Ensure()
and PyGILState_Release() calls. Furthermore, extensions (such as ctypes) using these APIs to allow calling
of Python code from non-Python created threads will probably be broken when using sub-interpreters.

122 Bab 8. Initialization, Finalization, and Threads

The Python/C API, Rilis 2.7.18

8.5 Asynchronous Notifications

A mechanism is provided to make asynchronous notifications to the main interpreter thread. These notifications take the
form of a function pointer and a void pointer argument.
int Py_AddPendingCall(int (*func)(void *), void *arg)

Schedule a function to be called from the main interpreter thread. On success, 0 is returned and func is queued for
being called in the main thread. On failure, -1 is returned without setting any exception.
When successfully queued, func will be eventually called from the main interpreter thread with the argument arg.
It will be called asynchronously with respect to normally running Python code, but with both these conditions met:

• on a bytecode boundary;
• with the main thread holding the global interpreter lock (func can therefore use the full C API).

funcmust return 0 on success, or -1 on failure with an exception set. func won’t be interrupted to perform another
asynchronous notification recursively, but it can still be interrupted to switch threads if the global interpreter lock
is released.
This function doesn’t need a current thread state to run, and it doesn’t need the global interpreter lock.

Peringatan: This is a low-level function, only useful for very special cases. There is no guarantee that func
will be called as quick as possible. If the main thread is busy executing a system call, func won’t be called
before the system call returns. This function is generally not suitable for calling Python code from arbitrary C
threads. Instead, use the PyGILState API.

Baru pada versi 2.7.

8.6 Profiling and Tracing

The Python interpreter provides some low-level support for attaching profiling and execution tracing facilities. These are
used for profiling, debugging, and coverage analysis tools.
Starting with Python 2.2, the implementation of this facility was substantially revised, and an interface from C was added.
This C interface allows the profiling or tracing code to avoid the overhead of calling through Python-level callable objects,
making a direct C function call instead. The essential attributes of the facility have not changed; the interface allows trace
functions to be installed per-thread, and the basic events reported to the trace function are the same as had been reported
to the Python-level trace functions in previous versions.
int (*Py_tracefunc)(PyObject *obj, PyFrameObject *frame, int what, PyObject *arg)

The type of the trace function registered using PyEval_SetProfile() and PyEval_SetTrace(). The
first parameter is the object passed to the registration function as obj, frame is the frame object to which the
event pertains, what is one of the constants PyTrace_CALL, PyTrace_EXCEPTION, PyTrace_LINE,
PyTrace_RETURN, PyTrace_C_CALL, PyTrace_C_EXCEPTION, or PyTrace_C_RETURN, and arg
depends on the value of what:

8.5. Asynchronous Notifications 123

The Python/C API, Rilis 2.7.18

Value of what Meaning of arg
PyTrace_CALL Always Py_None.
PyTrace_EXCEPTION Exception information as returned by sys.exc_info().
PyTrace_LINE Always Py_None.
PyTrace_RETURN Value being returned to the caller, or NULL if caused by an exception.
PyTrace_C_CALL Function object being called.
PyTrace_C_EXCEPTION Function object being called.
PyTrace_C_RETURN Function object being called.

int PyTrace_CALL
The value of the what parameter to a Py_tracefunc function when a new call to a function or method is being
reported, or a new entry into a generator. Note that the creation of the iterator for a generator function is not
reported as there is no control transfer to the Python bytecode in the corresponding frame.

int PyTrace_EXCEPTION
The value of the what parameter to a Py_tracefunc function when an exception has been raised. The callback
function is called with this value for what when after any bytecode is processed after which the exception becomes
set within the frame being executed. The effect of this is that as exception propagation causes the Python stack to
unwind, the callback is called upon return to each frame as the exception propagates. Only trace functions receives
these events; they are not needed by the profiler.

int PyTrace_LINE
The value passed as the what parameter to a trace function (but not a profiling function) when a line-number event
is being reported.

int PyTrace_RETURN
The value for the what parameter to Py_tracefunc functions when a call is about to return.

int PyTrace_C_CALL
The value for the what parameter to Py_tracefunc functions when a C function is about to be called.

int PyTrace_C_EXCEPTION
The value for the what parameter to Py_tracefunc functions when a C function has raised an exception.

int PyTrace_C_RETURN
The value for the what parameter to Py_tracefunc functions when a C function has returned.

void PyEval_SetProfile(Py_tracefunc func, PyObject *obj)
Set the profiler function to func. The obj parameter is passed to the function as its first parameter, and may be
any Python object, or NULL. If the profile function needs to maintain state, using a different value for obj for each
thread provides a convenient and thread-safe place to store it. The profile function is called for all monitored events
except PyTrace_LINE and PyTrace_EXCEPTION.

void PyEval_SetTrace(Py_tracefunc func, PyObject *obj)
Set the tracing function to func. This is similar to PyEval_SetProfile(), except the tracing fun-
ction does receive line-number events and does not receive any event related to C function objects being
called. Any trace function registered using PyEval_SetTrace() will not receive PyTrace_C_CALL,
PyTrace_C_EXCEPTION or PyTrace_C_RETURN as a value for the what parameter.

PyObject* PyEval_GetCallStats(PyObject *self)
Return a tuple of function call counts. There are constants defined for the positions within the tuple:

124 Bab 8. Initialization, Finalization, and Threads

The Python/C API, Rilis 2.7.18

Name Value
PCALL_ALL 0
PCALL_FUNCTION 1
PCALL_FAST_FUNCTION 2
PCALL_FASTER_FUNCTION 3
PCALL_METHOD 4
PCALL_BOUND_METHOD 5
PCALL_CFUNCTION 6
PCALL_TYPE 7
PCALL_GENERATOR 8
PCALL_OTHER 9
PCALL_POP 10

PCALL_FAST_FUNCTIONmeans no argument tuple needs to be created. PCALL_FASTER_FUNCTIONmeans
that the fast-path frame setup code is used.
If there is a method call where the call can be optimized by changing the argument tuple and calling the function
directly, it gets recorded twice.
This function is only present if Python is compiled with CALL_PROFILE defined.

8.7 Advanced Debugger Support

These functions are only intended to be used by advanced debugging tools.
PyInterpreterState* PyInterpreterState_Head()

Return the interpreter state object at the head of the list of all such objects.
Baru pada versi 2.2.

PyInterpreterState* PyInterpreterState_Next(PyInterpreterState *interp)
Return the next interpreter state object after interp from the list of all such objects.
Baru pada versi 2.2.

PyThreadState * PyInterpreterState_ThreadHead(PyInterpreterState *interp)
Return the pointer to the first PyThreadState object in the list of threads associated with the interpreter interp.
Baru pada versi 2.2.

PyThreadState* PyThreadState_Next(PyThreadState *tstate)
Return the next thread state object after tstate from the list of all such objects belonging to the same
PyInterpreterState object.
Baru pada versi 2.2.

8.7. Advanced Debugger Support 125

The Python/C API, Rilis 2.7.18

126 Bab 8. Initialization, Finalization, and Threads

BAB9

Memory Management

9.1 Overview

Memory management in Python involves a private heap containing all Python objects and data structures. The manage-
ment of this private heap is ensured internally by the Python memory manager. The Python memory manager has different
components which deal with various dynamic storage management aspects, like sharing, segmentation, preallocation or
caching.
At the lowest level, a raw memory allocator ensures that there is enough room in the private heap for storing all Python-
related data by interacting with the memory manager of the operating system. On top of the rawmemory allocator, several
object-specific allocators operate on the same heap and implement distinct memory management policies adapted to the
peculiarities of every object type. For example, integer objects are managed differently within the heap than strings, tuples
or dictionaries because integers imply different storage requirements and speed/space tradeoffs. The Python memory
manager thus delegates some of the work to the object-specific allocators, but ensures that the latter operate within the
bounds of the private heap.
It is important to understand that the management of the Python heap is performed by the interpreter itself and that the
user has no control over it, even if they regularly manipulate object pointers to memory blocks inside that heap. The
allocation of heap space for Python objects and other internal buffers is performed on demand by the Python memory
manager through the Python/C API functions listed in this document.
To avoid memory corruption, extension writers should never try to operate on Python objects with the functions exported
by the C library: malloc(), calloc(), realloc() and free(). This will result in mixed calls between the
C allocator and the Python memory manager with fatal consequences, because they implement different algorithms and
operate on different heaps. However, one may safely allocate and release memory blocks with the C library allocator for
individual purposes, as shown in the following example:

PyObject *res;
char *buf = (char *) malloc(BUFSIZ); /* for I/O */

if (buf == NULL)
return PyErr_NoMemory();

...Do some I/O operation involving buf...
res = PyString_FromString(buf);

(berlanjut ke halaman berikutnya)

127

The Python/C API, Rilis 2.7.18

(lanjutan dari halaman sebelumnya)
free(buf); /* malloc'ed */
return res;

In this example, the memory request for the I/O buffer is handled by the C library allocator. The Python memory manager
is involved only in the allocation of the string object returned as a result.
In most situations, however, it is recommended to allocate memory from the Python heap specifically because the latter
is under control of the Python memory manager. For example, this is required when the interpreter is extended with new
object types written in C. Another reason for using the Python heap is the desire to inform the Python memory manager
about the memory needs of the extension module. Even when the requested memory is used exclusively for internal,
highly-specific purposes, delegating all memory requests to the Python memory manager causes the interpreter to have a
more accurate image of its memory footprint as a whole. Consequently, under certain circumstances, the Python memory
manager may or may not trigger appropriate actions, like garbage collection, memory compaction or other preventive
procedures. Note that by using the C library allocator as shown in the previous example, the allocated memory for the
I/O buffer escapes completely the Python memory manager.

9.2 Memory Interface

The following function sets, modeled after the ANSI C standard, but specifying behavior when requesting zero bytes, are
available for allocating and releasing memory from the Python heap:
void* PyMem_Malloc(size_t n)

Allocates n bytes and returns a pointer of type void* to the allocated memory, or NULL if the request fails.
Requesting zero bytes returns a distinct non-NULL pointer if possible, as if PyMem_Malloc(1) had been called
instead. The memory will not have been initialized in any way.

void* PyMem_Realloc(void *p, size_t n)
Resizes the memory block pointed to by p to n bytes. The contents will be unchanged to the minimum of the old and
the new sizes. If p is NULL, the call is equivalent to PyMem_Malloc(n); else if n is equal to zero, the memory
block is resized but is not freed, and the returned pointer is non-NULL. Unless p isNULL, it must have been returned
by a previous call to PyMem_Malloc() or PyMem_Realloc(). If the request fails, PyMem_Realloc()
returns NULL and p remains a valid pointer to the previous memory area.

void PyMem_Free(void *p)
Frees the memory block pointed to by p, which must have been returned by a previous call to PyMem_Malloc()
or PyMem_Realloc(). Otherwise, or if PyMem_Free(p) has been called before, undefined behavior occurs.
If p is NULL, no operation is performed.

The following type-oriented macros are provided for convenience. Note that TYPE refers to any C type.
TYPE* PyMem_New(TYPE, size_t n)

Same as PyMem_Malloc(), but allocates (n * sizeof(TYPE)) bytes of memory. Returns a pointer cast
to TYPE*. The memory will not have been initialized in any way.

TYPE* PyMem_Resize(void *p, TYPE, size_t n)
Same as PyMem_Realloc(), but the memory block is resized to (n * sizeof(TYPE)) bytes. Returns a
pointer cast to TYPE*. On return, p will be a pointer to the new memory area, or NULL in the event of failure.
This is a C preprocessor macro; p is always reassigned. Save the original value of p to avoid losing memory when
handling errors.

void PyMem_Del(void *p)
Sama seperti PyMem_Free().

In addition, the following macro sets are provided for calling the Python memory allocator directly, without involving the
C API functions listed above. However, note that their use does not preserve binary compatibility across Python versions
and is therefore deprecated in extension modules.

128 Bab 9. Memory Management

The Python/C API, Rilis 2.7.18

PyMem_MALLOC(), PyMem_REALLOC(), PyMem_FREE().
PyMem_NEW(), PyMem_RESIZE(), PyMem_DEL().

9.3 Object allocators

The following function sets, modeled after the ANSI C standard, but specifying behavior when requesting zero bytes, are
available for allocating and releasing memory from the Python heap.
By default, these functions use pymalloc memory allocator.

Peringatan: The GIL must be held when using these functions.

void* PyObject_Malloc(size_t n)
Allocates n bytes and returns a pointer of type void* to the allocated memory, or NULL if the request fails.
Requesting zero bytes returns a distinct non-NULL pointer if possible, as if PyObject_Malloc(1) had been
called instead. The memory will not have been initialized in any way.

void* PyObject_Realloc(void *p, size_t n)
Resizes the memory block pointed to by p to n bytes. The contents will be unchanged to the minimum of the old
and the new sizes.
If p is NULL, the call is equivalent to PyObject_Malloc(n); else if n is equal to zero, the memory block is
resized but is not freed, and the returned pointer is non-NULL.
Unless p is NULL, it must have been returned by a previous call to PyObject_Malloc(),
PyObject_Realloc() or PyObject_Calloc().
If the request fails, PyObject_Realloc() returnsNULL and p remains a valid pointer to the previous memory
area.

void PyObject_Free(void *p)
Frees the memory block pointed to by p, which must have been returned by a previous call to
PyObject_Malloc(), PyObject_Realloc() or PyObject_Calloc(). Otherwise, or if
PyObject_Free(p) has been called before, undefined behavior occurs.
If p is NULL, no operation is performed.

In addition, the following macro sets are provided:
• PyObject_MALLOC(): alias to PyObject_Malloc()
• PyObject_REALLOC(): alias to PyObject_Realloc()
• PyObject_FREE(): alias to PyObject_Free()
• PyObject_Del(): alias to PyObject_Free()
• PyObject_DEL(): alias to PyObject_FREE() (so finally an alias to PyObject_Free())

9.3. Object allocators 129

The Python/C API, Rilis 2.7.18

9.4 The pymalloc allocator

Python has a pymalloc allocator optimized for small objects (smaller or equal to 512 bytes) with a short lifetime. It
uses memory mappings called ”arenas” with a fixed size of 256 KiB. It falls back to malloc() and realloc() for
allocations larger than 512 bytes.
pymalloc is the default allocator of PyObject_Malloc().
The arena allocator uses the following functions:

• mmap() and munmap() if available,
• malloc() and free() otherwise.

Berubah pada versi 2.7.7: The threshold changed from 256 to 512 bytes. The arena allocator now uses mmap() if
available.

9.5 Contoh-contoh

Here is the example from section Overview, rewritten so that the I/O buffer is allocated from the Python heap by using
the first function set:

PyObject *res;
char *buf = (char *) PyMem_Malloc(BUFSIZ); /* for I/O */

if (buf == NULL)
return PyErr_NoMemory();

/* ...Do some I/O operation involving buf... */
res = PyString_FromString(buf);
PyMem_Free(buf); /* allocated with PyMem_Malloc */
return res;

The same code using the type-oriented function set:

PyObject *res;
char *buf = PyMem_New(char, BUFSIZ); /* for I/O */

if (buf == NULL)
return PyErr_NoMemory();

/* ...Do some I/O operation involving buf... */
res = PyString_FromString(buf);
PyMem_Del(buf); /* allocated with PyMem_New */
return res;

Note that in the two examples above, the buffer is always manipulated via functions belonging to the same set. Indeed, it
is required to use the same memory API family for a given memory block, so that the risk of mixing different allocators
is reduced to a minimum. The following code sequence contains two errors, one of which is labeled as fatal because it
mixes two different allocators operating on different heaps.

char *buf1 = PyMem_New(char, BUFSIZ);
char *buf2 = (char *) malloc(BUFSIZ);
char *buf3 = (char *) PyMem_Malloc(BUFSIZ);
...
PyMem_Del(buf3); /* Wrong -- should be PyMem_Free() */
free(buf2); /* Right -- allocated via malloc() */
free(buf1); /* Fatal -- should be PyMem_Del() */

130 Bab 9. Memory Management

The Python/C API, Rilis 2.7.18

In addition to the functions aimed at handling raw memory blocks from the Python heap, objects in Python are allocated
and released with PyObject_New(), PyObject_NewVar() and PyObject_Del().
These will be explained in the next chapter on defining and implementing new object types in C.

9.5. Contoh-contoh 131

The Python/C API, Rilis 2.7.18

132 Bab 9. Memory Management

BAB10

Dukungan Implementasi Objek

Bab ini menjelaskan fungsi, tipe, dan makro yang digunakan saat menentukan tipe objek baru.

10.1 Mengalokasikan objek kedalam struktur data (heap)

PyObject* _PyObject_New(PyTypeObject *type)
Return value: New reference.

PyVarObject* _PyObject_NewVar(PyTypeObject *type, Py_ssize_t size)
Return value: New reference. Berubah pada versi 2.5: This function used an int type for size. This might require
changes in your code for properly supporting 64-bit systems.

void _PyObject_Del(PyObject *op)
PyObject* PyObject_Init(PyObject *op, PyTypeObject *type)

Return value: Borrowed reference. Inisialisasi sebuah objek yang baru dialokasi op dengan tipe dan referensi awal.
Mengembalikan objek yang telah diinisialisasi. Jika tipe pada objek mengindikasi bahwa objek berpartisipasi di
dalam siklus detektor sampah, maka objek tersebut ditambahkan pada set detektor terhadap objek sedang diob-
servasi.

PyVarObject* PyObject_InitVar(PyVarObject *op, PyTypeObject *type, Py_ssize_t size)
Return value: Borrowed reference. Ini melakukan segalanya PyObject_Init(), dan juga menginisialiasi pan-
jang informasi pada sebuah ukuran object variabel.
Berubah pada versi 2.5: This function used an int type for size. This might require changes in your code for
properly supporting 64-bit systems.

TYPE* PyObject_New(TYPE, PyTypeObject *type)
Return value: New reference. Alokasikan objek Python baru menggunakan tipe TYPE struktur C dan objek tipe
Python type. Fields yang tidak ditentukan oleh header objek Python tidak diinisialisasi; jumlah referensi objek akan
menjadi satu. Ukuran alokasi memori ditentukan dari field tp_basicsize pada objek tipe.

TYPE* PyObject_NewVar(TYPE, PyTypeObject *type, Py_ssize_t size)
Return value: New reference. Alokasikan objek Python baru menggunakan tipe TYPE struktur C dan objek tipe
Python type. Fields yang tidak ditentukan oleh header objek Python tidak diinisialisasi. Memori yang dialokasikan

133

The Python/C API, Rilis 2.7.18

memungkinkan untuk struktur TYPE ditambah size fields dari ukuran yang diberikan oleh field tp_itemsize
dari tipe. Ini berguna untuk mengimplementasikan objek seperti tuple, yang dapat menentukan ukurannya pada
waktu pembentukan construction. Menanamkan array dari fields ke dalam alokasi yang sama mengurangi jumlah
alokasi, meningkatkan efisiensi manajemen memori.
Berubah pada versi 2.5: This function used an int type for size. This might require changes in your code for
properly supporting 64-bit systems.

void PyObject_Del(PyObject *op)
Merilis memori yang dialokasikan ke objek menggunakan PyObject_New() atau PyObject_NewVar().
Ini biasanya dipanggil dari penangan tp_dealloc yang ditentukan dalam tipe objek. fields dari objek tidak
boleh diakses setelah panggilan ini karena memori tidak lagi menjadi objek Python yang valid.

PyObject* Py_InitModule(char *name, PyMethodDef *methods)
Return value: Borrowed reference. Create a new module object based on a name and table of functions, returning
the new module object.
Berubah pada versi 2.3: Older versions of Python did not support NULL as the value for the methods argument.

PyObject* Py_InitModule3(char *name, PyMethodDef *methods, char *doc)
Return value: Borrowed reference. Create a new module object based on a name and table of functions, returning
the new module object. If doc is non-NULL, it will be used to define the docstring for the module.
Berubah pada versi 2.3: Older versions of Python did not support NULL as the value for the methods argument.

PyObject* Py_InitModule4(char *name, PyMethodDef *methods, char *doc, PyObject *self, int apiver)
Return value: Borrowed reference. Create a new module object based on a name and table of functions, returning
the new module object. If doc is non-NULL, it will be used to define the docstring for the module. If self is non-
NULL, it will be passed to the functions of the module as their (otherwise NULL) first parameter. (This was added
as an experimental feature, and there are no known uses in the current version of Python.) For apiver, the only
value which should be passed is defined by the constant PYTHON_API_VERSION.

Catatan: Most uses of this function should probably be using the Py_InitModule3() instead; only use this
if you are sure you need it.

Berubah pada versi 2.3: Older versions of Python did not support NULL as the value for the methods argument.
PyObject _Py_NoneStruct

Object which is visible in Python as None. This should only be accessed using the Py_None macro, which
evaluates to a pointer to this object.

10.2 Struktur Objek Umum

There are a large number of structures which are used in the definition of object types for Python. This section describes
these structures and how they are used.
All Python objects ultimately share a small number of fields at the beginning of the object’s representation in memory.
These are represented by the PyObject and PyVarObject types, which are defined, in turn, by the expansions of
some macros also used, whether directly or indirectly, in the definition of all other Python objects.
PyObject

All object types are extensions of this type. This is a type which contains the information Python needs to treat a po-
inter to an object as an object. In a normal ”release” build, it contains only the object’s reference count and a pointer
to the corresponding type object. It corresponds to the fields defined by the expansion of the PyObject_HEAD
macro.

134 Bab 10. Dukungan Implementasi Objek

The Python/C API, Rilis 2.7.18

PyVarObject
This is an extension of PyObject that adds the ob_size field. This is only used for objects that have some
notion of length. This type does not often appear in the Python/C API. It corresponds to the fields defined by the
expansion of the PyObject_VAR_HEAD macro.

These macros are used in the definition of PyObject and PyVarObject:
PyObject_HEAD

This is a macro which expands to the declarations of the fields of the PyObject type; it is used when declaring
new types which represent objects without a varying length. The specific fields it expands to depend on the definition
of Py_TRACE_REFS. By default, that macro is not defined, and PyObject_HEAD expands to:

Py_ssize_t ob_refcnt;
PyTypeObject *ob_type;

When Py_TRACE_REFS is defined, it expands to:

PyObject *_ob_next, *_ob_prev;
Py_ssize_t ob_refcnt;
PyTypeObject *ob_type;

PyObject_VAR_HEAD
This is a macro which expands to the declarations of the fields of thePyVarObject type; it is used when declaring
new types which represent objects with a length that varies from instance to instance. This macro always expands
to:

PyObject_HEAD
Py_ssize_t ob_size;

Note that PyObject_HEAD is part of the expansion, and that its own expansion varies depending on the definition
of Py_TRACE_REFS.

Py_TYPE(o)
This macro is used to access the ob_type member of a Python object. It expands to:

(((PyObject*)(o))->ob_type)

Baru pada versi 2.6.
Py_REFCNT(o)

This macro is used to access the ob_refcnt member of a Python object. It expands to:

(((PyObject*)(o))->ob_refcnt)

Baru pada versi 2.6.
Py_SIZE(o)

This macro is used to access the ob_size member of a Python object. It expands to:

(((PyVarObject*)(o))->ob_size)

Baru pada versi 2.6.
PyObject_HEAD_INIT(type)

This is a macro which expands to initialization values for a new PyObject type. This macro expands to:

_PyObject_EXTRA_INIT
1, type,

10.2. Struktur Objek Umum 135

The Python/C API, Rilis 2.7.18

PyVarObject_HEAD_INIT(type, size)
This is a macro which expands to initialization values for a new PyVarObject type, including the ob_size
field. This macro expands to:

_PyObject_EXTRA_INIT
1, type, size,

PyCFunction
Type of the functions used to implement most Python callables in C. Functions of this type take two PyObject*
parameters and return one such value. If the return value is NULL, an exception shall have been set. If not NULL,
the return value is interpreted as the return value of the function as exposed in Python. The function must return a
new reference.

PyMethodDef
Structure used to describe a method of an extension type. This structure has four fields:

Field Tipe C Artinya
ml_name char * nama metode
ml_meth PyCFunction pointer ke implementasi C
ml_flags int flag bits indicating how the call should be constructed
ml_doc char * menunjuk ke isi docstring

The ml_meth is a C function pointer. The functions may be of different types, but they always return PyObject*.
If the function is not of the PyCFunction, the compiler will require a cast in the method table. Even though
PyCFunction defines the first parameter as PyObject*, it is common that the method implementation uses the
specific C type of the self object.
The ml_flags field is a bitfield which can include the following flags. The individual flags indicate either a calling
convention or a binding convention. Of the calling convention flags, only METH_VARARGS and METH_KEYWORDS can
be combined. Any of the calling convention flags can be combined with a binding flag.
METH_VARARGS

This is the typical calling convention, where the methods have the type PyCFunction. The function expects two
PyObject* values. The first one is the self object for methods; for module functions, it is the module object.
The second parameter (often called args) is a tuple object representing all arguments. This parameter is typically
processed using PyArg_ParseTuple() or PyArg_UnpackTuple().

METH_KEYWORDS
Methods with these flags must be of type PyCFunctionWithKeywords. The function expects three pa-
rameters: self, args, and a dictionary of all the keyword arguments. The flag is typically combined with
METH_VARARGS, and the parameters are typically processed using PyArg_ParseTupleAndKeywords().

METH_NOARGS
Methods without parameters don’t need to check whether arguments are given if they are listed with the
METH_NOARGS flag. They need to be of type PyCFunction. The first parameter is typically named self
and will hold a reference to the module or object instance. In all cases the second parameter will be NULL.

