
The Python Language Reference
Rilis 2.7.18

Guido van Rossum
and the Python development team

Mei 20, 2020

Python Software Foundation
Email: docs@python.org

Daftar Isi

1 Pengenalan 3
1.1 Implementasi Alternatif . 3
1.2 Notasi . 4

2 Lexical analysis 5
2.1 Line structure . 5
2.2 Other tokens . 8
2.3 Identifiers and keywords . 9
2.4 Literals . 10
2.5 Operators . 13
2.6 Delimiters . 14

3 Data model 15
3.1 Objects, values and types . 15
3.2 The standard type hierarchy . 16
3.3 New-style and classic classes . 24
3.4 Special method names . 24

4 Execution model 41
4.1 Naming and binding . 41
4.2 Pengecualian . 43

5 Expressions 45
5.1 Arithmetic conversions . 45
5.2 Atoms . 46
5.3 Primaries . 51
5.4 The power operator . 54
5.5 Unary arithmetic and bitwise operations . 55
5.6 Binary arithmetic operations . 55
5.7 Shifting operations . 56
5.8 Binary bitwise operations . 56
5.9 Perbandingan . 57
5.10 Boolean operations . 60
5.11 Conditional Expressions . 60
5.12 Lambdas . 60
5.13 Expression lists . 61
5.14 Evaluation order . 61

i

5.15 Operator precedence . 61

6 Simple statements 63
6.1 Expression statements . 63
6.2 Assignment statements . 64
6.3 The assert statement . 66
6.4 The pass statement . 66
6.5 The del statement . 67
6.6 The print statement . 67
6.7 The return statement . 68
6.8 The yield statement . 68
6.9 The raise statement . 69
6.10 The break statement . 69
6.11 The continue statement . 69
6.12 The import statement . 70
6.13 The global statement . 73
6.14 The exec statement . 73

7 Pernyataan gabungan 75
7.1 The if statement . 76
7.2 The while statement . 76
7.3 The for statement . 76
7.4 The try statement . 77
7.5 The with statement . 79
7.6 Definisi fungsi . 80
7.7 Definisi Kelas . 81

8 Komponen tingkat atas 83
8.1 Program Python lengkap . 83
8.2 Masukan dari Berkas . 84
8.3 Masukan interaktif . 84
8.4 Masukan ekspresi . 84

9 Spesifikasi Lengkap Tata Bahasa 85

A Ikhtisar 89

B Tentang dokumen-dokumen ini 99
B.1 Kontributor untuk dokumentasi Python . 99

C Sejarah dan Lisensi 101
C.1 Sejarah perangkat lunak . 101
C.2 Syarat dan ketentuan untuk mengakses atau menggunakan Python . 102
C.3 Lisensi dan Ucapan Terima Kasih untuk Perangkat Lunak yang Tergabung 105

D Hak Cipta 117

Indeks 119

ii

The Python Language Reference, Rilis 2.7.18

Manual referensi ini menjelaskan sintaksis dan ”core semantics” dari bahasa. Ini singkat, tetapi berusaha untuk menjadi
tepat dan lengkap. Semantik tipe objek bawaan yang tidak esensial dan fungsi dan modul bawaan dijelaskan dalam
library-index. Untuk pengantar informal ke bahasa, lihat tutorial-index. Untuk programmer C atau C++, ada dua manual
tambahan: extending-index menjelaskan gambar tingkat tinggi tentang cara menulis modul ekstensi Python, dan c-api-
index menjelaskan antarmuka yang tersedia untuk C / C++ programmer secara detail.

Daftar Isi 1

The Python Language Reference, Rilis 2.7.18

2 Daftar Isi

BAB1

Pengenalan

This reference manual describes the Python programming language. It is not intended as a tutorial.
While I am trying to be as precise as possible, I chose to use English rather than formal specifications for everything
except syntax and lexical analysis. This should make the document more understandable to the average reader, but will
leave room for ambiguities. Consequently, if you were coming from Mars and tried to re-implement Python from this
document alone, you might have to guess things and in fact you would probably end up implementing quite a different
language. On the other hand, if you are using Python and wonder what the precise rules about a particular area of the
language are, you should definitely be able to find them here. If you would like to see a more formal definition of the
language, maybe you could volunteer your time --- or invent a cloning machine :-).
It is dangerous to add too many implementation details to a language reference document --- the implementation may
change, and other implementations of the same language may work differently. On the other hand, there is currently only
one Python implementation in widespread use (although alternate implementations exist), and its particular quirks are
sometimes worth being mentioned, especially where the implementation imposes additional limitations. Therefore, you’ll
find short ”implementation notes” sprinkled throughout the text.
Every Python implementation comes with a number of built-in and standard modules. These are documented in library-
index. A few built-in modules are mentioned when they interact in a significant way with the language definition.

1.1 Implementasi Alternatif

Though there is one Python implementation which is by far the most popular, there are some alternate implementations
which are of particular interest to different audiences.
Implementasi yang diketahui meliputi:
CPython This is the original and most-maintained implementation of Python, written in C. New language features ge-

nerally appear here first.
Jython Python implemented in Java. This implementation can be used as a scripting language for Java applications, or

can be used to create applications using the Java class libraries. It is also often used to create tests for Java libraries.
More information can be found at the Jython website.

3

http://www.jython.org/

The Python Language Reference, Rilis 2.7.18

Python untuk .NET This implementation actually uses the CPython implementation, but is a managed .NET application
and makes .NET libraries available. It was created by Brian Lloyd. For more information, see the Python for .NET
home page.

IronPython An alternate Python for .NET. Unlike Python.NET, this is a complete Python implementation that generates
IL, and compiles Python code directly to .NET assemblies. It was created by Jim Hugunin, the original creator of
Jython. For more information, see the IronPython website.

PyPy An implementation of Python written completely in Python. It supports several advanced features not found in
other implementations like stackless support and a Just in Time compiler. One of the goals of the project is to
encourage experimentation with the language itself by making it easier to modify the interpreter (since it is written
in Python). Additional information is available on the PyPy project’s home page.

Each of these implementations varies in some way from the language as documented in this manual, or introduces specific
information beyond what’s covered in the standard Python documentation. Please refer to the implementation-specific
documentation to determine what else you need to know about the specific implementation you’re using.

1.2 Notasi

The descriptions of lexical analysis and syntax use a modified BNF grammar notation. This uses the following style of
definition:

name ::= lc_letter (lc_letter | "_")*
lc_letter ::= "a"..."z"

The first line says that a name is an lc_letter followed by a sequence of zero or more lc_letters and underscores.
An lc_letter in turn is any of the single characters 'a' through 'z'. (This rule is actually adhered to for the names
defined in lexical and grammar rules in this document.)
Each rule begins with a name (which is the name defined by the rule) and ::=. A vertical bar (|) is used to separate
alternatives; it is the least binding operator in this notation. A star (*) means zero or more repetitions of the preceding
item; likewise, a plus (+) means one or more repetitions, and a phrase enclosed in square brackets ([]) means zero
or one occurrences (in other words, the enclosed phrase is optional). The * and + operators bind as tightly as possible;
parentheses are used for grouping. Literal strings are enclosed in quotes. White space is only meaningful to separate
tokens. Rules are normally contained on a single line; rules with many alternatives may be formatted alternatively with
each line after the first beginning with a vertical bar.
In lexical definitions (as the example above), two more conventions are used: Two literal characters separated by three
dots mean a choice of any single character in the given (inclusive) range of ASCII characters. A phrase between angular
brackets (<...>) gives an informal description of the symbol defined; e.g., this could be used to describe the notion of
’control character’ if needed.
Even though the notation used is almost the same, there is a big difference between the meaning of lexical and syntactic
definitions: a lexical definition operates on the individual characters of the input source, while a syntax definition operates
on the stream of tokens generated by the lexical analysis. All uses of BNF in the next chapter (”Lexical Analysis”) are
lexical definitions; uses in subsequent chapters are syntactic definitions.

4 Bab 1. Pengenalan

https://pythonnet.github.io/
https://pythonnet.github.io/
http://ironpython.net/
http://pypy.org/

BAB2

Lexical analysis

A Python program is read by a parser. Input to the parser is a stream of tokens, generated by the lexical analyzer. This
chapter describes how the lexical analyzer breaks a file into tokens.
Python uses the 7-bit ASCII character set for program text.
Baru pada versi 2.3: An encoding declaration can be used to indicate that string literals and comments use an encoding
different from ASCII.
For compatibility with older versions, Python only warns if it finds 8-bit characters; those warnings should be corrected
by either declaring an explicit encoding, or using escape sequences if those bytes are binary data, instead of characters.
The run-time character set depends on the I/O devices connected to the program but is generally a superset of ASCII.
Future compatibility note: It may be tempting to assume that the character set for 8-bit characters is ISO Latin-1 (an
ASCII superset that covers most western languages that use the Latin alphabet), but it is possible that in the future Unicode
text editors will become common. These generally use the UTF-8 encoding, which is also an ASCII superset, but with
very different use for the characters with ordinals 128-255. While there is no consensus on this subject yet, it is unwise
to assume either Latin-1 or UTF-8, even though the current implementation appears to favor Latin-1. This applies both
to the source character set and the run-time character set.

2.1 Line structure

A Python program is divided into a number of logical lines.

5

The Python Language Reference, Rilis 2.7.18

2.1.1 Logical lines

The end of a logical line is represented by the token NEWLINE. Statements cannot cross logical line boundaries except
where NEWLINE is allowed by the syntax (e.g., between statements in compound statements). A logical line is constru-
cted from one or more physical lines by following the explicit or implicit line joining rules.

2.1.2 Physical lines

A physical line is a sequence of characters terminated by an end-of-line sequence. In source files and strings, any of the
standard platform line termination sequences can be used - the Unix form using ASCII LF (linefeed), the Windows form
using the ASCII sequence CR LF (return followed by linefeed), or the old Macintosh form using the ASCII CR (return)
character. All of these forms can be used equally, regardless of platform. The end of input also serves as an implicit
terminator for the final physical line.
When embedding Python, source code strings should be passed to Python APIs using the standard C conventions for
newline characters (the \n character, representing ASCII LF, is the line terminator).

2.1.3 Comments

A comment starts with a hash character (#) that is not part of a string literal, and ends at the end of the physical line. A
comment signifies the end of the logical line unless the implicit line joining rules are invoked. Comments are ignored by
the syntax; they are not tokens.

2.1.4 Encoding declarations

If a comment in the first or second line of the Python script matches the regular expression coding[=:]\s*([-\w.
]+), this comment is processed as an encoding declaration; the first group of this expression names the encoding of the
source code file. The encoding declaration must appear on a line of its own. If it is the second line, the first line must also
be a comment-only line. The recommended forms of an encoding expression are

-*- coding: <encoding-name> -*-

which is recognized also by GNU Emacs, and

vim:fileencoding=<encoding-name>

which is recognized by Bram Moolenaar’s VIM. In addition, if the first bytes of the file are the UTF-8 byte-order mark
('\xef\xbb\xbf'), the declared file encoding is UTF-8 (this is supported, among others, by Microsoft’s notepad).
If an encoding is declared, the encoding name must be recognized by Python. The encoding is used for all lexical analysis,
in particular to find the end of a string, and to interpret the contents of Unicode literals. String literals are converted to
Unicode for syntactical analysis, then converted back to their original encoding before interpretation starts.

6 Bab 2. Lexical analysis

The Python Language Reference, Rilis 2.7.18

2.1.5 Explicit line joining

Two or more physical lines may be joined into logical lines using backslash characters (\), as follows: when a physical
line ends in a backslash that is not part of a string literal or comment, it is joined with the following forming a single
logical line, deleting the backslash and the following end-of-line character. For example:

if 1900 < year < 2100 and 1 <= month <= 12 \
and 1 <= day <= 31 and 0 <= hour < 24 \
and 0 <= minute < 60 and 0 <= second < 60: # Looks like a valid date

return 1

A line ending in a backslash cannot carry a comment. A backslash does not continue a comment. A backslash does not
continue a token except for string literals (i.e., tokens other than string literals cannot be split across physical lines using
a backslash). A backslash is illegal elsewhere on a line outside a string literal.

2.1.6 Implicit line joining

Expressions in parentheses, square brackets or curly braces can be split over more than one physical line without using
backslashes. For example:

month_names = ['Januari', 'Februari', 'Maart', # These are the
'April', 'Mei', 'Juni', # Dutch names
'Juli', 'Augustus', 'September', # for the months
'Oktober', 'November', 'December'] # of the year

Implicitly continued lines can carry comments. The indentation of the continuation lines is not important. Blank conti-
nuation lines are allowed. There is no NEWLINE token between implicit continuation lines. Implicitly continued lines
can also occur within triple-quoted strings (see below); in that case they cannot carry comments.

2.1.7 Blank lines

A logical line that contains only spaces, tabs, formfeeds and possibly a comment, is ignored (i.e., no NEWLINE token is
generated). During interactive input of statements, handling of a blank line may differ depending on the implementation
of the read-eval-print loop. In the standard implementation, an entirely blank logical line (i.e. one containing not even
whitespace or a comment) terminates a multi-line statement.

2.1.8 Indentation

Leading whitespace (spaces and tabs) at the beginning of a logical line is used to compute the indentation level of the
line, which in turn is used to determine the grouping of statements.
First, tabs are replaced (from left to right) by one to eight spaces such that the total number of characters up to and
including the replacement is a multiple of eight (this is intended to be the same rule as used by Unix). The total number
of spaces preceding the first non-blank character then determines the line’s indentation. Indentation cannot be split over
multiple physical lines using backslashes; the whitespace up to the first backslash determines the indentation.
Cross-platform compatibility note: because of the nature of text editors on non-UNIX platforms, it is unwise to use a
mixture of spaces and tabs for the indentation in a single source file. It should also be noted that different platforms may
explicitly limit the maximum indentation level.
A formfeed character may be present at the start of the line; it will be ignored for the indentation calculations above.
Formfeed characters occurring elsewhere in the leading whitespace have an undefined effect (for instance, they may reset
the space count to zero).

2.1. Line structure 7

The Python Language Reference, Rilis 2.7.18

The indentation levels of consecutive lines are used to generate INDENT and DEDENT tokens, using a stack, as follows.
Before the first line of the file is read, a single zero is pushed on the stack; this will never be popped off again. The
numbers pushed on the stack will always be strictly increasing from bottom to top. At the beginning of each logical line,
the line’s indentation level is compared to the top of the stack. If it is equal, nothing happens. If it is larger, it is pushed
on the stack, and one INDENT token is generated. If it is smaller, it must be one of the numbers occurring on the stack;
all numbers on the stack that are larger are popped off, and for each number popped off a DEDENT token is generated.
At the end of the file, a DEDENT token is generated for each number remaining on the stack that is larger than zero.
Here is an example of a correctly (though confusingly) indented piece of Python code:

def perm(l):
Compute the list of all permutations of l

if len(l) <= 1:
return [l]

r = []
for i in range(len(l)):

s = l[:i] + l[i+1:]
p = perm(s)
for x in p:
r.append(l[i:i+1] + x)

return r

The following example shows various indentation errors:

def perm(l): # error: first line indented
for i in range(len(l)): # error: not indented

s = l[:i] + l[i+1:]
p = perm(l[:i] + l[i+1:]) # error: unexpected indent
for x in p:

r.append(l[i:i+1] + x)
return r # error: inconsistent dedent

(Actually, the first three errors are detected by the parser; only the last error is found by the lexical analyzer --- the
indentation of return r does not match a level popped off the stack.)

2.1.9 Whitespace between tokens

Except at the beginning of a logical line or in string literals, the whitespace characters space, tab and formfeed can be used
interchangeably to separate tokens. Whitespace is needed between two tokens only if their concatenation could otherwise
be interpreted as a different token (e.g., ab is one token, but a b is two tokens).

2.2 Other tokens

Besides NEWLINE, INDENT and DEDENT, the following categories of tokens exist: identifiers, keywords, literals,
operators, and delimiters. Whitespace characters (other than line terminators, discussed earlier) are not tokens, but serve
to delimit tokens. Where ambiguity exists, a token comprises the longest possible string that forms a legal token, when
read from left to right.

8 Bab 2. Lexical analysis

The Python Language Reference, Rilis 2.7.18

2.3 Identifiers and keywords

Identifiers (also referred to as names) are described by the following lexical definitions:

identifier ::= (letter|"_") (letter | digit | "_")*
letter ::= lowercase | uppercase
lowercase ::= "a"..."z"
uppercase ::= "A"..."Z"
digit ::= "0"..."9"

Identifiers are unlimited in length. Case is significant.

2.3.1 Keywords

The following identifiers are used as reserved words, or keywords of the language, and cannot be used as ordinary iden-
tifiers. They must be spelled exactly as written here:

and del from not while
as elif global or with
assert else if pass yield
break except import print
class exec in raise
continue finally is return
def for lambda try

Berubah pada versi 2.4: None became a constant and is now recognized by the compiler as a name for the built-in object
None. Although it is not a keyword, you cannot assign a different object to it.
Berubah pada versi 2.5: Using as and with as identifiers triggers a warning. To use them as keywords, enable the
with_statement future feature .
Berubah pada versi 2.6: as and with are full keywords.

2.3.2 Reserved classes of identifiers

Certain classes of identifiers (besides keywords) have special meanings. These classes are identified by the patterns of
leading and trailing underscore characters:
_* Not imported by from module import *. The special identifier _ is used in the interactive interpreter to store

the result of the last evaluation; it is stored in the __builtin__ module. When not in interactive mode, _ has
no special meaning and is not defined. See section The import statement.

Catatan: The name _ is often used in conjunction with internationalization; refer to the documentation for the
gettext module for more information on this convention.

__*__ System-defined names. These names are defined by the interpreter and its implementation (including the standard
library). Current system names are discussed in the Special method names section and elsewhere. More will likely
be defined in future versions of Python. Any use of __*__ names, in any context, that does not follow explicitly
documented use, is subject to breakage without warning.

2.3. Identifiers and keywords 9

The Python Language Reference, Rilis 2.7.18

__* Class-private names. Names in this category, when used within the context of a class definition, are re-written to
use a mangled form to help avoid name clashes between ”private” attributes of base and derived classes. See section
Identifiers (Names).

2.4 Literals

Literals are notations for constant values of some built-in types.

2.4.1 String literals

String literals are described by the following lexical definitions:

stringliteral ::= [stringprefix](shortstring | longstring)
stringprefix ::= "r" | "u" | "ur" | "R" | "U" | "UR" | "Ur" | "uR"

| "b" | "B" | "br" | "Br" | "bR" | "BR"
shortstring ::= "'" shortstringitem* "'" | '"' shortstringitem* '"'
longstring ::= "'''" longstringitem* "'''"

| '"""' longstringitem* '"""'
shortstringitem ::= shortstringchar | escapeseq
longstringitem ::= longstringchar | escapeseq
shortstringchar ::= <any source character except "\" or newline or the quote>
longstringchar ::= <any source character except "\">
escapeseq ::= "\" <any ASCII character>

One syntactic restriction not indicated by these productions is that whitespace is not allowed between the
stringprefix and the rest of the string literal. The source character set is defined by the encoding declaration;
it is ASCII if no encoding declaration is given in the source file; see section Encoding declarations.
In plain English: String literals can be enclosed in matching single quotes (') or double quotes ("). They can also be
enclosed in matching groups of three single or double quotes (these are generally referred to as triple-quoted strings). The
backslash (\) character is used to escape characters that otherwise have a special meaning, such as newline, backslash
itself, or the quote character. String literals may optionally be prefixed with a letter 'r' or 'R'; such strings are called
raw strings and use different rules for interpreting backslash escape sequences. A prefix of 'u' or 'U' makes the string
a Unicode string. Unicode strings use the Unicode character set as defined by the Unicode Consortium and ISO 10646.
Some additional escape sequences, described below, are available in Unicode strings. A prefix of 'b' or 'B' is ignored in
Python 2; it indicates that the literal should become a bytes literal in Python 3 (e.g. when code is automatically converted
with 2to3). A 'u' or 'b' prefix may be followed by an 'r' prefix.
In triple-quoted strings, unescaped newlines and quotes are allowed (and are retained), except that three unescaped quotes
in a row terminate the string. (A ”quote” is the character used to open the string, i.e. either ' or ".)
Unless an 'r' or 'R' prefix is present, escape sequences in strings are interpreted according to rules similar to those
used by Standard C. The recognized escape sequences are:

10 Bab 2. Lexical analysis

The Python Language Reference, Rilis 2.7.18

Escape Sequence Artinya Catatan
\newline Ignored
\\ Backslash (\)
\' Single quote (')
\" Double quote (")
\a ASCII Bell (BEL)
\b ASCII Backspace (BS)
\f ASCII Formfeed (FF)
\n ASCII Linefeed (LF)
\N{name} Character named name in the Unicode database (Unicode only)
\r ASCII Carriage Return (CR)
\t ASCII Horizontal Tab (TAB)
\uxxxx Character with 16-bit hex value xxxx (Unicode only) (1)
\Uxxxxxxxx Character with 32-bit hex value xxxxxxxx (Unicode only) (2)
\v ASCII Vertical Tab (VT)
\ooo Character with octal value ooo (3,5)
\xhh Character with hex value hh (4,5)

Catatan:
(1) Individual code units which form parts of a surrogate pair can be encoded using this escape sequence.
(2) Any Unicode character can be encoded this way, but characters outside the Basic Multilingual Plane (BMP) will

be encoded using a surrogate pair if Python is compiled to use 16-bit code units (the default).
(3) As in Standard C, up to three octal digits are accepted.
(4) Unlike in Standard C, exactly two hex digits are required.
(5) In a string literal, hexadecimal and octal escapes denote the byte with the given value; it is not necessary that the

byte encodes a character in the source character set. In a Unicode literal, these escapes denote a Unicode character
with the given value.

Unlike Standard C, all unrecognized escape sequences are left in the string unchanged, i.e., the backslash is left in the
string. (This behavior is useful when debugging: if an escape sequence is mistyped, the resulting output is more easily
recognized as broken.) It is also important to note that the escape sequences marked as ”(Unicode only)” in the table
above fall into the category of unrecognized escapes for non-Unicode string literals.
When an 'r' or 'R' prefix is present, a character following a backslash is included in the string without change, and
all backslashes are left in the string. For example, the string literal r"\n" consists of two characters: a backslash and
a lowercase 'n'. String quotes can be escaped with a backslash, but the backslash remains in the string; for example,
r"\"" is a valid string literal consisting of two characters: a backslash and a double quote; r"\" is not a valid string
literal (even a raw string cannot end in an odd number of backslashes). Specifically, a raw string cannot end in a single
backslash (since the backslash would escape the following quote character). Note also that a single backslash followed by
a newline is interpreted as those two characters as part of the string, not as a line continuation.
When an 'r' or 'R' prefix is used in conjunction with a 'u' or 'U' prefix, then the \uXXXX and \UXXXXXXXX
escape sequences are processed while all other backslashes are left in the string. For example, the string literal ur"\
u0062\n" consists of three Unicode characters: ’LATIN SMALL LETTER B’, ’REVERSE SOLIDUS’, and ’LATIN
SMALL LETTER N’. Backslashes can be escaped with a preceding backslash; however, both remain in the string. As a
result, \uXXXX escape sequences are only recognized when there are an odd number of backslashes.

2.4. Literals 11

The Python Language Reference, Rilis 2.7.18

2.4.2 String literal concatenation

Multiple adjacent string literals (delimited by whitespace), possibly using different quoting conventions, are allowed, and
their meaning is the same as their concatenation. Thus, "hello" 'world' is equivalent to "helloworld". This
feature can be used to reduce the number of backslashes needed, to split long strings conveniently across long lines, or
even to add comments to parts of strings, for example:

re.compile("[A-Za-z_]" # letter or underscore
"[A-Za-z0-9_]*" # letter, digit or underscore

)

Note that this feature is defined at the syntactical level, but implemented at compile time. The ’+’ operator must be used
to concatenate string expressions at run time. Also note that literal concatenation can use different quoting styles for each
component (even mixing raw strings and triple quoted strings).

2.4.3 Numeric literals

There are four types of numeric literals: plain integers, long integers, floating point numbers, and imaginary numbers.
There are no complex literals (complex numbers can be formed by adding a real number and an imaginary number).
Note that numeric literals do not include a sign; a phrase like -1 is actually an expression composed of the unary operator
’-’ and the literal 1.

2.4.4 Integer and long integer literals

Integer and long integer literals are described by the following lexical definitions:

longinteger ::= integer ("l" | "L")
integer ::= decimalinteger | octinteger | hexinteger | bininteger
decimalinteger ::= nonzerodigit digit* | "0"
octinteger ::= "0" ("o" | "O") octdigit+ | "0" octdigit+
hexinteger ::= "0" ("x" | "X") hexdigit+
bininteger ::= "0" ("b" | "B") bindigit+
nonzerodigit ::= "1"..."9"
octdigit ::= "0"..."7"
bindigit ::= "0" | "1"
hexdigit ::= digit | "a"..."f" | "A"..."F"

Although both lower case 'l' and upper case 'L' are allowed as suffix for long integers, it is strongly recommended to
always use 'L', since the letter 'l' looks too much like the digit '1'.
Plain integer literals that are above the largest representable plain integer (e.g., 2147483647 when using 32-bit arithmetic)
are accepted as if they were long integers instead.1 There is no limit for long integer literals apart from what can be stored
in available memory.
Some examples of plain integer literals (first row) and long integer literals (second and third rows):

7 2147483647 0177
3L 79228162514264337593543950336L 0377L 0x100000000L

79228162514264337593543950336 0xdeadbeef

1 In versions of Python prior to 2.4, octal and hexadecimal literals in the range just above the largest representable plain integer but below the
largest unsigned 32-bit number (on a machine using 32-bit arithmetic), 4294967296, were taken as the negative plain integer obtained by subtracting
4294967296 from their unsigned value.

12 Bab 2. Lexical analysis

The Python Language Reference, Rilis 2.7.18

2.4.5 Floating point literals

Floating point literals are described by the following lexical definitions:

floatnumber ::= pointfloat | exponentfloat
pointfloat ::= [intpart] fraction | intpart "."
exponentfloat ::= (intpart | pointfloat) exponent
intpart ::= digit+
fraction ::= "." digit+
exponent ::= ("e" | "E") ["+" | "-"] digit+

Note that the integer and exponent parts of floating point numbers can look like octal integers, but are interpreted using
radix 10. For example, 077e010 is legal, and denotes the same number as 77e10. The allowed range of floating point
literals is implementation-dependent. Some examples of floating point literals:

3.14 10. .001 1e100 3.14e-10 0e0

Note that numeric literals do not include a sign; a phrase like -1 is actually an expression composed of the unary operator
- and the literal 1.

2.4.6 Imaginary literals

Imaginary literals are described by the following lexical definitions:

imagnumber ::= (floatnumber | intpart) ("j" | "J")

An imaginary literal yields a complex number with a real part of 0.0. Complex numbers are represented as a pair of
floating point numbers and have the same restrictions on their range. To create a complex number with a nonzero real
part, add a floating point number to it, e.g., (3+4j). Some examples of imaginary literals:

3.14j 10.j 10j .001j 1e100j 3.14e-10j

2.5 Operators

The following tokens are operators:

+ - * ** / // %
<< >> & | ^ ~
< > <= >= == != <>

The comparison operators <> and != are alternate spellings of the same operator. != is the preferred spelling; <> is
obsolescent.

2.5. Operators 13

The Python Language Reference, Rilis 2.7.18

2.6 Delimiters

The following tokens serve as delimiters in the grammar:

() [] { } @
, : . ` = ;
+= -= *= /= //= %=
&= |= ^= >>= <<= **=

The period can also occur in floating-point and imaginary literals. A sequence of three periods has a special meaning as
an ellipsis in slices. The second half of the list, the augmented assignment operators, serve lexically as delimiters, but also
perform an operation.
The following printing ASCII characters have special meaning as part of other tokens or are otherwise significant to the
lexical analyzer:

' " # \

The following printing ASCII characters are not used in Python. Their occurrence outside string literals and comments
is an unconditional error:

$?

14 Bab 2. Lexical analysis

BAB3

Data model

3.1 Objects, values and types

Objects are Python’s abstraction for data. All data in a Python program is represented by objects or by relations betwe-
en objects. (In a sense, and in conformance to Von Neumann’s model of a ”stored program computer,” code is also
represented by objects.)
Every object has an identity, a type and a value. An object’s identity never changes once it has been created; you may think
of it as the object’s address in memory. The ’is’ operator compares the identity of two objects; the id() function returns
an integer representing its identity (currently implemented as its address). An object’s type is also unchangeable.1 An
object’s type determines the operations that the object supports (e.g., ”does it have a length?”) and also defines the possible
values for objects of that type. The type() function returns an object’s type (which is an object itself). The value of
some objects can change. Objects whose value can change are said to be mutable; objects whose value is unchangeable
once they are created are called immutable. (The value of an immutable container object that contains a reference to a
mutable object can change when the latter’s value is changed; however the container is still considered immutable, because
the collection of objects it contains cannot be changed. So, immutability is not strictly the same as having an unchangeable
value, it is more subtle.) An object’s mutability is determined by its type; for instance, numbers, strings and tuples are
immutable, while dictionaries and lists are mutable.
Objects are never explicitly destroyed; however, when they become unreachable they may be garbage-collected. An
implementation is allowed to postpone garbage collection or omit it altogether --- it is a matter of implementation quality
how garbage collection is implemented, as long as no objects are collected that are still reachable.
CPython implementation detail: CPython currently uses a reference-counting scheme with (optional) delayed detection
of cyclically linked garbage, which collects most objects as soon as they become unreachable, but is not guaranteed to
collect garbage containing circular references. See the documentation of the gc module for information on controlling
the collection of cyclic garbage. Other implementations act differently and CPython may change. Do not depend on
immediate finalization of objects when they become unreachable (ex: always close files).
Note that the use of the implementation’s tracing or debugging facilities may keep objects alive that would normally be
collectable. Also note that catching an exception with a ’try...except’ statement may keep objects alive.

1 It is possible in some cases to change an object’s type, under certain controlled conditions. It generally isn’t a good idea though, since it can lead
to some very strange behaviour if it is handled incorrectly.

15

The Python Language Reference, Rilis 2.7.18

Some objects contain references to ”external” resources such as open files or windows. It is understood that these resources
are freed when the object is garbage-collected, but since garbage collection is not guaranteed to happen, such objects also
provide an explicit way to release the external resource, usually a close()method. Programs are strongly recommended
to explicitly close such objects. The ’try...finally’ statement provides a convenient way to do this.
Some objects contain references to other objects; these are called containers. Examples of containers are tuples, lists and
dictionaries. The references are part of a container’s value. In most cases, when we talk about the value of a container, we
imply the values, not the identities of the contained objects; however, when we talk about the mutability of a container,
only the identities of the immediately contained objects are implied. So, if an immutable container (like a tuple) contains
a reference to a mutable object, its value changes if that mutable object is changed.
Types affect almost all aspects of object behavior. Even the importance of object identity is affected in some sense: for
immutable types, operations that compute new values may actually return a reference to any existing object with the same
type and value, while for mutable objects this is not allowed. E.g., after a = 1; b = 1, a and bmay or may not refer
to the same object with the value one, depending on the implementation, but after c = []; d = [], c and d are
guaranteed to refer to two different, unique, newly created empty lists. (Note that c = d = [] assigns the same object
to both c and d.)

3.2 The standard type hierarchy

Below is a list of the types that are built into Python. Extension modules (written in C, Java, or other languages, depending
on the implementation) can define additional types. Future versions of Python may add types to the type hierarchy (e.g.,
rational numbers, efficiently stored arrays of integers, etc.).
Some of the type descriptions below contain a paragraph listing ’special attributes.’ These are attributes that provide
access to the implementation and are not intended for general use. Their definition may change in the future.
None This type has a single value. There is a single object with this value. This object is accessed through the built-in

name None. It is used to signify the absence of a value in many situations, e.g., it is returned from functions that
don’t explicitly return anything. Its truth value is false.

NotImplemented This type has a single value. There is a single object with this value. This object is accessed through the
built-in name NotImplemented. Numeric methods and rich comparison methods may return this value if they
do not implement the operation for the operands provided. (The interpreter will then try the reflected operation, or
some other fallback, depending on the operator.) Its truth value is true.

Ellipsis This type has a single value. There is a single object with this value. This object is accessed through the built-in
name Ellipsis. It is used to indicate the presence of the ... syntax in a slice. Its truth value is true.

numbers.Number These are created by numeric literals and returned as results by arithmetic operators and arithmetic
built-in functions. Numeric objects are immutable; once created their value never changes. Python numbers are
of course strongly related to mathematical numbers, but subject to the limitations of numerical representation in
computers.
Python distinguishes between integers, floating point numbers, and complex numbers:
numbers.Integral These represent elements from the mathematical set of integers (positive and negative).

There are three types of integers:
Plain integers These represent numbers in the range -2147483648 through 2147483647. (The range may

be larger on machines with a larger natural word size, but not smaller.) When the result of an operation
would fall outside this range, the result is normally returned as a long integer (in some cases, the exception
OverflowError is raised instead). For the purpose of shift andmask operations, integers are assumed
to have a binary, 2’s complement notation using 32 or more bits, and hiding no bits from the user (i.e.,
all 4294967296 different bit patterns correspond to different values).

16 Bab 3. Data model

The Python Language Reference, Rilis 2.7.18

Long integers These represent numbers in an unlimited range, subject to available (virtual) memory only.
For the purpose of shift and mask operations, a binary representation is assumed, and negative numbers
are represented in a variant of 2’s complement which gives the illusion of an infinite string of sign bits
extending to the left.

Booleans These represent the truth values False and True. The two objects representing the values False
and True are the only Boolean objects. The Boolean type is a subtype of plain integers, and Boolean
values behave like the values 0 and 1, respectively, in almost all contexts, the exception being that when
converted to a string, the strings "False" or "True" are returned, respectively.

The rules for integer representation are intended to give the most meaningful interpretation of shift and mask
operations involving negative integers and the least surprises when switching between the plain and long
integer domains. Any operation, if it yields a result in the plain integer domain, will yield the same result in
the long integer domain or when using mixed operands. The switch between domains is transparent to the
programmer.

numbers.Real (float) These represent machine-level double precision floating point numbers. You are at
the mercy of the underlying machine architecture (and C or Java implementation) for the accepted range
and handling of overflow. Python does not support single-precision floating point numbers; the savings in
processor and memory usage that are usually the reason for using these are dwarfed by the overhead of using
objects in Python, so there is no reason to complicate the language with two kinds of floating point numbers.

numbers.Complex These represent complex numbers as a pair ofmachine-level double precision floating point
numbers. The same caveats apply as for floating point numbers. The real and imaginary parts of a complex
number z can be retrieved through the read-only attributes z.real and z.imag.