METH_O
Methods with a single object argument can be listed with the METH_O flag, instead of invoking
PyArg_ParseTuple() with a "O" argument. They have the type PyCFunction, with the self parame-
ter, and a PyObject* parameter representing the single argument.

METH_OLDARGS
This calling convention is deprecated. The method must be of type PyCFunction. The second argument is
NULL if no arguments are given, a single object if exactly one argument is given, and a tuple of objects if more
than one argument is given. There is no way for a function using this convention to distinguish between a call with
multiple arguments and a call with a tuple as the only argument.

136 Bab 10. Dukungan Implementasi Objek

The Python/C API, Rilis 2.7.18

These two constants are not used to indicate the calling convention but the binding when use with methods of classes.
These may not be used for functions defined for modules. At most one of these flags may be set for any given method.
METH_CLASS

The method will be passed the type object as the first parameter rather than an instance of the type. This is used
to create class methods, similar to what is created when using the classmethod() built-in function.
Baru pada versi 2.3.

METH_STATIC
The method will be passed NULL as the first parameter rather than an instance of the type. This is used to create
static methods, similar to what is created when using the staticmethod() built-in function.
Baru pada versi 2.3.

One other constant controls whether a method is loaded in place of another definition with the same method name.
METH_COEXIST

The method will be loaded in place of existing definitions. Without METH_COEXIST, the default is to skip repe-
ated definitions. Since slot wrappers are loaded before the method table, the existence of a sq_contains slot, for
example, would generate a wrapped method named __contains__() and preclude the loading of a corres-
ponding PyCFunction with the same name. With the flag defined, the PyCFunction will be loaded in place of the
wrapper object and will co-exist with the slot. This is helpful because calls to PyCFunctions are optimized more
than wrapper object calls.
Baru pada versi 2.4.

PyMemberDef
Structure which describes an attribute of a type which corresponds to a C struct member. Its fields are:

Field Tipe C Artinya
name char * nama member
type int tipe member dalam C struct
offset Py_ssize_t the offset in bytes that the member is located on the type’s object struct
flags int flag bits indicating if the field should be read-only or writable
doc char * menunjuk ke isi docstring

type can be one of many T_ macros corresponding to various C types. When the member is accessed in Python,
it will be converted to the equivalent Python type.

10.2. Struktur Objek Umum 137

The Python/C API, Rilis 2.7.18

Nama macro tipe C
T_SHORT short
T_INT int
T_LONG long
T_FLOAT float
T_DOUBLE double
T_STRING char *
T_OBJECT PyObject *
T_OBJECT_EX PyObject *
T_CHAR char
T_BYTE char
T_UBYTE unsigned char
T_UINT unsigned int
T_USHORT unsigned short
T_ULONG unsigned long
T_BOOL char
T_LONGLONG long long
T_ULONGLONG unsigned long long
T_PYSSIZET Py_ssize_t

T_OBJECT and T_OBJECT_EX differ in that T_OBJECT returns None if the member is NULL and
T_OBJECT_EX raises an AttributeError. Try to use T_OBJECT_EX over T_OBJECT because
T_OBJECT_EX handles use of the del statement on that attribute more correctly than T_OBJECT.
flags can be 0 for write and read access or READONLY for read-only access. Using T_STRING for type
implies READONLY. Only T_OBJECT and T_OBJECT_EX members can be deleted. (They are set to NULL).

PyGetSetDef
Structure to define property-like access for a type. See also description of the PyTypeObject.tp_getset
slot.

Field Tipe C Artinya
nama char * nama atribut
get getter Fungsi C untuk mendapatkan atribut
set setter optional C function to set or delete the attribute, if omitted the attribute is readonly
doc char * docstring pilihan
closure void * optional function pointer, providing additional data for getter and setter

The get function takes one PyObject* parameter (the instance) and a function pointer (the associated
closure):

typedef PyObject *(*getter)(PyObject *, void *);

It should return a new reference on success or NULL with a set exception on failure.
set functions take two PyObject* parameters (the instance and the value to be set) and a function pointer (the
associated closure):

typedef int (*setter)(PyObject *, PyObject *, void *);

In case the attribute should be deleted the second parameter is NULL. Should return 0 on success or -1 with a set
exception on failure.

138 Bab 10. Dukungan Implementasi Objek

The Python/C API, Rilis 2.7.18

PyObject* Py_FindMethod(PyMethodDef table[], PyObject *ob, char *name)
Return value: New reference. Return a bound method object for an extension type implemented in C. This
can be useful in the implementation of a tp_getattro or tp_getattr handler that does not use the
PyObject_GenericGetAttr() function.

10.3 Objek Tipe

Perhaps one of the most important structures of the Python object system is the structure that defines a new type: the
PyTypeObject structure. Type objects can be handled using any of thePyObject_*() orPyType_*() functions,
but do not offer much that’s interesting to most Python applications. These objects are fundamental to how objects behave,
so they are very important to the interpreter itself and to any extension module that implements new types.
Type objects are fairly large compared to most of the standard types. The reason for the size is that each type object stores
a large number of values, mostly C function pointers, each of which implements a small part of the type’s functionality.
The fields of the type object are examined in detail in this section. The fields will be described in the order in which they
occur in the structure.
Typedefs: unaryfunc, binaryfunc, ternaryfunc, inquiry, coercion, intargfunc, intintargfunc, intobjargproc, intintobjargp-
roc, objobjargproc, destructor, freefunc, printfunc, getattrfunc, getattrofunc, setattrfunc, setattrofunc, cmpfunc, reprfunc,
hashfunc
The structure definition for PyTypeObject can be found in Include/object.h. For convenience of reference,
this repeats the definition found there:

typedef struct _typeobject {
PyObject_VAR_HEAD
char *tp_name; /* For printing, in format "<module>.<name>" */
int tp_basicsize, tp_itemsize; /* For allocation */

/* Methods to implement standard operations */

destructor tp_dealloc;
printfunc tp_print;
getattrfunc tp_getattr;
setattrfunc tp_setattr;
cmpfunc tp_compare;
reprfunc tp_repr;

/* Method suites for standard classes */

PyNumberMethods *tp_as_number;
PySequenceMethods *tp_as_sequence;
PyMappingMethods *tp_as_mapping;

/* More standard operations (here for binary compatibility) */

hashfunc tp_hash;
ternaryfunc tp_call;
reprfunc tp_str;
getattrofunc tp_getattro;
setattrofunc tp_setattro;

/* Functions to access object as input/output buffer */
PyBufferProcs *tp_as_buffer;

/* Flags to define presence of optional/expanded features */

(berlanjut ke halaman berikutnya)

10.3. Objek Tipe 139

The Python/C API, Rilis 2.7.18

(lanjutan dari halaman sebelumnya)
long tp_flags;

char *tp_doc; /* Documentation string */

/* Assigned meaning in release 2.0 */
/* call function for all accessible objects */
traverseproc tp_traverse;

/* delete references to contained objects */
inquiry tp_clear;

/* Assigned meaning in release 2.1 */
/* rich comparisons */
richcmpfunc tp_richcompare;

/* weak reference enabler */
long tp_weaklistoffset;

/* Added in release 2.2 */
/* Iterators */
getiterfunc tp_iter;
iternextfunc tp_iternext;

/* Attribute descriptor and subclassing stuff */
struct PyMethodDef *tp_methods;
struct PyMemberDef *tp_members;
struct PyGetSetDef *tp_getset;
struct _typeobject *tp_base;
PyObject *tp_dict;
descrgetfunc tp_descr_get;
descrsetfunc tp_descr_set;
long tp_dictoffset;
initproc tp_init;
allocfunc tp_alloc;
newfunc tp_new;
freefunc tp_free; /* Low-level free-memory routine */
inquiry tp_is_gc; /* For PyObject_IS_GC */
PyObject *tp_bases;
PyObject *tp_mro; /* method resolution order */
PyObject *tp_cache;
PyObject *tp_subclasses;
PyObject *tp_weaklist;

} PyTypeObject;

The type object structure extends the PyVarObject structure. The ob_size field is used for dynamic types (cre-
ated by type_new(), usually called from a class statement). Note that PyType_Type (the metatype) initializes
tp_itemsize, which means that its instances (i.e. type objects) must have the ob_size field.
PyObject* PyObject._ob_next
PyObject* PyObject._ob_prev

These fields are only present when the macro Py_TRACE_REFS is defined. Their initialization to NULL is taken
care of by the PyObject_HEAD_INITmacro. For statically allocated objects, these fields always remainNULL.
For dynamically allocated objects, these two fields are used to link the object into a doubly-linked list of all live
objects on the heap. This could be used for various debugging purposes; currently the only use is to print the objects
that are still alive at the end of a run when the environment variable PYTHONDUMPREFS is set.

140 Bab 10. Dukungan Implementasi Objek

The Python/C API, Rilis 2.7.18

These fields are not inherited by subtypes.
Py_ssize_t PyObject.ob_refcnt

This is the type object’s reference count, initialized to 1 by the PyObject_HEAD_INIT macro. Note that for
statically allocated type objects, the type’s instances (objects whose ob_type points back to the type) do not count
as references. But for dynamically allocated type objects, the instances do count as references.
field ini tidak diwariskan oleh subtipe.
Berubah pada versi 2.5: This field used to be an int type. This might require changes in your code for properly
supporting 64-bit systems.

PyTypeObject* PyObject.ob_type
This is the type’s type, in other words its metatype. It is initialized by the argument to the
PyObject_HEAD_INIT macro, and its value should normally be &PyType_Type. However, for dynami-
cally loadable extension modules that must be usable on Windows (at least), the compiler complains that this is
not a valid initializer. Therefore, the convention is to pass NULL to the PyObject_HEAD_INIT macro and to
initialize this field explicitly at the start of the module’s initialization function, before doing anything else. This is
typically done like this:

Foo_Type.ob_type = &PyType_Type;

This should be done before any instances of the type are created. PyType_Ready() checks if ob_type is
NULL, and if so, initializes it: in Python 2.2, it is set to &PyType_Type; in Python 2.2.1 and later it is initialized
to the ob_type field of the base class. PyType_Ready() will not change this field if it is non-zero.
In Python 2.2, this field is not inherited by subtypes. In 2.2.1, and in 2.3 and beyond, it is inherited by subtypes.

Py_ssize_t PyVarObject.ob_size
For statically allocated type objects, this should be initialized to zero. For dynamically allocated type objects, this
field has a special internal meaning.
field ini tidak diwariskan oleh subtipe.

char* PyTypeObject.tp_name
Pointer to a NUL-terminated string containing the name of the type. For types that are accessible as module globals,
the string should be the full module name, followed by a dot, followed by the type name; for built-in types, it should
be just the type name. If the module is a submodule of a package, the full package name is part of the full module
name. For example, a type named T defined in module M in subpackage Q in package P should have the tp_name
initializer "P.Q.M.T".
For dynamically allocated type objects, this should just be the type name, and the module name explicitly stored in
the type dict as the value for key '__module__'.
For statically allocated type objects, the tp_name field should contain a dot. Everything before the last dot is made
accessible as the __module__ attribute, and everything after the last dot is made accessible as the __name__
attribute.
If no dot is present, the entire tp_name field is made accessible as the __name__ attribute, and the
__module__ attribute is undefined (unless explicitly set in the dictionary, as explained above). This means
your type will be impossible to pickle. Additionally, it will not be listed in module documentations created with
pydoc.
field ini tidak diwariskan oleh subtipe.

Py_ssize_t PyTypeObject.tp_basicsize
Py_ssize_t PyTypeObject.tp_itemsize

These fields allow calculating the size in bytes of instances of the type.
There are two kinds of types: types with fixed-length instances have a zero tp_itemsize field, types with
variable-length instances have a non-zero tp_itemsize field. For a type with fixed-length instances, all instances

10.3. Objek Tipe 141

The Python/C API, Rilis 2.7.18

have the same size, given in tp_basicsize.
For a type with variable-length instances, the instances must have an ob_size field, and the instance size is
tp_basicsize plus N times tp_itemsize, where N is the ”length” of the object. The value of N is typically
stored in the instance’s ob_size field. There are exceptions: for example, long ints use a negative ob_size
to indicate a negative number, and N is abs(ob_size) there. Also, the presence of an ob_size field in the
instance layout doesn’t mean that the instance structure is variable-length (for example, the structure for the list
type has fixed-length instances, yet those instances have a meaningful ob_size field).
The basic size includes the fields in the instance declared by the macro PyObject_HEAD or
PyObject_VAR_HEAD (whichever is used to declare the instance struct) and this in turn includes the
_ob_prev and _ob_next fields if they are present. This means that the only correct way to get an initializer
for the tp_basicsize is to use the sizeof operator on the struct used to declare the instance layout. The
basic size does not include the GC header size (this is new in Python 2.2; in 2.1 and 2.0, the GC header size was
included in tp_basicsize).
These fields are inherited separately by subtypes. If the base type has a non-zero tp_itemsize, it is generally not
safe to set tp_itemsize to a different non-zero value in a subtype (though this depends on the implementation
of the base type).
A note about alignment: if the variable items require a particular alignment, this should be taken ca-
re of by the value of tp_basicsize. Example: suppose a type implements an array of double.
tp_itemsize is sizeof(double). It is the programmer’s responsibility that tp_basicsize is a multiple
of sizeof(double) (assuming this is the alignment requirement for double).

destructor PyTypeObject.tp_dealloc
A pointer to the instance destructor function. This function must be defined unless the type guarantees that its
instances will never be deallocated (as is the case for the singletons None and Ellipsis).
The destructor function is called by the Py_DECREF() and Py_XDECREF() macros when the new reference
count is zero. At this point, the instance is still in existence, but there are no references to it. The destructor function
should free all references which the instance owns, free all memory buffers owned by the instance (using the freeing
function corresponding to the allocation function used to allocate the buffer), and finally (as its last action) call
the type’s tp_free function. If the type is not subtypable (doesn’t have the Py_TPFLAGS_BASETYPE flag bit
set), it is permissible to call the object deallocator directly instead of via tp_free. The object deallocator should
be the one used to allocate the instance; this is normally PyObject_Del() if the instance was allocated using
PyObject_New() orPyObject_VarNew(), orPyObject_GC_Del() if the instancewas allocated using
PyObject_GC_New() or PyObject_GC_NewVar().
field ini diwariskan oleh subtipe.

printfunc PyTypeObject.tp_print
An optional pointer to the instance print function.
The print function is only called when the instance is printed to a real file; when it is printed to a pseudo-file (like a
StringIO instance), the instance’s tp_repr or tp_str function is called to convert it to a string. These are
also called when the type’s tp_print field is NULL. A type should never implement tp_print in a way that
produces different output than tp_repr or tp_str would.
The print function is called with the same signature as PyObject_Print(): int tp_print(PyObject
*self, FILE *file, int flags). The self argument is the instance to be printed. The file argument is
the stdio file to which it is to be printed. The flags argument is composed of flag bits. The only flag bit currently
defined is Py_PRINT_RAW. When the Py_PRINT_RAW flag bit is set, the instance should be printed the same
way as tp_str would format it; when the Py_PRINT_RAW flag bit is clear, the instance should be printed the
same was as tp_repr would format it. It should return -1 and set an exception condition when an error occurred
during the comparison.
It is possible that the tp_print field will be deprecated. In any case, it is recommended not to define tp_print,
but instead to rely on tp_repr and tp_str for printing.

142 Bab 10. Dukungan Implementasi Objek

The Python/C API, Rilis 2.7.18

field ini diwariskan oleh subtipe.
getattrfunc PyTypeObject.tp_getattr

An optional pointer to the get-attribute-string function.
This field is deprecated. When it is defined, it should point to a function that acts the same as the tp_getattro
function, but taking a C string instead of a Python string object to give the attribute name. The signature is

PyObject * tp_getattr(PyObject *o, char *attr_name);

This field is inherited by subtypes together with tp_getattro: a subtype inherits both tp_getattr and
tp_getattro from its base type when the subtype’s tp_getattr and tp_getattro are both NULL.

setattrfunc PyTypeObject.tp_setattr
An optional pointer to the function for setting and deleting attributes.
This field is deprecated. When it is defined, it should point to a function that acts the same as the tp_setattro
function, but taking a C string instead of a Python string object to give the attribute name. The signature is

PyObject * tp_setattr(PyObject *o, char *attr_name, PyObject *v);

The v argument is set to NULL to delete the attribute. This field is inherited by subtypes together with
tp_setattro: a subtype inherits both tp_setattr and tp_setattro from its base type when the sub-
type’s tp_setattr and tp_setattro are both NULL.

cmpfunc PyTypeObject.tp_compare
An optional pointer to the three-way comparison function.
The signature is the same as for PyObject_Compare(). The function should return 1 if self greater than other,
0 if self is equal to other, and -1 if self less than other. It should return -1 and set an exception condition when
an error occurred during the comparison.
This field is inherited by subtypes together withtp_richcompare andtp_hash: a subtypes inherits all three of
tp_compare, tp_richcompare, and tp_hash when the subtype’s tp_compare, tp_richcompare,
and tp_hash are all NULL.

reprfunc PyTypeObject.tp_repr
An optional pointer to a function that implements the built-in function repr().
The signature is the same as for PyObject_Repr(); it must return a string or a Unicode object. Ideally, this
function should return a string that, when passed to eval(), given a suitable environment, returns an object with
the same value. If this is not feasible, it should return a string starting with '<' and ending with '>' from which
both the type and the value of the object can be deduced.
When this field is not set, a string of the form <%s object at %p> is returned, where %s is replaced by the
type name, and %p by the object’s memory address.
field ini diwariskan oleh subtipe.

PyNumberMethods* tp_as_number
Pointer to an additional structure that contains fields relevant only to objects which implement the number protocol.
These fields are documented in Number Object Structures.
The tp_as_number field is not inherited, but the contained fields are inherited individually.

PySequenceMethods* tp_as_sequence
Pointer to an additional structure that contains fields relevant only to objects which implement the sequence protocol.
These fields are documented in Sequence Object Structures.
The tp_as_sequence field is not inherited, but the contained fields are inherited individually.

10.3. Objek Tipe 143

The Python/C API, Rilis 2.7.18

PyMappingMethods* tp_as_mapping
Pointer to an additional structure that contains fields relevant only to objects which implement the mapping protocol.
These fields are documented in Mapping Object Structures.
The tp_as_mapping field is not inherited, but the contained fields are inherited individually.

hashfunc PyTypeObject.tp_hash
An optional pointer to a function that implements the built-in function hash().
The signature is the same as for PyObject_Hash(); it must return a C long. The value -1 should not be
returned as a normal return value; when an error occurs during the computation of the hash value, the function
should set an exception and return -1.
This field can be set explicitly to PyObject_HashNotImplemented() to block inheritance of the hash
method from a parent type. This is interpreted as the equivalent of __hash__ = None at the Python level,
causing isinstance(o, collections.Hashable) to correctly return False. Note that the converse
is also true - setting __hash__ = None on a class at the Python level will result in the tp_hash slot being set
to PyObject_HashNotImplemented().
When this field is not set, two possibilities exist: if the tp_compare and tp_richcompare fields are both
NULL, a default hash value based on the object’s address is returned; otherwise, a TypeError is raised.
This field is inherited by subtypes together with tp_richcompare and tp_compare: a subtypes inhe-
rits all three of tp_compare, tp_richcompare, and tp_hash, when the subtype’s tp_compare,
tp_richcompare and tp_hash are all NULL.

ternaryfunc PyTypeObject.tp_call
An optional pointer to a function that implements calling the object. This should be NULL if the object is not
callable. The signature is the same as for PyObject_Call().
field ini diwariskan oleh subtipe.

reprfunc PyTypeObject.tp_str
An optional pointer to a function that implements the built-in operation str(). (Note that str is a type now,
and str() calls the constructor for that type. This constructor calls PyObject_Str() to do the actual work,
and PyObject_Str() will call this handler.)
The signature is the same as for PyObject_Str(); it must return a string or a Unicode object. This function
should return a ”friendly” string representation of the object, as this is the representation that will be used by the
print statement.
When this field is not set, PyObject_Repr() is called to return a string representation.
field ini diwariskan oleh subtipe.

getattrofunc PyTypeObject.tp_getattro
An optional pointer to the get-attribute function.
The signature is the same as for PyObject_GetAttr(). It is usually convenient to set this field to
PyObject_GenericGetAttr(), which implements the normal way of looking for object attributes.
This field is inherited by subtypes together with tp_getattr: a subtype inherits both tp_getattr and
tp_getattro from its base type when the subtype’s tp_getattr and tp_getattro are both NULL.

setattrofunc PyTypeObject.tp_setattro
An optional pointer to the function for setting and deleting attributes.
The signature is the same as for PyObject_SetAttr(), but setting v to NULL to delete an attribute must be
supported. It is usually convenient to set this field to PyObject_GenericSetAttr(), which implements the
normal way of setting object attributes.
This field is inherited by subtypes together with tp_setattr: a subtype inherits both tp_setattr and
tp_setattro from its base type when the subtype’s tp_setattr and tp_setattro are both NULL.

144 Bab 10. Dukungan Implementasi Objek

The Python/C API, Rilis 2.7.18

PyBufferProcs* PyTypeObject.tp_as_buffer
Pointer to an additional structure that contains fields relevant only to objects which implement the buffer interface.
These fields are documented in Buffer Object Structures.
The tp_as_buffer field is not inherited, but the contained fields are inherited individually.

long PyTypeObject.tp_flags
This field is a bit mask of various flags. Some flags indicate variant semantics for certain situations; others are used
to indicate that certain fields in the type object (or in the extension structures referenced via tp_as_number,
tp_as_sequence, tp_as_mapping, and tp_as_buffer) that were historically not always present are
valid; if such a flag bit is clear, the type fields it guards must not be accessed and must be considered to have a zero
or NULL value instead.
Inheritance of this field is complicated. Most flag bits are inherited individually, i.e. if the base type has a flag bit set,
the subtype inherits this flag bit. The flag bits that pertain to extension structures are strictly inherited if the extension
structure is inherited, i.e. the base type’s value of the flag bit is copied into the subtype together with a pointer to
the extension structure. The Py_TPFLAGS_HAVE_GC flag bit is inherited together with the tp_traverse and
tp_clear fields, i.e. if the Py_TPFLAGS_HAVE_GC flag bit is clear in the subtype and the tp_traverse
and tp_clear fields in the subtype exist (as indicated by the Py_TPFLAGS_HAVE_RICHCOMPARE flag bit)
and have NULL values.
The following bit masks are currently defined; these can be ORed together using the | operator to form the value of
the tp_flags field. The macro PyType_HasFeature() takes a type and a flags value, tp and f, and checks
whether tp->tp_flags & f is non-zero.
Py_TPFLAGS_HAVE_GETCHARBUFFER

If this bit is set, the PyBufferProcs struct referenced by tp_as_buffer has the
bf_getcharbuffer field.

Py_TPFLAGS_HAVE_SEQUENCE_IN
If this bit is set, the PySequenceMethods struct referenced by tp_as_sequence has the
sq_contains field.

Py_TPFLAGS_GC
This bit is obsolete. The bit it used to name is no longer in use. The symbol is now defined as zero.

Py_TPFLAGS_HAVE_INPLACEOPS
If this bit is set, the PySequenceMethods struct referenced by tp_as_sequence and
the PyNumberMethods structure referenced by tp_as_number contain the fields for
in-place operators. In particular, this means that the PyNumberMethods structure has
the fields nb_inplace_add, nb_inplace_subtract, nb_inplace_multiply,
nb_inplace_divide, nb_inplace_remainder, nb_inplace_power,
nb_inplace_lshift, nb_inplace_rshift, nb_inplace_and, nb_inplace_xor,
and nb_inplace_or; and the PySequenceMethods struct has the fields sq_inplace_concat
and sq_inplace_repeat.

Py_TPFLAGS_CHECKTYPES
If this bit is set, the binary and ternary operations in the PyNumberMethods structure referenced by
tp_as_number accept arguments of arbitrary object types, and do their own type conversions if needed. If
this bit is clear, those operations require that all arguments have the current type as their type, and the caller is
supposed to perform a coercion operation first. This applies to nb_add, nb_subtract, nb_multiply,
nb_divide, nb_remainder, nb_divmod, nb_power, nb_lshift, nb_rshift, nb_and,
nb_xor, and nb_or.

Py_TPFLAGS_HAVE_RICHCOMPARE
If this bit is set, the type object has the tp_richcompare field, as well as the tp_traverse and the
tp_clear fields.

Py_TPFLAGS_HAVE_WEAKREFS

10.3. Objek Tipe 145

The Python/C API, Rilis 2.7.18

If this bit is set, the tp_weaklistoffset field is defined. Instances of a type are weakly referenceable
if the type’s tp_weaklistoffset field has a value greater than zero.

Py_TPFLAGS_HAVE_ITER
If this bit is set, the type object has the tp_iter and tp_iternext fields.

Py_TPFLAGS_HAVE_CLASS
If this bit is set, the type object has several new fields defined starting in Python 2.2: tp_methods,
tp_members, tp_getset, tp_base, tp_dict, tp_descr_get, tp_descr_set,
tp_dictoffset, tp_init, tp_alloc, tp_new, tp_free, tp_is_gc, tp_bases, tp_mro,
tp_cache, tp_subclasses, and tp_weaklist.

Py_TPFLAGS_HEAPTYPE
This bit is set when the type object itself is allocated on the heap. In this case, the ob_type field of its
instances is considered a reference to the type, and the type object is INCREF’ed when a new instance is
created, and DECREF’ed when an instance is destroyed (this does not apply to instances of subtypes; only
the type referenced by the instance’s ob_type gets INCREF’ed or DECREF’ed).

Py_TPFLAGS_BASETYPE
This bit is set when the type can be used as the base type of another type. If this bit is clear, the type cannot
be subtyped (similar to a ”final” class in Java).

Py_TPFLAGS_READY
This bit is set when the type object has been fully initialized by PyType_Ready().

Py_TPFLAGS_READYING
This bit is set while PyType_Ready() is in the process of initializing the type object.

Py_TPFLAGS_HAVE_GC
This bit is set when the object supports garbage collection. If this bit is set, instances must be created
using PyObject_GC_New() and destroyed using PyObject_GC_Del(). More information in se-
ction Supporting Cyclic Garbage Collection. This bit also implies that the GC-related fields tp_traverse
and tp_clear are present in the type object; but those fields also exist when Py_TPFLAGS_HAVE_GC
is clear but Py_TPFLAGS_HAVE_RICHCOMPARE is set.

Py_TPFLAGS_DEFAULT
This is a bitmask of all the bits that pertain to the existence of certain fields in
the type object and its extension structures. Currently, it includes the following bi-
ts: Py_TPFLAGS_HAVE_GETCHARBUFFER, Py_TPFLAGS_HAVE_SEQUENCE_IN ,
Py_TPFLAGS_HAVE_INPLACEOPS, Py_TPFLAGS_HAVE_RICHCOMPARE,
Py_TPFLAGS_HAVE_WEAKREFS, Py_TPFLAGS_HAVE_ITER, and Py_TPFLAGS_HAVE_CLASS.

char* PyTypeObject.tp_doc
An optional pointer to a NUL-terminated C string giving the docstring for this type object. This is exposed as the
__doc__ attribute on the type and instances of the type.
field ini tidak diwariskan oleh subtipe.

The following three fields only exist if the Py_TPFLAGS_HAVE_RICHCOMPARE flag bit is set.
traverseproc PyTypeObject.tp_traverse

An optional pointer to a traversal function for the garbage collector. This is only used if the
Py_TPFLAGS_HAVE_GC flag bit is set. More information about Python’s garbage collection scheme can be
found in section Supporting Cyclic Garbage Collection.
The tp_traverse pointer is used by the garbage collector to detect reference cycles. A typical implementation
of a tp_traverse function simply calls Py_VISIT() on each of the instance’s members that are Python
objects. For example, this is function local_traverse() from the thread extension module:

146 Bab 10. Dukungan Implementasi Objek

The Python/C API, Rilis 2.7.18

static int
local_traverse(localobject *self, visitproc visit, void *arg)
{

Py_VISIT(self->args);
Py_VISIT(self->kw);
Py_VISIT(self->dict);
return 0;

}

Note that Py_VISIT() is called only on those members that can participate in reference cycles. Although there
is also a self->keymember, it can only be NULL or a Python string and therefore cannot be part of a reference
cycle.
On the other hand, even if you know a member can never be part of a cycle, as a debugging aid you may want to
visit it anyway just so the gc module’s get_referents() function will include it.
Note that Py_VISIT() requires the visit and arg parameters to local_traverse() to have these specific
names; don’t name them just anything.
This field is inherited by subtypes together with tp_clear and the Py_TPFLAGS_HAVE_GC flag bit: the flag
bit, tp_traverse, and tp_clear are all inherited from the base type if they are all zero in the subtype and
the subtype has the Py_TPFLAGS_HAVE_RICHCOMPARE flag bit set.

inquiry PyTypeObject.tp_clear
An optional pointer to a clear function for the garbage collector. This is only used if the Py_TPFLAGS_HAVE_GC
flag bit is set.
The tp_clear member function is used to break reference cycles in cyclic garbage detected by the garbage
collector. Taken together, all tp_clear functions in the system must combine to break all reference cycles. This
is subtle, and if in any doubt supply a tp_clear function. For example, the tuple type does not implement a
tp_clear function, because it’s possible to prove that no reference cycle can be composed entirely of tuples.
Therefore the tp_clear functions of other types must be sufficient to break any cycle containing a tuple. This
isn’t immediately obvious, and there’s rarely a good reason to avoid implementing tp_clear.
Implementations of tp_clear should drop the instance’s references to those of its members that may be Python
objects, and set its pointers to those members to NULL, as in the following example:

static int
local_clear(localobject *self)
{

Py_CLEAR(self->key);
Py_CLEAR(self->args);
Py_CLEAR(self->kw);
Py_CLEAR(self->dict);
return 0;

}

The Py_CLEAR() macro should be used, because clearing references is delicate: the reference to the contained
object must not be decremented until after the pointer to the contained object is set to NULL. This is because
decrementing the reference count may cause the contained object to become trash, triggering a chain of reclamation
activity that may include invoking arbitrary Python code (due to finalizers, or weakref callbacks, associated with the
contained object). If it’s possible for such code to reference self again, it’s important that the pointer to the contained
object be NULL at that time, so that self knows the contained object can no longer be used. The Py_CLEAR()
macro performs the operations in a safe order.
Because the goal of tp_clear functions is to break reference cycles, it’s not necessary to clear contained ob-
jects like Python strings or Python integers, which can’t participate in reference cycles. On the other hand, it
may be convenient to clear all contained Python objects, and write the type’s tp_dealloc function to invoke

10.3. Objek Tipe 147

The Python/C API, Rilis 2.7.18

tp_clear.
More information about Python’s garbage collection scheme can be found in section Supporting Cyclic Garbage
Collection.
This field is inherited by subtypes together with tp_traverse and the Py_TPFLAGS_HAVE_GC flag bit: the
flag bit, tp_traverse, and tp_clear are all inherited from the base type if they are all zero in the subtype
and the subtype has the Py_TPFLAGS_HAVE_RICHCOMPARE flag bit set.

richcmpfunc PyTypeObject.tp_richcompare
An optional pointer to the rich comparison function, whose signature is PyObject
*tp_richcompare(PyObject *a, PyObject *b, int op).
The function should return the result of the comparison (usually Py_True or Py_False). If the comparison
is undefined, it must return Py_NotImplemented, if another error occurred it must return NULL and set an
exception condition.

Catatan: If you want to implement a type for which only a limited set of comparisons makes sense (e.g. == and
!=, but not < and friends), directly raise TypeError in the rich comparison function.

This field is inherited by subtypes together with tp_compare and tp_hash: a subtype inherits all three of
tp_compare, tp_richcompare, and tp_hash, when the subtype’s tp_compare, tp_richcompare,
and tp_hash are all NULL.
The following constants are defined to be used as the third argument for tp_richcompare and for
PyObject_RichCompare():

Konstanta Perbandingan
Py_LT <
Py_LE <=
Py_EQ ==
Py_NE !=
Py_GT >
Py_GE >=

The next field only exists if the Py_TPFLAGS_HAVE_WEAKREFS flag bit is set.
long PyTypeObject.tp_weaklistoffset

If the instances of this type are weakly referenceable, this field is greater than zero and contains the offset in
the instance structure of the weak reference list head (ignoring the GC header, if present); this offset is used by
PyObject_ClearWeakRefs() and thePyWeakref_*() functions. The instance structure needs to include
a field of type PyObject* which is initialized to NULL.
Do not confuse this field with tp_weaklist; that is the list head for weak references to the type object itself.
This field is inherited by subtypes, but see the rules listed below. A subtype may override this offset; this means
that the subtype uses a different weak reference list head than the base type. Since the list head is always found via
tp_weaklistoffset, this should not be a problem.
When a type defined by a class statement has no __slots__ declaration, and none of its base types are weakly
referenceable, the type is made weakly referenceable by adding a weak reference list head slot to the instance layout
and setting the tp_weaklistoffset of that slot’s offset.
When a type’s __slots__ declaration contains a slot named __weakref__, that slot becomes the weak refe-
rence list head for instances of the type, and the slot’s offset is stored in the type’s tp_weaklistoffset.
When a type’s __slots__ declaration does not contain a slot named __weakref__, the type inherits its
tp_weaklistoffset from its base type.

148 Bab 10. Dukungan Implementasi Objek

The Python/C API, Rilis 2.7.18

The next two fields only exist if the Py_TPFLAGS_HAVE_ITER flag bit is set.
getiterfunc PyTypeObject.tp_iter

An optional pointer to a function that returns an iterator for the object. Its presence normally signals that the
instances of this type are iterable (although sequences may be iterable without this function, and classic instances
always have this function, even if they don’t define an __iter__() method).
This function has the same signature as PyObject_GetIter().
field ini diwariskan oleh subtipe.

iternextfunc PyTypeObject.tp_iternext
An optional pointer to a function that returns the next item in an iterator. When the iterator is exhausted, it must
return NULL; a StopIteration exception may or may not be set. When another error occurs, it must return
NULL too. Its presence normally signals that the instances of this type are iterators (although classic instances
always have this function, even if they don’t define a next() method).
Iterator types should also define the tp_iter function, and that function should return the iterator instance itself
(not a new iterator instance).
This function has the same signature as PyIter_Next().
field ini diwariskan oleh subtipe.

The next fields, up to and including tp_weaklist, only exist if the Py_TPFLAGS_HAVE_CLASS flag bit is set.
struct PyMethodDef* PyTypeObject.tp_methods

An optional pointer to a static NULL-terminated array of PyMethodDef structures, declaring regular methods
of this type.
For each entry in the array, an entry is added to the type’s dictionary (see tp_dict below) containing a method
descriptor.
This field is not inherited by subtypes (methods are inherited through a different mechanism).

struct PyMemberDef* PyTypeObject.tp_members
An optional pointer to a static NULL-terminated array of PyMemberDef structures, declaring regular data mem-
bers (fields or slots) of instances of this type.
For each entry in the array, an entry is added to the type’s dictionary (see tp_dict below) containing a member
descriptor.
This field is not inherited by subtypes (members are inherited through a different mechanism).

struct PyGetSetDef* PyTypeObject.tp_getset
An optional pointer to a staticNULL-terminated array ofPyGetSetDef structures, declaring computed attributes
of instances of this type.
For each entry in the array, an entry is added to the type’s dictionary (see tp_dict below) containing a getset
descriptor.
This field is not inherited by subtypes (computed attributes are inherited through a different mechanism).

PyTypeObject* PyTypeObject.tp_base
An optional pointer to a base type from which type properties are inherited. At this level, only single inheritance
is supported; multiple inheritance require dynamically creating a type object by calling the metatype.
This field is not inherited by subtypes (obviously), but it defaults to &PyBaseObject_Type (which to Python
programmers is known as the type object).

PyObject* PyTypeObject.tp_dict
The type’s dictionary is stored here by PyType_Ready().

10.3. Objek Tipe 149

The Python/C API, Rilis 2.7.18

This field should normally be initialized to NULL before PyType_Ready is called; it may also be initialized to
a dictionary containing initial attributes for the type. Once PyType_Ready() has initialized the type, extra
attributes for the type may be added to this dictionary only if they don’t correspond to overloaded operations (like
__add__()).
This field is not inherited by subtypes (though the attributes defined in here are inherited through a different me-
chanism).

descrgetfunc PyTypeObject.tp_descr_get
An optional pointer to a ”descriptor get” function.
The function signature is

PyObject * tp_descr_get(PyObject *self, PyObject *obj, PyObject *type);

field ini diwariskan oleh subtipe.
descrsetfunc PyTypeObject.tp_descr_set

An optional pointer to a function for setting and deleting a descriptor’s value.
The function signature is

int tp_descr_set(PyObject *self, PyObject *obj, PyObject *value);

The value argument is set to NULL to delete the value. This field is inherited by subtypes.
long PyTypeObject.tp_dictoffset

If the instances of this type have a dictionary containing instance variables, this field is non-zero and con-
tains the offset in the instances of the type of the instance variable dictionary; this offset is used by
PyObject_GenericGetAttr().
Do not confuse this field with tp_dict; that is the dictionary for attributes of the type object itself.
If the value of this field is greater than zero, it specifies the offset from the start of the instance structure. If the value
is less than zero, it specifies the offset from the end of the instance structure. A negative offset is more expensive to
use, and should only be used when the instance structure contains a variable-length part. This is used for example
to add an instance variable dictionary to subtypes of str or tuple. Note that the tp_basicsize field should
account for the dictionary added to the end in that case, even though the dictionary is not included in the basic
object layout. On a system with a pointer size of 4 bytes, tp_dictoffset should be set to -4 to indicate that
the dictionary is at the very end of the structure.
The real dictionary offset in an instance can be computed from a negative tp_dictoffset as follows:

dictoffset = tp_basicsize + abs(ob_size)*tp_itemsize + tp_dictoffset
if dictoffset is not aligned on sizeof(void*):

round up to sizeof(void*)

where tp_basicsize, tp_itemsize and tp_dictoffset are taken from the type object, and ob_size
is taken from the instance. The absolute value is taken because long ints use the sign of ob_size to sto-
re the sign of the number. (There’s never a need to do this calculation yourself; it is done for you by
_PyObject_GetDictPtr().)
This field is inherited by subtypes, but see the rules listed below. A subtype may override this offset; this means that
the subtype instances store the dictionary at a difference offset than the base type. Since the dictionary is always
found via tp_dictoffset, this should not be a problem.
When a type defined by a class statement has no __slots__ declaration, and none of its base types has an instance
variable dictionary, a dictionary slot is added to the instance layout and the tp_dictoffset is set to that slot’s
offset.

150 Bab 10. Dukungan Implementasi Objek

The Python/C API, Rilis 2.7.18

When a type defined by a class statement has a __slots__ declaration, the type inherits its tp_dictoffset
from its base type.
(Adding a slot named __dict__ to the __slots__ declaration does not have the expected effect, it just causes
confusion. Maybe this should be added as a feature just like __weakref__ though.)

initproc PyTypeObject.tp_init
An optional pointer to an instance initialization function.
This function corresponds to the __init__()method of classes. Like __init__(), it is possible to create an
instance without calling __init__(), and it is possible to reinitialize an instance by calling its __init__()
method again.
The function signature is

int tp_init(PyObject *self, PyObject *args, PyObject *kwds)

The self argument is the instance to be initialized; the args and kwds arguments represent positional and keyword
arguments of the call to __init__().
The tp_init function, if not NULL, is called when an instance is created normally by calling its type, after the
type’s tp_new function has returned an instance of the type. If the tp_new function returns an instance of
some other type that is not a subtype of the original type, no tp_init function is called; if tp_new returns an
instance of a subtype of the original type, the subtype’s tp_init is called. (VERSION NOTE: described here is
what is implemented in Python 2.2.1 and later. In Python 2.2, the tp_init of the type of the object returned by
tp_new was always called, if not NULL.)
field ini diwariskan oleh subtipe.

allocfunc PyTypeObject.tp_alloc
An optional pointer to an instance allocation function.
The function signature is

PyObject *tp_alloc(PyTypeObject *self, Py_ssize_t nitems)

The purpose of this function is to separate memory allocation from memory initialization. It should return a po-
inter to a block of memory of adequate length for the instance, suitably aligned, and initialized to zeros, but with
ob_refcnt set to 1 and ob_type set to the type argument. If the type’s tp_itemsize is non-zero, the
object’s ob_size field should be initialized to nitems and the length of the allocated memory block should be
tp_basicsize + nitems*tp_itemsize, rounded up to a multiple of sizeof(void*); otherwise,
nitems is not used and the length of the block should be tp_basicsize.
Do not use this function to do any other instance initialization, not even to allocate additional memory; that should
be done by tp_new.
This field is inherited by static subtypes, but not by dynamic subtypes (subtypes created by a class statement); in
the latter, this field is always set to PyType_GenericAlloc(), to force a standard heap allocation strategy.
That is also the recommended value for statically defined types.

newfunc PyTypeObject.tp_new
An optional pointer to an instance creation function.
If this function is NULL for a particular type, that type cannot be called to create new instances; presumably there
is some other way to create instances, like a factory function.
The function signature is

PyObject *tp_new(PyTypeObject *subtype, PyObject *args, PyObject *kwds)

10.3. Objek Tipe 151

The Python/C API, Rilis 2.7.18

The subtype argument is the type of the object being created; the args and kwds arguments represent positional
and keyword arguments of the call to the type. Note that subtype doesn’t have to equal the type whose tp_new
function is called; it may be a subtype of that type (but not an unrelated type).
The tp_new function should call subtype->tp_alloc(subtype, nitems) to allocate space for the
object, and then do only as much further initialization as is absolutely necessary. Initialization that can safely be
ignored or repeated should be placed in the tp_init handler. A good rule of thumb is that for immutable types,
all initialization should take place in tp_new, while for mutable types, most initialization should be deferred to
tp_init.
This field is inherited by subtypes, except it is not inherited by static types whose tp_base is NULL or
&PyBaseObject_Type. The latter exception is a precaution so that old extension types don’t become callable
simply by being linked with Python 2.2.

destructor PyTypeObject.tp_free
An optional pointer to an instance deallocation function.
The signature of this function has changed slightly: in Python 2.2 and 2.2.1, its signature is destructor:

void tp_free(PyObject *)

In Python 2.3 and beyond, its signature is freefunc:

void tp_free(void *)

The only initializer that is compatible with both versions is _PyObject_Del, whose definition has suitably
adapted in Python 2.3.
This field is inherited by static subtypes, but not by dynamic subtypes (subtypes created by a class statement); in
the latter, this field is set to a deallocator suitable to match PyType_GenericAlloc() and the value of the
Py_TPFLAGS_HAVE_GC flag bit.

inquiry PyTypeObject.tp_is_gc
An optional pointer to a function called by the garbage collector.
The garbage collector needs to know whether a particular object is collectible or not. Normally, it is sufficient to
look at the object’s type’s tp_flags field, and check the Py_TPFLAGS_HAVE_GC flag bit. But some types have
a mixture of statically and dynamically allocated instances, and the statically allocated instances are not collectible.
Such types should define this function; it should return 1 for a collectible instance, and 0 for a non-collectible
instance. The signature is

int tp_is_gc(PyObject *self)

(The only example of this are types themselves. The metatype, PyType_Type, defines this function to distinguish
between statically and dynamically allocated types.)
This field is inherited by subtypes. (VERSION NOTE: in Python 2.2, it was not inherited. It is inherited in 2.2.1
and later versions.)

PyObject* PyTypeObject.tp_bases
Tuple of base types.
This is set for types created by a class statement. It should be NULL for statically defined types.
This field is not inherited.

PyObject* PyTypeObject.tp_mro
Tuple containing the expanded set of base types, starting with the type itself and ending with object, in Method
Resolution Order.
This field is not inherited; it is calculated fresh by PyType_Ready().

152 Bab 10. Dukungan Implementasi Objek

The Python/C API, Rilis 2.7.18

PyObject* PyTypeObject.tp_cache
Unused. Not inherited. Internal use only.

PyObject* PyTypeObject.tp_subclasses
List of weak references to subclasses. Not inherited. Internal use only.

PyObject* PyTypeObject.tp_weaklist
Weak reference list head, for weak references to this type object. Not inherited. Internal use only.

The remaining fields are only defined if the feature test macro COUNT_ALLOCS is defined, and are for internal
use only. They are documented here for completeness. None of these fields are inherited by subtypes. See the
PYTHONSHOWALLOCCOUNT environment variable.
Py_ssize_t PyTypeObject.tp_allocs

Number of allocations.
Py_ssize_t PyTypeObject.tp_frees

Number of frees.
Py_ssize_t PyTypeObject.tp_maxalloc

Maximum simultaneously allocated objects.
PyTypeObject* PyTypeObject.tp_next

Pointer to the next type object with a non-zero tp_allocs field.
Also, note that, in a garbage collected Python, tp_dealloc may be called from any Python thread, not just the thread which
created the object (if the object becomes part of a refcount cycle, that cycle might be collected by a garbage collection
on any thread). This is not a problem for Python API calls, since the thread on which tp_dealloc is called will own the
Global Interpreter Lock (GIL). However, if the object being destroyed in turn destroys objects from some other C or C++
library, care should be taken to ensure that destroying those objects on the thread which called tp_dealloc will not violate
any assumptions of the library.

10.4 Number Object Structures

PyNumberMethods
This structure holds pointers to the functions which an object uses to implement the number protocol. Almost every
function below is used by the function of similar name documented in the Number Protocol section.
Here is the structure definition:

typedef struct {
binaryfunc nb_add;
binaryfunc nb_subtract;
binaryfunc nb_multiply;
binaryfunc nb_divide;
binaryfunc nb_remainder;
binaryfunc nb_divmod;
ternaryfunc nb_power;
unaryfunc nb_negative;
unaryfunc nb_positive;
unaryfunc nb_absolute;
inquiry nb_nonzero; /* Used by PyObject_IsTrue */
unaryfunc nb_invert;
binaryfunc nb_lshift;
binaryfunc nb_rshift;
binaryfunc nb_and;
binaryfunc nb_xor;
binaryfunc nb_or;

(berlanjut ke halaman berikutnya)

10.4. Number Object Structures 153

The Python/C API, Rilis 2.7.18

(lanjutan dari halaman sebelumnya)
coercion nb_coerce; /* Used by the coerce() function */
unaryfunc nb_int;
unaryfunc nb_long;
unaryfunc nb_float;
unaryfunc nb_oct;
unaryfunc nb_hex;

/* Added in release 2.0 */
binaryfunc nb_inplace_add;
binaryfunc nb_inplace_subtract;
binaryfunc nb_inplace_multiply;
binaryfunc nb_inplace_divide;
binaryfunc nb_inplace_remainder;
ternaryfunc nb_inplace_power;
binaryfunc nb_inplace_lshift;
binaryfunc nb_inplace_rshift;
binaryfunc nb_inplace_and;
binaryfunc nb_inplace_xor;
binaryfunc nb_inplace_or;

/* Added in release 2.2 */
binaryfunc nb_floor_divide;
binaryfunc nb_true_divide;
binaryfunc nb_inplace_floor_divide;
binaryfunc nb_inplace_true_divide;

/* Added in release 2.5 */
unaryfunc nb_index;

} PyNumberMethods;

Binary and ternary functions may receive different kinds of arguments, depending on the flag bit
Py_TPFLAGS_CHECKTYPES:

• If Py_TPFLAGS_CHECKTYPES is not set, the function arguments are guaranteed to be of the object’s type;
the caller is responsible for calling the coercion method specified by the nb_coerce member to convert the
arguments:
coercion PyNumberMethods.nb_coerce

This function is used by PyNumber_CoerceEx() and has the same signature. The first argument is
always a pointer to an object of the defined type. If the conversion to a common ”larger” type is possible, the
function replaces the pointers with new references to the converted objects and returns 0. If the conversion
is not possible, the function returns 1. If an error condition is set, it will return -1.

• If the Py_TPFLAGS_CHECKTYPES flag is set, binary and ternary functions must check the type of all their
operands, and implement the necessary conversions (at least one of the operands is an instance of the defined type).
This is the recommended way; with Python 3 coercion will disappear completely.

If the operation is not defined for the given operands, binary and ternary functions must return Py_NotImplemented,
if another error occurred they must return NULL and set an exception.

154 Bab 10. Dukungan Implementasi Objek

The Python/C API, Rilis 2.7.18

10.5 Mapping Object Structures

PyMappingMethods
This structure holds pointers to the functions which an object uses to implement the mapping protocol. It has three
members:

lenfunc PyMappingMethods.mp_length
This function is used by PyMapping_Length() and PyObject_Size(), and has the same signature. This
slot may be set to NULL if the object has no defined length.

binaryfunc PyMappingMethods.mp_subscript
This function is used by PyObject_GetItem() and has the same signature. This slot must be filled for the
PyMapping_Check() function to return 1, it can be NULL otherwise.

objobjargproc PyMappingMethods.mp_ass_subscript
This function is used by PyObject_SetItem() and PyObject_DelItem(). It has the same signature as
PyObject_SetItem(), but v can also be set to NULL to delete an item. If this slot is NULL, the object does
not support item assignment and deletion.

10.6 Sequence Object Structures

PySequenceMethods
This structure holds pointers to the functions which an object uses to implement the sequence protocol.

lenfunc PySequenceMethods.sq_length
This function is used by PySequence_Size() and PyObject_Size(), and has the same signature.

binaryfunc PySequenceMethods.sq_concat
This function is used by PySequence_Concat() and has the same signature. It is also used by the + operator,
after trying the numeric addition via the nb_add slot.

ssizeargfunc PySequenceMethods.sq_repeat
This function is used by PySequence_Repeat() and has the same signature. It is also used by the * operator,
after trying numeric multiplication via the nb_multiply slot.

ssizeargfunc PySequenceMethods.sq_item
This function is used by PySequence_GetItem() and has the same signature. This slot must be filled for the
PySequence_Check() function to return 1, it can be NULL otherwise.
Negative indexes are handled as follows: if the sq_length slot is filled, it is called and the sequence length is
used to compute a positive index which is passed to sq_item. If sq_length is NULL, the index is passed as
is to the function.

ssizeobjargproc PySequenceMethods.sq_ass_item
This function is used by PySequence_SetItem() and has the same signature. This slot may be left to NULL
if the object does not support item assignment and deletion.

objobjproc PySequenceMethods.sq_contains
This function may be used by PySequence_Contains() and has the same signature. This slot may be left to
NULL, in this case PySequence_Contains() simply traverses the sequence until it finds a match.

binaryfunc PySequenceMethods.sq_inplace_concat
This function is used by PySequence_InPlaceConcat() and has the same signature. It should modify its
first operand, and return it.

ssizeargfunc PySequenceMethods.sq_inplace_repeat
This function is used by PySequence_InPlaceRepeat() and has the same signature. It should modify its
first operand, and return it.