Sequences These represent finite ordered sets indexed by non-negative numbers. The built-in function len() returns
the number of items of a sequence. When the length of a sequence is n, the index set contains the numbers 0, 1,
..., n-1. Item i of sequence a is selected by a[i].
Sequences also support slicing: a[i:j] selects all items with index k such that i <= k < j. When used as an
expression, a slice is a sequence of the same type. This implies that the index set is renumbered so that it starts at
0.
Some sequences also support ”extended slicing” with a third ”step” parameter: a[i:j:k] selects all items of a
with index x where x = i + n*k, n >= 0 and i <= x < j.
Sequences are distinguished according to their mutability:
Immutable sequences An object of an immutable sequence type cannot change once it is created. (If the object

contains references to other objects, these other objects may be mutable and may be changed; however, the
collection of objects directly referenced by an immutable object cannot change.)
The following types are immutable sequences:
String The items of a string are characters. There is no separate character type; a character is represented

by a string of one item. Characters represent (at least) 8-bit bytes. The built-in functions chr() and
ord() convert between characters and nonnegative integers representing the byte values. Bytes with
the values 0--127 usually represent the corresponding ASCII values, but the interpretation of values is
up to the program. The string data type is also used to represent arrays of bytes, e.g., to hold data read
from a file.
(On systems whose native character set is not ASCII, strings may use EBCDIC in their internal represen-
tation, provided the functions chr() and ord() implement a mapping between ASCII and EBCDIC,
and string comparison preserves the ASCII order. Or perhaps someone can propose a better rule?)

Unicode The items of a Unicode object are Unicode code units. A Unicode code unit is represented by a
Unicode object of one item and can hold either a 16-bit or 32-bit value representing a Unicode ordinal
(the maximum value for the ordinal is given in sys.maxunicode, and depends on how Python is
configured at compile time). Surrogate pairs may be present in the Unicode object, and will be reported

3.2. The standard type hierarchy 17

The Python Language Reference, Rilis 2.7.18

as two separate items. The built-in functions unichr() and ord() convert between code units and
nonnegative integers representing the Unicode ordinals as defined in the Unicode Standard 3.0. Conver-
sion from and to other encodings are possible through the Unicode method encode() and the built-in
function unicode().

Tuples The items of a tuple are arbitrary Python objects. Tuples of two or more items are formed by comma-
separated lists of expressions. A tuple of one item (a ’singleton’) can be formed by affixing a comma to an
expression (an expression by itself does not create a tuple, since parentheses must be usable for grouping
of expressions). An empty tuple can be formed by an empty pair of parentheses.

Mutable sequences Mutable sequences can be changed after they are created. The subscription and slicing nota-
tions can be used as the target of assignment and del (delete) statements.
There are currently two intrinsic mutable sequence types:
List The items of a list are arbitrary Python objects. Lists are formed by placing a comma-separated list of

expressions in square brackets. (Note that there are no special cases needed to form lists of length 0 or
1.)

Byte Arrays A bytearray object is a mutable array. They are created by the built-in bytearray() con-
structor. Aside from being mutable (and hence unhashable), byte arrays otherwise provide the same
interface and functionality as immutable bytes objects.

The extension module array provides an additional example of a mutable sequence type.
Set types These represent unordered, finite sets of unique, immutable objects. As such, they cannot be indexed by any

subscript. However, they can be iterated over, and the built-in function len() returns the number of items in
a set. Common uses for sets are fast membership testing, removing duplicates from a sequence, and computing
mathematical operations such as intersection, union, difference, and symmetric difference.
For set elements, the same immutability rules apply as for dictionary keys. Note that numeric types obey the normal
rules for numeric comparison: if two numbers compare equal (e.g., 1 and 1.0), only one of them can be contained
in a set.
There are currently two intrinsic set types:
Himpunan Set These represent a mutable set. They are created by the built-in set() constructor and can be

modified afterwards by several methods, such as add().
Frozen sets These represent an immutable set. They are created by the built-in frozenset() constructor. As

a frozenset is immutable and hashable, it can be used again as an element of another set, or as a dictionary
key.

Mappings These represent finite sets of objects indexed by arbitrary index sets. The subscript notation a[k] selects the
item indexed by k from the mapping a; this can be used in expressions and as the target of assignments or del
statements. The built-in function len() returns the number of items in a mapping.
There is currently a single intrinsic mapping type:
Kamus Dictionaries These represent finite sets of objects indexed by nearly arbitrary values. The only types of

values not acceptable as keys are values containing lists or dictionaries or other mutable types that are compa-
red by value rather than by object identity, the reason being that the efficient implementation of dictionaries
requires a key’s hash value to remain constant. Numeric types used for keys obey the normal rules for numeric
comparison: if two numbers compare equal (e.g., 1 and 1.0) then they can be used interchangeably to index
the same dictionary entry.
Dictionaries are mutable; they can be created by the {...} notation (see section Dictionary displays).
The extension modules dbm, gdbm, and bsddb provide additional examples of mapping types.

Callable types These are the types to which the function call operation (see section Calls) can be applied:

18 Bab 3. Data model

The Python Language Reference, Rilis 2.7.18

User-defined functions A user-defined function object is created by a function definition (see section Definisi
fungsi). It should be called with an argument list containing the same number of items as the function’s
formal parameter list.
Special attributes:

Atribut Artinya
__doc__ func_doc The function’s documentation string, or None if

unavailable.
Writable

__name__ func_name The function’s name Writable
__module__ The name of the module the function was

defined in, or None if unavailable.
Writable

__defaults__ func_defaults A tuple containing default argument values for
those arguments that have defaults, or None if
no arguments have a default value.

Writable

__code__ func_code The code object representing the compiled
function body.

Writable

__globals__ func_globals A reference to the dictionary that holds the
function’s global variables --- the global
namespace of the module in which the function
was defined.

Read-only

__dict__ func_dict The namespace supporting arbitrary function
attributes.

Writable

__closure__ func_closure None or a tuple of cells that contain bindings
for the function’s free variables.

Read-only

Most of the attributes labelled ”Writable” check the type of the assigned value.
Berubah pada versi 2.4: func_name is now writable.
Berubah pada versi 2.6: The double-underscore attributes __closure__, __code__, __defaults__,
and __globals__ were introduced as aliases for the corresponding func_* attributes for forwards com-
patibility with Python 3.
Function objects also support getting and setting arbitrary attributes, which can be used, for example, to
attach metadata to functions. Regular attribute dot-notation is used to get and set such attributes. Note that
the current implementation only supports function attributes on user-defined functions. Function attributes on
built-in functions may be supported in the future.

Additional information about a function’s definition can be retrieved from its code object; see the description
of internal types below.

User-defined methods Auser-definedmethod object combines a class, a class instance (orNone) and any callable
object (normally a user-defined function).
Special read-only attributes: im_self is the class instance object, im_func is the function object;
im_class is the class of im_self for bound methods or the class that asked for the method for unbound
methods; __doc__ is the method’s documentation (same as im_func.__doc__); __name__ is the
method name (same as im_func.__name__); __module__ is the name of the module the method was
defined in, or None if unavailable.
Berubah pada versi 2.2: im_self used to refer to the class that defined the method.
Berubah pada versi 2.6: For Python 3 forward-compatibility, im_func is also available as __func__, and
im_self as __self__.
Methods also support accessing (but not setting) the arbitrary function attributes on the underlying function
object.

3.2. The standard type hierarchy 19

The Python Language Reference, Rilis 2.7.18

User-defined method objects may be created when getting an attribute of a class (perhaps via an instance of
that class), if that attribute is a user-defined function object, an unbound user-defined method object, or a
class method object. When the attribute is a user-defined method object, a new method object is only created
if the class from which it is being retrieved is the same as, or a derived class of, the class stored in the original
method object; otherwise, the original method object is used as it is.
When a user-defined method object is created by retrieving a user-defined function object from a class, its
im_self attribute is None and the method object is said to be unbound. When one is created by retrieving
a user-defined function object from a class via one of its instances, its im_self attribute is the instance, and
the method object is said to be bound. In either case, the new method’s im_class attribute is the class from
which the retrieval takes place, and its im_func attribute is the original function object.
When a user-defined method object is created by retrieving another method object from a class or instance,
the behaviour is the same as for a function object, except that the im_func attribute of the new instance is
not the original method object but its im_func attribute.
When a user-defined method object is created by retrieving a class method object from a class or instance, its
im_self attribute is the class itself, and its im_func attribute is the function object underlying the class
method.
When an unbound user-defined method object is called, the underlying function (im_func) is called, with
the restriction that the first argument must be an instance of the proper class (im_class) or of a derived
class thereof.
When a bound user-defined method object is called, the underlying function (im_func) is called, inserting
the class instance (im_self) in front of the argument list. For instance, when C is a class which contains
a definition for a function f(), and x is an instance of C, calling x.f(1) is equivalent to calling C.f(x,
1).
When a user-defined method object is derived from a class method object, the ”class instance” stored in
im_self will actually be the class itself, so that calling either x.f(1) or C.f(1) is equivalent to calling
f(C,1) where f is the underlying function.
Note that the transformation from function object to (unbound or bound) method object happens each time the
attribute is retrieved from the class or instance. In some cases, a fruitful optimization is to assign the attribute
to a local variable and call that local variable. Also notice that this transformation only happens for user-
defined functions; other callable objects (and all non-callable objects) are retrieved without transformation. It
is also important to note that user-defined functions which are attributes of a class instance are not converted
to bound methods; this only happens when the function is an attribute of the class.

Generator functions A function or method which uses the yield statement (see section The yield statement) is
called a generator function. Such a function, when called, always returns an iterator object which can be used
to execute the body of the function: calling the iterator’s next() method will cause the function to execute
until it provides a value using the yield statement. When the function executes a return statement or
falls off the end, a StopIteration exception is raised and the iterator will have reached the end of the
set of values to be returned.

Built-in functions A built-in function object is a wrapper around a C function. Examples of built-in functions are
len() and math.sin() (math is a standard built-in module). The number and type of the arguments
are determined by the C function. Special read-only attributes: __doc__ is the function’s documentation
string, or None if unavailable; __name__ is the function’s name; __self__ is set to None (but see the
next item); __module__ is the name of the module the function was defined in or None if unavailable.

Built-in methods This is really a different disguise of a built-in function, this time containing an object passed
to the C function as an implicit extra argument. An example of a built-in method is alist.append(),
assuming alist is a list object. In this case, the special read-only attribute __self__ is set to the object
denoted by alist.

Class Types Class types, or ”new-style classes,” are callable. These objects normally act as factories for new

20 Bab 3. Data model

The Python Language Reference, Rilis 2.7.18

instances of themselves, but variations are possible for class types that override __new__(). The arguments
of the call are passed to __new__() and, in the typical case, to __init__() to initialize the new instance.

Classic Classes Class objects are described below. When a class object is called, a new class instance (also de-
scribed below) is created and returned. This implies a call to the class’s __init__() method if it has one.
Any arguments are passed on to the __init__() method. If there is no __init__() method, the class
must be called without arguments.

Class instances Class instances are described below. Class instances are callable only when the class has a
__call__() method; x(arguments) is a shorthand for x.__call__(arguments).

Modul-Modul Modules are imported by the import statement (see section The import statement). A module object
has a namespace implemented by a dictionary object (this is the dictionary referenced by the func_globals attribute
of functions defined in the module). Attribute references are translated to lookups in this dictionary, e.g., m.x
is equivalent to m.__dict__["x"]. A module object does not contain the code object used to initialize the
module (since it isn’t needed once the initialization is done).
Attribute assignment updates the module’s namespace dictionary, e.g., m.x = 1 is equivalent to m.
__dict__["x"] = 1.
Special read-only attribute: __dict__ is the module’s namespace as a dictionary object.
CPython implementation detail: Because of the way CPython clears module dictionaries, the module dictionary
will be cleared when the module falls out of scope even if the dictionary still has live references. To avoid this,
copy the dictionary or keep the module around while using its dictionary directly.
Predefined (writable) attributes: __name__ is the module’s name; __doc__ is the module’s documentation
string, or None if unavailable; __file__ is the pathname of the file from which the module was loaded, if it
was loaded from a file. The __file__ attribute is not present for C modules that are statically linked into the
interpreter; for extension modules loaded dynamically from a shared library, it is the pathname of the shared library
file.

Kelas-kelas Both class types (new-style classes) and class objects (old-style/classic classes) are typically created by class
definitions (see sectionDefinisi Kelas). A class has a namespace implemented by a dictionary object. Class attribute
references are translated to lookups in this dictionary, e.g., C.x is translated to C.__dict__["x"] (although
for new-style classes in particular there are a number of hooks which allow for other means of locating attributes).
When the attribute name is not found there, the attribute search continues in the base classes. For old-style classes,
the search is depth-first, left-to-right in the order of occurrence in the base class list. New-style classes use the
more complex C3 method resolution order which behaves correctly even in the presence of ’diamond’ inheritance
structures where there are multiple inheritance paths leading back to a common ancestor. Additional details on
the C3 MRO used by new-style classes can be found in the documentation accompanying the 2.3 release at https:
//www.python.org/download/releases/2.3/mro/.
When a class attribute reference (for class C, say) would yield a user-defined function object or an unbound user-
defined method object whose associated class is either C or one of its base classes, it is transformed into an unbound
user-defined method object whose im_class attribute is C. When it would yield a class method object, it is
transformed into a bound user-defined method object whose im_self attribute is C. When it would yield a static
method object, it is transformed into the object wrapped by the static method object. See section Implementing
Descriptors for another way in which attributes retrieved from a class may differ from those actually contained in
its __dict__ (note that only new-style classes support descriptors).
Class attribute assignments update the class’s dictionary, never the dictionary of a base class.
A class object can be called (see above) to yield a class instance (see below).
Special attributes: __name__ is the class name; __module__ is the module name in which the class was defi-
ned; __dict__ is the dictionary containing the class’s namespace; __bases__ is a tuple (possibly empty or a
singleton) containing the base classes, in the order of their occurrence in the base class list; __doc__ is the class’s
documentation string, or None if undefined.

3.2. The standard type hierarchy 21

https://www.python.org/download/releases/2.3/mro/
https://www.python.org/download/releases/2.3/mro/

The Python Language Reference, Rilis 2.7.18

Class instances A class instance is created by calling a class object (see above). A class instance has a namespace
implemented as a dictionary which is the first place in which attribute references are searched. When an attribute is
not found there, and the instance’s class has an attribute by that name, the search continues with the class attributes.
If a class attribute is found that is a user-defined function object or an unbound user-defined method object whose
associated class is the class (call itC) of the instance for which the attribute reference was initiated or one of its bases,
it is transformed into a bound user-defined method object whose im_class attribute is C and whose im_self
attribute is the instance. Static method and class method objects are also transformed, as if they had been retrieved
from class C; see above under ”Classes”. See section Implementing Descriptors for another way in which attributes
of a class retrieved via its instances may differ from the objects actually stored in the class’s __dict__. If no
class attribute is found, and the object’s class has a __getattr__()method, that is called to satisfy the lookup.
Attribute assignments and deletions update the instance’s dictionary, never a class’s dictionary. If the class has
a __setattr__() or __delattr__() method, this is called instead of updating the instance dictionary
directly.
Class instances can pretend to be numbers, sequences, or mappings if they have methods with certain special names.
See section Special method names.
Special attributes: __dict__ is the attribute dictionary; __class__ is the instance’s class.

Files A file object represents an open file. File objects are created by the open() built-in function, and also by os.
popen(), os.fdopen(), and the makefile() method of socket objects (and perhaps by other functions
or methods provided by extension modules). The objects sys.stdin, sys.stdout and sys.stderr are
initialized to file objects corresponding to the interpreter’s standard input, output and error streams. See bltin-file-
objects for complete documentation of file objects.

Internal types A few types used internally by the interpreter are exposed to the user. Their definitions may change with
future versions of the interpreter, but they are mentioned here for completeness.
Code objects Code objects represent byte-compiled executable Python code, or bytecode. The difference between

a code object and a function object is that the function object contains an explicit reference to the function’s
globals (the module in which it was defined), while a code object contains no context; also the default argument
values are stored in the function object, not in the code object (because they represent values calculated at run-
time). Unlike function objects, code objects are immutable and contain no references (directly or indirectly)
to mutable objects.
Special read-only attributes: co_name gives the function name; co_argcount is the number of positional
arguments (including arguments with default values); co_nlocals is the number of local variables used
by the function (including arguments); co_varnames is a tuple containing the names of the local variables
(starting with the argument names); co_cellvars is a tuple containing the names of local variables that are
referenced by nested functions; co_freevars is a tuple containing the names of free variables; co_code
is a string representing the sequence of bytecode instructions; co_consts is a tuple containing the literals
used by the bytecode; co_names is a tuple containing the names used by the bytecode; co_filename is
the filename from which the code was compiled; co_firstlineno is the first line number of the function;
co_lnotab is a string encoding themapping from bytecode offsets to line numbers (for details see the source
code of the interpreter); co_stacksize is the required stack size (including local variables); co_flags
is an integer encoding a number of flags for the interpreter.
The following flag bits are defined for co_flags: bit 0x04 is set if the function uses the *arguments
syntax to accept an arbitrary number of positional arguments; bit 0x08 is set if the function uses the
**keywords syntax to accept arbitrary keyword arguments; bit 0x20 is set if the function is a genera-
tor.
Future feature declarations (from __future__ import division) also use bits in co_flags to
indicate whether a code object was compiled with a particular feature enabled: bit 0x2000 is set if the
function was compiled with future division enabled; bits 0x10 and 0x1000 were used in earlier versions of
Python.
Other bits in co_flags are reserved for internal use.

22 Bab 3. Data model

The Python Language Reference, Rilis 2.7.18

If a code object represents a function, the first item in co_consts is the documentation string of the fun-
ction, or None if undefined.

Frame objects Frame objects represent execution frames. They may occur in traceback objects (see below).
Special read-only attributes: f_back is to the previous stack frame (towards the caller), or None if this is the
bottom stack frame; f_code is the code object being executed in this frame; f_locals is the dictionary
used to look up local variables; f_globals is used for global variables; f_builtins is used for built-
in (intrinsic) names; f_restricted is a flag indicating whether the function is executing in restricted
execution mode; f_lasti gives the precise instruction (this is an index into the bytecode string of the code
object).
Special writable attributes: f_trace, if not None, is a function called at the start of each source code line
(this is used by the debugger); f_exc_type, f_exc_value, f_exc_traceback represent the last
exception raised in the parent frame provided another exception was ever raised in the current frame (in all
other cases they are None); f_lineno is the current line number of the frame --- writing to this from within
a trace function jumps to the given line (only for the bottom-most frame). A debugger can implement a Jump
command (aka Set Next Statement) by writing to f_lineno.

Traceback objects Traceback objects represent a stack trace of an exception. A traceback object is created when
an exception occurs. When the search for an exception handler unwinds the execution stack, at each unwound
level a traceback object is inserted in front of the current traceback. When an exception handler is entered,
the stack trace is made available to the program. (See section The try statement.) It is accessible as sys.
exc_traceback, and also as the third item of the tuple returned by sys.exc_info(). The latter is the
preferred interface, since it works correctly when the program is using multiple threads. When the program
contains no suitable handler, the stack trace is written (nicely formatted) to the standard error stream; if the
interpreter is interactive, it is also made available to the user as sys.last_traceback.
Special read-only attributes: tb_next is the next level in the stack trace (towards the frame where the
exception occurred), or None if there is no next level; tb_frame points to the execution frame of the
current level; tb_lineno gives the line number where the exception occurred; tb_lasti indicates the
precise instruction. The line number and last instruction in the traceback may differ from the line number of
its frame object if the exception occurred in a try statement with no matching except clause or with a finally
clause.

Slice objects Slice objects are used to represent slices when extended slice syntax is used. This is a slice using
two colons, or multiple slices or ellipses separated by commas, e.g., a[i:j:step], a[i:j, k:l], or
a[..., i:j]. They are also created by the built-in slice() function.
Special read-only attributes: start is the lower bound; stop is the upper bound; step is the step value;
each is None if omitted. These attributes can have any type.
Slice objects support one method:
slice.indices(self, length)

This method takes a single integer argument length and computes information about the extended slice
that the slice object would describe if applied to a sequence of length items. It returns a tuple of three
integers; respectively these are the start and stop indices and the step or stride length of the slice. Missing
or out-of-bounds indices are handled in a manner consistent with regular slices.
Baru pada versi 2.3.

Static method objects Static method objects provide a way of defeating the transformation of function objects to
method objects described above. A static method object is a wrapper around any other object, usually a user-
defined method object. When a static method object is retrieved from a class or a class instance, the object
actually returned is the wrapped object, which is not subject to any further transformation. Static method
objects are not themselves callable, although the objects they wrap usually are. Static method objects are
created by the built-in staticmethod() constructor.

3.2. The standard type hierarchy 23

The Python Language Reference, Rilis 2.7.18

Class method objects A class method object, like a static method object, is a wrapper around another object
that alters the way in which that object is retrieved from classes and class instances. The behaviour of class
method objects upon such retrieval is described above, under ”User-defined methods”. Class method objects
are created by the built-in classmethod() constructor.

3.3 New-style and classic classes

Classes and instances come in two flavors: old-style (or classic) and new-style.
Up to Python 2.1 the concept of class was unrelated to the concept of type, and old-style classes were the only flavor
available. For an old-style class, the statement x.__class__ provides the class of x, but type(x) is always <type
'instance'>. This reflects the fact that all old-style instances, independent of their class, are implemented with a
single built-in type, called instance.
New-style classes were introduced in Python 2.2 to unify the concepts of class and type. A new-style class is simply
a user-defined type, no more, no less. If x is an instance of a new-style class, then type(x) is typically the same as
x.__class__ (although this is not guaranteed -- a new-style class instance is permitted to override the value returned
for x.__class__).
The major motivation for introducing new-style classes is to provide a unified object model with a full meta-model. It
also has a number of practical benefits, like the ability to subclass most built-in types, or the introduction of ”descriptors”,
which enable computed properties.
For compatibility reasons, classes are still old-style by default. New-style classes are created by specifying another new-
style class (i.e. a type) as a parent class, or the ”top-level type” object if no other parent is needed. The behaviour
of new-style classes differs from that of old-style classes in a number of important details in addition to what type()
returns. Some of these changes are fundamental to the new object model, like the way special methods are invoked.
Others are ”fixes” that could not be implemented before for compatibility concerns, like the method resolution order in
case of multiple inheritance.
While this manual aims to provide comprehensive coverage of Python’s class mechanics, it may still be lacking in some
areas when it comes to its coverage of new-style classes. Please see https://www.python.org/doc/newstyle/ for sources of
additional information.
Old-style classes are removed in Python 3, leaving only new-style classes.

3.4 Special method names

A class can implement certain operations that are invoked by special syntax (such as arithmetic operations or subscrip-
ting and slicing) by defining methods with special names. This is Python’s approach to operator overloading, allowing
classes to define their own behavior with respect to language operators. For instance, if a class defines a method na-
med __getitem__(), and x is an instance of this class, then x[i] is roughly equivalent to x.__getitem__(i)
for old-style classes and type(x).__getitem__(x, i) for new-style classes. Except where mentioned, attempts
to execute an operation raise an exception when no appropriate method is defined (typically AttributeError or
TypeError).
When implementing a class that emulates any built-in type, it is important that the emulation only be implemented to the
degree that it makes sense for the object being modelled. For example, some sequences may work well with retrieval of
individual elements, but extracting a slice may not make sense. (One example of this is the NodeList interface in the
W3C’s Document Object Model.)

24 Bab 3. Data model

https://www.python.org/doc/newstyle/

The Python Language Reference, Rilis 2.7.18

3.4.1 Basic customization

object.__new__(cls[, ...])
Called to create a new instance of class cls. __new__() is a static method (special-cased so you need not declare
it as such) that takes the class of which an instance was requested as its first argument. The remaining arguments are
those passed to the object constructor expression (the call to the class). The return value of __new__() should
be the new object instance (usually an instance of cls).
Typical implementations create a new instance of the class by invoking the superclass’s __new__()method using
super(currentclass, cls).__new__(cls[, ...]) with appropriate arguments and then modi-
fying the newly-created instance as necessary before returning it.
If __new__() returns an instance of cls, then the new instance’s __init__() method will be invoked like
__init__(self[, ...]), where self is the new instance and the remaining arguments are the same as were
passed to __new__().
If __new__() does not return an instance of cls, then the new instance’s __init__() method will not be
invoked.
__new__() is intendedmainly to allow subclasses of immutable types (like int, str, or tuple) to customize instance
creation. It is also commonly overridden in custom metaclasses in order to customize class creation.

object.__init__(self[, ...])
Called after the instance has been created (by __new__()), but before it is returned to the caller. The arguments
are those passed to the class constructor expression. If a base class has an __init__() method, the derived
class’s __init__() method, if any, must explicitly call it to ensure proper initialization of the base class part of
the instance; for example: BaseClass.__init__(self, [args...]).
Because __new__() and __init__() work together in constructing objects (__new__() to create it, and
__init__() to customise it), no non-None value may be returned by __init__(); doing so will cause a
TypeError to be raised at runtime.

object.__del__(self)
Called when the instance is about to be destroyed. This is also called a destructor. If a base class has a __del__()
method, the derived class’s __del__() method, if any, must explicitly call it to ensure proper deletion of the
base class part of the instance. Note that it is possible (though not recommended!) for the __del__() method
to postpone destruction of the instance by creating a new reference to it. It may then be called at a later time when
this new reference is deleted. It is not guaranteed that __del__() methods are called for objects that still exist
when the interpreter exits.

Catatan: del x doesn’t directly call x.__del__() --- the former decrements the reference count for x by
one, and the latter is only called when x’s reference count reaches zero. Some common situations that may prevent
the reference count of an object from going to zero include: circular references between objects (e.g., a doubly-
linked list or a tree data structure with parent and child pointers); a reference to the object on the stack frame of a
function that caught an exception (the traceback stored in sys.exc_traceback keeps the stack frame alive); or
a reference to the object on the stack frame that raised an unhandled exception in interactive mode (the traceback
stored in sys.last_traceback keeps the stack frame alive). The first situation can only be remedied by
explicitly breaking the cycles; the latter two situations can be resolved by storing None in sys.exc_traceback
or sys.last_traceback. Circular references which are garbage are detected when the option cycle detector is
enabled (it’s on by default), but can only be cleaned up if there are no Python-level __del__()methods involved.
Refer to the documentation for the gcmodule for more information about how __del__()methods are handled
by the cycle detector, particularly the description of the garbage value.

3.4. Special method names 25

The Python Language Reference, Rilis 2.7.18

Peringatan: Due to the precarious circumstances under which __del__()methods are invoked, exceptions
that occur during their execution are ignored, and a warning is printed to sys.stderr instead. Also, when
__del__() is invoked in response to a module being deleted (e.g., when execution of the program is done),
other globals referenced by the __del__()method may already have been deleted or in the process of being
torn down (e.g. the import machinery shutting down). For this reason, __del__() methods should do the
absolute minimum needed to maintain external invariants. Starting with version 1.5, Python guarantees that
globals whose name begins with a single underscore are deleted from their module before other globals are
deleted; if no other references to such globals exist, this may help in assuring that imported modules are still
available at the time when the __del__() method is called.

See also the -R command-line option.
object.__repr__(self)

Called by the repr() built-in function and by string conversions (reverse quotes) to compute the ”official” string
representation of an object. If at all possible, this should look like a valid Python expression that could be used to
recreate an object with the same value (given an appropriate environment). If this is not possible, a string of the
form <...some useful description...> should be returned. The return value must be a string object.
If a class defines __repr__() but not __str__(), then __repr__() is also used when an ”informal” string
representation of instances of that class is required.
This is typically used for debugging, so it is important that the representation is information-rich and unambiguous.

object.__str__(self)
Called by the str() built-in function and by the print statement to compute the ”informal” string representation
of an object. This differs from __repr__() in that it does not have to be a valid Python expression: a more
convenient or concise representation may be used instead. The return value must be a string object.

object.__lt__(self, other)
object.__le__(self, other)
object.__eq__(self, other)
object.__ne__(self, other)
object.__gt__(self, other)
object.__ge__(self, other)

Baru pada versi 2.1.
These are the so-called ”rich comparison” methods, and are called for comparison operators in preference to
__cmp__() below. The correspondence between operator symbols andmethod names is as follows: x<y calls x.
__lt__(y), x<=y calls x.__le__(y), x==y calls x.__eq__(y), x!=y and x<>y call x.__ne__(y),
x>y calls x.__gt__(y), and x>=y calls x.__ge__(y).
A rich comparison method may return the singleton NotImplemented if it does not implement the operation for
a given pair of arguments. By convention, False and True are returned for a successful comparison. However,
these methods can return any value, so if the comparison operator is used in a Boolean context (e.g., in the condition
of an if statement), Python will call bool() on the value to determine if the result is true or false.
There are no implied relationships among the comparison operators. The truth of x==y does not imply that x!=y
is false. Accordingly, when defining __eq__(), one should also define __ne__() so that the operators will
behave as expected. See the paragraph on __hash__() for some important notes on creating hashable objects
which support custom comparison operations and are usable as dictionary keys.
There are no swapped-argument versions of these methods (to be used when the left argument does not support the
operation but the right argument does); rather, __lt__() and__gt__() are each other’s reflection, __le__()
and __ge__() are each other’s reflection, and __eq__() and __ne__() are their own reflection.
Arguments to rich comparison methods are never coerced.
To automatically generate ordering operations from a single root operation, see functools.
total_ordering().

26 Bab 3. Data model

The Python Language Reference, Rilis 2.7.18

object.__cmp__(self, other)
Called by comparison operations if rich comparison (see above) is not defined. Should return a negative integer
if self < other, zero if self == other, a positive integer if self > other. If no __cmp__(),
__eq__() or __ne__() operation is defined, class instances are compared by object identity (”address”). See
also the description of __hash__() for some important notes on creating hashable objects which support custom
comparison operations and are usable as dictionary keys. (Note: the restriction that exceptions are not propagated
by __cmp__() has been removed since Python 1.5.)

object.__rcmp__(self, other)
Berubah pada versi 2.1: No longer supported.

object.__hash__(self)
Called by built-in function hash() and for operations on members of hashed collections including set,
frozenset, and dict. __hash__() should return an integer. The only required property is that objects
which compare equal have the same hash value; it is advised to mix together the hash values of the components
of the object that also play a part in comparison of objects by packing them into a tuple and hashing the tuple.
Example:

def __hash__(self):
return hash((self.name, self.nick, self.color))

If a class does not define a __cmp__() or __eq__() method it should not define a __hash__() operation
either; if it defines __cmp__() or __eq__() but not __hash__(), its instances will not be usable in hashed
collections. If a class defines mutable objects and implements a __cmp__() or __eq__() method, it should
not implement __hash__(), since hashable collection implementations require that an object’s hash value is
immutable (if the object’s hash value changes, it will be in the wrong hash bucket).
User-defined classes have __cmp__() and __hash__() methods by default; with them, all objects compare
unequal (except with themselves) and x.__hash__() returns a result derived from id(x).
Classes which inherit a __hash__() method from a parent class but change the meaning of __cmp__() or
__eq__() such that the hash value returned is no longer appropriate (e.g. by switching to a value-based concept
of equality instead of the default identity based equality) can explicitly flag themselves as being unhashable by
setting __hash__ = None in the class definition. Doing so means that not only will instances of the class raise
an appropriate TypeError when a program attempts to retrieve their hash value, but they will also be correctly
identified as unhashable when checking isinstance(obj, collections.Hashable) (unlike classes
which define their own __hash__() to explicitly raise TypeError).
Berubah pada versi 2.5: __hash__()may now also return a long integer object; the 32-bit integer is then derived
from the hash of that object.
Berubah pada versi 2.6: __hash__ may now be set to None to explicitly flag instances of a class as unhashable.

object.__nonzero__(self)
Called to implement truth value testing and the built-in operation bool(); should return False or True, or
their integer equivalents 0 or 1. When this method is not defined, __len__() is called, if it is defined, and the
object is considered true if its result is nonzero. If a class defines neither __len__() nor __nonzero__(), all
its instances are considered true.

object.__unicode__(self)
Called to implement unicode() built-in; should return a Unicode object. When this method is not defined,
string conversion is attempted, and the result of string conversion is converted to Unicode using the system default
encoding.

3.4. Special method names 27

The Python Language Reference, Rilis 2.7.18

3.4.2 Customizing attribute access

The following methods can be defined to customize the meaning of attribute access (use of, assignment to, or deletion of
x.name) for class instances.
object.__getattr__(self, name)

Called when an attribute lookup has not found the attribute in the usual places (i.e. it is not an instance attribute
nor is it found in the class tree for self). name is the attribute name. This method should return the (computed)
attribute value or raise an AttributeError exception.
Note that if the attribute is found through the normal mechanism, __getattr__() is not called. (This is an
intentional asymmetry between __getattr__() and __setattr__().) This is done both for efficiency
reasons and because otherwise __getattr__() would have no way to access other attributes of the instance.
Note that at least for instance variables, you can fake total control by not inserting any values in the instance attribute
dictionary (but instead inserting them in another object). See the __getattribute__() method below for a
way to actually get total control in new-style classes.

object.__setattr__(self, name, value)
Called when an attribute assignment is attempted. This is called instead of the normal mechanism (i.e. store the
value in the instance dictionary). name is the attribute name, value is the value to be assigned to it.
If __setattr__() wants to assign to an instance attribute, it should not simply execute self.name =
value --- this would cause a recursive call to itself. Instead, it should insert the value in the dictionary
of instance attributes, e.g., self.__dict__[name] = value. For new-style classes, rather than acces-
sing the instance dictionary, it should call the base class method with the same name, for example, object.
__setattr__(self, name, value).

object.__delattr__(self, name)
Like __setattr__() but for attribute deletion instead of assignment. This should only be implemented if del
obj.name is meaningful for the object.

More attribute access for new-style classes

The following methods only apply to new-style classes.
object.__getattribute__(self, name)

Called unconditionally to implement attribute accesses for instances of the class. If the class also defi-
nes __getattr__(), the latter will not be called unless __getattribute__() either calls it explicit-
ly or raises an AttributeError. This method should return the (computed) attribute value or raise an
AttributeError exception. In order to avoid infinite recursion in this method, its implementation should
always call the base class method with the same name to access any attributes it needs, for example, object.
__getattribute__(self, name).

Catatan: This method may still be bypassed when looking up special methods as the result of implicit invocation
via language syntax or built-in functions. See Special method lookup for new-style classes.

28 Bab 3. Data model

The Python Language Reference, Rilis 2.7.18

Implementing Descriptors

The following methods only apply when an instance of the class containing the method (a so-called descriptor class)
appears in an owner class (the descriptor must be in either the owner’s class dictionary or in the class dictionary for one
of its parents). In the examples below, ”the attribute” refers to the attribute whose name is the key of the property in the
owner class’ __dict__.
object.__get__(self, instance, owner)

Called to get the attribute of the owner class (class attribute access) or of an instance of that class (instance attribute
access). owner is always the owner class, while instance is the instance that the attribute was accessed through, or
None when the attribute is accessed through the owner. This method should return the (computed) attribute value
or raise an AttributeError exception.

object.__set__(self, instance, value)
Called to set the attribute on an instance instance of the owner class to a new value, value.

object.__delete__(self, instance)
Called to delete the attribute on an instance instance of the owner class.

Invoking Descriptors

In general, a descriptor is an object attribute with ”binding behavior”, one whose attribute access has been overridden by
methods in the descriptor protocol: __get__(), __set__(), and __delete__(). If any of those methods are
defined for an object, it is said to be a descriptor.
The default behavior for attribute access is to get, set, or delete the attribute from an object’s dictionary. For instance, a.x
has a lookup chain starting with a.__dict__['x'], then type(a).__dict__['x'], and continuing through
the base classes of type(a) excluding metaclasses.
However, if the looked-up value is an object defining one of the descriptor methods, then Python may override the
default behavior and invoke the descriptor method instead. Where this occurs in the precedence chain depends on which
descriptor methods were defined and how they were called. Note that descriptors are only invoked for new style objects
or classes (ones that subclass object() or type()).
The starting point for descriptor invocation is a binding, a.x. How the arguments are assembled depends on a:
Direct Call The simplest and least common call is when user code directly invokes a descriptor method: x.

__get__(a).
Instance Binding If binding to a new-style object instance, a.x is transformed into the call: type(a).

__dict__['x'].__get__(a, type(a)).
Class Binding If binding to a new-style class, A.x is transformed into the call: A.__dict__['x'].

__get__(None, A).
Super Binding If a is an instance of super, then the binding super(B, obj).m() searches obj.__class__.

__mro__ for the base class A immediately preceding B and then invokes the descriptor with the call: A.
__dict__['m'].__get__(obj, obj.__class__).

For instance bindings, the precedence of descriptor invocation depends on the which descriptor methods are defined.
A descriptor can define any combination of __get__(), __set__() and __delete__(). If it does not define
__get__(), then accessing the attribute will return the descriptor object itself unless there is a value in the object’s
instance dictionary. If the descriptor defines __set__() and/or __delete__(), it is a data descriptor; if it defines
neither, it is a non-data descriptor. Normally, data descriptors define both __get__() and __set__(), while non-
data descriptors have just the __get__() method. Data descriptors with __set__() and __get__() defined
always override a redefinition in an instance dictionary. In contrast, non-data descriptors can be overridden by instances.

3.4. Special method names 29

The Python Language Reference, Rilis 2.7.18

Python methods (including staticmethod() and classmethod()) are implemented as non-data descriptors.
Accordingly, instances can redefine and override methods. This allows individual instances to acquire behaviors that
differ from other instances of the same class.
The property() function is implemented as a data descriptor. Accordingly, instances cannot override the behavior of
a property.

__slots__

By default, instances of both old and new-style classes have a dictionary for attribute storage. This wastes space for objects
having very few instance variables. The space consumption can become acute when creating large numbers of instances.
The default can be overridden by defining __slots__ in a new-style class definition. The __slots__ declaration takes a
sequence of instance variables and reserves just enough space in each instance to hold a value for each variable. Space is
saved because __dict__ is not created for each instance.
__slots__

This class variable can be assigned a string, iterable, or sequence of strings with variable names used by instances. If
defined in a new-style class, __slots__ reserves space for the declared variables and prevents the automatic creation
of __dict__ and __weakref__ for each instance.
Baru pada versi 2.2.

Notes on using __slots__
• When inheriting from a class without __slots__, the __dict__ attribute of that class will always be accessible, so a
__slots__ definition in the subclass is meaningless.

• Without a __dict__ variable, instances cannot be assigned new variables not listed in the __slots__ definition. At-
tempts to assign to an unlisted variable name raises AttributeError. If dynamic assignment of new variables
is desired, then add '__dict__' to the sequence of strings in the __slots__ declaration.
Berubah pada versi 2.3: Previously, adding '__dict__' to the __slots__ declaration would not enable the as-
signment of new attributes not specifically listed in the sequence of instance variable names.

• Without a __weakref__ variable for each instance, classes defining __slots__ do not support weak references to
its instances. If weak reference support is needed, then add '__weakref__' to the sequence of strings in the
__slots__ declaration.
Berubah pada versi 2.3: Previously, adding '__weakref__' to the __slots__ declaration would not enable
support for weak references.

• __slots__ are implemented at the class level by creating descriptors (Implementing Descriptors) for each variable
name. As a result, class attributes cannot be used to set default values for instance variables defined by __slots__;
otherwise, the class attribute would overwrite the descriptor assignment.

• The action of a __slots__ declaration is limited to the class where it is defined. As a result, subclasses will have a
__dict__ unless they also define __slots__ (which must only contain names of any additional slots).

• If a class defines a slot also defined in a base class, the instance variable defined by the base class slot is inaccessible
(except by retrieving its descriptor directly from the base class). This renders themeaning of the program undefined.
In the future, a check may be added to prevent this.

• Nonempty __slots__ does not work for classes derived from ”variable-length” built-in types such as long, str
and tuple.

• Any non-string iterable may be assigned to __slots__. Mappings may also be used; however, in the future, special
meaning may be assigned to the values corresponding to each key.

• __class__ assignment works only if both classes have the same __slots__.
Berubah pada versi 2.6: Previously, __class__ assignment raised an error if either new or old class had __slots__.

30 Bab 3. Data model

The Python Language Reference, Rilis 2.7.18

3.4.3 Customizing class creation

By default, new-style classes are constructed using type(). A class definition is read into a separate namespace and the
value of class name is bound to the result of type(name, bases, dict).
When the class definition is read, if __metaclass__ is defined then the callable assigned to it will be called instead of
type(). This allows classes or functions to be written which monitor or alter the class creation process:

• Modifying the class dictionary prior to the class being created.
• Returning an instance of another class -- essentially performing the role of a factory function.

These steps will have to be performed in the metaclass’s __new__()method -- type.__new__() can then be called
from this method to create a class with different properties. This example adds a new element to the class dictionary
before creating the class:

class metacls(type):
def __new__(mcs, name, bases, dict):

dict['foo'] = 'metacls was here'
return type.__new__(mcs, name, bases, dict)

You can of course also override other class methods (or add new methods); for example defining a custom __call__()
method in the metaclass allows custom behavior when the class is called, e.g. not always creating a new instance.
__metaclass__

This variable can be any callable accepting arguments for name, bases, and dict. Upon class creation, the
callable is used instead of the built-in type().
Baru pada versi 2.2.

The appropriate metaclass is determined by the following precedence rules:
• If dict['__metaclass__'] exists, it is used.
• Otherwise, if there is at least one base class, its metaclass is used (this looks for a __class__ attribute first and if
not found, uses its type).

• Otherwise, if a global variable named __metaclass__ exists, it is used.
• Otherwise, the old-style, classic metaclass (types.ClassType) is used.

The potential uses for metaclasses are boundless. Some ideas that have been explored including logging, interfa-
ce checking, automatic delegation, automatic property creation, proxies, frameworks, and automatic resource loc-
king/synchronization.

3.4.4 Customizing instance and subclass checks

Baru pada versi 2.6.
The following methods are used to override the default behavior of the isinstance() and issubclass() built-in
functions.
In particular, the metaclass abc.ABCMeta implements these methods in order to allow the addition of Abstract Base
Classes (ABCs) as ”virtual base classes” to any class or type (including built-in types), including other ABCs.
class.__instancecheck__(self, instance)

Return true if instance should be considered a (direct or indirect) instance of class. If defined, called to implement
isinstance(instance, class).

class.__subclasscheck__(self, subclass)
Return true if subclass should be considered a (direct or indirect) subclass of class. If defined, called to implement
issubclass(subclass, class).

3.4. Special method names 31

The Python Language Reference, Rilis 2.7.18

Note that these methods are looked up on the type (metaclass) of a class. They cannot be defined as class methods in
the actual class. This is consistent with the lookup of special methods that are called on instances, only in this case the
instance is itself a class.
Lihat juga:
PEP 3119 - Introducing Abstract Base Classes Includes the specification for customizing isinstance() and

issubclass() behavior through __instancecheck__() and __subclasscheck__(), with moti-
vation for this functionality in the context of adding Abstract Base Classes (see the abc module) to the language.

3.4.5 Emulating callable objects

object.__call__(self[, args...])
Called when the instance is ”called” as a function; if this method is defined, x(arg1, arg2, ...) is a shor-
thand for x.__call__(arg1, arg2, ...).

3.4.6 Emulating container types

The following methods can be defined to implement container objects. Containers usually are sequences (such as lists or
tuples) or mappings (like dictionaries), but can represent other containers as well. The first set of methods is used either to
emulate a sequence or to emulate a mapping; the difference is that for a sequence, the allowable keys should be the integers
k for which 0 <= k < NwhereN is the length of the sequence, or slice objects, which define a range of items. (For bac-
kwards compatibility, the method __getslice__() (see below) can also be defined to handle simple, but not extended
slices.) It is also recommended that mappings provide the methods keys(), values(), items(), has_key(),
get(), clear(), setdefault(), iterkeys(), itervalues(), iteritems(), pop(), popitem(),
copy(), and update() behaving similar to those for Python’s standard dictionary objects. The UserDict module
provides a DictMixin class to help create those methods from a base set of __getitem__(), __setitem__(),
__delitem__(), and keys(). Mutable sequences should provide methods append(), count(), index(),
extend(), insert(), pop(), remove(), reverse() and sort(), like Python standard list objects. Finally,
sequence types should implement addition (meaning concatenation) and multiplication (meaning repetition) by defining
the methods __add__(), __radd__(), __iadd__(), __mul__(), __rmul__() and __imul__() descri-
bed below; they should not define __coerce__() or other numerical operators. It is recommended that both mappings
and sequences implement the __contains__() method to allow efficient use of the in operator; for mappings, in
should be equivalent of has_key(); for sequences, it should search through the values. It is further recommended that
both mappings and sequences implement the __iter__() method to allow efficient iteration through the container;
for mappings, __iter__() should be the same as iterkeys(); for sequences, it should iterate through the values.
object.__len__(self)

Called to implement the built-in function len(). Should return the length of the object, an integer >= 0. Also, an
object that doesn’t define a __nonzero__()method and whose __len__()method returns zero is considered
to be false in a Boolean context.
CPython implementation detail: In CPython, the length is required to be at most sys.maxsize. If the length
is larger than sys.maxsize some features (such as len()) may raise OverflowError. To prevent raising
OverflowError by truth value testing, an object must define a __nonzero__() method.

object.__getitem__(self, key)
Called to implement evaluation of self[key]. For sequence types, the accepted keys should be integers and
slice objects. Note that the special interpretation of negative indexes (if the class wishes to emulate a sequence type)
is up to the __getitem__() method. If key is of an inappropriate type, TypeError may be raised; if of a
value outside the set of indexes for the sequence (after any special interpretation of negative values), IndexError
should be raised. For mapping types, if key is missing (not in the container), KeyError should be raised.

32 Bab 3. Data model

https://www.python.org/dev/peps/pep-3119

The Python Language Reference, Rilis 2.7.18

Catatan: for loops expect that an IndexError will be raised for illegal indexes to allow proper detection of
the end of the sequence.

object.__setitem__(self, key, value)
Called to implement assignment to self[key]. Same note as for __getitem__(). This should only be
implemented for mappings if the objects support changes to the values for keys, or if new keys can be added, or
for sequences if elements can be replaced. The same exceptions should be raised for improper key values as for the
__getitem__() method.

object.__delitem__(self, key)
Called to implement deletion of self[key]. Same note as for __getitem__(). This should only be imple-
mented for mappings if the objects support removal of keys, or for sequences if elements can be removed from the
sequence. The same exceptions should be raised for improper key values as for the __getitem__() method.

object.__missing__(self, key)
Called by dict.__getitem__() to implement self[key] for dict subclasses when key is not in the dictio-
nary.

object.__iter__(self)
This method is called when an iterator is required for a container. This method should return a new iterator object
that can iterate over all the objects in the container. For mappings, it should iterate over the keys of the container,
and should also be made available as the method iterkeys().
Iterator objects also need to implement this method; they are required to return themselves. For more information
on iterator objects, see typeiter.

object.__reversed__(self)
Called (if present) by the reversed() built-in to implement reverse iteration. It should return a new iterator
object that iterates over all the objects in the container in reverse order.
If the __reversed__() method is not provided, the reversed() built-in will fall back to using the sequ-
ence protocol (__len__() and __getitem__()). Objects that support the sequence protocol should only
provide __reversed__() if they can provide an implementation that is more efficient than the one provided
by reversed().
Baru pada versi 2.6.

Themembership test operators (in andnot in) are normally implemented as an iteration through a sequence. However,
container objects can supply the following special method with a more efficient implementation, which also does not
require the object be a sequence.
object.__contains__(self, item)

Called to implement membership test operators. Should return true if item is in self, false otherwise. For mapping
objects, this should consider the keys of the mapping rather than the values or the key-item pairs.
For objects that don’t define __contains__(), the membership test first tries iteration via __iter__(), then
the old sequence iteration protocol via __getitem__(), see this section in the language reference.

3.4. Special method names 33

The Python Language Reference, Rilis 2.7.18

3.4.7 Additional methods for emulation of sequence types

The following optional methods can be defined to further emulate sequence objects. Immutable sequences methods should
at most only define __getslice__(); mutable sequences might define all three methods.
object.__getslice__(self, i, j)

Ditinggalkan sejak versi 2.0: Support slice objects as parameters to the __getitem__() method. (However,
built-in types in CPython currently still implement __getslice__(). Therefore, you have to override it in
derived classes when implementing slicing.)
Called to implement evaluation of self[i:j]. The returned object should be of the same type as self. No-
te that missing i or j in the slice expression are replaced by zero or sys.maxsize, respectively. If negative
indexes are used in the slice, the length of the sequence is added to that index. If the instance does not imple-
ment the __len__() method, an AttributeError is raised. No guarantee is made that indexes adjusted
this way are not still negative. Indexes which are greater than the length of the sequence are not modified. If no
__getslice__() is found, a slice object is created instead, and passed to __getitem__() instead.

object.__setslice__(self, i, j, sequence)
Called to implement assignment to self[i:j]. Same notes for i and j as for __getslice__().
This method is deprecated. If no __setslice__() is found, or for extended slicing of the form
self[i:j:k], a slice object is created, and passed to __setitem__(), instead of __setslice__()
being called.

object.__delslice__(self, i, j)
Called to implement deletion of self[i:j]. Same notes for i and j as for __getslice__(). This method
is deprecated. If no __delslice__() is found, or for extended slicing of the form self[i:j:k], a slice
object is created, and passed to __delitem__(), instead of __delslice__() being called.

Notice that these methods are only invoked when a single slice with a single colon is used, and the slice method is
available. For slice operations involving extended slice notation, or in absence of the slice methods, __getitem__(),
__setitem__() or __delitem__() is called with a slice object as argument.
The following example demonstrate how to make your program or module compatible with earlier versions of Python
(assuming that methods __getitem__(), __setitem__() and __delitem__() support slice objects as argu-
ments):

class MyClass:
...
def __getitem__(self, index):

...
def __setitem__(self, index, value):

...
def __delitem__(self, index):

...

if sys.version_info < (2, 0):
They won't be defined if version is at least 2.0 final

def __getslice__(self, i, j):
return self[max(0, i):max(0, j):]

def __setslice__(self, i, j, seq):
self[max(0, i):max(0, j):] = seq

def __delslice__(self, i, j):
del self[max(0, i):max(0, j):]

...

Note the calls to max(); these are necessary because of the handling of negative indices before the __*slice__()
methods are called. When negative indexes are used, the __*item__() methods receive them as provided, but the

34 Bab 3. Data model

The Python Language Reference, Rilis 2.7.18

__*slice__() methods get a ”cooked” form of the index values. For each negative index value, the length of the
sequence is added to the index before calling the method (which may still result in a negative index); this is the customary
handling of negative indexes by the built-in sequence types, and the __*item__() methods are expected to do this as
well. However, since they should already be doing that, negative indexes cannot be passed in; they must be constrained
to the bounds of the sequence before being passed to the __*item__() methods. Calling max(0, i) conveniently
returns the proper value.

3.4.8 Emulating numeric types

The following methods can be defined to emulate numeric objects. Methods corresponding to operations that are not
supported by the particular kind of number implemented (e.g., bitwise operations for non-integral numbers) should be
left undefined.
object.__add__(self, other)
object.__sub__(self, other)
object.__mul__(self, other)
object.__floordiv__(self, other)
object.__mod__(self, other)
object.__divmod__(self, other)
object.__pow__(self, other[, modulo])
object.__lshift__(self, other)
object.__rshift__(self, other)
object.__and__(self, other)
object.__xor__(self, other)
object.__or__(self, other)

These methods are called to implement the binary arithmetic operations (+, -, *, //, %, divmod(), pow(),
**, <<, >>, &, ^, |). For instance, to evaluate the expression x + y, where x is an instance of a class that has
an __add__() method, x.__add__(y) is called. The __divmod__() method should be the equivalent to
using __floordiv__() and __mod__(); it should not be related to __truediv__() (described below).
Note that __pow__() should be defined to accept an optional third argument if the ternary version of the built-in
pow() function is to be supported.
If one of those methods does not support the operation with the supplied arguments, it should return
NotImplemented.

object.__div__(self, other)
object.__truediv__(self, other)

The division operator (/) is implemented by these methods. The __truediv__() method is used when
__future__.division is in effect, otherwise __div__() is used. If only one of these two methods is
defined, the object will not support division in the alternate context; TypeError will be raised instead.

object.__radd__(self, other)
object.__rsub__(self, other)
object.__rmul__(self, other)
object.__rdiv__(self, other)
object.__rtruediv__(self, other)
object.__rfloordiv__(self, other)
object.__rmod__(self, other)
object.__rdivmod__(self, other)
object.__rpow__(self, other)
object.__rlshift__(self, other)
object.__rrshift__(self, other)
object.__rand__(self, other)
object.__rxor__(self, other)

3.4. Special method names 35

The Python Language Reference, Rilis 2.7.18

object.__ror__(self, other)
These methods are called to implement the binary arithmetic operations (+, -, *, /, %, divmod(), pow(),
**, <<, >>, &, ^, |) with reflected (swapped) operands. These functions are only called if the left operand does
not support the corresponding operation and the operands are of different types.2 For instance, to evaluate the
expression x - y, where y is an instance of a class that has an __rsub__() method, y.__rsub__(x) is
called if x.__sub__(y) returns NotImplemented.
Note that ternary pow() will not try calling __rpow__() (the coercion rules would become too complicated).

Catatan: If the right operand’s type is a subclass of the left operand’s type and that subclass provides the reflected
method for the operation, this method will be called before the left operand’s non-reflected method. This behavior
allows subclasses to override their ancestors’ operations.

object.__iadd__(self, other)
object.__isub__(self, other)
object.__imul__(self, other)
object.__idiv__(self, other)
object.__itruediv__(self, other)
object.__ifloordiv__(self, other)
object.__imod__(self, other)
object.__ipow__(self, other[, modulo])
object.__ilshift__(self, other)
object.__irshift__(self, other)
object.__iand__(self, other)
object.__ixor__(self, other)
object.__ior__(self, other)

These methods are called to implement the augmented arithmetic assignments (+=, -=, *=, /=, //=, %=, **=,
<<=, >>=, &=, ^=, |=). These methods should attempt to do the operation in-place (modifying self) and return the
result (which could be, but does not have to be, self). If a specific method is not defined, the augmented assignment
falls back to the normal methods. For instance, to execute the statement x += y, where x is an instance of a class
that has an __iadd__() method, x.__iadd__(y) is called. If x is an instance of a class that does not define
a __iadd__() method, x.__add__(y) and y.__radd__(x) are considered, as with the evaluation of x
+ y.

object.__neg__(self)
object.__pos__(self)
object.__abs__(self)
object.__invert__(self)

Called to implement the unary arithmetic operations (-, +, abs() and ~).
object.__complex__(self)
object.__int__(self)
object.__long__(self)
object.__float__(self)

Called to implement the built-in functions complex(), int(), long(), and float(). Should return a value
of the appropriate type.

object.__oct__(self)
object.__hex__(self)

Called to implement the built-in functions oct() and hex(). Should return a string value.
object.__index__(self)

Called to implement operator.index(). Also called whenever Python needs an integer object (such as in
2 For operands of the same type, it is assumed that if the non-reflected method (such as __add__()) fails the operation is not supported, which is

why the reflected method is not called.

36 Bab 3. Data model

The Python Language Reference, Rilis 2.7.18

slicing). Must return an integer (int or long).
Baru pada versi 2.5.

object.__coerce__(self, other)
Called to implement ”mixed-mode” numeric arithmetic. Should either return a 2-tuple containing self and other
converted to a common numeric type, or None if conversion is impossible. When the common type would be
the type of other, it is sufficient to return None, since the interpreter will also ask the other object to attempt a
coercion (but sometimes, if the implementation of the other type cannot be changed, it is useful to do the conversion
to the other type here). A return value of NotImplemented is equivalent to returning None.

3.4.9 Coercion rules

This section used to document the rules for coercion. As the language has evolved, the coercion rules have become hard
to document precisely; documenting what one version of one particular implementation does is undesirable. Instead, here
are some informal guidelines regarding coercion. In Python 3, coercion will not be supported.

• If the left operand of a % operator is a string or Unicode object, no coercion takes place and the string formatting
operation is invoked instead.

• It is no longer recommended to define a coercion operation. Mixed-mode operations on types that don’t define
coercion pass the original arguments to the operation.

• New-style classes (those derived from object) never invoke the __coerce__()method in response to a binary
operator; the only time __coerce__() is invoked is when the built-in function coerce() is called.

• For most intents and purposes, an operator that returns NotImplemented is treated the same as one that is not
implemented at all.

• Below, __op__() and __rop__() are used to signify the generic method names corresponding to an operator;
__iop__() is used for the corresponding in-place operator. For example, for the operator ’+’, __add__() and
__radd__() are used for the left and right variant of the binary operator, and __iadd__() for the in-place
variant.

• For objects x and y, first x.__op__(y) is tried. If this is not implemented or returns NotImplemented, y.
__rop__(x) is tried. If this is also not implemented or returns NotImplemented, a TypeError exception
is raised. But see the following exception:

• Exception to the previous item: if the left operand is an instance of a built-in type or a new-style class, and the right
operand is an instance of a proper subclass of that type or class and overrides the base’s __rop__() method, the
right operand’s __rop__() method is tried before the left operand’s __op__() method.
This is done so that a subclass can completely override binary operators. Otherwise, the left operand’s __op__()
method would always accept the right operand: when an instance of a given class is expected, an instance of a
subclass of that class is always acceptable.

• When either operand type defines a coercion, this coercion is called before that type’s __op__() or __rop__()
method is called, but no sooner. If the coercion returns an object of a different type for the operand whose coercion
is invoked, part of the process is redone using the new object.

• When an in-place operator (like ’+=’) is used, if the left operand implements __iop__(), it is invoked without
any coercion. When the operation falls back to __op__() and/or __rop__(), the normal coercion rules apply.

• In x + y, if x is a sequence that implements sequence concatenation, sequence concatenation is invoked.
• In x * y, if one operand is a sequence that implements sequence repetition, and the other is an integer (int or
long), sequence repetition is invoked.

• Rich comparisons (implemented by methods __eq__() and so on) never use coercion. Three-way comparison
(implemented by __cmp__()) does use coercion under the same conditions as other binary operations use it.

3.4. Special method names 37

The Python Language Reference, Rilis 2.7.18

• In the current implementation, the built-in numeric types int, long, float, and complex do not use coercion.
All these types implement a __coerce__() method, for use by the built-in coerce() function.
Berubah pada versi 2.7: The complex type no longer makes implicit calls to the __coerce__() method for
mixed-type binary arithmetic operations.

3.4.10 With Statement Context Managers

Baru pada versi 2.5.
A context manager is an object that defines the runtime context to be established when executing a with statement. The
context manager handles the entry into, and the exit from, the desired runtime context for the execution of the block of
code. Context managers are normally invoked using the with statement (described in section The with statement), but
can also be used by directly invoking their methods.
Typical uses of context managers include saving and restoring various kinds of global state, locking and unlocking reso-
urces, closing opened files, etc.
For more information on context managers, see typecontextmanager.
object.__enter__(self)

Enter the runtime context related to this object. The with statement will bind this method’s return value to the
target(s) specified in the as clause of the statement, if any.

object.__exit__(self, exc_type, exc_value, traceback)
Exit the runtime context related to this object. The parameters describe the exception that caused the context to be
exited. If the context was exited without an exception, all three arguments will be None.
If an exception is supplied, and the method wishes to suppress the exception (i.e., prevent it from being propagated),
it should return a true value. Otherwise, the exception will be processed normally upon exit from this method.
Note that __exit__() methods should not reraise the passed-in exception; this is the caller’s responsibility.

Lihat juga:
PEP 343 - The ”with” statement The specification, background, and examples for the Python with statement.

3.4.11 Special method lookup for old-style classes

For old-style classes, special methods are always looked up in exactly the same way as any other method or attribute. This
is the case regardless of whether the method is being looked up explicitly as in x.__getitem__(i) or implicitly as
in x[i].
This behaviour means that special methods may exhibit different behaviour for different instances of a single old-style
class if the appropriate special attributes are set differently:

>>> class C:
... pass
...
>>> c1 = C()
>>> c2 = C()
>>> c1.__len__ = lambda: 5
>>> c2.__len__ = lambda: 9
>>> len(c1)
5
>>> len(c2)
9

38 Bab 3. Data model

https://www.python.org/dev/peps/pep-0343

The Python Language Reference, Rilis 2.7.18

3.4.12 Special method lookup for new-style classes

For new-style classes, implicit invocations of special methods are only guaranteed to work correctly if defined on an
object’s type, not in the object’s instance dictionary. That behaviour is the reason why the following code raises an
exception (unlike the equivalent example with old-style classes):

>>> class C(object):
... pass
...
>>> c = C()
>>> c.__len__ = lambda: 5
>>> len(c)
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
TypeError: object of type 'C' has no len()

The rationale behind this behaviour lies with a number of special methods such as __hash__() and __repr__()
that are implemented by all objects, including type objects. If the implicit lookup of these methods used the conventional
lookup process, they would fail when invoked on the type object itself:

>>> 1 .__hash__() == hash(1)
True
>>> int.__hash__() == hash(int)
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
TypeError: descriptor '__hash__' of 'int' object needs an argument

Incorrectly attempting to invoke an unboundmethod of a class in this way is sometimes referred to as ’metaclass confusion’,
and is avoided by bypassing the instance when looking up special methods:

>>> type(1).__hash__(1) == hash(1)
True
>>> type(int).__hash__(int) == hash(int)
True

In addition to bypassing any instance attributes in the interest of correctness, implicit special method lookup generally
also bypasses the __getattribute__() method even of the object’s metaclass:

>>> class Meta(type):
... def __getattribute__(*args):
... print "Metaclass getattribute invoked"
... return type.__getattribute__(*args)
...
>>> class C(object):
... __metaclass__ = Meta
... def __len__(self):
... return 10
... def __getattribute__(*args):
... print "Class getattribute invoked"
... return object.__getattribute__(*args)
...
>>> c = C()
>>> c.__len__() # Explicit lookup via instance
Class getattribute invoked
10
>>> type(c).__len__(c) # Explicit lookup via type
Metaclass getattribute invoked

(berlanjut ke halaman berikutnya)

3.4. Special method names 39

The Python Language Reference, Rilis 2.7.18

(lanjutan dari halaman sebelumnya)
10
>>> len(c) # Implicit lookup
10

Bypassing the __getattribute__() machinery in this fashion provides significant scope for speed optimisations
within the interpreter, at the cost of some flexibility in the handling of special methods (the special method must be set
on the class object itself in order to be consistently invoked by the interpreter).

40 Bab 3. Data model

BAB4

Execution model

4.1 Naming and binding

Names refer to objects. Names are introduced by name binding operations. Each occurrence of a name in the program
text refers to the binding of that name established in the innermost function block containing the use.
A block is a piece of Python program text that is executed as a unit. The following are blocks: a module, a function
body, and a class definition. Each command typed interactively is a block. A script file (a file given as standard input
to the interpreter or specified on the interpreter command line the first argument) is a code block. A script command (a
command specified on the interpreter command line with the ’-c’ option) is a code block. The file read by the built-in
function execfile() is a code block. The string argument passed to the built-in function eval() and to the exec
statement is a code block. The expression read and evaluated by the built-in function input() is a code block.
A code block is executed in an execution frame. A frame contains some administrative information (used for debugging)
and determines where and how execution continues after the code block’s execution has completed.
A scope defines the visibility of a name within a block. If a local variable is defined in a block, its scope includes that
block. If the definition occurs in a function block, the scope extends to any blocks contained within the defining one,
unless a contained block introduces a different binding for the name. The scope of names defined in a class block is
limited to the class block; it does not extend to the code blocks of methods -- this includes generator expressions since
they are implemented using a function scope. This means that the following will fail:

class A:
a = 42
b = list(a + i for i in range(10))

When a name is used in a code block, it is resolved using the nearest enclosing scope. The set of all such scopes visible
to a code block is called the block’s environment.
If a name is bound in a block, it is a local variable of that block. If a name is bound at the module level, it is a global
variable. (The variables of the module code block are local and global.) If a variable is used in a code block but not
defined there, it is a free variable.
When a name is not found at all, a NameError exception is raised. If the name refers to a local variable that has not
been bound, a UnboundLocalError exception is raised. UnboundLocalError is a subclass of NameError.

41

The Python Language Reference, Rilis 2.7.18

The following constructs bind names: formal parameters to functions, import statements, class and function definitions
(these bind the class or function name in the defining block), and targets that are identifiers if occurring in an assignment,
for loop header, in the second position of an except clause header or after as in a with statement. The import
statement of the form from ... import * binds all names defined in the imported module, except those beginning
with an underscore. This form may only be used at the module level.
A target occurring in a del statement is also considered bound for this purpose (though the actual semantics are to
unbind the name). It is illegal to unbind a name that is referenced by an enclosing scope; the compiler will report a
SyntaxError.
Each assignment or import statement occurs within a block defined by a class or function definition or at the module level
(the top-level code block).
If a name binding operation occurs anywhere within a code block, all uses of the name within the block are treated as
references to the current block. This can lead to errors when a name is used within a block before it is bound. This rule is
subtle. Python lacks declarations and allows name binding operations to occur anywhere within a code block. The local
variables of a code block can be determined by scanning the entire text of the block for name binding operations.
If the global statement occurs within a block, all uses of the name specified in the statement refer to the binding of that
name in the top-level namespace. Names are resolved in the top-level namespace by searching the global namespace,
i.e. the namespace of the module containing the code block, and the builtins namespace, the namespace of the module
__builtin__. The global namespace is searched first. If the name is not found there, the builtins namespace is
searched. The global statement must precede all uses of the name.
The builtins namespace associated with the execution of a code block is actually found by looking up the name
__builtins__ in its global namespace; this should be a dictionary or a module (in the latter case the module’s dictio-
nary is used). By default, when in the __main__ module, __builtins__ is the built-in module __builtin__
(note: no ’s’); when in any other module, __builtins__ is an alias for the dictionary of the __builtin__ module
itself. __builtins__ can be set to a user-created dictionary to create a weak form of restricted execution.
CPython implementation detail: Users should not touch __builtins__; it is strictly an implementation detail.
Users wanting to override values in the builtins namespace should import the __builtin__ (no ’s’) module and
modify its attributes appropriately.
The namespace for a module is automatically created the first time a module is imported. The main module for a script
is always called __main__.
The global statement has the same scope as a name binding operation in the same block. If the nearest enclosing scope
for a free variable contains a global statement, the free variable is treated as a global.
A class definition is an executable statement that may use and define names. These references follow the normal rules for
name resolution. The namespace of the class definition becomes the attribute dictionary of the class. Names defined at
the class scope are not visible in methods.

4.1.1 Interaction with dynamic features

There are several cases where Python statements are illegal when used in conjunction with nested scopes that contain free
variables.
If a variable is referenced in an enclosing scope, it is illegal to delete the name. An error will be reported at compile time.
If the wild card form of import --- import * --- is used in a function and the function contains or is a nested block with
free variables, the compiler will raise a SyntaxError.
If exec is used in a function and the function contains or is a nested block with free variables, the compiler will raise
a SyntaxError unless the exec explicitly specifies the local namespace for the exec. (In other words, exec obj
would be illegal, but exec obj in ns would be legal.)

42 Bab 4. Execution model

The Python Language Reference, Rilis 2.7.18

The eval(), execfile(), and input() functions and the exec statement do not have access to the full enviro-
nment for resolving names. Names may be resolved in the local and global namespaces of the caller. Free variables are
not resolved in the nearest enclosing namespace, but in the global namespace.1 The exec statement and the eval()
and execfile() functions have optional arguments to override the global and local namespace. If only one namespace
is specified, it is used for both.

4.2 Pengecualian

Exceptions are a means of breaking out of the normal flow of control of a code block in order to handle errors or other
exceptional conditions. An exception is raised at the point where the error is detected; it may be handled by the surroun-
ding code block or by any code block that directly or indirectly invoked the code block where the error occurred.
The Python interpreter raises an exception when it detects a run-time error (such as division by zero). A Python program
can also explicitly raise an exception with the raise statement. Exception handlers are specified with the try ...
except statement. The finally clause of such a statement can be used to specify cleanup code which does not
handle the exception, but is executed whether an exception occurred or not in the preceding code.
Python uses the ”termination” model of error handling: an exception handler can find out what happened and continue
execution at an outer level, but it cannot repair the cause of the error and retry the failing operation (except by re-entering
the offending piece of code from the top).
When an exception is not handled at all, the interpreter terminates execution of the program, or returns to its interactive
main loop. In either case, it prints a stack backtrace, except when the exception is SystemExit.
Exceptions are identified by class instances. The except clause is selected depending on the class of the instance: it
must reference the class of the instance or a base class thereof. The instance can be received by the handler and can carry
additional information about the exceptional condition.
Exceptions can also be identified by strings, in which case the except clause is selected by object identity. An arbitrary
value can be raised along with the identifying string which can be passed to the handler.