10.5. Mapping Object Structures 155

The Python/C API, Rilis 2.7.18

10.7 Buffer Object Structures

The buffer interface exports a model where an object can expose its internal data as a set of chunks of data, where each
chunk is specified as a pointer/length pair. These chunks are called segments and are presumed to be non-contiguous in
memory.
If an object does not export the buffer interface, then its tp_as_buffer member in the PyTypeObject structure
should be NULL. Otherwise, the tp_as_buffer will point to a PyBufferProcs structure.

Catatan: It is very important that your PyTypeObject structure uses Py_TPFLAGS_DEFAULT for the value of
the tp_flags member rather than 0. This tells the Python runtime that your PyBufferProcs structure contains
the bf_getcharbuffer slot. Older versions of Python did not have this member, so a new Python interpreter using
an old extension needs to be able to test for its presence before using it.

PyBufferProcs
Structure used to hold the function pointers which define an implementation of the buffer protocol.
The first slot is bf_getreadbuffer, of type readbufferproc. If this slot is NULL, then the object does
not support reading from the internal data. This is non-sensical, so implementors should fill this in, but callers
should test that the slot contains a non-NULL value.
The next slot is bf_getwritebuffer having type writebufferproc. This slot may be NULL if the object
does not allow writing into its returned buffers.
The third slot is bf_getsegcount, with type segcountproc. This slot must not be NULL and is used
to inform the caller how many segments the object contains. Simple objects such as PyString_Type and
PyBuffer_Type objects contain a single segment.
The last slot is bf_getcharbuffer, of type charbufferproc. This slot will only be present
if the Py_TPFLAGS_HAVE_GETCHARBUFFER flag is present in the tp_flags field of the obje-
ct’s PyTypeObject. Before using this slot, the caller should test whether it is present by using the
PyType_HasFeature() function. If the flag is present, bf_getcharbuffer may be NULL, indicating
that the object’s contents cannot be used as 8-bit characters. The slot function may also raise an error if the object’s
contents cannot be interpreted as 8-bit characters. For example, if the object is an array which is configured to
hold floating point values, an exception may be raised if a caller attempts to use bf_getcharbuffer to fetch a
sequence of 8-bit characters. This notion of exporting the internal buffers as ”text” is used to distinguish between
objects that are binary in nature, and those which have character-based content.

Catatan: The current policy seems to state that these characters may be multi-byte characters. This implies that
a buffer size of N does not mean there are N characters present.

Py_TPFLAGS_HAVE_GETCHARBUFFER
Flag bit set in the type structure to indicate that the bf_getcharbuffer slot is known. This being set does not
indicate that the object supports the buffer interface or that the bf_getcharbuffer slot is non-NULL.

Py_ssize_t (*readbufferproc)(PyObject *self, Py_ssize_t segment, void **ptrptr)
Return a pointer to a readable segment of the buffer in *ptrptr. This function is allowed to raise an exception,
in which case it must return -1. The segment which is specified must be zero or positive, and strictly less than the
number of segments returned by the bf_getsegcount slot function. On success, it returns the length of the
segment, and sets *ptrptr to a pointer to that memory.

Py_ssize_t (*writebufferproc)(PyObject *self, Py_ssize_t segment, void **ptrptr)
Return a pointer to a writable memory buffer in *ptrptr, and the length of that segment as the function return
value. The memory buffer must correspond to buffer segment segment. Must return -1 and set an exception on

156 Bab 10. Dukungan Implementasi Objek

The Python/C API, Rilis 2.7.18

error. TypeError should be raised if the object only supports read-only buffers, and SystemError should be
raised when segment specifies a segment that doesn’t exist.

Py_ssize_t (*segcountproc)(PyObject *self, Py_ssize_t *lenp)
Return the number of memory segments which comprise the buffer. If lenp is not NULL, the implementation must
report the sum of the sizes (in bytes) of all segments in *lenp. The function cannot fail.

Py_ssize_t (*charbufferproc)(PyObject *self, Py_ssize_t segment, char **ptrptr)
Return the size of the segment segment that ptrptr is set to. *ptrptr is set to the memory buffer. Returns -1 on
error.

10.8 Supporting Cyclic Garbage Collection

Python’s support for detecting and collecting garbage which involves circular references requires support from object
types which are ”containers” for other objects which may also be containers. Types which do not store references to other
objects, or which only store references to atomic types (such as numbers or strings), do not need to provide any explicit
support for garbage collection.
To create a container type, the tp_flags field of the type object must include the Py_TPFLAGS_HAVE_GC and
provide an implementation of the tp_traverse handler. If instances of the type are mutable, a tp_clear imple-
mentation must also be provided.
Py_TPFLAGS_HAVE_GC

Objects with a type with this flag set must conform with the rules documented here. For convenience these objects
will be referred to as container objects.

Constructors for container types must conform to two rules:
1. The memory for the object must be allocated using PyObject_GC_New() or PyObject_GC_NewVar().
2. Once all the fields which may contain references to other containers are initialized, it must call

PyObject_GC_Track().
TYPE* PyObject_GC_New(TYPE, PyTypeObject *type)

Analogous to PyObject_New() but for container objects with the Py_TPFLAGS_HAVE_GC flag set.
TYPE* PyObject_GC_NewVar(TYPE, PyTypeObject *type, Py_ssize_t size)

Analogous to PyObject_NewVar() but for container objects with the Py_TPFLAGS_HAVE_GC flag set.
Berubah pada versi 2.5: This function used an int type for size. This might require changes in your code for
properly supporting 64-bit systems.

TYPE* PyObject_GC_Resize(TYPE, PyVarObject *op, Py_ssize_t newsize)
Resize an object allocated by PyObject_NewVar(). Returns the resized object or NULL on failure. op must
not be tracked by the collector yet.
Berubah pada versi 2.5: This function used an int type for newsize. This might require changes in your code for
properly supporting 64-bit systems.

void PyObject_GC_Track(PyObject *op)
Adds the object op to the set of container objects tracked by the collector. The collector can run at unexpected
times so objects must be valid while being tracked. This should be called once all the fields followed by the
tp_traverse handler become valid, usually near the end of the constructor.

void _PyObject_GC_TRACK(PyObject *op)
A macro version of PyObject_GC_Track(). It should not be used for extension modules.

Similarly, the deallocator for the object must conform to a similar pair of rules:
1. Before fields which refer to other containers are invalidated, PyObject_GC_UnTrack() must be called.

10.8. Supporting Cyclic Garbage Collection 157

The Python/C API, Rilis 2.7.18

2. The object’s memory must be deallocated using PyObject_GC_Del().
void PyObject_GC_Del(void *op)

Releases memory allocated to an object using PyObject_GC_New() or PyObject_GC_NewVar().
void PyObject_GC_UnTrack(void *op)

Remove the object op from the set of container objects tracked by the collector. Note that
PyObject_GC_Track() can be called again on this object to add it back to the set of tracked objects. The dea-
llocator (tp_dealloc handler) should call this for the object before any of the fields used by the tp_traverse
handler become invalid.

void _PyObject_GC_UNTRACK(PyObject *op)
A macro version of PyObject_GC_UnTrack(). It should not be used for extension modules.

The tp_traverse handler accepts a function parameter of this type:
int (*visitproc)(PyObject *object, void *arg)

Type of the visitor function passed to the tp_traverse handler. The function should be called with an object
to traverse as object and the third parameter to the tp_traverse handler as arg. The Python core uses several
visitor functions to implement cyclic garbage detection; it’s not expected that users will need to write their own
visitor functions.

The tp_traverse handler must have the following type:
int (*traverseproc)(PyObject *self, visitproc visit, void *arg)

Traversal function for a container object. Implementations must call the visit function for each object directly
contained by self, with the parameters to visit being the contained object and the arg value passed to the handler.
The visit function must not be called with a NULL object argument. If visit returns a non-zero value that value
should be returned immediately.

To simplify writing tp_traverse handlers, a Py_VISIT() macro is provided. In order to use this macro, the
tp_traverse implementation must name its arguments exactly visit and arg:
void Py_VISIT(PyObject *o)

If o is not NULL, call the visit callback, with arguments o and arg. If visit returns a non-zero value, then return it.
Using this macro, tp_traverse handlers look like:

static int
my_traverse(Noddy *self, visitproc visit, void *arg)
{

Py_VISIT(self->foo);
Py_VISIT(self->bar);
return 0;

}

Baru pada versi 2.4.
The tp_clear handler must be of the inquiry type, or NULL if the object is immutable.
int (*inquiry)(PyObject *self)

Drop references that may have created reference cycles. Immutable objects do not have to define this method since
they can never directly create reference cycles. Note that the object must still be valid after calling this method
(don’t just call Py_DECREF() on a reference). The collector will call this method if it detects that this object is
involved in a reference cycle.

158 Bab 10. Dukungan Implementasi Objek

LAMPIRANA

Ikhtisar

>>> Prompt Python bawaan dari shell interaktif. Sering terlihat untuk contoh kode yang dapat dieksekusi secara inte-
raktif dalam interpreter.

... The default Python prompt of the interactive shell when entering code for an indented code block, when within
a pair of matching left and right delimiters (parentheses, square brackets, curly braces or triple quotes), or after
specifying a decorator.

2ke3 A tool that tries to convert Python 2.x code to Python 3.x code by handling most of the incompatibilities which can
be detected by parsing the source and traversing the parse tree.
2to3 is available in the standard library as lib2to3; a standalone entry point is provided as Tools/scripts/
2to3. See 2to3-reference.

kelas basis abstrak Abstract base classes complement duck-typing by providing a way to define interfaces when other
techniques like hasattr()would be clumsy or subtly wrong (for example with magic methods). ABCs introduce
virtual subclasses, which are classes that don’t inherit from a class but are still recognized by isinstance() and
issubclass(); see the abcmodule documentation. Python comes with many built-in ABCs for data structures
(in the collections module), numbers (in the numbers module), and streams (in the io module). You can
create your own ABCs with the abc module.

argumen A value passed to a function (or method) when calling the function. There are two types of arguments:
• keyword argument: an argument preceded by an identifier (e.g. name=) in a function call or passed as a value
in a dictionary preceded by **. For example, 3 and 5 are both keyword arguments in the following calls to
complex():

complex(real=3, imag=5)
complex(**{'real': 3, 'imag': 5})

• positional argument: an argument that is not a keyword argument. Positional arguments can appear at the
beginning of an argument list and/or be passed as elements of an iterable preceded by *. For example, 3 and
5 are both positional arguments in the following calls:

complex(3, 5)
complex(*(3, 5))

159

The Python/C API, Rilis 2.7.18

Arguments are assigned to the named local variables in a function body. See the calls section for the rules governing
this assignment. Syntactically, any expression can be used to represent an argument; the evaluated value is assigned
to the local variable.
See also the parameter glossary entry and the FAQ question on the difference between arguments and parameters.

atribut A value associated with an object which is referenced by name using dotted expressions. For example, if an
object o has an attribute a it would be referenced as o.a.

BDFL Benevolent Dictator For Life, a.k.a. Guido van Rossum, Python’s creator.
bytes-like object An object that supports the buffer protocol, like str, bytearray or memoryview. Bytes-like

objects can be used for various operations that expect binary data, such as compression, saving to a binary file or
sending over a socket. Some operations need the binary data to be mutable, in which case not all bytes-like objects
can apply.

bytecode Python source code is compiled into bytecode, the internal representation of a Python program in the CPython
interpreter. The bytecode is also cached in .pyc and .pyo files so that executing the same file is faster the second
time (recompilation from source to bytecode can be avoided). This ”intermediate language” is said to run on a
virtual machine that executes the machine code corresponding to each bytecode. Do note that bytecodes are not
expected to work between different Python virtual machines, nor to be stable between Python releases.
Daftar instruksi-instruksi bytecode dapat ditemukan di dokumentasi pada the dis module.

kelas A template for creating user-defined objects. Class definitions normally contain method definitions which operate
on instances of the class.

classic class Any class which does not inherit from object. See new-style class. Classic classes have been removed in
Python 3.

paksaan The implicit conversion of an instance of one type to another during an operation which involves two arguments
of the same type. For example, int(3.15) converts the floating point number to the integer 3, but in 3+4.5,
each argument is of a different type (one int, one float), and both must be converted to the same type before they
can be added or it will raise a TypeError. Coercion between two operands can be performed with the coerce
built-in function; thus, 3+4.5 is equivalent to calling operator.add(*coerce(3, 4.5)) and results in
operator.add(3.0, 4.5). Without coercion, all arguments of even compatible types would have to be
normalized to the same value by the programmer, e.g., float(3)+4.5 rather than just 3+4.5.

bilangan kompleks An extension of the familiar real number system in which all numbers are expressed as a sum of a
real part and an imaginary part. Imaginary numbers are real multiples of the imaginary unit (the square root of -1),
often written i in mathematics or j in engineering. Python has built-in support for complex numbers, which are
written with this latter notation; the imaginary part is written with a j suffix, e.g., 3+1j. To get access to complex
equivalents of the math module, use cmath. Use of complex numbers is a fairly advanced mathematical feature.
If you’re not aware of a need for them, it’s almost certain you can safely ignore them.

manajer konteks An object which controls the environment seen in a with statement by defining __enter__() and
__exit__() methods. See PEP 343.

CPython The canonical implementation of the Python programming language, as distributed on python.org. The term
”CPython” is used when necessary to distinguish this implementation from others such as Jython or IronPython.

penghias A function returning another function, usually applied as a function transformation using the @wrapper
syntax. Common examples for decorators are classmethod() and staticmethod().
The decorator syntax is merely syntactic sugar, the following two function definitions are semantically equivalent:

def f(...):
...

f = staticmethod(f)

@staticmethod

(berlanjut ke halaman berikutnya)

160 Lampiran A. Ikhtisar

https://www.python.org/~guido/
https://www.python.org/dev/peps/pep-0343
https://www.python.org

The Python/C API, Rilis 2.7.18

(lanjutan dari halaman sebelumnya)
def f(...):

...

The same concept exists for classes, but is less commonly used there. See the documentation for function definitions
and class definitions for more about decorators.

descriptor Any new-style object which defines the methods __get__(), __set__(), or __delete__(). When
a class attribute is a descriptor, its special binding behavior is triggered upon attribute lookup. Normally, using a.b
to get, set or delete an attribute looks up the object named b in the class dictionary for a, but if b is a descriptor,
the respective descriptor method gets called. Understanding descriptors is a key to a deep understanding of Python
because they are the basis for many features including functions, methods, properties, class methods, static methods,
and reference to super classes.
For more information about descriptors’ methods, see descriptors.

kamus An associative array, where arbitrary keys are mapped to values. The keys can be any object with __hash__()
and __eq__() methods. Called a hash in Perl.

dictionary view The objects returned from dict.viewkeys(), dict.viewvalues(), and dict.
viewitems() are called dictionary views. They provide a dynamic view on the dictionary’s entries,
which means that when the dictionary changes, the view reflects these changes. To force the dictionary view to
become a full list use list(dictview). See dict-views.

docstring A string literal which appears as the first expression in a class, function or module. While ignored when
the suite is executed, it is recognized by the compiler and put into the __doc__ attribute of the enclosing class,
function or module. Since it is available via introspection, it is the canonical place for documentation of the object.

duck-typing A programming style which does not look at an object’s type to determine if it has the right interface;
instead, the method or attribute is simply called or used (”If it looks like a duck and quacks like a duck, it must be a
duck.”) By emphasizing interfaces rather than specific types, well-designed code improves its flexibility by allowing
polymorphic substitution. Duck-typing avoids tests using type() or isinstance(). (Note, however, that
duck-typing can be complemented with abstract base classes.) Instead, it typically employs hasattr() tests or
EAFP programming.

EAFP Easier to ask for forgiveness than permission. This common Python coding style assumes the existence of valid
keys or attributes and catches exceptions if the assumption proves false. This clean and fast style is characterized
by the presence of many try and except statements. The technique contrasts with the LBYL style common to
many other languages such as C.

ekspresi A piece of syntax which can be evaluated to some value. In other words, an expression is an accumulation
of expression elements like literals, names, attribute access, operators or function calls which all return a value.
In contrast to many other languages, not all language constructs are expressions. There are also statements which
cannot be used as expressions, such as print or if. Assignments are also statements, not expressions.

modul tambahan A module written in C or C++, using Python’s C API to interact with the core and with user code.
objek berkas An object exposing a file-oriented API (with methods such as read() or write()) to an underlying

resource. Depending on the way it was created, a file object can mediate access to a real on-disk file or to another
type of storage or communication device (for example standard input/output, in-memory buffers, sockets, pipes,
etc.). File objects are also called file-like objects or streams.
There are actually three categories of file objects: raw binary files, buffered binary files and text files. Their interfaces
are defined in the io module. The canonical way to create a file object is by using the open() function.

file-like object A synonym for file object.
finder An object that tries to find the loader for a module. It must implement a method named find_module(). See

PEP 302 for details.

161

https://www.python.org/dev/peps/pep-0302

The Python/C API, Rilis 2.7.18

floor division Mathematical division that rounds down to nearest integer. The floor division operator is //. For example,
the expression 11 // 4 evaluates to 2 in contrast to the 2.75 returned by float true division. Note that (-11)
// 4 is -3 because that is -2.75 rounded downward. See PEP 238.

fungsi A series of statements which returns some value to a caller. It can also be passed zero or more arguments which
may be used in the execution of the body. See also parameter, method, and the function section.

__future__ A pseudo-module which programmers can use to enable new language features which are not compatible
with the current interpreter. For example, the expression 11/4 currently evaluates to 2. If the module in which it
is executed had enabled true division by executing:

from __future__ import division

the expression11/4would evaluate to2.75. By importing the__future__module and evaluating its variables,
you can see when a new feature was first added to the language and when it will become the default:

>>> import __future__
>>> __future__.division
_Feature((2, 2, 0, 'alpha', 2), (3, 0, 0, 'alpha', 0), 8192)

pengumpulan sampah The process of freeingmemory when it is not used anymore. Python performs garbage collection
via reference counting and a cyclic garbage collector that is able to detect and break reference cycles.

pembangkit A function which returns an iterator. It looks like a normal function except that it contains yield state-
ments for producing a series of values usable in a for-loop or that can be retrieved one at a time with the next()
function. Each yield temporarily suspends processing, remembering the location execution state (including lo-
cal variables and pending try-statements). When the generator resumes, it picks up where it left off (in contrast to
functions which start fresh on every invocation).

generator expression An expression that returns an iterator. It looks like a normal expression followed by a for exp-
ression defining a loop variable, range, and an optional if expression. The combined expression generates values
for an enclosing function:

>>> sum(i*i for i in range(10)) # sum of squares 0, 1, 4, ... 81
285

GIL Lihat global interpreter lock.
kunci interpreter global Themechanism used by the CPython interpreter to assure that only one thread executes Python

bytecode at a time. This simplifies the CPython implementation bymaking the object model (including critical built-
in types such as dict) implicitly safe against concurrent access. Locking the entire interpreter makes it easier
for the interpreter to be multi-threaded, at the expense of much of the parallelism afforded by multi-processor
machines.
However, some extension modules, either standard or third-party, are designed so as to release the GIL when doing
computationally-intensive tasks such as compression or hashing. Also, the GIL is always released when doing I/O.
Past efforts to create a ”free-threaded” interpreter (one which locks shared data at a much finer granularity) have not
been successful because performance suffered in the common single-processor case. It is believed that overcoming
this performance issue would make the implementation much more complicated and therefore costlier to maintain.

hashable An object is hashable if it has a hash value which never changes during its lifetime (it needs a __hash__()
method), and can be compared to other objects (it needs an __eq__() or __cmp__() method). Hashable
objects which compare equal must have the same hash value.
Hashability makes an object usable as a dictionary key and a set member, because these data structures use the hash
value internally.
All of Python’s immutable built-in objects are hashable, while no mutable containers (such as lists or dictionaries)
are. Objects which are instances of user-defined classes are hashable by default; they all compare unequal (except

162 Lampiran A. Ikhtisar

https://www.python.org/dev/peps/pep-0238

The Python/C API, Rilis 2.7.18

with themselves), and their hash value is derived from their id().
IDLE Sebuah Lingkungan Pengembangan Terpadu untuk Python. IDLE adalah editor dasar dan lingkungan interpreter

yang digabungkan dengan distribusi standar dari Python.
immutable An object with a fixed value. Immutable objects include numbers, strings and tuples. Such an object cannot

be altered. A new object has to be created if a different value has to be stored. They play an important role in
places where a constant hash value is needed, for example as a key in a dictionary.

integer division Mathematical division discarding any remainder. For example, the expression 11/4 currently evaluates
to 2 in contrast to the 2.75 returned by float division. Also called floor division. When dividing two integers the
outcome will always be another integer (having the floor function applied to it). However, if one of the operands is
another numeric type (such as a float), the result will be coerced (see coercion) to a common type. For example,
an integer divided by a float will result in a float value, possibly with a decimal fraction. Integer division can be
forced by using the // operator instead of the / operator. See also __future__.

importing The process by which Python code in one module is made available to Python code in another module.
importer An object that both finds and loads a module; both a finder and loader object.
interaktif Python has an interactive interpreter which means you can enter statements and expressions at the interpreter

prompt, immediately execute them and see their results. Just launch python with no arguments (possibly by
selecting it from your computer’s main menu). It is a very powerful way to test out new ideas or inspect modules
and packages (remember help(x)).

diinterpretasi Python is an interpreted language, as opposed to a compiled one, though the distinction can be blurry
because of the presence of the bytecode compiler. This means that source files can be run directly without explicitly
creating an executable which is then run. Interpreted languages typically have a shorter development/debug cycle
than compiled ones, though their programs generally also run more slowly. See also interactive.

iterable An object capable of returning its members one at a time. Examples of iterables include all sequence types (such
as list, str, and tuple) and some non-sequence types like dict and file and objects of any classes you
define with an __iter__() or __getitem__() method. Iterables can be used in a for loop and in many
other places where a sequence is needed (zip(), map(), ...). When an iterable object is passed as an argument
to the built-in function iter(), it returns an iterator for the object. This iterator is good for one pass over the set
of values. When using iterables, it is usually not necessary to call iter() or deal with iterator objects yourself.
The for statement does that automatically for you, creating a temporary unnamed variable to hold the iterator for
the duration of the loop. See also iterator, sequence, and generator.

iterator An object representing a stream of data. Repeated calls to the iterator’s next()method return successive items
in the stream. When no more data are available a StopIteration exception is raised instead. At this point,
the iterator object is exhausted and any further calls to its next() method just raise StopIteration again.
Iterators are required to have an __iter__() method that returns the iterator object itself so every iterator is
also iterable and may be used in most places where other iterables are accepted. One notable exception is code
which attempts multiple iteration passes. A container object (such as a list) produces a fresh new iterator each
time you pass it to the iter() function or use it in a for loop. Attempting this with an iterator will just return
the same exhausted iterator object used in the previous iteration pass, making it appear like an empty container.
Informasi lebih lanjut dapat ditemukan di typeiter.

fungsi kunci A key function or collation function is a callable that returns a value used for sorting or ordering. For
example, locale.strxfrm() is used to produce a sort key that is aware of locale specific sort conventions.
A number of tools in Python accept key functions to control how elements are ordered or grouped. They in-
clude min(), max(), sorted(), list.sort(), heapq.nsmallest(), heapq.nlargest(), and
itertools.groupby().
There are several ways to create a key function. For example. the str.lower() method can serve as a key
function for case insensitive sorts. Alternatively, an ad-hoc key function can be built from a lambda expression
such as lambda r: (r[0], r[2]). Also, the operatormodule provides three key function constructors:

163

The Python/C API, Rilis 2.7.18

attrgetter(), itemgetter(), and methodcaller(). See the Sorting HOW TO for examples of how
to create and use key functions.

argumen kata kunci Lihat argument.
lambda An anonymous inline function consisting of a single expression which is evaluated when the function is called.

The syntax to create a lambda function is lambda [parameters]: expression

LBYL Look before you leap. This coding style explicitly tests for pre-conditions before making calls or lookups. This
style contrasts with the EAFP approach and is characterized by the presence of many if statements.
In a multi-threaded environment, the LBYL approach can risk introducing a race condition between ”the looking”
and ”the leaping”. For example, the code, if key in mapping: return mapping[key] can fail if
another thread removes key from mapping after the test, but before the lookup. This issue can be solved with locks
or by using the EAFP approach.

daftar A built-in Python sequence. Despite its name it is more akin to an array in other languages than to a linked list
since access to elements is O(1).

list comprehension A compact way to process all or part of the elements in a sequence and return a list with the results.
result = ["0x%02x" % x for x in range(256) if x % 2 == 0] generates a list of strings
containing even hex numbers (0x..) in the range from 0 to 255. The if clause is optional. If omitted, all elements
in range(256) are processed.

loader An object that loads a module. It must define a method named load_module(). A loader is typically returned
by a finder. See PEP 302 for details.

magic method An informal synonym for special method.
pemetaan A container object that supports arbitrary key lookups and implements the methods specified in the Mapping

or MutableMapping abstract base classes. Examples include dict, collections.defaultdict,
collections.OrderedDict and collections.Counter.

metaclass The class of a class. Class definitions create a class name, a class dictionary, and a list of base classes. The me-
taclass is responsible for taking those three arguments and creating the class. Most object oriented programming
languages provide a default implementation. What makes Python special is that it is possible to create custom
metaclasses. Most users never need this tool, but when the need arises, metaclasses can provide powerful, ele-
gant solutions. They have been used for logging attribute access, adding thread-safety, tracking object creation,
implementing singletons, and many other tasks.
Informasi lebih lanjut dapat ditemukan di metaclasses.

method A function which is defined inside a class body. If called as an attribute of an instance of that class, the method
will get the instance object as its first argument (which is usually called self). See function and nested scope.

method resolution order Method Resolution Order is the order in which base classes are searched for a member during
lookup. See The Python 2.3 Method Resolution Order for details of the algorithm used by the Python interpreter
since the 2.3 release.

modul An object that serves as an organizational unit of Python code. Modules have a namespace containing arbitrary
Python objects. Modules are loaded into Python by the process of importing.
Lihat juga package.