Catatan: Messages to exceptions are not part of the Python API. Their contents may change from one version of Python
to the next without warning and should not be relied on by code which will run under multiple versions of the interpreter.

See also the description of the try statement in section The try statement and raise statement in section The raise
statement.

1 This limitation occurs because the code that is executed by these operations is not available at the time the module is compiled.

4.2. Pengecualian 43

The Python Language Reference, Rilis 2.7.18

44 Bab 4. Execution model

BAB5

Expressions

This chapter explains the meaning of the elements of expressions in Python.
Syntax Notes: In this and the following chapters, extended BNF notation will be used to describe syntax, not lexical
analysis. When (one alternative of) a syntax rule has the form

name ::= othername

and no semantics are given, the semantics of this form of name are the same as for othername.

5.1 Arithmetic conversions

When a description of an arithmetic operator below uses the phrase ”the numeric arguments are converted to a common
type,” the arguments are coerced using the coercion rules listed at Coercion rules. If both arguments are standard numeric
types, the following coercions are applied:

• If either argument is a complex number, the other is converted to complex;
• otherwise, if either argument is a floating point number, the other is converted to floating point;
• otherwise, if either argument is a long integer, the other is converted to long integer;
• otherwise, both must be plain integers and no conversion is necessary.

Some additional rules apply for certain operators (e.g., a string left argument to the ’%’ operator). Extensions can define
their own coercions.

45

The Python Language Reference, Rilis 2.7.18

5.2 Atoms

Atoms are the most basic elements of expressions. The simplest atoms are identifiers or literals. Forms enclosed in reverse
quotes or in parentheses, brackets or braces are also categorized syntactically as atoms. The syntax for atoms is:

atom ::= identifier | literal | enclosure
enclosure ::= parenth_form | list_display

| generator_expression | dict_display | set_display
| string_conversion | yield_atom

5.2.1 Identifiers (Names)

An identifier occurring as an atom is a name. See section Identifiers and keywords for lexical definition and sectionNaming
and binding for documentation of naming and binding.
When the name is bound to an object, evaluation of the atom yields that object. When a name is not bound, an attempt
to evaluate it raises a NameError exception.
Private namemangling: When an identifier that textually occurs in a class definition begins with two or more underscore
characters and does not end in two or more underscores, it is considered a private name of that class. Private names are
transformed to a longer form before code is generated for them. The transformation inserts the class name, with leading
underscores removed and a single underscore inserted, in front of the name. For example, the identifier__spam occurring
in a class named Hamwill be transformed to _Ham__spam. This transformation is independent of the syntactical context
in which the identifier is used. If the transformed name is extremely long (longer than 255 characters), implementation
defined truncation may happen. If the class name consists only of underscores, no transformation is done.

5.2.2 Literals

Python supports string literals and various numeric literals:

literal ::= stringliteral | integer | longinteger
| floatnumber | imagnumber

Evaluation of a literal yields an object of the given type (string, integer, long integer, floating point number, complex
number) with the given value. The value may be approximated in the case of floating point and imaginary (complex)
literals. See section Literals for details.
All literals correspond to immutable data types, and hence the object’s identity is less important than its value. Multiple
evaluations of literals with the same value (either the same occurrence in the program text or a different occurrence) may
obtain the same object or a different object with the same value.

46 Bab 5. Expressions

The Python Language Reference, Rilis 2.7.18

5.2.3 Parenthesized forms

A parenthesized form is an optional expression list enclosed in parentheses:

parenth_form ::= "(" [expression_list] ")"

A parenthesized expression list yields whatever that expression list yields: if the list contains at least one comma, it yields
a tuple; otherwise, it yields the single expression that makes up the expression list.
An empty pair of parentheses yields an empty tuple object. Since tuples are immutable, the rules for literals apply (i.e.,
two occurrences of the empty tuple may or may not yield the same object).
Note that tuples are not formed by the parentheses, but rather by use of the comma operator. The exception is the empty
tuple, for which parentheses are required --- allowing unparenthesized ”nothing” in expressions would cause ambiguities
and allow common typos to pass uncaught.

5.2.4 List displays

A list display is a possibly empty series of expressions enclosed in square brackets:

list_display ::= "[" [expression_list | list_comprehension] "]"
list_comprehension ::= expression list_for
list_for ::= "for" target_list "in" old_expression_list [list_iter]
old_expression_list ::= old_expression [("," old_expression)+ [","]]
old_expression ::= or_test | old_lambda_expr
list_iter ::= list_for | list_if
list_if ::= "if" old_expression [list_iter]

A list display yields a new list object. Its contents are specified by providing either a list of expressions or a list compre-
hension. When a comma-separated list of expressions is supplied, its elements are evaluated from left to right and placed
into the list object in that order. When a list comprehension is supplied, it consists of a single expression followed by
at least one for clause and zero or more for or if clauses. In this case, the elements of the new list are those that
would be produced by considering each of the for or if clauses a block, nesting from left to right, and evaluating the
expression to produce a list element each time the innermost block is reached1.

5.2.5 Displays for sets and dictionaries

For constructing a set or a dictionary Python provides special syntax called ”displays”, each of them in two flavors:
• either the container contents are listed explicitly, or
• they are computed via a set of looping and filtering instructions, called a comprehension.

Common syntax elements for comprehensions are:

comprehension ::= expression comp_for
comp_for ::= "for" target_list "in" or_test [comp_iter]
comp_iter ::= comp_for | comp_if
comp_if ::= "if" expression_nocond [comp_iter]

1 In Python 2.3 and later releases, a list comprehension ”leaks” the control variables of each for it contains into the containing scope. However,
this behavior is deprecated, and relying on it will not work in Python 3.

5.2. Atoms 47

The Python Language Reference, Rilis 2.7.18

The comprehension consists of a single expression followed by at least one for clause and zero or more for or if
clauses. In this case, the elements of the new container are those that would be produced by considering each of the
for or if clauses a block, nesting from left to right, and evaluating the expression to produce an element each time the
innermost block is reached.
Note that the comprehension is executed in a separate scope, so names assigned to in the target list don’t ”leak” in the
enclosing scope.

5.2.6 Generator expressions

A generator expression is a compact generator notation in parentheses:

generator_expression ::= "(" expression comp_for ")"

A generator expression yields a new generator object. Its syntax is the same as for comprehensions, except that it is
enclosed in parentheses instead of brackets or curly braces.
Variables used in the generator expression are evaluated lazily when the __next__() method is called for generator
object (in the same fashion as normal generators). However, the leftmost for clause is immediately evaluated, so that
an error produced by it can be seen before any other possible error in the code that handles the generator expression.
Subsequent for clauses cannot be evaluated immediately since they may depend on the previous for loop. For example:
(x*y for x in range(10) for y in bar(x)).
The parentheses can be omitted on calls with only one argument. See section Calls for the detail.

5.2.7 Dictionary displays

A dictionary display is a possibly empty series of key/datum pairs enclosed in curly braces:

dict_display ::= "{" [key_datum_list | dict_comprehension] "}"
key_datum_list ::= key_datum ("," key_datum)* [","]
key_datum ::= expression ":" expression
dict_comprehension ::= expression ":" expression comp_for

A dictionary display yields a new dictionary object.
If a comma-separated sequence of key/datum pairs is given, they are evaluated from left to right to define the entries of
the dictionary: each key object is used as a key into the dictionary to store the corresponding datum. This means that you
can specify the same key multiple times in the key/datum list, and the final dictionary’s value for that key will be the last
one given.
A dict comprehension, in contrast to list and set comprehensions, needs two expressions separated with a colon followed
by the usual ”for” and ”if” clauses. When the comprehension is run, the resulting key and value elements are inserted in
the new dictionary in the order they are produced.
Restrictions on the types of the key values are listed earlier in section The standard type hierarchy. (To summarize, the
key type should be hashable, which excludes all mutable objects.) Clashes between duplicate keys are not detected; the
last datum (textually rightmost in the display) stored for a given key value prevails.

48 Bab 5. Expressions

The Python Language Reference, Rilis 2.7.18

5.2.8 Set displays

A set display is denoted by curly braces and distinguishable from dictionary displays by the lack of colons separating keys
and values:

set_display ::= "{" (expression_list | comprehension) "}"

A set display yields a new mutable set object, the contents being specified by either a sequence of expressions or a
comprehension. When a comma-separated list of expressions is supplied, its elements are evaluated from left to right and
added to the set object. When a comprehension is supplied, the set is constructed from the elements resulting from the
comprehension.
An empty set cannot be constructed with {}; this literal constructs an empty dictionary.

5.2.9 String conversions

A string conversion is an expression list enclosed in reverse (a.k.a. backward) quotes:

string_conversion ::= "`" expression_list "`"

A string conversion evaluates the contained expression list and converts the resulting object into a string according to rules
specific to its type.
If the object is a string, a number, None, or a tuple, list or dictionary containing only objects whose type is one of these,
the resulting string is a valid Python expression which can be passed to the built-in function eval() to yield an expression
with the same value (or an approximation, if floating point numbers are involved).
(In particular, converting a string adds quotes around it and converts ”funny” characters to escape sequences that are safe
to print.)
Recursive objects (for example, lists or dictionaries that contain a reference to themselves, directly or indirectly) use ...
to indicate a recursive reference, and the result cannot be passed to eval() to get an equal value (SyntaxError will
be raised instead).
The built-in function repr() performs exactly the same conversion in its argument as enclosing it in parentheses and
reverse quotes does. The built-in function str() performs a similar but more user-friendly conversion.

5.2.10 Yield expressions

yield_atom ::= "(" yield_expression ")"
yield_expression ::= "yield" [expression_list]

Baru pada versi 2.5.
The yield expression is only used when defining a generator function, and can only be used in the body of a function
definition. Using a yield expression in a function definition is sufficient to cause that definition to create a generator
function instead of a normal function.
When a generator function is called, it returns an iterator known as a generator. That generator then controls the execution
of a generator function. The execution starts when one of the generator’s methods is called. At that time, the execution
proceeds to the first yield expression, where it is suspended again, returning the value of expression_list to
generator’s caller. By suspended we mean that all local state is retained, including the current bindings of local variables,
the instruction pointer, and the internal evaluation stack. When the execution is resumed by calling one of the generator’s

5.2. Atoms 49

The Python Language Reference, Rilis 2.7.18

methods, the function can proceed exactly as if the yield expression was just another external call. The value of the
yield expression after resuming depends on the method which resumed the execution.
All of this makes generator functions quite similar to coroutines; they yield multiple times, they have more than one entry
point and their execution can be suspended. The only difference is that a generator function cannot control where should
the execution continue after it yields; the control is always transferred to the generator’s caller.

Generator-iterator methods

This subsection describes the methods of a generator iterator. They can be used to control the execution of a generator
function.
Note that calling any of the generator methods below when the generator is already executing raises a ValueError
exception.
generator.next()

Starts the execution of a generator function or resumes it at the last executed yield expression. When a gene-
rator function is resumed with a next() method, the current yield expression always evaluates to None. The
execution then continues to the next yield expression, where the generator is suspended again, and the value of
the expression_list is returned to next()’s caller. If the generator exits without yielding another value, a
StopIteration exception is raised.

generator.send(value)
Resumes the execution and ”sends” a value into the generator function. The value argument becomes the result
of the current yield expression. The send() method returns the next value yielded by the generator, or raises
StopIteration if the generator exits without yielding another value. When send() is called to start the
generator, it must be called with None as the argument, because there is no yield expression that could receive
the value.

generator.throw(type[, value[, traceback]])
Raises an exception of type type at the point where generator was paused, and returns the next value yielded by
the generator function. If the generator exits without yielding another value, a StopIteration exception is
raised. If the generator function does not catch the passed-in exception, or raises a different exception, then that
exception propagates to the caller.

generator.close()
Raises a GeneratorExit at the point where the generator function was paused. If the generator function then
raises StopIteration (by exiting normally, or due to already being closed) or GeneratorExit (by not
catching the exception), close returns to its caller. If the generator yields a value, a RuntimeError is raised. If
the generator raises any other exception, it is propagated to the caller. close() does nothing if the generator has
already exited due to an exception or normal exit.

Here is a simple example that demonstrates the behavior of generators and generator functions:

>>> def echo(value=None):
... print "Execution starts when 'next()' is called for the first time."
... try:
... while True:
... try:
... value = (yield value)
... except Exception, e:
... value = e
... finally:
... print "Don't forget to clean up when 'close()' is called."
...
>>> generator = echo(1)
>>> print generator.next()

(berlanjut ke halaman berikutnya)

50 Bab 5. Expressions

The Python Language Reference, Rilis 2.7.18

(lanjutan dari halaman sebelumnya)
Execution starts when 'next()' is called for the first time.
1
>>> print generator.next()
None
>>> print generator.send(2)
2
>>> generator.throw(TypeError, "spam")
TypeError('spam',)
>>> generator.close()
Don't forget to clean up when 'close()' is called.

Lihat juga:
PEP 342 - Coroutines via Enhanced Generators The proposal to enhance the API and syntax of generators, making

them usable as simple coroutines.

5.3 Primaries

Primaries represent the most tightly bound operations of the language. Their syntax is:

primary ::= atom | attributeref | subscription | slicing | call

5.3.1 Attribute references

An attribute reference is a primary followed by a period and a name:

attributeref ::= primary "." identifier

The primary must evaluate to an object of a type that supports attribute references, e.g., a module, list, or an instance. This
object is then asked to produce the attribute whose name is the identifier. If this attribute is not available, the exception
AttributeError is raised. Otherwise, the type and value of the object produced is determined by the object. Multiple
evaluations of the same attribute reference may yield different objects.

5.3.2 Subscriptions

A subscription selects an item of a sequence (string, tuple or list) or mapping (dictionary) object:

subscription ::= primary "[" expression_list "]"

The primary must evaluate to an object of a sequence or mapping type.
If the primary is a mapping, the expression list must evaluate to an object whose value is one of the keys of the mapping,
and the subscription selects the value in the mapping that corresponds to that key. (The expression list is a tuple except if
it has exactly one item.)
If the primary is a sequence, the expression list must evaluate to a plain integer. If this value is negative, the length of the
sequence is added to it (so that, e.g., x[-1] selects the last item of x.) The resulting value must be a nonnegative integer
less than the number of items in the sequence, and the subscription selects the item whose index is that value (counting

5.3. Primaries 51

https://www.python.org/dev/peps/pep-0342

The Python Language Reference, Rilis 2.7.18

from zero).
A string’s items are characters. A character is not a separate data type but a string of exactly one character.

5.3.3 Slicings

A slicing selects a range of items in a sequence object (e.g., a string, tuple or list). Slicings may be used as expressions or
as targets in assignment or del statements. The syntax for a slicing:

slicing ::= simple_slicing | extended_slicing
simple_slicing ::= primary "[" short_slice "]"
extended_slicing ::= primary "[" slice_list "]"
slice_list ::= slice_item ("," slice_item)* [","]
slice_item ::= expression | proper_slice | ellipsis
proper_slice ::= short_slice | long_slice
short_slice ::= [lower_bound] ":" [upper_bound]
long_slice ::= short_slice ":" [stride]
lower_bound ::= expression
upper_bound ::= expression
stride ::= expression
ellipsis ::= "..."

There is ambiguity in the formal syntax here: anything that looks like an expression list also looks like a slice list, so any
subscription can be interpreted as a slicing. Rather than further complicating the syntax, this is disambiguated by defining
that in this case the interpretation as a subscription takes priority over the interpretation as a slicing (this is the case if
the slice list contains no proper slice nor ellipses). Similarly, when the slice list has exactly one short slice and no trailing
comma, the interpretation as a simple slicing takes priority over that as an extended slicing.
The semantics for a simple slicing are as follows. The primary must evaluate to a sequence object. The lower and upper
bound expressions, if present, must evaluate to plain integers; defaults are zero and the sys.maxint, respectively. If
either bound is negative, the sequence’s length is added to it. The slicing now selects all items with index k such that i
<= k < j where i and j are the specified lower and upper bounds. This may be an empty sequence. It is not an error
if i or j lie outside the range of valid indexes (such items don’t exist so they aren’t selected).
The semantics for an extended slicing are as follows. The primary must evaluate to a mapping object, and it is indexed
with a key that is constructed from the slice list, as follows. If the slice list contains at least one comma, the key is a tuple
containing the conversion of the slice items; otherwise, the conversion of the lone slice item is the key. The conversion of a
slice item that is an expression is that expression. The conversion of an ellipsis slice item is the built-in Ellipsis object.
The conversion of a proper slice is a slice object (see section The standard type hierarchy) whose start, stop and step
attributes are the values of the expressions given as lower bound, upper bound and stride, respectively, substituting None
for missing expressions.

5.3.4 Calls

A call calls a callable object (e.g., a function) with a possibly empty series of arguments:

call ::= primary "(" [argument_list [","]
| expression genexpr_for] ")"

argument_list ::= positional_arguments ["," keyword_arguments]
["," "*" expression] ["," keyword_arguments]
["," "**" expression]

52 Bab 5. Expressions

The Python Language Reference, Rilis 2.7.18

| keyword_arguments ["," "*" expression]
["," "**" expression]
| "*" expression ["," keyword_arguments] ["," "**" expression]
| "**" expression

positional_arguments ::= expression ("," expression)*
keyword_arguments ::= keyword_item ("," keyword_item)*
keyword_item ::= identifier "=" expression

A trailing comma may be present after the positional and keyword arguments but does not affect the semantics.
The primary must evaluate to a callable object (user-defined functions, built-in functions, methods of built-in objects, class
objects, methods of class instances, and certain class instances themselves are callable; extensions may define additional
callable object types). All argument expressions are evaluated before the call is attempted. Please refer to section Definisi
fungsi for the syntax of formal parameter lists.
If keyword arguments are present, they are first converted to positional arguments, as follows. First, a list of unfilled slots
is created for the formal parameters. If there are N positional arguments, they are placed in the first N slots. Next, for
each keyword argument, the identifier is used to determine the corresponding slot (if the identifier is the same as the first
formal parameter name, the first slot is used, and so on). If the slot is already filled, a TypeError exception is raised.
Otherwise, the value of the argument is placed in the slot, filling it (even if the expression is None, it fills the slot). When
all arguments have been processed, the slots that are still unfilled are filled with the corresponding default value from the
function definition. (Default values are calculated, once, when the function is defined; thus, a mutable object such as a list
or dictionary used as default value will be shared by all calls that don’t specify an argument value for the corresponding
slot; this should usually be avoided.) If there are any unfilled slots for which no default value is specified, a TypeError
exception is raised. Otherwise, the list of filled slots is used as the argument list for the call.
CPython implementation detail: An implementation may provide built-in functions whose positional parameters do
not have names, even if they are ’named’ for the purpose of documentation, and which therefore cannot be supplied by
keyword. In CPython, this is the case for functions implemented in C that use PyArg_ParseTuple() to parse their
arguments.
If there are more positional arguments than there are formal parameter slots, a TypeError exception is raised, unless
a formal parameter using the syntax *identifier is present; in this case, that formal parameter receives a tuple
containing the excess positional arguments (or an empty tuple if there were no excess positional arguments).
If any keyword argument does not correspond to a formal parameter name, a TypeError exception is raised, unless a
formal parameter using the syntax **identifier is present; in this case, that formal parameter receives a dictionary
containing the excess keyword arguments (using the keywords as keys and the argument values as corresponding values),
or a (new) empty dictionary if there were no excess keyword arguments.
If the syntax *expression appears in the function call, expression must evaluate to an iterable. Elements from
this iterable are treated as if they were additional positional arguments; if there are positional arguments x1, ..., xN, and
expression evaluates to a sequence y1, ..., yM, this is equivalent to a call with M+N positional arguments x1, ..., xN,
y1, ..., yM.
A consequence of this is that although the *expression syntax may appear after some keyword arguments, it is
processed before the keyword arguments (and the **expression argument, if any -- see below). So:

>>> def f(a, b):
... print a, b
...
>>> f(b=1, *(2,))
2 1
>>> f(a=1, *(2,))
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
TypeError: f() got multiple values for keyword argument 'a'

(berlanjut ke halaman berikutnya)

5.3. Primaries 53

The Python Language Reference, Rilis 2.7.18

(lanjutan dari halaman sebelumnya)
>>> f(1, *(2,))
1 2

It is unusual for both keyword arguments and the *expression syntax to be used in the same call, so in practice this
confusion does not arise.
If the syntax **expression appears in the function call, expression must evaluate to a mapping, the contents of
which are treated as additional keyword arguments. In the case of a keyword appearing in both expression and as an
explicit keyword argument, a TypeError exception is raised.
Formal parameters using the syntax *identifier or **identifier cannot be used as positional argument slots
or as keyword argument names. Formal parameters using the syntax (sublist) cannot be used as keyword argument
names; the outermost sublist corresponds to a single unnamed argument slot, and the argument value is assigned to the
sublist using the usual tuple assignment rules after all other parameter processing is done.
A call always returns some value, possibly None, unless it raises an exception. How this value is computed depends on
the type of the callable object.
If it is---
a user-defined function: The code block for the function is executed, passing it the argument list. The first thing the

code block will do is bind the formal parameters to the arguments; this is described in sectionDefinisi fungsi. When
the code block executes a return statement, this specifies the return value of the function call.

a built-in function or method: The result is up to the interpreter; see built-in-funcs for the descriptions of built-in
functions and methods.

a class object: A new instance of that class is returned.
a class instance method: The corresponding user-defined function is called, with an argument list that is one longer than

the argument list of the call: the instance becomes the first argument.
a class instance: The class must define a __call__()method; the effect is then the same as if that method was called.

5.4 The power operator

The power operator binds more tightly than unary operators on its left; it binds less tightly than unary operators on its
right. The syntax is:

power ::= primary ["**" u_expr]

Thus, in an unparenthesized sequence of power and unary operators, the operators are evaluated from right to left (this
does not constrain the evaluation order for the operands): -1**2 results in -1.
The power operator has the same semantics as the built-in pow() function, when called with two arguments: it yields
its left argument raised to the power of its right argument. The numeric arguments are first converted to a common type.
The result type is that of the arguments after coercion.
With mixed operand types, the coercion rules for binary arithmetic operators apply. For int and long int operands, the
result has the same type as the operands (after coercion) unless the second argument is negative; in that case, all arguments
are converted to float and a float result is delivered. For example, 10**2 returns 100, but 10**-2 returns 0.01. (This
last feature was added in Python 2.2. In Python 2.1 and before, if both arguments were of integer types and the second
argument was negative, an exception was raised).
Raising 0.0 to a negative power results in a ZeroDivisionError. Raising a negative number to a fractional power
results in a ValueError.

54 Bab 5. Expressions

The Python Language Reference, Rilis 2.7.18

5.5 Unary arithmetic and bitwise operations

All unary arithmetic and bitwise operations have the same priority:

u_expr ::= power | "-" u_expr | "+" u_expr | "~" u_expr

The unary - (minus) operator yields the negation of its numeric argument.
The unary + (plus) operator yields its numeric argument unchanged.
The unary ~ (invert) operator yields the bitwise inversion of its plain or long integer argument. The bitwise inversion of
x is defined as -(x+1). It only applies to integral numbers.
In all three cases, if the argument does not have the proper type, a TypeError exception is raised.

5.6 Binary arithmetic operations

The binary arithmetic operations have the conventional priority levels. Note that some of these operations also apply to
certain non-numeric types. Apart from the power operator, there are only two levels, one for multiplicative operators and
one for additive operators:

m_expr ::= u_expr | m_expr "*" u_expr | m_expr "//" u_expr | m_expr "/" u_expr
| m_expr "%" u_expr

a_expr ::= m_expr | a_expr "+" m_expr | a_expr "-" m_expr

The * (multiplication) operator yields the product of its arguments. The arguments must either both be numbers, or
one argument must be an integer (plain or long) and the other must be a sequence. In the former case, the numbers are
converted to a common type and then multiplied together. In the latter case, sequence repetition is performed; a negative
repetition factor yields an empty sequence.
The / (division) and // (floor division) operators yield the quotient of their arguments. The numeric arguments are
first converted to a common type. Plain or long integer division yields an integer of the same type; the result is that of
mathematical division with the ’floor’ function applied to the result. Division by zero raises the ZeroDivisionError
exception.
The % (modulo) operator yields the remainder from the division of the first argument by the second. The numeric argu-
ments are first converted to a common type. A zero right argument raises the ZeroDivisionError exception. The
arguments may be floating point numbers, e.g., 3.14%0.7 equals 0.34 (since 3.14 equals 4*0.7 + 0.34.) The
modulo operator always yields a result with the same sign as its second operand (or zero); the absolute value of the result
is strictly smaller than the absolute value of the second operand2.
The integer division and modulo operators are connected by the following identity: x == (x/y)*y + (x%y). In-
teger division and modulo are also connected with the built-in function divmod(): divmod(x, y) == (x/y,
x%y). These identities don’t hold for floating point numbers; there similar identities hold approximately where x/y is
replaced by floor(x/y) or floor(x/y) - 13.
In addition to performing the modulo operation on numbers, the % operator is also overloaded by string and unicode

2 While abs(x%y) < abs(y) is true mathematically, for floats it may not be true numerically due to roundoff. For example, and assuming
a platform on which a Python float is an IEEE 754 double-precision number, in order that -1e-100 % 1e100 have the same sign as 1e100, the
computed result is -1e-100 + 1e100, which is numerically exactly equal to 1e100. The function math.fmod() returns a result whose sign
matches the sign of the first argument instead, and so returns -1e-100 in this case. Which approach is more appropriate depends on the application.

3 If x is very close to an exact integer multiple of y, it’s possible for floor(x/y) to be one larger than (x-x%y)/y due to rounding. In such
cases, Python returns the latter result, in order to preserve that divmod(x,y)[0] * y + x % y be very close to x.

5.6. Binary arithmetic operations 55

The Python Language Reference, Rilis 2.7.18

objects to perform string formatting (also known as interpolation). The syntax for string formatting is described in the
Python Library Reference, section string-formatting.
Ditinggalkan sejak versi 2.3: The floor division operator, the modulo operator, and the divmod() function are no longer
defined for complex numbers. Instead, convert to a floating point number using the abs() function if appropriate.
The + (addition) operator yields the sum of its arguments. The arguments must either both be numbers or both sequences
of the same type. In the former case, the numbers are converted to a common type and then added together. In the latter
case, the sequences are concatenated.
The - (subtraction) operator yields the difference of its arguments. The numeric arguments are first converted to a
common type.

5.7 Shifting operations

The shifting operations have lower priority than the arithmetic operations:

shift_expr ::= a_expr | shift_expr ("<<" | ">>") a_expr

These operators accept plain or long integers as arguments. The arguments are converted to a common type. They shift
the first argument to the left or right by the number of bits given by the second argument.
A right shift by n bits is defined as division by pow(2, n). A left shift by n bits is defined as multiplication with
pow(2, n). Negative shift counts raise a ValueError exception.

Catatan: In the current implementation, the right-hand operand is required to be at most sys.maxsize. If the
right-hand operand is larger than sys.maxsize an OverflowError exception is raised.

5.8 Binary bitwise operations

Each of the three bitwise operations has a different priority level:

and_expr ::= shift_expr | and_expr "&" shift_expr
xor_expr ::= and_expr | xor_expr "^" and_expr
or_expr ::= xor_expr | or_expr "|" xor_expr

The & operator yields the bitwise AND of its arguments, which must be plain or long integers. The arguments are
converted to a common type.
The ^ operator yields the bitwise XOR (exclusive OR) of its arguments, which must be plain or long integers. The
arguments are converted to a common type.
The | operator yields the bitwise (inclusive) OR of its arguments, which must be plain or long integers. The arguments
are converted to a common type.

56 Bab 5. Expressions

The Python Language Reference, Rilis 2.7.18

5.9 Perbandingan

Unlike C, all comparison operations in Python have the same priority, which is lower than that of any arithmetic, shif-
ting or bitwise operation. Also unlike C, expressions like a < b < c have the interpretation that is conventional in
mathematics:

comparison ::= or_expr (comp_operator or_expr)*
comp_operator ::= "<" | ">" | "==" | ">=" | "<=" | "<>" | "!="

| "is" ["not"] | ["not"] "in"

Comparisons yield boolean values: True or False.
Comparisons can be chained arbitrarily, e.g., x < y <= z is equivalent to x < y and y <= z, except that y is
evaluated only once (but in both cases z is not evaluated at all when x < y is found to be false).
Formally, if a, b, c, ..., y, z are expressions and op1, op2, ..., opN are comparison operators, then a op1 b op2 c
... y opN z is equivalent to a op1 b and b op2 c and ... y opN z, except that each expression is
evaluated at most once.
Note that a op1 b op2 c doesn’t imply any kind of comparison between a and c, so that, e.g., x < y > z is
perfectly legal (though perhaps not pretty).
The forms <> and != are equivalent; for consistency with C, != is preferred; where != is mentioned below <> is also
accepted. The <> spelling is considered obsolescent.

5.9.1 Value comparisons

The operators <, >, ==, >=, <=, and != compare the values of two objects. The objects do not need to have the same
type.
Chapter Objects, values and types states that objects have a value (in addition to type and identity). The value of an object
is a rather abstract notion in Python: For example, there is no canonical access method for an object’s value. Also, there
is no requirement that the value of an object should be constructed in a particular way, e.g. comprised of all its data
attributes. Comparison operators implement a particular notion of what the value of an object is. One can think of them
as defining the value of an object indirectly, by means of their comparison implementation.
Types can customize their comparison behavior by implementing a __cmp__() method or rich comparison methods
like __lt__(), described in Basic customization.
The default behavior for equality comparison (== and !=) is based on the identity of the objects. Hence, equality compa-
rison of instances with the same identity results in equality, and equality comparison of instances with different identities
results in inequality. A motivation for this default behavior is the desire that all objects should be reflexive (i.e. x is
y implies x == y).
The default order comparison (<, >, <=, and >=) gives a consistent but arbitrary order.
(This unusual definition of comparison was used to simplify the definition of operations like sorting and the in and not
in operators. In the future, the comparison rules for objects of different types are likely to change.)
The behavior of the default equality comparison, that instances with different identities are always unequal, may be in
contrast to what types will need that have a sensible definition of object value and value-based equality. Such types will
need to customize their comparison behavior, and in fact, a number of built-in types have done that.
The following list describes the comparison behavior of the most important built-in types.

• Numbers of built-in numeric types (typesnumeric) and of the standard library types fractions.Fraction
and decimal.Decimal can be compared within and across their types, with the restriction that complex num-

5.9. Perbandingan 57

The Python Language Reference, Rilis 2.7.18

bers do not support order comparison. Within the limits of the types involved, they compare mathematically
(algorithmically) correct without loss of precision.

• Strings (instances of str or unicode) compare lexicographically using the numeric equivalents (the result of
the built-in function ord()) of their characters.4 When comparing an 8-bit string and a Unicode string, the 8-bit
string is converted to Unicode. If the conversion fails, the strings are considered unequal.

• Instances of tuple or list can be compared only within each of their types. Equality comparison across these
types results in unequality, and ordering comparison across these types gives an arbitrary order.
These sequences compare lexicographically using comparison of corresponding elements, whereby reflexivity of
the elements is enforced.
In enforcing reflexivity of elements, the comparison of collections assumes that for a collection element x, x ==
x is always true. Based on that assumption, element identity is compared first, and element comparison is per-
formed only for distinct elements. This approach yields the same result as a strict element comparison would,
if the compared elements are reflexive. For non-reflexive elements, the result is different than for strict element
comparison.
Lexicographical comparison between built-in collections works as follows:

– For two collections to compare equal, they must be of the same type, have the same length, and each pair of
corresponding elements must compare equal (for example, [1,2] == (1,2) is false because the type is
not the same).

– Collections are ordered the same as their first unequal elements (for example, cmp([1,2,x], [1,2,
y]) returns the same as cmp(x,y)). If a corresponding element does not exist, the shorter collection is
ordered first (for example, [1,2] < [1,2,3] is true).

• Mappings (instances of dict) compare equal if and only if they have equal (key, value) pairs. Equality comparison
of the keys and values enforces reflexivity.
Outcomes other than equality are resolved consistently, but are not otherwise defined.5

• Most other objects of built-in types compare unequal unless they are the same object; the choice whether one
object is considered smaller or larger than another one is made arbitrarily but consistently within one execution of
a program.

User-defined classes that customize their comparison behavior should follow some consistency rules, if possible:
• Equality comparison should be reflexive. In other words, identical objects should compare equal:

x is y implies x == y

• Comparison should be symmetric. In other words, the following expressions should have the same result:
x == y and y == x

x != y and y != x

x < y and y > x

x <= y and y >= x

4 The Unicode standard distinguishes between code points (e.g. U+0041) and abstract characters (e.g. ”LATIN CAPITAL LETTER A”). While
most abstract characters in Unicode are only represented using one code point, there is a number of abstract characters that can in addition be repre-
sented using a sequence of more than one code point. For example, the abstract character ”LATIN CAPITAL LETTER C WITH CEDILLA” can
be represented as a single precomposed character at code position U+00C7, or as a sequence of a base character at code position U+0043 (LATIN
CAPITAL LETTER C), followed by a combining character at code position U+0327 (COMBINING CEDILLA).
The comparison operators on unicode strings compare at the level of Unicode code points. This may be counter-intuitive to humans. For example,

u"\u00C7" == u"\u0043\u0327" is False, even though both strings represent the same abstract character ”LATIN CAPITAL LETTER C
WITH CEDILLA”.
To compare strings at the level of abstract characters (that is, in a way intuitive to humans), use unicodedata.normalize().
5 Earlier versions of Python used lexicographic comparison of the sorted (key, value) lists, but this was very expensive for the common case of

comparing for equality. An even earlier version of Python compared dictionaries by identity only, but this caused surprises because people expected to
be able to test a dictionary for emptiness by comparing it to {}.

58 Bab 5. Expressions

The Python Language Reference, Rilis 2.7.18

• Comparison should be transitive. The following (non-exhaustive) examples illustrate that:
x > y and y > z implies x > z

x < y and y <= z implies x < z

• Inverse comparison should result in the boolean negation. In other words, the following expressions should have
the same result:

x == y and not x != y

x < y and not x >= y (for total ordering)
x > y and not x <= y (for total ordering)

The last two expressions apply to totally ordered collections (e.g. to sequences, but not to sets or mappings). See
also the total_ordering() decorator.

• The hash() result should be consistent with equality. Objects that are equal should either have the same hash
value, or be marked as unhashable.

Python does not enforce these consistency rules.

5.9.2 Membership test operations

The operators in and not in test for membership. x in s evaluates to True if x is a member of s, and False
otherwise. x not in s returns the negation of x in s. All built-in sequences and set types support this as well as
dictionary, for which in tests whether the dictionary has a given key. For container types such as list, tuple, set, frozenset,
dict, or collections.deque, the expression x in y is equivalent to any(x is e or x == e for e in y).
For the string and bytes types, x in y is True if and only if x is a substring of y. An equivalent test is y.find(x)
!= -1. Empty strings are always considered to be a substring of any other string, so "" in "abc" will return True.
For user-defined classes which define the __contains__() method, x in y returns True if y.
__contains__(x) returns a true value, and False otherwise.
For user-defined classes which do not define __contains__() but do define __iter__(), x in y is True if
some value z with x == z is produced while iterating over y. If an exception is raised during the iteration, it is as if
in raised that exception.
Lastly, the old-style iteration protocol is tried: if a class defines __getitem__(), x in y is True if and only if
there is a non-negative integer index i such that x == y[i], and all lower integer indices do not raise IndexError
exception. (If any other exception is raised, it is as if in raised that exception).
The operator not in is defined to have the inverse true value of in.

5.9.3 Identity comparisons

The operators is and is not test for object identity: x is y is true if and only if x and y are the same object. x is
not y yields the inverse truth value.6

6 Due to automatic garbage-collection, free lists, and the dynamic nature of descriptors, you may notice seemingly unusual behaviour in certain uses
of the is operator, like those involving comparisons between instance methods, or constants. Check their documentation for more info.

5.9. Perbandingan 59

The Python Language Reference, Rilis 2.7.18

5.10 Boolean operations

or_test ::= and_test | or_test "or" and_test
and_test ::= not_test | and_test "and" not_test
not_test ::= comparison | "not" not_test

In the context of Boolean operations, and also when expressions are used by control flow statements, the following values
are interpreted as false: False, None, numeric zero of all types, and empty strings and containers (including strings,
tuples, lists, dictionaries, sets and frozensets). All other values are interpreted as true. (See the __nonzero__() special
method for a way to change this.)
The operator not yields True if its argument is false, False otherwise.
The expression x and y first evaluates x; if x is false, its value is returned; otherwise, y is evaluated and the resulting
value is returned.
The expression x or y first evaluates x; if x is true, its value is returned; otherwise, y is evaluated and the resulting value
is returned.
(Note that neither and nor or restrict the value and type they return to False and True, but rather return the last
evaluated argument. This is sometimes useful, e.g., if s is a string that should be replaced by a default value if it is empty,
the expression s or 'foo' yields the desired value. Because not has to invent a value anyway, it does not bother to
return a value of the same type as its argument, so e.g., not 'foo' yields False, not ''.)

5.11 Conditional Expressions

Baru pada versi 2.5.

conditional_expression ::= or_test ["if" or_test "else" expression]
expression ::= conditional_expression | lambda_expr

Conditional expressions (sometimes called a ”ternary operator”) have the lowest priority of all Python operations.
The expression x if C else y first evaluates the condition, C (not x); if C is true, x is evaluated and its value is
returned; otherwise, y is evaluated and its value is returned.
See PEP 308 for more details about conditional expressions.

5.12 Lambdas

lambda_expr ::= "lambda" [parameter_list]: expression
old_lambda_expr ::= "lambda" [parameter_list]: old_expression

Lambda expressions (sometimes called lambda forms) have the same syntactic position as expressions. They are a shor-
thand to create anonymous functions; the expression lambda parameters: expression yields a function object.
The unnamed object behaves like a function object defined with

def <lambda>(parameters):
return expression

See section Definisi fungsi for the syntax of parameter lists. Note that functions created with lambda expressions cannot

60 Bab 5. Expressions

https://www.python.org/dev/peps/pep-0308

The Python Language Reference, Rilis 2.7.18

contain statements.

5.13 Expression lists

expression_list ::= expression ("," expression)* [","]

An expression list containing at least one comma yields a tuple. The length of the tuple is the number of expressions in
the list. The expressions are evaluated from left to right.
The trailing comma is required only to create a single tuple (a.k.a. a singleton); it is optional in all other cases. A single
expression without a trailing comma doesn’t create a tuple, but rather yields the value of that expression. (To create an
empty tuple, use an empty pair of parentheses: ().)

5.14 Evaluation order

Python evaluates expressions from left to right. Notice that while evaluating an assignment, the right-hand side is evaluated
before the left-hand side.
In the following lines, expressions will be evaluated in the arithmetic order of their suffixes:

expr1, expr2, expr3, expr4
(expr1, expr2, expr3, expr4)
{expr1: expr2, expr3: expr4}
expr1 + expr2 * (expr3 - expr4)
expr1(expr2, expr3, *expr4, **expr5)
expr3, expr4 = expr1, expr2

5.15 Operator precedence

The following table summarizes the operator precedences in Python, from lowest precedence (least binding) to highest
precedence (most binding). Operators in the same box have the same precedence. Unless the syntax is explicitly given,
operators are binary. Operators in the same box group left to right (except for comparisons, including tests, which all
have the same precedence and chain from left to right --- see section Perbandingan --- and exponentiation, which groups
from right to left).

5.14. Evaluation order 61

The Python Language Reference, Rilis 2.7.18

Operator Deskripsi
lambda Lambda expression
if -- else Conditional expression
or Boolean OR
and Boolean AND
not x Boolean NOT
in, not in, is, is not, <, <=, >, >=, <>, !=, == Comparisons, including membership tests and

identity tests
| Bitwise OR
^ Bitwise XOR
& Bitwise AND
<<, >> Shifts
+, - Addition and subtraction
*, /, //, % Multiplication, division, remainder7
+x, -x, ~x Positive, negative, bitwise NOT
** Exponentiation8
x[index], x[index:index], x(arguments...), x.
attribute

Subscription, slicing, call, attribute reference

(expressions...), [expressions...], {key:
value...}, `expressions...`

Binding or tuple display, list display, dictionary
display, string conversion

7 The % operator is also used for string formatting; the same precedence applies.
8 The power operator ** binds less tightly than an arithmetic or bitwise unary operator on its right, that is, 2**-1 is 0.5.

62 Bab 5. Expressions

BAB6

Simple statements

Simple statements are comprised within a single logical line. Several simple statements may occur on a single line sepa-
rated by semicolons. The syntax for simple statements is:

simple_stmt ::= expression_stmt
| assert_stmt
| assignment_stmt
| augmented_assignment_stmt
| pass_stmt
| del_stmt
| print_stmt
| return_stmt
| yield_stmt
| raise_stmt
| break_stmt
| continue_stmt
| import_stmt
| future_stmt
| global_stmt
| exec_stmt

6.1 Expression statements

Expression statements are used (mostly interactively) to compute and write a value, or (usually) to call a procedure (a
function that returns no meaningful result; in Python, procedures return the value None). Other uses of expression
statements are allowed and occasionally useful. The syntax for an expression statement is:

expression_stmt ::= expression_list

63

The Python Language Reference, Rilis 2.7.18

An expression statement evaluates the expression list (which may be a single expression).
In interactive mode, if the value is not None, it is converted to a string using the built-in repr() function and the
resulting string is written to standard output (see section The print statement) on a line by itself. (Expression statements
yielding None are not written, so that procedure calls do not cause any output.)

6.2 Assignment statements

Assignment statements are used to (re)bind names to values and to modify attributes or items of mutable objects:

assignment_stmt ::= (target_list "=")+ (expression_list | yield_expression)
target_list ::= target ("," target)* [","]
target ::= identifier

| "(" target_list ")"
| "[" [target_list] "]"
| attributeref
| subscription
| slicing

(See section Primaries for the syntax definitions for the last three symbols.)
An assignment statement evaluates the expression list (remember that this can be a single expression or a comma-separated
list, the latter yielding a tuple) and assigns the single resulting object to each of the target lists, from left to right.
Assignment is defined recursively depending on the form of the target (list). When a target is part of a mutable object (an
attribute reference, subscription or slicing), the mutable object must ultimately perform the assignment and decide about
its validity, and may raise an exception if the assignment is unacceptable. The rules observed by various types and the
exceptions raised are given with the definition of the object types (see section The standard type hierarchy).
Assignment of an object to a target list is recursively defined as follows.

• If the target list is a single target: The object is assigned to that target.
• If the target list is a comma-separated list of targets: The object must be an iterable with the same number of items
as there are targets in the target list, and the items are assigned, from left to right, to the corresponding targets.

Assignment of an object to a single target is recursively defined as follows.
• If the target is an identifier (name):

– If the name does not occur in a global statement in the current code block: the name is bound to the object
in the current local namespace.

– Otherwise: the name is bound to the object in the current global namespace.
The name is rebound if it was already bound. This may cause the reference count for the object previously bound
to the name to reach zero, causing the object to be deallocated and its destructor (if it has one) to be called.

• If the target is a target list enclosed in parentheses or in square brackets: The object must be an iterable with the
same number of items as there are targets in the target list, and its items are assigned, from left to right, to the
corresponding targets.

• If the target is an attribute reference: The primary expression in the reference is evaluated. It should yield an object
with assignable attributes; if this is not the case, TypeError is raised. That object is then asked to assign the
assigned object to the given attribute; if it cannot perform the assignment, it raises an exception (usually but not
necessarily AttributeError).

64 Bab 6. Simple statements

The Python Language Reference, Rilis 2.7.18

Note: If the object is a class instance and the attribute reference occurs on both sides of the assignment operator,
the RHS expression, a.x can access either an instance attribute or (if no instance attribute exists) a class attribute.
The LHS target a.x is always set as an instance attribute, creating it if necessary. Thus, the two occurrences of
a.x do not necessarily refer to the same attribute: if the RHS expression refers to a class attribute, the LHS creates
a new instance attribute as the target of the assignment:

class Cls:
x = 3 # class variable

inst = Cls()
inst.x = inst.x + 1 # writes inst.x as 4 leaving Cls.x as 3

This description does not necessarily apply to descriptor attributes, such as properties created with property().
• If the target is a subscription: The primary expression in the reference is evaluated. It should yield either a muta-
ble sequence object (such as a list) or a mapping object (such as a dictionary). Next, the subscript expression is
evaluated.
If the primary is a mutable sequence object (such as a list), the subscript must yield a plain integer. If it is negative,
the sequence’s length is added to it. The resulting value must be a nonnegative integer less than the sequence’s
length, and the sequence is asked to assign the assigned object to its item with that index. If the index is out of
range, IndexError is raised (assignment to a subscripted sequence cannot add new items to a list).
If the primary is a mapping object (such as a dictionary), the subscript must have a type compatible with the
mapping’s key type, and the mapping is then asked to create a key/datum pair which maps the subscript to the
assigned object. This can either replace an existing key/value pair with the same key value, or insert a new key/value
pair (if no key with the same value existed).

• If the target is a slicing: The primary expression in the reference is evaluated. It should yield a mutable sequence
object (such as a list). The assigned object should be a sequence object of the same type. Next, the lower and upper
bound expressions are evaluated, insofar they are present; defaults are zero and the sequence’s length. The bounds
should evaluate to (small) integers. If either bound is negative, the sequence’s length is added to it. The resulting
bounds are clipped to lie between zero and the sequence’s length, inclusive. Finally, the sequence object is asked to
replace the slice with the items of the assigned sequence. The length of the slice may be different from the length
of the assigned sequence, thus changing the length of the target sequence, if the object allows it.

CPython implementation detail: In the current implementation, the syntax for targets is taken to be the same as for
expressions, and invalid syntax is rejected during the code generation phase, causing less detailed error messages.
WARNING: Although the definition of assignment implies that overlaps between the left-hand side and the right-hand
side are ’safe’ (for example a, b = b, a swaps two variables), overlaps within the collection of assigned-to variables
are not safe! For instance, the following program prints [0, 2]:

x = [0, 1]
i = 0
i, x[i] = 1, 2
print x

6.2.1 Augmented assignment statements

Augmented assignment is the combination, in a single statement, of a binary operation and an assignment statement:

augmented_assignment_stmt ::= augtarget augop (expression_list | yield_expression)
augtarget ::= identifier | attributeref | subscription | slicing
augop ::= "+=" | "-=" | "*=" | "/=" | "//=" | "%=" | "**="

| ">>=" | "<<=" | "&=" | "^=" | "|="

6.2. Assignment statements 65

The Python Language Reference, Rilis 2.7.18

(See section Primaries for the syntax definitions for the last three symbols.)
An augmented assignment evaluates the target (which, unlike normal assignment statements, cannot be an unpacking)
and the expression list, performs the binary operation specific to the type of assignment on the two operands, and assigns
the result to the original target. The target is only evaluated once.
An augmented assignment expression like x += 1 can be rewritten as x = x + 1 to achieve a similar, but not exactly
equal effect. In the augmented version, x is only evaluated once. Also, when possible, the actual operation is performed
in-place, meaning that rather than creating a new object and assigning that to the target, the old object is modified instead.
With the exception of assigning to tuples and multiple targets in a single statement, the assignment done by augmented
assignment statements is handled the same way as normal assignments. Similarly, with the exception of the possible
in-place behavior, the binary operation performed by augmented assignment is the same as the normal binary operations.
For targets which are attribute references, the same caveat about class and instance attributes applies as for regular assig-
nments.

6.3 The assert statement

Assert statements are a convenient way to insert debugging assertions into a program:

assert_stmt ::= "assert" expression ["," expression]

The simple form, assert expression, is equivalent to

if __debug__:
if not expression: raise AssertionError

The extended form, assert expression1, expression2, is equivalent to

if __debug__:
if not expression1: raise AssertionError(expression2)

These equivalences assume that __debug__ and AssertionError refer to the built-in variables with those names.
In the current implementation, the built-in variable __debug__ is True under normal circumstances, False when
optimization is requested (command line option -O). The current code generator emits no code for an assert statement
when optimization is requested at compile time. Note that it is unnecessary to include the source code for the expression
that failed in the error message; it will be displayed as part of the stack trace.
Assignments to __debug__ are illegal. The value for the built-in variable is determined when the interpreter starts.

6.4 The pass statement

pass_stmt ::= "pass"

pass is a null operation --- when it is executed, nothing happens. It is useful as a placeholder when a statement is required
syntactically, but no code needs to be executed, for example:

def f(arg): pass # a function that does nothing (yet)

class C: pass # a class with no methods (yet)

66 Bab 6. Simple statements

The Python Language Reference, Rilis 2.7.18

6.5 The del statement

del_stmt ::= "del" target_list

Deletion is recursively defined very similar to the way assignment is defined. Rather than spelling it out in full details,
here are some hints.
Deletion of a target list recursively deletes each target, from left to right.
Deletion of a name removes the binding of that name from the local or global namespace, depending on whether the name
occurs in a global statement in the same code block. If the name is unbound, a NameError exception will be raised.
It is illegal to delete a name from the local namespace if it occurs as a free variable in a nested block.
Deletion of attribute references, subscriptions and slicings is passed to the primary object involved; deletion of a slicing is
in general equivalent to assignment of an empty slice of the right type (but even this is determined by the sliced object).

6.6 The print statement

print_stmt ::= "print" ([expression ("," expression)* [","]]
| ">>" expression [("," expression)+ [","]])

print evaluates each expression in turn and writes the resulting object to standard output (see below). If an object is
not a string, it is first converted to a string using the rules for string conversions. The (resulting or original) string is then
written. A space is written before each object is (converted and) written, unless the output system believes it is positioned
at the beginning of a line. This is the case (1) when no characters have yet been written to standard output, (2) when
the last character written to standard output is a whitespace character except ' ', or (3) when the last write operation
on standard output was not a print statement. (In some cases it may be functional to write an empty string to standard
output for this reason.)

Catatan: Objects which act like file objects but which are not the built-in file objects often do not properly emulate this
aspect of the file object’s behavior, so it is best not to rely on this.

A '\n' character is written at the end, unless the print statement ends with a comma. This is the only action if the
statement contains just the keyword print.
Standard output is defined as the file object named stdout in the built-in module sys. If no such object exists, or if it
does not have a write() method, a RuntimeError exception is raised.
print also has an extended form, defined by the second portion of the syntax described above. This form is sometimes
referred to as ”print chevron.” In this form, the first expression after the >> must evaluate to a ”file-like” object, spe-
cifically an object that has a write() method as described above. With this extended form, the subsequent expressions
are printed to this file object. If the first expression evaluates to None, then sys.stdout is used as the file for output.

6.6. The print statement 67

The Python Language Reference, Rilis 2.7.18

6.7 The return statement

return_stmt ::= "return" [expression_list]

return may only occur syntactically nested in a function definition, not within a nested class definition.
If an expression list is present, it is evaluated, else None is substituted.
return leaves the current function call with the expression list (or None) as return value.
When return passes control out of a try statement with a finally clause, that finally clause is executed before
really leaving the function.
In a generator function, the return statement is not allowed to include an expression_list. In that context, a
bare return indicates that the generator is done and will cause StopIteration to be raised.

6.8 The yield statement

yield_stmt ::= yield_expression

The yield statement is only used when defining a generator function, and is only used in the body of the generator
function. Using a yield statement in a function definition is sufficient to cause that definition to create a generator
function instead of a normal function.
When a generator function is called, it returns an iterator known as a generator iterator, or more commonly, a generator.
The body of the generator function is executed by calling the generator’s next() method repeatedly until it raises an
exception.
When a yield statement is executed, the state of the generator is frozen and the value of expression_list is
returned to next()’s caller. By ”frozen” we mean that all local state is retained, including the current bindings of local
variables, the instruction pointer, and the internal evaluation stack: enough information is saved so that the next time
next() is invoked, the function can proceed exactly as if the yield statement were just another external call.
As of Python version 2.5, the yield statement is now allowed in the try clause of a try ... finally construct. If
the generator is not resumed before it is finalized (by reaching a zero reference count or by being garbage collected), the
generator-iterator’s close() method will be called, allowing any pending finally clauses to execute.
For full details of yield semantics, refer to the Yield expressions section.

Catatan: In Python 2.2, the yield statement was only allowed when the generators feature has been enabled.
This __future__ import statement was used to enable the feature:

from __future__ import generators

Lihat juga:
PEP 255 - Simple Generators The proposal for adding generators and the yield statement to Python.
PEP 342 - Coroutines via Enhanced Generators The proposal that, among other generator enhancements, proposed

allowing yield to appear inside a try ... finally block.

68 Bab 6. Simple statements

https://www.python.org/dev/peps/pep-0255
https://www.python.org/dev/peps/pep-0342

The Python Language Reference, Rilis 2.7.18

6.9 The raise statement

raise_stmt ::= "raise" [expression ["," expression ["," expression]]]

If no expressions are present, raise re-raises the last exception that was active in the current scope. If no exception is
active in the current scope, a TypeError exception is raised indicating that this is an error (if running under IDLE, a
Queue.Empty exception is raised instead).
Otherwise, raise evaluates the expressions to get three objects, using None as the value of omitted expressions. The
first two objects are used to determine the type and value of the exception.
If the first object is an instance, the type of the exception is the class of the instance, the instance itself is the value, and
the second object must be None.
If the first object is a class, it becomes the type of the exception. The second object is used to determine the exception
value: If it is an instance of the class, the instance becomes the exception value. If the second object is a tuple, it is used
as the argument list for the class constructor; if it is None, an empty argument list is used, and any other object is treated
as a single argument to the constructor. The instance so created by calling the constructor is used as the exception value.
If a third object is present and not None, it must be a traceback object (see section The standard type hierarchy), and it is
substituted instead of the current location as the place where the exception occurred. If the third object is present and not
a traceback object or None, a TypeError exception is raised. The three-expression form of raise is useful to re-raise
an exception transparently in an except clause, but raise with no expressions should be preferred if the exception to be
re-raised was the most recently active exception in the current scope.
Additional information on exceptions can be found in section Pengecualian, and information about handling exceptions
is in section The try statement.

6.10 The break statement

break_stmt ::= "break"

break may only occur syntactically nested in a for or while loop, but not nested in a function or class definition
within that loop.
It terminates the nearest enclosing loop, skipping the optional else clause if the loop has one.
If a for loop is terminated by break, the loop control target keeps its current value.
When break passes control out of a try statement with a finally clause, that finally clause is executed before
really leaving the loop.

6.11 The continue statement

continue_stmt ::= "continue"

continue may only occur syntactically nested in a for or while loop, but not nested in a function or class definition
or finally clause within that loop. It continues with the next cycle of the nearest enclosing loop.
When continue passes control out of a try statement with a finally clause, that finally clause is executed
before really starting the next loop cycle.

6.11. The continue statement 69

The Python Language Reference, Rilis 2.7.18

6.12 The import statement

import_stmt ::= "import" module ["as" name] ("," module ["as" name])*
| "from" relative_module "import" identifier ["as" name]
("," identifier ["as" name])*
| "from" relative_module "import" "(" identifier ["as" name]
("," identifier ["as" name])* [","] ")"
| "from" module "import" "*"

module ::= (identifier ".")* identifier
relative_module ::= "."* module | "."+
name ::= identifier

Import statements are executed in two steps: (1) find a module, and initialize it if necessary; (2) define a name or names
in the local namespace (of the scope where the import statement occurs). The statement comes in two forms differing
on whether it uses the from keyword. The first form (without from) repeats these steps for each identifier in the list.
The form with from performs step (1) once, and then performs step (2) repeatedly.
To understand how step (1) occurs, one must first understand how Python handles hierarchical naming of modules. To
help organize modules and provide a hierarchy in naming, Python has a concept of packages. A package can contain
other packages and modules while modules cannot contain other modules or packages. From a file system perspective,
packages are directories and modules are files.
Once the name of the module is known (unless otherwise specified, the term ”module” will refer to both packages and
modules), searching for the module or package can begin. The first place checked is sys.modules, the cache of all
modules that have been imported previously. If the module is found there then it is used in step (2) of import.
If the module is not found in the cache, then sys.meta_path is searched (the specification for sys.meta_path
can be found in PEP 302). The object is a list of finder objects which are queried in order as to whether they know
how to load the module by calling their find_module() method with the name of the module. If the module hap-
pens to be contained within a package (as denoted by the existence of a dot in the name), then a second argument to
find_module() is given as the value of the __path__ attribute from the parent package (everything up to the last
dot in the name of the module being imported). If a finder can find the module it returns a loader (discussed later) or
returns None.
If none of the finders on sys.meta_path are able to find the module then some implicitly defined finders are queried.
Implementations of Python vary in what implicit meta path finders are defined. The one they all do define, though, is one
that handles sys.path_hooks, sys.path_importer_cache, and sys.path.
The implicit finder searches for the requested module in the ”paths” specified in one of two places (”paths” do not have
to be file system paths). If the module being imported is supposed to be contained within a package then the second
argument passed to find_module(), __path__ on the parent package, is used as the source of paths. If the module
is not contained in a package then sys.path is used as the source of paths.
Once the source of paths is chosen it is iterated over to find a finder that can handle that path. The dict at sys.
path_importer_cache caches finders for paths and is checked for a finder. If the path does not have a finder
cached then sys.path_hooks is searched by calling each object in the list with a single argument of the path, re-
turning a finder or raises ImportError. If a finder is returned then it is cached in sys.path_importer_cache
and then used for that path entry. If no finder can be found but the path exists then a value of None is stored in sys.
path_importer_cache to signify that an implicit, file-based finder that handles modules stored as individual files
should be used for that path. If the path does not exist then a finder which always returns None is placed in the cache for
the path.
If no finder can find the module then ImportError is raised. Otherwise some finder returned a loader whose
load_module() method is called with the name of the module to load (see PEP 302 for the original definition
of loaders). A loader has several responsibilities to perform on a module it loads. First, if the module already exists in
sys.modules (a possibility if the loader is called outside of the import machinery) then it is to use that module for

70 Bab 6. Simple statements

https://www.python.org/dev/peps/pep-0302
https://www.python.org/dev/peps/pep-0302

The Python Language Reference, Rilis 2.7.18

initialization and not a new module. But if the module does not exist in sys.modules then it is to be added to that
dict before initialization begins. If an error occurs during loading of the module and it was added to sys.modules it
is to be removed from the dict. If an error occurs but the module was already in sys.modules it is left in the dict.
The loader must set several attributes on the module. __name__ is to be set to the name of the module. __file__
is to be the ”path” to the file unless the module is built-in (and thus listed in sys.builtin_module_names) in
which case the attribute is not set. If what is being imported is a package then __path__ is to be set to a list of paths
to be searched when looking for modules and packages contained within the package being imported. __package__
is optional but should be set to the name of package that contains the module or package (the empty string is used for
module not contained in a package). __loader__ is also optional but should be set to the loader object that is loading
the module.
If an error occurs during loading then the loader raises ImportError if some other exception is not already being
propagated. Otherwise the loader returns the module that was loaded and initialized.
When step (1) finishes without raising an exception, step (2) can begin.
The first form of import statement binds the module name in the local namespace to the module object, and then goes
on to import the next identifier, if any. If the module name is followed by as, the name following as is used as the local
name for the module.
The from form does not bind the module name: it goes through the list of identifiers, looks each one of them up in the
module found in step (1), and binds the name in the local namespace to the object thus found. As with the first form of
import, an alternate local name can be supplied by specifying ”as localname”. If a name is not found, ImportError
is raised. If the list of identifiers is replaced by a star ('*'), all public names defined in the module are bound in the local
namespace of the import statement..
The public names defined by a module are determined by checking the module’s namespace for a variable named
__all__; if defined, it must be a sequence of strings which are names defined or imported by that module. The names
given in __all__ are all considered public and are required to exist. If __all__ is not defined, the set of public names
includes all names found in the module’s namespace which do not begin with an underscore character ('_'). __all__
should contain the entire public API. It is intended to avoid accidentally exporting items that are not part of the API (such
as library modules which were imported and used within the module).
The from form with * may only occur in a module scope. If the wild card form of import --- import * --- is used in
a function and the function contains or is a nested block with free variables, the compiler will raise a SyntaxError.
When specifying what module to import you do not have to specify the absolute name of the module. When a module or
package is contained within another package it is possible to make a relative import within the same top package without
having to mention the package name. By using leading dots in the specified module or package after from you can
specify how high to traverse up the current package hierarchy without specifying exact names. One leading dot means
the current package where the module making the import exists. Two dots means up one package level. Three dots is
up two levels, etc. So if you execute from . import mod from a module in the pkg package then you will end
up importing pkg.mod. If you execute from ..subpkg2 import mod from within pkg.subpkg1 you will
import pkg.subpkg2.mod. The specification for relative imports is contained within PEP 328.
importlib.import_module() is provided to support applications that determine whichmodules need to be loaded
dynamically.

6.12. The import statement 71

https://www.python.org/dev/peps/pep-0328

The Python Language Reference, Rilis 2.7.18

6.12.1 Future statements

A future statement is a directive to the compiler that a particular module should be compiled using syntax or semantics
that will be available in a specified future release of Python. The future statement is intended to ease migration to future
versions of Python that introduce incompatible changes to the language. It allows use of the new features on a per-module
basis before the release in which the feature becomes standard.

future_statement ::= "from" "__future__" "import" feature ["as" name]
("," feature ["as" name])*
| "from" "__future__" "import" "(" feature ["as" name]
("," feature ["as" name])* [","] ")"

feature ::= identifier
name ::= identifier

A future statement must appear near the top of the module. The only lines that can appear before a future statement are:
• the module docstring (if any),
• comments,
• blank lines, and
• other future statements.

The features recognized by Python 2.6 are unicode_literals, print_function, absolute_import,
division, generators, nested_scopes and with_statement. generators, with_statement,
nested_scopes are redundant in Python version 2.6 and above because they are always enabled.
A future statement is recognized and treated specially at compile time: Changes to the semantics of core constructs are
often implemented by generating different code. It may even be the case that a new feature introduces new incompatible
syntax (such as a new reserved word), in which case the compiler may need to parse the module differently. Such decisions
cannot be pushed off until runtime.
For any given release, the compiler knows which feature names have been defined, and raises a compile-time error if a
future statement contains a feature not known to it.
The direct runtime semantics are the same as for any import statement: there is a standard module __future__,
described later, and it will be imported in the usual way at the time the future statement is executed.
The interesting runtime semantics depend on the specific feature enabled by the future statement.
Note that there is nothing special about the statement:

import __future__ [as name]

That is not a future statement; it’s an ordinary import statement with no special semantics or syntax restrictions.
Code compiled by an exec statement or calls to the built-in functions compile() and execfile() that occur in a
module M containing a future statement will, by default, use the new syntax or semantics associated with the future state-
ment. This can, starting with Python 2.2 be controlled by optional arguments to compile() --- see the documentation
of that function for details.
A future statement typed at an interactive interpreter prompt will take effect for the rest of the interpreter session. If an
interpreter is started with the -i option, is passed a script name to execute, and the script includes a future statement, it
will be in effect in the interactive session started after the script is executed.
Lihat juga:
PEP 236 - Back to the __future__ The original proposal for the __future__ mechanism.

72 Bab 6. Simple statements

https://www.python.org/dev/peps/pep-0236

The Python Language Reference, Rilis 2.7.18

6.13 The global statement

global_stmt ::= "global" identifier ("," identifier)*

The global statement is a declaration which holds for the entire current code block. It means that the listed identifiers
are to be interpreted as globals. It would be impossible to assign to a global variable without global, although free
variables may refer to globals without being declared global.
Names listed in aglobal statement must not be used in the same code block textually preceding thatglobal statement.
Names listed in a global statement must not be defined as formal parameters or in a for loop control target, class
definition, function definition, or import statement.
CPython implementation detail: The current implementation does not enforce the latter two restrictions, but programs
should not abuse this freedom, as future implementations may enforce them or silently change themeaning of the program.
Programmer’s note: global is a directive to the parser. It applies only to code parsed at the same time as the global
statement. In particular, a global statement contained in an exec statement does not affect the code block containing
theexec statement, and code contained in anexec statement is unaffected byglobal statements in the code containing
the exec statement. The same applies to the eval(), execfile() and compile() functions.

6.14 The exec statement

exec_stmt ::= "exec" or_expr ["in" expression ["," expression]]

This statement supports dynamic execution of Python code. The first expression should evaluate to either a Unicode
string, a Latin-1 encoded string, an open file object, a code object, or a tuple. If it is a string, the string is parsed as a
suite of Python statements which is then executed (unless a syntax error occurs).1 If it is an open file, the file is parsed
until EOF and executed. If it is a code object, it is simply executed. For the interpretation of a tuple, see below. In all
cases, the code that’s executed is expected to be valid as file input (see section Masukan dari Berkas). Be aware that the
return and yield statements may not be used outside of function definitions even within the context of code passed
to the exec statement.
In all cases, if the optional parts are omitted, the code is executed in the current scope. If only the first expression after
in is specified, it should be a dictionary, which will be used for both the global and the local variables. If two expressions
are given, they are used for the global and local variables, respectively. If provided, locals can be any mapping object.
Remember that at module level, globals and locals are the same dictionary. If two separate objects are given as globals
and locals, the code will be executed as if it were embedded in a class definition.
The first expression may also be a tuple of length 2 or 3. In this case, the optional parts must be omitted.
The form exec(expr, globals) is equivalent to exec expr in globals, while the form exec(expr,
globals, locals) is equivalent to exec expr in globals, locals. The tuple form of exec provides
compatibility with Python 3, where exec is a function rather than a statement.
Berubah pada versi 2.4: Formerly, locals was required to be a dictionary.
As a side effect, an implementation may insert additional keys into the dictionaries given besides those corresponding to
variable names set by the executed code. For example, the current implementation may add a reference to the dictionary
of the built-in module __builtin__ under the key __builtins__ (!).
Programmer’s hints: dynamic evaluation of expressions is supported by the built-in function eval(). The built-in
functions globals() and locals() return the current global and local dictionary, respectively, which may be useful
to pass around for use by exec.

1 Note that the parser only accepts the Unix-style end of line convention. If you are reading the code from a file, make sure to use universal newlines
mode to convert Windows or Mac-style newlines.

6.14. The exec statement 73

The Python Language Reference, Rilis 2.7.18

74 Bab 6. Simple statements

BAB7

Pernyataan gabungan

Compound statements contain (groups of) other statements; they affect or control the execution of those other statements
in some way. In general, compound statements span multiple lines, although in simple incarnations a whole compound
statement may be contained in one line.
The if, while and for statements implement traditional control flow constructs. try specifies exception handlers
and/or cleanup code for a group of statements. Function and class definitions are also syntactically compound statements.
Compound statements consist of one or more ’clauses.’ A clause consists of a header and a ’suite.’ The clause headers
of a particular compound statement are all at the same indentation level. Each clause header begins with a uniquely
identifying keyword and ends with a colon. A suite is a group of statements controlled by a clause. A suite can be one or
more semicolon-separated simple statements on the same line as the header, following the header’s colon, or it can be one
or more indented statements on subsequent lines. Only the latter form of suite can contain nested compound statements;
the following is illegal, mostly because it wouldn’t be clear to which if clause a following else clause would belong:

if test1: if test2: print x

Also note that the semicolon binds tighter than the colon in this context, so that in the following example, either all or
none of the print statements are executed:

if x < y < z: print x; print y; print z

Meringkas:

compound_stmt ::= if_stmt
| while_stmt
| for_stmt
| try_stmt
| with_stmt
| funcdef
| classdef
| decorated

suite ::= stmt_list NEWLINE | NEWLINE INDENT statement+ DEDENT
statement ::= stmt_list NEWLINE | compound_stmt

75

The Python Language Reference, Rilis 2.7.18

stmt_list ::= simple_stmt (";" simple_stmt)* [";"]

Note that statements always end in a NEWLINE possibly followed by a DEDENT. Also note that optional continuation
clauses always begin with a keyword that cannot start a statement, thus there are no ambiguities (the ’dangling else’
problem is solved in Python by requiring nested if statements to be indented).
The formatting of the grammar rules in the following sections places each clause on a separate line for clarity.

7.1 The if statement

The if statement is used for conditional execution:

if_stmt ::= "if" expression ":" suite
("elif" expression ":" suite)*
["else" ":" suite]

It selects exactly one of the suites by evaluating the expressions one by one until one is found to be true (see section
Boolean operations for the definition of true and false); then that suite is executed (and no other part of the if statement
is executed or evaluated). If all expressions are false, the suite of the else clause, if present, is executed.

7.2 The while statement

The while statement is used for repeated execution as long as an expression is true:

while_stmt ::= "while" expression ":" suite
["else" ":" suite]

This repeatedly tests the expression and, if it is true, executes the first suite; if the expression is false (which may be the
first time it is tested) the suite of the else clause, if present, is executed and the loop terminates.
A break statement executed in the first suite terminates the loop without executing the else clause’s suite. A
continue statement executed in the first suite skips the rest of the suite and goes back to testing the expression.