MRO Lihat method resolution order.
mutable Mutable objects can change their value but keep their id(). See also immutable.
named tuple Any tuple-like class whose indexable elements are also accessible using named attributes (for example,

time.localtime() returns a tuple-like object where the year is accessible either with an index such as t[0]
or with a named attribute like t.tm_year).

164 Lampiran A. Ikhtisar

https://www.python.org/dev/peps/pep-0302
https://www.python.org/download/releases/2.3/mro/

The Python/C API, Rilis 2.7.18

A named tuple can be a built-in type such as time.struct_time, or it can be created with a regular
class definition. A full featured named tuple can also be created with the factory function collections.
namedtuple(). The latter approach automatically provides extra features such as a self-documenting represen-
tation like Employee(name='jones', title='programmer').

namespace The place where a variable is stored. Namespaces are implemented as dictionaries. There are the local,
global and built-in namespaces as well as nested namespaces in objects (in methods). Namespaces support mo-
dularity by preventing naming conflicts. For instance, the functions __builtin__.open() and os.open()
are distinguished by their namespaces. Namespaces also aid readability and maintainability by making it clear whi-
ch module implements a function. For instance, writing random.seed() or itertools.izip() makes it
clear that those functions are implemented by the random and itertools modules, respectively.

nested scope The ability to refer to a variable in an enclosing definition. For instance, a function defined inside another
function can refer to variables in the outer function. Note that nested scopes work only for reference and not for
assignment which will always write to the innermost scope. In contrast, local variables both read and write in the
innermost scope. Likewise, global variables read and write to the global namespace.

new-style class Any class which inherits from object. This includes all built-in types like list and dict.
Only new-style classes can use Python’s newer, versatile features like __slots__, descriptors, properties, and
__getattribute__().
More information can be found in newstyle.

objek Any data with state (attributes or value) and defined behavior (methods). Also the ultimate base class of any
new-style class.

paket A Python module which can contain submodules or recursively, subpackages. Technically, a package is a Python
module with an __path__ attribute.

parameter A named entity in a function (or method) definition that specifies an argument (or in some cases, arguments)
that the function can accept. There are four types of parameters:

• positional-or-keyword: specifies an argument that can be passed either positionally or as a keyword argument.
This is the default kind of parameter, for example foo and bar in the following:

def func(foo, bar=None): ...

• positional-only: specifies an argument that can be supplied only by position. Python has no syntax for defining
positional-only parameters. However, some built-in functions have positional-only parameters (e.g. abs()).

• var-positional: specifies that an arbitrary sequence of positional arguments can be provided (in addition to any
positional arguments already accepted by other parameters). Such a parameter can be defined by prepending
the parameter name with *, for example args in the following:

def func(*args, **kwargs): ...

• var-keyword: specifies that arbitrarily many keyword arguments can be provided (in addition to any keywo-
rd arguments already accepted by other parameters). Such a parameter can be defined by prepending the
parameter name with **, for example kwargs in the example above.

Parameters can specify both optional and required arguments, as well as default values for some optional arguments.
See also the argument glossary entry, the FAQ question on the difference between arguments and parameters, and
the function section.

PEP Python Enhancement Proposal. A PEP is a design document providing information to the Python community,
or describing a new feature for Python or its processes or environment. PEPs should provide a concise technical
specification and a rationale for proposed features.
PEPs are intended to be the primary mechanisms for proposing major new features, for collecting community input
on an issue, and for documenting the design decisions that have gone into Python. The PEP author is responsible

165

The Python/C API, Rilis 2.7.18

for building consensus within the community and documenting dissenting opinions.
Lihat PEP 1.

positional argument Lihat argument.
Python 3000 Nickname for the Python 3.x release line (coined long ago when the release of version 3 was something in

the distant future.) This is also abbreviated ”Py3k”.
Pythonic An idea or piece of code which closely follows the most common idioms of the Python language, rather than

implementing code using concepts common to other languages. For example, a common idiom in Python is to loop
over all elements of an iterable using a for statement. Many other languages don’t have this type of construct, so
people unfamiliar with Python sometimes use a numerical counter instead:

for i in range(len(food)):
print food[i]

As opposed to the cleaner, Pythonic method:

for piece in food:
print piece

jumlah referensi The number of references to an object. When the reference count of an object drops to zero, it is
deallocated. Reference counting is generally not visible to Python code, but it is a key element of the CPython
implementation. The sys module defines a getrefcount() function that programmers can call to return the
reference count for a particular object.

__slots__ A declaration inside a new-style class that saves memory by pre-declaring space for instance attributes and
eliminating instance dictionaries. Though popular, the technique is somewhat tricky to get right and is best reserved
for rare cases where there are large numbers of instances in a memory-critical application.

urutan An iterable which supports efficient element access using integer indices via the __getitem__() special
method and defines a len() method that returns the length of the sequence. Some built-in sequence types are
list, str, tuple, and unicode. Note that dict also supports __getitem__() and __len__(), but is
considered a mapping rather than a sequence because the lookups use arbitrary immutable keys rather than integers.

slice An object usually containing a portion of a sequence. A slice is created using the subscript notation, [] with
colons between numbers when several are given, such as in variable_name[1:3:5]. The bracket (subscript)
notation uses slice objects internally (or in older versions, __getslice__() and __setslice__()).

special method A method that is called implicitly by Python to execute a certain operation on a type, such as addi-
tion. Such methods have names starting and ending with double underscores. Special methods are documented in
specialnames.

pernyataan A statement is part of a suite (a ”block” of code). A statement is either an expression or one of several
constructs with a keyword, such as if, while or for.

struct sequence A tuple with named elements. Struct sequences expose an interface similiar to named tuple in that
elements can be accessed either by index or as an attribute. However, they do not have any of the named tuple
methods like _make() or _asdict(). Examples of struct sequences include sys.float_info and the
return value of os.stat().

teks tiga-kutip A string which is bound by three instances of either a quotation mark (”) or an apostrophe (’). While they
don’t provide any functionality not available with single-quoted strings, they are useful for a number of reasons.
They allow you to include unescaped single and double quotes within a string and they can span multiple lines
without the use of the continuation character, making them especially useful when writing docstrings.

tipe The type of a Python object determines what kind of object it is; every object has a type. An object’s type is
accessible as its __class__ attribute or can be retrieved with type(obj).

166 Lampiran A. Ikhtisar

https://www.python.org/dev/peps/pep-0001

The Python/C API, Rilis 2.7.18

universal newlines A manner of interpreting text streams in which all of the following are recognized as ending a line:
the Unix end-of-line convention '\n', the Windows convention '\r\n', and the old Macintosh convention '\
r'. See PEP 278 and PEP 3116, as well as str.splitlines() for an additional use.

lingkungan virtual Lingkungan runtime kooperatif yang memungkinkan pengguna dan aplikasi Python untuk mengin-
stal dan memperbarui paket distribusi Python tanpa mengganggu perilaku aplikasi Python lain yang berjalan pada
sistem yang sama.

mesin virtual A computer defined entirely in software. Python’s virtual machine executes the bytecode emitted by the
bytecode compiler.

Zen of Python Listing of Python design principles and philosophies that are helpful in understanding and using the
language. The listing can be found by typing ”import this” at the interactive prompt.

167

https://www.python.org/dev/peps/pep-0278
https://www.python.org/dev/peps/pep-3116

The Python/C API, Rilis 2.7.18

168 Lampiran A. Ikhtisar

LAMPIRANB

Tentang dokumen-dokumen ini

Dokumen-dokumen ini dihasilkan dari reStructuredText dengan Sphinx, sebuah pemroses dokumen yang khusus ditulis
untuk dokumentasi Python.
Pengembangan dokumentasi dan perangkat pengembangannya sepenuhnya upaya sukarela, seperti halnya Python. Jika
anda ingin berkontribusi, silakan lihat halaman reporting-bugs untuk informasi cara melakukannya. Relawan baru selalu
diterima!
Terima kasih banyak untuk:

• Fred L. Drake, Jr., pembuat awal kumpulan alat dokumentasi Python dan penulis banyak konten;
• Docutils proyek untuk membuat reStructuredText dan Docutils suite;
• Fredrik Lundh untuk Alternative Python Reference proyek dimana Sphinx mendapatkan banyak ide bagus.

B.1 Kontributor untuk dokumentasi Python

Banyak orang telah berkontribusi ke bahasa Python, pustaka standar Python, dan dokumentasi Python. Lihat Misc/ACKS
di distribusi kode sumber Python untuk sebagian daftar kontributor-kontributor.
Hanya dengan masukan dan kontribusi dari komunitas Python sehingga Python memiliki dokumentasi yang sangat baik.
Terima kasih!

169

http://docutils.sourceforge.net/rst.html
http://sphinx-doc.org/
http://docutils.sourceforge.net/
http://effbot.org/zone/pyref.htm
https://github.com/python/cpython/tree/2.7/Misc/ACKS

The Python/C API, Rilis 2.7.18

170 Lampiran B. Tentang dokumen-dokumen ini

LAMPIRANC

Sejarah dan Lisensi

C.1 Sejarah perangkat lunak

Python diciptakan pada awal 1990-an oleh Guido van Rossum di Stichting Mathematisch Centrum (CWI, lihat https://
www.cwi.nl/) di Belanda sebagai penerus bahasa yang disebut ABC.Guido tetapmenjadi penulis utama Python, meskipun
ia memasukkan banyak kontribusi dari orang lain.
Pada tahun 1995, Guido melanjutkan karyanya tentang Python di Corporation for National Research Initiatives (CNRI,
lihat https://www.cnri.reston.va.us/) di Reston, Virginia di mana ia merilis beberapa versi perangkat lunak.
In May 2000, Guido and the Python core development team moved to BeOpen.com to form the BeOpen PythonLabs
team. In October of the same year, the PythonLabs team moved to Digital Creations (now Zope Corporation; see https:
//www.zope.org/). In 2001, the Python Software Foundation (PSF, see https://www.python.org/psf/) was formed, a non-
profit organization created specifically to own Python-related Intellectual Property. Zope Corporation is a sponsoring
member of the PSF.
Semua rilis Python adalah Sumber Terbuka (lihat https://opensource.org/ untuk Definisi Sumber Terbuka). Secara histo-
ris, sebagian besar, tetapi tidak semua, rilis Python juga kompatibel dengan GPL; tabel di bawah ini merangkum berbagai
rilis.

Rilis Berasal dari Tahun Pemilik GPL compatible?
0.9.0 hingga 1.2 t/a 1991-1995 CWI ya
1.3 hingga 1.5.2 1.2 1995-1999 CNRI ya
1.6 1.5.2 2000 CNRI tidak
2.0 1.6 2000 BeOpen.com tidak
1.6.1 1.6 2001 CNRI tidak
2.1 2.0+1.6.1 2001 PSF tidak
2.0.1 2.0+1.6.1 2001 PSF ya
2.1.1 2.1+2.0.1 2001 PSF ya
2.1.2 2.1.1 2002 PSF ya
2.1.3 2.1.2 2002 PSF ya
2.2 dan ke atas 2.1.1 2001-sekarang PSF ya

171

https://www.cwi.nl/
https://www.cwi.nl/
https://www.cnri.reston.va.us/
https://www.zope.org/
https://www.zope.org/
https://www.python.org/psf/
https://opensource.org/

The Python/C API, Rilis 2.7.18

Catatan: GPL-compatible doesn’t mean that we’re distributing Python under the GPL. All Python licenses, unlike the
GPL, let you distribute a modified version without making your changes open source. The GPL-compatible licenses make
it possible to combine Python with other software that is released under the GPL; the others don’t.

Terima kasih kepada banyak sukarelawan eksternal yang telah bekerja di bawah arahanGuido untukmewujudkan rilis-rilis
ini.

C.2 Syarat dan ketentuan untuk mengakses atau menggunakan
Python

C.2.1 LISENSI PERJANJIAN PSF UNTUK PYTHON 2.7.18

1. This LICENSE AGREEMENT is between the Python Software Foundation ("PSF"),␣
↪→and

the Individual or Organization ("Licensee") accessing and otherwise using␣
↪→Python

2.7.18 software in source or binary form and its associated documentation.

2. Subject to the terms and conditions of this License Agreement, PSF hereby
grants Licensee a nonexclusive, royalty-free, world-wide license to␣

↪→reproduce,
analyze, test, perform and/or display publicly, prepare derivative works,
distribute, and otherwise use Python 2.7.18 alone or in any derivative
version, provided, however, that PSF's License Agreement and PSF's notice␣

↪→of
copyright, i.e., "Copyright © 2001-2020 Python Software Foundation; All␣

↪→Rights
Reserved" are retained in Python 2.7.18 alone or in any derivative version
prepared by Licensee.

3. In the event Licensee prepares a derivative work that is based on or
incorporates Python 2.7.18 or any part thereof, and wants to make the
derivative work available to others as provided herein, then Licensee␣

↪→hereby
agrees to include in any such work a brief summary of the changes made to␣

↪→Python
2.7.18.

4. PSF is making Python 2.7.18 available to Licensee on an "AS IS" basis.
PSF MAKES NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF
EXAMPLE, BUT NOT LIMITATION, PSF MAKES NO AND DISCLAIMS ANY REPRESENTATION␣

↪→OR
WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT␣

↪→THE
USE OF PYTHON 2.7.18 WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

5. PSF SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF PYTHON 2.7.18
FOR ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT␣

↪→OF

172 Lampiran C. Sejarah dan Lisensi

The Python/C API, Rilis 2.7.18

MODIFYING, DISTRIBUTING, OR OTHERWISE USING PYTHON 2.7.18, OR ANY␣
↪→DERIVATIVE

THEREOF, EVEN IF ADVISED OF THE POSSIBILITY THEREOF.

6. This License Agreement will automatically terminate upon a material breach␣
↪→of

its terms and conditions.

7. Nothing in this License Agreement shall be deemed to create any␣
↪→relationship

of agency, partnership, or joint venture between PSF and Licensee. This␣
↪→License

Agreement does not grant permission to use PSF trademarks or trade name in␣
↪→a

trademark sense to endorse or promote products or services of Licensee, or␣
↪→any

third party.

8. By copying, installing or otherwise using Python 2.7.18, Licensee agrees
to be bound by the terms and conditions of this License Agreement.

C.2.2 LISENSI PERJANJIAN BEOPEN.COM UNTUK PYTHON 2.0

LISENSI PERJANJIAN BEOPEN SUMBER TERBUKA PYTHON VERSI 1

1. This LICENSE AGREEMENT is between BeOpen.com ("BeOpen"), having an office at
160 Saratoga Avenue, Santa Clara, CA 95051, and the Individual or Organization
("Licensee") accessing and otherwise using this software in source or binary
form and its associated documentation ("the Software").

2. Subject to the terms and conditions of this BeOpen Python License Agreement,
BeOpen hereby grants Licensee a non-exclusive, royalty-free, world-wide license
to reproduce, analyze, test, perform and/or display publicly, prepare derivative
works, distribute, and otherwise use the Software alone or in any derivative
version, provided, however, that the BeOpen Python License is retained in the
Software, alone or in any derivative version prepared by Licensee.

3. BeOpen is making the Software available to Licensee on an "AS IS" basis.
BEOPEN MAKES NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF
EXAMPLE, BUT NOT LIMITATION, BEOPEN MAKES NO AND DISCLAIMS ANY REPRESENTATION OR
WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE
USE OF THE SOFTWARE WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

4. BEOPEN SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF THE SOFTWARE FOR
ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT OF USING,
MODIFYING OR DISTRIBUTING THE SOFTWARE, OR ANY DERIVATIVE THEREOF, EVEN IF
ADVISED OF THE POSSIBILITY THEREOF.

5. This License Agreement will automatically terminate upon a material breach of
its terms and conditions.

6. This License Agreement shall be governed by and interpreted in all respects
by the law of the State of California, excluding conflict of law provisions.
Nothing in this License Agreement shall be deemed to create any relationship of
agency, partnership, or joint venture between BeOpen and Licensee. This License

(berlanjut ke halaman berikutnya)

C.2. Syarat dan ketentuan untuk mengakses atau menggunakan Python 173

The Python/C API, Rilis 2.7.18

(lanjutan dari halaman sebelumnya)
Agreement does not grant permission to use BeOpen trademarks or trade names in a
trademark sense to endorse or promote products or services of Licensee, or any
third party. As an exception, the "BeOpen Python" logos available at
http://www.pythonlabs.com/logos.html may be used according to the permissions
granted on that web page.

7. By copying, installing or otherwise using the software, Licensee agrees to be
bound by the terms and conditions of this License Agreement.

C.2.3 LISENSI PERJANJIAN CNRI UNTUK PYTHON 1.6.1

1. This LICENSE AGREEMENT is between the Corporation for National Research
Initiatives, having an office at 1895 Preston White Drive, Reston, VA 20191
("CNRI"), and the Individual or Organization ("Licensee") accessing and
otherwise using Python 1.6.1 software in source or binary form and its
associated documentation.

2. Subject to the terms and conditions of this License Agreement, CNRI hereby
grants Licensee a nonexclusive, royalty-free, world-wide license to reproduce,
analyze, test, perform and/or display publicly, prepare derivative works,
distribute, and otherwise use Python 1.6.1 alone or in any derivative version,
provided, however, that CNRI's License Agreement and CNRI's notice of copyright,
i.e., "Copyright © 1995-2001 Corporation for National Research Initiatives; All
Rights Reserved" are retained in Python 1.6.1 alone or in any derivative version
prepared by Licensee. Alternately, in lieu of CNRI's License Agreement,
Licensee may substitute the following text (omitting the quotes): "Python 1.6.1
is made available subject to the terms and conditions in CNRI's License
Agreement. This Agreement together with Python 1.6.1 may be located on the
Internet using the following unique, persistent identifier (known as a handle):
1895.22/1013. This Agreement may also be obtained from a proxy server on the
Internet using the following URL: http://hdl.handle.net/1895.22/1013."

3. In the event Licensee prepares a derivative work that is based on or
incorporates Python 1.6.1 or any part thereof, and wants to make the derivative
work available to others as provided herein, then Licensee hereby agrees to
include in any such work a brief summary of the changes made to Python 1.6.1.

4. CNRI is making Python 1.6.1 available to Licensee on an "AS IS" basis. CNRI
MAKES NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF EXAMPLE,
BUT NOT LIMITATION, CNRI MAKES NO AND DISCLAIMS ANY REPRESENTATION OR WARRANTY
OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE USE OF
PYTHON 1.6.1 WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

5. CNRI SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF PYTHON 1.6.1 FOR
ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT OF
MODIFYING, DISTRIBUTING, OR OTHERWISE USING PYTHON 1.6.1, OR ANY DERIVATIVE
THEREOF, EVEN IF ADVISED OF THE POSSIBILITY THEREOF.

6. This License Agreement will automatically terminate upon a material breach of
its terms and conditions.

7. This License Agreement shall be governed by the federal intellectual property
law of the United States, including without limitation the federal copyright
law, and, to the extent such U.S. federal law does not apply, by the law of the

(berlanjut ke halaman berikutnya)

174 Lampiran C. Sejarah dan Lisensi

The Python/C API, Rilis 2.7.18

(lanjutan dari halaman sebelumnya)
Commonwealth of Virginia, excluding Virginia's conflict of law provisions.
Notwithstanding the foregoing, with regard to derivative works based on Python
1.6.1 that incorporate non-separable material that was previously distributed
under the GNU General Public License (GPL), the law of the Commonwealth of
Virginia shall govern this License Agreement only as to issues arising under or
with respect to Paragraphs 4, 5, and 7 of this License Agreement. Nothing in
this License Agreement shall be deemed to create any relationship of agency,
partnership, or joint venture between CNRI and Licensee. This License Agreement
does not grant permission to use CNRI trademarks or trade name in a trademark
sense to endorse or promote products or services of Licensee, or any third
party.

8. By clicking on the "ACCEPT" button where indicated, or by copying, installing
or otherwise using Python 1.6.1, Licensee agrees to be bound by the terms and
conditions of this License Agreement.

C.2.4 LISENSI PERJANJIAN CWI UNTUK PYTHON 0.9.0 SAMPAI 1.2

Copyright © 1991 - 1995, Stichting Mathematisch Centrum Amsterdam, The
Netherlands. All rights reserved.

Permission to use, copy, modify, and distribute this software and its
documentation for any purpose and without fee is hereby granted, provided that
the above copyright notice appear in all copies and that both that copyright
notice and this permission notice appear in supporting documentation, and that
the name of Stichting Mathematisch Centrum or CWI not be used in advertising or
publicity pertaining to distribution of the software without specific, written
prior permission.

STICHTING MATHEMATISCH CENTRUM DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS
SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN NO
EVENT SHALL STICHTING MATHEMATISCH CENTRUM BE LIABLE FOR ANY SPECIAL, INDIRECT
OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE,
DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS
SOFTWARE.

C.3 Lisensi dan Ucapan Terima Kasih untuk Perangkat Lunak yang
Tergabung

Bagian ini tidak lengkap, tetapi daftar lisensi dan ucapan terima kasih yang terus bertambah untuk perangkat lunak pihak
ketiga yang tergabung dalam distribusi Python.

C.3. Lisensi dan Ucapan Terima Kasih untuk Perangkat Lunak yang Tergabung 175

The Python/C API, Rilis 2.7.18

C.3.1 Mersenne Twister

The _random module includes code based on a download from http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/
MT2002/emt19937ar.html. The following are the verbatim comments from the original code:

A C-program for MT19937, with initialization improved 2002/1/26.
Coded by Takuji Nishimura and Makoto Matsumoto.

Before using, initialize the state by using init_genrand(seed)
or init_by_array(init_key, key_length).

Copyright (C) 1997 - 2002, Makoto Matsumoto and Takuji Nishimura,
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

3. The names of its contributors may not be used to endorse or promote
products derived from this software without specific prior written
permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Any feedback is very welcome.
http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html
email: m-mat @ math.sci.hiroshima-u.ac.jp (remove space)

C.3.2 Soket

The socket module uses the functions, getaddrinfo(), and getnameinfo(), which are coded in separate
source files from the WIDE Project, http://www.wide.ad.jp/.

Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions

(berlanjut ke halaman berikutnya)

176 Lampiran C. Sejarah dan Lisensi

http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/MT2002/emt19937ar.html
http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/MT2002/emt19937ar.html
http://www.wide.ad.jp/

The Python/C API, Rilis 2.7.18

(lanjutan dari halaman sebelumnya)
are met:
1. Redistributions of source code must retain the above copyright

notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright

notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

3. Neither the name of the project nor the names of its contributors
may be used to endorse or promote products derived from this software
without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

C.3.3 Floating point exception control

The source for the fpectl module includes the following notice:

/ Copyright (c) 1996. \

| The Regents of the University of California. |
| All rights reserved. |
| |
| Permission to use, copy, modify, and distribute this software for |
| any purpose without fee is hereby granted, provided that this en- |
| tire notice is included in all copies of any software which is or |
| includes a copy or modification of this software and in all |
| copies of the supporting documentation for such software. |
| |
| This work was produced at the University of California, Lawrence |
| Livermore National Laboratory under contract no. W-7405-ENG-48 |
| between the U.S. Department of Energy and The Regents of the |
| University of California for the operation of UC LLNL. |
| |
| DISCLAIMER |
| |
| This software was prepared as an account of work sponsored by an |
| agency of the United States Government. Neither the United States |
| Government nor the University of California nor any of their em- |
| ployees, makes any warranty, express or implied, or assumes any |
| liability or responsibility for the accuracy, completeness, or |
| usefulness of any information, apparatus, product, or process |
| disclosed, or represents that its use would not infringe |
| privately-owned rights. Reference herein to any specific commer- |
| cial products, process, or service by trade name, trademark, |
| manufacturer, or otherwise, does not necessarily constitute or |
| imply its endorsement, recommendation, or favoring by the United |

(berlanjut ke halaman berikutnya)

C.3. Lisensi dan Ucapan Terima Kasih untuk Perangkat Lunak yang Tergabung 177

The Python/C API, Rilis 2.7.18

(lanjutan dari halaman sebelumnya)
| States Government or the University of California. The views and |
| opinions of authors expressed herein do not necessarily state or |
| reflect those of the United States Government or the University |
| of California, and shall not be used for advertising or product |
\ endorsement purposes. /

C.3.4 MD5 message digest algorithm

The source code for the md5 module contains the following notice:

Copyright (C) 1999, 2002 Aladdin Enterprises. All rights reserved.

This software is provided 'as-is', without any express or implied
warranty. In no event will the authors be held liable for any damages
arising from the use of this software.

Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it
freely, subject to the following restrictions:

1. The origin of this software must not be misrepresented; you must not
claim that you wrote the original software. If you use this software
in a product, an acknowledgment in the product documentation would be
appreciated but is not required.

2. Altered source versions must be plainly marked as such, and must not be
misrepresented as being the original software.