7.3 The for statement

The for statement is used to iterate over the elements of a sequence (such as a string, tuple or list) or other iterable
object:

for_stmt ::= "for" target_list "in" expression_list ":" suite
["else" ":" suite]

The expression list is evaluated once; it should yield an iterable object. An iterator is created for the result of the
expression_list. The suite is then executed once for each item provided by the iterator, in the order of ascending
indices. Each item in turn is assigned to the target list using the standard rules for assignments, and then the suite is
executed. When the items are exhausted (which is immediately when the sequence is empty), the suite in the else
clause, if present, is executed, and the loop terminates.

76 Bab 7. Pernyataan gabungan

The Python Language Reference, Rilis 2.7.18

A break statement executed in the first suite terminates the loop without executing the else clause’s suite. A
continue statement executed in the first suite skips the rest of the suite and continues with the next item, or with
the else clause if there was no next item.
The suite may assign to the variable(s) in the target list; this does not affect the next item assigned to it.
The target list is not deleted when the loop is finished, but if the sequence is empty, it will not have been assigned to at all
by the loop. Hint: the built-in function range() returns a sequence of integers suitable to emulate the effect of Pascal’s
for i := a to b do; e.g., range(3) returns the list [0, 1, 2].

Catatan: There is a subtlety when the sequence is being modified by the loop (this can only occur for mutable sequences,
e.g. lists). An internal counter is used to keep track of which item is used next, and this is incremented on each iteration.
When this counter has reached the length of the sequence the loop terminates. This means that if the suite deletes the
current (or a previous) item from the sequence, the next item will be skipped (since it gets the index of the current item
which has already been treated). Likewise, if the suite inserts an item in the sequence before the current item, the current
item will be treated again the next time through the loop. This can lead to nasty bugs that can be avoided by making a
temporary copy using a slice of the whole sequence, e.g.,

for x in a[:]:
if x < 0: a.remove(x)

7.4 The try statement

The try statement specifies exception handlers and/or cleanup code for a group of statements:

try_stmt ::= try1_stmt | try2_stmt
try1_stmt ::= "try" ":" suite

("except" [expression [("as" | ",") identifier]] ":" suite)+
["else" ":" suite]
["finally" ":" suite]

try2_stmt ::= "try" ":" suite
"finally" ":" suite

Berubah pada versi 2.5: In previous versions of Python, try...except...finally did not work. try...except had
to be nested in try...finally.
Theexcept clause(s) specify one ormore exception handlers. When no exception occurs in thetry clause, no exception
handler is executed. When an exception occurs in the try suite, a search for an exception handler is started. This search
inspects the except clauses in turn until one is found that matches the exception. An expression-less except clause, if
present, must be last; it matches any exception. For an except clause with an expression, that expression is evaluated, and
the clause matches the exception if the resulting object is ”compatible” with the exception. An object is compatible with
an exception if it is the class or a base class of the exception object, or a tuple containing an item compatible with the
exception.
If no except clause matches the exception, the search for an exception handler continues in the surrounding code and on
the invocation stack.1

If the evaluation of an expression in the header of an except clause raises an exception, the original search for a handler
is canceled and a search starts for the new exception in the surrounding code and on the call stack (it is treated as if the
entire try statement raised the exception).

1 The exception is propagated to the invocation stack unless there is a finally clause which happens to raise another exception. That new
exception causes the old one to be lost.

7.4. The try statement 77

The Python Language Reference, Rilis 2.7.18

When a matching except clause is found, the exception is assigned to the target specified in that except clause, if present,
and the except clause’s suite is executed. All except clauses must have an executable block. When the end of this block
is reached, execution continues normally after the entire try statement. (This means that if two nested handlers exist for
the same exception, and the exception occurs in the try clause of the inner handler, the outer handler will not handle the
exception.)
Before an except clause’s suite is executed, details about the exception are assigned to three variables in the sys module:
sys.exc_type receives the object identifying the exception; sys.exc_value receives the exception’s parameter;
sys.exc_traceback receives a traceback object (see section The standard type hierarchy) identifying the point in the
program where the exception occurred. These details are also available through the sys.exc_info() function, which
returns a tuple (exc_type, exc_value, exc_traceback). Use of the corresponding variables is deprecated
in favor of this function, since their use is unsafe in a threaded program. As of Python 1.5, the variables are restored to
their previous values (before the call) when returning from a function that handled an exception.
The optional else clause is executed if the control flow leaves the try suite, no exception was raised, and no return,
continue, or break statement was executed. Exceptions in the else clause are not handled by the preceding
except clauses.
If finally is present, it specifies a ’cleanup’ handler. The try clause is executed, including any except and else
clauses. If an exception occurs in any of the clauses and is not handled, the exception is temporarily saved. The finally
clause is executed. If there is a saved exception, it is re-raised at the end of the finally clause. If the finally clause
raises another exception or executes a return or break statement, the saved exception is discarded:

>>> def f():
... try:
... 1/0
... finally:
... return 42
...
>>> f()
42

The exception information is not available to the program during execution of the finally clause.
When a return, break or continue statement is executed in the try suite of a try...finally statement, the
finally clause is also executed ’on the way out.’ A continue statement is illegal in the finally clause. (The
reason is a problem with the current implementation --- this restriction may be lifted in the future).
The return value of a function is determined by the last return statement executed. Since the finally clause always
executes, a return statement executed in the finally clause will always be the last one executed:

>>> def foo():
... try:
... return 'try'
... finally:
... return 'finally'
...
>>> foo()
'finally'

Additional information on exceptions can be found in sectionPengecualian, and information on using theraise statement
to generate exceptions may be found in section The raise statement.

78 Bab 7. Pernyataan gabungan

The Python Language Reference, Rilis 2.7.18

7.5 The with statement

Baru pada versi 2.5.
The with statement is used to wrap the execution of a block with methods defined by a context manager (see section
With Statement Context Managers). This allows common try...except...finally usage patterns to be encapsulated
for convenient reuse.

with_stmt ::= "with" with_item ("," with_item)* ":" suite
with_item ::= expression ["as" target]

The execution of the with statement with one ”item” proceeds as follows:
1. The context expression (the expression given in the with_item) is evaluated to obtain a context manager.
2. The context manager’s __exit__() is loaded for later use.
3. The context manager’s __enter__() method is invoked.
4. If a target was included in the with statement, the return value from __enter__() is assigned to it.

Catatan: The with statement guarantees that if the __enter__() method returns without an error, then
__exit__() will always be called. Thus, if an error occurs during the assignment to the target list, it will be
treated the same as an error occurring within the suite would be. See step 6 below.

5. Rangkaian dieksekusi
6. The context manager’s __exit__() method is invoked. If an exception caused the suite to be exited, its type,

value, and traceback are passed as arguments to __exit__(). Otherwise, three None arguments are supplied.
If the suite was exited due to an exception, and the return value from the __exit__() method was false, the
exception is reraised. If the return value was true, the exception is suppressed, and execution continues with the
statement following the with statement.
If the suite was exited for any reason other than an exception, the return value from __exit__() is ignored, and
execution proceeds at the normal location for the kind of exit that was taken.

With more than one item, the context managers are processed as if multiple with statements were nested:

with A() as a, B() as b:
suite

setara dengan:

with A() as a:
with B() as b:

suite

Catatan: In Python 2.5, the with statement is only allowed when the with_statement feature has been enabled.
It is always enabled in Python 2.6.

Berubah pada versi 2.7: Support for multiple context expressions.
Lihat juga:
PEP 343 - The ”with” statement The specification, background, and examples for the Python with statement.

7.5. The with statement 79

https://www.python.org/dev/peps/pep-0343

The Python Language Reference, Rilis 2.7.18

7.6 Definisi fungsi

A function definition defines a user-defined function object (see section The standard type hierarchy):

decorated ::= decorators (classdef | funcdef)
decorators ::= decorator+
decorator ::= "@" dotted_name ["(" [argument_list [","]] ")"] NEWLINE
funcdef ::= "def" funcname "(" [parameter_list] ")" ":" suite
dotted_name ::= identifier ("." identifier)*
parameter_list ::= (defparameter ",")*

("*" identifier ["," "**" identifier]
| "**" identifier
| defparameter [","])

defparameter ::= parameter ["=" expression]
sublist ::= parameter ("," parameter)* [","]
parameter ::= identifier | "(" sublist ")"
funcname ::= identifier

A function definition is an executable statement. Its execution binds the function name in the current local namespace to
a function object (a wrapper around the executable code for the function). This function object contains a reference to
the current global namespace as the global namespace to be used when the function is called.
The function definition does not execute the function body; this gets executed only when the function is called.2

A function definition may be wrapped by one or more decorator expressions. Decorator expressions are evaluated when
the function is defined, in the scope that contains the function definition. The result must be a callable, which is invoked
with the function object as the only argument. The returned value is bound to the function name instead of the function
object. Multiple decorators are applied in nested fashion. For example, the following code:

@f1(arg)
@f2
def func(): pass

is equivalent to:

def func(): pass
func = f1(arg)(f2(func))

When one or more top-level parameters have the form parameter = expression, the function is said to have ”default
parameter values.” For a parameter with a default value, the corresponding argument may be omitted from a call, in
which case the parameter’s default value is substituted. If a parameter has a default value, all following parameters must
also have a default value --- this is a syntactic restriction that is not expressed by the grammar.
Default parameter values are evaluated when the function definition is executed. This means that the expression
is evaluated once, when the function is defined, and that the same ”pre-computed” value is used for each call. This is
especially important to understand when a default parameter is a mutable object, such as a list or a dictionary: if the
function modifies the object (e.g. by appending an item to a list), the default value is in effect modified. This is generally
not what was intended. A way around this is to use None as the default, and explicitly test for it in the body of the
function, e.g.:

def whats_on_the_telly(penguin=None):
if penguin is None:

(berlanjut ke halaman berikutnya)
2 A string literal appearing as the first statement in the function body is transformed into the function’s __doc__ attribute and therefore the

function’s docstring.

80 Bab 7. Pernyataan gabungan

The Python Language Reference, Rilis 2.7.18

(lanjutan dari halaman sebelumnya)
penguin = []

penguin.append("property of the zoo")
return penguin

Function call semantics are described inmore detail in sectionCalls. A function call always assigns values to all parameters
mentioned in the parameter list, either from position arguments, from keyword arguments, or from default values. If the
form ”*identifier” is present, it is initialized to a tuple receiving any excess positional parameters, defaulting to the
empty tuple. If the form ”**identifier” is present, it is initialized to a new dictionary receiving any excess keyword
arguments, defaulting to a new empty dictionary.
It is also possible to create anonymous functions (functions not bound to a name), for immediate use in expressions.
This uses lambda expressions, described in section Lambdas. Note that the lambda expression is merely a shorthand for
a simplified function definition; a function defined in a ”def” statement can be passed around or assigned to another
name just like a function defined by a lambda expression. The ”def” form is actually more powerful since it allows the
execution of multiple statements.
Programmer’s note: Functions are first-class objects. A ”def” form executed inside a function definition defines a local
function that can be returned or passed around. Free variables used in the nested function can access the local variables
of the function containing the def. See section Naming and binding for details.

7.7 Definisi Kelas

A class definition defines a class object (see section The standard type hierarchy):

classdef ::= "class" classname [inheritance] ":" suite
inheritance ::= "(" [expression_list] ")"
classname ::= identifier

A class definition is an executable statement. It first evaluates the inheritance list, if present. Each item in the inheritance
list should evaluate to a class object or class type which allows subclassing. The class’s suite is then executed in a new
execution frame (see section Naming and binding), using a newly created local namespace and the original global names-
pace. (Usually, the suite contains only function definitions.) When the class’s suite finishes execution, its execution frame
is discarded but its local namespace is saved.3 A class object is then created using the inheritance list for the base classes
and the saved local namespace for the attribute dictionary. The class name is bound to this class object in the original
local namespace.
Programmer’s note: Variables defined in the class definition are class variables; they are shared by all instances. To
create instance variables, they can be set in a method with self.name = value. Both class and instance variables
are accessible through the notation ”self.name”, and an instance variable hides a class variable with the same name
when accessed in this way. Class variables can be used as defaults for instance variables, but using mutable values there
can lead to unexpected results. For new-style classes, descriptors can be used to create instance variables with different
implementation details.
Class definitions, like function definitions, may be wrapped by one or more decorator expressions. The evaluation rules
for the decorator expressions are the same as for functions. The result must be a class object, which is then bound to the
class name.

3 Sebuah string literal yang muncul sebagai pernyataan pertama dalam tubuh kelas diubah menjadi item namespace __doc__ dan karenanya
docstring kelas.

7.7. Definisi Kelas 81

The Python Language Reference, Rilis 2.7.18

82 Bab 7. Pernyataan gabungan

BAB8

Komponen tingkat atas

Interpreter Python dapat memperoleh masukan dari sejumlah sumber: dari skrip yang diteruskan sebagai masukan standar
atau sebagai argumen program, diketikkan secara interaktif, dari berkas sumber modul, dll. Bab ini memberikan sintaks
yang digunakan dalam kasus-kasus tersebut.

8.1 Program Python lengkap

While a language specification need not prescribe how the language interpreter is invoked, it is useful to have a notion
of a complete Python program. A complete Python program is executed in a minimally initialized environment: all
built-in and standard modules are available, but none have been initialized, except for sys (various system services),
__builtin__ (built-in functions, exceptions and None) and __main__. The latter is used to provide the local and
global namespace for execution of the complete program.
Sintaksis untuk program Python lengkap adalah untuk masukan berkas, dijelaskan pada bagian selanjutnya.
Interpreter juga dapat dipanggil dalam mode interaktif; dalam hal ini, ia tidak membaca dan menjalankan program yang
lengkap tetapi membaca dan mengeksekusi satu pernyataan (mungkin digabungkan) pada suatu waktu. Lingkungan awal
identik dengan program lengkap; setiap pernyataan dieksekusi di namespace __main__.
A complete program can be passed to the interpreter in three forms: with the -c string command line option, as a file
passed as the first command line argument, or as standard input. If the file or standard input is a tty device, the interpreter
enters interactive mode; otherwise, it executes the file as a complete program.

83

The Python Language Reference, Rilis 2.7.18

8.2 Masukan dari Berkas

Semua input yang dibaca dari berkas non-interaktif memiliki bentuk yang sama:

file_input ::= (NEWLINE | statement)*

Sintaks ini digunakan dalam situasi berikut:
• saat mengurai program Python lengkap (dari berkas atau dari string);
• ketika mengurai sebuah modul;
• when parsing a string passed to the exec statement;

8.3 Masukan interaktif

Input dalam mode interaktif diuraikan menggunakan tata bahasa berikut:

interactive_input ::= [stmt_list] NEWLINE | compound_stmt NEWLINE

Perhatikan bahwa pernyataan gabungan (tingkat atas) harus diikuti oleh baris kosong dalammode interaktif; ini diperlukan
untuk membantu parser mendeteksi akhir masukan.

8.4 Masukan ekspresi

There are two forms of expression input. Both ignore leading whitespace. The string argument to eval() must have
the following form:

eval_input ::= expression_list NEWLINE*

The input line read by input() must have the following form:

input_input ::= expression_list NEWLINE

Note: to read ’raw’ input line without interpretation, you can use the built-in function raw_input() or the
readline() method of file objects.

84 Bab 8. Komponen tingkat atas

BAB9

Spesifikasi Lengkap Tata Bahasa

Ini adalah tata bahasa lengkap Python, seperti yang dibaca oleh pembangkit pengurai generator parser dan digunakan
untuk mengurai parse berkas sumber Python:

Grammar for Python

Note: Changing the grammar specified in this file will most likely
require corresponding changes in the parser module
(../Modules/parsermodule.c). If you can't make the changes to
that module yourself, please co-ordinate the required changes
with someone who can; ask around on python-dev for help. Fred
Drake <fdrake@acm.org> will probably be listening there.

NOTE WELL: You should also follow all the steps listed in PEP 306,
"How to Change Python's Grammar"

Start symbols for the grammar:
single_input is a single interactive statement;
file_input is a module or sequence of commands read from an input file;
eval_input is the input for the eval() and input() functions.
NB: compound_stmt in single_input is followed by extra NEWLINE!
single_input: NEWLINE | simple_stmt | compound_stmt NEWLINE
file_input: (NEWLINE | stmt)* ENDMARKER
eval_input: testlist NEWLINE* ENDMARKER

decorator: '@' dotted_name ['(' [arglist] ')'] NEWLINE
decorators: decorator+
decorated: decorators (classdef | funcdef)
funcdef: 'def' NAME parameters ':' suite
parameters: '(' [varargslist] ')'
varargslist: ((fpdef ['=' test] ',')*

('*' NAME [',' '**' NAME] | '**' NAME) |
fpdef ['=' test] (',' fpdef ['=' test])* [','])

fpdef: NAME | '(' fplist ')'
fplist: fpdef (',' fpdef)* [',']

(berlanjut ke halaman berikutnya)

85

The Python Language Reference, Rilis 2.7.18

(lanjutan dari halaman sebelumnya)

stmt: simple_stmt | compound_stmt
simple_stmt: small_stmt (';' small_stmt)* [';'] NEWLINE
small_stmt: (expr_stmt | print_stmt | del_stmt | pass_stmt | flow_stmt |

import_stmt | global_stmt | exec_stmt | assert_stmt)
expr_stmt: testlist (augassign (yield_expr|testlist) |

('=' (yield_expr|testlist))*)
augassign: ('+=' | '-=' | '*=' | '/=' | '%=' | '&=' | '|=' | '^=' |

'<<=' | '>>=' | '**=' | '//=')
For normal assignments, additional restrictions enforced by the interpreter
print_stmt: 'print' ([test (',' test)* [',']] |

'>>' test [(',' test)+ [',']])
del_stmt: 'del' exprlist
pass_stmt: 'pass'
flow_stmt: break_stmt | continue_stmt | return_stmt | raise_stmt | yield_stmt
break_stmt: 'break'
continue_stmt: 'continue'
return_stmt: 'return' [testlist]
yield_stmt: yield_expr
raise_stmt: 'raise' [test [',' test [',' test]]]
import_stmt: import_name | import_from
import_name: 'import' dotted_as_names
import_from: ('from' ('.'* dotted_name | '.'+)

'import' ('*' | '(' import_as_names ')' | import_as_names))
import_as_name: NAME ['as' NAME]
dotted_as_name: dotted_name ['as' NAME]
import_as_names: import_as_name (',' import_as_name)* [',']
dotted_as_names: dotted_as_name (',' dotted_as_name)*
dotted_name: NAME ('.' NAME)*
global_stmt: 'global' NAME (',' NAME)*
exec_stmt: 'exec' expr ['in' test [',' test]]
assert_stmt: 'assert' test [',' test]

compound_stmt: if_stmt | while_stmt | for_stmt | try_stmt | with_stmt | funcdef |␣
↪→classdef | decorated
if_stmt: 'if' test ':' suite ('elif' test ':' suite)* ['else' ':' suite]
while_stmt: 'while' test ':' suite ['else' ':' suite]
for_stmt: 'for' exprlist 'in' testlist ':' suite ['else' ':' suite]
try_stmt: ('try' ':' suite

((except_clause ':' suite)+
['else' ':' suite]
['finally' ':' suite] |

'finally' ':' suite))
with_stmt: 'with' with_item (',' with_item)* ':' suite
with_item: test ['as' expr]
NB compile.c makes sure that the default except clause is last
except_clause: 'except' [test [('as' | ',') test]]
suite: simple_stmt | NEWLINE INDENT stmt+ DEDENT

Backward compatibility cruft to support:
[x for x in lambda: True, lambda: False if x()]
even while also allowing:
lambda x: 5 if x else 2
(But not a mix of the two)
testlist_safe: old_test [(',' old_test)+ [',']]
old_test: or_test | old_lambdef
old_lambdef: 'lambda' [varargslist] ':' old_test

(berlanjut ke halaman berikutnya)

86 Bab 9. Spesifikasi Lengkap Tata Bahasa

The Python Language Reference, Rilis 2.7.18

(lanjutan dari halaman sebelumnya)

test: or_test ['if' or_test 'else' test] | lambdef
or_test: and_test ('or' and_test)*
and_test: not_test ('and' not_test)*
not_test: 'not' not_test | comparison
comparison: expr (comp_op expr)*
comp_op: '<'|'>'|'=='|'>='|'<='|'<>'|'!='|'in'|'not' 'in'|'is'|'is' 'not'
expr: xor_expr ('|' xor_expr)*
xor_expr: and_expr ('^' and_expr)*
and_expr: shift_expr ('&' shift_expr)*
shift_expr: arith_expr (('<<'|'>>') arith_expr)*
arith_expr: term (('+'|'-') term)*
term: factor (('*'|'/'|'%'|'//') factor)*
factor: ('+'|'-'|'~') factor | power
power: atom trailer* ['**' factor]
atom: ('(' [yield_expr|testlist_comp] ')' |

'[' [listmaker] ']' |
'{' [dictorsetmaker] '}' |
'`' testlist1 '`' |
NAME | NUMBER | STRING+)

listmaker: test (list_for | (',' test)* [','])
testlist_comp: test (comp_for | (',' test)* [','])
lambdef: 'lambda' [varargslist] ':' test
trailer: '(' [arglist] ')' | '[' subscriptlist ']' | '.' NAME
subscriptlist: subscript (',' subscript)* [',']
subscript: '.' '.' '.' | test | [test] ':' [test] [sliceop]
sliceop: ':' [test]
exprlist: expr (',' expr)* [',']
testlist: test (',' test)* [',']
dictorsetmaker: ((test ':' test (comp_for | (',' test ':' test)* [','])) |

(test (comp_for | (',' test)* [','])))

classdef: 'class' NAME ['(' [testlist] ')'] ':' suite

arglist: (argument ',')* (argument [',']
|'*' test (',' argument)* [',' '**' test]
|'**' test)

The reason that keywords are test nodes instead of NAME is that using NAME
results in an ambiguity. ast.c makes sure it's a NAME.
argument: test [comp_for] | test '=' test

list_iter: list_for | list_if
list_for: 'for' exprlist 'in' testlist_safe [list_iter]
list_if: 'if' old_test [list_iter]

comp_iter: comp_for | comp_if
comp_for: 'for' exprlist 'in' or_test [comp_iter]
comp_if: 'if' old_test [comp_iter]

testlist1: test (',' test)*

not used in grammar, but may appear in "node" passed from Parser to Compiler
encoding_decl: NAME

yield_expr: 'yield' [testlist]

87

The Python Language Reference, Rilis 2.7.18

88 Bab 9. Spesifikasi Lengkap Tata Bahasa

LAMPIRANA

Ikhtisar

>>> Prompt Python bawaan dari shell interaktif. Sering terlihat untuk contoh kode yang dapat dieksekusi secara inte-
raktif dalam interpreter.

... The default Python prompt of the interactive shell when entering code for an indented code block, when within
a pair of matching left and right delimiters (parentheses, square brackets, curly braces or triple quotes), or after
specifying a decorator.

2ke3 A tool that tries to convert Python 2.x code to Python 3.x code by handling most of the incompatibilities which can
be detected by parsing the source and traversing the parse tree.
2to3 is available in the standard library as lib2to3; a standalone entry point is provided as Tools/scripts/
2to3. See 2to3-reference.

kelas basis abstrak Abstract base classes complement duck-typing by providing a way to define interfaces when other
techniques like hasattr()would be clumsy or subtly wrong (for example withmagic methods). ABCs introduce
virtual subclasses, which are classes that don’t inherit from a class but are still recognized by isinstance() and
issubclass(); see the abcmodule documentation. Python comes with many built-in ABCs for data structures
(in the collections module), numbers (in the numbers module), and streams (in the io module). You can
create your own ABCs with the abc module.

argumen A value passed to a function (or method) when calling the function. There are two types of arguments:
• keyword argument: an argument preceded by an identifier (e.g. name=) in a function call or passed as a value
in a dictionary preceded by **. For example, 3 and 5 are both keyword arguments in the following calls to
complex():

complex(real=3, imag=5)
complex(**{'real': 3, 'imag': 5})

• positional argument: an argument that is not a keyword argument. Positional arguments can appear at the
beginning of an argument list and/or be passed as elements of an iterable preceded by *. For example, 3 and
5 are both positional arguments in the following calls:

complex(3, 5)
complex(*(3, 5))

89

The Python Language Reference, Rilis 2.7.18

Arguments are assigned to the named local variables in a function body. See the Calls section for the rules governing
this assignment. Syntactically, any expression can be used to represent an argument; the evaluated value is assigned
to the local variable.
See also the parameter glossary entry and the FAQ question on the difference between arguments and parameters.

atribut A value associated with an object which is referenced by name using dotted expressions. For example, if an
object o has an attribute a it would be referenced as o.a.

BDFL Benevolent Dictator For Life, a.k.a. Guido van Rossum, Python’s creator.
bytes-like object An object that supports the buffer protocol, like str, bytearray or memoryview. Bytes-like

objects can be used for various operations that expect binary data, such as compression, saving to a binary file or
sending over a socket. Some operations need the binary data to be mutable, in which case not all bytes-like objects
can apply.

bytecode Python source code is compiled into bytecode, the internal representation of a Python program in the CPython
interpreter. The bytecode is also cached in .pyc and .pyo files so that executing the same file is faster the second
time (recompilation from source to bytecode can be avoided). This ”intermediate language” is said to run on a
virtual machine that executes the machine code corresponding to each bytecode. Do note that bytecodes are not
expected to work between different Python virtual machines, nor to be stable between Python releases.
Daftar instruksi-instruksi bytecode dapat ditemukan di dokumentasi pada the dis module.

kelas A template for creating user-defined objects. Class definitions normally contain method definitions which operate
on instances of the class.

classic class Any class which does not inherit from object. See new-style class. Classic classes have been removed in
Python 3.

paksaan The implicit conversion of an instance of one type to another during an operation which involves two arguments
of the same type. For example, int(3.15) converts the floating point number to the integer 3, but in 3+4.5,
each argument is of a different type (one int, one float), and both must be converted to the same type before they
can be added or it will raise a TypeError. Coercion between two operands can be performed with the coerce
built-in function; thus, 3+4.5 is equivalent to calling operator.add(*coerce(3, 4.5)) and results in
operator.add(3.0, 4.5). Without coercion, all arguments of even compatible types would have to be
normalized to the same value by the programmer, e.g., float(3)+4.5 rather than just 3+4.5.

bilangan kompleks An extension of the familiar real number system in which all numbers are expressed as a sum of a
real part and an imaginary part. Imaginary numbers are real multiples of the imaginary unit (the square root of -1),
often written i in mathematics or j in engineering. Python has built-in support for complex numbers, which are
written with this latter notation; the imaginary part is written with a j suffix, e.g., 3+1j. To get access to complex
equivalents of the math module, use cmath. Use of complex numbers is a fairly advanced mathematical feature.
If you’re not aware of a need for them, it’s almost certain you can safely ignore them.

manajer konteks An object which controls the environment seen in a with statement by defining __enter__() and
__exit__() methods. See PEP 343.

CPython The canonical implementation of the Python programming language, as distributed on python.org. The term
”CPython” is used when necessary to distinguish this implementation from others such as Jython or IronPython.

penghias A function returning another function, usually applied as a function transformation using the @wrapper
syntax. Common examples for decorators are classmethod() and staticmethod().
The decorator syntax is merely syntactic sugar, the following two function definitions are semantically equivalent:

def f(...):
...

f = staticmethod(f)

@staticmethod

(berlanjut ke halaman berikutnya)

90 Lampiran A. Ikhtisar

https://www.python.org/~guido/
https://www.python.org/dev/peps/pep-0343
https://www.python.org

The Python Language Reference, Rilis 2.7.18

(lanjutan dari halaman sebelumnya)
def f(...):

...

The same concept exists for classes, but is less commonly used there. See the documentation for function definitions
and class definitions for more about decorators.

descriptor Any new-style object which defines the methods __get__(), __set__(), or __delete__(). When
a class attribute is a descriptor, its special binding behavior is triggered upon attribute lookup. Normally, using a.b
to get, set or delete an attribute looks up the object named b in the class dictionary for a, but if b is a descriptor,
the respective descriptor method gets called. Understanding descriptors is a key to a deep understanding of Python
because they are the basis for many features including functions, methods, properties, class methods, static methods,
and reference to super classes.
For more information about descriptors’ methods, see Implementing Descriptors.

kamus An associative array, where arbitrary keys are mapped to values. The keys can be any object with __hash__()
and __eq__() methods. Called a hash in Perl.

dictionary view The objects returned from dict.viewkeys(), dict.viewvalues(), and dict.
viewitems() are called dictionary views. They provide a dynamic view on the dictionary’s entries,
which means that when the dictionary changes, the view reflects these changes. To force the dictionary view to
become a full list use list(dictview). See dict-views.

docstring A string literal which appears as the first expression in a class, function or module. While ignored when
the suite is executed, it is recognized by the compiler and put into the __doc__ attribute of the enclosing class,
function or module. Since it is available via introspection, it is the canonical place for documentation of the object.

duck-typing A programming style which does not look at an object’s type to determine if it has the right interface;
instead, the method or attribute is simply called or used (”If it looks like a duck and quacks like a duck, it must be a
duck.”) By emphasizing interfaces rather than specific types, well-designed code improves its flexibility by allowing
polymorphic substitution. Duck-typing avoids tests using type() or isinstance(). (Note, however, that
duck-typing can be complemented with abstract base classes.) Instead, it typically employs hasattr() tests or
EAFP programming.

EAFP Easier to ask for forgiveness than permission. This common Python coding style assumes the existence of valid
keys or attributes and catches exceptions if the assumption proves false. This clean and fast style is characterized
by the presence of many try and except statements. The technique contrasts with the LBYL style common to
many other languages such as C.

ekspresi A piece of syntax which can be evaluated to some value. In other words, an expression is an accumulation
of expression elements like literals, names, attribute access, operators or function calls which all return a value.
In contrast to many other languages, not all language constructs are expressions. There are also statements which
cannot be used as expressions, such as print or if. Assignments are also statements, not expressions.

modul tambahan A module written in C or C++, using Python’s C API to interact with the core and with user code.
objek berkas An object exposing a file-oriented API (with methods such as read() or write()) to an underlying

resource. Depending on the way it was created, a file object can mediate access to a real on-disk file or to another
type of storage or communication device (for example standard input/output, in-memory buffers, sockets, pipes,
etc.). File objects are also called file-like objects or streams.
There are actually three categories of file objects: raw binary files, buffered binary files and text files. Their interfaces
are defined in the io module. The canonical way to create a file object is by using the open() function.

file-like object A synonym for file object.
finder An object that tries to find the loader for a module. It must implement a method named find_module(). See

PEP 302 for details.

91

https://www.python.org/dev/peps/pep-0302

The Python Language Reference, Rilis 2.7.18

floor division Mathematical division that rounds down to nearest integer. The floor division operator is //. For example,
the expression 11 // 4 evaluates to 2 in contrast to the 2.75 returned by float true division. Note that (-11)
// 4 is -3 because that is -2.75 rounded downward. See PEP 238.

fungsi A series of statements which returns some value to a caller. It can also be passed zero or more arguments which
may be used in the execution of the body. See also parameter, method, and the Definisi fungsi section.