3. This notice may not be removed or altered from any source distribution.

L. Peter Deutsch
ghost@aladdin.com

Independent implementation of MD5 (RFC 1321).

This code implements the MD5 Algorithm defined in RFC 1321, whose
text is available at

http://www.ietf.org/rfc/rfc1321.txt
The code is derived from the text of the RFC, including the test suite
(section A.5) but excluding the rest of Appendix A. It does not include
any code or documentation that is identified in the RFC as being
copyrighted.

The original and principal author of md5.h is L. Peter Deutsch
<ghost@aladdin.com>. Other authors are noted in the change history
that follows (in reverse chronological order):

2002-04-13 lpd Removed support for non-ANSI compilers; removed
references to Ghostscript; clarified derivation from RFC 1321;
now handles byte order either statically or dynamically.

1999-11-04 lpd Edited comments slightly for automatic TOC extraction.
1999-10-18 lpd Fixed typo in header comment (ansi2knr rather than md5);

added conditionalization for C++ compilation from Martin
Purschke <purschke@bnl.gov>.

1999-05-03 lpd Original version.

178 Lampiran C. Sejarah dan Lisensi

The Python/C API, Rilis 2.7.18

C.3.5 Layanan soket asinkron

Modul asynchat dan asyncore berisi pemberitahuan berikut:

Copyright 1996 by Sam Rushing

All Rights Reserved

Permission to use, copy, modify, and distribute this software and
its documentation for any purpose and without fee is hereby
granted, provided that the above copyright notice appear in all
copies and that both that copyright notice and this permission
notice appear in supporting documentation, and that the name of Sam
Rushing not be used in advertising or publicity pertaining to
distribution of the software without specific, written prior
permission.

SAM RUSHING DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE,
INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN
NO EVENT SHALL SAM RUSHING BE LIABLE FOR ANY SPECIAL, INDIRECT OR
CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS
OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT,
NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

C.3.6 Pengelolaan Cookie

The Cookie module contains the following notice:

Copyright 2000 by Timothy O'Malley <timo@alum.mit.edu>

All Rights Reserved

Permission to use, copy, modify, and distribute this software
and its documentation for any purpose and without fee is hereby
granted, provided that the above copyright notice appear in all
copies and that both that copyright notice and this permission
notice appear in supporting documentation, and that the name of
Timothy O'Malley not be used in advertising or publicity
pertaining to distribution of the software without specific, written
prior permission.

Timothy O'Malley DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS
SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS, IN NO EVENT SHALL Timothy O'Malley BE LIABLE FOR
ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
PERFORMANCE OF THIS SOFTWARE.

C.3. Lisensi dan Ucapan Terima Kasih untuk Perangkat Lunak yang Tergabung 179

The Python/C API, Rilis 2.7.18

C.3.7 Pelacakan eksekusi

Modul trace berisi pemberitahuan berikut:

portions copyright 2001, Autonomous Zones Industries, Inc., all rights...
err... reserved and offered to the public under the terms of the
Python 2.2 license.
Author: Zooko O'Whielacronx
http://zooko.com/
mailto:zooko@zooko.com

Copyright 2000, Mojam Media, Inc., all rights reserved.
Author: Skip Montanaro

Copyright 1999, Bioreason, Inc., all rights reserved.
Author: Andrew Dalke

Copyright 1995-1997, Automatrix, Inc., all rights reserved.
Author: Skip Montanaro

Copyright 1991-1995, Stichting Mathematisch Centrum, all rights reserved.

Permission to use, copy, modify, and distribute this Python software and
its associated documentation for any purpose without fee is hereby
granted, provided that the above copyright notice appears in all copies,
and that both that copyright notice and this permission notice appear in
supporting documentation, and that the name of neither Automatrix,
Bioreason or Mojam Media be used in advertising or publicity pertaining to
distribution of the software without specific, written prior permission.

C.3.8 UUencode and UUdecode functions

Modul uu berisi pemberitahuan berikut:

Copyright 1994 by Lance Ellinghouse
Cathedral City, California Republic, United States of America.

All Rights Reserved
Permission to use, copy, modify, and distribute this software and its
documentation for any purpose and without fee is hereby granted,
provided that the above copyright notice appear in all copies and that
both that copyright notice and this permission notice appear in
supporting documentation, and that the name of Lance Ellinghouse
not be used in advertising or publicity pertaining to distribution
of the software without specific, written prior permission.
LANCE ELLINGHOUSE DISCLAIMS ALL WARRANTIES WITH REGARD TO
THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS, IN NO EVENT SHALL LANCE ELLINGHOUSE CENTRUM BE LIABLE
FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT
OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

Modified by Jack Jansen, CWI, July 1995:
- Use binascii module to do the actual line-by-line conversion

between ascii and binary. This results in a 1000-fold speedup. The C

(berlanjut ke halaman berikutnya)

180 Lampiran C. Sejarah dan Lisensi

The Python/C API, Rilis 2.7.18

(lanjutan dari halaman sebelumnya)
version is still 5 times faster, though.

- Arguments more compliant with Python standard

C.3.9 XML Remote Procedure Calls

The xmlrpclib module contains the following notice:

The XML-RPC client interface is

Copyright (c) 1999-2002 by Secret Labs AB
Copyright (c) 1999-2002 by Fredrik Lundh

By obtaining, using, and/or copying this software and/or its
associated documentation, you agree that you have read, understood,
and will comply with the following terms and conditions:

Permission to use, copy, modify, and distribute this software and
its associated documentation for any purpose and without fee is
hereby granted, provided that the above copyright notice appears in
all copies, and that both that copyright notice and this permission
notice appear in supporting documentation, and that the name of
Secret Labs AB or the author not be used in advertising or publicity
pertaining to distribution of the software without specific, written
prior permission.

SECRET LABS AB AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH REGARD
TO THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANT-
ABILITY AND FITNESS. IN NO EVENT SHALL SECRET LABS AB OR THE AUTHOR
BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY
DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
OF THIS SOFTWARE.

C.3.10 test_epoll

The test_epoll contains the following notice:

Copyright (c) 2001-2006 Twisted Matrix Laboratories.

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF

(berlanjut ke halaman berikutnya)

C.3. Lisensi dan Ucapan Terima Kasih untuk Perangkat Lunak yang Tergabung 181

The Python/C API, Rilis 2.7.18

(lanjutan dari halaman sebelumnya)
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

C.3.11 Pilih kqueue

The select and contains the following notice for the kqueue interface:

Copyright (c) 2000 Doug White, 2006 James Knight, 2007 Christian Heimes
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
1. Redistributions of source code must retain the above copyright

notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright

notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

C.3.12 strtod dan dtoa

The file Python/dtoa.c, which supplies C functions dtoa and strtod for conversion of C doubles to and from strings,
is derived from the file of the same name by David M. Gay, currently available from http://www.netlib.org/fp/. The
original file, as retrieved on March 16, 2009, contains the following copyright and licensing notice:

/**
*
* The author of this software is David M. Gay.
*
* Copyright (c) 1991, 2000, 2001 by Lucent Technologies.
*
* Permission to use, copy, modify, and distribute this software for any
* purpose without fee is hereby granted, provided that this entire notice
* is included in all copies of any software which is or includes a copy
* or modification of this software and in all copies of the supporting
* documentation for such software.
*
* THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR IMPLIED

(berlanjut ke halaman berikutnya)

182 Lampiran C. Sejarah dan Lisensi

http://www.netlib.org/fp/

The Python/C API, Rilis 2.7.18

(lanjutan dari halaman sebelumnya)
* WARRANTY. IN PARTICULAR, NEITHER THE AUTHOR NOR LUCENT MAKES ANY
* REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE MERCHANTABILITY
* OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR PURPOSE.
*
***/

C.3.13 OpenSSL

The modules hashlib, posix, ssl, crypt use the OpenSSL library for added performance if made available by the
operating system. Additionally, the Windows and Mac OS X installers for Python may include a copy of the OpenSSL
libraries, so we include a copy of the OpenSSL license here:

LICENSE ISSUES
==============

The OpenSSL toolkit stays under a dual license, i.e. both the conditions of
the OpenSSL License and the original SSLeay license apply to the toolkit.
See below for the actual license texts. Actually both licenses are BSD-style
Open Source licenses. In case of any license issues related to OpenSSL
please contact openssl-core@openssl.org.

OpenSSL License

/* ==
* Copyright (c) 1998-2008 The OpenSSL Project. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
*
* 3. All advertising materials mentioning features or use of this
* software must display the following acknowledgment:
* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
*
* 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
* endorse or promote products derived from this software without
* prior written permission. For written permission, please contact
* openssl-core@openssl.org.
*
* 5. Products derived from this software may not be called "OpenSSL"
* nor may "OpenSSL" appear in their names without prior written
* permission of the OpenSSL Project.
*
* 6. Redistributions of any form whatsoever must retain the following
* acknowledgment:

(berlanjut ke halaman berikutnya)

C.3. Lisensi dan Ucapan Terima Kasih untuk Perangkat Lunak yang Tergabung 183

The Python/C API, Rilis 2.7.18

(lanjutan dari halaman sebelumnya)
* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit (http://www.openssl.org/)"
*
* THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
* EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
* ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
* OF THE POSSIBILITY OF SUCH DAMAGE.
* ==
*
* This product includes cryptographic software written by Eric Young
* (eay@cryptsoft.com). This product includes software written by Tim
* Hudson (tjh@cryptsoft.com).
*
*/

Original SSLeay License

/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
* All rights reserved.
*
* This package is an SSL implementation written
* by Eric Young (eay@cryptsoft.com).
* The implementation was written so as to conform with Netscapes SSL.
*
* This library is free for commercial and non-commercial use as long as
* the following conditions are aheared to. The following conditions
* apply to all code found in this distribution, be it the RC4, RSA,
* lhash, DES, etc., code; not just the SSL code. The SSL documentation
* included with this distribution is covered by the same copyright terms
* except that the holder is Tim Hudson (tjh@cryptsoft.com).
*
* Copyright remains Eric Young's, and as such any Copyright notices in
* the code are not to be removed.
* If this package is used in a product, Eric Young should be given attribution
* as the author of the parts of the library used.
* This can be in the form of a textual message at program startup or
* in documentation (online or textual) provided with the package.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:

(berlanjut ke halaman berikutnya)

184 Lampiran C. Sejarah dan Lisensi

The Python/C API, Rilis 2.7.18

(lanjutan dari halaman sebelumnya)
* "This product includes cryptographic software written by
* Eric Young (eay@cryptsoft.com)"
* The word 'cryptographic' can be left out if the rouines from the library
* being used are not cryptographic related :-).
* 4. If you include any Windows specific code (or a derivative thereof) from
* the apps directory (application code) you must include an acknowledgement:
* "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
*
* THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* The licence and distribution terms for any publically available version or
* derivative of this code cannot be changed. i.e. this code cannot simply be
* copied and put under another distribution licence
* [including the GNU Public Licence.]
*/

C.3.14 expat

The pyexpat extension is built using an included copy of the expat sources unless the build is configured
--with-system-expat:

Copyright (c) 1998, 1999, 2000 Thai Open Source Software Center Ltd
and Clark Cooper

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

C.3. Lisensi dan Ucapan Terima Kasih untuk Perangkat Lunak yang Tergabung 185

The Python/C API, Rilis 2.7.18

C.3.15 libffi

The _ctypes extension is built using an included copy of the libffi sources unless the build is configured
--with-system-libffi:

Copyright (c) 1996-2008 Red Hat, Inc and others.

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
``Software''), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED ``AS IS'', WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.

C.3.16 zlib

The zlib extension is built using an included copy of the zlib sources if the zlib version found on the system is too old
to be used for the build:

Copyright (C) 1995-2010 Jean-loup Gailly and Mark Adler

This software is provided 'as-is', without any express or implied
warranty. In no event will the authors be held liable for any damages
arising from the use of this software.

Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it
freely, subject to the following restrictions:

1. The origin of this software must not be misrepresented; you must not
claim that you wrote the original software. If you use this software
in a product, an acknowledgment in the product documentation would be
appreciated but is not required.

2. Altered source versions must be plainly marked as such, and must not be
misrepresented as being the original software.

3. This notice may not be removed or altered from any source distribution.

Jean-loup Gailly Mark Adler
jloup@gzip.org madler@alumni.caltech.edu

186 Lampiran C. Sejarah dan Lisensi

LAMPIRAND

Hak Cipta

Python dan dokumentasi ini adalah:
Copyright © 2001-2020 Python Software Foundation. All rights reserved.
Hak Cipta © 2000 BeOpen.com. Seluruh hak cipta.
Hak Cipta © 1995-2000 Corporation for National Research Initiatives. Seluruh hak cipta.
Hak Cipta © 1991-1995 Stichting Mathematisch Centrum. Seluruh hak cipta.

Lihat Sejarah dan Lisensi untuk lisensi lengkap dan informasi perizinan.

187

The Python/C API, Rilis 2.7.18

188 Lampiran D. Hak Cipta

Indeks

Non-abjad
..., 159
2ke3, 159
>>>, 159
__all__ (package variable), 27
__builtin__

modul, 9, 113
__dict__ (module attribute), 99
__doc__ (module attribute), 99
__file__ (module attribute), 99
__future__, 162
__import__

fungsi built-in, 27
__main__

modul, 9, 113, 122
__name__ (module attribute), 99
__slots__, 166
_frozen (tipe C), 29
_inittab (tipe C), 29
_Py_c_diff (fungsi C), 64
_Py_c_neg (fungsi C), 64
_Py_c_pow (fungsi C), 65
_Py_c_prod (fungsi C), 64
_Py_c_quot (fungsi C), 64
_Py_c_sum (fungsi C), 64
_Py_NoneStruct (variabel C), 134
_PyImport_FindExtension (fungsi C), 29
_PyImport_Fini (fungsi C), 29
_PyImport_FixupExtension (fungsi C), 29
_PyImport_Init (fungsi C), 28
_PyObject_Del (fungsi C), 133
_PyObject_GC_TRACK (fungsi C), 157
_PyObject_GC_UNTRACK (fungsi C), 158
_PyObject_New (fungsi C), 133
_PyObject_NewVar (fungsi C), 133
_PyString_Resize (fungsi C), 69
_PyTuple_Resize (fungsi C), 90

A
abort(), 26
abs

fungsi built-in, 48
apply

fungsi built-in, 45, 46
argumen, 159
argumen kata kunci, 164
argv (in module sys), 115
atribut, 160

B
BDFL, 160
bilangan kompleks, 160
buffer

object, 83
buffer interface, 83
BufferType (in module types), 87
builtins

modul, 122
bytearray

object, 66
bytecode, 160
bytes

fungsi built-in, 45
bytes-like object, 160

C
calloc(), 127
Capsule

object, 103
charbufferproc (tipe C), 157
class

object, 95
classic class, 160
classmethod

fungsi built-in, 137
ClassType (in module types), 95
cleanup functions, 26

189

The Python/C API, Rilis 2.7.18

close() (in module os), 122
cmp

fungsi built-in, 44
CO_FUTURE_DIVISION (variabel C), 14
CObject

object, 104
code object, 110
coerce

fungsi built-in, 50
compile

fungsi built-in, 28
complex number

object, 64
copyright (in module sys), 115
CPython, 160

D
daftar, 164
descriptor, 161
dictionary

object, 92
dictionary view, 161
DictionaryType (in module types), 92
DictType (in module types), 92
diinterpretasi, 163
divmod

fungsi built-in, 48
docstring, 161
duck-typing, 161

E
EAFP, 161
ekspresi, 161
EOFError (built-in exception), 98
exc_info() (in module sys), 8
exc_traceback (in module sys), 8, 17
exc_type (in module sys), 8, 17
exc_value (in module sys), 8, 17
exceptions

modul, 9
exec_prefix, 4
executable (in module sys), 114
exit(), 26

F
file

object, 97
file-like object, 161
FileType (in module types), 97
finder, 161
float

fungsi built-in, 50
floating point

object, 63

FloatType (in modules types), 63
floor division, 162
fopen(), 97
free(), 127
freeze utility, 29
frozenset

object, 109
function

object, 95
fungsi, 162
fungsi built-in

__import__, 27
abs, 48
apply, 45, 46
bytes, 45
classmethod, 137
cmp, 44
coerce, 50
compile, 28
divmod, 48
float, 50
hash, 46, 144
int, 50
len, 47, 51, 53, 91, 93, 110
long, 50
pow, 48, 49
reload, 28
repr, 45, 143
staticmethod, 137
str, 45
tuple, 52, 92
type, 46
unicode, 45

fungsi kunci, 163

G
generator, 162
generator expression, 162
GIL, 116, 162
global interpreter lock, 116

H
hash

fungsi built-in, 46, 144
hashable, 162

I
IDLE, 163
ihooks

modul, 27
immutable, 163
importer, 163
importing, 163
incr_item(), 8, 9

190 Indeks

The Python/C API, Rilis 2.7.18

inquiry (tipe C), 158
instance

object, 95
int

fungsi built-in, 50
integer

object, 59
integer division, 163
interaktif, 163
interpreter lock, 116
IntType (in modules types), 59
iterable, 163
iterator, 163

J
jumlah referensi, 166

K
kamus, 161
kelas, 160
kelas basis abstrak, 159
KeyboardInterrupt (built-in exception), 20
kunci interpreter global, 162

L
lambda, 164
LBYL, 164
len

fungsi built-in, 47, 51, 53, 91, 93, 110
lingkungan virtual, 167
list

object, 90
list comprehension, 164
loader, 164
lock, interpreter, 116
long

fungsi built-in, 50
long integer

object, 61
LONG_MAX, 60, 62
LongType (in modules types), 61

M
magic

method, 164
magic method, 164
main(), 114, 115
malloc(), 127
manajer konteks, 160
mapping

object, 92
mesin virtual, 167
metaclass, 164
METH_CLASS (variabel built-in), 137

METH_COEXIST (variabel built-in), 137
METH_KEYWORDS (variabel built-in), 136
METH_NOARGS (variabel built-in), 136
METH_O (variabel built-in), 136
METH_OLDARGS (variabel built-in), 136
METH_STATIC (variabel built-in), 137
METH_VARARGS (variabel built-in), 136
method, 164

magic, 164
object, 96
special, 166

method resolution order, 164
MethodType (in module types), 95, 96
modul, 164

__builtin__, 9, 113
__main__, 9, 113, 122
builtins, 122
exceptions, 9
ihooks, 27
rexec, 27
signal, 20
sys, 9, 113, 122
thread, 118

modul tambahan, 161
module

object, 99
search path, 9, 113, 115

modules (in module sys), 27, 113
ModuleType (in module types), 99
MRO, 164
mutable, 164

N
named tuple, 164
namespace, 165
nested scope, 165
new-style class, 165
None

object, 58
numeric

object, 59

O
object

buffer, 83
bytearray, 66
Capsule, 103
class, 95
CObject, 104
code, 110
complex number, 64
dictionary, 92
file, 97
floating point, 63

Indeks 191

The Python/C API, Rilis 2.7.18

frozenset, 109
function, 95
instance, 95
integer, 59
list, 90
long integer, 61
mapping, 92
method, 96
module, 99
None, 58
numeric, 59
sequence, 65
set, 109
string, 67
tuple, 88
type, 4, 57

objek, 165
objek berkas, 161
OverflowError (built-in exception), 62

P
package variable

__all__, 27
paket, 165
paksaan, 160
parameter, 165
PATH, 9
path

module search, 9, 113, 115
path (in module sys), 9, 113, 115
pembangkit, 162
pemetaan, 164
penghias, 160
pengumpulan sampah, 162
PEP, 165
pernyataan, 166
platform (in module sys), 115
positional argument, 166
pow

fungsi built-in, 48, 49
prefix, 4
Py_AddPendingCall (fungsi C), 123
Py_AddPendingCall(), 123
Py_AtExit (fungsi C), 26
Py_BEGIN_ALLOW_THREADS, 117
Py_BEGIN_ALLOW_THREADS (macro C), 120
Py_BLOCK_THREADS (macro C), 120
Py_buffer (tipe C), 84
Py_buffer.buf (anggota C), 84
Py_buffer.internal (anggota C), 85
Py_buffer.itemsize (anggota C), 84
Py_buffer.ndim (anggota C), 84
Py_buffer.readonly (anggota C), 84
Py_buffer.shape (anggota C), 84

Py_buffer.strides (anggota C), 84
Py_buffer.suboffsets (anggota C), 84
Py_BuildValue (fungsi C), 35
Py_CLEAR (fungsi C), 15
Py_CompileString (fungsi C), 13
Py_CompileString(), 14
Py_CompileStringFlags (fungsi C), 13
Py_complex (tipe C), 64
Py_DECREF (fungsi C), 15
Py_DECREF(), 4
Py_Ellipsis (variabel C), 102
Py_END_ALLOW_THREADS, 117
Py_END_ALLOW_THREADS (macro C), 120
Py_END_OF_BUFFER (variabel C), 87
Py_EndInterpreter (fungsi C), 122
Py_EnterRecursiveCall (fungsi C), 22
Py_eval_input (variabel C), 14
Py_Exit (fungsi C), 26
Py_False (variabel C), 60
Py_FatalError (fungsi C), 26
Py_FatalError(), 115
Py_FdIsInteractive (fungsi C), 25
Py_file_input (variabel C), 14
Py_Finalize (fungsi C), 113
Py_Finalize(), 26, 113, 122
Py_FindMethod (fungsi C), 138
Py_GetBuildInfo (fungsi C), 115
Py_GetCompiler (fungsi C), 115
Py_GetCopyright (fungsi C), 115
Py_GetExecPrefix (fungsi C), 114
Py_GetExecPrefix(), 9
Py_GetPath (fungsi C), 115
Py_GetPath(), 9, 114
Py_GetPlatform (fungsi C), 115
Py_GetPrefix (fungsi C), 114
Py_GetPrefix(), 9
Py_GetProgramFullPath (fungsi C), 114
Py_GetProgramFullPath(), 9
Py_GetProgramName (fungsi C), 114
Py_GetPythonHome (fungsi C), 116
Py_GetVersion (fungsi C), 115
Py_INCREF (fungsi C), 15
Py_INCREF(), 4
Py_Initialize (fungsi C), 113
Py_Initialize(), 9, 114, 118, 122
Py_InitializeEx (fungsi C), 113
Py_InitModule (fungsi C), 134
Py_InitModule3 (fungsi C), 134
Py_InitModule4 (fungsi C), 134
Py_IsInitialized (fungsi C), 113
Py_IsInitialized(), 10
Py_LeaveRecursiveCall (fungsi C), 22
Py_Main (fungsi C), 11
Py_NewInterpreter (fungsi C), 122

192 Indeks

The Python/C API, Rilis 2.7.18

Py_None (variabel C), 58
Py_PRINT_RAW, 98
Py_REFCNT (macro C), 135
Py_RETURN_FALSE (macro C), 60
Py_RETURN_NONE (macro C), 58
Py_RETURN_TRUE (macro C), 60
Py_SetProgramName (fungsi C), 114
Py_SetProgramName(), 9, 113, 114
Py_SetPythonHome (fungsi C), 116
Py_single_input (variabel C), 14
Py_SIZE (macro C), 135
PY_SSIZE_T_MAX, 62
Py_TPFLAGS_BASETYPE (variabel built-in), 146
Py_TPFLAGS_CHECKTYPES (variabel built-in), 145
Py_TPFLAGS_DEFAULT (variabel built-in), 146
Py_TPFLAGS_GC (variabel built-in), 145
Py_TPFLAGS_HAVE_CLASS (variabel built-in), 146
Py_TPFLAGS_HAVE_GC (variabel built-in), 146
Py_TPFLAGS_HAVE_GETCHARBUFFER (variabel

built-in), 145, 156
Py_TPFLAGS_HAVE_INPLACEOPS (variabel built-in),

145
Py_TPFLAGS_HAVE_ITER (variabel built-in), 146
Py_TPFLAGS_HAVE_RICHCOMPARE (variabel built-

in), 145
Py_TPFLAGS_HAVE_SEQUENCE_IN (variabel built-

in), 145
Py_TPFLAGS_HAVE_WEAKREFS (variabel built-in),

145
Py_TPFLAGS_HEAPTYPE (variabel built-in), 146
Py_TPFLAGS_READY (variabel built-in), 146
Py_TPFLAGS_READYING (variabel built-in), 146
Py_tracefunc (tipe C), 123
Py_True (variabel C), 60
Py_TYPE (macro C), 135
Py_UNBLOCK_THREADS (macro C), 120
Py_UNICODE (tipe C), 71
Py_UNICODE_ISALNUM (fungsi C), 72
Py_UNICODE_ISALPHA (fungsi C), 72
Py_UNICODE_ISDECIMAL (fungsi C), 72
Py_UNICODE_ISDIGIT (fungsi C), 72
Py_UNICODE_ISLINEBREAK (fungsi C), 72
Py_UNICODE_ISLOWER (fungsi C), 72
Py_UNICODE_ISNUMERIC (fungsi C), 72
Py_UNICODE_ISSPACE (fungsi C), 72
Py_UNICODE_ISTITLE (fungsi C), 72
Py_UNICODE_ISUPPER (fungsi C), 72
Py_UNICODE_TODECIMAL (fungsi C), 72
Py_UNICODE_TODIGIT (fungsi C), 72
Py_UNICODE_TOLOWER (fungsi C), 72
Py_UNICODE_TONUMERIC (fungsi C), 72
Py_UNICODE_TOTITLE (fungsi C), 72
Py_UNICODE_TOUPPER (fungsi C), 72
Py_VaBuildValue (fungsi C), 37