__future__ A pseudo-module which programmers can use to enable new language features which are not compatible
with the current interpreter. For example, the expression 11/4 currently evaluates to 2. If the module in which it
is executed had enabled true division by executing:

from __future__ import division

the expression11/4would evaluate to2.75. By importing the__future__module and evaluating its variables,
you can see when a new feature was first added to the language and when it will become the default:

>>> import __future__
>>> __future__.division
_Feature((2, 2, 0, 'alpha', 2), (3, 0, 0, 'alpha', 0), 8192)

pengumpulan sampah The process of freeingmemory when it is not used anymore. Python performs garbage collection
via reference counting and a cyclic garbage collector that is able to detect and break reference cycles.

pembangkit A function which returns an iterator. It looks like a normal function except that it contains yield state-
ments for producing a series of values usable in a for-loop or that can be retrieved one at a time with the next()
function. Each yield temporarily suspends processing, remembering the location execution state (including lo-
cal variables and pending try-statements). When the generator resumes, it picks up where it left off (in contrast to
functions which start fresh on every invocation).

generator expression An expression that returns an iterator. It looks like a normal expression followed by a for exp-
ression defining a loop variable, range, and an optional if expression. The combined expression generates values
for an enclosing function:

>>> sum(i*i for i in range(10)) # sum of squares 0, 1, 4, ... 81
285

GIL Lihat global interpreter lock.
kunci interpreter global Themechanism used by the CPython interpreter to assure that only one thread executes Python

bytecode at a time. This simplifies the CPython implementation bymaking the object model (including critical built-
in types such as dict) implicitly safe against concurrent access. Locking the entire interpreter makes it easier
for the interpreter to be multi-threaded, at the expense of much of the parallelism afforded by multi-processor
machines.
However, some extension modules, either standard or third-party, are designed so as to release the GIL when doing
computationally-intensive tasks such as compression or hashing. Also, the GIL is always released when doing I/O.
Past efforts to create a ”free-threaded” interpreter (one which locks shared data at a much finer granularity) have not
been successful because performance suffered in the common single-processor case. It is believed that overcoming
this performance issue would make the implementation much more complicated and therefore costlier to maintain.

hashable An object is hashable if it has a hash value which never changes during its lifetime (it needs a __hash__()
method), and can be compared to other objects (it needs an __eq__() or __cmp__() method). Hashable
objects which compare equal must have the same hash value.
Hashability makes an object usable as a dictionary key and a set member, because these data structures use the hash
value internally.
All of Python’s immutable built-in objects are hashable, while no mutable containers (such as lists or dictionaries)
are. Objects which are instances of user-defined classes are hashable by default; they all compare unequal (except

92 Lampiran A. Ikhtisar

https://www.python.org/dev/peps/pep-0238

The Python Language Reference, Rilis 2.7.18

with themselves), and their hash value is derived from their id().
IDLE Sebuah Lingkungan Pengembangan Terpadu untuk Python. IDLE adalah editor dasar dan lingkungan interpreter

yang digabungkan dengan distribusi standar dari Python.
immutable An object with a fixed value. Immutable objects include numbers, strings and tuples. Such an object cannot

be altered. A new object has to be created if a different value has to be stored. They play an important role in
places where a constant hash value is needed, for example as a key in a dictionary.

integer division Mathematical division discarding any remainder. For example, the expression 11/4 currently evaluates
to 2 in contrast to the 2.75 returned by float division. Also called floor division. When dividing two integers the
outcome will always be another integer (having the floor function applied to it). However, if one of the operands is
another numeric type (such as a float), the result will be coerced (see coercion) to a common type. For example,
an integer divided by a float will result in a float value, possibly with a decimal fraction. Integer division can be
forced by using the // operator instead of the / operator. See also __future__.

importing The process by which Python code in one module is made available to Python code in another module.
importer An object that both finds and loads a module; both a finder and loader object.
interaktif Python has an interactive interpreter which means you can enter statements and expressions at the interpreter

prompt, immediately execute them and see their results. Just launch python with no arguments (possibly by
selecting it from your computer’s main menu). It is a very powerful way to test out new ideas or inspect modules
and packages (remember help(x)).

diinterpretasi Python is an interpreted language, as opposed to a compiled one, though the distinction can be blurry
because of the presence of the bytecode compiler. This means that source files can be run directly without explicitly
creating an executable which is then run. Interpreted languages typically have a shorter development/debug cycle
than compiled ones, though their programs generally also run more slowly. See also interactive.

iterable An object capable of returning its members one at a time. Examples of iterables include all sequence types (such
as list, str, and tuple) and some non-sequence types like dict and file and objects of any classes you
define with an __iter__() or __getitem__() method. Iterables can be used in a for loop and in many
other places where a sequence is needed (zip(), map(), ...). When an iterable object is passed as an argument
to the built-in function iter(), it returns an iterator for the object. This iterator is good for one pass over the set
of values. When using iterables, it is usually not necessary to call iter() or deal with iterator objects yourself.
The for statement does that automatically for you, creating a temporary unnamed variable to hold the iterator for
the duration of the loop. See also iterator, sequence, and generator.

iterator An object representing a stream of data. Repeated calls to the iterator’s next()method return successive items
in the stream. When no more data are available a StopIteration exception is raised instead. At this point,
the iterator object is exhausted and any further calls to its next() method just raise StopIteration again.
Iterators are required to have an __iter__() method that returns the iterator object itself so every iterator is
also iterable and may be used in most places where other iterables are accepted. One notable exception is code
which attempts multiple iteration passes. A container object (such as a list) produces a fresh new iterator each
time you pass it to the iter() function or use it in a for loop. Attempting this with an iterator will just return
the same exhausted iterator object used in the previous iteration pass, making it appear like an empty container.
Informasi lebih lanjut dapat ditemukan di typeiter.

fungsi kunci A key function or collation function is a callable that returns a value used for sorting or ordering. For
example, locale.strxfrm() is used to produce a sort key that is aware of locale specific sort conventions.
A number of tools in Python accept key functions to control how elements are ordered or grouped. They in-
clude min(), max(), sorted(), list.sort(), heapq.nsmallest(), heapq.nlargest(), and
itertools.groupby().
There are several ways to create a key function. For example. the str.lower() method can serve as a key
function for case insensitive sorts. Alternatively, an ad-hoc key function can be built from a lambda expression
such as lambda r: (r[0], r[2]). Also, the operatormodule provides three key function constructors:

93

The Python Language Reference, Rilis 2.7.18

attrgetter(), itemgetter(), and methodcaller(). See the Sorting HOW TO for examples of how
to create and use key functions.

argumen kata kunci Lihat argument.
lambda An anonymous inline function consisting of a single expression which is evaluated when the function is called.

The syntax to create a lambda function is lambda [parameters]: expression

LBYL Look before you leap. This coding style explicitly tests for pre-conditions before making calls or lookups. This
style contrasts with the EAFP approach and is characterized by the presence of many if statements.
In a multi-threaded environment, the LBYL approach can risk introducing a race condition between ”the looking”
and ”the leaping”. For example, the code, if key in mapping: return mapping[key] can fail if
another thread removes key from mapping after the test, but before the lookup. This issue can be solved with locks
or by using the EAFP approach.

daftar A built-in Python sequence. Despite its name it is more akin to an array in other languages than to a linked list
since access to elements is O(1).

list comprehension A compact way to process all or part of the elements in a sequence and return a list with the results.
result = ["0x%02x" % x for x in range(256) if x % 2 == 0] generates a list of strings
containing even hex numbers (0x..) in the range from 0 to 255. The if clause is optional. If omitted, all elements
in range(256) are processed.

loader An object that loads a module. It must define a method named load_module(). A loader is typically returned
by a finder. See PEP 302 for details.

magic method An informal synonym for special method.
pemetaan A container object that supports arbitrary key lookups and implements the methods specified in the Mapping

or MutableMapping abstract base classes. Examples include dict, collections.defaultdict,
collections.OrderedDict and collections.Counter.

metaclass The class of a class. Class definitions create a class name, a class dictionary, and a list of base classes. The me-
taclass is responsible for taking those three arguments and creating the class. Most object oriented programming
languages provide a default implementation. What makes Python special is that it is possible to create custom
metaclasses. Most users never need this tool, but when the need arises, metaclasses can provide powerful, ele-
gant solutions. They have been used for logging attribute access, adding thread-safety, tracking object creation,
implementing singletons, and many other tasks.
Informasi lebih lanjut dapat ditemukan di Customizing class creation.

method A function which is defined inside a class body. If called as an attribute of an instance of that class, the method
will get the instance object as its first argument (which is usually called self). See function and nested scope.

method resolution order Method Resolution Order is the order in which base classes are searched for a member during
lookup. See The Python 2.3 Method Resolution Order for details of the algorithm used by the Python interpreter
since the 2.3 release.

modul An object that serves as an organizational unit of Python code. Modules have a namespace containing arbitrary
Python objects. Modules are loaded into Python by the process of importing.
Lihat juga package.

MRO Lihat method resolution order.
mutable Mutable objects can change their value but keep their id(). See also immutable.
named tuple Any tuple-like class whose indexable elements are also accessible using named attributes (for example,

time.localtime() returns a tuple-like object where the year is accessible either with an index such as t[0]
or with a named attribute like t.tm_year).

94 Lampiran A. Ikhtisar

https://www.python.org/dev/peps/pep-0302
https://www.python.org/download/releases/2.3/mro/

The Python Language Reference, Rilis 2.7.18

A named tuple can be a built-in type such as time.struct_time, or it can be created with a regular
class definition. A full featured named tuple can also be created with the factory function collections.
namedtuple(). The latter approach automatically provides extra features such as a self-documenting represen-
tation like Employee(name='jones', title='programmer').

namespace The place where a variable is stored. Namespaces are implemented as dictionaries. There are the local,
global and built-in namespaces as well as nested namespaces in objects (in methods). Namespaces support mo-
dularity by preventing naming conflicts. For instance, the functions __builtin__.open() and os.open()
are distinguished by their namespaces. Namespaces also aid readability and maintainability by making it clear whi-
ch module implements a function. For instance, writing random.seed() or itertools.izip() makes it
clear that those functions are implemented by the random and itertools modules, respectively.

nested scope The ability to refer to a variable in an enclosing definition. For instance, a function defined inside another
function can refer to variables in the outer function. Note that nested scopes work only for reference and not for
assignment which will always write to the innermost scope. In contrast, local variables both read and write in the
innermost scope. Likewise, global variables read and write to the global namespace.

new-style class Any class which inherits from object. This includes all built-in types like list and dict.
Only new-style classes can use Python’s newer, versatile features like __slots__, descriptors, properties, and
__getattribute__().
More information can be found in New-style and classic classes.

objek Any data with state (attributes or value) and defined behavior (methods). Also the ultimate base class of any
new-style class.

paket A Python module which can contain submodules or recursively, subpackages. Technically, a package is a Python
module with an __path__ attribute.

parameter A named entity in a function (or method) definition that specifies an argument (or in some cases, arguments)
that the function can accept. There are four types of parameters:

• positional-or-keyword: specifies an argument that can be passed either positionally or as a keyword argument.
This is the default kind of parameter, for example foo and bar in the following:

def func(foo, bar=None): ...

• positional-only: specifies an argument that can be supplied only by position. Python has no syntax for defining
positional-only parameters. However, some built-in functions have positional-only parameters (e.g. abs()).

• var-positional: specifies that an arbitrary sequence of positional arguments can be provided (in addition to any
positional arguments already accepted by other parameters). Such a parameter can be defined by prepending
the parameter name with *, for example args in the following:

def func(*args, **kwargs): ...

• var-keyword: specifies that arbitrarily many keyword arguments can be provided (in addition to any keywo-
rd arguments already accepted by other parameters). Such a parameter can be defined by prepending the
parameter name with **, for example kwargs in the example above.

Parameters can specify both optional and required arguments, as well as default values for some optional arguments.
See also the argument glossary entry, the FAQ question on the difference between arguments and parameters, and
the Definisi fungsi section.

PEP Python Enhancement Proposal. A PEP is a design document providing information to the Python community,
or describing a new feature for Python or its processes or environment. PEPs should provide a concise technical
specification and a rationale for proposed features.
PEPs are intended to be the primary mechanisms for proposing major new features, for collecting community input
on an issue, and for documenting the design decisions that have gone into Python. The PEP author is responsible

95

The Python Language Reference, Rilis 2.7.18

for building consensus within the community and documenting dissenting opinions.
Lihat PEP 1.

positional argument Lihat argument.
Python 3000 Nickname for the Python 3.x release line (coined long ago when the release of version 3 was something in

the distant future.) This is also abbreviated ”Py3k”.
Pythonic An idea or piece of code which closely follows the most common idioms of the Python language, rather than

implementing code using concepts common to other languages. For example, a common idiom in Python is to loop
over all elements of an iterable using a for statement. Many other languages don’t have this type of construct, so
people unfamiliar with Python sometimes use a numerical counter instead:

for i in range(len(food)):
print food[i]

As opposed to the cleaner, Pythonic method:

for piece in food:
print piece

jumlah referensi The number of references to an object. When the reference count of an object drops to zero, it is
deallocated. Reference counting is generally not visible to Python code, but it is a key element of the CPython
implementation. The sys module defines a getrefcount() function that programmers can call to return the
reference count for a particular object.

__slots__ A declaration inside a new-style class that saves memory by pre-declaring space for instance attributes and
eliminating instance dictionaries. Though popular, the technique is somewhat tricky to get right and is best reserved
for rare cases where there are large numbers of instances in a memory-critical application.

urutan An iterable which supports efficient element access using integer indices via the __getitem__() special
method and defines a len() method that returns the length of the sequence. Some built-in sequence types are
list, str, tuple, and unicode. Note that dict also supports __getitem__() and __len__(), but is
considered a mapping rather than a sequence because the lookups use arbitrary immutable keys rather than integers.

slice An object usually containing a portion of a sequence. A slice is created using the subscript notation, [] with
colons between numbers when several are given, such as in variable_name[1:3:5]. The bracket (subscript)
notation uses slice objects internally (or in older versions, __getslice__() and __setslice__()).

special method A method that is called implicitly by Python to execute a certain operation on a type, such as addition.
Such methods have names starting and ending with double underscores. Special methods are documented in Special
method names.

pernyataan A statement is part of a suite (a ”block” of code). A statement is either an expression or one of several
constructs with a keyword, such as if, while or for.

struct sequence A tuple with named elements. Struct sequences expose an interface similiar to named tuple in that
elements can be accessed either by index or as an attribute. However, they do not have any of the named tuple
methods like _make() or _asdict(). Examples of struct sequences include sys.float_info and the
return value of os.stat().

teks tiga-kutip A string which is bound by three instances of either a quotation mark (”) or an apostrophe (’). While they
don’t provide any functionality not available with single-quoted strings, they are useful for a number of reasons.
They allow you to include unescaped single and double quotes within a string and they can span multiple lines
without the use of the continuation character, making them especially useful when writing docstrings.

tipe The type of a Python object determines what kind of object it is; every object has a type. An object’s type is
accessible as its __class__ attribute or can be retrieved with type(obj).

96 Lampiran A. Ikhtisar

https://www.python.org/dev/peps/pep-0001

The Python Language Reference, Rilis 2.7.18

universal newlines A manner of interpreting text streams in which all of the following are recognized as ending a line:
the Unix end-of-line convention '\n', the Windows convention '\r\n', and the old Macintosh convention '\
r'. See PEP 278 and PEP 3116, as well as str.splitlines() for an additional use.

lingkungan virtual Lingkungan runtime kooperatif yang memungkinkan pengguna dan aplikasi Python untuk mengin-
stal dan memperbarui paket distribusi Python tanpa mengganggu perilaku aplikasi Python lain yang berjalan pada
sistem yang sama.

mesin virtual A computer defined entirely in software. Python’s virtual machine executes the bytecode emitted by the
bytecode compiler.

Zen of Python Listing of Python design principles and philosophies that are helpful in understanding and using the
language. The listing can be found by typing ”import this” at the interactive prompt.

97

https://www.python.org/dev/peps/pep-0278
https://www.python.org/dev/peps/pep-3116

The Python Language Reference, Rilis 2.7.18

98 Lampiran A. Ikhtisar

LAMPIRANB

Tentang dokumen-dokumen ini

Dokumen-dokumen ini dihasilkan dari reStructuredText dengan Sphinx, sebuah pemroses dokumen yang khusus ditulis
untuk dokumentasi Python.
Pengembangan dokumentasi dan perangkat pengembangannya sepenuhnya upaya sukarela, seperti halnya Python. Jika
anda ingin berkontribusi, silakan lihat halaman reporting-bugs untuk informasi cara melakukannya. Relawan baru selalu
diterima!
Terima kasih banyak untuk:

• Fred L. Drake, Jr., pembuat awal kumpulan alat dokumentasi Python dan penulis banyak konten;
• Docutils proyek untuk membuat reStructuredText dan Docutils suite;
• Fredrik Lundh untuk Alternative Python Reference proyek dimana Sphinx mendapatkan banyak ide bagus.

B.1 Kontributor untuk dokumentasi Python

Banyak orang telah berkontribusi ke bahasa Python, pustaka standar Python, dan dokumentasi Python. Lihat Misc/ACKS
di distribusi kode sumber Python untuk sebagian daftar kontributor-kontributor.
Hanya dengan masukan dan kontribusi dari komunitas Python sehingga Python memiliki dokumentasi yang sangat baik.
Terima kasih!

99

http://docutils.sourceforge.net/rst.html
http://sphinx-doc.org/
http://docutils.sourceforge.net/
http://effbot.org/zone/pyref.htm
https://github.com/python/cpython/tree/2.7/Misc/ACKS

The Python Language Reference, Rilis 2.7.18

100 Lampiran B. Tentang dokumen-dokumen ini

LAMPIRANC

Sejarah dan Lisensi

C.1 Sejarah perangkat lunak

Python diciptakan pada awal 1990-an oleh Guido van Rossum di Stichting Mathematisch Centrum (CWI, lihat https://
www.cwi.nl/) di Belanda sebagai penerus bahasa yang disebut ABC.Guido tetapmenjadi penulis utama Python, meskipun
ia memasukkan banyak kontribusi dari orang lain.
Pada tahun 1995, Guido melanjutkan karyanya tentang Python di Corporation for National Research Initiatives (CNRI,
lihat https://www.cnri.reston.va.us/) di Reston, Virginia di mana ia merilis beberapa versi perangkat lunak.
In May 2000, Guido and the Python core development team moved to BeOpen.com to form the BeOpen PythonLabs
team. In October of the same year, the PythonLabs team moved to Digital Creations (now Zope Corporation; see https:
//www.zope.org/). In 2001, the Python Software Foundation (PSF, see https://www.python.org/psf/) was formed, a non-
profit organization created specifically to own Python-related Intellectual Property. Zope Corporation is a sponsoring
member of the PSF.
Semua rilis Python adalah Sumber Terbuka (lihat https://opensource.org/ untuk Definisi Sumber Terbuka). Secara histo-
ris, sebagian besar, tetapi tidak semua, rilis Python juga kompatibel dengan GPL; tabel di bawah ini merangkum berbagai
rilis.

Rilis Berasal dari Tahun Pemilik GPL compatible?
0.9.0 hingga 1.2 t/a 1991-1995 CWI ya
1.3 hingga 1.5.2 1.2 1995-1999 CNRI ya
1.6 1.5.2 2000 CNRI tidak
2.0 1.6 2000 BeOpen.com tidak
1.6.1 1.6 2001 CNRI tidak
2.1 2.0+1.6.1 2001 PSF tidak
2.0.1 2.0+1.6.1 2001 PSF ya
2.1.1 2.1+2.0.1 2001 PSF ya
2.1.2 2.1.1 2002 PSF ya
2.1.3 2.1.2 2002 PSF ya
2.2 dan ke atas 2.1.1 2001-sekarang PSF ya

101

https://www.cwi.nl/
https://www.cwi.nl/
https://www.cnri.reston.va.us/
https://www.zope.org/
https://www.zope.org/
https://www.python.org/psf/
https://opensource.org/

The Python Language Reference, Rilis 2.7.18

Catatan: GPL-compatible doesn’t mean that we’re distributing Python under the GPL. All Python licenses, unlike the
GPL, let you distribute a modified version without making your changes open source. The GPL-compatible licenses make
it possible to combine Python with other software that is released under the GPL; the others don’t.

Terima kasih kepada banyak sukarelawan eksternal yang telah bekerja di bawah arahanGuido untukmewujudkan rilis-rilis
ini.

C.2 Syarat dan ketentuan untuk mengakses atau menggunakan
Python

C.2.1 LISENSI PERJANJIAN PSF UNTUK PYTHON 2.7.18

1. This LICENSE AGREEMENT is between the Python Software Foundation ("PSF"),␣
↪→and

the Individual or Organization ("Licensee") accessing and otherwise using␣
↪→Python

2.7.18 software in source or binary form and its associated documentation.

2. Subject to the terms and conditions of this License Agreement, PSF hereby
grants Licensee a nonexclusive, royalty-free, world-wide license to␣

↪→reproduce,
analyze, test, perform and/or display publicly, prepare derivative works,
distribute, and otherwise use Python 2.7.18 alone or in any derivative
version, provided, however, that PSF's License Agreement and PSF's notice␣

↪→of
copyright, i.e., "Copyright © 2001-2020 Python Software Foundation; All␣

↪→Rights
Reserved" are retained in Python 2.7.18 alone or in any derivative version
prepared by Licensee.

3. In the event Licensee prepares a derivative work that is based on or
incorporates Python 2.7.18 or any part thereof, and wants to make the
derivative work available to others as provided herein, then Licensee␣

↪→hereby
agrees to include in any such work a brief summary of the changes made to␣

↪→Python
2.7.18.

4. PSF is making Python 2.7.18 available to Licensee on an "AS IS" basis.
PSF MAKES NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF
EXAMPLE, BUT NOT LIMITATION, PSF MAKES NO AND DISCLAIMS ANY REPRESENTATION␣

↪→OR
WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT␣

↪→THE
USE OF PYTHON 2.7.18 WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

5. PSF SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF PYTHON 2.7.18
FOR ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT␣

↪→OF

102 Lampiran C. Sejarah dan Lisensi

The Python Language Reference, Rilis 2.7.18

MODIFYING, DISTRIBUTING, OR OTHERWISE USING PYTHON 2.7.18, OR ANY␣
↪→DERIVATIVE

THEREOF, EVEN IF ADVISED OF THE POSSIBILITY THEREOF.

6. This License Agreement will automatically terminate upon a material breach␣
↪→of

its terms and conditions.

7. Nothing in this License Agreement shall be deemed to create any␣
↪→relationship

of agency, partnership, or joint venture between PSF and Licensee. This␣
↪→License

Agreement does not grant permission to use PSF trademarks or trade name in␣
↪→a

trademark sense to endorse or promote products or services of Licensee, or␣
↪→any

third party.

8. By copying, installing or otherwise using Python 2.7.18, Licensee agrees
to be bound by the terms and conditions of this License Agreement.

C.2.2 LISENSI PERJANJIAN BEOPEN.COM UNTUK PYTHON 2.0

LISENSI PERJANJIAN BEOPEN SUMBER TERBUKA PYTHON VERSI 1

1. This LICENSE AGREEMENT is between BeOpen.com ("BeOpen"), having an office at
160 Saratoga Avenue, Santa Clara, CA 95051, and the Individual or Organization
("Licensee") accessing and otherwise using this software in source or binary
form and its associated documentation ("the Software").

2. Subject to the terms and conditions of this BeOpen Python License Agreement,
BeOpen hereby grants Licensee a non-exclusive, royalty-free, world-wide license
to reproduce, analyze, test, perform and/or display publicly, prepare derivative
works, distribute, and otherwise use the Software alone or in any derivative
version, provided, however, that the BeOpen Python License is retained in the
Software, alone or in any derivative version prepared by Licensee.

3. BeOpen is making the Software available to Licensee on an "AS IS" basis.
BEOPEN MAKES NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF
EXAMPLE, BUT NOT LIMITATION, BEOPEN MAKES NO AND DISCLAIMS ANY REPRESENTATION OR
WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE
USE OF THE SOFTWARE WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

4. BEOPEN SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF THE SOFTWARE FOR
ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT OF USING,
MODIFYING OR DISTRIBUTING THE SOFTWARE, OR ANY DERIVATIVE THEREOF, EVEN IF
ADVISED OF THE POSSIBILITY THEREOF.

5. This License Agreement will automatically terminate upon a material breach of
its terms and conditions.

6. This License Agreement shall be governed by and interpreted in all respects
by the law of the State of California, excluding conflict of law provisions.
Nothing in this License Agreement shall be deemed to create any relationship of
agency, partnership, or joint venture between BeOpen and Licensee. This License

(berlanjut ke halaman berikutnya)

C.2. Syarat dan ketentuan untuk mengakses atau menggunakan Python 103

The Python Language Reference, Rilis 2.7.18

(lanjutan dari halaman sebelumnya)
Agreement does not grant permission to use BeOpen trademarks or trade names in a
trademark sense to endorse or promote products or services of Licensee, or any
third party. As an exception, the "BeOpen Python" logos available at
http://www.pythonlabs.com/logos.html may be used according to the permissions
granted on that web page.

7. By copying, installing or otherwise using the software, Licensee agrees to be
bound by the terms and conditions of this License Agreement.

C.2.3 LISENSI PERJANJIAN CNRI UNTUK PYTHON 1.6.1

1. This LICENSE AGREEMENT is between the Corporation for National Research
Initiatives, having an office at 1895 Preston White Drive, Reston, VA 20191
("CNRI"), and the Individual or Organization ("Licensee") accessing and
otherwise using Python 1.6.1 software in source or binary form and its
associated documentation.

2. Subject to the terms and conditions of this License Agreement, CNRI hereby
grants Licensee a nonexclusive, royalty-free, world-wide license to reproduce,
analyze, test, perform and/or display publicly, prepare derivative works,
distribute, and otherwise use Python 1.6.1 alone or in any derivative version,
provided, however, that CNRI's License Agreement and CNRI's notice of copyright,
i.e., "Copyright © 1995-2001 Corporation for National Research Initiatives; All
Rights Reserved" are retained in Python 1.6.1 alone or in any derivative version
prepared by Licensee. Alternately, in lieu of CNRI's License Agreement,
Licensee may substitute the following text (omitting the quotes): "Python 1.6.1
is made available subject to the terms and conditions in CNRI's License
Agreement. This Agreement together with Python 1.6.1 may be located on the
Internet using the following unique, persistent identifier (known as a handle):
1895.22/1013. This Agreement may also be obtained from a proxy server on the
Internet using the following URL: http://hdl.handle.net/1895.22/1013."

3. In the event Licensee prepares a derivative work that is based on or
incorporates Python 1.6.1 or any part thereof, and wants to make the derivative
work available to others as provided herein, then Licensee hereby agrees to
include in any such work a brief summary of the changes made to Python 1.6.1.

4. CNRI is making Python 1.6.1 available to Licensee on an "AS IS" basis. CNRI
MAKES NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF EXAMPLE,
BUT NOT LIMITATION, CNRI MAKES NO AND DISCLAIMS ANY REPRESENTATION OR WARRANTY
OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE USE OF
PYTHON 1.6.1 WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

5. CNRI SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF PYTHON 1.6.1 FOR
ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT OF
MODIFYING, DISTRIBUTING, OR OTHERWISE USING PYTHON 1.6.1, OR ANY DERIVATIVE
THEREOF, EVEN IF ADVISED OF THE POSSIBILITY THEREOF.

6. This License Agreement will automatically terminate upon a material breach of
its terms and conditions.

7. This License Agreement shall be governed by the federal intellectual property
law of the United States, including without limitation the federal copyright
law, and, to the extent such U.S. federal law does not apply, by the law of the

(berlanjut ke halaman berikutnya)

104 Lampiran C. Sejarah dan Lisensi

The Python Language Reference, Rilis 2.7.18

(lanjutan dari halaman sebelumnya)
Commonwealth of Virginia, excluding Virginia's conflict of law provisions.
Notwithstanding the foregoing, with regard to derivative works based on Python
1.6.1 that incorporate non-separable material that was previously distributed
under the GNU General Public License (GPL), the law of the Commonwealth of
Virginia shall govern this License Agreement only as to issues arising under or
with respect to Paragraphs 4, 5, and 7 of this License Agreement. Nothing in
this License Agreement shall be deemed to create any relationship of agency,
partnership, or joint venture between CNRI and Licensee. This License Agreement
does not grant permission to use CNRI trademarks or trade name in a trademark
sense to endorse or promote products or services of Licensee, or any third
party.

8. By clicking on the "ACCEPT" button where indicated, or by copying, installing
or otherwise using Python 1.6.1, Licensee agrees to be bound by the terms and
conditions of this License Agreement.

C.2.4 LISENSI PERJANJIAN CWI UNTUK PYTHON 0.9.0 SAMPAI 1.2

Copyright © 1991 - 1995, Stichting Mathematisch Centrum Amsterdam, The
Netherlands. All rights reserved.

Permission to use, copy, modify, and distribute this software and its
documentation for any purpose and without fee is hereby granted, provided that
the above copyright notice appear in all copies and that both that copyright
notice and this permission notice appear in supporting documentation, and that
the name of Stichting Mathematisch Centrum or CWI not be used in advertising or
publicity pertaining to distribution of the software without specific, written
prior permission.

STICHTING MATHEMATISCH CENTRUM DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS
SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN NO
EVENT SHALL STICHTING MATHEMATISCH CENTRUM BE LIABLE FOR ANY SPECIAL, INDIRECT
OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE,
DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS
SOFTWARE.

C.3 Lisensi dan Ucapan Terima Kasih untuk Perangkat Lunak yang
Tergabung

Bagian ini tidak lengkap, tetapi daftar lisensi dan ucapan terima kasih yang terus bertambah untuk perangkat lunak pihak
ketiga yang tergabung dalam distribusi Python.

C.3. Lisensi dan Ucapan Terima Kasih untuk Perangkat Lunak yang Tergabung 105

The Python Language Reference, Rilis 2.7.18

C.3.1 Mersenne Twister

The _random module includes code based on a download from http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/
MT2002/emt19937ar.html. The following are the verbatim comments from the original code:

A C-program for MT19937, with initialization improved 2002/1/26.
Coded by Takuji Nishimura and Makoto Matsumoto.

Before using, initialize the state by using init_genrand(seed)
or init_by_array(init_key, key_length).

Copyright (C) 1997 - 2002, Makoto Matsumoto and Takuji Nishimura,
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

3. The names of its contributors may not be used to endorse or promote
products derived from this software without specific prior written
permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Any feedback is very welcome.
http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html
email: m-mat @ math.sci.hiroshima-u.ac.jp (remove space)

C.3.2 Soket

The socket module uses the functions, getaddrinfo(), and getnameinfo(), which are coded in separate
source files from the WIDE Project, http://www.wide.ad.jp/.

Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions

(berlanjut ke halaman berikutnya)

106 Lampiran C. Sejarah dan Lisensi

http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/MT2002/emt19937ar.html
http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/MT2002/emt19937ar.html
http://www.wide.ad.jp/

The Python Language Reference, Rilis 2.7.18

(lanjutan dari halaman sebelumnya)
are met:
1. Redistributions of source code must retain the above copyright

notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright

notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

3. Neither the name of the project nor the names of its contributors
may be used to endorse or promote products derived from this software
without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

C.3.3 Floating point exception control

The source for the fpectl module includes the following notice:

/ Copyright (c) 1996. \

| The Regents of the University of California. |
| All rights reserved. |
| |
| Permission to use, copy, modify, and distribute this software for |
| any purpose without fee is hereby granted, provided that this en- |
| tire notice is included in all copies of any software which is or |
| includes a copy or modification of this software and in all |
| copies of the supporting documentation for such software. |
| |
| This work was produced at the University of California, Lawrence |
| Livermore National Laboratory under contract no. W-7405-ENG-48 |
| between the U.S. Department of Energy and The Regents of the |
| University of California for the operation of UC LLNL. |
| |
| DISCLAIMER |
| |
| This software was prepared as an account of work sponsored by an |
| agency of the United States Government. Neither the United States |
| Government nor the University of California nor any of their em- |
| ployees, makes any warranty, express or implied, or assumes any |
| liability or responsibility for the accuracy, completeness, or |
| usefulness of any information, apparatus, product, or process |
| disclosed, or represents that its use would not infringe |
| privately-owned rights. Reference herein to any specific commer- |
| cial products, process, or service by trade name, trademark, |
| manufacturer, or otherwise, does not necessarily constitute or |
| imply its endorsement, recommendation, or favoring by the United |

(berlanjut ke halaman berikutnya)

C.3. Lisensi dan Ucapan Terima Kasih untuk Perangkat Lunak yang Tergabung 107

The Python Language Reference, Rilis 2.7.18

(lanjutan dari halaman sebelumnya)
| States Government or the University of California. The views and |
| opinions of authors expressed herein do not necessarily state or |
| reflect those of the United States Government or the University |
| of California, and shall not be used for advertising or product |
\ endorsement purposes. /

C.3.4 MD5 message digest algorithm

The source code for the md5 module contains the following notice:

Copyright (C) 1999, 2002 Aladdin Enterprises. All rights reserved.

This software is provided 'as-is', without any express or implied
warranty. In no event will the authors be held liable for any damages
arising from the use of this software.

Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it
freely, subject to the following restrictions:

1. The origin of this software must not be misrepresented; you must not
claim that you wrote the original software. If you use this software
in a product, an acknowledgment in the product documentation would be
appreciated but is not required.

2. Altered source versions must be plainly marked as such, and must not be
misrepresented as being the original software.

3. This notice may not be removed or altered from any source distribution.

L. Peter Deutsch
ghost@aladdin.com

Independent implementation of MD5 (RFC 1321).

This code implements the MD5 Algorithm defined in RFC 1321, whose
text is available at

http://www.ietf.org/rfc/rfc1321.txt
The code is derived from the text of the RFC, including the test suite
(section A.5) but excluding the rest of Appendix A. It does not include
any code or documentation that is identified in the RFC as being
copyrighted.

The original and principal author of md5.h is L. Peter Deutsch
<ghost@aladdin.com>. Other authors are noted in the change history
that follows (in reverse chronological order):

2002-04-13 lpd Removed support for non-ANSI compilers; removed
references to Ghostscript; clarified derivation from RFC 1321;
now handles byte order either statically or dynamically.

1999-11-04 lpd Edited comments slightly for automatic TOC extraction.
1999-10-18 lpd Fixed typo in header comment (ansi2knr rather than md5);

added conditionalization for C++ compilation from Martin
Purschke <purschke@bnl.gov>.

1999-05-03 lpd Original version.

108 Lampiran C. Sejarah dan Lisensi

The Python Language Reference, Rilis 2.7.18

C.3.5 Layanan soket asinkron

Modul asynchat dan asyncore berisi pemberitahuan berikut:

Copyright 1996 by Sam Rushing

All Rights Reserved

Permission to use, copy, modify, and distribute this software and
its documentation for any purpose and without fee is hereby
granted, provided that the above copyright notice appear in all
copies and that both that copyright notice and this permission
notice appear in supporting documentation, and that the name of Sam
Rushing not be used in advertising or publicity pertaining to
distribution of the software without specific, written prior
permission.

SAM RUSHING DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE,
INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN
NO EVENT SHALL SAM RUSHING BE LIABLE FOR ANY SPECIAL, INDIRECT OR
CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS
OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT,
NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

C.3.6 Pengelolaan Cookie

The Cookie module contains the following notice:

Copyright 2000 by Timothy O'Malley <timo@alum.mit.edu>

All Rights Reserved

Permission to use, copy, modify, and distribute this software
and its documentation for any purpose and without fee is hereby
granted, provided that the above copyright notice appear in all
copies and that both that copyright notice and this permission
notice appear in supporting documentation, and that the name of
Timothy O'Malley not be used in advertising or publicity
pertaining to distribution of the software without specific, written
prior permission.

Timothy O'Malley DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS
SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS, IN NO EVENT SHALL Timothy O'Malley BE LIABLE FOR
ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
PERFORMANCE OF THIS SOFTWARE.

C.3. Lisensi dan Ucapan Terima Kasih untuk Perangkat Lunak yang Tergabung 109

The Python Language Reference, Rilis 2.7.18

C.3.7 Pelacakan eksekusi

Modul trace berisi pemberitahuan berikut:

portions copyright 2001, Autonomous Zones Industries, Inc., all rights...
err... reserved and offered to the public under the terms of the
Python 2.2 license.
Author: Zooko O'Whielacronx
http://zooko.com/
mailto:zooko@zooko.com

Copyright 2000, Mojam Media, Inc., all rights reserved.
Author: Skip Montanaro

Copyright 1999, Bioreason, Inc., all rights reserved.
Author: Andrew Dalke

Copyright 1995-1997, Automatrix, Inc., all rights reserved.
Author: Skip Montanaro

Copyright 1991-1995, Stichting Mathematisch Centrum, all rights reserved.

Permission to use, copy, modify, and distribute this Python software and
its associated documentation for any purpose without fee is hereby
granted, provided that the above copyright notice appears in all copies,
and that both that copyright notice and this permission notice appear in
supporting documentation, and that the name of neither Automatrix,
Bioreason or Mojam Media be used in advertising or publicity pertaining to
distribution of the software without specific, written prior permission.

C.3.8 UUencode and UUdecode functions

Modul uu berisi pemberitahuan berikut:

Copyright 1994 by Lance Ellinghouse
Cathedral City, California Republic, United States of America.