Py_VISIT (fungsi C), 158
Py_XDECREF (fungsi C), 15
Py_XDECREF(), 9
Py_XINCREF (fungsi C), 15
PyAnySet_Check (fungsi C), 109
PyAnySet_CheckExact (fungsi C), 109
PyArg_Parse (fungsi C), 35
PyArg_ParseTuple (fungsi C), 34
PyArg_ParseTupleAndKeywords (fungsi C), 34
PyArg_UnpackTuple (fungsi C), 35
PyArg_VaParse (fungsi C), 34
PyArg_VaParseTupleAndKeywords (fungsi C), 35
PyBool_Check (fungsi C), 60
PyBool_FromLong (fungsi C), 60
PyBuffer_Check (fungsi C), 88
PyBuffer_FillContiguousStrides (fungsi C),

86
PyBuffer_FillInfo (fungsi C), 86
PyBuffer_FromMemory (fungsi C), 88
PyBuffer_FromObject (fungsi C), 88
PyBuffer_FromReadWriteMemory (fungsi C), 88
PyBuffer_FromReadWriteObject (fungsi C), 88
PyBuffer_IsContiguous (fungsi C), 86
PyBuffer_New (fungsi C), 88
PyBuffer_Release (fungsi C), 86
PyBuffer_SizeFromFormat (fungsi C), 86
PyBuffer_Type (variabel C), 87
PyBufferObject (tipe C), 87
PyBufferProcs, 87
PyBufferProcs (tipe C), 156
PyByteArray_AS_STRING (fungsi C), 66
PyByteArray_AsString (fungsi C), 66
PyByteArray_Check (fungsi C), 66
PyByteArray_CheckExact (fungsi C), 66
PyByteArray_Concat (fungsi C), 66
PyByteArray_FromObject (fungsi C), 66
PyByteArray_FromStringAndSize (fungsi C), 66
PyByteArray_GET_SIZE (fungsi C), 66
PyByteArray_Resize (fungsi C), 66
PyByteArray_Size (fungsi C), 66
PyByteArray_Type (variabel C), 66
PyByteArrayObject (tipe C), 66
PyCallable_Check (fungsi C), 45
PyCallIter_Check (fungsi C), 100
PyCallIter_New (fungsi C), 100
PyCallIter_Type (variabel C), 100
PyCapsule (tipe C), 103
PyCapsule_CheckExact (fungsi C), 103
PyCapsule_Destructor (tipe C), 103
PyCapsule_GetContext (fungsi C), 103
PyCapsule_GetDestructor (fungsi C), 103
PyCapsule_GetName (fungsi C), 103
PyCapsule_GetPointer (fungsi C), 103
PyCapsule_Import (fungsi C), 104

Indeks 193

The Python/C API, Rilis 2.7.18

PyCapsule_IsValid (fungsi C), 104
PyCapsule_New (fungsi C), 103
PyCapsule_SetContext (fungsi C), 104
PyCapsule_SetDestructor (fungsi C), 104
PyCapsule_SetName (fungsi C), 104
PyCapsule_SetPointer (fungsi C), 104
PyCell_Check (fungsi C), 105
PyCell_GET (fungsi C), 105
PyCell_Get (fungsi C), 105
PyCell_New (fungsi C), 105
PyCell_SET (fungsi C), 105
PyCell_Set (fungsi C), 105
PyCell_Type (variabel C), 105
PyCellObject (tipe C), 105
PyCFunction (tipe C), 136
PyClass_Check (fungsi C), 95
PyClass_IsSubclass (fungsi C), 95
PyClass_Type (variabel C), 95
PyClassObject (tipe C), 95
PyCObject (tipe C), 104
PyCObject_AsVoidPtr (fungsi C), 105
PyCObject_Check (fungsi C), 104
PyCObject_FromVoidPtr (fungsi C), 104
PyCObject_FromVoidPtrAndDesc (fungsi C), 105
PyCObject_GetDesc (fungsi C), 105
PyCObject_SetVoidPtr (fungsi C), 105
PyCode_Check (fungsi C), 110
PyCode_GetNumFree (fungsi C), 110
PyCode_New (fungsi C), 110
PyCode_NewEmpty (fungsi C), 111
PyCode_Type (variabel C), 110
PyCodec_BackslashReplaceErrors (fungsi C),

41
PyCodec_Decode (fungsi C), 40
PyCodec_Decoder (fungsi C), 40
PyCodec_Encode (fungsi C), 40
PyCodec_Encoder (fungsi C), 40
PyCodec_IgnoreErrors (fungsi C), 41
PyCodec_IncrementalDecoder (fungsi C), 40
PyCodec_IncrementalEncoder (fungsi C), 40
PyCodec_KnownEncoding (fungsi C), 40
PyCodec_LookupError (fungsi C), 41
PyCodec_Register (fungsi C), 40
PyCodec_RegisterError (fungsi C), 41
PyCodec_ReplaceErrors (fungsi C), 41
PyCodec_StreamReader (fungsi C), 40
PyCodec_StreamWriter (fungsi C), 40
PyCodec_StrictErrors (fungsi C), 41
PyCodec_XMLCharRefReplaceErrors (fungsi C),

41
PyCodeObject (tipe C), 110
PyCompilerFlags (tipe C), 14
PyComplex_AsCComplex (fungsi C), 65
PyComplex_Check (fungsi C), 65

PyComplex_CheckExact (fungsi C), 65
PyComplex_FromCComplex (fungsi C), 65
PyComplex_FromDoubles (fungsi C), 65
PyComplex_ImagAsDouble (fungsi C), 65
PyComplex_RealAsDouble (fungsi C), 65
PyComplex_Type (variabel C), 65
PyComplexObject (tipe C), 65
PyDate_Check (fungsi C), 106
PyDate_CheckExact (fungsi C), 106
PyDate_FromDate (fungsi C), 107
PyDate_FromTimestamp (fungsi C), 108
PyDateTime_Check (fungsi C), 106
PyDateTime_CheckExact (fungsi C), 106
PyDateTime_DATE_GET_HOUR (fungsi C), 108
PyDateTime_DATE_GET_MICROSECOND (fungsi C),

108
PyDateTime_DATE_GET_MINUTE (fungsi C), 108
PyDateTime_DATE_GET_SECOND (fungsi C), 108
PyDateTime_FromDateAndTime (fungsi C), 107
PyDateTime_FromTimestamp (fungsi C), 108
PyDateTime_GET_DAY (fungsi C), 107
PyDateTime_GET_MONTH (fungsi C), 107
PyDateTime_GET_YEAR (fungsi C), 107
PyDateTime_TIME_GET_HOUR (fungsi C), 108
PyDateTime_TIME_GET_MICROSECOND (fungsi C),

108
PyDateTime_TIME_GET_MINUTE (fungsi C), 108
PyDateTime_TIME_GET_SECOND (fungsi C), 108
PyDelta_Check (fungsi C), 106
PyDelta_CheckExact (fungsi C), 107
PyDelta_FromDSU (fungsi C), 107
PyDescr_IsData (fungsi C), 101
PyDescr_NewClassMethod (fungsi C), 101
PyDescr_NewGetSet (fungsi C), 100
PyDescr_NewMember (fungsi C), 100
PyDescr_NewMethod (fungsi C), 101
PyDescr_NewWrapper (fungsi C), 101
PyDict_Check (fungsi C), 92
PyDict_CheckExact (fungsi C), 92
PyDict_Clear (fungsi C), 93
PyDict_Contains (fungsi C), 93
PyDict_Copy (fungsi C), 93
PyDict_DelItem (fungsi C), 93
PyDict_DelItemString (fungsi C), 93
PyDict_GetItem (fungsi C), 93
PyDict_GetItemString (fungsi C), 93
PyDict_Items (fungsi C), 93
PyDict_Keys (fungsi C), 93
PyDict_Merge (fungsi C), 94
PyDict_MergeFromSeq2 (fungsi C), 94
PyDict_New (fungsi C), 92
PyDict_Next (fungsi C), 93
PyDict_SetItem (fungsi C), 93
PyDict_SetItemString (fungsi C), 93

194 Indeks

The Python/C API, Rilis 2.7.18

PyDict_Size (fungsi C), 93
PyDict_Type (variabel C), 92
PyDict_Update (fungsi C), 94
PyDict_Values (fungsi C), 93
PyDictObject (tipe C), 92
PyDictProxy_New (fungsi C), 92
PyErr_BadArgument (fungsi C), 19
PyErr_BadInternalCall (fungsi C), 20
PyErr_CheckSignals (fungsi C), 20
PyErr_Clear (fungsi C), 18
PyErr_Clear(), 7, 9
PyErr_ExceptionMatches (fungsi C), 18
PyErr_ExceptionMatches(), 9
PyErr_Fetch (fungsi C), 18
PyErr_Format (fungsi C), 18
PyErr_GivenExceptionMatches (fungsi C), 18
PyErr_NewException (fungsi C), 21
PyErr_NewExceptionWithDoc (fungsi C), 21
PyErr_NoMemory (fungsi C), 19
PyErr_NormalizeException (fungsi C), 18
PyErr_Occurred (fungsi C), 17
PyErr_Occurred(), 7
PyErr_Print (fungsi C), 17
PyErr_PrintEx (fungsi C), 17
PyErr_Restore (fungsi C), 18
PyErr_SetExcFromWindowsErr (fungsi C), 19
PyErr_SetExcFromWindowsErrWithFilename

(fungsi C), 20
PyErr_SetExcFromWindowsErrWithFilenameObject

(fungsi C), 19
PyErr_SetFromErrno (fungsi C), 19
PyErr_SetFromErrnoWithFilename (fungsi C),

19
PyErr_SetFromErrnoWithFilenameObject

(fungsi C), 19
PyErr_SetFromWindowsErr (fungsi C), 19
PyErr_SetFromWindowsErrWithFilename

(fungsi C), 19
PyErr_SetFromWindowsErrWithFilenameObject

(fungsi C), 19
PyErr_SetInterrupt (fungsi C), 20
PyErr_SetNone (fungsi C), 19
PyErr_SetObject (fungsi C), 18
PyErr_SetString (fungsi C), 18
PyErr_SetString(), 7
PyErr_Warn (fungsi C), 20
PyErr_WarnEx (fungsi C), 20
PyErr_WarnExplicit (fungsi C), 20
PyErr_WarnPy3k (fungsi C), 20
PyErr_WriteUnraisable (fungsi C), 21
PyEval_AcquireLock (fungsi C), 121
PyEval_AcquireLock(), 113
PyEval_AcquireThread (fungsi C), 121
PyEval_EvalCode (fungsi C), 13

PyEval_EvalCodeEx (fungsi C), 13
PyEval_EvalFrame (fungsi C), 13
PyEval_EvalFrameEx (fungsi C), 14
PyEval_GetBuiltins (fungsi C), 39
PyEval_GetCallStats (fungsi C), 124
PyEval_GetFrame (fungsi C), 39
PyEval_GetFuncDesc (fungsi C), 39
PyEval_GetFuncName (fungsi C), 39
PyEval_GetGlobals (fungsi C), 39
PyEval_GetLocals (fungsi C), 39
PyEval_GetRestricted (fungsi C), 39
PyEval_InitThreads (fungsi C), 118
PyEval_InitThreads(), 113
PyEval_MergeCompilerFlags (fungsi C), 14
PyEval_ReInitThreads (fungsi C), 119
PyEval_ReleaseLock (fungsi C), 121
PyEval_ReleaseLock(), 113, 118
PyEval_ReleaseThread (fungsi C), 121
PyEval_ReleaseThread(), 118
PyEval_RestoreThread (fungsi C), 119
PyEval_RestoreThread(), 117, 118
PyEval_SaveThread (fungsi C), 119
PyEval_SaveThread(), 117, 118
PyEval_SetProfile (fungsi C), 124
PyEval_SetTrace (fungsi C), 124
PyEval_ThreadsInitialized (fungsi C), 119
PyExc_ArithmeticError, 23
PyExc_AssertionError, 23
PyExc_AttributeError, 23
PyExc_BaseException, 23
PyExc_BufferError, 23
PyExc_BytesWarning, 24
PyExc_DeprecationWarning, 24
PyExc_EnvironmentError, 23
PyExc_EOFError, 23
PyExc_Exception, 23
PyExc_FloatingPointError, 23
PyExc_FutureWarning, 24
PyExc_GeneratorExit, 23
PyExc_ImportError, 23
PyExc_ImportWarning, 24
PyExc_IndentationError, 23
PyExc_IndexError, 23
PyExc_IOError, 23
PyExc_KeyboardInterrupt, 23
PyExc_KeyError, 23
PyExc_LookupError, 23
PyExc_MemoryError, 23
PyExc_NameError, 23
PyExc_NotImplementedError, 23
PyExc_OSError, 23
PyExc_OverflowError, 23
PyExc_PendingDeprecationWarning, 24
PyExc_ReferenceError, 23

Indeks 195

The Python/C API, Rilis 2.7.18

PyExc_RuntimeError, 23
PyExc_RuntimeWarning, 24
PyExc_StandardError, 23
PyExc_StopIteration, 23
PyExc_SyntaxError, 23
PyExc_SyntaxWarning, 24
PyExc_SystemError, 23
PyExc_SystemExit, 23
PyExc_TabError, 23
PyExc_TypeError, 23
PyExc_UnboundLocalError, 23
PyExc_UnicodeDecodeError, 23
PyExc_UnicodeEncodeError, 23
PyExc_UnicodeError, 23
PyExc_UnicodeTranslateError, 23
PyExc_UnicodeWarning, 24
PyExc_UserWarning, 24
PyExc_ValueError, 23
PyExc_VMSError, 23
PyExc_Warning, 24
PyExc_WindowsError, 23
PyExc_ZeroDivisionError, 23
PyFile_AsFile (fungsi C), 97
PyFile_Check (fungsi C), 97
PyFile_CheckExact (fungsi C), 97
PyFile_DecUseCount (fungsi C), 98
PyFile_FromFile (fungsi C), 97
PyFile_FromString (fungsi C), 97
PyFile_GetLine (fungsi C), 98
PyFile_IncUseCount (fungsi C), 97
PyFile_Name (fungsi C), 98
PyFile_SetBufSize (fungsi C), 98
PyFile_SetEncoding (fungsi C), 98
PyFile_SetEncodingAndErrors (fungsi C), 98
PyFile_SoftSpace (fungsi C), 98
PyFile_Type (variabel C), 97
PyFile_WriteObject (fungsi C), 98
PyFile_WriteString (fungsi C), 98
PyFileObject (tipe C), 97
PyFloat_AS_DOUBLE (fungsi C), 63
PyFloat_AsDouble (fungsi C), 63
PyFloat_AsReprString (fungsi C), 64
PyFloat_AsString (fungsi C), 64
PyFloat_Check (fungsi C), 63
PyFloat_CheckExact (fungsi C), 63
PyFloat_ClearFreeList (fungsi C), 64
PyFloat_FromDouble (fungsi C), 63
PyFloat_FromString (fungsi C), 63
PyFloat_GetInfo (fungsi C), 63
PyFloat_GetMax (fungsi C), 63
PyFloat_GetMin (fungsi C), 63
PyFloat_Type (variabel C), 63
PyFloatObject (tipe C), 63
PyFrame_GetLineNumber (fungsi C), 39

PyFrozenSet_Check (fungsi C), 109
PyFrozenSet_CheckExact (fungsi C), 109
PyFrozenSet_New (fungsi C), 109
PyFrozenSet_Type (variabel C), 109
PyFunction_Check (fungsi C), 95
PyFunction_GetClosure (fungsi C), 96
PyFunction_GetCode (fungsi C), 96
PyFunction_GetDefaults (fungsi C), 96
PyFunction_GetGlobals (fungsi C), 96
PyFunction_GetModule (fungsi C), 96
PyFunction_New (fungsi C), 96
PyFunction_SetClosure (fungsi C), 96
PyFunction_SetDefaults (fungsi C), 96
PyFunction_Type (variabel C), 95
PyFunctionObject (tipe C), 95
PyGen_Check (fungsi C), 106
PyGen_CheckExact (fungsi C), 106
PyGen_New (fungsi C), 106
PyGen_Type (variabel C), 106
PyGenObject (tipe C), 106
PyGetSetDef (tipe C), 138
PyGILState_Ensure (fungsi C), 119
PyGILState_GetThisThreadState (fungsi C),

120
PyGILState_Release (fungsi C), 119
PyImport_AddModule (fungsi C), 28
PyImport_AppendInittab (fungsi C), 29
PyImport_Cleanup (fungsi C), 28
PyImport_ExecCodeModule (fungsi C), 28
PyImport_ExecCodeModuleEx (fungsi C), 28
PyImport_ExtendInittab (fungsi C), 29
PyImport_FrozenModules (variabel C), 29
PyImport_GetImporter (fungsi C), 28
PyImport_GetMagicNumber (fungsi C), 28
PyImport_GetModuleDict (fungsi C), 28
PyImport_Import (fungsi C), 27
PyImport_ImportFrozenModule (fungsi C), 29
PyImport_ImportModule (fungsi C), 27
PyImport_ImportModuleEx (fungsi C), 27
PyImport_ImportModuleLevel (fungsi C), 27
PyImport_ImportModuleNoBlock (fungsi C), 27
PyImport_ReloadModule (fungsi C), 28
PyIndex_Check (fungsi C), 50
PyInstance_Check (fungsi C), 95
PyInstance_New (fungsi C), 95
PyInstance_NewRaw (fungsi C), 95
PyInstance_Type (variabel C), 95
PyInt_AS_LONG (fungsi C), 59
PyInt_AsLong (fungsi C), 59
PyInt_AsSsize_t (fungsi C), 60
PyInt_AsUnsignedLongLongMask (fungsi C), 60
PyInt_AsUnsignedLongMask (fungsi C), 59
PyInt_Check (fungsi C), 59
PyInt_CheckExact (fungsi C), 59

196 Indeks

The Python/C API, Rilis 2.7.18

PyInt_ClearFreeList (fungsi C), 60
PyInt_FromLong (fungsi C), 59
PyInt_FromSize_t (fungsi C), 59
PyInt_FromSsize_t (fungsi C), 59
PyInt_FromString (fungsi C), 59
PyInt_GetMax (fungsi C), 60
PyInt_Type (variabel C), 59
PyInterpreterState (tipe C), 118
PyInterpreterState_Clear (fungsi C), 120
PyInterpreterState_Delete (fungsi C), 120
PyInterpreterState_Head (fungsi C), 125
PyInterpreterState_New (fungsi C), 120
PyInterpreterState_Next (fungsi C), 125
PyInterpreterState_ThreadHead (fungsi C),

125
PyIntObject (tipe C), 59
PyIter_Check (fungsi C), 54
PyIter_Next (fungsi C), 54
PyList_Append (fungsi C), 92
PyList_AsTuple (fungsi C), 92
PyList_Check (fungsi C), 90
PyList_CheckExact (fungsi C), 90
PyList_GET_ITEM (fungsi C), 91
PyList_GET_SIZE (fungsi C), 91
PyList_GetItem (fungsi C), 91
PyList_GetItem(), 6
PyList_GetSlice (fungsi C), 92
PyList_Insert (fungsi C), 91
PyList_New (fungsi C), 90
PyList_Reverse (fungsi C), 92
PyList_SET_ITEM (fungsi C), 91
PyList_SetItem (fungsi C), 91
PyList_SetItem(), 5
PyList_SetSlice (fungsi C), 92
PyList_Size (fungsi C), 91
PyList_Sort (fungsi C), 92
PyList_Type (variabel C), 90
PyListObject (tipe C), 90
PyLong_AsDouble (fungsi C), 63
PyLong_AsLong (fungsi C), 62
PyLong_AsLongAndOverflow (fungsi C), 62
PyLong_AsLongLong (fungsi C), 62
PyLong_AsLongLongAndOverflow (fungsi C), 62
PyLong_AsSsize_t (fungsi C), 62
PyLong_AsUnsignedLong (fungsi C), 62
PyLong_AsUnsignedLongLong (fungsi C), 62
PyLong_AsUnsignedLongLongMask (fungsi C), 62
PyLong_AsUnsignedLongMask (fungsi C), 62
PyLong_AsVoidPtr (fungsi C), 63
PyLong_Check (fungsi C), 61
PyLong_CheckExact (fungsi C), 61
PyLong_FromDouble (fungsi C), 61
PyLong_FromLong (fungsi C), 61
PyLong_FromLongLong (fungsi C), 61

PyLong_FromSize_t (fungsi C), 61
PyLong_FromSsize_t (fungsi C), 61
PyLong_FromString (fungsi C), 61
PyLong_FromUnicode (fungsi C), 61
PyLong_FromUnsignedLong (fungsi C), 61
PyLong_FromUnsignedLongLong (fungsi C), 61
PyLong_FromVoidPtr (fungsi C), 62
PyLong_Type (variabel C), 61
PyLongObject (tipe C), 61
PyMapping_Check (fungsi C), 53
PyMapping_DelItem (fungsi C), 53
PyMapping_DelItemString (fungsi C), 53
PyMapping_GetItemString (fungsi C), 54
PyMapping_HasKey (fungsi C), 53
PyMapping_HasKeyString (fungsi C), 53
PyMapping_Items (fungsi C), 54
PyMapping_Keys (fungsi C), 53
PyMapping_Length (fungsi C), 53
PyMapping_SetItemString (fungsi C), 54
PyMapping_Size (fungsi C), 53
PyMapping_Values (fungsi C), 53
PyMappingMethods (tipe C), 155
PyMappingMethods.mp_ass_subscript (anggo-

ta C), 155
PyMappingMethods.mp_length (anggota C), 155
PyMappingMethods.mp_subscript (anggota C),

155
PyMarshal_ReadLastObjectFromFile (fungsi

C), 30
PyMarshal_ReadLongFromFile (fungsi C), 30
PyMarshal_ReadObjectFromFile (fungsi C), 30
PyMarshal_ReadObjectFromString (fungsi C),

30
PyMarshal_ReadShortFromFile (fungsi C), 30
PyMarshal_WriteLongToFile (fungsi C), 30
PyMarshal_WriteObjectToFile (fungsi C), 30
PyMarshal_WriteObjectToString (fungsi C), 30
PyMem_Del (fungsi C), 128
PyMem_Free (fungsi C), 128
PyMem_Malloc (fungsi C), 128
PyMem_New (fungsi C), 128
PyMem_Realloc (fungsi C), 128
PyMem_Resize (fungsi C), 128
PyMemberDef (tipe C), 137
PyMemoryView_Check (fungsi C), 87
PyMemoryView_FromBuffer (fungsi C), 87
PyMemoryView_FromObject (fungsi C), 87
PyMemoryView_GET_BUFFER (fungsi C), 87
PyMemoryView_GetContiguous (fungsi C), 87
PyMethod_Check (fungsi C), 96
PyMethod_Class (fungsi C), 96
PyMethod_ClearFreeList (fungsi C), 97
PyMethod_Function (fungsi C), 96
PyMethod_GET_CLASS (fungsi C), 96

Indeks 197

The Python/C API, Rilis 2.7.18

PyMethod_GET_FUNCTION (fungsi C), 96
PyMethod_GET_SELF (fungsi C), 97
PyMethod_New (fungsi C), 96
PyMethod_Self (fungsi C), 97
PyMethod_Type (variabel C), 96
PyMethodDef (tipe C), 136
PyModule_AddIntConstant (fungsi C), 99
PyModule_AddIntMacro (fungsi C), 99
PyModule_AddObject (fungsi C), 99
PyModule_AddStringConstant (fungsi C), 99
PyModule_AddStringMacro (fungsi C), 99
PyModule_Check (fungsi C), 99
PyModule_CheckExact (fungsi C), 99
PyModule_GetDict (fungsi C), 99
PyModule_GetFilename (fungsi C), 99
PyModule_GetName (fungsi C), 99
PyModule_New (fungsi C), 99
PyModule_Type (variabel C), 99
PyNumber_Absolute (fungsi C), 48
PyNumber_Add (fungsi C), 47
PyNumber_And (fungsi C), 48
PyNumber_AsSsize_t (fungsi C), 50
PyNumber_Check (fungsi C), 47
PyNumber_Coerce (fungsi C), 50
PyNumber_CoerceEx (fungsi C), 50
PyNumber_Divide (fungsi C), 47
PyNumber_Divmod (fungsi C), 48
PyNumber_Float (fungsi C), 50
PyNumber_FloorDivide (fungsi C), 48
PyNumber_Index (fungsi C), 50
PyNumber_InPlaceAdd (fungsi C), 49
PyNumber_InPlaceAnd (fungsi C), 49
PyNumber_InPlaceDivide (fungsi C), 49
PyNumber_InPlaceFloorDivide (fungsi C), 49
PyNumber_InPlaceLshift (fungsi C), 49
PyNumber_InPlaceMultiply (fungsi C), 49
PyNumber_InPlaceOr (fungsi C), 49
PyNumber_InPlacePower (fungsi C), 49
PyNumber_InPlaceRemainder (fungsi C), 49
PyNumber_InPlaceRshift (fungsi C), 49
PyNumber_InPlaceSubtract (fungsi C), 49
PyNumber_InPlaceTrueDivide (fungsi C), 49
PyNumber_InPlaceXor (fungsi C), 49
PyNumber_Int (fungsi C), 50
PyNumber_Invert (fungsi C), 48
PyNumber_Long (fungsi C), 50
PyNumber_Lshift (fungsi C), 48
PyNumber_Multiply (fungsi C), 47
PyNumber_Negative (fungsi C), 48
PyNumber_Or (fungsi C), 49
PyNumber_Positive (fungsi C), 48
PyNumber_Power (fungsi C), 48
PyNumber_Remainder (fungsi C), 48
PyNumber_Rshift (fungsi C), 48