All Rights Reserved
Permission to use, copy, modify, and distribute this software and its
documentation for any purpose and without fee is hereby granted,
provided that the above copyright notice appear in all copies and that
both that copyright notice and this permission notice appear in
supporting documentation, and that the name of Lance Ellinghouse
not be used in advertising or publicity pertaining to distribution
of the software without specific, written prior permission.
LANCE ELLINGHOUSE DISCLAIMS ALL WARRANTIES WITH REGARD TO
THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS, IN NO EVENT SHALL LANCE ELLINGHOUSE CENTRUM BE LIABLE
FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT
OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

Modified by Jack Jansen, CWI, July 1995:
- Use binascii module to do the actual line-by-line conversion

between ascii and binary. This results in a 1000-fold speedup. The C

(berlanjut ke halaman berikutnya)

110 Lampiran C. Sejarah dan Lisensi

The Python Language Reference, Rilis 2.7.18

(lanjutan dari halaman sebelumnya)
version is still 5 times faster, though.

- Arguments more compliant with Python standard

C.3.9 XML Remote Procedure Calls

The xmlrpclib module contains the following notice:

The XML-RPC client interface is

Copyright (c) 1999-2002 by Secret Labs AB
Copyright (c) 1999-2002 by Fredrik Lundh

By obtaining, using, and/or copying this software and/or its
associated documentation, you agree that you have read, understood,
and will comply with the following terms and conditions:

Permission to use, copy, modify, and distribute this software and
its associated documentation for any purpose and without fee is
hereby granted, provided that the above copyright notice appears in
all copies, and that both that copyright notice and this permission
notice appear in supporting documentation, and that the name of
Secret Labs AB or the author not be used in advertising or publicity
pertaining to distribution of the software without specific, written
prior permission.

SECRET LABS AB AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH REGARD
TO THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANT-
ABILITY AND FITNESS. IN NO EVENT SHALL SECRET LABS AB OR THE AUTHOR
BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY
DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
OF THIS SOFTWARE.

C.3.10 test_epoll

The test_epoll contains the following notice:

Copyright (c) 2001-2006 Twisted Matrix Laboratories.

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF

(berlanjut ke halaman berikutnya)

C.3. Lisensi dan Ucapan Terima Kasih untuk Perangkat Lunak yang Tergabung 111

The Python Language Reference, Rilis 2.7.18

(lanjutan dari halaman sebelumnya)
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

C.3.11 Pilih kqueue

The select and contains the following notice for the kqueue interface:

Copyright (c) 2000 Doug White, 2006 James Knight, 2007 Christian Heimes
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
1. Redistributions of source code must retain the above copyright

notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright

notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

C.3.12 strtod dan dtoa

The file Python/dtoa.c, which supplies C functions dtoa and strtod for conversion of C doubles to and from strings,
is derived from the file of the same name by David M. Gay, currently available from http://www.netlib.org/fp/. The
original file, as retrieved on March 16, 2009, contains the following copyright and licensing notice:

/**
*
* The author of this software is David M. Gay.
*
* Copyright (c) 1991, 2000, 2001 by Lucent Technologies.
*
* Permission to use, copy, modify, and distribute this software for any
* purpose without fee is hereby granted, provided that this entire notice
* is included in all copies of any software which is or includes a copy
* or modification of this software and in all copies of the supporting
* documentation for such software.
*
* THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR IMPLIED

(berlanjut ke halaman berikutnya)

112 Lampiran C. Sejarah dan Lisensi

http://www.netlib.org/fp/

The Python Language Reference, Rilis 2.7.18

(lanjutan dari halaman sebelumnya)
* WARRANTY. IN PARTICULAR, NEITHER THE AUTHOR NOR LUCENT MAKES ANY
* REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE MERCHANTABILITY
* OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR PURPOSE.
*
***/

C.3.13 OpenSSL

The modules hashlib, posix, ssl, crypt use the OpenSSL library for added performance if made available by the
operating system. Additionally, the Windows and Mac OS X installers for Python may include a copy of the OpenSSL
libraries, so we include a copy of the OpenSSL license here:

LICENSE ISSUES
==============

The OpenSSL toolkit stays under a dual license, i.e. both the conditions of
the OpenSSL License and the original SSLeay license apply to the toolkit.
See below for the actual license texts. Actually both licenses are BSD-style
Open Source licenses. In case of any license issues related to OpenSSL
please contact openssl-core@openssl.org.

OpenSSL License

/* ==
* Copyright (c) 1998-2008 The OpenSSL Project. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
*
* 3. All advertising materials mentioning features or use of this
* software must display the following acknowledgment:
* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
*
* 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
* endorse or promote products derived from this software without
* prior written permission. For written permission, please contact
* openssl-core@openssl.org.
*
* 5. Products derived from this software may not be called "OpenSSL"
* nor may "OpenSSL" appear in their names without prior written
* permission of the OpenSSL Project.
*
* 6. Redistributions of any form whatsoever must retain the following
* acknowledgment:

(berlanjut ke halaman berikutnya)

C.3. Lisensi dan Ucapan Terima Kasih untuk Perangkat Lunak yang Tergabung 113

The Python Language Reference, Rilis 2.7.18

(lanjutan dari halaman sebelumnya)
* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit (http://www.openssl.org/)"
*
* THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
* EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
* ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
* OF THE POSSIBILITY OF SUCH DAMAGE.
* ==
*
* This product includes cryptographic software written by Eric Young
* (eay@cryptsoft.com). This product includes software written by Tim
* Hudson (tjh@cryptsoft.com).
*
*/

Original SSLeay License

/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
* All rights reserved.
*
* This package is an SSL implementation written
* by Eric Young (eay@cryptsoft.com).
* The implementation was written so as to conform with Netscapes SSL.
*
* This library is free for commercial and non-commercial use as long as
* the following conditions are aheared to. The following conditions
* apply to all code found in this distribution, be it the RC4, RSA,
* lhash, DES, etc., code; not just the SSL code. The SSL documentation
* included with this distribution is covered by the same copyright terms
* except that the holder is Tim Hudson (tjh@cryptsoft.com).
*
* Copyright remains Eric Young's, and as such any Copyright notices in
* the code are not to be removed.
* If this package is used in a product, Eric Young should be given attribution
* as the author of the parts of the library used.
* This can be in the form of a textual message at program startup or
* in documentation (online or textual) provided with the package.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:

(berlanjut ke halaman berikutnya)

114 Lampiran C. Sejarah dan Lisensi

The Python Language Reference, Rilis 2.7.18

(lanjutan dari halaman sebelumnya)
* "This product includes cryptographic software written by
* Eric Young (eay@cryptsoft.com)"
* The word 'cryptographic' can be left out if the rouines from the library
* being used are not cryptographic related :-).
* 4. If you include any Windows specific code (or a derivative thereof) from
* the apps directory (application code) you must include an acknowledgement:
* "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
*
* THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* The licence and distribution terms for any publically available version or
* derivative of this code cannot be changed. i.e. this code cannot simply be
* copied and put under another distribution licence
* [including the GNU Public Licence.]
*/

C.3.14 expat

The pyexpat extension is built using an included copy of the expat sources unless the build is configured
--with-system-expat:

Copyright (c) 1998, 1999, 2000 Thai Open Source Software Center Ltd
and Clark Cooper

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

C.3. Lisensi dan Ucapan Terima Kasih untuk Perangkat Lunak yang Tergabung 115

The Python Language Reference, Rilis 2.7.18

C.3.15 libffi

The _ctypes extension is built using an included copy of the libffi sources unless the build is configured
--with-system-libffi:

Copyright (c) 1996-2008 Red Hat, Inc and others.

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
``Software''), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED ``AS IS'', WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.

C.3.16 zlib

The zlib extension is built using an included copy of the zlib sources if the zlib version found on the system is too old
to be used for the build:

Copyright (C) 1995-2010 Jean-loup Gailly and Mark Adler

This software is provided 'as-is', without any express or implied
warranty. In no event will the authors be held liable for any damages
arising from the use of this software.

Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it
freely, subject to the following restrictions:

1. The origin of this software must not be misrepresented; you must not
claim that you wrote the original software. If you use this software
in a product, an acknowledgment in the product documentation would be
appreciated but is not required.

2. Altered source versions must be plainly marked as such, and must not be
misrepresented as being the original software.

3. This notice may not be removed or altered from any source distribution.

Jean-loup Gailly Mark Adler
jloup@gzip.org madler@alumni.caltech.edu

116 Lampiran C. Sejarah dan Lisensi

LAMPIRAND

Hak Cipta

Python dan dokumentasi ini adalah:
Copyright © 2001-2020 Python Software Foundation. All rights reserved.
Hak Cipta © 2000 BeOpen.com. Seluruh hak cipta.
Hak Cipta © 1995-2000 Corporation for National Research Initiatives. Seluruh hak cipta.
Hak Cipta © 1991-1995 Stichting Mathematisch Centrum. Seluruh hak cipta.

Lihat Sejarah dan Lisensi untuk lisensi lengkap dan informasi perizinan.

117

The Python Language Reference, Rilis 2.7.18

118 Lampiran D. Hak Cipta

Indeks

Non-abjad
..., 89
%=

augmented assignment, 65
&=

augmented assignment, 65
*

in function calls, 53
statement, 81

**
in function calls, 54
statement, 81

**=
augmented assignment, 65

*=
augmented assignment, 65

+=
augmented assignment, 65

//=
augmented assignment, 65

/=
augmented assignment, 65

2ke3, 89
<<=

augmented assignment, 65
=

assignment statement, 64
-=

augmented assignment, 65
>>=

augmented assignment, 65
>>>, 89
@

statement, 80
^=

augmented assignment, 65
__abs__() (method object), 36
__add__() (method object), 35
__all__ (optional module attribute), 71

__and__() (method object), 35
__bases__ (class attribute), 21
__builtin__

modul, 73, 83
__builtins__, 73
__call__() (method object), 32
__call__() (object method), 54
__class__ (instance attribute), 22
__closure__ (function attribute), 19
__cmp__() (method object), 27
__code__ (function attribute), 19
__coerce__() (method object), 37
__complex__() (method object), 36
__contains__() (method object), 33
__debug__, 66
__defaults__ (function attribute), 19
__del__() (method object), 25
__delattr__() (method object), 28
__delete__() (method object), 29
__delitem__() (method object), 33
__delslice__() (method object), 34
__dict__ (class attribute), 21
__dict__ (function attribute), 19
__dict__ (instance attribute), 22, 28
__dict__ (module attribute), 21
__div__() (method object), 35
__divmod__() (method object), 35
__doc__ (class attribute), 21
__doc__ (function attribute), 19
__doc__ (method attribute), 19
__doc__ (module attribute), 21
__enter__() (method object), 38
__eq__() (method object), 26
__exit__() (method object), 38
__file__, 71
__file__ (module attribute), 21
__float__() (method object), 36
__floordiv__() (method object), 35
__future__, 92
__ge__() (method object), 26

119

The Python Language Reference, Rilis 2.7.18

__get__() (method object), 29
__getattr__() (method object), 28
__getattribute__() (method object), 28
__getitem__() (mapping object method), 24
__getitem__() (method object), 32
__getslice__() (method object), 34
__globals__ (function attribute), 19
__gt__() (method object), 26
__hash__() (method object), 27
__hex__() (method object), 36
__iadd__() (method object), 36
__iand__() (method object), 36
__idiv__() (method object), 36
__ifloordiv__() (method object), 36
__ilshift__() (method object), 36
__imod__() (method object), 36
__imul__() (method object), 36
__index__() (method object), 36
__init__() (method object), 25
__init__() (object method), 21
__instancecheck__() (method class), 31
__int__() (method object), 36
__invert__() (method object), 36
__ior__() (method object), 36
__ipow__() (method object), 36
__irshift__() (method object), 36
__isub__() (method object), 36
__iter__() (method object), 33
__itruediv__() (method object), 36
__ixor__() (method object), 36
__le__() (method object), 26
__len__() (mapping object method), 27
__len__() (method object), 32
__loader__, 71
__long__() (method object), 36
__lshift__() (method object), 35
__lt__() (method object), 26
__main__

modul, 42, 83
__metaclass__ (variabel built-in), 31
__missing__() (method object), 33
__mod__() (method object), 35
__module__ (class attribute), 21
__module__ (function attribute), 19
__module__ (method attribute), 19
__mul__() (method object), 35
__name__, 71
__name__ (class attribute), 21
__name__ (function attribute), 19
__name__ (method attribute), 19
__name__ (module attribute), 21
__ne__() (method object), 26
__neg__() (method object), 36
__new__() (method object), 25

__nonzero__() (method object), 27
__nonzero__() (object method), 32
__oct__() (method object), 36
__or__() (method object), 35
__package__, 71
__path__, 70, 71
__pos__() (method object), 36
__pow__() (method object), 35
__radd__() (method object), 35
__rand__() (method object), 35
__rcmp__() (method object), 27
__rdiv__() (method object), 35
__rdivmod__() (method object), 35
__repr__() (method object), 26
__reversed__() (method object), 33
__rfloordiv__() (method object), 35
__rlshift__() (method object), 35
__rmod__() (method object), 35
__rmul__() (method object), 35
__ror__() (method object), 35
__rpow__() (method object), 35
__rrshift__() (method object), 35
__rshift__() (method object), 35
__rsub__() (method object), 35
__rtruediv__() (method object), 35
__rxor__() (method object), 35
__set__() (method object), 29
__setattr__() (method object), 28
__setattr__() (object method), 28
__setitem__() (method object), 33
__setslice__() (method object), 34
__slots__, 96
__slots__ (variabel built-in), 30
__str__() (method object), 26
__sub__() (method object), 35
__subclasscheck__() (method class), 31
__truediv__() (method object), 35
__unicode__() (method object), 27
__xor__() (method object), 35
|=

augmented assignment, 65

A
abs

fungsi built-in, 36
addition, 56
and

bitwise, 56
operator, 60

anonymous
function, 60

argumen, 89
argumen kata kunci, 94
argument

120 Indeks

The Python Language Reference, Rilis 2.7.18

call semantics, 52
function, 18
function definition, 80

arithmetic
conversion, 45
operation, binary, 55
operation, unary, 55

array
modul, 18

as
import statement, 70
with statement, 79

ASCII@ASCII, 4, 10, 11, 14, 17
assert

statement, 66
AssertionError

eksepsi, 66
assertions

debugging, 66
assignment

attribute, 64
augmented, 65
class attribute, 21
class instance attribute, 22
slicing, 65
statement, 18, 64
subscription, 65
target list, 64

atom, 46
atribut, 90
attribute, 16

assignment, 64
assignment, class, 21
assignment, class instance, 22
class, 21
class instance, 22
deletion, 67
generic special, 16
reference, 51
special, 16

AttributeError
eksepsi, 51

augmented
assignment, 65

B
back-quotes, 26, 49
backslash character, 7
backward

quotes, 26, 49
BDFL, 90
bilangan kompleks, 90
binary

arithmetic operation, 55

bitwise operation, 56
binary literal, 12
binding

global name, 73
name, 41, 64, 70, 71, 80, 81

bitwise
and, 56
operation, binary, 56
operation, unary, 55
or, 56
xor, 56

blank line, 7
block, 41

code, 41
BNF, 4, 45
Boolean

object, 17
operation, 60

break
statement, 69, 76, 78

bsddb
modul, 18

built-in
method, 20

built-in function
call, 54
object, 20, 54

built-in method
call, 54
object, 20, 54

byte, 17
bytearray, 18
bytecode, 22, 90
bytes-like object, 90

C
C, 10

language, 16, 17, 20, 57
call, 52

built-in function, 54
built-in method, 54
class instance, 54
class object, 21, 54
function, 18, 54
instance, 32, 54
method, 54
procedure, 64
user-defined function, 54

callable
object, 18, 52

chaining
comparisons, 57

character, 17, 52
character set, 17

Indeks 121

The Python Language Reference, Rilis 2.7.18

chr
fungsi built-in, 17

class
attribute, 21
attribute assignment, 21
classic, 24
constructor, 25
definition, 68, 81
instance, 22
name, 81
new-style, 24
object, 21, 54, 81
old-style, 24
statement, 81

class instance
attribute, 22
attribute assignment, 22
call, 54
object, 21, 22, 54

class object
call, 21, 54

classic class, 90
clause, 75
close() (method generator), 50
cmp

fungsi built-in, 27
co_argcount (code object attribute), 22
co_cellvars (code object attribute), 22
co_code (code object attribute), 22
co_consts (code object attribute), 22
co_filename (code object attribute), 22
co_firstlineno (code object attribute), 22
co_flags (code object attribute), 22
co_freevars (code object attribute), 22
co_lnotab (code object attribute), 22
co_name (code object attribute), 22
co_names (code object attribute), 22
co_nlocals (code object attribute), 22
co_stacksize (code object attribute), 22
co_varnames (code object attribute), 22
code

block, 41
code object, 22
comma, 47

trailing, 61, 67
command line, 83
comment, 6
comparison, 57

string, 17
comparisons, 26, 27

chaining, 57
compile

fungsi built-in, 73
complex

fungsi built-in, 36
literal, 12
number, 17
object, 17

compound
statement, 75

comprehensions
list, 47

Conditional
expression, 60

conditional
expression, 60

constant, 10
constructor

class, 25
container, 16, 21
context manager, 38
continue

statement, 69, 76, 78
conversion

arithmetic, 45
string, 26, 49, 64

coroutine, 50
CPython, 90

D
daftar, 94
dangling

else, 76
data, 15

type, 16
type, immutable, 46

datum, 48
dbm

modul, 18
debugging

assertions, 66
decimal literal, 12
DEDENT token, 7, 76
def

statement, 80
default

parameter value, 80
definition

class, 68, 81
function, 68, 80

del
statement, 25, 67

deletion
attribute, 67
target, 67
target list, 67

delimiters, 14
descriptor, 91

122 Indeks

The Python Language Reference, Rilis 2.7.18

destructor, 25, 64
dictionary

display, 48
object, 18, 21, 27, 48, 51, 65

dictionary view, 91
diinterpretasi, 93
display

dictionary, 48
list, 47
set, 49
tuple, 47

division, 55
divmod

fungsi built-in, 35, 36
docstring, 81, 91
documentation string, 22
duck-typing, 91

E
EAFP, 91
EBCDIC, 17
eksepsi

AssertionError, 66
AttributeError, 51
GeneratorExit, 50
ImportError, 70, 71
NameError, 46
RuntimeError, 67
StopIteration, 50, 68
TypeError, 55
ValueError, 56
ZeroDivisionError, 55

ekspresi, 91
elif

keyword, 76
Ellipsis

object, 16
else

dangling, 76
keyword, 69, 76, 78

empty
list, 47
tuple, 18, 47

encoding declarations (source file), 6
environment, 41
error handling, 43
errors, 43
escape sequence, 10
eval

fungsi built-in, 73, 84
evaluation

order, 61
exc_info (in module sys), 23
exc_traceback (in module sys), 23, 78

exc_type (in module sys), 78
exc_value (in module sys), 78
except

keyword, 77
exception, 43, 69

handler, 23
raising, 69

exception handler, 43
exclusive

or, 56
exec

statement, 73
execfile

fungsi built-in, 73
execution

frame, 41, 81
restricted, 42
stack, 23

execution model, 41
expression, 45

Conditional, 60
conditional, 60
generator, 48
lambda, 60, 81
list, 61, 63, 64
statement, 63
yield, 49

extended
slicing, 52

extended print statement, 67
extended slicing, 17
extension

module, 16

F
f_back (frame attribute), 23
f_builtins (frame attribute), 23
f_code (frame attribute), 23
f_exc_traceback (frame attribute), 23
f_exc_type (frame attribute), 23
f_exc_value (frame attribute), 23
f_globals (frame attribute), 23
f_lasti (frame attribute), 23
f_lineno (frame attribute), 23
f_locals (frame attribute), 23
f_restricted (frame attribute), 23
f_trace (frame attribute), 23
False, 17
file

object, 22, 84
file-like object, 91
finally

keyword, 68, 69, 77, 78
find_module

Indeks 123

The Python Language Reference, Rilis 2.7.18

finder, 70
finder, 70, 91

find_module, 70
float

fungsi built-in, 36
floating point

number, 17
object, 17

floating point literal, 12
floor division, 92
for

statement, 69, 76
frame

execution, 41, 81
object, 23

free
variable, 41, 67

from
keyword, 70
statement, 41

frozenset
object, 18

func_closure (function attribute), 19
func_code (function attribute), 19
func_defaults (function attribute), 19
func_dict (function attribute), 19
func_doc (function attribute), 19
func_globals (function attribute), 19
func_name (function attribute), 19
function

anonymous, 60
argument, 18
call, 18, 54
call, user-defined, 54
definition, 68, 80
generator, 49, 68
name, 80
object, 19, 20, 54, 80
user-defined, 19

fungsi, 92
fungsi built-in

abs, 36
chr, 17
cmp, 27
compile, 73
complex, 36
divmod, 35, 36
eval, 73, 84
execfile, 73
float, 36
globals, 73
hash, 27
hex, 36
id, 15

input, 84
int, 36
len, 17, 18, 32
locals, 73
long, 36
oct, 36
open, 22
ord, 17
pow, 35, 36
range, 77
raw_input, 84
repr, 26, 49, 64
slice, 23
str, 26, 49
type, 15
unichr, 17
unicode, 17, 27

fungsi kunci, 93
future

statement, 72

G
garbage collection, 15
gdbm

modul, 18
generator, 92

expression, 48
function, 20, 49, 68
iterator, 20, 68
object, 22, 48, 50

generator expression, 92
GeneratorExit

eksepsi, 50
generic

special attribute, 16
GIL, 92
global

name binding, 73
namespace, 19
statement, 64, 67, 73

globals
fungsi built-in, 73

grammar, 4
grouping, 7

H
handle an exception, 43
handler

exception, 23
hash

fungsi built-in, 27
hash character, 6
hashable, 48, 92
hex

124 Indeks

The Python Language Reference, Rilis 2.7.18

fungsi built-in, 36
hexadecimal literal, 12
hierarchy

type, 16

I
id

fungsi built-in, 15
identifier, 9, 46
identity

test, 59
identity of an object, 15
IDLE, 93
if

statement, 76
im_class (method attribute), 20
im_func (method attribute), 19, 20
im_self (method attribute), 19, 20
imaginary literal, 12
immutable, 93

data type, 46
object, 17, 46, 48

immutable object, 15
immutable sequence

object, 17
immutable types

subclassing, 25
import

statement, 21, 70
importer, 93
ImportError

eksepsi, 70, 71
importing, 93
in

keyword, 76
operator, 59

inclusive
or, 56

INDENT token, 7
indentation, 7
index operation, 17
indices() (method slice), 23
inheritance, 81
input, 84

fungsi built-in, 84
raw, 84

instance
call, 32, 54
class, 22
object, 21, 22, 54

int
fungsi built-in, 36

integer, 17
object, 16

representation, 17
integer division, 93
integer literal, 12
interactive mode, 83
interaktif, 93
internal type, 22
interpreter, 83
inversion, 55
invocation, 18
is

operator, 59
is not

operator, 59
item

sequence, 51
string, 52

item selection, 17
iterable, 93
iterator, 93

J
Java

language, 17
jumlah referensi, 96

K
kamus, 91
kelas, 90
kelas basis abstrak, 89
key, 48
key/datum pair, 48
keyword, 9

elif, 76
else, 69, 76, 78
except, 77
finally, 68, 69, 77, 78
from, 70
in, 76
yield, 49

kunci interpreter global, 92

L
lambda, 94

expression, 60, 81
language

C, 16, 17, 20, 57
Java, 17
Pascal, 77

last_traceback (in module sys), 23
LBYL, 94
leading whitespace, 7
len

fungsi built-in, 17, 18, 32
lexical analysis, 5

Indeks 125

The Python Language Reference, Rilis 2.7.18

lexical definitions, 4
line continuation, 7
line joining, 6, 7
line structure, 5
lingkungan virtual, 97
list

assignment, target, 64
comprehensions, 47
deletion target, 67
display, 47
empty, 47
expression, 61, 63, 64
object, 18, 47, 51, 52, 65
target, 64, 76

list comprehension, 94
literal, 10, 46
load_module

loader, 70
loader, 70, 94

load_module, 70
locals

fungsi built-in, 73
logical line, 6
long

fungsi built-in, 36
long integer

object, 17
long integer literal, 12
loop

over mutable sequence, 77
statement, 69, 76

loop control
target, 69

M
magic

method, 94
magic method, 94
makefile() (socket method), 22
manajer konteks, 90
mangling

name, 46
mapping

object, 18, 22, 51, 65
membership

test, 59
mesin virtual, 97
metaclass, 94
method, 94

built-in, 20
call, 54
magic, 94
object, 19, 20, 54
special, 96

user-defined, 19
method resolution order, 94
minus, 55
modul, 94

__builtin__, 73, 83
__main__, 42, 83
array, 18
bsddb, 18
dbm, 18
gdbm, 18
sys, 67, 78, 83

modul tambahan, 91
module

extension, 16
importing, 70
namespace, 21
object, 21, 51

modulo, 55
MRO, 94
multiplication, 55
mutable, 94

object, 18, 64, 65
mutable object, 15
mutable sequence

loop over, 77
object, 18

N
name, 9, 41, 46

binding, 41, 64, 70, 71, 80, 81
binding, global, 73
class, 81
function, 80
mangling, 46
rebinding, 64
unbinding, 67

named tuple, 94
NameError

eksepsi, 46
NameError (built-in exception), 41
names

private, 46
namespace, 41, 95

global, 19
module, 21

negation, 55
nested scope, 95
new-style class, 95
newline

suppression, 67
NEWLINE token, 6, 76
next() (method generator), 50
None

object, 16, 64

126 Indeks

The Python Language Reference, Rilis 2.7.18

not
operator, 60

not in
operator, 59

notation, 4
NotImplemented

object, 16
null

operation, 66
number, 12

complex, 17
floating point, 17

numeric
object, 16, 22

numeric literal, 12

O
object, 15

Boolean, 17
built-in function, 20, 54
built-in method, 20, 54
callable, 18, 52
class, 21, 54, 81
class instance, 21, 22, 54
code, 22
complex, 17
dictionary, 18, 21, 27, 48, 51, 65
Ellipsis, 16
file, 22, 84
floating point, 17
frame, 23
frozenset, 18
function, 19, 20, 54, 80
generator, 22, 48, 50
immutable, 17, 46, 48
immutable sequence, 17
instance, 21, 22, 54
integer, 16
list, 18, 47, 51, 52, 65
long integer, 17
mapping, 18, 22, 51, 65
method, 19, 20, 54
module, 21, 51
mutable, 18, 64, 65
mutable sequence, 18
None, 16, 64
NotImplemented, 16
numeric, 16, 22
plain integer, 16
recursive, 49
sequence, 17, 22, 51, 52, 59, 65, 76
set, 18, 49
set type, 18
slice, 32

string, 17, 51, 52
traceback, 23, 69, 78
tuple, 18, 51, 52, 61
unicode, 17
user-defined function, 19, 54, 80
user-defined method, 19

objek, 95
objek berkas, 91
oct

fungsi built-in, 36
octal literal, 12
open

fungsi built-in, 22
operation

binary arithmetic, 55
binary bitwise, 56
Boolean, 60
null, 66
shifting, 56
unary arithmetic, 55
unary bitwise, 55

operator
and, 60
in, 59
is, 59
is not, 59
not, 60
not in, 59
or, 60
overloading, 24
precedence, 61
ternary, 60

operators, 13
or

bitwise, 56
exclusive, 56
inclusive, 56
operator, 60

ord
fungsi built-in, 17

order
evaluation, 61

output, 64, 67
standard, 64, 67

OverflowError (built-in exception), 16
overloading

operator, 24

P
package, 70
paket, 95
paksaan, 90
parameter, 95

call semantics, 53

Indeks 127

The Python Language Reference, Rilis 2.7.18

function definition, 79
value, default, 80

parenthesized form, 47
parser, 5
Pascal

language, 77
pass

statement, 66
pembangkit, 92
pemetaan, 94
penghias, 90
pengumpulan sampah, 92
PEP, 95
pernyataan, 96
physical line, 6, 7, 10
plain integer

object, 16
plain integer literal, 12
plus, 55
popen() (in module os), 22
positional argument, 96
pow

fungsi built-in, 35, 36
precedence

operator, 61
primary, 51
print

statement, 26, 67
private

names, 46
procedure

call, 64
program, 83
Python 3000, 96
Python Enhancement Proposals

PEP 1, 96
PEP 236, 72
PEP 238, 92
PEP 255, 68
PEP 278, 97
PEP 302, 70, 91, 94
PEP 308, 60
PEP 328, 71
PEP 342, 51, 68
PEP 343, 38, 79, 90
PEP 3116, 97
PEP 3119, 32

Pythonic, 96

Q
quotes

backward, 26, 49
reverse, 26, 49

R
raise

statement, 69
raise an exception, 43
raising

exception, 69
range

fungsi built-in, 77
raw input, 84
raw string, 10
raw_input

fungsi built-in, 84
readline() (file method), 84
rebinding

name, 64
recursive

object, 49
reference

attribute, 51
reference counting, 15
relative

import, 71
repr

fungsi built-in, 26, 49, 64
representation

integer, 17
reserved word, 9
restricted

execution, 42
return

statement, 68, 78
reverse

quotes, 26, 49
RuntimeError

eksepsi, 67

S
scope, 41
send() (method generator), 50
sequence

item, 51
object, 17, 22, 51, 52, 59, 65, 76

set
display, 49
object, 18, 49

set type
object, 18

shifting
operation, 56

simple
statement, 63

singleton
tuple, 18

slice, 52, 96

128 Indeks

The Python Language Reference, Rilis 2.7.18

fungsi built-in, 23
object, 32

slicing, 17, 18, 52
assignment, 65
extended, 52

source character set, 6
space, 7
special

attribute, 16
attribute, generic, 16
method, 96

special method, 96
stack

execution, 23
trace, 23

standard
output, 64, 67

Standard C, 10
standard input, 83
start (slice object attribute), 23, 52
statement

*, 81
**, 81
@, 80
assert, 66
assignment, 18, 64
assignment, augmented, 65
break, 69, 76, 78
class, 81
compound, 75
continue, 69, 76, 78
def, 80
del, 25, 67
exec, 73
expression, 63
for, 69, 76
from, 41
future, 72
global, 64, 67, 73
if, 76
import, 21, 70
loop, 69, 76
pass, 66
print, 26, 67
raise, 69
return, 68, 78
simple, 63
try, 23, 77
while, 69, 76
with, 38, 79
yield, 68

statement grouping, 7
stderr (in module sys), 22
stdin (in module sys), 22

stdio, 22
stdout (in module sys), 22, 67
step (slice object attribute), 23, 52
stop (slice object attribute), 23, 52
StopIteration

eksepsi, 50, 68
str

fungsi built-in, 26, 49
string

comparison, 17
conversion, 26, 49, 64
item, 52
object, 17, 51, 52
Unicode, 10

string literal, 10
struct sequence, 96
subclassing

immutable types, 25
subscription, 17, 18, 51

assignment, 65
subtraction, 56
suite, 75
suppression

newline, 67
syntax, 4, 45
sys

modul, 67, 78, 83
sys.exc_info, 23
sys.exc_traceback, 23
sys.last_traceback, 23
sys.meta_path, 70
sys.modules, 70
sys.path, 70
sys.path_hooks, 70
sys.path_importer_cache, 70
sys.stderr, 22
sys.stdin, 22
sys.stdout, 22
SystemExit (built-in exception), 43

T
tab, 7
target, 64

deletion, 67
list, 64, 76
list assignment, 64
list, deletion, 67
loop control, 69

tb_frame (traceback attribute), 23
tb_lasti (traceback attribute), 23
tb_lineno (traceback attribute), 23
tb_next (traceback attribute), 23
teks tiga-kutip, 96
termination model, 43

Indeks 129

The Python Language Reference, Rilis 2.7.18

ternary
operator, 60

test
identity, 59
membership, 59

throw() (method generator), 50
tipe, 96
token, 5
trace

stack, 23
traceback

object, 23, 69, 78
trailing

comma, 61, 67
triple-quoted string, 10
True, 17
try

statement, 23, 77
tuple

display, 47
empty, 18, 47
object, 18, 51, 52, 61
singleton, 18

type, 16
data, 16
fungsi built-in, 15
hierarchy, 16
immutable data, 46

type of an object, 15
TypeError

eksepsi, 55
types, internal, 22

U
unary

arithmetic operation, 55
bitwise operation, 55

unbinding
name, 67

UnboundLocalError, 41
unichr

fungsi built-in, 17
Unicode, 17
unicode

fungsi built-in, 17, 27
object, 17

Unicode Consortium, 10
universal newlines, 97
UNIX, 83
unreachable object, 15
unrecognized escape sequence, 11
urutan, 96
user-defined

function, 19

function call, 54
method, 19

user-defined function
object, 19, 54, 80

user-defined method
object, 19

V
value

default parameter, 80
value of an object, 15
ValueError

eksepsi, 56
values

writing, 64, 67
variable

free, 41, 67

W
while

statement, 69, 76
whitespace, 7
with

statement, 38, 79
writing

values, 64, 67

X
xor

bitwise, 56

Y
yield

expression, 49
keyword, 49
statement, 68

Z
Zen of Python, 97
ZeroDivisionError

eksepsi, 55

130 Indeks

	Pengenalan
	Implementasi Alternatif
	Notasi

	Lexical analysis
	Line structure
	Other tokens
	Identifiers and keywords
	Literals
	Operators
	Delimiters

	Data model
	Objects, values and types
	The standard type hierarchy
	New-style and classic classes
	Special method names

	Execution model
	Naming and binding
	Pengecualian

	Expressions
	Arithmetic conversions
	Atoms
	Primaries
	The power operator
	Unary arithmetic and bitwise operations
	Binary arithmetic operations
	Shifting operations
	Binary bitwise operations
	Perbandingan
	Boolean operations
	Conditional Expressions
	Lambdas
	Expression lists
	Evaluation order
	Operator precedence

	Simple statements
	Expression statements
	Assignment statements
	The assert statement
	The pass statement
	The del statement
	The print statement
	The return statement
	The yield statement
	The raise statement
	The break statement
	The continue statement
	The import statement
	The global statement
	The exec statement

	Pernyataan gabungan
	The if statement
	The while statement
	The for statement
	The try statement
	The with statement
	Definisi fungsi
	Definisi Kelas

	Komponen tingkat atas
	Program Python lengkap
	Masukan dari Berkas
	Masukan interaktif
	Masukan ekspresi

	Spesifikasi Lengkap Tata Bahasa
	Ikhtisar
	Tentang dokumen-dokumen ini
	Kontributor untuk dokumentasi Python

	Sejarah dan Lisensi
	Sejarah perangkat lunak
	Syarat dan ketentuan untuk mengakses atau menggunakan Python
	Lisensi dan Ucapan Terima Kasih untuk Perangkat Lunak yang Tergabung

	Hak Cipta
	Indeks