PyNumber_Subtract (fungsi C), 47
PyNumber_ToBase (fungsi C), 50
PyNumber_TrueDivide (fungsi C), 48
PyNumber_Xor (fungsi C), 48
PyNumberMethods (tipe C), 153
PyNumberMethods.nb_coerce (anggota C), 154
PyObject (tipe C), 134
PyObject_AsCharBuffer (fungsi C), 55
PyObject_AsFileDescriptor (fungsi C), 47
PyObject_AsReadBuffer (fungsi C), 55
PyObject_AsWriteBuffer (fungsi C), 55
PyObject_Bytes (fungsi C), 45
PyObject_Call (fungsi C), 45
PyObject_CallFunction (fungsi C), 46
PyObject_CallFunctionObjArgs (fungsi C), 46
PyObject_CallMethod (fungsi C), 46
PyObject_CallMethodObjArgs (fungsi C), 46
PyObject_CallObject (fungsi C), 45
PyObject_CheckBuffer (fungsi C), 85
PyObject_CheckReadBuffer (fungsi C), 55
PyObject_Cmp (fungsi C), 44
PyObject_Compare (fungsi C), 44
PyObject_Del (fungsi C), 134
PyObject_DelAttr (fungsi C), 44
PyObject_DelAttrString (fungsi C), 44
PyObject_DelItem (fungsi C), 47
PyObject_Dir (fungsi C), 47
PyObject_Free (fungsi C), 129
PyObject_GC_Del (fungsi C), 158
PyObject_GC_New (fungsi C), 157
PyObject_GC_NewVar (fungsi C), 157
PyObject_GC_Resize (fungsi C), 157
PyObject_GC_Track (fungsi C), 157
PyObject_GC_UnTrack (fungsi C), 158
PyObject_GenericGetAttr (fungsi C), 43
PyObject_GenericSetAttr (fungsi C), 44
PyObject_GetAttr (fungsi C), 43
PyObject_GetAttrString (fungsi C), 43
PyObject_GetBuffer (fungsi C), 85
PyObject_GetItem (fungsi C), 47
PyObject_GetIter (fungsi C), 47
PyObject_HasAttr (fungsi C), 43
PyObject_HasAttrString (fungsi C), 43
PyObject_Hash (fungsi C), 46
PyObject_HashNotImplemented (fungsi C), 46
PyObject_HEAD (macro C), 135
PyObject_HEAD_INIT (macro C), 135
PyObject_Init (fungsi C), 133
PyObject_InitVar (fungsi C), 133
PyObject_IsInstance (fungsi C), 45
PyObject_IsSubclass (fungsi C), 45
PyObject_IsTrue (fungsi C), 46
PyObject_Length (fungsi C), 47
PyObject_Malloc (fungsi C), 129

198 Indeks

The Python/C API, Rilis 2.7.18

PyObject_New (fungsi C), 133
PyObject_NewVar (fungsi C), 133
PyObject_Not (fungsi C), 46
PyObject._ob_next (anggota C), 140
PyObject._ob_prev (anggota C), 140
PyObject_Print (fungsi C), 43
PyObject_Realloc (fungsi C), 129
PyObject_Repr (fungsi C), 44
PyObject_RichCompare (fungsi C), 44
PyObject_RichCompareBool (fungsi C), 44
PyObject_SetAttr (fungsi C), 44
PyObject_SetAttrString (fungsi C), 44
PyObject_SetItem (fungsi C), 47
PyObject_Size (fungsi C), 47
PyObject_Str (fungsi C), 45
PyObject_Type (fungsi C), 46
PyObject_TypeCheck (fungsi C), 46
PyObject_Unicode (fungsi C), 45
PyObject_VAR_HEAD (macro C), 135
PyObject.ob_refcnt (anggota C), 141
PyObject.ob_type (anggota C), 141
PyOS_AfterFork (fungsi C), 25
PyOS_ascii_atof (fungsi C), 39
PyOS_ascii_formatd (fungsi C), 38
PyOS_ascii_strtod (fungsi C), 38
PyOS_CheckStack (fungsi C), 25
PyOS_double_to_string (fungsi C), 38
PyOS_getsig (fungsi C), 25
PyOS_setsig (fungsi C), 25
PyOS_snprintf (fungsi C), 37
PyOS_stricmp (fungsi C), 39
PyOS_string_to_double (fungsi C), 37
PyOS_strnicmp (fungsi C), 39
PyOS_vsnprintf (fungsi C), 37
PyParser_SimpleParseFile (fungsi C), 12
PyParser_SimpleParseFileFlags (fungsi C), 13
PyParser_SimpleParseString (fungsi C), 12
PyParser_SimpleParseStringFlags (fungsi C),

12
PyParser_SimpleParseStringFlagsFilename

(fungsi C), 12
PyProperty_Type (variabel C), 100
PyRun_AnyFile (fungsi C), 11
PyRun_AnyFileEx (fungsi C), 11
PyRun_AnyFileExFlags (fungsi C), 11
PyRun_AnyFileFlags (fungsi C), 11
PyRun_File (fungsi C), 13
PyRun_FileEx (fungsi C), 13
PyRun_FileExFlags (fungsi C), 13
PyRun_FileFlags (fungsi C), 13
PyRun_InteractiveLoop (fungsi C), 12
PyRun_InteractiveLoopFlags (fungsi C), 12
PyRun_InteractiveOne (fungsi C), 12
PyRun_InteractiveOneFlags (fungsi C), 12

PyRun_SimpleFile (fungsi C), 12
PyRun_SimpleFileEx (fungsi C), 12
PyRun_SimpleFileExFlags (fungsi C), 12
PyRun_SimpleFileFlags (fungsi C), 12
PyRun_SimpleString (fungsi C), 12
PyRun_SimpleStringFlags (fungsi C), 12
PyRun_String (fungsi C), 13
PyRun_StringFlags (fungsi C), 13
PySeqIter_Check (fungsi C), 100
PySeqIter_New (fungsi C), 100
PySeqIter_Type (variabel C), 100
PySequence_Check (fungsi C), 51
PySequence_Concat (fungsi C), 51
PySequence_Contains (fungsi C), 52
PySequence_Count (fungsi C), 52
PySequence_DelItem (fungsi C), 51
PySequence_DelSlice (fungsi C), 52
PySequence_Fast (fungsi C), 52
PySequence_Fast_GET_ITEM (fungsi C), 52
PySequence_Fast_GET_SIZE (fungsi C), 53
PySequence_Fast_ITEMS (fungsi C), 52
PySequence_GetItem (fungsi C), 51
PySequence_GetItem(), 6
PySequence_GetSlice (fungsi C), 51
PySequence_Index (fungsi C), 52
PySequence_InPlaceConcat (fungsi C), 51
PySequence_InPlaceRepeat (fungsi C), 51
PySequence_ITEM (fungsi C), 53
PySequence_Length (fungsi C), 51
PySequence_List (fungsi C), 52
PySequence_Repeat (fungsi C), 51
PySequence_SetItem (fungsi C), 51
PySequence_SetSlice (fungsi C), 52
PySequence_Size (fungsi C), 51
PySequence_Tuple (fungsi C), 52
PySequenceMethods (tipe C), 155
PySequenceMethods.sq_ass_item (anggota C),

155
PySequenceMethods.sq_concat (anggota C), 155
PySequenceMethods.sq_contains (anggota C),

155
PySequenceMethods.sq_inplace_concat

(anggota C), 155
PySequenceMethods.sq_inplace_repeat

(anggota C), 155
PySequenceMethods.sq_item (anggota C), 155
PySequenceMethods.sq_length (anggota C), 155
PySequenceMethods.sq_repeat (anggota C), 155
PySet_Add (fungsi C), 110
PySet_Check (fungsi C), 109
PySet_Clear (fungsi C), 110
PySet_Contains (fungsi C), 110
PySet_Discard (fungsi C), 110
PySet_GET_SIZE (fungsi C), 110

Indeks 199

The Python/C API, Rilis 2.7.18

PySet_New (fungsi C), 109
PySet_Pop (fungsi C), 110
PySet_Size (fungsi C), 109
PySet_Type (variabel C), 109
PySetObject (tipe C), 109
PySignal_SetWakeupFd (fungsi C), 21
PySlice_Check (fungsi C), 101
PySlice_GetIndices (fungsi C), 101
PySlice_GetIndicesEx (fungsi C), 101
PySlice_New (fungsi C), 101
PySlice_Type (variabel C), 101
PyString_AS_STRING (fungsi C), 69
PyString_AsDecodedObject (fungsi C), 70
PyString_AsEncodedObject (fungsi C), 70
PyString_AsString (fungsi C), 68
PyString_AsStringAndSize (fungsi C), 69
PyString_Check (fungsi C), 67
PyString_CheckExact (fungsi C), 67
PyString_Concat (fungsi C), 69
PyString_ConcatAndDel (fungsi C), 69
PyString_Decode (fungsi C), 70
PyString_Encode (fungsi C), 70
PyString_Format (fungsi C), 69
PyString_FromFormat (fungsi C), 67
PyString_FromFormatV (fungsi C), 68
PyString_FromString (fungsi C), 67
PyString_FromString(), 93
PyString_FromStringAndSize (fungsi C), 67
PyString_GET_SIZE (fungsi C), 68
PyString_InternFromString (fungsi C), 69
PyString_InternInPlace (fungsi C), 69
PyString_Size (fungsi C), 68
PyString_Type (variabel C), 67
PyStringObject (tipe C), 67
PySys_AddWarnOption (fungsi C), 26
PySys_GetFile (fungsi C), 26
PySys_GetObject (fungsi C), 26
PySys_ResetWarnOptions (fungsi C), 26
PySys_SetArgv (fungsi C), 116
PySys_SetArgv(), 113
PySys_SetArgvEx (fungsi C), 115
PySys_SetArgvEx(), 9, 113
PySys_SetObject (fungsi C), 26
PySys_SetPath (fungsi C), 26
PySys_WriteStderr (fungsi C), 26
PySys_WriteStdout (fungsi C), 26
Python 3000, 166
Python Enhancement Proposals

PEP 1, 166
PEP 238, 14, 162
PEP 278, 167
PEP 302, 161, 164
PEP 343, 160
PEP 3116, 167

PYTHONDUMPREFS, 140
PYTHONHOME, 9, 116
Pythonic, 166
PYTHONPATH, 9
PYTHONSHOWALLOCCOUNT, 153
PyThreadState, 116
PyThreadState (tipe C), 118
PyThreadState_Clear (fungsi C), 120
PyThreadState_Delete (fungsi C), 120
PyThreadState_Get (fungsi C), 119
PyThreadState_GetDict (fungsi C), 121
PyThreadState_New (fungsi C), 120
PyThreadState_Next (fungsi C), 125
PyThreadState_SetAsyncExc (fungsi C), 121
PyThreadState_Swap (fungsi C), 119
PyTime_Check (fungsi C), 106
PyTime_CheckExact (fungsi C), 106
PyTime_FromTime (fungsi C), 107
PyTrace_C_CALL (variabel C), 124
PyTrace_C_EXCEPTION (variabel C), 124
PyTrace_C_RETURN (variabel C), 124
PyTrace_CALL (variabel C), 124
PyTrace_EXCEPTION (variabel C), 124
PyTrace_LINE (variabel C), 124
PyTrace_RETURN (variabel C), 124
PyTuple_Check (fungsi C), 88
PyTuple_CheckExact (fungsi C), 89
PyTuple_ClearFreeList (fungsi C), 90
PyTuple_GET_ITEM (fungsi C), 89
PyTuple_GET_SIZE (fungsi C), 89
PyTuple_GetItem (fungsi C), 89
PyTuple_GetSlice (fungsi C), 89
PyTuple_New (fungsi C), 89
PyTuple_Pack (fungsi C), 89
PyTuple_SET_ITEM (fungsi C), 90
PyTuple_SetItem (fungsi C), 89
PyTuple_SetItem(), 5
PyTuple_Size (fungsi C), 89
PyTuple_Type (variabel C), 88
PyTupleObject (tipe C), 88
PyType_Check (fungsi C), 57
PyType_CheckExact (fungsi C), 57
PyType_ClearCache (fungsi C), 58
PyType_GenericAlloc (fungsi C), 58
PyType_GenericNew (fungsi C), 58
PyType_HasFeature (fungsi C), 58
PyType_HasFeature(), 156
PyType_IS_GC (fungsi C), 58
PyType_IsSubtype (fungsi C), 58
PyType_Modified (fungsi C), 58
PyType_Ready (fungsi C), 58
PyType_Type (variabel C), 57
PyTypeObject (tipe C), 57
PyTypeObject.tp_alloc (anggota C), 151

200 Indeks

The Python/C API, Rilis 2.7.18

PyTypeObject.tp_allocs (anggota C), 153
PyTypeObject.tp_as_buffer (anggota C), 144
PyTypeObject.tp_base (anggota C), 149
PyTypeObject.tp_bases (anggota C), 152
PyTypeObject.tp_basicsize (anggota C), 141
PyTypeObject.tp_cache (anggota C), 152
PyTypeObject.tp_call (anggota C), 144
PyTypeObject.tp_clear (anggota C), 147
PyTypeObject.tp_compare (anggota C), 143
PyTypeObject.tp_dealloc (anggota C), 142
PyTypeObject.tp_descr_get (anggota C), 150
PyTypeObject.tp_descr_set (anggota C), 150
PyTypeObject.tp_dict (anggota C), 149
PyTypeObject.tp_dictoffset (anggota C), 150
PyTypeObject.tp_doc (anggota C), 146
PyTypeObject.tp_flags (anggota C), 145
PyTypeObject.tp_free (anggota C), 152
PyTypeObject.tp_frees (anggota C), 153
PyTypeObject.tp_getattr (anggota C), 143
PyTypeObject.tp_getattro (anggota C), 144
PyTypeObject.tp_getset (anggota C), 149
PyTypeObject.tp_hash (anggota C), 144
PyTypeObject.tp_init (anggota C), 151
PyTypeObject.tp_is_gc (anggota C), 152
PyTypeObject.tp_itemsize (anggota C), 141
PyTypeObject.tp_iter (anggota C), 149
PyTypeObject.tp_iternext (anggota C), 149
PyTypeObject.tp_maxalloc (anggota C), 153
PyTypeObject.tp_members (anggota C), 149
PyTypeObject.tp_methods (anggota C), 149
PyTypeObject.tp_mro (anggota C), 152
PyTypeObject.tp_name (anggota C), 141
PyTypeObject.tp_new (anggota C), 151
PyTypeObject.tp_next (anggota C), 153
PyTypeObject.tp_print (anggota C), 142
PyTypeObject.tp_repr (anggota C), 143
PyTypeObject.tp_richcompare (anggota C), 148
PyTypeObject.tp_setattr (anggota C), 143
PyTypeObject.tp_setattro (anggota C), 144
PyTypeObject.tp_str (anggota C), 144
PyTypeObject.tp_subclasses (anggota C), 153
PyTypeObject.tp_traverse (anggota C), 146
PyTypeObject.tp_weaklist (anggota C), 153
PyTypeObject.tp_weaklistoffset (anggota C),

148
PyTZInfo_Check (fungsi C), 107
PyTZInfo_CheckExact (fungsi C), 107
PyUnicode_AS_DATA (fungsi C), 71
PyUnicode_AS_UNICODE (fungsi C), 71
PyUnicode_AsASCIIString (fungsi C), 80
PyUnicode_AsCharmapString (fungsi C), 81
PyUnicode_AsEncodedString (fungsi C), 75
PyUnicode_AsLatin1String (fungsi C), 80
PyUnicode_AsMBCSString (fungsi C), 81

PyUnicode_AsRawUnicodeEscapeString
(fungsi C), 79

PyUnicode_AsUnicode (fungsi C), 74
PyUnicode_AsUnicodeEscapeString (fungsi C),

79
PyUnicode_AsUTF8String (fungsi C), 76
PyUnicode_AsUTF16String (fungsi C), 78
PyUnicode_AsUTF32String (fungsi C), 77
PyUnicode_AsWideChar (fungsi C), 74
PyUnicode_Check (fungsi C), 71
PyUnicode_CheckExact (fungsi C), 71
PyUnicode_ClearFreeList (fungsi C), 71
PyUnicode_Compare (fungsi C), 83
PyUnicode_Concat (fungsi C), 82
PyUnicode_Contains (fungsi C), 83
PyUnicode_Count (fungsi C), 82
PyUnicode_Decode (fungsi C), 75
PyUnicode_DecodeASCII (fungsi C), 80
PyUnicode_DecodeCharmap (fungsi C), 80
PyUnicode_DecodeLatin1 (fungsi C), 79
PyUnicode_DecodeMBCS (fungsi C), 81
PyUnicode_DecodeMBCSStateful (fungsi C), 81
PyUnicode_DecodeRawUnicodeEscape (fungsi

C), 79
PyUnicode_DecodeUnicodeEscape (fungsi C), 79
PyUnicode_DecodeUTF7 (fungsi C), 78
PyUnicode_DecodeUTF7Stateful (fungsi C), 78
PyUnicode_DecodeUTF8 (fungsi C), 75
PyUnicode_DecodeUTF8Stateful (fungsi C), 75
PyUnicode_DecodeUTF16 (fungsi C), 77
PyUnicode_DecodeUTF16Stateful (fungsi C), 77
PyUnicode_DecodeUTF32 (fungsi C), 76
PyUnicode_DecodeUTF32Stateful (fungsi C), 76
PyUnicode_Encode (fungsi C), 75
PyUnicode_EncodeASCII (fungsi C), 80
PyUnicode_EncodeCharmap (fungsi C), 81
PyUnicode_EncodeLatin1 (fungsi C), 79
PyUnicode_EncodeMBCS (fungsi C), 81
PyUnicode_EncodeRawUnicodeEscape (fungsi

C), 79
PyUnicode_EncodeUnicodeEscape (fungsi C), 79
PyUnicode_EncodeUTF7 (fungsi C), 78
PyUnicode_EncodeUTF8 (fungsi C), 76
PyUnicode_EncodeUTF16 (fungsi C), 78
PyUnicode_EncodeUTF32 (fungsi C), 76
PyUnicode_Find (fungsi C), 82
PyUnicode_Format (fungsi C), 83
PyUnicode_FromEncodedObject (fungsi C), 74
PyUnicode_FromFormat (fungsi C), 73
PyUnicode_FromFormatV (fungsi C), 74
PyUnicode_FromObject (fungsi C), 74
PyUnicode_FromString (fungsi C), 73
PyUnicode_FromStringAndSize (fungsi C), 73
PyUnicode_FromUnicode (fungsi C), 73

Indeks 201

The Python/C API, Rilis 2.7.18

PyUnicode_FromWideChar (fungsi C), 74
PyUnicode_GET_DATA_SIZE (fungsi C), 71
PyUnicode_GET_SIZE (fungsi C), 71
PyUnicode_GetSize (fungsi C), 74
PyUnicode_Join (fungsi C), 82
PyUnicode_Replace (fungsi C), 83
PyUnicode_RichCompare (fungsi C), 83
PyUnicode_Split (fungsi C), 82
PyUnicode_Splitlines (fungsi C), 82
PyUnicode_Tailmatch (fungsi C), 82
PyUnicode_Translate (fungsi C), 82
PyUnicode_TranslateCharmap (fungsi C), 81
PyUnicode_Type (variabel C), 71
PyUnicodeDecodeError_Create (fungsi C), 21
PyUnicodeDecodeError_GetEncoding (fungsi

C), 21
PyUnicodeDecodeError_GetEnd (fungsi C), 22
PyUnicodeDecodeError_GetObject (fungsi C),

21
PyUnicodeDecodeError_GetReason (fungsi C),

22
PyUnicodeDecodeError_GetStart (fungsi C), 22
PyUnicodeDecodeError_SetEnd (fungsi C), 22
PyUnicodeDecodeError_SetReason (fungsi C),

22
PyUnicodeDecodeError_SetStart (fungsi C), 22
PyUnicodeEncodeError_Create (fungsi C), 21
PyUnicodeEncodeError_GetEncoding (fungsi

C), 21
PyUnicodeEncodeError_GetEnd (fungsi C), 22
PyUnicodeEncodeError_GetObject (fungsi C),

21
PyUnicodeEncodeError_GetReason (fungsi C),

22
PyUnicodeEncodeError_GetStart (fungsi C), 22
PyUnicodeEncodeError_SetEnd (fungsi C), 22
PyUnicodeEncodeError_SetReason (fungsi C),

22
PyUnicodeEncodeError_SetStart (fungsi C), 22
PyUnicodeObject (tipe C), 71
PyUnicodeTranslateError_Create (fungsi C),

21
PyUnicodeTranslateError_GetEnd (fungsi C),

22
PyUnicodeTranslateError_GetObject (fungsi

C), 21
PyUnicodeTranslateError_GetReason (fungsi

C), 22
PyUnicodeTranslateError_GetStart (fungsi

C), 22
PyUnicodeTranslateError_SetEnd (fungsi C),

22
PyUnicodeTranslateError_SetReason (fungsi

C), 22

PyUnicodeTranslateError_SetStart (fungsi
C), 22

PyVarObject (tipe C), 134
PyVarObject_HEAD_INIT (macro C), 135
PyVarObject.ob_size (anggota C), 141
PyWeakref_Check (fungsi C), 102
PyWeakref_CheckProxy (fungsi C), 102
PyWeakref_CheckRef (fungsi C), 102
PyWeakref_GET_OBJECT (fungsi C), 102
PyWeakref_GetObject (fungsi C), 102
PyWeakref_NewProxy (fungsi C), 102
PyWeakref_NewRef (fungsi C), 102
PyWrapper_New (fungsi C), 101

R
readbufferproc (tipe C), 156
realloc(), 127
reload

fungsi built-in, 28
repr

fungsi built-in, 45, 143
rexec

modul, 27

S
search

path, module, 9, 113, 115
segcountproc (tipe C), 157
sequence

object, 65
set

object, 109
set_all(), 6
setcheckinterval() (in module sys), 116
setvbuf(), 98
SIGINT, 20
signal

modul, 20
slice, 166
SliceType (in module types), 101
softspace (file attribute), 98
special

method, 166
special method, 166
staticmethod

fungsi built-in, 137
stderr (in module sys), 122
stdin (in module sys), 122
stdout (in module sys), 122
str

fungsi built-in, 45
strerror(), 19
string

object, 67

202 Indeks

The Python/C API, Rilis 2.7.18

StringType (in module types), 67
struct sequence, 166
sum_list(), 7
sum_sequence(), 7, 8
sys

modul, 9, 113, 122
SystemError (built-in exception), 99

T
teks tiga-kutip, 166
thread

modul, 118
tipe, 166
tp_as_mapping (anggota C), 143
tp_as_number (anggota C), 143
tp_as_sequence (anggota C), 143
traverseproc (tipe C), 158
tuple

fungsi built-in, 52, 92
object, 88

TupleType (in module types), 88
type

fungsi built-in, 46
object, 4, 57

TypeType (in module types), 57

U
ULONG_MAX, 62
unicode

fungsi built-in, 45
universal newlines, 167
urutan, 166

V
variabel environment

exec_prefix, 4
PATH, 9
prefix, 4
PYTHONDUMPREFS, 140
PYTHONHOME, 9, 116
PYTHONPATH, 9
PYTHONSHOWALLOCCOUNT, 153

version (in module sys), 115
visitproc (tipe C), 158

W
writebufferproc (tipe C), 156

Z
Zen of Python, 167

Indeks 203

	Pengenalan
	Menyertakan Berkas
	Objek, Tipe dan Jumlah Referensi
	Pengecualian
	Embedding Python
	Debugging Builds

	The Very High Level Layer
	Reference Counting
	Penanganan Pengecualian
	Objek Pengecualian Unicode
	Kontrol Rekursi
	Pengecualian Standar
	Kategori Peringatan Standar
	String Exceptions

	Utilitas
	Operating System Utilities
	System Functions
	Process Control
	Mengimpor Modul
	Data marshalling support
	Mengurai argumen dan membangun nilai
	String conversion and formatting
	Reflection
	Codec registry and support functions

	Lapisan Abstrak Objek
	Object Protocol
	Number Protocol
	Sequence Protocol
	Mapping Protocol
	Iterator Protocol
	Old Buffer Protocol

	Lapisan Objek Konkrit
	Objek Dasar
	Objek Numerik
	Objek Urutan
	Mapping Objects
	Objek lain

	Initialization, Finalization, and Threads
	Initializing and finalizing the interpreter
	Process-wide parameters
	Thread State and the Global Interpreter Lock
	Sub-interpreter support
	Asynchronous Notifications
	Profiling and Tracing
	Advanced Debugger Support

	Memory Management
	Overview
	Memory Interface
	Object allocators
	The pymalloc allocator
	Contoh-contoh

	Dukungan Implementasi Objek
	Mengalokasikan objek kedalam struktur data (heap)
	Struktur Objek Umum
	Objek Tipe
	Number Object Structures
	Mapping Object Structures
	Sequence Object Structures
	Buffer Object Structures
	Supporting Cyclic Garbage Collection

	Ikhtisar
	Tentang dokumen-dokumen ini
	Kontributor untuk dokumentasi Python

	Sejarah dan Lisensi
	Sejarah perangkat lunak
	Syarat dan ketentuan untuk mengakses atau menggunakan Python
	Lisensi dan Ucapan Terima Kasih untuk Perangkat Lunak yang Tergabung

	Hak Cipta
	Indeks

